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Abstract 

The objective of this study was to determine the molecular structure and properties of 

newly released cultivars of field peas [CDC Golden (CDCG), Abarth (ABAR), CDC 

Patrick (CDCP) and CDC Amarillo (CDCA)] grown at different locations in 

Saskatchewan, Canada. Starch yield (on a whole seed basis), apparent amylose, total lipid 

and surface area were in the range 34-37%, 38.2-42.6%, 1.07–1.38% and 0.31-0.38 m
2
, 

respectively. The proportion of short (DP 6-12) amylopectin chains, amylopectin 

branching density, molecular order, crystallinity, crystalline heterogeneity, gelatinization 

transition temperatures, pasting temperatures, peak viscosity, extent of acid hydrolysis, 

and resistant starch content were higher in CDCG and ABAR. However, amylopectin 

long chains (DP 13-26), average chain length and thermal stability were higher in CDCP 

and CDCA. The results of this study showed that differences in physicochemical 

properties among cultivars were mainly influenced by amylopectin chain length 

distribution, amylopectin branching density and co-crystallization of amylose with 

amylopectin.  

Keywords: field pea starch; structure; properties 

 

 

 

 



iii 
 

Acknowledgements 

First and foremost, I would like to express my deepest sense of gratitude to Dr.R.Hoover 

for having accepted to be my supervisor and for helping to bring this research project to 

fruition. His insightful questions, valuable suggestions and constructive advice piqued my 

interest in the study of pulse starches. His unreserved support and guidance throughout 

the period of my study has led to the successful completion of my thesis. Besides my 

supervisor, I would like to thank my committee members: Dr. Fereidoon Shahidi and Dr. 

Erika Merschrod, whose positive criticisms and encouragement provided valuable impact 

in the advancement of this research project. My sincere thanks go to Dr.Q.Liu, 

Dr.V.Vamadevan and Dr.R.Waduge for providing support in some of the analytical 

techniques described in the thesis. I would also like to thank Dr.A.Yethiraj (Department 

of Physics and Physical Oceanography) for his support in using polarized light 

microscopy and Dr.T.D. Warkentin (Crop Development Centre) for providing valuable 

information on pulse starches. Thanks also to CCART unit (Memorial University of 

Newfoundland) for providing access to perform DSC (Differential Scanning 

Calorimetry). I also thank my fellow labmates, Maaran and Rasanjali for their towering 

support and encouragement throughout my study. I also wish to express my gratitude to 

Agriculture and Agri-Food Canada and Saskatchewan Pulse Growers for the financial 

support throughout my program. Funding from the Department of Biochemistry and the 

School of Graduate Studies are also greatly acknowledged. Last but not least, I am deeply 

indebted to my family for their constant love and encouragement throughout my 

academic trajectory and for being an indispensable source of spiritual support.   



iv 
 

Table of contents 

 

Abstract……………………………………………………………………………….   .ii 

Acknowledgements……………………………………………………………………. iii 

List of Tables……………………………………………………………………………ix 

List of Figures………………………………………………………………………….   x 

List of Abbreviations…………………………………………………………………..  xii 

List of Appendices…………………………………………………………………….. xiv 

Chapter 1: Introduction and overview…………………………………………………    1 

Chapter 2: Literature review……………………………………………………………   6 

2.1 Starch……………………………………………………………………………….   6 

2.2 Starch biosynthesis………………………………………………………………….   8 

2.3 Granule morphology and size………………………………………………………. 10 

2.4 Molecular architecture of starch……………………………………………………  11 

2.5 Structure of amylose……………………………………………………………….....15 

       2.5.1 Location of amylose…………………………………………………………...18 

       2.5.2 Amylose inclusion complexes……………………………………………….. 21 

       2.5.3 Determination of amylose content…………………………………………… 25 

2.6 Structure of amylopectin…………………………………………………………....  27 

        2.6.1 Cluster model of amylopectin…………………………………………….......30 



v 
 

        2.6.2 Internal chains of amylopectin…………………………………………….… 32 

        2.6.3 Blocklet model of amylopectin………………………………………….……33 

        2.6.4 Analysis of APCLD……………………………………………………….…36 

        2.6.5 Starch crystallinity…………………………………………………………....37 

2.7 Minor components of starch………………………………………………………....41 

        2.7.1 Lipids…………………………………………………………………………41 

        2.7.2 Proteins……………………………………………………………………….42 

        2.7.3 Phosphorous…………………………………………………………………. 43 

2.8  Disadvantages of native starch……………………………………………………...46 

2.9  Applications of starch……………………………………………………………….47 

2.10 Starch properties……………………………………………………………………49 

         2.10.1 Granular swelling and amylose leaching…………………………………...49 

         2.10.2 Gelatinization…………………………………………………………….…51 

         2.10.3 Retrogradation……………………………………………………………...54 

         2.10.4 Pasting……………………………………………………………………...58 

         2.10.5 Acid hydrolysis……………………………………………………………. 61 

         2.10.6 Enzyme hydrolysis………………………………………………………… 64 

         2.10.7 Starch nutritional fractions……………………………………………….…68 

Chapter 3: Materials and methods……………………………………………………….73 

3.1 Materials ……………………………………………………………………………..73 



vi 
 

3.2 Methods……………………………………………………………………………...73 

       3.2.1 Starch isolation………………………………………………………………...73 

       3.2.2 Starch damage…………………………………………………………………74 

       3.2.3 Chemical composition…………………………………………………………75 

                  3.2.3.1 Moisture content……………………………………………………..75 

                  3.2.3.2 Nitrogen content……………………………………………………..76 

                  3.2.3.3 Apparent amylose content…………………………………………...77 

                  3.2.3.4 Lipid content…………………………………………………….…...77 

                                3.2.3.4.1 Surface lipid………………………………………………77 

                                3.2.3.4.2 Bound lipid……………………………………………..…78 

                                3.2.3.4.3 Crude lipid purification…………………………………...78 

       3.2.4 Granule morphology and particle size distribution……………………………79 

                     3.2.4.1 Starch granule size distribution……………………………….……79 

                     3.2.4.2 Light microscopy……………………………………………….…. 79 

                     3.2.4.3 Scanning electron microscopy………………………………….… .80 

3.2.5 Starch structure……………………………………………………………………..80 

           3.2.5.1 Determination of amylopectin chain length distribution by high-

performance    anion- exchange chromatography with pulsed amperometric 

detection………………………………………………….………………………..80 

           3.2.5.2 Attenuated total reflectance Fourier transform infrared spectroscopy  

           (ATR-FTIR)………………………………………………………………………81 



vii 
 

           3.2.5.3 Wide angle X-ray diffraction…………………………………………  82 

          3.2.5.3.1 Determination of ‘A’ and ‘B’ polymorphic composition by X-ray    

diffraction…………………………………………………………… ..83 

3.2.6 Starch properties…………………………………………………………………83 

           3.2.6.1 Amylose leaching (AML)…………………………………….………..83 

           3.2.6.2 Differential scanning calorimetry (DSC)……………………………....83 

           3.2.6.3 Rapid visco analyzer (RVA)…………………………………………...84 

           3.2.6.4 Acid hydrolysis………………………………………………………...84 

                         3.2.6.4.1 Determination of reducing value………………….….……..85 

           3.2.6.5  Invitro digestibility…………………………………………….………85 

                         3.2.6.5.1 Determination of glucose content by Megazyme glucose      

method… ……………………………………………………………86 

3.2.7 Retrogradation…………………………………………………………………..86 

           3.2.7.1 Turbidity……………………………………………………………….86 

3.2.8 Statistical analysis……………………………………………………………….87 

Chapter 4:  Results and discussion……………………………………………………88 

4.1 Chemical composition…………………………………………………………… 88 

4.2 Morphological characteristics……………………………………………………..90 

4.3 Amylopectin chain length distribution……………………………………………95 

4.4 Attenuated total reflectance Fourier transform infrared spectroscopy 

 (ATR-FTIR)…………………………………………………………………………..97 



viii 
 

4.5 Wide angle X-ray diffraction (WAXS)……………………………………………98 

4.6 Differential scanning calorimetry (DSC)………………………………………….101 

4.7 Amylose leaching (AML)………………………………………………………….104 

4.8 Pasting properties…………………………………………………………………..105 

4.9 Acid hydrolysis…………………………………………………………………….108 

4.10 Starch digestibility………………………………………………………………..111 

4.11 Turbidity…………………………………………………………………………..115 

Chapter 5……………………………………………………………………………….118 

5.1 Summary and conclusion…………………………………………………………..118 

5.2 Directions for future research……………………………………………………....119 

References……………………………………………………………………………....121 

Publications, conference presentations and awards…………………………………….157 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

 

Table 4.1       Chemical composition (%) of field pea starches ………………………..89 

Table 4.2       Amylopectin chain length distribution of field pea starches determined  

                      by high performance anion exchange chromatography with pulsed  

                       amperometric detection………………………………………………….96 

Table 4.3       FTIR intensity ratio (1048/1016 cm
-1

), relative crystallinity and  

                       B-polymorphic content of field pea starches……………………………100 

Table 4.4        Gelatinization parameters of field pea starches…………………………103 

Table 4.5        Amylose leaching and pasting properties of field pea starches…………107 

Table 4.6        Acid hydrolysis (%) of field pea starches……………………………….110 

Table 4.7        Nutritional fractions of field pea starches determined by in vitro   

hydrolysis……………………………………………………………….114 

 

 

 

 

 

 

 

 

 



x 
 

List of Figures 

 

Figure 2.1   The major metabolites and enzymes involved in the conversion of  

sucrose to starch in storage organs……………………………………………………  9 

Figure 2.2    Six supramolecular levels of the rice grain, highlighting the microscopic  

structural contribution of starch……………………………………………………… 14 

Figure 2.3    Schematic diagram of amylose…………………………………………..17 

Figure 2.4    Mechanism outlining the role of amylose in disrupting the packing of  

amylopectin double helices within the crystalline lamellae……………………………20 

Figure 2.5     Schematic representation of amylose complex with two monopalmitin  

molecules……………………………………………………………………………..  24 

Figure 2.6    Schematic diagram of amylopectin with a branch point at the  

1,6 position……………………………………………………………………………..28 

Figure 2.7    The α-(1,4) and α-(1,6) linkages between the glucosyl units present in the 

amylopectin and amylose of starch…………………………………………………….29 

Figure 2.8     Cluster model of amylopectin …………………………………………...31 

Figure 2.9     Overview of the starch granule structure………………………………...34 

Figure 2.10    From starch granules to building blocks, a schematic showing different  

structural levels of starch granules……………………………………………………..35 

Figure 2.11 Double helices arrangement of A-type and B-type crystallites in 

starch……………………………………………………………………………….…..39 



xi 
 

Figure 2.12    Proposed models for the branching patterns of waxy maize and potato  

starch……………………………………………………………………….………… 40 

Figure 2.13    A molecular model of phosphorylated starch (crystalline domain)…... 45 

Figure 2.14   A schematic representation of the processes and structures observed during  

heating and storage of aqueous suspensions of granular starch…………………..… ..57 

Figure 2.15    Typical RVA profile of rice starch…………………………….…….. ..60 

Figure 2.16    Chair to half-chair conformation of glucose molecule……………..… .63 

Figure 2.17    Action pattern of starch-degrading enzymes …………………………. 67 

Figure 2.18    Structure of resistant starch……………………………………….…....72 

Figure  4.1     Scanning electron micrograph image of CDC Golden Rosthern………92 

Figure  4.2      Bright field microscopy images of field pea starches………………….93 

Figure  4.3      Polarized light microscopy images of field pea starches………………94 

Figure  4.4      Turbidity profiles of field pea starches stored at 25
ᵒ
C………………..117 

Figure A1       Standard curve for the determination of amylose content……………159 

Figure A2       Standard curve for the determination of B polymorphic content…….160 

Figure A3       Standard curve for the determination of reducing sugar as glucose….161 

Figure A4       Standard curve for the determination of reducing sugar as maltose….162 

 

  

 

 



xii 
 

List of Abbreviations 

 

AAM                                  -        Apparent amylose content 

ADP                                    -        Adenosine diphosphate 

AFM                                   -        Atomic force microscopy 

AM                                      -        Amylose 

AMD                                   -        Arithmetic mean diameter 

AML                                   -        Amylose leaching 

AP                                       -        Amylopectin 

APCLD                               -        Amylopectin chain length distribution 

ATP                                     -       Adenosine triphosphate 

ATR-FTIR                          -        Attenuated total reflectance Fourier transform  

                                                      Infrared spectroscopy 

BV                                       -        Breakdown viscosity 

13
C CP/MAS NMR             -         Cross-polarization magic angle spinning carbon-13 

                                                        nuclear magnetic resonance 

CDC                                    -         Crop Development Centre 

𝐶𝐿̅̅̅̅                                         -         Chain length 

DMSO                                 -         Dimethyl sulphoxide 

DP                                       -         Degree of polymerisation 



xiii 
 

DSC                                     -          Differential scanning calorimetry 

FV                                       -           Final viscosity 

GOPOD                               -          Glucose oxidase/peroxidase 

HPAEC-PAD                      -           High performance anion exchange chromatography  

                                                         with pulsed amperometric detection 

HPSEC                                 -          High performance size exclusion chromatography 

LC                                        -           Long chain 

RC                                        -           Relative crystallinity 

RDS                                      -          Rapidly digestible starch 

RS                                        -           Resistant starch 

RVA                                     -           Rapid visco analyzer 

SBV                                      -           Setback viscosity 

SC                                         -           Short chain 

SDS                                       -           Slowly digestible starch 

SSA                                       -           Specific surface area 

Tc                                           -           Conclusion temperature 

To                                           -           Onset temperature 

Tp                                           -           Peak temperature 

UDP                                       -           Uridine diphosphate 

WAXS                                   -           Wide angle X-ray scattering 



xiv 
 

List of Appendices 

 

Appendix A: Standard curves……………………………………………………… 158 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 

Introduction and overview 

 

Legumes are dicotyledenous seeds of plants belonging to the family Leguminosae (Allen 

& Allen, 1981). They are the third largest flowering plant family comprising 727 genera 

and 19325 species. Legumes, referred to as the poor man’s meat play a prominent role in 

human nutrition as they are a good source of proteins, calories, minerals and vitamins 

(Deshpande, 1992). The presence of root and stem nodules containing nitrogen fixing 

bacteria is the characteristic feature of legumes. Owing to the development of chemical 

fertilizers and herbicides, there has been a drastic reduction in incorporating legumes for 

crop rotations (McCartney & Fraser, 2010). Grain legumes are cultivated in both tropical 

and temperate regions across the world (Iqbal, Khalil, Ateeq, & Khan, 2006) and they 

constitute 33% of the dietary protein needs of humans (Singh, Singh, Chung, & Nelson, 

2007). Although grain legumes have been consumed for many centuries, only some years 

back their beneficial effects were investigated using suitable approaches (Duranti, 2006). 

Legumes are classified into two types: oilseeds that include soybeans and peanuts that are 

grown for their protein and oil content and grain legumes, comprising common beans, 

lentils, chickpeas and common peas that are grown for their protein (Venter & Van 

Eyssen, 2001). Starch, fibre and dietary fibre are the main components of grain legumes 

(Guillon & Champ, 2002). There is ample evidence of the physiological effects of 

legumes in restricting various metabolic diseases such as diabetes mellitus, coronary 

artery disease and colon cancer (Tharanathan & Mahadevamma, 2003). Regular 
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consumption of legumes has been associated with the decreased risk of cardiovascular 

disease, stroke, Parkinson’s, Alzheimer’s diseases, liver ailments and cancer (Singh, 

2005). Though legumes are a good source of protein, their yield is much lower in 

comparison to cereals (Razdan & Cocking, 1981) because of the ever-increasing demand 

for cereals from human population (Siddique, Johansen, Turner, Jeuffroy, Hashem, Sakar, 

et al., 2012). Legumes are a rich source of B vitamins that comprise riboflavin, thiamin, 

niacin, pyridoxine and folic acid and they play a vital role in energy metabolism (Rebello, 

Greenway, & Finley, 2014). They are a rich source of iron and other minerals. However, 

they also contain antinutritional factors such as proteinase inhibitors, lectin, saponins, 

phytate etc. that decrease the nutritional value of food by lowering the digestibility or 

bioavailability of nutrients (Sandberg, 2002). Legumes are rich in lysine, an essential 

amino acid but are deficient in sulphur-containing aminoacids, methionine and cysteine. 

Whereas, cereal grains are deficient in lysine but possess adequate amounts of sulphur 

aminoacids (Singh & Singh, 1992). Due to the lack of knowledge regarding the 

nutritional composition, large quantities of leguminous seeds remain unexplored (Prakash 

et al., 2001). New research approaches that depend on biotechnology to improve the 

utilization of grain legumes will have positive impacts on the nutritional quality of 

legumes (Duranti & Gius, 1997).  

Pulses are the edible seeds of the plants belonging to the legume family. They include 

dried beans, dried peas, chickpeas and lentils (Curran, 2012). They are grown for many 

years and are useful in restoring soil fertility, maintaining soil quality (Ganeshamurthy, 

2009) and possess several physiological benefits (Rochfort & Panozzo, 2007). They are a 

rich source of dietary fibre, protein, carbohydrates (Campos-Vega, Loarca-Piña, & 
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Oomah, 2010), minerals and vitamins necessary for human health (Bushra, Bhanu, Kiran, 

& Pramod, 2015) and are also low in fat (Longnecker, 2000). They have several bioactive 

substances that cannot be termed as nutrients, but exert metabolic effects on humans 

(Champ, 2002). Canadian pulse production has increased from about 1 million tonne in 

the early 1990s to 5.9 million tonnes in 2015. Canada exported 6 million tonnes of pulses 

in 2015, valued nearly $4.2 billion (Pulse Canada, 2016). With approximately 15000 

pulse growers, Saskatchewan holds an important place in the province’s agricultural 

industry (Saskatchewan pulse growers, 2016). Among pulses produced worldwide, dry 

beans, peas, chick peas and lentils contribute about 46, 26, 20 and 8%, respectively. 

Canada is the world largest producer of field peas (3.4 million tonnes (MT)) followed by 

China (1.6 MT), Russia (1.4 MT), USA (7.4 kilotonnes (kT)) and India (600 kT) (http://

faostat.fao.org/). 

Increase in consumption of pulses throughout the world is attributed to their high 

nutritional value, being low in calories and glycaemic index (Rizkalla, Bellisle, & Slama, 

2002). Pulses also help in controlling cholesterol and triglyceride levels (Asif, Rooney, 

Ali, & Riaz, 2013) and thus intake of pulses has been associated with reduced risk for 

cardiovascular diseases, diabetes, bone health and weight management (Anderson & 

Major, 2002). Pulse intake has been associated with lowering serum cholesterol and 

increasing saturation levels of cholesterol in the bile (Singh & Basu, 2012).  

Starch is a versatile raw material having a variety of applications and the increasing 

demand of starches has resulted in the interest in developing new sources of this 

polysaccharide in food industry (Betancur, Ancona, Guerrero, Camelo Matos, & Ortiz, 
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2001). Legume starch accounts for 22-45% of the seed and is the main storage 

component. The property of legume starches being resistant towards hydrolysis is 

considered important by nutritionists because they exhibit a lower glycaemic index than 

cereals (Hoover & Sosulski, 1991).Pulses that comprise peas, lentils, beans and chickpeas 

constitute 18.5-30% protein and 14.4-26.3% fiber on a dry weight basis (Toews & Wang, 

2013). Because of the high cost of isolation, high retrogradation rates and less 

information available on the amylose and amylopectin structure, pulse starches are not 

widely used in food industries (Chibbar, Ambigaipalan, & Hoover, 2010). The objectives 

of this study are to isolate starch from eight newly released cultivars of field peas (Pisum 

sativum) grown at Rosthern and Meathpark in Saskatchewan, Canada and to determine 

the composition, molecular structure, gelatinization parameters, stability towards heat and 

shear, kinetics of acid hydrolysis, starch nutritional fractions, and the rate and extent of 

retrogradation.  
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Chapter 2 

Literature review 

2.1 Starch 

Starch is the main carbohydrate reserve in plants found in photosynthetic and 

nonphotosynthetic tissues. Starch that is present in the chloroplasts of leaves is referred to 

as “transitory starch” because of the diurnal rise and fall of its levels in these tissues. 

Transitory and reserve starch can be classified based on their physical properties such as 

size, shape and composition. Transitory starch granules are smaller whereas reserve 

granules have species-specific shapes. Transitory starch is made entirely of the branched 

amylopectin but reserve starch has significant amounts of amylose in addition to 

amylopectin (Slattery, Kavakli, & Okita, 2000). 

Starch constitutes two-thirds of the carbohydrate caloric intake of most humans (Whistler 

& Daniel, 1978). Starch is an interesting polymer in food industry (Ayoub, Ohtani, & 

Sugiyama, 2006). It is biodegradable, edible and non-reliable on fossil sources (García, 

Famá, Dufresne, Aranguren, & Goyanes, 2009) and accounts for approximately 70% of 

the dry weight of cereal seeds (Hannah & James, 2008). Cereal grains, tuber and legume 

seeds contain starch, but the extent of digestibility depends on the plant type, 

physicochemical properties of starch and processing/storage conditions (Liu, Donner, 

Yin, Huang, & Fan, 2006). 
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Starch is an important functional food biopolymer contributing to the characteristic 

properties of food products made from cereals, rice, potato and maize and is also added as 

a functional ingredient to several products such as sauces, puddings, confectionery, etc 

(Hermansson & Svegmark, 1996). 
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2.2 Starch biosynthesis: 

Biosynthesis of starch involves several steps and is a complex process. Starch is 

synthesized in leaves from photosynthetically fixed carbon during the day and mobilized 

at night. Though starch is synthesized transiently in organs such as meristems and root 

cap cells, its major site of accumulation is in storage organs (Martin & Smith, 1995). 

Sucrose that is derived from photosynthesis is the initial point of alpha-glucan deposition 

and it is converted to uridine diphosphate glucose and fructose by sucrose synthase in the 

cytosol.  The UDP-glucose is then converted to glucose-1-phosphate by UDP-glucose 

pyrophosphorylase in the presence of pyrophosphate which is subsequently converted to 

glucose-6-phosphate by phosphoglucomutase. The glucose-6-phosphate is then 

translocated across the amyloplast membrane and subsequently converted to glucose-1-

phosphate by phosphoglucomutase. The resulting glucose-1-phosphate may be either 

translocated directly into the amyloplast or converted to and then translocated as 

adenosine diphosphate glucose that is generated as a consequence of ADP-glucose 

pyrophosphorylase activity in the presence of ATP. ADP-glucose provides glucose 

residues for the biosynthesis of amylose and amylopectin. Starch synthases are classified 

as “granule bound” and “soluble” and these add glucose units to the non-reducing ends of 

amylose and amylopectin. Granule bound starch synthase can extend malto-

oligosaccharides to form amylose and the soluble starch synthase is responsible for the 

amylopectin synthesis (Tester, Karkalas, & Qi, 2004). 
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Figure 2.1: The major metabolites and enzymes involved in the conversion of sucrose to 

starch in storage organs. Enzymes are: a) Sucrose synthase, b) UDPglucose 

pyrophosphorylase, c) ADPglucose pyrophosphorylase, d) Phosphoglucomutase, e) starch 

synthase, f) starch synthase and starch branching enzyme, g) ADP glucose transporter, h) 

hexose phosphate transporter, PPi – inorganic pyrophosphate (Source: Smith, Denyer, & 

Martin, 1997, reproduced with permission from Annual Reviews). 
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2.3 Granule morphology and size 

The size of the starch granules generally range from 1 to 110 μm (Singh, Singh, Kaur, 

Sodhi, & Gill, 2003) with varied shapes (spherical, lenticular, polyhedral and irregular) 

and size distributions (unimodal and bimodal) (Dhital, Shrestha, & Gidley, 2010). 

Majority of the tuber and root starches have simple granules but cassava and taro starches 

contain a mixture of simple and compound granules (Hoover, 2001). The width of the 

starch granules of wheat, rice, barley and potato starch were reported to be 22, 8, 8 and 38 

μm, respectively (Palmer, 1972 ;  Svihus, Uhlen, & Harstad, 2005). The size of the corn 

starch granules varied from 3.6 to 14.3 μm, whereas the potato starch granules were 

flattened ellipsoids with size in the range of 14.3 to 53.6 μm and the size of tapioca starch 

granules was between 7.1 and 25 μm (Mishra & Rai, 2006). Pulse starches are oval, 

round, spherical, elliptical or irregular with width in the range of 5 – 55  and 5 – 70 μm in 

length (Chibbar, Ambigaipalan, & Hoover, 2010).  
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2.4 Molecular architecture of starch: 

The structure of starch in a grain can be categorized into six levels that range in scale 

from nanometer to millimeter. 

Level 1: Individual branches 

Individual linear branches is the lowest level wherein the α-D-glucopyranosyl units are 

linked by α(1→4) glycosidic linkages and the branches comprise two categories: 

amylopectin, whose average degree of polymerization (DP) is approximately 17-25 and 

amylose, where it is 10
3
-10

4
 (Gilbert, Wu, Sullivan, Sumarriva, Ersch, & Hasjim, 2013). 

Level 2: Whole starch molecules 

This is the structure of the branched molecules. Amylopectin is responsible for the 

architecture of starch granules and it influences various physicochemical properties. It is a 

highly branched structure that is composed of A-chains, which do not carry any other 

chains, B-chains that carry other chains through 1→6 branches and C-chain that has the 

reducing end (Laohaphatanaleart, Piyachomkwan, Sriroth, & Bertoft, 2010). 

Level 3: Lamellar structure 

The crystallinity of the granule is attributed to the double helices formed by amylopectin 

branches and amylose is present in the amorphous layers of growth rings. The crystalline 

lamella is composed of amylopectin double helices that are packed in a parallel fashion. 

The amylopectin branch points are present in the amorphous zones (Jacobs & Delcour, 

1998). The blocklet level of organization describes the organization of amylopectin 
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lamellae into spherical blocklets that has diameters ranging from 20 to 500 nm (Baker, 

Miles, & Helbert, 2001). The blocklets are composed of partially crystalline amylopectin 

with branches of amylopectin molecules that form the crystalline part of the granule and 

are found embedded within the amorphous amylose matrix (Ridout, Parker, Hedley, 

Bogracheva, & Morris, 2004). AFM (Atomic force microscopy) study bears out the 

observations of the ‘blocklet’ structure of starch (Gallant, Bouchet, & Baldwin, 1997). 

The blocklet structure is similar in shape but varies with plant size and is continuous 

throughout the granule. The size of the blocklets may not correspond to their granular 

sizes and the thickness of growth (Tang, Mitsunaga, & Kawamura, 2006). An important 

benefit of using AFM is that minimum starch preparation is sufficient to obtain 

information on the internal structure of starch granules (Parker, Kirby, & Morris, 2008).  

Level 4: Granules 

The hierarchical structure of granules can be observed by light and electron microscopy. 

Several concentric layers of growth rings extend from the hilum towards the surface. The 

growth rings, which are 120-400 nm in thickness, contain alternating crystalline and 

amorphous regions of higher and lower density. The higher density regions possess a 

lamellar structure of alternating crystalline and amorphous layers whereas the amorphous 

layers has the amylopectin branching points and a disordered conformation of amylose 

and amylopectin molecules (Copeland, Blazek, Salman, & Tang, 2009). 
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Level 5: Endosperm 

The endosperm is the largest organ in the seed and is covered by a single layer of cells 

called the aleurone layer (Emes, Bowsher, Hedley, Burrell, Scrase‐Field, & Tetlow, 

2003). In the seed endosperm, starch is stored as an energy reserve (James, Denyer, & 

Myers, 2003). 

Level 6: Whole grain 

This is the final level and is approximately 1 mm in size. It comprises the highest-level 

structures and the function of granular structure is that it serves as an energy-storage 

medium for the germinating plant. It also causes the slow release of glucose upon external 

stimuli. Though amylopectin is sufficient for the starch granule formation, amylose also 

plays a significant role in the primary stages of granule crystallization (Dona, Pages, 

Gilbert, & Kuchel, 2010). 
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Figure 2.2: Six supramolecular levels of the rice grain, highlighting the microscopic structural contribution of starch (Dona, 

Pages, Gilbert, & Kuchel., 2010, Copyright Elsevier, reproduced with permission). 
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2.5 Structure of amylose 

Starch is composed of amylose and amylopectin. Amylose is the minor component of the 

two consisting of α-(1→4) linked D-glucopyranosyl residues although a slight degree of 

branching in various starch sources has been reported (Hizukuri, Takeda, Yasuda, & 

Suzuki, 1981). The amylose content in pulse starches range from 24-88%. Because of the 

differences in growth location, physiological state of seed, cultivar differences and 

various methodologies used for the determination, it becomes difficult to compare the 

amylose content among and between the pulse starches (Chibbar, Ambigaipalan, & 

Hoover, 2010). The molecular weight of amylose ranges approximately from 1 x 10
5
 – 1 

x 10
6
 and has a degree of polymerization of 324-4920 containing 9-20 branch points 

(Tester, Karkalas, & Qi, 2004). Amylose is formed of anhydroglucose units in the 
4
C1 

chair conformation and six monosaccharide units are found in one turn of a left-handed 

helix. The hydroxyl groups are located towards the exterior of the helices that allows 

interaction with polar solutes and the interior of the amylose helices is hydrophobic 

(Bergthaller, Hollmann, & Johannis, 2007). Amylose exists as a flexible random coil 

containing left-handed helical segments that are more pronounced at low hydration levels 

(López, de Vries, & Marrink, 2012). Amylose molecules have a tendency to approach and 

bond together due to the presence of hydroxyl groups and its linear structure (Kang, Zuo, 

Hilliou, Ashokkumar, & Hemar, 2016). On the basis of X-ray diffraction studies, it was 

proposed that the amylose is organized as left-handed helices having outer diameters of 

13Å and a pitch of 8Å (Yu, Houtman, & Atalla, 1996). Amylose content can be 

quantitatively determined by the formation of a helical complex between amylose and 
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iodine that results in the formation of a typical blue colour. Polyiodide ions such as  𝐼3
−  

and 𝐼5
− interact with amylose forming single left handed V- type helices. Also the 

hydrocarbon portion of monoglycerides and fatty acids interact with amylose to form a V- 

helix complex (Hoover, 2001). Light-absorption spectroscopy can be used to monitor the 

blue colour of amylose-iodine complex. Hence, this tool is used in combination with 

circular dichroism to study the complex formation (Saenger, 1984). The conformation of 

amylose in solution has been investigated for a long time. Three molecular models : a 

random coil with no helical structure, an interrupted helix with alternate coil portions and 

helical sequences and a continuously bending helix have been proposed (Norisuye, 1996). 

For double helix formation in a pure oligosaccharide solution, a minimum chain length of 

DP 10 is required (Pérez & Bertoft, 2010).  
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Figure 2.3: Schematic diagram of amylose 
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2.5.1 Location of amylose: 

The location of amylose in native starch granule is still under discussion but it is thought 

to be present primarily in the amorphous, less-crystalline regions (Jobling, 2004). 

Amylose was believed to be present in the amorphous portion of the granule which was 

supported by the results indicating the presence of blue-staining rings when starch 

granules of low-amylose potato tubers were stained with iodine (Denyer, Johnson, 

Zeeman, & Smith, 2001). Based on the small-angle X-ray scattering techniques, it was 

reported that amylose is primarily concentrated in the amorphous growth rings and the 

reason for decrease in crystallinity is attributed to the interaction of amylose and 

amylopectin in the amorphous regions (Saibene & Seetharaman, 2010). Considering 

starch granule properties such as amylose leaching, amylose-iodine complexation, DMSO 

solubilisation and V-complex formation, amylose is proposed of being separated from 

amylopectin in the case of normal maize starch and being interspersed with amylopectin 

in potato starch (Jane, 2006).  

Studies on maize, pea and barley starch granules indicated that amylose molecules disrupt 

the structural order of amylopectin clusters (Atkin, Cheng, Abeysekera, & Robards, 

1999). Jane and Shen (1993) proposed that amylose is more concentrated in the periphery 

of the potato starch granule. However, Tatge, Marshall, Martin, Edwards, and Smith 

(1999) reported the presence of amylose in the central region of the potato starch granule. 

The presence of amylose in the amorphous and/or crystalline regions varies with the 

botanical origin of starch. For instance, amylose is concentrated in the amorphous region 

in wheat starch whereas in potato starch, it is found partly co-crystallized with 
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amylopectin (Oates, 1997). Cross-linking reactions were performed on intact native starch 

granules to investigate whether amylose molecules are interspersed with amylopectin or 

are found in the form of bundles (Jane, Ao, Duvick, Wiklund, Yoo, Wong et al., 2003). 

Experiments carried out with cross-linking agents on potato and corn starch indicated that 

individual amylose molecules are interspersed among the amylopectin molecules and not 

grouped together (Wang, Blazek, Gilbert, & Copeland, 2012).  
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Figure 2.4: Mechanism outlining the role of amylose in disrupting the packing of 

amylopectin double helices within the crystalline lamellae: (a) Amylopectin structure 

with no amylose present (b) The co-crystallization of amylose with amylopectin pulls a 

number of amylopectin chains out of register (Jenkins & Donald, 1995, Copyright 

Elsevier, reproduced with permission). 
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2.5.2 Amylose inclusion complexes: 

The ability of the linear amylose fraction to form inclusion complexes with a number of 

ligands is one of the characteristic features of starch. The ligands pass into the helical 

cavities of the amylose molecules forming molecular inclusion complexes. Amylose 

undergoes a coil to helix transformation in the presence of ligand molecules that enhances 

the helical aggregation to partially crystalline V structures (Szezodrak & Pomeranz, 

1992). This complex decreases the water solubility and susceptibility of starches to 

enzyme digestion (Kaur & Singh, 2000) and also modifies the rheology of starch (Singh, 

Singh, & Saxena, 2002). The longer the lipid chain, longer the amylose chain has to be 

for lipid complexation. Longer lipid chain lengths tend to be more hydrophobic and hence 

less soluble in water (Putseys, Derde, Lamberts, Goesaert, & Delcour, 2009). Three 

polymorphs of amylose, A, B and V forms exist and the V-form requires a complexing 

ligand. No hydrogen bonding exists between consecutive turns of the helices in A and B 

forms whereas in the V-form, amylose forms a helix with a large cavity in which various 

ligands are present (Pethrick & Song, 2013). The V-forms have a pitch of about 8Å per 

turn, whereas the A and B forms have a pitch of about 21Å and is characterized by the 

absence of internal cavity (Snape, Morrison, Maroto-Valer, Karkalas, & Pethrick, 1998). 

Amylose complexes with polar and nonpolar compounds (Jovanovich & Añón, 1999). 

There are some forces holding the helix conformation. Intramolecular bonds occur 

between the helix turns and intermolecular forces stabilize the interactions between 

amylose and its ligand. The formation of hydrophobic interactions is favoured as the 
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amylose helix is hydrophilic on the outside and hydrophobic inside (Putseys, Lamberts, & 

Delcour, 2010).  

The formation of amylose-lipid complex depends on several factors such as degree of 

polymerization, pH of the solution, complexation temperature and the complexed lipid 

structure (Zabar, Lesmes, Katz, Shimoni, & Bianco-Peled, 2009). For starches with 

normal amylose content, phase transition that occurs during gelatinization is observed as 

a single endotherm at around 55-75
ᵒ
C whereas amylose-rich endotherms exhibit a broad 

endotherm between 80 and 130
ᵒ
C with a second reversible endothermic transition noticed 

at 100
ᵒ
C for lipid-containing cereal starches that is attributed to the melting of amylose-

lipid complex (Le Bail, Bizot, Ollivon, Keller, Bourgaux, & Buléon, 1999).  

Various methods have been used to study the starch-lipid complexes. For instance, X-ray 

diffraction is used to measure crystallinity and DSC to observe the melting-transition 

characteristics and stability of the complexes (De Pilli, Derossi, Talja, Jouppila, & 

Severini, 2011). The lipid-amylose complexation is a modification occurring during 

extrusion cooking as it influences the paste viscosity and extrudate texture (De Pilli, 

Legrand, Derossi, & Severini, 2015). DSC is a useful method in gaining insight into the 

properties of starch. Starch-lipid interaction influences gelatinization and restricts 

recrystallization of gels (Cieśla & Eliasson, 2007). For example, in wheat flour, starch is 

one of the main constituents and they may interact with water, lipids, sugars and 

hydrophilic macromolecules which have an effect on its properties (Jovanovich & Añón, 

1999). 
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Starch and lipids play a vital role in functional interactions in food systems (Tang & 

Copeland, 2007). Starch-lipid complexation impacts the formation of resistant starch, 

starch pasting and gel texture behaviour. For example, lipids complexing with amylose on 

the granule surface restricts swelling (Zhou, Robards, Helliwell, & Blanchard, 2007). 

Polar lipids play an important role in influencing the starch behaviour towards the 

development of viscous and gelling properties (Godet, Bouchet, Colonna, Gallant, & 

Buleon, 1996). The amylose-lipid complexes have several important applications such as 

emulsifiers in delaying bread staling, in nanotechnology for helical wrapping of carbon 

nanotubes and in biotechnology for artificial chaperoning of proteins (Gelders, 

Vanderstukken, Goesaert, & Delcour, 2004).  
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Figure 2.5: Schematic representation of amylose complex with two monopalmitin 

molecules (Copeland et al., 2009, Copyright Elsevier, reproduced with permission). 
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2.5.3 Determination of amylose content: 

Amylose content determination is important in starch characterization because it 

influences the functional properties of starch in food industry and other applications 

(Knutson, 2000). Near-infrared spectroscopy is a simple method for determining the 

amylose content in starch because it is rapid and non-destructive. In addition to that, it 

requires minimal or no sample preparation (Fertig, Podczeck, Jee, & Smith, 2004). Size 

exclusion chromatography has also been used in which the molecules are separated 

according to their hydrodynamic radius (Gérard, Barron, Colonna, & Planchot, 2001). 

The amylose content of starches can also be determined by a calorimetric procedure that 

involves the formation and melting of the lysolecithin complex (Kugimiya & Donovan, 

1981). 

The blue complex of amylose and iodine has been the subject of investigation since its 

discovery (Yamagishi, Imamura, & Fujimoto, 1972) and the physicochemical properties 

are studied (Takahashi & Ono, 1972). Triiodide ion required for the initiation of amylose-

iodine complex formation forms spontaneously when iodine is dissolved in DMSO.  

Starch, when dissolved in DMSO containing iodine and diluting with water forms the 

amylose-iodine complex whose absorbance is measured at 600 nm.  This forms the basis 

for the estimation of amylose content (Knutson & Grove, 1994). Amylose forms highly 

coloured iodine complexes because of the long helices it can form whereas the ability of 

the amylopectin to form complexes and bind iodine is weaker because of its shorter chain 

length (Suortti, Gorenstein, & Roger, 1998).  
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Though a number of techniques are used to determine the amylose content of starch such 

as iodine calorimetry, potentiometric titration (Duan, Donner, Liu, Smith, & Ravenelle, 

2012), amperometry (Gibson, Solah, & McCleary, 1997), size exclusion chromatography 

and concanavalin A precipitation, the results can vary noticeably because each technique 

measures a different property that is converted to a purported amylose content (Vilaplana, 

Hasjim, & Gilbert, 2012) and there are certain drawbacks associated with each method. 

NIR procedure requires standardisation for each material, HPSEC uses expensive 

columns and DSC is applicable only for the analysis of crystal structure in starch but it 

can be affected by heat treatment. Though iodine calorimetry is widely used in the 

amylose content determination, the accuracy is limited because of interference of amylose 

with lipids (Wang, Yu, Xu, Yang, Jin, & Kim, 2011).The enzymatic method is very 

specific, but may lead to underestimation in materials that contain starch resistant to 

gelatinisation or enzyme hydrolysis (Stawski, 2008).  
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2.6 Structure of amylopectin: 

Amylopectin is an extensively branched component in comparison with amylose. It is 

composed of α-D-glucopyranosyl residues linked by (1→4) linkages and 5-6% of (1→6) 

bonds at the branch points (Hizukuri, 1985) and is the major component of starch 

contributing to the architecture of the starch granules (Bertoft, 2007b).  It has a molecular 

weight of about 10
8
 and a degree of polymerization (DP) that is more than one million. In 

pulses, the average chain length and the proportion of chains with DP 6-12, 13-24, 25-36 

and 37-50 range from 17-27, 16-27, 28-60, 14-56 and 4.5-19.4, respectively (Chibbar, 

Ambigaipalan, & Hoover, 2010). The organization of the unit chains in amylopectin is 

important in gaining insight into the structure and architecture of the macromolecule. 

Currently, two major structural models exist: cluster model and the building block 

backbone model. The primary difference between the backbone and traditional models is 

the different visualization of the organization of chains within amylopectin (Chauhan & 

Seetharaman, 2013).   The cluster model proposes that the short unit chains with less than 

approximately 36 glycosyl units are organized into clusters and the long chains 

interconnect them. However, the building block backbone model proposes that the 

clusters are built up from still smaller structural units referred to as building blocks 

(Vamadevan & Bertoft, 2015) and the long chains (>35 glucosyl units) form the backbone 

and branched building blocks that are smaller than clusters and are outspread along the 

backbone forming the structural unit (Peymanpour, Marcone, Ragaee, Tetlow, Lane, 

Seetharaman et al., 2016). 
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Figure 2.6: Schematic diagram of amylopectin  
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Figure 2.7: The α-(1,4) and α-(1,6) linkages between the glucosyl units present in the 

amylopectin and amylose of starch (Tharanathan, R., & Mahadevamma, S.,  2003, 

Copyright Elsevier, reproduced with permission). 
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2.6.1 Cluster model of amylopectin 

One of the most widely accepted models of amylopectin was that proposed by Hizukuri in 

1985. The cluster model can be described in the following ways: 1. Formation of 

crystalline double helices as physical clusters from exterior linear region of amylopectin, 

2. Distribution of 1,6 branch points with periodic variation in branch point density 

(Thompson, 2000). Based on the pattern of substitution and chain lengths, the 

amylopectin branches may be classified into A, B and C chains (Hizukuri, 1985). A-

chains are unsubstituted. They are linked to B-chains and do not carry any other chains. 

B-chains are substituted by other chains and are further classified as B1-B4 based on the 

number of clusters they span and the C-chain carries the reducing end group of the 

molecule (Copeland, Blazek, Salman, & Tang, 2009). The external segments of the 

clusters within the starch granules form double helices which crystallize into A or B 

polymorphs. B-type starches have longer average chain lengths and a higher proportion of 

long chains in comparison to A-type starches. The crystals form 5-6 nm thick lamellae 

that alternate with amorphous lamellae of 3-4 nm thickness (Bertoft, 2007b). Short chains 

within the starch granules form clusters and the external segments of chains form double 

helices that account for the crystalline structure. Short and clustered chains were defined 

A and B1 chains and the clusters are interconnected through long chains: B2 chains 

participate in the interlinkage of two clusters and B3 chains form three clusters etc. 

(Laohaphatanaleart, Piyachomkwan, Sriroth, & Bertoft, 2010). 
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Figure 2.8: Cluster model of amylopectin indicating A, B1-B3 chains, ɸ is the reducing 

chain-end (Hizukuri, 1986, Copyright Elsevier, reproduced with permission)  
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2.6.2 Internal unit chains of amylopectin 

The amylopectin chains are classified as external and internal. External chains build up 

the crystalline lamellae whereas the internal chains are present among the clusters of 

branches in the amorphous lamellae. The entire A-chains are external but the B-chains 

consist of an external and an internal segment (Bertoft, Piyachomkwan, Chatakanonda, & 

Sriroth, 2008). The exoacting enzymes, phosphorylase and β-amylase were used to 

remove the external chains of the cluster. The resulting limit dextrins (named ɸ,β-limit 

dextrin) had only the internal structure (Bertoft, 2007a). The internal chains are divided 

into short and long chains. Short B-chains contained two subgroups: the major group at 

DP 8-25 and a minor ‘fingerprint’, Bfp- group at DP 3-7 (Bertoft, Koch, & Åman, 2012). 

On the basis of the internal unit chain profiles, amylopectin is classified into four types: 

Type 1 amylopectin contains only A-allomorph starches with little B2 chains. Type 2 

amylopectin consists of more BL-chains. Type 3 amylopectin contains more of the long 

B3 chains but less Bfp chains. Type 4 amylopectin contains a large number of B3 chains 

and low content of BS chains (Bertoft, Koch, & Åman, 2012). 
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2.6.3 Blocklet model of amylopectin 

Before 1960, it was hypothesized that starch granules consist of crystalline units 

embedded in amorphous material (Gallant, Bouchet, & Baldwin, 1997). Later, an 

additional level of structural organization named blocklets was put forward by Gallant 

and coworkers. The blocklets are envisioned as parcels of crystals distributed within the 

growth rings (Ridout, Parker, Hedley, Bogracheva, & Morris, 2003). The blocklet 

concept describes the organization of amylopectin lamellae into spherical blocklets with 

diameters ranging from 20 to 500 nm, varying with the botanical source of starch (Baker, 

Miles, & Helbert, 2001). Based on electron microscopy studies, it has been proposed that 

starch granules contain structures referred as ‘blocklets’ and they are proposed to contain 

packets of partially crystalline amylopectin. Atomic force microscopy has been used in 

the observation of blocklet model as it provides the possibility of imaging under more 

natural conditions i.e. it does not require treatment with acid or enzyme to cause contrast 

in the images (Morris, 2004). The blocklet structure is similar in shape but varies with the 

plant size.  The blocklet is continuous throughout the granule. Some defects may occur in 

the amorphous rings during the blocklet production. An interconnecting matrix is present 

surrounding the group of blocklets and the growth rings and amorphous rings are not 

always continuous structures  (Tang, Mitsunaga, & Kawamura, 2006).  
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Figure 2.9: Overview of the starch granule structure: a) The lowest level of starch 

granule organization indicates the alternate crystalline and semi-crystalline shells, b) The 

blocklet structure is shown, c) One blocklet is shown to contain several amorphous 

crystalline lamellae (Adapted from Gallant et al., 1997). 

a b 
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Figure 2.10 : From starch granules to building blocks, a schematic showing different 

structural levels of starch granules (a) The granule containing alternate regions with a 

hilum region in the middle, (b) & (c) The arrangement of the semicrystalline rings 

according to the cluster and building block backbone structure of amylopectin 

(Vamadevan & Bertoft, 2015, reproduced with permission from John Wiley and  Sons).  
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2.6.4 Analysis of APCLD 

Chain-length distribution is one of the key parameters in describing the molecular 

structure of amylopectin (Bello-Perez, Paredes-Lopez, Roger, & Colonna, 1996) and size 

exclusion chromatography was used to estimate the chain length which exhibited bimodal 

distribution: F1 (long B chain) and F2 (short B and A chains) and a correlation was found 

between the ratio of F2/F1 and weight-average chain length. But SEC could not achieve 

the separation of individual chains and so high-performance liquid chromatography on an 

NH2-bonded silica column with a refractive index detector was used to separate chains up 

to DP ~ 26. As the major portion of chains is distributed up to DP ~ 100, this technique 

was replaced by high performance anion exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD) (Hanashiro, Abe, & Hizukuri, 1996). HPAEC-

PAD provides information on the amount of the individual unit glucan chains and 

separation of individual maltosaccharides with DP up to 80 with high resolution could be 

achieved (Koch, Andersson, & Åman, 1998). The chain-length distributions are divided 

as follows: A-chains with DP 6-12, B1 chains having DP 13-24, B2 chains with DP 25-36 

and B3 chains with DP>37. A-type starches possess amylopectin of more A-chains and 

B-type starches have fewer A-chains (Jane, Wong, & McPherson, 1997). C-type starches 

possess amylopectins with both long and short branch chain lengths (McPherson & Jane, 

1999). HPAEC-PAD has been used for the analysis of amylopectin chain length 

distribution (Nagamine & Komae, 1996). The amylopectin chain length distribution 

(APCLD) is an important factor influencing starch gelatinization properties (Noda, 

Takahata, Sato, Suda, Morishita, Ishiguro et al., 1998).  
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 2.6.5 Starch crystallinity 

Native granular starch is semi-crystalline and can possess different crystalline structures 

with packed double helices (Rindlava, Hulleman, & Gatenholma, 1997). Investigation of 

starch crystallinity requires the presence of water as dry starch exhibit a completely 

amorphous X-ray pattern whereas the crystallinity of B-type starches varies on the basis 

of water contents (Myllärinen, Buleon, Lahtinen, & Forssell, 2002). 

Wide angle X-ray scattering (WAXS) is used in determining the crystal structure and 

regular molecular arrangements in native and processed starch (Frost, Kaminski, Kirwan, 

Lascaris, & Shanks, 2009). Based on the botanical origin and composition, starch 

granules exhibit three types of X-ray diffraction patterns. Cereal starches exhibit an ‘A’ 

type diffraction pattern whereas the tuber, root, high-amylose and retrograded starches 

exhibit a typical ‘B’ type X-ay pattern with broad and weak peaks and two main 

reflections at 5.5 and 17
ᵒ 
2θ angles. The ‘C’ type diffraction pattern which is the 

characteristic of most legume starches is believed to be a superposition of ‘A’ and ‘B’ 

patterns respectively (Hoover, 2001). The ‘A’ and ‘B’ types of starch crystals exhibit 

differences in the geometry of the unit cell with variations in the bound water attached to 

the double helices (8 and 36 water molecules, respectively) (Genkina, Wikman, Bertoft, 

& Yuryev, 2007). Another polymorph found is the V-type which arises from single 

amylose helices that are complexed with lipids (Lopez‐Rubio, Flanagan, Gilbert, & 

Gidley, 2008). 
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The X-ray diffraction patterns are useful in differentiating various native starches and in 

predicting the changes in crystallinity brought about physical or chemical treatments 

(Singh, Ali, Somashekar, & Mukherjee, 2006). The climatic conditions during plant 

growth and genetic control are also important factors influencing the crystalline nature of 

starch (Buléon, Colonna, Planchot, & Ball, 1998). Factors influencing the differences in 

relative crystallinity among starches are crystallite size, orientation of double helices 

within the crystallites, average chain length of amylopectin and the mole percentage of 

short chain fraction of amylopectin (Gunaratne & Hoover, 2002). In pulse starches, the 

proportion of B-unit cells range from 26 to 92.2% and the crystallinity ranges from 17 to 

34%. Because of the differences in moisture content of the starches and the methodology 

used in calculating crystallinity, it is difficult to compare the crystallinity of various pulse 

starches (Chibbar, Ambigaipalan, & Hoover, 2010). 
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Figure 2.11: Double helices arrangement of A-type and B-type crystallites in starch (Wu 

and Sarko, 1978, Copyright Elsevier, reproduced with permission) 
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Figure 2.12: Proposed models for the branching patterns of a) waxy maize starch which 

displays the A-type X-ray pattern and b) potato starch, which displays the B-type X-ray 

pattern. ‘A’ and ‘C’ refers to the amorphous and crystalline regions (Jane, Wong and 

McPherson, 1997, Copyright Elsevier, reproduced with permission). 
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2.7 Minor components of starch 

2.7.1 Lipids 

Starch and lipids are important components that play a vital role in the functional 

interactions in food systems (Tang & Copeland, 2007). The presence of starch-lipid 

complexes influence the digestion by reducing the contact between enzyme and substrate 

and the extent of swelling is less because of increasing hydrophobicity (Svihus, Uhlen, & 

Harstad, 2005). The amylose-lipid complex forms a coil to helix transition and the lipids 

pass into the helical cavities resulting in changes in the rheology of starch (Singh, Singh, 

& Saxena, 2002). It has been shown that the removal of lipids increases resistant starch 

content (Zhou, Robards, Helliwell, & Blanchard, 2007). Among food starches, non-waxy 

cereal starches are unusual because they contain significant amounts of monoacyl lipids 

(Morrison, Law, & Snape, 1993). 

Cereal starches such as wheat, barley, rice, maize contain more lipids (0.2 – 0.8%, w/w) 

than tuber (0.05%), root (0.1%) and legume (less than 0.6%) starches (Hoover & Manuel, 

1996; Gunaratne & Hoover, 2002; Debet & Gidley, 2006).  Starch and lipids are the 

important constituents of foods that play vital roles in caloric density, texture, and flavour 

of foods (Ai, Hasjim, & Jane, 2013). The amount of lipids present in all normal-amylose 

cereal starches is proportional to the amylose content (Nebesny, Rosicka, & Tkaczyk, 

2002). Lipids or surfactants are used in starch-containing foods as modifiers (Cui & 

Oates, 1999). 



42 
 

Integral lipids in cereal starches are in the form of lysophospholipids and free fatty acids 

and surface lipids comprise triglycerides, glycolipids, phospholipids and free fatty acids 

(Tester, Karkalas, & Qi, 2004). The glycolipids present are digalactoside diglyceride and 

monogalactosyl diglyceride and the major phospholipids include phosphatidyl choline, N-

acyl phosphatidyl ethanolamine and N-acyl lysophosphatidyl ethanolamine (Morrison, 

1977). Lipids obtained from field peas constitute 2.9% of the seed weight and contain 

43.2% neutral lipids, 3.2% glycolipids and 53.6% phospholipids (Hoover, Cloutier, 

Dalton, & Sosulski, 1988). 

Starch-lipid interactions have been studied by various methods such as iodine absorption, 

enzymatic analysis, X-ray diffraction, differential scanning calorimetry etc. (Eliasson & 

Kim, 1995). Starch-lipid complexes have several applications in food industry. It is used 

to decrease stickiness of starchy foods, enhance freeze-thaw stability, to delay bread 

staling and are also used as crumb softeners in breads (Copeland, Blazek, Salman, & 

Tang, 2009). 

2.7.2 Proteins 

Starch accounts for approximately 0.3% starch granule-associated proteins in cereals and 

less than 0.1% in potato starch (Xian-Zhong & Hamaker, 2002). Starch granules have a 

protein content of 3g or less/kg and the proportion increases towards the surface of the 

granule. The size of a large amount of surface proteins range from 5-60 kDa, whereas 

proteins present in the interior range from 60-150 kDa (Svihus, Uhlen, & Harstad, 2005). 

Proteins that are associated with starch granules are present on the surfaces (that can be 
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readily extracted at temperatures below the gelatinization temperature) or in the form of 

integral proteins (that are extractable near or above the gelatinization temperature) (Ellis, 

Cochrane, Dale, Duffus, Lynn, Morrison et al., 1998). 

The maize granule-associated proteins comprise two classes: the surface-located zeins 

that can be removed by proteases and the granule-intrinsic proteins that are resistant to 

protease digestion (Xian-Zhong & Hamaker, 2002). In the case of wheat, softness and 

hardness of the grain are associated with the presence or absence of a protein called 

friabilin on the surface. Higher levels of friabilin are present in the starch granules of soft 

wheats in comparison to hard ones (Darlington, Tecsi, Harris, Griggs, Cantrell, & 

Shewry, 2000). In pulses, the major proteins present are globulins and albumins. The 

globulins comprise two major proteins characterized by their sedimentation coefficients 

(7S and 11S). The 7S and 11S globulins in pea and fababean refer to vicilin and legumin 

respectively (Gueguen, 1983). Other protein types present in legumes include various 

enzymes, protease inhibitors and lutins that are referred to as antinutritional compounds 

(Roy, Boye, & Simpson, 2010). Some minor proteins such as prolamins and glutelins are 

also found. Pulse proteins are rich in lysine, leucine, aspartic acid, glutamic acid and 

arginine but lack methionine, cysteine and tryptophan (Boye, Zare, & Pletch, 2010) 

2.7.3 Phosphorous  

Starches contain small quantities of minerals that include calcium, magnesium, 

phosphorous, sodium and potassium (Tester, Karkalas, & Qi, 2004). Most cereal starches 

contain phosphorous (0.02 – 0.06%) in the form of phospholipids, whereas in the tuber 
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(0.01 – 0.1%) and pulse (green pea, lentils, lima bean, and mung bean) starches (0.004 – 

0.007%), phosphorous is present in the form of starch phosphate monoesters (Singh, 

Singh, Kaur, Sodhi, & Gill, 2003; Lim, Kasemsuwan, & Jane, 1994; Ambigaipalan, 

Hoover, Donner, Liu, Jaiswal, Chibbar et al., 2011; Gunaratne & Hoover, 2002; 

Łabanowska, Wesełucha-Birczyńska, Kurdziel, & Puch, 2013). The distinctive properties 

of potato starch are attributed to its high level of phosphate esters (Karim, Toon, Lee, 

Ong, Fazilah, & Noda, 2007). In native potato starch, starch phosphate monoesters are 

present mainly in the amylopectin (Hoover, 2001) and are linked to the O-2, O-3 or O-6 

hydroxyl groups (Blennow, Engelsen, Munck, & Møller, 2000). The phosphate groups 

(60-70% ) are bound to the C-6 position of the glucosyl units as monoesters and 30-40% 

is monoesterified on the C-3 position (Blennow, Bay-Smidt, Olsen, & Møller, 2000). 

High swelling power of potato starch is probably due to the presence of phosphate groups 

and the large granular size (Jobling, 2004). The presence of phosphate groups exert a 

major influence in the rheological properties of starch resulting in clearer gels and higher 

viscosity and this is beneficial in several industrial applications (Blennow, Bay-Smidt, 

Wischmann, Olsen, & Møller, 1998).  
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Figure 2.13: A molecular model of phosphorylated starch (crystalline domain). The 

helices are phosphorylated on the same glucose residue, at the C-3 (a) and C-6 (b) 

positions (Blennow at al., 2002, Copyright Elsevier, reproduced with permission).  
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2.8 Disadvantages of native starch 

The hydrophilic nature of starch is the main factor restricting the development of starch-

based materials (Fang, Fowler, Tomkinson, & Hill, 2002). Though native starch is a good 

texture stabilizer and regulator in food systems, limitations such as low shear resistance, 

thermal resistance/decomposition and higher retrogradation rates restrict its application in 

industries (Ribeiro, do Prado Cordoba, Colman, de Oliveira, Andrade, & Schnitzler, 

2014). In order to overcome these drawbacks, native starch is physically, chemically or 

enzymatically modified to obtain desired properties (Sorokin, Kachkarova-Sorokina, 

Donzé, Pinel, & Gallezot, 2004). Physical modification of starch by various means such 

as radiation, heat, shear and moisture is preferred because of the absence of by-products 

of chemical reagents in the modified starch. Heat moisture treatment and annealing are 

methods used to alter the physicochemical properties of starch without causing changes to 

the granular structure (Zavareze & Dias, 2011). Chemical modification is generally 

carried out through derivatization such as etherification, esterification and crosslinking, 

oxidation, cationization, grafting and decomposition (Kaur, Ariffin, Bhat, & Karim, 

2012). Modified starches exhibit better paste clarity and stability, improved resistance to 

retrogradation and freeze-thaw stability (Waliszewski, Aparicio, Bello, & Monroy, 2003). 

Modified starches result in changes in the gelatinization, pasting and retrogradation 

properties (Singh, Kaur, & McCarthy, 2007) are used as food ingredients (Sweedman, 

Tizzotti, Schäfer, & Gilbert, 2013).  
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2.9 Applications of starch 

Because of the abundance as a natural biopolymer, starch acts as a very good adsorbent. It 

is a renewable resource and economically feasible (Ismail, Irani, & Ahmad, 2013). Starch 

is included in fluid products to improve their viscosity and stability and in semisolid 

products to enhance their fat and water-holding properties (Hermansson & Svegmark, 

1996). It is also used in food industries as a viscosifier, stabilizer, texturizer, binder and 

for pharmaceutical purposes such as coating, disintegrating, and thickening 

(Srijunthongsiri, Pradipasena, & Tulyathan, 2014). 

Starch is used in bread making, confectionery (Nuwamanya, Baguma, Wembabazi, & 

Rubaihayo, 2013) and to thicken continuous phase of fluid foods (Chamberlain & Rao, 

1999). It is also used as an industrial feedstock and is a source of energy for humans and 

animals (Morell & Myers, 2005). The gelling properties of starch are useful in controlling 

the texture and mechanical properties of many foods (Pinto, Vanier, Klein, Zavareze, 

Elias, Gutkoski et al., 2012). 

Native starch, when processed under high pressure and temperature yields a thermoplastic 

product that can be transformed into injection or blow moulded articles (Funke, 

Bergthaller, & Lindhauer, 1998). Starch containing a high proportion of amylopectin is 

used in the food industry to enhance uniformity, texture and also provide freeze-thaw 

stability in frozen foods (Slattery, Kavakli, & Okita, 2000). Starch is also used as a 

delivery vehicle that helps in protecting pharmaceutically active proteins from digestion 

(Jobling, 2004) and is used in cement as an additive to improve the setting time and is 
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used in paper-making for various purposes (Burrell, 2003). Also, ethanol produced from 

starch is considered an environmentally friendly option to petroleum based fuels (Hannah 

& James, 2008). Starch-based biodegradable polymers can be used as medical polymer 

materials because it offers a host of benefits: good biocompatibility, biodegradability, 

non-toxicity of degradation products and good mechanical properties (Lu, Xiao, & Xu, 

2009). The use of starch in nanotechnology is gaining momentum especially in the area of 

drug delivery (Rodrigues & Emeje, 2012). 
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2.10 Starch properties 

2.10.1 Granular swelling and amylose leaching 

Swelling ability of starch accounts for the important properties such as pasting and 

rheological behaviors in most starchy food products. When the starch granule is heated in 

excess water, heat transfer and moisture transfer phenomena occur and the granule swells 

several times its initial size due to the loss of crystalline order and causes absorption of 

water inside the granular structure (Lii, Tsai, & Tseng, 1996). Swelling is primarily a 

property of amylopectin and amylose acts as a dilutant. The swelling pattern is influenced 

by the magnitude of interactions between the glucan chains within the amorphous and 

crystalline region and also by the packing arrangement of the glucan chains within the 

crystalline lamellae (Ratnayake, Hoover, & Warkentin, 2002). 

Starch granules are insoluble in cold water and starch normally contains about 20% by 

weight of water at room temperature. When starch granules are dispersed in water and 

warmed below the gelatinization temperature, water enters reversibly into the starch 

structure (Hancock & Tarbet, 2000). Pulse starches exhibit a single stage restricted 

swelling and low extent of amylose leaching and this is attributed to the strong 

interactions between starch chains that relax over one temperature and not multiple 

temperatures.  At temperatures below 60
ᵒ
C, no measurable granule swelling or amylose 

leaching occurs in most pulse starches but a pronounced increase in both swelling and 

amylase leaching occurs beyond 70
ᵒ
C and this could be correlated to the high amylose 

content of pulse starches which causes the tight packing of amylose chains within the 
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amorphous domains of the granule.  This result in strong interactions between adjacent 

amylose chains and therefore a high input of thermal energy is required to disrupt the 

amylose chain interactions (Hoover, Hughes, Chung, & Liu, 2010). 
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2.10.2 Gelatinization 

Native starches are insoluble in cold water. When starch granules are heated in excess 

water, it undergoes an order to disorder phase transition at a certain temperature interval 

referred to as the gelatinization temperature range. As a result of this, substantial 

rheological changes take place in the starch suspension during heating. The starch 

granules imbibe water, swell to several times their original size and results in the leaching 

of amylose, the low molecular weight components of the starch granules (Eliasson, 1986). 

Finally, the crystallites are disrupted and there is a total loss of crystallinity 

(Karapantsios, Sakonidou, & Raphaelides, 2002). Starch gelatinization in water is thus 

the breakdown of intermolecular association between amylose and amylopectin 

molecules by the application of heat (Tako, Tamaki, Teruya, & Takeda, 2014). This 

property is vital in contributing to starch functionality and thus used in food industries 

(Bogracheva, Morris, Ring, & Hedley, 1998). Gelatinization causes several changes in the 

physical, chemical and biological properties of starch (Shetty, Lineback, & Seib, 1974). 

Though the gelatinization process is readily apparent, a number of methods used for the 

determination has made it hard to formulate a precise definition (Zobel, Young, & Rocca, 

1988). 

Gelatinization is one of the unique properties of starch granules and it is generally 

accepted that water first enters the amorphous region and initiate swelling that result in 

the loss of birefringence as the temperature is increased. As a result of further increase in 

temperature, thermal motion and solvation causes decreasing order and rupture of 

crystalline regions with uncoiling of double helices (Lineback, 1986). Formation of a 
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viscous solution or a gel is primarily dependent on the starch/water ratio. However, there 

are other processing parameters such as temperature and heating rate influencing this 

process (Sakonidou, Karapantsios, & Raphaelides, 2003). A clear endothermic peak that 

is visible in the temperature region between 54 and 73
ᵒ
C for various starches was defined 

as the gelatinization temperature (Yu & Christie, 2001). Thus, starch phase transitions are 

three stage processes in which the starch granules absorb water increasing the starch 

polymer mobility in amorphous regions, formation of new intermolecular interactions and 

an increase in hydrothermal effects take place causing the disruption of overall granule 

structure (Ratnayake & Jackson, 2007). 

Gelatinized starches have a number of industrial applications apart from its non-food uses 

such as in drilling oil wells, sizing textiles, paper manufacture, briquetting charcoal, etc.  

Gelatinized starches are used in foods as a thickener. The gelatinization of starch also 

influences the characteristics and quality of food, elasticity and softness of paste products, 

digestibility and palatability (Chiang & Johnson, 1977). Gelatinization plays a significant 

role in several food processing operations and hence many analytical techniques such as 

light microscopy, electron microscopy, viscometry, x-ray diffraction, nuclear magnetic 

resonance, calorimetry, laser light scattering etc. have been used to estimate quantitatively 

the amount of gelatinized starch in processed foods (Biliaderis, 1991). It is also important 

in analysis and design of food processes such as extrusion, aseptic processing and 

sterilization (Wang & Sastry, 1997). 

DSC measures the onset (To), midpoint (Tp), conclusion (Tc) temperatures and the 

enthalpy (∆H) of gelatinization. DSC parameters are dependent on the molecular 



53 
 

architecture of the crystalline region, that relates to the distribution of the amylopectin 

short chains (DP 6-11) and not by the proportion of crystalline region that corresponds to 

the amylose to amylopectin ratio. A low To, Tp, Tc and ∆H indicate the presence of 

abundant short amylopectin chains (Ratnayake, Hoover, & Warkentin, 2002). 

Gelatinization temperature is positively correlated with the amylopectin long branch 

chains as it could form longer double helices and thus would require higher temperatures 

for complete dissociation. Song and Jane (2000) reported higher onset temperature of 

gelatinization for high amylose starches than waxy and normal maize starch because of 

the longer branch chain lengths. The presence of phosphate monoesters are reported to 

cause a decrease in gelatinization temperatures. The ratio of amylose to amylopectin is 

also an important factor influencing the gelatinization temperature of starches. Waxy 

starches exhibited a broader gelatinization temperature and higher enthalpy in comparison 

with normal starches which suggests that the structure of amylopectin mainly determines 

the gelatinization temperatures (Emmambux & Taylor, 2013).  
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2.10.3 Retrogradation 

When starch granules are heated in the presence of excess water (above their 

gelatinization temperature), they undergo irreversible swelling and result in the leaching 

of amylose into the solution. This suspension will form an elastic gel on cooling and the 

molecular interaction that take place after cooling is called retrogradation, which is time 

and temperature dependent (Ratnayake, Hoover, & Warkentin, 2002).  

Starch retrogradation occurs in three steps: nucleation (formation of crystal nuclei), 

propagation (crystal growth from the nuclei formed during nucleation) and maturation 

(Ambigaipalan, Hoover, Donner, & Liu, 2013). Starch retrogradation is not desirable 

because it is responsible for the staling of bread and other starch-rich foods, resulting in 

reduced shelf-life and consumer acceptance but is found to be useful in the production of 

breakfast cereals, parboiled rice, in the manufacture of croutons and breadcrumbs 

(Ottenhof & Farhat, 2004) due to the modification of structural and mechanical properties 

(Wang, Li, Copeland, Niu, & Wang, 2015).  

Retrogradation occurs in two stages: the recrystallization of amylopectin which is a 

slower process and the gelation of solubilized amylose that proceeds at a faster rate. The 

turbidity increases during the early stage of storage and this indicates the network 

formation between amylose chains leached out of the granules during gelatinization 

(Fukuzawa, Ogawa, Nakagawa, & Adachi, 2016).  

Starch molecules in gel associate on aging, resulting in precipitation, gelation and 

changes in consistency. Crystallites start to develop and this is followed by increases in 
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rigidity and phase transition between polymer and solvent (Karim, Norziah, & Seow, 

2000). Retrogradation involves increase in the degree of crystallinity and gel firmness, 

exudation of water and the appearance of “B” type X-ray pattern. The legume starches are 

susceptible to retrogradation and syneresis and so are not suitable for products that call 

for low-temperature storage. Retrogradation is occasionally used in modifying the 

structural, mechanical and organoleptic properties of starch-based products (Liu, Yu, 

Chen, & Li, 2007).  

Though both amylose and amylopectin have the ability to retrograde, the long-term 

quality changes in foods is attributed to the amylopectin component (Sandhu & Singh, 

2007). The retrogradation of starch results in a reduction in the quality of starchy foods 

and also negatively impacting their textural properties. Many methods such as X-ray 

diffraction, differential scanning calorimetry etc. have been used for determining the 

degree of retrogradation (Fukuzawa, Ogawa, Nakagawa, & Adachi, 2016) and so it 

becomes difficult to measure the rate and extent of retrogradation. Each of these methods 

measures a different property of retrogradation. For example, syneresis data and turbidity 

measurements provide information on the amylose and amylopectin crystallization. On 

the other hand, DSC and NMR measures amylopectin crystallization and changes in 

water mobility during retrogradation (Hoover, Hughes, Chung, & Liu, 2010). 

DSC has been used in investigating gelatinization in water-starch systems (Nakazawa, 

Noguchi, Takahashi, & Takada, 1984). DSC has been used for studying starch 

retrogradation for the following reasons: 1. It can be used for a wide range of water 

content, 2. Direct determination of the heat of re-gelatinization after retrogradation is 
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possible, 3. No change in water content because of perfect sealing of the sample cells, 4. 

The technique is not time consuming (Nakazawa, Noguchi, Takahashi, & Takada, 1985). 

Retrogradation occurs because the gelatinized starch is supercooled and maintained below 

its melting temperature and hence the potential towards thermodynamic equilibrium 

during storage causes reordering and crystallization (Lionetto, Maffezzoli, Ottenhof, 

Farhat, & Mitchell, 2006). The primary reason for the deterioration of desirable sensory 

qualities of starch containing products is the retrogradation of starch during storage. 

Methods used for  retarding retrogradation include enzyme treatment, addition of 

oligosaccharides and lipids (Yao, Zhang, & Ding, 2003).  

Lipids and short amylopectin chains with DP 6-9 have also been reported to reduce 

retrogradation (Fredriksson, Silverio, Andersson, Eliasson, & Åman, 1998). Generally, 

cereal amylopectin retrograde to a lesser extent in comparison to pea and potato 

amylopectin due to the presence of shorter average chain lengths in cereal amylopectin 

(Silverio, Fredriksson, Andersson, Eliasson, & Åman, 2000). Sugars such as glucose, 

fructose and maltose have been reported to inhibit the rice and potato starch 

retrogradation. Hydrogen bonding between the starch chains that lead to crystallization 

can be modified by saccharides that result in reduction in the rate of retrogradation 

(Durán, León, Barber, & de Barber, 2001). Because of the higher amylose content and/or 

differences in molecular structure, pulse starches retrograde to a higher extent in 

comparison with cereal and tuber starches (Hoover, Hughes, Chung, & Liu, 2010).  
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Figure 2.14 : A schematic representation of the processes and structures observed during 

heating and storage of aqueous suspensions of granular starch (Biliaderis, 1991, 

reproduced with permission from NRC Research Press) 
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2.10.4 Pasting 

Pasting characteristics were first described by Caesar in 1932 using a consistometer. The 

Brabender amylograph available during the 1930s was used in the industry for 

characterisation of starch containing products (Deffenbaugh & Walker, 1989). The term 

pasting refers to the changes that occur after gelatinization. The pasting properties of a 

starch suspension can be monitored with a rapid visco analyzer (RVA) (Waterschoot, 

Gomand, Fierens, & Delcour, 2015). Pasting properties are influenced by starch granule 

size, amylose and lipid contents and structure of amylopectin (Ao & Jane, 2007).  

Starch granules are insoluble in water below the onset temperature of gelatinization 

(usually below 50
ᵒ
C). When starch granules are heated in the presence of water above the 

gelatinization temperature, the granules absorb water and swell to many times their 

original size resulting in the leaching of amylose and an increase in viscosity. The 

temperature at the beginning of rise in viscosity is considered as the starting point of 

gelatinization and is referred to as the pasting temperature (Pongsawatmanit, 

Thanasukarn, & Ikeda, 2002). The highest viscosity reached during the heating cycle is 

the peak viscosity (Vamadevan & Bertoft, 2015). Peak viscosity reflects the water 

binding capacity and the extent to which the starch granules are disintegrated and is 

related to the final product quality (Gani, Wani, Masoodi, & Salim, 2013). With 

increasing amylose content, peak viscosity of the starch paste decreases (Blazek & 

Copeland, 2008). The peak viscosity decreases as the granules rupture due to continuous 

shear and starch molecules are dispersed in aqueous phase (Copeland, Blazek, Salman, & 

Tang, 2009). This is referred as breakdown and the breakdown value indicates the paste 
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stability (Joshi, Aldred, McKnight, Panozzo, Kasapis, Adhikari et al., 2013) and the 

differences in breakdown are due to differences in rigidity/fragility of the swollen 

granules  (Han & Hamaker, 2001). As the starch paste cools, molecules leached out begin 

to reassociate in an ordered structure. (Jacobs & Delcour, 1998). The extent of 

reassociation depends on several factors such as amylose content, length of amylose 

molecules and the state of dispersion of amylose chains (Mishra & Rai, 2006). Amylose 

molecules, because of their linear structure reassociate more easily and is one factor 

contributing to the occurrence of setback (Rupollo, Vanier, Zavareze, Oliveira, Pereira, 

Paraginski et al., 2011).  
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Figure 2.15: Typical RVA profile of rice starch (Copeland et al., 2009, Copyright 

Elsevier, reproduced with permission) 

 



61 
 

2.10.5 Acid hydrolysis 

Native starches cannot be utilized for specific industrial applications owing to its 

functional limitations such as low resistance to shear stress, high tendency towards 

retrogradation and poor thermal properties (Hermansson & Svegmark, 1996). However, 

these limitations can be overcome by physical (heat-moisture treatment, annealing, pre-

gelatinization, radiation) and chemical (crosslinking, acid hydrolysis, substitution, 

oxidation/bleaching) modification methods (BeMiller & Huber, 2010). The physical 

modification technique is generally preferred because of the absence of by-products of 

chemical reagents in the modified starch (Zavareze & Dias, 2011).  

Acid hydrolysis provides an understanding of the inner structure of starch granules as it 

could result in changes in the morphological, crystalline, gelatinization and viscoelastic 

properties of starch (Jiping, Shujun, Jinglin, Hongyan, Jiugao, & Wenyuan, 2007). Acid 

hydrolysis involves the treatment of starch granules with dilute aqueous or alcoholic 

solutions of hydrochloric or sulphuric acid below the gelatinization temperature for 

different time periods and when the desired degree of hydrolysis is attained, the resultant 

modified starch is recovered by neutralizing with alkali followed by washing and 

subsequent drying (Wang & Copeland, 2015). 

The hydrolysis of cereal, legume and tuber starches follows a two stage pattern: rapid 

hydrolysis of the amorphous region and the slow hydrolysis of crystalline regions (Singh, 

Sodhi, & Singh, 2009). Two hypotheses have been proposed for the slower hydrolysis of 

crystalline region. Firstly, the dense packing of starch chains within the starch crystallites 
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prevents the penetration of H3O
+ 

into the regions. Secondly, the chair to half- chair 

transformation that is necessary for the hydrolysis of the glucosidic bond occurs slowly 

due to the immobilization of the sugar conformation within the starch crystallites 

(Jayakody & Hoover, 2002). 
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Figure 2.16: Chair to half-chair conformation of glucose molecule 
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2.10.6 Enzyme hydrolysis 

Legume starches are better substrates for analyzing the structural factors contributing to 

α-amylolysis than cereal and tuber starches because of the absence of pores on the 

granular surface, lesser quantities of phosphate monoesters, trace amounts of bound lipids 

and granule size uniformity (Zhou, Hoover, & Liu, 2004). Starch hydrolysis involves an 

enzyme in solution reacting on a solid substrate and thus the critical kinetic parameters 

are the surface area that is accessible to the enzyme and the extent of enzyme adsorption 

onto the surface (Hoover & Zhou, 2003). Therefore, the steps involved in the enzymatic 

reaction are the diffusion to the solid surface, adsorption of the enzyme and the 

occurrence of catalysis (Uthumporn, Zaidul, & Karim, 2010). Native starch is digested 

slowly in comparison with the gelatinized starch because the accessibility of the enzyme 

to the substrate in processed starch is greater and also the crystallinity is disrupted. 

Furthermore, there are no restrictions by α-glucan associations (Blazek & Gilbert, 2010). 

The smaller granules hydrolyze faster because of their large surface area per unit mass 

that facilitates diffusion and adsorption of enzymes and increasing the catalytic action in 

comparison with large granules (Dhital, Shrestha, & Gidley, 2010).  

Starch hydrolysis by α-amylase depends on several features such as granule size, 

phosphorous content, presence of amylose-lipid complexes, starch crystallinity and 

porosity (Asare, Jaiswal, Maley, Båga, Sammynaiken, Rossnagel et al., 2011). 

Amylolytic enzymes are not capable of bypassing the phosphorylated glucosyl residue 

and so digestion of potato starch (that contains covalently-bound phosphate groups) with 

amylase results in the release of phosphoryl oligosaccharides (Absar, Zaidul, Takigawa, 
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Hashimoto, Matsuura-Endo, Yamauchi et al., 2009). Thus, the presence of higher 

phosphorous content in potato starch may be associated with reduced digestibility of both 

gelatinized and native starch (Noda, Takigawa, Matsuura-Endo, Suzuki, Hashimoto, 

Kottearachchi et al., 2008). Amylose-lipid complexes restrict the susceptibility of 

amylose to amylolysis. The competitive mechanism is believed to exist between amylose 

retrogradation and amylose-lipid complex formation, wherein the crystallization of 

amylose-lipid complexes is favoured that prevents amylose leaching during gelatinization 

and restricts the swelling of starch granules when heated in the presence of water (Cui & 

Oates, 1999). The porosity of starch granules has been reported to influence the extent of 

enzyme hydrolysis as the presence of pores, channels and cavities increase the surface 

available for the enzymatic reactions. Pores provide access for initial enzyme attack that 

causes the enzyme to penetrate to the granule interior (Sujka & Jamroz, 2007). Double 

helices that associate to form crystalline regions resist enzyme hydrolysis and it has been 

reported that B and C-type starches are more resistant to hydrolysis than A-type (Tester, 

Qi, & Karkalas, 2006).  

Starch digestibility is influenced by some unique properties of legumes such as high 

content of viscous soluble dietary fibre, various antinutrients and high 

amylose/amylopectin ratios (Sandhu & Lim, 2008). It is reported that amylolysis occurs 

along furrows initially and then pass through pores that increases in size (Svihus, Uhlen, 

& Harstad, 2005). Starch with ‘A’ type diffraction pattern is more susceptible to 

amylolysis because the branch points in ‘A’ type starch are scattered in both amorphous 

and crystalline regions. As a result of this, numerous short A chains are present in the 
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crystalline regions forming an inferior crystalline structure that lead to weak points and 

thus readily attacked by α-amylase. On the other hand, in ‘B’ type starches, amorphous 

region has more branch points and fewer short branch chains that results in a superior 

crystalline structure in comparison to ‘A’ type starches and thus more resistant to 

amylolysis (Srichuwong, Sunarti, Mishima, Isono, & Hisamatsu, 2005).  

Native starches are hydrolyzed to a lower extent than gelatinized starch. During the 

enzyme-catalyzed hydrolysis of α(1→4) glucosidic bonds, the ring distortion from chair 

to half-chair conformation decreases the enthalpy of activation and increases the 

susceptibility of glucosyl residues to nucleophilic attack by functional groups on the 

enzyme and by water (Oates, 1997).  

Enzyme hydrolysis has multiple benefits in comparison with the acid that was 

traditionally used to hydrolyze starch that resulted in the formation of low molecular 

weight dextrins and glucose. The specificity of enzyme results in the sugar syrup 

production with well-defined properties and the enzymatic hydrolysis is milder that 

causes less ‘browning’ and a few side reactions (Nigam & Singh, 1995). The enzyme 

hydrolysis also results in changes in functional properties of starch such as gelatinization 

temperatures, gel formation and paste viscosity (Rocha, Carneiro, & Franco, 2010). 
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Figure 2.17: Action pattern of starch-degrading enzymes (Tharanathan, R., & 

Mahadevamma, S.,  2003, Copyright Elsevier, reproduced with permission). 
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2.10.7 Starch nutritional fractions: 

Starch is classified into RDS (rapidly digestible starch), SDS (slowly digestible starch) 

and RS (resistant starch) based on the extent of glucose release and its absorption in the 

gastrointestinal tract (Zhang, Ao, & Hamaker, 2006). If the amount of RDS present is 

high, SDS and RS would be low (Zhang & Hamaker, 2009). The rate of glucose release 

from foods play a vital role in human health by aiding to control the blood glucose levels 

and to provide good energy absorption (Zhang, Venkatachalam, & Hamaker, 2006). The 

concept of glycaemic index (GI) was proposed to classify foods based on their 

postprandial blood glucose response (Jenkins, Wolever, Taylor, Barker, Fielden, Baldwin 

et al., 1981). The GI is defined as “the postprandial incremental glycemic area after a test 

meal that is expressed as a percentage of the corresponding area after an equi-

carbohydrate portion of a reference food such as white bread” (Goñi, Garcia-Alonso, & 

Saura-Calixto, 1997).  

RDS is the fraction of starch granules that cause a rapid elevation in blood glucose 

concentration after carbohydrate ingestion. SDS is the portion of starch that is digested 

slowly but completely in the small intestine and the part of starch that escapes digestion 

in the small intestine and is fermented in the colon as dietary fiber is referred to as 

resistant starch (Dona, Pages, Gilbert, & Kuchel, 2010). One of the primary aims to 

manage diabetes is to decrease meal-associated hyperglycaemia. Intake of slowly 

digestible starch provides a host of benefits such as reduced postprandial glucose peaks, 

improved lipid response, lesser concentration of glycosylated haemoglobin and 

fructosamine and better insulin sensitivity (Lehmann & Robin, 2007). SDS is widely used 
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in edible processed food products, nutritional supplements and drug preparations. SDS 

materials used in food processing exhibit a low thermal stability. It is also used as a 

biomacromolecule film-former for pharmaceutical coatings to allow complete release in 

the small intestine (Miao, Jiang, Cui, Zhang, & Jin, 2015). 

RS content in foods is influenced by the amylose/amylopectin ratio, degree of 

gelatinization, thermal treatments and cooling/storage (Goñi, Garcia-Diz, Mañas, & 

Saura-Calixto, 1996). Several factors contribute to the amount of RS in starch-rich foods: 

the source, ripeness, processing, preparation and storage (Raben, Tagliabue, Christensen, 

Madsen, Holst, & Astrup, 1994). Due to the presence of surplus quantities of salivary and 

pancreatic α-amylase, starch was believed to be hydrolyzed completely and absorbed 

from the small intestine but it was later observed that a portion of starch resists water 

dispersion and pancreatic amylase hydrolysis. Starch that does not breakdown in the 

small intestine will enter the large intestine where it acts in the same manner to the 

unabsorbed non-starch polysaccharides of dietary fiber (Tomlin & Read, 1990). Resistant 

starch has thus been defined as ‘the sum of starch and products of starch degradation not 

absorbed in the small intestine of healthy individuals’ (Asp, 1992).  

The purpose of incorporating an ingredient high in RS is to combine physical, nutritional 

functionalities and processing stability (Thompson, 2000). A diet containing a high 

proportion of dietary fiber and RS has been found to significantly increase the weight of 

pancreas, liver and intestine in rats (Perera, Meda, & Tyler, 2010). Resistant starch forms 

only a small proportion of the total calories in diets and so its inability to be digested and 

converted to glucose makes little impact to the overall energy intake (Johnson & Gee, 
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1996). Resistant starch can be used for the development of functional foods by employing 

processing techniques to increase the resistant starch level in foods, identifying foods rich 

in resistant starch and processing them to be palatable to consumers (Niba, 2002). 

Resistant starch undergoes fermentation upon the activity of large bowel microflora that 

results in the production of methanol, hydrogen and short chain fatty acids which 

decrease pH and stimulates the formation of beneficial groups of bacteria and eliminating 

pathogenic microorganisms (Leszczyñski, 2004).  

Resistant starch is classified into several types. Type 1 refers to the physically trapped 

starch that are found locked in the plant cell and present in partly milled grains, seeds and 

legumes (Eerlingen & Delcour, 1995). This refers to starch granules that are physically 

inaccessible to digestion and is released when food is ground, chewed or milled (Muir, 

Young, & O'Dea, 1994). RS2 are native, uncooked granules of starch (Fuentes-Zaragoza, 

Riquelme-Navarrete, Sánchez-Zapata, & Pérez-Álvarez, 2010). RS2 refers to starch that 

exists in a granular form and resistant to enzyme digestion and is found in raw potato and 

green banana (Raigond, Ezekiel, & Raigond, 2015). RS3 indicates retrograded starch and 

the starch granules are completely hydrated in the formation of RS3. Amylose leaches 

from the granules into the solution and the polymer chains begin to reassociate as double 

helices upon cooling (Sajilata, Singhal, & Kulkarni, 2006). Significance of RS3 is 

attributed to its thermal stability as it remains stable in most cooking operations and thus 

serving as an ingredient in a number of conventional foods (Haralampu, 2000). In 

addition to the naturally occurring resistant starch types, a fourth category includes 

chemically modified starches that resist enzyme hydrolysis to a certain degree. 
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Modification of starch by crosslinking, esterification, etc. is performed to extend the 

usefulness of starch in food processing, transportation and storage (Brown, 1996). 
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Figure 2.18: Structure of resistant starch A) Type 1 resistant starch B) Type 2 resistant 

starch C) Type 3 resistant starch formed in aqueous amylose solutions. (Sajilata et al., 

2006, reproduced with permission from John Wiley and Sons). 
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Chapter 3 

Materials and methods 

3.1 Materials 

Field pea (Pisum sativum) cultivars [CDC Golden (CDCG), Abarth (ABAR), CDC 

Patrick (CDCP), CDC Amarillo (CDCA)] grown (during the 2012 season) at two 

different locations (Rosthern and Meathpark) in Saskatchewan, Canada were obtained 

from the Crop Development Center, University of Saskatchewan, Saskatoon, Canada. The 

locations at which the field peas were grown differed only marginally with respect to 

rainfall, growing season, temperature and soil conditions. Pancreatin from porcine 

pancreas (Cat. No. P-1625, activity 3 x USP/g) was purchased from Sigma Chemical (St 

Louis, MO). Amyloglucosidase (EC 3.2.1.3., 3300 U/ml) and glucose oxidase-peroxidase 

assay kit (cat. no. K-GLUC) were purchased from Megazyme International Ireland Ltd 

(Bray, Ireland). All chemicals and solvents were of ACS certified grade. 

3.2 Methods 

3.2.1 Starch isolation 

Starch was extracted from the pulse seeds using the wet milling procedure of Hoover and 

Sosulski (1985). Pulse seeds (50g) were steeped in 250 ml of deionized water containing 

0.01% (w/v) sodium metabisulfite for 36 hours at 40
ᵒ
C. The swollen seeds were dehulled 

by pressing the endosperm out of the softened hull and then thoroughly washed with 

deionized water. The softened seeds were wet milled (1:3) with sufficient water using 
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Waring commercial blender (Dynamics Corporation of America, Greenwich, 

Connecticut, USA) for 3 minutes and then screened through cheese cloth. This step was 

repeated two more times and pooled the filtrates. The filtrate was then passed through a 

210μm polypropylene sieve followed by a 70μm nylon sieve and allowed to sediment for 

18 hours at room temperature. The supernatant was decanted and an excess of 0.2% 

sodium hydroxide was added to the sediment at room temperature and this step was 

repeated many times until a white starch was obtained. The resulting starch was washed 

with deionized water and passed through a 70μm nylon sieve. The solution was then 

neutralized to pH 7.0 with 0.2% hydrochloric acid and filtered on a Buchner funnel using 

Whatman No.4 filter paper and thoroughly washed on the filter with distilled water. The 

resulting filter cake was oven dried overnight at 40
ᵒ
C and the dried starch was ground 

passed through a 60-mesh screen.  

3.2.2 Starch damage 

Starch damage was estimated by enzyme digestion procedure according to the AACC 

(2000) method. One gram of starch (dry basis) was measured and added to a 125ml 

Erylenmeyer flask and 50mg fungal amylase from Aspergillus oryzae (157 units/mg 

protein) was added. Acetate buffer (45 ml) was brought to 30
ᵒ
C in a water bath and then 

added to the Erylenmeyer flask and the contents were mixed with a glass rod to obtain a 

uniform suspension before incubating into the water bath at 30
ᵒ
C. The enzyme action was 

terminated at the end of 15 minutes by the addition of 3ml of H2SO4 and 2 ml of sodium 

tungstate solution.  Contents were mixed well and allowed to stand for 2 minutes. The 

solution was then filtered through Whatman No 4 filter paper. First 8-10 drops of filtrate 
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were discarded and the determination of reducing sugar was carried out by the procedure 

outlined by Bruner (1964). 

3.2.3 Chemical composition 

3.2.3.1 Moisture content 

The moisture content of the starch samples were determined by the AACC (2000) 

method. Empty moisture pans and lids were dried for 1h at 130
ᵒ
C in an oven and then 

cooled in a desiccator prior to analysis. The moisture pans were pre-weighed and 5g of 

starch samples were added and dried in an air-forced oven at 130
ᵒ
C for 1h. Moisture pans 

were placed in the oven with the lids placed under the pans and then the samples were 

removed, covered with lids and transferred to a desiccator. Weights of the sample were 

measured after they reached the room temperature. Three replicates were used for the 

analysis and the moisture content was calculated by the following equation, 

Moisture (%) = 
W1−W2

W1−W0
 X 100………..(EQ 3.1) 

where,  

Wo – weight of the tare moisture pan and lid (g), 

W1 – weight of sample, moisture pan and lid before drying (g), and 

W2 – weight of sample in the pan after drying (g) 
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3.2.3.2 Nitrogen content 

The nitrogen content of native starches was estimated by Micro Kjeldahl method (AACC, 

2000). The samples (0.3g, db) were measured on nitrogen-free papers and placed in the 

digestion tubes of Büchi 430 (Büchi Laboratoriums-Technik AG, Flawill/Schweiz) 

digester. The catalyst (2 Kjeltabs M pellets [Fisher Scientific, Fair Lawn, NJ, USA]) and 

20 ml of concentrated sulphuric acid were added. The samples were digested until a clear 

yellow solution was visible which was then cooled, diluted with 50ml of distilled water. 

One hundred milliliters of 40% (w/w) sodium hydroxide were added and the released 

ammonia was steam distilled into 50 ml of 4% of H3BO3 containing 12 drops of end point 

indicator (N-point indicator, Sigma Chemical Co., St. Louis, MO, USA) using a Büchi 

321 distillation unit 150ml of distillate was collected. By titrating against 0.025M 

sulphuric acid, the amount of ammonia in the distillate was determined and the nitrogen 

content was calculated using the equation, 

Nitrogen (%) = 
(V1−V2) X N X 14.0067

W
 X 100………………(EQ 3.2) 

where 

V1 – volume (ml) of H2SO4 to titrate sample,  

V2 – volume (ml) of H2SO4 to titrate blank, 

N –  normality of H2SO4, and 

W – sample weight (g/db) 
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3.2.3.3 Apparent amylose content 

Amylose content of starches was determined by the colorimetric method of Hoover and 

Ratnayake (2004). Starch (20 mg/db) was weighed in a round bottom screw cap tube and 

solubilized by adding dimethylsulfoxide (90% DMSO, 8 ml). The contents were vortexed 

and heated in a water bath for 15 min at 85
ᵒ
C with intermittent mixing. The tubes were 

then allowed to cool at room temperature which was then diluted to 25ml in a volumetric 

flask. 1ml of the diluted solution was mixed with 40ml of water and 5 ml of I2/KI solution 

[0.0025M I2 and 0.0065M KI mixture] and vortexed. The final volume was brought to 

50ml in a volumetric flask. The contents were allowed to stand in the dark for 15 minutes 

at room temperature. The absorbance was measured at 600nm using a UV-visible 

spectrophotometer. The amylose content of the samples was calculated using a standard 

curve constructed using the pure amylose and amylopectin mixtures, over the range 0% to 

100% (Appendix  I ). 

3.2.3.4 Lipid content 

3.2.3.4.1 Surface lipid 

Surface lipids of the native starch sample were estimated by the procedure outlined by 

Vasanthan and Hoover (1992). The surface lipids were extracted at ambient temperature 

(25 - 27
ᵒ
C) by the addition of 100ml of chloroform/methanol (2:1, v/v) to the starch 

sample (5g, db). The contents were thoroughly mixed for 1 hour and the solution was 

filtered into a 250 ml round bottomed flask. The residue was washed out with 

chloroform/methanol solution. The lipid solvent mixture was evaporated to dryness using 
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a rotary evaporator (Rotovapor-R110, Büchi Laboratorimus-Technik AG, 

Flawill/Schweiz, Switzerland). Purification of the crude lipid extracts was carried out by 

the method of Bligh and Dyer (1959) before quantification. 

3.2.3.4.2 Bound lipid 

Bound lipid content of starch samples was estimated using the method of Vasanthan and 

Hoover (1992). The residues from the chloroform/methanol extractions were refluxed 

with n-propanol/water (3:1, v/v) in a Soxhlet apparatus at 85
ᵒ
C for 7h. The solvent was 

evaporated to dryness using a rotary evaporator. The crude lipid residue was purified by 

the method of Bligh and Dyer (1959) before quantification. 

3.2.3.4.3 Crude lipid purification 

Bligh and Dyer (1959) method was used for the extraction of crude lipid extracts using a 

separatory funnel with chloroform/methanol/water. The round bottomed flask with crude 

lipid extract was washed with chloroform/methanol/water (1:2:0.8, v/v/v) respectively. 

The contents were then mixed and then transferred to separatory funnel. Chloroform and 

water was then added to form a biphasic layer. The heavy chloroform layer in the bottom 

of the separatory funnel that contained the purified lipid was withdrawn into a pre-

weighted round bottomed flask and then evaporated to dryness in the rotary evaporator. 

The round bottomed flask containing the purified lipid was removed and dried at 60
ᵒ
C in 

an air forced oven. The dried lipids were cooled to room temperature in a desiccator and 

weighed. Lipid content was estimated using the formula: 
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Lipid (%) = 
W2−W1

Wo
 X 100……………………(EQ 3.3) 

where 

Wo – sample weight (g/db) 

W1 – weight of tare round bottom flask (g) 

W2 – weight of round bottomed flask and lipid after drying (g) 

3.2.4 Granule morphology and particle size distribution 

3.2.4.1 Starch granule size distribution 

Granule size analysis was carried out using a Laser particle sizer (Fritsch NanoTec 

“analysette 22”, Idar-Oberstein, Germany). The starch samples were suspended in water 

around 7% (w/w). Particle size is defined in terms of 10
th

 percentile [d(0.1)], median 

[d(0.5)], 90
th

 percentile [d(0.9)] and surface weighted mean [D(3,2)]. The average granule 

size was expressed as the surface weighted mean value, i.e. the diameter of a sphere that 

has the same volume/surface area ratio. This was used to calculate the specific surface 

area (m
2
/g) assuming spherical granules of uniform density (1500 kg/m

3
). 

3.2.4.2 Light microscopy 

Pulse starch suspensions (water/glycerol 50:50, v/v) were observed under bright field 

(magnification 400x) and crossed polarised light (magnification 200x) using a binocular  

microscope (Nikon microscope, Eclipse 80i, Nikon INC, Melville, NY, USA) equipped 
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with a real time viewing (Q-capture PRO
TM

). A QImaging digital camera (QICAM fast 

1394, BC, Canada) was used for image capture.  

3.2.4.3 Scanning electron microscopy (SEM) 

Granular morphologies of starches were examined using a FEI MLA 650 FEG (Brisbane, 

Australia) scanning electron microscope at an accelerating potential of 20 kV. The dried 

starch samples were thinly spread onto circular aluminum stubs with double–sided carbon 

adhesive tape and then carbon coated in a vacuum chamber. 

3.2.5 Starch structure 

3.2.5.1 Determination of amylopectin chain length distribution by high-performance 

anion-exchange chromatography with pulsed amperometric detection (HPAEC-

PAD) 

The amylopectin branch chain length distribution was determined by isoamylase 

debranching of whole starch followed by HPAEC-PAD (Liu et al., 2007). Starch was 

dispersed in 2 ml of 90% DMSO (5 mg/ml) and subjected to stirring in a boiling water 

bath for 20 minutes. Upon cooling, 6 ml of methanol was added and vortexed. The tube 

was then placed in an ice bath for 30 minutes. The pellet was obtained by centrifugation 

(1000 x g for 12 min) and dispersed in 2 ml of 50mM sodium acetate buffer (pH 3.5) by 

stirring in a boiling water bath for 20 minutes. 5 μl of isoamylase was added (EN102, 

68,000 U/mg protein, Hayashibara Biochemi cals Laboratories Inc., Okayama, Japan) 

following the equilibration of tube at 37
ᵒ
C. The sample was incubated with slow stirring 

for 22h at 37
ᵒ
C and the enzyme was inactivated by boiling for 10 minutes. An aliquot 
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(200 μl) of the cooled debranched sample was diluted with 2 ml of 150 mM NaOH and 

the sample was filtered in a 0.45 μm nylon syringe filter which was then injected into the 

HPAEC-PAD system using 50 μl loop. The HPAEC-PAD system consists of a Dionex 

DX 600 equipped with an ED50 electrochemical detector with a gold working electrode, 

GP50 gradient pump, LC30 chromatography oven and AS40 automated sampler (Dionex 

Corporation, Sunnyvale, CA, USA). The standard triple potential waveform was used 

with the following periods and pulse potentials: T1 = 0.40s, with 0.20s sampling time, E1 

= 0.05V; T2 = 0.20s, E2= 0.75V; T3= 0.40s, E3 = -0.15V. Data were obtained using 

Chromeleon software, version 6.50 (Dionex Corporation, Sunnyvale, CA, USA). The 

weight fraction of DP 6-12, 13-24, 25-36 and 37-58 was obtained from the area of peaks 

and the average chain length was also calculated. Eluents were prepared in distilled water 

with helium sparging: Eluent A was 500 mM sodium acetate in 150 mM NaoH, Elent B 

was 150 mM NaOH. Separation of linear components was achieved on a Dionex 

CarboPac
TM

 PA1 column with gradient elution 0 min, 40% eluent A; 5 min, 60% eluent 

A; 45 min, 80% eluent A) at a column temperature of 26
ᵒ
C and a flow rate of 1 ml/min.  

3.2.5.2 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) 

Short range molecular order was determined using a Digilab FTS 7000 spectrometer 

(Digilab USA, Randolph, MA, USA) equipped with a thermoelectrically cooled 

deuterated triglycine sulphate (DIGS) detector using an attenuated total reflectance (ATR) 

accessory at a resolution of 4 cm
-1

 by 128 scans. Spectra were baseline-corrected and then 
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deconvoluted by drawing a straight line between 1200 and 800 cm
-1

 (using Win-IR Pro 

software, BioRad, Mississuaga, ON, Canada).  

3.2.5.3 Wide angle X-ray diffraction (WAXS) 

Relative crystallinity (RC) and polymorphic composition (proportion of A- and B-type 

unit cells) were calculated using a Rigaku Ultima IV X-ray diffractometer (Rigaku 

Americas, TX, USA) with operating conditions of target voltage 40 kV; current 44 mA; 

scanning range 3-35
ᵒ
; scan speed 1.00

ᵒ
/min; step time 0.95; divergence slit width 0.5

ᵒ
; 

scatter slit width 0.5
ᵒ
; sampling width 0.03

ᵒ
 and receiving slit width 0.3mm. The moisture 

content of the starches was adjusted to      21% by being kept in a desiccator over saturated 

K2SO4 solutions (aw = 0.97) at room temperature for 14 days. RC (%) was calculated by a 

curve fitting procedure using IGOR pro 6.1 software (Wavemetrics Inc., Lake Oswego, 

OR, USA). A Gaussian function was used for curve fitting (Appendix 2). The 

polymorphic composition of the starches was determined as described by Ambigaipalan 

et al. (2011). Crystal size at the main reflections (5.5
ᵒ
, 17

ᵒ
, 23

ᵒ
 2θ) was determined using 

the Scherrer’s equation (Langford & Wilson, 1978) as shown below: 

τ = 
𝒌𝝀

𝜷𝒄𝒐𝒔𝜽
  (τ is the mean size of the ordered (crystalline) domains, K is a 

dimensionless shape factor, with a value close to unity,  λ is the X-ray wavelength, β is 

the line broadening at half the maximum intensity,   𝜃 is the Bragg angle).  
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3.2.5.3.1 Determination of ‘A’ and ‘B’ polymorphic composition by X-ray diffraction 

The proportion of ‘A’ and ‘B’ polymorphic compositions of the starches were determined 

by the method described by Zhou, Hoover and Liu (2004). The ‘B’ polymorph content 

was obtained by calculating the ratio of the area under the diffraction peak at 5.6
ᵒ
 2θ to 

the total crystalline area together with the calibration curve (Appendix II) obtained from 

mixtures of pure ‘B’ type (0-100% potato starch) and pure ‘A’ type (100-0% waxy corn 

starch).  

3.2.6 Starch properties 

3.2.6.1 Amylose leaching (AML) 

Native starches (20 mg/db) in water (10 ml) were heated at 90
ᵒ
C in volume calibrated 

sealed tubes for 30 min. The tubes were then cooled to ambient temperature and 

centrifuged at 2000 x g for 10 min. The supernatant liquid (1 ml) was withdrawn and its 

amylose content determined as described by Hoover and Ratnayake (2001). AML was 

expressed as percentage of amylose leached per 100g of dry starch. Three replicate 

samples were used in this determination. 

3.2.6.2 Differential scanning calorimetry (DSC) 

Gelatinization parameters of starches were measured and recorded on Mettler-Toledo 

DSC equipped with a thermal analysis data station and data recording software (STAR@ 

SW 9.20). Water (11 μL) was added with a microsyringe to starch (3.0 mg db) in the DSC 

pans, which were then hermetically sealed, reweighed and allowed to stand overnight at 
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room temperature. The scanning temperature range and the heating rates were 30-110
ᵒ
C 

and 10
ᵒ
C/min, respectively. In all measurements, the thermogram was recorded with an 

empty aluminum pan as the reference. The transition temperatures reported are the onset 

(To), peak (Tp) and conclusion (Tc). The enthalpy of gelatinization (∆H) was assessed by 

integrating the area between the thermogram and a base line under the peak and was 

expressed in terms of Joules per gram of dry starch. All DSC experiments were replicated 

thrice. 

3.2.6.3 Rapid visco analyzer (RVA) 

Rapid Visco Analyzer RVA-4 (Newport Scientific Pty. Ltd., Warriewood, NSW, 

Australia) was used to measure the pasting properties of pulse starches (10% db). The 

samples were held at 50
ᵒ
C for 1 min, heated at 6

ᵒ
C/min at 95

ᵒ
C, held at 95

ᵒ
C for 5 min, 

cooled subsequently at 6
ᵒ
C/min at 50

ᵒ
C, and held at 50

ᵒ
C for 2 min. The speed was 

maintained at 960 rpm for the first 10s, then to 160 rpm for the rest of the experiment. 

3.2.6.4 Acid hydrolysis 

Starches were hydrolyzed in triplicate with 2.2M HCl (1g, db, starch/40 ml) at 35
ᵒ
C in a 

water bath (New Brunswick Scientific, G76D, Edison, NJ, USA) for periods ranging from 

1 to 25 days. Starch slurries were vortexed daily to re-suspend the deposited starch 

granules. Aliquots taken at specific time intervals were neutralized with 2.2M NaOH and 

centrifuged at 2000 x g for 10 min. The extent of hydrolysis was determined by 

expressing the solubilized carbohydrates (Jane, & Robyt, 1984) as a percentage of the 

initial starch using the method of Bruner (1964). 
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3.2.6.4.1 Determination of reducing value 

2 ml of 3,5-dinitrosalicylic acid (DNS) was measured in a glass tube and placed in an ice-

water bath for 5 min and an aliquot of sample (1 ml) was pipetted into 2 ml of the chilled 

3.5-DNS. Then the reaction mixture was diluted to 4 ml with distilled water. The contents 

were mixed and placed in the ice-bath until thoroughly chilled and then was then 

subjected to heating for 5 min in a boiling water bath for color development. The contents 

were then returned to the ice-water bath before color measurement. After chilling, the 

final volume was brought to 8 ml with distilled water at room temperature. Contents were 

subjected to vortex mixing and the absorbance was measured at 540 nm. If the relative 

absorbance of the sample exceeded 1.5 at 540 nm, the spectrophotometer was set to 590 

nm and then the relative absorbance was measured. The apparent sugar content of the 

sample was calculated by using the appropriate regression equation of the standard curves 

(Appendix III) 

3.2.6.5 In vitro starch digestibility 

In vitro starch digestibility was performed by the AACC International (2000) approved 

method 32-40. Pulse starches (100 mg) were incubated with 10 mg pancreatin and 12U 

amyloglucosidase in 4 ml of 0.1M sodium maleate buffer (pH 6.0) at 37
ᵒ
C with 

continuous shaking (200 strokes/min) for 0.5 – 16h and after incubation, 4 ml of 95% 

ethanol were added to terminate the reaction and the sample was centrifuged at 2000 x g 

for 10 min. Glucose content of the supernatant was calculated by a glucose oxidase-

peroxidase assay kit (Megazyme International Ireland Ltd, Bray, Ireland). Based on the 
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rate of hydrolysis, starch was classified as rapidly digestible (digested within 0.5h), 

slowly digestible (digested between 0.5 and 16h) and resistant (undigested after 16h).  

3.2.6.5.1 Determination of glucose content by Megazyme glucose method 

GOPOD (Glucose oxidase/peroxidase) reagent buffer [1.0 M, pH 7.4, p-hydroxybenzoic  

acid and sodium azide (0.4% w/v )] was diluted with distilled water to a final volume of 1 

l. GOPOD reagent enzyme (>12000 U) was dissolved in 20 ml of freshly prepared 

GOPOD buffer. 3 ml of GOPOD reagent was added to 0.1 ml of sample solution 

containing glucose and was incubated for 20 min at 50
ᵒ
C. The absorbance (∆A) of the 

sample was then measured at 510 nm against reagent blank. The glucose content was 

calculated using the formula: 

Glucose (μg/0.1 ml) = 
∆A sample

∆A glucose standard (100 μg)
 X 100……………..(EQ 3.4) 

3.2.7 Retrogradation 

3.2.7.1 Turbidity 

A 2% aqueous suspension (200 mL) of starch was heated for 1 hr in a boiling water bath 

under continuous gentle stirring. It was then cooled for 20 min at 25
ᵒ
C. Triplicate samples 

were used and turbidity was determined by measuring transmittance at 640 nm against 

water blank with a Milton Roy UV–visible spectrophotometer (Spectronic 601, Milton 

Roy Company, Warminster, Pennsylvania, USA). The turbidity development was 

monitored by storing the remaining starch pastes for 1 day at 4
ᵒ
C followed by 2-7 days at 

40
ᵒ
C. 



87 
 

 

3.2.8 Statistical analysis 

Statistical analysis was performed among cultivars for each location and also between the 

means for each location. All determinations were replicated three times and the mean 

values and standard deviations were calculated. Analysis of variance (one-way ANOVA) 

was performed and the mean separations were carried out by Tukey’s HSD test (P<0.05) 

using SPSS 16.0 for Windows (SPSS Inc., Chicago, IL, USA). 
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Chapter 4 

Results and discussion 

4.1 Chemical composition 

Data on the yield and composition are presented in Table 1. The purity of the starches 

was judged on the basis of composition (low nitrogen) and microscopic observation 

(absence of any adhering protein). The yields (on a total seed basis) of pure starch (29.1 

to 37.2%) were in the range reported (12.3 – 49.3%) for other pulse starches (Hoover et 

al., 2010). The nitrogen content was in the range 0.02 to 0.03%. The low nitrogen content 

indicated the absence of non-starch lipids (lipids associated with endosperm proteins). 

The apparent amylose content (AAM) of the cultivars (38.2 to 42.6%) were in the range 

reported (17.0 to 49.0%) for other pulse starches (Hoover et al., 2010). At both locations, 

differences in AAM among cultivars were marginal (Table 1). In all starches, the free and 

bound lipids ranged 0.05 – 0.13 and 0.97 – 1.29%, respectively. Starch damage was 

minimal (<1.0%) in all cultivars. The specific surface area (SSA) ranged from 0.31 to 

0.38 m
2
/g. There was no significant difference in SSA among cultivars at Rosthern. 

However, at Meathpark, ABAR exhibited a lower SSA (0.31 m
2
/g) than the other 

cultivars (0.35 to 0.36 m
2
/g). The arithmetic mean diameter (AMD) ranged from 26.4 to 

30.5 μm. At both locations, ABAR exhibited a higher AMD (Table 1). 



89 
 

Table 4.1: Chemical composition (%) of field pea starches  

Starch source 

and location 

Yield 
Nitrogen 

Apparent amylose 

content
2
 

Lipid 
Arithmetic mean 

diameter (µm) 

Specific surface 

area (m
2
/g) (% initial material) 

    
Free

3
 Bound

4
 

  
Rosthern: 

       CDC Golden  34.7 0.03±0.00
a
 40.6±0.0

a
 0.06±0.03

a
 1.11±0.00

a
 28.0±0.2

a
 0.38±0.01

a
 

Abarth  36.9 0.03±0.00
ab

 38.4±0.3
b
 0.07±0.01

a
 1.10±0.40

a
 30.5±0.3

c
 0.36±0.04

a
 

CDC Patrick  33.7 0.02±0.00
b
 40.1±0.2

a
 0.05±0.01

a
 1.29±0.12

a
 27.2±0.4

ab
 0.35±0.03

a
 

CDC Amarillo  37.2 0.03±0.00
ab

 39.2±0.5
c
 0.12±0.01

a
 1.28±0.06

a
 27.1±0.1

ab
 0.36±0.01

a
 

Mean 

 

0.028
d
 39.58

d
 0.08

c
 1.20

c
 28.2

d
 0.36

d
 

 

     

  Meathpark: 

  CDC Golden  35.2 0.03±0.00
e
 39.2±0.5

eh
 0.07±0.04

b
 1.27±0.01

b
 26.8±0.5

e
 0.35±0.01

ef
 

Abarth  29.1 0.02±0.00
f
 38.2±0.7

ef
 0.07±0.00

b
 1.05±0.10

b
 30.0±0.0

f
 0.31±0.01

e
 

CDC Patrick  35.2 0.03±0.00
e
 42.6±0.2

g
 0.13±0.04

b
 1.25±0.07

b
 26.4±0.0

e
 0.36±0.00

f
 

CDC Amarillo  34 0.02±0.00
f
 39.8±0.3

h
 0.10±0.00

b
 0.97±0.20

b
 26.6±0.2

e
 0.35±0.02

f
 

Mean   0.025
d
 39.95

d
 0.09

c
 1.14

c
 27.45

d
 0.34

d
 

Statistical analysis was performed among cultivars for each location and also between the means for each location. 

  1All data represent the mean of triplicates. Values followed by the same superscript in each column for each starch source are not significantly different (P<0.05) by Tukey’s HSD test. 

2Determined by iodine binding without removal of free and bound lipids. 

 3Lipid extracted from the starch by chloroform-methanol (CM) 2:1 (v/v) at 25ᵒC (mainly free lipids). 

 4Lipid extracted by hot 1-propanol-water (PW) 3:1 (v/v) from the residue left after CM extraction (mainly bound lipids).
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4.2 Morphological characteristics 

Scanning electron microscopy (Fig. 1, supplementary) showed that granules from all four 

cultivars had irregular shapes, which varied from elliptical to round. The surfaces of the 

above starches appeared to be smooth. However, bright field microscopy (Figs 2a–f, 

supplementary) showed the presence of cracks on many granules of all four cultivars. The 

nature and extent of cracking varied among granules. Cracks have also been reported in 

other pulse starches (Ambigaipalan et al., 2011). Cracking has been shown to reflect low 

granule integrity (due to weak interaction between radially arranged AP chains) resulting 

in an increase in strain as the granule grows, and/or to sub-optimal packing of starch 

chains within the granule (Glaring, Koch, & Blennow, 2006). The birefringence patterns 

(Fig 3 a-h, supplementary) viewed under polarized light reflects the radial arrangement of 

AP crystallites within the granule at right angles to the surface with their single reducing 

end group towards the hilum. Birefringence implies that there is a high degree of 

molecular orientation without reference to the three dimensional crystalline order. At both 

locations, CDCA (Figs 3f, h) exhibited strong birefringence in many of its granules 

(arrow 1), well defined quadrants (arrow 2) in some granules and disorganized quadrants 

(arrow 3) in others. However, in CDCG (Figs 3 a, c), ABAR (Figs 3b, d) and CDCP (Figs 

3e, g) birefringence intensities were weaker (arrow 4) and many granules exhibited 

disorganized quadrants (arrow 5) with large voids at the granule centre (arrow 6). The 

intensity of the birefringence pattern has been shown to be influenced by AP content, 

irregularly shaped granules, disrupted crystallites and radial orientation of AP chains 

(Ambigaipalan et al., 2011). In this study, differences in AP content (Table 1) and granule 
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morphology (Figs 1 & 2 supplementary) were not significant. Furthermore, disrupted 

crystallites cannot be a factor influencing birefringence, since relative crystallinity (Table 

3) differences among the cultivars (CDCG > ABAR > CDCP     CDCA) did not correlate 

with birefringence intensities (CDCA > CDCG   CDCP   ABAR). This suggests a greater 

degree of order in the molecular orientation of AP crystallites in CDCA. 
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Figure 4.1: Scanning electron micrograph image of CDC Golden Rosthern 
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CDC Golden Rosthern                            Abarth Rosthern                                  CDC Golden Meathpark                        Abarth Meathpark 

 

CDC Patrick Rosthern                            CDC Amarillo Rosthern                          CDC Patrick Meathpark                      CDC Amarillo Meathpark

 

Figure 4.2: Bright field microscopy images of field pea starch
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        CDC Golden Rosthern                           Abarth Rosthern                                  CDC Golden Meathpark                    Abarth Meathpark 

 

 

 

 

 

 

 

      CDC Patrick Rosthern                              CDC Amarillo Rosthern                      CDC Patrick Meathpark                   CDC Amarillo Meathpark                                          
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Figure 4.3: Polarized light microscopy images of field pea starches. Arrows 1 – 3 indicate quadrants, voids and shape of the quadrants 
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4.3 Amylopectin chain length distribution (APCLD) 

The normalized branched APCLD of the four cultivars are presented in Table 2. At both 

locations, CDCG and ABAR differed significantly (P<0.05) from CDCP and CDCA with 

respect to a higher proportion of short chains [SC (DP 6-12)], lower proportion of long 

chains [LC (DP 25-36)], lower average chain length (𝐶𝐿̅̅̅̅ ), and higher SC/LC ratio 

(reflects high degree of AP branching). However, there was no significant (P<0.05) 

difference among the cultivars with respect to maximum detectable DP and in the 

proportion of chains with DP<6, DP (13-24) and DP>37. The APCLD of these starches 

were in the range reported for other pulse starches (Hoover et al., 2010). The SC/LC ratio 

(CDCG   CDCA > CDCP   CDCA) has been shown to reflect variable activity, due to gene 

mutations, of the enzymes involved in starch synthesis (Zhang, Ao, & Hamaker, 2008). 
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Table 4.2: Amylopectin chain length distribution of field pea starches determined by high performance anion exchange 

chromatography with pulsed amperometric detection
1
 

Starch source                                                    

Degree of polymerization
2 

(dP)% 

<6 
 6-12 

 (A chains) 

 13-24   

 (B1 chains) 

 25-36 

 (B2 chains) 

>37 

 (B3 chains) 
𝐶𝐿̅̅̅̅ 3 

      SC/LC
4
 

Maximum 

detectable dP 

Rosthern 
      

  CDC Golden 0.4±0.3
a
 25.4±0.0

a
 48.9±0.0

a
 14.1±0.1

a
 10.9±0.0

a
 16.3±0.5

a
 0.34 59 

Abarth 0.4±0.3
a
 24.7±0.0

b
 49.1±0.0

a
 14.2±0.0

a
 11.5±0.2

a
 16.0±0.2

a
 0.33 65 

CDC Patrick 0.5±0.2
a
 19.8±0.0

c
 52.9±1.2

a
 16.4±0.0

b
 11.4±0.4

a
 16.8±0.2

a
 0.25 64 

CDC Amarillo 0.3±0.1
a
 18.0±0.2

d
 52.2±0.0

a
 17.3±0.0

c
 11.3±1.0

a
 17.1±0.1

a
 0.23 62 

Mean 0.4
e
 22.0

e
 51.1

e
 15.5

e
 11.6

e
 16.6

e
 

  
 

Meathpark         

CDC Golden 0.5±0.3
f
 25.0±0.7

f
 49.2±1.2

fg
 14.3±0.1

f
 10.9±0.3

f
 15.8±0.2

f
 0.34 60 

Abarth 0.6±0.3
f
 24.8±0.8

f
 48.9±0.6

f
 14.0±0.4

f
 11.7±0.0

f
 15.8±0.3

f
 0.34 64 

CDC Patrick 0.6±0.2
f
 19.1±0.1

g
 51.9±0.0

gh
 16.0±0.3

g
 13.5±1.0

f
 17.0±0.0

g
 0.24 64 

CDC Amarillo 0.4±0.1
f
 18.9±0.2

g
 53.3±0.0

h
 16.7±0.2

g
 11.9±1.7

f
 16.9±0.2

g
 0.24 62 

Mean 0.5
e
 22.0

e
 50.8

e
 15.3

e
 12.0

e
 16.4

e
     

Statistical analysis was performed among cultivars of each starch source and also among the means of each starch source. 

1All data represent the mean of triplicates. Values followed by the same superscript in each column for each starch source are not significantly different (P > 0.05) by Tukey's HSD test. 

2DPn: indicates degree of polymerization. Total relative area was used to calculate the percent distribution. 

3𝐶𝐿̅̅̅̅  represent chain length. 

4SC/LC represents the ratio of short chains (DP<6 to 12) to long chains (DP 13 to >37). 
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4.4 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) 

In ATR-FTIR spectroscopy, the vibrational modes influencing absorption bands at 1105, 

1125 and 1155 cm
-1

 (C-OH, C-C and C-O stretching), 928, 995, 1048, 1080 cm
-1 

(C-OH 

bending and CH2 vibrational modes), and 860 cm
-1 

 (C-O-C symmetrical stretching and 

C-H deformation) reflect conformational and crystalline order in starch (van Soest, 

Tournois, de Wit, & Vliegenthart, 1995). The ATR-FTIR spectrum is sensitive to short 

range order, defined as the double helical order, as opposed to long range order related to 

the packing of double helices (detected by X-ray diffraction). The IR beam penetrates 

only to a depth of 2 micrometers of the sample (Sevenou, Hill, Farhat, & Mitchell, 2002). 

Hence, the IR spectra reflect short range order at or near the granule surface. The 

absorbance bands at 1022/1048cm
-1

 are characteristic of amorphous and crystalline 

structures in starch, respectively (Van Soest et al., 1995). Thus, the ratio of 1048/1022 

cm
-1 

has been used to express the amount of ordered crystalline domains to amorphous 

domains in starches (Capron, Robert, Colonna, Brogly, & Planchot, 2007). As shown in 

Table 3, at both locations, the amount of ordered crystalline domains (at or near the 

granule surface) among the cultivars did not follow the same trend. For instance, at 

Rosthern and Meathpark, the 1048/1022 cm
-1

 ratio
 
followed the order: CDCG   ABAR > 

CDCP     CDCA and ABAR   CDCG   CDCA > CDCP, respectively. The FTIR ratio was 

within the range 0.778 to 1.16 reported for other pulse starches (Maaran, Hoover, 

Vamadevan, Waduge, & Liu, 2016; Ambigaipalan et al., 2011).  
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4.5 Wide angle X-ray diffraction (WAXS) 

The WAXS patterns of starch granules result from parallel packing of left handed co-

axial double helices arranged in extended regular arrays. Granule crystallinity is believed 

to result from clustered AP chains of DP 13 - 15. Relative crystallinity (RC) and B-

polymorphic content are presented in Table 3. All starches exhibited the “C” type X-ray 

pattern characteristic of pulse starches. The “C” type pattern has been shown (Hoover & 

Ratnayake, 2002) to be a mixture of “A” and “B” unit cells in varying proportions. The 

X-ray pattern was characterized by peaks at 5.6, 10.4, 15.0, 17.3, 19.9 and 23.3
ᵒ
 2θ. The 

B-polymorphic content ranged from 45.1 to 55.5% (ABAR > CDCA > CDCP > CDCG), 

and 41.0 to 55.4% (CDCG > CDCP > ABAR > CDCA) at Rosthern and Meathpark, 

respectively. At both locations, the B-polymorphic content not only varied significantly 

(P<0.05) among the cultivars, but was also significantly (P<0.05) different for each 

cultivar at the two locations (Table 3). The B-polymorphic content of pulse starches has 

been reported to be in the range of 22.1 to 48.0% (Hoover et al., 2010). The RC ranged 

from 33.1 to 36.8 (CDCG > ABAR > CDCA > CDCP) and 32.3 to 35.1 (CDCG     ABAR 

> CDCP > CDCA) at Rosthern and Meathpark, respectively. In all cultivars, the 

crystallite size at 5.6, 17.3, 23.3
ᵒ
 2θ was 120, 59 and 45Å, respectively. RC differences 

among pulse starches could be influenced by: 1) crystallite size, 2) orientation of 

crystallites to the X-ray beam, 3) degree of packing of double helices within the 

crystalline lamella, 4) presence of a high proportion of short AP chains (DP<6), 5) extent 

of AP branching, and 6) moisture content. As shown in Table 2, among cultivars, the 

proportion of short chains (DP 6 -12) and the degree of AP branching was higher in 
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CDCG and ABAR. Therefore, theoretically, the RC of CDCG and ABAR should have 

been lower than those of CDCP and CDCA. This is indicative that the higher RC of CDC 

Golden and Abarth are mainly due to their crystallites being better oriented to diffract X-

rays. This seems plausible, since AP content (Table 1), crystallite size and starch moisture 

content did not differ significantly (P<0.05) among cultivars. 
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Table 4.3: FTIR intensity ratio (1048/1016 cm
-1

 ), relative crystallinity and B-polymorphic content of field pea starches
1
 

 

Starch source and location FTIR ratio 1048/1016 cm
-1

 Relative crystallinity
2
(%)  B polymorphic composition

3
 (%) 

Rosthern: 

 
 

 
 

CDC Golden  0.937±0.002
a
 36.8±0.0

a
  45.1±0.1

a
 

Abarth  0.934±0.003
a
 34.1±0.1

b
  55.5±0.1

b
 

CDC Patrick 0.924±0.001
b
 33.1±0.0

c
  46.1±0.0

c
 

CDC Amarillo  0.922±0.002
b
 33.6±0.0

d
  51.6±0.0

d
 

Mean                                                                                                                                                       0.929
f
 34.4

i
  49.58

i
 

 
  

 
 

Meathpark: 

 
 

 
 

CDC Golden   0.938±0.000
cd

 35.1±0.1
e
  55.4±0.1

e
 

Abarth  0.946±0.005
c
 35.1±0.0

e
  50.9±0.1

f
 

CDC Patrick  0.913±0.001
e
 34.0±0.0

f
  53.4±0.0

g
 

CDC Amarillo  0.935±0.002
d
 32.3±0.0

g
  41.0±0.0

h
 

Mean 0.933
f
 34.13

i
  50.18

i
 

        1All data represent the mean of triplicates. Values followed by the same letter, in the same column are not significantly different (P<0.05) by Tukey’s HSD test.  The 

moisture content of the starches were in the range of 16 - 17% (w/w)  

             2.% crystallinity = ƩǀIs-Iaǀ/ǀIc-IaǀX100, where Is-Ia = difference between the sample and amorphous intensities and Ic-Ia = difference between the 100% crystalline (quartz) 

and amorphous intensities. 

            3 Proportion of ‘B’ polymorph α [area of the peak at 5.54 (2θ)/total peak area].  
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4.6 Differential scanning calorimetry (DSC) 

Gelatinization transition temperatures (To (onset), Tp (midpoint), and Tc (conclusion)), 

and enthalpies of gelatinization (∆H) of the four pea cultivars are presented in Table 4. At 

both locations, CDCG and ABAR exhibited higher To, Tp, Tc, and a wider Tc - To, than 

those of CDCP and CDCA. However, there was no significant difference (P<0.05) in ∆H 

among cultivars. Gelatinization parameters have been shown to be influenced by the 

molecular architecture of the crystalline region which is related to the distribution of AP 

short chains (DP 6-11) and not by the proportion of crystalline region which corresponds 

to the AM/AP ratio (Noda, Takahata, Sato, Ikoma & Mochida, 1996). The above authors 

have shown that a low To, Tp, Tc and ∆H reflect the presence of abundant short AP (DP 6 

– 13) chains. Shi and Seib (1992) have also shown by studies on ae, wx, ae, duwx maize 

starches, that wx starch having the lowest proportion of short chains (DP 6-13) exhibited 

lower To, Tp, Tc and ∆H values. Perez and Bertoft (2010) and Biliaderis, Grant and Vose 

(1981) have shown that starches with a high degree of AP branching exhibit low To, Tp, 

and Tc. However, in this study, the higher To, Tp, Tc were exhibited by CDCG and ABAR, 

where AP branching was more extensive and the proportion of short (DP 6 -12) and long 

(DP 25 – 36) chains were higher and lower, respectively, than those of CDCP and CDCA 

(Table 2). This suggests that AM may be co-crystallized with AP in CDCG and ABAR. 

This seems plausible, due to their higher proportion of short A chains (DP 6-12) and 

higher AP branching density (facilitates interactions with AM chains). Studies on waxy 

starches (Bertoft, Annor, Shen, Rumpagaporn, Seetharaman, & Hamaker, 2016) have 

shown that crystalline A chains (DP>9) potentially participate in the formation of double 
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helices. Thus, the higher To, Tp, and Tc of CDCG and ABAR is a reflection of the 

additional thermal energy required to disrupt AM – AP crystallites. The wider Tc-To 

exhibited by the above starches could be attributed to melting of both heterogenous (AP –

AM) and homogenous (AP –AP) crystallites. This seems plausible, since there was no 

significant differences (P<0.05) among cultivars with respect to AP content (Table 1) or 

crystal size (Section 3.4), and RC was mainly indicative of crystallite orientation rather 

than to differences in crystalline stability (Section 3.4).  As shown in Table 4, there was 

no significant difference (P<0.05) in ∆H among the starches. Theoretically, ∆H should 

have been lower in CDCG and ABAR due to: 1) higher proportion of DP 6-12 chains and 

2) higher degree of AP branching (prevents close alignment of double helices within the 

crystalline lamella). The data suggests that double helices resulting from AM-AP co-

crystallization may have negated the impact of factors 1 and 2 on ∆H.  
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Table 4.4: Gelatinization parameters of field pea starches
1
 

Starch source and location     Gelatinization transition  parameters (ᵒC)
2
   

  To
3
 Tp

3
 Tc

3
 (Tc-To)

4
 ∆H/(AP)

5
 J/g 

Rosthern: 

     CDC Golden  62.2±0.1
ab

 66.6±0.1
ab

 74.7±0.4
a
 12.5±0.5

a
 5.8±0.1

a
 

Abarth  62.6±0.1
a
 67.0±0.0

a
 75.4±0.1

a
 12.8±0.0

a
 6.2±0.0

b
 

CDC Patrick  61.2±0.1
c
 65.3±0.1

c
 72.4±0.3

b
 11.2±0.2

b
 6.2±0.0

b
 

CDC Amarillo  61.8±0.2
b
 66.0±0.3

b
 72.8±0.4

b
 11.0±0.2

b
 6.0±0.1

ab
 

Mean 62.0
d
 66.2

d
 73.8

d
 11.9

d
 6.1

d
 

Meathpark: 

     CDC Golden  61.3±0.1
ef

 65.6±0.0
e
 74.8±0.1

e
 13.5±0.1

e
 5.8±0.3

e
 

Abarth  61.5±0.3
e
 65.8±0.2

e
 74.9±0.0

e
 13.3±0.3

e
 6.3±0.1

e
 

CDC Patrick  60.6±0.2
gh

 64.2±0.3
f
 71.7±0.1

f
 11.1±0.3

f
 6.2±0.1

e
 

CDC Amarillo  60.8±0.0
fh

 64.7±0.1
f
 72.3±0.1

g
 11.5±0.1

f
 6.4±0.2

e
 

Mean 61.1
d
 65.1

d
 73.4

d
 12.3

d
 6.2

d
 

 Statistical analysis was performed among cultivars for each location and also between the means for each location. 

 1All data represent the mean of triplicates. Values followed by the same superscript in each column for each starch source are not significantly different (P<0.05) by 

Tukey’s HSD test. 

 2Starch: water ratio = 1:3 (w/w dry basis). 

 3To, Tp, and Tc indicates the onset, peak, and end temperature, respectively. 

 4(Tc-To) indicates the gelatinization temperature range. 

 5Gelatinization enthalpy expressed on the basis of amylopectin content. 
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4.7 Amylose leaching (AML) 

The extent of AML at 90
ᵒ
C is presented in Table 5. At both locations, AML was less 

pronounced in CDCG and ABAR than in CDCP and CDCA. AML has been shown to be 

influenced by: A) bound lipid content, B) amylose content, and C) extent of interaction 

between AM-AM and AM-AP chains (Hoover & Ratnayake, 2002). In this study, there 

was no significant difference in A or B among the starches (Table 1). Therefore, the 

lower extent of AML observed with CDCG and ABAR lends credence to our postulate 

that AM is co-crystallized with AP in the above starches. 
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4.8 Pasting properties 

Pasting is the phenomenon following gelatinization in the dissolution of starch. The 

granules become increasingly susceptible to shear disintegration as they swell and release 

soluble material as they disintegrate. The paste that is obtained on gelatinization is a 

viscous mass consisting of a continuous phase of solubilized AM and/or AP, and a 

discontinuous paste of granule remnants. The peak viscosity and shear stability have been 

shown to be influenced by AM content, proportion of AP chain lengths of DP 13-24 and 

DP>37 (Han & Hamaker, 2001). Han and Hamaker (2001) have shown by studies on rice 

starches of nearly similar content, but differing significantly in the proportion of long AP 

chains, that rice starches containing the highest proportion of long AP chains showed 

almost no viscosity breakdown. This was attributed to the entanglement between long AP 

chains (decreases the extent of dispersion) and to an increase in the gyration radius 

(volume occupied by AP in a solution) of AP molecules. Final viscosity has been shown 

to be influenced by: 1) extent of AML (during the heating period), 2) network formation 

by leached AM chains, 3) presence of intact rigid swollen granules embedded in the AM 

network (Maaran, Hoover, Donner, & Liu, 2014). The pasting properties of the starches 

are presented in Table 5. At both locations, the difference in breakdown viscosity (BV) 

and final viscosity (FV) among cultivars, followed the same order: CDCG > ABAR > 

CDCP    CDCA, and CDCP > CDCA > CDCG > ABAR, respectively. However, the same 

trend was not seen with respect to pasting temperature (PT), peak viscosity (PV), and 

setback (SB) at the two locations. For instance, at Rosthern, PT, PV and SB followed the 

order: CDCG     ABAR > CDCA    CDCP, CDCG > CDCP > ABAR >CDCA and CDCG 
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> CDCA > CDCP > ABAR, respectively. Whereas, at Meathpark, the corresponding 

orders were CDCG > ABAR > CDCA   CDCP, CDCP > CDCG > CDCA > ABAR and 

CDCP > CDCA   CDCG > ABAR, respectively. The greater thermal stability exhibited by 

CDCP and CDCA (reflected in their lower BV) could be attributed to their higher 

proportion of long AP chains (DP 13 to 36) and smaller proportion of short (DP<12) AP 

chains (Table 2). The higher FV exhibited by both CDCP and CDCA, is indicative that 

their lower extent of granule breakdown during the holding period may have resulted in a 

large proportion of intact granules being embedded within the AM network. The presence 

of these embedded intact granules may have imparted resistance to the stirring action of 

the RVA paddles during the cooling cycle, resulting in a higher FV for the above 

starches. In many starches, the SBV order normally mirrors the FV order. However, this 

was not the case with CDCP (at Rosthern) and CDCG (at Rosthern and Meathpark).  
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Table 4.5: Amylose leaching and pasting properties of field pea starches
1 

  

Starch source and 

location 

 Amylose leaching at 

90
ᵒ
C (%) 

Pasting 

temperature(
ᵒ
C) 

Peak 

viscosity(cP)
2
 

Breakdown 

viscosity(cP)
2
 

Final 

viscosity(cP)
2
 

Setback 

viscosity(cP)
2
 

Rosthern: 

      CDC Golden  11.8±0.0 72.7±0.0
a
 4428±3

a
 2363±67

a
 4730±61

a
 2665±9

a
 

Abarth  9.8±0.0 72.3±0.5
a
 3332±14

b
 1510±20

b
 3958±37

b
 2136±4

b
 

CDC Patrick 14.0±0.0 69.8±0.6
b
 3839±32

c
 1217±4

c
 5193±54

c
 2571±18

c
 

CDC Amarillo  13.6±0.0 70.3±0.0
b
 3254±41

b
 885±31

d
 4946±47

d
 2577±37

c
 

Mean 12.3 71.28
h
 3713.25

h
 1493.75

h
 4706.75

h
 2487.25

h
 

 
 

     

Meathpark: 
 

CDC Golden  7.3±0.0 72.5±0.3
e
 4349±11

e
 2397±45

e
 4442±82

e
 2491±26

e
 

Abarth  11.4±0.0 71.9±0.0
f
 3284±12

f
 1772±37

f
 3437±4

f
 1926±53

f
 

CDC Patrick  13.7±0.0 69.8±0.6
g
 4663±24

g
 1624±3

g
 6026±65

g
 2987±38

g
 

CDC Amarillo  14.2±0.0 70.3±0.1
g
 3581±16

h
 981±23

h
 5048±40

h
 2448±1

e
 

Mean 11.7 71.13
h
 3969.25

h
 1693.5

h
 4738.25

h
 2463

h
 

Statistical analysis was performed among cultivars for each location and also between the means for each location. 

1 All data represent the mean of triplicates. Values followed by the same superscript in each column for each starch source are not significantly different (P<0.05)   by 

Tukey’s HSD test.  

2 cP refers to centipoise. 
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4.9 Acid hydrolysis 

Acid hydrolysis of the starches by 2.2M HCl during a 25 day period is presented in Table 

6. At both locations, differences in the extent of hydrolysis among the starches during the 

first eight days of hydrolysis were marginal. However, on day 12, CDCP and CDCA were 

hydrolyzed to a lesser extent (34.2 to 38.0%) than CDCG and ABAR (44.6 to 47.1%). 

Furthermore, the extent of increase in hydrolysis between days 8 and 12, was much 

higher in CDCG and ABAR (29.6 to 44.7%) than in CDCP and CDCA (32.1 to 34.2%). 

On day 25, CDCG and ABAR were hydrolyzed to a greater extent than CDCP and 

CDCA. These differences were more marked at Meathpark. It has generally been 

accepted that heterogeneous acid hydrolysis preferably attacks the bulk and 

intercrystalline amorphous regions of the granule. In contrast, crystalline regions are less 

accessible to attack by hydrolytic protons and are attacked only after a period of 10 to 12 

days (Hoover, 2000). To account for the slower hydrolysis of the crystalline regions, two 

hypotheses have been proposed (Hoover, 2000). First, the dense packing of starch chains 

within the starch crystallites hinders the penetration of H3O
+
. Second, acid hydrolysis 

requires a ring distortion of the 
4
C1 conformation of the glucose units to the half chain 

conformation. In the half chair conformation, the glycosidic linkages become more 

accessible to H3O
+
. Immobilization of the sugar conformation due to dense packing of AP 

double helices in the crystalline domains would render the above transition difficult. The 

slower increase in hydrolysis between days 8 and 12 seen with CDCP and CDCA in 

Table 6 is indicative that glycosidic linkages present in crystallites of the above starches 

are less accessible than those present in CDCG and ABAR to attack by H3O
+
. As shown 
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in Table 2, the AP chains of both CDCP and CDCA were composed of fewer proportions 

of short chains (DP 6-12), larger proportion of longer chains (DP 25-36) and higher 

average chain length (𝐶𝐿̅̅̅̅ ) than those of CDCG and ABAR. Therefore, it is likely, that in 

CDCP and CDCA, their longer DP 25-36 chains (represent B2 chains which span two 

amylopectin clusters) may have been entangled with other AP molecules, rendering the 

4
C1 to half chair conformation difficult. This would then restrict the ability of H3O

+
 to 

access the glycosidic linkages. In summary, the differences in hydrolysis among the 

starches between days 8 and 12 are probably influenced by differences in their proportion 

of short chains, long chains and average chain length (Table 2). 
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Table 4.6: Acid hydrolysis (%) of field pea starches
1
 

  

Starch source and location 

Number of days 

1 2 5 8 12 20 25 

Rosthern:        

CDC Golden 2.3±0.0
a
 6.1±0.2

a
 20.3±0.0

ab
 29.7±0.5

a
 44.6±0.1

a
 60.2±0.3

a
 69.3±0.6

a
 

Abarth 2.3±0.0
a
 6.3±0.0

a
 21.7±0.1

ac
 29.6±0.2

a
 44.7±0.1

a
 60.7±0.7

a
 71.9±0.0

b
 

CDC Patrick 1.7±0.0
b
 5.7±0.0

b
 19.8±0.7

b
 32.1±0.4

b
 34.2±0.5

b
 59.9±0.3

a
 66.8±0.4

c
 

CDC Amarillo 2.0±0.0
c
 6.3±0.0

a
 22.0±0.3

c
 32.1±0.1

c
 38.0±0.7

c
 61.7±1.2

a
 68.7±0.2

a
 

 

Meathpark: 

       

CDC Golden 2.3±0.1
d
 6.4±0.0

d
 21.8±0.1

d
 30.2±0.1

d
 46.8±0.2

d
 63.2±0.1

d
 74.2±0.3

d
 

Abarth 2.6±0.0
e
 6.6±0.0

e
 22.3±0.1

e
 31.9±0.2

d
 47.1±0.0

d
 64.6±0.1

e
 75.9±0.3

e
 

CDC Patrick 1.8±0.0
f
 6.1±0.0

f
 19.7±0.1

f
 31.9±0.9

e
 37.4±1.2

e
 61.0±0.4

f
 67.8±0.6

f
 

CDC Amarillo 2.1±0.0
g
 6.1±0.0

f
 19.1±0.0

g
 31.4±0.1

f
 36.2±0.2

e
 60.6±0.3

f
 64.3±0.1

g
 

 

1All data represent the mean of triplicates. The values followed by the same superscript are not significantly different (P<0.05) by Tukey’s HSD test. 
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4.10 Starch digestibility 

Rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) 

determined by in vitro digestibility of the field pea starches by a mixture of pancreatin 

and amyloglucosidase are presented in Table 7 (supplementary). The above nutritional 

classification reflects both the kinetic component and the completeness of digestibility. 

RDS reflects starch that is rapidly and completely digested in the small intestine. SDS 

reflects starch that is more slowly digested in the small intestine and RS reflects the sum 

of starch, and the product of starch degradation not absorbed in the small intestine, but is 

fermented in the large intestine. (Jenkins et al, 1983). As shown in Table 7 

(supplementary), at both locations, CDCP and CDCA exhibited RDS levels (10.4 to 

10.9%) that were higher than those of CDCG and ABAR (8.6 to 9.5%). These levels were 

in the range (8.1 to 23.8%) reported for other pulse starches (Chung, Liu, Hoover, 2009; 

Miao, Zhang, Jiang, 2009; Sandhu & Lim, 2008). Variations in SDS levels among 

cultivars ranged from 44.9 – 48.8% (Rosthern) and 43.7 – 48.8% (Meathpark). These 

levels were higher than those reported (29.7 to 45.7%) for other pulse starches (Hoover et 

al., 2010). The RS levels at Rosthern (28.9 – 34.9%) and Meathpark (29.7 – 38.7%) 

followed the order of CDCG > ABAR > CDCP     CDCA, and CDCG > ABAR > CDCA 

> CDCP, respectively. The range in RS levels for the above cultivars was lower than the 

range (40.5 to 65.2%) reported for other pulse starches (Hoover et al., 2010). The rate and 

extent of enzyme hydrolysis has been shown (Hoover & Zhou, 2003; Zhang, 

Venkatachalam & Hamaker, 2006) to be influenced by: 1) granule surface area, 2) pores 

on the granule surface, 3) relative crystallinity, 4) crystal size, 5) polymorphic content, 6) 
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AM content, 7) proportion of short AP chains, 8) AP branching density, and 9) molecular 

order at the granule surface, 10) degree and extent of retrogradation between hydrolyzed 

starch chains. In this study, differences in RDS levels among cultivars are mainly 

influenced by the interplay among differences in: a) molecular order (ABAR > CDCG > 

CDCA > CDCP), b) extent of AP branching (CDCG     ABAR > CDCP     CDCA) and c) 

proportion of AP short chains (CDCG     ABAR > CDCP     CDCA). A high degree of 

molecular order would restrict diffusion of amylolytic enzymes into the granule interior. 

Whereas, extensive AP branching and a high proportion of short AP (DP 6 -12) chains 

would restrict the ability of amylolytic enzymes to access the glycosidic linkages. This 

seems plausible, since differences in RDS levels among cultivars cannot be explained in 

terms of factors 1 to 6 due to the following reasons: 1) absence of pores on the granule 

surfaces (Fig 1, supplementary), 2) marginal differences in AM content (Tables 1, & 3) 

similar crystallite size Section 3.4), 4) RC differences did not reflect AP double helical 

packing density within the crystalline lamella, and 5) Gérard, Colonna, Buléon, Planchot 

(2001) have shown that regardless of AM content or RC, starches with a higher 

proportion of B-type crystallites are more resistant to amylolysis than A or C-type 

(contain A and B polymorphs in varying proportion) crystallites. However, in this study, 

variation in B-polymorphic content (Table 3) among cultivars cannot be considered as a 

factor influencing RDS levels, since at both locations, there was no correlation between 

RDS levels and B-polymorphic content. For instance, at Meathpark, CDCP and CDCA 

with B-polymorphic contents of 53.4 and 41.0%, respectively, exhibited similar RDS 

levels. Whereas, at Rosthern, CDCA with a higher B-polymorphic content (51.0%) than 

CDCG (41.0%) exhibited a higher RDS level (Table 7, supplementary).Variation in RS 
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content among cultivars (CDCG   ABAR > CDCP   CDCA) reflect the interplay among the 

following factors: A) rate and extent of aggregation of double helical segments formed by 

retrogradation of hydrolyzed amylose chains with a DP in the range 30 to 70 (Leloup, 

Colonna, & Ring, 1991), B) state of organization of AM chains within native granules 

(free or co-crystallized with other AM or AP chains) and C) AP branching density. It is 

plausible, that the higher resistance exhibited by CDCG and ABAR towards amylolysis 

may be influenced by their higher AP branching density (slows digestion due to the 

slower kinetics associated with digestion of α (1→6) linkages  (Zhang & Hamaker, 2013) 

and AM-AP co-crystallization (sterically hinders the conformational transition (chair to 

half-chair) required for hydrolysis of the glucosidic linkages of the D-glucopyranosyl 

units). 
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Table 4.7: Nutritional fractions of field pea starches determined by in vitro hydrolysis
1
 

Starch source and location RDS
2
     SDS

2
     RS

2
 

Rosthern: 

   CDC Golden  9.2±0.3
a
 45.9±0.6

a
 34.9±0.3

a
 

Abarth 8.6±0.3
a
 47.9±0.4

b
 31.1±0.1

b
 

CDC Patrick 10.5±0.0
b
 44.9±0.4

a
 28.9±0.4

c
 

CDC Amarillo  10.9±0.2
b
 48.8±0.3

b
 29.9±0.4

bc
 

Mean 9.8
e
     46.9

e
     31.2

e
 

Meathpark: 

   CDC Golden  8.6±0.2
f
 43.7±0.3

f
 38.7±0.5

f
 

Abarth  9.5±0.1
g
 48.8±0.3

g
 35.6±0.1

g
 

CDC Patrick 10.8±0.3
h
 47.8±0.2

g
 29.7±0.5

h
 

CDC Amarillo  10.4±0.0
h
 48.2±0.5

g
 33.8±0.5

i
 

Mean 9.8
e
     47.1

e
     34.5

e
 

 

Statistical analysis was performed among cultivars for each location and also between the means for each location. 

1
All data represent the mean of triplicates. Values followed by the same superscript in each column for each starch source are not significantly different (P<0.05) by Tukey’s HSD test. 

2
RDS: rapidly digestible starch; SDS: slowly digestible starch; RS: resistant starch 
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4.11 Turbidity 

Turbidity effects have their origin in refractive index fluctuations over a distance scale 

comparable to the wavelength of observation (Gidley & Bulpin, 1987). In a polymer-

solvent system this is caused by density fluctuations over the same distance scale, and is 

most likely due to extensive polymer-polymer aggregation. Turbidity measurements have 

been used extensively to determine the rate and extent of starch retrogradation 

(Ambigaipalan, Hoover, Donner, & Liu, 2013; Karim, Norziah, & Seow, 2000. The first 

stage of retrogradation has been shown to involve mainly interaction between amylose 

(AM) chains leading to crystallization, which is completed within the first few hours of 

storage, whereas, the second stage that occurs over longer periods involves primarily 

interaction between AP chains leading to crystallization. As illustrated in figure 4 

(supplementary), at both locations, the %T on day 0 followed the order: 

CDCG>ABAR>CDCP~CDCA. %T decreased rapidly in all starches (ABAR   

CDCG>CDCP>CDCA) during the first 24h of storage. Thereafter, %T decreased 

gradually to the same extent (Fig 4). The low %T exhibited by both CDCP and CDCA at 

day 0 could be attributed to their higher extent of AML (Table 5) and to the presence of a 

higher proportion of intact swollen granules in the gelatinized paste (Section 3.8). The 

rapid decrease in %T in all starches during the first 24h of storage reflects the interplay 

between the extent of AML and the rate and extent of interaction between leached 

amylose chains (influenced by the viscosity of the gelatinized paste). The absence of any 

significant difference in %T beyond 24h of storage is indicative that the rate of 
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interactions between AM-AM, AM-AP and AP-AP chains may have been too slow to be 

measurable by light transmission.  
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Figure 4.4: Turbidity profiles of field pea starches stored at 25
ᵒ
C 
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Chapter 5 

  

5.1 Summary and conclusion 

At both growth locations, starches isolated from the four cultivars of field peas, did not 

exhibit any significant (P < 0.05) differences with respect to chemical composition, 

granule morphology, SDS content and ∆H. However, the proportion of short AP chains 

(DP 6-12), degree of AP branching, molecular order, To, Tp, Tc, Tc-To, pasting temperature, 

RC, and RS content were higher in CDCG and ABAR. Whereas, the proportion of long 

AP chains (DP 13 – 26), thermal stability, RDS content and the final viscosity attained 

during pasting were higher in CDCP and CDCA. DSC and AML data revealed AM-AP 

co-crystallization in granules of CDCG and ABAR. Differences in structure and 

physicochemical properties between CDCG and ABAR and between CDCP and CDCA 

at both growth locations were marginal. Differences in physicochemical properties among 

cultivars were mainly influenced by the interplay among AP chain length distribution, 

degree of AP branching, molecular order, and AM-AP co-crystallization. This study 

showed that CDCA would be the better choice for incorporation into foods subjected to 

sterilization and shear (due to a lower extent of viscosity breakdown), whereas CDCG 

with a lower RDS and higher RS level may be a healthier choice. However, due to the 

high degree of set-back, all starches need to be extensively modified before they could be 

incorporated into foods subjected to repeated freeze-thaw cycles. Research is underway 

on field pea starch modification. 
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5.2 Directions for future research 

I have listed below the areas that need to be addressed in order to obtain additional 

insights into the structure-property relationships among field pea starches. 

1. Morphology: The morphology of field pea starches in the study has been mainly 

investigated using scanning electron microscopy, bright field microscopy and polarized 

light microscopy. However, atomic force microscopy can be used to visualize the 

morphological features of starch granules at a greater resolution and also provide 

topographical information that cannot be obtained from scanning electron microscopy 

(Baldwin, Adler, Davies, & Melia, 1998). 

 2. Structure: The structure of field pea starches was investigated using methods such as 

HPAEC-PAD, WAXS, and ATR-FTIR. However, the amount of amorphous and double 

helical content should be determined by 
13

C CP/MAS NMR in order to obtain deeper 

insights into the mechanism of acid and enzyme hydrolysis (Gidley & Bociek, 1985). 

3. Retrogradation: In this study, the progress of retrogradation was monitored using 

turbidity measurements (mainly measure interaction between amylose chains). However, 

additional methods such as DSC (provides information of amylopectin crystallization) 

and 
13

C CP/MAS NMR (elucidates changes in water mobility) can also be used, since 

each of the above techniques measures a different property of the retrograded starch gel 

(Karim, Norziah, & Seow, 2000). 
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4. Enzyme hydrolysis: Studies on enzyme hydrolysis have been mainly focussed in 

understanding the reactivity of starches with varying amylose contents towards porcine 

pancreatic amylase (PPA). In this study, RDS, SDS and RS contents were determined 

based on the rate of glucose release. However, to gain additional insights into the kinetics 

of enzyme hydrolysis, the degradation pathway of PPA into the granule structure of field 

pea starches needs to be examined by imaging techniques such as confocal laser scanning 

microscopy, scanning electron microscopy and polarized light microscopy (Hoover & 

Zhou, 2003). 

5. Acid hydrolysis: In this study, the rate and extent of acid hydrolysis of field pea 

starches were observed by treating native starch granules with hydrochloric acid for 

various time intervals. However, the structure and properties of the acid-hydrolyzed 

residues at different time periods of hydrolysis needs to be investigated in order to 

understand how starch-chain organization within the amorphous and crystalline domains 

influence the accessibility of H3O
+
 into the granule interior (Hoover, 2000). 

6. Modification: This study has shown that the field pea starches cannot be utilized in the 

food industry without prior modification. Thus, modification of starch by physical and/or 

chemical means must be carried out in order to improve the functionality of field pea 

starches (Kaur, Ariffin, Bhat, & Karim, 2012). 
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Figure A1: Standard curve for the determination of amylose content 
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Figure A2: Standard curve for the determination of B polymorphic content 

 

y = 0.067x - 0.1945 
R² = 0.9866 

-1

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120

B
 p

o
ly

m
o
rp

h
ic

 c
o
n
te

n
t 

 

Percentage 



161 
 

 

 

 

 

 

Figure A3: Standard curve for the determination of reducing sugar as glucose 
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Figure A4: Standard curve for the determination of reducing sugar as maltose 
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