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Abstract 

A major concern regarding the impact of aquaculture is the alteration or reduction 

of the fitness of wild stocks through interbreeding with escapees. Cultured fishes 

develop morphologies and behaviours different than those of their wild 

counterparts, and the spawning success and fitness of cultured fish is frequently 

lower. However, successful interbreeding between wild and cultured fish is well 

documented and can lead to negative consequences for the wild population. In this 

thesis I examined how culture affects the phenotypes of fishes, and how these 

differences in phenotype in turn relate to reproductive success and offspring early 

growth and survival. I found that cultured Atlantic cod (Gadus morhua) had 

relatively smaller fins, heads, eyes, and jaws, but greater condition factor and body 

depth than wild cod from the same ancestral population. This suite of morphological 

differences is often referred to as the “cultured phenotype”, and while commonly 

asserted to exist I was the first to formally test for it using a meta-analysis and a 

vote-counting analysis. These analyses confirmed that aspects of a general “cultured 

phenotype” exist. To evaluate the influence of morphology and behaviour on male 

spawning success, I studied the reproductive interactions of individual cultured and 

wild male cod in the presence of a cultured female. Despite phenotypic differences, 

the spawning success of cultured males did not differ from that of wild males. 

Finally, because the introgression of genetically differentiated escapees into wild 

populations can lead to fitness declines, I tested the effect of hybridization between 
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two genetically distinct populations of cod. I found no evidence that the pure strain 

and F1 hybrids differed in their relative fitness, or of differential response to 

temperature. Finding equal reproductive success of cultured and wild male cod, at 

least in my experimental conditions, and no differences in early life history fitness 

between F1 hybrids and non-hybrids suggests that the potential for introgression 

may be higher than has been predicted by previous studies.  
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Chapter 1 - Introduction 101 

Currently, about half of the world’s population (a proportion disproportionately 102 

skewed towards peoples in developing countries) derive at least 15% of their 103 

protein intake from fish (FAO 2014). The human population is expected to rise to 104 

over 9.7 billion by 2050 (United Nations 2015). Not only will a greater absolute 105 

quantity of fish protein be required to feed this larger population, but it is also 106 

expected that fish protein will come to constitute a greater proportion of the total 107 

dietary protein intake. Consequently, the importance of fish protein to ensuring food 108 

security is predicted to increase (FAO 2014). However even at present, the global 109 

demand for fish product has surpassed what is available from capture fisheries, and 110 

landings have plateaued. Concomitant with this plateauing is the realization that 111 

many of the world’s fish stocks are currently fully- or over-exploited and that some 112 

fish populations have declined precipitously to fractions of their historic levels 113 

(Hutchings et al. 2010, Christensen et al. 2014, FAO 2014, WWF 2015). Focusing on 114 

the ocean environment, population declines and over-exploitations are not 115 

distributed uniformly across all species, or even higher taxonomic divisions, with 116 

fisheries and their incumbent effects disproportionately targeting large marine 117 

predators and higher trophic level fishes (Pinnegar et al. 2002, Myers & Worm 2003, 118 

Daan et al. 2005); but refer to Tacon and Metian (2009), Essington et al. (2015), and 119 

Branch (2015) for an alternate perspective.  120 
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 To meet the demand for preferred fish protein, both the number of fish and 121 

the number of fish species in culture have increased over the past 50 years (FAO 122 

2014). The large-scale increase in aquaculture activities has led to the realization 123 

that aquaculture, like all other types of animal culture and production, is not without 124 

effect on the environment.  125 

While terrestrial farming and animal husbandry benefit from millennia of 126 

accumulated knowledge and best practices, aquaculture in comparison is much 127 

newer. Lately in terrestrial farming, as well as in aquaculture much attention has 128 

been directed to the reduction of environmental impacts. Broadly speaking, 129 

aquaculture must contend with the elimination of faeces (Gomi 1993), and other 130 

organic detritus. The rate at which organic wastes enter the environment must 131 

balance the rate at which natural ecosystem functions (including biofiltration in 132 

closed-containment aquaculture) can remove them, or else there is the risk of their 133 

accumulation leading to environmental degradation. Furthermore, excess feed that 134 

escapes from cages, as well as the physical structure of the cages themselves, can act 135 

as fish aggregators altering the natural distribution of wild fishes (Dempster et al. 136 

2009). Strategies must be implemented to prevent or mitigate the spread of 137 

pathogens from farmed to wild fish (and vice versa) and among individual cages and 138 

farms (Johansen et al. 2011), the potential impact of antibiotics and antiparasitics on 139 

non-target organisms (Davies & Rodger 2000), and the development of antibiotic 140 

resistance (Schmidt et al. 2001). Finally, one of the most pernicious concerns, and 141 
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the focus of this thesis, is the escape of cultured fish into the marine environment 142 

(Naylor et al. 2005, Bekkevold et al. 2006, Thorstad et al. 2008).  143 

Exposure to culture leads to phenotypic and genotypic changes in fishes. 144 

Phenotypically, cultured fish have been shown to differ from wild fish in their 145 

morphology (Fleming et al. 1994, Uglem et al. 2011, Arechavala-Lopez et al. 2012), 146 

levels of aggression (Jonsson 1997, Einum & Fleming 2001, Jonsson & Jonsson 147 

2006), response to predators (Matsuzaki et al. 2009, Chittenden et al. 2010, Meager 148 

et al. 2011), prey preference and capture ability (Steingrund & Fernö 1997, Olsen & 149 

Skilbrei 2010), physiology and metabolic performance (Fleming et al. 2002, 150 

Pedersen et al. 2008, Anttila & Mänttäri 2009, Chittenden et al. 2010), growth rate 151 

(Devlin et al. 2009, Wringe et al. 2010, Skaala et al. 2012), life history timing (Kause 152 

et al. 2003, Glover et al. 2009, Fraser et al. 2010b), and gene expression (Roberge et 153 

al. 2008, Normandeau et al. 2009) among other traits.  154 

Genotypically, cultured populations will invariably differ from their founder 155 

population. Even considering the simplest scenario, such as is typical of many 156 

supplementary hatcheries (e.g. Svåsand et al. 2000, Busack et al. 2007, Belk et al. 157 

2008, Horreo et al. 2008), where fish are captured from the wild and mated 158 

together, the genotypes of the resultant offspring will differ from those of the source 159 

population because of founder effects (Cross & King 1983, Verspoor 1988, Petersson 160 

et al. 1996, Norris et al. 1999, Weeder et al. 2005) and the removal of sexual 161 
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selection (Petersson et al. 1996, Neff et al. 2011). Where a broodstock has been 162 

maintained in captivity for more than one generation, even in the absence of 163 

artificial selection, the divergence of its genotype from that of the founder 164 

population will increase over time because of genetic drift (Cross & King 1983, 165 

Verspoor 1988, Alarcón et al. 2004), domestication selection (Christie et al. 2012), 166 

and removal of sexual selection, including mate choice (Landry et al. 2001, 167 

Rudolfsen et al. 2005, Neff et al. 2011). Domestication selection is a broad term 168 

covering multiple different processes. It includes unintentional selection on those 169 

traits that confer a fitness advantage in culture, as well as on loci physically or 170 

genetically linked to the genes that underlie such advantageous traits (Christie et al. 171 

2012). As well, hatchery protocol may impart inadvertent directional selection 172 

during artificial spawning, such as the propagation of the least shy fish because they 173 

may be the most easily caught (Bekkevold et al. 2006). Because natural and sexual 174 

selection are relaxed or removed in culture environments, those phenotypes that 175 

arise through domestication selection that would be disadvantageous in the wild are 176 

not purged and continue to be propagated. 177 

Fish reared in commercial aquaculture are generally the product of 178 

broodstocks that have undergone directed artificial selection for various traits that 179 

are of benefit to the producer [e.g. rapid growth (e.g. Myers et al. 2001, Fleming et al. 180 

2002, Small 2006, Gjedrem 2010), delayed maturity (e.g. Fleming et al. 2002, Kause 181 

et al. 2003, Gjedrem 2010), high-density production (e.g. Ridha 2006, Trenzado et al. 182 
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2006), disease resistance (e.g. Nichols et al. 2003, Antonello et al. 2009) and greater 183 

feed conversion efficiency (e.g. Kause et al. 2006)]. Furthermore, in aquaculture 184 

there is often an incentive to utilize a broodstock outside of the range of its native 185 

population because of a wish to expand aquaculture production for a species into an 186 

area for which a local broodstock does not exist (Withler et al. 1994, McGinnity et al. 187 

1997), or because the non-native broodstock outperforms the native one (De 188 

Innocentiis et al. 2005). Thus the broodstock and hence the fish stocked to cages and 189 

which have the potential to escape, will be genetically differentiated from wild 190 

populations. 191 

Research, primarily in salmonid fishes, has shown that because of these 192 

phenotypic and genotypic differences, interaction between wild and cultured fish 193 

can lower the fitness of fish in the wild population through genetic (e.g. introduction 194 

of non-local alleles and breakdown of co-adapted gene complexes) or non-genetic 195 

(e.g. reduced reproductive success because of behavioural differences) (Fleming et 196 

al. 2000, McGinnity et al. 2003, McGinnity et al. 2009), and that carry-over effects 197 

and repeated introgressions can lead to cumulative fitness effects (Miller et al. 2004, 198 

Araki et al. 2009). Much of the study of wild/farmed interaction has focused on 199 

Atlantic salmon (Salmo salar; e.g. McGinnity et al. 1997, Fleming et al. 2000, Fraser et 200 

al. 2010a, Glover 2010), a species that is often considered representative of 201 

salmonids in general, and as such provides a good example of the risks and 202 

consequences of introgression. The anadromous life cycle of Atlantic salmon, 203 
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especially their homing behaviour, leads to reduced gene flow between populations 204 

and consequently the development of local adaptation (e.g. Garcia de Leaniz et al. 205 

2007, Fraser et al. 2011).  206 

Posit that local adaptation in this scenario has arisen as the result of 207 

divergent natural selection for changes in allele frequencies among habitats 208 

(Lenormand 2002, Jensen et al. 2008), which is then reinforced by either poor 209 

performance in the local environment of migrants and of the hybrid offspring of 210 

local individuals and migrants. In an analogous fashion, even in the absence of 211 

directed artificial selection, hatchery environments impose selection pressures 212 

(and/or lack of natural selection) such that the farmed fish are de facto locally 213 

adapted to the farm environment (Vasemagi et al. 2012). In this scenario, escape of 214 

farmed fish can be thought of as being analogous to (very) long-distance natural 215 

dispersers (c.f. straying in salmon), and the literature would suggest their 216 

introgression into the native population would result in loss of genetic variation, 217 

breakdown of co-adapted gene complexes and breakdown of population structure 218 

(Laikre et al. 2010). The breakdown of co-adapted gene complexes would result in a 219 

loss of intrinsic adaptation, while the introduction or replacement of local with 220 

foreign alleles would cause a loss of extrinsic adaptation (Laikre et al. 2010).  221 

However, while the same genetic consequences of introgression of farmed 222 

fish with wild populations would be predicted for non-salmonid species, simply 223 
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extending salmonid findings to marine species, each of which has disparate life 224 

histories, reproduction, and population genetic differentiation, is imprudent 225 

(Bekkevold et al. 2006). As an example, and the focus of this thesis, Atlantic cod 226 

(Gadus morhua) have been shown to exhibit genetic differentiation beyond simple 227 

isolation by distance. Genetic differentiation in cod as a species has arisen as a result 228 

of the resident nature of some populations (Ruzzante et al. 2000, Morris & Green 229 

2002), retention of eggs within an area by prevailing currents (Espeland et al. 2007, 230 

Jørstad et al. 2008), or the seasonal return to spawning grounds by migratory cod 231 

populations (Robichaud & Rose 2001, Skjæraasen et al. 2011). These processes have 232 

resulted in a pattern of genetic differentiation among cod populations at both large 233 

(Pogson et al. 1995, Hutchinson et al. 2001, Pogson et al. 2001) and small scales 234 

(Pogson et al. 2001, Imsland & Jónsdóttir 2003 (review), Knutsen et al. 2003), 235 

including some evidence of local adaptation (Pogson & Fevolden 2003, Andersen et 236 

al. 2009, Bradbury et al. 2010, Beirão et al. 2015). The differences in biology and life-237 

history between cod, and salmonids means that the results of salmonid studies 238 

should not simply be assumed to be true of cod. Therefore, all potential outcomes of 239 

interaction between escaped and wild cod, the competitive ability and reproductive 240 

success of escaped individuals relative to wild, through to the fitness outcome of 241 

hybridizations between genetically divergent populations must be tested.  242 

At the turn of the millennium, government and aquaculture industry leaders 243 

in Canada sought to diversify the Canadian aquaculture industry and began 244 
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development of research and culture programmes for alternative species, including 245 

Atlantic cod. Through these programmes, experimental cod broodstocks were 246 

created from wild-caught fish, and their offspring were stocked to commercial cage 247 

aquaculture farms. These first-generation farmed cod afforded me the unique 248 

opportunity to study the effects of exposure to the aquaculture environment, and the 249 

interaction between cultured and wild fish in a species that had not experienced the 250 

intensive selection regimes common in more established species (e.g., Atlantic 251 

salmon). 252 

This thesis explores the potential for interaction and interbreeding between 253 

wild and farmed cod, comprises the results of three experimental studies, and a 254 

related systematic review and meta-analysis.  255 

The second chapter, published in the journal Aquaculture Environment 256 

Interactions (Wringe et al. 2015a), is an examination of the effect that exposure to 257 

culture has on the morphology cod relative to that wild fish from their founder 258 

population. Morphological differentiation relative to their wild progenitors resultant 259 

from their exposure to cultured conditions has been variously noted for farmed 260 

fishes (e.g. Fleming et al. 1994, Higgins et al. 2010, Uglem et al. 2011, Arechavala-261 

Lopez et al. 2012), and perhaps more surprisingly in fishes reared in hatcheries for 262 

intentional release (e.g. Taylor 1986, Rogdakis et al. 2011, Tiffan & Connor 2011). 263 

Many of the morphological features that have been found to differ between cultured 264 
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and wild fish should have implications for their relative fitness, and could contribute 265 

in part to the observed poor performance of escapees and stocked fish. In addition to 266 

effects on locomotion (Webb 1984) and prey capture (Huskey & Turingan 2001, 267 

Frederich et al. 2008), given the seeming importance of morphology, and secondary 268 

sexual characteristics in the mating system of cod (Skjæraasen et al. 2006a, Rowe et 269 

al. 2008, Skjæraasen et al. 2008), deviations from wild-type phenotype may have 270 

fitness consequences for cultured cod. In light of this, I tested differences in the 271 

morphology of wild and cultured cod, both to examine the (plastic) effect of 272 

exposure to culture, and to hypothesize the effect on fitness any observed change 273 

may impart. 274 

The third chapter is an offshoot of the second chapter based on the inference 275 

that cultured individuals of many species can be readily distinguished visually from 276 

their wild conspecifics because of differences in morphology caused by cultured 277 

rearing, and that many of the features, and the direction in which they differ from 278 

cultured to wild fish are similar for multiple species (e.g. Balon 1995, Busack et al. 279 

2007, Uglem et al. 2011, Arechavala-Lopez et al. 2013a). The environments 280 

experienced by fishes in culture appear to be more similar to each other than are the 281 

environments experienced by their wild conspecifics. In light of this, it is possible 282 

that cultured fishes may converge on a stereotypical “cultured phenotype”. A 283 

systematic review of the literature based on PRISMA best practice protocols was 284 

performed, and then these results were used to conduct a meta-analysis and vote-285 
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counting analysis to test for the existence of such a “cultured phenotype”. This 286 

chapter is currently under review in the journal Reviews in Fish Biology and Fisheries. 287 

The fourth chapter, published in the journal Marine Ecology Progress Series 288 

(Wringe et al. 2015b), is a comparison of the mating success of individual cultured 289 

and wild male cod in the presence of a cultured female using spawning trios. This 290 

experiment examines the reproductive competitive abilities of cultured and wild 291 

males, and hence the potential for genetic introgression following escape events.  292 

After comparing the potential for hybridization between wild and farmed cod 293 

in chapter in chapter four, I sought to evaluate the potential consequences of 294 

hybridization. The fifth chapter is an examination of the fitness of hybrids of cod 295 

from two genetically distinct populations relative to their founder populations at 296 

different temperatures. Two separate broodstocks of cod were simultaneously 297 

developed from wild-caught fish in New Brunswick and Newfoundland and were the 298 

parents of the fish used in this experiment. These two populations have been shown 299 

to differ genetically, in a fashion that is indicative of positive temperature-related 300 

selection (Bradbury et al. 2010), and thus their hybridization may result in offspring 301 

with reduced fitness compared to the parental strains.  302 

  303 
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Chapter 2 – Rapid morphological divergence of cultured cod of the 304 

northwest Atlantic from their source population. 305 

2.1 Abstract 306 

The performance of aquaculture escapees in the wild depends in part on how their 307 

morphology differs from that of wild fish. We compared farmed Atlantic cod (Gadus 308 

morhua) morphology to that of wild cod from the same ancestral population. 309 

Traditional and geometric morphometrics showed that farmed cod had relatively 310 

smaller fins, heads, eyes, and jaws than wild cod for a given size. Conversely, 311 

drumming muscle size and metrics of body and liver condition were greater in 312 

farmed fish. As the observed differences are likely due to phenotypic plasticity, their 313 

fitness consequences for escaped farmed fish may be transient.  314 

2.2 Introduction  315 

Fish exposed to culture develop phenotypes that differ from those of their wild 316 

counterparts (Fleming & Gross 1994, Araki et al. 2008, Bailey et al. 2010, Chittenden 317 

et al. 2010); phenotypes that may be beneficial under culture but may reduce the 318 

fitness of an individual when exposed to another environment (e.g. the wild 319 

environment following escape). These cultured phenotypes can be the product of a 320 

plastic response whereby different phenotypes can be expressed by a single 321 

genotype in response to different environmental conditions (Imre et al. 2002, 322 

Skjæraasen et al. 2008, Mayer et al. 2011, Vehanen & Huusko 2011), or these 323 
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phenotypes may be the result of genetic changes brought about through both 324 

intentional and unintentional selection (Fleming et al. 1994, Einum & Fleming 2001, 325 

Fleming & Petersson 2001, Hutchings & Fraser 2008, Solberg et al. 2013). The 326 

degree of phenotypic change, and its permanence, are both a function of the time an 327 

individual has spent in captive conditions (Pakkasmaa et al. 1998, von Cramon-328 

Taubadel et al. 2005), as well as the degree of genetic change from the ancestral 329 

lineage due to captivity (Fleming et al. 1994, Blanchet et al. 2008, reviewed by: 330 

Hutchings & Fraser 2008, Fraser et al. 2010a). Thus if it is presumed that the 331 

phenotypes of wild fish are the product of adaptation to their local environment, 332 

then the degree to which the phenotype of cultured fish diverges from this is likely a 333 

reflection of how maladaptive the cultured phenotype may be if exposed to the wild 334 

environment. Furthermore, the ‘permanence’ of the cultured fish’s phenotype, or the 335 

degree to which phenotypic plasticity allows it to (re)converge on a wild-type 336 

phenotype over time at liberty, may result in a life-time fitness difference between 337 

the two groups that is lower than would be predicted based on morphological 338 

differences at the time of escape. 339 

Through programmes that sought to diversify the Canadian aquaculture 340 

industry, experimental Atlantic cod (Gadus morhua) broodstocks were created from 341 

wild-caught fish, and their offspring were stocked to commercial cage aquaculture 342 

farms. These first-generation farmed cod afforded us the unique opportunity to 343 

study the morphological effects of exposure to the aquaculture environment on fish 344 
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that had not experienced the intensive selection regimes common in more 345 

established species (e.g., Atlantic salmon, Salmo salar). We compared the 346 

morphology of wild cod to farmed individuals created from wild-caught parents that 347 

were genetically similar to our wild fish. We then discuss the differences in 348 

morphology in terms of potential fitness effects on escapees in the wild. 349 

2.3 Materials and Methods 350 

2.3.1 Data Collection 351 

Farmed cod were the progeny of wild-caught fish from Bay Bulls, Newfoundland, 352 

Canada (47° 18’ N, 52° 48’ W; NAFO division 3L; Figure 2.1), which were spawned 353 

between December 2006 and March 2007. The farmed cod were reared in tanks at 354 

Memorial University from fertilization until they were transferred en masse to 355 

Sapphire Sea Farms’ net-pen facility in Bay Bulls on 30 November 2008. Some of 356 

them (N = 112) were sampled between 4 and 9 November, 2009 during the annual 357 

harvest. 358 

Wild cod were captured using baited cod pots on 10 (N = 38) and 20 (N = 19) 359 

November 2009 in Smith Sound, Newfoundland (48° 9’ N, 53° 44’ W; NAFO division 360 

3L; Figure 2.1).  Cod of Smith Sound and Bay Bulls are thought to be of the same 361 

stock, being genetically similar (Beacham et al. 2002, Bradbury et al. 2010, Rose et 362 

al. 2011). The wild fish were held in a tank and measured 2-3 weeks after collection. 363 

The farmed and wild cod were held without feeding prior to measuring to ensure 364 
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gut contents did not bias weight or shape measures, and only fish free of obvious 365 

skeletal defect were included in the analysis. 366 

After being killed fish were kept on ice before being arranged left side up, 367 

with their median and caudal fins extended and pinned in place, and photographed 368 

with a digital camera (Nikon D300) mounted on a tripod. A ruler was included in 369 

each photograph to allow for size calibration. 370 

After photographing, the right and left pelvic fin lengths (the distance from 371 

the origin of the fin to the tip of the longest fin ray) were measured (± 0.01 cm) with 372 

digital callipers because they could not be measured from the photographs. Fish 373 

were weighed whole (± 0.01 g), sexed when the internal organs were removed, and 374 

the liver was weighed separately (± 0.01 g). Following the protocol of Rowe and 375 

Hutchings (2004a), both the right and left drumming muscles were removed and 376 

frozen, before being dried to constant mass and weighed together (± 0.001 g). 377 

Eighteen landmarks were recorded as x-y coordinates from the photographs 378 

using ImageJ (Schneider et al. 2012; http://rsb.info.nih.gov/ij/download.html; 379 

Figure 2.2). Standard lengths were measured as the distance between the 380 

anteriormost point of the premaxilla, to the posteriormost edge of the hypural plate 381 

(points 1 and 8 respectively; Figure 2.2). The dorsal and anal fin lengths and widths 382 

were measured as the distance from the fin origin to the tip of the second fin ray, 383 

which was the longest, and as the distance along the fin base from its origin to its 384 
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distal insertion, respectively (Figure 2.2). Unforeseen variation in fin attitude and 385 

extension prevented measurement of the size of the left pectoral fin from the digital 386 

photographs. A small number of farmed fish (10 of 112) showed malformed fins, 387 

which were excluded from the analysis. 388 

2.3.2 Size standardization and calculation of condition indices 389 

Size standardization was employed so that only relative differences in trait size 390 

between the two origins (i.e. wild or farmed) were considered. The lengths and 391 

widths of the dorsal and anal fins, the lengths of the pelvic fins and the weight of the 392 

drumming muscles were log10 transformed and then were standardized using the 393 

method of Reist (1986b). Each of these traits was standardized for each fish using 394 

the formula Mst = Mobs(Szmean/Szobs)b, where: M is the trait measure, Sz is the size 395 

measure to which samples are standardized, b is the trait-specific common within-396 

groups slope and the subscripts mean, obs and std refer to the mean, observed (raw) 397 

and the size-standardized measurements, respectively. The weight of the drumming 398 

muscles was standardized to a common body weight, while the length and width 399 

measurements were standardized to a common centroid size. The centroid size, the 400 

square root of the sum of the squared distances of each peripheral landmark (i.e. 401 

excluding points 13, 14, 17, and 18; Figure 2.2) to the centroid, was calculated in R 402 

(R Development Core Team 2015) using the function gpagen (geomorph package; 403 

Adams & Otárola-Castillo 2013).   404 
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 Condition indices were calculated for each fish by taking the standardized 405 

residuals of the regression of log10-transformed standard length on the log10-406 

transformed total weight (CI). The liver indices (LI), were calculated similarly from 407 

the regression of the log10-transformed weight of the liver on the log10-transformed 408 

total weight. The standardized residuals convey the condition status of each fish. 409 

Positive residuals indicate that the fish is heavier, or possesses a heavier liver for 410 

their size than the average, while negative residuals indicate the opposite.  411 

2.3.3 Traditional morphometric, geometric morphometric, and statistical 412 

analyses 413 

All statistical and geometric morphometric analyses were conducted in R (R 414 

Development Core Team 2015). The traditional morphometric analyses consisted of 415 

testing for differences in size-standardized drumming muscle mass, dorsal and anal 416 

fin lengths and widths, pelvic fin lengths, as well as CI, and LI individually between 417 

fish origins (i.e. wild or farmed) using a linear model with permutation (lmp 418 

function, lmPerm package; Wheeler 2010) and type-III sums-of-squares (Anova 419 

function, car package Fox & Weisberg 2011) with sex and origin as fixed effects. 420 

Using permutation removes the necessity that the data satisfy the assumptions of 421 

traditional parametric tests, and allows for the calculation of exact significance 422 

levels. The issue of multiple hypothesis testing was addressed by the use of adjusted 423 

p-values, with the false discovery rate set to α = 0.05 (Benjamini & Hochberg 1995).  424 
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Principal component analysis (PCA), with varimax rotation (prcomp function, 425 

stats package; R Development Core Team 2015), was also conducted as part of the 426 

traditional morphometric analysis to reduce the number of parameters, using all 427 

morphometric measures listed in Table 2.1, with the exception of standard length, 428 

total weight and drumming muscle mass. Standard length and total weight were 429 

excluded because they represent differences in fish size rather than shape (size 430 

standardized). Drumming muscle mass was also excluded because it had missing 431 

values which caused the sample size to drop appreciably. All principle components 432 

(PC) with eigenvalues greater than the mean eigenvalue were considered significant 433 

(Jackson 1993). 434 

Geometric morphometric analyses were conducted using the R packages 435 

shapes (Dryden 2013) and geomorph (Adams & Otárola-Castillo 2013). The x-y 436 

coordinates collected from the photographs of the fish were first converted to shape 437 

coordinates using generalized Procrustes analysis (GPA; Adams et al. 2004). GPA 438 

removes the non-shape aspects of size, (scaling), orientation and location from the 439 

raw x-y coordinates, and also standardizes each individual to a common unit 440 

centroid size (Rohlf 1999, Adams et al. 2004).  441 

The amount of shape variation attributable to the different origins of the fish 442 

(controlling for sex) was quantified using Procrustes ANOVA with permutation, 443 

which compares the observed sum-of-squared Procrustes distances to an expected 444 
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distribution which is calculated through permutation (Goodall 1991). PCA was also 445 

conducted on the configuration of the specimens into principal warp space to detect 446 

the major features of the shape variation. Differences in PC scores between origins 447 

were tested using linear models with sex and origin as fixed effects.  448 

2.4 Results 449 

2.4.1 Traditional morphometrics 450 

No interactions were detected between sex and origin. Within origin, the size-451 

adjusted dried mass of the drumming muscles was greater in males than in females 452 

(Table 2.1). However, females were bigger and their LI were greater, than those of 453 

the males (Table 2.1). All size-adjusted morphometric measures, with the exception 454 

of the width of the first dorsal fin, differed significantly between wild and farmed 455 

cod (Table 2.1).  456 

The first four PCs all had eigenvalues greater than the mean eigenvalue, and 457 

cumulatively explained 74.3% of the variation in traditional morphometric variables 458 

(Table 2.2). The loadings of wild and farmed fish on PCs 1 and 2 differed 459 

significantly (t-test, p < 0.001), while there was no significant difference on PCs 3 460 

and 4 (t-test, both p > 0.05; Figure 2.3; PC4 not shown).  461 

The first PC, which explains 44.3% of the variation, was characterized by 462 

negative loading of the fin measures, particularly fin lengths (Table 2.2). PC2 463 
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explained 12.6% of the variation, and for the most part is described by positive 464 

loadings from CI, LI and fin widths. Interestingly, on PC2, the fin widths showed 465 

moderate to strong positive loadings, while their lengths showed near zero to 466 

moderately negative loadings (Table 2.2). 467 

2.4.2 Geometric morphometrics 468 

ANOVA with permutation on the Procrustes-aligned coordinates of the wild and 469 

farmed cod revealed that there was a significant interaction between sex and origin 470 

(F1,140 = 6.112, p<0.001). Within-origin analysis showed that the shape of the wild 471 

males differed from that of the wild females, and the same was true for farmed 472 

males and females (both p < 0.05). Testing within sexes, the shape of both farmed 473 

females and males was different from that of their wild counterparts (both p < 474 

0.001).    475 

 Principle component analysis of the configuration of the wild and farmed 476 

specimens into the principle warp space revealed 7 PCs with eigenvalues greater 477 

than the mean eigenvalue, and cumulatively explained 81.90% of the variance. Like 478 

the ANOVA above, the scores on PC1 and PC2 showed a significant interaction 479 

between sex and origin (both p < 0.05; Figure 2.4). That said, Figure 2.4 shows a 480 

clear separation between wild and farmed fish along PC2 (Figure 2.4). PC1 explained 481 

30.17% of the variance, and PC2 18.52%. PC1 was however significantly correlated 482 

with centroid size (Spearman’s rho -0.259, p < 0.01), indicating that the shape 483 
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differences described by the first PC were mainly related to size. There were no 484 

significant differences in shape between origins, sexes, or any interaction between 485 

the two for PCs 3-7 (all p > 0.05). 486 

Figure 2.5 depicts the difference in shape between farmed females relative to 487 

farmed males (Figure 2.5a), wild females relative to wild males (Figure 2.5b), 488 

farmed females relative to wild females (Figure 2.5c) and farmed males relative to 489 

wild males (Figure 2.5d), and is illustrative of the significant sex by origin 490 

interaction. Despite detecting significant statistical difference in shape between the 491 

farmed males and females, their consensus shapes appear to be quite congruent 492 

even when differences are magnified 3X (Figure 2.5a). Wild females appear to be 493 

shallower in the abdominal region than the wild males as indicated by the 494 

magnitude of the ventral displacements of points 2, 3 and 4 relative to point 12 495 

(refer to Figure 2.1 for description of points and Figure 2.5b for relative 496 

displacement of points). This difference in body depth seems to be confined to the 497 

abdominal region because the displacement of the points on the dorsal surface are 498 

offset by the displacement of the points opposite them on the ventral surface in the 499 

head (points 1, 13, 15, 16, and 18), and caudal regions (points 5, 6, 7, 9, 10, and 11; 500 

Figure 2.5b).  501 

Farmed males and females both show a reduction in head size and caudal 502 

peduncle length relative to their wild counterparts (females: Figure 2.5c; males: 503 
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Figure 2.5d). The smaller head size is evidenced by the posterior displacement of 504 

points 1, 16, 17 and 18, the anterior displacement of points 13 and 14, and the 505 

anteriodorsal displacement of point 15 (Figure 2.5c, d). Farmed males show a 506 

greater reduction in jaw length relative to wild males than farmed females do to wild 507 

females though (point 15; Figure 2.5c, d). The posterior displacement of points 6, 7 508 

(females), 9, and 10, while the midlateral portion of the hypural plate (point 8) 509 

remains relatively unchanged along the anteroposterior axis is indicative of a 510 

truncation of the caudal peduncle. Of particular note, the difference in abdominal 511 

region body depth between the farmed and wild females appears to be greater than 512 

the difference between the farmed and wild males (points 3,4 and 12; Figure 2.5c, 513 

d). It is worth noting that the dorsal rotation of point 8 in Figure 2.5b and d, appears 514 

most likely to be the result of subtle differences in the overall rotation, or curvature 515 

of the wild male specimens and likely should be taken as spurious.  516 

2.5 Discussion 517 

2.5.1 Differences between wild and farmed fish 518 

Farmed Atlantic cod experience an environment markedly different from that of 519 

wild cod. Differences include diet, water temperature and current, fish density, 520 

visual complexity and structure, all of which have been shown to plastically affect 521 

the growth, development and morphology of fishes (Currens et al. 1989, Adams & 522 

Huntingford 2002, Marcil et al. 2006b, Ambrosio et al. 2008). Not surprisingly, the 523 
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vast majority of morphological characters we measured differed significantly 524 

between wild and farmed individuals, as did their overall shape as evidenced by 525 

geometric morphometric analysis. Both traditional and geometric morphometrics 526 

indicated that farmed cod had relatively smaller head, jaw and fin measures, while 527 

their body depth, CI, and LI measures were larger than those of the wild cod.  528 

 The presence in cultured cod of greater CI and LI than wild cod has been 529 

widely documented (e.g. Lie et al. 1986, Svåsand et al. 1996, Grant et al. 1998, 530 

Purchase & Brown 2001) and is corroborated by our results. Given that the main site 531 

of lipid sequestration in cod is the liver, and liver size and lipid content are directly 532 

influenced by the lipid content of the feed, the observed differences in LI are likely 533 

reflective of the different diet and physical environment experienced by the wild and 534 

farmed cod (Lie et al. 1986, Lambert & Dutil 1997, Morais et al. 2001). Similarly, the 535 

greater CI, and the greater body depth of the farmed relative to the wild fish in this 536 

study are both related to the farmed cod having a higher LI (liver and as 537 

consequence visceral mass).  538 

 Like what was seen for body depth and LI, the different head morphology in 539 

the farmed and wild cod was also likely the result of differences in diet and perhaps 540 

to a lesser extent physical environment. The jaw and head morphology of fishes have 541 

been shown to be highly phenotypically plastic, and this plastic response is related 542 

to, and influenced by the fish’s diet. While studies on the phenotypic effects of 543 
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different diets are lacking in cod, studies in other species have indicated that smaller 544 

heads and jaws are seen in fish which are fed non-elusive, prepared diets (Meyer 545 

1987, Wintzer & Motta 2005), as well as in fish fed a greater ration (Currens et al. 546 

1989). These features are characteristic of the pellet diet, and feeding regime of 547 

farmed cod, and relatively smaller heads and jaws have been previously observed in 548 

cultured cod (Uglem et al. 2011).  549 

Among the head features that were found to be relatively smaller in the 550 

farmed than the wild fish was the size of their eyes. Apart from simply being 551 

proportional to the head size, Devlin et al. (2012) have suggested that the eye 552 

development of rapidly growing fish becomes decoupled from their somatic growth 553 

resulting in a negative allometry.  554 

The most consistently observed differences between multiple species of wild 555 

and cultured fish are that cultured fish tend to develop relatively smaller fins of all 556 

types (e.g. Lund et al. 1989, Swain et al. 1991, Rogdakis et al. 2011, Patiyal et al. 557 

2013). In some cases, this difference in size is the result of the fins of the cultured 558 

fish being either damaged or malformed (Bosakowski & Wagner 1994, Latremouille 559 

2003, Hatlen et al. 2006, Blanchet et al. 2008, Chittenden et al. 2010). However, it is 560 

unlikely contemporary fin damage or malformation affected the results of the 561 

current study. The fins of both the wild and farmed fish were checked for signs of 562 

damage (e.g. clubbing, or abrasion of fin margin etc.) or deformity, and 563 
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measurements from any deformed fins were excluded from the analysis. Whether 564 

past damage, or abrasion may have resulted in stunting of the size of the farmed 565 

cod’s fins is also unclear given the behaviour of cod (decreased wounding with fish 566 

size; Hatlen et al. (2006)), as well as the great capacity for organ and tissue 567 

regeneration present in fish (Azevedo et al. 2011, Shao et al. 2011). It is possible that 568 

the smaller fins of the cultured cod resulted in part from a plastic response to water 569 

current. Studies in salmonids have shown that lower current velocity, and variability 570 

experienced in culture can lead to relatively smaller fins (Pakkasmaa & Piironen 571 

2000, Wessel et al. 2006, Keeley et al. 2007). Similarly, when compared to wild fish, 572 

farmed cod likely experience similar reductions in water velocity, and hence similar 573 

plastic effects on fin size could be expected in our study. 574 

Considering all the observed differences between the farmed and wild cod in 575 

our study, the congruence between our results, and those of Uglem et al. (2011), the 576 

only other study of differences in adult morphology between wild and farmed cod in 577 

which sufficient information is reported to allow comparison is impressive. This is 578 

especially true given that the populations examined are thought to have been 579 

isolated for at least 100 000 years (Bigg et al. 2008b). This suggests that the 580 

observed differences may represent a stereotypical plastic response of Atlantic cod 581 

to culture.  582 
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2.5.2 Differences between sexes 583 

Cod drumming muscle weight (Engen & Folstad 1999, Rowe & Hutchings 2004a, 584 

Skjæraasen et al. 2006b, Skjæraasen et al. 2008) and the length of the pelvic fins 585 

(Skjæraasen et al. 2006b, Skjæraasen et al. 2008, Skjæraasen et al. 2012) have been 586 

shown to be sexually dimorphic in other studies, and our results found this to be 587 

true of drumming muscle weight, but marginally not so for pelvic fin length. Both 588 

traits are suspected to play important roles in mate choice (Skjæraasen et al. 2006b, 589 

Rowe & Hutchings 2008, Skjæraasen et al. 2012) and in the case of the pelvic fins, in 590 

maintaining ventral alignment during gamete release (Skjæraasen et al. 2008). 591 

Sampling time, and differences in the maturation schedule of male and female 592 

cod likely account for the observed differences in body depth, body mass and LI, and 593 

perhaps to some extent drumming muscle mass. Seasonal gonad ripening in cod 594 

from this population generally begins at about the same time these fish were 595 

sampled (Rideout & Burton 2000). Male Atlantic cod (cultured and wild) generally 596 

begin to mature, and have functionally mature gonads earlier in the season than 597 

females. During maturation, males cease feeding and exhibit a concomitant decrease 598 

in body mass and marked hypertrophy of the testes and drumming muscles, while 599 

maintaining an LI lower than that of females throughout their reproductive cycle 600 

(Fordham & Trippel 1999, Rideout & Burton 2000, Rowe & Hutchings 2004a, 601 

Solberg & Willumsen 2008).  602 
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2.5.3 Implications 603 

When cultured cod escape from net-pens they interact with wild cod, and are 604 

subjected to the selective pressures of the natural environment (Moe et al. 2007, 605 

Damsgård et al. 2012, Zimmermann et al. 2012). It is likely that the morphology 606 

developed by the cod in culture will be to some degree maladaptive in the wild, and 607 

thus any escapees will experience lower fitness than their wild counterparts, as has 608 

been seen in other species (Fleming et al. 2000, McGinnity et al. 2003, Meager et al. 609 

2010, Skaala et al. 2012). 610 

The differences in fin size and body condition we documented may result in 611 

different swimming performance. However the relationship between them in cod, 612 

and other species is not always clear (Rose et al. 1995, Reidy et al. 2000). Fitness 613 

effects of the fins may also extend to reproduction, with the relatively smaller fins of 614 

the farmed cod imparting a competitive disadvantage during both male-male 615 

agonistic interaction and courtship display. Extension of the median fins is a 616 

component of male Atlantic cod’s “flaunting display” (shown to both males and 617 

females; Brawn 1961) and pelvic fins are used both for display (Skjæraasen et al. 618 

2010), and to grasp the female and maintain alignment of their urogenital openings 619 

during ventral mount (Brawn 1961, Rowe et al. 2008). Moreover, some evidence 620 

suggests pelvic fin size may be related to spawning success (Rowe et al. 2008). Such 621 

effects may, however, be mitigated to some extent by transience in the differences in 622 

fin sizes resulting from convergence through plasticity towards the wild phenotype 623 
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following escape as noted in gilthead sea bream (Sparus aurata; Arechavala-Lopez et 624 

al. 2013b), and the same is likely true of condition (CI and LI; Nordeide et al. 1994, 625 

Jacobsen & Hansen 2001).  626 

It is perhaps intuitive to believe that that morphological characters will differ 627 

in their capacity to plastically converge or revert to a wild phenotype. However, 628 

there have been documented instances of bony features showing morphological 629 

change/re-convergence with wild-type phenotype (Wintzer & Motta 2005, Rogdakis 630 

et al. 2011, Arechavala-Lopez et al. 2013a, Arechavala-Lopez et al. 2013b), but there 631 

is evidence this ability differs with age (Adams & Huntingford 2002). Thus, 632 

predicting, which morphological changes observed in these cultured cod will be 633 

more permanent than others is difficult. 634 

It is worth reiterating that the fish in this study are first-generation offspring 635 

of wild-caught parents, and while a single generation in captivity has been shown to 636 

affect the fitness of cultured fish (Fleming et al. 1997, Milot et al. 2013), increased 637 

generations under selection in a cultured environment can lead to genetic changes 638 

(Reviewed by: Hutchings & Fraser 2008, Nguyen 2015). Such genetic changes could 639 

result in permanent phenotypic changes relative to the wild fish, even if they are 640 

exposed to the same environment (i.e. after escape; Araki et al. 2008, Christie et al. 641 

2012, Milot et al. 2013). Therefore, any realized differences in fitness caused by the 642 

morphological differentiation between wild and cod observed in this study, would 643 
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likely be inflated by genotypic, and consequent phenotypic changes that accumulate 644 

over time through both deliberate and inadvertent selection.   645 
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2.7 Tables 659 

Table 2.1 Mean (± SD) morphometric measures and analyses by sex and 660 

framed/wild origin Atlantic cod (Gadus morhua). Standard length and weight 661 

measures are unstandardized, and the calculation of CI and LI includes an inherent 662 

standardization. Drumming muscle weight has been standardized to a common 663 

weight, while all other measures have been standardized to a common centroid size. 664 

DM is the combined dried mass of the right and left drumming muscles. DF1, DF2, 665 

DF3, refers to the first through third dorsal fins, PF denotes the pelvic fins and AF1 666 

and AF2, are the first and second anal fins, respectively. There were no significant 667 

interactions between sex and origin for any of the measures. Adjusted p-values are 668 

shown, and those significant are bolded. 669 
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 670 

671 
Measure Farmed Male Wild Male Farmed Female Wild Female Sex Origin 

   n = 45  n = 44 n = 28   n = 19 F-value p-value F-value p-value 

Standard Length (mm) 419 ± 40 484 ± 60 435 ± 33 516 ± 51 10.69 0.016 113.63 <0.001 

Weight (g) 1056 ± 279 1377 ± 409 1158 ± 321 1583 ± 367 8.16 0.027 55.01 <0.001 

Condition Index (CI) 0.10 ± 1.13 -0.20 ± 0.84 0.16 ± 1.11 -0.21 ± 0.66 0.04 0.837 4.85 0.033 

Liver Index (LI) 0.48 ± 0.60 -1.15 ± 0.72 0.75 ± 0.54 -0.80 ± 0.74 9.99 0.016 267.45 <0.001 

DM Weight (g) 0.23 ± 0.07 0.18 ± 0.06 0.20 ± 0.09 0.12 ± 0.05 8.33 0.020 3.39 <0.001 

DF1 Length (mm) 49.61 ± 3.67 65.71 ± 4.83 49.26 ± 3.85 65.63 ± 7.09 0.14 0.751 333.48 <0.001 

DF1 Width (mm) 67.70 ± 4.39 66.20 ± 5.41 66.89 ± 4.38 67.44 ± 4.74 0.19 0.751 0.11 0.737 

DF2 Length (mm) 45.35 ± 3.09 53.82 ± 3.38 44.13 ± 3.83 54.3 ± 2.51 2.15 0.411 205.52 <0.001 

DF2 Width (mm) 100.91 ± 7.35 104.65 ± 6.38 99.83 ± 7.21 106.14 ± 3.69 0.17 0.751 15.05 <0.001 

DF3 Length (mm) 42.80 ± 3.69 53.60 ± 4.40 42.18 ± 3.66 52.76 ± 3.31 1.14 0.699 211.18 <0.001 

DF3 Width (mm) 66.03 ± 6.09 73.44 ± 5.91 65.31 ± 5.12 72.31 ± 3.88 0.78 0.713 43.81 <0.001 

AF1 Length (mm) 44.23 ± 7.87 52.98 ± 6.32 42.61 ± 3.52 55.15 ± 7.40 0.47 0.751 73.60 <0.001 

AF1 Width (mm) 91.47 ± 8.47 95.70 ± 6.20 91.07 ± 5.62 99.41 ± 7.12 0.21 0.751 21.64 <0.001 

AF2 Length (mm) 38.09 ± 3.01 50.04 ± 4.83 37.53 ± 2.44 50.84 ± 3.26 0.22 0.751 437.14 <0.001 

AF2 Width (mm) 61.52 ± 5.84 67.39 ± 3.31 60.89 ± 4.59 67.36 ± 2.92 0.35 0.751 41.40 <0.001 

Right PF Length (mm) 47.47 ± 4.41 62.10 ± 6.05 45.99 ± 5.09 58.61 ± 6.16 5.10 0.087 177.45 <0.001 

Left PF Length (mm) 50.32 ± 4.32 61.61 ± 5.42 48.45 ± 3.89 59.62 ± 5.33 6.38 0.054 162.10 <0.001 
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Table 2.2 The percentage of explained variance, eigenvalues and the loadings of the 672 

measurements included in the PCA (with varimax rotation) on the first four 673 

principal components (PCs), for the farmed and wild Atlantic cod (Gadus morhua). 674 

DF, AF, and PF refer to the, dorsal, anal and pelvic fins respectively, and their 675 

corresponding numbering begins with the most anterior fin. CI and LI are the 676 

standardized residuals of the regression of standard length, and liver weight on total 677 

weight respectively. Fin sizes were standardized to a common centroid size, while 678 

the calculation of CI and LI includes an inherent standardization. 679 

  680 
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 681 

 682 

 683 

 684 

  685 

686 

Measure PC1 PC2 PC3 PC4 

Condition Index (CI) -0.01 0.54 -0.15 0.51 

Liver Index (LI) 0.25 0.43 -0.13 0.21 

DF1 Length (mm) -0.36 0.04 -0.06 0.09 

DF1 Width (mm) 0.00 0.43 -0.33 -0.10 

DF2 Length (mm) -0.33 0.00 0.14 0.19 

DF2 Width (mm) -0.17 0.33 0.61 -0.13 

DF3 Length (mm) -0.35 0.01 0.04 0.00 

DF3 Width (mm) -0.22 0.12 -0.37 -0.47 

AF1 Length (mm) -0.25 -0.17 -0.06 0.04 

AF1 Width (mm) -0.22 0.34 0.40 -0.25 

AF2 Length (mm) -0.37 0.00 0.06 0.17 

AF2 Width (mm) -0.25 0.19 -0.32 -0.42 

Right PF Length (mm) -0.31 -0.10 -0.13 0.31 

Left PF Length (mm) -0.32 -0.14 -0.20 0.22 

Percentage of Variance 44.34 12.56 8.84 8.53 

Eigenvalue 6.21 1.76 1.24 1.19 
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2.8 Figures 687 

 688 

Figure 2.1 Map of the island of Newfoundland, Canada, showing the locations of 689 

sample collection. 690 

  691 
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 692 

Figure 2.2 Locations of landmark points recorded on Atlantic cod (Gadus morhua). 693 

1) Anteriormost point of premaxilla; 2) origin of the first dorsal fin (DF1); 3) 694 

insertion of DF1; 4) origin of the second dorsal fin (DF2); 5) insertion of DF2; 6) 695 

origin of the third dorsal fin (DF3); 7) insertion of DF3; 8) posteriormost point of the 696 

hypural plate; 9) insertion of the second anal fin (AF2); 10) origin of AF2; 11) 697 

insertion of the first anal fin (AF1); 12) origin of AF1; 13) origin of pectoral fin; 14) 698 

posteriormost point of the operculum; 15) posteriormost point of the maxilla; 16) 699 

anteriormost point of the dentary; 17) anteriormost point of the eye; 18) 700 

posteriormost point of the eye directly across from point 17. 701 

 702 
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 703 

Figure 2.3 Individual factor scores for the first three principle components for the 704 

traditional morphometric analysis. Farmed Gadus morhua individuals (n = 108) are 705 

plotted using black circles, while red triangles are used for the wild (n = 36). 706 
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Figure 2.4 Gadus morhua. Ordination plot for the configurations of specimens into 711 

principle warp shape for the geometric morphometric analysis. Individuals are 712 

plotted by origin and sex using colour and shape respectively (farmed = black, wild = 713 

red, males = triangles, females = circles; farmed males n = 58, farmed females n = 50, 714 

wild males n = 13, wild females n = 23). The ellipses represent the 95% confidence 715 

interval for the groups. The same colour scheme is used to denote origins, but sexes 716 

are distinguished by line type (solid = males, dashed = females).  717 

  718 
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Figure 2.5 Gadus morhua. Magnitude and displacement of the consensus shapes of: 720 

a) farmed females (n = 50) relative to farmed males (n = 58); b) wild females (n = 721 

23) relative to wild males (n = 13); c) farmed females relative to wild females; d) 722 

farmed males relative to wild males. The red arrows indicate the direction and 723 

degree of displacement of the landmarks of the consensus shape of the first group 724 

relative to the black dots, which represent the location of landmarks on the 725 

consensus shape of the second group. The landmark numbering in b, c, and d is the 726 

same as that in a, and landmark numbers and descriptions are given in Figure 2.1. 727 

Displacements have been magnified 3X for easier visualization. The units for both 728 

the x- and y-axes are the Procrustes coordinates. 729 

  730 
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Chapter 3 – In search of a “cultured fish phenotype”: a systematic 731 

review, meta-analysis, and vote-counting analysis. 732 

3.1 Abstract 733 

That cultured fishes develop a morphology that differs from their wild conspecifics 734 

has become nearly axiomatic in fisheries science. A commonly supervened corollary 735 

is that exposure to culture causes a set of predictable and consistent morphological 736 

changes that result in a common “cultured phenotype” in fishes because the 737 

similarity of environments and selection pressures is greater among culture than 738 

natural environments. While this is often asserted, it has not been formally tested. A 739 

systematic review of the literature based on PRISMA best practice protocols 740 

identified 65 papers, composed of 106 studies that compared the morphology of 39 741 

species of cultured fish to their wild conspecifics. This formed the basis of a meta-742 

analysis of quantitative, and vote-counting analysis of qualitative differences (in this 743 

case this is akin to a chi-square test for differences in counts of three categories) in 744 

16 external morphological features and condition factor. My analyses confirm that 745 

aspects of a general “cultured phenotype” exist. The meta-analysis analysis revealed 746 

that cultured fish had consistently shorter fins and upper jaws than wild fish, and 747 

the vote-counting analysis was suggestive of this as well. The vote-counting analysis 748 

showed that across all studies cultured fish had greater body depth and condition 749 

factor than wild fish, but this was not supported by the meta-analysis. As well as 750 
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matching the morphological changes required to develop the “cultured phenotype”, 751 

the changes detected in our analyses are consistent with experimentally observed 752 

plastic responses to environmental conditions typical of those experienced in 753 

culture. This is discussed, as is how intentional and unintentional selection in culture 754 

may contribute to, or reinforce the observed morphological changes.  755 

3.2 Introduction 756 

Globally, the demand for fish product has outstripped what is available from capture 757 

fisheries and landings have plateaued. To meet this demand both the number of fish 758 

and number of species of fish in culture have increased over the past 50 years (FAO 759 

2014). In concert with this plateauing of capture fisheries is the realization that 760 

many of the world’s fish stocks are currently fully- or over-exploited, and that in 761 

some cases this is exacerbated by the degradation of habitat (Hutchings & Reynolds 762 

2004, Dobson et al. 2006, Wilberg et al. 2011). To this end, various supplementary 763 

hatchery programmes have been established worldwide as an effort to bolster 764 

natural populations and to offset human-mediated habitat loss (McDonald et al. 765 

2007, Kinziger et al. 2008, Tiffan & Connor 2011). The net result of both the increase 766 

in hatchery and aquaculture production is that a large and increasing number of fish 767 

that have been exposed to artificial culture conditions are being intentionally, or 768 

unintentionally (e.g. through escape from aquaculture) released into the wild and 769 

subsequently coming into contact with wild fishes (Poole et al. 2003, Jonsson & 770 

Jonsson 2006, Jørstad et al. 2008, McGinnity et al. 2009, Vehanen et al. 2009, 771 
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Chittenden et al. 2010, Fraser et al. 2010a, Rogdakis et al. 2011, Somarakis et al. 772 

2013). 773 

Exposure to culture conditions leads fish to develop phenotypes that differ 774 

from those of their wild counterparts, and that may be maladaptive in the wild 775 

(Fleming & Gross 1994, Araki et al. 2008, Bailey et al. 2010, Chittenden et al. 2010). 776 

Cultured phenotypes are the product of a plastic response whereby different 777 

phenotypes can be expressed by a single genotype in response to different 778 

environmental conditions (Imre et al. 2002, Skjæraasen et al. 2008, Mayer et al. 779 

2011, Vehanen & Huusko 2011), and/or genetic changes brought about through 780 

both intentional and unintentional selection (Fleming et al. 1994, reviwed by: Einum 781 

& Fleming 2001, Fleming & Petersson 2001, Hutchings & Fraser 2008, Solberg et al. 782 

2013, Colihueque & Araneda 2014). 783 

Most aquacultured species undergo breeding programmes with similar goals, 784 

such as rapid growth (e.g. Myers et al. 2001, Fleming et al. 2002, Thrower et al. 2004, 785 

Small 2006, Wringe et al. 2010), delayed maturity (e.g. Myers et al. 2001, Fleming et 786 

al. 2002, Wang et al. 2006, Wang et al. 2008, Gjedrem 2010), high-density 787 

production (e.g. Thorpe 1991, Kause et al. 2003, Gjedrem 2010), disease resistance 788 

(e.g. Ridha 2006, Trenzado et al. 2006) and greater feed conversion efficiency (e.g. 789 

Hulata 2001, Nichols et al. 2003, Antonello et al. 2009). Given that farmed fish are 790 

never intended to be released into the wild, these selection programmes often have 791 
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little or no regard for maintaining fitness of these fish in the wild or of maintaining a 792 

wild-type morphology, apart from ensuring the production of an ‘appealing’ 793 

phenotype for the consumer (e.g. Kause et al. 2006, Small 2006, reviewed by: 794 

Colihueque 2010, Colihueque & Araneda 2014). Conversely, supplementary 795 

hatchery programmes often strive to produce fish for release which will be viable in 796 

the wild, and which are similar in morphology to their wild counterparts (Iguchi & 797 

Mogi 2007, Belk et al. 2008, Blanchet et al. 2008, Brockmark & Johnsson 2010, Wilke 798 

et al. 2015). Despite the efforts of hatcheries, evidence suggests that the fitness of 799 

hatchery-produced fish is often lower than that of their wild conspecifics (Barahona-800 

Fernandes 1982, Svåsand et al. 2000, Miller et al. 2004, Araki et al. 2008, Gavaia et 801 

al. 2009).  802 

Differences in selection aside, it is important to note that the environments 803 

experienced by fishes in any type of culture tend to share many commonalities. 804 

These include low habitat complexity, stable and plentiful non-elusive feed, 805 

consistent water velocity, and high fish density, all of which have been shown to 806 

have predictable effects on fish morphology (e.g. Currens et al. 1989, McDonald et al. 807 

1998, Pakkasmaa & Piironen 2000, Purchase & Brown 2001, Imre et al. 2002, 808 

Langerhans et al. 2003, Latremouille 2003, Enders et al. 2004, Wintzer & Motta 809 

2005, Bureau et al. 2006, Marcil et al. 2006a, Ambrosio et al. 2008, Vehanen & 810 

Huusko 2011, Arechavala-Lopez et al. 2013b, Pulcini et al. 2014). In light of this, it is 811 

possible that cultured fishes may converge on a stereotypical “cultured phenotype” 812 
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(Fleming et al. 1994, Balon 1995, Pulcini et al. 2014) through similar plastic or 813 

adaptive responses because the environments they experience appear to be more 814 

similar to each other than are the environments experienced by their wild 815 

conspecifics. In fact, it is often suggested that cultured individuals of many species 816 

can be readily distinguished visually from their wild conspecifics because of 817 

differences in morphology caused by cultured rearing, and that many of the features, 818 

and the direction in which they differ from cultured to wild fish are similar for 819 

multiple species (e.g. Balon 1995, Busack et al. 2007, Uglem et al. 2011, Arechavala-820 

Lopez et al. 2013a). Morphological divergence of cultured fish from their wild 821 

conspecifics, which can be thought of as leading to the “cultured phenotype,” is 822 

generally said to include greater body depth and condition, but smaller fins, eyes 823 

and heads. Some researchers have gone so far as to suggest the degree of permanent 824 

phenotypic divergence caused by exposure to culture and the selection therein has 825 

been large enough to warrant the designation of farmed Atlantic salmon as a (sub-826 

)species distinct from wild Atlantic salmon (wild Salmo salar, Salmonidae; cultured 827 

S. salar domesticus; Gross 1998). 828 

Despite differences between cultured and wild fish having been reported for 829 

various species individually, and the commonality of these changes among species 830 

being alluded to, no formal test has been conducted to determine if exposure to 831 

culture conditions leads to a set of common morphological changes in fish exposed 832 

to culture relative to the morphology of their wild counterparts. To this end, we 833 
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performed a meta-analysis, as well as a vote-counting analysis (i.e. a chi-square test 834 

on the number of studies finding each of the three qualitative differences in 835 

morphological feature size), based on a systematic review that was conducted 836 

following PRISMA best practice protocols (Refer to Supplementary Table 3.1 for 837 

PRISMA (Liberati et al. 2009, Moher et al. 2009) Checklist) of the literature on 838 

morphological differentiation between cultured fish and their wild counterparts to 839 

determine if similar patterns of divergence are observed across species. In addition 840 

to just examining the effect of culture as a whole, we also determined the influence 841 

of a number of variables that could reasonably have an influence on the degree of 842 

phenotypic divergence observed.  843 

The degree of phenotypic change and its permanence are both a function of 844 

the time an individual has spent in captive conditions (Pakkasmaa et al. 1998, von 845 

Cramon-Taubadel et al. 2005), as well as the degree of genetic change in the cultured 846 

lineage (Fleming et al. 1994, Blanchet et al. 2008, reviewed by: Hutchings & Fraser 847 

2008, Fraser et al. 2010a). To this end, we examined whether the number of 848 

generations for which a population’s ancestral line had been in captivity influenced 849 

the degree of differentiation. As well, it was noted earlier that different types of 850 

culture may have different selection regimes and goals, thus we tested if the 851 

phenotypic divergence of fishes reared in hatcheries, farms or laboratories differed. 852 

These locales may also differ as to the time an individual has spent in captivity, with 853 

hatcheries generally releasing fish as juveniles; while in farms and labs they are 854 
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often retained into adulthood. We also tested the role of environment and genetics 855 

in shaping the phenotype of fishes by looking at differences in the degree of 856 

differentiation between studies in which the wild and cultured fish were reared in a 857 

common garden to those in which the wild fish had been captured from the wild, 858 

and by investigating studies in which the fish compared were from the same 859 

ancestral population, and when they were not. Finally, because a great deal of 860 

research effort has been put into improving the performance of Salmonidae in both 861 

commercial aquaculture farms and following release from supplementation 862 

hatcheries (producing two types of fish production that have opposing goals, but yet 863 

like all types culture share environmental similarities), we tested if Salmonidae 864 

differ in their response to culture compared to other families of fishes. It would of 865 

course have been of considerable interest to be able to compare amongst all families, 866 

not just Salmonidae against all other fish, however the sample sizes for other 867 

families were too small to allow testing. 868 

3.3 Materials and Methods 869 

3.3.1 Data collection 870 

Our goal was to test the hypothesis that when exposed to culture, fishes develop 871 

stereotypical changes in their external morphology relative to their wild 872 

conspecifics. We began by conducting a systematic review using PRISMA best-873 

practice protocols (Refer to Supplementary Table 3.1 for PRISMA (Liberati et al. 874 
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2009, Moher et al. 2009) Checklist) with our search terms (Supplementary Table 875 

3.2) intentionally defined quite broadly to ensure we identified as many publications 876 

as possible. We considered fish reared in any non-natural environment to be 877 

cultured (i.e. farms, hatcheries, laboratory or other aquaria; Table 3.1). Searches 878 

were conducted in three main databases: the Aquatic Sciences and Fisheries 879 

Abstracts Database (ASFA), Web of Science, and Google Scholar. The titles and 880 

abstracts of papers returned by our searches were parsed, and all publications that 881 

appeared to compare the phenotypes of wild and cultured fish were retained for 882 

further screening (Figure 3.1 and Supplementary Table 3.3). Publications retained at 883 

this initial screening stage were then read, and studies were evaluated against our 884 

four inclusion criteria (Liberati et al. 2009). These criteria were: 1) the study must 885 

have examined the external morphology of the fish; 2) it must have been measured 886 

in a quantitative manner; 3) a comparison of cultured to a wild population must 887 

have been undertaken; and 4) the cultured fish must have spent the entirety of their 888 

lives in captivity (i.e. studies of recaptured or “sea ranched” cultured fish were 889 

excluded because convergence on wild-type phenotype has been reported in fishes 890 

following release (Fleming et al. 1994, Arechavala-Lopez et al. 2013b), and since the 891 

purpose of this study was to examine the effect of culture conditions on phenotype 892 

we were worried that this would ‘dilute’ the signal from such studies). All 893 

publications containing studies that conformed to these criteria were included (Fig. 894 

3.1 and Supplementary Table 3.3). Using the same methodology and inclusion 895 
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criteria, we also screened all references within the publications retained at the initial 896 

screening stage, as well as within relevant reviews identified during our initial 897 

search. 898 

 Once the systematic review had been completed, and having parsed all 899 

publications retained, a set of external morphological features were selected that 900 

were commonly measured in morphological studies, were homologous across 901 

species, for which differences in their relative expression may affect the fish’s 902 

fitness, and which are commonly asserted to comprise the “cultured phenotype” 903 

(Fig. 3.2). We also chose to include condition factor (Fulton's K = 100(W/L3)) in our 904 

analysis because, while it is not technically an external morphological feature, it 905 

does have bearing on the fish’s overall external conformation, and conforms to the 906 

other criteria.  907 

Differences in experimental methodology, study purpose, and a myriad of 908 

other factors, meant that all of the morphological features chosen to be examined in 909 

our meta-analysis were not measured or reported in every publication. We recorded 910 

the available morphological feature means and where reported, the corresponding 911 

standard deviations (see Statistical Analysis for treatment of missing standard 912 

deviations). In addition, we recorded species, the form of culture, and whether the 913 

wild and cultured fish that were compared were from the same ancestral genetic 914 

population. Again, each of these was not reported in every publication, and even 915 
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when details were reported, they tended to differ among publications. To overcome 916 

this disparity, each variable was made categorical (Table 3.1), and where any of 917 

these data were unavailable or ambiguously reported, they were coded as 918 

‘unknown’ and excluded from the analysis. 919 

Finally, a number of publications presented the results of multiple 920 

independent (e.g. comparisons of different populations or cohorts of cultured and 921 

wild fish) or semi-independent (e.g. comparison of multiple populations of wild to a 922 

single population of cultured fish, or vice versa) wild/cultured comparisons 923 

(Supplementary Table 3.4). In both cases, each comparison was treated as being an 924 

independent result (i.e. study), and separate sets of effect sizes were recorded for 925 

each. Repeated sampling of species within publications, as well as differences in the 926 

number of studies available for each species was accounted for by using species as a 927 

random effect in the mixed effects models (see below for further model 928 

information). 929 

It was our hope to be able to calculate an effect size for each morphological 930 

feature measured in each of the studies that conformed to our inclusion criteria. 931 

However, it became evident early in the review that many of the publications 932 

identified, despite stating in their materials and methods that specimens were 933 

measured such that quantitative values would explicitly (e.g. direct measurements 934 

using a ruler or calliper) or implicitly (e.g. from conversion of x-y dimensions for 935 
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geometric morphometrics) be generated, the results were reported such that values 936 

could not be obtained from either the text or figures of the paper, nor from the 937 

referenced supplemental materials (e.g. differences displayed as PCs or differences 938 

remarked on qualitatively). We attempted to surmount this issue in two ways: 939 

firstly, we contacted and requested data from study authors, and if they provided 940 

data or clarification we included it in our meta-analysis. Second, because it was 941 

possible to determine the qualitative differences in morphological feature size 942 

between the cultured and wild populations (e.g. pectoral fin longer in wild than 943 

cultured population) in all studies, we recorded the qualitative differences as one of 944 

three categorical values: 1) cultured larger than wild (C>W), 2) wild larger than 945 

cultured (C<W), or 3) no difference reported (C=W). For each morphological feature, 946 

we then tested if the proportion of studies falling into each of the three categories 947 

differed. Qualitative differences were thus recorded for all studies that passed our 948 

inclusion screening, while effect sizes could only be calculated for those studies from 949 

which the population means were available (Fig. 3.1). 950 

3.3.2 Statistical Analysis – Vote counting analysis 951 

All statistical analyses were conducted in R version 3.2.1 (R Development Core Team 952 

2015). For the analysis of the qualitative differences in feature size, a simple 953 

difference of proportions test was used, which did not incorporate a random effect 954 

(prop.test function, stats package; R Development Core Team 2015). We chose not to 955 

incorporate a random effect because, in keeping with the more inexact nature of the 956 
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qualitative and categorical response variable, we wanted our model to be as liberal 957 

as possible. For all studies, for each morphological character, we first tested if there 958 

was a difference in the proportion of studies reporting each of the three qualitative 959 

difference categories (i.e. C>W = C<W = C=W). Where significant differences in 960 

proportion were observed, all possible pairwise combinations were tested with the 961 

resultant p-values adjusted using the method of Benjamini and Hochberg (1995) to 962 

control the false discovery rate.  963 

Next, using the ‘moderators’ (i.e. dependent variables, terminology of the 964 

meta-analysis package developed by Viechtbauer 2010 and will be used throughout 965 

for consistency) listed in Table 3.1, we looked for differences in proportion for those 966 

studies comprising each category of the moderator. In cases where subsetting using 967 

the moderators resulted in fewer than 10 studies in a given grouping, that grouping 968 

was not subjected to statistical analysis. Again, where significant differences in 969 

proportion within a moderator were found, all pairwise combinations were tested, 970 

and p-values adjusted (Benjamini & Hochberg 1995). We also tested if the 971 

proportion of studies that found a given qualitative difference varied between 972 

categories of a moderator. 973 

3.3.3 Statistical analysis  - Formal meta-analysis 974 

For every study in which numerical values were reported, a separate effect size was 975 

calculated for each morphological feature measured therein. To ensure that effect 976 
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sizes were not biased by differences in overall body size between fish in different 977 

studies, we used the response ratios (ratios of means), as the effect size because this 978 

measure quantifies the proportional change between groups and as such provides 979 

inherent across-study size standardization, provided both groups in a study were of 980 

similar size (Hedges et al. 1999). Most studies included some type of size 981 

standardization between the groups examined, and the difference in reported mean 982 

lengths between cultured and wild fish did not differ (linear mixed-effects model 983 

with species as random, chisq = 0.4601, p > 0.49). Which indicates the inherent 984 

across-study size standardization should function appropriately. 985 

The response ratio was calculated for each morphological character in Fig. 986 

3.2 using the function escalc from the R package metafor (Viechtbauer 2010), which 987 

employs the formula proposed by Hedges et al. (1999):                  , where 988 

ln is the natural logarithm (loge), the subscripts c and w refer to the cultured and 989 

wild populations respectively, for which their means,   , of a morphological 990 

character were reported. The formula has the corresponding variance: 991 

     
 

     
 

 
      

     
 

 

Where n is the sample size and SD the standard deviation for the population denoted 992 

in subscript. The natural logarithm is used because it linearizes the effect metric by 993 
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treating deviations in the numerator and denominator equally and has the added 994 

benefit of normalizing the sampling distribution (Hedges et al. 1999).  995 

 As noted above, standard deviations were not reported for all studies. 996 

Missing standard deviations were imputed using regression techniques based on the 997 

relationship observed between standard deviation and sample size in those studies 998 

with complete information (Koricheva et al. 2013). To estimate the missing standard 999 

deviations in our meta-analysis we employed mixed-effects models with species as a 1000 

random effect, which allowed the intercept to vary for each species. In addition to 1001 

sample size, we also controlled for differences in the size of the fish by including 1002 

total length as a fixed effect. Thus the missing standard deviations were calculated as 1003 

                                      

Where:     is the estimated standard deviation for population x, with corresponding 1004 

sample size   and mean total length    .    and     are the slopes of the 1005 

relationships for sample size and total length respectively,           is the model 1006 

intercept, and     is the absolute value function. These imputed values were then 1007 

used in the calculation of the variance of the response ratio. 1008 

  If exposure to culture leads a given morphological trait to exhibit a common 1009 

morphological change relative to wild populations, it would be expected that using 1010 

the response ratio as an effect size, the effect sizes for a given morphological trait 1011 

will be either consistently greater, or less than zero across all populations examined 1012 
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(zero being no difference between cultured and wild). Thus for each morphological 1013 

feature, we tested if its grand overall mean effect size was significantly different 1014 

from zero (i.e. no difference between cultured and wild) using mixed effects linear 1015 

models, with species as the random effect (Koricheva et al. 2013). Including species 1016 

as a random effect in our model accounts for the fact that direction, magnitude or 1017 

scope of morphological change may be more similar within, than across species and 1018 

also for the fact that the number of studies for each species varied. As well, 1019 

variability among the effect sizes may be the result of the studies included in the 1020 

meta-analysis not being identical in terms of their methodologies, and this can be 1021 

accounted for statistically by treating this variability as completely random through 1022 

the use of random effects within the mixed-effects linear models (rma.mv function, 1023 

metafor package; Viechtbauer 2010). The rma.mv function was used because it was 1024 

designed for multivariate or multi-level meta-analyses, unlike the rma.uni function 1025 

which is only suitable for univariate analyses. Finally, the use of random-effects 1026 

structure in these models also allows us to make unconditional inferences about a 1027 

larger set of studies that have been conducted, or could be conducted in the future, 1028 

from which the studies included in the meta-analysis are assumed to be a random 1029 

sample (Viechtbauer 2010). Thus random effects models allow us to extend the 1030 

observed morphological responses to culture to an effect of cultured conditions in 1031 

general, and not limited to just those studies included in the analysis.  1032 
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Following testing all studies included in the meta-analysis, we then examined 1033 

if the factors listed in Table 3.1 lead to common morphological change by including 1034 

them as moderators in the model. The influence of each factor had to be tested 1035 

separately for two interrelated reasons. Firstly, information for all the factors 1036 

considered could not be obtained from all studies. The meta-analytical statistical 1037 

function used in our analysis is a type of generalized-linear-model (i.e. independent 1038 

variables; Viechtbauer 2010) and as such, for a study to be included it must have a 1039 

corresponding value in each of the categorical moderator terms. Thus, to test the 1040 

factors simultaneously instead of singly, those studies that were missing data (i.e. 1041 

coded as unknown) from even one of the factors must be dropped from the entire 1042 

analysis, instead of just from the analysis of that factor singly. Secondly, even for 1043 

those studies in which all factors contained data, not all category combinations were 1044 

present for most of the features. This resulted in spurious interaction between 1045 

factors. Thus, it was decided that the factors should be tested independently. 1046 

3.4 Results 1047 

3.4.1 Overall 1048 

We examined the relative differences in trait size between cultured and wild fish for 1049 

all 106 studies identified by the systematic review (Supplementary Table 3.4). This 1050 

was done with the vote-counting analysis by testing for differences in the proportion 1051 

of studies that found one of the three possible relative size differences (i.e. Cultured 1052 
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< Wild, C>W, C=W). Among all studies, no differences in proportion of studies 1053 

finding these three possibilities were found for head length and depth, eye size, 1054 

lower jaw length, caudle peduncle length and depth, pectoral and pelvic fin length, 1055 

dorsal fin length and width, anal fin length, and caudal fin length (P > 0.05; see 1056 

Supplementary Table 3.5). The vote-counting analysis found that the length of the 1057 

upper jaws of the cultured fish tended to be shorter than those of the wild fish (P < 1058 

0.05; Supplementary Table 3.5). The opposite was observed for both body depth and 1059 

condition factor, with the greatest proportion of studies finding them to be larger in 1060 

cultured than wild populations (P < 0.0001; Supplementary Table 3.5). The width of 1061 

the anal fin appeared to be unaffected by culture with almost half of all studies in 1062 

which it was measured reporting no difference between the wild and cultured 1063 

populations and this proportion was significantly greater than the proportions that 1064 

found the width to differ (P < 0.05; Supplementary Table 3.5). Other comparisons 1065 

will not be discussed because of small sample size (i.e. fewer than 10 studies; 1066 

Supplementary Table 3.5). 1067 

 Among all 67 studies for which we were able to calculate effect sizes, the 1068 

meta-analysis found the lengths of the head, upper jaw and, pectoral and pelvic fins, 1069 

and the lengths and widths of the dorsal and anal fins were significantly smaller in 1070 

cultured fish, while none of the other features were found to be significantly 1071 

different (all p < 0.05; Fig. 3.3). It must be noted that, while the meta-analysis was 1072 

conducted using                  , where values of zero indicate no difference, 1073 
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for ease of interpretation the results in Figs. 3.3, 3.4 and 3.5 are presented as the 1074 

exponent of L. This transforms the mean and standard deviations of the effect size 1075 

for a given character to fold changes of the cultured measure relative to the wild. 1076 

Thus after transformation a value of one is no difference, and values less than one 1077 

indicates the feature is smaller in the cultured fish than the wild, while values 1078 

greater than one signify the opposite.  1079 

When examining the congruence of the two analyses, it must be borne in 1080 

mind that the vote-counting analysis and meta-analysis were inherently different. 1081 

The criteria for significance were more stringent in the meta-analysis. Unlike the 1082 

vote-counting analysis, the meta-analysis methodology not only assesses the 1083 

magnitude of difference but also gives weighting to each study (through the manner 1084 

in which the sampling variances associated with each study/effect size are treated 1085 

within the mixed-effects linear model in the meta-analysis (Viechtbauer 2010)) 1086 

based on variability/accuracy of the measurements, as well as the sample size. 1087 

Furthermore, by employing a random-effect structure, the meta-analysis is also able 1088 

to account for potentially greater within than across species similarities, and 1089 

variability in the number of studies per species. As such, while a summary of the 1090 

congruence between the vote-counting analyses and meta-analyses for all results 1091 

has been provided in Supplementary Table 3.6, only cases where both the meta-1092 

analysis and vote-counting analysis were significant are mentioned. That said, the 1093 

meta-analysis and the vote-counting analysis both found the length of the heads to 1094 
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be shorter in cultured fish. Their results were not congruent for the length of the 1095 

anal fin with the meta-analysis showing it to be lower in cultured fish, while the vote 1096 

counting analysis suggested the anal fins of cultured and wild fish to be equal in 1097 

length (Supplementary Table 3.6). 1098 

3.4.2 Form of culture 1099 

Looking first at differences within forms of culture, the vote-counting analysis 1100 

showed that among studies of farm fish a significantly greater proportion of studies 1101 

found the eyes of cultured fish to be smaller than those of the wild, and the same 1102 

was true of the proportion that reported no difference in upper jaw length, and 1103 

caudal peduncle depth (all P < 0.05; Supplementary Table 3.5). As well, greater body 1104 

depth and condition in cultured than wild fish was seen in a greater proportion of 1105 

studies than the other two outcomes (all P < 0.01), while a greater proportion of 1106 

studies found the width of the anal fins of the farmed and wild fish to be equal, than 1107 

found them to be wider in the cultured than the wild (P < 0.05; Supplementary Table 1108 

3.5). The meta-analysis found only the length of the head and the depth of the caudal 1109 

peduncle differed, both being significantly less in cultured than wild fish (Fig. 3.4). 1110 

Among studies of hatchery fish, the vote-counting analysis showed that the 1111 

greatest proportion reported the upper jaws to be shorter in the cultured than wild 1112 

fish, and the same to be true of the length and width of the dorsal fin (all P < 0.05; 1113 

Supplementary Table 3.5).  1114 
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The meta-analysis revealed that the pectoral fins of hatchery-reared fish 1115 

were shorter than their wild counterparts (p < 0.001, Fig. 3.4). While significant 1116 

differences were detected for the lengths of the pectoral, pelvic, anal and dorsal fins, 1117 

the sample size was small in some cases (Fig. 3.4). 1118 

Vote-counting analysis found that among studies of laboratory fish a 1119 

significantly greater proportion of studies found no difference in head length and 1120 

depth between wild and cultured populations than found the heads of the cultured 1121 

fish to be smaller (both p < 0.05; Supplementary Table 3.5). As well, within 1122 

laboratory studies, the vote-counting analysis revealed that a significantly greater 1123 

proportion of studies found no difference in pelvic fin length than found it to be 1124 

greater in the cultured fish, while the opposite was observed for body depth (both P 1125 

< 0.05; Supplementary Table 3.5).  1126 

The meta-analysis found that head and pelvic fin lengths were significantly 1127 

smaller in laboratory reared than wild fish (both p < 0.01; Fig. 3.4). Body depth, the 1128 

lengths of the upper jaw and pectoral fins, and the lengths and widths of the dorsal 1129 

and anal fins were also found to be significantly smaller in the cultured fish, albeit 1130 

with small sample size (all p < 0.05; Fig. 3.4). 1131 

Differences were also observed between forms of culture in the proportion of 1132 

studies finding a given possible relative size difference (i.e. C<W, C>W, C=W; 1133 

Supplementary Table 3.5). The same is true of the differences in absolute values of 1134 
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the effect sizes. However, because of the way in which the rma.mv function 1135 

(Viechtbauer 2010) calculates the confidence intervals when testing for significant 1136 

deviation from zero, compared with testing for differences between moderator 1137 

levels (i.e. it must be specified that the model should test difference between levels, 1138 

and not difference from zero effect), these differences are not obvious from 1139 

examining Fig.(s) 3.4 (and 3.5), but can be found in Table 3.2. Specifically, the 1140 

absolute values of the effect sizes for farmed and hatchery populations were 1141 

significantly greater than those for laboratory populations for the lengths of the 1142 

head, upper jaw, and pectoral fin, as well as the body depth (all p < 0.05; Table 3.2). 1143 

The same was true of the effect sizes for the lengths of the pelvic, dorsal and anal 1144 

fins between farm and laboratory populations (all p < 0.05; Table 3.2). Where one or 1145 

both moderator levels represent five or fewer studies, these differences are not 1146 

reported, but can be found in Table 3.2. 1147 

3.4.3 Commonality of rearing environment 1148 

When cultured fish and the wild fish to which they were compared were reared in a 1149 

common garden environment, the vote-counting analysis suggested the heads of the 1150 

cultured fish were shorter than those of the wild fish (p < 0.001), and a significantly 1151 

greater proportion of common garden studies found no difference in the width of 1152 

the dorsal and anal fins between the cultured and wild fish than found them to be 1153 

different (both P < 0.05; Supplementary Table 3.4). Both common garden studies 1154 

and those that compared cultured to wild-caught fish found greater condition factor 1155 
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in the cultured fish more often than not (P < 0.05), and the proportions did not differ 1156 

between study types (all P > 0.20; Supplementary Table 3.5). Interestingly, while 1157 

there was no difference in the proportion of findings for body depth among common 1158 

garden studies (P > 0.05), a significantly greater proportion of wild-caught studies 1159 

found the body depth of the cultured fish to be lower than that of wild fish than 1160 

found the opposite (P < 0.01; Supplementary Table 3.5).  1161 

For the meta-analysis, the signs of the effect sizes were generally the same for 1162 

both common garden studies and those that employed wild-caught fish, and the 1163 

majority did not differ significantly in absolute value between these study types 1164 

except where effect sizes were composed of few studies (Fig. 3.5a, Table 3.2). 1165 

Studies employing wild-caught wild fish had effect sizes significantly less than zero 1166 

for the lengths of the head, upper jaw, pectoral, pelvic, dorsal and anal fins, as well as 1167 

the width of the anal fin (all p < 0.05; Fig. 3.5a). While significant differences were 1168 

observed for the lengths of the head and anal fin and the depth of the caudal 1169 

peduncle in studies which used a common garden design, caution should be taken in 1170 

interpreting these results because the number of studies (n = 1-4) and species 1171 

represented for those results detected as significant (n = 1-3, all of which are 1172 

salmonids) are quite low (Fig. 3.5a). The same cautionary message applies to the 1173 

congruency of the vote-counting analysis and meta-analysis in Supplementary Table 1174 

3.5.  1175 
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3.4.4 Level of domestication 1176 

Vote-counting analysis revealed that a significantly greater proportion of studies in 1177 

which the cultured fish had a domestication history of at least two generations found 1178 

that the upper jaw of the cultured fish was either shorter, or did not differ from that 1179 

of the wild fish than those that found the jaws of the cultured fish were longer (both 1180 

P < 0.05), and the same was true of the depth of the caudal peduncle (P < 0.05; 1181 

Supplementary Table 3.5). As well, a significantly greater proportion of studies in 1182 

which the cultured fish had at least two generations in culture found smaller anal 1183 

and dorsal fin widths in cultured fish than in wild fish (all P < 0.05; Supplementary 1184 

Table 3.5). Among studies in which the cultured fish had experienced only one 1185 

generation of culture a significantly greater proportion of studies found no 1186 

difference in caudle peduncle depth between cultured and wild fish than found it 1187 

was larger in the cultured fish (P < 0.05; Supplementary Table 3.5).  1188 

The meta-analysis found that cultured fish which had been exposed to two or 1189 

more generations of domestication were seen to have significantly shorter heads, 1190 

pectoral, pelvic, dorsal and anal fins, as well as shallower bodies, and narrower 1191 

dorsal and anal fins than the wild fish to which they were compared (Fig. 3.5b). The 1192 

same was true of the lengths of the head and upper jaw of cultured fish exposed to 1193 

one generation of domestication, and while other significant results were found, the 1194 

sample sizes tended to be small (all p < 0.05; Fig. 3.5b). Sample size must again be 1195 
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considered when examining the congruency of the meta-analysis and vote-counting 1196 

analysis (Supplementary Table 3.6). 1197 

Where moderator levels were comprised of five or more studies, the effect 1198 

sizes were greater where fish had been exposed to two or more generations of 1199 

culture than when they were first generation for the lengths of the lower jaw and 1200 

pectoral fin, as well as both the length and depth of the head (all p < 0.05; Table 3.2). 1201 

The opposite was found of the effect sizes for the width of the anal fin and the depth 1202 

of the body (both p < 0.0001, Table 3.2). 1203 

3.4.5 Ancestral population 1204 

Vote-counting analysis showed that for both studies in which the fish compared 1205 

were from the same ancestral population and those in which they were not, a 1206 

significantly greater proportion of studies found that the length of the upper jaw did 1207 

not differ between cultured and wild fish than found a difference (all P < 0.05; 1208 

Supplementary Table 3.5). While, again for both ancestral types, a significantly 1209 

larger proportion of studies found body depth of cultured fish was greater than that 1210 

of wild than found it was lower or not different (all P < 0.05; Supplementary Table 1211 

3.5). The vote-counting analysis also indicated that when the fish compared were of 1212 

different ancestral populations no difference in dorsal or anal fin widths between 1213 

wild and cultured fish was found in a greater proportion of studies than the 1214 
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proportion that found them to be larger in the cultured fish (P < 0.05; 1215 

Supplementary Table 3.5). 1216 

Like what was seen for similarities in rearing environment, meta-analysis 1217 

revealed that with the exception of where samples sizes were small (i.e. lengths of 1218 

the upper and lower jaw, caudal peduncle, and caudal fins), the sign of the effect 1219 

sizes were generally the same whether the comparisons were among fish of the 1220 

same ancestral population or not (Fig. 3.5c). While the signs were generally the 1221 

same, significant differences in the magnitude of the effect size were seen between 1222 

study types, with effect sizes for the lengths of the head and dorsal fin, and the width 1223 

of the anal fin being significantly larger in studies comparing fish of the same 1224 

ancestral population (all p < 0.0001, Table 3.2). The opposite was seen between 1225 

study types of the effect sizes for body depth and anal fin width (both p < 0.0001; 1226 

Table 3.2). These same features were found to be significantly different between 1227 

cultured and wild fish, with effect sizes showing that cultured fish in both types of 1228 

comparison had significantly smaller condition, pectoral, pelvic, dorsal and anal fin 1229 

lengths (all p < 0.05; Fig. 3.5c).  1230 

3.4.6 Salmonid and non-salmonid 1231 

Among studies of salmonids, vote-counting analysis showed that a significantly 1232 

greater proportion of studies found that the heads of the cultured fish were shorter, 1233 

or did not differ in size from wild fish, than found the heads of the wild fish to be 1234 
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longer (both P < 0.001; Supplementary Table 3.5). The proportion of salmonid 1235 

studies that found the depth of the caudal peduncle to be greater in cultured than 1236 

wild fish was lower than that that found the reverse, but the proportion that found it 1237 

to be lower in the cultured fish was less than that that found no difference (both P < 1238 

0.05; Supplementary Table 3.5). For caudal peduncle length, the proportion of 1239 

salmonid studies that found no difference was significantly greater than those that 1240 

found a difference (both P < 0.05; Supplementary Table 3.5). Among non-salmonid 1241 

studies a greater proportion found longer heads in cultured than wild fish than 1242 

found the heads of the cultured fish were shorter, and deeper bodies in cultured fish 1243 

were reported in a greater proportion of studies than the proportions that found the 1244 

opposite or no difference (all P < 0.05; Supplementary Table 3.5). 1245 

The meta-analysis showed that salmonids exposed to culture had 1246 

significantly shorter heads, upper jaws, pectoral, pelvic, and anal fins than the wild 1247 

fish to which they were compared (Fig. 3.5d). Among non-salmonids, the same was 1248 

true of the lengths of the pelvic and pectoral fins and the width of the anal fin (Fig. 1249 

3.5d). Interestingly, unlike most other moderators, the magnitude of the effect sizes 1250 

for all morphological characters, with the exception of the lower jaw length, which 1251 

had a low sample size for non-salmonids, did not differ between moderator levels 1252 

(Table 3.2). 1253 
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3.5 Discussion 1254 

3.5.1 Existence of a “cultured phenotype” 1255 

Fishes exposed to culture are often said to possess/develop a similar, readily 1256 

identifiable “cultured phenotype” characterized by shorter but deeper heads, greater 1257 

body depth and condition factor, and smaller fins than those typical of their wild 1258 

conspecifics (e.g. common carp, Cyprinus carpio, Cyprinidae [Balon 1995], Atlantic 1259 

salmon, S. salar, Salmonidae [Gross 1998], coho salmon, Oncorhynchus kisutch, 1260 

Salmonidae [Tiffan & Connor 2011], gilthead seabream, Sparus aurata, Sparidae and 1261 

European seabass, Dicentrarchus labrax, Moronidae [Arechavala-Lopez et al. 2012], 1262 

rainbow trout, O. mykiss, Salmonidae [Pulcini et al. 2013], Atlantic cod, Gadus 1263 

morhua, Gadidae [Wringe et al. 2015a]).  1264 

While this is most commonly cited in truly farmed fishes, differences in 1265 

morphology between hatchery-reared fish and their wild counterparts are well 1266 

known (e.g. Fleming et al. 1994, Ellis et al. 1997, Busack et al. 2007, Tiffan & Connor 1267 

2011) and thought to contribute to the relatively poor fitness of the released fish 1268 

(Fleming & Gross 1994, Hard et al. 2000, Belk et al. 2008, Brown et al. 2013). If 1269 

exposure to cultured conditions does indeed lead to common, directional changes in 1270 

the size of a morphological feature relative to that of wild fish, it is expected this 1271 

would be reflected in effect sizes being either consistently greater than or less than 1272 

zero (N.B. analogous to greater than or less than one as depicted in Figs. 3.3-3.5). 1273 
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The results our meta-analysis of the literature comparing the morphology of 1274 

cultured fish, which have been exposed to varying degrees of selection and time in 1275 

captivity, to their wild conspecifics show that as commonly ascribed, the heads of 1276 

cultured fish were shorter, as were their upper jaws, and all fin measures with the 1277 

exception of the width of the dorsal fin and the length of the caudal fin. However, 1278 

unlike what was predicted, measures of body conformation, especially as it relates to 1279 

depth measures, were not found to differ. Thus while our findings provide support 1280 

to the conjecture of a universal response to culture, leading to the development of a 1281 

common ‘cultured’ phenotype, it does not appear to necessarily involve changes in 1282 

body depth, or condition as is commonly suggested.  1283 

It also bears noting that the changes in morphology relative to the wild 1284 

phenotype required to produce the commonly described “cultured phenotype”, and 1285 

the phenotypic changes detected in our meta-analysis, are congruent with 1286 

experimentally observed plastic phenotypic response to environments typical of 1287 

those in culture. Cultured environments are often tailored to be more benign than 1288 

that experienced by wild fish (Thorpe 2004), and this is true of farm, laboratory and 1289 

hatchery culture. This more benign environment should allow the cultured fish to 1290 

sequester a greater proportion of the energy they consume resulting in greater 1291 

condition and body depth because of increased accumulation of lipid as well as 1292 

greater somatic muscle growth (Currens et al. 1989, Svåsand et al. 1996, Grant et al. 1293 

1998, Purchase & Brown 2001, Bureau et al. 2006). However, while our meta-1294 
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analysis found no evidence that the body depth or condition (K) of cultured and non-1295 

cultured differed when all studies were included, the results of the vote-counting 1296 

analysis suggest these two features are significantly greater in cultured fish. The diet 1297 

of cultured fish also likely promotes the development of smaller heads, and jaws, 1298 

because fish which are fed non-elusive, prepared diets (Meyer 1987, Wintzer & 1299 

Motta 2005), as well as fish fed a greater ration (Currens et al. 1989) have been 1300 

shown to develop smaller heads and jaws. Finally, while the lower and less variable 1301 

water velocity in culture has been shown to lead to the development relatively 1302 

smaller fins in cultured salmonids (Pakkasmaa & Piironen 2000, Wessel et al. 2006, 1303 

Keeley et al. 2007), smaller fins in cultured fish can also arise as the result of the fins 1304 

being malformed or damaged through abrasion or agonistic interaction (Bosakowski 1305 

& Wagner 1994, Latremouille 2003, Hatlen et al. 2006, Blanchet et al. 2008, 1306 

Chittenden et al. 2010).  1307 

 While phenotypic changes could certainly have arisen through plastic 1308 

responses to culture, there is no reason to believe that permanent genetic changes 1309 

could not have contributed to or caused these changes. Fish in commercial culture 1310 

are generally exposed to concerted selection for traits deemed beneficial to 1311 

aquaculture, which may lead to unintentional selection on genetically linked traits, 1312 

or for traits that convey a fitness advantage on fish in culture (Kallio-Nyberg & 1313 

Koljonen 1997, Vasemagi et al. 2012). It may be easiest to conceptualize such genetic 1314 

shifts occurring in commercial farms where studies report relatively high levels of 1315 
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heritability for aquaculture-related traits, at least among salmonids (Benjamini & 1316 

Hochberg 1995). However, theoretical (Bekkevold et al. 2006, Fraser 2008) and 1317 

empirical (Wessel et al. 2006, Christie et al. 2012) evidence also exists for the 1318 

accumulation of permanent genetic changes leading to morphological differentiation 1319 

within supplementation hatcheries. 1320 

Unfortunately, the separation of genetic vs. environmental effects on 1321 

morphology was not possible in our analysis. This is in part because as mentioned in 1322 

the materials and methods we were unable to analyze more than one moderator at a 1323 

time because missing category combinations caused the formation of significant 1324 

interactions in the model. This prevented us from being able to factor out the 1325 

simultaneous genetic and environmental effects.  1326 

While it is certainly true that genetic changes which accumulate over 1327 

generations in culture may modify the scope of plasticity (Solberg et al. 2013), that 1328 

we found few significant differences in effect size between domestication levels (six 1329 

of 16), especially among features that were found to differ significantly between 1330 

cultured and wild fish (three of 10) does not indicate this was the case. Furthermore, 1331 

while it is possible that different species may have different scopes, or available 1332 

morphospace within which their phenotype is able to lie and these may be 1333 

constrained or enhanced by either their underlying genetic variability or 1334 

morphology (i.e. the body shape of a species may facilitate or restrict change) this 1335 
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should not influence the outcome of our study. This is because even where degree of 1336 

change may be constricted, a consistent directional change in size would still be 1337 

observed as a deviation in effect size from zero, especially given that such 1338 

differences were measured as proportional changes.  1339 

Apart from perhaps being able to better test the interaction of moderators, 1340 

whether being able to include the results of all studies identified in the systematic 1341 

review in the meta-analysis would change its outcome is not readily apparent. This 1342 

is because the results of the vote-counting do not show clear directionality of 1343 

difference for most traits, and the results of the vote-counting analysis and the meta-1344 

analysis are generally not entirely congruent. However, it is possible that this 1345 

interpretation is a bit specious because the vote-counting analysis and meta-analysis 1346 

are inherently different. Unlike the formal meta-analysis the vote-counting analysis 1347 

gave no weighting to the magnitude of difference or variability/accuracy of the 1348 

measurements, and the sample size, nor did it employ a random-effect structure.  1349 

The fact that the just over half of the total number of studies identified in the 1350 

literature search provided sufficient detail to be included in the meta-analysis 1351 

highlights one of the major issues with the field: the lack of consistency in reporting 1352 

data. The methodology of all studies that passed our inclusion criteria indicated that 1353 

measurements of the fish were undertaken such that quantitative values would be 1354 

generated and available for publication. However, likely for concision such extensive 1355 
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numerical data were omitted in lieu of graphical representations of mean shapes or 1356 

principal component analysis (PCA). While such presentation methods lend 1357 

themselves to rapid interpretation of the relative differences between populations, 1358 

they do not relay quantitative differences as the displacements may be exaggerated 1359 

(i.e. thin plate splines of mean shapes), or are inherently unitless (PCA). This issue is 1360 

more prominent in more recent studies, which have moved away from 1361 

(multivariate) analyses of simple distance measures of morphological features (and 1362 

at times, their relation to one another), to inherently multivariate truss-based and 1363 

geometric morphometrics which readily lend themselves to the creation of PCAs and 1364 

mean-shapes (Adams et al. 2004). It is our recommendation then that future studies 1365 

provide a table of the mean and standard deviation of morphological distances 1366 

measured. Given that the majority of studies currently employ digital images, from 1367 

which the shapes of the fish are digitized to x-y coordinates using computer 1368 

software, the creation of such a table should be a trivial matter. This table could be 1369 

included in the body of the published study, or as would likely be more convenient, 1370 

as an archived supplement to the published study available through the journal 1371 

website.  1372 

In addition to this recommendation on data reporting, we would refer the 1373 

reader to Table 3.3 for some general recommendations on a proposed list of data to 1374 

be collected and reported to aid in the interpretation of comparisons of the 1375 

morphology of cultured and farmed fish in particular, and also of studies of 1376 
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morphology of fish in general. While seemingly obvious, a cursory examination of 1377 

Supplementary Material Table 3.3 shows that these data often go unreported. 1378 

It is our hope that this meta-analysis will serve as an illustration of how 1379 

exposure to similar environmental conditions in culture can lead to similar 1380 

phenotypic response among species of fish. This suggests that the underlying 1381 

species-specific genetic architecture of the fish may have less impact on the 1382 

development of phenotype or in regulating scope of plasticity than does the 1383 

environment. This has implications not only for fish in culture, but possibly also 1384 

if/when they find themselves at liberty, as this scope for plasticity may also temper 1385 

their ability to (re)converge on a wild-type phenotype as has been observed in 1386 

several species (Fleming et al. 1994, Arechavala-Lopez et al. 2013b). Both 1387 

intentional selection, as within commercial settings where consistency of phenotype 1388 

is desired, and in hatcheries where the brood stock may derive from only portion of 1389 

the wild population and mate choice is removed may contribute to the reduction of 1390 

scope for plasticity. In the first case, it has been noted that intentional selection for 1391 

faster growth in commercial rearing leads to a reduction in genetic variation for 1392 

body weight, and as a consequence reduced plasticity for growth (Solberg et al. 1393 

2013). Furthermore, reduction in genetic variation, and canalization of development 1394 

can lead to a reduction in the scope for plasticity (Parsons et al. 2010). It stands to 1395 

reason then, that perturbation of the normal genetic variability as would occur when 1396 

sampling only a portion of a mating population, or removing mate choice may also 1397 
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lead to reductions in the scope for plasticity. 1398 

Promotion of maintenance of plasticity may then be an important 1399 

consideration for enhancing the viability of fish released from hatcheries, much the 1400 

same as the production of a wild-type phenotype is currently thought to be. If, as has 1401 

been shown in this analysis, similar rearing environments lead to similar 1402 

morphological changes, then the lessons gleaned from the study of the 1403 

morphological impact of conditions in culture in one species may be readily 1404 

applicable to other species. We also wish for this paper to illustrate the need for a 1405 

standard set of information to be reported about the fish on which morphological 1406 

studies are conducted, as well as a standardized manner to make this information 1407 

available.  1408 

3.6 Acknowledgements 1409 

We thank P. Arechavala-Lopez, S. Blanchet, M. Jahunen, K. Tiffan and T. Vehanen for 1410 

providing us with data. The Natural Sciences and Engineering Research Council of 1411 

Canada funded this research through a strategic grant to I.A.F. and C.F.P, and the 1412 

Research and Development Corporation of Newfoundland provided additional 1413 

support to B.F.W.1414 



 

 

75 

3.7 Tables 1415 

Table 3.1 List and definitions of the moderators used in the meta-analysis 1416 

Explanatory Variable Definition 

Form of culture Farmed The site from which the cultured fish were 
sampled was described as a net-pen, or other 
aquaculture facility typical of commercial 
rearing of the species.  

  Hatchery The site from which the cultured fish were 
sampled was described as a hatchery facility, 
typical of the artificial propagation and 
(juvenile) rearing of that species 

  Lab The cultured fish were spawned, reared and 
sampled from a laboratory facility which was 
not an experimental farm or hatchery 

Commonality 
of rearing 
environment 

Common garden Both the wild and cultured populations were 
raised in a common, cultured environment. In 
this case, the cultured fish were the offspring of 
fish that had spent at least one generation in 
cultured conditions, while the wild fish were the 
offspring of wild-caught fish 

 Wild/farmed The cultured fish were raised in a cultured 
environment, while the wild fish were 
themselves wild-caught. Differences in 
morphology may be the result of genetics 
and/or environment. 

Domestication >=2 generations The stock from which the cultured fish were 
derived had been reared in cultured conditions 
for at least two generations. The potential exists 
for genetic changes to have occurred through 
intentional and/or unintentional selection in 
the cultured population. 
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 1417 

  1418 

  1 generation The cultured fish were the progeny of wild-
caught parents. Apart from founder effect, the 
genetics of the cultured population are likely 
unchanged relative to their source population. 
(c.f. Wild/farmed commonality of rearing 
environment: 1 generation cultured fish can be 
compared to wild caught wild fish, but not to 
wild fish in a common garden) 

Ancestral 
population 

Different The cultured fish were compared to wild fish 
from a stock other than that from which they 
were derived 

 Same The cultured fish were compared to wild fish 
from the population from which their stock was 
derived 

Salmonid Salmonid The cultured and wild fish are part of the family 
Salmonidae 

  
Not The cultured and wild fish are not part of the 

family Salmonidae 
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Table 3.2 Summary of difference in effect size between moderator types for the 1419 

meta-analysis. Descriptions of the morphological characters can be found in Fig. 3.2 1420 

and definitions of the moderators in Table 3.1. Abbreviations are as follows: L = 1421 

length; D = depth; W = width; Low = lower; Cond = Fulton’s condition factor (K); 1422 

Hatch = hatchery; Lab = laboratory; CG = common garden; WF = studies where 1423 

cultured were compared to wild caught fish; 2G = studies in which the cultured fish 1424 

had at least two generations of domestication history; 1G = studies in which the 1425 

cultured fish were first generation in culture. Salmonid Yes are studies in which 1426 

cultured and wild fish belong to the family Salmonidae, while all other species are 1427 

denoted Salmonid Not. Moderator levels comprised of five or fewer studies are 1428 

annotated with an asterisk (*) where differences between levels are significant 1429 

Feature Moderator Diff. within level Z p 

H
ea

d
 L

en
gt

h
 

Culture location Farm = Hatch -1.7 > 0.86 

 
Farm > Lab -3.51 < 0.001 

 
Hatch > Lab -2.49 < 0.05 

Comparison CG = WF 1.57 > 0.11 

Domestication 2G > 1G -3.67 < 0.001 

Population Diff < Same 34.53 < 0.0001 

Salmonid Not = Yes -0.84 > 0.40 

H
ea

d
 D

ep
th

 

Culture Location Farm = Hatch 0.41 > 0.68 

 
Farm = Lab -0.29 > 0.77 

 
Hatch = Lab -0.42 > 0.67 

Comparison CG = WF -0.65 > 0.51 

Domestication 2G > 1G -2.3 < 0.05 

Population Diff > Same* -2.13 < 0.05 

Salmonid Not = Yes 0.14 > 0.88 

E
y

e 
Si

ze
 

Culture Location Farm = Hatch 0.76 > 0.44 

 
Farm = Lab -0.76 > 0.44 

 
Hatch = Lab -1.07 > 0.28 

Comparison CG = WF 1.25 > 0.21 

Domestication 2G = 1G -0.47 > 0.64 

Population Diff = Same -0.15 > 0.88 

Salmonid Not = Yes -0.55 > 0.58 
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U
p

p
er

 J
aw

 L
 

Culture Farm = Hatch -0.63 > 0.52 

 
Farm > Lab -4.18 < 0.0001 

 
Hatch > Lab -2.79 < 0.01 

Comparison CG = WF -0.17 > 0.86 

Domestication 2G = 1G -1.92 > 0.05 

Population Diff* > Same -2.49 < 0.05 

Salmonid Not = Yes -1.00 > 0.31 
L

o
w

 J
a

w
 L

 Culture Farm = Hatch -0.69 > 0.48 

Comparison CG* > WF -2.24 < 0.05 

Domestication 2G > 1G -13.67 < 0.0001 

Population Diff* > Same* -13.67 < 0.0001 

Salmonid Not* > Yes 4.20 < 0.0001 

B
o

d
y

 D
ep

th
 

Culture Farm = Hatch -0.40 > 0.68 

 
Farm > Lab -2.77 < 0.01 

 
Hatch > Lab -2.25 < 0.05 

Comparison CG < WF 6.53 < 0.0001 

Domestication 2G < 1G 6.31 < 0.0001 

Population Diff > Same -8.21 < 0.0001 

Salmonid Not = Same 0.80 > 0.42 

C
o

n
d

 

Culture Farm = Hatch -1.08 > 0.28 

Comparison CG = WF 1.1 > 0.27 

Domestication 2G > 1G -6.61 < 0.0001 

Population Diff > Same* -6.61 < 0.0001 

Salmonid Not = Yes 0.34 > 0.73 

C
au

d
le

 P
ed

 D
 

Culture Farm = Hatch 1.80 > 0.07 

 
Farm = Lab -1.73 > 0.08 

 
Hatch > Lab* -2.40 < 0.05 

Comparison CG* < WF 32.83 < 0.0001 

Domestication 2G = 1G -0.12 > 0.90 

Population Diff = Same 0.92 > 0.35 

Salmonid Not = Yes 0.76 > 0.44 

C
au

d
le

 P
ed

 L
 

Culture Farm = Hatch 0.83 > 0.40 

 
Farm = Lab 0.32 > 0.74 

 
Hatch = Lab -0.21 > 0.83 

Comparison CG = WF -0.81 > 0.42 

Domestication 2G = 1G -0.21 > 0.83 

Population Diff = Same -0.79 > 0.42 

Salmonid Not = Yes 0.52 > 0.60 

P
ec

to
ra

l F
in

 L
 

Culture Farm > Hatch -4.42 < 0.0001 

 
Farm > Lab -3.66 < 0.001 

 
Hatch = Lab -0.04 > 0.96 

Comparison CG* > WF -24.18 < 0.0001 

Domestication 2G > 1G -9.89 < 0.0001 

Population Diff = Same 0.06 > 0.94 

Salmonid Not = Yes -1.64 > 0.10 

P
e

lv
i c F
i n
 

L
 

Culture Farm > Hatch* -3.68 < 0.001 
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 1430 

  1431 

 
Farm > Lab -3.61 < 0.001 

 
Hatch = Lab 0.03 > 0.97 

Comparison CG* > WF -25.15 < 0.0001 

Domestication 2G = 1G 0.14 > 0.88 

Population Diff = Same -0.81 > 0.41 

Salmonid Not = Yes 0.06 > 0.95 

D
o

rs
al

 F
in

 L
 

Culture Farm > Hatch* -2.44 < 0.05 

 
Farm > Lab -2.69 < 0.01 

 
Hatch = Lab -0.31 > 0.75 

Comparison CG* > WF -15.48 < 0.0001 

Domestication 2G = 1G 0.92 > 0.35 

Population Diff < Same 12.17 < 0.0001 

Salmonid Not = Yes 0.57 > 0.56 

D
o

rs
al

 F
in

 W
 

Culture Farm = Hatch -1.38 > 0.16 

 
Farm > Lab* -2.71 < 0.01 

 
Hatch = Lab -1.58 > 0.11 

Comparison CG* > WF -2.9 < 0.01 

Domestication 2G = 1G 0.85 > 0.39 

Population Diff > Same -7.74 < 0.0001 

Salmonid Not = Yes 0.79 > 0.43 

A
n

al
 F

in
 L

 

Culture Farm > Hatch* -2.36 < 0.05 

 
Farm > Lab -2.48 < 0.05 

 
Hatch = Lab -0.62 > 0.53 

Comparison CG = WF -1.15 > 0.24 

Domestication 2G = 1G 0.83 > 0.40 

Population Diff = Same -1.85 > 0.06 

Salmonid Not = Yes 0.07 > 0.94 

A
n

al
 F

in
 W

 

Culture Farm = Hatch -1.96 > 0.05 

 
Farm < Lab* -1.97 < 0.05 

 
Hatch = Lab -0.65 > 0.51 

Comparison CG* > WF -4.8 < 0.0001 

Domestication 2G < 1G 6.38 < 0.0001 

Population Diff < Same 5.15 < 0.0001 

Salmonid Not = Yes 1.69 > 0.09 

C
au

d
al

 F
in

 L
 

Culture Farm = Hatch -0.36 > 0.71 

 
Farm = Lab -1.58 > 0.11 

 
Hatch = Lab -1.19 > 0.23 

Comparison CG = WF -0.29 > 0.77 

Domestication 2G < 1G 2.15 < 0.05 

Population Diff = Same 1.05 > 0.29 

Salmonid Not = Yes -0.27 > 0.78 
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Table 3.3 Recommended information to be included, or made available in all 1432 

published morphological analyses of fishes 1433 

  1434 

1435 

General Recommendation for Data Collection and Reporting 

1 The number of fish analyzed 
2 The (mean) length of the fish analyzed 
3 The age of the fish, or their life history stage 
4 The history of domestication, if any, of the fish 
5 The relatedness, if any, of the groups of fish 
6 The mean and standard deviation for each morphological 

feature analyzed 

7 A method to make available the raw data for download 
8 Any peculiarities of the fish studied which may affect the 

interpretation of the results (e.g. skewed sex ratios, 
spawning condition, etc.) 
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3.8 Figures1436 
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Figure 3.1 Decision making flowchart for study inclusion into meta-analysis. Each 1438 

cultured/wild comparison reported in a publication was considered separately (i.e. 1439 

a ‘study’). Numerical data suitable for the calculation of effect sizes was only 1440 

presented in 67 of 106 studies, but qualitative differences in morphology were 1441 

recorded from all studies (i.e. 67 + 36 = 106). 1442 
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 1443 

1444 
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Figure 3.2 Visualization of the morphometric features examined in the meta-1445 

analysis. Eye size is the maximal diameter of the eye. Upper jaw length is the 1446 

distance between the anteriormost point of the premaxilla and the posteriormost 1447 

point of the maxilla. Lower jaw length is the distance between the anteriormost and 1448 

posteriormost points of the dentary. Head length is the distance between the 1449 

anteriormost point of the head, to the posteriormost point of the operculum. Head 1450 

depth is the maximal depth of the head and body depth is the maximal depth of the 1451 

body while caudal peduncle depth is the minimum depth of the caudal peduncle. Fin 1452 

lengths, with the exception of the caudal fin is the straight-line distance between the 1453 

fin origin and the tip of the longest fin ray (usually the second). Fin widths are the 1454 

straight-line distance between the fin anterior fin origin and its posterior insertion. 1455 

The height of the caudal fin is the maximal vertical distance with the caudal fin 1456 

extended, while the caudal fin length is the straight-line distance between its origin 1457 

and a plane running perpendicular to the body length at the caudal fins most 1458 

posterior point when extended. In addition to these morphological measures, 1459 

Fulton’s condition factor (K) was also included in the analysis as K = 100(W/L3).   1460 
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 1461 

Figure 3.3 Effect sizes for the morphological features examined for all studies 1462 

included in the meta-analysis. The points are the exponent of the estimated effect 1463 

size for each morphological feature from their respective mixed-effects model. The 1464 

error bars represent the 95% confidence interval. A dotted line has been drawn at 1465 

one to aid in interpretation. Opposite each morphological character, its 1466 

corresponding effect size, upper and lower bounds of the 95% C.I. (in brackets), and 1467 

the number of cultured/wild comparisons tested (n) are reported. The 1468 

abbreviations for the morphological features are: D = depth, L = length, U = upper, 1469 

Lw = lower, Caud = caudal, Ped = peduncle, Pec = pectoral, Pel = pelvic, Dor = dorsal, 1470 

and F = fin. *** indicates significance at  < 0.001, ** at  < 0.01 and * at  <0.05 1471 
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 1473 
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Figure 3.4 Effect sizes for the morphological features examined. Morphological 1474 

characters and abbreviations are the same as in Figure 3.3. The points are the 1475 

exponent of the estimated effect size for each morphological feature from their 1476 

respective mixed-effects model with form of culture as a moderator. The form of 1477 

culture is noted as well as indicated by the colour of the points, with red for fish 1478 

reared in farms, black for hatcheries and blue for laboratories. The error bars 1479 

represent the 95% confidence interval. A dotted line has been drawn at one effect to 1480 

aid in interpretation. Opposite each morphological character/form of culture is its 1481 

corresponding effect size, upper and lower bounds of the 95% C.I. (in brackets), and 1482 

the number of cultured/wild comparisons tested (n) are reported. Effect sizes that 1483 

deviate significantly from zero are marked with asterisks. *** indicates significance 1484 

at  < 0.001, ** at  < 0.01 and * at  <0.05.  1485 

 1486 
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Figure 3.5 Effect sizes for the morphological features examined for the moderators: 1497 

commonality of rearing environment, domestication, ancestral population and 1498 

salmonid. Morphological characters and abbreviations are the same as in Figure 3.3, 1499 

and descriptions of the moderators can be found in Table 3.1. Moderator levels are 1500 

indicated beside each morphological feature, as well as by the colour of the point. 1501 

The points are the exponent of the estimated effect size for each morphological 1502 

feature from their respective mixed-effects model. The error bars represent the 95% 1503 

confidence interval. A dotted line has been drawn at one to aid in interpretation. 1504 

Opposite each morphological character/cofactor level combination is its 1505 

corresponding effect size, upper and lower bounds of the 95% C.I. (in brackets), and 1506 

the number of cultured/wild comparisons tested (n) are reported. Effect sizes that 1507 

deviate significantly from zero are marked with asterisks. *** indicates significance 1508 

at  < 0.001, ** at  < 0.01 and * at  <0.05.  a - Commonality of rearing 1509 

environment; wild caught compared to cultured fish (black), or wild and cultured 1510 

fish reared in a common garden (red). b - Domestication; the parents of the cultured 1511 

fish are first generation cultured (black), or the stock from which the cultured fish 1512 

are derived have been in culture at least two generations (red). c - Ancestral 1513 

population; the cultured and wild fish compared are part of the same ancestral 1514 

population (black), or not (red). d - Salmonid; the cultured and wild fish are 1515 

members of the family Salmonidae (black), or not (red). 1516 

1517 
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Chapter 4 – Spawning success of cultured and wild male Atlantic 1518 

cod (Gadus morhua L.) does not differ during paired contests. 1519 

4.1 Abstract 1520 

Culture of Atlantic cod (Gadus morhua, L) has been proposed to diversify the 1521 

aquaculture industry in Canada, and other countries in its native range. Lessons 1522 

gleaned from aquaculture of salmonids suggest that escapes and interactions with 1523 

wild fish are inevitable. We studied the reproductive interactions of individual 1524 

cultured and wild male cod in the presence of a cultured female using a series of 1525 

spawning trios. The spawning success of cultured males, in terms of both overall 1526 

proportion of eggs fertilized, and number of spawns in which they fertilized the 1527 

larger proportion of eggs, did not differ from that of wild males. This equality was 1528 

likely brought about, at least in part, by multiple paternity with appreciable 1529 

proportions of eggs fertilized by the presumed satellite male. In the subset of 1530 

spawning events for which behavioural data were available, neither wild, nor 1531 

cultured males were found to be behaviourally dominant over one another during 1532 

the night of spawning across all such events. The spawning success of the males was 1533 

not influenced by their size or by their agonistic behaviour, but was influenced by 1534 

their courting behaviour. The courting behaviour of the wild males had a negative 1535 

influence on their success, while the courting behaviour of the cultured males was 1536 
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found to increase their success. To our knowledge, this is the first study to detect 1537 

spawning success equality between wild and cultured male cod in competition.  1538 

4.2 Introduction 1539 

The waning of fish stocks worldwide has helped spur the development of 1540 

aquaculture programmes to meet the demand for product (Svåsand et al. 2000, 1541 

Naylor & Burke 2005, Dauer et al. 2009), and this has led to increases in the 1542 

unintentional release of cultured fish into the wild (Jensen et al. 2010). Exposure to 1543 

the unnatural culture environment, intentional and unintentional selection 1544 

(“domestication selection”), founder effects, genetic drift and small effective 1545 

population sizes (Ne) are likely to cause cultured fish to diverge from wild fish 1546 

genetically and phenotypically (Fleming & Einum 1997, Gross 1998, Thorstad et al. 1547 

2008). In fact, captivity has been shown to cause rapid phenotypic and genetic 1548 

changes in cultured relative to fish, and there is evidence that escapees from 1549 

aquaculture may not be as fit as their wild-born counterparts, especially in terms of 1550 

successfully mating (Fleming et al. 1996, Fleming et al. 2000, Meager et al. 2009, 1551 

Meager et al. 2010). However, while cultured fish may not be as successful in 1552 

attaining mates, interbreeding between wild fish and fish that have escaped from 1553 

aquaculture has been well documented for Atlantic salmon (Salmo salar) (Lura & 1554 

Sægrov 1991, Webb et al. 1993, Fleming et al. 2000, Glover et al. 2013), and evidence 1555 

exists that such interbreeding and genetic introgression can reduce the fitness of 1556 

wild stocks (Fleming et al. 2000, McGinnity et al. 2003, Skaala et al. 2012). 1557 
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While historically aquaculture production and research efforts focused 1558 

primarily on salmonid species, culture of other marine fishes, such as Atlantic cod 1559 

(Gadus morhua), has been attempted at various times as a means of diversifying the 1560 

industry. Although the current scale of cod aquaculture is much lower than that of 1561 

salmonids, the potential for escapes and subsequent interbreeding between wild 1562 

and escaped cod may be higher. Atlantic cod have been shown to have a greater 1563 

motivation to escape net pens than do salmonids, and to escape at a greater relative 1564 

rate than salmonids (Moe et al. 2007, Hansen et al. 2008, Zimmermann et al. 2012). 1565 

Moreover, cod, and other marine broadcast spawners readily spawn within sea 1566 

cages, releasing fertilized eggs into the surrounding ocean (Jørstad et al. 2008, 1567 

Uglem et al. 2012, Somarakis et al. 2013). Like escaped salmon, escaped cod have 1568 

been found to occupy the same habitat as their wild conspecifics (Zimmermann et al. 1569 

2013), even to the extent of having been found among wild fish in spawning 1570 

aggregations (Wroblewski et al. 1996, Uglem et al. 2008, Meager et al. 2010). 1571 

Nevertheless, simply being present in a spawning aggregation in and of itself does 1572 

not guarantee spawning success. 1573 

Atlantic cod exhibit lek-like mating aggregations (Hutchings et al. 1999, Rose 1574 

et al. 2008, Meager et al. 2010), with female mate choice apparently based on both 1575 

visual and acoustic displays, and broadcast spawning of buoyant, planktonic eggs 1576 

occurs with the selected male in a ventral mount on the female (Brawn 1961, 1577 

Hutchings et al. 1999). Within spawning aggregations, male cod form dominance 1578 
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hierarchies based on agonistic interaction, usually with the largest males occupying 1579 

the highest ranks, and access to females and spawning success being related to this 1580 

hierarchical position (Hutchings et al. 1999, Bekkevold et al. 2002, Bekkevold 2006). 1581 

Experimental studies have shown that while the most dominant males obtain 1582 

greater access to females and acquisition of ventral mounts, the majority of the egg 1583 

batches spawned have some degree of multiple paternity, indicating the importance 1584 

of satellite spawning in the cod mating system (Rakitin et al. 2001, Bekkevold et al. 1585 

2002, Herlin et al. 2008). The spawning success of cultured males in competition 1586 

with wild males in multi-individual groups has been found to be mixed. Skjæraasen 1587 

and Hutchings (2010) found that the reproductive success of cultured cod in 1588 

competition with wild cod was “essentially nil”, but in another study, Skjæraasen et 1589 

al. (2010) observed that cultured cod fertilized approximately 25% of eggs spawned 1590 

by wild females, but up to 52% of eggs spawned by cultured females.  1591 

 Taking into account the apparent importance of male dominance hierarchies, 1592 

courting behaviours and sperm competition in cod mating, we have tested the 1593 

competitive ability of paired cultured and wild male cod in the presence of 1594 

individual cultured female cod. We did this to remove the effect of multi-male 1595 

dominance hierarchies, which would exclude a large number of males from 1596 

spawning, thus this design should provide further illumination of the inter-1597 

individual variation in competitive ability between cultured and wild male cod. The 1598 

behaviour of the females within the trios was also considered because male success 1599 
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has been observed to be dependent upon the type of female with which they 1600 

spawned (Skjæraasen et al. 2010). We examined if females exhibited any 1601 

behavioural preference for either male type and if so, was this behavioural 1602 

preference also reflected in the male’s spawning success. We hypothesized that the 1603 

wild males would be dominant over the cultured males, both behaviourally and in 1604 

terms of spawning success. We further hypothesized that male spawning success 1605 

would be influenced by a female behavioural preference.  1606 

4.3 Materials and Methods 1607 

4.3.1 Experimental Fish 1608 

Wild cod were collected using baited cod pots on 10 and 20 November 2009, from 1609 

Smith’s Sound in Trinity Bay, Newfoundland, Canada (48° 9’ N, 53° 44’ W; Northwest 1610 

Atlantic Fisheries Management [NAFO] Division 3L; Figure 4.1). The cultured cod 1611 

were the progeny of wild-caught fish from Bay Bulls, Newfoundland, Canada (47° 18’ 1612 

N, 52° 48’ W; NAFO Division 3L; Figure 4.1), and are members of the same 1613 

population as the wild fish (Beacham et al. 2002, COSEWIC 2010). The cultured fish 1614 

were spawned between 13 December 2006 and 27 February 2007 in the Joe Brown 1615 

Aquatic Research Building (JBARB) at Memorial University of Newfoundland’s 1616 

Ocean Sciences Centre (OSC) in Logy Bay, Newfoundland (47° 37’ N, 52° 40’ E), and 1617 

raised there until they were stocked into sea cages at the Sapphire Sea Farms site in 1618 

Bay Bulls on the 30 November 2008 (ca. 31 cm total length). On 30 October 2009, 1619 
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cultured cod were collected from Sapphire Sea Farms’ cage facility, and transported 1620 

to the OSC.  1621 

The wild and cultured cod were placed in adjacent, identical 24.27 m3 tanks 1622 

(5.3 m diameter, 1.1 m deep) and acclimated for at least four months; thus the wild 1623 

and cultured cod were not exposed to one another prior to the start of 1624 

experimentation. Both tanks were illuminated with an ambient photoperiod, and 1625 

supplied with ca. 5-8oC seawater inflows (ca. 1.5-1.8 L s-1) and oxygen 1626 

supplementation to ensure that oxygen saturation at the outflow was maintained at 1627 

≥ 90%.  1628 

Approximately one week after the wild cod were collected, passive integrate 1629 

transponder (PIT) tags (Avid Identification Systems, Inc. Norco, California, USA) 1630 

were inserted into the dorsal musculature under anaesthesia with MS-222 (tricaine 1631 

methanesulfonate). The cultured cod had been implanted with PIT tags (at ca. 15-20 1632 

g body weight) in their abdominal cavities prior to our acquisition of them. All cod 1633 

were fed a diet consisting primarily of herring (Clupea herengus), supplemented 1634 

with mackerel (Scomber scombrus) and squid (Ilex sp.) as available, three times a 1635 

week to satiation. Cultured cod were easily weaned onto this diet over the course of 1636 

about a month. 1637 

Beginning in mid-February 2010, both the wild and cultured cod were 1638 

checked weekly for signs of gonad maturation, and the tanks were checked daily for 1639 
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the presence of eggs. Experimentation began once it appeared the majority of fish 1640 

had matured. 1641 

4.3.2 Experimental conditions 1642 

A trio, consisting of one wild male, one cultured male, and one cultured female, were 1643 

placed in each of ten circular experimental tanks, which were maintained on natural 1644 

photoperiod and supplied with ambient flow-through seawater (three of the tanks 1645 

were 3.77 m3 [2.0 m diameter, 1.2 m deep], three were 4.6 m3 [1.8 m diameter, 1.8 m 1646 

deep] and four of the tanks were 1.84 m3 [1.25 m diameter, 1.5 m deep]). To 1647 

increase our sample size, we ran three temporal replicates, each using ten unique 1648 

trios for a total of 30 unique trios (1 trio per tank x 10 tanks x 3 temporal replicates). 1649 

The first temporal replicate began on 18 March 2010, and ran until 13 April 2010. 1650 

The second temporal replicate ran between 13 and 30 April 2010, and the third and 1651 

final replicate ran between 30 April and 27 May 2010. 1652 

For each temporal replicate, trios were made by haphazardly selecting from 1653 

their respective holding tanks, the first 10 wild male, 10 cultured male, and 10 1654 

cultured female cod that were found to be in, or near spawning condition (males: 1655 

semen freely released following gentle pressure to ventral surface; females: soft, 1656 

distended bellies), and then randomly assigning one of each type to each of the ten 1657 

experimental tanks (randomization script written in R; R Development Core Team 1658 

2015). The females were added to the experimental tanks first, followed by the 1659 

simultaneous introduction of the paired males approximately five minutes later. Due 1660 
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to low maturation rates, a number of the cultured females and wild males had to be 1661 

used in more than one round of experimentation (See Supplementary Table 4.1). In 1662 

cases where fish were used in more than one round of experimentation, it was 1663 

ensured that they were not competed with individuals (i.e. unique trios were 1664 

produced) or in a tank in which they had previous experience. Unfortunately, no 1665 

female wild cod were detected to be in or near spawning condition during the 1666 

experiment, so the experiment was conducted using only cultured females. In total, 1667 

of 110 wild cod collected only four females eventually matured. 1668 

Prior to being added to the experimental tanks, the selected fish were 1669 

sedated with MS-222, scanned for PIT tag number, weighed (± 0.1 g), and measured 1670 

for total body length (± 0.5 cm) and pelvic fin lengths (fin origin to tip of the longest 1671 

fin ray [± 0.01 cm], using digital callipers). Wild males were tagged sinistrally to the 1672 

origin of their third dorsal fin, and the cultured males dextrally to the origin of their 1673 

first dorsal fin with 5-cm-long yellow t-bar tags (Floy Tag Inc., Seattle Washington) 1674 

for visual identification on video (females were not tagged). Even though not all trios 1675 

were filmed, for consistency all males were tagged. Fish were not observed to 1676 

interact with these tags during the course of the experiment, and the tags did not 1677 

appear to cause any stress. 1678 

All tanks were affixed with egg collectors, consisting of a surface-skimming 1679 

drain that emptied into a fine-meshed aquarium net suspended in a 19 L bucket. 1680 

These egg collectors were checked daily between 10:00 and 12:00, and when eggs 1681 
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were detected they were transferred into labeled 1 L beakers. A subsample of the 1682 

eggs collected from each spawning event was examined under a dissecting 1683 

microscope to verify that the eggs were at a developmental stage consistent with 1684 

having been spawned during the preceding 24 h period (Hall et al. 2004). Once 1685 

verified, eggs were then transferred in their 1 L beakers to a climate-controlled 1686 

room with the temperature set to 4°C (± 1°C of that of the spawning tanks), and a 1687 

12:12 light:dark cycle. After settling for ca. 15 min., non-viable eggs (i.e. those that 1688 

had sunk) were discarded, while the viable eggs, which were floating were retained. 1689 

Viable eggs were transferred to a new 1 L beaker, and the beaker was filled with ca. 1690 

800 ml of filtered seawater. Eggs were attended to daily, and any that sunk to the 1691 

bottom were removed using a pipette and discarded. Then ca. half of the water in 1692 

the beaker was removed and replaced with fresh, filtered seawater. Following ca. 72 1693 

h of development, all floating eggs, up to a maximum of 5 ml, were collected and 1694 

preserved in 95% ethanol, which was subsequently exchanged twice. 1695 

4.3.3 DNA extraction and amplification 1696 

DNA was extracted from 25 preserved fertilized eggs from each spawning event and 1697 

from fin clips from each potential parent, using Promega Wizard SV 96 Genomic 1698 

DNA Purification kits (Promega catalogue number A2371) following the 1699 

manufacturer’s protocol. Extracted DNA was amplified via polymerase chain 1700 

reaction (PCR) using the multiplex protocol of Wesmajervi et al. (2006), with some 1701 

modification: based on preliminary analysis of parents, which were genotyped in 1702 
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duplicate, the gadoid microsatellite Tch11 (O'Reilly et al. 2000) was dropped from 1703 

our multiplex as it failed to amplify consistently. Thus our multiplex consisted of the 1704 

fluorescently end-labelled markers Gmo8, Gmo19, Gmo35, and Gmo37 (Miller et al. 1705 

2000; Supplementary Table 4.2). 1706 

The multiplex PCR mixture consisted of 5 µl Qiagen Multiplex PCR Master Mix 1707 

(Qiagen Multiplex PCR Kit, catalogue number 206145), 1 µl 5X Q-Solution (Qiagen, 1708 

provided in the Multiplex Kit), 0.4 µl primer master mix (Supplementary Table 4.2), 1709 

and 4.8 µl extracted DNA, for a total reaction volume of 10 µl. The thermocycler 1710 

conditions were: an initial denaturation step of 95°C for 15 min, followed by 40 1711 

cycles consisting of 94°C for 35 s, 57°C for 60 s, and 72°C for 30 s. The reaction was 1712 

terminated by a final extension at 72°C for 10 min, followed by incubation at 4°C. 1713 

PCR products were sized on an ABI 3730 DNA Analyzer (Applied 1714 

Biosystems), allele sizes were calculated against the internal LIZ size standard 1715 

(GeneScan™ 500 LIZ™ dye Size Standard, Applied Biosystems, catalogue number 1716 

4322682) and, eletrophorograms were visualized using GeneMapper® v4.1 1717 

Software (Applied Biosystems). All genotyping was conducted twice, and the 1718 

accuracy of all allele scorings generated by the software was visually confirmed. 1719 

The genotypes of the offspring were compared to that of the known mother and the 1720 

two candidate fathers, and paternity was assigned manually based on exclusion.   1721 
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4.3.4 Behavioural observations 1722 

Axis 210 Network Cameras (Axis Communications, Lund, Sweden) were mounted 1723 

above four of the ten tanks (the four 1.84 m3 tanks; Tanks 4, 5, 7, and 8; 1724 

Supplementary Table 4.1), such that the entirety of the tank was visible, and the 1725 

cameras recorded continuously to a networked storage drive for the duration of the 1726 

experiment. Light levels were set such that unambiguous identification of each fish 1727 

in the tanks was possible during both the simulated day and night. From the video 1728 

recordings, three courting and four agonistic behaviours were assessed (Table 4.1).  1729 

Fish were far less active and no spawns were observed during daylight, 1730 

therefore only the behaviours of the fish during the night before eggs were collected 1731 

were considered for analysis (i.e. the night in which spawning occurred). Despite 1732 

screening the entirety of the video, in the majority cases, the actual release of 1733 

gametes could not be unambiguously identified. The impacts of this were twofold: 1734 

firstly, we were unable to examine how acting as the primary male (i.e. the male in 1735 

the ventral mount with the female) influenced fertilization success, and secondly, 1736 

this caused us to have to quantify the behaviour of the fish over the entire night of 1737 

spawning. Thus for each of the behaviours listed in Table 4.1, we counted the 1738 

number of behavioural actions each actor and recipient pair (Figure 4.2) exhibited 1739 

during one, randomly chosen, five-minute block per hour between 20:00 and 06:00 1740 

(i.e. “at night”). We then used the sum of the behavioural actions of each type of 1741 

behaviour (all blocks, for all hours), for each actor-recipient pair in the analysis. 1742 
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Each fish in a trio can act on, and in turn itself be acted upon, by the other two 1743 

fish in the trio; thus there are six potential actor/recipient dyads (Figure 4.2). In 1744 

light of this, the differences in the behaviour of fish of each origin were analyzed in 1745 

two ways. First, for each of the behaviours listed in Table 4.1, the recipient of the 1746 

behavioural events were not considered, and the total number of behavioural action 1747 

events performed on both potential recipients were summed (Figure 4.2). Next, for 1748 

each of the behaviours listed in Table 4.1, the number of behavioural events directed 1749 

at each of the potential recipients were considered separately (Figure 4.1).  1750 

We also tested the following: 1) if fish of different origins differed in their overall 1751 

level of behaviour, 2) whether fish of different origins behaved in a qualitatively 1752 

similar manner, and 3), if the behaviour of an individual in a trio influenced that of 1753 

the others. 1754 

4.3.5 Statistical analysis 1755 

We tested for differences in weight, total length, and size-adjusted mean pelvic fin 1756 

length between the wild males, the cultured males and the cultured females using 1757 

ANOVA with permutation, (aovp, lmPerm package (aovp, lmPerm package; Wheeler 1758 

2010)), and where significant differences were detected, Tukey’s honest significance 1759 

test (TukeyHSD, stats package; R Development Core Team 2015). The mean of the 1760 

right and left pelvic fin lengths were calculated after they were first individually size 1761 

standardized using the formula Mstd = Mobs(51.65/TLobs)b, where M is the trait 1762 

measure, 51.65 is the mean total length of all fish, TL is the total length of a fish, b is 1763 
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the trait-specific common within-groups slope, and obs and std refer to the observed 1764 

(raw), and the size-standardized measurements respectively (Reist 1986a). Despite 1765 

heterogeneity of regression slopes between fish origins (wild or cultured), the 1766 

common within-groups slope for each character was used because this is advised 1767 

even when such heterogeneity exists (Reist 1986a). We ensured the fish for which 1768 

behavioural data were available were a representative subset of fish in the 1769 

experiment by comparing their lengths and weights to those of all other fish of their 1770 

origin in the experiment using paired t-tests (all p > 0.05, t.test, stats package, (all p 1771 

> 0.05; t.test, stats package; R Development Core Team 2015)). 1772 

 Linear mixed-effects models (lme function from the package nlme (lme, nlme 1773 

package; Pinheiro et al. 2013)), which can account for repeated and non-1774 

independent measures were used because many trios spawned more than once, 1775 

several fish were used in more than one round of experimentation and the 1776 

behaviour of each member of a trio was not independent of that of the other 1777 

members of the trio (Figure 4.1). We assigned each fish a unique ID and these IDs 1778 

were used in the mixed effects models as the random effects. Where significant 1779 

differences were detected in the mixed effects model, post-hoc analysis using 1780 

Tukey’s honest significance tests were conducted using the function glht (multcomp 1781 

package; Hothorn et al. 2008). 1782 

Before analyzing all detected spawning events together, we ensured that the 1783 

spawning success of the wild and cultured males in the trios was unaffected by tank 1784 
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size (small, medium, large [Type III ANOVA on lme: chisq = 5.55, df = 2, p = 0.06]) or 1785 

temporal round (three experimental rounds [Type III ANOVA on lme: chisq = 0.31, df 1786 

= 2, p = 0.85]). We then examined whether, in all detected spawning events, the wild 1787 

and cultured males differed in their spawning success or in their behaviour. 1788 

Differences in the spawning success of males of both types were also examined in 1789 

terms of differences in the number of spawning event ‘wins’ and ‘losses’. In this case 1790 

for each spawning event detected, a ‘win’ was awarded to the male who fertilized 1791 

the greater proportion of eggs. If the two males within a trio fertilized an equal 1792 

proportion of the eggs in a given spawning event, then neither a ‘win’ nor ‘loss’ can 1793 

be awarded, and that event cannot be evaluated. Using the cultured males as the 1794 

focal males, this was analyzed using a mixed-effects logistic regression with the IDs 1795 

of the fish in the trio as the random effect. 1796 

The effects of relative size and behaviour on spawning success are reported 1797 

for the spawning success of the cultured males only. This was done both for 1798 

consistency and ease of interpretation and because the spawning success data are 1799 

proportions therefore if an effect is detected for one male, an inverse effect will be 1800 

seen for the other male. The wild males were on average, longer, heavier, and had 1801 

longer pelvic fins (Tukey’s HSD, all p < 0.01; Table 4.2), than the cultured males and 1802 

females, which did not differ significantly in these traits (Tukey’s HSD, all p > 0.88; 1803 

Table 4.2). When examining how size influenced behaviour and spawning success, 1804 

we considered both the overall size of the males compared to all other males of their 1805 
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origin, as well as differences in size between the two males in a trio. We looked at 1806 

the within origin effect of size because the purpose of this study was to examine 1807 

differences between wild and cultured males, and because the significant interaction 1808 

between size and origin made interpretation perilous. Next, because females were 1809 

only able to evaluate and choose between the two spawning partners that she was 1810 

presented, the effect of differences in the size of males within a tank (i.e. the two 1811 

males in actual competition) were examined. Both the raw difference between the 1812 

males and the log10 ratio of cultured male to wild male size were considered in 1813 

order to assess the effects of raw, as well as proportional differences in size. We also 1814 

tested the effect of differences in size between the males of both types and the 1815 

female in the same manner. An effect on spawning success of difference in wild and 1816 

cultured male size could be taken as indicative of size-based dominance, while an 1817 

effect of difference in size between either of the males and the female could indicate 1818 

size-assortative mating. 1819 

We examined the influence of behaviour on the spawning success of the 1820 

cultured males the same way we examined the influence of size on their spawning 1821 

success. That is, we first tested if the number of behavioural action events 1822 

performed during the night of spawning by fish of each origin for each behaviour, 1823 

both when the recipient of the behavioural actions were considered, and when they 1824 

were not influenced the spawning success of the cultured male. We then tested the 1825 

influence of differences in behaviour between the fish in the trio on the spawning 1826 
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success of the cultured male. Again, we first looked at the influence of the raw 1827 

difference in the number of each type of behavioural action performed between each 1828 

fish, then at the log10 ratios of cultured male to wild behavioural actions. We also 1829 

tested for evidence of female behavioural preference for either male type, and if it 1830 

was present, was it reflective of spawning success. 1831 

4.4 Results 1832 

4.4.1 Spawning success 1833 

Of the 30 trios (1 trio/tank x 10 tanks x 3 temporal replicates), 23 of them spawned 1834 

a total of 61 times (mean 2.65, range 1 to 6; Supplementary Table 4.1). Across all 1835 

spawning events there was no significant difference (ANOVA, on lme: chisq = 0.22, df 1836 

= 1 p = 0.64) in the proportion of eggs fertilized by the wild (median 50%, range 0-1837 

100) and cultured (median 47%, range 0-100) males (Figure 4.3). The paternity of 1838 

3% of all eggs could not be resolved because shared alleles in the males precluded 1839 

the exclusion of either male as the candidate father. The wild male fertilized all eggs 1840 

in a given batch for six spawns across five unique trios, while the cultured male sired 1841 

all eggs within a given batch during three spawns across three unique trios. There 1842 

was no significant difference in the number of spawning ‘wins’ (i.e. when a male 1843 

fertilized the greater proportion of eggs) between the wild and cultured males 1844 

(ANOVA on lme: chisq = 0.04, df = 1, p > 0.86). For the 61 detected spawning events, 1845 

the cultured male ‘won’ 29, the wild male ‘won’ 30, and they both fertilized an equal 1846 
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proportion (i.e. 50%) in 2 spawning events. Qualitatively similar results were found 1847 

in the subset of spawnings for which behavioural data were available. 1848 

4.4.2 Relationship between fish size and spawning success 1849 

When all spawns were examined, neither the size of the fish nor differences in their 1850 

size were found to effect spawning success. The weight, total length and size-1851 

standardized mean pelvic fin length, of the wild and cultured males were not found 1852 

to relate to the fertilization success of the cultured male (ANOVA on lme: df = 1, all p 1853 

> 0.12). Nor was the weight or length of the female found to affect the proportion 1854 

spawned by the cultured male (ANOVA on lme: df = 1, all p > 0.37). There was no 1855 

evidence that size-based dominance influenced spawning success because neither 1856 

raw differences nor log10 ratios in weight, total length, or pelvic fin size between the 1857 

wild and cultured male had an effect on the spawning success of the cultured male 1858 

(ANOVA on lme: df = 1, all p > 0.05). Differences in length, weight and pelvic fin size 1859 

between the female and either of the males were not found to have a significant 1860 

effect on cultured male fertilization success (size –assortative mating) (ANOVA on 1861 

lme: df = 1, all p > 0.05). There was also no evidence (Figure 4.4) of a dome-shaped 1862 

response characteristic of size-assortative mating (i.e. proportional fertilization 1863 

peaking when the male-female size difference is minimal, and decreasing as the 1864 

difference in size increases). 1865 
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4.4.3 Behaviour  1866 

Behavioural data were available for 23 spawning events, representing nine trios (4 1867 

trios filmed in each of 3 rounds, but some did not spawn; Supplementary Table 4.1). 1868 

It must be noted that the behaviour of one of the females, during the night of one of 1869 

the spawning events, was dramatically different from both her behaviour during the 1870 

other night in which she spawned, as well as from the behaviour of every other 1871 

female. During the night in question, this female was found to direct an inordinate 1872 

number of approach and brush behavioural events towards the cultured male in the 1873 

trio, which in turn had an undue influence on her aggregated behaviours (refer to 1874 

Table 4.1 for description of behaviours). To address this, the data were first 1875 

analyzed with this aberrant spawning event included, and then with it removed, 1876 

because this single spawning event was found to drive the majority of the 1877 

relationships found with female behaviour. 1878 

When the recipient of the behavioural action events was not considered, 1879 

there were significant differences among wild and cultured males and females in 1880 

every type of behavioural action, apart from ventral mounts (Table 4.3). Post-hoc 1881 

analysis revealed that, with the exception of ventral mounts, the cultured males 1882 

performed significantly more agonistic and courting behavioural events than the 1883 

females (Table 4.3). Furthermore, while cultured males tended to also perform more 1884 

behavioural events than wild males, the only significant difference between the two 1885 

was in the number of brushes (Table 4.3). The wild males tended to perform more 1886 
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behavioural events than cultured females, but only the difference in the number of 1887 

approaches was significant (Table 4.3). It must be noted that as seen in Table 4.3, the 1888 

variability of the behavioural data is large in relation to the sample size, which likely 1889 

accounts for the lack of statistical significance despite relatively large differences in 1890 

means. These results were not altered by the exclusion of the aberrant spawning 1891 

event. 1892 

Taking the recipient of each behavioural action into account revealed that the 1893 

cultured males directed more lateral displays, chases, brushes and approaches 1894 

towards the female than the female directed towards either of the males (Table 4.4). 1895 

Additionally, the cultured males directed more coerce behaviour events towards 1896 

wild males than did the females towards wild or cultured males and more than the 1897 

wild males directed towards the females (Table 4.4). The cultured males also 1898 

performed more brush behavioural events on the females than the wild males 1899 

performed on either the females or the cultured males (Table 4.4). The cultured 1900 

males approached the wild males more than the females did (Table 4.4). Overall, the 1901 

cultured males were observed to direct significantly more agonistic behaviour 1902 

towards females than the females did to either male type (Table 4.4). The cultured 1903 

males also directed more overall courting towards females than did the wild males 1904 

(Table 4.4), while females showed no significant preference for either male type. 1905 

Exclusion of the aberrant spawning event did not affect these results. 1906 
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The ratio of total agonistic to total courting behavioural events revealed no 1907 

significant differences in the manner in which individuals of different origin 1908 

interacted (including and excluding aberrant spawning event, ANOVA on lme: all p > 1909 

0.05). Interestingly, within trios, there was a significant relationship between the 1910 

total number of behavioural events (t = 2.9, df = 12, p < 0.05), and the total agonistic 1911 

behavioural events (t = 3.6, df = 12. p < 0.01) performed by one male and the 1912 

number performed by the other male, but there was no relationship between the 1913 

number of total courting behavioural events they performed (t = 2.0, df = 12, p > 1914 

0.063). Furthermore, there was no relationship, between the total number of 1915 

behavioural events, the total agonistic behavioural events, and the total courting 1916 

behavioural events performed by either male in a trio and the female in that trio (all 1917 

p > 0.094). 1918 

4.4.5 Relationship of behaviour to body and pelvic fin size 1919 

Neither male length, weight nor standardized mean pelvic fin size of the wild male 1920 

had a statistically significant effect on the total number of behavioural events, the 1921 

total number of agonistic events, the total number of courting events or the number 1922 

of each of the individual types of behavioural events performed when the recipient 1923 

of the interaction was not considered (ANOVA on lme: df = 1 all p > 0.33). Likewise, 1924 

wild male size had no effect on either the raw differences in the number of each type 1925 

of behavioural events performed between the cultured and wild male in a trio, or on 1926 
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the ratio of the number of behavioural events between the cultured and wild male in 1927 

a trio (ANOVA on lme: df = 1, all p > 0.54).  1928 

This pattern was similar for cultured males, with the exception of a negative 1929 

relationship between their total length and the number of chases observed when the 1930 

recipients were not considered (ANOVA on lme: chisq = 6.82 df = 1, p < 0.01). This 1931 

relationship, however, appeared driven by the smallest male studied having 1932 

performed the greatest number of chases of all cultured males, and when the one 1933 

spawning in which he partook was removed the relationship became non-significant 1934 

(ANOVA on lme: chisq = 1.79, df = 1, p > 0.18).  1935 

For females, there was some evidence of positive relationships between their 1936 

size and the number of total courting, brush and chase behavioural events (ANOVA 1937 

on lme: df = 1, all p < 0.05). When the aberrant spawning event was removed from 1938 

the analysis none of the significant relationships remained.  1939 

Neither raw or log10 ratios of differences in weight and length between the 1940 

wild and cultured male, or between the female and either of the males, had a 1941 

significant effect on the absolute number of, or the difference in the number of 1942 

individual or aggregated behavioural events performed (ANOVA on lme: df = 1, all p 1943 

> 0.11). 1944 

4.4.5 Relationship between behaviour and spawning success 1945 

No relationship between female behaviour and the spawning success of either 1946 

cultured or wild males was found after removal of the aberrant spawning event 1947 
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(ANOVA on lme: df = 1, all p > 0.46). Cultured male spawning success however, was 1948 

positively related to the total number of brush behaviours they exhibited (ANOVA 1949 

on lme: chisq = 6.64, df = 1, p < 0.01), as well as the total number of agonistic and 1950 

approach behavioural actions performed by the wild male (ANOVA on lme: total 1951 

agonistic: chisq = 5.71, df = 1, p < 0.05; approach: chisq = 9.09, df = 1, p < 0.01). 1952 

When the direction of interaction was considered, it was brushes and approaches 1953 

the wild male performed on the female that had the positive effect on cultured male 1954 

spawning success (ANOVA on lme: brush: chisq = 7.75, df = 1, adjusted p < 0.05; 1955 

approach: chisq = 7.10, df = 1, adjusted p < 0.01). There were no other significant 1956 

relationships between male behaviour and spawning success. 1957 

4.5 Discussion 1958 

4.5.1 Relationship of findings to Atlantic cod mating system 1959 

Contrary to our hypothesis larger or more aggressive males did not enjoy greater 1960 

spawning success. Finding equality in the spawning success of male wild and 1961 

cultured cod is unique to this experiment, and could be the result of the interplay 1962 

between the cod mating system and our experimental setup. Male cod typically form 1963 

dominance hierarchies several weeks prior to the first spawning event (Brawn 1964 

1961, Hutchings et al. 1999) and authors assign male rank within a dominance 1965 

hierarchy based on spawning success or on relative levels of agonistic behaviour 1966 

(e.g. Brawn 1961, Hutchings et al. 1999, Bekkevold et al. 2002). Both spawning 1967 
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success and male rank seem to be highly positively correlated to one another, and to 1968 

body size (Brawn 1961, Hutchings et al. 1999, Bekkevold et al. 2002). While 1969 

dominance hierarchies may have formed prior to spawning in our experiment, they 1970 

were not detected in the behavioural analysis. Unlike in ‘typical’ studies, we found a 1971 

lack of relationship between agonistic behaviour observed during the night of 1972 

spawning, spawning success and body size. This is suggestive evidence that 1973 

behavioural dominance during the night of spawning did not influence the outcome 1974 

of spawnings in this experiment, and also that dominance dyads may not have 1975 

formed within the trios. Given that Skjæraasen et al. (2010), and Skjæraasen and 1976 

Hutchings (2010), also found no relationship between male size and dominance 1977 

rank, it may be that competition between cultured and wild male cod leads to a 1978 

breakdown of size stratified dominance ranks, and thus lack of relationship between 1979 

male size and dominance rank is the norm in cultured/wild interaction. This has 1980 

some support in the results of Skjæraasen and Hutchings (2010), who found that 1981 

when the much smaller cultured males were excluded from their analysis, a 1982 

significant relationship between wild male length, but not weight, condition or 1983 

pelvic fin length and dominance rank was detected. This suggests that something 1984 

peculiar to the cultured fish was causing the breakdown of the typically size-1985 

stratified dominance hierarchy.  1986 

Abnormal cultured male behaviour has been observed during mating 1987 

competition with wild males in salmonids. The cultured males do not follow the 1988 
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usual agonistic exchange typical among wild males, and while cultured and wild 1989 

male salmonids show similar levels of aggression, the cultured individuals do not 1990 

appropriately cede victory (Fleming & Gross 1993, Fleming et al. 1996, Fleming et al. 1991 

1997). A breakdown of the size-stratified dominance hierarchy typically observed in 1992 

male cod could occur if wild and cultured male cod also have similar differences in 1993 

their response thresholds when evaluating competitors, the point at which they 1994 

switch from display to overt, physical aggression, or the point at which they cease 1995 

physically contesting interactions or cede victory. Under such a scenario, wild males 1996 

may trade current for future reproductive success, and/or they may choose to adopt 1997 

alternate mating strategies and act as a satellite spawner. The results of Skjæraasen 1998 

et al. (2010), and Skjæraasen and Hutchings (2010), bear this out, finding that across 1999 

all males in their studies, male agonistic behaviour, but not body size, is positively 2000 

related to reproductive success; dominance hierarchies existed, but were stratified 2001 

based on behaviour. This finding is not consistent with our results. We found neither 2002 

levels of agonistic behaviour during the night of spawning nor body size had an 2003 

effect on spawning success of males of either origin. 2004 

An alternative explanation for our findings is that lack of dominance and 2005 

effect of size on spawning success may be a feature of competitive interaction in cod 2006 

trios. Using an experimental set up similar to ours, Rakitin et al. (2001), explicitly 2007 

tested for and found no effect of size on spawning success in wild male cod. They 2008 

found that the male in the trio that fertilized the greater proportion of eggs 2009 
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alternated randomly between batches of eggs, and also that there was no association 2010 

between activity level and fertilization success, which could indicate lack of female 2011 

mate choice. Similarly, Skjæraasen (2003), also found no relationship between male 2012 

size and fertilization success for trios of both wild and cultured males tested 2013 

separately. Skjæraasen (2003) did find a relationship between male behaviour and 2014 

spawning success however. While this may explain why we saw no evidence of 2015 

positive size-assortative mating, which has been reported elsewhere (e.g. Bekkevold 2016 

et al. 2002), these results differ intrinsically from ours. Skjæraasen (2003) found 2017 

evidence of inter-batch consistency in spawning success for both wild and cultured 2018 

males, which we saw to some degree as well (e.g. wild male 13 with female 1, WM 2019 

9/F 15, WM6/F 20; Figure 4.5). Taken together with the fact that, unlike Skjæraasen 2020 

(2003), we saw no evidence that dominance played a role in determining the 2021 

outcome of mating competition, this intra- and inter-trio consistency, indicates that 2022 

female mate choice could have had a role in shaping the outcome of our experiment. 2023 

However, the characteristics on which the females were basing their choices are not 2024 

obvious. 2025 

Courtship in cod is behaviourally complex, involving visual and acoustic 2026 

displays, and female mate choice may be based on cues from any or all of these 2027 

(Brawn 1961). In our experiment, in addition to having no effect on agonistic 2028 

interaction, body size and pelvic fin length had no effect on courting behaviour or on 2029 

spawning success. Only courting behaviours were found to influence male 2030 
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reproductive success. The cultured male cod performed significantly more courting 2031 

behavioural events than the wild males. Of particular note, the cultured males 2032 

directed a significantly greater proportion of their courting behavioural actions 2033 

towards the females than they did towards the wild males, while the wild males 2034 

directed a statistically equal number of courting behavioural events towards both 2035 

the cultured males and females. This finding that wild and cultured males differed in 2036 

the number of courting displays they exhibited as well as to whom they directed 2037 

them, is in contrast to the results of Skjæraasen et al. (2010). Skjæraasen et al. 2038 

(2010) found that wild and cultured males both directed more courting events 2039 

towards other males, than they did towards females, which they attributed to males 2040 

courting fish in their vicinity. While male cod are capable of sex determination, male-2041 

male courting appears common, and sexual recognition often does not occur until 2042 

after a behaviour or physical contact has been initiated (Skjæraasen et al. 2010). Our 2043 

findings suggest though that the cultured males were able to visually distinguish 2044 

between the female and the wild male, while the wild males were unable to visually 2045 

determine the sex of the cultured fish. This may have been because the wild and 2046 

cultured males had different search images for ripe females based on the condition 2047 

of the females with which they have previous experience. The mean condition of the 2048 

cultured males in our study (mean Fulton’s K = 1.41), was greater than the mean 2049 

condition of the wild females in Skjæraasen and Hutchings (2010) (mean K = 1.10), 2050 

and Skjæraasen et al. (2010) (mean K = 1.06), and this may have led the wild males 2051 
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to confuse the cultured males and females and to behave inappropriately towards 2052 

both. We found the number of brush and approach behavioural events the wild 2053 

males directed towards the female had a negative effect on the wild males’ spawning 2054 

success, suggesting that the behaviour of the wild males towards the females may 2055 

not have been appropriate and that the females were selecting against them based 2056 

on this. It was impossible to sex the cod prior to maturation, and thus male and 2057 

female cod of each type were housed communally, which may have led to the 2058 

cultured males having an inherent advantage through prior exposure. 2059 

We found no evidence for our second hypothesis either. Despite differences 2060 

in male behaviour towards them, the females did not differ in the number of 2061 

agonistic or courting behaviours directed towards either male type indicating they 2062 

had no behavioural preference for males of either origin. However, female mate 2063 

choice may be mediated by behaviours not quantified, such as tendency to break 2064 

away from ventral mounts, and decisions of whether or not to release eggs.  2065 

In addition to prior exposure to ripe females, prior spawning experience may 2066 

have also influenced the spawning success of the fish in our study. Growth rate, 2067 

while highly variable, is generally slower and because age at maturity is directly 2068 

related to growth rate (Thorpe 2004), age at maturity is consequently higher in wild 2069 

(Knickle & Rose 2013) than in cultured cod (Svåsand et al. 1996). Thus, wild cod 2070 

mature at a greater age, and at a slightly larger body size than do cultured cod. If 2071 

past spawning experience improves male reproductive success, a smaller cultured 2072 
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male cod with more seasons of spawning experience may have higher reproductive 2073 

success than a larger, less experienced, wild fish. Such an effect has been 2074 

documented in the Pecos pupfish (Cyprinodon pecosensis), wherein spawning 2075 

success increases with experience, independent of male body size (Kodric-Brown 2076 

1995). Skjæraasen et al. (2008), found that repeat-spawning cultured cod males 2077 

invest more in their drumming muscle mass and less in the length of their pelvic fins 2078 

than do recruit spawners, while the opposite is seen in wild males. This could 2079 

indicate that in an effort to increase their spawning success, experienced males are 2080 

able to tailor their displays and/or secondary sexual characteristics to either the 2081 

environment they experience or to the preference of females. While we do not know 2082 

the exact age or spawning history of the wild fish in this study, based on their size 2083 

they are likely a mixture of naïve and repeat spawners (Knickle & Rose 2013). It is 2084 

likely that the cultured females are naïve spawners, but a proportion of the cultured 2085 

males may have matured the previous year. 2086 

The importance of multiple paternity in determining the outcome of this 2087 

study, and in the mating system of cod cannot be overstressed. Multiple paternity in 2088 

batches of eggs appears to be the norm in cod under tank-based experimental 2089 

conditions, and likely also in the wild (e.g. Hutchings et al. 1999, Rakitin et al. 2001, 2090 

Bekkevold et al. 2002). In the current study, the success of both the wild and 2091 

cultured males when acting as the satellite male could be quite high (at least 50%; in 2092 
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the absence of visual observation of all spawnings, it cannot be concluded if the 2093 

fertilization success of the satellite male exceeded that of the primary male). 2094 

Rowe et al. (2008) found that while mating success of males within spawning 2095 

groups is highly skewed, and males that are larger and more aggressive generally 2096 

sire a greater proportion of eggs, some males are able to sire offspring without 2097 

courting females or aggressively competing with fellow males. These authors 2098 

suggest that not only is this possible evidence for alternate mating tactics in cod, but 2099 

also that this is the cause of the statistical breakdown of a relationship between 2100 

morphological and behavioural correlates, and spawning success. In our experiment, 2101 

this hypothesis can be taken a step further. In experiments with more than four 2102 

males in competition, one or more males are generally fully excluded from spawning 2103 

by the agonistic behaviour of the dominant males (Bekkevold et al. 2002, 2104 

Skjæraasen & Hutchings 2010). In our experiment, wherein there were only two 2105 

males, once either of the males paired with the female in a ventral mount, there was 2106 

nothing to prevent the other from satellite spawning. This illustrates a very 2107 

important assumption within this, and some other studies: that the male that was 2108 

genetically detected to fertilize the greater proportion of eggs was presumed to be 2109 

the primary spawner (i.e. the male ventrally mounted to the female). While this is 2110 

generally found to be true in other studies, it cannot be positively concluded that the 2111 

satellite spawner could not have obtained greater fertilization success than the 2112 

primary spawner through sperm competition, genetic incompatibilities, or mis-2113 
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timing of gamete release by the primary male (Fleming et al. 1996, Weir et al. 2004, 2114 

Berejikian et al. 2009). Genetic incompatibilities cannot be ruled out either as having 2115 

influenced fertilization success, however such evidence is weak. Rudolfsen et al. 2116 

(2005), assert that finding no optimal male for all females is indicative of genetic 2117 

incompatibility and we found that fertilization success of wild male 13 with female 2118 

4, was generally lower than his success with either females 1 or 7 (Figure 4.5) which 2119 

supports this assertion. However it must be noted that his fertilization success in the 2120 

spawning event with the highest fertilization success with female 4 was actually 2121 

higher than that observed in the spawning event with the lowest fertilization 2122 

success with female 7. While this finding could be suggestive of genetic 2123 

incompatibility, alternative explanations such as female choice or timing of gamete 2124 

release cannot be excluded. 2125 

4.5.2 Potential for introgression 2126 

The results of this study are the first to show that in the absence of multi-male 2127 

dominance hierarchies, the spawning success of cultured male cod was equal to that 2128 

of wild males, despite these first-generation cultured cod differing both 2129 

behaviourally (this study) and morphologically (Wringe et al. 2015a) from wild fish 2130 

of the same source population. These results also provide further evidence that 2131 

interbreeding between wild and escaped cultured cod is likely. It is also probable 2132 

that through both intentional and unintentional selection within the culture 2133 

environment, these differences will become magnified in future generations. 2134 
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 Furthermore, nota bene, that the use of only cultured females in this 2135 

experiment may cause an overestimation of cultured male success, given that the 2136 

spawning success of cultured male cod in competition with wild males has been 2137 

found to be higher when they mate with cultured rather than with wild females 2138 

(Skjæraasen et al. 2010). However, when considering risk of introgression, even low 2139 

cultured male fertilization success, presumably such as may be attained through 2140 

satellite spawning, cannot be discounted, and our results show that both the 2141 

cultured and wild males took part in the majority of spawning events. That said, 2142 

evidence suggests cultured males may be excluded even from satellite spawning in 2143 

the wild. Tagging studies have shown that after simulated escape, the habitat use of 2144 

cultured male and female cod generally overlaps with that of wild cod (Uglem et al. 2145 

2008, Meager et al. 2009, Meager et al. 2010, Zimmermann et al. 2013). But, within 2146 

spawning aggregations, the distribution of the cultured males was physically 2147 

separated from that of the wild males and the cultured males appeared to be 2148 

excluded from the spawning arenas (Meager et al. 2009, Meager et al. 2010). This 2149 

suggests that in nature, like what is typically seen experimentally when dominance 2150 

hierarchies are allowed to form (e.g. Bekkevold et al. 2002, Bekkevold 2006, 2151 

Skjæraasen & Hutchings 2010, Skjæraasen et al. 2010), that male hierarchical rank 2152 

may best predict spawning success. Further, given the perceived importance of 2153 

satellite spawning in our results along with the fact that acoustic studies (Meager et 2154 

al. 2009, Meager et al. 2010) suggest farmed males are excluded from the location(s) 2155 
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were actual spawning takes place, suggests that the fertilization success parity with 2156 

wild males observed in our study likely will not occur in the wild.  2157 

That said, Meager et al. (2009) and Meager et al. (2010) did find that female 2158 

cultured cod were associated with the wild males in the spawning aggregations, and 2159 

the results of our study, along with those of Skjæraasen et al. (2010) demonstrate 2160 

that wild males will readily spawn with cultured females suggesting that escaped 2161 

cultured females may act as the primary vector of introgression as has been seen in 2162 

Atlantic salmon (Fleming et al. 1996, Fleming et al. 2000). 2163 

 Caveats aside, the lack of clear dominance, either behaviourally or through 2164 

monopolization of spawning events by either the wild or cultured males, while still 2165 

finding some consistency in intra- and inter-trio fertilization success, suggests that 2166 

the competitive ability of individual males is quite varied. Thus, in the case of a 2167 

large-scale escape event, the likelihood exists that some fraction of the male 2168 

escapees may be competitively superior to their wild conspecifics and hybridization 2169 

between them and wild females may occur. In fact, given that cod will spawn within 2170 

cages and the resultant eggs ‘escape’ and develop in the wild (Jørstad et al. 2008, 2171 

Jørstad et al. 2014), exposure to the wild environment may result in ‘farmed’ 2172 

offspring possessing a wild-type phenotype and which may be inherently as fit as 2173 

their wild counterparts. This may occur through some combination of a plastic 2174 

phenotypic response to the wild environmental conditions or through a different 2175 
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selection regime in the wild, which may result in the survival of a portion of the 2176 

‘farmed’ offspring most akin to their wild counterparts (phenotypically and 2177 

genetically). Furthermore, for cod that escape from culture, their potential to 2178 

hybridize may also increase in subsequent spawning seasons, if experience plays a 2179 

role in determining success, and as the escapees become larger and their external 2180 

morphology converges on that of the wild-type phenotype.   2181 
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4.7 Tables 2195 
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Table 4.1 Behavioural interactions examined during spawning 2196 

2197 Interaction Name Description Reference 

Agonistic Approach One fish swimming directly to within one-half-
body-length of another stationary fish 

Hutchings et al. 1999 

Chase One fish swimming towards a swimming fish Hutchings et al. 1999 

Prod Contact between the snout of one fish, and any 
part of another 

Hutchings et al. 1999 

Coercea One fish swimming in a manner such that 
another fish was forced to swim in only a fraction 
of all potential directions 

Brawn 1961 and 
Hutchings et al. 1999 

Courting Brushb One fish contacts another fish with its side Hutchings et al. 1999 

Lateral Display A fish maintains station in front of another 
stationary fish and extends its median fins 

 

Ventral Mount One fish slips under another, grasps it with its 
pelvic fins and attempts to elicit spawning 

Brawn 1961 

a Coerce is classified as an agonistic action in contrast to the "paired swim" described by Brawn and 
Hutchings et al. because it appeared generally to be performed to restrict access to the female, or in some 
cases, a portion of the tank 

 b The brush action was seen to initiate and accentuate the "circling" behaviour described by Hutchings et al., 
 which in turn was part of the "flaunting display" described by Brawn.  
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Table 4.2 Descriptive statistics of the fish used in the experiment. Reported values 2198 

are means ± standard deviation. ANOVA (on LME) results are also reported, with 2199 

different letters in superscript indicating significant differences between groups (α = 2200 

0.05). 2201 

 2202 

 2203 
2204 

Wild Males (n=16) Cultured Males (n=22) Cultured Females(n=19) F P

Weight (g) 2215.2 ± 183.5a 1723.1 ± 91.9b 1794.0 ± 60.4b 2,55 = 9.88 < 0.001

Total Length (cm) 58.4 ± 1.4a 49.1 ± 0.8b 48.5 ± 0.6b 2,51 = 33.91 < 0.001

Mean Pelvic Fin Length (mm) 75.2 ± 7.9a 59.8 ± 6.0b 55.4 ± 5.4b 2,49 = 47.32 < 0.001
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Table 4.3 Mean ± SD of behavioural actions (defined in Table 4.1) performed during 2205 

the night of spawning. The numbers are the sum of the action an individual directed 2206 

at both possible recipients. ANOVA (on lme) results are reported, with different 2207 

letters in superscript indicating significant differences (α = 0.05). 2208 

 2209 
  2210 

 
Behaviour Cultured Male Wild Male Cultured Female χ2 P 

 
Total Actions 99.0 ± 88.1a 53.8 ± 55.3ab 15.3 ± 27.0b 38.23 < 0.001 

A
go

n
istic 

B
eh

av
io

u
rs 

Total Agonistic 63.8 ± 50.7a 38.8 ± 36.6ab 10.4 ± 15.5b 43.04 < 0.001 

Approach 41.0 ± 30.4a 28.0 ± 25.7a 6.9 ± 11.8b 45.18 < 0.001 

Chase 3.9 ± 5.8a 1.5 ± 2.9ab 0.4 ± 1.1b 20.18 < 0.001 

Prod 8.2 ± 9.4a 4.7 ± 6.1ab 1.5 ± 2.6b 21.02 < 0.001 

Coerce 10.75 ± 12.4a 4.6 ± 7.0ab 1.7 ± 2.4b 25.12 < 0.001 

C
o

u
rtin

g 
B

eh
av

io
u

rs 

Total Courting 35.2 ± 40.8a 15.0 ± 22.5ab 4.9 ± 12.4b 24.26 < 0.001 

Brush 19.0 ± 19.4a 8.2 ± 10.0b 4.2 ± 12.1b 22.84 < 0.001 

Lateral Display 15.9 ± 23.2a 6.4 ± 15.0ab 0.7 ± 2.1b 18.61 < 0.001 

Ventral Mount 0.3 ± 1.1 0.5 ± 1.3 0.02 ± 0.2 2.43 0.296 
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Table 4.4 Differences in the behavioural interactions (defined in Table 4.1) among 2211 

the fish in the trios. WM, CM and Fem denote the wild male and cultured male and 2212 

female respectively. Arrows represents the direction of behavioural interaction, with 2213 

actor on the left, and the recipient on the right. The greater-than symbol (>) 2214 

indicates that the number of behavioural actions performed by the first 2215 

actor/recipient pair was greater than the number performed by the second pair. All 2216 

entries are significant at α = 0.05, while those entries marked with * are significant 2217 

only after the aberrant spawning was excluded from analysis. 2218 

  2219 
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 2220 

 

Behaviour Significant Differences 

 

Total Actions CM ⇒ Fem  >  Fem ⇒ CM 

 

  CM ⇒ Fem  >  Fem ⇒ WM 

 

  CM ⇒ WM  >  Fem ⇒ WM 

A
go

n
istic B

eh
av

io
u

rs 

Total 
Agonistic CM ⇒ Fem  >  Fem ⇒ CM 

  CM ⇒ Fem  >  Fem ⇒ WM 

  CM ⇒ WM  >  Fem ⇒ WM 

  CM ⇒ WM  >  Fem ⇒ CM* 

Approach CM ⇒ Fem  >  Fem ⇒ CM 

  CM ⇒ Fem  >  Fem ⇒ WM 

  CM ⇒ WM  >  Fem ⇒ WM 

Chase CM ⇒ Fem   > Fem ⇒ CM 

  CM ⇒ Fem   > Fem ⇒ WM 

Prod   

Coerce CM ⇒ WM  >  WM ⇒ Fem 

  CM ⇒ WM  >  Fem ⇒ CM 

  CM ⇒ WM  >  Fem ⇒ WM 

C
o

u
rtin

g B
eh

av
io

u
rs 

Total 
Courting CM ⇒ Fem  >  Fem ⇒ CM 

  CM ⇒ Fem  >  Fem ⇒ WM 

  CM ⇒ Fem  >  WM ⇒ Fem 

Brush CM ⇒ Fem  >  WM ⇒ Fem 

  CM ⇒ Fem  >  WM ⇒ CM 

  CM ⇒ Fem  >  CM ⇒ WM* 

  CM ⇒ Fem  >  Fem ⇒ CM 

  CM ⇒ Fem  >  Fem ⇒ WM 

Lateral 
Display CM ⇒ Fem  >  Fem ⇒ WM 

Ventral 
Mount 
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4.8 Figures2221 

 2222 

Figure 4.1 Locations from which the wild Atlantic cod were captured (Smith 2223 

Sound), and the cultured cod were obtained (Bay Bulls).   2224 

 2225 

 2226 
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 2227 

 2228 

Figure 4.2 Actor-recipient behavioural dyads with direction of action labelled a-e. 2229 

Each fish is capable of acting on either, or both of the other two fish in the tank (e.g. 2230 

for the female, arrows ‘e’ and ‘f’). In turn, each fish can also be acted upon by either 2231 

or both of the other fish (e.g. for the female, arrows ‘a’ and ‘c’). Total behavioural 2232 

actions are the sum of all behavioural actions an individual directs at both potential 2233 

recipients (e.g. for the female, the sum of ‘e’ and ‘f’). 2234 

2235 

Cultured Female

Cultured Male Wild Male

a

b

c

d

e f
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 2236 

Figure 4.3 Proportion of the 25 eggs that were genotyped per batch fertilized by 2237 

either the wild or cultured male. The data are all spawns for each trio that was 2238 

successful in spawning for all tanks and all rounds of experimentation. The mid-line 2239 

of the boxplot is the median, upper and lower limits of the box denote the first and 2240 

third quartiles respectively, and the whiskers extend to 1.5 times the inter-quartile 2241 

range. 2242 

2243 
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 2244 

Figure 4.4 Proportion of eggs fertilized by each male, as a function of the difference 2245 

in total length between the male, and the female with which he spawned. Differences 2246 

are the length of the male, minus the length of the female (negative numbers 2247 

indicate the female was longer than the male). Whiskers on the boxes extend to 1.5 2248 

times the inter-quartile range, the upper and lower bounds of the box are the first 2249 

and third quartiles, and the mid-bar in the box is the median. Dashes without boxes 2250 

indicate that a group spawned once, and hence calculation of variance is impossible. 2251 

2252 
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 2254 
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Figure 4.5 Intra- and inter-trio spawning success of wild males. The spawning 2255 

success of the cultured males are not shown, because they were not used in more 2256 

than one trial, and thus do not show inter-trio variability. However, within each trio, 2257 

the spawning success of the cultured males is the inverse of that of the wild male. 2258 

The y-axis is the proportion of eggs fertilized by the wild male, while the x-axis is the 2259 

unique identity of the female with which a male spawned. Individual wild males are 2260 

plotted using unique numbers, and the font size is proportional to the weight of that 2261 

male. Each point is reflective of the proportion of eggs fertilized by a wild male in 2262 

one spawning event with the female indicated on the x-axis. More than one unique 2263 

number above a female indicates she was used in more than one trial, while the 2264 

unique ID of a wild male occurring above more than one unique female identifies 2265 

wild males that were used in more than one trial.  2266 

 2267 

 2268 

2269 
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Chapter 5 – Hybridization between genetically distinct populations 2270 

has no effect on fitness during early life-history 2271 

5.1 Abstract 2272 

Interbreeding or hybridization of locally adapted, and thus genetically distinct 2273 

populations can lead to fitness differences relative to the parental strains in the F1, 2274 

and introgressed populations may experience genetic alterations and reductions in 2275 

their fitness. Populations of Atlantic cod from New Brunswick and Newfoundland 2276 

show genetic divergence, consistent with temperature-related local adaptation. 2277 

While naturally reproductively isolated, the potential for hybridization was created 2278 

through transfers for their use in aquaculture. We thus sought to determine if pure 2279 

strain and F1 hybrid offspring differed in any of several proxies of early life history 2280 

fitness, and if this was influenced by environment. We first compared fertilization 2281 

and hatching success, as well as aspects of metabolic rate such as time to hatch and 2282 

time-to-death of unfed larvae, at three temperatures. Then the relative survivorship, 2283 

growth and morphology at two temperatures were examined over a longer period. 2284 

We found no evidence that the pure strain and F1 hybrids differed in their relative 2285 

fitness, nor did we find a differential response to temperature. These findings 2286 

suggest the introgression of a non-local strain into the local population is quite 2287 

possible (i.e. NB into NL or vice versa). But, whether these findings are true of the 2288 

entire life-history of the hybrids is unknown, and the same is true of the relative 2289 
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fitness of F2, Fn, and backcross offspring, as well as longer term effects on the fitness 2290 

of the local population following introgression. 2291 

5.2 Introduction  2292 

Traditionally, oceanic habitats have been assumed to have fewer impediments to 2293 

interbreeding and dispersal than either terrestrial or freshwater habitats. Thus 2294 

levels of gene flow among populations in oceans are presumed to be higher and 2295 

patterns of genetic variation more uniform. Despite this adage, patterns of genetic 2296 

variation beyond simple isolation by distance (Hauser & Carvalho 2008), and which 2297 

are indicative of positive selection and local adaptation are often detected 2298 

(Beheregaray & Sunnucks 2001, Nielsen et al. 2004, Jorgensen et al. 2005). 2299 

Temperature is known to impart a strong selective force on the genomes of 2300 

poikilothermic animals and is implicated in patterning the divergence observed in 2301 

many of these studies. These patterns can occur as a continuous latitudinal cline, as 2302 

in the case of lactase dehydrogenase (LDH) allele frequencies in the killifish 2303 

Fundulus heteroclitus (Powers & Place 1978, Bell et al. 2014), to more spatially 2304 

discrete divergences as have been observed in other species (Jorgensen et al. 2005, 2305 

Bradbury et al. 2010). A good example of such discrete differentiation is seen 2306 

between populations of Atlantic cod (Gadus morhua) in Newfoundland and New 2307 

Brunswick, which differ on either side of ocean bottom temperature discontinuities 2308 

associated with the Laurentian Channel in the Gulf of St. Lawrence (Ruzzante et al. 2309 
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1996, Pogson & Fevolden 2003, Pampoulie et al. 2006, Andersen et al. 2009, 2310 

Bradbury et al. 2010). 2311 

Introgressive hybridization between genetically isolated or locally adapted 2312 

populations can lead to any of several possible fitness outcomes dependent in part 2313 

on their underlying genetic architecture (Burke & Arnold 2001). While the fitness of 2314 

the F1 hybrids could be increased by, for example, heterosis (hybrid vigour) 2315 

(Charlesworth & Willis 2009, Pruvost et al. 2013), the long term (F2 and more likely 2316 

in natural environments back cross) fitness of the introgressed population may be 2317 

reduced by the introduction of non-locally adapted traits or loci, reduction of overall 2318 

genetic diversity, and/or disruption of locally adapted gene complexes which have 2319 

evolved to work in concert over evolutionary timescales (Marr et al. 2002, Tymchuk 2320 

et al. 2007, Johnson et al. 2010).  2321 

One manner in which disparately related and naturally separated 2322 

populations may come into contact is through human mediated dispersal (Fraser et 2323 

al. 2010a). Among aquatic species this often occurs through the use of “non-native” 2324 

(i.e. originating from different ancestral populations) strains in aquaculture, and the 2325 

subsequent escape of genetic materials (fertilized eggs or larvae: Jørstad et al. 2326 

(2008), Uglem et al. (2012), Somarakis et al. (2013); through to spawning 2327 

individuals: McGinnity et al. (1997), Jensen et al. (2010), Glover et al. (2013)). 2328 

Broodstocks are often used outside of the range of their founder populations 2329 

because of a wish to expand aquaculture production into an area for which a local 2330 
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broodstock does not exist, or because the non-native broodstock outperforms the 2331 

native one.  2332 

Beginning around the turn of the millennium, the culture of cod in Canada’s 2333 

Atlantic provinces was examined as a means to both diversify the region’s 2334 

aquaculture industry, and a to meet consumer demand for product following the 2335 

collapse of wild stocks. To this end, cod broodstocks were simultaneously developed 2336 

from locally captured fish in both New Brunswick (NB) and Newfoundland (NL). 2337 

This experimental cod aquaculture programme resulted in a group of NB cod being 2338 

present in NL waters. If escapes (either of individuals or genetic materials in the 2339 

forms of fertilized eggs, or larvae) of these NB fish were to occur into NL waters, it 2340 

could result in introgressive hybridization and subsequent fitness effects. 2341 

In light of this potential for anthropogenically mediated introgression events, 2342 

we experimentally tested several proxies of early life-history fitness (e.g. growth 2343 

rate, Tupper & Boutilier 1995, metabolic rate and energy usage, Grabowski et al. 2344 

2009, morphology, Paulsen et al. 2009) of hybrids between cod stocks from NB and 2345 

NL relative to that of their pure-strain half-sibs. Given the presumed importance of 2346 

temperature in the development of the adaptive genetic differentiation and 2347 

structuring between the two populations and because the effects of outbreeding 2348 

depression (where present) are often exacerbated by environmental conditions 2349 

(Tymchuk et al. 2007, Frankham et al. 2011), we chose to test how any differences in 2350 

relative fitness were influenced by temperature. Using two experiments we looked 2351 
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for differences in relative fitness over both short- and longer-term rearing. The 2352 

former featured an evaluation of genetic compatibility, relative gamete quality, 2353 

developmental, and energy utilization rate, while the latter focused on relative 2354 

survival, growth and morphology. 2355 

5.3 Methods 2356 

The Newfoundland (NL) and New Brunswick (NB) cod used in our experiment were 2357 

progeny of The Atlantic cod Genomics and Broodstock Development Project’s (CGP) 2358 

NL and NB broodstocks, respectively. The CGP NL broodstock was created from wild 2359 

caught fish from Smith Sound and Bay Bulls NL, while the NB broodstock was 2360 

founded using wild caught fish from the Bay of Fundy NB (Figure 5.1). Seventy-five 2361 

fish of each origin (NL: 2848.6 ± 556.0 g, 62.2 ± 3.7 cm; NB: 1579.7 ± 563.8 g, 47.6 ± 2362 

5.3 cm) were obtained from Cooke Aquaculture’s commercial cod farming cage 2363 

facility in Hermitage, NL on December 6, 2011 and transported by truck to Memorial 2364 

University of Newfoundland’s Department of Ocean Sciences’ Joe Brown Aquatic 2365 

Research Building. These fish were held together in a 25m3 tank (diameter 5m, 2366 

depth 1.3 m, flow rate 110 Lhr-1, temperature 6 ± 1 °C) for the duration of the 2367 

experiments.  2368 

Fish were fed ad libitum three times per week on a diet of herring (Clupea 2369 

harrengus), supplemented with mackerel (Scomber scombrus) and squid (Ilex spp.) 2370 

as available. Feeding was reduced to twice weekly during the peak of the spawning 2371 

season because fish decreased their food intake (Fordham & Trippel 1999). All fish 2372 
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were implanted with passive integrated transponder (PIT) tags under anaesthesia 2373 

with MS-222 (Tricaine methanesulfonate) for unique identification. 2374 

5.3.1 Short-term hybridization 2375 

A split-brood design was employed to create both hybrid and non-hybrid half-sib 2376 

families using both NL and NB stock dams at three different experimental 2377 

temperature (3, 6, 9 °C). Females showing obvious signs of sexual maturity (i.e. 2378 

swollen, distended bellies) were captured from their holding tank using dip nets, 2379 

their PIT tags scanned and the number recorded, before being placed in a 750 L 2380 

insulated fish tote prefilled with water from the same source as the tank. Next males 2381 

were captured, scanned, and placed along with the females in the fish tote. The PIT 2382 

tag numbers were used to determine the population of origin of the fish (i.e. NB or 2383 

NL), as well as to keep track of which fish had been crossed previously, and with 2384 

whom they had been crossed.  Gametes were collected from fish that had been 2385 

anaesthetized in MS-222, weighed (± 1.0 g) and measured for total length (± 0.5 cm). 2386 

Two to three ML of Semen was collected in an unlabelled 5 mL syringe by applying 2387 

gentle pressure to the abdomen, taking care to ensure that there was no 2388 

contamination from blood, urine or faeces. Approximately 175-180 mL of eggs were 2389 

collected in two 100 mL plastic screw-top specimen containers in a similar fashion. 2390 

Semen and eggs were stored in a cooler with icepacks until use. 2391 

For each male, its semen was aliquoted into three pre-chilled 1.5 mL 2392 

Eppendorf tubes (one at each of three experimental temperatures, i.e. 3, 6 and 9 °C; 2393 
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Figure 5.2), which were then replaced into their respective incubator (Thermo 2394 

Scientific Precision). Next, for each batch of eggs collected, ~25 mL aliquots were 2395 

placed into six pre-labelled, pre-chilled 250 ml glass beakers (one for the pure strain 2396 

cross, one for the hybrid cross, at each of the three temperatures; Figure 5.2). These 2397 

were then placed in the incubators for approximately 15 minutes to allow them to 2398 

come to temperature.  2399 

  For each fertilization, the beaker containing the eggs was removed from the 2400 

incubator and placed upon a cooling plate (custom Physitemp TS-4 system; 2401 

Purchase & Moreau 2012) set to the experimental temperature, a small amount of 2402 

filtered and UV treated seawater (approx. 2 mL) at the experimental temperature 2403 

was added to the eggs and distributed by gently swirling the beaker, followed by the 2404 

addition of 250 μL of milt via pipette (≅ 1:100 milt:egg ratio). This was stirred for 20 2405 

s using the pipette tip, and then returned to the incubator for 3 min. After 3 min, 150 2406 

mL of seawater was added, and the beaker was again returned to the incubator for a 2407 

further 10 min. Excess semen was then removed by pouring the contents of the 2408 

beaker through a fine-meshed aquarium net and rinsing with filtered seawater at 2409 

the experimental temperature. The net was then inverted above a new chilled 2410 

beaker, and the eggs were rinsed into the net using the proper temperature filtered 2411 

seawater, filling the beaker to the 200 mL mark. Beakers were returned to the 2412 

incubators overnight.  2413 
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The next day, the eggs were gently swirled (to ensure that the floating and 2414 

presumably viable, and sunk and presumably unviable eggs were sampled equally) 2415 

and a random sample of approximately 100 eggs was taken from each fertilization 2416 

(i.e. each dam-sire pair at each temperature) using a disposable 3 mL plastic pipette, 2417 

from which the tip had been removed to prevent damage to the eggs. Samples were 2418 

stored in 20 mL plastic scintillation vial along with 15 mL of Stockard’s solution (50 2419 

mL formalin, 40 mL glacial acetic acid, 60 mL glycerin, 850 mL distilled water) for 2420 

preservation. Approximately one week after the sample was taken, the Stockard’s 2421 

solution was decanted out, and a fresh 15 mL was added to ensure the concentration 2422 

was adequate for preservation and clearing of the egg.  2423 

Fertilization success and egg sizes were calculated from photographs taken of 2424 

the preserved eggs using a digital camera (Nikon D90 with a Micro-NIKKOR 60mm 2425 

lens). Each image contained a size standard, and the diameters of fertilized eggs 2426 

(unfertilized or damaged eggs tended to swell, and thus were not reflective of the 2427 

true egg size) were measured in ImageJ (Schneider et al. 2012; 2428 

http://rsb.info.nih.gov/ij/download.html). The proportion of eggs fertilized was 2429 

taken as the number of intact eggs in which signs of cell division were present 2430 

divided by the total number of eggs sampled. 2431 

After sampling the remaining eggs were replaced in the incubators to settle 2432 

for at least 15 min to allow the viable eggs to refloat before another disposable 3 ml 2433 

pipette was used to remove approx. 100 eggs at a time from the surface of the 2434 
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beaker. These eggs were transferred to a petri dish and the number of fertilized eggs 2435 

in the sample was counted under a dissecting microscope, and then all eggs in the 2436 

petri dish were added to a pre-chilled 250 mL glass beaker (N.B. this was not used 2437 

for calculation of proportion fertilized). This was repeated until a total of 200 2438 

fertilized eggs were added to the beaker, at which point the beaker was filled to the 2439 

200 mL mark with filtered seawater at the experimental temperature and the 2440 

beaker was placed in the incubator. 2441 

Three replicate beakers from each fertilization at each temperature were 2442 

created in this manner. Conducting crosses and incubating the resultant offspring 2443 

was labour intensive, as such crosses were conducted every few days in an effort to 2444 

stagger the workload.  2445 

5.3.3 Short-term hybrids – daily husbandry 2446 

Each beaker was attended to daily, and using a disposable pipette we removed and 2447 

counted any dead eggs or larvae. In addition we also recorded the day on which the 2448 

first hatched larvae was observed, as well as the date of peak hatch (i.e. > 50% of all 2449 

eggs in beaker were hatched). The experiment ran until all larvae had starved to 2450 

died, and this was noted as time-to-death. The proportion of eggs that hatched was 2451 

calculated by dividing the number of larvae recorded, by the number of fertilized 2452 

eggs added to each beaker (i.e. 200). The water quality of each beaker was 2453 

maintained by carefully removing ca. 75% of the water every other day using a 2454 
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large-volume pipette, transferring the larvae in the remaining water to a new 2455 

beaker, and filling the new beaker to the 200 ml mark. 2456 

5.3.4 Long-term hybridization crosses 2457 

Tank space constraints and the different maturation timing of the two populations 2458 

prevented the creation of crosses using NB dams, and as such the long-term 2459 

hybridization experiment was conducted using NL dams only. Gametes were 2460 

collected, crosses were conducted and fertilization success and egg size measured 2461 

similarly to as in the short-term hybridization experiment with a few differences: 1) 2462 

Two sets of crosses (hereafter referred to as temporal groups) were conducted, one 2463 

on 25 April, and the other on 5 May 2012. PIT tag numbers were again used to 2464 

determine the population of origin of the fish (i.e. NL or NB), and on the second date 2465 

to ensure that unique crosses were conducted. 2) Four unique females were used on 2466 

25 April, and five unique females on May 5. A greater volume of eggs was collected 2467 

(min. 100 mL eggsfemale-1). 3) Crosses were conducted within a cold-room with 2468 

the temperature set to 6 °C, and one half of each batch of eggs collected was 2469 

fertilized with the milt of an NL male and the other with milt from an NB male.  2470 

Unlike in the shorter-term experiment, eggs of each half-sib family retained 2471 

were disinfected by ozonation for 1.5 min. at an oxidation-reduction potential of 2472 

800-900 mV. Once disinfected, each half-sib family was stocked to individual flow-2473 

through 50 L conical incubators. Each incubator was supplied with filtered, UV 2474 

treated seawater maintained at 6 °C at a flow rate of 1 Lmin-1. Banjo filters (mesh 2475 
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size 500 μM) prevented egg loss, and an air stone promoted water movement to 2476 

prevent eggs from adhering to the sides of the incubator. Incubators were 2477 

illuminated 24 hrsday-1 at an intensity of 500 lx. Once daily, the water flow and 2478 

aeration in each incubator was halted to allow presumably non-viable eggs to sink to 2479 

the bottom. These were then removed from the tank via the bottom drain and 2480 

discarded. Offspring of each temporal group remained in the incubators until the 2481 

majority of half-sibs in a temporal group had hatched (i.e. ≥ 90% of all eggs in each 2482 

half-sib family [incubator] had hatched). 2483 

5.3.5 Long-term hybrids – larval husbandry 2484 

Two circular 500 L replicate tanks at each of two experimental temperatures 2485 

(heated [11.1 ± 2.2 °C] and ambient [8.8 ± 2.0 °C]) were used for each cross date (i.e. 2486 

April 25 or May 5). Each of these tanks was stocked with equal numbers of larvae 2487 

from each half-sib family on the day of majority hatch to create common garden 2488 

environments. This occurred on 14 May for the group fertilized on 25 April and 21 2489 

May for the group fertilized 5 May. Transfer was accomplished by first removing the 2490 

larvae from each incubator (half-sib family) to a 20 L bucket along with 15 L of 2491 

filtered, UV treated seawater. All buckets were put in a cold room set to 6 °C to 2492 

maintain a constant temperature during counting. The water in each bucket was 2493 

then carefully agitated to evenly distribute the larvae in space, and a 150 mL sub-2494 

sample of water was removed using a graduated cylinder. The number of larvae in 2495 

this subsample was counted, and the subsample returned to the bucket. This was 2496 

repeated four more times, and the counts of larvae150 mL-1 in the five subsamples 2497 



 149 

averaged. This average number was then used to calculate the total number of 2498 

larvae present in each bucket (i.e. half-sib family). Once the number of larvae 2499 

available for each half-sib family had been calculated, the largest equal number 2500 

possible for stocking to each experimental tank was determined as the number of 2501 

larvae in the half-sib family with the fewest available larvae divided by four (two 2502 

replicate tanks at two experimental temperatures). The volume needed to be 2503 

removed from each bucket such that it contained this number of larvae was 2504 

calculated for each half-sib family, and the requisite volumes were transferred to 2505 

four 20 L buckets (one for each of the experimental tanks). Each of these four 2506 

buckets was then emptied into one of the four experimental tanks. This same 2507 

procedure was followed for both temporal cohorts (i.e. cross dates), with 8 half-sib 2508 

families stocked in the first temporal replicate and 10 for the second. The total 2509 

number of larvae stocked to each tank was 38500 for the first temporal replicate 2510 

and 20000 for the second temporal replicate. 2511 

 Rearing was conducted according to the standard operating procedure of the 2512 

Joe Brown Aquatic Research Building for Atlantic cod. Each of the 500 L tanks was 2513 

initially supplied with filtered UV treated water at a rate of 0.8 Lmin-1, which was 2514 

subsequently increased to 1.2 Lmin-1 after 5 days, 2 Lmin-1 after 9 days, 2.5 Lmin-2515 

1 after 13 days, and finally 4.5 Lmin-1 after 35 days. Light was initially set to 1000 2516 

lux with a 24 hr light photoperiod, before being reduced to 600 lux after 28 days. To 2517 

improve feeding performance and reduce bacterial and organic loads, the water was 2518 

conditioned by adding 200 mL of a mixture of 500g clay10 L-1 filtered seawater to 2519 
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the tanks twice daily (Attramadal et al. 2012). Larvae were first fed rotifers enriched 2520 

with Algamac three times daily. Artemia were introduced when the average length of 2521 

larvae in a tank had reached 9 mm, and weaning onto commercial, pellet diet began 2522 

at an average length of 12 mm. Prior to each feeding live feeding, a small number of 2523 

larvae were removed from each tank using a 250 mL glass beaker and the presence 2524 

of food in their guts was visually confirmed. At the same time, the number of prey 2525 

itemsL-1 was assessed, and this value informed the amount of live feed to be added 2526 

to each tank to ensure the prey concentration remained above the value prescribed 2527 

in the JBARB standard operating procedure. Fish were initially fed commercial 2528 

pellets in excess to aid in the weaning process, but once weaned fish were fed to 2529 

satiation. 2530 

5.3.6 Long-term hybrids - sampling 2531 

Cod were haphazardly sampled from each tank two, eight and 12 weeks after they 2532 

were stocked to them. Fish were caught and removed from each tank using a long-2533 

handled aquarium net, euthanized via overdose with MS-222, and preserved in 95% 2534 

ethanol in 50 mL Falcon tubes. We attempted to sample at least 100 fish from each 2535 

tank at each sampling period, however in the early sampling periods we 2536 

underestimated how many fish we had sampled, while in the later sampling periods 2537 

insufficient numbers of fish remained in the ambient temperature tanks to allow 2538 

sampling of 100 fish (Table 5.1). In addition to the sampled fish preserved in Falcon 2539 

tubes, during the week 2 sampling for the 5 May cohort, and the week 8 samplings 2540 

for the 25 April and 5 May cohorts, 25 cod from each tank were photographed with a 2541 
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digital camera (Nikon D90 with a Micro-NIKKOR 60mm lens) for morphometric 2542 

analysis, and individually preserved in Eppendorph tubes. All fish sampled during 2543 

the week 12 samplings were photographed and individually preserved in 2544 

Eppendorph tubes.   2545 

5.3.7 DNA Extraction and amplification 2546 

DNA was extracted from appropriately sized portions of preserved larvae/juvenile 2547 

or fin clips from each potential parent using Promega Wizard SV 96 Genomic DNA 2548 

Purification kits (Promega catalogue number A2371) following the manufacturer’s 2549 

protocol. Extracted DNA was amplified by polymerase chain reaction (PCR) using a 2550 

multiplex PCR mixture that consisted of 5 µL Qiagen Multiplex PCR Master Mix 2551 

(Qiagen Multiplex PCR Kit, catalogue number 206145), 1 µL 5X Q-Solution (Qiagen, 2552 

provided in the Multiplex Kit), 0.40 µL of forward and reverse for each of the four 2553 

primers, and 2.4 µL extracted DNA, for a total reaction volume of 10 µL. Two 2554 

separate multiplexes were used to genotype each individual, one containing the 2555 

markers Gmo8, Gmo19, Gmo35, and Gmo37, and the other containing Gmo63, 2556 

Gmo118, Gmo125, and Gmo152 (Gmo8, Gmo19, Gmo35, Gmo37: Miller et al. 2000, 2557 

Gmo63, Gmo118, Gmo125, Gmo152: Higgins et al. 2009; Supplementary Table 5.1). 2558 

The thermocycler conditions were: an initial denaturation step of 95 °C for 15 min., 2559 

followed by 40 cycles consisting of 95 °C for 35 s, 58 °C for 90 s, and 72 °C for 30 s. 2560 

The reaction was terminated by a final extension at 72 °C for 5 min., followed by 2561 

incubation at 4 °C.  2562 
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PCR products were sized on an ABI 3730 DNA Analyzer (Applied Biosystems) 2563 

against an internal LIZ size standard (GeneScan™ 500 LIZ™ dye Size Standard, 2564 

Applied Biosystems, catalogue number 4322682) and, eletrophorograms were 2565 

visualized using GeneMapper® v4.1 Software (Applied Biosystems). Each offspring 2566 

was genotyped in duplicate for each multiplex, and the parents in triplicate. The 2567 

accuracy of allele scorings generated by the software was visually confirmed. 2568 

Parentage was conducted on all offspring for which genotypes were available at all 2569 

eight loci using Cervus v3.0 (Kalinowski et al. 2007). 2570 

5.3.8 Statistical analysis 2571 

All statistical analyses were conducted in R v3.2.1 (R Development Core Team 2572 

2015). Where there was non-independence because of shared parentage, or 2573 

repeated sampling over time, general mixed-effects linear models (GLMM) were 2574 

conducted using the package lme4 (Bates et al. 2015), with post-hoc analysis using 2575 

Tukey’s honest significance tests implemented using the package multcomp 2576 

(Hothorn et al. 2008) when significant differences were detected. For the short-term 2577 

hybridization experiment, the PIT tag number of the sire and dam used in each cross 2578 

were used as the random effect, while for the long-term hybridization experiment, 2579 

that of the dam alone was used. This was because in the short-term hybridization 2580 

experiment, both the sires and dams were used multiple times, but in the longer-2581 

term experiment, only dams were repeated within temporal replicates. 2582 



 153 

Differences in proportions fertilized and hatched were independently tested 2583 

using GLMMs with binomial error structure, as were the proportions determined via 2584 

genetic parentage to be hybrid or non-hybrid at each time point in the long-term 2585 

hybridization experiment. Time to first hatch, time to peak hatch, and time-to-death, 2586 

with time measured in both days and degree-days were each independently tested 2587 

using GLMMs with Poisson error structure. Finally, GLMMs with Gaussian error 2588 

structure was used to test for differences in size between hybrids and non-hybrids 2589 

at each time sampling point in the long-term hybridization experiment. 2590 

5.3.9 Morphometric and geometric morphometric analyses 2591 

Based on their appearance in the digital photographs, the sampled cod were 2592 

classified as being either larvae (i.e. not having developed median fins) or juveniles. 2593 

Ten landmarks (Rohlf 1999, Adams et al. 2004) were recorded as x-y coordinates 2594 

from the larvae, while 16 landmarks were recorded for the juveniles using the 2595 

programme ImageJ (Figure 5.3)(Schneider et al. 2012).  2596 

 Geometric morphometric analyses were conducted using the R packages 2597 

geomorph (Adams & Otárola-Castillo 2013) and shapes (Dryden 2013). The x-y 2598 

coordinates were converted to shape coordinates using generalized Procrustes 2599 

analysis (GPA; Adams et al. 2004). GPA removes the non-shape aspects of scaling 2600 

(size), orientation and location from the raw x-y coordinates, and standardizes each 2601 

individual to a common unit centroid size (Rohlf 1999, Adams et al. 2004). The 2602 

amount of shape variation attributable to the nature of the cross (hybrid or non-2603 
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hybrid), and the temperature treatment (where possible, see results) was tested 2604 

using the function procD.lm which conducts Procrustes ANOVA with permutation on 2605 

the Procrustes shape coordinates (Adams & Otárola-Castillo 2013, Collyer et al. 2606 

2015).  procD.lm does not allow the specification of random effects, such as the 2607 

identities of the dams, to account for similarity within half-sibs. However, we 2608 

compared the results from procD.lm with results generated by two permutational 2609 

MANOVA approaches, one using adonis (vegan R package; Oksanen et al. 2015), in 2610 

which we specified that the permutations be constrained to occur within half-sibs 2611 

(i.e. based on dam ID) , as well as those from PRIMER v6 (Clarke 2006) which allows 2612 

the specification of mixed-effects. The results of all three analyses were qualitatively 2613 

the equivalent (the absolute values of the [pseudo-] F and p values differed because 2614 

they are based on permutation, but the interpretation was the same). Given that the 2615 

procD.lm, which does not allow for the inclusion of a random effects term and would 2616 

thus tend to be less conservative (i.e. greater chance of detecting significance where 2617 

it did not exist [Type I error]) showed qualitatively matching results to the analyses 2618 

in which random effects were included we chose to use procD.lm in this paper 2619 

because it afforded greater interoperability with the other functions in its package. 2620 

 In addition to conducting geometric morphometrics, which examines the 2621 

shape of the individual as a whole, we also tested for differences in size for the 2622 

morphological measures listed in Table 5.2 between hybrids and non-hybrids, as 2623 

well as between half-sib families using GLMM with female ID as the random effect. 2624 

These features were measured in two ways. In the first way the distance in pixels 2625 
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between the x-y points which make up each feature was converted to millimeters, 2626 

then each feature for each individual was standardized using the formula Mst = 2627 

Mobs(Szmean/Szobs)b where: M is the trait measure, Sz is the size measure (standard 2628 

length) to which samples are standardized, b is the trait-specific common within-2629 

groups slope and the subscripts mean, obs and std refer to the mean, observed (raw) 2630 

and the size-standardized measurements, respectively (Reist 1986a). In the second 2631 

manner, the distances between the points were calculated from the Procrustes 2632 

coordinates returned after conducting GPA which contain inherent size 2633 

standardization. In both cases, differences in size between hybrids and non-hybrids, 2634 

as well as between half-sib families were tested using GLMMs with the dam as the 2635 

random factor.  2636 

5.4 Results 2637 

5.4.1 Short-term rearing 2638 

While many of the characteristics examined were found to be influenced by 2639 

temperature, no significant interactions between cross and temperature were found 2640 

(all p > 0.05). 2641 

The NL dams were larger than the NB dams (length: NL 61.6 ± 3.35 cm, NB 2642 

51.83 ± 0.83 cm;  F1,9 = 11.56, p < 0.01; weight: NL 3675.14 ± 206.94 g, NB 2194.50 ± 2643 

292.20 g F1,11 = 23.95, p < 0.001), and the same was true of the sires (length: NL 2644 

62.30 ± 1.07 cm, NB 48.83 ± 1.86 cm; F1,17 = 30.14, p < 0.0001; weight: NL 2591.60 ± 2645 

95.50 g, NB 1618.44 ± 176.27 g F1,17 = 18.17, p < 0.001). The eggs of NB dams were 2646 
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significantly larger than those of the NL dams (diameter NL 1.33 ± 0.03 mm, NB 1.45 2647 

± 0.03 mm ANOVA on GLMM: chisq = 11.633, df = 1, p < 0.001]. 2648 

 Fertilization success (overall mean) was not different between hybrids and 2649 

non-hybrids from NL or NB dams (ANOVA on GLMM: chisq = 5.0368, df = 3, p > 2650 

0.16), nor was it influenced by temperature, or egg size (both p > 0.64). 2651 

A significantly greater proportion of non-hybrid eggs with an NL dam 2652 

hatched than non-hybrids with a NB dam (Tukey’s HSD on GLMM: z = 2.818, p < 2653 

0.05; all other comparisons p > 0.12; Figure 5.4) which fit with a significantly greater 2654 

proportion of the eggs of NL dams than those of NB dams being found to hatch 2655 

overall (ANOVA on GLMM: chisq = 6.1049, df = 1, p < 0.05). The proportion of eggs 2656 

which hatched at 6 °C was higher than that which hatched at 9 °C, (Tukey’s HSD on 2657 

GLMM: z = -2.719, p < 0.05), but did not differ between 3 and 6 °C or 3 and 9 °C (both 2658 

p > 0.21) nor between cross types (ANOVA on GLMM: chisq = 0.6478 df = 2 p > 0.72). 2659 

The proportion of eggs that hatched was not influenced by the size of the eggs (all p 2660 

> 0.63). 2661 

 Neither days nor degree-days to first hatch differed between hybrids and 2662 

non-hybrids (all p > 0.19). However, both measures of time to first hatch were 2663 

greater for NB than NL dams (both p < 0.05; Figure 5.5). Interestingly, while 2664 

differences between temperature treatments were ubiquitous for both days and 2665 

degree days to first hatch, expressing time to first hatch in degree-days revealed 2666 

there to be some degree of metabolic compensation to temperature. This can be 2667 
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seen in Figure 5.5 where degree days to first hatch increases with temperature (i.e. 3 2668 

°C < 6 °C < 9 °C), and while the difference between each temperature was significant 2669 

(Tukey’s HSD on LMM: all p < 0.001), the absolute difference between 3 and 6 °C was 2670 

larger than that between 6 and 9 °C. This pattern was even more prevalent when 2671 

measured in days (Figure 5.5).  2672 

Degree-days to peak hatch (≥ 50% hatched) was greater for eggs of NB non-2673 

hybrids than NL non-hybrids (Tukey’s HSD on LMM: z = -2.906, p < 0.05), but none 2674 

of the other comparisons were found to differ significantly (Tukey’s HSD on LMM: all 2675 

p > 0.16; Figure 5.6). There were also no differences between cross types when time 2676 

to peak hatch was expressed in days (ANOVA on LMM: chisq = 5.4429, df = 1, p > 2677 

0.14; Figure 5.6).  Both measures of time to peak hatch, were positively related to 2678 

time to first hatch (ANOVA on LMM: all p < 0.0001), as well as temperature (Tukey’s 2679 

HSD on LMM: all p < 0.0001). When expressed in degree-days, some degree of 2680 

metabolic compensation to temperature was again observed with time to peak hatch 2681 

at 3 °C being significantly shorter than that at 6 or 9 °C (Tukey’s HSD: both p < 2682 

0.0001), while the difference between 6 and 9 °C was not significant (Tukey’s HSD, z 2683 

= 1.849, p > 0.14; Figure 5.6). 2684 

 Time-to-death (i.e. time to death of all hatched larvae), whether expressed in 2685 

days or degree-days, did not differ between dam origins, or between hybrids and 2686 

non-hybrids (all p > 0.16; time-to-death Figure 5.8). Expressed in days, time-to-2687 

death was found to differ between temperature treatments with 3 > 6 > 9 °C (all p < 2688 
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0.0001; Figure 5.7). Time-to-death was positively related to percent hatch and 2689 

median time-to-death (all p < 0.0001). Temperature compensation was again 2690 

observed when time-to-death was expressed in degree days. Significant differences 2691 

were observed between each temperature (Tukey’s HSD on LMM: all p < 0.0001), 2692 

but the difference between 3 and 6 °C was less than that between 6 and 9 °C (Figure 2693 

5.7). Degree-days to time-to-death was positively related to median degree days to 2694 

death, degree days to peak hatch and proportion of eggs that hatched (all p < 0.01). 2695 

There was no relationship between egg size and time-to-death (all p > 0.15).  2696 

5.4.2 Long-term rearing 2697 

A total of 840 and 781 offspring from the Apr. 25 and May 5 cohorts respectively 2698 

were correctly assigned to parent pairs using CERVUS (93 and 94% success 2699 

respectively; Table 5.3). All alleles found in the parents were detected in the 2700 

offspring, and the genetic variation for the eight loci ranged between five and 13 2701 

alleles (Table 5.4).  2702 

The effects of temperature and sampling date on proportional relative 2703 

survivorship had to be tested separately because a significant interaction between 2704 

them was present in both temporal replicates (Apr. 25 cohort: ANOVA on GLMM 2705 

chisq = 28.9896, df = 2, p < 0.0001; May 5 cohort: ANOVA on GLMM chisq = 6.7398, 2706 

df = 2, p < 0.05). For the April 25 cohort, the proportional relative survival of hybrids 2707 

in the high temperature treatment was not significantly different from their survival 2708 

in the ambient treatment at the two and eight week sampling periods, and the same 2709 
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was true of the non-hybrids (all p >0.56). At the 12 week sampling period however, 2710 

the survivorship of the non-hybrids in the ambient treatment was significantly 2711 

greater than in the high temperature treatment (ANOVA on LMM: chisq = 31.274, df 2712 

= 1, p < 0.0001; Figure 5.8). Within temperature treatments, the proportional 2713 

survivorship of hybrids and non-hybrids was statistically equal at all three sampling 2714 

points (ANOVA on GLMM: chisq = 1.06, df = 2, p > 0.58; Figure 5.8). The same was 2715 

true of the ambient treatment for the two and eight week sampling periods, (Tukey’s 2716 

HSD z = -0.345, p > 0.93), but the proportion of hybrids at the 12 week sampling 2717 

period was significantly less than that of hybrids at either 2 (Tukey’s HSD z = 4.411, 2718 

p < 0.0001) or 8 weeks (Tukey’s HSD z = 5.317, p < 0.0001; Figure 5.8). The 2719 

proportional relative survivorship for the offspring of the female which was used 2720 

twice (i.e. crossed with two NL and two NB males; the circle and downward triangle 2721 

families) showed similar proportional relative survivorship in the high temperature 2722 

treatment, and the non-hybrid offspring of this female showed the best proportional 2723 

relative survivorship in the ambient treatment especially at 12 weeks (Figure 5.9) 2724 

There was a significant positive relationship between proportional relative 2725 

survivorship for both hybrids and non-hybrids, and egg size in the ambient, but not 2726 

in the high temperature treatment (ambient: z = 2.008, p < 0.05; high: z = 1.454, p > 2727 

0.14) and at the 12-week sampling period (z = 2.552, p < 0.01) but the relationship 2728 

did not differ between hybrids and non-hybrids. 2729 

The May 5 cohort showed a significant difference in proportional relative 2730 

survivorship between temperature treatments at the 2-week sampling period (chisq 2731 
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= 7.0339, df = 1, p < 0.01) but no difference in proportional relative survivorship 2732 

between temperature treatments for the other two sampling periods (both p > 0.54), 2733 

or over all three sampling periods within the ambient treatment (ANOVA on GLMM: 2734 

chisq = 4.203, df = 2, p > 0.12; Figure 5.8). However within the high temperature 2735 

treatment, the proportion of hybrids was greater at both eight and 12 weeks than at 2736 

two weeks (Tukey’s HSD, both p < 0.01), but did not differ between eight and 12 2737 

weeks (Tukey’s HSD, z = -1.205, p > 0.45; Figure 5.8). This difference is likely more a 2738 

reflection of reversal in relative survival however.  2739 

Looking closely at the contribution by each half-sib family, it is clear that 2740 

much of the signal in the ambient tank at the 12-week sampling point was caused by 2741 

the filled circle family, which made up 50% of all offspring sampled at this time 2742 

(Figure 5.9). There was a significant positive relationship between survivorship for 2743 

both hybrids and non-hybrids, and egg size at all time points in both temperature 2744 

treatments (all p < 0.0001). 2745 

 At the two-week sampling period, for the May 5 cohort, no morphological 2746 

differences were detected by either the traditional (all p > 0.34; Table 5.5) or 2747 

geometric morphometric (Z = 0.63, p > 0.60) analyses between hybrids and non-2748 

hybrids and all offspring analyzed were found to be at the larval stage. Head length, 2749 

eye size and somite depth were found to be significantly larger in high temperature 2750 

(ANOVA on LMM: chisq = 4.4928, df = 1, p < 0.05; all other p > 0.09; Table 5.5), but 2751 

this was not reflected as a difference in shape in the geometric morphometric 2752 
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analysis (Z = 1.21, p > 0.20), and there were no interactions between temperature 2753 

and treatment (all p > 0.53). Egg size was positively related to standard length, head 2754 

length, and lower jaw length (all p < 0.05), but not to the other characters (all p > 2755 

0.15). No samples were taken for measurement at the two week sampling point for 2756 

the April 25 cohort. 2757 

By the eight-week sampling period, approximately one third of all samples all 2758 

of which were in the high temperature treatment for the April 25 cohort had 2759 

metamorphosed to the juvenile stage. However, by eight weeks, May 5 cohort fish 2760 

sampled from the high temperature treatment had metamorphosed into juveniles, 2761 

while those in the ambient treatment retained their larval morphology making 2762 

comparisons across temperatures impossible within this cohort. For both temporal 2763 

treatments and offspring developmental stages (i.e. larval and juvenile) hybrids and 2764 

non-hybrids did not differ morphologically (all p > 0.64; Tables 5.5 and 5.6). 2765 

However, for the April 25 cohort where comparison was possible, the larvae in the 2766 

high temperature treatment were larger than those in the ambient for all measures 2767 

following size standardization (all p < 0.0001; Table 5.5), and there was no 2768 

interaction between cross type and temperature (all p > 0.36). The morphology of 2769 

the April 25 larvae was not related to egg size (all p > 0.35), but a positive 2770 

relationship was for all features in the May 5 cohort (all p < 0.05). Likewise, the 2771 

morphology of the April 25 juveniles was unrelated to egg size, and the same was 2772 

true of the May 5 cohort (all p > 0.11). The results of the geometric morphometric 2773 

analysis were equivalent; for both cohorts the hybrids and non-hybrids did not 2774 
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differ in shape (all p > 0.11). Within the April 25 cohort where comparison as 2775 

between temperatures was possible for those fish at the larval stage, there was a 2776 

significant difference in shape between temperature treatments (Z = 10.24, p < 2777 

0.001) but no type/treatment interaction (Z = 1.57, p > 0.09; Figure 5.10). 2778 

All offspring sampled at 12 weeks were found to have metamorphosed to 2779 

juveniles. None of the juvenile morphometric measures differed in size between 2780 

hybrids and non-hybrids in the April 25 cohort (all p > 0.09; Table 5.6), but the 2781 

depths of the caudal peduncle, and body were found to be significantly greater in the 2782 

non-hybrids than the hybrids in the May 5 cohort (both p < 0.05). For both cohorts, 2783 

all measurements were found to be significantly larger in the high temperature 2784 

treatment following size standardization (all p < 0.05). Geometric morphometric 2785 

analysis showed similar results, with significant differences in shape present 2786 

between temperature treatments in both temporal cohorts (both p < 0.001; Figures 2787 

5.11 & 5.12), but no difference between hybrids and non-hybrids (both p > 0.05) nor 2788 

any interaction between treatment and hybrid status (both p > 0.18). Egg size was 2789 

positively related to standard length, head length, and lower jaw length for the April 2790 

25 cohort (all p < 0.05), and to standard length, body depth, lower jaw length, mid-2791 

body area, and gut area in the May 5 cohort (all p < 0.05). 2792 

 There was no relationship between size and survivorship for either temporal 2793 

cohort, at any sampling period (all p > 0.19).  2794 



 163 

5.5 Discussion 2795 

Generally, the fitness of hybrids is quite variable compared to the parent 2796 

populations, with relative fitness highly dependent upon the environment 2797 

experienced (Hails & Morley 2005, Tymchuk et al. 2007). Given that the genetic 2798 

divergence in the cod populations tested appears driven by adaptation to dissimilar 2799 

temperature regimes, we anticipated that we would observe differences related to 2800 

metabolic processes and energy usage efficiency between the hybrids and non-2801 

hybrids. These differences would manifest in the short-term experiment in the 2802 

fertilization rate, hatching success, and developmental rate and in the longer-term 2803 

experiment as differences in survivorship, morphology and growth. 2804 

5.5.1 Short-term rearing 2805 

Fertilization rate was lower for hybrids than non-hybrids and it did not depend on 2806 

the direction of the cross (i.e. whether the dam was NL or NB). However, there was 2807 

no difference in hatching success between hybrids and non-hybrids. This suggests 2808 

that any genetic incompatibilities are pre-zygotic or lethal just prior to fertilization 2809 

(i.e. before cleavage). Finding that neither fertilization nor hatching success were 2810 

related to egg size is consistent with what has previously been reported in cod from 2811 

the northwest Atlantic (Pepin et al. 1997).  2812 

Interestingly, the hatching success of non-hybrid NL eggs was significantly 2813 

greater than that of non-hybrid NB eggs, and was not related to temperature. This is 2814 

in one way consistent with what was observed by Trippel (1998), who found that 2815 
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both fertilization and hatching rate were higher for females in their second 2816 

spawning season than in their first as were our NL and NB dams, respectively. 2817 

However egg size in the cod in Trippel’s (1998) experiment were larger in the repeat 2818 

spawners, and also showed a positive relationship with female body size, contrary to 2819 

what we found (however our sample size was small).  2820 

Hatch timing did not differ between hybrids and non-hybrids, but the times 2821 

to peak hatch (≥ 50% hatch) appear to be slightly longer at each temperature than 2822 

have been previously reported (Wieland et al. 1994, Pepin et al. 1997). The NL 2823 

population, which typically spawn at a lower temperature than the NB population, 2824 

showed some evidence of countergradient developmental rate response to 2825 

temperature by taking significantly fewer days to first hatch, especially at the higher 2826 

temperatures. However, this did not carry over to time to peak hatch, with the time 2827 

taken by the two populations not differing significantly. Countergradient variation 2828 

has been detected previously for developmental rate for time to hatch in other 2829 

species (e.g. Fundulus heteroclitus; DiMichele & Westerman 1997), but this may be 2830 

the first time it has been observed in cod.  2831 

Time-to-death did not differ between cross types, and was unrelated to egg 2832 

size. The time-to-death in our experiment showed good correspondence to those 2833 

observed by Yin and Blaxter (1986) at similar temperatures. The main determinates 2834 

of time-to-death in unfed larvae is the amount of energy with which the eggs were 2835 

provisioned by the dams, and the efficiency in which it was used by the offspring. 2836 
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The sizes of the eggs in our experiment were within the ranges that have been 2837 

reported previously for fish of about the same size (Chambers & Waiwood 1996, 2838 

Pepin et al. 1997, Trippel 1998), but the absolute size of eggs of the NB dams were 2839 

significantly larger than those of the NL dams (diameter: ~9%; volume: ~25%). Egg 2840 

diameter in cod is positively associated with yolk dry weight (viz. energy) (Trippel 2841 

1998,  but see Bachan et al. 2012 for differences in yolk lipid contents), and 2842 

assuming this relationship is the same for NB and NL dams, one would presume the 2843 

offspring of NB dams would have been provisioned with a greater initial yolk supply. 2844 

Given that there were no differences in time-to-death measures between hybrids 2845 

and non-hybrids, or between populations, and further that time-to-death was not 2846 

related to egg size, it would appear differences in energy usage have a greater 2847 

impact on time-to-death than initial energy provisions.  2848 

Previous research has shown that temperature during development can have 2849 

significant impacts on the in ovo energy usage of cod embryos, with size at hatch, 2850 

and hence energy conversion efficiency decreasing from 4-10 °C (Peterson et al. 2851 

2004). However, Pepin et al. (1997) found the opposite, with size at hatch increasing 2852 

with temperature. We did not measure the size of the hatching larvae, or the size of 2853 

their yolk sac, and thus cannot comment directly on their energy usage efficiency 2854 

within the egg. That said, the fact that time-to-death in degree days was related to 2855 

the time to peak hatch in degree days across temperatures indicates the overarching 2856 

role of metabolic rate in shaping the outcome of our experiment. Moreover, despite 2857 

being significantly different, there was some overlap for time-to-death in degree 2858 
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days between 6 and 9 °C, but not between 6 and 3 °C, suggesting that energy usage 2859 

efficiency was affected by temperature. This did not differ, however, between 2860 

populations or hybrids and was not in the direction which would be predicted based 2861 

on the results of Peterson et al. (2004). It is unlikely that this effect is due to 2862 

differences in energy expenditure by virtue of being active following hatch for more 2863 

days at 3 °C because all characters measured showed the acceleration of 2864 

development (degree days) at 3 °C.  2865 

Furthermore, (Pepin et al. 1997) found that while significant, the effect of egg 2866 

size on time-to-death was minimal. Fish species from higher latitudes, and which 2867 

consequently generally experience lower average ambient temperatures, tend to 2868 

show higher temperature-adjusted standard metabolic rates (White et al. 2012). At 2869 

the species level, this pattern also holds true for cod (Sylvestre et al. 2007, 2870 

Grabowski et al. 2009), and is consistent with what we observed. Furthermore, that 2871 

the hybrids did not differ from the non-hybrids indicates that the metabolic effect 2872 

may have been primarily driven by maternal inheritance of mitochondrial 2873 

haplotypes (Brown et al. 2006), and was not influenced by the interaction of the two 2874 

genotypes (NL and NB).  2875 

5.5.2 Longer-term hybridization 2876 

The results of the longer-term hybridization experiment, which used only NL dams, 2877 

initially appear harder to interpret because the two temporal treatments showed 2878 

different results in terms of the relative fitness of hybrids and non-hybrids. Looking 2879 
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at the ambient temperature treatments in particular, in the April 25 cohort in the 2880 

ambient temperature treatment, the relative fitness of the non-hybrids appears 2881 

greater than that of the hybrids, while in the May 5 cohort the opposite was true. 2882 

However, turning our attention from the overall proportion of hybrids and non-2883 

hybrids detected, to the relative survivorship of the hybrid and non-hybrid half sibs 2884 

on a dam-by-dam basis, a different pattern emerges. Saliently, some type of maternal 2885 

effect, tempered by the interaction of the female and male genomes, as well as their 2886 

interaction with the conditions in each treatment appears to be the driver of the 2887 

observed results. In both the April 25 and May 5 treatments, there is a general 2888 

pattern of both types of offspring from several of the dams performing well in the 2889 

high-temperature treatment, and then one type of offspring from these same dams 2890 

making up the majority of the offspring detected at 12 weeks, where the population 2891 

numbers for some tanks became very low, in the ambient treatment (e.g. April 25: 2892 

square, circle, and downward triangle dams [n.b. circle and downward triangle are 2893 

the same dam]; May 5: square, and circle, to some extent upward triangle [n.b. that 2894 

the same dams designated by the shapes performed well is due to chance as the 2895 

same shapes in different temporal cohorts do not denote the same dams]). There 2896 

was no clear pattern among dams showing greater relative fitness in their hybrid or 2897 

non-hybrid offspring over all sampling periods in the high temperature treatment 2898 

for either the April 25 or May 5 cohorts. That said, while there was no difference in 2899 

the overall proportion of hybrid and non-hybrid offspring recovered at 12-weeks in 2900 

the April 25 high temperature treatment, tellingly all hybrid half-sib families, but not 2901 
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non-hybrid families show non-zero survivorship. Furthermore, the offspring of the 2902 

dam that was used twice in the April 25 cohort (circle and downward triangle 2903 

families) all show similar survivorship indicating some type of maternal effect. 2904 

In the ambient treatments, the relative fitness differences observed at the 12-2905 

week sampling period in the April 25 cohort appears consistent with theoretical 2906 

expectations of outbreeding depression where its effects are exacerbated in non-2907 

optimal conditions (Hails & Morley 2005, Tymchuk et al. 2007). However, these 2908 

results are also consistent with the possibility that NL fish are better adapted to 2909 

cooler temperatures (Purchase & Brown 2000, 2001) (although the temperature 2910 

differential between the two treatments was small, the variability in the ambient 2911 

was greater). It must be noted that the findings are driven primarily by the offspring 2912 

of only two dams.  2913 

As was seen in the April 25 cohort, two dams drove the results in the May 5 2914 

cohort. Thus it appears that the results of both cohorts are best explained by female 2915 

quality and/or sire-dam incompatibilities. Looking first at dam quality in the 2916 

ambient treatment, the hybrid offspring of the circle and square dams make up over 2917 

70% of offspring sampled at 12 weeks. The non-hybrid offspring of the circle dam 2918 

show zero survivorship in both the high and ambient temperature treatments, 2919 

indicating there may be some incompatibility between this sire and this dam.  2920 

The inconsistency of relative hybrid and non-hybrid fitness between the two 2921 

sampling periods, suggests there is no clear evidence of negative effects of 2922 
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hybridization between these two populations under the experimental conditions 2923 

tested. We did not genotype the fish for markers corresponding to the SNPs with 2924 

allele frequencies in the two populations related to temperature identified by 2925 

Bradbury et al. (2010) or the genes identified by other researchers (Pogson & 2926 

Fevolden 2003, Andersen et al. 2009, Borza et al. 2009) and thus cannot directly 2927 

comment on how their inheritance may have influenced survival. However, given 2928 

that the frequency of cold-associated alleles is greater in the NL than the NB 2929 

populations (Bradbury et al. 2010), probability would dictate that the full strain 2930 

offspring (i.e. NL dam X NL sire) would inherit a greater number of cold-associated 2931 

alleles. If these loci do indeed confer greater fitness in colder temperatures, whether 2932 

they act in an additive or non-additive manner, the pure strain fish should display 2933 

greater survivorship in the ambient temperature treatment as was seen in the April 2934 

25 cohort, but not the May 5 cohort. Furthermore, it is unlikely pleiotropic effects 2935 

are responsible for differences in fitness because in these F1 hybrids recombination 2936 

would have taken place within the genetic background of each population and thus 2937 

co-adapted gene complexes would be inherited in toto.  2938 

A degree of maternal effect is suggested because (half-sib) families with 2939 

relatively good survivorship in the high temperature treatment were generally seen 2940 

to also have the relatively good survivorship in the ambient treatment. Furthermore, 2941 

survivorship was positively related to egg size in all samples except for the two and 2942 

eight week samples from high temperature for the April 25 cohort. The split-brood 2943 

design of our experiment, in which both the hybrid and non-hybrid offspring of a 2944 
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dam should receive identical maternal inputs, also revealed differences in the 2945 

survivorship of the two offspring types that would appear indicative of a paternal 2946 

effect (Trippel et al. 2005) or a sire-by-dam compatibility effect (Rudolfsen et al. 2947 

2005).  2948 

Morphologically the hybrid and non-hybrid fish were essentially identical, in 2949 

both temperature treatments, and survivorship was not related to size. Marcil et al. 2950 

(2006b), and Marcil et al. (2006a) reared cod from the same populations as us in 2951 

common gardens at two different temperatures. Contrary to our findings, both 2952 

studies by Marcil et al. found genetically-based differences in morphology between 2953 

juvenile full strain cod from NL and NB populations. Similarly, studying NL and NB 2954 

populations of cod, Purchase and Brown (2000) found genetically based differences 2955 

in energy allocation (viz. hepatosomatic index) which we have previously shown can 2956 

lead to differences in morphology in adult cod (Wringe et al. 2015a). If mortality was 2957 

related in some way to morphology, we would expect that groups exhibiting higher 2958 

proportional mortality would in turn display only a subset of the morphology of the 2959 

other group. However, this did not appear to be the cease. So, why we did not detect 2960 

differences in morphology is unclear. 2961 

5.5.3 Conclusions 2962 

Previous experiments in cod have shown that cultured fish are capable of 2963 

interbreeding with wild fish (Skjæraasen et al. 2010, Wringe et al. 2015b). The 2964 

results of this study indicate that should cod from these populations come into 2965 
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contact as the result of human-mediated dispersal through aquaculture, 2966 

introgression is possible and a portion of the resultant offspring (F1) are likely to 2967 

survive because their fitness will not differ significantly from that of their non-2968 

hybrid counterparts during early life stages. The cod mating system may further 2969 

increase the chances that fit hybrids are produced as well. We observed that while 2970 

some females appeared to produce more fit offspring overall, a paternal effect was 2971 

also quite prevalent, especially in the higher mortality ambient treatment. Being 2972 

multiple batch spawners (Trippel 1998, Rakitin et al. 2001, Wringe et al. 2015b), in 2973 

whom multiple paternity within and among batches appears to be the norm 2974 

(Hutchings et al. 1999, Bekkevold et al. 2002, Wringe et al. 2015b), the cod mating 2975 

system increases the chances of a favourable local/non-local pairing occurring. What 2976 

is unclear is how the fitness of F2 (or Fn) or backcrosses will compare to that of non-2977 

hybrids (or even the F1). It is also unclear if the results found here would differ had 2978 

we used wild fish, or had the fish been subjected to more generations of selection in 2979 

culture.  2980 
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5.7 Tables 2992 

Table 5.1 Number of offspring sampled at each time period. The number genotyped 2993 

does not necessarily correspond to the number correctly assigned to parental pairs 2994 

because parentage analysis was only performed on individuals for whom all eight 2995 

loci were successfully typed. Refer to materials and methods for further information. 2996 

The numbers beside each treatment correspond to the replicate tank numbers. 2997 

Entries marked with an asterisk indicate that all remaining individuals were 2998 

sampled at that time. 2999 

Cohort Treatment 2 Weeks 8 Weeks 12 Weeks 
Apr. 25 High-1 67 100 100 

 
High-2 60 100 100 

 
Amb-1 100 100 64* 

 
Amb-2 74 100 23* 

May 5 High-1 100 87 100 

 
High-2 100 100 100 

 
Amb-1 100 70* NA 

 
Amb-2 100 100 100 

 3000 

  3001 
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Table 5.2 Morphometric characters measured for the larval and juvenile cod. 3002 

Measurements were taken from the x-y coordinates of the photographs used in the 3003 

geometric morphometric analysis. Bounding points correspond to those illustrated 3004 

in Figure 5.2. 3005 

  Measure Bounding pts 

Larvae Standard length 1-4 

 
Head length 1-2 

 
Eye diameter 9-10 

 
Lower jaw length 7-8 

 
Somite Depth 3-5 

Juveniles Standard length 1-7 

 
Head length 1-11 

 
Eye diameter 15-16 

 
Lower Jaw length 13-14 

 

Caudal peduncle 
depth 6-8 

 
Body depth 3-12 

 
Head area 1-2-11-13 

 
Gut area 4-5-9-10 

  Mid-body area 3-4-10-12 

 3006 

  3007 
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Table 5.3 Number of offspring correctly assigned to parent pairs at each sampling 3008 

point in the two temperature treatments for the Apr. 25 and May 5 cohorts. Ambient 3009 

is abbreviated Amb, and number is abbreviated No. 3010 

Cohort 
Sampling 
Period Treatment 

No. 
Assigned 

Apr. 25 2 Week Amb 73 

  
High 167 

 
8 Week Amb 180 

  
High 172 

 
12 Week Amb 91 

  
High 157 

  
Total 840 

May 5 2 Week Amb 122 

  
High 147 

 
8 Week Amb 144 

  
High 153 

 
12 Week Amb 32 

  
High 183 

  
 

Total 781 

 3011 

  3012 
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Table 5.4 Genetic parameter estimates from eight microsatellite loci in each of the 3013 

two temporal cohorts. H is heterozygosity with the subscripts obs denoting the 3014 

observed heterozygosity and exp that expected under Hardy-Weinberg equilibrium. 3015 

All estimates were generated using CERVUS.  3016 

 3017 

Marker   
No. 

Alleles Hobs Hexp 
Null 

Alleles 

Gmo8 Apr. 25 Cohort 11 0.62 0.85 +0.153 

 
May 5 Cohort 12 0.76 0.88 +0.067 

Gmo19 Apr. 25 Cohort 13 0.69 0.85 +0.102 

 
May 5 Cohort 13 0.83 0.88 +0.042 

Gmo35 Apr. 25 Cohort 8 0.81 0.76 -0.041 

 
May 5 Cohort 7 0.76 0.73 -0.030 

Gmo37 Apr. 25 Cohort 10 0.86 0.74 -0.056 

 
May 5 Cohort 8 0.66 0.63 +0.197 

Gmo63 Apr. 25 Cohort 5 0.62 0.54 -0.095 

 
May 5 Cohort 6 0.55 0.51 -0.012 

Gmo118 Apr. 25 Cohort 10 0.66 0.67 +0.021 

 
May 5 Cohort 8 0.74 0.61 -0.126 

Gmo125 Apr. 25 Cohort 10 0.76 0.76 -0.003 

 
May 5 Cohort 9 0.89 0.77 -0.069 

Gmo152 Apr. 25 Cohort 7 0.73 0.71 -0.013 

  May 5 Cohort 7 0.81 0.74 -0.041 
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Table 5.5 – Mean ± SD of the larval-stage morphological characters from the long-3018 

term rearing experiment. L = length; Diam = diameter; Low J = lower jaw. Please 3019 

refer to the methods for further information on the measurement of these 3020 

characters. Diff. b/w type is the test for differences between hybrid and non-hybrid 3021 

measures. Diff b/w treat is between temperature treatments. Results ANOVA on 3022 

LMM, and significant differences (α = 0.05) are bolded. The lack of measurements in 3023 

the high temperature treatment at the 8 week sampling period reflects the fact that 3024 

all fish had metamorphosed to the juvenile phase by this time point. 3025 
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 3026 

    High Temp Ambient Temp Diff. b/w type Diff b/w treat 

Apr 25 Cohort Feature Hybrid Non-hybrid Hybrid Non-hybrid (chisq, p) (chisq, p) 

8 Week Standard L 23.86 ± 3.51 23.18 ± 2.92 14.93 ± 2.40 14.65 ± 1.87 1.73, > 0.18 227.12, < 0.001 

 
Head L 6.63 ± 0.94 6.42 ± 0.81 4.34 ± 0.73 4.20 ± 0.53 2.48, > 0.11 194.02, < 0.001 

 
Eye Diam 2.46 ± 0.33 2.43 ± 0.27 1.51 ± 0.23 1.46 ± 0.20 1.70, > 0.19 322.16, < 0.001 

 
Low J L 3.50 ± 0.52 3.46 ± 0.44 2.07 ± 0.38 2.02 ± 0.30 1.17, > 0.27 275.22, < 0.001 

  Somite D 2.94 ± 0.49 2.79 ± 0.51 1.48 ± 0.42 1.45 ± 0.30 1.97, > 0.16 83.34, < 0.001 

May 5 Cohort 
       2 Week Standard L 7.00 ± 0.51 7.13 ± 0.54 7.07 ± 0.41 6.85 ± 0.61 1.00, > 0.31 2.22, > 0.13 

 
Head L 1.59 ± 0.17 1.51 ± 0.07 1.51 ± 0.19 1.48 ± 0.21 0.32, > 0.57 4.65, < 0.05 

 
Eye Diam 0.58 ± 0.02 0.57 ± 0.04 0.56 ± 0.04 0.53 ± 0.06 2.62, > 0.10 6.17, < 0.05 

 
Low J L 0.78 ± 0.04 0.78 ± 0.08 0.75 ± 0.08 0.73 ± 0.07 0.39, > 0.53 2.62, > 0.10 

  Somite D 0.45 ± 0.03 0.48 ± 0.07 0.45 ± 0.03 0.43 ± 0.07 0.24, > 0.62 5.78, < 0.05 

8 Week Standard L 
  

13.86 ± 1.92 13.83±1.64 0.01, > 0.91 
 

 
Head L 

  
4.18 ± 0.55 4.17±0.46 0.10, > 0.74 

 

 
Eye Diam 

  
1.42 ± 0.20 1.43±0.20 0.03, > 0.86 

 

 
Low J L 

  
1.96 ± 0.26 1.91±0.25 0.53, > 0.46 

   Somite D 
  

1.27 ± 0.28 1.22±0.19 0.32, > 0.56 
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Table 5.6 Mean ± SD of the juvenile-stage morphological characters from the long-3027 

term rearing experiment. L = length; Diam = diameter; Low J = lower jaw; Caud Ped 3028 

= caudal peduncle; A = area. Please refer to the methods for further information on 3029 

the measurement of these characters. Diff. b/w type is the test for differences 3030 

between hybrid and non-hybrid measures. Diff b/w treat is between temperature 3031 

treatments. Results ANOVA on LMM, and significant differences (α = 0.05) are 3032 

bolded. The lack of measurements in the ambient temperature treatment at the 8 3033 

week sampling periods reflects the fact that all were in the larval phase at these time 3034 

points. 3035 
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    High Temp Ambient Temp Diff. b/w type Diff b/w treat 

Apr 25 Cohort Feature Hybrid Non-hybrid Hybrid Non-hybrid (chisq, p) (chisq, p) 

8 Week Standard L 24.01 ± 3.30 23.09 ± 2.77 
  

2.07, > 0.15 
 

 
Head L 7.18 ± 0.91 6.95 ± 0.79 

  
2.70, > 0.10 

 

 
Eye Diam 2.50 ± 0.29 2.41 ± 0.25 

  
2.96, > 0.08 

 

 
Low J L 3.56 ± 0.46 3.48 ± 0.44 

  
1.03, > 0.30 

 

 
Caud Ped D 1.55 ± 0.19 1.52 ± 0.21 

  
0.58, > 0.44 

 

 
Body D 4.73 ± 0.72 4.60 ± 0.62 

  
0.97, > 0.32 

 

 
Head A 16.71 ± 3.64 16.01 ± 3.31 

  
1.53, > 0.21 

 

 
Gut A 15.92 ± 4.35 14.89 ± 4.38 

  
0.85, > 0.35 

 
  Mid-body A 12.21 ± 3.36 10.88 ± 3.11 

  
2.42, > 0.12 

 
12 Week Standard L 39.15 ± 7.07 39.80 ± 5.95 26.80 ± 6.30 23.87 ± 5.05 0.00, > 0.96 205.95, < 0.001 

 
Head L 10.93 ± 1.85 11.01 ± 1.56 7.11 ± 1.54 6.44 ± 1.37 0.01, > 0.92 241.16, < 0.001 

 
Eye Diam 3.62 ± 0.38 3.66 ± 0.35 2.44 ± 0.49 2.28 ± 0.39 0.01, > 0.91 407.21, < 0.001 

 
Low J L 5.70 ± 0.97 5.77 ± 0.97 3.96 ± 0.92 3.61 ± 0.73 0.01, > 0.93 166.91, < 0.001 

 
Caud Ped D 2.32 ± 0.41 2.39 ± 0.36 1.74 ± 0.40 1.51 ± 0.34 0.06, > 0.80 168.73, < 0.001 

 
Body D 7.82 ± 1.40 8.00 ± 1.16 5.63 ± 1.30 4.87 ± 1.00 0.03, > 0.85 200.67, < 0.001 

 
Head A 32.45 ± 9.98 33.03 ± 8.29 15.20 ± 5.78 12.50 ± 4.56 0.00, > 0.95 195.50, < 0.001 

 
Gut A 47.41 ± 18.75 49.13 ± 15.55 25.34 ± 11.95 18.66 ± 8.33 0.01, > 0.90 119.33, < 0.001 

  Mid-body A 37.08 ± 13.62 37.48 ± 12.37 18.21 ± 8.65 14.14 ± 6.04 0.05, > 0.83 123.58, < 0.001 

May 5 Cohort 
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8 Week Standard L 22.76 ± 5.31 22.83 ± 8.14 
  

0.47, > 0.49 
 

 
Head L 6.93 ± 1.50 6.91 ± 2.31 

  
0.52, > 0.49 

 

 
Eye Diam 2.35 ± 0.38 2.32 ± 0.64 

  
0.18, > 0.67 

 

 
Low J L 3.28 ± 0.57 3.12 ± 0.51 

  
0.18, > 0.67 

 

 
Caud Ped D 1.49 ± 0.34 1.44 ± 0.53 

  
0.34, > 0.55 

 

 
Body D 4.46 ± 1.07 4.56 ± 1.65 

  
0.69, > 0.40 

 

 
Head A 15.10 ± 6.37 15.46 ± 9.65 

  
0.38, > 0.53 

 

 
Gut A 14.34 ± 8.11 14.91 ± 11.17 

  
0.55, > 0.45 

 
  Mid-body A 13.27 ± 7.63 13.19 ± 9.53 

  
0.33, > 0.56 

 
12 Week Standard L 44.11 ± 6.41 47.26 ± 5.78 23.89 ± 3.33 23.16 ± 3.50 1.36, > 0.24 351.26, < 0.001 

 
Head L 12.19 ± 1.63 13.01 ± 1.56 7.24 ± 1.00 7.12 ± 0.96 2.28, > 0.13 296.84, < 0.001 

 
Eye Diam 3.88 ± 0.42 4.09 ± 0.38 2.47 ± 0.26 2.31 ± 0.28 0.43, > 0.51 382.36, < 0.001 

 
Low J L 6.02 ± 0.88 6.46 ± 0.78 3.57 ± 0.53 3.42 ± 0.47 2.92, > 0.08 267.93, < 0.001 

 
Caud Ped D 2.67 ± 0.40 2.95 ± 0.37 1.52 ± 0.17 1.53 ± 0.16 6.84, < 0.01 285.24, < 0.001 

 
Body D 9.01 ± 1.29 9.63 ± 1.15 4.75 ± 0.63 4.60 ± 0.84 4.54, < 0.05 394.08, < 0.001 

 
Head A 39.43 ± 9.83 44.82 ± 10.04 14.73 ± 4.06 14.28 ± 4.10 3.57, > 0.05 208.24, < 0.001 

 
Gut A 61.73 ± 18.01 70.43 ± 16.88 16.17 ± 4.88 15.39 ± 5.70 3.48, > 0.06 227.78, < 0.001 

  Mid-body A 57.34 ± 16.34 63.45 ± 16.28 13.58 ± 3.67 12.77 ± 4.53 2.01, > 0.15 244.12, < 0.001 
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5.7 Figures 3036 

 3037 

Figure 5.1 Map of Atlantic Canada showing the locations from whence the NL 3038 

(Smith Sound and Bay Bulls) and NB (Bay of Fundy) broodstocks derive, and the 3039 

location of the cage site (Hermitage Bay, NL) from which the experimental fish were 3040 

collected. The approximate location of the Laurentian Channel is illustrated. The x-3041 

axis is degrees of longitude east, and the y degrees of latitude north. 3042 

 3043 
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 3044 

Figure 5.2 Schematic of the split brood design employed in the short-term 3045 

hybridization experiment. Eggs from each female were used to create both hybrid 3046 

(fertilized by male of different origin) and non-hybrid (fertilized by male of same 3047 

origin) half sibs. The temperatures denote the temperature at which each individual 3048 

fertilization was conducted. Each fertilization was later split into three replicate 3049 

beakers (see materials and methods). 3050 

 3051 
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Figure 5.3 Morphometric landmarks used in the geometric morphometric analysis. 3055 

The upper panel is an offspring typical of what was considered “larval” morphology, 3056 

and the bottom is typical of “juvenile” morphology. The numbering for the larval 3057 

morphology correspond to the following landmarks: 1 – most anterior point of 3058 

premaxilla; 2 – junction of medulla oblongata and notochord; 3 – mid-point of the 3059 

notochord, dorsal side; 4 - posteriormost point of the notochord; 5 – mid-point of 3060 

the notochord, ventral side; 6 – articulation of the lower jaw; 7 – ventral process at 3061 

site of maximum curvature of lower jawl; 8 – anteriormost point of lower jaw; 9 – 3062 

edge of eye in line with 7; 10 – edge of eye directly opposite 9, and in line with 7. The 3063 

numbering for the juvenile morphology is: 1 – anteriormost point of the premaxilla; 3064 

2 – indentation in cranium, 3, 4, 5 – anterior insertion of dorsal fins 1, 2 and 3; 6 – 3065 

dorsal insertion of the caudal fin; 7 – posteriormost point of the hypural plate; 8 – 3066 

ventral insertion of the caudal fin; 9, 10 – anterior insertion of anal fins 1 and 2; 11 – 3067 

posteriormost point of the process extended from the operculum; 12 – most ventral 3068 

aspect of the fish on a line drawn perpendicular to the long axis, through point 11; 3069 

13 – posteriormost point of the lower jaw; 14 – anteriormost point of the lower jaw; 3070 

15 – anteriormost point of the eye; 16 – posterior most point of the eye, directly 3071 

opposite 15. 3072 

3073 
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 3074 

Figure 5.4 Proportion hatched by dam origin and cross type. Significant differences 3075 

at p < 0.05 are denoted by the same letter. The mid-line of the boxplot is the median, 3076 

upper and lower limits of the box denote the first and third quartiles respectively, 3077 

and the whiskers extend to 1.5 times the inter-quartile range. 3078 

  3079 
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 3080 

 3081 

Figure 5.5 Time to first hatch in both days and degree days. New Brunswick and 3082 

Newfoundland dams are denoted by plus sign hashed boxes and small polka-dots 3083 

respectively. The mid-line of the boxplot is the median, upper and lower limits of the 3084 

box denote the first and third quartiles respectively, and the whiskers extend to 1.5 3085 

times the inter-quartile range  3086 

  3087 
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 3088 

 3089 

Figure 5.6 Time to peak hatch in both days and degree days. Temperature 3090 

treatments are indicated by colour, with blue, green and orange denoting the 3, 6, 3091 

and 9 °C treatments respectively. The mid-line of the boxplot is the median, upper 3092 

and lower limits of the box denote the first and third quartiles respectively, and the 3093 

whiskers extend to 1.5 times the inter-quartile range 3094 
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 3096 

Figure 5.7 Time-to-death in both days and degree days. Temperature treatments 3097 

are indicated by colour, with blue, green and orange denoting the 3, 6, and 9 °C 3098 

treatments respectively. The mid-line of the boxplot is the median, upper and lower 3099 

limits of the box denote the first and third quartiles respectively, and the whiskers 3100 

extend to 1.5 times the inter-quartile range  3101 
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Figure 5.8 Proportion of hybrid and non-hybrids detected in each of three sampling 3105 

periods in two different temperature treatments. The results for the cohorts of fish 3106 

spawned on April 25 and May 5 are plotted separately. For each sampling period, in 3107 

each temperature treatment, in each temporal replicate, relative survivorship is 3108 

shown as the proportional contribution of a cohort to all individuals assigned to 3109 

parental pairs. The coloured points and lines indicate the overall relative 3110 

proportional survivorship of hybrids and non-hybrids. Blue circles connected by 3111 

dashed lines indicate non-hybrids, and red circles connected by solid lines denote 3112 

hybrids.  3113 

 3114 
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Figure 5.9 Proportion of hybrid and non-hybrids detected in each of three sampling 3116 

periods in two different temperature treatments. The results for the cohorts of fish 3117 

spawned on April 25 and May 5 are plotted separately. For each sampling period, in 3118 

each temperature treatment, in each temporal replicate, relative survivorship is 3119 

shown as the proportional contribution of a cohort to all individuals assigned to 3120 

parental pairs. Unfilled shapes connected by dashed lines represent the proportional 3121 

survivorship of hybrid half-sib families, and filled shapes connected by solid lines 3122 

the non-hybrids. The same shape within, but not across, temporal treatments 3123 

denotes half-sib families sharing the same dam. 3124 

3125 
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 3126 
 3127 

Figure 5.10 Magnitude and displacement of the consensus shape of the April 25 3128 

cohort larvae from the ambient temperature treatment relative to those in the high 3129 

temperature treatment at the eight week sampling period. The displacement is 3130 

indicated by the bending of the thin plate spline deformation grid. The landmark 3131 

numbering and descriptions are given in Figure 5.3. The units of both the x- and y-3132 

axes are the Procrustes coordinates 3133 
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 3135 

Figure 5.11 Magnitude and displacement of the consensus shape of the April 25 3136 

cohort juveniles from the ambient temperature treatment relative to those in the 3137 

high temperature treatment at the twelve week sampling period. The displacement 3138 

is indicated by the bending of the thin plate spline deformation grid. The landmark 3139 

numbering and descriptions are given in Figure 5.3. The units of both the x- and y-3140 

axes are the Procrustes coordinates. 3141 
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 3143 

 3144 

Figure 5.12 Magnitude and displacement of the consensus shape of the May 5 3145 

cohort juveniles from the ambient temperature treatment relative to those in the 3146 

high temperature treatment at the twelve week sampling period. The displacement 3147 

is indicated by the bending of the thin plate spline deformation grid. The landmark 3148 

numbering and descriptions are given in Figure 5.3. The units of both the x- and y-3149 

axes are the Procrustes coordinates.3150 
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Chapter 6 – Conclusion 3151 

The results of the experiments detailed in this thesis add to a growing body of 3152 

literature outlining the potential consequences of exposure to cultured conditions 3153 

and the outcomes of interaction between wild and escaped cultured fish. Under the 3154 

most reductionist scenario, built through consensus of the existing literature, 3155 

exposure to culture leads to phenotypic (Fleming et al. 1996, Matsuzaki et al. 2009, 3156 

Skjæraasen et al. 2009, Chittenden et al. 2010) and genotypic (Cross & King 1983, 3157 

Einum & Fleming 1997, Jørstad et al. 2008, Wringe et al. 2010, Karlsson et al. 2011) 3158 

changes in fishes. The genotypic changes in the cultured fish are such that if 3159 

introgression into the wild population should occur, there is the distinct possibility 3160 

for reduction in the fitness of the local wild population (Reisenbichler & Rubin 1999, 3161 

McGinnity et al. 2003, Miller et al. 2004, Araki et al. 2009, McGinnity et al. 2009). 3162 

Concomitantly, the phenotypic changes, be they morphological, behavioural, or both, 3163 

brought about through exposure to culture lead to lower fitness in the cultured fish 3164 

relative to the wild, reducing the potential for, or rate of realized introgression 3165 

relative to the proportion of escaped fish present in the spawning grounds (Fleming 3166 

& Gross 1994, Berejikian et al. 2001, McLean et al. 2003, Araki et al. 2008) [nota 3167 

bene, this fitness reduction is primarily in males, and introgression through escaped 3168 

females is likely (Fleming et al. 1996, Skjæraasen et al. 2010)].  3169 

Two major concerns exist regarding the alteration of local gene pools through 3170 

the interbreeding of wild and escapee fish. Firstly, the escapees themselves may 3171 
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harbour genes or gene complexes maladapted to local conditions (e.g. outbreeding 3172 

depression), and or be genetically depauperate and cause negative fitness effects 3173 

(e.g. low effective population size [Ne] and many lethal or semi-lethal alleles). 3174 

Secondly, gadoids from different populations may differ intrinsically in traits 3175 

deemed valuable to culturists (e.g. growth rate, food conversion efficiency, disease 3176 

and parasite resistance etc.), as such their appeal to aquaculture breeding 3177 

programmes may differ (Utter & Epifanio 2002, Naylor & Burke 2005, Bekkevold 3178 

2006). 3179 

The implication of the second part is that the census population size of these 3180 

desirable stocks may increase relative to that of the endemic stocks increasing the 3181 

chance of introgression of the ‘desirable’ genotype into the local population 3182 

(Bekkevold et al. 2006). It is important to keep in mind that genetic changes can and 3183 

will occur even in the absence of an explicit selection program though random 3184 

genetic drift and domestication selection. Domestication selection is a broad term 3185 

that describes the relaxation of natural selection pressures, leading to the survival 3186 

and propagation of phenotypes that would be deleterious in the wild; and the 3187 

concomitant selection of phenotypes that are advantageous in culture (Bekkevold et 3188 

al. 2006). 3189 

Individuals originating from a large population are expected to harbour more 3190 

lethal or sublethal mutations, at a genome wide level than those originating from a 3191 

historically small population because the smaller Ne should result in the recessive 3192 
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alleles being present in a homozygous state more frequently, and thus be purged 3193 

more effectively (Zajitschek et al. 2009). The potential then is for the gadoid 3194 

individuals in culture to harbour more lethal or sublethal alleles than salmonids 3195 

given that the Ne for salmonid populations is smaller due to differences in life 3196 

history. Furthermore, the potential exists for these lethal or sublethal alleles to 3197 

become more prevalent in the farmed fish through the relaxed selection pressures 3198 

inherent in aquaculture (Thorpe 2004). The major implication of this is that escapee 3199 

fish may then harbour lethal and semi-lethal alleles at a much higher prevalence 3200 

than their wild counterparts.   3201 

Cod are thought to form leks (Hutchings et al. 1999, Bekkevold et al. 2002) 3202 

and spawnings and the initiation of a ventral mount are follow active female mate 3203 

choice based at least in part on her evolution of male courtship behaviours and 3204 

displays and phenotype including sexually selected characters (Skjæraasen et al. 3205 

2006a, Skjæraasen et al. 2008, Skjæraasen et al. 2012) (for description of spawning 3206 

behaviour see Brawn 1961). Given the importance of morphology to the cod mating 3207 

system, as well as that exposure to cultured conditions often leads to changes in 3208 

morphology because of plastic responses to environmental conditions (Imre et al. 3209 

2002, Mayer et al. 2011, Vehanen & Huusko 2011) and/or genetic changes brought 3210 

about through both intentional and unintentional selection (Fleming et al. 1994, 3211 

reviewed by: Einum & Fleming 2001, Fleming & Petersson 2001, Hutchings & Fraser 3212 

2008, Solberg et al. 2013, Colihueque & Araneda 2014), I thought it prudent to test 3213 

for morphological differences between wild and cultured cod brought about as a 3214 
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result of their exposure to cultured conditions. The results of the experiments 3215 

detailed in Chapter 2 (Wringe et al. 2015a), support this supposition and show that 3216 

first generation cultured cod differ significantly in their morphology from that of 3217 

wild fish from their ancestral population. Being first generation cultured fish, it is 3218 

unlikely that the morphological differences detected were the result of genetic 3219 

changes brought about through intentional selection (although genetic 3220 

differentiation can occur in a single generation; Christie et al. 2012), and are likely 3221 

the result of plastic phenotypic effects. This notion is supported by the concord 3222 

between my study and Uglem et al. (2011). Considering all the observed differences 3223 

between the farmed and wild cod in my study, the congruence between my results, 3224 

and those of Uglem et al. (2011), the only other study that has examined differences 3225 

in adult morphology between wild and farmed cod is impressive. This is especially 3226 

true given that the populations examined are thought to have been isolated for at 3227 

least 100 000 years (Bigg et al. 2008a). This suggests that the observed differences 3228 

may represent a stereotypical plastic response of Atlantic cod to culture. It is 3229 

interesting to note as well, that many of the differences observed between wild and 3230 

farmed cod in both my study and that of Uglem et al. (2011) are also seen in other 3231 

cultured species (e.g. condition indices, fin sizes; e.g. Pedersen et al. 2008, Rogdakis 3232 

et al. 2011, Lenhardt et al. 2012, Patiyal et al. 2013).  3233 

 The notion that exposure to culture causes fishes to develop morphology that 3234 

differs from their wild conspecifics has been espoused so often it has become nearly 3235 

axiomatic in fisheries science. A commonly supervened corollary to this axiom is 3236 
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that such changes in morphological occur in a predictable and consistent manner 3237 

and result in a consonant “cultured phenotype”. While this is often stated or alluded 3238 

to, the meta-analysis conducted in Chapter 3, is to my knowledge the first time it has 3239 

been formally tested. Aquacultured fishes are generally subjected to breeding 3240 

programmes with similar goals, such as rapid growth (e.g. Myers et al. 2001, Fleming 3241 

et al. 2002, Thrower et al. 2004, Small 2006, Wringe et al. 2010), delayed maturity 3242 

(e.g. Myers et al. 2001, Fleming et al. 2002, Wang et al. 2006, Wang et al. 2008, 3243 

Gjedrem 2010), high-density production (e.g. Thorpe 1991, Kause et al. 2003, 3244 

Gjedrem 2010), disease resistance (e.g. Ridha 2006, Trenzado et al. 2006) and 3245 

greater feed conversion efficiency (e.g. Hulata 2001, Nichols et al. 2003, Antonello et 3246 

al. 2009) which could lead to convergent genetic and hence morphological changes. 3247 

Moreover, these breeding programmes often have little or no regard for maintaining 3248 

fitness of these fish in the wild or of maintaining a wild-type morphology, apart from 3249 

ensuring the production of an ‘appealing’ phenotype for the consumer (e.g. Kause et 3250 

al. 2006, Small 2006, reviewed by: Colihueque 2010, Colihueque & Araneda 2014). 3251 

Conversely, supplementary programmes often strive to maintain wild-type 3252 

morphology and produce fish for release that will be viable in the wild (Iguchi & 3253 

Mogi 2007, Belk et al. 2008, Blanchet et al. 2008, Brockmark & Johnsson 2010, Wilke 3254 

et al. 2015). Despite the efforts of hatcheries, evidence suggests that the fitness of 3255 

hatchery-produced fish is often lower than that of their wild conspecifics, and that 3256 

this may be at least partially attributable to differences in morphology (Barahona-3257 

Fernandes 1982, Svåsand et al. 2000, Miller et al. 2004, Araki et al. 2008, Gavaia et 3258 
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al. 2009). Selection differences aside, it is noteworthy that the environments 3259 

experienced by cultured fish are more similar to one another, than are the 3260 

environments experienced by their wild conspecifics.  3261 

The meta-analysis comparing the morphology of cultured fish, which have 3262 

been exposed to varying degrees of selection and time in captivity, to their wild 3263 

conspecifics shows that as commonly ascribed, the heads of cultured fish were 3264 

shorter, as were their upper jaws, and all fin measures with the exception of the 3265 

width of the dorsal fin and the length of the caudal fin. However, unlike what was 3266 

predicted, measures of body conformation, especially as it relates to depth 3267 

measures, were not found to differ. Thus while my findings provide support to the 3268 

conjecture of a universal response to culture, leading to the development of a 3269 

common ‘cultured’ phenotype, it does not appear to necessarily involve changes in 3270 

body depth, or condition as is commonly suggested.  3271 

It bears mention as well that the phenotypic change in the cultured fish 3272 

espoused to form the “cultured phenotype”, and which were detected by the meta-3273 

analysis are congruent with experimentally observed plastic phenotypic response to 3274 

environments typical of those in culture. Thus, while these phenotypic changes 3275 

could certainly have arisen through plastic responses to culture, there is no reason 3276 

to believe that permanent genetic changes could not have contributed to or caused 3277 

these changes. 3278 
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 In Chapter 4, I studied the reproductive interactions of individual cultured 3279 

and wild male cod in the presence of a cultured female using a series of spawning 3280 

trios. This experiment tested the potential for genetic introgression between 3281 

cultured and wild cod to occur. Cod exhibit lek-like mating aggregations (Hutchings 3282 

et al. 1999, Rose et al. 2008, Meager et al. 2010), with female mate choice apparently 3283 

based on both visual and acoustic displays. Within spawning aggregations, male cod 3284 

form dominance hierarchies based on agonistic interaction, usually with the largest 3285 

males occupying the highest ranks, and access to females and spawning success 3286 

being related to this hierarchical position (Hutchings et al. 1999, Bekkevold et al. 3287 

2002, Bekkevold 2006). Previous studies have shown that the spawning success of 3288 

cultured males in competition with wild males in multi-individual spawning 3289 

aggregations to be mixed. Skjæraasen and Hutchings (2010) found that the 3290 

reproductive success of cultured cod in competition with wild cod was “essentially 3291 

nil”, but in another study, Skjæraasen et al. (2010) observed that cultured cod 3292 

fertilized approximately 25% of eggs spawned by wild females, but up to 52% of 3293 

eggs spawned by cultured females. These results suggested that the potential for 3294 

hybridization between escaped male farmed and wild female cod to be low. But, in 3295 

contrast to these studies, I found that in the absence of multi-male dominance 3296 

hierarchies, the spawning success of cultured male cod was equal to that of wild 3297 

males. This is despite the fact that the first-generation cultured cod I used differed 3298 

both behaviourally (Chapter 4; Wringe et al. 2015b) and morphologically (Chapter 3299 

2; Wringe et al. 2015a), from wild fish of the same source population. Given that the 3300 
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cultured males were found to be more aggressive than the wild males as well as 3301 

showing some evidence that their courting behaviours were less competent, it is 3302 

important to keep in mind that genetic consequences can occur in the native 3303 

population even in the absence of gene flow between them because of competition 3304 

and wasted reproductive effort (Laikre et al. 2010). These results suggest that both 3305 

the potential consequences for wild populations from interaction and competition 3306 

with escapees and for introgression through escaped farmed male cod may be 3307 

higher than previously suspected. While the extensive number and breadth of 3308 

studies of wild/farmed interaction in salmonids undoubtedly provide important 3309 

theoretical foundations, because of differences in life history and biology my 3310 

research into the spawning success of farmed male cod is likely more applicable 3311 

practically to other cultured marine broadcast spawners (e.g. gilthead seabream 3312 

Sparus aurata and European seabass Dicentrarchus labrax). 3313 

Having not only confirmed that introgression of by cultured male cod into 3314 

wild populations is possible, but that the risk of it occurring may be greater than 3315 

previously suspected (Skjæraasen & Hutchings 2010, Skjæraasen et al. 2010), the 3316 

potential impact of hybridization between two genetically distinct cod populations 3317 

was evaluated. One manner in which disparately related and naturally separated 3318 

populations may come into contact is through human mediated dispersal (Fraser et 3319 

al. 2010a). Among aquatic species this often occurs through the use of “non-native” 3320 

(i.e. originating from different ancestral populations) strains in aquaculture, and the 3321 

subsequent escape of genetic materials (fertilized eggs or larvae: Jørstad et al. 3322 
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(2008), Uglem et al. (2012), Somarakis et al. (2013); through to spawning 3323 

individuals: McGinnity et al. (1997), Jensen et al. (2010), Glover et al. (2013)). While 3324 

it is true that the broodstocks used in some areas derive from populations native to 3325 

that locality, this is not always the case. There is often an incentive in aquaculture to 3326 

utilize a broodstock outside of the range of its founder population. This may be 3327 

because of a wish to expand aquaculture production for a species into an area for 3328 

which a local broodstock does not exist, or because the non-native broodstock 3329 

outperforms the native one. In either case, escapees from the non-native broodstock 3330 

have the potential to hybridize with local fish stocks and disrupt their local 3331 

adaptation (Fleming et al. 2000, McGinnity et al. 2003, Glover et al. 2013). At the 3332 

time the experimentation was conducted, the focus by industry in Atlantic Canada 3333 

was towards development of local stocks for their aquaculture efforts (one 3334 

broodstock from Newfoundland and one for New Brunswick and the Maritimes, 3335 

Genome Atlantic’s Cod Genome Project). These two broodstocks were availed of to 3336 

test differences between the Newfoundland and New Brunswick stocks, which are 3337 

known to be genetically distinct (Bradbury et al. 2010), and in so doing evaluate the 3338 

potential consequences of introgression from a non-native broodstock. I found that 3339 

if hybridization between these two populations were to occur in the wild, it is very 3340 

likely a portion of the resultant offspring (F1) would survive because their fitness 3341 

during their early life history stages did not differ significantly from that of their 3342 

non-hybrid counterparts. Furthermore, there was evidence that female effects, male 3343 

effects and female by sire compatibility affected the survival of the offspring. Thus, it 3344 
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is possible that the mating system of cod in which females are multiple batch 3345 

spawners (Trippel 1998, Rakitin et al. 2001, Wringe et al. 2015b), and where 3346 

multiple paternity within and among batches appears to be the norm (Hutchings et 3347 

al. 1999, Bekkevold et al. 2002, Wringe et al. 2015b), could increase the chances of a 3348 

favourable local/non-local pairing occurring. What is unclear is how the fitness of F2 3349 

(or Fn) or backcrosses will compare to that of non-hybrids (or even the F1) and 3350 

should be tested in future experiments. 3351 

In summary, I found that exposure to culture causes both behavioural and 3352 

morphological changes in Atlantic cod relative to their wild conspecifics, and meta-3353 

analysis showed these morphological changes are common among fishes exposed to 3354 

culture, confirming the existence of a “cultured phenotype”. Despite their phenotypic 3355 

differences, the reproductive success of cultured male cod was equal to that of wild 3356 

males, at least under the conditions in which they were tested. Furthermore, hybrids 3357 

between genetically distinct populations of cod did not show any fitness differences 3358 

relative to their pure-strain half-sibs during their early life history. Taken together, 3359 

these results suggest that the potential for introgression between wild and escaped 3360 

cod may be greater than has previously been predicted. 3361 

Moving forward and building off the results of this thesis, I would suggest 3362 

that further studies be conducted on the importance of female behaviour and female 3363 

mate choice in determining male spawning success. Many of the features of the cod 3364 

mating system are indicative of female mate choice, such as the presence of sexually 3365 
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dimorphic features (Rowe & Hutchings 2004b, Skjæraasen et al. 2006a, Rowe & 3366 

Hutchings 2008, Skjæraasen et al. 2008, Skjæraasen et al. 2012), male display and 3367 

courtship behaviours (Brawn 1961, Hutchings et al. 1999) and a lek-like spawning 3368 

system (Nordeide & Folstad 2000, Windle & Rose 2007). In fact there is even some 3369 

evidence, albeit weak, that the size of cod secondary sexual characters is related to 3370 

their spawning success (Rowe & Hutchings 2008). That said, despite the original 3371 

description of cod spawning (Brawn 1961) indicating that the behaviour of a female 3372 

who would engage in spawning with a displaying male differed from that of a 3373 

disinterested female, and that the male perceived and reacted to such behavioural 3374 

differences, no further work has directly addressed how female behaviour dictates 3375 

male spawning success. I would propose to repeat, or reevaluate studies such as 3376 

those of (Brawn 1961) (Skjæraasen & Hutchings 2010) (Rowe & Hutchings 2008) 3377 

for example, but include a critical evaluation of female behaviour.  3378 

Furthermore, the existing evidence for the importance of secondary sexual 3379 

characters in cod mating success is weak (Rowe & Hutchings 2008, Skjæraasen et al. 3380 

2008). It is possible that the relationship between these two factors is obfuscated by 3381 

the experimental conditions such as the limited number of males from which the 3382 

female may choose compared to the wild, the confined tank space engendering 3383 

unnatural levels of satellite spawning and sperm competition, or the sample sizes 3384 

may have been too small to detect an effect. One manner in which a relationship 3385 

between spawning success and secondary sexual character size might be tested is 3386 

through experimental manipulation of the size of the characters. While the size of 3387 
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the pelvic fins could be modified without undue difficulty, the size of the drumming 3388 

muscles would be more difficult to alter. However, while increasing the size of the 3389 

muscles may not be possible, it may be feasible to use a neurotoxin, such as 3390 

botulinium toxin type A, to induce selective, or partial paralysis of the drumming 3391 

muscles and thereby effectively reduce their size.  3392 

While this is by no means an exhaustive list of potential experimental 3393 

avenues, these are the ones that most interest me for their theoretical relevance to 3394 

the evolution of sexual selection, mating systems, and intra- and inter-sexual 3395 

competition.3396 
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Supplementary Table 3.1 PRISMA 2009 Checklist For Wringe et al. 2016. In search of a “cultured fish phenotype”: a 4261 

systematic review, meta-analysis, and vote-counting analysis. Page numbers modified for thesis. From:  Moher D, Liberati 4262 

A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-4263 

Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097  4264 
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Section/topic  # Checklist item  
Reported 
on page 
#  

TITLE   

Title  1 In search of a “cultured fish phenotype”: a systematic review, meta-analysis, and vote-counting 

analysis. 
40 

ABSTRACT   

Structured summary  2 That cultured fishes develop a morphology that differs from their wild conspecifics has become 

nearly axiomatic in fisheries science. A commonly supervened corollary is that exposure to culture 

causes a set of predictable and consistent morphological changes that result in a common “cultured 

phenotype” in fishes because the similarity of environments and selection pressures is greater 

among culture than natural environments. While this is often asserted, it has not been formally 

tested. A systematic review of the literature based on PRISMA best practice protocols identified 65 

papers, composed of 106 studies that compared the morphology of 39 species of cultured fish to 

their wild conspecifics. This formed the basis of a meta-analysis of quantitative, and vote-counting 

analysis of qualitative differences in 16 external morphological features and condition factor. My 

analyses confirm that aspects of a general “cultured phenotype” exist. The meta-analysis analysis 

40 
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revealed that cultured fish had consistently shorter fins and upper jaws than wild fish, and the vote-

counting analysis was suggestive of this as well. The vote-counting analysis showed that across all 

studies cultured fish had greater body depth and condition factor than wild fish, but this was not 

supported by the meta-analysis. As well as matching the morphological changes required to 

develop the “cultured phenotype”, the changes detected in our analyses are consistent with 

experimentally observed plastic responses to environmental conditions typical of those experienced 

in culture. This is discussed, as is how intentional and unintentional selection in culture may 

contribute to, or reinforce the observed morphological changes.  

INTRODUCTION   

Rationale  3 Despite differences between cultured and wild fish having been reported for various species 

individually, and the commonality of these changes among species being alluded to, no formal test 

has been conducted to determine if exposure to culture conditions leads to a set of common 

morphological changes in fish exposed to culture relative to the morphology of their wild 

counterparts. To this end, we performed a meta-analysis, as well as a vote-counting analysis, based 

on a systematic review that was conducted following PRISMA best practice protocols (Liberati et 

al. 2009, Moher et al. 2009) of the literature on morphological differentiation between cultured fish 

and their wild counterparts to determine if similar patterns of divergence are observed across 

species. 

44 

Objectives  4 Our goal was to test the hypothesis that when exposed to culture, fishes develop stereotypical 

changes in their external morphology relative to their wild conspecifics. 
46 

METHODS   

Protocol and registration  5 Review protocol can be found in the methods, as well as the supplementary materals. 46 

Eligibility criteria  6 1) the study must have examined the external morphology of the fish; 2) it must have been 

measured in a quantitative manner; 3) a comparison of cultured to a wild population must have 

been undertaken; and 4) the cultured fish must have spent the entirety of their lives in captivity (i.e. 

studies of recaptured or “sea ranched” cultured fish were excluded 

46-47 

Information sources  7 Searches were conducted in three main databases: the Aquatic Sciences and Fisheries Abstracts 

Database (ASFA), Web of Science, and Google Scholar. Where data were ambiguous … we 

contacted and requested data from study authors. 

46 and 
49  

Search  8 Listed in Supplementary Table 3.1  
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Study selection  9 This is outlined in the methods as well as in Supplementary Table 3.2 and Supplementary Figure 

3.1 
 

Data collection process  10 Numeric data were extracted from tables. For the qualitative differences we recorded the qualitative 

differences as one of three categorical values: 1) cultured larger than wild (C>W), 2) wild larger 

than cultured (C<W), or 3) no difference reported (C=W).  

49 

Data items  11 Once the systematic review had been completed, and having parsed all publications retained, a set 

of external morphological features were selected that were commonly measured in morphological 

studies, were homologous across species, for which differences in their relative expression may 

affect the fish’s fitness, and which are commonly asserted to comprise the “cultured phenotype” 

(Fig. 3.2). We also chose to include condition factor (Fulton's K = 100(W/L
3
)) in our analysis 

because, while it is not technically an external morphological feature, it does have bearing on the 

fish’s overall external conformation, and conforms to the other criteria. 

Differences in experimental methodology, study purpose, and a myriad of other factors, 

meant that all of the morphological features chosen to be examined in our meta-analysis were not 

measured or reported in every publication. We recorded the available morphological feature means 

and where reported, the corresponding standard deviations (see Statistical Analysis for treatment of 

missing standard deviations). In addition, we recorded species, the form of culture, and whether the 

wild and cultured fish that were compared were from the same ancestral genetic population. Again, 

each of these was not reported in every publication, and even when details were reported, they 

tended to differ among publications. To overcome this disparity, each variable was made 

categorical (Table 3.1), and where any of these data were unavailable or ambiguously reported, they 

were coded as ‘unknown’ and excluded from the analysis. 

 

47 and 
48 

Risk of bias in individual 
studies  

12 This was not done because there was no indication there would have been biases in measuring the 

morphometrics of fishes.  
NA 

Summary measures  13 The response ratio was calculated for each morphological character in Fig. 3.2 using the function 

escalc from the R package metafor (Viechtbauer 2010), which employs the formula proposed by 

Hedges et al. (1999):                   

51 

Synthesis of results  14 Studies were not combined.   



 232 

Supplementary Table 3.2 Keywords, and variant forms, including wild-cards and 

Boolean operators used in the systematic review. Search terms generally included at 

least a Culture Designation Term, a Wild Designation Term, and a Morphology Term. 

The word “fish”, or a variant form was included when Culture and/or Wild 

Designation Terms did not implicitly refer to fish culture or rearing. Searches were 

also conducted with Culture or Wild Designation Terms replaced with variants of 

“Population”. All pairings are not listed because the number of terms and their 

possible combinations is extremely large. However the vast majority of possible, 

relevant combinations of Culture, Wild, and Morphology terms were used. Searches 

utilizing all Boolean (i.e. OR) combinations of Culture Designation Terms, Wild 

Designation Terms and Morphology Terms were also conducted. 

Root Keyword Variant Forms Keyword Type 

Appearance  Morphology Term 
Aquaculture Aquacult* Culture Designation 

Term 
Culture Culture + Artificial 

Culture + Laboratory 
Culture + Aquarium 
Culture + Domestic* 

Culture Designation 
Term 

Domesticated Domest* 
Domestic* 

Culture Designation 
Term 

Farm Farm* Culture Designation 
Term 

Fish Fish*  
Hatchery Hatcher* 

Hatchery + Supplemental 
Hatchery + Restor* 
Hatchery + Product* 

Culture Designation 
Term 

Laboratory Laborator* 
Lab* 

Culture Designation 
Term 

Morphology Morpholog* Morphology Term 
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Morphometric/Morphometrics Morphometric* 
Morphom* 
Morpho* 

Morphology Term 

Native  Wild Designation 
Term 

Natural  Wild Designation 
Term 

Phenotype Phenotyp* Morphology Term 
Population Population* 

Population + Aquacult* 
Population + Domestic* 
Population + Laborator* 
Population + Lab* 
Population + Laborator* 
Population + Native 
Population + Natural 
Population + Wild 

Population Term 

Shape Shape* Morphology Term 
Term 

Wild  Wild Designation 
Term 
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Supplementary Table 3.3 References screened during the systematic review, along with the results of four inclusion 1 

criteria2 
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Supplementary Table 3.4 Summary of meta-analysis of qualitative morphological differences between cultured and 16 

wild fish. Heading abbreviations are as follows: LH is life history, Up is upper, Low is lower, K is Fulton’s condition factor, 17 

Caud Ped is caudal peduncle, Pec is pectoral, Pel is pelvic, L is length, D is depth, W is width, H is height, and F is fin. 18 

Within the table, Unk indicates that the data was not provided, or was ambiguous in the study. Comparisons of wild-19 

caught fish to cultured are denoted WF, while CG indicates the fish were compared in a common garden. Different is 20 

abbreviated Diff. and Immature, Imm. C>W denotes studies in which the expression of the trait in cultured fish is greater 21 

than in the wild to which they were compared, C<W indicates the opposite and C=W indicates a trait was measured, but 22 

no difference was detected. Blank spaces signify that a trait was not measured in a given study. Species abbreviations and 23 

their corresponding common, and binomial names are listed. Where more than one comparison was conducted in a 24 

study, this is noted and the populations or comparison are noted. 25 

Species Comparison Culture Domestication Population LH 
Head 
L 

Head 
D Eye 

Up 
Jaw L 

Low 
Jaw L 

Body 
D K 

Caud 
Ped D 

Caud 
Ped L 

Pec F 
L 

Pel F 
L 

Dorsal 
F L 

Dorsal 
F W 

Anal 
F L 

Anal 
F W 

Caudal 
F L 

Caudal 
F H Study Notes 

AC WF Farm Unk Unk Adult C<W 
  

C<W C<W 
 

C>W 
 

C=W C<W 
       

Uglem et al. 2011 
 

AC WF Farm 1 Same Adult C<W C<W C<W C<W C<W C<W C<W C=W C<W 
 

C<W C<W C<W C<W C<W 
  

Wringe et al. 2015 
 

AS WF Farm ≥2 Diff Imm C<W C=W 
   

C>W 
 

C=W C=W C=W C=W C=W C=W C=W C=W 
  

Enders et al. 2004 
 

AS WF Farm ≥2 Diff Adult C>W C>W C=W C=W C>W C>W 
 

C=W C=W C>W C>W C>W C>W C>W C=W 
  

Fleming et al. 1994 1 

AS WF Farm ≥2 Diff Adult C=W C=W C=W C=W C<W 
  

C=W C=W C>W C>W C>W C>W C>W C=W 
  

Fleming et al. 1994 2 

AS WF Farm Unk Unk Adult 
         

C<W 
 

C<W 
   

C<W 
 

Lund et al. 1989 
 

ASs WF Farm ≥2 Diff Unk 
     

C>W 
    

C>W 
      

Crichigno et al. 2014 
 

BT WF Farm ≥2 Unk Adult C=W C=W C=W 
 

C=W C=W 
   

C=W C=W C=W 
 

C=W C=W C=W C=W Lahnsteiner and Jagsch 2005 3 

BT WF Farm ≥2 Unk Adult C=W C=W C<W C=W 
 

C>W 
   

C<W C=W C=W 
 

C<W C=W C<W C=W Lahnsteiner and Jagsch 2005 4 

ESB WF Farm >2 Diff Imm C<W C<W C<W 
  

C>W C>W C>W C>W 
   

C<W 
 

C<W 
  

Arechavala-Lopez et al. 2012 5 

ESB WF Farm Unk Diff Imm C<W C<W C<W 
  

C>W 
 

C>W C>W C<W C<W 
 

C<W 
 

C<W C<W 
 

Arechavala-Lopez et al. 2012 6 

EuP WF Farm Unk Unk Adult C>W 
  

C>W 
 

C<W C>W C=W C=W 
  

C=W C=W 
  

C=W C=W Mairesse et al. 2005 7 

EuP WF Farm Unk Unk Adult C=W 
  

C=W 
 

C>W C>W C=W C=W 
  

C=W C=W 
  

C=W C=W Mairesse et al. 2005 8 

GSB WF Farm Unk Diff Imm C>W C<W C<W 
  

C>W C>W C=W C<W 
   

C<W 
 

C<W 
  

Arechavala-Lopez et al. 2012 9 

GSB WF Farm Unk Diff Imm C<W C>W C<W 
  

C>W 
 

C<W C<W C<W C<W 
 

X>W 
 

C>W C<W 
 

Arechavala-Lopez et al. 2012 10 

GSB WF Farm Unk Unk Imm C>W 
  

C>W 
 

C=W C>W C=W 
 

C<W C<W C<W C<W C<W C<W 
  

Rogdakis et al. 2011 
 

GSB WF Farm ≥2 Diff Adult C=W C>W C>W 
  

C>W 
 

C>W C>W C>W C<W C<W C=W C<W C>W C>W 
 

Segvic-Bubic et al. 2014 
 

OF WF Farm Unk Unk Adult C=W 
    

C>W C>W 
          

Park et al. 2012 
 

PM WF Farm Unk Same Unk C>W C<W C<W 
  

C>W 
 

C>W C>W C<W C<W C<W C<W C<W 
 

C>W 
 

Patiyal et al. 2013 
 



 245 

PP WF Farm ≥2 Diff Unk 
     

C>W C<W 
          

Crichigno et al. 2014 
 

AH WF Hatchery 1 Unk Imm C>W C>W 
               

Balbontin et al. 1973 
 

ArC WF Hatchery 1 Same Adult C<W C>W C<W C<W C<W 
            

Adams and Huntingford 2004 
 

ArC WF Hatchery 1 Same Adult 
  

C<W C<W 
   

C>W 
 

C<W 
 

C<W 
 

C<W C>W C>W 
 

Klemetsen et al. 2002 11 

ArC WF Hatchery 1 Same Adult 
  

C>W C<W 
   

C>W 
 

C<W 
 

C<W 
 

C>W C>W C<W 
 

Klemetsen et al. 2002 12 

AS WF Hatchery 1 Same Imm C=W C<W C=W 
  

C=W 
 

C<W C=W C=W 
    

C=W C=W 
 

Blanchet et al. 2008 
 

AS WF Hatchery Unk Same Imm* C>W C>W 
 

C=W C>W C>W 
 

C>W C=W C<W C>W C>W C=W C>W C>W 
  

Fleming et al. 1994 13 

AS WF Hatchery Unk Unk Imm C<W 
 

C=W C=W C<W C>W C>W C<W C<W C<W C<W C<W C<W C<W C<W C<W 
 

Kazakov and Semenova 1986 
 

AS WF Hatchery 1 Same Imm 
      

C=W 
  

C<W 
       

Pedersen et al. 2008 
 

AS WF Hatchery Unk Unk Imm C<W C>W C>W C>W C<W 
            

Salmanov 1986 
 

AS WF Hatchery Unk Unk Imm C<W C>W C>W C>W C>W 
            

Salmanov 1989 14 

AS WF Hatchery Unk Unk Imm C>W C>W C>W C>W C>W 
            

Salmanov 1989 15 

AS WF Hatchery Unk Unk Imm C>W C>W C>W C>W C>W 
            

Salmanov 1989 16 

AS WF Hatchery ≥2 Same Imm 
 

C<W 
 

C<W 
 

C>W 
 

C=W C=W 
   

C=W 
 

C=W 
  

von Cramon-Taubadel et al. 
2006 

 
AS WF Hatchery ≥2 Same Imm C<W 

  
C<W 

   
C<W 

         
Wilkins et al. 1994 17 

AS WF Hatchery ≥2 Same Imm C<W 
  

C<W 
   

C<W 
         

Wilkins et al. 1994 18 

AS WF Hatchery ≥2 Same Imm C<W 
  

C<W 
   

C<W 
         

Wilkins et al. 1994 19 

BFF WF Hatchery Unk Unk Imm C<W 
 

C<W C=W 
 

C<W 
   

C=W 
       

Aritaki et al. 2000 
 

BhC WF Hatchery 1 Same Imm C=W 
 

C=W 
  

C=W 
 

C<W C=W C=W 
   

C=W 
 

C=W C=W Kerschbaumer et al. 2011 
 

BT WF Hatchery 1 Same Imm 
      

C>W 
  

C<W 
       

Pedersen et al. 2008 
 

BT WF Hatchery 1 Same Imm C<W C=W 
 

C<W 
 

C=W 
 

C=W C=W 
   

C=W 
 

C=W 
  

Vehanen and Huusko 2011 
 

BT WF Hatchery ≥2 Same Imm C<W 
  

C<W 
   

C<W 
         

Wilkins et al. 1994 20 

BT WF Hatchery ≥2 Same Imm C<W 
  

C<W 
   

C<W 
         

Wilkins et al. 1994 21 

ChS WF Hatchery ≥2 Diff Imm C>W C>W C>W C>W 
 

C<W 
 

C=W C<W 
   

C=W 
 

C<W 
  

Tiffan and Connor 2011 
 

CoS WF Hatchery 1 Same Adult C<W C>W 
 

C=W 
 

C>W 
 

C<W C<W C=W C=W C<W C>W C<W C>W 
  

Hard et al. 2000 
 

CoS WF Hatchery ≥2 Diff Imm C<W C<W 
 

C<W 
 

C<W 
 

C<W C<W 
  

C<W C=W C<W C<W C<W C<W Swain et al. 1991 
 

CoS WF Hatchery 1 Diff Imm C=W 
    

C=W C=W C=W C=W 
 

C<W 
      

Taylor 1986 
 

JM WF Hatchery Unk Diff Unk C=W C>W C=W C=W 
 

C>W 
   

C<W 
  

C=W 
 

C=W 
  

Suda et al. 1986 
 

LmB WF Hatchery ≥2 Diff Imm C<W C>W 
 

C<W C<W 
            

Wintzer and Motta 2005 
 

Roh WF Hatchery Unk Unk Unk C>W 
 

C>W 
  

C>W 
 

C>W C>W C>W C>W C>W 
 

C>W 
 

C>W 
 

Wagle and Pradhan 2013 22 

Roh WF Hatchery Unk Unk Unk C>W 
 

C>W 
  

C>W 
 

C>W C>W C>W C>W C>W 
 

C>W 
 

C>W 
 

Wagle and Pradhan 2013 23 

RSB WF Hatchery Unk Unk Imm C=W C<W C<W C<W 
 

C<W 
 

C=W 
 

C<W C=W C<W 
 

C<W 
 

C=W 
 

Matsumiya and Kanamaru 
1987 

 
SSB WF Hatchery 

 
Unk Imm 

  
C<W 

  
C>W 

 
C>W C>W 

   
C<W 

 
C<W C>W 

 
Kouttouki et al. 2006 

 
ST WF Hatchery 1 Same Imm C<W 

  
C=W 

  
C>W 

  
C<W 

       
Lenhardt et al. 2012 

 
Tau WF Hatchery 1 Unk Adult C>W 

 
C>W 

  
C>W 

 
C>W 

         
Schwartz et al. 2005 

 
TUR WF Hatchery Unk Same Imm 

     
C>W 

           
Ellis et al. 1997 

 
YfT WF Hatchery 1 Unk Imm C<W 

 
C=W C<W C<W C<W 

 
C<W 

         
Shimizu and Shiozawa 2004 

 
AD WF Lab 1 Unk Imm C>W 

  
C>W 

 
C>W 

  
C<W C>W 

       
Murphy et al. 2007 

 
Blt WF Lab 1 Same Adult C>W 

 
C<W C<W 

     
C=W C=W C>W 

 
C>W 

   
Todd et al. 1981 

 
Gup WF Lab 1 Same Adult C=W 

 
C<W 

  
C<W 

 
C<W C=W 

   
C<W 

 
C>W 

  
Burns et al. 2009 24 

Gup WF Lab 1 Same Adult C>W 
 

C>W 
  

C>W 
 

C>W C>W 
   

C>W 
 

C<W 
  

Burns et al. 2009 25 

Gup WF Lab 1 Same Adult C>W 
 

C>W 
  

C>W 
 

C>W C=W 
   

C>W 
 

C<W 
  

Burns et al. 2009 26 

Gup WF Lab 1 Same Adult C=W 
 

C<W 
  

C<W 
 

C<W C<W 
   

C<W 
 

C>W 
  

Burns et al. 2009 27 

Ky WF Lab 1 Same Adult C=W 
 

C=W C<W 
     

C=W C=W C>W 
 

C>W 
   

Todd et al. 1981 
 

LER WF Lab ≥2 Unk Adult 
     

C<W 
 

C<W C>W 
   

C<W 
 

C>W 
  

McGuigan et al. 2003 28 

LER WF Lab ≥2 Unk Adult 
     

C<W 
 

C<W C>W 
   

C<W 
 

C=W 
  

McGuigan et al. 2003 29 

LjC WF Lab 1 Same Adult C=W 
 

C=W C=W 
     

C>W C=W C>W 
 

C>W 
   

Todd et al. 1981 
 

Mid WF Lab Unk Same Adult C=W 
 

C=W C=W 
 

C>W 
 

C<W C=W C=W C=W 
 

C>W 
 

C=W 
  

Barlow and Munsey 1976 
 

MR WF Lab ≥2 Diff Adult C=W 
 

C>W 
  

C<W 
 

C=W 
 

C=W C=W C=W C=W C=W C=W C=W 
 

Taylor 2003 30 

MR WF Lab ≥2 Same Adult C=W 
 

C>W 
  

C=W 
 

C=W 
 

C=W C=W C=W C=W C=W C=W C>W 
 

Taylor 2003 31 

SEN WF Lab 1 Same Imm C>W 
 

C>W 
    

C>W 
       

C>W 
 

Gozlan et al. 1998 
 

SjC WF Lab 1 Same Adult C>W 
 

C<W C>W 
     

C=W C>W C>W 
 

C=W 
   

Todd et al. 1981 
 

Thr WF Lab Unk Same Adult C>W 
 

C>W C>W 
 

C<W 
    

C<W C<W 
     

Kitano et al. 2007 
 

Thr WF Lab 1 Same Adult 
  

C=W 
 

C=W C>W 
   

C=W C=W 
      

Leaver and Reimchen 2012 32 

Thr WF Lab 1 Same Adult 
  

C=W 
 

C=W C>W 
   

C>W C>W 
      

Leaver and Reimchen 2012 33 

Thr WF Lab 1 Same Adult C<W 
    

C>W 
 

C>W C>W 
        

McCairns and Bernatchez 2012 34 

Thr WF Lab 1 Same Adult C>W C>W 
   

C>W 
 

C>W C>W 
        

McCairns and Bernatchez 2012 35 

Thr WF Lab 1 Same Adult C=W C=W C=W C=W 
 

C=W 
    

C=W 
      

McPhail 1984 36 

Thr WF Lab 1 Same Adult C=W C=W C=W C=W 
 

C=W 
    

C=W 
      

McPhail 1984 37 

Thr WF Lab 1 Same Adult 
     

C>W 
 

C>W 
 

C>W C<W 
 

C>W 
  

C=W 
 

Sharpe et al. 2008 38 

Thr WF Lab 1 Same Adult 
     

C>W 
 

C>W 
 

C<W C<W 
 

C>W 
  

C<W 
 

Sharpe et al. 2008 39 
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Thr WF Lab 1 Same Adult 
     

C>W 
 

C>W 
 

C<W C<W 
 

C<W 
  

C>W 
 

Sharpe et al. 2008 40 

TsG WF Lab 1 Same Imm C<W 
 

C<W C=W 
 

C<W 
    

C<W 
      

Morioka et al. 2012 
 

AS CG Farm ≥2 Diff Imm C=W C<W 
  

C<W C<W 
 

C<W C>W C=W 
 

C>W C<W C=W C>W C>W C>W Einum 1996 41 

AS CG Farm ≥2 Diff Imm C=W C=W 
  

C=W C=W 
 

C<W C=W C=W 
 

C=W C=W C=W C=W C=W C=W Einum 1996 42 

AS CG Farm ≥2 Same Imm C<W C=W 
   

C>W 
 

C=W C=W C<W C<W C=W C<W C<W C=W 
  

Fleming and Einum 1997 
 

AS CG Farm ≥2 Diff Imm C=W C<W C=W C=W 
 

C<W C=W C=W C<W 
   

C=W 
 

C=W 
  

Fraser et al. 2010 43 

AS CG Farm ≥2 Diff Imm C>W C=W C=W C=W 
 

C=W C=W C=W C=W 
  

C>W C=W 
 

C=W 
  

Fraser et al. 2010 44 

AS CG Farm ≥2 Diff Imm C=W C=W C=W C=W C=W C<W C<W C=W C>W 
  

C<W C=W 
 

C=W 
  

Morris et al. 2011 
 

AS CG Farm ≥2 Diff Imm 
 

C>W C<W 
 

C>W C>W 
 

C>W C<W C<W C<W 
    

C=W 
 

Solem et al. 2006 
 

CC CG Farm ≥2 Diff Imm C>W C>W C=W C=W 
 

C<W 
 

C=W C=W 
   

C<W 
 

C=W 
  

Matsuzaki et al. 2009 
 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C>W 
          

Suzuki and Yamaguchi 1980 45 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C=W 
          

Suzuki and Yamaguchi 1980 46 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C>W 
          

Suzuki and Yamaguchi 1980 47 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C>W 
          

Suzuki and Yamaguchi 1980 48 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C=W 
          

Suzuki and Yamaguchi 1980 49 

CC CG Farm ≥2 Diff Adult C=W 
    

C>W C>W 
          

Suzuki and Yamaguchi 1980 50 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C>W 
          

Suzuki and Yamaguchi 1980 51 

CC CG Farm ≥2 Diff Adult C>W 
    

C>W C>W 
          

Suzuki and Yamaguchi 1980 52 

OF CG Farm Unk Same Imm 
     

C>W C>W 
          

Kim et al. 2011 
 

ArC CG Hatchery ≥2 Diff Imm C>W C>W 
   

C<W 
 

C<W C>W C=W 
  

C=W 
 

C=W C<W 
 

Janhunen et al. 2009 53 

ArC CG Hatchery ≥2 Diff Imm C>W C>W 
   

C=W 
 

C=W C=W C=W 
  

C=W 
 

C=W C=W 
 

Janhunen et al. 2009 54 

ArC CG Hatchery ≥2 Diff Adult C=W C=W 
   

C<W 
 

C<W C=W C<W 
  

C<W 
 

C<W C<W 
 

Janhunen et al. 2009 55 

ArC CG Hatchery ≥2 Diff Adult C=W C=W 
   

C<W 
 

C<W C=W C>W 
  

C>W 
 

C>W C<W 
 

Janhunen et al. 2009 56 

ChS CG Hatchery ≥2 Same Imm C=W C<W 
 

C<W 
 

C<W C=W C<W C>W 
   

C=W 
 

C=W 
  

Wessel et al. 2006 
 

CoS CG Hatchery ≥2 Same Imm C=W C<W 
 

C<W 
 

C=W 
 

C=W C=W 
  

C<W C=W C=W C<W C=W C<W Swain et al. 1991 
 

RT CG Hatchery Unk Diff Imm C>W C>W 
 

C=W 
 

C>W C=W C>W C<W 
  

C>W 
 

C>W 
   

Pulcini et al. 2013 
 

Species abbreviations: AC, Atlantic cod (Gadus morhua); AD, Ambon damselfish (Pomacentrus amboinensis); AH, Atlantic herring (Clupea harengus); ArC, Arctic charr (Salvelinus alpinus); AS, Atlantic salmon (Salmo salar); ASs, Atlantic silverside (Odontesthes bonariensis); BFF, Barfin Flounder (Verasper moseri); BhC, Blunthead cichlid (Tropheus moorii); 
Blt, Bloater (Coregonus hoyi); BT, Brown trout (Salmo trutta); CC, Common carp (Cyprinus carpio); ChS, Chinook salmon (Oncorhynchus tshawytscha); CoS, Coho salmon (Oncorhynchus kisutch); ESB, European sea bass (Dicentrarchus labrax); EuP, European perch (Perca fluviatilis); GSB, Gilthead sea bream (Sparus aurata); Gup, Guppy (Poecillia reticulata); 
JM, Jack mackerel (Trachurus japonicas); Ky, Kiyi (Coregonus kiyi); LER, Lake Eacham rainbowfish (Melanotaenia eachamensis); LjC, Longjaw cisco (Coregonus alpenae); LmB, Largemouth bass (Micropterus salmoides); Mid, Midas cichlid (Amphilophus citrinellus); MR, Mangrove rivulus (Kryptolebias marmoratus); OF, Olive flounder (Paralichthys olivaceus); 
PM, Putitor mahseer (Tor putitora); PP, Patagonian perjerry (Odontesthes hatcheri); Roh, Rohu (Labeo rohita); RSB, Red sea bream (Pagrus major); RT, Rainbow trout (Oncorhynchus mykiss); SEN, South-west European nace (Parachondrostoma toxostoma); SjC, Shortjaw cisco (Coregonus zenithicus); SSB, Sharpsnout sea bream (Diplodus puntazzo); St, 
Sterlet (Acipenser ruthenus); Tau, Tautog (Tautoga onitis); Thr, Threespine stickleback (Gasterosteus aculeatus); TsG, Three-spot gourami (Trichopodus trichopodus); TUR, Turbot (Scophthalmus maximus) YfT, Yellowfin tuna (Thunnus albacares) 

Notes: 1- Sunndalsora Hatchery 2- Imsa River; 3- Lacustrine morph; 4- Normal morph; 5- Greece Farmed; 6- Spain Farmed; 7- Wild of river origin; 8- Wild of lake origin; 9- Greece Farmed; 10- Spain Farmed; 11- Littoral morph; 12- Profundal morph; 13- Mature male parr; 14- Wild from Umba River; 15- Wild from Luvenga River; 16- Wild from Simijoki 
River; 17- 1991 generation cultured salmon (91S); 18- 1992 generation cultured salmon (92S); 19- 2NS cultured salmon; 20- 2NT cultured trout; 21- 1992 generation trout (92T); 22- Cultured from Sunsari hatchery; 23- Cultured from Rupandeshi hatchery; 24- Aripo population, high predation; 25- Oropuche population, high predation; 26- Aripo 
population, low predation; 27- Oropuche population, low predation; 28- Wild are stream population; 29- Wild are lake population; 30- Florida population; 31- Belize population; 32- Wild from Mayer Lake; 33- Wild from Mayer Pond; 34- Saltwater population; 35- Freshwater population; 36- Benthic morph; 37- Limnetic morph; 38- Fish of outlet 
population; 39- Fish of inlet population; 40- Fish of lake population; 41- Wild from Imsa River; 42- Wild from Lone River; 43- Wild from Stewiake River; 44- Wild from Tusket River; 45- Cultured are Yamamoto strain, reared in running water; 46- Cultured are Asagi strain, reared in running water; 47- Cultured are mirror strain, reared in running water; 
48- Cultured are Scaly German strain, reared in running water; 49- Cultured are Yamamoto strain, reared in standing water; 50- Cultured are Asagi strain, reared in standing water; 51- Cultured are Mirrored strain, reared in standing water; 52- Cultured are Scaly German strain, reared in standing water; 53- Cultured from Lake Saimaa; 54- Cultured from 
Lake Inari; 55- Cultured from Lake Saimaa; 56- Cultured from Lake Inari 
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Supplementary Table 3.5 Summary of the results of the vote-counting analysis. 26 

Results are presented for each category of each moderator. Morph. Feature is short 27 

for morphological feature. Diff. w/i stands for difference within category, and is the 28 

result of the test of the hypothesis that the proportion studies finding each of the 29 

three possible relative differences in morphological feature size between the 30 

cultured and wild fish (i.e. C<W = C>W = C=W) are equal for a given morphological 31 

feature and category of a moderator. Where significant differences were found, the 32 

results of all pairwise comparisons and adjusted p-values are given. Diff. b/w stands 33 

for difference between categories, and is the result of the test of the hypothesis that 34 

for each of the three possible relative differences in morphological feature size, the 35 

proportion of studies finding it did not differ between categories of a moderator. 36 

Where significant, and there are more than two categories of a moderator, the 37 

results of all pairwise comparisons, and adjusted p-values reported. NS indicates a 38 

given test was not significant, and chi-squared and p-values are given for each test. 39 

Lab is short for laboratory, CG is common garden, and WF indicates studies in which 40 

the cultured fish were compared to wild-caught fish. There were a number of cases 41 

in which the sample size was not sufficient for accurate statistical analysis, and these 42 

are marked with an asterisk (*). In these cases it was impossible to test for Diff. b/w 43 

and this is left blank. 44 

  45 
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 46 

Morph. 
Feature Moderator Diff. w/i Chisq p 

Prop. 
findings Diff.b/w Chisq p 

H
ea

d
 L

en
gt

h
 

Overall NS 1.65 > 0.43         

Form of culture 
      

  

Farm NS 3.47 > 0.17 C<W Farm<Hatch 7.84 < 0.01 

Hatchery NS 4.02 > 0.13 
 

Farm=Lab 0.41 > 0.51 

Lab 
 

6.79 < 0.05 
 

Lab<Farm 9.87 < 0.01 

 
C<W < C=W 4.6 < 0.05 C=W NS 1.01 > 0.60 

 
C<W = C=W 3.39 > 0.06 C>W NS 0.01 > 0.99 

  C=W = C>W <0.001 ~ 1         

Commonality of 
rearing 
environment               

CG 
 

13.23 < 0.01 C<W CG<WF 6.9 < 0.01 

 
C<W < C=W 6.34 < 0.05 C=W NS 0.37 > 0.54 

 
C<W < C>W 10.92 

< 
0.001 C>W NS 2.57 > 0.10 

  C=W = C>W 0.36 > 0.54         

WF NS 0.6 > 0.74         

Domestication 
   

C<W NS 0.01 > 0.91 

1 Generation NS 0.12 >0.94 C=W NS 0.01 > 0.89 

>2 Generations NS 1.5 > 0.47 C>W NS 
< 
0.0001 ~1 

Ancestral 
population       C<W NS 2.4 > 0.12 

Diff NS 5.73 > 0.05 C=W NS 
< 
0.0001 ~1 

Same NS 1.15 > 0.56 C>W NS 1.86 > 0.17 

Salmonid 
      

  

Not 
 

6.19 < 0.05 C>W NS 3.52 > 0.06 

 
C<W = C=W 0.22 > 0.64 C=W NS 2.38 > 0.12 

 
C<W < C>W 4.67 < 0.05 C>W Not>Yes 14.51 

< 
0.001 

 
C=W = C>W 2.21 > 0.13 

   
  

Yes 
 

18.3 
< 
0.001 

   
  

 
C<W = C=W <0.001 ~ 1 

   
  

 
C<W > C>W 14.4 

< 
0.001 

   
  

  C=W > C<W 12.8 
< 
0.001         

H
ea

d
 

D
ep

th
 

Overall NS 3.19 > 0.20 
   

  

Form of culture       C<W Farm=Hatch 2.91 > 0.08 

Farm NS 3.47 > 0.17 
 

Farm=Lab 0.41 > 0.51 
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Hatchery NS 3.25 > 0.19 
 

Lab<Hatch 5.04 < 0.05 

Lab 
 

6.79 < 0.05 C=W NS 2.82 > 0.24 

 
C<W < C=W 4.6 < 0.05 C>W NS 1.43 > 0.48 

 
C<W = C>W 3.39 > 0.06 

   
  

  C=W = C>W 
< 
0.001 ~ 1         

Commonality of 
rearing 
environment       C<W NS 

< 
0.0001 ~1 

CG NS 0.6 0.74 C=W NS 0.77 > 0.37 

WF NS 5.03 > 0.08 C>W NS 0.42 > 0.51 

Domestication       C<W NS 
< 
0.0001 ~1 

1 Generation NS 1 > 0.60 C=W NS 
< 
0.0001 ~1 

>2 Generations NS 0.84 > 0.65 C>W NS 0.06 > 0.79 

Ancestral 
population 

   
C<W NS 0.6 > 0.43 

Diff NS 2.63 > 0.26 C=W NS 
< 
0.0001 ~1 

Same NS 0.86 > 0.65 C>W NS 0.49 > 0.48 

Salmonid       C<W NS 0.77 > 0.37 

Not NS 4.2 > 0.12 C=W NS 1.47 > 0.22 

Yes NS 2.71 > 0.25 C>W NS 
< 
0.0001 ~1 

E
y

e 
Si

ze
 

Overall NS 0.39 > 0.82         

Form of culture 
 

8.06 < 0.05 C<W NS 2.63 > 0.26 

Farm 
 

8.06 < 0.05 C=W NS 1.25 > 0.53 

 
C<W = C=W 0 ~1 C>W Farm<Hatch 5.32 < 0.05 

 
C<W > C>W 5.56 < 0.05 

 
Farm=Lab 2.32 > 0.12 

 
C=W > C>W 4.17 < 0.05 

 
Hatch=Lab 0.28 > 0.59 

Hatchery NS 2.52 > 0.28 
   

  

Lab NS 0.5 > 0.77 
   

  

Commonality of 
rearing 
environment               

CG 
      

  

WF NS 0.19 > 0.91         

Domestication 
   

C<W NS 0.33 > 0.56 

1 Generation NS 1.77 > 0.41 C=W NS 0.03 > 0.84 

>2 Generations NS 2.79 > 0.24 C>W NS 
< 
0.0001 ~1 

Ancestral 
population       C<W NS 

< 
0.0001 ~1 

Diff NS 2.4 > 0.30 C=W NS 0.05 > 0.81 

Same NS 1.13 > 0.56 C>W NS 
< 
0.0001 ~1 

Salmonid 
   

C<W NS 0.32 > 0.56 
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Not NS 0.68 > 0.71 C=W NS 0.87 > 0.34 

Yes NS 2.18 > 0.33 C>W NS 0.01 > 0.93 

U
p

p
er

 J
aw

 L
en

gt
h

 
Overall 

 
6.00 < 0.05 

   
  

 
C<W = C=W 0 1 

   
  

 
C<W > C>W 3.85 < 0.05 

   
  

  C=W > C>W 3.85 < 0.05         

Form of culture 
   

C<W Farm<Hatch 4.04 < 0.05 

Farm 
 

9 < 0.05 
 

Farm=Lab 
< 
0.0001 ~1 

 
C<W < C=W 4.29 < 0.05 

 
Hatch=Lab 2.72 > 0.09 

 
C<W = C>W 0 ~1 C=W Farm>Hatcher 4.57 < 0.05 

 
C=W > C>W 4.29 < 0.05 

 
Farm=Lab 0.12 > 0.72 

Hatchery 
 

11.04 <0.01 
 

Hatch=Lab 1.13 > 0.28 

 
C<W > C=W 4.72 < 0.05 C>W NS 0.78 > 0.67 

 
C<W > C>W 7.62 < 0.01 

   
  

 
C=W = C>W 0.11 > 0.74 

   
  

Lab NS 2.1 >0.34 
   

  

Commonality of 
rearing 
environment       C<W NS 0.06 > 0.80 

CG 
   

C=W NS 2 > 0.15 

WF   3.42 > 0.18 C>W NS 0.84 > 0.35 

Domestication 
      

  

1 Generation NS 5.25 > 0.07 
   

  

> 2 Generations 
 

10.5 < 0.01 C<W NS 
< 
0.0001 ~1 

 
C<W = C=W 0.45 > 0.50 C=W NS 

< 
0.0001 ~1 

 
C<W > C>W 8.38 < 0.01 C>W NS 0.01 > 0.91 

 
C=W > C>W 4.02 < 0.05 

   
  

Ancestral 
population               

Diff 
 

1.73 < 0.01 C<W NS 3.81 > 0.05 

 
C<W < C=W 4.58 < 0.05 C=W NS 3.61 > 0.05 

 
C<W = C=W 0 ~1 C>W NS 

< 
0.0001 ~1 

 
C=W > C>W 6.77 < 0.01 

   
  

Same 
 

15.24 
< 
0.001 

   
  

 
C<W < C=W 4.58 < 0.05 

   
  

 
C<W = C>W 0 ~1 

   
  

  C=W > C>W 6.77 < 0.01         

Salmonid 
   

C<W NS 1.04 > 0.30 

Not NS 3.5 > 0.17 C=W NS 0.61 > 0.43 
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Yes NS 5.72 > 0.05 C>W NS 
< 
0.0001 ~1 

L
o

w
er

 J
aw

 L
en

gt
h

 
Overall NS 1.95 > 0.37         

Form of culture 
   

C<W Farm=Hatch 
< 
0.0001 ~1 

Farm NS 1 ~1 C=W Farm=Hatch 1.6 > 0.20 

Hatchery 
 

7 < 0.05 C>W Farm=Hatch 0.25 > 0.61 

 
C<W > C=W 4.43 < 0.05 

   
  

 
C<W = C=W 0 ~1 

   
  

 
C=W = C>W 2.89 > 0.08 

   
  

Lab 
      

  

Commonality of 
rearing 
environment       C<W NS 0.11 > 0.73 

CG NS 0.75 > 0.68 C=W NS 0.41 > 0.51 

WF NS 3.56 > 0.16 C>W NS 
< 
0.0001 ~1 

Domestication 
   

C<W NS 0.04 > 0.82 

1 Generation NS 4.2 > 0.12 C=W NS 
< 
0.0001 ~1 

>2 Generation NS 0.375 > 0.82 C>W NS 0.18 > 0.67 

Ancestral 
population       C<W NS 

< 
0.0001 ~1 

Same NS 0.43 > 0.80 C=W NS 
< 
0.0001 ~1 

Diff NS 0.6 > 0.74 C>W NS 
< 
0.0001 ~1 

Salmonid 
   

C<W NS 0.61 > 0.43 

Not 
   

C=W NS 
< 
0.0001 ~1 

Yes NS 1.5 > 0.47 C>W NS 1.91 > 0.16 

B
o

d
y

 D
ep

th
 

Overall 
 

32.33 
< 
0.001 

   
  

 
C<W = C=W 2.33 > 0.12 

   
  

 
C<W < C>W 13.40 

< 
0.001 

   
  

  C=W < C>W 27.29 
< 
0.0001         

Form of culture 
      

  

Farm 
 

32.12 
< 
0.0001 C<W NS 2.69 > 0.26 

 
C<W = C=W 0.11 > 0.73 C=W NS 1.46 > 0.48 

 
C<W < C>W 17.24 

< 
0.0001 C>W NS 5.02 > 0.08 

 
C=W < C>W 21.92 

< 
0.0001 

   
  

Hatchery NS 2.19 > 0.33 
   

  

Lab 
 

6.86 < 0.05 
   

  

 
C<W = C=W 1.18 > 0.27 

   
  

 
C<W = C>W 0.88 < 0.34 
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C=W < C>W 5.25 < 0.05 

   
  

Commonality of 
rearing 
environment       C<W NS 1.38 > 0.24 

CG NS 6 > 0.05 C=W NS 1.26 > 0.26 

WF 
 

10.5 < 0.01 C>W CG>WF 7.05 < 0.01 

 
C<W = C=W 1.24 > 0.26 

   
  

 
C<W < C>W 8.74 < 0.01 

   
  

  C=W = C>W 2.7 > 0.09         

Domestication 
   

C<W NS 0.65 > 0.41 

1 Generation NS 5.61 > 0.06 C=W NS 0.35 > 0.55 

> 2 Generations 
 

8.83 < 0.05 C>W NS 
< 
0.0001 ~1 

 
C<W = C=W 2.55 > 0.11 

   
  

 
C<W = C>W 0.89 > 0.34 

   
  

 
C=W < C>W 7.46 < 0.01 

   
  

Ancestral 
population       C<W NS 0.33 > 0.56 

Diff 
 

17.24 
< 
0.001 C=W NS 0.79 > 0.37 

 
C<W = C=W 2.25 > 0.13 C>W NS 

< 
0.0001 ~1 

 
C<W < C>W 4.83 < 0.05 

   
  

 
C=W < C>W 14.49 

< 
0.001 

   
  

Same 
 

11.1 < 0.01 
   

  

 
C<W = C=W 

< 
0.0001 ~1 

   
  

 
C<W < C>W 7.05 < 0.01 

   
  

  C=W < C>W 5.63 < 0.05         

Salmonid 
   

C<W NS 0.38 > 0.53 

Not 
 

43.17 
< 
0.0001 C=W Not<Yes 4.13 < 0.05 

 
C<W = C=W 3.27 > 0.07 C>W Not>Yes 5.28 < 0.05 

 
C<W < C>W 18.08 

< 
0.0001 

   
  

 
C=W < C>W 35.38 

< 
0.0001 

   
  

Yes NS 0.33 > 0.84         

C
o

n
d

it
io

n
 Overall 

 
16.17 

< 
0.001 

   
  

 
C<W = C=W 1.81 > 0.17 

   
  

 
C<W < C>W 13.14 

< 
0.001 

   
  

  C=W < C>W 4.62 < 0.05         

Form of culture 
   

C<W NS 0.12 > 0.72 

Farm 
 

15.86 
< 
0.001 C=W NS 2.1 > 0.14 

 
C<W = C=W 0 ~1 C>W NS 0.44 > 0.50 
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C<W < C>W 9.88 < 0.01 

   
  

 
C=W < C>W 7.88 < 0.01 

   
  

Hatchery NS 5.57 > 0.06 
   

  

Lab No Samples 
     

  

Commonality of 
rearing 
environment       C<W NS 

< 
0.0001 ~1 

CG 
 

6.64 < 0.05 C=W NS 1.57 > 0.20 

 
C<W = C=W 3.05 > 0.08 C>W NS 0.59 > 0.43 

 
C<W < C>W 4.37 < 0.05 

   
  

 
C=W = C>W 0 ~1 

   
  

WF 
 

13.71 < 0.01 
   

  

 
C<W = C=W 0 ~1 

   
  

 
C<W < C>W 7.15 < 0.01 

   
  

  C=W < C>W 7.15 < 0.01         

Domestication 
      

  

1 Generation 
Low Sample 
Size 

  

Low 
Sample 
Size 

  
  

> 2 Generations NS 4.04 > 0.13 
   

  

Ancestral 
population       

Low 
Sample 
Size       

Diff NS 5.25 > 0.07 
   

  

Same NS 1.5 > 0.47 

Low 
Sample 
Size       

Salmonid 
   

Low 
Sample 
Size 

  
  

Not 
 

26.68 
< 
0.0001 

   
  

Numerically 
same C<W = C=W 0 ~1 

   
  

 
C<W < C>W 15.33 

< 
0.0001 

   
  

 
C=W < C>W 15.33 

< 
0.0001 

   
  

Yes NS 7 > 0.05         

C
au

d
le

 
P

ed
u

n
cl

e 
D

ep
th

 

Overall NS 0.13 > 0.93         

Form of culture 
   

C<W Farm<Hatch 5.42 < 0.05 

Farm 
 

12 < 0.01 
 

Farm=Lab 0.9 > 0.34 

 
C<W < C=W 8.18 < 0.01 

 
Hatch=Lab 0.55 > 0.45 

 
C<W = C>W 0.15 > 0.69 C=W Farm>Hatch 6.17 < 0.05 

 
C=W > C>W 4.76 < 0.05 

 
Farm>Lab 6.61 < 0.05 

Hatchery NS 5.7 > 0.05 
 

Hatch=Lab 0.15 > 0.69 

Lab NS 5.4 > 0.06 C>W NS 4.18 > 0.12 
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Commonality of 
rearing 
environment       C<W NS 0.02 > 0.86 

CG NS 4.2 > 0.12 C=W NS 0.87 > 0.35 

WF NS 0.71 > 0.70 C>W NS 2.05 > 0.15 

Domestication 
   

C<W NS 0.62 > 0.43 

1 Generation 
 

7.35 < 0.05 C=W NS 3.71 > 0.05 

 
C<W = C=W 0.57 > 0.44 C>W 1Gen>>2Gen 10.36 < 0.01 

 
C<W = C>W 1.63 > 0.20 

   
  

 
C=W > C>W 5.38 < 0.05 

   
  

> 2 Generations 
 

11.71 < 0.01 
   

  

Numerically 
same C<W = C=W 0 ~1 

   
  

 
C<W > C>W 8.1 < 0.01 

   
  

 
C=W < C>W 8.1 < 0.01 

   
  

Ancestral 
population       C<W NS 0.29 > 0.55 

Diff NS 4.87 > 0.08 C=W Diff>Same 4.13 < 0.05 

Same NS 3.6 > 0.16 C>W NS 1.46 > 0.22 

Salmonid 
   

C<W NS 2.4 > 0.12 

Not NS 5.18 > 0.07 C=W NS 1.63 > 0.20 

Yes 
 

8.84 < 0.05 C>W Not>Yes 6.98 < 0.01 

 
C<W = C=W 0 ~1 

   
  

 
C<W > C>W 5.81 < 0.05 

   
  

  C=W > C>W 5.81 < 0.05         

C
au

d
le

 P
ed

u
n

cl
e 

L
en

gt
h

 

Overall NS 5.47 > 0.06         

Form of culture 
      

  

Farm NS 3 
> 
0.022 C<W NS 0.09 > 0.95 

Hatchery NS 3.75 > 0.15 C=W NS 1.16 > 0.55 

Lab NS 2.1 > 0.34 C>W NS 2.06 > 0.35 

Commonality of 
rearing 
environment       C<W NS 

< 
0.001 > 0.98 

CG NS 4.2 > 0.12 C=W NS 0.2 > 0.64 

WF NS 2.25 > 0.32 C>W NS 0.01 > 0.89 

Domestication 
   

C<W NS 0.33 > 0.56 

1 Generation NS 1.61 > 0.44 C=W NS 
< 
0.0001 ~1 

> 2 Generations 
 

6 < 0.05 C>W NS 0.07 > 0.78 

Ancestral 
population       C<W NS 0.42 > 0.51 

Diff NS 1.69 > 0.42 C=W NS 0.2 > 0.65 

Same 
 

6.5 < 0.05 C>W NS 
< 
0.0001 ~1 
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C<W < C=W 4.33 < 0.05 

   
  

 
C<W = C>W  0.16 > 0.68 

   
  

  C=W = C>W 1.82 > 0.17         

Salmonid 
   

C<W NS 0.06 > 0.80 

Not NS 4.44 > 0.10 C=W NS 2.43 > 0.11 

Yes 
 

11.19 < 0.01 C>W Not>Yes 4.87 < 0.05 

 
C<W < C=W 3.86 < 0.05 

   
  

 
C<W = C>W 0.46 > 0.49 

   
  

  C=W > C>W 8.29 < 0.01         

P
ec

to
ra

l F
in

 L
en

gt
h

 

Overall NS 5.81 > 0.05         

Form of culture 
   

C<W NS 5.87 > 0.05 

Farm NS 5.81 > 0.05 C=W NS 0.33 > 0.84 

Hatchery NS 5.84 > 0.05 C>W NS 1.11 > 0.57 

Lab NS 4.38 > 0.11 
   

  

Commonality of 
rearing 
environment       C<W NS 

< 
0.0001 ~1 

CG NS 2.62 > 0.26 C=W NS 0.29 > 0.58 

WF NS 4.57 > 0.10 C>W NS 0.02 > 0.87 

Domestication 
   

C<W NS 0.24 > 0.61 

1 Generation NS 1.5 > 0.47 C=W NS 0.09 > 0.76 

>2 Generations NS 3 > 0.22 C>W NS 
< 
0.0001 ~1 

Ancestral 
population       C<W NS 0.15 > 0.69 

Diff NS 0.6 > 0.74 C=W NS 
< 
0.0001 ~1 

Same NS 5.86 > 0.05 C>W NS 0.32 > 0.57 

Salmonid 
   

C<W NS 
< 
0.0001 ~1 

Not NS 2.18 > 0.33 C=W NS 0.61 > 0.43 

Yes NS 5.65 > 0.05 C>W NS 0.42 > 0.51 

P
el

v
ic

 F
in

 L
en

gt
h

 Overall NS 3.48 > 0.17         

Form of culture 
      

  

Farm NS 5.35 > 0.06 C<W NS 2.58 > 0.27 

Hatchery NS 0.42 > 0.80 C=W NS 4.16 > 0.12 

Lab 
 

6.93 < 0.05 C>W NS 2.64 > 0.26 

 
C<W = C=W 1.14 > 0.28 

   
  

 
C<W = C>W 0.73 > 0.39 

   
  

 
C=W > C>W 4.98 > 0.05 

   
  

Commonality of 
rearing 
environment       C<W NS 0.06 > 0.79 

CG NS 4.2 > 0.12 C=W NS < ~1 
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0.0001 

WF NS 1.09 > 0.57 C>W NS 0.15 > 0.69 

Domestication 
   

C<W NS 0.06 > 0.56 

1 Generation NS 4.2 > 0.12 C=W NS 
< 
0.0001 ~1 

>2 Generations NS 1.09 > 0.57 C>W NS 0.15 > 0.69 

Ancestral 
population       C<W NS 0.01 > 0.89 

Diff NS 2.1 > 0.34 C=W NS 0.87 > 0.34 

Same NS 4.65 > 0.09 C>W NS 0.23 > 0.62 

Salmonid 
   

C<W NS 1.16 > 0.28 

Not NS 5.04 > 0.08 C=W NS 0.32 > 0.56 

Yes NS 1.8 > 0.40 C>W NS 0.04 > 0.83 

D
o

rs
al

 F
in

 L
en

gt
h

 

Overall NS 1.62 > 0.44         

Form of culture 
      

  

Farm NS 1.23 > 0.53 C<W NS 4.64 > 0.09 

Hatchery 
 

10.09 < 0.01 C=W NS 5.96 > 0.05 

 
C<W > C=W 7.54 < 0.01 C>W NS 2.51 > 0.28 

 
C<W = C>W 0.72 > 0.39 

   
  

 
C=W = C>W 2.75 > 0.09 

   
  

Lab NS 3 > 0.22 
   

  

Commonality of 
rearing 
environment       C<W NS     

CG NS 0.42 > 0.80 C=W NS 
 

  

WF NS 2.03 > 0.36 C>W NS     

Domestication 
      

  

1 Generation 
   

Small 
Sample 
Size 

  
  

>2 Generations NS 1.8 > 0.40 
   

  

Ancestral 
population       C<W NS 0.35 > 0.55 

Diff NS 1.09 > 0.55 C=W NS 0.15 > 0.69 

Same NS 3.94 > 0.13 C>W NS 0.04 > 0.82 

Salmonid 
   

C<W NS 0.25 > 0.61 

Not NS 3 > 0.22 C=W NS 0.11 > 0.73 

Yes NS 2.47 > 0.28 C>W NS 1.46 > 0.22 

D
o

rs
al

 F
in

 
W

id
th

 Overall NS 5.04 > 0.08         

Form of culture 
   

C<W NS 2.53 > 0.28 

Farm NS 4.65 > 0.09 C=W Farm=Hatch 1.48 > 0.22 

Hatchery 
 

11.4 < 0.01 
 

Farm=Lab 0.96 > 0.32 

 
C<W < C=W 4.88 < 0.02 

 
Hatch<Lab 4.87 < 0.05 
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C<W = C>W 0 ~1 C>W NS 4.01 > 0.13 

 
C=W > C>W 6.8 < 0.01 

   
  

Lab NS 2.25 > 0.32 
   

  

Commonality of 
rearing 
environment       C<W NS 0.01 > 0.89 

CG 
 

8.53 < 0.05 C=W NS 1.68 > 0.19 

 
C<W = C=W 1.39 > 0.23 C>W NS 1.01 > 0.31 

 
C<W = C>W 0.99 > 0.31 

   
  

 
C=W > C>W 6.11 < 0.05 

   
  

WF NS 1.14 > 0.56         

Domestication 
   

C<W NS 0.08 > 0.77 

1 Generation NS 3.9 > 0.14 C=W 1Gen<>2Gen 5.32 < 0.05 

> 2 Generations 
 

13.44 < 0.01 C>W 1Gen>>2Gen 3.89 < 0.05 

 
C<W < C=W 3.97 < 0.05 

   
  

 
C<W = C>W 1.12 > 0.28 

   
  

 
C=W > C>W 10.5 < 0.01 

   
  

Ancestral 
population       C<W NS < 0.01 > 0.94 

Diff 
 

7.09 < 0.05 C=W NS 1.04 > 0.30 

 
C<W = C=W 2.35 > 0.12 C>W NS 0.53 > 0.46 

 
C<W = C>W 0.12 > 0.71 

   
  

 
C=W > C>W 4.81 < 0.05 

   
  

Same NS 
< 
0.0001 ~1         

Salmonid 
   

C<W Not>Yes 4.42 < 0.05 

Not NS 5.88 > 0.05 C=W Not<Yes 5.98 < 0.05 

Yes 
 

13.63 < 0.01 C>W NS 0.01 > 0.89 

 
C<W < C=W 7.61 < 0.01 

   
  

 
C<W = C=W 0 ~1 

    
  C=W > C>W 7.61 < 0.01         

A
n

al
 F

in
 L

en
gt

h
 Overall NS 0.30 > 0.86         

Form of culture 
   

C<W Farm=Hatch 
< 
0.001 ~1 

Farm NS 3 > 0.22 C=W Farm=Hatch 0.22 > 0.63 

Hatchery NS 2.25 > 0.32 C>W Farm=Hatch 0.8 > 0.36 

Lab 
      

  

Commonality of 
rearing 
environment               

CG 
   

Small 
Sample 
Size 

  
  

WF NS 1.56 > 0.45         
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Domestication 
      

  

1 Generation 
   

Small 
Sample 
Size 

  
  

> 2 Generations NS 4.38 > 0.11 
   

  

Ancestral 
population               

Same 
      

  

Diff NS 0.21 > 0.89 

Small 
Sample 
Size       

Salmonid 
   

C<W NS 0.44 > 0.50 

Not NS 2.1 > 0.34 C=W NS 
< 
0.001 ~1 

Yes NS 0.6 > 0.74 C>W NS 0.46 > 0.49 

A
n

al
 F

in
 W

id
th

 

Overall   6.71 < 0.05         

 
C<W = C=W 2.95 > 0.08 

   
  

 
C<W = C>W 0.05 > 0.81 

   
  

  C=W > C>W 4.72 < 0.05         

Form of culture 
      

  

Farm 
 

8.21 < 0.05 C<W Farm=Hatch 0.11 > 0.73 

 
C<W = C=W 2.69 > 0.10 C=W Farm=Hatch 0.24 > 0.62 

 
C<W = C>W 0.15 > 0.69 C>W Farm=Hatch 

< 
0.001 ~1 

 
C=W > C>W 5.54 < 0.05 

   
  

Hatchery  NS 2.43 > 0.29 
   

  

Lab NS 1 > 0.60 
   

  

Commonality of 
rearing 
environment       C<W NS 0.72 > 0.39 

CG 
 

11.3 < 0.01 C=W NS 2.23 > 0.13 

 
C>W < C=W 5.67 < 0.05 C>W NS 0.21 > 0.64 

 
C>W = C>W 0 ~1 

   
  

 
C=W > C>W 5.67 < 0.05 

   
  

WF NS 1.09 > 0.57         

Domestication 
   

C<W NS 0.09 > 0.76 

1 Generation NS 2.1 > 0.34 C=W 1Gen<>2Gen 4.65 < 0.05 

> 2 Generations 
 

20.33 
< 
0.0001 C>W NS 3.18 > 0.07 

 
C<W < C=W 10.9 

< 
0.001 

   
  

 
C<W = C>W 0 ~1 

   
  

 
C=W > C>W 12.96 

< 
0.001 

   
  

Ancestral 
population       C<W NS 

< 
0.001 ~1 

Diff 
 

7.09 < 0.05 C=W NS 0.25 > 0.61 
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C<W = C=W 2.35 > 0.12 C>W NS 0.71 > 0.39 

 
C<W = C>W 0.012 > 0.71 

   
  

 
C=W > C>W 4.81 < 0.05 

   
  

Same NS 1.23 > 0.53         

Salmonid 
   

C<W NS 2 > 0.15 

Not NS 1.1 > 0.57 C=W NS 2.4 > 0.12 

Yes 
 

12.33 < 0.01 C>W NS 
< 
0.001 ~1 

 
C<W < C=W 7.79 < 0.01 

   
  

 
C<W = C>W 0 ~1 

   
  

  C=W > C>W 6.21 < 0.05         

C
au

d
al

 F
in

 L
en

gt
h

 

Overall NS 0.27 > 0.87         

Form of culture 
   

C<W Farm=Hatch 
< 
0.001 ~1 

Farm NS 0.75 > 0.68 C=W Farm=Hatch < 0.01 > 0.96 

Hatchery NS 0.6 > 0.74 C>W Farm=Hatch 
< 
0.001 ~1 

Lab 
      

  

Commonality of 
rearing 
environment               

CG 
   

Small 
Sample 
Size 

  
  

WF NS 0.12 > 0.94         

Domestication 
      

  

1 Generation 
   

Small 
Sample 
Size 

  
  

>2 Generations NS 1.5 > 0.47 
   

  

Ancestral 
population       C<W NS 1.35 > 0.24 

Diff NS 3 > 0.22 C=W NS 
< 
0.001 ~1 

Same NS 1.9 > 0.38 C>W NS 1.09 > 0.29 

Salmonid 
   

C<W NS 2.56 > 0.10 

Not NS 3.35 > 0.18 C=W NS 
< 
0.001 ~1 

Yes NS 5.25 > 0.07 C>W NS 3.16 > 0.07 

 47 
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 Supplementary Table 3.6 Congruence of the results of the meta-analysis and the 48 

vote-counting analysis. For the meta-analysis the difference in size is what was 49 

indicated from the mean effect size as generated by the mixed-mixed effect model. 50 

For the vote-counting analysis, the relative difference found in the largest 51 

proportion of studies is used. Where the proportions of two possible differences did 52 

not differ, both are given, and where all three did not differ, this is denoted Aprx. 53 

Equal, or all proportions approximately equal. Significances are given for both the 54 

meta-analysis and the vote-counting results. Comp. is the comparison of the results 55 

of the vote-counting and meta-analysis. Where the results of the two analyses show 56 

the same relative difference in size for a morphological character between the 57 

cultured and wild fish the results are said to be congruent, where the results are 58 

indicate the differences are opposite this is indicated, and where the they do not 59 

match, this is indicated as incongruent. A summary of the number of morphological 60 

features where were found to be congruent, incongruent or opposite are given for 61 

each moderator level.62 
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Moderator Feature Meta-analysis Significance Vote-count Significance Comparison 
  

All studies Head Depth C > W NS C>W NS Congruent Congruent 7 

  Head Length C < W p < 0.01 Props Aprx Equal Incongruent Incongruent 8 

  Eye Size C < W NS Props Aprx Equal Incongruent Opposite 1 

  Upper Jaw L C < W p < 0.01 C<W and C=W p < 0.05 Congruent 
    Lower Jaw L C < W NS C<W NS Congruent 
    Body Depth C < W NS C>W p < 0.001 Opposite 
    Condition C > W NS C>W p < 0.05 Congruent 
    Caud Ped D C < W NS Props Aprx Equal Incongruent 
    Caud Ped L C > W NS C=W NS Incongruent 
    Pectoral Fin L C < W p < 0.001 C<W NS Congruent 
    Pelvic Fin L C < W p < 0.001 C<W and C=W NS Congruent 
    Dorsal Fin L C < W p < 0.01 Props Aprx Equal NS Incongruent 
    Dorsal Fin W C < W NS C=W and C<W NS Congruent 
    Anal Fin L C < W p < 0.01 Props Aprx Equal Incongruent 
    Anal Fin W C < W p < 0.05 C=W p < 0.05 Incongruent 
  

  Caudal Fin L C < W NS Props Aprx Equal Incongruent 
  

Farm Head Depth C > W NS C>W NS Congruent Congruent 7 

  Head Length C < W p < 0.01 C>W NS Opposite Incongruent 5 

  Eye Size C < W NS C<W p < 0.05 Congruent Opposite 2 

  Upper Jaw L C < W NS C=W p < 0.05 Incongruent 
  

  Lower Jaw L C > W NS Props Aprx Equal Incongruent 
  

  Body Depth C > W NS C>W p < 0.001 Congruent 
  

  Condition C > W NS C>W p < 0.001 Congruent 
  

  Caud Ped D C < W p < 0.05 C=W p < 0.05 Incongruent 
  

  Caud Ped L C < W NS C=W NS Incongruent 
  

  Pectoral Fin L C < W NS C<W NS Congruent 
  

  Pelvic Fin L C < W NS C<W NS Congruent 
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  Dorsal Fin L C < W NS Props Aprx Equal NA 
    Dorsal Fin W C > W NS C<W NS Opposite 
    Anal Fin L C < W NS C<W NS Congruent 
    Anal Fin W C < W NS C=W p < 0.05 Incongruent 
  

  Caudal Fin L C < W NS Props Aprx Equal NA 
  

Hatchery Head Depth C > W NS C<W NS Opposite Congruent 4 

  Head Length C < W NS C<W NS Congruent Incongruent 2 

  Eye Size C > W NS C>W NS Congruent Opposite 4 

  Upper Jaw L C > W NS C<W p < 0.05 Opposite 
  

  Lower Jaw L C < W NS Props Aprx Equal NA 
  

  Body Depth C < W NS C>W NS Opposite 
  

  Condition NA 
 

Props Aprx Equal NA 
  

  Caud Ped D C > W NS C<W NS Opposite 
  

  Caud Ped L C > W NS C=W NS Incongruent 
  

  Pectoral Fin L C < W p < 0.001 C<W NS Congruent 
  

  Pelvic Fin L C < W p < 0.001 Props Aprx Equal NA 
  

  Dorsal Fin L C < W p < 0.05 C<W NS Congruent 
  

  Dorsal Fin W C < W NS C=W p < 0.05 Incongruent 
  

  Anal Fin L C < W p < 0.05 Props Aprx Equal NA 
  

  Anal Fin W C < W NS Props Aprx Equal NA 
  

  Caudal Fin L C < W NS Props Aprx Equal NA 
  

Laboratory Head Depth C < W NS C>W p < 0.05 Opposite Congruent 1 

  Head Length C < W p < 0.001 C>W p < 0.05 Opposite Incongruent 3 

  Eye Size C < W NS Props Aprx Equal NA Opposite 7 

  Upper Jaw L C < W p < 0.001 C=W NS Incongruent 
    Lower Jaw L NA 

 
Few Studies NA 

    Body Depth C < W p < 0.01 C>W  p < 0.05 Opposite 
    Condition C < W NS Few Studies NA 
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  Caud Ped D C < W NS C>W NS Opposite 
    Caud Ped L C > W NS C>W NS Congruent 
    Pectoral Fin L C < W p < 0.001 C=W NS Incongruent 
    Pelvic Fin L C < W p < 0.001 C=W p < 0.05 Incongruent 
    Dorsal Fin L C < W p < 0.01 C>W NS Opposite 
    Dorsal Fin W C < W p < 0.01 Props Aprx Equal NA 
    Anal Fin L C < W p < 0.05 C>W NS Opposite 
    Anal Fin W C < W  p < 0.05 Props Aprx Equal NA 
  

  Caudal Fin L C < W NS C>W NS Opposite 
  

Common Garden Head Depth C > W NS Props Aprx Equal NA Congruent 1 

  Head Length C < W p < 0.001 C>W p < 0.05 Opposite Incongruent 1 

  Eye Size C < W NS Few Studies NA Opposite 3 

  Upper Jaw L Few Studies Few Studies NA 
  

  Lower Jaw L Few Studies Few Studies NA 
  

  Body Depth C < W NS C>W NS Opposite 
  

  Condition C < W NS C>W p < 0.05 Opposite 
  

  Caud Ped D C < W p < 0.001 C<W  NS Congruent 
  

  Caud Ped L C > W NS C=W NS Incongruent 
  

  Pectoral Fin L Few Studies Few Studies NA 
  

  Pelvic Fin L Few Studies Few Studies NA 
  

  Dorsal Fin L Few Studies Props Aprx Equal NA 
  

  Dorsal Fin W Few Studies C=W p < 0.05 NA 
  

  Anal Fin L Few Studies Few Studies NA 
  

  Anal Fin W Few Studies C=W p < 0.05 NA 
  

  Caudal Fin L Few Studies   Few Studies NA 
  

Wild/Farmed Head Depth C > W NS Props Aprx Equal NA Congruent 10 

  Head Length C < W p < 0.01 C>W NS Opposite Incongruent 0 

  Eye Size C < W NS Props Aprx Equal NA Opposite 1 
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  Upper Jaw L C < W  p < 0.05 C<W NS Congruent 
    Lower Jaw L C < W p < 0.05 C<W NS Congruent 
    Body Depth C < W NS C<W p < 0.05 Congruent 
    Condition C > W NS C>W P < 0.01 Congruent 
    Caud Ped D C < W NS Props Aprx Equal NA 
    Caud Ped L C > W NS C=W and C>W NS Congruent 
    Pectoral Fin L C < W p < 0.001 C<W NS Congruent 
    Pelvic Fin L C < W p < 0.001 C<W and C=W NS Congruent 
    Dorsal Fin L C < W p < 0.001 C<W NS Congruent 
    Dorsal Fin W C < W NS C<W and C=W NS Congruent 
    Anal Fin L C < W p < 0.01 Props Aprx Equal NA 
    Anal Fin W C < W p < 0.01 C=W and C<W NS Congruent 
  

  Caudal Fin L C < W NS Props Aprx Equal NA 
  

Different Pop Head Depth C > W NS C>W NS Congruent Congruent 3 

  Head Length C < W p < 0.001 C>W NS Opposite Incongruent 5 

  Eye Size C < W NS Props Aprx Equal NA Opposite 3 

  Upper Jaw L C > W NS C=W p < 0.05 Incongruent 
  

  Lower Jaw L C > W p < 0.001 Props Aprx Equal NA 
  

  Body Depth C < W NS C>W p < 0.05 Opposite 
  

  Condition C < W p < 0.001 C>W NS Opposite 
  

  Caud Ped D C < W NS C=W NS Incongruent 
  

  Caud Ped L C > W NS C=W NS Incongruent 
  

  Pectoral Fin L C < W p < 0.001 Props Aprx Equal NA 
  

  Pelvic Fin L C < W p < 0.01 C<W NS Congruent 
  

  Dorsal Fin L C < W  p < 0.001 Props Aprx Equal NA 
  

  Dorsal Fin W C > W NS C=W p < 0.05 Incongruent 
  

  Anal Fin L C < W p < 0.05 Props Aprx Equal NA 
  

  Anal Fin W C < W p < 0.01 C=W p < 0.05 Incongruent 
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  Caudal Fin L C < W NS C<W NS Congruent 
  

Same Pop Head Depth C < W NS Props Aprx Equal NS NA Congruent 6 

  Head Length C < W NS C<W and C=W NS Congruent Incongruent 2 

  Eye Size C < W NS C<W and C=W NS Congruent Opposite 1 

  Upper Jaw L C < W p < 0.001 C<W p < 0.05 Congruent 
  

  Lower Jaw L C < W p < 0.001 Few Studies NA 
  

  Body Depth C < W NS C>W p < 0.05 Opposite 
  

  Condition C < W p < 0.001 Few Studies NA 
  

  Caud Ped D C < W NS C>W equal to C<W Congruent 
  

  Caud Ped L C < W NS C=W NS Incongruent 
  

  Pectoral Fin L C < W p < 0.001 C<W and C=W NS Congruent 
  

  Pelvic Fin L C < W p < 0.001 Props Aprx Equal NA 
  

  Dorsal Fin L C < W p < 0.01 Props Aprx Equal NA 
  

  Dorsal Fin W C < W p < 0.05 Props Aprx Equal NA 
  

  Anal Fin L C < W p < 0.01 Props Aprx Equal NA 
  

  Anal Fin W C < W NS C=W p < 0.001 Incongruent 
  

  Caudal Fin L C > W NS C>W and C=W Congruent 
  

>2 Gen Domestication Head Depth C <W NS C=W NS Incongruent Congruent 1 

  Head Length C < W p < 0.01 C>W and C=W NS Opposite Incongruent 11 

  Eye Size C < W NS C=W NS Incongruent Opposite 3 

  Upper Jaw L C = W NS C<W NS Incongruent 
    Lower Jaw L C > W p < 0.001 Props Aprx Equal NA 
    Body Depth C < W p < 0.05 C>W p < 0.05 Opposite 
    Condition C < W p < 0.001 C>W NS Opposite 
    Caud Ped D C < W NS C<W and C=W p < 0.01 Congruent 
    Caud Ped L C > W NS C=W NS Incongruent 
    Pectoral Fin L C < W p < 0.05 C=W NS Incongruent 
    Pelvic Fin L C < W p < 0.05 C=W NS Incongruent 
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  Dorsal Fin L C < W p < 0.001 C=W NS Incongruent 
    Dorsal Fin W C < W p < 0.05 C=W p < 0.05 Incongruent 
    Anal Fin L C < W p < 0.01 C=W NS Incongruent 
    Anal Fin W C < W p < 0.01 C=W p < 0.01 Incongruent 
  

  Caudal Fin L C < W p < 0.001 C=W and C<W NS Incongruent 
  

1 Gen Domestication Head Depth C < W NS Props Aprx Equal NA Congruent 5 

  Head Length C < W p < 0.001 Props Aprx Equal NA Incongruent 0 

  Eye Size C < W NS C=W and C<W NS Congruent Opposite 2 

  Upper Jaw L C < W p < 0.001 C<W NS Congruent 
  

  Lower Jaw L C < W p < 0.001 Props Aprx Equal NA 
  

  Body Depth C < W NS C>W NS Opposite 
  

  Condition C < W p < 0.001 Props Aprx Equal NA 
  

  Caud Ped D C < W NS C>W p < 0.05 Opposite 
  

  Caud Ped L C = W NS C=W NS Congruent 
  

  Pectoral Fin L C < W p < 0.001 C<W and C=W NS Congruent 
  

  Pelvic Fin L C < W p < 0.01 C=W and C<W NS Congruent 
  

  Dorsal Fin L C < W p < 0.01 Props Aprx Equal NA 
  

  Dorsal Fin W C > W NS Props Aprx Equal NA 
  

  Anal Fin L C < W NS Props Aprx Equal NA 
  

  Anal Fin W C > W NS Props Aprx Equal NA 
  

  Caudal Fin L C > W NS Props Aprx Equal NA 
  

Non-salmonid Head Depth C > W NS Props Aprx Equal NA Congruent 8 

  Head Length C < W NS C>W p < 0.05 Opposite Incongruent 2 

  Eye Size C > W NS Props Aprx Equal NA Opposite 3 

  Upper Jaw L C < W NS C=W NS Incongruent 
    Lower Jaw L C < W p < 0.001 C<W NS Congruent 
    Body Depth C < W NS C>W p < 0.001 Opposite 
    Condition C > W NS C>W p < 0.001 Congruent 
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  Caud Ped D C < W NS C>W NS Opposite 
    Caud Ped L C > W NS C>W NS Congruent 
    Pectoral Fin L C < W p < 0.05 C<W NS Congruent 
    Pelvic Fin L C < W p < 0.05 C<W NS Congruent 
    Dorsal Fin L C < W p < 0.01 C<W NS Congruent 
    Dorsal Fin W C < W NS C<W NS Congruent 
    Anal Fin L C < W p < 0.05 Props Aprx Equal NA 
    Anal Fin W C < W p < 0.01 C<W NS Congruent 
  

  Caudal Fin L C < W NS C>W NS Incongruent 
  

Salmonid Head Depth C >W NS C>W and C=W NS Congruent Congruent 5 

  Head Length C < W p < 0.05 C<W p < 0.01 Congruent Incongruent 7 

  Eye Size C < W NS C=W NS Incongruent Opposite 1 

  Upper Jaw L C < W p < 0.01 C<W NS Congruent 
  

  Lower Jaw L C > W NS Props Aprx Equal NA 
  

  Body Depth C > W NS Props Aprx Equal NA 
  

  Condition C > W NS C=W NS Incongruent 
  

  Caud Ped D C > W NS C<W and C=W p < 0.05 Incongruent 
  

  Caud Ped L C > W NS C=W p < 0.05 Incongruent 
  

  Pectoral Fin L C < W p < 0.001 C<W and C=W NS Congruent 
  

  Pelvic Fin L C < W p < 0.05 C=W NS Incongruent 
  

  Dorsal Fin L C < W NS C>W NS Opposite 
  

  Dorsal Fin W C < W NS C=W p < 0.01 Incongruent 
  

  Anal Fin L C < W p < 0.05 Props Aprx Equal NA 
  

  Anal Fin W C < W NS C=W p < 0.05 Incongruent 
  

  Caudal Fin L C < W NS C<W NS Congruent 
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Supplementary Table 4.1 Identities of the fish that were used more than once, and the rounds in which they were used. 267 
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18, 

2010 

1 7 Female 
15182

8 
N
A   2132 49.5 53.27 53.66 

Did not 
spawn 

                      
1 7 

Culture
d Male 

27533
6 

N
A   1288 47 45.46 50.24 

1 7 
Wild 
Male No Tag 

1
5 3 2114 56.5 66.78 69.02 

Mar. 1 8 Female 34953 N   1836 47 47.38 54.99 Did not                       
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18, 
2010 

9 A spawn 

1 8 
Culture
d Male 

36574
6 

N
A   1395 47 59.41 56.75 

1 8 
Wild 
Male 

068 
868 
872 7   1636 54.5 74.28 77.08 

Mar. 
18, 

2010 

1 9 Female 
34645

6 
1
1   2163 51 48.75 56.27 

Apr. 
10, 

2010 
0.41                     1 9 

Culture
d Male 

15417
6 3   1545 NA NA NA 

1 9 
Wild 
Male 

069 
039 
528 

1
1   3700 62 81.31 76.41 

Mar. 
18, 

2010 

1 10 Female 
36208

0 
1
6   1510 51.5 49.73 56.27 

Apr. 
14, 

2010 
1.00                     1 10 

Culture
d Male 

14944
5 1   1484 48.5 63.77 61.83 

1 10 
Wild 
Male 

069 
020 
888 8   2698 68 89.98 86.78 

Apr. 13, 
2010 

2 1 Female 
27452

0 
N
A   

1580.
5 49.5 51 55 

Did not 
spawn 

                      2 1 
Culture
d Male 

36309
2 

N
A   

1277.
3 44.5 66 60 

2 1 
Wild 
Male 

060 
557 
596 2   1759 55 72.39 71.28 

Apr. 13, 
2010 

2 2 Female 
27573

3 8 2 1857 50 59 59 

Apr. 
20, 

2010 
0.44 

Apr. 
24, 

2010 
0.93 

Apr. 
25, 

2010 
0.65             2 2 

Culture
d Male 

26331
0 5   

1340.
8 47.5 45.09 50.34 

2 2 
Wild 
Male 

069 
020 
888 4   2698 66 81.78 80.89 

Apr. 13, 
2010 

2 3 Female 
34870

8 
1
2   

1924.
4 50.5 56 64 

Apr. 
20, 

2010 
0.08                     2 3 

Culture
d Male 

27223
9 9   

2357.
2 53.5 63.85 73.23 

2 3 
Wild 
Male 

066 
605 
031 5   1816 50.5 79.05 76.82 

Apr. 13, 
2010 

2 4 Female 
34488

4 9   
1216.

2 43 57 61 Apr. 
27, 

2010 
Behavi

our 
Data 

0.81                     2 4 
Culture
d Male 

26668
8 7   1655 49 63.78 67.64 

2 4 
Wild 
Male 

066 
020 
024 3   1902 54.5 66.47 74.77 

Apr. 13, 
2010 

2 5 Female 
26398

5 3   
1749.

2 47 59 60 Apr. 
17, 

2010 
Behavi

our 
Data 

0.15 

Apr. 
21, 

2010 
Behavi

our 
Data 

0.47 

Apr. 
22, 

2010 
Behavi

our 
Data 

0.55             2 5 
Culture
d Male 

35512
6 

1
8   

2841.
3 NA NA NA 

2 5 
Wild 
Male 

069 
039 
528 

1
2   3700 62 81.31 76.41 

Apr. 13, 
2010 2 6 Female 

27052
3 6   

2115.
5 51.5 59 60 

Apr. 
15, 

0.56 
Apr. 
26, 

0.00                 
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2 6 
Culture
d Male 

27109
8 8   

2517.
3 59 81.03 65.92 

2010 2010 

2 6 
Wild 
Male 

060 
028 
101 1 2 2146 57.5 85.19 77.37 

Apr. 13, 
2010 

2 7 Female 
34580

7 
1
0 2 

1943.
8 50 43.23 41.07 Apr. 

26, 
2010 

Behavi
our 

Data 

0.29 

Apr. 
27, 

2010 
Behavi

our 
Data 

0.40                 2 7 
Culture
d Male 

36881
5 

2
2   

1805.
6 50.5 61.22 68.21 

2 7 
Wild 
Male 

068 
868 
872 7 2 1636 54.5 74.28 77.08 

Apr. 13, 
2010 

2 8 Female 
27557

8 7 2 2304 48 44.78 46.15 
Apr. 
21, 

2010 
Behavi

our 
Data 

0.88 

Apr. 
24, 

2010 
Behavi

our 
Data 

0.85 

Apr. 
26, 

2010 
Behavi

our 
Data 

0.95 

Apr. 
27, 

2010 
Behavi

our 
Data 

0.73 

Apr. 
28, 

2010 
Behavi

our 
Data 

0.60     
2 8 

Culture
d Male 

26324
8 4   

1807.
4 50 55.4 62.5 

2 8 
Wild 
Male No Tag 

1
5 3 2114 56.5 66.78 69.02 

Apr. 13, 
2010 

2 9 Female 
11524

8 1   
1771.

5 48 63 57 

Apr. 
20, 

2010 
0.05 

Apr. 
25, 

2010 
0.00 

Apr. 
28, 

2010 
0.00             2 9 

Culture
d Male 

26564
3 6   

1392.
7 44.5 58 53 

2 9 
Wild 
Male 

069 
269 
109 

1
3 3 1363 52.5 63.4 69.55 

Apr. 13, 
2010 

2 10 Female 
36959

4 
N
A   1750 48 43.3 

PF 
Missi

ng 

Did not 
spawn 

                      
2 10 

Culture
d Male 

27648
7 

N
A   

1405.
2 47.5 50 59 

2 10 
Wild 
Male 

066 
304 
091 

N
A   1679 59.5 79.82 72.68 

Apr. 30, 
2010 

3 1 Female 
36058

9 
1
4   

1305.
9 46 46.59 53.43 

May 9, 
2010 

0.65 
May 
13, 

2010 
0.70 

May 
15, 

2010 
0.74 

May 
17, 

2010 
0.91         3 1 

Culture
d Male 

15248
6 2   

1332.
9 51 68.69 69.97 

3 1 
Wild 
Male 

068 
868 
872 7 2 1636 54.5 74.28 77.08 

Apr. 30, 
2010 

3 2 Female 
35442

5 2   
1899.

2 50 51.18 51.14 

May 7, 
2010 

0.63 
May 
11, 

2010 
0.86 

May 
12, 

2010 
0.76 

May 
13, 

2010 
0.24 

May 
17, 

2010 
0.38 

May 
18, 

2010 
0.50 3 2 

Culture
d Male 

36578
3 

2
1   

1896.
6 47 NA NA 

3 2 
Wild 
Male 

060 
557 
596 2 2 1759 55 72.39 71.28 

Apr. 30, 
2010 

3 3 Female 

068 
841 
858 

N
A   2261 62 74.64 74.04 

Did not 
spawn 

                      
3 3 

Culture
d Male 

37092
7 

N
A   979 46 41.83 40.59 

3 3 
Wild 
Male 

066 
084 
072 4   

3249.
5 66 81.78 80.89 

Apr. 30, 
2010 3 4 Female 

36187
9 

1
5   1677 46 52.81 60.46 

May 7, 
2010 

0.12 
May 
10, 

0.00                 
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 268 
269 

3 4 
Culture
d Male 

27472
9 

1
1   1344 50 64.42 61.31 

Behavi
our 

Data 

2010  

3 4 
Wild 
Male 

069 
027 
029 9   2280 58.5 74.07 74.55 

Apr. 30, 
2010 

3 5 Female 
26863

9 5   
1981.

3 48 56.2 53.37 May 7, 
2010 

Behavi
our 

Data 

0.79 

May 
18, 

2010 
Behavi

our 
Data 

0.08 

May 
22, 

2010 
Behavi

our 
Data 

0.06 

May 
23, 

2010 
Behavi

our 
Data 

0.05         3 5 
Culture
d Male 

35384
0 

1
7   

1425.
8 48 51.07 51.63 

3 5 
Wild 
Male 

069 
012 
888 

1
6   

3208.
9 68 89.98 86.78 

Apr. 30, 
2010 

3 6 Female 
37288

2 
1
7   

1835.
2 NA NA NA 

May 
11, 

2010 
0.24 

Female 
5 Died, 

and 
was 

replace
d by 

Female 
20 

                  3 6 
Culture
d Male 

36010
1 

1
9   2436 51 78.86 61.93 

3 6 
Wild 
Male 

066 
605 
031 6   1816 50.5 79.05 76.82 

May 16, 
2010 

3 6 Female 
36959

4 
2
0   

1553.
6 48 43.3 NA 

May 
19, 

2010 
0.00 

May 
22, 

2010 
0.04                 3 6 

Culture
d Male 

36010
1 

1
9   2436 51 78.86 61.93 

3 6 
Wild 
Male 

066 
605 
031 6   1816 50.5 79.05 76.82 

Apr. 30, 
2010 

3 7 Female 
26753

0 4   
1797.

4 48 44.78 46.15 May 3, 
2010 

Behavi
our 

Data 

0.50 

May 7, 
2010 

Behavi
our 

Data 

0.54 

May 
15, 

2010 
Behavi

our 
Data 

0.36             3 7 
Culture
d Male 

27726
4 

1
3   

1542.
1 47.5 50.94 52.07 

3 7 
Wild 
Male 

069 
269 
109 

1
3 3 1363 52.5 63.4 69.55 

Apr. 30, 
2010 

3 8 Female 
37426

4 
1
8   

1633.
6 45.5 49.8 54.59 May 

11, 
2010 

Behavi
our 

Data 

0.64 

May 
13, 

2010 
Behavi

our 
Data 

0.63 

May 
16, 

2010 
Behavi

our 
Data 

0.94 

May 
17, 

2010 
Behavi

our 
Data 

1.00         3 8 
Culture
d Male 

34595
3 

1
5   

1507.
9 49 60.24 59.54 

3 8 
Wild 
Male 

069 
373 
341 

1
4   2310 59.5 77.69 67.52 

Apr. 30, 
2010 

3 9 Female 

068 
890 
370 

1
9   1701 53 69.16 69.67 

May 7, 
2010 

0.50 
May 
16, 

2010 
0.10                 

3 9 
Culture
d Male 

34844
1 

1
6   

1710.
9 NA NA NA 

3 9 
Wild 
Male 

069 
034 
019 

1
0   2654 59.5 79.82 72.68 

Apr. 30, 
2010 

3 10 Female 
27573

3 8 2 2050 50 59 59 

May 3, 
2010 

0.86 
May 5, 
2010 

0.76 
May 7, 
2010 

0.87             
3 10 

Culture
d Male 

36570
3 

2
0   

1345.
9 44.5 52.79 59.43 

3 10 
Wild 
Male No Tag 

1
5 3 2114 56.5 66.78 69.02 
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Supplementary Table 4.2 Primer sequences and characteristics of the microsatellite loci used in this study. Only the 270 

forward primers were labeled. The amount added is the volume of 10 μM forward and reverse primer added to each PCR 271 

reaction. All primer sequences are from Miller et al. (2000). 272 

273 

Locus 
Repeat 
Motive Primer Sequence (5'-3') 

Allele Size 
Range 
(bp) 

Dye 
Label 

Accession 
Number 

Amount 
Added 
(μL) 

Gmo8 GACA R: TGG GGG AGG CAT CTG TCA TTC A  132-184 5' NED AF159238 0.6 

  
F: GCA AAA CGA GAT GCA CAG ACA CC  

  
 

Gmo19 GACA R: GTC TTG CCT GTA AGT CAG CTT G 134-210 5' VIC AF159232  0.5 

  
F: CAC AGT GAA GTG AAC CCA CTG 

   
 

Gmo35 ACA R: CCT TAT CAT GTA CGT TGT TAA C  128-145 5' 6-FAM AF159235  0.5 

  
F: GGA GGT GCT TTG AAG ATG 

   
 

Gmo37 GACA R: CGT GGG ATA CAT GGG TAC CT  240-292 5' PET AF159237  0.4 

    F: GGC CAA TGT TTC ATA ACT CT         



 279 

Supplementary Table 5.1 Primer sequences and characteristics of the microsatellite loci used in this study. Only the 274 

forward primers were labelled. The number of alleles and their size ranges are reported separately for the two temporal 275 

cohorts. Allele sizes are based on an internal LIZ size standard (GeneScan™ 500 LIZ™ dye Size Standard, Applied 276 

Biosystems). Genotyping was done using two separate multiplexes, one consisting of Gmo8, Gmo19, Gmo35 and Gmo37, 277 

and the other of Gmo63, Gmo118, Gmo125 and Gmo152. 278 

        Number of Alleles Size Range     

Marker 
Repeat 
Motif Primer Sequence 

Apr. 25 
Cohort 

May 5 
Cohort 

Apr. 25 
Cohort 

May 5 
Cohort 

GenBank Accession 
No. Reference 

Gmo8 GACA R: TGGGGGAGGCATCTGTCATTCA 11 12 131-177 131-177 AF159238 Miller et al. (2001) 

  
F: GCAAAACGAGATGCACAGACACC 

      
Gmo19 GACA R: GTCTTGCCTGTAAGTCAGCTTG 13 13 145-213 145-294 AF159232 Miller et al. (2001) 

    F: CACAGTGAAGTGAACCCACTG             

Gmo35 ACC R: CCTTATCATGTACGTTGTTAAC 8 7 132-153 132-150 AF159235 Miller et al. (2001) 

  
F: GGAGGTGCTTTGAAGATG 

      
Gmo37 GACA R: CGTGGGATACATGGGTACT 10 8 152-296 248-296 AF159237 Miller et al. (2001) 

    F: GGCCAATGTTTCATAACTCT             

Gmo63 TG R: CATGAAGCATCGACAACTGG  5 6 266-274 174-274 FJ007676  Higgins et al. (2009) 

  
F: CATGAAGCATCGACAACTGG  

      
Gmo118 TC R: CGTGATCAGACAGAGAGGGG  10 8 253-289 253-289 FJ007709  Higgins et al. (2009) 

    F: AACTTCCTGTGCAAGTTCGG              

Gmo125 GA R: TCAGTGAGGTCACCATCTGC  10 9 253-293 261-293 FJ007712  Higgins et al. (2009) 

  
F: ACTTTAGGATGTTCGTCCGC  

      
Gmo152 CA R: ACAAATGTCCATAGGGCAGC  7 7 285-305 285-305 FJ007728  Higgins et al. (2009) 

    F: TAAGCAACAACAGCCACAGG              
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Supplementary Figure 3.1a)  279 

 280 
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Supplementary Figure 3.1b) 281 

 282 

 283 
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Supplementary Figure 3.1c) 284 

 285 

 286 
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Supplementary Figure 3.1d) 287 

 288 

  289 
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Supplementary Figure 3.1e) 290 

 291 

292 
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Supplementary Figure 3.1f) 293 

 294 

295 
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Supplementary Figure 3.1g) 296 

 297 

298 
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Supplementary Figure 3.1h) 299 

 300 

301 
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Supplementary Figure 3.1i) 302 

 303 

304 
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Supplementary Figure 3.1j) 305 

 306 

307 
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Supplementary Figure 3.1k) 308 

 309 

310 
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Supplementary Figure 3.1l) 311 

 312 

313 
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Supplementary Figure 3.1m) 314 

 315 

316 
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Supplementary Figure 3.1n) 317 

 318 

319 



 294 

Supplementary Figure 3.1o) 320 

 321 

322 



 295 

Supplementary Figure 3.1p) 323 

 324 

Supplementary Figure 3.1 Forest-plots for each morphological feature examined. 325 

The points are the effect size for each study, and the error bars represent the 95% 326 

confidence interval around it. The size of the point is reflective of the weighting 327 

given to it by the linear-mixed effects function, and a unique colour is given to each 328 

genus. The morphological features are as described in Fig. 4.1/Table 4.1, and the 329 

species examined can be found in Supplementary Table 3.3.  330 

S1a, Head depth; S1b, Head length; S1c, Eye size; S1d, Upper jaw length; S1e, Lower 331 

jaw length; S1f, Body depth; S1g, Condition factor; S1h, Caudle peduncle depth; S1i, 332 

Caudle peduncle length; S1j, Pectoral fin length; S1k, Pelvic fin length; S1l, Dorsal fin 333 



 296 

length; S1m, Dorsal fin width; S1n, Anal fin length; S1o, Anal fin width; S1p, Caudle 334 

fin length 335 


