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Abstract 

The objective of this thesis was to examine how ambient temperatures ((Cool 

(16°C) vs. Room (21°C)) and exercise modality ((upright (Treadmill) vs. recumbent 

stepper (NuStep)) effects the neuromuscular excitability in people with Multiple Sclerosis 

(PwMS). Fourteen heat sensitive MS patients (10 Females), 49.28 ± 13.56 years of age 

with relapsing remitting MS and baseline expanded disability status scores ranging from 

3.4 ± 2.37 participated in the study. Transcranial magnetic stimulation (TMS) elicited 

motor evoked potentials (MEPs) were recorded and assessed prior to and following 

aerobic exercise interventions at 65% of VO2max. Tibial nerve stimulation elicited maximal 

muscle compound action potential (Mmax). Measurements were taken from the tibialis 

anterior, lateral gastrocnemius and soleus muscle of the weakest limb, both at rest and during a 

torque equivalent to 10% of maximal voluntary contraction (MVC). Participants attended 

four randomized experimental sessions including temperature ((Cool (16°C) and Room 

(21°C)) and exercise modality ((Treadmill (T) and NuStep (N)). Therefore, the 

experimental sessions were T in cool (TC), T in room (TR), N in cool (NC) and N in room 

(NR). MEP amplitudes were made relative to Mmax amplitudes for analysis.  

The results showed that exercising on a NuStep in a cool ambient temperature 

resulted in greater MVC and peak twitch (PT) torque, reduced half relaxation time (HRT) 

and no change in Mmax indicating that exercising in a cool environment enhances 

voluntary contraction and electrically evoked contractile properties of the muscle in 

PwMS. Furthermore, MEPs were elicited more readily following exercise using the 

i 

 



 

NuStep as compared to the treadmill. Regardless of ambient temperature and/or exercise 

modality; the number of MEPs elicited was strongly correlated with the neurological 

disability measured through the EDSS (i.e., the occurrence of MEPs was reduced 

significantly with increasing motor impairments). Strong correlations were also observed 

with neurological disability for: 1) MVC and 2) EMG of the LG and SOL. Furthermore, 

post exercise aural temperatures recorded did not change after exercising in cool (16°C) 

ambient temperature conditions, but were increased in room (21°C) temperature 

conditions. Overall, the experiment demonstrated that neuromuscular excitability of the 

lower limb is affected by the exercise modality and ambient temperature conditions, and 

PwMS should exercise in a cooler temperature conditions on non-weight bearing exercise 

modality such as NuStep.  
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Chapter 1: REVIEW OF LITERATURE 

1.1: Introduction 

The corticospinal tract is a major descending tract of the central nervous system 

(CNS) that connects the cerebral cortex to the spinal cord. This tract is responsible for 

conveying voluntary movement commands from the motor cortex to the spinal cord. 

These motor commands then get relayed to the muscle through spinal motoneurones. The 

excitability of this pathway can be altered by certain factors, including different types of 

activity, fatigue, and pathology. The excitability of the corticospinal tract alters the input 

from the motor cortex during a contraction in a specified muscle or group of muscles. 

Corticospinal excitability (CSE) may be reduced when higher command centres fail to 

generate the impulse required for muscles activation, and/or due to impaired peripheral 

transmission. The change in the corticospinal tract can result in altered CSE and muscle 

properties. Higher commands and the peripheral nervous system are necessary to execute 

voluntary movements, such as walking, lifting, climbing, etc. Thus, disruption of signals 

from upper motoneurons to lower motoneurons can make such activities challenging. In 

addition, the axonal physiology and presence of myelin sheath over nerve fibers accounts 

for proper conduction of impulses. CSE may get affected in certain neurological and 

inflammatory disorders, which could account for altered conduction.  

Multiple sclerosis (MS) is a neurological and inflammatory disorder that results in 

altered functioning of the CNS. Specifically, MS causes damage to the myelin sheath 

disrupting the ability of neurons to communicate with each other, thus altering sensory 
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and motor function. Sensorimotor effects are more pronounced when PwMS are exposed 

to heat (Andrea T White, VanHaitsma, Vener, & Davis, 2013), whether during exercise 

and/or ambient temperatures. Due to the demyelination in the hypothalamus (the sensory 

integration center for thermal stimuli), PwMS also have altered thermal sensitivity. A 

current means to combat reduced physical performance in PwMS is exercise 

rehabilitation. The exercise rehabilitation process is complicated due in large part to heat 

susceptibility. As PwMS begin to exercise, body temperature rises resulting in a 

worsening of sensorimotor symptoms and therefore disrupts motor behavior largely due 

to fatigue. Overall, in the majority of PwMS, thermal stress due to demyelination results 

in altered CNS functioning of the corticospinal tract, likely altering motor output (Andrea 

T White et al., 2013). This study will assess CSE of PwMS before and after exercising at 

two ambient temperatures (cool vs. room temperature) using two different modes of 

exercise (body-weight supported treadmill vs. recumbent stepper Nustep) with the goal of 

enhancing exercise programming for PwMS. 

1.2: Multiple Sclerosis 

MS is a chronic inflammatory demyelinating disease of the CNS. Focal 

neurological symptoms caused by the inflammation include sensory changes and motor 

dysfunction, as well as blurred vision, transient blindness or nystagmus (Induruwa, 

Constantinescu, & Gran, 2012). It was Charcot (1868) who defined the disease by its 

clinical and pathophysiological characteristics, i.e. paralysis and the cardinal symptoms 

such as intention tremors, nystagmus and alteration in speech. The disease is often 

described as episodic, progressive and with partially reversible symptomatic attacks 
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(Ransohoff, Hafler, & Lucchinetti, 2015). The symptom pattern of the disease is variable. 

In the third or fourth decade of life, PwMS usually experience reversible neurological 

deficit, followed by irreversible neurological decay by the sixth to seventh decade of life 

(Trapp & Nave, 2008).  The prevalence of MS is twice as high in females as males. MS is 

the leading cause of neurological disability in North America and Europe, where 

approximately 2.5 million people are living with MS. There are four types of MS namely 

relapsing-remitting MS (RRMS), primary-progressive MS (PPMS), secondary 

progressive MS (SPMS), and progressive-relapsing MS (PRMS). Almost 85% of MS 

patients have relapsing-remitting type of MS (RRMS), which is characterized by 

reversible relapse phase (disease phase showing signs of neurological deficits due to focal 

areas of inflammatory demyelination), followed by remission (clinical recovery phase, 

resolution of inflammation and restoration of myelination) when the patient regains 

neurological function (Ransohoff et al., 2015; Trapp & Nave, 2008).  

The course of the disease is thought to involve numerous autoimmune events, 

which appear to be genetic in origin, probably in conjunction with environmental factors 

such as infectious agents (S. L. Davis, Wilson, White, & Frohman, 2010; Frohman, 

Racke, & Raine, 2006). However, some investigators hold onto the fact that these 

infectious agents might provide the suitable environmental conditions for the initiation of 

the autoimmune reaction, which result in MS but are not directly responsible for the cause 

of the disorder. It is generally held that the blood brain barrier fails and myelin sensitive 

T-lymphocytes enter the brain resulting in acute inflammation (Frohman et al., 2006). 

Animal models such as experimental autoimmune encephalitis (EAE) demonstrate that 
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the inflammatory demyelination of the CNS is due to the auto reactive T cells such as 

CD4+ or CD8+ and strongly support the fact that MS is an autoimmune inflammatory 

disorder involving various antigens (Frohman et al., 2006). Thus, MS is believed to be 

primarily neurodegenerative in nature, which is further complicated by inflammatory 

responses (Ransohoff et al., 2015). 

The inflammatory reactions occurring within the CNS result in the demyelination 

of the axon. Eventually, demyelinated areas become filled with fibrous astrocytes 

resulting in glial scars (plaques); a process referred to as gliosis, which inhibits axonal 

regeneration. These pathophysiological reactions lead to multiple symptoms such as 

difficulty in walking, fatigue, and numbness. MS lesions and plaque formation can occur 

at any site within the CNS. MS is highly variable and unpredictable from person to person 

and within a given individual over the period of time of the disease progression. The 

majority of individuals with MS experience temporary worsening of clinical signs and 

show adverse reactions to a number of factors such as fatigue and heat (S. L. Davis et al., 

2010). 

1.3: Temperature sensitivity in MS 

Studies have revealed that approximately 60-80% of the individuals with MS 

experience transient and temporary worsening of clinical signs such as blurred vision, 

tetraplegia or paraplegia, nystagmus, extraocular muscle paresis, dysarthria, aphasia and 

bilateral ptosis (Malhotra & Goren, 1981) when exposed to heat. NELSON, JEFFREYS, 

and McDOWELL (1958) assessed 26 MS patients after they were exposed to infrared 

heating lamps and immersion in warm water. Twenty-five of the 26 individuals 
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developed neurological signs such as nystagmus, facial palsy, ataxia, ptosis, ankle clonus, 

and motor weakness in response to heat induced by both modalities. EDMUND and FOG 

(1955) tested individuals with MS by exposing them to an incandescent lamp for 20 

minutes. While exposed to heat, patients were sitting in a cabinet with their left arm 

exposed in order to record heart rate and the blood pressure throughout the experiment. 

The temperature in the heating box rose up to 55- 60°C. After exposure, a thorough 

neurological examination was done. The team reported that 32 out of 41 subjects 

developed neurological signs within 10-15 minutes, which included nystagmus, ataxia, 

facial palsy, bulbar signs, paresis, and sensory disturbances (uncertain postural sense). A 

similar study by Malhotra and Goren (1981) reported that 85% of participants 

demonstrated worsening of symptoms when immersed in a hot bath with water 

temperature at 41°C , while 15% of them showed new signs and symptoms, which were 

never documented before. New signs observed by the team were unilateral and/or 

bilateral decrease in visual acuity, extraocular muscle paresis, dysarthria, mutism or 

aphasia, nystagmus and athetoid posture of hand. 

 The underlying mechanisms responsible for the exacerbation of MS symptoms 

when exposed to heat are not well understood but are likely due to an altered axonal 

physiology in the CNS (Syndulko, Jafari, Woldanski, Baumhefner, & Tourtellotte, 1996). 

Axonal lesions within the CNS reduce the generation and propagation of action potential 

due to a loss of saltatory properties of electrical conduction, decreased conduction 

velocity, and conduction loss (S. L. Davis et al., 2010). Smith and McDonald (1999) 

reported that the severity of the conduction block depends on the degree of myelin loss 
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and duration since demyelination started. Thus, individuals with severe forms of MS are 

at greater risk of developing conduction block (failure of generating action potential 

across the node of ranvier). Floyd A Davis (1970) found that the conduction block in 

demyelinated axons is sensitive to temperature increase as small as 0.5°C. Rasminsky and 

Sears (1972), when examining changes in demyelinated rat ventral root fibers at different 

temperatures found similar results. They recorded action potentials from the sacral or 

coccygeal ventral roots in the spinal cord of Sprague-Dawley rats at various temperatures 

ranging from 27°C - 45°C. Interestingly, they were able to record action potential in 

normal fibers at 45°C; however, the internodal action potential time across the 

demyelinated roots was significantly reduced with increased temperatures. They also 

observed that the conduction block developed because of increased temperature was 

reversible and could be restored by reducing the temperature up to 0.5°C. The team 

suggested that the temperature sensitivity could be the reason for conduction 

abnormalities in neuro-degenerative and neuro-inflammatory diseases, such as MS. The 

aforementioned studies support the view that changes in temperature result in slower 

action potential conduction velocities or possible conduction block. In contrast, 

conduction could be restored possibly in remission phase i.e., RRMS due to 

remyelination occurring at the axonal site; however, the areas are still prone to conduction 

block due to progressive nature of disease resulting in permanent deficit and conduction 

failure (Smith & McDonald, 1999). 

Transmission (conduction) of the electrical signals is carried through the axon in 

the form of nerve impulses, which is known as the action potential. The ionic mechanism 
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of propagating the action potentials is dependent on the sodium-potassium pump. In 

myelinated nerves, conduction is dependent on inward movement of sodium ions to 

initiate the depolarization and outward movement of potassium ions to produce 

repolarization. Huxley (1959) reported that elevated temperatures can impact the 

electrical properties of the nerve fiber by altering these ion movements across the nerve.  

With an increase in temperature there is an increase in refractory period, which is partly 

mediated by potassium channel activation and sodium channel inactivation. Thus, 

demyelination and increases in temperature not only affect the propagation of the action 

potential along the axon, but may also influence ionic movements across the axon.  In 

addition, the safety factor plays an important role in saltatory conduction. With 

progressive demyelination, there is also a reduction in the safety factor (the ratio of the 

current generated by a nerve, to the amount required in accordance to reach the threshold 

and maintain the action potential propagation, Caldwell, 2009). Tasaki (1953) reported 

that the safety factor ranges from 3-7 in a healthy axons. A safety factor of 3 means that 

the current generated by sodium channel is thrice the minimum required for the 

conduction to occur. It allows the membrane to reach threshold faster. On the contrary, 

demyelinated axons have a safety factor of ~1. This significant reduction in safety factor 

can result in a failure to generate an action potential, ultimately leading to conduction 

block. With increased temperature, the safety factor is further reduced, thereby 

influencing the threshold of current required to excite an axon.  

Furthermore, several studies have also been conducted to determine the effects of 

temperature on nerve conduction at the site of lesion (Floyd A Davis, 1970; F. A. Davis 

7 

 



 

& Jacobson, 1971; Rasminsky & Sears, 1972). The experiments included the recording of 

action potential from peripheral nerves on experimentally induced demyelinating lesions 

in animals. It is known that altered thermal sensitivity and demyelination leads to a 

conduction block (F. A. Davis & Jacobson, 1971; Rasminsky & Sears, 1972), but how 

much demyelination results in a block is still a question. Since there are observed 

conduction abnormalities due to changes in temperature, which is again enhanced in the 

inflammatory and progressive neurodegenerative diseases such as MS, it seems plausible 

that heat exposure in MS could result in increased conduction abnormalities, which might 

explain the altered sensory and motor functions in PwMS. However, PwMS are heat 

sensitive and perhaps studies that explore the reason for heat sensitivity in MS could 

provide some reasoning for conduction abnormalities due to heat exposure. 

1.4: Central regulation of body temperature and MS 

The hypothalamus is the primary integration center of sensory thermal inputs (e.g. 

warm and cold ambient temperatures), and directs autonomic thermal responses (e.g. 

shivering, vasodilatation and vasoconstriction) in order to regulate the core body 

temperature. The thermoregulatory centres, known as central thermosensors, are located 

in the brain stem and spinal cord and are primarily concerned with warmth. Peripheral 

thermosensors are located beneath the epidermis, (i.e., skin and other deep body sensors, 

such as the esophagus, stomach, large intra-abdominal veins) and respond to core body 

temperature. The spino-thalamo-cortical afferent pathway is involved in discriminative 

temperature sensation (Romanovsky, 2007). Thermal responses can be generated by 

thermal stimulation to various areas in the supraspinal centres (i.e., reticular formation of 
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the medulla oblongata, pons and midbrain) and the spinal cord. Thermosensitive neurons 

of the preoptic anterior hypothalamus (POA) are most essential to elicit thermal 

responses. These POA neurons are heat sensitive neurons, and thus cold or heat defense 

autonomic responses are initiated by corresponding changes in these warm sensitive POA 

neurons of hypothalamus. Increased activity of the POA will trigger the heat-defense 

responses (increase in core body temperature) whereas decreased activity of POA will 

cause cold defense responses (decrease in cold body temperature). As POA are located in 

the hypothalamus, lesions to the hypothalamus can alter homeostatic control of the body 

temperature, resulting in hypothermia or hyperthermia. Interestingly, studies have 

concluded that in PwMS, the hypothalamus is more prone to demyelination (Andersen & 

Nordenbo, 1997; Huitinga et al., 2001), thus altering one’s ability to effectively regulate 

body temperature  

Experiments have examined physiological changes and heat tolerance at different 

ambient temperature in PwMS. Heat exposure greatly reduce the functional capability of 

individual with MS. Studies have shown that more than 77% of PwMS experience 

deteriorated functions (e.g. fatigue, spasticity, walking, vision) when exposed to heat 

(Petrilli et al., 2004). Also, Bol et al. (2012) evaluated 88 heat sensitive MS patients for 

subjective fatigue in relation to the ambient temperature conditions. Patients were asked 

to answer two items from the Fatigue Assessment Inventory: 1)”Heat brings on my 

fatigue” and, 2)”Cool temperature lessens my fatigue”. Both items were answered on a 

scale of 1 to 7, ranging from 1=completely disagree to 7-completely agree. They found a 

positive correlation between subjective fatigue and heat sensitivity in individuals the MS, 
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but they were unable to confirm the relationship between ambient temperature and 

reported fatigue by PwMS. Interestingly, non-heat sensitive and heat sensitive PwMS did 

not show any differences in their fatigue level and were found to be equally fatigued.  

Indeed, multiple studies have shown that an increase in ambient temperature 

causes a higher core body temperature rise in PwMS, and this elevated temperature 

results in acute adverse effects on physical functioning, as stated above (Petrilli et al., 

2004; Romberg, Ikonen, Ruutiainen, Virtanen, & Hamalainen, 2012). In addition to 

passive warming, symptom worsening can also result from prolonged exercise due to 

increase in core body temperature, or active warming (S. L. Davis et al., 2010). Since 

there are observed decrements in various types of motor task performance due to 

inflammation, neurodegeneration, heat sensitivity, and altered axonal physiology, 

maintaining the quality of life is of interest. 

1.5: Aerobic training in Multiple Sclerosis 

Sensory and motor impairments that occur with MS lead to reduced physical 

performance which can reduce one’s quality of life (QOL). One way to enhance QOL is 

through exercise and rehabilitation. Evidence shows that exercise has the potential to 

improve muscular strength, aerobic capacity, ambulation and hence the overall QOL in 

PwMS (Robert W. Motl & Pilutti, 2012). A meta-analysis on the effects of exercise 

training on QOL in PwMS was conducted by R. W. Motl and Gosney (2008). They 

reviewed 25 published journal articles, and thirteen out of the 25 provided enough data to 

compute effect size. They found statistically significant improvements in QOL and 
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reported that aerobic exercise was the most significant mode of exercise to maximize 

improvements in fatigue related MS symptoms, and QOL. 

Petajan et al. (1996) showed that aerobic training improves mobility and fitness 

and has a positive impact on several physical dimensions of PwMS. Their training session 

combined upper and lower-limb exercises for three 40 minutes sessions per week. They 

measured maximal aerobic capacity (VO2max) and isometric strength before the exercise 

interventions and after the intervention was completed. For evaluation, they compared the 

pre-intervention values after every exercise intervention, and found increased VO2maxand 

strength in upper and lower limbs. Thus part of maintaining strength and mobility of 

PwMS is regular exercise to help them to achieve physiological well-being. Kileff and 

Ashburn (2005) conducted a pilot study to examine the effects of aerobic exercise on the 

mobility and function of MS population with disability. The exercise intervention 

consisted of 30 minutes of cycling on a stationary bicycle for two sessions per week, for 

12 weeks. Scores for 10-metre and 6 min walk tests (6MWT) were recorded pre- and 

post-exercise intervention. There was a significant improvement in 6MWT scores with 

the mean distance increasing from 200m (pre-test) to 261 m (post-test), indicating aerobic 

exercise training can improve mobility. Pearson, Dieberg, and Smart (2015) conducted a 

meta-analysis on 13 randomized control trials that assessed the effects of exercise training 

on walking abilities. Their team reported clinically significant improvements in walking 

speed and endurance in adult MS patient group, post exercise training. Aforementioned 

studies have described the importance of exercise induced benefits and laid a foundation 

of exercise as a rehabilitative tool for the MS population.   
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Several studies confirm that exercise improves fitness and mobility of people in 

the early and middle stages of the disease and is associated with preservation of the axons 

in the brain (Robert W. Motl & Pilutti, 2012). A study using an animal model of 

experimental autoimmune encephalitis (EAE, i.e. experimental model of MS in 

laboratories) shows the positive effects of aerobic exercise on reducing the CNS 

abnormalities, especially in striatal synaptic and dendritic areas. Golzari, Shabkhiz, 

Soudi, Kordi, and Hashemi (2010) reported significant reductions in proinflammatory 

cytokines interferon gamma and interleukins after eight weeks of an exercise training, 

thereafter showing anti-inflammatory effects. In addition, the exercise training improved 

the muscle strength, balance and mobility status of the participants.  

Methodological aspects (exercise mode or type, research design, length of 

exercise intervention, intensity of exercise, and exercise duration) make it difficult to 

compare exercise regimes across all types of MS with various neurological disabilities.  

1.5.1: Aerobic training- Difference between modes of exercise 

Aforementioned studies have shown that exercise among PwMS is beneficial 

(Kileff & Ashburn, 2005; Pearson et al., 2015) and that recent reviews of exercise have 

illustrated that cardiovascular exercise is important for improving walking speed and 

endurance as well as strength in both upper and lower limb (Robert W Motl, Goldman, & 

Benedict, 2010; Robert W. Motl & Pilutti, 2012). Using certain modes of exercise 

described improvements in muscle strength and aerobic capacity, whereas combination of 

other forms of exercise modalities depicted different improvements. For example, lower 

extremity resistance training and leg ergometry exercises improved muscle strength and 
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aerobic capacity in PwMS. Employing a variety of activities such as treadmill, walking, 

upper limb strengthening and cycling showed improvements on perceived fatigue (Robert 

W. Motl & Pilutti, 2012).  Another study by Samaei, Bakhtiary, Hajihasani, Fatemi, and 

Motaharinezhad (2016) also showed that 4 weeks of downhill compared to uphill walking 

on a treadmill led to greater balance and force output in PwMS. Interestingly, with 

different levels of neurological disability and thus ambulatory status, the benefits of these 

exercises could be more pronounced in an ambulatory group. Thus, identifying common 

modes of exercise for increasing aerobic exercise benefits in PwMS having ambulatory 

issues would be important (Robert W. Motl & Pilutti, 2012), such as weight bearing 

exercise vs. non-weight bearing exercise. To date no studies have directly compared the 

effects of different exercise modalities on neuromuscular performance and fatigue.  

Although exercise interventions for PwMS may be beneficial in the early and 

middle stages (RRMS) of the disease, elevated body heat due to exercise itself may limit 

these benefits. If the body fails to achieve thermal balance during exercise, it could result 

in hyperthermia, and exacerbation of signs and symptoms in heat sensitive MS patients, 

and prematurely end the exercise session. 

1.6: Fatigue in Multiple Sclerosis: Heat induced and early onset 

Fatigue can be defined as an exercise-induced inability to generate force from a 

muscle or a group of muscles. It is a common symptom in MS and is mainly classified 

into two types, central and peripheral fatigue. Central fatigue is defined as a reduction or 

failure of the CNS (spinal and/or supraspinal components) to voluntarily activate the 
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muscle and, peripheral fatigue is defined by changes at or distal to the neuro-muscular 

junction (J. L. Taylor, Todd, & Gandevia, 2006). Any change in the excitability of the 

corticospinal tract, one of the main descending pathways involved in the voluntary 

control of motor output, can cause fatigue. Approximately 75% to 95% of PwMS 

experience fatigue (Bakshi, 2003) and are heat sensitive. Due to heat sensitivity, PwMS 

are unable to maintain their internal body temperature and thus increased temperature 

may exacerbate their MS symptoms (Sumowski & Leavitt, 2014). Internal body 

temperatures ranging from 38.6°C to 40.3°C during aerobic exercise leads to fatigue in 

healthy individuals (Cheung & Sleivert, 2004; Gonzalez-Alonso et al., 1999). Gonzalez-

Alonso et al. (1999) assessed healthy individuals to examine the effects of body 

temperature on the development of fatigue during a prolonged aerobic exercise session 

(cycle ergometer), at 60% of their VO2max.  They found that individuals were exhausted at 

the same level of internal body temperature, i.e. ~ 40°C and concluded that high internal 

body temperature accelerates fatigue. Fatigue is a common disabling symptom in MS and 

is likely due to the course of disease i.e. neurodegenerative and deconditioning (due to 

inactivity) or both (Krupp, LaRocca, Muir-Nash, & Steinberg, 1989). To combat this 

fatigue it would seem obvious to engage in regular exercise to prevent or mitigate 

deconditioning. It has been traditionally recommended that PwMS should not engage in 

regular exercise regimes because of the potential for symptom exacerbation, particularly 

fatigue, which is caused by a rise in internal body temperature after exercise (Petajan & 

White, 2000) 
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An experiment conducted by Sheean, Murray, Rothwell, Miller, and Thompson 

(1997) to study the mechanism of physiological fatigue in MS, postulated that the fatigue 

perception is central in origin and is likely due to impaired central drive. To allow 

investigators to examine central and peripheral contributions to fatigue, PwMS and a 

healthy control group performed 45s maximal voluntary contractions (MVCs) of the 

adductor pollicis muscle (APM). The cause of fatigue (central or peripheral) was assessed 

by using the interpolated twitch technique (ITT; J. L. Taylor et al. (2006)) and, supra-

maximal ulnar nerve stimulation at rest (to assess the muscle contractile properties i.e., 

muscle twitch properties and m-wave). Both groups demonstrated a significant decline in 

force output throughout the fatigue test but the rate of force decline was more rapid in MS 

patients (45% decline), as compared to healthy individuals (20% decline).  They 

suggested that in controls, fatigue was peripheral in origin i.e., no change in central 

activation with reduced twitch force. However, PwMS experienced significant fatigue 

which was mainly found to be central in origin (i.e., decrease in central activation with no 

change in twitch force). 

Kent-Braun, Sharma, Weiner, and Miller (1994) recorded MVC torque outputs 

from ankle dorsiflexors (DF) to determine muscle fatigue in PwMS with mild disability. 

To do so, participants performed fatiguing, intermittent, progressive isometric 

contractions of the ankle DF at 10% of their initial MVC, followed force increases in 

increments of 10%, up to 80% MVC (each stage was 2 minutes apart). Participants 

performed 4 seconds contractions at each intensity, followed by 6 seconds of rest, and the 

protocol continued until the 16th minute, (i.e., until the maximum intensity of 80% MVC). 
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The authors assessed central activation and muscle contractile properties using ITT and 

supra-maximal stimulation of peroneal nerve, respectively. They found that the onset of 

muscle fatigue occurred earlier in PwMS compared to healthy controls but by the end of 

the fatiguing protocol, the relative decline in force magnitude was nearly similar. The 

authors attempted to explain that the decrements were most likely due to the combination 

of central (decline in central activation) mechanisms and excitation-contraction coupling 

(i.e., activation failure beyond the muscle membrane).  

Other research has looked at subjective fatigue scores by using special tests such 

as the Fatigue Severity Scale (FSS; a self-reported measure of fatigue severity, Krupp et 

al. (1989), Fatigue Impact scale (FIS; Fisk, Pontefract, Ritvo, Archibald, and Murray 

(1994)) and, Modified Fatigue Impact Scale (MFIS; Fisk et al. (1994)). FIS and MFIS 

measure the effects of fatigue in terms of physical, cognitive and psychosocial 

functioning in PwMS. A population based longitudinal cohort study on 198 people living 

with MS examined correlations between MS and fatigue (Wood et al., 2012). Using the 

FSS they found that fatigue was positively associated with higher disability scores i.e. 

Expanded Disability Status Score (EDSS; (Kurtzke, 1983)). EDSS is a method of 

measuring the degree of neurologic impairment in PwMS on the scale of 10 ranging from 

0-10 with 0.5 units of increments (0 = no disability with minimal impairment in 

functional systems and 10 = Death due to MS). However, Bakshi (2003) reported that 

fatigue is present in all stages of MS including patients with relapsing remitting clinical 

course and mild disability. Interestingly, he also discussed that fatigue and physical 

16 

 



 

disability can occur independently and thus are not associated with increasing scores of 

EDSS.   

The aforementioned studies indirectly support the fact that PwMS fatigue easier 

than healthy individuals. So far, the investigation of the etiology behind fatigue has failed 

to provide a satisfactory explanation. The presence of central and peripheral fatigue 

mechanisms are also postulated in the above mentioned studies. However, at present the 

underlying cause of MS related fatigue remains unknown. Of primary importance to the 

current study is the fact that heat sensitivity causes early fatigue in PwMS and sometimes, 

leads to temporary worsening of MS. 

1.7: Response to cooling by PwMS 

Heat exposure can either cause exacerbation of existing signs and symptoms in 

PwMS or produce new signs and symptoms not previously reported. These clinical 

symptoms appear immediately after heat exposure and resolve with cooling (NELSON et 

al., 1958). A. T. White, Wilson, Davis, and Petajan (2000) designed an experiment to 

evaluate the effects of precooling on physical performance in heat-sensitive MS patients. 

Thermal load was induced by exercising for 30 minutes on a combined arm-leg ergometer 

under two experimental conditions: precooling and non-cooling. Precooling was 

administered by lower body immersion in 16 - 17°C water. Motor fatigue was assessed by 

using a FIS and a 25-ft walk test was performed to assess the walking performance 

(number of steps taken per minute) in both experimental conditions. Scores were obtained 

prior to, immediately after and 30 minutes post-exercise. Immediately after exercise the 

precooling trial resulted in a significant reduction of perceived exertion, improved 
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walking performance and reduced time taken to complete the walk. In contrast, non-

cooling trials resulted in worsening of FIS scores and 25-ft walk performance, 

immediately and after 30 minutes post-exercise. Participants in the precooling condition 

were able to finish the 25-ft walk test in 6.8±0.8 seconds while the non-cooling group 

took 9.7±3.0 seconds (p=.057). Internal body temperature was significantly lower in the 

pre-cooling group compared to the non-cooling (36.5°C vs. 37.4°C, p<.05).They 

concluded that precooling is an effective method to prevent increases in core body 

temperature, thereby helping to reduce fatigue in heat sensitive MS patients and allowing 

them to exercise without relapse. Cooling strategies such as the use of cooling garments 

can also combat heat stress in PwMS during daily activities and/or exercise. The 

application of a cooling garment improves motor performance (e.g. walking, muscle 

strength), visual acuity and fatigue perception (Capello et al., 1995; Kinnman, Andersson, 

& Andersson, 2000) in heat-sensitive MS patients. 

1.8: Paradoxical effects of temperature in Multiple Sclerosis 

A large reduction in body temperature may be detrimental to motor function in 

MS patients. Honan, Heron, Foster, and Snelgar (1987) reviewed six cases of PwMS who 

reported changes in signs and symptoms of MS when exposed to cold environmental 

temperatures. When exposed to cold, all of the six cases experienced paresthetic 

symptoms. In addition to paresthesia, case 1 and 6 experienced deterioration of motor 

functions, case 3 and 6 lost the sphincter control and, case 2 and 4 developed ataxia, 

vertigo, vomiting and internuclear opthalmoplegia. Interestingly, cases 2-6 did not 

experience aggravation of all the above-mentioned symptoms after a hot shower bath 
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taken at home. Amongst those six cases, one of the patients was diagnosed with mild 

spastic paraparesis and sensory impairment in bilateral lower limbs. When the patient was 

heated (ambient laboratory temperature: 25°C), their ambulation improved and he/she 

was able to walk freely without any aid. In addition to improved gait, sensory 

impairments were improved and the authors concluded that heating might have induced a 

paradoxical improvement of sensory and motor function (Honan et al., 1987). The 

majority of the evidence on the adverse effects of cold on symptoms reported by the 

authors are subjective and no physiological explanation was provided. This study appears 

to have opposite findings than the aforementioned studies. However, there may be an 

optimal cooling temperature that reduces symptoms in PwMS. Furthermore, findings may 

vary from study to study due to differences in plaque, site of lesions, duration of MS and 

response to changing environmental temperatures. Due to such variations it is also 

important to understand the effects of temperature on their neuromuscular fatigue and 

performance. In this study we are employing non-invasive techniques to understand the 

mechanisms of neuromuscular fatigue and performance. 

1.9: Peripheral fatigue mechanisms and evaluation 

Non-invasive techniques such as peripheral nerve stimulation can be used to test 

the contractile and fatigue properties of muscle. When the motor axon is electrically 

activated by a single, supra-threshold voltage, a single all-or-none contraction occurs in 

all muscle fibres of a motor unit and a single action potential is transmitted from nerve to 

muscle or from motor point to muscle, producing a transient increase in muscle force, 

described as a twitch. When a stimulus is applied to the nerve, the twitch evoked from the 
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stimulus is an indication of the twitch force at rest. In mammalian skeletal muscles, the 

twitch has a characteristic form, in which there is a relatively rapid rise from onset to 

peak force. The resulting twitch is then studied to evaluate the muscle contractile 

properties and to understand the fatigue state of muscle.  

The twitch contractile properties of a muscle that are examined include the peak 

twitch tension (PT), time to peak twitch (TPT) and half relaxation time (HRT). All of 

these properties reflect muscle excitability and fatigue state of the muscle. Rice, Vollmer, 

and Bigland-Ritchie (1992) studied muscle contractile properties in response to 

percutaneous stimulation in four MS patients and compared them with sixteen healthy 

individuals without any neurological impairment. The disability scores varied amongst all 

four MS patients and twitch contractile properties were recorded bilaterally from the knee 

extensors, except in one patient with only unilateral recordings. They found slightly but 

significantly prolonged contraction time (TPT) in the MS group. The contraction time and 

HRT values in healthy controls and MS population were 73 ± 8 ms and 61 ± 14 ms; and 

81 ± 11 ms and 61 ± 12 ms, respectively. The authors suggested that PwMS may not be 

able to activate all the motoneurons required to generate force which partially implies the 

slowing of muscle contractile characteristics and prolongation of the twitch time. The 

authors were unable to generalize their results due to the low sample size; however, they 

mentioned that spasticity presented in one of the MS patients may have potentiated her 

twitch contractile properties. They also found large areas of silent electromyography 

(EMG) while taking measurements and suggested that alterations could be due to atrophy 

and other neurotrophic factors. 
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It is a well-established fact that activity or exercise alters the contractile properties 

of the skeletal muscle fibres (Edstrom & Grimby, 1986). To date, these alterations are 

difficult to examine because 1) different types of exercise training induce different types 

of changes, and 2) motor unit recruitment pattern during exercise differs and is controlled 

by the CNS to some extent. This being so, the contractile properties of muscles in 

individuals with neurological and orthopedic impairments might alter as the disease 

progresses (Lenman, Tulley, Vrbova, Dimitrijevic, & Towle, 1989). Lenman et al. (1989) 

induced fatigue through electrical stimulation in order to understand muscle fatigue in 

neurological disorders. They induced fatigue in tibilias anterior (TA) muscle in PwMS 

and SCI patients by repetitive electrical stimulation. MVC was recorded at the beginning 

of the test followed by TA stimulation at 1, 10, 20 and 40 Hz for 250 msec. Stimulation 

was repeated three times after a resting interval of 5 minutes. Fatigue was then induced 

through repetitive electrical stimulation (40Hz stimuli for 250 msec, delivered each 

second for 3 minutes). The ratio of the first five over the last five contractions was 

defined as the fatigue index. The authors found significant reductions in PT in MS and 

SCI patients compared to healthy controls and stated that it could be the nature of 

disorder (i.e., upper motor neuron dysfunction which makes their muscles more fatigable 

compared to the healthy individuals). Alternatively, because of the prolonged inactivity of 

TA could have led to inefficient Ca+2 uptake to the sarcoplasmic reticulum. They also 

recorded HRT of the tetanic contractions before and during the fatigue cycle and found 

prolonged relaxation of TA in both, MS and SCI patients. Thus, the prolongation of HRT 

also indicate that this fatigability could be due to prolonged disuse in MS and SCI, and 
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that fatigue-resistant fibers (muscle fiber type I) are transformed into fatigable ones as a 

result of disuse. 

A review done by Bigland-Ritchie, Johansson, Lippold, and Woods (1983) 

suggested that the reduction in force generating capacity of a muscle (after contraction in 

non-clinical population) might be due to several factors such as 1) reduced central motor 

drive, 2) neurotransmission failure, and 3) failed excitation/contraction coupling 

mechanisms or all of these factors, with the later as the most important explanation for 

failure of muscle contraction. Other mechanisms of peripheral fatigue could be, 1) 

insufficient propagation of the nerve potential at the nerve endings, 2) reduced 

neurotransmitter release or its depletion, and 3) decreased sensitivity of post-synaptic 

acetylcholine receptors and/or the post synaptic membrane (Boyas & Guével, 2011).  

A reduction in force can also occur if the motor drive is prevented from reaching 

the muscle by either neuromuscular or conduction block, which makes it difficult to 

evaluate objectively (J. L. Taylor et al., 2006). For this reason, it is difficult for 

researchers to determine if the reduction in force occurs at the CNS level (reduced central 

drive) or at muscle (failure of excitation/coupling mechanism). Central fatigue occurs at 

both supraspinal and spinal sites. One of the several etiologies causing reduced central 

drive during prolonged exercise is decreased motor cortex excitability (J. L. Taylor et al., 

2006). Supraspinal fatigue can be measured indirectly through transcranial magnetic 

stimulation (TMS) and/or transcranial electrical stimulation (Janet L Taylor & Gandevia, 

2001). TMS studies by J. L. Taylor and Gandevia (2004) have shown that approximately 
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25% of fatigue during sustained and maximal voluntary contractions is due to the changes 

in CNS.  

1.10: TMS as a measure to examine CSE and fatigue in MS 

Transcranial magnetic stimulation uses a high intensity magnetic field to stimulate 

the motor cortex to produce multiple descending volleys to the motor pool within the 

spinal cord (Burke et al., 1993). The technique is a non-invasive means to investigate the 

changes involving the neural structure of the motor cortex and spinal cord (Rothwell et 

al., 1987). When the motor cortex is stimulated it sends a signal down to the spinal cord, 

which is relayed to the motoneurones and eventually the muscle. This activity (i.e., 

signal) is believed to be in corticospinal tract neurons, which have monosynaptic 

connections with motoneurons (Palmer & Ashby, 1992). If the summation of the volleys 

evoked by TMS is excitatory, it will cause a response (or multiple responses) in the 

muscle, which is called a motor evoked potential (MEP), a short latency excitatory 

response. In healthy individuals, TMS elicits both excitatory and inhibitory response by 

activating different cortical neuronal circuits. Parameters which can be measured by TMS 

are the latency, amplitude, and area of the MEP and central motor conduction time 

(CMCT). MEP’s allow researchers to examine the performance of the major motor 

pathway (the corticospinal tract) in humans. In addition, the amplitude of evoked 

potentials is not only influenced by cortical excitability, but also by the excitability of the 

spinal motoneuron pools. Thus, it is difficult to determine whether the changes in MEPs 

are occurring at the spinal or supraspinal level using TMS alone. The motoneurones 

within the spinal cord vary in responsiveness depending on what type of descending and 
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afferent inputs they are receiving, and also the intrinsic motoneuron properties, such as 

after-hyperpolarization. These factors complicate the prediction of alteration in 

excitability occurring either at spinal or supra spinal levels (J. L. Taylor & Gandevia, 

2004).  

Demyelination, the outcome of the inflammatory reactions that occur in MS 

impairs nerve conduction. Due to the transmission failure, MS is also known as 

“Disconnection Syndrome’, evidenced by using functional neuro-imaging. Results 

suggest that the cortico-cortical and cortico-subcortical connectivity is impaired (Chen, 

2012). Studies have shown that demyelination and axonal loss in the MS brain produces 

slowed conduction in nerves and an inability of pyramidal axons to conduct rapid 

transition of impulse to the spinal motoneurons (axonal transmission), and resulting in 

conduction failure (Gagliardo et al., 2007). The use of TMS to determine 

neurophysiological markers by using TMS such as CMCT has helped researchers to 

better understand motor connectivity in MS. In addition, Gagliardo et al. (2007) 

suggested that MEPs evoked by TMS can assess motor pathways and the recovery of 

motor pathway dysfunction in MS. Gagliardo and his team found prolonged CMCT 

which was accompanied by MEP amplitude and area abnormalities. Their team also 

stated that the MEP amplitude and area study appears to represent one of the relevant 

parameters to be considered in clinical trials especially MS and follow up studies. 

Researchers have used TMS to calculate intracortical inhibition (ICI) and central 

conduction index (CCI) to examine CSE in PwMS (Caramia et al., 2004; Scheidegger, 
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Kamm, Humpert, & Rösler, 2012; Tataroglu, Genc, Idiman, Cakmur, & Idiman, 2003). 

TMS was used by Hess, Mills, Murray, and Schriefer (1987) who found prolonged 

conduction time in 72% of their MS patients. These authors suggested that TMS 

technique is beneficial and of value for elucidating central motor pathway lesions in 

PwMS. Studies have correlated electrophysiological findings with the clinical status of 

MS patients. Findings include: 1) MEP threshold was higher in patients with relapsing 

MS, compared to those who were in remission phase, 2) PwMS who were in the relapse 

phase had reduced silent period (SP) duration; however, patients in remission phase had 

prolonged SP duration, 3) ICI was significantly reduced in PwMS and, 4) prolonged 

CMCT was observed in all types of MS except those in the relapsing and remitting phase 

(Caramia et al., 2004; Scheidegger et al., 2012; Tataroglu et al., 2003). Overall, the 

aforementioned studies also found reduced CSE and suggested that these changes might 

play a role in the pathophysiology of MS symptoms. 

Several investigators have reported prolongation of MEP latency, reduced MEP 

amplitude,  increased MEP threshold, reduced silent period (SP) duration (Caramia et al., 

2004; Petajan & White, 2000) and prolonged CMCT in MS patients (Hess et al., 1987; 

Ingram, Thompson, & Swash, 1988; Petajan & White, 2000; Tataroglu et al., 2003). 

These impairments have been shown in MS patients under varying conditions, including 

rest, exercise, and fatiguing task. Caramia et al. (2004) observed a reduction in MEP 

threshold at rest. During minimal voluntary isometric contraction, Gagliardo et al. (2007) 

found reduced MEP amplitude and area with increased CMCT. Similar results were 

observed by Petajan and White (2000) during a three minute sustained fatiguing hand grip 
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exercise. All the studies show variable findings but they all indicate that alteration seen in 

CSE in MS patients are due to the changes along the corticospinal tract. 

The aforementioned studies also found prolonged MEP latency and increased 

MEP threshold during rest and after exercise. Hess et al. (1987) examined the ADM 

muscle in MS patients during rest and contraction. They used percutaneous electrical 

stimulation and TMS to study motor pathways and found prolonged latency, in spite of 

using increased stimulus intensities of TMS. Also, it is important to note that spatial and 

temporal summations of excitatory post synaptic potentials (EPSPs) are required to evoke 

an action potential in the interneurons of the motor cortex. Thus with MS having lesions 

(partial or complete) in one or various regions in the corticospinal tract, interneurons 

might require more time to exceed firing threshold thus resulting in prolonged MEP 

latencies (Hess et al., 1987) and CMCT. In spite of using increased stimulus intensities, 

reduced susceptibility of cortical neurons in response to TMS could possibly be due to 

edema, gliosis, axonal transaction and conduction block. These factors may reduce CSE 

in PwMS (Caramia et al., 2004). However, Caramia and his team also observed normal 

sized MEPs followed by significant prolongation of SP, and suggested that this could be 

because of hyperpolarization currents. Also, additional neurons are being recruited in MS, 

to attain the specific task as compared to healthy individuals (Caramia et al., 2004). A 

similar explanation was proposed by Scheidegger et al. (2012) in relation to 

compensatory activation of areas in the motor cortex during exercise in PwMS. 
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The main limitation of all the studies outlined above is that TMS was the only 

stimulation paradigm used. For this reason, it was impossible to determine if the observed 

changes in MEP responses were due to changes at the spinal, or supraspinal level or both. 

So far, MEPs evoked by TMS have been used as a capable probe to quantify CNS 

function (central motor pathways) in people with MS. Moreover, this technique is also 

efficient to substantiate sub clinical lesions of ascending and descending motor pathways 

(Hess et al., 1987). A study conducted by (Kinnman et al., 2000) evaluated differences in 

motor evoked potentials after treatment of MS patients with a cooling suit. They 

investigated twelve MS patients with relevant clinical lesions and found increased MEP 

amplitudes, and reduced CMCT. They documented weak but significant correlations 

between ambient temperature and CMCT and found that with cooling, the duration of 

CMCT was reduced. No study to date has tested how CSE is effected, post exercise at 

different environmental temperatures (room vs. cold temperature). 

1.11: Correlates of neurological disability measured by TMS 

Various studies have shown a correlation between EDSS and measures of CSE 

(MEP latency and amplitude, area, CMCT, and SP). For instance, EDSS, age and disease 

duration correlated with MEP thresholds and amplitudes (Neva et al., 2016). Schmierer, 

Irlbacher, Grosse, Roricht, and Meyer (2002) and Ingram et al. (1988) have found cortico 

motor conduction and latency time periods to be correlated with EDSS. Authors have 

suggested that these CSE measures can be applied to the MS population for evaluating 

motor pathways and corticospinal tract involvement. Potentially these TMS based CSE 
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measures could provide insights into the neuropathology of the MS progression and 

possibly serve as biomarkers to monitor the disease. 

1.12: Summary 

Systemic reviews of randomized controlled trials (Robert W. Motl & Pilutti, 2012; 

Pilutti, Greenlee, Motl, Nickrent, & Petruzzello, 2013) confirm that aerobic exercise 

improves fitness and mobility among PwMS. Moreover, improved cardiovascular 

fitness is associated with preservation of axons in the brains of people with mild MS. 

Studying the beneficial effects of exercise on brain plasticity in MS is complicated by the 

fact that exertion and heat exposure temporarily make MS symptoms worse. Fatigue and 

heat sensitivity are debilitating symptoms and major impediments to exercise 

experienced by 75% of PwMS. Several lines of evidence suggest that abnormalities 

in nervous system excitability measured using TMS underlie this `central' fatigue in 

MS. This study marks the first step in carefully outlining safe and effective methods to 

institute and test aerobic training among people with moderate MS-related disability. 

It is important to first determine if a cooler environment enhances nervous system 

excitability in PwMS. If so, then it may be a better environment for MS patients to 

exercise in. Fatigue and heat sensitivity may impede persons with MS to exercise. Part of 

the reason for the fatigue may be due to reductions in excitation of the nervous 

system, which could be further compounded by increased levels of heat. By utilizing 

TMS and peripheral nerve stimulation pre-post exercise to assess the effects of 

temperature and modality, researchers will be able to determine the cause of fatigue in 
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MS population and also, which temperature and exercise modality condition will enhance 

CSE and have less fatigable effects on them.  

To our best knowledge, no study to date has looked at how ambient temperatures 

(cool vs. room) and exercise modality ((upright (treadmill) vs. recumbent stepper 

(NuStep)) effects CSE in PwMS. 

1.13: Research Questions 

The purpose of this study was to determine the effects of different common 

exercise modalities (treadmill and NuStep) at different room temperatures (Cool, 16°C 

and Room, 21°C) on PwMS. Specific research questions include: 

1) What is the effect of exercise modality and temperature on central and peripheral 

nervous systems excitability and neuromuscular performance? 

2) What is the effect of disease severity on measures of central and peripheral 

nervous system excitability and neuromuscular performance? 

1.14: Hypothesis 

 We hypothesized that: 

1) Central and peripheral nervous system excitability and neuromuscular 

performance would be greater following NuStep versus treadmill exercise because 

of greater fatigue during treadmill exercise. 

2) Irrespective of exercise modality, neuromuscular performance would be greater, 

due to less neuromuscular fatigue, following exercise in cool environment. 
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3) Central and peripheral nervous system excitability and neuromuscular 

performance and perceived fatigue will correlate with the extent of clinical 

disability.   
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Abstract 

Corticospinal excitability (CSE) in persons with multiple sclerosis (PwMS) is reduced, 

likely contributing to fatigue and limiting one’s ability to engage in physical activity. 

Given that fatigue is task and temperature dependent, the purpose of the study was to 

determine how a combination of temperature (cool vs. room) and exercise (treadmill vs. 

recumbent NuStep) affects CSE in PwMS. We hypothesized that CSE, irrespective of 

exercise modality, would be higher following exercise in the cool environment than in a 

room temperature due to lower levels of fatigue. Fourteen heat sensitive MS patients (10 

females), 49.28 ± 13.56 years of age with relapsing remitting MS and baseline expanded 

disability status scores ranging from 3.4 ± 2.37 participated. Transcranial magnetic 

stimulation (TMS) was used to elicit motor evoked potentials (MEPs) prior to and following 

an aerobic exercise bout performed at 65% of VO2max. Tibial nerve stimulation was used 

to elicit maximal muscle compound action potential (Mmax). Measurements were taken 

from the soleus muscle of the weakest limb both at rest and during a torque equivalent to 

10% of maximal voluntary contraction (MVC). Participants attended four randomized 

experimental sessions including temperature (cool, 16°C and room, 21°C) and exercise 

modality (treadmill (T) and NuStep (N)). Therefore, the experimental sessions were T in 

cool (TC), T in room (TR), N in cool (NC) and N in room (NR). The results showed that 

exercising in cooler temperature compared to room temperature resulted in a greater MVC torque 

(p = 0.023) and NuStep compared to treadmill exercise resulted in greater PT torque (p = 

0.026) and faster HRT (p = 0.001; p = 0.027). Regardless of temperature and exercise 

modality the occurrence of MEPs was strongly correlated with the neurological disability 
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measured through the Expanded Disability Status Scale (EDSS; i.e., the occurrence of 

MEPs was reduced significantly with increasing motor impairments). Strong correlations 

were also observed with neurological disability for: 1) MVC and 2) EMG of the LG and 

SOL. Perceived fatigue scores depicted that participants were tired after exercising on 

treadmill and NuStep however; their neuromuscular performance did improve post-

exercise. Interestingly, PwMS felt less fatigued after exercise in cool temperature. 

Furthermore, aural temperature recorded post exercise did not change after exercising in 

the cool ambient temperature conditions, but was increased in the room temperature 

condition. The result suggests that exercising on NuStep (PwMS being seated on a recumbent 

stepper) in a cooler ambient temperature may be an optimal way for PwMS to exercise without having 

neuromuscular fatigue and associated decrease in neuromuscular performance. Both temperature and 

the exercise modality influence CSE such that exercising in cool temperature and exercising 

on a NuStep enhance post-exercise CSE in PwMS. 

KEY WORDS: 

Transcranial Magnetic Stimulation, Nerve Stimulation, Plantar Flexors 
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2.1: Introduction: 

Multiple Sclerosis (MS) is primarily an inflammatory demyelinating disease of the 

central nervous system (CNS) often characterized as episodic, progressive and with 

partially reversible symptomatic attacks (Ransohoff et al., 2015). One of the major signs 

of MS pathophysiology is the occurrence of focal lesions in the brain and spinal cord 

white matter. As the occurrence of these lesions progress 50% of the MS population 

transforms from ambulatory to non-ambulatory (Trapp & Nave, 2008). The development 

of neuromuscular fatigue and heat sensitivity also occurs in people with MS (PwMS), 

which limits their participation in exercise intervention programs required to improve 

their quality of life (QOL). Although exercise can improve muscular strength, aerobic 

capacity, walking abilities and hence the overall QOL in PwMS (Robert W. Motl & 

Pilutti, 2012), exercise itself leads to fatigue and elevated body temperature that often 

results in an acute worsening of sensorimotor symptoms which disrupts neuromuscular 

output (Romberg et al., 2012) and subsequently may offset potential exercise-induced 

benefits (A. T. White et al., 2000). Thus, understanding how a combination of exercise 

and temperature affects neuromuscular fatigue and performance in PwMS is important.  

Neuromuscular fatigue is defined as any exercise-induced reduction in the ability 

of a muscle to generate force or power due to central (i.e. reduced motor output capacity 

from the brain and spinal cord (Enoka & Stuart, 1992; J. L. Taylor & Gandevia, 2004) 

and peripheral (i.e. reduced ability for the muscle to contract due to changes in the 

peripheral nerve axons, neuromuscular junction or within the muscle itself (Allen, Lamb, 

& Westerblad, 2008)) factors. Fatigue is a common disabling symptom in PwMS 
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(Induruwa et al., 2012; Krupp et al., 1989) and is a major barrier to exercise in MS. Thus, 

examining the mechanisms underlying neuromuscular fatigue through measures of central 

and peripheral nervous system excitability may provide insight for understanding the 

cause of neuromuscular fatigue (Enoka & Stuart, 1992; Kent-Braun, 1999; J. L. Taylor et 

al., 2006) in MS (Kent-Braun et al., 1994) and how the combination of exercise and 

temperature affects it.  

The inability for PwMS to sustain force compared to healthy controls is due, in 

part to changes in central nervous excitability. Studies have observed a greater rate of 

force decline in PwMS compared to healthy controls and found that the fatigue was 

mainly central in origin (i.e., decrease in central drive) (Kent-Braun et al., 1994; Sheean 

et al., 1997). PwMS showed altered MEP amplitudes and latencies (Gagliardo et al., 

2007; Neva et al., 2016; Petajan & White, 2000; Schmierer et al., 2002), CSE thresholds 

(at rest and during activity (i.e. muscle contraction)) (Caramia et al., 1991; Caramia et al., 

2004; Neva et al., 2016), and that these CSE properties correlate with clinical disability 

(Neva et al., 2016; Schmierer et al., 2002). When PwMS are exposed to heat stressed 

conditions there are even further decreases in force production, MEP amplitudes, and 

increased motor thresholds compared to thermo-neutral ambient temperature (Andrea T 

White et al., 2013). These findings are opposite to what happens for MEP amplitudes 

when PwMS are placed in a cooling suit (Kinnman et al., 2000). Furthermore, studies 

have shown that PwMS experience deteriorated function (e.g. fatigue, spasticity, and 

walking) under heat stress conditions as compared to ambient room temperature 

conditions (Bol et al., 2012; Petrilli et al., 2004). The inability for PwMS to sustain force 
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compared to healthy controls is also due, in part to changes in the muscle. Rice et al. 

(1992) found prolonged peak twitch contraction time (time to peak twitch; TPT) of the 

knee extensors in PwMS. Electrical stimulation induced fatigue reduced tibialis anterior 

potentiated twitch force and prolonged tetanic contraction (HRT) in PwMS compared to 

healthy controls (Lenman et al., 1989). Overall, both central and peripheral nervous 

systems are altered in PwMS, which leads to reduced motor output and this reduction is 

further exacerbated during heat stress.  

One way to reduce neuromuscular fatigue and improve neuromuscular 

performance is by exercise. Exercise training with in this population has been shown to 

reduce fatigue (Pilutti et al., 2013), improve 6 min walk test (6MWT) scores (Kileff & 

Ashburn, 2005), increase strengthen upper and lower limb muscles (Petajan et al., 1996) 

and improve walking speed and endurance (Pearson et al., 2015) in PwMS. Thus, 

exercise training can potentially offset neuromuscular fatigue and can improve 

neuromuscular performance. In contrast, Gonzalez-Alonso et al. (1999) assessed healthy 

individuals to examine the effects of body temperature on the development of fatigue 

during a prolonged aerobic exercise session (cycle ergometer), at 60% of their VO2max.  

They found that individuals were exhausted at the same level of internal body 

temperature, i.e. ~ 40°C and concluded that high internal body temperature accelerates 

fatigue. Thus, for heat sensitive PwMS, exercise should be planned to avoid overheating 

because heat sensitivity is a major trigger for reduced neuromuscular performance (S. L. 

Davis et al., 2010; Romberg et al., 2012) and causing fatigue (Flensner, Ek, Söderhamn, 
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& Landtblom, 2011). However, no research to date has examined the effects of common 

exercise modes in different room temperatures on neuromuscular performance in PwMS.  

The primary purpose of this study was to determine the acute effects of two 

common exercise modalities (treadmill and NuStep) performed in two room temperatures 

(cool, 16°C and room, 21°C) on 1) central and peripheral nervous system excitability, and 

2) neuromuscular performance and fatigue. A secondary purpose of the study was to 

determine if there was a correlation between neuromuscular performance, central and 

peripheral nervous systems excitability and the extent of clinical disability. It was 

hypothesized that neuromuscular performance would be greater following NuStep versus 

treadmill exercise and that irrespective of exercise modality neuromuscular performance 

would be greater in cool temperatures. It was hypothesized that neuromuscular fatigue 

would be lower and neuromuscular performance would be greater following NuStep 

versus treadmill exercise and that irrespective of exercise modality neuromuscular 

performance would greater during cool temperatures.  

2.2: Materials and Methods 

2.2.1: Participants 

Fourteen PwMS were recruited from outpatient rehabilitation services and the 

provincial MS Clinic. The inclusion criteria for PwMS were: being diagnosed with MS by 

a neurologist using the McDonald criteria (Polman et al., 2011), having a negative 

Physical Activity Readiness Questionnaire (Canadian, 2003) screening, being relapse free 

during the past 3 months, taking no medication that affected heart response to exercise, 

having no musculoskeletal impediment to exercise, having a score >24 on the Montreal 
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Cognitive Assessment (Dagenais et al., 2013; Nasreddine et al., 2005), and completing a 

magnetic stimulation safety checklist to screen for potential contraindications to magnetic 

stimulation procedures (Rossi, Hallett, Rossini, & Pascual-Leone, 2011). The procedures 

and the purpose of the study were explained and if willing to participate, participants 

signed a written consent form. Table 1 represents the characteristics of MS participants 

recruited for the study. The local university Health Research Ethics Board, St. John’s, NL 

approved this study (HREB: Ref No. 14.102). 

2.2.2: Experimental Design: 

A cross over study design was used to evaluate the effects of room temperature 

(cool or ambient) and exercise modality (upright or recumbent) on neuromuscular 

excitability in PwMS. Participants visited the research laboratory on six separate 

occasions. On the first visit, participants were asked to rate their degree of heat sensitivity 

on a ten point Likert scale. In order to prescribe exercise accurately, on the first and 

second visits, participants completed a maximal graded exercise test (GXT) once using a 

body-weight supported treadmill and once using a recumbent stepper (NuStep), in 

randomized order. Based on the results of this test maximal oxygen consumption 

(VO2max) and maximal heart rate (HR) were determined. This data was subsequently used 

to assign 65% of their maximum workloads during aerobic exercise experimental 

conditions (described below). After completion of baseline testing, participants attended 

four experimental sessions (once a week for four weeks) with the order of training 

temperature (Cool, 16°C and room, 21°C) and exercise modality ((Treadmill (T) and 

NuStep (N)) randomized. Therefore the experimental sessions were T in cool (TC), T in 
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room (TR), N in cool (NC) and N in room (NR), which is outlined in Figure 1A.  

Participants followed the Canadian Society for Exercise Physiology preliminary 

instructions (no eating, drinking caffeine, smoking, or drinking alcohol for 2, 2, 2 or 6 h, 

respectively) before the GXT and exercise sessions. They were also requested to avoid 

moderate-to-high intensity and long duration exercise 48-hr prior to all sessions. Room 

temperature in the exercise area was controlled by a mini-split air handling unit. 

Figure 1B outlines the events on an experimental day. On each experimental day, 

the participant’s corticospinal excitability and evoked contractile properties of the lower 

limb muscles was measured (detailed methods below). Next, body temperature was 

recorded twice in the right ear using an aural thermometer. The value from the two 

measurements was averaged (Braun ThermoScan Ear Thermometer). Participant’s then 

recorded their present level of fatigue on a visual analogue scale (VAS) i.e., 0 = not 

fatigued at all up to 10 = maximally fatigued. Starting with 5 minutes of warm up 

(gradual increment of speed and work load until the participant reached the target heart 

rate i.e., simultaneous increase in speed with inclination on treadmill and resistance for 

NuStep), participants exercised at steady state for 30 minutes at 65% of their VO2max. 

Following exercise completion participants cooled down for 5 minutes (gradual 

decrements of speed and work load until the participant reached the resting heart rate 

(RHR)). Heart rate (HR) was recorded using chest monitors (Polar V800, Polar Electro 

Oy, Professorintie 5, FI-90440 Kempele, Finland). After exercise, body temperature and 

fatigue were recorded again. This was followed by measures of CSE and evoked 

contractile properties of muscle through posterior tibial nerve stimulation.  
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2.2.3: Experimental procedures and set up 

2.2.3.1: Graded Exercise Test (GXT) 

Measurement of VO2maxwas performed on a treadmill (SportArt T625M/T52MD-

Rehabilitation Commercial Treadmill, USA) and on a NuStep (NuStep, T4r Recumbent 

cross trainer, Michigan, USA). On the testing day the metabolic cart (Moxus Metabolic 

Systems, AEI Technologies, Inc., Pittsburgh) was calibrated by medically certified 

calibration gases (20.88% of O2; 0.031% of CO2) using the systems built in calibration 

functions and according to manufacturer instructions. Anthropometric measurements 

(age, height, and weight), RHR and blood pressure (BP) were taken prior to the 

measurement of VO2max and were updated in the built in software. During GXT, expired 

air was analyzed breath-by-breath through tubing connected to the metabolic cart. After 

positioning the subject (head gear, mouth piece, tubing, handle length and seat 

adjustments (NuStep), and body weight supported harness (treadmill)), baseline 

measurements were taken which included oxygen volume inhaled (VO2), carbon dioxide 

volume exhaled (V’CO2), minute volume (V’E), respiratory exchange ratio (RER), 

breathing frequency (BF) and heart rate (HR).  HR was recorded using a HR detector 

(polar receiver), that was a part of the metabolic cart (Moxus). The detector receives HR 

through a chest strap (Polar V800, Polar Electro Oy, Professorintie 5, FI-90440 Kempele, 

Finland). All of these parameters were recorded from the participant during the GXT. 

Expired air was continuously analyzed throughout the experimental protocol using the 

Moxus metabolic system. The Borg rating of perceived exertion (RPE) scale was also 

used during GXT. The Borg scale is a simple method to rate perceived exertion on a 10 

point scale (0-10) with 0 as nothing at all and 10 as maximal level of exertion (very, very 
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hard). Verbal encouragement was provided during GXT sessions. The test was terminated 

if the VO2 plateaued (<150 ml-min with increasing work load), the HR got to within 11 

beats per minutes (BPM) of the participants age predicted maximum HR, if the HR failed 

to increase with increasing work load, if the participants reported having chest pain or 

feeling dizzy or if the participant requested that the test be terminated because they were 

too fatigued to continue. Verbal motivation was provided in order to encourage each 

individual to perform the GXT at their maximum workload. Following the termination of 

GXT, 5-10 minutes of recovery was allotted and baseline measurements were recorded 

again.  

2.2.3.2: NuStep: GXT 

A ramp protocol was implemented at the stepping cadence of 80-90 revolutions 

per minute (RPM) for each participant starting at workload of 3 (load 3) which 

corresponds to 25 watts and increased 25 watts every 2 minutes until the participant could 

no longer maintain the minimum of 80 RPM. The maximum load that could be reached 

on NuStep was 200 watts (load 10). If the participant was able to achieve a workload of 

200 watts, they were then instructed to increase RPM by 10 every 2 minutes in order to 

further increase their workload. Baseline measurements (as stated above) were done 

twice; prior to the beginning of the ramp protocol and soon after the termination of the 

GXT. The Borg RPE measures were taken verbally every 2 minutes. Measurement of 

VO2max were then used to assign 65% of their maximum workloads during aerobic 

exercise experimental conditions on NuStep. 
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2.2.3.3: Treadmill: GXT 

A body weight supported harness treadmill was employed to perform GXT on the 

treadmill. During the exercise testing the harness support 10% of the participants body 

weight. The test required participants to walk on the treadmill at a self-selected speed 

(SS) as the inclination was increased by 2.5%, every 2 minutes until the gradient was at 

10%. Once the workload was achieved at the gradient of 10%, the load was further 

increased by increasing the speed by 0.5 miles every 2 minutes until the termination of 

the test. Baseline measurements, the Borg RPE measures, and HR were recorded similar 

to NuStep: GXT. 

2.2.4: Electrophysiological Measurements 

2.2.4.1: Plantar flexor force: 

To determine plantar flexor contraction force, the participant sat in an upright 

position on a specially designed chair with their weakest leg flexed at 90° at the knee and 

mounted in a modified boot apparatus (Technical services, Memorial University of 

Newfoundland). Manual muscle testing was performed by a registered physiotherapist 

prior to the MVC measurement to identify the weakest leg of the participant. The anterior 

portion of the thigh was secured by an adjustable pad (Fig. 1C). Forces acting on the foot 

plate were measured by a load cell connected with foot plate through a rigid bar. The 

force signals were sampled at a frequency of 1 kHz by using Acknowledge 4.1, Biopac 

systems and were stored on the computer. Participants performed two 5s MVCs as 

forcefully as possible and the forces were detected and amplified at a gain (x1000) 

(Biopac systems) and displayed on a computer screen. Participants were verbally 
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encouraged during the MVCs. An average of 2 MVCs torque was taken and the averaged 

MVC torque was considered maximal. Two minutes of rest was given in between the 

MVCs.  

2.2.4.2: Electromyography (EMG) 

The EMG activity was recorded from the LG and SOL muscles. Before securing 

electrodes, thorough skin preparation was done. This included shaving hair off the desired 

area, removal of dead epithelial cells from the desired area with abrasive (sand) paper 

around the designated area, followed by cleansing with an isopropyl alcohol swab to 

maximize electrical conductance of the skin. The surface EMG recording electrodes 

(MediTrace Pellet Ag/AgCl electrodes, disc shape, and 10 mm in diameter, Graphic 

Controls Ltd., Buffalo, NY) were placed longitudinally over the motor point of each 

muscle. The electrodes were placed 2 cm apart (centre to centre).  In addition, a ground 

electrode was secured on the lateral epicondyle of the femur.  EMG signals were 

amplified (Gain of 1000, Biopac Systems EMG 100 amplifier, Santa Barbara, Calif; and 

filtered using a butterworth filter with a pass-band of 10-500 Hz. All signals were analog- 

digitally converted using a sampling rate of 1000 Hz. Data was recorded and analyzed 

with a commercially designed software program (Biopac MP150WSW, Biopac Systems 

Inc., Holliston, Mass, Acknowledge 4.1, Biopac Systems Inc.). 

2.2.4.3: Stimulation Conditions 

Stimulation was used to measure evoked contractile properties and MEP. Muscle 

and motor responses from LG and SOL of the weakest limb were elicited via 1) posterior 

tibial nerve stimulation, and 2) TMS, respectively.  
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Posterior tibial nerve stimulation: 

To evoke an M-wave (Mmax) and to evaluate the twitch contractile properties in 

the LG and SOL muscles electrical stimulation was applied to the posterior tibial nerve 

while participants were at rest with their lower leg still in the boot apparatus. The nerve 

was stimulated through a pair of Ag-AgCl electrodes identical to the ones used for EMG 

collection. These electrodes were placed in the popliteal fossa (cathode) and over the 

tibial tuberosity (anode). Current pulses (200 µs duration, 100-400 mA) were delivered 

via a constant current stimulator (DS7AH; Digitimer, Welwyn Garden City, 

Hertfordshire, United Kingdom). Evoked contractile properties included: 1) peak twitch 

(PT) torque - the peak-to-peak amplitude of the twitch force, 2) time to peak twitch (TPT) 

- the time it took to reach peak twitch force, 3) half relaxation time (HRT) – the time it 

took for the peak twitch torque to reduce to half of its peak amplitude and 4) Mmax – the 

peak-to-peak amplitude of m-wave. The electrical stimulation was gradually increased 

until the PT torque and M-wave (Mmax) of LG, and SOL reached a plateau. No further 

stimulations were given after that. 

Transcranial magnetic stimulation: 

MEP responses were elicited using the BrainsightTM neuro-navigation software 

package (Rogue Research Inc., Montreal, QC, Canada) that was connected to the 

Magstim 200 stimulator (Magstim, Dyfed, UK). The double cone TMS coil was 

positioned over the motor strip corresponding to lower limb muscles of the right or left 

hemisphere (depending upon which leg was being tested i.e., weakest limb). The hotspot 

(i.e., the point at which maximum MEP is evoked from a relaxed muscle (Rossini et al., 
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1994), was determined by positioning the coil over the motor strip with the assistance of 

neuro navigation using an MRI generated 3D curvilinear brain model provided by the 

software. The built-in and exterior camera systems also displayed the coil orientation over 

the brain model image. The MRI generated 3D curvilinear brain model was an averaged 

MRI of 150 brain images collected from healthy young adult population. The 3D brain 

image was prepared at Montreal Neurological Institute. This averaged brain was used as a 

template in the current study to determine the hotspot. Once the hotspot was located, the 

coil position was secured over the hot spot using a coil holder attached to the chair.  

Resting motor threshold (RMT) (Rossini et al., 1994) and active motor threshold 

(AMT) were defined as the minimum TMS intensity that elicited a MEP of at least 50 μV 

in 5 out 10 trials at rest and during 10% MVC of plantar flexion, respectively. Eight 

consecutive stimulations were delivered at both RMT and AMT and recorded in computer 

for further data analysis.  

2.2.5: Aerobic Exercise Intervention 

For each aerobic exercise intervention, the participants completed the experiment 

in three phases - pre-exercise assessment, exercise phase (randomized temperature 

controlled aerobic exercise intervention) and post exercise intervention.   

2.3: Data Analysis 

Data collected during the MVC trials were examined to determine the peak force 

amplitude produced during the contractions. Root mean square (RMS) EMG was 

measured and averaged for 500ms about the peak force amplitude during the MVC for 
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each muscle. Evoked contractile properties of the triceps surae elicited via tibial nerve 

stimulation were assessed as a measure of peripheral excitability (see 2.2.4.3).  

The peak-to-peak amplitudes were measured for MEP and Mmax responses. Onset 

of MEP and Mmax were defined as the point at which the voltage trace became tangent to 

the baseline in either the positive or negative direction. Because changes in MEP 

amplitude could be due to changes at the peripheral level (i.e. muscle), all MEPs were 

normalized to the recorded Mmax.  

For correlations the EDSS scores were correlated to the average of pre-exercise 

perceived fatigue scores, MVC, evoked contractile properties, and the number of MEP 

responses recorded for all four exercise conditions.  

2.4: Statistical Analysis 
Statistical analyses were computed using SPSS software (SPSS 19.0, IBM 

Corporation, Armonk, New York, USA). Assumptions of sphericity (Mauchley test) and 

normality (Shapiro-Wilk test) were tested for all of the dependent variables. If the 

assumption of sphericity was violated, the corrected value for non-sphericity with 

Greenhouse-Geisser epsilon was reported. A three-way ANOVA with repeated measures 

(Factors: time (pre- and post); modality (treadmill and NuStep); temperature (cool and 

room) was performed on all dependent variables to examine within group differences. If 

significant main effects were found, a Bonferroni post hoc test was performed to test for 

significant differences between variables. F-ratios were considered statistically significant 

at the p < 0.05 levels. Pearson product-moment correlation coefficients between EDSS 

scores and dependent variables were also calculated. All data are reported as means ± SD. 
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2.5: Results 
2.5.1: Perceived Fatigue Scores 
There was no significant effect for exercise modality (n=12, F (1,11) = 0.562, p = 

0.469) on perceived fatigue. However, there was significant main effect for time (n=12, F 

(1,11) = 17.629, p = 0.001) and temperature (n=12, F (1,11) = 6.065, p = 0.032) on 

perceived fatigue scores measured on VAS. Perceived fatigue significantly increased (p 

<0.02) following exercise (pre: 18.5±10.8 versus post: 41.8±19.3) but was significantly 

less (p<0.02) when participants exercised in cool temperature (26.1±12.8) compared to 

room temperature (34.2±14.7). 

2.5.2: Aural Temperature 
There was a significant main interaction for exercise modality X time (n=11, F 

(1,10) = 8.041, p = 0.018) and temperature X time (n=11, F (1,10) = 13.304, p = 0.004) 

on aural temperature (Fig. 2). Results of post-hoc testing revealed that aural temperature 

increased following exercising in room temperature on both treadmill (t(13) = -2.87, p = 

0.013) and NuStep(t(11) = -3.90, p = .002). There was no change in aural temperature 

following exercising in cool temperature on both treadmill (t(13) = 1.12, p = 0.281) and 

NuStep (t(12) = -0.12, p = 0.908).  

Insert Fig 2 

2.5.3: Force and EMG 

2.5.3.1: Maximal Plantar Flexor Force Outputs 

There was no significant main effect for time (n=13, F (1,12) = 0.109, p = 0.747) 

or exercise modality (n=13, F (1,12) = 0.100, p = 0.757) or temperature (n=12, F (1,11) = 

0.003, p = 0.956) on MVC torque (Fig. 3A). However, there was a significant interaction 
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for temperature X time (n=12, F (1,11) = 6.771, p = 0.023) on MVC torque. Irrespective 

of exercise modality, MVC torque increased by 7% post exercise in cool and decreased 

by 9% post-exercise in room temperature conditions (Fig. 3B).  

Insert Fig 3A and 3B 

2.5.3.2: RMS EMG during Maximal Plantar Flexor Force Outputs 

There was no significant main effect for time (n=12, F (1,11) = 1.979, p = 0.187), 

exercise modality (n=12, F (1,11) = 1.571, p = 0.236), or temperature (n=12, F (1,11) = 

0.248, p = 0.628) on LG RMS EMG (Fig. 4A). However, there was a significant 

interaction for temperature X time (n=12, F (1,11) = 9.555, p = 0.010) on LG RMS EMG. 

Results of post-hoc testing revealed that irrespective of exercise modality, LG RMS EMG 

significantly decreased by 14% post exercise in room temperature conditions. An increase 

by 4% post exercise in cool conditions was also noted, but the increment was not 

significant (Fig. 4B).  

Insert Fig 4A and 4B 

There was no significant main effect for exercise modality (n=12, F (1,11) = 

2.366, p =0.152) or temperature (n=12, F (1,11) = 0.559, p = 0.470) on SOL RMS EMG 

(Fig. 5A). However, there was a significant main effect for time (n=12, F (1,11) = 36.308, 

p < 0.001) on SOL RMS EMG. Results of post-hoc testing revealed that irrespective of 

exercise modality and temperature SOL EMG was decreased by 15% post exercise (Fig 

5B). 

Insert Fig 5A and 5B 
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2.5.4: Evoked Contractile Properties 
Table 2 represents the raw data values for PT, HRT, and TPT recorded pre-post in 

all exercise sessions. 

There was no significant main effect for time (n=12, F (1,11) = 1.930, p = 0.192) 

or temperature (n=12, F (1,11) = 0.000, p = 0.986) on PT force. However, there was a 

significant main effect for exercise modality (n=12, F (1,11) = 6.56, p = 0.026). There 

was a significant interaction for modality X time (n=12, F (1,11) = 6.568, p = 0.026). 

Results of post-hoc testing revealed that irrespective of temperature, PT force increased 

by 19% following NuStep exercise and decreased (although not significantly p = 0.74) by 

4% following treadmill exercise compare to pre-exercise (Fig. 6A).  

There was no significant main effect for temperature (n=12, F (1,11) = 0.014, p = 

0.907) and modality (n=12, F (1,11) = 3.778, p = 0.078) on HRT. However, there was a 

significant main effect for time (n=12, F (1,11) = 19.34, p = 0.001) and a significant 

interaction for exercise modality X time (n=12, F (1,11) = 6.56, p = 0.027) on HRT. HRT 

decreased by 4% and 13% following NuStep and Treadmill exercise, respectively (Fig. 

6B).  

Insert Fig 6A and 6B 

There was no significant main effect for time (n=12, F (1, 11) = 1.522, p = 0.243), 

exercise modality (n=12, F (1, 11) = 1.770, p = 0.210) or temperature (n=12, F (1, 11) = 

0.325, p = 0.580) on TPT. 
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 There was no significant main effect for time (n=11, F (1, 10) = 0.238, p = 0.636), 

exercise modality (n=11, F (1, 10) = 0.052, p = 0.824) or temperature (n=11, F (1, 10) = 

0.131, p = 0.725) on Mmax for LG. Also, there was no significant main effect for time 

(n=11, F (1, 10) = 1.653, p = 0.228), exercise modality (n=11, F (1, 10) = 0.049, p = 

0.829) or temperature (n=11, F (1, 10) = 2.048, p = 0.183) on Mmax for SOL. 

2.5.5: Motor Evoked Potentials (MEPs) 
 Due to safety, one participant did not qualify for TMS and one of the participant 

wasn’t able to perform AMT due to temporary blindness caused by MS. Table 3 shows 

descriptive data of the MEPs recorded from LG and SOL muscles of all the participants 

(n=13, check mark in Table 3 indicates that a MEP was elicited in both LG and SOL 

muscle). The ability to record MEPs from PwMS was highly variable from day to day. A 

MEP response from all muscles could only be induced in 1 of the 13 participants during 

all conditions and almost in all conditions in another 3 participants. Also, MEPs seemed 

to be more distinguishable in the other 6/13 PwMS after performing exercise on NuStep, 

in both room and cool conditions. However, we were unable to elicit MEPs in 3/13 

PwMS amongst all the participants in all four conditions. Due to the lack of MEP 

responses from the muscles in PwMS we were unable to run statistical analysis. 

2.5.6: Correlation between EDSS score and dependent variables 
EDSS scores showed a significant correlation with MVC (r = -0.628, p = 0.016) 

(Fig. 7A), LG (r = -0.599, p = 0.024) (Fig. 7B) and SOL (r = -0.695, p = 0.006) (Fig. 7C) 

RMS EMG, number of MEP responses (r = -0.836, p < 0.001) (Fig. 7D), and perceived 
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fatigue scores (r = 0.539, p = 0.047) (Fig. 7E) but no other dependent variables (see table 

4).  

Insert Fig 7 

2.6: Discussion 
In this study, we used non-invasive neurophysiological techniques to examine 

central and peripheral excitability after an aerobic exercise session in a specific ambient 

temperature conditions (cool vs. room) and using different exercise modalities (treadmill 

vs. NuStep). The results showed that exercising on a NuStep in a cool ambient 

temperature condition resulted in greater MVC and PT torque, reduced HRT and no 

change in Mmax indicating that exercising in a cool environment enhances voluntary 

contraction and electrically evoked contractile properties of the muscle in PwMS. 

Regardless of ambient temperature and/or exercise modality the number of MEPs elicited 

was strongly correlated with the neurological disability measured using EDSS (i.e., the 

occurrence of MEPs was reduced significantly with increasing motor impairments). 

Strong correlations were also observed with neurological disability for: 1) MVC, 2) EMG 

of the LG and SOL and 3) perceived fatigue. Furthermore, post exercise aural 

temperatures recorded did not change after exercising in cool (16°C) ambient temperature 

conditions, but were increased in room (21°C) temperature conditions. Finally, PwMS 

perceived both exercise modalities as fatiguing even though neuromuscular fatigue did 

not occur. 
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2.6.1: Effects of exercise modality and temperature on perceived fatigue 
The most interesting finding in the current study was that, perceived fatigued was 

greater following exercise in room and cool temperature conditions, while improvements 

in MVC torque and evoked contractile properties occurred during cooling and post-

exercise, respectively indicating improved neuromuscular performance (i.e. no 

neuromuscular fatigue) in PwMS. However, they perceived less fatigued post-exercise in 

the cool environment. Similar results were found when A. T. White et al. (2000) assessed 

perceived fatigue pre-, post- and 30 min after exercise via the fatigue impact scale 

preceded by randomized cooling and non-cooling. They found that participants fatigue 

scores were higher but the increment was less in the cooling group, and that 

improvements were observed in 25-ft walking scores. Why there was a disconnect 

between perceived fatigue and neuromuscular fatigue in PwMS remains unknown but 

perhaps it may be due to their level of physical inactivity or their perception of fatigue 

that limits the performance. 

2.6.2: Effects of temperature on neuromuscular performance and fatigue 

Since exercise itself increases body temperature we hypothesized that PwMS who 

exercise in room temperature would have decreased neuromuscular performance due to 

increased neuromuscular fatigue compared to exercise in a cool temperature. In the 

present study, 30 minutes of exercise at 65% of VO2max in room temperature resulted in 

reduction of MVC torque (7%) and LG EMG (14%) with a simultaneous 0.3°C increase 

in body temperature. Also, there was no change in evoked contractile properties 

suggesting that the decrease in torque and EMG were due to central mechanisms. In non-

exercise studies where PwMS were exposed to passive body heating for approximately 
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30-45 minutes, increment in body temperature were recorded (~0.6°C) which further lead 

to greater impairments in walking, reaching, chair-rise and force generating capacity with 

increased fatigue perception (Romberg et al., 2012; Andrea T White et al., 2013). In 

addition, passively heated PwMS also demonstrated a decrease in CSE as depicted by an 

increased RMT and decreased MEP amplitudes (Andrea T White et al., 2013). The 

mechanisms for impaired neural function in demyelinated axons due to increase in 

temperature in PwMS remain unknown but are likely due to further impairment in action 

potential propagation due to reduced conduction velocity and/or block (Floyd A Davis, 

1970; S. L. Davis et al., 2010; Smith & McDonald, 1999; Syndulko et al., 1996). As 

reported by Smith et al, (1999) reduced conduction velocity or the severity of the 

conduction block depends on the degree of myelin loss and disease duration (i.e. duration 

since demyelination started). Thus, individuals with the progressive form of MS might 

have a greater risk of developing conduction block (failure of generating action potential 

across the node of ranvier). Rasminsky and Sears (1972) observed that conduction block 

developed in demyelinated axons of sprague-dawley rats (recorded at temperature ranging 

from 27°C - 45°C) was due to increased temperature. However, they also noticed that this 

block was reversible and could be restored by reducing the temperature up to 0.5°C. 

Rasminsky and Sears (1972) suggested that the temperature sensitivity could be the 

reason for conduction abnormalities in neuro-degenerative and neuro-inflammatory 

diseases, such as MS. Since there are observed conduction abnormalities due to changes 

in temperature, it seems plausible that heat exposure in MS could result in increased 

conduction abnormalities, which might explain the altered sensory and motor functions in 
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PwMS. Thereby, in PwMS, reduced CSE and thus CNS activation due to increased body 

temperature following exercise in room temperature may have led to decreased MVC 

torque.   

 One way to minimize the increase in body temperature during exercise in PwMS 

is to exercise in cooler ambient temperature conditions. Exercise for 30 minutes in cooler 

temperature did not change the body temperature but increased MVC torque by 9% and 

LG EMG by 4%. Since all four exercise conditions were randomized and there were no 

differences in pre-exercise MVCs across all four exercise conditions, we believe that the 

differences in MVC is not due to a learning effect but rather exercising in a cool 

temperature has reduced the heat-induced stress on the CNS. Pre-cooling prior to 30 min 

arm-leg ergometry exercise prevented an increment in core temperature during the 

exercise compared to no pre-cooling (A. T. White et al., 2000). The internal body 

temperature was significantly lower in the pre-cooling group compared to the non-cooling 

(36.5°C vs. 37.4°C, p < .05) thus, minimizing heat stress and allowing for improved 25-ft 

walk test performance in PwMS. This was also observed by various research groups 

where cooling suits improved motor outputs such as walking speed, gait, climbing and 

lower limb strength (Capello et al., 1995; Flensner et al., 2011; Kinnman et al., 2000). 

Exercising in cooler temperatures may decrease body heat storage and reduce the stress 

on heat dissipation mechanisms during exercise (Wilson et al., 2002), thus allowing for 

improved CNS function and improved MVC torque. In the present study, aural 

temperatures were maintained during exercise in cool temperature compared to exercise 

in room temperature, subsequently reducing heat stress on CNS function and an 
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enhancing MVC torque. Exercising in cool temperature may be a practical way to employ 

exercise or rehabilitation sessions for heat sensitive MS population.  

2.6.3: Effect of exercise modality on neuromuscular performance and fatigue  
 Aerobic training exercise programs are beneficial for PwMS. Recent reviews have 

found improved walking speed and endurance as well as strength in upper and lower limb 

muscles (Robert W Motl et al., 2010; Robert W. Motl & Pilutti, 2012; Pearson et al., 

2015). To date no studies have directly compared the effects of different exercise 

modalities on neuromuscular performance and fatigue. Although our participants felt 

more fatigued following exercise, we found that the different exercise modalities had no 

effect on MVC torque and Mmax. The exercise modality did, however, affect evoked 

contractile properties (Fig 6A and 6B) suggesting that the effect was not at the 

neuromuscular junction or muscle membrane but in the excitation-contraction coupling of 

the muscle fibers. PT torque was increased following NuStep rather than treadmill 

exercise and HRT was increased from pre- to post-exercise for both exercise modalities. 

The reason behind enhanced PT and HRT may be due to exercise-induced post-activation 

potentiation (PAP) (Hodgson, Docherty, & Robbins, 2005). PAP is a phenomenon that 

typically occurs in muscle following contractions that are non-fatiguing and leads to more 

forceful contraction (Hodgson et al., 2005). The changes in PT and HRT may be due to 

enhanced 1) calcium kinetics (Ismailov, Kalikulov, Inoue, & Friedlander, 2004), 2) 

myosin phosphorylation, and 3) muscle stiffness (Grange, Vandenboom, & Houston, 

1993; Sweeney, Bowman, & Stull, 1993). Why NuStep as opposed to treadmill exercise 

would have greater effect on PT in PwMS remains unknown but perhaps it may be due to 

it being a non-weight bearing versus weight bearing exercise, respectively. However this 
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is speculative at the moment. Again, although perceived fatigue was higher following 

exercise, there was no change in MVC torque or evoked contractile properties indicating 

the disconnect between how PwMS feel following exercise versus how well their 

neuromuscular system can perform. In fact, since the muscle became potentiated it 

appears as if the exercise acts to warm-up the muscle in order for it to respond better to 

stimulation. 

2.6.4: Effect of neurological disability on neuromuscular performance and 
fatigue 

 As the symptoms of MS progress there is a higher degree of neurological 

disability (Trapp & Nave, 2008). In the current study we found that, with increasing 

neurological disability in PwMS, maximal torque (MVC and PT), and muscle EMG of 

the plantar flexor muscles decreases. Thus, all of these important markers of 

neuromuscular performance can be potentially used as biomarkers of MS disease 

progression.  Furthermore as neurological disability increases so to does perceived fatigue 

scores. MVC and evoked contractile properties (Kent-Braun et al., 1994; Rice et al., 

1992; Thickbroom et al., 2006) and central activation (Andreasen, Jakobsen, Petersen, & 

Andersen, 2009) are decreased in MS population compared to control. In addition, 

voluntary activation was also found to be lower in secondary progressive compared to 

relapsing remitting MS patients (Wolkorte, Heersema, & Zijdewind, 2016). In the present 

study, it is difficult to draw conclusions about neuromuscular performance based on 

changes in CSE or vice versa, as we were unable to elicit MEPs from LG and SOL 

muscles following exercise (at rest and even during muscle contraction). However, our 

results showed that neurological disability (EDSS) were negatively correlated with the 
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number of times a MEP was elicited. Various studies have also shown similar correlations 

between EDSS and measures of CSE (Ingram et al., 1988; Neva et al., 2016; Schmierer et 

al., 2002; Tataroglu et al., 2003). However our study included MS participants with a 

wide range of neurological disability and likely having more corticospinal tract damage, 

thus limiting our ability to elicit MEPs. Furthermore, the previous studies and others 

(Caramia et al., 2004; Gagliardo et al., 2007; Petajan & White, 2000) were successful in 

recording MEPs almost all of the time, but from hand muscles and tibilias anterior 

muscle. Also, it has been mentioned by other researchers that these muscles may have a 

higher degree of monosynaptic connections from the motor cortex to the spinal 

motoneurone pool (Brouwer & Ashby, 1990). As cortical pathology, demyelination and 

axonal degeneration increases with MS disease progression (Trapp & Nave, 2008) in 

combination with and high levels of physical inactivity (Robert W Motl et al., 2010) 

neuromuscular performance is substantially reduced. Interestingly, in the current study 

both psychological and neuromuscular measures correlated with disability severity in 

PwMS, but following exercise there was a disconnect between perceived fatigue of 

PwMS and their neuromuscular performance.  

2.7: Limitations 

There are several limitations in the current study. 1) The neurological 

investigation in the current study was performed on PwMS who were in the relapse-

remitting phase of MS therefore it may be hard to draw specific conclusions for other 

types of MS. 2) In many cases, MEPs were not elicited from the sample of PwMS 

participants in the current study thus we could not include any data on MEP amplitude or 
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and discuss CSE. The reason for this remains unknown but may be due to the muscles 

there were being examined and also disease severity. 3) We recorded aural temperatures 

rather than core body temperatures, thus the temperatures recorded in the current study 

may not be a true representation of overall body temperature. However, Childs, Harrison, 

and Hodkinson (1999) reported that ear temperatures are now emerging as an excellent 

measure of core temperature and that variability can be reduced by taking two recordings 

from same ear.  

2.8: Application and Conclusion 

The current study shows for the first time that neuromuscular fatigue of the lower 

limb in PwMS is affected by exercise modality (likely mediated at the muscle level) and 

temperature (likely mediated at the CNS level) and perceived fatigue is affected by 

exercise. MVC torque is enhanced when PwMS exercise in cooler temperature and PT 

torque is enhanced to a greater extent following NuStep rather than treadmill exercise. 

Based on our results, the increase in force was probably due to central factors whereas 

the increase in PT torque was probably due to potentiation of the muscle from the 

exercise itself. The enhancement of neuromuscular performance occurred even though 

PwMS perceived fatigue to be greater following exercise illustrating a disconnect 

between neuromuscular fatigue and psychological fatigue. Based on the findings we 

suggest that PwMS should exercise in a cooler temperature in a non-weight bearing 

aerobic exercise machine to maximize exercise-induced benefits for neuromuscular 

performance and to potentially reach higher training levels. Determining CSE in the 

muscles of the plantar flexors may not be optimal for PwMS since there were very few 
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recordings of MEPs from LG and SOL. Thus future research on CSE, exercise modality 

and temperature in PwMS should focus on muscles in which MEPs can be recorded 

from (such as muscles in the arm and hand). We also demonstrated that neuromuscular 

performance measurements of the plantar flexors, the ability to induce a MEP and 

perceived fatigue might be used as biomarkers of the degree of neurological impairment. 

All of these variables are very important for the development of exercise interventions to 

promote restoration of physical performance in MS.   
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2.11: Tables 

Table 1 – Clinical Characteristics of MS participants 

 

Characteristics 

Age (years) 49.28 ± 13.56 

Gender (F/M) 10/4 

Years since Diagnosis 11.46 ± 8.34 

Type of MS (RRMS/PPMS) 11/3 

EDSS 3.1 ± 2.25 

Heat Sensitivity (VAS/100) 55 ± 19.30 
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Table 2 – Raw Data Values (Peak Twitch, Half Relaxation Time (HRT) and Time to 
Peak twitch (TPT)). NuStep room (NR), NuStep cool (NC), treadmill room (TR), 
treadmill cool (TC) 
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Table 3 – Motor Evoked Potential (MEPs) - Descriptive Data for distinguishable MEPs elicited during pre-post aerobic 
exercise intervention in all four conditions. 
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Table 4 – Correlations 

Correlations  

 

EDSS 
score  

MVC  
 Peak      
Twitch  

Time to 
Peak 
Twitch  

Half 
Relaxation 
Time  

Motor 
Evoked 
Potentials  

RMS EMS 
Lateral 
Gastrocnemius  

RMS 
EMS 
Soleus  

Mmax Lateral 
Gastrocnemius  

Mmax 
Soleus  

Perceived 
Fatigue 
Scores (VAS) 

ED
SS

 S
co

re
 

Pearson 
Correlation  

1  -.628*  -.421  -.428  .114  -.836**  -.599*  -.695**  -.272  -.359  0.539* 

Sig.  (2-tailed)  

 

.016  .134  .127  .698  .000  .024  .006  .347  .208  .047 

N  14  14  14  14  14  14  14  14  14  14  14 

*. Correlation is significant at the 0.05 level (2-tailed).  
**. Correlation is significant at the 0.01 level (2-tailed).  
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2.12: Figure Legends 

Figure 1 – (A) Experimental Design, (B) Protocol and (C) Boot apparatus set up 

Figure 2 – Aural Temperature. Average aural temperature recorded pre-post aerobic 
exercise in all four exercise sessions. * Indicates a significant (p < 0.05) difference 
between the experimental conditions. 

Figure 3 – Maximal Voluntary Contractions. A) MVC torque produced during pre-post 
aerobic exercise in all four exercise sessions and B) MVC torque produced in room and 
cool exercise conditions. Data presented as percentage change (+ increase, - decrease). * 
Indicates a significant (p < 0.05) difference between the experimental conditions. 

Figure 4 – Lateral Gastrocnemius EMG A) EMG produced during pre-post aerobic 
exercise in all four exercise sessions and B) EMG produced in room and cool exercise 
conditions. Data presented as percentage change (+ increase, - decrease). * Indicates a 
significant (p < 0.05) difference between the experimental conditions. 

Figure 5 –Soleus EMG. A) EMG produced during pre-post aerobic exercise in all four 
exercise sessions and B) EMG produced pre- and post-exercise conditions. Data 
presented as percentage change (+ increase, - decrease). * Indicates a significant (p < 
0.05) difference between the experimental conditions. 

Figure 6 – Evoked Contractile Properties. A) Peak Twitch and B) Half Relaxation Time. 
Data presented as percentage change. * Indicates a significant (p < 0.05) difference 
between the experimental conditions. 

Figure 7 – EDSS and Correlations. EDSS correlations with A) MVC torque produced, B) 
Lateral Gastrocnemius muscle, C) Soleus muscle, D) Root Mean Square EMG and E) 
Perceived Fatigue. 
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(C) 

 

Figure 1 – (A) Experimental Design, (B) Protocol and (C) Boot apparatus set up 
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Figure 2 – Aural Temperature. Average aural temperature recorded pre-post 
aerobic exercise in all four exercise sessions. * Indicates a significant (p < 0.05) 
difference between the experimental conditions 
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Figure 3 – Maximal Voluntary Contractions. A) MVC torque produced during pre-
post aerobic exercise in all four exercise sessions and B) MVC torque produced in 
room and cool exercise conditions. Data presented as percentage change (+ increase, 
- decrease). * Indicates a significant (p < 0.05) difference between the experimental 
conditions. 
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Figure 4 – Lateral Gastrocnemius EMG A) EMG produced during pre-post aerobic exercise in all four exercise sessions 
and B) EMG produced in room and cool exercise conditions. Data presented as percentage change (+ increase, - 
decrease). * Indicates a significant (p < 0.05) difference between the experimental conditions. 
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Figure 5 –Soleus EMG. A) EMG produced during pre-post aerobic exercise in all four exercise sessions and B) EMG 
produced pre- and post-exercise conditions. Data presented as percentage change (+ increase, - decrease). * Indicates a 
significant (p < 0.05) difference between the experimental conditions. 
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Figure 6 – Evoked Contractile Properties. A) Peak Twitch and B) Half Relaxation 
Time. Data presented as percentage change. * Indicates a significant (p < 0.05) 
difference between the experimental conditions. 
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Figure 7 – EDSS and Correlations. EDSS correlations with A) MVC torque 
produced, B) Lateral Gastrocnemius muscle, C) Soleus muscle, D) Root Mean 
Square EMG and E) Perceived Fatigue  
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Room 400; 100 Forest Rd. 
St. John’s NL 

Inclusion/Exclusion	Criteria	

Participant	Number:		 _____________________________	

Inclusion	criteria:	 Y/N:	
I. Age ≥18 years  [ __ ] 

II. Relapse free in previous 3 months [ __ ] 

III. Unlimited walking group: are able to walk at least 100m [ __ ] 
independently without a cane

IV. Limited walking group: walk with a cane or walk independently for [ __ ]  
less than 30m.

V. Negative PAR‐Q screen for risk factors  [ __ ] 

VI. More than 6 weeks post Botox injection (if received) in lower extremity  [ __ ]

VII. No musculoskeletal impediment to exercise [ __ ] 
(joint replacement, orthosis)

VIII. Not pregnant or breast feeding [ __ ] 

IX. Score >24 Montreal Cognitive Assessment (MOCA) [ __ ] 
(All answers should be “Yes” to proceed)

Consent:		
I. Date Obtained: ________________  (dd/mm/yyyy) 

Researcher Initials _________ 
Date completed ______________________ 
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Consent to Take Part in Research 

TITLE: The effects of aerobic training on corticospinal excitability and neurotrophin expression among 
people with multiple sclerosis: A pilot study	

INVESTIGATOR(S): Dr. Michelle Ploughman (Medicine),  
  Dr. Kevin Power (Human Kinetics and Recreation), 
  Dr. Duane Button (Human Kinetics and Recreation), 
  Dr. Fabien Basset (Human Kinetics and Recreation) 

You have been invited to take part in a research study.  Taking part in this study is voluntary.  It is up to 
you to decide whether to be in the study or not.  You can decide not to take part in the study.  If you 
decide to take part, you are free to leave at any time.  This will not affect your usual health care/normal 
treatment 

Before you decide, you need to understand what the study is for, what risks you might take and what 
benefits you might receive.  This consent form explains the study.   

Please read this carefully. Take as much time as you like. If you like, take it home to think about for a 
while. Mark anything you do not understand, or want explained better. After you have read it, please ask 
questions about anything that is not clear. 

The researchers will: 

 discuss the study with you
 answer your questions
 keep confidential any information which could identify you personally
 be available during the study to deal with problems and answer questions

1. Introduction/Background:

Exercise benefits people with multiple sclerosis (MS) but sometimes because of MS symptoms, it
can be difficult to exercise. We plan to test types of exercise training conditions to find the best way to 
exercise. To do this we need to recruit individuals who have MS as well as people who do not have MS 
as part of a control group. This control group will help to compare results to individuals with MS.  

2. Purpose of study:

The purpose of this study is to determine the safest and most efficient mode of exercise and best
temperature at which to do exercise for people diagnosed with MS.  

Appendix B: Consent Form
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HREB Version: June 2014 

Version date: Sept 29th, 2014       Subject’s Initials: _________ 
The effects of aerobic training among people with multiple sclerosis: A pilot study 

3. Description of the study procedures:

When you say yes to be in the study, you will have a series of tests that will assess memory,
thinking, spatial skills, leg strength, walking ability, and leg flexibility. You will then have a fitness test 
in which you will be seated on a stationary bicycle with a face mask to measure your oxygen use during 
exercise. Heart rate, blood pressure, and breathing rate will also be recorded. This test will take place in 
the school of Human Kinetics and Recreation at Memorial University. 

After these initial assessments, you will do four different types of exercise trials. Each trial will be 
7-10 days apart. For each trial, you will wear a heart rate monitor, and will be either seated in a 
stationary exercise bicycle, or standing on a treadmill secured by an overhead safety harness. After a 5 
minute warm-up you will exercise for 30 minutes. Water will be provided for you to drink and after the 
test you will be asked how tired you are using a scale.  

Before and after exercising three types of data will be taken. Firstly, measurements of body 
temperature will be taken using an ear thermometer. Secondly, a 5mL blood sample will be taken to 
measure the amount of protein helpful to brain cells in your blood. Lastly, your walking speed and 
agility will be tested using a sensor mat.  

We will also assess the electrical activity in your nerves using a special device that we place on 
your scalp on a different day from the four exercises. The device called TMS will use a magnetic field 
to provide a pulse to the nerves of your leg muscles which we can then measure. 

4. Length of time:

The first assessment, which includes this consent form and some testing, will take about an hour 
to complete. The first session and each exercise and testing session which follow will take 
approximately 3 hours. These sessions will include an hour of testing, 30 minutes of exercise and 
another hour of testing post exercise. The sessions will be 7-10 days apart from one another. 

5. Possible risks and discomforts:

 You may feel tired after exercise so rest when you need to.
 Blood sample may cause skin irritation/bruising.
 Oxygen mask over the face may cause discomfort.

6. Benefits:

It is not known whether this study will benefit you. 

7. Liability statement:

Signing this form gives us your consent to be in this study.  It tells us that you understand the
information about the research study.  When you sign this form, you do not give up your legal
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rights.  Researchers or agencies involved in this research study still have their legal and 
professional responsibilities. 

8. What about my privacy and confidentiality?

Protecting your privacy is an important part of this study. Every effort to protect your privacy 
will be made. However, it cannot be guaranteed. For example, we may be required by law to 
allow access to research records.  

        When you sign this consent form you give us permission to  
 Collect information from you
 Share information with the people conducting the study
 Share information with the people responsible for protecting your safety

Access to records 

The members of the research team will see study records that identify you by name. 
Other people may need to look at the study records that identify you by name. This might include 
the research ethics board. You may ask to see the list of these people. They can look at your 
records only when supervised by a member of the research team.  

Use of your study information 

The research team will collect and use only the information they need for this research study.        

This information will include your  

 Age
 Sex
 Medical conditions
 Relapse history
 Walking ability
 PAR-Q screen for risk factors
 Medications

 The results of tests and procedures you had before and during the study.

 Information from study questionnaires

Your name and contact information will be kept secure by the research team in Newfoundland and 
Labrador.  It will not be shared with others without your permission. Your name will not appear in 
any report or article published as a result of this study. 

Information collected for this study will be kept for five years. 

If you decide to withdraw from the study, the information collected up to that time will continue to 
be used by the research team.  It may not be removed. This information will only be used for the 
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purposes of this study. 

Information collected and used by the research team will be stored in password protected 
computers at the Recovery and Performance Laboratory. Dr. Ploughman is the person responsible 
for keeping it secure. 

Your access to records 
You may ask the Dr. Ploughman to see the information that has been collected about you.   

9. Questions or problems:

If you have any questions about taking part in this study, you can meet with the investigator who is
in charge of the study at this institution.  That person is: Dr. Michelle Ploughman

Principal Investigator’s Name and Phone Number

Dr. Michelle Ploughman
Office number: 777-2099

Or you can talk to someone who is not involved with the study at all, but can advise you on your
rights as a participant in a research study.  This person can be reached through:

Ethics Office 
Health Research Ethics Authority 
709-777-6974 or by email at info@hrea.ca 

10. Declaration of financial interest

The investigators declare no financial interest.  

After signing this consent you will be given a copy. 
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Signature Page 

Study title: The effects of aerobic training on corticospinal excitability and neurotrophin expression 
among people with multiple sclerosis: A pilot study	

Name of principal investigator: Dr. Michelle Ploughman 

To be filled out and signed by the participant: 

Please check as appropriate: 
I have read the consent Yes { }     No { } 
I have had the opportunity to ask questions/to discuss this study.  Yes { }     No { } 
I have received satisfactory answers to all of my questions.  Yes { }     No { } 
I have received enough information about the study. Yes { }     No { } 
I have spoken to Dr. Ploughman and she has answered my questions  Yes { }     No { } 
I understand that I am free to withdraw from the study Yes { }     No { } 

 at any time
 without having to give a reason

I understand that it is my choice to be in the study and that I may not benefit.  Yes { }     No { } 
I understand how my privacy is protected and my records kept confidential  Yes { }     No { } 

I agree to take part in this study.    Yes { }     No { } 

___________________________________  _____________________    _______________ 
Signature of participant    Name printed     Year Month Day 

__________________________________ ______________________     ________________ 
Signature of person authorized as   Name printed      Year Month Day 

Substitute decision maker, if applicable____________________________________ 

__________________________________    ______________________     ________________ 
Signature of witness (if applicable)  Name printed     Year Month Day 

To be signed by the investigator or person obtaining consent 

I have explained this study to the best of my ability. I invited questions and gave answers. I believe that 
the participant fully understands what is involved in being in the study, any potential risks of the study 
and that he or she has freely chosen to be in the study. 

___    _____________________-       
Signature of investigator          Name printed  Year Month Day 

Telephone number:    _________________________ 
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Room 400; 100 Forest Rd. 
St. John’s NL 

Participant	Demographics	

Participant	Number:  _____________________ 

Birthdate:   _____________________ (mm/dd/yy) 
Gender:  [ __ ] Male [ __ ] Female 

Highest Level of Education Completed: Elementary School [ __ ] 
High School  [ __ ] 

   College or Technical School Diploma  [ __ ] 
Undergraduate Degree [ __ ] 

    Graduate or Professional Degree [ __ ] 

Living Situation: Lives Alone  [ __ ] 
Lives with Others in a Household Residence [ __ ] 

         Lives in an Institutional residence (Retirement Home) [ __ ] 

Physical Activity in the Past One Week:  
Description of Type Intensity Duration (mins) Frequency 

Type – could include walking, house work, exercises, weight training, yard work, walking up stairs, exercise classes, jogging, 
playing with children, etc.  
Intensity – could be related to breathlessness or fatigue. For example, if walking does not cause breathlessness, this is Mild. If the 
activity causes breathlessness and a need to rest, this is vigorous.  

Appendix C: Participant Demographics
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Room 400; 100 Forest Rd. 
St. John’s NL 

Researcher initials ____________ 

Date completed _____________________ 

Participant	Number:		 _____________________________	

Medical history form: 

Date of initial diagnosis: ____________________ 
Initial type of MS: _________________________ 
Current type of MS: ________________________ 

EDSS score (check chart): ___________________________ 
Date of EDSS testing: __________________________ 

Medication List (NOTE: if betablocker is in use only BORG RPE will be used as an outcome) 

1. _______________________________________________
2. _______________________________________________
3. _______________________________________________
4. _______________________________________________
5. _______________________________________________

Betablocker in use? ___________ [Y/N] 

Comorbid conditions (e.g.: diabetes, heart disease, asthma, etc.): 

1. _______________________________________________
2. _______________________________________________
3. _______________________________________________
4. _______________________________________________
5. _______________________________________________

MS related conditions: (e.g.: bladder dysfunction, sweat abnormalities, etc.) 

1. _______________________________________________
2. _______________________________________________
3. _______________________________________________
4. _______________________________________________
5. _______________________________________________

Botulinum toxin injection: ________________ [Yes/No] (Write N/A for inapplicable sections if no) 
Date of most recent injection: ___________________ 
Location of injection: _____________________ 
Date of next scheduled injection: _____________________ 
Check up date (>6 weeks after injection ______________________ 

Appendix D: Medical History Form
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