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Abstract

In Survival analysis, it is vital to understand the effect of the covariates on the survival

time. Commonly studied models are the Cox [1972] proportional hazards model and

the accelerated failure time model. These methods mainly focus on one characteristic

of the survival time. In reality, the association between the response and risk factors

is not homogeneous always. This leads to the use of quantile regression [Koenker and

Basset, 1978] models, which provide a global description of the association. In quan-

tile regression modeling of the survival data, the problem of estimating the regression

coefficients for extreme quantiles can be affected by severe censoring [Portnoy, 2003],

especially when the sample size is small. In epidemiological studies, however, there are

often times when only a subset of the whole study cohort is accurately observed. The

rest of the cohort has only some auxiliary covariate available. The naive use of the

auxiliary covariate in the model without the accurately measured covariate could lead

to biased estimates. To deal with this problem in censored quantile regression, we pro-

pose a regression calibration based method when there is a linear relationship between

the auxiliary covariate and the accurately measured covariate. When the relation-

ship is non-linear, we propose a non-parametric kernel smoothing technique. We also

propose an empirical likelihood [Owen, 1998, 2001] based weighted censored quantile

regression to improve the efficiency of the censored quantile regression estimation by

utilizing the auxiliary information about the target population parameters available

through scientific facts/previous studies. The proposed estimators are consistent and

have asymptotically Gaussian distributions. The efficiency gain compared to the ex-

isting methods is remarkable. These methods provide the possibilities of looking into

extreme quantiles of the survival distribution. We also applied our proposed methods

in real case examples.
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Chapter 1

Introduction

Survival analysis deals with the analysis of time to event data. In a survival study,

an individual is followed until the occurrence of a specific event from a starting point

like date of birth, experimental study entry time, hospital admission, etc. This time

interval is known as the failure time (or the time to event).

One common feature of survival data is censoring. During the experimental/study

period, a subject’s failure time is censored when its follow-up is lost due to some cause.

The cause of the censoring must be independent of the event of interest to enable us to

perform the standard methods of analysis. There are different kinds of censoring: right

censoring, left censoring and interval censoring. In right censoring, the failure times are

not observed/followed after a specific time. In left censoring, the failure times are not

observed/followed before a specific time. In the case of interval censoring, the failure

times are observed/followed only between two specific time points. For a subject, we

observe the survival time (Y ) as either the censoring time (C) or the failure time (T ),

whichever occurs first for right censoring. In general, a subject’s survival time is right

censored if the ‘event of interest’ for this particular subject did not happen before

censoring. The observed data are the triplet (Y, δ,X), where δ = I(T ≤ C) is the

censoring indicator and X is the vector of covariates. Here I(·) denotes the indicator

function.

The survival, S(t) and the hazard, h(t) functions are the two main functions based

on which survival analysis is mainly conducted. Let T be a non-negative and con-

tinuous failure time with probability density function, f(t) and distribution function,

F (t). Then the probability of an individual surviving beyond a specific time t is

S(t) = P (T ≥ t) = 1− F (t) =

∫ ∞

t

f(u)du.
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The hazard function (or hazard rate) is defined as the instantaneous failure rate or as

the probability that the failure occurs for a subject in a short period of time, [t, t+∆t)

conditional on the fact that the subject survived until the time t. The hazard function

is defined as,

h(t) = lim
∆t→0

P (T ∈ [t, t+∆t) | T ≥ t)

∆t
=

f(t)

S(t)
= − d

dt
logS(t).

There are parametric, non-parametric and semi-parametric approaches for model-

ing the survival and the hazard functions. In parametric methods, we assume that

the underlying survival distribution is known, up to a few unknown parameters, such

as exponential, Weibull and log-normal distributions. Under the parametric model

framework, it is common to have the model parameters estimated by the maximum

likelihood method.

Without distributional assumptions, survival analysis can be conducted non-param-

etrically. The Kaplan–Meier estimator [Kaplan and Meier, 1958] also known as the

product limit estimator, is a non-parametric estimator of the survival function. If

there are no tied event times, the Kaplan–Meier estimator of the survival function is

Ŝ(y) =

⎧⎪⎪⎨⎪⎪⎩
1, if y < y(1)∏

y(i)≤y

ni − di
ni

, otherwise,
(1.1)

where y(i); i = 1, 2, . . . ,m are the ordered survival times, ni is the number of subjects

at risk at time y(i) and di is the number of events at time y(i).

The Nelson–Aalen estimator is a non-parametric estimator of the cumulative haz-

ard function, H(y) = − logS(y) =
∫ y

0
h(u)du [Nelson, 1972; Aalen, 1978],

Ĥ(y) =
∑
y(i)≤y

di
ni

. (1.2)

The statistical properties of the Nelson–Aalen estimator are discussed in a counting

process framework by Fleming and Harrington [2011]. Both of these methods are

good for the comparison between two groups of survival data. Other functions (e.g.,

quantiles of survival time) can also be estimated from the estimated survival function

or the hazard function.

Generally, the main interest in survival analysis is to describe the relationship of

a factor of interest (e.g., treatment) to the time to event, in the presence of several
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covariates (X), under censoring. Since the survival times are non-negative and often

involve censored observations, a standard linear regression model may not be appro-

priate to explain the relationship. There are a number of models that can be used

in analyzing the effects of covariates, such as blood pressure, body temperature, age,

weight, etc. over the survival time, Y . Survival models are often partially parame-

terized, which leads to the so called semi-parametric models. The two most popular

semi-parametric models are Cox’s proportional hazards and accelerated failure time

models.

The proportional hazards (PH) model [Cox, 1972] is widely used in survival analysis

to analyze the effect of the explanatory variables on the survival time by modeling the

hazard function. The hazard function at time t, conditional on the vector of covariates,

X, can be modeled using the regression parameters, β as

h(t |X) = h0(t) e
X⊤β,

where h0(t) is the baseline hazard function, the hazard function at X = 0. The PH

model is semi-parametric with the baseline hazard function completely unspecified.

The inferences based on the PH model are asymptotically efficient, but it is difficult

to interpret the regression parameters explicitly.

The accelerated failure time (AFT) model is another semi-parametric model which

defines a linear relationship between the logarithm of the failure time and the covari-

ates. The AFT model is widely used because of the possibility of interpreting the

regression parameters explicitly. It is semi-parametric in the sense that the distribu-

tion of the error term in the linear regression model has not been specified.

Let Ti (i = 1, 2, . . . , n) be the logarithm of failure time of the ith subject and let

X i be the p-vector covariate. The AFT model with the regression parameters, β is

Ti = X i
⊤β + ϵi, (1.3)

where ϵi are the iid error random variables from a distribution function, F , such as

normal distribution, extreme value distribution or log logistic distribution.

Inference procedures for the AFT model include the work of Prentice [1978], Buck-

ley and James [1979], Tsiatis [1990], Ritov [1990], Wei, Ying and Lin [1990], among

others. These procedures have been derived with F completely unspecified. However,

the independent error terms are required to be homogeneous. For more details see Cox

and Oakes [1984]; Kalbfleisch and Prentice [2002]; Klein and Moeschberger [2003].

In practice, the distribution of the response, hence the regression model, could
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vary with different stages of the observation process or when the distribution of the

response approaches its boundary, such as in the longevity of the Mediterranean fruit

fly study [Carey et al., 1992]. The mortality rate of Mediterranean fruit flies decline at

older ages, which is a contradiction to the fact that survival rate generally decreases

with age. This phenomenon occurs because there is a shift in the upper tail of the

distribution of the survival times of Mediterranean fruit flies. A quantile regression

[Koenker and Basset, 1978] model provides an alternative way to investigate this kind

of change [Koenker and Geling, 2001]. The quantile regression model assumes that,

for a specific 0 < τ < 1, the τ th quantile of the random error term is equal to zero. Cox

PH and AFT models focus on one characteristic of the survival time. They are not

capable of estimating the effect of the covariates over different quantiles of the failure

time. In general, all the mean-based regression models are vulnerable to outliers. But

the quantile regression models are not only robust to the outliers, they are also robust

to misspecification of the error distribution, heteroscedasticity, scale transform of the

variables, etc. [Koenker, 2005].

1.1 Quantile Regression

In quantile regression, the conditional quantiles of the response variable for a given

set of predictor variables are modeled. The regression parameters are estimated by

minimizing a check loss function at a specific quantile, τ, instead of the square loss

function as in the standard linear regression.
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Figure 1.1: Check-loss function, ρτ (u) = u[τ − I(u < 0)]

A quantile regression model based on properly selected quantiles could provide a

global assessment of the covariate effects on the response, which is often ignored by

the standard linear regression model, such as the model for the plant self-thinning

phenomenon [Cade and Guo, 2000].

For a given response random variable, Y , the τ th quantile can be defined as

QY (τ |X = x) = inf{y : P (Y ≤ y |X = x) ≥ τ},

where X is the vector of explanatory variables. Consider a linear conditional quantile

function, say QY (τ |X = x) = x⊤β(τ). Let h(·) be a monotonically non-decreasing

function, then we have

Qh(Y )(τ | x) = h
(
QY (τ | x)

)
.

This equivariance property of the conditional quantile function allows us to tackle the

model parameter interpretation issues involved with variable transformations.

The covariate effect at the τ th quantile of the response can be estimated as the
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minimizer of an objective function, say

β̂(τ ) = argmin
β∈ℜp

n∑
i=1

ρτ

(
yi − xi

⊤β
)

(1.4)

where ρτ (u) = u[τ − I(u < 0)], is the check loss function.

The minimization problem in (1.4) can be solved by using a linear programming

algorithm [Koenker, 2005]. However, if we consider the quantile regression model for

the survival data, the inferences of the covariate effect over the survival time become

more complicated due to censoring.

1.1.1 Censored Quantile Regression

Recently, censored quantile regression has been studied extensively. Powell [1984] in-

troduced the least absolute deviation (LAD) estimator, also called the median regres-

sion model for the left censored survival data, using the censored Tobit model [Tobin,

1958]. Powell [1986] generalized the LAD estimation to any quantile. Consider the

linear latent variable model with the regression parameters, β,

Ti = X i
⊤β + ui,

where Ti is the latent variable (Not directly completely observed) and ui’s are assumed

to be iid error random variables with distribution function, F . Powell [1984, 1986]

considered a case when all left censoring values Ci, i = 1, 2, . . . n are observed (fixed

censoring). For the observed survival time, Yi = max(Ti, Ci), the covariate vector, X i

and for the τ th (0 < τ < 1) quantile, the linear conditional quantile function is

QTi
(τ |X i = xi) = F−1(τ ) + x⊤

i β(τ ),

and we can estimate β at the τ th quantile as

β̂(τ ) = argmin
β∈ℜp

n∑
i=1

ρτ

(
Yi −max

{
Ci,X i

⊤β
})

, (1.5)

where ρτ (u) = u[τ−I(u < 0)] is the check loss function. The LAD estimator by Powell

[1984] is a special case of (1.5) when τ = 1/2. Chernozhukov and Hong [2002] devel-

oped a three-step censored quantile regression under left censoring with a separation

restriction on the censoring probability.
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Let Ti be the logarithm of the failure times, Ci the logarithm of right censoring

time and let Yi = min(Ti, Ci) be the logarithm of the survival time for the ith subject.

Define an event indicator, δi = I(Ti ≤ Ci) (δi = 1, if the event has occurred for the ith

subject and δi = 0, when the failure time is censored for the ith subject). We assume

that conditional on the p-vector covariate, X i, Ci is independent of Ti. If we relax

the assumptions on F and the iid assumption on the errors, the conditional quantile

regression model for the τ th (0 < τ < 1) quantile is

Q
Ti |X i=xi

(τ | xi) = xi
⊤β(τ ), (1.6)

with the assumption that F−1(τ) = 0. Then for a given value of τ , the censored

quantile regression parameter, β(τ) can be obtained as,

β̂(τ ) = argmin
βτ∈ℜp

n∑
i=1

ρτ

(
Yi −min

{
Ci,X i

⊤β
})

, (1.7)

where ρτ (u) = u[τ − I(u < 0)], is the check loss function.

Newey and Powell [1990] introduced the optimally weighted censored LAD (CLAD)

estimators under fixed censoring. Honore, Khan and Powell [2002] proposed a method

which extends the censored quantile regression estimator under fixed censoring to

the models with random censoring using the Kaplan-Meier estimator in (1.1). They

applied this methodology to Powell [1984, 1986] estimators. Portnoy [2003] introduced

a censored quantile regression model under random censoring as a generalization of

the Kaplan-Meier estimator recursively using the Kaplan-Meier estimator. Peng and

Huang [2008] developed a censored quantile regression model based on the Nelson-

Aalen estimator in (1.2), using counting processes and martingale theory. The methods

of Powell [1986], Portnoy [2003] and Peng and Huang [2008] are implemented in the

“quantreg” package with statistical software SAS and R.

Recently, Ying, Jung and Wei [1995] introduced a semi-parametric inference pro-

cedures for median regression models with censored observations. Fitzenberger [1997]

studied a censored quantile regression model under fixed censoring in more detail

with some applications. Lindgren [1997] proposed a method to estimate the para-

metric quantile function for censored failure times using asymmetric L1 minimization.

Buchinsky and Hahn [1998] developed a censored quantile regression model under fixed

censoring by minimizing a globally convex objective function. Yang [1999] introduced

two semi-parametric regression estimators for the censored median regression model

using weighted empirical hazard and survival functions.



8

McKeague, Subramanian and Sun [2001] proposed a censored median regression

model based on the missing information principle by replacing the LAD estimating

equation [Ying et al., 1995] with its estimated conditional expectation. Neocleous,

Vanden Branden and Portnoy [2006] corrected the consistency proof of the default

“grid” algorithm provided in Portnoy [2003]. Fitzenberger and Winker [2007] devel-

oped a new algorithm for estimating the linear censored quantile regression parameters

using the heuristic optimization approach based on threshold accepting (TA). Koenker

[2008] described three censored quantile regression methods of Powell [1986], Portnoy

[2003] and Peng and Huang [2008] with the applications using the “quantreg” package

in R software. Yin, Zeng and Li [2008] proposed a class of power-transformed linear

censored quantile regression models. Wang and Fygenson [2009] developed a censored

quantile regression model for the longitudinal studies. Neocleous and Portnoy [2009]

extended the censored quantile regression model of Portnoy [2003] to a partially linear

censored quantile regression model by assuming that one or more explanatory vari-

ables have a non-linear effect on the response. Wang and Wang [2009] developed a

locally weighted censored quantile regression model to relax the assumptions of global

linearity at all quantile levels and unconditional independence between the failure time

and the censoring time. Portnoy and Lin [2010] provided the asymptotic distribution

theory for the censored quantile regression model of Portnoy [2003].

Wagener, Volgushev and Dette [2012] developed a quantile process under random

censoring with the assumption of linearity at all the quantiles and a censored quantile

process in sparse regression models. Leng and Tong [2013] generalized the median re-

gression model of Ying et al. [1995] to all the quantiles based on an unbiased estimating

equation. Wu and Yin [2013] proposed a mixture cure rate censored quantile regression

model with a survival fraction in the population. Yin, Zeng and Li [2014] developed a

varying coefficient censored quantile regression model. Chernozhukov, Fernandez-Val

and Kowalski [2015] developed a censored quantile instrumental variable estimator

which incorporates both the censored quantile regression model of Powell [1986] and

endogenous covariates. Yin and Cai [2005] investigated the quantile regression models

with clustered or correlated failure time data.

1.2 Auxiliary Information

Covariate measurement error problems in the quantile regression model have attracted

growing interest among researchers recently. Due to the financial/time constraints or

because of the impracticability of precise measurement, it is very common to carry
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out studies with surrogate measurements in economics, clinical trials, etc. The use of

covariates with measurement error (surrogate variables) for the analysis could lead to

significant estimation bias. Carroll et al. [2006] extensively studied measurement error

problems in mean-based linear/non-linear regression models.

In quantile regression models, the distribution of the response is not specified and

the quantiles do not have the additive property unlike the mean. Because of these

problems, it is very difficult to correct the bias in the quantile regression model in-

duced by covariate measurement error. He and Liang [2000] discussed the quantile

regression model with covariate measurement error by minimizing the check loss func-

tion of orthogonal residuals. Since the error distribution is unknown, they assumed

that the errors of both the response and the surrogate variables have a joint spherically

symmetric distribution, which leads to consistent estimators. Chesher [2001] consid-

ered a small measurement error variance approximation approach, which does not

require knowledge of the response distribution. However, it fails to provide consistent

estimators, and the computation is difficult under heteroscedasticity.

Angrist, Chernozhukov and Fernandez-Val [2006] developed a quantile regression

model by minimizing a weighted sum of squared specification errors when the linearity

of conditional quantiles has been misspecified. They also developed a bias formula for

the quantile regression when the subset of covariates is not available. This formula

enables us to determine the bias from measurement error in the covariates. With

the presence of an instrument variable, Schennach [2008] discussed a non-parametric

method of quantile regression model identification in the presence of measurement er-

ror in the predictors and provided consistent estimators for non-parametric quantile

functions. Wei and Carroll [2009] introduced an EM algorithm-type iterative quantile

regression model identification by estimating the density of the latent variable condi-

tional on the response and the surrogate variables simultaneously for all the quantile

levels when the covariates are measured with error. Montes-Rojas [2011] extended

the estimation procedure of Angrist et al. [2006] to classical additive measurement

error models. Wang, Stefanski and Zhu [2012] developed a corrected-loss estimator

for a particular quantile of interest when there is covariate measurement error. It

requires only the assumption of linearity of the quantile function and the knowledge

of regression error distribution is not required.

In the case of random censoring, it is often difficult to estimate the regression pa-

rameters for extreme quantiles. This makes the covariate measurement error problem

in the censored quantile regression model more challenging. Ma and Yin [2011] studied

a censored quantile regression model with covariate measurement errors for a range of
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quantiles rather than a given quantile using composite quantile regression [Zou and

Yuan, 2008] for a randomly censored data. Ma and Yin [2011] proposed an objective

function based on the inverse censoring probability weights. This method requires the

assumption that the errors of both the response and the surrogate variables have a

joint spherically symmetric distribution and are independent of the covariates. For

a given quantile, Wu, Ma and Yin [2015] introduced the censored quantile regression

model with covariate measurement errors under random censoring using a smoothed

and corrected estimating equation as an extension of Peng and Huang [2008]’s cen-

sored quantile regression model. So far, the literature developed in this area is still

limited.

Müller and Keilegom [2014] developed an efficient parametric quantile regression

estimator in which the responses may be missing at random and the covariates are

always observed completely. They estimated a particular conditional quantile when

the auxiliary information such as the parametric models of the mean regression or the

variance function regarding that quantile are available.

In some studies, accurately measured variables can be obtained together with the

surrogate variables (considered as the ‘auxiliary information’ in general) for a sub-

cohort. In other cases, a validation sample with accurately measured variables is

collected, additional to the auxiliary covariates. In some scenarios, the auxiliary infor-

mation is available from previous experimental studies/records. These various forms

of auxiliary information can be used in the censored quantile regression model to im-

prove the efficiency of the estimators and help us to examine the covariate effect over

extreme quantiles of the response as well.

In the application of quantile regression models with the survival data under ran-

dom right censoring, we encountered scenarios where the estimation of regression pa-

rameters corresponding to high quantiles fails, especially when the censoring rate is

high. The regression parameters are not identifiable at high quantiles when large fail-

ure times are all censored [Portnoy, 2003]. A way to deal with this problem could

be the extension of the experimental period until a sufficient number of large failure

times is recorded, which may be very expensive in terms of time, cost, etc. In observa-

tional studies, however, other options are often required. In large scale epidemiological

studies, for example, there could be only a limited number of subjects with some key

exposures measured accurately, due to technical, financial, or other limitations. This

accurately measured data subset forms a validation sample, while the other data sub-

set of the study cohort has been measured only through auxiliary/surrogate covariates,

which are easier and cheaper to observe but can only provide partial information about
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the key exposures. The latter forms the non-validation sample. If one focuses only

on the accurately measured validation sample, the identifiability problem of the re-

gression coefficients at high quantiles might very likely occur because of the relatively

small sample size.

For the effective incorporation of the accurately measured variable in the model,

the presence of the auxiliary variable in relation to those accurately measured vari-

ables can be considered as an asset. Auxiliary information is often available in various

forms such as additional covariates, known relationships between some covariates or

some established relationship between the covariates and the response available from

experience/previous records. In this thesis, we develop methodologies to utilize the

auxiliary information to improve the efficiency of censored quantile regression param-

eter estimation. Our simulation studies reveal that utilizing the auxiliary information

in the censored quantile regression model could improve the efficiency of the parameter

estimation. It may even enable us to investigate the effect of the explanatory variables

on the response’s higher quantiles under heavy censoring and reduce the possible loss

of information.

1.2.1 Regression Calibration in Censored Quantile Regres-

sion

The regression calibration type estimation method was introduced by Prentice [1982]

in a failure time regression model with normal covariate measurement errors under

rare disease assumptions. They introduced a partial likelihood estimator based on

the induced relative risk function after correcting for covariate measurement error.

Pepe, Self and Prentice [1989] extended the regression calibration method to paramet-

ric settings. Wang et al. [1997] applied the regression calibration method to predict

the unavailable variables of interest in the non-validation sample using the validation

sample and the surrogate covariates. Yu and Nan [2010] introduced the regression

calibration method in a semi-parametric accelerated failure time model. In this thesis,

we would like to use the regression calibration methodology in the censored quantile

regression model with auxiliary covariates to avoid information loss. This approach

is straightforward to implement, but it is challenging to provide the theoretical justi-

fication. We considered the classic additive covariate measurement error model as a

special case of our model. The proposed methodology is implemented in two steps.

In the first step, we predict the unobserved covariate in the non-validation sample

using the regression calibration method. For this prediction, we use other explanatory
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variables and the auxiliary covariate by assuming that they are linearly related to

the accurately measured variable. And in the second step, we combine the predicted

observations in the non-validation sample with the accurately measured observations

in the validation sample and apply them to the censored quantile regression model.

1.2.2 Kernel Smoothing in Censored Quantile Regression

In most scenarios, the form of the relationship between the accurately measured covari-

ate and the auxiliary covariate and the measurement error distribution are unknown.

To utilize the auxiliary information effectively, Zhou and Pepe [1995] proposed an

estimated partial likelihood method for the censored failure time relative risk regres-

sion with categorical auxiliary covariates using the validation sample. Zhou and Wang

[2000] extended the idea to handle the continuous auxiliary covariates based on a kernel

smoothing method using the validation sample. Fan and Wang [2009] further extended

this approach to multivariate correlated failure time. Granville and Fan [2014] used a

non-parametric kernel smoothing method instead of a regression calibration method

to predict the unobserved observations in the non-validation sample. We propose to

apply this non-parametric prediction concept to censored quantile regression models.

Similar to the application of the regression calibration procedure discussed in the pre-

vious section, the implementation is straightforward but the theoretical justification

is more challenging.

1.2.3 Empirical Likelihood based Weighted Censored Quan-

tile Regression

In survey sampling, one often has auxiliary information about the target population

from previous surveys or records. The information could be used to improve the

efficiency of estimation. See Kuk and Mak [1989]; Rao, Kovar and Mantel [1990]; Chen

and Qin [1993], among others. Tang and Leng [2012] introduced an empirical likelihood

[Owen, 1998, 2001] approach to quantile regression with auxiliary information. We

would like to adapt this idea to the censored quantile regression model to improve

the efficiency of the estimator. The incorporation of auxiliary information can be

tricky because of the presence of censoring time in the observed survival time. The

idea is to convert the auxiliary information into empirical likelihood based data driven

probabilities and apply them as the weights in the censored quantile regression model.
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1.3 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we propose the

regression calibration based approach in the non-validation sample. First, we briefly

describe the censored quantile regression model and its estimation procedure from

the work of Peng and Huang [2008]. Then we introduce the regression calibration

method to estimate the unobserved key exposure measurements using the validation

sample and the auxiliary covariate. We present a new estimating equation for the

estimation of the regression parameters and investigate their asymptotic properties.

In the simulation studies, we compare the performance of our proposed method with

the results using the validation sample at different quantile levels. We illustrate our

proposed method by analyzing the primary biliary cirrhosis (PBC) data, and also by

predicting the unobserved copper content in urine measurements.

In Chapter 3, we introduce a non-parametric kernel based prediction for the un-

available key exposure in a censored quantile regression model. This proposed method

does not require linearity or Gaussian assumptions. We develop an estimating equa-

tion by considering both validation and non-validation samples and investigate its

large sample properties as well. In the simulation studies, we compare the perfor-

mance of our proposed method with the results using only the validation sample. We

applied our proposed method to Colorado plateau uranium miners data by assuming

the radon exposure measurements are unavailable. For illustration, we applied our

proposed method to PBC data as well.

In Chapter 4, we investigate the censored quantile regression with auxiliary infor-

mation through a weighted censored quantile regression model. We detail the method-

ology of estimating the weights using the empirical likelihood for both known and

unknown target population parameters. We discuss the estimation procedure of the

proposed weighted censored quantile regression model parameters and their asymp-

totic properties based on Peng and Huang [2008] censored quantile regression model.

We perform simulation studies of four different models, with correlated and uncorre-

lated covariates. In the first numerical study we consider the auxiliary information

coming from a known linear relationship between the failure time and the covariates.

In the second numerical study, we consider the observed survival time instead of the

failure time. In both numerical studies, we compare the performance of our proposed

method with the standard censored quantile regression results at various quantiles.

We illustrate our proposed method by analyzing the North Central Cancer Treatment

Group (NCCTG) lung cancer data as well.
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Our overall concluding remarks are provided in Chapter 5. From our simulation

studies, we observe that our proposed regression calibration and kernel smoothing

based methods have a remarkable efficiency gain compared to using only the validation

sample in the censored quantile regression model at all quantile levels. The proposed

empirical likelihood based weighted censored quantile regression is more efficient than

standard censored quantile regression. We present options for some future work in the

following section. We would like to extend our proposed methods to non-continuous

variables, a variable selection procedure for censored quantile regression, goodness of

fit test etc.



Chapter 2

Regression Calibration in Censored

Quantile Regression

2.1 Introduction

For the ith (i = 1, 2, . . . , n) subject, let Ti be the failure time, Ci the right censoring

time, X i the p-vector covariate, Yi = Ti∧Ci the time of failure or censoring, whichever

occurs first, and let the event indicator be δi = I(Ti ≤ Ci), where ∧ is the minimum

operator and I(·) is the indicator function. Then for a given quantile level, τ (0 < τ <

1), the censored quantile regression model parameter, β(τ) can be estimated as,

β̂(τ ) = argmin
β∈ℜp

n∑
i=1

ρτ

(
Yi −min

{
Ci,X i

⊤β
})

.

In the application of censored quantile regression models with survival data, we en-

countered scenarios where the quantile regression parameters are not identifiable at

extreme quantiles due to censoring. We may be able to resolve this identification

problem by extending the experimental period until the larger failure times have been

recorded. This is however often not feasible in practice.

In large scale epidemiological studies, due to technical, financial or other limita-

tions, there could be only a limited number of subjects with key exposures measured

accurately. The remaining subjects in the study cohort have been measured only

through the auxiliary covariates, which are easier and cheaper to observe but can only

provide partial information about the key exposures. The subjects with exact mea-

surements form the validation sample. The remaining subjects form the non-validation
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sample. If one focuses only on the accurately measured validation sample, the iden-

tifiability problem of the censored quantile regression coefficients at higher quantiles

may very likely occur. If we exclude the non-validation sample from the analysis, it

leads to a loss of information as well.

In this chapter, we propose a regression calibration based method which accom-

modates both the validation and non-validation samples in the censored quantile re-

gression model. Using this method, we can efficiently estimate the censored quantile

regression coefficients corresponding to some high quantiles, whereas we may fail to

estimate the regression parameters when we use only the validation sample. At the

same time, the efficiency gain of our proposed method as compared to the method

which uses only the validation sample is remarkable.

The rest of this chapter is organized as follows. In Section 2.2, we briefly discuss

the censored quantile regression model of Peng and Huang [2008] and the estimation

procedure of our proposed method, followed by discussing its asymptotic properties.

Results of the simulation studies and application of the proposed method to real data

are discussed in Section 2.3 and concluding remarks are presented in Section 2.4.

2.2 Estimation

2.2.1 Censored Quantile Regression Model of Peng and Huang

[2008]

Accelerated failure time (AFT) models are a family of semi-parametric models which

define a linear relationship between the logarithm of the failure time and the covariates.

For the ith (i = 1, 2, . . . , n) subject, let Ti be the logarithm of the failure time and X i

the p-vector covariate. Then the AFT model with regression parameters, β is

Ti = X i
Tβ + ϵi,

where ϵi’s are the iid error random variables with a distribution, F , such as normal

distribution, extreme value distribution or log logistic distribution.

For the ith observation, let Ci be the logarithm of the right censoring time and

let Yi = min(Ti, Ci) be the logarithm of the observed survival time. Define an event

indicator, δi = I(Ti ≤ Ci). In this model, they assumed that the independent censoring

mechanism, that is, conditional on X i, Ci is independent of Ti .

Because of the monotonicity of the quantile function, the quantile regression model
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based on the AFT model is a special case of the more flexible model used by Peng and

Huang [2008]:

QTi
(τ |X i) = eX

⊤
i β(τ ),

for a specific quantile, τ ∈ (0, 1).

Define the counting process, Ni(t) = I(Yi ≤ t, δi = 1). Let H(u) = − log(1−u) for

0 ≤ u < 1. When theX i’s are available for the entire cohort, the observed data are the

triplet {Yi,X i, δi}. Peng and Huang [2008] introduced the censored quantile regression

estimator as a generalization of the Nelson-Aalen estimator of the cumulative hazard

function of Ti. For a fixed τ ∈ (0, 1), the regression coefficient, β(τ) can be estimated

by solving the estimating equation

√
n Sn(β, τ ) = 0,

where

Sn(β, τ ) =
1

n

n∑
i=1

X i

(
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

)
. (2.1)

Here Ni

(
eX

⊤
i β(τ)

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u) is a martingale associated with

the counting process, Ni(t). The martingale property ensures that E{Sn(β0, τ)} = 0,

where β0(τ) is the true value of the censored quantile regression parameter.

Peng and Huang [2008] suggested a grid-based estimation procedure for β0(τ)

because of the stochastic integral representation of Sn(β, τ). β̂(τ), the estimator of

β0(τ), is a right-continuous piecewise constant function which jumps only on the grid,

SL(n) = {0 = τ0 < τ1 < · · · < τL(n) = τU < 1}. The size of SL(n) is defined asSL(n)

 = max
k

{τk − τk−1; k = 1, . . . , L(n)}. For simplicity, we will use L for L(n).

To obtain β̂(τk); k = 1, . . . , L, they proposed a sequential solution to the following

monotone estimating equation, which is based on (2.1), for β(τk),

1√
n

n∑
i=1

X i

(
Ni

(
eX

⊤
i β(τk)

)
−

k−1∑
r=0

I

[
Yi ≥ eX

⊤
i β̂(τr)

]
{H(τr+1)−H(τr)}

)
= 0.

(2.2)

They defined the estimators, β̂(τk) as generalized solutions [Fygenson and Ritov, 1994]

to equation (2.2), because this equation is not continuous and its solution may not

be unique. (Fygenson and Ritov [1994] defined a generalized estimating equation,

W (β), as a monotone nondecreasing field, if for any β and ξ in Rp, ξ⊤W (β + xξ) is
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monotone non-decreasing in the scalar x. Tao [2016] stated that “Generalized solution

to an equation such as Lu(x) = f(x) for all x ∈ Ω is to allow for the existence of some

singular set S ⊂ Ω in which the solution u is allowed to be singular or undefined, but

require that u be smooth outside of S (or at least smooth enough that it is clear how

to define Lu), and only require that the equation Lu(x) = f(x) be true outside of S.

Typically the set S will be closed and suitably “small” (e.g. zero measure, or having

positive codimension, or being contained in a finite union of hypersurfaces.)”)

Because of the monotone non-deceasing property of equation (2.2) on β(τk) [Peng

and Huang, 2008; Koenker, 2008], all the generalized solutions belong to a convex set

and the left hand side of equation (2.2) is the gradient of a convex function. Peng

and Huang reformulated it to the following L1-type convex objective function (2.3) to

obtain the minimizer which is equivalent to the generalized solution of equation (2.2),

lk(b) =
n∑

i=1

⏐⏐⏐⏐⏐δi log Yi − δib
⊤X i

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐R∗ − b⊤

n∑
i=1

(−δiX i)

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐R∗ − b⊤
n∑

i=1

(
2X i

k−1∑
r=0

I

[
Yi ≥ eX

⊤
i β̂(τr)

]
{H(τr+1)−H(τr)}

)⏐⏐⏐⏐⏐ , (2.3)

where R∗ is a very large number and k = 1, 2, . . . , L. The solutions are obtained

by minimizing this function using the Barrodale-Roberts algorithm [Barrodale and

Roberts, 1974]. This has been converted to a linear programming problem and imple-

mented in the “quantreg” package.

2.2.2 Regression Calibration in Censored Quantile Regres-

sion

In many epidemiological or other medical studies, the main exposure, say X1, is not

accurately measured for a subcohort. However, an auxiliary covariate, W , is available

for the entire study cohort which is linearly related to the unobserved main exposure

variable. For the partially unobserved X1, we assume the linear regression model:

X1 = Wθ1 +X2θ2 + ξ = Xθ + ξ, (2.4)

where ξ is the random error andX2 are the explanatory variables which are completely

available. Here θ = (θ1,θ2) is a p-vector andX2 is a matrix with dimension n×(p−1).
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A special case of (2.4) is the classic measurement error model:

W = X1 + ε,

where ε is the measurement error. The subcohort with all the information available is

the validation subset. Assume that X1 is the covariate subset which is partly available

and that X2 is the covariate subset which is completely available in the covariate,

X = (X1,X2). In a sample (with size, n), we completely observe only {W,X2}, where
W is the auxiliary variable or the error prone observation of X1. For a subset of mv

subjects randomly selected from the sample (mv < n), X1 is also completely available,

which form the validation sample. X1 is not available for the remaining mn = n−mv

subjects, which form the non-validation sample. The observed data are composed of

{Yj,Wj, X1j,X2j, δj}, j ∈ V, the validation sample and {Yl,Wl,X2l, δl}, l ∈ V, the
non-validation sample.

Assume that the conditional expectation of X1 given {W,X2} is a function of W

and X2, say Φ(W,X2,θ) = E(X1 |W,X2). We propose a regression calibration based

approach to predict the unobserved values of X1 in the non-validation sample. The

regression parameter, θ can be estimated using the validation data.

Let Φl = Φ(Wl,X2l,θ) and

Φ̂l = Φ̂(Wl,X2l, θ̂) = X⊤
l θ̂, ∀ l ∈ V, (2.5)

where θ̂ =
(
X⊤

VXV
)−1X⊤

VX1V, is obtained by regressing X1j on (Wj,X2j), j ∈ V. Here
XV and X1V are the validation sample subset of X and X1 respectively. The dimension

of the XV matrix is mv × p.

Denote Z = (Φ,X2) and Ẑ = (Φ̂,X2); then our estimating function is

√
n Sn(β, τ )

and β̂ is the generalized solution of
√
n Sn(β, τ) = 0, where

Sn(β, τ ) =
ρn

mv

∑
j∈V

Xj

{
Nj

(
eX

⊤
j β(τ )

)
−
∫ τ

0

I

[
Yj ≥ eX

⊤
j β(u)

]
dH(u)

}

+
1− ρn

mn

∑
l∈V

Ẑ l

{
Nl

(
eẐ

⊤
l β(τ )

)
−
∫ τ

0

I

[
Yl ≥ eẐ

⊤
l β(u)

]
dH(u)

}

= ρn ΩV
mv

(β, τ ) + (1− ρn) Ω̂
V
mn

(β, τ ), (2.6)
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where ρn = mv/n. The first part on the right hand side of the equation (2.6) comes

from the validation sample and the second part is from the non-validation sample.

For a particular quantile, τk, the estimator of β0(τk) is β̂(τk), which is the generalized

solution of
√
n Sn(β, τk) = 0.

√
n Sn(β̂, τk) =

√
n

{
ρn ΩV

mv
(β̂, τk) + (1− ρn) Ω̂

V
mn

(β̂, τk)
}
+ ξn,k, (2.7)

for k = 1, . . . , L. Here by the definition of a generalized solution, max
k=1,2,...,L

∥ξn,k∥ ≤

sup
i

∥X i∥/
√
n, and

ΩV
mv

(β̂, τk) =
1

mv

∑
j∈V

Xj

{
Nj

(
eX

⊤
j β̂(τk)

)
−
∫ τk

0

I

[
Yj ≥ eX

⊤
j β̂(u)

]
dH(u)

}
,

Ω̂
V
mn

(β̂, τk) =
1

mn

∑
l∈V

Ẑ l

{
Nl

(
eẐ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
dH(u)

}
.

Let s(β, τ) = E

{
ρn ΩV

mv
(β, τ) + (1− ρn) Ω̂

V
mn

(β, τ)

}
. Define

ΩV
mn

(β̂, τk) =
1

mn

∑
l∈V

Z l

{
Nl

(
eZ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

}
.

Using the martingale property, we have E{ΩV
mv

(β0, τ)} = 0 and E{ΩV
mn

(β0, τ)} = 0.

By the equation (2.12) and the martingale property, s(β0, τ) = 0, where β0(·) denotes
the true β(·). Now we have,

Ω̂
V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)

=
1

mn

⎛⎝∑
l∈V

Ẑ l

{
Nl

(
eẐ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
dH(u)

}

−
∑
l∈V

Z l

{
Nl

(
eZ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

}⎞⎠
=

1

mn

⎛⎝∑
l∈V

Ẑ lNl

(
eẐ

⊤
l β̂(τk)

)
−
∑
l∈V

Ẑ l

∫ τk

0

I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
dH(u)
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−
∑
l∈V

Z lNl

(
eZ

⊤
l β̂(τk)

)
−
∑
l∈V

Z l

∫ τk

0

I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

⎞⎠
=

1

mn

⎛⎝∑
l∈V

{
Ẑ lNl

(
eẐ

⊤
l β̂(τk)

)
−Z lNl

(
eZ

⊤
l β̂(τk)

)}

−
∑
l∈V

∫ τk

0

{
Ẑ lI

[
Yl ≥ eẐ

⊤
l β̂(u)

]
−Z lI

[
Yl ≥ eZ

⊤
l β̂(u)

]}
dH(u)

⎞⎠
=

1

mn

∑
l∈V

(
Ẑ l

[
Nl

(
eẐ

⊤
l β̂(τk)

)
− Nl

(
eZ

⊤
l β̂(τk)

)]

+
(
Ẑ l −Z l

)
Nl

(
eZ

⊤
l β̂(τk)

)
−
∫ τk

0

(
Ẑ l

{
I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
− I

[
Yl ≥ eZ

⊤
l β̂(u)

]}

−
(
Ẑ l −Z l

)
I

[
Yl ≥ eZ

⊤
l β̂(u)

])
dH(u)

)

=
1

mn

∑
l∈V

(
Ẑ l

[
Nl

(
eẐ

⊤
l β̂(τk)

)
− Nl

(
eZ

⊤
l β̂(τk)

)]

−
∫ τk

0

Ẑ l

{
I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
− I

[
Yl ≥ eZ

⊤
l β̂(u)

]}
dH(u)

+
(
Ẑ l −Z l

)
Nl

(
eZ

⊤
l β̂(τk)

)

−
∫ τk

0

(
Ẑ l −Z l

)
I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

)

=
1

mn

∑
l∈V

(
Ẑ l

[
Ml

{
τk, Ẑ l, β̂(τk)

}
−Ml

{
τk,Z l, β̂(τk)

}]

+
(
Ẑ l −Z l

)
Ml

{
τk,Z l, β̂(τk)

})

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)

=

√
n(1− ρn)

mn

∑
l∈V

(
Ẑ l

[
Ml

{
τk, Ẑ l, β̂(τk)

}
−Ml

{
τk,Z l, β̂(τk)

}]
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+
(
Ẑ l −Z l

)
Ml

{
τk,Z l, β̂(τk)

})
, (2.8)

where

Mi

{
τk,U i, β̂(τk)

}
= Ni

(
eU

⊤
i β̂(τk)

)
−
∫ τk

0

I

[
Yi ≥ eU

⊤
i β̂(u)

]
dH(u).

Using Appendix B (proof of Theorem 2) of [Peng and Huang, 2008, p. 647], since
√
mn ∥SL∥ → 0, we have

1
√
mn

∑
l∈V

Ẑ l Ml{τk, Ẑ l, β̂(τ )} = o(0,τU ])(1), a. s. .

Using similar arguments as in Appendix B (proof of Theorem 2) of [Peng and Huang,

2008, p. 647] and because of the boundedness of Ẑ l, we have

1
√
mn

∑
l∈V

Ẑ l Ml{τk,Z l, β̂(τ )} = o(0,τU ])(1), a. s. .

So we have

1
√
mn

∑
l∈V

Ẑ l

[
Ml

{
τk, Ẑ l, β̂(τk)

}
−Ml

{
τk,Z l, β̂(τk)

}]
= o(0,τU ])(1) a. s. .

Then (2.8) becomes,

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)

=

√
n(1− ρ)
mn

∑
l∈V

(
Ẑ l −Z l

)
Ml

{
τk,Z l, β̂(τk)

}
+ o(0,τU ])(1), (2.9)

where ρ = lim
n→∞

ρn.

Now consider,

Ẑ l −Z l =

(
Φ̂l − Φl

0

)
=

(
X⊤

l θ̂ − Φl

0

)
where 0 is a (p− 1) zero-vector.

Under the conditions C1 and C2 (at page 24), asymptotically we have,

Ẑ l −Z l

 =
⏐⏐⏐X⊤

l θ0 − Φl

⏐⏐⏐+Op

(
1√
n
∥X∥

)
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= Op

(
1√
n
∥X∥

)
,

which acts in (2.9) as

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)

= Op

⎛⎝ 1

n
∥X∥

∑
l∈V

Ml{τk,Z l, β̂(τk)}

⎞⎠+ o(0,τU ])(1)

= Op

(
1√
n

)
+ o(0,τU ])(1). (2.10)

The equation (2.10) is due to the martingale central limit theorem. So by (2.10), (2.7)

becomes

√
n Sn(β̂, τk)

=
√
n

{
ρ ΩV

mv
(β̂, τk) + (1− ρ) ΩV

mn
(β̂, τk)

}
+ ξn,k +Op

(
1√
n

)
+ o(0,τU ])(1)

=
√
n

{
ρ
mv

∑
j∈V

XjMj

{
τk,Xj, β̂(τk)

}
+

1− ρ
mn

∑
l∈V

Z lMl

{
τk,Z l, β̂(τk)

}}

+ ξn,k +Op

(
1√
n

)
+ o(0,τU ])(1)

=
√
n

{
ρ
mv

∑
j∈V

XjMj

{
τk,Xj, β̂(τk)

}
+

1− ρ
mn

∑
l∈V

Z lMl

{
τk,Z l, β̂(τk)

}}

+Op

(
1√
n

)
+ o(0,τU ])(1). (2.11)

Because of the boundedness of Ẑ l and Z l and the martingale property,

E

{
Ω̂

V
n−m(β0, τ )− ΩV

n−m(β0, τ )
}

=
1

mn

E

⎧⎨⎩∑
l∈V

(
Ẑ l −Z l

)
Ml {τ ,Z l,β0(τ )}

⎫⎬⎭
= 0. (2.12)

2.2.3 Large Sample Theory

Define F (t | ·) = Pr(Y ≤ t | ·), F (t | ·) = Pr(Y > t | ·), F̃ (t | ·) = Pr(Y ≤ t, δ = 1 | ·),
f(y | ·) = −f(y | ·) = −dF (y | ·)/dy, f̃(y | ·) = dF̃ (y | ·)/dy. (For a vector g, g⊗2 = gg⊤,
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g(l) = lth component of g, ∥g∥ is the Euclidean norm of g.)

Regularity Conditions:

C1: For any given set A ⊂ Rp,

(a) The conditional mean, Φ(W,X2,θ) = E(X1 | W,X2) is continuous with

respect to θ ∈ A and uniformly bounded.

(b) The class {Φ(W,X2,θ),θ ∈ A} forms a P-Donsker class.

C2: The true value of θ, θ0 is an interior point of A such that
√
n
{
θ̂ − θ0

}
is

asymptotically normal with mean 0 and finite variance.

C3: sup
i

∥X i∥ < ∞ and sup
i

∥Zi∥ < ∞.

C4: (a) Each component of E
[
XN

(
eX

⊤β0(τ )
)]

and E
[
ZN

(
eZ

⊤β0(τ )
)]

is a Lips-

chitz function of τ .

(b) f̃(t | x) and f(t | x) are bounded above uniformly in t and x.

(c) f̃(t | z) and f(t | z) are bounded above uniformly in t and z.

C5: (a) f̃
(
eX

⊤b
⏐⏐⏐X) > 0 and f̃

(
eZ

⊤b
⏐⏐⏐Z) > 0 for all b ∈ B(d0).

(b) To have positive definiteness, E
{
X⊗2

}
> 0 and E

{
Z⊗2

}
> 0.

(c) Each component of

E
[
X⊗2 f

(
eX

⊤b
⏐⏐⏐X) eX

⊤b
]
×
(
E
[
X⊗2 f̃

(
eX

⊤b
⏐⏐⏐X) eX

⊤b
] )−1

and

E
[
Z⊗2 f

(
eZ

⊤b
⏐⏐⏐ Z) eZ

⊤b
]
×
(
E
[
Z⊗2 f̃

(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
] )−1

is uni-

formly bounded in b ∈ B(d0); B(d0) is a neighborhood containing {β0(τ), τ ∈
(0, τU ]}, defined in Appendix A.

C6: For any ν ∈ (0, τU ], inf
τ∈[ν,τU ]

eigmin E

[
X⊗2 f̃

(
eX

⊤β0(τ )
⏐⏐⏐⏐X) eX

⊤β0(τ )
]
> 0

and inf
τ∈[ν,τU ]

eigmin E

[
Z⊗2 f̃

(
eZ

⊤β0(τ )
⏐⏐⏐⏐Z) eZ

⊤β0(τ )
]
> 0, where eigmin(·)

denotes the minimum eigenvalue of a matrix.

Theorem 2.2.1. Assume that the regularity conditions C1-C6 hold. If lim
n→∞

∥SL∥ = 0,

then sup
τ∈[ν,τU ]

β̂(τ)− β0(τ)
 Pr−→ 0, where 0 < ν < τU .



25

Theorem 2.2.2. Assume that the regularity conditions C1-C6 hold. If lim
n→∞

√
n ∥SL∥ =

0, then
√
n
{
β̂(τ)− β0(τ)

}
weakly converges to a zero-mean Gaussian process for

τ ∈ [ν, τU ], where 0 < ν < τU .

Proofs of Theorems 2.2.1 and 2.2.2 are deferred to Appendices A and B respectively.

2.3 Numerical Studies

We conduct simulation studies to compare the performance of our proposed method

with that based only on the validation sample, as well as the complete case, when the

X1 values are all known. We use the simulation models similar to those in Koenker

[2008].

The logarithmic event times are generated from the following linear model:

Ti = β0 + β1X1i + ui; i = 1, 2, . . . , n

and the logarithmic censoring times are also generated from a linear model:

Ci = γ0 + γ1X1i + vi; i = 1, 2, . . . , n.

Here X1i’s are iid U [0, 5] and ui’s and vi’s are iid N(0, 1). The parameters, β⊤ = (5, 1)

and γ⊤ = (6.4, 0.75) were selected to maintain approximately 30% of the censoring

proportion. We assumed that 50% of the observations are in the validation sample. We

applied the estimator of Peng and Huang [2008] to the simulated data for the purpose

of comparison. We compared our proposed method with the one assuming all X1 are

known (‘Complete’) and the one using only the validation sample. We generated W

from an additive model:

W = X1 + ε,

where ε ∼ N(0, σ2
ε). In the simulation study, we chose σε = 0.2, 0.8 and sample sizes

200 and 500. We reported the mean bias and the root mean squared error (RMSE)

based on 1000 simulations and used 250 bootstrap samples for estimating the standard

error (SE) of the estimates and the calculation of the coverage probability (CP) of a

95% confidence interval of the model parameters. The quantiles considered in the

simulation study are 0.25, 0.5 and 0.75 and the results are reported in Tables 2.1 - 2.3

respectively.
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Complete 0.0173 0.1891 0.1996 96.00 0.0021 0.0682 0.0711 96.40

Proposed 0.0099 0.1973 0.2032 95.60 0.0035 0.0715 0.0725 96.70

Validation 0.0179 0.2687 0.2917 96.10 -0.0005 0.0966 0.1040 96.30

n = 200, σε = 0.8

Complete 0.0173 0.1891 0.1996 96.00 0.0021 0.0682 0.0711 96.40

Proposed -0.0519 0.2297 0.2413 95.80 0.0072 0.0811 0.0862 95.30

Validation 0.0179 0.2687 0.2917 96.10 -0.0005 0.0966 0.1040 96.30

n = 500, σε = 0.2

Complete 0.0248 0.1246 0.1248 94.80 -0.0017 0.0429 0.0441 94.80

Proposed 0.0206 0.1268 0.1273 94.40 -0.0019 0.0444 0.0449 94.90

Validation 0.0263 0.1756 0.1783 94.80 0.0001 0.0615 0.0632 95.90

n = 500, σε = 0.8

Complete 0.0248 0.1246 0.1248 94.80 -0.0017 0.0429 0.0441 94.80

Proposed -0.0451 0.1524 0.1494 94.50 0.0037 0.0512 0.0531 95.40

Validation 0.0263 0.1756 0.1783 94.80 0.0001 0.0615 0.0632 95.90

Table 2.1: Comparison between regression calibration based approach and validation

sample approach using the Bias, RMSE, SE and CP of regression parameters at τ =

0.25
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Complete 0.0221 0.1835 0.1909 95.20 0.0018 0.0671 0.0700 95.40

Proposed 0.0225 0.1878 0.1939 94.49 0.0026 0.0685 0.0712 94.79

Validation 0.0290 0.2558 0.2784 95.40 0.0002 0.0925 0.1027 97.00

n = 200, σε = 0.8

Complete 0.0221 0.1835 0.1909 95.20 0.0018 0.0671 0.0700 95.40

Proposed 0.0317 0.2204 0.2308 95.50 0.0097 0.0827 0.0850 96.00

Validation 0.0290 0.2558 0.2784 95.40 0.0002 0.0925 0.1027 97.00

n = 500, σε = 0.2

Complete 0.0266 0.1249 0.1186 94.20 -0.0011 0.0427 0.0429 94.90

Proposed 0.0267 0.1264 0.1211 94.70 -0.0002 0.0435 0.0440 94.90

Validation 0.0285 0.1753 0.1707 94.30 0.0017 0.0609 0.0620 95.50

n = 500, σε = 0.8

Complete 0.0266 0.1249 0.1186 94.20 -0.0011 0.0427 0.0429 94.90

Proposed 0.0299 0.1452 0.1443 94.40 0.0079 0.0519 0.0526 94.70

Validation 0.0285 0.1753 0.1707 94.30 0.0017 0.0609 0.0620 95.50

Table 2.2: Comparison between regression calibration based approach and validation

sample approach using the Bias, RMSE, SE and CP of regression parameters at τ = 0.5
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Complete 0.0321 0.2105 0.2329 96.10 0.0062 0.0832 0.0976 97.10

Proposed 0.0434 0.2202 0.2397 96.50 0.0073 0.0852 0.0967 97.30

Validation NaN NaN NaN NaN NaN NaN NaN NaN

n = 200, σε = 0.8

Complete 0.0321 0.2105 0.2329 96.10 0.0062 0.0832 0.0976 97.10

Proposed 0.1226 0.2907 0.2973 94.40 0.0229 0.1111 0.1195 96.70

Validation NaN NaN NaN NaN NaN NaN NaN NaN

n = 500, σε = 0.2

Complete 0.0351 0.1455 0.1439 95.60 -0.0003 0.0526 0.0563 95.90

Proposed 0.0441 0.1533 0.1479 95.00 -0.0002 0.0551 0.0577 95.90

Validation 0.0450 0.2064 0.2083 95.30 0.0028 0.0767 0.0829 96.60

n = 500, σε = 0.8

Complete 0.0351 0.1455 0.1439 95.60 -0.0003 0.0526 0.0563 95.90

Proposed 0.1136 0.1997 0.1807 93.70 0.0172 0.0693 0.0710 95.20

Validation 0.0450 0.2064 0.2083 95.30 0.0028 0.0767 0.0829 96.60

Table 2.3: Comparison between regression calibration based approach and validation

sample approach using the Bias, RMSE, SE and CP of regression parameters at τ =

0.75

Tables 2.1, 2.2 and 2.3, show that our proposed estimators are asymptotically

unbiased. The measures of variation (SE and RMSE) of the proposed method always

stay between those in the complete case and using only the validation sample. Our

proposed method is very efficient compared to using the validation sample only. When

the σ2
ε is small, it works as well as the ‘Complete’ case. For a larger sample size,

the coverage probability of the proposed method for the 95% confidence interval is

approximately 95%.

We identified that using only the validation sample fails to provide estimates for

higher quantiles when the sample size is small, as in Table 2.3.
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2.3.1 PBC Data

As an illustration of our regression calibration based approach in the censored quantile

regression model, we analyze the data from a clinical trial on Primary Biliary Cirrhosis

(PBC) of the liver, conducted at the Mayo Clinic between 1974 and 1984 (data is

available in Appendix D of Fleming and Harrington [2011] or the “survival” package

in R software). PBC is a chronic autoimmune disease which affects the liver and is

generally found among women aged between 40 and 60. The exact cause of PBC is still

unknown and liver transplantation is the only possible way to be clear of it (National

Digestive Diseases Information Clearinghouse and American Liver Foundation). It is

a slow destruction of the bile ducts, which move bile, a fluid produced by the liver, to

the intestines, aiding in the digestion of food and the disposal of worn out red blood

cells, cholesterol and toxins from the human body. PBC causes the liver to function

improperly because of inflammation and scarring.

In the Mayo clinic trial, 418 observations, each with 20 variables were available.

The censoring rate was 0.615. Information regarding 310 observations was completely

available and the remaining 108 observations were partially available. The incomplete

subjects did not participate in the clinical trial, but provided their basic measurements

and agreed to be followed to record survival. We considered only 5 covariates for the

analysis, age of the patient (in years), serum albumin content in blood (in mg/dl),

copper content in urine (ug/day), standardized blood clotting time and edema, the

inflammation caused by excess fluid trapped in the body’s tissues. Edema takes the

following values:

edema =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, If no edema

0.5, If edema untreated or successfully treated

1, If there exists edema despite diuretic therapy.

We considered the model using copper content in urine as our X1 and the other

covariates, age, albumin, blood clotting time and edema were complete and included

in X2.

We defined two dummy variables for ‘edema’ as follows.

Edema1 =

⎧⎨⎩1, If there exists edema despite diuretic therapy

0, Otherwise
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Edema0.5 =

⎧⎨⎩1, If edema untreated or successfully treated

0, Otherwise

As in the work of Granville and Fan [2014], to make marginal distributions closer to

normal, we took the log transformation of age, albumin, copper and blood clotting

time. The logarithm of the serum bilirubin content in blood (in mg/dl) is chosen as

the auxiliary covariate (W ) because of the high correlation (≈ 0.6) with the logarithm

of the copper content in urine. We removed 2 subjects because of the missing X2

values. Finally, we considered that n = 416 and that the validation sample size is

mv = 310. The results are reported in Table 2.4.

In Table 2.4, we reported the parameter estimates, their standard error and 95%

confidence limits and compared our proposed method with the estimates based only

on the validation sample. We obtained the standard error and confidence limits using

250 bootstrap samples. The standard error of the estimates based on the validation

sample is high compared to our proposed method, which shows that our method is

more efficient. The widths of the confidence intervals are small for our proposed

method.

Validation Proposed

τ −→ 0.25 0.50 0.75 0.25 0.50 0.75

log(β̂)

Intercept 19.5599 21.2413 23.6345 19.3461 19.8870 23.3248

Age -0.6552 -1.3863 -1.4283 -0.6321 -1.3289 -1.9788

Albumin 2.1459 2.4975 2.1497 1.9857 2.3005 2.3675

Copper -0.5672 -0.6215 -0.7266 -0.5849 -0.6582 -0.8488

Protime -4.0750 -3.4839 -3.6980 -3.9234 -2.8374 -2.4402

Edema1 -0.9777 -0.5987 -0.9373 -0.9970 -0.6912 -1.1445

Edema0.5 -0.6736 0.0496 -0.2515 -0.6559 -0.0169 -0.3463

SE

Intercept 1.9879 4.5143 5.9999 2.1626 4.0633 5.2636

Age 0.3019 0.5948 0.8755 0.2888 0.5872 0.8859

Albumin 0.4453 0.8927 1.0479 0.4205 0.7893 0.8391

Copper 0.0762 0.1566 0.2606 0.0861 0.1538 0.2499

Protime 0.7167 1.6214 2.1205 0.7823 1.3471 1.7755

Edema1 0.3720 0.4194 0.4133 0.3760 0.3775 0.4426

Edema0.5 0.2130 0.4667 0.5737 0.1851 0.3537 0.4589

CI

Intercept (15.45,23.25) (11.77,29.47) (9.49,33.01) (15.16,23.64) (13.61,29.54) (12.57,33.2)

Age (-1.3,-0.12) (-2.44,-0.1) (-2.96,0.47) (-1.37,-0.24) (-2.64,-0.34) (-3.42,0.05)

Albumin (1.31,3.06) (0.81,4.31) (0.26,4.37) (1.21,2.86) (0.79,3.89) (0.41,3.7)

Copper (-0.71,-0.41) (-0.91,-0.3) (-1.13,-0.11) (-0.77,-0.44) (-1.01,-0.4) (-1.26,-0.28)

Protime (-5.33,-2.52) (-6.61,-0.26) (-7.44,0.87) (-5.18,-2.11) (-5.81,-0.53) (-6.28,0.68)

Edema1 (-1.71,-0.25) (-1.54,0.1) (-1.82,-0.2) (-1.72,-0.25) (-1.46,0.02) (-1.93,-0.2)

Edema0.5 (-1.02,-0.19) (-1.13,0.7) (-1.26,0.98) (-0.99,-0.26) (-0.9,0.48) (-1.11,0.69)

Table 2.4: Estimates, SE and 95% CI for regression parameters of PBC data analysis
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2.4 Discussion

In this Chapter, we proposed the use of the regression calibration method to accommo-

date the auxiliary covariates in estimating the censored quantile regression parameters.

We first applied the regression calibration method to predict the unavailable covari-

ates in the non-validation sample using the auxiliary covariate, by assuming that they

are linearly related. Then we applied Peng and Huang’s censored quantile regression

method to the whole study cohort for identifying the covariate effect on the observed

survival time under heavy censoring at various quantile levels. Our proposed method is

efficient compared to that using only the validation sample. The proposed estimators

are consistent and have asymptotic normality.

Our proposed method is effective when the accurately measured covariate has a

strong linear relationship with the auxiliary covariate. i.e, a high correlation between

W and X1. Our numerical studies show that our proposed method works as well as the

‘Complete’ case if σ2
ε is small. But, our proposed method works always better than

that using only the validation sample irrespective of the value of σ2
ε. We applied our

proposed method in an unobserved variable scenario of PBC data as an illustration in

Section 2.3.1.

For application purposes, we should use only the auxiliary covariate which has a

strong linear relationship with the accurately measured main exposure variable. We

have to be very cautious when applying this method to the data with a very small

validation sample size, mv, compared to n.



Chapter 3

Kernel Smoothing in Censored

Quantile Regression

3.1 Introduction

In the previous chapter, we discussed the regression calibration based method for es-

timating the censored quantile regression parameters with the auxiliary covariates, by

assuming a linear association between the partially unavailable accurately measured

covariate and the auxiliary covariates, as well as other available covariates. In this

chapter, we would like to relax the restriction of the linearity and parametric assump-

tions between unavailable and auxiliary covariates. We introduce a non-parametric

method to accommodate the auxiliary covariates in a general setup. Zhou and Wang

[2000] investigated the failure time regression with error prone covariates based on

kernel smoothing. Granville and Fan [2014] investigated Buckley-James estimator of

AFT model with the auxiliary covariates in a semi-parametric setting using kernel

smoothing.

In reality, it is very difficult to know the type of the association and distributional

assumptions between unobserved and auxiliary covariates. For example, consider the

Colorado Plateau uranium miners cohort data [Lubin et al., 1994; Langholz and Gold-

stein, 1996]. The study was undertaken to assess the risk of lung cancer due to radon

exposure. We use miners’ working time as the auxiliary covariate to predict the un-

available radon exposure. The scatter diagram of the working time and the logarithm

of radon exposure is given in Figure 3.1 (page 49) and we can see that the relation-

ship is not linear. To deal with this scenario, we propose a non-parametric estimation

procedure to predict the unobserved data. We predict the unavailable covariates in
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the non-validation sample by using the validation sample with kernel smoothing and

accommodating the auxiliary covariates. Other options, such as local linear approxi-

mations, can be applied with a similar level of technical difficulty.

The rest of the chapter is organized as follows. In Section 3.2, we present the

estimation procedure, which is developed based on the Watson-Nadaraya estimator

[Watson, 1964; Nadaraya, 1964] and the censored quantile regression approach of Peng

and Huang [2008]. We establish the asymptotic properties of the proposed method

in Section 3.2.1. Performance analysis using simulation studies and application of the

proposed method to Colorado Plateau uranium miners cohort data are presented in

Section 3.3. In Section 3.3.3, we apply the proposed method to PBC data.

3.2 Estimation

For a given τ (0 < τ < 1), the quantile regression coefficient, β(τ) can be estimated

by solving the following estimating equation,

√
n Sn(β, τ ) = 0,

where

Sn(β, τ ) =
1

n

n∑
i=1

X i

(
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

)
.

The accurate measurements of the main exposure are not available for a subcohort.

The auxiliary covariate, W which has a relationship with the partially unobserved

covariate, X1, is available for the entire study cohort. In the previous chapter, we

assumed that X1 has a linear relationship with W and other explanatory variables,

X2. To relax this restriction, we consider a general relationship between X1 and

(W,X2) as

X1 = g(W,X2, ξ). (3.1)

Some special cases are, as examples:

• Classical additive measurement error model: W = X1 + ε

• Berkson measurement error model: X1 = W + ξ

• E(X1 |W,X2) = Φ(W,X2)

• X1 = αW + βX2 + ε,
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where the form of g(·), Φ(·) and the distribution of the random errors ξ and ε are not

specified.

Similar to the previous chapter, we assume that a subcohort was randomly selected

as the validation sample. In the covariate, X = (X1,X2), we assume that X1 is the

accurately measured covariate subset which is partially available and X2 is the covari-

ate subset which is available for the whole study cohort. We observe only {W,X2} for

the entire study cohort, where W is the auxiliary covariate of X1. The observed data

in the validation sample are {Yj,Wj, X1j,X2j, δj}, j ∈ V and in the non-validation

sample, they are {Yl,Wl,X2l, δl}, l ∈ V. If we consider that the entire study cohort

sample size is n and that the validation sample size is mv, then the non-validation

sample size is mn = n−mv.

Assume that the expectation of X1 conditional on {W,X2} is a function of W and

X2, say Φ(W,X2) = E(X1 |W,X2). We propose a local polynomial approximation

based approach to predict the unobserved values of X1 in the non-validation sample.

Kernel smoothing is a special case of the local polynomial approximation.

Remark 3.2.1. The function g(·) in (3.1) can take a very general form as long as

the model is informative. If it takes a linear form, then we can apply the regression

calibration method introduced in the previous chapter.

If W is only defined as a categorical variable, the methods of Zhou and Pepe [1995],

Liu, Zhou and Cai [2009] and Liu et al. [2012] would be used.

Our estimating function is
√
n Sn(β, τ )

and β̂ is the generalized solution of
√
n Sn(β, τ) = 0. Let Φl = Φ(Wl,X2l) and

Φ̂l = Φ̂(Wl,X2l) =

∑
j∈V

κh

(
Wj −Wl,X2j −X2l

)
X1j

∑
j∈V

κh

(
Wj −Wl,X2j −X2l

) , (3.2)

where κh(·) = κ(·/h). κ(·) is the Gaussian kernel on Rp with bandwidth h. Let

Z = (Φ,X2) and Ẑ = (Φ̂,X2), then

Sn(β, τ ) =
ρn

mv

∑
j∈V

Xj

{
Nj

(
eX

⊤
j β(τ )

)
−
∫ τ

0

I

[
Yj ≥ eX

⊤
j β(u)

]
dH(u)

}

+
1− ρn

mn

∑
l∈V

Ẑ l

{
Nl

(
eẐ

⊤
l β(τ )

)
−
∫ τ

0

I

[
Yl ≥ eẐ

⊤
l β(u)

]
dH(u)

}
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= ρn ΩV
mv

(β, τ ) + (1− ρn) Ω̂
V
mn

(β, τ ).

where ρn = mv/n. Here the first part on the right hand side of the equation comes

from the validation sample and the second part is from the non-validation sample.

For a particular quantile, τk, the estimator of β0(τk) is β̂(τk), which is the generalized

solution of
√
n Sn(β, τk) = 0.

√
n Sn(β̂, τk) =

√
n

{
ρn ΩV

mv
(β̂, τk) + (1− ρn) Ω̂

V
mn

(β̂, τk)
}
+ ξn,k, (3.3)

for k = 1, . . . , L(n), where,

ΩV
mv

(β̂, τk) =
1

mv

∑
j∈V

Xj

{
Nj

(
eX

⊤
j β̂(τk)

)
−
∫ τk

0

I

[
Yj ≥ eX

⊤
j β̂(u)

]
dH(u)

}
,

Ω̂
V
mn

(β̂, τk) =
1

mn

∑
l∈V

Ẑ l

{
Nl

(
eẐ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
dH(u)

}
.

For simplicity, denote L = L(n). Here, by the definition of a generalized solution

(defined in Section 2.2), max
k=1,2,...,L

∥ξn,k∥ ≤ sup
i

∥X i∥/
√
n. β̂(τ) is a right- continuous

piecewise constant function which jumps only on a grid, SL = {0 = τ0 < τ1 < · · · <
τL = τU < 1}. The size of SL is defined as ∥SL∥ = max

k
{τk − τk−1; k = 1, . . . , L}.

Let s(β, τ) = E

{
ρn ΩV

mv
(β, τ) + (1− ρn) Ω̂

V
mn

(β, τ)

}
. Define

ΩV
mn

(β, τk) =
1

mn

∑
l∈V

Z l

{
Nl

(
eZ

⊤
l β(τk)

)
−
∫ τk

0

I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

}
.

Using the martingale property, we have E{ΩV
mv

(β0, τ)} = 0 and E{ΩV
mn

(β0, τ)} = 0.

By the equation (3.8) and the martingale property, s(β0, τ) = 0, where β0(τk) denotes

the true β(τk). Now we have,

Ω̂
V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)

=
1

mn

⎛⎝∑
l∈V

Ẑ l

{
Nl

(
eẐ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
dH(u)

}

−
∑
l∈V

Z l

{
Nl

(
eZ

⊤
l β̂(τk)

)
−
∫ τk

0

I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

}⎞⎠
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=
1

mn

⎛⎝∑
l∈V

Ẑ lNl

(
eẐ

⊤
l β̂(τk)

)
−
∑
l∈V

Ẑ l

∫ τk

0

I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
dH(u)

−
∑
l∈V

Z lNl

(
eZ

⊤
l β̂(τk)

)
−
∑
l∈V

Z l

∫ τk

0

I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

⎞⎠
=

1

mn

⎛⎝∑
l∈V

{
Ẑ lNl

(
eẐ

⊤
l β̂(τk)

)
−Z lNl

(
eZ

⊤
l β̂(τk)

)}

−
∑
l∈V

∫ τk

0

{
Ẑ lI

[
Yl ≥ eẐ

⊤
l β̂(u)

]
−Z lI

[
Yl ≥ eZ

⊤
l β̂(u)

]}
dH(u)

⎞⎠
=

1

mn

∑
l∈V

(
Ẑ l

[
Nl

(
eẐ

⊤
l β̂(τk)

)
− Nl

(
eZ

⊤
l β̂(τk)

)]

+
(
Ẑ l −Z l

)
Nl

(
eZ

⊤
l β̂(τk)

)
−
∫ τk

0

(
Ẑ l

{
I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
− I

[
Yl ≥ eZ

⊤
l β̂(u)

]}

−
(
Ẑ l −Z l

)
I

[
Yl ≥ eZ

⊤
l β̂(u)

])
dH(u)

)

=
1

mn

∑
l∈V

(
Ẑ l

[
Nl

(
eẐ

⊤
l β̂(τk)

)
− Nl

(
eZ

⊤
l β̂(τk)

)]

−
∫ τk

0

Ẑ l

{
I

[
Yl ≥ eẐ

⊤
l β̂(u)

]
− I

[
Yl ≥ eZ

⊤
l β̂(u)

]}
dH(u)

+
(
Ẑ l −Z l

)
Nl

(
eZ

⊤
l β̂(τk)

)

−
∫ τk

0

(
Ẑ l −Z l

)
I

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

)

=
1

mn

∑
l∈V

(
Ẑ l

[
Ml

{
τk, Ẑ l, β̂(τk)

}
−Ml

{
τk,Z l, β̂(τk)

}]

+
(
Ẑ l −Z l

)
Ml

{
τk,Z l, β̂(τk)

})

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)
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=

√
n(1− ρn)

mn

∑
l∈V

(
Ẑ l

[
Ml

{
τk, Ẑ l, β̂(τk)

}
−Ml

{
τk,Z l, β̂(τk)

}]

+
(
Ẑ l −Z l

)
Ml

{
τk,Z l, β̂(τk)

})
, (3.4)

where

Mi

{
τk,U i, β̂(τk)

}
= Ni

(
eU

⊤
i β̂(τk)

)
−
∫ τk

0

I

[
Yi ≥ eU

⊤
i β̂(u)

]
dH(u).

According to Appendix B (proof of Theorem 2) of [Peng and Huang, 2008, p. 647],

since
√
mn ∥SL∥ → 0, we have

1
√
mn

∑
l∈V

Ẑ l Ml{τk, Ẑ l, β̂(τ )} = o(0,τU ])(1), a. s. .

Using similar arguments as in Appendix B (proof of Theorem 2) of [Peng and Huang,

2008, p. 647] and because of the boundedness of Ẑ l, we have

1
√
mn

∑
l∈V

Ẑ l Ml{τk,Z l, β̂(τ )} = o(0,τU ])(1), a. s. .

So we have

1
√
mn

∑
l∈V

Ẑ l

[
Ml

{
τk, Ẑ l, β̂(τk)

}
−Ml

{
τk,Z l, β̂(τk)

}]
= o(0,τU ])(1) a. s. .

Then (3.4) becomes,

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)

=

√
n(1− ρ)

mn

∑
l∈V

(
Ẑ l −Z l

)
Ml

{
τk,Z l, β̂(τk)

}
+ o(0,τU ])(1), (3.5)

where ρ = lim
n→∞

ρn.

Now consider,

Ẑ l −Z l =

∑
j∈V

κh

(
Wj −Wl,X2j −X2l

)
(Xj −Z l)∑

j∈V

κh

(
Wj −Wl,X2j −X2l

)
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=

∑
j∈V

κh

(
Wj −Wl,X2j −X2l

)
(Xj −Z l)∑

l∈V

κh

(
Wj −Wl,X2j −X2l

)
∑
l∈V

κh

(
Wj −Wl,X2j −X2l

)
∑
j∈V

κh

(
Wj −Wl,X2j −X2l

) .
Asymptotically,

mn

mv

∑
l∈V

κh

(
Wj −Wl,X2j −X2l

)/
mn

∑
j∈V

κh

(
Wj −Wl,X2j −X2l

)/
mv

−→ ϱ,

where ϱ = lim
n→∞

1− ρn

ρn

. Then, (3.5) can be rewritten as,

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)

=

√
n(1− ρ)
mn

ϱ

∑
l∈V

∑
j∈V

κh

(
Wj −Wl,X2j −X2l

)
(Xj −Z l)∑

l∈V

κh

(
Wj −Wl,X2j −X2l

) Ml

{
τk,Z l, β̂(τk)

}

+Op

(
1√
n

)
+ o(0,τU ])(1).

The denominator will become a function of ‘j’ after summing over ‘l’ and changing

the order of summation,

√
n(1− ρn)

(
Ω̂

V
mn

(β̂, τk)− ΩV
mn

(β̂, τk)
)

=
√
n

mn

n

1

mn

mv

mv

ϱ

∑
j∈V

∑
l∈V

κh

(
Wj −Wl,X2j −X2l

)
(Xj −Z l) Ml

{
τk,Z l, β̂(τk)

}
∑
l∈V

κh

(
Wj −Wl,X2j −X2l

)
+Op

(
1√
n

)
+ o(0,τU ])(1)

=

√
n ρ
mv

ϱ
∑
j∈V

[
XjWqMV

(
Ml

{
τk,Z l, β̂(τk)

})
−WqMV

(
Z l Ml

{
τk,Z l, β̂(τk)

})]
+Op

(
1√
n

)
+ o(0,τU ])(1), (3.6)
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where WqMV(G) denotes

∑
l∈V

κh

(
Wj −Wl,X2j −X2l

)
Gl

∑
l∈V

κh

(
Wj −Wl,X2j −X2l

) , the weighted mean of

terms for the non-validation sample.

By (3.6), (3.3) becomes

√
n Sn(β̂, τk)

=
√
n

{
ρ ΩV

mv
(β̂, τk) + (1− ρ) ΩV

mn
(β̂, τk)

+
ρ
mv

ϱ
∑
j∈V

[
XjWqMV

(
Ml

{
τk,Z l, β̂(τk)

})
−WqMV

(
Z l Ml

{
τk,Z l, β̂(τk)

})]}

+ ξn,k +Op

(
1√
n

)
+ o(0,τU ])(1)

=
√
n

{
ρ
mv

∑
j∈V

(
XjMj

{
τk,Xj, β̂(τk)

}
+ ϱ

[
XjWqMV

(
Ml

{
τk,Z l, β̂(τk)

})
−WqMV

(
Z l Ml

{
τk,Z l, β̂(τk)

})])
+

(1− ρ)
mn

∑
l∈V

Z lMl

{
τk,Z l, β̂(τk)

}}
+ ξn,k +Op

(
1√
n

)
+ o(0,τU ])(1)

=
√
n

{
ρ
mv

∑
j∈V

(
XjMj

{
τk,Xj, β̂(τk)

}
+ ϱ

[
XjWqMV

(
Ml

{
τk,Z l, β̂(τk)

})
−WqMV

(
Z l Ml

{
τk,Z l, β̂(τk)

})])
+

(1− ρ)
mn

∑
l∈V

Z lMl

{
τk,Z l, β̂(τk)

}}
+Op

(
1√
n

)
+ o(0,τU ])(1). (3.7)

(1− ρn)E

{
Ω̂

V
mn

(β0, τ )− ΩV
mn

(β0, τ )
}

=
ρ ϱ
mv

E

{∑
j∈V

[
XjWqMV

(
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This result is due to the boundedness of Ẑ l and Z l and the martingale property.

3.2.1 Asymptotic Properties

Define F (t | ·) = Pr(Y ≤ t | ·), F (t | ·) = Pr(Y > t | ·), F̃ (t | ·) = Pr(Y ≤ t, δ = 1 | ·),
f(y | ·) = −f(y | ·) = −dF (y | ·)/dy, f̃(y | ·) = dF̃ (y | ·)/dy. (For a vector g, g⊗2 = gg⊤,

g(l) = lth component of g, ∥g∥ is the Euclidean norm of g.)

Regularity Conditions:

R1: sup
i

∥X i∥ < ∞ and sup
i

∥Zi∥ < ∞.

R2: (a) Each component of E
[
XN

(
eX

⊤β0(τ )
)]

, E
[
ZN

(
eZ

⊤β0(τ )
)]

and

E
[
XWqMV

{
N
(
eZ

⊤β0(τ )
)}

−WqMV

{
Z N

(
eZ

⊤β0(τ )
)}]

is a Lipschitz func-

tion of τ .

(b) f̃(t | x) and f(t | x) are bounded above uniformly in t and x.

(c) f̃(t | z) and f(t | z) are bounded above uniformly in t and z.
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R3: (a) f̃

(
eX

⊤b
⏐⏐⏐⏐X) > 0 and f̃

(
eZ

⊤b
⏐⏐⏐⏐Z) > 0 for all b ∈ B(d0).

(b) To have the positive definiteness, E
{
X⊗2

}
> 0 and E

{
Z⊗2

}
> 0.

(c) Each component of

E

[
X⊗2 f

(
eX

⊤b
⏐⏐⏐⏐X) eX

⊤b
]
×
(
E

[
X⊗2 f̃

(
eX

⊤b
⏐⏐⏐⏐X) eX

⊤b
])−1

,

E
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Z⊗2 f

(
eZ

⊤b
⏐⏐⏐⏐Z) eZ

⊤b
]
×
(
E

[
Z⊗2 f̃

(
eZ

⊤b
⏐⏐⏐⏐Z) eZ

⊤b
])−1

and

E

[
X⊗2 WqMV

{
f

(
eZ

⊤b
⏐⏐⏐⏐Z) eZ

⊤b
}
−WqMV

{
Z⊗2 f

(
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⊤b
⏐⏐⏐⏐Z) eZ
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}]

×(
E

[
X⊗2 WqMV

{
f̃

(
eZ

⊤b
⏐⏐⏐⏐Z) eZ

⊤b
}
−WqMV

{
Z⊗2 f̃

(
eZ

⊤b
⏐⏐⏐⏐Z) eZ

⊤b
}])−1

is uniformly bounded in b ∈ B(d0); B(d0) is a neighborhood containing

{β0(τ), τ ∈ (0, τU ]}, defined in appendix C.

R4: For any ν ∈ (0, τU ], inf
τ∈[ν,τU ]

eigmin E

[
X⊗2 f̃

(
eX

⊤β0(τ )
⏐⏐⏐⏐X) eX

⊤β0(τ )
]
> 0,

inf
τ∈[ν,τU ]

eigmin E

[
Z⊗2 f̃

(
eZ

⊤β0(τ )
⏐⏐⏐⏐Z) eZ

⊤β0(τ )
]
> 0 and

inf
τ∈[ν,τU ]

eigmin E

[
X⊗2 WqMV

{
f̃

(
eZ

⊤β0(τ )
⏐⏐⏐⏐Z) eZ

⊤β0(τ )
}

−WqMV

{
X⊗2 f̃

(
eZ

⊤β0(τ )
⏐⏐⏐⏐Z) eZ

⊤β0(τ )
}]

> 0 where eigmin(·) denotes the

minimum eigenvalue of a matrix.

Theorem 3.2.1. Assume that the regularity conditions R1-R4 hold. If lim
n→∞

∥SL∥ = 0,

then sup
τ∈[ν,τU ]

β̂(τ)− β0(τ)
 Pr−→ 0, where 0 < ν < τU .

Theorem 3.2.2. Assume that the regularity conditions R1-R4 hold. If lim
n→∞

√
n ∥SL∥ =

0, then
√
n
{
β̂(τ)− β0(τ)

}
weakly converges to a zero-mean Gaussian process for

τ ∈ [ν, τU ], where 0 < ν < τU .

Proofs of Theorems 3.2.1 and 3.2.2 are deferred to Appendices C and D respectively.

3.3 Numerical Studies

We conduct a series of simulation studies to compare the performance of our proposed

method with the results of using only the validation sample and the complete case. We

used the same simulation models as in the simulation study of the previous chapter.
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The logarithmic event times are generated from

Ti = β0 + β1X1i + ui; i = 1, 2, . . . , n

and the logarithmic censoring times are generated from

Ci = γ0 + γ1X1i + vi; i = 1, 2, . . . , n.

where X1i’s are generated from U [0, 5] and ui’s and vi’s are from standard normal

distribution. The parameters, β⊤ = (5, 1) and γ⊤ = (6.4, 0.75) were selected to

maintain a censoring rate of approximately 30%. We assumed 50% of the observations

are in the validation sample. We applied the Peng and Huang [2008] estimator for

comparison purposes. The performance of our proposed method is compared with the

one using only the validation sample as well as with the complete cohort. We used

the optimal bandwidth, h = (4/3)0.2σVn
−1/5 ≈ 1.06σVn

−1/5 for the Gaussian kernel

[Silverman, 1986, p. 45], where σV is the standard deviation of the residuals from the

cubic spline fit between W and X1 from the validation sample. We generated W from

an additive model:

W = X1 + ε,

where the error term is generated from ε ∼ N(0, σ2
ε) with different σε = 0.2 and 0.8.

We conducted the simulation study with different sample sizes, 200 and 500, and re-

ported the mean bias and root mean squared error (RMSE) measures of the parameters

based on 1000 simulations. We used 250 bootstrap samples to estimate the standard

error (SE) of the parameter estimates and to compute the coverage probability (CP)

of the 95% confidence interval of the model parameters. We conducted the simula-

tions for the 25th percentile (Table 3.1), 50th percentile (Table 3.2) and 75th percentile

(Table 3.3).
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Complete 0.0173 0.1891 0.1996 96.00 0.0021 0.0682 0.0711 96.40

Proposed 0.0077 0.1948 0.2076 96.30 0.0036 0.0709 0.0738 97.20

Validation 0.0179 0.2687 0.2917 96.10 -0.0005 0.0966 0.1040 96.30

n = 200, σε = 0.8

Complete 0.0173 0.1891 0.1996 96.00 0.0021 0.0682 0.0711 96.40

Proposed -0.0590 0.2335 0.2423 97.00 0.0103 0.0826 0.0876 96.70

Validation 0.0179 0.2687 0.2917 96.10 -0.0005 0.0966 0.1040 96.30

n = 500, σε = 0.2

Complete 0.0248 0.1246 0.1248 94.80 -0.0017 0.0429 0.0441 94.80

Proposed 0.0209 0.1270 0.1285 94.60 -0.0021 0.0446 0.0452 95.80

Validation 0.0263 0.1756 0.1783 94.80 0.0001 0.0615 0.0632 95.90

n = 500, σε = 0.8

Complete 0.0248 0.1246 0.1248 94.80 -0.0017 0.0429 0.0441 94.80

Proposed -0.0500 0.1526 0.1490 94.60 0.0071 0.0514 0.0527 96.00

Validation 0.0263 0.1756 0.1783 94.80 0.0001 0.0615 0.0632 95.90

Table 3.1: Comparison between kernel smoothing based approach and validation sam-

ple approach using the Bias, RMSE, SE and CP of regression parameters at τ = 0.25
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Complete 0.0221 0.1835 0.1909 95.20 0.0018 0.0671 0.0700 95.40

Proposed 0.0226 0.1868 0.1981 95.60 0.0024 0.0681 0.0725 95.30

Validation 0.0290 0.2558 0.2784 95.40 0.0002 0.0925 0.1027 97.00

n = 200, σε = 0.8

Complete 0.0221 0.1835 0.1909 95.20 0.0018 0.0671 0.0700 95.40

Proposed 0.0159 0.2154 0.2346 94.80 0.0151 0.0815 0.0860 96.80

Validation 0.0290 0.2558 0.2784 95.40 0.0002 0.0925 0.1027 97.00

n = 500, σε = 0.2

Complete 0.0266 0.1249 0.1186 95.20 -0.0011 0.0427 0.0429 94.90

Proposed 0.0281 0.1293 0.1224 94.50 -0.0005 0.0437 0.0445 95.00

Validation 0.0285 0.1753 0.1707 94.30 0.0017 0.0609 0.0620 95.50

n = 500, σε = 0.8

Complete 0.0266 0.1249 0.1186 95.20 -0.0011 0.0427 0.0429 94.90

Proposed 0.0157 0.1435 0.1434 94.20 0.0127 0.0530 0.0521 95.30

Validation 0.0285 0.1753 0.1707 94.30 0.0017 0.0609 0.0620 95.50

Table 3.2: Comparison between kernel smoothing based approach and validation sam-

ple approach using the Bias, RMSE, SE and CP of regression parameters at τ = 0.5
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Complete 0.0321 0.2105 0.2329 96.10 0.0062 0.0832 0.0976 97.10

Proposed 0.0437 0.2204 0.2454 97.20 0.0079 0.0857 0.0992 97.40

Validation NaN NaN NaN NaN NaN NaN NaN NaN

n = 200, σε = 0.8

Complete 0.0321 0.2105 0.2329 96.10 0.0062 0.0832 0.0976 97.10

Proposed 0.1082 0.2826 0.3186 93.10 0.0268 0.1077 0.1268 97.90

Validation NaN NaN NaN NaN NaN NaN NaN NaN

n = 500, σε = 0.2

Complete 0.0351 0.1455 0.1439 94.60 -0.0003 0.0526 0.0563 95.90

Proposed 0.0466 0.1560 0.1498 94.20 -0.0012 0.0556 0.0584 95.90

Validation 0.0450 0.2064 0.2083 95.30 0.0028 0.0767 0.0829 96.60

n = 500, σε = 0.8

Complete 0.0351 0.1455 0.1439 94.60 -0.0003 0.0526 0.0563 95.90

Proposed 0.0908 0.2028 0.1811 93.50 0.0194 0.0702 0.0711 95.80

Validation 0.0450 0.2064 0.2083 95.30 0.0028 0.0767 0.0829 96.60

Table 3.3: Comparison between kernel smoothing based approach and validation sam-

ple approach using the Bias, RMSE, SE and CP of regression parameters at τ = 0.75

From Tables 3.1, 3.2 and 3.3, we can observe that our proposed estimators are

asymptotically unbiased. From the values of RMSE and SE, as the measures of dis-

persion for all three estimates, we can see that our proposed method is very efficient

compared to the one using only the validation sample. When the σ2
ε is small, our

proposed method works almost as well as the ‘Complete’ case. For n = 500, our pro-

posed method provides approximately 95% coverage for the 95% confidence interval.

The coverage probability is also competitive as compared to the ‘Complete’ case, when

n = 200.

We also observed that using only the validation sample fails to provide estimates

for higher quantiles, as in Table 3.3.

In this Section and for the regression calibration based approach in Section 2.3 (at

page 25), we considered a linear relationship between W and X1. From the results,

we see that both methods are performing equally well.
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3.3.1 Non-Linear Auxiliary Covariate

We conduct simulation studies to compare the performance of the regression cali-

bration based approach and the kernel smoothing based approach when there is a

non-linear relationship between X1 and W . We also used the same simulation models

as in Section 3.3 in this simulation study. W is generated from a power model:

W = X1
5 + ε,

where the error term is generated from ε ∼ N(0, σ2
ε) with different σε = 0.2 and 0.8.

We used the bandwidth for the Gaussian kernel, h = 1.06σVn
−1/5, where σV is

the standard deviation of the residuals from the cubic spline fit between W and X1

available from the validation sample. We reported the mean bias and root mean

squared error (RMSE) measures of the parameters based on 1000 simulations. We used

250 bootstrap samples to estimate the standard error (SE) of the parameter estimates

and to compute the coverage probability (CP) of the 95% confidence interval of the

model parameters. We conducted simulations for the 25th percentile (Table 3.4), 50th

percentile (Table 3.5) and 75th percentile (Table 3.6).

Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Calibration -0.0992 0.2747 0.2722 95.40 0.0212 0.0948 0.0978 95.90

Smoothing 0.0113 0.2053 0.2236 96.00 0.0025 0.0842 0.0879 95.60

n = 200, σε = 0.8

Calibration -0.0993 0.2743 0.2722 95.20 0.0211 0.0946 0.0978 95.80

Smoothing 0.0054 0.2038 0.2223 96.20 0.0048 0.0809 0.0876 96.20

n = 500, σε = 0.2

Calibration -0.0862 0.1848 0.1683 92.90 0.0157 0.0611 0.0602 94.30

Smoothing 0.0250 0.1328 0.1351 94.60 -0.0006 0.0513 0.0536 96.40

n = 500, σε = 0.8

Calibration -0.0863 0.1847 0.1683 92.90 0.0157 0.0611 0.0602 94.20

Smoothing 0.0174 0.1325 0.1348 94.40 0.0003 0.0483 0.0523 96.10

Table 3.4: Comparison between regression calibration based approach and kernel

smoothing based approach using the Bias, RMSE, SE and CP of regression parameters

at τ = 0.25
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Calibration 0.0398 0.2438 0.2600 96.30 0.0197 0.0940 0.0983 95.50

Smoothing 0.0238 0.1924 0.2140 96.70 0.0017 0.0791 0.0870 96.80

n = 200, σε = 0.8

Calibration 0.0402 0.2436 0.2600 96.30 0.0197 0.0938 0.0983 95.60

Smoothing 0.0277 0.1960 0.2124 96.20 -0.0002 0.0772 0.0867 96.90

n = 500, σε = 0.2

Calibration 0.0388 0.1637 0.1604 94.30 0.0182 0.0619 0.0595 93.60

Smoothing 0.0336 0.1364 0.1275 94.50 -0.0015 0.0517 0.0517 95.20

n = 500, σε = 0.8

Calibration 0.0388 0.1637 0.1604 94.20 0.0182 0.0619 0.0595 93.70

Smoothing 0.0344 0.1368 0.1283 94.10 -0.0031 0.0489 0.0507 95.10

Table 3.5: Comparison between regression calibration based approach and kernel

smoothing based approach using the Bias, RMSE, SE and CP of regression parameters

at τ = 0.5
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Intercept Slope

Bias RMSE SE CP Bias RMSE SE CP

n = 200, σε = 0.2

Calibration 0.1395 0.3457 0.3467 96.00 0.0386 0.1365 0.1462 96.40

Smoothing 0.0524 0.2341 0.2716 97.80 0.0002 0.1032 0.1362 97.70

n = 200, σε = 0.8

Calibration 0.1403 0.3467 0.3467 96.10 0.0385 0.1370 0.1462 96.20

Smoothing 0.0566 0.2296 0.2681 97.50 -0.0006 0.0959 0.1267 97.80

n = 500, σε = 0.2

Calibration 0.1286 0.2415 0.2133 91.80 0.0345 0.0879 0.0878 94.30

Smoothing 0.0535 0.1607 0.1557 94.40 -0.0039 0.0634 0.0688 96.60

n = 500, σε = 0.8

Calibration 0.1285 0.2416 0.2133 92.00 0.0344 0.0881 0.0878 94.40

Smoothing 0.0637 0.1633 0.1553 94.10 -0.0091 0.0602 0.0665 96.80

Table 3.6: Comparison between regression calibration based approach and kernel

smoothing based approach using the Bias, RMSE, SE and CP of regression parameters

at τ = 0.75

From Tables 3.4, 3.5 and 3.6, we can observe that the kernel smoothing based

approach clearly outperforms the regression calibration based approach. The kernel

smoothing based approach has a smaller bias, smaller RMSE and smaller SE compared

to the regression calibration based approach when there is a non-linear relationship be-

tween W and X1. Since the regression calibration based approach has a high bias, the

confidence interval is meaningless. We ignore the comparison between their coverage

probabilities.

3.3.2 Colorado Plateau Uranium Miners data

As an illustration, we apply our proposed method to the Colorado Plateau uranium

miners cohort data. The major interest of this study was to assess the effect of radon

exposure to the observed survival time. This data set consists of 3347 male miners

who worked underground for at least one month in the uranium mines of the four-state

Colorado Plateau area and who were examined at least once by physicians between

1950 and 1960. For convenience, we removed three individuals with missing ‘status’.

The censoring rate of this data is 0.624. Apart from the failure time, the miners’ age,
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the cumulative radon exposure, cumulative smoking in number of packs and miners’

working duration are available. In our study, we randomly chose 1672 miners (50%

of total observations) as the validation sample. We assumed that the remaining 1672

individuals belonged to the non-validation sample and assumed that a radon exposure

measurement is not available for them.

Similarly to the work of Leng and Tong [2013], we considered three covariates such

as the logarithm of the cumulative radon exposure (in 100 WLM), X1; cumulative

smoking in 1000 packs, X2 and age at entry to the study, X3. Leng and Tong [2013]

pointed out that the log survival time is approximately linear with the covariates only

for median regression. To predict the unobserved X1’s, we considered the miners’

working duration as the auxiliary covariate (W ). The scatter plot in Figure 3.1 shows

that it is not certainly linear.

Figure 3.1: Scatter plot of miners’ working time and radon exposure
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To smooth the unobserved X1’s, we used equation (3.2) with the bandwidth for the

Gaussian kernel, h = 1.06σVn
−1/5, where σV ≈ 5.44. After estimating the unobserved

X1’s, we fitted the AFT model:

log T = β0 + β1X1 + β2X2 + β3X3 + ϵ

for τ = 0.5 using Peng and Huang [2008] censored quantile regression method. We

compared our proposed method with those based on the complete case and the vali-

dation sample as in our simulation studies. The results are provided in Table 3.7 and

apart from the estimates we produced 95% confidence limits and standard error using

the 250 bootstrap samples.

Estimate 95% CI SE

Intercept

Complete 4.2670 (4.1752,4.3448) 0.0433

Proposed 4.2540 (4.1625,4.3363) 0.0443

Validation 4.2788 (4.1697,4.3835) 0.0545

log(Radon)

Complete -0.0204 (-0.0297,-0.0114) 0.0047

Proposed -0.0189 (-0.0307,-0.0095) 0.0054

Validation -0.0195 (-0.0333,-0.0075) 0.0066

Smoking

Complete −1.6× 10−5 (-0.0001,0.0001) 0.0001

Proposed −2.1× 10−5 (-0.0001,0.0001) 0.0001

Validation −0.6× 10−5 (-0.0002,0.0001) 0.0001

Age

Complete 0.0024 (0.0014,0.0038) 0.0006

Proposed 0.0024 (0.0015,0.0039) 0.0006

Validation 0.0021 (0.0009,0.0035) 0.0008

Table 3.7: Estimates, SE and 95% CI for regression parameters of Colorado Plateau

uranium miners’ data at median

From Table 3.7, we can observe that our proposed method has a smaller standard

error than that of the validation sample and hence narrower confidence intervals. In

the following section, we conduct a study of PBC data discussed in Section 2.3.1.
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3.3.3 PBC data

We also used the PBC data set mentioned in the previous chapter to illustrate the per-

formance of the kernel smoothing based method. We used the same model described

in Chapter 2. But we smoothed the unobserved values of the logarithm of the copper

content in urine, using equation (3.2) with optimum bandwidth for the Gaussian ker-

nel, h = 1.06σVn
−1/5, where σV ≈ 0.81 and fitted the model using Peng and Huang

[2008] censored quantile regression method. Results with the kernel smoothing based

approach are provided in Table 3.8.

Validation Proposed

τ −→ 0.25 0.50 0.75 0.25 0.50 0.75

log(β̂)

Intercept 19.5599 21.2413 23.6345 19.3681 22.0858 20.8564

Age -0.6552 -1.3863 -1.4283 -0.6279 -1.5445 -1.6993

Albumin 2.1459 2.4975 2.1497 1.9140 2.3535 2.3016

Copper -0.5672 -0.6215 -0.7266 -0.6454 -0.6528 -0.9076

Protime -4.0750 -3.4839 -3.6980 -3.7848 -3.4432 -1.7419

Edema1 -0.9777 -0.5987 -0.9373 -1.0859 -0.6112 -1.2016

Edema0.5 -0.6736 0.0496 -0.2515 -0.6592 0.0570 -0.4044

SE

Intercept 1.9879 4.5143 5.9999 2.1339 3.8685 5.6396

Age 0.3019 0.5948 0.8755 0.2878 0.5647 0.8232

Albumin 0.4453 0.8927 1.0479 0.4205 0.7920 0.8655

Copper 0.0762 0.1566 0.2606 0.0875 0.1472 0.2526

Protime 0.7167 1.6214 2.1205 0.7402 1.3307 1.8631

Edema1 0.3720 0.4194 0.4133 0.3797 0.3871 0.4361

Edema0.5 0.2130 0.4667 0.5737 0.1854 0.3460 0.4632

CI

Intercept (15.45,23.25) (11.77,29.47) (9.49,33.01) (15.41,23.78) (14.04,29.2) (11.67,33.78)

Age (-1.3,-0.12) (-2.44,-0.1) (-2.96,0.47) (-1.37,-0.24) (-2.56,-0.35) (-3.3,-0.08)

Albumin (1.31,3.06) (0.81,4.31) (0.26,4.37) (1.2,2.84) (0.79,3.9) (0.34,3.74)

Copper (-0.71,-0.41) (-0.91,-0.3) (-1.13,-0.11) (-0.78,-0.44) (-0.99,-0.41) (-1.25,-0.26)

Protime (-5.33,-2.52) (-6.61,-0.26) (-7.44,0.87) (-5.16,-2.26) (-5.87,-0.65) (-6.39,0.91)

Edema1 (-1.71,-0.25) (-1.54,0.1) (-1.82,-0.2) (-1.72,-0.23) (-1.46,0.06) (-1.94,-0.23)

Edema0.5 (-1.02,-0.19) (-1.13,0.7) (-1.26,0.98) (-0.99,-0.26) (-0.89,0.47) (-1.14,0.68)

Table 3.8: Estimates, SE and 95% CI for regression parameters of PBC data analysis

using kernel smoothing

From the results in Tables 3.8 and 2.4 (page 30), we can observe that the values are

almost equal for both regression calibration and kernel smoothing methods. Kernel

smoothing based method has smaller standard errors and narrower confidence intervals

compared to using only the validation sample. This non-parametric method works as

well as the regression calibration based method.
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3.4 Discussion

In this chapter, we proposed a semi-parametric method to estimate the censored quan-

tile regression parameters with the auxiliary covariates. We applied the kernel smooth-

ing method to estimate the unobserved covariates using the auxiliary covariates. Then

we applied Peng and Huang [2008] censored quantile regression method to the whole

study cohort to identify the covariate effect over the observed survival time under heavy

censoring for various quantile levels. Our proposed method is more efficient compared

to the one using only the validation sample. If the auxiliary covariate and the partially

available covariate are closely related, then the performance of our proposed method

is close to the one using the completely known study cohort.

Our proposed method performs well for a general relationship between the unob-

served covariates and the auxiliary covariates. Numerical results also show that our

proposed method works as well as the ‘Complete’ case if σ2
ε is small. It always out-

performs the method using only the validation sample irrespective of the value of σ2
ε.

We applied our proposed method to the Colorado Plateau uranium miners data with

the scenario of variables randomly unavailable as described in Section 3.3.2.

Based on our simulation studies, we suggest the use of the regression calibration

based method if the auxiliary covariate has a very strong linear relationship with the

unobserved covariate. Zhou and Wang [2000] mentioned that the kernel smoothing

based method does not provide stable inference when the dimension of the auxiliary

covariate (W ) and the covariates correlated with X1 together are higher than 2. A

regression calibration based approach is needed when the dimension of the auxiliary

covariate (W ) and the covariates correlated with X1 are higher than 2 and if they are

linearly related. But in the general scenario, we would suggest the semi-parametric

method which accommodates a more general relationship between the auxiliary covari-

ate and the unobserved variable. We have to be cautious when applying this method

to data, especially when we have an extremely small validation sample size, because

it may lead to biased estimates.



Chapter 4

Empirical Likelihood based

Weighted Censored Quantile

Regression

4.1 Introduction

In many studies, auxiliary information about the target population is available from

previous studies. For example, in survey sampling, information about the population

mean and variance could be available from previous surveys or records. The auxiliary

information could be used to improve the efficiency of the statistical inference [Kuk

and Mak, 1989; Rao, Kovar and Mantel, 1990; Chen and Qin, 1993].

Consider a known relationship between the survival time, Y (or the failure time,

T ) and a subset of covariates, say Xd,

Y = f (Xd;θ) . (4.1)

The knowledge about this relationship can be treated as auxiliary information. In a

more general case, the auxiliary information can be expressed as E{g(Z;θ)} = 0 for

some d-dimensional parameter, θ ∈ Rd, where Z is the observed data from the present

study and g(Z;θ) ∈ Rq in some function with q ≥ d.

The parameter, θ could be unknown, and estimated using the information available

from previous studies.

Chen and Qin [1993] introduced the use of auxiliary information to improve the

efficiency of estimators in the context of survey sampling using empirical likelihood

[Owen, 1998, 2001]. Li and Wang [2003] accommodated the auxiliary information to
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the censored linear regression model using empirical likelihood by defining a synthetic

variable [Koul, Susarla and Ryzin, 1981]. Fang et al. [2013] proposed the effective

use of auxiliary information in the linear regression model with right censored data

using empirical likelihood, by utilizing the Buckley-James [Buckley and James, 1979]

estimating equation. Tang and Leng [2012] introduced an empirical likelihood (EL)

based linear quantile regression model using auxiliary information. In this chapter, we

propose an empirical likelihood based approach to accommodate auxiliary information

to the censored quantile regression. We utilize the EL based data driven probabilities

as the weights by using the estimating function, g(Z;θ) and incorporate those weights

into the censored quantile regression model.

For the ith (i = 1, 2, . . . , n) subject, let Ti be the logarithm of the failure time, Ci the

logarithm of right censoring time, X i the p-vector covariate and let Yi = min(Ti, Ci) be

the logarithm of the survival time. As an extension to the censored quantile regression

model in (1.7), for a given quantile, τ , the regression coefficients, β(τ) in the weighted

censored quantile regression can be estimated as

β̂(τ) = argmin
β∈ℜp

n∑
i=1

ωi ρτ

(
Yi −min

{
Ci,X i

⊤β
})

, (4.2)

where ωi’s are the weights. We propose to use the EL based data driven probabilities

as the weights. Our simulation results show that the EL based weighted censored

quantile regression performs more efficiently than the standard linear censored quantile

regression.

The rest of the chapter is organized as follows. In Section 4.2, we present the estima-

tion procedure of the EL based data driven probabilities. In Section 4.3, we introduce

the EL based weighted censored quantile regression and investigate the asymptotic

properties of the estimators. In Section 4.4, performance analysis of the proposed

method is conducted using the simulations. The application to the north central can-

cer treatment lung cancer data is presented in Section 4.4.4 as an illustration. A brief

discussion is provided in Section 4.5.

4.2 Estimation of Weights using Empirical Likeli-

hood

In this section, we develop a method that converts the auxiliary information to the

EL based data driven probabilities, which are further used in the weighted censored
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quantile regression as the weights.

Qin and Lawless [1994] developed the EL based on general estimating equations.

For a random sample, {Ti, Yi, δi,Xdi}ni=1, denote it as {Zi}ni=1 and for an estimating

function, g(Zi;θ) with parameter, θ, the maximum empirical likelihood is given by

LEL(θ) = sup

{
n∏

i=1

pi : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi g (Zi;θ) = 0

}
, (4.3)

where pi = Pr(Yi = yi) and θ is the parameter in the auxiliary information which

can be assumed to be known. The parameter, θ could be any parametric information

available from the previous studies which has an influence on the model parameter,

β(τ). For a given g(Zi;θ), θ should satisfy E{g(Zi;θ)} = 0 to avoid the convex hull

issues. (This is the scenario for when zero is not an inner point of the convex hull of

the g(Zi;θ), i = 1, 2, . . . , n, which will fail to provide positive pi’s). For a given value

of θ = θ0, using the Lagrange multiplier method, LEL(θ0) attains its maximum at

pi(θ0) =
1

n
{
1 + λ⊤

θ0
g(Zi;θ0)

} , i = 1, 2, . . . , n. (4.4)

The Lagrange multiplier, λ̂θ0 is the solution to the equation

n∑
i=1

g(Zi;θ0)

n
{
1 + λ⊤

θ0
g(Zi;θ0)

} = 0.

The estimated pi(·)’s are used as the weights (ωi) in (4.2) for the weighted censored

quantile regression.

In some cases, θ may not be available. We can use an estimate of θ, say θ̂A

obtained from previous studies. Using this θ̂A, the new probabilities will be

pi(θ̂A) =
1

n
{
1 + λ⊤

θ̂A
g(Zi; θ̂A)

} , i = 1, 2, . . . , n. (4.5)

The Lagrange multiplier, λ̂θ̂A
is the solution to the equation

n∑
i=1

g(Zi; θ̂A)

n
{
1 + λ⊤

θ̂A
g(Zi; θ̂A)

} = 0.

Chen and Qin [1993] and Qin and Lawless [1994] showed that for a random sample,
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Yi, and pi(·)’s are estimated using (4.4), F̃ n(y) =
n∑

i=1

piI(Yi ≤ y) has smaller variance

than the empirical distribution function, F̂ n(y) =
1
n

n∑
i=1

I(Yi ≤ y). As a result, with

Bahadur representation [Bahadur, 1966; Kiefer, 1967], for a given τ (0 < τ < 1), the

quantile estimate, F̃
−1

n (τ) has smaller variance than F̂
−1

n (τ) (See Kuk and Mak [1989]

and Rao et al. [1990]). Hence our proposed method is expected to be more efficient

than the censored quantile regression ignoring the auxiliary information.

4.3 Estimation of Weighted Censored Quantile Re-

gression Parameters

Define the distribution function of Ti conditional on the p-vector covariate, X i as

FTi
(t |X i) = Pr(Ti ≤ t |X i). Let ΛTi

(t |X i) = −log {1− Pr(Ti ≤ t |X i)}, Ni(t) =

I(Yi ≤ t, δi = 1), and Mi(t) = Ni(t)−ΛTi
(t∧ Yi |X i). Here ΛTi

(· |X i) is the cumula-

tive hazard function conditional on X i, Ni(t) is the counting process and Mi(t) is the

martingale process associated with Ni(t) [Fleming and Harrington, 2011]. We consider

an extension of Peng and Huang [2008] censored quantile regression estimation pro-

cedure. Assuming that pi’s are known and E {pi Mi(t) |X i} = 0 (by the martingale

property) for t ≥ 0, we have

E

{
√
n

n∑
i=1

piX i

(
Ni

(
eX

⊤
i β0(τ )

)
− ΛT

[
eX

⊤
i β0(τ ) ∧ Yi

⏐⏐⏐⏐X i

])}
= 0, (4.6)

where β0(τ) denotes the true β(τ) in (4.2) for a given quantile, τ .

Our weighted censored quantile regression estimating equation is

√
n Sn(β, τ ) = 0, (4.7)

where

Sn(β, τ ) =
n∑

i=1

piX i

{
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}
.

Here pi’s are defined in (4.4) and H(u) = − log(1 − u) for 0 ≤ u < 1. Let s(β, τ) =

E{Sn(β, τ)}. The martingale property of M(·) gives s(β0, τ) = 0. For a particular

quantile, τk and an estimator of β0(τk), β̂(τk) is a right-continuous step function which
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jumps only on a grid, SL = {0 = τ0 < τ1 < · · · < τL = τU < 1}. Here L depends on

the sample size, n. The size of SL is defined as ∥SL∥ = max
k

(τk − τk−1).

For different quantiles, τ0, τ1, . . . , τL (0 = τ0 < τ1 < · · · < τL < 1), based on (4.7),

we can obtain β̂(τk)(k = 1, 2, . . . , L) by recursively solving the following monotone

estimating equation for β(τk):

√
n

n∑
i=1

piX i

{
Ni

(
eX

⊤
i β(τk)

)
−

k−1∑
r=0

I

[
Yi ≥ eX

⊤
i β̂(τr)

]
{H(τr+1)−H(τr)}

}
= 0.

(4.8)

Similar to previous chapters, we define the estimators, β̂(τk) as the generalized so-

lutions [Fygenson and Ritov, 1994] because equation (4.8) is not continuous and the

solution may not be unique.

4.3.1 Asymptotic Theory

We derived the asymptotic properties of the EL based weighted censored quantile

regression estimators using the approach of Peng and Huang [2008]. Now we prove

the uniform consistency adnd weak Gaussian convergence of the proposed weighted

censored quantile regression estimator, β̂(·).
Define F (t |X) = Pr(Y ≤ t |X), F (t |X) = Pr(Y > t |X), F̃ (t |X) = Pr(Y ≤

t, δ = 1 |X), f(y |X) = −f(y |X) = −dF (y |X)/dy and f̃(y |X) = dF̃ (y |X)/dy.

(For a vector h, h⊗2 = hhT , h(l) = lth component of h, ∥h∥ is the Euclidean norm of

h.)

Define W i = λ⊤
θ0
g(Zi;θ0)X i, i = 1, 2, . . . , n as a p-vector.

Regularity Conditions:

R.1 The observations, Zi, i = 1, 2, . . . , n are iid observations from some distribu-

tion. Without loss of generality, we assume that (Yi, δi,X
⊤
di)

⊤ ⊂ Zi for all

i = 1, 2, . . . , n.

R.2.1: There exists θ0 such that E {g(Zi;θ0)} = 0, the matrix

Σ(θ0) = E
{
g(Zi;θ0)g(Zi;θ0)

⊤} is positive definite,
∂g(z;θ)

∂θ
is continuous in

the neighborhood of θ0. The matrix E

{
∂g(Z;θ)

∂θ

}
is of full rank. Furthermore,

there exist functions Hlj(z) such that for θ in the neighborhood of θ0:

(a)
∂gl(z;θ)

∂θj
≤ Hlj(z),
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(b) For a constant C, E{H2
lj(Z)} ≤ C < ∞ for l = 1, . . . q and j = 1, . . . d.

R.2.2: max
i

∥X i∥2 = o(
√
n) and max

i
∥X iYiG∥ = o(

√
n), a. s.

R.3: sup
i

∥X i∥ < ∞ and sup
i

∥W i∥ < ∞.

R.4: (a) Each component of E
[
XN

(
eX

⊤β0(τ )
)]

is a Lipschitz function of τ .

(b) f̃(t | x) and f(t | x) are bounded above uniformly in t and x.

R.5: (a) f̃
(
eX

⊤b
⏐⏐⏐X) > 0 for all b ∈ B(d0).

(b) To have the positive definiteness, E{X⊗2} > 0.

(c) Let µ(b) = E
[
XN

(
eX

⊤b
)]

. For d > 0, define B(d) = {b ∈ Rp :

inf
τ∈(0,τU ]

µ(b)− µ{β0(τ)}
 ≤ d}. Each component of

E
[
X⊗2 f

(
eX

⊤b
⏐⏐⏐X) eX

⊤b
]
×
(
E
[
X⊗2 f̃

(
eX

⊤b
⏐⏐⏐X) eX

⊤b
] )−1

is uni-

formly bounded in b ∈ B(d0); B(d0) is a neighborhood containing {β0(τ ), τ ∈
(0, τU ]}.

R.6: For any ν ∈ (0, τU ], inf
τ∈[ν,τU ]

eigmin E

[
X⊗2 f̃

(
eX

⊤β0(τ )
⏐⏐⏐⏐X) eX

⊤β0(τ )
]
> 0,

where eigmin(·) denotes the minimum eigenvalue of a matrix.

Condition R.1 implies that Zi may contain extra variables other than (Yi,X
⊤
di)

⊤

for censored quantile regression. This provides wide acceptability for our proposed

method by including more general auxiliary information. For example, in our NCCTG

data analysis (Section 4.4.4, Page 82), we considered only the continuous variables for

the auxiliary information. The standard error was reduced not only for the parameter

estimates corresponding to the continuous variables, but also was reduced for the

parameter estimates corresponding to the other variables.

Theorem 4.3.1. Assuming that the regularity conditions R.1-R.6 hold, if lim
n→∞

∥SL∥ =

0, then sup
τ∈[ν,τU ]

∥β̂(τ )− β0(τ )∥
Pr−→ 0, where 0 < ν < τU .

Theorem 4.3.2. Assuming that the regularity conditions R.1-R.6 hold, if lim
n→∞

n1/2 ∥SL∥ =

0, then n1/2{β̂(τ ) − β0(τ )} weakly converges to a zero-mean Gaussian process for

τ ∈ [ν, τU ], where 0 < ν < τU .

To prove Theorems 4.3.1 and 4.3.2, we need to show that max
1≤i≤n

|λ⊤
θ0
g(Zi;θ0)| =

op(1). We consider two different types of g(Zi;θ). First, g(Zi;θ) does not contain the
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censored observations, as given in (4.10). The second, g(Zi;θ), contains the censored

observations, as given in (4.14).

In the case of uncensored observations, by Owen [1991] and Lemma 11.2 of Owen

[2001], we have max
1≤i≤n

||g(Zi;θ0)|| = op(
√
n). By Lemma 1 of Tang and Leng [2012], we

have under the regularity conditionR.2.1; the λθ0 in (4.4) satisfies ∥λθ0∥ = Op

(
1√
n

)
.

So,

max
1≤i≤n

⏐⏐λ⊤
θ0
g(Zi;θ0)

⏐⏐ = Op

(
1√
n

)
op
(√

n
)
= op(1). (4.9)

Under the condition R.2.2; Qin and Jing [2001] proved max
1≤i≤n

|λ⊤
θ0
g(Zi;θ0)| = op(1) for

the g(·) with censored observations.

Now following Owen [2001], using Taylor’s series expansion of the weights, pi’s

defined in (4.4) can be rewritten as,

pi(θ0) =
1

n
{
1 + λ⊤

θ0
g(Zi;θ0)

}
=

1

n

[
1− λ⊤

θ0
g(Zi;θ0){1 + op(1)}

]
=

1

n

[
1− λ⊤

θ0
g(Zi;θ0)

]
+ op

(
1

n

)
; i = 1, 2, . . . n.

Now we rewrite the Sn(β, τ ) as

Sn(β, τ ) =
1

n

n∑
i=1

[
1− λ⊤

θ0
g(Zi;θ0)

]
X i

{
Ni

(
eX

⊤
i β(τ )

)

−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}
+ op

(
1

n

)

=
1

n

n∑
i=1

X i

{
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}

− 1

n

n∑
i=1

λ⊤
θ0
g(Zi;θ0)X i

{
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}

+ op

(
1

n

)
=

1

n

n∑
i=1

X i

{
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}

− 1

n

n∑
i=1

W i

{
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}
+ op

(
1

n

)
.
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Asymptotically, by (4.9), we have
W i

 = op(1); i = 1, 2, . . . , n. So,

Sn(β, τ ) =
1

n

n∑
i=1

X i

{
Ni

(
eX

⊤
i β(τ )

)
−
∫ τ

0

I

[
Yi ≥ eX

⊤
i β(u)

]
dH(u)

}
+ op

(
1

n

)
.

Asymptotically our estimating function, Sn(β, τ) is the same as Peng and Huang

[2008]. Following the similar arguments of Peng and Huang [2008], the proofs of

Theorems 4.3.1 and 4.3.2 are straightforward, so we ignore the remaining proof.

4.4 Numerical Analysis

We conduct extensive simulation studies to compare the performance between our

proposed EL based weighted censored quantile regression estimator and the standard

censored quantile regression estimator. For our simulation, we use similar models

discussed in Tang and Leng [2012].

The simulation models used to generate the logarithmic event time (Tr) and loga-

rithmic censoring time (Cr) for the r
th (r = 1, 2, . . . , N) subject are given in Table 4.1

under four Cases (i)-(iv).

Cases Models Error Distribution

(i)
Tr = θ0 + θ1x1r + θ2x2r + ur,

ur, vr ∼ N(0, 1)
Cr = γ0 + γ1x1r + γ2x2r + vr.

(ii)
Tr = θ0 + θ1x1r + θ2x2r + ur,

ur, vr ∼ t(3)
Cr = γ0 + γ1x1r + γ2x2r + vr.

(iii)
Tr = θ0 + θ1x1r + θ2x2r + (π0 + π0x1r + π2x2r)ur,

ur, vr ∼ N(0, 1)
Cr = γ0 + γ1x1r + γ2x2r + (π0 + π0x1r + π2x2r)vr.

(iv)
Tr = θ0 + θ1x1r + θ2x2r + (π0 + π0x1r + π2x2r)ur,

ur, vr ∼ t(3)
Cr = γ0 + γ1x1r + γ2x2r + (π0 + π0x1r + π2x2r)vr.

Table 4.1: Four simulation models to generate event and censoring times

In Cases (i) and (ii), event times and censoring times are generated from the ho-

moscedastic models and in Cases (iii) and (iv), we considered heteroscedastic models to

examine the efficiency gain of our proposed method over the standard censored quan-

tile regression. We set the parameter values as θ⊤ = (0,−1, 0.2), π⊤ = (0.3,−0.1, 0.1)

and selected γ⊤ to maintain approximately 30% of the censoring proportion in each
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case. We generated explanatory variables from zero mean bivariate normal distribution

with covariance, Σ =

[
1 σx1,x2

σx1,x2 1

]
and σx1,x2 = 0 & 0.5.

We considered two different ways to compute the EL based probability weights.

In numerical study - I, we compute pi’s based on the auxiliary information related

to the failure time, Ti, whereas in numerical study - II, pi’s are computed using

the observed survival time, Yi = min(Ti, Ci). In numerical study -II, we employ the

synthetic variable approach [Koul et al., 1981; Qin and Jing, 2001; Li and Wang, 2003]

to compute the EL based data driven probability weights.

4.4.1 Numerical Study - I

4.4.1.A Auxiliary information based on both x1 and x2

To compute pi’s, first we need to have a known population parameter, θ, or its es-

timate. We considered a linear relation between T and X = (X1, X2) with slopes

(θ1 and θ2) and intercept (θ0) as the auxiliary information. We estimated θ using

the standard linear regression (least square) based on a large, finite population with

size, N = 10000. We need to generate censoring times as well to compute the event

indicator, δi = I(Ti ≤ Ci) and survival time, Yi = min(Ti, Ci) to estimate the censored

quantile regression parameters. To fit the weighted censored quantile regression model

given in (4.2), we generated another n observations {yi,xi}ni=1 with n ≪ N , using the

same models given in Table 4.1. We considered the sample sizes, n = 100 and 200

and three quantiles, τ = 0.25, 0.5, 0.75. For our proposed method, we estimated pi’s

using the estimating function, g(ti,xi;θ) defined based on the normal equations of the

linear least squares method [Owen, 1991].

gi(zi;θ) = g(ti,xi;θ) = xi(ti − x⊤
i θ̂), i = 1, 2, . . . , n. (4.10)

For a given quantile, τ , the true value of the censored quantile regression parameters

β0(τ) are estimated from the population of size, N = 10000. In general, under a linear

model assumption, the true value of the censored quantile regression slope parameters

are the same as the θ (i.e, β1(τ) = θ1, β2(τ) = θ2). But for the intercept, it is

β0(τ) = θ0 + F−1(τ), where F is the error distribution.

a) Independent covariates: In this case, we generated the covariates assuming

σx1,x2 = 0. We conducted 1000 simulations and computed mean bias, standard error
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(SE) and 95% coverage probability (CP) of the model parameter estimates for differ-

ent sample sizes using 250 bootstrap samples. We compared the performance of our

proposed method (CQR-EL1) with the standard censored quantile regression (CQR)

model. We present the simulation results in Tables 4.2 to 4.5 respectively for Cases

(i)-(iv) with σx1,x2 = 0.

n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0042 0.0170 0.0647 0.0027 0.0180 0.0771

β1. 0.0029 0.0035 0.0094 -0.0014 -0.0048 0.0030

β2. -0.0049 -0.0141 -0.0100 -0.0047 -0.0124 -0.0171

200

β0 0.0218 0.0298 0.0501 0.0199 0.0322 0.0635

β1 0.0016 0.0026 0.0057 0.0008 0.0028 0.0048

β2 -0.0020 -0.0032 -0.0078 -0.0010 0.0001 -0.0071

SE

100

β0. 0.1449 0.1404 0.2268 0.1103 0.1086 0.2110

β1. 0.1533 0.1515 0.2141 0.1159 0.1109 0.2000

β2. 0.1519 0.1525 0.2198 0.1149 0.1109 0.2082

200

β0 0.0973 0.0929 0.1292 0.0720 0.0703 0.1221

β1 0.1040 0.1029 0.1341 0.0746 0.0718 0.1173

β2 0.1041 0.1027 0.1354 0.0752 0.0717 0.1177

CP

100

β0. 93.3 93.4 95.7 95.8 96.6 97.0

β1. 94.7 95.8 96.5 95.1 96.2 97.9

β2. 96.0 96.3 96.4 96.4 96.4 96.9

200

β0 92.3 91.9 92.7 92.7 92.5 94.8

β1 94.5 96.2 95.0 95.0 95.5 96.9

β2 93.6 95.0 95.2 94.2 94.9 95.8

Table 4.2: Bias, SE and CP of regression parameters for Case (i) model with indepen-

dent covariates (σx1,x2 = 0)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0105 0.0288 0.1088 0.0119 0.0270 0.1062

β1. 0.0063 0.0214 0.0169 0.0005 0.0102 0.0066

β2. 0.0164 0.0096 -0.0170 0.0152 0.0079 -0.0184

200

β0 0.0267 0.0355 0.0821 0.0276 0.0340 0.0760

β1 0.0006 -0.0032 0.0050 0.0042 0.0032 0.0024

β2 0.0112 0.0025 0.0051 0.0029 -0.0038 -0.0057

SE

100

β0. 0.1871 0.1538 0.2980 0.1522 0.1304 0.2914

β1. 0.1946 0.1664 0.2698 0.1555 0.1318 0.2480

β2. 0.1955 0.1676 0.2733 0.1556 0.1327 0.2543

200

β0 0.1235 0.1029 0.1621 0.0998 0.0871 0.1556

β1 0.1301 0.1146 0.1663 0.1010 0.0893 0.1473

β2 0.1315 0.1149 0.1671 0.1023 0.0897 0.1465

CP

100

β0. 95.5 93.1 94.7 96.2 94.8 97.2

β1. 95.6 93.5 96.4 95.7 95.6 97.8

β2. 95.9 95.4 96.4 96.0 95.0 97.2

200

β0 93.1 91.2 94.0 93.0 93.8 95.7

β1 95.0 95.5 95.4 94.8 95.5 96.2

β2 95.5 95.7 95.5 95.0 95.2 96.3

Table 4.3: Bias, SE and CP of regression parameters for Case (ii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0062 0.0088 0.0224 0.0055 0.0085 0.0254

β1. 0.0042 0.0051 0.0076 0.0034 0.0016 0.0057

β2. -0.0038 -0.0039 -0.0069 -0.0013 0.0003 -0.0010

200

β0 0.0064 0.0072 0.0167 0.0064 0.0089 0.0195

β1 0.0012 0.0038 0.0033 -0.0006 -0.0003 -0.0014

β2 -0.0015 -0.0031 -0.0017 -0.0004 0.0002 0.0023

SE

100

β0. 0.0472 0.0466 0.0767 0.0349 0.0338 0.0737

β1. 0.0566 0.0570 0.0796 0.0424 0.0411 0.0708

β2. 0.0567 0.0575 0.0807 0.0425 0.0418 0.0720

200

β0 0.0313 0.0301 0.0402 0.0225 0.0213 0.0345

β1 0.0371 0.0377 0.0489 0.0276 0.0267 0.0402

β2 0.0367 0.0376 0.0488 0.0270 0.0267 0.0401

CP

100

β0. 94.4 95.0 96.1 94.3 96.0 97.1

β1. 95.0 95.2 95.5 95.2 95.3 97.4

β2. 96.6 96.7 97.3 95.4 96.6 98.0

200

β0 94.1 93.4 94.9 93.2 94.0 94.1

β1 94.0 94.9 96.0 93.0 95.1 95.9

β2 94.6 95.0 95.3 94.4 95.3 94.8

Table 4.4: Bias, SE and CP of regression parameters for Case (iii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0066 0.0097 0.0364 0.0048 0.0076 0.0273

β1. 0.0031 0.0039 0.0041 0.0026 0.0043 0.0036

β2. 0.0008 -0.0009 -0.0018 0.0008 -0.0035 -0.0028

200

β0 0.0083 0.0089 0.0243 0.0100 0.0103 0.0258

β1 -0.0020 0.0016 0.0017 -0.0022 -0.0008 -0.0018

β2 0.0008 -0.0012 -0.0031 0.0026 0.0012 0.0004

SE

100

β0. 0.0600 0.0507 0.1103 0.0466 0.0407 0.1038

β1. 0.0667 0.0592 0.0993 0.0514 0.0468 0.0885

β2. 0.0677 0.0600 0.1014 0.0525 0.0470 0.0921

200

β0 0.0395 0.0327 0.0521 0.0305 0.0260 0.0464

β1 0.0429 0.0386 0.0568 0.0331 0.0298 0.0491

β2 0.0429 0.0389 0.0580 0.0331 0.0301 0.0501

CP

100

β0. 93.5 95.0 97.7 94.7 95.5 97.8

β1. 95.6 96.6 97.0 96.0 96.3 97.3

β2. 96.0 96.2 97.3 95.8 96.7 97.0

200

β0 93.0 93.9 94.9 93.5 93.4 94.1

β1 95.6 95.8 94.7 94.5 95.2 95.4

β2 94.5 95.9 95.5 94.5 96.0 95.2

Table 4.5: Bias, SE and CP of regression parameters for Case (iv) model with inde-

pendent covariates (σx1,x2 = 0)

From Tables 4.2-4.5, we see that our proposed estimator has approximately zero

bias. A comparison of SE of CQR-EL1 with CQR indicates that the SE of CQR-EL1

reduces remarkably for all the parameters irrespective of any quantile. For example,

we consider the scenario of n = 100 and τ = 0.25 for comparison purposes throughout

this section. From Table 4.2, for CQR, SE of β̂1 is 0.1533 and for CQR-EL1, SE of

β̂1 is reduced to 0.1159. When the sample size is increased to 200, SE of β̂1 of our

proposed method further is reduced to 0.0746. If we compare the CP of our proposed

method with the nominal level of 95%, CQR-EL1 provides approximately 95% coverage

and becomes more stable when the sample size increases. Similar conclusions can be

reached for Case (ii) (results are in Table 4.3) even though we considered heavy tailed

distribution for the failure time compared to Case (i). For example, SE of β̂1 using

CQR is 0.1946, whereas it is only 0.1555 for the CQR-EL1 based estimate. We also
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observed that SE is comparatively high in Case (ii) compared to Case(i).

In Cases (iii) and (iv), the error depends on the covariates. Simulation results

for these Cases (Tables 4.4 and 4.5) are almost similar to the cases where error is

independent of covariates. For example, in Case (iii) (Table 4.4), SE of β̂1 is 0.0566

and 0.0424 for CQR and CQR-EL1 respectively. Similarly, in Case (iv) (Table 4.5),

SE of β̂1 is 0.0667 and 0.0514 for CQR and CQR-EL1 respectively. Here, we could

also see a slight increase in the SE of estimates for Case (iv) because of the heavy

tailed distribution assumption for the failure time compared to Case (iii).

b) Dependent covariates: Next we consider the effect of correlation between the

covariates regarding the efficiency of our proposed estimators, and generated covariates

with σx1,x2 = 0.5. We present the simulation results in Tables 4.6 to 4.9 respectively

for Cases (i)-(iv).
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0120 0.0179 0.0588 0.0101 0.0261 0.0743

β1. 0.0006 0.0016 0.0134 0.0046 -0.0025 0.0101

β2. 0.0001 -0.0047 -0.0146 0.0025 -0.0004 -0.0168

200

β0 0.0268 0.0284 0.0487 0.0235 0.0280 0.0559

β1 -0.0032 -0.0001 -0.0037 0.0018 0.0050 0.0004

β2 -0.0006 -0.0072 -0.0030 -0.0007 -0.0049 -0.0058

SE

100

β0. 0.1438 0.1386 0.2225 0.1093 0.1079 0.2230

β1. 0.1788 0.1759 0.2493 0.1324 0.1286 0.2324

β2. 0.1768 0.1749 0.2543 0.1325 0.1276 0.2362

200

β0 0.0972 0.0922 0.1273 0.0726 0.0699 0.1204

β1 0.1197 0.1193 0.1543 0.0865 0.0835 0.1337

β2 0.1203 0.1193 0.1553 0.0871 0.0834 0.1348

CP

100

β0. 94.0 93.4 95.4 95.7 96.1 97.4

β1. 95.4 96.7 95.7 95.8 97.0 98.1

β2. 95.9 96.4 96.3 96.8 96.5 97.9

200

β0 93.3 92.1 94.6 93.1 93.8 96.2

β1 94.6 94.4 94.7 94.0 94.5 94.6

β2 95.0 94.4 95.5 95.8 94.5 96.2

Table 4.6: Bias, SE and CP of regression parameters for Case (i) model with dependent

covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0092 0.0301 0.1157 0.0197 0.0306 0.1136

β1. 0.0241 0.0040 -0.0053 0.0257 0.0050 0.0109

β2. -0.0140 -0.0102 -0.0016 -0.0158 -0.0043 -0.0186

200

β0 0.0264 0.0258 0.0605 0.0286 0.0249 0.0622

β1 0.0027 0.0004 0.0034 0.0093 0.0008 0.0045

β2 -0.0010 -0.0017 -0.0066 -0.0076 -0.0006 0.0003

SE

100

β0. 0.1868 0.1530 0.2943 0.1507 0.1300 0.2909

β1. 0.2261 0.1970 0.3164 0.1777 0.1534 0.2872

β2. 0.2261 0.1962 0.3163 0.1766 0.1542 0.2941

200

β0 0.1228 0.1007 0.1619 0.0995 0.0859 0.1581

β1 0.1495 0.1307 0.1938 0.1159 0.1014 0.1709

β2 0.1497 0.1305 0.1960 0.1164 0.1018 0.1731

CP

100

β0. 94.7 93.8 95.9 95.5 95.4 97.8

β1. 95.7 96.6 96.6 95.7 95.4 97.1

β2. 96.1 95.5 97.2 95.6 96.3 98.1

200

β0 91.7 92.9 93.4 93.0 94.3 95.5

β1 96.4 96.2 96.4 96.3 95.1 95.8

β2 95.2 95.0 96.0 94.2 96.0 96.8

Table 4.7: Bias, SE and CP of regression parameters for Case (ii) model with dependent

covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0067 0.0104 0.0202 0.0051 0.0090 0.0228

β1. 0.0037 0.0040 0.0091 0.0020 0.0016 0.0041

β2. -0.0013 -0.0048 -0.0105 -0.0012 -0.0006 -0.0037

200

β0 0.0073 0.0092 0.0182 0.0066 0.0093 0.0184

β1 0.0010 0.0025 0.0030 -0.0006 -0.0009 -0.0015

β2 -0.0006 -0.0021 -0.0041 0.0007 0.0012 0.0005

SE

100

β0. 0.0458 0.0440 0.0770 0.0341 0.0325 0.0760

β1. 0.0604 0.0607 0.0877 0.0457 0.0449 0.0814

β2. 0.0604 0.0610 0.0894 0.0454 0.0449 0.0830

200

β0 0.0308 0.0293 0.0400 0.0222 0.0213 0.0358

β1 0.0398 0.0409 0.0547 0.0292 0.0293 0.0463

β2 0.0396 0.0411 0.0549 0.0290 0.0291 0.0469

CP

100

β0. 94.6 93.9 96.2 95.7 94.9 97.8

β1. 96.6 95.9 97.1 96.0 96.6 97.9

β2. 96.7 96.1 97.2 95.9 95.9 97.9

200

β0 94.1 92.8 93.8 94.3 93.6 95.3

β1 95.8 95.1 95.5 95.6 95.1 95.4

β2 95.0 94.3 93.9 94.8 95.2 96.1

Table 4.8: Bias, SE and CP of regression parameters for Case (iii) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0068 0.0122 0.0332 0.0071 0.0124 0.0312

β1. -0.0006 0.0045 0.0115 -0.0036 -0.0016 0.0060

β2. -0.0000 -0.0045 -0.0118 0.0020 0.0014 -0.0048

200

β0 0.0075 0.0083 0.0226 0.0107 0.0108 0.0261

β1 -0.0010 0.0013 0.0034 -0.0042 -0.0017 -0.0016

β2 0.0014 -0.0003 -0.0026 0.0040 0.0025 0.0015

SE

100

β0. 0.0581 0.0488 0.1093 0.0454 0.0393 0.1035

β1. 0.0723 0.0655 0.1118 0.0557 0.0508 0.1013

β2. 0.0726 0.0661 0.1144 0.0553 0.0510 0.1035

200

β0 0.0384 0.0316 0.0518 0.0301 0.0259 0.0473

β1 0.0477 0.0422 0.0644 0.0368 0.0330 0.0561

β2 0.0470 0.0427 0.0645 0.0362 0.0333 0.0564

CP

100

β0. 94.3 93.0 97.1 95.6 95.5 98.8

β1. 95.3 96.6 96.5 95.8 95.7 98.0

β2. 96.4 95.7 97.3 95.4 95.6 97.9

200

β0 93.8 92.4 95.3 93.3 92.8 94.2

β1 94.4 94.7 95.4 95.1 95.3 95.4

β2 94.3 96.2 96.7 95.6 95.3 96.0

Table 4.9: Bias, SE and CP of regression parameters for Case (iv) model with depen-

dent covariates (σx1,x2 = 0.5)

We presented the simulation results with the correlated covariates in Tables 4.6

to 4.9 for Cases (i)-(iv) respectively. For our proposed method, we observed similar

results as those for the uncorrelated covariates such as negligible bias, smaller SE for

all the parameter estimates including intercept compared to CQR and approximately

95% coverage probability. For the simulation results in Tables 4.2 to 4.9, we utilized

the auxiliary information in relation to both x1 and x2 in the censored quantile re-

gression estimator, which resulted in a considerable reduction in the standard error of

β̂0, β̂1 and β̂2, as compared with that of the standard censored quantile regression.

4.4.1.B Auxiliary information based on x1

Now consider a more practical scenario when only partial information is available; i.e.,

we assume that we only have the information about θ0 and θ1.
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To consider this scenario, we assume a linear relationship between T and X1 with

slope (θ1) and intercept (θ0), estimated using the standard linear regression based on

the finite population size of N = 10000. For the simulation studies, we estimated pi’s

using the estimating function, g(ti, x1i;θ). We repeated our simulations 1000 times and

computed the mean bias. We used a 250 bootstrap sample to estimate the standard

error (SE) and 95% coverage probability (CP). The summaries of these studies are

given in Tables 4.10 to 4.13 for the uncorrelated covariates and in Tables 4.14 to 4.17

for the correlated covariates.

n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0096 0.0191 0.0594 0.0134 0.0272 0.0737

β1. 0.0038 0.0063 0.0162 0.0020 0.0026 0.0070

β2. 0.0035 -0.0008 -0.0102 0.0068 0.0039 -0.0026

200

β0 0.0227 0.0267 0.0543 0.0224 0.0314 0.0588

β1 -0.0011 -0.0005 0.0019 0.0016 -0.0009 0.0060

β2 0.0012 -0.0032 -0.0034 0.0022 -0.0012 -0.0014

SE

100

β0. 0.1437 0.1394 0.2205 0.1146 0.1127 0.2149

β1. 0.1526 0.1517 0.2064 0.1191 0.1159 0.1919

β2. 0.1536 0.1544 0.2186 0.1542 0.1555 0.2209

200

β0 0.0982 0.0914 0.1276 0.0758 0.0719 0.1207

β1 0.1035 0.1011 0.1351 0.0780 0.0738 0.1172

β2 0.1062 0.1023 0.1351 0.1067 0.1025 0.1376

CP

100

β0. 92.6 93.5 95.6 95.7 96.1 96.7

β1. 95.5 95.5 96.9 97.0 97.7 97.9

β2. 95.7 96.2 96.6 94.8 94.9 97.1

200

β0 94.0 93.4 93.9 94.6 93.9 95.3

β1 95.1 95.2 95.2 95.1 95.3 96.2

β2 95.4 94.3 94.1 95.9 94.0 94.8

Table 4.10: Bias, SE and CP of regression parameters for Case (i) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0105 0.0353 0.0918 0.0217 0.0422 0.1076

β1. -0.0030 0.0051 0.0164 -0.0047 0.0039 0.0175

β2. 0.0092 0.0046 -0.0032 0.0056 0.0075 -0.0115

200

β0 0.0237 0.0272 0.0708 0.0305 0.0329 0.0781

β1 0.0019 0.0028 0.0081 0.0019 0.0011 0.0110

β2 -0.0017 -0.0026 -0.0019 -0.0000 0.0008 0.0014

SE

100

β0. 0.1837 0.1542 0.2913 0.1524 0.1326 0.2874

β1. 0.1927 0.1657 0.2589 0.1539 0.1342 0.2414

β2. 0.1934 0.1669 0.2687 0.1954 0.1689 0.2790

200

β0 0.1235 0.1007 0.1667 0.1009 0.0866 0.1607

β1 0.1298 0.1126 0.1688 0.1014 0.0896 0.1515

β2 0.1304 0.1125 0.1696 0.1292 0.1137 0.1730

CP

100

β0. 94.2 93.9 95.3 94.6 94.6 96.6

β1. 95.8 95.1 95.7 97.0 96.0 97.7

β2. 95.8 94.3 95.5 95.1 94.6 96.2

200

β0 94.0 91.9 94.0 93.6 93.7 94.7

β1 95.1 95.9 95.1 95.4 95.9 96.5

β2 93.4 95.8 95.0 94.4 95.3 94.4

Table 4.11: Bias, SE and CP of regression parameters for Case (ii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0062 0.0088 0.0224 0.0078 0.0113 0.0280

β1. 0.0042 0.0051 0.0076 0.0045 0.0028 0.0077

β2. -0.0038 -0.0039 -0.0069 -0.0011 0.0010 -0.0024

200

β0 0.0095 0.0111 0.0198 0.0081 0.0112 0.0200

β1 0.0007 0.0018 0.0023 0.0013 0.0003 0.0011

β2 0.0011 -0.0016 -0.0006 0.0009 -0.0001 0.0020

SE

100

β0. 0.0472 0.0466 0.0767 0.0394 0.0380 0.0751

β1. 0.0566 0.0570 0.0796 0.0464 0.0458 0.0743

β2. 0.0567 0.0575 0.0807 0.0543 0.0547 0.0822

200

β0 0.0317 0.0302 0.0403 0.0257 0.0239 0.0361

β1 0.0371 0.0379 0.0492 0.0300 0.0299 0.0430

β2 0.0373 0.0372 0.0490 0.0351 0.0350 0.0478

CP

100

β0. 94.4 95.0 96.1 94.3 95.1 97.0

β1. 95.0 95.2 95.5 96.0 96.2 97.7

β2. 96.6 96.7 97.3 95.6 96.5 97.2

200

β0 93.9 92.5 93.6 93.6 93.8 93.3

β1 95.4 94.4 95.3 95.8 94.5 96.2

β2 94.4 94.9 96.6 94.1 95.1 95.7

Table 4.12: Bias, SE and CP of regression parameters for Case (iii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0026 0.0108 0.0334 0.0066 0.0133 0.0356

β1. 0.0043 0.0027 0.0111 0.0012 0.0001 0.0072

β2. -0.0010 -0.0014 -0.0086 0.0036 0.0013 -0.0071

200

β0 0.0095 0.0125 0.0232 0.0111 0.0137 0.0249

β1 -0.0007 0.0002 0.0020 -0.0013 -0.0002 0.0006

β2 0.0011 0.0011 0.0009 0.0030 0.0026 0.0024

SE

100

β0. 0.0594 0.0508 0.1093 0.0491 0.0428 0.1036

β1. 0.0668 0.0600 0.0964 0.0543 0.0486 0.0875

β2. 0.0663 0.0598 0.0996 0.0625 0.0567 0.0999

200

β0 0.0397 0.0329 0.0514 0.0325 0.0272 0.0470

β1 0.0429 0.0383 0.0567 0.0348 0.0312 0.0506

β2 0.0432 0.0389 0.0573 0.0409 0.0368 0.0560

CP

100

β0. 94.1 94.0 96.9 94.5 95.3 98.2

β1. 96.4 96.7 97.5 96.2 95.5 98.2

β2. 96.3 97.0 96.5 95.5 97.1 96.8

200

β0 93.4 91.8 94.7 93.7 93.0 94.3

β1 95.8 96.5 95.5 95.7 94.1 96.4

β2 95.5 95.7 94.9 94.3 95.2 95.3

Table 4.13: Bias, SE and CP of regression parameters for Case (iv) model with inde-

pendent covariates (σx1,x2 = 0)

For Case (i) with the independent covariates, we see from Table 4.10 that our

proposed method has approximately zero bias for all the parameters even with the

partial auxiliary information. Both methods provided approximately 95% coverage

probability and when the sample size increases, the coverage probability attains its

nominal level of 95%. Since we have used the auxiliary information in relation to x1

only, the reduction in SE is observed only for β̂0 and β̂1, not for β̂2. For example,

we consider the scenario n = 100 and τ = 0.25 for comparison. SE of β̂1 for CQR

is 0.1526 and for CQR-EL1, it reduces to 0.1191. But for β̂2, SE of both CQR and

CQR-EL1 are 0.1536 and 0.1542 respectively. The standard error of β̂2 is almost the

same for both methods. In comparison with Case (i), we considered a heavy tailed

distribution for the failure time in Case (ii) (results are in Table 4.11) and we noticed

a slight increase in SE for both our proposed method and CQR.
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The simulation results for the models with the error term depending on the co-

variates (Cases (iii) & (iv)) are provided in Tables 4.12 and 4.13 respectively. As

mentioned above, there is a considerable reduction in SE for β̂0 and β̂1 because we use

the population information in relation to x1. For example, the SE of β̂1 with n = 100

and τ = 0.25 (from Table 4.12) for CQR and CQR-EL1 methods are 0.0566 and 0.0464

respectively. Since the errors depend on the covariates, the SE of β̂2 shows a slight

reduction from 0.0567 to 0.0543.

n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0230 0.0372 0.0725 0.0145 0.0339 0.0777

β1. -0.0045 0.0001 -0.0009 -0.0049 -0.0057 0.0004

β2. 0.0039 0.0025 -0.0042 0.0050 0.0100 -0.0001

200

β0 0.0233 0.0283 0.0488 0.0248 0.0314 0.0556

β1 0.0035 0.0028 -0.0033 0.0010 0.0019 -0.0079

β2 -0.0012 0.0002 0.0033 -0.0026 0.0024 0.0091

SE

100

β0. 0.1441 0.1407 0.2251 0.1136 0.1125 0.2192

β1. 0.1787 0.1800 0.2483 0.1493 0.1480 0.2360

β2. 0.1794 0.1807 0.2549 0.1799 0.1823 0.2564

200

β0 0.0976 0.0911 0.1269 0.0751 0.0714 0.1199

β1 0.1205 0.1176 0.1559 0.0978 0.0944 0.1415

β2 0.1223 0.1185 0.1562 0.1229 0.1186 0.1588

CP

100

β0. 94.7 93.3 95.5 96.4 96.3 97.6

β1. 94.8 95.4 95.0 96.5 95.8 96.9

β2. 94.4 94.7 96.5 95.0 94.6 96.4

200

β0 91.9 92.0 92.8 93.6 94.5 94.5

β1 94.8 95.0 94.4 95.1 94.2 95.6

β2 93.6 94.5 95.3 94.1 94.1 96.0

Table 4.14: Bias, SE and CP of regression parameters for Case (i) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0150 0.0321 0.0935 0.0181 0.0384 0.0993

β1. 0.0060 0.0035 0.0019 0.0053 0.0127 0.0088

β2. -0.0092 -0.0037 0.0007 -0.0022 -0.0013 -0.0019

200

β0 0.0241 0.0268 0.0754 0.0254 0.0278 0.0714

β1 -0.0055 -0.0047 -0.0025 -0.0031 -0.0041 -0.0028

β2 -0.0000 0.0035 0.0067 -0.0004 0.0061 0.0078

SE

100

β0. 0.1830 0.1542 0.2937 0.1514 0.1325 0.2871

β1. 0.2248 0.1978 0.3138 0.1936 0.1710 0.2976

β2. 0.2280 0.1985 0.3218 0.2299 0.2011 0.3303

200

β0 0.1214 0.1010 0.1657 0.0995 0.0866 0.1593

β1 0.1493 0.1303 0.1957 0.1260 0.1106 0.1794

β2 0.1492 0.1317 0.1969 0.1489 0.1317 0.1990

CP

100

β0. 94.4 93.2 96.3 94.5 94.5 97.3

β1. 96.0 95.5 96.2 96.4 96.2 97.3

β2. 94.9 95.2 96.0 94.5 95.1 95.1

200

β0 92.1 91.4 93.9 92.6 93.0 95.9

β1 95.8 95.3 95.3 94.8 94.2 96.3

β2 94.9 95.2 95.7 95.3 94.2 95.8

Table 4.15: Bias, SE and CP of regression parameters for Case (ii) model with depen-

dent covariates (σx1,x2 = 0.5)



77

n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0043 0.0076 0.0218 0.0072 0.0114 0.0239

β1. -0.0002 0.0035 0.0118 -0.0023 -0.0007 0.0071

β2. 0.0026 -0.0026 -0.0090 0.0053 0.0013 -0.0044

200

β0 0.0076 0.0104 0.0173 0.0071 0.0097 0.0170

β1 -0.0004 -0.0024 0.0010 -0.0001 -0.0029 -0.0010

β2 -0.0005 0.0034 -0.0008 0.0002 0.0039 0.0016

SE

100

β0. 0.0456 0.0441 0.0774 0.0377 0.0357 0.0771

β1. 0.0601 0.0607 0.0876 0.0515 0.0507 0.0838

β2. 0.0606 0.0612 0.0884 0.0580 0.0587 0.0905

200

β0 0.0305 0.0290 0.0399 0.0248 0.0230 0.0361

β1 0.0400 0.0410 0.0545 0.0337 0.0338 0.0493

β2 0.0401 0.0413 0.0547 0.0382 0.0389 0.0538

CP

100

β0. 95.1 95.0 97.7 95.4 96.1 98.2

β1. 96.6 96.6 96.5 95.7 96.2 96.5

β2. 95.8 95.3 96.7 95.9 95.4 96.8

200

β0 91.6 91.8 94.1 94.8 93.1 95.2

β1 95.4 95.8 95.7 95.1 94.6 95.5

β2 94.6 94.7 94.4 95.0 94.7 94.3

Table 4.16: Bias, SE and CP of regression parameters for Case (iii) model with de-

pendent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL1

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0042 0.0110 0.0382 0.0045 0.0108 0.0364

β1. 0.0016 0.0041 0.0109 -0.0008 0.0030 0.0082

β2. -0.0002 -0.0032 -0.0119 0.0029 -0.0009 -0.0112

200

β0 0.0083 0.0100 0.0244 0.0087 0.0106 0.0246

β1 -0.0020 0.0017 0.0031 -0.0014 0.0005 0.0017

β2 0.0017 0.0000 -0.0030 0.0020 0.0014 0.0003

SE

100

β0. 0.0595 0.0498 0.1099 0.0493 0.0422 0.1068

β1. 0.0735 0.0663 0.1134 0.0622 0.0570 0.1077

β2. 0.0747 0.0668 0.1147 0.0708 0.0634 0.1172

200

β0 0.0383 0.0319 0.0517 0.0316 0.0269 0.0479

β1 0.0471 0.0426 0.0654 0.0400 0.0367 0.0600

β2 0.0475 0.0424 0.0643 0.0451 0.0406 0.0633

CP

100

β0. 95.4 95.0 97.2 95.9 95.4 98.1

β1. 95.7 96.4 96.9 96.8 97.2 97.3

β2. 96.0 96.3 96.9 96.6 96.1 96.8

200

β0 93.6 93.0 94.3 94.2 93.5 95.4

β1 95.7 95.3 95.4 94.5 95.1 95.0

β2 96.1 95.9 95.3 95.7 95.5 95.3

Table 4.17: Bias, SE and CP of regression parameters for Case (iv) model with de-

pendent covariates (σx1,x2 = 0.5)

From Tables 4.14 - 4.17, we see that the estimators have negligible bias and provide

approximately 95% coverage probability for all the parameters. The standard error of

β̂0 and β̂1 reduced considerably irrespective of whether the error term is depending

on the covariates. But the standard error of β̂2 remains the same as for CQR when

the error term is independent of the covariates (Tables 4.14 and 4.15) and is slightly

reduced when the error depend on the covariates (Tables 4.16 and 4.17). A comparison

of the results in Tables 4.10 - 4.13 leads to the conclusion that the correlation between

the covariates does not have much influence on the parameter estimates. These simu-

lation studies show that if the population information about the relationship between

T and the covariates is available, our proposed EL based weighted censored quantile

regression has a remarkable efficiency gain compared to the standard censored quantile

regression method.
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4.4.2 Numerical Study - II

In most of the survival data with random right censoring, the observed data are the

triplet {Y = min(T,C),X, δ}. In this section, we consider a linear relationship be-

tween the survival time (Y ) and the covariates as the auxiliary information. Here we

cannot use the EL estimating function, g(·) defined in (4.10) because of the censor-

ing. There are other methods available in the literature which take care of the right

censoring in the linear regression.

Koul et al. [1981] introduced a synthetic data approach by transforming the survival

time, Yr to a synthetic variable, Ỹ r as

Ỹ r =
δrYr

1−G(Yr)
; r = 1, 2, . . . , N, (4.11)

where δr is the censoring indicator and G(·) is the distribution of the censoring time.

E(Ỹ |X) = E(Y |X) if C is independent of both X and Y . When G(·) is unknown,
we can replace it with its Kaplan-Meier estimate. The estimator of G(·) using the

Kaplan-Meier [Kaplan and Meier, 1958] estimator is

1− ĜN(t) =
N∏
r=1

(
N − r

N − r + 1

)I(Y(r) ≤ t, δ(r) = 0)
, (4.12)

where Y(r)s are ordered and the corresponding censoring indicator is δ(r). We can

estimate θ as

θ̃ = (X⊤X)−1X⊤Ỹ r. (4.13)

Qin and Jing [2001] and Li and Wang [2003] independently provided the estimating

function to compute the EL based data driven probabilities as

gi(zi; θ̃) = g(yi,xi, δi; θ̃) = xi(ỹi − x⊤
i θ̃), i = 1, 2, . . . , n. (4.14)

We can compute the ỹi and Ĝn(t) using the sample analogues of (4.11) and (4.12)

respectively.

4.4.2.A Auxiliary information based on both x1 and x2

To compute pi’s, we consider a linear relation between Y and X = (X1, X2) with

slopes (θ1 and θ2) and intercept (θ0). We estimate θ using (4.13) based on a large,

finite population with size, N = 10000. To fit the weighted censored quantile regression

model given in (4.2), we generate another n observations {yi,xi}ni=1 with n ≪ N using
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the same models given in Table 4.1. For our proposed method, we estimate pi’s using

the estimating function, g(yi,xi, δi; θ̃) given in (4.14).

Similar to numerical study - I, we present the results based on 1000 simulations and

report the bias, standard error (SE) and empirical coverage probability (CP) for the

nominal level of 95% based on 250 bootstrap samples. We provide the summary of the

simulation results for this study in Tables E.1 to E.8 (Appendix E). In Tables E.1 to

E.4, we present the simulation results for the models with the uncorrelated covariates

and in Tables E.5 to E.8, the simulation results are for the correlated covariates.

Similar to the population information related to T (numerical study - I), conclusions

are almost similar for both correlated and uncorrelated covariates. Our proposed

method (CQR-EL2) provides unbiased estimates irrespective of any sample size and

quantile. If we consider the coverage probability, both CQR and CQR-EL2 provide

approximately 95% coverage. For any quantile, there is a reduction in the standard

error of CQR-EL2 parameter estimates compared to CQR parameter estimates. If we

consider Case (i) as a basic model, CQR-EL2 with Case (ii) has reasonably higher SE

along with CQR because of the heavy tailed distribution of the observed survival time.

When the error depended on the covariates (Cases (iii) & (iv)), the SE of CQR-EL2

reduced considerably.

4.4.2.B Auxiliary information based on x1

The results in Tables E.9 to E.16 are based on partial population information. Now

the weights, pi’s are computed using the estimating function, g(yi, x1i, δi; θ̃). Similar

to previous simulation settings, we considered the uncorrelated covariates models and

reported results in Tables E.9 to E.12, and the correlated covariates models with results

reported in Tables E.13 to E.16.

In numerical study-I, we have a slight reduction in SE of β̂2 using heteroscedastic

models for EQR-EL1. But using the estimating function, g(yi, x1i, δi; θ̃) (EQR-EL2),

does not reduce the SE of β̂2 under heteroscedastic models. Since we utilized only

partial population information in relation to X1, the standard error of β̂0 and β̂1

reduced for CQR-EL2 compared to CQR. The standard error of β̂2 was not changed.

Our simulation studies reveal that auxiliary information greatly enhances the ef-

ficiency of estimation, if the population information related to both X1 and X2 is

available. If the population information is only related to X1, the efficiency gain is

limited to β0 and β1 only. However, under heteroscedastic models, the efficiency of

estimating β2 slightly improved in numerical study - I, but not in numerical study -

II.
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4.4.3 Other Choices of g(·)

If the auxiliary information is in the form of a linear relationship between Y and X,

there are other EL estimating functions, g(·)’s, available for the computation of pi’s

from the right censored data in the literature.

Zhou and Li [2008] introduced the censored EL using the Buckley-James [see Buck-

ley and James, 1979; Ritov, 1990] estimating function. Let ei(b) = Yi −X⊤
i b and let

b be the candidate estimator of θ. The ordered ei(b)’s are denoted as e(i)(b); i =

1, 2, . . . , n and the corresponding covariates and censoring indicator are X(i) and δ(i)

respectively. To compute the EL based data driven probability weights, the estimating

function is

g(i)(zi; θ̂) = g(i)(yi,xi, δi; θ̂) = δ(i)e(i)(b)

∑
j<i

M [j, i]X(j)

nωi

, i = 1, 2, . . . , n, (4.15)

where ωi =
∑

j M [j, i]/n, M is a upper triangular matrix with order n and its elements

are defined as

M [i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 j ≤ i and δ(i) = 0

∆F̂ (e(j))

1− F̂ (e(i))
j > i and δ(i) = 0

1 j = i and δ(i) = 1

0 j ̸= i and δ(i) = 1.

Here F̂ (t) denotes the Kaplan–Meier estimator of F (t) based on the sample (e(i)(b), δ(i)).

This method forces the pi = 0 for censored observations [Zhou, 2005, 2015]. This

method is implemented in the “emplike” package in R software. Here the Buckley-

James estimate, θ̂ = b, can be used to compute the gi(·)’s and then pi’s. The com-

putation of pi’s is based on the modified EM algorithm proposed by Zhou [2005]. By

forcing pi = 0 for censored observations, we will get biased censored quantile regression

estimates; hence, we avoided this method in the comparison.

Fang et al. [2013] proposed an empirical likelihood based on the Buckley-James

estimating function which provides non-zero pi’s irrespective of censored or uncensored
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failure times. The estimating function is

gi(zi; θ̂) = gi(yi,xi, δi; θ̂) = (X i−µX)

⎧⎪⎪⎨⎪⎪⎩δiei(b) + (1− δi)

∫ ∞

ei(b)
tdF (t)

1− F (ei(b))

⎫⎪⎪⎬⎪⎪⎭ , i = 1, 2, . . . , n,

(4.16)

where X i is the covariates, E(X) = µX , F is the error distribution (known), ei(b) =

Yi−X⊤
i b and the censoring indicator is δi. However, they mentioned that even though

it is easy to compute probabilities, the method is not as efficient as the method of Zhou

and Li [2008]. We omitted this approach also from the performance analysis.

4.4.4 NCCTG Lung Cancer Study

The North Central Cancer Treatment Group (NCCTG) was initiated by a group of

physicians from the north central region of the United States of America and the Mayo

Clinic in Rochester, Minnesota. This study was conducted by NCCTG to determine

whether the conclusions from the patient-completed questionnaire and those already

obtained by the patient’s physician were independent or not [Loprinzi et al., 1994].

They used the performance scores (ECOG and Karnofsky) to assess the patient’s daily

activities. The dataset is available in the “survival” package of R software with read-

ings of 228 patients. Because of the incompleteness of the some of the variables, we

had to limit the dataset to 167 observations. For the illustration of our proposed

method, we changed our focus to identify the effect of following covariates over the ob-

served survival time at different quantiles. We considered ‘age’, patient’s age in years;

‘sex’, (Male=1 Female=2); ‘ph.ecog’, ECOG performance score measured by physician

(0=good 5=dead); ‘meal.cal’, calories consumed at meals and ‘wt.loss’, weight loss in

the last six months as the covariates. After removing the incomplete patient readings,

the available ECOG scores were 0,1 and 2 only. We defined two dummy categorical

variables for ‘ph.ecog’ as follows.

ecog1 =

⎧⎨⎩1, if ph.ecog=1

0, Otherwise

ecog2 =

⎧⎨⎩1, if ph.ecog=2

0, Otherwise

To demonstrate the usefulness of our proposed method, we randomly selected part



83

(100 observations) of the complete data (167 observations) by considering it to be

the data available from the previous study. We assumed that there exists a linear

relation between the logarithm of the observed survival time and all the continuous

explanatory variables (age, meal.cal and wt.loss) as the available auxiliary informa-

tion. We estimated the θ = (θ0, θage, θmeal, θwt) by the least square method based on

100 observations where the response is the synthetic variable defined by (4.11). Then

we computed the EL based data driven probability weights for the present study data

points (67 observations). After computing the weights, we estimated the weighted cen-

sored quantile regression parameters using Peng and Huang [2008] method with all the

covariates mentioned at the beginning of this Section. For the present study data, the

censoring proportion is 0.283. Interestingly, we estimated the regression parameters

using CQR up to the 86th quantile, where as we could estimate to the 90th quantile

using CQR-EL2. Along with the estimates for the quantiles, τ = 0.25, 0.5, 0.75, we

report standard error (SE) and 95% confidence limits using 250 bootstrap samples as

well in Table 4.18.
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CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

β̂

Intercept 5.4777 4.2651 5.5380 4.7531 4.1729 6.4258

Age -0.0168 0.0179 0.0040 -0.0047 0.0202 -0.0032

Sex 0.7201 0.6180 0.4181 0.7606 0.6638 0.3651

ECOG1 -0.7059 -0.5449 -0.2029 -0.5701 -0.5355 -0.2884

ECOG2 -0.8677 -0.9402 -0.8336 -1.1584 -1.0612 -1.0192

MealCal 0.0004 0.0001 0.0001 0.0004 0.0001 -0.0000

WtLoss -0.0007 -0.0084 -0.0023 -0.0023 -0.0100 -0.0135

SE

Intercept 1.9235 1.4314 1.7494 1.6628 1.4149 1.4666

Age 0.0277 0.0188 0.0225 0.0256 0.0184 0.0176

Sex 0.5610 0.3389 0.3716 0.5374 0.3317 0.2809

ECOG1 0.6521 0.3436 0.3375 0.6498 0.3493 0.2434

ECOG2 1.0317 0.5410 0.6061 0.9336 0.5413 0.3879

MealCal 0.0009 0.0006 0.0008 0.0009 0.0006 0.0005

WtLoss 0.0181 0.0128 0.0231 0.0157 0.0124 0.0100

CI

Intercept (1.6,9.14) (2.38,8) (2.08,8.94) (1.79,8.31) (2.32,7.87) (3.14,8.89)

Age (-0.07,0.04) (-0.04,0.04) (-0.04,0.05) (-0.06,0.04) (-0.03,0.04) (-0.03,0.04)

Sex (-0.45,1.74) (0,1.33) (-0.13,1.33) (-0.39,1.71) (-0.04,1.27) (-0.07,1.03)

ECOG1 (-1.75,0.81) (-1.15,0.2) (-0.97,0.35) (-1.86,0.69) (-1.18,0.19) (-0.78,0.18)

ECOG2 (-2.88,1.16) (-2,0.12) (-2.11,0.26) (-2.83,0.83) (-2.13,-0.01) (-1.73,-0.21)

WtLoss (-0.04,0.03) (-0.03,0.02) (-0.05,0.04) (-0.04,0.02) (-0.03,0.01) (-0.04,0)

Table 4.18: Estimates, SE and 95% CI for regression parameters of NCCTG lung

cancer data

From Table 4.18, we see that the standard error of the estimates of all the continu-

ous variable parameters and the intercept reduced considerably because we considered

the auxiliary information related to them. For the remaining variables, a reduction of

standard error can also be seen, even though we did not consider any auxiliary infor-

mation related to them. In the censored quantile regression with the EL based data

driven probability weights, we see narrower 95% confidence limits for all the variables

compared to those using the standard censored quantile regression.

4.5 Summary

In this chapter, we proposed an effective use of auxiliary information to improve the

efficiency of the censored quantile regression estimator. We developed a methodol-

ogy to transform the population information available from previous clinical trials or

from some existing facts into non-parametric empirical likelihood based data driven
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probabilities. We developed the EL based data driven probability computation for

both known and unknown cases of prior information regarding population parame-

ters. Then we applied these probabilities as the weights into Peng and Huang [2008]

censored quantile regression model. Our proposed method is efficient compared to

standard censored quantile regression and provides consistent estimators of regression

coefficients with asymptotic normality.

The standard error of the parameter estimates based on our proposed methods

(CQR-EL1 and CQR-EL2) is lower than the standard method (CQR) when we use

all the covariates for computing the EL based data driven probability weights. Our

proposed weighted censored quantile regression method provides almost the same cov-

erage probability compared to the nominal level. In the case of heteroscedastic models,

even the use of the auxiliary information regarding a subset of population parameters

improved the efficiency of the estimates of all the parameters by using CQR-EL1. But

in CQR-EL2, the efficiency improvement was limited to the corresponding subset of

variables and intercept. In homoscedastic models, the use of auxiliary information

regarding a subset of population parameters improved the efficiency only for that par-

ticular subset of parameters and the intercept in both CQR-EL1 and CQR-EL2. In

the real data analysis, we observed that our proposed method provides more efficient

quantile estimates and narrower confidence limits compared to the standard censored

quantile regression.



Chapter 5

Concluding Remarks

Quantile regression, developed by Koenker and Basset [1978], is an emerging area in

both statistics and economics. It models the conditional quantiles of the response

variable. Quantile regression provides a global assessment of the covariate effect on

the response at properly selected quantile levels.

Powell [1984, 1986] developed a censored quantile regression model for the cases

when all the censoring times are fixed. Among the major contributions to the field of

censored quantile regression under random censoring are those of Portnoy [2003] and

Peng and Huang [2008].

The severe censoring could force the large failure times to be unobserved and cause

an identifiability problem in the parameter estimation for the extreme quantiles of the

failure time. To overcome this problem, it is not always a practical choice to wait until

the larger failure times are observed because of the restrictions of the study duration.

In this thesis, we proposed three methods to tackle this problem and improve the

efficiency of the censored quantile regression estimators using auxiliary information.

In epidemiology studies, exposure assessment is solely based on the questionnaire.

The questionnaire responses could be inaccurate and might cause significant estima-

tion bias in the analysis. Because of the restrictions of the study time, the budgetary

issues or due to other limitations, the accurate measurements of the key exposure

might sometimes be limited to a subcohort (validation sample). If we use only these

accurate key exposure readings available from this subcohort in the censored quantile

regression model under heavy right censoring, it could result in an identification prob-

lem for the higher quantiles of the failure times because of a relatively small sample

size. If we ignore this accurately measured key exposure, it could result in a serious

information loss. We proposed two methods to handle this problem, considering both

the surrogate/auxiliary covariate and the accurately measured main exposure available
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through a validation sample.

In the first method, we proposed a regression calibration based approach to the

censored quantile regression model. We assumed that there exists a linear associa-

tion between the accurately measured covariate and its surrogate/auxiliary covariate

and other available covariates. First we predicted the unobserved covariate in the

non-validation sample using the regression calibration method with the help of the

auxiliary covariate and other available covariates. In the next step, we combined the

accurately measured covariate readings from the validation sample with the predicted

key exposures in the non-validation sample to estimate the censored quantile regres-

sion parameters. We developed a new estimating function based on Peng and Huang

[2008] censored quantile regression estimating function. We also provided its asymp-

totic properties such as consistency and the asymptotic normality of the estimators. In

the simulation study, we compared our proposed method with the results based solely

on the validation sample and the completely known main exposure scenario. The

standard error of the parameter estimates of our proposed method is always smaller

than the one using only the validation sample, irrespective of the value of σ2
ε and the

quantile level. When the σ2
ε is small, our proposed method and the ‘complete’ case

have almost the same standard error. Our proposed method provided asymptotically

unbiased estimates and the coverage probability of their confidence intervals is almost

equal to the nominal level. Under heavy censoring, we observed that the validation

sample approach fails to provide regression estimates for high quantiles when the sam-

ple size is low. As an illustration, we applied our proposed method to PBC data

[Fleming and Harrington, 2011] by predicting the unobserved copper content in urine

values. In application, we should use only the auxiliary covariate which has a strong

linear relationship with the accurately measured covariate.

We developed the second method for the scenario, for use when we are unsure

about the nature of the association between the accurately measured covariate and

its auxiliary covariate when the other covariates are present. Instead of the regression

calibration based approach, we used the non-parametric kernel smoothing method to

predict the unobserved main exposure in the non-validation sample. We developed

another new estimating function based on Peng and Huang [2008] censored quantile

regression estimating function and investigated its large sample properties. From the

simulation study and the Colorado Plateau uranium miners cohort data analysis, we

arrived at similar conclusions as with the regression calibration based approach. We

applied our proposed method to PBC data as well, for illustration.

It is possible to have unstable estimates when the dimension of the kernel goes
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beyond 2. If the kernel dimension is more than 2, we suggest using the regression

calibration based approach. In general, we have to be very cautious when the validation

sample size is very small compared to the sample size of the entire study cohort.

It could affect the prediction of the unobserved key exposure in the non-validation

sample.

We introduced an empirical likelihood [Owen, 2001] based weighted censored quan-

tile regression model as our third method to improve the efficiency of the parameter

estimates. When we have prior information regarding the target population param-

eters from previous studies or from the existing facts, we can convert this auxiliary

information into empirical likelihood based data driven probabilities and apply them

as the weights into censored quantile regression. Similar to our other proposed meth-

ods, we developed a new estimating equation based on Peng and Huang [2008] model

and investigated the asymptotic properties of the estimator. In our first simulation

study, we assumed the linear relationship between the failure time and the covariates

as the auxiliary information. We used empirical likelihood (Owen [1991]) approach for

the linear model to compute the probability weights. In the second simulation study,

we replaced the failure time by the observed survival time in the auxiliary informa-

tion, which is a more realistic scenario. We used empirical likelihood approach of Qin

and Jing [2001] and Li and Wang [2003] for the right censored linear regression model

based on the synthetic variable [Koul et al., 1981] to compute the probability weights.

From these simulation studies, we arrived at the following conclusions. Compared to

the standard censored quantile regression, using our proposed method, the efficiency

enhanced only for the censored quantile regression parameter associated with the co-

variates which are used in both the auxiliary information and in the censored quantile

regression model, including the intercept. The standard error of the weighted censored

quantile regression parameter estimates associated with the covariates which are not

a part of the auxiliary information remained the same as that for the standard cen-

sored quantile regression. But in the first simulation study, the standard error of all

the parameter estimates reduced for the heteroscedastic censored quantile regression

models, even with partial auxiliary information. In the application of an EL based

weighted censored quantile regression to the NCCTG lung cancer study, the standard

error reduced for all the parameter estimates with partial auxiliary information. Using

our proposed method, we could identify the censored quantile regression parameters at

more extreme quantile levels which failed while 1using the standard censored quantile

regression.
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5.1 Future Work

Quantile regression [Koenker and Basset, 1978; Koenker, 2005] models, with properly

chosen quantiles, provide a global assessment of the covariate effect on the response.

We proposed regression calibration and kernel smoothing based approaches in censored

quantile regression for the continuous predictor variables. We would like to develop

methods for discrete and categorical covariates. The theoretical justification could be

less challenging than the one with the continuous covariates.

We proposed an empirical likelihood [Owen, 2001] based weighted censored quantile

regression model using auxiliary information. When a subcohort has an accurately

measured covariate and its auxiliary covariate is available throughout the cohort along

with the information regarding the parameters of the target population from previous

studies, we could combine the EL based weighted censored quantile regression model

with the regression calibration and non-parametric kernel smoothing approaches.

We are also planning more research using the other choices of EL estimating func-

tion, g(·), to compute the probability weights when the relationship between the ob-

served survival time and the covariates is present as auxiliary information.

A lasso based variable selection for censored quantile regression model is discussed

by Wang, Zhou and Li [2013]. We would like to develop an EL based variable selection

for censored quantile regression.

Another interesting area for future work is the joint modeling of survival data and

longitudinal data using censored quantile regression. This could be a study based on

the combination of both the quantiles of survival time and the conditional mean of

longitudinal data.

Koenker and Machado [1999] proposed a goodness of fit test for quantile regression.

We would like to extend it to censored quantile regression. It will be an analogue of

coefficient of determination, R2 in linear models. The test statistic, R2(τ), will be

calculated based on the minimum of the
∑n

i=1 ρτ (Yi−min{Ci,X i
⊤β}) under restricted

and unrestricted models.
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Appendix A

Proof of Theorem 2.2.1

Define,

• µ(b) = E
[
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(
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Assume that τ1 < · · · < τL−1 are equally spaced between 0 and τU . Let an =
SL


and bn = an/(1− τU); then L = τU/an. It is clear that 0 < H(τk)−H(τk−1) ≤ bn for

k = 1, 2, . . . , L.

For d > 0, define B(d) = {b ∈ Rp : inf
τ∈(0,τU ]

ρ [µ(b)−µ{β0(τ)}] + (1−ρ) [µ(b)−

µ{β0(τ)}]
 ≤ d}. Let α0(τ) = ρ µ{β0(τ)}+ (1−ρ) µ{β0(τ)}, α̂(τ) = ρ µ{β̂(τ)}+

(1− ρ) µ{β̂(τ)} and A (d) = {ρ µ(b) + (1− ρ) µ(b) : b ∈ B(d)}.
Let b and b

′ ∈ B(d0) such that ρ µ(b) + (1− ρ) µ(b) = ρ µ(b
′
) + (1− ρ) µ(b

′
),
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then

0 = (b− b
′
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By condition C5(a), the above equation holds if and only if X⊤b = X⊤b
′
and Z⊤b =

Z⊤b
′
with probability 1.

By the positive definiteness of E[X⊗2] and E[Z⊗2], it is clear that b = b
′
. So there

exists an inverse function η, from A (d0) to B(d0) such that η {ρ µ(b) + (1− ρ) µ(b)} =

b for any b ∈ B(d0). Now we conclude that under the condition C5, ρ µ+ (1− ρ) µ
is also a one to one mapping from B(d0) to A (d0).

According to our estimating procedure, ρ ΩV
mv

(β̂, τk)+(1− ρ) ΩV
mn

(β̂, τk)+Op

(
1√
n

)
+

o(0,τU ])(1) = 0, which implies

ρ
mv

∑
j∈V

XjNj

(
eX

⊤
j β̂(τk)

)
+

1− ρ
mn

∑
l∈V

Z l Nl

(
eZ

⊤
l β̂(τk)

)

=
ρ
mv

∑
j∈V

∫ τk

0

XjI

[
Yj ≥ eX

⊤
j β̂(u)

]
dH(u)

+
1− ρ
mn

∑
l∈V

∫ τk

0

Z lI

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u) +Op

(
1√
n

)
+ o(0,τU ])(1).

Simple algebra leads to
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∑
l∈V

∫ τk

0

Z lI

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

− ρ E

[
X

∫ τk

0

I

[
Y ≥ eX

⊤β0(u)
]
dH(u)

]
− (1− ρ) E

[
Z

∫ τk

0

I

[
Y ≥ eZ

⊤β0(u)
]
dH(u)

]
= ρ

[∫ τk

0

Γ∗
mv

{
β̂(u)

}
dH(u) +

∫ τk

0

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u)

]
+ (1− ρ)

[∫ τk

0

Γ
∗
mn

{
β̂(u)

}
dH(u) +

∫ τk

0

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u)

]
.

By martingale property,

E

[
XN

(
eX

⊤β0(τk)
)]

= E

[
X

∫ τk

0

I

[
Y ≥ eX

⊤β0(u)
]
dH(u)

]
and

E

[
ZN

(
eZ

⊤β0(τk)
)]

= E

[
Z

∫ τk

0

I

[
Y ≥ eZ

⊤β0(u)
]
dH(u)

]
.

Then combining previous two equations,

ρ
[
µ
{
β̂(τk)

}
− µ {β0(τk)}

]
+ (1− ρ)

[
µ
{
β̂(τk)

}
− µ {β0(τk)}

]
= −ρ Γmv

{
β̂(τk)

}
+ ρ

∫ τk

0

Γ∗
mv

{
β̂(u)

}
dH(u)

+ ρ
k∑

r=1

∫ τr

τr−1

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u)

− (1− ρ) Γmn

{
β̂(τk)

}
+ (1− ρ)

∫ τk

0

Γ
∗
mn

{
β̂(u)

}
dH(u)

+ (1− ρ)
k∑

r=1

∫ τr

τr−1

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u) +Op

(
1√
n

)
+ o(0,τU ])(1)

= ρ
[
−Γmv

{
β̂(τk)

}
+

∫ τk

0

Γ∗
mv

{
β̂(u)

}
dH(u)

]
− (1− ρ)

[
Γmn

{
β̂(τk)

}
+

∫ τk

0

Γ
∗
mn

{
β̂(u)

}
dH(u)

]
+

k∑
r=1

∫ τr

τr−1

(
ρ
[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
+ (1− ρ)

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

])
dH(u)
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+Op

(
1√
n

)
+ o(0,τU ])(1). (A.1)

Consider

G1 =

{
XjI

[
Yj ≤ eX

⊤
j b
]
δj : b ∈ Rp

}
, G2 =

{
XjI

[
Yj ≥ eX

⊤
j b
]
: b ∈ Rp

}
,

G1 =

{
Z lI

[
Yl ≤ eZ

⊤
l b
]
δl : b ∈ Rp

}
and G2 =

{
Z lI

[
Yl ≥ eZ

⊤
l b
]
: b ∈ Rp

}
.

Since the class of indicator functions of polytopes in Rp is Glivenko Cantelli and

Xj and Z l are bounded, so here all the G1, G2, G1 and G2 are Glivenko Cantelli

[van der Vaart and Wellner, 1996]. So sup
b∈Rp

∥Γmv(b)∥
a.s−→ 0, sup

b∈Rp

∥Γ∗
mv

(b)∥ a.s−→ 0,

sup
b∈Rp

∥Γmn(b)∥
a.s−→ 0 and sup

b∈Rp

∥Γ∗
mn

(b)∥ a.s−→ 0 (Glivenko Cantelli theorem). Then, for

any given C1 and C1 (> 0) and for sufficiently large mv and n, sup
k

− Γmv{β̂(τk)}+∫ τk

0

Γ∗
mv

{β̂(u)}dH(u)

 < C1 and sup
k

−Γmn{β̂(τk)}+
∫ τk

0

Γ
∗
mn

{β̂(u)}dH(u)

 < C1

with probability 1.

There exists C2 > 0 such that sup
i

∥X i∥ < C2 and sup
i

∥Zi∥ < C2 (by C3).

For some constants C3 and C3 (> 0), ∥µ{β0(τ) − µ{β0(τ
′
)}∥ ≤ C3|τ − τ

′| and
∥µ{β0(τ)− µ{β0(τ

′
)}∥ ≤ C3|τ − τ

′| (by C4(a)) for any τ , τ
′ ∈ (0, τU ].

There exists C4 and C4 (> 0) such that ∥{B(b)}−1B∗(b)y∥ ≤ C4∥y∥; b ∈ B(d0)

and ∥{B(b)}−1B
∗
(b)y∥ ≤ C4∥y∥; b ∈ B(d0) for any y ∈ Rp (by C5(c)).

Define C1 = ρ C1 + (1 − ρ) C1, C2 = C2, C3 = ρ C3 + (1 − ρ) C3 and C4 =

ρ C4 + (1− ρ) C4.

For given n, define a sequence {εu}L−1
u=0 , where ε0 = C3an, ε1 = C1 + C2(1/n) +

C3an+ε0C4bn and εu = C1+C2(1/n)+C3an+

(
u−1∑
r=0

εr

)
C4bn for u = 2, 3, . . . , L−1.

By the definition of εu, εu − εu−1 = εu−1C4bn, hence εu = (1 + C4bn)
u−1ε1.

Given that lim
n→∞

an = 0 and L = τU/an, implies that lim
n→∞

(1+C4bn)
L−1 = exp{C4τU/(1−

τU)}. Since εu is increasing with u, and for some N0 such that n ≥ N0, we can choose

sufficiently small C1 so that εu ≤ 2 exp{τU/(1−τU)}C1 ≤ d0 for all u = 0, 1, . . . , L−1.

Next we prove that

sup
τu≤τ<τu+1

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

]  < εu,

for u = 0, 1, . . . , L− 1.
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Considering n ≥ N0, and by the definition of β̂(τ),

sup
τ0≤τ<τ1

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

] 
= sup

τ0≤τ<τ1

{∥ρ µ{β0(τ )}+ (1− ρ) µ{β0(τ )}∥}

≤ C3an = ε0.

Considering (A.1) with k = 1, for τ ∈ [τ0, τ1),ρ [µ∗
{
β̂(τk)

}
− µ∗ {β0(τk)}

]
+ (1− ρ)

[
µ∗
{
β̂(τk)

}
− µ∗ {β0(τk)}

]
=
ρ[µ∗ [η {α̂(τ )}]− µ∗ [η {α0(τ )}]

]
+ (1− ρ)

[
µ∗ [η {α̂(τ )}]− µ∗ [η {α0(τ )}]

]
=
ρ (B [η {ᾰ(τ )

}])−1
B∗ [η {ᾰ(τ )

}]
{α̂(τ )−α0(τ )}

+ (1− ρ)
(
B
[
η
{
ᾰ(τ )

}])−1
B

∗ [
η
{
ᾰ(τ )

}]
{α̂(τ )−α0(τ )}


≤ C4ε0,

where ᾰ(τ) is between α̂(τ) and α0(τ). So using conditions defined earlier, the norm

of the right hand side of (A.1) is not bigger than C1 + ε0C4bn + C2(1/n); So,

sup
τ1≤τ<τ2

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

] 
≤
ρ [µ{β̂(τ1)} − µ{β0(τ1)}

]
+ (1− ρ)

[
µ{β̂(τ1)} − µ{β0(τ1)}

] 
+ sup

τ1≤τ<τ2

ρ [µ{β̂(τ1)} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̂(τ1)} − µ{β0(τ )}

] 
≤ C1 +

C2

n
+ C3an + ε0C4bn = ε1.

Using similar approach, we can arrive β̂(τu) ∈ B(d0) and

sup
τu≤τ<τu+1

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

]  ≤ εu,

for all u = 2, 3, . . . , L−1. As n increases, an → 0 and C1 can become arbitrarily small,

which implies that

sup
0<τ<τU

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

]  Pr−→ 0.
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Using Taylor series expansion of η{α̂(τ)} at α0(τ) for τ ∈ [ν, τU ], from condition

C6, we arrive thatβ̂(τ )− β0(τ )
 ≤

ρ (B {β0(τ )})−1 {α̂(τ )−α0(τ )}

+ (1− ρ) (B {β0(τ )})−1 {α̂(τ )−α0(τ )}
+ ∥ϵ∗n(τ )∥

≤ C6 ∥α̂(τ )−α0(τ )∥+ ∥ϵ∗n(τ )∥ ,

where C6(> 0) is independent of τ and sup
ν≤τ≤τU

∥ϵ∗n(τ)∥
Pr−→ 0. Hence the consistency

proof.



Appendix B

Proof of Theorem 2.2.2

Lemma B.1. For any sequence,
{
β̃n(τ ), τ ∈ (0, τU ]

}∞

n=1
, we have

sup
τ∈(0,τU ]

 √
ρ

√
mv

∑
j∈V

Xj

[
Nj

(
eX

⊤
j β̃n(τ )

)
− Nj

(
eX

⊤
j β0(τ )

)]

+

√
(1− ρ)
√
mn

∑
l∈V

Z l

[
Nl

(
eZ

⊤
l β̃n(τ )

)
− Nl

(
eZ

⊤
l β0(τ )

)]
−

√
ρ mv

[
µ{β̃n(τ )} − µ{β0(τ )}

]
−
√

(1− ρ)mn

[
µ{β̃n(τ )} − µ{β0(τ )}

]  Pr−→ 0,

if

sup
τ∈(0,τU ]

ρ [µ{β̃n(τ )} − µ{β0(τ )}
]
+ (1− ρ)

[
µ{β̃n(τ )} − µ{β0(τ )}

] Pr−→ 0.

Proof of Lemma B.1: Define µ1(b) = E
[
N
(
eX

⊤b
)]

, µ1(b) = E
[
N
(
eZ

⊤b
)]

,

and

σ2
d(b) = Var

{
√
ρ
[
N
(
eX

⊤b
)
− N

(
eX

⊤β0(τ )
)
− µ1{b}+ µ1{β0(τ )}

]

+
√

(1− ρ)
[
N
(
eZ

⊤b
)
− N

(
eZ

⊤β0(τ )
)
− µ1{b}+ µ1{β0(τ )}

]}
.

Provided X and Z are bounded and errors are independent, it suffices to prove that

σ2
d

{
β̃n(τ)

}
Pr−→ 0, by following the arguments provided in Alexander [1984] and Lai
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and Ying [1988]. If β̃n(τ) is fixed,

σ2
d

{
β̃n(τ )

}
= Var

{
√
ρ
[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]

+
√

(1− ρ)
[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]}

= ρ Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]
+ (1− ρ) Var

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]
+ 2
√
ρ(1− ρ) Cov

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )},

N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]
≤ ρ Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]
+ (1− ρ) Var

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]
+ 2

√
ρ Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]

×

√
(1− ρ) Var

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1{β̃n(τ )}+ µ1{β0(τ )}

]
= ρ σ2

1d

{
β̃n(τ )

}
+ (1− ρ) σ2

2d

{
β̃n(τ )

}
+ 2

√
ρ(1− ρ) σ2

1d

{
β̃n(τ )

}
σ2
2d

{
β̃n(τ )

}
.

Following the arguments given in Appendix B of Peng and Huang [2008], we can

show that σ2
1d

{
β̃n(τ)

}
Pr−→ 0 and σ2

2d

{
β̃n(τ)

}
Pr−→ 0. This completes the proof of

σ2
d

{
β̃n(τ)

}
Pr−→ 0 and Lemma B.1.

Proof of Theorem 2.2.2

From the proofs of Theorem 2.2.1 and Lemma B.1, we have

sup
τ∈(0,τU ]

 √
ρ

√
mv

∑
j∈V

Xj

[
Nj

(
eX

⊤
j β̂(τ )

)
− Nj

(
eX

⊤
j β0(τ )

)]
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+

√
(1− ρ)
√
mn

∑
l∈V

Z l

[
Nl

(
eZ

⊤
l β̂(τ )

)
− Nl

(
eZ

⊤
l β0(τ )

)]
−

√
ρ mv

[
µ{β̂(τ )} − µ{β0(τ )}

]
−
√

(1− ρ)mn

[
µ{β̂(τ )} − µ{β0(τ )}

]  Pr−→ 0,

(B.1)

Similarly

sup
τ∈(0,τU ]

 √
ρ

√
mv

∑
j∈V

Xj

(
I

[
Yj ≥ eX

⊤
j β̂(τ )

]
− I

[
Yj ≥ eX

⊤
j β0(τ )

])

+

√
(1− ρ)
√
mn

∑
l∈V

Z l

(
I

[
Yl ≥ eZ

⊤
l β̂(τ )

]
− I

[
Yl ≥ eZ

⊤
l β0(τ )

])
−

√
ρ mv

[
µ∗{β̂(τ )} − µ∗{β0(τ )}

]
−
√

(1− ρ)mn

[
µ∗{β̂(τ )} − µ∗{β0(τ )}

]  Pr−→ 0.

(B.2)

√
n Sn(β̂, τ) = o(0,τU ](1), a. s. because

√
n ∥SL∥ → 0. This is true because, by the

definition of Sn(β̂, τ),

sup
τ∈[τk,τk+1]

√
n
Sn(β̂, τ )− Sn(β̂, τk)

 ≤
√
n C2 {H(τk+1)−H(τk)}

≤
√
n C2 an/(1− τU).

Given that ρ µ{β̂(τ)}+(1−ρ) µ{β̂(τ)} uniformly converges in probability to ρ µ{β0(τ)}+
(1− ρ) µ{β0(τ)} for τ ∈ (0, τU ], by (B.1) and (B.2),

−
√
n Sn(β0, τ )

=
√
ρ mv

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
+
√
(1− ρ) mn

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
−
∫ τ

0

(
√
ρ mv

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
+
√
(1− ρ) mn

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

])
dH(u) +Op

(
1√
n

)
+ o(0,τU ])(1)

=
√
ρ mv

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
+
√
(1− ρ) mn

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
−
∫ τ

0

{[
√
ρ mv B∗ {β0(u)} (B {β0(u)})−1 +

√
(1− ρ) mn B

∗ {β0(u)} (B {β0(u)})−1
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+Op

(
1√
n

)
+ o(0,τU ])(1)

]
×
(
√
ρ mv

[
µ
{
β̂(u)

}
− µ {β0(u)}

]
+
√

(1− ρ) mn

[
µ
{
β̂(u)

}
− µ {β0(u)}

])}
dH(u)

+Op

(
1√
n

)
+ o(0,τU ])(1).

Here
√
n Sn(β0, τ) = 0 can be viewed as a stochastic differential equation for

√
ρ mv [µ{β̂(τ)} − µ{β0(τ)}] +

√
(1− ρ) mn [µ{β̂(τ)} − µ{β0(τ)}], and using the

production integration theory [Gill and Johansen, 1990; Andersen et al., 1993], we

have

√
ρ mv

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
+
√

(1− ρ) mn

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
= ϕ{−

√
n Sn(β0, τ )}+Op

(
1√
n

)
+ o(0,τU ])(1), (B.3)

where ϕ is a map from F to F such that for γ ∈ F ,

ϕ(γ)(τ ) =
∫ τ

0

I(s, τ)dγ(s),

with

I(s, t) =πu∈(s,t]
{
Ip +

[√
ρ mv B∗ {β0(u)} (B {β0(u)})−1

+
√

(1− ρ) mn B
∗ {β0(u)} (B {β0(u)})−1

]
dH(u)

}
and F = {γ : [0, τU ] → Rp, γ is left-continuous with right limit,γ(0) = 0}.

Consider that{
ρ XjNj

(
eX

⊤
j β0(τ )

)
+ (1− ρ) Z lNl

(
eZ

⊤
l β0(τ )

)
; τ ∈ [0, τU ]

}
is a VC-class [van der Vaart and Wellner, 1996] and∫ τ

0

(
ρ XjI

[
Yj ≥ eX

⊤
j β0(u)

]
+ (1− ρ) Z lI

[
Yl ≥ eZ

⊤
l β0(u)

])
dH(u)
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is Lipschitz in τ , and by the permanence properties of the Donsker class we have that{
ρ XjNj

(
eX

⊤
j β0(τ )

)
+ (1− ρ) Z lNl

(
eZ

⊤
l β0(τ )

)
−
∫ τ

0

(
ρ XjI

[
Yj ≥ eX

⊤
j β0(u)

]
+ (1− ρ) Z lI

[
Yl ≥ eZ

⊤
l β0(u)

])
dH(u), τ ∈ [ν, τU ]

}
is a Donsker class. By the Donsker theorem, −

√
n Sn(β0, τ) converges weakly to a

tight Gaussian process, G(τ), with mean 0 and covariance Σ(s, t) for τ ∈ [0, τU ], where

Σ(s, t) = E{ιĵ(s)ιĵ(t)⊤}+ E{ι̂l(s)ι̂l(t)⊤} with

ιĵ(τ ) = ρ X ĵNĵ

(
e
X⊤

ĵ
β0(τ )

)
−
∫ τ

0

ρ X ĵI

[
Yĵ ≥ e

X⊤
ĵ
β0(u)

]
dH(u)

and

ι̂l(τ ) = (1− ρ) Z l̂Nl̂

(
e
Z⊤

l̂
β0(τ )

)
−
∫ τ

0

(1− ρ) Z l̂I

[
Ŷl ≥ e

Z⊤
l̂
β0(u)

]
dH(u).

ϕ{G(τ)} for τ ∈ (0, τU ] is also Gaussian process because ϕ is a linear operator

[Römisch, 2005]. ρ (B{β0(τ)})−1 + (1 − ρ) (B{β0(τ)})−1 is bounded uniformly for

τ ∈ [ν, τU ] (C6). Applying the Taylor expansion to η[ρ µ{β̂(τ)}+(1−ρ) µ{β̂(τ)}]−
η[ρ µ{β0(τ)} + (1 − ρ) µ{β0(τ)}] and by the continuous mapping theorem, we

have, for τ ∈ [ν, τU ],
√
n{β̂(τ)− β0(τ)} converges weakly to [ρ (B{β0(τ)})−1 + (1−

ρ) (B{β0(τ)})−1]ϕ{G(τ)}, which is Gaussian.



Appendix C

Proof of Theorem 3.2.1

Define,

• DV
mv

(β̂, τk) =
1

mv

∑
j∈V

{
XjMj

{
τk,Xj, β̂(τk)

}
+ϱ
[
XjWqMV

(
Ml

{
τk,Z l, β̂(τk)

})
−

WqMV

(
Z l Ml

{
τk,Z l, β̂(τk)

})]}
.

• µ(b) = E
[
XN

(
eX

⊤b
)]

, B(b) = E
[
X⊗2 f̃

(
eX

⊤b
⏐⏐⏐X) eX

⊤b
]
,

Γmv(b) =
1

mv

∑
j∈V

XjNj

(
eX

⊤
j b
)
− µ(b).

• µ̃(b) = E
[
X WqMV

{
N
(
eZ

⊤b
)}

−WqMV

{
ZN

(
eZ

⊤b
)}]

,

B̃(b) = E
[
X⊗2 WqMV

{
f̃
(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
}
−WqMV

{
Z⊗2 f̃

(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
}]

,

Γ̃mv(b) =
1

mv

∑
j∈V

[
XjWqMV

{
N
(
eZ

⊤b
)}

−WqMV

{
ZN

(
eZ

⊤b
)}]

− µ̃(b).

• µ(b) = E
[
ZN

(
eZ

⊤b
)]

, B(b) = E
[
Z⊗2 f̃

(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
]
,

Γmn(b) =
1

mn

∑
l∈V

Z lNl

(
eZ

⊤
l b
)
− µ(b).

• µ∗(b) = E
[
XI

(
Y ≥ eX

⊤b
)]

, B∗(b) = E
[
X⊗2 f

(
eX

⊤b
⏐⏐⏐X) eX

⊤b
]
,

Γ∗
mv

(b) =
1

mv

∑
j∈V

XjI

[
Yj ≥ eX

⊤
j b
]
− µ∗(b).

• µ̃∗(b) = E
[
X WqMV

{
I

[
Y ≥ eZ

⊤b
]}

−WqMV

{
ZI

[
Y ≥ eZ

⊤b
]}]

,

B̃
∗
(b) = E

[
X⊗2 WqMV

{
f
(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
}
−WqMV

{
Z⊗2 f

(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
}]

,
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Γ̃
∗
mv

(b) =
1

mv

∑
j∈V

[
XjWqMV

{
I

[
Y ≥ eZ

⊤b
]}

−WqMV

{
ZI

[
Y ≥ eZ

⊤b
]}]

−µ̃∗(b).

• µ∗(b) = E
[
ZI

(
Y ≥ eZ

⊤b
)]

, B
∗
(b) = E

[
Z⊗2 f

(
eZ

⊤b
⏐⏐⏐Z) eZ

⊤b
]
,

Γ
∗
mn

(b) =
1

mn

∑
l∈V

Z lI

[
Yl ≥ eZ

⊤
l b
]
− µ∗(b).

Assume that τ1 < · · · < τL−1 are equally spaced between 0 and τU . Let an =
SL


and bn = an/(1− τU); then L = τU/an. It is clear that 0 < H(τk)−H(τk−1) ≤ bn for

k = 1, 2, . . . , L.

For d > 0, define B(d) = {b ∈ Rp : inf
τ∈(0,τU ]

ρ [µ(b)− µ{β0(τ)}] + ρ ϱ[µ̃(b) −

µ̃{β0(τ)}]+(1−ρ) [µ(b)− µ{β0(τ)}]
 ≤ d}. Letα0(τ) = ρ µ{β0(τ)}+ρ ϱ µ̃{β0(τ)}+

(1− ρ) µ{β0(τ)}, α̂(τ) = ρ µ{β̂(τ)}+ ρ ϱ µ̃{β̂(τ)}+ (1− ρ) µ{β̂(τ)} and A (d) =

ρ µ(b) + ρ ϱ µ̃(b) + (1− ρ) µ(b) : b ∈ B(d)}.
Let b and b

′ ∈ B(d0) such that ρ µ(b) + ρ ϱ µ̃(b) + (1 − ρ) µ(b) = ρ µ(b
′
) +

ρ ϱ µ̃(b
′
) + (1− ρ) µ(b

′
), then

0 = (b− b
′
)⊤{ρ µ(b) + ρ ϱ µ̃(b) + (1− ρ) µ(b)− ρ µ(b

′
)− ρ ϱ µ̃(b

′
)− (1− ρ) µ(b

′
)}

= ρ E

{(
X⊤b−X⊤b

′
)[

F̃

(
eX

⊤b
⏐⏐⏐⏐X)− F̃

(
eX

⊤b
′ ⏐⏐⏐⏐X)]}

+ ρ ϱ E

{(
X⊤b−X⊤b

′
)[

WqMV

{
F̃

(
eZ

⊤b
⏐⏐⏐⏐Z)}−WqMV

{
F̃

(
eZ

⊤b
′ ⏐⏐⏐⏐Z)}]

−
[
WqMV

{(
Z⊤b−Z⊤b

′
)
F̃

(
eZ

⊤b
⏐⏐⏐⏐Z)}

−WqMV

{(
Z⊤b−Z⊤b

′
)
F̃

(
eZ

⊤b
′ ⏐⏐⏐⏐Z)}]}

+ (1− ρ) E
{(

Z⊤b−Z⊤b
′
)[

F̃

(
eZ

⊤b
⏐⏐⏐⏐Z)− F̃

(
eZ

⊤b
′ ⏐⏐⏐⏐Z)]} .

By condition R3(a), the above equation holds if and only if X⊤b = X⊤b
′
and Z⊤b =

Z⊤b
′
with probability 1.

By the positive definiteness of E(X⊗2) and E(Z⊗2) it is clear that b = b
′
. So there

exists an inverse function η, from A (d0) to B(d0) such that η{ρ µ(b) + ρ ϱ µ̃(b) +

(1− ρ) µ(b)} = b for any b ∈ B(d0). Now we conclude that under the condition R3,

ρ µ+ ρ ϱ µ̃+ (1− ρ) µ is also a one to one mapping from B(d0) to A (d0).

According to our estimating procedure, ρDV
mv

(β̂, τk)+(1− ρ) ΩV
mn

(β̂, τk)+Op

(
1√
n

)
+
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o(0,τU ])(1) = 0, which implies

ρ
mv

∑
j∈V

XjNj

(
eX

⊤
j β̂(τk)

)
+

1− ρ
mn

∑
l∈V

Z l Nl

(
eZ

⊤
l β̂(τk)

)
+

ρ
mv

ϱ
∑
j∈V

[
XjWqMV

{
N
(
eZ

⊤β̂(τk)
)}

−WqMV

{
Z N

(
eZ

⊤β̂(τk)
)}]

=
ρ
mv

∑
j∈V

∫ τk

0

XjI

[
Yj ≥ eX

⊤
j β̂(u)

]
dH(u) +

1− ρ
mn

∑
l∈V

∫ τk

0

Z lI

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

+
ρ
mv

ϱ
∑
j∈V

∫ τk

0

[
XjWqMV

{
I

[
Y ≥ eZ

⊤β̂(u)
]}

−WqMV

{
Z I

[
Y ≥ eZ

⊤β̂(u)
]}]

dH(u) +Op

(
1√
n

)
+ o(0,τU ])(1).

Simple algebra leads to

ρ
mv

∑
j∈V

XjNj

(
eX

⊤
j β̂(τk)

)
+

1− ρ
mn

∑
l∈V

Z l Nl

(
eZ

⊤
l β̂(τk)

)
+

ρ
mv

ϱ
∑
j∈V

[
XjWqMV

{
N
(
eZ

⊤β̂(τk)
)}

−WqMV

{
Z N

(
eZ

⊤β̂(τk)
)}]

− ρ
mv

E

[
XN

(
eX

⊤β0(τk)
)]

− 1− ρ
mn

E

[
ZN

(
eZ

⊤β0(τk)
)]

− ρ
mv

ϱ E

[
X WqMV

{
N
(
eZ

⊤β0(τk)
)}

−WqMV

{
ZN

(
eZ

⊤β0(τk)
)}]

= ρ
[
Γmv

{
β̂(τk)

}
+ µ

{
β̂(τk)

}
− µ

{
β0(τk)

}]
+ ρ ϱ

[
Γ̃mv

{
β̂(τk)

}
+ µ̃

{
β̂(τk)

}
− µ̃

{
β0(τk)

}]
+ (1− ρ)

[
Γmn

{
β̂(τk)

}
+ µ

{
β̂(τk)

}
− µ

{
β0(τk)

}]
and

ρ
mv

∑
j∈V

∫ τk

0

XjI

[
Yj ≥ eX

⊤
j β̂(u)

]
dH(u) +

1− ρ
mn

∑
l∈V

∫ τk

0

Z lI

[
Yl ≥ eZ

⊤
l β̂(u)

]
dH(u)

+
ρ
mv

ϱ
∑
j∈V

∫ τk

0

[
XjWqMV

{
I

[
Y ≥ eZ

⊤β̂(u)
]}

−WqMV

{
Z I

[
Y ≥ eZ

⊤β̂(u)
]}]

dH(u)
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− ρ
mv

E

[
X

∫ τk

0

I

[
Y ≥ eX

⊤β0(u)
]
dH(u)

]
− 1− ρ

mn

E

[
Z

∫ τk

0

I

[
Y ≥ eZ

⊤β0(u)
]
dH(u)

]
− ρ

mv

ϱ E

[∫ τk

0

(
X WqMV

{
I

[
Y ≥ eZ

⊤β0(u)
]}

−WqMV

{
Z I

[
Y ≥ eZ

⊤β0(u)
]})

dH(u)

]
= ρ

{∫ τk

0

Γ∗
mv

{
β̂(u)

}
dH(u) +

∫ τk

0

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u)

}
+ ρ ϱ

{∫ τk

0

Γ̃
∗
mv

{
β̂(u)

}
dH(u) +

∫ τk

0

[
µ̃∗
{
β̂(u)

}
− µ̃∗ {β0(u)}

]
dH(u)

}
+ (1− ρ)

{∫ τk

0

Γ
∗
mn

{
β̂(u)

}
dH(u) +

∫ τk

0

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u)

}
.

By martingale property,

E

[
XN

(
eX

⊤β0(τk)
)]

= E

[
X

∫ τk

0

I

[
Y ≥ eX

⊤β0(u)
]
dH(u)

]
,

E

[
ZN

(
eZ

⊤β0(τk)
)]

= E

[
Z

∫ τk

0

I

[
Y ≥ eZ

⊤β0(u)
]
dH(u)

]
and by the estimating equation property provided in Peng and Huang [2008, Sec. 2]

and martingale property,

E

[
X WqMV

{
N
(
eZ

⊤β0(τk)
)}

−WqMV

{
ZN

(
eZ

⊤β0(τk)
)}]

= E

[∫ τk

0

(
X WqMV

{
I

[
Y ≥ eZ

⊤β0(u)
]}

−WqMV

{
Z I

[
Y ≥ eZ

⊤β0(u)
]})

dH(u)

]
.

Then combining previous two equations,

ρ
[
µ
{
β̂(τk)

}
− µ {β0(τk)}

]
+ ρ ϱ

[
µ̃
{
β̂(τk)

}
− µ̃ {β0(τk)}

]
+ (1− ρ)

[
µ
{
β̂(τk)

}
− µ {β0(τk)}

]
= ρ

[
− Γmv

{
β̂(τk)

}
+

∫ τk

0

Γ∗
mv

{
β̂(u)

}
dH(u)
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+
k∑

r=1

∫ τr

τr−1

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
dH(u)

]
+ ρ ϱ

[
−Γ̃mv

{
β̂(τk)

}
+

∫ τk

0

Γ̃
∗
mv

{
β̂(u)

}
dH(u)

+
k∑

r=1

∫ τr

τr−1

[
µ̃∗
{
β̂(u)

}
− µ̃∗ {β0(u)}

]
dH(u)

]
+ (1− ρ)

[
− Γ̃mn

{
β̂(τk)

}
+

∫ τk

0

Γ̃
∗
mn

{
β̂(u)

}
dH(u)

+
k∑

r=1

∫ τr

τr−1

[
µ̃∗
{
β̂(u)

}
− µ̃∗ {β0(u)}

]
dH(u)

]
+Op

(
1√
n

)
+ o(0,τU ])(1)

= ρ
[
−Γmv

{
β̂(τk)

}
+

∫ τk

0

Γ∗
mv

{
β̂(u)

}
dH(u)

]
+ ρ ϱ

[
−Γ̃mv

{
β̂(τk)

}
+

∫ τk

0

Γ̃
∗
mv

{β0(u)} dH(u)

]
+ (1− ρ)

[
−Γmn

{
β̂(τk)

}
+

∫ τk

0

Γ
∗
mn

{
β̂(u)

}
dH(u)

]
+

k∑
r=1

∫ τr

τr−1

(
ρ
[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
+ ρ ϱ

[
µ̃∗
{
β̂(u)

}
− µ̃∗ {β0(u)}

]
+ (1− ρ)

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

])
dH(u) +Op

(
1√
n

)
+ o(0,τU ])(1).

(C.1)

Consider

G1 =

{
XjI

[
Yj ≤ eX

⊤
j b
]
δj : b ∈ Rp

}
, G2 =

{
XjI

[
Yj ≥ eX

⊤
j b
]
: b ∈ Rp

}
,

G1 =

{
Z lI

[
Yl ≤ eZ

⊤
l b
]
δl : b ∈ Rp

}
, G2 =

{
Z lI

[
Yl ≥ eZ

⊤
l b
]
: b ∈ Rp

}
,

G̃1 =

{(
XjWqMV

{
I

[
Y ≤ eZ

⊤b
]}

−WqMV

{
Z I

[
Y ≤ eZ

⊤b
]})

δj : b ∈ Rp

}
,

G̃2 =

{
Xj WqMV

{
I

[
Y ≤ eZ

⊤b
]}

−WqMV

{
Z I

[
Y ≤ eZ

⊤b
]}

: b ∈ Rp

}
.

Since the class of indicator functions of polytopes in Rp is Glivenko Cantelli and

Xj and Z l are bounded, so here all the G1, G2, G̃1, G̃2, G1 and G2 are Glivenko Can-

telli [van der Vaart and Wellner, 1996]. So sup
b∈Rp

∥Γmv(b)∥
a.s−→ 0, sup

b∈Rp

∥Γ∗
mv

(b)∥ a.s−→ 0,

sup
b∈Rp

∥Γ̃mv(b)∥
a.s−→ 0, sup

b∈Rp

∥Γ̃
∗
mv

(b)∥ a.s−→ 0, sup
b∈Rp

∥Γmn(b)∥
a.s−→ 0 and sup

b∈Rp

∥Γ∗
mn

(b)∥ a.s−→
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0 (Glivenko Cantelli theorem). Then, for any given C1, C̃1 and C1 (> 0) and

for sufficiently large mv and n, sup
k

−Γmv{β̂(τk)}+
∫ τk

0

Γ∗
mv

{β̂(u)}dH(u)

 < C1,

sup
k

− Γ̃mv{β̂(τk)}+
∫ τk

0

Γ̃
∗
mv

{β̂(u)}dH(u)

 < C̃1 and

sup
k

−Γmn{β̂(τk)}+
∫ τk

0

Γ
∗
mn

{β̂(u)}dH(u)

 < C1 with probability 1.

There exists C2 > 0 such that sup
i

∥X i∥ < C2 and sup
i

∥Zi∥ < C2 (by R1).

For some constants C3, C̃3 and C3 (> 0), ∥µ{β0(τ) − µ{β0(τ
′
)}∥ ≤ C3|τ − τ

′|,
∥µ̃{β0(τ) − µ̃{β0(τ

′
)}∥ ≤ C̃3|τ − τ

′| and ∥µ{β0(τ) − µ{β0(τ
′
)}∥ ≤ C3|τ − τ

′ | (by
R2(a)) for any τ , τ

′ ∈ (0, τU ].

There exists C4, C̃4 and C4 (> 0) such that ∥{B(b)}−1B∗(b)y∥ ≤ C4∥y∥; b ∈
B(d0), ∥{B̃(b)}−1B̃

∗
(b)y∥ ≤ C̃4∥y∥; b ∈ B(d0) and ∥{B(b)}−1B

∗
(b)y∥ ≤ C4∥y∥;

b ∈ B(d0) for any y ∈ Rp (by R3(c)).

Define C1 = ρ C1 + ρ ϱ C̃1 + (1 − ρ) C1, C2 = C2, C3 = ρ C3 + ρ ϱ C̃3 + (1 −
ρ) C3 and C4 = ρ C4 + ρ ϱ C̃4 + (1− ρ) C4.

For given n, define a sequence {εu}L−1
u=0 , where ε0 = C3an, ε1 = C1 + C2(1/n) +

C3an+ε0C4bn and εu = C1+C2(1/n)+C3an+

(
u−1∑
r=0

εr

)
C4bn for u = 2, 3, . . . , L−1.

By the definition of εu, εu − εu−1 = εu−1C4bn, hence εu = (1 + C4bn)
u−1ε1.

Given that lim
n→∞

an = 0 and L = τU/an, implies that lim
n→∞

(1+C4bn)
L−1 = exp{C4τU/(1−

τU)}. Since εu is increasing with u, and for some N0 such that n ≥ N0, we can choose

sufficiently small C1 so that εu ≤ 2 exp{τU/(1−τU)}C1 ≤ d0 for all u = 0, 1, . . . , L−1.

Next we prove that sup
τu≤τ<τu+1

ρ[µ{β̂(τ)}−µ{β0(τ)}]+ρ ϱ[µ̃{β̂(τ)}−µ̃{β0(τ)}]+

(1− ρ)[µ{β̂(τ)} − µ{β0(τ)}]
 < εu, u = 0, 1, . . . , L− 1.

Considering n ≥ N0, and by the definition of β̂(τ),

sup
τ0≤τ<τ1

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ ρ ϱ

[
µ̃{β̂(τ )} − µ̃{β0(τ )}

]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

] 
= sup

τ0≤τ<τ1

∥ρ µ{β0(τ )}+ ρ ϱ µ̃{β0(τ )}+ (1− ρ) µ{β0(τ )}∥ ≤ C3an = ε0.

Considering (C.1) with k = 1, for τ ∈ [τ0, τ1),ρ [µ∗
{
β̂(τk)

}
− µ∗ {β0(τk)}

]
+ ρ ϱ

[
µ̃∗
{
β̂(τk)

}
− µ̃∗ {β0(τk)}

]



115

+ (1− ρ)
[
µ̃∗
{
β̂(τk)

}
− µ̃∗ {β0(τk)}

]
=
ρ[µ∗ (η {α̂(τ )})− µ∗ (η {α0(τ )})

]
+ ρ ϱ

[
µ̃∗ (η {α̂(τ )})− µ̃∗ (η {α0(τ )})

]
+ (1− ρ)

[
µ∗ (η {α̂(τ )})− µ∗ (η {α0(τ )})

]
=
ρ (B [η {ᾰ(τ )

}])−1
B∗ [η {ᾰ(τ )

}]
{α̂(τ )−α0(τ )}

+ ρ ϱ
(
B̃
[
η
{
ᾰ(τ )

}])−1

B̃
∗ [
η
{
ᾰ(τ )

}]
{α̂(τ )−α0(τ )}

+ (1− ρ)
(
B
[
η
{
ᾰ(τ )

}])−1
B

∗ [
η
{
ᾰ(τ )

}]
{α̂(τ )−α0(τ )}


≤ C4ε0,

where ᾰ(τ) is between α̂(τ) and α0(τ). So using conditions defined earlier, the norm

of the right hand side of (C.1) is not bigger than C1 + ε0C4bn + C2(1/n); So,

sup
τ1≤τ<τ2

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ ρ ϱ

[
µ̃{β̂(τ )} − µ̃{β0(τ )}

]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

] 
≤
ρ [µ{β̂(τ1)} − µ{β0(τ1)}

]
+ ρ ϱ

[
µ̃{β̂(τ1)} − µ̃{β0(τ1)}

]
+ (1− ρ)

[
µ{β̂(τ1)} − µ{β0(τ1)}

] 
+ sup

τ1≤τ<τ2

ρ [µ{β̂(τ1)} − µ{β0(τ )}
]
+ ρ ϱ

[
µ̃{β̂(τ1)} − µ̃{β0(τ )}

]
+ (1− ρ)

[
µ{β̂(τ1)} − µ{β0(τ )}

] 
≤ C1 + C2

1

n
+ C3an + ε0C4bn = ε1.

Using similar approach, we can arrive β̂(τu) ∈ B(d0) and

sup
τu≤τ<τu+1

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ ρ ϱ

[
µ̃{β̂(τ )} − µ̃{β0(τ )}

]
+ (1− ρ)

[
µ{β̂(τ )} − µ{β0(τ )}

]  ≤ εu,

for all u = 2, 3, . . . , L−1. As n increases, an → 0 and C1 can become arbitrarily small,

which implies that

sup
0<τ<τU

ρ [µ{β̂(τ )} − µ{β0(τ )}
]
+ ρ ϱ

[
µ̃{β̂(τ )} − µ̃{β0(τ )}

]
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+ (1− ρ)
[
µ{β̂(τ )} − µ{β0(τ )}

]  Pr−→ 0.

Using Taylor series expansion of η{α̂(τ)} at α0(τ) for τ ∈ [ν, τU ], from condition

R4, we arrive thatβ̂(τ )− β0(τ )
 ≤

ρ (B {β0(τ )})
−1 {α̂(τ )−α0(τ )}

+ ρ ϱ
(
B̃ {β0(τ )}

)−1

{α̂(τ )−α0(τ )}

+ (1− ρ)
(
B {β0(τ )}

)−1 {α̂(τ )−α0(τ )}
+ ∥ϵ∗n(τ )∥

≤ C6 ∥α̂(τ )−α0(τ )∥+ ∥ϵ∗n(τ )∥ ,

where C6(> 0) is independent of τ and sup
ν≤τ≤τU

∥ϵ∗n(τ)∥
Pr−→ 0. Hence the consistency

proof.



Appendix D

Proof of Theorem 3.2.2

Lemma D.1. For any sequence,
{
β̃n(τ ), τ ∈ (0, τU ]

}∞

n=1
, we have

sup
τ∈(0,τU ]

 √
ρ

√
mv

∑
j∈V

Xj

[
Nj

(
eX

⊤
j β̃n(τ )

)
− Nj

(
eX

⊤
j β0(τ )

)]
−
√
ρ mv

[
µ
{
β̃n(τ )

}
− µ{β0(τ )}

]
+

√
ρ

√
mv

ϱ
∑
j∈V

[
XjWqMV

{
N
(
eZ

⊤β̃n(τ )
)}

−WqMV

{
Z N

(
eZ

⊤β̃n(τ )
)}

−XjWqMV

{
N
(
eZ

⊤β0(τ )
)}

+WqMV

{
Z N

(
eZ

⊤β0(τ )
)}]

−
√
ρ mv ϱ

[
µ̃
{
β̃n(τ )

}
− µ̃{β0(τ )}

]
+

√
(1− ρ)
√
mn

∑
l∈V

Z l

[
Nl

(
eZ

⊤
l β̃n(τ )

)
− Nl

(
eZ

⊤
l β0(τ )

)]
−
√

(1− ρ) mn

[
µ
{
β̃n(τ )

}
+ µ{β0(τ )}

]  Pr−→ 0,

if

sup
τ∈(0,τU ]

ρ [µ{β̃n(τ )} − µ{β0(τ )}
]
+ ρ ϱ[µ̃{β̃n(τ )} − µ̃{β0(τ )}]

+ (1− ρ)
[
µ{β̃n(τ )} − µ{β0(τ )}

]  Pr−→ 0.

Proof of Lemma D.1: Define µ1(b) = E
[
N
(
eX

⊤b
)]

, µ1(b) = E
[
N
(
eZ

⊤b
)]

,
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µ̃1(b) = E
[
WqMV

{
N
(
eZ

⊤b
)} ]

and

σ2
d(b) = Var

{
√
ρ
[
N
(
eX

⊤b
)
− N

(
eX

⊤β0(τ )
)
− µ1(b) + µ1{β0(τ )}

]
+
√
ρ ϱ
[
WqMV

{
N
(
eZ

⊤b
)}

− µ̃1(b)

−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+
√

(1− ρ)
[
N
(
eZ

⊤b
)
− N

(
eZ

⊤β0(τ )
)
− µ1(b) + µ1{β0(τ )}

]}
.

Provided X and Z are bounded, it suffices to prove that σ2
d

{
β̃n(τ)

}
Pr−→ 0 [Alexander,

1984; Lai and Ying, 1988]. For a given β̃n(τ),

σ2
d

{
β̃n(τ )

}
= Var

{
√
ρ
[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
+
√
ρ ϱ
[
WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+
√
(1− ρ)

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]}

= ρ Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
+ ρ ϱ2 Var

[
WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+ (1− ρ) Var
[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
+ 2

√
ρ ϱ Cov

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )},

WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]
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+ 2
√

(1− ρ) ϱ Cov

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )},

WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+ 2
√
ρ(1− ρ) Cov

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )},

N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
≤ ρ Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
+ ρ ϱ2 Var

[
WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+ (1− ρ) Var
[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
+ 2

√
ρ ϱ

√
Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]

×

√
Var

[
WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+ 2
√
(1− ρ) ϱ

√
Var

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]

×

√
Var

[
WqMV

{
N
(
eZ

⊤β̃n(τ )
)}

− µ̃1

{
β̃n(τ )

}
−WqMV

{
N
(
eZ

⊤β0(τ )
)}

+ µ̃1{β0(τ )}
]

+ 2
√
ρ(1− ρ)

√
Var

[
N
(
eZ

⊤β̃n(τ )
)
− N

(
eZ

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]

×

√
Var

[
N
(
eX

⊤β̃n(τ )
)
− N

(
eX

⊤β0(τ )
)
− µ1

{
β̃n(τ )

}
+ µ1{β0(τ )}

]
= ρ σ2

1d

{
β̃n(τ )

}
+ ρ ϱ2 σ2

2d

{
β̃n(τ )

}
+ (1− ρ) σ2

3d

{
β̃n(τ )

}
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+ 2ϱ

√
ρ σ2

1d

{
β̃n(τ )

}
σ2
2d

{
β̃n(τ )

}
+ 2ϱ

√
(1− ρ) σ2

3d

{
β̃n(τ )

}
σ2
2d

{
β̃n(τ )

}
+ 2

√
ρ(1− ρ) σ2

3d

{
β̃n(τ )

}
σ2
1d

{
β̃n(τ )

}
.

Following the arguments in Peng and Huang [2008], we can show that σ2
1d

{
β̃n(τ)

}
Pr−→

0 and σ2
3d

{
β̃n(τ)

}
Pr−→ 0. To prove that σ2

2d

{
β̃n(τ)

}
Pr−→ 0, we will use the similar

arguments provided in Peng and Huang [2008].

Since µ̃1{β0(0)} = 0 and µ̃1{β0(τ)} is Lipschitz-continuous in τ , for any ϑ > 0, we

can find some νϑ such that sup
τ∈(0,νϑ)

∥µ̃1{β0(τ)}∥ ≤ ϑ/8. Because sup
τ∈(0,τU ]

∥µ̃1{β̃n(τ)} −

µ̃1{β0(τ)}∥
Pr−→ 0, for any ζ > 0, there exists Nϑ,ζ,1 > 0 such that for n ≥ Nϑ,ζ,1,

Pr

(
sup

τ∈(0,τU ]

µ̃1

{
β̃n(τ )

}
− µ̃1{β0(τ )}

 > ϑ/8

)
< ζ/3.

Consider the case where sup
τ∈(0,τU ]

∥µ̃1{β̃n(τ)} − µ̃1{β0(τ)}∥ < ϑ/8. First, we have

sup
τ∈(0,νϑ)

∥µ̃1{β̃n(τ)}∥ ≤ ϑ/4. Note that, for a given β̃n(τ),

σ2
2d

{
β̃n(τ )

}
≤ E

(
WqMV

{
I

[
Y ≤ eZ

⊤β̃n(τ )
]}

−WqMV

{
I

[
Y ≤ eZ

⊤β0(τ )
]})2

≤ E

(
WqMV

{
I

[
Y ≤ eZ

⊤β̃n(τ )
]}

+WqMV

{
I

[
Y ≤ eZ

⊤β0(τ )
]})

= µ̃1

{
β̃n(τ )

}
+ µ̃1 {β0(τ )} ;

therefore σ2
2d

{
β̃n(τ)

}
≤ ϑ/2.

For any ν ∈ (0, τU), there exists a Nϑ,ζ,2 such that for n ≥ Nϑ,ζ,2 and given that

sup
τ∈[ν,τU ]

∥β̃n(τ)− β0(τ)∥
Pr−→ 0,

Pr

(
sup

τ∈[νϑ,τU ]

β̃n(τ )− β0(τ )
 > ϑ∗

)
< ζ/3,

where ϑ∗ satisfies

sup
τ∈(0,τU ], x∈X

ex
⊤β0(τ ) e(p C2 ϑ∗)(p C2 ϑ∗)C7 ≤ ϑ/2
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and

sup
τ∈(0,τU ], z∈Z

ez
⊤β0(τ ) e(p C2 ϑ∗)(p C2 ϑ∗)C7 ≤ ϑ/2.

Here X and Z are covariate spaces related to validation and non-validation sam-

ples and C7 is the uniform upper bound for f̃(t|x) and f̃(t|z). If ∥β̃n(τ)−β0(τ)∥ ≤ ϑ∗,

then it is easy to see thatex⊤β̃n(τ ) − ex
⊤β0(τ )

 ≤ sup
τ∈(0,τU ], x∈X

ex
⊤β0(τ ) e(p C2 ϑ∗)

and ez⊤β̃n(τ ) − ez
⊤β0(τ )

 ≤ sup
τ∈(0,τU ], z∈Z

ez
⊤β0(τ ) e(p C2 ϑ∗),

and thus σ2
2d

{
β̃n(τ)

}
≤ ϑ/2 for all τ ∈ [νϑ, τU ].

It then follows that for n ≥ max(Nϑ,ζ,1, Nϑ,ζ,2),

Pr

(
sup

τ∈(0,τU ]

σ2
2d

{
β̃n(τ )

}
> ϑ

)
≤ Pr

(
sup

τ∈(0,τU ]

µ̃1

{
β̃n(τ )

}
− µ̃1 {β0(τ )}

 > ϑ/8

)

+ Pr

(
sup

τ∈[νϑ,τU ]

β̃n(τ )− β0(τ )
 > ϑ∗

)
< ζ.

This completes the proof of σ2
d

{
β̃n(τ)

}
Pr−→ 0 and Lemma D.1.

Proof of Theorem 3.2.2

From the proofs of Theorem 3.2.1 and Lemma D.1, we have

sup
τ∈(0,τU ]

 √
ρ

√
mv

∑
j∈V

Xj

[
Nj

(
eX

⊤
j β̂(τ )

)
− Nj

(
eX

⊤
j β0(τ )

)]
−

√
ρ mv

[
µ
{
β̂(τ )

}
− µ{β0(τ )}

]
+

√
ρ

√
mv

ϱ
∑
j∈V

[
XjWqMV

{
N
(
eZ

⊤β̂(τ )
)}

−WqMV

{
Z N

(
eZ

⊤β̂(τ )
)}

−XjWqMV

{
N
(
eZ

⊤β0(τ )
)}

+WqMV

{
Z N

(
eZ

⊤β0(τ )
)}]

−
√
ρ mv ϱ

[
µ̃
{
β̂(τ )

}
− µ̃{β0(τ )}

]
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+

√
(1− ρ)
√
mn

∑
l∈V

Z l

[
Nl

(
eZ

⊤
l β̂(τ )

)
− Nl

(
eZ

⊤
l β0(τ )

)]
−
√
(1− ρ) mn

[
µ
{
β̂(τ )

}
+ µ{β0(τ )}

]  Pr−→ 0, (D.1)

Similarly we can get

sup
τ∈(0,τU ]

 √
ρ

√
mv

∑
j∈V

Xj

(
I

[
Yj ≥ eX

⊤
j β̂(τ )

]
− I

[
Yj ≥ eX

⊤
j β0(τ )

])

+

√
ρ

√
mv

ϱ
∑
j∈V

(
XjWqMV

{
I

[
Y ≥ eX

⊤β̂(τ )
]}

−WqMV

{
Z I

[
Y ≥ eX

⊤β̂(τ )
]}

−XjWqMV

{
I

[
Y ≥ eZ

⊤β0(τ )
]}

+WqMV

{
Z I

[
Y ≥ eZ

⊤β0(τ )
]})

+

√
(1− ρ)
√
mn

∑
l∈V

Z l

(
I

[
Yl ≥ eZ

⊤
l β̂(τ )

]
− I

[
Yl ≥ eZ

⊤
l β0(τ )

])
−

√
ρ mv

[
µ∗
{
β̂(τ )

}
− µ∗{β0(τ )}

]
−
√
ρ mv ϱ

[
µ̃∗{β̂(τ )} − µ̃∗{β0(τ )}

]
−
√
(1− ρ) mn

[
µ∗
{
β̂(τ )

}
+ µ∗{β0(τ )}

]  Pr−→ 0. (D.2)

√
n Sn(β̂, τ) = o(0,τU ](1), a.s. because

√
n ∥SL∥ → 0. This is true because, by the

definition of Sn(β̂, τ),

sup
τ∈[τk,τk+1]

√
n
Sn(β̂, τ )− Sn(β̂, τk)

 ≤
√
n C2{H(τk+1)−H(τk)}

≤
√
n C2 an/(1− τU).

Given that ρ µ{β̂(τ)} + ρ ϱ µ̃{β̂(τ)} + (1 − ρ) µ{β̂(τ)} uniformly converges in

probability to ρ µ{β0(τ)}+ρ ϱ µ̃{β0(τ)}+(1−ρ) µ{β0(τ)} for τ ∈ (0, τU ], by (D.1)

and (D.2),

−
√
n Sn(β0, τ )

=
√
ρ mv

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
+
√
ρ mv ϱ

[
µ̃
{
β̂(τ )

}
− µ̃ {β0(τ )}

]
+
√

(1− ρ) mn

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
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−
∫ τ

0

(
√
ρ mv

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

]
+
√
ρ mv ϱ

[
µ̃∗
{
β̂(u)

}
− µ̃∗ {β0(u)}

]
+
√
(1− ρ) mn

[
µ∗
{
β̂(u)

}
− µ∗ {β0(u)}

])
dH(u) +Op

(
1√
n

)
+ o(0,τU ])(1)

=
√
ρ mv

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
+
√
ρ mv ϱ

[
µ̃
{
β̂(τ )

}
− µ̃ {β0(τ )}

]
+
√

(1− ρ) mn

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
−
∫ τ

0

{[√
ρ mv B∗ {β0(u)} (B {β0(u)})

−1 +
√
ρ mv ϱ B̃

∗
{β0(u)}

(
B̃ {β0(u)}

)−1

+
√

(1− ρ) mn B
∗ {β0(u)}

(
B {β0(u)}

)−1
+Op

(
1√
n

)
+ o(0,τU ](1)

]
×
(
√
ρ mv

[
µ
{
β̂(u)

}
− µ {β0(u)}

]
+
√
ρ mv ϱ

[
µ̃
{
β̂(u)

}
− µ̃ {β0(u)}

]
+
√

(1− ρ) mn

[
µ
{
β̂(u)

}
− µ {β0(u)}

])}
dH(u)

+Op

(
1√
n

)
+ o(0,τU ])(1).

√
n Sn(β0, τ) = 0 can be viewed as a stochastic differential equation for

√
ρ mv [µ{β̂(τ)}−

µ{β0(τ)}] +
√
ρ mv ϱ [µ̃{β̂(τ)} − µ̃{β0(τ)}] +

√
(1− ρ) mn [µ{β̂(τ)} − µ{β0(τ)}],

and using the production integration theory (Gill and Johansen 1990; Andersen et al.

1998, II.6), we get

√
ρ mv

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
+
√
ρ mv ϱ

[
µ̃
{
β̂(τ )

}
− µ̃ {β0(τ )}

]
+
√

(1− ρ) mn

[
µ
{
β̂(τ )

}
− µ {β0(τ )}

]
= ϕ{−

√
n Sn(β0, τ )}+Op

(
1√
n

)
+ o(0,τU ])(1), (D.3)

where ϕ is a map from F to F such that for γ ∈ F ,

ϕ(γ)(τ ) =
∫ τ

0

I(s, τ)dγ(s),

with

I(s, t) =πu∈(s,t]
{
Ip +

[√
ρ mv B∗ {β0(u)} (B {β0(u)})

−1
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+
√
ρ mv ϱ B̃

∗
{β0(u)}

(
B̃ {β0(u)}

)−1

+
√
(1− ρ) mn B

∗ {β0(u)}
(
B {β0(u)}

)−1
]
dH(u)

}
and F = {γ : [0, τU ] → Rp, γ is left-continuous with right limit,γ(0) = 0}.

By considering that{
ρ XjNj

(
eX

⊤
j β0(τ )

)
+ (1− ρ) Z lNl

(
eZ

⊤
l β0(τ )

)

+ ρ ϱ
[
XjWqMV

{
N
(
eZ

⊤β0(τ )
)}

−WqMV

{
ZN

(
eZ

⊤β0(τ )
)}]

, τ ∈ [0, τU ]

}

is a VC-class [van der Vaart and Wellner, 1996] and

∫ τ

0

(
ρ XjI

[
Yj ≥ eX

⊤
j β0(u)

]
+ (1− ρ) Z lI

[
Yl ≥ eZ

⊤
l β0(u)

]

+ ρ ϱ
[
XjWqMV

{
I

[
Y ≥ eZ

⊤β0(u)
]}

−WqMV

{
ZI

[
Y ≥ eZ

⊤β0(u)
]}])

dH(u)

is Lipschitz in τ , and by using the permanence properties of the Donsker class we can

tell that{
ρ XjNj

(
eX

⊤
j β0(τ )

)
+ (1− ρ) Z lNl

(
eZ

⊤
l β0(τ )

)
+ ρ ϱ

[
XjWqMV

{
N
(
eZ

⊤β0(τ )
)}

−WqMV

{
ZN

(
eZ

⊤β0(τ )
)}]

−
∫ τ

0

(
ρ ϱ

[
XjWqMV

{
I

[
Y ≥ eZ

⊤β0(u)
]}

−WqMV

{
ZI

[
Y ≥ eZ

⊤β0(u)
]}]

+ ρ XjI

[
Yj ≥ eX

⊤
j β0(u)

]
+ (1− ρ) Z lI

[
Yl ≥ eZ

⊤
l β0(u)

])
dH(u), τ ∈ [ν, τU ]

}

is a Donsker class. By the Donsker theorem, −
√
n Sn(β0, τ) converges weakly to a

tight Gaussian process, G(τ), with mean 0 and covariance Σ(s, t) for τ ∈ [0, τU ], where

Σ(s, t) = E{ιĵ(s)ιĵ(t)⊤}+ E{ι̂l(s)ι̂l(t)⊤} with

ιĵ(τ ) = ρ X ĵNĵ

(
e
X⊤

ĵ
β0(τ )

)
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+ ρ ϱ
[
X ĵWqMV

{
N
(
eZ

⊤β0(τ )
)}

−WqMV

{
Z N

(
eZ

⊤β0(τ )
)}]

− ρ
∫ τ

0

(
X ĵI

[
Yĵ ≥ e

X⊤
ĵ
β0(u)

]

+ ϱ
[
X ĵWqMV

{
I

[
Y ≥ eZ

⊤β0(u)
]}

−WqMV

{
Z I

[
Y ≥ eZ

⊤β0(u)
]}])

dH(u)

and

ι̂l(τ ) = (1− ρ) Z l̂Nl̂

(
e
Z⊤

l̂
β0(τ )

)
−
∫ τ

0

(1− ρ) Z l̂I

[
Ŷl ≥ e

Z⊤
l̂
β0(u)

]
dH(u).

ϕ{G(τ)} for τ ∈ (0, τU ] is also Gaussian process because ϕ is a linear operator

(Römisch 2005). ρ (B{β0(τ)})−1 + ρ ϱ (B̃{β0(τ)})−1 + (1 − ρ) (B{β0(τ)})−1 is

bounded uniformly for τ ∈ [ν, τU ] (by R4). Applying the Taylor expansion technique

to η[ρ µ(β̂(τ)) + ρ ϱ µ̃(β̂(τ)) + (1 − ρ) µ(β̂(τ))] − η[ρ µ(β0(τ)) + ρ ϱ µ̃(β0(τ)) +

(1 − ρ) µ(β0(τ))] and the continuous mapping theorem, we get that for τ ∈ [ν, τU ],√
n {β̂(τ)−β0(τ)} converges weakly to [ρ (B{β0(τ)})−1 + ρ ϱ (B̃{β0(τ)})−1 + (1−

ρ) (B{β0(τ)})−1]ϕ{G(τ)}, which is also Gaussian.



Appendix E

Simulation Result Summary for

Numerical Study - II in Chapter 4



127

n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0042 0.0170 0.0647 0.0217 0.0275 0.0720

β1. 0.0029 0.0035 0.0094 -0.0491 -0.0411 -0.0090

β2. -0.0049 -0.0141 -0.0100 0.0116 -0.0029 -0.0194

200

β0 0.0218 0.0298 0.0501 0.0220 0.0323 0.0562

β1 0.0016 0.0026 0.0057 -0.0295 -0.0273 -0.0119

β2 -0.0020 -0.0032 -0.0078 0.0034 0.0053 -0.0011

SE

100

β0. 0.1449 0.1404 0.2268 0.1273 0.1233 0.2160

β1. 0.1533 0.1515 0.2141 0.1475 0.1416 0.2075

β2. 0.1519 0.1525 0.2198 0.1416 0.1414 0.2162

200

β0 0.0973 0.0929 0.1292 0.0840 0.0798 0.1239

β1 0.1040 0.1029 0.1341 0.0970 0.0921 0.1278

β2 0.1041 0.1027 0.1354 0.0957 0.0936 0.1304

CP

100

β0. 93.3 93.4 95.7 94.3 96.1 96.8

β1. 94.7 95.8 96.5 94.6 96.1 96.9

β2. 96.0 96.3 96.4 95.4 95.4 97.4

200

β0 92.3 91.9 92.7 92.9 92.3 94.3

β1 94.5 96.2 95.0 95.3 95.3 94.8

β2 93.6 95.0 95.2 93.5 94.9 95.9

Table E.1: Bias, SE and CP of regression parameters for Case (i) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0105 0.0288 0.1088 0.0306 0.0461 0.1139

β1. 0.0063 0.0214 0.0169 -0.0841 -0.0503 -0.0216

β2. 0.0164 0.0096 -0.0170 0.0329 0.0260 -0.0094

200

β0 0.0267 0.0355 0.0821 0.0419 0.0508 0.0921

β1 0.0006 -0.0032 0.0050 -0.0022 -0.0010 -0.0188

β2 0.0112 0.0025 0.0051 0.0251 0.0137 0.0133

SE

100

β0. 0.1871 0.1538 0.2980 0.1619 0.1379 0.2768

β1. 0.1946 0.1664 0.2698 0.1863 0.1595 0.2548

β2. 0.1955 0.1676 0.2733 0.1787 0.1549 0.2632

200

β0 0.1235 0.1029 0.1621 0.1048 0.0900 0.1551

β1 0.1301 0.1146 0.1663 0.1214 0.1052 0.1575

β2 0.1315 0.1149 0.1671 0.1185 0.1044 0.1606

CP

100

β0. 95.5 93.1 94.7 95.9 94.2 97.5

β1. 95.6 93.5 96.4 94.8 93.3 96.7

β2. 95.9 95.4 96.4 94.2 94.2 96.3

200

β0 93.1 91.2 94.0 93.5 93.0 94.7

β1 95.0 95.5 95.4 94.5 94.0 94.9

β2 95.5 95.7 95.5 94.8 94.5 95.4

Table E.2: Bias, SE and CP of regression parameters for Case (ii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0062 0.0088 0.0224 0.0127 0.0146 0.0302

β1. 0.0042 0.0051 0.0076 -0.0071 -0.0043 0.0021

β2. -0.0038 -0.0039 -0.0069 0.0018 0.0017 -0.0040

200

β0 0.0064 0.0072 0.0167 0.0094 0.0105 0.0197

β1 0.0012 0.0038 0.0033 -0.0042 -0.0026 -0.0007

β2 -0.0015 -0.0031 -0.0017 0.0009 -0.0003 0.0015

SE

100

β0. 0.0472 0.0466 0.0767 0.0448 0.0445 0.0801

β1. 0.0566 0.0570 0.0796 0.0541 0.0549 0.0830

β2. 0.0567 0.0575 0.0807 0.0538 0.0558 0.0833

200

β0 0.0313 0.0301 0.0402 0.0292 0.0283 0.0396

β1 0.0371 0.0377 0.0489 0.0348 0.0356 0.0484

β2 0.0367 0.0376 0.0488 0.0344 0.0359 0.0488

CP

100

β0. 94.4 95.0 96.1 93.9 94.7 96.9

β1. 95.0 95.2 95.5 94.6 94.7 96.3

β2. 96.6 96.7 97.3 95.8 96.4 97.3

200

β0 94.1 93.4 94.9 93.9 93.8 94.9

β1 94.0 94.9 96.0 94.1 94.3 95.0

β2 94.6 95.0 95.3 94.0 95.4 94.3

Table E.3: Bias, SE and CP of regression parameters for Case (iii) model with inde-

pendent covariates (σx1,x2 = 0)



130

n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0066 0.0097 0.0364 0.0189 0.0169 0.0419

β1. 0.0031 0.0039 0.0041 -0.0138 -0.0073 -0.0000

β2. 0.0008 -0.0009 -0.0018 0.0074 0.0060 0.0024

200

β0 0.0083 0.0089 0.0243 0.0124 0.0119 0.0273

β1 -0.0020 0.0016 0.0017 -0.0097 -0.0051 -0.0032

β2 0.0008 -0.0012 -0.0031 0.0019 0.0004 -0.0020

SE

100

β0. 0.0600 0.0507 0.1103 0.0548 0.0486 0.1159

β1. 0.0667 0.0592 0.0993 0.0618 0.0581 0.1018

β2. 0.0677 0.0600 0.1014 0.0616 0.0578 0.1066

200

β0 0.0395 0.0327 0.0521 0.0359 0.0304 0.0516

β1 0.0429 0.0386 0.0568 0.0397 0.0364 0.0558

β2 0.0429 0.0389 0.0580 0.0397 0.0368 0.0579

CP

100

β0. 93.5 95.0 97.7 92.9 95.2 97.6

β1. 95.6 96.6 97.0 94.2 95.5 97.4

β2. 96.0 96.2 97.3 96.3 97.0 97.6

200

β0 93.0 93.9 94.9 93.3 94.2 95.8

β1 95.6 95.8 94.7 94.0 95.5 95.2

β2 94.5 95.9 95.5 94.9 96.0 94.7

Table E.4: Bias, SE and CP of regression parameters for Case (iv) model with inde-

pendent covariates (σx1,x2 = 0)



131

n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0120 0.0179 0.0588 0.0203 0.0284 0.0663

β1. 0.0006 0.0016 0.0134 -0.0679 -0.0632 -0.0172

β2. 0.0001 -0.0047 -0.0146 0.0184 0.0133 -0.0053

200

β0 0.0268 0.0284 0.0487 0.0238 0.0297 0.0518

β1 -0.0032 -0.0001 -0.0037 -0.0371 -0.0351 -0.0243

β2 -0.0006 -0.0072 -0.0030 0.0089 0.0039 0.0023

SE

100

β0. 0.1438 0.1386 0.2225 0.1274 0.1221 0.2098

β1. 0.1788 0.1759 0.2493 0.1763 0.1671 0.2416

β2. 0.1768 0.1749 0.2543 0.1686 0.1664 0.2491

200

β0 0.0972 0.0922 0.1273 0.0840 0.0789 0.1209

β1 0.1197 0.1193 0.1543 0.1124 0.1091 0.1470

β2 0.1203 0.1193 0.1553 0.1118 0.1096 0.1510

CP

100

β0. 94.0 93.4 95.4 94.6 96.5 97.5

β1. 95.4 96.7 95.7 94.7 95.0 97.2

β2. 95.9 96.4 96.3 94.8 94.9 97.0

200

β0 93.3 92.1 94.6 95.0 94.7 96.1

β1 94.6 94.4 94.7 94.4 94.5 94.4

β2 95.0 94.4 95.5 94.8 94.2 95.0

Table E.5: Bias, SE and CP of regression parameters for Case (i) model with dependent

covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0092 0.0301 0.1157 0.0525 0.0623 0.1337

β1. 0.0241 0.0040 -0.0053 -0.0826 -0.0711 -0.0348

β2. -0.0140 -0.0102 -0.0016 0.0182 0.0182 0.0039

200

β0 0.0264 0.0258 0.0605 0.0498 0.0451 0.0825

β1 0.0027 0.0004 0.0034 -0.0411 -0.0436 -0.0263

β2 -0.0010 -0.0017 -0.0066 0.0120 0.0168 0.0119

SE

100

β0. 0.1868 0.1530 0.2943 0.1618 0.1391 0.2699

β1. 0.2261 0.1970 0.3164 0.2172 0.1912 0.2958

β2. 0.2261 0.1962 0.3163 0.2081 0.1843 0.3035

200

β0 0.1228 0.1007 0.1619 0.1061 0.0894 0.1565

β1 0.1495 0.1307 0.1938 0.1416 0.1211 0.1851

β2 0.1497 0.1305 0.1960 0.1376 0.1194 0.1892

CP

100

β0. 94.7 93.8 95.9 94.3 94.4 96.5

β1. 95.7 96.6 96.6 94.9 95.5 95.9

β2. 96.1 95.5 97.2 94.2 96.1 96.6

200

β0 91.7 92.9 93.4 93.1 93.9 94.3

β1 96.4 96.2 96.4 94.7 95.3 94.9

β2 95.2 95.0 96.0 94.5 94.7 96.3

Table E.6: Bias, SE and CP of regression parameters for Case (ii) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0067 0.0104 0.0202 0.0123 0.0161 0.0252

β1. 0.0037 0.0040 0.0091 -0.0071 -0.0062 0.0030

β2. -0.0013 -0.0048 -0.0105 0.0017 0.0010 -0.0058

200

β0 0.0073 0.0092 0.0182 0.0096 0.0107 0.0194

β1 0.0010 0.0025 0.0030 -0.0041 -0.0019 0.0000

β2 -0.0006 -0.0021 -0.0041 0.0005 -0.0009 -0.0019

SE

100

β0. 0.0458 0.0440 0.0770 0.0439 0.0431 0.0802

β1. 0.0604 0.0607 0.0877 0.0592 0.0608 0.0917

β2. 0.0604 0.0610 0.0894 0.0587 0.0613 0.0932

200

β0 0.0308 0.0293 0.0400 0.0290 0.0278 0.0396

β1 0.0398 0.0409 0.0547 0.0381 0.0393 0.0544

β2 0.0396 0.0411 0.0549 0.0380 0.0396 0.0550

CP

100

β0. 94.6 93.9 96.2 94.0 94.7 98.0

β1. 96.6 95.9 97.1 96.0 96.4 97.1

β2. 96.7 96.1 97.2 95.7 96.0 97.2

200

β0 94.1 92.8 93.8 93.9 94.2 94.1

β1 95.8 95.1 95.5 94.7 94.6 94.9

β2 95.0 94.3 93.9 93.8 94.1 93.9

Table E.7: Bias, SE and CP of regression parameters for Case (iii) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0068 0.0122 0.0332 0.0104 0.0155 0.0341

β1. -0.0006 0.0045 0.0115 -0.0159 -0.0081 0.0050

β2. -0.0000 -0.0045 -0.0118 -0.0010 -0.0029 -0.0118

200

β0 0.0075 0.0083 0.0226 0.0097 0.0099 0.0228

β1 -0.0010 0.0013 0.0034 -0.0092 -0.0053 0.0002

β2 0.0014 -0.0003 -0.0026 0.0013 0.0011 -0.0021

SE

100

β0. 0.0581 0.0488 0.1093 0.0539 0.0465 0.1084

β1. 0.0723 0.0655 0.1118 0.0705 0.0644 0.1121

β2. 0.0726 0.0661 0.1144 0.0694 0.0647 0.1152

200

β0 0.0384 0.0316 0.0518 0.0353 0.0297 0.0509

β1 0.0477 0.0422 0.0644 0.0451 0.0402 0.0637

β2 0.0470 0.0427 0.0645 0.0443 0.0409 0.0646

CP

100

β0. 94.3 93.0 97.1 94.1 94.6 98.0

β1. 95.3 96.6 96.5 94.7 94.8 98.4

β2. 96.4 95.7 97.3 95.9 96.5 97.2

200

β0 93.8 92.4 95.3 94.5 94.2 95.3

β1 94.4 94.7 95.4 94.4 94.5 95.9

β2 94.3 96.2 96.7 94.3 95.9 96.2

Table E.8: Bias, SE and CP of regression parameters for Case (iv) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0096 0.0191 0.0594 0.0174 0.0273 0.0685

β1. 0.0038 0.0063 0.0162 -0.0381 -0.0394 -0.0177

β2. 0.0035 -0.0008 -0.0102 0.0072 0.0033 -0.0060

200

β0 0.0227 0.0267 0.0543 0.0217 0.0281 0.0540

β1 -0.0011 -0.0005 0.0019 -0.0240 -0.0234 -0.0154

β2 0.0012 -0.0032 -0.0034 0.0043 0.0006 -0.0009

SE

100

β0. 0.1437 0.1394 0.2205 0.1277 0.1216 0.2113

β1. 0.1526 0.1517 0.2064 0.1459 0.1398 0.2002

β2. 0.1536 0.1544 0.2186 0.1555 0.1569 0.2205

200

β0 0.0982 0.0914 0.1276 0.0852 0.0790 0.1221

β1 0.1035 0.1011 0.1351 0.0958 0.0914 0.1281

β2 0.1062 0.1023 0.1351 0.1066 0.1031 0.1360

CP

100

β0. 92.6 93.5 95.6 95.4 95.9 97.3

β1. 95.5 95.5 96.9 95.0 94.9 96.2

β2. 95.7 96.2 96.6 95.0 94.6 96.8

200

β0 94.0 93.4 93.9 94.8 95.4 95.5

β1 95.1 95.2 95.2 94.2 94.9 96.3

β2 95.4 94.3 94.1 95.0 94.7 94.2

Table E.9: Bias, SE and CP of regression parameters for Case (i) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0105 0.0353 0.0918 0.0113 0.0359 0.0920

β1. -0.0030 0.0051 0.0164 -0.0647 -0.0458 -0.0199

β2. 0.0092 0.0046 -0.0032 0.0132 0.0084 0.0001

200

β0 0.0237 0.0272 0.0708 0.0208 0.0274 0.0702

β1 0.0019 0.0028 0.0081 -0.0411 -0.0343 -0.0206

β2 -0.0017 -0.0026 -0.0019 0.0017 0.0040 0.0035

SE

100

β0. 0.1837 0.1542 0.2913 0.1610 0.1368 0.2742

β1. 0.1927 0.1657 0.2589 0.1811 0.1535 0.2477

β2. 0.1934 0.1669 0.2687 0.1955 0.1679 0.2686

200

β0 0.1235 0.1007 0.1667 0.1075 0.0891 0.1571

β1 0.1298 0.1126 0.1688 0.1208 0.1024 0.1582

β2 0.1304 0.1125 0.1696 0.1312 0.1136 0.1699

CP

100

β0. 94.2 93.9 95.3 96.0 95.2 97.0

β1. 95.8 95.1 95.7 94.2 94.4 96.3

β2. 95.8 94.3 95.5 94.4 95.0 96.5

200

β0 94.0 91.9 94.0 93.8 93.5 94.7

β1 95.1 95.9 95.1 94.7 94.8 94.2

β2 93.4 95.8 95.0 93.9 95.5 94.7

Table E.10: Bias, SE and CP of regression parameters for Case (ii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0062 0.0088 0.0224 0.0120 0.0139 0.0297

β1. 0.0042 0.0051 0.0076 -0.0054 -0.0045 0.0021

β2. -0.0038 -0.0039 -0.0069 0.0008 0.0011 -0.0047

200

β0 0.0095 0.0111 0.0198 0.0116 0.0134 0.0221

β1 0.0007 0.0018 0.0023 -0.0035 -0.0022 -0.0010

β2 0.0011 -0.0016 -0.0006 0.0028 0.0004 0.0015

SE

100

β0. 0.0472 0.0466 0.0767 0.0444 0.0441 0.0763

β1. 0.0566 0.0570 0.0796 0.0537 0.0541 0.0784

β2. 0.0567 0.0575 0.0807 0.0561 0.0581 0.0817

200

β0 0.0317 0.0302 0.0403 0.0297 0.0284 0.0396

β1 0.0371 0.0379 0.0492 0.0352 0.0360 0.0486

β2 0.0373 0.0372 0.0490 0.0365 0.0368 0.0496

CP

100

β0. 94.4 95.0 96.1 94.0 95.2 96.6

β1. 95.0 95.2 95.5 95.8 95.0 96.3

β2. 96.6 96.7 97.3 96.2 96.7 97.2

200

β0 93.9 92.5 93.6 94.4 93.4 93.9

β1 95.4 94.4 95.3 95.1 94.4 96.0

β2 94.4 94.9 96.6 94.2 95.1 96.2

Table E.11: Bias, SE and CP of regression parameters for Case (iii) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0026 0.0108 0.0334 0.0102 0.0160 0.0389

β1. 0.0043 0.0027 0.0111 -0.0105 -0.0086 0.0027

β2. -0.0010 -0.0014 -0.0086 0.0043 0.0027 -0.0041

200

β0 0.0095 0.0125 0.0232 0.0121 0.0145 0.0254

β1 -0.0007 0.0002 0.0020 -0.0081 -0.0061 -0.0032

β2 0.0011 0.0011 0.0009 0.0026 0.0029 0.0025

SE

100

β0. 0.0594 0.0508 0.1093 0.0539 0.0473 0.1085

β1. 0.0668 0.0600 0.0964 0.0616 0.0563 0.0942

β2. 0.0663 0.0598 0.0996 0.0642 0.0595 0.1005

200

β0 0.0397 0.0329 0.0514 0.0364 0.0305 0.0501

β1 0.0429 0.0383 0.0567 0.0402 0.0360 0.0554

β2 0.0432 0.0389 0.0573 0.0420 0.0381 0.0574

CP

100

β0. 94.1 94.0 96.9 94.2 95.4 97.9

β1. 96.4 96.7 97.5 94.8 94.9 97.4

β2. 96.3 97.0 96.5 95.3 96.1 97.0

200

β0 93.4 91.8 94.7 94.0 93.7 94.7

β1 95.8 96.5 95.5 94.2 95.1 95.6

β2 95.5 95.7 94.9 95.0 94.6 95.5

Table E.12: Bias, SE and CP of regression parameters for Case (iv) model with inde-

pendent covariates (σx1,x2 = 0)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0230 0.0372 0.0725 0.0142 0.0308 0.0690

β1. -0.0045 0.0001 -0.0009 -0.0582 -0.0516 -0.0314

β2. 0.0039 0.0025 -0.0042 0.0072 0.0096 0.0033

200

β0 0.0233 0.0283 0.0488 0.0189 0.0245 0.0446

β1 0.0035 0.0028 -0.0033 -0.0311 -0.0319 -0.0276

β2 -0.0012 0.0002 0.0033 0.0010 0.0028 0.0071

SE

100

β0. 0.1441 0.1407 0.2251 0.1274 0.1229 0.2126

β1. 0.1787 0.1800 0.2483 0.1740 0.1712 0.2421

β2. 0.1794 0.1807 0.2549 0.1801 0.1829 0.2563

200

β0 0.0976 0.0911 0.1269 0.0856 0.0787 0.1194

β1 0.1205 0.1176 0.1559 0.1153 0.1097 0.1499

β2 0.1223 0.1185 0.1562 0.1236 0.1192 0.1569

CP

100

β0. 94.7 93.3 95.5 96.1 96.4 96.9

β1. 94.8 95.4 95.0 93.5 94.3 95.6

β2. 94.4 94.7 96.5 95.4 95.4 96.3

200

β0 91.9 92.0 92.8 94.8 94.4 94.6

β1 94.8 95.0 94.4 94.1 94.7 94.6

β2 93.6 94.5 95.3 94.8 95.1 95.2

Table E.13: Bias, SE and CP of regression parameters for Case (i) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0150 0.0321 0.0935 0.0128 0.0369 0.0920

β1. 0.0060 0.0035 0.0019 -0.0707 -0.0568 -0.0356

β2. -0.0092 -0.0037 0.0007 0.0008 0.0039 -0.0030

200

β0 0.0241 0.0268 0.0754 0.0267 0.0294 0.0758

β1 -0.0055 -0.0047 -0.0025 -0.0454 -0.0374 -0.0246

β2 -0.0000 0.0035 0.0067 0.0030 0.0081 0.0070

SE

100

β0. 0.1830 0.1542 0.2937 0.1615 0.1375 0.2743

β1. 0.2248 0.1978 0.3138 0.2197 0.1893 0.2978

β2. 0.2280 0.1985 0.3218 0.2298 0.2005 0.3174

200

β0 0.1214 0.1010 0.1657 0.1055 0.0891 0.1563

β1 0.1493 0.1303 0.1957 0.1418 0.1229 0.1861

β2 0.1492 0.1317 0.1969 0.1509 0.1327 0.1960

CP

100

β0. 94.4 93.2 96.3 95.4 94.9 97.4

β1. 96.0 95.5 96.2 95.7 95.5 95.6

β2. 94.9 95.2 96.0 94.8 95.1 96.1

200

β0 92.1 91.4 93.9 92.9 92.9 95.3

β1 95.8 95.3 95.3 94.9 94.8 96.1

β2 94.9 95.2 95.7 94.9 94.4 95.4

Table E.14: Bias, SE and CP of regression parameters for Case (ii) model with depen-

dent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0043 0.0076 0.0218 0.0097 0.0108 0.0208

β1. -0.0002 0.0035 0.0118 -0.0113 -0.0060 0.0038

β2. 0.0026 -0.0026 -0.0090 0.0075 0.0018 -0.0049

200

β0 0.0076 0.0104 0.0173 0.0094 0.0114 0.0180

β1 -0.0004 -0.0024 0.0010 -0.0056 -0.0072 -0.0019

β2 -0.0005 0.0034 -0.0008 0.0018 0.0048 0.0007

SE

100

β0. 0.0456 0.0441 0.0774 0.0431 0.0421 0.0798

β1. 0.0601 0.0607 0.0876 0.0588 0.0597 0.0894

β2. 0.0606 0.0612 0.0884 0.0605 0.0623 0.0900

200

β0 0.0305 0.0290 0.0399 0.0288 0.0276 0.0398

β1 0.0400 0.0410 0.0545 0.0387 0.0396 0.0541

β2 0.0401 0.0413 0.0547 0.0396 0.0408 0.0552

CP

100

β0. 95.1 95.0 97.7 94.4 95.1 98.4

β1. 96.6 96.6 96.5 96.2 96.2 96.9

β2. 95.8 95.3 96.7 95.7 95.9 96.7

200

β0 91.6 91.8 94.1 93.7 93.2 94.6

β1 95.4 95.8 95.7 94.4 94.9 95.8

β2 94.6 94.7 94.4 94.9 94.0 94.4

Table E.15: Bias, SE and CP of regression parameters for Case (iii) model with de-

pendent covariates (σx1,x2 = 0.5)
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n
CQR CQR-EL2

τ → 0.25 0.50 0.75 0.25 0.50 0.75

Bias

100

β0. 0.0042 0.0110 0.0382 0.0098 0.0147 0.0391

β1. 0.0016 0.0041 0.0109 -0.0150 -0.0080 0.0028

β2. -0.0002 -0.0032 -0.0119 0.0049 0.0016 -0.0110

200

β0 0.0083 0.0100 0.0244 0.0094 0.0102 0.0234

β1 -0.0020 0.0017 0.0031 -0.0106 -0.0057 -0.0015

β2 0.0017 0.0000 -0.0030 0.0031 0.0019 -0.0014

SE

100

β0. 0.0595 0.0498 0.1099 0.0541 0.0471 0.1067

β1. 0.0735 0.0663 0.1134 0.0717 0.0655 0.1109

β2. 0.0747 0.0668 0.1147 0.0734 0.0672 0.1164

200

β0 0.0383 0.0319 0.0517 0.0353 0.0299 0.0507

β1 0.0471 0.0426 0.0654 0.0454 0.0413 0.0638

β2 0.0475 0.0424 0.0643 0.0466 0.0421 0.0643

CP

100

β0. 95.4 95.0 97.2 94.5 96.1 97.6

β1. 95.7 96.4 96.9 95.1 96.3 96.6

β2. 96.0 96.3 96.9 95.7 95.9 96.7

200

β0 93.6 93.0 94.3 94.5 94.5 95.7

β1 95.7 95.3 95.4 94.1 95.4 94.7

β2 96.1 95.9 95.3 96.0 96.4 95.0

Table E.16: Bias, SE and CP of regression parameters for Case (iv) model with de-

pendent covariates (σx1,x2 = 0.5)
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