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Abstract

Redundancy is an important approach to increase the reliability and availability of

systems. There has been a recent interest in analyzing failure data from redundant

systems to detect the effects of adverse events. A carryover effect is defined as an effect

which may cause a temporary increase in the event intensity after the occurrence of

a condition or an event. We consider a parallel type of carryover effect in which the

event intensity of a process is temporarily increased after event occurrences in other

processes. The main goal of this thesis is to develop formal tests for the assessment of

parallel carryover effects in redundant systems with repairable components connected

in parallel. We, therefore, develop partial score tests for the presence of parallel carry-

over effects, and discuss their asymptotic properties analytically as well as through

simulations. A data set based on the information obtained from a power company is

analyzed to illustrate the methods developed.
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Chapter 1

Introduction

In this chapter, our main goal is to introduce some concepts related to the reliability

of power systems and research topics. In Section 1.1, we first introduce fundamental

concepts in reliability analysis of redundant systems, and next discuss the type of

data sets. In Section 1.2, we give an outline of the thesis.

1.1 Reliability of Power Systems and Redundancy

The demand of consumers of manufacturers, systems or service providers on quality,

productivity and availability of a product, system or service is getting higher than ever.

Reliability attached to those characteristics is of critical importance. In basic terms,

reliability is defined as the probability that a product, system or service operates

under the operating conditions for some specified period of time. Improving reliability

is, therefore, a very important issue for manufacturers and service providers to be

competitive.

In this thesis, we consider the reliability of systems with multiple components. Our

focus is on diesel operated power systems, which are often used to generate electricity

in isolated, hard-to-reach communities to meet the power demand, but methods and

models developed can be applied in other settings as well. The function of a power

system is to supply electrical energy to its consumers on demand as reliably and safely

as possible and in an economically justifiable manner (Billinton and Allan, 1984).

Power generation companies may sell their power to utility, industrial, residential

and commercial customers. The unavailability of a power system when it is needed

can create serious problems for its consumers as well as resulting in severe financial
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loss to a power company. The expectation of customers from a power company is,

therefore, a continuous supply of least-cost electricity whenever there is a demand

for power. This is not always possible in reality. There are many events causing

unwanted system stoppages, which are beyond the control of system engineers. Such

events, to which we refer to as failures, are often in a recurrent nature. Modelling and

analysis of recurrent failures can be useful for identifying opportunities for reliability

improvements in power systems especially in the operation phase.

There are different ways of improving the reliability of a system. As Billinton

and Allan (1992, Section 1.3) denoted, redundancy is an important approach to affect

the reliability and availability of a system. In this approach, there is one or more

back-ups of the components in a system so that the function of a failed component

is absorbed by other unfailed components. There are two types of redundancy. The

first type is called standby redundancy, in which the redundant component waits in

a standby position until the failure of active components, and starts operating when

one or more active components fail. In the second type of redundancy, called active

redundancy, components operate and share a function together. In case of a failure of a

component, remaining components absorb the load of the failed component (Billinton

and Allan, 1992). In this thesis, we focus on the active redundancy as it fits a

natural model for the type of data sets considered. A system having either standby or

active redundancy is called a redundant system. An example of a redundant system

with active redundancy is a (fully) parallel system with K components, in which all

components are connected in parallel. In such systems, a system failure occurs if

and only if all of the components fail. This type of systems are sometimes called

fully redundant. A system is called a series system, if all of its componenets are

connected in series. A series system is sometimes called zero redundant. There are

also partially redundant systems, in which some components are connected in series

and some components are connected in parallel. In this thesis, we focus on fully

redundant systems consisting of K parallely connected components.

Systems or their components can be classified as repairable or nonrepairable (Rig-

don and Basu, 2000). A nonrepairable system is a system that is discarded when

a failure occurs. Cost of replacement is usually low in nonrepairable systems. A

repairable system is a system that can be restored to an operating condition after

some repair other than replacement of the entire system when a failure occurs. As

discussed by Rigdon and Basu (2000), repairable systems are generally more complex
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than nonrepairable systems. Our focus in this thesis is on systems with repairable

components. Statistical analysis of repairable systems usually needs assumptions on

the nature of repairs, which plays an important role on the development of a model

for failure data. Ascher (1968) introduces the concept of a minimal repair, in which

a repair is assumed to bring a failed system or component to the operating condition

just like before the failure. In this case, a repair is sometimes called as-bad-as-old

(Ascher, 1968). A perfect repair is a repair that brings the condition of a repairable

system to that of a completely new system after a failure. This type of repair is

sometimes called as-good-as-new (Rigdon, 2007; Misra, 2012). As Lindqvist (2006)

denoted, the assumption of a minimal repair is usually applied when only a minor part

of the system is repaired or replaced after a failure. This type of repairs are better

suited in our study, so we assume that a minimal repair occurs after each failure of

components of a system. In Section 2.1, we introduce models corresponding to the

assumption of minimal and perfect repairs. There are also imperfect repair models

(Brown and Proschan, 1983; Baker, 2001; Lindqvist, 2006). In this thesis, we do not

discuss such repairs, but state them as a future work in the final chapter.

In the next two subsections, we first introduce the motivating example of this

research and then present the main target and outline of this thesis. It is well known

that there are major problems in reliability when it comes to data collection (Lawless,

1983). For example, failure data are often incomplete or biased in the sense that not

all types of failures are reported. We do not consider such difficulties in this thesis.

1.1.1 Example: Diesel Plants of a Power Company

The framework of the data sets used in this thesis are obtained from a power company.

Unexpected power outages in the remote, isolated communities in different regions is

a major concern for this power company and its customers. There are 25 diesel plants

operating in those isolated locations to provide electricity. Environmental conditions

in these regions are usually extremely severe, especially in the winter times. Also,

some of the power plants are 35-40 years old. Mainly because of these reasons, power

plants operating in these communities fail frequently, and require increasing attention

for maintenance, refurbishment and replacement. Most communities that receive

their electricity from diesel plants have an operator living in the community who can

respond to unexpected power outages that may occur on site and complete regular

maintenance. Therefore, a failed power plant can be sometimes repaired in a short
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time. However, there are many occasions when a failed power plant requires long

repair times, which may substantially increase the total cost of operation and create

unpleasant situations for customers.

To improve the reliability of operations, the power company implements the re-

dundancy approach. Most of the power plants operating in isolated communities have

multiple diesel operated engines working together in order to supply electricity de-

mand of a community. These engines are parallely connected to share the electricity

demand. If one of the engines fails, the remaining engines in operating conditions

share the load of the failed one and operate in an increased capacity. The power plant

has an unwanted system stoppage if and only if all of the engines do not operate. This

framework is, therefore, suitable for the analysis within the fully redundant systems.

In the remainder of this thesis, we consider a power plant as a system and its engines

as parallely connected components operating under redundancy.

1.2 Main Goal and Outline of the Thesis

Modelling and detection of the effects of adverse events on repairable systems has been

a major research area in the analysis of reliability data. Redundancy is an important

approach to increase the reliability. In redundant systems with active redundancy, the

failure of a component may temporarily increase the probability of failures of other

components. We refer to this phenomenon as a parallel carryover effect. In other

words, a parallel carryover effect is a temporary adverse effect resulting in an increased

risk of failures in redundant components of an active redundant system during the

downtime of the failed components. The presence of parallel carryover effects causes

temporary clustering of events (failures) together in the redundant components.

The main goal of this thesis is to provide a thorough discussion of parallel carryover

effects, develop formal tests for the absence of them in various settings, and investigate

their properties. The outcome of this thesis can be beneficial for power generation

companies to improve their reliability programs and to determine their maintenance

programs, which minimize the total cost of operation and maximize the availability

of repairable systems.

The remainder of this thesis is arranged as follows. In Chapter 2, we introduce

the notation used in the thesis, fundamental models for recurrent event processes

as well as mathematical concepts and simulation procedures applied in the following
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chapters.

In Chapter 3, we discuss testing for the presence of parallel carryover effects in

redundant systems with two components. We first consider testing for parallel carry-

over effects in redundant systems where repair times of the redundant component are

negligible. Then, we consider testing for parallel carryover effects in redundant sys-

tems where repair times of the redundant component are not negligible. Asymptotic

properties of the test statistics are discussed analytically as well as through simula-

tions in two different setups; (i) when the observation period increases for a single

system, and (ii) when the number of systems increases for multiple systems.

In Chapter 4, we discuss testing for parallel carryover effects in redundant systems

with three components as an extension of Chapter 3. We first consider testing for par-

allel carryover effects in redundant systems with three components when repair times

of the redundant component are negligible. Next, we discuss the same issue when

repair times of the redundant component are not negligible. We discuss the asymp-

totic properties of test statistics within the same setups of Chapter 3 via simulations.

Finally, we illustrate the methods developed in Chapter 4 by analyzing a simulated

data set. The simulation of the data set is based on the information received from a

power company on their diesel power plants.

In Chapter 5, we discuss testing for the presence of parallel carryover effects in

redundant systems, which are subject to monotonically increasing time trends in the

rate of event occurrences due to stochastic aging. This type of trends is often seen

in repairable systems. In this chapter, we also extend our methodology to deal with

external covariates in the models. We first consider systems with two components and

then extended the methods to three components case. We also discuss the asymptotic

properties of test statistics through simulations. Finally, we analyze a simulated failure

data set in power systems to illustrate the methods.

In the final chapter, we give a summary of the results of the previous chapters and

present our conclusions. Some important future research topics are also discussed.



Chapter 2

Basic Concepts and Models

In this chapter, we introduce basic concepts and models that are useful in this the-

sis. In Section 2.1, we introduce basic terminology and concepts in recurrent event

processes. We focus mostly on the Poisson processes. In Section 2.2, we give the

methodology based on the likelihood functions to test a hypothesis with score tests.

We explain simulation procedures in Section 2.3.

2.1 Basic Concepts and Models

In this section, we introduce the basic notation and terminology frequently used in the

remaining part of this thesis. We introduce the notation for a single process observed

over a fixed time interval. Extensions to multiple processes and other observation

schemes are given later in the thesis whenever it is needed.

As defined in the previous section, reliability is the probability that a product,

system or service operates under the operating conditions for some specified period of

time (Meeker and Escobar, 1998). In this thesis, we focus on systems with multiple

components, in which components are parallely connected. Figure 2.1 shows the

diagram of such a system with two parallelly connected components. We consider

only binary components with operational (up) and nonoperational (down) states, in

which either up or down state is possible for any component at any given time instant.

We define any event that results in an unplanned stoppage in a component as a failure

in the corresponding component. Furthermore, a system is in down state if and only

if all of its components are down. We assume components are repairable and provide

possibly recurrent failure (event) data.
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Figure 2.1: A system with two components (Component A and Component B) con-
nected in parallel.

The statistical analysis of repairable systems is usually constructed within the

point process framework. Let random variables T1, T2, . . ., with the property that

0 < T1 < T2 < · · · denote the occurrence times of a well-defined event along a time

axis. The Ti are called event times or arrival times. We then define the jth gap

time Wj as the interarrival time between the jth and j + 1st event times; that is,

Wj = Tj − Tj−1, j = 1, 2, . . ., where by mathematical convention T0 = 0. We also let

t1, t2, . . . and w1, w2, . . . denote realizations of T1, T2, . . . and W1, W2, . . ., respectively.

Let the random variable N(t) denote the number of event occurrences over a time

interval (0, t], where t > 0. We also let N(s, t) denote the number of event occurrences

over (s, t] so that N(s, t) = N(t) − N(s) for all 0 ≤ s < t < ∞. We assume that

N(0) = 0 and E{N(t)} <∞ for each t, where E denotes expectation. The stochastic

process {N(t), t > 0} is then called a counting process. Many properties of counting

processes and their related functions are given, for example, in Daley and Vere-Jones

(2003).

We next define the intensity function of a counting process, but to do this we

first define the history of a stochastic process. We let H(t) = {N(u), 0 ≤ u < t}
denote the history of the process {N(t), t > 0} at time t. The history H(t) includes

all information about the counting process {N(t), t > 0} from time 0 to just prior
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to time t. In our simple setup, this information includes event occurrence times t1,

t2, . . ., and the number of events at each time point in [0, t). More information on

histories of stochastic processes can be found in Daley and Vere-Jones (2003, pp.

423–427). We let dt denote an infinitesimal positive valued real number and dN(t)

be an infinitesimal increment in N(t); that is, dN(t) = N((t + dt)−)−N(t−), which

gives the number of events in [t, t + dt). We are now in a position to define the

intensity function. Let λ(t|H(t)) denote the intensity function of a counting process

{N(t), t > 0} (with respect to its history H(t)), which is mathematically defined as

λ(t|H(t)) = lim
∆t→0

Pr {N((t+ ∆t)−)−N(t−) = 1 |H(t)}
∆t

, (2.1)

where ∆t > 0. The intensity function gives the instantaneous probability of an

event occurring in [t, t + dt), given the process history H(t). Assuming that two

or more events cannot occur together at the same instant, the intensity function

completely specifies a recurrent event process (Cook and Lawless, 2007). In this

case, since dN(t) is a 0-1 valued (binary) random variable, it can be shown that

λ(t |H(t)) dt = E{dN(t) |H(t)}.
Other important concepts include mean, rate and hazard functions. The mean

function, denoted by µ(t), is a nondecreasing, right continuous function which gives

the expected number of events up to time t; that is, µ(t) = E{N(t)} for t > 0. We also

use the notation µ(s, t) to denote the expected number of events in any finite interval

(s, t], where 0 ≤ s < t < ∞. Thus, µ(s, t) = E{N(s, t)}. We let ρ(t) denote the

instantaneous rate of change of the expected number of events with respect to time.

We refer to ρ(t) as the rate of occurrence of failures function (ROCOF) or, simply,

the rate function. Since rate and mean functions are not conditioned on the history,

they are called marginal properties of a point process. Assuming the derivative of µ(t)

exists for t > 0, by definition, ρ(t) = (d/dt)µ(t). The hazard function of a positive

random variable W is defined by

h(w) = lim
∆t→0

Pr{W < w + ∆t |W > w}
∆t

, w > 0. (2.2)

If f(w), w > 0, denotes the probability density function (p.d.f.) of W and F (w) =

Pr{W ≤ w} =
∫ w

0
f(u) du is the cumulative density function (c.d.f.) of W , it is well

known that h(w) = f(w)/[1− F (w)] for w > 0.
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The data generating mechanism of a counting process {N(t), t > 0} in the con-

tinuous case is governed by its intensity function. The specification of the intensity

function (2.1), therefore, defines a statistical model for recurrent event processes. We

now introduce some fundamental models for recurrent event processes through the

specification of their intensity functions. We start with Poisson processes and then

introduce renewal processes and some ramifications of them.

Poisson processes are usually useful if there is an interest in modelling the number

of event occurrences. The process {N(t), t > 0} is called a Poisson process if its

associated intensity function is given by

λ(t |H(t)) = ρ(t), t > 0, (2.3)

where ρ(t) is the rate function of the process (Cook and Lawless, 2007). It is clear from

(2.3) that the intensity function of a Poisson process depends on t, but it is indepen-

dent from the previous event occurrences over [0, t). Therefore, Poisson processes have

the Markov property (see, e.g., Thompson, 1988). A Poisson process {N(t), t > 0} is

called a homogeneous Poisson process (HPP) if the intensity function (2.3) is constant

for any t > 0. Otherwise, it is called a nonhomogeneous Poisson process (NHPP).

In a reliability context, Poisson processes are canonical models for repairable sys-

tems if minimal repairs are applied after after each failure. The distinction between a

HPP and a NHPP is an important modelling issue. As denoted by Thompson (1988,

p. 22), homogeneous Poisson processes (HPPs) are often used for modelling recurrent

event data mainly because of their simple properties, but their adequacy should be

always investigated especially in reliability studies of repairable systems. For exam-

ple, since HPPs have a constant rate function, they are not appropriate models when

there is a time trend due to stochastic aging (Lai and Xie, 2006). This is a major

limitation of their use in the reliability studies of repairable systems because many

repairable systems are more prone to fail as they age. A constant rate function cannot

be adequate in such cases. Nonetheless, HPPs have some applications in reliability

studies, in particular, when the observation periods of systems are short. A NHPP is

a canonical model for repairable system if there is stochastic aging in the system due

to a wear-out phenomenon or due to reliability growth (Thompson, 1988, p. 53; Lai

and Xie, 2006, p. 7).

Poisson processes and their generalizations are well discussed in the literature.

Their properties can be found in many stochastic processes or point processes texts
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(see, e.g., Thompson, 1988; Kingman, 1993; Daley and Vere-Jones, 2003; Nakagawa,

2011). Here, we state only some of the useful properties, and refer to literature for

their proofs. For example, let {N(t), t > 0} be a Poisson process with the intensity

function (or equivalently, the rate function) ρ(t), where t > 0. Then, the number of

events in any finite interval (s, t], where 0 ≤ s < t < ∞, has a Poisson distribution

with the mean µ(s, t) (Daley and Vere-Jones, 2003, p. 34). We have, therefore,

Pr{N(s, t) = n} =
[µ(s, t)]n

n!
e−µ(s,t), n = 0, 1, 2, . . . , (2.4)

where µ(s, t) =
∫ t
s
ρ(u) du. Let V (t) denote the variance function. Since the mean

and the variance of any Poisson distributed random variable are equal, the variance

function of the number of events in a Poisson process {N(t), t > 0} is given by

V (t) = V ar{N(t)}, where V ar stands for the variance and V ar{N(t)} = µ(t) for

t > 0.

The following property is useful to simulate realizations of a HPP. The counting

process {N(t), t > 0} is a HPP with a constant rate function ρ, where ρ > 0, if and

only if the gap times Wj, j = 1, 2, . . ., are independent and identically distributed

(i.i.d.) exponential variables with mean ρ−1. A proof of this statement can be found,

for example, in Rigdon and Basu (2000, pp. 45–49). Another important result which

can be used to simulate realizations of a NHPP is given as follows. Let {N(t), t > 0}
be a NHPP with mean function µ(t) and {N∗(s), s > 0} be a HPP with mean function

µ∗ = 1. By letting s = µ(t), we can show thatN∗(s) = N(µ−1(s)) for s > 0 (Daley and

Vere-Jones, 2003, p. 258). We used these two results in simulation and data analysis

sections of the next chapters. We explain the simulation procedure in Section 1.4.

Another important class of models for recurrent event processes can be based on

renewal processes. A renewal process {N(t), t > 0} is a point process in which the gap

times W1, W2, . . ., are i.i.d. In this case, the intensity function (2.1) of {N(t), t > 0}
takes the form of

λ(t |H(t)) = h(t− tN(t−)), t > 0, (2.5)

where h is the hazard function defined in (2.2). In a reliability context, a renewal

process implies that there is a perfect (i.e., as-good-as-new) repair after each failure

of a repairable system, which brings the system to a brand new condition. In some

cases, this can be a reasonable assumption; for example, if a complete overhaul is

performed after each failure of a repairable system. However, the assumption of
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i.i.d. gap times is a very strong one, and its validity needs to be carefully checked

in each application. Many basic properties of the renewal processes can be found

in stochastic processes texts. For example, see Nakagawa (2011, Chapter 3). As

discussed by Thompson (1988, Section 5.2), a renewal process cannot model systems

that is wearing out. Therefore, we do not provide a detailed background on renewal

processes. However, one important relation is that, if the gap times Wj, j = 1, 2, . . .,

of renewal process {N(t), t > 0} are i.i.d. exponential random variables with mean

E{Wj} = ρ−1, where 0 < ρ < ∞, then the process {N(t), t > 0} is a HPP with rate

function ρ.

2.1.1 Covariates in Recurrent Event Processes

In many studies, there are covariates of interest. In such cases, models can be extened

to include covariates. An excellent discussion of this issue is given by Kalbfleisch and

Prentice (2002); also, see Andersen et al. (1996), Daley and Vere-Jones (2003) and

Cook and Lawless (2007). The basic idea is to consider the covariates as a vector of

stochastic processes and then extend the history by including their path information.

Following the notation of Daley and Vere-Jones (2003, pp. 237–238) and Cook and

Lawless (2007, Section 2.2.2), this can be done as follows.

Suppose that we observe a p-dimensional vector of stochastic processes denoted

by {X(t), t > 0}, where {X(t), t > 0} = {X1(t), . . . , Xp(t); 0 < t < ∞}. Let HX(t)

denote the history of the process X(t) over the time interval [0, t]. Thus, HX(t)

includes paths of covariate processes Xj(t), j = 1, . . ., p, in [0,t]. Now suppose that

{N(t), 0 < t} is a counting process with the intensity function λ0(t |HN(t)), where

HN(t) = {N(u), 0 ≤ u < t} is the history of the counting process. Then, a model of

multiplicative form is given by the following intensity function.

λ(t|H(t)) = λ0(t|HN(t))ψ(X1(t), . . . , Xp(t)), t > 0, (2.6)

where λ0 is called the baseline intensity function, ψ is a nonnegative valued function

and H(t) is the extended history including information on both HN(t) and HX(t). If

we specify λ0(t |HN(t)) = ρ(t) and logψ(X1, . . . , Xp) =
∑p

j=1 βjXj in (2.6), we obtain

the intensity function of the multiplicative form

ρ(t) exp[β1X1(t) + · · ·+ βpXp(t)], t > 0, (2.7)
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where ρ(t) is the rate function of {N(t), t > 0} and the βj are regression parameters.

The model (2.7) is called the modulated Poisson process (Cook and Lawless, 2007).

Instead of ρ(t), if we specify the baseline rate function with h(t−tN(t−)), we obtain

the modulated renewal process with the intensity function of the form

h(t− tN(t−)) exp[β1X1(t) + · · ·+ βpXp(t)], t > 0, (2.8)

where h is the hazard function defined in (2.2). The model (2.8) is discussed by

Cox (1972).

It should be noted that multiplicative models of the from (2.6) specify multiplica-

tive effects of covariates on the intensity function. The validity of this assumption

should be checked. Some methods for checking this assumption are discussed by Cook

and Lawless (2007, Section 3.7.2). As an alternative to multiplicative models, addi-

tive models can also be used (Aalen et al., 2008). In this case, the general intensity

function can be written as

λ(t|H(t)) = λ0(t|HN(t)) + ψ(X1(t), . . . , Xp(t)), t > 0. (2.9)

There is an important remark regarding to the inference with models involving

covariates in recurrent event processes. The full likelihood based inference requires

that the evolution of the covariate processes {Xj(t), t > 0}, j = 1, . . ., p, should be

independent from the counting process {N(t), t > 0}. Kalbfleisch and Prentice (2003,

p. 196–198) refer to such covariates as external, which means, in their words, that the

covariate process {X(u), 0 ≤ u ≤ t} may influence the probabilistic characteristics

of event occurrences over time, but its future path up to any time t, where t > u,

is not affected by the occurrence of an event at time u. In this case, as explained

in the next section, a full likelihood approach can be based on the models of the

multiplicative form (2.6). If a covariate is not external, the likelihood function should

be considered for both {X(t), t > 0} and {N(t), t > 0} together. In general, such a

likelihood function is too complicated and the treatment of covariates requires care.

Unless otherwise stated, we restrict the discussion in this thesis only to external

covariates, in which their values are known at time t and probability laws do not

include the parameters in the event generating model under study. All the models and

probabilities are conditional on the values of the covariates. For notational purposes,

we use the notation H(t) = {N(u), X(s); 0 ≤ u < t, 0 ≤ s ≤ t} to denote the history
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of the processes {N(t), t > 0} and {X(t), t > 0}.

2.2 Likelihood Methods and Score Tests

In this section, we give the likelihood function for a recurrent event process and

develop partial score test procedures for testing composite hypothesis. Suppose that

{N(t), t > 0} is a counting process with the associated intensity function λ(t|H(t)).

The likelihood function for the outcome that n events occur at times 0 < t1 < t2 <

· · · < tn < τ in the time interval (0, τ ], given the history of the process H(t), is of the

form (Cook and Lawless, 2007, p. 30)

L(θ) =
n∏
i=1

λ(ti|H(ti)) exp

{
−
∫ τ

0

λ(s|H(s)) ds

}
, (2.10)

where θ = (θ1, . . . , θp)
′

is a p × 1 vector of parameters. Let θ̂ be the maximum

likelihood estimator of θ which maximizes L(θ) and let `(θ) be the log likelihood

function; that is, `(θ) = logL(θ). Let U(θ) = (U1(θ), . . . , Up(θ))
′

be the p× 1 score

vector with entries

Uj(θ) =
∂`(θ)

∂θj
, j = 1, . . . , p, (2.11)

Usually the maximum likelihood estimator θ̂ can be obtained by solving U(θ) = 0

where 0 is a p × 1 vector of zeros. Let I(θ) be the p × p information matrix where

the entries of I(θ) are defined by

Iij(θ) = −∂
2`(θ)

∂θi∂θj
, i, j = 1, . . . , p, (2.12)

Also, let J(θ) be the p× p expected information matrix with entries

Jij(θ) = E

(
−∂

2`(θ)

∂θi∂θj

)
, i, j = 1, . . . , p. (2.13)

Under mild regularity conditions, E(U(θ)) = 0 and variance-covariance matrix of

U (θ) is J(θ).

Assuming that the model is a regular model and inverse of J(θ) exists, a test
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statistic for testing H0 : θ = θ0 is of the form

U(θ0)
′
J−1(θ0)U(θ0) (2.14)

which is called a score statistic and the test based on (2.14) is called a score test.

Under regularity conditions, the test statistic (2.14) is asymptotically chi-squared

distributed with p degrees of freedom under H0, (Boos, 1992).

If we are interested in only a part of the parameters in θ, we can make a partition

of it as θ = (α
′
,β
′
)
′

where α is k × 1 vector of nuisance parameters and β is q × 1

vector of parameters of interest. Then U (θ) can be partitioned accordingly into two

parts denoted by Uα(θ) and Uβ(θ) where Uα(θ) is a k × 1 vector of score functions

with entries Uαj(θ) = ∂`(θ)/∂αj, j = 1, . . . , k, and Uβ(θ) is a q × 1 vector of score

functions with entries Uβj(θ) = ∂`(θ)/∂βj, j = 1, . . . , q. Similarly, J(θ) can be

partitioned as follows.

J(θ) =

(
Jαα(θ) Jαβ(θ)

Jβα(θ) Jββ(θ)

)
, (2.15)

where Jαα(θ) is a k × k matrix, Jαβ(θ) = Jβα(θ)
′

is a k × q matrix and Jββ(θ) is a

q × q matrix. Observed information matrix I(θ) can be partitioned in the same way.

Assuming they exist, the inverse matrix of (2.15) can be written as

J(θ)−1 =

(
Jαα(θ) Jαβ(θ)

Jβα(θ) Jββ(θ)

)
. (2.16)

Let β = β0, where β0 is specified value of β. An estimator of α under this

specified case can be found by maximizing L(α,β0) or `(α,β0). Such an estimator

is called a restricted maximum likelihood estimator of α and denoted by α(β0) and if

β0 = 0, then shortly α̃. In this case, the function L(α,β0) is called profile likelihood

function for β and `(α,β0) is called profile log likelihood function for β. If we denote

that θ̃0 = (α̃(β0),β0) then under H0 : β = β0,

Uβ(θ̃0)
′
Jββ(θ̃0)Uβ(θ̃0) (2.17)

is asymptotically a chi-squared distributed with q degrees of freedom. A test of H0 :

β = β0 based on (2.17) is called a partial score test. We can replace Jββ(θ̃0) with a

consistent estimator of Jββ(θ0), because this will also give the same asymptotic result
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(Boos, 1992).

Suppose that {N(t), t > 0} is a counting process and the associated intensity

function is given by

λ(t|H(t);θ) = ρ(t;α) exp{X(t)
′
β}, t > 0, (2.18)

where X(t)
′

= (X1(t), . . . , Xq(t))
′

is a q × 1 vector, ρ is a baseline intensity func-

tion, and α = (α1, . . . , αk)
′

is a vector of unknown nuisance parameters, and β =

(β1, . . . , βq)
′

is a vector of unknown regression parameters that is of interest. Then

the likelihood function is given as follows.

L(θ) =
n∏
i=1

ρ(ti;α) exp{X(ti)
′
β} exp

{
−
∫ τ

0

ρ(s;α) exp{X(s)
′
β}ds

}
. (2.19)

The likelihood (2.19) is a partial likelihood and it is discussed by Cook and Lawless

(2007, pp. 47–49). The log likelihood function `(θ) = logL(θ) is given by

`(θ) =
n∑
i=1

log ρ(ti;α) +
n∑
i=1

X(ti)
′
β −

∫ τ

0

ρ(s;α) exp{X(s)
′
β}ds. (2.20)

Then the score vector is U(θ) = (Uα(θ)
′
,Uβ(θ)

′
)
′
, where Uα(θ) is a k× 1 vector

of score functions with entries Uαl(θ) = ∂`(θ)/∂αl, l = 1, . . . , k, and Uβ(θ) is a q× 1

vector of score functions with entries Uβj(θ) = ∂`(θ)/∂βj, j = 1, . . . , q. Therefore,

the components Uαl(θ) and Uβj(θ) are given as follows.

Uαl(θ) =
n∑
i=1

(
∂

∂αl
log ρ(ti;α)

)
−
∫ τ

0

(
∂

∂αl
ρ(s;α)

)
exp{X(s)

′
β}ds, (2.21)

and

Uβj(θ) =
n∑
i=1

Xj(ti)−
∫ τ

0

ρ(s;α)Xj(s) exp{X(s)
′
β}ds. (2.22)

The observed information matrix is partitioned as follows.

I(θ) =

(
Iαα(θ) Iαβ(θ)

Iβα(θ) Iββ(θ)

)
, (2.23)

where Iαα(θ) is a k×k matrix with entries Iαuαv = −(∂2/∂αu∂αv)`(θ), u, v = 1, . . . , k,
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so that

Iαuαv(θ) = −
n∑
i=1

(
∂2

∂αu∂αv
log ρ(ti;α)

)
−
∫ τ

0

(
∂2

∂αu∂αv
ρ(s;α)

)
exp{X(s)

′
β}ds,

(2.24)

Iαβ(θ) = Iβα(θ)
′

is a k × q matrix with entries Iαuβv = −(∂2/∂αu∂βv)`(θ), u =

1 . . . , k, v = 1, . . . , q, so that

Iαuβv(θ) =

∫ τ

0

Xv(s)

(
∂

∂αu
ρ(s;α)

)
exp{X(s)

′
β}ds, (2.25)

Iββ(θ) is a q × q matrix with entries Iβuβv = −(∂2/∂βu∂βv)`(θ), u, v = 1, . . . , q, is

given by

Iβuβv(θ) =

∫ τ

0

ρ(s;α)Xu(s)Xv(s) exp{X(s)
′
β}ds. (2.26)

For testing the null hypothesis H0 : β = β0 against the alternative hypothesis Ha

: β 6= β0, a partial score test can be used to test H0. If we let θ0 = (α
′
0,β

′

0)
′

be a

p× 1 vector where α0 is the true value of α and β0 is the value of β under the null

hypothesis. If we let β0 = 0 so that we want to test H0 : β = 0, then θ0 = (α
′
0,0

′
)
′
.

Let α̃ be a restricted maximum likelihood function of α under H0 : β = 0, then the

score statistic for testing H0 : β = 0 is of the form

Uβ(θ̃0)
′
Jββ(θ̃0)Uβ(θ̃0), (2.27)

where Uβ(θ̃0) is a q × 1 vector of score functions with entries Uβj(θ̃0), j = 1, . . . , q;

that is,

Uβj(θ̃0) =
n∑
i=1

X
′

j(ti)−
∫ τ

0

ρ(s; α̃)Xj(s)ds, (2.28)

and q × q matrix Jββ(θ̃0) is given by{
Jββ(θ̃0)− Jβα(θ̃0)Jαα(θ̃0)−1Jαβ(θ̃0)

}−1

. (2.29)

Replacing Jββ(θ̃0) with Iββ(θ̃0) in (2.27) gives the same asymptotic results.
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2.3 Simulation Procedures

In this section, we explain the simulation procedures used in the subsequent chapters of

this thesis. This simulation procedures can be used (i) to study the null distribution

of the test statistic, (ii) to study the distribution of the test statistic under the

alternative hypothesis and also obtain the power, (iii) to obtain the p-value.

A key result for generating a realization of a counting process is given in the

following. Its proof can be found, e.g., in Cook and Lawless (2007, p. 30). For a

counting process {N(t), t > 0}, with the associated intensity fuction λ(t|H(t)),

Pr{N(s, t) = 0|H(s+)} = exp

(
−
∫ t

s

λ(u|H(u))du

)
, (2.30)

where in the exponential term H(u)) = {H(s+), N(s, u) = 0}. Therefore, we can

show that Pr{N(tj−1, tj−1 + w) = 0|H(t+j−1)} = exp{−
∫ tj−1+w

tj−1
λ(u|H(u))du}.

The events “N(tj−1, tj−1 + w) = 0|H(t+j−1)” and “Wj > w|Tj−1 = tj−1,H(tj−1)”

are equivalent almost surely. Therefore,

Pr{Wj > w|Tj−1 = tj−1,H(tj−1)} = exp

(
−
∫ tj−1+w

tj−1

λ(u|H(u))du

)
. (2.31)

Now, if we let Ej =
∫ tj−1+Wj

tj−1
λ(u|H(u))du where j = 1, 2, . . . , from (2.31) the random

variable Ej has an exponential distribution with mean 1, given tj−1, t0 = 0 and H(t)

(Cook and Lawless, 2007, p. 44). Therefore, Uj = exp
(
−
∫ tj−1+Wj

tj−1
λ(u|H(u))du

)
=

exp{−Ej} has a uniform distribution on (0, 1). Then we can obtain each event Tj

by solving an equation Ej =
∫ tj−1+Wj

tj−1
λ(u|H(u))du for Wj. The simulation algorithm

given for this procedure is given below:

1. Set j = 1, t0 = 0.

2. Generate Uj from the standard uniform distribution.

3. Obtain Ej by transforming exp{−Ej} = Uj, so that Ej = − log(Uj).

4. Obtain wj by solving an equation Ej =
∫ tj−1+Wj

tj−1
λ(u|H(u))du for Wj.
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5. If Tj ≤ τ , then increase j by 1 and go to the step 2, otherwise stop the

loop.

In generating a HPP with the rate function ρ, steps 2-4 give WJ = − log(Uj)/ρ,

where j = 1, 2, . . . . In generation of a NHPP with the rate function ρ(t), mean

function µ(t) can be generated by using N∗(s) = N(µ−1(s)), where {N∗(s), s > 0}
is a HPP with mean function µ∗ = 1 (see Section 1.2). Therefore, in generation of

NHPP, steps 2-4 give HPP with rate 1 as µ(Tj) = µ(tj−1) + Ej, where j = 1, 2, . . .

and Tj = tj−1 +Wj is the jth event time. Then Tj = µ−1(µ(tj−1) +Ej) gives the jth

event time for NHPP, where µ−1 is the inverse transformation of µ.

The above algorithm has been used and recorded widely in the literature (see, e.g.,

Lewis and Shedler, 1976; Daley and Vare-Jones, 1988; Cook and Lawless, 2007). It

should be noted that the integral in step 4 may not have a closed form. In such cases,

numerical methods can be applied to obtain Wj = wj.

2.3.1 The Use of the Simulations

We are able to discuss the distributions of the statistics and obtain p-values by generat-

ing data under null and alternative hypotheses. For example, suppose that {N(t), t >

0} is a counting process with the intensity function λ(t|H(t)) = ρ(t;α) exp{X(t)
′
β},

and testing following composite hypotheses is of interests.

H0 : β = 0,α ∈ Rk vs. Ha : β 6= 0,α ∈ Rk (2.32)

We generate B realizations of recurrent event processes under the null hypothesis

to assess the asymptotic distribution of a statistic. For each realization, we obtain

θ̃0 = (α̃
′
, 0̃
′
)
′
, the partial score vector Uβ(θ̃0)

′
and the matrix Jββ(θ̃0), where θ̃0 is

an estimate of θ under the null hypothesis in (2.32). Then we can use these to study

the distribution of a score test statistic, under the null hypothesis.

Similarly, the power of the test can be obtained by simulation. We let the power

function of the test of hypothesis (2.32) as P (βa) = Pr{reject H0|β = βa}. We can

obtain the power by data generation under the alternative hypothesis in (2.32) and

by obtaining θ̂ = (α̂
′
, β̂
′

)
′
, the partial score vector Uβ(θ̂)

′
and the matrix Jββ(θ̂),

where θ̂ is an estimate of θ under the alternative hypothesis in (2.32).

We can obtain p-value by simulation. We first generate B realizations of recurrent
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event processes under the null hypothesis. Then we calculate the partial score statistic

Zi, i = 1, . . . , B. Then p-value can be estimated by obtaining∑B
i=1 I(Zi > Ztest)

B
, (2.33)

where Ztest is the test statistic based on the given data set. Under the null hypothesis

in (2.32), Uβ(θ̃0)
′
Jββ(θ̃0)Uβ(θ̃0) is asymptotically chi-squared distributed with q de-

grees freedom. Then p-value can be also obtained by Pr{χ2
q ≥ Uβ(θ̃0)

′
Jββ(θ̃0)Uβ(θ̃0)},

where θ̃0 is an estimate of θ under the null hypothesis in (2.32).



Chapter 3

Redundant Systems with Two

Components

In this chapter, we consider a system which includes two components; a primary

component and a redundant component working in parallel. Our goal is to develop

a formal method to assess whether or not there is an adverse effect of repairs of a

failed component on the redundant component. We therefore develop partial score

tests and discuss their asymptotic properties analytically and through simulations.

3.1 Introduction

As discussed previously, systems consisting of parallely connected components can be

seen in many industrial settings. Some examples include light bulbs in an automobile,

batteries in a laptop computer, computer server nodes and so forth. In repairable

systems settings, components of a system are subject to repairs and repair times may

not be negligible. For example, in fully redundant systems, the remaining components

share the duty of a failed component during its downtimes. This type of downtimes

due to unwanted failures in components may have some temporary residual effects

resulting in an increased risk of failures in the redundant components of a system

during the downtime of the failed components. We refer to such adverse effects as

parallel carryover effects. If a parallel carryover effect is significant, the system may

not perform well, and the cost of operation can be considerably high. Therefore, there

is a room for improving the reliability of a system by detecting parallel carryover

effects.
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In this section, we develop tests for the presence of parallel carryover effects, and

discuss their asymptotic properties. To this end, we consider partial score tests.

Partial score tests provide a convenient way of testing for the presence of a paral-

lel carryover effect because they do not require to obtain the maximum likelihood

estimates of the parameters under the alternative hypothesis.

3.2 Models and Tests for Parallel Carryover Ef-

fects

In this section, we first extend the notation introduced in the previous chapter to

the “two components” case. Then, we discuss models for a single system and mul-

tiple systems under two different settings according to the duration of repairs in the

redundant component.

Let {N1(t), N2(t), . . . , NK(t); t ≥ 0} be a K-variate process. If each {Ni(t); t ≥ 0},
i = 1, . . . , K, is a counting process and no two or more of the processes jump at

the same time, the K-variate process {N1(t), N2(t), . . . , NK(t); t ≥ 0} is called a

multivariate counting process (Fleming and Harrington, 1991). In this case, we let

H(t) denote the history of the multivariate counting process at time t, where we

assume that H(t) includes all information on the event times and the number of

events of each counting process {Ni(t), t ≥ 0} (i = 1, . . ., K) in [0, t).

Now, suppose that there is a bivariate counting process {NA(t), NB(t); t ≥ 0},
where {NA(t), t ≥ 0} is a counting process for Component A and {NB(t), t ≥ 0} is a

counting process for Component B in a system of two parallely connected components.

We let tA1, tA2, . . ., where 0 < tA1 < tA2 < · · · , and tB1, tB2, . . ., where 0 <

tB1 < tB2 < · · · , denote the failure times of Components A and B, respectively. The

components are subject to repairs and repair times cannot be ignored. Let ∆A and

∆B denote the repair times of Components A and B, respectively. In other words,

if Component A fails, for example, we assume that the repair takes ∆A time units.

Similarly, if Component B fails, it takes ∆B time units to repair it. We also need to

define at-risk indicators. For K = A, B, the function YK(t) is called at-risk indicator

of the process {NK(t), t > 0}, which takes the value of 1 when Component K is up

and the process {NK(t), t > 0} is under observation; otherwise, it is equal to 0. For

example, if at time t Component A is up and under observation and Component B is

down, then YA(t) = 1 and YB(t) = 0.
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A model including parallel carryover effects in Component A is given by

λA(t|H(t)) = YA(t)αA exp{βAXA(t)}, t > 0, (3.1)

where YA(t) is the at-risk function of Component A, αA > 0 is a baseline rate function,

and

XA(t) = I{NB(t−) > 0}I{t− tBNB(t−) ≤ ∆B}, (3.2)

and βA is a regression parameter. The intensity function (3.1) increases from αA to

αA exp{βA} at each failure time of Component B for ∆B time units. After ∆B time

units, it reduces to αA. This behaviour is what we refer to as a parallel carryover effect.

In the remaining part of this section, we develop formal tests for the presence of such

effects. It should be noted that ∆B defines the duration of a carryover effect period

in Component A. We therefore call ∆B the carryover effect period in Component A.

In this study, we assume that carryover effect periods are constant. We discuss issues

related to the choice of the carryover effect periods in the final chapter.

A model for parallel carryover effects can also be similarly defined for Component

B. In this case, the intensity function of {NB(t), t ≥ 0} is given by

λB(t|H(t)) = YB(t)αB exp{βBXB(t)}, t > 0, (3.3)

where YB(t) is the at-risk function of Component B, αB > 0 is a baseline rate function,

and

XB(t) = I{NA(t−) > 0}I{t− tANA(t−) ≤ ∆A}. (3.4)

Similarly, parallel carryover effects in Component B can be investigated through model

(3.3) with (3.4).

It should be noted that the models (3.1) and (3.3) can be equivalently written in

a simple form as follows. For K, J = A,B and K 6= J ,

λK(t|H(t)) = YK(t) exp{βK(1− YJ(t))}, t > 0. (3.5)

From (3.5), it is easy to see that the system is down if and only if both components

are down; that is, YA(t) = 0 and YB(t) = 0 at time t. In the following development in

this chapter, we mostly focus on the models of the former types because they provide

explicit relation to the duration of repairs.

Let m denote the number of systems in a study, each with two components. In the
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next subsections, we develop partial score tests for the presence of parallel carryover

effects in four different cases; (i) a single system is under observation and repair times

of Component A are negligible (m = 1, ∆A = 0), (ii) multiple systems are under

observation and repair times of Component A are negligible (m > 1, ∆A = 0), (iii) a

single system is under observation and repair times of Component A are not negligible

(m = 1, ∆A > 0), and (iv) multiple systems are under observation and repair times

of Component A are not negligible (m > 1, ∆A > 0). In all cases, we assume the

baseline rate functions are constants. We consider the settings in which baseline rate

functions depend on time in Chapter 5.

3.2.1 Case 1: m = 1, ∆A = 0

We first consider a single system (m = 1) with two components; Component A and

Component B. In this setting, we assume that repair times of one of the components

(say, Component A) is negligible; that is, ∆A = 0 so that failures of Component A does

not affect the probabilistic characteristics of the failure occurrences in Component B.

Furthermore, we assume that failure occurrences are governed by HPPs. Under these

assumptions and following the notation given previously, the model for Component

A is of the form

λA(t|H(t)) = YA(t)αA exp{βAXA(t)}, t > 0, (3.6)

where XA(t) is defined in (3.2) and H(t) = {NA(u), NB(u); 0 ≤ u < t}. Since ∆A = 0

and ∆B > 0, the intensity function of Component B is given by

λB(t|H(t)) = YB(t)αB, t > 0. (3.7)

A test for a parallel carryover effect in Component A can be developed by considering

the following composite hypothesis.

H0 : βA = 0, αA > 0, vs. H1 : βA 6= 0, αA > 0, (3.8)

where αA is a nuisance parameter.

Suppose that such a system with its components is under observation over the

followup period [0, τ ], where τ is a fixed end-of-followup time. Notice that, since

Component A is continuously under observation over [0, τ ] and its repair times are
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negligible, we can safely drop YA(t) from the model (3.6). Let nA, where nA ≥ 0,

denote the number of failures of Component A in [0, τ ] and tA1, tA2, . . ., tAnA be the

failure times of Component A. The likelihood function with the outcome “NA(τ) = nA

failures of Component A at times tA1 ≤ tA2 ≤ · · · ≤ tAnA in [0, τ ]” is then given by

L(θ) =

nA∏
j=1

αA exp{βAXA(tAj)} exp{−
∫ τ

0

αA exp{βAXA(s)} ds}, (3.9)

where θ = (αA, βA). The log likelihood function `(θ) = logL(θ) is given by

`(θ) = nA logαA +

nA∑
j=1

βAXA(tAj)−
∫ τ

0

αA e
βAXA(s) ds. (3.10)

The components of the score vector U(θ) = (UαA(θ), UβA(θ))′, where UαA(θ) =

(∂/∂αA)`(θ) and UβA(θ) = (∂/∂βA)`(θ) can be written as follows.

UαA(θ) =
nA
αA
−
∫ τ

0

exp{βAXA(s)} ds, (3.11)

and

UβA(θ) =

nA∑
j=1

XA(tAj)− αA
∫ τ

0

XA(s) exp{βAXA(s)} ds. (3.12)

The observed information matrix I(θ) is given by

I(θ) =

(
IαAαA(θ) IαAβA(θ)

IβAαA(θ) IβAβA(θ)

)
, (3.13)

with the components

IαAαA(θ) =
nA
αA2

, (3.14)

IαAβA(θ) = IβAαA(θ) =

∫ τ

0

XA(s) exp{βAXA(s)} ds, (3.15)

IβAβA(θ) = αA

∫ τ

0

XA(s) exp{βAXA(s)} ds. (3.16)

Let α̃A denote the restricted maximum likelihood estimator of αA under the null

hypothesis H0 : βA = 0. Letting βA = 0 in (3.11), and then solving UαA(αA, 0) = 0 for

αA, we find that α̃A = nA/τ , where α̃A is the restricted maximum likelihood estimator
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of αA. For notational convenience, we define the integral

I(τ, βA,∆B) =

∫ τ

0

XA(s) exp{βAXA(s)} ds. (3.17)

The integral I(τ, βA,∆B) is a function of the followup period [0, τ ], the regression

parameter βA, and the duration of the repairs of Component B; that is, ∆B. With

this notation, the partial score statistic UβA(α̃A, 0), where UβA(αA, βA) is given in

(3.12), can be written as

UβA(α̃A, 0) =

nA∑
j=1

XA(tAj)− α̃A I(τ, 0,∆B), (3.18)

and the estimated variance of UβA(α̃A, 0) is given by

V̂ ar(UβA(α̃A, 0)) = IβAβA(α̃, 0)− IβAαA(α̃, 0) I−1
αAαA

(α̃, 0) IαAβA(α̃, 0), (3.19)

=
(nA
τ 2

)
I(τ, 0,∆B) [τ − I(τ, 0,∆B)]. (3.20)

The standardized partial score statistic for testing H0 in (3.8) is then

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

, (3.21)

where Uβ(α̃A, 0) and V̂ ar(UβA(α̃A, 0)) are given in (3.18) and (2.20), respectively. As

we show in Section 3.3, the distribution of (3.21) is asymptotically standard normal

as τ → ∞. The p–values for H0 in (3.8) can be obtained from this approximation.

Alternatively, when τ is small, the p–values can be computed via simulation. In

Section 3.4, we discuss the asymptotic properties and power of the test statistic (3.21)

through simulations under various scenarios.

3.2.2 Case 2: m > 1, ∆A = 0

We now consider the case in which the number of systems m is greater than 1 and

repair times of Component A are negligible; that is, m > 1 and ∆A = 0. We consider

a similar setup given in Section 3.2.1, so each system has two components connected

in parallel and failures are governed by homogeneous Poisson processes (HPPs). We
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assume that failures of Component B affect the probabilistic characteristics of fail-

ure occurrences of Component A, while failures of Component A do not affect the

probabilistic characteristics of failure occurrences of Component B.

Since we consider m > 1 in this case, we need to include an index to denote the sys-

tem under observation. Therefore, we adapt the notation of the previous subsection to

this situation. Let’s suppose that we have m independent systems under observation,

each with two components; Component A and Component B. Furthermore, suppose

that there are m bivariate counting processes {NAi(t), NBi(t); t ≥ 0}, i = 1, . . ., m,

where {NAi(t); t ≥ 0} is a counting process for the failures of Component A in the ith

system and {NBi(t); t ≥ 0} is a counting process for the failures of Component B in

the ith systems. For i = 1, . . ., m, we let tAi1, tAi2, . . ., where 0 < tAi1 < tAi2 < · · · ,
denote the failure times of Component A in the ith system. Similarly, for i = 1, . . .,

m, we let tBi1, tBi2, . . ., where 0 < tBi1 < tBi2 < · · · , denote the failure times of

Component B in the ith system. Thus, tKij is the jth failure time of Component K in

the ith system, where K = A, B; i = 1, . . ., m; and j = 1, 2, . . .. We use the notation

YAi(t) and YBi(t) to denote the at-risk indicators of Component A and Component

B in the ith system, respectively, so that YKi, K = A,B, takes the value of 0 when

Component K in the ith system is down; otherwise, it is equal to 1. Finally, we

let Hi(t) = {NAi(u), NBi(u); 0 ≤ u < t} denote the history of the bivariate process

{NAi(t), NBi(t); t ≥ 0}, where i = 1, . . ., m.

The intensity function of Component A in the ith system, i = 1, . . ., m, is given

by

λAi(t|Hi(t)) = YAi(t)αA exp{βAXAi(t)}, t > 0, (3.22)

where XAi(t) = I{NBi(t
−) > 0}I{t − tBiNBi(t−) ≤ ∆B} and ∆B is the duration of

the repairs of Component B. Since ∆A = 0 and ∆B > 0, the intensity function of

Component B in the ith system , where i = 1, . . ., m, is given by

λBi(t|Hi(t)) = YBi(t)αB, t > 0. (3.23)

Once again, we consider the following hypothesis for a test of parallel carryover effects.

H0 : βA = 0, αA > 0, vs. H1 : βA 6= 0, αA > 0, (3.24)

where αA is a nuisance parameter.

Suppose that m such independent systems are under observation over the interval
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[0, τi], where τi is the end-of-followup time of the ith system and i = 1, . . ., m. Also,

let NAi(τi) = nAi and tAi1, . . ., tAinAi be the failure times of Component A in the ith

system for i = 1, . . ., m. The likelihood function for m independent systems is given

by

L(θ) =
m∏
i=1

Li(θ), (3.25)

where θ = (αA, βA) and

Li(θ) =

nAi∏
j=1

αA exp{βAXAi(tAij)} exp{−
∫ τi

0

αA exp{βAXAi(s)} ds}, (3.26)

which is the likelihood contribution of the ith system for the outcome “NAi(τi) = nAi

failures of Component A in the ith system at times tAi1 < tAi2 < · · · < tAinAi”. Once

again, we would like to note that the at-risk indicators YAi, i = 1, . . ., m, are not

needed in the likelihood function (3.25). The corresponding log likelihood function

`(θ) = logL(θ) is given by

`(θ) =
m∑
i=1

`i(θ), (3.27)

where

`i(θ) = nAi logαA + βA

nAi∑
j=1

XAi(tAij)− αA
∫ τi

0

exp{βAXAi(s)} ds. (3.28)

Once again for notational convenience, we define the functions

I1(m,βA,∆B) =
m∑
i=1

∫ τi

0

exp{βAXAi(s)} ds, (3.29)

and

I2(m,βA,∆B) =
m∑
i=1

∫ τi

0

XAi(s) exp{βAXAi(s)} ds. (3.30)

The functions (3.29) and (3.30) depend on the number of systems m, the duration of

the downtimes of Component B; that is, ∆B and the parameter βA. They also depend

on the duration of followups [0, τi], i = 1, . . ., m, but since we are not interested in

the asympotic distribution of the test statistic developed later in this section when τi
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increases, we do not emphasize them in (3.29) and (3.30). With this notation, com-

ponents of the score vector U(θ) = (UαA(θ), UβA(θ))′, where UαA(θ) = (∂/∂αA)`(θ)

and UβA(θ) = (∂/∂βA)`(θ) are given by

UαA(θ) =
m∑
i=1

nAi
αA
− I1(m,βA,∆B), (3.31)

and

UβA(θ) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− αA I2(m,βA,∆B). (3.32)

The components of the 2× 2 observed information matrix I(θ), where

I(θ) =

(
IαAαA(θ) IαAβA(θ)

IβAαA(θ) IβAβA(θ)

)
, (3.33)

are given by

IαAαA(θ) =
m∑
i=1

nAi
α2
A

, (3.34)

IαAβA(θ) = IβAαA(θ) = I2(m,βA,∆B), (3.35)

IβAβA(θ) = αA I2(m,βA,∆B). (3.36)

Let α̃A be the restricted maximum likelihood estimator of αA under the null hy-

pothesis H0 : βA = 0. By solving UαA(αA, 0) = 0 in (3.32) for αA = α̃A, we can

obtain

α̃A =

∑m
i=1 nAi∑m
i=1 τi

. (3.37)

Following the score procedures explained in Chapter 1, we obtain the standardized

partial score statistic

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

, (3.38)

for testing the null hypothesis H0 : βA = 0, where

Uβ(α̃A, 0) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− α̃A I2(m, 0,∆B), (3.39)
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and

V̂ ar(Uβ(α̃A, 0)) =

( ∑m
i=1 nAi

(
∑m

i=1 τi)
2

)
I2(m, 0,∆B)

(
m∑
i=1

τi − I2(m, 0,∆B)

)
. (3.40)

We discuss the asymptotic distribution of the test statistic (3.38) analytically as well

as through simulations in Sections 3.3 and 3.4, respectively. In Section 3.3, we showed

that the standardized partial score statistic Z in (3.38) converges to a standard normal

distribution under the null hypothesis stated in (3.24) as m→∞ for fixed observation

periods. Therefore, this result can be used to calculate p–values for testing the pres-

ence of parallel carryover effects in the redundant component (Component A) when

m is large. For small m values, p–values can be obtained via simulations.

3.2.3 Case 3: m = 1, ∆A > 0

In some systems, one of the components operates in a constant or full operating

capacity in the up state and does not change its load following the failures of other

components, while other components are still redundant. We now focus on such a

system with two components; Component A and Component B. The setup of this

section is similar to that of Section 3.2.1 except that both Components A and B are

subject to non-negligible repair times.

The model for Component A is given by

λA(t|H(t)) = YA(t)αA exp{βAXA(t)}, t > 0, (3.41)

where XA(t) is defined in (3.2) and H(t) = {NA(u), NB(u); 0 ≤ u < t}. It should

be noted that this is the same model for Component A given in Section 3.2.1, but in

this case, since ∆A > 0, we cannot drop YA(t) from the model. The model for the

Component B is once again defined by

λB(t|H(t)) = YB(t)αB, t > 0. (3.42)

Similarly, we want to test the null hypothesis H0 : βA = 0 against the alternative

hypothesis H1 : βA 6= 0.

Following the setup in Section 3.2.1, the likelihood function with the outcome that

“NA(τ) = nA failures of Component A at times tA1 < tA2 < · · · < tAnA in a fixed
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interval [0, τ ]” can be written as follows.

L(θ) =

nA∏
j=1

αA exp{βAXA(tAj)} exp{−
∫ τ

0

YA(t)αA exp{βAXA(s)} ds}. (3.43)

where θ = (αA, βA). The log likelihood function `(θ) is given by

l(θ) = nA logαA +

nA∑
j=1

βAXA(tAj)−
∫ τ

0

YA(t)αA exp{βAXA(s)} ds (3.44)

The components of the score vector U(θ) are given by

UαA(θ) =
nA
αA
−
∫ τ

0

YA(t) exp{βAXA(s)} ds, (3.45)

and

UβA(θ) =

nA∑
j=1

XA(tAj)− αA
∫ τ

0

YA(t)XA(s) exp{βAXA(s)} ds. (3.46)

Also, components of the 2× 2 observation matrix I(θ) are given by

IαAαA(θ) =
nA
αA2

, (3.47)

IαAβA(θ) = IβAαA(θ) =

∫ τ

0

YA(s)XA(s) exp{βAXA(s)} ds, (3.48)

IβAβA(θ) = αA

∫ τ

0

YA(s)XA(s) exp{βAXA(s)} ds. (3.49)

Let α̃A be the restricted maximum likelihood estimator of αA under the null hypothesis

H0 : βA = 0. Then, we obtain

α̃A =
nA∫ τ

0
YA(s)ds

. (3.50)

Notice that the restricted maximum likelihood estimator α̃A is the ratio of the observed

number of failures in Component A over [0, τ ] to the total time that Component A

stays in the up state in [0, τ ]. For convenience, we define

I(τ, βA,∆B) =

∫ τ

0

YA(s)XA(s) exp{βAXA(s)}ds, (3.51)
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so that, under the null hypothesis H0 : βA = 0, I(τ, 0,∆B) depends on the end of the

follow up time τ and the choice of ∆B. Then ,

Uβ(α̃A, 0) =

nA∑
j=1

XA(tj)− α̃A I(τ, 0,∆B), (3.52)

and

V̂ ar(Uβ(α̃A, 0)) =
nA I(τ, 0,∆B)

{
∫ τ

0
YA(s)ds}2

[∫ τ

0

YA(s)ds− I(τ, 0,∆B)

]
. (3.53)

Therefore, we obtain the partial score statistic for testing H0 : βA = 0 as follows

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

. (3.54)

Under mild regularity conditions on YA(t), it can be shown with a very similar method

given in Section 3.3 that the distribution of the test statistic (3.53) asymptotically

converges to a standard normal distribution as τ increases. We discuss this via simu-

lations in Section 3.4.

3.2.4 Case 4: m > 1, ∆A > 0

We now consider the case where multiple systems are under observation and repair

times of failures in Component A are not negligible; that is, m > 1 and ∆A > 0. This

case is, therefore, an extension of the case given in Section 3.2.2.

Following the notation introduced in Section 3.2.2 using the model (3.22) for Com-

ponent A and the model (3.23) for Component B, the likelihood function for m inde-

pendent systems can be written as follows.

L(θ) =
m∏
i=1

Li(θ), (3.55)

where θ = (αA, βA) and the likelihood contribution of Component A in the ith system

is given by

Li(θ) =

nAi∏
j=1

αA exp{βAXAi(tAij)} exp{−
∫ τi

0

YAi(s)αA exp{βAXAi(s)} ds}. (3.56)

The log likelihood function is then given by `(θ) = logL(θ) =
∑m

i=1 logLi(θ) where
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logLi(θ) is

nAi logαA + βA

nAi∑
j=1

XAi(tAij)− αA
∫ τi

0

YAi(s) exp{βAXAi(s)} ds. (3.57)

Taking the derivatives of `(θ) with respect to αA and βA, we obtain the score functions

as follows.

UαA(θ) =
m∑
i=1

nAi
αA
−

m∑
i=1

∫ τi

0

YAi(s) exp{βAXAi(s)} ds, (3.58)

and

UβA(θ) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− αA
m∑
i=1

∫ τi

0

YAi(s)XAi(s) exp{βAXAi(s)} ds. (3.59)

Now consider the null hypothesis H0 : βA = 0. Under this null hypothesis, solving

UαA(αA, 0) = 0 for αA = α̃A gives

α̃A =

∑m
i=1 nAi∑m

i=1

∫ τi
0
YAi(s) ds

, (3.60)

which is the restricted maximum likelihood estimator of αA. For convenience, we

define

I(m,βA,∆B) =
m∑
i=1

∫ τi

0

YAi(s)XAi(s) exp{βAXA} ds, (3.61)

Then, the partial score statistic for testing H0 : βA = 0 is given by

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

, (3.62)

where

Uβ(α̃A, 0) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− α̃A I(m, 0,∆B), (3.63)

and

V̂ ar(Uβ(α̃A, 0)) =
I(m, 0,∆B)

∑m
i nAi

(
∑m

i=1

∫ τ
0
YAi(s) ds)2

[
m∑
i=1

∫ τi

0

YAi(s) ds− I(m; ∆B)

]
. (3.64)

By following the method given in Section 3.3, it can be shown that, the asymptotic
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distribution of the test statistics (3.62) is a standard normal distribution as m→∞.

We discuss this convergence result through simulations in Section 3.4.

3.3 Asymptotic Properties of Test Statistics

In this section, we discuss the asymptotic properties of the test statistics (3.21) and

(3.38) analytically. We consider the asymptotic distribution of the former statistic

when the observation period τ increases. We utilize simple results from the martin-

gale theory for this purpose. As for the latter statistic, we consider the asymtotic

distribution when the number of systems m increases for a fixed observation period.

In this case, we show that our model belongs to the family of point process models con-

sidered in Andersen et al. (1993, Chapter VI.1.2) and Peña (1998), and satisfies the

conditions stated by them to obtain the large sample properties of the test statistic.

The development in this section is primarily based on Cigsar (2010, Section 2.3).

Consider the setup given in Section 3.2.1, where a single system (m = 1) with

two components (Components A and B) is under observation over a time interval

[0, τ ], where τ is a prespecified end-of-followup time. Also, ∆A and ∆B denote the

repair times of Components A and B, respectively, where ∆A = 0 and ∆B > 0. Let

{NA(t), t > 0} be the counting process for failure occurrences in Component A with

the associated intensity function

λA(t |H(t)) = αA exp{βAXA(t)}, (3.65)

where XA(t) = I{NB(t−) > 0}I{t − tBNB(t−) ≤ ∆B}, and {NB(t), t > 0} is the

counting process for failure occurrences in Component B with the intensity function

given in (3.7), and H(t) = {NA(u), NB(u); 0 ≤ u < t}. In Section 3.2.1, we consider

testing the hypothesis H0 : βA = 0 against H1 : βA 6= 0, and develop the partial score

test statistic

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

, (3.66)

where α̃A = nA/τ = (1/τ)
∫ τ

0
dNA(t), and

UβA(α̃A, 0) =

nA∑
j=1

XA(tj)− α̃A
∫ τ

0

XA(t) dt (3.67)
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and

V̂ ar(UβA(α̃A, 0)) =
(nA
τ 2

) ∫ τ

0

XA(t) dt

[
τ −

∫ τ

0

XA(t) dt

]
. (3.68)

We want to show that, under the null hypothsis H0 : βA = 0, the test statistic Z in

(3.66) converges in distribution to a standard normal random variable as τ increases;

that is, under H0, Z
d−→ N(0, 1) as τ →∞. Let αA0 be the true value of the parameter

αA assuming that the null hypothesis is true. In the following development, we use

τ in the superscripts of score functions to show their dependence on the observation

period. From the score function given in (3.18), we can write that

1√
τ
U τ
βA

(α̃A, 0) =
1√
τ
U τ
βA

(α0)−
√
τ(α̃A − α0)

1

τ

∫ τ

0

XA(t) dt, (3.69)

where
1√
τ
U τ
βA

(α0) =
1√
τ

∫ τ

0

XA(t) dMA(t), (3.70)

and MA(t) =
∫ t

0
[dNA(s)− α0 ds] is a bona fide martingale with respect to the history

H(t) (Daley and Vere-Jones, 2003, p. 428). We assume that XA(t) is measurable with

respect to H(t) at time t− in [0, τ ] so it is predictable with respect to H(t) (Daley and

Vere-Jones, 2003, p. 425). Also, notice that, for any t in [0,∆B], XA(t) = 1 if there

is at least one failure of Component B in [0,∆B]; otherwise, XA(t) = 0. Similarly,

for any t in [∆B, τ ], XA(t) = 1 if there is at least one failure of Component B in

[t−∆B, t]; otherwise, XA(t) = 0. Therefore,

E

{∫ τ

0

XA(t) dt

}
=

∫ ∆B

0

(
1− e−αBt

)
dt+

∫ τ

∆B

(
1− e−αB∆B

)
dt. (3.71)

From (3.71), we can show that

lim
τ→∞

(1/τ)E

{∫ τ

0

XA(t) dt

}
= 1− e−αB∆B . (3.72)

Let ϑ = 1− e−αB∆B , where 0 < ϑ < 1. Therefore, by a weak law of large numbers, as

τ →∞, we obtain
1

τ

∫ τ

0

XA(t)α0 dt
p−→ α0ϑ. (3.73)

Also, notice that, for every ε > 0 and sufficiently large τ , almost surely I(|XA(t)| >
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ε
√
τ) = 0 for all t ∈ [0, τ ]. Therefore, for every ε > 0, we have

lim
τ→∞

(1/τ)E

[∫ τ

0

X2
A(t) I(|XA(t)| > ε

√
τ)α0 dt

]
= 0. (3.74)

From the results (3.72) and (3.74) and a central limit theorem for point process

martingales (see, Karr, 1991, pp. 421–422, for the theorem and its proof), we obtain

the convergence
1√
τ
U τ
βA

(α0)
d−→ N(0, α0ϑ), (3.75)

as τ →∞. A convergence result for
√
τ(α̃A−α0) can be shown similarly. First notice

that
√
τ(α̃A − α0) =

1√
τ

∫ τ

0

dMA(t). (3.76)

Therefore, by taking XA(t) = 1 in (3.72) and (3.74), we have

√
τ(α̃A − α0)

d−→ N(0, α0), (3.77)

as τ →∞. Since E{dMA(t)} = E{dNA(t)−α0 dt} = 0 under the null hypothesis, we

have

Cov

{
1√
τ
U τ
βA

(α0),
√
τ(α̃A − α0)

}
=

1

τ
Cov

{∫ τ

0

XA(t) dMA(t),

∫ τ

0

dMA(t)

}
.

=
1

τ
E

{∫ τ

0

XA(t)α0 dt

}
. (3.78)

Therefore, from (3.72), we obtain

Cov

{
1√
τ
U τ
βA

(α0),
√
τ(α̃A − α0)

}
→ α0ϑ, (3.79)

as τ →∞. From the convergence results in (3.75), (3.77) and (3.79), and by applying

Slutsky’s Theorem, (1/τ)U τ
βA

(α̃A, 0) in (3.69) converges in distribution to a zero mean

normal distribution with the asymptotic variance α0ϑ(1 − ϑ) as τ → ∞ under the

null hypothesis. Therefore, we obtain the following result. Under the null hypothesis

H0 : βA = 0, as τ →∞,
1√
τ
U τ
βA

(α̃A, 0)√
α0ϑ(1− ϑ)

d−→ N(0, 1). (3.80)

The terms α0 and ϑ in (3.80) can be replaced by their consistent estimators. In this
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case, we obtain the variance estimator given in (3.68).

In the remaining part of this section, we discuss the asymptotic properties of the

test statistic given in (3.38) as m→∞ for a fixed τ value. Andersen et al. (1993, pp.

420–421) consider a general intensity model which depends on a vector of parameters

θ for a multivariate counting process. They state five conditions (Conditions A–E) to

derive the large sample properties of the maximum likelihood estimators θ̂ of θ. These

conditions have to be checked for each specific model under study. We do not restate

these conditions here or give the proofs, but our goal is to show that the model (3.22)

satisfies these conditions, and therefore we can apply the results of the theorems. In

particular, under these conditions, the score vector U(θ) = 0 has a solution θ̂ and

θ̂ converges in probability to θ0 as m increases, where θ0 is the real value of θ. In

notation, that is θ̂
p−→ θ0 as m→∞ (Andersen et al., 1993, Theorem VI.1.1., p. 422).

Furthermore, if θ̂ is a consistent solution of U(θ) = 0, then (1/
√
m)U(θ̂)

d−→ N(0,Σ)

as m→∞, where Σ is defined in Condition D (Andersen et al., pp. 424–426).

Following the setup given in Section 3.2.2, in our case the intensity function of

Component A in the ith system, i = 1, . . ., m, is given by

λAi(t|Hi(t)) = YAi(t)αA exp{βAXAi(t)}, t > 0, (3.81)

whereXAi(t) = I{NBi(t
−) > 0}I{t−tBiNBi(t−) ≤ ∆B} andHi(t) = {NAi(u), NBi(u); 0 ≤

u < t}.
Let θ = (αA, βA)′. We now check Conditions A–E of Andersen et al. (1993, pp.

420–421) for the above model under the null hypthesis H0 : βA = 0. Suppose that,

under the null hypothesis, the true value of αA is α0, where α0 > 0, and θ0 = (α0, 0)′.

Condition A is a Cramèr-type regularity condition on λAi(t|Hi(t)), log λAi(t|Hi(t))

and the log likelihood function given in (3.28). It is easy to see that Condition A

holds in our case. Now notice that, for a fixed τ > 0, we have

1

m

m∑
i=1

∫ τ

0

YAi(s)

α0

ds
p−→ σαAαA , as m→∞. (3.82)

Since τ is a fixed value and ∆A = 0, YAi(t) = 1 in [0, τ ]. Therefore, σαAαA = τ/α0.

Next, we need to show the following convergence result.

1

m

m∑
i=1

∫ τ

0

YAi(s)XAi(s) ds
p−→ σαAβA , as m→∞, (3.83)
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where σαAβA > 0. Since τ is fixed and YAi(t) = 1 in [0, τ ], the result in (3.83) follows

by a weak law of large numbers, where σαAβA is the right hand side of (3.71). It should

be noted that if YAi(t) is not always 1 (e.g., when ∆A > 0), some conditions needs to

be applied. Similarly, for τ > 0, we have

1

m

m∑
i=1

∫ τ

0

YAi(s)α0XAi(s) ds
p−→ σβAβA , as m→∞, (3.84)

where σβAβA = α0 σαAβA . Therefore, under the null hypothesis H0 : βA = 0, Condition

B is satisfied with σαAαA , σαAβA and σβAβA given above.

As for Condition C, we need to show that, for all ε > 0,

1

m

m∑
i=1

∫ τ

0

YAi(s)
1

α0

I

{
1

α0

√
m

> ε

}
ds

p−→ 0, as m→∞, (3.85)

and

1

m

m∑
i=1

∫ τ

0

YAi(s)X
2
Ai(s) I

{
XAi(s)√

m
> ε

}
ds

p−→ 0, as m→∞. (3.86)

Notice that, for a fixed τ , YAi(s) = 1, where s ∈ [0, τ ], and α0 > 0, the left hand

side of (3.85) is (τ/α0)I
{

1√
m
> α0 ε

}
, which converges to 0 as m → ∞. Therefore,

the convergence in (3.85) holds. The latter convergence result can be shown with

similar arguments which lead to the convergence result in (3.74). In this case, XA(s)

in (3.74) needs to be replaced by XAi(s), and limit should be taken on the average

of the expectation of the terms when m→∞, instead of τ →∞. The result follows

from the weak law of large numbers. Therefore, Condition C holds for the model in

(3.81).

Let Σ be a 2× 2 matrix defined as follows.

Σ =

(
σαAαA σαAβA
σβAαA σβAβA

)
, (3.87)

where σαAαA , σαAβA and σβAβA are given above, and σβAαA = σαAβA . Condition D

requires that the matrix Σ should be positive definite. Notice that σαAαA = τ/α0

is positive because α0 > 0 , τ > 0 and τ is fixed. We also need to show that
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σαAβA(τ − σαAαB) > 0. Recall that

0 < σαAβA =

∫ ∆B

0

(
1− e−αBt

)
dt+

∫ τ

∆B

(
1− e−αB∆B

)
dt

< ∆B(1− e−αB∆B) + (τ −∆B)(1− e−αB∆B) = τ(1− e−αB∆B) < τ. (3.88)

Therefore, the matrix Σ is positive definite, and Condition D holds. Condition E is

required for the boundedness of the third derivaties of λAi(t|Hi(t)) and log λAi(t|Hi(t))

given in (3.81) with respect to θ under the null hypothesis, as well as for the regu-

larity of the remainder term of a Taylor series expansion. It is easy to see that the

requirements on the boundedness is satified for the model (3.81). Also, requirements

on the remainder term hold for the model (3.81). It is worth noting that these condi-

tions can be shown for the model (2.23) by following a similar method. In this case,

the above approach should include mild regularity conditions on the at-risk indicator

YBi(t), i = 1, . . ., m, such as the integrals
∫ τ

0
YBi(s) ds should not be equal to 0.

Since ConditionA–E given in Andersen et al. (1993, pp. 420–421) are satisfied for

the model (3.81). Therefore, from Andersen et al. (1993, p. 424–426), we conclude

that, under the null hypothesis H0 : βA = 0, αA > 0,

1√
m
UβA(α̃A, 0)

σ(α0)

d−→ N(0, 1), as m→∞, (3.89)

where α̃A =
∑m

i=1 nAi/
∑m

i=1 τi is the restricted maximum likelihood estimator of αA

and σ2(α0) = αβAβA − (σ2
αAβA

/σαAαA). We obtain the final convergence result by

replacing σ2(α0) with a consistent estimator of it. Therefore, we obtain that, by

Slutsky’s theorem, under the null hypothesis H0 : βA = 0, αA > 0,

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

d−→ N(0, 1), as m→∞, (3.90)

where Z is given in (3.38).

3.4 Simulation Studies

In this section, we present the results of simulation studies carried out to assess when

asymptotic normal approximation for testing parallel carryover effects of redundant
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system is satisfactory. We consider two settings; (i) where m = 1 and τ → ∞, and

(ii) m→∞ and τ is fixed.

We consider testing for parallel carryover effects in a single system (m=1) where

repair times of Component A are negligible; that is, m = 1, ∆A = 0, ∆B > 0. The

composite hypothesis of no parallel carryover effects in Component A in this case is

H0 : βA = 0, αA > 0 and the standardized partial score statistic associated with the

null hypothesis, as given in Section 3.2.1, is

Z =
UβA(α̃A, 0)

V̂ ar(UβA(α̃A, 0))
1
2

, (3.91)

where the score statistic UβA(α̃A, 0) is given by (3.18) and its estimated variance

V̂ ar(UβA(α̃A, 0))
1
2 is given by (3.19). Our goal is to investigate the null distribution of

Z and to assess the adequacy of the standard normal approximation when τ increases.

We generated 10,000 realizations of HPPs based on (3.6) and (3.7). In the simulation,

we took αA = αB = 0.1 and βA = 0. We consider ∆B = 1, 3, 7 and 14.

Normal quantile-quantile (Q-Q) plots of 10,000 values of Z are presented in Fig-

ure 3.1 when ∆B = 1 for τ = 100, 200, 500 and 1000. The standard normal approx-

imations are not quite accurate in those four cases. However, it is noted that as τ

increases, there is an apparent improvement in the standard normal approximation.

Figure 3.2 shows the results when ∆B = 3. In this scenario, the standard normal

approximations are suitable for τ = 500 and 1000. In Figure 3.3, we can see that

the standard normal approximations are quite accurate for τ = 500 and τ = 1000

when ∆B = 7. Figure 3.4 shows also that, when ∆B = 14, the standard normal

approximations are adequate for all τ = 100, 200, 500 and 1000.

Table 3.1 presents estimates of Qp and Pr(Z > Qp) where Q̂p is the empirical pth

quantile of Z computed from 10,000 samples, Qp is the pth quantile of the standard

normal distribution, and P̂ r(Z > Qp) = 1 − p where p = 0.950, 0.975 and 0.990. In

all the scenarios with ∆B = 1, 3, 7 and 14, the standard normal approximations are

quite accurate.

The power of the statistic (3.91) against the alternative hypothesis HA : βA 6= 0,

αA > 0 is investigated. We use Monte Carlo simulation methods to obtain the power

of the test. We use 0.95 quantile of the standard normal distribution and the empirical

0.95 quantile of the test statistic in the 10,000 simulations runs that are under the

null hypothesis with different τ and ∆B values as discussed above. We generated
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1,000 processes under the model (3.6) and (3.7). We took αA = αB = 0.1. We set

βA at 0.693 and 0.916, where exp{0.693} = 2 and exp{0.916} = 2.5. Here, exp{βA}
means that while Component B is under repair, the rate of occurrences of failures

in Component A is exp{βA} times higher comparing with the rate while Component

B is in the up state. The power results are provided in Table 3.2, where entries

are the proportions of the values of Z in 1,000 samples which are larger than the

quantile values. This shows that the power of the test is high overall except that

when exp{βA} = 2 and τ is small.

Figure 3.1: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 3.2: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 3, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 3.3: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 7, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 3.4: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 14, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

∆B τ Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 100 1.854 2.356 2.940 0.0657 0.0445 0.0267

200 1.840 2.265 2.712 0.0676 0.0416 0.0228

500 1.766 2.118 2.675 0.0608 0.0349 0.0168

1000 1.753 2.169 2.586 0.0605 0.0355 0.0181

3 100 1.775 2.204 2.663 0.0636 0.0387 0.0198

200 1.699 2.036 2.440 0.0563 0.0296 0.0125

500 1.709 2.097 2.457 0.0557 0.0314 0.0144

1000 1.694 2.005 2.449 0.0547 0.0278 0.0119

7 100 1.707 2.029 2.434 0.0576 0.0318 0.0127

200 1.690 2.001 2.401 0.0553 0.0281 0.0116

500 1.636 1.939 2.312 0.0496 0.0238 0.0099

1000 1.637 1.975 2.334 0.0494 0.0259 0.0102

14 100 1.643 1.909 2.224 0.0499 0.0232 0.0075

200 1.590 1.876 2.239 0.0452 0.0209 0.0080

500 1.605 1.869 2.254 0.0456 0.0211 0.0078

1000 1.622 1.944 2.289 0.0482 0.0243 0.0087

Table 3.1: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m = 1. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000 samples which are

larger than the pth quantile of a standard normal distribution
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∆B τ P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha} P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha}
eβA = 2 eβA = 2 eβA = 6 eβA = 6

1 100 0.254 0.214 0.861 0.836

200 0.357 0.312 0.974 0.964

500 0.565 0.528 1.000 1.000

1000 0.805 0.782 1.000 1.000

3 100 0.327 0.292 0.974 0.971

200 0.523 0.493 0.999 0.998

500 0.818 0.800 1.000 1.000

1000 0.975 0.971 1.000 1.000

7 100 0.382 0.345 0.995 0.994

200 0.548 0.536 1.000 1.000

500 0.885 0.886 1.000 1.000

1000 0.991 0.991 1.000 1.000

14 100 0.308 0.309 0.995 0.995

200 0.566 0.588 1.000 1.000

500 0.877 0.881 1.000 1.000

1000 0.992 0.992 1.000 1.000

Table 3.2: Power of Z : m = 1,∆A = 0

We now consider testing for the presence of parallel carryover effects in multiple

systems where repair times of Component A are negligible, which is Case 2 of Sec-

tion 3.2.2, where m > 1, ∆A = 0 and ∆B > 0. The hypothesis of no parallel carryover

effects in Component A is conducted by using the statistic Z in (3.38). We gener-

ated 10,000 realizations of m HPPs under the null hypothesis with fixed values of the

parameters, where αA = αB = 0.1, and βA = 0. We considered ∆B = 1, 3, 7 and 14

and fixed τ at 100 this time. Normal quantile-quantile (Q-Q) plots of 10,000 values

of Z are given in Figures 3.5, 3.6, 3.7 and 3.8 with various combinations of m and

∆B. When ∆B = 1 in Figure 3.5, the standard normal approximation is appropriate

except when m = 10. The standard normal approximations are quite suitable when

∆B = 3, 7 and 14.

Table 3.3 shows estimates of Qp and Pr(Z > Qp) when p = 0.950, 0.975 and 0.990.

Table 3.3 also indicates that the standard normal approximations are overall accurate
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for all m and ∆B values except that when m = 10 and 20 and ∆B = 1 and 3 in the

tails.

The power of the statistic (3.38) against the alternative hypothesis HA : βA 6= 0,

αA > 0 is investigated by using Monte Carlo simulation methods. We use the 0.95

quantile of the standard normal distribution and the empirical 0.95 quantile of the

test statistic in the 10,000 simulations runs that are under the null hypothesis with

different m and ∆B. We generated 1,000 processes under the alternative model where

we took αA = αB = 0.1 when exp{βA} = 2 or 2.5. The power results are presented in

Table 3.4 where entries are the proportions of the values of Z in 1,000 samples which

are larger than the quantile values. This indicates that the power of the test is quite

high overall. It can also easily seen that the power of the test increases as m increases.

Figure 3.5: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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Figure 3.6: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 3, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

Figure 3.7: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 7, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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Figure 3.8: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 14, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

∆B m Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 10 1.728 2.130 2.516 0.059 0.0340 0.0158

20 1.721 2.079 2.508 0.056 0.0329 0.0159

50 1.665 1.982 2.369 0.0516 0.0267 0.0110

100 1.678 2.010 2.417 0.0544 0.0272 0.0123

3 10 1.705 2.036 2.388 0.0551 0.0301 0.0115

20 1.735 2.083 2.476 0.0583 0.0319 0.0140

50 1.646 1.971 2.394 0.0502 0.0258 0.0119

100 1.624 1.947 2.290 0.0477 0.0245 0.0092

7 10 1.688 2.013 2.368 0.0548 0.0295 0.0116

20 1.657 2.007 2.438 0.0513 0.0272 0.0125

50 1.653 1.983 2.334 0.0508 0.026 0.0105

100 1.691 1.982 2.413 0.0541 0.0266 0.0126

14 10 1.636 1.950 2.287 0.0490 0.0243 0.0095

20 1.631 1.958 2.312 0.0490 0.0249 0.0249

50 1.638 1.964 2.302 0.0493 0.0253 0.0097

100 1.620 1.918 2.359 0.0475 0.0221 0.0109

Table 3.3: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m > 1 and τ = 100. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000

samples which are larger than the pth quantile of a standard normal distribution
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∆ m P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha} P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha}
eβA = 2 eβA = 2 eβA = 2.5 eβA = 2.5

1 10 0.790 0.770 0.950 0.950

20 0.970 0.960 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

3 10 0.970 0.970 1.000 1.000

20 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

7 10 0.990 0.990 1.000 1.000

20 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

14 10 0.980 0.990 1.000 1.000

20 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

Table 3.4: Power of Z : m > 1,∆A = 0

We also considered the score statistic (3.54) where m = 1, ∆A > 0, ∆B > 0. We

generated 10,000 realizations of HPPs based on (3.41) and (3.42). We took αA =

αB = 0.1 and βA = 0. We considered ∆B = 1, 3, 7 and 14. For ∆B = 1 in Figure 3.9,

the normal approximation is not quite adequate, however with large τ values, the

approximation gets better. For ∆B = 3 (Figure 3.10), the normal approximation is

adequate when τ = 1000. For ∆B = 7 and 14 (Figures 3.11 and 3.12, respectively),

the approximations are overall good. Table 3.4 shows estimated Qp and P̂ r(Z > Qp)

values with p = 0.950, 0.975 and 0.990, and this indicates also that the standard

normal approximation is accurate for large τ .

The power of the statistic (3.54) against the alternative hypothesis HA : βA 6= 0,

αA > 0 is investigated by using Monte Carlo simulation methods as well. We used

0.95 quantile of the standard normal distribution and the empirical 0.95 quantile

of the test statistic obtained from 10,000 simulations runs with different τ and ∆B
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combinations. We generated 1,000 processes under the model (3.41) and (3.42) taking

αA = αB = 0.1 when βA = 0.693 or 1.098, where exp{0.693} = 2 and exp{1.098} = 3.

Table 3.6 provides the power results. Entries in Table 3.6 are the proportions of the

values of Z in 1,000 samples which are larger than the quantile values. Table 3.6 shows

that the power of the test is high overall, and power increases as τ increases.

Figure 3.9: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 1, ∆A > 0, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 3.10: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 3, ∆A > 0, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 3.11: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 7, ∆A > 0, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 3.12: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 14, ∆A > 0, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

∆B τ Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 100 1.985 2.571 3.101 0.079 0.052 0.034

200 1.868 2.317 2.874 0.071 0.044 0.025

500 1.787 2.194 2.690 0.061 0.037 0.021

1000 1.715 2.064 2.600 0.059 0.032 0.016

3 100 1.830 2.231 2.694 0.065 0.038 0.020

200 1.769 2.168 2.620 0.062 0.036 0.018

500 1.715 2.093 2.493 0.056 0.032 0.014

1000 1.730 2.110 2.493 0.058 0.033 0.015

7 100 1.677 1.994 2.344 0.055 0.026 0.011

200 1.679 2.033 2.345 0.053 0.028 0.011

500 1.683 2.009 2.366 0.055 0.028 0.012

1000 1.638 1.976 2.399 0.049 0.026 0.012

14 100 1.633 1.918 2.188 0.049 0.021 0.006

200 1.620 1.917 2.244 0.047 0.022 0.008

500 1.603 1.891 2.228 0.045 0.021 0.007

1000 1.640 1.977 2.342 0.050 0.026 0.011

Table 3.5: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m = 1 and ∆A > 0. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000

samples which are larger than the pth quantile of a standard normal distribution
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∆ τ P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha} P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha}
eβA = 2 eβA = 2 eβA = 3 eβA = 3

1 100 0.950 0.910 1.000 1.000

200 0.950 0.940 1.000 1.000

500 0.940 0.940 1.000 1.000

1000 0.940 0.950 1.000 1.000

3 100 0.960 0.950 1.000 1.000

200 0.940 0.940 1.000 1.000

500 0.940 0.940 1.000 1.000

1000 0.960 0.960 1.000 1.000

7 100 0.950 0.950 1.000 1.000

200 0.950 0.940 1.000 1.000

500 0.960 0.960 0.99 1.000

1000 0.950 0.950 1.000 1.000

14 100 0.950 0.950 1.000 1.000

200 0.930 0.930 1.000 1.000

500 0.950 0.950 1.000 1.000

1000 0.950 0.960 0.99 1.000

Table 3.6: Power of Z : m = 1,∆A > 0

Finally, we considered the score statistic (3.62) when m > 1, ∆A > 0, ∆B > 0 . We

fixed τ at 100, and generated 10,000 realizations of m HPPs taking αA = αB = 0.1,

βA = 0 for various m values with ∆B = 1, 3, 7 and 14. We fixed ∆A at 1. Normal

probability plots (Figures 3.13, 3.14, 3.15 and 3.16) show that normal approximations

are quite suitable for overall scenarios with these various combinations with ∆B and

m except for some cases in which ∆B = 1. Table 3.7 presents the value of estimated

Qp and P̂ r(Z > Qp) where p = 0.950, 0.975 and 0.990. This shows that for ∆B = 3, 7

and 14, the standard normal approximations are suitable.

The power of the statistic (3.62) against the alternative hypothesis HA : βA 6= 0,

αA > 0 is investigated by using Monte Carlo simulation study. To obtain the power,

0.95 quantile of the standard normal distribution and the empirical 0.95 quantile of

the test statistic in the 10,000 simulations runs with different m and ∆B used. The

power results are provided in Table 3.8. This shows that the power of the test is

overall quite high.
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Figure 3.13: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆A = 1, ∆B = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

Figure 3.14: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆A = 1, ∆B = 3, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100



53

Figure 3.15: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆A = 1, ∆B = 7, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

Figure 3.16: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆A = 1, ∆B = 14, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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∆B m Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 10 1.781 2.111 2.540 0.061 0.034 0.015

20 1.719 2.074 2.490 0.056 0.032 0.015

50 1.675 1.996 2.426 0.052 0.028 0.012

100 1.729 2.083 2.496 0.058 0.032 0.015

3 10 1.685 1.990 2.384 0.054 0.027 0.011

20 1.668 1.990 2.396 0.052 0.027 0.012

50 1.673 1.989 2.344 0.053 0.027 0.010

100 1.647 1.996 2.419 0.050 0.026 0.013

7 10 1.650 1.953 2.350 0.050 0.024 0.011

20 1.669 1.983 2.406 0.053 0.026 0.012

50 1.653 1.950 2.350 0.051 0.024 0.010

100 1.650 1.985 2.385 0.051 0.026 0.012

14 10 1.633 1.950 2.340 0.049 0.024 0.011

20 1.681 2.005 2.369 0.054 0.028 0.011

50 1.639 1.963 2.327 0.050 0.025 0.010

100 1.685 2.032 2.369 0.055 0.029 0.011

Table 3.7: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m > 1, ∆A = 1 and τ = 100. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000

samples which are larger than the pth quantile of a standard normal distribution

∆B m P̂r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha} P̂ r{Z > 1.645|Ha} P̂ r{Z > Q̂0.950|Ha}
eβA = 2 eβA = 2 eβA = 3 eβA = 3

1 10 0.830 0.850 0.990 0.990

20 0.950 0.960 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

3 10 0.940 0.940 1.000 1.000

20 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

7 10 0.980 0.980 1.000 1.000

20 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

14 10 0.970 0.970 1.000 1.000

20 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

Table 3.8: Power of Z : m > 1,∆A = 1



Chapter 4

Redundant Systems with Three

Components

In this chapter, as an extension of Chapter 3, we consider repairable systems with three

components working in parallel; a redundant component and two primary components.

In Section 4.2, we develop a test of parallel carryover effects in redundant systems with

three components. We present simulation results in Section 4.3. In Section 4.4, we

illustrate methods by analyzing a failure data set from diesel operated power plants.

4.1 Introduction

Redundant systems may include more than two components working in parallel. In

this section, we discuss testing for the presence of parallel carryover effects in re-

dundant systems with three components. We develop partial score tests of parallel

carryover effects in such systems, and discuss asymptotic properties of them through

simulations.

4.2 Models and Tests for Parallel Carryover Ef-

fects

In this section, we consider three components in a system, instead of two. We discuss

models for a single system and multiple systems under two different settings based on

the duration of repairs in the redundant component.
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Suppose that there is a multivariate counting processes {NA(t), NB(t), NC(t); t ≥
0}, where {NA(t); t ≥ 0} is a counting process for Component A, {NB(t); t ≥ 0} is

a counting process for Component B and {NC(t); t ≥ 0} is a counting process for

Component C. The three components are working in parallel in a system. We let

tA1, tA2, . . . , where 0 < tA1 < tA2 < . . . , tB1, tB2, . . . , where 0 < tB1 < tB2 < . . . , and

tC1, tC2, . . . , where 0 < tC1 < tC2 < . . . , denote the failure times of Components A,

B and C, respectively. All components are subject to repairs and repair times in the

primary components cannot be ignored. Let ∆A, ∆B and ∆C denote the repair times

of Components A, B and C, respectively. For K = A,B and C, YK(t) is the at-risk

indicator of process {NK(t); t > 0}.
A model including parallel carryover effects for Component A in a redundant

system having three components is given by

λA(t|H(t)) = YA(t)αA exp{βAXAB(t) + βAXAC(t)}, t > 0, (4.1)

where YA(t) is the at-risk indicator function of Component A, αA > 0 is a baseline

rate function, and

XAB(t) = I{NB(t−) > 0}I{t− tBNB(t−) ≤ ∆B}, (4.2)

and

XAC(t) = I{NC(t−) > 0}I{t− tC NC(t−) ≤ ∆C}, (4.3)

and βA is a regression parameter. Notice that, for K = B,C, XAK(t) takes the

value of 1 while Component K is under a repair; otherwise, it equals 0. Also, we

assume that one parameter βA represents the effect of repairs of Component B or C

on Component A. This assumption is applicable in many settings, but models can be

extended by including separate parameters for the effects of the repairs of Components

B and C. For simplicity, we do not pursue this case in this thesis. However, if there

is a need for more detailed modelling, methods in this section can be applied after

obvious modifications.

While Component A is in the up state at time t (i.e., YA(t) = 1), there are four

possibilities: (i) Both Components B and C are in the up state, (ii) Component B is

in the down state and Component C is in the up state, (iii) Component B is in the up

state and Component C is in the down state, and (iv) both Components B and C are

in the down state. In case (i), failures of Component A are governed by a HPP with
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rate function αA. In case (ii), the intensity function of Component A jumps from αA

to YA(t)αA exp{βA} after each failure in Component B, and stays there for ∆B time

units as long as there is no failures in Component A (i.e., YA(t) = 1) and Component C

(i.e., YC(t) = 1). Similarly, in case (iii), the intensity function of Component A jumps

from αA to YA(t)αA exp{βA} after each failure in Component C, and stays there for

∆C time units as long as there is no failures in Component A (i.e., YA(t) = 1) and

Component B (i.e., YB(t) = 1). In the last case, when both Components B and C are

in the down state, the intensity function (4.1) becomes αA exp{2βA}, and stays there

as long as there is no failures in Component A (i.e., YA(t) = 1) and both Components

B and C are under repair (YB(t) = 0 and YC(t) = 0).

A model for parallel carryover effects can be also similarly defined for Compo-

nent B. In this case, the intensity function of {NB(t); t ≥ 0} is given by

λB(t|H(t)) = YB(t)αB exp{βBXBA(t) + βBXBC(t)}, t > 0, (4.4)

where αB > 0 is a baseline rate function, and

XBA(t) = I{NA(t−) > 0}I{t− tANA(t−) ≤ ∆A}, (4.5)

and

XBC(t) = I{NC(t−) > 0}I{t− tC NC(t−) ≤ ∆A}. (4.6)

Similarly, the intensity function of {NC(t); t ≥ 0} is given by

λC(t|H(t)) = YC(t)αC exp{βCXCA(t) + βCXCA(t)}, t > 0, (4.7)

where αC > 0 is a baseline rate function, and

XCA(t) = I{NA(t−) > 0}I{t− tANA(t−) ≤ ∆A}, (4.8)

and

XCB(t) = I{NB(t−) > 0}I{t− tBNB(t−) ≤ ∆B}. (4.9)

Let m denote the number of systems, each with three components. In the re-

maining part of this section, we develop partial score tests for the presence of parallel

carryover effects in four different cases; (i) a single system is under observation and

repair times of Components A and B are negligible (m = 1, ∆A = 0, ∆B = 0,



58

∆C > 0), (ii) a single system is under observation and repair times of Component

A are negligible (m = 1, ∆A = 0, ∆B > 0, ∆C > 0), (iii) a single system is under

observation and repair times of Component A are not negligible (m = 1, ∆A > 0,

∆B > 0, ∆C > 0), and (iv) multiple systems are under observation and repair times

of Component A are not negligible (m > 1, ∆A > 0, ∆B > 0, ∆C > 0). In all cases,

we assume the baseline rate functions are constants.

4.2.1 Case 1: m = 1, ∆A = 0, ∆B = 0, ∆C > 0

We first consider a simple case in a system with 3 components connected in parallel;

Components A, B and C. In this setting, we assume that repair times of Components

A and B are negligible; that is ∆A = 0 and ∆B = 0 so that failures of Component A

and failures of Component B do not affect the probabilistic characteristics of failure

occurrences in Component C. We assume also that failure occurrences are governed

by HPPs. In this case, the intensity functions for Components A, B and C are given

by

Component A: λA(t|H(t)) = YA(t)αA exp{βAXA(t)}, t > 0, (4.10)

where YA(t) is at-risk indicator function αA > 0 is a baseline rate function and XA(t) =

I{NC(t−) > 0}I{t− TNC(t−) ≤ ∆C}, and

Component B: λB(t|H(t)) = YB(t)αB exp{βBXB(t)}, t > 0, (4.11)

where YB(t) is at-risk indicator function αB > 0 is a baseline rate function and

XB(t) = I{NC(t−) > 0}I{t− TNC(t−) ≤ ∆C}, and since ∆A = 0 and ∆B = 0

Component C: λC(t|H(t)) = YC(t)αC , t > 0, (4.12)

where αC > 0 is a baseline rate function andH(t) = {NA(u), NB(u), NA(u), YC(s); 0 ≤
u < t, 0 ≤ s ≤ t}.

A test for the presence of parallel carryover effects in Component A can be devel-

oped by considering the following composite hypothesis.

H0 : βA = 0, αA > 0, vs. Ha : βA 6= 0, αA > 0, (4.13)
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where βA is the parameter of interest and αA is a nuisance parameter. We suppose

that the system is under observation over the followup period [0, τ ], where τ is the

end-of-followup time. Note that, since ∆A = 0 and ∆B = 0, we can safely drop at-risk

indicator functions YA(t) and YB(t) from the model (4.10) and (4.11), respectively.

Let nA, where nA ≥ 0, denote the number of failures of Component A over [0, τ ], and

tA1, tA2, . . . , tAnA be the failure times of Component A in [0, τ ]. Then the likelihood

function of the outcome “NA(τ) = nA failures of Component A at times tA1 ≤ tA2 ≤
· · · ≤ tAnA in [0, τ ]” is given by

L(θ) =

nA∏
j=1

αA exp{βAXA(tAj)} exp{−
∫ τ

0

αA exp{βAXA(s)} ds}, (4.14)

where θ = (αA, βA). The likelihood function (4.14) is of the same form with the

likelihood function (3.9) given in Section 3.2.1, and thus, the partial score test statistic

based on (4.14) is the same with the one obtained in Section 3.2.1. We only state the

form of the test statistic here, but not discuss its derivation. Let

I(τ, βA,∆B) =

∫ τ

0

XA(s) exp{βAXA(s)} ds. (4.15)

Then, the partial score test for testing the null hypothesis H0 : βA = 0 is given by

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

, (4.16)

where

UβA(α̃A, 0) =

nA∑
j=1

XA(tj)− α̃A I(τ, 0,∆B), (4.17)

and

V̂ ar(UβA(α̃A, 0)) = I(τ, 0,∆B) [τ − I(τ, 0,∆B)]. (4.18)

The asymptotic properties of the test statistic (4.16) are discussed in Section 3.3

analytically and in Section 3.4 through simulations.

4.2.2 Case 2: m = 1, ∆A = 0, ∆B > 0, ∆C > 0

In this section, we consider a case in which there is a single system under obser-

vation and the repair times are negligible for Component A, but not negligible for



60

Components B and C. This means that m = 1 and ∆A = 0, ∆B > 0 and ∆C > 0.

The intensity functions of Components A, B and C are respectively given as follows.

Component A: λA(t|H(t)) = YA(t)αA exp{βAXAB(t) + βAXAC(t)}, t > 0,

(4.19)

where YA(t) is the at-risk indicator of Component A, XAB(t) and XAC(t) are respec-

tively defined in (4.2) and (4.3), βA is a regression parameter, ∆A = 0, and αA > 0 is

a baseline rate function.

Component B: λB(t|H(t)) = YB(t)αB exp{βBXBC(t)}, t > 0, (4.20)

where YB(t) is the at-risk indicator function of Component B, ∆B > 0, XBC(t) is

defined in (4.6), and αB > 0 is a baseline rate function.

Component C: λC(t|H(t)) = YC(t)αC exp{βCXCB(t)}, t > 0, (4.21)

where YC(t) is the at-risk indicator function of Component C, XCB(t) is defined in

(4.9), ∆C > 0, and αC > 0 is a baseline rate function and H(t) = {NA(u), NB(u),

NC(u), YB(s), YC(s); 0 ≤ u < t, 0 ≤ s ≤ t}.
Then the likelihood function of the outcome that “NA(τ) = nA failures of Com-

ponent A occur at times tA1 ≤ tA2 ≤ · · · ≤ tAnA in [0, τ ]” is given by

L(θ) =

nA∏
j=1

αA e
βAXAB(tAj)+βAXAC(tAj) exp{−

∫ τ

0

αA e
βAXAB(s)+βAXAC(s) ds}. (4.22)

Then the log likelihood function is given by

`(θ) = nA logαA +

nA∑
j=1

{βAXAB(tAj) + βAXAC(tAj)} − αA
∫ τ

0

eβAXAB(s)+βAXAC(s) ds.

(4.23)

The score vector is then defined by U(θ) = (UαA(θ), UβA(θ))
′

with components

UαA(θ) =
nA
αA
−
∫ τ

0

eβA(XAB(s)+XAC(s)) ds, (4.24)
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and

UβA(θ) =

nA∑
j=1

XAB(tAj) +

nA∑
j=1

XAC(tAj)

− αA
∫ τ

0

(XAB(s) +XAC(s)) eβA(XAB(s)+XAC(s)) ds.

(4.25)

Also, the observed information matrix I(θ) is given by

I(θ) =

(
IαAαA(θ) IαAβA(θ)

IβAαA(θ) IβAβA(θ)

)
, (4.26)

where the components are given by

IαAαA(θ) =
nA
α2
A

, (4.27)

IαAβA(θ) = IβAαA(θ) =

∫ τ

0

(XAB(s) +XAC(s)) eβAXAB(s)+βAXAC(s) ds, (4.28)

IβAβA(θ) = αA

∫ τ

0

(XAB(s) +XAC(s))2 eβAXAB(s)+βAXAC(s) ds. (4.29)

Let α̃A be the restricted maximum likelihood estimator of αA under H0 : βA = 0. By

solving UαA(αA, 0) = 0 in (4.24) with βA = 0 for αA = α̃A, we obtain

α̃A =
nA
τ

(4.30)

Therefore, the standardized partial score statistic for testing the hypotheses (4.13) is

given by

Z =
UβA(α̃A, 0)

V̂ ar(UβA(α̃A, 0))
1
2

, (4.31)

where

Uβ(α̃A, 0) =

nA∑
j=1

XAB(tAj) +

nA∑
j=1

XAC(tAj)− α̃A
∫ τ

0

(XAB(s) +XAC(s))ds, (4.32)
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and

V̂ ar(Uβ(α̃A, 0)) = IβAβA(α̃A, 0)− IβAαA(α̃A, 0)I−1
αAαA

(α̃A, 0)IαAβA(α̃A, 0) (4.33)

=
nA
τ 2

[
τ

∫ τ

0

(XAB(s) +XAC(s))2ds−
[∫ τ

0

(XAB(s) +XAC(s)) ds

]2
]

(4.34)

We discuss the asymptotic properties of this test statistic in Section 4.3 through

simulations. However, a proof based on the method in Section 3.3 can be useful to

show its asymptotic distribution analytically.

4.2.3 Case 3: m = 1, ∆A > 0, ∆B > 0, ∆C > 0

This section presents the derivation of a test statistics developed for testing the pres-

ence of parallel carryover effects in redundant systems. In this case, there is a single

system under observation and the repair times are not negligible for Components A,

B and C; that is, m = 1 and ∆A > 0, ∆B > 0 and ∆C > 0. Component A is the

redundant component in the system.

In this case, the intensity functions of Components A, B and C are given below:

Component A: λA(t|H(t)) = YA(t)αA exp{βAXAB(t) + βAXAC(t)}, t > 0,

(4.35)

where YA(t) is the at-risk indicator function of Component A, XAB(t) and XAC(t)

are respectively defined in (4.2) and (4.3), αA > 0 is a baseline rate function, βA is a

regression parameter.

Component B: λB(t|H(t)) = YB(t)αB exp{βBXBC(t)}, t > 0, (4.36)

where YB(t) is the at-risk indicator function of Component B, XBC(t) is defined in

(3.6), αB > 0 is a baseline rate function, and βB is a regression parameter.

Component C: λC(t|H(t)) = YC(t)αC exp{βCXCB(t)}, t > 0. (4.37)

where YC(t) is the at-risk indicator function of Component C, XCB(t) is defined in

(4.9), αC > 0 is a baseline rate function, and βC is a regression parameter. The history

of the processes is given by H(t) = {NA(u), NB(u), NC(u), YA(s), YB(s), YC(s); 0 ≤
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u < t, 0 ≤ s ≤ t}.
As explained previously in Section 4.2, in this case the intensity function (4.35)

jumps from αA to αA exp{βA} when either one of Component B or Component C

fails. Then, it increases from αA exp{βA} to αA exp{2βA} when both of Components

B and C fail.

In this case, the likelihood function of the outcome that “NA(τ) = nA failures of

Component A occur at times tA1 ≤ tA2 ≤ · · · ≤ tAnA in [0, τ ], where τ is fixed” is

given by

L(θ) =

nA∏
j=1

αA e
βAXAB(tAj)+βAXAC(tAj) exp{−

∫ τ

0

YA(s)αA e
βAXAB(s)+βAXAC(s) ds},

(4.38)

where θ = (αA, βA). Then, the log likelihood function `(θ) = logL(θ) is given by

nA logαA +

nA∑
j=1

{βAXAB(tAj) + βAXAC(tAj)} − αA
∫ τ

0

YA(s) eβAXAB(s)+βAXAC(s) ds.

(4.39)

The components of the score vector U (θ) are given by

UαA(θ) =
nA
αA
−
∫ τ

0

YA(s) eβA(XAB(s)+XAC(s)) ds, (4.40)

and

UβA(θ) =

nA∑
j=1

XAB(tAj)+

nA∑
j=1

XAC(tAj)

− αA
∫ τ

0

YA(s) (XAB(s) +XAC(s)) eβA(XAB(s)+XAC(s)) ds.

(4.41)

By solving UαA(αA, 0) = 0 in (4.40) with βA = 0, we can easily show that the restricted

maximum likelihood estimator α̃A of αA is given as α̃A = nA/(
∫ τ

0
YA(s) ds).

For testing the presence of parallel carryover effects in Component A, we consider

the hypothesis (4.13). The partial score function under the null hypothesisH0 : βA = 0

can be written as follows.

Uβ(α̃A, 0) =

nA∑
j=1

(XAB(tAj) +XAC(tAj))− α̃A
∫ τ

0

YA(s) (XAB(s)+XAC(s))ds. (4.42)
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The components of the observed information matrix I(αA, βA) evaluated at (αA, βA) =

(α̃A, 0) are given by

IαAαA(α̃A, 0) =
nA
α̃2
A

, (4.43)

IαAβA(α̃A, 0) = IβAαA(α̃A, 0) =

∫ τ

0

YA(s) (XAB(s) +XAC(s))ds, (4.44)

IβAβA(α̃A, 0) = α̃A

∫ τ

0

YA(s) (XAB(s) +XAC(s))2 ds. (4.45)

From the score procedures explained in Chapter 1, we obtain the following stan-

dardized partial score statistic for testing the presence of parallel carryover effects in

Component A.

Z =
UβA(α̃A, 0)

V̂ ar(UβA(α̃A, 0))
1
2

, (4.46)

where Uβ(α̃A, 0) is given in (3.42) and V̂ ar(Uβ(α̃A, 0)) is given by

nA
(
∫ τ

0
YA(s) ds)2

[(∫ τ

0

YA(s) ds

)
I1(τ, βA,∆B,∆C)− I2(τ, βA,∆B,∆C)

]
, (4.47)

with

I1(τ, βA,∆B,∆C) =

∫ τ

0

YA(s) (XAB(s) +XAC(s))2ds, (4.48)

and

I2(τ, βA,∆B,∆C) =

[∫ τ

0

YA(s) (XAB(s) +XAC(s)) ds

]2

. (4.49)

Asymptotic properties of the test statistic (4.46) are discussed in Section 4.3 through

simulations. Under some mild regularity conditions on the at-risk indicator YA(t)

(see, Karr, 1991, p. 421), the asymptotic distribution of the test statistic (4.46) can

be analytically shown with a similar method given in Section 3.3.

4.2.4 Case 4: m > 1,∆A > 0, ∆B > 0, ∆C > 0

In this section, we consider a similar setting of Section 4.2.3, but here we assume

that m independent systems are under observation, each with three components:

Component A, B and C. The repair times of the components are not negligible; that

is, ∆A > 0, ∆B > 0, ∆C > 0. Furthermore, we assume that failures of Components

B and C affect the probabilistic characteristics of failure occurrences of Component
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A, while failures of Component A do not affect the probabilistic characteristics of

failure occurrences of Components B and C. Therefore, Component A operates as a

redundant component in the system.

Now, suppose that there arem independent multivariate counting processes {NAi(t),

NBi(t), NCi(t); t ≥ 0}, i = 1, . . . , m, where {NKi(t); t ≥ 0}, for K = A, B or C, is a

counting process of failure occurrences in Component A in the ith system, i = 1, . . .,

m. For K = A, B or C, we let tKi1, tKi2, . . . , where 0 < tKi1 < tKi2 < · · · , denote

the failure times of the Kth component in the ith system, i = 1, . . ., m. Let ∆Ai,

∆Bi and ∆Ci denote the repair times of Components A, B and C in the ith system,

respectively. For K = A, B or C, the at-risk indicator YKi(t) of the process {NKi(t);

t > 0} takes value of 1 when Component K is up and the process {NKi(t); t > 0} is

under observation; otherwise, it equals to 0. The history of the multivariate processes

{NAi(t), NBi(t), NCi(t); t ≥ 0}, i = 1, . . . , m, is denoted by Hi(t) = {NAi(u), NBi(u),

NCi(u); 0 ≤ u < t}.
In this case, the intensity functions of Components A, B and C in the ith system

are given as follows.

Component A: λAi(t|Hi(t)) = YAi(t)αA exp{βAXABi(t) + βAXACi(t)}, t > 0,

(4.50)

where YAi(t) is the at-risk indicator function of Component A in ith system, αA > 0

is a baseline rate function, βA is a regression parameter, and

XABi(t) = I{NBi(t
−) > 0}I{t− tBiNBi(t−) ≤ ∆Bi},

XACi(t) = I{NCi(t
−) > 0}I{t− tCiNCi(t−) ≤ ∆Ci}.

(4.51)

Component B: λBi(t|Hi(t)) = YBi(t)αB exp{βBXBCi(t)}, t > 0, (4.52)

where YBi(t) is the at-risk indicator function of Component B in the ith system,

αB > 0 is a baseline rate function, and

XBCi(t) = I{NCi(t
−) > 0}I{t− tCiNCi(t−) ≤ ∆Ci}. (4.53)

Component C: λCi(t|Hi(t)) = YCi(t)αC exp{βCXCBi(t)}, t > 0, (4.54)

where YCi(t) is the at-risk indicator function of Component C in the ith system,
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αC > 0 is a baseline rate function, and

XCBi(t) = I{NBi(t
−) > 0}I{t− TBiNBi(t−) ≤ ∆Bi}. (4.55)

By considering the following composite hypothesis, a test of the presence of parallel

carryover effects in Component A can be developed.

H0 : βA = 0, αA > 0, vs. Ha : βA 6= 0, αA > 0, (4.56)

where αA is a nuisance parameter and βA is the parameter of interest.

We suppose that m systems are independent and under observation period over

[0, τi], where τi is the fixed end-of-followup time of the ith system, i = 1, 2, . . . ,m.

We let tAi1, tAi1, . . . , tAinAi be the failure times of Component A in the ith system,

and let NAi(τi) = nAi be the observed number of failures of Component A in the

ith system over the time interval [0, τi]. The likelihood function of the outcome that

“NAi(τi) = nAi failures of Component A observed at times tAi1, tAi1, . . . , tAinAi in

[0, τi]” is given by

L(θ) =
m∏
i=1

Li(θ), (4.57)

where

Li(θ) =

nAi∏
j=1

αA e
βAXABi(tAij)+βAXACi(tAij) exp{−

∫ τi

0

YAi(s)αA e
βAXABi(s)+βAXACi(s) ds}.

(4.58)

Then, the log likelihood function `(θ) = logL(θ) is given by

m∑
i=1

nAi logαA + βA

m∑
i=1

nAi∑
j=1

(XABi(tAij) +XACi(tAij))

− αA
m∑
i=1

∫ τi

0

YAi(s) e
βAXABi(s)+βAXACi(s) ds,

(4.59)

The components of the score vector U(θ) are followed by

UαA(θ) =

∑m
i=1 nAi
αA

−
m∑
i=1

∫ τi

0

YAi(s) e
βAXABi(s)+βAXACi(s) ds, (4.60)
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and

UβA(θ) =
m∑
i=1

nAi∑
j=1

(XABi(tAij) +XACi(tAij))

− αA
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) + βAXACi) e
βAXABi(s)+βAXACi(s) ds.

(4.61)

Also, the components of the observed information matrix I(θ) are given by

IαAαA(θ) =

∑m
i=1 nAi
αA2

, (4.62)

IαAβA(θ) = IβAαA(θ) =
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s)) e
βAXABi(s)+βAXACi(s) ds,

(4.63)

IβAβA(θ) =
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s))
2 eβAXABi(s)+βAXACi(s) ds. (4.64)

Under the null hypothesis H0 : βA = 0, we obtain the restricted maximum like-

lihood estimator α̃A of αA as α̃A = (
∑m

i=1 nAi)/
∑m

i=1

∫ τi
0
YAi(s) ds. Then, from the

score function UβA(θ) given in (4.61), we can write the partial score function evaluated

at (αA, βA) = (α̃A, 0) as follows.

UβA(α̃A, 0) =
m∑
i=1

nAi∑
j=1

(XABi(tAij)+XACi(tAij))−α̃A
m∑
i=1

∫ τi

0

YAi(s) (XABi(s)+βAXACi) ds.

(4.65)

We define the integrals I1(m,βA,∆B,∆C) and I2(m,βA,∆B,∆C), for notational con-

venience, as

I1(m,βA,∆B,∆C) =
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s))
2 ds, (4.66)

and

I2(m,βA,∆B,∆C) =

(
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s)) ds

)2

. (4.67)

Then, the estimated variance of UβA(α̃A, 0), which is denoted by V̂ ar(UβA(α̃A, 0)), can
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be written as∑m
i=1 nAi

(
∑m

i=1

∫ τi
0
YAi(s) ds)

2

[(
m∑
i=1

∫ τi

0

YAi(s) ds

)
I1(m,βA,∆B,∆C)− I2(m,βA,∆B,∆C)

]
.

(4.68)

With the partial score function (4.65) and its estimated variance (4.68), we obtain

the standardized partial score statistic for testing H0 : βA = 0 as

Z =
Uβ(α̃A, 0)

V̂ ar(Uβ(α̃A, 0))
1
2

. (4.69)

Under some mild convergence conditions on the at-risk indicators YAi, i = 1, . . ., m,

(see, Andersen et al., 1993, pp. 426–427 for an example), we can obtain the asymptotic

distribution of the test statistic (4.69) as m→∞. We discuss some of the large sample

properties of the test statistic (4.69) in Section 4.3 through simulations.

4.3 Simulation Studies

In this section, we present the results of simulation studies conducted to assess when

asymptotic normal approximation for the test statistics developed in Section 4.2.2,

Section 4.2.3 and Section 4.2.4 are satisfactory. We consider two settings (i) m = 1

and τ →∞ and (ii) m→∞ and τ fixed.

We first consider the setting given in Section 4.2.2; that is, Case 2: m = 1, ∆A = 0,

∆B > 0, ∆C > 0. The hypothesis of no parallel carryover effects in Component A is

H0 : βA = 0, αA > 0 and the test statistic for testing the null hypothesis is

Z =
UβA(α̃A, 0)

V̂ ar(UβA(α̃A, 0))
1
2

, (4.70)

where the score statistic UβA(α̃A, 0) is given by (4.32) and its estimated variance

V̂ ar(UβA(α̃A, 0))
1
2 is given by (4.34). We look into the null distribution of Z and

assess the standard normal approximation when τ increases.

We generated 10,000 realizations of HPPs based on (4.19), (4.20), and (4.21)

where αA = αB = αC = 0.1, and βA = 0, βB = βC = 0.693 so that exp{0.693} =

2. We consider ∆B, ∆C = 1, 3, 7 and 14 time units. Normal quantile-quantile (Q-

Q) plots of 10,000 values of Z are presented with ∆B, ∆C = 1 for four different

end-of-followup times τ in Figure 4.1. The normal approximation is not adequate
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for small τ values. The distribution of Z in (4.70) converges to a standard normal

distribution as τ increases, but the convergence rate is slow. Figure 4.2 shows the

results when ∆B = ∆C = 3. In this case, the distribution converges faster to the

standard normal approximation. When ∆B = ∆C = 7 in Figure 4.3, the standard

normal approximation is quite accurate even for small τ values, except for the tails

when τ = 100. Figure 4.4 shows similar results to those of Figure 4.3.

We let Qp be the pth quantile of the standard normal distribution and Q̂p be the

empirical pth quantile of Z computed from 10,000 samples. We obtain the estimates

of Pr(Z > Qp) = 1 − p, where p = 0.950, 0.975 and 0.990 in Table 4.1. The results

are in line with those obtained from Figures 4.1–4.4. Therefore, except the case

in which repair times of primary components are too small, the standard normal

approximations are adequate when approximately 20 or more failures are observed in

the redundant component over the followup period.

The power of the statistic (4.70) was investigated by Monte Carlo simulation

methods. We used the 0.95 quantile of the standard normal distribution as well as

the empirical 0.95 quantile of the test statistic obtained from 10,000 simulations runs

under the null hypothesis. We generated 1,000 processes under the models

λA(t|H(t)) = YA(t)αA exp{βAXAB(t) + βAXAC(t)},

λB(t|H(t)) = YB(t)αB exp{βBXBC(t)},

λC(t|H(t)) = YC(t)αC exp{βCXCB(t)},

(4.71)

where we took αA = αB = αC = 0.1. We took (i) βA = βB = βC = 0.693 and (ii)

βA = βB = βC = 1.386, so that e0.693 = 2 and e1.386 = 4. The power results are

provided in Table 4.2, where entries are the proportions of the values of Z in 1,000

samples which are larger than the quantile values. Table 4.2 shows poor results when

∆B and ∆C are small. This is not surprising because the expected number of followup

failures for ∆B and ∆C times are small, especially when exp{βA} = 2. However, power

of the test is increasing as τ and/or ∆B and ∆C increase. Also, power increases as

eβA increases.
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Figure 4.1: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 0, ∆B = 1, ∆C = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 4.2: Normal Q-Q plots of 10,000 simulated values of the test statistic Z

when∆A = 0, ∆B = 3, ∆C = 3, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4)

τ = 1000
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Figure 4.3: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 0, ∆B = 7, ∆C = 7, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 4.4: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 0, ∆B = 14, ∆C = 14, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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∆B and ∆C τ Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 100 1.814 2.248 2.854 0.0630 0.0406 0.0229

200 1.794 2.193 2.67 0.0640 0.0381 0.0197

500 1.722 2.070 2.517 0.0560 0.0315 0.0143

1000 1.686 2.046 2.433 0.0539 0.0295 0.0136

3 100 1.731 2.102 2.55 0.0585 0.0348 0.0146

200 1.718 2.095 2.488 0.0587 0.0318 0.0150

500 1.693 2.048 2.385 0.0550 0.0301 0.0116

1000 1.643 1.986 2.398 0.0499 0.0263 0.0119

7 100 1.662 1.997 2.371 0.0518 0.0274 0.0114

200 1.659 1.993 2.361 0.0515 0.0273 0.0106

500 1.615 1.936 2.336 0.0472 0.0237 0.0103

1000 1.652 1.968 2.386 0.0508 0.0252 0.0110

14 100 1.607 1.859 2.178 0.0454 0.0195 0.0070

200 1.638 1.906 2.261 0.0490 0.0224 0.0085

500 1.627 1.947 2.287 0.0484 0.0244 0.0092

1000 1.657 1.944 2.325 0.0515 0.0235 0.0100

Table 4.1: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m = 1, ∆A = 0, ∆B > 0, ∆C > 0. P̂ r(Z > Qp) is the proportion of the values

of Z in 10,000 samples which are larger than the pth quantile of a standard normal

distribution

∆B and ∆C τ P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2 eβA = 2 eβA = 4 eβA = 4

3 100 0.185 0.174 0.286 0.263

200 0.227 0.216 0.396 0.383

500 0.324 0.313 0.575 0.575

1000 0.433 0.433 0.726 0.733

7 100 0.510 0.506 0.664 0.653

200 0.678 0.675 0.857 0.852

500 0.921 0.924 0.993 0.993

1000 0.995 0.995 1.000 1.000

14 100 0.586 0.592 0.656 0.655

200 0.778 0.779 0.870 0.873

500 0.982 0.982 0.997 0.997

1000 1.000 1.000 1.000 1.000

Table 4.2: Power of Z : m = 1, ∆A = 0, ∆B > 0, ∆C > 0
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We also considered the test statistic (4.46) developed in Section 4.2.3, wherem = 1,

∆A > 0, ∆B > 0, ∆C > 0. We generated 10,000 realizations of HPPs based on (4.35),

(4.36), and (4.37) with αA = αB = αC = 0.1, and βA = 0, βB = βC = 0.693. We

considered ∆B, ∆C = 1, 3, 7 and 14. For ∆B, ∆C = 3, the results are presented

in Figure 4.6, which shows that the normal approximations are quite accurate when

τ = 500 and 1000. For ∆B, ∆C = 5 in Figure 4.7, the normal approximations

are adequate when τ = 500 and 1000. For ∆B, ∆C = 14 (See Figure 4.8), the

approximations are good when τ = 200, 500 and 1000. Table 3.3 shows estimated Qp

and P̂ r(Z > Qp) values where p = 0.950, 0.975 and 0.990. The results in this table

indicate also that the standard normal approximation is adequate for large τ .

The power of the statistic (4.46) against the alternative hypothesis HA : βA 6= 0,

αA > 0 is investigated by using Monte Carlo simulation methods. The 0.95 quantile of

the standard normal distribution and the empirical 0.95 quantile of the test statistic

obtained from 10,000 simulations runs were used to obtain the power. We generated

1,000 processes under the models

λA(t|H(t)) = YA(t)αA exp{βAXAB(t) + βAXAC(t)},

λB(t|H(t)) = YB(t)αB exp{βBXBC(t)},

λC(t|H(t)) = YC(t)αC exp{βCXCB(t)},

(4.72)

where we took αA = αB = αC = 0.1. We took (i) βA = βB = βC = 0.916 and (ii)

βA = βB = βC = 1.098, so that e0.916 = 2.5 and e1.098 = 3 . The power results are

provided in Table 4.4. Each entry in Table 4.4 is the proportions of the values of Z

in 1,000 samples which are larger than the quantile values and this shows that the

power of the test is high overall, and power increases as τ increases.
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Figure 4.5: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 1, ∆C = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 4.6: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 3, ∆C = 3, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 4.7: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 7, ∆C = 7, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 4.8: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 14, ∆C = 14, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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∆B and ∆C τ Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 100 1.879 2.280 2.839 0.0695 0.0426 0.0227

200 1.830 2.246 2.725 0.0652 0.0391 0.0215

500 1.755 2.128 2.609 0.0611 0.0327 0.0171

1000 1.716 2.122 2.516 0.0565 0.0343 0.0163

3 100 1.767 2.133 2.553 0.0625 0.0355 0.0171

200 1.714 2.080 2.511 0.0578 0.032 0.0162

500 1.677 2.037 2.422 0.0537 0.0287 0.0122

1000 1.694 1.995 2.387 0.0557 0.0272 0.0116

7 100 1.667 2.004 2.405 0.0537 0.028 0.013

200 1.658 1.974 2.359 0.0511 0.0264 0.0111

500 1.646 1.990 2.341 0.0501 0.0267 0.0104

1000 1.605 1.924 2.294 0.0451 0.0231 0.0092

14 100 1.587 1.906 2.259 0.0449 0.0222 0.0084

200 1.614 1.906 2.294 0.0474 0.0219 0.0092

500 1.637 1.951 2.258 0.0492 0.0242 0.0081

1000 1.649 1.990 2.353 0.0506 0.0271 0.0115

Table 4.3: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m = 1 and ∆A = 1, ∆B > 0, ∆C > 0. P̂ r(Z > Qp) is the proportion of the values

of Z in 10,000 samples which are larger than the pth quantile of a standard normal

distribution

∆B and ∆C τ P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2.5 eβA = 2.5 eβA = 3 eβA = 3

3 100 0.116 0.099 0.108 0.092

200 0.104 0.098 0.112 0.104

500 0.104 0.100 0.120 0.116

1000 0.100 0.094 0.113 0.108

7 100 0.243 0.239 0.278 0.277

200 0.203 0.202 0.315 0.312

500 0.249 0.249 0.389 0.389

1000 0.315 0.326 0.453 0.464

14 100 0.400 0.409 0.509 0.512

200 0.478 0.484 0.575 0.581

500 0.579 0.579 0.788 0.788

1000 0.735 0.735 0.929 0.929

Table 4.4: Power of Z : m = 1, ∆A = 1, ∆B > 0, ∆C > 0
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We now considered the score statistic (4.69) given in Section 4.2.4, where m > 1,

∆A > 0, ∆B > 0, ∆C > 0. We fixed τ at 100, and generated 10,000 realizations of

m HPPs based on (4.50), (4.52), and (4.54) with αA = αB = αC = 0.1, and βA = 0,

βB = βC = 0.693. We considered ∆B, ∆C = 1, 3, 7 and 14, and m = 10, 20, 50 and 100.

Normal Q-Q plots (Figures 4.9, 4.10, 4.11 and 4.12) show that normal approximations

are quite suitable with these various combinations with ∆B, ∆C and m. Table 4.5

presents the value of estimated Qp and P̂ r(Z > Qp) where p = 0.950, 0.975 and 0.990.

This shows that when ∆B, ∆C = 1, 3, 7 and 14, the normal approximation is suitable.

The power of the statistic (4.69) under the alternative hypothesis HA : βA 6= 0,

αA > 0 is investigated by using Monte Carlo simulation study. To obtain the power,

0.95 quantile of the standard normal distribution and the empirical 0.95 quantile of

the test statistic obtained from 10,000 simulations runs with different m, ∆B and ∆C

used. The power results are provided in Table 4.6, which shows that the power of the

test is high for long τ and/or m values. Also, power increases as eβA increases.

Figure 4.9: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 1, ∆C = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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Figure 4.10: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 3, ∆C = 3, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

Figure 4.11: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 7, ∆C = 7, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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Figure 4.12: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆A = 1, ∆B = 14, ∆C = 14, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

∆B and ∆C m Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 10 1.717 2.071 2.540 0.0579 0.0307 0.0151

20 1.714 2.041 2.458 0.0573 0.0306 0.0132

50 1.662 1.987 2.392 0.0514 0.0264 0.0122

100 1.674 1.999 2.381 0.0526 0.0271 0.0112

3 10 1.702 2.032 2.406 0.0570 0.0288 0.0121

20 1.703 1.979 2.366 0.0551 0.0268 0.0112

50 1.689 2.011 2.398 0.0548 0.0274 0.0114

100 1.674 1.984 2.350 0.0531 0.0265 0.0109

7 10 1.636 1.952 2.304 0.0493 0.0246 0.0096

20 1.654 1.983 2.376 0.0508 0.0263 0.0112

50 1.637 1.928 2.308 0.0485 0.0237 0.0097

100 1.664 1.984 2.329 0.0517 0.0263 0.0101

14 10 1.570 1.845 2.220 0.0408 0.0195 0.0076

20 1.638 1.950 2.318 0.0495 0.0245 0.0097

50 1.649 1.938 2.349 0.0509 0.0240 0.0103

100 1.596 1.880 2.261 0.0456 0.0209 0.0083

Table 4.5: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m > 1. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000 samples which are

larger than the pth quantile of a standard normal distribution
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∆B and ∆C m P̂r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2.5 eβA = 2.5 eβA = 3 eβA = 3

3 10 0.120 0.113 0.149 0.137

20 0.110 0.103 0.162 0.149

50 0.154 0.143 0.181 0.176

100 0.207 0.204 0.277 0.270

7 10 0.324 0.324 0.444 0.445

20 0.483 0.480 0.614 0.611

50 0.725 0.726 0.824 0.826

100 0.901 0.896 0.960 0.958

14 10 0.646 0.662 0.772 0.781

20 0.823 0.823 0.907 0.908

50 0.984 0.984 0.996 0.996

100 1.000 1.000 1.000 1.000

Table 4.6: Power of Z : m > 1, ∆A = 1, ∆B > 0, ∆C > 0

4.4 Application

We give an illustration of the methods considered in Section 4.2.4 where we discuss

testing for parallel carryover effects when m > 1, ∆A > 0, ∆B > 0 and ∆C > 0 case.

In Section 1.1.1, we introduced an overview of a data set of failures of diesel operated

power plants.

The data set received from the power company has information on locations of

communities, the number of generators in each community, maximum capacity and

connected capacity of the generators in each community, engine hours effective of each

generator on December 31, 2009, engine hours effective of each generator on December

31, 2011. Other information includes model, purchase year and operating speed of

each generator. We also received an availability data set, which includes failure data

only for a few communities for about two years. This availability data set includes

times when generators are out of service as well as times when generators return back

to service.

Since there is very limited information on the failure times, we generated a failure

data set based on the available information received from the company, which includes
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limited failure data, capacities of generators and purchase year of generators. In the

information sheet received from the company, there are 22 communities where each

community has 3, 4 or 5 generators working together, but most of the communities

have 3 generators to provide the electricity to the community. Therefore, we first as-

sume that all communities have 3 generators working in parallel. We assume also that

the redundant component (Component A) is identical for all communities. However,

components in a system maybe different from system to system.

We analyze the data for 16 communities. These are the communities with 3 power

generators. The purchase dates of each generator are provided in the original data.

Therefore, we used the purchase dates as the start of the observation times of each

generator. The observation period of each generator ends on September 1, 2015. In

each community, the redundant component is the oldest generator. Thus, the start

time of the observation (i.e. t = 0) is the purchase date of the redundant component

in a system.

Repair times are identical within communities; that is, ∆Ai = ∆Bi = ∆Ci = di,

where di > 0 is a constant and i = 1, 2, . . . , 16. However, the repair times between

communities can be different, because repair times also include travelling time from

the headquarters of the company and the distances from the headquarters are diverse.

Therefore, we let repair times be 15, 30 or 45 days according to their distances from

the headquarters. The average, median and variance of the number of failures of the

redundant generators in the communities during the observation periods is 30.6, 29

and 105.8, respectively, and ranging from 13 to 56. A part of the data generated is

given in Appendix A.1. It is worthy noting that we did not consider time trends in

the data generation.



82

Figure 4.13: Dot plots of failures of generators in communities
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Figure 4.14: Cumulative failures of community 7

Figure 4.15: Cumulative failures of community 11

Figure 4.16: Cumulative failures of community 12
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Figure 4.17: Cumulative failures of community 14

Figure 4.13 shows the dot plots of the generated failure times of power generators

for 8 communities. There are some clusters of failure events togeher in the redundant

generators (called Machine A in the plots) soon after failures of other generators.

Figures 4.14, 4.15, 4.16 and 4.17 present the plots of cumulative failures of generators

(Machine A, Machine B and Machine C) with respect to the calendar time in the

communities 7, 11, 12 and 14, respectively. There are some clusters of failures in the

redundant generator (Machine A) noted in the plots.

Clustering of failures in Figures 4.13–4.17 suggests the presence of parallel carry-

over effects in redundant components. Therefore, we consider the following model for

the redundant generators: For, i = 1, . . ., 16,

λAi(t|Hi(t)) = YAi(t)αA exp{βAXABi(t) + βAXACi(t)}, t > 0, (4.73)

where YAi(t) is the at-risk indicator function of Component A (the redundant genera-

tor) in the ith system, αA > 0 is a baseline rate function, βA is a regression parameter,

and

XABi(t) = I{NBi(t
−) > 0}I{t− tBiNBi(t−) ≤ ∆Bi},

XACi(t) = I{NCi(t
−) > 0}I{t− tCiNCi(t−) ≤ ∆Ci}.

We test the presence of parallel carryover effects in the redundant components by

testing H0 : βA = 0, αA > 0. Table 4.7 presents the maximum likelihood estimates α̂A

and β̂A of αA and βA, respectively, and the restricted maximum likelihood estimate

α̃A of αA, when βA = 0, as well as their standard errors within parentheses. The
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value of the test statistic Z is given in Table 4.8 which is 1.915; the standard normal

approximation gives a two-sided p-value of 0.0554 and 1000 simulation run gives a

two-sided p-value of 0.071. These results suggest that there is some evidence for the

presence of parallel carryover effects in the redundant components.

α̂A β̂A α̃A

0.004716 (0.000217) 0.645239 (0.138141) 0.005008 (0.000228)

Table 4.7: Estimates of αA, βA and αA when βA = 0. The numbers in parentheses

are the standard errors

UβA(θ̃) V̂ ar(UβA(θ̃)) Z `(θ̂) `(θ̃)

13.15811 47.20691 1.915096 3019.458 3028.644

Table 4.8: The test statistic Z, `(θ̂) and `(θ̃)

It should be noted that, even though we did not generate the data from a trend

model, the convex shapes of plots of cumulative failures of generators against calen-

dar time given in Figures 4.14–4.17 suggest the presence of monotonic trends. For

example, see the plot of Machine A in Figure 3.16. We discuss modeling trends with

parallel carryover effects in the next chapter. However, to investigate this issue with

the current data, we now consider the model (4.73) with a trend term as follows.

λAi(t|Hi(t)) = YAi(t)αA exp{βAXABi(t) + βAXACi(t) + γ t}, (4.74)

where i = 1, 2, . . . , 16. We test the absence of trend by testing H0 : γ = 0 with the

pooled data. Table 4.9 shows the maximum likelihood estimates of αA, βA and γ in

model (4.74), and their standard errors. A Wald-type statistic W = γ̂2/se2(γ̂) gives

a value of 3.536449 in Table 4.9; The p-value is 0.060033. This result suggests that

there is a mild increasing trend in the data.
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α̂A β̂A γ̂

0.015488 (0.001331) 0.693139 (0.101230) 0.000035 (0.0000101)

W = γ̂2/se2(γ̂) p-value

3.536449 0.060033

Table 4.9: Estimates of αA, βA, γ and Wald type statistic W and p-value. The

numbers in parentheses are the standard errors



Chapter 5

Redundant Systems with Trends

and Covariates

In this chapter, we consider the tests for parallel carryover effects in redundant systems

with trends. This chapter is organized as follows. In Section 5.1, we briefly introduce

the concept of trend in recurrent event processes. In Section 5.2, we provide tests

for the presence of parallel carryover effects when monotonic trends due to stochastic

aging are present. We present the results of simulation studies in Section 4.2. We

develop a score test for the presence of parallel carryover effects in models with external

covariates and trends in Section 5.3. In Section 5.4, we illustrate the methods by

analyzing a generated data set.

5.1 Introduction

Stochastic aging is an important concept in the analysis of repairable systems. If there

is no effect of the age of a system on probabilistic characteristics of event occurrences,

we say that there is no stochastic aging. On the contrary, if probabilistic character-

istics of event occurrences of a system depend on the age of a system, we say that

there is stochastic aging (Lai and Xie, 2006). Many repairable systems are subject

to stochastic aging. In this chapter, we discuss the assessment of parallel carryover

effects in repairable systems subject to stochastic aging.

In recurrent event processes, stochastic aging is usually studied within the context

of time trends (Cox and Lewis, 1966; Cook and Lawless, 2007). As discussed by

Lawless et al. (2012), the definition of a trend in recurrent event processes is elusive.
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Trends can appear in processes because of various reasons including stochastic aging

due to wear-out phenomenon, previous number of events in a process or some external

factors. There are monotonically increasing or decreasing trends as well as non-

monotonic trends such as seasonal or bathtub type. Trends due to stochastic aging

are usually in a monotonically increasing nature because repairable systems are more

prone to fail as they age (Thompson, 1988). In this case, a trend can be defined as

a systematic change in the rate function of a recurrent event process (Lawless et al.,

2012). Non-homogenous Poisson processes (NHPPs) are useful to model increasing

time trends. We discussed NHPPs in Section 2.1.

In the remainder of this chapter, we consider models for parallel carryover effects

and monotonic trends together, and develop tests for the presence of parallel carryover

effects in various settings. We study the asymptotic properties of the tests developed.

We also extend our models to include external covariates, and develop tests for parallel

carryover effects when external covariates are present.

5.2 Models and Tests for Parallel Carryover Ef-

fects with Trends

In this section, we discuss models and tests for parallel carryover effects with mono-

tonic trends in a single system and multiple systems. We first introduce the notation.

Suppose that there is a bivariate counting processes {NA(t), NB(t); t ≥ 0}, where

{NA(t); t ≥ 0} is a counting process for Component A and {NB(t); t ≥ 0} is a counting

process for Component B in a system with two components working in parallel. We let

tA1, tA2, . . . , where 0 < tA1 < tA2 < . . . , and tB1, tB2, . . . , where 0 < tB1 < tB2 < . . .

denote the failure times of Component A and Component B, respectively. The com-

ponents A and B are subject to repairs, and repair times cannot be ignored. Let ∆A

and ∆B denote the repair times of Component A and Component B, respectively. For

K = A,B, YK(t) is the at-risk indicator of process {Nk(t); t > 0}, which takes value

of 1 when Component K is up and the process {Nk(t); t > 0} is under observation;

otherwise, it equals to 0.

A model including parallel carryover effects for Component A with monotonic

trend due to stochastic aging is given by

λA(t|H(t)) = YA(t) ρA(t) exp{βAXA(t)}, t > 0, (5.1)
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where YA(t) is the at-risk indicator of Component A, βA is a parameter and ρA(t) >

0 is a time dependent baseline rate function. The rate function ρA(t) is given by

ρA(t) = αA exp(γAt), where γA ∈ R and t > 0. Then the intensity function (5.1) can

be written as

λA(t|H(t)) = YA(t)αA exp{βAXA(t) + γAt}, t > 0, (5.2)

and

XA(t) = I{NB(t−) > 0}I{t− tBNB(t−) ≤ ∆B}, (5.3)

where function XA(t) takes the value of 1, if Component B is in the down state at

time t; otherwise it is 0. The intensity function (5.2) jumps from αA exp{γAt} to

αA exp{βA + γAt} when Component B fails, and stays for ∆B time units; otherwise,

it remains αA exp{γAt} if Component B is in the up states.

Similarly, the intensity function of the counting process {NB(t); t > 0} is given by

λA(t|H(t)) = YB(t)αB exp{βBXB(t) + γBt}, t > 0, (5.4)

and

XB(t) = I{NA(t−) > 0}I{t− tANA(t−) ≤ ∆A}, (5.5)

We let m denote the number of systems. In the remaining part of this section, we

develop partial score tests for the presence of parallel carryover effects in five different

cases; (i) a single system with monotonic trend is under observation and repair times

of Components A and B are negligible (m = 1, ∆A = 0, ∆B > 0), (ii) multiple

systems with monotonic trend are under observation and repair times of Component

A are negligible (m > 1, ∆A = 0, ∆B > 0), (iii) a single system with monotonic trend

is under observation and repair times of Component A are not negligible (m = 1,

∆A > 0, ∆B > 0), (iv) multiple systems with monotonic trend are under observation

and repair times of Component A are not negligible (m > 1, ∆A > 0, ∆B > 0), (v)

a single 3–component system with monotonic trend is under observation and repair

times of Component A are not negligible (m = 1, ∆A > 0, ∆B > 0, ∆C > 0). The

asymptotic distribution of the test statistic developed in this chapter are discussed

through simulations in Section 5.3.
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5.2.1 Case 1: m = 1, ∆A = 0, ∆B > 0

In this section, we consider a redundant system with two components; Components A

and B. We first discuss a model with a single system and repair times of Component

A are negligible. Which means that m = 1 and ∆A = 0. Since we consider monotonic

trend in the model, we use NHPPs for this purpose. Under these assumptions, the

intensity function of Component A is given by

λA(t|H(t)) = YA(t)αA exp(βAXA(t) + γAt), t > 0, (5.6)

where YA(t) is at-risk indicator of Component A, αA > 0 is a baseline rate function

and βA and γA are parameters and XA(t) = I{NB(t−) > 0}I{t − tBNB(t−) ≤ ∆B}.
Since ∆A = 0 and ∆B > 0, the intensity function of Component B is given by

λB(t|H(t)) = YB(t)αB exp(γAt) t > 0, (5.7)

where YB(t) is at-risk indicator of Component B, αB > 0 is a baseline rate function,

γB is a parameter and H(t) = {NA(u), NB(u), YB(s); 0 ≤ u < t, 0 ≤ s ≤ t}. A test

for the presence of a parallel carryover effect in Component A can be developed by

considering the following hypothesis.

H0 : βA = 0, αA > 0, γA ∈ R, vs. Ha : βA 6= 0, αA > 0, γA ∈ R, (5.8)

where αA, γA are nuisance parameters and βA is the parameter of interest.

We suppose that a system is under observation over the followup period [0, τ ],

where τ is a fixed end-of-followup time. Note that, we can safely drop the at-risk

indicator YA(t) from the model (5.6), because Component A is continuously under

observation in [0, τ ] and its repair times are negligible. Let nA denote the number of

failures of Component A in [0, τ ]. The likelihood function of the outcome “NA(τ) = nA

failures of Component A at times tA1 ≤ tA2 ≤ · · · ≤ tAnA in [0, τ ]” is given as follows.

L(θ) =

nA∏
j=1

αA e
βAXA(tAj)+γAtAj exp{−

∫ τ

0

αA e
βAXA(s)+γAs ds}, (5.9)
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where θ = (αA, γA, βA). The log likelihood function `(θ) = logL(θ) is given as follows.

`(θ) = nA logαA +

nA∑
j=1

βAXA(tAj) +

nA∑
j=1

γAtAj −
∫ τ

0

αA e
βAXA(s)+γAs ds. (5.10)

Let α̃A, γ̃A denote the restricted maximum likelihood estimator of αA, γA, respectively

under the null hypothesis in (5.8). They can be obtained by maximizing l(θ0) where

θ0 = (αA, γA, 0). This can be done with an optimizing software such as the nlm

package in R (R core team, 2013). The score vector is then defined by U(θ) =

(UαA(θ), UγA(θ), UβA(θ))
′

with components

UαA(θ) =
nA
αA
−
∫ τ

0

eβAXA(s)+γAs ds, (5.11)

UγA(θ) =

nA∑
j=1

tAj − αA
∫ τ

0

s eβAXA(s)+γAs ds, (5.12)

and

UβA(θ) =

nA∑
j=1

XA(tAj)− αA
∫ τ

0

XA(s) eβAXA(s)+γAs ds. (5.13)

Then the observed information matrix I(θ) is given by

I(θ) =

IαAαA(θ) IαAγA(θ) IαAβA(θ)

IγAαA(θ) IγAγA(θ) IγAβA(θ)

IβAαA(θ) IβAγA(θ) IβAβA(θ)

 , (5.14)
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where its components are given as follows.

IαAαA(θ) =
nA
α2
A

,

IαAγA(θ) = IγAαA(θ) =

∫ τ

0

s eβAXA(s)+γAs ds,

IαAβA(θ) = IβAαA(θ) =

∫ τ

0

XA(s) eβAXA(s)+γAs ds,

IγAγA(θ) = αA

∫ τ

0

s2 eβAXA(s)+γAs ds,

IγAβA(θ) = IβAγA(θ) = αA

∫ τ

0

sXA(s) eβAXA(s)+γAs ds,

IβAβA(θ) = αA

∫ τ

0

{XA(s)}2 eβAXA(s)+γAs ds.

Let θ̃0 = (α̃A, γ̃A, 0). Then, the standardized partial score statistic for testing the

presence of parallel carryover effects is given by

Z =
UβA(θ̃0)

V̂ ar(Uβ(θ̃0)
1
2

, (5.15)

where UβA(θ̃0) is given by

UβA(α̃A, γ̃A, 0) =

nA∑
j=1

XA(tAj)− α̃A
∫ τ

0

XA(s) eγ̃As ds, (5.16)

and variance estimate V̂ ar(Uβ(θ̃0)) is

IβAβA(θ̃0)−
(
IβAαA(θ̃0) IβAγA(θ̃0)

)(IαAαA(θ̃0) IαAγA(θ̃0)

IγAαA(θ̃0) IγAγA(θ̃0)

)−1(
IαAβA(θ̃0)

IγAβA(θ̃0)

)
.

(5.17)

5.2.2 Case 2: m > 1, ∆A = 0, ∆B > 0

We now consider multiple systems with monotonic trend. We assume that repair

times of Component A are negligible while the repair times of Component B are not

negligible; That is, m = 1 and, ∆A = 0 and ∆B > 0. We assume that there are

m independent systems under observation each with two components; Components
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A and B. We let {NAi(t), NBi(t); t ≥ 0}, i = 1, 2, . . . ,m, where, for K = A,B,

{NKi(t); t ≥ 0} is a counting process for Component K in the ith system. We let

tKi1, tKi2, . . . , where 0 < tKi1 < tKi2 < . . . , denote the failure times of Component K

(K = A,B) in the ith system. The components are subject to repairs, and repair times

cannot be ignored. Let ∆Ai and ∆Bi denote the repair times of Components A and

B in the ith system, respectively. For K = A,B, YKi(t) is the at-risk indicator of the

process {NKi(t); t > 0}. History of the ith counting process {NAi(t), NBi(t); t ≥ 0},
i = 1, 2, . . . ,m, is denoted by Hi(t) = {NAi(u), NBi(u); 0 ≤ u < t}.

A model including parallel carryover effects for Component A in the ith system

with monotonic trends is given by

λAi(t|Hi(t)) = YAi(t) ρA(t) exp{βAXAi(t)}, t > 0, (5.18)

where βA is a regression parameter and ρA(t) > 0 is a time dependent baseline rate

function. The rate function ρA(t) is given by ρA(t) = αA exp(γAt). The intensity

function (5.18) can be rewritten as

λAi(t|Hi(t)) = YAi(t)αA exp{βAXAi(t) + γAt}, t > 0, (5.19)

where γA is a real valued parameter and

XAi(t) = I{NBi(t
−) > 0}I{t− tBiNBi(t−) ≤ ∆B}. (5.20)

Since ∆Ai = 0 and ∆Bi > 0, the probabilistic characteristics of failure occurrences

of Component B are not affected by failures of Component A. Therefore, the intensity

function of Component B in ith system is then given by

λBi(t|Hi(t)) = YBi(t)αB exp{γBt}, t > 0, (5.21)

where γB is a real valued parameter, and

XBi(t) = I{NAi(t
−) > 0}I{t− tAiNAi(t−) ≤ ∆A}. (5.22)

A test of parallel carryover effects in Component A in this case can be developed

by considering the hypothesis given in (5.8).

We suppose that m independent systems are under observation over [0, τi], where τi
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is a fixed end-of-followup time of the ith system, i = 1, 2, . . . ,m. We let tAi1, tAi2, . . . , tAinAi
be the failure times of Component A in the ith system, and let NAi(τi) = nAi. Then

the likelihood function of the outcome “NAi(τi) = nAi failures of Component A at

times tAi1 ≤ tAi2 ≤ · · · ≤ tAinAi in [0, τi]” is given by

L(θ) =
m∏
i=1

Li(θ), (5.23)

where

Li(θ) =

nAi∏
j=1

αA e
βAXAi(tAij)+γAtAij exp{−

∫ τi

0

αA e
βAXAi(s)+γAs ds}, (5.24)

where θ = (αA, βA, γ). The log likelihood function `(θ) = logL(θ) is given by

logαA

m∑
i=1

nAi + βA

m∑
i=1

nAi∑
j=1

XAi(tAij) + γA

m∑
i=1

nAi∑
j=1

tAij − αA
m∑
i=1

∫ τi

0

eβAXAi(s)+γAs ds.

(5.25)

The components of score vector U(θ) = (UαA(θ), UγA(θ), UβA(θ))
′

are followed by

UαA(θ) =

∑m
i=1 nAi
αA

−
m∑
i=1

∫ τi

0

eβAXAi(s)+γAs ds, (5.26)

UγA(θ) =
m∑
i=1

nAi∑
j=1

tAij − αA
m∑
i=1

∫ τi

0

s eβAXAi(s)+γAs ds, (5.27)

and

UβA(θ) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− αA
m∑
i=1

∫ τi

0

XAi(s) e
βAXAi(s)+γAs ds. (5.28)
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Then the elements of the observed information matrix I(θ) are given by

IαAαA(θ) =

∑m
i=1 nAi
α2
A

,

IαAγA(θ) = IγAαA(θ) =
m∑
i=1

∫ τi

0

s eβAXAi(s)+γAs ds,

IαAβA(θ) = IβAαA(θ) =
m∑
i=1

∫ τi

0

XAi(s) e
βAXAi(s)+γAs ds,

IγAγA(θ) = αA

m∑
i=1

∫ τi

0

s2 eβAXAi(s)+γAs ds,

IγAβA(θ) = IβAγA(θ) = αA

m∑
i=1

∫ τi

0

sXAi(s) e
βAXAi(s)+γAs ds,

IβAβA(θ) = αA

m∑
i=1

∫ τi

0

XAi(s) e
βAXAi(s)+γAs ds.

We let θ̃0 = (α̃A, γ̃A, 0). When βA = 0, the restricted maximum likelihood estima-

tors α̃A and γ̃A can be obtained by optimizing software packages. The standardized

partial score statistic for testing the presence of parallel carryover effects is then given

by

Z =
UβA(θ̃0)

V̂ ar(Uβ(θ̃0))
1
2

, (5.29)

where the partial score function is given by

UβA(θ̃0) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− α̃A
m∑
i=1

∫ τi

0

XAi(s) e
γ̃As ds, (5.30)

and variance estimate V̂ ar(Uβ(θ̃0)) is given by

IβAβA(θ̃0)−
(
IβAαA(θ̃0) IβAγA(θ̃0)

)(IαAαA(θ̃0) IαAγA(θ̃0)

IγAαA(θ̃0) IγAγA(θ̃0)

)−1(
IαAβA(θ̃0)

IγAβA(θ̃0)

)
.

(5.31)

5.2.3 Case 3: m = 1, ∆A > 0, ∆B > 0

In this section, we consider a single system with two components, in which repair

times of Component A are not ignorable, but failures of Component A do not affect
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the probabilistic characteristics of the failure occurrences of Component B. In this

case, the intensity functions of Components A, and B are given by

Component A: λA(t|H(t)) = YA(t)αA exp(βAXA(t) + γAt), t > 0, (5.32)

where YA(t) is the at-risk indicator of Component A, αA > 0 is a baseline rate function,

βA and γA are parameters and

Component B: λB(t|H(t)) = YB(t)αB exp(γAt), t > 0, (5.33)

where YB(t) is the at-risk indicator, αB > 0 is a baseline rate function and γA is

a parameter and H(t) = {NA(u), NB(u), YB(s); 0 ≤ u < t, 0 ≤ s ≤ t}. Then the

likelihood function of the outcome “NA(τ) = nA failures of Component A at times

tA1 ≤ tA2 ≤ · · · ≤ tAnA in [0, τ ]” is given as follows.

L(θ) =

nA∏
j=1

αA e
βAXA(tAj)+γAtAj exp{−

∫ τ

0

YA(s)αA e
βAXA(s)+γAs ds}, (5.34)

where θ = (αA, βA, γ). The log likelihood function `(θ) = logL(θ) is given as follows.

`(θ) = nA logαA +

nA∑
j=1

βAXA(tAj) +

nA∑
j=1

γAtAj−
∫ τ

0

YA(s)αA e
βAXA(s)+γAs ds. (5.35)

Let α̃A and γ̃A denote the restricted maximum likelihood estimator of αA and γA when

βA = 0. α̃A and γ̃A can be obtained by maximizing l(θ0) where θ0 = (αA, γA, 0). The

score vector is then defined by U(θ) = (UαA(θ), UγA(θ), UβA(θ))
′

with components

UαA(θ) =
nA
αA
−
∫ τ

0

YA(s) eβAXA(s)+γAs ds, (5.36)

UγA(θ) =

nA∑
j=1

tAj − αA
∫ τ

0

YA(s) s eβAXA(s)+γAs ds, (5.37)

and

UβA(θ) =

nA∑
j=1

XA(tAj)− αA
∫ τ

0

YA(s)XA(s) eβAXA(s)+γAs ds. (5.38)
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The observed information matrix I(θ) is given by

I(θ) =

IαAαA(θ) IαAγA(θ) IαAβA(θ)

IγAαA(θ) IγAγA(θ) IγAβA(θ)

IβAαA(θ) IβAγA(θ) IβAβA(θ)

 , (5.39)

where

IαAαA(θ) =
nA
α2
A

,

IαAγA(θ) = IγAαA(θ) =

∫ τ

0

YA(s) s eβAXA(s)+γAs ds,

IαAβA(θ) = IβAαA(θ) =

∫ τ

0

YA(s)XA(s) eβAXA(s)+γAs ds,

IγAγA(θ) = αA

∫ τ

0

YA(s) s2 eβAXA(s)+γAs ds,

IγAβA(θ) = IβAγA(θ) = αA

∫ τ

0

YA(s) sXA(s) eβAXA(s)+γAs ds,

IβAβA(θ) = αA

∫ τ

0

YA(s) {XA(s)}2 eβAXA(s)+γAs ds.

Let θ̃0 = (α̃A, γ̃A, 0). The standardized partial score statistic for testing the pres-

ence of parallel carryover effects is given by

Z =
UβA(θ̃0)

V̂ ar(Uβ(θ̃0)
1
2

, (5.40)

where UβA(θ̃0) is given by

UβA(α̃A, γ̃A, 0) =

nA∑
j=1

XA(tAj)− α̃A
∫ τ

0

YA(s)XA(s) eγ̃As ds, (5.41)

and variance estimate V̂ ar(Uβ(θ̃0)) is

IβAβA(θ̃0)−
(
IβAαA(θ̃0) IβAγA(θ̃0)

)(IαAαA(θ̃0) IαAγA(θ̃0)

IγAαA(θ̃0) IγAγA(θ̃0)

)−1(
IαAβA(θ̃0)

IγAβA(θ̃0)

)
.

(5.42)
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5.2.4 Case 4: m > 1, ∆A > 0, ∆B > 0

We now consider multiple systems with two components; Components A and B. Repair

times of Component A are not negligible. We assume that the failures of redundant

component (Component A) in the ith system, where i = 1, 2, . . . ,m. Failures of

Component A do not affect the probabilistic characteristics of failure occurrences of

Component B while failures of Component B affect the probabilistic characteristics

of failure occurrences of Component A.

In this case, the intensity functions of Components A and B in the ith system can

be defined by

Component A: λAi(t|Hi(t)) = YAi(t)αA exp{βAXAi(t)γAt}, t > 0, (5.43)

and

Component B: λBi(t|Hi(t)) = YBi(t)αB exp{γAt}, t > 0, (5.44)

where XAi(t) = I{NBi(t
−) > 0}I{t − tBiNBi(t−) ≤ ∆B}, YAi(t) is the at-risk indi-

cator of Component A in the ith system, βA and γA are parameters, and Hi(t) =

{NAi(u), NBi(u), YAi(s), YBi(s); 0 ≤ u < t, 0 ≤ s ≤ t}.
The likelihood function of the outcome “NAi(τi) = nAi failures of Component A

at times tAi1 ≤ tAi2 ≤ · · · ≤ tAinAi in [0, τi]” can be written as

L(θ) =
m∏
i=1

Li(θ), (5.45)

where

Li(θ) =

nAi∏
j=1

αA e
βAXAi(tAij)+γAtAij exp{−

∫ τi

0

YAi(s)αA e
βAXAi(s)+γAs ds}, (5.46)

where θ = (αA, βA, γ). The log likelihood function `(θ) = logL(θ) is given by

logαA

m∑
i=1

nAi + βA

m∑
i=1

nAi∑
j=1

XAi(tAij)

+ γA

m∑
i=1

nAi∑
j=1

tAij − αA
m∑
i=1

∫ τi

0

YAi(s) e
βAXAi(s)+γAs ds.

(5.47)
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Then, the components of score vector U(θ) = (UαA(θ), UγA(θ), UβA(θ))
′

are followed

by

UαA(θ) =

∑m
i=1 nAi
αA

−
m∑
i=1

∫ τi

0

YAi(s) e
βAXAi(s)+γAs ds, (5.48)

UγA(θ) =
m∑
i=1

nAi∑
j=1

tAij − αA
m∑
i=1

∫ τi

0

YAi(s)s e
βAXAi(s)+γAs ds, (5.49)

and

UβA(θ) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− αA
m∑
i=1

∫ τi

0

YAi(s)XAi(s) e
βAXAi(s)+γAs ds. (5.50)

The elements of observed information matrix I(θ) are given by

IαAαA(θ) =

∑m
i=1 nAi
α2
A

,

IαAγA(θ) = IγAαA(θ) =
m∑
i=1

∫ τi

0

YAi(s) s e
βAXAi(s)+γAs ds,

IαAβA(θ) = IβAαA(θ) =
m∑
i=1

∫ τi

0

XAi(s)YAi(s) e
βAXAi(s)+γAs ds,

IγAγA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) s
2 eβAXAi(s)+γAs ds,

IγAβA(θ) = IβAγA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) sXAi(s) e
βAXAi(s)+γAs ds,

IβAβA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s)XAi(s) e
βAXAi(s)+γAs ds.

Let θ̃0 = (α̃A, γ̃A, 0). α̃A are γ̃A restricted maximum likelihood estimators of αA

and γA, respectively, when βA = 0. Good optimizing software packages such as nlm in

R, give those restricted maximum likelihood estimators without analytical derivations.

Then the standardized partial score statistic for testing parallel carryover effects

is given by

Z =
UβA(θ̃0)

V̂ ar(Uβ(θ̃0))
1
2

, (5.51)
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where the partial score function is given by

UβA(θ̃0) =
m∑
i=1

nAi∑
j=1

XAi(tAij)− α̃A
m∑
i=1

∫ τi

0

YAi(s)XAi(s) e
γ̃As ds, (5.52)

and variance estimate V̂ ar(Uβ(θ̃0)) is

IβAβA(θ̃0)−
(
IβAαA(θ̃0) IβAγA(θ̃0)

)(IαAαA(θ̃0) IαAγA(θ̃0)

IγAαA(θ̃0) IγAγA(θ̃0)

)−1(
IαAβA(θ̃0)

IγAβA(θ̃0)

)
.

(5.53)

5.2.5 Case 5: m = 1, ∆A > 0, ∆B > 0, ∆C > 0

In this section, we consider a single system with 3 components; Components A, B and

C. We consider the case where repair times of Components A, B and C are not negli-

gible. That is, m = 1, ∆A > 0, ∆B > 0 and ∆C > 0. However, one of the components

in the system, that is Component A, is a redundant component. Therefore, failures of

Component A do not affect the probabilistic characteristics of failure occurrences of

Components B and C. Failures of Component B affect the probabilistic characteristics

of failure occurrences of Component C. Similarly, failures of Component C affect the

probabilistic characteristics of failure occurrences of Component B.

We now give extensions of notations given in previous sections. Suppose that there

is a multivariate counting processes {NA(t), NB(t), NC(t); t ≥ 0}, where {NA(t); t ≥
0} is a counting process for Component A, {NB(t); t ≥ 0} is a counting process

for Component B and {NC(t); t ≥ 0} is a counting process for Component C in a

system with three components working in parallel. We let tA1, tA2, . . . , where 0 <

tA1 < tA2 < . . . , tB1, tB2, . . . , where 0 < tB1 < tB2 < . . . , and tC1, tC2, . . . , where

0 < tC1 < tC2 < . . . , denote the failure times of Components A, B and C, respectively.

The components are subject to repairs and repair times cannot be ignored. Let ∆A,

∆B and ∆C denote the repair times of Components A, B and C, respectively. For

K = A,B and C, YK(t) is the at-risk indicator of process {NK(t); t > 0}.
A model including parallel carryover effects for Component A is given by

λA(t|H(t)) = YA(t)αA exp{βAXAB(t) + βAXAC(t) + γAt}, t > 0, (5.54)

where αA > 0 is a baseline rate function, βA and γA are parameters, XAB(t) =
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I{NB(t−) > 0}I{t− tBNB(t−) ≤ ∆B}, and XAC(t) = I{NC(t−) > 0}I{t− tC NC(t−) ≤
∆C}.

When Component A is in the up state at time t, (i) the intensity function (5.54)

becomes αA exp{2βA + γAt} when both Component B and Component C fails, (ii)

αA exp{βA + γAt} when one of Components B or C fails, (iii) αA exp{γAt} if none of

Components B and C fails. This is a similar situation that we explained in Section 3.2.

A model for parallel carryover effects in this case can be also defined for Component

B. In this case, the intensity function of Component B is given by

λB(t|H(t)) = YB(t)αB exp{βBXBC(t) + γBt}, t > 0, (5.55)

where αB > 0 is a baseline rate function, γB is a parameter, andXBC(t) = I{NC(t−) >

0}I{t− tC NC(t−) ≤ ∆C}.
Similarly, the intensity function of Component C is given by

λC(t|H(t)) = YC(t)αC exp(βC XCB(t) + γCt), t > 0, (5.56)

where αC > 0 is a baseline rate function, γC is a parameter, XCB(t) = I{NB(t−) >

0}I{t− tBNB(t−) ≤ ∆B}.
A test for the presence of a parallel carryover effect in Component A can be

developed by considering the following composite hypothesis given in (5.8).

We suppose that a single system is under observation over the followup period

[0, τ ], where τ is fixed end-of-followup time. Let nA, where nA ≥ 0, denote the

number of failures of Component A over [0, τ ] and tA1, tA1, . . . , tAnA be the failure

times of Component A.

Let θ = (αA, γA, βA). The likelihood function of the outcome “NA(τ) = nA failures

of Component A at times tA1, tA2, . . . , tAnA in [0, τ ]” is given by

L(θ) =

nA∏
j=1

αA e
βAB (XAB(tAj)+XAC(tAj))+γAtAj exp{−

∫ τ

0

YA(s)αA e
βA (XAB(s)+XAC(s))+γAs ds},

(5.57)



102

The log likelihood function `(θ) = logL(θ) is given by

`(θ) = nA logαA + βA

nA∑
j=1

(XAB(tAj)+XAC(tAj)) +

nA∑
j=1

γAtAj (5.58)

− αA
∫ τ

0

YA(s) eβA(XAB(s)+XAC(s))+γAs ds.

(5.59)

Let θ̃0 = (α̃A, γ̃A, 0) where α̃A and γ̃A are restricted maximum likelihood estimators

of αA and γA, respectively, when βA = 0.

Then, we obtain the following standardized partial score test statistic for testing

parallel carryover effects

Z =
UβA(θ̃0)

V̂ ar(Uβ(θ̃0))
1
2

, (5.60)

where the partial score function UβA(θ̃0) is given by

UβA(θ̃0) =

nA∑
j=1

(XAB(tAj) +XAC(tAj))− α̃A
∫ τ

0

YA(s) (XAB(s) +XAC(s)) eγ̃As ds.

(5.61)

Variance estimate V̂ ar(Uβ(θ̃0)) is followed by

IβAβA(θ̃0)−
(
IβAαA(θ̃0) IβAγA(θ̃0)

)(IαAαA(θ̃0) IαAγA(θ̃0)

IγAαA(θ̃0) IγAγA(θ̃0)

)−1(
IαAβA(θ̃0)

IγAβA(θ̃0)

)
,

(5.62)
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where

IαAαA(θ̃0) =
nA
α̃2
A

,

IαAγA(θ̃0) = IγAαA(θ̃0) =

∫ τ

0

YA(s) s eγ̃As ds,

IαAβA(θ̃0) = IβAαA(θ̃0) =

∫ τ

0

YA(s) (XAB(s) +XAC(s)) eγ̃As ds,

IγAγA(θ̃0) = α̃A

∫ τ

0

YA(s) s2 eγ̃As ds,

IγAβA(θ̃0) = IβAγA(θ̃0) = α̃A

∫ τ

0

YA(s) s (XAB(s) +XAC(s)) eγ̃As ds,

IβAβA(θ̃0) = α̃A

∫ τ

0

YA(s) (XAB(s) +XAC(s))2 eγ̃As ds.

5.3 Simulation Studies

In this section, we present the results of simulation studies conducted to assess when

asymptotic normal approximation for test statistics developed in Section 5.2.3, Sec-

tion 5.2.4 and Section 5.2.5 are satisfactory where

(i) m = 1, ∆A > 0, ∆B > 0

(ii) m > 1, ∆A > 0, ∆B > 0 ,

(iii) m = 1, ∆A > 0, ∆B > 0, ∆C > 0.

We consider two settings where m = 1 and τ →∞, and m→∞ and τ is fixed in

each of the 3 cases given above.

We first consider testing for presence of parallel carryover effects in a single system

with monotonic trend. In this case, m = 1, ∆A > 0 and ∆B > 0 so we consider the

models (5.32) and (5.33). The hypothesis of no parallel carryover effects in Component

A is H0 : βA = 0, αA > 0, γA ∈ R and this is conducted by using the statistic Z

in (5.40). We generated 10,000 realizations of NHPPs under the null hypothesis with

fixed values of the parameters for all scenarios where αA = αB = 0.1, βA = 0,

βB = 0.693, and γA = γB = 0.001. We considered ∆A = 1 and ∆B = 1, 3, 7,

and 14. We fixed ∆A at 1 . Normal quantile-quantile (Q-Q) plots of 10,000 values

of Z are given in Figures 5.1 when ∆A = 1 for τ = 100, 200, 500 and 1000. The

standard normal approximations are not accurate in those cases when τ = 100, 200
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and 500. However, it is noted that as τ increases, the standard normal approximation

improves. Figure 5.2 shows the results when ∆ = 3. In this scenario, the standard

normal approximations are accurate when τ = 500 and 1000. Figures 5.3 and 5.4

present the results when ∆ = 7 and ∆ = 14, respectively. In those scenarios, the

standard normal approximations are accurate, as τ increases.

Table 5.1 presents estimates of Qp and Pr(Z > Qp) where p = 0.950, 0.975 and

0.990. This also indicates that the standard normal approximation is not adequate

for small and moderate τ values and small ∆B values, but the approximation becomes

accurate as τ increses.

The power of the statistic (5.40) against the alternative hypothesis HA : βA 6= 0

is investigated by Monte Carlo simulation methods. We use the 0.95 quantile of the

standard normal distribution and the empirical 0.95 quantile of the test statistic ob-

tained from 10,000 simulations runs conducted under the null hypothesis with different

τ , ∆B and ∆C values as discussed above. We generated 1,000 processes under the

alternative model where we took αA = αB = 0.1 and βA = βB = 0.693. The power

results are presented in Table 4.2 where entries are the proportions of the values of Z

in 1,000 samples which are larger than the quantile values. Table 5.2 shows that the

power of the test is high overall, and power increases as τ increases.

Figure 5.1: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 1, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 5.2: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 3, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 5.3: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 7, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 5.4: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = 14, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

∆B τ Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 100 1.901 2.517 3.191 0.0781 0.0527 0.0324

200 1.874 2.314 2.845 0.0699 0.0447 0.0244

500 1.780 2.172 2.614 0.0629 0.0365 0.019

1000 1.693 2.011 2.459 0.0546 0.0278 0.014

3 100 1.870 2.267 2.729 0.0710 0.0436 0.0226

200 1.736 2.091 2.502 0.0590 0.0342 0.0158

500 1.685 2.030 2.375 0.0537 0.0275 0.0117

1000 1.696 2.046 2.448 0.0557 0.0299 0.0133

7 100 1.759 2.058 2.476 0.0622 0.0321 0.0152

200 1.692 2.029 2.434 0.0538 0.0299 0.0127

500 1.639 1.947 2.32 0.0488 0.0244 0.0100

1000 1.656 1.974 2.321 0.0513 0.0257 0.0099

14 100 1.687 1.988 2.318 0.0551 0.0268 0.0097

200 1.669 1.944 2.278 0.0528 0.0239 0.0089

500 1.619 1.890 2.281 0.0483 0.0205 0.0085

1000 1.593 1.942 2.348 0.0460 0.0241 0.0103

Table 5.1: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m=1. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000 samples which are

larger than the pth quantile of a standard normal distribution
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∆B τ P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2 eβA = 2 eβA = 2.5 eβA = 2.5

1 100 0.284 0.219 0.390 0.309

200 0.398 0.330 0.574 0.512

500 0.724 0.691 0.927 0.910

1000 0.989 0.988 1.000 1.000

3 100 0.319 0.258 0.506 0.432

200 0.509 0.483 0.723 0.694

500 0.876 0.871 0.988 0.986

1000 0.998 0.998 1.000 1.000

7 100 0.369 0.338 0.516 0.476

200 0.580 0.568 0.787 0.771

500 0.918 0.918 0.996 0.996

1000 0.999 0.999 1.000 1.000

14 100 0.310 0.294 0.461 0.443

200 0.528 0.515 0.765 0.750

500 0.874 0.880 0.991 0.993

1000 0.994 0.994 1.000 1.000

Table 5.2: Power of Z : m = 1, ∆A > 0, ∆B > 0
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We now consider testing for the presence of parallel carryover effects in multiple

systems with trend. This is the case in which m > 1, ∆A > 0, ∆B > 0, and the

models are given in (5.43) and (5.44). The hypothesis of no parallel carryover effects

in Component A is conducted by employing the statistic Z in (5.51). We generated

10,000 realizations of m NHPPs under the null hypothesis with the parameter values

αA = αB = 0.1, βA = 0, βB = 0.693, and γA = γB = 0.001. We considered

∆B = 1, 3, 7 and 14 and we fixed ∆A at 1 and τ at 100. Normal quantile-quantile

(Q-Q) plots of 10,000 values of Z are given in Figures 5.5, 5.6, 5.7, and 5.8 with

various combinations of m and ∆B. The standard normal approximation is very

accurate in each setting with all m values. Table 5.3 presents estimates of Qp and

Pr(Z > Qp) when p = 0.950, 0.975 and 0.990. This also indicates that the standard

normal approximation is adequate as τ increases.

The power of the statistic (5.51) against the alternative hypothesis HA : βA 6= 0

is investigated by Monte Carlo simulation methods. We use the 0.95 quantile of the

standard normal distribution and the empirical 0.95 quantile of the test statistic ob-

tained from 10,000 simulations runs calculated under the null hypothesis with different

m and ∆B values. We generated 1,000 processes under the alternative model where

we took αA = αB = 0.1 and γA = γB = 0.001 when eβA = eβB = 1.5 or 2. The power

results are presented in Table 5.4 where entries are the proportions of the values of Z

in 1,000 samples which are larger than the quantile values. And Table 5.4 indicates

that the power of the test is high as m increases.
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Figure 5.5: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 1, ∆A = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

Figure 5.6: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 3, ∆A = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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Figure 5.7: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 7, ∆A = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100

Figure 5.8: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

τ = 100, ∆B = 14, ∆A = 1, and (1) m = 10, (2) m = 20, (3) m = 50, (4) m = 100
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∆B m Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

1 10 1.694 2.110 2.552 0.0543 0.0316 0.0161

20 1.714 2.061 2.471 0.0562 0.0301 0.0136

50 1.729 2.093 2.471 0.0581 0.0328 0.0134

100 1.670 2.004 2.426 0.0531 0.0276 0.0121

3 10 1.707 2.026 2.457 0.0552 0.0286 0.0132

20 1.699 2.056 2.443 0.0549 0.0305 0.0129

50 1.684 1.962 2.368 0.0539 0.0256 0.0105

100 1.655 1.977 2.381 0.0510 0.0263 0.0116

7 10 1.622 1.935 2.326 0.0477 0.0241 0.0101

20 1.667 1.975 2.303 0.0522 0.0263 0.0095

50 1.668 1.977 2.327 0.0532 0.0258 0.0101

100 1.690 1.995 2.321 0.0546 0.0272 0.0099

14 10 1.664 1.943 2.316 0.0519 0.024 0.0098

20 1.648 1.960 2.319 0.0504 0.0251 0.0099

50 1.650 1.974 2.342 0.0513 0.0254 0.0108

100 1.675 1.989 2.321 0.0535 0.0275 0.0099

Table 5.3: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m > 1, ∆A = 1, and τ = 100. P̂ r(Z > Qp) is the proportion of the values of

Z in 10,000 samples which are larger than the pth quantile of a standard normal

distribution

∆B m P̂r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 1.5 eβA = 1.5 eβA = 2 eβA = 2

1 10 0.463 0.448 0.834 0.822

20 0.686 0.660 0.978 0.978

50 0.947 0.934 1.000 1.000

100 0.998 0.998 1.000 1.000

3 10 0.643 0.624 0.975 0.970

20 0.868 0.854 0.999 0.999

50 0.996 0.996 1.000 1.000

100 1.000 1.000 1.000 1.000

7 10 0.682 0.693 0.987 0.987

20 0.918 0.913 1.000 1.000

50 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000

14 10 0.678 0.673 0.987 0.985

20 0.927 0.927 1.000 1.000

50 0.999 0.999 1.000 1.000

100 1.000 1.000 0.999 0.999

Table 5.4: Power of Z : m > 1, ∆A = 1, ∆B > 0



112

We consider the score statistic (5.60) given in Section 5.2.5 where m = 1, ∆A > 0,

∆B > 0, ∆C > 0. We use the models (5.54), (5.55), and (5.56) for Components A,

B and C, respectively. We generated 10,000 realizations of NHPPs with αA = αB =

αC = 0.1, βA = 0, βB = βC = 0.693, γA = γB = γC = 0.001. We considered ∆B,

∆C = 1, 3, 7 and 14 when τ = 100, 200, 500 and 1000.

For ∆B, ∆C = 1, from the Q-Q plots in Figure 5.9, the normal approximations

are quite accurate when τ = 500 and 1000. For ∆B, ∆C = 1 from the Q-Q plots in

Figure 5.9, the normal approximation is adequate when τ = 1000. For ∆B, ∆C = 3

from the Q-Q plots in Figure 5.10, the normal approximations are adequate when τ =

500 and 1000. For ∆B, ∆C = 7 from the Q-Q plots in Figure 5.11, the approximations

are accurate when τ = 200, 500 and 1000. For ∆B, ∆C = 14 from the Q-Q plots in

Figure 5.12, the approximations are quite accurate at τ = 500 and 1000.

Table 5.5 shows estimated Qp and P̂ r(Z > Qp) values where p = 0.950, 0.975 and

0.990. Table 5.5 indicates also that the standard normal approximations are adequate

for large τ when ∆B ∆C = 1, 3 and 7. However, the normal approximation is less

accurate when ∆B and ∆C are 14 time units.

We next consider the power of the tests with size 0.05. So, we used 0.95 quantile

of the standard normal distribution and 0.95 empirical quantile of the test statistic

obtained from 10,000 simulations runs with various combinations of τ , ∆B and ∆C .

We generated 1,000 processes where we took αA = αB = αC = 0.1, βA = βB = βC =

0.693, and γA = γB = γC = 0.001. The results of the power of the test are presented

in Table 5.6 where entries are the proportions of the values of Z in 1,000 samples

which are larger than the quantile values. It shows that the power of the test is high

overall, and power increases as τ increases.
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Figure 5.9: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = ∆C = 1, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 5.10: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = ∆C = 3, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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Figure 5.11: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = ∆C = 7, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000

Figure 5.12: Normal Q-Q plots of 10,000 simulated values of the test statistic Z when

∆B = ∆C = 14, ∆A = 1, and (1) τ = 100, (2) τ = 200, (3) τ = 500, (4) τ = 1000
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∆B τ Q̂0.950 Q̂0.975 Q̂0.990 P̂ r(Z > 1.645) P̂ r(Z > 1.960) P̂ r(Z > 2.326)

∆C

1 100 1.910 2.430 3.084 0.0719 0.0468 0.0283

200 1.823 2.197 2.603 0.0671 0.0392 0.0182

500 1.711 2.040 2.419 0.0584 0.0296 0.0121

1000 1.646 1.963 2.297 0.0501 0.0255 0.0093

3 100 1.910 2.270 2.919 0.0768 0.0459 0.0233

200 1.755 2.118 2.524 0.0604 0.0355 0.0146

500 1.737 2.067 2.518 0.0601 0.0317 0.0151

1000 1.655 1.935 2.323 0.0512 0.0237 0.0100

7 100 1.842 2.236 3.002 0.0695 0.0413 0.0217

200 1.663 2.017 2.408 0.0521 0.0283 0.0115

500 1.734 2.057 2.513 0.0605 0.0323 0.0145

1000 1.659 1.968 2.339 0.051 0.0256 0.0103

14 100 1.653 2.008 2.509 0.0507 0.0274 0.0138

200 1.588 1.897 2.288 0.0442 0.0223 0.0094

500 1.597 1.928 2.270 0.0446 0.0234 0.0087

1000 1.600 1.897 2.265 0.0451 0.0212 0.0088

Table 5.5: Q̂p is the empirical pth quantile of Z computed from 10,000 samples when

m=1. P̂ r(Z > Qp) is the proportion of the values of Z in 10,000 samples which are

larger than the pth quantile of a standard normal distribution

∆B and ∆C τ P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2.5 eβA = 2.5 eβA = 3 eβA = 3

3 100 0.051 0.030 0.087 0.061

200 0.059 0.050 0.083 0.069

500 0.078 0.069 0.091 0.079

1000 0.076 0.074 0.174 0.173

7 100 0.127 0.096 0.156 0.120

200 0.160 0.156 0.234 0.230

500 0.220 0.199 0.425 0.402

1000 0.381 0.376 0.691 0.687

14 100 0.168 0.326 0.243 0.593

200 0.313 0.565 0.443 0.460

500 0.525 0.549 0.725 0.734

1000 0.725 0.741 0.912 0.917

Table 5.6: Power of Z : m = 1,∆A = 1 with Stochastic Aging
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5.4 Redundant Systems with Trends and Covari-

ates

In this section, we consider a redundant system with trend due to stochastic aging and

external covariates. We consider multiple systems with 3 components; Components

A, B and C. We consider the case where repair times of Components A, B and C

are not negligible. That is, m > 1, ∆A > 0, ∆B > 0 and ∆C > 0. However, one

of the components in the system, that is Component A, is a redundant component.

For K = A,B and C, zKi(t) = (z1,Ki(t), z2,Ki(t), . . . , zp,Ki(t))
′

be a p × 1 matrix to

include possibly time-varying external covariates and fixed covariates. The intensity

functions of Components A, B and C in the ith system, i = 1, . . . ,m, are given by

λAi(t|H(t)) = YAi(t)αA exp{βA (XABi(t)+XACi(t))+γAt+ζ
′
zAi(t)}, t > 0, (5.63)

λBi(t|H(t)) = YBi(t)αB exp{βBXBCi(t) + γBt+ ζ
′
zBi(t)}, t > 0, (5.64)

and

λCi(t|H(t)) = YCi(t)αC exp{βC XCBi(t) + γCt+ ζ
′
zCi(t)}, t > 0, (5.65)

respectively. Let θ = (αA, βA, γA, ζ). The likelihood function L(θ) of the outcome

“NAi(τi) = nAi failures of Component A at times tAi1 ≤ tAi2 ≤ · · · ≤ tAinAi in [0, τi]”

can be written as follows.

m∏
i=1

nA∏
j=1

αA exp(βA(XABi(tAij) +XACi(tAij)) + γAtAij + ζ
′
zAi(tAij))

exp{−
∫ τi

0

YAi(s)αA e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds}.

(5.66)
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Then, log likelihood function `(θ) = logL(θ) is given by

`(θ) =
m∑
i=1

nAi logαA + βA

m∑
i=1

nAi∑
j=1

(XABi(tAij) +XACi(tAij)) + γA

m∑
i=1

nAi∑
j=1

tAij

+
m∑
i=1

nAi∑
j=1

ζ
′
zAi(tAij)− αA

m∑
i=1

∫ τi

0

YAi(s)αA e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds.

The components of the score vector U(θ) are given by

UαA(θ) =

∑m
i=1 nAi
αA

+
m∑
i=1

∫ τi

0

YAi(s) e
βA(XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds, (5.67)

UγA(θ) =
m∑
i=1

nAi∑
j=1

tAij − αA
m∑
i=1

∫ τi

0

YAi(s) s e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds, (5.68)

U ζ(θ) =
m∑
i=1

nAi∑
j=1

zAi(tAij)−αA
m∑
i=1

∫ τi

0

YAi(s) zAi(s) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

(5.69)

and

UβA(θ) =
m∑
i=1

nAi∑
j=1

XABi(tAij) +XACi(tAij)

− αA
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s)) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds.

(5.70)

The observed information matrix I(θ) = ∂`(θ)/∂θ∂θ
′

is given by

I(θ) =


IαAαA(θ) IαAγA(θ) IαAζA(θ) IαAβA(θ)

IγAαA(θ) IγAγA(θ) IγAζA(θ) IγAβA(θ)

IζAαA(θ) IζAγA(θ) IζAζA(θ) IζAβA(θ)

IβAαA(θ) IβAγA(θ) IβAζA(θ) IβAβA(θ)

 , (5.71)
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where

IαAαA(θ) =

∑m
i=1 nAi
α2
A

,

IαAγA(θ) =
m∑
i=1

∫ τi

0

YAi(s) s e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IαAζA(θ) =

∑m
i=1 nAi
αA

+
m∑
i=1

∫ τi

0

YAi(s) zAi(s) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IαAβA(θ) =
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s)) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IγAγA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) s
2 eβA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IγAζA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) s zAi(s) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IγAβA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) s (XABi(s) +XACi(s)) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IζAζA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) zAi(s) s e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IζAβA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) zAi(s) (XABi(s) +XACi(s)) e
βA (XABi(s)+XACi(s))+γAs+ζ

′
zAi(s)ds,

IβAβA(θ) = αA

m∑
i=1

∫ τi

0

YAi(s) {XABi(s) +XACi(s)}2 eβA (XABi(s)+XACi(s))+γAs+ζ
′
zAi(s)ds.

For testing H0 : βA = 0, the restricted maximum likelihood estimators of θ0 =

(αA, γA, ζ, 0) can be obtained maximizing `(θ0). This can be done by an optimizing

software package such as nlm in R. Then, let θ̃0 = (α̃A, γ̃A, ζ̃, 0) denote the restricted

maximum likelihood estimator of θ0.

Then the standardized partial score statistic for testing parallel carryover effects

is given by

Z =
Uβ(θ̃0)

V̂ ar(Uβ(θ̃0))
1
2

, (5.72)
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where the partial score function is given by

UβA(θ) =
m∑
i=1

nAi∑
j=1

XABi(tAij) +XACi(tAij)

− αA
m∑
i=1

∫ τi

0

YAi(s) (XABi(s) +XACi(s)) e
γAs+ζ

′
zAi(s)ds,

(5.73)

and V̂ ar(Uβ(θ̃0)) is given by

IβAβA(θ̃0)− I1(θ̃0) I2(θ̃0)−1 I1(θ̃0)
′
, (5.74)

where

I1(θ̃0) =
(
IβAαA(θ̃0) IβAγA(θ̃0) IβAζA(θ̃0)

)
, (5.75)

and

I2(θ̃0) =

IαAαA(θ̃0) IαAγA(θ̃0) IαAζA(θ̃0)

IγAαA(θ̃0) IγAγA(θ̃0) IγAζA(θ̃0)

IζAαA(θ̃0) IζAγA(θ̃0) IζAζA(θ̃0)

 . (5.76)

5.5 Application

The purpose of this section is to illustrate the methods developed in this chapter.

Therefore, we use a generated data set for testing the presence of parallel carryover

effects in multiple systems with three components: Components A, B and C. We

consider the case given in Section 5.2.5, where the number of systems m > 0, and the

repair times of Components A, B and C are not negligible; i.e., ∆A > 0, ∆B > 0 and

∆C > 0. In this setup, Component A is the redundant component and Components B

and C are primary components.

As explained in Sections 1.1.1 and 4.4, information and limited availability data

on diesel power engines (i.e., power generators) operating in 22 remote communities

were provided by a power company. Among those communities, 4 of them have

relatively old generators comparing with the other generators operating in the same

community; the community number 3, the community number 5, the community

number 9 and the community number 15. Since ages of some generators are more

than 30 years, it is useful to consider increasing time trends in the failure occurrences

of these power generators. Since the availability data, including failure times and
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return to service times, are very limited, we generated a failure data set for the power

generators operating in those 4 communities with old power generators. The values of

parameters used in the data generation process were based on the limited availability

data set, capacities of the generators and purchase year of the generators. In the

following discussion, we use the term “system” to denote the power system operating

in a community, and “component” to denote the power generators, and use them

interchangeably. Each of those 4 systems includes three components.

We let the oldest generator in each of these systems be the redundant component

(Component A). Other two generators (Components B and C) are then the primary

generators. Starting time of the followups (i.e., t = 0) of the systems are the purchase

date of the redundant component. The end-of-followup time τ is September 1, 2015,

which is the same for all 4 systems. Since the redundant components are the oldest

ones, we consider monotonic time trends only in them. Repair times are based on the

distances of the communities from the headquarters of the company. This means that

repair times are identical for the components operating in the same system. However,

repair times can vary between communities. Therefore, we chose the repair times of

the generators as follows: ∆3 = 30 days, ∆5 = 30 days, ∆9 = 15 days, and ∆15 = 45

days for the commnity numbers 3, 5, 9, and 15, respectively.

Figure 5.13: Dot plots of failures of the redundant generators operating in the com-

munity number 3, 5, 9 and 15
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Figure 5.14: Plots of cumulative failures of the redundant generators in the community

number 3, 5, 9 and 15 versus operating time
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Observation periods of the redundant generators in the community number 3, 5,

9 and 15 are 9131, 12783, 9496 and 10592 days, respectively. Also, total number of

failures of the redundant generators operating in the community number 3, 5, 9 and

15 over their corresponding observation period are 45, 63, 49 and 44, respectively.

The observation periods of the generators B and C in the community number 3, 5,

9 and 15 are different from each others. Dot plots of the failures of the redundant

generators are given in Figure 5.13. The cumulative number of failures of redundant

components against the operating times are presented in Figure 5.14. The plots in

these figures show that there are clustering of failures over time. Furthermore, mild

convex shape observed in the plots presented in Figure 5.13 indicates an increasing

trend in the failure occurrences in redundnat generators.

The absence of parallel carryover effects in a system can be tested by considering

the following model. For i = 3, 5, 9, and 15, the model for Component A in the ith

system is given by

λAi(t|H(t)) = YAi(t)αAi exp{βAiXABi(t) + βAiXACi(t) + γi t}, t > 0, (5.77)

where YAi(t) is the at-risk indicator of Component A in the ith system, αAi, βAi and

γi are model parameters, and XABi(t) and XACi(t) are defined in Section 5.2.5.

We present the restricted maximum likelihood estimates α̃Ai and γ̃Ai of αAi and

γAi, respectively, and their standard errors in Table 5.7 when βAi = 0. We used the

nlm package in R to obtain these estimates and their standard errors. We test the null

hypothesis H0 : βAi = 0 against the alternative hypothesis H1 : βAi 6= 0. The observed

values of the test statistic Z are given in Table 5.8 along with the p–values based on

the standard normal distribution as well as based on 1000 simulation runs (denoted

by p∗–value). The results in Table 5.8 suggest that there is some evidence against the

null hypothesis H0 : βA3 = 0 and H0 : βA9 = 0. Therefore, we conclude that there

is parallel carryover effects on the redundant components operating in community 3

and community 9.
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α̃A3 0.002501 (0.001232) α̃A5 0.002499 (0.000914)

γ̃3 0.000182 (0.000050) γ̃5 0.000131 (0.000022)

α̃A9 0.002504 ( 0.000823) α̃A15 0.002501(0.000840)

γ̃9 0.000144 (0.000033) γ̃15 0.000119 (0.000030)

Table 5.7: Estimates of αAi, βAi, γi and αAi, γi when βAi = 0 where i = 3, 5, 9, and

15. The numbers in parentheses are the standard errors of the estimates.

i ∆i UβAi(θ̃) V ar(UβAi(θ̃)) Z p-value p∗-value

3 30 4.729459 6.231403 1.894605 0.058 0.069

5 30 1.874224 4.122099 0.923129 0.355 0.355

9 15 3.305245 2.682509 2.018056 0.049 0.058

15 45 1.537437 4.950848 0.690967 0.489 0.507

Table 5.8: Statistic Z and p-values

Figure 5.14 suggests that there are some trends in the number of failures of the

redundant generators as we generated data from a trend model. It should be noted

that we took γ = 0.0001 in the model (5.77) while generating the data. Therefore,

the rate function increases very slowly as time increases. We now test of absence of

monotonic trend of the systems. For this purpose, we use the Laplace test (Cox and

Lewis, 1966), which is given by

LA =
{
∑ni

j=1 Tij − ni(τi)/2}
{ni (τi)2/12}1/2

(5.78)

The observed values of the Laplace statistic (5.78) are presented in Table 5.9. The

standard normal approximation gives a two-sided p-value of 0.0003258, 0.0000268,

0.0495566 and 0.1258483. These results show that there is a strong evidence of trend

in the redundant components in community 3, 5 and 9.
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i LA p-value

3 3.593810 0.0003258

5 4.198454 0.0000268

9 1.963771 0.0495566

15 1.530681 0.1258483

Table 5.9: Statistic LA and p-values



Chapter 6

Summary and Future Research

In this chapter, we present a summary of the results obtained in this thesis. We also

briefly discuss some of the limitations of our approach and future research topics.

6.1 Summary and Conclusions

The statistical analysis of failure data from repairable systems has been a major

research area in statistics and reliability engineering. In this thesis, we considered a

reliability improvement technique called redundancy, which is often applied to power

systems. Redundancy can significantly increase the availability of systems. However,

implementation of it incurs cost. If the cost of repairs of components in a redundant

system is expensive, the reliability program of a company may not be cost-efficient.

Therefore, it is important to detect the reasons of failures of components in redundant

systems. In some cases, failures of components may result in a temporary increase

in the risk of failures in the redundant components while the failed ones are under

repair. In such cases, failures may cluster together over time. We referred to this

phenomenon as a parallel carryover effect. In this thesis, we developed simple tests

for parallel carryover effects and discuss their asymptotic properties in various settings.

The tests developed are easy to implement and have good overall power.

It is well known that the data acquisition is notoriously difficult in reliability

studies (see, Lawless, 1983; Blischke and Murthy, 2003). In this thesis, we analyzed

two randomly generated data sets as explained below (also, see Sections 4.4 and 5.5).

The data sets were generated according to the limited information received from a

power company. Our purpose with these analyses was to illustrate the methodology
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developed in the thesis. We did not consider issues related to the data sets. However,

the results of these analyses showed that the methods developed can be applied to

real life data sets as well.

In Chapter 3, we investigated testing for the presence of parallel carryover effects

in redundant systems with two components. We considered the cases in which repair

times of the redundant component are negligible and non-negligible. Asymptotic

normal approximations of the test statistics given in Sections 3.2.1 and 3.2.2 were

discussed analytically as well as by simulations under two different settings; (i) when

the observation period increases in a single system, and (ii) when the number of

systems approaches infinity for a fixed observation period. Simulation studies showed

that the standard normal approximation is adequate in both cases. The results of a

simulation study conducted to investigate the power of the tests were presented under

various scenarios. We found that the overall power of the test is high in overall.

In Chapter 4, we discussed testing for parallel carryover effects in redundant sys-

tems with three components. We considered cases in which repair times of the re-

dundant component are negligible and non-negligible. We presented two settings; (i)

when a single system is under observation, and (ii) when multiple systems are un-

der observation. We investigated asymptotic properties of the test statistics through

simulations. The results of our simulation studies indicated that the standard normal

approximation is accurate in settings with large m and/or τ values. An application

of the methods was given by analyzing a simulated data set in the context of power

systems with multiple generators.

In Chapter 5, we discussed testing for parallel carryover effects in redundant sys-

tems with stochastic aging and covariates. The models developed in Chapters 2 and

3 were extended accordingly. We developed partial score tests for the presence of

parallel carryover effects in redundant systems with two or three components. In this

chapter, we assumed that the components are subject to monotonic trends due to

stochastic aging. Once again, we considered two settings; (i) when a single system is

under observation, and (ii) when multiple systems are under observation. The ade-

quacy of the standard normal approximations for the test statistics was investigated

through simulations under various settings. Finally, we analyzed a generated data set

similar to that of the previous chapter, but included a trend in the rate functions of

failure occurrences of the redundant generator.

An issue related to our methodology is the choice of repair times ∆ of a failed
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component. The tests developed in this thesis require a fixed value for the repair

times of a failed component. This information can be obtained from experts or history

data. However, care is needed because too long or too short time specification for the

repair times may result in difficulties in the estimation of parallel carryover effects. In

an extreme case, when ∆→∞ or ∆→ 0, parallel carryover effects are not estimable.

This is not an important issue in the context of repairable systems because repair

times of failed components are usually not that short or long.

Another issue is the misspecification of ∆. We studied this issue through a simu-

lation study. Table B.1 and Table B.2 in Appendix B show that the power of the test

statistic Z in (3.21) developed in Section 3.2.1 when ∆B0 is misspecified. In Table B.1,

∆B0 denotes the true value of the repair times and ∆B is the value of the repair times

used in the test. For example, we generated data with ∆B0 = 2
3
∆B, where ∆B = 7

time units was used in the test. The factors of the simulation study were ∆B = 7,

14, ∆B0 = 2
3
∆B,

4
3
∆B, eβA = 2, 4, and τ = 100, 200, 500, and 1000. The results of

Tables B.1 and B.2 indicates that there is a small loss in the power if repair times

specified little smaller or larger than the true value of repair times. However, power

is increasing as τ increases. We also investigated the power of the test statistic Z in

(3.38) developed in Section 3.2.2 when m = 10, 20, 50, 100 and τ = 100. In this case,

we present the results with the same factors of Tables B.1 and B.2, but eβA = 2, 2.5.

The results are presented in Tables B.3 and B.4, and the conclusions are similar to

those obtained from Tables B.1 and B.2.

In this thesis, we considered the settings where parallel carryover effects can be

classified as time varying external covariates. This is because of the fact that failures

of primary components temporarily change the probabilistic characteristics of failure

occurrences in a redundant component, but failures of a redundant component do not

affect the probabilistic characteristics of failure occurrences of primary components.

As discussed in Chapter 1, in this case, carryover effects can be classified as an ex-

ternal covariate (Kalbfleisch and Prentice, 2002). However, if failures of a redundant

component also affects the probabilistic characteristics of failure occurrences on the

primary components, then joint modelling of the at-risk indicators and counting pro-

cesses is needed. This is because the at risk indicator does not evolve independently

of the counting process. In this case, the full likelihood based inference may become

unmanageable.
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6.2 Alternating Two-State Processes

In this thesis, we assumed for simplicity that parallel carryover effect periods are

constant. In applications, the duration of repair times may vary. Alternating two-

state processes are useful when the duration of repair times varies (See Cook and

Lawless, 2007; Nakagawa, 2008). An alternating two-state process involves the “up”

state and the “down” state, and a process can be either in the up state or the down

state at time t. We can specify a counting process model, which is similar to the

models developed in this thesis, for “up to down” transitions. Then, this model

can be extended to include varying repair times which are generated from a model.

Such a method is considered by Hong et al. (2013), where they use a truncated

lognormal distribution as a model for event durations. We can develop such a method

to investigate the presence of carryover effects with varying repair times. This topic

will be investigated in the future.

6.3 Redundant Systems with Imperfect Repairs

Imperfect repairs are common in applications. There are many imperfect repair mod-

els proposed for the repairable systems. A model that can incorporate imperfect

repairs as well as effects of maintenance activities of repairable systems is proposed

by Cigsar (2010). In this model, an internal carryover effect is specified to reflect im-

perfect repairs or maintenance activities so that it is assumed that after each repair or

maintenance activities the risk of a failure temporarily changes for the same process.

Our models in this thesis can be extended to include such internal carryover effects

as well. For example, with the settings of Section 3.2.1, this can be done by spec-

ifying the intensity function as λA(t|H(t)) = YA(t)αA exp{βA1XA(t) + βA2ZA(t)},
where XA(t) = I{NB(t−) > 0}I{t − tBNB(t−) ≤ ∆B} and ZA(t) = I{NA(t−) >

0}I{t − tANA(t−) ≤ ∆}. So function XA(t) detects parallel carryover effects and

function ZA(t) detects transient carryover effects. Here, ∆B is the repair times of

Component B and ∆ is specified time of transient carryover of Component A. We will

explore such models as a future research.
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Appendix A

Data Sets

A.1 Data 1

Part of data set used in Section 3.4

Comp : 1=Component A, 2=Component B, 3=Component C

Region City Comp Start End

1 1 1 60 90

1 1 1 474 504

1 1 1 1092 1122

1 1 1 1296 1326

1 1 1 1445 1475

1 1 1 1770 1800

1 1 1 2137 2167

1 1 1 2224 2254

1 1 1 2879 2909

1 1 1 2968 2998

1 1 1 3006 3036

1 1 1 3362 3392

1 1 1 3638 3668

1 1 1 3641 3671

1 1 1 3711 3741

Region City Comp Start End

1 1 1 3995 4025

1 1 1 4076 4106

1 1 1 4342 4372

1 1 1 4680 4710

1 1 2 2187 2217

1 1 2 2350 2380

1 1 2 2807 2837

1 1 2 3589 3619

1 1 2 3757 3787

1 1 2 3863 3893

1 1 2 3936 3966

1 1 2 4200 4230

1 1 2 4297 4327

1 1 3 2756 2786

1 1 3 2890 2920
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A.2 Data 2

City 3 City 5 City 9 City 15

∆ = 30 ∆ = 30 ∆ = 15 ∆ = 45

τ = 9131 τ = 12783 τ = 9496 τ = 10592

A B C A B C A B C A B C

1065 4640 1052 358 11444 6156 132 6239 6030 75 7778 4469

2601 4782 2240 649 11524 6417 1026 6410 6195 155 8242 4588

2877 4958 3267 729 11638 6453 1251 6528 6813 685 9418 4831

2908 5122 3310 1038 11674 6813 1502 6804 7001 1344 9495 5210

3091 5259 4569 2223 12364 7138 1930 8139 7693 1490 9588 5331

3147 5367 4845 2604 12610 7597 2338 8312 7897 1547 9806 6170

3371 5625 4901 3672 7943 2502 8395 8400 2139 10122 6831

3553 5736 5171 4095 9097 3107 8449 8617 2223 6908

3898 5848 5871 4903 9887 3179 8513 8638 2692 7291

3994 6282 5965 5223 10095 3531 8612 8757 3007 7611

4632 6663 6240 5274 10596 3778 9135 8825 3473 7806

4720 6729 6717 5309 11027 3914 9472 8844 3710 7944

4867 7201 6841 5353 11423 3996 8948 4502 8125

5010 7720 7097 5452 11661 4179 9372 4647 8235

5107 8114 7959 5565 12747 4245 9413 5179 8425

5190 8122 5643 4277 5236 8688

5339 8293 6137 4350 5344 9844

5462 8594 6197 4373 5479

5529 8643 6605 4432 5632

5698 8732 7032 4461 5686

5718 8763 7130 4510 5998

5743 8986 7531 4774 6347

5856 7628 5089 6534

6368 7754 5140 6793

6674 7804 5353 6985

6726 8090 5435 7173

6860 8595 5472 7449

6940 8765 6036 7598

7084 8844 6084 7819

7326 8897 6659 7897

7576 9017 6722 8018

7806 9132 6836 8221

7853 9204 7128 8351

8154 9292 7222 8439

8394 9395 7384 8596

8463 9621 7404 8908

8558 9682 7460 8974

8613 9912 7826 9245

8640 10158 8129 9716

8704 10264 8145 9887

8997 10543 8339 10041

10587 8401 10208

10633 8448 10274

10679 8646 10351

10777 8777

10871 8855

11014 8981

11111 9085

11180 9489

11303

11449

11506

11678

11718

11769

11844

11878

12196

12227

12329

12373

12476

12718

Table A.1: Data set used in Section 4.5, times (in days) are failure times in each

component, repair times, ∆, are the same among the components within a city



Appendix B

Misspecification of ∆B

τ ∆B0 P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2 eβA = 2 eβA = 4 eβA = 4

100 2
3∆B 0.232 0.230 0.753 0.748

∆B 0.369 0.369 0.996 0.995
4
3∆B 0.237 0.237 0.704 0.700

200 2
3∆B 0.401 0.379 0.954 0.958

∆B 0.537 0.518 1.000 1.000
4
3∆B 0.381 0.360 0.925 0.916

500 2
3∆B 0.679 0.687 1.000 1.000

∆B 0.885 0.890 1.000 1.000
4
3∆B 0.717 0.736 1.000 1.000

1000 2
3∆B 0.901 0.898 1.000 1.000

∆B 0.991 0.991 1.000 1.000
4
3∆B 0.924 0.920 1.000 1.000

Table B.1: Results of the power study when ∆B0 is misspecified, where ∆B = 7 is

assumed



135

τ ∆B0 P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2 eβA = 2 eβA = 4 eβA = 4

100 2
3∆B 0.195 0.199 0.657 0.660

∆B 0.290 0.293 0.995 0.995
4
3∆B 0.198 0.205 0.499 0.503

200 2
3∆B 0.333 0.345 0.926 0.928

∆B 0.519 0.535 1.000 1.000
4
3∆B 0.276 0.299 0.790 0.802

500 2
3∆B 0.610 0.610 1.000 1.000

∆B 0.882 0.882 1.000 1.000
4
3∆B 0.576 0.577 0.988 0.988

1000 2
3∆B 0.884 0.885 1.000 1.000

∆B 0.994 0.994 1.000 1.000
4
3∆B 0.832 0.832 1.000 1.000

Table B.2: Results of the power study when ∆B0 is misspecified, where ∆B = 14 is

assumed

m ∆B0 P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2 eβA = 2 eβA = 2.5 eβA = 2.5

10 2
3∆B 0.887 0.884 0.992 0.992

∆B 0.988 0.988 1.000 1.000
4
3∆B 0.912 0.912 0.994 0.994

20 2
3∆B 0.993 0.992 1.000 1.000

∆B 1.000 1.000 1.000 1.000
4
3∆B 0.996 0.996 1.000 1.000

50 2
3∆B 1.000 1.000 1.000 1.000

∆B 1.000 1.000 1.000 1.000
4
3∆B 1.000 1.000 1.000 1.000

100 2
3∆B 1.000 1.000 1.000 1.000

∆B 1.000 1.000 1.000 1.000
4
3∆B 1.000 1.000 1.000 1.000

Table B.3: Results of the power study when ∆B0 is misspecified, where ∆B = 7 is

assumed
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m ∆B0 P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950} P̂ r{Z > 1.645} P̂ r{Z > Q̂0.950}
eβA = 2 eβA = 2 eβA = 2.5 eβA = 2.5

10 2
3∆B 0.884 0.884 0.996 0.996

∆B 0.990 0.990 1.000 1.000
4
3∆B 0.792 0.792 0.955 0.955

20 2
3∆B 0.995 0.995 1.000 1.000

∆B 1.000 1.000 1.000 1.000
4
3∆B 0.972 0.972 0.997 0.997

50 2
3∆B 1.000 1.000 1.000 1.000

∆B 1.000 1.000 1.000 1.000
4
3∆B 1.000 1.000 1.000 1.000

100 2
3∆B 1.000 1.000 1.000 1.000

∆B 1.000 1.000 1.000 1.000
4
3∆B 1.000 1.000 1.000 1.000

Table B.4: Results of the power study when ∆B0 is misspecified, where ∆B = 14 is

assumed


