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ABSTRACT  
 

The Marine Icing project, in industrial collaboration with Statoil, explores and develops in-depth 

research on marine icing phenomena, and the appropriate sensor technology to detect ice 

accretion in marine and offshore environments.  The overall project includes detailed analytical 

concepts, simulations, and experiments of on and off deck ice accretion activities in the form of 

wave breakup and droplet freeing phenomena.   

Part of the project is dedicated to developing appropriate low cost sensors for ice accretion 

detection in these harsh environments. Proposed sensors should be autonomous and easy to 

modify. After examining the available ice detecting systems, it was decided to explore capacitive 

techniques, a concept that have been used in other industrial applications like tilt sensing, liquid 

level sensing, and accelerometers. However, the capacitive sensing technique has not been 

explored for marine ice detection and therefore will be developed in this thesis.  

A capacitive based sensor is simulated, designed, tested, and documented in this thesis. The 

proposed sensor consists of a copper tracing on a PCB, capacitance to digital converter circuit 

and a microcontroller. The whole system runs on a simple battery system or powered by a 

programming cable, depending on the area of deployment. The microcontroller controls the 

capacitance to digital converter circuit as well as the temperature sensing circuit. Additionally, 

this research compares the change in capacitance observed with the change in ice thickness; 

proper sensor calibration is drawn from this result. The system is used to test ice accretion due to 

fresh and saline water, observation and conclusions are made based on the data obtained.  This 

thesis focuses on developing a technical start up point for capacitive marine ice sensing. 
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Chapter 1  

Introduction 

Marine atmospheric conditions in arctic regions pose a number of problems that are unique to the 

cold regions around the world. The most intriguing problem is presented by sub-freezing air 

temperatures combined with wave actions and their impact with the offshore structures. In 

Canada, ice loads pose the most imminent danger, especially in offshore oil drilling operations.   

Most of alternative Canadian Oil and Gas wells are offshore, and at least 200 wells have been 

successfully drilled with high rate of success in offshore Newfoundland till date [1]. Offshore 

vessels and structures are used during production and transportation phases of these wells. 

Furthermore, various types of vessels are used to transport oil and offshore workers to and from 

these sites. FPSOs (Floating production storage and offloading) are also used in these areas, and 

other moving vessels such as ice breakers and transport vehicles are often employed during these 

activities.  Danger due to super structure ice accretion or freezing spray has been the main 

concern for arctic vessels due to ice loads. 

In Canadian arctic waters, vessels operating in late fall and winter are likely to experience some 

degree of icing phenomenon in exposed areas of the structures such as decks, railing and  

bulwarks. Marine icing could seriously blight vessel operation, safety, and stability [2]. Ice loads 

could alter the dynamics of ship movement as the center of gravity is raised, which could lower 
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the speed of the ship and cause problems when manoeuvring. Furthermore, ice loads increase the 

overall weight of the ship and increase the cost of operation. 

Unfortunately, this natural phenomenon is not preventable with the existing technology; the only 

remedies is to provide suitable means to provide accurate information on allowable ice loads on 

a vessel and provide means to remove them. In depth ice accretion research is underway in 

recent years; many government funded institutions in the country embark on research in this 

area. However, ways to mitigate the effect of marine icing are conducted with limited success so 

far. Most operational vessels resolve in a routine check of the structure surfaces and mechanical 

removal of ice.   

Ice accretion is a slow and continuous process which necessitates proper investigation because of 

the hazards it might cause. In Canadian arctic waters, most icing on vessels can result from 

saltwater moisture and impinging freezing rain or wet snow known as spray icing. Ice accretions 

in ships are as a result of fast sea spray from sea wind and wave generated sprays in form of 

super cooled droplets [3] .  Spray icing can occur over time, under favourable cold temperatures 

as these super cooled droplets freezes onto parts of the vessel before the runoff time elapses [2]. 

Reports show that different areas of the arctic region experience various lengths of natural icing 

yearly, with most areas experiencing less than 25 hours and some experiencing more icing 

periods. Baffin Bay, Davis Strait, and Amundsen Gulf near Cape Parry experience 25 to 50 hours 

of icing annually. Further north, areas like Brevoort and resolution Islands icing may occur for as 

many as 100 hours each year [2]. The marine icing also includes the ocean spray introduction 

with the frozen structure and thus this phenomenon can occur at much southern latitude. 
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The emerging field of ice detection and removal is slowly gaining interest and most offshore 

vessels operations are seeking proper means to detect icing on a surface in real time. Information 

gained is used to design techniques or to apply proper measures to remove marine ice on 

structures. In order to design systems for ice accretion detection, an understanding of the 

dielectric properties of ice and water is vital. The purpose of this thesis is to provide a workable 

sensor module for ice accretion detection using capacitive techniques. This thesis demonstrates 

the overall engineering design procedures of the sensor module. In addition, the parts selection 

criteria will also be discussed and a final prototype of the system will be presented at the end of 

the thesis. Experimental results and discussion of the overall contribution of the research is 

documented in this thesis. 

1.0 Thesis outline 
Chapter 2 of this thesis provides the necessary background information and literature review of 

the overall concept. This chapter covers an in-depth research on state of the art direct ice 

accretion detection methods, comparisons between them, and some of the limitations are 

discussed. The basic physics and technical background of capacitances and dielectrics will be 

presented in the Chapter 3.  Additionally, Chapter 3 presents the relationship between these 

electrical parameters and electric field during ice sensing. Furthermore, Chapter 4 documents all 

the capacitive plate electrostatics simulation using COMSOL Multiphysics and useful results 

needed to validate the actual experiments. Chapter 5 of this thesis presents the main sensor 

electronics, design, and schematics, this chapter also contain the full design and component 

selection criteria documentation. Chapter 6 discusses the final system prototype on a proto-
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board. This prototype is the final design stage needed in this thesis, further work on this 

prototype is included in the last chapter.  

The prototype designed in this thesis is used as it is for atmospheric and sea icing accretion 

experiments. Discussions of these results are presented in Chapter 7 of this thesis; the summary 

of the operating limits and the effectiveness of capacitive sensing for marine icing are also 

presented in this chapter. Chapter 8 presents an important component of the thesis where a more 

realistic analysis using Statistical methods to analyse a multiphase phase medium. Chapter 9 

summarises the research conclusion, contribution and future work. 

Additionally, this thesis contains an appendix section of the full microcontroller codes, header 

files, and data acquisition codes used in obtaining the results discussed in this thesis.  
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Chapter 2  

Literature Review 

2.0 Introduction  

Ice accretion is a very complex phenomenon; hence an in-depth understanding provides a way 

forward in designing proper systems for marine ice sensing. This section reviews the conducted 

researches on the basic impact of icing, icing accretion process, and the state of the art ice 

detection sensors and their various applications. Most offshore operations and transportation 

activities take icing phenomenon seriously and often work out ways to remove, or mitigate icing 

on and off deck of marine vessels. This section discusses the impact of marine icing and presents 

various ice sensors commercially available and their method of operation. In addition, some of 

these sensors have been designed but never tested in marine environments, and some have been 

tested but have not provided meaningful results of offshore ice thickness. On shore, most of 

these sensors have shown some promise in ice accretion detection. The general impact of icing 

will be presented beforehand to provide a better undemanding of the research problem statement. 

2.1 General Impact of Icing 
Icing on surfaces of ships and offshore structures in sub-arctic regions impose a dead load that 

could affect the economics of operating the structures during the winter months. Ice loads have 

also been proved to be dangerous to the safety of the personnel as smaller transport vessels could 
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capsize when ice loads are unevenly distributed on the vessel. Ice loads could accumulate on 

stairs, handrails, decks, and other exposed areas of the offshore structure; without proper 

measures in place to control or remove them, and ice loads could grow a hundreds of centimeters 

thick posing some adverse problems. The rate of icing in marine structures increases with an 

increase in sea spray, which in return depends on other environmental conditions such as 

temperature, relative humidity, wind speed and wind direction etc. 

Icing in offshore structures can lead to increased cost of operation in terms of fuel cost, 

maintenance and some engineering considerations for arctic chipping operations. Due to high ice 

accretion rate transportation routing might be considered which might not be cost effective all 

the time. To maximise the performance of these offshore vessels and structures, meteorological 

instruments are generally mounted on meteorological towers to measure environmental 

parameters such as humidity, ambient air temperature, wind speed, and direction. These 

instruments can only provide information on the environmental conditions leading to ice 

accretion but do not provide a good analysis on the amount of ice presently on the structure. In 

arctic regions, ice loads problems are caused mainly from atmospheric icing [4]. Atmospheric 

icing is the process by which ice deposits and grows on a surface or structure as a result of 

exposure to atmospheric conditions. There are two types of atmospheric icing, in-cloud icing and 

precipitation icing. In-cloud icing occurs when super cooled water drops impact on the surface of 

a structure resulting in the formation of ice; these droplets could results from wave breakups, and 

in cloud icing typically forms on-deck on marine vessels. Precipitation icing is formed due to wet 

snow or freezing rain, this is occurs very often in aircraft wings in higher altitudes [4].  
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2.2 Methods of Ice detection 
Methods of ice detection are application dependent and also depend on the variables needed to 

be detected. Some ice sensors simply measure the environmental conditions leading to ice 

accretion such as temperature, wind speed, precipitation, and relative humidity. These are 

important parameters used to determine icing conditions. On the other hand, some sensors 

measure the ice thickness as the icing occurs. Methods of ice accretion detection are broadly 

divided into direct and indirect methods of ice detection. 

2.2.1 Indirect method of ice detection  
 
The indirect method of ice detection involves measuring the atmospheric conditions that leads to 

prediction of an upcoming event. Climate conditions such as relative humidity, atmospheric 

temperatures, and wind velocity are some conditions that could lead to icing event in open 

waters. Data collected from various test sites are used alongside some Pre-determined Empirical 

models to forecast upcoming events. Fikke et al reported some useful results by using 

inventories of past and present atmospheric conditions from various test sites; these results are 

used in predicting icing phenomena in various European cities [4]. Some researchers have built 

their predictive models based on indirect method of ice detection, but as a result of global 

warming, these results have often proven to be inaccurate and needed to be updated more 

frequently, for this reason, more useful results and conclusions are sought after.  

2.2.2 Direct method of ice detection 
The direct method of ice involves a systematic ice measurement in real time as ice accretion 

activity occurs. This is based on detecting change in physical and chemical properties during ice 

build-up. Parameters such as mass, dielectric constants, conductivities or even inductance 
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properties of ice are often detected using some known sensors. Research also shows that these 

parameters varies from one type of ice to another, hence it provides a way to distinguish various 

forms of ice. Li et al proposed a system applies fibre optic technology to measure the intensity of 

the absorbed or scattered energy when a beam passes through an ice sheet [5]. The result of the 

research is able to distinguish between glazes, rime ice and snow. This thesis provides a close 

look at the existing commercially available ice sensors. Although, this thesis explores primarily 

the direct methods of ice accretion, commercially available sensors are for both direct and 

indirect ice accretion sensors are reviewed.  

2.3 Some Icing Sensors  
There are currently no proven sensors for offshore marine applications capable of detecting ice 

accretion without the need for constant routine maintenance. Some advancement has been made 

in producing sensors for ice detection, however over the years most icing sensors have been 

tailored towards the aerospace industries. Very light ice accretion occurs in aircraft wings as a 

result of very high velocity and altitude which they travel. By design, these sensors are not 

adaptable for marine icing where heavy ice accretion occurs. Marine icing conditions also 

present the harshest environment possible; therefore, the sensor robustness is paramount.  This 

thesis will cover a brief review of the available sensors. 

2.3.1 Goodrich ice detector model 0871LH1 
 
The Goodrich ice detector model 0871LH1 sensor is applicable in the aviation industry. It is a 

low power sensor manufactured by UTC aerospace systems and this sensor is currently under 

improvement. The Goodrich ice detector model 0871LH1 detects icing accretion on the probes 
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by monitoring the change in frequency as the mass of ice on the surface increase with time [6]. 

The shift in resonance frequency of the probe is monitored as it reaches or approaches its set 

point; this triggers the de-icing mode for a certain time to remove the icing on the probes. One of 

the short comings of this sensor is its inability to distinguish between water, air, and ice. Several 

experiments also conducted by the manufacturer’s shows that the Goodrich ice detector can only 

measure very thin ice accurately. This ice sensor also has not been tested in offshore marine 

environments, but it has shown some proven applicability in turbine blades, transmission lines 

and antennas [6]. Additionally, newer model sensors like the Combitech ice monitor can monitor 

heavier ice thickness and has been tested in the power industry.  

2.3.2 Combitech Ice Monitor  
 
The Combitech Ice monitor is manufactured by Combitech, and industrially marketed and 

applied by SAAB technologies, built based on the ISO 12494 standard. This sensor is originally 

designed and tested for icing surveillance on power lines as most high voltage power line in cold 

regions experience sever ice thickness in the winter. The operation of the Ice monitor is one of 

the simplest in the icing sensor technology where the mass of ice accumulated on a surface is 

measured gravitationally. The sensor has very low power performance by design which employs 

a freely rotating steel pipe resting on a rod placed on load cells. In principle, the load cells record 

the ice loads as icing activates occurs on the freely rotating steel pipes [7]. Furthermore, the 

sensor has a moving mechanical part which limits its application in very harsh marine 

environments. Additionally, unlike the ice detector model, the Combitech has no means of de-

icing like the ice detector model 0871LH1.  
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2.3.3 Instrumar Ice Sensor 

The Instrumar limited ice sensor is the only sensor that combines the direct and indirect method 

of ice accretion. The principle of operation involves measuring the surface temperature and 

electrical impedance [8]. Substance that enters or contacting the sensor enters the 

electromagnetic field, and the change in electromagnetic field is detected. The device is 

programmed with a pre-set set point for icing condition and a notification is obtained when this 

set point is reached. Also, when an expected icing condition is reached, the Instrumar ice sensor 

triggers an alarm in form of an electrical signal. This same signal is used to trigger the heating 

devices and notification systems. The device also interfaces with full software for real time data 

acquisition [9]. The Instrumar measures moisture content, temperature, conductivity and is 

highly adapted in aerospace applications.  

 

2.3.4 HoloOptics T40-series icing rate sensors 

HoloOptics manufactures the T40-series which is an improved modification from the old T20 

series. This sensor design is unique and comprises a four curved bars made of stainless steel with 

infrared probes installed. Each curved bar has a photo detector and a probe built as a single unit. 

The probe emits infrared light that is reflected by a reflector and the ice thickness is determined 

by the amount of light that bounces back to the probe. The HoloOptics T20 is an older series that 

has been tested in various sites to measure ice levels of about 0.01mm thick, reasonable results 

were obtained. The sensor is designed to produce an indication in form of a programmed alarmed 

if 95% of the probe is covered with 50μm to 90μm of any type of ice [4]. The de-icing 

mechanism in the sensor is deactivated in temperatures above +10oC so that heating is only 
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required when needed. De-icing time while the probe heating is activated depends on some 

environmental factors such as surface temperature, air temperature, ice thickness, and the 

insulted melting power [10]. This measurement is a hundred times of the order of magnitude less 

than the application presented in this thesis; hence, this is not suitable for marine icing.  

2.4 Capacitive Ice Sensor 
Capacitive ice sensors are designed to generate an electric field cloud which is used to detect the 

presence of dielectric materials that enter the region of the field. This change in capacitance is 

used to determine the material in the region. Tiuri et. al. [11] conducted experiments in this area, 

results shows that the dielectric constant of dry snow is determined by its density and that for wet 

snow, is determined by the imaginary part of the density measurement. The experiment further 

proved that there is some volumetric wetness dependence in increasing the real part of the 

density measurement, due to liquid water. In other words, the presence of liquid water will 

increase the dielectric property of dry snow.  Furthermore, the electrical properties of ice have 

also been further investigated and have been used to measure the presence and thickness of ice 

on a surface, as presented by Evanes [12]. Weinstein [13], Kwadwo [14] and Jarvinen [15]. 

 

2.4.1 Cylindrical probes ice detection technique  
 
The experiment conducted by kwadwo [14], using two aluminum based cylindrical probes to 

form a capacitive sensor probe. The experimental report shows that the fringing electric field 

between two electrical charged cylindrical probes can be disrupted by the presence of ice; this 

increases the capacitance of the probe pair and decreases the resistance. This experiment is 

conducted in a controlled environment where super cooled droplets are directed towards the 
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probes perpendicular to the electric field lines. The super cooled droplets are allowed to grow on 

the probes in controlled conditions as shown in Figure 2.1 and 2.2 below, The ratio of the 

increase in capacitance measures at a particular thickness of ice compared to clean air is used as 

a measure to determine the thickness of ice on the probes. The resistance between the two probes 

increases with an increase in ice accretion as a result of a decrease in the air gap. The change in 

capacitance, resistance, and voltage between the two probes were also investigated for various 

types of ice. Rime, frazil, and glaze ice were also compared and the resulting capacitances were 

analysed. This experiment proves to be consistent with the expected result of capacitive sensing.  

Results also showed that an increase in the salt content of the ice results in a decreased DC 

voltage, but does not particularly change the dielectric property of the ice which effects a change 

in capacitance. This is an important conclusion when applying capacitive sensor in marine 

offshore applications. This particular sensor was designed and tested in a lab scale; hence it also 

measures ice thickness for a few millimetres. The EAG 200 possesses the ability to measure 

heavier ice thickness.  

 

Figure 2.1 Super cooled droplets approaching a capacitive probe 
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Figure 2.2  Ice accretion on parallel cylindrical probes. 

 
 

2.4.2 EAG 200 
 
The EAG 200 is a German engineered icing sensor. The ice load sensor EAG 200 is an automatic 

icing measurement device that has been used in various European measuring sites to determine 

ice loads based on the weight of ice accumulated on a vertical pole using an electromechanical 

scale system [16].  The EAG 200 measures within a range of 0 to 10kg with an accuracy level of 

± 50 g. The ice poles are has a diameter of 0.035m and a pole length of 1m made of PVC. 

Additionally, the comparison of EAG 200 results with those of manually operated poles show 

the reliability of EAG200‘s data. Data collected over a long period of time shows that the EAG 

works well for small amount and operate well for short icing periods [4].  All weight 

measurement based ice sensor work well in state environments such as weather stations and test 

sites. However, a floating marine structure presents a dynamic condition as a result of strong 

wind gusts and structural vibration, which rules out load sensors in our application.  
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Chapter 3  

Technical background: Capacitive Sensing  

3.0 Introduction  
 
Capacitive sensing technology has grown in popularity in recent years to replace generic optical 

detections and mechanical sensing techniques in various engineering applications. Capacitive 

sensing technique is applied in direct sensing applications such as chemical composition, electric 

field and liquid level sensing. Industrial applications of these sensing techniques include motion 

detection, acceleration, moisture, water and ice detection. In advanced applications, this 

technique has also been used to detect gas composition and also provides alerts on the presence 

of hazardous gases in an environment. 

The design of capacitive sensors often have two sensing electrodes in a single dielectric, where 

one electrode is grounded relative to the other excited electrode, which turns the capacitance 

changes into voltage variations. The next section introduces capacitances and dielectrics and also 

shows the basic physics behind capacitances, this also illustrates the concept of dielectrics.  

3.1 Capacitance and Dielectrics  
In electronics engineering, the electrical concept of capacitances is based on capacitors. As 

simple as this application might seem, it is a used as building block in many electronics design. 

Capacitors are electrical passive elements which have the ability to store electric charge; this 
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electric charge creates a potential difference across the positive and negative plates that comprise 

a capacitor. The simplest form of capacitor consists of two non-contact parallel plates of known 

metal materials electrically separated by air. Electrolytic capacitors could be separated by other 

insulating materials such as ceramic or wax; such materials are known as dielectrics.  

Capacitators vary in shape and size depending on the application and the voltage rating which 

they are designed for; generally, but the basic internal configuration is unchanged. Figure 3.1 

[14] shows the basic setup of a capacitor, it comprises of two conductors carrying equal but 

opposite charges, and the electric field interaction often starts from positive plate and terminates 

in the negative plate.   

 

Figure 3.1 Basic configuration of a capacitor 

 

There are two states of a capacitor, the charge state and the uncharged state. In the uncharged 

state, the charge on either one of the conductors is zero; this means that there are no electrons 

moving from the positive plate to the negative plate at this time. A charging process occurs when 

a direct current is placed across the capacitive plates. During the charging process, a charge Q is 

moved from one conductor to the other one, the charged conductor assumes a positive charge 

+Q, and the other a negative charge -Q . During this process, a potential difference is created 
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across the plates and the positively charged plate is said to be at a “higher potential” and the 

negative charged plate at a “lower potential”. The flow of DC current through the capacitor is 

impeded by the insulating layer; the process of charge exchange presents a voltage across the 

plates in form of an electrical charge, here the capacitor is said to “store” the charge [17]. 

The presence of a steady DC current means the capacitive plates remain charged, until the 

capacitor reaches its steady state condition, and the charge also increases with the voltage. There 

are also various electrical methods to discharge a capacitor which will be discussed in later 

sections.   

3.2 Electric Field 
The Electric field effect is always associated with the capacitance of a capacitor depending on 

the type of dielectrics in between the plates. The voltage applied to the end of the sensing plates 

produces an electric field from the surfaces. These field lines define the capacitance between a 

pair of conductors in a much complex manner. Ideally, the electric field should be contained 

within the space between the sensing plates and the target material. In the case of an ideal 

capacitor, the dielectric will be assumed to be a vacuum, which allows the materials to be 

detected based on their dielectric properties as they “break” the electric field lines. Although 

there exist some other capacitor topology such as the cylindrical capacitors and line capacitors, 

but the scope of this thesis is concerned with two parallel conductors which are close together 

with the lines of electric field arising from one conductor which terminates on the neighbouring 

conductor in a small distance of separation. Figure 3.2 [18] shows a simple two parallel plate 

capacitor in vacuum with area A and distance of separation d, the capacitance could be computed 

by assuming one plate carry a charge +Q and the other plate –Q; and all field lines originate at 
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the positive plate and terminates at the negatively charged plate. The relationship between the 

electric field and the surface density is given by: 

𝐸 =
𝜎

ԑ0
           (3-1) 

      

 

Charge density also related to the charge Q and the area A by  

𝜎 =
𝑄

𝐴
       (3-2) 

           
In this case, the direction of the electric field is ignored for a uniform electric field, assuming it is 

very nearly true for plates whose dimensions are large compared to their separation [18].  

 

Figure 3.2 Configuration of a parallel plate capacitor 

 
Often, the voltage difference Vba between the two plates is expressed in terms of work done on a 

single charge as it moves from the positive plate to the negative plate. The work done by this 

charge is given by  

 

𝑉𝑎𝑏 =
𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒

𝑐ℎ𝑎𝑟𝑔𝑒
 = 𝐹𝑑

𝑞
 =Ed    (3-3) 
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The perimeter for measuring the capacity of a conductor to store charge is called the capacitance 

and denoted by C. By definition, the capacitance of a charge is the ratio of the charge stored to 

the potential difference between the two plates as generated by the charge.  

 

𝐶 =
𝑄

𝑉𝑎𝑏
      

       (3-4) 

A good storage device should have high capacitance and high work done per charge; hence, from 

equation (3-2) and (3-3) capacitance can be expressed as: 

 

𝐶 =
𝑄

𝐸𝑑
       (3-5) 

 
 
Combining (3-1) and (3-5), a more compact equation for capacitance as 
 
 

𝐶 =
𝑄ԑ𝑜

𝜎𝑑
 = 𝑄𝐴ԑ𝑜

𝑄𝑑
 = 𝐴ԑ𝑜

𝑑
    (3-6) 

 
 
Additionally, in view of the equation above, an increase in capacitance is caused by an increase 

in charge stored in the capacitor which in turn results in an increase in the potential difference 

between the plates. From equation (3-5), this will in effect result in an in increase in the electric 

field. 

This thesis will explore mainly the concept related to the effect of dielectrics on capacitance. As 

explained, a dielectric is a non-conducting material placed between a capacitive plate, and this 

often increases the capacitance. 
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𝐸𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
𝐸0

𝑘
      (3-7) 

 
 

 𝑉𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
𝑉0

𝑘
      (3-8)  

      

The equation shows that the potential difference across free space is higher than the potential 

difference with a real dielectric. From (3-4)  

   

𝐶 =
𝑄

𝑉𝑎𝑏
 = 𝑘

𝑄

𝑉𝑜
 = 𝑘𝐶𝑜    (3-9) 

 
 
Hence, this will result into a higher capacitance.  
 
Generally, this thesis fundamentally covers this principle as relevant to marine icing, the change 

in capacitance is expected to be higher as the electric field lines are broken in the presence of 

icing and these phenomena will be used to measure ice thickness. Simulation and experimental 

results will also be used to support these equations.  
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Chapter 4  
 

Capacitive Sensor Trace Simulation Experiments  

4.0 Introduction  
This chapter begins with a discussion of the selection criteria for the copper plate materials. The 

selection process will explore various capacitive plate configurations and simulations in 

COMSOL Multiphysics.  

4.1 Advantage of capacitive sensing  
In designing sensors for harsh environments, the critical criteria to consider are cost, robustness, 

and adaptability. Capacitive sensing is advantageous over all other types of sensing method due 

to the following reasons. 

 Simplicity and very low cost to build. 

 Capacitive sensing does not involve any moving, rotating, or vibrating mechanical parts 

which after some tear and ware could reduce efficiency and could also damage the 

system. Over time, this will increase the operation and maintenance cost of the whole ice 

detection system. 

 Capacitive sensing involves very low power electronics in the overall design; this is due 

to the simplicity of the system. 
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 Marine icing sensor should be easily deployable in harsh environments with very little 

supervision. Sub-zero temperatures does not have an adverse effect on capacitive sensing. 

For this reason, it is much convenient to deploy on offshore rigs and vessels, and 

monitoring this sensors will require very little technical expertise. 

 Due to the simplicity of the system, capacitive sensing has very low maintenance costs. 

Dust or debris could be easily cleaned off the surface when there is no ice accretion.   

The above advantages outweigh its inability to measure very thick ice load like the ultrasonic 

sensing [20], as illustrated in the literature review of this thesis. Although there is no off the 

shelf capacitive sensor for marine icing available, and very little work or research has been 

done in this area to improve the ice sensing capability of capacitive sensors  this technique of 

ice sensing still remains and ideal economical choice for low costs, ice sensing for offshore 

vessels. Unfortunately there is no literature comparison between the performances of other 

types of sensing techniques against the capacitive sensing technique as this technique has not 

been explored for offshore harsh weather applications.  

4.2 Capacitive Sensor Topology  
Generally speaking, the topology chosen for capacitive sensors are application dependent. A 

careful review of the material to be sensed would be done before choosing a topology. The 

sensor topology selected for marine applications depends on: 

 Desired Sensitivity, 

 Distance of Sensor-to-Target, and   

 Dielectric constant of the target material.  

The basic topology for capacitive sensing includes. 



22 
 

 Parallel Plates 

 Parallel fingers 

 Single sensors (used for human recognition). 

4.2.1 Parallel Plates  

The parallel plate topology works exactly as the parallel plate capacitor explained in the previous 

section. For parallel plate capacitance is, follows  

             

𝐶 =
ℇ 𝐴

𝑑
 =

 𝑘ԑ0𝐴

𝑑
      (4-1) 

Where  

C is the overall capacitance (Farads) 

A is the Area (m2) 

d is the distance of separation (m) 

ℇ0 is the permittivity of free space given by 8.854 x 10-12  F/m 

ℇr is the relative permittivity of the dielectric material between the plates  

Note: ℇr=1 for free space; ℇr>1 for all media, approximately= 1 for air. 

This topology is used mainly in material sensing and analysis, and the change in capacitance 

between the plates will change accordingly depending on the difference between the dielectric 

constant for each material. Figure 4.1 [21], shows the typical arrangement of this topology. The 

material sensed is inserted between the sensing electrode and the ground electrode; this allows 

the material between to be identified by the dielectric property.  

For this topology, a high resolution from the capacitance to digital converter interface circuit 

could be used to detect small changes in the dielectric. Hence, an increase in material thickness 
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results in an equal increase in capacitance and this observation is often proven by experiments. 

The capacitance could be related to the thickness of the material. This variable could be 

calculated by the difference between the dielectric properties of the material with air.  

 

Figure 4.1  Parallel plate Topology for Material Analysis. 

 

4.2.2 Parallel Fingers  

As the name implies the parallel fingers topology is designed to be axial to the z-axis, the sensing 

materials and the fringing field lay in the same plane on the same side as shown in Figure 4.2 

[22], this makes the fringing field dominance in this topology. In addition, unlike the parallel 

plate capacitance, the sensing materials lay in opposite sides creating smaller fringing field lines. 

The setup in the parallel fingers causes the electric field to be directed outwards towards the 

target which makes the parallel fingers a good candidate for liquid height measurement [13] [21].  

The complexity of this typology makes calculating the capacitance very complicated as the area 

of the electric field fringing path is greater than the area between the ground and the charged 

surfaces. This thesis will explore an expert FEM software in COMSOL Multiphysics to perform 

a simulated will be used to provide a simulated capacitance for this topology, and the result will 

be trusted as a good measure with the actual laboratory measurement. 
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Figure 4.2 Parallel Fingers Topology 

 

The parallel finger topology is often used when the material to be sensed has a large surface area, 

like water level sensing, moisture, or ice sensing. Additionally, this topology allows for 

modifications in the setup for a wide directivity along the electrodes. In this thesis, different 

modifications were made to this topology and a sensitivity test was also performed before the 

sensors were actually fabricated to be in-corporate with the sensing circuitry.  

4.3 Design Considerations 
 

4.3.1 Simulation Software  
 
 
The choice of simulation software is paramount in any engineering design, because it provides a 

first insight on the expected result and performance. Furthermore, a well-designed simulation 
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also provides the result on the effect of design parameters on the results. For this design, 

COMSOL Multiphysics was selected because it provides an in-depth visual analysis in 

modelling various engineering problems. This software uses partial differential equations PDEs 

to compile, solve and provide solutions to complex engineering models [23].  The software has 

been used in the field of acoustics, fluid dynamics, and Micro Electromechanical systems 

(MEMs). In comparison with other software like ANSYS which have the same capability, 

COMSOL does not require an in-depth knowledge of the mathematical or numerical analysis of 

the models; instead, models are built by simply specifying physical parameters like length, 

width, temperature and other constrains where need be. The software compiles the PDE of a 

given models using the defined parameters and subdomain values and provides a well-

documented result and compilation statistics. Furthermore, meshes, electrostatics calculations in 

forms of field volume and field lines can be visually represented in COMSOL which is very 

useful in electrostatics simulations so as to see where the field lines are most dense.  

In this thesis, COMSOL is used to model the capacitive copper tracings on silicon PCB, The 

same material specifications used in COMSOL was specified for fabrication. Furthermore, ice 

blocks of different thickness are added to the model to see the change in capacitance and the 

result is compared alongside the experiment. A sensitivity analysis is also performed by 

changing the width of the spacing between the sensor plate and the ground plate; this is as a 

guide in determining the optimum design with the largest electric field fringing lines and the 

lowest base capacitance.  
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4.3.2 Choice of sensing material 
 
The material used in the sensing material is very important because not every metal can be used 

as a sensing electrode, although, the geometry used determines the sensitivity of the sensor; 

which in turn determines how accurate the sensor can measure the thickness of the target 

material. For the initial sensor simulation, come material selection criteria are drawn, these 

criteria includes low cost, easy to manufacture on a PCB, light weight and good tolerance to 

moisture and rust, and the dielectric difference with that of air.  

The dielectric constant of a material is the measure of the materials ability to transmit electric 

field. Copper on silicon substrate is a good candidate because of the difference in dielectric 

properties compared with air and water. The best option decided upon at this stage is copper on 

FR4 Fiberglass substrate. The surface of the PCB might be coated with epoxy with a dielectric 

constant similar to glass which is 4.5 to 6. Materials used in the simulation were matched with 

the actual physical material used in the design as documented in this thesis.  

4.3.3 Geometry of the Sensor Plate: 
 
Electrode geometry is a very critical design consideration as it determines the direction of the 

electric field lines as charges migrate from positive to negative electrode creating an electric field 

cloud. The geometry employed in this thesis is a variant of the parallel finger topology. This was 

chosen because the fringing electric field from the wider surface area would be best fit to 

determine ice and water properties.  

Figure 4.3 [21] shows central ground geometry, this is ideal for sensing materials with wider 

surface area, and this setup is required for a high directivity along the width of the electrodes. 

Furthermore, the plot to the right shows the capacitance measurement on each side of the 
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charged electrode. As observed, the peak capacitances occur at the sensor ends of the geometry; 

this is only directive to the materials in either end of the setup.  

On the other hand, Figure 4.4 [21] shows the central sensor symmetry, this is a modified 

alternative of the parallel finger geometry, as the sensor is in between the ground plates, and it 

provides a sharper response over a small surface area. This alternative is not the best for ice 

sensing since the sensitivity is required throughout the whole area of the plate.   

 

Figure 4.3 Central Ground Symmetry. 

  

 

Figure 4.4  Central Sensor Symmetry 

 

After careful consideration of the target material, a combination of the central ground sensor 

and the central sensor is suggested, the capacitance calculated should be the overall 

capacitance throughout the entire area of the sensor plate. Hence, a wide and sharp response 

is simultaneously needed. The revised version of the parallel finger topology will be an 

interlocking central ground and central sensor hybrid configuration known as the “comb” 
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topology. This sensor is fundamentally based on the basic principle of material sensing which 

is a detection technique for anything that is conductive or possess a dielectric constant 

different from air.  

 

 

Figure 4.5 2D Comb Sensor Design 

 
Figure 4.5 above is a 2D COMSOL representation of the comb topology, as shown, one end of 

the comb is interconnected as the GNDed finger and the other end will be the charged or the 

sensor finger. During the cause of the design, other variations of the comb sensor will be 

produced and tested, before the final design for the sensor will be established.  

4.3.3 Interfacing Capacitance and copper spacing 
 
The front end capacitance as seen by the sensing circuitry is very important in this design 

because the capacitance to be read will be determined by the circuitry designed, the capacitance 

range should also be determined. The FDC1004 integrated circuit will be used to transfer charge 

from the sensing electrodes to the sigma delta analogue to digital converter ADC. The 

capacitance to digital converter has a capacitance null value limitation of 100pF. Due to the 

hardware limitation, the overall size and the spacing between the copper tracings become critical 
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in determining the overall capacitance. The spacing between the copper tracings determines the 

distribution of the fringing field lines.   

Based on preliminary simulation results, a spacing of 0.5 to 1mm is initially considered, as it 

provides the best combination of large fringing fields with capacitance in Pico Farads. 

Furthermore, the fringing field lines should be as large as possible to go through a considerable 

ice thickness, and also provide flexibility for deployment, in case the sensor is to be mounted 

behind a protective class, the field lines should be large enough to accommodate the glass. 

Hence, an ideal sensor layout for ice thickness detection should be one that produces the farthest 

extended electric field fringing lines which reaches the overall area of the sensor plate with 

minimum capacitance to suite the FDC1004.  

4.3.4 Effect of parasitic capacitance 
 
Some parasitic capacitances are introduced into this system by all non- guarded electrodes; this is 

made of little effect by the spacing between the copper sensor and round sensor is kept small 

enough to null the effect. However, the most important capacitance to consider is the external 

practice capacitance resulting from the connecting copper wires. The electronics of this sensor 

cannot distinguish the parasitic capacitance from the base capacitance since they are all 

connected in parallel. Hence for this design a guarded electrode and adequate shielding is used 

outside the electrode structure. Toth and Meijer [24] in their research on have shown that the 

capacitance between the connecting wires can easily be reduced to about 20 aF by simply using a 

shielded coaxial cables to connect the electrodes to the circuitry; the final length of the 

connecting wires are advised to be as short as possible. In critical cases, a series dead capacitance 
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bank can be installed in series with the capacitive plate to reduce the capacitance to the desired 

range. 

4.4 Prototype Descriptions and Simulation Results 

4.4.1 First Prototype 
 
The first capacitive sensor tracing is designed in Cadsoft Eagle PCB design then extruded in 3D 

geometry in COMSOL to perform the capacitance simulation. The initial conception was a 

simple interlocking copper tracing which area small enough to get the desired capacitance range. 

The purpose of the initial design is to get an in-depth look at the output capacitance and tune the 

geometry to suite the design.  

Table 1 Design Parameters and Results for prototype 1 

Trace Parameters Measurements 
Copper tracing spacing 1mm 

Copper tracing length 32mm 

Copper tracing Area 800mm2 

Copper tracing width 2mm 

Simulated base capacitance 11.25pF 

Measured base capacitance 22.45pF 
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Figure 4.6  2D COMSOL drawing of Prototype 1 

 
The first prototype was used in theory as an initial stage of the sensor design to obtain suitable 

design parameter. A second prototype is then proposed to reduce the base capacitance to at least 

10pF; this will give more room for calibration.  Also, this design showed some inconsistency in 

calculated capacitance when the file is ran in COMSOL. These problems are staged to be 

addressed in the second prototype. 

4.4.2 Second Prototype 
 
The second prototype is designed directly in COMSOL 2D module and extruded in 3D unlike 

the first that is designed in Eagle PCB design software. This is to address the problem of 

inconsistencies in measurement which could have come from importing the CAD file into 

COMSOL.  
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Figure 4.7 below shows the COMSOL simulation of the second prototype, this features a longer 

trace length, but the trace width is unchanged, hence has a longer sensing area (Area between the 

sensor tracing and the ground tracing). This design is used to show the change in base 

capacitance with change in basic parameters.  

 

 

Figure 4.7 3D COMSOL Representation of Prototype 2 

 
The Figure 4.7 above shows a base capacitance of 34.79pF which is again higher than expected, 

as the base capacitance need to be small enough to allow calibration. 

Since the aim of this thesis is to provide an in-depth analysis of designing a capacitive based 

sensor for marine icing, this means that at warmer temperature, the sensor could simply be 

exposed to just water without any freezing. Hence, further analysis was performed on this 

prototype to show the change in capacitance in the presence of a 1mm water film. In Figure 4.8 

below, a 1mm water film is added as a material available in COMSOL, the copper tracings are 
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insulated to eliminate conductivity in the coupling impedance. Hence, the light epoxy film is 

included in the simulation mole between the copper electrode and ice.  

 

Figure 4.8 COMSOL simulation of sensor tracing with 1mm water film 

 
The relative permittivity of water at about 0oC is about 88 as used in the simulation. As expected 

from the simulation above, the simulated capacitance is 214pF and the measured capacitance 

using the LCR meter is 250pF.  

Next, several ice simulations is performed to see the change in capacitance with ice thickness. 

Figure 4.9 and 4.10 shows a COMSOL simulation using 2mm ice thickness on the sensor plate. 

Figure 4.11 is a plot to show other results from various ice thicknesses.  
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Figure 4.9  COMSOL Simulation for change in capacitance due to 10mm icing 

 
 

 
 

Figure 4.10 Bottom view of the electric field effect through silicon substrate 

 
The above analysis shows some consistency with the expected results, for 10mm ice the 

capacitance is about 47pF.  
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Figure 4.11 Simulation results for capacitance vs Ice thickness for prototype 2 

 
A sensitivity analysis is performed to verify results obtained in Figure 4.11. For this analysis the 

fringing field lines are plotted and observed, lesser field lines penetrate the ice with increase in 

ice thickness, in other words, this sensor is more sensitive to measure ice thickness between 0 to 

30mm with some accuracy.   
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Figure 4.12 Sensitivity Analysis showing fringing field lines 

 
This prototype design is fabricated and measured using an LCR meter the Figure 4.12 above 

shows the fabricated sensor tracing on PCB with the following parameters.  

 

Table 2 Design Parameters and Results for Prototype 2 

Trace Parameters Measurements 
Copper tracing spacing 1mm 

Copper tracing length 35mm 

Copper tracing Area 835mm2 

Copper tracing width 2mm 

Simulated base capacitance 34.79pF 

Measured base capacitance 36.25pF 
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Figure 4.13  Fabricated prototype 2 

 
 
The problem with this design is that the output base capacitance exceeds expected values; this is 

needed to be as low as possible to give to provide room for calibration up to 100pF which is the 

ADC requirement. Furthermore, this prototype is fabricated with regular PCB copper cladding 

on Fiberglas substrate, an inconsistent result was obtained when tested with ice. This observation 

was never seen in the simulation stage, perhaps substrate material absorbed some moisture which 

added to its instability. Hence, the following sensor prototype is desired to find a solution to 

these short comings.  

4.4.3 Third Prototype 

 
The third prototype was initiated to address the base capacitance issue, as well as to obtain an 

improved sensitivity.  
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Figure 4.14 below shows the COMSOL simulation of the third prototype, the length of the 

sensor was reduced by one third and the width halved. The sensor gap is kept the same 

effectively to see the changes in the capacitance with a reduced area.  

 

 

Figure 4.14 3D COMSOL Representation of Prototype 3 

 
The third prototype showed a base capacitance of 14pF. The capacitance of the fabricated 

prototype as show in Figure4.14 measured 13.35pF. This is much lower as expected and 

provides enough room for calibration.  

Next step is to provide further analysis for to observe the change in capacitance in the presence 

of icing on the surface.  A 1mm water film is added as a material available in COMSOL, Figure 

4.15  
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Figure 4.15 COMSOL simulation of sensor tracing with 1mm water film 

 
As expected, a spike in capacitance was obtained because the relative permittivity of water is 

about 88 times more than that of air, hence for a1mm water film, a base capacitance of 71pF is 

observed and a measured capacitance of 68pF using the LCR meter after spraying the surface 

with a  simple spray bottle.  

Next, an ice simulation is performed to see the chance in capacitance with ice thickness. Figure 

4.16 shows a COMSOL simulation using 2 mm ice thickness on the sensor plate. Figure 4.17 is a 

plot to show other results from various ice thicknesses.  

From the simulation, a base capacitance of 23.83pF was obtained and a measured base 

capacitance of 35pF. This result shows some consistency with the expected values because the 

relative permittivity of ice at -20oC is about 3.5. In this analysis, the results show some 

acceptable consistency.  
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Figure 4.16 COMSOL Simulation for change in capacitance due to 10mm icing 

 
To obtain some more valuable results, various ice thicknesses were simulated and observed in 

comparison with the previous prototype, the aim was to obtain high sensitivity and low base 

capacitance.  

 

Figure 4.17 Simulation results for capacitance vs Ice thickness for prototype 2 
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The above results show that the prototype could only measure ice thickness up to 30mm and the 

graph flattens out at about 90pF. Further simulation work is done to produce a visual fringing 

field representation of the prototype. Figure 4.18 confirms this; as observed, the field lines are 

denser below 25mm range.  

 

Figure 4.18 Sensitivity Analysis showing fringing field lines 

 
This prototype was fabricated based on the following material specifications.  

After careful considerations, the copper tracings will have the following materials specifications.  

 FR4 (fibre glass substrate)1.5mm standard 1 Oz Cu 

 Single sided (top copper only) 

 

Figure 4.19  Fabricated prototype 3 



42 
 

The prototype was also tested, and the results were promising, longer electric field lines were 

obtained, and the results of the simulation closely match the measured capacitance and the 

results of the preliminary ice test.  Figure 4.19 shows the backside of the PCB embedded in clear 

caulking just to provide additional surface for an even ice accretion surface. At this stage, the 

results were satisfying, but there was a need to try modifying the sensor geometry to investigate 

a change in the direction of the fringing field, which could provide an improvement in the overall 

ice sensing capability. 

4.4.4 Forth Prototype 
 
Although there is no need for another prototype design, the effect of a fringing filed in a circular 

coordinate is needed to be investigated for a complete engineering design approach. Figure 4.20 

shows the fourth prototype is constructed in solid works instead of Eagle. This was because it 

involved a complicated combination of curved lines which could not be done in electronics 

software like CadSoft Eagle or Kicard. 

  
Figure 4.20 3D COMSOL Representation of Prototype 4 
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Figure 4.21 Fabricated prototype 3 Sensor Plate 

 
Similar to the other prototypes, the red electrode is the terminal and the blue electrodes are the 

grounds. The individual electrodes are interconnected in the PCB bottom layer. The final 

prototype shown above is a combination of the interlocking combs fingers and a sequence of 

alternating sensor and ground electrodes. The geometry was changed to create a circular fringing 

field at the edge, and produced a stronger fringing and longer fields. Although, The this 

prototype measured a base capacitance of 20.45pF which was slightly higher than expected that 

could measure ice thickens of up to 40mm as seen in Figure 4.21.  

The specifications are: 

 4.58cm X 5.58cm. 

 FR4 1mm standard 1oz Cu. 

 Single sided copper tracing. 

 Fused 63/37 SnPb finish. 

 Green photo Imageable solder mask. 
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Further ice and water simulations were performed as the other sensors; the prototype could sense 

water film with a base capacitance of 75pF. The Figure 4.22 below shows the CAD drawing of 

the final sensor.  

 

Figure 4.22 Final Drawing for Prototype 4 

 
 
Figure 4.23 shows the result of the ice simulation on COMSOL, it is observed that the change in 

geometry and shape of the sensor have significantly improved the sensitively and the sensing 

range. This is because the alternating sensor and ground electrodes provides a more diverse path 

for the fringing fields. Unfortunately, testing the sensor with real ice experiment proved that the 
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sensor was unable to measure ice accretion more than 5mm as proposed by the design 

simulation. This was because the electrode spacing and orientation was too tightly meshed 

together than the electric field lines became shortened.  

 

 

Figure 4.23 Simulation results for capacitance vs Ice thickness for prototype 4 

 

4.5 Design Conclusion 
 
Based on the simulations and results the prototype 3 seems to be the best option for the marine 

ice sensor because it provides a more reliable and consistent result, and could also detect ice 

thickness for up to 30mm. Pending to actual controlled experiment, this sensor plate is fabricated 

on a PCB based on the actual specification described in the previous section.  
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Chapter 5  
 
 
 

Sensor Electronics  

5.0 Introduction  
 
The function of the sensor electronics is to convert the information obtained from the sensor 

tracing to more useful information. This marine icing sensor setup contains many other 

accompanying electronics, as described in the following section.   

The block diagram shown in Figure 5.1 is the setup for the whole sensing system  

 

 

 

 

 

 

\ 

 

 

Figure 5.1 Block diagram showing sensor electronics 
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5.1 Capacitance to Digital Conversion  
 
There are several techniques used to measure capacitance, however for marine icing application 

there is a need for a reasonably good and reliable measurement. Consequently, there are some 

trade-offs in achieving these criteria. For example, in most cases the sensor capacitance is 

designed to be very low, in order of a few pF; and often, the parasitic capacitance is more or 

comparable in value to the actual sensor capacitance.  

From the previous section, it can be observed that complete shieling of the capacitive sensors are 

not always possible, hence, proper base masking and short shielded wires are used.   

Baxter et al [18], in his publication presented two main techniques for capacitance to digital 

conversion. 

 Excitation and A-D conversion  

 Circuit and system level technique  

The measuring sensors are required to be very low in a few pF, the excitation and A-D 

conversion becomes the better technique to measure capacitance with little effect from the 

parasitic capacitance. To measure a sensor capacitance, the terminal end of the capacitor need to 

be current excited. The excitation waveform is not really important some applications have used 

sine wave or square wave with some success. However, sine waves excitation measurement 

could show high resolution without meeting the requirement of cost and power minimization 

[18]. Hence, this thesis will employ a capacitance measurement based on square wave excitation 

using A/D sigma-delta conversion. 
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This principle have been used in modern chips like AD7745, AD7746, AD7747 and AD7150 

produced by Analog devices, and also seen in FDC1004, FDC2112 manufactured by Texas 

instrument.  

The capacitance to digital converter is a modified version of a voltage to digital converter. Figure 

5.2 [24], shows the working principle of the CDC. The digitization is established when the 

comparator output is zero (low), the charge transfer from the CxVref is transferred to Cint, and 

when the comparator output goes high, the charge (Cx – Cref) Vref is transferred to Cint. As a result 

of balance of charge, the stream of zeros and ones appears on the output of the comparator, the 

ratio of the number of clock cycles equals Cx / Cref [25]. The decimation filtering is then 

performed on the output and digital capacitance can be obtained.  

 

 

Figure 5.2 Capacitance to Digital Conversion using Sigma-delta 

 
 

5.1.1 FDC1004 Capacitance to Digital Converter.  

This thesis will explore the sigma delta conversion method found in the FDC1004 manufactured 

by Texas instrument. The FDC1004 technology implements a switch capacitor circuit to transfer 

charges from the sensor electrodes to the sigma-delta analog to digital converter [21]. As decided 
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in section 5.0, the circuit will be excited by a 25 kHz square wave form and after a certain time 

duration, the charge is transferred into a sample and hold circuit as shown in the Figure 5.3 

below.  

 

 

Figure 5.3 FDC 1004 theory of operation 

 

5.1.2 ATmega328P Microcontroller  

There is a need for a microcontroller to control the FDC1004 and the temperature sensor. The 

microcontroller also converts the capacitance to show the ice thickness at that a certain time. The 

ATmega328P was selected for this thesis because it is readily available high performance, low 

power, and 8-bit microcontroller, easily programmable in C language and can run off a 5V 

power supply available on the board. The ATmega328P also allows for I2C interfacing of the 

FDC1004 through the SDA and SDL available on chip. It is also responsible for the 1-wire 

interfacing of the temperature sensor. Details on the connection are shown in the schematic 

drawings in Figure 5.2.  
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5.2 DS18b20 Temperature Sensor.  
 
A DS18b20 is used to log the temperature during ice accretion. The DS18B20 digital 

thermometer provides 9-bit to 12-bit Celsius temperature measurements, as shown in the block 

diagram in Figure 5.4 [21]. The 1-wire communication standard as designed by Dallas 

semiconductor is a convenient way of transferring from the microprocessor power and data 

through a single wire. The DS18b20 will be exposed to extreme temperature hence; it was 

chosen because of the following reasons.   

 Capable of Measuring  Temperatures from -55°C to +125°C (-67°F to +257°F) 

 Measurement accuracy of  ±0.5°C from -10°C to +85°C 

 Programmable Resolution from 9 Bits to 12 Bits. 

                     

Figure 5.4 Block Diagram of the DS18b20 and Pin-outs 
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Chapter 6  
 
 

Final System Design  

 

6.0 Introduction 
 
The full system is built on a prototype board as shown in Figure 6.1. The system is powered from 

a 9V battery source and converted to a 5V and 3.3V as needed. The system is designed to operate 

with power coming from either the FTDL cable or the 9V battery but not simultaneously, so as to 

give adequate flexibility if system expansion is needed.  

 

 

Figure 6.1 Full System Prototype 
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As shown in Figure 6.1, An FTDL cable is used to program the micro controller and also used to 

output data from the system for post processing. This system is also designed with connection 

pins in case an LCD screen is needed instead of viewing the results on a computer screen. 

6.1 System Schematics. 
 
The system schematic is shown in Figure 6.1 this is designed in KiCard a free PCB design 

software and could be used as an effective tool to view and to convert this sensor electronics to a 

PCB should it be needed in the future. The FTDL is shown in the schematics as it was a separate 

hardware on its own. The sensor plates are also not shown in the schematics, as there was no way 

to incorporate them. The sensor plates will be connected to the CIN1 and GND as shown. 

 

Figure 6.2  Overall system Schematic 
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6.2 Programming, System Interface and Testing.  
 

6.2.1 The I2C Interface 
 
Some of the most important programming lines are listed here and explained for clarity, 

APPENDIX A contains the full code and header files used in this thesis. 

 

# include <Wire.h>: This is used to initiate the 12C capability  

# include <FDC1004.h>: Header file for the FDC1004  

Wire.begin ()>: Initiate the Wire library and join the I2C bus as a master or slave 

Wire.beginTransmission: This is used to start transmission the 12C slave 

Wire.endTransmission: This is used to end transmission the 12C slave 

Write (): Used to queue bytes for transmission to the master device  

NOTE: The FDC1004.h header file handles the serial interfacing with the FTDL cable used for 

programming.  

In this setup, the ATMega328P connects to and configures the FDC1004 Capacitive Sensing 

chip over I2C. For this sensor, the FDC1004 is configured in a single end mode as shown in 

Figure 6.2, the single end mode compares the capacitance value to an established ground within 

the FDC1004. The ATMega328P reads the capacitance output from the IC as a 4 bytes data, 

digitally outputs it to the transmitter.  
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Figure 6.3 Single-Ended Configuration with CAPDAC enabled 

 
The Microcontroller connects to the address 0x50 on the FDC1004 and writes to pointer 0xFF 

[21]. The microcontroller verifies the connection by reading the device identification 0x1004; 

additionally, the microcontroller configures the capacitance measurement register by writing 

0x1C00 to the pointer 0x08 enabling the measurement of capacitance input in CN1. This also 

triggers one sample of the capacitance, essentially begins the system write functionality. The 

FDC1004 runs in normal mode by default with the initial configuration register at 0x0C at a rate 

of 100S/s for all enabled measurements. The only enabled measurement for this design is the 

CN1 for a single-Ended mode. Next, the microcontroller reads the FDC1004 configuration to 

check for measurement completion, and then reads the registers at 0x00 and 0x01 for the MSB 

and LSB respectively.   
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6.2.2 FDC1004 Testing. 
 
The FDC1004 is interfaced with the microcontroller and tested to determine what frequency has 

the most accurate capacitance reading and the amount of delays needed while sampling. It is 

important to note that the sampling rate simply measures frequency at which the data is obtained.  

The FDC1004 hardware has the flexibility to program the output operate in 100 Hz, 200Hz or 

400Hz. From the tests, the FDC1004 reads the capacitance with good accuracy, this test was 

performed using a standard ceramic capacitor 27pF and capacitance readings were taking for 

over a period of one minute. Figure 6.4 shows some spikes when either legs of the capacitor is 

touched with the bare fingers, and it returns to the base capacitance shortly. As observed, the 

sampling rate did not affect the accuracy of the capacitance reading; hence the code is set to 16 

samples per second at 200Hz. The test capacitor is connected to the CIN1 and the ground PIN of 

the FDC1004 and the GND Pin is grounded to the circuit as shown in Figure 6.2.  

 

Figure 6.4 FDC1004 Testing Result 
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Chapter 7  
 

 

Experiments  
 

7.0 Experiment Setup 
The entire experiment is conducted in the laboratory, the system is tested in a deep freezer 

maintained at -20OC. The sensor plate is placed horizontally in the refrigerator to allow a steady 

ice build-up on the surface. Figure 7.1 shows the overall set-up in the laboratory and the sensor 

circuitry and the sensing surface is connected with a short 28 gauge padded data wires. This is 

eliminates any capacitive interference from the human hands during experiments. Data is 

collected on a real time python based data acquisition program running on the attached computer 

via a RSD232 based FTDI connection.  

 

Figure 7.1 Experimental Setup showing the temperature sensor 
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The icing surface model was obtained using a flat plastic completely covered in clear silicon 

caulking. The capacitive sensing surface is placed flush with the icing surface mode. This is 

icing surface model measures 13.2cm by 7.4cm, and 1cm thickness. As shown in Figure 7.1. 

7.1 Experimental Methods 
The experimental method used in this thesis is primarily to obtain a steady ice growth on the 

capacitive surface. In this test, the sensor plate is placed in the deep freezer and allowed to reach 

a temperature of -18.78◦C (as measured by the temperature sensor); this is the lowest possible 

temperature the deep freezer can attain. The active temperature is logged using the DS18B20 

attached to the sensor plate. As the temperature plate reaches the expected temperature, tap water 

of about 5◦C is sprayed on the surface of the sensor plate using a spray bottle; this is to obtain a 

homogenous 1mm water film on the surface. The whole setup is designed at a stable condition 

and allowed to sit for a very long time until the original temperature of the freezer is reached. 

The experiment is closely observed until there is no change in the capacitance and the set point 

temperature of the freezer is reached, the ice thickness of the setup is obtained by 

 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠(𝑚𝑚) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑔)

𝐴𝑟𝑒𝑎 (𝑐𝑚2)∗⍴𝑖𝑐𝑒(𝑔/𝑐𝑚3)
    (7-1) 

   

Where   ⍴𝑖𝑐𝑒 = 0.916𝑔/𝑐𝑚3 

 

More water is sprayed on the surface to apply a steady ice buildup as seen in Figure 7.2 for an 

approx. 2.1mm ice thickness. The real time data is observed through the data acquisition system. 

This whole experiment is repeated three times in order to investigate the repeatability of the data. 
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The same experimental methods were applied in salt water experiments as documented in the 

next section. 

 

 

Figure 7.2  Ice thickness using fresh water (2.1mm) 

 

7.2 Experimental Results 
 

7.2.1 Ice accretion results using fresh water  
 
The results of the experiment from the data acquisition is shown in Figure 7.3 using fresh water, 

As observed, the spikes in capacitance as seen on the graph shows the presence of water on the 

sensing surface, because the relative permittivity of water (70-80) is much higher than air. As 

freezing occurs, the water changes to solid ice and assumes the relative permittivity of ice (~3.2), 
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higher than air. The presence of the ice cover creates the dielectric padding which increases the 

overall capacitance obtained for each stage of the experiment.  

 

 
Figure 7.3 Data processing output for ice accretion experiment using fresh water 

 
Further experiments for ice thickness more than 4mm are performed using pre-made ice slabs. 

The ice slabs are designed with the same container and left to freeze for many hours, until the 

desired ice sample is obtained.  Figure 7.4 shows an experimental setup for an approx. 20.5mm 

ice thickness using fresh water. Again, the method of the experiment remain the same, the whole 

sensor plate is brought to the freezer steady temperature of -18.78◦C, and this is to avoid 

excessive melting between the boundary of the ice slab and the sensor plate. The ice slab is 

placed on the sensor plate and the whole setup is placed horizontally into the freezer and 

monitored until there is no change in capacitance. This experiment is repeated for different ice 

thickness until no change in capacitance is observed.  
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Figure 7.4  Experimental setup using ice slabs (20.5mm) 

 
To calibrate a sensor, a test for repeatability must be performed. For these experiments a new set 

of runs were performed at the initial stage. Hence the fresh water experiment is repeated three 

times. Also, new sets of ice slabs were made for each experiment. This is done following the 

principle of repeatability of experiments as found in Design of Engineering Experiments course 

EN7516. Also new ice slabs were used so as to get different values of ice thickness and observe 

the consistency with capacitance obtained for previous experiments.  
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Figure 7.5 Results of 3 Experiments using fresh water 

 
As observed from Figure 7.5 above, the result of the 3 experiments are correlated, the graph 

shows more consistency at the from 0mm to 5mm where the experiments were performed by 

spraying water on the surface using a spray bottle. This shows that the ice accretion was more 

steady and linear than the experiments using the ice slabs from 4mm to 30mm. However, the 

experimental repeatability results stands true as the 3 experiments shows very similar 

characterises and can represents a linear point to point mapping between the ice thickens and 

base capacitance up to 20mm.  

Furthermore, the conclusion of the experiments using fresh water led to the validation of the 

results obtained from the COMSOL simulations. Figure 7.6 compares the simulated data for the 

second prototype and the experimental 1 data. This plot also shows a high correlation between 
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the two plots at 0 to 5mm ice thickness. This plot shows a proof that the simulation using 

COMSOL Multiphysics can be used to design, simulate and build real capacitive based sensor 

for ice accretion measurement. 

 

Figure 7.6 Validation Plot for simulation data 

 
 

7.2.2 Ice accretion results using Sea water 
 
Ocean salinity is important when designing marine icing sensors; hence this creates a need to 

investigate the change in capacitance using sea water. Sea water is prepared in the laboratory for 

a salinity of 35 PSU at room temperature as seen in Figure 7.7. The whole solution is brought to 

about freezing to simulate a typical marine icing environment, and also to gain proper 

understanding on how temperature would affect freezing in sea water. Similar to the fresh water 
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experiment, the solution is sprayed evenly on the capacitive sensor plate and left to freeze. More 

spray is added when there is no change in capacitance and ice thickness is calculated using 

Equation 7.1.  

 

Figure 7.7  Laboratory preparation of sea water at 20.3oC 

 

Ice layers are added to the surface until complete run off is obtained this is to obtain a consistent 

ice growth on the surface and also monitor the capacitance for small changes in ice thickness. 

Figure 7.6 shows the result of the experiments after three spray sessions. Similar to the fresh 

water experiment for atmospheric icing, the  spikes in capacitance as seen on the graph shows 

the presence of water on the sensing surface, as the relative permittivity of water is much higher 

than air. Sea water measured up to 100pF initially which is as a result of having more water on 

the surface forming a small puddle. The setup is placed in a freezer maintained at -18.78◦C, as 
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freezing occurs, the water change to solid ice and assumes the relative permittivity of ice (~3.2), 

much higher than air.  

 

Figure 7.8 Data processing output for ice accretion experiment using Sea water 

 
 
Further experiments are also performed using ice slabs for larger ice thicknesses that could not 

produce on the sensor plate by spraying. The ice slab is placed on the sensor plate and the whole 

setup is placed horizontally into the freezer and monitored until there is no change in 

capacitance. This experiment is repeated for different ice thickness until no change in 

capacitance is observed. 

 

The repeatability test is also performed using sea water; hence a fresh experiment is repeated two 

more times. Figure 7.9 below shows a steady ice increase in capacitance with increase in 

thickness, for an ideal situation, a linear graph is expected, however due to some experimental 

and measurement error, some inconsistencies appear in the data. However, the results obtained 
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are comparable with the fresh water ice accretion graph. A comparison plot between the 

simulated and experimental data is not documented for saltwater because COMSOL 

Multiphysics so not have the capability to include salinity in ice models for electrostatic 

computation.  

 

Figure 7.9 Results of 3 Experiments using Seawater (35PSU at Room temperature) 

 

7.3 Experimental Conclusions and Discussions  
 
Controlled experiments were performed using fresh water to obtain atmospheric icing and salt 

water of 35PSU to simulate sea icing. The experimental measurements are independently 

collected based on Design of engineering experiments techniques. The ice samples used were 

made in commercially available deep freezers using tap water with no need further purification 
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procedure. The change in capacitance shows clear potential due to variation in dielectric property 

of ice due to increase in thickness. This change in capacitance detected from the ice accretion 

could be a useful technique in ice accretion detection in harsh marine environments. The freezing 

of ice shows a physical change from liquid to solid state, and also confirms the difference in 

dielectric property of ice and water. From the experiments, it is observed that the salt water 

freezing time is much larger than that of fresh water as expected. The scope of this thesis is not 

primarily to document the freezing time of either sample; instead, both samples are left to come 

to the freezer temperature and settled capacitance measurement is recorded. Furthermore, 

capacitance measurement could not be used to detect salt content in liquid; hence, this sensor 

could not be used to differentiate between atmospheric icing and sea icing. This experiments 

shows that both atmospheric and sea icing shows a decrease in the dielectric property as the 

liquid changes stage. A key conclusion on this experiment shows that the dielectric property of 

water decreases with an increase in salinity. This is evident in Figure 7.3 and Figure 7.8, initial 

base capacitance at the beginning of the experimental iterations is much higher in fresh water 

than in sea water. Gadani et al presented a results where salt water between 5000ppt to 35000ppt 

were measured at a frequency range of 200 MHz to 1.4GHz, results shows that electric property 

of sea water decrease with an increase in salt concentration. Figure 7.10 shows further analysis 

from the experiment which shows an increase in dielectric loss with increase in salinity [26].  
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Figure 7.10 Variation of dielectric loss with Salinity 

 
The result of this journal is consistent with the findings in this thesis; the dielectric constant of 

water is higher in fresh water than in salt water, also the dielectric loss increases as temperature 

decrease, effectively brining the water to freezing.  

 

7.4 Sensor Calibration 
 
The ice Sensor is calibrated based on point to point linear mapping, for this particular sensor 

experimented in this thesis, the calibration will be done from 0mm to 15mm. As shown in Figure 

7.11 and 8.12 below, the linear range for this calibration is obtained by discarding the last 3 

readings where the sensor couldn’t show any consistent linear reading, although decent readings 

could be extended to 20mm, but this might include some erroneous points. For this thesis, the 

calibration for this sensor will simply be done in the microcontroller C++ attached in 

APPENDIX B of this report.  
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Figure 7.11 Sensor Calibration Plot for freshwater 

 
 

 
Figure 7.12 Sensor Calibration Plot for seawater 
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From the above plot the Ice thickness for atmospheric ice can be obtained from the equation  

 

𝐼𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑚𝑚) =
𝐵𝑎𝑠𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒−28

3.8
  (7-2) 

 
 
And the thickness for sea ice can be obtained from the equation  
 
 
 

𝐼𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑚𝑚) =
𝐵𝑎𝑠𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒−26

3.9
  (7-3) 

 
 
Again the sensor is calibrated and tested using the equation above; the outcome was very good 

and contained very little error.  

In order to evaluate the correlation between the two equations, the root mean square error of the 

two equations is computed using: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥(𝑛) − 𝑦(𝑛))2𝑁−1

𝑛=0
     (7-4)  

   

Where 𝑥(𝑛) = Atmospheric Ice data sequence and  

 𝑦(𝑛)= Sea Ice data sequence. 

 

The RSME of the two sequences is 0.7077 meaning the two data sequences are highly correlated 

with very little spreads.  

Hence, either equation could be used in sensor calibration to obtain a decent result for ice 

growth.  

Some sources of error might include 



70 
 

 Preparing a consistent ice sample could pose some error, during the experiments; ice 

samples are prepared close or around the dimension of the previous one.  

 The pre-made ice thickness is measured using a caliper, and the average measurements 

from all the four edges were used to determine the thickness of each slab. 
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Chapter 8  

Theoretical Analysis of Multiphase Medium 

8.0 Introduction  
This Chapter introduces a theoretical analysis of three phase media with a water layer over the 

ice layer with a layer of spongy ice in-between. This case represents a real scenario of multiple 

phases being present at the same time. The key objective is to propose a sensing method that can 

uniquely discriminate predicts the response for each level of ice and water. Our approach is to 

provide at least two measurements of the same media that are linearly independent from each 

other. In simple terms, the two characteristics intersect at the solution point, in this case the ice 

thickness and water film thickness.  

8.1 Simulation Methods  
The simulation setup is performed in COMSOL Multiphysics for a simple two strip capacitive 

plates as represented in Figure 8.1. The model setup shows the basic components of the 

multiphase system with ice layer directly over the electrodes followed by some spongy ice with 

overlaying water layer. This simulation is to provide a start-up simulation to validate the 

theoretical conclusion on how changes in air gaps affect the capacitance of the overall setup. 

Additionally, this analysis also provides a validation for the experimental part of this thesis. 
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Figure 8.1 Two phase media simulation setup 

 
 
The system simulation is performed to investigate the capacitance as well as to provide a visual 

perspective of the basic physics of capacitance sensing as explained in the previous chapter. 

Figure 8.2 shows the electric filed lines as explained charges moves from less excited medium to 

a higher one. In other words, the electric filed line originates from the positive plate and 

terminates in the negative plate. The fringing filed passes through the material places on its path.  

 

Figure 8.2 Field lines path 
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In a real marine icing scenario, the ice accretion begins on the super cooled surface, as  more sea 

sprays impinge on the already frozen ice slabs, freezing occurs on the interface, and continues to 

increase until the whole medium is frozen to solid ice. During this process, some spongy ice is 

present in-between the solid ice and water interface, which contains a weighted amount of air, 

water and ice.  But for simulation purposes, this thesis will assume a uniform medium of 

interfacing water and ice with spongy ice sandwiched in-between. The simulation will assume a 

uniform surface for the whole medium and all other factors in the simulation such as temperature 

and sensor materials will be constant.   

Figure 8.3 below shows the setup for typical 2mm ice, 1mm spongy ice and 2mm water. Closer 

investigation shows the boundaries between water and ice. 

 

Figure 8.3  Field lines passing through water and ice 

 



74 
 

8.2 Statistical Design of Experiments  
The constituting variables used in most engineering designs are often expressed in terms of 

various parameters which contribute to the results; these variables are to be investigated to gain 

knowledge on what parameters are statistically significant.  The factors that mainly contribute to 

the capacitance of this setup are the ice thickness, water thickness, amount of spongy ice and the 

sensor air gaps.  Additionally, the type of material used for the substrate and the electrodes could 

affect the output capacitance, but for simplicity of this computer experiment, it was assumed that 

the same copper electrode and silicon substrate is used and kept constant. A computer based 

experiment is employed to investigate the effect of these factors in the experiment that contribute 

to the output capacitance; this is because the air gap is hard-to-change as this entire experiment is 

eventually transitioned into   hardware. 

The system modelling and finite element analysis is performed in COMSOL Multiphysics, 

solutions of the PDE solver are observed for each combination of factors. Since there are 

interactions between factors and changes in one factor affect the output, a more statistical 

approach is employed. This chapter demonstrates the application of statistical design of 

experiment (DoE) in the area of capacitance sensing for marine icing; it proofs to be a very 

important methodology to obtain a model for capacitive sensor in very few experimental runs. 

The DOE methodology is useful in developing a mathematical model that predicts how input 

variables interact to generate output variables [19]. Additionally, the model obtained is a 

representation of the results in terms of the input variables. This report presents a full computer 

model of the problem and analysis of results and no optimization approach of the system is 

investigated.  
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The surface methodology (RSM) is used primarily in this simulation experiment, based on the 

statistical design of experiments (DoE). This methodology provides more efficient way of 

studying the main effects of the variables as well as their interactions. An Optimal custom design 

is chosen because the experiment contains two numeric factors and one categorical hard-to-

change factor.  

8.2.1 Factors and responsible variables.  

 
The factors chosen in this study are number of critical a resource which determines the output 

capacitance of a capacitance sensor in a real life scenario.  Table 3 shows the variation range or 

level of factors; as can be seen, each factor has a defined range of study. This study aims at 

determining capacitances measured for water and ice thicknesses for various airgaps and 

different quantity of spongy ice in the medium. 

 

Table 3 Factor Levels 

Factor Name Levels 
A=Ice (Numeric ) 0 1 2 3 4 
A=Ice (Numeric ) 0 1 2 3 4 
C=Spongy Ice (categorical) 0 0.5 1   
D=air gap (categorical) 1 2 3   
 

From the previous discussions, the analysis obtained from this study should provide a seamless 

way of calculating the component factors just buy the knowledge of the output capacitance and 

the choice of air gap. Additionally, since this is a computer experiment, no replications is 

required because of the absence of noise; an optimal custom design is used, As seen from Table 
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4, the full design has 27 runs without replications. The optimal custom design provides a flexible 

custom model where all possible combination of factors in the experiment is considered.  

 
 

8.2.2 Statistical analysis of the RSM results  
 
The entire experiment is designed and analysed in Design Experts 9 from Statease. This 

objective of this analysis is to determine the significance of the input factors as shown in Table 4 

The main focus of this part is to determine the significance of the model itself and also to realise 

a reduced number of factors which will then be used to obtain a response surface design for 

fitting at least a second order polynomial to result.  

 

Table 4 Data from Simulation experiments 

A:Ice B:Water C:Spongy Ice D:Air Gap Capacitance 
3 4 1 1 12.721 
3 0 1 3 7.071 
0 0 1 3 1.529 
4 4 0.5 3 8.899 
3 1 1 1 12.15 
0 4 0.5 2 8.183 
0 4 0 1 28.022 
0 1 0 1 18.365 
4 0 0 3 6.198 
0 4 0 3 25.341 
0 1 0.5 3 5.723 
1 2 1 2 9.256 
2 0 0 1 11.839 
0 0 0 2 1.325 
0 0 1 1 5.825 
4 0 1 2 8.787 
0 4 0.5 1 9.502 
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4 2 0.5 2 9.732 
4 4 1 2 10.038 
2 2 0.5 1 12.003 
0 4 1 3 6.911 
3 4 0 2 10.276 
0 0 0.5 2 2.537 
4 0 0.5 1 11.63 
4 3 0 1 12.567 
4 2 1 3 8.528 
1 3 1 1 12.293 

 

 

Further analysis of the results is seen in Figure 8.4, the fit summary suggests the best and 

simplest model for the problem. In this case, design Expert software suggested a quadratic. This 

shows that the best model to represent the output capacitance in terms of the input will simply be 

a quadratic. The best model is seen from the highest R2 value of 0.9919.  

 

Table 5 Statistical analysis results 

 
Model Summary Statistics 

 Std.  Adjusted Predicted   
Source Dev. R-Squared R-Squared R-Squared PRESS  
Linear 4.59 0.5526 0.4184 0.1351 814.94  
2FI 1.50 0.9832 0.9377 0.6421 337.19  
Quadratic 0.54 0.9984 0.9919 0.8924 101.38 Suggested 
Cubic     + Aliased 

 

 
The ANOVA (Analysis of Variance) test in design Expert 9 is used is for significance analysis, 

the Figure 8.5 shows individual factors, their interactions and their significance; a significance 

threshold of 5% is used in this model. In other words, any parameter greater than with “Prob 
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>F”= 0.05 is insignificant and ignoring it in the equation will have little effect on the response 

(capacitance).  Additionally, since this study conducts an optimal custom design, in which the 

main effects and interactions are considered, studying the curvature in the RSM is of much 

importance. The significance of a curvature implies that a second order effect has to be added to 

the experiment so as to have an adequate regression model. Upon performing ANOVA as shown 

in Table 5 it reveals that the curvature is insignificant hence no additional point is needed in the 

experiment.  

Table 6 ANOVA Table 

 
Source Sum of  Mean F p-value  

 Squares DF Square Value Prob > F  
Model 940.73 21 44.80 152.48 < 0.0001 significant 
A-Ice 0.11 1 0.11 0.39 0.5603  

B-Water 149.94 1 149.94 510.38 < 0.0001  
C-Spongy Ice 149.11 2 74.55 253.77 < 0.0001  

D-Air Gap 90.26 2 45.13 153.61 < 0.0001  
AB 19.92 1 19.92 67.80 0.0004  
AC 122.02 2 61.01 207.66 < 0.0001  
AD 2.19 2 1.10 3.73 0.1020  
BC 75.61 2 37.80 128.68 < 0.0001  
BD 3.82 2 1.91 6.50 0.0406  
CD 80.45 4 20.11 68.46 0.0001  
A2 8.60 1 8.60 29.27 0.0029  
B2 2.43 1 2.43 8.28 0.0347  

Residual 1.47 5 0.29    
Cor Total 942.20 26     

 
 

Std. Dev. 0.54  R-Squared 0.9984 
Mean 10.27  Adj R-Squared 0.9919 

C.V. % 5.28  Pred R-Squared 0.8924 
PRESS 101.38  Adeq Precision 54.738 
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The ANOVA analysis in Table 6 shows that a quadratic model should be fitted to the data. The  

Significant factors are B, C, D, AB, AC, BC, BD, and CD. This makes sense as the dielectric 

property of ice is the lowest out of the other factors; hence it is not very significant in the output 

capacitance. However, the interaction with water and spongy ice is significant. This provides a 

useful insight on designing capacitance sensors for marine icing where a significant amount of 

spongy ice and water is present.  

Furthermore, based on the estimated coefficient of the significant factors, the FEM simulated 

data were fitted to a three dimensional polynomial regression that is listed below: 

 
 

             𝐶𝑖    =   𝑘0
𝑖 + 𝑘1

𝑖 𝑥 + 𝑘2
𝑖 𝑦 + 𝑘3

𝑖 𝑥𝑦 + 𝑘4
𝑖 𝑥2 + 𝑘5

𝑖 𝑦2                    (8-1) 
  
Where C: Capacitance (pF) 

     i: Airgap (mm) and spongy ice combination. 

     x: ice layer (mm) 

     y: water layer (mm) 

                              0  =   −𝐶𝑖 + 𝑘0
𝑖 + 𝑘1

𝑖 𝑥 + 𝑘2
𝑖 𝑦 + 𝑘3

𝑖 𝑥𝑦 + 𝑘4
𝑖 𝑥2 + 𝑘5

𝑖 𝑦2  

                          =      𝐹𝑖(𝑥, 𝑦)               (8-2) 

 
 

The slope of the constant capacitance characteristics for each air gap is calculated   as an implicit 

function using a F(x,y), using the implicit derivation formula below: 

 

                                       (
𝑑𝑦

𝑑𝑥
)

𝑖
= −

𝜕𝐹

𝜕𝑥
𝜕𝐹

𝜕𝑦

                           (8-3) 
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The derivative  (
𝑑𝑦

𝑑𝑥
)

𝑖
  is a function of the solution point (x, y)   and five coefficients   𝑘𝑛 , n= 1 

~5: 
  

                                                (
𝑑𝑦

𝑑𝑥
)

𝑖
= −

  𝑘1
𝑖 +𝑘3

𝑖 𝑦+2𝑘4
𝑖 𝑥

  𝑘2
𝑖 +𝑘3

𝑖 𝑥+2𝑘4
𝑖 𝑦

             (8-4) 

 
 
A close observation of the coefficients reveals that the higher order terms share the same value of 

𝑘3 , 𝑘4 𝑎𝑛𝑑 𝑘5 for all i =1, 2, 3. 

This derivative also corresponds to the output of the simulations. Table 8.2 shows the final 

quadratic regression coefficients for C obtained from the analysis in coded units. 

 

Table 8.7 Coefficient of the results in terms of the coded values 

 
 
 

 

Coeff. Airgap=1mm 
Spongy 

ice=0mm 

Airgap=2mm 
Spongy 

ice=0mm 

Airgap=3mm 
Spongy 

ice=0mm 

Airgap=1mm 
Spongy 

ice=0.5mm 

Airgap=2mm 
Spongy 

ice=0.5mm 
k0 +13.84002 +1.58721 +11.67851 +6.15500 +2.46713 
k1 +0.017806 +0.38384 +0.47993 +3.26493 +3.63096 
k2 +4.33958 +4.85508 +4.27396 +1.69440 +2.20990 
k3 -0.38601 -0.38601 -0.38601 -0.38601 -0.38601 
k4 -0.47435 -0.47435 -0.47435 -0.47435 -0.47435 
k5 -0.20274 -0.20274 -0.20274 -0.20274 -0.20274 

Coeff. Airgap=3mm 
Spongy 

ice=0.5mm 

Airgap=1mm 
Spongy 

ice=1mm 

Airgap=2mm 
Spongy 

ice=1mm 

Airgap=3mm 
Spongy 

ice=1mm 

 

k0 +4.39118 +6.03024 +2.21093 +1.17282  
k1 +3.72705 +3.10467 +3.47069 +3.56679  
k2 +1.62879 +2.29596 +2.81146 +2.23034  
k3 -0.38601 -0.38601 -0.38601 -0.38601  
k4 -0.47435 -0.47435 -0.47435 -0.47435  
k5 -0.20274 -0.20274 -0.20274 -0.20274  
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The derivatives (
𝑑𝑦

𝑑𝑥
)

𝑖
  therefore differ from each other which imply that the characteristics for 

different air gaps as well as spongy ice thicknesses are linearly independent across the entire 

domain of ice and water layer thickness under investigation. This confirms the initial hypothesis 

that an array of two or more sensors of different air gap can be used to uniquely determine the 

thickness of ice and water. The optimal gap spacing difference will be studied in future. 

Additionally, the coefficient of the equations shown in Table 8.5 are in terms of the actual factors 

and can be used to make predictions about the capacitance response for given levels of each 

factor at some amount of spongy ice.  

8.2.2 Validation of RSM Results  
 
The RSM consists of different steps, and the assumption of constant variance need to be 

validated. Additionally, this is needed to ensure that a useful data is collected from the COMSOL 

platform. Figure 8.6 shows the plot of standardised residuals, as observed, all the points are 

aligned on the linear graph line.  
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Figure 8.4 Normal probability of residuals  

 
This means the data collected shows no violation to the assumption of constant variance and the 

errors are normally distributed, also there is no need to apply a transformation to the model. 

Figure 8.7 is a plot of the residual versus the predicated points collected, for the whole data 

range, the plot shows that the points are in close correlation and are aligned around the origin; 

this observation indicates that the model and data collected is adequate.  
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Figure 8.5  Residuals vs. Predicted Plots. 

 

8.3 Response Surface Model. 
 
A second order design is obtained for this analysis. Due to the presence of nonlinearities in the 

surface of this design, a second order design allows the flexibility to fit a second order regression 

equation.  

There are other second order designs like the central composite design (CCD) and the Box-

Behnken design (BBD). For this analysis, a custom RSM is used to accommodate the hard to 

change factors in the design with the minimal amount of runs. The location of the vertex edge 

and interior points are already embedded in the design and a Response surface can simply be 

generated.  
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Figure 8.6 3D  Capacitance plot for 1mm air gap and 0mm Spongy ice. 

 
 

 

Figure 8.7 3D  Capacitance plot for 1 mm air gap 0.5mm spongy ice 
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Figure 8.8 3D capacitance plot for 2mm air gap spongy ice 0mm 

 
Figure 8.8 shows that in the absence of spongy ice, an increase in the water layer thickness 

results in a significant increase in the capacitance, however the capacitance drops off slowly as 

the ice thickness is increased simultaneously. This effect reduces with an increasing air gap and 

spongy ice. Also comparing the Figure 8.8 to 8.10 it is evident that the capacitance is highest at 

an increased water thickens and a reduced ice thickness regardless of the air gap. The 

capacitance and the length of the field lines got worse with increased air gap. The plots also 

shows that ice and water layer thickness for different air gaps can determined as the crossing 

point of two contour plots.  

Different combination of spongy ice thickness with air gap shows different capacitance output in 

the presence of water and ice. To obtain the optimum air gap requirement for a certain sensor, an 

optimisation analysis should be performed.    
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8.4 Result Conclusions 
 
This chapter presents a useful application of Statistical using design of Engineering experimental 

techniques in modelling , validating and analyzing a real life scenario of for a multiphase phase 

media with ice, water and spongy ice interaction. This research  strives  to  conduct  design  of  

experiment  for  determining a suitable air gap for a particular marine icing application for ice, 

water and spongy ice measurement to produce the best results in a real world marine icing 

phenomena.  

The applied method proofs that the applied model is statistically significant and an increase in 

the water layer will increase the capacitance significantly regardless of the air gap used. 

Furthermore, the results also shows that the air gaps for such an application should be around 

2mm or less since is it measures more capacitance, hence longer and more direct electric field 

lines.  

The method also proves that different sensors of different air gap can be used to uniquely 

determine the thickness of ice and water using the proposed model and a uniquely independent 

fitted curve on a Response surface model. Conclusions and observations deduced from this 

chapter are applied in the marine icing sensor design elaborated in the subsequent chapters.  
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Chapter 9  
 

Conclusion 
 

9.0 Research Conclusion  
 
A capacitive based Marine icing sensor developed in Memorial University of Newfoundland 

Electrical and Electronics Laboratory and tested in the Hydro fluids laboratory. This system was 

developed in collaboration with Statoil Canada Limited, RDC and MITACS. This system is 

capable detecting ice thickness on a surface within acceptable accuracy.  

In this thesis, three different geometry of capacitive sensor plate is simulated, fabricated and, 

tested; the basic characteristics of the sensor plates were analyzed by studying the electrical 

properties of the sensor tracings. Electric field lines behaviour, sensor geometry and materials 

were also investigated to produce the best possible sensor for marine icing. FEM software is also 

used in simulating two phase and multi-phase icing phenomena, experimentally validated in this 

thesis. 

Charged copper tracings on silicon substrate can be used in material detection by electrically 

exciting one end of the copper tracing and the other end grounded, this produces an electric field 

lines which is broken by the material in the vicinity. In this thesis, a low cost, low power 

consumption capacitance to digital converter circuitry is proposed and built. The capacitance to 

digital converter excites the capacitive plates and digitized. The resulting digital vales of the 

capacitance are read using a low cost microcontroller available on board. Experiments shows that 
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the proposed system can measure ice thicken in real time. The proposed system can be modified 

for installation for ice detection and can be easily integrated to trigger heat tracing to melt ice. 

 

9.1 Research Contribution 
 
The overall research is an industrial collaboration for a system deployable to monitor marine 

icing on deck of offshore vessels and rigs.  This thesis is also a contribution to sensor technology 

as a means to explore more on capacitive sensing in the area of marine technology.  The 

contributions of this research are as follows: 

 The research laid a foundation for effective marine icing sensing using capacitive 

technique. Marine icing sensing for a single phase steady state condition was 

experientially verified. 

 Design of Engineering Experiments (DoE) based method of analyzing and modeling 

multiphase medium of water and ice, with spongy ice embedded in-between. The FEM 

data proof linear independence of three different air gap sensors and the solution of a 

given ice and water thickness are determined as the crossing point of contour plots. 

 This thesis presents a prototype of a standalone, fully operational, RMI resistant marine 

icing sensor, capable of detecting ice thickness has been designed in this thesis. 

 Three different copper tracing sensor geometries is designed and simulated in COMSOL 

Multiphysics; two comb type and one circular hatched type sensor. The comb type has 

the electric field line parallel to the comb fingers and the last prototype has the electric 

field distributed in a circular pattern and centered in the middle of the Sensor plate.  
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 Simple, low cost and low power micro controller based circuitry for capacitance to digital 

conversion is developed and tested in the Electronics lab at Memorial University of 

Newfoundland.  

 Experimental proof of dielectric loss with increase in salinity. 

 Valuable ice thickness data for both fresh and salt water are obtained using the proposed 

ice sensor. Necessary documentation of all engineering procedures including results is 

contained in this thesis. 

9.2 Future Work 
 
The work presented in this thesis is part of a large research area in marine sensing in general. 

The result and conclusion resented in this thesis is to provide a starting point on the application 

of capacitive sensing in marine icing detection, quantifying and removal of ice loads in offshore 

vessels and rigs. This thesis also draws more attention on capacitive sensing as a replacement for 

more expensive direct or indirect ice sensing techniques like ultrasonic, inductive and image 

processing. Some of the future work could be developed and documented as follows. 

 

 The optimal air gap could be investigated in the future using the RSM optimization tool 

available in design expert 9 software, this will provide a more refined method which 

provides the best air gap for measuring a given ice thickness.  

 Testing different sensor arrangement for improved sensitivity. 

 This thesis contains full detail of the electronics schematics ready for PCB design. It is 

possible to use this documentation in producing a PCB of this sensor, end product will be 

rugged and ready to use for offshore vessels and rigs. 
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 The Sensor plate presented in this thesis provides a starting point to assist in further 

exploration of highly sensitive sensor geometry that could produce electric field lines 

long enough to detect ice thickness more than 30mm. This will be very useful in offshore 

Marine icing detection where ice loads range from 20mm to 300mm. 

 Methods to integrate the sensor with defrost system should also be investigated.  

 Both the sensing plate and the sensor electronics can be enhanced using Micro-Electro-

Mechanical Systems Technology (MEMS) this will produce a miniaturized version of the 

whole system that is even more easily deployable and easy to modify. 
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Appendix A 

A.1 Capacitance to Digital Conversion and 
Temperature Sensing 
 
#include <OneWire.h> 
#include <Wire.h> 
#include <FDC1004.h> 
OneWire ds(4);  // DS18S20 Temperature chip 
 
FDC1004 fdc; //Or, specify a rate: 100HZ, 200HZ, and 400HZ 
FDC1004 fdc(FDC1004_400HZ) 
  
void setup(void) {  //initialize inputs/outputs 
Wire.begin();  // start serial port 
  Serial.begin(115200); 
} 
  
void loop(void) { 
  
  //For conversion of raw data to C 
  int HighByte, LowByte, TReading, SignBit, Tc_100, Whole, Fract; 
  int32_t capacitance = fdc.getCapacitance(0)/1000; 
 
  byte i; 
  byte present = 0; 
  byte data[12]; 
  byte addr[8]; 
  
  if ( !ds.search(addr)) { 
      //Serial.print("**Sensor Detected**"); 
      ds.reset_search(); 
      return; 
  } 
  
  if ( OneWire::crc8( addr, 7) != addr[7]) { 
      Serial.print("CRC is not valid!\n"); 
      return; 
  } 
  
  ds.reset(); 
  ds.select(addr); 
  ds.write(0x44,1);         // start conversion, with parasite power on at the end 
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  delay(1000);      // Initiate some delay 
 
  present = ds.reset(); 
  ds.select(addr);     
  ds.write(0xBE);         // Read Scratchpad 
  
  
  Serial.print(" "); 
  for ( i = 0; i < 9; i++) {           //  9 bytes 
    data[i] = ds.read(); 
  } 
  LowByte = data[0];   //Conversion of raw data to C 
  HighByte = data[1]; 
  TReading = (HighByte << 8) + LowByte; 
  SignBit = TReading & 0x8000;  // test most sig bit 
  if (SignBit) // negative 
  { 
    TReading = (TReading ^ 0xffff) + 1; // 2's comp 
  } 
  Tc_100 = (6 * TReading) + TReading / 4;    // multiply by (100 * 0.0625) or 6.25 
  
  Whole = Tc_100 / 100;  // separate off the whole and fractional portions 
  Fract = Tc_100 % 100; 
 
  
  if (SignBit) // If its negative 
  { 
     Serial.print("-"); 
  } 
  Serial.print(Whole); 
  Serial.print("."); 
  if (Fract < 10) 
  { 
     Serial.print("0"); 
  } 
  Serial.print(Fract);   //End conversion to C 
  Serial.print(" , "); 
  Serial.println(capacitance); 
  delay(250); 
  //Serial.print(" pF\n"); 
 
} 
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A.2 FDC1004 Library  
 
 
#include <FDC1004.h> 
 
#define FDC1004_UPPER_BOUND ((int16_t) 0x4000) 
#define FDC1004_LOWER_BOUND (-1 * FDC1004_UPPER_BOUND) 
 
uint8_t MEAS_CONFIG[] = {0x08, 0x09, 0x0A, 0x0B}; 
uint8_t MEAS_MSB[] = {0x00, 0x02, 0x04, 0x06}; 
uint8_t MEAS_LSB[] = {0x01, 0x03, 0x05, 0x07}; 
uint8_t SAMPLE_DELAY[] = {11,11,6,3}; 
 
FDC1004::FDC1004(uint16_t rate){ 
  this->_addr = 0b1010000; // Configuring FDC1004 address  
  this->_rate = rate; 
} 
 
void FDC1004::write16(uint8_t reg, uint16_t data) { 
  Wire.beginTransmission(_addr); 
  Wire.write(reg); //send address 
  Wire.write( (uint8_t) (data >> 8)); 
  Wire.write( (uint8_t) data); 
  Wire.endTransmission(); 
} 
 
uint16_t FDC1004::read16(uint8_t reg) { 
  Wire.beginTransmission(_addr); 
  Wire.write(reg); 
  Wire.endTransmission(); 
  uint16_t value; 
  Wire.beginTransmission(_addr); 
  Wire.requestFrom(_addr, (uint8_t)2); 
  value = Wire.read(); 
  value <<= 8; 
  value |= Wire.read(); 
  Wire.endTransmission(); 
  return value; 
} 
 
uint8_t FDC1004::configureMeasurementSingle(uint8_t measurement, uint8_t channel, uint8_t 
capdac) { 
    //Verify data 
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    if (!FDC1004_IS_MEAS(measurement) || !FDC1004_IS_CHANNEL(channel) || capdac > 
FDC1004_CAPDAC_MAX) { 
        Serial.println("bad configuration"); 
        return 1; 
    } 
     
    //build 16 bit configuration 
    uint16_t configuration_data; 
    configuration_data = ((uint16_t)channel) << 13; //CHA 
    configuration_data |=  ((uint16_t)0x04) << 10; //CHB disable / CAPDAC enable 
    configuration_data |= ((uint16_t)capdac) << 5; //CAPDAC value 
    write16(MEAS_CONFIG[measurement], configuration_data); 
    return 0; 
} 
 
uint8_t FDC1004::triggerSingleMeasurement(uint8_t measurement, uint8_t rate) { 
  //verify data 
    if (!FDC1004_IS_MEAS(measurement) || !FDC1004_IS_RATE(rate)) { 
        Serial.println("bad trigger request"); 
        return 1; 
    } 
    uint16_t trigger_data; 
    trigger_data = ((uint16_t)rate) << 10; // sample rate 
    trigger_data |= 0 << 8; //repeat disabled 
    trigger_data |= (1 << (7-measurement)); // 0 > bit 7, 1 > bit 6, etc 
    write16(FDC_REGISTER, trigger_data); 
} 
 
/** 
 * Check if measurement is done, and read the measurement in value 
 * Return 0 if successful, 1 if bad request, 2 if measurement did not complete. 
 * Value should be at least 4 bytes long (24 bit measurement) 
 */ 
uint8_t FDC1004::readMeasurement(uint8_t measurement, uint16_t * value) { 
    if (!FDC1004_IS_MEAS(measurement)) { 
        Serial.println("bad read request"); 
        return 1; 
    }  
    //check if measurement is complete 
    uint16_t fdc_register = read16(FDC_REGISTER); 
    if (! (fdc_register & ( 1 << (3-measurement)))) { 
        Serial.println("measurement not completed"); 
        return 2; 
    } 
  //read the value 
  uint16_t msb = read16(MEAS_MSB[measurement]); 
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  uint16_t lsb = read16(MEAS_LSB[measurement]);   
  value[0] = msb; 
  value[1] = lsb; 
  return 0; 
} 
 
/** 
 * Convenience method to take a measurement, uses the measurement register equal to the 
channel number 
*/ 
uint8_t FDC1004::measureChannel(uint8_t channel, uint8_t capdac, uint16_t * value) { 
  uint8_t measurement = channel; //4 measurement configs, 4 channels, seems fair 
  if (configureMeasurementSingle(measurement, channel, capdac)) return 1; 
  if (triggerSingleMeasurement(measurement, this->_rate)) return 1; 
  delay(SAMPLE_DELAY[this->_rate]); 
  return readMeasurement(measurement, value); 
} 
 
/** 
 * High level function to get the capacitance from a channel. 
 * Attempts to manage capdac automagically 
*/ 
int32_t FDC1004::getCapacitance(uint8_t channel) { 
    fdc1004_measurement_t value; 
    uint8_t result = getRawCapacitance(channel, &value); 
    if (result) return 0x80000000; 
     
    int32_t capacitance = ((int32_t)ATTOFARADS_UPPER_WORD) * ((int32_t)value.value);  
    capacitance /= 1000; //femtofarads 
    capacitance += ((int32_t)FEMTOFARADS_CAPDAC) * ((int32_t)value.capdac); 
    return capacitance; 
} 
 
/** 
 * High level function to get the raw capacitance from a channel 
 * Managing CAPDAC 
 */ 
uint8_t FDC1004::getRawCapacitance(uint8_t channel, fdc1004_measurement_t * value) { 
    if (!FDC1004_IS_CHANNEL(channel)) return 1; 
    value->value = 0x7FFF; 
    uint16_t raw_value[2]; 
    value->capdac = this->_last_capdac[channel]; //load last capdac as starting point 
 
    //sample until we get a good result 
    while(value->value > 0x7E00 || value->value < 0x8100) { 
        if (measureChannel(channel, value->capdac, raw_value)) { 
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            Serial.println("error"); 
            return 1; 
        } 
        value->value = (int16_t)raw_value[0]; 
 
        //adjust capdac if necessary 
        if (value->value > FDC1004_UPPER_BOUND && value->capdac < 
FDC1004_CAPDAC_MAX) { 
            value->capdac++; 
        } else if (value->value < FDC1004_LOWER_BOUND && value->capdac > 0) { 
            value->capdac--; 
        } else { 
            //out of range, but capdac is already maxed (or minned). Return. 
            this->_last_capdac[channel] = value->capdac; 
            return 0; 
        } 
    } 
    this->_last_capdac[channel] = value->capdac; 
    return 0; 
 
} 
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A.3 FDC1004 Header File  
 
#ifndef _FDC1004 
#define _FDC1004 
 
#include "Arduino.h" 
#include "Wire.h" 
 
//Constants and limits for FDC1004 
#define FDC1004_100HZ (0x01) 
#define FDC1004_200HZ (0x02) 
#define FDC1004_400HZ (0x03) 
#define FDC1004_IS_RATE(x) (x == FDC1004_100HZ || \ 
                            x == FDC1004_200HZ || \ 
                            x == FDC1004_400HZ) 
 
#define FDC1004_CAPDAC_MAX (0x1F) 
 
#define FDC1004_CHANNEL_MAX (0x03) 
#define FDC1004_IS_CHANNEL(x) (x >= 0 && x <= FDC1004_CHANNEL_MAX) 
  
#define FDC1004_MEAS_MAX (0x03) 
#define FDC1004_IS_MEAS(x) (x >= 0 && x <= FDC1004_MEAS_MAX) 
                              
#define FDC_REGISTER (0x0C) 
                              
#define ATTOFARADS_UPPER_WORD (457) //number of attofarads for each 8th most LSB 
(lsb of the upper 16 bit half-word) 
#define FEMTOFARADS_CAPDAC (3028) //number of femtofarads for each LSB of the 
capdac 
                              
typedef struct fdc1004_measurement_t{ 
    int16_t value; 
    uint8_t capdac; 
}fdc1004_measurement_t; 
 
class FDC1004 { 
 public: 
    FDC1004(uint16_t rate = FDC1004_100HZ); 
    int32_t getCapacitance(uint8_t channel = 1); 
    uint8_t getRawCapacitance(uint8_t channel, fdc1004_measurement_t * value); 
    uint8_t configureMeasurementSingle(uint8_t measurement, uint8_t channel, uint8_t capdac);  
    uint8_t triggerSingleMeasurement(uint8_t measurement, uint8_t rate); 
    uint8_t readMeasurement(uint8_t measurement, uint16_t * value); 
    uint8_t measureChannel(uint8_t channel, uint8_t capdac, uint16_t * value); 
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 private: 
    uint8_t _addr; 
    uint8_t _rate; 
    uint8_t _last_capdac[4]; 
    void write16(uint8_t reg, uint16_t data); 
    uint16_t read16(uint8_t reg); 
}; 
 
#endif 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



101 
 

 

B.2 Data Acquisition Python Codes 
 
 
# Marine Ice Sensor Data Acquisition code for capacitance and temperature 
# Written by Charles Ezeoru 
 
import serial # import Serial Library 
import numpy  # Import numpy 
import matplotlib.pyplot as plt #import matplotlib library 
from drawnow import * 
  
Fract= [] 
capacitance=[] 
arduinoData = serial.Serial('com16', 115200) #Creating our serial object named arduinoData 
plt.ion() #Tell matplotlib you want interactive mode to plot live data 
cnt=0 
  
def makeFig(): #Create a function that makes our desired plot 
    plt.ylim(20,30)                                   #Set y min and max values 
    plt.title('My Live Streaming Sensor Data')       #Plot the title 
    plt.grid(True)                                     #Turn the grid on 
    plt.ylabel('Temperature')                         #Set ylabels 
    plt.plot(Fract, 'ro-', label='Degrees C')         #plot the temperature 
    plt.legend(loc='upper left')                      #plot the legend 
    plt2=plt.twinx()                                  #Create a second y axis 
    plt.ylim(0,100)                            #Set limits of second y axis- adjust to 

readings you are getting 
    plt2.plot(capacitance, 'b^-', label='capacitance (pF)') #plot capacitance data 
    plt2.set_ylabel('Capacitance (pF)')                     #label second y axis 
    plt2.ticklabel_format(useOffset=False)            #Force matplotlib to NOT autoscale y axis 
    plt2.legend(loc='upper right')                    #plot the legend 
     
  
while True: # While loop that loops forever 
    while (arduinoData.inWaiting()==0): #Wait here until there is data 
        pass #do nothing 
    arduinoString = arduinoData.readline()   #read the line of text from the serial port 
    dataArray = arduinoString.split(',')     #Split it into an array called dataArray 
    temp = float( dataArray[0])            #Convert first element to floating number and put in temp 
    P =    float( dataArray[1])            #Convert second element to floating number 
    Fract.append(temp)                     #Build our temp array by appending temp readings 
    capacitance.append(P)                     #Building our capacitance array by appending T readings 
    drawnow(makeFig)                       #Call drawnow to update our live graph 
    plt.pause(.000001)                     #Pause Briefly. Important to keep drawnow from crashing 
    cnt=cnt+1 
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    if(cnt>50):                            #If you have 50 or more points, delete the first one from the array 
        Fract.pop(0)                       #This allows us to just see the last 50 data points 
        capacitance.pop(0) 
 


