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Abstract

In this work, we describe the results of our investigation into the relevance of skewness

and kurtosis as measures of surface roughness. Two types of surfaces are computa-

tionally generated: abraded surfaces consisting of surface scratches, and corrugated

surfaces consisting of hemispherical features. It was found that abraded surfaces

could be well described by the skewness and kurtosis, which can both be specified by

the degree of coverage by the features on a surface. These two parameters showed

a large variation over the range of surfaces sampled. The root mean squared (RMS)

slope and surface area ratio did not change significantly by comparison, and the RMS

roughness changed significantly only for surfaces with a large variation of scratch

depths. A monotonic relationship was found to exist between skewness and kurtosis

for abraded surfaces composed mainly of smaller scratches. For corrugated surfaces,

the skewness and kurtosis were nearly constant for surfaces with RMS roughness val-

ues that differed significantly. The RMS roughness, RMS slope, and surface area ratio



iii

changed significantly by comparison. No monotonic relationship was found between

the skewness and kurtosis for corrugated surfaces. This indicates that corrugated

surfaces are best described by the RMS roughness, RMS slope, and surface area ratio

rather than the skewness and kurtosis.
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Chapter 1

Introduction

1.1 History of Skewness and Kurtosis

The skewness and kurtosis are statistical parameters that were first conceptualized

by Karl Pearson in 1894 and 1895 [1], [2]. In the 19th century, it was common practice

among scientists to fit experimental data to a normal distribution, even in cases of

large deviation from the normal distribution [3]. Noticing this, Pearson began the

development of a set of functions that could be used to model distributions that

deviated from the normal. This set was derived based on the use of the moments

of a distribution to characterize the shape of a non-normal frequency distribution.

Moments are a quantitative measure of the shape of a set of points, and are defined
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as:

µn =
1

N

N∑
i=1

(zi − z)n, (1.1)

where zi are the data points, and z is the mean of the distribution. Using this

definition, Pearson defined characteristic coordinates, (β1, β2), in Pearson’s function

space, as

β1 =
µ2

3

µ3
2

, β2 =
µ4

µ2
2

. (1.2)

All distributions in Pearson’s set can be described as a function of these coordinates;

that is, all Pearson’s frequency curves could be uniquely determined by their first

four moments [2]. These parameters will be used to derive the skewess and kurtosis.

Initially, Pearson sought to quantify the degree of asymmetry (i.e. how far the mean

deviated from the mode of the data set) in a distribution by creating the skew index,

χ, a precursor to the modern definition of skewness, defined as

χ =
z −mode

σ
, (1.3)

where z is the mean, σ is the standard deviation of the data set, and mode represents

the value that appears most often in the data set. A mean shifted to the right of the
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mode would give χ > 0, a mean shifted to the left of the mode would give χ < 0,

and the case of the normal distribution (µ = mode) would yield χ = 0 [3]. These

properties give a rudimentary idea of the skew of a distribution, however there are

some flaws in this definition. For discrete distributions, such as certain types of the

binomial distibution, the skew index predicts positive values of χ for distributions

with the mean left of the median [4].

Another proposed measure of skewness came from Bowley in 1920, in the form

skew =
Q1 +Q3 − 2m

Q3 −Q1

, (1.4)

where Q1 and Q3 represent the first and third quartiles, which are the 25th and 75th

percentiles of the distibution repectively, and m is the median of the distribution [5].

The use of quartiles is arbitrary, however; Bowley could have chosen the 10th and

90th percentiles, for example, and still used this as a measure of skewness. Further,

this measure of skewness is still susceptible to the issues faced by the skew index,

given by Equation 1.3. Finally, it was found that, by cubing the difference between

the data points and the mean, the failure of measure of skewness for certain discrete

distributions could be prevented, and thus Pearson’s original coordinate β1 began

being used as a measure of skewness in the form:
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Ssk = ±
√
β1 =

µ3

µ
3/2
2

=
1

Nσ3

N∑
i=1

(zi − z)3. (1.5)

This has now become the most widely used measure of skewness.

In 1895 Pearson created the concept of excess, ε, the precursor to kurtosis [2],

defined as

ε =
µ4 − 3µ2

2

3µ2
2

. (1.6)

In 1902, Pearson determined that εmeasures the degree of peakedness of a distribution

compared to the normal distribution [6]. If ε > 0, then µ4 > 3µ2
2 and the curve

is sharper than the normal distribution, and is called leptokurtic. If ε < 0, then

µ4 < 3µ2
2 and the distribution is flatter on top than the normal distribution, and is

called platykurtic. Finally, a curve with ε = 0 implies µ4 = 3µ2
2, (called mesokurtic)

and is a necessary condition for the normal distribution. In terms of the parameter

β2, we have

ε =
µ4 − 3µ2

2

µ2
2

=
µ4

µ2
2

− 3

= β2 − 3, (1.7)
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thus giving the modern definition for kurtosis as β2

β2 = Sku =
1

Nσ4

N∑
i=1

(zi − z)4. (1.8)

We see that for χ = ε = 0, we must have Ssk = 0 and Sku = 3. It is important to note,

however, that these conditions are simply necessary conditions for the normal distri-

bution, and are not sufficient to guarantee that a distribution is normal [3]. Sample

distributions with various values of skewness and kurtosis are shown in Figure 1.1.

Figure 1.1: Sample distributions with Ssk > 0, Sku > 3 in blue, Ssk = 0, Sku = 3 in
red, and Ssk < 0, Sku < 3 in green.
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Table 1.1: Mathematical definitions of surface height statistical parameters.

Name Symbol Equation

Root Mean Square Surface
Height (RMS)

Sq

√√√√√ N∑
i=1

(zi − µz)2

N

Surface Area Ratio Sdr
Asamp − Asub

Asub
× 100%

RMS Surface Slope Sdq

(
1

(M−1)(N−1)

N∑
j=2

M∑
i=2

[(
z(xi,yj)−z(xi−1,yj)

∆x

)2

+

(
z(xi,yj)−z(xi,yj−1)

∆y

)2
]) 1

2

1.2 Other Statistical Parameters

In this thesis, we will also make use of three other statistical parameters: the root

mean square (RMS) roughness, the RMS slope, and the surface area ratio, all defined

mathematically in Table 1.1 [7]. Each of the statistical parameters described will be

calculated using the surface heights of a given surface.

These parameters will be used for comparison with our results pertaining to skewness

and kurtosis. Note that the RMS roughness is simply the standard deviation of the

distribution, σ and measures the spread of the data. The RMS roughness is the most

common measure of surface roughness, and is the most widely cited measure in the

literature due to its capacity to correlate well with physically measurable roughness
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effects [8–12]. The RMS slope is the root mean square of all local slopes of the

surface under study, and often correlates strongly with the RMS roughness, due to

the similarities in their calculation. The surface area ratio is the quotient of the

area of the surface compared to the area of the underlying substrate. This quantity

also increases with surface roughness, because as the local surface slopes increase,

the surface features become more pronounced, thus increasing the area of the surface

while the area of the substrate remains the same.

1.3 Motivation

Due to the miniaturization of components, interest in surface characterization has

increased in recent years [10]. Accurate description of the roughness of a surface is

a significant challenge in surface characterization, and many practical systems could

benefit from a deeper understanding of surface roughness. One such example, per-

tinent to our research group, involves silicon microcantilevers coated with a gold

film. We wish to determine the relationship between the deflection of these cantilever

sensors and the surface roughness of the underlying gold film. Understanding this

relationship could greatly improve the design of these sensors, ultimately leading to

actual applications. Many other examples of practical uses for accurate roughness
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description come from fields such as tribology, the study of relationships between sur-

face roughness and physical parameters such as friction, wetting, and wear. Another

field which makes frequent use of surface roughness measures is dental science. Typi-

cal problems in dental science include determining how abrasions on teeth affect oral

health in humans, as well as how knowledge of surface roughness can help optimize

denture design [13].

1.4 Previous Work

The skewness and kurtosis are used extensively in the literature. Peltonen et al. used

them to successfully characterize the surfaces of chemically prepared sol-gel samples

with different topographes [8]. Sedlacĕk et al. used these parameters to measure

the coefficient of friction of metal surfaces composed of scratches with similar RMS

roughnesses, but with different skewness and kurtosis, both computationally [9], and

experimentally [10]. Tayebi et al. modelled scratched surfaces using the Pearson

system of frequency curves to predict the behaviour of the coefficient of static friction

with skewness and kurtosis [11]. Hansson et al. investigated the effect of surface

roughness on the bone response to dental implants [12], while Meierles el al. studied

the characterization of wear in teeth [13]. Wang et al. investigated the effect of
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skewness and kurtosis on various contact parameters of computationaly generated

non-Gaussian surfaces [14]. İkizler et al. found a correlation between the skewness

and kurtosis and the structure of an array of ZnO nanorods [15]. The majority of

these studies were successful in correlating these statistical parameters to the physical

parameters under study, with only Meireles et al. [13] finding the skewness to be

ineffective.

The work presented in this thesis is based on a program written by Dr. Luc

Beaulieu to simulate corrugated surfaces composed of hemispherical grains. These

surfaces are of interest to our group because they represent the surface of a gold-

coated microcantilever sensor well. Peter Martin, a B. Sc. Honours student in our

group, used Dr. Beaulieu’s code to attempt to correlate skewness, kurtosis and RMS

roughness with surface roughness for corrugated surfaces. Martin found that cor-

rugated surfaces with different amounts of peak height variation could have similar

values for skewness and kurtosis [16]. Neither the skewness nor the kurtosis gave any

indication of the sharpness or broadness of the surface features. From Martin’s work,

it is unclear whether the kurtosis and skewness are able to be used for characterizing

surfaces [16]. However, Martin did not generate a large number of surfaces, nor did

he vary the input parameters greatly, and thus the scope of this project was limited.

More data and a deeper analysis are required to make a more definite statement about
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the correlation of skewness and kurtosis to surface roughness.

1.5 Scope of Thesis

Although there are many studies on the applicability of the skewness and kurtosis to

physical systems, apart from Martin’s work there are no studies examining the surface

roughness of corrugated surfaces using these two parameters. In this thesis, we will

investigate, using Dr. Beaulieu’s code, computationally generated corrugated surfaces

more deeply. In addition, since the majority of the literature has focused on abraded

surfaces composed of scratches, I have written another program to generate abraded

surfaces and computed the skewness and kurtosis of these surfaces to compare with

the results from those of corrugated surfaces. In this way, we hope to determine

if the skewness and kurtosis are truly applicable to corrugated surfaces composed

of hemispherical grains. Chapter 2 will consist of a detailed description of both

the abraded and corrugated surfaces simulations, the presentation of the results and

analysis of the output of the two programs will be presented in Chapter 3, and our

conclusions and their implications for the study of surface characterization will be

given in Chapter 4.



Chapter 2

Computational Details

Two programs were written for this study; one, written by the author, simulates

abraded surfaces composed of half-cylindrical scratches, while the other, written by

Dr. Luc Beaulieu and modified by the author, simulates corrugated surfaces composed

of hemispherical grains. A sample of an abraded surface and cross-section can be seen

in Figure 2.1, while a sample of a corrugated surface and cross-section can be seen in

Figure 2.2

Both programs compute the skewness and kurtosis, as well as the RMS rough-

ness, RMS slope, and surface area ratio for each surface type, allowing a comparison

of the results for both types to be performed. Examples of abraded surfaces found in

the literature are typical surfaces examined in tribological and dental science appli-
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Figure 2.1: a) A sample cross-section of an abraded surface with 200 scratches
with a distribution of 5%, 10%, 25%, and 60% coarse, medium, fine, and superfine
scratches. b) the corresponding computer generated surface.

Figure 2.2: a) A sample cross-section of a corrugated surface with a = b = c = 46.
b) the corresponding computer generated surface.

cations, as discussed in the Introduction. Additionally, the gold film deposited on a

microcantilever sensor is an example of a corrugated surface. Thus, these two surface

types are of interest in our research. Both programs were written using Microsoft

Visual Basic, and consist of a Graphical User Interface (GUI) for both the input, and

the code itself.

In order to compute the previously mentioned roughness parameters, the surface
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height data (called the primary profile) must be filtered to separate its waviness

and roughness profiles. This separation is standard practice in characterizing actual

surfaces, and is done to account for any directionality imparted to the surface during

the roughing process. This is achieved through the convolution of a 2-dimensional

matrix representing the surface heights with a matrix whose entries are points in the

Gaussian weighting function, given by [17]

Gij =
1

αλ
e−π(

zij
αλ

)2 , (2.1)

where α = 0.4697 is a constant, λ is the cut-off wavelength, chosen based on industry

standards to best fit the moving average to the surface, and zij is the surface height

at point (i, j). Convolution of these matrices can be thought of as a moving average

along the surface with Gaussian weights; this weighted average is the waviness pro-

file. Matrix convolution is most easily achieved through the use of the Convolution

Theorem,

X ∗ Y = F−1(F(X) · F(Y )) (2.2)

where X and Y are complex-valued matrices of equal rank, the ∗ operator denotes

convolution, the · operator denotes term-by-term complex multiplication, F denotes
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the Fourier Transform, and F−1 denotes the inverse Fourier Transform. Code written

in-house which performs the Fast Fourier Transform and Inverse Transform was used

to perform the convolution to obtain the waviness profile. The roughness profile,

R, is, then, simply the difference between the primary profile, P , and the waviness

profile, h,

R = P − h. (2.3)

Figure 2.3 shows a visual representation of this filtering process. Figure 2.3a

shows a sample 2D primary profile which is fit with the moving average as discussed

above. The result is shown in Figure 2.3b. Filtering the primary profile results in the

roughness profile, shown in Figure 2.3c and the waviness profile, Figure 2.3d. The

roughness profile, which can be thought of as the primary profile with any direction-

ality removed, is then used to calculate the roughness parameters.

2.1 Abraded Surfaces Simulations

An image of the GUI for the abraded surfaces simulation can be seen in Figure 2.4.

From this interface, the user can define values for the resolution (size of the grid to

be used), G, the number of scratches for any given surface, the maximum depth of
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Figure 2.3: The primary profile a) is fitted with a weighted Gaussian function b),
which results in the waviness profile. The primary profile can then be split into the
roughness profile c), and the waviness profile d).

a scratch in the simulation, and the distribution of scratch sizes. The user can also

view an image of the surface, the cross-section through the centre of the surface, and

the distribution of surface heights, once a surface has been generated. The user can

save the output and distribution files from the GUI as well.

The program begins by defining a two-dimensional array of size (G+ G
10
×G+ G

10
),

with G = 256 in our simulations, to represent a Cartesian grid. The G
10

border is
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Figure 2.4: An example of the Graphical User Interface for the abraded surfaces
simulation.

included to prevent edge effects and is later removed, creating a G×G surface. The

array is then initialized with z = 0 values. To define a scratch, the equation of a line

in point-normal form is used,

~N · (~r − ~p) = 0, (2.4)

where ~p is a point on the line ` which we wish to draw on the grid, ~r = (x, y, 0) is a
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point on the grid, and ~N is a vector normal to `. Figure 2.5 a) shows, pictorially, how

Equation 2.4 generates a line in a plane. The components of ~p and ~N are generated

through the use of a random number generator. This ensures a degree of randomness

in the scratch direction and placement, to more closely represent actual surfaces. The

following equation was used to generate a random number, a, within upper and lower

bounds, a+ and a− respectively:

a = (a+ − a−)× Rnd + a−, (2.5)

where Rnd generates a random number between 0 and 1. Once the components of ~p

and ~N are determined, the program uses Equation 2.5 to generate a random value

for the scratch radius, ρ, within the bounds of the appropriate scratch type, and calls

a function which reads in ~p, ~N , and ρ. The function then loops over the whole array

and places a value equal to z at all points ~r in the array that satisfy Equation 2.4.

The set of points satisfying Equation 2.4 forms a line on the grid, which we will

call `, defined by ~N and ~p. The line, `, runs axially along the scratch as shown in

Figures 2.5 a and b, and will be used as a starting point for the construction of the

half-cylindrical scratch.
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Figure 2.5: a) A vector diagram showing a vector ~r that terminates on the line
`, given by Equation 2.4. b) A vector diagram that shows a vector ~r that does not
terminate on the line `. c) A figure showing the geometric derivation of Equation 2.7.

To draw the half-cylinder, the program loops over the whole array and computes

the in-plane perpendicular distance, L, of each vector ~r as [18]
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L =
~N · (~r − ~p)
‖ ~N‖

. (2.6)

The code then checks that L ≤ ρ, the radius of the scratch. If false, then the point

lies outside of the cylinder. If true, then the surface depth at ~r is computed using:

z =
√
ρ2 − L2. (2.7)

This equation can be derived from geometrical considerations, and is illustrated in

Figure 2.5c. From the previously shown Figure 2.1a, it is clear that this equation does

generate half-cylinders in the plane. The code repeats this process for the number

of scratches requested, ensuring, at the intersection of multiple scratches, to always

retain the lowest of the intersecting values; the result is a simulated scratched surface,

as shown in Figure 2.1b.

The program also has an option for creating a distribution of scratches with dif-

ferent depths. Prior to using the scratch creation algorithm, the percent distribution

of scratch depths is read and multiplied by the total number of scratches to get the

number of each type of scratch used in the simulation. The scratch types described

in this work are classified based on radius, and are, in order of decreasing radius,

coarse, C, medium, M , fine, F , and superfine, SF . The scratch types are defined
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based on the largest scratch depth (equal to the radius) for the surface, ρmax, as

0 ≤ rSF < d
4
≤ rF < d

2
≤ rM < 3d

4
≤ rC ≤ d. Note that the depth of a scratch is a

continuous variable. The program inputs the number of each scratch in the surface,

thus creating a surface composed of scratches with a user-defined radius distribution.

Once a number of scratches is set, the program is looped 10 times to create 10

surfaces using the same starting parameter plus random fluctuations. The statistical

roughness parameters are then averaged and written to a file. The parameters Sq,

Ssk, Sku, and Sdq are computed using the equations given in Sections 1.1 and 1.2.

The calculation of Sdr is done by first considering the surface heights, z(xi,j), at grid

points xi,j, xi+1,j, xi,j+1, and xi+1,j+1. Connecting these grid points forms a square in

the grid, and connecting the surface heights forms triangles, depending on the values

of the z(xi,j) used, as shown in Figure 2.6. The shape is divided into triangles of area

Aij by dividing along both diagonals, again as shown in Figure 2.6. These areas are

averaged as follows,

SAij =
(A1 + A2) + (A3 + A4)

2
. (2.8)

This procedure is repeated for all (i, j) until the surface area of each segment of the

surface is calculated. These areas are then summed over the surface, and the surface



2.1 Abraded Surfaces Simulations 21

Figure 2.6: A diagram of a sample surface segment at points xi,j, xi+1,j, xi,j+1, and
xi+1,j+1. The surface formed by connecting the heights at each point can be divided
along one diagonal into areas A1 and A2 or along the other diagonal into areas A3

and A4. These areas are used to compute the surface area of the segment as in
Equation 2.8
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area ratio, γ, is computed as

SAtot =
G∑
i=1

G∑
j=1

SAij, (2.9)

γ =
SAtot
G2

.

To create the distribution, Scott’s Rule, shown below, is used to calculate bin

widths, h [19]

h =
3.5Sq
N1/3

, (2.10)

and, consequently, the number of bins, b,

b =
Smax − Smin

h
, (2.11)

where Smax and Smin are the surface height maximum and minimum respectively.

The program then counts the number of points that fall within each bin. A sample

distribution is displayed in Figure 2.7.

All data is written to a file, as well as plotted in the GUI as shown in Figure 2.4.

Displaying the surface is accomplished by using a grayscale based on the surface

height value to denote low (black) and high (white) values. Finally, to create a cross-

sectional plot, the points, (x(i,j=G
2
, z) along the centreline of the grid are plotted.
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Figure 2.7: A sample distribution of surface heights for a surface composed of 200
scratches and a scratch distribution of 5%, 10%, 25%, 60% coarse, medium, fine, and
superfine scratches.

2.2 Corrugated Surfaces Simulations

For this project, code written by Dr. Luc Beaulieu was used in conjunction with our

abraded surfaces simulator. This was done to compare results for different surfaces

to better understand the effect of surface type on the applicability of skewness and

kurtosis. An example of the GUI for the corrugated surfaces simulation can be seen

in Figure 2.8.

Similarly to the abraded surfaces GUI, the surface resolution, G (along with a

boundary defined similarly as in the abraded surfaces code) and control parameters

are defined on the interface, however for this program, the control parameters are the

elliptic parameters a, b, c, and z0, given by the equation for an elliptical paraboloid,
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Figure 2.8: An example of the Graphical User Interface for the corrugated surfaces
simulation.

z = c

(
(x− x0)2

a2
+

(y − y0)2

b2

)
+ z0, c < 0. (2.12)

The grid size, which we will call g, is also a control parameter for these simulations.

The parameters a, and b control the curvature of the feature in the x and y directions,

c controls the vertical elongation, and zo sets the base height of the paraboloid.

Equation 2.12 is used to calculate the height of the surface features. Note that we

have defined c < 0 to ensure that all surface features are convex on the surface. In
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addition to these parameters, the statistical parameters, once computed, were written

to the GUI. The surface image and plots of the cross-section and distribution are also

visible on the interface. Options for saving the various data files are also available.

The algorithm for this program is described below

First, points (x0, y0) are defined to form a square grid to represent the centre point

of a hemispherical surface feature. The grid position indices, i and j, are declared

and set to loop from g
2

to G+ 2 ∗ border− g
2

in steps of g, where border is the length

of the border around the surface. The points (x0, y0) were allowed to fluctuate up to

a given percentage p (usually 20%) using the equation,

a = a0 + (
a0 ∗ p
100

)− 2(
a0 ∗ p
100

) ∗ Rnd , (2.13)

where a0 is the original non-randomized variable and Rnd is a random number be-

tween 0 and 1. This results in 0.8a0 < a ≤ 1.2a0 for a 20% deviation. Thus,

the locations of the centre points of the surface feature are randomized. The code

then checks all points (x, y) on the surface such that x0 − 2a ≤ x ≤ x0 + 2a and

y0 − 2a ≤ y ≤ y0 + 2a to ensure that the (x0, y0) are within the grid boundary. The

points (x, y) are then assigned a height value according to Equation 2.12.

If the points are not empty, the code computes the value of Equation 2.12, compares
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it with the value already in the array, and selects the larger value. The program then

checks to see if the point (x0, y0) is a maximum or a minimum. A maximum indicates

that the surface feature does exist around this point. This method is repeated until the

grid is filled with paraboloidic surface features. An example of an elliptical paraboloid

can be seen in Figure 2.9

Figure 2.9: An example of an elliptic paraboloid. The parameters a and b control
the curvature of the object, while c controls the vertical elongation.

Next, the program computes 10 surfaces based on the same initial conditions plus

randomness, and calculates the averages of the statistical parameters. It then repeats

this process for varying a, c, and z0, as determined by the start, end and step size fields

in the GUI (Figure 2.8). Note that, to create round surface features, the parameters,

a and b, were kept equal. Finally, the boundary is removed, the statistical parameters

are calculated, the surface image, distribution and cross-sectional plots are displayed

in the GUI, and the statistical data are written to file. An example of a corrugated

surface can be seen in Figure 2.2b and examples of the cross-sectional plot and the

distribution can be seen in Figure 2.10.



2.2 Corrugated Surfaces Simulations 27

Figure 2.10: A sample of the cross-section (top) and the surface height distribution
(bottom) outputs from the corrugated surfaces simulation.



Chapter 3

Results and Discussion

3.1 Corrugated Surfaces Results

For the corrugated surfaces simulations, we set b = a and allowed a and c to vary

from 10 to 70, and z0 to vary from 0 to 20 all in steps of 2. The previously mentioned

statistical parameters were computed for these surfaces 10 times and averaged to

account for the randomness in the parameters for each surface. The grid size, g, was

set to 8 and the resolution, G, to 256 for all surfaces. Figure 3.1 shows a comparison of

a gold surface, imaged by atomic force microscopy (AFM), and a computer generated

corrugated surface. Figure 3.1a was generated with a = 60, c = 50 and z0 = 16. The

vertical length scale is displayed in greyscale, with the highest features displayed as
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white, and the lowest features displayed as black. The size of the surface shown in

Figure 3.1b is 1000 nm ×1000 nm, with surface features ranging from 0 − 19 nm in

height. The surfaces appear visually similar to one another.

Figure 3.1: a) A computer-generated corrugated surface compared with a b) AFM
image of a gold surface.

It is first useful to examine how the shape of an elliptic paraboloid changes with

values of a and c. Figure 3.2 shows sample parabolas with various values of a and

c. Note that larger values of a lead to wider parabolas, while larger values of c lead

to narrower parabolas. It is also useful to examine how surfaces change with one

parameter, while keeping the others constant. Figure 3.3 shows surfaces for different

values of a and constant values of c and z0. All three surfaces are visually similar,

however the maximum of height from the cross-sectional plot can be observed to
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Figure 3.2: a) Parabolas with c = 10 and a ranging from a = 10 (red), a = 22
(orange), a = 34 (green), a = 46 (turquoise), a = 58 (blue), and a = 70 (violet). b)
Parabolas with a = 10 and c ranging from c = 10 (red), c = 22 (orange), c = 34
(green), c = 46 (turquoise), c = 58 (blue), and c = 70 (violet).

Figure 3.3: Examples of computer-generated corrugated surfaces with varying a,
along with a cross-sectional plot, and the surface height distribution for each surface.
Each surface has c = 10 and z0 = 0.
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Figure 3.4: Examples of computer-generated corrugated surfaces with varying c,
along with a cross-sectional plot, and the surface height distribution for each surface.
Each surface has a = 10 and z0 = 0.

decrease from 1.05 to 0.12 as a increases. This implies that as a increases, the height

of surface features tend to decrease. The a parameter controls the in-plane elongation

of each hemispherical paraboloid, so increasing a with c constant causes the feature

to flatten, resulting in lower surface height. This also causes a decrease in the range

of surface height, as shown in the cross-sectional plots, so the height of the features

will tend to cluster near similar, smaller values, thus decreasing the variance across

surface features.

Figure 3.4 shows surfaces with changing values of c and constant values of a and
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z0. As with Figure 3.3, these surfaces are not significantly visually different, however

the maximum surface height from the cross-sectional plot can be seen to increase from

10.87 to 40.06, with the range of bins in the distribution increasing accordingly. The

c parameter controls the vertical elongation of a hemispherical paraboloid, and so

increasing c with a constant causes the feature to stretch, which gives larger surface

height.

Figure 3.5: Examples of computer-generated corrugated surfaces with varying z0,
along with a cross-sectional plot, and the surface height distribution for each surface.
Each surface has a = 10 and c = 10.

Figure 3.5 shows surfaces with changing values of z0 and constant values of a and c.

As z0 increases, it is clear from the cross-sectional plot that the maximum surface
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Figure 3.6: Examples of computer-generated corrugated surfaces with a, c, and z0

all varying.

height increases from 5.97 to 10.32. Further, the variation in the surface height also

increases slightly. These differences, although significant, are much less than the

changes observed for varying c in Figure 3.4. This is because z0 affects the waviness,

whereas a and c affect the roughness (see Chapter 2 for discussion on waviness). The

c parameter, therefore, has a much greater effect on the roughness parameters than

z0. From the distribution plots, we can see a slight shift to the left as z0 increases,

as well as a widening of the peak of the distribution; this is caused by the increasing

variation in surface height, and is indicative of small changes in the skewness and
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kurtosis.

Figure 3.6 shows sample surfaces in which all parameters are changing. From the

cross-sectional plot, we see that the maximum height stays relatively constant across

the surfaces. This is due to the fact that increasing c increases the RMS roughness,

while increasing a decreases the RMS roughness, while z0 only affects the waviness.

Thus the effects largely offset, and only a slight increase in surface height is observed.

We note as well that the width of the peak of the distribution increases only slightly;

this is due to the aforementioned offsetting effect.

With these behaviours in mind, we now examine the statistical parameters. Due

to the fact that the RMS roughness has units of length, this parameter is affected

by the length scale of the surface height of the surfaces under study, which may be

arbitrary. To account for this, it is important to plot the statistical parameters against

non-dimensionalized a and c parameters. To create a non-dimensionalized a value, we

introduce the nearest neighbour distance, NND, as the average horizontal distance

between two adjacent particles on a surface, and calculate it using the following

equation,

NND =

√
N

g
(3.1)
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where N is the number of particles on the surface, and so
√
N is approximately the

number of particles along one side of the surface, and g is the grid size. A natural

choice of non-dimensionalized parameter is thus a∗ = a
NND

, which is a measure of

the horizontal size of the particles relative to the surface size. Figure 3.7a shows

a corrugated surface cross-section with no randomness, while Figure 3.7b shows a

zoom-in of the same surface. Both a and NND appear larger in Figure 3.7b, however

their ratio will be the same for both surfaces, accurately representing the fact that

these two surfaces are identical.

In Figure 3.8a, the roughness parameters are plotted against a∗. Note that curves

of different colours represent different statistical parameters, while curves using differ-

ent shaped markers represent different values of c. Neither the skewness nor kurtosis

change with a∗ at any value of c, while the remaining parameters decrease with a∗ at

all values of c. This behaviour appears exponentially decreasing for high values of c.

Similar behaviour is observed in Figure 3.8b, in which the markers represent different

values of z0, for all parameters, with the exception of the surface area ratio, which

remains largely constant for all values of a and z0. This is due to the fact that this

data was taken at c = 10, which is consistent with the c = 10 surface area ratio curve

in Figure 3.8a. Additionally, the range of a∗ for each of the 5 curves corresponding to

z0 = 0 is much smaller than for other z0 values. This is due to the fact that surfaces
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Figure 3.7: a) A periodic corrugated surface without randomness. b) A zoom-in of
a). Both a and NND are shown, and appear larger than they would in a).

with z0 = 0 have approximately the same number of particles for all a, whereas for

surfaces with other z0 values, the number of particles tends to decrease with increas-

ing a, giving a larger range of a∗ values. The similar number of particles for surfaces

with z0 = 0 can be explained by considering that the particles of such a surface will

have little height variation compared with surfaces with higher z0 values. Thus, the

tails of the elliptic paraboloids that make up the surface will have less space to spread
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Figure 3.8: a) Statistical parameters vs. a∗. Circles represent c = 10, squares
represent c = 30, triangles represent c = 50, and diamonds represent c = 70. All data
in this plot has z0 = 0. b) Statistical parameters vs a∗. Circles represent z0 = 0,
squares represent z0 = 8, triangles represent z0 = 16, and diamonds represent z0 = 20.
All data in this plot has c = 10. † Several sets of data are overlapping in this plot.

out, and will cover a smaller horizontal distance, leading to more horizontal space on

the surface for additional particles.

A similar parameter c∗ = c
NND

can be also be computed. This parameter gives a

measure of the vertical size of the particles compared to the surface size, and has no
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Figure 3.9: a) Statistical parameters vs. c∗. Circles represent a = 10, squares
represent a = 30, triangles represent a = 50, and diamonds represent a = 70. All
data in this plot has z0 = 0. b) Statistical parameters vs c∗. Circles represent z0 = 0,
squares represent z0 = 8, triangles represent z0 = 16, and diamonds represent z0 = 20.
All data in this plot has a = 10. † Several sets of data are overlapping in this plot.

dimensions. Figure 3.9a shows the RMS roughness, RMS slope, surface area ratio,

skewness and kurtosis against c∗ with different shaped markers representing different

values of a. We observe that the skewness and kurtosis remain constant for all values

of c∗, and over the range of a values, while the RMS slope, RMS roughness, and
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surface area ratio are largely constant for high values of a, but change linearly with

c∗ at low values of a. In Figure 3.9b, the different shaped markers now represent

different values of z0. Skewness and kurtosis change only slightly with respect to c∗,

at all values of z0. The RMS roughness, RMS slope, and surface area ratio increase

linearly with c∗ and are shifted to larger values for increasing z0.

Figure 3.10a shows the statistical parameters against z0, with markers representing

different values of c. We observe, again, the slight increase in RMS roughness, RMS

slope, and surface area ratio with z0, and the large increase of these parameters with

c. Skewness and kurtosis are largely constant with increasing z0 for all values of c.

In Figure 3.10b, the markers represent different values of a. At all values of a, the

skewness, kurtosis, RMS slope, and surface area ratio are constant with increasing

z0, while the RMS roughness increases with z0 at low values of a. The RMS slope is

shifted vertically upward for lower values of a.

For the purposes of surface characterization, it is useful to examine the shape of

the Sku vs. Ssk curve. Figure 3.11 shows a plot of kurtosis against skewness with

the RMS roughness represented by the colour of the plot points. From this plot, the

ranges of skewnes and kurtosis values are small, with skewness values from −0.77 to

−0.03 and kurtosis values from 2.35 to 3.36.

The plot of kurtosis vs. skewness is doubly-valued, implying that there are two po-
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Figure 3.10: a) Statistical parameters vs. z0. Circles represent c = 10, squares
represent c = 30, triangles represent c = 50, and diamonds represent c = 70. All data
in this plot has a = 10. b) Statistical parameters vs z0. Circles represent a = 10,
squares represent a = 30, triangles represent a = 50, and diamonds represent a = 60.
All data in this plot has c = 10.

tential values of kurtosis which correspond to a particular value of skewness. Further,

the RMS roughness can be significantly different for surfaces with similar skewness

and kurtosis, as evidenced by the close proximity of red and blue points, and there
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Figure 3.11: Kurtosis vs. skewness with RMS roughness represented with colour.
The RMS roughness ranges from 0.018 (blue) to 5.83 (red).

is a large overlap between many of the colours, further implying that many differ-

ent surfaces can have similar skewness and kurtosis. Due to the monotonicity of the

RMS roughness, this implies that the skewness and kurtosis cannot be related to

the roughness of the surface. This fact, combined with the lack of significant change

in skewness and kurtosis over the range of a, c, and z0 values provides evidence to

conclude that the skewness and kurtosis are insensitive to surface morphology and

are thus not applicable to surface characterization or roughness measurement of cor-

rugated surfaces.
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3.2 Abraded Surfaces Results

For abraded surfaces simulations, the number of scratches per surface was varied from

4 to 300. The scratch radius distribution was also varied, using different proportions

of coarse, medium, fine, and superfine scratches. The maximum scratch radius was

set to 6 for all simulations unless otherwise stated. Figure 3.12 shows a comparison

of a simulated abraded surface and an actual abraded surface. The simulated surface

was generated with 200 scratches, and appears similar to the image of a scratched

surface, prepared by Dr. Marko Sedlac̆ek. [10].

Figure 3.12: Left: A sample simulated abraded surface with 200 scratches. Right:
A scratched surface displayed with permission from Dr. Marko Sedlac̆ek.

Statistical parameters were calculated for sets of abraded surfaces with different

scratch radius distributions. The a) sides of Figures 3.13- 3.17 show the results of

these simulations. The shapes of the curves for each parameter are similar for different

distributions, with only minor differences. Distributions with more fine and superfine
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scratches tend to have a larger range of kurtosis and skewness, while distributions

with more coarse scratches have smaller ranges. This is due to the fact that surfaces

with smaller percent coverage of scratches have higher skewness and kurtosis, and

a superfine scratch will cover less of a portion of the surface than a coarse scratch.

Thus, surfaces composed mainly of smaller scratches will have higher skewness and

kurtosis for lower percent coverage than surfaces with larger scratches, resulting in a

larger overall range of skewness and kurtosis.

As percent coverage approaches 100%, for surfaces composed mostly of fine and

superfine scratches, the skewness and kurtosis tend towards their Gaussian values,

while for surfaces composed mostly of medium and coarse scratches, the skewness and

kurtosis begin to increase after reaching their Gaussian values. For all distributions,

the change in the RMS slope, and surface area ratio is relatively small. The RMS

roughness increases along the curve for all distributions and has a peak at Gaussian

skewness and kurtosis values; this can also be seen from the b) sides of Figures 3.13

- 3.17. Thus, the roughest abraded surfaces have Gaussian skewness and kurtosis

values.
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Figure 3.13: a) Statistical parameters for surfaces with a scratch depth distribution
of 5% coarse, 5% medium, 10% fine and 80% superfine scratches. b) Kurtosis vs.
skewness for this distribution.



3.2 Abraded Surfaces Results 45

Figure 3.14: a) Statistical parameters with a scratch depth distribution of 5%
coarse, 10% medium, 25% fine and 60% superfine scratches. b) Kurtosis vs. skewness
for this distribution.
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Figure 3.15: a) Statistical parameters with a scratch depth distribution of 10%
coarse, 20% medium, 40% fine and 30% superfine scratches. b) Kurtosis vs. skewness
for this distribution.



3.2 Abraded Surfaces Results 47

Figure 3.16: a) Statistical parameters with a scratch depth distribution of 20%
coarse, 40% medium, 30% fine and 10% superfine scratches. b) Kurtosis vs. skewness
for this distribution.
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Figure 3.17: a) Statistical parameters with a scratch depth distribution of 40%
coarse, 30% medium, 20% fine and 10% superfine scratches. b) Kurtosis vs. skewness
for this distribution.

The kurtosis vs. skewness curves are single-valued for scratch radius distributions

mainly composed of smaller scratches, however this is not the case for distributions

composed of larger scratches. For distributions with larger scratches, the kurtosis

begins to increase with skewness beyond the Gaussian skewness and kurtosis val-

ues. Figure 3.18a shows the cross-section of an abraded surface composed mainly of
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smaller scratches, and is compared with Figure 3.18b, which shows an abraded surface

composed mainly of larger scratches. It is clear that many of the scratches shown in

the plot in Figure 3.18a are small enough to extend to their lowest depth, and back

up to the z = 0 line. In contrast, the scratches in Figure 3.18b are prevented from

extending back up to z = 0 due to overlap with other scratches. This results in a

lower surface maximum of approximately z = −2 in Figure 3.18b in contrast to a

maximum of z = 0 in Figure 3.18a.

In contrast to the results from the corrugated surfaces simulations, the RMS

roughness is a simple function along the kurtosis vs. skewness curves. For surfaces

composed of mainly smaller scratches, the simple, single-valued function could be

useful in determining any of the skewness, kurtosis, or RMS roughness, given any two

of the parameters. However, due to the multi-valued nature of surfaces composed of

larger scratches, the relationship between the skewness, kurtosis, and RMS rough-

ness is more complex than for surfaces composed of smaller scratches. Thus, our

model breaks down for surfaces composed of larger scratches as the percent coverage

approaches 100%.



3.2 Abraded Surfaces Results 50

Figure 3.18: A comparison of a) a cross-section of an abraded surface composed of
200 scratches distributed with a majority of smaller scratches, and b) a cross-section
of an abraded surface composed of 200 scratches distributed with a majority of larger
scratches. Note that the maximum scratch height in a) is approximately 0, while the
maximum scratch height in b) is approximately −2.
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3.3 Discussion

From the corrugated surfaces simulations, it was observed that, for some surfaces,

the RMS roughness changed significantly, while the skewness and kurtosis remained

largely constant. The significant change in the RMS roughness for corrugated surfaces

is due to the effect of only a small number of surfaces which have the lowest a∗ values,

the highest c∗, and the highest z0 values sampled. These surfaces have the highest

RMS values of any surfaces generated in these simulations. The small a∗ values imply

that a greater number of hemispherical grains is placed on the surface, due to the low

values of a and high values of N , and the high c∗ and z0 values both vertically elongate

and raise each grain respectively. These factors have the effect of increasing the RMS

roughness to values approximately 5 times higher than the RMS roughness values

of most other surfaces in these simulations. However, these surfaces appear ordered

(as in Figure 3.4) compared to, for example, surfaces with the highest a∗ values as

well as the highest c∗ and z0 values (Figure 3.6), which have RMS roughness values

5 times smaller than for surfaces with the lowest a∗, c∗, and z0 values. This ordering

of surface features is not observed when considering surfaces prepared by thermal of

sputter deposition, as in Figure 3.1. For a surface prepared by thermal or sputter

deposition, each individual surface feature will have a different degree of horizontal
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elongation, leading to a lower surface feature density than if all features had low a

values, and so the RMS roughness may not have as large a range for these surfaces.

Thus, the RMS roughness will change significantly only for a small number of surfaces

which have the correct combination of a, c, and z0, and may not undergo significant

changes for other surfaces.

Figure 3.19: a) Statistical parameters for surfaces with a scratch depth distribution
of 5% coarse, 10% medium, 25% fine and 60% superfine scratches, with a maximum
radius of 18. Note the increase in the range of RMS roughness as compared with
Figure 3.14. b) The kurtosis vs. skewness curve for the same distribution as a), for
simulations conducted with maximum radii of 6 (red) and 18 (blue).

For the abraded surface simulations, the RMS roughness showed less significant

change than the skewness and kurtosis, which changed significantly. The small change

in RMS roughness for abraded surfaces is due to the fact that abraded surfaces are
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composed of features which do not vary significantly from one to another. A scratch

with a radius of 1.5, a superfine scratch, in a resolution of 256 occupies 0.6% of the

surface size, whereas a scratch with a radius of 6, a coarse scratch, occupies 2.3%

of the surface size, giving a range of 1.7%. If the maximum radius were increased,

however, then the scratch radius range would increase, and thus we would expect to

see an increase in the range of the RMS roughness. Figure 3.19a shows that this is

indeed the case; simulations with the same scratch radius distribution, but a larger

maximum scratch radius will increase the range of the RMS roughness. Note that,

from Figure 3.19b, the kurtosis vs. skewness curve is nearly identical to that of

Figure 3.14b. Surfaces with large, deep scratches as in Figure 3.19 appear to be a

zoomed in version of the scratch pattern shown in Figure 3.12. From Figure 3.12 and

from the literature, [10], scratches in physically realistic abraded surfaces show little

variation due to how the surfaces were abraded. Thus, the applicability of the RMS

roughness in characterizing the surface roughness is limited to surfaces composed of

many types of scratches.

Figure 3.19b shows that the skewness and kurtosis of abraded surfaces change

only slightly with scratch distribution, with surfaces composed of larger scratches

showing a slight increase in kurtosis with skewness beyond Gaussian skewness and

kurtosis values. This is also seen by plotting the kurtosis vs. skewness curves for all
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distributions sampled on the same set of axes, as in Figure 3.20. They are, however,

affected by the degree to which the surface is covered by these features.

Figure 3.20: Kurtosis vs. skewness curves for all distributions sampled. Note that
all distributions fall on a single, universal curve.

Corrugated surfaces can be thought of as always having 100% surface coverage, and

thus will always have skewness and kurtosis values near the Gaussian values. Abra-

sions on a surface, however, intrinsically leave large portions of a surface unaltered.

Unaltered surfaces have high kurtosis and low skewness, as seen most prominently

in Figure 3.13 and as the percent coverage increases toward 100%, the skewness and

kurtosis head toward their Gaussian values. This results in the large change observed

in the skewness and kurtosis for abraded surfaces over the range of percent coverage,

while, for corrugated surfaces, the skewness and kurtosis remain largely constant near
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their Gaussian values. This can be explained by considering that, at high percent

coverage, cross-sectional plots of abraded surfaces resemble inverted cross-sectional

plots of corrugated surfaces, as shown in Figure 3.21. Thus, abraded surfaces, once

completely covered in scratches, give similar roughness statistics as a corrugated sur-

face.

Figure 3.21: A comparison of a) the cross-sectional plot of a corrugated surface, and
b) the inverted cross-sectional plot of an abraded surface composed of 300 scratches.



Chapter 4

Conclusions

In this work, two programs were written to simulate two types of surfaces: corru-

gated surfaces composed of hemispherical grains, and abraded surfaces composed of

half-cylindrical scratches. Surface parameters, such as the a, c, and z0 values for cor-

rugated surfaces, and scratch radius, distribution, and surface coverage for abraded

surfaces were varied to generate a large number of surfaces of both types. Statistical

parameters including the RMS roughness, RMS slope, surface area ratio, skewness

and kurtosis were then calculated for each surface. The objective of this study was to

determine if the skewness and kurtosis could be related to the RMS roughness, and

thus the surface roughness, for the purposes of surface characterization and roughness

quantification.
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For corrugated surfaces, it was observed that the skewness and kurtosis did not

vary significantly for any of the non-dimensionalized parameters a∗ and c∗, or for

z0, while the RMS roughness increased slightly with z0 and significantly with c∗ at

the lowest values of a∗. The lack of change in the skewness and kurtosis is due to

the fact that unaltered surfaces, such as abraded surfaces with few scratches, can

have kurtosis values as high as 120 (compared with the Gaussian value of Sku = 3),

and skewness values as low as −10 (compared with the Gaussian value of Ssk = 0).

Corrugated surfaces are, by definition, completely covered by their surface features,

resulting in skewness and kurtosis values that change little, and are approximately

at their Gaussian values. The large change in the RMS roughness is a result of

surfaces with the lowest a∗ values and the highest c∗ and z0 values. The lowest a∗

values result in surfaces with many particles, each with small horizontal elongation,

while the highest c∗ and z0 values result in the highest and tallest surface features.

This combination results in large RMS roughness values of approximately 5, which

contrasts with other surfaces, which tend to have RMS roughness values up to 5 times

smaller. The RMS slope and surface area ratio tend to follow the same behaviour

as the RMS roughness as expected. In addition to having small ranges, a plot of

kurtosis vs. skewness shows that there are two kurtosis values which correspond to

a single skewness value. Further, the RMS roughness changes monotonically along
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the plot, resulting in surfaces with the same skewness and kurtosis having entirely

different values of RMS roughness. This indicates that the RMS roughness, skewness,

and kurtosis cannot be related, which implies that the skewness and kurtosis are not

applicable to surface characterization of corrugated surfaces.

For abraded surfaces, it was observed that the skewness and kurtosis did change

significantly with percent surface coverage. Surfaces created from distributions com-

posed mainly of larger scratches were found to have smaller ranges of skewness

and kurtosis than surfaces created from distributions composed mainly of smaller

scratches. Neither the skewness nor the kurtosis changed significantly with a changing

range of scratch depths. For surfaces composed of mainly smaller scratches, the skew-

ness and kurtosis approached their Gaussian values as the surface coverage increased

to 100%. For surfaces composed of mainly larger scratches, the kurtosis began to in-

crease with skewness beyond their Gaussian values. In contrast, corrugated surfaces,

which can be thought of as being constantly at 100% coverage, always remain near

their Gaussian values. This could be due to the fact that, as the percent coverage of

an abraded surface increases to 100%, the surface begins to resemble an inverted cor-

rugated surface, resulting in the roughness parameters for both being approximately

equal. Changing the distribution of scratch radii affected the range of the skewness

and kurtosis, but not the shape of the kurtosis vs. percent coverage and skewness vs.
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percent coverage curves themselves. In fact, when kurtosis vs. skewness is plotted for

all distributions, and overlayed on top of one another, all curves fall along a single,

universal curve. This implies that the RMS roughness, skewness, and kurtosis are,

in fact, related, and are entirely determined by the degree of surface coverage by the

scratches, with the roughest surfaces occuring for Gaussian skewness and kurtosis

values, at approximately 70% coverage. This relationship implies that it is possible

to use the skewness and kurtosis, in conjunction with the RMS roughness, for sur-

face characterization and roughness measurement. The RMS roughness, RMS slope,

and surface area ratio did not change significantly with surface coverage, however

the range of RMS roughness values did increase with increasing scratch radius range.

Surfaces generated with a high maximum scratch radius showed a large increase in the

range of RMS roughness values, while leaving the skewness and kurtosis unaffected.

This is due to the fact that, for low maximum scratch radii, the range of radius is

small compared to the size of the surface, resulting in only small variation between

different scratches on a surface, and smaller RMS roughness values. Increasing this

maximum radius allows for more variation, resulting in larger RMS roughness values,

while maintaining the relation between skewness, kurtosis, and percent coverage.
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4.1 Future Work

Although this is a terminal project for our group, some future work is possible. Exper-

imental verification, by creating corrugated and abraded surfaces and measuring the

roughness parameters studied in this work, could be performed. This work can also

be expanded to include different surface types, such as porous surfaces, to determine

the relationships between skewness and kurtosis and the surface roughness.
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