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Abstract	

Studies	 of	 antibiotic	 resistance	 frequently	 focus	 on	 resistance	 to	 specific	 antibiotics,	 or	

classes	 of	 antibiotics,	 without	 summarizing	 the	 overall	 resistance	 for	 all	 antibiotics.	

Biodiversity	indices,	such	as	the	Shannon-Weiner	(SW)	index	and	Bray-Curtis	distance,	are	

widely	 used	 in	 ecology	 to	 measure	 overall	 species	 abundance	 and	 variation	 within	 and	

between	 regions.	 We	 explore	 the	 use	 of	 biodiversity	 indices	 to	 summarize	 antibiotic	

resistance.	We	illustrate	this	approach	by	analyzing	data	on	antibiotic	resistance	in	clinical	

Salmonella	 enterica	 isolates.	 To	 understand	 changes	 in	 resistance	 patterns	 within	 and	

between	the	provinces	of	Canada,	S.	enterica	serotypes,	and	over	time,	we	measure	the	SW	

diversity	 and	 Bray-Curtis	 distance	 and	 visualize	 the	 differences	 between	 provinces,	

serotypes	 and	 over	 time	 using	 ordinations.	We	 describe	 the	 different	 types	 of	 antibiotic	

resistance	data	 that	 are	 required	 for	measuring	alpha	and	beta	diversity	 and	explain	 the	

interpretation	of	biodiversity	measures	when	applied	to	antibiotic	resistance	data.	
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Chapter	1	

Introduction	
	

Antibiotics	have	substantially	reduced	the	duration	and	number	of	deaths	due	to	bacterial	

infections	 (Davies	 et	 al.	 2010).	 However,	 the	 recent	 increase	 in	 antibiotic	 resistance,	 in	

particular,	resistance	to	multiple	antibiotics,	threatens	the	effective	treatment	of	bacterial	

infections	(Yeh	et	al.,	2009,	Davies	et	al.	2010,	MacLean	et	al.	2010,	Magiorakos	et	al.	2011,	

Campbell	et	al.	2014,	WHO,	2015).	Some	bacteria,	called	“superbugs”	are	now	resistant	to	

almost	 all	 the	 antibiotic	 treatments	 available	 and	many	Mycobacterium	 tuberculosis	 and	

Staphylococcus	 aureus	 infections	 are	 resistant	 to	 several	 different	 antibiotics.	 Globally,	

more	than	700,000	people	die	each	year	as	a	result	of	antibiotic	resistance	(O’Neill,	2016)	

and	a	recent	study	estimates	300	million	premature	deaths	and	economic	losses	up	to	$100	

trillion	dollars	due	to	antibiotic	resistance	by	the	year	2050	(Phimister	et	al.,	2015).	

Biodiversity	refers	to	the	great	variety	of	life	forms	present	on	earth.	Measures	to	estimate	

biodiversity	 have	 been	widely	 used	 in	 ecology	 to	 summarize	 species	 composition	within	

and	 between	 communities.	 Alpha	 biodiversity	 measures	 species	 composition	 within	 a	

community	by	 jointly	considering	richness	 (the	number	of	different	species	present)	and	

evenness	 (equality	 in	 relative	 species	 abundance;	 Magurran,	 1988).	 Beta	 biodiversity	



	 2	

measures	 the	 pairwise	 difference	 in	 the	 relative	 abundance	 of	 species	 between	

communities	 and	 is	 used	 to	 compare	 similarities	 in	 the	 composition	 of	 communities.		

Recently	 these	 biodiversity	 metrics	 have	 seen	 a	 limited	 application	 to	 populations	 of	

pathogens	with	antimicrobial	resistance	(Pakyz	et	al.	2008,	de	la	Pedrosa	et	al.	2009,	Blaak	

et	al.	2015,	Zhang	et	al.	2014,	Sigala	and	Unc	2013,	Abay	et	al.	2014).	

In	 this	 thesis,	 I	 explore	 the	 application	 of	 biodiversity	measures	 to	 antibiotic	 resistance	

data	 to	 measure	 antibiotic	 resistance	 in	 a	 way	 that	 summarizes	 the	 level	 of	 resistance	

across	many	different	antibiotics.	This	method	is	advantageous	for	two	main	reasons.	

Firstly,	in	clinical	settings,	treatment	can	occur	without	knowing	antibiotic	sensitivities,	for	

example,	 infections	such	as	sepsis,	meningitis,	pneumonia,	pyelonephritis,	gastroenteritis,	

osteomyelitis,	and	cellulitis	in	children	are	diagnosed	and	treated	without	any	information	

on	 antibiotic	 sensitivities	 (Bruel	 et	 al.	 2007).	 In	 these	 instances,	 a	 summary	measure	 of	

antibiotic	 resistance	 would	 provide	 information	 on	 how	 likely	 uninformed	 antibiotic	

choices	are	 to	succeed.	 I	use	biodiversity	measures	 to	quantify	 the	uncertainty	regarding	

which	 antibiotics	 an	 isolate	 is	 resistant	 to	 and	 to	 identify	 bacterial	 populations	 that	 are	

more	or	less	similar	in	terms	of	resistance.		

Secondly,	a	bacterial	pathogen	can	be	resistant	to	none,	multiple	or	all	antibiotics	available,	

which	 makes	 measuring	 the	 overall	 level	 of	 antibiotic	 resistance	 at	 the	 isolate	 or	

population	level	difficult	since	many	antibiotics	are	involved.	If	at	the	population	level	the	

prevalence	of	antibiotic	resistance	increases	for	some	antibiotics	but	decreases	for	others,	

there	 are	 no	 existing	 methods	 that	 measure	 whether	 overall	 antibiotic	 resistance	 is	

increasing	or	decreasing.	Our	method	has	novel	public	health	 implications	 as	 it	 provides	
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summary	 information	regarding	antibiotic	resistance	across	a	wide	number	of	antibiotics	

within	a	population	and	also	compares	similarities	and	differences	in	antibiotic	resistance	

between	different	populations.		

This	summary	information	regarding	overall	antibiotic	resistance	within	a	region	is	useful	

for	 public	 health	 personnel	 to	 prioritize	 regions	 that	 would	 benefit	 from	 susceptibility	

testing.	 If	 the	overall	 antibiotic	 resistance	 for	a	 region	 is	high,	 then	 it	 is	unlikely	 that	 the	

same	antibiotic	choices	will	be	effective	for	different	patients	in	that	region	in	the	absence	

of	susceptibility	tests.	When	interventions	such	as	antibiotic	stewardship	are	implemented,	

measuring	the	overall	antibiotic	resistance	before	and	after	the	intervention	is	an	approach	

to	quantifying	the	efficacy	of	the	intervention.	Additionally,	a	summary	measure	is	useful	to	

determine	 if	 antibiotic	 resistance	 is	 increasing	 over	 time,	 so	 as	 to	 determine	 if	 an	

intervention	is	needed	or	should	be	expected	in	the	future.	The	summary	measure	provides	

information	on	how	the	level	of	antibiotic	resistance	for	one	hospital	or	region	compares	to	

others,	 which	 is	 helpful	 in	 determining	 which	 are	 in	 need	 of	 increased	 antibiotic	

stewardship	or	susceptibility	testing.		

In	 Chapter	 2,	 I	 provide	 an	 overview	 of	 biodiversity	 measures	 and	 their	 application	 to	

ecology	and	microbial	studies.	In	Chapter	3,	I	propose	methods	to	apply	biodiversity	theory	

to	antibiotic	 resistance	data	and	 illustrate	 these	methods	using	 clinical	data	 from	human	

Salmonella	enterica	 isolates.	The	choice	to	analyze	S.	enterica	data	was	made	because	the	

CIPARS	 Salmonella	 data	 set	 is	 one	 of	 the	 few	 that	 contains	 complete	 information	 on	

antibiotic	resistance	at	the	individual	isolate	level.	The	data	set	also	consists	of	a	relatively	

large	number	of	isolates.	Additionally,	the	epidemiology	of	S.	enterica	 is	similar	enough	to	
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other	 pathogens	 of	 potential	 interest	 that	 the	 analysis	 of	 the	 S.	 enterica	 data	 will	 be	

informative	 for	 the	 analysis	 of	 these	 other	 pathogens	 (see	 Section	 3.2.2,	 Chapter	 3	 for	

further	discussion	on	the	choice	of	Salmonella	dataset).	
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Chapter	2	

Overview	of	Ecological	
Diversity	Indices	

	

2.1			Introduction	
	

Diversity	 indices	 are	 widely	 used	 to	 summarize	 the	 species	 composition	 of	

communities	with	over	5,900	studies	 in	ecology	having	calculated	some	measure	of	

biological	 diversity	 (Web	 of	 Science,	 2016).	 	 Ecologists	make	 a	 distinction	 between	

diversity	measured	at	the	regional	and	landscape	level,	which	are	termed	alpha	and	

gamma	diversity	respectively.	Under	this	distinction,	the	regions	are	subunits	within	

the	landscape	and	landscape	level	(gamma)	diversity	is	calculated	by	pooling	species	

abundances	across	the	regions.	Comparison	of	the	alpha	and	gamma	diversity	values	

provides	information	on	how	diversity	changes	between	regions.	This	is	termed	beta	

diversity	and	for	many	studies,	beta	diversity	may	be	the	quantity	of	most	interest.		

This	 chapter	 presents	 an	 overview	 of	 some	 of	 the	 widely	 used	 alpha	 and	 beta	

diversity	 measures	 in	 ecology,	 which	 may	 be	 useful	 in	 the	 study	 of	 antibiotic	

resistance	as	discussed	in	the	next	chapter	(Chapter	3).		
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2.2			Measuring	regional	(alpha)	diversity	
	

Species	 richness	 is	 defined	 as	 the	 number	 of	 species	 present	 in	 an	 area.	 Species	

evenness	 measures	 the	 similarity	 in	 the	 proportional	 abundance	 of	 these	 species.	

Various	 different	 alpha	 diversity	 indices	 differ	 in	 terms	 of	 the	 relative	 contribution	

that	 species	 richness	 versus	 species	 evenness	 makes	 to	 the	 overall	 index	 value	

(Magurran,	 1988).	 The	 necessary	 properties	 of	 an	 alpha	 diversity	 index	 are:	 (i)	

incorporates	 both	 species	 richness	 and	 species	 evenness;	 (ii)	 attains	 a	 maximum	

value	when	all	species	are	present	in	equal	proportions;	and	(iii)	for	two	communities	

with	 equal	 evenness,	 should	 attain	 a	 higher	 value	 for	 the	 community	 with	 more	

species	(Desrochers	and	Anand,	2004).		

In	1948,	Claude	Shannon	defined	the	concept	of	entropy	in	information	theory	as	the	

amount	 of	 uncertainty	 associated	 with	 the	 identity	 of	 a	 character	 in	 a	 message	

(Shannon	and	Weaver,	1948).	When	applied	to	ecology,	Shannon	entropy	quantifies	

the	uncertainty	of	the	species	identity	of	an	individual	in	the	population:	for	a	highly	

diverse	population	the	species	 identity	 is	highly	uncertain	because	there	are	a	 large	

number	 of	 equally	 common	 species,	 whereas	 a	 population	 has	 low	 diversity	 if	

dominated	by	one	or	a	few	common	species	(Pielou,	1975).			This	idea	forms	the	basis	

of	the	Shannon-Wiener	(SW)	diversity	index.			

The	SW	diversity	index	is	calculated	as,	



	 9	

𝐻" = − 𝑝&ln	(𝑝&+
&,- ),	 (1)	

where	 pi	 is	 the	 proportion	 of	 individuals	 in	 the	 ith	 species,	 ln(pi)	 is	 the	 natural	

logarithm	 of	 pi,	 and	 s	 is	 the	 total	 number	 of	 species	 (i.e.,	 the	 species	 richness,	

Magurran,	1988,	Anderson	et	 al.	 2011).	A	 simple	 interpretation	of	 the	SW	diversity	

index	value	arises	from	exponentiating	the	SW	diversity	value	(𝑒0").	This	calculation	

gives	 the	 ‘effective	diversity’	 (Anderson	et	al.	2011):	 the	number	of	 species,	which	 if	

equally	 abundant,	 would	 have	 the	 same	 SW	 diversity	 value	 as	 the	 community	 of	

interest.	 Table	 2.1	 provides	 an	 example	 of	 calculating	 alpha	 diversity	 using	 the	 SW	

index.	C1	and	C2	have	 the	greatest	alpha	diversity	because	 these	communities	have	

the	greatest	number	of	species	present	and	a	more	even	frequency	distribution.		

Another	widely	used	diversity	index	is	the	Simpson’s	index	(Magurran,	2004),	

𝐻" = 1 −	 𝑝&2+
&,- 	.	 (2)	

The	 Simpson’s	 index	 can	 be	 interpreted	 as	 the	 expected	 probability	 that	 two	

randomly	selected	individuals	sampled	from	the	community	without	replacement	are	

of	different	species,	i.e.	 𝑝&(1 − 𝑝&)+
&,- 	where	equation	(2)	is	recovered	by	noting	that	

every	individual	can	only	belong	to	one	species,	 𝑝&+
&,- = 1.	Different	alpha	diversity	

measures	are	unified	by	the	concept	of	Hill	numbers	(Hill,	1973,	Jost	2006,	Jost	2007,	

Chao	et	al.	2014).	Here,	different	values	of	a	parameter	in	a	common	formula	can	be	

used	to	recover	SW,	Simpson’s	and	other	diversity	measures.		

In	 addition	 to	 the	 SW	 and	 Simpson’s	 index,	 other	 alpha	 diversity	 indices	 may	 be	

appropriate	for	particular	studies	(Table	2.2,	Table	2	in	Hill	et	al.	2003,	Table	1	in	Jost	
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et	 al.	 2006,	 Box	 5.1	 in	Magurran	 and	McGill,	 2011,	 pp.	 56).	 For	 any	 study,	 the	 best	

choice	 of	 alpha	 diversity	 index	 depends	 on	 whether	 it	 is	 more	 appropriate	 to	

emphasize	rare	or	common	species.	However,	frequently	this	criterion	does	not	help	

select	 an	 index	 and	 the	 SW	or	 Simpson’s	 are	 used	 simply	 because	 they	 are	 easy	 to	

interpret	and	frequently	used	in	other	studies	(Pakyz	et	al.	2008,	de	la	Pedrosa	et	al.	

2009,	 Sigala	 and	 Unc,	 2013,	 Morris	 et	 al.	 2014).	 Alpha	 diversity	 indices	 that	more	

heavily	emphasize	species	richness	are	sensitive	to	the	detection	of	rare	species	and	

alpha	diversity	indices,	in	general,	are	prone	to	undersampling	bias	as	they	depend	on	

species	 richness,	 which	 is	 sensitive	 to	 sample	 size	 (Soetaert	 and	 Heip,	 1990,	

Magurran,	2004,	Chao	et	al.	2014).	Several	studies	(Walker	et	al.	2008,	Ricotta	et	al.	

2012,	 Gotelli	 and	 Ellison,	 2012,	 Chao	 and	 Jost,	 2012,	 Colwell	 et	 al.	 2012)	 have	

addressed	the	problem	of	undersampling	bias	for	diversity	indices.	Recently,	Chao	et	

al.	(2014)	explored	the	use	of	interpolation	and	extrapolation	to	reduce	the	effects	of	

undersampling	 bias	 on	 alpha	 diversity	 estimates;	 interpolation	 or	 rarefaction	

involves	 standardizing	 all	 samples	 to	 smaller	 equal	 sample	 sizes,	 and	 extrapolation	

involves	standardizing	to	larger	equal	sample	sizes.		

Some	studies	(Stirling	and	Wilsey,	2001,	Heino	et	al.	2008)	recommend	using	several	

different	alpha	diversity	measures	 to	dilute	 the	effect	of	biases	 that	may	arise	 from	

any	 one	 index.	 Leinster	 et	 al.	 (2012)	 propose	 an	 approach	 that	 replaces	 a	 flood	 of	

diversity	 indices	with	a	 single	 formula	 that	measures	diversity	 in	 terms	of	 effective	

numbers.	This	approach	of	Leinster	et	al.	(2012)	enables	comparisons	of	communities	

based	on	 ‘diversity	profiles’	and	takes	 into	account	the	similarities	between	species,	

not	just	their	relative	abundance.		
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Several	 previous	 studies	 have	 used	 ecological	 diversity	 indices	 to	 quantify	 the	

composition	 of	 a	 population	 of	 antibiotic-resistant	 isolates.	 Pakyz	 et	 al.	 (2008)	

compared	the	alpha	diversity	of	prescribed	antibiotics	and	antibiotic	resistance	data	

for	 17	 hospitals.	 To	 calculate	 the	 SW	 and	 Simpson’s	 diversity	 in	 the	 antibiotics	

prescribed	to	patients,	Pakyz	et	al.	 (2008)	defined	14	different	classes	of	antibiotics	

and	pi	 (as	 it	 appears	 in	 equations	 (1)	 and	 (2))	was	 calculated	 as	 the	 proportion	 of	

defined	daily	doses	(DDD)	due	to	each	of	the	14	classes.	Using	this	approach,	Pakyz	et	

al.	(2008)	were	able	to	summarize	the	level	of	uncertainty	in	which	antibiotics	were	

prescribed	to	patients	across	antibiotic	classes.	In	the	same	study,	Pakyz	et	al.	(2008)	

calculated	 the	 diversity	 of	 antibiotic	 resistance	 for	 specific	 pathogen-antibiotic	

combinations	 (see	Table	1	 in	Pakyz	et	al.	2008).	For	example,	one	of	 the	pathogen-

antibiotic	 combinations	 was	 to	 test	 Staphylococcus	 isolates	 for	 resistance	 to	

methicillin	 and	 here	 pi	 is	 the	 proportion	 of	 Staphylococcus	 isolates	 resistant	 to	

methicillin.	 Using	 this	 approach	 diversity	 values	 were	 calculated	 for	 specific	

pathogen-antibiotic	 combinations	 (i.e.	 Staphylococcus	 isolates	 resistant	 to	

methicillin),	 but	 diversity	 summarized	 for	 all	 different	 types	 of	 resistance	 that	 can	

occur	in	Staphylococcus	was	not.	

Other	studies	have	used	molecular	approaches	to	distinguish	between	different	types	

of	resistant	bacteria	(de	la	Pedrosa	et	al.	2009,	Sigala	and	Unc,	2013,	Abay	et	al.	2014,	

Blaak	et	al.	2015).	For	example,	de	la	Pedrosa	et	al.	(2009)	calculated	the	diversity	of	

erythromycin-resistant	 Streptococcus	 by	 calculating	 the	 proportion	 of	 isolates	

belonging	to	different	‘sequence	types’.	Each	sequence	type	groups	together	ancestors	

of	the	same	founding	genotype	and	so	groupings	are	based	on	shared	ancestry,	rather	
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than	shared	phenotypes,	 such	as	being	resistant	 to	a	particular	antibiotic.	All	of	 the	

Streptococcus	 isolates	were	 resistant	 to	 erythromycin	 and	 so	 sequence	 types	 are	 a	

finer	 partitioning	 of	 isolates	 within	 a	 phenotypic	 class.	 Another	 approach	 is	 to	

calculate	the	species	diversity	of	a	population	of	antibiotic-resistant	isolates	where	pi	

is	the	fraction	of	antibiotic-resistant	isolates	belonging	to	a	particular	species	(Zhang	

et	 al.	 2014).	 As	 such,	 all	 of	 the	 past	 studies	 applying	 biodiversity	 measures	 to	

antibiotic	resistance	data	focus	on	quantifying	species	or	molecular	diversity	and	not	

the	antibiotic	resistance	diversity.	

	

2.3	 	 	 Comparing	 regional	 diversities	 (Beta	
diversity)	
	

While	alpha	diversity	 indices	are	useful	 to	quantify	the	biodiversity	within	a	region,	

beta	 diversity	 indices	 focus	 on	 making	 comparisons	 of	 relative	 species	 abundance	

between	regions.	Robert	H.	Whittaker	(1960,	1972)	first	defined	the	concept	of	beta	

diversity	as	the	variation	in	community	composition	across	regions	where	regions	are	

subunits	within	a	 landscape.	The	classical	approach	defines	beta	diversity	based	on	

alpha	and	gamma	diversity	values,	

βShannon	=	Hγ/Hα.	 	 	 	 	 	 	 	 											(3)	
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(Jost	 2007,	Anderson	 et	 al.	 2011)	where,	Hγ	 =	 exp(H’pooled)	 is	 the	 exponential	 of	 SW	

index	obtained	by	pooling	abundances	for	each	species	across	all	alpha	level	units	and	

Hα	=	exp(H’)	is	the	exponential	of	SW	index	for	a	particular	alpha	level	sampling	unit.			

Approaches	to	measuring	beta	diversity	that	uses	equation	(3)	or	a	related	equation	

are	referred	to	as	the	classical	approach,	however,	the	second	view	of	beta	diversity	is	

to	measure	similarity,	dissimilarity	or	distances	between	regions	(referred	to	as	the	

multivariate	 approach).	Tuomisto	 (2010a),	Anderson	 et	 al.	 (2011)	 and	Bennett	 and	

Gilbert	(2015)	have	reviewed	some	important	differences	between	the	classical	and	

multivariate	approaches	 in	measuring	beta	diversity	and	several	authors	 (Legendre	

and	 Legendre,	 1998,	 Koleff	 et	 al.	 2003,	 Tuomisto,	 2010	 a,	 b,	 Anderson	 et	 al.	 2011,	

Barwell	 et	 al.	 2015)	 have	 reviewed	 various	 important	 properties	 relating	 to	 most	

commonly	used	beta	diversity	measures	in	community	data	analysis.		

The	 multivariate	 approach	 calculates	 a	 ‘dissimilarity	 matrix’,	 D,	 containing	 all	

pairwise	 dissimilarities	 in	 species	 abundance	 between	 regions.	 This	 dissimilarity	

matrix	 is	 calculated	 from	 a	 ‘community	 matrix’,	 C,	 where	 each	 row	 in	 the	 matrix	

represents	 each	 of	 n	 species	 within	 a	 given	 region	 and	 each	 column	 represents	 a	

different	 region	 (Anderson	 et	 al.	 2011;	 see	 Table	 2.1).	 Under	 the	 multivariate	

approach,	 two	 regions	 have	 low	 beta	 diversity	 when	 they	 have	 an	 identical	

composition	and	equal	relative	abundances	for	all	species.	 If	 the	two	regions	do	not	

share	 any	 species,	 then	 they	 are	 compositionally	 very	 different	 and	 have	 high	 beta	

diversity.	The	measure	of	relative	compositional	differentiation	ranges	between	0	and	
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1,	 where	 0	 is	 assigned	 to	 identical	 regions	 and	 1	 means	 no	 species	 are	 shared	

between	regions	(Jost	et	al.	2011).	

Jost	 et	 al.	 (2011)	 argue	 that	 at	 least	 three	 properties	 should	 be	 present	 in	 any	

ecologically	 useful	 measure	 of	 compositional	 similarity:	 i)	 the	 measure	 is	 a	

monotonically	 increasing	 function	 of	 similarity,	 ii)	 the	 measure	 is	 based	 on	 the	

relative	abundance	of	 species,	not	 the	 raw	abundances,	 and	 that	 iii)	 the	measure	 is	

replication-invariant.	Replication	invariance	means,	for	example,	that	if	the	landscape	

is	 comprised	 of	 k	 regions	 each	 with	 identical	 species	 composition	 and	 species	

abundance,	then	the	similarity	between	each	pair	of	regions	is	the	same	irrespective	

of	 how	 many	 regions	 there	 are	 (see	 Magurran	 and	 McGill,	 2011,	 pp.	 67-68	 for	 a	

detailed	discussion).	

Multivariate	measures	of	beta	diversity	indices	are	classified	into	two	broad	classes	of	

measure	 (binary	 or	 quantitative,	 Table	 2.3)	 based	 on	 the	 data	 type	 (Krebs,	 1999).	

Binary	 similarity	 coefficients	 are	 used	 for	 presence/absence	 data,	 considering	 only	

whether	a	 species	 is	present	or	not	and	 ignoring	relative	abundances	 (Krebs,	1999,	

Chao	et	al.	2006,	Anderson	et	al.	2011,	Barwell	et	al.	2015).	When	relative	abundance	

data	 is	 available,	 quantitative	 measures	 of	 beta	 diversity	 are	 generally	 preferred	

(Barwell	et	al.	2015)	and	are	less	affected	by	incomplete	sampling	(Beck	et	al.	2013,	

Barwell	et	al.	2015,	Bennett	and	Gilbert,	2015).	There	are	several	abundance-based	

similarity	 measures	 and	 different	 measures	 emphasize	 different	 aspects	 of	

community	data.	For	example,	the	Bray-Curtis,	Morisita-Horn	index,	modified	Gower,	

Euclidean	 on	 proportions,	 chi-squared,	 and	 Hellinger	 indices	 exclude	 instances	 of	
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joint	absences	and	as	such,	under	these	metrics,	two	regions	are	not	considered	more	

similar	 if	 they	 both	 lack	 certain	 species.	 Like	 alpha	 diversity	 indices,	 different	

dissimilarity	 measures	 emphasize	 rare	 or	 common	 species	 and	 various	 data	

transformations	 (like	 proportions,	 square	 roots,	 fourth	 roots,	 logarithm)	 can	 be	

applied	 to	 raw	 data	 before	measuring	 dissimilarity,	 resulting	 in	 different	 emphasis	

being	 place	 on	 rare/common	 species	 and	 exclusion/inclusion	 of	 joint	 absence	

information	 (Table	 2.3,	 Clarke,	 1999,	 Legendre	 et	 al.	 2005,	 Kindt	 and	 Coe,	 2005,	

pp130,	Table	1	and	Figure	5	in	Anderson	et	al.	2011	list	several	dissimilarity	metrics	

and	 the	 circumstances	where	 each	 is	most	 appropriate).	Often	 several	 dissimilarity	

measures	 are	 viewed	 as	 equally	 appropriate	 and	 Bray-Curtis	 is	 selected	 simply	

because	it	has	been	frequently	applied	in	other	studies	(Clarke	et	al.	2006,	Jost	et	al.	

2011,	Anderson	et	al.	2006,	2011)	thus	facilitating	comparisons.	

The	Bray-Curtis	distance,	developed	by	J.	Roger	Bray	and	John	T.	Curtis	during	their	

research	work	 on	 plant	 community	 ordination,	 is	 the	most	 popular	 and	 frequently	

used	 abundance	 based	 dissimilarity	 measure	 (Bray	 and	 Curtis,	 1957,	 Clarke	 et	 al.	

2006,	 Jost	 et	 al.	 2011,	 Anderson	 et	 al.	 2006,	 2011).	 It	 is	widely	 used	 in	 ecology	 to	

create	distance	matrices	for	vegetation	ordination	analysis	(Gotelli	and	Ellison,	2004,	

Chao	et	al.	2006).	The	desirable	properties	of	 the	Bray-Curtis	dissimilarity	measure	

include	excluding	joint	absences,	insensitivity	to	the	choice	of	units,	robustness	to	the	

addition	of	a	new	region,	and	when	relative	abundance	of	species	are	same	between	

regions	it	recognizes	differences	in	total	abundance.	Bray-Curtis	distance	is	calculated	

as,		
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𝐵 = |5678597|:
7;<

(567=597):
7;<

	,	 	 	 	 	 	 	 	 	 							(4)									

where,	Xak	is	the	abundance	of	species	k	in	the	ath	region,	Xbk	the	abundance	of	species	

k	 in	 the	bth	region,	and	N	 is	 the	 total	number	of	species	recorded	across	both	units.	

Bray-Curtis	 is	 a	 measure	 of	 relative	 compositional	 differentiation	 and	 as	 such,	 the	

index	gives	a	value	of	0	if	the	communities	are	identical	and	1	if	the	communities	are	

completely	 different	 (Table	 2.3;	 see	 Magurran	 and	 McGill,	 2011,	 chapter	 6	 for	 a	

detailed	 review	 of	 Bray-Curtis	 distance	 along	 with	 other	 various	 similarity	 and	

dissimilarity	measures).		

Table	 2.1	 shows	 a	 sample	 calculation	 of	 Bray-Curtis	 dissimilarity.	 The	 dissimilarity	

matrix	reveals	that	C1	is	dissimilar	to	both	C2	(B=0.64)	and	C3	(B=0.67)	and	that	C2	is	

relatively	similar	to	C3	(B=0.22).	Referring	to	the	community	matrix	(Table	2.1),	we	

can	 see	 that	 the	 only	 difference	 between	 C2	 and	 C3	 is	 that	 C2	has	 4	 individuals	 of	

species	D.	

2.3.1			Ordination	Analysis	
	

Dissimilarity	 matrices	 are	 often	 difficult	 to	 interpret	 because	 they	 involve	 many	

pairwise	 comparisons.	 For	 example,	 a	 landscape	 consisting	 of	 10	 different	 regions	

would	give	rise	to	a	dissimilarity	matrix	that	 involves	45	pairwise	comparisons.	For	

such	 a	 landscape,	 how	 can	 we	 simply	 represent	 the	 dissimilarity	 between	 the	

different	regions?	Ordination	techniques	show	the	relationship	between	communities	

and	 species	 in	 a	 low-dimensional	 space	 as	 accurately	 as	 possible	 (Gauch,	 1982,	

Palmer,	 2006),	 where	 frequently	 this	 low-dimensional	 space	 is	 a	 two-dimensional	
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graph	with	a	horizontal	and	vertical	axis	(i.e.,	Figure	2.1).	Regions	that	appear	closer	

in	 ordination	 are	 interpreted	 as	 being	 similar	 in	 species	 composition	 and	 the	 ones	

that	appear	apart	as	containing	different	species.		

Principal	 Component	Analysis	 (PCA)	 is	 one	 of	 the	 oldest	 (Pearson,	 1901)	 and	most	

widely	 used	 unconstrained	 ordination	 methods	 (Kindt	 and	 Coe,	 2005,	 pp	 154,	

Ramette,	 2007,	 Paliy	 and	 Shankar,	 2016).	 The	 Principle	 Components	 (PCs)	 are	 a	

linear	 combination	 of	 the	 species	 abundance	 that	 account	 for	 as	much	 variance	 in	

species	 abundance	 as	 possible	 (Ramette,	 2007,	 Paliy	 and	 Shankar,	 2016).	 The	 first	

principal	 component	 (PC1)	 is	 chosen	 to	 explain	 as	 much	 variance	 as	 possible	 and	

successive	principal	components	are	orthogonal	to	PC1	and	explain	progressively	less	

of	the	remaining	variance	(Kindt	and	Coe,	2005).	

PCA	 can	 be	 performed	 only	 to	 represent	 the	 Euclidean	 distances	 (see	 Table	 2.1)	

between	 regions.	 Generally,	 the	 ability	 to	 represent	 only	 one	 dissimilarity	measure	

limits	the	applicability	of	PCA	for	ecological	studies.	As	a	dissimilarity	measure,	some	

of	 the	 limitations	 of	 Euclidean	 distance	 are	 the	 inclusion	 of	 joint	 absences	 and	

sensitivity	to	the	abundance	of	each	species	rather	than	shared	species.	To	overcome	

these	 limitations,	 one	 option	 is	 to	 transform	 the	 community	 matrix	 prior	 to	

performing	a	PCA	(Kindt	and	Coe,	2005,	Legendre	and	Gallagher	2001).	For	example,	

Euclidean	distance	performed	on	proportions	ensures	that	results	are	not	influenced	

by	differences	in	total	abundance	between	sites	(Kindt	and	Coe,	2005)	and	excludes	

joint	absence	information	(Anderson	et	al.	2011).	
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Figure	 2.1A	 shows	 a	 PCA	 ordination	 corresponding	 to	 the	 community	 data	

represented	 in	Table	2.1.	The	data	were	 transformed	 into	proportional	 abundances	

and	the	PCA	was	performed	on	the	variance-covariance	matrix	(Table	2.4;	Scaling	1)	

formed	by	measuring	the	covariance	in	species	abundance	for	the	community	matrix	

(Table	2.1).	 In	Figure	2.1A,	 the	distance	between	the	communities	C1,	C2,	and	C3	 is	

the	Euclidean	distance.	Euclidean	distance	would	not	be	represented	accurately	if	the	

PCA	 was	 performed	 on	 a	 matrix	 that	 describes	 the	 correlation	 between	 species	

abundances	(Scaling	2;	Kindt	and	Coe,	2005,	Ramette,	2007).	Since	they	appear	closer	

in	the	two-dimensional	PCA,	Figure	2.1A	shows	that	communities	C2	and	C3	are	most	

similar,	 which	 can	 be	 confirmed	 by	 referring	 to	 Table	 2.1	 (Dissimilarity	 matrix	 -	

Euclidean	 distance).	 The	 first	 principal	 component	 (PC1)	 explains	 75.41%	 and	 the	

second	 principal	 component	 (PC2)	 explains	 24.58%	 of	 the	 variation	 in	 species	

abundance.	Arrows	are	drawn	for	species	S2	and	S4,	which	shows	the	direction	from	

the	 origin	 for	which	 communities	 have	 higher	 than	 average	 relative	 abundance	 for	

these	species.	For	example,	community	C2	appears	in	the	direction	of	S4	because	C2	

has	higher	than	average	relative	abundance	for	S4	(Figure	2.1A).	The	length	of	each	

arrow	projected	onto	the	PC1	or	PC2	axis	quantifies	the	contribution	of	that	species	to	

the	 respective	 principal	 component	 (Green,	 1990).	 For	 example,	 the	 abundance	 of	

species	S2	makes	the	biggest	contribution	to	PC1	with	species	S1,	S3	and	S4	making	

smaller	contributions,	while	species	S4	makes	the	biggest	contribution	to	PC2	(Figure	

2.1A).	 The	 perpendicular	 lines	 (dashed)	 from	 each	 community	 onto	 the	 species	 S2	

arrow,	as	shown	in	Figure	2.1A,	indicate	the	relative	ranking	of	the	abundance	of	S2	

for	each	community.	Since	C3	is	projected	farthest	from	the	origin	in	the	direction	of	
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S2,	 it	has	 the	highest	relative	abundance	of	S2.	Community	C1	 is	projected	onto	 the	

reflection	 of	 the	 S2	 vector,	 which	 means	 it	 has	 lower	 than	 an	 average	 relative	

abundance	of	species	S2.	Referring	to	Table	2.1	(Community	matrix),	C3	has	a	higher	

relative	 abundance	 of	 species	 S2	 than	 C2	 and	 examining	 the	 perpendicular	 lines	

(Figure	2.1A),	C3	shows	a	higher	relative	abundance	of	species	S2	than	C2.	However,	

the	positions	in	PCA	only	approximate	the	exact	relationships	in	the	data	since	only	a	

percentage	 of	 the	 total	 variation	 is	 explained	 by	 the	 graph	 (see	 Legendre	 and	

Legendre,	 1998,	 chapter	 9	 and	 Ramette,	 2007	 for	 a	 detailed	 discussion	 on	 PCA	

method).		

Another	 technique	 for	 unconstrained	 ordination	 is	 Principal	 coordinates	 Analysis	

(PCoA).	PCoA	is	similar	to	PCA	but	can	be	performed	using	any	distance/dissimilarity	

measure.	 Non-metric	 Multidimensional	 Scaling	 (NMDS)	 is	 an	 unconstrained	

ordination	technique,	related	to	PCoA,	where	NMDS	ordination	ranks	the	dissimilarity	

between	sites	of	a	community	matrix	and	uses	those	ranks	to	map	the	sites	onto	the	

chosen	N-dimensional	ordination	space	(usually	a	two-dimensional	graph).	As	NMDS	

preserves	only	 the	ranked	dissimilarities,	we	cannot	conclude	 that	a	pair	of	 regions	

appearing	twice	as	far	apart	as	another	pair	of	regions	are	twice	as	dissimilar,	rather	

we	 can	only	 conclude	 that	 the	 regions	 appearing	more	distant	 are	more	dissimilar.	

Because	 high	 dimensional	 data	 (i.e.,	 many	 different	 pairwise	 dissimilarities)	 are	

represented	 in	 a	 lower	 dimensional	 space	 it	 may	 not	 be	 possible	 for	 the	 NMDS	

ordination	to	preserve	the	complete	accuracy	of	the	data.	The	accuracy	of	the	NMDS	

in	 representing	 the	 relationships	 present	 in	 the	 dissimilarity	 matrix	 can	 also	 be	

visualized	 using	 a	 Shepherd	 diagram	 (Shepard,	 1962),	 which	 plots	 the	 distances	
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between	 the	 points	 in	 the	 ordination	 space	 versus	 the	 values	 of	 the	 dissimilarity	

matrix	(Legendre	and	Legendre,	1998).		The	mismatch	between	the	rank	order	of	the	

pairwise	 dissimilarities	 in	 the	 dissimilarity	 matrix	 and	 in	 the	 NMDS	 ordination	 is	

measured	 as	 ‘stress’	 (Palmer,	 2006)	 and	 generally,	 a	 stress	 value	 of	 ≤	 0.15	 is	

considered	acceptable	(Clarke,	1993,	Paliy	and	Shankar,	2016).		

Figure	 2.1B	 shows	 an	 NMDS	 ordination	 corresponding	 to	 the	 community	 data	

represented	 in	Table	2.1.	 	Figure	2.1B	shows	 that	communities	C2	and	C3	are	most	

similar	to	each	other	and	that	both	of	these	communities	are	relatively	dissimilar	to	

C1.	Referring	to	Table	2.1	(Dissimilarity	matrix	–	Bray-Curtis)	we	can	verify	that	this	

figure	is	a	reasonable	representation	(i.e.,	 from	most	similar	to	 least	similar:	C2	and	

C3	(0.22),	C1	and	C2	(0.64),	and	C1	and	C3	(0.67)).	

Several	 previous	 studies	 have	 used	 beta	 diversity	 measures	 and	 ordination	

techniques	to	compare	species	diversity	and	compositions	of	bacterial	communities.	

Price	 et	 al.	 (2009)	 used	 molecular	 techniques,	 Bray-Curtis	 distance,	 and	 NMDS	

ordination	methods	to	compare	the	bacterial	community	in	the	wounds	of	antibiotic-

treated	patients	to	that	of	untreated	patients.	Price	et	al.	(2009)	found	that	antibiotic	

treatments	 affect	 bacterial	 community	 structure	 by	 reducing	 the	 number	 of	 some	

bacteria	 while	 having	 no	 effect	 on	 others.	 Hong	 et	 al.	 (2010)	 compared	 the	

composition	of	microbiota	in	the	feces	of	infants	with	and	without	eczema	(a	chronic	

disorder	 in	 children).	 The	 presence	 of	 different	 bacterial	 phyla	was	 detected	 using	

molecular	 techniques	 and	 then	PCA	was	performed	on	 the	 abundance	of	 individual	

taxonomic	 units.	 Hong	 et	 al.	 (2010)	 found	 a	 strong	 correlation	 between	 the	
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abundances	of	particular	bacterial	genera	and	the	health	status	of	infants	during	the	

early	 stage	of	 infancy.	A	 study	by	Caucci	et	al.	 (2016)	used	beta	diversity	measures	

and	 ordinations,	 finding	 that	 water	 treatment	 influenced	 the	 abundance	 and	

composition	of	the	microbial	community,	but	had	no	significant	effect	in	the	relative	

abundance	of	the	antibiotic	resistance	genes.	As	for	the	application	of	alpha	diversity	

measures	to	antibiotic	resistance	data,	all	 the	previous	studies	of	beta	diversity	and	

ordinations	focus	on	comparing	species	or	molecular	composition	between	microbial	

communities	 and	 not	 the	 composition	 at	 the	 phenotypic	 level,	 i.e.	 composition	 of	

antibiotic	resistance.		

	

2.4			Conclusions	
	

Ecological	 diversity	 indices	 have	 been	 in	 use	 for	 several	 decades	 (Whittaker	 1972,	

Magurran,	 1988).	 Alpha	 diversity	 indices	 are	 useful	 for	 quantifying	 the	 uncertainty	

regarding	the	species	present	in	a	community	and	account	for	both	species	richness	

and	species	evenness.	There	are	various	alpha	diversity	measures	that	emphasize	the	

different	 aspect	 of	 species	 abundance	 (i.e.,	 rare	 versus	 common).	 Beta	 diversity	

measures	 are	 useful	 in	 comparing	 two	 or	more	 communities	 based	 on	 the	 species	

composition	 as	 they	 quantify	 the	 similarity	 in	 the	 relative	 abundance	 of	 species	

between	 communities.	 Like	 alpha	 diversity,	 there	 are	 numerous	 beta	 diversity	

measures	that	emphasize	different	aspects	of	species	composition,	such	as	inclusion	

versus	 exclusion	 of	 joint	 absence	 information	 or	 emphasis	 on	 common	 versus	 rare	
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species.	 Additionally,	 ordination	 techniques	 can	 be	 used	 to	 effectively	 visualize	 the	

differences	 in	 community	 composition	 measured	 using	 multidimensional	 beta	

diversity	 indices	 when	 there	 are	 more	 than	 two	 communities.	 Past	 studies	

demonstrate	 the	application	of	ecological	diversity	 indices	 to	measuring	 the	species	

or	molecular	diversity	of	microbial	communities	but	not	the	phenotypic	diversity	(i.e.	

the	diversity	of	antibiotic	 resistance).	The	approaches	explained	 in	 this	 chapter	 can	

also	be	applied	to	antibiotic	resistance	data	to	quantify	the	uncertainty	surrounding	

which	 antibiotics	 a	 bacterial	 isolate	 is	 resistant	 to	 and	 to	 compare	 antibiotic	

resistance	between	regions	as	explained	in	Chapter	3.		
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2.5			Tables	and	Figures		
	

	

Table	2.1:	Example	of	Community	and	Dissimilarity	Matrices.	The	community	matrix	
describes	the	abundance	and	relative	abundance	(parentheses)	of	species	in	each	of	
three	regions	(C1,	C2,	C3).	The	Shannon-Weiner	(SW)	index	(H’;	equation	1)	and	the	
effective	 diversity	 (eH’)	 is	 calculated	 for	 the	 community	 matrix.	 	 The	 dissimilarity	
matrix	 quantifies	 the	 pairwise	 dissimilarity	 between	 the	 regions	 as	 measured	 by	
Euclidean	and	Bray-Curtis	distance.	This	example	is	based	on	Tuomisto	et	al.	(2006).	

Community	matrix	
	 C1	 C2	 C3	

Species	S1	 5	(0.45)	 1	(0.09)	 1	(0.14)	
Species	S2	 1	(0.09)	 5	(0.45)	 5	(0.71)	
Species	S3	 4	(0.36)	 1	(0.09)	 1	(0.14)	
Species	S4	 1	(0.09)	 4	(0.36)	 0	(0.00)	

SW	index	(H’)	 1.16	 1.16	 0.8	
Effective	diversity	(eH’)	 3.19	 3.19	 2.23	

Dissimilarity	matrix	–	Euclidean	
	 C1	 C2	

C2	 7.07	 	
C3	 6.48	 4.00	

Dissimilarity	matrix	–	Bray-Curtis	
	 C1	 C2	

C2	 0.64	 	
C3	 0.67	 0.22	
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Table	2.2:	Comparison	of	some	common	Alpha	Diversity	Indices	

Indices	 What	they	do?	 Formulae	

	
	
	

1. Shannon-Weiner	
index	

Ø Measures	the	
uncertainty	of	species	
identity	in	a	community		

Ø Combines	species	
richness	and	evenness	

Ø More	moderate	and	
broad	weighting	to	rare	
and	intermediate	
species	

𝐻" = − 𝑝&ln	(𝑝&

+

&,-

)	

pi	is	the	proportion	of	
individuals	belonging	to	
the	ith	species;	

s	is	the	total	number	of	
species	

	
	

	
2. Simpson’s	index	

Ø Gives	probability	of	
two	species	drawn	at	
random	belonging	to	
the	same	community	

Ø Heavily	weighs	
common	species	

𝐻" = 1 −	 𝑝&2
+

&,-

	

pi	is	the	proportion	of	
individuals	belonging	to	
the	ith	species;	
s	is	the	total	number	of	
species	

	
	

3. Berger-Parker	index	

Ø Relative	abundance	
of	the	most	abundant	
species	

Ø Rare	species	are	
completely	ignored	

										
𝐻" = max	(𝑝&)	

pi	is	the	proportion	of	
individuals	belonging	to	
the	ith	species	

	
	

	
4. Renyi	entropy	

Ø Generalization	of	SW	
diversity	index.	

Ø Gives	different	
diversity	indices	for	
values	of	q	other	than	
1		

	

𝐻" = -
A8-

−ln 𝑝&
A+

&,- 	
pi	is	the	proportion	of	
individuals	belonging	to	
the	ith	species;	
s	is	the	total	number	of	
species;	
q	represents	the	order	of	
diversity	other	than	1	
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Table	2.3:		Comparison	of	some	common	Beta	Diversity	Indices		

Indices	 What	they	do?	 Formulae	

A)	Binary	Similarity	Coefficients	 	
	
	
	
	
1.	Jaccard	index	

Ø Compares	number	of	shared	
species	to	total	number	of	species	
in	combined	communities		

Ø Global	view	of	communities	
Ø Doesn’t	consider	commonness	

and	scarcity	of	species	
Ø Weighs	rare	and	common	species	

equally	

𝑆-2
𝑆- + 𝑆2 − 𝑆-2

	

	
S12	–	number	of	shared	species	in	
both	communities	
S1	–	number	of	species	in	
community	1	
S2	–	number	of	species	in	
community	2	

	
	
	
2.	Sorenson	index	

Ø Compares	number	of	shared	
species	to	the	mean	number	of	
species	in	a	single	community	

Ø Local	view	of	the	community	
Ø Doesn’t	consider	commonness	

and	scarcity	of	species	
Ø Weighs	rare	and	common	species	

equally	

2 ∗ 𝑆-2
𝑆- + 𝑆2

	

	
S12	–	number	of	shared	species	in	
both	communities	
S1	–	number	of	species	in	
community	1	
S2	–	number	of	species	in	
community	2	

B)	Quantitative	Similarity	Coefficients	 	
	
	
	
1.	Morisita-Horn	Index	

	
• Highly	sensitive	to	most	abundant	

species		
• Rare	species	have	little	effect	
• Excludes	joint	absences	

SMH = 1 −
𝑋𝑎𝑘 − 𝑋LM 2𝑁

𝑘=1

𝑋�M2𝑁
𝑘=1 + 𝑋LM2𝑁

𝑘=1
	

	
SMH	=	index	of	similarity	
N	–	total	number	of	species	in	
combined	communities	
𝑋OM	-	number	of	individuals	of	
species	k	in	community	a		
𝑋LM -	number	of	individuals	of	
species	k	in	community	b	

	
	
	
2.	Euclidean	Distance	

	

• Strongly	depends	on	abundance	of	
each	species	

• Abundant	species	have	more	
effect	

• Includes	joint	absences	

Eab = (𝑋𝑎𝑘 − 𝑋𝑏𝑘)
2

𝑁

𝑘=1

	

	
N	–	total	number	of	species	
Xak	-	number	of	individuals	of	
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	 species	k	in	community	a	
Xbk	–	number	of	individuals	of	
species	k	in	community	b	

	
3.	Manhattan	Distance	
	
§ The	following	two	

measures	(i	and	ii)	
are	based	on	
Manhattan	
Distance	

	
• Standardized	over	individuals	in	a	

community	
• Rare	and	abundant	species	make	

equal	contribution	
• Includes	joint	absences		

𝑑T 𝑎, 𝑏 = 	 𝑋OM − 𝑋LM

V

M,-

	

	
N	–	total	number	of	species	
Xak	-	number	of	individuals	of	
species	k	in	community	a	
Xbk	–	number	of	individuals	of	
species	k	in	community	b	

									
	
								i)	Bray-Curtis		
												Distance	

	
	

o Recognizes	differences	in	total	
abundance	when	relative	
abundance	is	same	

o Dominated	by	abundant	species	
o Rare	species	have	very	little	effect	
o Excludes	joint	absences		

	

𝐵 =
|𝑋OM − 𝑋LM|V

M,-

(𝑋OM + 𝑋LM)V
M,-

	

B	-	measure	of	dissimilarity		
N	-	number	of	species	in	
communities	
	Xak	–	number	of	individuals	of	
species	k	in	community	a	
Xbk	–	number	of	individuals	of	
species	k	in	community	b	

					
						
									ii)	Canberra			

															metric	

	
o Standardized	over	species	instead	

of	individuals		
o Rare	species	have	more	effect	
o Abundant	species	have	relatively	

less	effect		
o Includes	joint	absences	

																𝐶 = -
V

|5678597|
567=597

V
M,- 	

C	-	coefficients	of	dissimilarity		
N	-	number	of	species	in	
communities	
Xak	–	number	of	individuals	of	
species	k	in	community	a	
Xbk	–	number	of	individuals	of	
species	k	in	community	b	

	
	
	
4.	Gower’s	Distance	

	
• Handles	situations	when	missing	

values	are	present	
• Individual	species	can	be	

weighted	differently	
• Includes	joint	absences	

𝑠𝑎𝑏 = 	
𝑊𝑎𝑏𝑘𝑆𝑎𝑏𝑘𝑘

𝑊𝑎𝑏𝑘𝑘
	

sab	–	Similarity	coefficient	
comparing	two	communities	a	
and	b	
Sabk	–	contribution	provided	by	
kth	variable	
Wabk	–	usually	1	or	0,	depends	
on	whether	comparison	is	valid	
for	the	kth	variable	
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Table	2.4:	The	covariance	matrix	corresponding	the	community	matrix	in	Table	2.1.	
The	 covariance	matrix	 describes	 the	 covariance	 between	 species	 (S1,	 S2,	 S3,	 S4)	 in	
each	of	three	regions	(C1,	C2,	C3)	for	the	community	matrix	in	Table	2.1.	

Covariance	Matrix	

Species	 S1	 S2	 S3	 S4	

S1	 0.04	 -0.05	 0.03	 -0.01	

S2	 -0.05	 0.10	 -0.04	 -0.01	

S3	 0.03	 -0.04	 0.02	 -0.01	

S4	 -0.01	 -0.01	 -0.01	 0.04	
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Figure	2.1:	Ordinations	for	the	Community	Matrix	shown	in	Table	2.1.	A.	PCA	for	the	
Community	Matrix	 in	Table	2.1,	using	 the	covariance	matrix	(Table	2.4),	where	PC1	
explains	 75.41%	 and	 PC2	 explains	 24.58%	 of	 the	 variance	 in	 the	 composition	 of	
species	 S1,	 S2,	 S3,	 and	 S4	 with	 respect	 to	 communities	 C1,	 C2,	 and	 C3.	 For	 visual	
clarity,	 vector	 arrows	 are	 only	 drawn	 for	 species	 S2	 and	 S4,	 but	 can	 be	 drawn	 for	
species	 S3	 and	 S1	 in	 the	 same	way.	 The	 point	 of	 intersection	 of	 the	 perpendicular	
lines	 (dashed)	 from	each	 community	onto	 the	 species	 S2	 arrow	 indicate	 ranking	of	
communities	 from	 low	 (C1	 lowest)	 to	 high	 (C3	 highest)	 in	 relative	 abundance	 for	
species	 S2.	 Similarly,	 perpendicular	 lines	 can	 be	 drawn	 onto	 any	 species	 arrow	 for	
similar	 interpretation.	B.	NMDS	 for	 the	Community	Matrix	 in	Table	2.1,	using	Bray-
Curtis	distance	(Stress	=	0).		Stress	describes	the	mismatch	between	the	rank	order	of	
the	pairwise	dissimilarities	between	communities	for	Bray-Curtis	distance	and	in	the	
NMDS	ordination.	The	NMDS	was	performed	on	 raw	abundance	data.	The	PCA	was	
performed	on	raw	abundance	data	 transformed	 into	proportions	so	 that	 the	results	
are	 not	 influenced	 by	 differences	 in	 total	 abundance	 between	 communities	 and	
Euclidean	distance	on	proportion	excludes	joint	absences.	
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Chapter	3	

Application	of	Ecological	
Diversity	Indices	to	Antibiotic	

Resistance	
	

	

3.1			Introduction	
	

Many	 studies	 of	 antibiotic	 resistance	 report	 the	 resistance	 of	 pathogens	 to	 specific	

antibiotics	or	classes	of	antibiotics	(Di	Giulio	et	al.	2015,	Dyar	et	al.	2012,	Abadi	et	al.	2010,	

Nys	et	al.	2004)	with	only	limited	evaluation	of	antibiotic	resistance	across	a	broad	range	of	

antibiotics.	Recent	studies	support	the	need	for	 indices	summarizing	antibiotic	resistance	

across	antibiotics,	pathogen	species,	and	disease	syndromes	(Laxminarayan	and	Klugman,	

2011,	Ciccolini	et	al.	2015).	Given	the	success	of	biodiversity	measures	in	ecology,	there	is	

great	potential	for	this	approach	to	be	applied	to	summarize	antibiotic	resistance	data.	

The	 utility	 of	 applying	 alpha	 diversities	 to	 antibiotic	 resistance	 data	 is	 to	 quantify	 the	

uncertainty	 surrounding	 which	 antibiotics	 a	 bacterial	 isolate	 is	 resistant	 to.	 This	
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information	 is	useful	when	 infections	are	 treated	without	prior	susceptibility	 testing.	For	

example,	 diseases	 such	 as	 urinary	 tract	 infections	 in	 adults	 (Holm	 et	 al.	 2015),	 sepsis,	

meningitis,	 pneumonia,	 pyelonephritis,	 gastroenteritis,	 osteomyelitis,	 and	 cellulitis	 in	

children	(Bruel	et	al.	2007)	are	diagnosed	and	treated	without	any	knowledge	of	antibiotic	

susceptibility.	 If	 the	population	of	bacteria	associated	with	particular	symptoms	 is	highly	

diverse	 with	 respect	 to	 its	 antibiotic	 resistance	 then	 there	 is	 a	 high	 probability	 that	

different	 patients	 are	 infected	 with	 pathogens	 that	 have	 different	 resistance	 types.		

Therefore,	 it	 is	 less	 likely	 that	an	antibiotic	 that	 is	 successful	 for	one	patient	will	 also	be	

successful	for	the	next	patient.	As	such,	for	a	population	of	bacteria	that	are	highly	diverse	

with	 respect	 to	 antibiotic	 resistance,	 when	 antibiotic	 susceptibility	 is	 unknown,	 the	

recommended	strategies	for	prescribing	antibiotics	may	be	different	than	for	populations	

with	less	antibiotic	resistance	diversity.	Previous	studies	have	used	alpha	diversity	indices	

to	quantify	species	or	molecular	diversity	of	resistant	bacteria	isolates	(Pakyz	et	al.	2008,	

de	la	Pedrosa	et	al.	2009,	Sigala	and	Unc,	2013,	Abay	et	al.	2014,	Blaak	et	al.	2015,	Zhang	et	

al.	 2014),	 however	 no	 applications	 of	 alpha	 diversity	 measures	 to	 antibiotic-resistant	

populations	have	focused	on	the	diversity	of	antibiotic	resistance.	

Beta	diversity	indices	measure	the	similarity	in	the	antibiotic	resistance	between	regions.	

Regions	that	have	a	similar	distribution	of	antibiotic	resistance	will	have	low	beta	diversity,	

appear	close	 in	an	ordination,	and	 the	best	antibiotic	 treatment	 strategies	 for	patients	 in	

these	regions	will	be	similar.	Similar	to	alpha	diversity	indices,	all	the	previous	applications	

of	 beta	 diversity	 measures	 and	 ordination	 techniques	 have	 focused	 on	 the	 species	 or	

molecular	 composition	 of	 bacterial	 communities	 (Price	 et	 al.	 2009,	 Hong	 et	 al.	 2010,	
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McLellan	et	al.	2011,	Sigala	and	Unc,	2013,	Shankar	et	al.	2013,	Mutlu	et	al.	2014,	Caucci	et	

al.	2016)	and	not	the	composition	with	respect	to	antibiotic	resistance.	

In	 this	 chapter,	 we	 explore	 the	 utility	 of	 ecological	 diversity	 indices	 in	 summarizing	

patterns	 of	 antibiotic	 resistance.	 In	 the	 methods	 section,	 we	 discuss	 approaches	 for	

applying	alpha	and	beta	diversity	 indices	to	antibiotic	resistance	data.	Then,	we	illustrate	

the	 application	 of	 our	 proposed	 methods	 for	 a	 case	 study	 that	 analyzes	 data	 from	 the	

Canadian	 Integrated	 Program	 for	 Antimicrobial	 Resistance	 Surveillance	 (CIPARS)	 on	

antibiotic	 resistance	 in	 clinical	Salmonella	 enterica	 isolates	 collected	 from	 across	 Canada	

(CIPARS,	2013).	 In	 this	case	study,	we	measure	SW	diversity,	an	alpha	diversity	 index,	 to	

quantify	 the	 uncertainty	 surrounding	 which	 antibiotics	 clinical	 S.	 enterica	 isolates	 are	

resistant	 to.	 Then,	 we	 test	 whether	 SW	 diversity	 is	 affected	 by	 different	 Canadian	

provinces,	S.	enterica	serotypes,	time	periods	or	combinations	of	these	factors.		

We	measure	Bray-Curtis	distance,	a	beta	diversity	index,	to	measure	similarity	in	antibiotic	

resistance.	 We	 perform	 ordinations	 to	 visualize	 differences	 in	 the	 relative	 resistance	 to	

particular	antibiotics	between	provinces,	serotypes,	time	periods	or	combination	between	

them.		We	conclude	with	recommendations	for	the	future	use	of	ecological	diversity	indices	

to	analyze	and	understand	antibiotic	resistance	data.		

	

3.2			Material	and	Methods	
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3.2.1	 	 	 	 Applying	 diversity	 indices	 to	 antibiotic	
resistance	data	
	

An	 isolate	 is	 a	 pathogen	 isolated	 from	 a	 host	 or	 surface.	 For	 a	 sample	 of	 isolates,	 when	

measuring	 alpha	 diversity	 to	 quantify	 the	 uncertainty	 regarding	 which	 antibiotics	 the	

population	of	isolates	is	resistant	to,	we	need	to	define	pi	(as	it	appears	in	equation	1	and	2	

in	 Section	 2.2)	with	 regard	 to	 resistance.	 Suppose	we	 let	pi	 be	 the	 fraction	 of	 pathogens	

resistant	to	the	antibiotic	i,	and	s	be	the	total	number	of	antibiotics	considered.	Under	these	

definitions	 the	 sum	 𝑝&+
&,- 	 may	 exceed	 1	 and	 the	 properties	 (ii)	 and	 (iii)	 of	 a	 diversity	

index	 as	 described	 in	 Section	 2.2	 no	 longer	 hold	 or	 make	 sense.	 Furthermore,	

interpretations	of	the	meanings	of	the	values	of	the	SW	and	Simpson’s	index	as	described	in	

Section	2.2	no	longer	hold.	We	suggest	two	possible	solutions	to	this	problem:	

1)	 The	 line-listed	 approach.	 This	 approach	 considers	 each	 resistance	 type	 (i.e.,	 the	

complete	 combination	of	 antibiotics	 that	 an	 isolate	 is	 resistant	 to	 for	all	 isolates	 that	 are	

resistant	 to	 at	 least	 one	 antibiotic;	 see	Table	3.1)	 such	 that	pi	 in	 equation	1	 and	2	 is	 the	

proportion	 of	 isolates	 belonging	 to	 a	 resistance	 type	 i,	 and	 s	 is	 the	 total	 number	 of	

resistance	types;	and	

2)	The	aggregated	approach.	This	approach	considers	resistance	to	each	antibiotic	(Table	

3.1)	such	that	pi	 in	equation	1	and	2	 is	 the	proportion	of	 isolates	resistant	 to	a	particular	

antibiotic,	i,	relative	to	the	total	frequency	of	resistance	summed	across	all	antibiotics,	fi,	i.e.		

pi	=	fi/Σ	fi,																																																																																																																																																								(5)	

and	s	in	equation	1	and	2	is	the	total	number	of	antibiotics.	
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When	 calculating	 beta	 diversity	 using	 the	 ‘classical	 approach’	 (equation	 3	 in	 Section	 2.3,	

Chapter	2)	the	same	challenges	arise	as	were	described	above	for	the	application	of	alpha	

diversity	indices	to	resistance	data:	specifically,	pi	must	be	defined	so	that	the	 𝑝&+
&,- = 1.	

However,	when	beta	diversity	is	calculated	using	multivariate	dissimilarity	measures	there	

is	no	such	restriction	that	the	approach	need	only	be	applied	to	data	scaled	to	sum	to	one.	

Therefore,	we	define	Xak	and	Xbk	(as	it	appears	in	equation	4	in	Section	2.3,	Chapter	2)	as	

the	number	or	 frequency	of	 isolates	 that	 are	 resistant	 to	 antibiotic	k	 recovered	 from	 the	

population	a	and	population	b,	respectively.	This	is	referred	to	as	an	aggregated	approach	

because	 ‘k’	 indexes	different	antibiotics	and	not	different	resistance	types,	as	a	 line-listed	

approach	would.	One	 isolate	might	be	resistant	 to	more	 than	one	antibiotic,	however	 the	

application	 of	 multivariate	 beta	 diversity	 measures	 does	 not	 require	 a	 unique	

categorization	of	each	isolate	in	the	way	that	the	alpha	diversity	measures	do.		

If	beta	diversity	and	 the	resulting	ordinations	are	performed	on	 the	raw	abundance	data	

(i.e.	frequency	of	resistance	to	different	antibiotics),	populations	within	a	NMDS	ordination	

that	 appear	 close	 to	 each	 other	 have	 similar	 magnitudes	 of	 resistance	 to	 the	 same	

antibiotics.	 If	 beta	 diversity	 analyses	 and	 ordinations	 are	 performed	 on	 abundance	 data	

transformed	 into	 proportions	 (i.e.	 the	 frequency	 of	 resistance	 to	 different	 antibiotics	 is	

normalized	to	sum	to	1),	then	Xak	and	Xbk	(as	they	appear	in	equation	4	in	Section	2.3)	are	

the	 relative	 number	 of	 isolates	 that	 are	 resistant	 to	 the	 antibiotic	 k	 recovered	 from	

populations	a	and	b,	respectively,	and	under	this	transformation	populations	within	a	PCA	

ordination	that	appear	close	to	each	other	have	low	dissimilarity	as	measured	by	Euclidean	

distance.	For	a	PCA,	the	vectors	represent	different	antibiotics	and	point	in	the	direction	of	

higher	than	an	average	relative	abundance	of	particular	antibiotics.	
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In	 the	 analyses	 that	 follow	 (Section	 3.3),	 alpha	 diversity	 is	 calculated	 based	 on	 the	 line-

listed	approach	and	beta	diversity	is	calculated	using	the	aggregated	approach	(see	Figure	

3.1).	The	reasons	for	these	choices	will	be	discussed	in	more	detail	in	section	3.4.1.		

3.2.2			Data	Summary	
	
We	 chose	 to	 illustrate	 our	 method	 of	 applying	 biodiversity	 measures	 to	 antibiotic	

resistance	 data	 using	S.	 enterica	 clinical	 isolates	 from	CIPARS.	 To	 facilitate	 replication	 of	

our	results,	 the	data	request	 form	is	provided	 in	 the	Appendix.	This	dataset	was	selected	

due	to	the	large	number	of	isolates	collected	(over	35,000	isolates	between	January	1,	2003	

and	 December	 31,	 2013)	 and	 because	 it	 is	 one	 of	 the	 few	 individual	 isolate	 level	 (line-

listed)	 data	 sources	 available:	 more	 often	 antibiotic	 resistance	 data	 are	 available	 as	

population	 level	 frequencies	of	resistance	 to	 individual	antibiotics	(aggregated	data).	The	

human	 S.	 enterica	 isolates	 were	 tested	 for	 their	 susceptibility	 to	 a	 large	 number	 of	

antibiotics	 (17),	 which	 facilitated	 our	 goal	 of	 summarizing	 antibiotic	 resistance	 across	 a	

wide	range	of	antibiotics.	Even	though	gastroenteritis	arising	from	S.	enterica	infections	are	

not	 typically	 treated	with	 antibiotics,	 the	 analysis	would	be	 similar	 for	hospital-acquired	

(i.e.,	Staphylococcus	aureus,	Enterococcus	spp.,	Enterobacteriaceae,	Pseudomonas	aeruginosa	

and	 Acinetobacter	 spp.)	 and	 community-acquired	 (i.e.,	 Mycobacterium	 tuberculosis,	

Streptococcus,	and	pathogens	causing	Sexually	Transmitted	Infections)	pathogens	that	are	

treated	with	antibiotics.	

Provincial	 public	 health	 laboratories	 receiving	 high	 volumes	 of	 S.	 enterica	 isolates	 from	

hospital-based	 and	 clinical	 laboratories	 were	 responsible	 for	 providing	 a	 detailed	 set	 of	
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data	to	CIPARS	for	each	S.	enterica	 isolate	they	received	(CIPARS,	2013).	Eight	serotypes:	

Enteritidis,	 Heidelberg,	 Newport,	 Paratyphi	 A,	 Paratyphi	 B,	 Typhi,	 Typhimurium,	 and	 I	

4,[5],12:i:-,	were	routinely	tested	for	susceptibility	to	17	antibiotics	(Amoxicillin-clavulanic	

acid,	 Amikacin,	 Ampicillin,	 Azithromycin,	 Ceftiofur,	 Ceftriaxone,	 Cefoxitin,	 Cephalothin,	

Chloramphenicol,	 Ciprofloxacin,	 Gentamicin,	 Kanamycin,	 Nalidixic	 acid,	 Sulfisoxazole,	

Streptomycin,	 Tetracycline,	 Trimethoprim-sulfamethoxazole),	 and	 the	 remaining	 isolates	

were	stored	for	future	susceptibility	tests.		

We	 excluded	 the	 serotypes	 Typhi	 and	 Paratyphi	 A	 and	 B	 from	 our	 analysis,	 as	 these	

serotypes	are	known	to	cause	the	typhoidal	cases	of	S.	enterica	(CIPARS,	2013).	As	we	were	

interested	 in	 studying	 the	 antibiotic	 resistance	 of	 S.	 enterica	 in	 different	 provinces	 of	

Canada,	 we	 only	 included	 the	 non-typhoidal	 cases,	 as	 the	 typhoidal	 cases	 are	 usually	

contracted	during	 international	 travel.	We	also	excluded	the	Canadian	territories	(Yukon,	

Northwestern	Territories,	 and	Nunavut)	 from	our	 analysis	because	 fewer	 than	3	 isolates	

were	submitted.	The	provinces	of	Prince	Edward	Island	and	Newfoundland	and	Labrador	

were	also	excluded	from	our	alpha	diversity	analyses	due	to	low	sample	sizes	(see	Section	

3.2.3	for	a	more	detailed	explanation).	

The	line-listed	data	received	from	CIPARS	contained	designations	of	resistance	types	that	

included	 partial	 resistance	 (information	 on	 the	 breakpoints	 for	 minimum	 inhibitory	

concentrations	 for	 S.	 enterica	 serotypes	 for	 each	 antibiotic	 can	 be	 found	 in	 the	 CIPARS	

Annual	Report;	CIPARS,	2013).	All	occurrences	of	partial	resistance	were	considered	to	be	

susceptible	to	that	antibiotic.		
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The	summary	of	the	data	on	antibiotic	resistance	in	clinical	S.	enterica	isolates	used	for	our	

analysis	 consists	 of	 6737	 resistant	 isolates	 each	 having	 been	 collected	 in	 one	 of	 the	 ten	

Canadian	provinces	and	belonging	to	one	of	five	different	serotypes	belonging	to	S.	enterica	

(Table	3.2).	Most	isolates	were	resistant	to	multiple	antibiotics	(Table	3.2).	

3.2.3			Alpha	diversity	
	

Alpha	 diversity	 is	 a	 population	 level	measure	 and	 can	 only	 be	 calculated	 for	 a	 group	 of	

isolates,	not	an	individual	isolate.	We	defined	our	sampling	unit	as	consisting	of	30	isolates:	

the	more	isolates	per	sampling	unit	the	more	accurate	the	estimate	of	diversity	within	the	

sampling	unit,	but	there	are	fewer	sampling	units	reducing	the	sample	size	of	the	data	set	

(see	Section	3.4.4	for	a	discussion	of	the	effect	of	sampling	unit	size).	We	chose	to	define	a	

sampling	 unit	 according	 to	 a	 fixed	 number	 of	 isolates	 rather	 than	 a	 fixed	 length	 of	 time	

because	alpha	diversity	are	known	to	be	sensitive	to	sample	sizes	(Soetaert	&	Heip,	1990,	

Chao	 et	 al.	 2014)	 and	 because	 a	 fixed	 sample	 size	 approach	 is	 generally	 recommended	

(Magurran,	2004,	pp.	133,	Chao	et	al.	2014).	While	S.	enterica	exhibits	a	natural	one-year	

cycle,	 discretizing	 the	 sampling	 period	 into	 yearly	 increments	 creates	 artificial	 break	

points:	January	1,	2016	and	December	31,	2016	are	grouped	into	year	2016	despite	being	

nearly	a	year	apart,	while	December	31,	2015	is	grouped	into	year	2015	despite	being	only	

1	day	prior	to	January	1,	2016.	In	addition,	if	we	were	to	create	sampling	units	based	on	a	

fixed	 amount	 of	 time,	 i.e.	 based	 on	 seasons	 or	 yearly	 increments,	 then	 the	 number	 of	

isolates	 would	 be	 different	 within	 each	 sampling	 unit	 and	 thus	 the	 alpha	 diversity	

estimates	would	not	be	accurate	for	comparing	populations.	
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We	will	 determine	 if	 province,	 serotype	 and	 time	 affect	 alpha	 diversity.	We	 hypothesize	

that	province	may	affect	alpha	diversity	because	agricultural	practices,	including	antibiotic	

use,	 may	 differ	 between	 provinces.	 Also,	 provinces	 with	 higher	 population	 density	 are	

likely	 to	 differ	 from	 provinces	 with	 lower	 population	 density.	 Similarly,	 we	 hypothesize	

that	 the	 serotype	 a	 Salmonella	 isolate	 belongs	 to	 may	 affect	 alpha	 diversity	 because	

different	 serotypes	 have	 different	 growth	 rates	 and	 virulence	 (Su	 et	 al.	 2004,	 Kim	 et	 al.	

2005,	Beceiro	et	al.	2013).		A	serotype	that	reproduces	and/or	mutates	more	rapidly	could	

be	 expected	 to	 have	 higher	 alpha	 diversity.	 Likewise,	we	 hypothesize	 that	 over	 time	 the	

alpha	diversity	may	have	changed	because	the	antibiotic	use	may	differ	over	time	and	also	

new	types	of	resistance	in	Salmonella	may	have	emerged	over	time	(Glynn	et	al.	1998,	Su	et	

al.	2004).	

We	 subsetted	 our	 data	 by	 selecting	 all	 isolates	 of	 a	 particular	 serotype	 and	 province,	

ordering	by	time	and	forming	groups	of	30	isolates.	This	was	repeated	for	all	province	and	

serotype	 combinations.	 As	 such,	 each	 sampling	 unit	 of	 30	 isolates	 has	 an	 associated	

province,	 serotype	 and	 end	 time	 for	 when	 the	 30	 isolate	 group	 is	 completed.	 For	 each	

sampling	unit,	alpha	diversities	can	be	calculated	using	either	the	line-listed	or	aggregated	

approach.	 We	 were	 not	 able	 to	 include	 the	 provinces	 of	 Prince	 Edward	 Island	 (PEI)	 or	

Newfoundland	 and	 Labrador	 (NL)	 in	 our	 analysis	 because	 fewer	 than	 30	 isolates	 were	

recovered	from	PEI	for	different	serotypes	over	the	entire	surveillance	period	and	only	one	

serotype	(Heidelberg)	had	more	than	30	isolates	for	NL	(see	Table	A3.1	for	distribution	of	

isolates	in	PEI	and	NL	for	different	serotypes).		
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In	order	to	determine	whether	SW	diversity	varied	between	provinces,	serotypes	and	over	

time	 we	 considered	 several	 different	 general	 linear	 models	 and	 used	 an	 information	

theoretic	 model	 selection	 approach	 (Table	 3.3).	 The	 model	 fitting	 and	 selection	 was	

performed	 only	 for	 the	 line-listed	 approach	 (Section	 3.2.1)	 since	 alpha	 diversity	 values	

generated	using	the	aggregated	approach	are	not	meaningful	(discussed	in	Section	3.4.1).	

Following	 the	 line-listed	 approach,	 SW	diversity	quantifies	 the	uncertainty	 regarding	 the	

resistance	 type	 for	a	population	of	Salmonella	 isolates	belonging	 to	a	particular	 serotype	

and	 collected	 from	 a	 particular	 province	 over	 a	 period	 of	 time.	 If	 the	 SW	diversity	 for	 a	

population	 of	 isolates	 is	 high,	 then	 there	 is	 a	 high	 diversity	 of	 the	 resistant	 types.	 This	

corresponds	 to	 a	 high	 level	 of	 uncertainty	 regarding	 the	 resistant	 type	 of	 a	 population	

because	 in	 the	 absence	 of	 susceptibility	 testing	 it	 is	 more	 difficult	 to	 anticipate	 the	

antibiotics	that	an	isolate	is	resistant	to,	as	there	are	a	wide	variety	of	relatively	abundant	

resistance	 types	 present	 in	 the	 population	 (see	 Section	 2.2).	 For	 our	 study,	 we	 only	

considered	 resistant	 isolates	 because	 the	 interpretation	 regarding	 the	 uncertainty	

surrounding	 the	 antibiotics	 an	 isolate	 is	 resistant	 to	would	not	be	possible	 if	 susceptible	

isolates	were	included	(further	discussed	in	Section	3.4.4).		

For	the	fitted	models,	our	response	variable	was	the	SW	diversity	and	we	considered	all	the	

possible	 combinations	 of	 three	 predictor	 variables	 province,	 serotype	 and	 time.	 SW	

diversity	 and	 time	 are	 on	 a	 continuous	 scale,	 whereas	 provinces	 and	 serotypes	 are	

categorical	 variables.	 The	 time	 variable	 is	 the	 end	 time	 for	 each	 sampling	 unit	 of	 30	

isolates.		
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Model	 selection	 was	 performed	 using	 Akaike	 Information	 Criteria	 corrected	 for	 small	

sample	 size	 (AICc)	 using	 the	 package	 AICcmodavg	 (version	 2.0-4)	 in	 R.	 The	 top-ranked	

model	 has	 the	 lowest	 AICc	 score.	 The	 deltaAICc	 is	 the	 difference	 between	 the	 AICc	 of	 a	

particular	model	and	the	top	ranked	model	and	we	consider	models	with	deltaAICc<7	to	be	

no	different	(Bolker,	2008	pp.210).			We	fit	coefficients	for	the	general	linear	models	using	

the	 lm()	 function	 in	R	 (version	3.2.1).	We	 evaluated	 the	 goodness	of	 fit	with	multiple	R2	

values	from	the	model	output	(Anderson,	2008	pp.94-95).	All	the	figures	were	made	using	

either	 default	 R	 graphics	 package	 or	 ggplot2	 (version	 2.1.0)	 with	 cowplot	 (version	

0.6.1.9999)	 and	 ggrepel	 (version	 0.5).	 The	 CrossTable	 for	 testing	 independence	 between	

the	 categorical	 variables	 province	 and	 serotype	 was	 created	 using	 package	 gmodels	

(version	 2.16.2)	 and	 the	 heat	map	 for	 province-serotype	 distribution	was	 created	 using	

plot3d	(version	1.1).		

Even	 though	 the	 model	 fitting	 and	 selection	 was	 performed	 only	 for	 the	 line-listed	

approach	 (Section	 3.2.1),	 we	 did	 calculate	 SW	 diversity	 values	 for	 each	 province	 and	

serotype	 using	 the	 aggregated	 approach	 to	 determine	 how	 similar	 these	 results	 are	 to	

those	generated	with	the	line-listed	approach.		

3.2.4			Beta	diversity	

For	beta	diversity,	it	is	not	necessary	to	compare	sampling	units	of	equal	size	(as	it	was	for	

the	alpha	diversity,	see	Section	3.2.3),	because	beta	diversity	is	less	affected	by	incomplete	

sampling	(Beck	et	al.	2013,	Barwell	et	al.	2015,	Bennett	and	Gilbert,	2015).	Hence,	for	beta	

diversity	measurements	with	respect	to	time,	we	considered	different	surveillance	periods	
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discretized	 by	 year	 (2003-2013).	 The	 significance	 of	 considering	 the	 year	 to	 year	

differences	in	beta	diversity	is	that	if	the	beta	diversity	between	consecutive	years	is	high,	

then	 it	may	be	necessary	 to	 re-evaluate	antibiotic	prescription	policies	 annually.	We	will	

determine	 the	 provinces,	 serotypes	 and	 years	 that	 have	 similar	 levels	 of	 antibiotic	

resistance	to	the	same	antibiotics.	We	hypothesize	that	some	provinces	may	have	similar	

antibiotic	 resistance	 because	 they	 are	 in	 geographic	 proximity,	 have	 similar	 agriculture	

practices	 or	 antibiotic	 use,	 a	 similar	number	of	 poultry	 farms,	 and/or	 similar	population	

density.	We	hypothesize	that	some	serotypes	may	have	similar	antibiotic	resistance	due	to	

similar	epidemiology	and	mutation	rates.	Time	periods	(years)	may	have	similar	antibiotic	

resistance	due	to	similar	antibiotic	use	in	consecutive	years.			

For	 the	beta	diversity	 analysis	we	used	 the	 aggregated	 approach	 as	described	 in	 Section	

3.2.1	(see	also	Figure	3.1).	We	performed	PCA	and	NMDS	ordinations	to	identify	provinces,	

serotypes,	 and	years	 that	 are	 similar	with	 respect	 to	 the	 frequency	or	 relative	 frequency	

(normalized	within	a	province,	serotype	or	year)	of	resistance	to	particular	antibiotics.	We	

performed	a	PCA	with	Scaling	1	(variance-covariance	matrix)	on	the	raw	abundance	data	

transformed	 to	 proportions	 using	 the	 prcomp()	 function	 from	 the	 basic	 R	 package.	 We	

performed	NMDS	with	Bray-Curtis	distance	using	metaMDS()	function	from	the	vegan	(2.3-

5)	 package	 on	 the	 raw	 abundance	 data.	 The	 reasons	 for	 choosing	 transformed	 or	 raw	

abundance	data	will	be	discussed	in	Section	3.4.2.		

3.2.5			Model/Data	Analysis	Assumptions	
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All	models	 assume	normally	 distributed	 errors,	 independence	 of	 the	 predictor	 variables,	

and	variance	homogeneity	and	all	of	these	assumptions	were	satisfied	except	that	a	weak	

correlation	was	 found	between	time	and	 the	other	variables	 for	some	models	 (Table	3.3;	

see	 Table	 A3.2	 and	 Figures	 A3.1,	 A3.2,	 A3.3,	 and	 A3.4	 in	 Appendix).	 Rarefaction	 and	

extrapolation	 curves	 (Figure	A3.5	 in	 Appendix)	 constructed	 following	 Chao	 et	 al.	 (2014)	

using	 the	 iNext	 (version	2.0.8)	 package	 in	R	 tended	 to	 reach	 an	 asymptote	 at	 about	 100	

isolates	per	sample	as	shown	in	Figure	A3.5.	

	

3.3			Results	
	

Following	the	line-listed	approach,	we	found	that	province	Ontario	has	the	highest	species	

richness	of	the	resistance	types	(193),	whereas	Nova	Scotia	has	the	lowest	(49,	Table	3.2;	

excluding	Prince	Edward	Island	and	Newfoundland	and	Labrador	from	the	alpha	diversity	

analysis).	 S.	 enterica	 serotype	 Typhimurium	 has	 the	 highest	 species	 richness	 of	 the	

resistance	 types	 (210),	 whereas	 Newport	 has	 the	 lowest	 (61,	 Table	 3.2).	 When	 fitting	

models	for	the	alpha	diversity	values	using	the	line-listed	approach,	we	found	that	the	top	

ranked	model	(model	1,	AICc	=	185.40,	Table	3.3)	consists	of	province,	serotype,	time,	and	

an	interaction	term	between	serotype	and	time	to	predict	the	SW	diversity	(Table	3.4)	and	

explains	a	large	proportion	of	the	variation	in	SW	diversity	(multiple	R2	=	0.55,	Table	3.3).	

The	model	with	all	three	predictor	variables	and	a	three-way	interaction	(model	10,	Table	

3.3)	and	 the	model	with	all	 three	predictor	variables	and	a	 two-way	 interaction	between	

province	and	serotype	(model	11,	Table	3.3)	explained	the	largest	proportion	of	variation	
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in	the	SW	diversity	(Multiple	R2	=0.58).	However,	these	models	(models	10	and	11,	Table	

3.3)	had	a	large	number	of	parameters	(K=60	and	K=34	respectively,	Table	3.3)	compared	

to	the	top	ranked	model	(model	1,	K=17,	Table	3.3).	

We	present	our	results	for	the	alpha	(line-listed	approach)	and	beta	(aggregated	approach)	

diversity	by	splitting	according	to	the	province,	serotype,	and	time.		

3.3.1			Results	–	Province	
	

Alpha	 diversity	 (Line-listed	 approach)	 –	 How	 is	 the	

uncertainty	in	resistance	type	affected	by	provinces?	

Among	the	three	predictor	variables,	the	province	only	explains	a	small	amount	of	variance	

in	SW	diversity	(multiple	R2	=	0.07;	model	15,	Table	3.3)	and	there	is	substantial	overlap	in	

the	95%	confidence	 intervals	 (CI).	We	 found	 that	 the	 SW	diversity	 of	 resistance	 types	 is	

highest	 for	 the	 province	 of	 Alberta	 (1.88	with	 95%	CI	 [1.66,	 2.09])	 and	 lowest	 for	Nova	

Scotia	(1.39	with	95%	CI	[0.70,	2.07];	Figure	3.2A;	Table	A3.3	in	Appendix).	In	terms	of	the	

effective	diversity	(see	section	2.2),	Alberta	has	a	mean	diversity	equivalent	to	6.55	equally	

abundant	resistance	types,	whereas	Nova	Scotia	has	a	diversity	equivalent	to	4.01	equally	

abundance	resistance	types.	As	shown	in	Figure	3.2B,	Nova	Scotia,	which	has	the	lowest	SW	

diversity,	is	predominated	by	just	one	resistance	type,	whereas	Alberta	having	the	highest	

SW	diversity	has	the	lowest	relative	abundance	of	the	most	abundant	resistance	type	and	

the	distribution	of	resistance	types	is	more	even.		
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When	 calculating	 SW	 diversity	 for	 provinces	 using	 the	 aggregated	 approach	we	 found	 a	

strong	 correlation	 with	 the	 values	 of	 SW	 diversity	 as	 calculated	 using	 the	 line-listed	

approach	(Figure	3.3A).		

Beta	 diversity	 (Aggregated	 approach)	 -	 Which	 provinces	

have	 similar	 levels	 of	 resistance	 and	 relative	 resistance	 to	

the	same	antibiotics?	

We	 found	 that	Alberta	 and	British	Columbia	were	 very	 close	 in	 the	NMDS	graph	 (Figure	

3.2C)	 showing	 low	beta	 diversity	 or	 high	 similarity	 in	 the	 frequency	 of	 resistance	 to	 the	

same	antibiotics	(see	also	Figure	3.4A).	As	shown	in	the	PCA	(Figure	3.2D),	Alberta	is	least	

similar	 to	 all	 New	 Brunswick,	 Nova	 Scotia,	 and	Newfoundland	 and	 Labrador.	 Consulting	

PC1	 (72.4%),	 Alberta	 has	 higher	 than	 average	 relative	 resistance	 to	 Tetracycline	 and	

Streptomycin	compared	to	New	Brunswick,	Nova	Scotia,	and	Newfoundland	and	Labrador	

(Figure	3.2D;	see	also	Figure	3.4A).	Nova	Scotia	is	dissimilar	to	New	Brunswick,	and	other	

provinces	except	Prince	Edward	Island,	because	of	very	high	relative	resistance	to	Nalidixic	

acid	 (Figure	 3.2D,	 PC2	 (16.83%);	 see	 also	 Figure	 3.4A).	 Consulting	 PC1	New	Brunswick,	

Nova	 Scotia,	 and	Newfoundland	 and	 Labrador	 appear	 similar	 because	 of	 similar	 relative	

resistance	(higher	than	average)	to	Cefoxitin	(Figure	3.2D;	see	also	Figure	3.4A).		

3.3.2			Results	–	Serotype	
	

Alpha	 diversity	 (Line-Listed	 approach)	 -	 How	 is	 the	

uncertainty	in	resistance	type	affected	by	serotypes?	
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Amongst	 the	 three	 predictor	 variables,	 serotype	 explains	 most	 of	 the	 variance	 in	 SW	

diversity	 (multiple	R2	=	0.45;	model	9,	Table	3.3).	We	 found	 that	 the	S.	 enterica	serotype	

Newport	had	the	highest	SW	diversity	of	resistance	types	(2.44	with	95%	CI	[1.92,	2.97])	

and	S.	enterica	serotype	Enteritidis	had	the	 lowest	(1.17	with	95%	CI	[1.06,	1.28];	Figure	

3.5A;	 Table	 A3.4	 in	 Appendix).	 For	 Newport,	 the	 effective	 diversity	 is	 11.47	 equally	

abundant	 resistance	 types	 as	 compared	 to	 3.22	 for	 Enteritidis.	As	 shown	 in	 Figure	 3.5B,	

Enteritidis	 is	predominated	by	 just	one	resistance	 type,	whereas	Newport	has	 the	 lowest	

relative	abundance	of	the	most	abundant	resistance	type.	

The	 95%	 CI	 around	 the	 mean	 SW	 index	 values	 between	 serotypes	 are	 non-overlapping	

suggesting	 that	 the	mean	SW	diversity	 for	 serotype	Enteritidis	 is	different	 from	all	other	

serotypes.	In	addition,	the	SW	diversity	of	both	Heidelberg	and	I	4,[5],12:i:-	serotypes	are	

different	 from	 Newport	 and	 Typhimurium,	 and	 also	 Newport	 is	 different	 from	

Typhimurium	(Table	A3.4).	

Similar	to	provinces,	the	SW	diversity	values	for	serotypes	using	the	aggregated	approach	

were	strongly	correlated	with	the	values	of	SW	diversity	as	calculated	using	the	line-listed	

approach	(Figure	3.3B).		

Beta	 diversity	 (Aggregated	 approach)	 -	 Which	 serotypes	

have	 similar	 levels	 of	 resistance	 and	 relative	 resistance	 to	

the	same	antibiotics?	

The	 antibiotics	 that	 the	 serotype	 Enteritidis	 was	 resistant	 to	 were	 least	 similar	 to	

Heidelberg	and	Typhimurium,	whereas	the	antibiotics	serotype	I	4,[5],12:i:-	and	Newport	



	 51	

were	resistant	 to	was	more	similar	as	shown	in	the	NMDS	(Figure	3.5C).The	PCA	(Figure	

3.5D;	see	PC1	which	explains	71.02%	of	the	variance)	shows	that	serotype	Enteritidis	has	

very	 high	 levels	 of	 relative	 resistance	 (higher	 than	 average)	 to	 Nalidixic	 acid	 (see	 also	

Figure	3.4B)	compared	to	the	other	serotypes.	Consulting	PC2	(24.11%),	Typhimurium	and	

I	4,[5],12:i:-	appear	close	because	of	similar	level	of	relative	resistance	to		Tetracycline	and	

Sulfisoxazole	(higher	than	average)	and	far	 from	Heildeberg	(Figure	3.5D)	which	has	 low	

relative	resistance	(lower	than	average)	to	Tetracycline	and	Sulfisoxazole	and	instead	high	

levels	of	relative	resistance	to	Ampicillin	and	Ceftriaxone	(see	also	Figure	3.4B).		

3.3.3			Results	–	Time	
	

Alpha	 diversity	 (Line-listed	 approach)	 -	 How	 does	 the	

uncertainty	in	resistance	types	change	over	the	surveillance	

period?		

Among	the	three	predictor	variables,	time	explains	the	least	amount	of	the	variance	in	SW	

diversity	(multiple	R2	=	0.03;	model	13,	Table	3.3).	The	coefficient	associated	with	the	time	

variable	was	 -8.45	x	10-5	 and	 the	surveillance	period	 that	we	considered	 lasted	a	 total	of	

4016	days.	As	 such,	 the	best	model	 implies	a	decrease	 in	SW	diversity	 from	1.84	 to	1.50	

over	the	surveillance	period	(Figure	3.6A).	In	terms	of	effective	diversity,	this	is	a	decrease	

of	6.30	to	4.48	equally	abundant	resistance	types.	
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Beta	 diversity	 (Aggregated	 approach)	 -	 Which	 years	 have	

similar	 levels	 of	 resistance	 and	 relative	 resistance	 to	 the	

same	antibiotics?	

As	shown	in	the	NMDS	(Figure	3.6B),	consecutive	years	are	grouped	together	and,	as	such,	

the	 frequency	 of	 resistance	 for	 each	 antibiotic	 is	 similar	 between	 the	 consecutive	 years.	

Consulting	the	PCA	(Figure	3.6C,	PC1	(55.31%)),	we	see	years	2011	and	2012	overlapping	

and	2013	appearing	close	to	2011	and	2012	because	of	a	similar	level	of	relative	resistance	

(higher	than	average)	to	Amoxicillin-clavulanic	acid	and	Ceftriaxone	(see	also	Figure	3.4C).		

Consulting	 PC2	 (28.70%),	 years	 2007-2009,	 2011,	 and	 2012	 appear	 close	 because	 of	

similar	 level	(higher	than	average)	of	relative	resistance	to	Nalidixic	acid	(see	also	Figure	

3.4C).		

3.3.4	Alpha	Diversity	Results	–	Serotype	and	Time		
	

How	does	 the	uncertainty	 in	 resistance	 types	 for	 serotypes	

change	over	the	surveillance	period?		

The	top	ranked	model	consists	of	an	interaction	between	predictor	variables	serotype	and	

time	 (model	 1,	 Table	 3.3).	 For	 serotype	Enteritidis,	 there	was	 virtually	 no	 change	 in	 SW	

diversity,	whereas	SW	diversity	for	serotype	Typhimurium	increased	over	the	surveillance	

period	 and	 decreased	 for	 all	 other	 serotypes	 (Figure	 3.7A,	 Table	 3.4).	 The	 coefficient	

associated	 with	 the	 time	 variable	 for	 serotype	 Typhimurium	 was	 8.23	 x	 10-5	 (model	 6,	

Table	3.3)	and	as	such	SW	diversity	for	Typhimurium	increased	from	1.92	to	2.25	(Figure	
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3.7A),	which	is	an	increase	of	6.82	to	9.50	equally	abundant	resistant	types.	However,	the	

greatest	 change	 in	 SW	 diversity	 was	 for	 serotype	 Heidelberg.	 The	 coefficient	 associated	

with	time	variable	for	Heidelberg	was	-1.75	x	10-4	(model6,	Table	3.3)	and	hence	over	the	

surveillance	period	SW	diversity	for	Heidelberg	decreased	from	1.90	to	1.19	(Figure	3.7A),	

which	is	a	decrease	of	6.69	to	3.29	equally	abundant	resistance	types.		

3.3.5	Beta	Diversity	Results	–	Combinations	
	

Which	Serotype	and	Year	combinations	have	similar	levels	of	

resistance	and	relative	resistance	to	the	same	antibiotics?	

When	performing	 the	 ordination	 on	 different	 serotype	 year	 combinations	we	 found	 that	

the	 level	 of	 resistance	 to	 particular	 antibiotics	 was	 more	 similar	 for	 serotypes	 than	 for	

years	as	shown	in	the	NMDS	(Figure	3.7B).	In	addition,	I	4,[5],12:i:-	and	Newport	serotypes	

there	are	some	similarities	at	the	year	level.	Consulting	PCA	(Figure	3.7C,	PC1	(67.18%)),	

serotype	Enteritidis	in	all	the	years	from	2003	to	2013	was	different	than	other	serotypes	

because	of	a	high	level	of	relative	resistance	to	Nalidixic	acid	(see	also	Figure	3.4B).		

Which	 Province	 and	 Serotype	 combinations	 have	 similar	

levels	 of	 resistance	 and	 relative	 resistance	 to	 the	 same	

antibiotics?	

When	 performing	 the	 ordination	 on	 different	 province	 serotype	 combinations	we	 found	

that	 the	 level	 of	 resistance	 to	 particular	 antibiotics	was	more	 similar	 for	 serotypes	 than	

provinces	as	shown	in	the	NMDS	(Figure	A3.6A	in	Appendix).	In	addition,	Typhimurium,	I	
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4,[5],12:i:-	 and	 Newport	 serotypes	 there	 are	 some	 similarities	 at	 the	 province	 level.	

Consulting	 PCA	 (Figure	 A3.6B,	 PC1	 (69.01%)),	 all	 the	 provinces	 that	 had	 serotype	

Enteritidis	were	different	than	other	provinces	because	of	a	high	level	of	relative	resistance	

to	Nalidixic	acid	(see	also	Figure	3.4B).		

Which	Province	and	Year	combinations	have	similar	levels	of	

resistance	and	relative	resistance	to	the	same	antibiotics?	

The	ordination	 for	different	province	year	combinations	does	not	 show	a	pattern,	except	

that	 Prince	 Edward	 Island	 has	 a	 very	 different	 frequency	 of	 antibiotic	 resistance	 to	

particular	antibiotics	than	all	other	provinces	and	the	distribution	for	Prince	Edward	Island	

was	different	in	every	year	(Figure	A3.7A	in	Appendix).	Consulting	the	PCA	(Figure	A3.7B,	

PC1	 (46.01%)),	 Prince	 Edward	 Island	 in	 years	 2009	 and	 2011	 had	 very	 high	 levels	 of	

relative	resistance	to	Nalidixic	acid.	

	

3.4			Discussion	
	

The	 emergence	of	 antibiotic-resistant	 organisms	 is	 a	 serious	 threat	 to	public	 health	 as	 it	

limits	 the	 efficacy	 of	 antibiotic	 therapy	 and	 may	 increase	 the	 emergence	 rate	 of	 novel	

multidrug	 resistance	 (MDR)	 pathogens	 (Wright	 et	 al.	 2005,	 Tanwar,	 2014).	 Antibiotic-

resistant	populations	are	capable	of	causing	severe,	life-threatening	infections	that	may	be	

more	difficult	to	manage	when	treatment	options	are	limited	(Martin	et	al.	2004,	Helms	et	

al.	 2004,	 Varma	 et	 al.	 2005,	 Eguale	 et	 al.	 2016).	 We	 provide	 the	 first	 application	 of	
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biodiversity	 measures	 to	 summarize	 the	 antibiotic	 resistance	 across	 a	 broad	 range	 of	

antibiotics	and	illustrate	our	method	on	a	case	study	on	antibiotic	resistance	in	S.	enterica	

in	Canadian	jurisdictions.	S.	enterica	infections	are	generally	not	treated	with	antibiotics	in	

humans	 (unless	 a	 bloodstream	 infection	 occurs)	 and	 so	 our	 results	 do	 not	 have	 direct	

implications	for	how	antibiotics	are	prescribed	for	S.	enterica,	however,	our	methods	could	

be	applied	to	other	pathogens	where	there	are	clear	 implications	for	antibiotic	treatment	

strategies.		

3.4.1	Justification	of	analysis	of	 line-listed	versus	

aggregated	data	

The	contribution	of	our	work	 is	principally	a	methodological	one.	We	showed	 that	 alpha	

diversity	 measures,	 in	 particular	 SW	 diversity,	 can	 be	 used	 to	 quantify	 the	 uncertainty	

surrounding	 which	 antibiotics	 a	 bacterial	 isolate	 is	 resistant	 to.	 For	 antimicrobial	

resistance,	we	recommend	using	a	line-listed	approach	when	measuring	alpha	diversity,	as	

the	 interpretations	 of	 the	 meanings	 of	 alpha	 diversity	 indices	 do	 not	 hold	 for	 the	

aggregated	approach	 (see	Table	3.1	 for	examples	of	 line-listed	and	aggregated	data).	For	

example,	consider	 the	 two	scenarios	as	shown	 in	Table	3.5.	 In	scenario	A,	all	 the	 isolates	

are	resistant	to	all	the	antibiotics,	and	in	scenario	B	all	the	isolates	are	resistant	to	only	one	

antibiotic.	For	 the	 line-listed	approach,	Scenario	A	and	Scenario	B	are	 judged	as	different	

because	 they	 have	 different	 SW	 diversity	 (equation	 1;	 Table	 3.5);	 however	 for	 the	

aggregated	approach,	both	scenarios	A	and	B,	have	the	same	SW	diversity	(Table	3.5).	For	

scenario	 A	 there	 is	 little	 uncertainty	 regarding	 which	 antibiotics	 an	 isolate	 in	 the	
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population	will	be	resistant	to,	as	it	will	most	certainly	be	resistant	to	all	of	them,	while	for	

scenario	B	there	 is	a	high	degree	of	uncertainty	and	this	difference	 is	not	reflected	 in	the	

SW	diversity	calculations	when	using	the	aggregated	approach.	Therefore,	the	aggregated	

approach	is	not	consistent	with	the	interpretation	of	the	SW	diversity	index	as	quantifying	

the	uncertainty	in	the	identity	of	an	isolate	in	the	population	(as	described	in	Section	2.2).			

Practically	 speaking,	 aggregated	 data	 is	 more	 widely	 available;	 however	 line-listed	

resistance	data	is	necessary	to	make	a	meaningful	calculation	of	alpha	diversity.	That	being	

said,	we	did	find	a	strong	correlation	between	the	alpha	diversity	(SW	diversity)	results	for	

the	 line-listed	and	aggregated	approaches	 (Figure	3.3).	Hence,	 the	 results	obtained	using	

aggregated	approach	for	our	case	study	is	close	to	correct	as	obtained	using	the	line-listed	

approach.	To	make	use	of	aggregated	data,	future	research	might	create	models	to	predict	

the	most	 likely	 line-listed	 data	 from	 the	 aggregated	 data	 and	 seek	 to	 understand	 under	

what	assumptions	aggregated	data	would	be	sufficient	to	accurately	approximate	the	line-

listed	results.		

Another	relationship	between	line-listed	and	aggregated	data	(Table	3.1)	arises	due	to	the	

doubling	property	 of	Hill	 numbers	 (Hill,	 1973,	 Chao	 et	 al.	 2014).	 This	 doubling	property	

applies	to	the	SW	diversity	index	when	expressed	as	effective	diversity	(see	Section	2.2).	To	

illustrate	 the	doubling	property,	 consider	a	population	 that	consists	of	one	 isolate	 that	 is	

resistant	to	both	Amoxicillin	and	Amikacin.	Under	the	aggregated	approach,	the	normalized	

frequency	 of	 resistance	 to	 each	 of	 Amoxicillin	 and	 Amikacin	 is	 0.5	 (see	 equation	 5	 in	

Section	3.2.2),	and	for	all	other	antibiotics	 is	zero.	The	effective	diversity	(eH’)	 is	2.	Under	

the	 line-listed	 approach,	 the	 proportion	 of	 the	 isolates	 with	 resistance	 type	 ‘AmAk’	



	 57	

(resistant	 to	 both	 Amoxicillin	 and	 Amikacin)	 is	 one	 and	 for	 all	 other	 resistance	 types	 is	

zero.	 Under	 the	 line-listed	 approach,	 the	 effective	 diversity	 is	 1,	 and	 so	 the	 effective	

diversity	 is	 doubled	 under	 the	 aggregated	 approach.	 If	 we	 extend	 this	 example	 by	

considering	a	population	consisting	of	one	isolate	that	is	resistant	to	three	antibiotics,	we	

find	 that	 the	 effective	 diversity	 is	 tripled	 under	 the	 aggregated	 approach.	 These	

calculations	 reveal	 that	 the	 SW	 diversity	 calculated	 under	 the	 aggregated	 approach	 is	

always	greater	than	or	equal	to	the	SW	diversity	calculated	under	the	line-listed	approach.	

Hence,	 it	 is	not	possible	 to	 compare	SW	diversity	values	between	populations	unless	 the	

same	approach	has	been	used.		

For	 a	 single	population	 the	 SW	diversity	 could	be	 calculated	using	both	 approaches,	 and	

when	 doing	 so,	 the	 ratio	 of	 the	 effective	 diversities	 calculated	 under	 either	 approach	 is	

related	to	the	prevalence	of	multiple	resistance.	As	shown	in	the	regression	of	SW	diversity	

under	the	aggregated	approach	(vertical	axis)	against	the	line-listed	approach	(horizontal	

axis;	Figure	3.3A),	provinces	New	Brunswick,	Quebec,	and	Ontario	are	above	the	regression	

line	and	referring	 to	Table	3.2,	 these	provinces	 rank	1st,	2nd	and	4th	 in	 terms	of	 the	most	

multiple	resistance.	

We	 also	 showed	 that	 measuring	 beta	 diversity	 where	 these	 results	 are	 visualized	 using	

ordinations	provides	information	on	the	similarity	in	the	frequency	and	relative	frequency	

of	antibiotic	resistance	to	the	same	antibiotics	between	regions,	serotypes	or	time	periods.	

For	antimicrobial	resistance	data,	we	recommended	using	the	aggregated	approach	when	

measuring	 beta	 diversity	 because	 from	 a	 public	 heath	 perspective	 we	 are	 interested	 in	

knowing	 which	 antibiotics	 are	 likely	 to	 succeed	 and	 which	 are	 likely	 to	 fail	 due	 to	
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resistance.	 If	 beta	 diversity	 is	measured	 using	 the	 line-listed	 approach,	 then	 the	 regions	

that	appear	close	in	the	ordination	have	similar	frequencies	of	the	same	resistance	types.	

Under	the	 list-listed	approach,	a	region	consisting	only	of	 the	resistance	type	 ‘AmAkTeCf’	

(resistance	 to	Ampicillin,	Amikacin,	Tetracycline,	 and	Cefoxitin)	 is	 equally	dissimilar	 to	 a	

region	 with	 only	 the	 resistance	 type	 ‘AmAkTe’	 (resistance	 to	 Ampicillin,	 Amikacin,	 and	

Tetracycline)	 and	 to	 a	 region	 with	 only	 the	 resistance	 type	 ‘Na’	 (resistance	 to	 Nalidixic	

acid),	 however	 the	 antibiotics	 that	 can	 be	 used	 to	 successfully	 treat	 infections	 in	 the	

‘AmAkTeCf’	and	the	‘AmAkTe’	regions	are	similar.	Under	the	aggregated	approach,	regions	

that	 have	 similar	 abundances	 of	 resistance	 to	 the	 same	 antibiotics	 appear	 close	 to	 each	

other.	In	this	instance,	the	regions	that	appear	near	to	each	other	should	avoid	prescribing	

the	same	antibiotics.	

3.4.2	 Ordination	 and	 data	 transformation	 to	

proportions	

We	performed	the	PCA	on	raw	abundance	data	transformed	into	proportions	because	the	

transformation	 normalized	 the	 frequencies	 of	 antibiotic	 resistance	within	 the	 provinces,	

serotypes	 and	 years.	 This	was	 necessary	 because	 it	 is	 only	 reasonable	 to	 suggest	 that	 a	

particular	 antibiotic	 be	 avoided	 if	 other	 more	 effective	 antibiotics	 are	 available.	 Eighty	

percent	resistance	to	ciprofloxacin,	in	of	itself,	does	not	suggest	that	ciprofloxacin	should	be	

avoided.	In	fact,	if	the	population	is	90%	resistant	to	all	other	antibiotics,	then	ciprofloxacin	

should	be	preferred.	Hence,	it	is	the	relative	frequency	of	resistance	to	each	antibiotic	that	

is	important.			
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On	 the	other	hand,	we	performed	 the	NMDS	on	 the	 frequency	of	 resistance	data	without	

any	normalization	so	that	provinces,	serotypes	and	years	that	have	similar	frequencies	of	

resistance	to	the	same	antibiotics	would	appear	near	to	each	other	in	the	ordination.	In	this	

instance,	when	two	populations	both	have	80%	resistance	to	ciprofloxacin,	all	else	equal,	

these	 two	 populations	 will	 appear	 nearer	 to	 each	 other	 than	 to	 populations	 with	 low	

frequencies	of	resistance	to	ciprofloxacin.	

3.4.3	 Salmonella	 spp.	 data	 analysis	 and	 public	

health	implications	

Our	 top	 ranked	 model	 (model	 1,	 Table	 3.3)	 was	 a	 combination	 of	 all	 three	 predictor	

variables	and	an	interaction	between	serotype	and	time,	and	explained	55%	of	the	variance	

in	the	SW	diversity	index.	We	recognize	there	are	other	factors	that	are	contributing	to	the	

variance	 in	 the	diversity	 of	 resistance	 types.	 Further,	we	 found	 that	 that	 the	diversity	 of	

resistance	types	 for	S.	enterica	 serotype	Enteritidis	was	different	than	all	other	serotypes	

and	none	of	 the	provinces	differed	(Tables	A3.3	and	A3.4).	This	 is	 in	agreement	with	 the	

PCA	and	NMDS	results	which	showed	that	most	of	 the	variation	 in	the	resistance	pattern	

was	due	to	serotype	Enteritidis,	which	had	very	high	resistance	to	Nalidixic	acid	compared	

to	 other	 serotypes	 (Figure	 3.7C	 and	 Figure	 A3.6B;	 see	 also	 Figure	 3.4B).	 In	 the	 light	 of	

microbiology,	particular	 serotypes	have	different	 growth	 rates	 and	virulence	 factors	 that	

are	 correlated	 with	 the	 rates	 of	 resistance	 emergence	 (Su	 et	 al.	 2004,	 Kim	 et	 al.	 2005,	

Beceiro	et	al.	2013),	and	this	may	explain	why	serotype	is	the	best	predictor	of	differences	

in	Salmonella	resistance.		
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Additionally,	 the	 best	model	 contained	 an	 interaction	 between	 serotype	 and	 time	 (Table	

3.3).	The	SW	diversity	 for	 serotype	Typhimurium	 increased	over	 the	surveillance	period,	

whereas	 the	 SW	 diversity	 for	 Enteritidis	 did	 not	 change	 and	 for	 all	 the	 other	 serotypes	

diversity	 decreased	 (Figure	 3.7A).	 When	 averaged	 across	 all	 serotypes,	 SW	 diversity	

decreased	over	the	surveillance	period	(Figure	3.6A).	There	are	two	reasons	why	diversity	

would	decrease	over	time:	either	species	richness	is	decreasing	(i.e.,	there	are	fewer	types	

of	 resistance	 in	 the	population)	or	 the	distribution	of	 resistance	 types	become	 less	 even.	

Natural	 selection	 is	 a	possible	 explanation	 for	why	a	population	might	become	 less	 even	

over	 time,	 as	 we	 would	 expect	 that	 resistance	 types	 with	 higher	 fitness	 would	 become	

more	 abundant	 over	 time,	 while	 resistance	 types	 with	 lower	 fitness	 would	 become	 less	

abundant.	Selective	pressure	may	be	closely	linked	with	antibiotic	use	and	continued	use	of	

the	 same	 antibiotic	 may	 result	 in	 strong	 directional	 selection	 for	 resistance	 to	 that	

antibiotic.	

However,	 it	 is	not	obvious	 that	SW	diversity	will	necessarily	decrease	over	 time	because	

new	 types	 of	 resistance	 may	 emerge,	 increasing	 species	 richness,	 and	 increasing	 SW	

diversity.	In	the	past,	new	types	of	resistance	in	S.	enterica	have	indeed	emerged	(Glynn	et	

al.	1998,	Su	et	al.	2004).	Whether	SW	diversity	increases	or	decreases	over	time	depends	

on	 the	 relative	 rate	 that	new	resistance	 types	appear	 in	 the	data	 set	versus	 the	 rate	 that	

evenness	 is	 lost,	 potentially	 due	 to	 natural	 selection.	 The	 relative	 strengths	 of	 these	

opposing	 forces	 may	 explain	 why	 SW	 diversity	 increased	 for	 some	 serotypes	 while	

decreased	 for	 others:	 in	 particular,	 serotype	 level	 differences	 in	 mutation	 rates	 and	

generation	times	may	explain	this	finding.		
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When	measuring	beta	diversity	for	time	periods,	we	found	that	consecutive	years	had	low	

dissimilarity	and	were	grouped	 together	 (Figure	3.6B)	because	 they	had	similar	 levels	of	

antibiotic	 resistance	 to	 the	 same	 antibiotics	 (Figure	 3.6C;	 Figure	 3.4C).	 This	 low	

dissimilarity	means	that	the	effectiveness	of	an	antibiotic	prescribing	strategy	is	not	likely	

to	change	dramatically	year	to	year.		

To	illustrate	the	types	of	public	health	implications	that	our	analyses	could	have,	we	now	

suppose	 that	rather	 than	Salmonella	enterica	 that	 the	results	of	our	analyses	pertain	 to	a	

pathogen	 that	 is	 treated	with	 antibiotics	 in	 humans,	 for	 example,	 Staphylococcus	 aureus.	

While	 we	 did	 not	 find	 differences	 in	 alpha	 diversity	 between	 provinces	 (Section	 3.3.1;	

Figure	3.2A),	 if	we	had	we	might	have	concluded	that	microbiological	testing	prior	to	the	

prescribing	of	antibiotics	is	most	critical	in	the	province	with	the	highest	alpha	diversity.		

The	results	 shown	 in	 the	ordinations	give	 information	regarding	which	populations	have	

similar	frequencies	of	resistance	to	the	same	antibiotics	(Figures	3.2C,	3.5C,	and	3.6B)	and	

resistance	to	which	antibiotics	 is	most	different	between	populations	(Figures	3.2D,	3.5D,	

and	 3.6C).	 Figure	 3.2C	 suggests	 that,	 if	 these	 results	 corresponded	 to	 a	 pathogen	 that	 is	

treated	with	antibiotics	in	humans,	antibiotics	that	are	successful	in	Alberta	are	also	likely	

to	be	successful	in	British	Columbia.	Figure	3.2D	suggests	that	in	Alberta,	Tetracycline,	and	

Streptomycin	 are	 best	 to	 be	 avoided	 due	 to	 high	 levels	 of	 resistance	 to	 these	 antibiotics	

relative	to	other	provinces	(Figure	3.4A).	Nova	Scotia	and	New	Brunswick	have	higher	than	

average	 levels	 of	 relative	 resistance	 for	 Cefoxitin	 than	 other	 provinces	 (Figure	 3.2D;	 see	

also	Figure	3.4A),	hence	they	should	avoid	prescribing	Cefoxitin.			
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We	 found	 that	 the	 alpha	diversity	was	different	between	 serotypes.	Often,	 at	 the	 time	of	

prescribing	 the	 infecting	 serotype	 is	 unknown	 or	 if	 testing	 is	 done	 to	 identify	 serotype,	

testing	 for	 resistance	 may	 also	 be	 completed.	 As	 such,	 it	 is	 less	 practical	 to	 prioritize	

susceptibility	testing	for	particular	serotypes	that	have	higher	than	average	SW	diversity	or	

to	recommend	the	use	of	particular	antibiotics	for	one	serotype	relative	to	the	others.	

Previous	 studies	 have	 revealed	 different	 levels	 of	 antibiotic	 resistance	 in	 Salmonella	

isolates	 found	 in	different	 environmental	 sources	 (such	as	water)	or	 agricultural	 regions	

(Johnson	 et	 al.	 2003,	Wilkes	 et	 al.	 2011,	 Jokinen	 et	 al.	 2015),	 and	between	 (Michel	 et	 al.	

2006,	Laupland	et	al.	2010,	Nesbitt	et	al.	2012)	or	within	provinces	(between	urban	versus	

rural	 places;	 Michel	 et	 al.	 2006).	 Predictor	 variables	 such	 as	 whether	 the	 isolates	 were	

recovered	 from	 rural	 versus	 urban	 environments	 may	 explain	 differences	 in	 alpha	

diversity,	however,	we	were	unable	 to	 test	 these	variables	as	 the	CIPARS	data	set	 lacked	

such	level	of	information.		

3.4.4	 Additional	 consideration	 for	 using	

biodiversity	indices	

In	our	study,	the	alpha	diversity	measure	contains	no	information	regarding	the	percentage	

of	susceptible	 isolates	 in	a	population;	nonetheless,	 this	 information	should	be	taken	into	

consideration	when	 interpreting	 alpha	 diversity	 values.	 For	 example,	 if	 two	 populations	

have	 the	 same	 alpha	 diversity,	 then	 the	 population	 that	 has	 the	 lower	 percentage	 of	

susceptible	 isolates	has	 the	greater	need	 for	 effective	 antibiotic	prescribing.	 Isolates	 that	
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are	susceptible	to	all	antibiotic	are	not	considered	to	be	a	resistance	type	because	doing	so	

would	 mean	 that	 higher	 values	 of	 alpha	 diversity	 do	 not	 necessarily	 correspond	 to	

populations	 that	 are	 more	 difficult	 to	 treat	 with	 antibiotics.	 For	 example,	 consider	 a	

population	that	 is	50%	susceptible	 to	all	antibiotics	and	50%	resistant	 to	Ampicillin	only	

(Population	A)	 and	 another	 population	with	 50%	 resistance	 to	Ampicillin	 only	 and	50%	

resistance	to	Ciprofloxacin	only	(Population	B).		Both	Populations	A	and	B	would	have	the	

same	 alpha	 diversity	 values	 if	 isolates	 susceptible	 to	 all	 antibiotics	 are	 considered	 a	

resistance	 type,	 but	 in	 the	 absence	 of	 susceptibility	 testing	 it	 is	more	 straightforward	 to	

treat	Population	A	because	any	antibiotic	except	for	Ampicillin	is	effective	for	every	isolate	

in	the	population,	whereas	for	Population	B	there	are	two	antibiotics	that	must	be	excluded	

to	ensure	complete	susceptibility	for	all	isolates.	

As	there	are	numerous	diversity	indices,	the	best	choice	of	diversity	index	may	depend	on	

the	 research	 question.	 Diversity	 indices	 focus	 on	 two	 components:	 species	 richness	 and	

species	evenness	 (Magurran,	1998),	 and	how	much	weight	 should	be	placed	on	either	of	

these	 components	 translate	 into	 how	 much	 emphasis	 is	 put	 on	 rare	 versus	 common	

species.	For	our	study,	we	chose	the	SW	diversity	index	because	it	is	easy	to	interpret	and	

frequently	 used	 in	 other	 studies	 (Hill	 et	 al.	 2003,	 Pakyz	 et	 al.	 2008,	 de	 la	 Pedrosa	 et	 al.	

2009,	Sigala	and	Unc,	2013,	Morris	et	al.	2014).	Additionally,	SW	index	puts	more	emphasis	

on	the	rare	and	intermediate	resistant	types	(Hill	et	al.	2003).	For	antimicrobial	resistance,	

indices	that	emphasize	rare	resistance	types	may	be	appealing	since	these	rare	resistance	

types	could	be	a	new	type	of	multidrug	resistance	that	may	only	respond	to	a	very	narrow	

range	 of	 antibiotics	 or	 to	 different	 antibiotics	 than	 that	 had	 previously	 been	 effective.	

Therefore,	 while	 there	 may	 only	 be	 a	 few	 isolates	 of	 a	 new	 resistance	 type,	 these	 new	



	 64	

resistance	 types	 are	 a	 significant	 challenge	 and	 so	 choosing	 an	 index	 that	 places	 more	

weight	on	rare	species	may	be	most	appropriate.		

	The	choice	of	alpha	diversity	index	will	affect	the	results	of	an	analysis.	If	a	different	alpha	

diversity	 index	 were	 used,	 some	 of	 our	 results	 would	 be	 different	 (Figure	 A3.8	 in	

Appendix).	In	ecology,	the	Berger-Parker	index	is	calculated	as	the	proportional	abundance	

of	the	most	abundant	species	(Table	2.2	in	Chapter	2)	and	this	alpha	diversity	index	for	an	

antimicrobial	resistance	study	would	heavily	weigh	the	most	common	resistance	type.	This	

contrasts	 with	 the	 SW	 index,	 which	 gives	 more	 weighting	 to	 the	 rare	 and	 intermediate	

species	relative	to	the	most	abundant	species	(Hill	et	al.	2003).	Nova	Scotia	is	dominated	by	

the	 most	 abundant	 resistance	 type,	 while	 Alberta	 has	 the	 lowest	 abundance	 of	 most	

common	resistance	type	(Figure	3.2B).		If	instead	of	the	SW	index	the	Berger-Parker	index	

were	used	to	measure	diversity,	Nova	Scotia	would	have	the	highest	diversity	rather	than	

the	lowest,	while	Alberta	would	have	the	lowest	rather	than	the	highest	diversity	(Figure	

A3.8).	

Similar	 to	 alpha	 diversity,	 different	 beta	 dissimilarity	 measures	 may	 be	 appropriate	 for	

particular	application	of	the	theory.	As	discussed	in	section	2.3	(Chapter	2),	beta	diversity	

indices	have	different	properties	and	various	data	 transformations	yield	different	 results	

with	 different	 emphasis.	 In	 this	 chapter,	 we	 used	 Bray-Curtis	 distance	 (equation	 4	 in	

section	2.3;	Table	2.3)	since	 it	 is	 the	most	 frequently	used	abundance	based	dissimilarity	

measure	 (Anderson	 et	 al.	 2011).	 Additionally,	 Bray-Curtis	 distance	 emphasizes	 the	

antibiotics	that	have	the	highest	frequencies	of	resistance	for	the	two	populations	(Krebs,	

1999).	 For	 an	 antimicrobial	 resistance	 study,	 dissimilarity	 measures	 that	 emphasize	
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commonly	resistant	antibiotics	may	be	appealing	because	two	populations	appearing	close	

in	 the	NMDS	will	 have	 similar	 frequencies	of	 resistance	 to	 the	 antibiotics	 that	 resistance	

most	 frequently	 occurs	 for.	When	 prescribing	 antibiotics	 for	 such	 populations,	 they	 can	

have	a	similar	policy	of	antibiotic	use	(i.e.	avoid	prescribing	same	antibiotics)	because	the	

antibiotics	that	will	fail	for	one	population	will	also	likely	fail	for	the	other	population,	and	

this	is	especially	true	for	the	antibiotics	that	resistance	most	frequently	occurs.	

For	our	study,	if	we	had	used	a	different	beta	diversity	measure	some	of	our	results	would	

change	(Figure	A3.9	in	Appendix;	Table	2.3).	In	ecology,	Bray-Curtis	distance	is	a	measure	

that	is	dominated	by	abundant	species	and	rare	species	have	very	little	effect,	whereas	the	

Canberra	metric	 is	 less	 affected	 by	 the	more	 abundant	 species	 (Krebs,	 1999;	 Table	 2.3).	

Prince	 Edward	 Island	 and	 Newfoundland	 and	 Labrador	 have	 a	 similar	 distribution	 of	

resistance	 to	 the	 most	 commonly	 resistant	 antibiotics,	 but	 a	 different	 distribution	 of	

resistance	to	the	less	commonly	resistant	antibiotics	(Figure	3.4A).	Hence,	Prince	Edward	

Island	 and	 Newfoundland	 and	 Labrador	 appear	 closer	 in	 the	 NMDS	 under	 Bray-Curtis	

dissimilarity	and	further	apart	under	Canberra	dissimilarity	(Figure	A3.9).	However,	if	we	

had	 used	 the	 Canberra	 metric	 for	 our	 analysis,	 then	 we	 would	 not	 be	 able	 to	 interpret	

populations	appearing	close	 in	 the	NMDS	as	populations	 that	can	have	similar	policies	of	

antibiotic	use,	because	 the	antibiotics	 that	 isolates	are	most	 frequently	 resistant	 to	make	

the	 biggest	 contribution	 to	 failure	 in	 treatments,	 while	 the	 Canberra	metric	 emphasizes	

antibiotics	that	have	low	frequencies	of	resistance.	

In	 addition	 to	 considering	 whether	 the	 emphasis	 on	 rare	 or	 common	 species	 is	 more	

appropriate,	 different	dissimilarity	measures	may	exclude	 joint	 absences	 (see	Table	2.3).	
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We	performed	 the	PCA	using	a	proportional	 transformation	on	raw	abundance	data	 (see	

Section	 3.4.2)	 such	 that	 the	 distance	 between	 populations	 in	 the	 PCA	was	 related	 to	 the	

Euclidean	distance	(Section	2.3.1).	We	performed	the	NMDS	based	on	Bray-Curtis	distance	

(equation	4	in	section	2.3;	Table	2.3)	and	both	Euclidean	(on	proportions)	and	Bray-Curtis	

dissimilarity	ignore	instances	of	joint	absences.		Excluding	joint	absences	means	that	if	two	

populations	 have	 no	 resistance	 to	 the	 same	 antibiotic,	 this	 does	 not	 contribute	 to	 the	

measurement	 of	 the	 similarity	 between	 the	 two	 populations.	 While	 the	 choice	 of	 Bray-

Curtis	dissimilarity	for	the	NMDS	facilitates	comparison	with	the	PCA	as	they	both	ignore	

joint	absences,	other	dissimilarity	measures	 that	 include	 joint	absences	 (Table	2.3)	could	

be	 used	 and	may	 be	more	 appropriate	 because	 they	 acknowledge	 that	 two	 populations	

with	 100%	 susceptibility	 to	 the	 same	 antibiotics	 are	more	 similar	 than	 two	 populations	

where	 the	 susceptibility	 to	 this	 antibiotics	 was	 unknown.	 However,	 for	 our	 case	 study	

excluding	joint	absences	does	not	make	a	difference	because	there	are	no	instances	of	joint	

absences	in	the	data.	

We	used	biodiversity	measures	to	summarize	antibiotic	resistance	across	a	wide	number	of	

antibiotics.	While	physicians	may	know	the	prevalence	of	resistance	to	some	antibiotics	for	

their	 regions,	 our	 method	 goes	 beyond	 this	 by	 summarizing	 resistance	 and	 by	 making	

comparisons	between	populations	across	all	antibiotics.	For	 the	S.	enterica	analysis	 there	

are	 17	 antibiotics	 to	 consider,	 and	 due	 to	 the	 large	 number	 of	 antibiotics	 a	 summary	

measure	 is	 helpful.	 An	 alternative	 to	 our	 method	 is	 the	 Drug	 Resistance	 Index	 (DRI;	

Laxminarayan	 et	 al.	 2011).	 To	 summarize	 resistance	 at	 the	 level	 of	 pathogens,	 the	 DRI	

utilizes	 data	 describing	 both	 the	 frequency	 of	 resistance	 and	 antibiotic	 use.	However,	 as	

noted	by	Laxmimarayan	et	al.	(2011)	data	on	susceptibility	and	antibiotic	use	is	difficult	to	
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obtain	 as	 many	 parts	 of	 the	 world	 have	 limited	 laboratory	 space	 and	 also	 lack	 well	

organized	 surveillance	 systems.	An	 advantage	of	 our	method	 is	 that	 it	 requires	 less	data	

since	antibiotic	use	data,	which	may	be	difficult	to	obtain,	is	not	required.	Furthermore,	the	

DRI	and	our	method	produce	quantities	with	different	meanings.	While	strength	of	the	DRI	

is	that	antibiotic	use	data	is	incorporated,	strength	of	our	approach	is	that	only	resistance	

data	 is	 considered.	 Under	 our	 method,	 when	 comparisons	 are	 made	 between	 regions,	

serotypes	or	time	periods,	we	know	that	the	differences	are	due	to	changes	in	resistance,	

while	for	the	DRI	it	cannot	be	determined	if	differences	are	due	to	changes	in	resistance	or	

antibiotic	use.	

One	of	the	important	limitations	of	species	diversity	indices	is	that	not	all	species	are	equal,	

but	they	are	treated	such	in	the	measurement	of	diversity	(Magurran,	2004,	Chiarucci	et	al.	

2011).	Species	can	vary	functionally,	evolutionarily	and	ecologically.	When	measuring	beta	

diversity,	each	antibiotic	 is	 treated	as	being	equal,	but	different	antibiotics	have	different	

toxicities	and	antibiotics	can	be	broad	or	narrow	spectrum.	This	means	a	resistance	 type	

‘Na’	 (resistance	 to	Nalidixic	acid	only)	 is	 treated	as	being	 just	as	different	 to	a	 resistance	

type	‘Am’	(Ampicillin)	as	it	is	to	a	resistance	type	‘AmNa’	(resistance	to	both	Ampicillin	and	

Nalidixic	acid),	but	arguably	‘Na’	is	much	more	similar	to	‘AmNa’	than	it	is	to	‘Am’.			

A	challenge	in	measuring	species	diversity	is	that	it	is	impossible	to	account	for	all	species	

and	 to	 accurately	 measure	 their	 relative	 abundances	 with	 a	 limited	 number	 of	 samples	

(Magurran,	2004).	Samples	might	not	be	representative	of	the	true	population	as	there	are	

‘unseen’	species,	which	are	present	in	the	community	but	are	missing	from	the	sample	data.	

Thus,	 the	 estimated	 species	 richness	 will	 underestimate	 the	 true	 species	 richness	 with	
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finite	 sampling	 and	 species	 richness	 is	 one	 component	 of	 all	 species	 diversity	measures.		

For	 Salmonella,	 some	 infections	 go	 unreported	 because	 not	 all	 healthcare	 institutions	

submit	 isolates	 to	 the	 CIPARS	 surveillance	 program.	 In	 addition,	 some	 patients	 with	

Salmonella	 will	 not	 present	 at	 clinics,	 however,	 there	 is	 no	 reason	 to	 expect	 that	 the	

distribution	 of	 resistance	 in	 Salmonella	 for	 patients	 that	 do	 not	 present	 at	 clinics	 is	 any	

different	from	the	distribution	of	resistance	in	patients	that	do.	

Diversity	indices	are	sensitive	to	sample	size	and	to	reduce	bias	when	comparing	diversity	

between	communities	several	authors	suggest	using	samples	of	equal	size	(Hill	et	al.	2003,	

Magurran,	2004,	Chao	et	al.	2014).	For	our	analysis,	we	followed	a	standard	sample	size	of	

30	 isolates,	 but	 following	 Chao	 et	 al.’s	 (2014)	 method	 of	 rarefaction	 and	 extrapolation	

approximately	100	individuals	per	sample	would	be	an	ideal	sample	size	to	make	accurate	

comparisons.	We	 choose	 to	 use	30	 samples	 due	 to	 the	 size	 of	 the	Salmonella	data	 set	 to	

illustrate	the	method	of	data	analysis,	however,	the	results	of	rarefaction	and	extrapolation	

suggest	that	a	larger	number	of	samples	may	yield	more	robust	conclusions	(Figure	A3.5).		

In	 this	 chapter,	 we	 discuss	 the	 application	 of	 alpha	 and	 beta	 diversity	 measures	 to	

summarize	antibiotic	resistance	data.	We	also	 illustrate	 the	application	by	analyzing	data	

describing	 antibiotic	 resistance	 in	S.	 enterica.	Measuring	 the	 alpha	 diversity	 of	 antibiotic	

resistance	provides	information	on	whether	a	treatment	would	likely	succeed	or	fail	in	the	

absence	of	any	susceptibility	 testing.	Measuring	the	beta	diversity	of	antibiotic	resistance	

identifies	populations	that	have	similar	distributions	of	antibiotic	resistance	and	therefore	

may	have	similar	approaches	to	antibiotic	prescribing.	Due	to	the	challenge	of	interpreting	
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multidimensional	 dissimilarity	 matrices,	 ordination	 approaches	 visually	 present	 this	

information	to	efficiently	recognize	such	populations.	
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3.5			Figures	and	Tables	
	

	

Table	 3.1:	 Example	 Salmonella	 antibiotic	 resistance	 data	 showing	 the	 categorization	 of	
each	isolate	and	the	calculation	of	pi	under	the	line-listed	and	the	aggregated	approach	(see	
Section	 3.2.1).	 In	 the	 antibiotics	 columns	 1	 indicates	 an	 isolate	 that	 is	 resistant	 and	 0	
indicates	 an	 isolate	 that	 is	 susceptible	 to	 the	 corresponding	 antibiotic.	 The	 antibiotic	
abbreviations	 are	 Amoxicillin-clavulanic	 acid	 (Am),	 Cephalothin	 (Ce),	 Ciprofloxacin	 (Cp),	
Ceftriaxone	 (Cr),	Kanamycin	 (Ka),	 and	Streptomycin	 (St)	 respectively.	Resistance	Type	 is	
the	 complete	 combination	 of	 antibiotics	 that	 an	 isolate	 is	 resistant	 to,	 for	 example,	 the	
abbreviation	Am	indicates	resistance	to	Ampicillin	only,	while	AmKaSt	indicates	resistance	
to	 Ampicillin,	 Kanamycin	 and	 Streptomycin	 and	 these	 are	 examples	 of	 two	 different	
resistance	types.		
	

Isolate	
No.	

	
Am	

	
Ce	

	
Cp	

	
Cr	

	
Ka	

	
St	

Resistance	
Type	

Line-
Listed	
pi	

1	 1	 0	 0	 0	 0	 0	 Am	 1/6	
2	 0	 0	 0	 0	 0	 1	 St	 1/6	
3	 1	 0	 0	 0	 1	 1	 AmKaSt	 1/6	
4	 1	 1	 1	 1	 1	 1	 AmCeCpCrKaSt	 1/6	
5	 0	 0	 0	 0	 0	 1	 St	 1/6	
6	 0	 0	 0	 0	 1	 1	 KaSt	 1/6	

Aggregated	
pi	

	3/14	 1/14	 1/14	 1/14	 3/14	 5/14	 - 	 - 	
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Table	3.2:	Percentage	Distribution	of	 the	number	of	clinical	 resistant	S.	enterica	 isolates,	
collected	 by	 the	 Canadian	 Integrated	 Program	 for	 Antimicrobial	 Resistance	 Surveillance	
(CIPARS),	into,	Single	and	Multiple	Resistance	for	different	provinces	in	Canada	(A)	and	for	
various	 serotypes	 (B)	 with	 species	 richness	 for	 line-listed	 approach	 (Resistance	 types).	
Number	of	30	 isolates	groups	(N)	represents	 the	sample	size	 for	each	Province	and	each	
Serotype	 following	 the	30	 isolate	sampling	strategy	 for	measuring	SW	index	 for	different	
serotypes	in	each	province	(refer	to	Table	A3.1	in	Appendix	for	raw	distribution	of	clinical	
resistant	 isolates	 for	 serotypes	 in	 each	 province).	 Resistant	 isolates	 are	 those	 that	 are	
resistant	to	at	least	one	antibiotic.	

	
	
	

A)	Provinces	

No.	of	
Clinical	
Resistant	
Salmonella	
Isolates	

No.	of	
30	

Isolates	
groups	
(N)	

	
Single	

Resistance	
(%)	

	
Multiple	
Resistance	

(%)	

Species	
Richness	
(Resistance	
Types)	

British	Columbia	 747	 22	 33.33	 66.67	 124	
Alberta	 867	 26	 32.64	 67.36	 133	

Saskatchewan	 283	 7	 44.88	 55.12	 57	
Manitoba	 442	 13	 36.88	 63.12	 80	
Ontario	 2382	 77	 32.75	 67.25	 193	
Quebec	 1351	 43	 31.09	 68.91	 153	

New	Brunswick	 306	 8	 29.08	 70.92	 70	
Prince	Edward	

Island	
36	 0	 47.22	 52.78	 17	

Nova	Scotia	 224	 6	 53.12	 46.88	 49	
Newfoundland	&	

Labrador	
79	 1	 43.04	 56.96	 25	

	
B)	Serotypes	

	
	

	
Enteritidis	 1620	 50	 23.52	 76.48	 114	

Heidelberg	 2127	 66	 29.24	 70.76	 143	

I	4,[5],12:i:-	 550	 14	 28.73	 71.27	 78	

Newport	 195	 4	 20	 80	 61	
Typhimurium	 2245	 69	 9.93	 90.07	 210	
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Table	 3.3:	 Model	 selection	 results	 for	 the	 Shannon-Weiner	 diversity	 index.	 Model	
Description	 lists	 the	model	variables,	where	SW	stands	 for	Shannon-Weiner	 index	as	 the	
response	variable,	and	P	stands	for	Provinces,	S	stands	for	Serotypes,	and	D	stands	for	Days	
as	the	predictor	variables,	and	c	is	a	constant	term;	LL	is	the	log-likelihood	of	the	models;	K	
stands	for	the	number	of	parameters	in	the	models;	delta	AICc	is	the	difference	in	the	AICc	
of	 the	 model	 with	 the	 lowest	 AICc;	 wAICc	 is	 the	 model	 weights;	 Multiple	 R2	 shows	 the	
amount	of	variance	explained	by	the	predictor	variables.		

Model	
No.	

Model	Description	 LL	 K	 AICc	
delta	
AICc	

wAICc	
Multiple	

R2	

1	 SW	~	P	+	S	+	D	+	S	x	D	+	c	 -73.03	 17	 185.40	 0	 0.99	 0.55	

2	 SW	~	P+S+D+P	x	D	+	S	x	D	+	c	 -70.35	 24	 197.49	 12.09	 0	 0.54	

3	 SW	~	P	+	S	+	P	x	S	+	c	 -66.79	 33	 197.49	 12.09	 0	 0.54	

4	 SW	~	P	+	S	+	D	+	c	 -84.22	 13	 198.38	 12.99	 0	 0.53	

5	 SW	~	P	+	S	+	c	 -86.40	 12	 200.45	 15.05	 0	 0.52	

6	 SW	~	S	+	D	+	S	x	D	+	c	 -89.77	 10	 202.70	 17.31	 0	 0.49	

7	 SW	~	P	+	S	+	D	+	P	x	D	+	c	 -81.52	 20	 209.67	 24.28	 0	 0.50	

8	 SW	~	S	+	D	+	c	 -99.76	 6	 213.95	 28.56	 0	 0.46	

9	 SW	~	S	+	c	 -101.35	 5	 215.01	 29.61	 0	 0.45	

10	 SW	~	P	+	S	+	D	+	P	x	S	x	D	+	c	 -38.26	 60	 305.63	 120.24	 0	 0.58	

11	 SW	~	P	+	S	+	D	+	P	x	S	+	c	 -64.40	 34	 305.63	 120.24	 0	 0.58	

12	 SW	~	P	+	D	+	c	 -150.75	 9	 322.45	 137.05	 0	 0.1	

13	 SW	~	D	+	c	 -158.26	 2	 322.60	 137.19	 0	 0.03	

14	 SW	~		c	 -161.52	 1	 327.06	 141.66	 0	 0	

15	 SW	~	P	+	c	 -154.47	 8	 327.70	 142.30	 0	 0.07	

16	 SW	~	P	+		D	+	P	x	D	+	c	 -148.90	 16	 334.74	 149.35	 0	 0.05	
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Table	3.4:	Parameter	 estimates	 for	 the	 best	model	 (i.e.	Model	 1	 in	Table	 3.3)	with	 95%	
Confidence	Interval	(C.I.).	(Model:	SW	~	Province	+	Serotype	+	Days	+	Serotype	x	Days)	

	

	
Parameter	

	
Parameter	Estimate	

95%	C.I.	
2.5%	 97.5%	

Intercept	 1.385	 1.105	 1.665	
BC	 -0.002	 -0.211	 0.207	
MB	 -0.066	 -0.311	 0.179	
NB	 0.008	 -0.285	 0.301	
NS	 -0.228	 -0.555	 0.100	
ON	 -0.359	 -0.523	 -0.196	
QC	 -0.210	 -0.389	 -0.031	
SK	 -0.133	 -0.439	 0.174	

Heidelberg	 0.701	 0.401	 1.002	
I	4,[5],12:i:-	 0.911	 -0.035	 1.858	
Typhimurium	 0.753	 0.458	 1.048	
Newport	 1.762	 0.760	 2.765	
Days	 -1.078	x	10-5	 -1.114	x	10-4	 8.983	x	10-5	

Heidelberg	:	Days	 -1.610	x	10-4	 -2.865	x	10-4	 -3.525	x	10-5	

I	4,[5],12:i:-	:	Days	 -1.255	x	10-4	 -4.148	x	10-4	 1.908	x	10-4	

Typhimurium	:	Days	 9.165	x	10-5	 -3.735	x	10-5	 2.206	x	10-4	

Newport	:	Days	 -1.560	x	10-4	 -4.901	x	10-4	 1.780	x	10-4	
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Table	 3.5:	 Comparison	 of	 the	 Line-Listed	 and	 the	 Aggregated	 Approach	 for	 measuring	
Alpha	diversity.	Scenario	A	–	Multidrug	Resistance	shows	that	all	the	isolates	(A1,	A2,	and	
A3)	 are	 resistant	 to	 multiple	 antibiotics.	 Scenario	 B	 –	 Single	 Resistance	 shows	 that	 all	
isolates	(B1,	B2,	and	B3)	are	resistant	to	only	one	antibiotic.	SW	diversity	is	the	same	for	
both	scenarios	under	 the	aggregated	approach,	while	 for	 the	 line-listed	approach	 the	SW	
diversity	 is	 higher	 for	 Scenario	B.	 	 For	 the	 aggregated	 approach,	 ‘pi’	 is	 the	 proportion	 of	
isolates	 resistant	 to	 a	 particular	 antibiotic	 i	 relative	 to	 the	 total	 frequency	 of	 resistance	
summed	 across	 all	 antibiotics;	 and	 for	 the	 line-listed	 approach,	 ‘pi’	 is	 the	 proportion	 of	
isolates	belonging	to	a	resistance	type	i.		

Scenario	A	–	Multidrug	resistance	

								Line-Listed	Approach						 	 	 	 												Aggregated	Approach		 																																							

	

	

	

	

	

Scenario	B	–	Single	resistance	

											Line-Listed	Approach	 	 	 	 	 												Aggregated	Approach																																																														

	

	

	
	
	

	

	

	

Isolates	 AmCpKa	
A1	 1	
A2	 1	
A3	 1	
Total	 3	
pi	 3/3	

SW	=	0	

Isolates	 Am	 Cp	 Ka	
A1	 1	 1	 1	
A2	 1	 1	 1	
A3	 1	 1	 1	
Total	 3	 3	 3	
pi	 3/9	 3/9	 3/9	

SW	=	1.10	

Isolates	 Am	 Cp	 Ka	
B1	 1	 0	 0	
B2	 0	 1	 0	
B3	 0	 0	 1	
Total	 1	 1	 1	
pi	 1/3	 1/3	 1/3	

SW	=	1.10	

Isolates	 Am	 Cp	 Ka	
B1	 1	 0	 0	
B2	 0	 1	 0	
B3	 0	 0	 1	
Total	 1	 1	 1	
pi	 1/3	 1/3	 1/3	

SW	=	1.10	
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Figure	3.1:	 A	 flow	 chart	 for	measuring	 alpha	 and	beta	diversity	 for	 antibiotic	 resistance	
data.	pi	appears	in	equation	1	and	2	in	Chapter	2;	Xak	appears	in	equation	4	in	Chapter	2.	
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Figure	3.2:	Alpha	and	Beta	Diversity	for	Provinces.	(A)	Boxplot	showing	the	SW	index	for	
provinces	 in	Canada	 from	west	 (left)	 to	east	 (right).	The	solid	 lines	denote	 the	mean,	 the	
boxes	represent	the	interquartile	range,	the	whiskers	are	1.5	times	the	interquartile	range	
and	 the	 circles	 are	 outliers.	 The	 sample	 size	 (N;	 number	 of	 30	 isolate	 groups)	 for	 each	
province	can	be	found	in	Table	3.2.	(B)	Relative	abundance	of	the	ranked	resistance	types	
in	 various	 provinces.	 (C)	 NMDS	 (Stress	 =	 0.0008)	 using	 Bray-Curtis	 distance	 on	 raw	
antibiotic	 resistance	data.	 Stress	 represents	 the	mismatch	between	 the	 rank	order	of	 the	
pairwise	dissimilarities,	between	provinces,	due	to	Bray-Curtis	distance	and	 in	the	NMDS	
ordination.	 (D)	 PCA	 for	 provinces	 performed	 on	 the	 variance-covariance	 matrix	 of	 the	
antibiotic	 resistance	 data	 transformed	 into	 proportions.	 PC1	 explains	 72.42%	 and	 PC2	
explains	16.83%	of	the	variance	in	the	composition	of	antibiotic	resistance	with	respect	to	
the	provinces.	Vectors	point	in	the	direction	of	higher	than	average	relative	abundance	of	
particular	antibiotics.		

1

2

3

BC AB SK MB ON QC NB NS
Province

SW
_in

de
x

Shannon−Wiener indexA

0.0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40 45 50
Rank

Re
lat

ive
_A

bu
nd

an
ce

Province
BC
AB
SK
MB
ON
QC
NB
NS

Relative AbundanceB

AB
BC

MB NB

NL

NS

ON
PEI

QC

SK−0.5

0.0

0.5

−0.5 0.0 0.5 1.0
NMDS1

NM
DS

2

NMDSC

AB

BC

MB

NBNL
NS

ON

PEI

QC

SK

Nalidixic acid

Tetracycline
Cefoxitin

StreptomycinAmpicillin

−0.75

−0.50

−0.25

0.00

−0.2 0.0 0.2 0.4
PC1(72.42%)

PC
2(

16
.8

3%
)

PCAD



	 77	

	

Figure	3.3:	Correlation	between	Shannon-Weiner	(SW)	index	values	measured	using	line-
listed	 and	 aggregated	 approaches.	 The	 line	 in	 each	 graph	 corresponds	 to	 the	 fitted	
regression	 line	 for	 SW	 index	 values	 between	 line-listed	 and	 aggregated	 approaches.	 The	
upper	 panel	 (A)	 shows	 the	 high	 correlation	 (r2=0.8)	 for	 provinces	 in	 Canada.	The	 lower	
panel	(B)	shows	the	high	correlation	(r2=0.83)	for	S.	enterica	serotypes.		
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Figure	3.4:	The	distribution	 of	 aggregated	 resistance	 for	 provinces	 (province	names	 are	
abbreviated;	A),	 serotypes	 (B),	and	years	 (C).	Note	 that	 in	all	 the	panels	 (A),	 (B),	and	(C)	
fraction	of	antibiotic	resistance	sum	to	greater	than	1	 for	provinces,	serotypes,	and	years	
because	some	isolates	are	resistant	to	multiple	antibiotics.	
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Figure	3.5:	Alpha	and	Beta	Diversity	for	Serotypes.	(A)	Boxplot	showing	the	SW	index	for	
different	 S.	 enterica	 serotypes.	 The	 solid	 lines	 denote	 the	mean,	 the	 boxes	 represent	 the	
interquartile	range,	 the	whiskers	are	1.5	 times	the	 interquartile	range	and	the	circles	are	
outliers.	The	sample	size	(N;	number	of	30	isolate	groups)	for	each	serotype	can	be	found	
in	Table	3.2.	(B)	Relative	abundance	of	the	ranked	resistance	types	for	serotypes.	(C)	NMDS	
(Stress	=	0)	using	Bray-Curtis	distance	on	raw	antibiotic	resistance	data.	Stress	represents	
the	mismatch	between	 the	 rank	order	of	 the	pairwise	dissimilarities,	between	serotypes,	
due	 to	 Bray-Curtis	 distance	 and	 in	 the	 NMDS	 ordination.	 	 (D)	 PCA	 performed	 on	 the	
variance-covariance	matrix	of	the	antibiotic	resistance	data	transformed	into	proportions.	
PC1	 explains	 71.02%	 and	 PC2	 explains	 24.11%	 of	 the	 variance	 in	 the	 composition	 of	
antibiotic	resistance	with	respect	to	the	serotypes.	Vectors	point	in	the	direction	of	higher	
than	average	relative	abundance	of	particular	antibiotics.		
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Figure	3.6:	Alpha	and	Beta	Diversity	for	time	periods.	(A)	SW	index	change	over	the	entire	
surveillance	period	 (4016	days).	The	points	denote	SW	diversity	 values	 at	different	 time	
periods	and	the	red	 line	represents	 the	 fitted	regression	 line.	 (B)	NMDS	for	Years	(2003-
2013)	using	Bray-Curtis	distance	on	raw	antibiotic	 resistance	data	 (stress	=	0.01).	Stress	
represents	 the	mismatch	between	the	rank	order	of	 the	pairwise	dissimilarities,	between	
years,	due	to	Bray-Curtis	distance	and	in	the	NMDS	ordination.			(C)	PCA	for	Years	(2003-
2013)	 performed	 on	 the	 variance-covariance	 matrix	 of	 antibiotic	 resistance	 data	
transformed	 into	 proportions.	 PC1	 explains	 55.31%	 and	 PC2	 explains	 28.07%	 of	 the	
variance	in	the	composition	of	antibiotic	resistance	with	respect	to	the	years.	Vectors	point	
in	the	direction	of	higher	than	average	relative	abundance	of	particular	antibiotics.	
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Figure	3.7:	Alpha	and	Beta	Diversity	for	interaction	between	Serotype	and	Time	Periods.	
(A)	SW	 index	changes	 for	each	serotype	over	 the	entire	 surveillance	period	 (4016	days).	
The	points	represent	SW	index	values	for	different	time	periods	grouped	by	serotype.	The	
lines	 represent	 the	 fitted	 regressions	 for	 each	 serotype.	 (B)	 NMDS	 using	 Bray-Curtis	
distance	on	raw	antibiotic	resistance	data	for	Serotype-Year	combinations	(stress	=	0.06).	
Stress	represents	the	mismatch	between	the	rank	order	of	the	pairwise	dissimilarities	due	
to	Bray-Curtis	distance	and	 in	 the	NMDS	ordination.	 (C)	PCA	performed	on	 the	variance-
covariance	matrix	of	antibiotic	resistance	data	for	Serotype-Year	combination	transformed	
into	 proportions.	 PC1	 explains	 67.18%	 and	 PC2	 explains	 24.25%	 of	 the	 variance	 in	 the	
composition	 of	 antibiotic	 resistance	 with	 respect	 to	 the	 serotype-year	 combinations.	
Vectors	 point	 in	 the	 direction	 of	 higher	 than	 average	 relative	 abundance	 of	 particular	
antibiotics.	
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Chapter	4	

Thesis	Summary	

	

	

Contributions	to	theory:	

i) We	 propose	 a	 new	 method	 of	 applying	 biodiversity	 theory	 to	 summarize	 the	

antibiotic	resistance	data.		In	particular,	we	provide	direction	for	calculating	pi	(as	it	

appears	 in	 equation	 1	 and	 2	 in	 Chapter	 2)	 for	 measuring	 alpha	 diversity	 indices	

when	 applied	 to	 antibiotic	 resistance	 data.	 We	 recommend	 using	 a	 line-listed	

approach	for	measuring	alpha	diversity	and	defining	pi	as	the	proportion	of	isolates	

belonging	to	a	resistance	type	i.	For	measuring	beta	diversity,	we	recommend	using	

aggregated	approach	and	defining	Xak	or	Xbk	(as	it	appears	in	equation	4	in	Chapter	

2)	 as	 the	 number	 of	 isolates	 that	 are	 resistant	 to	 the	 antibiotic	 k	 recovered	 from	

population	a	or	population	b,	respectively.		

ii) Our	work	is	a	novel	contribution	to	public	health	in	understanding	and	summarizing	

the	antibiotic	resistance	across	broad	range	of	antibiotics.		



	 89	

	

Contributions	to	practice:	

i) Calculating	alpha	diversity	using	 the	 line-listed	approach	will	provide	 information	

on	the	diversity	of	resistance	types.	For	highly	diverse	populations,	in	the	absence	of	

any	 microbiological	 testing,	 the	 uncertainty	 surrounding	 the	 combination	 of	

antibiotics	 that	an	 isolate	 is	resistant	 to	 is	highest.	This	 implies	 that	 the	treatment	

for	such	populations	is	more	likely	to	fail,	 in	the	absence	of	any	other	information,	

relative	to	less	diverse	populations.	

ii) Beta	 Diversity	 using	 the	 aggregated	 approach	 will	 provide	 information	 on	 the	

antibiotics	that	are	likely	to	succeed	or	fail	in	different	regions,	when	infections	are	

treated	without	susceptibility	tests.	

Our	 method	 summarizes	 overall	 antibiotic	 resistance	 for	 a	 population,	 which	 provides	

direction	 for	 prescribing	 antibiotics	 when	 the	 antibiotic	 resistance	 of	 the	 infecting	

pathogen	 is	unknown.	This	will	 also	 likely	 improve	 the	 treatment	at	 the	population	 level	

and	help	 reduce	 the	 failure	 rate	of	 treatments	 for	 the	 infections	 that	are	 treated	without	

prior	susceptibility	tests.	

To	apply	our	method	you	need:	

i) For	Alpha	Diversity:	

a. A	 large	 line-listed	 antibiotic	 resistance	 dataset	 for	 pathogens	 that	 are	

prescribed	antibiotic	treatment.	

b. Alpha	diversity	metrics.	
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ii) For	Beta	Diversity:	

a. Aggregated	antibiotic	resistance	dataset.	

b. Beta	 diversity	 metrics	 and	 software	 for	 ordinations	 (such	 as	 the	 vegan	

package	in	R,	basic	R	package,	etc.)	

Limitations	and	Future	Directions:	

There	are	many	limitations	of	our	analysis	in	Chapter	3,	however,	diversity	measures	that	

reduce	 high	 dimensional	 information	 into	 a	 few	 dimension	 will	 always	 need	 to	 rely	 on	

strong	assumptions.		When	applied	to	ecology,	every	diversity	index	makes	an	assumption	

that	all	species	are	equal	despite	some	species	being	more	similar	to	each	other.	There	are	

some	 approaches	 in	 ecology	 that	 attempt	 to	 overcome	 this	 limitation,	 for	 example	

taxonomic	diversity	indices	(Desrochers	and	Anand,	2004)	and	the	approach	by	Leinster	et	

al.	(2012).	The	same	limitation	applies	to	antimicrobial	resistance	as	some	resistance	types	

or	 antibiotics	 are	 more	 similar	 than	 others.	 In	 this	 sense,	 the	 limitations	 of	 applying	

biodiversity	measures	to	antimicrobial	resistance	are	similar	to	the	limitations	associated	

with	its	use	in	ecology.	One	of	the	limitations	of	our	analysis	is	due	to	the	limited	size	of	our	

data	set,	which	might	have	caused	underestimation	of	the	total	number	of	resistance	types	

due	to	inadequate	sampling.		

S.	 enterica	 infections	 in	 humans	 are	 typically	 not	 prescribed	 antibiotic	 treatment.	 We	

anticipate	that	when	applied	to	pathogens	that	are	treated	with	antibiotics,	our	method	will	

provide	valuable	 information	on	whether	 the	antibiotic	 therapy	will	 likely	succeed	or	 fail	

based	 on	 the	 choice	 of	 antibiotic	 and	 the	 type	 of	 resistance	 expressed	 by	 the	 infecting	

isolate.	 Future	 research	 needs	 to	 investigate	 the	 feasibility	 of	 using	 the	 aggregated	
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approach	to	measure	and	 interpret	 the	results	of	alpha	diversity	 in	different	scenarios.	A	

future	direction	would	be	trying	to	create	models	to	recover	the	 line-listed	data	from	the	

aggregated	 data.	 Such	 models	 would	 help	 in	 measuring	 alpha	 diversity	 when	 only	

aggregated	 data	 is	 available.	 Future	 studies	 should	 also	 test	 the	 application	 of	 other	

biodiversity	measures	on	antibiotic	resistance	study	and	their	meaningful	interpretations.		

The	need	for	indices	summarizing	antibiotic	resistance	across	antibiotics,	pathogen	species,	

and	 disease	 syndromes	 has	 been	 supported	 by	 some	 recent	 studies	 (Laxminarayan	 and	

Klugman,	2011,	Ciccolini	et	al.	2015).	Our	proposed	methods	for	measuring	alpha	and	beta	

diversity	indices	(Figure	3.1)	are	useful	tools	for	antimicrobial	resistance	studies	as	these	

methods	can	be	used	to	measure	and	understand	antibiotic	resistance	across	a	broad	range	

of	antibiotics.		
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Appendix	
	

	

Table	A3.1:	Distribution	of	 clinical	 antibiotic	 resistant	S.	 enterica	 isolates	 (before	 the	30	
isolate	 sampling	 for	 different	 serotypes	 in	 each	 province)	 between	 provinces	 and	
serotypes.	 The	 rows	 represent	 provinces	 (abbreviations)	 and	 the	 column	 represent	
different	S.	enterica	 serotypes.	As	seen	 in	 the	table,	PEI	has	 less	 than	30	 isolates	 for	each	
serotype	and	NL	has	only	one	serotype	that	has	more	than	30	isolates.	The	total	number	of	
resistant	 isolate	 is	 6737.	 Resistant	 isolates	 are	 those	 that	 are	 resistant	 to	 at	 least	 one	
antibiotic.	

	 Enteritidis	 Heidelberg	 I	4,	[5],	12:i:-	 Newport	 Typhimurium	 Row	
Total	

BC	 234	 179	 65	 32	 237	 747	
AB	 190	 221	 108	 29	 319	 867	
SK	 66	 77	 53	 6	 81	 283	
MB	 90	 154	 51	 9	 138	 442	
ON	 583	 668	 136	 81	 914	 2382	
QC	 244	 530	 109	 33	 435	 1351	
NB	 77	 159	 11	 2	 57	 306	
PEI	 15	 10	 4	 2	 5	 36	
NS	 106	 86	 8	 0	 44	 224	
NL	 15	 43	 5	 1	 15	 79	

Column	
Total	

1620	 2127	 550	 195	 2245	 6737	
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Table	 A3.2:	Testing	 association	 between	 the	 predictor	 variables	 province	 and	 serotype	
using	 the	 Contingency	Table.	 The	 table	 shows	 sample	 sizes,	 i.e.	 the	 number	 of	 SW	 index	
values	 (response	 variable),	 for	 different	 serotypes	 in	 each	 province	 following	 the	 30	
isolates	 sampling.	 The	 rows	 represent	 provinces	 (abbreviations)	 and	 the	 columns	
represent	 serotypes.	 Fisher’s	 exact	 test	 (with	 simulated	 p-values	 based	 on	 2000	
replication)	 was	 performed	 because	 expected	 values	 for	 different	 serotypes	 in	 each	
province	was	<5	in	most	cases.	The	test	shows	that	province	and	serotypes	do	not	have	any	
association	at	the	significance	level	of	α=0.05	(p-value	=0.972;	two-sided	test).	Hence,	the	
categorical	predictor	variables	province	and	serotype	are	independent.		

	 	
Enteritidis	

	

	
Heidelberg	

	
I	4,[5],12:i:-	

	
Typhimurium	

	
Newport	

Row	
Total	

AB	 6	 7	
	

3	
	

10	
	

0	
	

26	
	

BC	 7	
	

5	
	

2	
	

7	
	

1	
	

22	
	

MB	 3	
	

5	
	

1	
	

4	
	

0	
	

13	
	

NB	 2	
	

5	
	

0	
	

1	
	

0	
	

8	
	

NS	 3	
	

2	
	

0	
	

1	
	

0	
	

6	
	

ON	 19	
	

22	
	

4	
	

30	
	

2	
	

77	

QC	 8	
	

17	
	

3	
	

14	
	

1	
	

43	
	

SK	 2	
	

2	
	

1	
	

2	
	

0	
	

7	
	

Column	
Total	

50	
	

65	
	

14	
	

69	
	

4	
	

202	

	
Fisher's	Exact	Test	for	Count	Data:	

	
p-value	=	0.971	
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Table	A3.3:	Mean	SW	diversity	 index	 for	Provinces	 in	Canada	 (with	sample	size	N)	with	
95%	Confidence	Interval	(C.I.)	around	the	mean.		

	

	
Provinces	 Sample	

Size	
(N)	

	
Mean	SW	index	

95%	C.I.	

2.5%	 97.5%	

British	Columbia	 22	 1.84	 1.65	 2.03	

Alberta	 26	 1.88	 1.66	 2.09	

Saskatchewan	 7	 1.68	 1.16	 2.21	

Manitoba	 13	 1.79	 1.43	 2.15	

Ontario	 77	 1.53	 1.42	 1.65	

Quebec	 43	 1.69	 1.52	 1.86	

New	Brunswick	 8	 1.71	 1.29	 2.12	

Nova	Scotia	 6	 1.38	 0.55	 2.22	
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Table	A3.4:	Mean	SW	diversity	 index	 for	S.	enterica	Serotypes	(with	sample	size	N)	with	
95%	Confidence	Interval	(C.I.)	around	the	mean.	

	

	
Serotypes	

	
Sample	
Size	
(N)	

	
Mean	SW	index	

95%	C.I.	

2.5%	 97.5%	

Enteritidis	 50	 1.17	 1.07	 1.26	

Heidelberg	 66	 1.57	 1.46	 1.69	

I	4,[5],12:i:-	 14	 1.73	 1.49	 1.96	

Typhimurium	 4	 2.06	 1.97	 2.16	

Newport	 69	 2.44	 2.26	 2.63	
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Figure	 A3.1:	Normality	 Plots	 (QQ-Plots)	 for	 the	 Shannon-Weiner	 index.	 The	 theoretical	
quantiles	are	given	by	a	normal	distribution.	Model	descriptions	are	provided	in	Table	3.3.	
This	figure	shows	that	the	normality	assumption	of	each	model	is	satisfied	for	the	data.		
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Figure	A3.2:	Residuals	versus	fitted	coefficient	plots.	For	model	descriptions	refer	to	Table	
3.3.	 This	 figure	 shows	 that	 the	 linearity	 assumption	 for	 the	 predictor	 variables	 in	 each	
model	is	reasonable,	the	variance	of	the	residuals	are	equal	(homogeneity	of	variance),	and	
there	are	few	outliers	in	each	model.		
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Figure	 A3.3:	Heat	 Map	 showing	 the	 distribution	 of	 S.	 enterica	 serotypes	 in	 each	 of	 the	
provinces.	Different	colors	indicate	different	proportions	as	explained	by	the	legend	on	the	
right	 side	 of	 the	 map.	 This	 map	 shows	 no	 obvious	 relationship	 between	 provinces	 and	
serotypes	and	hence,	the	use	of	province	and	serotype	as	independent	predictor	variables	
in	our	models	is	warranted.		
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Figure	A3.4:	Correlation	between	Days	and	Provinces	or	Serotypes.	The	upper	panel	 (A)	
shows	a	weak	correlation	between	observed	Days	and	model	fitted	Days	with	Province	as	a	
predictor	 variable	 (Pearson	 correlation	 coefficient,	 r2=0.11).	 The	 lower	 panel	 (B)	 shows	
weak	 correlation	 between	 observed	 Days	 and	 model	 fitted	 Days	 with	 Serotype	 as	 a	
predictor	 variable	 (Pearson	 correlation	 coefficient,	 r2=0.33).	 The	 red	 line	 in	 each	 graph	
represents	the	goodness	of	model	fit.		
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Figure	 A3.5:	 Rarefaction	 and	 Extrapolation	 Curve	 for	 comparison	 of	 species	 diversity	
between	provinces	and	between	serotypes	at	different	sample	sizes.	The	upper	panel	(A)	
shows	 the	 rarefaction	 and	 extrapolation	 curve	 for	 provinces.	 The	 solid	 lines	 represent	
rarefaction	 and	 the	 dotted	 lines	 represent	 extrapolation	 to	 the	 largest	 sample	 size	 for	
province.	 Different	 colors	 represent	 different	 provinces	 as	 shown	 in	 legend	 under	 the	
graph.	The	 lower	panel	 (B)	 shows	 the	 rarefaction	 and	 extrapolation	 curve	 for	 serotypes.	
The	 solid	 lines	 represent	 rarefaction	 and	 the	 dotted	 lines	 represent	 extrapolation	 to	 the	
largest	sample	size	for	serotypes.	Different	colors	represent	different	serotypes	as	shown	
in	legend	under	the	graph.	
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Figure	A3.6:	Beta	diversity	for	Salmonella	serotypes	within	Canadian	provinces.	Points	are	
labeled	with	province	abbreviations	and	grouped	with	respect	to	serotypes	(colors,	see	the	
legend	to	the	right).	Panel	(A)	shows	the	NMDS	for	province-serotype	combination	(Stress	
=	0.06)	on	raw	antibiotic	resistance	data.	Stress	represents	the	mismatch	between	the	rank	
order	 of	 the	 pairwise	 dissimilarities	 due	 to	 Bray-Curtis	 distance	 and	 in	 the	 NMDS	
ordination.	Panel	(B)	shows	the	PCA	for	province-serotype	combinations	performed	on	the	
variance-covariance	matrix	of	antibiotic	resistance	data	transformed	into	proportions.	PC1	
explains	69.01%	and	PC2	explains	22.69%	of	the	variance	in	the	distribution	of	antibiotic	
resistance.	 Vectors	 point	 in	 the	 direction	 of	 higher	 than	 average	 relative	 abundance	 of	
particular	antibiotics.		
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Figure	A3.7:	Beta	diversity	for	Canadian	Provinces	in	different	years.	Points	are	labeled	as	
years	and	grouped	with	respect	to	provinces	(colors,	see	the	legend	to	the	right).	Panel	(A)	
shows	the	NMDS	for	province-year	combination	(Stress	=	0.07)	on	raw	antibiotic	resistance	
data.	Stress	represents	the	mismatch	between	the	rank	order	of	the	pairwise	dissimilarities	
due	 to	 Bray-Curtis	 distance	 and	 in	 the	 NMDS	 ordination.	 Panel	 (B)	 shows	 the	 PCA	 for	
province-year	 combinations	 performed	 on	 the	 variance-covariance	 matrix	 of	 antibiotic	
resistance	 data	 transformed	 into	 proportions.	 PC1	 explains	 46.01%	 and	 PC2	 explains	
23.73%	 of	 the	 variance	 in	 the	 distribution	 of	 antibiotic	 resistance.	 Vectors	 point	 in	 the	
direction	of	higher	than	average	relative	abundance	of	particular	antibiotics.		

2003

2004

2005
2006

2007

2008

2009
20102011

2012

2013

2003

2004 2005

2006
2007

2008
2009

2010

2011

2012

2013

2003

2004

2005

2006

2007

2008

2009

2010

2011
2012

2013

2003

2004

2005

2006

2007

2008 2009

2010
20112012 2013

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012 2013

2003

2004

2005

2006
2007 2008

2009

2010

2011

20122013

2003
2004

2005

2006
2007

2008
2009

2010

2011

2012

2013
2003

2004

2005
2006

2007

2008

2009

2010

2011

2012

2013

2003

2004

2005
2006

2007

2008
2009

2010

2011

2012

2013

2003

2004

20052006

2007
2008

2009
2010

2011

2012
2013

−1

0

1

2

−1 0 1 2
NMDS1

N
M

D
S2

Province
BC
AB
SK
MB
ON
QC
NB
PEI
NS
NL

NMDSA

2003 2004
2005

2006

2007
2008

2009
2010

2011

2012

2013
2003

2004

2005

2006

2007

20082009

2010

2011

2012

2013

2003

2004

2005

2006

2007

2008

2009

2010

2011
2012

2013

2003
2004 2005

2006

2007

2008
2009

2010

2011 2012
2013

2003

2004

2005

2006

2007

2008

2009

2010 2011
2012

2013

2003

2004

2005

2006
2007

2008

2009

2010

2011

2012
2013

2003

2004

2005

2006

2007
2008 2009

2010
2011
2012 2013

2003
2004

2005

2006
2007

2008

2009

2010

2011

2012

2013
2003

2004
2005

2006

2007

2008

2009

2010
2011

2012
2013

2003

2004

2005

2006

2007 2008

2009

2010

2011

2012
2013

Nalidixic acid

Ampicillin

Sulfisoxazole

Tetracycline

−0.25

0.00

0.25

0.50

−1.00 −0.75 −0.50 −0.25 0.00
PC1(46.01%)

PC
2(

23
.7

3%
)

Province
BC
AB
SK
MB
ON
QC
NB
PEI
NS
NL

PCAB



	 104	

	

	

Figure	A3.8:	Bar	plots	for	comparing	three	different	alpha	diversity	indices	for	Provinces	
(A)	and	Serotypes	(B)	in	the	S.	enterica	dataset	following	the	30	isolate	sampling	strategy.	
Different	color	in	(A)	represents	provinces	and	in	(B)	represents	serotypes,	as	shown	in	the	
legend.	This	figure	shows	that	different	results	are	obtained	using	different	alpha	diversity	
indices	 as	 they	 have	 different	 properties	 (such	 as	 emphasis	 on	 rare	 versus	 common	
resistance	types;	refer	to	Table	2.2	for	diversity	indices	and	their	properties).		
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Figure	 A3.9:	 NMDS	 comparing	 different	 beta	 diversity	 measures	 for	 Provinces	 in	 the	
Salmonella	 dataset.	 The	 beta	 diversity	 measure	 with	 which	 NMDS	 was	 performed	 is	
mentioned	 at	 the	 top	 of	 each	 graph.	 Each	 point	 in	 each	 NMDS	 represents	 a	 province.	
Stresses	for	each	NMDS	are:	(A)	2	x	10-3,	(B)	2.43	x	10-5,	(C)	4	x	10-4,	(D)	6.83	x	10-5,	(E)	6.20	
x	10-5,	and	(F)	0.08.	Stress	for	each	NMDS	represents	the	mismatch	between	the	rank	order	
of	the	pairwise	dissimilarities,	between	provinces,	due	to	beta	diversity	measure	and	in	the	
NMDS	ordination.		This	figure	shows	that	similar	or	different	results	may	be	obtained	using	
different	beta	diversity	measures	as	various	measures	have	similar	or	different	properties	
(exclusion/inclusion	of	joint	absence,	emphasis	on	rare/common	species;	refer	to	Table	2.3	
for	indices	and	their	properties).	
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DATA	Request	Form	to	CIPARS:	

	

		

1"
"

Centre&for&Foodborne,&Environmental&and&Zoonotic&Infectious&Diseases&
(CFEZID)&and&Canadian&Integrated&Program&for&Antimicrobial&Resistance&

Surveillance&(CIPARS)&
"

Data&Request&Form&
"
"

In"order"to"keep"track"of"requests"for"data"held"by"CIPARS"and"to"ensure"that"you"receive"the"
information"that"you"are"looking"for,"please"check"off"the"appropriate"boxes"on"the"following"pages"and"
provide"any"other"additional"details"when"indicated."Please"also"fill"in"your"contact"information"below.""

Contact'Information:''

Name:"Amy'Hurford"

Organization/Committee:"Memorial'University'of'Newfoundland"

Phone"number:"(709)'726B1561'(before'Dec'22,'2014)'or'(709)'864B8301'(after'Jan'1,'2015)"

Email"address:"ahurford@mun.ca"

"

CFEZID/CIPARS'contacts:''

Rita"Finley""
PH":"519M826M2213""
EMmail":"Rita.Finley@phacMaspc.gc.ca"
"

1. Purpose'of'Request'
a. Outbreak"Investigation" " " !"
b. Supplemental"Data""" " " !"
c. Research"Project1" " " " ✓"
d. Publication" " " " " ✓"
e. Other"" " " " " ✓"

i. Please"specify:"MSc'thesis"
"

2. AMR'Data'request'details'(please'complete'as'much'detail'as'possible)'
" "

a. Salmonella"serotype(s):""All'available"
b. Phage"type(s):"All'available"
c. Region(s)"of"concern"

i. Canada" " " " ✓"

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1"Please&attach&a&copy&of&the&project&proposal.&
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2"

"

ii. Province/region" " " !"

1. Please"specify:"_____________________________________________"

"

d. Time"frame""" " " "

i. Year(s):"All'available"
ii. Month(s):"All'available"

"

3. Data'variables'requested:'
a. Laboratory"data"

i. Bacterial"genus" " " " ✓"

ii. Serotype" " " " " ✓"

iii. Phage"type" " " " " ✓"

iv. PFGE"patterns" " " " !"

v. Antimicrobial"susceptibility"patterns"" ✓"

vi. Other" " " " " !"

1. Please"specify:"______________________________________________"

"

b. Epidemiological"data"

i. Project/surveillance"component" " ✓"

ii. Year" " " " " ✓"

iii. Month"" " " " " ✓"

iv. Province/region" " " " ✓"

v. Other" " " " " !"

1. Please"specify:"______________________________________________" "

"

4. Preferred'format'of'the'data:'
a. Standard"CIPARS"summary"tables" " " " ✓"

b. Standard"CIPARS"summary""figures" " " " !"

c. “OneMoff”"summary"tables" (see"next"page)" " " !"

"

Please"provide"specific"details"of"other"formats"or"in"terms"of"how"the"r"x"c"tables"etc."should"be"

categorized"and"stratified"here:"

None'

5. AMU'Data'request'details'(please'complete'as'much'detail'as'possible)'
"

a. Human"AMU"Data"

i. Pharmacy" !"

ii. Hospital" !"

iii. Physician" !"

"
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3"
"

b. Antimicrobials"of"interest"
i. All" " " !"
ii. Cat.&I& " !"
iii. Cat.&II" " !"
iv. Cat.&III" " !"
v. Cat.&IV" " !"

" "
c. Others"(Specify):"_____________________________________________"

____________________________________________________________________"
"

d. Region(s)"of"concern"
i. Canada" " " " !"
ii. Province/region" " " !"

1. Please"specify:"_____________________________________________"
"

e. Time"frame""" " " "
i. Year(s):"All'available"
ii. Month(s):"All'available"

"
"

6. Data'variables'requested:'
i. Total"prescriptions" " !"
ii. Total"cost" " " !"
iii. Total"kilograms" " !"
iv. Total"number"of"units" !"
v. Defined"daily"doses"" !"
vi. Province" " " !"
vii. Total"diagnoses" " !"
viii. Total"antimicrobial"recommendations" !"
ix. Age"groups" " " !"
x. Disease"classification/code" !"
xi. Other:"

1. Please"specify:"______________________________________________" "
"

7. Preferred'format'of'the'data:'Microsoft'Excel'or'CSV"'

"

"

"

"

"

PLEASE'NOTE:'
You'are'receiving'confidential'information,'as'such,'it'should'be'kept'in'strict'
confidence.'This'confidential'information'can'be'used'only'for'the'purpose'
outlined'above.'The'data'should'not'in'any'way'be'manipulated'to'allow'the'reB
identification'of'any'patient/case.'

This'data'should'be'protected'to'prevent'any'unauthorized'use,'dissemination'or'
publication'outside'of'its'intended'use.'There'will'be'no'additional'copies,'extracts'
or'reproductions'made'of'the'confidential'information'with'the'exception'for'
sharing'on'a'needBtoBknow'basis'for'the'uses'outlined'above.'

"
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4"
"

"

"

"

"

"

By"signing"below,"you"are"agreeing"to"keep"this"information"confidential"and"not"using"it"for"any"
purposes"outside"of"those"outlined"above."The"data"will"be"deleted"from"all"systems"
immediately"after"the"completion"of"the"project."

"

Signed"by:"

"

Amy'Hurford' " Date:""December'10,'2014"


