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Abstract

This study investigated problems related to beta-plane turbulence and wave radiation by

a vortex drifting on a beta plane using laboratory experiments supplemented by numerical

simulations and analytic methods. An optical system Altimetric Imaging Velocimetry was

employed in the study. It directly measures geostrophic currents and then calculates the total

current using the quasi-geostrophic approximation under a small Rossby number assumption.

The first part of the dissertation investigated the barotropic β-plane turbulence. In the

first experiment, an electromagnetic method was employed to generate barotropic turbulent

flows consisting of cyclones and prevalent anti-cyclones. Zonal jets were formed in both the

forced-dissipative regime and the free-decaying regime. In the former case, jets are latent,

are obscured by the strong vortices and are only visible after time averaging of the observed

fields. In the second experiment, Thermal convection played the role of forcing with scales

confined by the baroclinic deformation radius, which was much smaller than the scale of the

electromagnetic forcing. The jets were more distinctive in this experiment. In both cases, an

anisotropic energy spectrum was observed, where less energy was located inside a dumbbell-

shaped area near the origin, whose boundary corresponds to the Rhines scale. Rather than

arresting the inverse cascading energy, the dumbbell redirected energy to the zonal modes

of approximately the forcing scale. The theoretical spectrum evolution showed that the

zonal modes can be fed by an isotropic forcing through only linear dynamics. The west-

propagating Rossby waves caused the asymmetry in the frequency-wavenumber spectrum

with an energetic plume directing towards the west with a slope Vrmsk, where Vrms is the
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root mean square velocity of the turbulent flow and k is the isotropic wavenumber.

The second part of the dissertation presented the results from a series of experiments on

baroclinic β-plane turbulence where a shear between two layers generated meanders, waves,

eddies and filaments interacting with each other. The small eddies and thin filaments in these

experiments are ageostrophic and can be related to the submesocale dynamics in the ocean,

where energy slowly released from baroclinic instability cascades to smaller scales. Dynamics

in spectral spaces were emphasized, and a normal Fourier transform in a local Cartesian

coordinate system together with a Fourier-Bessel transform in a global polar coordinate

system were employed. Rhines arguments hold on both spectra, which showed anisotrophy

during a quasi-stationary regime. High energy concentration on the zonal modes larger than

the Rhines scale, as well as low energy concentration below a threshold scale, represented

by the dumbbell-shaped curve in the Fourier spectrum, were observed as well. In frequency-

wavenumber space, prominent signatures due to the westward-propagating Rossby waves and

the eastward-propagating baroclinic instability waves were revealed by dispersion relations.

Encouraged by the significance of the linear dynamics in β-plane turbulence, the third

part of the dissertation extended the β-plume theory to an idealized scenario, i.e. wave

radiation by a drifting vortex on a β-plane. In a series of experiments, a cyclonic vortex

was generated by siphoning water out of the tank. A northwestward-propagating cyclone

radiating Rossby waves (long waves to the west and short waves to the east) was observed

in the experiments as well as in the pseudo-spectral simulation. Distinct inertial waves

were obvious in the altimetric images. Decomposing the vortex into a primary monopole
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and a secondary dipole showed that the vortex translation speed was indeed determined

by its dipole component (β-gyres). In the far field the linear dynamics played a dominant

role. Laboratory experiments, numerical simulation and a linear theory showed a similar

wave pattern where the long wave crests aligned in a quasi-zonal direction to the west of

the cyclone. A linear analogue of the Rhines wavenumber is proposed as kRhines =
√
β/Ut,

which qualitatively described the energy distribution of large-scale dynamics in the spectrum,

where Ut is the vortex translation speed. This result might be applied to the ocean, where

sparsely distributed eddies interact with each other through Rossby waves.
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Chapter 1

Introduction

1.1 Background

Geostrophic fluid dynamics is distinguished from general fluid mechanics due to rotation

and density stratification, which are characterized by two frequencies: the Coriolis frequency

and the buoyancy frequency, respectively. The rotation introduces a Coriolis force, which

acts on a moving object to its right in the northern hemisphere. The Coriolis force does

not do work; it does, however, generate eddies. Due to the small aspect ratio of the oceans

(Shell approximation), large-scale ocean circulations can be described by the Shallow Water

Equations.

The ocean circulations are turbulent and consist of coherent structures such as eddies,

waves and jets interacting with each other. In three-dimensional turbulence, Kolmogorov’s

dimensional analysis showed that kinetic energy (and enstrophy as well) continuously cas-
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cades to smaller scales until it reaches a dissipating scale. Given the two-dimensional char-

acter of large-scale circulations, the requirement of both energy and enstrophy conservation

results in an inverse energy cascade, i.e. energy transfers from the forcing scale to larger

scales; meanwhile, enstrophy still cascades to smaller scales. [44, 69].

1.2 Main concepts

In this section, some relevant textbook concepts are reviewed for the reader’s reference.

The β-plane approximation

Due to the Earth surface curvature, the Coriolis frequency f = 2Ω sin θ increases with

latitude θ, where Ω is the Earth rotating rate. The increasing trend is almost linear in a region

of limited meridional span centered at a reference latitude θ0. Then the Coriolis frequency

can be expanded into a Taylor series on the small meridional displacement δy = rEδθ:

f = f0 +
∂f

∂y
δy. (1.1)

This first-order approximation constitutes a local β-plane where f0 = 2Ω sin θ0 and β =

2Ω cos θ0/rE are two constants over the zonal band, rE is the Earth radius.
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Topographic β effect

The linear-varying topography and the β-plane approximation have dynamic similarity in

terms of potential vorticity (PV afterwards) conservation, i.e.

dq

dt
= 0, (1.2)

where

q =
ζ + f

H − hb
(1.3)

is defined as the barotropic PV, ζ is the relative vorticity, hb = sy is a bottom topography

increasing northward with the meridional displacement y and a slope s, and H is the mean

water depth without surface elevation or bottom topography. Here we assume that hb/H <<

1, then PV could be approximated by

q ≈ f + (fs/H)y

H
. (1.4)

One can see that the second term in the numerator plays a similar role as the second term

on RHS of Equation (1.1), the β-plane approximation. It is called the topographic β-effect

with βT = fs/H.

In the rotating tank experiment βT needs to be clarified. The free surface of the rotating

fluid is a paraboloid when in solid-body rotation, the water depth varies quadratically with

the distance r from the rotating axis

hR(r) = Ar2 +B, (1.5)
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where

A =
Ω2

2g
, B = H − hb −

(ΩRt)
2

4g
.

Here H is the mean water depth without rotation or topography, g is the acceleration due

to gravity, and Rt is the radius of the tank. The tank rotates anti-clockwise at a rate of

Ω = 2.38 rad/s. In order to derive the local βT at certain radius r0 away from the center of

the tank, a local Cartesian coordinate system is introduced at r0, such that the local x and

y axes are directed to the East and to the North correspondingly. Then PV can be written

as

q =
ζ + f0

A(r0 − y)2 +B
≈ ζ + f0
hR(r0)− 2Ar0y

≈ ζ + f0
hR(r0)

(1 +
2Ar0y

hR(r0)
).

By analogy with (1.4) the topographic βT is

βT =
2Ar0f0
Ar20 +B

. (1.6)

In a small area surrounding the rotating axis, the dependence on r is quadratic, rather

than linear, such that

q =
ζ + f0
Ar2 +B

≈ ζ + f0
B

(1− A

B
r2).

The above approximation constitutes the so-called polar β-plane or γ-plane in the center of

the tank.
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Rossby waves

The β-effect plays as a restoring force in Rossby waves. The dynamics of Rossby waves are

governed by the equation of conservation of relative vorticity:

∂

∂t
(∇2 −R−2d )η + βηx = 0, (1.7)

where Rd is the deformation radius, η is the surface elevation, and the subscript x in ηx

means its spatial derivative with respect to x. Here the nonlinear term is neglected. The

dispersion relation can be obtained by the Fourier transform of Equation (1.7). Substituting

the Fourier decomposition of η, i.e.

η(x, y) =
∑
kx,ky

η̃(kx, ky) exp

(
i · (kxx+ kyy − ωt)

)
,

where k = (kx, ky) is the wavenumber vector, ω is the wave frequency, and η̃(kx, ky) represents

the amplitude of mode k, into Equation (1.7) gives the dispersion relation for Rossby waves

in the form:

ω =
−β · kx
k2 +R−2d

, (1.8)

here k =
√
k2x + k2y is the isotropic wavenumber.

Dynamics in the polar coordinate system

Since the tank is cylindrical, it is necessary to derive the relative vorticity equation and

also the disperison relation for Rossby waves in polar coordinate system (r, θ). The PV

conservation shows

dq

dt
=

d

dt
(
ζ + f

hR + η
) = 0. (1.9)
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Substituting Equation (1.5) into the above equation gives

dq

dt
=
dζ

dt
− ζ + f

hR + η
(2Ar

dr

dt
+
dη

dt
) = 0. (1.10)

One can introduce the geostrophic approximation in the polar coordinate system such that

the velocity is defined as

(vθ, vr) = k× g

f
∇η =

g

f
(
∂η

∂r
,− ∂η

r∂θ
). (1.11)

The geostrophic approximation also implies

ζ =
g

f
∇2η, (1.12a)

dη

dt
=
∂η

∂t
. (1.12b)

Substituting the above 3 equations into Equation (1.10) gives

dq

dt
=
g

f

d

dt
(∇2η)− ζ + f

hR + η
(2rvrA+

∂η

∂t
)

=
∂

∂t
(
g

f
∇2 − ζ + f

hR + η
)η +

g2

f 2
J(η,∇2η)− ζ + f

hR + η
2rvrA

= 0.

Here g2J(η,∇η)/f 2 is the nonlinear term and J(a, b) = axby − aybx represents the Jacobian

operator. Neglecting the nonlinear term and using the following approximation

ζ + f

hR + η
≈ f

hR

show

∂

∂t
(
g

f
∇2 − f

hR
)η +

f

hR
2rvrA = 0.
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Multiplying it by f/g and using the geostrophic approximation for vr one obtains

∂

∂t
(∇2 −R−2d )η +

2Afηθ
hR

= 0, (1.13)

where Rd =
√
ghR/f0 is deformation radius. In a polar-coordinate system, a natural basis

is the Fourier-Bessel series:

η(r, θ, t) =
∞∑
m=0

BmJm(r′) exp(imθ − iωt), (1.14)

where r′ = kr, Bm is the amplitude for mode m, and Jm(r′) is 1st kind Bessel function of

order m. It could be shown that Fourier-Bessel series satisfies

∇2η = −k2η, (1.15)

which actually is the Bessel equation:

r′2
∂2J

∂r′2
+ r′

∂J

∂r′
+ (r′2 −m2)J = 0. (1.16)

Substituting the Fourier-Bessel decomposition into Equation (1.13) gives a dispersion relation

of Rossby waves in polar coordinate system in the form:

ωR =
−βTkx
k2 +R−2d

, (1.17)

which is an analogue of (1.8). Here the dimensional azimuthal wavenumber is kx = Am.

Note that βT = 2f0/hR here is different from that in (1.6), where βT is derived in a local

Cartesian coordinate system (the β-plane approximation); however, βT in Equation (1.17)

is a global function of r in the polar coordinate system. In practice when the radial profile
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η(r) is complicated, one can always use the following decomposition:

η(r) =
∞∑
n=1

Cn · Jm(
r

R
αm,n), (1.18a)

Cn =

∫ R
0
rη(r)Jm(r/Rαm,n)dr

0.5[RJm±1(αm,n)]2
, (1.18b)

where Jm(r) is the 1st kind Bessel function of order m ≥ −1, R is radius of the domain, and

αm,n is the nth positive root of Jm(r). As a result, the formal Fourier-Bessel decomposition

is given as

η(r, θ, t) =
∞∑
m=0

∞∑
n=0

BmnJm(
r

R
αm,n) exp(imθ − iωt), (1.19)

where Bmn is the amplitude for mode αm,n/R and m is azimuthal wavenumber. As a result,

the dispersion relation becomes

ωR =
−βT (r)kx

(αmn/R)2 +Rd(r)−2
. (1.20)

1.3 Phenomena due to the β effect

Rossby waves

On a β-plane, different types of coherent structures emerge in a background of geostrophic

turbulence. The primary one is the generation of Rossby waves, which were first discovered

by Carl Gustave Rossby in the 1930s as the big meanders of the jet stream in the atmosphere.

Nowadays, these large-scale waves can be observed in the oceans by satellite altimeters. The

signal of the Rossby wave propagation is usually visible in the Hovmoller diagram of sea

surface height(SSH, [30, 90]) and sea surface temperature (SST, [56]). The oceanic Rossby
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waves have amplitudes of O(10) cm, periods of months to years, and wavelengths of O(100)

km to O(1000) km, respectively. The wave speed increases equatorward of course with β,

specifically the zonal-averaged speed varies from 1 km/day to 27 km/day from 50 0N to

5 oN .

Rossby waves have great significance in oceans and the atmosphere. In the zonal direc-

tion, long Rossby waves carry energy to the west [87], contributing to the westward intensi-

fication of circulation gyres [9]. Their westward propagation provides a mechanism for the

response of the western boundary area to the atmospheric perturbation in the interior basin

[85, 67, 105, 59]. In the equatorial region, the reflected Rossby waves and equatorial Kelvin

waves play a key role in the dynamics of El Nino and Southern Oscillation (ENSO) events in

the Pacific Ocean[74]. Rossby wave radiation is important as well to the dipole mode in the

Indian Ocean[22]. In the meridional direction, Rossby waves explain planetary-scale atmo-

spheric teleconnections [124, 57, 62, 61, 125, 71]. In terms of marine biology, the upwelling

due to the wave radiation affects chlorophyll in the upper mixing layer [65, 35, 103].

Zonal jets

Another ubiquitous phenomenon on a β-plane is zonal jets. Satellite observations show an

abundance of zonal/quasi-zonal jets of alternating direction in areas with strong baroclinic

instability, such as the Antarctic Circumpolar Current, Gulf Stream and Kuroshio extensions

[80, 81, 109, 120]. Midlatitude jets have a width of 150 km∼ 300 km and a velocity magnitude

of about 7 cm/s. Zonal jets are latent in the ocean, i.e. they are obscured by energetic eddies
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and are only visible after time averaging of the observed fields. Their latency is determined by

the large-scale friction [73, 17] or energy injection rate [106] if in an equilibrium state. More

prominent jets are observed in atmospheres in giant gas planets like Jupiter and Saturn [53],

where they manifest as alternating stripes of different colors. Zonal jets, especially eastward

ones, act as barriers to meridional transportation of mass, although some particles are still

able to penetrate them after a long time [112]. The spontaneous emergence of zonal jets in a

background of geophysical turbulence on a β-plane as well as their barrier role in meridional

transportation are still under investigation[12].

Conceptual models based on either linear wave dynamics or quasi-linear wave-eddy inter-

actions have been proposed as the mechanism for jet formation. One of the linear mechanisms

of jet formation is the so-called β-plume mechanism [70, 116, 38]. A β-plume is a zonal-

elongated gyre of circulation west of a localized source of perturbation. The plume is carried

by nearly non-dispersive long Rossby waves. Two zonal jets with opposite directions develop

at the southern and northern flanks of the plume, and are reconnected around the source

of perturbation as well as in the front of the westward-propagating plume (see Figure 1.1).

Recent experiments by [4, 108, 117] showed how a β-plume works in generating zonal jets.

In the case of a homogeneous eddy forcing, the Rhines wavenumber kR =
√
β/Vrms

[98] can be introduced, where Vrms is the root-mean-square velocity of turbulent motions.

The Rhines scale denotes a spatial scale where the inversely cascading energy from small-

scale nonlinear interactions starts feeling large-scale wave dynamics, and being transferred

to Rossby waves and subsequently towards zonal jets. The Rhines theory is essentially
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Figure 1.1: A sketch of the β-plume dynamics.

a synchronization condition of frequencies of different classes of dynamics. By equating

the turbulence frequency to that of linear Rossby waves [122], one is able to solve for the

solution in the kx − ky wavenumber space as shown in Figure 1.2. The solution is of a

lazy-8/dumbbell structure where the Rossby wave dynamics dominate at large scales inside

the dumbbell; meanwhile, the nonlinearity due to eddy interactions dominates the dynamics

at small scales outside. In spectral space the anisotropic energy distribution of β-plane

turbulence is well known. In a forced-dissipative equilibrium, the dumbbell become visible

as the energy clusters around it[60, 122, 121].

When zonal jets emerge the spectrum can be even more anisotropic, and more energy

cascades to the zonal modes kx = 0 with a spectrum predicted as EZ(ky, kx = 0) = CZβ
2k−5y .

In the literature EZ(ky) is denominated as “zonal spectrum” even though it represents the

meridional variation of zonal modes. The −5 spectrum is first suggested in [98] using a

dimensional analysis. Although its universality is invalidated [36], the −5 slope is commonly
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Figure 1.2: A sketch of the Rhine theory in the kx− ky wavenumber space, where kx and ky

denote the wavenumber in zonal and meridional directions respectively. Pink color denotes

areas of high energy outside the solution where the presumed dispersion relation of turbulence

controls the dynamics; meanwhile, the white color denotes the low-energy areas at large scales

where Rossby waves dominate. ε is the energy injection/dissipating rate in a equilibrium

state. The red rod along ky axis represents the zonal modes where the inversely cascaded

energy accumulates.

observed at large scales [29, 52, 119, 53].

According to the PV conservation, zonal jets formation could be a consequence of hori-

zontal potential vorticity mixing by wave breaking or eddy penetration. Zonal jets tend to

mix PV in their flanks, which facilitates further mixing, thus leaving a strong PV gradient

in the eastward jets. This positive feedback mechanism accounts for the strongly inhomo-
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geneous regime, namely PV staircase observed in giant gas planets and in high-resolution

simulations [93, 75, 106]. A fully-developed PV staircase shows an asymmetry between the

eastward jets and westward ones, where eastward jets are more stable and narrower in width

compared to the westward jets. The meridional PV profile is piecewise constant separated

by step functions, whose locations indicate the cores of self-sharpening eastward jets. In

contrast, westward jets are more turbulent, and PV near the axis tends to be homogeneous.

This asymmetry is observed in early lab experiments [112]. In a PV staircase the original

kR might be irrelevant since the wave dynamics are significantly modified by the zonal jets.

Another approach is offered by the statistical structure stability theory (3ST) [21] which

excludes eddy-eddy interaction. The general idea is maximizing entropy while keeping energy

and enstrophy invariant. A recent numerical study [33] validated the 3ST theory, showing

that zonal jets emerge without the eddy-eddy interaction, or equivalently the local nonlinear

cascade in spectral space, hence suggesting that non-local cascade dominates the process

leading to the jet [13, 63, 128]. The famous “negative viscosity” phenomenon in physical

space exemplifies the non-local cascade, where infinitesimal perturbation in the mean flow

can arrange eddies to absorb eddy flux into zonal jets without wave breaking [11]. The non-

local interaction might take the forms of non-zonal structures [73, 18]. Numerical studies

[18] have shown that meridional jets of alternating direction emerge as “noodles” during the

early spin-up stage, and these meridional jets undergo secondary transverse instability into

zonal jets. The Rhines scale is skipped over in this process, and energy is tunneled directly

to zonal modes through the express of the non-zonal structures. A similar mechanism is also
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observed in the ocean [91].

In many circumstances the Rhines scale is often interpreted as the jet scale [86], though

the scale-dependent Vrms is hard to determine sometimes, thus making the direct interpre-

tation controversial. In Ref. [16] the Rhines scale is found to be valid only in a limited

parameter range, which implies that more factors need to be considered. The primary can-

didate is the deformation radius Rd [41, 83, 127, 79], while other factors such as the bottom

friction have also been suggested [73].

In the forced-dissipative equilibrium, kR alone might be insufficient in describing the β-

plane turbulence, and the energy injection/dissipating rate ε must be included. Therefore,

a ratio Rβ = kε/kR is employed to characterize different equilibrium states, and it includes

another characteristic friction wavenumber kε = (β3/ε)1/5 [122]. Rβ > 2 represents a regime

where jets dominate [51]; an extreme case is the PV-staircase with Rβ ≈ 10 [106]. Rβ < 1.5

corresponds to a viscous regime with latent jets. A similar result is obtained in [37] but while

using a different kε that permits unsteady flows. Besides its capability of phenomenological

description, Rβ is also found to be important to the jet scale [106].

In the first part of the dissertation, turbulence over a topographic β-plane was investi-

gated using laboratory experiments with a focus on its spectral characteristics. Although

β-plane turbulence has been a subject of study in laboratory experiments by different au-

thors [126, 39, 111, 112, 110, 42], its spectral evolution has not been well understood, partly

due to the deficiency of commonly-used PIV (Particle Image Velocimetry) techniques in vi-

sualizing the entire flow field with enough resolution. The optical system Altimetric Image
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Velocimetry (AIV) employed in this study provides 4 million pixels in each image. Energy

distributions in the kx-ky space as well as in the frequency-wavenumber space were described

in detail. One-dimensional spectra showing classic dual cascade ranges were presented. It

is interesting to see if the Rhines wavenumber kR as well as its two-dimensional analogues

work in both physical and spectral space in lab experiments. For this purpose, one needs a

wide inverse cascade range. The AIV technique can provide a span of scales of 3 decades

and the forcing was placed at a small scale. Electromagnetic forcing as well as convective

thermal forcing were used in the experiments. Although the thermal forcing in the second

experiment was baroclinic, the flows stayed barotropic to a great extent. The second moti-

vation is to validate the importance of linear dynamics as inspired by the β-plume theory

[70]. Results showed that energy transfer to the zonal modes through only linear dynamics

is possible. The linear spectrum evolution is qualitatively similar to those observed in the

lab experiments.

The second part of the dissertation focused on the spectral characteristics of baroclinic

turbulence in a two-layer system. In a series of experiments, freshwater injected from the

wall of the tank formed an eastward jet flowing on top of a saline layer. Baroclinic instability

due to the shear between two layers created meanders and waves of large scales, as well as

vortices and filaments of small scales. The spectral analyses reported in this part included

both Fourier transform and Fourier-Bessel transform. It is interesting to find and validate

the analogues of Rhines arguments in the Fourier-Bessel spectrum. The second question here

is the significance of linear dynamics, especially if the dispersion relations of Rossby waves
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and baroclinic instability waves could be validated in the observed frequency wavenumber

spectra.

Wave radiation by a traveling vortex

Mesoscale oceanic eddies are found virtually everywhere in the oceans [31]. They are subject

to the β-effect during their long-term evolution. This effect is known as the β-drift. A

cyclone drifts to the Northwest while an anticyclone travels to the Southwest on a β-plane.

The self-induced advection of vortices over a large distance is important to mass [135], heat

and PV transport in the ocean.

The general dynamics governing eddy evolution are the interplay between the Rossby

waves radiated away by the traveling vortex and nonlinearity localized around the vortex.

The northwestward/southwestward drift of the cyclone/anticyclone is analytically studied

in Ref [1] using Taylor expansion in time. The dynamics could be easily understood con-

ceptually. The northward Coriolis acceleration acting on the northern half of a cyclone is

greater than its counterpart on the southern half due to the β-effect; therefore, integrating

the Coriolis force over the cyclone/anticyclone gives a northward/southward Rossby force

[102]. Modelling the vortex as a rigid body [47], one can show that the northward/southward

propagating cyclone/anticyclone is pushed to the west by a lift force. This simple mechanical

model works better for an isolated vortex with a sharp radial profile (as supported by the

theory [68]), formed by stirring the fluid inside a cylinder in the experiment of [47]. Because

the strong nonlinearity prevents wave radiation to some extent[84, 95], an isolated vortex of
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strong nonlinearity seems to be more rigid.

An alternative explanation is that the drifting vortex is driven by the β-gyres [94], which

is a secondary circulation of a dipole structure triggered by an initial symmetric vortex. In

a cyclone, for example, fluid on the east side of the cyclone is advected northward and thus

loses relative vorticity in order to satisfy PV conservation. Similarly, the west side of the

cyclone gains relative vorticity. As a result, a dipole of relative vorticity anomaly emerges

with cyclonic gyre west to an anticyclonic gyre, superposed upon the initial cyclone. The

orientation of the dipole axis dominates the direction of the β-drift. Initially, the dipole is

directed to the North but later it is rotated anticlockwise by the primary monopole such

that the entire vortex propagates to the Northwest.

At later stages theoretical studies showed a different scenario of evolution between an iso-

lated vortex (strongly nonlinear such as a stirred vortex) and a non-isolated vortex (weakly

nonlinear such as a siphoned vortex). The isolated cyclone usually settles down by traveling

along a rest latitude at a constant speed, out of the range of linear Rossby waves (since

wave radiation and vortex decaying are assured if propagating at any linear Rossby wave

speed according to studies on Rossby solitons [94]). The rest latitude could be qualitatively

predicted by a balance between the planetary vorticity gain during vortex translation and

its initial relative vorticity. For a vortex of weak nonlinearity, Rossby wave radiation is

commonly observed. Wave radiation mechanism is immediately clear when one applies re-

peatedly the gyre generation mechanism on each of the secondary β-gyres. It shows that a

series of gyres of alternating sign in vorticity are formed to the east of the initial vortex; in
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contrast, on the west side all the gyres have the same sign as the initial vortex. The original

signal is then propagating westward, leaving a vorticity tail of alternating sign, which is the

quasi-geostrophic scenario of the beta-drift described in early analytic studies[46, 45]. In a

steady state, the energy lost from a vortex by wave radiation can be analytically calculated

[82], and as a response the vortex shrinks in size.

Rather than focusing on the details of the evolution of the vortex itself, which has been

covered in many theoretical studies, the dynamics of the radiated wave were investigated in

Chapter 4 in the dissertation. This study is motivated by the success of the β-plume theory in

describing the spectrum evolution of the β-plane turbulence (as shown in Chapter 2), and also

by the recent studies supporting the significant control of nonlinear oceanic vortices by linear

wave dynamics [129, 14, 15]. Now the question is to what extent are the linear dynamics

important, not to the nonlinear vortex, but to the far field where Rossby waves prevail.

As mentioned previously, perturbation on a β-plane gives rise to a β-plume. Compared to

the baroclinic buoyancy forcing, which was commonly used to generate the β-plume[117],

wave radiation by a traveling vortex in a barotropic case is easy to realize in the lab. It is

interesting to see how the β-plume dynamics work in such an idealized situation.

The main difficulty in the previous laboratory experiments on this subject was capturing

the vortex and the far field simultaneously with the same resolution; however, the AIV

technique employed here allows one to do so. Results from laboratory experiments were

used as the benchmark to compare with numerical simulation. Moreover, a linear theory

similar to that in Chapter 2 was derived, which shows a wave pattern closely resembling
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those observed in the lab experiments and the numerical simulation.

1.4 Overview of the thesis structure

Chapter 2 presents the results from the laboratory experiments on barotropic β-plane tur-

bulence. Spectral analyses for the baroclinic turbulence in a two-layer system is presented

in Chapter 3. Then in Chapter 4, an idealized problem, i.e. wave radiation by a cyclonic

vortex traveling on a β-plane, is investigated using laboratory experiments along with nu-

merical simulations. Chapters 2 and 4 are two published papers in Physics of Fluids, while

the results in Chapter 3 were submitted to Ocean Modelling. Final conclusions are contained

in Chapter 5.
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Chapter 2

β-plane Turbulence

This chapter is an adapted version of a journal article published in Physics of Fluids (Zhang

and Afanasyev 2014).

2.1 Introduction

Two-dimensional β-plane turbulence is an important conceptual model of turbulent flows on

rotating planets where the variation of the Coriolis parameter with latitude is of importance

for motions of large scale. Before we consider the β-plane flows, we shall review briefly

an even more basic concept of two-dimensional turbulence without the β-effect (see review

papers [37, 20]). A Kolmogorov-type theory [69] predicts that a forced-dissipative two-

dimensional turbulence develops a dual cascade, where energy is transferred from the scale

where the forcing is applied to larger scales while enstrophy is transferred to smaller scales.

The slopes of energy spectrum predicted by the theory are −5/3 in the energy range and −3
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in the enstrophy range. Note that numerical simulations [48] performed at high Reynolds

number showed that the theoretical −5/3 scaling law can be steepened to −2 when long-

lived vortex cores develop in the flow. An extension beyond two-dimensionality is provided

by rotating shallow water (RSW) theory [133] which takes into account vortex stretching,

the effect of the finite radius of deformation, and inertia-gravity waves. Recent laboratory

experiments with RSW turbulence on the f -plane [2] showed similarity to two-dimensional

turbulence with the spectral slopes of approximately −5/3 and (somewhat steeper than) −3.

These experimental results are in agreement with results of numerical simulations [132]. An

effect of asymmetry between anticyclonic and cyclonic vortices with the anticyclonic vortices

prevailing was observed in the experiments [2]; this is one of the effects that make RSW

turbulence different from its two-dimensional counterpart. In order to eliminate the β-effect,

a cylindrical tank with a paraboloidal bottom of the same shape as that of the rotating water

surface was employed in [2]. Note that in the present work we use a similar apparatus but

with an inverted paraboloidal bottom to increase β-effect rather than to eliminate it.

While two-dimensional and RSW turbulence are isotropic in the horizontal plane, the

turbulence with the β-effect is not. Even when the forcing is isotropic, an anisotropy develops

in the form of zonal jets. This phenomenon is of great interest for applications to atmospheric

circulations on gas giants [40] as well as to recently discovered jets in the Earths oceans

[80, 81, 109]. Note that while on Jupiter and Saturn jets are prominent features of the

circulation, the oceanic jets are often lost in a much stronger eddy field and can be revealed

only as a result of time averaging of the observed fields. In the spectral representation, the
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anisotropy of the flows manifests itself in the concentration of energy at the kx = 0 axis

in the wavenumber plane. Theory [98, 118] predicts that the zonal spectrum of the flow

defined as EZ = E(kx = 0, ky) has a slope of −5. Here E(kx, ky) is a two-dimensional energy

spectrum which will be properly defined later in this article. Baroclinic instability is a major

underlying process which generates eddies in atmospheric and oceanic large-scale turbulent

flows. At a mature stage of its development baroclinic instability becomes equilibrated

such that the flow becomes barotropic to a significant degree. The barotropic component

of the flow is coupled to the baroclinic one [34]. The barotropization process allows one

to use barotropic models for the investigation of turbulent flows. Observations of β-plane

turbulence in numerical simulations of different authors suggested that barotropic flows tend

to generate somewhat weaker jets than those in baroclinic flows. It seems that an energy

source capable of sustaining persistently high energy level in the flow is an important factor

of strong jet formation [99, 86]. In baroclinic flows (even when the dynamics is mainly

barotropic) the energy source is provided by eddies slowly releasing their available potential

energy.

Turbulent flows on the β-plane have been a subject of study in laboratory experiments

by different authors. Zonal jets were observed in the experiment [126] where the flows were

induced locally by a vertically oscillating disk. A formation of a zonal flow was also observed

in [39] who generated the flow by a periodic excitation of sources and sinks. In a series of

experiments, Sommeria forced eastward and westward jets by pumping fluid radially from

a ring of sources to a ring of sinks at the bottom of the tank [111, 112, 110]. This forcing
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created prominent jets with multiple eddies in the background. Marcus [76] used numerical

simulations in a setup similar to Sommeria’s experiments to further investigate the properties

of the jets, in particular, an asymmetry between the eastward and westward jets. Recent

experiments [4, 108] showed that a pattern of zonal jets can be formed westward of the

area where perturbations are located. The perturbations were created by buoyancy sources.

It was shown that the jets formed via a β-plume mechanism. A β-plume is an almost

zonal circulation consisting of two zonal jets flowing in opposite directions. The circulation

is formed via radiation of Rossby waves by a localized perturbation [4, 116, 38]. In the

experiments by [4] eddies eventually filled a significant area of the domain. However, the

jets were still prominent in this turbulent flow. While it is clear how a single localized

perturbation can create jets to the west of its location, it is much less clear how eddies in

a turbulent flow cooperate to sustain jets. Rather than using a forcing applied in a limited

area of the domain, one can use a uniformly distributed forcing to create an eddy field in the

entire domain. Ref. [5] used an electromagnetic (EM) forcing to generate a turbulent flow on

the polar β-plane. In EM experiments the Lorentz force is created by using a combination

of permanent magnets located at the bottom of the tank and the horizontal electric current

flowing through the layer of conducting fluid. It showed the formation of zonal flows in the

forced-dissipative β-plane turbulence, but they were somewhat limited by the size of the

apparatus. Further EM experiments in a setup similar to that used in [5] were performed

recently [42]. A different kind of distributed forcing was used in experiments on the Coriolis

platform [92]. The authors used convective forcing where the surface of the water in the
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tank was sprayed with saline water. More dense saline water formed small-scale convective

plumes descending to the bottom thus creating small-scale turbulence. A system of zonal

jets was observed. The slope of the turbulent energy spectrum was measured to be close to

−5/3 in the energy range as predicted by theory. Since the forcing was at very small scale,

the enstrophy range was not resolved in those experiments.

In what follows, we describe laboratory experiments on a rotating table with the (topo-

graphic) β-effect. Two experiments were performed; in the first experiment the forcing was

barotropic and generated by the EM method while in the second experiment the forcing was

baroclinic and generated by heating the fluid at the bottom of the tank. The purpose of these

experiments was to investigate the properties of the flows including their spectral character-

istics both in wavenumber space and in frequency-wavenumber space. We used a relatively

large tank of 110 cm diameter and an intermediate/small-scale forcing (approximately 1 cm)

in order to observe the dual cascade including the energy and enstrophy intervals. Our opti-

cal altimetry system allowed us to measure fields with high spatial and temporal resolution

which was necessary for spectral analyses. The dynamics of Rossby waves in the forced-

dissipative β-plane turbulence is elucidated. Our experimental results show how idealized

theory or numerical simulations hold in application to real flows. In Section 2.2 we describe

the setup of our apparatus as well as the optical altimetry technique used to measure the

gradient of the surface elevation field, from which we obtain the velocity and vorticity fields.

In Section 2.3 the results of the experiments and their analyses are reported. Concluding

remarks are given in Section 2.4.
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2.2 Laboratory apparatus and techniques

The experiments were performed in a cylindrical tank of radius Rt = 55 cm installed on a

rotating table (Figure 2.1). The tank was filled with water and rotated in an anticlockwise

direction at a rate of Ω = 2.32 rad · s−1. In the first experiment with an EM forcing an inner

container in the form of a cylinder with a paraboloidal bottom was inserted into the tank

and was concentric with the tank. The radius of the inner cylinder was Ri = 45 cm. The

bottom was an inverted paraboloid such that the bottom topography was hb = Hb + cbr
2,

where Hb = 8 cm, cb = 4× 10−3 cm−1, and r is the radial distance. The flow was generated

by an electromagnetic method. For this purpose the bottom of the inner container was fitted

uniformly at lf = 4.6 cm intervals with about 300 neodymium magnets. The magnets were in

a form of square tiles lm = 2.5 cm wide. The vertical component of the magnetic field of each

magnet was of the order of 1 Tesla. The poles of the magnets were oriented such that their

polarity alternated between neighbouring magnets. Two electrodes made from chemically

neutral material (graphite) were placed on the outside of the wall of the inner container to

prevent bubbles forming on the electrodes to enter the area of interest. Small holes were

drilled in the wall to allow an electric current to flow through the fluid inside. A voltage of

approximately 117 V DC was applied to the electrodes. The electrical conductivity of water

was increased by adding NaCl in the amount of approximately 35 parts per thousand. The

resulting electric current between the electrodes was about 15 Amp. A combination of the

horizontal electric current with the vertical magnetic field results in the Lorentz force acting

in the horizontal direction perpendicular to that of the electric current. The Lorentz force
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Figure 2.1: Sketch of the experimental setup: rotating tank and the inner container (gray

dashed lines) with the paraboloid false bottom (1) filled with water, video camera (2), high

brightness TFT panel displaying the color mask (3), electrodes (4), and permanent magnets

(5). A bird’s view of the paraboloid false bottom where an array of magnets was placed is

shown as the insert (6) between the camera and the tank.



CHAPTER 2. β-PLANE TURBULENCE 27

is a body force which acts on the fluid above each magnet. The effective vertical extent

of the volume where the force is applied is approximately equal to the width of a magnet.

The electromagnetic method provides an effective means of forcing the fluid in a controlled

manner. For more details see [77, 3].

The second experiment was performed in the tank without the cylindrical insert or the

paraboloidal bottom. The flow was forced thermally using a heating wire at the bottom of

the tank. The wire was fitted in an approximately uniform pattern such that the distance

between the neighbouring segments of the wire was about 4.5 cm. The power provided by

the heater was 2300 W. The height h of the water surface under a solid-body rotation varies

quadratically with the distance r from the axis of rotation

h(r) = H0 +
Ω2

2g
(r2 − R2

t

2
), (2.1)

where H0 is the depth of the layer in the absence of rotation and g is the gravitational

acceleration. The depth of the water in the tank is given by the difference between the

height of the surface and bottom topography, H = h−hb . In the EM experiment the water

was quite shallow (H = 2.5 cm) at the center of the tank and deep (H = 14 cm) near the

wall at radius Ri. In the heating wire experiment the bottom of the tank was flat (hb = 0)

and the water depth varied between 4 cm at the center and 12 cm near the wall (r = Rt) with

the average depth H0 = 8 cm. The dynamical equivalence of the varying depth of the layer

to the varying Coriolis parameter, results from the conservation of the potential vorticity

(PV) defined as q = (ζ+f0)/H. Here f0 = 2Ω is the Coriolis parameter and ζ is the vertical

component of the relative vorticity. A local Cartesian coordinate system can be introduced
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at some reference radius r0 such that a positive x-direction is to the East and a positive

y-direction is to the North. Note that the North Pole is at the center of the tank rotating

anticlockwise. The β-plane with the linearly varying Coriolis parameter, f = f0 + βy, can

then be introduced by defining the β-parameter as

β =
4(Ω2/2g + cb)Ωr0

H(r0)
. (2.2)

The Altimetric Imaging Velocimetry (AIV) system was used to observe perturbations of

the surface and to measure two components of the gradient ∇η =
(
∂η
∂x

+ ∂η
∂y

)
of the surface

elevation η in the horizontal plane (x, y). The AIV technique was described in detail in

[8]. The ∇η field was measured with a spatial resolution of approximately 2 vectors per

millimeter such that the total size of the array was 1900× 1900, with a temporal resolution

of 5 fields per second. The surface velocity of the flow can be determined from the measured

gradient of surface elevation using shallow water and quasi-geostrophic approximations which

yields

V =
g

f0
n×∇η − g

f 2
0

∂

∂t
∇η − g2

f 3
0

J(η,∇η), (2.3)

where V is the horizontal velocity vector, n is the vertical unit vector, and J(A,B) =

AxBy − AyBx is the Jacobian operator. The first term on the RHS of Equation (2.3) is the

geostrophic velocity. The second and third terms are due to transient and nonlinear effects

and their relative importance is determined by the temporal Rossby number RoT = 1/(f0T )

and the Rossby number Ro = V/(f0L), respectively. Here T is the time scale of the flow

evolution, while V and L are velocity and length scales of the flow.
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2.3 Experimental results and analyses

We performed two experiments with different forcing which will be referred to as the barotropic

(Bt) experiment with the EM forcing and the baroclinic (Bc) experiment with the thermal

forcing. Note that in fact an ensemble of EM experiments with similar values of the dimen-

sional control parameters was performed. The mean water depth and the forcing strength

varied within approximately 15% between the experiments. Here we give the results which

are typical for the ensemble. In what follows we discuss the Bt and Bc experiments in parallel

emphasizing the similarities and differences between them.

Observation of the flow evolution

Figure 2.2 (multimedia view) shows a typical evolution of the flow in the forced regime

and after the forcing stops in the Bt experiment. The initial period, shortly after (3 s) the

forcing was switched on, is shown in top row of Figure 2.2. A regular array of vortices of

alternating sign is formed such that there are approximately 10 vortices of the same sign

across the tank. Note that initially the vortices between the adjacent magnets have double

cores (Figure 2.2(c)) because the magnets generate vortex dipoles directed along parallel lines

in the directions opposite to each other. However, these cores rapidly coalesce into a single

vortex. The flow is much stronger in the center of the tank where the water is shallow. The

second row of Figure 2.2 shows the flow at the end of the relatively long forcing period when

the flow is at approximately steady state, the turbulence is fully developed; strong vortices

are abundant. They are no longer attached to specific locations although some indications
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Figure 2.2: Evolution of the barotropic turbulent flow with the β-effect visualized by AIV in

the Bt experiment (Multimedia view): initial period shortly after the forcing starts, t = 2 s

(a-c), stationary forced turbulence, t = 380 s (d-f) and decaying turbulence, t = 2 s (g-i)

and t = 30 s after the forcing was stopped (j-l). The first column of panels shows velocity

vectors superposed on color altimetry images. The velocity scale is given in the lower left

corner of each panel. The second column shows the x-component of velocity, vθ, while the

third column shows the dimensionless vorticity ζ/f0 varying from negative values (black,

anticyclonic) to positive values (white, cyclonic).
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of the regular forcing array can be seen in the azimuthal velocity map (Figure 2.2(e)). The

typical size of the vortices corresponds well to the forcing scale. The third row of Figure 2.2

shows the flow shortly after the forcing was switched off. The vortices are still prominent,

yet a certain alignment of vortices in the zonal direction is also evident. The map of the

x-component of velocity, u, shown in Figure 2.2(h) indicates the emergence of zonal jets in

the flow. Finally, the bottom row of Figure 2.2 shows the decaying flow at the very end of

the experiment when vortices no longer dominate but zonal currents are still present. Note

an interesting spiral pattern of jets in this flow. Most likely, the spiral manifests the Rossby

waves with spiral crests which occur above the isolated underwater mountains [96, 97]. In

our case, the entire water layer with shallow water in the center and deep water at the wall

of the tank, can be considered as that above a mountain. We will illustrate this effect using

linear Rossby wave theory in section Section 2.3.

Figure 2.3 shows the azimuthal velocity vθ and relative vorticity ζ/f0 in the Bc experi-

ment. The warm water rises from the wire at the bottom to the surface forming a narrow

upper layer initially aligned along the wire. This layer is lens-like in cross section and is

unstable with respect to baroclinic/frontal instability. It rapidly breaks into small eddies

of typical radius of approximately 1 cm. The size of the eddies is most likely determined

by baroclinic radius of deformation. These eddies possess available potential energy which

then is slowly released into the system. During the forcing period strong vertical convective

motions induced by hot wires is the main source of energy. The effect of this forcing can be

described by the β-plume theory which was developed in application to hydrothermal vents
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Figure 2.3: Baroclinic flow generated by thermal forcing in the Bc: forced turbulence, t = 360

s (a, b) and decaying turbulence, t = 40 s after the forcing was stopped (c, d). Panels (a)

and (c) show the x-component of velocity, vθ; panels (b) and (d) show the dimensionless

vorticity ζ/f0.
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in the ocean [116]. When the forcing was switched off, the eddies available potential energy

becomes the main source which can sustain the flow for a very long time. Panels (a) and (b)

of Figure 2.3 show the flow during the forcing period. Comparison with the Bt experiment

reveals that jets are more prominent in this case most likely because the eddies are much

smaller and weaker than those induced by magnets. It is interesting to note that this obser-

vation agrees with the results of high-resolution numerical simulations [106]. These authors

reported that the onset of strong jets in the forced-dissipative barotropic β-plane turbulence

occurs when the jet and eddy vorticity maxima are comparable, but jets weaken when the

eddies are too strong. During the decay period the azimuthal velocity map (Figure 2.3(c))

shows a spiral pattern similar to that in Bt experiment. However, the relative vorticity map

(Figure 2.3(d)) reveals that the eddies are much more alive in this experiment compared to

the barotropic one. Note also that a cyclonic circulation develops in the tank which causes

the asymmetry between the strength of the eastward and westward jets. This circulation is

due to a gradual accumulation of warm water at the periphery of the tank. The circulation

then occurs as suggested by the thermal wind balance with a radial gradient of density.

In order to investigate whether the flow becomes stationary during the forcing period,

we measured kinetic energy Ē = V2/2 and enstrophy ζ̄2 in both experiments. Time series

of mean values of both quantities are shown in Figure 2.4. In the Bt experiment both

energy and enstrophy fluctuate around some stationary levels during the forcing period. In

the Bc experiment both quantities continue to rise slowly over a long period of time until

they reach approximately steady levels at t = 2500 s. After the forcing stops both energy
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Figure 2.4: Kinetic energy Ē and enstrophy ζ̄2 averaged over the tank versus time in the Bt

(a, c) and Bc (b, d) experiments.

and enstrophy decay rapidly in the Bt experiment while in the Bc experiment the decay

is much slower. The measurements of energy decay allow us to quantify dissipation in the

experiments. Dissipation in the rotating fluid can be interpreted in terms of friction in the

bottom Ekman layer and viscosity in the bulk of the layer. The rate of change of the mean

energy in the system is given by

dĒ

dt
= −2αĒ − νζ̄2, (2.4)

where bottom friction is parameterized by a linear term with linear drag coefficient α and

ν is the kinematic viscosity of fluid. The coefficient α can then be determined as α =

−[d(lnĒ)/dt + νζ̄2/Ē]/2. The coefficient α is approximately equal to 0.05 s−1 in the Bt

experiment. The coefficient was measured immediately after the forcing stops using the

spatial-averaged energy and enstrophy data shown in Figure 2.4(a) and (c). Note that the
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contribution of bulk viscosity constitutes only 11% of the total rate of change of energy

such that most of the energy is dissipated at the bottom. Ekman dissipation is not uniform

across the domain; the system loses energy faster in the shallow area in the center than in

the deeper layer at the periphery. Alternatively, a theoretical estimate α =
√

Ων/H can be

obtained from the bottom Ekman layer theory. Theory gives α = 0.06 s−1 in the center and

α = 0.01 s−1 at the wall of the tank in the Bt experiment.

The presence of an energy source (baroclinic eddies) in the flow during the decay period

in the Bc experiment makes it impossible to measure α using mean energy and enstrophy

data. In this experiment we have to rely on the theoretical estimate only. It gives more

uniform distribution with radius than that in the Bt experiment with α varying between

0.03 s−1 in the center and 0.01 s−1 at the wall. A bulk value (averaged over the area) is

α = 0.02 s−1.

An important control parameter in a forced-dissipative turbulence is the rate, ε, at which

the forcing supplies energy to the system. In a stationary flow this energy is subsequently

removed from the system by dissipation at the same rate. Assuming that, immediately after

the forcing stops, the energy dissipation rate remains the same as it was during the forcing,

ε, can be estimated as

ε = −dĒ
dt
≈ 2αĒ. (2.5)

using Equation (2.5) but neglecting the dissipation due to bulk viscosity. The value of ε

in the Bt experiment is 0.1 cm2/s3 while in the Bc experiment ε = 0.006 cm2/s3, these

values are calculated by differentiating spatial-averaged energy with respect to time during
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Figure 2.5: Evolution of the two-dimensional energy spectrum in the Bt experiment. The

scale on the right shows the logarithm of relative energy (normalized by spatial averaged

energy in the tank), in kx − ky wavenumber space at (a) t = 4 s, (b) t = 382 s from the

start of the experiment and at (c) t = 12 s after the forcing was switched off. The white

line in panel (b) shows kR given by Equation (2.10) while the black line shows kβ given by

Equation (2.11).

the decaying regimes in the experiments.

Energy spectra in wavenumber space

Further insight into the dynamics of the turbulent flow can be provided by an analysis of its

spectral characteristics. For a Fourier decomposition it is convenient to use the Cartesian

coordinates. We chose the local coordinate system which corresponds to the β-plane centered

at the reference radius r0 = 2Ri/3. The domain is of halfwidth Ri/3 such that we cut off the

central part of the tank. The velocity vectors obtained by altimetry (in the global Cartesian

coordinates) are mapped into the local coordinate system to obtain the velocity u = (vθ, vr)

where vθ is the West-East and −vr is the South-North component of the velocity vector.
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Two-dimensional energy spectrum is given by

E(kx, ky) =
1

2
|u(kx, ky)|2, (2.6)

where k = (kx, ky) is the wavenumber vector and u(kx, ky) represents the discrete Fourier

transform of the velocity vector. Figure 2.5 shows the evolution of the two-dimensional

spectrum in the Bt experiment. The spectrum shortly after the forcing starts (Figure 2.5(a))

is in the form of a ring and is approximately isotropic. Note that since there are initially

approximately 10 vortices of the same sign across the tank, the forcing wavelength is λf =

2Ri/10 = 9 cm (equal to twice the distance between the magnets). The forcing wavenumber

is then kxf = kyf = 2π/λf ≈ 0.7 cm−1 which corresponds well to the size of the ring in

Figure 2.5(a). Figure 2.5(b) shows the spectrum of a stationary forced flow. An important

feature of the spectrum is the concentration of energy at the line kx = 0 which, in physical

space, is an indication of zonal jets. Finally, panel (c) in Figure 2.5 shows the spectra of the

decaying flow when the system is no longer driven to isotropy by forcing. Strong anisotropy

develops with most of the energy concentrated in zonal motions at kx = 0 and ky ≈ 0.7 cm−1.

In physical space, vortices decay while zonal jets become more prominent.

Figure 2.6 shows the two-dimensional spectrum in the Bc experiment. Initially (Fig-

ure 2.6(a)) the strongest signal is at approximately k ≈ 1 cm−1 which corresponds to the

spacing between the segments of the wire. The second, albeit weaker ring is visible at

k ≈ 2.2 cm−1. This wavenumber corresponds to the small scales of baroclinic eddies formed

as a result of baroclinic instability. Eventually, energy cascades towards smaller wavenum-

bers, and concentrates as well near the line kx = 0. Figure 2.6(b) shows the spectrum after
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Figure 2.6: Two-dimensional energy spectrum in the Bc experiment in the beginning of the

experiment at (a) t = 35 s and at (b) t = 37 s after the forcing was switched off. The white

and black lines show kR and kβ, respectively.

the forcing was switched off. The spectrum is qualitatively similar to that in the Bt experi-

ment (Figure 2.5(c)). Solid white and black lines in Figure 2.5(b) and Figure 2.6(b) show the

anisotropic Rhines wavenumber, kR and a wavenumber kβ respectively. These wavenumbers

are determined using a synchronization condition for turbulence and Rossby waves which

requires the frequency of the turbulent motions to be equal to the frequency of the waves.

The frequency of the Rossby waves is determined by their dispersion relation

ω(kx, ky) =
−βkx

k2 +R−2d
, (2.7)

where k2 = k2x + k2y and Rd =
√
gH/f0 is the radius of deformation. Turbulence, on the

other hand, does not have a dispersion relation; the frequency of turbulent motions can be

determined using different considerations. [98] used the root-mean-square (rms) velocity of
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vortices to obtain

ω = Vrmsk. (2.8)

Turbulence is assumed to be isotropic with wavenumber k characterizing a vortex arrange-

ment in the turbulent flow. Alternatively, the characteristic frequency of forced turbulence

can be obtained using the energy injection rate ε as a main control parameter. In the up-

scale energy cascade with spectral slope −5/3, the time required for a fluid parcel to move

a distance 1/k is ε−1/3k−2/3 ([122]) which gives

ω = ε1/3k2/3. (2.9)

Equating turbulent frequencies Equation (2.8) or Equation (2.9) to the Rossby wave fre-

quency Equation (2.7) and solving for the wavenumber, we obtain the Rhines wavenumber

kR = (
β

Vrms
)1/2 cos2 θ, (2.10)

and the kβ wavenumber

kβ =
β3

ε

1/5

cos3/5 θ. (2.11)

Here θ is the angle in the wavenumber plane such that cos θ = kx/k. In the derivations of the

wavenumbers we assumed Rd to be large and ignored it in the dispersion relation. Physically,

kβ can be interpreted as a wavenumber where turbulence starts feeling the β effect. A match

between the eddy frequency and the Rossby wave frequency allows the turbulence to emit

Rossby waves. The energy cascade, however, does not stop there and continues towards

smaller wavenumbers, especially towards kx = 0 [121]. The Rhines wavenumber determines
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where the Rossby waves are emitted most effectively by turbulent motions of characteristic

velocity Vrms. Note that this velocity is determined by the balance of the energy supply

by the forcing and its withdrawal by dissipation. The Rhines wavenumber represents a

boundary which divides small-scale turbulence and large-scale wave dominated motions.

The lines in Figure 2.5(b) and Figure 2.6(b) are calculated using parameters measured in

the experiments: Vrms =
√
Ē and ε = 2αĒ. It is clear that the space inside the dumbbells,

where the Rossby waves dominate, contains reduced energy. The lines showing anisotropic

wavenumbers kR and kβ in Figure 2.5(b) and Figure 2.6(b) represent certain frequencies

selected using the criteria specified by Equation (2.8) and Equation (2.9). However, turbulent

motions emit waves with the entire spectrum of frequencies. Rossby wave emission by a

localized perturbation is described by the β-plume theory [116, 38]. The β-plume approach

can be used to show that a two-dimensional spectrum of turbulence evolves towards an

anisotropic state similar to that observed in Figure 2.5(b) and Figure 2.6(b). The emission

of Rossby waves occurs due to a forcing in the RHS of a linearized quasi-geostrophic equation

∂

∂t
(∇2 −R2

d)η + β
∂η

∂x
= F, (2.12)

where η is the surface elevation. The forcing is isotropic with a known spectrum. In par-

ticular, an isotropic small-scale turbulence with the developed (due to nonlinear triad inter-

actions) −5/3 type energy cascade can be considered as forcing for this purpose. Note that

[76] used a forcing which modeled small-scale convective plumes in an atmosphere in their

numerical simulations of the quasi-geostrophic equation. They showed that the cascade of

energy from small to larger scales occurred and a system of zonal jets was produced. Here
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we skip the nonlinear cascade and consider only the Rossby waves generated by the vortices

produced by the cascade. A solution for the Fourier transform of the surface elevation η can

be obtained as

η(kx, ky) =
iF (kx, ky)

kxβ
[exp(−iωt)− 1], (2.13)

where F (kx, ky) is the forcing and ω is the frequency of the Rossby waves given by the dis-

persion relation Equation (2.7). Geostrophic velocity is obtained from the surface elevation

as

ug(kx, ky) =
g

f0
(iky,−ikx)η(kx, ky), (2.14)

and the two-dimensional energy spectrum is then calculated using Equation (2.6). Figure 2.7

shows the evolution of the spectra generated by an isotropic Gaussian forcing

F (kx, ky) = exp(−(k − kf )2

0.04
), (2.15)

where kf = 1 cm−1 is the forcing wavenumber. The ring-like Gaussian forcing approximately

models the forcing applied by the magnets in our experiment. The dimensional control

parameters used to calculate the spectrum shown in Figure 2.7 are chosen to have the

same values as in the Bt experiment. Figure 2.7 shows that the energy spectrum develops

from the initially isotropic spectrum towards a strongly anisotropic one where the energy

is concentrated at the kx = 0 line similar to that in the experiment (in Figure 2.5 and

Figure 2.6(b)).

One-dimensional energy spectrum is an important characteristic of a turbulent flow which

can be easily obtained from the two-dimensional spectrum such as that shown in Figure 2.5
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Figure 2.7: The evolution of the energy spectrum given by the theoretical solution Equa-

tion (2.14). The scale on the right shows the logarithm of energy in kx − ky wavenumber

space at (a) t = 10 s, (b) t = 100 s, and at (c) t = 500 s. The dimensional parameters are

kf = 1 cm−1 , f0 = 4.64 s−1, β = 0.2 cm−1s−1 , and Rd = 18 cm.

and Figure 2.6. The one-dimensional (isotropic) spectrum is defined as

E(k) = 2πkĒ(kx, ky). (2.16)

where the two-dimensional spectrum Ē(kx, ky) is averaged over angle θ in wavenumber do-

main. In anisotropic β-plane turbulence, a zonal spectrum can be defined as

Ez = Ē(kx = 0, ky). (2.17)

Theory predicts a steep zonal spectrum [98, 119]:

Ez(ky) ∼ β2k−5y , (2.18)

while the non-zonal spectrum is expected to have a slope of −5/3 as predicted by Kolmogorov

theory for two-dimensional turbulence. Figure 2.8 shows both the isotropic spectrum Ē(k)

and zonal spectrum EZ(ky) in the Bt experiment while Figure 2.9 shows the spectra in the
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Figure 2.8: The one-dimensional spectra of relative energy (normalized by spatial average

energy in the tank) in forced (a) and in decaying turbulence (b) with the barotropic electro-

magnetic forcing: energy E(k) (upper curve) and zonal energy EZ(ky) (lower curve). Arrows

indicate the forcing wavenumber kf . Panel (c) and (d) shows the Kolmogrov constants of

E(k) and EZ(ky) in (a).
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Figure 2.9: The same as before but for the flows with the baroclinic thermal forcing.
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Bc experiment. In both experiments, in the forced-dissipative regime the isotropic spectrum

shows a good agreement with the predictions of the two-dimensional turbulence theory. The

enstrophy and energy ranges are separated by a forcing wavenumber. In the Bt experiment

the isotropic forcing wavenumber is kf =
√

2kxf ≈ 1 cm−1 (arrow in Figure 2.8). In the Bc

experiment the forcing wavenumber corresponds to the size of the baroclinic eddies and is

more difficult to pinpoint precisely but it is clearly smaller than the forcing wavenumber in

the Bt experiment. In the enstrophy range (k > kf ) the slope of the energy spectra is close

to −3 in both experiments. The slope in the energy range (k < kf ) is close to −5/3 in both

experiments. Note, however, that the energy range in the Bt experiment is quite limited.

The RSW experiments by [2] showed that the finite radius of deformation can be a limiting

factor for the cascade (see also [37]). In the ring-shaped domain we use for measuring spectra

the values of Rd vary between 13 cm and 26 cm (bulk value 20 cm) and between 15 cm and

23.5 cm (bulk value 21 cm) in the Bt and Bc experiments, respectively. These values are

similar to those in [2] and so are the lowest limits of the energy range.

The zonal spectra EZ(ky) show peak at low wavenumbers and decline, albeit some-

what flatter than −5, at larger wavenumbers. Compensated energy spectra in the form

E(k)ε−2/3k5/3 are shown in panel (c) of Figures 2.8 and 2.9. The compensated spectra in

both experiments exhibit plateaus at the energy range that allows us to determine the value

of the Kolmogorov constant, C ≈ 6 and 5 in the Bt and Bc experiments, respectively. Com-

pensated zonal spectra, EZ(ky)β
−2k5y (Figure 2.8(d) and Figure 2.9(d)), however, vary with

ky and do not allow an accurate measurement of a constant in the theoretically predicted
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−5 law. The spectra in Figure 2.8 and Figure 2.9(b) were measured after the forcing was

switched off and the flows were decaying. In the Bt experiment the levels of energy decrease;

the shape of the zonal spectrum remains almost the same while the isotropic total energy

spectrum loses its −5/3 range and exhibits a uniform slope of approximately −3 from the

low wavenumber cut-off at k ≈ 0.5 cm−1 towards larger wavenumbers. In contrast, in the

Bc experiment the flow is still driven by the baroclinic energy source at relatively large

wavenumbers even when the direct forcing was switched off. The −5/3 range remains and

is even wider than that in Figure 2.9(a).

Figure 2.10 shows the evolution of the energy spectra E(k) after the forcing was switched

off in each experiment. The levels of energy drop and the peaks of spectra shift to lower

wavenumbers. To characterize the shift of the spectral peak it is useful to consider the

energy-weighted mean wavenumber kE defined as

kE =

∫ ∞
0

kE(k)dk/

∫ ∞
0

E(k)dk

Wavenumber kE provides a measure of the energy containing scale. Evolution of kE just

before and after the forcing was stopped is shown in Figure 2.10(c, d). In both Bt and Bc

experiments the energy-weighted mean wavenumbers stay at some constant level during the

forcing and then drop to a lower level when the forcing was stopped. Similar behaviour was

also observed in previous EM experiments[5].
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Figure 2.10: Evolution of the one-dimensional energy spectra (a, b) and the energy-weighted

mean wavenumber kE (c, d) in decaying turbulence in the Bt (left column) and Bc (right

column) experiments. Arrows indicate time when the forcing was switched off in each ex-

periment.

Frequency-wavenumber space and Rossby waves

In his pioneering paper on β-plane turbulence Rhines [98] predicted that Rossby waves should

dominate at low wavenumbers below the wavenumber kR. In what follows we shall provide

experimental evidence of the Rossby waves in our experiments. It is not easy to identify waves

in a turbulent flow. One way to do that is to use the fact that Rossby waves have a distinct

dispersion relation Equation (2.7). The dispersion relation shows in particular a well-known
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property, namely the westward phase propagation of the Rossby waves. Figure 2.11(a, b)

shows the x-component of velocity, vθ, measured along a circle of radius r0 = 2Ri/3 and

r0 = 2Rt/3 at different times during the Bt and Bc experiments respectively. The Hovmoller

plot in Figure 2.11 shows vθ in gray scale with distance along the circle in the horizontal and

time in the vertical axes. The human eye is good at identifying patterns and it is easy to

see a pattern of features aligned in oblique straight lines in these plots. These features are

perturbations of the velocity u and they propagate in the negative x-direction, to the west.

The slope of the lines then gives the phase velocity of the waves. Similar measurements

performed at different radii r0 show that the Rossby waves present almost everywhere in the

tank except for the center.

The dispersion relation Equation (2.7) can be used in a more direct way to identify the

spectral signature of the Rossby waves. Figure 2.12 shows the energy spectra in a frequency-

wavenumber domain in both Bt and Bc experiments. To calculate the spectra we measured

the velocity (u, v) along the circle r0 during a long time period (100 lab days and 3 lab years

in the Bt and Bc experiment, respectively.) when the flow is forced and then performed

the Fourier transform in time and in distance, x, along the circle. The resultant spectra

show some interesting features of the flow. In the Bt experiment where the forcing was

relatively strong and fixed in space, high energy motions are mostly concentrated at almost

zero frequencies with hot spots at kx ≈ ±0.8 cm−1, close to forcing wavenumber, and at

kx = 0. These high-energy, almost stationary motions radiate towards higher frequencies. In

contrast, zero-frequency motions are not so obvious in the Bc experiment and main energy
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Figure 2.11: Velocity vθ measured along a circle of radius r0 equal to two thirds of the radius

of the domain at different times in the Bt (a) and Bc (b) experiments. The gray scale shows

vθ in cm/s.

is concentrated in a plume extending to higher frequencies. The distribution of spectral

energy at higher frequencies is clearly asymmetric with respect to the wavenumber kx in both

experiments. Most of the energy is at negative kx which indicates that westward propagating

waves dominate in the flow. The white lines in both panels in Figure 2.12 show the Rossby

waves dispersion relation Equation (2.7) calculated with different values of ky. The upper

curves are calculated with ky = π/Ri = 0.07 cm−1 (Bt experiment) and ky = 0.06 cm−1 (Bc

experiment) which correspond to largest possible wavelengths that fit across the tank. These

curves provide an upper limit for the frequencies of the Rossby waves. The lower curves are

calculated with the wavenumber ky = 0.7 cm−1 equal to the forcing wavenumber. Thus,
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Figure 2.12: The relative energy (normalized by the spatial-averaged energy) spectrum in

the frequency-wavenumber space. The scale shows the logarithm of energy. The frequency

is normalized by the Coriolis parameter f0 . White curves show the Rossby wave dispersion

relation Equation (2.7) with ky = 0.07 cm−1 and Rd = 20 cm (a), and ky = 0.06 cm−1 and

Rd = 19 cm (b) (upper curves); and with ky = 0.7 cm−1 and Rd = 20 cm (a), ky = 0.7 cm−1

and Rd = 19 cm (b) (lower curves). The solid straight lines shows turbulent frequency given

by Equation (2.8) with Vrms = 1.34 cm/s (a) and Vrms = 0.4 cm/s (b).
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Figure 2.13: Rossby wave with spiral wavecrests propagating towards the center of the

domain and represented by a solution in the form of the Hankel function.

most of the Rossby waves that can be excited in this system should be in between these

two lines. According to [98] waves are excited most effectively at frequencies given by the

turbulence dispersion relation Equation (2.8). The straight white lines in Figure 2.12 show

Equation (2.8); there is indeed some concentration of energy along these lines.

Let us return now to the spiral pattern of jets that we pointed out earlier in Figure 2.2(k)

and Figure 2.3(c). The spiral patterns were observed in the decaying flows. The energy is

dissipated faster in the center of the domain where water is shallow. Therefore, we can

expect propagation of energy from the periphery where the turbulence is still active towards

the center. Turbulent eddies excite Rossby waves which can be described by linear theory.

Here, however, we need to use a polar domain rather than a regular β-plane. Linearised
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quasi-geostrophic equation similar to Equation (2.12) but in polar coordinates (r, θ) can be

written as

∂

∂t
(∇2 −R−2d )η + 2γ

∂η

∂θ
= 0. (2.19)

Here we use a so-called polar β-plane such that either the Coriolis parameter varies quadrat-

ically with distance from the pole on a rotating planet, f = f0 − γr2 , or water depth varies

quadratically with radius in the laboratory setting. In the latter case the coefficient γ is

defined as

γ =
2Ω(Ω2/2g + cb)

H0 −Hb

. (2.20)

Looking for the solution of Equation (2.19) in the form η = Ψ(κr) exp(imθ−iωt) one obtains

a dispersion relation for the Rossby wave on a polar β-plane [99]:

ω =
2γm

κ2 −R−2d
. (2.21)

Radial dependence is given by either the Bessel function Ψ(κr) = Jm(κr) or the Hankel

functions H
(1)
m (κr) and H

(2)
m (κr). The former case corresponds to standing waves while the

latter case describes waves propagating either inwards or outwards. Figure 2.13 shows the

Hankel wave with spiral wavecrests which corresponds to wavemode m = 8, κ = 0.73 cm−1.

The particular values of the wavenumbers were chosen to match the pattern with that ob-

served in the Bc experiment (Figure 2.3(c)). Thus, this simple linear analysis allows one to

see where the experiments are in the relevant wavenumber space.
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2.4 Discussions and conclusions

In this work, we have shown experimental evidence that zonal jets occur both in forced-

dissipative and in decaying turbulent flows on the topographic β-plane. The jets are latent

in the forced-dissipative case if the forcing is strong and eddies dominate; the jets in our

Bt experiment are similar in this respect to oceanic jets which can only be revealed by

filtering and time-averaging of the velocity fields [80, 81]. The jets are stronger, relative to

the eddies, in the Bc experiment where the forcing was weaker. The jets become prominent

in the decaying regime in both experiments, when the flow is no longer driven to isotropy

by strong forcing.

Numerical simulations of β-plane turbulence by [52, 51, 118, 106] showed that the ratio

Rβ = kβ/kR controls the regime of the flow. When Rβ is large enough (Rβ > 2), the flow

is in a so-called zonostrophic regime when the jets are a dominant feature of the flow. The

jets on gas giants satisfy the criterion of zonostrophy. When Rβ is less than approximately

1.5, the flow is in a viscous regime. A regime between the viscous and zonostrophic regimes

(1.5 < Rβ < 2) is transitional. The jets in the Earths oceans seem to be in the transitional

regime and so are the jets in our Bt experiments where Rβ ≈ 1.7.

The measurements of the energy spectrum in the wavenumber space demonstrated that

the spectrum evolves from initially almost isotropic one to an anisotropic spectrum of a

typical dumbbell form which was previously observed in numerical simulations [122]. The

evolution of the experimental spectrum is in a qualitative agreement with that predicted by

a β-plume theory. The energy cascades towards kx = 0 and nonzero ky close to the forcing
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wavenumber.

Investigations of the energy spectra in the frequency-wavenumber domain revealed an

asymmetry of the spectra with respect to the sign of the zonal wavenumber kx. This asymme-

try can be explained by the westward propagation of the Rossby waves. Some concentration

of wave-energy was observed along the line ω = Vrmsk as predicted by [98]. The asymmetric

frequency-wavenumber energy spectra, which are qualitatively similar to those observed in

our experiments, were also observed in the middle latitude ocean [129]. In the ocean,the

spectra also indicated a predominantly westward propagation of perturbations. Significant

energy was distributed along the so-called non-dispersive line given by ω = βR2
dk. This

line was tangent to the first-mode baroclinic Rossby wave dispersion curve. Note that in

our experiments the Rossby waves were barotropic, so the non-dispersion line represented a

barotropic Rossby wave speed for the longest spatial scale (the maximum wave speed allowed

by local water depth). However, in our case, shorter waves with wavenumbers close to the

forcing wavenumber were more prominent than long non-dispersive waves.

In this work we do not distinguish between jets and almost zero-frequency Rossby waves

with nearly zonal wavecrests. In Figure 2.2(j-l) and Figure 2.3(c) the (slightly spiralling)

jets can be directly associated with Rossby waves emitted by eddies in the decaying flows.

Moreover, we suggest that β-plume mechanism or emission of low-frequency waves by per-

turbations is the underlying mechanism in jets formation by β-plane turbulence. This notion

is illustrated in Figure 2.7 showing the evolution of the two-dimensional spectrum towards

zonal motions solely by linear wave emission. Further sustaining the jets by turbulence will
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perhaps involve nonlinear mechanisms where a self-organization of the jet-eddy system is

important and results in fluxes of momentum from eddies to jets.
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Chapter 3

Baroclinic Turbulence on the Polar

β-plane in the Rotating tank: Down

to Submesoscale

This chapter is an article submitted to Ocean Modelling (Zhang and Afanasyev 2016).

3.1 Introduction

General ocean circulation contains motions of different scales; the energy source for the

most energetic motions is often at mesoscale and is due to the baroclinic instability. It is

well-known that energy is transferred from the source scale to larger scale via the inverse

cascade mechanism predicted by the dual-cascade theory [69]. However, the energy must also



CHAPTER 3. BAROCLINIC TURBULENCE ON THE POLAR β-PLANE IN THE
ROTATING TANK: DOWN TO SUBMESOSCALE 57

be transferred to small scales where it is ultimately dissipated by viscosity. Submesoscale

motions are believed to be important in providing the direct energy cascade via specific

instabilities such as inertial, shear, frontal or baroclinic instabilities. Submesoscale motions

are typically narrow currents or small eddies characterised by the relatively high values

of strain and relative vorticity (Rossby numbers O(1)). These currents are often frontal

and have strong horizontal gradients of buoyancy and are surface-intensified. Technical

progress in the recent years allowed researchers to make detailed measurements of flows at

submesoscale in the ocean (e.g. [107, 25]) as well as to perform high-resolution numerical

simulations (e.g. [26, 27, 25, 32, 55]).

Here we employ a complementary tool, the laboratory experiment, to study turbulent

baroclinic flows with the β-effect. The experiments study the dynamics of the real fluid

as opposed to “digital” fluid in numerical simulations where there might always be some

degree of approximation due to unavoidable subgrid parametirizations. The challenge of

field studies is to make comprehensive measurements on sufficiently large scale; the same

challenge exists in the laboratory experiment. We use optical altimetry which not unlike

the satellite altimetry, provides a global coverage and yet is able to resolve the motions of

smallest scale present in the flow. The obvious disadvantage of the laboratory experiments

remain, of course, a relatively large dissipation.

In what follows we use the data obtained in the previous experiments [78] where a two-

layer baroclinic flows on the topographic β-plane were studied. The shear between the

layers supported baroclinic instability; the eddies and filaments created by the instability
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were affected by the β-effect and, in turn, generated Rossby waves and alternating zonal

jets. These flows can be considered as a laboratory model of the Antarctic Circumpolar

current or the Gulf Stream or Kuroshio extentions. A comprehensive analyses of the general

dynamics of the flows was given in [78]; here we investigate spectral characteristics of the

flows from the large and meso-scales down to smaller scales which can be related to the

oceanic submesoscale. The purpose is to clarify the dynamical processes which create spectral

features over the entire range of wavenumbers and frequences. The distinct features of our

flows include large scale zonal circulation, mesoscale meanders/eddies, Rossby waves and

submesoscale filaments and eddies.

In Section 3.2 of this paper, we very briefly describe the setup of the laboratory apparatus

as well as the altimetry technique since both were described in detail in previous publications.

In Section 3.3 the methods used to calculate energy spectra both in the Cartesian and polar

coordinates are described. The results of the spectral analyses are reported in Section 3.4

and concluding remarks are given in Section 3.5.

3.2 Laboratory techniques

Experiments were performed in a cylindrical tank installed on the rotating table. The tank

of radius R = 55 cm was filled with water of depth H = 10 ∼ 12 cm and was rotated

aniclockwise with angular rate Ω = 2.3 rad/s. The water in the tank was of salinity varying

between S = 10 ppt and 45 ppt in different experiments. The flow was forced by injecting a
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volume of 20 liters of fresh water along the wall of the tank. The injected water then formed

a fresh layer on top of the saline layer [78].

Altimetric measurements were performed to obtain the horizontal gradient of the surface

elevation, η over the entire tank [8]. The data was measured on a regular grid in the global

Cartesian coordinates (X, Y ) with the origin in the center of the tank. The smallest spatial

scale resolved by the altimetry was approximately 0.2 cm after filtering the original data

with the window of 5 by 5 pixels to reduce noise from the camera sensor. The fields of

the surface elevation gradient, ∇η, were recorded with frequency of 7 frames per second.

Thus, the measured data had sufficient spatial and temporal resolution for the purpose of

the spectral analyses reported in this paper.

The measured gradient allowed us to estimate the surface velocity, V in the quasi-

geostrophic approximation using the following expression

V =
g

f0
(n×∇η)− g

f 2
0

∂

∂t
∇η − g

f 3
0

J (η,∇η) , (3.1)

where f0 = 2Ω is the Coriolis parameter, n is the vertical unit vector and J (A,B) is the

Jacobian operator. Note, that the first term in the RHS of Equation (3.1) is the geostrophic

velocity. Thus, in the experiments ∇η or, alternatively, the pressure gradient, ∇p = ρg∇η

where ρ is density of water and g is the gravitational acceleration, is measured “exactly”

while V is determined approximately and is more accurate when the flow is closer to being

quasi-geostrophic. Typical values of the Rossby number, Ro = |ζ|/f0, were 0.2 or less in the

experiments such that the condition of quasi-geostrophy was reasonably satisfied. Here ζ is

the relative vorticity of the flow, ζ = curlV · z.
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The free surface of the rotating fluid is a paraboloid such that in the tank with flat

bottom the depth, h, of the fluid varies quadratically with the distance r from the axis of

rotation (the center of the tank). According to the conservation of potential vorticity, flows

in the layer of depth varying with r are dynamically equivalent to flows in a layer of uniform

depth but with the Coriolis parameter varying with r. In the first-order approximation this

dynamical equivalence can be represented by the so-called polar β-plane (or γ-plane) where

the Coriolis parameter varies quadratically:

f = f0 − γr2, (3.2)

here γ = Ω3/(gH). The center of the tank is the North pole of the polar β-plane. A

traditional β-plane can also be introduced in “midlatitudes” where the Coriolis parameter

varies linearly, such that β-parameter can be defined as [6]

β =

(
f0
h

dh

dr

)
r=r0

=
8Ωr0

4R2
d + 2r20 −R2

, (3.3)

where r0 is the reference distance from the pole and Rd = (gH)1/2/f0 is the barotropic radius

of deformation.

3.3 Methods of spectral analyses

The techniques of calculating two-dimensional (2D) and one-dimensional (1D) energy spectra

using discrete Fourier transform in Cartesian coordinates are well known. The Fourier-Bessel

transform in cylindrical polar coordinates, however, is used less often although it is a natural
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choice for a circular polar domain such as our tank (e.g. [5]) or, perhaps, for a polar-to-

midlatitudes domain of an ocean or the atmosphere. In what follows, we briefly describe the

methods we used to obtain spectra in the wavenumber or in frequency domain using both

of the transforms.

2D energy spectrum is defined as

E(kx, ky) =
1

2
|V(kx, ky)|2, (3.4)

where V(kx, ky) represents the 2D discrete Fourier transform of the velocity vector field. In

order to perform the Fourier transform we introduce a local Cartesian coordinate system

with the origin at a reference radius r0 = 25 cm such that the x and y axes are directed to

the East and the North, respectively. We limit the meridional extent of our domain to be 34

cm. Thus, the polar area of the tank, where the β-plane approximation is invalid, as well as

the wall area are excluded. The velocity field calculated from the altimetry measurements

is interpolated into this coordinate system to obtain the zonal (x-) and meridional (y-)

components of the the velocity vector.

1D energy spectrum is defined as

E(k) = 2πk〈E(kx, ky)〉, (3.5)

where

〈E(kx, ky)〉 =
1

π(δk2 + 2kδk)

∫ 2π

0

∫ k+δk

k

E(kx, ky)kdkdφ (3.6)

is the spectral energy averaged over a thin ring of width δk and of inner radius k =
√
k2x + k2y

in kx − ky wavenumber space, and φ is the polar angle in this wavenumber space.
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As an alternative to the local Cartesian coordinate system, a global (applicable to the

entire tank) polar coordinate system (r, θ) can be introduced. The velocity field given by the

altimetric measurements is interpolated into this coordinate system; the velocity vector is

given by its azimuthal and radial components. Fourier-Bessel series is then a natural choice

for spectral decomposition. The velocity is given by

V(r, θ) =
∞∑
m=0

∞∑
n=0

BmnJm(
r

R
αmn) exp(imθ), (3.7)

where Jm(r) is the Bessel function of order m, R is the radius of the tank, and αmn is the

nth root of the Bessel function. The amplitude, Bmn, of each mode (m, n) is given by

Bmn =
2

[RJm+1(αmn)]2

∫ R

0

rV(m, r)Jm(rαmn/R)dr, (3.8)

where

V(m, r) =
1

2π

∫ 2π

0

V(θ, r) exp(−imθ)dθ

is the complex Fourier transform of the velocity along azimuthal direction at some radius r.

A two-dimensional energy spectrum is then defined as

E(m,n) = |Bmn|2J2
m+1(αmn), (3.9)

where J2
m+1(αmn) is a weight coefficient required by the Parseval’s indentity (see Appendix

3.A).

While the definition of the 2D spectrum in wavenumber space (n, m) is straightforward,

defining a 1D spectrum is more complicated. First, a 1D wavenumber analogous to the 1D

(isotropic) wavenumber k =
√
k2x + k2y in the Cartesian system, must be introduced. In the
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polar coordinates, it can be defined as kp = αmn/R. Indeed, when the Laplace operator is

applied on the basis function

Fmn = Jm(
r

R
αmn) exp(imθ), (3.10)

it gives

∇2Fmn =
α2
mn

R2
Fmn, (3.11)

similar to that in the Cartesian system [19]. The discrete values of kp are obtained by sorting

the 2D array αmn into a linear sequence according to the values in αmn. Values of E(m, n)

corresponding to the linear sequence of kp can be used to obtain the 1D spectrum as follows:

E(kp) =
E(m, n)|sorted

∆kp
, (3.12)

where ∆kp is the interval between two consecutive values of kp in the (irregular) sequence.

Thus, the spectrum is defined as energy per unit wavenumber, as required. In practice, the 1D

spectrum obtained after sorting requires some smoothing, especially at high wavenumbers.

This can be done by interpolating the data into a regular sequence of kp after specifying an

appropriate constant interval of the wavenumber.

Energy spectrum in the frequency-wavenumber domain, E(ω, kx) can be defined as

follows:

E(ω, kx) =
1

2
|V(ω, kx)|2, (3.13)

where V(ω, kx) represents the discrete 2D Fourier transform of the velocity along the circle

of some radius r both in x-direction and in time. The 1D energy spectrum in the frequency

domain, E(ω), can then be obtained by integrating E(ω, kx) over kx.
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Energy spectra are sustained by transfers of energy either from smaller to larger wavenum-

bers (direct cascade) or in the opposite direction (inverse cascade) . The spectra themselves

do not provide us with the information on the magnitude or direction of the energy cascades.

This information can be provided by the investigation of the energy fluxes. We employ a

modified filter-space technique (FST, [101]) in order to calculate the spatial distribution

of the energy flux at different scales in physical space as well as to obtain the flux across

different wavenumbers in spectral domain. The energy flux Π is defined as

Πl = −[(vivj)
l − vlivlj]

∂vli
∂xj

, (3.14)

where the subscript i/j denotes the ith/jth component of the velocity vector v, summation

over repeated indices is assumed, and the superscript l denotes a low-pass-filtered field with

scales smaller than l removed. The filtering is performed by multiplying the corresponding

velocity field with a Gaussian filter in wavenumber space followed by an inverse Fourier

transform. The Gaussian filter in the wavenumber domain is defined as

G(kx, ky) =


exp[−20(k − kl)4], if k > kl

1, otherwise

(3.15)

where k =
√
k2x + k2y is the isotropic wavenumber and kl = 2π/l. Positive value of Πl

represents downscale flux, i.e energy transfers from large scales to small scales, while negative

value represents the inverse cascade. Summing the energy flux over the entire area of the

flow we obtain the overall balance of the flux as a function of the cutoff wavenumber kl, as

shown in Figure 3.7.
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3.4 Results

In what follows we analyse the data obtained in the set of experiments where turbulent baro-

clinic flows were generated on the topographic β-plane in the rotating tank. The injection

of fresh water along the wall at the surface of saline layer generates a strong jet current

flowing along the wall such that the wall is on its right. The fresh water layer is at this point

wedge-shaped in cross section. The injection lasts for a relatively short time after which

the flow is allowed to evolve freely. The wall (“coastal”) current is unstable and forms large

meanders and eddies which are injected into previously unstratified interior area of the tank.

The upper fresh layer thus extends gradually towards the center of the tank. After the fast

adjustment during the injection, the relatively slow phase of the adjustment includes slow

radial flow in the upper fresh layer towards the center. The final equilibrium state with the

upper layer of an uniform thickness, however, was never achieved in the experiments. The

radial flow causes an azimuthal circulation as a consequence of the conservation of angular

momentum. As a result, a velocity shear is sustained between the upper and lower layers.

This creates conditions for the development of the baroclinic instability. The unstable flow

continuously creates meanders, filaments and eddies. This is not unlike the bariclinic insta-

bility in the ocean which serves as an energy source at mesoscale. Figure 3.1 shows a typical

view of the flow in one of the experiments. A strong meandering coastal current is clearly

visible in the velocity field (arrows) in Figure 3.1(a). Features of smaller scale occupy the

inner area of the tank. Panel b of Figure 3.1 shows a close view of the flow including a

small cyclonic eddy and multiple filaments. More detailed spatial structure of the flow can
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Figure 3.1: Baroclinic flow in the rotating tank at t = 120 s after switching off the fresh water
source: (a) velocity (arrows) superposed on the altimetric color image; (b) magnified view
of the vortex indicated by the green arrow; (c) dimensionless relative vorticity, ζ/f0 varying
between -1 (blue) and +1 (red) and (d) dimensionless strain rate, s/f0 varying between 0
(blue) and +1 (red). Lower layer salinity is S = 20 ppt.
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Figure 3.2: Time series of the mean azimuthal velocity, Vθ, mean, rms azimuthal velocity,
Vθ rms, and rms radial velocity, Vr, rms. Time starts when the fresh water injection is stopped.
Lower layer salinity is S = 30 ppt.

be revealed in the kinematic fields composed of the spatial derivatives of velocity. Panels c

and d show the relative vorticity, ζ, and the strain rate defined as

s =
√

(∂VX/∂X − ∂VY /∂Y )2 + (∂VX/∂Y + ∂VY /∂X)2, (3.16)

where VX and VY are the components of the velocity in the global Cartesian coordinates

(X, Y ). These fields demonstrate that the flow mainly consists of multiple long and thin fea-

tures with relatively high vorticity or strain rate. The values of relative vorticity normalized

by the Coriolis parameter (Rossby number) are O(1) which implies significant ageostrophy.

The overall filament-like structure of these features and their ageostrophy allow us to relate

them to submesoscale motions observed in the ocean. The energy in the laboratory flow is

dissipated due to Ekman friction at the bottom as well as due to “regular” viscosity in the
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bulk of the fluid. However, the continuous release of baroclinic energy partially compen-

sates dissipation such that the dynamics of the system can be considered quasi-steady for

an extended period of time [78]. Time series of the mean azimuthal velocity and the root-

mean-square values of both the azimuthal and radial components of velocity in Figure 3.2

show a period of fast adjustment followed by the period of very slow evolution of the flow.

Energy spectra in the wavenumber space

In order to investigate how anisotropy develops in the flows we consider first the 2D energy

spectra in the wavenumber domain. Figure 3.3 shows a sequence of spectra measured in

the experiment with salinity of the lower layer, S = 30 ppt. The diagrams of the spectral

energy E(kx, ky) obatined by the 2D Fourier transform in the Cartesian coordinates and

the spectral energy E(n,m) obtained by the Fourier-Bessel transform in polar coordinates

are shown in parallel. Note that the major details of these spectra are qualitatively similar

for all of the experiments with different S. The spectra in Figure 3.3 allow us to identify the

main dynamical features of the flow during its evolution. The spectrum in Figure 3.3(a) is

measured right after the pumping of fresh water was stopped. The flow has a significant large

scale circulation component which manifests itself as a concentration of energy on ky axis.

Baroclinic instability generates mesoscale motions of kx ≈ 0.4 rad/cm and ky ≈ 0. The value

of kx is in agreement with the prediction of the Philips model which gives the most unstable

wavenumber k = 0.64R−1bc ≈ 0.5 rad/cm [88]. Here, the baroclinic radius of deformation is

defined as Rbc = (g′H)1/2/f0, where g′ is the reduced gravity in the two-layer system. Note
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Figure 3.3: Energy spectra in the wavenumber domain: (top row) the Fourier spectra in the
Cartesian coordinates and (bottom row) the Fourier-Bessel spectra in the polar coordinates
at (a, d) t = 1 s, (b, e) t = 300 s, and (c, f) t = 700 s after switching off the fresh
water source. Color scales show energy in logarithmic scale. Red lines in (c) and (f) display
Equation (3.17) and Equation (3.19) respectively. Black crosses in (c) mark the Rhines
wavenumber while the white lines in (f) are lines of αmn = 30, 50, 70, and 90. Lower layer
salinity is S = 30 ppt.

that after a period of initial linear evolution, baroclinic motions become of finite-amplitude.

Their wavenumber in this nonlinearly saturated state is typically smaller than that predicted

by linear theory. The fact that ky is close to zero indicates a significant coherence of the

baroclinic perturbations in the radial (y-) direction that was discussed previously in [78].

This can be understood within a theoretical concept of “noodles” [18].

An interesting feature of the spectra in Figure 3.3(a) and (b) is a certain asymmetry
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with respect to the vertical axis. There is a somewhat larger concentration of energy in the

upper left and the lower right quadrants. This implies that the phase of the periodic pattern

in the flow is shifted in the positive x-direction when we move in the negative y-direction

(away from the center of the tank). This is due to the larger azimuthal velocity near the wall,

especially in the coastal current. The coastal current is the most energetic feature of the flow

and its large meanders modulate the flow in the inner region of the tank. Although the area

of interest that is used for calculating the spectra excludes the coastal current, its influence

is still very significant there. In the experiment with S = 30 ppt the current typically

had between 12 and 15 meanders. Thus, the same periodicity in the azimuthal direction

can be expected in the entire flow. A strong spectral signal should then be expected at

wavenumber kx between 0.25 and 0.3 rad/cm. This coherent pattern is shifted due to the

radial dependence of the azimuthal velocity, hence the asymmetry.

When time progresses, the mean circulation subsides, the (finite-amplitude) baroclinic

eddies and filaments lose their initial noodle-like coherence in the radial direction and become

more isotropic Figure 3.3(b). On the other hand, they emit and interact with the Rossby

waves. This process introduces a specific asymmetry into the spectrum. This asymmetry

can be described by the so-called figure-of-eight curve [122] given by

k = (β cosφ/Vrms)
1/2, (3.17)

where φ = arctan(ky/kx) is the polar angle in the wavenumber space. Figure 3.3(c) demon-

strates a good agreement between the theoretical curve and the experimental energy distri-

bution. Crosses on ky axis mark the Rhines wavenumber, kRh = (β/Vrms)
1/2. Both in panels
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(b) and (c), the spectral signiture of zonal jets at ky ≈ 0.35 rad/cm is distinct. This value

of the wavenumber corresponds to the wavelength, λjet ≈ 18 cm, such that we observe 4

counterflowing jets.

The 2D Fourier spectra, although useful and informative, have certain limitations. The

ring-like area of interest cannot be wide enough to include the pole, otherwise the area

distortions occur due to the fact that the scales in the x-direction are y-dependent. The effect

of these distortions on the energy spectra is difficult to identify. An alternative approach

which is free of these limitations and can be applied in the entire domain, including the pole,

is to use the Fourier-Bessel transform. The energy spectra E(m, n) in the wavenumber space

(m, n) are calculated using Equation (3.9) and are shown in the bottom row in Figure 3.3.

Here m is the wavenumber in the azimuthal direction while n, the number of zeroes of

the Bessel function, serves as the wavenumber in the radial direction. Although the main

features of the energy distribution in the Fourier-Bessel spectra are similar to those in the

2D Fourier spectra, they can be identified more clearly here. The energy concentration at

m = 12 and 13 in Figure 3.3(d) and (e) respectively corresponds exactly to the number of

meanders of the coastal current. The energy maximum at m = 0 and n = 5 in Figure 3.3(f)

gives the number of alternating zonal jets. Note that the width of the jets is determined

by the distance between the consecutive zeroes of the Bessel function J0(α0nr/R) and is not

uniform. A red line in Figure 3.3(f) is a polar-domain analogue of the figure-of-eight curve.

It is obtained by equating an eddy “frequency”, Vrmskp = Vrmsαmn/R, to the Rossby wave
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Figure 3.4: 1D energy spectra in the wavenumber domain in the experiments with salinity
(left) S = 12 ppt and (right) S = 30 ppt. Blue and black lines show the Fourier and
Fourier-Bessel spectra respectively.

frequency [6]:

Vrmsαmn/R =
2mγ

(αmn/R)2 +R−2d
. (3.18)

Numerical solution of Equation (3.18) gives the function n(m) which is shown in Figure 3.3

(f). In a similar manner the Rhines wavenumber for the polar domain can be defined:

kp Rh = (γR/Vrms)
1/2. (3.19)

For the flow in Figure 3.3(f), kp ,Rh=0.15 cm−1 which translates into n=6. Note that while

at smaller m and n the distribution of energy is quite anisotropic, at high values of the

wavenumbers, it is less so. In the Fourier-Bessel diagrams the energy is isotropic when it is

distributed along the lines of constant αmn. White lines in Figure 3.3(f) display αmn = 30,

50, 70, and 90; the energy is approximately aligned with the lines for larger m and n just

like it aligned with the circles k = constant in 2D Fourier diagrams.

1D energy spectra allow us to look at the energy as a function of isotropic wavenumber k.
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The spectra are calculated in both Cartesian and polar domains and are shown in Figure 3.4.

The spectra calculated by the two different methods are quite close to each other except for

very large wavenumbers where the Cartesian-domain spectrum (blue line) becomes more

flat. This, however, is likely the artifact due to scale distortion and should be ignored.

Figure 3.4 demonstrates spectra for two experiments with different salinity. The values of

the baroclinic radius of deformation are different in these experiments and, hence, the values

of the corresponding wavenumber, kd = R−1bc which are indicated by arrows. The values of

the Rhines wavenumber are also shown in Figure 3.4. Other than the values of these control

parameters, the spectra in these two experiments are quite similar. The source of energy

must be close to kd from where energy propagates to lower wavenumbers where the peak

corresponds approximately to kRh. The range of the inverse energy cascade is not very large

but the spectral slope of -5/3 can still be identified. At larger wavenumber the energy drops

very steeply with a slope of -4.

In order to investigate the periodicity of the flow both in time and space we calculated

yet another form of the spectrum, namely the energy spectrum in the frequency-wavenumber

domain. The velocity was measured along a circle in the midlatitudes of the tank during

a relatively long period of quasi-stationary evolution of the flow. The Fourier transform

of the velocity in time and in distance, x, along the circle then gives the energy spectrum

(Equation (3.13)). The k−ω spectra allow us to identify Rossby waves in the turbulent flows

since the waves obey the dispersion relations while the turbulent motions do not. Rossby

waves form the basis of the linear dynamics of the flow, thus, we can see to what extent the
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Figure 3.5: Energy spectra in the frequency-wavenumber space measured along the circles of
radii (a) r = 0.5R and (b) r = 0.7R. White line shows the Rossby wave dispersion relation
Equation (3.20) with ky = 2π/R while black and red lines show the damped and growing
waves obtained by solving Equation (3.29) with ky = (1, 2, 5) × 2π/R. Color scales show
relative energy (normalized by its spatial average) in logarithmic scale. Lower layer salinity
is S = 10 ppt.
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linear dynamics are significant in the particular flows. Figure 3.5 shows the k − ω spectra

in the experiment with salinity S = 10 ppt. Although the main features of spectra in all

other experiments were similar, this particular experiment allowed us to observe the waves

most clearly. The reason was that at this lowest salinity value, the total energy of the flow

was relatively low, hence, the flow was more linear. In addition, the baroclinic radius of

deformation was small, Rbc = 0.7 cm, such that the motions of very small scale were present

in the flow.

Figure 3.5(a) and (b) show two spectra measured along the circles of radii r = 0.5R and

0.7R respectively. The flow at the inner circle was close to the front of the upper layer which

did not extend all the way to the pole in this experiment; the inner flow was relatively weak.

The outer circle was, on the other hand closer to a strong coastal current; the flow there

was stronger and more nonlinear. The comparison of the two diagrams reveals that waves

are more distinct in the inner area of the flow. The waves can be distinguished from eddies

using the dispersion relations. The dispersion relation of the Rossby waves in a mean flow

can be written in the form:

ω = k ·Vmean −
βkx +R−2d k ·Vmean

k2 +R−2d
, (3.20)

where Vmean is the velocity of the mean flow. In order to identify the Rossby waves in

the diagram, we must specify the y-component of the wavenumber. The largest wave in

our tank is of one wavelength across the radius of the tank, which corresponds to ky =

2π/R = 0.11 rad/cm. White curve in Figure 3.5(a) shows the function ω(kx) for this wave

without any Doppler shift (Vmean = 0). Surprisingly, this curve agrees very well with a
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particular pattern in the diagram which demonstrates that this mode is indeed excited in

the flow at a range of different frequences. A somewhat more sophisticated analysis can

allow us to obtain the dispersion relations not only for the Rossby waves but also for the

(growing or damped) baroclinic instability waves in a two-layer flow. Following [14] we can

write linearized quasi-geostrophic equations on the β-plane and, after applying the Fourier

transform, obtain the characteristic equation (see Appendix 3.B). Black and red lines in

Figure 3.5 display different solutions of the characteristic equation. The black lines show

damped Rossby waves (with peaks at kx < 0) and baroclinic instability (almost straight lines

at kx > 0) waves. Damping is due to the bottom Ekman friction; the time constant, which

gives the rate of the exponential decay of energy, was measured to be λ = 0.002 s−1 in the

experiment. In the equations, the mean flow, Vx, mean = 0.41 cm/s, was present in the upper

layer only, while the lower layer remained at rest. As a result, the baroclinic instability waves

propagate in the positive x-direction. The β-effect was applied only in the lower layer in

order to simulate the topographic β-effect in the experiments. Thus the Rossby waves, are

not Doppler shifted in this theoretical analysis. The red lines in Figure 3.5 display growing

modes of the baroclinic instability. It seems that they are in good agreement with the energy

plume at kx > 0.

Thus, a good agreement between the theoretical curves showing the linear dispersion

relations of the Rossby and baroclinic instability waves, and the measured distribution of

energy in the flow indicates that the linear dynamics is a significant in the flow. A line given
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Figure 3.6: 1D spectra of relative energy, normalized by the spatial averaged energy, in the
frequency domain in the experiments with salinity (black line) S = 20 ppt and (blue line) S
= 10 ppt.

by

ω = kVrms (3.21)

can serve as a simple “dispersion relation” for turbulent motions. It seems that it does indeed

provide an upper limit in frequency for the most energetic motions of different wavenumber

(green line in Figure 3.5(b)).

1D spectra in the frequency domain can be obtained from E(ω, kx) by integration over

kx (Figure 3.6). It is interesting to compare the 1D spectra in the frequency and wavenumber

domains. Oceanographic measurements from instruments located at a fixed point are in the

form of time series which are then interpreted in the frequency domain. However, the theory
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of turbulence is mainly developed in the wavenumber domain (see discussion in [43, 10]).

For this reason the frequency domain measurements are often related to the wavenumber

domain. The only way to do that is to use the Taylor hypothesis. The hypothesis suggests

that turbulent motions are embedded in and advected by a mean current such that ω =

k · Vmean. In this case one can expect that the spectra in the frequency domain exhibit

the same features as those in the wavenumber domain with the same spectral slopes. In

our experiments, however, the Taylor hypothesis is not well justified, if at all. Typically,

the rms velocity is larger than the mean current. The spectra in Figure 3.6 measured in

two experiments demonstrate that there are some differences between them and the spectra

in the wavenumber domain in Figure 3.4. In the frequency spectra the slope is less steep,

-3.2 compared to -4 in the wavenumber spectra, and -5/3 slope is hardly present at all.

However, there are similarities as well, at least qualitative. We can introduce the Rhines

frequency ωRh = (Vrmsβ)1/2 and the forcing frequency ωd = Vrms/Rbc which corresponds to

the wavenumbers kRh and kd. The values of ωRh and ωd were close in the two experiments

and are shown by arrows in Figure 3.6. Thus, the frequency and wavenumber spectra are

qualitatively of the same shape in the range between these characteristic quantities. Note

that our frequency spectra are very similar to that in the ocean given in [129] with the same

flat region at low frequences and relatively steep slope at higher frequences. At very high

frequences, the laboratory spectra are relatively flat but have very distinct sharp peaks. One

peak is at ω/f0 = 0.5 which correspond to one rotation of the tank or to one “laboratory

day” and is due to some (negligible) tidal motion in the tank. The tidal motion can occur due
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Figure 3.7: Energy flux as a function of the wavenumber in two experiments with salinity
(a) S = 15 ppt and (b) S = 30 ppt. Blue line displays the flux measured in the beginning of
the experiments, soon after the injection of the fresh water was stopped, at t = 10 s, while
the thin and thick black lines show the flux during quasi-steady period of the flow at t =
270 s and t = 430 s respectively.

to some slight deflection of the rotation axis of the tank from the vertical. The second peak

happens at frequencies just above the inertial frequency, f0, and are likely due to (almost

inertial) inertia-gravity waves. Note that the emission of the inertia-gravity waves by an

almost balanced flow (in the quasi-geotrophic sense) is called spontaneous emission and is

an interesting problem by itself, but we do not address it here.
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Energy flux

The form of the 1D spectra (Figure 3.4) resembles that of the spectra in 2D turbulence such

that one might expect the existence of the energy cascade. Moreover, we know approximately

the location of the energy source given by kd. However, the only way to determine the

magitude and the sign of the energy flux across the range of scales is to calculate the flux

directly. Figure 3.7 shows the fluxes calculated using Equation (3.14) in two experiments

with different salinity. The energy flux is negative at low wavenumbers and becomes positive

at higher wavenumbers. The transition is approximately in the range between kRh and kd

similar to the transition between the slope -5/3 and -4 in 1D energy spectra (Figure 3.4).

Thus, the existence of positive Π provides an evidence of the direct energy cascade due to

relatively high wavenumber (submesoscale) motions. Note that the derivative ∂Πl/∂kl is

equal to the difference of the energy supply (energy production by the baroclinic instability)

and energy disspation (energy sink due to the Ekman and “bulk” viscosity). The positive

slope in the range between the negative and positive peaks confirms the presence of the

energy source there. At very low or very high kl the slopes are negative and the dissipation

prevails.

In order to calculate fluxes we performed filtering of velocity and its derivatives in the

wavenumber domain according to Equation (3.15). The result of the filtering for relative

vorticity in the physical space is shown in Figure 3.8. The filtered fields in Figure 3.8(b)

and (c) correspond to kl= 1.5 and 3.5 rad/cm respectively and can be compared with the

original unfiltered vorticity field in panel a. These particular values of the wavenumber
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Figure 3.8: Relative vorticity in the experiment with salinity S = 30 ppt at t = 270 s: (a)
original field, (b) filtered at kl = 1.5 rad/cm and (c) filtered at kl = 3.5 rad/cm. Vorticity is
normalized by the Coriolis parameter and varies in the range between -0.5 (blue) and +0.5
(red).

kl correspond to the minimum and maximum value of the energy flux Π in Figure 3.7(b).

Thus the filtered vorticity fields show the scale of the vortex structures in the flow including

eddies, meanders and filaments, at which the inverse or direct energy cascade takes place.

Figure 3.9 shows the fields of the energy flux Πl at the same two values of the wavenumber

kl as the vorticity fields. The visual inspection of Figure 3.9 together with Figure 3.8 allows

one to relate the pattern of the flux to certain features in the flow. It is not, however,

immediately obvious that the overall balance of Πl is negative in Figure 3.9(a) and positive

in Figure 3.9(b) since the alternating patterns of Πl are present in both diagrams. For the

discussion of the correspondence of the energy flux to certain patterns of vorticity dynamics

in 2D turbulence we refer to [131]; some experimental results on rotating shallow-water

turbulence are presented in [2].
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Figure 3.9: Energy flux, Πl, in the experiment with salinity S = 30 ppt at t = 270 s: (a) kl
= 1.5 rad/cm and (b) kl = 3.5 rad/cm. Energy flux varies in the range between -0.8 cm2s−3

(blue) and +0.8 cm2s−3 (red).

3.5 Conclusions

The spectral analyses reported in this article investigate the characteristics of the turbulent

baroclinic flows on the polar β-plane. This study was motivated by the oceanographic

applications. The laboratory flows are dynamically similar (to the degree the laboratory

experiment allows) to oceanic flows where baroclinic instability is important. We investigated

the entire range of scales/wavenumbers and times/frequences where the main dynamical

processes take place. These include the Rossby waves, the alternating zonal jets, baroclinic

instability waves which are of large scale to mesoscale, and eddies and filaments which are

in the range from meso- to submesoscale.

2D energy spectra in wavenumber domain demonstrate the evolution from radial co-

herence and well-defined azimuthal wavenumber of the initial energy concentration due to



CHAPTER 3. BAROCLINIC TURBULENCE ON THE POLAR β-PLANE IN THE
ROTATING TANK: DOWN TO SUBMESOSCALE 83

noodle-like baroclinic purturbations towards a different asymmetry in the energy distri-

bution. This later state is predicted in [98] such that the energy concentrates along the

figure-of-eight curves as well as in “hot spots” corresponding to alternating zonal jets. The

Fourier-Bessel decomposition proved to be a useful tool in application to a circular domain

such as our experimental tank. It allowed us to see somewhat “sharper” spectra than those

obtained by the Fourier decomposition and to distiguish radial and azimuthal effects more

clearly. We showed that all general theoretical concepts such as the figure-of-eight curves or

the Rhines wavenumber can be easily transferred into the polar β-plane.

2D energy spectra in the frequency-wavenumber domain are asymmetric. At negative

zonal wavenumbers, kx, the motions that propagate to the east (sometimes against the mean

flow) are located. The Rossby waves signature is prominent as revealed by their dispersion

relation. This provides evidence that linear dynamics is significant in our flows in spite of the

fact that nonlinearity is present as well (the Rossby number is O(1)). The nonlinear motions

seem to be concentrated under the dividing line ω = Vrmsk in the spectra. At positive kx,

the growing (and decaying) baroclinic instability waves are present as shown by the stability

analysis similar to that in [14]. It is interesting to compare the laboratory spectra to those

in the midlatitude Pacific Ocean reported in [129]. There are clear similarities between the

laboratory and the oceanic spectra but, perhaps, the main difference is the presence of the

so-called “non-dispersive” line in the oceanic ones. The line is given by ω = βR2
bck, where

Rbc is the first baroclinic radius of deformation. The slope of the line corresponds to the

phase velocity of long baroclinic Rossby waves. However, in the laboratory, the Rossby waves
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are barotropic due to the nature of the topographic β-plane. Thus, we did not observe the

concentration of energy with this slope, instead, shorter waves with wavenumbers close to

that of (baroclinic) forcing were more prominent than long non-dispersive waves. A similar

observation was reported in our previous study on forced barotropic turbulence [134].

Our 1D energy spectra in the frequency domain are remarkably similar to that in the

ocean [129] apart from the peak at the annual cycle which we don’t have in the laboratory

experiments. Characteristic frequencies ωRh and ωd can be easily estimated for the area in

the Pacific ocean used by Wunsch [130] to compute the spectrum. Taking the rms velocity

Vrms = 10 ∼ 20 cm/s and the first baroclinic radius of deformation Rbc = 40 - 50 km, we

obtain ωRh ≈ 0.02 cycles/day and ωd ≈ 0.04 cycles/day. These values can be placed in the

ocean spectrum similar to those in the laboratory spectrum.

The analysis of the spectral energy flux provided the evidence of the direct energy cas-

cade to smaller scales by relatively small-scale motions which can be related to the oceanic

submesoscale. An inverse energy cascade at larger scales was also observed as was expected

according to the 2D turbulence theory and our previous study [134].

The present investigation was limited to spectral properties of the flows, however, many

interesting questions related to the dynamics of the submesoscale motions remain. They

include cyclone-anticyclone asymmetry, formation and sharpening of elongated filaments

and buoyancy fronts. Further investigation using the laboratory data is certainly warranted.
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Appendix

3.A Parseval’s identity

Parseval’s identity shows that the total energy in physical space is equal to the total energy

in the spectral domain. Here we show the Parseval’s identity for the Fourier-Bessel series.

In radial direction, Bessel function of the first kind is used as the basis function such that∫ R

0

u(m, r)u∗(m, r)rdr =

∫ R

0

{
∑
n

BmnJm(
r

R
αmn)}×

{
∑
n

B∗mnJm(
r

R
αmn)} rdr,

(3.22)

where the asterisk denotes the complex conjugate. Using the orthogonality condition∫ R

0

Jm(
r

R
αmp)Jm(

r

R
αmq)rdr =

1

2
R2δpqJ

2
m+1(αmn), (3.23)

where δpq is the Kroneker delta, Equation (3.22) can be simplified as follows:∫ R

0

u(m, r)u∗(m, r)rdr =
R2

2

∑
n

BmnB
∗
mnJ

2
m+1(αmn). (3.24)

In the azimuthal direction, Parseval’s identity for Fourier series gives

∑
m

u(m, r)u∗(m, r) =
1

2π

∫ 2π

0

|u(θ, r)|2dθ. (3.25)
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Summing Equation (3.24) over all zonal modes m and using Equation (3.25), we obtain the

Parseval’s identity for the Fourier-Bessel series in the from:

1

πR2

∫ 2π

0

∫ R

0

|u(θ, r)|2rdrdθ =
∑
m,n

BmnB
∗
mnJ

2
m+1(αmn). (3.26)

The LHS of Equation (3.26) represents a spatial average of kinetic energy while the RHS

represents a total energy of different modes in the spectral domain.

3.B Dispersion relation for two-layer baroclinic flow

Following [14] we write the linearized equations of motions for the two-layer flow in the

following form:

∂

∂t
(∇2ψ1 − S1ψ1 + S1ψ2) =− U1

∂

∂x
∇2ψ1 − U1S1

∂ψ2

∂x

+ U2S1
∂ψ1

∂x
+ ν∇4ψ1,

(3.27)

∂

∂t
(∇2ψ2 + S2ψ1 − S2ψ2) =− U2

∂

∂x
∇2ψ2 − U2S2

∂ψ1

∂x

+ U1S2
∂ψ2

∂x
+ ν∇4ψ2

− βT
∂ψ2

∂x
− λ∇2ψ2,

(3.28)

where index i = 1 or 2 refers to the upper or lower layer respectively, ψi is the stream

functions, Ui is the mean flow, Hi is the mean depth of each layer, Si = f 2
0 /g

′Hi and g′ is the

reduced gravity. ν = 0.01 cm2/s is the kinematic viscosity and λ = 0.002 s−1 represents the

bottom Ekman friction, estimated by approximating the time series of the kinetic energy in

the experiment using exponential function e−λt. Here we take U2 = 0 in the bottom layer
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and the measured values of U1 in the upper layer; the β-effect is present in the lower layer

only. Solving the above equations in the Fourier space gives the characteristic equation

aω2 + bω + c = 0, (3.29)

where

a = [(κ+ S1)(κ+ S2)− S1S2], (3.30a)

b = kx[βT (κ+ S1)− κ2(U1 + U2)− 2κ(S2U1 + S1U2)]+

ikx[νκ(2κ+ S1 + S2) + λ(κ+ S1)],

(3.30b)

c = [kx(−S1U2 − κU1) + iλκ2] · [kx(βT − S2U1 − κU2)+

iνκ2 + iλκ]− k2xS1S2U1U2,

(3.30c)

κ = k2x + k2y. (3.30d)

The solutions of Equation (3.29) give complex frequency ω(kx, ky) = ωr + iωi. Positive ωi

represents growing waves while negative ωi means damped waves.
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Chapter 4

Rossby Wave Radiation by an Eddy

on a beta-plane

This chapter is an adapted version of a journal article published in Physics of Fluids (Zhang

and Afanasyev 2015).

4.1 Introduction

Meso-scale vortices (eddies) are an essential element of the dynamics of the turbulent oceans.

They provide the strongest signal in the snapshots of the circulation measured by the satellite

altimetry. Eddies are intimately linked to narrow zonal flows (jets) observed in midlatitudes

[80, 81]. The altimetric signal due to zonal jets is much more subtle than that of eddies. For

this reason, the jets are called ’latent’ in the oceans. Although it is known that the existence
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of the zonal jets is due to the β-effect, the details of their generation are still a subject of

ongoing discussion. One of the mechanisms discussed is related to the radiation of Rossby

waves by eddies. The radiation of Rossby waves results in the creation of gyres (β-plumes)

elongated in the zonal direction. Each β-plume consists of two jets flowing in the opposite

directions [116, 38, 4]. β-plumes can be described within the framework of linear dynamics.

This implies that linear modes can provide a significant control of the entire flow which

include eddies, jets, and Rossby waves. A more general question is then to what extent the

linear dynamics is important. In their recent numerical and theoretical studies, Ref. [14]

analyzed linear modes in the idealized ocean circulation containing multiple jets and eddies

and showed that certain properties of (generally nonlinear) eddies can be understood in

terms of the linear modes. The linear modes themselves can be modified by the background

flow. An analysis of an ocean gyre circulation in a spectral space performed recently [32]

showed that the zonal jets (also called striations) can be interpreted either within linear

dynamics context as almost zero-frequency Rossby waves or as a result of the nonlinear eddy

propagation.

The present study is motivated by the oceanographic phenomena mentioned above. In

what follows, we consider an idealized setup where Rossby waves are radiated by single vor-

tex propagating on the topographic polar β-plane in the rotating tank. We focus on the

far-field, away from the immediate vicinity of the vortex, where the properties of the flow

were not measured in detail in previous experimental studies. In particular, we identify the

horizontal wave patterns and measure the spectral characteristics of the flow. We supple-
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ment our laboratory experiments with numerical simulations and theory. The results of the

experiments are used as a benchmark to compare with the analytical results and the results

of the simulations. The comparison between linear theory and nonlinear simulations or ex-

periment allows us to determine to what extent the linear dynamics can predict the pattern

of waves in a generally nonlinear flow.

Although a number of theoretical and numerical studies addressed the radiation of Rossby

waves by vortices, laboratory investigations are relatively few. This is perhaps due to the

fact that it is difficult to observe the wave field using traditional laboratory techniques.

Visualization with dye allows one to record the vortex trajectory and observe its evolution

but gives little information about the wave field. The Particle Image Velocimetry (PIV)

technique is a well-known experimental tool and can be used to measure velocity within the

vortex and in its vicinity. It is, however, more challenging to measure the far-field velocity in

a large tank. Most of the laboratory studies were focused on investigating the dynamics of

the vortex motion on the β-plane (e.g.,[50, 123, 115, 104, 47]). Ref. [47] used PIV to measure

the velocity profiles in monopolar cyclonic vortices created by suction or stirring. They also

studied the trajectories of the vortices and compared the measured trajectories with those

predicted by a theoretical mechanistic model based on integral relations for the Rossby force

and a lift force. In this study, we use a recently developed experimental technique, Altimetric

Imaging Velocimetry (AIV) to overcome the shortcomings of the earlier techniques and to

observe and measure the flow field both within the vortex and in the entire tank with the

same spatial and temporal resolution. The AIV technique measures the gradient of the
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surface elevation field. Integration of the gradient in the horizontal plane allows one to

obtain the surface elevation field which can also be interpreted as the pressure field at the

surface. The surface elevation is one of the major dynamic fields that can be used to describe

the Rossby waves. The measured gradient can be further used to obtain the velocity field in

the flow using quasi-geostrophic (QG) equations.

Radiation of Rossby waves by stationary perturbations was discussed in application to

different oceanographic problems including the flows induced by localized buoyancy sources

[116, 64, 38, 58]. A similar solution for an atmospheric tropical cyclone was given by [28]. A

linear radiation process is easy to understand. When a localized perturbation is steady, i.e

there is no oscillation inside the perturbation area such that the perturbation area acts as a

rigid body travelling through the flow, long Rossby waves with frequency approaching zero

have nearly zonal wavecrests. As a result of the radiation, the perturbation stretches to the

west forming a ridge/trough. According to geostrophy, two zonal jets form along the slopes

of the ridge/rough. The formation of the β-plume circulation due to the source of buoyant

fluid was illustrated in the laboratory experiments on the polar (quadratic) β-plane by [4].

Vortices in a turbulent flow are not at rest; they propagate due to interaction with

other vortices or with the background flow. Single vortices on the β-plane propagate due

to nonlinear effect of the induced wave field on the vortex. Cyclonic vortices travel to the

northwest, while anticyclonic vortices travel to southwest while radiating the Rossby waves.

Thus, it is important to include the source motion into the radiation problem. Lighthill[70]

gave a general solution of the linear problem for a travelling transient forcing. The external
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forcing can be due to a wind-stress curl present in a finite region of space, travelling with

constant velocity and varying in magnitude over some time period. A particular case is a

steady forcing for which the forcing frequency is zero. Lighthill’s solution gives the frequency

of the Rossby waves as a function of wavenumber in x- and y- directions. In the case of the

steady forcing, the solution predicts the relation between the x- and y- wavenumbers (a curve

in wavenumber space) for any particular velocity of the forcing.

In Section 4.2 of this paper, we describe the setup of the laboratory apparatus as well

as the altimetry technique. In Section 4.3, the setup of the shallow water numerical model

is described. A theory of the Rossby wave radiation by a travelling vortex is presented in

Section 4.4. In Section 4.5, the results of the laboratory experiments, numerical simulations,

and theory are reported. Concluding remarks are given in Section 4.6.

4.2 Laboratory setup and techniques

In our laboratory experiments, a cylindrical tank of radius R = 55 cm was filled with water

of depth H0 = 10 cm (Figure 4.1). The tank was installed on a rotating table and was

rotated anticlockwise at a constant angular rate Ω = 2.4 rad/s. The vortices in the tank

were generated by suction of fluid from below the surface. A thin tube connected to a pump

was placed on the bottom of the tank such that the opening of the tube was directed upward

(Figure 4.1). The suction creates a localized sink which manifests itself as a depression on

the surface. Water converging to the sink creates a cyclonic vortex in the presence of the
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Figure 4.1: (a) Sketch of the experimental setup (left): digital camera (1), high brightness

display showing the color mask (2), the fluid in the tank is pumped out through a thin tube

(3) to generate a cyclonic vortex (4). (b) Top view of the flow with a superposed velocity

field (vectors) measured by the AIV at 19 s in experiment 1.

background rotation. The vorticity in the core of the vortex is created by stretching the

background vorticity. Both the suction rate (determined by the voltage, V , applied to the

pump) and the duration of suction, ∆t, were varied in the experiments such that vortices

of different strengths and sizes were created. The control parameters for five experiments

are given in Table 4.1. Table 4.1 also summarizes the main characteristics of the vortices

measured right after the forcing period. The characteristics include the surface elevation, η,

in the center of each vortex, the maximum azimuthal velocity averaged around the vortex,

Vθv, the vortex radius Rv, which is defined as the radial location of Vθv, the total kinetic

energy, K, the mean Rossby number, Rov = Vθv/(f0Rv), and the ratio of the vortex azimuthal

velocity to its translational velocity, A = Vθv/Ut. Here, f0 = 2Ω is the Coriolis parameter.
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The surface of water in the tank when in a state of a solid-body rotation is a paraboloid,

such that the depth of water is given by

h(r) = H0 +
Ω2

2g
(r2 − R2

2
), (4.1)

where r is the distance to the axis of rotation (center of the tank) and g is the gravitational

acceleration. A dynamical effect of the radial variation of depth is similar to that due to

a variation of the Coriolis parameter on a rotating planet. The dynamical equivalence of

these effects follows from the conservation of potential vorticity (PV). The center of the tank

corresponds to the North pole of the planet. Due to the quadratic variation of the depth of

the layer, the laboratory system corresponds to a so-called polar β-plane (or γ-plane) such

that the Coriolis parameter is f = f0 − γr2, where f0 = 2Ω and γ = Ω3/gH0 [5]. In this

study, however, we also use a regular β-plane approximation for comparison with numerical

simulations and theory. The β-plane where the Coriolis parameter varies linearly in the

South-North direction can be defined with respect to a referencedistance from the North

pole r0. A local Cartesian coordinate is introduced at this reference latitude such that the

x and y axes are directed to the east and the north, respectively. The β-parameter is then

defined as

β =
2r0Ω

3

gh(r0)
. (4.2)

In the experiments, the vortices were created at r0 = 30 cm, where β = 0.1 cm1s−2.

Altimetry method [8] was used to measure two components of the gradient ∇η = (ηx, ηy)

of the perturbation surface elevation η in the horizontal plane (x, y). The ∇η field was

measured with a spatial resolution of approximately 2 vectors per millimeter which translates
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into the array of size 2300 × 2300, with a temporal resolution of 5 fields per second. The

surface velocity of the flow is then determined using quasi-geostrophic approximation

V =
g

f0
n×∇η − g

f 2
0

∂

∂t
∇η − g2

f 3
0

J(η,∇η), (4.3)

where V is the horizontal velocity vector, n is the vertical unit vector. Note that while

we measure an exact (within experimental accuracy) pressure gradient, ∇p = ρg∇η, at the

surface, the velocity field is determined more accurately when the flow is closer to being

quasigeostrophic. According to the Taylor-Proudman theorem, in a rapidly rotating flow,

the surface velocity is a good approximation for the velocity in the entire column of water

except the Ekman layer at the bottom. Table 4.1 shows that the Rossby number, Rov =

2Vθv/(f0Rv), that characterizes the relative vorticity in the core of the vortex exceeds unity

in experiments 1 ∼ 4 (immediately after the forcing stops). Here, Vθv is the maximum

azimuthal velocity of the vortex and Rv is the radial location of Vθv from the vortex center.

In these experiments where Rov > 1, the validity of the quasi-geostrophic approximation was

not satisfied within the vortex cores in the initial period of their evolution. As a consequence,

the velocity within the cores calculated with Equation (4.3) differed from the real velocity.

Later in these experiments as flow decayed, the values of the Rossby number dropped below

unity. In experiment 5, the validity of the quasi-geostrophic approximation was satisfied

at all times. The flow beyond the cores of the vortices (which is the primary focus of this

study) was always well within the bounds of the approximation in all experiments such that

the velocity given by the AIV was accurate.
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Parameters Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

∆t (s) 7.7 2.6 3.2 8.4 7.1
V (Volt) 7.9 7.9 6.9 6.0 9.0
ηv (cm) -0.19 -0.16 -0.14 -0.19 -0.2
Rv (cm) 1.7 0.9 0.91 1.1 2.7
Vθv (cm/s) 5.8 5.8 5.7 6.2 4.4
K (cm4/s2) 7 2.7 2.3 6.0 8.2
Rov = 2Vθv/(f0Rov) 1.4 2.6 2.6 2.3 0.67
A = Vθv/Ut 6.1 9.7 11 7.8 3.8

Table 4.1: Experiment parameters.

4.3 The numerical model

We consider vortices on the β-plane in a shallow water model,

(
∂2

∂t2
− k−2d )ψ = −βψx − J(ψ,∇2ψ)− ν∇6ψ − λ∇2ψ, (4.4)

where ψ is the stream function and kd = f0/
√
gH0 = 0.05 cm−1 is the reciprocal of the

deformation radius. The biharmonic diffusion term ν∇6ψ is routinely used in the simulations

of two-dimensional turbulence in order to effectively remove motions at the smallest scales

[24, 72]. The term λ∇2ψ represents the linear Ekman bottom friction. A particular value of

the friction coefficient, λ = 0.03 s−1 , was chosen to model the flow decay in our laboratory

experiments. The spatial differencing was implemented using the pseudo-spectral method

based on the Fourier series, implying the periodic boundary condition in both directions.

For the sake of numerical efficiency and stability, we used semi-implicit scheme AB3CN

from [23]. It combines third-order Adams-Bashforth scheme and the second-order Crank-

Nicholson scheme to discretize linear part including the β term and the damping terms in

time. The numerical domain was set to be a square of 110 cm wide with 512 grid points
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along each side. The value of the β parameter, β = 0.1 cm−1s−1 , in the simulations was the

same as that in the experiments. The simulations were performed in a rectangular (double

periodic) domain on a regular β-plane, rather than in a circular geometry and a polar β-

plane (as in our experiments) for the purpose of easier comparison and interpretation of the

results since in the majority of previous theoretical or numerical studies, a regular β-plane

was used.

4.4 Theory

Suppose we have a turbulent flow on an f -plane [2]. Energy distribution between motions of

different spatial scales is established by nonlinear (triad) interactions. The energy spectrum is

isotropic in wavenumber space. The flow on the f-plane is similar to a purely two dimensional

turbulent flow in non-rotating fluid except perhaps for the presence of the Ekman layer at the

bottom. Let us now suddenly switch on the β-effect. While the flow still remains balanced

on small scales where nonlinear terms prevail over the β-effect, it will be unbalanced on

larger scales where a QG type balance is required. In what follows, we look for an additional

component of the flow that is required to balance the initially specified turbulent flow. We

consider the scales starting from the scale where the turbulent flow starts to feel the β-effect

(the Rhines scale) which corresponds to the scale of the largest vortices/eddies formed in

the turbulent cascade, and larger zonal structures are formed in physical space to satisfy

the quasi-geostrophic type balance. Meanwhile, in spectral space, the energy distribution
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becomes anisotropic because energy can now cascade directly to the zonal modes such that

the additional component of the flow will be in the form of Rossby waves. At large scales,

it is sufficient to consider a linear dynamics at least as first approximation. The turbulent

vortices (assumed known) constitute a forcing in the wave equation. In what follows, for

simplicity, we consider only one vortex.

Let us follow a well-known derivation of a QG equation in order to obtain the forcing

terms. Consider a flow on a β-plane (x, y) where the Coriolis parameter varies linearly in

y-direction as

f = f0 + βy. (4.5)

The flow consists of an assumed known eddy component with velocity U = (Ux, Uy) and

the additional component due to the β-effect (the Rossby wave component) with velocity

u = (ux, uy). Both components can be related to pressure fields, expressed in terms of surface

elevations η0 and η, respectively, via geostrophic relations,

U =
g

f0
n×∇η0, u =

g

f0
n×∇η, (4.6)

where n is the vertical unit vector and g is the acceleration due to gravity. Potential vorticity

of the flow can be defined in a usual manner

q =
f + ζ0 + ζ

h
, (4.7)

where relative vorticities are ζ0 = g∇2η0/f0 and ζ = g∇2η/f0. The fluid depth is given by

h = H − hb + η0 + η, (4.8)
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where H is the mean depth and hb is the bottom height. Assuming that hb, η0, and η are

small compared to H and ζ0 and ζ are small compared to f0 , we rewrite q in the form

q = ζ0 + ζ + βy − f0
H

(η + η0 − hb). (4.9)

The dynamics of the flow is governed by the conservation equation for the potential vorticity,

[
∂

∂t
+ (U + u) · ∇]q = 0, (4.10)

which, after some algebra, can be rewritten in the form

∂

∂t
(∇2−k2d)(η0 + η) + (U+u) ·∇(∇2η0 +∇2η) +k2d(U+u) ·∇hb +β

∂

∂x
(η+ η0) = 0, (4.11)

where kd is the reciprocal of the radius of deformation, kd = R−1d = f0/
√
gH. To derive

Equation (4.11), we used the identity (U + u) ·∇(η0 + η) = 0 which results from geostrophic

relations Equation (4.6). In our further analysis, we consider a domain with a flat bottom

such that the term containing ∇hb is equal to zero. Note that this term gives a vertical

velocity due to the flow over topography which can result in interesting effects in a class of

problems where the bottom topography is important [113, 114]. We can neglect the quadratic

term (u ·∇)∇2η in Equation (4.11) assuming that the wave field is relatively weak. The term

(U·∇)∇2η0 describes the advection of the relative vorticity of a vortex by its velocity field. It

can be shown that this term vanishes if we assume that the vortex is axisymmetric. Indeed,

in that case, the advection is just a rotation of a vorticity distribution given by ∇2η0 around

the center of the vortex. The translation of a vortex is determined by the wave velocity

which is significant inside the vortex. Note that the vortex velocity field generates large
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difference in the Coriolis force between the northern and southern parts of the eddy. The

mean Coriolis force drives the (cyclonic) vortex to the North. The advection of the vortex can

be approximated by a constant translation velocity Ut such that (u·∇)∇2η0 ≈ (Ut ·∇)∇2η0.

Outside the vortex, the term (u·∇)∇2η0 is negligible since both u and η0 are relatively weak.

The linearized Equation (4.11) becomes

∂

∂t
(∇2 − k2d)η + β

∂η

∂x
= − ∂

∂t
(∇2 − k2d)η0 − β

∂η0
∂x
− (Ut · ∇)∇2η0. (4.12)

In the rotating systems, Ekman dissipation can be important. This effect can be easily

included in a form of the Ekman pumping. Vertical velocity at the boundary of the bottom

Ekman layer is proportional to the absolute vorticity of the flow

wE =
δE
2

(ζ0 + ζ), (4.13)

where δE =
√

2ν/f0 is the thickness of the Ekman layer and ν is the kinematic viscosity of

fluid. Introducing the Ekman number, E = 2ν/(f0H
2), we obtain

wE =
1

2
E1/2k−2d f0∇2(η0 + η). (4.14)

The part of wE which is due to the relative vorticity of the vortex will serve as an additional

forcing term in Equation (4.12), while the part due the relative vorticity of the wave will act

as a damping term. With these additional Ekman terms, Equation (4.12) becomes

∂

∂t
(∇2 − k2d)η + β

∂η

∂x
+ λ∇2η = − ∂

∂t
(∇2 − k2d)η0 − β

∂η0
∂x
− (Ut · ∇)∇2η0 − λ∇2η0, (4.15)

where λ = E1/2f0/2 is the Ekman coefficient.
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Assuming that the RHS of Equation (4.15) is known, we transform the equation into

Fourier space,

∂η̃

∂t
+ (iω + ωE)η̃ = − F̃

k2 + k2d
. (4.16)

Here,

ω =
−kxβ
k2 + k2d

and ωE =
λk2

k2 + k2d
(4.17)

are the Rossby wave frequency and the Ekman frequency, respectively, F̃ is the Fourier

transform of the RHS of Equation (4.15), k = (kx, ky) is the wavevector, and the tilde

denotes the spatial Fourier transform. Solving the first-order differential Equation (4.16)

with an initial condition η̃(t = 0) = 0, we obtain

η̃ = exp(−iωt− ωEt)
∫ t

0

−F̃
k2 + k2d

exp(iωt+ ωEt)dt. (4.18)

Let us specify now a particular form of forcing in order to gain further insight into the

dynamics of the flow. Consider a vortex travelling with velocity Ut without changing its

spatial structure such that its surface elevation is η0 = η0(r), where r′ = r− r0−Utt and r0

is the initial position of the eddy. In the Fourier space, this translates into exp(−ik · r0 −

ik ·Utt)η̃0 according to the shift theorem. The forcing can then be written as

F̃ = (−ik2dk ·Ut − iβkx + λk2) exp(−ik · r0 − ik ·Utt)η̃0. (4.19)

Substituting Equation (4.19) into Equation (4.18), we obtain the solution in the form

η̃ =
iωv − iω − ωE

−ik ·Ut + iω + ωE
exp(−ik · r0)[exp(−ik ·Utt)− exp(iωt− ωEt)]η̃0, (4.20)
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where we introduced a vortex frequency

ωv =
k2dk ·Ut

k2 + k2d
. (4.21)

In what follows, we use a simple expression for the vortex in the form

η0 = ηvM(r)[1 +
f0
gηv

(Utyx− Utxy)], (4.22)

where M(r) is the monopolar component of the vortex which describes its radial structure.

The second term in the brackets gives an additional dipolar component which is necessary

for the translation of the vortex. The x- and y- coordinates in Equation (4.22) are defined

in a coordinate system with the origin in the center of the vortex. The radial distribution

M(r) can be obtained from the experiments. The ratio of the magnitude of the monopolar

to dipolar components is determined by the ratio of the azimuthal velocity of the vortex to

its translational velocity.

A =
Vθv
Ut

=
gηv
f0Ut

. (4.23)

4.5 Results

We performed five experiments with different forcing (Table 4.1); in experiments 2 and 3,

the forcing was applied for a relatively short time, ∆t = 2 ∼ 3 s, while in the rest of the

experiments, the forcing time was ∆t = 7 ∼ 8 s. As a result, the vortices in experiments 2

and 3 are of relatively small radius, low amplitude of the surface elevation and, consequently,

low energy. The maximum velocity, Vθv, of these low-energy vortices is still relatively high
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Figure 4.1: Flow evolution in experiment 1 visualized by AIV: (a) the beginning of forcing,

t = 4 s, (b) the end of the forcing period when the vortex achieved its maximum strength,

t = 9 s, (c) and (d) unforced vortex, t = 16 s and t = 28 s. The arrows (blue) indicate the

velocity field.

as are the values of parameter A which can be considered as a measure of the nonlinearity.

Despite the differences between the control parameters in the experiments, the flows in all

of the experiments were qualitatively similar to each other.
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Figure 4.2: Surface elevation field in experiment 1 at t = 10 s (a) and t = 12 s (b). Gray

scale shows η in cm.

Figure 4.1 shows a typical evolution of the flow. The color shows ∇η field as recorded by

the video camera, while the arrows show the velocity field obtained in the post-processing of

the color images as described in Section 4.2. A local coordinate system with x-axis directed

to the East and y-axis directed to the North (the center of the tank is the North pole) is

shown in Figure 4.1(a). A cyclonic vortex indicated by a circular rainbow-like color pattern

is formed by the forcing (Figure 4.1(a, b)) and then propagates to the Northwest. The vortex

radiates Rossby waves; the longer and more zonal waves are to the west of the vortex, while

shorter waves are trailing behind the vortex to the East. Note that the altimetric signal

due to the waves are weaker than that due to the vortex. A (global) pattern of the Rossby

wave in the entire tank can be easily identified in the distribution of the surface elevation

(Figure 4.2). The depression of the surface (shown by darker shading) extends westward

from the vortex forming a typical β-plume.
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Figure 4.3: Characteristics of vortices measured in experiments 1-5: the azimuthal velocity in

cm/s (the first column), the surface elevation in cm (the second column), total kinetic energy

as a function of time (the third column), and the vortex trajectory (the fourth column). The

total time of travel after the forcing stops is indicated in the last column.
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Averaging the azimuthal velocity vθ and the surface elevation η in the azimuthal direction

around a vortex center, we obtained the radial profiles of these two quantities. They are

shown in the first and second columns, respectively, in Figure 4.3 for all five experiments. The

total kinetic energy, K, of a vortex can be obtained by integrating v2θ/2 over an area which

surrounds the moving vortex at each time (here, we used a circular area of approximately

5 cm radius). The third column in Figure 4.3 gives K as a function of time. The end of the

forcing period in each experiment is marked by a cross. During the forcing period, the energy

grows linearly, while after the forcing, it is switched off and the energy decays approximately

exponentially. By tracking the vortex center (surface elevation minimum), the trajectory of

each vortex can be determined. The trajectories for all experiments are shown in the fourth

column of Figure 4.3. Crosses denote the position of a vortex when the forcing is switched

off. Here, the x-component of the vortex displacement was measured in the zonal direction,

while the y-component was measured along the local North (radial) direction with respect

to a reference distance from the pole r0. The trajectories are approximately straight lines

such that the direction of propagation is approximately at an angle α = 140o. Note that

similar, almost straight trajectories were predicted theoretically in [95] (see their Figs. 1

and 2) for vortices with Gaussian or hurricanelike profiles of vorticity. An axially symmetric

monopolar vortex cannot perform translational motion unless a dipolar component is added

in order to match the velocity inside the vortex to that of translational motion. On the

β-plane, the breaking of the axial symmetry of the flow is provided by the β-effect. The

so-called β-gyres are formed within the vortex [94]. The formation of the dipolar β-gyres is
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easy to understand. A cyclonic vortex advects water parcels to the North at its eastern side

and to the South at its western side. According to the conservation of potential vorticity,

the parcels advected to the North acquire anticyclonic relative vorticity to compensate for

the increased background vorticity, while the parcels advected to the South acquire cyclonic

relative vorticity. Thus, the additional vorticity forms a dipole with its axis directed to

the North which indicates the primary direction of the translational motion. However, the

dipole is also affected by the monopolar velocity field and its axis rotates cyclonically. As a

result of this complex nonlinear interaction, the axis of the dipolar component and, hence,

the direction of the translational motion of the entire vortex is to the Northwest. Similar

arguments show that anticyclone propagates to the Southwest. We can use the measured

fields to reveal the dipolar component of the flow using Fourier transform in the azimuthal

direction.

In a local polar coordinate system attached to a vortex, the surface elevation field could

be decomposed into angular modes

η(r, θ) = M(r) + a(r) cos θ + b(r) sin θ, (4.24)

where M(r) is the monopolar component which can be calculated as the azimuthal average

of η. The dipolar component is a sum of two orthogonal terms of magnitude a(r) and

b(r), respectively. The relative strengths of the two dipolar terms determine the direction of

propagation of the vortex. Figure 4.4 shows the surface elevation fields due to the monopolar

and dipolar components together with the geostrophic velocity fields corresponding to these

components. The fields were measured right after the forcing was stopped in each experiment.
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Figure 4.4: Monopolar and dipolar components of the flow in experiments 1 – 5: (the first

column) the monopolar component M (contours show η in the range from −0.25 cm to −0.03

cm with 0.03 cm interval and arrows show the geostrophic velocity); (the second column)

the dipolar component (contours show η in the range from −0.2 cm to 0.2 cm with 0.004 cm

interval, lighter gray lines (red) indicate positive values, the darker gray lines (blue) indicate

negative values, the black shows zero η, and arrows show the geostrophic velocity); (the

third column) radial profiles M(r) (solid line), a(r) (dashed line), and b(r) (dashed-dotted

line); and (the fourth column) zonal and meridional components of the translation velocity

of the vortex measured in the experiments (solid darker gray/blue and lighter gray/red lines,

respectively) and the velocity derived from the dipolar component (dotted lines).
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The dipole (the second column in Figure 4.3) has a cyclonic vortex at the southwest and an

anticyclone at the northeast such that the axis of the dipole and the main flow induced by the

dipole are directed to the Northwest as theory predicts. The magnitudes of a(r) and b(r) are

relatively small compared to the monopolar term M(r) (the third column in Figure 4.4). To

confirm that the dipole provides the translation of the entire vortex structure, we compared

the velocity of the vortex measured in the experiments with that due to the dipole (the

fourth column in Figure 4.4). The zonal (x) and meridional (y) components of the vortex

translational velocity, Ut, were measured by tracking the position of the center of the vortex

(minimum η) and then differentiating with respect to time. The velocity due to the dipole

was obtained by averaging the geostrophic velocity

udipole =
g

f0
n×∇ηdipole, (4.25)

where ηdipole = a(r) cos θ + b(r) sin θ, over the area of the vortex. The comparison between

the directly measured velocity Ut and that calculated from the dipole surface elevation field

shows a close match that confirms that the vortex is indeed driven by its dipolar component.

Figure 4.5 shows the monopolar and dipolar components at different times in experiment

1. The sequence in the first column clearly shows that the monopole decays with time. The

dipolar fields in the second column in Figure 4.5 exhibit an interesting periodic behavior. The

dipole inside the vortex is swirled by the monopolar velocity field such that the dipole can

even reverse its direction at the center of the vortex (Figure 4.5(k, n)). Note that the dipole

outside of the vortex remains consistently to the Northwest. The swirling of the dipole in the

center is due to a nonlinear interaction between the monopolar and dipolar components. As
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Figure 4.5: Evolution of the monopolar (the first column) and the dipolar (the second

column) components of the flow in experiment 1 at t = 11 s, 16 s, 21 s, 26 s, and 31 s. The

third column gives M(r) (solid line), a(r) (dashed line), and b(r) (dashed-dotted line). The

contour lines show η with 0.01 cm interval for the monopole and with 0.005 cm interval for

the dipole.
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a result of the swirling, the translational motion of the entire vortex structure is oscillatory

which can be seen clearly in the time sequences of the translational velocity (the fourth

column in Figure 4.4). The time of the dipole reverses correlates well with the time when

the entire vortex slows down.

We performed numerical simulations of the flow with the control parameters similar to

those in the laboratory experiments (Section 4.3). The numerical simulations were initialized

with an axisymmetric distribution of the surface elevation mimicking that in the experiment

right after the vortex is fully formed. Since the simulations were performed in a rectangular

(rather than circular) domain and on a regular (rather than polar) β-plane, certain differences

between the experimental and simulated flows can be noted. These differences arise from a

different geometry and the different boundary conditions (such as the presence of a wall in

the tank) but they are not crucial for the physical interpretation of the flows. In order to

see to what extent can the observed laboratory flows be explained by the linear theory, here

we also present the theoretical solutions together with the experimental and numerically

simulated flows. We used vortex profiles obtained in the experiments to specify a translating

vortex in the RHS of Equation (4.15). The vortex was in a form given by Equation (4.22)

where we used experimental data to specify the profile of the monopolar component, M(r),

and the translation velocity Ut. The field of surface elevation is then given by the inverse

Fourier transform of the solution given by Equation (4.20).

Figure 4.6 shows a comparison of the surface elevation fields between the experiment,

numerical simulation, and linear theory, while Figure 4.7 compares relative vorticity fields.
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Figure 4.6: Comparison of the surface elevation fields η in experiment 1 (the first column),

numerical shallow-water simulation (the second column), and linear theory (the third col-

umn). Values of η is in the range between −0.03 cm (darker gray/blue) and 0.03 cm (lighter

gray/red).
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Figure 4.7: Same as in Fig. 7 but for the relative vorticity fields. Vorticity is normalized

by the Coriolis parameter and varies in the range between −0.5 (darker gray/blue) and

0.5 (lighter gray/red). Arrows indicate the crests of inertial waves emitted by the evolving

vortex.
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For easier comparison, the laboratory fields were interpolated into a local Cartesian coor-

dinate system with its origin fixed at the position of forcing and x- and y- axes directed

to the East and to the North, respectively. Figures 4.6 and 4.7 show the snapshots of the

flow at five different times. There are general similarities between the laboratory, numerical,

and theoretical fields. The vortex travels to the northwest, leaving behind a wave trail.

The wavecrests have approximately parabolic shape; the waves propagating to the East are

short, while the waves propagating to the West are long and approximately zonal as one can

expect. The vortex decays in magnitude due to the Ekman friction at the bottom as well

as due to regular friction in the bulk of the fluid layer. The comparison between numerical

simulations and linear theory shows that the theory predicts quite well the pattern of the

waves in the far-field. This confirms the approximately linear character of the radiation in

spite of the fact that the vortex itself is strongly nonlinear. It is not entirely surprising since

we account for the nonlinearity by specifying the translational motion of the vortex.

The differences between the experimental and simulated or theoretical flows are also

worth noting. In particular, the perturbations of η at the northern part of the domain

appear to be propagating much farther westward in the experiments compared to that in

the numerical simulations. Most likely, the reason is geometric, due to the fact that the

tank is circular such that the size of the domain in the x-direction becomes smaller when

approaching the center of the tank. As a result, a circumpolar circulation can be easily

established there. A similar effect can be important in real atmospheric flows (and, perhaps,

to lesser extent in oceanic flows) and is not accounted for in the regular β-plane setup.
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Figure 4.8: Sequence of the altimetric images of the vortex at t = 10 s (a), 12 s (b), and 14

s (c). Thin bands spiraling around the vortex are inertial waves.

Figure 4.9: Hovmoeller (space-time) diagram of the geostrophic velocity measured along the

straight line parallel to the vortex trajectory. Gray scale shows velocity in cm/s.
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Relative vorticity fields in Figure 4.7 allow us to see fine features of the flow. The

surface elevation (as in Figure 4.6) is obtained by integration of the measured ∇η and,

as a result, all small-scale features are smoothened. Vorticity, on the other hand, is a

result of differentiation which reveals the fine features (the downside of differentiation of

experimental data is, of course, that it amplifies noise). A couple of interesting features

can be observed in Figure 4.7. First, the cyclonic vortex generated by suction wraps the

negative (anticyclonic) vorticity around itself and thus becomes partially isolated. There is

also evidence of instability in the ring of the anticyclonic vorticity when two small satellite

anticyclones form and the cyclonic core of the vortex becomes elliptic. Second, inertial waves

can be observed in the flow. They are only present in the experimental flow and have an

appearance of thin filaments within the patches of vorticity around the vortex (indicated by

arrows in Figure 4.7). The emission of inertial waves by a travelling barotropic vortex is of

interest in the oceanographic context because it provides a path for the energy transfer from

mesoscale eddies to motions of smaller scales (submesoscale). Inertial waves should not be

confused with inertial oscillations which are inertia-gravity waves (IGW) in the limit when

their frequency approaching the Coriolis frequency f0. IGW are surface waves of frequency

above f0. Near-inertial IGW or inertial oscillations are sometimes called in short inertial

waves in the oceanographic literature. However, inertial waves have frequency below f0 and

are three-dimensional waves that can propagate in the bulk of the fluid. They are otherwise

known as Kelvin waves [66] or gyroscopic waves. Inertial waves constitute a basis of linear

dynamics of rotating fluid [54]; Rossby waves can in fact be considered as simply a special
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type of inertial waves [89]. Inertial waves are important in the process of adjustment of the

flow and can also be regarded as spontaneously emitted by an otherwise balanced flow. Some

altimetric observations of inertial waves emitted by a meandering coastal flow in a rotating

fluid were previously presented in [7].

Since this phenomenon is rarely observed in the experiments, it is worth investigating

in more detail. Note that here we report on inertial waves of relatively high frequency

(although still below f0) compared to the frequency of Rossby waves. Inertial waves can be

easily identified in a sequence of consecutive images of the flow (Figure 4.8) or in a video

(not shown here) by their curious feature when the phase of the wave propagates toward the

source of the wave rather than away from it (as gravity waves do when say a stone thrown

in a pond disturbs the surface of water). To visualize the evolution of the waves and to

measure their general characteristics, a Hovmoeller (space-time) diagram was rendered. The

diagram in Figure 4.9 shows the distribution of the geostrophic velocity along a straight line

at different times. The line was drawn along the vortex trajectory; the velocity component

perpendicular to the line was recorded. The vortex, where the velocity changes from positive

to negative and is of large magnitude, is visible as white and black bands in the middle of the

diagram. The vortex detaches itself from the sink when the forcing stops at approximately

9 s and then moves along the line. The slope of the bands indicates that it moves with

an approximately constant velocity. Inertial waves manifest themselves as thin bands above

(in front of) and below (behind) the vortex. The inertial waves are superposed on Rossby

waves which are of larger scale. The slope of the bands allows us to measure the phase
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speed, c ≈ 0.33 cm/s, while the distance between the lines gives the wavelength, λ ≈ 2.7

cm (which gives the horizontal wavenumber, k ≈ 2.3 cm−1 ). It is interesting to check the

measured properties against the dispersion relation for inertial waves. Figure 8 in [7] shows

dimensionless frequency, ω/f0, as a function of dimensionless wavenumber kRd for different

vertical modes. Here, Rd is the barotropic radius of deformation. In our case, the waves are

of low frequency, ω/f0 ≈ 0.17 and of high wavenumber, kRd ≈ 50. The dispersion relation

plot in [7] then shows that these particular values of frequency and wavenumber correspond

to the vertical mode of the lowest order which has a simplest vertical structure. Although

it is difficult to pinpoint the exact mechanism of emission here, we can hypothesize that

the emission is of the spontaneous type as that described in the theoretical study in [49].

This terminology emphasizes that this emission occurs due to the dynamics of the quasi-

balanced flow rather than due to an imbalance in the initial conditions. Indeed, our vortex

together with its Rossby wave field is approximately balanced within the quasi-geostrophic

framework. The (relatively weak) emission of the inertial waves occurs during the entire

time of the evolution of the vortex long after the forcing ended. This indicates that this

emission is the result of the higher-order dynamics beyond the quasi-geostrophy.

An insight into the dynamics of the Rossby wave radiation by a travelling vortex can

be gained by considering an energy spectrum of the flow in the wavenumber space. Two-

dimensional energy spectrum is given by

E(kx, ky) =
1

2
|u(kx, ky)|2, (4.26)

where k = (kx, ky) is the wavenumber vector and u(kx, ky) represents the discrete Fourier
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Figure 4.10: Two-dimensional energy spectra, E(kx, ky) in experiment 1 (upper row, a-c),

numerical simulations (middle row, d-f), and theory (bottom row, g-i) at t = 10 s, 16 s,

and 22 s, respectively. Color scale shows ln(E). Solid black lines show the solution of

Equation (4.27) with ω0 = 0. The white curves show the solution of Equation (4.27) with

ω0 = 2π/∆t, where ∆t = 12 s.
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transform of the velocity vector field. Figure 4.10 shows the evolution of the two-dimensional

spectrum in experiment 1 together with the spectra of the flow in our numerical simulations

and in linear theory. All spectra have a typical inverted S shape. While in the simulations

and theory, the energy is mainly located in the lobes at the ends of the S shape; in the

experiment, the significant energy is also concentrated at low kx that indicates that zonal

modes are significant. To understand the observed spectra, let us consider theoretical results

by Lighthill [70] who described general properties of linear Rossby waves emitted by a moving

disturbance (vortex). The disturbance moving with velocity Ut emits waves of frequency

ω0 + k ·Ut, where ω0 is the natural frequency of the disturbance and k ·Ut is the Doppler

shift. For a steady disturbance, ω0 = 0 and the Doppler shift defines the wave radiation.

A disturbance varying over a period of time ∆t emits transient waves with a spectrum of

frequencies varying from 0 to, say, 10/∆t. In our experiments, the vortices are created by

forcing over the time period ∆t such that the transients can be expected in the beginning of

each experiment. After the forcing stops, the vortex evolves on a longer time scale determined

by dissipation and by a loss of energy due to wave radiation. The wavevector k of a wave of

particular frequency can then be determined from the dispersion relation

ω0 + k ·Ut =
−βkx
k2 + k2d

. (4.27)

Black lines in Figure 4.10 show ky as a function of kx calculated from Equation (4.27) for a

stationary disturbance, ω0 = 0 . Instantaneous values of Ut were used to calculate the curves

for the experiment, while in the simulations and theory, Ut was constant, Ut = 0.7 cm/s.

While a close fit of the zero frequency curves with the energy pattern in the theoretical
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spectrum is not surprising, the fit with the fully nonlinear numerical simulations is some-

what unexpected. The spectrum evolves from an approximately isotropic (Figure 4.10(d))

when the vortex is initially approximately axisymmetric to the anisotropic spectrum (Fig-

ure 4.10(e, f)) which corresponds quite well to linear dispersion relation Equation (4.27).

Transient waves with frequency corresponding to the forcing time ∆t can be expected in the

experiments. In order to check where the transients are located in the wavenumber space

and if their energy signature is noticeable in the experimental spectrum, we plot the curves

ω0 = 2π/∆t in Figure 4.10(a-c). At this frequency, Equation (4.27) has two solutions: one is

given by an almost straight line and another is a circle near the origin. However, there is no

evidence of any concentration of energy along the line since the wavenumbers are relatively

large there. The waves with large wavenumbers are not effectively radiated by the relatively

large vortex as in our case. The low wavenumber waves corresponding to the circle near the

origin can be radiated but they can hardly be distinguished from those corresponding to the

zero-frequency curve.

4.6 Discussion

In this work, we have shown experimental evidence on the radiation of the Rossby waves

by vortices moving on the β-plane. Vortices are self-propelled due to nonlinear interaction

between primary monopolar flow field and the secondary dipolar flow which occurs due to

β-effect as described in [94]. The measurements of the velocity due to the dipolar component
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of vortices demonstrated this effect. The cyclones generated by suction in our experiments

are strongly nonlinear (similar to oceanic eddies) and propagate to the northwest. Travelling

vortices radiate zero-frequency Rossby waves Doppler-shifted by k ·Ut due to their motion.

The pattern of waves is approximately parabolic such that the waves with relatively large

wavenumber in (zonal) x- direction are to the East of the vortex and waves with small kx

and approximately zonal crests are to the west as discussed in [100]. The radiation of the

Rossby waves by vortices (eddies) can be one of the primary mechanisms of the creation

of zonal jets observed in the oceans [80, 81]. In fact, this mechanism is the basis of the

important theoretical work by [98] on the dynamics of turbulence on the β-plane. In his

original work, Rhines considered a field of closely packed eddies with a narrow spectrum

around some wavenumber k0 and assumed that β-term in the equation of motion is of the

same order of magnitude as the nonlinear term. As a result, he obtained a wavenumber

kβ =

√
β

Vrms
(4.28)

which separates the eddies (turbulence) and waves in the spectral space. Here, Vrms is the

root-mean-square fluid velocity at the energy containing wavenumber k0. The Rhines scale

has been widely discussed in the literature as a suitable measure of the meridional scale

of the zonal jets. This work contributes to this discussion as follows. The energy spectra

measured in our experiments as well as the spectra obtained in numerical simulations and

theory suggest the scaling

kβ =

√
β

Ut
. (4.29)
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This expression gives the characteristic wavenumber for Rossby waves emitted by a vortex

travelling with a speed Ut. Similar arguments as those applied for the Rhines scale can

be used here to justify that this is an appropriate scaling for zonal flows/jets. Note that

the translational velocity Ut is used here. The translational velocity (at least for highly

nonlinear vortices that are self-driven due to the β-effect) can be much lower than the

characteristic rotational velocity in the vortex (A >> 1). The characteristic rotational

velocity can be interpreted here as an analogue of the Vrms, the velocity at the energy

containing wavenumber k0. For a field of closely packed vortices, originally considered by

Rhines, there is no distinction between the two velocities because vortices are driven by

strong interactions with each other such that their translational velocity is determined by

the flow induced by their nearest neighbors rather than by the β-effect. However, one can

imagine a field of more loosely packed vortices which only occasionally interact with each

other but mostly driven by the β-effect (and perhaps by the mean flow). This is, perhaps,

the case in the ocean where mesoscale eddies are formed mostly at the eastern boundaries

and then move westward across the oceans. In this case, the relatively subtle distinction

between the velocities in Equations (4.28) and (4.29) might be important.
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Chapter 5

Conclusions

Vortices, waves and zonal jets under the β-effect, i.e. a background gradient in potential

vorticity, are conventional topics in the context of geophysical fluid dynamics. This disser-

tation addressed the problems firstly regarding the β-plane turbulence (Chapters 2 and 3)

and secondly the wave radiation by a traveling vortex (Chapter 4), using mainly laboratory

experiments, together with numerical and analytic methods. An optical system AIV (Al-

timetry Imaging Velocimetry) was employed in the study to observe the surface elevation

gradient field and to measure the velocity in the experiments. A detailed description of

the AIV method is given in [8]. High spatial resolution is the primary advantage of this

method. Approximately 2000 pixels in each direction of an image resolve wavenumbers

with a span of 3 decades in spectral space, which is beyond the reach of previously used

laboratory observation techniques, thus making AIV a desirable method for the purpose of

spectral analysis. The camera in the optical system captures 5 frames per second, such that
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it generates approximately 15 snapshots per revolution (Ω = 2.3 rad/s). AIV directly mea-

sures the water surface slopes, or equivalently the zero-order geostrophic currents. Under

the quasi-geostrophic approximation (Equation (2.3)) the total velocity can be calculated

from the geostrophic component. Consequently, the disadvantage of the AIV method lies

with the assumption of the small Rossby number Ro < 1. In areas with strong nonlin-

earity such as inside an eddy the quasi-geostrophic approximation is flawed, as is the total

velocity. In a circular vortex, a centripetal force needs to be added in order to account for

the underestimated nonlinerity in the quasi-geostrophic approximation. In the experiments

on β-plane turbulence (Chapters 2 and 3), Ro < 1 is satisfied almost everywhere in the

tank except inside the strong eddies or filaments. In the experiments with a single cyclone

(Chapter 4), the focus is the far field where Ro < 1 held rather than the strongly nonlinear

vortex. Therefore, the observed velocity field in this study is accurate to the first order of

quasi-geostrophic approximation.

A barotropic forcing with electromagnetic method (EM) and a baroclinic forcing with a

heating wire (thermal) were used to generate the turbulent flows on a topographic β-plane.

Although thermal forcing is baroclinic, the flow kept barotropic to a great extent. Latent jets

were observed in the forced-dissipative regime in our EM-forced experiment, and can only

be revealed by filtering the velocity fields, which is similar to oceanic jets [80, 81]. A non-

dimensional index Rβ characterizing the forced-dissipative equilibrium of β-plane turbulence

is found to be Rβ ≈ 1.7 in this experiment; this represents a transitional regime between

a zonostrophic regime (Rβ > 2) where jets dominates and a viscous regime where friction
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dominates (Rβ < 1.5). The jets are stronger, relative to the eddies, in the thermal-forced

experiment where the forcing was weaker and of a smaller scale. The jets become prominent

in the decaying regime in both experiments.

The signal of west-propagating Rossby waves is revealed in physical space, through

the Hovmoller diagram, as well as in the frequency-wavenumber space. In the frequency-

wavenumber domain Rossby wave propagation manifests itself as the asymmetric energy

distribution with respect to kx. Energy concentration along the “turbulence dispersion re-

lation” ω = Vrmsk [98] is observed. The asymmetric frequency-wavenumber energy spectra,

which are qualitatively similar to those observed in our experiments, were also observed in

the middle latitude ocean [129]. This shows a significant energy concentration along the

so-called non-dispersive line given by ω = βR2
dk. This line was tangent to the first-mode

baroclinic Rossby wave dispersion curve. Note that flows in our experiments were almost

barotropic, so the non-dispersion line represented a wave speed for the gravest mode. How-

ever, shorter waves of almost the forcing scale are more energetic than long non-dispersive

waves in the experiments.

The energy spectrum in kx− ky wavenumber space shows anisotropy where the analogue

of the Rhine scale, i.e. kβ or kR acts as a boundary of a dumbbell shape between the wave

regime and the nonlinear regime. Less energy inside the dumbbell was observed; however, the

dumbbell does not hinder energy cascades to the zonal modes of approximately the forcing

scale. It is interesting to see that the spectrum evolution predicted by the linear dynamics

of β-plume theory agrees qualitatively with the observations, where an isotropic forcing at
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the initial moment evolves into anisotropy.

Baroclinic turbulence in a 2-layer system is studied with a focus on its spectral charac-

teristics. The flow is initially triggered by a coastal current flowing on top of a saline layer.

Baroclinic instability due to the shear between two layers gives rise to large-scale meanders

and waves, as well as small-scale eddies and filaments. In two-dimensional wavenumber

space, Rhines’s theory is validated in this baroclinic case. Energy concentration on the

zonal modes larger than the Rhine scale is observed, as anisotrophy manifests as less en-

ergy locating inside a dumbbell-shaped curve. In order to include all the data points and

eliminate the geometric distortion due to the local β-plane, the Fourier-Bessel spectrum is

employed in parallel. Analogues of Rhines’s arguments work in the Fourier-Bessel spectra.

The energy distribution in frequency wavenumber space shows a good correspondence to

the dispersion relations of the westward-propagating Rossby waves as well as those of the

eastward-propagating baroclinic instability waves. This emphasizes the significance of linear

dynamics in the 2-layer case even though nonlinearity is strong. The one-dimensional spec-

trum in the frequency domain is similar to that found in the mid-latitude ocean [129]. Two

frequencies are proposed that characterize the time scale of baroclinic instability and that

of small Rossby waves, respectively.

Encouraged by the good prediction of spectrum evolution by solely the linear dynamics

in Chapter 2, and also by the significance of linear control in the baroclinic flow in Chapter 3,

Chapter 4 extends the β-plume theory to an idealized case: wave radiation by a traveling

vortex. In a series of experiments, intense cyclonic vortices were generated by siphoning
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water out of the tank. Vortex strength was varied by adjusting the forcing period and voltage

applied on the pump. In all the experiments, a cyclonic vortex propagates northwestward;

meanwhile, it radiates long Rossby waves with quasi-zonal wave crests aligned to the West,

leaving a tail of short waves to the East. A similar scenario was observed in numerical

simulation as well. Experiments showed the existence of inertial waves triggered by the

cyclone, though it was not captured by the pseudo-spectral model. β-gyres theory is validated

in these experiments; that is, the β-gyres/dipole component of the vortex determines the

vortex translation speed and direction. The dipole component is advected by the primary

monopole anti-clockwise such that the dipole axis as well as the vortex translation direct to

the Northwest. Small oscillations in the Lagrangian trajectory of the β-drift are owing to

the reverse events of the dipole near the vortex center.

The wave field (far field) predicted by the β-plume theory resembles those in the experi-

ments and model simulation. In addition, energy distribution in kx − ky wavenumber space

by linear dynamics agrees qualitatively with the energy spectrum of the flows generated in

the laboratory experiments and fully-nonlinear simulation. This study validates the signif-

icant control of linear dynamics in the radiated wave field triggered by a travelling vortex,

which is strongly nonlinear. The connection of the present work to the celebrated Rhines

scale is Ut, the vortex translation speed. As shown in Section 4.5 vortex translation speed

is determined by the dipole component, which could be considered as the local wave field in

the vicinity of the vortex; therefore, Ut could be interpreted further as the upper limit of

the characteristic velocity scale of the wave field. The Rhine scale was originally proposed
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for the fully turbulent flows where eddy interaction dominates, and thus the characteristic

velocity scale Vrms is close to the swirling velocity inside the vortices. However, in a case

of the β-drift, nonlinearity is greatly confined inside the vortex such that there is a distinct

scale separation between the vortex-dominated flow and the wave field. Ut naturally charac-

terizes the whole field due to the widespread waves. Although
√

β
Ut

is not an exact analogue

to the Rhines scale physically, the curves in Figure 4.10 follow correctly the energy lobes in

wavenumber space. The scale-dependency of characteristic velocity requires caution when

applying the Rhines scale in the ocean, where sparsely distributed vortices interact with each

other through radiated waves.
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