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ABSTRACT

An on·line analytical method has been developed for the routine measurement of S

isotopic composition in lichens using continuous flow-isotope ratio mass spectrometry (CF·

IRMS). 15 mg (equivalent to about 9 Ilg S) of chemically-untreated lichen powder

(Alecloria sarmentosa) together with V20' was weighed into 40 mg Sn capsules and then

combusted directly in an oxidation-reduction reactor (packed with WO), pure Cu and quartz

wool, heated to 1050°C) of an elemental analyzer, connected to the lRMS via an open-split

interface. All combusted gases were carried in a stream of He gas (at 80 mL/min) through

a trap (75% Mg(CI0.)2 + 25% quartz chips) to remove H20 W' A 1.2 m Teflon column

(Poropak"TM QS, heated to 75°C) was used to chromatographically separate 802from CO?

and N2. The separated gases were transferred into the IRMS through the interface where

excess CO2was diluted by the supply ofHe (set at 25 psi). Using these parameters over 1SO

samples can be analyzed successively, changing the H20 trap and cleaning residual ash from

the combustion reactor after every 40 samples.

Mean o).4Scm- values of +6.3 ± 0.4%0 (calibrated using sulphates) and +6.1 ± 0.3%0

(calibrated using sulphides) measured on a homogenized, composite Iiehen sample collected

from the Botanical Garden of Memorial University of Ne'>Vfoundland, show excellent

agreement with those acquired by dual inlet (DI)-TRMS (+6.2 ± 0.2%0), and by on-line CF·

IRMS in which samples are chemically pretreated 10 convert 8 to BaS04 (+5.9 ± 0.3%0).



Four different lichen samples with various S concentrations and lI:>1S values collected from

various locations in Newfoundland also show excellent ac<:uracy and precision compared to

DI technique. Lichen samples containing as little as 5-6 /1g S (equivalent to about 9 rog

lichen powder) produce valid isotopic measurements without a loss of precision. No

memory effects were observed over a o.l4Sarrvalue range of+6 to +16%0. Compared to 01­

IRMS and CF-mineral methods, analytical time and reasonable S amount required per CF­

lichen analysis are reduced greatly to 15 mins and 9 I1g S, respectively.

The developed CF-lichen method was applied to young and old portions of single

lichen strands (25-35 cm in length) collected from Come-By-Chance oil refinery area,

eastern Newfoundland to investigate variations ofS isotopic composition with time. There

were systematic variations in S isotope signatures (lIl4Scur) between old (+6.2 to +10.9%0)

and young (+5.1 to +8.2%0) portions, suggesting that the old portions may preserve the S

isotopic signatures before the refinery operation while those ofthe young portions show the

present S isotopic signatures. This study demonstrates that the micro analytical capability

of the developed CF·lichen method can successfully be applied to other studies which

require very small amount of organic material with low S concentrations.
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CHAPTER 1

INTRODUCfION

1.1 SCOPE AND OBJECTIVES

Atmospheric sulphur causes environmental problems such as acidification and

climate change, which subsequently harm human and animal health, and lead to ecosystem

damage. To better understand these impacts, S concentrations have been monitored in a

wide variety of media. Precipitation, aerosols, lakewater, sediments and vegetation have all

been used. In addition, sulphur stable isotopes have been used to distinguish anthropogenic

from natural inputs by comparing the distinct isotopic signatures ofvarious sulphur sources.

Such measurements are made by isotope ratio mass ~;peclromctry(IRMS) whereby

inorganic or organic samples experience chemical pretreatment in order to convert their S

to a solid form such as silver sulphide (Ag2S) or barium sulphate (8aS04), and then to the

gaseous compound such as sulphur dioxide ($02) or sulphur hexafluoride (SF6), suitable for

introduction into the instrument. Such sample preparation procedures require relatively large

amounts oforiginal sample to obtain sufficient S (e.g. 3-7 mg ofS) for analysis (Giesemann

et aI., 1994). They are also time-consuming (e.g. > I8 hrs per analysis for sample preparation

and IRMS analysis) and labor-intensive, and in some cases may be both difficult and

expensive (Giesemann et aI., 1994; Finnigan" MAT, 1997). Finally, they possess the

potential for incomplete combustion and isotopic fractionation.



In order to minimize the problems associated with sample preparation, a new inlet

system has been created by interfacing an elemental analyzer (EA) to an IRMS. In the on·

line continuous-flow isotope ratio mass spectrometry (CF-IRMS), samples with no or

reduced pretreatment are directly combusted in an EA, converted to 502, and then analyzed

by an IRMS. In addition to minimizing the problems identified above, this automated on­

line method yields better reproducibility by reducing human errors and increases laboratory

productivity(Barrieand Prosser, 1996). Forthe past several years, significant improvements

have been made to CF-IRMS techniques for S isotopic determinationsin inorganic materials.

S amount required for each analysis has been reduced to about 10 J.lg S and time for sample

preparation and IRMS analysis to about 1 hour (Giesemann ct aI., 1994).

However, the application of this on-line technique to the direct determination of S

isotopic compositions in organic materials has not been as successful, mainly because of

extremely low S concentration ofmOSI organic materials (e.g. <0.06 wt% S in the lichen

analyzed forthis study) compared to inorganic materials(e.g. >50 wt'Yo S in pyrite), requiring

large amount of samples. Large sample size may lead to incomplete combustion and

subsequent isotopic fractionation. In addition, the high C:S ratio of most organisms

(e.g. >90% ofthe total combusted gases ofthe lichenanalyzcd for this study is CO2) requires

much higher oxygen demand for complete sulphur oxidation than mineral analysis.

The major objective ofthis study was to develop an on-line analytical method for the

direct measurement of S isotopic composition in lichens, with no chemical pretreauncnt,

using a CF·IRMS. Lichens were chosen for this study because of their widespread usc as



an atmospheric S biomonitor. The quality ofthe developed analytical technique is evaluated

by comparison with two existing, independent methods, off·line DI·IRMS and CF-IRMS

with mineraJs. The method is then applied to old and young ponions ofsingle lichen strands

to investigate the variation ofS isotopic composition with time. II is believed that this study

will become a cornerstone for the analysis of other organisms with low S concentrations by

CF-IRMS.

1.2 SULPHUR

Sulphur is present in nearly all natural environments (Hoefs, 1997). It may be a

major component in ore deposits and evaporites. It occurs as a minor component in igneous

and metamorphic rocks, throughout the biosphere in organic substances, in marine sediments

as both sulphide and sulphate, and in ocean water as sulphate (Etlleringer and Rllildel, 1988;

Hoefs, 1997).

1.2.1 Atmospheric sulphur cycle

Figure 1- I illustrates the atmospheric sulphur cycle (Brimblecombe et aI., 1989).

Various sulphur compounds are emitted into the atmosphere, with a wide range of fluxes.

These include hydrogen sulphide (1-1)S). dimethyl sulphide (DMS, CHJSCH1), carbonyl

sulphide (COS), carbon disulphide (CS2), sulphur dioxide (S02) and sulphate (50.2.). Table

I·} summarizes nalUral and anthropogenic sources of atmospheric sulphur emission.



Continental (20);;.r=SO::::=SO:::,::'=S::'::±)l'(81)
so, so/"

Marine

Figure I-I. Atmospheric sulphur cycle (Jamieson, 1996 modified from
Brimbleeombe et al., 1989). All fluxes in Tg SIyr.



Table I-I. Natural and anthropogenic sources of atmospheric
suJphur (Ryaboshapko, 1983; Andreae, 1985; Brimblecombe
et ai" 1989; Charlson, et aI., 1992),

Natural

• emission of sea salt sulphur from the ocean

• biogenic emission from coastal regions and the open ocean

• biogenic emission from land

• volcanic emissions of sulphur compounds

• aeolian weathering of sulphates in arid regions

Anthropogenic

• combustion of fossil fuels for the production of energy

• oil refining and treatment of oil products

• smelting of ferrous and non-ferrous ores



1.2.1.1 Sources

1.2.1.1.1 Natural

The direct source of particulate sulphur to the marine atmosphere is from the

production ofseasalt aerosol at the ocean surface (Andreae, 1985). The aerosol is produced

from seawater droplets that form when air bubbles burst at the sea surface. Under very high

wind conditions. droplets can also be formed when water is torn away fmm the crest of a

wave (Andreae, 1985). The sulphate flux from the formation ofseaspray aerosol is probably

between 40 Tg S/yr and 300 Tg Slyr (Andreae, 1985). Brimblecombe et al. (1989) estimated

it to be 144 Tg S/yr (Figure 1-1). Most seasalt entering the atmosphere is redeposited to the

ocean surface (Andreae, 1985). However. as much as 10% of the total flux is carried over

continents and deposited on land (Andreae, 1985).

From coastal regions and the open oceans, gaseous reduced sulphur compounds are

emitted by phytoplankton (DMS) and various organic matlerdecomposition processes (H1S)

(Ryaboshapko, 1983). The most active reduction ofsulphate occurs in periodically flooded

and shallow parts of sea basins, especially in parts with considerable organic matter

(Ryaboshapko, 1983). Areasofhigh primary productivity are important for DMS emissions.

Estimates of the ocean and continental biogenic sulphur flux into the atmosphere vary from

34 Tg S/yr (Granat et al., 1976) to 267 Tg Slyr (Eriksson, 1963).

Fonnalion ofbiogenic volatile sulphur compounds, mainly H1S along with COS, CS

and DMS, occurs in continental areas under the anaerobic conditions found in marshes and

microorganisms playa leading role in this process (Ryaboshapko, 1983). Emissions are



likely to vary, therefore, with the temperature and moisture status of the environment and

with the availability of nutrients (Ryaboshapko, 1983). Also, the direct estimation of the

biogenic flux from land is rather difficult since its value may vary in space and time

(Ryaboshapko, 1983). Considering the uncertainty ofthe estimate of reduced sulphur with

short residence time in this reservoir, the flux may be within the range 3.5-30 Ig S/yr

(Ryaboshapko, 1983).

Volcanoes and geothermal areas emit a number of sulphur gases as well as other

sulphur species, including H1S, COS and sulphate aerosol, during both eruptive and non­

eruptive phases(Andreae, 1985). Based on the results offield measurements from volcanoes

throughout the world by Berresheim and Jaeschke (1983), S02 emissions during

non-eruptive phases (8 Ig S/yr) arc considerably larger than those during eruptive periods

(1 IgS/yr).

Estimates of dust emissions from arid regions (about 10% of the earth's land) vary

between 200 Iglyr and 3,OOOTglyr(Ryaboshapko, 1983). Depending on the assumed values

for both the total dust mobilization and the sulphur content of the dust, source estimates

proposed are between 3 Ig and 30 Ig S/yr (Ryaboshapko, 1983). Substantial amounts of

this dust can be transported over more than 1,000 km and can be of great importance to

regional sulphur cycling (Ryaboshapko, 1983).

1,2,1,1.2 Anthropogenic

The anthropogenic flux of sulphur to the atmosphere results from the utilization in



indust!)' of sulpbur compounds themselves and from the utilization of other materials that

contain sulpbur as an unwanted or urulvoidable by-product (Table I-I). Emissions of

anthropogenic sulphur to the atmosphere are almost entirely in the fonn of sulphur dioxide.

Combustion of fossil fuels accounts for 80 to 85% ofthe total, with the remainder coming

from the smelting ofores and other industrial processes and burning (Whelpdale, 1992). The

total flux ofanthropogenic sulphur to the atmosphere is estimated to be 80 Tg S/yr by Ivanov

(1983) and 93 Tg S/yr by Brimblecombc et aI. (1989).

In coal, sulphur exits as organic compounds, pyrites and suJphate (Ryaboshapko,

1983). During thecombustion processes, organic sulphur and pyrite are oxidized to SO/ and

partially SOl which, together with flue gases, arc released to the atmosphcre (Ryaboshapko,

1983). On combustion, 95% of the sulphur in fuel is released to thc atmosphcre (Kellogg

eta!.,1972).

In natural oils, sulphur exists as hydrogen sulphide and organic compounds

(Ryaboshapko, 1983). Typically, the content of sulphur in oil is about 2% (Brimblecombe

et ai.. 1989). The bulk of this sulphur (80%) remains in oil products. About 8% of the

sulphur is released from the refinc!)' into the atmosphere as the dioxide. The remaining 12%

is partly utilized for other products.

In ores of non-ferrous metals, sulphur exits in the sulphide form (pyrites). The

sulphur concentration in some pyrites reaches 45% (d!)' weight) (Ryaboshapko, 1983).

Sulphur from sulphide ore is emitted as sulphate directly formed in high-temperature

processes or as sulphur dioxide which can be oxidized further to sulphate during its



atmospheric residence (Thode, 1991). During smelting of copper, zinc, lead and nickel,

sulphide sulphur is oxidized to S02, which is emitted into the atmosphere, unless otherwise

used (Ryaboshapko, 1983).

1.1.1.2 Transformations

Most reduced suJphur compounds emitted 10 the atmosphere are quickly «I day)

oxidized to S02 and eventually most ofthis is oxidized to S04, by gas-phase (homogeneous)

or aqueous-phase (heterogeneous) processes (Newman et a1 .• 1991). For gas-phase

processes, H2S, for example, is oxidized by the reaction with free radical (OH) (Newman

eta!.,1991):

OH + H2S -----> HS + H20

HS + 202 ----> HS04

HS04 -----> OH + S03

S03 + H20 •••••> H1S04

(1.1)

(1.2)

(1.3)

(1.4)

Since most ofthe anthropogenic emissions are in the fonn 0(801, and since biogenic

sulphides are oxidized to SOl' the chemistry of802in the atmosphere is ofmajor importance

(Newman et a1., 1991). The summary of bomogeneous and heterogeneous oxidation

processes of802can be written as follows (Newman et a1., 1991):



Homogeneous oxidation;

S02W+OH---.>HOS02 (1.5)

HOSOl + 0 1 --_.> 50.1(1) + H02 (1.6)

SOlUl + H20 -----> H2S0ol(l) (1.7)

Heterogeneous oxidation

S02(ll + H20'I.I) --_.> S02·H20 (1"8)

SO,·H20 _._._.> HSOJ"(.oq)+ H+ (1.9)

HSOJ"\"'l) ----> HS04"("'ll (1.10)

1.2.1.3 Deposition

Chemical constituents in the aunosphere can be brought to the surface by a variety

of processes" The deposition processes which do not involve precipitation are collectively

termed dry deposition (Figure 1-2a) (Whelpdale, 1992). Particles larger than about 10 lim

in diameter may be removed by gravitational sedimentation (Whelpdale, 1992). However,

smaller particles and gases are more efficiently brought to the near-surface region by

turbulent aunospheric motions, where they may be subsequently be brought into contact with

surface elements by molecular-scale processes (Whelpdale, 1992). Actual uptake is

accomplished by chemical reaction, dissolution and adsorption (Whelpdale, 1992). Sulphur

dioxide is dry deposited more efficiently than particulate sulphate because it is more readily

taken up at the surface (Whelpdale, 1992).
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Figure 1-2. Schematic representation uflhe deposition processes: (a) dry
deposition and (b) wet deposition (Whelpdale, 1992).
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Those processes for which precipitation is the delivery mechanism are lenned wet

deposition (Figure 1-2b). Gases, such as sulphur dioxide, can dissolve in cloud and rain

drops or adsorb on to frozen precipitation elements (Whelpdale, 1992). Sulphate particles

are efficient condensation nuclei and are incorporated into precipitation by nucleation or as

a result of scavenging by cloud droplets and falling drops (Whelpdale, 1992).

Finally, the third deposition process includes mass transfer to the surface by

impaction offog or cloud droplcts, and by riming. In high-elevation forested ecosystems or

in areas with frequent fog, they can be very efficient (Whelpdale, i 992). This is not usually

ineluded as wet or dry deposition.

1.2.2 Sulphur stable isotopes

Sulphur has four stable isotopes, 32S, llS, lOS and }OS. occurring with natural

abWldances of 95.02, 0.75, 4.21 and 0.02%, respectively (Krouse, 1980; Mitchell et al.,

1998). 32S and l·S are the ones most frequently used in stable isotope studies because oftheir

higher abundances and the extensive use ofS02 gas for mass spectrometric detenninations

(Krouse, 1980; Trust and Fry, 1992). In general, isotopic compositions are reported using

relative units (per mille (%0), on the delta (6) scale). Natural abundance measurements arc

always made relative to a known standard reference material because absolute measurements

are technically more difficult to achieve on a routine basis (McKinney et al., 1950). Ol'S is

defined as:

12



where J-4SlilS is the ratio ofthe number ofloiS atoms to the number ofJ!S atoms in the sample

or the standard (Krouse, \988; Thode, 1991; Mitchell et al., 1998). In addition, o-notation

representsa convenient means for expressing the small differences in isotope ratios measured

at natural abundance without the redundancy of carrying multiple preceding zeros. The

standard for sulphur used internationally is Cafton Diablo troilite (COT, 34S/JlS '" 449.94 x

10.4), which is an iron sulphide (FeS) from the Canon Diablo meteorite (Krouse, 1988; Trust

and Fry, 1992; Mitchell et aI .• 1998).

1.2.2.1 Fractionation mechanisms

Certain natural processes lead to isotopic fractionation whichaltcrstheratioof34SP2$

in various compounds. Isotopic fractionation occurs because of the mass differences

between isotopes. Heavier isotopes have lower zero-point energies which means that they

tend to be bonded more strongly, and thus react less readily, than lighter isotopes (Hoefs,

1997). Fractionation is represented by the symbol alpha (IX) which can be written as:

(1.12)
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where R... and 14 are the ratios of isotopes (e.g. 14SflS) in substances A and B, respectively.

Two main phenomena produce isotope fractionation; (i) equilibrium isotope effect

and (ii) kinetic isotope effect (Thode, 1991; Hoefs, 1997). Equilibrium isotope effects

involve the exchange of isotopes between substances, phases or molecules in a system at

chemical equilibrium (Hoefs, 1997). Isotope exchange between hydrogen sulphide (H!S)

and S02 is an. example (Thode, 1991). The overall exchange reaction is:

The equilibrium constant K may be expressed as below:

(1.14)

This expression shows that when K is not unity the ratio Msf2s will not be the same in the

two equilibrium phases (Thode, 1991). Therefore, the extent to which K differs from unity

is a measure of the equilibrium isotope effect (Thode, 1991). For the H2S and S02 system

above, the equilibrium constant K is 1.0064 at 800 K. Therefore, at 800 K under equilibrium

conditions, S02 will be 6.4%0 enriched in MS compared to H2S (Thode, 1991).

Kinetic isotope effects occur during incomplete and unidirectional reactions such as

evaporation, dissociation reactions, biologically mediated reactions and diffusion (Hoefs,

1997). Since lighter isotopes react more quickly, these reactions tend to give products
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depleted in the heavier isotopes (Hoefs, 1997). Fractionation factors for kinetic reactions can

be calculated from reaction rate constants (k). As an example, the reduction of SO. to HzS

can be represented by two reactions:

32S04 <-----.--•..> H2)2S

.l4S0. <••••• 4> H
2
.l4S

k" (1.15)

(1.16)

The ratio of rate constants knJk.l4 for the above reactions is -1.022 at room temperature

(Thode, 1991). Since the l2S0/" species reacts 1.022 times faster than the .l4S0/, the H2S

produced at any instant is depleted in 34S by about 22%c. relative to the remaining SO/,

(Thode, 1991).

1.2.2.2 Usefulness ofsulphur stable isotopes in atmospheric studies

The combination of equilibriwn and kinetic effects results in distinct isotopic

signatures for various sulphur sources. Figure 1-3 illustrates the variations of sulphur

isotopic signatures for different natural as weU as anthropogenic sources of atmospheric

sulphur compounds (Newman et al., 1991). This makes the stable isotope technique a

powerful tool to identify sources of anthropogenic sulphur and trace its pathway in the

atmospheric environment.

In particular, isotope techniques work best if the isotopic value of anthropogenic

sulphur is quite different from that of natural background or other sources. Such is the case
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Figure 1-3. Variation of 53-45 values for different sources ofatmospheric
sulphur compounds (modified from Newman er aI., 1991).
~ is average 5:l4S of oil and gas from northeastern America.
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for emissions from sour gas processing in Alberta, Canada, where the isotopic differences

(O).OS values) between emitters and natural background range from +20 to +50%0 (Krouse,

1991). A number of studies have been reported in which isotopes have been successfully

employed to detennine source contributions and to elucidate atmospheric processes (Jensen

and Nakai, 1961; Cortccci and Longinelli, 1970; Dequasi and Grey, 1970; Holt et al., 1972;

Grey and Jensen, 1972; Castlemanet aI., 1974; Ludwig, 1976; Krouse, 1977; Nriagu, et a1.,

1991; Wadleigh et aL, 1994; Jamieson, 1996; Wadleigh et aI., 1996).

1.3 LICHENS

1.3,1 Biological background on licheDs

1.3,1.1 Lichens and their nutrienu

Lichens are symbiotic organisms composed ofa fungal component (mycobioDt) and

an algal component (photobiont) (Ahmadjian, 1967; Hale, 1974; Hawksworth and Rose,

1976; Richardson, 1992). In the relationship, the algal component usually suffers no

appreciable harm, andactuaUy receives some benefits; it is shielded from excessive sunlight,

desiccation and mechanical injury, and receives inorganic substances from its fungal

component. In return, the fungu~ receives nutrients from the photosynthetic algae

(Hawksworth and Rose, 1976; Richardson, 1992).

Lichens take nutrients from the environment in which they live: (I) they have active

uptake systems for anions like nitrates and sulphates within the cell, (2) they adsorb metal

ions such as Cal~ through an ion exchange mechanism and (3) they can trap tiny particles
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within their structure (Richardson, 1992). Some of the metabolites produced by lichens can

break down such particles, releasing nutrients which may then be taken into the cells of

lichens (Richardson, 1992).

The fact that lichens do not possess roots, the efficient nutrient absorption system for

higher plants, has led to major dependence on atmospheric sources ofnutrients (Nieboer et

al., 1978; Nash Ill, 1996), although some lichens take nutrients from soil and rock substrates

(Nash III, 1996). The processes of nutrient uptake from the atmosphere include wet

deposition such rainfall, snow, fog and dew and dry deposition such as sedimentation of

large aerosols (greater than 2-1 a!lm in diameter), impaction ofsmaller aerosols and gaseous

uptake (Nash III, 1996). These nutrient supplies are very dependent on water because the

nutrients are dissolved in water and adsorbed over the surface of the lichen thallus (Blum,

1973; Hawksworth and Rose, 1976; Richardson, 1992).

1.3.1.2 Groups and structure

Lichens can be divided, according to their thallus growth forms into three groups,

crustose, foliose and fruticose (Figure 1.4) (Ahmadjian, 1967; Hale, 1974; Hawksworthand

Rose, 1976; Richardson andNieboer, 1981; Richardson, 1992). The crustose lichens (Figure

1-4a) are closely attached or embedded in their substrates, and the foliose ones (Figure l-4b)

are usually flat, circular or lobed and grow loosely, or only centrally, attached to their

substrutes. The fruticose lichens (Figure 1-4c) are hair-like, shrubby or finger-like.

Alec/oria sarmentosa, the species used for this study, is a common frutieose lichen.
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Figure \·4. Three groups of lichens and their structures: (a) crustose,
(b) foliose and (c) fruticosc lichens (Ahmadjian, 1967).
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Fruticose lichens may be round or flattened, unbranched or richly branched and can range

from I nun to 5 m in length. The internal structure is radial with a dense outer cortex, a

medulla and a thin algal layer (Figure 1-4). The cortex serves as a protective covering over

the thallus. It is composed of more or less compressed, heavily gelatinized hyphae (fungal

threads), firmly cemented together. The medulla consists of loosely interwoven fungal

strands. The medulla may be as much as 500 Ilm thick. The medulla has a greater water­

holding capacity than any ofthe other tissues and is a region of nutrients. Within the algal

layer, positioned between the eortex and the medulla, lichen algae are completely surrounded

by fungal tissues. The alga] layer is about 7% of the total thallus volume and its thickness

varies in different lichen genera. The structure of the lichen thallus shows considerable

variation in different genera (Ahmadjian, 1967; Hale, 1974; Hawksworth and Rose, 1976;

Richardson and Nieboer, 1981).

1.3.2 Importance of lichens as biomoniton of air pollution

Since the last 19'" century, lichens have been used as biomonitors of atmospheric

pollution (Richardson, 1992). Several properties of liehens make them useful biomonitors

of atmospheric pollution (Ahmadjian, 1967; Hale, 1974; Hawksworth and Rose, 1976;

Richardsonand Niebocr, 1981; Richardson, 1992; Gries, 1996). Firstly, lichens arc abundant

and have a wide range ofhabitats. They can be found from extreme low tide level on the sea

shore to the tops of high mountains and from arctic to tropical regions. Secondly, lichens

take and accumulate materials mainly from the atmosphere. The accumulation may result
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by active uptake of ions from precipitation, passive adsorption of ions by ion exchange, or

direct incorporation of particulate materials into lichen tissues. Thirdly, lichens cannot

regulate the amount of uptake from the atmosphere because they do not possess specialized

protective structures such as a cuticle or stomates, which are found in higher plants.

Fourthly, lichens are slow growing and long-lived so they can be used in long term

monitoring. Growth rates vary from year to year and between habitats and may vary with

age of lichen. In general, the fruticose species are the fastest growing at between 1.6 mm to

10 mm annually, followed by the foliose (0.01 mm/year to 4 rom/year) and crustose

(0.25 rom/year to I mm/year) lichens. The longevity of lichens may be tcns or hundreds of

years or morc. In most eases the life of a lichen is determined by the longevity of its

substrate.

1.3.3 Atmospberic sulpbur biomonitoring with lichens

Sulphur is an essential nutrient for lichens. However, the uncontrolled accumulation

of sulphur can disrupt the metabolic processes in lichens such as photosynthesis and

respiration. Also, the growth rate can be reduced, the size oflichen thallus decreased and the

color of thallus changed (Hawkswonh and Rose, 1976).

Lichens are especially sensitive to sulphur dioxide (S02)' a major component of

urban and industrial air pollution (Hawksworth and Rose, 1976; Richardson, 1992). Sulphur

dioxide (1) may be adsorbed on a thallus and then absorbed when the thallus is wetted by

dew or rain, (2) may be absorbed by surface moisture and then taken up by the lichens, or
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(3) may be dissolved in rainwater as sulphuric acid prior to deposition on the lichen

(Hawksworth and Rose, 1976; Richardson, 1992; Ahmadjian, 1993). Several factors can be

correlated with the sensitivity of lichens to sulphur dioxide; (I) the concentration ofsulphur

dioxide in the atmosphere, (2) exposure time to sulphur dioxide, (3) wind speed, (4) water

content, (5) morphology, (6) physiology and (7) structure of the !ichenspecies (Richardson

and Nieboer, )981; Ahmadjian, 1993).

1.3.3.1 Fractionation of sulphur stable isotopes during lichen metabolism

Various sulphur compounds in the atmosphere may be deposited on vegetation,

including lichens. Most of these compounds are oxidized when they encounter water on the

thallus and form sulphate, which then enters the cells where it is reduced to sulphide and

incorporated iDlo usefuJ organic compounds (faiz and Zeiger. 1991; Trust and Fry. 1992).

This biochemical process, called assimilatory sulphate reduction, is summarized in Figure

1-5 (faiz and Zeiger, 1991; Trust and Fry, 1992).

SuJphate from the external environment begins activation reactions with adenosine

triphosphate (ATP). The activated sulphate is transferred to a carrier (CarSH) and reduced

to sulphite, followed by a further reduction to sulphide (Figure 1-5). The reduction of

sulphite may involve either free sulphite, to fonn free sulphide, or carrier-bound sulphite,

which is reduced to carrier-bound sulphide.

With respect to isotopic fractionation of sulphur, very small isotope fractionations

arc expected during the steps of the uptake of sulphate by the cell, the activation involving

22



External
SO/

1
I~~lal • AT!' )I

APS + 1'1\ ~CarS-S01·

RSII!
sot

fdMl
S!-+fd...

~ CarS-S·+fd,..,

Figure 1-5. Reaction sequence of the assimill110ry pathway of sulphate reduction by higher
plants. AI'S. adenosineS-phosphosulphate; AlP"" adenosine triphosphate;
CarSH· unidentified carrier mOlecule; CarS_So = carrier-bound sulphide;
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ATP and the transferring of sulphate to a carrier (Trust and Fry, 1992). However, there is

the potential to produce large fractionations due to the actual reduction steps in which

sulphur.-oxygen bonds are broken (Rees, 1973; Winner l.>t aI., 1981). Since the overall

fractionations that are observed during the assimilatory reduction of sulphate are small, the

rate of sulphate reduction in plants must be conlrolled either by the uptake or activation of

sulphate (Trust and Fry, 1992). Otherwise, if the reaction was limited by one of the

reduction steps, larger fractionations during the assimilatory reduction ofsulphate by plants

would be observed (Trost and Fry, 1992). Many studies have reported that large

fractionations do not occur during sulphur metaboLism by vegetation, including lichens.

The study ofKrousc ct al. (1984) is an example. The objective of this study was to

investigate how sulphur·gas emissions from the Amoco Canada Pelroleum Company

Limited West Whitecourt Sulphur Recovery Gas Plant affected the boreal forest ecosystem

including air, water, soil and vegetation (Krouse et ai., 1984). A large difference in isotopic

composition was observed between sulphur gas emissions (- +22%0) and the pre-industrial

soil at a depth of60 em (0%0), representing the natural environmental background (Krouse

eta!.. 1984). Interestingly the vegetation Gack pine needles and moss) showed slightly lower

isotopic values than the sulphur gas emissions, demonstrating the vegetation was receiving

sulphur from the atmosphere as well as inputs from the root system. Figure 1-6 is an

illustration of portions of the moss, Polylrichum juniperinum, showing the difference of

sulphur isotopic values in each portion. The upper portion ofthe moss has 5348 values near

+20%0, showing the direct influence of sulphur gas emissions, and the humus surrounding
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the rhizoids was at about +13%0. The rhizoids, +19%0, were intermediate between the two.

This study shows that the isotopic value of each portion of the plant represents that of the

surrounding environment and that sulphur stable isotope fractionation is very limited during

the assimilation and reduction of sulphate in vegetation.

In 1977, Krouse applied sulphur stable isotopes to Usnea sp., a frntioose lichen

species in Alberta, Canada. The sulphur isotope composition ofthe lichen species coincided

closely with the average isotopic composition of the air around the region (Figure 1-7)

(Krouse, 1977). However, the sulphur isotope composition of the pine needles, Pinus

con/orla, from the region were approximately 10%0 lighter compared with those of air and

lichens (Figure 1-7) (Krouse, 1977). This result indicates that the lichens absorb a much

higher proportion of their sulphur content from the air or rain than do coniferous trees, for

which soil is the primary source for sulphur. Thus, intennediate isotopic values were

obtained for the pine needles.

A similar result was found in the study ofCase and Krouse (1980). They investigated

variations in sulphur isotopic composition and contentofvegetation near a SO~ source at Fox

Creek, Alberta, Canada. Lichen species, Usnea scabrata, derived most oftheir sulphur from

the air while pine needles derived sulphur from both air and soil. Also, in this study, it was

fOWld that the J4S,mS ratio in the lichen species decreased with increasing distance from the

emitter, while pine needles did not show this trend.

A series of studies in Ne",foundland, Canada, has shown that the lichen species,

AleclOria sarmentosa, influenced by sulphur from anthropogenic and sea spray sources

26



SA:g Usnea
.~ .

'0

~

I

+10 +20

0"8(%,)

+30

Figure 1-7 {i14S values for atmospheric SO~, lichen
and pineneedles, Ram River Area, Alberta
(Krouse, 1977).
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showed lower and higher sulphur isotopic compositions, respectively (Evans, 1996; Blake,

1998; Gollop, 1998; Nowotczynski, 1998; Wadleigh and Blake, 1999). For example, the

lichens sampled around the Come-By-Chance oil refinery portrayed very low (- +4%0)

sulphur isotopic data, indicating that this area is polluted by anthropogenic sulphur. On the

other hand, the lichen samples collected from along the coastline displayed very high

(-+18%0) sulphur isotopic data, leading to the conclusion that the sulphur in the atmosphere

along the coastline is mainly from a natural source, sea salt.

1.4 ISOTOPE RATIO MASS SPECTROMETRY

IRMS consists of four essential components: (1) ion source, (2) mass analyzer, (3)

detector and (4) inlet system (Figure 1-8). IRMS ionizes gaseous molecules and separates

the ions into a spectrum according to their mass-to-charge ratio using electric and magnetic

fields. The relative abundances ofmolecules ofdifferent mass-to-charge ratio are then found

by measuring the currents generated by these separated ion beams (Figure \-8). Detailed

reviews oflRMS are provided by White and Wood (1986), Potts (1987), Barrie and Prosser

(1996), Brenna et al. (1997), Hoefs (1997), and Kendall and Cald...,ell (1998).

A good vacuum system « 10.1 mbar) is required for lRMS for two reasons; nrst, the

trajectory of ions will be modified resulting peak broadening if the ions collide with any

residual gas molecules and second, residual gases in the ionizing chamber are also ionized

together with the sample material giving rise to an instrument background.
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1.4.1 Inlet ~ystem~

The dual inlet is the most conventional inlet system orIRMS. It alternatively admits

sample and reference gases into the mass spectrometer, perhaps six to ten times each over

10 mins, to give the effect of simultaneous measurement of the isotope ratio under identical

conditions (Figure 1-9) (Barrie and Prosser, 1996; Kendall and Caldwell, 1998). Since the

original design of Nier-McKinney in 1950, significant improvements have been made on

dual inlet systems with respect to electronics., vacuum technology and computer control,

resulting in the automation of the system control and ofdata processing, and in more stable

electronics.

However, as mentioned earlier in Section t.l, for solid and liquid samples, this inlet

system requires lengthy, multiple-step, labor-intensive, difficult and expensive, off·line

chemical prctreaunents before isotopic detennination. On-line sample preparation, which

will be discussed in the next section, allows rapid analysis, and is easy-to-use.

1.4.1.1 Continuous·Dow inlet system and interface

In CF-IRMS, sample chemistry and gas purification take place in an aunosphere of

He and pulsesofsample·derived gases (i.e., N2, CO2, N20 or S02) flow directly into the ion

source (Barrie and Prosser, 1996). There are two branches ofCF·IRMS. In EA.IRMS, a

sample is combusted and the reaction products separated by gas chromatogmph (GC) with

pulses of pure sample gases directed to the IRMS (Barrie and Prosser, 1996; Kendall and

Caldwell, 1998). In GC-IRMS, the compounds of interest in the mixture are first separated
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by GC and then these compounds enter a reaction interface where they are oxidized,

pyrolizcd or reduced to pulses ofsuitable gases for analysis (Barrie and Prosser, 1996). The

first method is utilized for sulphur isotopic analysis and is discussed in more detail below.

Detailed reviews ofGC-IRMS can be found elsewhere: Barrie and Prosser, 1996; Krouse et

aI., 1996; Brenna, 1997; Kendall and Caldwell, 1998.

The geneml operation ofEA-IRMS is illustrated in Figure 1-10. Solid and liquid

samples are scaled into tin (Sn) capsules and loaded into an autosampler. The samples are

purged of air by a flow of He in the autosampler. They are dropped into the vertical

combustion tube as a pulse of O2 temporarily replaces the He carrier gas. The combustion

(oxidation) and reduction tubes are packed with various chemicals, depending on the isotope

analysis of interest. For example, for "N and DC analysis, the packing consists of an

oxidation catalyst Cr20 3 granuJes and chopped CuD wire to oxidize hydrocarbons, and Ag

wool to trap S and halogens. Combustion products are swept into the reduction tube (Cu

wires) where NOx are reduced to Nl , and excess O2 is removed. For"'S analysis, The

combustion and reduction takes places in a single tube packed with WO) and Cu wires. A

desiccant trap removes water. If only UN is being analyzed, then another suitable alkaline

tmp is used to remove CO2, He carrier gas sweeps the all combusted gascs through a GC

colwnn that sepamtes the sample gas of interest from others.

The sample gas is then swept in the He gas stream into the ion source via an open­

split interface (Figure 1-10). In addition to the efficient transfer of gases from the EA into

the ion source, the interface can be adjusted to reflect the relative abundance of different
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elements in one sample and to allow independent isotope ratio calibration for up to two

clements (Finnigan* MAT, 1996).

Of the most interest among Ihe researchers using stable isotope techniques are the

type of sample analyzed, the amount of sample available, the number of samples to be

analyzed and the precision of measurement required. With on-line CF-IRMS, samples can

be accepted in their natural state, or with minimal sample preparation and the amount of

sample has been reduced significantly, for example, from 3-7 mg S for DI-IRMS to 20 ~g

S for CF-IRMS method with minerals (Giesemann et aI., 1994). On-line techniques have

increased productivity more than S-lO-fold over Dl-IRMS techniques and reduced the eost

of analysis, enabling both larger-scale and more rapid experiments (Barrie and Prosser,

1996). Generally, the analytical precision available forCF-IRMS is slightly poorer than with

the conventional DI·IRMS methods, but this will be improved in the next few years (Kendall

and Caldwell, 1998).
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CHAPTER 2

SAMPLING AND ANALYTICAL METHODS

2.1 SAMPLING

2.1.1 Sampling des~ription

The species of lichen chosen for this study was Alecroria sarmentosa, which is

common in Newfoundland. This species, known locally as Old Man's Beard., is yellow-green

in color, and hair-like and bushy in appearance (Figure 2.1). It is classified as epiphytic and

fruticose. The samples were taken from Balsam Fir, which is one ofthe most common trees

in Newfoundland and a common substrate for this lichen species.

The Memorial University of Newfoundland (MUN) Botanical Garden is located in

Pippy Park in St. John's, Newfoundland (Figure 2-2). Sampling was conducted on May 8,

1998. The weather was moderately sunny, temperature 15-20 &C and wind less than 10

kmJIrr.

Samples were collected from three different sites, A, B and C (Figure 2-2), along the

trails of the Botanical Garden. These sites were selected because of the abundance of the

lichen sI)t:cies and accessibility. All ofthe sampling sites were located more than 250 meters

from the main road.

To avoid any contamination during sample collection, newunpowdered vinyl gloves

and sampling bags (Kraft paper) were used for each site. Lichens were taken only from the

tree branches, at a distance of 20-25 em from the trunks. The trees were approximately
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Figure 2-1. Photograph of Alectoria sarmentosa (arrow).
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10-15 cm in diameter. Samples were collected from aJl sides of each tree. From site-A,

approximately 55 g of lichens were collected, and from sites-B and -C. about 48 g and

110 g were collected. respectively. The sample paper bags from each. site were stored in

Ziploc™ bags and labeled.

2.1.2 Sample preparation

Samples collected from the field undelWCnt a series of physical pretreatments such

as air-drying, cleaning, grinding and sieving, and homogenizing. The composite lichen

powder was then processed independently by each of three techniques as summarized in

Figure 2-3: CF-IRMS analysis of chemically-untreated lichen powder (hencefonh referred

to as CF-lichen); conversion to BaSO. and analysis by CF-IRMS (henceforth CF-BaSO~);

and the conventional chemical treatment and analysis by dual inlet-IRMS (henceforth D/).

2.1.2.1 Physical pretreatments

All lichen samples were air dried in a clean room in the Department of Earth

Sciences, MUN. for 2-5 days. To avoid any contamination during the drying, the lichen

samples were covered with KimwipeTM towels. The dried lichen samples were then cleaned

by removing foreign materials such as twigs and other lichen species, using clean stainless

steel tweezers and unpowdercd vinyl gloves. The dried and cleaned samples were crushed

into a fine powder using a tungsten carbide puck mill for 1-2 minutes. sieved to -60 mesh,

and then placed in a labeled glass vial. Before storing the lichen sample powder, the glass
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vial was soaked in 1.5 N HNO) for at least one day, rinsed with deionized water several

times, and air dried for one day.

The glass vial containing the sample powder was then rolled on arolling machine for

over 20 minutes to ensure homogenization. In order to enhance homogenization, 6 glass

beads (cleaned in the same way as the glass vial) were rolled together with the lichen powder

in the glass vial. Between usages, the glass vial was kept in the refrigerator. This lichen

powder was used in all subsequent analyses (Figure 2-3).

2.1.2.2 Pa,.,. BombTM oxidation

For CF-BaS04 and Dl methods, naSO~ was obtained from the homogenized lichen

sample powder by Parr Bomb'IM oxidation. The Parr Bomb™ is a stainless steel container

that can withstand high temperatures and pressures. It converts all fonns of sulphur in the

sample to sulphate.

Approximately 0.7-\.0 g of lichen powder was accurately weighed into a cleaned

combustion capsule. 10 em of nickel (Ni) or platinum (Pt) aHoy fuse wire (45ClO) was

attached to the electrodes on the lid ofthe bomb. The capsule was then placed into the ring

holder, making sure that the fuse wire was positioned just above (1-2 mm) the lOp of the

lichen powder in the capsule, as illustrated in Figure 2-4. 10 ml deionized water and 5-7

drops of 50% hydrogen peroxide (Hl 00 were poured into the bottom of the bomb (Figure

2-4). The bomb was sealed very carefully and 30 atmospheres O[Ol was pumped into it.
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The bomb was placed into a cold water bath in a fume hood and checked for leaks.

The sample was then ignited by the alloy fuse wire. After 15·20 minutes, the bomb was

removed from the cold water bath. The pressure of the bomb was slowly released. When

the bomb was at atmospheric pressure, it was opened and the inside of the bomb, capsule,

lid and ele<:trodes were rinsed several times with deionized water and collected in a cleaned

beaker.

The collected sarnplesolution was filtered through a cellulose nitrate membrane filter

paper into an Erlemneyer™ flask under vacuum. The filtered solution was diluted to make

500 mL with deionized water and a 10 mL aliquot was taken to measure S concentration of

the lichen sample by ion chromatography (Figure 2-3). The remaining sample solution,

returned to a clean beaker, was heated on a hot plate. The solution was acidified to pH 4

with few drops of8 N HNO). When the sample solution was boiling, 10 mL ofO.5M BaCI]

was added to precipitate sulphate to the form ofBaS04, and the temperature was reduced.

The solution \\'35 then left to digest for over 2 hours (up to 24 hours) to precipitate BaS04.

The BaS04 solution was filtered twice through Fisherbrand ashless filter papers under

vacuwn, rinsing the beaker with warmed deionized water. The filter papers were dried in a

clean oven at around 70 "C for several hours and then combusted in a clean Vitrosil crucible

over a bunsen burner, leaving BaSO. in the crucible. The crucible with BaS04 was placed

in a desiccator until cool. The extracted BaS04 was weighed, and stored and labeled in a

clean vial. This BaS04 was used for CF-BaSO. and Dr methods (Figure 2-3).
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2.1.2.3 Sulphur dioxide extraction line

The BaS04 extracted by the Parr Bomb™ oxidation was used to obtain S02 based on

the method of Yanagisawa and Sakai (1983), Veda and Krouse (1986), and Wadleigh and

Blake (1999), A schematic of the S02 extraction line is shown. in Figure 2-5.

Approximately 5 mg ofBaSO. was thoroughly mixed with 50 mg each of vanadium

pentoxide (V~Ol) and silica (SiO~) in an agate mortar and pestle. V20S and Si02contribute

oxygen for the reaction to produce SOl. The mtio ofBaSO.:V10 S:Si02is maintained elose

to I: 10: I0 to ensure that the oxygen isotopic composition ofthe S02 is completely controlled

by these components and is independent ofthe original oxygen isotopic composition of the

BaS04,

The mixed sample powder was placed in the bottom ofa 9 nun (outer diameter (a.d.»)

quartz combustion tube. A small wad of quartz wool was placed on top of the reaction

mixture. Another small wad of quartz wool was placed about 2 cm above the first wad.

About 5-6 cm ofcopper turnings. used to reduce SO) to S02, were then placed on top ofthe

quartz wool. Figure 2-6 illustrates the packing of the combustion tube.

The prepared sample tube was connected to a vacuum line by a Cajon Ultra-Torr

union (Figure 2-5). A thennocouple was set into the combustion furnace, along with the

combustion tube. After evacuating the combustion tube for 3-5 minutes (valve-A), the

copper turnings were flamed to remove any oxide coating. In order to remove any wdter and

volatile organics thai might be in the reaction mixture, the combustion tube was heated, to

250 "C for I0 minutes, and then increased to 350 "C for 20 minutes, with evacuation (valve-
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A) continuing until outgassing ceased.

The sample mixture was then heated to 950°C during which the reaction occurred,

producing SOb COl' HPW and 02' The temperature was raised slowly, 1-2 "C rise/sec, in

order to prevent bwnping of the mixture, to ensure the consistency of the oxygen isotope

ratio of the evolved S02, and to achieve complete reduction of SO, by the copper. The

sample mixture was combusted 20-30 minutes after the temperature reached 950 "C. S02,

CO2and H20(1Il were frozen in the V-trap by liquid N2, while O2was released through valves­

C and -D to the pump. The temperature must not exceed 1040 "C because this can lead to

reaction between copper and oxygen, causing incomplete SOl formation due to the lack of

oxygen.

Slushes ofdifferent temperatures were then used to cryogenically separate and purify

the S02' A pentane and liquid N2slush. (-128 "C) was used to freeze S02 and HPw while

liberating CO2, An alcohol and liquid N2 slush (-80 to ·90 "C) was used to freeze HzOC,)

releasing S02' The SO! was then collected, through the valves-C and -E, into the cold finger

of a yield manometer in a liquid N! bath. After recording the yield, SOl was transferred.

through valve-F. into a sample vessel in a liquid N2 bath. Throughout the procedure, the

movement ofgases was observed by a Pirani gauge. The extracted S02 gas was used for Dl

method (Figure 2-3).

2.1.3 Sample selection metbods

Figure 2-7 summarizes the sample selection for the three analytical methods used in
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this study. For DI method, four 4 g aliquots of lichen powder were taken from the original

composite sample. These aliquols were used to prepare four separate 8a80. precipitates by

Parr 80mb™ oxidation. The precipitates were then combined in a single vial. Five aliquots

of this mixed 8a80. were converted separately to S02 for IRM8 analysis. For CF-Ba80.

method, thirty I g aliquots oflichen powder were converted separately to BaSO. for IRMS

analysis. For CF-lichen method, 15 mg aliquotsoflichcn powder were taken randomly from

the lichen powder, whenever necessary, for IRMS analysis.

2.2 ANALYTICAL METHODS

2.2.1 100 chromatography

Ion chromatography involves ion exchange separation of species, such as CI", PO/-,

NO)' and SO,2-- (in the case of S), in solution followed by conductivity detection. The

chromatograph was calibrated using solutions of different concentrations prepared from

National Institute of Standards and Technology (NIST) standards. For the lichen samples,

an aliquot ofbomb washings (see Section 2. 1.2.2) was analyzed using a Dionex DX-1 00 Ion

Chromatograph at the Department ofEarth Sciences, MUN, to obtain sulph3te concentration

in the samples. S concentration was then calculated from the sulphate concentration by

multiplication of the raw sulphate concentration determined from ion chromatography

analysis by the fraction ofS in sulphate ion. The detailed calculation procedure is illustrated

with an example in Appendix I.
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2.2.2 DI-lRMS analysis

SOlsample gas prepared by SOl extraction line (Section 2.1.2.3) was introduced into

the IRMS (Finnigantl MAT 252) through a dual inlet system. S02 reference gas was also

prepared from an independently analyzed pyrite (MUN·Py, FeS2' bJ4SmT = 1.26'H.o). The

sample and reference gases were alternately introduced to the ion source via a changeover

valve and the ion currents of masses 66 and 64 of the sample were compared to those of the

reference gas. Ten cycles were averaged for each detennination. To check accuracy of the

analysis, MUN-Py and the international NIST standard, NBS-127 (barium sulphate, BaS04)

were used. Replicate analyses yielded oJ4Srnr = +1.3 ± 0.5%0 and +20.3 ± 0.4%0,

respectively.

2.2.3 CF-IRMS analysis with BaS04

The experimental procedure and parameters ofon-line BaS04 analysis were adopted

mostly from the Instruction Manual ofNA 1500, Carlo Erbatl instruments and Giesemann

et al. (1994). The detailed analyticaJ parameters used arc given in Table 2-1. With these

parameters., more than 200 BaS04 samples could be analyzed with a single combustion

reactor packing. cleaning the residual ash from the combustion reactor after every 40

samples. The calibration method for on-line methods (CF-BaS04 and CF-lichen) in this

study can be found in Section 3.4.
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Table 2·\. Analytical parameters for CF-BaS04 method.

BaS04 (mg): 0.20-0.30

Sn capsule (mg): 30

Combustion reactor CC): 1050

Combustion reactor packing: WO}, pure Cu & quartz wool

0 1 supply (mUmin): 25·27

~ loop (mL): 10

Flow rate of He carrier (mL/min): 80

H10 trap: Mg(Cl04h

Length ofGC column (m): 2.0

GC oven ("C): 90
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CHAPTER 3

DEVELOPMENT OF CF-LICHEN METHOD

The developed on·line method with untreated lichens is highlighted in detail in

Chapter 3, by addressing the problems encountered during the development and discussing

their improvement. The main obstacle in the early stages of development was low S

concentration (-600 ppm) in the lichen samples, which meant a large amount ofsample was

required for each analysis. This set the direction for subsequent method development.

Therefore, the following stX:tions centre around combustion of large quantities of lichen

(several mg).

3.1 EXPERIMENTAL PROCEDURES

Samples ofthe lichen (Alectoria .~armentosa), initially used for development ofthis

analytical method, were collected from various locations in Newfoundland by Blake (1998).

Based on the tests of minimum S amount reported by Giesemann et aI. (1994), 10 11& ofS

was considered to be the lower limit of S amount. Therefore, about 20-23 mg samples

(containing about 12-14 Ilg S) of untreated lichen powder were used for the early trials.

Figure 3-1 shows the schematic diagram ofCF-IRMS used for this study, consisting of an

elemental analyzer(Carlo Erba$NA 1500), anopen-split interface (Finnigan$ MAT ConFlo

II) and an IRM$ (Finnigan$ MAT 252). The analytical parameters used in the early stages

of the development are summarized in Table 3-1 and were adopted mostly from the
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Table )·1. Initial and final analytical parameters for CF-lichen method.

Parameters Initial l Final

Lichen (mg) 20·23~ 15'

Sn capsule (mg) 60 40

Combustion reactor CC) 1050 1050

Combustion reactor WOJ,pureCu& WOJ,pureCu&
Quartz wool Quartz wool

O2supply (mUmin) 25-27 25-27

O2 loop (mL) 10 10

Flow rate of He carrier 80 80
(mUmin)

H20 trap Mg(CIO~h 75% Mg(CIO~)2&
25% Quaru chips

Length of GC column (m) 2.0 1.2

GC oven CC) 90 7S

He for CO~ dilution (psi) 25 25

f:1.JJJJ:.:
I Initial analytical parameters were adopted mostly from the Instruction

ManualofNA Isao, Carlo Erbal' Instruments and Giesemann et a!. (1994).
2 Lichen samples collected from various locations in Newfoundland by Blake (1998).
3 Lichen samples collected from the Botanical Garden, MUN.
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Instruction Manual ofNA 1500, Carlo Erba«> Instruments and Giesemann et aJ. (1994).

Chemically-untreated lichen samples were wrapped together with V20S in Sn

capsuJes (10 x 10 x 10 mm), 60 mg). The sample capsules were introduced from an

autosampler into the EA. In the EA, there are two furnaces. A transparent quartz

combustion reactor(45 cm in length, 1.5 em in inner diameter (i. d.) and 0.1 cm in thickness)

was located inside the left furnace set at IOS0"C (Figure 3-1). The right furnace was not

used in this study, however, the temperature was set at 750"C to ensure thermal equilibrium

with the left combustion furnace. The combustion reactor, composed ofboth oxidation and

reduction parts, was packed with tungstic oxide (WO», pure eu wire and very fine quartz

wool (Figure 3-2). WO, was used as a combustion catalyst. It is known that WO) does not

react with the quartz combustion tube even after prolonged periods ofheating and also does

not stop the flow of sulphur oxides (Rittner and Culmo, 1966). Pure eu wire was used to

reduce any trace SO) to S02 and NOx to N2, and to trap surplus 01' The quartz wool was

used as a baffle and provided additional high temperature surface for complete combustion

ofany stray fragments ofthe sample (Dugan, 1977). On top ofthis packing, a tube made of

quartz(22cm in length, 1.1 cmi.d. and 0.1 cm in thickness) with quartz wool (-1 em) at its

bottom was installed to collect residual ash after combustion of samples (Figure 3·2).

0 1 was supplied from a 10 mL loop at a rateof2S-27 mL/min by He carrier gas. To

achieve completc combustion, it is important to introduce the samplc into the reactor when

0 1 is enriched in the combustion zone. This was accomplished by adjusting the sample inlet

time to about 2 seconds before the flash of combustion (Instruction Manual ofNA 1500,
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Carlo Erba~ Instruments). Gaseous combustion products, 502, CO2, N2 and HPUIP were

carried in a stream on-Ie gas (at a rate of80 mUmin) through a trap to remove H20!I)' Thc

trap was filled with anhydrous magnesium perchlorate (Mg(CI0.1) and quartz wool (Figure

3·3). The remaining gases, SOl' COl and N1, passed through a 2.0 m-Iong GC colwnn

(porapak™ QS, Teflon), heated to 90"C, where COl and Nl were separated from the sample

gas, 502 (Figure 3- I)

The separated gases were transferred into the ion source of the IRMS through an

open-split interface (Figure 3-4). The excess CO2 was diluted by He supply (set to 25 psi)

in the interface so that the dynamic range ofthe IRMS was not exceeded. He was supplied

through a movable capillary (Figure 3-4) controlled automatically by computer. As 502 is

the only gas ofinterest for this study, the capillary ofthe reference gas ofCOl was not used.

501 reference gas supplied from a separate bellow attached to one of the dual inlets

(Figure 3-1) was also measured for a certain time interval (20 sec) when the sample gas was

not being measured. The Finnigane MAT ISODAT software then integrated the areas

underneath the peaks (of masses 64 and 66) of sample and reference gases to determine the

raw delta value (O.l4S......) by the equation:

(3.1)

where A represents peak area, and spI and ref stand for sample and reference gases,

respectively.
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Figure 3-4. Schematic view of an open-split interface (Finniganl' MAT ConFlo II) (modified from Finnigan"
MAT 252 Operator Course Note, 1997).



Figure 3·5 shows the typical peak traces ofuntreated lichens, minerals andreference

gases. Since the sample gases pass through the GC column before IRMS analysis, the peak

shapes of both masses 64 and 66 are sigmoidal (Figures 3-5a, b). Unlike the peaks of

minerals, lichen peak shapes are lower in amplitude and greater in width (Figure 3-5a)

because of low S concentration. Also, the peak tails of lichens are longer than those of

minerals. Reference gas is introduced into the IRMS as a pulse directly from a bellow of

dual·inlet system. Hence the peaks are more rectangular in shape (Figure 3-5c).

3.2 OBSERVED PROBLEMS

Several analytical problems were observed in the early stages ofmethod development

with untreated lichens. They included: (I) decreasing peak size (amplitude and area) and

delayed peak start time after only a few analyses; (2) decreasing flow rate of He carrier gas;

(3) no combustion flash; (4) discoloration of WO) and decreasing porosity in the WO J

packing; (5) excessive water in the Mg(CI04h trap and (6) the appearance ofan unidentified

peak.

(I) Decreasing peak size and delayed peak start time

Figure 3-6 illustrates a typical series of sample traces. Both peak ampliludes and

areas (both mass 64 and 66/64 ratio) decreased significantly over the course of these

analyses. By the Ialb analysis, the peak was no longer detected. Decreased peak was

accompanied by a delay in peak start time, from 347.1 sec for the 21'1 analysis to about
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Figure 3·6. An example of typical series of peaks in the early stages of development
ofCF·lichen method, showing decreasing peak size (amplitue and area)
and delayed peak start time with analysis, and an unidentified peak.
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475 sec for the lO'b.

(2) Decreasing flow rate of He carrier

The flow rote of He carrier gas was set to 80 mUmin using a bubble flowmeter

(Hewlett Packard") at the beginning of lichen analysis. Over the course of the lichen

analyses ilIustroted in Figure 3-6, the flow rate gradually decreased eventually becoming

zero. The decreasing flow rote ofHe carrier gas with analysis was neccssarily accompanied

by a decrease of flow rotc of sample gas.

(3) No combustion flash

The combustion flash for each sample can be viewed through the window of the

autosampler. Frequently, no flash was observed for lichen samples while a very bright flash

could be seen for mineral analyses. This was interpreted as incomplete combustion for the

lichen samples.

(4) Alteration of the properties ofWOJ

(4.a) Discoloration ofWOJ

Fresh WOJ granules are bright yellow. After a series of mineral analyses, it was

observed that the color changed to bright yellowish green. Howcver, after severollichen

analyses, it turned completely black. Removal ofoxygen from WOJ crystals darkens them

fim through green, then blue-green and finally black (parker, 1993). This indicates clearly
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that the combustion zone for lichen analysis was under a reducing environment, causing the

extraction ofoxygen from WOJ crystals.

(4.b) Decreasing porosity in WOl packing

Typically, after a series of mineral analyses, no change in packi.ng of WOl is

observed. The original, irregular shapes and the amount ofporosity are retained. However,

after analysis of several lichen samples. a significant reduction in porosity was observed in

the upper halfof the WOJ packing (Figure 3-7a) while the lower halfpreserved the original

shapes ofWOJ granules and the initial porosily in the packing. The upper halfalso showed

a difference in the shapes ofWO) granules (Figure 3-7a). Figures 3-7 (b) and (c) show SEM

(Scanning Elcctron Microscopy) images ofthe upper half. Numerous needle-shaped crystals

were also observed, filling the interstitial spaces among WO) granules. These crystals were

not observed on fresh WOl granules or after mineral analyses. Although the composition of

the needle-shaped crystals was nol identified, the crystals were considered as a by-product

of incomplete combustion of lichen analyses.

After fewer than ten successive lichen analyses. it was observed that sufficient water

had condensed at the top of H20 trap to prevent the flow of gases. In order to measure the

approximate water content. lichen samples were oven-dried (OCA Precision Scientific") at

100°C for about 60 hours. This resulted in -10 wt% loss. The lichen samples used in the
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initial stage of method development were not oven-dried. Thus, the high 'Water content of

the lichen samples was possibly enough to saturate the top of the H20 trap.

Observations (1) to (5) can. be attributed to incomplete combustion and subsequent

blocking ofgas flow, possibly due to (i) low combustion lemperature, (ii) O2deficiency and

(iii) high water content of the lichen. Complete combustion is highly important for

quantitative conversion 10 S02, especially for organic samples "'lith low S concentration

(high C:S ratio). Dugan (1977) suggested that optimum O2and temperature conditions are

important in order to achieve the dynamic conditions of flash combustion, especially for

samples that are difficult to combust. Since the actual combustion temperature is provided

by Sn, which locally raises the temperature to around 1700°C, ensuring complete oxidation

(Barrie and Prosser, 1996), steps were taken to eliminate conditions that might contribute to

a reduction in the actual combustion temperature, such as O2 deficiency and high water

content oflhe lichen. Dugan (1977) suggested that the results ofS analysis, in particular, are

poor if the sample is O2 starved, while other clements such as C and N may still have

acceptable results because the thennodynamics of the combustion reaction favour the

fonnation ofe02, N2 and HPit:l ahead ofS02• The situation is further complicated when

other O2 accepting elements such as C1 and P are present in a sample (Dugan, 1977), as is

the case with lichen. In addition, lower O2 pressure makes the combustion proceed slowly

and the slow stream ofS02 through the system causes adsorption of the gas on the walls of

internal surfaces (Eriksen, 1996).
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(6) Unidentified peak

An unidentified peak was observed during lichen analysis (Figure 3-6) which was not

observed for the analysis of mineral. This peak al-...,ays appeared abruptly at about 75 sec.

However, its size varied with sample size. For example, the size of the unknown peak

obtained from analysis of a 15 mg-lichen sample (containing 9 Ilg S) was approximately

double that of a 6 mg-Iichen sample (containing 3-4 I-Ig S). A similar peak was observed

dwing analysis ofanother organic material, BBOT (G.!r.H26N10jS). However, the peak size

for BBOT was 7-8 times smaller than for lichen (even though the BBOT contained more S).

The constant peak start time, the peak shape, and variation in size with sample amount

suggest thaI it may related to isotopic interference composed of elements such as C and N,

which exist in organics and which are separated earlier than S. However, more work is

needed to explain the occurrence of these unidentified peaks.

3.3 IMPROVEMENT AND SOLUTION

(I) Drying ofuntreated lichens

To reduce the water content, lichen samples were oven-dried at 60°C for 15 hours.

This resulted in 5-6 wt% loss. However, this oven-drying treatment did not reduce the

amount of water condensing at the top of H20 trap, nor did it improve the combustion flash

or the color of we), indicating that the combustion was still incomplete.

In order to reduce the water content as much as possible without isotopic

fractionation, the temperature was increased to 80°C and samples were dried for the same
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lengthoftime. This yielded 9-1 0 wt% loss. The water loss at 80°C was almost same as that

(-10 wt%) at 100°C for 60 bours, indicating almost completc drying.

The composition of the H20 trap was also changed from Mg(CI04)2 only, to a

mixture of 75% Mg(CI04)2 and 25% quartz chips (0.9-1.7 mm in diameter) in order 10

facilitate the flow ofgases (Figure 3-8). With these modifications,condensation was reduced

significantly, and about 40 lichen samples could be analyzed without changing the H20 trap.

(2) Increasing 0 1

To solve the problem of02 deficiency, two changes were made. The first was the

reduction in weight of the Sn capsules used. The capsules are oxidi;r.ed to SnOx by the

combustion reaction and hence consume some of the O2 needed to combust the lichen. The

weight was reduced from 60 to 40 mg with no change of the volwne of capsule (10)( 10)(

10 mm), resulting in theoretically 0.33 timcs reduction in O2 consumption for Sn oxidation.

The second change was in the amount oflichen used per analysis. Sample size was reduccd

from 20~23 mg (12-14 Ilg S) to IS rng (9 Ilg S), corresponding to a decrease of O2

consumption by about 0.70 times.

Thcse modifications, including ovcn-drying treatment of lichen samples, produced

clear improvement as represented by; (i) bright combustion flash, (ii) consistent flow of He

carricr gas throughout the life-time ofthe combustion reactor, (iii) bright green WO), (iv) no

blocking in WO) packing and (v) improved analytical signals in tenns of peak size and

consistency from sample to sample.
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(3) Sborter GC column and lower GC oven temperature

To further improve the analytical signals of untreated lichen analysis, the length of

GC column was shortened, from 2.0 10 1.2 m. This was done in order to decrease the

retention time of S02 in Ihe column and thereby increase peak. resolution. This improved

sensitivity by increasing the efficiency of delivering the sample gas to lRMS. However, the

lempemture ofGC oven had 10 be reduced from 90 to 75 °C to prevent the overlapping ofthe

sample peak with the unidentified peak (see Observation (6) ofSection 3.2).

Table 3-1 summarizes the final analytical parameters for the analysis of untreated

lichens. With the adopted analytical parameters, about 150 lichen samples (15 mg per

analysis) could be analyzed with cleaning ash lube and changing the top of H20 trap, after

every 40 samples. Afterahout 150 lichen sample analyses, the peaks became elongated with

long peak tail, fmally not enough to be detected, and the precision of oJ4S values became

poorer. Figure 3·9 shows an example of improved peaks of the lichen samples. Note the

constant peak size (amplitude and area) and peak start time for each analysis.

3.4 CALIBRATION PROCEDURE

Raw delta (03<lS.....) values determined by IRMS analyses (see Eq. 3.1) are typically

converted to oJ·SCOT values by comparison with an internal reference gas whose isotopic

composition has been calibrated to the intef?lltionally defined standard, CDT (Canon Diablo

Troilite, 14SP2S 0= 449.94 X 10-4). For CF method, the conversion ofOMS..... to o3<lScnr of the

sample was achieved by analyzing a set of mineral calibration standards at the beginning,
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middle and end of each run. A calibration line was calculated by perfonning least squares

linear regression using the known O"Scor values and the measured Ol48"... values of the

calibration standards. This procedure produces lines of slightly varying slope and intercept

for each analysis TUn. This is due to differences in composition between samples, the

condition of capillary tubes in the system with analysis and the degree of consumption of

chemicals (Le. eu wire) in the combustion tube. Measured Ol4S..", values from unknown

samples are converted to a"ScnT values using the calibration line calcuJated forthat analysis

run. An example of the calibration procedure is provided in Appendix II. Table 3-2

summarizes the five mineral calibration standards used for this study.
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Table 3-2. Mineral calibration standards used in this study.

Standards Composition 6:l4ScDT (%0) Distributors

NBS·127 bariwn sulphate +20.32 ± 0.36 NIST

NBS-123 sphalerite +17.09±0.31 NIST

MUN.Py·l pyrite +1.26±0.40 MUN

BaS04 #10.2 barium sulphate +2,07 ± 0.40 MUN

CdS cadmium sulphide +11.00 Finniganil> MAT

l:!JJJL:
• Made in the Department of Earth Sciences, MUN, and analyzed by other

laboratories in Canada to obtain their isotopic compositions.
1 Made from a large cube of pyrite which was crushed, sieved and X-rayed

for purity. Calibrated against NBS-123.
2 Made from reagent grade Na2S0. and BaCl l by dissolving a known amount

ofthe sulphate and then precipitating ilas 8a50•. Calibrated against MUN-Py.
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CHAPTER 4

RESULTS AND DISCUSSION

Samples of the lichen Aleclaria sarmenlasa collected from the Botanical Garden,

MUN, were analyzed by the developed CF-Iichen method. The S concentration ofthis lichen

averages 606 ± 93 ppm (n=4), measured by ion chromatography. Several tests were carried

out to evaluate the developed CF-lichen method (Table 4-1), and the following sections

describe the various features ofthe tests, the results and a discussion of their relative merits.

The detailed results ofindividual analyses are provided in Appendix III.

4.1 EFFECTS OF V 20 S

V lOS has been widely used as a combustion/oxidation catalyst for S isotope analysis

(Dugan, 1977; Eriksen and Johansen, 1994; Giesemann et aI., 1994; Fry et aI., 1996;

Micromassll>, 1996). However, the effects of V20 S on S analysis have not been well

established. In this study, the effects of V20:1 on the combustion reactions ofminerals and

lichens were investigated and Table 4·2 shows the summary of results.

4.1.1 Effects ofV20, on mineral analysis

To test the effects ofVPsonmineral combustion, three sets ofNBS-127 analyses

were performed (Table 4-2). Each set consisted of 6 replicates, having the same amount of
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Table 4-1. Tests conducted to evaluate
both CF-mineral and CF·lichen methods

V20 l effects

Selection ofcalibration standards

Accuracy and precision

Minimum S amount

Memory effects
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Table 4-2. Results OfV20~ effect test.

Sample V2OS(mg) Calibration standards 6J.lsc.w(%o)

NBS-127' No NBS-123, MUN-Py +20.5:t 0.5

0.10 NBS-In, MUN-Py +20.0:t 0.3

0.20 NBS-123, MUN-Py +20.2:t 0.1

Lichen' No NBS-I27, BaSO. #10 +6.6:t 0.5

0.20 NBS-127, BaSO. #10 +6.8:t 0.3

~:

.. A mineral standard. Sample amoun! per analysis for three NBS-127 sets
is approximately 0.26 mg.

• Sample amount per analysis for two lichen sets is approximately 15.0 mg.
n Numbcrofreplicatcs.
Analytical errors are based on slandard deviations (10).
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8aS04 (0.26 mg), but differing in amount ofY20S added. The first set had no V?O, added.

The second and third sets had 0.10 and 0.20 mg ofY20' added, respectively. The calibration

standards used were NBS-123 and MUN-Py. The same amount of V20! added to the

samples was added to the calibration standards.

The measured O~SWT values are ploued in Figure 4-1. Mean values are +20.5 ±

0.5%0 for the set with no V?Os,and +20.0 ± 0.3%0 and +20.2 ± 0.1%0 for the sets with 0.10

and 0.20 mg V20" respectively (Table 4-2). These three values are not significantly

different from one another at thc 95% and 99% confidence levels (Duncan and Cochran tests,

respectively). However, as can be seen in Figure 4-1, the set with 0.20 mg ofV20' produced

better precision than the other two. In general, standard deviation decreases with increasing

amount ofV?O" at least up to 0.20 mg.

The areas, widths and amplitudes ofthe mass 64 peaks for each ofthe three NBS-117

sets described above are plotted in Figure 4-2. The reason for Ihe wide variation in peak area

for the first analysis is not known. The peak areas for the 0.20 mg V20' set do not vary

greatly with analysis, while the other two sets show slightly decreasing trends with analysis

(Figure 4-18). In addition, the widths and amplitudes for the set with 0.20 mg ofYp, are

consistently lower and higher, respectively, compared to those oftwo other sets (Figures 4­

2b, c). The above two facts indicate that the combustion of minerals with 0.20 mg of V20'

is more consistent, more complete and faster than those with no and 0.10 mg of V20'.

Dugan (1977) also suggested, for more complete combustion of inorganic materials, that
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V20' should be included as an oxidation catalyst in an amoWlt at least as great as the sample

size. In conclusion, the addition of V20, yields better reproducibility and peak shape.

Kendall (personal communication) found the same result that the addition of V20' did

improve the precision although the accuracy of o-values did not change. For this reason, in

this study, about 0.20 mg ofV20, was added to all minerals (0.10-0.20 mg) analyzed.

4.1.2 Effects of VlOS on lichen analysis

In orderlo test the effects ofV10, on combustion reactions ofuntreated lichens, two

sets of lichen samples were analyzed with different amount of V20,; one with no Vp, and

the other with 0.20 mg V20, (Table 4-2). Eaeh set consisted of 6 replicates, containing

similar amounts of lichen (15 mg, containing 9 ~g S). NBS-127 and BaSO. #10 were used

as calibration standards. On the basis ofVp, effcctson mineral analysis reported in Section

4. \.1, about 0.20 mg of V20' was added to the two calibration mineral standards.

Figure 4-3 shows the OMSCDT values obtained for each set. Means are +6.6 ± 0.5%0

for the set with no V20" and +6.8 ± 0.3%0 for the set with 0.20 mg V10 S' These two values

are not significanUy different from each other in mean or in standard deviation (1 a) at the

95% confidence level (T and F tests). In addition, the areas, widths and amplitudes ofpeaks

(mass 64) ofthe two sets are not greatly different except for the fifth analysis with no V20 S

added, the reason for which is not known (Figure 4-4). The apparent absence ofV20, effects

on the combustion of lichens may indicate that the amount ofVPs (.....().20 mg) added was
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not large enough to make significant differences. Since the addition orv20~ amount similar

with the sample amount produces more reproducible delta values and peaks in mineral

analyses in Section 4.1.1, it was assumed that similar amount OfV20~ with the amount of

lichen samples should be added. Although, there was no difference with the addition of

V20~, about 0.20 mg ofV20\ was added to all lichen samples analyzed in this study in order

to make conditions ofoombustion as similar as possible to the mineral standards.

4.2 SELECTION OF CALIBRATION STANDARDS

As mentioned earlier in Section 3.4, raw delta values (5:l4S",w) delennined by IRMS

analysis are converted to 5:l4Scm using mineral standards with known 5:l4ScDT values.

However, it is desirable to investigatedifTerences in calibration using different mineral types.

In this study both sulphates and sulphides were tested as calibration standards since the

oxygen in the sulphates may be another source ofoxygen to alter the measured 5:l4S.

The 6:l4S..wvaluesofduplicates or triplicatesofthe five mineral standards (NBS-127,

BaS04 #10, CdS, MUN·Py and NBS-123) measured by CF-IRMS are plotted against their

known 6:l4Sanvalues in Figure 4-5. The linear correlation between the measured 534S"wand

their known 6:l4Scm values (Known 5:l4SCUT = 1.186 (±0.OO9) x 5:l4S...w+ 1.625 (±0.218),

r = 0.999) indicates that there is no difference between sulphate and sulphide standards as

well as among all ofthe standards. Thus, in this study, for any given run, any combination

of the five mineral standards may have been used.
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43 ACCURACY AND PRECISION

The accuracy of an analytical method is typically estimated by comparing the

measured value to the known value. This was the approach used for mineral analysis.

Unfortunately. there are no lichen standards with accepted S-isotopic compositions. This

problem can beovercome. however, by comparing the values obtained using the new method

with those detennined by one or more independent methods. For lUltreated lichen analysis

by CF-IRMS in this study, this was the approach used to estimate the accuracy. Mineral

analysis was also evaluated in this was.

The precision of an analytical method can be classified into two types; internal and

external (Barrie and Prosser, 1996). Internal precision includes errors resulting from the

performance ofthe instrument itself. For example, repeated analyses ofthe same aliquot of

S02 gas by IRMS may represent internal precision. External precision represents errors

involved in the entire analytical processes. For example, in this study. these would include

errors caused during the conversion of S in lichen to SOl gas, transferring the gas through

the inlet system. and measurement by IRMS. For Dl-IRMS technique, it is possible to

evaluate the two different types ofprecision separately. However, for the CF-IRMS method,

only external precision can be estimated because it integrates the sample preparation with

the analysis.
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4.3.1 Accuracy and precision of mineral analysis

To evaluate the accuracy and precision for CF-mineral analysis, the mean 5J4ScDT

value obtained with BaSO~ by this method (+5.9 ± 0.3%0, n=30) was compared to that

measured by the DI method (+6.2 ± 0.2%0, n=5) (Table 4-3 and Figure 4-6). The accuracy

and precision of the two methods are not significantly different at the 99% and 95%

confidence levels (T and F tests, respectively), demonstrating that no significant isotopic

fractionation occurred during the entire analytical processes.

The accuracy ofCF-minerai analysis can also be evaluated by comparing the IY"'SCDT

values offive mineral calibration ~1andards measured by the CF~mineral method in Section

4.2 to their known 5MScrrr values. The results arc summarized in Table 4-4 and plotted in

Figure 4-7. Three sulphide standards (NBS-123, MUN-Py and CdS) were analyzed as

samples using two sulphate standards (NBS-127 and BaS04 #10) as calibration standards.

The values of 5J4Scm arc plolted against their known 5:USCOT values in Figure 4-7a. The

slope (0.990 ± 0.009) and intercept (0.169 ± 0.173) of the regression line passing through

the origin imply an excellent accuracy for the analysis of three sulphide minerals by CF­

IRMS. The same method was applied to the two sulphates using the three sulphides as

calibration standards. Similar accuracy is achieved for the sulphate analyses as sulphide

analyses, with the slope of 1.01 a ± 0.013 and the intercept of-0.171 ± 0.296 ofthe regression

line (Figure 4-7b). These two comparisons demonstrate that accurate measurement of

5J4ScDTcan be obtained on minerals by on-line method, with 5:l4S values ranging from +1 to
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Table 4-3. Comparison of lS34SCDT values of the lichen samples,
measured by the three isotope analysis methods.

Methods Calibration standards lS34sCDT (%o)

DI +6.2:l: 0.2

CF-lichen NBS-123, MUN-Py 15

NBS-127, BaSO, #10 15

+6.1 :l: 0.3

+6.3:l: 0.4

!:l!lH.:
n NlImberofreplicates.
Analytical errors are ba.sedon standard deviations (10).
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Table 44. Results ofCF·mineral analyses for the mineral calibration standards.

Samples Known Measured Calibration
034SCDT (%0) O.14ScoT (%0) standards

Sulphides NBS-I23 +17.09 ± 0.31 +17.2 ± 0.1

MUN-Py +1.26 ± 0.40 +1.2 ± 0.1
NBS-127,
BaS04 #IO

CdS +11.00 +10.7

Sulphates NBS-127 +20.32 ± 0.36 +20.3 ± 0.4 NBS-I23,

BaSO. #10 +2.07:t 0040 +2.2:t 0.2
MUN-Py, CdS

!i!l!s.:
n Number of replicates.
Analytical errors are based on standan:i deviations (10).
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for mineral calibration standards with their known bl4Sc'DT values;
(a) sulphides calibrated by sulphatcs and (b) sulphatcs calibrated
by sulphides. Each data point represents single analysis.

89



+20%0.

The standard deviations(lo) offourcalibrationstandards(NBS·123, MUN-Py, NBS­

127 and BaSO. #10) were compared to theirpublishcd precisions (Table 4-4). CdS was not

included in this comparison because ofinsufficient replicates (n=2). For all ofthe standards

analyzed, the measured standard deviations by on-line method arc smaller than their

published precisions.

4.3.2 Accuracy and precision of lichen analysis

In order to evaluate the accuracy and precision for CF-lichen analysis, the mean

Ol4ScDr value ofthe lichen samples obtained by this method was compared to those measured

by two other independent methods, DI and CF-BaS04• Two different sets ofthe same lichen

were analyzed by CF-lichen method; one set was calibrated using sulphides (NBS-123 and

MUN-Py) and the other set using sulphates (NBS.127 and 8aS04 #10). Each set consisted

oftificen lichen samples (15 mg/analysis, containing 91lg S).

The mean ol4Scur values achieved by the three different methods arc given in Table

4-3 and compared in Figure 4-6. Similar means between CF-lichen analyses calibrated by

sulphides (+6.1 ± 0.3%0) and sulphates (+6.3 ± 0.4%0) demonstrate that the effects of

employing different types of calibration standard. are negligible. The mean ol4SClIT values

achieved by DI (+6.2 ± 0.2%0) and CF-BaS04 (+5.9± 0.3%0) analyses are not significantly

different from those by CF-lichcn analyses at the 95 or 99010 confidence level (T test),
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demonstrating that no significant isotopic fractionation occurred during the entire analytical

processes including combustion. It is surprising that lichen with S concentration as low as

9 lig can be analyzed by CF method with an accuracy which is comparable to that obtained

by DI and CF-BaS04•

In order to test the dependence of the accuracy of CF-lichen analysis on S

concentration, lichens with various S concentrations were analyzed by this method and the

results are compared to those obtained by the or method. Four different lichen samples

(MS·PN-09 and MS-BG: Alectoria sarmentosa; AG-214 and AG-O17: Cladonia sp.) were

selected for the test (Table 4-5). These samples were collected from various locations in

Newfoundland, and have a relatively wide range ofS concentrations (374 to 606 ppm S) and

S isotopic compositions (+4 to +16%0:., detcnnined by DI analyses) (Table 4-5). NBS-127

and BaS04 #10 were used as calibration standards for CF-lichen analyses.

The mean 6:l4Scm- values of the lichen samples measured by CF-lichen and DI

methods are summarized in Table 4-5 and are compared in Figure 4-8. In Figure 4-8, the

solid line represents the linear regression of the four lichen samples and the shaded area

represents the 95% confidence interval of the regression. The slope (1.071 ± 0.062) and

intercept (-1.022 ± 0.639) of the regression line demonstrate again that within acceptable

error limits, tbe CF-lichen method has anexcellentaccuracy for the tested rangc ofS amount

(5.8 to 9.5 J.lg) per analysis and 6J.1Scm value (+4 to +16%0).
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Table 4-5. Analytical resulls or rour different lichen samples obtained by CF-lichen and OJ methods.

Samples Species Sampling SItes S(ppm)' S(lIg)l CF,6J<Swr(~») D1,6J<Scm('K.t)'

AG-017' ClndQ"in $p. Avalon Peninsula 426 6.5 +5.3:i: 0.5 (13) +4.2:i: 0.5 (5)

t:!JlJ£.:
I S concentration in the lichen, determined by ion chromatography analysis.
2 S amount used per CF-Iichen analysis.
3 Numbers in parentheses represent the number orrcplicates. Analytical eJ'T"On; are based on standard deviations (10).
• Sampling, and ion chromatography and D1analyses were conducted by Nowotczynski (1998).
• Sampling (from Botanical Garden, MUN), and ion chromatography and DI analyses were conducted by the author.
• Samples collected by Blake (19')8), and analyzed by Gollop (1998) using ion chromatography and D1analyses.

:s

MS-PN-09" AleclQria $umwIlloslI Burin Peninsula

MS-BG' AleCloria .furme"IOs(I St. John's

AG-214~ Clalk}lli(l,~p. Western

464

6'>6

374

6.9 +15.9:tO.5(14) +16.0,*,0.5(5)

9.5 +6.3'*' 0.4 (IS) +6.2:t 0.2 (5)

5.8 +10.0,*,0.8(11) +9.72:0.5(5)
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Figure 4-8 Comparison of OJ4SCDT values of four differenl lichen samples
measured by CF-lichen and DI methods. The solid line represents
the linear regression and the shaded area represents the 95%
confidence interval of the regression. Error bars arc based on
standard deviations (1 a). Errors are smaller than that symbols
when they are not shown.
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The analytical precisions obtained by CF-lichen analyses are 0.3%0 (calibrated by

sulphide standards) and 0.4%0 (calibrated by sulphate standards) (Table 4-3 and Figure 4-6).

These precisions are not significantly different from tbose of the DI (0.2%0) and CF·BaS04

(0.3%0) methods at the 95% confidence level (F test), demonstrating that tbe on-line CF·

licben method can produce excellent precision comparable to those of the other two.

4.4 MINIMUM S AMOUNT

In the previous section, it was mentioned that analytical precision is a function ofS

concentration introduced into the system; precision becomes poorer with decrease in S

concentration. Minimwn S amount in this study is defined as the minimum S concentration

required for an analysis to yield a specified precision around the o-value. In order to

determine the minimum S amount, analyses were performed on sample sizes representing

various S concentrations. In some cases, single analyses were performed while for others

several replicates were analyzed allowing the derermination of analytical errors for each

point.

4.4.1 Minimum S amount (or mineral analysis

For CF·mineral analysis, minimum S amount was tested with a mineral standard,

NBS·127. The S concentration tested ranged from 36 J.lg (corresponding 0.26 rog) to 8 J.lg

(corresponding 0.06 mg). The results arc presented in Figure 4-9.
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The mean Ol·S,.... value is +15.9%0 with standard deviation (10) of ±O.4%o (IF25).

The minimum S amount for CF-mineraltechniqueestimated with NBS·127 is approximately

10 f.lg S (Figure 4·9). This result is consistent with that of Giesemann, et aI., (1994) who

reported that the minimum S amount necessary for on-line S-isotope analysis (using BaS04

and Ag2S) \\ow> about 10 f.l.g S. In addition, their reproducibility down. to 20 f.l.g S with BaSO.

(0.2%0, n=15) shows an excellent agreement with that ofNBS·127 (0.2%0, n=13) in this

study.

4.4.2 Minimum S amount for lichen analysis

For the tcst of minimum S amount for lichen analysis, single lichen samples were

analyzed, ranging from about 9 f.l.g (corresponding to 15 mg of sample) to about 3 f.l.g

(corresponding to 5 mgofsample) (Figure 4-10). NBS-127 and BaSO. #10 were used as

calibration standards.

The mean o"Scm value of these analyses is +6.5%0 with standard deviation (ia) of

±O.5':ll1o (n=12). Lichen samples containing as little as 3 f.lg S were analyzed by the CF-Iiehen

method (Figure 4-10).

To detennine the analytical errors for different S amounts, several lichen replicate

sets, with S amount ranging from 9.5 f.l.g to 3.7 f.l.g. were analyzed (Table 4-6). Each set

consisted of fourteen or fifteen replicates and different calibration standard sets were used

for different replicate sets. Lichen samples containing as little as 5.5 f.lg S yielded valid
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Table 4-6. Average 034SCDT values of untreated lichen sets with different
sample size and calibration standards analyzed for each set.

Lichen (mg) S (Jlg) Calibration standards 03~SClJT(%o)

1S.6 9.5 NBS·127, BaS04 #10 15 +6.3 t 0.4

13.0 7.9 NBS-123, MUN-Py 14 +6.S t 0.5

12.1 7.3 NBS.127, BaS04 #10 14 +6.6 t 0.7

9.1 5.5 NBS-127, MUN-Py 14 +6.7 t 0.6

6.1 3.7 NBS-127, BaS04 #10 14 +7.3 t 1.1

Ns!J£.:
n Numberofrcplicates.
Analytical errors are based on standard deviations (\0).
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isotope measurements without a loss of precision. The same result was observed in Table

4-5 and Figure 4-8. Sample AG-214 containing 5.8 /lg S showed excellent accuracy and

precision compared to analysis by DI method. However, further reduction of sample size

comcs at the expense of precision (fable 4-6).

In Figure 4-11, the standard precision (to) data in Table 4-5 (open circles) and in

Table 4-6 (solid circles) are plotted against their corresponding S amounts. lbis diagram

provides insight on the precision surrounding a-values reported for other studies associated

with lichen analysis, once the S concentrations in lichen samples are determined.

4.5 MEMORY EFFECTS

Memory effects occur when an analysis is contaminated by the residual traces ofthe

previous analyses. This is a particular problem for SOl analysis because of its "sticky"

charactt:r. The problem can be overcome in D1-IRMS by heating the inlet system to improve

the flow of gas or by allowing longer pwnping times bem·een samples. Although this

problem can be reduced in the CF-IRMS system because the high flow of He carrier gas

purges the capillary interface along which SO:! gas is transported, inter-sample memory

effects on mineral and lichen analyses were investigated in this study. lbis was done by

alternating analyses ofsamples with widely differing isotopiccompositions with the analysis

order organized to maximize any potential memory effect.
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4.5.1 Memory effed!l on minentl analysis

The te;;1 of memory effects on mineral analysis was conducted with two mineral

standards, NBS·I23 and MUN-Py. The difference in 45"So>T value for the two standards is

approximately 16%0; +17.09 ± 0.31960 for NBS-I23 and +1.26 ± 0.40%0 for MUN-Py.

Fourteen mineraJ samples (five NBS-123 and nine MUN-Py) were analyzed in series and the

calibration standards used were NBS·127 and BaS04 #10.

As shown in Figure 4-12, no memory effects are observed. The mean and standard

deviations (10) obtained are +17.5 ± 0.3%0 and +1.0 ± 0.2%0 for NBS·I23 and MUN·Py,

respectively. These values are in good agreement with their knov.n values. In particular,

precision for both standards are better than their reported precision.

4.5.2 Memory effec:ts on lichen analysis

For lichen analysis, thememoryeffectswere tested with two differentIichen samples,

MS-BG and MS-PN-09. The sample amounts used were about II mg (-6.5 j.lg S) for MS­

BO and about IS mg (-7 J.lg S) for MS-PN-09. The approximate difference in 6'"'SCDTvalue

between the two lichen samples is 10960, based on previous Dr analysis; +6.2 ± 0.2%0 (n=5)

for MS·BO and +16.0 ± 0.5%0 (n=5) for MS·PN·09. The DI analysis for MS·PN-09 was

obtained by Nowotczynski (1998). A total of seventeen samples (nine MS·BG and eight

MS-PN-09) were analyzed in series and NBS-127 and BaS04 #1 0 were used as calibration

standards.
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As shown in Figure 4-13, there were no memory effects between the two lichen

samples. The mean c534SCOT value ofMS-BO replicates is +6.8%0, with standard deviation

(10) of±O.5%o. For MS-PN-09 replicates, the mean is +15.7%0, with standard deviation (I 0)

of ±D.7%0. Significant levels of differences between the values obtained by two methods

were tested statistically: 99% and 95%(T and F tests, respectively) for MS-BG,and 95% (f

and F tests), for MS-PN·09.

4.6 TIME AND S AMOUNT REQUIRED PER ANALYSIS

The total time required per analysis for the three analytical methods mainly depends

on the number of sample preparation steps (see Figure 2.3). The required time per analysis

of untreated lichen by CF-IRMS method has been reduced to approximately IS minutes by

eliminating chemical sample preparation steps, including BaSO. extraction by Parr Bomb™

oxidation and 801 extraction line. While about 18 hours are necessary for off-line method

and about t 3 hours for on-line method with BaSO. (Table 4-7). The time required for the

physical pretreatment steps, such as air-drying, cleaning, grinding and homogenizing, was

excluded for the total estimated time in Table 4-7.

The elimination of chemical sample preparation steps also reduces the amount of S

required per analysis. The reasonable S amount per analysis is approximately 680 11& S for

otT-line method and, for on-line method with Ba80., about 35 j..lg S. However, for on-line

method with untreated lichen, only 9 flg S is required (Table 4-7). This reduction in S
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amount is a great advantage in a study requiring the analysis of very small samples, where

the conventional off-line method cannot be applied.
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Table 4-7. Comparison of total time and S amount required
per analysis for the three isotope analysis methods.

Analytical methods Time (min) S (1-1&)

DI 1100

800

680

35

CF-lichen 15

NOle:
Time of the physical pretreatments for the three methods is excluded.
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CHAPTERS

VARIATIONS OF S ISOTOPIC COMPOSITIONS IN A LICHEN STRAND

5.1 INTRODUCTION

During a previous study (Blake, 1998) it was determined that repeated off-line

isotopic analysis oflichen samples (Alec/oria sarmen/osa) groWld using a mortar and pestle

yielded values with very high associated standard deviations, on the order of±1.5%o. Since

mechanical crushing, followed by sieving 10 Wlifonn particle size improved standard

deviations to ±O.5%o, the initial results were attributed to isotopic inhomogeneity in the

sample itself. The technique developed in this thesis makes it possible to investigate the

nature of isotopic inhomogeneity in lichen strands.

Fruticose lichens grow both centripetally and apically (Hale, 1973; Hale, 1974). In

the early stages, most growth activity is funneled into increasing the surface area of the

lichen thallus. Eventually, lateral transport ofnutrients between the margin and center ofthe

thallus is hampered and the older parts thicken somewhat or bc<:ome folded, produee

vegetative structures, or divert energy into the reproductive formation (Hale, 1974).

Honnegger(1996)menlioncd that, in adult parts, the fungal and algal cells are less active in

their uptake ofnutrients and other elements while, in new growing parts, the cells arc highly

active. Moreover, with age, the cortex becomes thicker and more compact, such that it

prevents or impedes the penetration of SOl into the lichen strand (Wirth and TUrk, 1974).
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5.1.1 Sampling location: Come-By-Chance oil refinery

In order to maximize the possibility ofobserving 6J4S variation within lichen strands,

they should be collected from an area where a change in atmospheric S composition has

occurred within the lifetime of the lichen thallus. The oil refinery in Come-Dy-Chance

(CDC), eastern Newfoundland is the largest point source ofS02 in the province. It was

established by Provincial Refining in October 1973, but financial problems caused the

closure ofthe refinery in February 1976(Smallwoodand Pitt, 1981; Concord Environmental,

1993). The refinery was then reopened in the fall ofl987 by NewfoundJand Processing and

has been in operation ever since. Since anthropogenic S in Newfoundland is isotopically

distinct from the natural background, the CSC site was deemed suitable for this application.

Based on the report by Concord Environmental (1993), the refinery charge rate in

1988 was 85,569 barrels per stream day (BPSD) and this rate has nol been greatly changed

since the reopen of the refinery. In Table 5-1, the refinery charge and total S02 emission

among five oil refineries in Canada including CBC oil refinery are compared. CBC oil

refinery had the highest S02 emissions, about six and a halftimes higher than Petro-Canada,

which had the second highest emissions. Concord Environmental (1993) also reported that

the oil refinery did not operate the Sulphur Recovery Unit (SRU) until the summer of 1993.

'08



Table 5-1. Comparison of refinery charge and S02 emissions ofCBC refinery with
other refineries (Concord Environmental, 1993).

Refinery Refinery Charge (m)/CDl S02 (totulcslyr)

Esso (Dartmouth, Nova Scotia) 11,944 3,858

Shell (Scotford. Alberta) 9,635 462

Petro-Canada (Oakville, Ontario) 10,054 5,712

Suncor (Samia, Ontario) 9,932 3,453

eRC' (CBC, Newfoundland) 8,386 37,229
(-9,300)~

!:iJ2!£.:
* Cubicmcterspercalenderday.
• Come-By.Chance data is for 1992. Other data is for 1988.
, Total S02 emission without operating Sulphur Recovery Unit (SRU) by the refinery.

The number in the parenthesis is lotal S02 emission estimated with 75% of recovery
efficiency by SRU operation.
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5.1.2 Previous studies of S in lichen in Newfoundland

The distribution of S concentration and isotopic composition of lichens in

Newfoundland was studied by Evans (1996), Blake (1998), and Wadleigh and Blake (1999).

Based on theit studies, S concentrations in Newfoundland ranged from 262 to 787 ppm, with

values exceeding 450 ppm in regions surrounding urban centers and point sources of S

emissions. 6J.lScDT values in Newfoundland range from +3.7 to +16.6%0 and show a general

decrease from coastal areas to interior parts of the island (Figure 5-1). (')J.lSCDT values in

coastal areas are generally+12.0- +16.6%0, contributed by seasaltaerosols «(')J.lSeur=+21 %0)

andlor sulphate or SOl derived from the oxidation ofDMS «(')J.lSCDT = +16 - +21%0). Inland

regions which are not near urban or industrial centers have lower 014Son values (+9 •

+11%0), contributed primarily by anthropogenic S compounds (&:l4Scm- = +4 - +7%0) either

transported from continental North America or from urban/industrial regions within

Newfoundland such as the eBC refinery.

In the area ofthe esc refinery, S concentrations range from 249 to 757 ppm and the

majority of&:l4SCDT values (Figure 5-2) range from +5.2 to +8.3%0. In general, lichens in the

refinery area show high S concentrations and low o:l4SCOT values typical of anthropogenic

influence.

liD



~
59"W 5S"W 57"W 56°W 55°W 54°W 53"W

~

?- ?-

~ ~

Z

~

?-
~

?-
~

59°W 58oW 57°W 56°W 55°W 54"W 53"W

Figure 5·1. Contour map of S iSOIopic composition for Insular Newfoundland
(from Wadleigh and Blake, 1999). All data in %0 versus COT.

111



Legend

• Sample sites

-Roads

Lakes,coastline

rtf'Refinery

Placentia Bay

Figure S-2. Distribution ofS isotopic composition in Come-By-Chance (CBe)
area, NF (modified from Blake, 1998). All data in %0 in versus
CDT. TCH represents Trans-Canada-Highway.
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5.2 SAMPLING AND EXPERIMENTAL PROCEDURES

5.2.1 Sampling

Lichen samples (Alectoria sarmentosa) were collected from two sites, B and 0 near

the refinery (Figure 5-3). Site-B is about 7 km north of the refinery close to the town of

Come-By-Chance. Site-O is about 7 km northeast ofthe refinery, and eastofTrans-Canada­

Highway (TCH) and south ofthe town ofSunnyside. On an annual basis, the predominant

direction of wind is from the southwest (see Figure 5-3), implying the S emissions from the

refinery will blow towards the towns of CBC and Sunnyside. The sampling sites were

selected at least 3 km away from the refinery because lichen samples collected within 2.5 Ian

from the refmery may not directly reflect S from the refinery (Casc and Krouse, 1980; Blake,

1998). Case and Krouse (1980) suggested that the lichens in this zone may release

isotopically light S in response to the high atmospheric concentrations, therefore increasing

the l\.J.oS of the remaining S in the lichen.

Several thalli were collected from sites-B and -0, respectively. Since the average

growth rate offruticose lichens is generally I cm or less per year (Hale, 1974; Richardson,

1992), lichen strands 25-35 cm in length were expected to include lichen growth pre-refinery

(before 1973) to the present. One lichen thallus from each site was used for bulk analysis

to measure average S concentration and l\:l4SCDT value. Sampling method was described in

Section 2.1.1.

11J



~ To Gandtr Lclflld
• Sample.tlCI-,....

Lakts.eolllline

Iff'Refinery

@) Mllnwind
dircctlon•!!lil!5il

lkm

Figure 5·3. Map showing two sampling sites, Come-Oy-Chance (CBq, NF.
TCH represents Trans..canada-Highway.



5.2.2 Sample preparation

Figure 5-4 summarizes the sample preparation procedures. Upon arriving in the lab

from the field, the lichen thalli were air dried for 3-5 days and cleaned by removing foreign

materials in the same ways before in Section 2.1.2.

For end portion analyses (left flow in Figure 5-4), strands 25·35 cm in length were

separated from the cleaned lichen thalli. Then, young and old portions were separated from

each lichen strand. Only the end portions from these selected lichen strands were analyzed

to maximize the possibility of 6~S difference as illustrated in Figure 5-5. Clean stainless

steel tweezers, unpowdered vinyl gloves and a magnifier with light were used for separation

procedures. Extreme care was taken during the separation processes, nol to lose any portions

and to avoid contamination. Old portions were cut around 3 cm in length from an end

(Figures 5·5a, b) and young portions were cut about 1-2 cm fromtheotherend(Figures5-5a,

c). Since the young portions were hair-size in thickness, in order to supply enough sample

amount~ for the CF analysis, more young portions were separated from the strands than old

portions (Figures 5·5a, c). The thickness of the old portions was variable: the old portions

from site-D were mostly 2-3 mm in thickness while lichens from site·B were approximately

I mm thick. Each portion was then ground separately in a mortar and pestle, after immersing

in liquid nirrogen. The powder was oven dried at 80"C for about IS hrs prior to CF-IRMS

analysis. In order to prevent possible sample inhomogeneities associated with grinding by

the mortar and pestle, all of the ground sample was used for the analyses.
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Figure 5-4. Flow chart showing sample preparation Sleps for cnd portion (lcft) and bulk (right) analyses.
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Figure 5-5. An example of the separated old and young portions from a lichen sm
(a) whole lichen strand before separation (A/ectaria sarmentosa), and
(b) and (e) separated old and young portions, repectively.



For bulk analyses (right flow in Figure 5-4), the lichen thalli from each site were

ground using a puck mill and homogenized, followed by oven drying. For the details of

analytical conditions, refer to Chapter 3.

5.3 RESULTS AND DISCUSSION

5.3.1 S concentrations

S concentrations ofend portion and bulk lichen samples were roughly measured by

CF·IRMS by analyzing an organic material with known S concentration (BBOT,

C~H2fiN202S,with 7.45% S) and comparing the mass 64 peak areas of the samples with the

average mass 64 peak area ofreplicate BBOT analyses. The detailed calculation procedure

is provided with an example in Appendix IV and the calculated S concentrations (in ppm)

are given in Appendix V.

These S concentrations are ploned in Figure 5·6. For both sites-B and ·D,

S concentrations ofyoung portions arc consistently higher than those oftheir corresponding

old portions. This result suggests that input of atmospheric S has increased since the lichen

strands started to grow, but not necessarily linearly, since S concentrations obtained by bulk

analyses are not simply an average ofthe S concentrations obtained for end portions. In fact,

average 8 concentrations from bulk analyses are closer to those of the old portions,

consistent with a more recent increase of8. A similar pattern was found by Blake (1998).

He separated strands of Alectoria sarmentosa from eBC refincry area into three 3 cm
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segments and analyzed their S concentrations using Inductively Coupled Plasma-Optical

Emission Spectrometry (lep·OES). Concentrations decreased continuously with age, from

435 ppm S for the youngest, 384 ppm S for the middle and 366 ppm S for the oldest, with

the mean of395 ppm S. Both the mean S concentration (395 ppm) and the S concentration

of the middle portion (384 ppm) are closer to that of old portion.

Although the length oflichen strands from both sites are similar (25-35 em) and both

sampling sites were almost at the same distance (-7 km) from the refinery, old portions from

site-B have higher S concentrations than those from site-D (Figure 5-6). This may indicate

that atmospheric S concentrations were higher when the lichen strands from site-S started

to grow compared to those from site-D.

The difference in thickness ofold portions (2-3 mm for old portions from site-D and

-I mm for old portions from site-B) suggests the lichens from site-B are in fact younger than

those from site-D and must have grown at a faster rate to achieve the same length as those

from site-D. In other words, lichen strands from site-D record a longer time interval than

those from site-B. Annual growth rates of lichens from the same area do not necessarily

have to beunifonn (Ahmadjian, 1967). Yearly increments may vary considerably according

to the conditions ofthe growth environment such as moisture and temperature (Ahmadjian,

1967). Growth rates may vary within a single strand (Hale, 1954) and with the age of the

strand (Frey, 1959; Phillips, 1963). Also, the heterogeneous composition (e.g. a fungus and

an alga or a fungus and a cyanobacterium) and lack of physiological integration result in
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grov.1h that is usually irregular and unpredictable (Hayward and Grace, 1982; Annstrong,

1984). The more variable S concentrations ofyoung portions in contrast 10 old portions even

at the same sampling site (Figure 5·6) can also be explained by different growth rate,

combined with the different sampling methods used for old and young portions (see Section

5.2.2).

It is interesting to note that the S concentrations of old portions from site-B are

similar to those of young portions from site-D. This may indicate that the aunospheric S

whcn the lichen strands from site-B started to grow was similar to that during the time of

active S uptake by young portions from site-D.

5.3.2 S isotopic compositions

63<S(DT values ofend portion and bulk lichen samples are plotted in Figure 5-7, and

the detailed results are summarized in Appendix V. For site-B, there is no difference

between 63<SCUT values ofold and young portions (range of+5.0· +6.6'!bo). These values are

consistent with anthropogenic S from the refinery operation being the dominant input

throughout the lifetime of these lichens. The mean 63<SCDT value (+5.2 ± 0.4%0, 0=7)

measured by bulk analyses is similar to those 634SCUT values of the end portions.

For site-D, there is a distinct difference in bJ'SCDT between end portions (+6.2 to

+10.9960 for old portions and +5.1 to +8.2%0 for young portions), consistent with increasing

anthropogenic input over the lifetime of the lichens. The mean 6J.<Sarr value (+6.6 ± 0.7%0,
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n=7) measured by bulk analyses falls between lhe /)J.lSCOT values measured for end portions.

The total range of /)l-lSCDT values obtained from site-B (+5.0 to +6.6%0) is within lhe

range obtained for young portions alone (+5.1 to +8.2%0) from site-D (Figure 5.7). It is also

within the rage of 6J.4Su )T values previously reported for the CBC area (+4 to +8960)(Evans,

1996; Blake, 1998). Old portions from site-D are similar in /)34Scm range (+6.2 to +10.9%0)

to that of inland regions (+9 to + II %0) which are not near urban or industrial centers (Blake,

1998). These data support the interpretation that the old portions from silc-D preserve

/)l~SCDT values with lower anthropogenic S, and the young portions from site-D and both

portions from site-B reflect t')l-lScm values with higher anthropogenic S contribution.

Figure 5-8 is a schematic diagram showing the possible correlations among S isotopic

compositions, S concentration and time based on the history of refinery operation. Lichen

strands from site-B represent the time period from Operation-[ (1973-1976) to Operation-TlI

(the present) while the lichen strands from site-D include the lime period from Pre-refinery

(before 1973) when there was less contribution of anthropogenic S to Operation-III (the

present).

5.4 SUMMARY

In summary, the developed CF-lichen method reveals inhomogeneous distributions

ofS isotopic composition as well as S concentration along single lichen strands. However,

more segment data between young and old portions are required to reveal detailed histories
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of S concentration and 5:HSCDT change. Through this application, it was demonstrated that

the developed CF·lichen technique can successfully be applied to the analysis of very small

amount oforganic material with low S concentration. The micro analytical capability ofthis

method is a great advantage for other studies which require very small amount of sample

with low S concentration.

In addition, the fact that the distribution of S concentration and S isotopic

compositions in lichen strands may not be homogeneous possibly explains the somewhat

complicated distribution pattens ors concentration and S isotopic values in Newfoundland

in general and CSC in particular reported in previous studies. Thus, the analyses of young

portions only may reduce the amount ofscatter in S concentration and S isotopic values that

result from bulk analysis.

125



CHAPTER 6

CONCLUSIONS

An on-line analytical method has been developed for the routine measurement of S

isotopic composition in lichens using continuous flow isotope ratio mass spectrometry (CF­

lRMS). Analytical problems encountered that were attributed to incomplete combustion and

subsequent blocking of gas flow because of low S concentration (-600 ppm) and high

moisture content(-l 0 wt%) were solved by (i) oven-drying the lichen powder. (iI) increasing

O2 supply for combustion and, finally, (iii) increasing the sensitivity using a shorter GC

column and decreasing GC oven temperature.

The analytical quality of CF-IRMS method with chemically untreated lichen is

concluded below:

1. For two sets ofrcplicate analyses ofa lichen sample (Alectoria sarmentosa)

collected from the Botanical GardenofMemorial University ofNewfoundland mean a~SCDT

values, +6.3 ± 0.4960 (calibrated by sulphates) and +6.1 ± 0.3960 (calibrated by sulphides),

were compared to those by DI (+6.2 ± 0.2960) and CF·BaS04 (+5.9 ± 0.3%0) methods,

resulting in excellent accuracy and precision for the technique.

2. For four different lichen sample sets with the 6~SCDT range of +4 - +16960,

collected from various locations in Newfoundland, mean 6J4Smr values wcre compared to

those by DI method, also showing excellent accuracy and precision for the range of 6]48coT.
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3. Lichen samples containing as little as 5-6 Jlg S (approximately 9 mg lichen) could

be successfully analyzed without a loss of precision.

4. There were no memory effects observed over the 0348cOT value range in lichen of

+6·+16%...

5. Analytical time and reasonable 8 amount required per analysis are reduced greatly

over conventional techniques to 15 mins and 9 flg S, respectively.

Using the developed CF-lichen method, old and young portions of lichen strands

collected from Come-By-Chance oil refinery area, eastern Newfoundland, were analyzed in

order to investigate variations ofS isotopic composition along the lichen strands with time.

There was a systematic variation in S isotope signatures (o:>4SCOT) observed between old

(+6.2 to +10.9%0) and young portions (+5.1 to +8.2%0), demonstrnting that the old portions

represent the atmospheric S of pre-refinery, which is characterized by less contribution of

anthropogenic S from the refinery operation while those ofthe young portions represent the

present atmospheric S with more contribution of anthropogenic S. The micro analytical

capability ofthe developed CF-lichen method may be applied to other studies which require

the analysis of very small amount of organic materials containing low S concentration.
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APPENDIX)

CALCULATION OF SCONCENTRATION IN LICHENS

Example: sample MS-1 ofTable III-I, Appendix III

I Total amount of lichen powder combusted by Parr Domb™oxidation: 4.2405 g
II The volume diluted from the washing solution of Parr BombThl oxidation for ion

chromatography analysis: 0.50 L
1If Sulphate concentration obtained from ion chromatography analysis: 17.62 ppm
IV Percentage of sulphur in a sulphate molecule: 33.4%

17.62 mg X mg
-1-L- '" 0.50L

X'" 8.81 rog of sulphate in 0.50 L solution

8.81 mg _ Y mg
0.0042405 Kg - "'l'Ki

Y '" 2078 ppm ofsulphate in total lichen

Therefore, sulphur concentration in total lichen
=2078 ppm x 0.334 =694 ppm
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APPENDTXII

CALIBRATION PROCEDURE OF CF-IRMS METHOD

Example:

O)<lS..... and Known 5)~ScDTof calibration standards (NBS-127 and BaS04#10)'

Standards ,.. Known liM

NBS-127 +14.6 +20.32*0.36

NRS·127 +14.2 +20.32*0.36

NBS-127 +2 2*0.36

NBS-I27 +14.5 +20.32±O.36

BaSO #10

BaSO #10 -+Q.3 +2.07±0.40

BaSO #10 ...3 +2.01±0.40

BaSO #10 ".2 +2.1±0.4n

R. '" +'"' ""
Calibration line produced from the relationship between the obtained O..S..... and the
known 5l4SCDT Of the calibration standards.

30,-------------,
Slope'" 1291 (:I: 0.(09)

~t~r~.erlJ9- I.631 (:I: O.I80) .

Il/Ill"
.........

...,•.....
..........

r,....
o 0'---"-----1.1.

0
---'-15----'20
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III Using the slope above, ol·SCVToflichens can be calculated by applying the obtained
3J4S.." oflichens to X axis An example is sho."m below. If the o34S.... oflichen is
+3.4%0,

Known lj14Scnr " 1.291 x lj'J4St<N + 1.632

" 1.291 x 3.4 + 1.632 = 6.0 %0
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APPENDIX III

RESULTS OF THE TESTS IN CHAPTER 4

Table III-I. S concentration measured by ion chromatography.

Sam les Wei ht m BaSO Ill")' SO ,. (nr ,,"\, S (tmml'

MS-2

MS4

4.24

4.28

4.25

15.8

12.6

17.2

16.78

16.57

12.30

694

65

'"480

t:!.fl!£..
I &SO. prepared with lichcn by Parr Bomb'" oxidation.

2 SO/,· concentration measured by ion chromatogrnphy.

3 SconcentrationcalculatedwithSO.'·(seeAppendixl)

Error is based on standard deviation (10).
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Table IIJ·l. V,O, effect test on mineral analysis (NBS-127)

Sam les Wei hI m".) va m.' '"s .. iI"S ..
NBS·127 0.261 No +20.9

NBS-127 0.260 No +14.5 +20.1

NRS-127 0.262 +21.0

NBS-127 No

NBS-127 0.261 No +14.6 +20.2

NBS-127 0.260

AVoistds 0.261±0.001 No +14.8:1:0.4 +20.!'i±0.!'i

NBS-I27 0.260 0.100 +14.9 +19.6

NBS-127

0.260 0.101 +15.5 +20.3

NBS-127 0.260 0.101 +15.0 +l9.7

NBS-127 +15.5 +20.4

NBS-127 0.29 0.100 +15.1 +1°.8

AV":l:stds 0.260=*:0.001 0.100=*:0.001 +15.2=*:0.3 +20.0=*:0.3

NBS-127 0.261 +20.1

NBS-127 0.260 0.201 +15.4 +20.2

NBS--127 0.261 0.201 +20.1

NBS-127 +15.4 +20.1

NBS--I 7 0.260 0.202 +15.6 +20.3

N8S-127 0.29 +20.4

1"'".'00' "" '00' .,,« ."
l:!!!!J;..

Sulphide standards (NBS-Ill, MUN-Py) were used as calibration standards.

The same amount of V.OJ added to samples was added to the calibration standards.

Errors are based on standard devialions (10).
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Tablelll·3. vp, elTecl test on lichen analysis

Wei hI m VO m 6"S .. 6'" ..
MS·BG 15.062 No +4.0 +7.0

MS-BG +3.7 M'

MS·BG 15.017 No +3.8 +6.8

MS-RG +3.3 ".2

MS-Br. I 10 +3.2

MS·BG 15.122 No +7.1

A..... ± 51ds

15.000 0.201 + ., ...,
MS-BG 15.094 0.220 +7.2

MS·BG 15.013 0.201

MS-BG 15.078 + .,

MS·BG 15.086 0.201 +3.8 +6.8

MS-BG 15.079 0,200 +6,6

"'h"" "'M. '00' +,,~

t:lill..
Sulphate standards (NB5-127. BaSO, #10) were used as calibration standards

0.15-0.200 rng ofV10, was added to the working standards.

EITors are based on slandan:l deviations(lo)

144



TableUJ 4 Test of calibration standard selection

Standards Wei 'rn '·s ..
NRS-IH 0.462 64.17 +15.9

NBS-127 0.437 60.69

RaSO #10 0.574 79.72 +0.2

RaSO #10 0.459 63.75 "'.3

BaSO #10

CdS 0.226 51.36 +7.6

CdS 0.232 52.73 +7.9

6~.OO -0.4

MUN- 0.104 57.78 -0.3

MUN-Pv 0.091 50.56 -0.

NBS-12 '00

NBS-I23 0.185 61.67 +13.2
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Table 11I-5. Dl·IRMS analysis.

MS·]-D1

MS-2-D1

MS-3-Dl

MS-4-DJ

MS-5-DJ

ti!!!£.
MUN-Pywas used as arcferonee gas
Etror is based 011 standard deviation (10).
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Table 11I-6. CF IRMS analysis with BaSO•.

Sam les Wei hI m o"S fOIL. ,·S ..
MS-I-CF 26.94 +3.6 +5.7

MS·2·CF 0.194 26.94 +3.6 +5

MS-3-CF 0.193 26.81 +3.5 +5.6

MS-4-CF 0.190 2.39

MS-5-CF 0.189 26.25 +3.5 +5.7

MS-6--CF 26.53 +3.3

MS-7-CF 0.185 25.69 +3.8 +6.0

S_l.rl' +6.1

MS·9-CF 0.183 25.42 +3

MS-IO-CF 0.1&4 25.56 +3.5 +5.6

25.56 ....3 +6.7

MS-12-CF 0.215 29.86 +4.1

MS-13-CF 0.1&4 25,56 +4.0 +6.3

MS-14-CF 0.194 26.94 +4.0 +6.2

MS-15·CF 0.203 28.19 +3.2

MS-I6-CF 0.191 26.53 +3.6 + .7

0.203

MS-18·CF 0.193 26.81 +3.7 +5.9

MS-19-CF 0.213 29.58 +.6 +5.8

MS-2Q.-CF 0.192 26.67 +3. ...
MS-21-CF 0.218 30.28 +3.9 +6.2

MS·22-rF 28.33 +"

MS-23-CF 0,194 26.94 +3.7 +5.9

MS·24.(;F 0,202 28.06 +3.8 ".0

MS-25-CF 0.188 26.11 "'.I ....
U<. .c< "" 0<00
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fTahlelll-6co1lfinued

MS-27-CF 0.183 25.42 ....
MS-28-CF 0.190 26.39 +4.0 ..
MS-29-C.F 7.22 +5.7

MS-30-CF 0.175 24.31 +3.8 .. 0

" .. '"'" ,., ". +'" +""_.
Sulphate standards (NBS-127, BaSO,/lIO) were used as calibration standards.

Errors are based on stalldard devialions (10).
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Table 1II-7. CF·JRMS analysis with lichens, calibrated by sulphates (NBS-127
and BaSO. #10) standards

"am les WI , m "S ... 0"'''.,_('''-'

MS_Br. '.4 9.0 ".0

MS-BG I~ ~14 Q.40 +" ..
MS-BG 1.585 9.45 +1.6 ".2

M&-BG IS.431 9.35 +3.' +.

MS-BG '"'' 9.45 +3.6 +6.2

MS-lI.G ,,,, 9.47 +.4 +.

MS-BG IS 481 9.8 +.2 +5.8

MS-BG " 9 H +5.9

u<:_Sr. 1"" 9.48

MS-BG IS 672 9.0 +6.9

Ms.-SG 15.886 +7.0

M<:_Br. 1 ..
MS-BG IS 6110 9.45 +6.4

M"-BG I ~.54 9.42 ...
M<:_Br. 1"'4

AVI'±std. 15.583 ± 0.121 9.44±0.07 +3.6±0.3 +6.3 ± 0.4

M;·R{; 12.106 7.4 ".9

""<:-BG 12.1\08 7" +3.6 +6.0

MS-BG 12,116 7.8 +7.1

M"-Br. 12.05 7.1 +4.6

MS_Sr. 12.068 7.31 + ., +5.9

Ms.-Sr. 2.144 ,,,
MS_Sr. 12.095 7.33

'''-"" "",, ,,"
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(Table llJ-7 continued)

MS-IlG 7.33 '4.'

MS·BG 12.060 7.31 +41 +6.

MS_Rr. 12.114 7.'4 +7.5

MS-DG 12.105 7.34 '4.0 +6.6

M<;_Br. 12.081> 7.32 +3.9

MS-BG 12.026 7.29 +4.6 +7

7.3,*,0.1l1

MS-BG 6.150 3.73 +4.1 +7.1

+5.0 +.

MS·BG 6.07 3.68

MS-BG 6.160 '.73 +3.9

MS-BG 36 +2.8

S·BG 6.109 3.70 +5.2 +8.6

MS-BG 6.068 1.68 +5.2 +8.

3.72 '4.2

MS-BG 6.179 3.74 '4' +8.1

MS-BG 6.044 3.66 +3.3 +6.1

MS-BG .96 360

MS-BG .942 3.60 +3.0

MS_Br. 6.353 3.85 +'.' +6.4

MS-BG 364

""0"'
&!J£.
Errors lire based on standard deviations (I 0)
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Table lIl-S. CF-IRMS analysis with lichens, calibrated by sulphides (NBS-123 and

MUN-Py) standards.

Sam les Wei2h1 m S '"S .. '"S ..
MS-BG 15.331 Q.29 +4.5

MS-BG 9.31 +4.2 +6.2

MS-BG 15.193 9.21 +43

MS-RG 1.251 9.24 +4.1 ".1

MS-BG 15.226 9.23 ".8

MS-BG 15.253 9.24 +4.3 +6.4

MS-BG 15.241 9.2 +4.0 ".0

MS-BG 15.235 926 +3.8

1.098 9.15 +4.3 +6.3

MS-BG +5.8

MS-BG 15.172 9.19

15.050 9.12 +3.9 +5.9

MS-BG "" 9.24 ...3

MS-BG 15.175 9.20 +41

1.242 9.24 +3.3 +5.7

Av * ~ld~ 15.21 >OM' +6.1 *0.3

MS-BG 13.014 7.39 +3.4

7.90 +4.' +7.6

MS-BG 1.085 7.93

13.075 7.92 +3.5 +6.2

MS-BG 13.039 7."" +39 +{;.7

MS-BG 13.031 7."" +3.3 +6.6

MS-BG 13.020 7.39 +1.0

MS-BG 13.011 7.88 +3.6 +6.3

"'.Rr. 'M' ""
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n'ahleJlI-8conlimred

MS-BG 1.052

MS·BG 13.062 7.92 +3.6 +6.4

MS_Br. 13.034 7.9{)

MS-BG 13.011 7.89 +3.2 '.8

MS-Br. 13.08 7.9{) H

n,,,, "" 700.""' +".
!:!f2!!..
Errors are based on standard devialions (I 0).
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Table 11I-9. CF-IRMS analysis with lichens, calibrated by sulphate (NBS-l 27)

and sulphide (MUN-Py) standanis.

Sam les Wei lit m 6'" .. o14S ..
#,

MS-BG 9.045 5.48

S-BG 9.08 ".2 +7.1

MS-BG "MS-BG 9.061 SA9 -+3.2 +5.8

'.0 >6.

M~-RG 9.069 5.50 #.

MS-BG 9.035 5.48 -+4.4 +7.3

MS-SG 9.036 5.48 +3.6 #,

M5-BG '.1

MS-BG 9.084 50 +3.5 +6.2

MS-SG +4.2 +7.1

M....BG 07

MS-BG 9.007 5.46 +4.8 +7.8
,~, '"" .0 '"'

/W!r.
Errors arc based on standard devialiolls (10)
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Table III 10 CF lichen analysis applied to differcnt lichen species

Sam Ie Wci"ht m "5 '"
,.

'"MS-PN-D9 6.95 +12.5 +16.6

MS-PN-D9 14.846 6.89 +12.4 +16.4

MS-PN-09 14.3 6.R9

MS-PN-09 14.372 6.67 +11.8 +15.7

+16.6

MS·PN.(I 14.750 6.85 +11.9

MS-PN-09 6.94 +12.0 +15.9

MS-PN , 14.887 6.91

MS-PN-09 14.828 6.88 +12,0 +15.9

MS-PN-09 14.944 6.94 +12.4

14.670 +12.1

MS-PN-09 14.689 6.82 +11.0 +14.7

MS-PN-09 14.985 6.96 +11.8 +15.7

MS-F'N-Q9 14.915 6.93 ,"
A,· ±stds 14.827±O.t65 6.88±0.08 +12.0±O.4 +15.9±0.5

AG-214 1.62 5,84 +7.8

AG-214 15,59 s."
AG-214 15.412 5.76 +7.1 +9.8

AG-214

AG·214 15.597 5.83 +7.6 +10.3

AG-214 1.251 +7.1 '"..
AG-214 15.413 5.76 +7.0 ,".7

AG-214 15.03 5.80 +7.7 +10.

AG-214 15.363 5.74 +6.5 '"0

154



(1'able/l/-1OcQruimted)

AG-214 5.82 +8.9

AV:l:stds 1.486:1:0.121 5.79:1:0.05 +7.3:1:0.6 +10.0*0.8

~r:-017 1.01 ". ..
G·Ol1 IS.017 • +4.0 +S.8

Ar.-017 "'.48 +~.O

AG-OI1 IS.I13 6.46 +2.7 ....2

AG-017 I 10 4J '"
AG·017 IS.I71 6.46 '.5 +S.2

G-017 IS.02S 6.39 •.7 +S.5

AG-017 IS.220 48 '.8 •.7

G~I IS.27 6.50 +S.7

AG-017 IS.0~n +3.4 +S.2

AG-017 15.15

AG-0I7 15.192 ... '57

''', ." . '"~.

Su Iphate standards (NBS·127, BaSO, # I0) were used as calibration s1.al1dards

Errors are based on standard deviations(lo)
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Table III II Minimum S amount for CF-mineral analysis (single analysis)

Sam Ie Wei ht m 6)'S ..
0.263 +16.0

NBS-127 0.238 33.06 +15.7

NBS-127 0.240 3'.33 +15.8

NBS·127 0.222 30.83 +15.8

NBS-127 0.221 30.69 +15.8

NBS-127 0.200 27.78

NBS-127 0.200 27.78 +16.0

NBS-I 7 0.179 24.86

NBS-127 0.178 24.72 +15.6

NBS-127 21.94 +16.1

?2.2?

NBS-127 0.145 20,14 +16.2

NBS-127 0.141 19.58 +15.9

NBS-I27 0.119 16.53 +16

NBS-I27 0.102 14.17 +16.2

N8<;-17 0.101

NBS-127 0.089 12.36 +16.1

NBS-127 +16.6

NBS·127 0.082 11.39 +15.8

NBS-127 0.083 11.53 +16.4

NBS-I27 +14.8

NBS-I27 0.068 9.44 +15.8

NBS-127 0.Q60 8.33 +15.7

NBS-I27 0.059 R.19 +16.8

+" +
/!gJ<.

Error is based on standard deviation (10).
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TablellI·12 Minimum S amount forCF-lichen analysis (single analysis).

Sam Ie Wei lit m") S ",,' 6" .. o"S ..
M5-BG 15.094 9.15 +3.9 +6.6

MS-BG +6.8

MS-BG 13.059 7.91 +4.5 +7.1

MS-BG 13.039 7.90 +3.9 +6.6

MS-BG 7" + .6

MS-BG 11.036 6,69 +4.2 +7.0

MS·BG 10.075 6.11 +3.2

MS-BG

MS-SG 8.031 4.87 ".2 +6.9

MS·BG 7.045 427 +3.6 +6.2

MS_Br. 0" 3.66 +3.7 +6.3

5.070 3.07 +3.4 +5.9

.M.
f:J.rlM..
Erro!S art' based on standard deviations (lo).
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TableJII-13 Mcmory effcct tcst on mineral analysis

Sam Ie Wei ht m o"S ('t<., 6" ...
NBS-123 0.116 38.67

NBS·I23 0.120 40.00 +12.8 +17.3

+17.7

MUN- 0.091 50.56 +0.2

MUN-Pv 0.081 45.00 0.0 +1.1

MUN_Pv ")

NBS.123 0.112 37.33 +13_1 +17.6

MUN-Pv 0.084 46.67 .Q.l ....,
MUN-Pv 52.22

MIIN"_P 0.084 -0.1

NBS-123 0.107 35.67 +13.2 +17.7

MIIN"_Pv 0.083 +1.2

MIIN". 0.08 43.33 -0.0

'00. "
!:!!2!£
Sulphate standards (NBS-127, BaSO, #10) wen: used Il5 calibratiotl standards.
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Table 11I-14 Memory efTccl test on lichen analysis

"'"I< Wei hi m 1\"<;; ('Ii", ,·S ..
14,773 6.86 +10.0 +14.6

MS-PN-09 6.92 +5.8

6.92 +11.3 +16.2

MS-BG 11.014 6.67 +3.'"

MS-BG 11.081 +4.4 +7.6

MS-Br. 1O.QQ3 6.66 +3.0 +5.8

MS·BG 11.039 6.69 +4.0

MS-PN-09 6.86 +" , +16

14774 6.86 +11.4 +16.4

MS·BG 11.089 6.72 +3.8

MS-BG 67 +4.3

MS-BG 11.092 6.'2 +4.0 +7.0

MS-PN-09 14.830 6.88

MS-PN-09 +10.9 +15.8

14.639 6.79 +10.6 +J5.5

MS-BG 10.979 6.65 +6.5

+"
!::!J!l£..
Sulphate st.andards (NBS· 127, BaSO. #10) were used as caJibmtion standards.
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APPENDIXrv

CALCULATION OF S CONCENTRATION
IN OLDNOUNG PORTIONS OF LICHEN STRANDS

Example: sample CBC·D1·2 of Table V·2, Appendix V

Calculation of the S concentrations in BBOT samples.

Sam II's Wei lit m Peak area Vs)l S ,o~

BBOT' 0.668 33.69 49.76

BBOT 32.95

BBOT 0.626 32.24 46.78

" .'" ~., <

l::!!!!£..
I BBOT (C,.H",N,O,S) is an organic material with 7.45% S.

The rnole.:ular weight ofBBOT is 430.56 g.
2 Peak area ofmass 64. Vs-voltage><s«ond.

3 S concentration in BBOT samples (in ).Ig)

" (WI. Qj sample, mg) " (0.0745) x (1000 ).Ig)
I mg

4 Erronarebasedonstandal"ddeviations(IO").

Calculation of the S concentrations in old and young portion samples.

Sam Ie Wei , m Peakarea vs)l S '0" S m" Av ±stds

CBC·DI-2-0' 15.152 3.24 311.74

CBC-Ol-2-0 15.053 309 4.50 299.26

CBC-OI-2-0 15.309 3.27 4.77 311.39

CBC-DI·2-Y' 15.030 10.18 14.84 987.41

CBC-OI-2-Y 15.747 10.90 15.89 1042.20

"n".m.w ,., ,," "" '"'<00
1038.21:*:48.92
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/f.Qf£:

IOaudYrcpresenloldandyoungpol1ion,respectively.
2 Peak arca of mass 64. Vs"voltage~ second.

3 Sconcentrationofoldandyoungportionsamples(inlJg)'

(Avg. 5 eoncenJration 0/8BOT, ilK) ~ (peak. area oil/chell portion sample, Vs)

.. (Avg. peak area 01 BBOT, Vs)
(4g.05 Ilg) ~ (peak area ollichen porti01l sample,Vs)

'" (32.96 Vs)

4 S concentration of old and young portion samples (in ppm)

(5 conce1lIration 01 lichen p{W/iO/J sample, Ilg) " (1000 mg)

.. (wt. 01 lichen poriioo sample, mg) " (I g)

5 Errors arc based on standard deviations (10).

161



APPENDIX V
DATA SUMMARY OF CHAPTER 5

Table V-I. Old/young portion and bulk analyses (site-B, CBe)

Sam Ie Wei hi m<>' 5 m' 6'''5 AI. 6)'S ..
B4-1-0" 490.&1 "1.3 ".6

B4-1-0 15.561 452.72 +3.6 +5.7

12.162 430.23 +3.7 +5.&

Av *sltb )4.403,1,1.941 457.92*30.62 +3.8*0.4 +6.0*0.5

B4-1-Y' 15.155 1&87.36 +4.0 +6.2

B4-1-Y 15.521 1824.03 "1.2 ..,
B4-I-Y 15.226 1811.37 <3.' ".I

15..301,1,0.194 1840.92*40.72 +4.0*0.2

B5-1-0 15.542 636.65 +3.& ".0

B5-1-0 15.528 638.17 +3.1

B5-I-Y 15.295 2044.01 +3.2 +5.2

15.319 2152.43 +3.4

A-Bulk 15.054 1063.63 +2.7 +5.0

B-Bulk 15.126 1055.78 +3.0 +5.4

15.069 1026.22 <.1 +5.5

B-Bulk 15.225 1015.70 +2.6 +4.9

B-Bulk 15.095 1009.56 +5.2

B-Bulk 15.135 992.05 +2.3 "1.6

B-Bulk 15.087 984.03 +5.6

.. ,< ~, ,n"" "A *~",
&Jg.

Sulphate standards (NBS-127, BaSO, 1110) were used as calibration standards

• o and Y repre:sent old and young ponions. respectively

I SconcentmtioncalculatedbyanalyzinganorganicmaterialwithknownSconcentration

(BBOT, 7.45% S) by CF-IRMS and comparing the mass 64 peak area of tile samplewlth

the average mass 64 peak area of replicate BBOT analyses (see Appendix IV). ErTors are

based on standard deviations (10).
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Table V-2. Old/young portion and bulk analyses (site-D, CBC)

Sam Ie Wei hI m S m' 'uS "- 'uS ..
DI-l-O' 159.44 +4.8 ";.9

DI-l-0 15.024 150.40

DI-l-0 +5.4 +7.7

01-1-0 15.368 139.45 +4.2 ";.2

15.202oiO.I88 +5.0oiO.7 +7.2..,0.9

Ol-I-Y' 15.180 538.77 +3.6 +5.S

DJ·I-Y 15.072 587.12 +3.6 +5.4

I 163 611.48 +3.3 +5.1

A> oislds 15.1)1l±O.OSR 579.12 ± 37.01 +3.5..,0.2 +5.3..,0.2

01-2-0 1.152 +5.8 +8.1

01-ZOO 15.053 299.26 +6.6

DI. ·0 15.309 311.39

307.46±7.1I +5.3 ± 0.7 +7.6±0.8

15.030 987.41 +5.4

DJ-2·Y 15.247 1042.20 +5.lt

01-2-Y 108.00 +4.2 +6.1

A\Il!oistds J5.15J±O.1I2 10)8.21±48.92 +3.9..,0.)

01-3-0 15.165 145.16 ....2 +8.7

01·)-0 m'" .,;.. +8.9

01- -y 15.140 692.33 +4.2 -tti.2

no •• .« '00'0
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(Tahle V-2continU£d)

03-I-n 15.092 231.83

03-1-0 I 230 201.97 +5.6 +7.9

03-1-0 15.226 218.30 +5.1 +1.3

03-1-0 15.374 222.84 +5.0 +7.2

Av"'/'stds t!li.2Jl*0.lt!li 218.74* 12.!lil +5.5*

OJ-I-Y 15.205 467.89 +4.8 '6.9

5.085 496.74 +5.0

n1_2_0 189.11 '6.8

D3-2-O 15.227 180.95 +5.8 +8.1

15.472 +10.

., "'slds 15.321*0.132 183.34"'5.02 +6.7'/'0. ... *1.1

OJ-2-Y 15.017 749.45 +5.0 +7.1

12.396 755.03 •.7 +8.0

D5-1-0 15.542 171.15 +5.2 +7.8

141.92

0·1-0 I .580 144.47 +8.3

A' "'stds 15.5511*0.020 152.51'/'16.19 +5.6:1:0.3 +8.2*0.4

702.87 +4.0 '6.3

05-I-Y 15.09 739.90 +3.7

05-I-Y 15.641 738.22 •.6 +5.7

A, ,/,slds +3.8*0.2 +S.'HO.)

07-2-0 15.056 211.63

07·2-0 15.062 172.73 '6.7 +9.7

D7-!-O 17.34 +1.0 +10.1

07-2-0 15.529 169.41 +7.6 +10.9

I .6" 169.89
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(Table V-2 continued)

D7·2-Y 15.632 585.30 +5.0 +7.5

D7·2-Y 15.100 84.6, +8.2

D7·2-Y t4.977 618.71 .....3 '0.7

1S.03' "'.72 .... 6

Av ±stds 15.186:1:0.302 606.84:1:26.55 +4.9:1:0.5 +7.4:1:0.7

D-Bulk 15.538 284.43 +3.9 '0"

D-Bulk

[)'Bulk 15.s58 267.97 +4A +7.0

D-Bulk 268.35

D-Bulk 15A43 275.69 +3.8 '0.3

D-flulk 15.415 279.05 +6.7

D·Bulk 271t.35

,.." ,." ""0· '" +'0<
!:i!1l!f..
Sulphate standards (NBS-127. BaSO.IHO) were used as calibration standards.

• o and Y represent old and young ponions, respeetivdy.

I S conccntration calculatcd by analyzing an organicmaleJial with known Sconcentratio"

(BBOT. 7.450/. S) by CF·IRMS and comparing thc mass 64 peak area of the sample with
the average mass 64 peak area ofreplica!c BBOT analyscs (sce Appendix IV). Errors arc

bastdoustandarddeviatiolls(1o).
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