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Abstract

In this paper, we compare growth functions of different bases of commutator subgroups

of free groups. Of the bases that we consider, the geodesic Schreier basis appears to be

the fastest. In connection with groups, we consider a basis for the free Lie commutator

subalgebra. In contrast with groups, the growth of a basis for a free Lie algebra does

not depend on the choice of basis.
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Chapter 1

Free Groups and Free Lie Algebras

1.1 Free Groups

We start our discussion of free groups with the statement of their universal property,

and provide a few basic results. In the sections that follow, we provide a construction

to prove that such free groups exist, and discuss the methods of Nielsen which are

used to show that every finitely generated subgroup of a free group is free. This result

was later proven for any subgroup (finitely generated or not), and is known as the

Nielsen-Schreier theorem.

Definition 1. A group F is free on a set X if given any group G and a map f : X →

G, there exists a unique homomorphism φ : F → G such that φ ◦ ι = f , where ι is the

inclusion map. The set X is called the free basis of F .

In other words, the following diagram commutes:

X ⊂
ι
> F

G

φ

∨

.........

f

>
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Proposition 1 ([6], Section 1.1). Let F1 and F2 be free groups with bases X1 and X2,

respectively. Then F1 and F2 are isomorphic if and only if |X1| = |X2|.

Corollary 1 ([6], Section 1.1). All bases for a given free group F have the same

cardinality, called the rank of F .

Proposition 2 ([6], Section 1.1). Let X be a subset of a group G such that X∩X−1 =

∅. Then X is a basis for a free subgroup of G if and only if no product x1 . . . xn is

trivial, where n ≥ 1, xi ∈ X±1, and all xixi+1 6= 1.

We have covered some of the basic properties of free groups that follow from the

universal property. Yet so far, we have only given an abstract definition of a free

group. In the following section, we provide a construction of free groups to prove

existence.

1.2 Construction of Free Groups

Now that free groups have been defined in terms of their universal property, we give

a construction. Let X be a (not-necessarily finite) set. We let Ω(X) be the monoid

consisting of words, that is all finite products, of letters in the “alphabet” X±1 =

X
⋃
{x−1 : x ∈ X}. The associative binary operation is the juxtaposition of words

and we denote by 1 the empty word. Given a word w = a1a2 . . . an, where ai ∈ X±1,

the length of w is given by |w| = n. We may then define the word w−1 = a−1
n . . . a−1

1 .

Next, define an equivalence relation ∼ on Ω(X) as follows:

Two words u, v ∈ Ω(X) are equivalent if there exists a sequence of words u =

w0, w1, . . . , wk = v where wi is obtained from wi−1 by insertion or deletion of a subword

of the form xx−1, where x ∈ X±1. From this definition, it follows that if u1 ∼ u2 and

v1 ∼ v2, then u1v1 ∼ u2v2, and u
−1
1 ∼ u−1

2 .
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It is easy to verify that this relation is an equivalence relation. We then form the

quotient monoid Ω(X)/ ∼, consisting of equivalence classes of words. Every class has

an inverse: given a word u, it follows that uu−1 ∼ 1. Therefore the quotient monoid

is a group. We will show that it is in fact a free group.

A word w ∈ Ω(X) is said to be reduced if it contains no subword xx−1, x ∈ X±1.

We must show that each equivalence class contains a unique reduced word. It is clear

that each equivalence class contains at least one reduced word, since deletions of the

form xx−1 will eventually lead to a reduced word. We must now show that distinct

reduced words u, v are not equivalent. Assume on the contrary that we have some

sequence of words u = w0, w1, . . . , wn = v, where wi is obtained from wi−1 by insertion

or deletion of subwords of the form xx−1, where N =
∑

|wi| is a minimum. Since u

and v are both reduced, and u 6= v, then n > 0 and |w1| > |w0|, |wn−1| > |wn|. It

follows that for some i, 0 < i < n, |wi| > |wi−1|, |wi+1|. Now wi−1 is obtained from

wi by deletion of a subword of the form aa−1, and wi+1 is obtained by deletion of a

subword bb−1, where a, b ∈ X±1. Now if these subwords coincide, then wi−1 = wi+1,

contrary to the minimality of N . If the subwords overlap without coinciding, then

wi contains a subword of the form aa−1a. So wi−1 and wi+1 are both obtained by

replacing aa−1a by a, and again we have wi−1 = wi+1. The last possibility is that

these subwords aa−1 and bb−1 do not overlap at all, in which case wi can be replaced

by the result of removing both aa−1 and bb−1, resulting in N ′ = N −4, again contrary

to minimality of N .

Proposition 3 ([6], Section 1.1). The group F = Ω(X)/ ∼ is a free group with basis

the set [X] of equivalence classes of elements from X, and |[X]| = |X|.

Proof. Let G be any group, and let f map the set [X] of equivalence classes of elements

x ∈ X into G. We first show that |[X]| = |X|. Let x1, x2 ∈ X and x1 6= x2. Then

[x1] 6= [x2] since x1 and x2 are distinct reduced one-letter words. Then f determines
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a map g : X → G by g(x) = f([x]). Define an extension φ of g from Ω(X) into G

by setting φ(w) = φ(xβ1

1 . . . xβn
n ) = (g(x1))

β1 . . . (g(xn))
βn , where xi ∈ X, βi = ±1. If

w1 and w2 are equivalent, then φ(w1) = φ(w2), i.e. φ maps equivalent words onto the

same element in G, thereby inducing a map φ : F → G that is clearly a homomorphic

extension of f .

1.3 Nielsen’s Method

The methods of Nielsen focus largely on the cancellations of elements in a free group.

Given a finite generating set U for a subgroup of a free group, we can use Nielsen

transformations to transform U into a free basis. The methods in this chapter are

used to prove the Nielsen Subgroup Theorem, obtained in 1921, which states that

finitely generated subgroups of free groups are free. This result was later generalized

by Schreier who proved that any subgroup (finitely generated or not) of a free group

is free; this is the well-known Nielsen-Schreier Theorem. We begin this section with

a discussion on Nielsen transformations.

Consider a well-ordered subset U = {u1, u2, . . .}, either finite or infinite, of a group

G. We define three transformations on this set:

(T1) replace some ui by u
−1
i ;

(T2) replace some ui by uiuj, where j 6= i;

(T3) delete some ui where ui = 1.

These transformations leave fixed each uh where h 6= i. These three types of

transformations are known as elementary Nielsen transformations. A composition of

such transformations is a Nielsen transformation, and is called regular if there is no
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factor of type (T3). Clearly transformations of type (T1) and (T2) have inverses, so

the regular Nielsen transformations form a group. This group contains every permu-

tation fixing all but finitely many of the ui, and it also contains every transformation

carrying ui into one of uiuj, uiu
−1
j , ujui, u

−1
j ui, where j 6= i, and fixing every uh where

h 6= i.

Proposition 4 ([6], Section 1.2). If U is carried into V by a Nielsen transformation,

then 〈U〉 = 〈V 〉.

We now introduce the notion of Nielsen-reduced sets, or N-reduced for short. We

will see in a bit that every well-ordered finite generating set can be carried to a

Nielsen-reduced set via Nielsen transformations, and it is these Nielsen-reduced sets

that form free bases for subgroups of free groups. Let F be a free group with basis

X and let U = {u1, u2, . . .} be a well-ordered set, where each ui is in F . As before,

the length of a word, |w|, is the length of the reduced word over X representing w.

A set U is called N-reduced if the following conditions hold for all triples of elements

v1, v2, v3, where each vj is of the form u±1
i :

(N0) v1 6= 1;

(N1) v1v2 6= 1 ⇒ |v1v2| ≥ |v1|, |v2|;

(N2) v1v2 6= 1 and v2v3 6= 1 ⇒ |v1v2v3| > |v1| − |v2|+ |v3|.

Proposition 5 ([6], Section 1.2). If U = {u1, u2, . . . un} is finite, then U can be

carried by a Nielsen transformation into some V such that V is N-reduced.

Proposition 6 ([6], Section 1.2). If U is N-reduced, then 〈U〉 is free with U as a

basis.

Theorem 1 (The Nielsen Subgroup Theorem [6], Section 1.2). Every finitely gener-

ated subgroup of a free group is free.
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Proof. Let F be a free group, and G a subgroup generated by some finite subset U of

F . By the previous proposition, U can be carried to V by a Nielsen transformation

such that V is N-reduced. Then 〈U〉 = 〈V 〉, and G is free with V as a free basis.

Theorem 2 (The Nielsen-Schreier Subgroup Theorem [6], Section 1.2). Every sub-

group of a free group is free.

There exists a topological approach to the Nielsen-Schreier Theorem using covering

spaces; we direct the reader to [6]. We conclude this section by noting that there may

be several distinct free bases for a subgroup of a free group. In the next section, we

discuss the Schreier method for constructing free bases for subgroups of free groups.

1.4 The Schreier Method

The methods of Schreier provide a way to form a basis for any subgroup H (finitely

generated or not) of a free group F of rank r. Given a right coset Hu, we denote the

length of this coset to be the minimal length of elements in the coset Hu. A subset

T ⊂ F is a Schreier transversal for H if the following conditions are satisfied:

(1) ∀u, v ∈ T,Hu = Hv ⇒ u = v;

(2) F =
⋃

u∈T Hu;

(3) any prefix of a word in T is itself in T .

If u ∈ T,w ∈ F , and Hu = Hw, then we write u = w. A Schreier transversal is

called geodesic if each element u ∈ T is of minimal length among all representatives

of Hu. Given a Schreier transversal T for H, we may construct a free basis in the
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following way. For u ∈ T, x ∈ X±1, we consider ux(ux)−1. Then the set of all of these

elements different from the identity forms a free basis for H.

It will be convenient to use the equivalent language of graphs when finding a

Schreier basis. We consider a directed graph Γ, which we will call the coset graph,

with vertex set V = F/H. The edge set appears as follows. Given a coset Hu, we

form an edge e = (Hu,Hux), for each x ∈ X±1, where the label of e is denoted

by lab(e) = x. The inverse edge is given by e−1 = (Hux,Huxx−1) = (Hux,Hu),

with label x−1. We define the initial point of an edge e = (Hu,Hux) to be α(e) =

Hu, and the terminal point to be ω(e) = Hux. If we have a sequence e1, e2, . . . , en

such that ω(ei) = α(ei+1) for each i = 1, . . . , n − 1, then we may define the path

π = e1e2 . . . en, where α(π) = α(e1), and ω(π) = ω(en). The label of π is given by

lab(π) = lab(e1 . . . en) = lab(e1) . . . lab(en). If a path π has no parts of the form ee−1,

then lab(π) is a reduced word in Fr. The length of Hu is then the shortest path on

the graph from the origin H to Hu. We may then define the sphere Vn consisting of

those cosets of length n.

Let V (n) =
⋃n

k=0 Vk. Let Γ(n) be the induced subgraph of Γ with vertex set V (n).

The notion of a (geodesic) Schreier transversal is analogous to a (geodesic) maximal

subtree. A maximal tree T will be constructed as the union T (n) of maximal subtrees

in Γ(n), where T (0) = Γ(0). Once T (n−1) has been constructed, we define the vertex

set by V (T (n)) = V (T (n − 1))
⋃
Vn. For the edge set, we start with E(T (n − 1)),

and add one (double) edge from Γ(n) connecting each vertex in Vn with a vertex in

Vn−1. We see that the length of Hu corresponds to the length of the unique path π

in T from H to Hu. We now describe how to find the Schreier generators. The edge

set of the graph Γ can be defined as the disjoint union of the tree edges and non-tree

edges. Take any non-tree edge e with label x, and let π1 be the path in T from H to

α(e), and π2 the path in T from H to ω(e). Set u = lab(π1), v = lab(π2). Then the
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Schreier generators are exactly the elements uxv−1.

Note that our construction of a maximal tree T leads to a geodesic tree. That is,

the length of each tree path to a vertex is minimal. However it is not a requirement

when forming a Schreier basis that the transversal, or equivalently maximal tree, be

geodesic.

In the proof of the Nielsen theorem, it is shown that every finitely generated

subgroup of a free group is freely generated by some Nielsen-reduced set. The Schreier

bases that arise in this section are also connected with Nielsen-reduced sets.

Theorem 3 ([7], Section 3.2). Any geodesic Schreier basis for a subgroup H of a free

group F is Nielsen-reduced. Conversely, every Nielsen reduced set of generators for

H is (up to inverses) a geodesic Schreier basis for H.

1.5 Lie Algebras

Lie algebras arise naturally as vector spaces of linear transformations, together with

a new multiplication that is neither commutative nor associative. We begin our dis-

cussion of Lie algebras with their definition.

Definition 2. A Lie algebra is a vector space L over a field F with multiplication

defined via the Lie bracket [·, ·] : L× L→ L which has the following properties:

(L1) The bracket operation is bilinear;

(L2) [x, x] = 0 for all x ∈ L;

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ L.

Condition (L3) is called the Jacobi identity. From (L1) and (L2), it follows that
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the Lie bracket is anti-commutative:

0 = [x+ y, x+ y] = [x, y] + [y, x]

In a similar fashion, a Lie ring is an abelian group endowed with a bracket satisfying

properties (L1) through (L3).

Lie algebras can naturally be obtained from associative algebras in the following

way. Given an associative algebra A, and x, y ∈ A, we define the Lie bracket by

[x, y] = xy − yx, and it is easy to verify that this definition satisfies (L1) through

(L3). If a Lie algebra is obtained in such a way, we denote it as AL. It was discussed

in [5] that every Lie algebra is isomorphic to a subalgebra of some AL, which is

equivalent to showing that every Lie algebra is isomorphic to a Lie algebra of linear

transformations.

1.6 Free Lie Algebras

Similar to the notion of a free group is a free Lie algebra. We give the definition of

a free Lie algebra in terms of its universal property, and provide a construction. In

particular, we show that free Lie algebras may be constructed from free groups.

Definition 3. Let L be a Lie algebra generated by a set X ⊂ L. We say L is

free on X if, given any map f : X → M into a Lie algebra M , there exists a unique

homomorphism φ : L→M such that f = φ ◦ ι, where ι is the inclusion map.

In a similar fashion, we define the free Lie ring by replacing, in the previous defi-

nition, each occurrence of the word “algebra” with “ring”. Analogous to the Nielsen-

Schreier theorem for free groups, we have the following:
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Theorem 4 (Shirshov-Witt). Every Lie subalgebra of a free Lie algebra is itself free.

In particular, bases of free Lie algebras arise as so-called basic commutators (Sec-

tion 1.7). Next we demonstrate the relationship between Lie algebras and groups, as

discussed in [1].

Let G be any group, and consider the lower central series:

G = G1 ⊇ G2 ⊇ G3 ⊇ . . .

where Gi+1 = [Gi, G]. Set Li = Gi/Gi+1. Each Li is abelian. Then the set L(G) =

⊕
∞

i=0 Li is an abelian group. Addition of homogeneous elements is supplied by the

group operation:

xGi+1 + yGi+1 = (xy)Gi+1,

where x, y ∈ Gi. We make L(G) into a Lie ring by defining the Lie bracket, which we

denote by [., .]L to distinguish it from the group commutator:

[uGi+1, vGj+1]L = [u, v]Gi+j+1

for u ∈ Gi, v ∈ Gj, where [u, v] is the commutator of the group elements u and

v. This definition makes sense since for terms Gi, Gj in the lower central series,

[Gi, Gj] ⊆ Gi+j. The axioms of a Lie ring follow from the Witt-Hall identities, which

will be discussed in Section 1.8. To turn a Lie ring into a Lie algebra, we need to

allow for coefficients in some field K. We do this by forming the tensor product by K

over Z. Thus L(X) =
⊕

∞

i=0 Li
⊗
K is a Lie algebra. To form the free Lie algebra, we

take for G a free group F , and consider its lower central series. We discuss in section

1.8 that the quotients Fi/Fi+1 are free abelian groups. Thus, if we know a free basis
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for each term Fi/Fi+1, then this determines a linear basis for a free Lie algebra. In

the next section, we define a collection process which produces a free basis for each

quotient Fi/Fi+1. These basis elements are known as basic commutators.

1.7 Commutator Collecting Process

The commutator collecting process was described by M. Hall [3]. It provides a way

to write any group element as a product of generators and their higher commutators,

arranged in a specific order.

Let X = {x1, . . . , xr} be a free basis for a group F . We define formal commutators

cj and weights w(cj) by the following rules:

• ci = xi, i = 1, . . . , r, are the commutators of weight 1; that is, w(xi) = 1;

• If ci and cj are commutators, and i 6= j, then ck = [ci, cj] is a commutator of

weight w(ck) = w(ci) + w(cj).

The commutators ci = xi of weight 1 are ordered by their subscripts i = 1, . . . , r.

We then assign an arbitrary ordering to commutators of higher weight, with the rule

that ci1 < ci2 if w(ci1) < w(ci2).

A string ci1 . . . cim of commutators is said to be in collected form if i1 ≤ i2 ≤ . . . ≤

im, so that the commutators are read in order from left to right. An arbitrary string of

commutators ci1 . . . cimcim+1
. . . cin has a collected part ci1 . . . cim if i1 ≤ i2 ≤ . . . ≤ im,

and im ≤ ij for j = m + 1, . . . , n. The string will then have an uncollected part

cim+1
. . . cin , where im+1 is not the least of ij, j = m+ 1, . . . , n.

We now define a collecting process for a string of commutators. Suppose that cu is

in the uncollected part, and is of minimal weight in the uncollected part. Let cij = cu
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be the left-most uncollected cu. Then we replace

ci1 . . . cim . . . cij−1
cij . . . cin

by

ci1 . . . cim . . . cijcij−1
[cij−1

, cij ] . . . cin .

We have in effect moved cij to the left, and introduced a new commutator [cij−1
, cij ].

This commutator is clearly of higher weight than that of cij . Therefore, cij still has

minimal weight among the uncollected part. After some finite number of steps, cij

will be moved to the (m + 1)st position, and will then join the collected part. We

note that since each step introduces a new commutator, it is not guaranteed that this

process will terminate.

During the collection process, only certain commutators arise. For example, [x2, x1]

may arise, but not [x1, x2], since x1 is collected before x2. The commutators that

might actually arise are known as basic commutators. They are defined inductively

as follows:

• ci = xi, i = 1, . . . , r are the basic commutators of weight 1;

• Suppose that basic commutators of weight < n have been defined. Then the

basic commutators of weight n are of the form ck = [ci, cj], where

(a) ci and cj are basic and w(ci) + w(cj) = n

(b) ci > cj, and if ci = [cs, ct], then cj ≥ ct;

• The commutators of weight n follow those of weight less than n, and are ordered

arbitrarily with respect to each other.

We discuss in Section 1.8 that the basic commutators of weight k form a free basis
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of the free abelian group Fk/Fk+1, where Fi denotes the i-th term of the lower central

series.

1.8 The Basis Theorem

The structure of the quotients Fi/Fi+1 of terms of the lower-central series of a free

group F can be studied from the theory of Lie rings and formal power series. We start

be discussing Hall’s identities, which show a relationship between the commutation

of group elements and the Lie bracket. We will then show how free groups may be

mapped into free associative algebras. In doing so, we will need to allow for inverses

of the form

(1− x)−1 = 1 + x− x2 + x3 − x4 + . . .+ (−1)n−1xn + . . .

The commutation and multiplication of group elements is closely related to the mul-

tiplication and addition of elements in a Lie algebra. P. Hall originally discussed

the group theory of lower central series in 1933, and it was later expanded upon by

Magnus.

Definition 4. Let a, b be elements of a group G. Then we write

ab = b−1ab, a−b = b−1a−1b.

Theorem 5 ([7], Section 5.2). For any three elements a, b, c of a group G, the following

equations hold:

1. [a, b][b, a] = 1;

2. [a, bc] = [a, c][a, b][[a, b], c];
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3. [ab, c] = [a, c][[a, c], b][b, c];

4. [[a, b], ca][[c, a]bc][[b, c]ab] = 1;

5. [[a, b], c][[b, c], a][[c, a], b] = [b, a][c, a][c, b]a[a, b][a, c]b[b, c]a[a, c][c, a]b.

Theorem 6 ([7], Section 5.3). Let a, b, c be elements of a group G. Let k,m, n be

positive integers such that a ∈ Gk, b ∈ Gm, c ∈ Gn, where Gi is the i-th term of the

lower central series. Then

1. ab ≡ ba mod Gk+m;

2. [a, bc] ≡ [a, b][a, c] mod Gk+m+n;

3. [ab, c] ≡ [a, c][b, c] mod Gk+m+n;

4. [a, b, c][b, c, a][c, a, b] ≡ 1 mod Gk+m+n+1.

This theorem shows a close connection between the properties of commutation of

group elements and the axioms of a Lie ring. In fact, if the equations of Theorem

6 were replaced by equalities, rather than congruences, we would obtain a Lie ring,

where the ring addition is supplied by group multiplication, and ring multiplication

is the commutation of group elements.

Definition 5. A free associative Z-algebra on a set X = {x1, . . . , xr} is an algebra

A(r) with a map ι : X → A(r) such that for any associative Z-algebra R and a map

f : X → R, there exists a unique homomorphism φ : A(r) → R such that f = φ ◦ ι.
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The free associative Z-algebra on a setX = {x1, . . . , xr}may be described as the Z-

algebra for which the monomials xe1n1
xe2n2

. . . xeknk
, (where nj 6= nj+1, and n1, n2, . . . , nk ∈

{1, . . . , r}, and k, e1, e2, . . . , ek are positive integers) form a Z-linear basis.

From the free associative algebra A = A(X), we may form the algebra Â by

admitting infinite sums. The elements of Â appear as formal power series in the

non-commuting variables x1, . . . , xr:

v =
∞∑

n=0

un

where un is a homogeneous element of degree n belonging to A(r). Addition and mul-

tiplication in Â are defined in the natural way; multiplication is well-defined since in

the product of two infinite sums, only finitely many terms in each sum will contribute

to a component of a given degree.

Let Λ(r) be the free Lie algebra of rank r, generated by ε1, . . . , εr.

Proposition 7 ([7], Section 5.6). There exists a mapping µ of the free Lie algebra

Λ(r) on free generators εp into the free associative algebra A(r) on free generators xp

with the following properties:

1. Every element φ ∈ Λ(r) has exactly one image µ(φ) in A(r);

2. µ(εp) = xp, (p = 1, 2, . . . , r);

3. If φ, ψ are in Λ(r) and if α ∈ Z, then

µ(αφ) = αµ(φ)

µ(φ+ ψ) = µ(φ) + µ(ψ)

µ(φ ◦ ψ) = [µ(φ), µ(ψ)]
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Definition 6. An element of A(r) that is the image of some element Λ(r) under the

mapping µ is called a Lie element of A(r).

Let M ⊆ Â be the ideal consisting of all power series with zero constant term. We

now observe how group structures arise from these formal power series.

Proposition 8 ([7], Section 5.5). Let G = 1 +M ⊆ Â consist of all formal power

series with constant term 1. Then G is a group under multiplication. Moreover, if

g = 1 + h, then

g−1 = 1− h+ h2 − h3 + . . .+ (−1)nhn + . . .

Theorem 7 ([7], Section 5.5). If A is freely generated by x1, . . . , xr, then the elements

ap = 1 + xp, p = 1, . . . , r

of Â are free generators of a free group F of rank r. Moreover,

a−1
p = 1− xp + x2p − x3p + . . .+ (−1)nxnp + . . .

Theorem 8 (Basis Theorem [7], Section 5.6). In A, the free associative algebra of

rank at least 2, there exists a sequence z1, z2, . . . of homogeneous Lie elements with

non-decreasing degrees in the free generators of A such that

(i) The elements zv form a linear basis (over Z) for the Lie elements of A.
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(ii) The products

ze1v1z
e2
v2
. . . zekvk , 1 ≤ v1 < v2 < . . . < vk, k ≥ 1

with integral exponents e1, . . . , ek, together with the identity 1 form a linear basis

for all elements of A

(iii) All Lie elements zv of degree ≥ 2 in the free generators of A can be written in

the form

zv = [zλ, zµ], 1 ≤ µ < λ

(iv) Morever, every element zv of degree ≥ 2 can be written in the form above in

such a way that for each τ with µ ≤ τ < λ, the element

[[zλ, zµ], zτ ] = [zv, zτ ]

occurs in the sequence z1, z2, z3, . . .We call the elements z1, z2, z3, . . . basic Lie elements

Theorem 9 ([7], Section 5.7). The quotient groups Fn/Fn+1, n = 1, 2, 3, . . . , of the

lower central series of a free group F freely generated by a1, . . . , ar are isomorphic, as

abelian groups, to the submodules Ln of homogeneous elements of degree n in the Lie

algebra L freely generated by ξ1, . . . , ξr



Chapter 2

Growth of Bases for Commutator

Subgroups

2.1 Schreier-Type Formulas

Given a free group F of rank r, and a subgroup H of finite index [F : H], the Schreier

formula allows us to find the rank of H as follows:

rankH = (rankF − 1)[F : H] + 1.

However, given a free group F of rank at least 2, there always exists a non-trivial

subgroup of infinite index. Let x and y be distinct elements in a free basis for F .

Let U = {xkyx−k : k ∈ Z}. This set is clearly Nielsen-reduced, and is a free basis of

infinite rank for the group it generates. Therefore, we consider an infinite basis B,

along with the subsets Bn = {b ∈ B : ℓ(b) = n}, with respect to some length function

ℓ. If each Bn is finite, then we may form the Hilbert series, which is a formal power
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series of the form:

H(B, t) =
∞∑

n=1

|Bn|t
n

If rankH is finite, then it follows that rankH = H(B, 1).

Let Γ be the directed coset graph discussed in section 1.4, with vertex set V =

F/H. We recall that the set Vn consists of those cosets of minimal distance n from

the origin. So we may form a Hilbert series for the quotient F/H as follows:

H(F/H, t) =
∞∑

n=1

|Vn|t
n.

We say that a subgroup is even if it is generated by elements of even length. In the

event that H is an even subgroup, r = rankF , and B is a geodesic Schreier basis, it

was shown in [2] that H(B, t) and H(F/H, t) are related by the following formula:

H(B, t) = 2

(

2rt2

t2 + 1
− 1

)

H(F/H, t2) + 2. (2.1)

Thus the Hilbert series for a geodesic Schreier basis B can be obtained if we know

the Hilbert series for the quotient F/H. This formula holds independent of choice of

geodesic Schreier transversal.

An analogue of the Schreier formula exists in the case of Lie subalgebras of free

Lie algebras [9]. A finitely graded set is a countable set X, equipped with a weight

function wt : X → N such that the subsets Xi = {x ∈ X : wt(x) = i} are finite for all

i ∈ N. For any monomial y = xi1 . . . xin , xj ∈ X, we set wt(y) = wt(xi1)+. . .+wt(xin).

Let Y be the set of all monomials generated by X, which is also finitely graded. Let

A be an algebra generated by a finitely graded set X. Then A has a filtration
⋃

∞

i=1A
i,

where Ai is the space spanned by monomials of length at most i. If A is freely
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generated by X, then define

HX(A, t) = H(Y, t) =
∞∑

t=1

|Yi|t
i.

If B is a vector subspace of A, then the quotient space A/B acquires a filtration:

(A/B)n = (An +B)/B ∼= An/(B ∩ An).

In [9], Petrogradsky defines on operator ε on Z [[t]], the ring of formal power series in

the indeterminate t over Z:

ε :
∞∑

i=0

ait
i 7→

∞∏

i=0

1

(1− ti)ai
.

Petrogradsky then showed that for any Lie algebra L generated by a finitely graded

set X, and any Lie subalgebra K, there exists a free generating set Z such that:

H(Z) = (H(X)− 1) ε (H(L/K)) + 1.

In particular, Petrogradsky showed that the Hilbert series H(Z) does not depend on

the choice of homogeneous Z. However, in the case of groups, we consider specific

bases which give rise to non-equivalent growth functions, and thus distinct Hilbert

series.

2.2 Growth of Bases

Let F be a free group with basis X, and let B be a free basis of a free subgroup. Set

Bn = {b ∈ B : ℓX(b) = n}, where ℓX(b) denotes the length of the reduced word over

X. We define the cumulative growth function of a basis B by γ(n) =
∑n

i=1 |Bi|. The
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strict growth function of the basis B is given by λ(n) = γ(n)−γ(n−1) = |Bn|. Given

two functions, f1 and f2, we may define f1 � f2 if there exist positive constants c1, d1

such that f1(n) � c1f2(d1n) for all n > 0. Functions f1 and f2 are equivalent, written

as f1 ∼ f2, if f1 � f2 and f2 � f1.

Thanks to Dr. Bahturin and Dr. Olshanskii, we have the following two proposi-

tions:

Proposition 9. Let T1 and T2 be distinct geodesic Schreier transversals for a subgroup

H of a free group F of rank r. Let λT1
(n) and λT2

(n) be the growth functions of the

Schreier bases corresponding to T1 and T2. Then λT1
(n) = λT2

(n), for all n ∈ N.

Proof. We will show that the growth function is independent of choice of geodesic

Schreier transversal. Let Γ = Γ(F/H) be the coset graph, as described in Section

1.4. Let T be any geodesic maximal sub-tree. Let Sn = {Hv ∈ F/H : ℓ(Hv) = n}

be the sphere of radius n, where ℓ(Hv) is the minimal distance from H to Hv. The

cardinality |Sn| is independent of choice of maximal tree. The Schreier generators

that appear are in one-to-one correspondence with the non-tree edges. For each

edge e = (Hv,Hvx), x ∈ X, there exists some n ∈ N such that the initial point

α(e) = Hv ∈ Sn, and the terminal point ω(e) ∈ Sn
⋃
Sn+1. Note that we do not

include the edges with terminal point ω(e) ∈ Sn−1, since this would give rise to an

inverse of a Schreier generator already described. Furthermore, ω(e) cannot be in Sm,

m > n + 1, since this would result in a a vertex Hw ∈ Sm,m > n + 1 being reached

by a path of length n + 1, contrary to the definition of Sm. The Schreier generator

is formed as the label of the tree path from H to Hv, times the label of the non-tree

edge, times the label of the tree path from Hvx to H. If ω(e) ∈ Sn+1, then the length

of the Schreier generator is 2n + 2. The number of tree edges from Sn to Sn+1 is

|Sn+1|. Therefore, the Schreier generators of length 2n+ 2 are independent of choice

of geodesic tree. An edge with both the initial and terminal vertices in Sn clearly is
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not an edge of a geodesic tree. So the number of resulting Schreier generators does

not depend on the choice of maximal tree. Since the number of Schreier generators

of a given length is independent of choice of geodesic tree, then it is independent of

choice of geodesic Schreier transversal. Therefore, it follows that the strict growth

functions corresponding to any two geodesic Schreier transversals are the same.

Proposition 10. Let T0 be a geodesic Schreier transversal, and T a non-geodesic

Schreier transveral for a subgroup H of a free group F . Let γT0
(n) and γT (n) be the

growth functions of the Schreier bases corresponding to T0 and T . Then for some

N ′ ∈ N, γT0
(n) > γT (n), for all n ≥ N ′.

Proof. If T is geodesic, then from the previous proposition we have that λT0
= λT .

If T is non-geodesic, then there exists a vertex Hv ∈ SN such that the length of the

tree-path from H to Hv is m > N . We consider a non-tree edge e = (Hv,Hvx)

with label x ∈ X, where Hvx ∈ SN
⋃
SN+1; again, the edges with terminal point

Hvx ∈ SN−1 give rise to the inverse of a Schreier generator. The Schreier generator

that results is the label of the tree path from H to Hv, times the label x of the

non-tree edge, times the label of the tree path from Hvx back to H. The length is at

least m+N +2 > 2N +2, or at least m+N +1 > 2N +1. So the number of Schreier

generators of length 2N+2 or 2N+1 will be less than in the case of maximal geodesic

tree T0. Since in the case of a geodesic tree, the number of generators of length 2N+2

and 2N + 1 is maximal, it follows that γT0
(n) > γT (n) for all n ≥ 2N + 1 = N ′.

Let H be a subgroup of F and W a Schreier basis for H. Let H(n) be the

subgroup of H generated by all elements of length at most n with respect to X,

and let rH(n) denote the cardinality of the minimum generating set of H(n). Let
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W (n) = {w ∈ W : ℓX(w) ≤ n}.

Proposition 11 ([8]). Let H be a subgroup of a free group F . Then rH(n) = |W (n)|.

Furthermore, rH(n) is closely related to the geodesic Schreier transversal, where

H is a normal subgroup. Let γF/H(n) be the growth function of F/H, defined by

γF/H(n) = |{gH ∈ FH : ℓ(gH) ≤ n}|. The length ℓ(gH) of a coset is given as the

minimal path length from the origin H to the vertex gH in the coset graph Γ(F/H).

Then we have the following:

Theorem 10 ([8]). Let H be a normal subgroup of a free group F . Then rH ∼

γF/H

Our goal in the sections that follow is to discuss the growth functions for different

bases of the commutator subgroup. Of the different bases that we consider for the

commutator subgroup, the geodesic Schreier bases appear to be “the fastest”.

2.3 Geodesic Schreier Basis for F ′
2

Let F be a free group of rank r. It is well-known that F/F ′ ∼= Z
r, where F ′ is the

commutator subgroup of F . In the case where we have rank 2, the quotient F/F ′

can be viewed as the set of integral points in the real plane. We start by considering

a directed coset graph Γ with vertex set V = F/F ′, and labels of edges given by

X = {x, y}. We have two methods for constructing the Hilbert series for the Schreier

basis: either find the Hilbert series directly, or use the formula for even subgroups

given above. Both of these methods have been discussed by Shaqaqha [10]. Following

his method, we compute the Hilbert series for the symmetric basis (consisting of a

free basis and their inverses); in later chapters, we compute Hilbert series only for
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Plugging this into equation 2.1 for even subgroups, we obtain:

H(B, t) = 2

(

4t2

t2 + 1
− 1

)

(1 + t2)2

(1− t2)2
+ 2 =

8t4

(1− t2)2
.

We now confirm this formula by calculating H(B, t) directly. Given our coset graph

Γ, and geodesic Schreier transversal T = {ylxk : k, l ∈ Z}, we consider a maximal

subtree T with “trunk” the vertical line k = 0, and we have as branches the horizontal

lines l = c. For every point (k, l) with k 6= 0, there are two vertical non-tree edges

with labels y and y−1. These edges go from (k, l) to (k, l+ 1) and (k, l− 1). We may

then construct two loops λ1 and λ−1. The loop λ1 starts at the origin (0, 0), follows

the tree path (with label ylxk) to the point (k, l), takes the non-tree edge (with label

y) to the point (k, l + 1), and follows the tree path (with label x−ky−(l+1)) back to

the origin. Then we have that lab(λ1) = ylxkyx−ky−(l+1). Similarly, if λ−1 takes as

non-tree edge labelled by y−1, then it has label lab(λ2) = ylxky−1x−ky−(l−1).

Thus for every vertex (k, l), where k, l 6= 0, we get one Schreier generator of length

2|k|+2|l|+2, and one of length 2|k|+2|l|. If k 6= 0, l = 0, then both generators have

length 2|k|+2|l|+2 = 2|l|+2. It follows that all, except four, points on the rhombus

|k|+ |l| = n (4n− 4 in total) produce 4n− 4 generators of length 2n+ 2, and 4n− 4

generators of length 2n. The vertices (n, 0) and (−n, 0) together produce 4 generators

of length 2n+ 2. The vertices (0, n) and (0,−n) do not produce Schreier generators,

since there are no non-tree edges to follow. Therefore, the number of free generators

of length 2n is 4(n− 1) + (4n− 4) = 8n− 8. Thus we may form the Hilbert series

H(B, t) =
∞∑

n=1

(8n− 8)t2n =
8t4

(1− t2)2
,

which agrees with the Hilbert series obtained above. The strict growth function of this

basis is given by λ(2n) = 8(n− 1), λ(2n+ 1) = 0. Thus λ(2n) ∼ n, and this geodesic
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1. UL = {Hxkyl : l > 0, k = −l}

2. UR = {Hxkyl : k = l > 0}

3. LL = {Hxkyl : k = l < 0}

4. LR = {Hxkyl : k > 0, k = 1− l}

5. IL = {Hxkyl : k < 0, 0 < |l| < k}

6. IT = {Hxkyl : l > 0, 0 < |k| < l}

7. IR = {Hxkyl : k > 0,−(k − 1) < l < k}

8. IB = {Hxkyl : l < 0, l < k < 1− l}

A vertex Hxkyl is on level n if:

1. Hxkyl is not an interior-bottom vertex and max{|k|, |l|} = n, or if

2. Hxkyl is an interior-bottom vertex and −l = n− 1

With some simple inductive arguments, given a corner vertex Hxkyl on level n, we

may find the length of the path, following the spiral, from the origin to Hxkyl. For

example, the distance to the lower left corner vertex on level n is 2n(2n+1). Clearly

this holds for level 1. Suppose it holds for level n (we say the origin is on level 0).

The length of the bottom and the right sides of level n is given by 2n− 1, while the

length of the top and left sides is given by 2n. So the distance from the origin to the

lower left vertex on level n+ 1 is the distance to the lower left vertex on level n, plus

the sum of the lengths of the sides on level n+ 1. The result is

2n(2n+ 1) + 2(2(n+ 1)− 1) + 2(2(n+ 1)) = 2(n+ 1)((2(n+ 1) + 1)
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Corner Length

UL (2n)2

LL 2n(2n+ 1)

UR 2n(2n− 1)

LR (2n− 1)2

Now given an interior vertex, it is easy to count the length of its transversal

counterpart by counting backwards / forwards from the corners. It is easy to see that

every non-trivial vertex of our graph allows two non-tree edges. Given a vertex Hxkyl

on level n and non-tree edge e, we say that the Schreier generator is outer if ω(e) is

on a level > n, and inner otherwise. Clearly, every outer Schreier generator is the

inverse of some inner Schreier generator. So we need only determine lengths of the

inner Schreier generators. Also, the corner vertices give rise only to outer Schreier

generators. So we need only determine lengths of inner Schreier generators formed

from the interior vertices.

First, we need to determine the length, following the spiral, to any vertex Hxkyl.

We describe this process for the interior-bottom vertices, since the other vertices follow

similarly. Let Hxkyl be an interior-bottom vertex on level n. We start by counting

the distance to the lower left corner vertex on level n− 1, which from the table above

is 2(n− 1)(2(n− 1) + 1) = 4n2 − 6n+ 2. The x-coordinate of the lower-left corner is

−(n−1). So the distance from the lower-left corner to Hxkyl is k+(n−1). Therefore,

the length following the spiral from the origin to Hxkyl is given by:

4n2 − 6n+ 2 + k + (n− 1) = 4n2 − 5n+ 1 + k

Furthermore, the range for the x-coordinate is −(n − 1) < k < n. In a similar fash-

ion, we determine lengths for the other 3 types of interior vertices. The results are
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summarized in the table below.

Position Length Range

IB 4n2 − 5n+ 1 + k −(n− 1) < k < n

IR 4n2 − 3n+ l −(n− 1) < l < n

IT 4n2 − n− k −n < k < n

IL 4n2 + n− l −n < l < n

Notice that these formulas for interior lengths agree on the corners of the spiral.

Furthermore, given an interior bottom vertex Hxkyl on level n, and an inner Schreier

generator formed by an edge e, the terminal point ω(e) = Hxkyl+1 will be on level

n − 1 and either an interior-bottom vertex, or lower left corner or lower right corner

vertex. Therefore, we may determine the length of the resulting Schreier generator

from our formulas. It is the sum of the length of the tree path to the vertex Hxkyl,

plus 1 for the non-tree edge, plus the length from the vertex Hxkyl+1 to the origin.

The result is

(4n2 − 5n+ 1 + k) + 1 + (4(n− 1)2 − 5(n− 1) + 1 + k)

=8n2 − 18n+ 12 + 2k

The lengths of Schreier generators formed from the other interior edges are deter-

mined in a similar fashion. The lengths of their respective inner Schreier generators

are summarized in the following table:
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Position Length Range

IB 8n2 − 18n+ 12 + 2k −(n− 1) < k < n

IR 8n2 − 14n+ 8 + 2l −(n− 1) < l < n

IT 8n2 − 10n+ 6− 2k −n < k < n

IL 8n2 − 6n+ 4− 2l −n < l < n

Looking at any row of the above table, we see that the lengths of Schreier gener-

ators increase by 2 as k or l increases by 1. In other words, as we traverse the spiral,

the lengths of inner Schreier generators increases by 2. This pattern still holds as we

transition from interior bottom points to interior right points, from bottom vertices to

right vertices, from right vertices to top vertices, and from top vertices to left vertices.

For example, the longest interior bottom Schreier generator on round n is of length

8n2 − 18n+ 12 + 2(n− 1) = 8n2 − 16n+ 10. The shortest inner right generator is of

length 8n2− 14n+8+2(−(n− 2)) = 8n2− 16n+12. So clearly as we transition from

inner bottom to inner right generators, the pattern of increasing by 2 still holds.

It follows that for each n ≥ 2, there is exactly one Schreier generator of length 2n.

Therefore, the strict growth function is given by λ(2n) = 1, n ≥ 2. The cumulative

growth function is then γ(2n) = γ(2n+ 1) = n.

2.5 Ward’s Basis

In [4], the authors expand on the basic commutators that arise from the collection

process to form a basis for each term of the lower central series. In particular, if we

consider a free group F of rank r, then its commutator subgroup F ′ is generated by

all elements of the form [b0, b
β1

1 , . . . , b
βq
q ] where each bi is in a free generating set X for

F , βi = ±1, b0 > b1 ≤ b2 ≤ . . . ≤ bq, and bi = bj ⇒ βi = βj.

Suppose that X = {x, y} is a basis for F , and ordered such that x < y. Then the
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generating set for F ′ splits into six general cases:

(1) wk = [y, x, . . . , x
︸ ︷︷ ︸

k

]

(2) uk = [y, x−1, . . . , x−1

︸ ︷︷ ︸

k

]

(3) vk,l = [wk, y, . . . , y
︸ ︷︷ ︸

l

]

(4) tk,l = [wk, y
−1, . . . , y−1

︸ ︷︷ ︸

l

]

(5) zk,l = [uk, y, . . . , y
︸ ︷︷ ︸

l

]

(6) pk,l = [uk, y
−1, . . . , y−1

︸ ︷︷ ︸

l

]

There are two notions of “length” that we may consider in this case. First, we may

consider the lengths of the reduced words representing each basic commutator. As we

will see, construction of the growth function in this way is quite messy. Alternatively,

one may consider the notion of a weight. The set of invertators over a generating

set X is the closure of X under the operation x, y → [x±1, y±1]. A weight wtX is

defined on the set of inverators of X such that wtX(x) = 1 for any x ∈ X, and

wtX([x
±1, y±1]) = wtX(x) + wtX(y). There is some ambiguity in this definition. For

example, wtx([x, x]) = 2, while wtX([x, x, x]) = 3, even though [x, x] = [x, x, x]. So

we say that the weight is a function of the representation of an invertator, and not

necessarily of the group element itself.

2.5.1 Characterization by Weight

We wish to know for each n ∈ N, how many basic commutators have weight n. We

have that wt([y, xβ1 , . . . , xβ1

︸ ︷︷ ︸

k

, yβ2 , . . . , yβ2

︸ ︷︷ ︸

l

]) = k + l + 1.
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First we see that k ∈ {1, . . . , n− 1}, and βi ∈ {1,−1}. If k ∈ {1, . . . , n− 2}, then

l = n − 1 − k. Four possibilities then arise for our exponents βi, leading to 4(n − 2)

options. If k = n− 1, then l = 0, and β1 ∈ {1,−1}, so we have only two possibilities

in this case. In total, there are 4(n−2)+2 = 4n−6 ways to form a basic commutator

of degree n ≥ 3. Thus λ(n) = 4n− 6, n ≥ 3. The cumulative growth function is given

as γ(n) = 2 +
∑n

i=3(4i− 6) = 2(n− 1)2, for n ≥ 2.

2.5.2 Characterization by Length

We now must determine the lengths over {x, y} of the reduced words representing

each of these basic commutators. We provide formulas for wk and vk,l, and from there

it will be obvious that ℓ(wk) = ℓ(uk), and ℓ(vk,l) = ℓ(tk,l) = ℓ(zk,l) = ℓ(pk,l). First we

determine ℓ(wk).

Observe that:

w1 = [y, x] = y−1x−1yx

w2 = [w1, x] = [y−1x−1yx, x] = x−1 y−1xyx−1y−1x−1y
︸ ︷︷ ︸

w2

x2

= x−1w2x
2

w3 = [w2, x] = [x−1w2x
2, x] = x−2w−1

2 (xx−1)x−1w2
︸ ︷︷ ︸

w3

x3

= x−2w3x
3

w4 = [w3, x] = [x−2w3x
3, x] = x−3w−1

3 (x2x−2)x−1w3
︸ ︷︷ ︸

w4

x4

= x−3w4x
4
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where each wi is conjugated by some power of y. So then we have that:

ℓ(w1) = 4

ℓ(w2) = 2ℓ(w1) + 2 = 5 · 2

ℓ(w3) = 2ℓ(w2) = 5 · 22

ℓ(w4) = 2ℓ(w3)− 2 = 5 · 23 − 2

.

.

.

ℓ(wk) = 2ℓ(wk−1)− 2(k − 3) = 5 · 2k−1 −
k−3∑

i=1

i2k−2−i

Solving this recurrence relation yields

ℓ(wk) = 2k+1 + 2k − 2, k ≥ 3

Finding the length ℓ(vk,l) is more tedious. We start by finding a formula for ℓ(v1,l),

and then generalize to ℓ(vk,l). First, observe that:
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v1,1 = [w1, y] = [y−1x−1yx, y] = x−1y−1x(yy−1)y−1x−1yx
︸ ︷︷ ︸

v1,1

y

= v1,1y

v1,2 = [v1,1, y] = [v1,1y, y] = y−1 v1,1
−1y−1v1,1

︸ ︷︷ ︸

v1,2

y2

= y−1v1,2y
2

v1,3 = [v1,2, y] = [y−1v1,2y
2, y] = y−2 v1,2

−1(yy−1)y−1v1,2
︸ ︷︷ ︸

v1,3

y3

= y−2v1,3y
3

v1,4 = [v1,3, y] = [y−2v1,3y
3, y] = y−3 v1,3

−1(y2y−2)y−1v1,3
︸ ︷︷ ︸

v1,4

y4

= y−3v1,4y
4

.

.

.

v1,l = y−(l−1)v1,ly
l

Notice that each v1,i begins with x
−1 and ends with x. Since the v1,i are conjugated

by powers of y, then the only cancellations we need to consider are those inside of the

v1,l. As we see again, the pattern does not arise until l ≥ 3. Two cancellations occur

in v1,1, none in v1,2, two in v1,3, four in v1,4, and 2 · (l − 2) cancellations in v1,l, l ≥ 4.

Again, we list the lengths of each of these commutators:
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ℓ(v1,1) = 8

ℓ(v1,2) = 2ℓ(v1,1) + 2 = 9 · 2

ℓ(v1,3) = 2ℓ(v1,2) = 9 · 22

ℓ(v1,4) = 2ℓ(v1,3)− 2(1) = 9 · 23 − 21(1)

ℓ(v1,5) = 2ℓ(v1,4)− 2(2) = 9 · 24 − 22(1)− 21(2)

.

.

.

ℓ(v1,l) = 2ℓ(v1,l−1)− 2(l − 2) = 9 · 2l−1 −
l−3∑

i=1

i · 2l−2−i

Solving this recurrence relation yields

ℓ(v1,l) = 2l+2 + 2l − 2, l ≥ 3

Next we find the degree function for vk,l where k ≥ 2. Again, we see that our pattern

starts at l = 3.
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vk,1 = [wk, y] = w−1
k y−1wk

︸ ︷︷ ︸

vk,1

y

= vk,1y

vk,2 = [vk,1, y] = [vk,1, y] = y−1 vk,1
−1

︸ ︷︷ ︸

vk,2

y−1vk,1y
2

= y−1vk,2y
2

vk,3 = [vk,2, y] = [y−1vk,2y
2, y] = y−2vk,2

−1(yy−1)y−1vk,2y
3

= y−2vk,3y
3

vk,4 = [y−2vk,3y
3, y] = y−3 vk,3

−1(y2y−2)y−1vk,3
︸ ︷︷ ︸

vk,4

y4

= y−3vk,4y
4

.

.

.

vk,l = y−(l−1)vk,ly
l

As before, each vk,l begins with x−1 and ends with x. The pattern for counting

cancellations arises for l ≥ 4. We have the degrees:
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ℓ(vk,1) = 2ℓ(wk) + 2

ℓ(vk,2) = 2ℓ(vk,1) + 2 = 4 · ℓ(wk) + 6

ℓ(vk,3) = 2ℓ(vk,2) = 8 · ℓ(wk) + 12

ℓ(vk,4) = 2ℓ(vk,3)− 2 · 1 = 2[8ℓ(wk) + 12]− 2 · 1

ℓ(vk,5) = 2ℓ(vk,4)− 2 · 2 = 22[8 · ℓ(wk) + 12]− 22 · 1− 2 · 2

.

.

.

ℓ(vk,l) = 2 · ℓ(vk,l−1)− 2 · (l − 3)

= 2l−3[8 · ℓ(wk) + 12]−
l−3∑

m=1

m · 2l−2−m.

We have the following finite lengths, and then can form a general pattern:

ℓ(v2,1) = 22, ℓ(v2,2) = 46, ℓ(v2,3) = 92

ℓ(v3,1) = 42, ℓ(v3,2) = 86, ℓ(v3,3) = 172

ℓ(vk,l) = 2k+l+1 + k · 2l+1 − 2l + 2l − 2,

for k, l ≥ 3.

Our goal now is to determine the cumulative growth function for this basis. It

can be described by the inverse of the length function. We will be concerned with the

cumulative growth, and not the strict growth, since the strict growth is a bit more

complicated. First consider a basis element of the form wk, where k ≥ 3, and whose
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length is given by n = ℓ(wk) = 2k+1 + 2k − 2.

n ≥ 2k+1 + 2k − 2

≥ 2k

⇒ k ≤ log2(n)

Since the elements of the form uk have the same length, we multiply by two to

obtain 2 log2(n). This gives us an upper bound for the number of basis elements of

the form wk and uk of length at most n.

Next, we consider an element of the form v1,l, where l ≥ 3, with length given by

ℓ(v1,l) = 2l+2 + 2l − 2. As before, we take a lower bound of this function and invert:

n = ≥ 2l+2 + 2l − 2

≥ 2l

⇒ l ≤ log2(n)

Since ℓ(v1,l) = ℓ(t1,l) = ℓ(z1,l) = ℓ(p1,l), we multiply by 4 to obtain 4 log2(n).

Last, we consider the elements of the form vk,l, k, l ≥ 3.

n ≥ 2k+l+1 + k · 2l+1 − 2l + 2l − 2

≥ 2l+k

⇒ k + l ≤ log2(n)
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To determine how many elements of the form vk,l give rise to generators of length

at most n, we consider the rhombus {(k, l) : k + l ≤ log2(n)}. Since k, l > 0, we

restrict to the first quadrant of the Euclidean plane. For each fixed value log2(n), the

points in this rhombus lie on or below the line that connects the points (0, log2(n))

and (log2(n), 0). The number of such integral points is half the area of the given

square. Therefore, the size of this rhombus is estimated as

|{(k, l) : k + l ≤ log2(n)}| ≤
(log2(n))

2

2

Since ℓ(vk,l) = ℓ(tk,l) = ℓ(zk,l) = ℓ(pk,l), we multiply this value by 4 to obtain

2(log2(n))
2. Summing the following values, we obtain an upper bound for the cu-

mulative growth function:

γ(n) ≤ 2 log2(n) + 4 log2(n) + 2(log2(n))
2

≤ 8(log2(n))
2

2.6 {[xk, yl] : k, l 6= 0}

We consider the set B = {[xk, yl] : k, l 6= 0}, which is clearly contained in the

commutator subgroup F ′. In fact, it is a free basis for F ′. First, we show that it is a

free basis for the subgroup it generates by showing that it is Nielsen-reduced.

The length of [xk, yl] is given by ℓ([xk, yl]) = 2(|k|+ |l|). Clearly no element is the

identity, so (N0) is satisfied. Furthermore, we have that

[xk1 , yl1 ][xk2 , yl2 ] = x−k1y−l1xk1yl1x−k2y−l2xk2yl2 ,
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and

[xk1 , yl1 ][xk2 , yl2 ][xk3 , yl3 ] = x−k1y−l1xk1yl1x−k2y−l2xk2yl2x−k3y−l3xk3yl3 ,

whence it follows that:

ℓ
(

[xk1 , yl1 ][xk2 , yl2 ]
)

= 2 · (|k1|+ |l1|+ |k2|+ |l2|)

ℓ
(

[xk1 , yl1 ][xk2 , yl2 ][xk3 , yl3 ]
)

= 2 · (|k1|+ |l1|+ |k2|+ |l2|+ |k3|+ |l3|)

Therefore (N1) and (N2) are satisfied and this set is Nielsen-reduced. Conse-

quently, it forms a free basis for the subgroup it generates.

Now we must show that it generates the commutator subgroup F ′. Any element

in F ′ can be written in the form

xk1yl1xk2yl2 . . . xksyls

where
∑s

i=1 ki =
∑s

j=1 lj = 0.

Proposition 12. Any element of the form xk1yl1 . . . xksyls can be written as a product

cxksyjs, where c ∈ 〈B〉, ks =
∑s

i=1 ki, and ls =
∑s

j=1 lj.

Proof. We proceed on induction on s. If s = 1, then the result holds with c being

equal to the identity. Now assume that the result holds for s − 1. By the inductive

step, we have that

(xk1yl1 . . . xks−1yls−1)xksyls = (cxks−1yls−1)xksyls

where c ∈ 〈B〉. Observe:



41

cxks−1yls−1xksyls = cxks−1yls−1(x−ks−1y−ls−1yls−1xks−1)xksyls

= c[x−ks−1 , y−ls−1 ]yls−1xksyls

= c[x−ks−1 , y−ls−1 ]yls−1xks(y−ls−1x−ksxksyls−1)yls

= c[x−ks−1 , y−ls−1 ][y−ls−1 , x−ks ]xksyls .

Clearly c[x−ks−1 , y−ls−1 ][y−ls−1 , x−ks ] ∈ 〈B〉. The result follows.

In the case where xk1yl1 . . . xksyls is in the commutator subgroup, then ks = ls = 0,

whence every element of F ′ can be written as a product of elements in B±1. Since B

is Nielsen-reduced, it follows that B is a free basis for the commutator subgroup. We

may now find the growth functions and determine the Hilbert series for this basis.

We define the sets

Bn = {[xk, yl] : k, l 6= 0, 2(|k|+ |l|) = n}

=
{

[xk, yl] : k, l 6= 0, |k|+ |l| =
n

2

}

Clearly |Bn| = 0 for odd n, or for n = 2. Now suppose that n > 2 is even. Then

k, l ∈
{

−
(
n

2
− 1

)

, . . . ,−1, 1, . . . ,
(
n

2
− 1

)}

.

Consequently, |Bn| =
(

2
(
n
2
− 1

))

2 = 2n − 4 ⇒ |B2n| = 4(n − 1). Thus we have the
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Hilbert series

H(B, t) =
∞∑

n=1

|B2n|t
2n =

∞∑

n=2

4(n− 1)t2n =
4t4

(1− t2)2

For the strict growth function, we have λ(2n) = 4(n − 1), and this basis has linear

growth. The cumulative growth function is γ(2n) = 2n2 − 2n. Notice that these

growth functions are identical to the growth functions in the case of geodesic Schreier

basis. However, as we will now show, this basis is not Schreier.

If B were non-geodesic Schreier, then as we showed in Section 2.2, the growth func-

tions would not be equal to those in the case of geodesic Schreier. Therefore, we must

show that the basis B does not arise from any maximal geodesic tree in the coset graph

Γ = Γ(F/F ′). We now consider the graph Z×Z ∼= F/F ′, where edges are labelled by x

and y. We need only consider the three elements of B: [x−1, y−1], [x−2, y−1], [x−1, y−2].

In assuming that B is geodesic Schreier, we must have that the y- and x- axes be

contained in the maximal tree, by requirement that the tree is geodesic. Therefore,

exactly one of the edges in each of the three generators listed above must be non-tree

edges. Consider the generator [x−1, y−1]. Now the edge e1 = ((1, 0), (1, 1)) cannot be

a non-tree edge. If it were, then [x−1, y−1] and [x−1, y−2] would either be formed from

the same non-tree edge (which is nonsense), or else [x−1, y−2] would have two non-tree

edges. So then it must be that e2 = ((1, 1), (0, 1)) is a non-tree edge which corresponds

to the generator [x−1, y−1]. Now consider the generator [x−2, y−1]. Neither the edges

e3 = ((2, 0), (2, 1)) nor e4 = ((2, 1), (1, 2)) can be non-tree edges, lest [x−2, y−1] be

formed from two non-tree edges.

Thus in considering these three generators, we have shown that the basis B cannot

be formed from a maximal geodesic tree, and is thus not a geodesic Schreier system.

Furthermore, since the growth functions are the same as in the geodesic Schreier case,
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B cannot be non-geodesic Schreier either. Consequently, we have given an example

of a basis that is not Schreier, but grows as fast as the geodesic Schreier systems.

2.7 Basis for Free Lie Commutator Subalgebra

In the case of free Lie algebras generated by a set X, we consider the filtration

associated to X, where Sn(X) is the subspace spanned by all monomials of length

at most n. For example, S1(X) = 〈X〉, the vector space spanned by elements of X,

S2(X) = 〈X, [X,X]〉, S3(X) = 〈X, [X,X], [X,X,X]〉, and so on.

The growth function of the Lie algebra L is given by

γS(n) = dimSn(X).

In contrast with groups, the growth functions of bases of Lie algebras do not depend

on the choice of homogeneous basis [9].

Let X = {x, y} be a basis for a free Lie algebra L, and suppose that it is well-

ordered such that y > x. It was shown in [1] that the commutator subalgebra L′ is

generated by the set {[y, x, . . . , x
︸ ︷︷ ︸

l

, y, . . . , y
︸ ︷︷ ︸

k

] : k ∈ N
⋃
0, l ∈ N} = {uk,l : l 6= 0}.

The weight is given by wt(uk,l) = k + l + 1. Therefore,

Bn = {uk,l : k + l + 1 = n} = {uk,l : k + l = n− 1}

Since l ∈ {1, 2, . . . , n− 1} and then k = n− l− 1, we have that |Bn| = (n− 1). Then

we form the Hilbert series:

H(B, t) =
∞∑

n=2

|Bn|t
n =

∞∑

n=2

(n− 1)tn =
t2

(1− t)2
.
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In this case, the strict growth function is given by λ(n) = n − 1, for n ≥ 2. The

cumulative growth function is given by γ(n) = n(n−1)
2

.

Alternatively, we may determine the Hilbert series via Petrogradsky’s formula:

H(B) = (H(X)− 1) ε (H(L/K)) + 1

where B is the homogeneous basis for the Lie commutator subalgebra, andX = {x, y}.

Clearly H(X) = 2t. We must determine the Hilbert series for L/L′. Recall that

given a filtration in L, we define a filtration in L/L′ by (L/L′)n = (Ln+L′)/L′. Since L

has basis {x, y}, then the basis elements of degree 1 in L/L′ are x+L′, y+L′. Then for

n ≥ 2, we have that dim(L/L′)n = dim((Ln + L′)/L′) = 0, since Ln ⊆ L′, for n ≥ 2.

Thus, the Hilbert series is given by H(L/L′) = 2t, and thus ε (H(L/L′)) = 1
(1−t)2

.

Plugging into his formula, we obtain

H(B) = (H(X)− 1) ε (H(L/K)) + 1

= (2t− 1)

(

1

(1− t)2

)

+ 1

=
t2

(1− t)2

2.8 Summary

As we have shown, growth functions of bases of a group are not guaranteed to be the

same, or even equivalent. Of the different bases that we have considered, the geodesic

Schreier bases appear to be the fastest. The geodesic Schreier bases share the same

growth functions with the basis of the form {xk, yl : k, l 6= 0}. Growing slightly slower
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are the non-geodesic Schreier generators appearing from the spiral. Ward’s basis ap-

peared the slowest. In contrast with groups, the growth of bases for Lie algebras

does not depend on the choice of homogeneous generating set. As we have seen, the

commutator of group elements is closely connected with the Lie bracket. The growth

of the Lie basis we considered is a scalar multiple of the growth of geodesic Schreier

basis for the commutator subgroup. The results are summarized in the table below.
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Basis Degree Strict Growth λ(n) Cumulative Growth γ(n)

Lie Algebras Weight λ(n) = n− 1 γ(n) = n(n−1)
2

Geodesic Schreier Length λ(2n) = 4(n− 1), n ≥ 2; λ(2n+ 1) = 0 γ(2n) = γ(2n+ 1) = 2n2 − 2n

{[xk, yl] : k, l 6= 0} Length λ(2n) = 4(n− 1), n ≥ 2; λ(2n+ 1) = 0 γ(2n) = γ(2n+ 1) = 2n2 − 2n

Non-Geodesic Schreier Length λ(2n) = 1, n ≥ 2; λ(2n+ 1) = 0 γ(2n) = γ(2n+ 1) = n

Ward’s Basis Length γ(n) ≤ 8(log2(n))
2

Ward’s Basis Weight λ(n) = 4n− 6, n ≥ 3 γ(n) = 2(n− 1)2
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