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Abstract

This study aims to develop a numerical tool for investigating the FSI and dynamic

reactions of a scale model of a deeply submerged cylindrical flexible offshore structure

mounted on an experimental rig that will be used for future studies. The flow around

a finite cylinder with an aspect ratio of four causes smaller drag and lift forces com-

pared to an infinite cylinder. However, for cylinders with flexible material properties

these forces cause non-negligible deformations which require the investigation of FSI.

For this purpose, a two-way coupled partitioned approach was used by coupling the

FLUENT and Transient Structural modules in ANSYS with the help of dynamic

meshing algorithms in order to communicate force and deformation data alternately

between the solvers. Compared to two-way coupling, one-way coupling demands less

effort and computational resources, however, it overestimates the deformations for the

flexible cylinder. Two-way coupling requires more effort and computational resources,

yet it is advantageous enough to justify extra work and computational resources.
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Chapter 1

Introduction

1.1 Background

In recent years, the advancement of the oil and gas industry into deeper waters and

harsher environments has increased the need for safer and more advanced engineering

solutions. Considering both safety and financial costs, the performance prediction of

these engineering solutions under the aforementioned conditions are a highly signifi-

cant part of the design process.

Flexible structures are relatively new in offshore applications. Due to their large

deformations under load, conventional numerical analyses are not sufficient to predict

the behaviour and stresses in highly flexible structures. Thus the complexity of the

required engineering analysis increased and the need for higher accuracy of numerical

simulations arose. This necessitates the consideration of more than one single physical

factor [5], rather than only hydrodynamics or structural aspects. Moreover, with the

increasing significance of these factors’ influence on the response of the system, fluid-

1



structure interactions carry greater importance than just the sum of the structural or

hydrodynamic aspects of the problem. The underlying reason for this is the inherent

mutual dependence between the structural responses and fluid dynamics aspects of

the problem. The flow behaviour around the structure is defined by the shape of the

structure whereas the motion and the deformations of the structure are defined by

the forces acting on the structure from the fluid. As a result, with the increasing

significance of these mutual influences and responses on each other, fluid-structure

interaction effects carry great importance.

However, in modeling and computational calculations, FSI problems can be the

most challenging problems to simulate. Due to the complexity of the multi-physics

problems combined with the non-linear and time dependent nature of FSI, it is gen-

erally challenging to solve this class of problem analytically. There are still relatively

few published cases in which FSI problems have been studied analytically, although

significant computational FSI research has been conducted in the last decades. In

engineering applications FSI carries a significant role in the design procedure result-

ing in a requirement for numerical simulations or experiments in order to predict the

performance of the flexible system. In addition, the choice of an appropriate solution

method for a FSI problem is crucial when developing a numerical tool. The monolithic

approach aims to solve all fluid flow and structural displacement equations simulta-

neously. However, the partitioned approach uses more specified and advanced solvers

which were developed particularly for structural or fluid simulations. Companies like

ANSYS, COMSOL and CD-adapco have developed efficient multi-physics software

with versatile features in the last decades. These commercial codes let users choose

the specific solvers for their requirements while dealing with fluid and structural me-

2



chanics aspects along with their close relations within the system. Despite all the

improvements on computational FSI, the use of the method is still challenging.

1.2 Scope and Objectives

Due to the shape dependency of hydrodynamic forces on structures and the structural

deformations resulting from hydrodynamic loads, current problems require exclusive

analysis for each application. Considering the wide use of cylindrical shaped struc-

tures such as risers, moored and tethered structures along with sub sea umbilicals

and spar hulls, this study focuses on FSI investigation of an assembly composed of

a fixed cylinder with flexible material properties mounted on a test rig designed for

future experimental investigations. One-way and two-way coupled partitioned ap-

proach was used by the aid of ANSYS Workbench environment using Mechanical and

Fluent solvers. Since the one-way coupled partitioned approach only transmits force

values one way between the solvers, this approach lacks displacement effects on the

hydrodynamic loads. This causes a lack of accuracy when the effect of deformations

on the structure is significant. Thus, it can only be used when the deformations of

the system are small or can be neglected. On the other hand, the two-way coupled

method sends deformation values to the fluid solvers by upgrading the mesh of the

fluid domain for every time step of the solution. This method provides a more realistic

and advanced simulation of the physical problem especially when the deformations

are large and their resulting effects on the hydrodynamic loads are significant.

This study aims to develop a numerical model and method for simulating the

deformations and dynamic reactions of a scale model of a deeply submerged cylindrical
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flexible offshore structure mounted on a supporting measurement rig that will be used

for future experimental studies. For this purpose, a two-way coupled partitioned

approach was used for the FSI problem by coupling the FLUENT and Transient

Structural Analysis modules in the ANSYS Workbench environment. This allows

both the investigation of the realistic behaviour of the cylindrical structure and the

testing the endurance of the designed experimental rig.
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Chapter 2

Literature Review

The work proposed for this thesis is a coupled model of a circular cylinder in a steady

flow in which both the hydrodynamic forces and the structural responses are modeled

simultaneously. This is a relatively new area in numerical FEA modeling and as such,

there are relatively few studies of such coupled modeling. There are however, a large

number of studies in which either fluid models or structural models are exercised

separately. The purpose of this chapter is to review the current state of the art in

fluid and structural modeling and to cover the smaller body of literature on coupled

modeling in order to provide a better understanding of the fluid-structure interaction

of the proposed submerged flexible cylinder.

2.1 Hydrodynamics Background

The flow around a circular cylinder has long been a focus of interest. The following

section provides a summary of the flow around a circular cylinder from references

[6],[7] and aims to provide insight into the basic flow regimes around a cylinder,
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dependent mainly on flow velocity.

2.1.1 Flow Around a Circular Cylinder

When a fluid flow encounters an obstacle, the flow is required to move around the

body and is thus disturbed from its previous path. The same occurs in the case of

an obstacle moving within the flow. Though there are a wide variety of parameters

that affect the nature and form of the flow deviation, the most important ones can be

identified as the shape and size of the body, the velocity of the flow and the viscosity

of the fluid. Reynolds introduced a numerical relation between these parameters,

known as Reynolds number (Re), which has been the most important variable used

to categorize the flow around cylinders since 1883 [8]. Reynolds number refers to the

ratio between inertia and viscosity forces and can be written as below for a smooth

circular cylinder where the diameter of the cylinder is shown as D, the velocity of the

flow is U and ν represents the kinematic viscosity.

Re =
DU

ν
(2.1)

Along with Reynolds number, the flow around a cylinder is affected by other pa-

rameters such as the effects of nearby boundaries, the aspect ratio of cylinder height

over cylinder diameter, the surface roughness of the cylinder and the existence of a

free end (three-dimensional effects). In this study, the cylinder surface is presumed

smooth, thus the effects of roughness were not considered. In order to learn more

about flow around a circular cylinder, flow regimes, which are significantly affected by

relative flow speed, must be understood. Flow patterns show significant changes un-

der different conditions, thus the identification of differences and similarities between
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flow behaviours are required as a function of Reynolds number.

2.1.1.1 Flow Regimes Around a Two-Dimensional Cylinder

Two-dimensional flow around a smooth circular cylinder shows significant similari-

ties with three-dimensional flow and presents a simplified understanding of the flow

regimes which can be slightly modified later to account for three-dimensional effects.

The three-dimensional flow investigations around the cylinder will be discussed later

for comparison. References [6] and [7] have divided the flow around a two-dimensional

cylinder into different Reynolds number regimes according to hydrodynamic forces,

vortex formation, flow structure and boundary layer characteristics. These regimes

are briefly reviewed in the following sections.

Creeping Flow, Re < 5

For very small Re, such as values less than 5, the flow moves around the cylinder and

does not separate from the cylinder with the flow pattern as seen in Figure 2.1 by [1].

Separation, which is the detachment of flow streamlines from the surface of the body

and the creation of turbulent flow in the wake, begins when the Re reaches 5 and the

length of the wake increases with subsequent increases of the Re.

Figure 2.1: Creeping flow [1] (adapted with permission)
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Attached Eddies, 5 < Re < 40

As shown in Figure 2.2 [1], flow separation behind the body leads to formation of a

pair of attached vortices (or eddies) that develop symmetrically behind the cylinder

as the Re increases to a value of 40. The flow separation occurs at approximately 80o

from the forward stagnation point, which the point on the front of the body where

the velocity is zero. The length of the attached vortex structure behind the body

increases with increasing Re.

Figure 2.2: Attached eddies [1] (adapted with permission)

Laminar Vortex Regime, 40 < Re < 350

With increasing Reynolds number, the wake behind the cylinder becomes unstable

resulting in the shedding of the attached vortices as shown in Figure 2.3 [1]. When

the Reynolds number is between 40 and 200, the detaching vortices form a laminar

vortex street showing only two-dimensionality. As mentioned by Sumer in [6], Bloor

[9] reported that as the Re increases further, transition of the turbulent flow in the

wake approaches the cylinder and the vortices that form at Reynolds numbers bigger

than 300 show turbulent behaviour in the wake and present three-dimensionality. In

other words, vortex shedding varies across the span of the cylinder.
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Figure 2.3: Laminar vortex shedding by Heseltine[1] (adapted with permission)

Subcritical Regime, 350 < Re < 2× 105

For a Reynolds number greater than 300, the wake behind a cylinder becomes com-

pletely turbulent while the boundary layer on the cylinder continues to be laminar.

A non-dimensional Strouhal number generally describes the oscillation of the flow.

When the Reynolds number is between 350 and 2× 105, in the subcritical regime, a

fully turbulent Karman vortex street forms with a nearly constant Strouhal number

of 0.20. With an increasing Re, the length of the vortex formation behind the cylinder

shrinks. In this regime, the drag coefficient is usually 1.2. Demonstration of the flow

can be seen in Figure 2.4.

Figure 2.4: Flow in subcritical regime by Heseltine[1] (adapted with permission)

Critical Regime, 2× 105 < Re < 7× 105

Re = 2 × 105 is known as the critical Reynolds number. When the Re is between

3×105 and 3.5×105, the boundary layer on one side of the cylinder becomes turbulent

at the separation point. This results in a laminar boundary layer on one side and
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a turbulent boundary layer on the other side. As shown in Figure 2.5, during this

process, turbulent separation switches sides alternately, causing a small lift force that

changes direction from one side to another. The wake is at its shortest length when

the Re is 3×105. This point, also known as the drag crisis, is where the drag coefficient

drops drastically from the value of 1.2 to 0.3 and the Strouhal number increases to

0.46 from 0.2 [1].

Figure 2.5: Flow in critical regime by Heseltine[1] (adapted with permission)

Supercritical Regime, 7× 105 < Re < 3.5× 106

The next flow regime is called supercritical flow regime for a Re between 7× 105 and

3.5 × 106. In this regime, the separation of boundary layer becomes fully turbulent

on both sides of the cylinder when Re reaches 1.5 × 106. However, a full transition

within the boundary layer is not completed. Within the upper-transition flow regime,

which extends up to the Reynolds number of 4.5 × 106, the boundary layer displays

fully turbulent behaviour on one side of the cylinder and shows a combination of

laminar and turbulent behaviour on the other side of the cylinder. Flow behavior in

this regime is shown in Figure 2.6.
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Figure 2.6: Flow in supercritial regime by Heseltine[1] (adapted with permission)

Transcritical Regime, Re > 3.5× 106

As the Re reaches 4.5× 106 and extends to the larger values within the transcritical

flow regime, the boundary layer becomes fully turbulent. As shown in Figure 2.7,

separation bubbles do not form and the drag value increases from 0.5 to 0.7 where

the St shows a near constant value of 0.30 [1].

Figure 2.7: Flow in transcritial regime by Heseltine[1] (adapted with permission)

2.2 Review of the Literature

Until the 1980s, it appears that the experimental work on circular cylinders generally

involved two-dimensional flows. Subsequently several experiments have been done on

finite cylinders where the presence of the free-end affects the three-dimensionality of

the flow. Several authors tried to explain this effect [10], [2], [11]. Even though this
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study focuses on the Fluid-Structure interaction of a relatively short flexible cylinder

and supporting experimental rig, the literature review was guided by the availability

of literature covering the constituent ideas of flow phenomena.

2.2.1 Experimental Studies

2.2.1.1 Separation

Compared to the two-dimensional cylinder, numerous authors reported a shifted sep-

aration point towards the stagnation point of the cylinder for the three-dimensional

flow past a finite length cylinder. Luo [11] performed experiments within the sub-

critical regime in an open loop wind tunnel using smoke wire flow visualization. He

measured the separation angle from the stagnation point as 80o to 85o for normal con-

ditions, however, he noted that it might delay until 90o near the free end for cylinders

with an aspect ratio of 8 or less.

Okamoto et al. [10] reported an unchanged separation point for cylinders with

a length to diameter ratio equal to and greater than 12, however, a forward move

was measured with ratios smaller than 12. This was attributed to an increased base

pressure associated with the existence of a free end with a decreasing length to di-

ameter ratio. On the other hand, Kawamura et al. [2] observed a similar forward

shift of the separation point with decreasing length to diameter ratio from oil-film

photographs. However, they argued that this shift should be attributed to the de-

crease of acceleration of the side flow. Furthermore, this decrease in acceleration can

be attributed to the three-dimensionality of the flow resulting in a lower separation

velocity than that of the two-dimensional flow. In addition, Kawamura et al. [2] re-
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ported a reattachment of the separated flow for cylinders with an aspect ratio of 8 or

less and observed a ”mushroom” type vortex flow in the absence of this reattachment.

Moreover, Kawamura et al. [2] modelled the flow for cylinders with values above and

below the critical aspect ratio as shown in Figure 2.8.

Figure 2.8: Vortex structure around cylinders with different aspect ratios, by Kawa-

mura et al. [2]

2.2.1.2 Fluid forces on the cylinder

Understanding the fluid flow loading on offshore structures is important in optimizing

their design to minimize the dangerous effects of fluid loads. Much work has been

done to measure hydrodynamic forces on the cylinder with different flow regimes us-

ing force and pressure based methods [12].

Before Roshko[13]’s study, the existence of the transcritical flow regime was not rec-

ognized [14]. Roshko [13] performed experiments on cylinders in both supercritical
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and transcritical flow regimes with a Reynolds number varying between 1× 106 and

1 × 107. He measured the drag coefficient as 0.7 at Re = 3.5 × 106 which is an

increase from its value of 0.3 at Re = 1 × 106. Moreover, similar to Achenbach &

Heinecke [15]’s findings, he reported a constant trend for the drag coefficient for the

rest of the supercritical regime. On the contrary, Delany & Sorensen [16] measured

the drag coefficient between Re = 11000 and 2.3 × 105 and reported a significantly

different drag value for the subcritical regime due to the gaps in their wind tunnel.

Nevertheless, their measurements of critical Reynolds number 5 × 105 and 6 × 105

were in agreement with the other authors. Within the critical regime, several au-

thors detected a steep decrease in drag force. This phenomenon, known as the drag

crisis, was attributed to laminar separation bubbles by numerous authors. Schewe

[17] conducted wind tunnel experiments from a subcritical regime to the transcritical

Reynolds numbers 2.3× 104− 7.1× 106 and measured the forces on the cylinder with

a 3-component piezoelectric force-measuring element. He observed a steeper decline

in CD for Re < 50000 compared to previous experiments due to differences in surface

roughness of the cylinders tested by other authors. He also mentioned two intermit-

tent drops of CD. At Re around 3.5× 105 he measured CD as 0.22 with a stationary

trend in Re up to 1×106. Further in the supercritical range, he measured an increased

CD value of 0.52 until Re = 5× 106. Moreover, Schewe [17] also measured CL R.M.S.

with a maximum value of 0.38 in the subcritical regime and 0.02 in the supercritical

regime at Re = 3.5 × 106. In addition, Bearman [14] also observed a steep decrease

in the drag coefficient immediately after the critical range (Re = 2× 105) and noted

a minimum value at Re = 4.16× 105.

Due to the flow over the end, the flow around a finite cylinder shows significant
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differences when compared to the flow around an infinitely long cylinder. One of the

most fundamental differences between the finite and infinite cylinders is the differ-

ence in flow induced cylinder forces. Many authors have reported a lower mean drag

coefficient for a finite cylinder compared to an infinite cylinder due to the presence

of a free end. Luo [11] attributed this phenomenon to less negative wake pressure

and stated that the mean drag coefficient is always lower for a finite length cylinder.

Moreover, on cylinders with aspect ratios between 4 and 30 Fox & West [18] examined

the mean pressure distribution at Re of 4400. They observed the direct effect of the

cylinder aspect ratio on the local drag. Their circumferential pressure distribution

measurements showed a decrease in the local drag value towards the bottom of the

cylinder for aspect ratios smaller than 13. However, this effect was not observed for

aspect ratios greater than 13. Thus, Fox & West [18] concluded by reporting an

increase of the local drag force starting at a distance of 4 diameters from the bottom

and reaching the infinite cylinder value at 20 diameters. In addition, Kawamura et

al. [2] performed experiments on cylinders mounted on flat plates and calculated the

drag coefficient as an integration of the surface pressure. They reported a lower drag

coefficient for a finite cylinder than a two-dimensional cylinder due to lower separa-

tion velocity of the flow on the side of the cylinder wall. Moreover, they observed

a decreasing CD with a decreasing aspect ratio. Finally, they concluded that CD

decreases with a thicker boundary layer from the plate.

2.2.1.3 Vortex Shedding

In addition to the magnitude of the hydrodynamic forces, the oscillation frequency

arising from pressure changes associated with vortex shedding is also crucial. One of
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the topics for which several authors obtain similar measurements is the investigation

of the Strouhal number. For instance, there is strong convergent evidence for the

Strouhal value at both the upper supercritical and transcritical regimes. Roshko [13]

did not detect regular vortex shedding for Re between 0.9× 106 and 3.5× 106 during

his detailed hot-wire investigation. However, he did report a definite start of vortex

shedding at Re = 3.5 × 106 with a Strouhal number of 0.27. Although he extended

the investigation up to a higher Reynolds number of 1× 107, he did not observe the

frequencies reported by Delany & Sorensen [16] at a Reynolds number between 1×106

and 2 × 106. He attributed this inconsistency to a difference in the distance of the

probe behind the cylinder. While Roshko’s probe was positioned at 7.3 diameters

[13], the other authors measurements were made from one or two diameters behind

the cylinder.

Similar to Roshko, Achenbach & Heinecke[15] also measured the Strouhal number

as 0.25 at Re = 4× 106 using a hot-wire probe. They also noted a constant Strouhal

at 0.205 for subcritical regime. However, they did not find regular signals in the wake

of the cylinder beyond the critical regime due to three-dimensionality of the wake

formation. Achenbach [19] detected a decrease in Strouhal from a value of 0.5 at

Re = 1.5× 106 to 0.25 from Re = 4× 106 which, again, shows good agreement with

other studies.

Bearman [14] examined the flow over a two-dimensional cylinder between Re of

1× 105 to 7× 105. He reported two regular occurrences of shedding: one in the one-

bubble range with a Strouhal number of 0.32 and another one in the two-bubble range

with a higher Strouhal number of 0.46. Schewe [17] examined flows in the range from

the subcritical regime (Re = 2.3 × 104) to the transcritical regime (7.1 × 106). He
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measured the Strouhal number as 0.2 in the subcritical range. In the critical range,

he reported two intermittent transitions for Strouhal number, which are coupled with

the drop of CD and measured Strouhal Number as 0.3 and 0.48. As mentioned

in [17], these measured values are confirmed by Bearman (1969) and Achenbach &

Heinecke (1981). At supercritical range, Schewe [17] noted a nearly constant Strouhal

number. In the upper transition range he measured a decreased Strouhal as 0.4 at

Re = 2×106. Finally, at his highest measurement of Re = 7.1×106, he measured the

Strouhal number as 0.29. This was close to what Jones et al. measured in 1969 [17].

The Strouhal measurements of Schewe [17] show very good agreement with Roshko’s

[13] value of 0.27 and Achenbach & Heinecke’s [15] Strouhal of 0.25 at Re = 4× 106.

When it comes to the differences between finite and infinite cylinder for the

Strouhal number, Ayoub and Karamcheti [20] detected a distinct vortex shedding

frequency at the free end of the cylinder that differs from the shedding at the main

body. They also noted that this shedding could be unstable, intermittent, and gen-

erally lower than the frequency of an infinite version of the cylinder.

Most authors measured the vortex shedding frequency from the velocity fluctua-

tions of the flow behind the cylinder. However, Fox & West [18] took a different ap-

proach; they analyzed the surface pressure on the cylinder and obtained the Strouhal

number based on the fluctuations in pressure. For cylinders with aspect ratios smaller

than 13, they reported a relation between the aspect ratio and the Strouhal number.

On the other hand, they noted an independent Strouhal number for aspect ratios

of 13 and greater. For aspect ratios smaller than 13, they could not detect vortex

shedding at the tip of the cylinder. However, they reported an increase in Strouhal

number from its minimum value near the tip of the cylinder to its constant value at
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around 6 diameters distance in span from the end. In addition, for cylinders with

aspect ratios greater than 13, the Strouhal number was constant regardless of the

aspect ratio. The described investigations were made at Re = 4.4× 104.

During his experiments, Luo [11] detected regular vortex shedding only with a

cylinder aspect ratio of 8. Furthermore, he reported a non-uniform wake pressure near

the free end due to the strong three-dimensionality of the flow causing disturbance and

a slightly smaller Strouhal number compared to the two-dimensional case. Similar

to Luo [11], Kawamura et al. [2] also detected periodic vortex shedding for cylinders

with an aspect ratio of 8 which was absent for cylinders with an aspect ratio of 4.

Okamoto & Yagita [10] measured the surface pressure on the cylinder and noted a

decrease in the Strouhal number with a decreasing aspect ratio. On the other hand,

Park & Lee (2000) [21] used a different approach, performing a detailed hot-wire in-

vestigation and measuring the wake velocity. Regardless of the different measurement

methodology, they also noted that the Strouhal number decreased with a decreasing

aspect ratio and attributed this to descending downwash flow. As can be seen from

the previous section, the vortex-shedding phenomenon is the most important com-

mon feature of all flow regimes. This phenomenon arises from the adverse pressure

gradient at the backside of the cylinder caused by the change of the geometry, and is

common to all flows with Re > 40.

Despite the fact that the flow around cylinders has been investigated extensively,

there are still unresolved issues. For instance, when a cylinder is placed in a boundary

layer the effect of the incoming boundary layer on vortex shedding characteristics are

still unknown [22].
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2.2.2 Computational Fluid Dynamics

Understanding and predicting the flow around cylinders to allow optimization of en-

gineering aspects such as structural design is essential. However, experiments a with

minimum human and instrumentation error for very high Reynolds number flow con-

ditions are technically challenging and financially expensive. Considering this, com-

puter aided tools to predict and calculate the flow around cylinders are potentially

very beneficial. Along with improvements in computer science, both commercial and

independent numerical tools have shown significant improvement over the years. In

this chapter, some of the numerical methods for calculating the flow around cylin-

ders are discussed. Until the 1970s, computers were not powerful enough to solve

Navier-Stokes equations for three dimensional flows [23]. Even later on, numerical

studies were limited to laminar flows, coarse meshes, or steady flows, due mainly

to computational limitations. As one of the early examples of CFD studies within

practical engineering flows, Majumdar and Rodi [23] used the standard K- model

with wall functions and finite volume method using the SIMPLE algorithm. The flow

simulated was at Re = 5 × 105 and the aspect ratio of the cylinder was two. Even

though they reported that the model successfully captured the complex flow features

such as separation and vortex systems, the base pressure was calculated as being too

high resulting in a lower drag than the experimental measurements. They attributed

this to the steady calculation of the flow that could not account for the shedding of

the vortices. Over time, turbulence models and calculation methodologies improved

in parallel with the computational possibilities; however, until the late 1990s the

initial versions of the turbulence models did not suffice when solving complicated
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flows and hydrodynamic forces with high accuracy. Menter [24] compared the per-

formances of the four popular turbulence models at the time: The Baldwin-Lomax

(BL), Johnson-King (JK), Baldwin-Barth (BB) and Wilcox K- models for solving the

flows with adverse pressure gradients. He performed the computations with a nu-

merical method that solved the incompressible RANS equations using the method of

pseudo-compressibility. In his study [24], Menter reported an inferior performance for

the BL model compared to the rest of the models. The JK model was reported as the

superior model owing to its capability of solving both the turbulent shear stress and

the shape of the velocity profiles with the highest accuracy. The BB model predicted

the pressure coefficient well, however, it was insufficient in determining the velocity

profile shapes. On the other hand, the K-ω model presented better predictions for

the velocity profiles but produced excessive turbulent shear stress values. In the case

of flows at a Reynolds number greater than 180, it is a known fact that the flow

around the cylinder shows three-dimensional effects. However, until the late 1990s,

computational fluid simulations were generally conducted in two-dimensions or at low

Reynolds numbers. Thanks to the development of high performance computing tech-

nologies and new turbulence models, it was possible to extend CFD investigations to

higher Re and three-dimensions with higher accuracy.

In 1994, Menter developed two new empirical based eddy-viscosity turbulence

models for engineering applications [25]. He stated that these models were developed

from the combination of different elements from existing models and the formulations

of K- which show the best numerical stability. The new Baseline model (BSL) was

developed to utilize the original K- model in the sub and log-layer and to switch

to the K- model in the wake region of the boundary layer. By using this strat-
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egy, the model avoids the strong free stream dependency of the flow. Secondly, the

Shear-Stress Transport Model was designed to provide significant improvements for

flows with adverse pressure gradients. The Shear-Stress Transport Model is the only

two-equation model that is capable of predicting the pressure-induced separation and

viscous-inviscid interaction. These two models require more programming effort com-

pared to the standard K- model, however, both models were tested for a wide variety

of challenging research flows and subsequently fine-tuned. As a result, they show a

good performance and high stability.

While RANS models were gaining popularity, early examples of a computationally

more intense method, called Large-Eddy Simulations, began to emerge. For instance,

Kalro and Tezduyar [26] carried out some of the early examples of LE simulations

and performed numerical investigations at Reynolds numbers of 300, 800, and 10

000. They used the simplest version of the Simagorinsky LES model at Re=10 000

with 3D finite element formulations and employed the 2D unsteady solutions as the

initial boundary conditions. They reported excellent agreement for drag coefficient

and Strouhal numbers with experimental results.

Despite the advancements in the development of turbulence modeling, there is

unfortunately still no universal model that can be used for all flow applications with

high accuracy. On some occasions, the selection of a turbulence model might be

challenging. However, the comparison of these models and their most suitable appli-

cations can be found in the literature. As seen in the following paragraphs, RANS

models have been examined by numerous authors. For instance, Rahman et al. [27]

compared the Standard K − ε, Realizable K − ε, and the Shear-Stress Turbulence

(SST) K − ω turbulence models for predicting the force coefficients along with the
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vortex shedding frequency. They performed the numerical investigation using a 2D

finite volume method with a second order numerical scheme. As per the result of

their evaluation, they reported that the Standard K− ε model was the most success-

ful in predicting the drag coefficient. However, the Realizable K − ε captured the

separating flow better than the Standard K − ε model. Finally, they recommended

the (SST) K − ω model when dealing with high Reynolds numbers.

Ong et al. [28] evaluated the suitability of the standard K− ε model for engineer-

ing applications. They carried numerical investigations of flow around a 2D smooth

cylinder at Re = 1×106, 2×106, and 3.6×106 using 2D Unsteady Reynolds-Averaged

Navier-Stokes (URANS) equations. They noted that although the mentioned model

had drawbacks and lacked a certain level of accuracy for predicting the flow with

strong anisotropic turbulence, it still showed satisfactory results for engineering de-

sign purposes compared to other numerical [29] and experimental work [19]. With

advancements in computer science and access to increased computational capabilities,

Large-Eddy Simulations started to gain popularity. However, due to the requirement

for more computational power, their feasibility and performance over RANS models

was frequently investigated. As an example, Catalano et al. [29] numerically in-

vestigated the flow around a cylinder in the supercritical regime and compared the

reliability of the LES and RANS solutions. They used a simple wall stress model with

a Smagorinsky LES model to provide initial boundary conditions. This made the LES

simulations possible by mitigating the requirements for resolving the near wall. On

the other hand, the commercial CFD code FLUENT was used with second order finite

volume discretization for RANS simulations. Though the simulations they performed

were unable to accurately capture the Re dependency and drag coefficient for higher
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Re numbers due to the poor grid distribution, they measured the drag coefficient

well for Re = 0.5× 106 and 1× 106. According to them [29], it is worth noting that

LES was more successful than RANS simulations for predicting the delayed boundary

layer separation and reduced drag coefficient after the drag crisis, which was also in

good agreement with experimental measurements.

Frhlich & Rodi [30] performed numerical LES investigations for cylinders with an

aspect ratio of 2.5 and a flow at Re = 43000. The calculations were made with the

finite-volume based LESOCC2 code, which solves the incompressible Navier-Stokes

equations on curvilinear block-structured grids [30]. They reported successful solution

of the complexity of the flow with the Smagorinsky sub-grid scale model. Further-

more, they detected an arch-type vortex behind the cylinder, which was previously

observed for a wall-mounted cube but unprecedented for a cylinder. They attributed

this to the small height of the cylinder, which prevented the formation of the two-

dimensional von Karman vortices. Similarly, Salvador et al. [31] carried out numerical

investigations of the flow around finite cylinders with similar aspect ratios of 2.5 and

5 and a Re varying between 22000 and 43000. However, they used a finite-volume

method based LES code called MGLET on a staggered Cartesian grid. They reported

a good agreement with the results of previous experiments by Kappler [32]. The au-

thors [31] noted the requirement of a very fine mesh for the finite cylinders near the

free end in order to solve the details of the very complex flow behaviours close to the

wall.

Compared to previous researchers, Singh and Mittal [33] took a different approach

and used a stabilized finite element method with two-dimensional LES for their stud-

ies. However, the objective of their study was not to resolve the three-dimensional
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effects of the flow. They aimed to show the connection between the shear layer

instability (which was noted as two-dimensional) and drag crisis by numerically in-

vestigating the flows between Re = 100 and 1 × 107. They reported that for a Re

greater than 200, their computations were not able to predict the correct drag coeffi-

cient as expected. However, they did successfully predict the drag-crisis. One of the

challenges of using foremost CFD methods within FSI problems is the requirement

of a very fine mesh resulting in excessive computational costs. Thus, this type of

application is not widely common within FSI simulations for industrial applications.

However, it has been a focus of interest for numerous researchers.

For instance, Lee et al. [34] used one of the new hybrid methods of CFD, detached-

eddy simulation (DES), which combines the best aspects of the RANS and LES mod-

els. Lee et al. [34] investigated the fluid-structure interaction of a self-oscillating cylin-

der due to vortex shedding by coupling a delayed-detached-eddy simulation (DDES)

and a nonlinear finite element analysis simulation. They investigated the flow past a

cylinder with an aspect ratio of 2D at a Re of 5000 with the aid of an open source

software package, OpenFOAM. For the Strouhal number and values of drag and lift

coefficients, they reported good agreement with previous experimental work involv-

ing numerical models with mesh that featured a Y+ value around 1. In addition,

Feymark [35] used an LES based FSI methodology to investigate the hydro-elasticity

of a deforming hydrofoil and noted good agreement with the experimental data.

24



2.3 Structural Analysis

In fluid-structure interactions, the oscillating dynamic fluid forces cause deformations

on the structure, which conversely results in a change in the fluid forces due to

the new shape of the structure. This inherent relation between the structure shape

and hydrodynamic forces requires a good prediction of the structural responses. In

the fluid-structure interaction investigations of underwater and offshore structures,

the finite element method is traditionally the most practical and efficient standard

numerical modelling method for investigating structural behaviors [36]. Numerous

authors report nonlinear finite element analysis applications within Fluid-Structure

Investigations. For instance, Phadke and Cheung [37] studied the nonlinear behaviour

of a bottom-mounted membrane under the influence of gravity waves. By using a

linear isoparametric element along with an approach originated from the virtual work

principle that accounts for geometrical nonlinearities, they examined the membrane

deformations by solving the nodal coordinates and deformations as linear functions.

In addition, Relvas and Suleman [38] presented a method to model the geometric

nonlinearities on an aeroelastic wing as part of an FSI procedure. For the structural

aspect of the problem that calculates the nonlinear structural response of the wing,

they employed a dynamic co-rotational approximately-energy-conserving algorithm

to solve the nonlinear structural responses with existing linear finite element codes.

They compared their demonstrated process with the nonlinear implicit Newmark

method within an FSI investigation and reported a higher stability for their method

[38]. There are various finite element formulations based on geometry, including point,

line, surface and solid elements. Even though solid elements offer the opportunity to
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couple fluid and structure geometries in three dimensions, they may not offer the

best performance when the wall thickness of the structures is considered. Thus, new

formulations such as solid-shell elements have been a focus of interest for several

authors.

With regard to solid-shell elements, Meraim et al. [39] developed a new formula-

tion for the existing finite element, SHB8PS, with a three-dimensional approach that

accounts for locking. The new solid-shell element features 8 nodes and displacement

as the only degrees of freedom per node in addition to arbitrary number of integration

points that are distributed along the thickness. By employing an in-plane one-point

quadrature scheme, the element becomes computationally more cost effective. Lastly,

they concluded that the enhanced element both effectively eliminated occurrences of

membrane and shear locking and performed accurately when calculating bending

problems without requiring multiple elements along the thickness.

Wasfy and Noor [40] investigated the dynamic response and sensitivity of large,

flexible structures with multiple bodies consisting of beams, shells and solids with

a new computational procedure. They selected the Cartesian coordinate system as

three degrees of freedom and used slopes within elements for the new beam, shell and

solid elements. For predicting the kinematics of large body motion, they used the

Lagrangian formulation with the co-rotational frame approach. The governing semi-

discrete finite element equations of motion were solved by a semi-explicit temporal

integration where the sensitivity equations were calculated by directly differentiating

the equations of motion.

In the last several years, numerous commercial software packages have been de-

veloped for structural investigations. For partitioned FSI studies in particular, know-
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ing the best practices and drawbacks of these solvers is crucial for successful FSI

investigations. Examples of these types of comparisons can be found in the litera-

ture. For instance, Rust and Schweizerhof [41], performed structural investigations

on structures with thin walls under different loading scenarios. They compared the

two commercial software packages, ANSYS and LS-DYNA, with implicit and explicit

methods respectively. They reported the benefits of both tools and concluded that

LS-DYNA is more beneficial when solving the quasi-static load analyses with systems

that demonstrate numerous highly nonlinear effects.

2.4 Fluid-Structure Interaction

Generally, most problems in nature are related to more than one physical phe-

nomenon. For instance, the interaction between fluids and solids can be seen in

numerous examples in nature. Moreover, in most of these problems the two aspects

that control the problem cannot be solved separately from each other. Problems like

this can be defined as Multiphysics problems [42]. As a branch of multiphysics prob-

lems, FSI problems must be solved within various different industries. Some examples

of these challenging problems include cardio-vascular dynamics and the design of air-

craft wings, turbine blades, tall structures and buildings and offshore and underwater

structures. The literature review for the fluid-structure interaction will be presented

under the following main categories: the monolithic approach and the partitioned

approach.
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2.4.1 Monolithic Approach

In the monolithic approach, a single solver solves the combined equations of solid

and fluid domains simultaneously. Since the fluid and solid domains are not separate,

monolithic solutions generally provide better accuracy than the partitioned approach

[43]. For this reason, numerous researchers have been showing great interest in FSI

investigations using the monolithic approach. Some of the solution methodologies for

the monolithic approach can be named as The Arbitrary Lagrangian Eulerian (ALE),

Distributed Lagrangian Multiplier, Extended Finite Element Method (XFEM), Im-

mersed Boundary Method (IBM) and Immersed Finite Element method (IFEM) [44].

Over the last few decades, researchers from different areas have contributed to these

numerical methodologies for numerical FSI investigations. As one of many examples,

Zhang & Gay [44] improved the Immersed Boundary (IB) method by using a new

interpolation function with higher order and advanced its proficiency with boundary

conditions and non-uniform and independent meshes for fluid and solid domains. This

new method, Immersed Finite Element Method (IFEM), allows the investigation of

detailed stress distributions for immersed deformable structures [44].

Michler et al. [45] compared the monolithic and partitioned solution schemes based

on numerical stability, computational cost and accuracy. They reported significantly

more accuracy with the monolithic approach compared to the partitioned approach

despite the requirement of three to four times more computational cost.
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2.4.2 Partitioned Approach

In most engineering problems, partitioned FSI methods are used out of convenience

[43]. The partitioned approach, also known as the staggered approach, is divided

into two sub categories as one-way and two-way partitioned approach. The difference

between one-way and two-way coupling is the additional data transfer of the structural

displacements to the fluid domain and the solver during a two-way coupling. Within

the FSI solution, if the convergence of two individual solvers is desired at a certain

level, the coupling is considered to be strong two-way coupling. In recent years, the

partitioned approach has gained great popularity owing to its convenience in allowing

researchers to use existing and validated solvers instead of developing a completely

new all-inclusive solver for fluid and solid domains.

Relvas and Suleman [38] coupled their dynamic structural algorithm with the

vortex-ring method using a staggered technique in order to investigate the aeroelas-

tic behaviour of a nonlinear plate-type wing subjected to low speed airflow. They

reported stable and accurate solutions along with the demonstration of limit cycle

oscillations. Benra et al. [42] investigated the differences between one-way and two-

way coupling methods for numerical FSI analysis. One of the cases they investigated

includes a structure consisting of a square cylinder and a thin plate attached to a

cylinder at the downstream side. The FSI between the structure and flow was in-

vestigated under different flow speeds and plate materials that produced different

vortex shedding and natural frequencies. The commercial software package ANSYS

CFX was used for fluid calculations whereas ANSYS Mechanical was used for the

structural aspect and ANSYS MFX was used for two-way coupling. They reported a
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similar frequency prediction with one-way and two-way coupling for the deflections of

the plate when the vortex shedding and the natural frequency of the structure were

similar. However, when the vortex shedding frequency was distinct from the natural

frequency of the structure, the results of one-way and two-way couplings for displace-

ment magnitude and the mean frequency of oscillations were significantly different.

In addition, the one-way coupling method showed lower deflections than two-way

coupling. They evaluated both of the methodologies and concluded that one-way

coupling is more advantageous considering the smaller solution time and mesh qual-

ity consistency due to the lack of mesh deformations. On the other hand, they noted

that two-way coupling is superior in accuracy and provides more realistic results and

energy conservation at the fluid-solid interface.

In addition to Benra et al. [42], numerous authors support the claim that the

two-way coupling approach requires significantly longer solution time than one-way

coupling. Lee et al.[34] investigated the FSI on a self-oscillating cylinder using an open

sourced software package, OpenFOAM, and noted an extensive 8 to 10 times longer

computational time compared to rigid cylinder investigations due to the continuous

data transfer between two solvers.

Phadke and Cheung [37] investigated the nonlinear responses of the wave-membrane

interaction problem by solving the coupled membrane motions along with the inter-

nal and external fluids. For the calculations of the potential flows on the inside and

outside, they used a two-boundary element model. Furthermore, they coupled the

fluid models with the finite element model of the membrane to solve the nonlinear

responses. They used an efficient approach to solve the spatial and temporal formu-

lations with a single iteration and reported good agreement with other numerical and
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experimental work in the literature.

When compared to the monolithic approach, another advantage of the partitioned

approach is that it offers flexibility when selecting individual solvers, which permits

configurations or improvements on a separate solver. For instance, Gordnier & Fithen

[46] developed a new three-dimensional aeroplastic solver by improving an existing

structural solver. By implicitly coupling the new nonlinear finite element structural

model with the finite difference method Navier-Stokes code, they advanced the capa-

bilities of the solver so that it could handle isotropic and orthotropic materials.

Literature Summary

In summary for the issue of finite length cylinders under steady flow loads, it ap-

pears that many authors have reported an upstream shifted separation point and

lower hydrodynamic forces and vortex shedding frequency for finite length cylinders

when compared to infinite cylinders. Although there is rapidly growing literature

on the experimental and numerical investigation of hydrodynamics around cylinders,

relatively little research has been carried out on the fluid-structure interaction of flex-

ible and low aspect ratio finite cylinders. Considering the exposure of cylinders to

flow-induced forces in extreme offshore environments, the fluid-interaction investiga-

tion of these structures is important for their design. The hydrodynamic forces that

form around the cylinder due to the shape dependency causes deformations on the

structures that conversely affect the hydrodynamic forces and create a cyclic rela-

tion between the fluid and structure. This relation and its effect on the structural

responses and endurance can only be solved with the aid of an FSI investigation.

Considering this, the main objective of the presented work was to develop a nu-
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merical model and method that simulates the deformations and dynamic reactions of

a scale model of a deeply submerged cylindrical flexible offshore structure mounted on

a supporting measurement rig, which will be used for future experimental studies. For

this purpose, a two-way coupled partitioned FSI approach is proposed by coupling the

FLUENT and Transient Structural Analysis modules in the ANSYS Workbench en-

vironment. Based on the current literature this method offers a practical compromise

between solution accuracy and computational cost.

To sum up, the method developed within this thesis allows investigation of the

realistic behaviour of the flexible cylindrical structure and testing of the endurance

of the designed experimental rig, which can provide insight for other engineering

applications and offer a guideline for further research.
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Chapter 3

Methodology

This study formed part of a larger effort to develop improved numerical and exper-

imental methods of estimating the forces on fully submerged cylinders in transverse

flows. The work of this study was to numerically model the response of a simple

cylinder mounted on an experimental towing apparatus (the Experimental Rig). The

numerical model was developed to simulate the interplay between fluid and struc-

tural forces and responses. The numerical model will be used to help design the

experimental apparatus.

3.1 Experimental Rig Design

In order to develop the numerical model, some preliminary design work on the ex-

perimental apparatus was carried out. While choosing the dimensions and materials

of the experimental rig and the test cylinder, the dimensions of the Ocean Engineer-

ing Research Center (OERC) tow tank, the availability of materials from providers

and the resources of the Engineering Tech Services were all taken into account. The
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dimensions of the cylinder were adapted from a proposed sub sea structure. Exper-

imentally, the rig will be capable of housing a range of cylinder sizes. Similarly, the

selected Reynolds is also within the range of the tests planned with the experimental

model.

The study was focused on a flexible cylinder mounted on an experimental rig.

Thus, it is crucial to have a reliable system for measuring the flow forces around

the cylinder with minimum vibrations in order to avoid unintentional instabilities on

the test subject. Given that, the structural resistance of the system opposing to the

fluid forces is essential as well. The flow around the cylinder should be isolated from

reflecting flows and any kinds of disturbances. For this purpose, an experimental rig

was designed for towing the test subject, a circular cylinder with 0.1524 m diameter

and 0.60 m length, in different depths and speeds. The cylinder was designed to be

attached to a plate that is 0.243 m long and 0.9144 m wide in order to simulate the

ocean floor in different operating conditions. The plate was designed to be attached

to the OERC tow tank carriage with a main support consisting of a 0.1016 m diameter

pipe and a fin that was used in order to delay vortex formations around the main

support.

Towing a submerged large plate without being exposed to severe vibrations under

the prescribed speeds (3m/s − 4m/s) is a challenge resulting in the requirement of

a sturdy supporting system. Considering this, based on the preliminary numerical

simulations, two cylindrical front supports were designed in order to introduce more

stiffness to the system. Furthermore, they are placed 0.5 m away from the cylinder in

downstream direction in order to provide more stability without disturbing the flow

around the cylinder. Initial 2D fluid flow simulations show that the flow around these
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supports are not affecting the test cylinder. Taking these challenges into account,

the design demonstrated in Figures 3.1,3.2,3.3 and 3.4 was developed after several

optimization trials.

Figure 3.1: Experimental rig perspective view
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Figure 3.2: Experimental rig front view
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Figure 3.3: Experimental rig top view
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Figure 3.4: Experimental rig side view

The plate was strengthened with a frame stiffener system from the bottom of the

plate as shown in the Figure 3.5.
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Figure 3.5: Stiffener frame underneath the plate

The experimental rig in a towing tank setup is shown in Figure 3.6.
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Figure 3.6: Experimental rig in towing tank
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The fluid-structure interaction problem of the flexible submerged cylinder on an

experimental rig was investigated numerically. With the aid of the commercial soft-

ware package ANSYS, an integrated coupled model was created using FLUENT and

Transient Structural modules. The numerical tool was created not only for the inves-

tigation of FSI on the cylinder but also on the test rig. This was intended to provide

insight about the experimental rig’s endurance for future experimental studies.

Numerical Models

The main goal in computational numerical simulations is to reach the solution with

the desired level of accuracy and minimized computational cost. While developing the

numerical models within this research, an empirical approach was employed based on

the assistance of ANSYS technical support and prior literature research. Considering

the computational costs and the feasibility of the research, both the structural and

hydrodynamics models were simplified as explained in the following sections. In order

to develop a numerical tool using ANSYS Multiphysics for investigating the FSI of

the cylinder and the experimental rig, both structural and fluid domain geometries

were created together using ANSYS DesignModeler. The hydrodynamics and the

structural model geometries were created as a whole in order to provide complete en-

closure and prevent low quality data mapping that may happen during the coupling.

Mapping data is a procedure to map variables such as pressure and deformations

between the meshes of fluid and structure domains on the associated cell and faces.

When creating the structural mesh, the CFD domain was suppressed whereas the

opposite was done while creating the CFD mesh. Moreover, these geometries were

meshed using the ANSYS Meshing within ANSYS Workbench environment. These
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meshes carry different specifications such as element type, cell size and resolution

due to distinctive requirements by their particular solvers. Furthermore, completed

meshes were imported to the solvers separately in order to set the simulations indi-

vidually. Both simulations require essential settings such as selection of the solver

type, material selection or modification, setting the boundary conditions , numerical

scheme selection and solution settings.

After completion of the model set up, the CFD model and the structural model were

obtained within ANSYS Workbench environment. The structural model contains the

experimental rig and the cylinder and the CFD model includes a single phase fluid

domain around the rig and the cylinder. To complete the setup these two simula-

tions where coupled using the System Coupling module within Workbench. Moreover,

data transfers were created between the participants and their preassigned FSI re-

gions. Multiphysics simulation settings of time step size, duration of the solution and

restart points were set within the System Coupling module.

3.2 Assumptions and Simplifications

In order to reach the project goals within a reasonable time frame, several simplifi-

cations and assumptions were made to decrease computational expenses.

• Two-way coupled analyses were carried out on the flexible cylinder only, whereas

the response of the experimental rig, was investigated with one-way coupling

for all of the case studies.

• Even though it would not be possible to see flexible structural behaviour from
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a steel cylinder under the investigated conditions, the structural steel mate-

rial model was modified by decreasing its Young’s modulus for the purpose of

creating a flexible material.

• Front supports that were designed to provide more sturdiness to the rig’s plate

were numerically introduced to the structural model as boundary conditions.

• A stiffener frame which was placed underneath the plate was introduced to the

system numerically by modifying the plate’s material properties.

• In the design process of the experimental rig, Styrofoam blocks were determined

to be attached to the system in order to equalize the buoyancy forces and the

weight of the system, hence gravitational effects along with damping were not

included in the numerical models.

• For the wall surfaces of the experimental rig along with the cylinder, smooth

and no slip wall boundary conditions were used in the CFD model.

3.3 Numerical Structural Model

A static structural analysis of a system is capable of showing if the system will with-

stand the steady-state loading conditions. However, this may not be sufficient es-

pecially when the loading conditions alternate with time. In this case a dynamic

analysis is used to determine the structural responses of a system considering the

time dependent loading conditions. On the other hand, a modal analysis determines

a structure’s vibration characteristics. In order to understand the structural responses

of the experimental rig under operation loading conditions and investigate its natural
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frequency, a modal and static structural analysis model was created initially. After

reaching a mesh independent solution on the static case, the model was upgraded to

a dynamic structural analysis model. The following equation is solved by a transient

dynamic analysis [47];

(M) {ü}+ (C) {u̇}+ (K) {u} = {F (t)} (3.1)

In this equation (M) represents the mass matrix where (C) represents the damping

matrix. Furthermore, (K) indicates the stiffness matrix and {ü} indicates the nodal

acceleration vector. Finally, {u̇} illustrates the nodal velocity vector where {u} nodal

displacement vector.

3.3.1 Geometry

A finite element model was created in order to investigate the structural responses of

the experimental rig and the test cylinder. Transient Structural module of ANSYS

Mechanical was used for the purpose. Multiple bodies were created for each individual

section of the experimental rig using ANSYS DesignModeler. In order to avoid contact

problems the parts composing the geometry were grouped and converted to a multi-

body part.

For the purpose of simplifying the structural module, front supports were intro-

duced as a fixed support condition onto the region of their attachment point with the

plate. Thus, they were not included in the model geometrically. Figure 3.7 shows the

experimental rig’s structural geometry including six bodies.
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Figure 3.7: Structural geometry

3.3.2 Computational FE Mesh

Following the geometry creation, the generation of a mesh is required. Due to coupling

requirements between the structural and fluid dynamics models and considering the

fact that the parts forming the experimental rig are thin plates, the finite element

model was created using solid/shell elements. For this purpose, SOLSH190 type

elements were used in ANSYS Mechanical. These elements allow geometry and mesh

coupling for FSI problems and far less expensive than the solid elements. Furthermore,

SOLSH190 features eight node connectivity and 3 DOF for each node. They support

large deflections and large strain capabilities along with plasticity, hyper elasticity,

creep and stress stiffening [48].

In order to obtain a constructed mesh, local mesh sizing controls applied on the
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edges are shown in the Figure 3.8. The figure shows the element sizes that are used

in order to create the optimal mesh for the structural model.

2mm

5mm

7.5mm

10 mm

10mm 2 mm

5 mm

10 mm

10 mm

Figure 3.8: Rig meshing parameters

3.3.2.1 Mesh Dependence Study for Structural FE Model

Considering the need for a vibration free, stable and durable experimental rig, pre-

dicting its stability and endurance was crucial. Although a structural analysis can

provide significant insight about these considerations, its performance is strongly

dependent on the mesh and the use of correct boundary conditions. A mesh depen-

dence study was conducted focusing on the resultant displacement and a very fine
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mesh was chosen in order to achieve maximum accuracy. Moreover, in order to set

a static structural simulation, the loads acting on the cylinder and experimental rig

were obtained from an individual CFD simulation. These hydrodynamic forces along

with their directions acting on the FSI geometries are shown in Table 3.1.

Table 3.1: Hydrodynamic Forces on the Rig

Geometry Force Direction Force Magnitude (N)

Cylinder X 154.13

Cylinder Y 3.03

Cylinder Z 83.94

Plate X 76.87

Plate Y 0.3

Plate Z -69.32

Support X 241.15

Support Y 22.99

Support Z -0.43

The fixed support boundary conditions were applied to the system on the attachment

surfaces of the frontal supports and the carriage. The gravitational acceleration of

the earth was not introduced to the system due to the design principal of keeping

the weight of the rig and buoyancy forces equal in order to avoid vibrations. After

completion of the static structural analysis model setup, different element sizes shown
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in Table 3.2 were chosen in order to create different meshes with various mesh con-

centrations on the rig. Different mesh element sizes, ranging from 10 mm to 1.5 mm,

were used to create various meshes as shown in Table 3.2.

Table 3.2: Element size and node count

Element Size (mm) Node Count

10 70,468

5 250,042

2.5 1,055,679

2 2,021,665

1.5 3,944,884

Table 3.3: von-Mises Stresses

Mesh Number of Nodes von-Mises Stress (MPa)

1 70,468 36.065

2 250,042 45.705

3 1,055,679 51.196

4 2,021,665 55.379

5 3,944,884 55.215
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Table 3.4: Deformations

Mesh Number of Nodes Deformations (mm)

1 70,468 0.774

2 250,042 0.774

3 1,055,679 0.775

4 2,021,665 0.775

5 3,944,884 0.775

Table 3.5: Changes in von-Mises Stresses and deformations for different meshes

Mesh Number of Nodes Change in von-Mises Stresses Change in Deformations

1 70,468 - -

2 250,042 26.7% 0.056%

3 1,055,679 12% 0.076%

4 2,021,665 8.2% 0.052%

5 3,944,884 -0.3 % 0.03%

It can be clearly seen from Table 3.3, 3.4 and 3.5 that the element size of 2 mm

was the most accurate and efficient size for the model. The model created with this

element size contained around two million nodes which was an excessive number of
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equations to solve within an FSI simulation. Considering the continuous calculation of

the structural model during the coupling iterations, this amount of equations would

extend the computational time beyond feasible limits. Thus, an optimized model

was needed. In order to achieve an optimized model, the high stress areas on the

structure were meshed with more concentrated mesh and the mesh concentration

around the low stress areas was coarsened. This optimized model of the experimental

rig including the plate, cylinder, cylinder cap and support system contains 71052

elements with 123860 nodes. The average aspect ratio of the mesh was 2.26 and the

average skewness was 0.061. This mesh can be seen in Figure 3.9.

Figure 3.9: Structural mesh

The changes in the Von-misses stresses regarding the different mesh concentrations

is shown in Table 3.5. Moreover, the plot showing the prediction of the von-Mises
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stresses based on the increased node count can be seen in Figure 3.10. The point

shown in red represents the optimized structural FE mesh that was further used in

the FSI simulations.
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Figure 3.10: Structural mesh convergence study

3.3.3 Simulation Setup

One of the challenges of a numerical investigation of the FSI problems is the demand

for computational resources and the solution time. In order to obtain numerical

results in the reasonable time, solver performances of both the Mechanical and Fluent

modules in ANSYS were critical. Even though the CFD portion of the FSI problem

requires more computational resources, due to the size of the structural solution and

the necessity for repetition at the end of each coupling iteration, the performance of

the Mechanical solver was also crucial. A numerical benchmark test for comparison

51



of solver type vs. calculation time was conducted to choose the most robust solver

for this particular problem. Even though a direct solver would be more robust for the

analysis of the static structural responses of the experimental rig, due to the extensive

output file sizes and non-linearities in the system, an iterative solver, Preconditioned

Conjugate Gradient (PCG), was used for its efficiency in memory and storage usage.

It was also evident that for this specific solver, the use of eight parallel processors

gave the most speed-up in the solution time.

3.3.3.1 Materials

Considering the difficulties of FEA on hyper elastic materials due to the large de-

formations and their ability to withstand greater strains than conventional materials

[49], the default structural steel model from ANSYS Material Database [50] was used

as material for the support system and rigid cylinder. For the flexible cylinder, struc-

tural steel model was modified by decreasing its Young’s modulus to provide a more

stable flexible behaviour. On the other hand, structural steel model was modified

by increasing its Young’s modulus in order to introduce the sturdiness gained by the

stiffener frame underneath the plate. Initial calculations and simulations showed that

this frame stiffens the plate resulting in 1/10 of the initial deformations. Thus, the

Young’s modulus of the structural steel material model was increased from 200 GPa

to 2000 GPa.

3.3.3.2 Boundary Conditions

Following the creation of the geometry and the mesh, boundary conditions had to be

applied to the structural analysis model in order to constrain the system. As shown
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in Figure 3.11 with letters A and B, four fixed support boundary conditions were

introduced to the structural model on the points of attachments between the plate

and the frontal cylindrical supports and the 45cm portion of the wake plate which

was attached to the main cylindrical support.

Figure 3.11: Rig structural model

Figure 3.11 shows the FE geometry and the supports along with the marked FSI data

transfer regions in red. Forces that are shown with the letters C, D, E, F, G, H, I and

J were not used as force boundary conditions in the FSI model. These areas were

set as fluid-solid interface and the forces were calculated by the CFD portion of the

simulation.

ANSYS Mechanical employs the finite element analysis approach for calculating the
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stresses and deformations. Some of the governing stress equations that mechanical

solvers address can be shown as follows [51]:

{σ} = [D]{ε} (3.2)

in the equation, [D] represents elastic stiffness matrix and [σ] represents stress tensor

which can also be written as:

{σ} =
[
σxxσxyσxzσyxσyyσyzσzxσzyσzz

]
(3.3)

where σxy = σyx, σxz = σzx and σyz = σzy.

The total strain tensor {ε} can also be written as:

{ε} = total strain tensor =
[
εxxεxyεxzεyxεyyεyzεzxεzyεzz

]
(3.4)

where εxy = εyx, εxz = εzx and εyz = εzy.

εxy, εyz,εxz represent the shear strains. Shear strains can be expressed as follows by

the aid of Shear modulus and stresses:

γxy =
σxy

Gxy

(3.5)

γyz =
σyz

Gyz

(3.6)

γxz =
σxz

Gxz

(3.7)

whereas shear modulus can be written as follows for isotropic and homogeneous ma-

terials:

G =
E

2(1 + ν)
(3.8)

Finally von-Mises Stresses are calculated with the following formula[51]:

σe =

√[(σxx − σyy)
2 + (σyy − σzz)

2 + (σzz − σxx)
2 + 6(σ2

xy + σ2
yz + σ2

xz)

2

]
(3.9)
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3.4 Numerical Fluid Flow Model

3.4.1 Geometry

ANSYS Fluent uses volume of fluid method (VOF) to simulate fluid dynamics. In

order to simulate fluid flow around the cylinder and the experimental rig, a three

dimensional CFD domain, or in other words, a numerical towing tank, was created.

To simulate the previously determined test scenario, a single phase fluid flow model

was used. The domain dimensions and the placement of the test rig can be seen

in Figure 3.12a. The CFD domain is 5.5 meters long and 2 meters wide. The test

subject, the cylinder, is placed at the origin of the domain. The inlet distance from

the center of the cylinder is 1.5 meters upstream and the outlet distance is 4 meters

downstream. The experimental rig along with the test cylinder is centered between

the side walls giving 1 meters distance from the cylinder center to the walls.

Figure 3.12 b shows the vertical placement of the test apparatus and the cylinder

in the CFD domain. The cylinder was submerged to 1.2 meters of depth which was

twice its height. The distance from the bottom wall to the plate that was initially

designed to simulate the ocean floor scenarios was determined as 0.1 meters. The

domain has 1.3 meters of height in total. The geometry that is being used for the

CFD model is a multi-body part which is divided into 102 bodies in order to obtain

practical and successful meshing controls.
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(a) CFD domain top view

(b) CFD domain side view

Figure 3.12: CFD domain view
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3.4.2 Computational Fluid Mesh

CFD mesh was created using ANSYS Meshing. Thirteen local mesh sizing controls,

three multi zone mesh methods and 4 inflation controls were applied in order to create

a constructed hexahedron mesh. Following the initial mesh creation and preliminary

CFD simulation results it was seen that further refinement in the CFD mesh was

required. Several refinements were made based on the mesh dependence studies each

focusing on different dimensions around the cylinder. First, a mesh study on a wall

to wall cylinder was conducted focusing on the element concentration in the perpen-

dicular direction of the cylinder circumference. Nine different meshes were created

and the results investigated. The most accurate and efficient mesh defined the mesh-

ing parameters for the subsequent mesh dependence study. Moreover, another mesh

study was conducted on a truncated cylinder. Lastly, a general refinement which

focuses on not only the cylinder but also on the experimental rig was made on the

CFD mesh. As a result, the mesh consisting of 3027800 elements with an average

of 0.043 skewness, 0.987 orthogonal quality and 9.371 aspect ratio was created. The

aspect ratio value is bigger than desired; however, it represents the averaged aspect

ratio of the whole CFD mesh which intentionally involves coarser mesh in the less

significant areas. This mesh is shown in Figure 3.26.

3.4.2.1 Mesh Dependence Study for Wall to Wall Cylinder

Considering that the most of the experimental work was done with infinite cylinders,

initially a wall to wall cylinder was investigated for the mesh study. Even though a

circular cylinder shows basic geometrical features, the flow passing over it shows com-
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plex physics. When capturing the physics of the fluid around a circular cylinder, the

surrounding mesh carries a high significance. Along with an appropriate turbulence

model and near wall treatment, the size and number of elements define the success of

the flow solution. Considering this, a mesh dependence study was conducted around

an infinite (wall to wall) cylinder by changing the element concentration in the area

shown in Figure 3.13. Considering the convergence of residual values, initially a time

step size of 2.5 milliseconds was chosen.

Figure 3.13: Wall to wall cylinder mesh study focus area, around the cylinder

Eight different meshes were created using incremental numbers of elements around

the cylinder. The number of elements and the element size that were used to create

different meshes are defined in Table 3.6. A biasing factor of 5, with a decreasing

element size towards the cylinder, was used in order to provide a smoother transition
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within the mesh.

Table 3.6: Mesh convergence study for wall to wall cylinder

Mesh Number of Elements Mesh Changes

Mesh A 1101750 25 elements around the cylinder

Mesh B 1326750 50 elements around the cylinder

Mesh E 1434750 62 elements around the cylinder

Mesh C 1551750 75 elements around the cylinder

Mesh D 1776750 100 elements around the cylinder

Mesh F 2001750 125 elements around the cylinder

Mesh G 2226750 150 elements around the cylinder

Mesh H 2676750 200 elements around the cylinder

The plots of the drag coefficients are shown in Figure 3.14, while the plots for

lift coefficients can be found in Figure 3.15. Furthermore, the comparison of the

root mean squares of the lift coefficients, C ′
L, and Strouhal numbers can be seen in

Figures 3.16 and 3.17 respectively.
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Figure 3.14: Drag coefficients over flow time for wall to wall cylinder mesh study
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Figure 3.15: Lift coefficients over 3.25 sec of flow time for wall to wall cylinder mesh

study
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It can be clearly seen from Figure 3.15 that Mesh E predicts the highest oscilla-

tions.

Figure 3.16: CL RMS values for wall to wall cylinder mesh study

Figure 3.16 demonstrates the CL RMS values for different meshes. It can be seen

that highest values are calculated by Mesh E and Mesh F.
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Figure 3.17: Strouhal number for wall to wall cylinder mesh study

Figure 3.17 indicates the highest shtrouhal number as 0.374 which was predicted

by Mesh F. Mesh E predicts this parameter as 0.347.

The results of drag coefficient CD, RMS of lift coefficient C ′
L, Strouhal and Y+ are

shown in Table 3.7.
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Table 3.7: Mesh convergence study for wall to wall cylinder

Mesh Number of Elements CD C ′
L Strouhal Distance (mm) Y+

Mesh A 1101750 0.333 0.057 0.367 1.17 88

Mesh B 1326750 0.449 0.112 0.339 0.59 45

Mesh E 1434750 0.432 0.124 0.347 0.48 36

Mesh C 1551750 0.412 0.105 0.354 0.39 30

Mesh D 1776750 0.427 0.117 0.349 0.29 22

Mesh F 2001750 0.425 0.124 0.374 0.24 18

Mesh G 2226750 0.417 0.116 0.350 0.20 15

Mesh H 2676750 0.408 0.110 0.353 0.15 12

Considering the literature data ([29],[13], [7], [17], [52] cited in [6], [53], [54],[55],

[56]) and the results shown in Table 3.7, Mesh E seemed to be the best choice for

simulating the flow around an infinite cylinder.

3.4.2.2 Mesh Dependence Study for Truncated Cylinder

Following the conclusion of the mesh study for an infinite cylinder, another mesh

study was conducted for a finite, truncated cylinder in order to achieve an optimized,

mesh independent model for the CFD model. Considering the existence of the free

end and that turbulence is a three dimensional physical phenomenon, mesh concen-

tration and quality are significant in three dimensions. After finishing the initial mesh

dependence study with the understanding of the circumferential mesh requirements
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on the horizontal plane, another mesh study was conducted in order to obtain a mesh

independent result regarding the requirements along the Z axis. Similarly, a time step

size of 2.5 milliseconds was chosen for the mesh study.

Initially nine meshes were created based on the parameters shown in Table 3.8.

Table 3.8: Meshing parameters for truncated cylinder mesh study

Run Matrix Ny=50 Ny=100 Ny=150

Nz=75,Bz=10 Mesh 1 Mesh 2 Mesh 3

Nz=150,Bz=15 Mesh 4 Mesh 5 Mesh 6

Nz=200,Bz=20 Mesh 7 Mesh 8 Mesh 9

In table above, the index Nz represents the number of elements along the height

of the cylinder (0.6 meters), where Ny represents the number of elements in the

normal direction to circumference of the cylinder. In addition, Bz shows the number

of elements within 0.1 m above the cylinder in the Z direction. A biasing factor

of 10 was used with this element sizing. The mesh within this area was taken into

account carefully considering the mesh refinements for capturing the flow separations.

After finishing the initial runs, three more meshes were added to the study in order to

investigate the effect of circumferential element number. While creating these meshes,

the number of elements above the cylinder, within the separation area, were kept as

20 for all the additional meshes. The meshing parameters for the additional meshes

are shown in Table 3.9.
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Table 3.9: Meshing parameters for additional meshes

Run Matrix Ny=100 Nc

Nz=75,Bz=20 Mesh 10 120

Nz=100,Bz=20 Mesh 11 160

Nz=125,Bz=20 Mesh 12 200

In Table 3.9, Nc represents the number of circumferential elements around the cylin-

der. Furthermore, Figure 3.18 demonstrates the meshing parameters in a vertically

sliced mesh.

Figure 3.18: Meshing parameters for the truncated cylinder

Table 3.10 shows the number of elements, the aspect ratio of the cell surrounding
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the cylinder and Y+ values on X-Y and Z axes.

Table 3.10: Meshing parameters for mesh convergence study for truncated cylinder

Mesh Specs Number of Elements AR Around Cylinder Y+ (X-Y axis) Y+ (Z axis)

Mesh 1 1652990 5.63 111 184

Mesh 2 2198990 6.00 56 184

Mesh 3 2744990 8.50 37 184

Mesh 4 3081690 3.81 111 125

Mesh 5 4107690 6.63 56 125

Mesh 6 5133690 9.46 37 125

Mesh 7 4068140 4.09 111 95

Mesh 8 5424140 6.63 56 95

Mesh 9 6780140 8.53 37 95

Mesh 10 2462890 6.63 58 103

Mesh 11 4658160 6.61 56 93

Mesh 12 5674130 6.63 56 95

The aspect ratio is calculated as the distance from the edge of the cell to the cell

centroid over the distance from the face centroid to the cell centroid. More detailed

information about the mesh requirements, mesh economy and mesh quality can be

found in ANSYS Fluent User’s Guide [3].
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Figure 3.19: Aspect ratio calculation, from [3]

Figure 3.19 demonstrates the calculation of the aspect ratio of the cells used in

the mesh. As seen in Figure 3.20 and Figure 3.21, this value affects the performance

of the mesh when calculating the flow forces. For instance, Mesh 12 with an aspect

ratio of 6.63 shows irregular oscillations in the lift force even though it has the highest

number of elements, reaching up to 5674130 elements.
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Figure 3.20: Drag coefficients over flow time for truncated cylinder mesh study
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Figure 3.21: Lift coefficients over flow time for truncated cylinder mesh study
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Drag values calculated by the created meshes are shown below in Figure 3.22.
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1 2 3 4 5 6 7 8 9 10 11

CD

Meshes

Figure 3.22: Drag Coefficient convergence

Figure 3.23 shows the calculated lift coefficient values among the meshes created.

It can be clearly seen that the Mesh 4 shows the highest CLRMS value among the

other meshes.
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Figure 3.23: Lift Coefficient RMS convergence

Figure 3.24 shows the relation between the mesh cell aspect ratio and the CLRMS

prediction of the CFD model that was created with this mesh.

Figure 3.24: CLRMS vs. element aspect ratio
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Figure 3.25 shows the dimensionless Strouhal number for different meshes

Figure 3.25: Strouhal vs. element aspect ratio

Considering the results of oscillating forces and the frequency of the oscillations,

Mesh 4 with an aspect ratio of 3.81 predicted the best values for CLRMS and Strouhal

number. Thus, for the development of the FSI model this mesh was chosen for the

fluid flow modeling.

3.4.2.3 Mesh Optimization for Experimental Rig in Flow

After conducting the mesh dependence studies for finite and infinite cylinders, the

CFD mesh was refined within the limits of computational resources. The meshing

parameters that was used for Mesh 4 were applied to the last mesh. Further mesh

refinements were made around the walls of the main cylindrical support and plate.

The horizontal region of the plate thickness was divided into 5 pieces throughout the
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CFD domain in order to capture the flow around the plate. An inflation layer mesh

control with 4 layers was applied around the cylindrical support with 0.01 m first

layer thickness and 1.2 growth rate. The distance from the plate to the bottom of

the domain was divided into 15 divisions with a biasing factor of 2.

As a result, the mesh shown in Figure 3.26 was created involving 3027800 elements.

74



(a) CFD mesh perspective view

(b) CFD mesh top view

(c) CFD mesh side view

Figure 3.26: CFD mesh views
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3.4.3 Turbulence Model

One of the most difficult challenges when designing engineering solutions for offshore

operations is turbulence. For small Reynolds numbers, the equations of motion for

a viscous fluid would demonstrate a steady solution due to the domination of the

viscous stresses. However, at larger Reynolds numbers, the fluid’s inertia overcomes

the viscous stresses and causes random disorders in flow [57]. At high Reynolds

numbers reaching 500 000, the flow speed around the cylinder falls into the super-

critical turbulent regime. In this flow regime, vortices rapidly shed. Furthermore, the

oscillations of the drag and lift forces significantly affect the FSI problem resulting in

the need for accurate solution. Turbulence is three dimensional and time dependent

which requires a great deal of information for its full description. For this reason,

while investigating the turbulent flows, the significant properties of the flow and the

fidelity of the solution should be determined in advance. Unfortunately, there is no

turbulent model that can be used universally. Today’s computer technologies are not

able to solve Navier-Stokes equations with the deterministic method. This method

is also known as Direct Numerical Simulation (DNS). However, since this method

aims to solve the components of the flow in every scale, it is not applicable for the

practical engineering flows with the current computational resources. This requires

a statistical approach to the solution. Reynolds introduced time average, the spatial

average and the ensemble average in 1895 [58]. These methods introduce a loss of

accuracy in the solution; however, they also make the investigation of the significant

flow features possible.

Reynolds Averaged Navier-Stokes equations are the derived versions of the Navier-
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Stokes equations. They are derived from the substitution of the disintegrated mean

and fluctuating scalar quantities of the flow into the continuity and momentum equa-

tions [4]. This process resolves the requirement of fine mesh by modeling the turbu-

lence in all grades. However, the approximation introduces unknown variables to the

system. As a result, additional equations are needed to be solved in order to close the

system. This method, also acknowledged as Reynolds averaged navier-Stokes (RANS)

method, is considered as the best compromise in numerical turbulence modeling[57].

The Reynolds Averaged Navier-Stokes Equations (RANS) can be shown as below

[4]:

∂ρ

∂t
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ρui
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= 0 (3.10)

∂

∂t
(ρui)+

∂

∂xj

(ρuiuj) = − ∂p

∂xi

+
∂

∂xj

[
µ
(∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij
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∂

∂xj

(
−ρū′

iū
′
j

)
(3.11)

As mentioned earlier, there is no conventional turbulence model that can be used for

all flow scenarios while numerically simulating a turbulent flow. Thus, the preference

of turbulence model depends on the physics of the flow along with the factors of de-

sired detail scale and accuracy level. Moreover, the dimensions of the computational

domain as well as available time and computational resources also carry significance

in model selection. Several turbulence models were developed for numerical turbu-

lence modeling such as: zero equation (Prantls Mixing Length, Cebeci-Smith Model),

one-equation model (Spart-Allmaras), two-equation models (k-ε, k-ω), second order

closure (Reynolds stress) and algebraic stress models. It can be seen that Large

Eddy Simulation (LES) gained popularity in the recent years. Even though LES

requires less refined mesh than DNS, it still requires significantly more refined mesh
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than RANS due to the necessity of calculating large eddies in the turbulent flow [57].

RANS models are computationally the most economical and also widely used for sim-

ulating industrial flows due to their ability to capture significant flow features within

an acceptable accuracy range. These models solve the problem by the help of two

additional transport equations and Eddy-Viscosity to estimate Reynolds Stresses.

Considering the computational cost and coupling requirements of the FSI prob-

lem, a realizable k-ε RANS model with non-equilibrium wall functions was used in

this study. A Non-equilibrium wall function was chosen due to its performance in

calculating the lift and drag forces more accurately than the standard wall functions

[4].

Moreover, one of the reasons of choosing the Realizable k-ε model lies under the

term ”realizable”. As shown below, in the Realizable k-ε model the eddy viscosity

coefficient, Cµ , is calculated rather than being used as a constant as in Standard k-ε

model. The turbulent viscousity equations that are used by Realizable k-ε model are

shown below [4]:

µt = ρCµ
k2

ε
(3.12)

where

Cµ =
1

A0 + As
kU∗

ε

(3.13)

and

U∗ ≡
√

SijSij + Ω̃ijΩ̃ij (3.14)

also

Ω̃ij = Ωij − 2εijkωk (3.15)

Ωij = Ωij − εijkωk (3.16)
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Ωij represents the mean rate-of-rotation tensor with angular velocity ωk. The model

constants A0 and As are determined as [4];

A0 = 4.04, As =
√
6cosφ (3.17)

where φ is defined as below [4];

φ =
1

3
arccos(

√
6W ),W =

SijSjkSki

S̃3
, S̃ =

√
SijSij, Sij =

1

2
(
∂uj

∂xi

+
∂ui

∂xj

) (3.18)

Although it is computationally the most expensive k-ε model, Realizable k-ε out-

performs the traditional k-ε models thanks to the modifications were made over the

years. Transport equations that are solved by the model are shown below [4];
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and

∂

∂t
(ρε)+

∂

∂xj

(ρεuj) =
∂

∂xj

[
(µ+

µt

σε

) +
∂ε

∂xj

]
+ρC1Sε−ρC2+

ε2

k +
√
νε

+C1ε+
ε

k
C3εGb+Sε

(3.20)

where

C1 = max

[
0.43,

η

η + 5

]
, η = S

k

ε
, S =

√
2SijSij (3.21)

Lastly, model constants that are used in FLUENT by default are shown below [4];

C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2 (3.22)

More detailed information about the model can be found in ANSYS Fluent Theory

Guide [4].
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3.4.3.1 Near Wall Treatment

In turbulence modelling, near wall modelling carries a significant role. This is due to

the fact that the flow properties extend to very high gradients in the near wall region.

This region can be split into three sections: viscous sub layer, buffer layer and fully

turbulent layer also known as log-law region. Figure 3.27 below demonstrates these

layers in the near wall region[4].

Figure 3.27: Near wall region divisions, from [4]

In the figure above the non-dimensional distance to the wall in the normal direction

is represented with y+. It is calculated using the following formula[4];

y+ ≡ ρuτ
y

µ
(3.23)

where uτ is defined as
√

τw
ρ
. Near wall region can either be resolved or calculated.
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It can be calculated with a model that is enabled and capable of resolving the inner,

viscosity-affected regions by the aid of a mesh throughout the wall. Secondly, it can

be calculated with semi-empirical formulas and linked to the outer boundary layer

region. This second strategy is also known as wall functions. Figure 3.28 illustrates

these two strategies.

Figure 3.28: Wall functions, from [4]

The use of wall functions helps to decrease computational costs significantly. How-

ever, they should be used carefully. For instance, excessive refinements of the mesh in

the normal direction to the wall, in other words small y+ values, can create errors in

the solution. This deterioration was observed in certain meshes during the mesh de-

pendence studies that were conducted during this research. Contrary to expectations,

certain meshes with Y+ values lower than 30 showed lower force predictions than the

mesh with Y+ value around 30. The results can be seen in Chapter 3.4.2.1. Owing

to its ability to predict the wall shear more accurately, this model was preferred over

standard wall functions which is the default wall function option for the Realizable
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k-ε model. ANSYS FLUENT offers several near wall treatment methods with other

turbulent models such as Scalable Wall Functions and Enhanced Wall Treatment.

Detailed information about available near wall treatments and their characteristics

can be found in ANSYS Fluent Theory Guide [4].

3.4.4 Simulation Setup

A single phase fluid flow model with Realizable k-ε turbulence viscous model was

used to set up the simulation. Furthermore, for the fluid, liquid water was used

from the Fluent material library with a density of 998.2 kg/m3 and viscosity of

1.003x10−3kg/ms−1. For the flow domain the default operating pressure of 101325

Pa was used.

3.4.4.1 Boundary Conditions

For the solution of Navier-Stokes and momentum equations, appropriate boundary

conditions along with initial conditions have to be applied to the flow. ANSYS

Fluent offers several boundary conditions for flow inlet and outlets such as: velocity-

inlet, mass-flow-inlet and pressure inlet for inlets, and outflow and pressure-outlet

for flow exits. Additionally, slip, no-slip and symmetry boundary conditions for wall

boundaries are offered. Brief descriptions of these boundary conditions can be found

below[3].

Velocity Inlet

Assigns the velocity profile at the inlet. For the uniform flow profile, velocity vector

along with the scalar velocity can be defined.
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Mass Flow Inlet

Can be used when the mass flow rate of the flow is known at the inlet.

Pressure Inlet

Suitable to use with both compressible and incompressible flows. Used to define the

total pressure at inlet boundaries.

Outflow Outlet

This outlet boundary condition can be used when the flow velocity and the pressure

is not known before the solution of the flow. All other gradients except pressure are

assumed zero. Required information is extrapolated from the interior.

Pressure Outlet

Requires the specification of the static pressure at the outlet.

In addition, slip, no-slip along with stationary and moving wall boundary condi-

tions are also available for wall boundary conditions.

Wall

Wall boundary condition is the most basic boundary condition. The fluid cannot pass

the flow thus, relative normal velocity is defined as zero.

No Slip Wall

No slip wall boundary condition is a version of the wall where the tangential compo-

nent of velocity is also set to zero.
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Symmetry Wall

Generally used to decrease computational costs of the model. With this boundary

condition the flow factors across a symmetry plane are mirrored [59].

As shown in Table 3.11, velocity-inlet and pressure-outlet type boundary condition

was used for inlet and outlet of the fluid domain. The distance between the inlet

boundary and cylinder was 1.5m where it is 4m to the outlet. Flow specifications

were defined as a velocity of 3.294m/s on X direction. Furthermore, default values

5% and 10 were used for turbulence intensity and viscosity ratio respectively. No slip

wall boundary conditions were used for the bottom wall of the domain. In addition,

the side and the top walls were assigned as zero shear slip wall.

Lastly, a gravitational acceleration of 9.80665m/s2 was introduced in the model

on negative Z axis in order to include its effect on the flow.

Table 3.11: CFD Boundary Conditions

Parts of the domain Type of boundary condition

Inlet Velocity inlet

Outlet Pressure outlet

Cylinder wall No slip wall

Plate wall No slip wall

Support wall No slip wall

Top wall Slip wall

Bottom wall No slip wall

Side walls No slip wall
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3.4.4.2 Solver Settings

In order to calculate the flow around the experimental rig as well as the rigid and

flexible cylinder, a pressure-based transient solver was used. For the purpose of

including the gravitational effects on the hydrodynamics, a gravitational acceleration

of −9.80665m/s2 was activated on the Z axis. Table 3.12 lists the type of solution

methods that were used in Fluent model. Stated solution methods and schemes were

chosen based on examples in the literature and technical support from the ANSYS

customer service department.

Table 3.12: FLUENT Solver Settings

Solution Methods

Scheme PISO

Gradient Least Squares Cell Based

Pressure Second Order

Momentum Second Order Upwind

Turbulent Kinetic Energy QUICK

Turbulent Dissipation Rate Second Order Upwind

Transient Formulation Second Order Upwind

Under relaxation factors (URF) were left at the default settings. By default, URF

for pressure is 0.3, where it is 1 for density, body forces and turbulent viscosity, 0.8 for

turbulent kinetic energy and turbulent dissipation rate. Lastly, URF for momentum

is 0.7. The solution was initialized with standard initialization where it was computed
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from the inlet with a velocity of 3.294m/s on X direction. Residual monitoring was set

to an absolute criteria of 0.00001 for continuity, X-velocity, Y-velocity, Z-velocity, k

and ε. The calculation was run with a time step of 2.5ms with maximum 50 iterations

per time step. The solution was completed for 2000 time steps and thus 5 seconds of

flow time.

3.4.4.3 Time Step Dependence Study for CFD Model

In transient simulations, the accuracy of the solution is affected by the time step size

in addition to mesh. Considering this, a time step dependence study was conducted

in order to obtain the most accurate solution for the numerical model. As can be seen

in Table 3.13, six different time steps were used ranging from 0.01 s to 0.625 ms. The

most accurate time step size was obtained as 1.25 ms. Considering the computational

costs for the FSI simulations, a bigger time step size of 2.5 ms was initially chosen.

The CFD solution with a 2.5 ms time-step size showed an insignificant difference

in calculation of the Strouhal number from the time-step independent solution with

an error of 0.56%. However, as mentioned in the System Coupling section, this

time step size was too big for two-way coupled analysis due to the dynamic meshing

requirements. Thus, the global time-step size of a 2.5 milliseconds were used for

one-way coupling and one millisecond was used for two-way coupled FSI simulations.

The comparison for the time step size and corresponding the Strouhal numbers can

be seen in Table 3.13 and Figure 3.29.
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Table 3.13: Parameters

Mesh Mesh 4d Mesh 4c Mesh 4 Mesh 4e Mesh 4a Mesh 4b

Time Step 0.01 0.005 0.0025 0.002 0.00125 0.000625

Strouhal Number 0.330 0.350 0.354 0.355 0.356 0.355

CL RMS 0.0117 0.0126 0.0128 0.0129 0.0130 0.0127

CD 0.299 0.301 0.302 0.282 0.302 0.302

% St 92.70 98.31 99.44 99.85 100.00 99.72

Figure 3.29: Strouhal convergence
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3.5 System Coupling

The last step of a Multi-Physics simulation is the coupling of the particular mod-

ules/solvers. For this purpose System Coupling module was used. Figure 3.30 illus-

trates the workbench work flow for a coupled analysis between ANSYS Mechanical

and ANSYS FLUENT solvers within ANSYS Workbench environment.

Figure 3.30: Workbench coupling work scheme

During the coupling process, transferring data between solvers occurs in every

time step and is repeated with additional coupling iterations until it either achieves

the convergence criteria or reaches the maximum number of iterations. For both

one-way and two-way coupled analyses, a minimum 2 and maximum of 5 iterations

were set. In addition, the convergence criteria between the solvers was fixed to 0.001.

As previously mentioned, a global time-step size of 1 millisecond was chosen for the

coupled analyses.

For the purpose of being able to restart the FSI simulation in case of crashes, Interme-
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diate Restart Data Outputs were set to 250 under System Coupling Execution Control

settings. In addition to System Coupling, several settings for restarting purposes were

set in the Mechanical module. Under Analysis Settings, ”Generate Restart Points”

were set to Yes and under Analysis Data Management, ”Delete Unneeded Files” set-

ting was set to No. These additional steps were crucial in order to start the transient

mechanical simulation from the desired load step and sub-steps. Similarly, FLUENT

module was set properly to save every 100 time step data of the fluid flow solution.

3.5.1 One-Way Coupling

Initially, one-way coupling model was created. For this purpose, three data transfers

were established between the Mechanical and CFD FSI interfaces. A data transfer

only sends one type of variable from the source to the target region and the sequence

of this data transfer happens from FLUENT to ANSYS Mechanical. Each data

transfer was created for the cylinder, plate and support regions individually to send

force variables. Between the FSI regions of Mechanical and CFD, 100%mapping was

established within ANSYS System Coupling. While running FSI simulations on the

cluster environment, this information can be accessed within the System Coupling

log file.

Figure 3.31 demonstrates the one-way coupling procedure[42].
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Figure 3.31: One-way coupling scheme

3.5.2 Two-Way Coupling

In addition to one-way coupled analysis, two data transfers were created for the

cylinder in the process of developing the two-way coupled analysis. For one-way

coupled analysis, Fluent solves the RANS equations for the whole fluid domain and

sends the results on the cylinder, plate and support. However, for a two-way coupled

analysis, deformations caused by hydrodynamic forces are also transferred back to

fluid domain with the help of dynamic mesh algorithms. This concludes one time

step of the calculation in case of convergence of both solutions. As distinct from the

one-way coupled FSI simulation, another data transfer was created within System

Coupling. Thus, the two-way coupled analysis setup includes 3 data transfers for the

force variables and one data transfer for the nodal displacements.

Outlines of the system coupling schematics of one-way and two-way coupling can be

seen in Figure 3.32
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Figure 3.32: Coupling setup, one-way (left) and two-way (right)

The process scheme for a single time-step of two-way coupled analysis can be seen

in Figure 3.33[42].
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Figure 3.33: Two-way coupling scheme

For the purpose of mesh updating, diffusion based smoothing along with local

cell and local face re-meshing methods were applied. In the smoothing method, the

number of nodes and their connections do not change. However, the interior nodes

of the mesh moves. The mesh motion is governed by the diffusion equation shown as

follows [4]:

∇.(Ψ∇−→u ) = 0 (3.24)

where −→u represents the mesh displacement velocity and Ψ represents the diffusion

coefficient. The local cell re-meshing only affects triangular and tetrahedral mesh

cells that exceed the skewness or size criteria due to large displacements. By doing

so, it prevents convergence problems in the solution that can be caused by negative

cell volumes.
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3.6 Different Simulation Cases

In order to investigate the behaviour of the submerged flexible cylinder, 5 different

cases were run. For these runs, the same CFD model was used except for the ones

with dynamic meshing. Base case included a cylinder with rigid material as explained

on Page 52. Since large displacements were not expected, this case was solved with

one-way coupled FSI simulation.

Case 1 included a flexible cylinder; however, it was solved with one-way coupled

analysis initially.

Case 2 included a more flexible cylinder and was solved with one-way coupled

analysis in order to compare the effects of flexibility with one-way coupled method.

Lastly, in Case 3 and Case 4, a cylinder with same material properties in Case

1 and Case 2 was solved with two-way coupling. The thickness of the cylinder was

designed as 0.02 m for all the investigated cases. Material properties along with FSI

solution methods of the cylinder for each case is shown in Table 3.14 below.

Table 3.14: Different simulation cases

Cases Cylinder Material Young’s Modulus (Pa) Simulation Type

Base case Rigid 2e+11 One-way coupled FSI

Case 1 Flexible 2e+09 One-way coupled FSI

Case 2 Flexible 2e+08 One-way coupled FSI

Case 3 Flexible 2e+09 Two-way coupled FSI

Case 4 Flexible 2e+08 Two-way coupled FSI
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Chapter 4

Results and Discussion

In order to provide insight about the fluid-structure interaction of the test cylinder and

the endurance of the experimental rig, the results of five different cases with varying

material properties and coupling methods for the cylinder are presented. The flow

behavior is analyzed with the aid of streamlines and contour plots of mean-velocity

and fluctuation components. Additionally, the dynamic responses of the cylinder and

the experimental rig are analyzed with deformations and von-Mises stresses.

4.1 Validation of the CFD Model

A numerical investigation of the flow around a finite cylinder at a critical Reynolds

number using the Realizable RANS model has been carried out as part of the FSI

model development. The following section compares the results of the CFD model

with literature data in order to validate the numerical fluid flow model. All cited data

from the literature was digitized by the open source software, Engauge 7.2.
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Pressure Coefficient

Circumferential pressure distributions are presented from available experimental and

numerical studies. The pressure coefficient curve obtained from the numerical fluid

flow model from the current study shows a less negative pressure around the sepa-

ration point when compared to other studies. This can be attributed to the effect

of the free end; Fox and West [18] observed a notable effect on the mean pressure

distributions in the presence of a free end. They reported an increase in the wake

pressure due to down-wash flow, which generally means reduced pressure for a fi-

nite cylinder. The reduction in pressure can be attributed to the separation of the

fully turbulent boundary in other studies with a higher Reynolds number. In the

present study, which utilizes a lower Reynolds number of 500000, the transition may

still be in progress. As seen in Figure 4.1, the trend of the pressure coefficient over

the circumference of the cylinder shows similar behavior from the stagnation point

to separation. As mentioned by Okamoto and Yagita [10] an inflexion point in the

pressure curve after the minimum pressure indicates separation. Furthermore, from

the comparison of the inflexion points in the curves it can be seen that separation

occurs in a similar vicinity, compared to the other studies.

Summing up the results, it can be concluded that the calculated pressure co-

efficient distribution shows a good agreement with the other studies ([29],[13], [7])

considering the finite length of the cylinder.
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Figure 4.1: Pressure coefficients for a circular cylinder from literature

Drag Coefficient

Results from several experimental and numerical investigations of the flow around

a circular cylinder are shown in Figure 4.2. Fox and West [18] reported a notable

relation between the drag pressure and aspect ratio of the cylinder when the aspect

ratio is less than 13. They reported an increase in the wake pressure and reduced

drag pressure for the finite cylinder compared to an infinite cylinder.

However, Achenbach [19] investigated the flow around a smooth cylinder with

a similar aspect ratio to the present study with a value of 3.33. He measured the

local pressure and skin friction distribution and calculated the drag coefficient from

these measurements. From the outcome of the present investigation, it is possible to

96



conclude that the fluid flow model calculates the drag coefficient with good agreement

with other literature data from [29], [60], [17], [54], [16],[61] particularly with that of

Achenbach[19].

Figure 4.2: Drag coefficients for circular cylinder from literature

Lift Coefficient

In most applications involving cylindrical structures, the lift force is significantly

smaller than the drag force which results in a smaller structural response from the

cylinder. This might be one of the reasons that the lift force around the cylinder is

less commonly investigated than the drag force.
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Moreover, the effect of the free end along with the aspect ratio of the cylinder

and the influence of the Reynolds number on the flow around the tip of the cylinder

are not fully understood [62]. Consequently, experimental results for a finite cylinder

mounted on a similar experimental rig with an aspect ratio of 4 in a flow with a

Reynolds number of 500000 could not be found for direct comparison. However, the

validation of the model considering the lift force was studied with the aid of the root

mean square value from several related studies. The results of the root mean square

of the lift coefficient for circular cylinders are shown in Figure 4.3.

Figure 4.3: RMS lift coefficient for circular cylinder from literature
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As seen in Figure 4.3, the lift RMS value for the finite cylinder mounted on the rig

is significantly lower than the value of the infinite cylinder which was mentioned in

the mesh dependence study section of Chapter 3 of this thesis. The infinite cylinder

lift RMS value shows a good agreement with the literature data from [17], [52] cited

in [6], [53].

However, the finite cylinder RMS value is significantly lower. According to Fox

and West [63], this is expected. Furthermore, it can be seen from Figure 4.4 [64] cited

in [65], that the ratio of the lift coefficient for the finite cylinder to that of an infinite

cylinder is approximately 0.1 for the present study.

Figure 4.4: Ratio of lift force coefficient on finite cylinder to that on infinite cylinder
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To sum up, the data obtained indicates a similar trend for the small RMS lift

coefficient value of the finite cylinder with an aspect ratio of 4. Thus, it can be said

that the results show acceptable agreement.

Strouhal Number

Strouhal numbers from several studies are shown in Figure 4.5. It can be seen from

this figure that for a Reynolds number of 500000, the value of the Strouhal is approx-

imately 0.45 for cylinders with larger aspect ratios of 5 and 10 [56]. As mentioned

in the literature review, Fox and West [18] reported a relation between the aspect

ratio and the Strouhal number for cylinders with aspect ratios smaller than 13. They

reported that the Strouhal number increased with the aspect ratio until it reached a

value of 13. This relation can be seen from the comparison of Zan [56]’s result for

aspect ratios of 5 and 10 and the current study with an aspect ratio of 4.

It is evident that in comparison to the results from the literature ([54],[55], [56]),

the fluid flow model performed similarly when calculating the Strouhal number. Thus,

the results of the current study are in good agreement with the results from the

literature.
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Figure 4.5: Strouhal number for circular cylinder from literature

In general, the data obtained for pressure, lift and drag coefficients along with

Strouhal number are consistent with the major trends in literature compared to other

experimental and numerical work. Therefore, the current numerical fluid flow model

is judged to be sufficient for use in further FSI investigation of flexible submerged

cylinders.
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4.2 Investigated Cases

For all investigated cases, the cylinder thickness was chosen as 0.02 m. The flow

was at Reynolds 5x105, with a flow speed of 3.294m/s. FSI on the experimental rig

was investigated with one-way coupling, whereas the coupling method for the FSI

investigation on the cylinder varied between cases. All simulations were started by

coupling the fluid flow simulations that were at a steady state after 3 seconds of initial

time. One-way coupled simulations were completed for 1000 coupling steps (2.5 s)

and two-way coupled simulations were completed for 500 coupling steps (0.5 s). 2500

coupling steps for one-way coupled simulations were completed in approximately 19

hours using 16 cores for Structural and 48 cores for CFD solver for each case. On the

other hand, 500 coupling steps for each two-way coupled simulation were completed in

approximately 116 hours using 16 cores for Structural and 32 cores for CFD solver.

A cylinder can be considered rigid if its deformation remains at less than 1/200th

of its diameter [65]. The base case investigated involves a cylinder with a default

structural steel material property [50]. The Young’s modulus of the material was

left as it is, 2x1011. Excluding the base case, all the cases investigated involve a

cylinder with a modified structural steel material property. The Young’s modulus of

the material was decreased to 2x109 for Case 1 and Case 3. For Case 2 and Case 4 it

was reduced to 2x108 which provided more flexibility. These cases were included for

the comparison of one-way and two-way coupled FSI solution methods for solving the

structural responses of different materials. The force transfers for the experimental

rig were in one direction for all the cases which was from CFD solver to structural

solver. However, for cases 3 and 4, the data transfers for the cylinder were completed
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as two way transfers, making it a one-way coupling for the rig and two-way coupling

for the cylinder. Summarized properties of all the investigated cases can be found in

Table 4.1.

Table 4.1: FSI Cases

Case Coupling Method Cylinder Young’s Modulus (Pa) Coupling Steps Time (s)

Base Case One-way 2x1011 2500 2.5

Case 1 One-way 2x109 2500 2.5

Case 2 One-way 2x108 2500 2.5

Case 3 Two-way 2x109 500 0.5

Case 4 Two-way 2x108 500 0.5

4.2.1 Base case

For the one-way coupling cases, the base case and Case 1 and Case 2, the CFD domain

remains intact, meaning the fluid forces acting on the cylinder are not affected by the

deformations and are identical for all one-way coupled cases. Figure 4.6 shows the non-

dimensional lift and drag coefficients of the hydrodynamic forces acting on the cylinder

over time. The mean drag coefficient oscillates around 0.311 whereas the root mean

square value for the lift coefficient is 0.005 and the Strouhal number is 0.299. These

values are slightly different compared to the single finite cylinder model. The mesh

parameters that represent the mesh converged solution for the fluid flow modelling

of the finite cylinder were used for modelling the cylinder on the experimental rig.
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However, there is a slight, expected difference in these hydrodynamic forces since the

numerical models are not identical.

Figure 4.6: Lift and drag coefficients for base case over time

Velocity contours plotted on the vertical and horizontal planes of the fluid flow

solution for the base case, Case 1 and Case 2 can be seen in Appendix A.

Figure 4.7 illustrates the directional deformations of the cylinder due to the hydro-

dynamic forces shown in Figure 4.6. A significant difference between the structural

reactions to drag and lift forces can be seen. Figure 4.8 illustrates the maximum

von-Mises stress values for the base case over time. The highest stress occurs at

0.0625 sec with a value of 68.78 MPa. The distribution of the von-Mises stress was

demonstrated in Figure 4.9 and deformations were scaled up 150 times for visibility

purposes. It can be seen that the highest stress occurs in the vicinity of the front

support connections.
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Figure 4.7: Cylinder directional deformations for base case

Figure 4.8: Base case maximum von-Mises stress over time
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Figure 4.9: Base case peak von-Mises Stress

4.2.2 Case 1

The first case includes a cylinder with modified material properties in order to provide

flexibility. However it was solved with one-way coupling. Thus, the hydrodynamic

forces are identical to the ones in the base case. In order to demonstrate the structural

response of the cylinder, directional deformations were investigated. Figure 4.10

represents the directional deformations of cylinder in x and y axes along with the

behaviour of the hydrodynamic force coefficients of the cylinder over time. The lift

coefficient was magnified 10 times for providing a better comparison.
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Figure 4.10: Case 1 cylinder directional deformations vs. force coefficients over time

The von-Mises stress occurring on the experimental rig due to the hydrodynamic

forces and cylinder deformations can be seen in Figure 4.11a. The von-Mises stress

reaches its peak value of 71.74 MPa at 0.0725 s. It can be seen in Figure 4.11 b that

the minimum von-Mises stress occurs on the fixing portion of the main support with

a value of 0 Pa. On the other hand, the maximum stress occurs in the vicinity of the

front cylindrical support with a value of 71.74 MPa. These supports were introduced

as a fixed support to the system. Deformations were scaled up 170 times for visibility

purposes.
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(a) Case 1 maximum von-Mises stress over time

(b) Case 1 peak von-Mises stress

Figure 4.11: Case 1 von-Mises stress on the rig
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4.2.3 Case 2

Since Case 2 was also solved using one-way coupled FSI simulation for the cylinder,

the non-dimensional force coefficients and the Strouhal number are identical to that

of Case 1 and the base case. Figure 4.12 demonstrates the directional deformations

on the x and y axes of the cylinder for Case 2 along with the drag and lift force

coefficients over time.

Figure 4.12: Case 2 cylinder directional deformations vs. force coefficients over time

Figure 4.13 a represents the behavior of the maximum von-Mises stress for Case

2. The highest stress occurs at 0.22 s with a value of 82 MPa. The deformations and

the stress distributions on the rig were shown in Figure 4.13 b.
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(a) Case 2 maximum von-Mises stress over time

(b) Case 2 peak von-Mises stress

Figure 4.13: Case 2 von-Mises stress on the rig

Deformations were scaled up 33 times for visibility purposes.
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4.2.4 Case 3

The biggest difference between one-way and two-way coupling is the update of the

fluid domain based on the structural deformations. In a different manner than the

first three cases, Case 3 and Case 4 were solved by two-way coupling. Thus the

hydrodynamic forces around the cylinder were affected by the cylinder deformations

resulting in a different behaviour. Non-dimensional hydrodynamic forces for the flex-

ible cylinder can be seen over time in Figure 4.14.

Figure 4.14: Case 3 lift and drag coefficients over time

Red circles in the figure mark the perturbations in the force coefficients. These

perturbations are thought to be caused by the lack of force transfer convergence for
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certain time steps. It was seen from the coupling log file that force monitoring showed

that the force transfer was not converging to the RMS convergence target even though

both of the solvers were reaching convergence individually. Regardless, the trend of

the drag and lift coefficient can be clearly seen.

Figure 4.15 shows the directional deformations of the cylinder in x and y axes over

time.

Figure 4.15: Case 3 directional deformations of cylinder on X and Y axes

Figure 4.16 illustrates the directional deformations on the cylinder for Case 3

along with the force coefficients over time. Lift deformations were magnified 10 times

in order to emphasize the relation between the lift force and structural reactions.
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Figure 4.16: Case 3 cylinder directional deformations vs. force coefficients over time

Figure 4.17 a demonstrates the maximum von-Mises stress values for Case 3 at the

highest point, which is at 0.071 s with a value of 75.39 MPa. Figure 4.17 b illustrates

the stress distribution and deformations on the rig at the highest maximum von-Mises

stress time.
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(a) Case 3 maximum von-Mises stress over time

(b) Case 3 peak von-Mises Stres

Figure 4.17: Case 3 von-Mises stress on the rig

For visibility purposes deformations were magnified 160 times.
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4.2.5 Case 4

The non-dimensional lift and drag coefficients of the hydrodynamic forces acting on

the cylinder are illustrated in Figure 4.18.

Figure 4.18: Case 4 lift and drag coefficients over time

Similar to Case 3, red circles in the figure mark the perturbations in the force

coefficients. These perturbations are thought to be due to the unconverged data

transfer for force variables within certain coupling time steps. The RMS convergence

target for these data transfers was set to 0.01. However, the trend of the drag and

lift coefficients can clearly be seen.

Figure 4.19 demonstrates the directional deformations of the cylinder in the x and
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y axes due to the lift and drag forces.

Figure 4.19: Case 4 directional deformations of cylinder on X and Y axes

Figure 4.20 demonstrates directional deformations on the cylinder for Case 4 along

with the force coefficients over time.
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Figure 4.20: Case 4 cylinder directional deformations vs. force coefficients over time
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Figure 4.21 a demonstrates the oscillation of the maximum von-Mises stress for Case 4

over time. The highest stress occurs at 0.08 s with a value of 110.24 MPa. Figure 4.21

b illustrates the stress concentrations and resulting deformations on the system. Sim-

ilar to other cases, the highest stress occurs on the plate around the front support

connections.

(a) Case 4 maximum von-Mises stress over time

(b) Case 4 peak von-Mises Stres

Figure 4.21: Case 4 von-Mises stress on the rig
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In the Figure 4.21 b, deformations were scaled up 33 times for visibility purposes.

It was seen that the highest von-Mises stress that occurs on the system was measured

in Case 4 with a value of 110.24 MPa. This value does not exceed the tensile yield

strength of 250 MPa for the structural steel material [48] thus it can be concluded

that the experimental rig is nowhere close to yield.

4.3 Comparison of the Cases

In order to determine the differences between one-way and two-way coupling method-

ologies, hydrodynamic forces and the structural responses of the cylinder were investi-

gated by comparing the directional deformations with one-way and two-way coupling.

Furthermore, to examine the endurance of the experimental rig for the proposed ex-

perimental conditions, the highest deformations and von-Mises stress distributions on

the experimental rig were investigated.

4.3.1 Comparison of Hydrodynamic Cylinder Forces and Struc-

tural Responses

Figure 4.22 illustrates the calculated oscillation of the drag coefficients for one-way

cases and the two-way coupled Case 3. It can be seen that larger oscillations of

the drag force are observed with the update of the fluid domain with the structural

deformations. Figure 4.23 depicts the calculation of directional deformations caused

by the drag coefficients for one-way and two-way coupled FSI simulations. Two-way

coupling appears to calculate a smaller oscillation magnitude compared to one-way

coupling. However, both calculations follow a similar trend.
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Figure 4.22: Comparison of drag coefficients for one-way (Case 1, 2) and two-way

(Case 3) cases

Figure 4.23: Comparison of one-way and two-way directional deformations along x

axis
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Figure 4.24 presents the drag coefficient calculation with one-way coupling for

Case 1 and Case 2 and two-way coupling for Case 4. Similar to that of Case 3, it

can be seen that when the fluid domain is updated with the cylinder deformations,

bigger oscillations of the drag force are observed.

Figure 4.24: Comparison of drag coefficients for one-way (Case 1, 2) and two-way

(Case 4) cases

Figure 4.25 demonstrates the directional deformations along x axis for one-way

coupled Case 2 and two-way coupled Case 4.
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Figure 4.25: Comparison of one-way and two-way directional deformations along x

axis

Figure 4.26 depicts the calculation of the drag coefficient over time for all FSI

cases. It can be seen that the oscillations for drag coefficient are bigger in the two-way

coupled FSI solutions. Moreover, it seems that a more flexible material causes bigger

oscillations in the drag force as seen in Case 4. For further analysis, perturbations were

removed from the drag and lift coefficient by omitting the values from the coupling

steps with unconverged data transfers between the solvers. The further analysis of

the drag coefficient signal on Figure 4.26 reveals that even though the linear trend

line of the drag calculation for all cases might seem similar, the standard deviation,

mean and root mean square values show significant differences. For instance, when
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Figure 4.26: Comparison of drag coefficients for all cases
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the mean value for calculated drag data for Case 1 and 2 are approximately 0.311, the

value is close to 0.275 for Case 3 and 4. In addition, standard deviation is 0 for Case

1 and 2, however, it is 0.0106 and 0.0207 for Case 3 and 4 respectively. These results

show that two-way coupled FSI analysis predicts the effect of structural responses and

their effects on the hydrodynamic forces more successfully than the one-way coupled

approach.

Figure 4.27 demonstrates the calculation of lift coefficients for flexible cylinder

with one-way and two-way coupled FSI simulations.

Figure 4.27: Comparison of lift coefficients for one-way (Case 1, 2) and two-way

coupling (Case 3) cases

Figure 4.28 demonstrates the solution of directional deformations on the flexible
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cylinder along y axis with one-way and two-way coupling.

Figure 4.28: Comparison of one-way and two-way directional deformations along y

axis

Figure 4.29 demonstrates the calculation of lift coefficients for more flexible cylin-

der with one-way and two-way coupled FSI simulations.
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Figure 4.29: Comparison of lift coefficients for one-way (Case 1, 2) and two-way (Case

4) cases

Figure 4.30 demonstrates the solution of directional deformations on the more

flexible cylinder on the y axis for one-way and two-way coupling.
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Figure 4.30: Comparison of one-way and two-way directional deformations along y

axis

Furthermore, Figure 4.31 illustrates the calculation of the lift coefficient over time for

all FSI cases. Perturbations were removed from the lift coefficient by omitting the

values from the coupling steps with unconverged data transfers between the solvers.

Perturbation filtered data for all cases was shown in Figure 4.31. It can be seen

that bigger oscillations for the lift coefficient were calculated with two-way coupled

FSI solutions. Thus, the effect of flexibility on the lift force seems to be calculated

more successfully with two-way coupled FSI analysis. It is evident that the structural

responses of a more flexible cylinder cause bigger oscillations in the lift force as seen
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in Cases 3 and 4. The mean values of the oscillating lift forces are similar, however,

with further investigation it can be seen that the standard deviation varies between

coupling methods. For one-way coupled FSI cases the standard deviation is 0.0052,

whereas it is 0.0053 for Case 3 and 0.0057 for Case 4. Similarly, when the RMS

value for the lift coefficient is calculated as 0.0052 for one-way coupled cases, it was

calculated as 0.0072 for two-way coupled cases. The results clearly show that the

structural behavior of flexible structures and the resultant effect of their structural

response on hydrodynamic forces is more successfully analyzed with two-way coupled

FSI analysis.
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Figure 4.31: Comparison of lift coefficients for all cases
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Total Cylinder Deformations

Figures 4.32 and 4.33 below demonstrate the close-up figures of true scale deforma-

tions of cylinders mounted on the experimental rig. The flow velocity is visualized

with the aid of streamlines and presented at the nearest available solution time for the

highest structural deformation time. Deformations along the x axis are represented

with a colored scheme on the cylinder body. The highest deformations along with

response/diameter ratio of the cylinders are summarized in Table 4.2. From this table

it can be seen that a one-way coupled FSI solution overestimates the deformations of

the flexible cylinder compared two-way coupling.

Table 4.2: Highest deformations of the cylinder

Case Deformation (m) Diameter/Response (non-dimensional) Time (s)

Base case 0.0005 297.05 0.0475

Case 1 0.0008 190.30 0.055

Case 2 0.0081 18.84 0.165

Case 3 0.0007 212.16 0.054

Case 4 0.0031 49.71 0.0610
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(a) Case 0

(b) Case 1 (c) Case 2

Figure 4.32: Deformations of the cylinder solved with one-way coupling

(a) Case 3 (b) Case 4

Figure 4.33: Deformations of the cylinder solved with two-way coupling
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4.3.1.1 Comparison of the Rig Endurance Calculation

In order to investigate the endurance of the experimental rig for the given operating

conditions of the proposed experiments, the total deformations and von-Mises stress

distributions were examined. Figure 4.34 illustrates the behavior of the maximum

total deformation for each case over the rig over time. The results were summa-

rized in Table 4.3. It can also be seen from the following figures that the max total

deformations occur in the leading front edge of the plate.

Table 4.3: Highest deformations on the rig (plate)

Case Deformation (m) Time Scale

Base case 0.00062 0.055 130

Case 1 0.00064 0.0625 120

Case 2 0.00678 0.1875 110

Case 3 0.00061 0.061 130

Case 4 0.00113 0.071 110

Figures 4.35 and 4.36 depict the magnified maximum deformations on the experi-

mental rig at their highest deformation times with different FSI coupling approaches

and varying material properties for the cylinder. For visibility purposes and to pro-

vide an easier comparison between cases, the deformations were magnified by a similar

scaling as further explained in Table 4.3.
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Figure 4.34: Deformations of rig for all cases
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(a) Base case, Case 0

(b) Case 1 (c) Case 2

Figure 4.35: Maximum deformation on the rig for one-way coupling

(a) Case 3 (b) Case 4

Figure 4.36: Maximum deformation on the rig for two-way coupling
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For the purpose of providing an overall insight of the flow around the experimental

rig and the structural responses following figures are presented. In the figures below,

structural responses along with the results of the nearest available solution time for

fluid flow are shown together. All figures depict the von-Mises stresses on the rig

when the highest deformations occur.

Figure 4.37 represents the structural results for case 1 at 0.55 s along with the flow

velocity and streamlines in the vertical plane and flow pressure with the aid of vortex

core visualization. For the fluid flow results, the nearest available data solution at

0.25 s was used. A horizontal plane separating the geometry into two symmetrical

parts was used in order to demonstrate the local flow features.

135



Figure 4.37: Case 1 FSI von-Mises vs. flow velocity and pressure at highest deforma-

tion
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Figure 4.38: Case 2 FSI von-Mises vs flow velocity and pressure at highest deformation

Figure 4.38 represents the results from the highest deformation time, at 0.1875 s,

and shows the similar variables in Case 2 with the only difference being the structural

time.
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Figure 4.39: Case 3 FSI von-Mises vs. flow velocity and pressure at highest deforma-

tion

Figure 4.39 shows the results for Case 3 at 0.061 s structural solution and 0.1 s

solution for fluid flow.
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Figure 4.40: Case 4 FSI von-Mises vs. flow velocity and pressure at highest deforma-

tion

In Figure 4.40, the 0.071 s solution for structural and 0.1 s solution for fluid flow

results are illustrated. Figure 4.41 illustrates the von-Mises stress concentrations on

the experimental rig from a top view. The flow features are represented with the aid

of a vortex core visualization and streamlines on the horizontal plane with a black

and white color scheme. The stress distribution is presented with a color scheme for

better visibility.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 4.41: Maximum von-Mises stress on rig for all cases
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4.4 Summary

As mentioned earlier, cylindrical structures are subject to flow-induced forces in off-

shore environments and the investigation of these forces is vital for their design. The

hydrodynamic forces that affect the cylinder causes deformations on the structures

that conversely affect the hydrodynamic forces and create a cyclic relation between

the fluid and structure. This relation and its effect on structural responses and en-

durance can only be numerically solved with the aid of an FSI investigation. Consid-

ering this, the main objective of the presented work was to develop a numerical model

and method that simulates the dynamic reactions of a scale model of a deeply sub-

merged cylindrical flexible offshore structure mounted on a supporting measurement

rig, which will be used for future experimental studies.

As a part of the developed FSI tool, the fluid flow model which solves the flow

features and hydrodynamic forces around the cylinder is in good agreement with other

studies. By investigating the rare combination of a cylinder with a height to diameter

ratio of 4 and a flow in critical regime with a Reynolds number of approximately 500

000, this work makes a modest contribution to the ongoing discussion on the numerical

modelling of flow past a three-dimensional finite cylinder.

Due to the necessity for dynamic meshing, significantly more effort was required

for the set-up of the two-way coupled model. The differences between one-way and

two-way coupling are the additional steps for modelling the CFD domain according to

dynamic meshing, setting the re-meshing parameters as mentioned in Chapter 3 and

creating the additional data transfer in system coupling module for deformations. It

was also observed that the run times for two-way coupled simulations are significantly
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longer than one-way coupled simulations due to the requirements for smaller time-step

sizes and additional coupling iterations.

It has been found from the results that both FSI models (one-way and two-way

coupled) are capable of solving the structural responses of flexible finite cylinders

with varying material properties. However, despite the extra effort for modelling and

significantly longer solution time, it was observed that for more realistic results and

applications involving a flexible cylinder, a two-way coupled approach is required due

to the non-negligible effects of structural deformations on the hydrodynamic forces

and cyclic FSI effects.

In addition, it was shown by the numerical model that the designed experimental

rig provides a reliable and stable system with relatively low stresses, minimum vibra-

tions and adequate structural stiffness for future experiments which would include

fluid force measurements around the submerged flexible cylinder.

Furthermore, the presented FSI model predicts the deformations and stress dis-

tributions on the experimental rig and provides a significant insight about stability

and endurance. Thus, it can be used as a guide for possible structural improvements

on the experimental rig against loads that might occur under experimental operating

conditions.
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

The focus of the study was to establish a numerical model and method for simulat-

ing the deformations and dynamic reactions of a scale model of a deeply submerged

cylindrical flexible offshore structure mounted on a supporting measurement rig that

will be used for future experimental studies. Moreover, the focus of the study also in-

cluded the examination of the endurance of the experimental rig at a prescribed depth

and speed along with the effects of the flexibility of the cylinder on hydrodynamic

loading conditions.

For this purpose, a turbulent flow in critical regime past a circular cylinder at-

tached to an experimental rig was investigated. Structural response and hydrody-

namic loading results were presented with one-way and two-way coupled FSI analysis

involving a single phase turbulent flow around the experimental rig and cylinder.

Based on the results, it is possible to conclude that the research has been very
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successful. The findings of the research and the results generated in the numerical sim-

ulations are quite convincing, and thus the following conclusions can be drawn. It was

seen from the numerical investigation and data from the literature that hydrodynamic

loads show a difference for cylinders with small length to diameter ratios and free tips

(finite cylinders) compared to infinite cylinders with no free tips. For instance, drag

and lift forces are smaller than those of the infinite cylinders for finite cylinders with

small aspect ratios. In addition, the Strouhal number for lift oscillations also seems to

be smaller for finite cylinders. However, although the hydrodynamic loads are smaller

for finite cylinders, the inherent mutual dependence between the structure and hydro-

dynamic loading of flexible cylinders still carries a significant relation which requires

investigation. The numerical flow simulation was shown to be able to capture these

three-dimensional effects and provide a model that better reflects the true flow around

the cylinder as modeled. For the examination of this cyclic relation and its effect on

both structural responses and hydrodynamic loads, both one-way and two-way cou-

pled partitioned fluid-structure interaction methods were used. It was seen from the

results that the one-way coupled partitioned approach overestimates the structural

responses. However, the two-way coupled FSI approach solves the structural defor-

mations more accurately and provides more realistic structural behaviour predictions

by including the resulting effects on the hydrodynamic loads and vice versa. Thus, it

is concluded that a fully coupled two-way simulation offers sufficient improvement in

the prediction of flow induced vibrations and structural stresses to justify the extra

effort in modeling and the extra time required to run the simulations.

Summing up the results, it can be concluded that from the presented comparison of

the proposed partitioned one-way and two-way coupled FSI methods, the superiority
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of the two-way coupled approach when investigating the FSI of a flexible cylinder

was proven. Furthermore, the developed numerical tool can be used to evaluate

the structural performance of the designed experimental rig for further validation

experiments.

5.2 Recommendations

More research into the understanding of aspect ratio, free end and structural flexibil-

ity effects on the hydrodynamic loads of cylinders is necessary. In order to provide a

solid insight about these factors, further research will clearly be required to validate

with experiments. Considering this, the focus of the study was broadened to provide

a reliable design for the experimental rig that can be used for future experiments.

The proposed numerical model can be readily used in practice for the FSI of a fully

submerged flexible circular cylinder and the endurance of the experimental rig. How-

ever, with minor modifications, the focus of interest can be expanded by including

more experiments with different material properties for the cylinder.

Moreover, the effects of depth and free surface on the FSI of the flexible cylinder

can be studied by changing the operational depth of the experimental rig. In this

case, owing to the advantages of a partitioned coupled FSI approach, the developed

FSI tool can be improved correspondingly with a multiphase fluid flow model using

the volume of fraction (VOF) method which would provide a chance to examine free

surface effects numerically.

In addition, the fluid flow model can be replaced with a LES, DES or another

RANS turbulence model when a different approach is needed for turbulence modelling.
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This type of modification requires minor changes on the developed model. Similarly,

improvements can be made by using other structural modules within ANSYS for the

structural part of the problem. To decrease the run times, computers with more

processors and faster storage can be used. However, it is worthwhile to note that

for the structural solver of this FSI problem, the use of 16 cores provides the most

efficient solution performance.

Considering the advantages, the developed numerical tool has great potential for

designing applications to be used in oil and gas industry such as oil spill containments.

For this purpose, the experimental study may include the investigation of the struc-

tural behaviour of flexible cylinder when internally pressurized. Correspondingly, the

FE model within the FSI model can be modified.

More tests and experiments will be needed to verify the limits of the developed

tool such as including flow with higher Reynolds numbers and cylinders with more

flexibility.

In conclusion, further research into the FSI of flexible cylinders with a wider

variety of material properties and scenarios is desirable to extend our knowledge of

their performance and potential use in harsh offshore environments within oil and gas

industry.
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Appendix A

Velocity Plots for CFD Solutions
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Figure A.1: Velocity plots on horizontal and vertical planes at time=0.25 sec for

one-way cases
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Figure A.2: Velocity plots on horizontal and vertical planes at time=0.50 sec for

one-way cases
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Figure A.3: Velocity plots on horizontal and vertical planes at time=0.75 sec for

one-way cases
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Figure A.4: Velocity plots on horizontal and vertical planes at time=1.00 sec for

one-way cases
160



Figure A.5: Velocity plots on horizontal and vertical planes at time=1.25 sec for

one-way cases
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Figure A.6: Velocity plots on horizontal and vertical planes at time=1.50 sec for

one-way cases
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Figure A.7: Velocity plots on horizontal and vertical planes at time=1.75 sec for

one-way cases
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Figure A.8: Velocity plots on horizontal and vertical planes at time=2.00 sec for

one-way cases
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Figure A.9: Velocity plots on horizontal and vertical planes at time=2.25 sec for

one-way cases
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Figure A.10: Velocity plots on horizontal and vertical planes at time=2.50 sec for

one-way cases
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Figure A.11: Velocity plots on horizontal and vertical planes at time=0.10 sec for

Case 3
167



Figure A.12: Velocity plots on horizontal and vertical planes at time=0.20 sec for

Case 3
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Figure A.13: Velocity plots on horizontal and vertical planes at time=0.30 sec for

Case 3
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Figure A.14: Velocity plots on horizontal and vertical planes at time=0.40 sec for

Case 3
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Figure A.15: Velocity plots on horizontal and vertical planes at time=0.10 sec for

Case 4
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Figure A.16: Velocity plots on horizontal and vertical planes at time=0.20 sec for

Case 4
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Figure A.17: Velocity plots on horizontal and vertical planes at time=0.25 sec for

Case 4
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Figure A.18: Velocity plots on horizontal and vertical planes at time=0.40 sec for

Case 4
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