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ABSTRACT 

The objective of this translational research project was to develop, optimize and 

validate a diagnostic panel of the 20 pathogenic variants in the ABCA4 gene 

previously identified to cause Stargardt disease in the population of Newfoundland 

and Labrador (NL). Two different laboratory developed test (LDT) panels (1x20-

plex & 2x20-plex) were designed and genotyping was performed on the 

Sequenom MassARRAY 4 system using genomic DNA from both Stargardt 

patients and population controls. A set of minimum criteria was established to 

accurately determine genotyping calls; 1x20-plex LDT panel was selected based 

on quality metrics. Assessment of the validation cohort including 78 previously 

tested genomic DNA samples, blind to the investigator, resulted in establishing 

analytical sensitivity (100%), specificity (100%), accuracy (100%), and 

reproducibility (100%). A total of 1039 control samples were assessed using the 

1x20-plex LDT panel and the minor allele frequencies of 0% - 0.76% for NL, and 

0% - 0.60% for non-NL samples were determined. 
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  Chapter 1 

1.0 –  INTRODUCTION 

1.1 –  EYE, STARGARDT DISEASE AND GENETICS 

1.1.1 – Structure of the Retina 

The eye is comprised of many different layers and specialized cell types. One of 

the most important sensory layers responsible for vision at the back of the eye is 

the retina (Figure 1.1). The major types of neural cells in the sensory layer of the 

retina are photoreceptors, bipolar cells, horizontal cells, amacrine cells and 

ganglion cells (including Mueller cells). Just outside the neurosensory retina 

there is a layer of pigmented cells known as the retinal-pigmented epithelium 

(RPE). These cells posterior to the photoreceptors provide several supportive 

functions for neural cells in the sensory layer of the retina. These supportive 

functions are: 1) phagocytosis of photoreceptor outer segments; 2) providing 

nutritive support in the form of various growth factors for photoreceptors; 3) 

synthesis of inter-photoreceptor matrix; 4) providing a selectively permeable 

barrier between the neurosensory retina and its posterior layers; 5) renewal of an 

integral part of the visual cycle; and 6) absorption and reduction of light within the 

eye (Sundaram 2014, Yu et al. 2010) (Figure 1.1).  

Photoreceptors, comprised of rods and cones, are highly differentiated 

cells with regards to their structure and function. Cone photoreceptors function 

only in bright light, and are responsible for color vision and best visual acuity 

(Figure 1.2A). In contrast, rod photoreceptors are highly light sensitive, and 
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function in dim light conditions and also provide peripheral vision (Figure 1.2B). 

There are an estimated 60-125 million rods and 3.2-6.5 million cones cells that 

are unevenly distributed in the retina (Nentwich, Rudolph 2013). The macula is a 

region in the retina, which has the highest concentration of cone photoreceptors. 

Within the macula there is a densely packed cone region, providing high visual 

acuity, called the fovea. Rods are absent in the fovea region, but their numbers 

start to increase toward the peripheral retina (Nentwich, Rudolph 2013, 

Sundaram 2014, Yu et al. 2010). 

 

Figure 1.1. A schematic picture of the eye with different layers and an enlarged segment 
of the retina. Adapted from a website (http://webvision.med.utah.edu/book/part-i-
foundations/simple-anatomy-of-the-retina/)); used under a creative commons attribution 
license. 

http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
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Figure 1.2. A) A schematic picture of cone and rod photoreceptors. Adapted from: 
(http://dmm.biologists.org/content/8/2/109); used under a creative commons attribution 
license. B) Magnified view of the outer segments of photoreceptors showing the disc 
rims and distribution of the ABCA4 channels (Molday, Zhang 2010); adapted by 
permission. C) Normal ABCA4 protein compared with defective ABCA4 (Maeda et al. 
2011); adapted by permission. 

1.1.2 – The visual cycle 

Each photoreceptor consists of an outer segment, connecting cilium, inner 

segments, nuclear region and a synaptic region (Figure 1.2). Photoreceptor 

outer segments detect light and convert it into electrical signals where the signal 

passes through the inner segment and transmits to the secondary retinal neurons 

by the synapsis region. The phototransduction process depends on utilizing the 

unique properties of 11-cis retinal, a photosensitive derivative of vitamin A, which 

is covalently bound to an opsin signalling protein to form a visual pigment 

molecule. When a photon of light reaches rhodopsin (in the outer segment of 

photoreceptors), 11-cis retinal is isomerized to all-trans retinal and causes a 
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conformational change. All-trans retinal is reduced to all-trans retinol once it is 

released from rhodopsin due to photoexcitation. This molecule is transferred to 

the RPE cells and converted to retinyl esters before being isomerized to make 

all-trans retinol and oxidized to all-trans retinal and finally shuttled back to 

photoreceptors to finish the visual cycle (Figure 1.3). However, rhodopsin also 

releases a substantial fraction of all-trans retinal which reacts with 

phosphatidylethanolamine acid (PE) to form the Schiff base adduct N-

retinylidene-Phosphatidylethanolamine (N-ret-PE) (Molday, Moritz 2015, Yu et al. 

2010). 
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Figure 1.3. A schematic picture of light absorption by the retina, and the visual cycle. 
Adapted from: 
(http://www.d.umn.edu/~jfitzake/Lectures/DMED/Vision/Retina/VisualCycle.html), 
(http://www.mdpi.com/2072-6643/5/7/2646/htm) ); used under a creative commons 
attribution license.. 

  

1.1.3 – Retinal degeneration disorders 

Retinal degeneration (RD) disorders are one of the major causes of blindness 

(Molday, Zhang 2010). Classification of RD disorders is based on phenotypic 

http://www.d.umn.edu/~jfitzake/Lectures/DMED/Vision/Retina/VisualCycle.html
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characteristics of the disease and the affected specialized cells. For example, 

retinitis pigmentosa (RP) and macular dystrophy (MD) disorders (two of the major 

categories in RD disease) affect photoreceptor cells (Rivolta et al. 2002). The 

main phenotypic characteristics of RP include night blindness and progressive 

peripheral vision loss, which eventually may lead to central vision loss and total 

blindness (Rivolta et al. 2002). This is due to the fact that RP mostly affects rod 

photoreceptors, and as mentioned earlier, rods are responsible for night and 

peripheral vision. In contrast to RP, MDs are characterized by central vision loss 

and usually by preservation of peripheral vision. As the name of the disease 

reveals, this type of disorder mostly affects the macula region of the eye with 

high concentration of cone photoreceptors (Rattner, Nathans 2006). MDs are 

further divided into juvenile and age-related macular disorders with similar clinical 

features (Quellec et al. 2011). Early onset or juvenile MD is a hereditary form 

caused by disruptions in visual cycle pathway proteins or deficiencies in eye 

structural proteins due to various pathogenic variants in related genes encoding 

these important proteins (Molday, Zhang 2010). The juvenile hereditary MD is 

further subdivided to other diseases, the most common of which are Stargardt 

disease (MIM # 601691) and Best disease (MIM # 153700. Age-related macular 

dystrophy (AMD), however, occurs at later ages. AMD is described as a complex 

disorder with both genetics and environmental factors playing a role in causing 

the disease (Montezuma, Sobrin & Seddon 2007, Jager, Mieler & Miller 2008). 
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1.1.4 – Stargardt disease 

Among all hereditary juvenile MDs, Stargardt disease (STGD) is the most 

common and accounts for almost 7% of all retinal diseases (Heathfield et al. 

2013). In 1909, Karl Stargardt, a 34-year-old German ophthalmologist, was the 

first person who comprehensively defined the nature and clinical features of 

STGD. He identified seven affected individuals from two families with the disease 

(Fishman 2010, Allikmets et al. 1997, Stargardt 1909); and described STGD as a 

bilateral progressive atrophic MD characterized by perimacular and peripheral 

yellowish flecks (Nentwich, Rudolph 2013, Haji Abdollahi, Hirose 2013). He 

concluded that STGD is a genetic, neuroepithelial disease that affects cone 

photoreceptors initially and RPE cells and choroid layer, subsequently (Fishman 

2010). STGD is subdivided into autosomal recessive Stargardt (STGD1; MIM# 

248200), caused by homozygous or compound heterozygous mutations in the 

Adenosine triphosphate (ATP) binding cassette transporter (ABCA4; MIM 

#601691) gene (Valverde et al. 2006, Allikmets et al. 1997); and Stargardt-like 

diseases (STGD3; MIM #600110 and STGD4; MIM# 603786), which are 

phenotypically similar but inherited in an autosomal dominant manner, and 

caused by mutations in the ELOVL4 ( MIM #605512) (Zhang et al. 2001) and 

PROM1 ( MIM #604365) (Miraglia et al. 1997)  genes, respectively (Molday, 

Zhang 2010, Nentwich, Rudolph 2013, Miraglia et al. 1997).  
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1.1.5 – STGD1 

Autosomal recessive STGD1 (MIM #248200), which is the focus of this thesis, is 

the most common form of the disease (Sohrab et al. 2010). It has a prevalence of 

1 in 8,000-10,000 individuals in the United States (Haji Abdollahi, Hirose 2013) 

and a carrier frequency that is 1/20 or possibly higher (Burke, Tsang 2011, 

Molday, Zhang 2010). The clinical symptoms start in the first two decades of life; 

however, in some individuals’ symptoms appear later in life. As expected in all 

MD disorders, the symptoms include progressive loss of central vision, while the 

peripheral visual field remains unaffected (Fishman et al. 1987). Some patients 

may also have photophobia and color vision loss (Aguirre-Lamban et al. 2009, 

Fishman, Farbman & Alexander 1991, Mantyjarvi, Tuppurainen 1992). The 

hallmark of the disease is the presence of yellow flecks surrounding the macula 

area (Birnbach et al. 1994). However, according to the literature these flecks may 

not appear in all STGD1 patients (Fishman, Sokol 2001).  

1.1.6 –  Fundus Flavimaculatus 

A retinal disease called Fundus Flavimaculatus is a variant of STGD1 (Anderson 

et al. 1995) described by Franceschetti in the 1960's (CARR 1965). It is 

characterized by appearance of fundus flecks with no evidence of atrophy in 

macular lesions. Affected individuals with Fundus Flavimaculatus may also 

appear with flecks outside of macular region (Haji Abdollahi, Hirose 2013, Noble, 

Carr 1979). This condition has the same pattern of inheritance as STGD1 and is 

also caused by mutations in the ABCA4 gene (Noble, Carr 1979). Compared with 
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STGD1, it generally affects older people and represents a milder form of the 

disease (Weleber 1994, Westerfeld, Mukai 2008). However, it is important to 

know that a person who is diagnosed with Fundus Flavimaculatus might be in the 

earliest stages of classic STGD1, and typical STGD1 appearance might present 

as the disease progresses (Armstrong et al. 1998, Westerfeld, Mukai 2008).  

1.1.7 – The ABCA4 gene and ABC transporters 

Mutations in the ABCA4 gene, previously called the ABCR gene, are known to 

cause STGD1. The ABCA4 gene is a 150kb gene located on the short arm of 

chromosome 1 (1p22.1), which consists of 50 exons that can vary in size from 

33bp to 266bp and produces a transcript of 7309bp (Aguirre-Lamban et al. 2009, 

Kaplan et al. 1993, Oldani et al. 2012). ATP-binding cassette (ABC) transporters 

are a large family of ATP binding transmembrane proteins, divided to seven 

subfamilies, responsible for transporting a variety of compounds across the cell 

membrane (Dean, Annilo 2005). ABCA1 (MIM #600046) (Luciani et al. 1994), 

ABCA3 (MIM #601615) (Klugbauer, Hofmann 1996), ABCA4 (MIM #601691) 

(Allikmets et al. 1997) and ABCA12 (MIM #607800) (Annilo et al. 2002) are 

associated with inherited diseases with deficiencies in transporting lipids 

(Kaminski, Piehler & Wenzel 2006). The presence of these transporters in all 

living organisms, including plants, animals and micro-organisms, is evidence for 

their important function. Research indicates that mutations causing deficiencies 

in the majority of the seven subfamilies of ABC transporters in the human 

genome are linked to severe genetic disorders. For example, mutations in the 
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ABCC7 (Cystic fibrosis transmembrane conductance regulator; MIM #602421) 

gene cause cystic fibrosis (MIM #219700) (Riordan et al. 1989). Mutations in the 

ABCB11 (Bile Salt Export Pump; MIM #603201) gene cause liver disease 

(Jansen et al. 1999). Defects in the ABCD1 (adrenoleukodystrophy; MIM 

#300371) gene cause adrenoleukoystrophy (MIM #300100) (Borst, Elferink 2002, 

Mosser et al. 1993). Allikmets and coworkers discovered the ABCA4 gene in 

1997 when they were studying families with STGD1 (Allikmets et al. 1997). The 

ABCA4 gene is the only currently recognized gene associated with STGD1.. 

Despite the expression of the ABCA4 gene in many tissues of the human body, 

the only highly detectable expression of this protein is located in the retina 

(Allikmets et al. 1997). Within the retina, the ABCA4 gene has been localized to 

the photoreceptor’s outer segment. Using immunofluorescent labeling and 

subcellular fractionation, ABCA4 was localized to the outer layer of membrane 

protein of light sensitive photoreceptors next to the RPE (Sun, Nathans 1997, 

Papermaster, Reilly & Schneider 1982). 

 

1.1.8 – Variants in ABCA4 and genotype-phenotype correlations 

In the outer segment of photoreceptors, an organized disc-like membrane exists 

(Figure 1.2B). The rim region of rod and cone outer segments is where ABCA4 

membrane proteins are responsible for transporting all-trans retinal out of the cell 

(Klien, Krill 1967). When pathogenic variants occur in the ABCA4 gene, there is 

an accumulation of all-trans retinal and its derivatives (i.e., N-retinylidene-N-
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retinylethanolamine or A2E) due to dysfunctional ABCA4 transporter protein 

(Figure 1.2C). This accumulation has a toxic effect on photoreceptors and RPE 

cells (Dorey et al. 1989). The derivatives appear as lipofusion vesicles scattered 

within the inner half of the pigment epithelial cell. This is a histopathology 

characteristic of STGD1 (Klien, Krill 1967, Birnbach et al. 1994). 

Although pathogenic variants located in the ABCA4 gene were initially found in 

STGD1 patients, other retinal dystrophies may result from pathogenic variants 

located in the same gene. These retinal degenerations include cone dystrophy 

(CD), cone-rod dystrophy (CRD) and RP (Cremers et al. 1998, Maugeri et al. 

2000, Shroyer et al. 2001). Genotype-phenotype correlations were proposed by 

Maugeri et al. for pathogenic variants located in the ABCA4 gene. This model 

proposes an inverse relationship between the residual activity of the ABCA4 

gene and severity of retinal diseases. It classifies the ABCA4 pathogenic variants 

into three (3) groups of severe (null), moderate and mild. Based on this 

classification, the most severe phenotype is RP, which results from two null 

pathogenic variants. The moderate phenotype is CRD, which has partly retained 

protein activity and is caused by moderate and severe pathogenic variants. 

Finally, STGD is the result of a combination of mild and severe pathogenic 

variants or two moderate variants (Haji Abdollahi, Hirose 2013, Maugeri et al. 

2000). 

Regardless of other retinal degenerations caused by mutations in ABCA4, 

even Stargardt presents with various clinical symptoms and rate of progression 
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(Lambertus et al. 2015). A classification of the disease was proposed by Nobel 

and Carr, which is based on fundus appearance at the time of disease 

presentation: 1) MD without flecks; 2) MD with perifoveal flecks; 3) MD with 

diffuse flecks; and 4) diffuse flecks without a MD (Noble, Carr 1979). This 

classification may not be ideal, since the disease manifestation differs as it 

progresses (Haji Abdollahi, Hirose 2013). In the early stages of the disease when 

the flecks are not present, or in cases such as Fundus Flavimaculatus that flecks 

appear outside of the macula region of the eye, the diagnosis of STGD1 might be 

difficult; hence, in these situations visiting a retina specialist is necessary for 

patients (Haji Abdollahi, Hirose 2013). 

1.1.9 – Clinical examinations and diagnostic tools 

Given that clinical phenotype can be variable in patients with ABCA4 pathogenic 

variants, based on the variant type and stage of disease, ophthalmologists and 

retina specialists use different examination methods to diagnosis the disease and 

determine the disease progression. One of the first useful markers to check for 

progression of disease is the visual acuity follow-up (Burke, Tsang 2011). The 

progression rate of the STGD1 can be predicted based on the age they were first 

diagnosed with the disease. Usually, patients who present with symptoms after 

20 years of age are more likely to maintain a better visual acuity compared with 

those presenting with symptoms before 20 years of age (Lambertus et al. 2015, 

Burke, Tsang 2011).  
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Fundus photography is the most common retinal screening application for 

investigation of retinal disorders such as STGD1 (Abràmoff, Garvin & Sonka 

2010). Fundus pictures provide images of the retina that document most 

abnormalities in the retina such as presence of flecks. Due to the relatively low 

cost, safety and user friendliness of the cameras in imaging the retina, Fundus 

pictures are one of primary methods used to investigate STGD1 (Abràmoff, 

Garvin & Sonka 2010, Burke, Tsang 2011).  

Visual field measurement is another useful method in demonstrating 

defects of central visual field in patients with STGD1 (Burke, Tsang 2011). 

Defects in central vision can be detected at early stages of STGD1 and defects in 

peripheral vision can be detected as disease progresses and starts to affect rod 

photoreceptors. Table 1.1 lists methods used to investigate STGD1 after visual 

acuity, Fundus photos and visual field testing. These methods are listed in the 

table base on their efficiency. Other diagnostic modalities such as Optical 

Coherence Tomography (OCT), Indocyanine green angiography (ICGA), 

electrooculogram (EOG) are also listed in the literature (Burke, Tsang 2011). 
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Table 1.1. The most common methods used to investigate STGD1 

Methods 
name 

Abbreviation Description Efficiency/practicality 

Fluorescein 
Angiography 

FA 

Imaging that demonstrates RPE 
atrophy or advanced choroidal 
degeneration. When subretinal 

lipofuscin blocks the blue light from 
reaching to choroid, a “Dark choroid” 

appears which can be a 
characteristic of STGD. 

A useful and commonly used 
method to diagnose patients with 

STGD1(Abràmoff, Garvin & 
Sonka 2010, Burke, Tsang 2011, 
Fishman et al. 1987). The only 

downfall to this method is that the 
light can be a progression 
cofactor, also cannot be 

performed in young children. 

Fundus 
Autofluoresc

ence 
FAF 

Visualize the build-up and 
distribution of lipofuscin in the RPE. 

This assessment can help to 
evaluate the disease stages and 

monitor the progression of disease 
by showing the increase in 

accumulation of lipofuscin over time 
(Boon et al. 2008). 

A common and useful method to 
diagnose patients with STGD1. 

Electroretino
gram/Full-

Field 
Electroretino

gram 

ERG/ FF ERG 

Record of the photoreceptors 
performance. In STGD1 (FF ERG) is 
frequently normal until late stages of 

the disease. Abnormal FF ERG is 
reported in more advanced stages of 

the disease.  

This method is not usually altered 
at young ages and may never be 
altered in some patients(Lois et 

al. 2001). 
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1.1.10 – STGD1 pathogenic variants 

Currently, approximately 1,000 disease causing pathogenic variants have been 

identified in the ABCA4 gene, although this is increasing (Sangermano et al. 

2016). The most frequent of these variants contribute to STGD1 in ~10% of 

cases (Burke, Tsang 2011, Sangermano et al. 2016, Burke et al. 2012). Most 

STGD1 causing pathogenic variants in the ABCA4 gene are “ethnic-group-

specific”, meaning that the pathogenic variants most frequent in a specific 

geographic area but less frequent in a different population (Zernant et al. 2014b, 

Burke, Tsang 2011). Some of the known ethnic group specific pathogenic variant 

are: 1) the c.2588G>C (p.[G863A; G863del]) founder pathogenic variant in 

Northern European patients (Maugeri et al. 1999); 2) the c.[1622T>C; 3113C>T] 

(p.[L541P; A1038V]) complex allele in patients of mostly German origin (Maugeri 

et al. 2000); 3) the c.3386G>T (p.R1129L) founder pathogenic variant in Spain 

(Valverde et al. 2006); 4) the c.2894A>G (p.N965S) variant in the Danish 

population (Rosenberg et al. 2007); and 5) the c.5318 (p.A1773V) variant in 

Mexico (Chacon-Camacho et al. 2013). 

1.1.11 – Phenotypic variations in STGD1 

Diagnosis of STGD1 with standard and typical clinical symptoms such as 

appearance of fundus flecks and progression rate of visual loss can be easy for 

retina specialists. However, STGD1 cases may present with variable progression 

rate, and even variability in fleck sizes, numbers and appearance, which makes 

the diagnosis much more difficult (Haji Abdollahi, Hirose 2013). This variability in 
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manifestation of the disease can be due to different parameters, the most 

important of which are the different pathogenic variants (i.e., ~1,000) in the 

ABCA4 gene of an affected individual and the stage of disease at the time of 

diagnosis (Itabashi et al. 1993). This variability could be also due to interaction of 

other genes or the possibility of environmental modifiers (including light 

exposure, smoking, and diet) for STGD1 patients (Ryan et al. 2013).  

1.1.12 – Animal models and potential therapy 

Despite the ongoing research in various fields including genetics, disease 

mechanism, gene therapy and cell replacement, there is currently no available 

treatment for STGD1 patients (Haji Abdollahi, Hirose 2013). However, advances 

in therapeutic applications for ABCA4-associated pathology may show promising 

results for STGD1 treatment in the near future (Auricchio, Trapani & Allikmets 

2015). Genetically engineered mice that lack the ABCA4 gene exhibit many 

features similar to STGD1 patients, even though mice lack a macula. These 

symptoms include delayed dark adaptation in ERG, increased all trans-

retinaldehyde in light exposure and accumulation of A2E in the RPE. Yellow-

white flecks and atrophy are also present in fundus of older ABCA4-/- mice 

(Weng et al. 1999). Research showed that less exposure to the light or treatment 

with isotretinoin (a medicine to treat severe acne) might be beneficial for these 

mice (Radu et al. 2003); however, long-term isotretinoin usage might be harmful 

(Han, Conley & Naash 2014). Finally, in order to decrease the potential formation 

of bisretinoids (i.e., N-retinylidene-N-retinylethanolamine or A2E) in the retina, it 
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is recommended to avoid high-dose of vitamin A supplements for STGD1 

patients (Haji Abdollahi, Hirose 2013). 

Current success of viral-mediated gene delivery has made gene 

replacement a reasonable option to treat STGD1 patients, however, the size of 

the ABCA4 complementary deoxyribonucleic acid (cDNA) is 6.8kb, which is too 

large to be delivered by an adeno-associated virus (AAV) (Han, Conley & Naash 

2014, Trapani et al. 2014). To overcome this issue, research groups successfully 

exploited the ability of AAV genomes to concatemerize (i.e., packaging of a long 

continuous DNA molecules with the similar series of the sequences of DNA) via 

intermolecular recombination, and used dual AVV vectors to transfer the large 

ABCA4 cDNA. Although using dual AVV vectors showed improvement in 

phenotype of STGD mouse and pig models, it resulted in expressing lower levels 

of transgene compared with a single AAV or truncated proteins (Trapani et al. 

2014, Colella et al. 2014). Due to larger carrying capacity compared with AAV, 

Lentiviruses were successful in delivering the gene, but the progress of this 

method to treat STGD1 has been slowed due to random integration of the gene 

throughout the genome (Thomas, Ehrhardt & Kay 2003). Non-viral DNA 

nanoparticles (NPs) have been shown to be an effective gene delivery method 

for ABCA4-deficient mice, which recovered anatomically and functionally, and 

showed reduced lipofuscin granules and significant correction in dark adaption by 

ERG (Han et al. 2012). Although further studies are necessary to determine the 

efficiency of NP in improving the phenotypic characteristics and immune 
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responses of STGD1 mice, currently this approach has proved to have the least 

systemic toxicity (Han, Conley & Naash 2014). 

Cell therapy using human embryonic stem cells derived from RPE to 

transplant sub-retinally is another potential approach to cure STGD1 (Schwartz 

et al. 2012). The first attempt to do this type of therapy, as a 4-year assessment, 

was successful (Schwartz et al. 2016). This research demonstrated more than 

half of treated patients had improvement in visual acuity. Also, no adverse cell 

therapy related events such as tumorogenicity, hyperproliferation, or ectopic 

tissue formation or rejection were reported in the cases with STGD. Although the 

rate of success in this study has opened a new door to advance therapies for 

macular degeneration disorders, further research in this field is essential due to 

the lack of a large sample cohort, long follow-up duration, formal control group, 

plus poor initial visual acuity of patients in this study (Schwartz et al. 2016). 

Another option to treat STGD1 with medicines such as dobesilate and 

angiotensin-converting-enzyme (ACE) inhibitor treatment has been performed by 

small research groups. Dobesilate is a synthetic fibroblast growth factor inhibitor 

that was injected intravitreously and resulted in some improvement in the visual 

acuity of a STGD1 patient after four weeks (Cuevas et al. 2012). Improvement in 

visual acuity in a group of patients treated with the ACE inhibitor (Ramipril 2%) 

was reported by another research group after a three-month period follow-up 

(Rekik, Charfeddine 2012). 



19 
 

1.2 –  NEWFOUNDLAND AND LABRADOR POPULATION AND STARGARDT 

DISEASE 

1.2.1 – History of Newfoundland and Labrador 

The population of Newfoundland and Labrador (NL) located on the eastern part 

of Canada is evidenced to be genetically isolated. In 1497, John Cabot 

discovered Newfoundland. In 1610, the first seasonal colonies of English 

fishermen became established (Mannion 1977) in the current Conception Bay 

area (Handcock 2000). In the late 1700s and early 1800s, Protestant settlers 

from the south-west of England and Roman Catholic settlers from the south of 

Ireland comprised the main population of immigrants. Natural expansion then 

resulted in population growth, but still 98% of the NL population are of English or 

Irish decent (Mannion 1977). Several studies showed the persistent geographic 

isolation and homogeneity in isolated areas in NL using the data from three 

representative outport communities (Bear et al. 1988). Although genetic isolation 

has been confirmed some heterogeneity has been identified in the overall 

population (Martin et al. 2000). Genetic consequences of such a small and 

isolated population of Newfoundland settlers are genetic drift, founder effect and 

inbreeding (Pope et al. 2011).  

1.2.2 – Genetic drift, founder effect and the NL population 

The process of random alteration in allele frequency over generations is genetic 

drift. Bottleneck and founder effect are two of the most common consequences of 

genetic drift. Bottleneck occurs when there is a sudden reduction in the 

population size, which decreases allelic heterogeneity. The newly generated 
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population is left with fewer allelic variations creating a founder population 

(ArcosBurgos, Muenke 2002). The founder population of NL was created by a 

bottleneck effect due to immigration of English and Irish settlers, resulting in 

genetic drift and subsequently lower genetic heterogeneity. Therefore, a lower or 

higher prevalence of some disorders might occure. Examples of higher 

prevalence for monogenic disorders is Bardet-Biedel syndrome (i.e., 1/17,500 in 

NL compared with 1/160,000 in more admixed Caucasian populations of northern 

European ancestry) (Green et al. 1989, Karvonen et al. 2000), likewise some 

complex diseases such as juvenile type 1 diabetes mellitus have increased 

incidence in NL (Rahman et al. 2003). Also, founder pathogenic variants 

identified to increase risk of developing diseases such as cancer (e.g., the exon 8 

deletion and an intron 5 splice site mutation (c.942+3A>T) in MSH2 for colorectal 

cancer) can be one of the major reasons of having a higher incidence rate for 

colorectal cancer in NL (Woods et al. 2005). It is worth noting that inbreeding 

(i.e., the tendency of mating with distance relatives or within the community and 

avoiding others) in NL has been shown to have a higher average value 

compared to other larger and isolated areas (Bear et al. 1988). 

 

1.2.3 – Hereditary eye diseases in NL 

It has been established that NL has a genetically unique structure, large family 

pedigrees and available clinical information have created an ideal population to 

study various monogenic diseases including hereditary eye disease (Green, Bear 
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& Johnson 1986, Doucette et al. 2013). The hereditary eye diseases (caused by 

mutations in a single-gene) accounted for 33% of all individuals registered blind 

in 1983, which was previously statistically underestimated in the records from the 

Canadian National Institute for the Blind (Green, Johnson 1983). Among all 

single-gene diseases, the frequency of specific recessive disorders was higher 

due to inbreeding and a founder effect in the NL population (Green, Bear & 

Johnson 1986). 

1.3 –  MOLECULAR DETECTION OF STGD1 

Clinically, among all currently available genotyping technologies, Sanger 

sequencing and microarray chips are two of the commonly used methods to 

genotype individuals with clinical features of STGD1 (Burke, Tsang 2011, 

Aguirre-Lamban et al. 2009, Zernant et al. 2014a). Utilization of these two 

techniques in the clinical setting aids in the detection of pathogenic variants in 

affected individuals or reveals the genotyping status of carriers and unaffected 

persons. 

1.3.1 – Sequencing technology 

Determining the order of nucleotides or decoding the chemical building 

blocks (i.e., bases) of the deoxyribonucleic acid (DNA) molecules is called DNA 

sequencing. Identification of genetic variation may result in detecting the cause of 

the various diseases. DNA sequencing can be performed using various 

techniques, the most common of which was Sanger sequencing. Sanger 

sequencing is based on incorporation and detection of a fluorescent labeled 
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terminal nucleotide in the DNA amplified by polymerase chain reaction (PCR) 

(Sanger, Nicklen & Coulson 1977). Thus, with this method a particular part of the 

genome is amplified and then sequenced.  

After the Human Genome project was completed in 2003, technical 

improvement and automation with the aim of higher speed and lower cost was 

achieved. The development of next-generation sequencing (NGS) technologies 

with the ability to generate a sequence of the whole-genome or whole-exome 

had a major impact on DNA sequencing approaches (de Magalhaes, Finch & 

Janssens 2010). NGS can be more targeted utilizing approaches such as whole-

exome sequencing which targets protein-coding regions of the human genome. 

Utilization of whole-genome/exome sequencing has resulted in identifying new 

variations in the human genome at higher resolution and greater sensitivity than 

previously possible (Mardis 2008).  

1.3.2 –  Genotyping using microarray technology 

Microarray is a tool to detect particular variants in different segments of DNA. 

Microarray is a chip-based technology, which requires DNA fragments to be 

labeled (for example by fluorescent dye). Comparative genomic hybridization 

(CGH) and single nucleotide polymorphism (SNP) array are two important 

applications to microarray technology. The microarray application used to detect 

ABCA4 disease associated pathogenic variants is called the ABCR400 chip. In 

this microarray application, SNP array genotyping is coupled with array primer 

extension (APEX) technology to detect the pathogenic variants causing STGD1 
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in the ABCA4 gene (Jaakson et al. 2003). Although both techniques are based 

on fluorescent dyes, unlike Sanger sequencing, which genotypes the amplified 

segment of DNA, microarray probes target specific genetic mutation. Due to the 

low cost compared with Sanger sequencing, microarray is still used as a clinical 

test for Stargardt disease. 

According to Burke and Tsang, microarray is a common method to detect 

many variants in the ABCA4 gene that are known as disease causing. The 

microarray chip is being updated as new variants have been added to the 

pathogenic list. Based on the Burke and Tsang study, this genotyping method is 

reported to detect ~65% to 75% of all disease-associated alleles in Stargardt 

patients, ~30% to 65% of all alleles causing autosomal recessive CRD and finally 

~16% of disease associated alleles in autosomal recessive RP patients (Burke, 

Tsang 2011). However, in a study by Aguirre-lamban et al., the ABCR400 

microarray yielded a variant detection rate of 43.5% for STGD1 patients, 4.8% for 

arCRD patients and 4.8% for arRP patients (Aguirre-Lamban et al. 2009). In this 

study, authors also reported 1.6% of false positives and 1.6% of false negatives 

for the ABCR400 microarray. Thus, they attempted to combine the microarray 

with other high-throughput approaches such as denaturing high-performance 

liquid chromatography (dHPLC) scanning to achieve a higher mutation detection 

rate. Using microarray and dHPLC in that study increased the detection 

frequency of mutated allele to 64.8% for STGD1 patients and 6.4% for autosomal 

recessive CD patients, but no changes were seen for autosomal recessive RP 



24 
 

detection rate (Aguirre-Lamban et al. 2009). The efficiency of direct Sanger 

sequencing of coding regions and intronic-exonic boundaries is estimated to be 

80% for STGD1 patients (Zernant et al. 2014b).  In general, around 25% to 30% 

of patients were found with just one pathogenic variant, and approximately 15% 

of them remain without any identified pathogenic variant even after complete 

sequencing of the ABCA4 gene. Three possible reasons for not finding any 

pathogenic mutations included: 1) the disease-causing variant is located in a 

non-coding region of ABCA4 gene; 2) phenocopies (i.e., similar phenotype but 

not same underlying genetic etiology); 3) Locus Heterogeneity; and 4) the lack of 

testing for copy number variants (CNVs) which were shown to be rare (~1% of all 

patients) in the ABCA4 locus (Zernant et al. 2011).  

1.3.3 – Previous studies on Stargardt in NL 

Families with STGD1 have been identified since 1978 through the ocular 

genetics clinic and medical record, family history and geographic origin were 

collected (J. Green, 2013, personal communication). In a study cohort of 46 

STGD1 patients from 29 families utilizing targeted Sanger sequencing and 

haplotype analysis resulted in the identification of 63 variants in the ABCA4 gene. 

Of these 63 variants, 14 were known pathogenic missense variants, 2 others 

were mild pathogenic variants that were disease causing where present with a 

severe mutation in trans and 1 was a novel pathogenic variant found in a family 

from NL (T.L. Young and J. Green, 2013, personal communication). 
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The most common mutation seen among ~50% of families was the 

c.5714+5G>A (splice site) pathogenic single nucleotide variant (SNV). This SNV, 

which is also common among Northern European populations, was either 

homozygous or compound heterozygous in patients. The second most common 

pathogenic variant in patients was the c.5461-10T>C (splice site) SNV, which is 

another known variant associated with the Stargardt disease (Klevering et al. 

2005, Azarian et al. 1998, Roberts et al. 2012). This mutation was seen in 12 

patients and has a higher frequency in people from Conception Bay, NL. The 

following pathogenic variants were seen with a lower frequency: c.2564G>A 

(p.W855X); c.3322C>T (p.R1108C); c.4139C>T (p.P1380L); c.4163T>C 

(p.L1388P); c.4469G>A (p.C1490Y); c.4577C>T (p.T1526M) mutations were 

found in 2-4 families. However, the c.634C>T (p.R212C); c.1522C>T (p.R508C); 

c.3323G>A (p.R1108H); c.4537delC (p.Q1513fs); c.6089G>A (p.R2030Q); 

c.6449G>A (p.C2150Y) pathogenic SNVs were only identified in one family each. 

The 2 milder pathogenic SNVs mentioned above were: c.455G>A (p.R152Q) and 

c.2588G>C (p.G863A). Each of these mutations was repeatedly seen in cis with 

another mutation such as: c.455G>A (p.R152Q) and c.4163T>C (p.L1388P) or 

c.2588G>C (p.G863A) and c.5714+5G>A (splice site) making a complex allele. A 

novel pathogenic SNV, c.67-1delG (splice site), was found in the affected 

members of one family in NL (T.L. Young and J. Green, 2013, personal 

communication). 
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Recent research on 2 other STGD1 patients from NL using Sanger 

sequencing indicated three other causal SNVs: c.3064G>A (p.E1022K) 

c.4222T>C (p.W1408R) and c.4918C>T (p.R1640W). Based on family studies 

and literature review, c.4222T>C (p.W1408R) and c.4918C>T (p.R1640W).  

SNVs are in cis and form a complex allele (Valverde et al. 2006).  

1.3.4 – Genotyping using Sequenom MassARRAY technology 

Genotyping with this technology is based on the weight of final molecular 

products. Genotyping using iPLEX chemistry on the Sequenom MassARRAY has 

two levels of specificity. This first is the PCR, in which the locus specific PCR 

primers bind to the sequences of target DNA and amplify the region of interest. 

The second level of specificity is when the extension (EXT) reaction occurs. In 

this step, another locus specific oligonucleotide primer anneals next to the 

polymorphic (or variant) site to genotype. The EXT primer has an indicated mass 

and immediately binds to the locus where the variant is located and adds a single 

complementary mass-modified base. Using matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, the mass of 

the extended primer based on the alternative alleles present at the polymorphic 

site of interest, is determined (Gabriel, Ziaugra & Tabbaa 2009). According to 

Meyer et al, in the process of allele detection by MALDI mass spectrometry, the 

laser beam serves as desorption and ionization source, and the matrix absorbs 

the laser light energy and causes part of the illuminated substrate to vaporize. 

The process occurs as a rapidly expanding matrix plume carries some of the 
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analyte into the vacuum with it and assists the sample to ionize. The majority of 

the laser’s energy is absorbed by the matrix molecules. Once the sample 

molecules are vaporized and ionized, they are transferred electrostatically into a 

time-of-flight mass spectrometer (TOF-MS), where they are separated from the 

matrix ions, independently detected based on their mass-to-charge ratios. The 

Typer software (provided by the company) automatically translated the detected 

mass of primers to a genotype call for each reaction (Meyer, Ueland 2011, 

Gabriel, Ziaugra & Tabbaa 2009). 

1.4 –  KNOWLEDGE TRANSLATION 

Knowledge translation (KT) is the ability to transfer or translate the knowledge 

acquired by a research group to another part of society. The knowledge and/or 

experience gained by the first group is beneficial to the second group (Argote, 

Ingram 2000). KT encompasses a wide range of activities; among these activities 

translation of genetic innovations into a better healthcare system is highly 

important. In order to improve the healthcare system, it is critical to conduct 

research both on KT strategies and the technology transfer process 

(Kristoffersson, Schmidtke & Cassiman 2010). At Memorial University, 

collaboration between research and clinic has already benefited society. This KT 

project will translate known genetic findings into a clinically useful diagnostic test. 

The aim of this KT project is to enhance the healthcare by offering a cost-

effective, easy to use molecular diagnostic test.  
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1.5 –   ANALYTIC VALIDITY, CLINICAL VALIDITY, AND CLINICAL UTILITY 

The evaluation of a genetic test is based on three criteria that were proposed by 

the National Institutes of Health–Department of Energy Task Force in 1997. 

These criteria include analytic validity, clinical validity, and clinical utility(National 

Human Genome Research Insititue 03/2012). 

Analytical validity includes accuracy (concordance of the results) based on 

analytical sensitivity (measuring the rate of true positives), and analytical 

specificity (measuring the rate of true negatives); precision (reproducibility of the 

results); reportable range (the possible outcome of the results); reference range 

(Wild Type sequence). They all measure the performance characteristics of a lab 

developed test. 

 Clinical validity refers to preciseness of results produced by a test in 

relation to presence or absence of a pathogenic variant.  

Clinical utility is the “the balance of benefits to risks” which refers to the 

ability of a diagnostic test in recognizing the disease, preventing adverse health 

care practices and aiding in possible treatments(Grosse, Khoury 2006, Burd 

2010) . 

 

The objectives of this study are to: 1) design, optimize and validate a 

genetic test to facilitate the accurate diagnosis of (already known pathogenic 

variants causing) Stargardt disorder in the NL population; 2) determine the allele 
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frequency of known and recurrent pathogenic variants causing Stargardt disorder 

in the NL population; and 3) compare the allele frequency of known and 

recurrwent pathogenic variants causing Stargardt disorder in the NL population 

with non-NL populations. 
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  Chapter 2 

2.0 –  MATERIALS & METHODS 

2.1 –  STUDY COHORT AND ETHICS 

Affected and unaffected family members with STGD1 disease were previously 

recruited and informed consent was obtained from all participants in the study 

(T.L. Young and J. Green, 2013, personal communication). The project was 

approved by the Human Investigation Committee, now known as the research 

ethics board (REB) of the Faculty of Medicine, Memorial University of 

Newfoundland (HIC No. 02.116) and the research advisory committee (RPAC) of 

Eastern Health, St. John’s, NL. In the previous study, all extended family 

histories, geographic origin and consanguinity were recorded. Clinical 

investigations such as visual acuity, central and full visual field, fundus photos 

(i.e., retinal photographs), fluorescein angiography, ERG, EOG and OCT were 

performed on affected individuals if possible. All blood samples were collected 

and genomic DNA was extracted from peripheral leukocytes as previously 

described (Miller, Dykes & Polesky 1988).  

 

In this study, the DNA samples and clinical information of participants in the 

former study were used for the optimization and validation cohorts. The 

optimization cohort was comprised of 14 samples covering all the 20 known 

pathogenic variants causing STGD1 in the NL population (Table 2.1). The 

validation cohort was comprised of 78 samples from individuals suspected to 
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have a clinical diagnosis of STGD1 or parents/siblings/relatives of affected 

individuals diagnosed with STGD1, with known genetic status, that were blinded 

to me, the investigator.  

 

Regarding control samples, 536 de-identified genomic DNA samples from 

disease or control populations used in other research studies [such as ankylosing 

spondylitis (n=170), hereditary hearing loss (n=187), cardiomyopathy (n=94) and 

colorectal cancer (n=85)] were used to determine the allele frequency of 

pathogenic variants in the ABCA4 gene in the NL population. DNA samples used 

for the non-NL populations included samples from United Kingdom population 

(n=191) and de-identified samples from the Alberta (n=187) and Ontario (n=125) 

population controls, totalling 503 samples. No clinical vision information was 

available for population controls as they were originally participants of other 

studies.  

 

To assess the clinical validity in this study, a small cohort (n=15) of genomic DNA 

samples with unknown mutational status was assessed using the custom 

genotyping panel. 

 

Table 2.1. The 20 pathogenic variants identified in NL causing STGD1 disease 

Nucleotide 
change 

Amino 
acid 

change 

Number  
of 

alleles 
Exon 

c.67-1delG  splice site 3 2 
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c.455G>A p.R152Q 3/11 5 

c.634C>T p.R212C 1 6 

c.1522C>T p.R508C 2 11 

c.2564G>A p.W855X 5 16 

c.2588G>C p.G863A 2/4 17 

c.3064G>A p.E1022K 1 21 

c.3322C>T p.R1108C 3 22 

c.3323G>A p.R1108H 1 22 

c.4139C>T p.P1380L 4 28 

c.4163T>C p.L1388P 8 28 

c.4222T>C p.W1408R 1 28 

c.4469G>A p.C1490Y 2 30 

c.4537delC p.Q1513fs 1 30 

c.4577C>T p.T1526M 3 31 

c.4918C>T p.R1640W 1 35 

c.5461-10T>C 
(IVS38) 

splice 
site? 

12 38 

c.5714+5G>A 
(IVS40) 

splice site 31 40 

c.6089G>A p.R2030Q 1 44 

c.6449G>A p.C2150Y 1 47 

 

2.2 –  IN-SILICO DESIGN OF MULTIPLEX PANEL 

To multiplex using the Sequenom MassArray technology, I used two different 

programs (i.e., Assay Design Suite and Typer4) to design polymerase chain 

reaction (PCR) and extension (EXT) primers for each of SNVs to be included in 

the multiplex laboratory developed test (LDT) panel. Five different automatic 

steps were used in the Assay Design Suite software (Agena Bioscience, San 

Diego, Ca, USA) in designing a multiplex panel, which included: 1) retrieve and 

format sequences; 2) find proximal single nucleotide polymorphisms (SNPs); 3) 
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identify optimal primer areas; 4) attempt to design panel; and 5) validate panel 

design.  

The processes of designing primers in the Design Assay Suite software 

through the five steps is briefly described below. In the first step (i.e., retrieve and 

format sequences), the retrieved sequences were reformatted into a SNV group 

file format, and then the target sequence was generated based on the selected 

flank size. In the second step (i.e., find proximal SNPs), the SNV sequence was 

aligned to the human genome to determine if there was a registered SNP within 

the proximal area of the selected assay, which could prevent design of primers. 

In the third step (i.e., identify optimal primer areas), the PCR primers were 

designed. Then the human genome was scanned to determine if there were any 

other similar amplification products that could be used by the specific extend 

primer, which could prevent multiple targets being produced for the EXT primers. 

In the fourth step (i.e., attempt to design panel), the EXT primers were designed 

for different alleles with a specific weight to be sorted by mass. Then, the 

multiplex panel was generated including the sequence of PCR and EXT primers, 

which was used to order the primers or to import the design into MassARRAY 

Typer software. The design summary also created in step 4 provided information 

regarding the number of SNVs that multiplex together, the number of wells in the 

design and the weight of the EXT primers. In the fifth step (i.e., validate panel 

design), the amplification products were validated to prevent, or at least, mitigate 

unintentional false positives in the mass spectra analysis. 
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The Design Assay Suite software estimated in a validation report (which 

was assessed when step 5 of the program was complete) the number of 

locations that the designed primers could have a potential homology with, in the 

desired part of genome. These locations or hits were divided into three (3) 

categories. The true hit (i.e., H.True) value represented the number of possible 

PCR amplicons produced by the designed PCR primer pair that contained a valid 

target for the subsequent EXT primer. In contrast, the false hit (i.e., H.False) 

value represented the number of possible amplicons generated by the designed 

PCR pair that contained an invalid target for the following EXT primer. The null 

hit (i.e., H.Null) value represented the number of possible amplicons created by 

the designed PCR pair that did not contain a valid target for the related EXT 

primer. Also, the frequency that forward or reverse PCR primers were 

independently matched with the genome was reported for each “rs” number.  

 

2.2.1 – In-silico design of 20 pathogenic variants causing Stargardt disease 

In-silico design in Assay Design Suite software was accomplished by importing 

sequences in FASTA format (i.e., a text-based format using single letter codes 

showing nucleotide sequences) or SNP “rs” identification numbers to the 

software for all 20 pathogenic variants, determined using Alamut software 

(Interactive Biosoftware, France) and dbSNP ( 

Table 0.1). SNV “rs” numbers were used for the majority of pathogenic variants 

(i.e., 18/20), whereas FASTA sequences (1,035 base pairs) were used for the 
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two deletions (i.e., c.67-1delG and c.4537delC) lacking “rs” identification 

numbers. Desired organism type, chemistry, genomic database and multiplex 

level of assay were also selected for the design (Table 2.2). 

If any of the design steps failed due to issues in the sequence that 

interfered with effective primer binding, the software showed a reject for that 

step. Each reject generated a code and a brief description of the reason or 

potential for the rejection. For example, the potential for false-priming, hairpin 

formation and primer-dimer formation was described in scales of high, moderate 

and weak. When there was a high potential of an issue for a given SNP, it was 

rejected and consequently excluded from the multiplex primer design. To 

incorporate the rejects, the “advanced settings” option in the software was used 

to modify the default settings for each of the 5 steps involved in the assay design, 

which can raise or lower the stringency of each option.  

I used a trial-and-error approach with respect to parameters within 

“advanced settings” in order to incorporate all the SNVs into one well. In each 

version of the design, one or two options were altered and the results of those 

changes were reviewed. Further changes to other options were applied based on 

results from previous alterations. 

 

Table 2.2. Options selected for the multiplex LDT design using Assay Design Suite 
software. 

Organism Human 

Database Feb.2009(GRCh37/hg19) 

Chemistry iPLEX 
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Multiplex Level 20 

2.3 –  PRIMER MIXTURES AND ADJUSTMENTS 

I prepared a pool containing all forward (F) and reverse (R) primers with the final 

concentration of 0.5uM for each primer. The original PCR primers were ordered 

at 100uM concentration and a calculated amount of each primer was added to 

each tube based on the final volume of the reaction mixture. UltraPure distilled 

water was then added to dilute and bring the final volume to 1,000ul. When a 

PCR primer was shared for multiple SNVs, that primer was added to the mix only 

once. For example, in the 1x20-plex LDT panel, rs61750130, rs61750131 and 

rs61750135 had shared PCR primers and only one unit of primer (i.e., F and R) 

was added the PCR primer mix.  

The EXT primers for the iPLEX reaction were adjusted by concentration 

prior to genotyping by one of our laboratory assistants. Three-tier method in the 

protocol provided by manufacturer was selected for adjusting the primers. Briefly, 

the method included dividing the mass into three groups: low mass (LM), medium 

mass (MM) and high mass (HM). A 5µL for each LM primer, 10µL for each MM 

primer and 15µL for each HM primer were added to make the EXT primer 

cocktail. UltraPure distilled water (49µL) and EXT primer mix (1µL) was added to 

the wells in a PCR plate and run in triplicate. The plate was vortexed, centrifuged 

and placed in the plate holder of the Sequenom Nano-dispenser.  

The assays transferred to the Typer4 software generated two types of 

reports that were used for EXT primer adjustment. The first report was an excel 
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sheet comprised of all the assays, their masses, signal to noise ratio (SNR) and 

the percent that was needed to be added for each assay based on the average 

over three wells (these numbers are based on the assay that has the maximum 

SNR). The second report was comprised of three histograms, which represented 

the SNR for each assay. 

The quality control (QC) step simply measured the peak for each EXT 

primer in water rather than with a sample present. The report from the Typer4 

software identified the ratio of each primer that should be added to the iPLEX 

primer cocktail in order to achieve the best peak. Given that we had three 

replicates for each SNV, the average percent to add for each primer for each 

assay was calculated. If the average volume to add was above 50% for any of 

the assays, I added a calculated amount of the extend primer to the EXT primer 

cocktail based on the mass of that EXT primer. Once the required amount was 

added to the mixture again, the resulting cocktail was spotted on the chip and 

transferred to the MassARRAY analyzer to determine if the SNR for each SNV 

increased compared with the initial SNR assessment. The result was analysed 

once again and the previous steps were repeated if more adjustments were 

required. 

 

2.4 –  SEQUENOM MASSARRAY AND IPLEX CHEMISTRY 

The general procedure for iPLEX genotyping included the following steps: 1) 

normalize DNA concentration; 2) DNA amplification (PCR); 3) neutralize 
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unincorporated dNTPs (Shrimp Alkaline Phosphatase (SAP) reaction); 4) iPLEX 

extension reaction; 5) condition the iPLEX reaction products; and 6) dispense 

onto SpectroCHIP Arrays. 

 

2.4.1 – Preparation of samples  

A range of 5-10ng/µl concentrations for DNA was required for genotyping with 

Sequenom MassARRAY. I prepared a master plate of genomic DNA samples 

with concentration of 5ng/µl. All the DNA samples were first diluted to 100ng/µl in 

Tris Ethylenediaminetetraacetic acid (TE) buffer, further diluted in TE buffer to 

10ng/µl and finally diluted to 5ng/µl in UltraPure distilled water. 

 

2.4.2 – DNA amplification  

The setting for the same multiplexed assays for all wells with different DNA 

samples, from the protocol provided by the manufacturer was selected. PCR 

cocktail was made following the protocol (Table 2.3) using a microtube. After a 

quick vortex and centrifuge of the microtube containing PCR cocktail, 3µL of the 

solution in the tube was aliquoted into the wells of PCR-96-LP-FLT-C PCR 

Microplate (AXYGEN, CA, USA). 2µL of DNA (5ng/µl) was then added to each 

well. The plate was gently vortexed and centrifuged at 290 relative centrifugal 

force (rcf) for 30 seconds, and then transferred to a Veriti® 96-Well Fast Thermal 

Cycler (Applied Biosystems, Life Technologies, CA, USA) and run under 

conditions stated in the Table 2.4.  
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2.4.3 – Neutralize unincorporated dNTPs (SAP reaction) 

Shrimp Alkaline Phosphatase (SAP) enzyme solution was prepared in a 

microtube following the manufacturer’s protocol (Table 2.3). The microtube was 

gently vortexed and spun. Then, 2µL of the SAP solution was dispensed to each 

of the wells in the plate containing the amplified PCR products. The plate was 

again gently mixed by vortexing and centrifuged at 290 rcf for 30 seconds and 

transferred to the thermal cycle with conditions that are indicated in Table 2.4. 

 

Table 2.3. Master mix compositions in preparing an iPLEX reaction for the LDT panel, 
for different steps (i.e., PCR, SAP, Extension) included. 

PCR MasterMix (µl) 1x 

HPLC  grade water 0.80 

10X PCR Buffer 0.50 

25 mM MgCl2 0.40 

25 mM dNTP 0.10 

5 u/µl Sequenom PCR Enzyme 0.20 

PCR Primer (0.5uM) 1.00 

Total volume-DNA per well 3.00 

DNA 2.00 

Total per well 5.00 

Dispense  3µl of PCR mix  to each well  
 Dispense 2µl of DNA into each well 

SAP MasterMix (µl) 1x 

HPLC grade water 1.53 

SAP Buffer 0.17 

SAP Enzyme 0.30 

Total per well 2.00 

Dispense 2µl of SAP mix into each well  

Extend MasterMix (µl) 1x 

HPLC grade water 0.755 
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iPLEX-PRO Buffer 0.200 

iPLEX Termination Mix 0.200 

iPLEX PRO Enzyme 0.041 

Extend Primer 0.804 

Total per well 2.000 

Dispense 2µl of Extend mix into each 
well 

 

 

 

Table 2.4. Thermal cycling parameters in preparing an iPLEX reaction for the LDT panel 
for the different steps (i.e., PCR, SAP, Extension) included. 

Temp ˚C Time Cycles 

PCR 

95 2 min 
 95 30 sec 45 cycles 

56 30 sec 
 

72 1 min 
 

72 5 min 
 4 ∞ 
 SAP 

 37 40 min 
  85 5 min 
  4 ∞ 
  Extension iPLEX 

94 30 sec 
  94 5 sec 
 

40 
cycles 

 
 

52 5 sec 
5 cycles 

 80 5 sec 

72 180 sec 
  4 ∞ 
   

2.4.4 – iPLEX extension reaction  

The same multiplexed assays for all wells with different DNA in each well, from 

the protocol provided by the manufacturer was selected. Extension cocktail was 
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made following the manufacturer’s protocol (Table 2.3) in a microtube. After 

quickly vortexing and a quick spin, 2µL of the extension mix was added to each 

well of the plate containing PCR and SAP products. The plate was then gently 

mixed by vortexing and centrifuged at 290 rcf for 30 seconds and transferred to 

the thermal cycler with conditions that are indicated in Table 2.4. 

 

2.4.5 – Condition the iPLEX reaction products  

Briefly, resin was carefully added to the required wells of the dimple plate using a 

scraper. It was then left to dry for 10 minutes. While the resin was drying, 41µL of 

UltraPure distilled water was added to each well of the plate and centrifuged at 

290 rcf for 1 minute. In order to add the dried resin into the wells of the plate, I 

gently turned the plate upside down so that the resin fell out of the dimple plate 

into the wells. Then, the sample plate containing the resin was rotated for 30 

minutes on a rotator with the lowest speed at room temperature and centrifuged 

for 5 minutes at 805 rcf to be prepared for dispensing into a chip. 

 

2.4.6 – Dispense onto SpectroCHIP arrays and defining assays and plates  

Following the manufacturer’s protocol, the 6-pin option for 96 well plate format 

was selected to transfer samples onto the chip in the Nanodispenser machine. 

The order of spotting (i.e., for which sample from which wells in the sample plate, 

to which region on the chip) was given under Mapping section (i.e., Software 

option) of the Nanodispenser machine (Agena Bioscience, San Diego, Ca, USA) 
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and saved with a specific name. Also, under Mapping section (i.e., Software 

option) systematic options of analyte or auto-Tuning could be selected. The 

spotting settings under Method section (i.e., Software option) include 3 different 

icons, which included setup, cleaning and aspirate/dispense. In setup, after 

selecting the correct mapped file, a target volume of 14nl; a lower limit of 8nl; and 

an upper limit of 18nl were selected. Cleaning settings were as default, and 

under aspirate/dispense settings included in Table 0.2 were selected. In case of 

using a new chip, the calibrant was first dispensed to the chip by Nano-dispenser 

machine, and analyte + calibrant  (i.e., Software option) option was selected 

under the Method section (i.e., Software option). Finally, the proper method file 

was selected under Transfer section (i.e., Software option), and the chip spotting 

was started. When dispensing by the Nanodispenser machine was completed, 

the chip was carefully transferred to the MassARRAY system. To link the chip 

and samples with the designed assays, the following file inputs were created and 

uploaded to the MassARRAY Typer4 software: 1) a special file input (.txt) with 

the name of samples in the order of how they are located in the actual plate was 

created, which was then transferred to the MassARRAY Typer4 software under 

Plate Editor (i.e., Software option)  and saved as a new sample group with a 

given group ID; and 2) the excel design output file including the information about 

the designed assays was uploaded under Assay Editor  (i.e., Software option) of 

MassARRAY Typer4 software. Then, create plate (i.e., Software option) under 

Plate Editor (i.e., Software option) was selected and the assays were applied to 
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the plate and sample groups that were created. In the MassARRAY database, 

the assays and order of samples in the spotted plate were setup. The plate in the 

MassARRAY database was connected to the dispensed samples on the chip 

with a program called “chiplinker” before the MassARRAY analyzer started 

shooting lasers and ionizing the reaction products on the chip. The acquired 

spectra and data generated by Typer4 software were then analysed in detail. 

2.5 –  ASSESSMENT AND SELECTION OF BEST PERFORMING LDT PANEL  

The raw data generated by the MassARRAY using Typer4 software (Agena 

Bioscience, San Diego, Ca, USA) was analyzed separately for every run. A 

cohort of 14 samples (i.e., optimization cohort), which were positive for at least 

one of the SNVs, was assessed in duplicate on both LDT panels (i.e., 2x10-plex 

and 1x20-plex). The first step in the analysis was to inspect the automated 

genotype call followed by manually visualizing all genotype calls to ensure 

accuracy. The second step was to devise a calling algorithm for a more stringent 

method of accepting calls rather than visually inspecting the data or relying solely 

on the automated genotype call. The threshold for two (2) specific parameters 

were chosen based on two (2) runs for each LDT panel and was applied for each 

subsequent run. The initial candidate parameters included: fractional unextended 

primer (F-UEP) or yield (1 - F-UEP) and allele height (AH). Minimum and 

average values for yield and AH were calculated for every SNV in each run in 

order to set a threshold. Non-template control (NTC) wells, which contain all 
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reagents of a regular well but no test samples, were assessed on each run and 

the percentage of assays containing automatic genotype calls was documented.  

To determine if the quality metrics were improved by replacing iPLEX Gold 

with iPLEX Pro chemistry, the optimization cohort along with two NTC wells were 

assessed in duplicate for both the 1x20-plex and 2x10-plex LDT panels. To 

determine the differences between the 2x10-plex vs 1x20-plex LDT panels, the 

optimization samples were assessed on each LDT in triplicate using iPlex Pro 

chemistry.  

2.6 –  CONFIRMATION OF GENOTYPES BY SANGER SEQUENCING  

2.6.1 – Designing PCR primers 

Specific F and R primers were designed to amplify the regions of interest. In the 

previous study (T.L. Young and J. Green, 2013, personal communication), thirty-

two (32) F and R primers were extracted or redesigned in the ABCA4 gene 

based on the paper by Ariazan et al. (Azarian et al. 1998). These primers were 

used to amplify 16 exons and introns (depending on where the mutation of 

interest occurs) in the ABCA4 gene to find causal variants for STGD1 in the NL 

population. The same primers in addition to six more primers (i.e., including F 

and R strands) that we designed for exon 5, 22 and 39 were used in my study. 

The primers for exon 5, 22 and 39 were redesigned in order to achieve a bigger 

amplicon size and expand the sequenced region. All primers (i.e., both F and R 

strands) were designed using primer 3 software (http://bioinfo.ut.ee/primer3-

0.4.0/).  

http://bioinfo.ut.ee/primer3-0.4.0/
http://bioinfo.ut.ee/primer3-0.4.0/
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2.6.2 –  Preparing the DNA samples at the required concentration 

A master plate of 5ng/µl was prepared for all samples in the optimization cohort. 

All the DNA samples were first diluted to 100ng/µl in TE buffer, then diluted in TE 

buffer once more to 10ng/µl and finally diluted to 5ng/µl in UltraPure distilled 

water. For patient samples with unknown status, 10ng/µl DNA was prepared in 

microtubes by diluting the prepared 100ng/µl in TE Buffer first and then diluting 

further in UltraPure distilled water to 10ng/µl. 

2.6.3 –  PCR procedure, examining the amplification on the gel electrophoresis, 

and purifying the products using Sephacryl 

Following the standard protocol for PCR, a mixture containing 2µL of 10X PCR 

Buffer (containing MgCl2), 5µL of Betain (3.75µ), 0.4µL of dNTPs (10 mM), 0.08 

µL of KapaTaq DNA Polymerase (5 U/µL) (Kapa Biosystems, Boston, MA), 8.92 

µL of distilled dH20, 0.8 µL of F primer (10 µM) and 0.8 µL of R primer (10 µM) 

was made. 18µL of the mixture was then aliquoted into the 96-well PCR plate 

followed by 2µL of 5 ng/µl of each DNA sample. The plate was then sealed, 

centrifuged and transferred to the GeneAmp PCR System 9700 Thermal Cycler 

(Applied Biosystems, Foster City, CA) with a program setting described in Table 

2.5. The amplified PCR products were examined on gel electrophoresis using a 

1% agarose gel consisting of 1.5g of agarose, 100 mL of Tris Borate EDTA 

(TBE) and 3.5µL of SyberSafe. The PCR products and ladder (100 bp) were 

loaded into the gel and the gel was then transferred to the electrophoresis 
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system. The electrophoresed gel containing PCR amplicons was then observed 

under Ultraviolet (UV) light from a Kodiak GEL LOGIC 100 Molecular Imaging 

System (Rochester, Y, Version 4.01, 2005). Successfully amplified PCR 

products, which were observed with a correct band size under the imaging 

system, were required to be purified before the cycle sequencing reaction. The 

purification step was done using Sephacryl S-300HR. Re-suspended Sephacryl 

(300µL) was aliquoted to the wells on a Millipore Multi-screen plate, which was 

placed on top of a corresponding 96-well waste plate to catch flow-through. They 

were then balanced and centrifuged for 5 minutes at 1811 rcf. The solutions in 

the catch plate were discarded. The PCR products were added to the Millipore 

Multi-screen plate, which was aligned and positioned over a clean PCR plate. As 

described above, the plates were balanced and centrifuged for 5 minutes at 1811 

rcf. The collected flow-through in the PCR plate contained the purified PCR 

products. 

Table 2.5. Thermal cycling parameters for the touch-down PCR step of Sanger 
sequencing. 

Temp ˚C  Time  Cycles 

PCR  

94 5 min   

94 30 sec 

5 cycles 64 30 sec 

72 30 sec 

94 30 sec 

30 cycles 54 30 sec 

72 30 sec 

72 7 min   

4 ∞   
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2.6.4 –  Cycle sequencing, ethanol precipitation and sample setup on the ABI 3130 

or 3730 XL DNA Analyser 

A reaction mixture consisting of 0.5µL of Sequencing Enzyme Big Dye 

Terminator V. 3.1, 2µL of 5X sequencing buffer (Applied Biosystem, Carlsbad, 

CA, USA), 0.32µL of primer (10 µM) and 15.18µL of dH2O was made and 

aliquoted to an optical 96-well reaction plate (Applied Biosystem, Carlsbad, CA, 

USA). Note that the same mixture was made twice, once with the F primer and 

the other with the R primer. Purified PCR products (2µL) were then added to 

each well. The plate was covered with a silicon mat, quickly spun down on a 

centrifuge and then loaded to the thermal cycler with the program settings shown 

in Table 2.6. 

Table 2.6. Thermal cycler settings for the cycle sequencing reaction. 

Temp ˚C Time Cycles 

ABI CYClE SEQ 

96 1 min 
24 cycles 

 
 
 

96 10 sec 

50 5 sec 

60 4 min 

4 ∞ 
  

For the Ethanol precipitation step, I added 5µL of 125mM EDTA followed 

by 65µL of 95% Ethanol (EtOH) to each reaction well. The plate was then 

covered with a silicon mat, it was then briefly vortexed, centrifuged and incubated 

at ambient temperature in the dark for 15 minutes. After incubation, the plate was 

centrifuged for 30 minutes at 1811 rcf, and then inverted to discard the 

https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=carlsbad+california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrWVFixcmJyFKMkn9zH7fzvj79bOC8JAP2RSVthAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CIwBEJsTKAEwEw
https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-9GuRaiSL_N-PXgdL-Hla7v5v3dwJAFQmsKhhAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CI0BEJsTKAIwEw
https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=carlsbad+california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrWVFixcmJyFKMkn9zH7fzvj79bOC8JAP2RSVthAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CIwBEJsTKAEwEw
https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-9GuRaiSL_N-PXgdL-Hla7v5v3dwJAFQmsKhhAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CI0BEJsTKAIwEw
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supernatant. The inverted plate covered with paper towels underneath, was then 

centrifuged briefly at 18 rcf. Then, 150µL of 70% EtOH was added to each 

sample on the plate and centrifuged for 15 min at 1811 rcf. The supernatant was 

again discarded by inverting the plate, and in the same manner as the previous 

step, the inverted plate covered with folded paper towels was centrifuged at 18 

rcf. The plate was then left in the dark to air dry at room temperature for 15 

minutes. Highly deionized (Hi-Di) formamide (15µL) was subsequently aliquoted 

to each well and covered with a septa mat. The plate was briefly vortexed, 

centrifuged and loaded into Thermal Cycler for denaturation at 95˚C for 2 

minutes. The plate was centrifuged briefly and loaded either into the Applied 

Biosystem instrument (ABI) 3130 or 3730 XL DNA analyser (Applied Biosystem, 

Carlsbad, CA, USA), depending on which was available at the time. 

2.6.5 – Analyzing Sanger sequencing data 

Data collected from the ABI DNA analyser instrument was first analyzed by the 

sequencing analysis software (version 5.4, Applied Biosystem, Carlsbad, CA, 

USA) to see the raw data. The high quality sequences were then transferred to 

Mutation Surveyor (Version 3.0, Softgenetics, State College, PA) to identify DNA 

sequence variants by comparison with the reference genome. 

2.7 –  OPTIMIZATION OF THE 1X20-PLEX LDT PANEL 

2.7.1 – Adjustments to eliminate automated genotype calls in NTC wells  

To determine if increasing the annealing temperature (from 56 to 57˚C) in the 

PCR thermal cycling program (Table 2.4) resulted in elimination of automated 

https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=carlsbad+california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrWVFixcmJyFKMkn9zH7fzvj79bOC8JAP2RSVthAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CIwBEJsTKAEwEw
https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-9GuRaiSL_N-PXgdL-Hla7v5v3dwJAFQmsKhhAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CI0BEJsTKAIwEw
https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=carlsbad+california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrWVFixcmJyFKMkn9zH7fzvj79bOC8JAP2RSVthAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CIwBEJsTKAEwEw
https://www.google.ca/search?espv=2&biw=1680&bih=949&site=webhp&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-9GuRaiSL_N-PXgdL-Hla7v5v3dwJAFQmsKhhAAAA&sa=X&ei=2MH5VNi0FdGOyAThioLYDw&sqi=2&ved=0CI0BEJsTKAIwEw
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genotype calls in the NTC wells, I assessed the optimization cohort including 2 

NTC wells on the selected LDT panel. To determine if an interaction between 

PCR or EXT primers might cause automated genotype calls in the NTC wells, the 

optimization cohort including two regular NTC wells (with both PCR and EXT 

primers) in addition to four NTC wells that had all required reagents except for 

PCR primers (i.e., ultrapure water replaced PCR primers) was assessed on the 

1x20-plex LDT panel. To determine if using Uracil-N-glycosylase (UNG) enzyme 

results in elimination of automated genotype calls in the NTC wells, the 

optimization cohort including two NTC wells using the UNG kit was assessed 

using the 1x20-plex LDT in triplicate. The percentage of automated SNV calls run 

in triplicate was calculated. Preparation of the PCR mix, which is the only step 

that differed using UNG kit is summarized in Table 2.7 and Table 2.8. The 

master mix composition and thermal cycling program for PCR using UNG kit are 

displayed in Table 2.7 and Table 2.8, respectively. 

 

Table 2.7. Master mix compositions for PCR step using UNG kit. 

PCR MasterMix (µl) 1x 

UNG Enzyme 0.05 

HPLC  grade water 0.75 

10X PCR Buffer 0.50 

25 mM MgCl2 0.40 

25 mM dNTP/dUTP 0.10 

5 u/µl Sequenom PCR Enzyme 0.20 

PCR Primer (0.5uM) 1.00 

Total volume-DNA per well 3.00 

DNA 2.00 

Total per well 5.00 
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Dispense  3µl of PCR mix  to each well  

Dispense 2µl of DNA into each well  

 

Table 2.8. Thermal cycling parameters for the PCR step using UNG kit. 

Temp ˚C  Time  Cycles 

PCR  

30 10 min  

95 2 min 
 

95 30 sec 
45 

cycles 

56 30 sec 
 

72 1 min 
 

72 5 min 
 

4 ∞ 
 

 

2.7.2 – Adjustments to increase allele height  

2.7.2.1 – Nanodispenser adjustments 

To determine if auto-tuning results in consistently higher volumes compared with 

manual spotting, 64 samples were spotted with and without the auto-tuning 

function enabled. To determine if the viscosity of the multiplex LDT affects the 

volume spotted, 64 samples were spotted with and without the detergent Tween 

20. To determine if a correlation exists between the spotted volume and the peak 

height, a range of 355-365 samples (i.e., samples used in 2.7.2.3) were selected. 

For each SNV, the peak height of homozygous alleles was divided into two 

groups based on their spotted volumes of nano-liter (nl) (i.e., <14nl and >14nl). 

The number of samples with a peak height below threshold of seven intensity 

units was recorded for each group. 
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2.7.2.2 – Adjustment of PCR/extension primer pool based on optimization cohort 

To determine the amount of primer used for each SNV in each run, a formula 

was devised to calculate the percentage of used primer: allele height/ (allele 

height + primer height) x 100. The minimum and average numbers for 

percentage of used primer (UP) was calculated for each SNV in 3 runs that was 

assessed using the optimization cohort and the 1x20-plex LDT.  

To determine if the new extension mix resulted in higher quality 

performance of the SNVs, the optimization cohort was assessed using the 1x20-

plex LDT panel with the old EXT primer cocktail and with the newly made EXT 

primer cocktail. Then, for the specific SNVs that had higher amount of EXT 

primers in the cocktail, the minimum and average values for yield, AH and UP 

were compared between runs.  

To determine if having unsatisfactory AH for specific SNVs is due to low 

amount of PCR products (i.e., as a result of low PCR primers in the mix). As 

before, the minimum and average numbers for percentage of used primer (UP) 

was calculated for each SNV in 3 random runs that was assessed on the 

optimization cohort on 1x20-plex. Then, a new PCR primer cocktail with double 

the amount of primers for SNVs that had unsatisfactory height of allele, and also 

minimum value of less than 80% UP, was made. The optimization cohort was 

assessed on the 1x20-plex LDT panel once with the old PCR primer cocktail and 

then with the newly made PCR primer cocktail. Then, for the specific SNVs that 
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had higher amount of EXT primers in the cocktail, the minimum and average 

values for yield, AH and UP were compared between the two runs. 

2.7.2.3 –  Allele frequency determination 

The 1x20-plex LDT panel was used to determine the allele frequency of the 20 

pathogenic variants in the general population (NL and non-NL). A total number of 

1039 control samples compromised of 536 individuals from NL and 503 from 

non-NL (more detail information of these samples in the 2.1 – Study cohort) were 

tested on 1x20-plex LDT panel. All the automated genotype calls were inspected 

manually by visualizing and the accuracy of calls was confirmed. I excluded all 

inconclusive genotypes from downstream calculations for the allele frequency 

data, and minor allele frequencies (MAF) for each assay were calculated based 

on the total number of accepted genotype calls. In addition, the MAF of all the 20 

SNVs for European non-Finnish population from EXAC browser was extracted 

and compared with the obtained data. 

2.7.2.4 – Final optimization of the 1x20-plex LDT panel 

Poor performing SNVs were selected, using the data generated for AHs of 400 

samples from the NL control population. For each SNV, the percentage of 

samples that generated AHs greater than 10 intensity units for homozygous calls, 

and greater than 5 intensity units for heterozygous calls, was calculated. SNVs 

with a percentage of less than 95 were considered as low quality performers. 

Another EXT primer cocktail (containing previous adjustments) with 

double the amount of primers for selected SNVs was made. To determine if the 
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AH improves using the new EXT primer cocktail, the optimization cohort was 

assessed on 1x20-plex once using new EXT primer cocktail and once with old 

extension primer cocktail. Same as above, I calculated the minimum and average 

values for AH and compared them. 

2.7.3 – Final calling algorithm parameters 

As mentioned previously in order to have a more stringent method of accepting 

calls rather than visually inspecting the data or relying solely on the automated 

genotype call, a calling algorithm was devised. All parameters and the cut-off 

values were developed based on the data collected from multiple runs performed 

using the 1x20-plex LDT panel. A separate algorithm for NTCs and samples was 

created.  

2.8 –  ANALYTICAL VALIDATION 

During the analytical validation study, the following attributes were calculated: 

analytical sensitivity, specificity, accuracy, precision, reference range, and 

reportable range. The validation cohort that included 78 samples with known 

genotype status but blinded to the investigator was assessed on the optimized 

1x20-plex LDT panel. The raw data generated by the MassARRAY in the Typer4 

software was carefully analyzed for each SNV for every sample. All genotype 

calls were first manually visualized and then the calling algorithm was applied to 

ensure the accuracy and sensitivity of the LDT panel. Samples were reassessed 

on the 1x20-plex LDT panel if they failed to meet the quality metrics (i.e., calling 

algorithm) for any of the SNVs. To determine if the data is reproducible (i.e., 
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precision) the optimization cohort was assessed on the 1x20-plex LDT panel 

three (3) times and the calling algorithm was applied to the runs. The formulas 

used to calculate, sensitivity, specificity and accuracy are displayed below: 

Sensitivity =
             

                             
      

Specificity =
             

                             
      

Accuracy =
                           

                                                          
      

2.9 –  CLINICAL VALIDITY OF THE 1X20-PLEX LDT PANEL 

The cohort of 15 genomic DNA samples from patients or family members of the 

patients with unknown genetic status was assessed using the optimized 1x20-

plex LDT panel and the calling algorithm was applied to determine the genotype 

of each sample. 

2.10 –  STATISTICAL ANALYSIS 

After assessing each run on any LDT panel, I stratified and categorized the data 

for each of the 20 SNVs. The calculation of minimum and average for the 

candidate parameters for each SNV in the group of homozygous and 

heterozygous calls was performed. Also, with regard to NTC wells, the 

percentage of SNVs that generated an automated genotype call in the NTC well 

was calculated by dividing the number of observed genotype calls by the total 

number of SNVs. 
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A paired t-test and Fisher exact test were the two analysing methods to 

achieve p-values and determine the significant difference. I used a paired t-test  

to compare auto-tuning function and using Tween 20 detergent between both 

LDT panels, and a Fisher exact test to compare the differences and correlation of 

peak height and spotted volume, also to compare the difference between the NL 

and non-NL control populations. The calculation to determine the MAF was 

based on the total number of accepted genotype calls. 
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  Chapter 3 

 

3.0 –  RESULTS 

3.1 –  STUDY COHORT 

Individuals in optimization and validation cohorts were selected to be genotyped 

for the most common mutations causing STGD1 in the NL population, if they 

were diagnosed with STGD1 through clinical features of the disease, family 

members of an affected member or suspected to have STGD1 by clinical 

features. Table 3.1 displays the clinical methods used to support a diagnosis of 

STGD1 for the 14 affected members (previously tested) comprising the 

optimization cohort.  

Table 3.1. Clinical methods used to diagnose STGD1 in the optimization cohort. 

Sample 
# 

Visual 
acuity 

Visual 
field 

Fundus 
photos 

Fluorescein 
Angiography 

ERG Others 

1    

 

 

 2      

 3      

 4    

 

 EOG 

5     

 
OCT 

6     

  7    

 

 

 8      EOG 

9    

   10    

 

 

 11      

 12  

     13      OCT 

14      
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A representative visual acuity report (Figure 3.1A), visual field (Figure 3.1B), 

Fundus photograph (Figure 3.1C) and fluorescein angiography (Figure 3.1D) for 

both eyes of an individual in the optimization cohort (sample #13) is shown. 

Sample #13 had a normal ERG, so the data for ERG is not displayed. 

 

3.2 –  PRIMARY ATTEMPT AT IN-SILICO DESIGN OF A MULTIPLEX PANEL 

COMPRISING 20 PATHOGENIC VARIANTS CAUSING STGD1 

All of the pathogenic variants included in the LDT panel (i.e., 20/20) successfully 

passed steps 1 to 3 in the Assay Design Suite software (refer to 2.2). Initially, 

85% (i.e., 17/20) of the assays designed successfully without rejects in step 4 

(i.e., attempting to design panel). The list of rejected SNVs (i.e., rs61749459, 

ABCA4_4537delC and rs138157885) along with the reason for rejection (Table 

0.4. SNVs rejected and the reason for the rejection.) and details of design 

settings (Table 0.5) are provided.  

Figure 3.1. A representative diagram of the clinical methods used for diagnosis of 
STGD1. A representative visual acuity report. (A), visual field (B), Fundus 
photograph (C) and fluorescein angiography (D) for both eyes of an individual in the 
optimization cohort (sample #13). 
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Rejected SNVs were excluded from the design, to remove the rejects and 

incorporate the SNVs into my design, the following criteria were specifically 

changed: 1) the amplicon length control changed from minimum (80bp), optimum 

(100bp), and maximum (120bp) to minimum (80bp), optimum (100bp), and 

maximum (700bp); and 2) the stringency of the false priming, dimer potential, 

hair pin potential, number of sequential G’s and overall cut-off for extension 

primers, and the number of sequential G’s for PCR primers were changed (Table 

0.5 &  

Table 0.6). The design settings used to remove rejects is also provided ( 

Table 0.6).  

Once the reject issues were solved, step 4 (i.e., attempting to design 

panel) and step 5 (i.e., validating panel design) were successfully completed for 

all 20/20 (100%) SNVs. However, the successful LDT design had SNVs 

distributed into a 3-well design (Table 3.2) due to multiplexing issues arising from 

the stringency settings for each SNV. With respect to the 3-well design, well#1 

was a 15-plex design including: rs61750130, rs61751402, rs76157638, 

rs61751404, ABCA4_67-1delG, rs61752406, rs61750200, rs61751407, 

rs61750641, rs61751384, rs61750120, rs61749459, rs1800728, rs61750152 and 

rs138157885 (multiplex SNP capture confidence score of: 60.8). Well#2 was a 4-

plex design including: ABCA4_4537delC, rs61750121, rs61750131 and 

rs62646862 (multiplex SNP capture confidence score of: 88.4). Finally, well#3 
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was a 1-plex design including rs61750135 (multiplex SNP capture confidence 

score of: 100).  

Table 3.2. Initial design of the multiplex panel generating a 3-well design. 

Well#1  Well#2 Well#3  

rs61750130 ABCA4_4537delC rs61750135 

rs61751402 rs61750121 
 rs76157638 rs61750131 
 rs61751404 rs62646862 
 ABCA4_67-1delG 

  rs61752406 
  rs61750200 
  rs61751407 
  rs61750641 
  rs61751384 
  rs61750120 
  rs61749459 
  rs1800728 
  rs61750152 
  rs138157885 
   

3.3 –  SECONDARY ATTEMPT AT IN-SILICO DESIGN OF A MULTIPLEX PANEL 

COMPRISING 20 PATHOGENIC VARIANTS CAUSING STGD1 

A trial-and-error approach was used to change design settings in order to relax 

the stringency of various design parameters used in the 3-well design, thereby 

reducing the overall number of wells. Given the inherent difficulties with 

multiplexing in general, we decided to design two different LDT multiplexes (i.e., 

2x10-plex and 1x20-plex) the performance of which would be compared and the 

best performing LDT panel would be selected for subsequent optimization and 

validation.  
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3.3.1 – Designing the 2x10-plex LDT (2-well design) 

The 20 SNVs were divided into two groups of 10 – each group in one well. The 

first alteration to achieve this goal was to change the multiplex level to 10. 

Additional variables were changed in “advanced settings” using a trial-and-error 

approach to incorporate the 20 SNVs into two different wells (i.e., 2x10-plex LDT 

panel). A summary of the final changes made in the settings to integrate each 

group of 10 SNVs into one well is provided (Table 0.7).  

The SNVs included in the first well were: rs61751404, rs76157638, 

ABCA4_671delG, rs61750120, rs1800728, rs61751407, rs138157885, 

rs61751402, rs62646862 and rs61751384 (multiplex SNP capture confidence 

score 99.1%) (Table 0.8). The other 10 SNVs in the second well were: 

rs61750135, rs61749459, rs61750130, rs61750131, rs61750200, 

ABCA4_4537delC, rs61750152, rs61750641, rs61752406 and rs61750121 

(multiplex SNP capture confidence score: 98.3%) (Table 0.9). The direction and 

sequence of the unextended primers (UEP), their alternative alleles that could be 

added, and the uniplex confidence score for well#1 (Table 0.10) and well#2 

(Table 0.11) of the 2x10-plex is provided. Warnings and validation hits for both 

wells are indicated in Table 0.12 and Table 0.13, respectively. 

3.3.2 – Designing the 1x20-plex LDT (1-well design) 

Using the more robust Typer4 software, 95% (i.e., 19/20) of the “rs” numbers 

were designed in one well (multiplex SNP capture confidence score: 98.6). The 

other SNV, rs61749459, was designed separately as a uniplex (SNP capture 
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confidence score: 100). This SNV was then manually added to the 1-well, 19-

plex design creating a 1-well, 20-plex design. Design settings and warnings for 

the 1-well design using Typer4 are indicated in  

Table 0.14 and Table 0.16, respectively. PCR primers (both F and R) and the 

corresponding confidence score for each assay including those with shared 

primers are provided (Table 0.15). The direction, sequence, alternative allele and 

the uniplex confidence score for the extension reaction is provided (Table 0.17). 

 

3.4 –  PRIMER MIXTURES AND ADJUSTMENTS 

The QC assessment was performed in triplicate as described in the Materials 

and Methods section. A representative histogram for the 1x20-plex LDT panel 

and the 2x10-plex LDT panel is shown in Figure 3.2 and Figure 3.3, 

respectively.  
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Figure 3.2. A representative graph of the first quality control assessment of the 1x20-
plex LDT panel. All 20 SNVs (i.e., included in the 1x20-plex LDT panel) are displayed 
with different colour bars. For each SNV, the X axis represents the mass and Y axis 
represents the signal-to-noise ratio for that SNV in the quality control assessment. The 
more equal the bars on the Y axis (i.e., SNR), the better the quality of the primers. 
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Figure 3.3. Representative pictures of the first quality control assessment for both wells 
of the 2x10-plex LDT panel. There are two wells each containing 10 SNVs. SNVs in 
each well are displayed with different colour bars. For each SNV, the X axis represents 
the mass and Y axis represents the signal-to-noise ratio for that SNV in the quality 
control assessment. In each well of the 2x10-plex LDT panel, the more equal the bars on 
the Y axis (i.e., SNR), the better the quality of the primers. 
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3.5 –  ASSESSMENT AND SELECTION OF BEST PERFORMING LDT PANEL 

The genotype call made by the Typer4 software was accurate (based on visual 

analysis) for all the 20 SNVs in each of the 14 samples across both LDT panels. 

All SNVs in both the 1x20-plex and 2x10-plex LDT panels produced a yield 

>50%. However, comparison of homozygous allele heights, including WT and 

MUT, for each SNV between the 1x20-plex and 2x10-plex LDT panels was 

performed (Table 3.3). The average peak height for all SNVs grouped together 

(i.e., irrespective of the SNV) was higher for the 2x10-plex LDT, which was 10.7 

intensity units, compared with the 1x20-plex LDT, which was 6.7 intensity units 

(Table 3.3). Also, only 1 SNV (i.e., rs61751407) generated greater average allele 

heights for the 1x20-plex LDT panel compared with the 2x10-plex LDT panel. 

Moreover, 5 SNVs (i.e., ABCA4_67-1delG, rs61750120, rs61750200, 

rs61751402, rs76157638) generated almost the same (i.e., >0.9) average allele 

height in the 1x20-plex LDT panel compared with 2x10-plex LDT panel (Table 

3.3). A comparison of heterozygous allele heights for each SNV between the 

1x20-plex and 2x10-plex LDT panels was performed (Table 3.4). However, in the 

optimization cohort there was just one heterozygous call for most SNVs. Multiple 

calls appeared in the NTC wells for both the 1x20-plex and 2x10-plex LDT 

panels. An average of 11% (i.e., 9/80) of SNVs produced calls in the NTC wells 

for both the 1x20-plex and 2x10-plex LDT panels. In the 1x20-plex LDT panel, 

more than half (i.e., 56%) of the SNVs that were automatically called in the NTC 

wells were random (i.e., not consistently automatically called across runs). 
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However, in the 2x10-plex LDT panel, only 34% of the SNVs were automatically 

called as random. 

But, the quality performance metrics for both assays (i.e., 1x20-plex and 2x10-

plex) was unsatisfactory. 

Table 3.3. Comparison of homozygous allele heights, including WT and MUT, for each 
SNV between 1x20-plex and 2x10-plex LDT panels. 

SNV ID 
Homozygous 
Allele Height 

1x20-plex 
LDT 

2x10-plex 
LDT 

ABCA4_4537delC 
Minimum 3.6 6.7 

Average 11.7 14.9 

ABCA4_67-1delG 
Minimum 3.8 2.5 

Average 8.3 8.0 

rs138157885 
Minimum 1.5 3.6 

Average 3.6 10.4 

rs1800728 
Minimum 2.8 4.8 

Average 5.8 10.4 

rs61749459 
Minimum 2.3 5.2 

Average 4.9 11.2 

rs61750120 
Minimum 2.9 3.9 

Average 9.2 9.0 

rs61750121 
Minimum 2.2 4.3 

Average 6.9 12.6 

rs61750130 
Minimum 2.3 6.0 

Average 6.5 21.9 

rs61750131 
Minimum 0.9 2.9 

Average 3.4 7.3 

rs61750135 
Minimum 2.3 5.3 

Average 7.2 13.6 

rs61750152 
Minimum 3.4 4.9 

Average 6.7 13.2 

rs61750200 
Minimum 3.1 2.7 

Average 6.9 6.9 

rs61750641 Minimum 3.9 6.1 
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Average 7.8 16.2 

rs61751384 
Minimum 2.2 3.5 

Average 6.0 8.0 

rs61751402 
Minimum 2.6 1.7 

Average 6.0 6.3 

rs61751404  
Minimum 6.9 5.6 

Average 12.3 15.7 

rs61751407 
Minimum 2.9 1.1 

Average 5.2 2.5 

rs61752406 
Minimum 2.0 3.0 

Average 4.4 8.3 

rs62646862 
Minimum 2.4 7.6 

Average 6.6 12.6 

rs76157638 
Minimum 2.5 1.7 

Average 5.1 4.7 

All 20 variants Average 6.7 10.7 

Green colour represents almost the same average allele height in both 
1x20-plex and 2x10-plex LDTs. Yellow colour represents a greater 
average allele height for the 1x20-plex vs 2x10-plex LDT. 

 
 

Table 3.4. Comparison of the averages for heterozygous allele heights, for each SNV 
between 1x20-plex and 2x10-plex designs. 

SNV ID 
Heterozygous 
Allele Height 

1x20-plex LDT 2x10-plex LDT 

Alternative 
Alleles 

Alternative 
Alleles 

ABCA4_4537delC Average 8.7 3.8 10.7 5.6 

ABCA4_67-1delG Average 4.7 3.8 4.3 2.9 

rs138157885 Average 2.0 2.0 5.3 5.9 

rs1800728 Average 4.9 3.4 6.9 4.8 

rs61749459 Average 2.2 1.8 2.1 1.9 

rs61750120 Average 4.6 4.6 3.1 2.8 

rs61750121 Average 2.8 2.6 4.2 3.3 

rs61750130 Average 3.6 3.0 6.7 5.0 

rs61750131 Average 1.4 1.8 3.7 3.7 

rs61750135 Average 5.5 4.3 7.2 5.7 

rs61750152 Average 3.4 2.2 4.9 4.4 

rs61750200 Average 3.1 2.4 4.2 3.6 
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rs61750641 Average 3.8 3.6 8.7 8.9 

rs61751384 Average 6.3 3.0 4.9 3.7 

rs61751402 Average 2.4 2.5 2.6 3.3 

rs61751404  Average 8.7 4.0 9.8 4.3 

rs61751407 Average 2.2 1.9 1.4 1.5 

rs61752406 Average 4.1 3.0 4.8 3.0 

rs62646862 Average 3.2 2.1 7.4 5.2 

rs76157638 Average 2.6 2.4 2.3 2.4 

Due to having lower number of samples in the category of heterozygous calls, 
comparison was not valid, statistically. 

 

3.5.1 – Comparison of iPLEX Gold vs iPLEX Pro 

To determine if the quality metrics were improved by replacing iPLEX Gold with 

iPLEX Pro chemistry, the optimization cohort along with two NTC wells was 

assessed in duplicate for both the 1x20-plex and 2x10-plex LDT panels. To 

assess the overall performance of the LDT panels from a peak height 

perspective between iPLEX Gold and iPLEX Pro chemistry, the overall average 

of the homozygous allele heights for all SNVs grouped together were compared 

between the 1x20-plex and the 2x10-plex LDT panels. The overall average of the 

homozygous allele heights for all SNVs grouped together in the 1x20-plex LDT 

panel was 6.7 and 12 intensity units using iPLEX Gold and iPLEX Pro chemistry, 

respectively.  

The number and percentage of samples with allele heights above and 

below the threshold of 6.7 intensity units was recorded for each group (i.e., 

iPLEX Gold vs iPLEX Pro). Table 3.5 displays the frequency and percentage of 

samples from the optimization cohort in duplicate with allele height higher or 

lower than 6.7 intensity units between iPLEX Gold and iPLEX Pro chemistries for 
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the 1x20-plex LDT panel. The number of samples that had allele heights greater 

than 6.7 intensity units was greater using the iPLEX Pro compared with iPLEX 

Gold chemistry for all SNVs except rs61751404 for the 1x20-plx LDT panel. 

There was a significant difference between the results produced using iPLEX Pro 

compared with iPLEX Gold chemistry for all SNVs except rs61751404 (Table 

3.5). With respect to automated genotype calls in the NTC wells, the 

performance of the iPLEX Pro chemistry considerably reduced the total number 

of incorrect automated genotype calls (<1%) and all SNVs that were called were 

random with the 1x20-plex LDT panel.  

 
Table 3.5. The frequency and percentage of samples for homozygous alleles in 1x20-
plex LDT panel that were above the average (AH>6.7) using Gold vs Pro iPlex chemistry 
in duplicate. 

SNV ID 
Homozygous 

Allele height 

iPLEX Chemistry* 
P-value 

Gold Pro 

ABCA4_4537delC 
AH>6.7 68%  

(17/25) 
96%  

(25/26) 0.0109 
AH<6.7 32%    

(8/25) 
4%      

(1/26) 

ABCA4_67-1delG 
AH>6.7 71% 

17/24 
92% 
22/24 <0.0001 

AH<6.7 29% 
7/24 

8% 
2/24 

rs138157885 
AH>6.7 0% 

0/25 
58% 
15/26 <0.0001 

AH<6.7 100% 
25/25 

42% 
11/26 

rs1800728 
AH>6.7 32% 

8/25 
69% 
18/26 0.0118 

AH<6.7 68% 
17/25 

31% 
8/26 
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rs61749459 
AH>6.7 4% 

1/25 
73% 
19/26 <0.0001 

AH<6.7 96% 
24/25 

27% 
7/26 

rs61750120 
AH>6.7 48% 

12/25 
100% 
26/26 <0.0001 

AH<6.7 52% 
13/25 

0% 
0/26 

rs61750121 
AH>6.7 40% 

10/25 
100% 
26/26 <0.0001 

AH<6.7 60% 
15/25 

0% 
0/26 

rs61750130 
AH>6.7 40% 

10/25 
75% 
18/24 0.0209 

AH<6.7 60% 
15/25 

25% 
6/24 

rs61750131 
AH>6.7 0% 

0/25 
48% 
12/25 <0.0001 

AH<6.7 100% 
25/25 

52% 
13/25 

rs61750135 
AH>6.7 44% 

11/25 
96% 
23/24 0.0001 

AH<6.7 56% 
14/25 

4% 
1/24 

rs61750152 
AH>6.7 44% 

11/25 
88% 
23/26 0.001 

AH<6.7 56% 
14/25 

12% 
3/26 

rs61750200 
AH>6.7 36% 

9/25 
100% 
25/25 <0.0001 

AH<6.7 64% 
16/25 

0% 
0/25 

rs61750641 
AH>6.7 48% 

12/25 
100% 
26/26 <0.0001 

AH<6.7 52% 
13/25 

0% 
0/26 

rs61751384 
AH>6.7 31% 

8/26 
96% 
25/26 <0.0001 

AH<6.7 69% 
18/26 

4% 
1/26 

rs61751402 
AH>6.7 32% 

8/25 
96% 
25/26 <0.0001 

AH<6.7 68% 
17/25 

4% 
1/26 
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rs61751404 
AH>6.7 96% 

24/25 
100% 
26/26 0.4902 

AH<6.7 4% 
1/25 

0% 
0/26 

rs61751407 
AH>6.7 0% 

0/19 
90% 
18/20 <0.0001 

AH<6.7 100% 
19/19 

10% 
2/20 

rs61752406 
AH>6.7 9% 

2/23 
92% 
22/24 

< 

0.0001 AH<6.7 91% 
21/23 

8% 
2/24 

rs62646862 
AH>6.7 32% 

7/22 
96% 
23/24 

< 

0.0001 AH<6.7 68% 
15/22 

4% 
1/24 

rs76157638 
AH>6.7 11% 

2/19 
83% 
15/18 

< 

0.0001 AH<6.7 89% 
17/19 

17% 
3/18 

*Some samples failed to yield a genotype for certain variants in the multiplex 
assay. 

 

 The optimization cohort samples were assessed in duplicate using the 

2x10-plex LDT with the iPLEX Gold and the iPLEX Pro. The average of 

homozygous allele heights with iPLEX Gold chemistry for all the 20 SNVs was 

calculated at 10.7 units. The number of samples with peak heights above and 

below threshold of 10.7 was recorded for each group (i.e., iPLEX Gold vs iPLEX 

Pro). Table 3.6 displays the number of times the 14 samples produced a peak 

height higher and lower than 10.7 using Gold vs Pro chemistry. In the 2x10-plex 

LDT panel, 40% (i.e., 8/20) of SNVs failed to show a significant difference using 

the two different chemistries. Ten out of 20 SNVs (i.e., 50%) performed better 

using iPLEX Pro chemistry while only 2 out of 20 SNVs (i.e., 10%) performed 

better using the iPLEX Gold chemistry. With respect to automated genotype calls 
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in the NTC wells, the performance of the iPLEX Pro chemistry considerably 

reduced the total number of genotype calls (1.25%) and 50% of all SNVs that 

were called were random with the 2x10-plex LDT panel (Table 3.7). 

Table 3.6. The number and percentage of samples for the homozygous allele in the 
2x10-plex LDT panel that were above the average allele height (AH>10.7) using iPLEX 
Gold vs iPLEX Pro chemistry in duplicate. 

SNV ID 
Homozygous 
Allele height 

iPLEX Chemistry* 
P-value 

Gold Pro 

ABCA4_4537delC 

AH>10.7 
62% 
16/26 

85% 
22/26 

0.1164 

AH<10.7 
38% 
10/26 

15% 
4/26 

ABCA4_67-1delG 

AH>10.7 
12% 
3/26 

0% 
0/25 

0.2353 

AH<10.7 
88% 
23/26 

100% 
25/25 

rs138157885 

AH>10.7 
52% 
13/25 

100% 
26/26 

<0.0001 

AH<10.7 
48% 
12/25 

0% 
0/26 

rs1800728 

AH>10.7 
38% 
10/26 

8% 
2/26 

0.0188 

AH<10.7 
62% 
16/26 

92% 
24/26 

rs61749459 

AH>10.7 
46% 
12/26 

73% 
19/26 

0.0889 

AH<10.7 
54% 
14/26 

27% 
7/26 

rs61750120 

AH>10.7 
23% 
6/26 

73% 
19/26 

0.0007 

AH<10.7 
77% 
20/26 

27% 
7/26 

rs61750121 

AH>10.7 
52% 
13/25 

96% 
25/26 

0.0003 

AH<10.7 
48% 
12/25 

4% 
1/26 

rs61750130 

AH>10.7 
88% 
23/26 

73% 
19/26 

0.2913 

AH<10.7 
12% 
3/26 

27% 
7/26 
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rs61750131 

AH>10.7 
31% 
8/26 

46% 
12/26 

0.3929 

AH<10.7 
69% 
18/26 

54% 
14/26 

rs61750135 

AH>10.7 
50% 
13/26 

96% 
25/26 

0.0003 

AH<10.7 
50% 
13/26 

4% 
1/26 

rs61750152 

AH>10.7 
58% 
15/26 

92% 
24/26 

0.0087 

AH<10.7 
42% 
11/26 

8% 
2/26 

rs61750200 

AH>10.7 
23% 
6/26 

27% 
7/26 

1 

AH<10.7 
77% 
20/26 

73% 
19/26 

rs61750641 

AH>10.7 
69% 
18/26 

100% 
26/26 

<0.0042 

AH<10.7 
31% 
8/26 

0% 
0/26 

rs61751384 

AH>10.7 
23% 
6/26 

69% 
18/26 

<0.019 

AH<10.7 
77% 
20/26 

31% 
8/26 

rs61751402 

AH>10.7 
5% 
1/20 

58% 
15/26 

< 0.0002 

AH<10.7 
95% 
19/20 

42% 
11/26 

rs61751404 

AH>10.7 
88% 
23/26 

85% 
22/26 

1 

AH<10.7 
12% 
3/26 

15% 
4/26 

rs61751407 

AH>10.7 
11% 
2/19 

10% 
2/20 

1 

AH<10.7 
89% 
17/19 

90% 
18/20 

rs61752406 

AH>10.7 
33% 
8/24 

96% 
23/24 

< 0.0001 

AH<10.7 
67% 
16/24 

4% 
1/24 

rs62646862 

AH>10.7 
63% 
15/24 

92% 
22/24 

0.0363 

AH<10.7 
38% 
9/24 

8% 
2/24 

rs76157638 AH>10.7 
0% 
0/20 

89% 
17/19 

< 0.0001 
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AH<10.7 100% 
20/20 

11% 
2/19 

*Some samples failed to yield a genotype for certain variants in the multiplex assay. 
 
 
Table 3.7. The percentage of calls and reproducibility of calls for the NTC in the 1x20-
plex and 2x10-plex LDT panel using different iPLEX chemistries. 

1x20-plex 2x10-plex 

Gold 
chemistry 

Pro 
chemistry* 

Gold 
chemistry 

Pro 
chemistry* 

11%            
(9/80) 

0.94%            
(3/320) 

11%            
(9/80) 

1.25%            
(4/320) 

44% non-
random calls 

0% non-
random calls 

66% non-
random calls 

50% non-
random calls 

*More than two NTC wells per run. 

 

3.5.2 – Comparison of 2x10-plex vs 1x20-plex LDT (iPLEX Pro ONLY) 

To determine the differences between the 2x10-plex and the 1x20-plex LDT 

panels, the optimization samples were assessed for each panel in triplicate using 

iPlex Pro chemistry. If a sample failed to yield a genotype for a certain SNV in 

one of the triplicate runs, it was confirmed that the same sample produced the 

correct genotype call for that SNV in the other replicate runs. We used the same 

experimental conditions (i.e., same PCR primer mix, extension primer mix and 

thermal cycling parameters) to select the best LDT panel based on: 1) no 

genotype calls in the NTC wells; and 2) the quality performance (i.e., allele height 

and yield) of the SNVs for each sample. The average and minimum yield values 

for all SNVs in all 3 runs of the 1x20-plex and the 2x10-plex LDT panels were 

higher than the 50% threshold. Table 3.8 shows the comparison of the average 

and minimum value of homozygous allele heights for all samples based on 3 
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different runs of the 1x20-plex and the 2x10-plex LDT panels for each of the 20 

SNVs. Four out of 20 SNVs (i.e., 20%) had a minimal difference (i.e., <1.0 

intensity unit) in allele height for homozygous calls in both LDT panels. Five out 

of 20 SNVs (i.e., 25%) had a higher average allele height for homozygous calls in 

the 1x20-plex LDT panel compared with the 2x10-plex LDT panel. Eleven out of 

20 SNVs (i.e., 55%) had a higher average allele height for homozygous calls in 

the 2x10-plex LDT compared with the 1x20-plex LDT panel (Table 3.8). The 

comparison of the average values of heterozygous allele heights is displayed in 

Table 3.9. Two out of 20 SNVs (i.e., 10%) had a minimal difference (i.e., <0.5 

intensity unit) in allele height for heterozygous calls in both LDT panels. Eight out 

of 20 SNVs (i.e., 40%) had a higher average allele height for heterozygous calls 

in the 1x20-plex LDT panel compared with the 2x10-plex LDT panel. Ten out of 

20 SNVs (i.e., 50%) had a higher average allele height for heterozygous calls in 

the 2x10-plex LDT panel compared with the 1x20-plex LDT panel (Table 3.9). No 

automated genotype calls (i.e., 0/120) were observed in the NTC wells of the 

1x20-plex LDT panel; however, an average of 2.5% (i.e., 3/120) of SNVs 

produced genotype calls in the NTC wells for the 2x10-plex LDT panel. 

Noteworthy, 2/3 of the automated genotype calls in the NTC wells in the 2x10-

plex LDT panel occurred with the same SNV.  
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Table 3.8. The average and minimum value of homozygous allele heights for all 
samples based on 3 different runs of the 1x20-plex vs 2x10-plex LDT panels for each of 
the 20 SNVs. 

SNV ID 
Homozygous 
Allele Height 

1x20-plex 
LDT 

2x10-plex 
LDT 

ABCA4_4537delC 
Minimum 4.0 6.3 

Average 9.8 19.1 

ABCA4_67-1delG 
Minimum 9.0 3.7 

Average 16.4 8.1 

rs138157885 
Minimum 5.0 9.8 

Average 8.2 21.0 

rs1800728 
Minimum 4.5 4.2 

Average 9.3 8.6 

rs61749459 
Minimum 4.5 4.8 

Average 8.2 14.3 

rs61750120 
Minimum 8.2 6.4 

Average 13.8 14.5 

rs61750121 
Minimum 5.6 10.8 

Average 10.2 20.1 

rs61750130 
Minimum 2.9 5.0 

Average 6.6 15.4 

rs61750131 
Minimum 3.6 3.0 

Average 7.1 10.7 

rs61750135 
Minimum 5.6 6.2 

Average 11.2 21.0 

rs61750152 
Minimum 6.0 8.3 

Average 10.7 21.1 

rs61750200 
Minimum 7.6 4.2 

Average 13.0 11.1 

rs61750641 
Minimum 8.0 10.2 

Average 13.7 25.8 

rs61751384 
Minimum 4.6 6.3 

Average 9.1 14.0 

rs61751402 
Minimum 7.9 5.9 

Average 13.5 12.5 

rs61751404 Minimum 9.7 7.3 
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Average 19.6 18.3 

rs61751407 
Minimum 5.2 1.5 

Average 7.7 3.8 

rs61752406 
Minimum 10.8 5.9 

Average 17.5 17.4 

rs62646862 
Minimum 7.4 8.7 

Average 13.1 19.9 

rs76157638 
Minimum 9.8 11.9 

Average 16.6 16.7 

Green colour represents a similar yield regarding average allele 

height in both 1x20-plex and 2x10-plex LDT panels. Yellow colour 

represents a greater yield regarding the average allele height for 

the 1x20-plex compared with the 2x10-plex LDT panel. Red colour 

represents a greater yield regarding average allele height for the 

2x10-plex compared with the 1x20-plex LDT panel. 

 

Table 3.9. The average and minimum value of heterozygous allele heights for all 
samples based on 3 different runs of the 1x20-plex vs 2x10-plex LDTs for each of the 20 
SNVs. 

 

SNV ID 
Heterozygous 

1x20-plex LDT 2x10-plex LDT 
Allele Height 

ABCA4_4537delC 
Minimum 3.5 3.2 6.1 5.3 

Average 5.7 4.7 7.7 6.8 

ABCA4_67-1delG 
Minimum 1.2 1.6 1.9 2.5 

Average 3.7 5.3 2.9 3.4 

rs138157885 
Minimum 3.8 4.9 4.4 5.3 

Average 4.4 5.5 6.4 8.3 

rs1800728 
Minimum 5.1 5.4 2.8 2.7 

Average 5.4 5.5 3.1 3.1 

rs61749459 
Minimum 3.2 2.8 3.9 4.3 

Average 3.8 3.2 4.0 4.5 

rs61750120 
Minimum 3.8 4.0 3.4 4.0 

Average 4.8 5.7 4.4 5.4 

rs61750121 
Minimum 3.1 3.0 5.1 5.4 

Average 3.8 3.4 8.1 7.3 
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rs61750130 
Minimum 2.8 2.6 4.5 4.7 

Average 4.1 3.8 5.0 5.0 

rs61750131 
Minimum 2.5 3.3 3.3 3.4 

Average 2.8 3.5 5.3 5.4 

rs61750135 
Minimum 5.8 5.4 6.6 7.5 

Average 7.4 7.1 8.2 8.8 

rs61750152 
Minimum 3.1 3.9 5.0 6.1 

Average 5.0 4.9 8.8 10.2 

rs61750200 
Minimum 6.3 4.3 5.9 3.2 

Average 8.1 5.4 7.2 4.8 

rs61750641 
Minimum 5.3 5.2 8.1 9.8 

Average 6.7 6.3 8.9 10.5 

rs61751384 
Minimum 3.5 3.6 3.4 3.4 

Average 3.8 3.8 6.1 5.9 

rs61751402 
Minimum 4.4 5.6 3.3 3.6 

Average 5.4 6.6 4.8 5.3 

rs61751404 
Minimum 9.8 7.4 5.1 3.2 

Average 12.5 8.1 9.6 5.9 

rs61751407 
Minimum 3.3 3.2 1.8 1.6 

Average 4.3 4.1 2.2 2.3 

rs61752406 
Minimum 6.5 4.5 7.2 5.9 

Average 11.4 8.3 8.1 6.8 

rs62646862 
Minimum 5.1 3.2 4.8 5.6 

Average 5.5 4.2 7.3 8.6 

rs76157638 
Minimum 2.4 3.1 3.0 4.7 

Average 4.9 6.0 4.0 5.9 

Green colour represents a similar yield regarding average allele 

height in both 1x20-plex and 2x10-plex LDT panels. Yellow colour 

represents a greater yield regarding the average allele height for the 

1x20-plex compared with the 2x10-plex LDT panel. Red colour 

represents a greater yield regarding average allele height for the 

2x10-plex compared with the 1x20-plex LDT panel. 

3.6 –  CONFIRMATION OF GENOTYPES BY SANGER SEQUENCING 

Sanger sequencing was performed on all samples in the optimization cohort to 

confirm the result from the LDT panels. Three (3) amplicons covering exons 5, 22 
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and 39 were redesigned as the results from using the initially designed primers 

were unsatisfactory (data not shown). The pathogenic variants detected in the 

optimization cohort using the 1x20-plex LDT panel were confirmed using Sanger 

sequencing (Table 3.10). A representative electropherogram displaying each of 

the 20 pathogenic variants in the optimization cohort is displayed in Figure 3.4. 

The electropherogram for the individual who was homozygous for the 

c.5714+5G>A SNV is also displayed in Fig 3.4C. 
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Table 3.10. The pathogenic variants detected in the optimization cohort using the 1x20-
plex LDT panel and Sanger sequencing. 

DNA # Pathogenic Variants 
Detected 
by both 
LDTs 

Bidirectional 
Sanger 

Sequencing 

1 
c.[2588G>C; 

5714+5G>A];[5714+5G>A] 
Yes Yes 

2 c.[2588G>C];[4537delC] Yes Yes 

3 c.[2588G>C];[6449G>A] Yes Yes 

4 c.[67-1delG];[5714+5G>A] Yes Yes 

5 c.[634C>T];[5714+5G>A] Yes Yes 

6 
c. [2588G>C;5714+5G>A]; [5461-

10T>C] 
Yes Yes 

7 c.[3322C>T];[3323G>A] Yes 
Yes (only F 

strand) 

8 
c. [455G>A; 5714+5G>A]; 

[4163T>C] 
Yes Yes 

9 c.[4469G>A];[6089G>A] Yes Yes 

10 c.[2564G>A];[4139C>T] Yes Yes 

11 c.[1522C>T];[2564G>A] Yes Yes 

12 c. [455G>A];[4577C>T] Yes Yes 

13 c.[4222T>C; 4918C>T]; ? Yes Yes 

14 c.[3064G>A ];? Yes Yes 
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Figure 3.4. Representative electropherograms (A-C) of the 20 pathogenic variants 
included in the optimization cohort using Sanger sequencing. All 20 SNVs included in 
the LDT panels are displayed in heterozygous status. Figure 3.4C includes a 
representative electropherogram of the only individual who was homozygous for the 
C.5714+5 G>A SNV in the optimization cohort. 

3.7 –  OPTIMIZATION OF THE 1X20-PLEX LDT PANEL 

3.7.1 – Adjustments to eliminate automated genotype calls in NTC wells  

To determine if increasing the annealing temperature resulted in elimination of 

automated genotype calls in the NTC wells, the optimization cohort including 2 

NTC wells was assessed using the 1x20-plex LDT panel. The increase in 

annealing temperature did not eliminate automated genotype calls in the NTC 

wells, as 1.25% (i.e., 1/80) of SNVs were still called in the NTC wells. However, 
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we noticed that changing the annealing temperature contributed to a significant 

decrease in the yield and allele heights of all the optimization cohort samples for 

all SNVs.  

To determine if an interaction between PCR or EXT primers might cause 

automated genotype calls in the NTC wells, the optimization cohort including two 

regular NTC wells in addition to four NTC wells that had all required reagents 

except for PCR primers was assessed on the 1x20-plex LDT panel. In the four 

NTC wells without any PCR primers, there were no automated genotype calls. 

However, for the NTC wells that contained both PCR and EXT primers, 1.25% 

(i.e., 1/80) of SNVs still produced automated genotype calls.  

To determine if using UNG enzyme results in elimination of automated 

genotype calls in the NTC wells, the optimization cohort including two NTC wells 

using the UNG kit was assessed using the 1x20-plex LDT in triplicate. The UNG 

enzyme failed to completely eliminate the automated genotype calls in the NTC 

wells across three runs. The percentage of SNVs that generated automated 

genotype calls in NTC wells for each run was as follows: 1st run (3.75% or 3/80 

SNVs); 2nd run (1.25% or 1/80 SNVs); and 3rd run (5% or 4/80 SNVs). Also, all 

SNVs that produced a call in the NTC wells were random. 
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3.7.2 – Adjustments to increase allele height  

3.7.2.1 – Nanodispenser adjustments 

To determine if there was a correlation between the spotted volume and the peak 

height, a range of 355-365 samples (i.e., samples used in 2.6.2.3) were selected. 

There was no significant difference (p=0.6090) when samples were spotted with 

or without the auto-tuning function enabled (Table 0.18). However, with auto-

tuning enabled, the spotted volumes were closer to the target volume, which was 

set to 14nl of volume (Table 0.18). 

To determine if the viscosity of the multiplex assay affects the volume 

spotted, 64 samples were spotted with and without the detergent Tween 20. 

There was no significant difference (p=0.4316) when samples were spotted with 

and without Tween 20 (Table 0.19). However, with Tween 20 the spotted 

volumes were closer to the target volume, which was set to 14nl of volume 

(Table 0.19). 

To determine if there was a correlation between the spotted volume and 

the peak height, a range of 355-365 samples (i.e., samples used in 2.7.2.3) were 

selected. Interestingly, there was no significant difference between the two 

groups that were spotted using a predetermined cut-off (i.e., <14nl and >14nl) for 

the SNVs (Table 0.20). However, the rs61750152 SNV showed a significant 

difference (p=0.0346) between the two groups. 
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3.7.2.2 – Adjustment of PCR/extension primer pool based on optimization cohort 

To determine if the new extension mix resulted in higher quality performance of 

the SNVs (i.e., specifically achieving higher AH), the optimization cohort was 

assessed using the 1x20-plex LDT panel with the old EXT primer cocktail and 

with the newly made EXT primer cocktail. The average allele height for three (3) 

SNVs (i.e., ABCA4_4537delC, rs61750131 and rs61751407) was lower 

compared with the rest of the tested SNVs. The average value of the 

unexpended primer for those same SNVs was above 80%. Increasing the 

amount (i.e., by double) of the extension primers for those three (3) variants 

failed to improve the average values for yield and unextended primer. Table 0.21 

represents the homozygous and heterozygous AHs for the ABCA4_4537delC, 

rs61750131 and rs61751407 SNVs with the old and new extension primers. For 

the ABCA4_4537delC and rs61750131 SNVs, the AH for both homozygous and 

heterozygous calls was improved using the new EXT primer mix.  

To determine if having unsatisfactory AHs for specific SNVs is due to a low 

amount of PCR product (i.e., as a result of low PCR primers in the mix), the 

percentage of used primer (UP) was calculated for each SNV run in triplicate. 

The SNVs, rs138157885, rs1800728 and rs61749459, produced an 

unsatisfactory minimum allele height and had a UP under 80%. Comparing the 

data using old PCR mix and new PCR mix failed to improve the average values 

for yield and unextended primer. Table 0.22 represents the homozygous and 

heterozygous AH for rs138157885, rs1800728 and rs61749459 with the old and 
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new extension primers. Using new PCR mix did not result in an improvement of 

AH for homozygous calls compared with using the new extension mix. 

Interestingly, the average and minimum values for AH homozygous calls for the 

rs1800728 SNV decreased, but the AH homozygous call increased. 

3.7.2.3 – Allele frequency determination 

A total number of 1039 control samples were tested for the 20 most common 

ABCA4 mutations causing STGD1 in the NL population. In the multiplex panel of 

1039 individuals, a range of 987-1024 control samples was successful in 

generating a genotype call. The MAF of the 20 mutations within populations of 

European descent, ranged from 0% to 0.50% (i.e., NL and non-NL controls 

combined). This data was compared with the MAF of all 20 SNVs for European 

non-Finnish population using EXAC browser (Table 3.11).  

 The MAF of the 20 mutations in the NL population ranged from 0% to 0.76 

% (Table 3.12). Five SNVs had a higher MAF in the NL population including 

rs61752406, rs76157638, rs61750130, rs1800728 and rs61751407 (pathogenic 

variants c.2564G>A, c.2588G>C, c.4139C>T, c.5461-10T>C, and c.5714+5G>A, 

respectively). The c.5714+5G>A SNV MAF was significantly increased in the NL 

population compared with the non-NL populations (p-value = 0.0078).  

The MAF of the 20 mutations in the non-NL population ranged from 0% to 

0.60% (Table 3.12). The MAF for the rs61750120 SNV and the rs62646862 SNV 

(i.e., c.3322C>T and c.455G>A mutations, respectively) were higher in the non-
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NL population compared with the NL population controls, but this was not 

statistically significant (p-value=0.4858). Interestingly, the rs61750120 SNV (i.e., 

c.3322C>T) was homozygous in a single non-NL individual, which was not 

reported in the EXAC browser and also was not detected in the NL population. 

Another non-NL sample was a heterozygous for the c.67-1delG mutation, which 

is a novel mutation found in just one family from NL.
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Table 3.11. Comparison of the MAF of the 20 mutations within populations of European descent and European non-Finish 
from ExAC browser. 

 

Mutations c.4163T>C c.4222T>C c.4469G>A c.4537delC c.4577C>T c.4918C>T c.5461-10T>C c.5714+5G>A c.6089G>A c.6449G>A
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Total number of Allele 2034 2036 2040 2036 2044 2044 2030 2038 2038 2042

Allele Frequency combined (in NL+non-NL )(%) 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0493% 0.3925% 0.0000% 0.0000%

 European Non-Finnish  (%) 0.0015% 0.0015% 0.0384% unknown 0.0030% 0.0015% 0.0391% 0.0616% 0.0554% 0.0045%

Total number of Allele 66158 66536 31222 unknown 66736 66728 66486 66522 66736 66734

Total number of Homo unknown

Allele Frequency combined (in NL + non-NL)

Allele Frequency from ExAC browser
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Table 3.12. Carrier frequency and MAF in NL and non-NL 

 

Mutations c.67-1delG c.455G>A c.634C>T c.1522C>T c.2564G>A c.2588G>C c.3064G>A c.3322C>T c.3323G>A c.4139C>T

RS# A
BC

A
4_

67
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lG

rs
62
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62

rs
61
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00
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13
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rs
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rs
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59

rs
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rs
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#2
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Total number of Samples 527 493 525 526 525 521 526 526 526 523

Total number of WT 527 489 525 526 521 517 526 526 526 522

Total number of Het 0 4 0 0 4 4 0 0 0 1

Total number of Homo (mut) 0 0 0 0 0 0 0 0 0 0

WT (%) 100.00% 99.19% 100.00% 100.00% 99.24% 99.23% 100.00% 100.00% 100.00% 99.81%

Het (%) 0.00% 0.81% 0.00% 0.00% 0.76% 0.77% 0.00% 0.00% 0.00% 0.19%

Homo (mut) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Total number of Alleles 1054 986 1050 1052 1050 1042 1052 1052 1052 1046

Allele Frequency in NL (%) 0.0000% 0.4057% 0.0000% 0.0000% 0.3810% 0.3839% 0.0000% 0.0000% 0.0000% 0.0956%

Allele Frequency in NL

Newfoundland and Labrador Population

Carrier Frequency in NL

Mutations c.4163T>C c.4222T>C c.4469G>A c.4537delC c.4577C>T c.4918C>T c.5461-10T>C c.5714+5G>A c.6089G>A c.6449G>A

RS# rs
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rs
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Total number of Samples 523 524 525 524 526 528 523 524 524 524

Total number of WT 523 524 525 524 526 528 522 516 524 524

Total number of Het 0 0 0 0 0 0 1 8 0 0

Total number of Homo (mut) 0 0 0 0 0 0 0 0 0 0

WT (%) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.81% 98.47% 100.00% 100.00%

Het (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 1.53% 0.00% 0.00%

Homo (mut) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Total number of Alleles 1046 1048 1050 1048 1052 1056 1046 1048 1048 1048

Allele Frequency in NL (%) 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0956% 0.7634% 0.0000% 0.0000%

Newfoundland and Labrador Population

Carrier Frequency in NL

Allele Frequency in NL
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Mutations c.67-1delG c.455G>A c.634C>T c.1522C>T c.2564G>A c.2588G>C c.3064G>A c.3322C>T c.3323G>A c.4139C>T

RS# A
BC

A
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Total number of Samples 495 494 494 498 496 491 495 497 497 494

Total number of WT 494 488 494 498 495 488 495 496 497 494

Total number of Het 1 6 0 0 1 3 0 0 0 0

Total number of Homo (mut) 0 0 0 0 0 0 0 1 0 0

WT (%) 99.80% 98.79% 100.00% 100.00% 99.80% 99.39% 100.00% 99.80% 100.00% 100.00%

Het (%) 0.20% 1.21% 0.00% 0.00% 0.20% 0.61% 0.00% 0.00% 0.00% 0.00%

Homo (mut) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.00%

Total number of Alleles 990 988 988 996 992 982 990 994 994 988

Allele Frequency in non-NL (%) 0.1010% 0.6073% 0.0000% 0.0000% 0.1008% 0.3055% 0.0000% 0.2012% 0.0000% 0.0000%

non-Newfoundland and Labrador Population

Carrier Frequency in non-NL

Allele Frequency in non-NL

Mutations c.4163T>C c.4222T>C c.4469G>A c.4537delC c.4577C>T c.4918C>T c.5461-10T>C c.5714+5G>A c.6089G>A c.6449G>A
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Total number of Samples 494 494 495 494 496 494 492 495 495 497

Total number of WT 494 494 495 494 496 494 492 495 495 497

Total number of Het 0 0 0 0 0 0 0 0 0 0

Total number of Homo (mut) 0 0 0 0 0 0 0 0 0 0

WT (%) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Het (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Homo (mut) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Total number of Alleles 988 988 990 988 992 988 984 990 990 994

Allele Frequency in non-NL (%) 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

Allele Frequency in non-NL

non-Newfoundland and Labrador Population

Carrier Frequency in non-NL
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3.7.2.4 –  Final optimization of the 1x20-plex LDT panel 

SNVs with lower quality performance were selected based on the data generated 

for AH of 400 samples from the NL control samples. All of the SNVs, with the 

exception of the list below, had more than 95% of homozygous calls above 10 

intensity units and heterozygous calls above 5 intensity units. The rs138157885 

SNV had 82% of homozygous AH>10 intensity units, rs1800728 had 94% of 

homozygous AH>10 intensity unit, and rs61749459 had 88% of homozygous 

AH>10 intensity units. Thus, a new EXT primer cocktail with increased amount of 

extension primers was made for three (3) SNV (i.e., rs138157885, rs1800728 

and rs61749459) and used to check if it improved quality performance. Table 

0.23 represents the homozygous and heterozygous AHs for the rs138157885, 

rs1800728 and rs61749459 SNVs with the new and the old extension primers. 

The AHs clearly improved after using the new EXT primer cocktail after 

adjustment. 

  



92 
 

A 

 

 
 
 
 
 
 



93 
 

B 

 

 
 
 
 
 
 



94 
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D 

 
Figure 3.5. Representative mass spectrometry pictures of all the SNVs included in the 
1x20-plex LDT panel after optimization (A-C). The coloured dotted lines indicate the 
mentioned SNV and the grey dotted lines indicate other SNVs with different masses. 
The first red dotted line with black arrow on top on the right side of each plot represents 
the unexpended primer. Having no peak (or just small peak) under that line indicates 
that most of the primer has been used. The other two (2) coloured dotted lines on the left 
side of each plot indicate the alternative alleles that can be called. Called alleles have a 
peak the line and a red arrow on the top verifies that call.  Panels A, B and C represent 
all SNVs in the 1x20-plex LDT panel in heterozygous status with an acceptable allele 
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height and SNR. Panel D represents the only mutated homozygous call in the 
optimization cohort. 

 

3.7.3 – Final calling algorithm parameters 

Based on our investigations, four important factors that need to be considered in 

order to accept an automated genotype call were: 1) yield; 2) allele height(s); 3) 

percentage of used primer; and 4) signal to noise ratio. Figure 3.6 represents the 

homozygous and heterozygous calling algorithms. 

Yield of greater than 50% and AH of greater than 10 intensity units for 

homozygous calls and greater than 5 intensity units for heterozygous calls are 

required. If the yield was greater than 50% but AH was between the range of 7 

and 10 intensity unit, and 4 and 5 intensity unit for homozygous and 

heterozygous calls respectively, then the UP% of greater than 80% and SNR of 

20 and 12 are required for homozygous and heterozygous calls, respectively. In 

case the mentioned criteria were not met, that genotype is failed and 

unacceptable. 

The requirements for a run to be acceptable with regards to the NTC were 

as below: 1) at least one NTC without any automated genotype call; and 2) 

random calls for less than 2.5% of SNVs with an automated genotype call. 
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Figure 3.6. Calling algorithm for homozygous and heterozygous calls. This algorithm 
represents the primary and secondary parameters with their respective thresholds to 
accept automated genotype calls after visual inspection. 

3.8 –  ANALYTICAL VALIDATION  

The validation cohort was comprised of 78 samples that were previously tested in 

a molecular laboratory. The phenotype and genotype of each individual 

comprising the validation cohort is indicted in Table 3.13. 
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Table 3.13. Validation cohort details of clinical and genotyping status. 

DNA # 

Status Clinical Data 

Pathogenic Variant detected by 
optimized 1x20-plex LDT Patient/pare

nt/sibling 

Indicate whether 
they have any 

clinical 
examinations 

done 

1 Relative No WT 

2 Patient Yes c.[4139C>T];[4139C>T] 

3 Parent No c.[5461-10T>C] 

4 Sibling No c.[5714+5G>A] 

5 Patient Yes c.[5714+5G>A];[5714+5G>A] 

6 Sibling Yes WT 

7 Sibling No c.[5714+5G>A] 

8 Patient Yes c.[5714+5G>A];[5714+5G>A] 

9 Patient Yes c.[5461-10T>C(;)5714+5G>A] 

10 Patient Yes WT 

11 Niece Yes WT 

12 Sibling No WT 

13 Patient Yes c.[67-1delG(;)5714+5G>A] 

14 Cousin No WT 

15 Patient Yes c.[5461-10T>C];[5461-10T>C] 

16 Sibling No WT 

17 Relative No c.[3322C>T] 

18 Patient Yes c.[5461-10T>C];[5461-10T>C] 

19 Sibling No WT 

20 Patient Yes 

c.[455G>A;4163T>C];[455G>A; 
4163T>C] 

*rs61750200 (failed to generate 
a call) 

21 Patient Yes c.[5714+5G>A];[5714+5G>A] 

22 Patient Yes c.[5714+5G>A];[5714+5G>A] 

23 Sibling No WT 

24 Sibling No c.[4469G>A] 

25 Parent No c.[5714+5G>A] 

26 Parent No c.[1522C>T] 

27 Parent No WT 

28 Patient Yes c.[5714+5G>A];[5714+5G>A] 

29 Patient Yes c.[4577C>T] 
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30 Sibling No WT 

31 Parent No c.[5714+5G>A] 

32 Sibling No c.[5714+5G>A] 

33 Parent No c.[4537delC] 

34 Parent No c.[5714+5G>A] 

35 Parent Yes WT 

36 Patient Yes c.[5461-10T>C(;)5714+5G>A] 

37 Parent No c.[5461-10T>C] 

38 Patient Yes WT 

39 Patient Yes c.[67-1delG(;)5714+5G>A]  

40 Sibling No c.[2588G>C(;)5714+5G>A]  

41 Patient Yes c.[4139C>T(;)5714+5G>A] 

42 Patient Yes c.[4577C>T(;)5714+5G>A] 

43 Parent No c.[5461-10T>C] 

44 Relative No c.[2564G>A] 

45 Patient Yes 
c.[455G>A(;)4163T>C(;)5714+

5G>A] 

46 Patient Yes c.[5714+5G>A];[5714+5G>A] 

47 Relative No c.[3322C>T] 

48 Patient Yes c.[3322C>T(;)5714+5G>A] 

49 Patient Yes 

c.[455G>A;4163T>C];[455G>A; 
4163T>C] 

*rs61750200 (failed to generate 
a call) 

50 Sibling No c.[2588G>C(;)5714+5G>A]  

51 Patient Yes 
c.[455G>A(;)4163T>C(;)4469G

>A] 

52 Patient Yes 
c.[455G>A(;)4163T>C(;)5714+

5G>A] 

53 Parent No c. [2588G>C(;)5714+5G>A] 

54 Relative No c.[455G>A] 

55 Parent No c.[5461-10T>C] 

56 Patient Yes c.[5461-10T>C];[5461-10T>C]   

57 Patient Yes WT 

58 Patient Yes c.[3322C>T(;)5714+5G>A] 

59 Patient Yes c.[5714+5G>A];[5714+5G>A] 

60 Parent No c.[2588G>C] 

61 Patient Yes WT 

62 Parent No c.[5714+5G>A] 

63 Patient Yes c.[1522C>T(;)2564G>A] 
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*No genotype call was generated for the c.634C>T in sample 20 and 49. 

 

As shown in the Table 3.13, sample #20 and #49 in the validation cohort 

failed to produce any genotype call for rs61750200. Also, these two individuals 

were homozygous for the same pathogenic variants (i.e., c.4163T>C and 

c.455G>A) Sanger sequencing analysis on these individuals showed that at the 

genotype location where the EXT primer binds on the R strand, there was a 

polymorphism (i.e., c.635G>A). Sample #20 and #49 in the validation cohort 

were determined to be homozygous for the c. 635G>A SNP (Figure 3.7).  

64 Parent No c.[2564G>A] 

65 Sibling No c.[2588G>C(;)5714+5G>A] 

66 Patient Yes c. [2564G>A(;)5714+5G>A] 

67 Patient Yes WT 

68 Patient Yes WT 

69 Parent No c.[2588G>C(;)5714+5G>A]  

70 Parent No c.[2588G>C] 

71 Patient Yes c.[2564G>A];[5461-10T>C]  

72 Sibling No c.[2588G>C] 

73 Parent No c.[5714+5G>A] 

74 Parent No c.[3322C>T] 

75 Patient Yes WT 

76 Patient Yes c.[455G>A(;)5461-10T>C]  

77 Patient Yes c.[455G>A(;)5461-10T>C] 

78 Relative No c.[5461-10T>C] 
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Figure 3.7. Sanger sequencing results for sample #20 and #49 in the validation cohort 
that were homozygous for the c.635G>A SNV. 

 

All genotypes produced in the validation cohort passed the calling 

algorithm threshold criteria. The analytical validity results of the optimized 1x20-

plex LDT are displayed in Table 3.14. The validation cohort using the optimized 

1x20-plex LDT panel had an analytical sensitivity and specificity of 100%. The 

optimized 1x20-plex LDT panel displayed 100% accuracy (i.e., concordance) 

with the results from previous testing in an external reference facility. The 

optimization cohort produced the same results when assessed using the 1x20-
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plex LDT panel in triplicate (i.e., 100% precision). The reference and reportable 

ranges are indicated in Table 3.15. 

 

Table 3.14. Analytical validity of the optimized 1x20-plex LDT for the 78 samples in the 
validation cohort. 

*To determine the precision the optimization cohort was assessed 3 times.  

 

Table 3.15. Reference and reportable range for all 20 SNVs included in the 1x20-plex 
LDT panel, and the precision determined for each SNV. 

Pathogenic 
variant 

Reference 
range 

Reportable 
range 

c.67-1delG  G G, del 

c.455G>A G G, A 

c.634C>T C C, T 

c.1522C>T C C, T 

c.2564G>A G G, A 

c.2588G>C G G, C 

c.3064G>A G G, A 

c.3322C>T C C, T 

c.3323G>A G G, A 

c.4139C>T C C, T 

c.4163T>C T T, C 

c.4222T>C T T, C 

c.4469G>A G G, A 

c.4537delC C C, del 

c.4577C>T C C , T 

c.4918C>T C C, T 

c.5461-10T>C 
(IVS38) 

T T, C 

True-
positive 
rate (%) 

True-
negative 
rate (%) 

Analytical 
sensitivity 

(%) 

Analytical 
specificity 

(%) 

Accuracy 
(%) 

Precision 
(%) 

78/78 
(100%) 

 
(100%) 

 
(100%) 

 
(100%) 

78/78 
(100%) 

*42/42 
(100%) 
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c.5714+5G>A 
(IVS40) 

G G, A 

c.6089G>A G G, A 

c.6449G>A G G, A 

3.9 –  CLINICAL VALIDITY OF THE 1X20-PLEX LDT PANEL 

Assessing 15 individuals using the optimized 1x20-plex LDT panel resulted in 

identifying 1 patient with 3 pathogenic variants (i.e., c.455G>A; c.4163T>C; 

c.4469G>A), and 4 carriers (Table 3.16). Sample #1 was a carrier for the most 

common mutation in NL (i.e., c.5714+5G>A); sample #4 was a carrier for the 

c.5461-10T>C SNV and samples #11 and #12 were both carriers for c.455G>A 

SNV (Table 3.16). The individuals who were heterozygous for any SNV included 

in the panel were confirmed using Sanger sequencing. 

 

Table 3.16. Clinical and genotyping information for the unknown genotype validation 
cohort. 

DNA # 
Status Clinical 

Data 
available? 

Symptomati
c 

Pathogenic Variant by 
1x20-plex LDT Family History 

of STGD1 

1 Yes No No c.[5714+5G>A] 

2 No No No WT 

3 No Yes Yes WT 

4 Yes Yes Yes c.[5461-10T>C] 

5 No No Unknown WT 

6 No Yes Yes WT 

7 No Yes Yes WT 

8 No Yes Yes WT 

9 No Yes Yes WT 

10 No Yes Yes WT 

11 No Yes Yes c.[455G>A] 
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12 No Yes Yes c.[455G>A] 

13 No No Yes WT 

14 No Yes Yes WT 

15 Yes No Yes 
c.[455G>A(;)4163T>C(;) 

4469G>A] 

If it is not stated as (homo) variants were in heterozygous status 
 

  



104 
 

  Chapter 4 

4.0 –  DISCUSSION 

 

4.1 –  STUDY APPROACHES 

This custom LDT panel will be the preliminary test to identify the underlying 

genetic causes in individuals newly diagnosed with Stargardt or Stargardt-like 

disease, and in individuals at-risk of being a carrier in the NL population. Also, 

the panel assisted in calculating the carrier frequency for the 20 pathogenic 

variants. 

4.2 –  BENEFITS OF CLINICAL GENETIC TESTING FOR STARGARDT DISEASE 

Stargardt disease (STDG1) is a recessive disorder, which causes progressive 

loss of central vision. Clinical features of STGD1 mostly appear in the second 

decade of life (Zernant et al. 2014b). The hallmark feature of disease is the 

appearance of yellow flecks surrounding the macular area (Burke, Tsang 2011). 

Pathogenic variants in the ABCA4 gene are the only genetic contributions 

associated with STGD1. However, the ABCA4 gene is large comprised of 50 

exons. Approximately one thousand pathogenic variants have been detected in 

the ABCA4 gene that not only cause STGD1 but are also associated with 

disorders such as CRD or RP (Sangermano et al. 2016).  

The development of a successful genetic test for a condition in which a 

clinical diagnosis is often difficult to make or often happens in later stages will 

lead to immediate improvements for those individuals. Although there is no 
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specific therapy available for STGD1 yet (Auricchio, Trapani & Allikmets 2015), 

there are a number of benefits in knowing a patient’s genotype status: 1) earlier 

diagnosis including in the absence of any clinical features (i.e., asymptomatic); 2) 

preparation or planning for future use of vision-assisting tools; 3) affected 

individuals can be identified for interventional trials, such as gene therapy 

(Sangermano et al. 2016); and 4) identifying carriers can be useful for family 

planning. In addition, methods such as in vitro fertilization can assist affected and 

carrier parents to have healthy offspring. To this end, the first successful study to 

achieve an unaffected child from an STGD1 patient father and a carrier mother 

using IVF and preimplantation genetic diagnosis was performed by Sohrab et al 

in 2010 (Sohrab et al. 2010). During this project intracytoplasmic sperm injection 

produced embryos which were either affected or carriers as detected by single 

cell DNA testing. Implantation of an embryo with a single ABCA4 pathogenic 

allele resulted in delivering a healthy live born female (Sohrab et al. 2010). 

4.3 –  APPROACHES TO GENETIC TESTING FOR STARGARDT DISEASE 

According to the literature, using a targeted SNP-based microarray chip is one of 

the most common methods utilized for genetic testing of STGD1 (Burke, Tsang 

2011). However, there is a debate on the outcome of using the ABCA4 

microarray testing in routine clinical practice because there may be false positive 

or false negative results (Ernest et al. 2009). Some studies have used other 

methods (i.e., denaturing gradient gel electrophoresis, denaturing high-

performance liquid chromatography and multiplex ligation-dependent probe 
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amplification) to assist SNP-based microarray in detection of STGD1 pathogenic 

variants (Ernest et al. 2009, Aguirre-Lamban et al. 2009). Also, since some 

variants in ABCA4 causing STGD1 are ethnic-specific, general SNP-based 

microarray may not detect some of these variants. The other useful but 

expensive way of detecting pathogenic variants is using traditional Sanger 

sequencing (Aguirre-Lamban et al. 2009). Sanger sequencing has a higher and 

more successful detection rate compared with SNP-based microarray but it is 

more time-consuming and not cost-efficient (Burke, Tsang 2011, Aguirre-Lamban 

et al. 2009) (the cost for 1 sample screening 20 amplicon is ~630$ Canadian). 

The other efficient way of genotyping utilized in recent years is next generation 

sequencing (NGS) technologies, which is also beneficial in detecting novel 

mutations but remains costly to perform clinically (Chiang et al. 2015). 

This project was the first translational study at Memorial University to 

develop a clinically useful diagnostic test. Previously, research on 29 NL families 

diagnosed with STGD1 resulted in the identification of 20 common pathogenic 

variants (T.L. Young and J. Green, 2013, personal communication). Eleven out of 

these 20 pathogenic variants were recurrent pathogenic variants.  

The iPLEX chemistry with the Sequenom MassARRAY technology was 

selected as the genotyping platform for the LDT panel due to the following: 1) it 

enables multiplexing of various pathogenic variants; 2) it is a cheap (the cost for 

1 sample screening 20 amplicon is ~20$ Canadian) and a less time-consuming 

technology compared with other genotyping techniques (because fluorescent 
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dyes are not required); 3) it is a highly automated technique; 4) it uses a small 

reaction volume; 5) it has accurate genotyping calls (Blumenstiel et al. 2016, 

Farkas et al. 2010); 6) it has a more streamlined process minimizing 

contamination; and 7) it has a customizable open platform permitting custom 

panels to be designed and adding additional variants (i.e., newly discovered 

pathogenic variants) is a relatively easy process. 

A summary of the steps for genotyping with the Sequenom MassARRAY 

iPLEX chemistry is as follows: 1) amplification using PCR (required to amplify 

areas of interest); 2) cleanup step using SAP reaction; 3) primer extension; and 

4) conditioning the iPLEX reaction using resin. The last step is crucial in order to 

optimize the mass spectrometry analysis of the iPLEX reaction products because 

it deionizes the reaction products to ensure an optimal result. Matrix-assisted 

laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was 

used to identify pathogenic variants. MALDI-TOF mass spectrometric detection 

coupled with iPLEX chemistry resulted in allele-discrimination of various DNA 

samples in the multiplex LDT panel (Meyer, Ueland 2011). This technology 

represents the lowest cost-per-variant technology currently available for 

genotyping as it uses the mass of specific nucleotides to make genotype calls. 

 

4.4 –  CHALLENGES WITH DESIGNING A CUSTOM MULTIPLEX LDT PANEL 

The first challenge encountered when developing the custom LDT panel was with 

respect to the in-silico design of the multiplex reaction. Initially, specific SNVs 
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were rejected in the Assay Design Suite software and excluded from subsequent 

design due to having high dimer or hairpin potentials. Once the rejected SNVs 

were incorporated into the design by changing the stringency, the incompatibility 

of the designed primers resulted in spreading the SNVs across multiple wells. 

Given that the ultimate goal for any LDT panel for clinical testing is to be cheap, 

fast, accurate and reliable, we tried to reduce the number of wells, which would 

lower the cost and time per test.  

Two LDT panel designs were tested, a 2x10-plex and a 1x20-plex design. 

The 2x10-plex LDT panel was achieved using a trial-and-error approach with the 

Assay Design Suite software. However, due to the issues encountered designing 

the 1x20-plex LDT panel (i.e., testing all 20 pathogenic variants in one well) with 

Assay Design Suite software, the manufacturer (i.e., Agena BioSciences) 

suggested to use a desktop version of the design software called Typer4, which 

is similar to Assay Design Suite but more robust and flexible with respect to 

assay design. For example, this off-line software doesn’t produce as many 

rejects because it does not process data the same way as the Assay Design 

Suite software, thus it was better for multiplexing more SNVs in fewer wells. The 

1x20-plex LDT panel was created using the Typer4 software. The strategy of 

designing two different multiplex LDT panels enabled us to compare and contrast 

the quality performance of the 20 SNVs. The performance of any custom LDT 

panel regardless of whether it is a uniplex or multiplex assay must be analyzed in 

the laboratory in order to assess the quality of the in-silico design.  
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 Before assessing a single sample on the custom designed LDT panel, it 

was critical to adjust the extension (EXT) primers for both LDT panels. This step 

was critical because different EXT products having distinct molecular weights 

result in the detection of different alleles and the mass of extension products has 

an inverse relationship with the SNR (Farkas et al. 2010). Primers for each SNV 

were designed within a window of 4,000 to 95,000Da and every SNV allele had 

to differ by at least 5Da in mass in order for successful genotyping. Although 

having equal amounts of the EXT primers in the mix was impossible, it was 

necessary to adjust the mix in a way that the SNR for all primers was above an 

acceptable value (>15%) and almost equal to each other (using a trial-and-error 

approach) as suggested by the manufacturer in order for optimum EXT reaction 

to proceed.  

 

4.5 –  ASSESSMENT AND SELECTION OF THE BEST PERFORMING LDT PANEL  

To check the performance of each LDT panel a cohort of 14 samples that 

contained at least one heterozygous allele for each of the 20 pathogenic variants 

was assessed on both LDT panels. This allowed us to assess each SNV within a 

single run, shortening the optimization time resulting in a time-efficient and cost-

effective approach to panel development. 

The initial assessment of performance of both the 1x20-plex and 2x10-

plex LDT panels used iPLEX Gold chemistry. No false positive or false negative 

results in the tested samples were observed for either LDT panel. To determine 
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whether the obtained result was reproducible, the same samples were assessed 

again and 100% precision was achieved for both LDT panels. The yield for all 

SNVs was greater than 50% for all runs indicating that the reaction was efficient. 

However, the allele heights of the automated genotype calls were too low and 

unreliable for clinical testing. Some of the calls were as low as background noise 

(i.e., AH of 2 and 1.5 intensity units for homozygous and heterozygous calls, 

respectively). Also, in the NTC wells, multiple automated genotype calls were 

observed that were either random or were repeated in different wells. 

The quality performance metrics for both LDT panels (i.e., 1x20-plex and 

2x10-plex) was unsatisfactory attributed to: 1) the presence of genotype “calls” in 

the NTC wells for multiple assays; and 2) lower allele heights (AH) than 

expected. With respect to the observed poor quality metrics (i.e., multiple 

automated genotype calls in NTC and low AH), the manufacturer suggested that 

switching genotyping chemistry from iPLEX Gold to iPLEX Pro, as the latter has 

a higher fidelity enzyme likely to improve quality and overall performance of the 

LDT panels. Also, automated genotype calls in the NTC wells might be attributed 

to a possible negative interaction between the PCR and EXT primers. In the 

latter theory, the hybridization of various primers in the iPLEX reaction results in 

a targeted sequence of DNA for EXT primers to bind, which could explain the 

observed automated calls. However, if a call for the same SNV is observed in 

different NTC wells within a run and across runs, it strongly suggests a poor 

design of those primers in the multiplex reaction. The experiment to test for an 



111 
 

interaction between PCR and EXT primers led to a conclusion that the EXT  

primers alone were not causing SNVs to have genotype calls in the NTC wells. 

Rather, the automated genotype calls were caused by a random interaction 

between the PCR and EXT primers.  

Next, the optimization cohort was assessed using the two chemistries on 

both LDT panels. Both the 1x20-plex and 2x10-plex LDT panels performed better 

using the iPLEX Pro chemistry compared with iPLEX Gold chemistry. In order to 

compare the AH for the 1x20-plex and the 2x10-plex LDT panel using iPLEX 

Gold versus Pro chemistry, the AH were averaged regardless of the SNV. 

However, the SNVs in the 2x10-plex LDT panel displayed more complexity 

compared with the 1x20-plex LDT panel. There were always more SNVs that 

were called in the NTC wells of the 2x10-plex LDT panel compared with the 

1x20-plex LDT panel. Importantly, greater than or equal to 50% of these calls 

were non-random SNVs in the NTC wells of the 2x10-plex LDT panel. This 

finding is consistent with a design error for one or more SNVs in the 2x10-plex 

LDT panel, which were run-dependent. Given that the 1x20-plex LDT panel 

yielded better initial results for all SNVs, had significantly fewer automated 

genotype calls in the NTC wells and the automated genotype calls that appeared 

in the NTC wells were random, provided the first indication that the 1x20-plex 

LDT panel would be selected for subsequent optimization and validation. 

Although statistical analysis was performed comparing the homozygous calls 

across each SNV, a comparison across the heterozygous SNVs was not possible 
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for the initial assessment because of the small number of heterozygous alleles in 

the optimization cohort. A possible explanation for the lack of a significant 

difference in AH between the iPLEX Gold and Pro chemistry for the rs61751404 

SNV suggests that either the primer design/location or the amplicon generated 

worked sufficiently well regardless of enzyme fidelity. 

 Results obtained from assessing the optimization cohort comparing the 

1x20-plex and 2x10-plex LDT panel using only the iPLEX Pro chemistry indicated 

that although a greater number of SNVs performed better in the 2x10-plex LDT 

panel (i.e., higher allele heights) compared with the 1x20-plex LDT panel, the 

quality performance of each SNV varied. Even though the 2x10-plex LDT panel 

appeared to perform better than the 1x20-plex LDT panel based on AH of most 

SNVs (i.e., 55% had a higher average allele height for homozygous calls in the 

2x10-plex LDT panel compared with the 1x20-plex LDT panel) the 1x20-plex LDT 

panel was still selected for subsequent optimization and validation as the 1x20-

plex LDT panel did not produce automated SNV calls in the NTC wells, unlike the 

2x10-plex LDT panel. Based on multiplex design, one would expect the well 

containing a lower multiplex (i.e., 2x10-plex) to out perform a well containing a 

higher multiplex (i.e., 1x20-plex). One possible explanation for this finding is that 

the parameters used to select primers for the 1x20-plex LDT panel using the 

Typer4 software were different than parameters used to select primers for the 

2x10-plex LDT panel using the Assay Design Suite software, which would 

produce different primers for the same SNV across the two panels. 
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 Sanger sequencing was performed and confirmed the results obtained by 

the STGD1 LDT panels. Such confirmation is required for novel genomic 

discoveries and clinical validation to rule out technological artifacts (i.e., false 

positives). However, a reverse sequence was not obtained for sample #7 in the 

optimization cohort, which could be attributed to the PCR template to be used for 

the reverse sequencing was not present in sufficient amount or the possibility of 

a SNP located in the primer binding site for the reverse sequencing primer. 

4.6 –  OPTIMIZATION OF THE 1X20-PLEX LDT PANEL 

It was important to optimize the selected LDT panel since the highest sensitivity, 

specificity, accuracy and precision, a requirement for a clinical LDT panel, could 

not be achieved unless the processes and reagents used in the study were 

optimized. In order to optimize the 1x20-plex LDT panel, multiple runs were 

performed to adjust different variables. If an improvement was achieved based 

on adjustments performed in the experiment, that modification was applied to 

subsequent runs to optimize the LDT panel.  

4.6.1 – Adjustments to eliminate automated genotype calls in NTC wells 

In an attempt to eliminate the automated genotype calls in the NTC wells, the 

annealing temperature of 57 instead of 56 was used to reduce the amount of 

non-specific activity during the PCR phase. However, due to still having 

automated genotype calls in the NTC wells and the observed decrease in the AH 

for all samples (as expected), we decided to switch back to the normal annealing 

temperature. The experiment to test for an interaction between PCR and EXT 
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primers led to a conclusion that the EXT primers alone were not causing SNVs to 

have genotype calls in the NTC wells. Rather, the automated genotype calls 

were caused by an interaction between the PCR and EXT primers. In another 

attempt to eliminate the automated genotype calls in the NTC wells, Uracil N-

Glycosylase (UNG) enzyme was utilized. Using the UNG enzyme in the PCR is a 

useful way of eliminating carryover contaminations. Unfortunately, the 

percentage of SNVs that were called in the NTC wells was not reduced in 

subsequent runs. These results suggest that the automated calls in the NTC 

wells were not attributed to carryover contamination in the PCR step. 

4.6.2 – Adjustments to increase allele height 

In an attempt to increase allele heights, several experiments with the instruments 

used to spot the extended product and detect alleles were performed to 

determine the effect of: 1) auto-tuning; 2) viscosity; and 3) the relationship 

between the volume spotted and AH. From experience in order to spot the 

optimal amount of iPLEX reaction on the chip, we knew if the spotted volumes 

were below 4nl and above 40nl, the MassARRAY system was unable to detect 

any spectrum and thus could not discriminate allelic calls. Due to the 

unpredictable nature of the Nanodispenser machine to spot volumes on the chip, 

a range of 8nl to 18nl and the target volume of 14nl were selected. With this 

setup we were hoping to achieve a consistent volume spotted not below 10 or 

above 20 units. To determine if auto-tuning results in consistently higher volumes 

compared with manual spotting, 64 samples were spotted with and without the 
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auto-tuning function enabled. Given that there was no significant difference with 

the auto-tune function enabled compared with it being disabled but with the auto-

tune function enabled resulted in higher spotting volumes closer to the target 

volume (i.e., 14nl), we decided to enable this function for the optimization and 

validation in our study. 

To determine if the viscosity of the multiplex LDT panel affects the volume 

spotted, 64 samples were spotted with and without the detergent Tween 20. 

Tween-20 is a polysorbate surfactant with a fatty acid ester moiety and a long 

polyoxyethylene chain, and the decrease in viscosity caused by Tween-20 is due 

to decreasing the surface tension, which would allow a greater spotted volume 

(Vinardell, Infante 1999). That Tween 20 did not result in significantly higher 

spotting volumes suggests that the viscosity of the iPLEX reaction products was 

not a factor with respect to spotted volume. That finding coupled with adding 

another variable that could increase the chance of contamination, we decided to 

not use this detergent in the optimization and validation study. 

To determine if a correlation existed between the spotted volume and AH, 

a subset of samples used for allele frequency determination were selected. 

Based on the results of that experiment, no direct relationship or correlation was 

observed between the targeted volume (i.e., 14nl) spotted and AH. This was an 

unexpected finding as having more iPLEX reaction products spotted onto the 

chip and ionized by the MassArray system logically would be expected to 

produce higher AHs. Although lower spotted volumes produced a greater number 
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of acceptable allele heights (i.e., AH>7), higher spotted volumes yielded 

unacceptable allele heights (i.e., AH<7) in three samples for the rs61750152 

SNV, which was responsible for the statistically significant finding. A possible 

explanation for the significant difference in spotted volume and AH for the 

rs61750152 SNV suggests that either the primer design/location or the amplicon 

generated worked relatively poorly regardless of spotted volume. 

Primer (i.e., both PCR and EXT) adjustments were also made to optimize 

the 1x20-plex LDT panel. For the SNVs that performed poorly (possibly be due to 

having insufficient amount of amplification or extension products), the amount of 

primers in the mix was adjusted. Unlike adjusting the PCR cocktail (which 

resulted in no beneficial effect), doubling the amount of EXT primers in the 

extension cocktail improved the performance of the LDT panel with respect to 

AH.  

The odd finding for the rs1800728 SNV (i.e., the average and minimum 

AH values for homozygous calls decreased, but the average and minimum AH 

for heterozygous calls increased) that was observed after the amount of 3 PCR 

primers were adjusted in the PCR pool can be possibly explained by having a 

non-homogenous reaction in the plate at the time of spotting. Thus, the reaction 

non-homogeneity resulted in an overall lower AH for homozygous calls for the 

rs1800728 SNV.  
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4.6.3 – Allele frequency determination  

The initially optimized 1x20-plex LDT panel was ready to be assessed using a 

higher number of samples. Up to this point, regardless of the numerous runs that 

were performed using the 1x20-plex LDT panel, the only cohort of samples 

assessed on the LDT panel was the optimization cohort. However, to assist 

finalizing the optimization step, results from a larger cohort (i.e., 1039 alleles) 

determined the quality performance of each SNV, and assisted in improving the 

problematic SNVs. Estimating the minor allele frequency (MAF) for each 

pathogenic variant causing STGD1 was important to approximate the carrier 

frequency of the 20 pathogenic variants in the general population and to 

determine if the frequencies differ between NL and non-NL populations. As 

expected, the allele frequencies for the majority of SNVs were similar for the 

combined European descent dataset (i.e., NL and non-NL population) compared 

with the European non-Finnish dataset (ExAC browser). The finding that the MAF 

for the c.5714+5G>A SNV was significantly increased in the NL population 

compared with the non-NL population was not surprising and consistent with a 

previous study (T.L. Young and J. Green, 2013, personal communication). That 

the rs61750120 (i.e., c.3322C>T) SNV was homozygous in a single non-NL 

individual, not reported in the EXAC browser, and not detected in the NL 

population indicates a possible novel genotype. This likelihood was strengthened 

by ruling out the presence of a SNP under the primer-binding site by Sanger 

sequencing. Unfortunately, although the genotype was consistent with Stargardt 
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disease, given that the control samples used in this study were de-identified, it 

was impossible to correlate genotype findings with clinical information. 

Interestingly, a non-NL sample was heterozygous for the c.67-1delG pathogenic 

variant, which was previously discovered as a novel or family-specific pathogenic 

variant in the NL population (T.L. Young and J. Green, 2013, personal 

communication), suggesting that the individual might have NL ancestry. 

As previously mentioned, instead of visually inspecting and accepting the 

automated genotype calls, an algorithm was developed to systematically confirm 

the automated genotype calls. The large cohort of samples assessed using the 

LDT panel to determine the MAF also assisted to better understand the 

parameters and thresholds to be considered and included in the calling 

algorithm. Initially, yield and AH were selected as important factors to be 

considered. A greater than 50% yield demonstrated that the reaction was highly 

efficient. Although the AH threshold was set at 7 and 4.5 intensity units for 

homozygous and heterozygous calls respectively, with further optimization these 

numbers increased to 10 and 5 intensity units respectively. Subsequently, 

secondary parameters were selected to more stringently accept the automated 

genotype calls for homozygous and heterozygous calls, and thresholds were set 

for each parameter. The secondary parameters are applied if the primary 

parameters (i.e., yield and allele height) were below threshold but within a 

specific range (i.e., AH for homozygous between the range of 7 and 10 intensity 

unites, and for heterozygous calls between the range of 4 and 5 intensity units). 
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The secondary parameters included: 1) SNR, which determines the level of 

acquired signal to the background noise, set to be greater than 20 for 

homozygous calls and greater than 12 for heterozygous calls; and 2) the amount 

of EXT primer that was used in the reaction, was set to be greater than 80%, 

meaning that more than 80 percent of unexpended primer must be used in the 

reaction to produce the genotype call in order to be acceptable when the 

secondary parameters are applied. 

4.7 –  ANALYTICAL VALIDATION 

Prior to starting the analytical validation study, the final optimization of the 

selected 1x20-plex LDT panel was based on the data collected using the allele 

frequency cohort. A second adjustment of the EXT primer cocktail was performed 

for the SNVs that were selected as “lower quality performers”. The result was 

satisfactory as adjustment of the EXT primer cocktail for the lower quality SNVs 

improved the AH. 

 It is necessary that a test is validated (even if it has been optimized) and 

the accuracy of results proven before utilized in a clinical setting (Mattocks et al. 

2010). Results from genotyping the validation cohort were concordant with their 

previously known genotypes (i.e., accuracy of 100%) with no false-negative or 

false-positive calls. Based on Burd 2010 accuracy, precision, reportable range, 

reference interval, analytical sensitivity, and analytical specificity are the 

performance characteristics that must be established before implementation of a 

LDT. All these characteristics have to be acceptable for the test to pass, for 
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example analytical sensitivity of greater than 95% is noted (Burd 2010). Also, 

American College of Medical Genetics and the College of American Pathologists 

Molecular Genetics Laboratory Survey requires analytical sensitivity, and 

analytical specificity of 95 percent CI 93.0 to 100% and 95 percent CI 96.0 to 

100% respectively 

(https://www.cdc.gov/genomics/gtesting/file/print/fbr/bcanaval.pdf). The 1x20-plex 

LDT panel had an analytical accuracy, sensitivity, specificity and precision of 

100%, indicating that our STGD1 LDT panel passed the requirements for a 

molecular diagnostic test and it can be utilized in a clinical setting (Grosse, 

Khoury 2006, Burd 2010).  

 Interestingly, two (2) samples from the validation cohort failed to produce 

a genotype call for a specific SNV (i.e., c.634C>T) after multiple assessments 

using the 1x20-plex LDT panel. Two (2) possibilities to explain this finding were 

investigated: 1) the potential of having a SNP at the PCR primer binding site that 

prevent the amplification of the target sequence; and 2) the potential of having a 

SNP at the EXT primer binding site that prevented the amplicon from extending. 

Sanger sequencing failed to identify a SNP under the PCR primer binding site 

thus excluding this as a possibility for the observed results. Sanger sequencing 

data from a previous study (T.L. Young and J. Green, 2013, personal 

communication) revealed a SNP at the genomic location c.635G>A which is the 

primer binding site for the EXT primers. Interestingly, follow-up investigation 

revealed that the two individuals (one from this study and one from a previous 
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study) were related and possibly inherited the same genotype. Sanger 

sequencing analysis on both individuals revealed that there was a homozygous 

polymorphism at the genotype location that the EXT primer binds (i.e., 

c.635G>A) preventing the extension reaction, thus creating a null allele. 

4.8 –  CLINICAL VALIDITY 

According to Grosse et al., a diagnostic test can have a clinical utility if it has 

effective access to appropriate interventions (Grosse, Khoury 2006). In other 

words, clinical utility of a test is based on the information that a test generates 

and any outcomes produced by the test considered important to individuals and 

families (Grosse, Khoury 2006). The results from assessing a cohort of 15 

unknown patients on the optimized and validated 1x20-plex LDT panel revealed 

a patient who was carrier for multiple SNVs (i.e., heterozygous status for 3 

SNVs) tested in the panel; and 4 individuals who were carriers (i.e., each person 

detected with one heterozygous SNV that was tested in the panel). That this 

custom LDT panel identified individuals with one or more pathogenic ABCA4 

variants support the utility of this panel for individuals with Stargardt or Stargardt-

like disease. 

4.9 –  STRENGTHS AND LIMITATIONS OF STUDY 

This study represents the first KT genomics project conducted at Memorial. The 

1x20-plex LDT panel could not have been achieved without all the clinical data 

on a large cohort of samples from affected and unaffected samples that were 
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collected over several years by Dr. Jane Green. Also, her specialty in the area of 

inherited eye disorders, specifically Stargardt disease, was the biggest 

component of and motivation for starting this translational project. This study also 

complimented previous research performed by Drs. Young and Green by 

translating their findings into a clinical diagnostic. Having access to such a large 

cohort of samples (i.e., 1,039 individuals) from the general population or 

individuals that participated in other studies from Drs. Young, Rahman and 

O’Rielly enabled the estimation of allele frequencies of the 20 pathogenic 

variants and optimization of the 1x20-plex LDT panel.  

Perhaps the most important strength of this study were the lessons 

learned with respect to the issues associated with using a new technology for this 

first time, the valuable experience in assay troubleshooting and the stringent 

requirements for a clinical diagnostic. Furthermore, this study resulted in the 

introduction of a new technology to the molecular diagnostic laboratory of 

Eastern Health. This project has also paved the way for developing other 

diagnostic LDT panels using MassArray MALDI-TOF spectrophotometry. 

 This study has several weaknesses or limitations. First, there are 

approximately 1000 variants associated with STGD1 all over the world, but the 

custom 1x20-plex LDT panel can only detect the 20 SNVs currently known to be 

pathogenic in the NL population causing STGD1 that were included in the panel. 

Second, samples with a SNP under primer binding sites of either PCR or EXT 

primers for any of the SNVs in the multiplex, MassARRAY system will fail to 
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generate a genotype call for that specific SNV. This occurred in this study with 

two (2) samples (#22 and #49) in the validation cohort that had a SNP at the 

genomic binding location of the EXT primers and thus failed to generate a 

genotype call. Third, there was no access to the clinical vision information on 

population control samples to investigate the genotype-phenotype correlation. 

Fourth, the 1x20-plex LDT panel was developed, optimized, and validated using 

the Sequenom MassArray technology. The assay design may not be 

transferrable to other similar technologies with respect to multiplexing and cost. 

Finally, the assessment of the clinical validity of the 1x20-plex LDT panel was 

limited given the relatively small sample cohort. 

4.10 –   FUTURE DIRECTIONS 

Determining the practicality of this LDT panel in the clinical laboratory remains to 

be addressed. Calculating the statistical detection rate of the optimized LDT 

panel on a cohort of randomly selected participants from the NL population would 

be beneficial as a future project. A project such as this can help to determine the 

genetically unsolved cases of NL STGD1. 

4.11 –  SUMMARY AND CONCLUSION 

This was the first translational study developed at Memorial University to be used 

clinically as a diagnostic test. The primary outcome will be a comprehensive (20 

pathogenic variants), time-efficient (<24 hours) and cost-effective (~$20) 

preliminary test to identify the underlying genetic cause in individuals newly 
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diagnosed with Stargardt or Stargardt-like disease, and individuals at-risk of 

developing this condition in the NL population. Importantly, the 20-plex LDT 

panel can easily incorporate additional pathogenic variants as they become 

identified. Clinically, knowing the mutational status for this recessive disorder will 

help affected individuals or those at-risk to better plan their future (because the 

phenotype varies based on the pathogenic variants an affected individual 

carries). A genetic counselor can assist patients by educating them about the 

severity of their condition, the different stages of their disease and what tools are 

available to help them in each stage (they can be more prepared to use the 

helpful tools if they know their disease in advance). Also, the STGD1 LDT panel 

assisted in calculating the carrier frequency for the 20 pathogenic variants. Given 

the low-cost associated with this 20-plex panel and that several common 

mutations in Caucasians are included, this panel might also be utilized on 

individuals outside of the NL population with or without NL ancestry. 
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APPENDIX A. 

 

Table 0.1. Genomic location of pathogenic variants included in the custom LDT 

panel with coding sequences and corresponding FASTA format and SNV “rs” 

identification numbers 

Genomic location rs number 

NM_000350.2(ABCA4):c.5714+5G>A rs61751407 

NM_000350.2(ABCA4):c.5461-

10T>C 
rs1800728 

NM_000350.2(ABCA4):c.4163T>C rs61750131 

NM_000350.2(ABCA4):c.2564G>A rs61752406 

NM_000350.2(ABCA4):c.4139C>T rs61750130 

NM_000350.2(ABCA4):c.3322C>T rs61750120 

NM_000350.2(ABCA4):c.4577C>T rs61750152 

NM_000350.2(ABCA4):c.1522C>T rs138157885 

NM_000350.2(ABCA4):c.4469G>A rs61751402 

NM_000350.2(ABCA4):c.3323G>A rs61750121 

NM_000350.2(ABCA4):c.634C>T rs61750200 

NM_000350.2(ABCA4):c.6449G>A rs61751384 

NM_000350.2(ABCA4):c.6089G>A rs61750641 

NM_000350.2(ABCA4):c.3064G>A rs61749459 

NM_000350.2(ABCA4):c.4222T>C rs61750135 

NM_000350.2(ABCA4):c.4918C>T rs61751404 

NM_000350.2(ABCA4):c.455G>A rs62646862 

NM_000350.2(ABCA4):c.2588G>C rs76157638 

NM_000350.2(ABCA4):c.67-1delG 
FASTA 

sequence 

NM_000350.2(ABCA4):c.4537delC 
FASTA 

sequence 
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Table 0.2. Spotting settings under Method section selected for the Nanodispenser. 

 

 
Aspirate Dispense 

Time 5 (sec) 0.2(sec) 

Offset 6.75(mm) 1(mm) 

Speed 60(mm/sec) 100(sec/mm) 

 

 
Calibrant 

Dipense/aspirate 1 

Dispense speed 150 

 

Table 0.3. Forward and reverse primer sequences for Sanger sequencing the 16 exons 
in the LDT panels. 

Exo
n 

Forward primer 
sequence 

Reverse primer sequence 
Annealing 

Temperatur
e (°C) 

2 
GTCTGCTCTGGTTACGT

TTTC 
TCTAGACAAAAGGCCCAG

AC 55 

5 
GCTGTTTTCCTTTTTTT

GACCC 
ATATTTCTTGCCTTTCTCA

GG 54 

5* 
ACTGGCAAGAGCCTCA

CCT 
TCTGAATGTGAACACAAG

GAAGA 54 

6 
TTAGGACGTGGGTGTC

TTTC 
TCGTGAGGCTCTGCTACC 

55 

11 
GGCTGAAGAACAAGAC

CAAAG 
CTTGCTAAGGGAGCTCTG

G 56 

16 
CTGGGTGCTGTTGCATT

G 
ATGAATGGAGAGGGCTGG 

55 

21 
TCTGTAAGATCAGCTGC

TGG 
CTGGGTGCACTGGGGAG 

60 

22 
TCCTCACCCTCCACAG

CC 
CTAGGGCTGCAGTGAGAG

C 62 

22* 
CTAAGAGGCAGCACCA

AACC 
TTGGGAAGTAGGTTGCAT

CA 60 

28 CGCACGTGTGACATCT GTGCCCCAAACCCACAG 58 
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CC 

30 
CCTAGGGATTTGTCAG

CAAC 
CTCCCCTAGTCCCTCTGT

G 55 

31 
AAGACAACAAGCAGTTT

CAC 
TTATCTTCTGTCCCTAGTT

AATATC 54 

35 
TTCCTTCACTGATTTCT

GCTTT 
CTCAGGATGTTCAAAGAGT

GG 55 

39 
GTTTGCCCCGTTTCCAA

C 
CCCTCCCAGCTTTGGAC 

54 

39* 
ATGCTCTGCTGGACAAA

TCC 
GAGGCACCCTAATCCTCT

CC 54 

40 
TAGTGGGCCCTGTGCT

GT 
GCTCCTGAGGAAAGAAAT

GACC 60 

44 
GCCCTAGCTCTATGGT

CATC 
GCACTCTCATGAAACAGG

C 55 

47 
AGAGATTCCCAGGGCT

GG 
TCAATGGAGAACACAGGA

TCC 60 

*The redesigned primers for exon 5, 22 and 39 are indicated with an asterisk. 

 

Table 0.4. SNVs rejected and the reason for the rejection. 

rs61749459 
Rejected [244] - High dimer potential (29.09) for reverse extend 

primer. 
High hairpin potential (32.60) for forward extend primer. 

ABCA4_4537delC 
Rejected [242] - High hairpin potential (51.36) for forward 

extend primer. GGGGGG sequence blocks reverse extend 
primer design. 

rs138157885 
Rejected [244] - High dimer potential (4.52) for reverse extend 

primer. 
High hairpin potential (3.60) for forward extend primer 

 

Table 0.5. Details of design settings with 3 rejects for rs61749459, ABCA4_delC and 
rs138157885. 

Allow INDEL/MNP 
strand design 

Yes Minimum EP binding Tm 45 

Allow multiSnp strand 
design 

Yes Mplex Amp.Len.Var. ScrWt = 1 

Allowed Spacer Masses 138.1(#) Mplex Ave.Amp. ScrWt = 1 

Amp. Length ScrWt = 1 Mplex B.Score Dev. Max = 40 
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Amplicon design score 
cutoffs (u/m-plex) 

0.3, 0.4 Mplex FP ScrWt = 2 

Amplicon length control 
80, 100, 

120 
Mplex PCRP Tm.Var. ScrWt = 1 

Analyte/probe peak 
separation 

30, 0 Mplex PDimer ScrWt = 2 

Annotation type 
Scan and 
Restrict 

Mplex Repass Base Max = 60 

Assay Type SBE Multiplexing 12, 1 

By-product mass offsets none 
Mutant allele occlusion 

control 
Optimize 

Contaminant peaks none PCRP FPrime ScrWt = 100 

EP FPrime 
ScrWt = 

100 
PCRP Hp/D 

ScrWt = 10, 
w/Tags = No 

EP GC Content ScrWt = 1 PCRP Hyb.Tm 
Min = 50, Opt = 
60, Max = 80, 

ScrWt = 1 

EP Hp/D ScrWt = 10 PCRP LCase ScrWt = 1 

EP Seq.Gs 
Max = 6, 
ScrWt = 1 

PCRP Length 
Min = 18, Opt = 
20, Max = 24, 

ScrWt = 1 

EP/1stByprod. Sep. ScrWt = 1 PCRP PDimer ScrWt = 1 

Extend pausing code -1 PCRP Pc GC 
Min = 0, Opt = 
50, Max = 100, 

ScrWt = 1 

Extend primer score 
cutoff (uniplex) 

0.4 PCRP Seq.Gs 
Max = 6, ScrWt 

= 1 

Ignore dimers during 
exchange PDC 

No Primer Tags 

ACGTTGGATG
(1), 

ACGTTGGATG
(2) 

MBE EP Extend 
Max = 3, 
ScrWt = 1 

Primer-dimer control 
Min Exc Dist = 

10, Min Tm 
Exceed = 0 

MSNP Forced EP Length 
Min = 15, 
ScrWt = 1 

Report verbosity Detailed 

Mass window 
4300.0 - 
9000.0 

SNP Set Representation Once per Run 

Max alleles/SNP 4 Stop Mix iPLEX 

Max. EP length 30 Tm Calculation method 
Nearest 

Neighbor (NN.) 

Maximum EP binding 
Tm 

100 Use exchange replexing Yes, 0, No 
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Maximum Non-
templated extend primer 

5, 0, 15, 1 numOfIter 1 

Min. EP length 15 selectionCriteria 0 

 

Table 0.6.Details of settings required to remove rejects in the assay design. 

Allow INDEL/MNP strand 
design 

Yes Minimum EP 
binding Tm 

45 

Allow multiSnp strand 
design 

Yes Mplex 
Amp.Len.Var. 

ScrWt = 1 

Allowed Spacer Masses 138.1(#) Mplex Ave.Amp. ScrWt = 1 

Amp. Length ScrWt = 1 Mplex B.Score Dev. Max = 40 

Amplicon design score 
cutoffs (u/m-plex) 

0.3, 0.0 Mplex FP ScrWt = 2 

Amplicon length control 80, 100, 
700 

Mplex PCRP 
Tm.Var. 

ScrWt = 1 

Analyte/probe peak 
separation 

30, 0 Mplex PDimer ScrWt = 2 

Annotation type Scan and 
Restrict 

Mplex Repass 
Base 

Max = 60 

Assay Type SBE Multiplexing 20, 1 

By-product mass offsets none Mutant allele 
occlusion control 

Optimize 

Contaminant peaks none PCRP FPrime ScrWt = 100 

EP FPrime ScrWt = 
0.5 

PCRP Hp/D ScrWt = 10, w/Tags 
= No 

EP GC Content ScrWt = 1 PCRP Hyb.Tm Min = 50, Opt = 60, 
Max = 80, ScrWt = 1 

EP Hp/D ScrWt = 
0.6 

PCRP LCase ScrWt = 1 

EP Seq.Gs Max = 10, 
ScrWt = 0 

PCRP Length Min = 18, Opt = 20, 
Max = 24, ScrWt = 1 

EP/1stByprod. Sep. ScrWt = 1 PCRP PDimer ScrWt = 1 

Extend pausing code -1 PCRP Pc GC Min = 0, Opt = 50, 
Max = 100, ScrWt = 

1 

Extend primer score 
cutoff (uniplex) 

0.4 PCRP Seq.Gs Max = 9, ScrWt = 0 

Ignore dimers during 
exchange PDC 

No Primer Tags ACGTTGGATG(1), 
ACGTTGGATG(2) 

MBE EP Extend Max = 3, 
ScrWt = 1 

Primer-dimer 
control 

Min Exc Dist = 10, 
Min Tm Exceed = 0 

MSNP Forced EP Length Min = 15, Report verbosity Detailed 
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ScrWt = 1 

Mass window 4300.0 - 
9000.0 

SNP Set 
Representation 

Once per Run 

Max alleles/SNP 4 Stop Mix iPLEX 

Max. EP length 30 Tm Calculation 
method 

Nearest Neighbor 
(NN.) 

Maximum EP binding Tm 100 Use exchange 
replexing 

Yes, 0, No 

Maximum Non-templated 
extend primer 

5, 0, 15, 1 numOfIter 1 

Min. EP length 15 selectionCriteria 0 

The main attributes that were changed in the settings are as follow: 1) the 

amplicon length control; 2) the stringency of the false priming, dimer potential, 

hair pin potential, number of sequential G’s and overall cut-off for extension 

primers; and 3) the number of sequential G’s for PCR primers were changed. 

 

Table 0.7. Details of the 2x10-plex LDT panel design. 

Multiplexing 10, 1 Primer-dimer control 
Min Exc Dist = 10, 
Min Tm Exceed = 

0 

Max alleles/SNP 4 PCRP Length 
Min = 18, Opt = 
20, Max = 24, 

ScrWt = 1 

Allow multiSnp 
strand design 

Yes PCRP Hyb.Tm 
Min = 50, Opt = 
60, Max = 80, 

ScrWt = 1 

Allow INDEL/MNP 
strand design 

Yes PCRP Pc GC 
Min = 0, Opt = 50, 
Max = 100, ScrWt 

= 1 

Mutant allele 
occulsion control 

Optimize PCRP Seq.Gs 
Max = 6, ScrWt = 

1 

Annotation type 
Scan and 
Restrict 

PCRP LCase ScrWt = 1 

SNP Set 
Representation 

Once per Run PCRP FPrime ScrWt = 100 

Use exchange 
replexing 

Yes, 0, No PCRP Hp/D 
ScrWt = 100, 
w/Tags = No 

Report verbosity Detailed PCRP PDimer ScrWt = 1 

Amplicon length 
control 

50, 100, 1000 Amp. Length ScrWt = 1 
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Amplicon design 
score cutoffs (u/m-

plex) 
0.3, 0.4 MBE EP Extend 

Max = 3, ScrWt = 
1 

Primer Tags 

ACGTTGGATG(1
), 

ACGTTGGATG(2
) 

MSNP Forced EP 
Length 

Min = 15, ScrWt = 
1 

Min. EP length = 17 
Max. EP length = 

30 
EP Seq.Gs 

Max = 8, ScrWt = 
0 

Analyte/probe peak 
separation 

30, 10 EP/1stByprod. Sep. ScrWt = 1 

Peak mass shifts 
-

78.0(termination), 
-62.0(pausing) 

EP GC Content ScrWt = 0 

Tm Calculation 
method 

Nearest Neighbor 
(NN.) 

EP FPrime ScrWt = 1 

Minimum EP 
binding Tm 

45 EP Hp/D ScrWt = 0.5 

Maximum EP 
binding Tm 

100 Mplex FP ScrWt = 0 

Maximum Non-
templated extend 

primer 
0, 0, 15, 0 Mplex PDimer ScrWt = 0 

Extend primer 
score cutoff 

(uniplex) 
0.4 Mplex Amp.Len.Var. ScrWt = 1 

Contaminant peaks none Mplex PCRP Tm.Var. ScrWt = 1 

Mass window 4500.0 - 8500.0 Mplex Ave.Amp. ScrWt = 1 

Extend pausing 
code 

-1 Mplex Repass Base Max = 60 

By-product mass 
offsets 

none Mplex B.Score Dev. Max = 40 

The main attributes that were changed in the settings are as follows: 1) change 

the multiplex level to 10; 2) change the amplicon length control; 3) change the 

stringency of the number of sequential G’s , GC content and hairpin dimer for 

extension primers; and 4)change the stringency of multiplex primer dimer. 

 

 Table 0.8. PCR primer pairs for well#1 of the 2x10-plex LDT panel. 

SNP ID Forward PCR Reverse PCR 
Uniplex 

confidence 
score 
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rs61751404 
TGGCTAATGACG

GTGATTCC 
TTCTCAATGTGGC

CCACAAC 
86.20% 

rs76157638 
ATAGGGAGACTC

CTTCGACT 
GAAAGTACCAAGG

AAGTGGG 
100.00% 

ABCA4_67-
1delG 

CTTAGCACCACT
GAACTTTC 

GATAAAGGCCACA
CGAGTTC 

86.20% 

rs61750120 
AGACTGAGCAGC

AGCTGTTA 
CTTACTCGAGACG

CTCAATC 
93.80% 

rs1800728 
GAAGACAATGAG

CAGCTTCC 
TTGCCCCGTTTCC

AACAGTC 
88.10% 

rs61751407 
CAGCGCCACTTC

TTCCTCT 
GTGGGTATAAGGT

CCAGTTC 
86.20% 

rs138157885 
AGGTATTGATTG

ACCAGGCG 
CTGACGACATGGC

CAACTTC 
99.70% 

rs61751402 
CAGGTCAACCCT

TCACCATC 
CCCGTTGTTTGGA

GGTCAG 
97.90% 

rs62646862 
ATTTCCCCTTCAA

CACCCTG 
AGTGTCAGTGTTT

CTTCATC 
99.90% 

rs61751384 
AATGTGAGGCAC

TGTGTACC 
CACCATCTGCTTA

CTTGGAC 
97.00% 

 
 

Table 0.9. PCR primer pairs for well#2 of the 2x10-plex LDT panel. 

SNP ID Forward PCR Reverse PCR 
Uniplex 

confidence 
score 

rs61750135 
AAGAAGGTGTAC

TGCTGCCC 
GTCTATTCTCCCA

CAGATCG 
86.20% 

rs61749459 
CTAAGCCACTGC

TTTTCTCG 
CTTTCAGCTGGGC

ATAGAAC 
100.00% 

rs61750130 
AAGAAGGTGTAC

TGCTGCCC 
GTCTATTCTCCCA

CAGATCG 
86.20% 

rs61750200 
TGCAGTTCGCTC

ATGGAGTC 
GCGTCTCTGGCTG

AAGATGA 
93.80% 

ABCA4_4537 
delC 

CCCGTTGTTTGG
AGGTCAG 

CAGGTCAACCCTT
CACCATC 

88.10% 

rs61750131 
AAGAAGGTGTAC

TGCTGCCC 
GTCTATTCTCCCA

CAGATCG 
86.20% 

rs61750152 
CCAAGAAGTCGG

AGATGTTC 
TAACGTGGGTGTC

TCATTGC 
99.70% 

rs61750641 
TACTGTCCTCAG

TTTGATGC 
TTCTTCTGCTGGT

ACACCTC 
97.90% 

rs61752406 TACCCTATAGAG TGCTGCTGTCTAT 99.90% 
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GAGGATGC GGCTTAC 

rs61750121 
CTTACTCGAGAC

GCTCAATC 
AGACTGAGCAGCA

GCTGTTA 
97.00% 

 
 

Table 0.10. Extension primers for well#1 of the 2x10-plex panel. 

SNP ID 
UEP 

Direct
ion 

UEP Sequence 
Alternative 

Alleles 

Uniplex 
confiden
ce Score 

rs61751404 F17 
CCCACAACGC

CATCTTA 
C(C) T(T) 100.00% 

rs76157638 F17 
GTGGGGTTCC

ATAGTCT 
C(C) G(G) 97.50% 

ABCA4_67-
1delG 

R18 
TTCCACCACA

AAGCGAAT 
C(G) T(DEL) 99.40% 

rs61750120 F19 
GGATCTGCTC
CTGAAGTAT 

C(C) T(T) 99.50% 

rs1800728 F20 
GTTTCCAACA
GTCCTACTTC 

C(C) T(T) 98.50% 

rs61751407 R21 
TGGCCCAGGG
TGTGGCATGG

A 
C(G) T(A) 96.00% 

rs138157885 R22 
GGACATATTTA
ACATCACTGA

T 
C(G) T(A) 95.00% 

rs61751402 R22 
GGTGAGCTTC
TCCCTGGTGC

TG 
C(G) T(A) 90.80% 

rs62646862 R23 
CATCTTTCAAG
ATATCCCTTAT

T 
C(G) T(A) 100.00% 

rs61751384 R24 
TTGAGATGCT
GAATGGTGCC

CATA 
C(G) T(A) 97.10% 

 
 

Table 0.11. Extension primers for well#2 of the 2x10-plex LDT panel. 

SNP ID 
UEP 

Directi
on 

UEP 
Sequence 

Alternative Alleles 
Uniplex 
confiden
ce Score 
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rs61750135 F17 
CTTTGACCC
TTCACCCC 

C(C) T(T) 
 

90.30% 

rs61749459 R17 
ATAGAACAG
CATGTGCT 

C(G) T(A) 
 

86.90% 

rs61750130 F18 
TCCCACAGA
TCGTGCTCC 

C(C) T(T) 
 

99.40% 

rs61750200 R18 
GGCTGAAGA
TGATGAAGC 

A(T) G(C) 
 

84.20% 

ABCA4_453
7delC 

F19 
CGGGGGCCT
CCCGCCCCC

C 
C(C) A(DEL)  54.40% 

rs61750131 F19 
ACCTTTGTGT
TTTTGGCTC 

C(C) T(T) 
 

99.50% 

rs61750152 F20 
GGAAATTCT
ACAAGACCT

GA 
C(C) T(T) 

 
100.00% 

rs61750641 R21 
GCATAAAGG
TAAAGATGTT

CT 
C(G) T(A) 

 
66.70% 

rs61752406 F22 
GCTGTCTAT
GGCTTACTC

GCTT 
A(A) G(G) 

 
82.70% 

rs61750121 R22 
TGAGCAGCA
GCTGTTACC

TGAG 
C(G) A(T) T(A) 76.40% 

 
 
Table 0.12. Details of warnings in both well#1 and well#2 of 2x10-plex LDT panel 

SNP ID Warning description 

*Well#1 

rs76157638 (g) extend primer contains a GGGG sequence 

*Well#2 

rs61749459 (h) extend primer has weak extend self-dimer potential 

ABCA4_4537del
C 

(s) extend primer has weak false priming potential (0.261) with 
it's own amplicon 

(G) extend primer contains a GGGGG sequence 

(h) extend primer has weak extend hairpin potential (0.390) 

rs61750641 
(s) extend primer has weak false priming potential (0.289) with 

it's own amplicon 

*letters in the parenthesis are the software codes for each warning 
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Table 0.13. Summary of validation hits for both well#1 and well#2 of the 2x10-plex LDT 
panel. 

WELL SNP ID H.TRUE H.FALSE H.NULL H.PCR2 H.PCR1 

W1 rs76157638 1 0 0 108 14 

W1 rs61751404 1 0 0 35 18 

W1 rs62646862 1 0 0 210 87 

W1 ABCA4_67-1delG 1 0 0 20 68 

W1 rs61751407 1 0 0 28 117 

W1 rs138157885 1 0 0 23 12 

W1 rs1800728 1 0 0 31 97 

W1 rs61751384 1 0 0 34 44 

W1 rs61750120 1 0 0 2 77 

W1 rs61751402 1 0 0 61 58 

W2 rs61749459 1 0 0 43 15 

W2 rs61750641 1 0 0 38 41 

W2 rs61752406 1 0 0 29 46 

W2 rs61750152 1 0 0 49 18 

W2 rs61750200 1 0 0 122 5 

W2 rs61750130 1 0 0 15 39 

W2 ABCA4_4537delC 1 0 0 58 61 

W2 rs61750131 1 0 0 15 39 

W2 rs61750135 1 0 0 15 39 

W2 rs61750121 1 0 0 77 2 

 
 

Table 0.14. Details of design settings with Typer4 for the 1x20-plex LDT panel. 

Multiplexing: 50, 1 Primer-dimer control: 
Min Exc Dist = 

10, Min Tm 
Exceed = 0 

Max alleles/SNP: 4 PCRP Length: 
Min = 18, Opt = 
20, Max = 24, 

ScrWt = 1 

Allow multiSnp strand 
design: 

Yes PCRP Hyb.Tm: 
Min = 50, Opt = 
60, Max = 80, 

ScrWt = 1 

Allow INDEL/MNP Yes PCRP Pc GC: Min = 0, Opt = 
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strand design: 50, Max = 100, 
ScrWt = 1 

Mutant allele 
occulsion control: 

Optimize PCRP Seq.Gs: 
Max = 6, ScrWt 

= 1 

Annotation type: Scan and Restrict PCRP LCase: ScrWt = 1 

SNP Set 
Representation: 

Once per Run PCRP FPrime: ScrWt = 100 

Use exchange 
replexing: 

Yes, 0, No PCRP Hp/D: 
ScrWt = 100, 
w/Tags = No 

Report verbosity: Detailed PCRP PDimer: ScrWt = 1 

Amplicon length 
control: 

50, 100, 1000 Amp. Length: ScrWt = 1 

Amplicon design 
score cutoffs (u/m-

plex): 
0.3, 0.4 MBE EP Extend: 

Max = 3, ScrWt 
= 1 

Primer Tags: 
ACGTTGGATG(1), 
ACGTTGGATG(2) 

MSNP Forced EP 
Length: 

Min = 15, ScrWt 
= 1 

Min. EP length = 
15, Max. EP length 

= 30 
EP Seq.Gs: 

Max = 8, ScrWt 
= 0 

Analyte/probe peak 
separation: 

30, 0 EP/1stByprod. Sep.: ScrWt = 1 

Peak mass shifts: 
-78.0(termination), -

62.0(pausing) 
EP GC Content: ScrWt = 0 

Tm Calculation 
method: 

Nearest Neighbor 
(NN.) 

EP FPrime ScrWt = 1 

Minimum EP binding 
Tm: 

45 EP Hp/D ScrWt = 1 

Maximum EP binding 
Tm: 

100 Mplex FP ScrWt = 0 

Maximum Non-
templated extend 

primer: 
5, 0, 15, 1 Mplex PDimer ScrWt = 0 

Extend primer score 
cutoff (uniplex): 

0.4 Mplex Amp.Len.Var. ScrWt = 1 

Contaminant peaks: none Mplex PCRP Tm.Var. ScrWt = 1 

Mass window: 4300.0 - 9000.0 Mplex Ave.Amp. ScrWt = 1 

Extend pausing code: -1 Mplex Repass Base Max = 60 

By-product mass 
offsets: 

none Mplex B.Score Dev. Max = 40 

The main attributes that were changed in the settings are as follow: 1) change the 

multiplex level to 50; and 2) change the stringency of the primer hairpin for extension 

primers. 
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Table 0.15. PCR primer pairs for the design with Typer4 for the 1x20-plex LDT panel. 

SNP ID Forward PCR Reverse PCR 
Uniplex 

confidence 
score 

ABCA4_4537
delC 

CCCGTTGTTTGG
AGGTCAG 

CAGGTCAACCCTTC
ACCATC 

88.10% 

rs61750130 
AAGAAGGTGTAC

TGCTGCCC 
GTCTATTCTCCCAC

AGATCG 
86.20% 

rs61751384 
AATGTGAGGCA

CTGTGTACC 
CACCATCTGCTTAC

TTGGAC 
98.60% 

rs61751407 
CAGCGCCACTT

CTTCCTCT 
GTGGGTATAAGGTC

CAGTTC 
94.00% 

rs1800728 
GAAGACAATGA

GCAGCTTCC 
TTGCCCCGTTTCCA

ACAGTC 
98.50% 

rs61750131 
AAGAAGGTGTAC

TGCTGCCC 
GTCTATTCTCCCAC

AGATCG 
86.20% 

rs61750120 
AGACTGAGCAG

CAGCTGTTA 
CTTACTCGAGACGC

TCAATC 
97.00% 

rs61750200 
TGCAGTTCGCTC

ATGGAGTC 
GCGTCTCTGGCTGA

AGATGA 
93.80% 

rs61751404 
TGGCTAATGACG

GTGATTCC 
TTCTCAATGTGGCC

CACAAC 
99.70% 

rs61750135 
AAGAAGGTGTAC

TGCTGCCC 
GTCTATTCTCCCAC

AGATCG 
86.20% 

rs61751402 
CAGGTCAACCCT

TCACCATC 
CCCGTTGTTTGGAG

GTCAG 
88.10% 

rs61750152 
CCAAGAAGTCG

GAGATGTTC 
TAACGTGGGTGTCT

CATTGC 
99.70% 

ABCA4_67-
1delG 

CTTAGCACCACT
GAACTTTC 

GATAAAGGCCACAC
GAGTTC 

98.60% 

rs76157638 
ATAGGGAGACT

CCTTCGACT 
GAAAGTACCAAGGA

AGTGGG 
98.70% 

rs61752406 
TACCCTATAGAG

GAGGATGC 
TGCTGCTGTCTATG

GCTTAC 
99.90% 

rs61750641 
TTCTTCTGCTGG

TACACCTC 
TACTGTCCTCAGTTT

GATGC 
97.90% 

rs62646862 
ATTTCCCCTTCA

ACACCCTG 
AGTGTCAGTGTTTC

TTCATC 
93.50% 

rs61750121 
CTTACTCGAGAC

GCTCAATC 
AGACTGAGCAGCAG

CTGTTA 
97.00% 

rs138157885 
AGGTATTGATTG

ACCAGGCG 
CTGACGACATGGCC

AACTTC 
98.60% 
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rs61749459* 
CTTTCAGCTGGG

CATAGAAC 
CTAAGCCACTGCTT

TTCTCG 
100.00% 

*rs61749459 separately designed and manually forced into the 19-plex well creating a 
20-plex well design. 

 
 
Table 0.16. Details of warnings for the design with Typer4 for the 1x20-plex LDT panel. 

SNP ID Warning description 

rs61750200 (H) extend primer has moderate extend hairpin potential 

rs76157638 (g) extend primer contains a GGGG sequence 

rs138157885 (H) extend primer has moderate extend self-dimer potential 

 
 
 
Table 0.17. UEP for the design with Typer4 for the 1x20-plex LDT panel. 

SNP ID 
UEP 

Directio
n 

UEP Sequence 
Alternative 

Alleles 

Uniplex 
confiden
ce Score 

ABCA4_4537del
C 

F15 
GGCCTCCCGCCCC

CC 
C(C) A(DEL) 58.80% 

rs61750130 F15 
CACAGATCGTGCTC

C 
C(C) T(T) 

 
100.00% 

rs61751384 R16 
CTGAATGGTGCCCA

TA 
C(G) T(A) 

 
100.00% 

rs61751407 R15 
aAGGGTGTGGCATG

GA 
C(G) T(A) 

 
97.80% 

rs1800728 F17 
TCCAACAGTCCTAC

TTC 
C(C) T(T) 

 
100.00% 

rs61750131 F18 
CCTTTGTGTTTTTG

GCTC 
C(C) T(T) 

 
100.00% 

rs61750120 F18 
GATCTGCTCCTGAA

GTAT 
C(C) T(T) 

 
100.00% 

rs61750200 R17 
tGCTGAAGATGATG

AAGC 
A(T) G(C) 

 
84.60% 

rs61751404 F16 
ccaCCACAACGCCAT

CTTA 
C(C) T(T) 

 
100.00% 

rs61750135 F16 
ccgaTTTGACCCTTC

ACCCC 
C(C) T(T) 

 
89.80% 
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rs61751402 R15 
cgagaTTCTCCCTGG

TGCTG 
C(G) T(A) 

 
92.90% 

rs61750152 F20 
GGAAATTCTACAAG

ACCTGA 
C(C) T(T) 

 
100.00% 

ABCA4_67-1delG R16 
ccccgCCACCACAAA

GCGAAT 
C(G) T(DEL) 100.00% 

rs76157638 F17 
ggacGTGGGGTTCC

ATAGTCT 
C(C) G(G) 

 
96.90% 

rs61752406 F17 
ccttcCTATGGCTTAC

TCGCTT 
A(A) G(G) 

 
84.60% 

rs61750641 F18 
ccttATGAGCTGCTCA

CAGGAC 
A(A) G(G) 

 
83.20% 

rs62646862 R23 
CATCTTTCAAGATAT

CCCTTATT 
C(G) T(A) 

 
100.00% 

rs61750121 R19 
ctgcGCAGCAGCTGT

TACCTGAG 
C(G) A(T) 

T(
A) 

77.00% 

rs138157885 R25 
GAGGGACATATTTA

ACATCACTGAT 
C(G) T(A) 

 
80.50% 

rs61749459* F15 
AGCCTCACGGTGG

CT 
A(A) G(G) 

 
70.80% 

*Assay separately designed and manually forced into the 19-plex well creating a 1x20-plex LDT 
design. 
 
Table 0.18. Comparison of spotting volumes with and without auto-tuning enabled. 

 Autotuning 
enabled 

Autotuning disabled 

Minimum 7nl 4.3nl 

Maximum 34.12nl 29.2nl 

Mean 14.18781nl 14.67344nl 

SD 5.056737 5.538645 

SD Error 0.632092 0.692331 

Lower 95% CI 12.92468 13.28993 

Upper 95% CI 15.45095 16.05695 

 

Table 0.19. Comparison of spotting volumes with and without Tween 20. 

 With Tween 20 Without Tween 20 

Minimum 6.5nl 4.3nl 

Maximum 34.12nl 29.9nl 

Mean 14.70813nl 14.15313nl 
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SD 5.605669 4.978652 

SD Error 0.700709 0.622331 

Lower 95% CI 13.30787 12.90949 

Upper 95% CI 16.10838 15.39675 

 

 

 

Table 0.20.Correlation of spotted volumes with the peak heights for homozygous alleles. 

SNV id 
Allele 
height 

Volume 
P-value 

<14 nl >14 nl 

ABCA4_4537delC 
>7 241 119 

1 
<7 1 0 

ABCA4_67-1delG 
>7 244 119 

1 
<7 0 0 

rs138157885 
>7 230 111 

1 
<7 16 8 

rs1800728 
>7 234 115 

1 
<7 7 3 

rs61749459 
>7 232 113 

1 
<7 12 6 

rs61750120 
>7 244 119 

1 
<7 2 0 

rs61750121 
>7 244 115 

0.0913 
<7 2 4 

rs61750130 
>7 241 117 

0.60006 
<7 2 2 

rs61750131 
>7 237 117 

1 
<7 6 2 

rs61750135 
>7 242 119 

1 
<7 1 0 

rs61750152 
>7 244 116 

0.034 
<7 0 3 
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rs61750200 
>7 242 118 

0.3296 
<7 0 1 

rs61750641 
>7 243 119 

1 
<7 0 0 

rs61751384 
>7 242 119 

0.2501 
<7 1 0 

rs61751402 
>7 243 118 

0.3287 
<7 0 1 

rs61751404 
>7 244 119 

1 
<7 0 0 

rs61751407 
>7 241 116 

0.1074 
<7 0 2 

rs61752406 
>7 243 117 

0.5996 
<7 2 2 

rs62646862 
>7 243 116 

0.325 
<7 0 1 

rs76157638 

>7 238 116 

1 <7 1 0 

 

 

Table 0.21. Comparison of homozygous and heterozygous allele heights using the old 
and new EXT primers for the ABCA4_4537delC, rs61750131 and rs61751407 SNVs. 

  

Homozygous Allele 
Height 

Heterozygous Allele 
Heights 

  

Old 
extension 

primer 
mix 

New 
extension 

primer 
mix 

Old 
extension 
primer mix 

New 
extension 

primer 
mix 

ABCA4_4537del
C 

MIN 1.1 5.0 
2.1 1.7 6.5 5.2 

AVG 4.5 13.4 

rs61750131 
MIN 1.5 3.3 

0.7* 0.5* 
2.2 2.2 

AVG 5.2 8.5 3.4 3.8 

rs61751407 
MIN 2.7 6.3 2.1 1.7 0.9 0.9 

AVG 8.7 8.5 2.3 2.4 2.1 2.0 
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In the optimization cohort for ABCA4_4537delC there is just one heterozygous call.   
* Just one sample produced a genotype call with the old extension primer. 

 
 
Table 0.22. Comparison of Homozygous and Heterozygous allele heights using old and 
new PCR primers for rs138157885, rs1800728 and rs61749459. 

  

Homozygous Allele 
Height 

Heterozygous Allele 
Heights 

  

Old PCR 
primer mix 

New PCR 
primer mix 

Old PCR 
primer mix 

New PCR 
primer mix 

rs138157885 
MIN 6.9 5.7 3.3 3.7 4.1 5.3 

AVG 10.3 11.3 

rs1800728 
MIN 10.0 7.8 4.6 4.3 9.0 9.1 

AVG 16.1 13.8 

rs61749459 
MIN 6.2 5.4 4.2 3.3 6.5 5.3 

AVG 10.9 11.1 

In the optimization cohort, there was just one heterozygous call for rs138157885, 
rs1800728 and rs61749459. 

 

Table 0.23. Homozygous and heterozygous AHs for 3 SNVs with new and old extension 
primers. 

  

Homozygous Allele 
Height 

Heterozygous Allele 
Heights 

  

Old EXT 
primer mix 

New EXT 
primer mix 

Old EXT 
primer mix 

New EXT 
primer mix 

rs138157885 
MIN 5.5 13.5 4.8 6.5 12.0 15.3 

AVG 10.3 22.7 

rs1800728 
MIN 5.7 18.5 2.2 2.6 30.6 32.3 

AVG 13.7 34.0 

rs61749459 
MIN 5.0 13.6 5.2 4.6 7.8 6.6 

AVG 10.1 25.7 

 

 


