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Abstract

A numerical program is developed to optimize the ship hull based on wave making

resistance. Ship hull geometries are modified to optimize the hulls within a limit to

maintain the design criteria. In this work, a non-uniform rational b-spline (NURBS)

based hull surface is taken as the input for optimization. MAPS resistance is a

potential theory based program that uses a modified Dawson method to calculate

wave making resistance. An automatic hull discretization system is developed for

calculating wave making resistance by MAPS resistance. Two different algorithms,

Path of steepest descent (PSD) and Broyden–Fletcher–Goldfarb–Shanno (BFGS) are

employed for optimization. At first the PSD is used for optimization. Later on a BFGS

algorithm is applied with the help of a Kriging technique to reduce the computational

time and expense. Three different kinds of hull modification methods are introduced

to optimize the ship hull. Multiple ship hulls are used for validating the optimization

technique. All the ship hulls produced satisfactory results by decreasing the wave

making resistance. The optimal hulls are further investigated for a series of Froude

numbers to compare their wave making resistance with published experimental data.
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Chapter 1

Introduction

1.1 Background

Ship design is one of the most important stages of ship construction. Although this

is done in a very preliminary stage, it has a significant effect on the ship’s entire life.

Not only that, seakeeping performance is also determined by the ship hull design.

Ships consume large amounts of fuel in their operation. As a result, ships emit

unfavorable gases like CO2, H2O(aq), NO2, NO3, SO3 etc in the environment. In

2011, the International Maritime Organization (IMO) introduced a new rule to reduce

greenhouse gases emission for ships (MARPOL Annex VI, Chapter 4). This regulation

has been effective since January 2013. As a result, it has become mandatory to limit

the emission of toxic gases from ships. The total resistance of a ship mainly consists

of viscous resistance and wave making resistance. For low speed the viscous resistance

dominates but with the increase of ship speed the wave making resistance becomes

dominating. So for ships with higher speeds, it is essential to reduce the wave making

resistance in order to reduce the total resulting resistance. For these reasons, it is

crucial for a ship hull design to be optimized. In this thesis, the main target is to

1
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reduce the wave making resistance by optimizing ship hull geometry.

1.2 Literature Review

The geometry of ship hull is complex. To optimize a ship, it is required to represent

the hull mathematically. Besides this, selecting the region of optimization and select-

ing the types of optimization make the whole optimization procedure difficult. The

total optimization procedure for a ship can be divided into hull representation, hull

deformation, and optimization procedure.

1.2.1 Hull Representation

Ship hull shapes are difficult to represent by mathematical equations. Due to the

complexity of ship hull, no mathematical formula has been established to represent

commercial ship hull perfectly. For this reason it is challenging to modify an estab-

lished hull shape as per requirement. In early days, ship design researchers used the

offset table of the ship to represent the hull form. The benefit of using the offset table

is that it is relatively easy to use and understand. To solve these problems, researchers

started to use Bezier curve to represent the hull. Bezier curve is very simple to use and

provides good representation of the geometry. But this curve has some major draw-

backs. Increasing degree of a Bezier curve adds flexibility to the curve but at the same

time it also increase the processing effort and probability of causing numerical noise

in calculation. Beside these the Bezier curve requires more control vertices to define

the curve properly and joining two Bezier curves is relatively complex. To overcome

these problems, spline curve was introduced. There is a wide range of splines. The

most popular one is the cubic spline. Spline is a numerical function that is piecewise

continuous and its shape is defined by a polynomial function. Recently the B-spline
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has become very popular for surface representation. It can give a clear mathematical

expression of ship hull. In this method the points on the B-spline surface are very

close to the original control points. As a result it gives very accurate information

about the ship hull. Rogers (1980) gave a detail discussion about the procedure of

generating a hull using B-spline surface. Park and Choi (2013) used B-spline based

surface modeling technique during the optimization procedure. Although the B-spline

gives very good representation of geometry, it has some drawbacks. B-spline curves

are variant under transformation. Beside this this curves are unable to define conic

sections. To fix these problems a modified version of B-spline is introduced, known

as Non-Uniform Rational B-spline(NURBS). In NURBS the user has better authority

over the control points as they are governed by weights.

Researchers frequently uses the NURBS based hull representation. Kim et al. (2008)

described a CFD based optimization procedure where the input of the geometry is

NURBS surface. Ping et al. (2008) used a new way of hull generation based on

NURBS surface.

With the help of B-spline and NURBS, parametric modeling is introduced. This

design-oriented parametric definition language is introduced to vary ship hulls quickly

and smoothly. By using the parametric modeling Harries (1998) developed a method

based on global and regional form parameters such as principal dimensions, different

coeffcients etc. In the surface generation part he used a set of B-spline curves to

represent the sectional curves of the ship hull. Later on this method is modified by

Abt et al. (2001). They presented a parametric modeling approach that is fast and

efficient to produce multiple hull at the time of hull variation. Ping et al. (2008)

introduced another quick approach to generate and variate hull based on paramet-

ric hull generation. Han et al. (2012) described a fairness optimized B-spline form

parameter curve based hull variation procedure by applying parametric hull design.
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The benefit of using this technique is that based on the selected parameters, the hull

form modification can be done very easily and results in smooth surfaces. The main

problem with this procedure is that making a parametric model for complex geometry

is not easy. It requires higher skill and adequate time to generate a accurate model.

To avoid this problem, the NURBS based ship model is used in this work as an input

hull geometry, which is relatively easy to generate and more available.

1.2.2 Hull Modification

The types of hull modification procedures for ships can be divided into three parts:

global, regional, and local (Nowacki et al. (1995). There are numerous methods

regarding global modification. Shifting the stations of the hull along longitudinal

direction is one of the major and popular global modification procedures. Ground

breaking work on modification of ship hull design by shifting the sections was carried

on by Lackenby (Lackenby (1950)). In his work he modified the hull by modifying the

position of the longitudinal center of buoyancy, by varying the fullness of the hull and

by changing the length of the parallel middle body of the ship. Lackenby introduced

shift functions to change the existing position of hull sections by keeping the fore and

aft perpendiculars unchanged. Janson and Larsson also introduced another procedure

of hull modification based on two different types of variable (Janson and Larsson

(1997)). For the modification of the hull they used a program known as ALADDIN,

which is capable of varying the hull geometry based on two parameters, master and

slave. Slave is a function of master parameters. They optimized the hull globally based

on the ship resistance. Markov and Suzuki modified the ship hull globally based on the

shifting of mathematically generated surface sections and real ship sections (Markov

and Suzuki (2001)). In their work they also introduced another procedure based on

shifting and deforming of real ship sections. Grigoropoulos introduced a global hull
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variation by changing the dimensions from a parent hull (Grigoropoulos (2004)). In

their work the hull with best seakeeping behaviour is selected based on a weighted sum

of the resonant values. Once the hull is selected it can be modified locally to improve

the optimizing property. In this thesis a global modification is carried out based on a

shifting method. This procedure is similar with Markov’s shifting of mathematically

generated surface sections, but with the exception that the amount of shift on forward

and aft regions can be controlled by two parameters. This allows the ship shape to

remain undistorted while the hull is undergoing variation.

In the regional modification procedure, a ship hull is deformed regionally instead of

globally. A certain portion of the hull goes through the modification algorithm to pro-

duce a new hull surface. Regional surface modification can be done by using Markov’s

shifting procedure(Markov and Suzuki (2001)). But this shifting only works on a cer-

tain portion of ship hull. Park and Choi (2013) introduced a regional deformation by

modifying the B-spline surface of a certain portion of ship. In the works of Kim et

al., a new regional shifting method is frequently used. In their multiple papers they

used a custom formulation to modify the sectional area distribution of a ship (Kim

and Yang (2010b), Kim et al. (2010), Kim and Yang (2013), Kim and Yang (2011)).

This method is also used in this thesis for surface modification.

Local hull modification indicates deforming certain points on a ship’s hull. The hull

deformation can be carried out locally by modifying the control points on the bow,

stern, and combination of both (Kim et al. (2008), Kim and Yang (2010a), Kim and

Yang (2013)). The other way of modifying the hull locally is moving some control

points on the surface (Janson and Larsson (1997)). The advantage of local modifica-

tion is that in this way modification can be done on any place of the ship but because

of this kind of flexibility it also creates an unrealistic change in the shape of ship hull.

As a result hull fairing is required to be done at the time of local optimization. In this
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work, beside the global and regional deformation, another hull deformation is also

carried out. It is actually a local deformation procedure, but as result of this kind of

modification, a certain region is required to be modified. Beside these three modifi-

cation procedure, another new approach is also used by researchers. It is parametric

design based modification. Though the representation of hull by parametric design is

complex, it has advantages for hull variation. Once a hull is defined by parametric

design, it can easily be deformed with high precision.

Hollister used four methods for ship hull modification. These are the stretching

method, balancing method, Lackenby method and CMVARYmethod (Hollister (1996)).

In the stretching method, the ship hull is varied based on the principal dimensions. In

balancing method, a couple of parameters are changed but the remaining parameters

are modified as per the variables to reduce the effect of the variables. The Lack-

enby method shifting technique is implemented by varying the ship hulls and in the

CMVARY method the midship of the ship is kept variable.

1.2.3 Optimization Methods

The choice optimization methods plays a pivotal role in ship hull optimization. Dif-

ferent optimization methods have different types of advantages and disadvantages.

Generally the efficiency of an optimization procedure depends on the number of runs

before getting the optimized value. Beside this, complexity and total time required

for each run are also issues. A typical optimization problem can be stated as follows.

Find variable X =



x1

x2

...

xn


which minimize or maximize the function f(X)



7

The objective function f(X) can be subjected to the equality and inequality con-

straints. Based on the type of objective functions, the equality and inequality con-

straints can be written as follows.

Inequality constraint: gi(X) ≤ 0; i = 1, 2, ..., m

Equality constraint: hj(X) = 0; j = 1, 2, ..., n

where, m and n are two positive numbers those depend on the type and requirement

of the problem.

The present study is focused on reducing wave making resistance of a hull form. If the

wave making resistance coefficient at a particular speed of the initial hull and the hull

obtained during the optimization process are respectively Ci
w and Cd

w, the objective

function f(x) can be defined as follows:

f(x) = Ci
w − Cd

w

Ci
w

The optimization procedure can be divided into deterministic methods and heuris-

tic methods based on techniques applied for optimization. The classical methods for

solving optimization problems are deterministic methods. In these methods normally

hessian or gradient calculation is required, resulting in increasing the complexity of the

procedure. The procedures are relatively complex to calculate but they also provides

a very detailed information about each step of the optimization. Deterministic based

optimization like Sequential Quadratic Programming and Quasi-Newton methods can

handle large-dimensional problems. The conjugate gradient method uses gradient to

find the optimal result. For constrained optimization, interior point method give fairly

acceptable results although it can not reach the optimum point of problem. Gradient
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descent method uses the gradient to find the steepest path to reach the maxima/min-

ima. Beside these methods there are some other popular deterministic methods such

as sub gradient method, bundle method of decent, ellipsoid method and reduced gra-

dient method and many more.

Heuristic methods are a technique designed for reducing searching problem-solving

activities and are a means to obtain acceptable solutions within a limited computing

time (Zanakis, 1981). The solution from these methods may not be the best solutions

but they are among the reasonable solutions. The main advantage of these methods

are that like deterministic methods it does not need longer time to achieve the opti-

mized results and generally it takes less run than the deterministic methods. Besides

this advantage, heuristic methods normally do not contain any derivatives for calcu-

lation resulting a simple procedure for optimization. At the time of using heuristic

optimization methods some properties require to be traded off. In some problems,

there is more than one solution. Heuristic methods do not provide guarantee for giv-

ing the best solution among these solutions. Again sometimes there are more than

one solutions in a problem. These methods are not able to find all the solutions.

Accuracy is another major trade off for heuristic algorithms. As these techniques

cannot find all the solutions, so it is quite uncertain to predict the accuracy of an

optimized solution obtained by heuristic methods. There are some popular heuristic

methods that can provide approximate solutions to optimization problems. Mimetic

algorithm, Evolutionary algorithms, Genetic algorithms, Hill climbing with random

restart, Particle swarm optimization, Artificial bee colony optimization, Simulated

annealing, Tabu search etc. are among them.

Based on the types of problems and hull variation, researchers use different optimiza-

tion methods. Markov and Suzuki (2001) introduced hull modification technique by

shifting the hull section and deforming the ship geometry. They preferred a deter-
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ministic method known as Davidson-Fletcher-Powell (DFP) for optimization. Chun

(2010) used gradient-based sequential quadratic programming (SQP) for reducing

wave making resistance that provide acceptable results for local optimization. In his

work, a parametric design based hull was introduced to vary the hull geometry. Saha

et al. (2004) optimized the resistance of a ship hull by multiplying the breadth of the

ship hull with a coefficient by using SQP. Park and Choi (2013) also adopted this

optimization method to reduce the resistance of a ship by using a CFD technique. In

their works, they used multiple variables to variate the ship hull. The benefit of SQP

is that it can handle any degree of non-linearity including non-linearity in constraints.

The main disadvantage of this method is that it contains multiple derivatives which

need more time and work as well. Partial swamp optimization (PSO) is metaheuristic

procedure. This method does not need any derivative to optimize a problem, as a

result it is a less complex method than most of the other methods. The benefit of this

method is that it can search very large spaces of variable solutions but at the same

time it does not ensure that optimal solution is found. Although having this draw-

back, researchers uses this method because of the simplicity of this method. Chun

(2010) also used PSO method to optimize the ship hull along with SQP.

More recently, there is another popular optimization method known as genetic algo-

rithm (GA). This method is a heuristic method based on the idea of Darwin’s natural

selection theory. Like natural selection theory, this method also contains inheritance,

mutation, selection, and crossover to obtain the optimal value. Mahmood and Huang

(2012) optimized the bulbous bow of the ship to reduce the total resistance of ship

by using a genetic algorithm. In that work they varied the shape of bulbous bow

by changing the bulb parameters based on genetic algorithm. Kim et al. (2008) and

Kim and Yang (2010b) have carried out CFD based optimization where the applied

method was a genetic algorithm. More works on ship hull optimization are done by
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Kim et al. (2010), Matulja and Dejhalla (2013) and Bagheri et al. (2014). Although

as a heuristic method GA has capability of versatile applicability, it has also some de-

merits. Genetic algorithm usually takes longer time than other optimization methods.

But researchers are using it widely because of its capability of versatile applicability.

In the present work at first a deterministic optimization algorithm known as path

of steepest descent is introduced. The target of this algorithm is move along the

region in which the process generates improved result. This is a straight forward and

easy to implement method. With the increment of variables this method takes huge

computational time. To avoid this problem a gradient based optimization method

known as BFGS (Broyden-Fletcher-Goldfarb-Shanno) has been adopted that is an

advanced unconstrained optimization algorithm. This method can be considered as

quasi-Newton, conjugate gradient and variable metric method.

1.3 Statement of the problem

The objective of this study is to develop a practical NURBS based calculation tool for

the hydrodynamic optimization of ship hull forms for reducing wave making resistance

at the early stage of design. To calculate the wave making resistance a panel based

wave making resistance calculation tool known as MAPS-Resistance is used. The

input for MAPS Resistance is ship hull surface panels. So a program is required

that can generate ship hull geometry in terms of panels from NURBS. At the time of

ship hull optimization, the hull geometry will go through a continuous modification

based on the optimization code. So it is also required to make sure that after each

modification the program will also generate suitable panels for calculating the wave

making resistance. Based on the step length of the optimization, the program may

need to calculate the wave making resistance more than a thousand times which is
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cost ineffective and time inefficient. To avoid this problem, a surrogate based model is

required for mimicking the whole scenario. After the surrogate model is constructed,

an optimization solver is required to find the optimal ship hull. In the following

section, the framework of the computational program will be discussed.

1.4 Thesis Content

In this thesis, chapter 1 provides literature review of the work and at the same time

it also give a clear idea about the statement of the problem. In chapter 2, a theo-

retical description of NURBS, Kriging, optimization and wave making resistance are

provided. In chapter 3, multiple methods for surface unification, grid generation and

three different kinds of hull variation procedures are introduced. Chapter 4 shows the

outcome of the optimization procedure for Wigley, Series 60 and KCS container hull.

Finally chapter 5 gives conclusion and recommendation for future research.

The goal of this research is to develop a numerical tool to predict the optimized

ship hull on the basis of wave making resistance. In this procedure the optimization

starts with grid generating from an IGES file. Then path of steepest descent is used for

optimization. To avoid huge time consumption, later on Kriging method is introduced

to predict whole optimization scenario. Finally BFGS algorithm is used to find the

optimized ship hull. The work procedure with PSD and BFGS can be illustrated by

two separate flow chart as follows.
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Figure 1.1: Flowchart of work procedure with path of stepeest descent
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Figure 1.2: Flowchart work procedure with BFGS



Chapter 2

Mathematical Formulation

The hull of ship is a very complicated three dimensional shape. For the ease of

calculating properties, it is very common to use mathematical equations to represent

a geometry. As the shape of ship is complex, ship designers give high emphasis on

the graphical description of hull forms. In the past, a ship’s hull form is represented

graphically by lines plan. The lines plan consists of projections of the intersection of

the hull with XY,YZ and ZX directional plane. A typical linesplan with offset table

is provided in figure 2.1, where body plan, half-breadth plan and sheer planes are

indicating the stations, waterlines and buttock lines of ship. The geometry of the hull

is represented by the table of offset. To represent ship hull different types of curves

and surfaces like Hermit interpolation, Bezier curves, Spline, B-spline and recently non

uniform rational basis spline(NURBS)are introduced. Among these methods, NURBS

gains popularity and usability because of its flexibility and precision for handling. A

typical graphical representation of surface by NURBS is depicted on figure 2.2. For

transferring the information of surface electronically, different types of file format are

used. Among all the formats, IGES file format is one of the very common digital file

formats that allows exchange of information among computer-aided design (CAD)

14
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Figure 2.1: Typical lines plan of a utility ship(www.themodelshipwright.com)

systems.

In this thesis, the optimization of ship hull is carried out from an input ship geometry.

To get precise information about the ship, IGES file format is used as an input. Af-

ter getting the surface information, the appropriate panel distribution for calculating

wave making resistance is created by a panel rearranging method. A convergence test

is carried out to find suitable number of panels for the calculation of wave making

resistance. Later on the method of steepest descent is introduced to get minimum re-

sistance. This procedure works well but the main problem is that the required number

of iterations can be more than couple of hundreds in this approach. Depending on the

step size the number of run can be more than thousand times. It is a time consuming

and cost ineffective process. To overcome this problem a process known as optimiza-

tion based on Kriging method is introduced. The main benefit of the Kriging method

is that once we have our database or field points, we can easily find the minimum

point based on the optimization. After generating a model from Kriging a improved
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Figure 2.2: Graphical representation of NURBS surface

optimization procedure, Broyden Fletcher Goldfarb Shanno(BFGS) algorithm is used

to find the optimal resistance. The detail mathematical formulations are provided

is the following parts of this chapter. The whole procedure can be divided into four

parts.

• Surface point generation

• Developing Kriging model

• Optimization

• Wave making resistance calculation
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2.1 Surface Point Generation

2.1.1 Non Uniform Rational B-spline Surface

The structure of an IGES file is consists of five parts: Start, Global, Directory Entry,

Parameter Data, and Terminate. Among these five parts the characteristics and

geometric information for any geometry is provided on directory Entry and parameter

data. A typical example of IGES file is provided on Appendix A.1. The parameter

data section contains the information about the NURBS. A NURBS curve (C(t)) can

be defined as (Piegl and Tiller (1997)):

C(t) =

m∑
j=0

Nj,p(t)wjPj
m∑
j=0

Nj,p(t)wj
(2.1)

where, Nj,p(t) = p−th degree b-spline basis functions based on knot vectors, wj=

weights of the control points, t = parameters of the curve, Pj = coordinate of control

points, p= degree of the spline and m = total number of control points on a curve.

In NURBS, a knot vector defines how the basis function will behave at different

positions along a curve. It controls the continuity between the different arcs of the

basis functions. It also determine where and how the control points will affect the

curve. The number of knots are always equal to the number of control points plus

curve degree plus one. Generally there are two types of knot vectors, clamped and

unclamped. These two types can be subdivided into uniform and nonuniform knot

vectors. For a second degree curve containing six control points if the knot vectors

are defined by U, an example of different types of knot vectors can be provided on

equation 2.2.
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U =



0, 0, 0, 1, 2, 3, 4, 4, 4 :Clamped Uniform

0, 0, 0, 2, 5, 6, 7, 7, 7 :Clamped Nonuniform

0, 1, 2, 3, 4, 5, 6, 7, 8 :Unclamped Uniform

0, 0, 1, 2, 4, 5, 5.5, 7, 8 :Unlamped Nonuniform

(2.2)

There are different methods for calculating parameters for NURBS. Among them three

common methods are equally spaced parametrization, chord length parametrization

and centripetal method parametrization. Each of these procedures has some benefits

and some limitations. The main benefit of using equally spaced parametrization

is that it is very simple and easy to use but it can produce erratic shapes if the

control points are distributed in bumpy pattern. To avoid this problem chord length

parametrization is introduced. For most of the cases this method is adequate but for

further improvement centripetal method can be used (Piegl and Tiller (1997)).

In this work at first the equally spaced parameter is taken for generating the parame-

ters. Later on equal chord parametrization is also used. But using the second method

did not improve the surface representation as the points of input files are distributed

in an organized way. The input data are taken from the IGES file where data are

organized enough to give good results using the equally spaced method. The equally

spaced parameter can be calculated by equation 2.3 (Piegl and Tiller (1997)).

t1 = 0, tn = 0 and ti = i

n
, i = 2, 3, 4, ..., (n− 1) (2.3)

where, t= parameter, n= number of parameters. The chord length parametrization

can be represented by equation 2.4 (Piegl and Tiller (1997)).

t1 = 0, tn = 0 and ti = ti−1 + | Ci − Ci−1 |
d

, i = 2, 3, 4, ..., (n− 1) (2.4)
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where, d = | Ci − Ci−1 |, t= parameter and n= number of parameters.

The weights (w) of the control points determine the effect of points on the curve.

Generally the weights are positive numbers. For a curve if all the control points have

the same weight, the curve is known as non-rational curve, otherwise the curve is

called as rational curve.

Once the knots, weights and parameters are calculated, the basis function Ni,p can

be calculated based on a recurrence formula known as deBoor′s algorithm (Piegl and

Tiller (1997)). For the (l + 1) number of knots, n number of points and p-th degree

spline, the formula of B-spline basis function can be described by equation 2.5 and

2.6.

Nj,0(tk) =


1 if uj ≤ tk < uj+1

0 otherwise
(2.5)

Nj,p(tk) = tk − uj
uj+p − uj

Ni,p−1(tk) + uj+p+1 − tk
uj+p+1 − uj+1

Nj+1,p−1(tk) (2.6)

Figure 2.3: Dimensional and non dimensional coordinate system for ship

In figure 2.3, the coordinate system for ship is introduced where X,Y and Z indicating

the direction of cartesian coordinate system and U , V indicating the non dimensional
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coordinate system. If u and v are two parameters, p and q are degree of curves, (n+1)

and (m+ 1) are number of points along U and V direction, wi,j indicates the weight

of points Pi,j, a equation for NURBS surface can also be derived from the extension

of equation 2.1.

S(tk, rl) =

n∑
i=0

m∑
j=0

Ni,p(tk)Nj,q(rl)wi,jPi,j
n∑
i=0

m∑
j=0

Ni,p(tk)Nj,q(rl)wi,j
(2.7)

In equation 2.7, S(tk, rl) indicates the surface points, tk and rl represent parameters

on U and V directions. The values of k and l are equal to the number of parameters

on U and V direction respectively. Once the surface points are obtained, an input

file can be made based on the requirements of the resistance program. To represent

the surface of a ship more than one surface patch (segment) may be required. In

figure 2.4, the black lines are indicating the border of multiple patches in a ship.

After generating surface points from multiple patches the points are joined together

to generate a single point field for the ship.

Figure 2.4: Ship with multiple patches
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2.2 Developing Kriging Model

2.2.1 Sampling

Surrogate based optimization starts from selecting a suitable set of design variables

combination and corresponding responses. For this reason a well organized distribu-

tion of variables is required to mimic the whole scenario of the experimental system.

Latin hypercube design(LHD) is a statistical model for generating a set of variables

combination from multidimensional distribution that fulfil the requirement of repre-

senting the whole scenario. It was first described by McKay(Mckay et al. (1979)) in

1979 though a similar technique was also introduced by Eglājs in 1977. The concept

behind this design is that there will be one sample point in each sample level. Based

on the distribution of points, LHD has different types of designs. In this work a Latin

Hypercube Design is used where the sampling points are taken based on random

sampling.

2.2.2 Kriging

Kriging is a linear spatial estimation procedure for finding the response of an unknown

location from a given sets of points by computing a weighted average of those known

values. In figure 2.5, the red point indicating the unknown point where the response

is required. Based on responses of the surrounding black points Kriging predict the

response on red point. Kriging is based on the assumption of covariance and generally

produces a linear unbiased estimator to predict the unknown value. Kriging starts

with a set of known values for the neighbouring points of the target points. Each

value associated with a spatial location. A new value can be predicted at any new

spatial location by calculating the weights on corresponding points. For predicting

the response of an unknown point s0, if the number of neighbouring known locations
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Figure 2.5: Concept of Kriging(http://desktop.arcgis.com)

are n, positions and the responses of those points are respectively ( s1, s2, s3,...,sn )

and ( Y (s1),Y (s2),Y (s3), ..., Y (sn) ), the predicted response Y (s0) can be defined as

follows (Isaaks and Srivastava (1989)).

Ŷ (s0) =
n∑
i=1

wiY (si) (2.8)

where, wi indicate the weights of points and can be represented as wi=[w1, w2,

w3,...,wn]. The error(∈k) between the predicted and the actual value at any loca-

tion i can be represented by equation 2.9.

∈ki= Ŷ (si)− Y (si) (2.9)

For any point s0, the expected error can be written by

E(∈k0) = E
(
Ŷ (s0)− Y (s0)

)
(2.10)
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The expected value for each response will be same as it is considered that each of

point has same probability of giving expected value. From this point of view equation

2.11 can be written.

E(Y (s1)) = E(Y (s2)) = ...... = E(Y (sn)) = E(Y (s0)) = E(Y ) (2.11)

If we set the expected error to be zero, it is possible to get an unbiased prediction for

point s0. From this consideration a condition is derived.

0 = E(∈ (s0))

= E
(
Ŷ (s0)

)
− E (Y (s0))

= E

(
n∑
i=1

wiY (si)
)
− E (Y (si))

=
n∑
i=1

wiE(Y )− E(Y )

= E(Y )(
n∑
i=1

wi − 1) (2.12)

or,
n∑
i=1

wi = 1 (2.13)

The variance of the error from the Kriging can be expressed as σ2 and it can be

described in form of matrices (Sakata et al. (2004)).

σ2(s0) = −wTΓw + 2wTγ∗ (2.14)

where, w={w1, w2, ......, wn}T , γ∗={γ(s1 − s0), γ(s2 − s0),γ(s3 − s0),...,γ(sn − s0)}T

and Γ={γ(si − sj)}ij. γ(si − sj) indicates corelational function between si and sj.

This is also known as semivariogram. To get accurate prediction from Kriging, it
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is required to minimize the variance of error. A Lagrangian function φL can be

introduced based on the condition of unbiasedness.

φ(w, λ)L = −wTΓw + 2wTγ∗ − 2λ(wT1− 1) (2.15)

where λ is the Lagrange multiplier and 1 =(1, 1, 1, ..., 1)T . Based on the stationary

condition, δφL = 0 we can get the following equation,

γ∗
1

 =

 Γ 1

1T 0


w
λ

 (2.16)

By solving the equation of the above expression, the value for the weights can be

determined. By plugging the value of w in equation 2.8, the predicted values can be

calculated.

In Kriging process, semivariogram models are used for constructing the coefficient

matrix Γ. There are several acceptable models that can be used to meet the purpose

such as spherical model, exponential model, gaussian model, power model etc. A set

of standard semivariogram models are introduced here (Bailey and Gatrell (1995))

from equations 2.17 to 2.21. For all the described models γ(h) is the semivariance

for interval distance h, c0 is the nugget value (c0 ≥ 0), a is the lag value and c1 is a

constant value(c1 ≥ 0).

Spherical model: The spherical model is one of the most commonly used models.

This model exhibits good result if the spatial correlation between points decreases

approximately linearly with the separation distance and after certain limit it becomes

zero.
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γ(hij =


c0 + c1(1.5h

a
)− 0.5(h

a
)3), if h ≤ a

c0 + c1, otherwise
, (2.17)

Gaussian model: Like the spherical model this model is also very popular. This

model is used when the correlation between nearest points are very strong and after

a certain distance the relation become very minimal.

γ(h) =


c0 + c1

1− exp
− ( |h|

a
)2

, if h6= 0

0, if h= 0
, (2.18)

Exponential Model: This model is similar like spherical but it reaches the sill

almost asymptotically.

γ(h) =


c0 + c1

1− exp
− 3( |h|

a
)
, if h6= 0

0, if h= 0
, (2.19)

Linear Model: This model never reaches the sill. Based on the gradient of the line

it indicates that how the points are related based on the distance of points.

γ(h) =


c0 + c1|h|, if h6= 0

0, if h= 0
, (2.20)

Power Model: This model also does not reach the sill. This model is similar like

linear model except the non linearity. Generally linear and power models are points
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have long range correlation.

γ(h) =


c0 + c1h

c2 , if h6= 0

0, if h= 0
, (2.21)

where, 0<c2<2.

2.3 Optimization

2.3.1 Path of Steepest Descent (PSD)

Path of steepest descent is a very popular method to find the optimized results from

a problem because of its ease of use and simplicity. The whole procedure of PSD can

be subdivided into three sections: screening response, steeping ascent or descent and

model for optimization. In screening the response step, initially a factorial design

is generated. Based on the outcome of the design a first order equation is made by

ignoring the nonlinear effect. If the number of variables is k and the level of run is 2,

the total number of run will be 2k. By considering n as the number of run and y as

the outcome of each run, the first order equation can be written as follows (Borkowski

(2016)),

y = b0 +
k∑
i=1

bixi (2.22)

where, y = the estimated value, x0, x1, x2,..., xk = variables and b0, b1, b2,..., bk = re-

gression coefficients. Based on the outcome of the full factorial design and considering

no random error, equation (2.22) can be written as follows.

Y = Xb (2.23)
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where the Y , X and b can be defined as

Y =



y1

y2

...

yn


, X =



1 x1,1 x1,2 · · · x1,k

1 x2,1 x2,2 · · · x2,k

... ... ... . . . ...

1 xn,1 xn,2 · · · xn,k


, b =



b0

b1

...

bk


(2.24)

Equation 2.23 can be solved for regression coefficients by simple transformation of the

matrix X,

b = (XTX)−1XTY (2.25)

where XT indicates the transpose of matrix X. After generating the equation, the

model moves forward by changing the magnitude of variables by a step length of li.

The values of li can be defined by equation 2.26 (NIST (2016)).

li = 4bi√√√√ k∑
i=1

b2
i

(2.26)

where, k indicates number of variables, 4 represents a value that is controlled by step

length. The model keeps moving on the direction of steepest ascent (or descent, as

required) until there is no further improvement in the response. Once the model finds

no other improvement on the search path, a new factorial experiment with center runs

is conducted to determine a new search direction. This process is repeated until a

significant curvature is achieved on the path. Figure 2.6 shows the behaviour of line

search along steepest ascent or descent. To understand the behaviour of curvature,

a model like central composite designs (CCD), Box-Behnken design (BBD) etc. can

be introduced. In this work a second order equation is created by using CCD (figure

2.7). The second order model includes linear terms, cross product terms and a second
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Figure 2.6: Sequence of steepest path search for two factors optimization

order term for each variable. Then equation for second order regression model can be

written as follows.

Figure 2.7: Central composite designs for the optimization of two variables

y = b0 +
k∑
i=1

bixi +
k∑
i=1

biix
2
i +

k∑
i<j

bijxixj (2.27)

where, bi = b1, b2, b3, ......, bk, bij = b12, b23, ....... and bii = b11, b22, b33, ......, bkk. From

the second order regression equation the maximum, minimum or saddle point(xm)
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can be represented by equation 2.28.

xm = −1
2B
−1b (2.28)

where as B−1 is the inverse matrix of B. B and b can be written as,

xm =



x1

x2

...

xk


, B =



b1,1
b1,2

2 · · · b1,k

2
b2,1

2 b2,2 · · · ...
... ... . . . ...

sym · · · · · · bk,k


, b =



b1

b2

...

bk


(2.29)

After that by using xm the optimized value can be achieved.

2.3.2 Broyden Fletcher Goldfarb Shanno algorithm

Multivariable search methods use a sequential search method that terminates when

a convergence test is satisfied. Different multivarible optimization algorithms, like

gradient method, Newton’s method, Quasi-Newton method, DFP use different types

of search method. In sequential multivariable search methods calculating gradient

and Hessian matrix play the key role. Based on the search procedure the duration of

optimization procedure varies.

In DFP method the calculation of the Hessian matrix is required but quasi-Newton

method does not calculate the Hessian matrix for the search method. In the gradient

search method the gradient plays the key role for searching the optimal value whereas

Newton’s method uses the inverse of the Hessian matrix. The major difference between

BFGS and DFP is that the Hessian matrix is updated iteratively in BFGS method

wheras DFP method uses the inverse of Hessian matrix. The Broyden Fletcher Gold-

farb Shanno algorithm (BFGS) is the modified procedure of quasi-newton method.
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This procedure uses quadratic Taylor approximation of the objective function in vari-

ables search direction. One of the main benefits of this method is that it gives good

results in solving the non-smooth problems. In this algorithm the whole system moves

forward by calculating the inverse Hessian matrix. The procedure can be described

by the following steps (Rao (1996)).

1. BFGS algorithm starts by calculating directional matrix, Pk from equation (2.30)

where ∇f(xk) and [Bk] are the derivative of f(xk) and initial Hessian matrix re-

spectively. The initial Hessian matrix [B1] is assumed to be equal to unity matrix

I.

Pk = −[Bk]∇f(xk) (2.30)

2. Later on the calculated Pk is used for line search where an acceptable method

(Wolfe conditions, Fibonacci method, etc) require for obtaining a step length αk that

ensure sufficient change is the value of function. The process of calculating new values

for the variables can be defined as follows,

xk+1 = xk + αkPk (2.31)

3. Once the value of αk is being calculated, a new parameter sk is measured from the

step length and directional matrix by equation (2.32) .

sk = αkPk (2.32)

4. Later on the difference between consecutive gradient yk and consecutive value dk

are calculated.

yk = ∇f(xk+1)−∇f(xk) (2.33)

dk = xk+1 − xk (2.34)
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5. The successive Hessian matrix can be calculated by the following equation

[Bk+1] = [Bk] +
(

1 + yTk [Bk]yk
dTi yk

)
dkd

T
k

dTk yk
− dky

T
k [Bk]
dTk yk

− [Bk]ykdTk
dTk yk

(2.35)

After this step the algorithm goto step 2 and continue till get a optimized result.

For line search a popular inexact line search condition is used in this thesis that

gives sufficient decrease in the objective function f(x) as measured by the following

inequalities.

f(xk + αkPk) ≤ f(xk) + a1αkP
T
k ∇f(xk) (2.36)

P T
k ∇f(xk + αkPk) ≥ a2P

T
k f(xk) (2.37)

where the values of a1 and a2 can be represented as 0 < a1 < a2 < 1. In generally

a1 is considered to be a very small value, say a1 = 10−4. Equation (2.36) and (2.37)

are known as the Armijo rule (Armijo (1966)) and curvature condition respectively .

Based on Wolfe conditions, the step length of a function is calculated for which the

value of function varies significantly. In some cases wolfe conditions can not calculate

the step length α to ensure the progress toward the extreme value of a function. To

solve this problem some modification is introduced on equation (2.37) that ensure to

find proper step length α.

∣∣∣pTk∇f(xk + αkpk)
∣∣∣ ≤ ∣∣∣a2p

T
k f(xk)

∣∣∣ (2.38)

Together equation (2.36) and (2.38) known as the stronge Wolfe conditions.
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2.4 Wave Making Resistance

In this thesis the optimization is carried out on the basis of wave making resistance of

ship. A wave making resistance program MAPS-Resistance is being used here. The

theoretical background of MAPS wave making resistance calculation can be described

as follows (Peng et al. (2014)).

2.4.1 MAPS-Resistance

Consider a surface ship is travelling with steady forward speed U in calm water, a ship-

fixed Cartesian coordinate system xyz is employed with the positive z-axis upwards

and the positive x-axis pointing from the bow to the stern. The origin is set on the

undisturbed water surface intersecting with the midship section and the centre plane.

After using velocity potential on Laplace equation, the expression can be described

as follows,

52φ = 0 (2.39)

If Φ is the velocity potential of the basic flow of a body translating in an infinite fluid

and ϕ is the disturbed velocity potential, the total velocity potential can be expressed

as,

φ = Φ + ϕ (2.40)

The body boundary condition on the wetted surface of the ship hull is

∂φ

∂n
= 0 (2.41)

where the outward normal vector from the ship hull is denoted by−→n=(nx, ny, nz). The

kinematic free surface condition and dynamic free surface condition can be expressed
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as equation 2.42 and 2.43 respectively.

ηxφx + ηyφy − φz = 0 on z = η(x, y) (2.42)

η = 1
2g (U2

0 − |∇φ|2) on z = η(x, y) (2.43)

where η is the free surface elevation and the subscripts denote the partial derivatives on

that direction, g is the gravitational acceleration and ∇φ=(φx, φy, φz). The combined

nonlinear free surface condition is then given as

1
2φx(φ

2
x + φ2

y + φ2
z)x + 1

2φy(φ
2
x + φ2

y + φ2
z)y + gφz = 0 on z = η(x, y) (2.44)

After the velocity potential φ is solved, the wave elevation on the free surface can be

obtained.If the resistance of ship hull is denoted Rw, the resistance can be expressed

as follows,

Rw =
∫
SB

(
1− |∇φ|

2

U2

)
nxdx (2.45)

The wave resistance coefficient,Cw, is defined as:

Cw = Rw

1
2ρU

2
0S

(2.46)

where, Rw is the wave making resistance, U0 is forward speed , ρ is water density and

S wetted surface area.



Chapter 3

Numerical Method

3.1 Input Generation for MAPS

The wave making resistance calculation program, MAPS resistance has its own geom-

etry input format. A sample input for MAPS resistance is provided on the appendix

B. MAPS can handle multiple vertically placed surface patches for calculation. The

input of the optimization procedure in this work is an IGES file. An IGES file may

have multiple patches. For the sake of necessity in this thesis, all the surface points

generated from multiple patches are unified into a single point field. Later on, the

point field is arranged in the proper way to make an input file for MAPS resistance.

3.1.1 Unification of multiple patch surface points

In this work, two point distribution methods are introduced to get systemically dis-

tributed surface points of the ship.

34
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3.1.1.1 Method 1

For multiple patches in an IGES file, it is common to have patches with different

numbers of points. The first method starts with generating a large number of points

along V direction of each patch. By using the generated points the arc length of

each station is calculated. Once the arc length is known, surface points at suitable

distances can be selected from the generated large number of surface points based

on the distance from the initial point within a tolerance limit. Once surface points

of different patches are distributed similarly along V direction, the surfaces can be

merged into a new surface. In figure3.1a, two patches with misaligned surface points

are shown. In figure 3.1b, the generation of a large number of surface points by

NURBS is illustrated. Figure 3.1c and figure 3.1d indicate aligning and joining the

multiple patches to make a single surface point cloud.

3.1.1.2 Method 2

The method 2 is a modified method of Hsiao′s surface grid generation method (Hsiao

(1996)). In this method, the arc length for surface along U and V direction are

described by φi,j and ψi,j respectively. The definition of φi,j and ψi,j can be described

as

φi,j = φi,j−1 +
√

[(xi,j − xi,j−1)2 + (yi,j − yi,j−1)2 + (zi,j − zi,j−1)2] (3.1)

ψi,j = ψi−1,j +
√

[(xi,j − xi−1,j)2 + (yi,j − yi−1,j)2 + (zi,j − zi−1,j)2] (3.2)

where, i and j indicate the serial of the surface point along U and V directions;

xi,j, yi,jand zi,j are the surface points on each patch. The normalized arc length for

surface along U and V direction are described by φ′
i,j and ψ

′
i,j respectively. It can be

considered that φ′
1,j=ψ

′
i,1 = 0 and φ′

imax,j = ψ
′
i,jmax =1 . For other points the following
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(a) Misaligned surface points on two patches (b) Large number of surface points generation

(c) Properly aligned surface points on two
patches

(d) Unification of surface points from two
patches

Figure 3.1: Unification of surface points from multiple patches

equation can be used,

φ
′

i,j = φi,j
φimax,j

, ψ
′

i,j = ψi,j
ψimax,j

(3.3)

where, i = 2, 3, ......, (m− 1) and j = 2, 3, 4, ......, (n− 1). By using the normalized arc

length the surface points can be written as

Sx = {xi,j, φ
′

i,j, ψ
′

i,j}

Sy = {yi,j, φ
′

i,j, ψ
′

i,j}

Sz = {zi,j, φ
′

i,j, ψ
′

i,j}

(3.4)
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Based on φ′ and ψ′ , calculation of bi-cubic interpolation is carried out along U and

V direction. By using bi-cubic interpolation the surface point rearrangement takes

place with the help of ξ and η that depend on the total number of points on U and

V directions. If the number of points along U and V directions are NU and NV

respectively, the value of two parameter ξ and η can be obtained from equation 3.5.

ξi = (i− 1)
NU − 1

ηj = (j − 1)
NV − 1

(3.5)

Once the values of ξ and η are achieved, the value of φ and ψ can be redistributed by

equation 3.6 and equation 3.7.

φ
′

i =
1− a+ (a+ 1)[a+ 1

a− 1]
2(ξi−

1
2 )

2 + 2[a+ 1
a− 1]

2(ξi−
1
2 )

(3.6)

ψ
′

j =
1 + b− (b− 1)[b+ 1

b− 1]
(1−ηj)

1 + [b+ 1
b− 1](1−ηj)

(3.7)

where, a and b indicate two positive real numbers, a > 1 and b > 1. The distribution

of surface points over the surface greatly depends on the value of a and b. If the value

of a and b are close to unity, equation 3.6 makes the point distribution denser on both

corners of the surface where equation 3.7distribute the points densely on one corner

of the surface. If the value of a and b are higher, both equations give approximately

equally spaced distributed points. Figure 3.2 gives an idea about different types of

points distribution. The main benefit of this method is that it is fast as it does not

need to generate large number of points like the method 1.
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(a) Initial point distribution (b) Equally spaced point distribution

(c) Points clustered on two opposite corners (d) Points clustered on a single corner

Figure 3.2: Different types of point distributions

By using this method similar kinds of point distribution can be obtained for multiple

patches in an IGES file. Later on the patches can be merged into a single surface

point cloud.

3.2 Input for Resistance Calculation

Once a surface point cloud is generated, it is required to distribute the surface points

to prepare an input file for MAPS resistance. For calculating the wave making resis-

tance it is important to have denser point distribution on the bow and stern of the

ship surface to measure the change of pressure gradient properly. To fulfil the require-

ment again Hsiao’s algorithm is used. In figure 3.3, the steps of input file generation
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is shown. Figure 3.3a depicts the graphical representation of a ship with multiple

patches. From there, surface points are generated by NURBS (figure 3.3b). Later

on points are redistributed and multiple patch distributed surface points are joined

together (figure 3.3c). Finally unified surface point cloud is redistributed to make an

input for MAPS resistance (figure 3.3d).

(a) Hull with multiple patches (b) Surface Points from patches

(c) Unified surface points from multiple
patches

(d) Modified points distribution suitable for
calculation

Figure 3.3: Generation of input file for resistance calculation

3.3 Hull Variation

To optimize the ship hull, it is required to modify the ship geometry. There are

different ways of modifying the geometry. In this thesis three different methods are
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used. The methods are shifting parametric sections globally (schm:1), shifting ship

surface sections regionally (schm:2) and modifying the hull by generating a bulbous

bow (schm:3).

3.3.1 Shifting Parametric Section Globally (schm:1)

(a) Perspective view of a half ship (blue line = parametric section, black line= real section)

(b) Modified wigley hull

Figure 3.4: (Profile of half ship (blue line = parametric section, black line= real
section)

This method is a kind of shifting methods. To understand this method it is required

to differentiate between real sections and parametric sections of the ship. In figure

3.4, the difference between real and parametric sections are illustrated. Real sections

are perpendicular to the load waterline and generally all the points on a particular

real section will have the same x directional coordinate. The parametric sections are

generated based on the point distribution on the ship’s surface. A set of parametric

sections can easily describe a ship easily. In this modification method, the parametric
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sections are grouped into two parts, forward part and aft part. The forward part

indicates all the parametric sections starting from bow to half of the total number of

parametric sections. The aft part represent all the parametric sections from stern of

the ship to half of the total number of parametric sections. Later on these two parts

are moved along the length of the ship to modify the ship geometry. We can consider

x directional surface points of forward part and aft part are Sxf(i,j) and Sxa(i,j)

respectively. The number of surface points on U direction are NV and V direction are

NU . The difference between two consecutive x- directional surface points are ∆f(i,j)

and ∆a(i,j).

∆r(i,j) =| Xi,j −Xi,j+1 |, where 1 6 i 6 NU and 1 6 j 6 (NV − 1) (3.8)

∆l(i,j) =| Xi,j −Xi,j−1 |, where 1 6 i 6 NU and 2 6 j 6 NV (3.9)

For each x- directional point from 1 6 i 6 NU to 2 6 j 6 (NV − 1) there will be

two distances namely ∆r(i,j) and ∆l(i,j). From there the minimum distances δa(i,j) and

δf(i,j) can be determined.

δa(i,j) = min
(
∆r(i,j),∆l(i,j)

) 
if NV even, 1 6 i 6 NU and 2 6 j 6

NV

2
if NV odd, 1 6 i 6 NU and 2 6 j 6

NV − 1
2

(3.10)

δf(i,j) = min
(
∆r(i,j),∆l(i,j)

) 
if NV even, 1 6 i 6 NU and NV

2 + 1 6 j 6 NV − 1

if NV odd, 1 6 i 6 NU and NV + 1
2 + 1 6 j 6 NV − 1

(3.11)

Once the minimum distance is known, two coefficients wf and wa can be used to
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define the amount of deformation of Sf(i,j) and Sa(i,j).

Sf(i,j) = wfδf(i,j) (3.12)

Sa(i,j) = waδa(i,j) (3.13)

Then based on the amount of deformation the new position of Sxf(i,j) and Sxa(i,j)

can be written as follows,

Snf(i,j) = Sxf(i,j) + v1Sf(i,j) (3.14)

Sna(i,j) = Sxa(i,j) + v2Sa(i,j) (3.15)

where, v1 and v2 are two parameters those control the amount of shifting. The values

of v1 and v2 can be between 0 to 1. Snf(i,j) and Sna(i,j) are the new positions of

Sxf(i,j) and Sxa(i,j) respectively where 1 < i < Nu and 2 < j < (Nv − 1). For all

1 < i < Nu, Snf(i,1)=Sxf(i,1) and Sna(i,1)=Sxa(i,1). The benefit of this modification

technique is that the hull will never be distorted. It will always give realistic ship hull

and at the same time the deviation of original ship hull will be minimal. The benefit

of using wf and wa are that if the values are higher than one still there will be no

overlapping except the first and the last column. To get rid of these kind of problems

the values of wf and wa are better to keep less than one. Figures 3.5, 3.6 and 3.7

depict the procedure of surface point movement based on this technique.

Figure 3.5: Hull with original and modified surface points
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Figure 3.6: Original(A) and Modified(M) forward surface points

Figure 3.7: Original(A) and Modified(M) aft surface points

3.3.2 Regional Shifting Method (schm:2)

This method is another kind of shifting method which was first introduced by Kim

and Yang (2010a). Later on they have done some further related work based on

this method (Kim and Yang (2013)). It is a modified technique of Lackenby′s hull

variation procedure (Lackenby (1950)). The main benefit of using this technique

is that it prevents the generation of the unrealistic hull forms associated with the

movement of the new sectional area curve Kim and Yang (2010a). Beside this the

initial hull form can be modified without evaluating the initial and modified sectional

area curves. At the time of optimization the sectional area curve changes on the basis

of two variables.

If the sectional area curve (SAC) of a ship can be defined by S0 and sectional area

curve after modification is S ′ , then the relation between these two curves can be

expressed as follows.

S
′ = S0 + f(x, a1, a2) (3.16)
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where, a1 indicates a parameter and a2 refers to the position where the coordinate of

ship section will remain fixed.The amount of shifts are defined by a1. The modification

function f can be expressed as follows.

f(x, a1, a2) =



a1

(
0.5(1− cos 2π x− x1

a2 − x1
)
)1

2 x1 ≤ x ≤ a2

−a1

(
0.5(1− cos 2π x− a2

a2 − x2
)
)1

2 a2 ≤ x ≤ x2

0 elsewhere

(3.17)

where x1 and x2 indicate the starting and finishing positions of the region where the

shifting will occur. In the hull modification method, the positions of x1 and x2 are

kept fixed. Then a1 and a2 vary based on the optimization procedure. The main

benefit of this procedure is that there is less chance of having abrupt or impractical

ship hull generation. In figure 3.8, x1 and x2 indicate the range of hull modification.

S(x), S ′(x) and f(x) indicate the original sectional area curve, modified sectional area

curve and modification function respectively.
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Figure 3.8: Comparison of original and modified sectional area

3.3.3 Generating Bulbous Bow byModifying the Bow (schm:3)

The concept of using a bulb like shape with the ship hull to reduce the resistance

was first introduced by R. E. Froude (Kratch (1978)). Later on D.W. Taylor first

recognized the bulbous bow as a part of ship to reduce the wave making resistance

of a ship. A bulb can be represented roughly by using a fewer number of parame-

ters. Kratch (1978) divided the bulbs into three types: 4 type, O type and 5 type

(figure 3.9). Generally a bulb can be represented by three linear and three nonlinear

coefficients. A illustration of bulb can be introduced here to depict the geometry of a

bulbous bow (figure 3.10). The parameters of the bulb are LPR= protruding length

of the bulb, BB= bulb breadth at forward perpendicular, ZB= height of the bulb

from keel at maximum LPR, LPP= length between perpendiculars, B= breadth of

the midship, T= draft and V= displacement of the ship. Based on these parameters
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three linear and three nonlinear coefficients can be described. Based on the detail

works on bulbous bow of Kratch (1978), a table is introduced where the maximum

and the minimum limit of bulb parameters are provided 3.1, although these values

also depend on the block coefficient, prismatic coefficient, volume and other factors

of the ship geometry. Beside this in table 3.2, a comparison of these coefficients are

provided for different types of ships.

Wigley, Series60, S175 or other this kind of ship can easily be modified by this method.

To obtain a bulb like shape, the bow of the ship is modified based on trigonometric

functions. Based on the characteristics of Sinn(x), the profile of the bulbous bow is

generated where n is a positive number. The main problem of using Sin(x) function

is that though it creates a bulbous shape at the bow, it generates a very narrow bulb.

To overcome this problem again the bow part of the waterlines are modified based on

a exponential function emx where m is a positive number.

Figure 3.9: Types of bulbous bow 4 type, O type and 5 type(Kratch (1978))
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Figure 3.10: Parametrs of bulbous bow (Kratch (1978))

Table 3.1: Typical values of bulb coefficients

Parameters Symbol Ratio Minimun Maximum
Linear coeff CLPR LPR/L 0.0180 0.0310
Breadth coeff CBB Bb/B 0.170 0.200
Depth coeff CZB ZB/T 0.260 0.550
Lateral coeff CABL ABL/AMid 0.068 0.146

Trans.Area coeff CABT ABT/AMid 0.064 0.122
Volume coeff CV PR VPR/V 0.0011 0.00272

Table 3.2: Range of parameters for bulb geometry for different hulls

Parameters Symbol Ratio KCS container KVLCC2 S175
Linear coeff CLPR LPR/L 0.0297 0.0249 0.009609
Breadth coeff CBB Bb/B 0.1500 0.2415 0.0529
Depth coeff CZB ZB/T 0.5731 0.5096 0.2537
Lateral coeff CABL ABL/AMid 0.1359 0.07198 0.03914

Trans.Area coeff CABT ABT/AMid 0.0857 0.1439 0.07828
Volume coeff CV PR VPR/V 0.001254 0.002053 0.000164
Block coeff CB VPR/V 0.651 0.8098 0.5859
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For better understanding this method can be divided into three parts: changing the

bow profile, changing the bulb breadth, generating the bow and smoothing the surface.

3.3.3.1 Changing the Bow Profile

At first the bow of the ship is changed based on the coefficient CLPR and CZB. These

two coefficients indicate the maximum length of bulb (LLPR) and the height of the

maximum length from the keel (ZB). The X directional coordinates of profile can

be represented by xU and xD where U and D are indicating position of points above

the maximum length of bulb and below the maximum length of bulb respectively.

dU and dD are distances of any point along waterline and keel from the maximum

length of bulb respectively (figure 3.11). If x′
U and x′

D are X directional coordinates

of modified profile (above and below the maximum length of bulb respectively), these

can be obtained by equation 3.18 and 3.19.

x
′

U = xU + ∆xU = xU + LLR. sina{(1−
dU

T − ZB
)π2 } (3.18)

x
′

D = xD + ∆xD = xD + LLR. sinb{(1−
dU
ZB

)π2 } (3.19)

where, a and b are two positive values; ∆xU and ∆xD are the change of lengths of xU

and xD respectively.
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Figure 3.11: Original and modified bow of a hull with parameters

3.3.3.2 Changing the Bulb Breadth

Once the profile of the ship is modified based on LPR and ZB, the bulb sectional area

is required to change based on the value of bulb breadth, BB. Equation 3.20 and 3.21

are developed based on the value of BB to generate bulb like sections.

yU = BB

2 .eU . sinc{(1−
dU

T − ZB
)π2 } (3.20)

yD = BB

2 .eD. sind{(1−
dD
ZB

)π2 } (3.21)

where, c and d are two positive values; eU and eD are two parameters to give steepness

to the bulb section respectively. The value of eU and eD can be a constant, algebraic,

sinusoidal or exponential function. In this work, a sinusoidal function is selected for eU

and a constant for eD. A typical section of bulb at forward perpendicular is depicted

on figure 3.12.
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Figure 3.12: Bulb section parameters at forward perpendicular

3.3.3.3 Generating the Bow

After making the profile and sections of the bow, the waterlines at the bow are

generated based on the value of yU and yD. The breadth at any position on the bulb

can be generated by y′
U or y′

D.

y
′

D = yD.{1 + 1− ekrD

ek − 1 } (3.22)

y
′

U = yU .{1 + 1− ekrU

ek − 1 } (3.23)

On equation 3.22 and 3.23, k indicates a constant value and 0 ≤ rD, rU ≤ 1. Based

on the value of k, the shape of bulb waterlines varies. In figure 3.13, each waterline

shows how the waterlines are propagating based on equation 3.22 and 3.23.
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Figure 3.13: Modified waterlines of Wigley(I) hull bow

3.3.3.4 Smoothing the Surface

In this method at the time of bulb sections generation, sometimes the forward hull

surface become unsmooth. To avoid this kind of smoothing problem a simple algo-

rithm can be used. There are multiple types of smoothing / filtering methods. In this

work two different types of smoothing algorithm are introduced, Gaussian smoothing

and Moving mean smoothing.

• Gaussian Smoothing

Gaussian smoothing method is a very widely used method. Taubin (1995) introduced

a detail description of this method. If the number of points is n, coordinate of gen-

erated point is x′
i, coordinate of existing point is xi, weight is λ whose value can be

zero to one, then the modified points for the curve/surface can be written as follows,

x
′

i = xi + λ4 xi (3.24)
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Here4xi indicates the amount of effect of surrounding points. This effect also depends

on the value of weight w.

4xi = 1
2w
[
(xi−1 − xi) + (xi+1 + xi)

]
(3.25)

• Moving Mean Smoothing

In this method, modified points are generated from a series of averages of differ-

ent subsets of the full point set. The modified points can be the average of two to

higher number of points. As the number of points for obtaining average increases,

the modified curve become smoother and shrinker. The effect of smoothing can be

demonstrated in figure 3.14 where the right side of the figure is giving a compari-

son between original hull and hull after gaussian smoothing. On the other side a

comparison between original hull and hull after mean smoothing is demonstrated.
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Figure 3.14: Comparison of surface smoothing methods



Chapter 4

Numerical Results

This chapter describes the geometry and wave making resistance of the optimized

hulls. Comparisons are also made based on hull properties and wave making re-

sistance of ships. Three different types of hull, Wigley(I), Series 60 and KCS con-

tainer hulls are investigated to examine the performance of the proposed ship hull

optimization technique. The results for different hulls are represented separately for

convenience. At first Path of steepest descent (PSD) is used for Wigley(I) and Series

60 hulls. As this method takes huge computational time, Kriging is introduced to

predict the wave making resistance of ships. For better result, an updated optimiza-

tion method Broyden−Fletcher−Goldfarb−Shanno algorithm (BFGS) is used with

Kriging method.

4.1 Validation of Optimization Methods

In this thesis two different optimization methods known as PSD and BFGS are intro-

duced for optimization. A fortran program is developed for implementing these two

methods. Before using these methods for optimization it is required to validate both

of these methods. Two function named as Sphere function (Raska and Ulrych (2014))

54
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and Booth’s function (Hedar (2004)) are used to validate the optimization methods.

The Sphere function can be defined by equation (4.1) and an illustrative depiction is

provided on figure 4.1 for two variables. This function generates it’s minimum value

’zero’ at point (0, 0).

f(x) =
n∑
i=1

x2
i (4.1)

The Booth′s function is a non convex function and can be defined by equation (4.2)

and can be illustrated by figure 4.2.

f(x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 (4.2)

This function gives minimum value ’zero’ at point (1, 3). Within the domain of −2 ≤

xi ≤ 2 and −10 ≤ x1 ≤ 10, PSD and BFGS methods are applied to find the optimum

points respectively. Table 4.1 provides a comparison between actual minimum value

Table 4.1: Validation of PSD for optimization

Actual PSD
coordinate value coordinate value

Sphere function (0,0) 0.00 (1.13× 10−5,−1.99× 10−3) 3.99× 10−6

Booth function (1,3) 0.00 (1.890,2.110) 1.579

Table 4.2: Validation of BFGS method for optimization

Actual BFGS method
coordinate value coordinate value

Sphere function (0,0) 0.00 (1.30× 10−12,−8.06× 10−7) −8.06× 10−7

Booth function (1,3) 1.579 (0.997,2.997) 1.388× 10−4

and PSD minimum value whereas table 4.2, provides a comparison between actual

minimum value and minimum value obtained by BFGS algorithm. From the tables

it is evident that both of these optimization methods are giving reasonable optimized

results. The result from PSD can be improved by decreasing the size of steps.
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Figure 4.1: Sketch of Sphere function
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Figure 4.2: Sketch of Booth′s function
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4.2 Validation of Kriging

Once the fortran code for optimization is validated, another fortran code is developed

for the Kriging method. To validate the Kriging method, both Sphere and Booth’s

function are employed. In figure 4.3 and figure 4.4, comparison of predicted values and

actual values are provided. From these figures it is also understandable that with the

increase of number of sample points, the prediction due to Kriging improves. In this

work if the number of sample points are more than 40, this Kriging can predict values

within very reasonable tolerance. To get an acceptable approximation 40 sample

points are used for Kriging.

4.3 Convergence Test for Number of Panels

In this thesis, a panel method based program MAPS resistance is used for calculating

the wave making resistance. For this reason before optimization, it is required to go

through a convergence test for number of panels on hull. Beside this it is also required

to find appropriate dimension of free surface. In this thesis three different types of

hulls are used for optimization. The hulls are Wigley(I), Series 60 and KCS container.

Convergence tests for number of panels on hull have been carried out for Wigley(I)

hull, Series 60 hull and KCS container hull at Froude number 0.300, 0.300 and 0.260

respectively. From figure 4.5 and figure 4.6, it can be seen that the wave making

resistance of Wigley(I) and Series 60 converge if the numbers of panels are around

3200 on hulls. The free surface for a ship can be defined by three parameters: forward

length (lf ), aft length (la) and side length (ls). To understand the parameters, figure

4.7 has been introduced. Based on the free surface convergence test, the value of the

free surface parameters for Wigley(I) hull and Series 60 hull are kept as lf=1.0 L,

la=2.25 L and ls= 1.0 L where L= length of ship hull at waterline.
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Figure 4.7: Geometry of free surface

Figure 4.8: Geometry of free surface for KCS container
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For KCS container hull a convergence study of number of panels on hull has been

carried out. From the study it can be seen that 3600 panels on hull surface is sufficient

to predict the wave making resistance (figure 4.9). For the calculation of wave making

resistance of KCS container hull, it can be observed that wave contours at the stern

region is full of vortices (Peng et al. (2014)). To avoid the computational complexity

of this kind of incident, this portion was excluded from the calculation. Though the

stern portion was excluded, it still generates reasonable wave making resistance with

respect to the experimental value. To understand the exclusion, figure 4.8 is provided

where xs and xe indicate the starting point and ending point of exclusion respectively.

Again a convergence test is also carried out for the free surface of KCS container ship.

From the study of free surface convergence, parameters for the KCS container ship

are kept as lf=1.50 L, la=2.50 L, ls= 1.0 L, xs = 0.42 L and xe = 2.0 L.
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4.4 Comparison of Input Hull Properties

In this thesis the input for optimization technique is an IGES file. The MAPS resis-

tance cannot calculate the wave resistance directly from the IGES file. So it is required

to prepare input file from IGES file for MAPS resistance. At the time of input file

preparation, ship hull goes through multiple interpolations. So there is a chance that

the hull properties get changed. To avoid these kind of problems, cubic spline (Press

et al. (1996)) is implemented for interpolation. The dimension of different hulls those

are used in this thesis are provided on table 4.3. A comparison of hull properties is

provided for different kinds of ship on table 4.4, where it is shown that the area and

the volume are almost same before and after the generation of input hull for MAPS.

Table 4.3: Principal particulars of different hulls

Length at waterline(m) Breadth(m) Draft(m)
Wigley(I) Hull 100.00 10.00 6.25
Series 60 Hull 200.00 26.24 10.50
KCS container Hull 307.84 42.62 14.30

Table 4.4: Comparison of ship hull properties before and after the input hull genera-
tion

Properties based on IGES file Properties based on MAPS input file
area(m2) volume(m3) area(m2) volume(m3)

Wigley(I) Hull 1487.24 2074.15 1486.89 2074.93
Series 60 Hull 6608.15 25953.72 6606 25956.38
KCS container Hull 16723.35 120837.385 16634.66 120516.495
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4.5 Comparison of Properties for Optimized Hulls

In this work multiple types of optimization techniques are implemented. Table 4.5 is

provided to give a detail explanation of different types of optimized techniques.

Table 4.5: Nomenclature of different types of hull optimization technique

Name Modification Optimization Surrogate model
Original Hull - - -
Optimized Hull(schm:I1) schm:1 PSD -
Optimized Hull(schm:K1) schm:1 BFGS Kriging
Optimized Hull(schm:K2) schm:2 BFGS Kriging
Optimized Hull(schm:K3) schm:3 BFGS Kriging

4.5.1 Wigley(I) hull

AWigley(I) hull is a mathematical hull. If the water line, breadth and draft of the ship

are represented by L, B and T; the coordinates of Wigley(I) hull can be represented

by equation 4.3 (Tarafder and Suzuki (2008)).

y(x, z) = B

2 (1− ( z
T

)2)(1− 4x2

L2 ) (4.3)

4.5.1.1 Wigley(I) Hull Optimization with schm:1

In this optimization method, the hull surface is changed depending on two variables.

The variables are wf and wa (equation 3.12); the range of variables are provided on

equation 4.4. It can be mentioned here that the maximum and the minimum values

of these two variables will be less than ’1’ and more than ’−1’ respectively. Because

of this method, all the surface points go through modification resulting the global hull

modification.

−0.4 ≤ wf ≤ 0.4,−0.4 ≤ wa ≤ 0.4 (4.4)
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In this method, the path of steepest descent (PSD) is used to optimize the hull. As it

is a method of searching the path of steepest descent, it takes numerous iteration to

obtain the final result. Later on Kriging method is introduced to reduce the running

time of the program. With Kriging a new and updated optimization method named as

BFGS method is used. For the method of steepest descent and Kriging, it is supposed

to get same result as the hull deformation procedure is same. But normally it does not

happen as Kriging is a statistical method for predicting the value of unknown point

based on the surrounding known points values. Beside this the selection of sampling

model also plays important role on predicting values by Kriging. Based on Kriging,

the whole scenario within the limit of variables can be predicted. By changing the

value of variables from maximum to minimum a surface plot is generated on figure

4.10 where if v1=0.0 then wf = −0.4 and if v1=1.0 then wf = 0.4. Similarly if v2=0.0

then wa = −0.4 and if v2=1.0 then wa = 0.4. At the time of applying schm:1 method,

principal particulars of the ship hull are kept fixed.

Figure 4.10: Wave making resistance (Cw) based on Kriging for Wigley(I) hull
(schm:K1)
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4.5.1.2 Wigley(I) Hull Optimization with schm:2

In this optimization technique, a certain region of the hull is modified within a range

to obtain a optimized hull. The surface points associated with the region go through

a movement to achieve the required hull modification. Unlike schm:1, in this case

the principal particulars also remain unchanged. As per equation 3.17, there are four

variables x1, x2, a1 and a2 associated with this method. For this case the values

of x1 and x2 are kept as 0.5L and 1.0L respectively where L indicates the length

of ship at waterline. The range of a1 and a2 are kept within the following limit,

−0.020L ≤ a1 ≤ 0.0 and 0.675L ≤ a2 ≤ 0.775L.

4.5.1.3 Wigley(I) Hull Optimization with schm:3

The target of this optimization technique is to reduce wave making resistance by

introducing a bulbous bow. There are six variables associated with this hull modifi-

cation method. There is no fixed limit of these variables. But based on table 3.1 and

table 3.2, a set of limits are set for the Wigley(I) hull on table 4.6. Unlike schm:1 and

schm:2, the principal particulars are kept unchanged. An optimized hull is obtained

from this optimization technique. In schm:K3 bulbous bow is generated on the front

side of the hull. For better understanding of this hull modification method figure 4.11

is provided where the comparison of profile sections and waterlines are illustrated.

Table 4.6: Range of parameters for bulb geometry for Wigley(I) hull

Parameters Symbol Ratio Minimun Maximum
Linear coeff CLPR LPR/L 0.0180 0.0310
Breadth coeff CBB Bb/B 0.1630 0.2249
Depth coeff CZB ZB/T 0.2624 0.5584
Lateral coeff CABL ABL/AMid 0.1625 0.3263

Trans.Area coeff CABT ABT/AMid 0.1310 0.2049
Volume coeff CV PR VPR/V 0.002287 0.006747
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(a) Comparison of forward sections of orig-
inal Wigley(I) hull (Black) and optimized
Wigley(I) hull (Green)

(b) Comparison of waterlines at bow region of
original Wigley(I) hull (Black) and optimized
Wigley(I) hull (Green)

Figure 4.11: Comparison of Wigley(I) hull and optimized Wigley(I) hull

4.5.1.4 Comparison of Properties of Optimized Wigley(I) Hulls

Based on two optimization algorithm and three hull modification methods, four op-

timized hulls are generated. In PSD, the wave making resistance of optimized hull

is achieved directly from the MAPS resistance. But for BFGS method the wave

making resistance of optimized hull is achieved based on the Kriging. So there is a

chance to get little deviated result in Kriging method from directly calculated wave

making resistance. A comparison of predicted and actual wave making resistance is

provided on table 4.7. The table shows that predicted and calculated results are in

good agreement. Table 4.8 gives a comparison of volume, area and location of center

of buoyancy (LCB) for original and optimized Wigley(I) hulls. From the tables it can

be mentioned here that the change in volume, area and location of center of buoyancy

of the ships are within a tolerable limit whereas all hull modification methods are

generating hull with lesser wave making resistance than the original hull. Compared

to other hull modification methods at Froude number 0.300, schm:K3 is giving the

best result for Wigley(I) hull. In terms of wave making resistance this method is

producing 31.90% improved result whereas the change on volume, area and LCB are
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2.70%, 2.37% and 1.27% respectively. Although schm:K1 and schm:K2 are not gener-

ating better result than schm:K3, but still these two methods are generating improved

results than original Wigley(I) hull. For schm:K1, 9.28% improvement is achieved on

wave making resistance by changing 3.50% of volume, 0.71% of area and 0.103% of

LCB. For schm:K2, the improvement in wave making resistance is 5.20% whereas the

change in volume, area and LCB are 2.10%, 0.46% and 0.67% respectively.

Table 4.7: Comparison of predicted and actual Cw for different optimized Wigley(I)
hulls at Froude number 0.30

Predicted Cw(x1000) Calculated Cw(x1000)
Experimental value - 1.555
Original Hull - 1.498
Optimized Hull(schm:I1) - 1.417
Optimized Hull(schm:K1) 1.369 1.359
Optimized Hull(schm:K2) 1.426 1.420
Optimized Hull(schm:K3) 1.028 1.020

Table 4.8: Comparison of Wigley(I) hull properties before and after optimization

Volume(m3) Area(m2) LCB(m),+ on aft
Original Hull 2074.15 1487.24 0.00
Optimized Hull(schm:I1) 2051.53 1483.34 -0.9658
Optimized Hull(schm:K1) 2001.50 1476.59 0.1033
Optimized Hull(schm:K2) 2030.61 1480.34 0.6729
Optimized Hull(schm:K3) 2130.24 1522.60 -1.267

4.5.1.5 Comparison of Wave Making Resistance of Optimized Wigley(I)

Hulls

The optimization is carried out for the Froude number 0.300. A comparison of hull

sections of optimized Wigley(I) hulls are illustrated on figure 4.12. For all optimized

hulls sections are smooth enough to be realistic ship hulls. Based on the optimized

hulls a series of wave making resistances are calculated at different Froude numbers.
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In figure 4.13, the comparison of optimized hulls with the experimental and origi-

nal hull results is provided. Within the range of Froude number 0.230 to 0.370, all

optimized hulls are producing lesser wave making resistance than experimental and

original Wigley(I) hull. For the range of Fn= 0.370 to Fn= 0.425, optimized hull

(schm:K1) create higher wave making resistance than original hull but in this range

other optimized hulls generate reduced wave making resistance. At higher Froude

number(> 0.425) all the hulls create either equal or higher wave making resistance.

A comparison hull sections of original and optimized Wigley(I) hulls is provided on

figure 4.12. From the comparison of wave profiles on hull in figure 4.14 and 4.15, it

is also visible that the hull which generates lesser wave making resistance has shorter

wave hight at bow.
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Figure 4.12: Comparison of sections for different Wigley(I) hulls
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Figure 4.13: Comparison of Cw of experimental, calculated and optimized Wigley(I)
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4.5.2 Series 60 hull

Series 60 is one of the most used hull form for researchers to investigate the optimiza-

tion of ship hull. The optimization for series 60 hull is carried out at its design speed

(Fn = 0.316). The length of ship at load waterline, breadth and draft for series 60

are taken as 200 m, 26.24 m and 10.5 m respectively.

4.5.2.1 Series 60 Hull Optimization with schm:1

Unlike Wigley(I), in this optimization procedure the number of variables are kept two.

The variables are wf and wa (equation 3.12); the range of the variables are provided

on equation 4.5. It can be mentioned here that the maximum and minimum values

of these two variables will be less than ’1’ and more than ’−1’ respectively.

−0.3 ≤ wf ≤ 0.3,−0.3 ≤ wa ≤ 0.3 (4.5)

Two different kinds of optimization procedures are introduced here. At first PSD is

used to optimize the hull. Later on BFGS method is implemented to optimize the

hull by using Kriging method.

4.5.2.2 Series 60 Hull with schm:2

In this procedure Kriging with BFGS algorithm is selected to modify a certain region

of the hull within a range to obtain optimized hull. As per equation 3.17, there are

four variables x1, x2, a1 and a2 associated with this method. For this case the values

of x1 and x2 are kept as 0.5L and 1.0L respectively. The range of a1 and a2 are kept

within the following limit, −0.03L ≤ a1 ≤ 0.03L and 0.750L ≤ a2 ≤ 0.840L. At the

time of hull modification, principal particulars of the hull are kept fixed.
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4.5.2.3 Series 60 Hull with schm:3

Unlike Wigley(I) hull, schm:3 is used for generating bulbous bow for reducing the

wave making resistance. In this hull modification procedure six variables are changes

within a range based on table 3.1 and table 3.2 to optimize the hull. The ranges of

hull variables are provided in table 4.9. In schm:K3 bulbous bow is generated on the

bow region of the hull. For better understanding of this modification, figure 4.16 is

provided where the section and waterlines are illustrated.

Table 4.9: Range of parameters of bulb geometry for Series 60 hull

Parameters Symbol Ratio Minimun Maximum
Linear coeff CLPR LPR/L 0.0050 0.0300
Breadth coeff CBB Bb/B 0.0500 0.1300
Depth coeff CZB ZB/T 0.2600 0.5700
Lateral coeff CABL ABL/AMid 0.0198 0.1587

Trans.Area coeff CABT ABT/AMid 0.0353 0.0870
Volume coeff CV PR VPR/V 0.00023 0.002304

(a) Comparison of forward sections of original
Series 60 hull (Black) and optimized Series 60
hull (Green)

(b) Comparison of waterlines at bow region of
original Series 60 hull (Black) and optimized
(schm:3) Series 60 hull (Green)

Figure 4.16: Comparison of original Series 60 hull and optimized Series 60 hull
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4.5.2.4 Comparison of Properties of Optimized Series 60 Hulls

For series 60 hull, the optimization is conducted at the Froude number 0.316. Based

on four different combinations optimized hulls are generated. Unlike Wigley(I), there

is small deviation for optimized results obtained from PSD with schm:1 and Kriging

method based BFGS with schm:1. A comparison of predicted wave making resistance

and directly calculated wave making resistance is given on table 4.10. The table

shows that predicted and calculated results are in good agreement. Table 4.8 gives

a comparison of volume, area and location of center of buoyancy (LCB) for original

and optimized Series 60 hulls. From the tables, it can be mentioned here that the

change in volume, area and location of center of buoyancy of ships are within a

tolerable limit whereas all hull modification methods are generating hulls with lesser

wave making resistance than the original hull. Compared to other hull modification

methods, schm:K2 is giving the best result. In terms of wave making resistance this

method reduced the resistance by 22.51% whereas the change on volume, area and

LCB are 2.30%, 1.30% and 0.47% respectively. Compared to original hull, schm:k3 is

also generating improved result by reducing 20.34% of wave resistance. The reduction

due to schm:K1 and schm:I1 are not as good as like the other two hull modification

methods but still these they are generating 8.65% and 9.89% reduction in wave making

resistance respectively.

Table 4.10: Comparison of predicted and actual Cw for different optimized Series 60
hulls

Predicted Cw(x1000) Calculated Cw(x1000)
Original Hull - 1.6132
Optimized Hull(schm:I1) - 1.4536
Optimized Hull(schm:K1) 1.4927 1.4742
Optimized Hull(schm:K2) 1.2009 1.2500
Optimized Hull(schm:K3) 1.2681 1.2850
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Table 4.11: Comparison of Series 60 hull properties before and after optimization

Volume(m3) Area(m2) LCB(m),+ on aft
Original Hull 25953.72 6608.15 0.189
Optimized Hull(schm:I1) 25675.29 6576.01 0.195
Optimized Hull(schm:K1) 25544.41 6562.51 0.195
Optimized Hull(schm:K2) 25356.77 6522.05 0.6653
Optimized Hull(schm:K3) 26199.647 6707.38 -0.667

4.5.2.5 Comparison of Wave Making Resistance of Optimized Series 60

Hulls

A comparison of hull sections of optimized Series 60 hulls are illustrated on figure 4.17.

Based on the optimized hulls a series of wave making resistances are calculated at

different Froude numbers (Fn). Beside this, experimental results from Ishikawajima-

Harima heavy Industries Co., Ltd.(IHHI) and University of Tokyo are also provided

to compare the optimized resistance (Tarafder and Suzuki (2008)). In figure 4.18, the

comparison of wave making resistance of optimized hulls with the experimental and

original Series 60 hull is provided. From the figure it is visible that the reduction of

wave making resistance for optimized hulls are not significant for Froude number 0.100

to 0.260. From the range of 0.260 to 0.340 all optimized hulls are producing improved

results. After this range optimized hull (schm:K2) and optimized hull (schm:K3)

are showing improved performances in term of wave making resistance. From wave

profiles of these hulls in figure 4.19, it is also understandable that the hull which

generates lesser wave making resistance has shorter wave hight at bow. A comparison

of wave profiles on hulls are provided on figure 4.19 for the Froude number 0.316.



78

Figure 4.17: Comparison of sections for different Series 60 hulls
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Figure 4.18: Comparison of Cw of experimental, calculated and optimized Series 60
hull
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Figure 4.19: Comparison of wave profile on hull for experimental, calculated and
optimized Series 60 hull (Fr = 0.316)
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4.5.3 KCS Container Hull

KCS container has large bulbous bow and blunt stern. Unlike Wigley(I) and Series 60

hull both schm:1 and schm:2 are applicable for this hull. Schm:1 is a kind of shifting

methods. As the parallel middle body of this hull is comparatively longer than Series

60 hull, the schm:1 will have less effect on reducing the wave making resistance on

this hull. For this reason only schm:2 is applied to KCS container hull to optimize

the wave making resistance.

4.5.3.1 KCS Container Hull Optimization with schm:2

Unlike Wigley(I) hull and Series 60 hull , in this modification method the forward

part of the hull is modified. The number of variables are kept two. The variables

are a1 and a2 (equation 3.17); the range of the variables are provided on equation 4.6

where the L indicating the length of ship at waterline.

−0.03L ≤ a1 ≤ 0.02L, 0.75L ≤ a2 ≤ 0.885L (4.6)

To optimize the hull, BFGS method is implemented with the help of Kriging method.

4.5.3.2 Comparison of Properties of Optimized KCS Container Hull

For KCS container hull, based on schm:2 the optimization is conducted at Froude

number 0.260 and 0.300. For the sake of simplicity, KCS container hull optimized at

Froude number 0.26 and KCS container hull optimized at Froude number 0.30 can

be expressed as ’OKCS26’ and ’OKCS30’ respectively. The prediction of resistance

by Kriging for this ship hull is carried out based on 40 sample points. Comparisons

of predicted wave making resistance and calculated wave making resistance are given

on table 4.12 and table 4.13. The tables show that predicted and calculated results
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for OKCS26 and OKCS30 are in good agreement. The comparison of volume, area

and location of center of buoyancy (LCB) for original and optimized KCS container

hulls are provided on table 4.14 where it can be shown that the change in volume,

area and location of center of buoyancy of the ships are within a tolerable limit

whereas schm:2 is generating hull with lesser wave making resistance than the original

hull. A comparison of sections of original hull and optimized KCS container hulls are

illustrated on figure 4.20.

Table 4.12: Comparison of predicted and actual Cw for original and OKCS26 hull

Predicted Cw(x1000) Calculated Cw(x1000)
Original Hull - 0.3408
Optimized Hull(schm:K2) 0.2759 0.2857

Table 4.13: Comparison of predicted and actual Cw for original and OKCS30 hull

Predicted Cw(x1000) Calculated Cw(x1000)
Original Hull - 1.397
Optimized Hull(schm:K2) 1.119 1.115

Table 4.14: Comparison of KCS container hull properties before and after optimization

Volume(m3) Area(m2) LCB(m),+ on aft
Original Hull 120837.385 16723.350 -0.54
OKCS26 119418.309 16615.605 0.10
OKCS30 119179.108 16597.635 0.26

4.5.3.3 Comparison of Wave Making Resistance of KCS Container Hull

A series of total resistance for original hull is calculated and compared with the

experimental and CFD results by Banks et al. (2010) and Larsson et al. (2003).

This comparison shows that the calculated total resistance is in good agreement with

experimental and CFD results.
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Later on based on the optimized hulls, a series of wave making resistances are calcu-

lated at different Froude numbers and compared with the original KCS container hull

wave making resistance (figure 4.22). From the comparison, it is visible that OKCS26

and OKCS30 generate almost identical wave making resistance at different Froude

numbers though their hull sections are not identical (figure 4.20). From Froude num-

ber 0.1 to 0.30, the optimized hulls generate reduced wave making resistance than the

original hulls. The optimized hulls create higher reduction from Froude number 0.175

to 0.245 and 0.270 to 0.300. From wave profiles of these hulls in figure 4.23 and 4.24, it

is also understandable that hulls generating lesser wave making resistance has shorter

wave hight at bow. In terms of wave making resistance, for OKCS26 hull at Froude

number 0.26, this procedure reduced the resistance by 16.16% whereas the change on

volume is 1.174% and for OKCS30 hull at Froude number 0.30, the reduction in wave

making resistance is 20.186% whereas the change in volume is 1.37%.
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Figure 4.20: Comparison of sections for different KCS container hulls
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Chapter 5

Conclusions and Future Work

In this thesis a technique for ship hull optimization based on wave making resistance

is developed. The technique starts from reading an IGES file. After interpolation

an input point cloud is generated. In this work the hull is optimized based on the

wave making resistance. A panel based wave making resistance calculation program

MAPS Resistance is used. As per the requirement of the input file of MAPS, the input

point cloud is distributed. To optimize a ship hull it is require to modify the ship

geometry. Three different types of hull modification methods are applied with two

different types of optimization algorithms. At first path of steepest descent is used

to optimize the ship hull. With the increment of variables, this algorithm consumes

a significant amount of time. To avoid this problem the optimization scenario is

mimicked by Kriging method. Later on another optimization algorithm known as

Broyden Fletcher Goldfarb Shanno (BFGS) is used to optimized the hull based on

the response from Kriging. Multiple validation tests are provided for every step of this

optimization technique. Optimization is carried out for Wigley(I), Series 60 and KCS

container hull. A comparison of wave making resistance for multiple ship is provided.

At the time of generating surface points from NURBS, equally spaced and chord

89
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length methods for parameter selection are employed. If the ship geometry is very

complex, an upgraded parameter selection method known as centripetal method can

be introduced for parameter calculation.

A random number based Latin Hypercube Design (LHD) is used for Kriging. There

is different kinds of LHD. To reduce the number of sample points for Kriging, a better

LHD algorithm can be introduced.

On schm:3, bulbous bow is generated for reducing the wave making resistance that

makes some part of hull unsmooth. A simple smoothing algorithm named Gaussian

algorithm is deployed to solve the problem. A better smoothing algorithm like kalman

filter, kernel smoother etc. can be introduced to obtain better result.

If there is multiple patches in IGES file, it is required to combines them together

into one patch for this optimization technique. But the current technique can only

combine vertically aligned patches. To represent complex ship hull like DTMB or

Swath, it needs horizontally aligned patches also. In future work, this optimization

technique can be modified to handle multiple directional patches at the time of hull

optimization.

BFGS and path of steepest descent are used in this work to optimize the ship hull.

These optimization algorithms perform well on local perspective. A global optimiza-

tion method like genetic algorithm can be introduced to detect an optimized hull on

global perspective.

In this thesis different optimized hulls are achieved based on a panel based wave

making resistance calculation procedure. To validate the resistance a CFD and model

test experiment can be carried out for optimized hull.

There are multiple methods to modify ship hull geometry. Recently parametric ship

design is getting the attention from the researchers. In future work a parametric hull

modification procedure can be integrated with the current optimization technique to
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optimize the ship hull.

In this work, the modification in hull geometry is minimal that ensure the adequate

space for machineries after hull optimization. In future work the added wave resis-

tance, seakeeping performance, combined engine and propeller performance can be

included on this optimization technique.

Finally, the present optimization technique can also be used for other objective func-

tions related to ship design. To optimize multiple objectives, a multi-objective multi-

variable optimization strategy can be introduced to replace the present optimization

technique.
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Appendix A

Typical IGES Format

A typical format of IGES file is provided here.

A-1



Appendix B

MAPS Resistance Input

A typical format of MAPS resistance input for ship geometry is provided here.

B-1


