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ABSTRACT 

 

Anisotropy is generally formed as a result of systematic orientation and shape of asymmetric 

grains making up the solid matrix of porous media. It is well known that porous media are often 

anisotropic. To calculate flow in such three dimensional media a permeability tensor must be 

used in Darcy's law. 

 

These anisotropic reservoirs cannot be properly studied with conventional simulators, which 

assume that the coordinate system used to describe the fluid flow aligns with the principal 

permeability axes. Thus, the coordinate axes are oriented in the same direction as these 

principal axes. Permeability actually varies in all directions and with increased use of directional 

wells, the ability to use correct permeability in the direction of fluid flow is important in 

predicting reservoir production characteristics. This will also help explain why and where oil 

accumulations occur. 
 

 

Many investigators have attempted to either develop a mathematical model to calculate 

anisotropic permeability of a system or to experimentally develop a procedure to measure 

directional permeabilities. 

 

This research involves creating this three-dimensional permeability tensor mathematically. 

Then, using the commercial reservoir simulator, the three-dimensional permeability tensor is 
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included in the reservoir model. The tensor is rotated within each grid block to align the 

principal coordinate axes with the actual well path. The model with the three-dimensional 

permeability tensor is used to predict the oil production rate. The oil production rates are then 

compared to the conventional reservoir simulator results.  

 

Results from the reservoir simulations found that as the size reservoir grid refinement 

increased, so did the deviation in the oil production rates predicted comparing the conventional 

reservoir simulator wellpath and the simulation with the tensor aligned with the wellpath. 

 

Also, from the simulations it was found that there is a difference in oil production rates when 

comparing the simulations with the tensor aligned with the wellpath to the conventional 

reservoir simulation approach. Further research using the tensor aligned with the wellpath in 

full field reservoir simulation and comparing the results to real field data will confirm which 

approach is more accurate.  
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Chapter 1  Introduction 

 

Reservoir simulation is used to help make large capital decisions, to estimate reserves, predict 

future oil production rates, and to diagnose, and improve the performance of producing 

reservoirs. The reservoir models have a large number of properties associated with them. 

Therefore, a better understanding of the variability of reservoir properties is needed. One of 

the most important properties governing fluid flow is permeability, which is a directionally, 

spatially and scale dependent variable describing the connectivity or transmissibility of the 

reservoir rock. This research focuses on the directional variability, or anisotropy, of 

permeability and its effect on predicting oil production rates. 

 

Permeability anisotropy is formed by compaction due to gravity, depositional processes, the 

presence of fractures, diagenesis, biologic activity, etc. Permeability anisotropy results in a 

directionally variable permeability that can be modeled in three dimensions using a full tensor, 

represented by a 3x3 permeability matrix.  

 

In reservoir simulation, the permeability tensor is used in Darcy's Law to model fluid flow in 

three dimensions. Typically, reservoir simulators ignore the full tensorial nature of the absolute 

permeability and assume the permeability can be represented by a diagonal tensor whose 

principal permeability axes coincide with the local coordinate system. Figure 1-1 depicts the 
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local grid coordinate system (x, y, z) and the principal permeability (Kx, Ky, Kz) having the same 

directions, resulting in a diagonal permeability tensor. The fluid flow does not align with the 

coordinate systems. The figure represents an offshore production platform producing 

hydrocarbons from a reservoir folded by tectonic forces. Also depicted is the location of a 

section of a reservoir simulation grid.  

 

 

Figure 1-1: Representation of the Permeability Model Simulation Grid within the Oil Field Reservoir 

 

Figure 1-1 depicts the local coordinate system as (x, y, z) therefore the principal permeability 

axes (Kx, Ky, Kz) are aligned with the depositional directions before folding occurred. The 

challenge with this approach arises when the flow path is not aligned with the local coordinate 
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system as seen in Figure 1-1. Also in Figure 1-1 the well cuts through the grid blocks rather than 

being aligned with them or the principal permeability directions.  

 

Diagonal permeability tensors are used in each simulation grid block. This is obtained by having 

the well path aligned with either the x, y or z direction within each block. Commercial 

simulators also depict the well path as passing through the center of each block in either of the 

directions. This limits the ability of commercial simulators to accurately model well paths. The 

following Figure 1-2 is an example of how current reservoir simulators would depict the 

wellbore path in Figure 1-1. The lighter sections of the wellbore demonstrate that it is inside 

the reservoir and the dot followed by the darker section of the wellbore is where the well is 

exiting the simulation grid. 

 

 

Figure 1-2: Reservoir Grid with Commercial Simulator Wellpath 
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An alternate method to model the hydrocarbon flow into the well is to rotate the permeability 

axes to match the wellbore path. This would create new directional permeabilities (Kβ, Kξ, Kζ) 
that will differ from the principal permeabilities (Kx, Ky, Kz) and will require a full tensorial 

description as explained below. The new  rotated coordinate system is illustrated in Figure 1-3. 

 

 

Figure 1-3: Reservoir with Rotated Permeability Tensor and Mathematical Representation of Wellpath 

 

 

When the principal permeability tensor is rotated, cross permeability terms arise in the 

permeability matrix. These cross permeability terms have been investigated analytically and 

with numerical simulations, and the importance of including these terms has been established 

(Leung, 1986). However, through extensive literature review, the effect that cross permeability 

terms have on production and forecasting is not fully understood.  
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In order to orient the permeability tensor parallel to the wellbore, a matrix rotation is required. 

Rotation methods include the directional cosines method, and using an angle rotation about a 

secondary axis. By using these methods a new permeability tensor that contains cross terms in 

the permeability matrix can be generated. This new tensor is then used to calculate flow rate 

using Darcy's Law for fluid flow in a porous media.  

 

In this thesis, reservoir simulations using the full permeability tensor, obtained from the 

mathematical rotation, are compared to the cases where the reservoir simulator uses a 

diagonal tensor. Oil production rates for the full permeability tensor and the diagonal tensor 

are examined to find any discrepancies between the two. Results show a difference in 

production rates depending on the method used. 
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Chapter 2  Literature Review 

 

Through literature review it has been found that little work has been completed on the three 

dimensional permeability tensors for use in anisotropic and heterogeneous reservoir 

simulation. For this thesis, a good deal of work has been completed on understanding 

anisotropic reservoirs, fluid flow in porous media, reservoir modeling and other background 

information required.  

 

In this chapter, absolute permeability is described, with information on isotropic, anisotropic 

and directional permeability. This is followed by sections outlining reservoir simulators, studies 

on modeling of three-dimensional anisotropic permeability and a section on permeability 

tensor.   

 

2.1. Absolute Permeability  

 

The absolute permeability of a rock is a measure of the ease with which a rock will permit the 

flow of fluids. A high permeability will allow a fluid to move rapidly through rocks. The 

permeability of a single phase fluid is different than the permeability where multiple fluid 

phases are flowing.  
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In 1856, Henry Darcy carried out simple experiments on packs of sand, and hence developed an 

empirical formula that remains the main permeability formula in use in the oil industry today. It 

has since been validated for most porous rock types and certain common fluids. Darcy's Law 

can be expressed as, 

      

                           (2.1) 

 

Where:   

  Q   =    flow rate (m
3
/s) 

  Po   =    outlet fluid pressure (Pa) 

  Pi   =    inlet fluid pressure (Pa) 

  µ    =    dynamic viscosity of the fluid (Pa·s) 

  L    =    length between inlet and outlet (m) 

  K    =    permeability of the sample (m
2
) 

  A    =    area of the sample (m
2
) 

 

In petroleum engineering, the unit used for permeability is the Darcy (D). A material is said to 

have a permeability equal to 1 Darcy if a pressure difference of 1 atmosphere will produce a 

flow rate of 1 cm
3
/s of a fluid with 1 centipoise (cP) viscosity through a cube having sides equal 

to 1 cm (Darcy 1856). Therefore,  

 

    

(2.2) 

 

 

 

 

1 �� !" = 1 $!%3' ( 1(!*)
1(!%2)1(�-%!% ) = 0.987 (3%)2 . 

4 = 56(*7 − *9 )3:  . 
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Darcy's law can also be expressed in terms of volumetric flux, � = 4 6⁄ . The differential form of 

Darcy's law can be written as, 

 

     

   (2.3) 

 

 

where s is the positive flow direction and θ is the angle between the positive x-axis and the 

positive flow direction measured counter clockwise. 

 

 
Figure 2-1: Arbitrary Flow Direction 

 

 

Darcy's law applies for any direction and can therefore be formulated in three dimensions as a 

vector equation, 

 

 

                  

 

                               (2.4) 

 

 

 

 

 

 

�>? = − 13 5(∇� − @A?) . 

� = − 53 $B�B' + @A sin E( , 



9 

 

In equation 2.3, K is a matrix of the following form, 

 

 

  (2.5) 

 

 

 

A great deal of effort has been spent on proving that the permeability tensor K is symmetric 

and positive definite (Liakopoulos 1965). A symmetric matrix is a square matrix that is equal to 

its transpose, A = A
T
. A n x n matrix, M, is positive definite when z

T
Mz is positive for every non-

zero column vector z of n real numbers. Where z
T
 denotes the transpose of z. It is a 

mathematical fact that it is always possible to find three directions perpendicular to each other 

such that the permeability tensor becomes diagonal. These directions are called the principal 

directions for the permeability tensor. If x, y, z are the principal directions, Kxy = Kxz = Kyz = 0, 

and the permeability matrix becomes, 

 

  

(2.6) 

 

 

 

5 = F5GG 5G" 5GH5G" 5"" 5"H5GH 5"H 5HH
I . 

5 = F5GG 0 00 5"" 00 0 5HH
I . 
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When Kxx = Kyy = Kzz = K, the medium is called isotropic. In an anisotropic medium, the flow 

direction does not align with the pressure gradient (Liakopoulos 1965). The component 

volumetric flux (u) equation for x, y, and z  becomes 

 

   (2.7) 

 

(2.8) 

   

(2.9)  

 

 

A property is said to be anisotropic when it is directionally dependent; otherwise, the property 

is said to be isotropic, which implies identical properties in all directions. Only flow or transport 

properties, which have a specific direction associated with their measurement, are anisotropic. 

This includes permeability, resistivity, thermal conductivity, and dispersivity. Properties such as 

density, porosity, and capillary pressure are considered intrinsically isotropic (Lake 1988). 

Nearly all reservoirs have some degree of anisotropy and heterogeneity (Fanchi 2006).  

 

Permeability also varies spatially. A medium is homogeneous if the permeability is constant 

from point to point over the entire medium, while it is heterogeneous if permeability changes 

from point to point. An anisotropic medium has a different magnitude of permeability 

�G = − 13 J5GG B�BG + 5G" B�B" + 5GH B�BH K, 

�" = − 13 J5G" B�BG + 5"" B�B" + 5"H B�BH K, 

�H = − 13 J5GH B�BG + 5"H B�B" + 5HH B�BH K. 
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depending on the direction (x, y or z) at each point, while the permeability of an isotropic 

medium is the same in each direction. Figure 2-2 illustrates four conditions of permeability. The 

arrows in each block indicate the magnitude of the permeability in each direction. It should be 

noted that these are scale dependent variables and what may be perceived as homogeneous or 

isotropic at one scale may be anisotropic or heterogeneous at another scale. 

 

 

 

Figure 2-2: Four Possible Conditions for Isotropy / Anisotropy and Homogeneity / Heterogeneity 
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2.1.1. Isotropic Permeability 

 

The permeability is considered to be isotopic if the elements of the diagonalized permeability 

tensor are equal,  5LL = 5MM = 5NN = 5. Therefore, if the medium is isotopic, permeability 

does not depend on direction. 

 

2.1.2. Anisotropic Permeability 

 

In the anisotropic case the permeability tensor will have different values for 5LL, 	5MM	 and 5NN. 

When the coordinate axes are not aligned with the principal permeability directions there will 

also be non-zero cross terms, which all have pairs;  5LM = 5ML , 5LN = 5NL and 5MN = 5NM. 

 

2.1.3. Directional Permeability Measurements 

 

Measurement of isotropic permeability is usually performed on linear, mostly cylindrically 

shaped, 'core' samples. The core sample can be arrange to have either horizontal or vertical 

flow. Great care must be taken during fluid flow through the sample as to not allow fluids to 

bypass and cause a misreading.  
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Liquids and gases have been used to measure the permeability of the core using steady state 

and unsteady state methods. It has been found that liquids sometimes change the pore 

structure and therefore the permeability. This happens by rearrangement of some particles, 

swelling of material in pores, chemical reaction, etc (Rose 1982). 

 

Directional permeabilities are measured for anisotropic materials. A couple of methods used to 

measure these permeabilities have been performed on anisotropic sandstone (Johnson and 

Hughes 1948; Johnson and Breston 1951). One method consists of cutting plug samples at 

various angles from the well core. The permeabilities of these plugs are then measured as 

mentioned previously. In the other method, a hole was drilled down the center of the 

cylindrical piece of a well core whose faces had been parallel. The equipment used allowed the 

hollow porous cylinder to be rotated to any position for flow measurement while the fluid was 

flowing from the center of the core to the outside of the cylinder. Darcy's Law is then used to 

calculate the directional permeabilities.  

 

A more recent method to measure directional permeability is performed using three 

measurements on a laboratory sample to calculate the maximum and minimum permeabilities 

(Rose 1982). Rose used an angle which shows the direction of flow with respect to the direction 

of maximum permeability, an angle which shows the direction of flow with respect to the 

direction of the driving force gradient and an element, OPQ, of the resistivity tensor that appears 

when Darcy's law is given the special form, 	OPQ ∙ ST3 = −A �U	�	 
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2.2. Reservoir Simulators 

 

Reservoir simulators progressed, between the early 1950s and 1970, from two dimensions and 

simple geometries to three dimensions, realistic geometry and a black oil fluid model. In the 

1970s, researchers introduced compositional models and placed a heavy emphasis on 

enhanced oil recovery (Coats 1980).  

 

Today, simulators are used to estimate production characteristics, calibrate reservoir 

parameters, visualise reservoir flow patterns, and much more. The main purpose is to provide 

an information database that can help the oil and gas companies to position and manage wells 

and well trajectories in order to maximize the oil and gas recovery and forecast production 

profiles for economic and life of field. Unfortunately, obtaining an accurate prediction of 

reservoir flow scenarios is a difficult task. One of the reasons is that it is not possible to obtain a 

complete and accurate characterization of the rock parameters that influence the flow pattern. 

Even if it was possible, reservoir simulators would not be able to exploit all available 

information, since this would require a tremendous amount of computer resources that exceed 

the capabilities of modern multi-processor computers. 

 

Three categories of reservoir simulators exist; private, open source and commercial. The most 

well known open source software includes Black Oil Applied Simulation Tool (Boast), the 

MATLAB Reservoir Simulation Toolbox (MRST), and the Open Porous Media (OPM). Commercial 
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software includes Rock Flow Dynamics, CMG Suite (Three-Phase Black-Oil Reservoir Simulator, 

Compositional & Unconventional Reservoir Simulator and Advanced Processes & Thermal 

Reservoir Simulator), Schlumberger's Eclipse Suite (E100 and E300), and Halliburton's Landmark 

Nexus®.  

 

For the purpose of this research the Schlumberger Eclipse E300 suite software was used, since 

Eclipse 300 allows a full tensor description of the absolute permeability and is licenced to 

Memorial University. 

 

In order to confirm that the results from the Eclipse 300 reservoir simulator can be used, the 

diagonal tensor must have identical results as the case using the full tensor and having zero in 

the off diagonal components of the matrix. The only cases where the approaches should yield 

identical results are when the full tensor have zero in he off diagonal terms and have the same 

values in the diagonal terms as the diagonal tensor. If this occurs then it proves that the Eclipse 

300 reservoir simulator have no error when comparing either approach.   

 

2.2.1. Schlumberger ECLIPSE Suite 

 

The Schlumberger ECLIPSE simulator is an industry standard for complete and robust set of 

numerical solutions and for fast and accurate prediction of dynamic behaviour for all types of 

reservoirs and development schemes. The ECLIPSE simulator has been a benchmark for 
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commercial reservoir simulators for more than 25 years thanks to its extensive capabilities, 

robustness, speed and parallel scalability (Schlumberger 2014).  

 

Full tensor permeabilities are often required to describe complex reservoirs. Given a detailed 

heterogeneous reservoir description at the geological scale, upscaling is normally carried out to 

reduce the model size to one suitable for reservoir simulation. These upscaling procedures will 

generally create full tensor permeabilities, even if the permeabilities in the fine geological grid 

are not represented as tensors. Full tensor permeabilities also arise in complex crossbedded 

systems where the dip directions will not in general coincide with the local coordinate direction 

(Johansen 2008). A further case for full tensor permeabilities is in the modeling of fractured 

systems.  

 

Conventionally, reservoir simulators ignore the full tensor nature of the absolute permeability 

and assume the permeability can be represented by a diagonal tensor whose principal axes 

coincide with the local coordinate system. This allows the construction of the usual five point 

discretization (the process of transferring continuous models and equations into discrete 

counterparts) in two dimensions or seven point in three dimensions which can be solved 

efficiently in the simulator. Ignoring the full tensor nature of the absolute permeability can lead 

to large reservoir simulation errors. Introduction of a full tensor permeability extends the 

arrangement of the discretization scheme to nine points in two dimensional cases and either 19 
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or 27 points in three dimensional cases. Figure 2-3 depicts the five (points P, N, S, E, W) and 

nine (points P, N, S, E, W, NW, NE, SW, SE) point discretization scheme's. 

 

 

Figure 2-3:  Five and Nine Point Discretization Scheme's 

 

ECLIPSE 300 allows a full tensor description of the absolute permeability. The permeability 

tensor may either be supplied by a pre-processor by upscaling the properties on the geological 

model, or it may be entered by keywords PERMXX, PERMYY, PERMZZ (which describe the 

diagonal components for the tensor, x, y and z) and PERMXY, PERMYZ, PERMXZ to describe the 

off diagonal components (in the xy, yz and xz directions). Only positive definite symmetric 

tensors are allowed in the simulator. The principal directions of the tensor must also be 

supplied.  
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At present, the directions of the components of the tensor have three options, Figure 2-4. They 

can be aligned with the Cartesian axes (1), aligned with the axes joining the midpoints of each 

pair of opposite faces in the corner point cells (2), or aligned with the two axes formed by 

joining the midpoints of pairs of opposite faces in the "I" and "J" directions and with the third 

axis normal to the bedding plane (3). 

 

Figure 2-4:  Three Options for Components of the Tensor  

 

2.2.2. Traditional Reservoir Simulation Modeling 

 
In reservoir simulation, the material balance equations must be discretized by choosing either 

an explicit or implicit method for pressure and saturation. For straight forward cases, the 

pressure is solved using an implicit equation, then the saturation using an explicit time stepping 

scheme. The algorithm is called the IMplicit Pressure Explicit Saturation (IMPES) (Sheldon et al. 

1959). 
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The Eclipse E300 can use three calculation methods for the next time step; fully implicit (both 

saturation and pressure are implicit), adaptive implicit (tries to save computation time and 

memory by making cells implicit only when necessary) and IMPES. For the simulations related 

to this research the fully implicit method was used. This is the default case in Eclipse E300 and 

the most widely used in reservoir simulation. 

 

Figure 2-4 illustrate the difference in implicit and explicit time discretization, where D  is a 

space differential operator, ��  is mass flux vector and V�(G, ", H+ is known for every point in the 

reservoir. 

 

Figure 2-5:  Time Discretization in Reservoir Simulation  

 

When multiple blocks are added to the reservoir simulation, space discretization must be 

included. The simplest way to discretize space is to divide the whole simulation region into 
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many regions of the same size. Figure 2-5 demonstrates space discretization and the equation 

used in reservoir simulation.  

 

Figure 2-6:  Space Discretization in Reservoir Simulation (Johansen 2008) 

 

Near the wellbore, the linear Darcy's law may be inadequate to simulate the fluid flow. In the 

near wellbore region the flow rate from the reservoir is highly sensitive to the variation in 

permeabilities.  

 

In the reservoir simulator, the wellbore is penetrates through the center of a box shaped 

reservoir grid, seen in Figure 1-2. These reservoir blocks are usually much larger than the 

wellbore and must be scaled accordingly. Equation 2.10 describes the steady state oil flow rate 

equation used to describe radial well models,  

 

 

(2.10) 

 

49 = 2W5ℎ(�Y − �Z )3[ln( Y  Z⁄ ) + ]^ , 
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where Qo is the flow rate, K is the isotropic permeability, h is the height, pe is the reservoir 

pressure at the drainage radius, pw is the wellbore pressure,  μ is fluid viscosity, re is the 

drainage radius and rw is the wellbore radius. The variable S is called the skin. This represents 

an additional pressure drop (positive or negative) due to different irregularities in permeability 

in the near well region. A positive value would represent an impairment to flow, while a 

negative skin value would represent an enhancement to flow.  

 
For the reservoir simulator the previous flow equation becomes,  

 

     (2.11) 

 

where pblock and rblock are the simulation grid block pressure and block radius, respectively. The 

problem arises in the so called block radius. It has been determined, through numerical 

simulations where analytical solutions exist, that the "correct" value to use for rblock in an 

anisotropic case with the well penetrating the center of the grid block and traveling in the y-

direction is,  

 

             

(2.12) 

 

49 = 2W5ℎ(�gh9!i − �Z )3[ln( gh9!i  Z⁄ ) + ]^ , 

 9 = 0.28 j∆G2l5H5G + ∆H2l5G5H
l5H5G4 + l5G5H4  . 
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This is called the Peaceman formula (Peaceman 1983). The following should be used for 

permeability in this anisotropic case in equation (2.12), 

 

5 = n5L5N .       (2.13) 

 

In equation (2.12), Δx and Δz is the block size in the x- and z-directions, respectively. Similar 

formulas apply when the well path is aligned with other axis. 

 

In reservoir simulation, it is standard to align the well in each grid block with the grid coordinate 

axis. Figure 2-6 depicts the well trajectory of simulator following the layers of the grid blocks as 

opposed to the actual well trajectory (Johansen 2008).  

 

 

Figure 2-7: Actual and Simulated Wellpaths 
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2.3. Studies on Modeling of Three-Dimensional Anisotropic Permeability 

 

Studies have been completed on understanding how anisotropic permeability is formed in 

reservoirs but little work has been done on the effects anisotropy has on predicting production 

profiles. However, the worth that has been done is described in this section. 

 

2.3.1. Methods for Modeling Full Tensor Permeability in Reservoir Simulation  

 

Bagheri and Settari's (2007) work examines methods for modeling reservoir flow using a 

permeability tensor. Instead of using the control volume multipoint discretizations, they used a 

simple extension of conventional finite difference method to handle both the permeability 

tensor and complex geometry. The work was initiated in order to find a more accurate way to 

model fluid flow in porous media. Dependency of simulation results of fluid flow in porous 

media to the type of grid mesh used is well-known and called the "grid orientation" effect. 

Many errors have been found depending on the gird method used. Figure 2-7 is an example 

used to demonstrate the effect the grid orientation has on production (Dalen et al. 1986). The 

reservoir simulation has two producing wells equidistant from an injection well and an 

orthogonal grid, Figure 2-7 (a). In order to investigate grid effects, the grid has been twisted so 

that the grid is no longer orthogonal, Figure 2-7 (b). Dalen's results showed the difference 

between the water cut values of the two wells increased dramatically when the angle between 

the grid lines is reduced to 45 degrees. The water reaches Well 2 before Well 1, in 
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correspondence with a faster flow parallel with the grid lines than the diagonal to the grid lines, 

using a skewed grid.  

 

Figure 2-8: Grids for the Three-Well Problems: (a) Orthogonal grid and (b) Skew Grid with 45° Between 

Grid Lines (Dalen et al. 1986) 

 

 

The nine point discretization method is the usual practice in reservoir simulation. Bagheri and 

Settari (2007) found that using a 9-point approximation with full tensor, in the presence of 

permeability anisotropy, could not accurately predict the behaviour of the reservoir, Figure 2-8. 

This was due to what they called a "tensor orientation" effect. This caused an error in the 

pressure and shape of the pressure field, which depends on the relative orientation of the grid 

in relation to the principal axes of the permeability tensor.  
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They showed that using a 13-point extension of the conventional 9-point finite difference 

method virtually eliminates the tensor orientation errors. The problem with the 13-point 

method is that it is impractical for conventional reservoir simulators because of the increased 

computer time required for simulation.  

 

Figure 2-9: Overlapping Coordinate System used in 13-Point Method (Bagheri and Settari 2007) 

 

Bagheri and Settari's research focused on x-y coordinate systems and not on a three-

dimensional case. The base cases for each method (9-point and 13-point) used an isotropic 

model rather than a full tensor anisotropic model. Therefore, there is a lack of an analytical 

solution and full tensorial analysis to support their method.  
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In summary, their work describes the theory for modeling fluid flow in the presence of a 

permeability tensor. However, it does not look at rotation of the permeability tensor to align 

with the well trajectory. 

 

2.3.2. A Tensor Model for Anisotropic and Heterogeneous Reservoirs with Variable 

Directional Permeabilities  

 
Leung (1986) studied the permeability tensor to model fluid flow in complex reservoirs with 

multiple zones of directional permeability. He analyzed the cross permeability effects that arise 

when the coordinate axes are offset at an angle to the principal permeability axes. Nine and 

nineteen point finite difference methods have been derived for the tensor formation for two 

and three dimensional simulations, respectively.  

 

His work explained the permeability tensor and its importance in Darcy's Law.  He then 

provided mathematical and physical interpretation for the non-diagonal terms in the 

permeability tensor for a two-dimensional case. To show the cause and effect of the cross 

permeability terms of the tensor quantity, simple examples were used.  

 

A finite difference formula was derived and implemented by Leung (1986), for use in a standard 

black oil simulator. Examples were performed in order to test the cross term permeability 

tensor derived from the formula. These examples focused solely on two dimensional cases with 
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the principal permeability axes rotated at an angle from the x-y axis. The examples 

demonstrated that neglecting the cross permeability terms in the tensor matrix may lead to 

serious errors in interpreting the well response. One example illustrated the importance of a 

permeability tensor used to study reservoirs with variable directional permeabilities in different 

zones. It showed that conventional simple anisotropy models are inadequate for studying this 

type of reservoir. 

 

The work completed by Leung (1986) is helpful in understanding the use of a permeability 

tensor to model fluid flow in complex reservoirs with multiple zones of directional permeability. 

The research did not look at horizontal wells in anisotropic reservoirs and the problems that 

arise when simulating horizontal wells.  

 

 

2.4. Permeability Tensor  

Tensor calculus is a technique that can be regarded as a follow-up on linear algebra. It is a 

generalisation of classical linear algebra. In classical linear algebra one deals with vectors and 

matrices. Tensors are generalisations of vectors and matrices. 

An example would be a tensor T  at a point P  is a property of the medium at P, such that T  can 

be represented by a set of scalars depending on the coordinate system in which P is 

represented, Figure 2-9. Also, the components in another coordinate system depends uniquely 

on the linear transformation by which the two coordinate systems are related. 



28 

 

 

In Figure 2-9, X, Y and Z represent the principal permeability directions and x', y' and z' are the 

directions after the tensor (T') has been rotated.  

 

 

 

Figure 2-10: Tensor T at Point P 

 

Tensors often display a certain degree of symmetry, as is always the case in a diagonal matrix. 

Such symmetries have a strong effect on the properties of these tensors. Often, many of these 

properties or even tensor equations can be derived solely on the basis of these symmetries 

(Dellemond and Peeters 2010). 

 

Darcy’s law was originally derived for one dimensional single phase fluid flow. Permeability is a 

scalar quantity in the one dimensional flow case. The permeability tensor that can be 
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transformed by a rotation of the coordinate system has since been proven to be a symmetric 

property (Szabo 1968; Whitaker 1969; Case & Cochran 1972). Therefore, the eigenvalues of the 

tensor will be real. In 1988, Bear defined the tensor as positive definite, which guarantees that 

the energy is always dissipated during flow. If this were not true, then the flow would be 

against the pressure gradient (Durlofsky 1991).  

 

Figure 2-10 depicts the direction of a flow field, �>? and the direction of a pressure gradient, ∇�.  

The definition of positive definite means that Gt5G u 0 for all vectors x. For this case take 

G = ∇� and	� = 5 ∙ ∇�. Therefore, ∇� ∙ (5 ∙ ∇�) equals components of �>? in the direction of ∇�. 

Components of �>? cannot be in the opposite direction of ∇� since the tensor is positive definite.  

 

 

Figure 2-11: Directions of Tensor,	v>>?, and Pressure Gradient, wx 

 

Fluid flow in porous media is a transport phenomenon, fluid flow can be mathematically 

described by a linear law showing that the flow is directly proportional to the driving force 

(Scheidegger 1958). If the flow magnitude and direction are expressed in terms of a velocity 

vector and if the driving force is expressed by another vector given by the gradient in 

mechanical energy, such as pressure gradient, the constant of proportionality will be a simple 
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scalar quantity denoted by the absolute permeability divided by viscosity (K/μ), when the 

porous medium is an isotropic conductor. In an isotropic medium, K  is a scalar quantity and has 

no directional sense. Mathematically, the direction of the flow and the driving force vectors are 

the same throughout the field of flow. This implies that in those domains, homogeneity of the 

system prevails. Sometimes, the constant of proportionality in Darcy’s law between the flow 

and driving force vectors cannot be expressed in terms of a simple scalar number, but rather 

reference has to be made to a symmetric second rank tensor, which will have nine elements in 

a three dimensional case.  

 

For an anisotropic porous media, Darcy’s law can be described using a three dimensional matrix 

as shown (with gravity neglected),  

 

 

   

 (2.14) 

The permeability tensor 

is used to model fluid flow in complex anisotropic and heterogeneous reservoirs. The 

orientation and magnitude of principal permeabilities may, in general, vary between different 

zones in the reservoir. This type of reservoir cannot be studied with conventional simulators, 

which assume that the orientation of the principal permeability axes are fixed in each grid 

block; thus, the coordinate axes can be oriented in the same direction as these principal axes. 

y�G�"�H z = − 13 {5GG 5G" 5GH5"G 5"" 5"H5HG 5H" 5HH
| ⋅  

~�
��
��
�B� BG�
B� B"�
B� BH� ��

��
��
�
 . 
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Permeability actually varies in all directions and with the increased use of directional wells, the 

ability to simulate these wells using realistic permeability values is important in predicting 

reservoir production characteristics, as is the focus of this thesis. 

 

2.4.1. Tensor Rotation 

 

In cases where the coordinate system used to describe flow is not aligned with the principal 

permeability directions, the coordinates are obtained by a rotation of the principal coordinate 

system. According to the definition of a tensor, the tensor must be calculated from the same 

set of rotations. A case where this occurs would be when a wellbore path passes through a 

reservoir that is tilted as shown in the Figure 2-11. This two dimensional figure shows the 

principal permeability directions of the reservoir that are not in the same direction of the 

hydrocarbon flow.  
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Figure 2-12: Wellpath in Reservoir Not Aligned with a Principal Permeability Direction 

 

 

A simple test can be performed  to determine if the matrix is symmetric, positive definite when 

the principal permeabilities K1, K2 and K3 are known. After the tensor rotation calculation has 

been performed, a quick calculation using equations (2.21), (2.22) and (2.23) will determine if 

the calculation was performed correctly (Johansen 2013). 

 

The theory for this simple test begins with symmetric matrices always having real eigenvalues 

and if the matrix is also positive definite then these eigenvalues are also positive. These facts 

are utilized in the search for a coordinate system that will simplify calculations using Darcy's law 

for a symmetric, positive definite permeability tensor 5. First, the following eigenvalue problem 

must be solved,  

5 ∙ Y? = �Y?	,       (2.15) 
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where Y? is an eigenvector for the eigenvalue � and the permeability tensor is symmetric, i.e. 

5 = F5LL 5LM 5LN5LM 5MM 5MN5LN 5MN 5NNI.       (2.16) 

 

Equation 2.15 determines the direction for which Y? and 5 ∙ Y? are the same. These are the 

directions where the medium behaves isotropically. For (2.15) to have non-trivial solutions, the 

determinant of 5 − �� must be zero, where � is the identity matrix. This leaves the cubic 

equation 

�� − ���� + ��� − �� = 0                                        (2.17) 

 

in � where the coefficients are given by 

 

   

(2.18) 

 

 

 

It was assumed that (2.16) is a symmetric and positive definite permeability tensor, having real 

roots ��, ��, ��. The next step is to find the corresponding eigenvectors, once the eigenvalues 

are determined. The determinant, �Y-�5 − �P�� = 0 for each 7, therefore one of the 

components of Y�>>? can be chosen leaving a unique solution for the two remaining components. 

For a symmetric matrix, this will always result in three linearly independent orthogonal 

eigenvectors Y�>>>?, Y�>>>?, Y�>>>?. Since one of the components in each eigenvector could be chosen, it is 

�1 = 5GG + 5"" + 5HH 	, �2 = 5GG5"" + 5""5HH + 5HH5GG − 5G"2 − 5"H2 − 5HG2 	, and �3 = 5GG5""5HH + 25G"5"H5HG + 5GG5"H2 − 5""5HG2 − 5HH5G"2 	. 
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also possible to choose these eigenvectors as unit vectors. Assuming an eigenvector as a unit 

vector, an orthonormal coordinate system corresponding to the eigenvalues of the given 

symmetric and positive definite matrix 5 is determined. These orthonormal eigenvectors can 

then be organized in a matrix as 

 

O = [Y�>>>?, Y�>>>?, Y�>>>?^	,      (2.19) 

 

where the i-th column of O is Y�>>?. Since the columns are linear independent, the inverse O�� 

exists, O�� ∙ O = �. Therefore,  

O�� ∙ 5 ∙ O = O�� ∙ 5 ∙ [Y�>>>?, Y�>>>?, Y�>>>?^ = O�� ∙ [��Y�>>>?, ��Y�>>>?, ��Y�>>>?^ = y�� 0 00 �� 00 0 ��z	.  (2.20) 

      

The transform 5 → O�� ∙ 5 ∙ O gives a diagonal matrix with eigenvalues of 5 on the diagonal, 

and the corresponding coordinate system that gives this result is defined by three orthonormal 

eigenvectors.  

 

For a symmetric positive definite matrix to be a permeability tensor, the diagonalization 

process applied to it must result in the same eigenvalues and eigenvectors, namely those given 

by the principal directions and principal permeabilities 5�, 5�, 5�. That is to say, all permeability 

tensors for a porous medium have the same eigenvalues and corresponding eigenvectors. 

Consequently, equation (2.17) always has 5�, 5�, 5� as roots independent of the coordinate 
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system we started with. Therefore, the coefficients of (2.17) given by (2.18) are also 

independent of the coordinate system. As a result, ��, ��, �� in (2.18) are permeability invariants 

for the porous medium. These facts offer the simple test to determine if a given symmetric, 

positive definite matrix as (2.16) is a permeability tensor for the medium if the principal 

permeabilities (5�, 5�, 5�) are known, 

 

5LL + 5MM + 5NN = 5� + 5� + 5�          (2.21) 

5LL5MM + 5MM5NN + 5NN5LL −5LM� − 5MN� − 5LN� = 5�5� + 5�5� + 5�5�            (2.22) 

5LL5MM5NN + 25LM5MN5LN − 5LL5MN� − 5MM5LN� − 5NN5LM� = 5�5�5�         (2.23) 

 

where, 5�, 5�, 5� are the principal permeability values and 5LL, 5MM , 5NN, 5LM, 5MN , 5LN  are 

values from the full tensor created after rotation. 

 

Orthogonal transformation of the permeability tensor can be done in many ways. This research 

will focus on three dimensional transformation using the directional cosine method and the 

angle rotation about a secondary axis. These are described next. 
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2.4.1.1. Directional Cosines   

 

The directional cosines of a vector are the cosines of the angles between the vector and the 

three coordinate axes. They are useful in forming directional cosines matrices that express one 

set of orthonormal basis vectors in terms of another set. Sets of direction cosines can be used 

to construct a transformation matrix from the vectors (Tyldesley 1975).  

 

The following figure illustrates an arbitrary direction �>?  relative to the principal permeability 

directions, 

 

 

Figure 2-13: Principal Permeability Directions x, y, and z with Unit Vector �>>? 
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where the  directional cosines for Figure 2-12 and 2-13 are,  

(2.24) 

      

(2.25) 

      

 (2.26) 

 

 

We find that 

 

  

 (2.27) 

 

 

Therefore, �cos EL , cos EM , cos EN� is a unit vector (length=1). 

 

This method needs three angles, one from each of the principal permeability directions to the 

given direction. The given direction is the direction of the wellbore. The axis in Figure 2-13 

below, represents the principal permeability directions and the arbitrary wellbore represented 

as β. Angles from the x, y and z-axis to the well path are required to describe the deviation of 

the arbitrary wellbore orientation from the principal permeability axes.  

 

cos EH = �H  . 
cos E" = �"  , 
cos EG = �G  , 

cos2 EG + cos2 E" + cos2 EH = �G2 2 + �"2 2 + �H2 2 = 1 . 
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Figure 2-14: Coordinate System Rotation so the x-axis Aligns with the Wellbore (β) using Directional 

Cosines 

 

A three dimensional rotated coordinate system is given by a matrix O. In this method O is given 

by,  

 

O = OL(EL) ∙ OM�EM� ∙ ON(EN),     (2.28) 

 

with coordinate system rotations of the x, y and z-axis in the counterclockwise direction when 

looking towards the origins give the matrices, 

 

OL)EL+ = y1 0 00 cos EL sin EL0 − sin EL cos ELz	,       (2.29) 

 

OM�EM� = {cos EM 0 − sin EM0 1 0sin EM 0 cos EM |	,         (2.30) 
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ON)EN+ = y cos EN sin EN 0− sin EN cos EN 00 0 1z	.                                                           (2.31) 

 

After matrix multiplication we find 

 

O = { cos EM cos EN cos EM sinEN −sinEMcos EN sinEL sin EM − cosEL sinEN sinEL sin EM sinEN + cosEL cos EN cosEM sin ELcos EL cos EN sinEM + sin EL sinEN cosEL sinEM sin EN − cosEN sin EL cos EL cosEM|.      (2.32) 

 

This rotation method gives the permeability tensor with the following terms, 

5�� = 5L cos� EM cos� EN + 5M cos� EM sin� EN + 5N sin� EM,                                                     (2.33) 

 

5�� = 5L(cos EN sin EL sin EM − cos EL sin EN) cos EM cos EN + 5M(cos EL cos EN 

+sin EL sin EM sin EN) cos EM sin EN − 5N cos EM sin EL sin EM,                                     (2.34) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM) cos EM cos EN +5M(cos EL sin EM sin EN 

						− cos EN sin EL) ∗ cos EM sin EN − 5N cos EL cos EM sin EM,                                             (2.35)             

 

5�� = 5L(cos EN sin EL sin EM −cos EL sin EN) cos EM cos EN + 5M(cos EL cos EN 

						+ sin EL sin EM sin EN) ∗ cos EM sin EN − 5N sin EM cos EM sin EL,                                   (2.36)  

 

5�� = 5L(cos EL sin EL sin EN − cos EL sin EN)� + 5M(cosEL cos EN + sin EL sin EM sin EN)� 

				+5N cos� EM sin� EL,                                                                                                        (2.37) 
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5�� = 5L(sin EL sin EM + cos EL cos EN sin EM)(cos EN sin EL sin EM − cos EL sin EN) 

											+5M(−cos EN sin EL + cos EL sin EM sin EN)(cos EL cos EN + sin EL sin EM sin EN)  

+5N cos EL cos� EM sin EL                                                                                                (2.38) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM) cos EM cos EN + 5M(cos EL sin EM sin EN 

−cos EN sin EL) ∗ cos EM sin EN − 5N cos EL cos EM sin EM,                                            (2.39) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM)(cos EN sin EL sin EM − cos EL sin EN) 

											+5M(−cos EN sin EL + cos EL sin EM sin EN)(cos EL cos EN + sin EL sin EM sin EN) 

+5N cos EL cos� EM sin EL,                                                                                              (2.40) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM)� + 5M(cosEL sin EM sin EN − cos EN sin EL)�  

							+5N cos� EL cos� EM.                                                                                                       (2.41) 

 

For further derivation details, see Appendix A. 
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2.4.1.2. Angle Rotation About a Secondary Axis 

 

The two rotation method uses a rotation about the y-axis followed by a rotation about the z-

axis to align the x-axis of the principal permeability directions with the wellbore, β. This was 

performed using Euler's rotation theorem. See Appendix B for further details. 

 

 

Figure 2-15: Coordinate System Rotation so the x-axis Aligns with the Wellbore (β) using two Axis 

Rotations  

 

Figure 2-14 depicts the axis representing the principal permeability in the x, y and z direction. In 

order to align the x-axis with the wellbore, rotations about the y-axis and z-axis are performed. 

The mathematics for this method follows the same concept as the directional cosine method.   

 

A three dimensional rotated coordinate system is given by a matrix R. In this two rotation 

method R equals,  
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O = OM�EM� ∙ ON(EN)      (2.42) 

 

with coordinate system rotations of the y and z-axis in the counterclockwise direction when 

looking towards the origin, give the matrices 

 

OM�EM� = {cos EM 0 − sin EM0 1 0sin EM 0 cos EM |	,         (2.43) 

 

ON(EN) = y cos EN sin EN 0− sin EN cos EN 00 0 1z	.                                                            (2.44) 

 

After matrix multiplication, O equals, 

 

O = {cos E" cos EH cos E" sin EH −sin E"−sin EH cos EH 0cos EH sin E" sin EH sin E" cos E" |	.                                              (2.45) 

 

This rotation method give the permeability tensor with the following terms, 

 

5�� = 5L(cos EM cos EN)� + 5M(cos EM sin EN)� + 5N sin EM� ,                                                     (2.46) 

 

5�� = −5L cos EM cos EN sin EN + 5M cos EM cos EN sin EN ,                                                          (2.47) 

 

5�� = 5L cos EM cos EN� sin EM + 5M cos EM sin EM sin EN� − 5N cos EM sin EM ,                           (2.48) 
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5�� = −5L cos EM cos EN sin EN + 5M cos EM cos EN sin EN ,                                                          (2.49) 

 

5�� = 5L sin EN� + 5M cos EN� ,                                                                                                            (2.50) 

 

5�� = −5L cos EN sin EM sin EN + 5M cos EN sin EM sin EN ,                                                            (2.51) 

 

5�� = 5L cos EM cos EN� sin EM + 5M cos EM sin EM sin EN� − 5N cos EM sin EM ,                           (2.52) 

 

5�� = −5L cos EN sin EM sin EN + 5M cos EN sin EM sin EN ,                                                            (2.53) 

 

5�� = 5L(cos EN sin EM)� + 5M(sin EM sin EN)� + 5N cos EM� .                                                      (2.54) 

 

 

2.4.2. Mathematically Modeling the Permeability Tensor 

 

As we have discussed above, when permeability varies in different directions a tensor is 

required to describe the material's permeability.  

 

Two dimensional permeability tensor models have been used and tested with the cross terms 

in the matrix having non-zero terms (Leung 1986). Examples are shown with the X-Y local 
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coordinate axes of the reservoir set up such that they are aligned with the principal 

permeability axes of the reservoir, but are offset at an angle from the global x-y coordinate. 

This will be the basis for my three dimensional permeability tensor having rotation around the 

x, y & z axis. 
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Chapter 3  Mathematical Modeling 

 

Three different reservoir models, all having the same total volume, were used to test the 

effects of rotating the permeability tensor to align with the wellpath that is not parallel to 

either the x-, y- or z-axis. The first is using a single reservoir grid block, Figures 3-1 to 3-10. 

Second is a 5x5x5 (5 blocks in the x-direction, 5 blocks in the y-direction and 5 blocks in the z-

direction) reservoir, Figures 3-11 to 3-29. Finally is the 10x10x10 reservoir, which are 

represented in Figures 3-30 to 3-48. The grid blocks in all three reservoirs had different sizes 

that when combined equalled 50 x 50 x 50 ft
3
. The different number of blocks in each reservoir 

model will determine if increasing the grid refinement also increases the error in oil production 

rates between the full permeability tensor and the diagonal tensor cases. Ideally, we would use 

even more grid blocks. However, this turned out to be impracticable due to large CPU times, 

and the grid sizes chosen for this study do indeed reflect the grid size dependency correctly. 

Every simulation had a specific code wrote for it and was ran using Eclipse E300 on a computer 

with a Intel® Core™ i5-4570 CPU @ 3.20 GHz processor with 8.00 GB of RAM.  

 

The wellbore was rotated about the y-axis which would account for a downward slope in the 

well. The z-axis rotation was used when the well was not along the x-axis. The rotations used in 

the test simulations were counterclockwise rotations in the y-axis being 0°, 343° and 320°, and 

counterclockwise rotations in the z-axis of 0°, 22° and 45°. These rotations give the full range of 
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possible wellbore rotation. This can be seen in Figure 2-12 of the directional cosines section, 

2.4.1.1. 

 

The permeability of the reservoir simulation grid was 200 milliDarcy (mD) in the x- and y-

direction and 64 milliDarcy (mD) in the z-direction.  These values were taken as average values 

in the E-Segment of the Norne Field from publically available data (Statoil 2001). Also taken 

from (Statoil 2001) was the porosity in the reservoir simulation grid, 25%. 

 

Table 3-1 below is the simulation matrix followed to test the effects of rotating the permeability 

tensor. A total of 36 reservoir simulations were performed.  

 

The first rotated permeability tensor tests were performed on a single reservoir simulation 

block, with the x-, y- and z-direction all having a length of 50 feet. This size of block was not the 

same as used for the 5x5x5 reservoir (10 feet) and the 10x10x10 reservoir (5 feet).  

 

The oil production rate for each run were obtained, for both the full permeability tensor and 

the diagonal permeability tensor cases, from the use of the Eclipse E300 reservoir simulator. 

These results will be used for comparison to find differences between the rotated and base 

case.  
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Table 3-1: Reservoir Simulation Matrix 

 

Run Number of Blocks Rotation (Degrees) 

about y-axis

Rotation (Degrees) 

about z-axis

PERMX 

(mD)

PERMY 

(mD)

PERMZ 

(mD)

1 1 0 0 200 200 64

2 1 0 22 200 200 64

3 1 0 45 200 200 64

4 1 343 0 200 200 64

5 1 343 22 200 200 64

6 1 343 45 200 200 64

7 1 320 0 200 200 64

8 1 320 22 200 200 64

9 1 320 45 200 200 64

10 5x5x5 = 125 0 0 200 200 64

11 5x5x5 = 125 0 22 200 200 64

12 5x5x5 = 125 0 45 200 200 64

13 5x5x5 = 125 343 0 200 200 64

14 5x5x5 = 125 343 22 200 200 64

15 5x5x5 = 125 343 45 200 200 64

16 5x5x5 = 125 320 0 200 200 64

17 5x5x5 = 125 320 22 200 200 64

18 5x5x5 = 125 320 45 200 200 64

19 5x5x5 = 125 0 0 200 150 64

20 5x5x5 = 125 0 22 200 150 64

21 5x5x5 = 125 0 45 200 150 64

22 5x5x5 = 125 343 0 200 150 64

23 5x5x5 = 125 343 22 200 150 64

24 5x5x5 = 125 343 45 200 150 64

25 5x5x5 = 125 320 0 200 150 64

26 5x5x5 = 125 320 22 200 150 64

27 5x5x5 = 125 320 45 200 150 64

28 10x10x10= 1000 0 0 200 200 64

29 10x10x10= 1000 0 22 200 200 64

30 10x10x10= 1000 0 45 200 200 64

31 10x10x10= 1000 343 0 200 200 64

32 10x10x10= 1000 343 22 200 200 64

33 10x10x10= 1000 343 45 200 200 64

34 10x10x10= 1000 320 0 200 200 64

35 10x10x10= 1000 320 22 200 200 64

36 10x10x10= 1000 320 45 200 200 64
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3.1. Wellpath Modeling in Single Block Reservoir 

 

The wellpath in the simulator can penetrate the block straight through the center in either the 

x-, y-, or z-direction. The full length of the well is perforated. For the unrotated single block 

simulation, the well was in the x-direction, shown in Figure 3-1. This meant that when rotating 

the permeability tensor to align with the wellpath in Runs 1 to 9, the tensor was rotated from 

the x-axis. The results from Runs 1 to 9 were then compared to the results of the unrotated 

simulation.  

 

Prior to running the Eclipse simulations, Petrel was used to develop the actual wellpath used for 

simulation. The Petrel wellpath in the following figures show what the traditional reservoir 

simulation use for the wellpath. Comparing these to the rotated permeability tensor wellpath, 

also shown in the figures, indicate that there is a difference depending on which approach used 

in the reservoir simulation.  

 

 Figure 3-1: Petrel Wellpath for Single Block 
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Runs 1-9 had the rotated permeability tensor rotated to match the wellpaths displayed in 

Figures 3-2 to 3-10. Figure 3-1 shows zero rotation about the y- or z-axis. In the simulation 

code, for this case a full tensor was used while in the unrotated case a diagonal tensor was 

used. If the oil production results are identical it will prove there is no error in the simulator, as 

was discussed in Section 2.2. 

 

 

Figure 3-2: Mathematical Wellpath for Run 1 (0° about y-axis and 0° about z-axis;                                     

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figure 3-3: Mathematical Wellpath for Run 2 (0° about y-axis and 22° about z-axis;                                   

Kx = 200mD, Ky = 200mD and Kz = 64mD) 
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Figure 3-4: Mathematical Wellpath for Run 3 (0° about y-axis and 45° about z-axis;                                  

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

  

 

Figure 3-5: Mathematical Wellpath for Run 4 (343° about y-axis and 0° about z-axis;                                

Kx = 200mD, Ky = 200mD and Kz = 64mD) 
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Figure 3-6: Mathematical Wellpath for Run 5 (343° about y-axis and 22° about z-axis;                              

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

 

   

Figure 3-7: Mathematical Wellpath for Run 6 (343° about y-axis and 45° about z-axis;                              

Kx = 200mD, Ky = 200mD and Kz = 64mD) 
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Figure 3-8: Mathematical Wellpath for Run 7 (320° about y-axis and 0° about z-axis;                                

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

 

        

Figure 3-9: Mathematical Wellpath for Run 8 (320° about y-axis and 22° about z-axis;                              

Kx = 200mD, Ky = 200mD and Kz = 64mD)                   
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Figure 3-10: Mathematical Wellpath for Run 9 (320° about y-axis and 45° about z-axis;                            

Kx = 200mD, Ky = 200mD and Kz = 64mD) 
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3.2. Wellpath Modeling in 5x5x5 Block Reserovir 

 

For the 5x5x5 reservoir grid (Runs 10 to 27 in Table 3-1) there is not just one unrotated case 

used to compare the other 9 Runs. Instead, each Run (Figures 3-12 to 3-29) have their own 

unrotated case used for comparison. This happens because the well will follow a different path 

depending on the set of rotations used in the Run. For instance, the well path for Run 10's 

unrotated case penetrate blocks (1,3,3), (2,3,3), (3,3,3), (4,3,3) and (5,3,3), while Run 11's 

unrotated cases has the well going through (1,2,3), (2,3,3), (3,3,3), (4,3,3) and (5,4,3).  

 

Run 10's rotated and unrotated cases follow the exact path because the rotation about the y- 

and z-axis are both zero. A diagonal tensor was used in the unrotated code and a full tensor in 

the rotated code. This will indicate the size of the error made in the simulation when ignoring 

off diagonal elements, as discussed in section 2.2.   

 

Figures 3-12 to 3-29 show the mathematical representation of the wellpath after tensor 

rotation and the Petrel wellpath for Runs 10 - 18. In Petrel the wellpath only connects the 

center points of the blocks with wells. It does not show the direction the well is traveling in 

each block. The direction in each block should be straight through the center of the block and in 

the x-direction. This can be seen in the simulation code, Appendix C, under COMPDAT. 
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A Cartesian coordinate system is used to create the well path in the reservoir. For example, the 

position (2,3,4) would represent 2 blocks in the x-direction, 3 blocks in the y-direction and 4 

blocks in the z-direction. Figures 3-11 represents the reference grids for the 5x5x5 block 

reservoir. Each of these blocks are 10 feet in each direction, totalling the same volume as the 

single block reservoir. 

 

Figure 3-11: 5x5x5 Reservoir Reference Grid 

 

In the 5x5x5 block cases each Run had their own unrotated case to be compared to. In each 

case the well path would follow through a different set of blocks. For example, Run 10 

unrotated case, the well goes through blocks (1,3,3), (2,3,3), (3,3,3), (4,3,3) and (5,3,3), with the 

well travelling in the x-direction within each block. Run 11 unrotated case travels in blocks 

(1,2,3), (2,3,3), (3,3,3), (4,3,3) and (5,4,3), which is slightly different from Run 10 because the 

well is rotated 22 degrees about the z-axis.  
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Figure 3-12: Mathematical Wellpath for Run 10 (0° about y-axis and 0° about z-axis;                                

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

   

Figure 3-13: Petrel Wellpath for Run 10 (0° about y-axis and 0° about z-axis;                                                

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Run 10, Figure 3-12 and 3-13, shows a 0° rotation about both the y- and z-axis. Both the 

mathematical wellpath and the Petrel wellpath figures are very similar. The wellpath travelled 

in the reservoir simulation code is (1,3,3), (2,3,3), (3,3,3), (4,3,3) and (5,3,3). 
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Figure 3-14: Mathematical Wellpath for Run 11 (0° about y-axis and 22° about z-axis;                                

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

   

Figure 3-15: Petrel Wellpath for Run 11 (0° about y-axis and 22° about z-axis;                                              

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Figures 3-14 and 3-15 depict the mathematical and Petrel wellpaths for Run 11, respectively. 

The Petrel model shows an irregular wellpath compared to the mathematical model. In Petrel, 

the wellpath is represented by connecting the center point of each block which the wellpath 
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passes through. In the reservoir code created for this model the well travels in the x-direction 

within each cell and passes through cells (1,2,3), (2,3,3), (3,3,3), (4,3,3) and (5,4,3).  

  

Figure 3-16: Mathematical Wellpath for Run 12 (0° about y-axis and 45° about z-axis;                              

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

  

Figure 3-17: Petrel Wellpath for Run  12 (0° about y-axis and 45° about z-axis;                                            

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

The reservoir simulation code for Run 12 passes through blocks (1,1,3), (2,2,3), (3,3,3), (4,4,3) 

and (5,5,3), all in the x-direction. In the Petrel model the well starts at the center of block 
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(1,1,3) rather than at the edge. This is due to Petrel connecting center points to depict their 

wellpaths. 

 

Figure 3-18: Mathematical Wellpath for Run  13 (343° about y-axis and 0° about z-axis;                           

Kx = 200mD, Ky = 200mD and Kz = 64mD)   

 

 

Figure 3-19: Petrel Wellpath for Run 13 (343° about y-axis and 0° about z-axis;                                           

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

A jagged wellpath is noticed again in the Petrel model for Run 13. The simulation code wellpath 

for Run 13 is (1,3,2), (2,3,3), (3,3,3), (4,3,3) and (5,3,4). 
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Figure 3-20: Mathematical Wellpath for Run 14 (343° about y-axis and 22° about z-axis;                         

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

  

Figure 3-21: Petrel Wellpath for Run 14 (343° about y-axis and 22° about z-axis;                                         

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Figure 3-20 and 3-21 show both the mathematical and Petrel wellpaths for Run 14. Blocks 

(1,2,2), (2,3,3), (3,3,3), (4,3,3) and (5,4,4) were used in the reservoir coded to model the 

wellpath. 
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Figure 3-22: Mathematical Wellpath for Run 15 (343° about y-axis and 45° about z-axis;                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

   

 

     

Figure 3-23: Petrel Wellpath for Run 15 (343° about y-axis and 45° about z-axis;                                        

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

For Run 15 a jagged wellpath is noticed again in the Petrel model. The simulation code wellpath 

for Run 15 is (1,1,2), (2,2,3), (3,3,3), (4,4,3) and (5,5,4). 
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Figure 3-24: Mathematical Wellpath for Run 16 (320° about y-axis and 0° about z-axis;                             

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

  

Figure 3-25: Petrel Wellpath for Run 16 (320° about y-axis and 0° about z-axis;                                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

The reservoir simulation code for Run 16 passes through blocks (1,3,1), (2,3,2), (3,3,3), (4,3,4) 

and (5,3,5), all in the x-direction.  
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Figure 3-26: Mathematical Wellpath for Run 17 (320° about y-axis and 22° about z-axis;                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

       

Figure 3-27: Petrel Wellpath for Run 17 (320° about y-axis and 45° about z-axis;                                        

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Figures 3-26 and 3-27 are the mathematical wellpath and the Petrel wellpath, respectively, for 

Run 17. The blocks the wellpath passes through in the code are (1,2,1), (2,3,2), (3,3,3), (4,3,4) 

and (5,4,5). 
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Figure 3-28: Mathematical Wellpath for Run 18 (320° about y-axis and 45° about z-axis;                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

   

Figure 3-29: Petrel Wellpath for Run 18 (320° about y-axis and 45° about z-axis;                                        

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Finally, Figure 3-28 and 3-29 show the wellpaths for Run 18. In the reservoir code the wellpath 

passes through blocks (1,1,1), (2,2,2), (3,3,3), (4,4,4) and (5,5,5).  
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Runs 19 - 27 use the 5x5x5 blocks but have the permeability in the x- and y-direction not equal. 

The principal permeability in the x-direction is still equal to 200 mD, but the principal 

permeability in the y-direction is changed to 150 mD. This was done in order to see if having a 

different x and y permeability had an effect on the oil production difference. The wellpath for 

these Runs are the same as Runs 10-18. 
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3.3. Wellpath Modeling in 10x10x10 Block Reserovir 

 

Finally, the 10x10x10 reservoir will test the effects of rotating the permeability tensor. This 

number of reservoir simulation grid blocks has created a more complex well path to follow and 

is shown in the Figures 3-31 to 3-48.  

 

Once again a Cartesian coordinate system is used to create the well path. Figure 3-30 

demonstrates the coordinate system used in the 10x10x10 reservoir. The block sizes now are 5 

feet in each direction, totalling the same volume as the single block reservoir and the 5x5x5 

block reservoir. 

 

Figure 3-30: 10x10x10 Reservoir Reference Grid 
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Figure 3-31: Mathematical Wellpath for Run 28 (0° about y-axis and 0° about z-axis;                                

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figure 3-32: Petrel Wellpath for Run 28 (0° about y-axis and 0° about z-axis;                                               

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Run 28, Figured 3-31 and 3-32, shows a 0° rotation about both the y- and z-axis. Both the 

mathematical wellpath and the Petrel wellpath figures are very similar. The wellpath travelled 
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in the reservoir simulation code is (1,5,5), (2,5,5), (3,5,5), (4,5,5), (5,5,5), (6,5,5), (7,5,5), (8,5,5), 

(9,5,5) and (10,5,5). 

  

Figure 3-33: Mathematical Wellpath for Run 29 (0° about y-axis and 22° about z-axis;                              

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

  

 

Figure 3-34: Petrel Wellpath for Run 29 (0° about y-axis and 22° about z-axis;                                             

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

Figures 3-33 and 3-34 depict the mathematical and Petrel wellpaths for Run 29, respectively. 

The blocks the wells pass through are (1,3,5), (2,3,5), (3,4,5), (4,4,5), (5,4,5), (6,5,5), (7,5,5), 
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(8,5,5), (9,6,5) and (10,6,5). Similar to the 5x5x5 reservoir model, the Petrel model shows an 

irregular wellpath compared to the mathematical model.  

 

 

Figure 3-35: Mathematical Wellpath for Run 30 (0° about y-axis and 45° about z-axis;                               

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figure 3-36: Petrel Wellpath for Run 30 (0° about y-axis and 45° about z-axis;                                             

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

The reservoir simulation code for Run 30 passes through blocks (1,1,5), (2,2,5), (3,3,5), (4,4,5), 

(5,5,5) (6,6,5), (7,7,5), (8,8,5), (9,9,5) and (10,10,5) all in the x-direction. In the Petrel model, 
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again the well starts at the center of block (1,1,5) rather than at the edge. This is due to Petrel 

connecting center points to depict their wellpaths. 

  

    

Figure 3-37: Mathematical Wellpath for Run 31 (343° about y-axis and 0° about z-axis;                            

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figure 3-38: Petrel Wellpath for Run 31 (343° about y-axis and 0° about z-axis;                                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

A jagged wellpath is noticed again in the Petrel model for Run 31. The simulation code wellpath 

for Run 31 is (1,5,3), (2,5,3), (3,5,4), (4,5,4), (5,3,4), (6,5,5), (7,5,5), (8,5,5), (9,5,6) and (10,6,6). 
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Figure 3-39: Mathematical Wellpath for Run 32 (343° about y-axis and 22° about z-axis;                         

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figure 3-40: Petrel Wellpath for Run 32 (343° about y-axis and 22° about z-axis;                                        

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figure 3-39 and 3-40 show both the mathematical and Petrel wellpaths for Run 32. Blocks 

(1,3,3), (2,3,3), (3,4,4), (4,4,4), (5,4,4), (6,5,5), (7,5,5), (8,5,5), (9,6,6) and (10,6,6) were used in 

the reservoir coded to model the wellpath 
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Figure 3-41: Mathematical Wellpath for Run 33 (343° about y-axis and 45° about z-axis;                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

  

Figure 3-42: Petrel Wellpath for Run 33 (343° about y-axis and 45° about z-axis;                                        

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

For Run 33 an irregular wellpath is noticed again in the Petrel model. The simulation code 

wellpath for Run 33 is (1,1,3), (2,2,4), (3,3,4), (4,4,4), (5,5,4), (6,6,5), (7,7,5), (8,8,5), (9,9,6) and 

(10,10,6). 
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Figure 3-43: Mathematical Wellpath for Run 34 (320° about y-axis and 0° about z-axis;                            

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

 

   

Figure 3-44: Petrel Wellpath for Run 34 (320° about y-axis and 0° about z-axis;                                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

The reservoir simulation code for Run 34 passes through blocks (1,5,1), (2,5,2), (3,5,3), (4,5,4), 

(5,5,5), (6,5,6), (7,5,7), (8,5,8), (9,5,9) and (10,5,10), all in the x-direction.  
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Figure 3-45: Mathematical Wellpath for Run 35 (320° about y-axis and 22° about z-axis;                           

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

  

 

 Figure 3-46: Petrel Wellpath for Run 35 (320° about y-axis and 22° about z-axis;                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Figures 3-45 and 3-46 are the mathematical wellpath and the Petrel wellpath, respectively, for 

Run 35. The blocks the wellpath passes through in the code are (1,3,1), (2,3,2), (3,4,3), (4,4,4), 

(5,4,5), (6,5,6), (7,5,7), (8,5,8), (9,6,9) and (10,6,10). 
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Figure 3-47: Mathematical Wellpath for Run 36 (320° about y-axis and 45° about z-axis;                          

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

      

 

Figure 3-48: Petrel Wellpath for Run 36 (320° about y-axis and 45° about z-axis;                                        

Kx = 200mD, Ky = 200mD and Kz = 64mD) 

 

 

Finally, Figure 3-47 and 3-48 show the wellpaths for Run 36. In the reservoir code the wellpath 

passes through blocks (1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6), (7,7,7), (8,8,8), (9,9,9) and 

(10,10,10). 



76 

 

Once again in the 10x10x10 reservoir Runs (28-36), each Run had their own corresponding 

unrotated case. The wellpath's for this reservoir followed the same idea as the 5x5x5 reservoir. 

 

The reservoir code was created to Run in a compositional simulator, Eclipse 300. Sample codes 

for both an unrotated and rotated case are given for the one block, the 5x5x5 reservoir and the 

10x10x10 reservoir in the Appendix C. 

 

The only sections of the code that change are DIMENS, DXV, DYV, DZV, and TSTEP, depending 

on the reservoir size. The keywords PERMX, PERMY, PERMZ, PERMXY, PERMXZ, PERMYZ, 

WELLSPECS and COMPDAT change depending on the Run. PERMXY, PERMXZ, PERMYZ are not 

in the unrotated codes. All these keywords and definitions can be found in Appendix C.  

 

Values for the full tensor, PERMX, PERMY, PERMZ, PERMXY, PERMXZ and PERMYZ, were 

obtained through the tensor rotation calculation in Appendix A and B.  

 

3.4. Procedure for Calculating the Permeability Tensor 

 

The calculation for rotating the permeability tensor was placed in an Excel sheet for ease of 

calculation. The values in the Excel document, shown in Figure 3-49, that can be varied include 

the principal permeabilities (5L, 5M , 5N) and the angles of rotation for the x-, y- and z-axis. The 
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blue blocks are inputs for the principal permeabilities and the grey blocks are the angles of 

rotation. Depending on the values in these block, the permeability 5 matrix will change. 

 

 

Figure 3-49: Input Values in Excel Sheet include Kx, Ky and Kz (Blue Cells) and θx, θy and θz (Grey Cells) 

 

Once the input values are included the values for Kββ, Kβξ, Kβζ, Kξβ, Kξξ, Kξζ, Kζβ, Kζξ, Kζζ are 

output into a table and a matrix version in the excel sheet, Figure 2-50. These are the values 

that will make up the new rotated permeability tensor used in the reservoir simulation code. 

Figure 2-50 also shows the results when inputting the values used in Runs 9, 18 and 36 (320° 

about y-axis and 45° about z-axis; Kx=200mD, Ky=200mD and Kz=64mD). 

 

 

Figure 3-50: Tensor Rotation Results For Runs 9, 18 and 36 (320° about y-axis and 45° about z-axis; 

Kx=200mD, Ky=200mD and Kz=64mD) 

Degrees Radian Cos θ Sin θ

K1 = Kx = 200 θx = 0 0 1 0

K2 = Ky = 200 θy = 320 5.59 0.77 -0.64

K3 = Kz = 64 θz = 45 0.79 0.71 0.71

Kββ = 144 Kββ Kβξ Kβζ 144 0 -67

Kβξ = 0 K = Kξβ Kξξ Kξζ = 0 200 0

Kβζ = -67 Kζβ Kζξ Kζζ -67 0 120

Kξβ = 0

Kξξ = 200

Kξζ = 0

Kζβ = -67

Kζξ = 0

Kζζ = 120
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The results from the tensor rotation show Kβξ = Kξβ, Kβζ = Kζβ, and Kξζ = Kζξ. This indicates that 

the tensor rotation is performed correctly. The matrix test also confirms that the calculation is 

performed without error. The theory behind the matrix test was discussed in Section 2.4.1, 

Tensor Rotation. Table 3-2 is the matrix test that was included into the excel sheet to verify the 

calculations (Malvern 1969). 

 

 Table 3-2: Invariance Test Using Equations 2.18 5�� + 5�� + 5��                                                                           = 464 5� + 5� + 5�               = 464 

5��5�� + 5��5�� + 5��5�� − 5��� − 5��� − 5���                   = 65600 5�5� + 5�5� + 5�5� = 65600 

5��5��5�� + 25��5��5�� − 5��5��� − 5��5��� − 5��5���  = 2.5x10^6 5�5�5�                     = 2.5x10^6 

 

 

The permeability values used in Table 3-2 were from both the permeability matrix after rotation 

and the principal permeability values. The permeability values from the matrix after rotation 

include 5�� = 144 mD,   5��  = 200 mD, 5�� = 120 mD, 5�� =0 mD, 5�� = -67mD, and 5��  = 0 mD. 

The terms K1, K2 and K3 are the principal permeability values for directions x, y and z, 

respectively. The principal permeability values used in Runs 9, 18 and 36 are 5� = 5� =
200 mD and 5� = 64 mD. Invariance testing, Table 3-2, confirms that the rotation was 

performed correctly.  

 

The following tables show the results for all combination of tensor rotations and for both 

reservoirs permeability types.  
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Table 3-3: Tensor Rotation Results for Runs 1 to 18 and 28 to 36 

 

 

 

Table 3-4: Tensor Rotation Results for Runs 19 to 27 

 

 

 

 

Runs Rotation 

(Degrees) 

about y-axis

Rotation 

(Degrees) 

about z-axis

PERMX 

(mD)

PERMY 

(mD)

PERMZ 

(mD)

PERMXY 

(mD)

PERMYZ 

(mD)

PERMZX 

(mD)

1, 10, 28 0 0 200 200 64 0 0 0

2, 11, 29 0 22 200 200 64 0 0 0

3, 12, 30 0 45 200 200 64 0 0 0

4, 13, 31 343 0 188 200 76 0 0 -38

5, 14, 32 343 22 188 200 76 0 0 -38

6, 15, 33 343 45 188 200 76 0 0 -38

7, 16, 34 320 0 144 200 120 0 0 -67

8, 17, 35 320 22 144 200 120 0 0 -67

9, 18, 36 320 45 144 200 120 0 0 -67

Runs Rotation 

(Degrees) 

about y-axis

Rotation 

(Degrees) 

about z-axis

PERMX 

(mD)

PERMY 

(mD)

PERMZ 

(mD)

PERMXY 

(mD)

PERMYZ 

(mD)

PERMZX 

(mD)

19 0 0 200 150 64 0 0 0

20 0 22 193 157 64 -17 0 0

21 0 45 175 175 64 -25 0 0

22 343 0 188 150 76 0 0 -38

23 343 22 182 157 75 -16 5 -36

24 343 45 166 175 73 -24 7 -31

25 320 0 144 150 120 0 0 -67

26 320 22 140 157 117 -13 11 -64

27 320 45 129 175 110 -19 16 -55
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Chapter 4  Results and Discussion 

 

The oil production simulation results for the single block reservoir, 5x5x5 block reservoir and 

the 10x10x10 block reservoir at the various well rotations are presented and discussed in his 

chapter. The different reservoir grid refinements will determine if increasing the number of 

blocks also increases the difference in oil production rate between cases. The rotations of the 

wellbore used, as previously discussed, give the full range of possible rotation. The well 

production schedule was identical for all cases, with a maximum production rate of 250 

STB/day. The bottom hole pressure for the wells were given the Eclipse default value of 14.7 

psia and the initial reservoir pressure was 10,000 psia. 

 

Included in the 5x5x5 reservoir result section is a test performed to examine cases where 

permeability in the x- and y-direction are not equal. The x-permeability stays the same at 200 

mD, but the y-permeability changes to 150 mD.  

 

4.1. Single Block Reservoir Runs 

 

Runs 1-36, Table 4-1, had a rotated permeability simulation and were compared to their 

corresponding unrotated permeability simulation. This comparison will show the difference in 
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oil production rate between using conventional simulator (unrotated, which do not account for 

the actual well trajectory) and the method of rotating the permeability tensor.   

The simulation results for Runs 1-9, single block with 200 mD, 200 mD, and 64 mD in the x-, y- 

and z-direction, are show in Table 4-1. All production rates shown are in STB/Day. Runs 1-3 (0° 

about y-axis and varying degrees about z-axis), 4-5 (343° about y-axis and varying degrees 

about z-axis) and 6-9 (320° about y-axis and varying degrees about z-axis) produced identical oil 

production rates and therefore can be grouped together for discussion. This means that the 

rotation about the z-axis, the only variable that is different within the groups, had no effect on 

the oil production. The reason for this is that the permeability in the x- and y-direction are both 

200 mD, meaning the entire x-y plane is 200 mD in all directions, and any rotation about the z-

axis has no affect on the x and y permeability.   

 

Since Run 1 (0° about the y-axis and 0° about the z-axis) matches the results from the unrotated 

case, it proves there is no error in the simulator when it comes to comparing the results from 

the full tensor and the diagonal tensor when the x-y plane is isotropic. 

 

Table 4-1: Oil Production Rates (STB/DAY) for Runs #1-9 (single block, varying degrees about the y-axis 

and z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

Time (Days) Unrotated Run #1 Run #2 Run #3 Run #4 Run #5 Run #6 Run #7 Run #8 Run #9

1 250 250 250 250 250 250 250 250 250 250

2 250 250 250 250 250 250 250 250 250 250

3 208 208 208 208 220 220 220 231 231 231

4 27.9 27.9 27.9 27.9 29.0 29.0 29.0 30.2 30.2 30.2

5 18.3 18.3 18.3 18.3 18.7 18.7 18.7 19.1 19.1 19.1

6 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0

7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7
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Each Run in the single block cases were compared to the same unrotated case. The unrotated  

case is where the single block has the horizontal well running horizontally through the center of 

the block in the x-direction.  

 

Table 4-2, Figure 4-1 and Figure 4-2 shows the grouped simulation results. Figure 4-1 show the 

grouped production rates for Runs 1 to 9. The oil production percent difference from the 

unrotated case and group rotated tensor cases are shown in Table 4-2 and graphically in Figure 

4-2. Runs 1-3 (single block, 0° about the y-axis and varying degrees about the z-axis) have no 

rotation about the y-axis and yield identical production data as the unrotated case, therefore 

Runs 1-3 were grouped with the unrotated case and are identified as the blue blocks in the 

table. Runs 4-6 (single block, 343° about the y-axis and varying degrees about the z-axis) show a 

slight difference in production data from the unrotated case. Finally Runs 7-9 (single block, 320° 

about the y-axis and varying degrees about the z-axis) show a considerable difference in 

production data from the unrotated case, due to the irregular well path. 

 

The unrotated case, which used the diagonal tensor in the simulation, had identical oil 

production results as the full tensor Runs 1-3 (single block, 0° about the y-axis and varying 

degrees about the z-axis). Table 4-1 shows that after the tensor rotation, the tensor for Runs 1-

3 were the same. This group had the smallest production rate at the first time step after 

production started to decline from the maximum permitted. Runs 4-6 had the second highest 

production rate at the first time step of the decline and Runs 7-9 had the lowest production 
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rate. This reveals that as the permeability tensor is rotated at greater degrees from the 

principal permeability directions the higher the production rate becomes. 

 

 

Figure 4-1: Oil Production Rates Combining Runs with Identical Results (Unrotated with Runs 1-3, Runs 

4-6 & Runs 7-9) 

 

The unrotated tensor simulation is considered the way conventional simulators would 

represent Runs 1-9 in a single block case. Therefore a percent difference between the 

unrotated simulation and Runs 1-9 is useful in describing the results. A percentage difference of 

the oil production rate between the unrotated case and the three groups are shown in Figure 4-

2 and Table 4-2.  
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Table 4-2: Oil Production Percentage Difference from Unrotated Case and Grouped Rotated Tensor 

Cases (Runs 1-3, Runs 4-6 & Runs 7-9) 

 

 

 

Figure 4-2: Graph of Oil Production Percentage Difference for Unrotated Case and Grouped Rotated 

Tensor Cases (Runs 1-3, Runs 4-6 & Runs 7-9) 
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The results show zero percent difference between Runs 1-3 and the unrotated case. The 

unrotated case has identical production rate results as Runs 1-3, therefore zero production 

difference in the figure.   

Runs 4-6 (red in the figure) had a production rate 5% higher than the unrotated case at the first 

time step of production decline (3 days). As the production continued, Runs 4-6 gradually 

declined until it started producing at the same rate as the unrotated case. Similar results can be 

seen when comparing Runs 7-9 (green in the figures) to the unrotated case, but with a more 

drastic effect.  

Table 4-2 shows that the overall oil production rate for each simulation drops fast within the 

first few time steps. The unrotated production rate starts at 250 STB/day and drops to 9.7 

STB/day in 7 days. Production rate comparison in the higher time steps are comparing lower oil 

production rate. These low rates can be accounted for from the size of the reservoir simulation 

grid used. For all the cases the reservoir is only 50 feet x 50 feet x 50 feet, 125,000 ft
3
.  

The single block simulations show that rotations about the z-axis had no effect on oil 

production. As the rotation about the y-axis increased so did the difference in production rates 

between the rotated and unrotated cases. 

 

 

 

 



86 

 

4.2. 5x5x5 Block Reservoir Runs 

 

The next set of simulations were performed on a 5x5x5 reservoir grid.  Each block in this 

reservoir is smaller than the single block reservoir, but when combined equal the same total 

volume as the single block reservoir. This increased number of reservoir grid blocks will indicate 

the effect of increasing the number of blocks on the oil production difference.  

Once again it was noticed that the rotation about the z-axis had little to no effect on 

production. Runs 10-12 (zero rotation about the y-axis and changing z-axis rotation) showed 

that the z-axis rotation had zero effect on oil production difference between the unrotated and 

rotated cases for each Run. The table below shows the results for Runs 10-12 (0° rotation about 

the y-axis and changing rotation about the z-axis). 

 

Table 4-3: Oil Production and Percent Difference Results for Runs 10-12 (5x5x5 Reservoir, 0° rotation 

about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

Time 

(Days)

Run #10 

Unrotated 

(STB/Day)

Run #10 

Rotated 

(STB/Day)

Run #10  

Percent 

Difference

Run #11 

Unrotated 

(STB/Day)

Run #11 

Rotated 

(STB/Day)

Run #11 

Percent 

Difference

Run #12 

Unrotated 

(STB/Day)

Run #12 

Rotated 

(STB/Day)

Run #12 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 22.2 22.2 0 23.1 23.1 0 22.6 22.6 0

5 17.4 17.4 0 17.8 17.8 0 17.4 17.4 0

6 13.8 13.8 0 13.9 13.9 0 13.7 13.7 0

7 10.9 10.9 0 11.0 11.0 0 10.8 10.8 0

0° about y-axis, 0° about z-axis 0° about y-axis, 22° about z-axis 0° about y-axis, 45° about z-axis
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Runs 13-15 (343° rotation about y-axis and changing z-axis rotation) shows nearly identical 

results when compared to the difference between each Runs unrotated case. In the percentage 

difference column, below in the table, we see that the Runs 13 (0° rotation about the y-axis and 

0° about the z-axis), 14 (0° about the y-axis and 22° about the z-axis) and 15 (0° about the y-axis 

and 45° about the z-axis) have a very similar percentage difference when production starts to 

drop off. With the slight difference in production coming from the wells following different 

paths and having different lengths in each simulation, see Figures 3-12 to 3-29.  

 

Table 4-4: Oil Production and Percent Difference Results for Runs 13-15 (5x5x5 Reservoir, 343° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

Finally, Runs 16-18 (320 degree rotation about the y-axis and changing z-axis rotation) shows a 

larger difference in unrotated and rotated production values then was observe in Runs 13-15. It 

shows a similar pattern, with a greater difference as production drops towards zero. In Runs 13-

15, table above, the difference reached 8.2% difference as production dropped, while the 

results for Runs 16-18 shows the production difference reach 15.2% as production drops.  

Time 

(Days)

Run #13 

Unrotated 

(STB/Day)

Run #13 

Rotated 

(STB/Day)

Run #13 

Percent 

Difference

Run #14 

Unrotated 

(STB/Day)

Run #14 

Rotated 

(STB/Day)

Run #14 

Percent 

Difference

Run #15 

Unrotated 

(STB/Day)

Run #15 

Rotated 

(STB/Day)

Run #15 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 24.9 26.3 5.3 24.9 26.5 6.0 24.3 26.5 8.2

5 19.1 19.9 3.9 19.1 19.9 4.3 18.6 19.7 5.7

6 14.5 14.8 2.2 14.4 14.8 2.7 14.3 14.8 3.3

7 11.1 11.3 1.2 11.1 11.3 1.4 11.0 11.2 1.7

343° about y-axis, 0° about z-axis 343° about y-axis, 22° about z-axis 343° about y-axis, 45° about z-axis
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The higher difference in production in Runs 16-18 reveals that the rotation about the y-axis has 

a larger effect on the production difference between the rotated and unrotated cases. The final 

time step in Run 18 has a percent difference of 15.2%. 

 

Table 4-5: Oil Production and Percent Difference Results for Runs 16-18 (5x5x5 Reservoir, 320° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

Figure 4-3 illustrates the production rate differences for Runs 10-18 (5x5x5 block reservoir, 

changing rotation about the y- and z-axis, Kx=200mD, Ky=200mD and Kz=64mD). It shows the 

change in z-axis rotation has little effect on the oil production rate and the y-axis rotation 

having a large effect on oil production rate. The main reason for the little effect caused by the 

z-axis rotation is the permeability in the x- and y-direction equal. When the tensor is only 

rotated on the x-y plane, rotation about the z-axis, the x-y plane is isotropic and therefore the 

rotation has no effect. 

 

Time 

(Days)

Run #16      

Unrotated 

(STB/Day)

Run #16 

Rotated 

(STB/Day)

Run #16 

Percent 

Difference

Run #17 

Unrotated 

(STB/Day)

Run #17 

Rotated 

(STB/Day)

Run #17 

Percent 

Difference

Run #18 

Unrotated 

(STB/Day)

Run #18 

Rotated 

(STB/Day)

Run #18 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 26.6 30.6 13.2 26.2 30.5 14.1 25.1 29.6 15.2

5 20.0 21.8 8.0 20.1 21.9 8.3 19.1 21.2 9.8

6 14.8 15.4 3.7 14.9 15.5 4.1 14.5 15.3 5.1

7 11.2 11.3 1.3 11.2 11.4 1.6 11.1 11.4 2.1

320° about y-axis, 0° about z-axis 320° about y-axis, 22° about z-axis 320° about y-axis, 45° about z-axis
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Figure 4-3 Oil Production Rate Percent Difference for Runs 10-18 (5x5x5 block reservoir, changing 

rotation about the y- & z-axis, Kx=200mD, Ky=200mD and Kz=64mD)  

 

The next set of simulation tests were performed on the same 5x5x5 reservoir as Runs 10-18, 

except the permeability in the y-direction was changed to 150 mD. This was done to see the 

effect of the z-axis rotation when permeability in the x- and y-direction were not equal.  

 

Table 4-6 shows the simulation results for Runs 19-20 (0° rotation about the y-axis and a 

changing rotation about the z-axis). In this set of simulations the rotation about the z-axis does 

have an effect on the oil production rate. In the previous set of simulations, Runs 10-18, there 

was no effect. Runs 20 and 21 (0° rotation about the y-axis and a changing rotation about the z-

axis) in Table 4-6 show that rotation about the z-axis now effects the production rate. 
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Runs 10-12

Runs 13-15
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Previously when the x- and y-permeability were both 200 mD there was no production 

difference when there was a rotation about the z-axis. 

 

Once again the first Run, zero rotation about both the y-axis and z-axis, has identical oil 

production results. This shows there is no significant difference in comparing results from the 

diagonal tensor and full tensor.  

 

Table 4-6: Oil Production and Percent Difference Results for Runs 19-21 (5x5x5 Reservoir, 0° rotation 

about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=150mD and Kz=64mD) 

 

 

The next set of production results, Runs 22-24 (343° rotation about the y-axis and changing 

rotation about the z-axis), are shown in Table 4-7. The results are similar to Runs 13-15, Table 4-

4, with Runs 22-24 having larger differences in oil production rates compared to the unroated 

tensor case. These results show that the rotation about the z-axis is now affecting the oil 

production rate. 

 

Time 

(Days)

Run #19      

Unrotated 

(STB/Day)

Run #19 

Rotated 

(STB/Day)

Run #19 

Percent 

Difference

Run #20 

Unrotated 

(STB/Day)

Run #20 

Rotated 

(STB/Day)

Run #20 

Percent 

Difference

Run #21 

Unrotated 

(STB/Day)

Run #21 

Rotated 

(STB/Day)

Run #21 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 20.1 20.1 0 20.8 21.2 1.7 20.6 21.2 2.6

5 16.1 16.1 0 16.6 16.8 1.3 16.5 16.8 1.8

6 13.1 13.1 0 13.3 13.4 0.5 13.3 13.5 0.8

7 10.7 10.7 0 10.8 10.8 0.2 10.7 10.7 0.4

0° about y-axis, 0° about z-axis 0° about y-axis, 22° about z-axis 0° about y-axis, 45° about z-axis
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Table 4-7: Oil Production and Percent Difference Results for Runs 22-24 (5x5x5 Reservoir, 343° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=150mD and Kz=64mD) 

 

 

The final set of simulations performed on the 5x5x5 reservoir are Runs 25-27 (320° rotation 

about the y-axis and changing rotation about the z-axis), with Table 4-8 below show the results. 

 

Table 4-8: Oil Production and Percent Difference Results for Runs 25-27 (5x5x5 Reservoir, 320° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=150mD and Kz=64mD) 

 

 

Similar results as Runs 10-18 are observed for Runs 19-27, with the z-axis rotation now having 

more of an effect on production because the x and y principal permeabilities are not equal. 

Runs 10-12, in Figure 4-3, and Runs 19-21, in Figure 4-4, both have 0° rotation about the y-axis 

Time 

(Days)

Run #22      

Unrotated 

(STB/Day)

Run #22 

Rotated 

(STB/Day)

Run #22 

Percent 

Difference

Run #23 

Unrotated 

(STB/Day)

Run #23 

Rotated 

(STB/Day)

Run #23 

Percent 

Difference

Run #24 

Unrotated 

(STB/Day)

Run #24 

Rotated 

(STB/Day)

Run #24 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 22.4 23.5 4.8 22.1 23.7 6.4 22.1 24.1 8.3

5 17.5 18.2 3.4 17.9 18.9 5.3 17.6 18.7 6.0

6 13.9 14.3 2.6 13.9 14.4 3.3 13.8 14.3 3.7

7 11.0 11.1 1.4 11.0 11.1 1.5 10.9 11.1 2.0

343° about y-axis, 0° about z-axis 343° about y-axis, 22° about z-axis 343° about y-axis, 45° about z-axis

Time 

(Days)

Run #25      

Unrotated 

(STB/Day)

Run #25 

Rotated 

(STB/Day)

Run #25 

Percent 

Difference

Run #26 

Unrotated 

(STB/Day)

Run #26 

Rotated 

(STB/Day)

Run #26 

Percent 

Difference

Run #27 

Unrotated 

(STB/Day)

Run #27 

Rotated 

(STB/Day)

Run #27 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 23.6 27.4 13.7 23.9 28.2 15.2 22.2 27.0 17.8

5 18.7 20.4 8.2 18.7 20.8 9.8 17.8 20.0 10.7

6 14.3 15.0 4.8 14.3 15.1 5.1 13.9 14.9 6.5

7 11.1 11.3 2.1 11.1 11.3 2.0 10.9 11.3 3.3

320° about y-axis, 0° about z-axis 320° about y-axis, 22° about z-axis 320° about y-axis, 45° about z-axis
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and varying rotation about the z-axis, with the only difference being the principal permeability 

in the x and y direction are equal in Runs 10-12 and not equal in Runs 19-21. From the figures it 

is observed that when the x and y permeabilities are not equal and there is a rotation about the 

z-axis, it causes there to be a difference in the percent difference in the oil production between 

the unrotated and rotated tensor cases. 

 

Figure 4-4 illustrates the percent difference results for Runs 19-27. The figure shows that all 

rotated tensor cases produced at a higher rate than their unrotated case when production rate 

started to decline. At steps 1 to 3 days all cases were producing at their maximum oil 

production rate, 250 STB/day. Once the production rate started to decline (time step 4) the 

differences in oil production rates were noticed. 
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Figure 4-4: Oil Production Rate Percent Difference for Runs 19-27 (5x5x5 block reservoir, changing 

rotation about the y- & z-axis, Kx=200mD, Ky=150mD and Kz=64mD) 

 

Results in Figures 4-3 and 4-4 prove that having the permeability in the x- and y-direction not 

equal effects the production rate difference. At the point in the 5x5x5 reservoir simulation 

where the production rate starts to decline (4 days) we notice a percent difference at the first 

step in the production rate decline. 
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4.3. 10x10x10 Block Reservoir Runs 

 

Simulations for Runs 28-36 (changing rotation about the y- & z-axis, Kx=200mD, Ky=200mD and 

Kz=64mD) were performed on a 10x10x10 block reservoir grid. The larger simulation grid will 

show if grid scaling has an effect on percent difference between the rotated and unrotated 

permeability tensor. Runs 10-18 and Runs 28-36 have identical principal permeability values 

and followed the same set of tensor rotations. Comparing the results for Runs 28-36 to the 

results found in Runs 10-18 will show if more reservoir blocks increases the production rate 

difference between the rotated and unrotated tensor cases.  

 

The first set of simulation for the 10x10x10 reservoir, Runs 28-30, yields the same result as Runs 

10-12 of the 5x5x5 reservoir, which was zero percent difference between the unrotated and 

rotated cases.  

 

Table 4-9: Oil Production and Percent Difference Results for Runs 28-30 (10x10x10 Reservoir, 0° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

Time 

(Days)

Run #28     

Unrotated 

(STB/Day)

Run #28 

Rotated 

(STB/Day)

Run #28 

Percent 

Difference

Run #29 

Unrotated 

(STB/Day)

Run #29 

Rotated 

(STB/Day)

Run #29 

Percent 

Difference

Run #30 

Unrotated 

(STB/Day)

Run #30 

Rotated 

(STB/Day)

Run #30 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 23.8 23.8 0 23.7 23.7 0 25.3 25.3 0

5 19.1 19.1 0 18.9 18.9 0 19.3 19.3 0

6 15.0 15.0 0 15.0 15.0 0 15.0 15.0 0

7 11.9 11.9 0 12.0 12.0 0 12.0 12.0 0

0° about y-axis, 0° about z-axis 0° about y-axis, 22° about z-axis 0° about y-axis, 45° about z-axis
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The simulation results for Runs 31-33 are shown in Table 4-10. The rotations for these Runs are 

the same as Runs 13-15 in the 5x5x5 block simulations. The difference in oil production rates 

for Runs 31-33 are similar to results in Runs 13-15 (5x5x5 block reservoir), with the percent 

difference being greater in Runs 31-33 (10x10x10 block reservoir).  

 

Table 4-10: Oil Production and Percent Difference Results for Runs 31-33 (10x10x10 Reservoir, 343° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

Once again we see a similar result in Run 34-36 (320° rotation about the y-axis and changing 

rotation about the z-axis), Table 4-11, as was seen in the corresponding rotations in the 5x5x5 

reservoir, Runs 16-18. Both sets of simulation results showed the largest percent difference 

between the unrotated and rotated cases when the y-axis rotation was 320°. With the highest 

difference in oil production rate coming when the permeability tensor is rotated 320° about the 

y-axis and 45° about the z-axis. 

 

 

Time 

(Days)

Run #31      

Unrotated 

(STB/Day)

Run #31 

Rotated 

(STB/Day)

Run #31 

Percent 

Difference

Run #32 

Unrotated 

(STB/Day)

Run #32 

Rotated 

(STB/Day)

Run #32 

Percent 

Difference

Run #33 

Unrotated 

(STB/Day)

Run #33 

Rotated 

(STB/Day)

Run #33 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 25.8 27.8 7.3 25.2 27.7 9.0 25.9 29.0 10.7

5 19.6 20.5 4.6 19.6 20.9 5.9 19.8 21.3 7.0

6 15.2 15.6 2.8 15.2 15.7 3.2 15.3 15.9 3.3

7 12.0 12.2 1.3 11.9 12.2 2.1 11.9 12.2 2.3

343° about y-axis, 0° about z-axis 343° about y-axis, 22° about z-axis 343° about y-axis, 45° about z-axis
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Table 4-11: Oil Production and Percent Difference Results for Runs 34-36 (10x10x10 Reservoir, 320° 

rotation about the y-axis and changing rotation about the z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

The percent difference results for Runs 28-36 (10x10x10 block reservoir, changing rotation 

about the y- & z-axis, Kx=200mD, Ky=150mD and Kz=64mD) are shown in Figure 4-5.  The results 

show a similar graph as Runs 10-18, Figure 4-4. That is, Runs 28-30 (0° about the y-axis and 

varying degrees about the z-axis) have a zero percent difference in oil production rate between 

the unrotated and rotated tensor. Runs 31-33 (343° about the y-axis and varying degrees about 

the z-axis) show an increase in oil production difference as the days increase. Finally Runs 34-36 

(320° about the y-axis and varying degrees about the z-axis) show the largest difference in oil 

production rate, reaching 20.7% in Run 36.  

 

 

Time 

(Days)

Run #34      

Unrotated 

(STB/Day)

Run #34 

Rotated 

(STB/Day)

Run #34 

Percent 

Difference

Run #35 

Unrotated 

(STB/Day)

Run #35 

Rotated 

(STB/Day)

Run #35 

Percent 

Difference

Run #36 

Unrotated 

(STB/Day)

Run #36 

Rotated 

(STB/Day)

Run #36 

Percent 

Difference

1 250 250 0 250 250 0 250 250 0

2 250 250 0 250 250 0 250 250 0

3 249 249 0 249 249 0 249 249 0

4 29.6 34.9 15.3 29.7 35.9 17.3 28.2 35.6 20.7

5 22.1 24.1 8.2 21.8 24.4 10.8 21.2 24.1 12.2

6 16.0 16.8 4.5 15.9 16.7 4.8 15.9 16.8 5.0

7 12.1 12.4 2.5 12.0 12.4 2.9 12.1 12.5 3.6

320° about y-axis, 0° about z-axis 320° about y-axis, 22° about z-axis 320° about y-axis, 45° about z-axis
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Figure 4-5: Oil Production Rate Percent Difference for Runs 28-36 (10x10x10 block reservoir, changing 

rotation about the y- & z-axis, Kx=200mD, Ky=200mD and Kz=64mD) 

 

 

Runs 28-36 also have negative percent differences in oil production when the oil production 

rates start to drop from their maximum allowed rate, the rotated tensor first produces more 

than the unrotated. As production rates continue to decrease the percent difference between 

the rotated  and unrotated cases increases, in Runs with a rotation about the y-axis. 

 

It was noticed once again that as the number of reservoir grid blocks increased, the difference 

oil production has also increased. In the final step of Run 36 the percent difference is 20.7%. 
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When comparing the results from the single block case, the 5x5x5 block reservoir and the 

10x10x10 block reservoir we see that increasing the grid refinement of the reservoir simulation 

grid slightly increases the percent difference between the rotated and unrotated cases. 
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Chapter 5  Conclusion and Recommendations 

 

A total of 64 reservoir simulations (10 for the single block, 36 for the 5x5x5 block reservoir and 

18 for the 10x10x10 block reservoir) were performed to obtain the results needed for this 

research. These results show that the way conventional reservoir simulator create the wellpath 

and the rotated permeability tensor to align with the actual wellpath method gives different oil 

production rate results. 

 

5.1. Conclusion 

 

Simulation results from comparing the oil production rates of the unrotated tensor (traditional 

reservoir simulator) to the rotated tensor (aligning the permeability tensor with the actual well 

path) demonstrate a difference in oil production rates depending if the rotation is done about 

the y- or z-axis. It was found that the rotation about the z-axis had no effect on the oil 

production difference when both the x and y principal permeability are equal and there is no 

rotation about the y-axis. As the y-axis rotation increased from 0° to 343° to 320° 

(counterclockwise), the percent difference between the rotated and unrotated simulations also 

increased. 
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The single block reservoir simulations, Runs 1-9 (single block, changing rotation about the y- & 

z-axis, Kx=200mD, Ky=200mD and Kz=64mD), had the unrotated tensor case producing at a 

higher production rate than the rotated cases when rates dropped from the maximum oil 

production rate. 

 

In the 5x5x5 block reservoir, oil production rate differences increased as the rotation about the 

y-axis increased. There was a zero percent difference when the rotation about the y-axis was 

zero. When the rotation about the y-axis increased so did the oil production difference. 

 

Tests were performed on the 5x5x5 block reservoir to determine the effect on oil production 

rates when the principal permeability in the x- and y-direction were not equal, Runs 19-27 

(5x5x5 block reservoir, changing rotation about the y- & z-axis, Kx=200mD, Ky=150mD and 

Kz=64mD). It was found that rotation about the y-axis and the z-axis both had an effect on oil 

production rates.  With the largest oil production difference occurring in Run 26 (320° about 

the y-axis and 22° about the z-axis). 

 

As the number of reservoir grid blocks increased, so did the maximum oil production percent 

difference. In the 5x5x5 block reservoir (Runs 10-18), five blocks within the reservoir had 

production wells penetrating them. While in the 10x10x10 block reservoir (Runs 28-36) there 

was 10 blocks having wells. The more blocks used in the simulation the greater the difference in 

oil production rate becomes. In both the 5x5x5 block reservoir and the 10x10x10 block 
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reservoir, the oil production difference was zero when the rotation about the y-axis was zero. 

When the rotation about the y-axis was 343° the 5x5x5 block reservoir had an oil production 

difference of 8.2%, while the 10x10x10 block reservoir reached a 10.7% oil production 

difference. In the 320° rotation about the y-axis cases the 5x5x5 block reservoir had a 15.7% oil 

production difference and the 10x10x10 block reservoir had the highest oil production 

difference of all simulations, 20.7%. This indicates that increasing the grid refinement also 

increased the difference in production rate. 

  

These results show there are large differences in production rates depending on which tensor 

approach used. The permeability tensor rotation to align with the well trajectory may prove to 

be more accurate in predict reservoir production rates. This would be extremely valuable to oil 

and gas reservoir operators in predicting future production rates.  

 

5.2. Recommendations 

 

The results show that the wellpath in traditional reservoir simulators are producing at a rate 

that may not be emulating true reservoir production. More accurate production rates may 

come from rotating the permeability tensor to align the tensor parallel to the well trajectories.   

 

Further variations using the full tensorial permeability aligning with the well trajectory should 

be performed, such as using a greater number of grid blocks and different well trajectories. The 



102 

 

cause for these oil production rate differences may be better understood with further reservoir 

simulations using full tensorial permeability and interpreting the well lengths used in the 

simulation. 

 

Also, a cost based analysis on computational time between the traditional reservoir simulation 

approach and the full tensorial permeability aligning with the well trajectory should be 

performed.  

 

Finally, research using this technique in a full field applications need to be performed. The more 

accurate tensor approach would be found by comparing the reservoir simulation results of the 

full permeability tensor and the diagonal permeability tensor to the actual field production 

data. If the full tensorial simulation is demonstrated to be the more accurate way for reservoir 

simulation it will be beneficial in the oil and gas industry when making large capital decision, to 

estimate reserves, and to diagnose and improve the performance of producing reservoirs. 
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Appendix A. Tensor Rotation Using Directional Cosines Method 

 

           

                                Figure 1                                                                     Figure 2 

 

Figure 1 above depicts a three dimensional Cartesian coordinate system (x, y, z), which 

corresponds to principal permeability directions of the reservoir, and a well path that does not 

align with the coordinate system. The well path will be represented in a coordinate system that 

is different from the principal directions. The β axis, shown in figure 2, will align with the well 

and has the β axis rotated at an angle of θx from the x-axis, θy from the y-axis and then θz from 

the z-axis.  

 

According to Darcy’s Law, the velocity vector is 

 

�>� = − �� 5 ∙ ∇� ,                                                          (A.1) 
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or 

y�L�M�N z = − �� F5LL 5LM 5LN5ML 5MM 5MN5NL 5NM 5NN
I ∙

�
��
��

B� BG�
B� B"�
B� BH� �

��
��

,    (A.2) 

 

where we for simplicity have ignored gravity. 

 

From (A.2), the components of  �>� are 

 

�L = − �� J5LL � �L + 5LM � �M + 5LN � �NK,     (A.3) 

 

�M = − �� J5ML � �L + 5MM � �M + 5MN � �NK,    (A.4) 

 

�N = − �� J5NL � �L + 5NM � �M + 5NN � �NK.     (A.5) 

 

A three dimensional rotated coordinate system is given by a matrix R. 

 

¡¢£¤¥ = O ∙ ¦G"H§      (A.6) 
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where R equals; 

O = OL(EL) ∙ OM�EM� ∙ ON(EN),     (A.7) 

 

 

with coordinate system rotations of the x, y and z-axis in a counter clockwise direction when 

looking towards the origin give the matrices;       

 

OL(EL) = y1 0 00 cos EL sin EL0 − sin EL cos ELz,      (A.8) 

 

OM�EM� = {cos EM 0 − sin EM0 1 0sin EM 0 cos EM |,        (A.9) 

 

ON(EN) = y cos EN sin EN 0− sin EN cos EN 00 0 1z.                                                          (A.10) 

 

 

We find 

 

O = OL(EL)OM�EM� ∙ ON(EN) 
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= y1 0 00 cos EL sin EL0 − sin EL cos ELz ∙ {cos EM 0 −sin EM0 1 0sin EM 0 cos EM | ∙ y cos EN sin EN 0−sin EN cos EN 00 0 1z 

 

= { cos EM cos EN + 0 + 0 cos EM sin EN + 0 + 0 0 + 0 − sin EMcos EN sin EL sin EM − cos EL sin EN + 0 sin EL sin EM sin EN + cos EL cos EN + 0 0 + 0 + cos EM sin ELcos EL cos EN sin EM + sin EL sin EN + 0 cos EL sin EM sin EN − cos EN sin EL + 0 0 + 0 + cos EL cos EM
| 

 

= { cos EM cos EN cos EM sin EN −sin EMcos EN sin EL sin EM − cos EL sin EN sin EL sin EM sin EN + cos EL cos EN cos EM sin ELcos EL cos EN sin EM + sin EL sin EN cos EL sin EM sin EN − cos EN sin EL cos EL cos EM
|.        (A.11) 

 

 

From (A.6),  

 

¡¢£¤ ¥ = { cos EM cos EN cos EM sin EN − sin EMcos EN sin EL sin EM − cos EL sin EN sin EL sin EM sin EN + cos EL cos EN cos EM sin ELcos EL cos EN sin EM + sin EL sin EN cos EL sin EM sin EN − cos EN sin EL cos EL cos EM
| ∙ ¦G"H§,   

 

 

which gives 

 

¢ = G cos EM cos EN + " cos EM sin EN − H sin EM,                                                                           (A.12) 
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£ = G(cos EN sin EL sin EM − cos EL sin EN) + "(cos EL cos EN + sin EL sin EM sin EN) 

+H cos EM sin EL,                                                                                                                  (A.13) 

 

¤ = G(sin EL sin EN + cos EL cos EN sin EM) + "(cos EL sin EM sin EN − cos EN sin EL) 

+H cos EL cos EM.                                                                                                                 (A.14) 

 

 

Using the chain rule for differentiation, 

 

B�BG = B�B¢ B¢BG + B�B£ B£BG + B�B¤ B¤BG 

						= cos EM cos EN B�B¢ + (cos EN sin EL sin EM − cos EL sin EN) B�B£ + (sin EL sin EN 

+ cos EL cos EN sin EM) � ��,                                                                                                (A.15) 

 

and 

 

B�B" = B�B¢ B¢B" + B�B£ B£B" + B�B¤ B¤B" 

      = cos EM sin EN � �� + (cos EL cos EN + sin EL sin EM sin EN) � �� + (cos EL sin EM sin EN	
− cos EN sin EL) � ��,                                                                                                          (A.16) 
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and 

 

B�BH = B�B¢ B¢BH + B�B£ B£BH + B�B¤ B¤BH 

	= − sin EM � �� + cos EM sin EL � �� + cos EL cos EM � ��.																																																																		(A.17) 

 

Using Darcy's law in the principal directions x, y, z, 

 

�L = 5L � �L	,	 	 	 	 	 	 (A.18) 

 

�M = 5M � �M	,	 	 	 	 	 	 (A.19) 

	
�N = 5N � �N .      (A.20) 
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Then applying the rotation (A.11) to the Darcy velocities (A.18), (A.19) and (A.20) as follows: 

 

O ∙ ¡�L�M�N¥
= { cos EM cos EN cos EM sin EN −sin EMcos EN sin EL sin EM − cos EL sin EN sin EL sin EM sin EN + cos EL cos EN cos EM sin ELcos EL cos EN sin EM + sin EL sin EN cos EL sin EM sin EN − cos EN sin EL cos EL cos EM

|

∙
�
���
�5L cos EM cos EN B�B¢ + 5L(cos EN sin EL sin EM − cos EL sin EN) B�B£ + 5L(sin EL sin EN + cos EL cos EN sin EM) B�B¤

5M cos EM sin EN B�B¢ + 5M(cos EL cos EN + sin EL sin EM sin EN) B�B£ + 5M(cos EL sin EM sin EN − cos EN sin EL) B�B¤
− 5Nsin EM B�B¢ + 5Ncos EM sin EL B�B£ + 5Ncos EL cos EM B�B¤ �

���
�

 

= ¡¨Y %	1¨Y %	2¨Y %	3¥                                                                                                                            (A.21) 

where 

 

¨Y %	1 = 	 5L cos� EM cos� EN B�B¢ + 5L(cos EN sin EL sin EM − cos EL sin EN) cos EM cos EN B�B£ + 

																					5L(sin EL sin EN + cos EL cos EN sin EM) cos EM cos EN B�B¤ + 5M cos� EM sin� EN B�B¢ − 

																					5M(cos EL cos EN + sin EL sin EM sin EN) cos EM sin EN B�B£ + 5M(cos EL sin EM sin EN − 

																					cos EN sin EL) cos EM sin EN B�B¤ + 5N sin� EM B�B¢ − 5N cos EM sin EL sin EM B�B£ − 

			5N cos EL cos EM sin EM � �� ,                                                                                          (A.22) 
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¨Y %	2 = 5L cos EM cos EN(cos EN sin EL sin EM − cos EL sin EN) B�B¢ + 5L(cos EN sin EL sin EM − 

																				cos EL sin EN)� B�B£ + 5L(sin EL sin EN + cos EL cos EN sin EM)(cos EN sin EL sin EM − 

																				cos EL sin EN) B�B¤ + 5M cos EM sin EN(cos EL cos EN + sin EL sin EM sin EN) B�B¢ + 

																				5M(cos EL cos EN + sin EL sin EM sin EN)� B�B£ + 5M(cos EL sin EM sin EN − cos EN sin EL) ∗ 

																				(cos EL cos EN + sin EL sin EM sin EN) � �� − 5N cos EM sin ELsinEM � �� + 

							5N cos� EM sin� EL � �� + 5N cos EL cos� EM sin EL � �� ,                                                           (A.23) 

and 

¨Y %	3 = 5L cos EM cos EN(cos EL cos EN sin EM + sin EL sin EN) B�B¢ + 5L(cos EN sin EL sin EM − 

																				cos EL sin EN)(cos EL cos EN sin EM + sin EL sin EN) B�B£ + 5L(sin EL sin EM + 

																				cos EL cos EN sin EM)� B�B¤ + 5M cos EM sin EN( cos EL sin EM sin EN − cos EN sin EL) B�B¢ + 

																				5M(cos EL cos EN + sin EL sin EM sin EN)(cos EL sin EM sin EN − cos EN sin EL) B�B£ + 

																				5M(cos EL sin EM sin EN − cos EN sin EL)� B�B¤ − 5N sin EM cos EL cos EM B�B¢ + 

							5NcosEL cos� EM sin EL � �� + 5N cos� EL cos� EM � �� .                                                                 (A.24) 
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This is the volumetric flux in β, ξ, ζ coordinates. Hence it must be equal to  

 

¡¨Y %	1¨Y %	2¨Y %	3¥ = F5�� 5�� 5��5�� 5�� 5��5�� 5�� 5��
I ∙

�
���
�B� B¢�
B� B£�
B� B¤� �

���
�

                                            (A.25) 

 

by carrying out the above matrix multiplication we find that the permeabilities Kββ, Kβξ, Kβζ, Kξβ, 

Kξξ, Kξζ, Kζβ, Kζξ, and Kζζ are given by 

 

5�� = 5L cos� EM cos� EN + 5M cos� EM sin� EN + 5N sin� EM,                                                     (A.26) 

 

5�� = 5L(cos EN sin EL sin EM − cos EL sin EN) cos EM cos EN + 5M(cos EL cos EN 

+ sin EL sin EM sin EN) cos EM sin EN − 5N cos EM sin EL sin EM,                                     (A.27) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM) cos EM cos EN + 5M(cos EL sin EM sin EN 

						− cos EN sin EL) ∗ cos EM sin EN − 5N cos EL cos EM sin EM,                                             (A.28)             

 

5�� = 5L(cos EN sin EL sin EM − cos EL sin EN) cos EM cos EN + 5M(cos EL cos EN 

						+ sin EL sin EM sin EN) ∗ cos EM sin EN − 5N sin EM cos EM sin EL,                                   (A.29)  
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5�� = 5L(cos EL sin EL sin EN − cos EL sin EN)� + 5M(cos EL cos EN + sin EL sin EM sin EN)� 

				+5N cos� EM sin� EL,                                                                                                        (A.30) 

 

5�� = 5L(sin EL sin EM + cos EL cos EN sin EM)(cos EN sin EL sin EM − cos EL sin EN) 

											+5M(−cos EN sin EL + cos EL sin EM sin EN)(cos EL cos EN + sin EL sin EM sin EN)  

+5N cos EL cos� EM sin EL                                                                                                (A.31) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM) cos EM cos EN + 5M(cos EL sin EM sin EN 

− cos EN sin EL) ∗ cos EM sin EN − 5N cos EL cos EM sin EM,                                            (A.32) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM)(cos EN sin EL sin EM − cos EL sin EN) 

											+5M(−cos EN sin EL + cos EL sin EM sin EN)(cos EL cos EN + sin EL sin EM sin EN) 

+5N cos EL cos� EM sin EL,                                                                                              (A.33) 

 

5�� = 5L(sin EL sin EN + cos EL cos EN sin EM)� + 5M(cos EL sin EM sin EN − cos EN sin EL)�  

							+5N cos� EL cos� EM.                                                                                                       (A.34) 
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Appendix B. Tensor Rotation Using Two Axis Rotation Method 

 

             

                                Figure 1                                                                         Figure 2 

 

Figure 1 above depicts a three dimensional Cartesian coordinate system (x, y, z), which 

corresponds to principal permeability directions of the reservoir, and a well path that does not 

align with the coordinate system. The well path will be represented in a coordinate system that 

is different from the principal directions. In order to align the x-axis with the β axis in figure 2, a 

rotation around the y-axis, θy, followed by a rotation about the z-axis, θz, is required.   

 

According to Darcy’s Law, the velocity vector is 

 

�>� = − �� 5 ∙ ∇� ,                                                          (B.1) 

or 
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y�L�M�N z = − �� F5LL 5LM 5LN5ML 5MM 5MN5NL 5NM 5NN
I ∙

�
��
��

B� BG�
B� B"�
B� BH� �

��
��

,    (B.2) 

 

where we for simplicity have ignored gravity. 

 

From (B.2), the components of  �>� are 

�L = − �� J5LL � �L + 5LM � �M + 5LN � �NK,     (B.3) 

 

�M = − �� J5ML � �L + 5MM � �M + 5MN � �NK,    (B.4) 

 

�N = − �� J5NL � �L + 5NM � �M + 5NN � �NK.     (B.5) 

 

A three dimensional rotated coordinate system is given by a matrix R. 

¡¢£¤¥ = O ∙ ¦G"H§      (B.6) 

where R equals; 

O = OM�EM� ∙ ON(EN),     (B.7) 
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with coordinate system rotations of the y and z-axis in a counter clockwise direction when 

looking towards the origin give the matrices; 

 

OM�EM� = {cos EM 0 − sin EM0 1 0sin EM 0 cos EM |,    (B.8) 

 

ON(EN) = y cos EN sin EN 0− sin EN cos EN 00 0 1z.    (B.9) 

  

We find 

O = OM�EM� ∙ ON(EN) 

 

= {cos EM 0 −sin EM0 1 0sin EM 0 cos EM | ∙ y cos EN sin EN 0−sin EN cos EN 00 0 1z 

 

= {cos EM cos EN + 0 + 0 cos EM sin EN + 0 + 0 0 + 0 − sin EM0 − sin EN + 0 0 + cos EN + 0 0 + 0 + 0sin EM cos EN + 0 + 0 sin EN sin EM + 0 + 0 0 + 0 + cos EM| 

 

= {cos EM cos EN cos EM sin EN −sin EM−sin EN cos EN 0cos EN sin EM sin EN sin EM cos EM |.                                                                                   (B.10) 
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From (B.6), 

¡¢£¤¥ = {cos EM cos EN cos EM sin EN −sin EM−sin EN cos EN 0cos EN sin EM sin EN sin EM cos EM | ∙ ¦G"H§ 

 

 

which gives 

 

¢ = G cos EM cos EN + " cos EM sin EN − H sin EM,                                                                           (B.11) 

 

£ = −G sin EN + " cos EN,                                                                                                                    (B.12) 

 

¤ = G cos EN sin EM + " sin EN sin EM + H cos EM.                                                                            (B.13) 

 

Using the chain rule for differentiation, 

 

B�BG = B�B¢ B¢BG + B�B£ B£BG + B�B¤ B¤BG 

	= cos EM cos EN � �� − sin EN � �� + cos EN sin EM � ��,                                                               (B.14) 

 

and 
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B�B" = B�B¢ B¢B" + B�B£ B£B" + B�B¤ B¤B" 

= cos EM sin EN � �� +cos EN � �� + sin EN sin EM � ��,                                                                (B.15) 

 

and 

 

B�BH = B�B¢ B¢BH + B�B£ B£BH + B�B¤ B¤BH 

	= − sin EM � �� + cos EM � ��.                                                                                                   (B.16) 

 

 

Using Darcy's law in the principal directions x, y, z, 

 

�L = 5L � �L	,	 	 	 	 	 	 (B.17) 

 

�M = 5M � �M	,	 	 	 	 	 	 (B.18) 

	
�N = 5N � �N .      (B.19) 
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Then applying the rotation (B.10) to the Darcy velocities (B.17), (B.18) and (B.19) as follows: 

 

O ∙ ¡�L�M�N¥ = {cos EM cos EN cos EM sin EN −sin EM−sin EN cos EN 0cos EN sin EM sin EN sin EM cos EM |

∙
~�
��
��
�K©cos EM cos EN B�B¢ − K©sin EN B�B£ + K©cos EN sin EM B�B¤
5M cos EM sin EN B�B¢ +5Mcos EN B�B£ + 5Msin EN sin EM B�B¤

− Kªsin EM B�B¢ + Kªcos EM B�B¤ ��
��
��
�
 

= ¡¨Y %	1¨Y %	2¨Y %	3¥,                                                                                                                       (B.20) 

 

where 

 

¨Y %	1 = 	 5L(cos EM cos EN)� B�B¢ − 5L cos EM cos EN sin EN B�B£ + 5L cos EM cos EN� sin EM B�B¤ + 

5M(cos EM sin EN)� B�B¢ + 5M cos EM cos EN sin EN B�B£ + 5M cos EM sin EM sin EN� B�B¤ + 

									5N sin EM� � �� − 5N cos EM sin EM � �� ,                                                                              (B.21) 

 

¨Y %	2 = −5L cos EM cos EN sin EN B�B¢ + 5L sin EN� B�B£ − 5L cos EN sin EM sin EN B�B¤ + 

						5M cos EM cos EN sin EN � �� + 5M cos EN� � �� + 5M cos EN sin EM sin EN � �� ,                         (B.22) 
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¨Y %	3 = 5L cos EM cos EN� sin EM B�B¢ − 5L cos EN sin EM sin EN B�B£ + 5L(cos EN sin EM)� B�B¤ + 

																				5M cos EM sin EM sin EN� B�B¢ + 5M cos EN sin EM sin EN B�B£ + 5M(sin EM sin EN)� B�B¤ − 

						5N cos EM sin EM � �� + 5N cos EM� � �� .                                                                                     (B.23) 

 

This is the volumetric flux in β, ξ, ζ coordinates. Hence it must be equal to 

 

¡¨Y %	1¨Y %	2¨Y %	3¥ = F5�� 5�� 5��5�� 5�� 5��5�� 5�� 5��
I ∙

�
���
�B� B¢�
B� B£�
B� B¤� �

���
�

   (B.24) 

 

by carrying out the above matrix multiplication we find that the permeabilities Kββ, Kβξ, Kβζ, Kξβ, 

Kξξ, Kξζ, Kζβ, Kζξ, and Kζζ are given by 

 

5�� = 5L(cos EM cos EN)� + 5M(cos EM sin EN)� + 5N sin EM� ,                                                    (B.25) 

 

5�� = −5L cos EM cos EN sin EN + 5M cos EM cos EN sin EN ,                                                          (B.26) 

 

5�� = 5L cos EM cos EN� sin EM + 5M cos EM sin EM sin EN� − 5N cos EM sin EM ,                           (B.27) 
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5�� = −5L cos EM cos EN sin EN + 5M cos EM cos EN sin EN ,                                                          (B.28) 

 

5�� = 5L sin EN� + 5M cos EN� ,                                                                                                            (B.29) 

 

5�� = −5L cos EN sin EM sin EN + 5M cos EN sin EM sin EN ,                                                           (B.30) 

 

5�� = 5L cos EM cos EN� sin EM + 5M cos EM sin EM sin EN� − 5N cos EM sin EM ,                          (B.31) 

 

5�� = −5L cos EN sin EM sin EN + 5M cos EN sin EM sin EN ,                                                           (B.32) 

 

5�� = 5L(cos EN sin EM)� + 5M(sin EM sin EN)� + 5N cos EM� .                                                      (B.33) 
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Appendix C.  Sample Reservoir Simulation Code 

Code for Run#1-9 unrotated (Single Block) 

 

RUNSPEC --- Beginning Section of the Code.  

  

TITLE --- Gives the code its title. 

RUN#1-9 UNROTATED  

 

FIELD --- Request the Field unit set. 

 

HWELLS --- Horizontal wells present, needed in 300 code. 

 

--- Indicates that the Run may contain oil, water and gas. 

OIL   

WATER  

GAS  

 

CO2SOL  --- Allows CO2 to exist in all three phases. 

 

AIM --- Selects the AIM (Adaptive IMplicit) solution option for 300 code. 

  

COMPS --- Activates the compositional mode. 

9 /  

 

EOS --- Equation of state being used is Peng-Robinson. 

PR /  

 

DIMENS --- Number of blocks in x-, y-, and z-directions. This is a part of the code that will be 

 changed, depending on the number of blocks in the reservoir. 

1 1 1 /  

  

TABDIMS --- Table dimensions. 

1 1 200 200 /  

 

START --- Specifies the start date of the simulation. 

1 JAN 2014 /  

 

GRID --- Grid section of the code. 



125 

 

 

DXV --- x-direction grid block sizes, 50 feet per block. Change depending on the reservoir. 

1*50 /  

DYV --- y-direction grid block sizes, 50 feet per block. Change depending on the reservoir. 

1*50 /  

DZV --- z-direction grid block sizes, 50 feet per block. Change depending on the reservoir. 

1*50 /  

 

TOPS --- Depth to the top of the reservoir, 1000 feet. 

1*10000 /  

 

EQUALS --- Assigns or replaces the value of a property for a box of cells within the grid. 

 

PORO --- Porosity, 25%. 

0.25 /  

 

--- The location in the code where the permeability is changed, depending on the Run.  

PERMX 200 / --- Principal permeability in the x-direction, 200 mD. 

PERMY 200 / --- Principal permeability in the y-direction, 200 mD. 

PERMZ 64  /  --- Principal permeability in the z-direction, 64mD. 

 

PROPS --- Properties section of the code. 

 

NCOMPS --- Confirm number of components 

9 /  

 

STCOND --- Standard temperature and pressure in degree F and PSIA. 

60.0 14.7 /  

 

CNAMES --- Component names. 

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /  

 

HYDRO --- Define hydrocarbon type. 

N N H H H H A A A /  

 

TCRIT --- Critical temperature, degree R. 

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  

  

PCRIT --- Critical pressure, PSA 

1071.33111 492.31265 667.78170 708.34238 618.69739  
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514.92549 410.74956 247.56341 160.41589 /  

 

 

ZCRIT --- Critical z-factor. 

.27408 .29115 .28473 .28463 .27748  

.27640 .26120 .22706 .20137 /  

  

ACF --- Acentric factor. 

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 /  

 

MW --- Molecular weights. 

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA --- Omega_A values. 

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB --- Omega_B values. 

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD --- Default fluid sample composition. 

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL --- Boiling point temperature, degree R. 

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF --- Reference temperature, degree R. 

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF --- Reference densities, lb/ft3. 

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  

  

PARACHOR --- Parachors, dynes/cm. 

78.00000 41.00000 77.00000 108.00000 150.30000  
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213.52089 331.78241 516.45301 853.48860 /  

  

 

BIC --- Binary interaction coefficients. 

-.0200  

.1000 .0360  

.1300 .0500 .000000  

.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0  

.1000 .1000 .130663 .006 .006 .0 .0 .0 /  

 

 

RTEMP --- Reservoir temperature, degree F. 

230.0 /  

  

SWFN --- Water saturation functions.  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN --- Gas saturation functions. 

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3 --- Oil saturation functions (three-phase) 

0.00 0.000 0.000  

0.24 0.000 0.000  
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0.28 0.005 0.005  

0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  

0.72 0.400 0.400  

0.84 0.800 0.800 /  

 

ROCK --- Rock compressibility. 

4351.1 0.00001577 /  

 

PVTW  --- Water pressure tables. 

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY  --- Surface density.  

1* 63.02 1* /  

  

SOLUTION --- Solution section of the code. 

EQUIL --- Equilibration data specification. 

10000 10000 10250 3 10000  0.001/  

  

OUTSOL --- Outputs at every report step. 

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY --- Summary section of the code. 

RUNSUM --- Requests table output of summary data. 

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY --- Requests that summary data be written to the summary file only at report times. 

 

SCHEDULE  --- Schedule section of the code. 

RPTSCHED --- Controls the output from the schedule section of the code.  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS  --- General specification data for wells. Will change depending on the Run. 

P FIELD 1 1 10000 OIL  /  

/  

  



129 

 

 

COMPDAT --- Well completion specification data. Will change depending on the Run. In the 

single block reservoir the well is in the only block and traveling in the x-direction. 

well name, x,  y,  z,  second z, open wellbore, default 6, well direction in the block.   

P  1  1  1  1  open  6*  'X' / 

/  

  

WCONPROD  ---- Controls data for the production wells. 

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/  

 

TSTEP --- After each time step a report of the current state of the reservoir is produced. The 

 time step will also change depending on the reservoir used. 

7*1 /  

 

END --- End of the code. 
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Code for Run#4 rotated (Single block reservoir, 343° about the y-axis and 0° about the z-axis)  

 

RUNSPEC 

  

TITLE  

RUN#4 ROTATED  

 

FIELD 

 

HWELLS 

 

OIL  

WATER  

GAS  

 

CO2SOL  

 

AIM  

  

COMPS  

9 /  

 

EOS  

PR /  

 

DIMENS  

1 1 1 /  

  

TABDIMS  

1 1 200 200 /  

 

START  

1 JAN 2014 /  

 

GRID  

 

DXV  

1*50 /  

DYV  

1*50 /  
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DZV  

1*50 /  

 

TOPS  

1*10000 /  

 

EQUALS 

 

PORO  

0.25 /  

 

--- PERMXY, PERMYZ, PERMZX used in the rotated tensor cases. They represent he off diagonal 

terms in the permeability matrix that appear after the rotation. This is the only section of the 

code that changes in Runs 1-9.  

PERMX  188.37    /  

PERMY  200         /  

PERMZ  75.625    / 

PERMXY 0            / 

PERMYZ 0            / 

PERMZX -38.025  / 

/  

 

PROPS  

 

NCOMPS  

9 /  

 

STCOND  

60.0 14.7 /  

 

CNAMES  

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /  

HYDRO  

N N H H H H A A A /  

 

TCRIT  

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  
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PCRIT  

1071.33111 492.31265 667.78170 708.34238 618.69739  

514.92549 410.74956 247.56341 160.41589 /  

 

ZCRIT  

.27408 .29115 .28473 .28463 .27748  

.27640 .26120 .22706 .20137 /  

 

ACF  

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 /  

 

MW  

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA  

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB  

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD  

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL  

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF  

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF  

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  
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PARACHOR  

78.00000 41.00000 77.00000 108.00000 150.30000  

213.52089 331.78241 516.45301 853.48860 /  

  

BIC  

-.0200  

.1000 .0360  

.1300 .0500 .000000  

.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0 / 

 

RTEMP  

230.0 /  

  

SWFN  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN  

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3  

0.00 0.000 0.000  

0.24 0.000 0.000  

0.28 0.005 0.005  
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0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  

0.72 0.400 0.400  

0.84 0.800 0.800 /  

 

ROCK  

4351.1 0.00001577 /  

 

PVTW   

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY   

1* 63.02 1* /  

  

 

SOLUTION  

EQUIL  

10000 10000 10250 3 10000  0.001/  

  

OUTSOL  

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY   

RUNSUM   

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY  

 

SCHEDULE   

RPTSCHED  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS   

P FIELD 1 1 10000 OIL  /  

/  
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COMPDAT  

P  1  1  1  1  open  6*  'X' / 

/  

  

WCONPROD   

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/  

 

TSTEP  

7*1 /  

 

END 
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Code for Run#15 unrotated (5x5x5 Reservoir) 

 

RUNSPEC 

  

TITLE  

RUN#15 UNROTATED  

 

FIELD 

 

HWELLS 

 

OIL  

WATER  

GAS  

 

CO2SOL  

 

AIM  

  

COMPS  

9 /  

 

EOS  

PR /  

 

DIMENS  --- Since this is now a 5x5x5 reservoir, the dimensions are changed. 

5 5 5 /  

  

TABDIMS  

1 1 200 200 /  

 

START  

1 JAN 2014 /  

 

GRID  

 

--- The number of blocks in this section is also changed.  

DXV  

5*10 /  

DYV  
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5*10 /  

DZV  

5*10 /  

 

TOPS  

125*10000 /  

 

EQUALS 

 

PORO  

0.25 /  

 

--- The unrotated permeability is still the same in the 5x5x5 reservoir. 

PERMX 200 /  

PERMY 200 /  

PERMZ 64  /  

/ 

 

PROPS  

 

NCOMPS  

9 /  

 

STCOND  

60.0 14.7 /  

 

CNAMES  

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /  

HYDRO  

N N H H H H A A A /  

 

TCRIT  

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  

  

PCRIT  

1071.33111 492.31265 667.78170 708.34238 618.69739  

514.92549 410.74956 247.56341 160.41589 /  

 

ZCRIT  

.27408 .29115 .28473 .28463 .27748  
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.27640 .26120 .22706 .20137 /   

ACF  

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 /  

 

MW  

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA  

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB  

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD  

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL  

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF  

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF  

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  

  

PARACHOR  

78.00000 41.00000 77.00000 108.00000 150.30000  

213.52089 331.78241 516.45301 853.48860 /  

  

BIC  

-.0200  

.1000 .0360  

.1300 .0500 .000000  
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.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0 / 

 

RTEMP  

230.0 /  

  

SWFN  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN  

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3  

0.00 0.000 0.000  

0.24 0.000 0.000  

0.28 0.005 0.005  

0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  

0.72 0.400 0.400  

0.84 0.800 0.800 /  

 

ROCK  

4351.1 0.00001577 /  
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PVTW   

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY   

1* 63.02 1* /  

  

SOLUTION  

EQUIL  

10000 10000 10250 3 10000  0.001/  

  

OUTSOL  

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY   

RUNSUM   

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY  

 

SCHEDULE   

RPTSCHED  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS   

P FIELD 1 1 10000 OIL  /  

/  

 

--- The wellpath in Run 15 starts at block (1,1,2) and finishes at block (5,5,4). In every block the 

well penetrates the center and travels in the x-direction.  

COMPDAT  

P  1  1  2  2  open  6*  'X' / 

P  2  2  3  3  open  6*  'X' / 

P  3  3  3  3  open  6*  'X' / 

P  4  4  3  3  open  6*  'X' / 

P  5  5  4  4  open  6*  'X' / 

/   
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WCONPROD   

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/ 

 

TSTEP  

7*1 / 

 

END 
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Code for Run#15 rotated (5x5x5 block reservoir, 343° about the y-axis and 45° about the z-axis) 

 

RUNSPEC 

  

TITLE  

RUN#15 ROTATED  

 

FIELD 

 

HWELLS 

 

OIL  

WATER  

GAS  

 

CO2SOL  

 

AIM  

  

COMPS  

9 /  

 

EOS  

PR /  

 

DIMENS   

5 5 5 /  

  

TABDIMS  

1 1 200 200 /  

 

START  

1 JAN 2014 /  

 

GRID  

 

DXV  

5*10 /  

DYV  

5*10 /  
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DZV  

5*10 /  

 

TOPS  

125*10000 /  

 

EQUALS 

 

PORO  

0.25 /  

 

--- The only section in the code that changes from Run 15 unrotated to Run 15 rotated. 

PERMX  188.38   /  

PERMY  200      /  

PERMZ  75.625   / 

PERMXY 0        / 

PERMYZ 3.6E-15  / 

PERMZX -38.025  / 

/ 

PROPS  

 

NCOMPS  

9 /  

 

STCOND  

60.0 14.7 /  

 

CNAMES  

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /  

HYDRO  

N N H H H H A A A /  

 

TCRIT  

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  

  

PCRIT  

1071.33111 492.31265 667.78170 708.34238 618.69739  

514.92549 410.74956 247.56341 160.41589 /  
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ZCRIT  

.27408 .29115 .28473 .28463 .27748  

.27640 .26120 .22706 .20137 /   

 

ACF  

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 /  

 

MW  

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA  

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB  

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD  

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL  

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF  

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF  

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  

  

PARACHOR  

78.00000 41.00000 77.00000 108.00000 150.30000  

213.52089 331.78241 516.45301 853.48860 /  
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BIC  

-.0200  

.1000 .0360  

.1300 .0500 .000000  

.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0 / 

 

RTEMP  

230.0 /  

  

SWFN  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN  

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3  

0.00 0.000 0.000  

0.24 0.000 0.000  

0.28 0.005 0.005  

0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  
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0.72 0.400 0.400/   

 

ROCK  

4351.1 0.00001577 /  

 

PVTW   

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY   

1* 63.02 1* /  

  

 

SOLUTION  

EQUIL  

10000 10000 10250 3 10000  0.001/  

  

OUTSOL  

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY   

RUNSUM   

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY  

 

SCHEDULE   

RPTSCHED  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS   

P FIELD 1 1 10000 OIL  /  

/  
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--- The wellpath in Run 15 rotated and unrotated are identical. 

COMPDAT  

P  1  1  2  2  open  6*  'X' / 

P  2  2  3  3  open  6*  'X' / 

P  3  3  3  3  open  6*  'X' / 

P  4  4  3  3  open  6*  'X' / 

P  5  5  4  4  open  6*  'X' / 

/   

  

WCONPROD   

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/ 

 

TSTEP  

7*1 / 

 

END 
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Code for Run#26 unrotated (5x5x5 block reservoir)  

 

RUNSPEC 

  

TITLE  

RUN#26 UNROTATED  

 

FIELD 

 

HWELLS 

 

OIL  

WATER  

GAS  

 

CO2SOL  

 

AIM  

  

COMPS  

9 /  

 

EOS  

PR /  

 

DIMENS   

5 5 5 /  

  

TABDIMS  

1 1 200 200 /  

 

START  

1 JAN 2014 /  

 

GRID  

 

DXV  

5*10 /  

DYV  

5*10 /  
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DZV  

5*10 /  

 

TOPS  

125*10000 /  

 

EQUALS 

 

PORO  

0.25 /  

 

--- The only section in the code that changes from Runs 10-18 to 19-27. Runs 19-27 use the 

permeability in the y-direction to equal 150.  

PERMX 200 /  

PERMY 150 /  

PERMZ 64  /  

/  

PROPS  

 

NCOMPS  

9 /  

 

STCOND  

60.0 14.7 /  

 

CNAMES  

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 / 

  

HYDRO  

N N H H H H A A A /  

 

TCRIT  

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  

  

PCRIT  

1071.33111 492.31265 667.78170 708.34238 618.69739  

514.92549 410.74956 247.56341 160.41589 /  
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ZCRIT  

.27408 .29115 .28473 .28463 .27748  

.27640 .26120 .22706 .20137 /  

  

ACF  

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 /  

 

 

MW  

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA  

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB  

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD  

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL  

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF  

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF  

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  

  

PARACHOR  

78.00000 41.00000 77.00000 108.00000 150.30000  

213.52089 331.78241 516.45301 853.48860 /  
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BIC  

-.0200  

.1000 .0360  

.1300 .0500 .000000  

.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0 / 

 

RTEMP  

230.0 /  

  

SWFN  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN  

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3  

0.00 0.000 0.000  

0.24 0.000 0.000  

0.28 0.005 0.005  

0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  

0.72 0.400 0.400 / 
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ROCK  

4351.1 0.00001577 /  

 

PVTW   

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY   

1* 63.02 1* /  

  

SOLUTION  

 

EQUIL  

10000 10000 10250 3 10000  0.001/  

OUTSOL  

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY   

RUNSUM   

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY  

 

SCHEDULE   

RPTSCHED  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS   

P FIELD 1 1 10000 OIL  /  

/  
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--- The wellpath in Run 10-18 are identical to the well paths in Runs 19-27. Both these sets of 

Runs use the 5x5x5 reservoir.  

COMPDAT  

P  1  1  2  2  open  6*  'X' / 

P  2  2  3  3  open  6*  'X' / 

P  3  3  3  3  open  6*  'X' / 

P  4  4  3  3  open  6*  'X' / 

P  5  5  4  4  open  6*  'X' / 

/   

  

WCONPROD   

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/ 

 

TSTEP  

7*1 / 

 

END 
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Code for Run#32 unrotated (10x10x10 block reservoir)  

 

RUNSPEC 

  

TITLE  

RUN#32 UNROTATED  

 

FIELD 

 

HWELLS 

 

OIL  

WATER  

GAS  

 

CO2SOL  

 

AIM  

  

COMPS  

9 /  

 

EOS  

PR /  

 

DIMENS --- Changes from the 5x5x5 reservoir to the 10x10x10 reservoir dimensions. 

10  10  10 /  

  

TABDIMS  

1 1 200 200 /  

 

START  

1 JAN 2014 /  

 

GRID  

 

--- The 5 blocks in the code are changed to 10. 

DXV  

10*5 /  
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DYV  

10*5 /  

 

DZV  

10*5 / 

 

TOPS  

1000*10000 /  

 

EQUALS 

 

PORO  

0.25 /  

 

--- The only section in the code is the same as Runs 1-9 and Runs 10-18.   

PERMX 200 /  

PERMY 200 /  

PERMZ 64  /  

/  

PROPS  

 

NCOMPS  

9 /  

 

STCOND  

60.0 14.7 /  

 

CNAMES  

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /  

 

HYDRO  

N N H H H H A A A /  

 

TCRIT  

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  

  

PCRIT  

1071.33111 492.31265 667.78170 708.34238 618.69739  

514.92549 410.74956 247.56341 160.41589 /  
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ZCRIT  

.27408 .29115 .28473 .28463 .27748  

.27640 .26120 .22706 .20137 /  

  

ACF  

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 /  

 

MW  

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA  

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB  

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD  

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL  

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF  

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF  

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  

  

PARACHOR  

78.00000 41.00000 77.00000 108.00000 150.30000  

213.52089 331.78241 516.45301 853.48860 /  
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BIC  

-.0200  

.1000 .0360  

.1300 .0500 .000000  

.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0 / 

 

RTEMP  

230.0 /  

  

SWFN  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN  

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3  

0.00 0.000 0.000  

0.24 0.000 0.000  

0.28 0.005 0.005  

0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  

0.72 0.400 0.400  
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0.84 0.800 0.800 /  

 

ROCK  

4351.1 0.00001577 /  

 

PVTW   

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY   

1* 63.02 1* /  

  

SOLUTION  

 

EQUIL  

10000 10000 10250 3 10000  0.001/  

 

OUTSOL  

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY   

RUNSUM   

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY  

 

SCHEDULE   

RPTSCHED  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS   

P FIELD 1 3 10000 OIL  /  

/  

  

--- The wellpath is longer because the reservoir is now 10x10x10.  

COMPDAT  

P  1   3  3  3  open  6*  'X' / 

P  2   3  3  3  open  6*  'X' / 
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P  3   4  4  4  open  6*  'X' / 

P  4   4  4  4  open  6*  'X' / 

P  5   4  4  4  open  6*  'X' / 

P  6   5  5  5  open  6*  'X' / 

P  7   5  5  5  open  6*  'X' /  

P  8   5  5  5  open  6*  'X' / 

P  9   6  6  6  open  6*  'X' /  

P  10 6  6  6  open  6*  'X' / 

/  

  

WCONPROD   

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/ 

 

TSTEP --- Larger time step to allow for more Running time in the larger reservoir.  

7*1 / 

 

END 
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Code for Run#32 rotated (10x10x10 block reservoir, 343° about the y-axis and 22° about the z-

axis)  

 

RUNSPEC 

  

TITLE  

RUN#32 ROTATED  

 

FIELD 

 

HWELLS 

 

OIL  

WATER  

GAS  

 

CO2SOL  

 

AIM  

  

COMPS  

9 /  

 

EOS  

PR /  

 

DIMENS  

10  10  10 /  

  

TABDIMS  

1 1 200 200 /  

 

START  

1 JAN 2014 /  

 

GRID  

 

DXV  

10*5 /  
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DYV  

10*5 /  

DZV  

10*5 / 

 

 

TOPS  

1000*10000 /  

 

EQUALS 

 

PORO  

0.25 /  

 

--- This is the only section in the code that is different than the Run 32 unrotated case.  

PERMX  188.38    /  

PERMY  200         /  

PERMZ  75.63      / 

PERMXY 0            / 

PERMYZ 3.6E-15  / 

PERMZX -38.03    / 

/  

PROPS  

 

NCOMPS  

9 /  

 

STCOND  

60.0 14.7 /  

 

CNAMES  

CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /  

HYDRO  

N N H H H H A A A /  

 

TCRIT  

548.46000 227.16000 343.08000 549.77400 665.64000  

806.54054 838.11282 1058.03863 1291.89071 /  

  

PCRIT  

1071.33111 492.31265 667.78170 708.34238 618.69739  
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514.92549 410.74956 247.56341 160.41589 /  

 

ZCRIT  

.27408 .29115 .28473 .28463 .27748  

.27640 .26120 .22706 .20137 /  

  

ACF  

.22500 .04000 .01300 .09860 .15240  

.21575 .31230 .55670 .91692 / 

 

MW  

44.01000 28.01300 16.04300 30.07000 44.09700  

66.86942 107.77943 198.56203 335.19790 /  

  

OMEGAA  

.4572355 .4572355 .5340210 .4572355 .4572355  

.4572355 .6373344 .6373344 .6373344 /  

  

OMEGAB  

.0777961 .0777961 .0777961 .0777961 .0777961  

.0777961 .0872878 .0872878 .0872878 /  

  

ZMFVD  

1 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633  

10000 0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633 /  

  

TBOIL  

350.46000 139.32000 201.06000 332.10000 415.98000  

523.33222 689.67140 958.31604 1270.40061 /  

  

TREF  

527.40000 140.58000 201.06000 329.40000 415.80000  

526.05233 519.67000 519.67000 519.67000 /  

  

DREF  

48.50653 50.19209 26.53189 34.21053 36.33308  

37.87047 45.60035 50.88507 55.89861 /  

  

PARACHOR  

78.00000 41.00000 77.00000 108.00000 150.30000  

213.52089 331.78241 516.45301 853.48860 /  
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BIC  

-.0200  

.1000 .0360  

.1300 .0500 .000000  

.1350 .0800 .000000 .000  

.1277 .1002 .092810 .000 .000  

.1000 .1000 .130663 .006 .006 .0  

.1000 .1000 .130663 .006 .006 .0 .0 / 

 

RTEMP  

230.0 /  

  

SWFN  

0.16 0 3  

0.18 0 2  

0.20 0.002 1  

0.44 0.090 0.5  

0.68 0.330 0.1  

0.8 0.540 0.05  

1.00 1.000 0.0 /  

 

SGFN  

0.00 0.000 0.0  

0.04 0.005 0.0  

0.12 0.026 0.0  

0.24 0.078 0.0  

0.36 0.156 0.0  

0.48 0.260 0.0  

0.60 0.400 0.0  

0.72 0.562 0.0  

0.84 0.800 0.0  

/  

 

SOF3  

0.00 0.000 0.000  

0.24 0.000 0.000  

0.28 0.005 0.005  

0.32 0.012 0.012  

0.44 0.060 0.060  

0.56 0.150 0.150  

0.72 0.400 0.400 / 
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ROCK  

4351.1 0.00001577 /  

 

PVTW   

4351.1 1.0 0.000004 0.2476 0.0 /  

  

DENSITY   

1* 63.02 1* /  

  

SOLUTION  

 

EQUIL  

10000 10000 10250 3 10000  0.001/  

 

OUTSOL  

PRESSURE SOIL SWAT SGAS /  

 

SUMMARY   

RUNSUM   

FOPR  

FWPR  

FOPT  

FGOR  

FPR  

 

RPTONLY  

 

SCHEDULE   

 

RPTSCHED  

PRESSURE SWAT SOIL SGAS /  

  

WELSPECS   

P FIELD 1 3 10000 OIL  /  

/  

  

--- The wellpath is the same as the unrotated case.  

COMPDAT  

P  1   3  3  3  open  6*  'X' / 

P  2   3  3  3  open  6*  'X' / 

P  3   4  4  4  open  6*  'X' / 
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P  4   4  4  4  open  6*  'X' / 

P  5   4  4  4  open  6*  'X' / 

P  6   5  5  5  open  6*  'X' / 

P  7   5  5  5  open  6*  'X' /  

P  8   5  5  5  open  6*  'X' / 

P  9   6  6  6  open  6*  'X' /  

P  10 6  6  6  open  6*  'X' / 

/  

  

WCONPROD   

P OPEN LRAT 1* 1* 1* 250 1* 1/  

/ 

 

TSTEP   

7*1 / 

 

END 

 


