DEVELOPMENT OF THE SUBSEA ROBOT ANNE
(AUTONOMOUS PNEUMATIC NAUTICAL EXPLORER)

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

REENI CATHERINE WOOLGAR
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
DEVELOPMENT OF THE SUBSEA ROBOT ANNE
(AUTONOMOUS PNEUMATIC NAUTICAL EXPLORER)

BY

© REENI CATHERINE WOOLGAR, B.ENG.

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the
requirements for the degree of
Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
April 1999

St. John's Newfoundland Canada
Dedicated to the loving memory of my father,
David Walter Woolgar
Worry is the rehearsal for failure.

Author Unknown
Abstract

In 1997, a small drifter subsea robot known as NO MAD was developed at Memorial University of Newfoundland (MUN). This robot uses a simple air-water ballast tank for depth control. Although NO MAD is modular in construction, it does not provide easy assembly as all of the structural components are either bolted or screwed and the majority of the electrical components are hard-wired. It uses five float switches equally spaced vertically in the ballast tank to control the level of water in the ballast tank. Unfortunately, this control strategy does not provide adequate depth control.

This thesis describes the development of a more robust version of NO MAD known as the Autonomous Pneumatic Nautical Explorer (ANNE). ANNE is extremely modular in design and complete assembly requires thirty minutes. Components are locked together using a simple twist mechanism and suction is used to close the instrumentation boxes. To improve the control strategy, ANNE uses an accelerometer to determine whether it is over or under buoyant which controls the amount of flow into and out of the ballast tank. With these modifications, tests in a deep tank at the Faculty of Engineering and Applied Science, MUN, illustrated that ANNE achieved adequate depth control.

Although ANNE was developed for educational purposes, it has potential for industrial benefits as ANNE could be placed in the ocean upstream of a region of interest. It would be carried by the local current and used for either measurements at preset depths or seabed exploration.
Acknowledgements

Financial support is greatly acknowledged from the Natural Sciences and Engineering Research Council (NSERC) Scholarship; the Faculty of Engineering and Applied Science, Memorial University of Newfoundland (Supplemental Support); and the author’s supervisor, Dr. Michael James Hinchey.

The author is forever indebted to Dr. Hinchey for his excellent supervision throughout the duration of the research. Dr. Hinchey provided assistance with the project, spending numerous hours with the author during the experimentation aspect. His kindness, support, respect and understanding must at this time be acknowledged.

Personal thanks are extended to the author’s fiancé, John Hiscock, for his hands-on assistance with the construction and experimentation work of the robot. Thanks to the Technical Services staff at Memorial University of Newfoundland, namely Humphrey Dye and Leo Spurrell of the machine shop, as well as Jim Andrews and Mac Butler of the welding shop. Special thanks to special friends Peter Saturley and Prasanna Raghavan for their support and assistance throughout the project.
Contents

Abstract vi
Acknowledgements v
List of Figures viii
List of Tables x
List of Symbols xi
List of Abbreviations xv

1 Introduction 1

2 Background Review of Underwater Robotic Vehicles 3
 2.1 Remotely Operated Vehicles 3
 2.2 Autonomous Underwater Vehicles 6
 2.3 Comparison of Remotely Operated Vehicles and Autonomous Underwater Vehicles 8
 2.4 Industrial Autonomous Underwater Vehicles 12
 2.4.1 Autonomous Benthic Explorer 12
 2.4.2 Autosub-1 16
 2.4.3 Autonomous Lagrangian Circulation Explorer 18
 2.4.4 NO MAD 20
 2.5 Development of a Virtual World 24

3 Control Strategies for Subsea Robots 26
 3.1 Classical Control Strategies 28
 3.1.1 Proportional Integral Derivative 28
 3.1.2 Switching 30
 3.1.3 Computed Load 31
 3.1.4 Sliding Mode 32
 3.1.5 Neural Networks 40
 3.1.6 Fuzzy Logic 46
 3.1.6.1 Linear Fuzzy Logic 48
 3.1.6.2 Nonlinear Fuzzy Logic 52
 3.2 Supervisory Control Strategies 55
 3.2.1 Neural Networks 55
 3.2.2 Fuzzy Logic 55
 3.2.3 Subsumption 56
 3.3 Control Strategy Selection for ANNE 58
List of Figures

2.1 Depth range for ROVs and AUVs 9
2.2 Autonomous Benthic Explorer 12
2.3 Autosub-1 17
2.4 Autonomous Lagrangian Circulation Explorer 18
2.5 NO MAD 21
3.1 Phase portrait with uncertain parameters 37
3.2 Phase portrait with no uncertain parameters 38
3.3 Neural network mapping 41
3.4 Simple neural network map 44
3.5 Extremely complex neural network map 45
3.6 Membership functions for linear map 50
3.7 Linear fuzzy logic map 51
3.8 Membership functions for nonlinear map 53
3.9 Nonlinear fuzzy logic map 54
4.1 Autonomous Pneumatic Nautical Explorer 60
4.2 Center cylinder with both frames 62
4.3 Top frame 62
4.4 Bottom frame 63
4.5 Ballast tank 64
4.6 Ballast tank with pistons 64
4.7 Intermediate length tubes 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Shortest length tubes</td>
<td>67</td>
</tr>
<tr>
<td>4.9</td>
<td>Controller box</td>
<td>68</td>
</tr>
<tr>
<td>4.10</td>
<td>Component layout of controller</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Component layout of controller illustrating inputs and outputs</td>
<td>71</td>
</tr>
<tr>
<td>4.12</td>
<td>Battery box</td>
<td>72</td>
</tr>
<tr>
<td>4.13</td>
<td>Pneumatic box</td>
<td>73</td>
</tr>
<tr>
<td>4.14</td>
<td>Schematic of pneumatic valve for air supply to ballast tank</td>
<td>74</td>
</tr>
<tr>
<td>4.15</td>
<td>Schematic of pneumatic valve for piston operation</td>
<td>74</td>
</tr>
<tr>
<td>5.1</td>
<td>Block diagram inside the error band</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Block diagram outside the error band</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulation time trace</td>
<td>94</td>
</tr>
<tr>
<td>6.1</td>
<td>ANNE with testing apparatus</td>
<td>100</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of simulation time trace and testing data</td>
<td>103</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Cost Estimate of ANNE</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameter Definitions and Values</td>
<td>89</td>
</tr>
<tr>
<td>6.1</td>
<td>Testing Data</td>
<td>101</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>negative constant</td>
</tr>
<tr>
<td>Δh</td>
<td>change in elevation</td>
</tr>
<tr>
<td>ΔP</td>
<td>change in pressure</td>
</tr>
<tr>
<td>Δt</td>
<td>sampling or loop rate</td>
</tr>
<tr>
<td>λ</td>
<td>bandwidth</td>
</tr>
<tr>
<td>ρ</td>
<td>density of air in the ballast tank</td>
</tr>
<tr>
<td>σ</td>
<td>density of the flowing fluid (water)</td>
</tr>
<tr>
<td>a</td>
<td>constant used in squashing function</td>
</tr>
<tr>
<td>A</td>
<td>cross-sectional area of the ballast tank</td>
</tr>
<tr>
<td>A_f</td>
<td>frontal area exposed to flow</td>
</tr>
<tr>
<td>B</td>
<td>buoyancy force on small subsea robot</td>
</tr>
<tr>
<td>C</td>
<td>term which accounts for wake drag</td>
</tr>
<tr>
<td>C</td>
<td>best estimate for term that accounts for wake drag</td>
</tr>
<tr>
<td>C_D</td>
<td>drag coefficient</td>
</tr>
<tr>
<td>C_o</td>
<td>head loss coefficient</td>
</tr>
<tr>
<td>D</td>
<td>disturbance force from the surroundings</td>
</tr>
<tr>
<td>D</td>
<td>best estimate of disturbance force from the surroundings</td>
</tr>
<tr>
<td>E</td>
<td>difference between desired and actual small subsea robot position (depth error)</td>
</tr>
<tr>
<td>f</td>
<td>squashing function</td>
</tr>
<tr>
<td>F</td>
<td>force generated by the propulsion system</td>
</tr>
<tr>
<td>F</td>
<td>best estimate of force generated by the propulsion system</td>
</tr>
</tbody>
</table>
acceleration due to gravity

head loss

flow area

command position of small subsea robot

neural network input

neural network with two inputs

neural network input

specific heat ratio

measure of air compressibility

relay strength

derivative gain

integral gain

proportional gain

relay gain

constant involving C, D and M

best estimate of constant involving C, D and M

inherent and added water mass of small subsea robot

best estimate of inherent and added water mass of small subsea robot

mass of high-pressure compressed air from divers bottle to the ballast tank

maximum mass of water that the ballast tank can withstand

negative fuzzy logic input

negative-negative fuzzy logic control signal output
NP negative-positive fuzzy logic control signal output
NZ negative-zero fuzzy logic control signal output
O actual vertical position of small subsea robot
ON neural network output
P positive fuzzy logic input
PN positive-negative fuzzy logic control signal output
PP positive-positive fuzzy logic control signal output
PZ positive-zero fuzzy logic control signal output
P driving pressure
Q_w volumetric flow rate of water flowing into the ballast tank (positive)
Q_w volumetric flow rate of water through the orifice during purging (negative)
Q_in flow rate of air into ballast tank from the divers bottles
Q_out flow rate of air out of the ballast tank through the top hole
R vertical submergence depth of small subsea robot
sg specific gravity
S control signal
t time
t_p purge period
T half height of the ballast tank
V pseudo-energy
V_a volume of air in the ballast tank
V_f volume of fluid
\(V_t \) maximum terminal speed of small subsea robot

\(W \) weight force

\(W_{BO} \) output weight for bias neuron

\(W_{Bl} \) input weight for input bias neuron

\(W_{xi} \) input weight

\(W_{xi} \) input weight

\(W_{xo} \) output weight

\(Y \) water level measured positive downward from the center of the ballast tank

\(Z \) zero fuzzy logic input

\(ZN \) zero-negative fuzzy logic control signal output

\(ZP \) zero-positive fuzzy logic control signal output

\(ZZ \) zero-zero fuzzy logic control signal output
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE</td>
<td>Autonomous Benthic Explorer</td>
</tr>
<tr>
<td>ALACE</td>
<td>Autonomous Lagrangian Circulation Explorer</td>
</tr>
<tr>
<td>AM</td>
<td>ABE altitude sensor</td>
</tr>
<tr>
<td>ANNE</td>
<td>Autonomous Pneumatic Nautical Explorer</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>CON</td>
<td>ABE controller of seven thrusters</td>
</tr>
<tr>
<td>Controller</td>
<td>Z-WORLD Rugged Giant C-Programmable Miniature Controller</td>
</tr>
<tr>
<td>DP</td>
<td>ABE depth sensor</td>
</tr>
<tr>
<td>MUN</td>
<td>Memorial University of Newfoundland</td>
</tr>
<tr>
<td>NAV</td>
<td>ABE navigator</td>
</tr>
<tr>
<td>NC-NO</td>
<td>normally closed – normally open relay</td>
</tr>
<tr>
<td>PD</td>
<td>Proportional Derivative Control</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative Control</td>
</tr>
<tr>
<td>ROV</td>
<td>Remotely Operated Vehicle</td>
</tr>
<tr>
<td>XPD</td>
<td>ABE safety communications</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

Often the most plentiful and worthwhile resources provided by nature are located in environments inhospitable to humans. The ocean is a storage space for mineral resources as well as oil and gas reserves. The living resources held within promise a supply of protein for many future generations [1]. Success in recovering these resources depends on technology and innovation. Besides economic potential, the military also recognizes the strategic importance of the ocean. These factors make ocean exploration and the removal of humans from working in these environments increasingly important.

Throughout the development of modern underwater robotic vehicles, there has been a growth from manned submersibles to remotely operated vehicles (ROVs), which can be either tethered or untethered, and finally to autonomous underwater vehicles (AUVs), which are entirely untethered. The trend is to eliminate the presence of humans for underwater tasks through the development of subsea robots. This requires that the units be preprogrammed and autonomous.

As the underwater environment is without structure and uniformity, it contains numerous simulation and modeling uncertainties. These must be considered when designing a control system for underwater vehicles. The technology that has developed for land-based systems cannot be transferred to underwater robotics due to differences in dynamic
characteristics. The area of underwater vehicles has grown enormously in the last decade and has become paramount to such areas as the offshore oil industry.

In 1997, a small drifter subsea robot known as NO MAD was developed at Memorial University of Newfoundland (MUN) as part of a Doctoral degree for ZhongQun Lu [2]. The main objective of this thesis is to describe the development of a more robust version of the original NO MAD, known as the Autonomous Pneumatic Nautical Explorer (ANNE). Assembly and disassembly of ANNE will be somewhat easier than that of NOMAD, requiring less time for the start-up and ending of missions. The robust features of ANNE will include the use of an accelerometer for depth control and a more effective use of high-pressure air consumption as required by the control strategy, which will ultimately provide longer mission durations than NOMAD.

The thesis starts with background on underwater robotic vehicles, Chapter 2, with information on some of the most advanced subsea robots presently in existence. In Chapter 3, the main control strategies being used by developers of underwater vehicles are described. The robust version of NO MAD, referred to as ANNE, is described in detail in Chapter 4. This includes design and construction details of the robot, as well as a description of the electrical and pneumatic components essential for operation. Chapter 5 describes the simulation strategy for depth control of ANNE, while Chapter 6 gives a description of the actual deep tank testing and the results. Concluding remarks and recommendations for future work are contained in Chapter 7.
Chapter 2

Background Review of Underwater Robotic Vehicles

The intent of this review is to give the reader information on the appearance of underwater vehicles and their uses. It does not focus on performance data interpretation. A detailed comparison of the performance of various underwater vehicles is beyond the scope of this work.

2.1 Remotely Operated Vehicles

The human diver has dominated the majority of underwater work in the past, as they tend to be the most effective for underwater work. ROVs have become increasingly popular in the last decade and since their introduction to the underwater world, they have gained the reputation of being effective for underwater inspection and surveying.

ROVs were traditionally designed for observation and emergency back up of human divers, while most recently they have been performing tasks that were only executed by human divers. These include such things as releasing hooks, cutting cables and placing explosive charges. The level of complexity has increased to specific assignments such as cleaning and inspecting drill rigs as well as burying pipelines through use of their robotic
manipulators. ROVs are also reaching water depths beyond the capability of human divers.

ROVs are used for oceanographic research, development of offshore oil industries, hydrographic surveys, and exploration in the survey industry. There has been a growing trend towards their development for task-specific services as opposed to multiple uses. Specifically for the offshore oil industry, they are a kinesthetic means of examination.

Classification of ROVs is based on the type of work they perform, and they can be tethered or untethered vehicles. Tethered vehicles account for the majority of ROVs and they are dependent on a surface supply vessel through an umbilical or tether. Thus they can be suspended, towed mid-water, or cable-controlled. For work on the ocean floor, there are towed bottom and crawling vehicles. The tether is a design advantage as it can supply unlimited power to the vehicles. It is also the biggest disadvantage as it limits the diving range and speed that the vehicle can travel.

Suspended vehicles are an important class of tethered vehicles that are deployed and operated through cables. Suspended vertically under the support vessel by the cable, they are useful for local work tasks in construction related operations such as pipeline repair.

Crawling vehicles are intended for specific observation such as work tasks on the seabed or on an underwater structure. Power is transmitted through the tether or umbilical cable
and propulsion is provided through wheels or tracks that are in contact with the surface bottom. They are primarily used for pipeline and cable burial.

Towed vehicles are the simplest to design and construct. It is a towed unit which can be launched from a supply vessel and towed at a certain depth and distance from the surface bottom. They are useful for pipeline inspections.

Untethered vehicles are making their way into the offshore sector as the drive from oil companies and the scientific community is to explore work in deeper waters. Untethered vehicles are useful for exploring drill rigs in ice-infested waters. They are self-propelled, self-powered, controlled from the surface and are tracked through the use of acoustic signals. They are used for the surveillance and inspection of drill rigs and are extremely effective in ice-infested waters, as they require no cables or umbilical cords.

As ROVs can operate in depths up to 8000 m, it is necessary to have a reliable tracking system, thus the need for greater use of acoustic navigation systems. Proper position display can give the operator a line of sight between the supply vessel and the ROV. By using additional beacons to mark subsea locations, the relocation time of the ROV is reduced. Using a tracking system with ROVs permits the operator to know its exact location at all times. The acoustic navigation system can be used to reduce the chance of damage incidents and collisions. During inspection and damage survey operations, the subsea tracking system is the critical link between the subsea operation and the real
world. By integrating the ROV position data with the surface vessel or platform position, the global coordinates of the ROV position can be plotted. For example, if an inspection on a pipeline reveals damage then the exact position of this damage can be determined.

2.2 Autonomous Underwater Vehicles

In order to eliminate the presence of humans from conducting underwater tasks, a subsea robot must be designed to be preprogrammed and autonomous. Autonomous means that the vehicles are independent as they carry their own power supply and have no physical connection to the surface. For these vehicles, control is an area that requires intense work. There are six spatial degrees of freedom (heave, pitch, surge, roll, yaw and sway) that must be considered and not all of the physical control issues can be solved. As there are unpredictable influences from the underwater environments and ocean currents, AUVs are prone to severe nonlinear instabilities or unwanted motions. The propulsion requirements are costly, and are often slow and limited.

The desire to change to AUVs did not happen suddenly, as the technologies that existed had to be adapted. The underwater environment contains modeling uncertainties and nonlinearities, which gives the motivation for robust control. AUVs require an adaptive control approach meaning that the subsea robot learns as it goes, changing its control techniques and path planning during its mission.
AUVs permit a search of the ocean floor and waters for such things as minefield location and avoidance, beach access, hazardous materials and navigation. They provide for remote sensing in the military and scientific areas and oceanographical, biological and geological explorations are possible in regions where access is difficult. They can be used for the localization of pollutant sources and evaluation of hull damage in high sea states [3].

The physical environment in which AUVs operate is generally inaccessible, remote and unattended with communications being intermittent or nonexistent. Extreme pressure and temperature changes are often experienced. Sonar sensing is much slower and not as effective as visual sensing which results with the deployment, operation and recovery of the AUV being time-consuming and expensive. For these robots, reliability, stability and autonomy are paramount. The constraints are generally worst-case for any subsea robot and the underwater environment leaves many theoretical and engineering problems open for exploration.
2.3 Comparison of Remotely Operated Vehicles and Autonomous Underwater Vehicles

The increasing depth requirement for underwater work is the motivation for the use of underwater vehicles, ROVs and AUVs alike. The depth range for the human diver is near 450 m, while the depth range for underwater vehicles is between 1800 m and 6000 m, depending on the level of complexity of the vehicle [4]. Figure 2.1 from [4] illustrates the underwater depth range for various examples of ROVs and AUVs, as well human divers. This creates a disadvantage for the ROV when compared to the AUV as the maximum depth of the ROV is directly linked to the length of the tether.

The tether in the design of the ROV is essential as it transmits communication, power and control requirements. They can become entangled requiring large cranes and winches to be deployed into the water to release the ROV. The tether also increases the overall drag force. Tether problems have created the promotion of AUVs, as they do not require contact with the surface. They are programmed, through an on-board computer, and contain their own source of power.
Figure 2.1 Depth range for ROVs and AUVs [4]
The underwater environment does not permit either ROVs or AUVs to have high performance characteristics due to problems with effective control strategies. Both types of vehicles are inefficient when considering propulsion, thrusting mechanisms, and the use of sensors. For example, ducted propellers mounted close to the main structure of the robot are often used for propulsion. This creates complex flow interactions with the main structure making characterization with these devices difficult.

When comparing the use of underwater vehicles to human divers, both ROVs and AUVs are less efficient for complex assignments. The human diver is more effective than teleoperated systems for complete visual inspection, as television systems hard-wired to ROVs fail to transmit generated visual cues. This problem is being overcome by the use of fiber optics and sonar. Underwater vehicles will perhaps not replace the human diver in depths of their competence unless human lives are at risk.

The uses for ROVs and AUVs are infinite and the further exploration of these vehicles is clearly a continuing objective of researchers and designers. This includes possible applications for unique remote technology in areas outside the offshore oil industry. With the advancement of technology and innovation, the progression of ROVs and AUVs will thrive with a consolidation of the leaders in the research area.

As the population of ROVs and AUVs increase and designers become more experienced, reliability factors will be established that will lead to improvement in current designs of
ROVs and AUVs. Interface capabilities of ROVs and AUVs will be required as deeper waters and harsher environments are explored. The overall size of ROVs and AUVs will likely remain the same as they are today, but they will be equipped with greater load capacity, providing for more flexibility. Design attention should be focussed on allowing the underwater vehicles to remain on site for longer durations.

Communication and power requirements for tethered vehicles are implemented through the use of cables that often have low bandwidth and significant time delay. This delay between the time the information and power is sent and received can be critical in the functioning of the vehicle in specialized applications. This major drawback of tethered vehicles encourages the design of autonomous underwater vehicles. However, future development of untethered vehicles will face problems, primarily centering on communications and power requirements.
2.4 Industrial Autonomous Underwater Vehicles

As the main focus of this thesis is on the design of an AUV, some of the more important AUVs used in industry are discussed herein.

2.4.1 Autonomous Benthic Explorer

The most important characteristic of the Autonomous Benthic Explorer (ABE) is that it can operate independently and remain on site for months at a time. It was designed by Bradley and Yoerger [5] with the need for long term monitoring of the ocean floor. The main structure consists of three horizontal tubes arranged in a triangular pattern as shown in Figure 2.2. Two bladders are used to fine tune buoyancy where one bladder contains a liquid heavier than water and the other contains a liquid lighter than water. Expelling the heavier liquid makes ABE rise while expelling the lighter liquid makes it sink.

Figure 2.2 Autonomous Benthic Explorer
The mobility of the vehicle can significantly enhance data from moored and bottom mounted instruments. ABE can descend to a prepared site on the bottom of the ocean floor, dock to a suitable mooring and place itself in a very low power or sleep state. At pre-programmed intervals, ABE will undock, perform a grid survey with video cameras and other sensors, redock to the mooring and return to the sleep state, where the majority of the mission time is spent.

ABE is designed as a three body open frame vehicle in order to minimize cost. Glass balls are used for flotation. There are three glass balls in each of the two free-flooded upper pods. The open frame permits all of the batteries and electronics to be put in a single housing. The separation of buoyancy and payload creates a large righting moment that simplifies control and allows the propellers to be put in the protected space between the three body open frame. ABE has seven thrusters and can move in any direction.

ABE uses distributed control architecture designed for flexibility, testability, maintainability and survivability. There are two layers of capability, which are very low electrical power and modest computational efficiency, and modest electrical power with large and expandable computational resources. ABE is powered by rechargeable gelled lead-acid batteries to facilitate testing and reduce costs. These batteries permit ABE to travel well over 50 km in a straight line [5]. In a real mission, the energy required to maneuver and operate the sensors will limit the range to a fraction of the available battery
power. For longer missions and future design improvements, alkaline or lithium batteries could be used for a twelve-fold improvement over the lead-acid batteries.

The top-level controller, called ABE, is in charge of mission planning and speaks to a group of officers. CON controls the seven thrusters that operate at ambient pressure in an oil environment. NAV is the navigator, AM is the altitude sensor, DP is the depth sensor and XPD is the safety communications. NAV can communicate with AM and DP. XPD will call for help and drop weights to anchor if it does not receive a message that everything is operating normally over set periods of time.

A typical mission consists of sleeping periods, vehicle movements and data recording sequences. Such missions are specified in the top-level mission controller. The flexible command interface that permits the mission must then be re-programmed. ABE's architecture allows for nodes to be removed by only severing the simple bus connection to the rest of the vehicle and replacing it with a new and modified brain.

ABE is designed to operate independently of an operator. It carries two transponders for vehicle location and communication purposes. The transponders are electrically independent which allows for relocation if the main battery dies and can also provide a back up if ABE suffers major electrical or software trauma.
The most prominent feature of ABE is the variable ballast system. Since ABE must not waste energy fighting possible buoyancy errors, and because it is difficult to pre-ballast with sufficient accuracy, the variable ballast system is used. A single pump system pumps either a heavy or light fluid overboard from ambient pressure bladders that are nestled around the buoyancy spheres in the fiberglass fairings. The light fluid is alcohol (sg = 0.78) and the heavy fluid is a calcium bromide solution (sg = 1.8).

For redundancy and balance, there are identical pump and bladder systems in the port and starboard upper fairings. The pumps are peristaltic and in ambient pressure oil filled housings. Slip clutches allow the motor to drive one pump when it turns forward and the other when it operates in reverse.
2.4.2 Autosub-1

Autosub-1 is able to carry a scientific payload that can be replaced for each mission. It is cost effective, durable and can gather environmental data from sensors that can assist with oceanographic research and industrial use [6]. Autosub-1 was designed by Millard and his colleagues [6] and can be used in both coastal and environmental management to monitor waste, natural hazards, environmental changes and bio-diversity. For oil exploration, it is equipped with housing sensors. Autosub-1 can also be used in the chemical industry for monitoring and detecting dissolved chemicals such as oxygen and nitrate ions.

Autosub-1 is able to collect multiple sets of data simultaneously including physical, biological, chemical and geophysical data with major implications for climate change studies. Another use includes routine sampling for underwater satellites, which will reduce the need for large research ships and crew.

Resembling a torpedo as pictured in Figure 2.3, Autosub-1 is 7 m long and has a diameter of 0.9 m. It has a mass of 1400 kg when it is dry and is positively buoyant by 15 kg. A pressure vessel holds the batteries and power management system. Foam cells provide buoyancy and ballast weight provides trim.
A radio modem is linked with the support vessel so that missions can be downloaded for the retrieval of data. Argos satellite beacons are used for locating Autosub-1 at the surface.

Figure 2.3 Autosub-1
2.4.3 Autonomous Lagrangian Circulation Explorer

The Autonomous Lagrangian Circulation Explorer (ALACE), designed by Davis and Webb [7] is a subsurface float that cycles vertically from a depth where it is neutrally buoyant to the surface. System Argos satellites, to which it can relay data, can locate ALACE. ALACE is intended to allow for exploration of low scale low frequency currents and to provide repeated vertical profiles of ocean variables. There are three major components or subsystems that compose ALACE. These include a hydraulic system to adjust buoyancy, a microprocessor to schedule and control various functions, and the Argo transmitters and antenna. These features are visible in Figure 2.4 where ALACE is pictured with one of the designers.

Figure 2.4 Autonomous Lagrangian Circulation Explorer
ALACE can periodically change its buoyancy by changing the volume of an external bladder. Pumping hydraulic fluid from an internal reservoir to an external bladder increases float volume and buoyancy. Buoyancy changes can also be produced by allowing fluid to flow from the external bladder back into the internal reservoir.

To ascend, hydraulic fluid flows from the internal reservoir through a filter to a small motor-driven hydraulic pump, which pumps high-pressure fluid through a one way check valve and into the external bladder. To descend, a latching valve opens to allow the oil to flow from the external bladder back to the internal reservoir which is maintained at the internal pressure of the float [7].

Positioning and data relay are accomplished by satellite but ALACE has links with acoustic tracking networks which makes them suitable for global deployments in arrays of any size. While providing only a sequence of displacements between surfacing intervals, they are efficient in gathering long term observations that are needed to map large-scale average flow.
2.4.4 NO MAD

NO MAD is an intelligent yet inexpensive subsea robot designed by Lu [2] and Hinchey [8] that has yet to undergo sea trials. It uses a simple air-water ballast tank for depth control, having only a precise trajectory vertically. To date, there is no lateral control which means it would drift with local ocean currents. It can be deployed into the ocean to record temperatures at preset depths or to explore the seabed. NO MAD remains inexpensive as it does not contain any complex propulsion mechanisms or sensors and there are no preset three-dimensional (3D) trajectories.

NO MAD is modular in construction having a cylindrical shape as shown in Figure 2.5. Measuring 1 m in height and having a mass of 30 kg, it would be used mainly in shallow water depths of 10 m. There are two main components, namely a divers bottle and a ballast tank. The divers bottle is located near the bottom of NO MAD where a payload would hang. The ballast tank is positioned at the top, having large holes at the top and bottom. When the top hole is closed, high-pressure compressed air is permitted to flow into the ballast tank to force water out of the bottom hole in order for NO MAD to rise. Similarly, with both holes open, high-pressure compressed air flows out of the ballast tank through the top hole and water flows in through the bottom hole causing NO MAD to sink.
When outside an error band surrounding the command depth, a Z-WORLD Rugged Giant C-Programmable Miniature Controller (controller) allows water in or forces water out to make NO MAD move towards the established error band surrounding the command depth at a specified speed. Once the set speed is reached, the holes at the top and bottom of the ballast tank are closed. Inside the error band, the controller sends signal to the pneumatic valves that control pneumatic pistons which permit water in or force water in order to make NO MAD neutrally buoyant. Once this is done, the top and bottom holes of the ballast tank are closed. The drag on the robot causes its speed to decay to zero. Faster speeds could have been achieved, but this demand requires high-pressure air consumption at an increased rate.
Pneumatic pistons are used to open or close the holes at the top and bottom of the ballast tank. The use of pistons and large holes allows for quick filling and purging of the ballast tank, creating a fast response. Pneumatic valves are used to control the flow of the high-pressure compressed air from the divers bottle to the pistons and the ballast tank. The divers bottle containing high-pressure compressed air is rated at 200 bar. A pressure regulator is used to reduce 200 bar to 12 bar and a second pressure regulator takes 12 bar down to 4 bar, which is the operating pressure of the pneumatic components. A manual flow control valve sets a limit on the flow of high-pressure compressed air from the divers bottle.

There are two pressure transducers utilized as sensors. One of these measures pressure inside the ballast tank while the other measures pressure outside the ballast tank, and acts as a depth sensor. The use of two sensors permits for a check on the stresses on the walls of the ballast tank. A relief valve vents pressure to the surroundings if the relative pressure across the walls of the ballast tank becomes too high. One way valves are utilized to keep the pneumatic components dry. Five simple float switches evenly spaced vertically are used to estimate the amount of water in the ballast tank. This could have been done with a continuous level sensor but was considered to be too expensive.

The controller is used on-board for pneumatic valve operation and sensor measurements. There are ten high voltage-current drivers to execute the pneumatic valves and seven analog to digital channels for intake signals such as pressure and water level sensors.
These can be seen in Figure 4.11 of Chapter 4. Three 24V DC Nickel-Cadmium batteries power the computer, which allows for twenty-four hour operation. The real time kernel feature in the software allows for various control tasks to be isolated and performed at set intervals of time.

The success or failure of the NO MAD concept depends on how long the high-pressure compressed air supply lasts, which determines the mission duration. This is highly dependent on the depth control strategy employed. The control strategy for NO MAD is at the drive level with a switching type of error-driven strategy. The depth error and rate of change of depth error are used to get a command water level in the ballast tank. The main control loop is given as a finite number of IF-THEN Rules. The inner feedback loop operates pneumatic valves and makes the actual water level, measured by the float switches, home in on the command level so that NO MAD moves to the command depth.

When computational simulations were executed, it suggested that the switching nature of the strategy and the use of the float switches would cause NO MAD to undergo a limit cycle near the command depth. It was thought that the use of hysteresis and phase lead compensation could perhaps suppress the limit cycle [8]. Actual tests of NO MAD in a tank 5 m deep were performed in which NO MAD was controlled manually from a computer keyboard. It was commanded to go from its initial depth of 1.25 m to 3 m, then to the water surface 0 m, and back to 1.25 m. At the final command, a limit cycle was produced as predicted by the simulation with an amplitude of 0.15 m and a period of 20 s.
2.5 Development of a Virtual World

When considering AUVs, it is noted that there are only a select few working today and each has limited functionality. However, there are thousands of indoor and outdoor land-based mobile subsea robots, hundreds of airborne and space-based autonomous robots and hundreds of underwater ROVs. The limited number of AUVs is a result of the complex design and manufacturing procedures involved and the lack of testing ability before commissioning in the real world.

Perhaps the construction of a virtual world for subsea robot development and evaluation of performance will become a pre-requisite for successful AUV development. Several researchers like Brutzman are attempting to design virtual worlds [3]. Testing subsea robots in the actual underwater environment contains an element of risk as the threat of losing the subsea robots exists, which can become costly. It is tremendously difficult to observe, communicate with and test AUVs, because they operate in remote and hazardous environments.

A virtual world would provide a way for engineers and designers, as well as the subsea robots themselves, to view and interact with distant and hazardous environments in a 3D sense. Thus the goal of the designer is to provide the complete functionality of the targeted environment in a laboratory setting. This would produce a simulation strategy
that would allow interaction capability to reduce the design flaws associated with classical simulation approaches.

Simple simulation schemes are inadequate in predicting the reaction of subsea robots to underwater environments. The classical analytical simulation techniques are generally performed on very isolated problems and interactions between the models are rarely considered. As the real world imposes many physical and timing constraints that are often overlooked when defining a simulation scope, simple simulation is only a preliminary proof of the design concepts. There is no guarantee of how the subsea robot will react in real world applications.

The 3D virtual world must be developed with specific characteristics. These include an obvious recreation of the complete environment external to the subsea robot, the physical behaviour of the subsea robot, and sensor interactions. In order to prevent a bias, the subsea robot must not be able to recognize a difference between the virtual world and the actual environment. The successful implementation of the virtual world would be validated by the robot performance in the real world domain.

The incorporation of the above components would require a cross-disciplinary approach in the modeling efforts. An underwater virtual world would allow for simulation, operation, evaluation and modification of the subsea robots without incurring a huge expense or taking the risk of losing the subsea robot during testing.
Chapter 3

Control Strategies for Subsea Robots

The control strategy used by ANNE is quite simple, however, for completeness, an overview of strategies used by other researchers will be described. These control strategies are all suitable for subsea robot implementation with the ultimate selection depending on specified design criteria which include stability, accuracy, speed of response, disturbance rejection and robustness.

Stability would indicate the nature of ANNE during a disturbance from a rest state with the desire for transients to decay, as opposed to grow, with time. Accuracy would determine how close ANNE would settle near the command depth. The speed of response would indicate how fast, or slow, ANNE would approach the command depth. The control strategy must be able to reject disturbances, which becomes important when ANNE is subjected to sudden wave impulses, where it is essential that the controller can stabilize ANNE at the command depth. Robustness would determine how ANNE reacts to large changes in the system or the surroundings. This criteria is important due to the frequency of such occurrences, which are often either difficult to measure or unknown.

The underwater environment contains numerous simulation and modeling uncertainties that must be considered when designing a control system for subsea robots. This is a direct result of the underwater environment being without structure and uniformity.
Considering the underwater environment as a vertical profile, it can be broken down into three regions. These regions are the atmosphere above the water surface, the water column, and the sea floor [9]. The water column is the region which greatly influences subsea robotics as it includes surface and internal gravity waves, drag due to wave generation, as well as the temperature, salinity, pressure and density properties of seawater. These factors must be considered in the design and operation of ROVs and AUVs near the ocean surface.

Control strategies are divided into two categories, namely classical and supervisory. Classical control strategies generate drive signals with the majority based on state error. These are said to be error-driven, although some make use of the system governing equations. These strategies try to make the system home in on set points. Supervisory control strategies are designed to replicate a human operator, operating at higher levels than classical control strategies. Supervisory control strategies can decide when classical control will be successful and can set necessary points and gains. For example, they can feed information, such as set points and appropriate gains, down to the classical level.

Presently, control strategies for subsea robotics are derived from a combination of both classical and supervisory. When human operators are utilized, supervisory control will often take the form of rules-of-thumb or heuristics which include neural networks, fuzzy logic and subsumption [10]. A good overview of control strategies for subsea robots is detailed by Farbrother and Stacey [11].
3.1 Classical Control Strategies

Dynamically positioning a small subsea robot vertically is an excellent example to illustrate various classical control strategies. The system governing equation for dynamically positioning a small subsea robot with slow up and down motion is given by:

\[M \frac{d^2O}{dt^2} + C \frac{dO}{dt} \left| \frac{dO}{dt} \right| = F + D \]

(3.1)

where:

- \(M \) = inherent and added water mass of small subsea robot
- \(C \) = term which accounts for wake drag
- \(F \) = force generated by the propulsion system
- \(D \) = disturbance force from the surroundings
- \(O \) = actual vertical position of small subsea robot
- \(t \) = time

It is important to note that \(M, C \) and \(D \) are not exactly known.

3.1.1 Proportional Integral Derivative

This type of control contains a conventional feedback loop, which incorporates proportional, integral and derivative controllers [12]. In a digital control loop, a PID scheme for a small subsea robot allows \(F \) to be calculated by:
\[F = K_P E + K_I \sum E \Delta t + K_D \frac{\Delta E}{\Delta t} \]

(3.2)

where:

\(\Delta t \) = sampling or loop rate
\(\sum E \Delta t \) = approximation of the integral of error with respect to time
\(\Delta E/\Delta t \) = approximation of the derivative of error
\(K_P \) = proportional gain
\(K_I \) = integral gain
\(K_D \) = derivative gain

This form of control allows \(F \) to be a function of the depth error, \(E \), which is the difference between the desired and the actual small subsea robot position. This is calculated by:

\[E = I - O \]

(3.3)

where:

\(I \) = command position of small subsea robot

For subsea robots, in order for the control loop to function properly it is required that \(\Delta t \) be at least ten times smaller than the dominant subsea robot period [9]. This period is determined by the natural frequency of the small subsea robot.

Proportional controllers permit good stability criterion but are not well suited for applications that involve system disturbances. Integral controllers are able to reject
disturbances and they eliminate the steady-state system error, but they often overshoot the command input creating an oscillatory response leading to instabilities. As derivative controllers respond to the rate of change of the error, they can anticipate the error and produce corrective action before the error becomes too large, however, they do not respond to steady-state error itself. Thus, they must be used in combination with proportional controllers, integral controllers or both.

A combination of all three strategies, known as PID, allows the best characteristic of each strategy to be employed. Some advantages for PID control for subsea robots include high computational efficiency, stability and the ability for adaptation to computer control. The gains in a PID controller could be made directly dependent on the system and/or surroundings. This creates a potential for the existence of adaptive control.

3.1.2 Switching

Switching schemes are generally of good performance and easy to implement with hardware. An ideal relay scheme allows F for a small subsea robot to be calculated by:

$$F = K_r \text{sign}(E)$$

(3.4)

where:

- K_r = relay gain
- $\text{sign}(E) = +1$ for $E > 0$
- $\text{sign}(E) = -1$ for $E < 0$
This simple control scheme often causes mechanical systems, such as small subsea robots, to undergo finite amplitude oscillations, or limit cycles, about the command position. Modifications can be made to avoid these complications by introducing hysteresis or by the use of deadbands.

3.1.3 Computed Load

Computed load control is a form of open loop control, which is based on the system equations of motion. The drive loads correspond to desired motions while the control signals are sent to the drives in an attempt to generate the appropriate loads.

Independently, this control strategy is not very precise as the parameters such as M, C and D are not exactly known. Even when M, C and D are known, the propulsion system for the subsea robot usually cannot generate the computed load for F exactly. For vertical positioning, the computed load for F is represented by:

$$F = M \frac{d^2 I}{dt^2} + C \frac{dI}{dt} \frac{dI}{dt} - D$$

(3.5)
3.1.4 Sliding Mode

This control strategy combines a form of computed load control with a switching type of error-driven control compensation. It is a popular control strategy for subsea robots [13,14]. The switching counteracts the uncertainties that exist and allows the control to become more robust. When the uncertainties have known upper bounds, there is always some form of control, as the system can be directed back toward the command state.

Sometimes ideal relay compensation by itself generates a chattering or limit cycle about a sliding line. A boundary layer on either side of the sliding line can be used to counteract this. In this case, sliding mode tries to ensure movement towards the boundary layer so that once inside the layer, a linear control strategy can be used.

For the vertical positioning case of a small subsea robot, the sliding line is represented by:

\[S = \frac{dE}{dt} + \lambda E \]

(3.6)

where:

- \(S \) = control signal
- \(\lambda \) = bandwidth
The sliding equation is one order lower than the system order. If S, which ultimately drives E, can be made equal to zero, then E must decay. S is a filtered version of E, and acts as a buffer. Thus, in terms of S, a pseudo-energy, V, can be defined by:

$$V = \frac{M}{2} S^2$$

(3.7)

where:

V = pseudo-energy

If dV/dt is negative, then all the trajectories must move toward $S = 0$. This implies that:

$$\frac{dV}{dt} = SM \frac{dS}{dt}$$

(3.8)

From Equation 3.3, an equation for S and dS/dt can be determined. Using Equation 3.1 and substituting the expression for d^2O/dt^2 into Equation 3.8 gives:

$$\frac{dS}{dt} = \frac{d^2I}{dt^2} - \frac{F}{M} - \frac{D}{M} + \frac{C}{M} \frac{dO}{dt} \left| \frac{dO}{dt} \right| + \lambda \frac{dI}{dt} - \lambda \frac{dO}{dt}$$

(3.9)
If M, C and D are the best estimates of the uncertain parameters M, C and D, and the assumption is made that $dS/dt = 0$, then the computed load expression for F is given by:

$$F = M \frac{d^2 I}{dt^2} - D + C \frac{dO}{dt} + M \lambda \frac{dI}{dt} - M \lambda \frac{dO}{dt}$$

(3.10)

Ideal relay compensation is used for the lowest level sliding mode scheme where F is computed by:

$$F = F + K \text{sign}(S)$$

(3.11)

where:

$K = \text{relay strength}$

$\text{sign}(S) = +1 \text{ for } S > 0$

$\text{sign}(S) = -1 \text{ for } S < 0$

This expression of F will give a new expression for dS/dt in terms of both the best estimates, M, C and D, and the uncertain parameters, M, C and D.

If the parameters were certain, Equation 3.9 would reduce to that representing the switching scheme for an ideal relay. In this case, S would go to zero and cause E to dissipate. This implies that:

$$\frac{dS}{dt} = - \frac{K}{M} \text{sign}(S)$$

(3.12)
With uncertain parameters, sliding mode will try to adjust the relay gain K so that $\frac{dV}{dt}$ is always more negative than $\gamma |S|$ where γ is some negative number. Using Equation 3.8 and substituting dS/dt from Equation 3.9 and Equation 3.12 gives:

$$\frac{dV}{dt} = \left[(\Delta C) \frac{dO}{dt} \frac{dO}{dt} - (\Delta D) + (\Delta M) \frac{d^2I}{dt^2} + \lambda(\Delta M) \frac{dI}{dt} - \lambda(\Delta M) \frac{dO}{dt} \right] - K \text{sign}(S) S$$

(3.13)

where:

$$\Delta C = C - C$$
$$\Delta D = D - D$$
$$\Delta M = M - M$$

This can be represented by:

$$\frac{dV}{dt} = [(\Delta L) - K \text{sign}(S)] S$$

(3.14)

with:

$$\Delta L = (\Delta C) \frac{dO}{dt} \frac{dO}{dt} - (\Delta D) + (\Delta M) \frac{d^2I}{dt^2} + \lambda(\Delta M) \frac{dI}{dt} - \lambda(\Delta M) \frac{dO}{dt}$$

(3.14a)

where:

$$\Delta L = L - L$$
$$L = \text{constant involving } C, D \text{ and } M$$
$$L = \text{best estimate of constant involving } C, D \text{ and } M$$

This gives:

$$K = |\Delta L| - \gamma$$

(3.15)
This sliding mode control technique focuses on directing the system towards the command state. The method is useful for controlling linear systems using discontinuous control action, and it has also been adapted for the control of nonlinear systems with continuous control action. It has been determined that sliding mode control used as an adaptive control algorithm requires a good estimate of the system and its surrounding parameters, which are often not always easy to obtain for small subsea robots. Thus, it is essential for a good estimate of $|\Delta L|$ in order for this scheme to work.

Consider the case where C and M are certain but D is uncertain. In this case, the theoretical equations that are of particular interest include:

$$\frac{dS}{dt} = \frac{d^2 I}{dt^2} - \frac{d^2 O}{dt^2} + \lambda \frac{dI}{dt} - \lambda \frac{dO}{dt}$$ \hspace{1cm} (3.16)

and:

$$\frac{d^2 O}{dt^2} = \frac{1}{M} \left(F + D - C \frac{dO}{dt} \right) \frac{dO}{dt}$$ \hspace{1cm} (3.17)

The best estimate for the force of the propulsion system must also be uncertain as there is one uncertainty in the equation. Thus:

$$F = C \frac{dO}{dt} \left| \frac{dO}{dt} \right| - D - M\lambda \frac{dO}{dt}$$ \hspace{1cm} (3.18)
Figure 3.1 gives a phase portrait for this case. The appropriate code and data file for this case are given in Appendix A. The parameters are $M = 5$, $C = 5$, $\gamma = -25$ and $\lambda = 5$.

Initially the small subsea robot is at rest with $O = 0$ and is commanded to go to $O = 5$. The disturbance load is given by:

$$D = D + \Delta D \sin \left(\frac{2\pi}{T} \right) t$$

(3.19)

D is the best estimate for D with ΔD accounting for the uncertainty. The parameters are such that $D = 1$, $\Delta D = 1$ and $T = 1$. As can be seen in Figure 3.1, the small subsea robot does home in on the command depth but it is affected by the uncertain component of D.

![Figure 3.1 Phase portrait with uncertain parameters](image)
Considering the case where all parameters are certain, there is no upper bound for the sliding mode mechanism to work with. Thus, there is no error associated with the $|\Delta D|$ term. Figure 3.2 shows a phase portrait for this case. The appropriate code and data file for this case are also given in Appendix A. It is illustrated that the small subsea robot now adapts continuously to changes in D.

Figure 3.2 Phase portrait with no uncertain parameters
For the case of a small subsea robot, there is a sudden drop off. This can be explained by considering the following equations:

\[
\frac{dS}{dt} = -\frac{dL}{dt} - \lambda L
\] \hspace{1cm} (3.20)

with:

\[
L = \frac{dO}{dt}
\] \hspace{1cm} (3.21)

and:

\[
\frac{dS}{dt} = -\frac{K}{M} \text{sign}(S) = \pm \frac{K}{M}
\] \hspace{1cm} (3.22)

Generally sign(S) is +1 as S is greater than zero, thus:

\[
\frac{dS}{dt} = -\frac{K}{M}
\] \hspace{1cm} (3.23)

However, for the drop off case, it can be shown that sign(S) has a value of -1 as S is less than zero, thus:

\[
\frac{dS}{dt} = +\frac{K}{M}
\] \hspace{1cm} (3.24)
When the value of \(S \) becomes negative, the phase portrait flips and heads in the opposite direction. In addition, the apparent height of the phase portrait, as shown in Figure 3.2, is a representation of Equation 3.24 divided by \(\lambda \). When the parameter values substituted into Equation 3.24 are \(K = 25, M = 5 \) and \(\lambda = 5 \), this results in an apparent height with a value of unity as presented below:

\[
\frac{(dS/dt)}{\lambda} = \frac{K}{M\lambda} = \frac{25}{(5)(5)} = 1
\]

(3.25)

3.1.5 Neural Networks

Neural networks can be used to construct fits to either supervisory or drive-level control strategies [10]. Drive level control is considered herein. A neural network mapping generally consists of three layers of neurons, namely an input layer, a middle or hidden layer and an output layer, as shown in Figure 3.3. Both the input and hidden layers contain one bias neuron that has an input of unity. A nonlinear squashing function, \(f \), processes the summed inputs contained in the hidden layer of neurons. The sigmoidal or S-shape that is used to represent this process is given by:

\[
f(a) = \frac{1}{1 + e^{-a}}
\]

(3.26)
This function is zero for large negative values of a and unity for large positive values of a. The information flows through the network from input to output.
The mapping equation for a three layer network with only one hidden neuron is represented by:

\[O_N = W_{bo} + W_{xo} f(W_{xi} I_N + W_{xj} J_N + W_{bN}) \]
(3.27)

This equation can be used to show that in an \(O_N \) versus \(I_N J_N \) plot, weights can be used to shift both horizontally and vertically features generated by the squashing functions.

Inspection of Equation 3.27 shows that \(W_{bo} \) can be used to shift an \(O_N \) versus \(I_N J_N \) plot vertically, while a positive \(W_{bo} \) will move the plot up and a negative \(W_{bo} \) will move the plot down. A weight which multiplies an \(f \) function determines its contribution to the \(O_N \) versus \(I_N J_N \) plot. Again, these weights can be either positive or negative. If one of the weights has a value of zero, it will remove its \(f \) function entirely.

The weights inside the \(f \) function are more difficult to explain. Consider the first function in the Equation 3.27:

\[f(W_{xi} I_N + W_{xj} J_N + W_{bN}) \]
(3.28)

This will create a feature in the plot where its arguments \(W_{xi} I_N + W_{xj} J_N + W_{bN} \) is zero. This is the point where the \(f \) function itself is one-half or midway between its two limits, which are zero and unity.
Consider the case where W_{rx} is a large negative number and J_N is zero. In this case, on the I_N axis, the feature is defined by:

$$W_{xi} I_N + W_{rx} = 0$$

(3.29)

$$I_N = -\frac{W_{rx}}{W_{xi}}$$

(3.30)

If the W_{xi} is a small positive value then it will appear at a larger positive value of I_N, while a small negative value will appear at a large negative value of I_N.

If W_{xo} is positive, a positive value of W_{xi} will cause a feature to grow in the positive I_N direction, while a negative value of W_{xi} will cause a feature to grow in the negative I_N direction. Small values of W_{xi} spread the feature, while large values of W_{xi} steepen it. Similar statements can also be made about W_{xj}.

43
Figure 3.4 shows a simple map generated by squashing functions. It is actually a relay with deadband, with an ideal relay in the I_N direction and proportional with saturation in the J_N direction. The appropriate code and data file for this are given in Appendix A.
Figure 3.5 shows an extremely complex map generated by only three squashing functions with appropriate code and data file given in Appendix A. Many functions would allow construction of almost any map that could be imagined.

Figure 3.5 Extremely complex neural network map
To construct the map for a neural network controller, its weights could be adjusted by iteration until the output from the system matches the desired output. If the basic map shape is known, then the controller weights can be adjusted until its map matches the known shape. In conclusion, a neural network has the capability to represent extremely complicated control strategies.

3.1.6 Fuzzy Logic

Fuzzy logic can be used to construct fits to either supervisory or drive level control strategies [10]. Drive level control is considered herein.

The concept of fuzzy logic uses a fuzzy set where linguistic concepts are treated mathematically and human thought processes are replicated. The experience of a human operator is required and the procedure uses such linguistic terms as large, medium or small to assign values to the variables. The linguistic terms are treated mathematically in order to develop a set of IF-THEN Rules.

For example, consider the case for Proportional Derivative Control (PD) with given values of error, \(E \), error rate, \(dE/dt \), and the control signal, \(S \), where membership functions need to be determined using standard fuzzy logic manipulations. The membership functions contain negative inputs (N), zero inputs (Z), and positive inputs (P).
Each fuzzy logic statement or rule would have a format such as:

"If E is negative (N) and dE/dt is negative (N), then the control signal, S, should be double negative (NN)."

Membership functions can be used to quantify the degree to which a parameter belongs to a particular class. The interpolation or decision process can be eliminated when the intelligent experience of a human operator is used to generate the rules and membership functions. Membership function shapes can include triangles, trapezoids and smooth bell shapes, with neighboring membership functions permitted to overlap. Previous input information is used to develop the membership functions to help the operator generate the fuzzy logic rules and other membership functions. Numerical simulations can be used to study how the control strategy for the small subsea robot will proceed.

For a specific set of membership functions such as E and dE/dt, manipulation of each fuzzy logic rule produces a contribution to an overall fuzzy range of the control signal, S. For this particular manipulation, it is assumed that the rule is an IF-AND-THEN Rule structure, where the minimum membership value to the left of THEN will dominate. If there was an IF-OR-THEN Rule, the maximum membership value would dominate. Crisp depth is obtained from the overall range using a process known as defuzzification where determining the centroid of area is a commonly used defuzzification scheme.
In some cases, the first run of the fuzzy logic scheme does not agree with the direct predictions of the human operator. Thus, the human operator must assist in fine tuning the logic code by adjusting membership function breaking points and shapes. Tuning can be accomplished by specifying new rules, deleting old rules, or by changing the value of the scaling parameters which define the membership functions.

Fuzzy logic is a versatile control strategy. It is most simply described as a set of linguistic IF-THEN Rules, which can be compared to rules-of-thumb for human operations and thought processes. Unlike expert systems, fuzzy logic does not require that the outputs be determined for each and every input. The output can be determined through the membership function manipulations.

3.1.6.1 Linear Fuzzy Logic

Membership functions for a PD controller for E and \(dE/dt\) are given in Figure 3.6. Both E and \(dE/dt\) range from -5 to +5 while the control signal, S, ranges from -9 to +9. It is constructed to make four divisions with five points for both E and \(dE/dt\) such that the positioning of the values of E and \(dE/dt\) would be -5, -2.5, 0, +1, +2.5 and +5. The first combination would be \(E = -5\) and \(dE/dt = -5\), the second combination would be \(E = -5, dE/dt = -2.5\), and so on, such that there would be 5*5 combinations for a total of twenty-five possible values of the control signal, S.
For clarity, to obtain the results as indicated in Figure 3.6, consider the case where \(E = 0 \) and \(dE/dt = -2.5 \). This is the second case in Figure 3.6 and indicated by the arrows. For this case with \(E = 0 \), then \(N = 0\% \), \(Z = 100\% \) and \(P = 0\% \). For a value of \(dE/dt = -2.5 \), then \(N = 50\% \), \(Z = 50\% \) and \(P = 0\% \). Thus, nine combinations must be considered.

Recall that membership functions take the minimum value as its final result. Thus for the cases NN, NZ and NP, there is no result as \(N = 0\% \) when \(E = 0 \). Now, consider when \(Z = 100\% \), then \(ZN = 50\% \), \(ZZ = 50\% \) and \(ZP = 0\% \), which results in two contributions. Finally, when \(P = 0\% \), there is no result for the remaining terms PN, PZ and PP. Performing defuzzification, the centroid of the area for the case in point, results with a value of -1 for the control signal, \(S \).

This procedure is followed for all combinations for the linear case. For Figure 3.6, when \(E = 0 \), the results for the control signal, \(S \), are \(-2, -1, 0, +1, +2 \). The case for \(-1 \) was detailed above. These values are inputs for the appropriate code given in Appendix A, corresponding to the case when \(E = 0 \), which is the third point of the four divisions.
Membership functions for linear map
From Figure 3.7, it is visible that no nonlinear features occurred as the plot is flat in nature. This linear feature results from the fact that the membership functions for N and P for E and dE/dt contained only one flat portion and one sloping linear portion. The value of Z for both E and dE/dt contained two sloping linear portions from -5 to a peak at the top and then sloping back to +5, thus the value was never zero except at -5 and +5. The results show that for the majority of the cases, three membership functions inputs have some percentage of both E and dE/dt. The results vary for the percentages as they were not always 100% NN. The appropriate code and data file are given in Appendix A.

Figure 3.7 Linear fuzzy logic map
3.1.6.2 Nonlinear Fuzzy Logic

Membership functions for another PD controller for E and dE/dt are given in Figure 3.8. Both E and dE/dt range from -5 to +5 while the control signal, S, ranges from -9 to +9. It is constructed to make eight divisions with nine points for both E and dE/dt such that the positioning of the values of E and dE/dt would be -5, -3, -1, 0, +1, +3 and +5. The first combination would be $E = -5$ and $dE/dt = -5$, the second combination would be $E = -5$, $dE/dt = -3$, and so on such, that there would be 9*9 combinations for a total of eighty-one possible values of the control signal, S. The same procedure was followed as outlined in Section 3.1.6.1.
Figure 3.8 Membership functions for nonlinear map
From Figure 3.9, it is apparent these membership functions produced nonlinear features or steep jumps within the plot. This is due to the many locations where the control signal, S, was either 100% NN, 100% PN, 100% ZN, 100% ZZ, 100% ZP, 100% NP or 100% PP. This resulted from the two flat portions of the membership functions for N and P for both E and dE/dt with only one sloping linear portion. The value of Z for both E and dE/dt was mainly zero due to two flat portions with a value of zero with two linear sloping portions. The results show that for the majority of the cases, two of the inputs of the membership function were 0% with the other being 100% for both E and dE/dt. The nonlinear features result from local concentration of membership functions. The appropriate code and data file are given in Appendix A.

![Figure 3.9 Nonlinear fuzzy logic](image)
3.2 Supervisory Control Strategies

3.2.1 Neural Networks

Mechanically, neural network fits to supervisory strategies are no different than fits to drive level strategies. For example, consider a supervisory strategy that would pick a safe depth for a small subsea robot to drive during a storm. Inputs into the network would include the wave period and the wave steepness, with the output being the safe depth.

The supervisory experience of human operators and/or the simulation of the small subsea robot in waves could be used to generate data to train the network. Once trained, it will give a safe depth for any wave period and steepness within the range of training data.

3.2.2 Fuzzy Logic

Fuzzy logic fits to supervisory strategies are similar to the fits to drive level strategies. For the depth selector case, membership functions would have a format such as:

"If wave period is large and wave steepness is large, then safe depth would be very large".

As with drive level control, a human operator would probably have to fine tune the logic before it could be used on the small subsea robot.
3.2.3 Subsumption

Subsumption is a control strategy that was developed by Rodney Brooks and his colleagues at the Massachusetts Institute of Technology [15]. Each layer in subsumption is a behaviour where layers or behaviours operate independently of each other. The top layers have higher priority and take over or subsume control from lower layers when conditions permit.

Brooks believes that human intelligence is far too complex to be understood, as the process of intelligence is broken down into sections with the interfaces between them impossible to duplicate. He suggests that the thought process be broken down into a number of levels, each of which has relatively simple intelligence, and then build these increments up step by step to the capability of an intelligent system like that of the human brain [15]. Each intelligent system is constructed of independent, parallel activity layers which all connect directly to the outside environment through perception and action.

Consider the example where subsumption would be used to keep a small subsea robot from colliding with a hill in the ocean floor. A lower layer would try to keep the robot a certain distance from the bottom of the ocean floor. However, the robot may approach an underwater hill which would permit the higher layers to subsume control from lower layers in order to get the robot above the hill without incurring any damage. Once the
robot was clear of the obstacle, the higher layers would pass the control back to the appropriate lower layer so that the robot would continue on its original path.

This layered type of control strategy has been used in the application of mobile robots, which can operate independently in a closed environment. The subsumption architecture is broken into three layers, namely avoidance, wandering and exploration. Every layer is built on top of existing layers where lower layers never rely on the existence of the top layers. These subsea robots can operate autonomously in a complex changing environment mimicking insect-like intelligence.

In subsumption, the surroundings determine the nature of control as the higher layer behaviours are activated by the surroundings. The subsea robots using subsumption control are said to have insect-like intelligence, as they react to the surroundings much like that of insects. This control strategy provides robustness, as adding extra behaviours does not change existing behaviours. Subsumption is not computationally expensive and the coding for its use is modest.
3.3 Control Strategy Selection for ANNE

The strategy selected for use in ANNE is a two level switching error-driven control strategy which employs a depth error band. Outside the band, one level moves ANNE towards the band surrounding the command depth, creating a depth error-driven control strategy. This strategy is based on switching as discussed in Section 3.1.2.

The other level is used when ANNE is within the band. This attempts to bring ANNE to a stop within the band using a buoyancy error-driven control strategy. Within the band, readings are substituted into the depth equation of motion to estimate buoyancy. The use of a system governing equation as detailed in Section 5.1.5 makes the second level resemble a computed load strategy as discussed in Section 3.1.3.

This control strategy is selected because the simulation suggests that it demonstrates an excellent combination of error-driven and computed load control. In addition, it is a control strategy that is compatible with the switching hardware on ANNE, most of which is supplied by NO MAD as discussed in Section 4.4.1.
Chapter 4

Autonomous Pneumatic Nautical Explorer

The first NO MAD prototype has a number of areas which require improvement. Even though NO MAD is modular in construction, all of the electrical components are hard-wired into their positions, making it difficult to modify the setup. Similarly, the majority of components are bolted or screwed in place. As a result, assembly of NO MAD is time consuming.

NO MAD uses five float switches that are equally spaced in the vertical direction of the ballast tank. These switches are employed to sense the water level in the ballast tank, as required by the depth control strategy. Due to the discrete nature of the information, stable operation of NO MAD is impossible and limit cycles exist around the command depth. To overcome this, ANNE uses an accelerometer instead of the float switches [16].

One of the major goals of the present work was to redesign NO MAD such that all of the components would permit easy assembly. For ease of obtaining parts, the majority of the components of the first NO MAD prototype were utilized in ANNE but more efficiently. For simplification, ANNE is modular in construction and requires no tools for assembly. The detailed fabrication drawings are given in Appendix B. ANNE was designed for missions in shallow water to depths of 100 m. It has a mass of 50 kg and an overall
height of 1.2 m. ANNE requires at least two people and an overhead crane for deployment and recovery. An overall illustration of ANNE is shown in Figure 4.1.

ANNE has holes at the top and bottom of its ballast tank. Pneumatic pistons mounted outside the ballast tank are used to open or close the holes. To make ANNE sink, water is allowed to enter the ballast tank as both holes are open. To make ANNE surface, high-pressure compressed air is used to purge water from the ballast tank with the top hole closed and the bottom hole open.
The main components consist of an air-water ballast tank, two divers bottles, of which only one is used during a mission, a Z-WORLD Rugged Giant C-Programmable Miniature Controller (controller) for control, batteries for power during missions, and pneumatic components for operation of the pistons for the ballast tank. The electrical and pneumatic schematics of ANNE are given in Appendix C. There is also ample space for a payload.

The two divers bottles are used as the source of high-pressure compressed air for the ballast tank and the pistons. Pneumatic valves are used to control the high-pressure compressed air flows. These pneumatic valves are solenoid activated and pilot pressure operated.

4.1 Structure and Shell

The structure and shell of ANNE consists of five cylindrical plastic tubes that are held together by an aluminum frame at the top. Figure 4.2 shows the center cylinder and the two aluminum frames. Figure 4.3 shows the top aluminum frame before it is attached to the center cylinder. Figure 4.4 depicts the bottom aluminum frame that is attached to the bottom of the center cylinder that is used to hold the instrumentation boxes. This center cylinder, which is the longest of the five tubes at 1.2 m, houses the ballast tank and acts as a support for the four remaining tubes as can be seen in Figure 4.2.
Figure 4.2 Center cylinder with both frames

Figure 4.3 Top frame
4.2 Ballast Tank

Figure 4.5 shows the ballast tank with the pneumatic pistons attached. The ballast tank, taken from NOMAD, was designed and sized from previous work by Lu [2]. Specific parameters of the ballast tank are given in Section 5.1.6, Table 5.1. Figure 4.6 shows the pneumatic pistons together with the ballast tank. They are double acting pistons meaning that high-pressure compressed air is used to move them back and forth. There is another type of pneumatic piston known as single acting that uses air pressure to extend the actuator rod with a spring to retract it. These were not used in ANNE.
Figure 4.5 Ballast tank

Figure 4.6 Ballast tank with pistons
4.3 Outside Tubes

The outside tubes consist of two intermediate length cylindrical plastic tubes at 76.5 cm and two shortest length cylindrical plastic tubes at 56 cm.

4.3.1 Intermediate Length Tubes

Two intermediate length cylindrical plastic tubes are used to hold the smaller size divers bottles that supply the high-pressure compressed air to the ballast tank. These tubes have been designed to be able to hold regular size divers bottles, however, they are not used due to the weight restrictions. The maximum pressure supplied by one of the divers bottles is 200 bar (3000 psi) with a capacity of 300 stpL. A first pressure regulator followed by a second pressure regulator are required to limit the operation pressure of ANNE to 4 bar.

The divers bottles are held in place within the cylinders by styrofoam rings. Figure 4.7 shows the intermediate length tubes and the small divers bottles before assembly. These tubes are also able to house payloads.
4.3.2 Shortest Length Tubes

The remaining two cylindrical plastic tubes of the shortest length contain styrofoam rings that are used for roughly tuning buoyancy as the ballast tank is used for fine tuning buoyancy. Figure 4.8 shows these tubes and the styrofoam rings before assembly.
4.4 Instrumentation Boxes

There are three instrumentation boxes and they can be seen in Figure 4.1 of the overall photograph of ANNE.

4.4.1 Controller Box

Figure 4.9 shows the largest of these boxes with an outside diameter of 27 cm and a height of 14.1 cm. This box houses a Z-WORLD Rugged Giant C-Programmable Miniature Controller, an ICSensors pressure transducer (Model 114) and an ICSensors accelerometer (Model 3145). Appendix D gives specification sheets from the
manufacturer on these three devices together with the specifications sheets for Subconn connectors and the necessary components from FESTO.

![Controller box](image)

Figure 4.9 Controller box

The sensors were chosen to be compatible with the controller. Both require 24V DC to operate and the controller, powered by the batteries, can supply this. Since they draw low current, the devices should not drain the batteries. The current drawn in milliAmps (mA) from the batteries would be the sum of that needed by the controller and that needed by each of the sensors. The power drawn by the controller is far greater than that drawn by the sensors. The controller, which reads sensors in milliVolts (mV), requires a very small voltage from the sensors.
The 15 psi pressure transducer, from ICSensors, has a calibration factor of 2 mm per mV and is sufficient for the deep tank tests. A plot of the calibration factor for the pressure transducer is given with the specification sheet in Appendix D. This results in a depth accuracy of 2 mm, which is an acceptable level. The 100 psi pressure transducer, that would be used at sea, has a calibration factor of 7 cm per mV, which is also reasonable. The accelerometer, also from ICSensors, is rated at 1000 mV per gravity, g, gives low precision as the g levels are very low during the deep tank tests. However, this precision is adequate for the experimental purposes of the ANNE deep tank tests. The calibration results for the accelerometer are also given with the specification sheet in Appendix D.

A component layout of the controller, purchased from Z-WORLD, is shown in Figure 4.10. The controller has the capability to receive digital inputs from limit switches, but this was not needed for ANNE. It also has the capability for analog inputs from pressure transducers and accelerometers as utilized in ANNE. These are referred to as universal inputs in the schematic. Digital outputs for operating solenoid valves, are used to operate pneumatic valves for controlling flow into and out of the air-water ballast tank. The controller also has the capability to output one analog signal, and can operate two normally closed-normally open (NC - NO) relays, which are not used in this work. These digital inputs and outputs can be seen in Figure 4.11.
Figure 4.10 Component layout of controller
Figure 4.11 Component layout of controller illustrating inputs and outputs

4.4.2 Battery Box

The power to the controller is provided by three DC batteries (two 7.2V and one 8.4V) in series. Together, they have a voltage rating 22.8 V, which is sufficient to power the controller, and a current rating of 1800 mAh. The controller itself draws 220 mA. The calculation for the power requirements of the three batteries is given in Appendix E.
(Sample Calculation 4.1). This illustrates that for a mission of ANNE the batteries should last for four hours. The batteries are housed in the smallest of the instrumentation boxes, shown in Figure 4.12. This box has an outside diameter of 27 cm and a height of 5.8 cm. A 3 Amp (A) fuse is inserted in series to protect the controller from a short circuit external from the battery box.

![Battery box](image)

Figure 4.12 Battery box

4.4.3 Pneumatic Box

Figure 4.13 shows the third box, which has an outside diameter of 27 cm and a height of 8.9 cm. This box houses the two types of pneumatic valves that were used. Figure 4.14 shows a schematic of the valve used to control flow of high-pressure compressed air into the ballast tank when it is necessary to purge water from the ballast tank to make ANNE rise. The pneumatic valve, as shown in the schematic, would allow air to vent from the
ballast tank. This is prevented by installing a check valve in the pneumatic line to the ballast tank. With the solenoid on the right of the schematic activated, the flow paths on the right move over allowing a flow path from the high-pressure compressed air to the ballast tank to be created which purges the ballast tank.

Figure 4.13 Pneumatic box

The second pneumatic valve that is used is shown schematically in Figure 4.15. As shown, the valve would create a flow path from the high-pressure compressed air to one end of a pneumatic piston and a vent from the other end. With the left solenoid deactivated and the right solenoid activated, the flow paths on the right would move to the right and create a reverse set of flow paths. With the right solenoid deactivated and the left solenoid activated, the original flow paths shown would reappear.
Figure 4.14 Schematic of pneumatic valve for air supply to ballast tank

Figure 4.15 Schematic of pneumatic valve for piston operation
Pneumatic and electrical bulk-head connectors are used to connect the three instrumentation boxes to each other and to the pistons and the ballast tank. These can be seen in Figure 4.9, Figure 4.12 and Figure 4.13.

Aluminum covers are used to close the boxes and are designed so that screws are not used as they are held together by the principle of suction. Each box has a small hole in one cover allowing air to be removed through suction by using a vortex blower in reverse operation [17]. Duct tape is used to cover the appropriate hole after sufficient suction, or negative pressure, has developed within each instrumentation box. Two O-Rings are present in the aluminum covers (one in the top and one in the bottom) that assists in maintaining the seal, once proper lubrication grease is applied to the O-Rings.

The instrumentation boxes are the only structural components subjected to high-pressure which could create hoop stresses. This type of box has been pressurized to approximately 10 bar or 100 m [18] with no problems noted.

4.5 Simple Twist Lock Mechanism

To assist in the modular construction of ANNE, the elimination of bolts and screws is essential. This is done by the use of a simple twist lock mechanism where the component fits into place and secured by a simple twist. This appears in the majority of the components of ANNE.
Consider Figure 4.2 which illustrates the center cylindrical tube, and the top and bottom aluminum frames. Slots in the cylindrical tubes and lugs in the aluminum frames allow for a tight fit and a reliable means of support for both frames. A close inspection of Figure 4.3 will permit a view of some of these lugs.

This simple twist lock mechanism is also employed in the design of the ballast tank. This permits the connection of the pneumatic piston support to the ballast tank. This design can be seen in Figure 4.6. The slots are in the support for the pneumatic pistons, at the top and bottom of the ballast tank, and the lugs are placed in the housing of the pneumatic pistons.

The simple twist lock mechanism is also used to hold the divers bottles in place in the intermediate length tubes. In Figure 4.7, it can be seen that the slots exist in the cylindrical tubes and the lugs are present in the support that holds the divers bottle. A support is also placed on top of the divers bottle to prevent its loss during a mission. There are also slots for positioning these tubes on to the top aluminum frame.

For the smallest of the cylindrical tubes, the simple twist lock mechanism is used to hold the styrofoam in place, which can be seen in Figure 4.8. The slots are in the cylindrical tubes, while the lugs are in the support. There are also slots for positioning these tubes on the top aluminum frame.
4.6 Cost Estimate

A cost estimate of the overall development of ANNE is presented in Table 4.1.

Table 4.1 Cost Estimate of ANNE

<table>
<thead>
<tr>
<th>Component</th>
<th>Company</th>
<th>Qty</th>
<th>Unit Cost ($)</th>
<th>Rounded Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerometer</td>
<td>ICSensors</td>
<td>1</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Batteries (Ni-Ca)</td>
<td>Signal Hobbies</td>
<td>3</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Controller</td>
<td>Z-WORLD</td>
<td>1</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Divers Bottles</td>
<td>Sub Aqua</td>
<td>2</td>
<td>195</td>
<td>390</td>
</tr>
<tr>
<td>Electrical Bulkhead Connectors</td>
<td>Subconn</td>
<td>2</td>
<td>177</td>
<td>355</td>
</tr>
<tr>
<td>Flow Regulator</td>
<td>FESTO</td>
<td>1</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Framework/Tubes and Shopwork</td>
<td>MUN Technical Services</td>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Pneumatic Connectors</td>
<td>TubeCraft</td>
<td>9</td>
<td>20</td>
<td>180</td>
</tr>
<tr>
<td>Pneumatic Piston</td>
<td>FESTO</td>
<td>2</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Pressure Transducer</td>
<td>ICSensors</td>
<td>1</td>
<td>385</td>
<td>385</td>
</tr>
<tr>
<td>Pressure Regulators</td>
<td>FESTO</td>
<td>2</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Pneumatic Valve</td>
<td>FESTO</td>
<td>2</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Pneumatic Valve</td>
<td>FESTO</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Reducer</td>
<td>Sub Aqua</td>
<td>1</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>Quick Disconnect Low Pressure Line</td>
<td>Sub Aqua</td>
<td>1</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Miscellaneous Components and Shopwork</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>400</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$5015</td>
</tr>
</tbody>
</table>

These values are rounded to the nearest dollar. The total cost is calculated to be approximately $5000, which is relatively inexpensive for this subsea robot design. If ANNE is to be made in mass production, this cost can be reduced. The potential cost of losing ANNE during an at sea mission can be seen as expensive.
Chapter 5
Simulation

The success or failure of ANNE depends on the length of time the high-pressure compressed air lasts as this determines the mission duration. Critically, this depends on the depth control strategy employed. Thus, it became essential to develop a simulation to test the depth control strategy employed by ANNE.

5.1 Parameter Determination

5.1.1 Volumetric Flow Rate

A simulation trial lasts about three minutes of real time. During this time, only a small amount of high-pressure compressed air is consumed. This implies that the pressure is fixed during a trial. The pressure in the divers bottle creates choked flow that causes the mass flow rate, $\frac{dM}{dt}$, from the high-pressure compressed air to be constant and insensitive to ballast tank conditions. For clarity, the volumetric flow rate of water flowing into the ballast tank is denoted as Q_w, which will be a positive quantity. When the ballast tank is being purged with high-pressure compressed air, Q_w will be a negative quantity. Thus, it is assumed that when a flow of high-pressure compressed air is
released to force water out of the ballast tank through the bottom hole, the outward flow of water, Q_w, is negative with no storage permitted.

The volumetric flow rate of water, Q_w, from the ballast tank is calculated by:

$$Q_w = \frac{-dM_A}{\rho}$$

(5.1)

where:

- M_A = mass of high-pressure compressed air from divers bottle to the ballast tank
- ρ = density of air in the ballast tank

The density of air in the ballast tank, ρ, is a function of the vertical submergence depth of the small subsea robot, R. For ANNE, dM/dt is set to a level that makes Q_w approximately equal to -1.0 L/s when flow is to standard atmosphere. With the cross-sectional area of the ballast tank fixed, this Q_w will permit purging of the ballast tank at a reasonable rate. Specific parameters of the ballast tank are presented in Section 5.1.6, Table 5.1.

The volumetric flow rate for air of 1.0 L/s can be obtained from ANNE when the divers bottles are fully charged. Gas dynamics could be used to estimate the pressure drop in the divers bottle as well as the volumetric flow rate. This is not done in the present stages of ANNE design.
5.1.2 Driving Pressure

With both top and bottom holes of the ballast tank open, the positive Q_w upward through the ballast tank is governed by the resistance created at the bottom. The given flow through the ballast tank creates a greater pressure drop at the bottom, as the density of the flowing fluid (water), σ, is greater than air. For steady flow, the orifice flow equation [19] is given by:

$$Q_w = C_o H \sqrt{\frac{2P}{\sigma}}$$

(5.2)

where:

- Q_w = volume flow rate of water through the orifice
- C_o = head loss coefficient
- H = flow area
- P = driving pressure
- σ = density of the flowing fluid (water)

Manipulation of Equation 5.2 gives:

$$P = \frac{\sigma}{2} \left(\frac{Q_w}{C_o H} \right)^2$$

(5.3)

The maximum overall pressure head is equal to the height of the ballast tank, which is 500 mm. The pressure driving free flow up through the ballast tank cannot be greater than the hydrostatic pressure corresponding to the height of the ballast tank.
From fundamental fluid mechanics [20], the pressure-elevation relationship is given by:

\[\Delta P = \sigma g (\Delta h) \]

(5.4)

where:

- \(\Delta P \) = change in pressure
- \(g \) = acceleration due to gravity
- \(\Delta h \) = change in elevation

With the water level measured positive downward from the center of the ballast tank and denoted by \(Y \), then the neutrally buoyant point is taken as \(Y = 0 \). If both top and bottom holes of the ballast tank are open and \(Y \) is known, the change in driving pressure using Equation 5.4 can be calculated by:

\[\Delta P = \sigma g (T + Y) \]

(5.5)

where:

- \(T \) = half height of the ballast tank
- \(Y \) = water level measured positive downward from the center of the ballast tank
Substituting the applicable values given in Section 5.1.6, Table 5.1 into Equation 5.5, results in $\Delta P = 4905 \text{ Pa}$ (Sample Calculation 5.1, Appendix E). This causes the pressure of the high-pressure compressed air in the ballast tank to be approximately equal to the pressure in the water just outside the top of the ballast tank. This implies that the pressure driving the water flow through the bottom hole would be equal to the hydrostatic pressure corresponding to the height of the air cavity. With both hole sizes fixed, the average water flow Q_w into the ballast tank is approximately equal to 1.0 L/s. This results in equal filling and purging rates as the magnitudes are the same.

$$|Q_{fi}| = |Q_{purge}| = 1.0 \text{ L/s}$$

(5.6)

The equation for head loss, h_L is given by:

$$h_L = \frac{2\Delta P}{\rho}$$

(5.7)

Substituting the values given in Table 5.1 into Equation 5.7 gives $h_L = 0.5 \text{ mm}$ (Sample Calculation 5.2, Appendix E). Thus, it can be shown that, in shallow water, no more than 0.5 mm of pressure head could result from high-pressure compressed air flow through the top hole of the ballast tank.
The equation for the purge period, t_p, is given by:

$$t_p = \frac{AT}{Q_w}$$

(5.8)

where:

$A = \text{cross-sectional area of the ballast tank}$

Substituting the values that are listed in Section 5.1.6, Table 5.1 into Equation 5.8 results with $t_p = 6.25$ s (Sample Calculation 5.3, Appendix E).

The flow through the bottom hole is assumed to be steady. An inertance and resistance orifice flow model would give the bottom hole volume flow rate more accurately, but such a model is beyond the scope of this work. With very high-pressure compressed air used to create a strong air jet through the top hole, choked flow through the top hole would result accompanied by strong shock waves. This type of flow is difficult to model, and seldom used, thus it was not used in the present work.
5.1.3 Conservation of Mass

A conservation of mass equation for the high-pressure compressed air in the ballast tank can be used to take air compressibility into account [19]. This is given by:

\[\frac{d(\rho V_a)}{dt} = \rho Q_{in} - \rho Q_{out} \] (5.9)

where:

- \(V_a \) = volume of air in the tank
- \(Q_{in} \) = flow rate of air into ballast tank from the divers bottles
- \(Q_{out} \) = flow rate of air out of the ballast tank through the top hole

Manipulation of Equation 5.9 gives:

\[\frac{V_a}{K} \frac{dP}{dt} + \frac{dV_a}{dt} = Q_{in} - Q_{out} \] (5.10)

A measure of air compressibility, \(K_a \), is known to be calculated by:

\[K_a = \rho a^2 \] (5.11)

with:

\[a = \sqrt{kRT} \] (5.12)
For isothermal compression-expansion, K_a is equal to the ballast tank pressure as the value of $K_a = 1.0$. For isentropic compression-expansion, it becomes k times the ballast tank where $k = 1.4$ is the specific heat ratio. For ANNE, it is assumed that K_a is between these two limits.

Equation 5.10 shows that compressibility adds a period to the dynamics that are small relative to the ballast tank filling and purging periods. This would have little or no effect on performance and simulation runs with and without compressibility confirms this result.

5.1.4 Buoyancy

The rate of change of the water level Y in the tank is given by:

$$\frac{dY}{dt} = -\frac{Q_w}{A}$$

(5.13)

From Equation 5.2, Equation 5.6 and Equation 5.13, this allows for a calculation for Q_w and Y by integration.
From fundamental fluid mechanics [20], the weight force is given by:

\[W = \sigma g V_f \]

(5.14)

where:

- \(W \) = weight force
- \(V_f \) = volume of fluid

Substitution of the applicable parameters into Equation 5.14 gives the calculation for buoyancy force on the small subsea robot, \(B \):

\[B = \sigma g (AY) \]

(5.15)

The maximum absolute value of \(B/g \) is denoted as \(M_{\text{max}} \). This assumes that \(Y \) is given the maximum value of \(T \). This is calculated by:

\[M_{\text{max}} = \frac{B}{g} = \frac{\sigma g AT}{g} = \sigma AT \]

(5.16)

This value is \(M_{\text{max}} = 6.25 \text{ kg} \) when the parameters given in Section 5.1.6, Table 5.1 are substituted into Equation 5.16 (Sample Calculation 5.4, Appendix E).

ANNE has a basic mass of 50 kg when neutrally buoyant. The added mass is estimated to be 25 kg. An explanation for this value is detailed in Section 5.1.6. Both of these components are included in \(M \), which is 75 kg. If \(B \) is increased, then \(M \) would decrease by \(B/g \).
5.1.5 Governing Equation of Motion

With B known, the vertical submergence depth of the small subsea robot, R, can be computed from the equation of motion that is derived from Newton’s Second Law and given by:

$$M \frac{d^2 R}{dt^2} = -B - \frac{C_D A_f \sigma dR}{2} \frac{dR}{dt}$$

(5.17)

where:

M = inherent and added mass of small subsea robot
R = vertical submergence depth of small robot depth
C_D = drag coefficient
A_f = frontal area exposed to flow

The maximum terminal speed of ANNE is calculated from setting the left hand side of Equation 5.17 to zero as there is no acceleration. The value of the buoyancy force is substituted from equation 5.15 and setting Y equal to T. This gives:

$$\frac{C_D A_f \sigma \left(\frac{dR}{dt} \right)^2}{2} = \sigma g A T$$

(5.18)
Solving Equation 5.18 for dR/dt gives:

$$\frac{dR}{dt} = \sqrt{\frac{2ATg}{C_DA_f}} = V_t$$

(5.19)

With the parameters substituted into Equation 5.19 as listed in Section 5.1.6, Table 5.1, this gives the maximum terminal velocity as $V_t = 0.313$ m/s (Sample Calculation 5.5, Appendix E).
5.1.6 Justification of Uncertain Parameters

Table 5.1 lists all of the known and calculated parameters involved in the simulation calculations for ANNE. The measurements are taken directly from ANNE where applicable.

Table 5.1 Parameter Definitions and Values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>cross-sectional area of ballast tank</td>
<td>0.025 m²</td>
</tr>
<tr>
<td>T</td>
<td>half height of the ballast tank</td>
<td>0.250 m</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
<td>9.81 m/s²</td>
</tr>
<tr>
<td>σ</td>
<td>density of the flowing fluid (water)</td>
<td>1000 kg/m³</td>
</tr>
<tr>
<td>M</td>
<td>inherent and added mass of small subsea robot</td>
<td>75 kg</td>
</tr>
<tr>
<td>C_D</td>
<td>drag coefficient</td>
<td>2.5</td>
</tr>
<tr>
<td>A_f</td>
<td>frontal area exposed to flow</td>
<td>0.50 m²</td>
</tr>
<tr>
<td>C_o</td>
<td>head loss coefficient</td>
<td>0.5</td>
</tr>
<tr>
<td>H</td>
<td>flow area</td>
<td>0.0010 m²</td>
</tr>
<tr>
<td>V_t</td>
<td>maximum terminal speed of small subsea robot</td>
<td>0.313 m/s</td>
</tr>
<tr>
<td>t_p</td>
<td>purge period</td>
<td>6.25 s</td>
</tr>
<tr>
<td>M_{max}</td>
<td>maximum mass of water that ballast tank can withstand</td>
<td>6.25 kg</td>
</tr>
</tbody>
</table>

The uncertain parameters in Table 5.1 include the hole loss factor, C_o, and the wake drag coefficient, C_D. In addition, the added mass of ANNE is taken as 50% of the basic robot mass (a typical value used by other researchers).
To determine these parameters precisely, experiments could have been performed. However, as the purpose of the simulation is to approximate the overall influence of these and other parameters, rough estimates are sufficient.

5.2 Depth Control Strategy

For most survey or exploration type missions of ANNE, depth control does not have to be extremely accurate. ANNE is required to get close to the command depth and hover or drift very slowly up and down. ANNE uses a two level switching error-driven control strategy to achieve this. One level of the control strategy moves it towards a band surrounding the command depth, creating a depth error-driven control strategy. The other level attempts to bring ANNE to a stop within the band and uses a buoyancy error-driven control strategy to achieve this.

Water is allowed to enter the ballast tank when ANNE is above a preset band surrounding the command depth and is either rising or not moving towards the band fast enough. Water is forced out of the ballast tank when ANNE is below the band and is either sinking or not moving up to the band fast enough. Within the band, water is allowed to enter the ballast tank when ANNE is moving upwards and buoyancy is positive. Water is forced out of the ballast tank when ANNE is moving downwards and buoyancy is negative. Within the band, the goal is to force the buoyancy to zero and stop ANNE near the command depth.
Figure 5.1 shows the block diagram for inside the error band. For this case, the response of the apparent depth of the subsea robot is fed back for comparison with the command depth. The controller then acts on the depth error and the rate of response, which is how fast the robot moves toward the band. On this basis, the control signal is sent to the pneumatic valves which then permit flow into or out of the ballast tank through the pneumatic pistons. This in turn causes a change in the buoyancy that is fed to the plant, the subsea robot, and results in motion of the subsea robot to the specified command depth.

![Block diagram inside the error band](image)
Figure 5.2 shows the block diagram for outside the error band. For this case, the rate of response of the motion of the subsea robot, together with the acceleration, are used to calculate the buoyancy. The controller acts on both the estimate of the buoyancy and the rate of response. The response of the apparent depth of the subsea robot is also fed back to the controller for comparison with the command depth. Similarly to the case of Figure 5.1, the control signal is sent to the pneumatic valves which then permit flow into or out of the ballast tank through the pneumatic pistons. This in turn causes a change in the buoyancy that is fed to the plant, the subsea robot, and results in motion of the subsea robot to the specified command depth.

![Block diagram](image)

Figure 5.2 Block diagram outside the error band
The flow of water into the ballast tank is pulsed. Between the pulses, ANNE is permitted to drift. This is done because the natural filling rate turns out to be more than expected. The use of Equation 5.2 is questionable for this pulsed flow. A lumped inerterance-resistance model for the flow would perhaps be more accurate but this has not been developed in the present work.

A simple one step scheme is used to integrate the entire set of ordinary differential equations given by Equation 5.10, Equation 5.13, and Equation 5.17. In the simulation, buoyancy is calculated from the ballast tank flow equations. For ANNE, this is not accurate, because there are numerous uncertain parameters in the equations. An estimate of buoyancy is made using Equation 5.17, however, this equation has uncertain parameters but fewer than those in the ballast tank flow equations.

Manipulation of Equation 5.17 gives:

$$B = -M \frac{d^2 R}{dt^2} + \frac{C_D A_f \sigma}{2} \frac{dR}{dt} \frac{dR}{dt}$$

(5.20)

The accelerometer provides the value of $d^2 R/dt^2$ and dR/dt is obtained through numerical differentiation of the depth sensor readings.
5.3 Simulation

Using the simulation code developed in Fortran, see Appendix F, the pattern shown in Figure 5.3 was produced. The applicable parameters were substituted into the simulation code as given in Section 5.1.6, Table 5.1. This pattern is actually a time trace generated by the simulation for the case of the actual hover test discussed in Chapter 6.

![Figure 5.3 Simulation time trace](image-url)
For this test, ANNE is initially at the bottom of a water tank 3.5 m deep. It is then commanded to rise 1 m up from the bottom, pause, and then commanded to rise to a level of 2 m, pause, and then return to the 1 m level. As can be seen in Figure 5.3, ANNE is able to approach the command depth and the motion is stable.

The simulation of ANNE permitted an exploration of the behaviour of the subsea robot in waves near the ocean surface. Due to the nonlinear nature of the controller, motions were found to be chaotic, which is expected near the water surface. As this is a very interesting problem, it deserves further study but was beyond the scope of the present work.
Chapter 6

Experimentation

6.1 Preliminary Trials

In order to confirm the operation of ANNE, several tests had to be performed. In the early stages of design, specific components had to be examined to ensure that they would maintain a water tight seal while in operation. This began with the three instrumentation boxes that house the controller, the batteries and the pneumatic components. Once the boxes achieved adequate suction, they were lowered into the towing tank at MUN at a depth of 2 m and left for various periods of time.

The first time period was twenty minutes. There were no problems with two of the boxes, but the controller box had leaked and water was found inside. This leak was caused by a poor pressure transducer connection and proper care was taken to reinstall the pressure transducer with teflon tape. This box was retested and no leaks were present for the twenty minute time period. All the boxes were placed in the towing tank and left for thirty minutes and no leaks were detected. They were then tested for sixty minutes and again, no leaks were detected. It was confirmed that the suction created in the instrumentation boxes using the vortex blower in reverse operation and the duct tape used to maintain the seal, was adequate to prevent leaks for a three hour test period.
Once the critical components were tested and no fear of water leaks existed, it was time to place ANNE in the towing tank. With a compressed air pressure of 4 bar and both holes of the ballast tank closed, a test was conducted to ensure that none of the FESTO tubing and connections had any possible leaks. Some minor air bubbles were present, and the appropriate fittings were adjusted to reduce the leakage.

This test demonstrated that ANNE was not quite neutrally buoyant, as ANNE did not float to the surface as predicted. It was then decided that additional styrofoam would be required, thus a modification was made to the design of ANNE. Two additional cylinders were added to hold the styrofoam, illustrated in Figure 4.8, which assisted in creating stability. Two lead weights were also added to the bottom of ANNE and two small lead weights were attached using duct tape to the side that holds the controller box, in order to balance with the other two boxes. This was done because the three batteries were creating a weight imbalance.

ANNE was then placed in the towing tank, at a depth of 2 m, with a compressed air pressure of 4 bar. ANNE sank to the bottom of the towing tank floor as both holes of the ballast tank were open, was left for thirty minutes and then retrieved using two ropes attached to the structure. This was a successful test as there were no leaks within the instrumentation boxes, no air bubbles were present as a result of the FESTO tubing and connections, and ANNE was stable on the towing tank floor.
6.2 Hovering Trials

The time came to run the Dynamic C Code for the controller outside of the towing tank. This was to ensure that all of the pistons were operating and the high-pressure compressed air from the divers bottle was entering the ballast tank at an acceptable flow rate. All systems were operating effectively so ANNE was prepared for testing in the deep tank at MUN at a maximum depth of 3.5 m.

The routine for a typical test consisted of many important steps. This list of instructions is given in Appendix G. Before deployment, it was ensured that the proper code was developed for the test. Next, the three batteries were recharged and connected properly with the 3 A fuse in place. Following this, the divers bottles were checked to ensure that sufficient high-pressure compressed air was present. All of the pneumatic valve electrical connections, as well as the pneumatic tubing connections were checked to ensure tight connections.

A vortex blower was used in reverse to permit suction of the battery box and then duct tape was applied to maintain suction before the box was placed on ANNE. Following this, the same procedure was followed for the suction of the pneumatic box and it was placed next to the battery box. These were then held into place on one side of the bottom frame using a screw handle as shown in Figure 4.1.
The code was loaded from the host computer to the controller and then the cable was disconnected from the controller. The code required the accelerometer to be oriented in a certain way so this had to be checked to ensure proper positioning. Once again, the vortex blower was used for suction of the controller box and duct tape was applied before it was placed on the other side of ANNE. Another screw handle was used to keep the controller box in place on the bottom aluminum frame. Once all the instrumentation boxes were placed on ANNE, the manual flow control valve on the divers bottle was opened so that the high-pressure compressed air was turned on and all pneumatic components were checked for leaks.

Due to the weight of ANNE, it had to be placed into the deep tank using an overhead crane as shown in Figure 6.1. Ropes were attached to a lifting lug so that ANNE could be hooked to the crane that was used to place ANNE in the deep tank.

When recovered, if another test was planned, suction was removed from the controller box only and the controller was reconnected to the host computer and an appropriate code was reloaded. If another test was not planned, all of the instrumentation boxes were removed from ANNE, suction was released and all of the instrumentation boxes were checked for leaks. The compressed air was turned off and ANNE was sent back to home base.
The first test of ANNE with the first code loaded was successful. ANNE sank to the bottom of the tank, at a depth of 3.5 m, as both holes of the ballast tank were open and at the specified time, ANNE rose to the surface. No hovering characteristics were attempted or observed at this time, as they were not entered into the code.
It was decided that the hovering commands would be employed by a new code. Several tests were required to obtain satisfactory hovering performances and remove any errors. After numerous manipulation of the code, the most typical mission was quite successful. The data for this test is presented in Table 6.1. ANNE began at rest at the bottom of the tank and then lifted and hovered to the specified depth, returned to the bottom of the tank, lifted again and hovered to the specified depth, rested on the bottom of the tank and finally returned to the surface of the water and floated.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.50</td>
</tr>
<tr>
<td>12</td>
<td>2.70</td>
</tr>
<tr>
<td>17</td>
<td>2.25</td>
</tr>
<tr>
<td>19</td>
<td>2.25</td>
</tr>
<tr>
<td>28</td>
<td>2.30</td>
</tr>
<tr>
<td>36</td>
<td>2.30</td>
</tr>
<tr>
<td>37</td>
<td>2.30</td>
</tr>
<tr>
<td>47</td>
<td>2.20</td>
</tr>
<tr>
<td>48</td>
<td>2.20</td>
</tr>
<tr>
<td>53</td>
<td>2.15</td>
</tr>
<tr>
<td>55</td>
<td>2.20</td>
</tr>
<tr>
<td>56</td>
<td>2.20</td>
</tr>
<tr>
<td>69</td>
<td>1.50</td>
</tr>
<tr>
<td>73</td>
<td>1.45</td>
</tr>
<tr>
<td>75</td>
<td>1.50</td>
</tr>
<tr>
<td>80</td>
<td>1.50</td>
</tr>
<tr>
<td>83</td>
<td>1.50</td>
</tr>
<tr>
<td>92</td>
<td>1.45</td>
</tr>
<tr>
<td>102</td>
<td>1.40</td>
</tr>
<tr>
<td>108</td>
<td>1.50</td>
</tr>
<tr>
<td>114</td>
<td>2.00</td>
</tr>
<tr>
<td>117</td>
<td>1.95</td>
</tr>
<tr>
<td>119</td>
<td>1.95</td>
</tr>
<tr>
<td>123</td>
<td>1.85</td>
</tr>
<tr>
<td>124</td>
<td>1.85</td>
</tr>
<tr>
<td>129</td>
<td>2.05</td>
</tr>
<tr>
<td>130</td>
<td>2.00</td>
</tr>
<tr>
<td>134</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Table 6.1 Testing Data
The data in Table 6.1 was obtained from measuring the distance that a fixed point on ANNE moved. This was done through video taped footage of an actual test. A rope with increments of 0.25 m was placed in the deep tank. As ANNE passed by, the measurements were taken from the video screen through the use of calipers. The time was determined from a clock on the video screen.

Figure 6.2 shows both the simulation data and the actual test data for comparison. ANNE was initially at the bottom of the deep tank at a depth of 3.5 m. It was commanded to rise up from the bottom 1 m, hover there for approximately one minute, rise another 1 m, hover for another minute, move down 1 m, hover there for another minute, and finally come up to the surface and wait to be retrieved. The Dynamic C Code, which was successful for hovering, is given in Appendix H.

As can be seen in Figure 6.2, ANNE reaches the command depth and motion is stable. This can be compared with that produced in the simulation plot shown in Figure 5.3. The simulation code and data file are given in Appendix F.
Figure 6.2 Comparison of simulation time trace and testing data

It is possible to estimate the amount of high-pressure compressed air consumed by recording both the number of times the pistons in the ballast tank were activated during a trial run and the total amount of time that high-pressure compressed air flowed into the ballast tank. This is accounted for in the simulation discussed in Chapter 5. The simulation suggests that during a three minute run, only 4 stpL are used. The two divers' bottles contain 2000 stpL and they should last up to 3000 minutes or 50 hours. If the trial
runs did not have such high demands, these requirements would be reduced. It is also possible that a better control strategy would also reduce the high-pressure compressed air requirements.

As stated at the beginning of Chapter 5, it was assumed that the success or failure of ANNE depended on how long the high-pressure air lasts as this determined the mission duration. From actual test operation of ANNE, it has been discovered that the mission duration is ultimately determined by the battery power. The actual time duration provided by the battery supply for ANNE has been calculated to be four hours (Sample Calculation 4.1, Appendix E). This has been confirmed through the actual deep tank tests.
Chapter 7

Conclusions and Recommendations

For educational purposes, the development of the subsea robot ANNE proved to be quite successful. The design, construction, simulation and testing phases in completing such a task illustrated the importance of ensuring that all components function properly and effectively to achieve the main task. From the work to date, ANNE has proved to have potential for industrial use.

An extensive review of previous robots that have been designed allowed for some research insight to the importance of their uses and their limitations. In reviewing the control strategies, it was concluded that the most effective subsea robot control for ANNE was the switching strategy with error-driven control. The goal was to develop a more robust version of the subsea robot NOMAD and this thesis illustrates that this goal was accomplished through the development of the subsea robot ANNE.

Compared to NOMAD, ANNE is easier to assemble and disassemble. This is due in part to the use of a simple twist lock mechanism to lock the components and parts together, and the use of suction to close the instrumentation boxes. NOMAD has unwanted up and down motions, known as limit cycles, near the command depth. ANNE uses a different control strategy that results in the motion settling down near the command depth.
For future work with respect to the design of ANNE, it would be in the best interest of future designers to turn the educational benefits gained into a subsea robot more suitable for industrial use which would allow for ocean missions. This would entail that many of the current features of ANNE be modified.

New design features should allow the mass of the subsea robot to be reduced substantially. Although ANNE allows for easy assemble, it is too heavy for one person to operate and requires the uses of an overhead crane for deployment. To simplify deployment and retrieval, the ocean going version should be much lighter than the subsea robots, NO MAD and ANNE, developed to date.

The pneumatic valves ANNE uses have pilot exhausts, which cannot be ported. This causes pressure to build up in the pneumatic valve box during a mission. For ANNE, two check valves are positioned in series to periodically vent this unwanted pressure to the external surroundings. Valves have now been designed such that fittings allow pilot exhausts to be ported. This type of pneumatic valve should be tested in any future subsea robots.

A new subsea robot must use the high-pressure compressed air and battery power consumption at maximum efficiency. The control strategy should be such that it requires less use of the high-pressure compressed air. For power consumption, higher capacity batteries should be utilized for extension of battery life.
A new ocean going subsea robot should be tested initially from a wharf, and finally from a supply vessel at sea. For such tests, the robot would need a fail-safe system onboard to bring it back to the ocean surface if it suffered a computer or power failure. Confidence to test at sea is perhaps the most important recommendation for subsea robot design.

The simulation employed by ANNE permitted an exploration of the behaviour of the subsea robot in waves near the ocean surface. Due to the nonlinear nature of the controller, motions were chaotic, which is expected near the water surface. As this is a very interesting problem, it also deserves further study.
References

Bibliography

Proceedings of the Tenth International Symposium on Unmanned Untethered Submersible Technology, organized by the Autonomous Undersea Systems Institute, Lee, New Hampshire.

Appendix A

Control Strategy Codes (Fortran)
Sliding mode control code and data for
Figure 3.1 — Phase portrait with uncertain parameters
SLIDING MODE DEPTH CONTROL
OF A SMALL SUBSEA ROBOT

MASS = SUBSEA ROBOT MASS
DRAG = SUBSEA ROBOT DRAG

RNEW/ROLD = ACTUAL DEPTH
PNEW/POLD = DEPTH RATE
COMMAND = COMMAND DEPTH

IMPLICIT REAL*8(A-H,O-Z)
REAL*4 XP,YP,XO,YO
REAL*8 MASS,LOAD
REAL*8 LAMBDA
OPEN(5, file='gop.d', status='old')
READ(5,*) LOAD, PERIOD
READ(5,*) DELT, NIT, NIP
READ(5,*) MASS, DRAG
READ(5,*) ESTIMATE
READ(5,*) COMMAND
READ(5,*) LAMBDA
READ(5,*) GAMMA
READ(5,*) XO, YO
READ(5,*) SX, SY
READ(5,*) ROLD
READ(5,*) POLD
ZERO=0.0D0
PI=3.14159265
CALL PLOTS(5,0,-1)
CALL PLOT(XO-0.07, YO,3)
CALL PLOT(XO+0.07, YO,2)
CALL PLOT(XO, YO-0.07,3)
CALL PLOT(XO, YO+0.07,2)
CALL SYMBOL(2..., 0.25, 3RHCW, 0.0, 3)
CALL PLOT(XO, YO, 3)
IP=NIP
TIME=0.0D0
DO 11 IT=1,NIT
SIGN=0.0D0
TIME=TIME+DELT
WHAT=ESTIMATE+LOAD*DSIN(2.0D0*
* PI/PERIOD*TIME)
S=LAMBDA*(COMMAND-ROLD)-POLD
IF(S.NE.0.0D0) SIGN=S/DABS(S)
GAIN=GAMMA
CONTROL=DRAG*(POLD-ESTIMATE)*
* DABS(POLD-ESTIMATE)-MASS*LAMBDA*POLD
C CONTROL=DRAG*(POLD-WHAT)*
C * DABS(POLD-WHAT)-MASS*LAMBDA*POLD
CONTROL=CONTROL+GAIN*SIGN
RATE = (CONTROL-DRAG*(POLD-WHAT))
* DABS((POLD-WHAT))/MASS
RNEW = ROLD + DELT*POLD
PNEW = POLD + DELT*RATE
YP = PNEW*SY + YO
XP = RNEW*SX + XO
IF(IP.EQ.NIP)
* CALL PLOT(XP,YP,2)
IF(IP.EQ.NIP) IP = 0
ROLD = RNEW
POLD = PNEW
IP = IP + 1
CONTINUE
CALL PLOT(0.0,0.0,0.999)
CLOSE(5)
STOP
END
LOAD PERIOD
DELTA NIT NIP
SUB MASS DRAG
ESTIMATE
COMMAND
LAMBDAS
GAMMA
PLOT ORIGIN
PLOT SCALE
OLD DEPTH
OLD RATE
Sliding mode control code and data for Figure 3.2 – Phase portrait with no uncertain parameters
SLIDING MODE DEPTH CONTROL
OF A SMALL SUBSEA ROBOT

MASS = SUBSEA ROBOT MASS
DRAG = SUBSEA ROBOT DRAG

RNW/ROLD = ACTUAL DEPTH
RNW/POLD = DEPTH RATE
COMMAND = COMMAND DEPTH

IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 XP,YP,XO,YO
REAL*8 MASS,LOAD
REAL*8 LAMBDA
OPEN(5,FILE='gop.d',STATUS='OLD')
READ(5,*) LOAD,PREDI
READ(5,*) DELT,NIT,NIP
READ(5,*) MASS,DRAG
READ(5,*) ESTIMATE
READ(5,*) COMMAND
READ(5,*) LAMBDA
READ(5,*) GAMMA
READ(5,*) X0,YO
READ(5,*) SX,SY
READ(5,*) ROLD
READ(5,*) POLO
ZERO=0.DO
PI=3.14159D0
CALL PLOTS(53.0.,-1)
CALL PLOT(XO-YO,3)
CALL PLOT(XO+0.07,YO,2)
CALL PLOT(XO,YO-0.07,3)
CALL PLOT(XO,YO+0.07,2)
CALL SYMBOL(2.2.,0.25,3HR,CW,0.0,3)
CALL PLOT(XO,YO,3)
IP=NIP
TIME=0.DO
DO 11 IT=1,NIT
SIGN=0.DO
TIME=TIME+DEL1
WHAT=ESTIMATE+LOAD*DSIN(2.DO*+
* PI/PREDI*TIME)
S=LAMBDA*(COMMAND-ROLD)-POLO
IF(S.NE.0.DO) SIGN=S/DABS(S)
GAIN=-GAMMA
CONTROL=DRAG*(POLO-ESTIMATE)*
* DABS(POLO-ESTIMATE)-MASS*LAMBDA*POLO
CONTROL=DRAG*(POLO-WHAT)*
* DABS(POLO-WHAT)-MASS*LAMBDA*POLO
CONTROL=CONTROL+GAIN*SIGN
RATE=(CONTROL-DRAG*(POLD-WHAT))
* *DABS(POLD-WHAT)/MASS
RNEW=ROLD+DELT*POLD
PNEW=POLD+DELT*RATE
YP=PNEW*SY+YO
XP=RNEW*SX+XO
IF(IP.EQ.NIP)
* CALL PLOT(XP,YP,2)
IF(IP.EQ.NIP) IP=0
ROLD=RNEW
POLD=PNEW
IP=IP+1
11 CONTINUE
CALL PLOT(0.0,0.0,999)
CLOSE(S)
STOP
END
<table>
<thead>
<tr>
<th>LOAD PERIOD</th>
<th>DELT NIT NIP</th>
<th>SUB MASS DRAG</th>
<th>ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.000</td>
<td>1000000</td>
<td>100</td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25.00</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOAD PERIOD
DELT NIT NIP
SUB MASS DRAG
ESTIMATE
COMMAND
LAMBDA
GAMMA
PLOT ORIGIN
PLOT SCALE
OLD DEPTH
OLD RATE
Neural network control code and data for Figure 3.4 – Simple neural network map
3D IMAGE OF A THREE NEURON NEURAL NETWORK
WITH TWO INPUTS AND ONE OUTPUT

DATA
OPEN(5, file='net.d', status='old')
READ(5, *) WBO, WBX, WBY, WBZ
READ(5, *) WYO, WYZ, WZO
READ(5, *) WIX, WIX, WIZ
READ(5, *) WXJ, WYJ, WZJ
READ(5, *) ALPHA, BETA
READ(5, *) RANGE, Dl, D2
READ(5, *) SX, SY, SZ
READ(5, *) NR, NI
READ(5, *) X0, Y0
PI=1.41459
ALPHA=ALPHA/180.0*PI
BETA=BETA/180.0*PI
CALL PLOTS(53, 0, -1)
CALL NUMBER(1.95, 0.07, WBO, 0.0, 2)
CALL NUMBER(2.95, 0.07, WBX, 0.0, 2)
CALL NUMBER(3.95, 0.07, WBY, 0.0, 2)
CALL NUMBER(4.95, 0.07, WBZ, 0.0, 2)
CALL NUMBER(2.90, 0.07, WYO, 0.0, 2)
CALL NUMBER(3.90, 0.07, WYO, 0.0, 2)
CALL NUMBER(4.90, 0.07, WYO, 0.0, 2)
CALL NUMBER(2.85, 0.07, WIX, 0.0, 2)
CALL NUMBER(3.85, 0.07, WIX, 0.0, 2)
CALL NUMBER(4.85, 0.07, WIZ, 0.0, 2)
CALL NUMBER(2.80, 0.07, WIX, 0.0, 2)
CALL NUMBER(3.80, 0.07, WIX, 0.0, 2)
CALL NUMBER(4.80, 0.07, WIZ, 0.0, 2)
CALL NUMBER(2.80, 0.07, WIZ, 0.0, 2)
CALL NUMBER(3.80, 0.07, WIZ, 0.0, 2)
CALL NUMBER(4.80, 0.07, WIZ, 0.0, 2)
CALL SYMBOL(1.6.0.0.25, 3HRCW, 0.0.3)
CALL SYMBOL(1.7.0.0.25, 3HNET, 0.0.3)
YP=-RANGE*SX*SIN(ALPHA)+YO
XP=-RANGE*SX*COS(ALPHA)+XO
CALL PLOT(XP, YP, 3)
YP=-RANGE*SX*SIN(ALPHA)+YO
XP=-RANGE*SX*COS(ALPHA)+XO
CALL PLOT(XP, YP, 2)
YP=-RANGE*SY*SIN(BETA)+YO
XP=-RANGE*SY*COS(BETA)+XO
CALL PLOT(XP, YP, 3)
YP=-RANGE*SY*SIN(BETA)+YO
XP=-RANGE*SY*COS(BETA)+XO
CALL PLOT(XP, YP, 2)
YP=-RANGE+YO
XP=XO
CALL PLOT(XP, YP, 3)
YP=-RANGE+YO
XP=XO
CALL PLOT(XP, YP, 2)
SR= RANGE
DO 22 NIT=1, NR
SI= RANGE
DO 11 MIT=1, NI
CS=WBO+WXX*SQUASH(WXX*SR+WJX*SI+WBX)
* +WYO*SQUASH(WYY*SR+WYY*SI+WBY)
* +WZ0*SQUASH(WXZ*SR+WJZ*SI+WBZ)
YP=CS*SZ-SR*SX*SIN(ALPHA)+SI*SY*SIN(BETA)+YO
XP=SR*SX*COS(ALPHA)+SI*SY*COS(BETA)+XO
IF(MIT.EQ.1) CALL PLOT(XP, YP, 3)
CALL PLOT(XP, YP, 2)
SI=SI-DI
11 CONTINUE
SR=SR-DR
22 CONTINUE
SI= RANGE
DO 44 NIT=1, NI
SR= RANGE
DO 33 MIT=1, NI
CS=WBO+WXX*SQUASH(WXX*SR+WJX*SI+WBX)
* +WYO*SQUASH(WYY*SR+WYY*SI+WBY)
* +WZ0*SQUASH(WXZ*SR+WJZ*SI+WBZ)
YP=CS*SZ-SR*SX*SIN(ALPHA)+SI*SY*SIN(BETA)+YO
XP=SR*SX*COS(ALPHA)+SI*SY*COS(BETA)+XO
IF(MIT.EQ.1) CALL PLOT(XP, YP, 3)
CALL PLOT(XP, YP, 2)
SR=SR-DR
33 CONTINUE
SI=SI-DI
44 CONTINUE
CALL PLOT(0.0, 0.0, 0.999)
CLOSE(5)
STOP
END
FUNCTION SQUASH(X)
IF(X.GT.+33.0) SQUASH=1.0
IF(X.LT.-33.0) SQUASH=0.0
IF(ABS(X).LE.+33.0)
* SQUASH=1.0/(1.0+EXP(-X))
RETURN
END
-1.5 -25. +25. +50. WBO WBX WBY WBZ
+1.0 +1.0 -1.0 WKO WYO WZO
+25. +25. +25. WIX WTY WIZ
+25. -25. +50. WJX WJY WJZ
-30.0 -30.0 ALPHA BETA
2.5 0.2 0.2 RANGE DR DI
1.0 1.0 1.0 SX SY SZ
25 25 NR NI
4. 5. XO YO
Neural network control code and data for Figure 3.5 – Extremely complex neural network map
3D IMAGE OF A SIX NEURON NEURAL NETWORK WITH TWO INPUTS AND ONE OUTPUT

DATA
OPEN(5, file='not.d', status='old')
READ(5, *) WBO
READ(5, *) WBX, WBY, WBZ
READ(5, *) WXO, WYO, WZO
READ(5, *) WIX, WITY, WIZ
READ(5, *) WJX, WJY, WJZ
READ(5, *) WBU, WBV, WBW
READ(5, *) WUO, WVO, WWO
READ(5, *) WJU, WJV, W JW
READ(5, *) ALPHA, BETA
READ(5, *) RANGE, DR, DI
READ(5, *) SX, SY, SZ
READ(5, *) NR, NI
READ(5, *) XO, YO
PI = 3.14159
ALPHA = ALPHA / 180.0 * PI
BETA = BETA / 180.0 * PI
CALL PLOTS(53, 0, -1)
CALL NUMBER(1.0, 0.95, 0.07, WBO, 0.0, 1)
CALL NUMBER(2.0, 0.9, 0.07, WBY, 0.0, 1)
CALL NUMBER(3.0, 0.9, 0.07, WBZ, 0.0, 1)
CALL NUMBER(4.0, 0.9, 0.07, WBU, 0.0, 1)
CALL NUMBER(5.0, 0.9, 0.07, WBW, 0.0, 1)
CALL NUMBER(6.0, 0.9, 0.07, WVO, 0.0, 1)
CALL NUMBER(1.0, 0.85, 0.07, WJX, 0.0, 1)
CALL NUMBER(2.0, 0.85, 0.07, WJO, 0.0, 1)
CALL NUMBER(3.0, 0.85, 0.07, WZD, 0.0, 1)
CALL NUMBER(4.0, 0.85, 0.07, WJU, 0.0, 1)
CALL NUMBER(5.0, 0.85, 0.07, WJV, 0.0, 1)
CALL NUMBER(6.0, 0.85, 0.07, WWO, 0.0, 1)
CALL NUMBER(7.0, 0.85, 0.07, WIU, 0.0, 1)
CALL NUMBER(8.0, 0.85, 0.07, WJW, 0.0, 1)
CALL NUMBER(9.0, 0.85, 0.07, WJZ, 0.0, 1)
CALL NUMBER(10.0, 0.85, 0.07, WJU, 0.0, 1)
CALL NUMBER(11.0, 0.85, 0.07, WJV, 0.0, 1)
CALL NUMBER(12.0, 0.85, 0.07, WJW, 0.0, 1)

YP = -RANGE * SX * SIN(ALPHA) + YO
XP = +RANGE * SX * COS(ALPHA) + XO
CALL PLOT(XP, YP, 3)
YP = RANGE * SX * SIN(ALPHA) + YO
XP = RANGE * SX * COS(ALPHA) + XO
CALL PLOT(XP, YP, 2)
YP = RANGE * SY * SIN(BETA) + YO
XP = RANGE * SY * COS(BETA) + XO
CALL PLOT(XP, YP, 3)
YP = RANGE * SY * SIN(BETA) + YO
XP = RANGE * SY * COS(BETA) + XO
CALL PLOT(XP, YP, 2)
YP = RANGE + YO
XP = XO
CALL PLOT(XP, YP, 3)
YP = RANGE + YO
XP = XO
CALL PLOT(XP, YP, 2)
SR = RANGE
DO 22 NIT = 1, NR
SI = RANGE
DO 11 MIT = 1, NI
CS = WBO + WXO * SQUASH(WIX * SR + WJX * SI + WBX)
 + WYO * SQUASH(WIY * SR + WJY * SI + WBY)
 + WZO * SQUASH(WIZ * SR + WJZ * SI + WBZ)
 + WWO * SQUASH(WIW * SR + WJW * SI + WBW)
 + WVO * SQUASH(WIV * SR + WJV * SI + WBV)
 + WSO * SQUASH(WIS * SR + WJS * SI + WBS)
YP = CS * SZ * SX * SIN(ALPHA) + SI * SY * SIN(BETA) + YO
XP = SR * SX * COS(ALPHA) + SI * SY * COS(BETA) + XO
IF (MIT .EQ. 1) CALL PLOT(XP, YP, 3)
CALL PLOT(XP, YP, 2)
SI = SI - DI
11 CONTINUE
SR = SR - DR
22 CONTINUE
SI = RANGE
DO 44 NIT = 1, NI
SR = RANGE
DO 33 MIT = 1, NI
CS = WBO + WXO * SQUASH(WIX * SR + WJX * SI + WBX)
 + WYO * SQUASH(WIY * SR + WJY * SI + WBY)
 + WZO * SQUASH(WIZ * SR + WJZ * SI + WBZ)
 + WWO * SQUASH(WIW * SR + WJW * SI + WBW)
 + WVO * SQUASH(WIV * SR + WJV * SI + WBV)
 + WSO * SQUASH(WIS * SR + WJS * SI + WBS)
YP = CS * SZ * SR * SX * SIN(ALPHA) + SI * SY * SIN(BETA) + YO
XP = SR * SX * COS(ALPHA) + SI * SY * COS(BETA) + XO
IF (MIT .EQ. 1) CALL PLOT(XP, YP, 3)
CALL PLOT(XP, YP, 2)
SR = SR - DR
33 CONTINUE
SI = SI - DI
44 CONTINUE
CALL PLOT(0.0, 0.0, 0.999)
CLOSE(5)
STOP
FUNCTION SQUASH(X)
 IF(X.GT.+33.0) SQUASH=1.0
 IF(X.LT.-33.0) SQUASH=0.0
 IF(ABS(X).LE.+33.0)
 SQUASH=1.0/(1.0+EXP(-X))
 RETURN
END
<table>
<thead>
<tr>
<th></th>
<th>WBO</th>
<th>WBX WBY WBZ</th>
<th>WXO WYO WZO</th>
<th>WIX WIX WIZ</th>
<th>WJX WJY WJZ</th>
<th>WBU WBV WBW</th>
<th>WUO WVO WWO</th>
<th>WIU WIV WIW</th>
<th>WJU WJV WJW</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>0.0</td>
<td>+0.5</td>
<td>+0.5</td>
<td>0.0</td>
<td>+1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>+1.0</td>
</tr>
<tr>
<td>0.0</td>
<td>+0.5</td>
<td>0.0</td>
<td>+1.0</td>
<td>0.0</td>
<td>+1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>+25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>+50.</td>
<td>+1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>+1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>+50.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>+25.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-25.</td>
<td>+1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>+25.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-30.0</td>
<td>0.0</td>
<td>-30.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.5</td>
<td>0.1</td>
<td>0.1</td>
<td>RANGE</td>
<td>DR</td>
<td>DI</td>
<td>SX</td>
<td>SY</td>
<td>SZ</td>
<td>NR</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>DS</td>
<td>DI</td>
<td>BR</td>
<td>NR</td>
<td>NT</td>
<td>SX</td>
<td>SY</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>NR</td>
<td>NT</td>
<td>SX</td>
<td>SY</td>
<td>SZ</td>
<td>NR</td>
<td>NT</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>XO</td>
<td>YO</td>
<td>XR</td>
<td>YO</td>
<td>ZO</td>
<td>NR</td>
<td>NT</td>
</tr>
</tbody>
</table>
Fuzzy logic control code and data for Figure 3.7 – Linear fuzzy logic map
3D IMAGE OF A LINEAR FUZZY LOGIC CONTROLLER

DATA
DIMENSION X(5), Y(5), S(5, 5)
OPEN(5, file='log.d', status='old')

READ(5,*) (X(I), I=1,5)
READ(5,*) (Y(I), I=1,5)
READ(5,*) (S(1,J), J=1,5)
READ(5,*) (S(2,J), J=1,5)
READ(5,*) (S(3,J), J=1,5)
READ(5,*) (S(4,J), J=1,5)
READ(5,*) (S(5,J), J=1,5)
READ(5,*) ALPHA, BETA
READ(5,*) SX, SY, SZ
READ(5,*) XO, YO
READ(5,*) NOP
PI=3.14159
ALPHA=ALPHA/180.0*PI
BETA=BETA/180.0*PI
CALL PLOTS(53,0,-1)
DO 22 NIT=1,NOP
SR=X(NIT)
DO 11 MIT=1,NOP
SI=Y(MIT)
CS=S(NIT,MIT)
YP=CS*SZ-SR*SX*SIN(ALPHA)+SI*SY*SIN(BETA)+YO
XP=SR*SX*COS(ALPHA)+SI*SY*COS(BETA)+XO
IF(MIT.EQ.1) CALL PLOT(XP,YP,3)
CALL PLOT(XP,YP,2)
11 CONTINUE
22 CONTINUE
DO 44 NIT=1,NOP
SI=Y(NIT)
DO 33 MIT=1,NOP
SR=X(MIT)
CS=S(MIT,NIT)
YP=CS*SZ-SR*SX*SIN(ALPHA)+SI*SY*SIN(BETA)+YO
XP=SR*SX*COS(ALPHA)+SI*SY*COS(BETA)+XO
IF(MIT.EQ.1) CALL PLOT(XP,YP,3)
CALL PLOT(XP,YP,2)
33 CONTINUE
44 CONTINUE
CALL PLOT(0.0,0.0,0.999)
CLOSE(5)
STOP
END
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-2.5</td>
<td>0</td>
<td>+2.5</td>
<td>+5</td>
</tr>
<tr>
<td>-5</td>
<td>-2.5</td>
<td>0</td>
<td>+2.5</td>
<td>+5</td>
</tr>
<tr>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>+4</td>
<td>+5</td>
<td>+6</td>
<td>+7</td>
<td>+8</td>
</tr>
</tbody>
</table>

-30.0 **-30.0** **ALPHA** **BETA**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>SX</td>
<td>SY</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>XO</td>
<td>YO</td>
</tr>
</tbody>
</table>
Fuzzy logic control code and data for
Figure 3.9 – Nonlinear fuzzy logic map
3D IMAGE OF A NONLINEAR FUZZY LOGIC CONTROLLER

DATA
DIMENSION X(9), Y(9), S(9, 9)
OPEN(5, file='log.d', status='old')

READ(5,*) (X(I), I=1,9)
READ(5,*) (Y(I), I=1,9)
READ(5,*) (S(1, J), J=1,9)
READ(5,*) (S(2, J), J=1,9)
READ(5,*) (S(3, J), J=1,9)
READ(5,*) (S(4, J), J=1,9)
READ(5,*) (S(5, J), J=1,9)
READ(5,*) (S(6, J), J=1,9)
READ(5,*) (S(7, J), J=1,9)
READ(5,*) (S(8, J), J=1,9)
READ(5,*) (S(9, J), J=1,9)
READ(5,*) ALPHA, BETA
READ(5,*) SX, SY, SZ
READ(5,*) XO, YO
READ(5,*) NOP
PI=3.14159
ALPHA=ALPHA/180.0*PI
BETA=BETA/180.0*PI
CALL PLOTS(S5,0,-1)
DO 22 NIT=1, NOP
SR=X(NIT)
DO 11 MIT=1, NOP
SI=Y(MIT)
CS=S(MIT,NIT)
YP=CS*SZ-SR*SX*SIN(ALPHA)+SI*SY*SIN(BETA)+YO
XP=SR*SX*COS(ALPHA)+SI*SY*COS(BETA)+XO
IF(MIT.EQ.1) CALL PLOT(XP,YP,3)
CALL PLOT(XP,YP,2)

11 CONTINUE
22 CONTINUE
DO 44 NIT=1, NOP
SI=Y(NIT)
DO 33 MIT=1, NOP
SR=X(MIT)
CS=S(MIT,NIT)
YP=CS*SZ-SR*SX*SIN(ALPHA)+SI*SY*SIN(BETA)+YO
XP=SR*SX*COS(ALPHA)+SI*SY*COS(BETA)+XO
IF(MIT.EQ.1) CALL PLOT(XP,YP,3)
CALL PLOT(XP,YP,2)

33 CONTINUE
44 CONTINUE
CALL PLOT(0.0,0.0,0.999)
CLOSE(5)
STOP
END
-5. -3. -1. -0.5 0.0 +0.5 +1. +3. +5
-5. -3. -1. -0.5 0.0 +0.5 +1. +3. +5
-2. -2. -2. -1. 0. +1. +2. +2. +2. +2.
+1. +1. +2. +3. +4. +5. +5. +5.
+4. +4. +5. +6. +7. +8. +8. +8.
+4. +4. +5. +6. +7. +8. +8. +8.
+4. +4. +5. +6. +7. +8. +8. +8.
-30.0 -30.0
0.5 0.5 0.5
4. 4.
9

ALPHA BETA
SX SY SZ
XO YO NOP

135
Appendix B

Detailed Fabrication Drawings
Autonomous Pneumatic Nautical Explorer
Fabrication Drawings

Structure and Shell
Drawing A Center Cylinder
Drawing B Top Frame
Drawing C Bottom Frame

Ballast Tank
Drawing D Ballast Tank
Drawing E Pneumatic Piston Support
Drawing F Pneumatic Piston Support Component #1
Drawing G Pneumatic Piston Support Component #2
Drawing H Support for Ballast Tank

Intermediate Length Tubes
Drawing I Intermediate Length Tubes
Drawing J Covers and Supports for Intermediate Length Tubes
Drawing K Styrofoam Rest for Divers Bottles

Shortest Length Tubes
Drawing L Shortest Length Tubes
Drawing M Covers for Shortest Length Tubes
Drawing N Styrofoam

Controller Box
Drawing O Controller Box
Drawing P Beveled Edged Cover (with hole)
Drawing T Cover (without hole)

Battery Box
Drawing Q Battery Box
Drawing R Beveled Edged Cover (without hole)
Drawing U Cover (with hole)

Pneumatic Box
Drawing S Pneumatic Box
Drawing U Cover (with hole)
Drawing T Cover (without hole)

Additional
Drawing V Support for Screw Handle
Drawing B Top Frame

ALL DIMENSIONS IN MM

147

260

225 MM OD TUBING
2 MM THICK
5 PLACES

6 MM PLATE
WELD UP

153
Drawing G Pneumatic Piston Support Component #2
Drawing H Support for Ballast Tank

SQUARE LUGS 3 PLACES 180 DEG APART

127 MM TUBING 3 PLACES

ALL DIMENSIONS IN MM
ML. ALUMINIUM 2 OFF

10
ALL DIMENSIONS IN MM
MIL. ALUMINIUM 7 MM THICK PLATE

SQUARE LUGS 3 PLACES
120 DEG APART

DIA 998
DIA 98

8
10

57

φ 30 8 PLACES
Drawing K Styrofoam Rest for Divers Bottles

ALL DIMENSIONS IN MM
1/2" THICK STYROFOAM
4 OFF
Drawing L Shortest Length Tubes

ALL DIMENSIONS IN MM
MLL 221 MM LD PVC PIPE
7 MM THICK
ALL SLOTS 120 DEG APART
2 OFF
ALL DIMENSIONS IN MM
HIL ALUMINIUM
7 MM THICK PLATE

SQUARE LUGS 3 PLACES
120 DEG APART

10
8

1>0
Drawing N Styrofoam

ALL DIMENSIONS IN MM

HTL STYROFOAM

10 OFF
Drawing R Beveled Edged Cover (without hole)

All dimensions in mm

MIL: Aluminium

1 off
Drawing S Pneumatic Box

ALL DIMENSIONS IN MM
MIL: PVC
ALL HOLES IDENTICAL
1 OFF
Drawing T Cover (without hole)

ALL DIMENSIONS IN MM
MIL ALUMINIUM 2 CF
Drawing V Support for Screw Handle

All dimensions in mm
MTL: Aluminium
2 OFF

ML1 TAP

19.05 SQUARE

25.4 SQUARE

SECTION AA

16 10.5
Appendix C

Electrical and Pneumatic Schematics
Pneumatic Schematic
Appendix D

Product Information and Specifications
Z-WORLD Rugged Giant C-Programmable Miniature Controller Specifications Sheets
Z-World's Rugged Giant™ is a C-programmable miniature controller with extensive input and output interfaces. A modern solution for controlling all types of equipment, the Rugged Giant differs from other logic controllers because everything you need for most projects is already built in.

- Six 10-bit universal* inputs
- One 10-bit analog output
- One high-gain, differential analog input
- Seven digital inputs
- Two counter inputs
- Ten high-current digital outputs
- Two relay-contact outputs
- PLCBus™ expansion port
- Rugged enclosure with 2x20 LCD and 2x6 keypad standard equipment
- One RS232 serial port
- One RS422/RS485/RS232 port
- Extensive software support

In addition, the Rugged Giant's I/O channels have been designed to connect directly to many low-cost sensors without expensive intermediate signal conditioning.

Universal Inputs...

Universal inputs accept analog signals and report either the analog voltage level or a digital "1" or "0." Software interprets the analog level by comparing it either to a fixed threshold or to two program-selectable thresholds. When the analog level is below a low threshold, the software reports logic 0. When the level is above a high threshold, the software reports logic 1. Otherwise, the logic value remains unchanged. This is essentially software "hysteresis."

Specifications

- **Board Size:** 5.5 x 6.9 x 1.5 inches (140 x 175 x 38 mm).
- **Enclosure Size:** 5.5 x 7 x 1.6 inches (140 x 178 x 41 mm).
- **Temperature:** 0°C to 50°C, with LCD. -40°C to 70°C, without LCD.
- **Power:** Accepts unregulated DC voltage in the range of 18–35V and consumes approximately 220 mA. External PLCBus options or external use of the +10V reference will, of course, increase current requirements. A version of the Rugged Giant that takes 12-volt input is available.

Universal Inputs

Six 10-bit universal* inputs. Each can be used as a 0–10 volt analog input, or as a digital input with thresholds adjustable between 0 and 10 volts. One of the inputs can accept 0–20 mA current loop without an external load resistor. The circuitry is protected against overloads.

All universal inputs have internal pull-up and pull-down resistors that can be connected to the input with jumpers. The pull-ups are connected to the board’s precision 10V reference. The following diagram shows a typical thermistor temperature sensor using a universal input channel:

- +10V Reference
- 3.3k Excitation Resistor
- Universal Input
- Temperature Sensor

The exact voltage of the reference (usually about 10.3V) is stored in EEPROM at the factory. Other parameters relating to measurement are also stored in EEPROM.

Digital Inputs

Seven digital inputs accept voltages in the range –48 to +48 volts, with the logic threshold at 2.5 volts. Built-in pull-up resistors allow direct connection to contacts or to transistor outputs on external devices.

Counter Inputs

The Rugged Giant has two counter inputs. Counter 1 shares its inputs with two digital input lines. Counter 2 shares one digital input line and uses an RS485 receiver to provide a true differential signal for the other input. Both can count at speeds of 200 kHz and more.

Precision Analog Input

This differential input ranges from 0 to 1 volt with 10-bit accuracy. The common-mode voltage can range from 0 to 10 volts. It is suitable for resistance temperature devices (RTDs) or other devices requiring high input sensitivity. Its gain can be adjust-
ed by changing on-board resistors and operational amplifiers. Higher voltages can also be measured on its positive input in the 0–10 volt range, also with 10-bit accuracy.

Relay Contact Outputs
Two relays, with three terminals for each relay: normally open, normally closed, and common. The relays are capable of handling 3 amperes at 48 volts.

High Current / High Voltage Port
Ten digital output lines, each capable of controlling inductive loads (up to 500 mA at 48 volts) such as relays, stepping motors, and solenoids. The total load on all outputs at the same time is subject to package heat dissipation limits.

Analog Output
The primary analog output can be configured as 0–10 V (max 20 mA) voltage output, or as 0–20 mA current loop output. It has 10 bit resolution. A second analog output (0–10 V, 10 bits) is available if the universal inputs are configured as fixed-threshold digital inputs.

Voltage Reference
One 10-volt reference, supplying up to 100 mA. This is suitable for powering external bridges or other devices.

Operator Interface
The Rugged Giant has a 2×20 liquid crystal display (LCD), a 12-button keypad, and a very audible beeper with high and low volume control. A backlit version of the LCD is available by special order.

The Rugged Giant’s operator interface is driven by Z-World’s FIVEKEY system (a Dynamic C library). The operator may scan multiple menus and submenus and change system parameters with only five keys, plus one additional key as a help key. You can easily customize the keypad legend with common desktop software. The six other keys are available for your application.

Bus Expansion
An expansion header allows connection to Z-World’s PLCBus I/O expansion boards. It also provides an easy way to connect your own custom-designed expansion boards.

Serial Communication
The RS232 port provides full-duplex communication, with handshake lines and baud rates to 38,400 bits per second. The connector is an RJ12 "phone jack."

The RS422 / RS485 port provides full- or half-duplex asynchronous communications at up to 38,400 bits per second. It allows communications over twisted-pair wires up to three kilometers. You may also configure this port as RS232.

Other Standard Features
The Rugged Giant incorporates a Z80 processor with a 6.144 MHz clock (9.216 MHz optional), programmable timers, serial ports, EPROM, lithium battery, SRAM, EEPROM, real-time clock with time/date functions, watchdog timer, and power failure detection. See page 3 for more detail.

Developing Software for the Rugged Giant
Because of the size of the Rugged Giant libraries, it is important to order the 128K or 512K memory option for software development. (Finished programs, running from ROM, often do not require this option.)
ICSensors Pressure Transducer- Model 114
Specifications Sheets and Calibration Data
OEM Pressure Transducer
Gage, Sealed Gage and
Absolute 1 to 6 Vdc Output
Span Stainless Steel
Diaphragm

Features
- Solid State Reliability
- Iso-Pressure Structure
- Fully Calibrated
- Temperature Compensated
- ± 0.5% Accuracy
- Interchangeable
- Rugged Construction
- Internal Voltage Regulation
- Reverse Voltage Protection
- Cost Effective

Typical Applications
- Hydraulic Controls
- Robotics
- Water Management
- Air Conditioning
- Refrigeration
- Process Control
- Machine Tools
- Environmental Control
- Agricultural Sprayers
- Compressors

Description
The Model 114 is a media compatible, iso-pressure, signal conditioned pressure transducer that is intended for a wide range of pressure sensing applications.

The iso-pressure sensor assembly utilizes an oil column to couple a diffused, piezoresistive sensor to a convoluted, flush 316 stainless steel diaphragm that can be interfaced with most harsh media. No O-ring is exposed to the media.

The sensor assembly and associated solid state electronics are enclosed in a cylindrical casing with a 1/4-18 NPT stainless steel pressure fitting.

Full calibration and temperature compensation is provided over 0-50°C, along with unit-to-unit interchangeability. A three-wire connector is included with color-coded, 18 gauge wire.

One performance grade is available in gage pressure ranges from 0-5 psi to 0-300 psi and in both sealed gage and absolute pressure from 0-15 psi to 0-6000 psi. In addition to the 1-6Vdc output span, other span ranges and pressure connections are available on special request. Each transducer is individually serialized.

Connections/Dimensions
Model 114

Performance Specifications

Supply Voltage = 12Vdc & Ambient Temperature =25°C (Unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Scale Output Span</td>
<td>4.96</td>
<td>5.00</td>
<td>5.05</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Full-Scale Output</td>
<td>5.00</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Zero Pressure Output</td>
<td>9.5</td>
<td>1.00</td>
<td>1.05</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>Static Accuracy</td>
<td></td>
<td>.5</td>
<td></td>
<td>±%Span</td>
<td>3</td>
</tr>
<tr>
<td>Temperature Coefficient-Span</td>
<td></td>
<td>1.0</td>
<td></td>
<td>±%Span</td>
<td>1</td>
</tr>
<tr>
<td>Temperature Coefficient-Zero</td>
<td></td>
<td>1.0</td>
<td></td>
<td>±%Span</td>
<td>1</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>10</td>
<td>12</td>
<td>36</td>
<td>mA</td>
<td>4</td>
</tr>
<tr>
<td>Supply Current</td>
<td>2.5</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Line Regulation</td>
<td>.005</td>
<td></td>
<td></td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td>Output Resistance</td>
<td>100</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Response Time</td>
<td></td>
<td>4</td>
<td></td>
<td>mS</td>
<td></td>
</tr>
<tr>
<td>Output Noise</td>
<td>.5</td>
<td></td>
<td></td>
<td>mV/P-P</td>
<td></td>
</tr>
<tr>
<td>Output Load Resistance</td>
<td>2</td>
<td></td>
<td></td>
<td>KO</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance (50V)</td>
<td>50</td>
<td></td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>Pressure Overload</td>
<td></td>
<td></td>
<td>3X</td>
<td>Rated</td>
<td>5</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20°C to +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>Compatible with 316 Stainless Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>6 oz. with connector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pressure Transducer Calibration

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.753</td>
</tr>
<tr>
<td>1</td>
<td>1.803</td>
</tr>
</tbody>
</table>

slope = 0.072 V/m

Current 5.30mA
Voltage 23.1V
Power 0.122W

used water for depth calibration
ICSensors Accelerometer—Model 3145
Specification Sheets and Calibration Data
Signal Conditioned
Temperature Compensated
0.5 to 4.5 Vdc Output
Low Cost

Features
- Full Calibration Data Supplied
- DC Response
- Internal Voltage Regulation
- High Sensitivity
- Built-in Overrange Stops
- Built-In Critical Damping
- Piezoresistive

Typical Applications
- Structural Analysis
- Modal Analysis
- Flight Dynamics Measurements
- Transportation Shock Monitoring
- Machine Tool Monitoring
- Industrial Vibration Monitoring
- Crash Testing
- Geophysical Monitoring
- Motion Control

Standard Ranges
± 2 g
± 5 g
± 10 g
± 20 g
± 50 g
± 100 g
± 200 g

Description
The Model 3145 is a precision accelerometer intended for instrumentation applications where the high performance level of the Model 3140 is not required. This fully signal conditioned accelerometer provides the performance of traditional instrumentation accelerometers yet at a fraction of the cost.

The module consists of a silicon micromachined accelerometer, amplification, signal conditioning, and temperature compensation from -20 to +85°C. A single supply is required and full scale output is ±2 volts about a 2.5 volt offset.

The Model 3145 is designed with built-in damping, thereby allowing a wide usable bandwidth. In addition, the accelerometer element is protected from shock by overrange stops in the silicon microstructure. The lightweight Valom™ housing provides easy attachment to the measurement surface.

A detailed calibration sheet that provides the measured test and calibration data for the sensor is included with each unit. A sample of this calibration sheet is shown in Figure 1.

The accelerometer is available in standard ranges from ±2 g to ±100 g. Custom ranges are also available. Device performance characteristics and output range can be tailored to meet the requirements of specific applications.

Connections/Dimensions

Figure 1. Calibration Data Sheet
A calibration data sheet similar to the sample shown above is included with each unit. The calibration sheet provides the measured test and calibration data for the sensor.
Performance Specifications

Supply Voltage = 12 Vdc and Ambient Temperature = 25°C (Unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>±2g</th>
<th>±5g</th>
<th>±10g</th>
<th>±20g</th>
<th>±50g</th>
<th>±100g</th>
<th>±200g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response (TYP) (See Notes 6 & 9)</td>
<td>0-250 Hz</td>
<td>0-800 Hz</td>
<td>0-700 Hz</td>
<td>0-100 Hz</td>
<td>0-1000 Hz</td>
<td>0-2300 Hz</td>
<td>0-2600 Hz</td>
</tr>
<tr>
<td>Mounted Resonant Frequency (TYP) (See Note 9)</td>
<td>450 Hz</td>
<td>850 Hz</td>
<td>1200 Hz</td>
<td>1800 Hz</td>
<td>2750 Hz</td>
<td>3900 Hz</td>
<td>5000 Hz</td>
</tr>
<tr>
<td>Sensitivity (Norm)</td>
<td>1 Vg</td>
<td>400 mVg</td>
<td>200 mVg</td>
<td>100 mVg</td>
<td>40 mVg</td>
<td>20 mVg</td>
<td>10 mVg</td>
</tr>
</tbody>
</table>

Notes

1. The output voltage increases from the Zero Acceleration Output for positive acceleration and decreases for negative acceleration. The sensitivity is then 2V/Range. For example, the ±5g range has a sensitivity of 2V/5g or 400mV/g.
2. The 0.7 damping ratio represents critical damping. The damping ratio is controlled to within ±10% over the entire operating temperature range. Alternate damping ratios are available on a special order basis.
3. Includes repeatability, hysteresis and linearity (best fit straight line).
4. Compensated temperature range: -20 to +85°C in reference to 25°C.
5. 10 Hz to 1 kHz.
6. Pin 2 provides an optional 2.5V reference which may be used, if desired, to provide a stable zero-g reference. Thus, the full scale differential output between Pins 2 and 4 would be ±2.5 Vdc. If a single-ended output signal is preferred (0.5-4.5 VDC), make no connection to Pin 2. To avoid damage to the internal voltage regulator, do not connect Pin 2 to Pin 1 (gnd). Minimum load resistance connected to Pin 2 without affecting output is 100 kOhm.
7. The case material is a carbon-filled Ultem™ plastic that forms a noise shield. Pin 5 allows the case shield and cable shield to be connected to ground to reduce noise susceptibility.
8. The useful frequency range is defined as the range of frequencies over which the device sensitivity is within ±0.5% of the DC value.
9. Actual test data for this parameter is included on the calibration sheet included with each sensor. A sample of this calibration sheet is shown in Figure 1.
10. To use an alternate electrical connector, refer to the following color code for proper electrical connections: Pin 1-Green; Pin 2-White; Pin 3-Red; Pin 4-Blue; Pin 5-Black. For cable extensions longer than 10 ft., please contact factory.

Ordering Information

<table>
<thead>
<tr>
<th>3145 - 002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration Range</td>
</tr>
</tbody>
</table>

IC Sensors products are warranted against defects in material and workmanship for 12 months from date of shipment. Products not subjected to misuse will be repaired or replaced. THE FOREGOING IS IN LIEU OF ALL OTHER EXPRESSED OR IMPLIED WARRANTIES. IC Sensors reserves the right to make changes to any product herein and assumes no liability arising out of the application or use of any product or circuit described or referenced herein.
Accelerometer Calibration

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>6.92mA</td>
</tr>
<tr>
<td>Voltage</td>
<td>23.1V</td>
</tr>
<tr>
<td>Power</td>
<td>0.160W</td>
</tr>
</tbody>
</table>

- 3.5V | top position
- 2.5V | center position
- 1.5V | bottom position
Subconn Connectors Schematics and Data
FESTO Components’ Specification Sheets
Double acting cylinder
Type DSW-32-50-P-A

Order code
(see sheet 1.245.1)
Part No. = DSW + piston dia. + stroke length + end position cushioning + proximity sensing
Example: piston dia. 63 mm, stroke length 80 mm = DSW-63-80-P-A

Medium
Compressed air, filtered (lubricated or un lubricated)

Design
Piston cylinder

Max. permissible operating pressure
10 bar

Temperature range
-20 to +80 °C (check range of application of proximity switches)

Materials
Bearing cap and cover cap: naturally anodized aluminium; cylinder barrel: X 5 Cr Ni 18 9; piston rod: X 20 Cr 13, rolled thread; DUO rail: aluminium; seals: perbunan

Weights
See overleaf

<table>
<thead>
<tr>
<th>Piston dia. mm</th>
<th>Standard stroke lengths mm</th>
<th>Stroke length min. - max. mm</th>
<th>Thrust at 6 bar N (≈ kp)</th>
<th>Return force at 6 bar N (≈ kp)</th>
<th>Connection</th>
<th>Cushioning length mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>25 160</td>
<td>10 to 500</td>
<td>450 (45)</td>
<td>360 (35)</td>
<td>G 1/8</td>
<td>19</td>
</tr>
<tr>
<td>40</td>
<td>40 200</td>
<td></td>
<td>720 (72)</td>
<td>630 (63)</td>
<td>G 1/8</td>
<td>22</td>
</tr>
<tr>
<td>50</td>
<td>50 300</td>
<td></td>
<td>1050 (105)</td>
<td>910 (91)</td>
<td>G 1/8</td>
<td>27</td>
</tr>
<tr>
<td>63</td>
<td>80</td>
<td></td>
<td>1800 (180)</td>
<td>1650 (165)</td>
<td>G 3/8</td>
<td>27</td>
</tr>
</tbody>
</table>

Non-return valve
Type H-M5

Order code
Part No./Type
H-M 5
H-1/8 a/i
H-1/4-B
H-3/8-B
H-1/2-B
H-3/4-B

Medium
Compressed air, filtered (lubricated or un lubricated)

Design
Non-return valve

Mounting
Line fitting (screw-in thread)

Connection
M 5
G 1/8
G 1/4
G 3/8
G 1/2
G 3/4

Nominal bore
2.2 mm
4 mm
6 mm
8 mm
13 mm
16 mm

Standard nominal flow rate
115 l/min
280 l/min
1020 l/min
2300 l/min
5800 l/min
6650 l/min

Pressure range
0.4 to 8 bar
0.4 to 12 bar

Temperature range
-10 to +60 °C

Materials
Housing: brass; seals: perbunan

Weight
0.015 kg
0.025 kg
0.070 kg
0.075 kg
0.150 kg
0.425 kg
Solenoid valve
Type MYH-3-M5-L-LED

<table>
<thead>
<tr>
<th>Function: Type MZ</th>
<th>MOZH</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part. No./Type</th>
<th>34 307 MYH-3-M5-L-LED</th>
<th>34 308 MOYH-3-M5-L-LED</th>
<th>34 301 MYH-3-2.3-L-LED</th>
<th>34 302 MOYH-3-2.3-L-LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Compressed air, 5 μm filtered, un lubricated</td>
<td>Through-holes in housing</td>
<td>optional with sub-base</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Spool valve, indirectly actuated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting</td>
<td>M5 thread</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>M5 thread</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal bore</td>
<td>2.3 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard nominal flow rate (1 – 2)</td>
<td>190 l/min.</td>
<td>170 l/min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure range</td>
<td>2 to 8 bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time at 6 bar</td>
<td>On: 11 ms; off: 30 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>+5 to 50 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium temperature</td>
<td>+5 to 50 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>Housing: Al; seals: polybutan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0.065 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>24 V nominal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.8 W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double solenoid valve
Type JMYH-5/2-M5-L-LED

<table>
<thead>
<tr>
<th>Part. No./Type</th>
<th>34 310 JMYH-5/2-M5-L-LED</th>
<th>34 304 JMYH-5/2-2.3-L-LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Compressed air, 5 μm filtered, un lubricated</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Spool valve, indirectly actuated</td>
<td></td>
</tr>
<tr>
<td>Mounting</td>
<td>Through-holes in housing</td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>M5 thread</td>
<td></td>
</tr>
<tr>
<td>Nominal bore</td>
<td>2.3 mm</td>
<td></td>
</tr>
<tr>
<td>Standard nominal flow rate (1 – 2)</td>
<td>190 l/min.</td>
<td>180 l/min.</td>
</tr>
<tr>
<td>Pressure range</td>
<td>2 to 8 bar</td>
<td></td>
</tr>
<tr>
<td>Response time at 6 bar</td>
<td>10 ms</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>+5 to 50 °C</td>
<td></td>
</tr>
<tr>
<td>Medium temperature</td>
<td>+5 to 50 °C</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>Housing: Al; seals: polybutan</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0.095 kg</td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>24 V nominal</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.8 W</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flow control valve, adjustable
Type GRO-M5

![Flow control valve diagram]

<table>
<thead>
<tr>
<th>Order code</th>
<th>Part No./Type</th>
<th>Medium</th>
<th>Design</th>
<th>Mounting</th>
<th>Connection</th>
<th>Nominal size</th>
<th>Flow rate</th>
<th>Pressure range</th>
<th>Temperature range</th>
<th>Materials</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4804 GRO-M 5</td>
<td>Compressed air, filtered (lubricated or unlubricated)</td>
<td>Flow control valve</td>
<td>2 through-holes in housing, or front-panel mounting</td>
<td>G 1/8</td>
<td>2 mm</td>
<td>0 to 45 l/min</td>
<td>0 to 10 bar</td>
<td>-10 to +60 °C</td>
<td>Housing: aluminium, brass: seals: perbunan</td>
<td>0.020 kg</td>
</tr>
<tr>
<td></td>
<td>6500 GRO-1/8</td>
<td>G 1/8</td>
<td>G 1/8</td>
<td>2 mm</td>
<td>0 to 100 l/min</td>
<td>0 to 350 l/min</td>
<td></td>
<td></td>
<td>Housing: aluminium, steel: seals: perbunan</td>
<td>0.030 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2109 GRO-1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.080 kg</td>
</tr>
</tbody>
</table>

Regulator
Type LR-1/8-F-7

![Regulator diagram]

<table>
<thead>
<tr>
<th>Order code</th>
<th>Regulator</th>
<th>Part no./type</th>
<th>Mounting bracket</th>
<th>Medium</th>
<th>Design</th>
<th>Mounting</th>
<th>Installation position</th>
<th>Connection</th>
<th>Standard nominal flow rate</th>
<th>Max. upstream pressure</th>
<th>Max. working pressure</th>
<th>Temperature range</th>
<th>Materials</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7879 LR-1/8-F</td>
<td>7879 LR-1/8-F</td>
<td>3754 FV-32</td>
<td>Compressed air, filtered</td>
<td>Piston type relieving regulator</td>
<td>Panel mounting, installation dia. 30.5 mm</td>
<td>Any</td>
<td>G 1/8</td>
<td>420 l/min</td>
<td>20 bar</td>
<td>12 bar</td>
<td>-10 to +60 °C</td>
<td>Housing: brass, plastic: seals: perbunan</td>
<td>0.280 kg</td>
</tr>
</tbody>
</table>
Quick push-pull connector
Type CS-M5-PK-4

<table>
<thead>
<tr>
<th>Order code</th>
<th>Part No.</th>
<th>Type</th>
<th>For tubing/tube inside dia.</th>
<th>Connection D</th>
<th>Nominal size mm</th>
<th>Material</th>
<th>Weight kg</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>With metal connector and sealing ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5787</td>
<td>CS-M5-PK-3</td>
<td>3</td>
<td>M5</td>
<td>2.4</td>
<td>Steel/</td>
<td>0.004</td>
<td>3.5</td>
<td>10.5</td>
</tr>
<tr>
<td>5788</td>
<td>CS-M5-PK-4</td>
<td>4/4</td>
<td>M5</td>
<td>2.4</td>
<td>plastic</td>
<td>0.005</td>
<td>3.5</td>
<td>11.5</td>
</tr>
<tr>
<td>10100</td>
<td>CS-1/8-PK-3</td>
<td>3</td>
<td>G 1/8</td>
<td>3</td>
<td>Aluminium/plastic</td>
<td>0.006</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>10101</td>
<td>CS-1/8-PK-4</td>
<td>4/4</td>
<td>G 1/8</td>
<td>4</td>
<td></td>
<td>0.006</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>12620</td>
<td>CK-1/8-PK-6</td>
<td>6/5.2</td>
<td>G 1/8</td>
<td>5.3</td>
<td></td>
<td>0.007</td>
<td>6.5</td>
<td>17</td>
</tr>
<tr>
<td>10102</td>
<td>CS-1/4-PK-4</td>
<td>4/4</td>
<td>G 1/4</td>
<td>4</td>
<td></td>
<td>0.009</td>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>10103</td>
<td>CS-1/4-PK-6</td>
<td>6/5.2</td>
<td>G 1/4</td>
<td>6</td>
<td></td>
<td>0.010</td>
<td>6.5</td>
<td>17</td>
</tr>
<tr>
<td>12962</td>
<td>CS-1/4-PK-8</td>
<td>8</td>
<td>G 1/4</td>
<td>8</td>
<td></td>
<td>0.150</td>
<td>6.5</td>
<td>21</td>
</tr>
<tr>
<td>10104</td>
<td>CS-3/8-PK-6</td>
<td>6/5.2</td>
<td>G 3/8</td>
<td>6</td>
<td></td>
<td>0.140</td>
<td>8.5</td>
<td>17</td>
</tr>
<tr>
<td>12963</td>
<td>CS-3/8-PK-8</td>
<td>6/5.2</td>
<td>G 3/8</td>
<td>8</td>
<td></td>
<td>0.020</td>
<td>8.5</td>
<td>21</td>
</tr>
</tbody>
</table>

Plastic design

<table>
<thead>
<tr>
<th>Order code</th>
<th>Part No.</th>
<th>Type</th>
<th>For tubing/tube inside dia.</th>
<th>Connection D</th>
<th>Nominal size mm</th>
<th>Material</th>
<th>Weight kg</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>5789</td>
<td>CS-1/8-PK-3-KU</td>
<td>3</td>
<td>G 1/8</td>
<td>3</td>
<td>Plastic</td>
<td>0.004</td>
<td>6.5</td>
<td>14.2</td>
</tr>
<tr>
<td>5790</td>
<td>CS-1/8-PK-4-KU</td>
<td>4/4</td>
<td>G 1/8</td>
<td>4</td>
<td></td>
<td>0.004</td>
<td>6.5</td>
<td>14.2</td>
</tr>
<tr>
<td>5792</td>
<td>CS-1/4-PK-4-KU</td>
<td>4/4</td>
<td>G 1/4</td>
<td>4</td>
<td></td>
<td>0.005</td>
<td>8.5</td>
<td>14.2</td>
</tr>
<tr>
<td>6669</td>
<td>CS-1/4-PK-6-KU</td>
<td>6/5.2</td>
<td>G 1/4</td>
<td>6</td>
<td></td>
<td>0.005</td>
<td>8.5</td>
<td>16</td>
</tr>
<tr>
<td>6700</td>
<td>CS-3/8-PK-6-KU</td>
<td>6/5.2</td>
<td>G 3/8</td>
<td>6</td>
<td></td>
<td>0.007</td>
<td>10.5</td>
<td>16</td>
</tr>
</tbody>
</table>

Quick push-pull elbow
Type LCS-M5-PK-4

<table>
<thead>
<tr>
<th>Order code</th>
<th>Part No.</th>
<th>Type</th>
<th>For tubing/tube inside dia.</th>
<th>Connection D</th>
<th>Nominal size mm</th>
<th>Material</th>
<th>Weight kg</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>With metal connector and sealing ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12952</td>
<td>LCS-M5-PK-3</td>
<td>3</td>
<td>M5</td>
<td>3</td>
<td>Steel/</td>
<td>0.01</td>
<td>3.5</td>
<td>12.5</td>
</tr>
<tr>
<td>13688</td>
<td>LCS-M5-PK-4</td>
<td>4/4</td>
<td>M5</td>
<td>4</td>
<td>plastic</td>
<td>0.01</td>
<td>3.5</td>
<td>14</td>
</tr>
<tr>
<td>10105</td>
<td>LCS-1/8-PK-3</td>
<td>3</td>
<td>G 1/8</td>
<td>3</td>
<td>Aluminium/plastic</td>
<td>0.008</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>10106</td>
<td>LCS-1/8-PK-4</td>
<td>4/4</td>
<td>G 1/8</td>
<td>4</td>
<td></td>
<td>0.008</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>12621</td>
<td>LCS-1/8-PK-6</td>
<td>6/5.2</td>
<td>G 1/8</td>
<td>5.3</td>
<td></td>
<td>0.008</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>10107</td>
<td>LCS-1/4-PK-4</td>
<td>4/4</td>
<td>G 1/4</td>
<td>4</td>
<td></td>
<td>0.012</td>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>10108</td>
<td>LCS-1/4-PK-6</td>
<td>6/5.2</td>
<td>G 1/4</td>
<td>6</td>
<td></td>
<td>0.014</td>
<td>6.5</td>
<td>17</td>
</tr>
<tr>
<td>12964</td>
<td>LCS-1/4-PK-8</td>
<td>8</td>
<td>G 1/4</td>
<td>8</td>
<td></td>
<td>0.025</td>
<td>6.5</td>
<td>21</td>
</tr>
<tr>
<td>10109</td>
<td>LCS-3/8-PK-6</td>
<td>6/5.2</td>
<td>G 3/8</td>
<td>6</td>
<td></td>
<td>0.017</td>
<td>8.5</td>
<td>17</td>
</tr>
<tr>
<td>12965</td>
<td>LCS-3/8-PK-8</td>
<td>6/5.2</td>
<td>G 3/8</td>
<td>8</td>
<td></td>
<td>0.028</td>
<td>8.5</td>
<td>21</td>
</tr>
</tbody>
</table>

Plastic design

<table>
<thead>
<tr>
<th>Order code</th>
<th>Part No.</th>
<th>Type</th>
<th>For tubing/tube inside dia.</th>
<th>Connection D</th>
<th>Nominal size mm</th>
<th>Material</th>
<th>Weight kg</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>9618</td>
<td>LCS-1/8-PK-3-KU</td>
<td>3</td>
<td>G 1/8</td>
<td>3</td>
<td>Plastic</td>
<td>0.005</td>
<td>6.5</td>
<td>14.2</td>
</tr>
<tr>
<td>5833</td>
<td>LCS-1/8-PK-4-KU</td>
<td>4/4</td>
<td>G 1/8</td>
<td>4</td>
<td></td>
<td>0.005</td>
<td>6.5</td>
<td>14.2</td>
</tr>
<tr>
<td>5835</td>
<td>LCS-1/4-PK-4-KU</td>
<td>4/4</td>
<td>G 1/4</td>
<td>4</td>
<td></td>
<td>0.007</td>
<td>8.5</td>
<td>14.2</td>
</tr>
<tr>
<td>5836</td>
<td>LCS-1/4-PK-6-KU</td>
<td>6/5.2</td>
<td>G 1/4</td>
<td>6</td>
<td></td>
<td>0.008</td>
<td>8.5</td>
<td>16</td>
</tr>
<tr>
<td>9619</td>
<td>LCS-3/8-PK-6-KU</td>
<td>6/5.2</td>
<td>G 3/8</td>
<td>6</td>
<td></td>
<td>0.010</td>
<td>10.5</td>
<td>16</td>
</tr>
</tbody>
</table>
Barbed tubing connectors
Type T-PK-4
Type Y-PK-4

<table>
<thead>
<tr>
<th>Order code</th>
<th>Design</th>
<th>For tubing I.D.</th>
<th>Nominal bore mm</th>
<th>Material</th>
<th>Weight kg</th>
<th>D₁ dia.</th>
<th>H₁</th>
<th>L₁</th>
<th>L₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>19539</td>
<td>L-PK-2</td>
<td>2</td>
<td>1.5</td>
<td>Brass, Plastic</td>
<td>0.001</td>
<td>4</td>
<td>10.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7473</td>
<td>L-PK-3</td>
<td>3</td>
<td>2.5</td>
<td>0.001</td>
<td>6.5</td>
<td>13.7</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9584</td>
<td>L-PK-4</td>
<td>4</td>
<td>3.5</td>
<td>0.002</td>
<td>7.6</td>
<td>16.9</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30919</td>
<td>T-PK-2</td>
<td>2</td>
<td>1.5</td>
<td>0.001</td>
<td>4</td>
<td>20.4</td>
<td>12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7267</td>
<td>T-PK-3</td>
<td>3</td>
<td>2.5</td>
<td>0.002</td>
<td>6.5</td>
<td>26.5</td>
<td>17.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9585</td>
<td>T-PK-4</td>
<td>4</td>
<td>3.5</td>
<td>0.003</td>
<td>7.8</td>
<td>32</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30918</td>
<td>V-PK-2</td>
<td>2</td>
<td>1.5</td>
<td>0.001</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7268</td>
<td>V-PK-3</td>
<td>3</td>
<td>2.5</td>
<td>0.001</td>
<td>6.5</td>
<td>15.5</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95920</td>
<td>V-PK-4</td>
<td>4</td>
<td>3.5</td>
<td>0.002</td>
<td>7.6</td>
<td>19.6</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9540</td>
<td>Y-PK-2</td>
<td>2</td>
<td>1.5</td>
<td>0.001</td>
<td>4</td>
<td>18</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7269</td>
<td>Y-PK-3</td>
<td>3</td>
<td>2.5</td>
<td>0.002</td>
<td>6.5</td>
<td>25.5</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9586</td>
<td>Y-PK-4</td>
<td>4</td>
<td>3.5</td>
<td>0.003</td>
<td>7.8</td>
<td>31</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plastic tubing
Type PU-4

<table>
<thead>
<tr>
<th>Pressure range*</th>
<th>-0.95 to +7 bar (PU-9, PU-13 max. 10 bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>-35 to +60 °C</td>
</tr>
<tr>
<td>Order code</td>
<td>Inside dia. mm</td>
</tr>
<tr>
<td>Part No.</td>
<td></td>
</tr>
<tr>
<td>13365</td>
<td>2.2</td>
</tr>
<tr>
<td>13366</td>
<td>2.9</td>
</tr>
<tr>
<td>5732</td>
<td>3.9</td>
</tr>
<tr>
<td>5731</td>
<td>5.9</td>
</tr>
<tr>
<td>5733</td>
<td>8</td>
</tr>
<tr>
<td>9159</td>
<td>9</td>
</tr>
<tr>
<td>6731</td>
<td>13</td>
</tr>
</tbody>
</table>

*Pressure range includes the barometric pressure range and atmospheric pressure range.
Sample Calculations

4.1 Battery Life

Currents:
- Accelerometer: 5.0 mA
- Pressure Transducer: 2.5 mA
- Controller: 220 mA
- Pneumatic Valves: 3 @ 75 mA = 225 mA

Total Current: 452.5 mA
Voltage Supplied: 22.8 V DC – 3 batteries in series (taken as 24 V DC)

\[\text{Power} = \text{Voltage} \times \text{Total Current} \]
\[= 24 \text{ V DC} \times 0.4525 \text{ A} \]
\[= 10.86 \text{ W} \]

Time = Current Power Available/ Total Current Required
\[= 1800 \text{ mAh}/452.5 \text{ mA} \]
\[= 3.977 \text{ h} \]
\[\approx 4 \text{ hours} \]

These calculations assume the worst case scenario where
- all components are operating all the time
- not considering the voltage drop as the batteries are discharging

Thus, the battery set-up should last for four hours before recharging is required.

5.1 Pressure Drop in Ballast Tank, \(\Delta P \)

\[\Delta P = \sigma g (T + Y) \]
\[= (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(0.250 \text{ m} + 0.250 \text{ m}) \]
\[= 4905 \text{ Pa} \]
5.2 **Head Loss,** h_L

\[
\begin{align*}
 h_L &= (2T \rho)/\sigma \\
 &= (2 \times 0.250 \text{ m} \times 1 \text{ kg/m}^3)/1000 \text{ kg/m}^3 \\
 &= 0.0005 \text{ m} \\
 &= 0.5 \text{ mm}
\end{align*}
\]

5.3 **Purge Period,** t_p

\[
\begin{align*}
 t_p &= AT/Q_w \\
 &= (0.025 \text{ m}^2 \times 0.250 \text{ m})/0.001 \text{ m}^3/\text{s} \\
 &= 6.25 \text{ s}
\end{align*}
\]

5.4 **Maximum mass of water that the ballast tank can withstand,** M_{max}

\[
\begin{align*}
 M_{max} &= B/g = \sigma AT \\
 &= 1000 \text{ kg/m}^3 \times 0.025 \text{ m}^2 \times 0.250 \text{ m} \\
 &= 6.25 \text{ kg}
\end{align*}
\]

5.5 **Maximum terminal speed,** V_t

\[
\begin{align*}
 V_t &= ((2AT \gamma)/(C_D A_D))^{1/2} \\
 &= ((2 \times 0.025 \text{ m}^2 \times 0.250 \text{ m} \times 9.81 \text{ m/s}^2)/(2.5 \times 0.5 \text{ m}^2))^{1/2} \\
 &= 0.313 \text{ m/s}
\end{align*}
\]
Appendix F

Simulation Codes (Fortran)
Simulation code and data for
Figure 5.3 – Simulation time trace
PNEUMATIC SUBSEA ROBOT

D = SUBSEA ROBOT DEPTH
U = SUBSEA ROBOT VELOCITY
NIT = STEPS IN TIME
AREA = FRONTAL AREA
TANK = TANK HALF HEIGHT
BASE = TANK SECTIONAL AREA
HOLE = TANK HOLE AREA
CD = HOLE LOSS FACTOR
WAKE = DRAG LOSS FACTOR
BUOY = TANK BUOYANCY
SIZE = BUOYANCY BAND
SPEED = WATER IN FLOW
GAS = WATER OUT FLOW
SKG = SUBSEA ROBOT MASS
DELT = STEP IN TIME
BAND = DEPTH BAND
RATE = SPEED BAND
FAST = FAST SPEED
SLOW = SLOW SPEED
OLD = STEP START
NEW = STEP END
COM = COMMAND

IMPLICIT REAL*8(A-H,O-Z)
REAL*4 XP,YP,XO,YO,TOTAL
OPEN(5,file='sod.d',status='old')
READ(5,*) DOLD,DCOM
READ(5,*) NIT,NIP
READ(5,*) MIA,MIB
READ(5,*) AREA,WAKE
READ(5,*) SKG,DELT
READ(5,*) BASE,TANK
READ(5,*) HOLE,CD
READ(5,*) ONE, TWO
READ(5,*) SX,SY
READ(5,*) XO,YO
READ(5,*) BAND
READ(5,*) RATE
READ(5,*) FAST
READ(5,*) SLOW
READ(5,*) SIZE
READ(5,*) GAS
G=9.81DO
DENSI=1000.DO
YP=YO-DOLD*SY
CALL PLOTS(53,0,-1)
CALL PLOT(XO,YO,3)
CALL PLOT(XO+6.0,YO,2)
CALL PLOT(XO,YO,3)
CALL PLOT(XO,YO-4.0,2)

190
CALL PLOT(XO+0.05,YO-4.0,3)
CALL PLOT(XO-0.05,YO-4.0,2)
CALL PLOT(XO+2.0,YO+0.05,3)
CALL PLOT(XO+2.0,YO-0.05,2)
CALL PLOT(XO+4.0,YO+0.05,3)
CALL PLOT(XO+4.0,YO-0.05,2)
CALL PLOT(XO+6.0,YO+0.05,3)
CALL PLOT(XO+6.0,YO-0.05,2)
CALL PLOT(XO,YP,3)
IP=0
ID=0
TOTAL=0.0
TIME=0.0D0
BUOY=0.0D0
UOLD=0.0D0
YOLD=0.0D0
UDOT=0.0D0
DO 22 IT=1,NIT
IG=0
IW=0
AIR=GAS
ERROR=DCOM-DOLD
HIGH=(TANK+YOLD)*G
IF(HIGH.GT.0.0D0) SPEED=CD*HOLE*DSQRT(2.0D0*HIGH)
IF(ID.GT.NIA.AND.ERROR.GT.BAND.AND.UOLD.LT.+SLOW) IW=1
IF(ID.GT.NIA.AND.DABS(ERROR).LE.BAND.AND.UOLD.LE.-RATE
* .AND.BUOY.LE.0.0D0) IW=1
IF(ERROR.LT.-BAND.AND.UOLD.GT.-FAST) IG=1
IF(DABS(ERROR).LE.BAND.AND.UOLD.GE.+RATE
* .AND.BUOY.LE.0.0D0) IG=1
IF(IT.EQ.MIA) DCOM=ONE
IF(IT.EQ.MIB) DCOM=TWO
IF(IG.EQ.0) AIR=0.0D0
IF(IW.EQ.0) SPEED=0.0D0
FLOW=AIR*SPEED
WATER=FLOW*DENSITY*G
BUOY=BUOY+BASE+DNEW
HIT=DENSITY*UOLD+DABS(UOLD)/2.D0
DRAG=WAKE*AREA*HIT
IF(IG.EQ.1) TOTAL=TOTAL+DELTA
YNEW=YOLD+DELTA*FLOW/ BASE
SOG=SKY-YOLD*BASE*DENSITY
UDOT=-BUOY/SOG-DRAG/SOG
DNEW=DOLD+DELTA*UOLD
UNEW=UOLD+DELTA*UDOT
TIME=TIME+DELTA
XP=SX*TIME+XO
YP=YO-DNEW*S
IP=IP+1
ID=ID+1
IF(IP.EQ.NIP) CALL PLOT(XP,YP,2)
IF(IP.EQ.NIP) IP=0
IF(ID.EQ.NIB) ID=0
DOLD=DNEW
UOLD=UNEW
YOLD=YNEW

22 CONTINUE
READ(5,*) NO
DO 33 IO=1,NO
READ(5,*) TIME,DEPTH
DEPTH=3.5-DEPTH
XP=SX*TIME+XO
YP=YO-DEPTH*SY
CALL SYMBOL(XP-0.05,YP-0.025,0.25,1H.,0.0,1)
33 CONTINUE
TOTAL=TOTAL*1000.
CALL SYMBOL(XO+5.65,YO+0.14,0.14,5H180 s,0.0,5)
CALL SYMBOL(XO-0.21,YO-4.28,0.14,3H5 m,0.0,3)
CALL SYMBOL(XO+0.5,YO-6.0,0.14,3HRCW,0.0,3)
CALL NUMBER(XO+0.5,YO-7.0,0.14,TOTAL,0.0,2)
CALL PLOT(XO+0.5,YO-7.0,0.14,TOTAL,0.0,2)
CLOSE(5)
STOP
END
<table>
<thead>
<tr>
<th>3.5d0</th>
<th>2.5d0</th>
<th>dold</th>
<th>dcom</th>
</tr>
</thead>
<tbody>
<tr>
<td>140000</td>
<td>600</td>
<td>nit</td>
<td>nip</td>
</tr>
<tr>
<td>1000</td>
<td>1500</td>
<td>nia</td>
<td>nib</td>
</tr>
<tr>
<td>50000</td>
<td>100000</td>
<td>mia</td>
<td>mib</td>
</tr>
<tr>
<td>0.15d0</td>
<td>5.0d0</td>
<td>area</td>
<td>wake</td>
</tr>
<tr>
<td>75.d0</td>
<td>0.001d0</td>
<td>skg</td>
<td>delt</td>
</tr>
<tr>
<td>0.025d0</td>
<td>0.25d0</td>
<td>base</td>
<td>tank</td>
</tr>
<tr>
<td>0.001d0</td>
<td>1.0d0</td>
<td>hole</td>
<td>cd</td>
</tr>
<tr>
<td>1.5d0</td>
<td>2.5d0</td>
<td>one</td>
<td>two</td>
</tr>
<tr>
<td>0.03333</td>
<td>0.8</td>
<td>sx</td>
<td>sy</td>
</tr>
<tr>
<td>1.0</td>
<td>8.0</td>
<td>xo</td>
<td>yo</td>
</tr>
<tr>
<td>0.5d0</td>
<td></td>
<td>band</td>
<td></td>
</tr>
<tr>
<td>0.00d0</td>
<td></td>
<td>rate</td>
<td></td>
</tr>
<tr>
<td>0.005d0</td>
<td></td>
<td>fast</td>
<td></td>
</tr>
<tr>
<td>0.0025d0</td>
<td></td>
<td>slow</td>
<td></td>
</tr>
<tr>
<td>0.01d0</td>
<td></td>
<td>size</td>
<td></td>
</tr>
<tr>
<td>0.0025d0</td>
<td></td>
<td>gas</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plotting code and data for
Figure 6.2 – Comparison of simulation time trace and testing data
OPEN(5, file='sos.d', status='old')
READ(5,*) SX, SY
READ(5,*) XO, YO
READ(5,*) ND
YP=YO-3.5*SY
CALL PLOTS(53,0,-1)
CALL PLOT(XO,YO,3)
CALL PLOT(XO+6.0,YO,2)
CALL PLOT(XO,YO,3)
CALL PLOT(XO,YO-4.0,2)
CALL PLOT(XO+0.05,YO,3)
CALL PLOT(XO-0.05,YO,2)
CALL PLOT(XO+0.05,YO-4.0,3)
CALL PLOT(XO-0.05,YO-4.0,2)
CALL PLOT(XO+2.0,YO+0.05,3)
CALL PLOT(XO+2.0,YO-0.05,2)
CALL PLOT(XO+4.0,YO+0.05,3)
CALL PLOT(XO+4.0,YO-0.05,2)
CALL PLOT(XO+6.0,YO+0.05,3)
CALL PLOT(XO+6.0,YO-0.05,2)
CALL PLOT(XO,YP,3)
DO 22 ID=1,ND
READ(5,*) TIME, DEPTH
DEPTH=3.5-DEPTH
XP=SX*TIME+XO
YP=YO-DEPTH*SY
CALL SYMBOL(XP-0.05,YP-0.025,0.25,1H.,0.0,1)
22 CONTINUE
CALL SYMBOL(XO+5.65,YO+0.14,0.14,5H180 s,0.0,5)
CALL SYMBOL(XO-0.21,YO-4.28,0.14,3H5 m,0.0,3)
CALL SYMBOL(XO+0.5,YO-6.0,0.14,3HRCW,0.0,3)
CALL PLOT(0.0,0.0,999)
CLOSE(5)
STOP
END
0.03333 0.8
1.0 8.0

<table>
<thead>
<tr>
<th>sx</th>
<th>sy</th>
<th>xo</th>
<th>yo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.</td>
<td>2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.</td>
<td>1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.</td>
<td>1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129.</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix G

Testing Instructions
Testing Instructions

Deployment of ANNE

- Ensure batteries are recharged and connected properly
- Ensure sufficient high-pressure compressed air is present in divers bottle being used
- Check all pneumatic valve electrical connections
- Check all FESTO tubing to ensure connected
- Use vortex blower for suction of battery box, apply duct tape and place box in position on ANNE
- Use vortex blower for suction of pneumatic box, apply duct tape and place box next to battery box
- Use screw handle to keep both boxes in place
- Turn on the air pressure
- Load code from computer to the Z-World
- Disconnect cable from Z-World
- Check location of accelerometer
- Use vortex blower for suction of controller box, apply duct tape and place box on other side of ANNE opposite of the battery and pneumatic boxes
- Use screw handle to keep controller box in place
- Make sure lead weights are placed on top of controller box (held by duct tape)
- Attach ropes for lifting lugs
- Use lifting lug to attach ropes and hook to crane
- Use crane to place ANNE in deep water tank
Recovery of ANNE (and preparation for next test)

- Use two ropes to ease ANNE out of the tank
- Use lifting lug to attach ropes and hook to crane
- Remove from tank and place on moving cart
- Use screw handle to release controller box
- Attach cable to Z-World
- Reload code
- Disconnect cable from Z-World
- Repeat as above in deployment

Recovery of ANNE (and end of testing)

- Use two ropes to ease ANNE out of the tank
- Use lifting lug to attach ropes and hook to crane
- Remove from tank and place on moving cart
- Turn off the air pressure
- Use screw handles to release controller, pneumatic valve and battery boxes
- Remove duct tape and release suction
- Take boxes apart and ensure there are no leaks
- Return ANNE and components to resting place
Appendix H

Testing Code (Dynamic C)
ANNE HOVER TEST

declare variables

int n, m, a; b; p, i, j, k, h, iw, ig;
int depth, gs, command, error;
int slow, fast, rate, skg, water;
int drag, area, band, count;
long fax;

start main program

root main ()
{

initialize hardware

uplc_init () :

data

ig=0; iw=0; count=0; h=10;
i=2000; j=2400; k=2500; n=2200; m=2300;
depth=0; slow=5; fast=10; water=1000;
command=1000; band=250; drag=1;
area=15; skg=75;

sample depth

b=up_adcal (2) :

set pneumatic valves

1 - closes top hole
2 - opens top hole
3 - closes bottom hole
4 - opens bottom hole
5 - air flow to ballast tank

up_setout (3,0); up_setout (4,1);
up_setout (1,0); up_setout (2,1);
up_setout (5,0):

save power

p=1; while (p<10000) {p++;}
up_setout (4,0); up_setout (2,0):

control loop

while (1)
{

count++;
sample sensors
if (count==i) {a=up_adcal (1)};
if (count==i) {depth=up_adcal (2) - b};

rest
p=1; while (p,10000) {p++;}
if (count>i && count<j) {gs=up_adcal (1) - a;}
if (count>i && count<j) {rate=up_adcal (2) - b - depth;}
if (count>i && count<j) {depth=up_adcal (2) - b};

hover tests
if (count>i && count<j)
{
if (count==n) {command=500;}
if (count==m) {command=1000;}

ig=0; iw=0;

calculate ig and iw
error=command-depth;
fast=skg*500*500*gs-drag*area*water*rate*abs(rate);
if (error>band && rate<slow) {iw=1;}
if (error>band && rate>s*slow) {ig=1;}
if (error<band && rate>fast) {ig=1;}
if (error<band && rate<s*fast) {iw=1;}
if (abs(error)<band && rate>0 && fast<0) {ig=1;}
if (abs(error)<band && rate<0 && fast>0) {iw=1;}
if (abs(error)<band && rate>slow) {ig=1;}
if (abs(error)<band && rate<fast) {iw=1;}
if (ig==1) {iw=0;}
if (iw==1) {ig=0;}

operate pneumatic valves
if (iw==1 && ig==0) {up_setout (2,0);
 up_setout (1,1) ; up_setout (5,0);
 up_setout (4,0) ; up_setout (3,1);}
if (iw==1) {up_setout (3,0);}
if (iw==1) {up_setout (4,1);}
if (iw==1) {up_setout (1,0);}
if (iw==1) {up_setout (2,1);}
if (ig==1) {up_setout (3,0);}
if (ig==1) {up_setout (4,1);}
if (ig==1) {up_setout (2,0);}
if (ig==1) {up_setout (1,1);}
if (ig==1) {up_setout (5,1);}
if (ig==0) {up_setout (5,0);}

/ close holes of ballast tank and drift
if (iw==1) {p=1; while (p<25000) {p++;}
 {up_setout (2,0) ; up_setout (1,1);
 up_setout (4,0) ; up_setout (3,1);}
/* rise to water surface */
if (count>=j && count<k)
{
 up_setout (2,0) ; up_setout (1,1) ;
 up_setout (3,0) ; up_setout (4,1);
 up_setout (5,1) ;
}

/* float at water surface */
if (count==k) (up_setout (5,0) ;
 up_setout (2,0) ; up_setout (1,1);
 up_setout (3,0) ; up_setout (4,1) ;
}