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ABSTRACT

Global ischemia dcslroys lhe CA I pyram idal ce lls of lhe hippocampus . This cell

loss can be preven ted by ischem ic precco diticoin g (IP). IP is a phenom enon whereb y

brief ep isodes of ischemia protect agai nst a later more seve re insult. Dend ritic spines

have been suggested to be neuroprotective by reg ulat ing toxic calcium levels

independently of the parent dendrit e. There fore. dendriti c spine forma tion may playa

role in the developmen t of lP . The purpose of the present experiment was to examine the

effects of IP on spin e dens ities in the CA I region in gerb ils. An imals received bilateral

caroti d occl usions of I.S min (pre-conditioning) and S min ( ischem ic precondi tionin g) in

duration. Spine den sities were calc ulated from apical and basilar dendrites of CAl

pyramida l ce lls in ischem ic precondit ioned anima ls that survived 3 (lP 3). 10 (IPIO) or 30

(IP30) days, precondit ioned on ly (PO ) animals, and sham anima ls. An imals were tested

on the same days for habitua tion to a novel openfield. Sect ions were stained using a

modifi ed Gclg i-Cc x procedu re and spines were visualized using a Neuro lucida® neuron

tracing system. Results show thai PO.IPIO and IP30 animals have significantly higher

spine densiti es on bas ilar. prox imal and termi nal dendri tes than all other groups o f

animals. In the open field.I P anima ls initially displayed habi tua tion impainnents tha t

recovered with time. This apparen t recovery coincided with the increase in CA I spine

densi ty. Thesedata may reflect a role for dendritic spines in the neu roprol ectKmand

recovery of funct ion associated with ischemic tolera nce.
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Stroke, as a resultof cerebral ischemia. is one of the leading causes of death and

chronic disability in NorthAmerica for which there is currently no effective treatment

(Koroshe:tzand Moskowitz, 1996). It is caused by a blockage of blood flow to the brain

I~d ing to a loss of functionof specific brain areas. Therearc a number of risk factors for

stroke, including modifiable factors, such as hypertension. cardiac disease,diabetes,

cigarette smoking, physical inactivity and hyperlipidemia. whichare potentially treatable

conditions. There are also non-modifiable risk factorssuch as age. gender. race. ethnicity

and heredity (Elkind and Sacco. 1998) that predispose people to stroke. Drugs that have

been found to be neuroprotective in animal models of stroke have failed to improve

ischemic outcome when used in clinical trials (De Keyser et al., 1999). Some of these

drugs includeGABA modulators, (e.g.• clomethiazole). and calcium channel blockers,

(e.g .• nimodipine). which act on specific targets believed to be involved in theischemic

cascade. Researchers are anempting to improve the translation from animal models to

the clinical situation by extending survival times. emphasizing functional outcome

measures and more carefully COfItrolling physiological variables soch as temperature.

Arguments have been made that such changes are necessary in order to identify drug

treatments that are truly neuroprorecuve rather than those that only delay or postpone

neuronal death (Cornea and Nurse. 1998). Also. much mort research is beingdone on

rehabilitation after stroke to improve the functional outcome of patients with physical.

cognitiveand other deficits.

There are several animal models of ischemic stroke. two of the most common

involve globaland focal ischemia. Global ischemia occurs when the blood supply to the



forebrain is reduced resulting in damage10 selectively vulnerable areas, such as the CAI

region of the hippocampus (Kirino and Sano, 1984). This type of ischemia commonly

occurs during cardiac arrest or after hypoxia. Focal ischemia, on the other hand, is an

incident whereby the blood supply to a specific brain region is interrupted as a result of

blockageofa main anery, such as the middle cerebral anery. Both types of stroke are

highly reproducible in rodent models. Global models include the gerbil bilateral carotid

occlusion model (Kirino and Sano, 1984), and the two (Smither al.. 1984) and four­

vessel occlusion models in rats (Pulsinelli and Brierley. 1979). Focal models involving

the middlecerebral anery include vascular application of Endothelin- l (Sharkey et al.,

1993;Sharkey and Butcher, 1995), the intraluminal suture method (Longe et al., 1989)

and transient occ lusion of the middle cerebral artery wi th microvascular clips (Buchanet

al., 1992).

In the gerbil model of global ischemia there is damage to forebrain structures, in

particular, the hippocampus. Thehippocampus is an area of thebrain involved in

learning and memory (Scoville and Milner, 1954), and consequently, these processesare

disrupted after global ischemia (lola-Morgan et el., 1986a) in both animals (lola­

Morgan et al., 1986b) and humans (Squire and lola, 1996). In the gerbil model, the

caroIid arteries are bilaterally occluded for 5 · 10 minutes and then blood now is restored.

thus causing a transient ischemic attack. This type of global ischemia predominantly

aff~ the CAI pyramidal cell layer of the hippocampus, although other areas, such as

CA2and hiler neurons, are also vulnerable (Kirino and Sane, 1984). Since the gerbil has

an incomplete circle of Willis (Levine and Payan, 19(6 ) a brief occlusion of the carotid



arteries (approximately 3 • 5 min in duration) causes near total forebrain ischemia and.

thus.almostcomplete destructionof the CAI pyramidal cell layer. When brain

temperature is maintained al normolhemticlevelsduring ischemia the loss orCA1te lls

is highly consistent. resulting in approximately 15%and 98% cellular death with 3and 5

minepisodes. respectively (Nurse and Corbett. 1994; Colbourne and Corbett. 1994).

CAl pyramidal te ll death becomes evident 2 · 4 days following ischemia and, therefore.

has been termed delayed neuronal death (Kirino. 1982; Chci, 1990).

The pathophysiology of delayedneuronaldeath has been extensively studiedin

order10identify poIenliallreal mcnl regimens(Siesjo. 1988). In normal cin;umstanees

the energysupplied by oxygen and glucosefuels the membrane pumps. which regulate

ionic homeostasis. In nonnal synaptic transmission glutamate increases to moderate

levels in the synaptic cleft, activates the NMDAand AMPA receptors, which causesa

transient rise in intracellular calcium, and eventually glutamate levels return 10normal.

During an ischemic episode a disruptionof ionic balance occurs, which prevents the

nonnal re-eprake of glutamate fromthecleft. This causes excessive activation oflhe

glutamate recepeoes, particularly thoseof the NMDA type , which leads to a massive

increase in intracellular calcium. through both calcium permeable ion channels and

release from internal stores (Siesjoand Bengtsson, 1989; Choi, 1992). As !he energy

supply isdepleted (Siesio, 1988),the membrane pumps. which require ATP 10 funclion,

are no longer able 10 transfer calcium, sodium and chloride out of the cell (Mies et al.,

1990). This disruption of nonnal ionic balance also causes the cell to be more excitable

and increase its sponta:neous tiring rate. Tbe increasein calcium is Ihoughllo triggerte ll



death via a numbe r of destruct ive pathways, such as mitochondria l dysfunctio n, free

radical formation , ca lcium act ivated catabolic enzy mes . gene activation. and

disintegra tion of the cytos keleton and cell membran e (Cho i, 1988; Siesjo and Bengtsscn ,

1989; K.oroshetzand Mosk ow itz, 1996). Thus . ca lcium entry into cells following an

ischemic insult is a major player in the casca de of cel l death. Con sistent with the

findings of elevated intrace llular calcium is the abnormal electro phys iology o fC A I ce lls

afl:er S min of forebra in ische mia. Thesecells lose the capacity for long-term potentiation

( l TP ) and show increased spontaneous firing that can beblocked by the calcium chelator

EGTA (Kirino et al., 1992 ). These findings suggest that vulnerable CAl cells suffer

from abnorma l calcium homeostasi s. which ultima tely may lead to ischem ic ce ll death.

Curren t researc h focuses on developi ng novel treatm ents to protect the brain

against the devastat ing effec ts of ischemia. One such approa ch is ischemic tolerance.

whereby the brain develops "tolerance" to ischemia as a resu lt of prio r exposure 10 brief

periodsof non-injuri ous ische mia. In the gerbil mode l o f global ischemia two brief

episodes of canxid artery occlusion (e.g.• I.S min in du rat ion), given 24 hours apart. can

protect hippocampa l CA l cells froma severe insult (e .g.• 5 min in duration) three days

later (Kitagawa er al., 1990). This method ofCA I prese rvat ion is termed ischemic pre­

cond itionin g (IP) and has been shown in both gerbi l (Kin no et al.• 1991; Kato et al.•

1991 ) and rat (l iu et al.. 1992) mode ls of global ischemia, as .....ell as focal ische mia

(Matsushima and Hakim. 1995; Matsushima et al., 1996 ; Barone et al.• 1998). However,

the amount of protection declin es as survival time increases, such mat ten days afte r IP

approx imately 80% of CAl cells remain, but afl:er30 days th is decreases to -S()o~



(Corbett and Crooks, 1997). Given mat a 5 min occlusion normally produces

approximately 95% to 980/. CAl cell loss.this is still a significant amount of cellular

preservation. Although ischemic pre-conditioning produc¢s signiflCaJtt histological

proIection. tolerantanimals show behavioural deftcits, such as open-field habitualion

impairments (Corbett and Crooks, 1997), which recover as survival time increases.

The mechanisms of ischemic tolerance are unknown, but there have been many

suggested possibilities. Someof these include: inductionof heat shock proteins

(Kitagawa e al., 1990 ; Kato et el., 1993), activation ofastroglia (Kato et al.. 1994 ), and

imerteukin- l expression (Ohtsukier 011., 1996), decreasedinflarnmanon and increased

endogenous antioxidant activity(Clemens et 011., 1993; Clemenset al., 1994 ), changes in

second messengersystems(Chum et aI., 1992; Hu and Wieloch. 199]), and specific

expression patterns of immediate early genes involved in cell survival (Katoet aI., 1995;

Whitfieldet 011., 1999). Whileeach of these have been implicated in the development of

ischemic toleranceit is likely lhat a combination of factors mediates me neuroprotective

errectsoflP.

Segal (Segal, 1995) has proposed mat morphological changes on thedendrites of

cells are neurcprorecuve in brain injury. Dendritic spines are small protrusions mat

emanate from dendrites and are thelocation of over 90% of all excitatory synapses in the

central nervoussystem (Harris and Kater, 1994). They are highly specialized input zones

that are connected to the maindendritic shaft by a narrowneck and ending in a bulbous

head. The shapeof me neck and head defines the numerous types that have been

identified. including stubby, thin, sessile, mushroom and branched(Sorra and Harris.



2000). On hippocampal CAI cells virtually all excitatory synapses are found on dendritic

spines and most spines are contacted byonly one presynaptic bouton(Andersenet al..

1966). Theycontain both NMDA and non-NMDA glutamate receptor types, along with

calcium/calmodulin dependent protein kinase II, which is activated when calcium flows

through the NMDA receptors. The small neck of the spine is thought to restrict the rise

in calcium that occurs during synapticactivation. thus, the spine represents an

independent biochemica l compartment. Some models visualize the spine to be the site at

which "long-term memory" is stored (Zadoret at , 1990; Bliss and Collingridge, 1993).

FOI" example, in the honeybee the first orientalionflight leads 10spine stem shorteningin

the retinal ganglion cells (Brandon and Cess. 1982). Indeed this model of spine function

deserves some recognition, where recently O' Malley has shown that passive avoidance

training in rats produces a transient increasein spine density in thedentate gyrus

(O'Malleyet aI., 1998), again demonstrating a role of spines in learning and memory.

However, with the advent of sensitive, high-resolution imaging methods, the emphasis of

the roleof the spine in memory storage has shifted. Segal hypothesizes a novel function

fOl" spines: by isolating the synapse:from the parent dendrite the spine may be able10

protect the cell from excuotcxicit y that occurs as a result of a rise in calcium (Segal,

1995), subsequent 10 an ischemic episode. Therefore, spines may be able to protect the

parent dendrite from the overload of cak ium that occurs after brain injury such as in

ischemia, thus providing a neuroproteetive mechanism. Furthennore, they may be

involved in neuroplasticity processes that may be responsible for lhe recoveryof function

(e.g., open-field habituation) seen in ischemic tolerant animals.



In models of ischemic tolerance both histological and behavioural measuresare

used to assess the protection and proper function of the hippocampus. In the gerbil

model, IP animals appear histologically nonnal up to day 10, where approximately 80'/,

of viable CAI cells are present in thehippocampus. However. theseanimals show

habituation impainnents in the open-field. This impainnent disappears by day 30

suggesting a recoveryof function taking place in these animals that is not reflected in the

histological assessment(Dooley and Corbett. 1998; Dowden and Corbett. 1999).

Electrophysiology studieshave also dcmonstr.uedfunctionaldisturbances in tolerant

hippocampal slices. which recover with lime. IPanimals show reduced CAl field

excitatory postsynaptic potentials (fEPSP) up to and including day 10. which coincides

with the deficits seen in the open-field (Dooley and Corbett, 1998; Dowden and Corbett,

1999). However, these animals have nonnal amounts of MAP2 {microtubule-associated

protein-2). suggestingthatdendritic abnormalities may not beresponsible for theseearly

functional deficits. Theamplitudeof the fEPSPsreturns to sham levels by day 30. again.

correlating temporally withopen-field behaviour (Dowden andCorbett, 1999). Kawai

(Kawai et at . 1998) has also sbown that the functionaldisturbanceseen in IP animals

recovers. Hippocampal slices of tolerant gerbils lose the capacity for l TP shortlyafter a

S min insult. as well as NMDAreceptor-mediated transmission. Both these functional

characteristics recoveredwith time. suggesting that ischemic toleranceproduces both

functional and morphological protection. The locusof functionalpreservation seen in

ischemic tolerance has beenattributed to compensation by Olherareasof the brain, such



as caud al CA I or prefron tal corte x (Doo ley and Co rbett , 1998 ). but may in fact bethe

resu lt of neurop lastic mechan isms on survi ving CAl dendrit ic spines.

The dynamic properties of spines make them a promi s ing player in synaptic

plastic ity and possibly in neuroproteetion. Since the hippoc ampal formation is closely

assoc iated with spatia l leam ing. struc tural chan ges in hippocampal syna pses that occur as

a conseq uence of learn ing. are an ellkient system (0 demonstrate the dynam ics of spines .

Moser (Moser et at. 1994 ) has sho wn increased spine density on rat basi lar hippocampal

CA I dendrites fol low ing spat ia l learning in a wate r maze when compared to non-trained

coe nterpe rts. Theincrease in spine den sity is representative o f an increase in synapse

fonnation (Andersen et al., 1966 ) as a resul t of spatial learn ing and thus. an altered

connecti vity within the hip poc amp us. LTP. (he increase in synaptic efficacy believed to

beassoc iated with leami ng and memo ry mechani sms, has also been shown to involve

modificat ions of synapses and spi nes . Papa and Segal (Papa and Segal. 1996) have

shown that ce lls respond to an increase in synaptic activity with an incre ase in spine

dens ity. suggesting that spines are likely to have a short-term ro le in synaptic interaction

rather than to ccn samt e a long -term memory storag e site. Also . Buchs (Buchs and

Muller. 1996) found ultra-structural changes in potentiated CA l synapses following high­

frequenc y trai ns of LTP producing stimulation . Tbesechanges include perforated

postsynaptic densities, large r apposit ion zone between pre- and postsyn aptic structures,

longer postsynapt ic densities and enl arged spines (Buc hs and Multer. 1996). This

dynam ic nature of spines has also been shown in other situa tions, such as, environmental



enrichment(Kolb et al.. 1991)and throughout the estrous cycle of rcderus (Woolleyet

al., I990).

Environmental enrichment and its effects on learning and memory have been

studied formany years. Exposure to enriched environmental conditions improves

learning and problemsolving ability and results in plastic changes in the brain(Duffy et

al.,2 001). Kiyono (Kiyonoet al., 1985) foundthat maternalenvironmental enrichment

during pregnancy in rats exerted a facilitaloryeffect on postnatal maze learning, where

male offspring raised by enriched-housedmothersperformedbetter in a Hebb-Williams

maze than the offspring of impoverishedand standard-housed mothers. Recently,

enrichment has receiveda lot of attention in braininjury paradigms as well. It has been

shown that enrichment improves functionaloutcome on tasks of spatial leaming such as

the Morriswatermaze(Puurunenet al.. 1997) following global ischemia in rats. Also,

gerbils housed in enriched cages followingglobal ischemia showed improved

performance in a T-maze, a test of workingspatial memory, as compared to those

animals in standard housing (Farrell er al., 2001). Both these studies show the beneficial

results of enrichment on brain function following injury. This improvement in memory

processes resulting fromenvironmentalenrichmentisassociatedwith changes in

dendritic morphology, that is. an increasein spine density(Globus er aI., 1973; Moser et

aI., 1994). Manygroops have shown that rats that are placed in enriched conditions have

an increase indendritic branching/arborization,as well as an increase in spine density on

conical neurons (Greenough er aI., \985; Kolb et al., 1997). Therefore, environmental



enrichment clearly induces changes in dendritic spines that could contribute to

neuroprotectionand/or synaptic plasticity_

Anotherarea that has receiveda lot of attention is hormonal effects on dendritic

spines. This interest stems from the fact that females are at a lower risk of stroke than

their male counterpartsduring their reproductive years, but this risk increases once they

reach menopause. It has been shown that intact female rats have smaller infarctvolumes

than males andovariectomized females. in a middle cerebral artery occlusion (Me AD)

model of focal stroke(Alkayed et at . 1998; Hum and Macrae, 2000). Therefore, gonadal

honnones are thought to play a role in this protectivephenomenon, which may include

morphological changes in dendritic spines. Indeed, a number of groupshave shown

structural changes in hippocampal spines during the estrous cycle of rats and gerbils.

During the estrous phase. when estrogen levels are at its highest,spine density is

maximal. During theproestrous phase, whenestrogen levels are at the lowest. spine

density is minimal (Woolley er aI., 1990; Woolley and McEwen, 1992). Also,

ovariectomy of female rats results in a decrease in spine density on the lateral dendritic

branches of CAl pyramidal cells, whichcan be prevented(Gould et al.• 1990)or reversed

(Woolley and McEwen, 1993) by estradiol treatment. This demonstrates the ability of

the hippocampusto be extremely ptasuc, even in responseto naturally occurring

hormone changes. However, the behaviouralsignificance of this is not clear. Korol

(Korol er al., 1994; Korol et aI., 1996) has reponed changes in spatial behaviour of

female rats during thedifferent phases of their cycle. This suggests a role of the spine in

hippocampalfunction. The positive cceetauoe betweenspine density and estrogen

10



levels may represen t differentia l regulatory mechanisms ofleam ing and memory

processes between the sexes as well as between the d ifferent phases of the estrous cycle.

How estrogen exerts its effect on dendritic spines is not c learly define d nor is the

functional conseq uence of lhis change. Onepossible mechan ism is lhe reduction of

GABAergic inhibition in the pyramidal cells to increase the formation o f dendritic spines

(Murphy et aI., 1998). Since global ischemia increases the excitation:inhibition ratio in

the hippocam pus this is also a potential mechanism of ischemic tolerance in gerbils.

Another poss ibility is the induction ofCREB (cAMP response element binding protein )­

regulated genes through the increase in calcium (Jin et al., 200 1). The plasticity seen in

thehippoca mpus o f rats and gerb ils during hormone changes, and the protection seen in

female anima ls in models c f beain injury, dearly demoostrat es the dyna mic nature o f

spines, and their potent ial role in neurceectecnon and functional recovery .

One cha racteristic o f spines that may make them so dynamic is their actin

cytoskeleto n. Spines conta in a specialized cytoskeleton. made up of a network o f actin

filaments, which reflects their need to balance stability and plasticity. Intermed iate

filaments and microtubules, the other major components o f a cell's cytos keleton, are rare

or nonexistent in spines, whereas, actin is extremely enriched in spines relative to the rest

of lhe neuron (Fifk cva and Delay, 1982; Cohen et aI., 1985). Theactin network provides

a comp lex, dynamic structure to copewith the ever changing environmen t of a neuron.

Halpain (Halpain er al., 1998) has suggested that there are two populations of actin in

dendritic spines, one that is relatively stable and one that is dynamic. The stable fonn

seems to be involved in the persistence of dendritx: spines over a period of hours and

11



days (Hosokawae t al., 1992; Dailey and Smith, 1996) maintaining the basic shape and

profile of spines on dendrites. In fact, low coecentraticns of actin inhibitors, such as

cytochalasins and latruncuhns, arrest spine movement but do not disrupt actin filaments

in spines (Fischer et al., 1998; Dunaevsky et at . 1999). The dynamic fonn, however. is

presumably rnpons ible for the shape changesseen in a time frame of seconds to minutes

(Dailey and Smith, 1996; Fischer er al., 1998; Dunaevsky er at, 1999) and thus, has an

essential role in synaptic plasticity. Evidenceof lhis has been shown by Krucker

(Krucker et at. 2000), whereby, LTP was selectively blocked by low concentrationsof

actin assembly inhibitors, demonstrating the role of actin assembly in synaptic plasticity.

The two pools of actin filaments may represent the way in which dendritic spines

constantly change in the face of an unstable environment and yet still maintain the

essential synaptic connections with otherareas of the brain, thus, making the spine a

worthy candidate in plasticity as well as in neuroproteetion.

Calcium has long been thought to be a major player in the ischemic cell dealh

process (Siesjo and Bengissoe, 1989). The ability of spines to change shape and density

may provide a mechanism 10salvage the cell from damage caused by increasing calcium

levels. Intracellular calcium plays a crucial role in a variety of ce llular functions in

neurons, including neurotransmitter release. activation of ion channels, and growthand

plasticity (Choi. 1988; Grover and Teyler, 1990). Calcium-ion concentrations are

nonnally maintained at submicromolar levels within cells by machinery that is

responsible for regulating its levels. TIle dendritic spine is an area of the cell where the

local concentration of calcium rises to levelsneeded to activate biochemical cascades

12



associated with plasticity (Koch and Zador, I993). However, like many necessary and

beneficial elements too much calcium. as in the case or an ischemic episode. can have

damaging effects. Since spines are able 10regulate calcium levels independently or the

parent dendrite (Muller and Connor, 1991; Guthrie et al.• 1991).protecting the main

dendritic shaft froma lethal doseor calcium is consistent wiltt the idea that spines may be

involved in neuroprotection. This theoryis supported by the factthat spines containa

high corcenumion or protein phosphatases, which regulate calcium dependent

phosphorylationof spine proteins (Ouimet et al., 1995). Also, spines arc:not equipped

with organelles that can be damaged by an increase in calcium, such as mitochondriaand

microtubules. However. they do contain calcium-sequestering agents such as imemal

calcium stores. endogenous butTers and a Ca2·lNa· exchanger (Segal, 1995).

The shape and/or size of'the dendritic:spine may also influence the degreeor

neuroprotection (Sam. and Harris, 2000). Calcium kinetics in spines are different than in

the parent dendrite. After synaptic activity there is a larger increase in calcium levels in

the spine thanin the neighbouring dendrite. Also. the spine shows a slower decay phase:

than the parentdendrite. suggesting that the spine contains differential mechanisms or

calcium decay. such as active extrusion by calcium pumps and diffusion across the spine

ned (Majewska et al.• 2000). The decay kinetics vary betweenspines because the

shapel1engthor spines contributes to their calcium regulatingabilities. Longer spine

necks maintain high calcium levels more so than short spine necks, where calcium can

move quickly into the parent dendritic shaft and go on to the cell nucleus. However. a

longer spine is more independent from the main dendrite and calcium moves slowly out
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of the spine head (Volfovsky eret., 1999). The shorter the spine neck the more similar

the intra«lIu lar calcium dynamics between the spine head and theparmi dendrile(~al

et aI., 2000). Therefore, a longerspine may protect the cell froma massive i nf1u~ of

calcium and prevent the polentially devastating effects that this may cause. Because

spines can change lengths over a veryshort time frame spine length serves to fine tune

the interaction between the spine headand the parent dendrite on a continuous basis.

Also, the differential decay kinetics of longer spines may affect long-term processes such

as actlvarion ofkinases, phcspbau ses and mobilization of glutamate receptors 10the

pcstsynepuc membrane (lissin et al., 1999), thus altering the amounl of input and

synaptic elTicacy of the cell.

Consistent with spines being neuroprorecnve are findings demonstrating the

signaling pathways mostlike ly involved in spine foemanon and aheration, CREB is a

transcriptional factor implicated in the control of numerous genes involved in synaptic

plasticity pathways and also in cell survival pathways. CREB protein responds to an

increase in cAMP and/or calcium levels and is then transformed into its active form:

phosphorylated CREB (pCREB). Recentevidence suggests a role for pCREB in the

generation of new spines. Segal and Murphy (Segal and Murphy, 1998) have shown Ihat

blocking of the cAMP-regulated protein kinase A eliminates estradiol-evoked spine

formation (Woolley et aI., 1990).,as well as the increases in CREB binding protein

responses seen with estradiol. Also, bicucullme, which enhances spontaneous firing

activity, has been shown to have the same effect on spine density in hippocampal

cultured neurons (Papa and Segal, 1996). These results indicate that CREB activation is
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a necessary step in the process leading to the generation of new spines, and that the

increase in spine density seen in estradiol treated neurons can beaccomplished by

~uct)on of GABA input. increasedexcitation, NMDA-mediated calcium influx and

finallyCRf B phosphorylation. Ischemia alsocausesan increase in excitation within the

hippocampus, where cells of the CAI pyramidal layer undergo a process of apcptonc cell

death and dentate granule cells survive. In the resistant granule cells an increase in

pCREBis seen 48 hours after a hypoxic-ischemic episode. However, a dramatic lossof

pCREB is seen in theCAl cells precedingthe onset of eelIdeath (Waltoner aI., 1996).

This is consistent with the idea ofC REB being important in survival of hippocampal

neurons. Therefore, it is logical to suggest that the neuroprotecrion offered by ischemic

pre-conduioning may also be a result of CREBactivationand thus, spine formation.

Recently, Segal (Segal. 2001) has proposeda unifying hypothesis of the role of

spines in plasticity. He suggests that there is a bimodalrelationship between spines and

intracellular calcium levels, such thai a mooerare increasein calcium concentration will

cause theformationof novel spinesand the dongation of existing ones, whereas. a large

and persistentincrease in calcium will cause shrinkage and eventual elimination of

spines. Furthermore, it is suggested that a local change in calcium levels will change the

length oflocal spines, whereasa cernral change in calcium will cause the phosphorylation

ofCREB and formationof novel spines. Thus, both local and central factors play a role

in spine morphology, where spine shape and density are thought to affect the ability of

spines to regulate calcium.
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Therefore, the hypothesis to betested in this thesis is that an increase in spine

density on the CAI cells or the hippocampus contributes to the development or IP, which

supports the !WI'Vival of thesecells and the recoveryof function rollowing a severe

ischemic insulL 1lJe present experiments will examine the effect or IP on hippocampal

spine formationto determine its involvement in ischemic tolerance and the time courseor

the postulated moepbolcglcal changes. Because spines are extremely dynamic structures.

as demonstratedby their response to environmental enrichment,honnonal changes and

synapc:ic activity, and because they have been intimately linked with nuclear mechanisms.,

such as CREB activity. spines could contribute to the development or ischemic tolerance.
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METHODS

Animals

These experimcnlSutilized female (n~) Mongolian gerbils (Meriones

unguiculalWl, which were purchased from High Oak R.mch l id (Baden , On ). The

gerbils were housed in groups of four in the animal care facility for at least two weeks

prior to any experimentation. They were treated with piperazine for 3 days when they

arrived to rid them of pinworm infections commonly found in these rodents . They were

also kept on a 12-hour lighl/dark cycle in the animal room. Animals ranged from 4 to 9

months in age.

The gerbils were fed guinea pig pellets, and twice a week they were given a

mixture of sunflower seeds and other grains. They were also fed carrots or apples,oncea

week. Shredded paper and cardboard rubes were in the cages to allow nest building.

Cannula [",pl an/II/ion

Gerbils (50 - 120 g) were anaesthetized with sodium pentobarbital (65 mg/kg i.p.)

and given a subcutaneous injection of atropine (O.oJ mglml, O.03ml). They were then

placed in a stereotaxic instrument and the head immobilized. An incision was made. the

skull was exposed and the overlying periosteum was removed with a cotton swab. A

small hole (approximalely Imm in diameter) was drilled in the skull approximately 2 mm

lateral of thc midline suture and I mm in front of Bregma. Two plastic screws were

glued 10 the skull 10 hold dental cement in place. A stainless steel guide cannula (5 mm

in lenglh) was held in place in the hole, above the dura with denial cement. A stainless

steel stylet was then placed in the cannula to prevent infection. The animal's skin was
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then sutured, and it was placed in its cage under a heat lamp until it recovered from the

anaesthetic. From this point on the gerbils were housed individually.

ND"" . I Te",w" '""

Three days after the cannula implantation gerbils were anaesthetized with H t%

halothane (with 300/. oxygen and 700;' nitrogen) and 8 mm wireless temperature probes

(Mini·Miner Co.. Bend,Or. USA) were irsened into the guide cannula. The probe tip

tcnn inated in the striatum at a depth that approximates that of the hippocampus. The

probewas taped to the cannula ann and the gerbil was removed from anesthesia and

placed in a plexiglas cage. These eages were placedon top of AM receives (mOOd"

RA-IOIO. DataSciences Inc., St. Paul. MN, USA),which were connected to a computer

that records brain temperature every 30 seconds for four hours. This established a

baseline:temperature. The probeswere then removedfromthe gnbils underhalothane

and they were placedback.in their home cages.

Groups

There were six groups of animals used in thisexperiment: ischemic pre­

conditionedanimals (IP) surviving either 3 (IP3). 10 (IPIO)or 30 (IP30) days: pre­

conditioned only (PO); controls (C); and triple shams(TS). PO animals received two 1.5

min occlusions, separated by 24 hours , and were sacrificedthree days after the second

occlusion. The IP animals received two 1.5 min ccclusioes, separated by 24 hours,and

followed by a 5 min ischemic insult three days later. Control animals did not receive any

surgical treatment. Finally, the TS group received thethree surgical procedures

consisting of dissectionof the arteries, suturing. and temperature monitoring, without any
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carotid artery occlusions, 10 control for the repealed use of anaesthetic. C and TS groups

were combined as a normal (N) group fer stalistical analysis.

[nduction of [sdt~"".

Three days after normal temperature measurement animals were prepared for

surgery. Gerb ils were anesthetized under 2% halothane (30"/. oxygen and 70% nitrogen)

and brain temperature probes were placed into the cannula. Theanimal was posilioned

ventral side up, its neck was shaved, and a midline incision was made. The carotid

arteries were isolated from surrounding tissue, using forceps, freed from connective

tissue and a silk suture was placed beneath each artery.

When the brain temperature reached 36SC the arteries were picked up bythe

sutures and occluded with mini-aneurysm clips. Occlusions were either 1.5 min in

duration (pre-<:onditioning) Of S min in duration (ischemia). The arteries were kepcmoist

during occlusion so that the clips would not break the artery upon removal. During the

occlusion the animal' s brain temperature was maintained at or close to J6.S'C with a hot

water blanket (Gaymar heat thenp y Mul.T_PadT"'model TP·J E, J 112"x2J", Gaymar

Industries Inc., Orchard Park, NY. USA) surrounding the head and neck area. Body

temperature was also regulated using a homoeothermic heating blanket (Harvard

Apparatus. Saint Natick, MA, USA) wrapped around lIIe gerbil's body.

After occlusion theclips were carefully removed from the carotidarteries and

reflow was re-established by massaging the arteries with lIIe forceps. The neck incision

was then sutured and the brain probe secured to the cannula. The animal was then placed

into the plexiglas cage with foodand water, and allowed to recover. Brain temperature
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was monitored for eight hours following pre-conditioning and 24 hours following the 5

min occlusion. Brain temperature was maintained at/ex- above 36.5'C for one hour after

ischemia with beating lamps located above the cages. Generally. afterone hour the

animals recovered and self-regulationof'rempeeanee was restored. f ollowing the

temperature monitoring period the animals were reanaestheuzed and brain probes

removed. They were then placed back into their home cages.

B,.I"",iONlI Tnting

All gerbils were tested in the open-field, which is a sensitive measureof

hippocampal dysfunction (Wang and Corbett, 1990; Babcock er aI., 1993). This testing

was done on days 3,7. 10 and 30 after the last ischemic episode. depending on survival

lime. The animals were brought to the testing area approximately )0 minprior to testing

and were disturbed as liule as possible during this time.

The gerbils were tested individually in a soundproof room using an open-field

measuring 72 x 76 x 57 em' , Thefloor of the open-field was e1ectronicaJlyd ividcd into

25 squares. A visual tracking system(HVS Systems, Kingston. UK) recordedthe

number of squares entered per 10min test session. At the end of the10 min session the

gerbil was removed from the apparatus and placed back in its home cage. The floor of

the apparatus was washed between lest sessions to eliminate any odours thai may

interfere with the next animal's behaviour. Gerbils were weighed after everyopen-field

session.
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Hislology

At the end of the experiment the animals were given an overdose of sodium

pentobarb ital and perfused transcard iall y with O.lJOA.sa line. The brains were removed

immedi ately after perfusion and placed in a mod ified Golgi-Cox solution (Glaser and

Van der Leos, 1981) for 14 days. The brainswere then immersed in a 30% sucrose

solutio n for a minimum 00 days. The bra ins were s liced on a vibrato me at 200}Lm and

mounted on gelatin-immersed slides. Sections were kept moist with sucrose to preven t

excessive drying of the sections. They were then blotted with bibulous paper and put in a

sl ide ho lder that was cov ered with a damp paper towe l. This was then put in an airt ight

con tainer with deion ized water on the bottom . and placed in a dark cupboard. Twenty ­

four hou rs later the slides were remo ved from the container and blo tted again in the same

manner . They were the n sta ined using a modifi ed Gclg i-Cox staining procedure (Gi bb

and Kclb , 1998). Absolu le alcohol used in this stai ning proced ure was dehy drated with a

molecu lar sieve (type SA. S OH Inc.• Toront o. On ) to minimize moistu re in the tissue .

After the s lides were co ver slipped jhey were placed in a container filled with desic cant.

lmllg e-Anlllys;s

Bra in tissue was ana lyzed using the Neuro lucida® neuron trac ing system and

Neuroe xploreT@(Microbrightfield Inc.• Co lchest er. VT. USA) programs. CA I spine

densit ies were sampled from the rostral level o f the hippoca mpus. Onl y cells/dendrites

reach ing the following criteria were analyzed (Gibb and Kolb, 1998); I ) the cell had to

bewell impregnated with sta in and not obscured by blood vesse ls. astrocytes or other

dendrit es; 2} the apica l and bas ilar branches had to bemostly intact and within the plane
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of section. Fifteen dendritic branches were analyzed from each brain. Th is consisted of

five basila r, 5 prox imal and 5 termina l branches (Fig. I). Proximal bra nches were

considered to be first and seco nd orderdendrites that projected laterall y from themain

apical dendrite. Tcnninal branches were third, founh and higher order dendrites that

projec ted more rando mly and posterior from the main apical dend rite. Branch order was

determined for the apical dendri tes such that branches arising from the primary apical

dendrite were first order.after one bifurcat ion, second order,and so 00. Branch order

was determ ined for the basilar dend rilCSsuch that branch es arising from the cell body

were first order, and so on. Ideall y, each ce ll would contain an adequate basilar ,

proximal and termina l branc h to ana lyze, but this wasn ' t possible for all brains. The

minimum numher of ce lls usedwas 5 and themaxi mum was9. Ce lls were taken from

both hemispheres depending upon staining and availabilit y.

Chosen dendriti c branche s were divided into 3 pan s, the inner part being closest

to thebifurcation node , middle, and ce rer bei ng the end of the branch . On ly middle

portions were traced and were between JJJ. 86.5 JIm long. Trac ings were made of

dendrites visualized at 1000 X magnification, Spine densuies were calcu lated using

Neuroex plorer® , and were expresse d as the num ber of spines per 10 u m. No attempt

was made to correct for spines hidden beneath or above tlle dendriti c segment, there fore,

the spine densities are likely an underest imate of the actua l density of the dendritic

spines .
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Sladslics

One- way ANO VAs were used to analyze open-fi eld and spine:densi ty data.

Newman- Keuls post-hoc tests were used to compare treatmen t means. Tbe significance

level was set at p<O.OS.
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RESULTS

The mean brain temperature recordedfor the IP groups and the TS group

following the 5 min occ lus ion was 36.47"C ± 0.08 S.D. (0"'39) . The gro up tem perature

means did not d iffer sign ifican tly from eachother (p:O .20S) thro ughou t the 24 hour post ­

ischemic monitoring period (Table I).

Behfl l';OU'

The data from the ccen-fleldscores are shown in Fig. 2. The scoresof the

animals in the IP groupsdid not di ffer wilh surviv a l t ime (Day 3, p=O.27; Day 7. JF<).22;

Day IO.~.I 4) and were pooled foranalysis (see Table 2). Analysis of variance

indicated a signiClCant treatment effect on Day 3 (Fl.n =8.426, p<O.OOO I). Day 7

(F2Jo- JO.908. p<O.OOOI). and Day 10 (Fuo=8 .764 , p<O.OI). All group s displayed a

moderate amount of'activiryon their firstexposure (Day 3) to the open-field, wherethe

IP group exhibited heightened levels ofactivity compared to the other grou ps (p<O.OI).

All groups d isp layed habitua tion 10 the open- field . as shown by the dec lining ac tivity

levels on Day 7, Day 10 and Day 30. However, the IP animals did no! show the same

amount of habituation. Their activity levels decreased with each test day but their

activity scores were significantly higher than theC and TS group on Day 7 (p<U.OI) and

higherthan the C animalson Day 10(p<O.OS). By Day 30, however, the IP groups'

scoresreturned to sham levels (p=O.93)

Spine Densuies

Fig. I is a schematic diagramof a typical CA I cell, showing the different types of

dendritic branches examined in thepeesent experimenL The basilar branches are those
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emanating directly fromthe cell body. Proximal and terminaldendrites stem fromthe

main apical branch and are also depicted in this drawing. Fig. 3 shows a repeesenunve

CAI pyramidal cell dendrite usedto calculale spine density, Spine densities were

calculated as the numberof spines per 10 urn of dendrite. Unpaired t-tests showed that

TS and C groups' spine densities did not differ on basilar (TS"'S.98 ± 0.7; C- S.64 t 1.1;

p=O.46I). proximal (TS=6.42 t 2.4;C-6.14 t 13;~.S I 86) orterminal (TS"'6 .14 to.9;

C"6 .16 t 1.1; p---o.97) dendrites. Therefore. these groups werecombined into an N

(normal) group . Table 3 shows the increase in spine densily expressed as a percentage of

the N group.

Five basilar branches were traced. from whicha mean spinedensity was

calculated,for each animal (Fig. 4). Analysis of varianceindicated that thc:re wasa

significanttreatmenteffect for basilar spine densities(F u o=8.754. p<O.OOOI ). Newman­

Keuls post hoc tests indicated that the PO animals had a significantly higher spine density

than the normal (N) animals (p<O.OI). showing an increaseof atmosr 30% (Table 3). IP

animals !hat survived 10and 30 days after the 5 min insultalso displayeda significanlly

higher spine density than the N group (p<O.OI) reaching approximately 30 and27%.

respectively. Hcwever.H' animals that survivedj ust J days after the lasl insult had spine

densities that weresignificantly lower than the PO.IPIO and IPJOgroups (p<O.OI), and

were decreased from N by 3%.
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Proxi",tlllhnflriln

Significant treatment effects were also found (F uo~.669. p<O.OI) for proxim al

dendrit es . Animals that surv ived 10 and 30 days afte r the 5 min ischemic insult (lP

groups) d isplayed signi fican tly higher spine densities than the normal animals (N )

(p<O.OS. Newman- Keuls) o f approximate ly 30 and 218/0. respectivel y_ However. PO

animals did not have a higher spine density than any of the other groups on these

dendrit ic branches (Fig. 5).

Again. analysis of variance showed a signiti cam treatment effect on terminal

dendrites (F ~.60=9.369. p<O.OOI). On these branches spine dens ities were signi ficantly

higher in the PO. IP IOand IP30 groups (p<o .05) relative to the N group (23. 29 and 210/.

increase . respectively). Also. IP animals thai survived 10 and 30 days had a higher spine

density (p<O.OI and p<O.05. respectively) than animals that only survived 3 days

following the last insult (Fig. 6).
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Tab'e I : Inua ischemic brain tempera tures

Mean Trmperatu~ (OC) >SD

PO
36.4 0 .16

( n~)

IP)
36.4 0.16(0 -10

.PIO
36.4 0.16

(n:=13)

IP.lO
36.6 0.18

n:>:lO)
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Ta ble 2. Mean open-field scores for the individuallP groups on days 3. 7 and 10. No

significant differenc es exist between the lP groups and therefore. they were pooled for

further analysis.

G ro up ""r3 ""r 7 Dar10

IP3 (n = 10) 823 ± 115 .., _.

IPIO (" = 13) 918 ± 77 794 ± 69 614 t 125

IP30 (n = 10) 89 1 ± 206 742 ± 128 54 1 t 94
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Table 3. Increase in spinedensity as a percentage of N groupvalues.

Basilar PreJ.imal Termini

PO (n-9)
30% 20% ,,%

IP3 (n=JO) ·3% 6% 3%

IPIO(n=13) 30% 29% 29%

IPJO(n=IO) 27% 27% ,,%
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Fig I : Schematic drawing of hippocampal CA I pyramidal cell, demonstrating proximal
(first and second order , shown in blue and purple), terminal (third and fourth order ,
shown in green and red), and bas ilar (those emanating directl y from cell body) dendrites .
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Fig 2: Ope n-fie ld ac tivity scores (mean ± SO). Scores for IP animals were

pooled as one group . On day 3. PO (n=9), TS (n- 1) and control (n=8)
animals had similar scores, however.the IP animals (n=33) hada signifw;antly
higher score than all the other groups (.p < 0.05). On days 7 and 10 the IP
animals (0"'23 ) exhibited significantly higher activ ity sco res than the cont rols
(0=8) andthe TS an imals (n- J ) (p < O.OS). On day ]O (P an imals (n= IO) were

nol different than controls (n- 7).
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FiR3: Representative photograph (magnific ation I000X)
ofa terminal dendr ite from a CAl pyramidal cell
showing dendritic spines.
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DlSCUSS ION

The present experiment has demonstrated that there are differences in spine

densities between po. IP and normal animals. Thesedifferencesare incorrelation with

the hypothesis that dendritic spinescontribute 10 the development of ischemictolerance.

Therefore, the present experiment suggests that morphological dendritic changes may be

a possible mechanism of ischemic tolerance. An increase in spine densitywas seen 10

and 30 days following IP. and. 3 days following PO treatment. In addition, it wasshown

that open-field behaviour in IPanimals was initially abnonnal but began to recover to

nonnal sometime between 10 and 30 days following IP. a time when spine density was

elevated.

The PO animals hada higherspincdtmity than normal animals on basilar.

proximal and terminal dendrites. These results suggest that the observed increase in

spine formation. which was seen 3 days afterthe last preconditioning episode. might be

necropeorecuve becausethis elevation coincideswith thegreatest degreeof

protection/ischemic tolerance. Normally with IP, the 5 min insult is given 3 days

following the last preconditioningepisode. Previous studies have shown that this 3 day

interval seems to provide the greatest amountof protection against the moresevereinsult

(i.e., 5 min) since shorter or much longerintervalsresults in less CAI protection

(Kitagawa et aI., 1990; Kirino et aI., 1991). Therefore. 3 days after preconditioningis an

optimal time to detect mechanism(s) of ischemic tolerance. The observed increase in

spine density seen in the PO animals suppons the idea that dendritic spines may have a
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neuropecrecuv e role in brain injury (Segal. 1995; Segal . 200 1). Segal proposes that

small. transient increases in intracellu lar calcium are sufficient to ca use elongation o f

existing spines and the formation of novel spines, whereas. large. more sustained

increases in inuacel lular calcium may cause shrinkage and possibly collapse of existing

spines (Segal, 200 I). Th is may bethe case in precondition ing, where the brief episodes

of ischemia increase calcium to concentrations sufJicienl to ca use an increase in spine

density, There fore. after the IWO PO episodes the dendri tes have more spines,which may

beab le to buffer excess amounts o f calcium if needed. During the5 min ischemic

episode calc ium levels increase significantly, which would normally cause cell death

(Choi. 1992). However. the CAl ce lls, as a resa lt o f pre-condition ing, are bener

equipped lo hand le excess calciu m. The extra spines lake up the ca lcium and prevent it

fromreaching the parent dendrite through unique ca lcium buffering systems, including

the presence of smoo th endoplasmic reticu lum. which takes up excess calcium as an

internal store. and polyribosomes thai are capable of synthesizing calcium-buffering

proteins locall y (Harri s and Kater. 1994). This is supported by the finding that ischemic­

tolerant hippocampa l CA I cells have differentia l calcium dynam ics compared to non­

tolerant neurons (Ohta et al.• 1996). In the hippocampus of ischem ic tolerant gerbils

plasma membrane Ca 2- ATPase levels {i.e.. plasma membrane calcium pumps) were

significantly elevat ed before the S min episode and remained at a higher level throughout

the following episod e. "The levels in these cells were similar to those displayed by

ischemia resistant CA3 neurons. The increased calcium-buffering abilities reduced

calcium toxicity following the S min insult and prevented delayed neurona l death.
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Therefore.an increase in spine density may be responsible for the increasein calcium

bufferingsystems seen in these ischemic-tolerant CA1cells. thus providing a mechanism

of neuroprcrecucn.

Spine density was also elevated in IP animals lhat survived 10and 30 days

following the last ischemic insult. This effect was seen on basilar. proximal and terminal

dendrites. However. thoseanimals that survivedonly 3 days following the last ischemic

insult did not show anychange in spine densityat this lime point, which isseemingly due

to the impact of the Smin episode. Following an ischemic insult hippocampal pyramidal

cell dendrites show varicosity formation and collapse of spines. which may be occurring

to reduce the synaptic efficacy of afferent fibres. Bothof these characteristic changes are

reversible following a return to standardconditions(Park er at., 1996). An increasein

spine density in the IPanimals following the 5 min episode may not be seen until 10days

later because the cell may initially retractdendritic spines in order to preventexcess

incoming excitatory (potentially exeitotoxic) input. Therefore, the IP3 animals do not

show an increase in spine density, although spine densities are assumed to have been

elevated prior to the Smin episode to the same level as the PO animals. This insult may

then havecauseda significant decease in spinenumber. that is. a possible retractionof

spines. Between 10 and30 days later the cells may attempt to recover lost synaptic

connections. due to the death of neighbouringCAI cells. by increasing the numberof

spines on the dendrites of surviving cells. In fact, the majority of incomingexcitalory

synapticconnections in the hippocampus are on dendritic spines (Andersen er al., 1966).

Therefore. this may represent compensatory mechanisms that are taking placedue 10 the
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loss of surrounding CAl neurons. If so, this could contribute to the recoveryof function

seen in the open-field behaviour at 30 days following IP. The open-field datashow the

IP animals hadhigher scores than normal animals up to and including 10 daY' after the:

last ischemic insulL This implies an impairment of habituation. a functionof the

hippocampus (Wang and Corbett, 1990; Babcock et al., 1993), which disappearsby day

30, thus correlating temporally with the increase in spine density. Therefore, the increase

in the number of spines evident at 10 and 30 days following IP may account forthe

subsequent return to normal open-field behaviour. In support of this interpretation, rats

that were given frontal conical lesions demonstrated recovery on a spatial learning task,

which was associated with an increase in spine density on remaining coeticalneuroes

(Kolb et al.. 1991). suggesting that recovery from cortical injury may be mediated by

dendritic changes in the remaining cortex.

Unlike the PO group, the increase in spine density seen in the IP animals is less

likely to be attributed to neuroproecdcn, but is more likely a mechanism of

neuroplasticity. It is possible that a necrccroecnve response may still be in effect since

thecell death process can continue for more than a month after ischemic pre-conditioning

(Dooley and Corbett, 1998). However, the majority of the evidence suggests that the

increase in spine density is a compensatory mechanism (Humm et al., 1991).

Dendritic injury following an ischemic insult has been studied intensively in recent yean,

although Ramon Y Cajal's description ofcellular injury almost 100 years ago (Segal and

Andersen. 2000) closely resembles what modem researchers have observed. The pattern

of dendritic changes, that includes focal swelling (varicosities) and beading. has been
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characterized both in vivo (Hsu and Bczsaki, 1993; Hori and Carpenter. 1994; Matesic

and Lin. 1994)and in vitro (Park et al., 1996; Ha.sbani et al., 2001). After an ischemicor

hypoxic event dendrites show segmental swelling with periodic spherical beadingjoined

by thin regions of membrane. This is also accompanied by a loss of dendritic spines,

which is mediated by glutamate release and NMDA receptor activation (Goldberg et aI.,

1987;Goldberg and Choi, 1993; Parket al.. 1996). The nature ofthc swellings may

possibly becaused by an excessive influx of ions and water. or, disruption of the

cytoskeleton (Park et al., 1996). It is possible that the structural changes that occur in

response to hypoxia or ischemia leadto early changes in synaptic effkacy and

transmission failure, wherefocal constrictions seen between varicosities may cause

electrical isolation of dendrites from thecell body. and a loss of dendritic spines would

limit ongoing neuronal damage by excitceoxicmechanisms (Park et at., 1 996~ Therefore,

the pathological process of dendritic swelling and beading may actually bea mechanism

of cellular preservation. These dendritic changes have been observed in other models of

global ischemia (Hori and Carpenter, 1994) and also noted in the present experiment.

Althoogh dendritic beading and swelling are characteristics of pathological processes,

their recovery back to normal dendritic shape may contribute to functional recovery. such

as that demonstrated in the present experiment. Neurons are capable of reorganizing

synapses in response to injury. For example, Hasbani (Hasbani et al.. 2001) has shown

that despite widespread dendritic injury and spine loss following hypoxia. cultured

cortical cell dendrites recovered from extensivespine loss after removal of thehypoxic

situation. In addition they observed a re-emergenceof spines from the same location
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from which they disappeared, as well as the formation of dendritic filopodia in new

locations along the dendritic shaft after dendritic recovery. Furthermore, throughout

spine loss and recovery. presynaptic and postsynaptic elements remained intact (Hasbani

et al., 2(01). These findings suggest that the re-establishment of dendritic spine synapses

in surviving neurons and the formation of novel spines may bea mechanism of functional

recovery after an ischemic insult. Another study has demonstrated that striatal medium

spiny I neurons go through a process ofloss and replacementof dendritic spines after

unilateral deconication, suggesting that theseneurons are capableof forming new

synaptic circuitry following deafferentation (Cheng et al., 1997). Since other neuronal

cell types have the capacity for functionalplasticity following injury, it is likely that

hippocampal CAl cell also possess the ability 10restructure functional connectionsafter

ischemia. The present study has shown an increase in spine density on surviving neurons

in the IP animals which can beseen up 10 one month after ischemia and which correlates

temporally with a recovery of habinarion in the open-field. Previous results fromthis lab

have demonstrated recovery of function following ischemia. Following ischemicpre­

conditioning the amplitude of fEPSPs are initially attenuated but return to sham levels 30

days following the last ischemic episode (Dooley and Corbett, 1998; Dowden and

Corbett, 1999 ), and remain stable as long as 120 days (Farrell et al.. 200 1). As stated

earlier. this coincides with a recovery of normal open-field behaviour. 'Iherefoee, the

change in spine density in the IPIOand IP30 groups may beattributed 10 neuroplastic

changes laking place 10 compensate for the loss of other CA l cells. and thus restore the

learningand memory functions associated with the hippocampus.
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The signaling mechanisms leading to an increase in spine fonnation are still being

invest igated . One of the most promising cand idates involved in this pathway is CRE8

(cAMP response element binding protein). CREB is known to be involved in long-term

synaptic plasticity, more spec ifically, UP, where the cakium-dependent phosphorylation

of CRE8 (pCR EB) is critical for maintaining the late-ph ase of LTP (Nguyen and Kandel,

1996). Imperative to the study o f long-term neurona l plasticity are dendrit ic spines, since

they are the primary targets of excnatoey synaptic inputs and have been intimately linked

with the mocpholog ical changes associated with LTP and behavioural plast icity ( Lee et

aI., 1980; Chang and Greenough, 1984). Although it has been well established that both

CRE B and dendrit ic spines play pivotal roles in neuronal plasticity the molecular events

linking them together in the regulation of new spine forma tion is SliI!unknown. In CA 1

cells, which are highly vulnerab le to ischemia, there is a drama tic loss ofC REB. whereas.

in the resistant dentate granule cells there is a dela yed increase in the levels of pCREB,

suggesti ng that pCREB may be important for cell survival (Walton and Draguoow,

2000). Segal's (Sega l and Murphy, 1998) Sludy of thc involvement ofCREB in the

estradio l-evoked increase in spine formation on cultured hippocampal neurons has

demonstrated that an intlux of calcium via NMDA-dependent synaptic channels leads to

the activat ion ofa cAMP cascade, which in turn, leads to the phosphorylation of CREB

and the subsequen t formation of new dendritic spines. In fact, theestrad iol-induced

increase in spine density (Woolley and McEwen, 1992) can be attributed to CREB

activation through a GABA inhibitory mechanism, which has been linked to calcium

influx (Murphy et al.. 1998). Therefore, ischemic prc-cond itioning may work through a
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similar pathway to cause the formation of nc:wspines on the:CAl cells of the

hippocampus.

Another aspect of spines that may contribute to their neuroprotcctiveJneuroplastic

properties is their shape and size. Unfortwtately, in the present experiment,spine lengths

were unable 10beappropriately analyzeddue to the limitations of the tracing system

used. However, according to these spine density results and Segal's unifying hypothesis

(~I, 2001), it would be suspectedthat the PO animals would show an increasedspine

length as compared to the ornergroups. Spines that are longer are more biochemically

and electrically isolated from the parent dendrite and can maintainand regulate calcium

levels independently fromthe parent dendrite. thereby, addingto the neuroprorecuve

efficacy ofdcndriti c spines (Volfovskyet al., 1999). This mayalsoexplain why a

majority of the CAl neurons in JP animalssurvive over time. Spine shape may be

involved in neuroplastic mechanisms, as well. Novel or existing spines may develop

bulbous heads, longer necksand even multiple spine heads, thereby increasing the

surface area and the number of synaptic connectionsthat theycan accommodate.

Hippocampal CAI cells have varying ranges of spine dimensions; forexample, spine

neck diameter can range from 0.04 - 0.5 J.Lm; IlC1:k length from0.1- 2 J.Lm; maximum

numbcr of boutons per spine is J; and maximumnumber of branches perspine is 3.

Thesedifferences in spine parameterscan be seen on the same: cell and evenon the same

dendritic segment (Harris and Kater, 1994). Therefore. the dynamic nature. shape, and

size ofC AI dendritic spines may contribute to the neuroprotectiveand neuroplastic

mechanisms characteristic of thegerbil model of ischemic tolerance.
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In conclusion , the present experiment supports previous claims that dendritic

spines are involved in pectecting thebrain from injwy, and also suggests that they are

involved in compensatory mechanisms to recover from brain injury . Future work in this

laboratory will examine thetime COWle ofCREB express ion in the ischemic tolerant

brain as it may corre late with the observed increase in spine density seen in this study.

Another interes ting experiment would be to investigate spine lengths and shape using

electron microscop y in the IP model, since these structu ral features may contribute to the

prerecnve effec ts of dendritic sp ines. Also. measuring calcium influx during or after a

pre-conditioning ischemic episode. as compared to the 5 min insult, would further shed

light on the idea that alterations of dendritic morphology can be neurcoececuve. The

present experiment provides additional insights into the true mechan ism(s) of ischemic

tolerance. Once these endogeno us mechanisms have beenidentified. they may provide a

basis for novel treatment of stroke that is relatively free of undesirable side effects.
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