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Abstract

This thesis illustrates two approaches for the evaluation of forecasting, filtering and

smoothing from a flexible state-space model. Parameters of this model can be time

dependent and the dimension of its state or observed vectors can vary over time. The

first approach consists of establishing an algorithm based on the Kalman filter and

Kalman smoother as well as properties derived from the model. Another approach is

to reconstruct the model. In addition, an extension of the model is proposed.
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Chapter 1

Introduction

This thesis would mainly explore the relationship among estimators like forecasts,

filters and smoothers of a state-space model. We will propose a flexible state-space

model, in which any subset of parameters can be time dependent. In addition, the

dimension of the state and observed vectors of our model could vary over time, which

is only assumed in limited literature, for instance, the article of Mclauchlan and

Murray [1996]. The relationship among estimators could be well described by their

joint distribution. Based on the algorithms - Kalman filter and Kalman smoother,

we adopt two methods to obtain the complete information of the distribution. One

method is established by researching on some properties derived from the model,

the other one can be accomplished by reconstructing the model, which is a classic

approach in the study of state-space model (see Anderson and Moore [2012]). Besides

these, inspired by the work of Qian [2014], we extend our state-space model into a

new one, and propose a procedure to calculate forecasts, filters and smoothers of the

new model through the model reconstruction method.

The rest of the thesis is organized as follows. Chapter 2 provides an introduction

to our state-space model and preliminary concepts associated with it as well as a brief
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introduction to Kalman filter and Kalman smoother. The organization and content

of the second chapter is referred to the books of Shumway and Stoffer [2010] as well

as Hamilton [1994], however we should notice that our model differs from theirs due

to the time-varying dimension of the state and observed vectors. Chapter 3 illustrates

the main work of this thesis. In the first section of chapter 3, an algorithm has been

established to assist us in studying the joint distribution, and in the second section

of it, we examine the model reconstruction method. we also extend the model in the

third section. Chapter 4 gives a summary and indicate our further work.



Chapter 2

Preliminary knowledge of the

state-space model

Starting with the breakthrough papers of Kalman [1960] as well as Kalman and Bucy

[1961], the state-space model has been widely applied in many fields such as statis-

tics, economics, engineering and medicine. Harvey [1990], Hamilton [1994], Tsay

[2010], Durbin and Koopman [2012] and Tsay [2014] present its theory and applica-

tions in time series analysis. The article of Basdevant [2003] contains an application

on macroeconomics, Mergner [2009] addresses applications in the area of finance and

Jones [1984] provides an example of applications on health science. In order to solve

practical problems, building a good state-space model is essential. We should know

how to cast a structural model into an appropriate state-space form. The representa-

tion is not unique, for one can enlarge the state vector but describe the same process.

The primary and standard tools for analyzing a state-space model are filtering

and smoothing algorithms. Filtering provides an estimate of the state vector at a

given time point conditional on the information observed up to that point. Smoothing

enables us to estimate the state vector at any time given all the available observations.
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The best known filtering and smoothing algorithms are Kalman filter and Kalman

smoother, that could be found in a large amount of literature, for example, books of

Shumway and Stoffer [2010], Anderson and Moore [2012], Brockwell and Davis [2013].

In the first section of this chapter, we describe a state-space model which is the

focus of this thesis, and give an instance to illustrate the state-space representation. In

the second section, we would discuss the forecasting, filtering and smoothing problems

and introduce the solution - the Kalman filter and Kalman smoother algorithms.

2.1 The state-space model and representation

Many linear dynamic systems can be written in a state-space form. Before explor-

ing the state-space representation, we consider a simple dynamic system: first-order

autoregression

zt = φzt−1 + εt, (2.1)

where εt ∼ i.i.d. N(0, σ2). Since the future values {zt+1, zt+2, · · · } of this process

only depend on the present value zt, we can easily to analyze the dynamics and

make forecasts for this process. For example, we solve equation (2.1) by recursive

substitution:

zt+m = φzt+m−1 + εt+m

= φ(φzt+m−2 + εt+m−1) + εt+m

= φmzt + φm−1εt+1 + φm−2εt+2 + · · ·+ φεt+m−1 + εt+m

(2.2)

for m = 1, 2, · · · , which implies an optimal (in a mean square error sense) m-ahead

forecast

E(zt+m|zt, zt−1, · · · ) = φmzt.
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In order to represent a more complicated linear dynamic system by the state-space

model, we should derive the dynamics of the system from an (nt×1) observation vector

yt. The system dynamics is expressed by the change of a possibly unobserved (rt× 1)

vector xt known as the state vector of the system. The dynamics of a linear system

can be illustrated as a generalization of (2.1):

xt = gt + Ftxt−1 + vt, (2.3)

where Ft denotes an (rt × rt−1) matrix, gt is an (rt × 1) predetermined vector, the

(rt×1) vector vt is taken to be N(0, Qt) and {vt}∞t=1 is an independent sequence. State

vector x0 is assumed to be the initial value of the state, furthermore, we assume that

it is N(γ,O) and independent of {vt}∞t=1. We usually name (2.3) the state equation.

Note that 0 in the last paragraph symbolizes a zero matrix fitted its position, for

instance, population mean 0 for vector vt is an (rt × 1) zero matrix. In the following

context, symbol 0 would be used like this way for convenience. Similarly, Qt and O

in the last paragraph are covariance matrices fitted their positions.

Like (2.2), we can write

xt+m =F̃m
t+mxt + F̃m−1

t+m gt+1 + F̃m−2
t+m gt+2 + · · ·+ F̃ 1

t+mgt+m−1 + gt+m

+ F̃m−1
t+m vt+1 + F̃m−2

t+m vt+2 + · · ·+ F̃ 1
t+mvt+m−1 + vt+m

(2.4)

for m = 1, 2, · · · , where

F̃ n
t+m = Ft+m × Ft+m−1 × · · · × Ft+m−(n−1)
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for n = 1, 2, · · · ,m. Thus, the optimal m-ahead forecast can be written as

E(xt+m|xt, xt−1, · · · )

= F̃m
t+mxt + F̃m−1

t+m gt+1 + F̃m−2
t+m gt+2 + · · ·+ F̃ 1

t+mgt+m−1 + gt+m.

(2.5)

Assume that the observation vectors are related to the state vectors through the

equation

yt = at +Htxt + wt, (2.6)

where yt is an (nt×1) vector representing the observation of the system at time t, Ht is

an (nt× rt) matrix of coefficients, and wt is an (nt×1) vector which could be thought

as measurement error; wt is presumed to be N(0, Rt) (Rt is covariance matrix fitted its

position), {wt}∞t=1 is an independent sequence and also independent of {vt}∞t=1 as well

as the initial value of state x0. Equation (2.6) also includes at, an (nt×1) observed or

predetermined vector. For example, at could include the information of lagged values

of y. We usually call (2.6) the observation equation of the system.

The state equation (2.3) and observation equation (2.6) constitute a state-space

representation for the dynamic system of y. In this paper, we would focus on the

system described by (2.3) and (2.6).

Note that the dimension of both state and observed vectors of this model can

change over time. The time-varying dimension of observed vectors has been well

understood and practiced. For instance, if some elements of an observation have

missed, then its size is accordingly reduced. If the observation itself has missed, the

updating step of the Kalman filter would be skipped (see Jones [1980], Harvey and

Pierse [1984]). However the time-varying dimension of state vectors had not been

enough appreciated until recently. Jungbacker et al. [2011] put common factors and

idiosyncratic disturbances corresponding to missing data in the state vector when
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consider a factor model with missing data, then the state vector varies in dimension

over time due to the variation in the amount of missing data. In our model, the

dimension of state vectors is allowed to vary over time, not only for the generality of

the model but also for the convenience to introduce the model reconstruction method

in next chapter.

Because at is deterministic, the state vector xt and measurement error wt contain

everything in the past which is relevant for the future values of y,

E(yt+m|xt, xt−1, · · · , yt, yt−1, · · · )

= E(at+m +Htxt+m + wt+m|xt, xt−1, · · · , yt, yt−1, · · · )

= at+m +HtE(xt+m|xt, xt−1, · · · , yt, yt−1, · · · )

= at+m +HtE(xt+m|xt, xt−1, · · · ),

(2.7)

where E(xt+m|xt, xt−1, · · · ) can be obtained from (2.5)

We take a pth order autoregression as a simple example of a system which can be

written in state-space form,

yt − µ = φ1(yt−1 − µ) + φ2(yt−2 − µ) + · · ·+ φp(yt−p − µ) + εt. (2.8)

Then we write (2.8) as



yt − µ

yt−1 − µ
...

yt−p+1 − µ


=



φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0

0 1 · · · 0 0

...
... · · · ...

...

0 0 · · · 1 0





yt−1 − µ

yt−2 − µ
...

yt−p − µ


+



εt

0

...

0


. (2.9)
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The first row of (2.9) indicates (2.8) and other rows simply state the identity. We use

the following notations:

xt
def
= (yt − µ, yt−1 − µ, · · · , yt−p+1 − µ)′,

vt
def
= (εt, 0, · · · , 0)′,

F
def
=



φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0

0 1 · · · 0 0

...
... · · · ...

...

0 0 · · · 1 0


,

H
def
= (1, 0, · · · , 0)′.

Hence equation (2.9) can be written as

xt = Fxt−1 + vt,

which is the state equation. The observation equation is

yt = µ+Hxt.

2.2 Forecasting, filtering and smoothing

The relevant state-space model is taken as previously mentioned:
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• state equation

xt = gt + Ftxt−1 + vt

x0 ∼ N(γ,O)

vt ∼ N(0, Qt),

(2.10)

• observation equation

yt = at +Htxt + wt

wt ∼ N(0, Rt),

(2.11)

for t = 1, 2, · · · . Note that all the elements of gt, at, Ft, Ht, γ, O, Qt and Rt are

known with certainty, and {vt}, {wt} as well as x0 are mutually independent.

In practice, the main aim for the analysis of a state-space model is to provide

estimators for the underlying unobserved state xt on the basis of observations Ys =

{ys, ys−1, · · · , y1}. When s < t, the problem is called forecasting; when s = t, it is

called filtering; when s > t, it is called smoothing. Besides the estimators, we also

want to measure their precision. The solution to these problems can be accomplished

by Kalman filter and Kalman smoother.

For convenience, we will use the following notations:

xst
def
= E(xt|Ys),

P s1,s2
t1,t2

def
= E{(xt1 − xs1t1 )(xt2 − xs2t2 )′}

and

P s
t1,t2

def
= P s,s

t1,t2 , P s1,s2
t

def
= P s1,s2

t,t , P s
t

def
= P s,s

t,t .
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Because xt − xst and any vector from Ys are uncorrelated, by the assumption of nor-

mality, xt − xst is independent from Ys, which implies

E{(xt1 − xst1)(xt2 − x
s
t2

)′|Ys} = E{(xt1 − xst1)(xt2 − x
s
t2

)′} = P s
t1,t2

.

Before introducing Kalman filter and Kalman smoother, we should notice that,

for our model, the dimension of state vectors is time-varying, which is different from

the usual models normally with fixed size of state vectors. However this feature of

our model does not affect the proof of following algorithms at all. Therefore Kalman

filter and smoother do work as expected for the model.

2.2.1 Kalman filter

First, we present the Kalman filter. Kalman filter can be described as a recursive

algorithm for calculating the one-ahead forecast and the filter of xt through the infor-

mation observed. The advantage of Kalman filter is that it specifies how to update

the filter from xt−1t−1 to xtt via the observation yt, without having to reprocess the entire

observations {yt, · · · , y1}.

Now we begin to present Kalman filter. The algorithm is started by setting the

initial condition:

x00 = γ, P 0
0 = O,

where γ and O are the mean and variance of the distribution of x0 respectively. Then

next step is to calculate the forecast of xt conditional on Yt−1. We have

xt−1t = gt + Ftx
t−1
t−1, (2.12)



11

and

P t−1
t = FtP

t−1
t−1F

′
t +Qt. (2.13)

Therefore xt−1t , P t−1
t could be obtained from xt−1t−1, P

t−1
t−1 via (2.12) and (2.13). The

final step is to get the filter of xt conditional on Yt. We have

xtt = xt−1t +Kt(yt − at −Htx
t−1
t ), (2.14)

where the Kalman gain, Kt, is defined as

Kt
def
= P t−1

t H ′t(HtP
t−1
t H ′t +Rt)

−1.

P t
t can be obtained as

P t
t = (Irt −KtHt)P

t−1
t , (2.15)

where Irt represents an (rt × rt) identity matrix. Therefore we obtain xtt, P
t
t from

xt−1t , P t−1
t through (2.14) and (2.15).

To summarize, the Kalman filter is an recursive algorithm that could be stated as

• Initial condition:

x00 = γ, P 0
0 = O.

• Forecast equation:

xt−1t = gt + Ftx
t−1
t−1,

P t−1
t = FtP

t−1
t−1F

′
t +Qt.
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• Filter equation:

xtt = xt−1t +Kt(yt − at −Htx
t−1
t ),

P t
t = (Irt −KtHt)P

t−1
t .

(Kt = P t−1
t H ′t(HtP

t−1
t H ′t +Rt)

−1)

We should notice that some or all parameters of the model could vary with time

and the state or observation dimension could change with time as well. The variance

P t−1
t and P t

t are not functions of the data and could be evaluated without calculating

the forecast xt−1t and filter xtt.

We have had the one-ahead forecast from forecast equation of Kalman filter, an

m-ahead forecast can be calculated by (2.4):

xtt+m = E(xt+m|Yt)

= F̃m
t+mx

t
t + F̃m−1

t+m gt+1 + F̃m−2
t+m gt+2 + · · ·+ F̃ 1

t+mgt+m−1 + gt+m.

(2.16)

Thus the error of this forecast can be obtained from (2.4) and (2.16),

xt+m − xtt+m = F̃m
t+m(xt − xtt) + F̃m−1

t+m vt+1 + F̃m−2
t+m vt+2 + · · ·+ F̃ 1

t+mvt+m−1 + vt+m,

where it follows that the mean squared error of the forecast, P t
t+m, is

P t
t+m = E{(xt+m − xtt+m)(xt+m − xtt+m)′}

= F̃m
t+mP

t
t (F̃m

t+m)′ + F̃m−1
t+m Qt+1(F̃

m−1
t+m )′ + · · ·+ F̃ 1

t+mQt+m−1(F̃
1
t+m)′ +Qt+m.

(2.17)
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2.2.2 Kalman smoother

Up to this point we have been concerned with the forecast and filter of the state

vector, however in some applications the value of the state is of interest in its own

right. It is desirable to use the information through the end of the sample to conduct

the inference about the past values of the state. Such an inference is known as a

smoothed estimate, the estimator is xTt for t = 1, 2, · · · , T − 1, and the corresponding

mean squared error is P T
t , where T denote the time for the last observation.

The smoothed estimates can be calculated by Kalman smoother, which is a recur-

sive algorithm for obtaining the smoother xTt and its mean squared error P T
t . Now

we present the Kalman smoother as follows. First, we run the observed data through

Kalman filter to obtain {P t−1
t }Tt=1, {P t

t }Tt=1 from (2.13), (2.15) respectively, and ac-

cordingly obtain {xt−1t }Tt=1, {xtt}Tt=1 from (2.12), (2.14). We set xTT , P T
T as the initial

value of this algorithm, therefore the sequence of smoothed estimates {xTt }Tt=1 can be

calculated in reverse order by iterating on

xTt−1 = xt−1t−1 + Jt−1(x
T
t − xt−1t ), (2.18)

where

Jt−1
def
= P t−1

t−1F
′(P t−1

t )−1,

for t = T−1, T−2, · · · , 1. The corresponding mean squared errors are similarly found

by iterating on

P T
t−1 = P t−1

t−1 + Jt−1(P
T
t − P t−1

t )J ′t−1, (2.19)

in reverse order for t = T − 1, T − 2, · · · , 1.

To summarize, the Kalman smoother is a recursive algorithm which could be stated

as
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• Initial conditions:

run Kalman filter to obtain

{P t−1
t }Tt=1, {P t

t }Tt=1, {xt−1t }Tt=1, {xtt}Tt=1.

• Smoother equation:

run equations below in reverse order

xTt−1 = xt−1t−1 + Jt−1(x
T
t − xt−1t ),

P T
t−1 = P t−1

t−1 + Jt−1(P
T
t − P t−1

t )J ′t−1.

(Jt−1 = P t−1
t−1F

′(P t−1
t )−1)



Chapter 3

Discussion of the joint distribution

of estimators

As we discussed in the last chapter, from the algorithm named Kalman filter, we

can obtain the filter xtt, m-ahead forecast xtt+m (by (2.16)) and corresponding mean

squared errors P t
t , P t

t+m (by (2.17)). Furthermore, we could also obtain the smoother

xtt−m (m = 1, 2, · · · , t − 1) and the corresponding mean squared error P t
t−m from

the algorithm called Kalman smoother. Up to this point, we have a procedure to

compute these estimators and their mean squared errors, then naturally the next

aim is to obtain the joint distribution of these estimators based on the given data or

observations YT , which provides an evaluation of these estimators.

Based on the model which consists of (2.10) and (2.11), It is easy to notice that

vectors {xT+m, · · · , x1, yT , · · · , y1} have a joint normal distribution, which means that

the joint conditional distribution of {xT+m, · · · , x1} given YT is normal. We can
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illustrate the result as:



xT+m

...

xT
...

x1


|YT ∼ N(



xTT+m

...

xTT
...

xT1


,



P T
T+m · · · P T

T+m,T · · · P T
T+m,1

... · · · ... · · · ...

P T
T,T+m · · · P T

T · · · P T
T,1

... · · · ... · · · ...

P T
1,T+m · · · P T

1,T · · · P T
1


).

We already know the method to obtain xTT+m, · · · , xTT , · · · , xT1 and P T
T+m, · · · , P T

T , · · · , P T
1 ,

thus next step is to develop an approach to obtain the conditional covariances P T
s,t for

s, t ∈ {1, 2, · · · , T + m} and s 6= t. We could work out this problem by focusing on

matrix 

P T
T+m · · · P T

T+m,T · · · P T
T+m,1

... · · · ... · · · ...

P T
T,T+m · · · P T

T · · · P T
T,1

... · · · ... · · · ...

P T
1,T+m · · · P T

1,T · · · P T
1


. (3.1)

We consider two approaches to address this problem. In the first section of this

chapter, we propose an algorithm to calculate the related conditional covariances.

Since this algorithm is recursive, we call it recursive method. On the other hand, in

the second section, we will reconstruct the state-space model to propose another way

to solve the problem. We call it model reconstruction method, which could be found

in the book of Anderson and Moore [2012] (chapter 7). Besides giving a solution to

this problem, by the model reconstruction method, we would also extend our state-

space model into a relatively more general one and try to develop the corresponding

method to do filtering, forecasting, smoothing of the new model. This extension would

be introduced in the third section.
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3.1 Recursive method

Based on the original model ((2.10) and (2.11)), we develop an algorithm to obtain

the conditional covariance

P s,t
a,b = E{(xa − xsa)(xb − xtb)′}.

Before deriving the algorithm, we should introduce a lemma.

Lemma. For the model consisting of (2.10) and (2.11), the following equations hold:

1. (P s,t
a,b)
′ = P t,s

b,a.

2. P s,t
a,b = P t

a,b = P t,s
a,b, if s ≤ t.

3. P t
a,b = FaP

t
a−1,b, if a > max(b, t).

4. P t
b = FbP

t
b−1F

′
b +Qb, if b > t.

5. P t
t,b = (Irt −KtHt)P

t−1
t,b , if t > b.

6. P t
a,b = P a

a,b + Ja(P
b
a+1,b − P a

a+1,b) + Ja(P
t
a+1,b+1 − P b

a+1,b+1)J
′
b, if t > a > b.

Proof.

1. Based on the definition of P s,t
a,b , we have

(P s,t
a,b)
′ = E{(xa − xsa)(xb − xtb)′}′ = E{(xb − xtb)(xa − xsa)′} = P t,s

b,a .

2. Denote G def
= σ(Yt), the σ-algebra generated by {yt, yt−1, · · · , y1}. If vector
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function g is G-measurable, thus

E{(xa − xta)g′} = E(xag
′)− E(xtag

′)

= E{E(xag
′|Yt)} − E(xtag

′)

= E(xtag
′)− E(xtag

′)

= 0.

Note that xtb and xsb (s ≤ t) are G-measurable, thus we have

E{(xa − xta)(xtb)′} = 0 and E{(xa − xta)(xsb)′} = 0,

then

P t
a,b = E{(xa − xta)(xb − xtb)′}

= E{(xa − xta)x′b}

= E{(xa − xta)(xb − xsb)′}

= P t,s
a,b .

By the property 1 of this lemma, we have

P t,s
b,a = P t

b,a ⇒ P s,t
a,b = P t

a,b.

Therefore when s ≤ t, P s,t
a,b = P t

a,b = P t,s
a,b holds.

3. Since a > t, by (2.10), we have

xta = ga + Fax
t
a−1,
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hence

xa − xta = ga + Faxa−1 + va − (ga + Fax
t
a−1)

= Fa(xa−1 − xta−1) + va.

Therefore

P t
a,b = E{(xa − xta)(xb − xtb)′}

= E{[Fa(xa−1 − xta−1) + va](xb − xtb)′}

= FaE{(xa−1 − xta−1)(xb − xtb)′}

= FaP
t
a−1,b,

where the third equation holds as E{(va)(xb − xtb)′} = 0 when a > max(b, t).

4. We already know that

xb − xtb = Fb(xb−1 − xtb−1) + vb,

thus

P t
b = E{(xb − xtb)(xb − xtb)′}

= E{[Fb(xb−1 − xtb−1) + vb][Fb(xb−1 − xtb−1) + vb]
′}

= E{[Fb(xb−1 − xtb−1)(xb−1 − xtb−1)′F ′b]}+ E(vbv
′
b)

= FbP
t
b−1F

′
b +Qb,

where the third equation holds since

E{[Fb(xb−1 − xtb−1)]v′b} = 0 and E{vb[Fb(xb−1 − xtb−1)]′} = 0
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when b > t.

5. From the filter equation (2.14) of Kalman filter, we obtain

xtt = xt−1t +Kt(yt − at −Htx
t−1
t )

= xt−1t +Kt[(at +Htxt + wt)− at −Htx
t−1
t ]

= xt−1t +Kt[Ht(xt − xt−1t ) + wt]

= xt−1t +KtHt(xt − xt−1t ) +Ktwt.

Thus we have

P t
t,b = P t,b

t,b

= E{(xt − xtt)(xb − xbb)′}

= E{(xt − xt−1t −KtHt(xt − xt−1t )−Ktwt)(xb − xbb)′}

= E{[(Irt −KtHt)(xt − xt−1t )−Ktwt](xb − xbb)′}

= (Irt −KtHt)E{(xt − xt−1t )(xb − xbb)′}

= (Irt −KtHt)P
t−1,b
t,b

= (Irt −KtHt)P
t−1
t,b ,

where the first and last equations hold because of property 2 and the fact t > b,

and the fifth equation holds because

KtE{wt(xb − xbb)′} = 0,

when t > b.
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6. From (2.18) of Kalman smoother, we have

xta = xaa + Ja(x
t
a+1 − xaa+1),

thus

xa − xta = xa − xaa − Ja(xta+1 − xaa+1),

then

xa − xta + Jax
t
a+1 = xa − xaa + Jax

a
a+1. (3.2)

Similarly, the following holds:

xb − xtb + Jbx
t
b+1 = xb − xbb + Jbx

b
b+1. (3.3)

Next, multiply the left side of (3.2) by the transpose of the left hand side of

(3.3), and equate this to the corresponding result of the right hand sides of (3.2)

and (3.3). Then taking expectation of both sides, we arrive to

P t
a,b + E{(xa − xta)(xtb+1)

′}J ′b + JaE{xta+1(xb − xtb)′}+ JaE{xta+1(x
t
b+1)

′}J ′b

= P a,b
a,b + E{(xa − xaa)(xbb+1)

′}J ′b + JaE{xaa+1(xb − xbb)′}+ JaE{xaa+1(x
b
b+1)

′}J ′b.

(3.4)

Here vectors xtb+1 and xta+1 are σ(Yt)-measurable, then

E{(xa − xta)(xtb+1)
′} = 0 and E{xta+1(xb − xtb)′} = 0. (3.5)

Since b < a ⇒ σ(Yb) ⊆ σ(Ya) and xbb+1 is σ(Yb)-measurable, xbb+1 should be
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σ(Ya)-measurable, which implies

E{(xa − xaa)(xbb+1)
′} = 0. (3.6)

We have

P t
a+1,b+1 =E{(xa+1 − xta+1)(xb+1 − xtb+1)

′}

=E(xa+1x
′
b+1)− E{E[xa+1(x

t
b+1)

′|Yt]} − E{E(xta+1x
′
b+1|Yt)}

+ E{xta+1(x
t
b+1)

′}

=E(xa+1x
′
b+1)− E{xta+1(x

t
b+1)

′},

thus

E{xta+1(x
t
b+1)

′} = E(xa+1x
′
b+1)− P t

a+1,b+1. (3.7)

Because b < a ⇒ σ(Yb) ⊆ σ(Ya), we have

E(xaa+1|Yb) = E{E(xa+1|Ya)|Yb}

= E(xa+1|Yb)

= xba+1,

therefore

E{xaa+1(x
b
b+1)

′} = E{E(xaa+1(x
b
b+1)

′|Yb)}

= E{E(xaa+1|Yb)(xbb+1)
′}

= E{xba+1(x
b
b+1)

′}

Then, as in the proof of (3.7), we could establish

E{xaa+1(x
b
b+1)

′} = E(xa+1x
′
b+1)− P b

a+1,b+1. (3.8)
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We have

E{xaa+1(xb − xbb)′} = E{xa+1(xb − xbb)′} − E{(xa+1 − xaa+1)(xb − xbb)′}.

Here

E{(xa+1 − xaa+1)(xb − xbb)′} = P a,b
a+1,b = P a

a+1,b,

where the last equation holds because of property 2 as well as b < a; and

E{xa+1(xb − xbb)′} = E{(xa+1 − xba+1)(xb − xbb)′} = P b
a+1,b,

where the first equation holds as xba+1 is σ(Yb)-measurable, which implies that

E{xba+1(xb − xbb)′} = 0.

Therefore

E{xaa+1(xb − xbb)′} = P b
a+1,b − P a

a+1,b. (3.9)

From (3.5), (3.6), (3.7), (3.8), (3.9) and P a,b
a,b = P a

a,b (by property 2), (3.4) reduces

to

P t
a,b = P a

a,b + Ja(P
b
a+1,b − P a

a+1,b) + Ja(P
t
a+1,b+1 − P b

a+1,b+1)J
′
b.

Up to this point, we have proven the lemma, then what we shall do next is to

state the algorithm. This algorithm is in essence a recursive one like Kalman filter as

well as Kalman smoother and it is established on the basis of these two algorithms.

We could calculate any conditional covariance P s,t
a,b by this algorithm in terms of the
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model we introduced ((2.10) and (2.11)).

Algorithm.

step 1 For any conditional covariance P s,t
a,b of the model consisting of (2.10) and (2.11),

assume i is a variable , let


P s,t
a,b = P s,t

a,b , i = 1 if a ≥ b,

P s,t
a,b = (P s,t

a,b)
′, i = 0 otherwise.

step 2 Due to the property 2, assume n = max(s, t), we have P n
a,b = P s,t

a,b .

step 3 Consider P n
a,b in several conditions (note that a ≥ b always holds due to step 1):



go to step 4.1 if a > n, b = a,

go to step 4.2 if a > n, b < a, b > n,

go to step 4.3 if a > n, b = n,

go to step 4.4 if a > n, b < n,

go to step 4.5 if a = n, b = a

go to step 4.6 if a = n, b < a,

go to step 4.7 if a < n, b = a,

go to step 4.8 if a < n, b < a.

step 4.1 In this condition, P n
a,b = P n

a (a > n), by property 4 of lemma, this can be

calculated by iterating on

P n
a = FaP

n
a−1F

′
a +Qa (a > n) (3.10)
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until P n
n , and P n

n can be obtained by Kalman filter. After obtaining the value

of P n
a,b, go to step 5.

step 4.2 By property 3 of lemma, P n
a,b can be calculated by iterating on

P n
a,b = FaP

n
a−1,b (a > max(b, n)) (3.11)

until P n
b (b > n) which can be calculated by iterating on (3.10) until P n

n , then

P n
n can be obtained by Kalman filter. After obtaining the value of P n

a,b, go to

step 5.

step 4.3 For this condition, P n
a,b = P n

a,n (a > n), and it can be calculated by iterating

on equation (3.11) until P n
n , then P n

n can be obtained by Kalman filter. After

obtaining the value of P n
a,b, go to step 5.

step 4.4 By property 3 and 5 of lemma, P n
a,b can be calculated by iterating on (3.11) until

P n
n,b, and P n

n,b can be calculated by iterating on

P n
n,b = (In −KnHn)P n−1

n,b = (In −KnHn)FnP
n−1
n−1,b (n > b) (3.12)

until P b
b which can be obtained by Kalman filter. After obtaining the value of

P n
a,b, go to step 5.

step 4.5 In this condition, P n
a,b = P n

n , it can be obtained by Kalman filter. After obtaining

the value of P n
a,b, go to step 5.

step 4.6 Under this condition, P n
a,b = P n

n,b (b < n), it can be calculated by iterating on

(3.12) until P b
b , and P b

b can be obtained by Kalman filter. After obtaining the

value of P n
a,b, go to step 5.



26

step 4.7 For this condition, P n
a,b = P n

a (a < n), it can be obtained by Kalman smoother.

After obtaining the value of P n
a,b, go to step 5.

step 4.8 By property 6 of lemma, P n
a,b can be calculated by iterating on

P n
a,b = P a

a,b + Ja(P
b
a+1,b − P a

a+1,b) + Ja(P
n
a+1,b+1 − P b

a+1,b+1)J
′
b (n > a > b)

until P n
n,n−a+b, where P a

a,b can be calculated by the procedure of step 4.6, P b
a+1,b

can be calculated by the procedure of step 4.3, P a
a+1,b can be calculated by the

procedure of step 4.4 and P b
a+1,b+1 can be calculated by the procedure of step

4.2. As for P n
n,n−a+b, since n−a+ b < n, it could be calculated by the procedure

of step 4.6. After obtaining the value of P n
a,b, go to step 5.

step 5 Considering the procedure of step 1, by the property 1 of lemma, we have


P s,t
a,b = P n

a,b if i = 1,

P s,t
a,b = (P n

a,b)
′ if i = 0.

Then the calculation of P s,t
a,b is done.

By this algorithm, we could calculate any conditional covariance of the given state-

space model ((2.10) and (2.11)), which implies that we can compute the value of every

parameter of matrix (3.1), thus the original problem has been solved.

To derive this algorithm, we have developed several properties for the model. The

algorithm is established on the basis of Kalman filter and Kalman smoother, which

are repeatedly called to carry on the calculation.

This method is easy to apply, and it is especially suitable when we are only inter-

ested in some specific elements of the covariance matrix (3.1), because the algorithm

is oriented to calculate the single conditional covariance. Certainly, this algorithm can
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be revised to make it more efficient if we were interested in values of almost all these

parameters of matrix (3.1). However, for this situation, the method to be introduced

in the next section would be more efficient. Therefore, the advantage of this method

is to be able to calculate a single value.

3.2 Model reconstruction method

The key point of the model reconstruction method is to find an alternative expression

of the original state-space model consisting of (2.10) and (2.11), then apply Kalman

filter. With this process we can obtain enough information to calculate the related

conditional covariances, thus solve the original problem.

At first, let us consider the state equation (2.3), for t = 2, 3, · · · , which can be

written as



xt

xt−1

xt−2
...

x1


=



gt

0

0

...

0


+



Ft 0 · · · 0

Irt−1 0 · · · 0

0 Irt−2 · · · 0

...
... · · · ...

0 0 · · · Ir1





xt−1

xt−2
...

x1


+



vt

0

0

...

0


, (3.13)

where Irt represents an (rt × rt) identity matrix and, as we have mentioned before, 0

symbolizes a zero matrix fitted its position. The first rt rows of (3.13) indicate the

state equation and other rows simply state the identity.

By using the following notation:

pt
def
=


rt + rt−1 + · · ·+ r1 t = 1, 2, · · · ,

r0 t = 0,
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Zt
(pt×1)

def
=



xt

xt−1
...

x1


, Gt

(pt×1)

def
=



gt

0

...

0


, Vt

(pt×1)

def
=



vt

0

...

0


,

Φt
(pt×pt−1)

def
=



Ft 0 · · · 0

Irt−1 0 · · · 0

0 Irt−2 · · · 0

...
... · · · ...

0 0 · · · Ir1


,

(3.13) can be written as

Zt = Gt + ΦtZt−1 + Vt. (3.14)

We define

Q∗t
(pt×pt)

def
=



Qt 0 · · · 0

0 0 · · · 0

...
... · · · ...

0 0 · · · 0


,

hence the vector Vt follows N(0, Q∗t ) and {Vt}∞t=1 is an independent sequence. We

denote Z0
def
= x0 and set Z0 as the initial value of sequence {Zt}∞t=1, obviously Z0 is

independent of {Vt}∞t=1. By the definition of Z0, equation (3.14) holds from t = 1.

Therefore, if we set Zt as a state vector, (3.14) would be a state equation.
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Similarly, for observation equation (2.6), it can be written as

yt = at +

[
Ht 0 · · · 0

]


xt

xt−1
...

x1


+ wt. (3.15)

By using the following notation:

Λt
(1×pt)

def
=

[
Ht 0 · · · 0

]
,

(3.15) can be expressed as

yt = at + ΛtZt + wt. (3.16)

It is easy to notice that (3.16) can be seen as an observation equation of (3.14), which

means they can constitute an alternative representation for the original state-space

model:

• state equation

Zt = Gt + ΦtZt−1 + Vt

Z0 ∼ N(γ,O)

Vt ∼ N(0, Q∗t ),

• observation equation

yt = at + ΛtZt + wt

wt ∼ N(0, Rt),
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for t = 1, 2, · · · .

To distinguish from notations used for the original model, we adopt the following

notations:

Zs
t

def
= E(Zt|Ys),

Cs1,s2
t1,t2

def
= E{(Zt1 − Zs1

t1 )(Zt2 − Zs2
t2 )′}

and

Cs
t1,t2

def
= Cs,s

t1,t2 , Cs1,s2
t

def
= Cs1,s2

t,t , Cs
t

def
= Cs,s

t,t .

Now we apply Kalman filter to this model. First, the initial condition becomes

Z0
0 = γ, C0

0 = O,

where γ and O are the mean and variance of the distribution of Z0. Next step is

to calculate the forecast of Zt conditional on Yt−1. By forecast equations (2.12) and

(2.13), we have

Zt−1
t = Gt + ΦtZ

t−1
t−1 , (3.17)

and

Ct−1
t = ΦtC

t−1
t−1Φ′t +Q∗t . (3.18)

The final step is to obtain the filter of Zt conditional on Yt. By filter equations (2.14)

and (2.15), we have

Zt
t = Zt−1

t +K∗t (yt − at − ΛtZ
t−1
t ), (3.19)
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where

K∗t
def
= Ct−1

t Λ′t(ΛtC
t−1
t Λ′t +Rt)

−1.

Ct
t can be accomplished as

Ct
t = (Ipt −K∗t Λt)C

t−1
t , (3.20)

where Ipt represents an (pt × pt) identity matrix.

By the definition of Zt−1
t , Zt

t , C
t−1
t and Ct

t ,

Zt−1
t =



xt−1t

xt−1t−1
...

xt−11


, Zt

t =



xtt

xtt−1
...

xt1


,

Ct−1
t =



P t−1
t P t−1

t,t−1 · · · P t−1
t,1

P t−1
t−1,t P t−1

t−1 · · · P t−1
t−1,1

...
... · · · ...

P t−1
1,t P t−1

1,t−1 · · · P t−1
1


,

Ct
t =



P t
t P t

t,t−1 · · · P t
t,1

P t
t−1,t P t

t−1 · · · P t
t−1,1

...
... · · · ...

P t
1,t P t

1,t−1 · · · P t
1


.

Note that CT
T is the lower right part of the conditional covariance matrix (3.1) and,

if we look back on the algorithm of recursive method, calculation of elements from

CT
T are most laborious, therefore CT

T provides a partial but important solution to the

original problem. CT
T can be calculated through the Kalman filter for the rewritten
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model. The rest of the matrix (3.1) can be easily calculated as follows. Assume that

we have already computed the value of CT
T , then by the property 3 of lemma,

P T
T+i,j = FT+iP

T
T+i−1,j

holds for i = 1, 2, · · · ,m and j = 1, 2, · · · , T . Therefore the upper right part of matrix

(3.1) 
P T
T+m,T · · · P T

T+m,1

... · · · ...

P T
T+1,T · · · P T

T+1,1


can be obtained from CT

T . In addition, by the property 4 of lemma,

P T
T+i = FT+iP

T
T+i−1F

′
T+i +QT+i

holds for i = 1, 2, · · · ,m. Thus, we can obtain all the values of elements on the main

diagonal of matrix (3.1) from CT
T . As for P T

T+i,T+j (i = 1, 2, · · · ,m, j = 1, 2, · · · ,m

and i > j), by the property 3 of lemma, we have

P T
T+i,T+j = FT+iP

T
T+i−1,T+j,

which implies P T
T+i,T+j can be obtained from the P T

T+j on the main diagonal. Thus,

by this procedure, all the values from the upper triangular part of matrix (3.1) can

be computed. Since the covariance matrix is symmetric, we can compute the whole

covariance matrix (3.1) accordingly.

In summary, to compute matrix (3.1), we start by calculation CT
T via Kalman

filter. Then obtain the values of the upper triangular part from CT
T by some easy

procedures, thus the whole matrix by symmetry.
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Although we have solved the original problem, a close look into (3.17), (3.18),

(3.19) and (3.20) reveals more information. (3.17) and (3.18) can be written as



xt−1t

xt−1t−1

xt−1t−2
...

xt−11


=



gt

0

0

...

0


+



Ft 0 · · · 0

Irt−1 0 · · · 0

0 Irt−2 · · · 0

...
... · · · ...

0 0 · · · Ir1





xt−1t−1

xt−1t−2
...

xt−11


(3.21)

and 

P t−1
t P t−1

t,t−1 · · · P t−1
t,1

P t−1
t−1,t P t−1

t−1 · · · P t−1
t−1,1

...
... · · · ...

P t−1
1,t P t−1

1,t−1 · · · P t−1
1



= Φt



P t−1
t−1 P t−1

t−1,t−2 · · · P t−1
t−1,1

P t−1
t−2,t−1 P t−1

t−2 · · · P t−1
t−2,1

...
... · · · ...

P t−1
1,t−1 P t−1

1,t−2 · · · P t−1
1


Φ′t +Q∗t

=



FtP
t−1
t−1F

′
t +Qt FtP

t−1
t−1 · · · FtP

t−1
t−1,1

P t−1
t−1F

′
t P t−1

t−1 · · · P t−1
t−1,1

...
... · · · ...

P t−1
1,t−1F

′
t P t−1

1,t−1 · · · P t−1
1


.

(3.22)

The rt rows from the top of (3.21) state

xt−1t = gt + Ftx
t−1
t−1,
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which is the forecast equation (2.12) of original model. Considering the equation

(3.22), we have

P t−1
t = FtP

t−1
t−1F

′
t +Qt,

which is the forecast error (2.13), and we also have

P t−1
t,i = FtP

t−1
t−1,i,

for i = 1, 2, · · · , t− 1, it is just a instance of property 3 of lemma.

Then consider (3.19), which could be written as



xtt

xtt−1
...

xt1


=



xt−1t

xt−1t−1
...

xt−11


+ Ct−1

t Λ′t(ΛtC
t−1
t Λ′t +Rt)

−1(yt − at − ΛtZ
t−1
t )

=



xt−1t

xt−1t−1
...

xt−11


+ Ct−1

t



H ′t

0

...

0


(

[
Ht 0̂ · · · 0̂

]
Ct−1

t



H ′t

0

...

0


+Rt)

−1(yt − at −Htx
t−1
t )

=



xt−1t

xt−1t−1
...

xt−11


+



P t−1
t H ′t

P t−1
t−1,tH

′
t

...

P t−1
1,t H

′
t


(HtP

t−1
t H ′t +Rt)

−1(yt − at −Htx
t−1
t ).

(3.23)
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By (3.23), we have

xti = xt−1i + P t−1
i,t H ′t(HtP

t−1
t H ′t +Rt)

−1(yt − at −Htx
t−1
t ), (3.24)

for i = 1, 2, · · · , t. Particularly, when i = t, (3.24) becomes

xtt = xt−1t + P t−1
t H ′t(HtP

t−1
t H ′t +Rt)

−1(yt − at −Htx
t−1
t ), (3.25)

which is the filter equation (2.14). In addition, if we consider (3.24) together with

(3.25), the following holds:

xti = xt−1i + P t−1
i,t (P t−1

t )−1(xtt − xt−1t )

= xt−1i + P t−1
i,t−1F

′
t(P

t−1
t )−1(xtt − xt−1t ),

(3.26)

for i = 1, 2, · · · , t − 1. We should notice that (3.26) also provides another way to

calculate smoothed estimators xti (i < t). Assume we already know the values of

sequence {P s
a,b} (a, b ≤ s ≤ t) and have run Kalman filter, then we can obtain xti

(i < t) from xii by iterating on (3.26). As for the calculation of P s
a,b (a, b ≤ s ≤ t),

this can be accomplished as follows.

Let us consider (3.20), that can be written as
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P t
t P t

t,t−1 · · · P t
t,1

P t
t−1,t P t

t−1 · · · P t
t−1,1

...
... · · · ...

P t
1,t P t

1,t−1 · · · P t
1


= Ct−1

t − Ct−1
t Λ′t(ΛtC

t−1
t Λ′t +Rt)

−1ΛtC
t−1
t

=



P t−1
t P t−1

t,t−1 · · · P t−1
t,1

P t−1
t−1,t P t−1

t−1 · · · P t−1
t−1,1

...
... · · · ...

P t−1
1,t P t−1

1,t−1 · · · P t−1
1


−



P t−1
t H ′t

P t−1
t−1,tH

′
t

...

P t−1
1,t H

′
t


(HtP

t−1
t H ′t +Rt)

−1



P t−1
t H ′t

P t−1
t−1,tH

′
t

...

P t−1
1,t H

′
t



′

.

(3.27)

(3.27) indicates that

P t
i,j = P t−1

i,j − P t−1
i,t H ′t(HtP

t−1
t H ′t +Rt)

−1HtP
t−1
t,j , (3.28)

for i = 1, 2, · · · , t and j = 1, 2, · · · , t. When i = j = t, equation (3.28) becomes the

error of filter (2.15). Like (3.26), equation (3.28) also gives an alternative approach to

calculate the covariance of smoother of original model P t
i,j (i, j < t). Equation (3.28)

can be written as

P t
i,j =



P t
t i = j = t,

FtP
t−1
t−1,j − P t−1

t H ′t(HtP
t−1
t H ′t +Rt)

−1HtFtP
t−1
t−1,j i = t, j < t,

P t−1
i,t−1F

′
t − P t−1

i,t−1F
′
tH
′
t(HtP

t−1
t H ′t +Rt)

−1HtP
t−1
t i < t, j = t,

P t−1
i,j − P t−1

i,t−1F
′
tH
′
t(HtP

t−1
t H ′t +Rt)

−1HtFtP
t−1
t−1,j i < t, j < t.

(3.29)
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Therefore if we have run Kalman filter, by (3.29), the value of P t
i,j (i, j ≤ t) could be

obtained by iterating on equation (3.28). Since t could be any positive integer, based

on Kalman filter, we have already developed a method to calculate P s
a,b (a, b ≤ s ≤ t).

Since equation (3.28) can also be used to calculate the conditional covariances of

smoothers like the property 6 of lemma, it could substitute for the property 6 in the

recursive method. It is easy to notice that equations (3.26) and (3.28) could constitute

an alternative method to calculate the smoothed estimators and their covariance.

The calculation through this procedure is not as simple as for the Kalman smoother,

however it could provide a way to obtain covariances for smoothers, not only variances.

3.3 Extension of the state-space model

The state-space model we adopted ((2.10) and (2.11)) actually is a rather general one,

we can clearly notice that parameters of this model can vary with time and the state

or observation dimension can vary over time too. However we can still extend our

state-space model to make it more versatile.

Consider a new model:

• state equation

xt =


gt + Ft,t−1xt−1 + · · ·+ Ft,1x1 + vt t = 2, 3, · · ·

g1 + F1,0x0 + v1 t = 1

x0 ∼ N(γ,O)

vt ∼ N(0, Qt),

(3.30)
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• observation equation

yt = at +Ht,txt + · · ·+Ht,1x1 + wt (t = 1, 2, · · · )

wt ∼ N(0, Rt),

(3.31)

Like before, assume all the elements of gt, at, Ft,i (0 < i < t), Ht,j (0 < j ≤ t), γ,

O, Qt and Rt are known with certainty, and {vt}, {wt} as well as x0 are mutually

independent. For convenience, we call the new model G-model and the original one

N-model.

Compared to N-model, the present observation and state of G-model may depend

on some or all state vectors in the past. In fact, lagged variables in the observation

equation (3.31) are useful, the article of Qian [2014] gives us several cases for the

applications of this. However allowing more than one lagged state vector in the state

equation (3.30) is rarely seen in the literature, since it would make state vectors lose

Markov property. In practice, we usually set Ft,t−2 = · · · = Ft,1 = 0, for now we

assume they are given functions. These changes in model can broaden the scope of

application of model, however they also make it more difficult to obtain forecasts,

filters and smoothers. The original Kalman filter and smoother become inapplicable

for this model, furthermore it is hard to propose a new edition of Kalman filter and

smoother for G-model based on the original idea invovled in the proof for N-model.

Fortunately it is straightforward to calculate these estimators for G-model through the

model reconstruction procedure introduced in last section. Next, we would illustrate

these results.



39

We denote

Φ•t
(pt×pt−1)

def
=



Ft,t−1 Ft,t−2 · · · Ft,1

Irt−1 0 · · · 0

0 Irt−2 · · · 0

...
... · · · ...

0 0 · · · Ir1


and

Λ•t
(1×pt)

def
=

[
Ht,t Ht,t−1 · · · Ht,1

]
.

By using notations Zt, Gt, Vt in the last section, the state equation (3.30) can be

written as

Zt = Gt + Φ•tZt−1 + Vt, (3.32)

which holds from t = 1. Similarly, the observation equation (3.31) can be written as

yt = at + Λ•tZt + wt. (3.33)

If we treat Zt as a state vector, (3.32) can be seen as the state equation for Zt and

(3.33) can be the corresponding observation equation. Therefore the equations (3.32)

and (3.33) constitute a N-model for state Zt. Considering the relationship between xt

of the G-model and Zt of the N-model, we should expect to obtain forecasts, filters

and smoothers for G-model by applying Kalman filter to N-model ((3.32) and (3.33)).

Now we apply Kalman filter. At first, we set the initial condition:

Z0
0 = γ, C0

0 = O.
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By the forecast equation (2.12) and (2.13), we have

Zt−1
t = Gt + Φ•tZ

t−1
t−1 (3.34)

and

Ct−1
t = Φ•tC

t−1
t−1(Φ•t )

′ +Q∗t . (3.35)

By the filter equation (2.14) and (2.15), we have

Zt
t = Zt−1

t + Ct−1
t (Λ•t )

′(Λ•tC
t−1
t (Λ•t )

′ +Rt)
−1(yt − at − Λ•tZ

t−1
t ) (3.36)

and

Ct
t = Ct−1

t − Ct−1
t (Λ•t )

′(Λ•tC
t−1
t (Λ•t )

′ +Rt)
−1Λ•tC

t−1
t . (3.37)

Due to the complex structure of Φ•t and Λ•t , it is difficult to derive good results such as

(3.26) or (3.28) from equation (3.34) to (3.37). For example, even if only one element

of Ct
t is needed, we still have to compute all the elements of Ct−1

t . Hence we prefer to

calculate these data by using (3.34) to (3.37) directly. Since

Zt
t =



xtt

xtt−1
...

xt1


,

we can obtain the filters and smoothers of G-model from the filters of corresponding
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N-model. Based on the state equation (3.30),

xTT+m = gT+m + FT+m,T+m−1x
T
T+m−1 + · · ·+ FT+m,Tx

T
T + · · ·+ FT+m,1x

T
1 (3.38)

hold for m = 1, 2, · · · and T = 1, 2, · · · . As we already know the filters and smoothers,

the forecast xTT+m can be obtained by iterating on equation (3.38). Therefore, by the

procedure introduced in last section, we can get forecasts, filters and smoothers of the

new model.



Chapter 4

Summary and future work

The calculation of estimators of the underlying unobserved states on the basis of ob-

servations is a classic and important problem of state-space models. This has been

accomplished by Kalman filter and Kalman smoother. Even though we can also have

errors of these estimators through Kalman filter and smoother, the statistical rela-

tionships between these estimators can not be accordingly obtained. Several articles,

reports or books have given lag-one covariances for smoothers, enlightened by this, at

first we propose an algorithm to calculate any covariance for these estimators, which

provides a good solution to the problem. In fact, based on the same observation, these

estimators follow a normal distribution. All the parameters of the distribution can

be calculated by our new algorithm and Kalman filter and smoother. In addition, we

also try another method to solve this problem. We reconstruct the model and apply

Kalman filter to the new model. Then we can obtain a partial solution, by which the

complete solution could be achieved through some easy procedures. We continue to

explore the result and derive some interesting properties, which provide another view

to establish the algorithm for the calculation of covariances. In the end, we extend

the definition of our state-space model, and obtain a more general new model. By
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the model reconstruction method, we can obtain an approach to calculating those

estimators as well.

There are still some problems for further research. The algorithm established in

the first section of chapter 3 is designed for the calculation of single specific conditional

covariance, which means the output of this algorithm is just one covariance. If we want

large numbers of covariances, we have to fulfil the algorithm several times, there must

be large redundancies in the process. It persuades us to reconstruct the algorithm

for those cases, although this work should be easy. Another problem is that we want

an easier and clearer way to get estimators like forecasts, filters and smoothers for

the new model in third section of chapter 3, even though the application of model

reconstruction method could get them successfully. The structure of the new model

is so complicated that we could not expect an easy algorithm like Kalman filter or

Kalman smoother, however we do hope to get an easy algorithm like what we have

established in this article, at least for some special cases of the new model. These

problems provide the aim for our future work.



Bibliography

Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012.

Olivier Basdevant. On applications of state-space modelling in macroeconomics. Re-

serve Bank of New Zealand Discussion Paper No. DP2003/02, 2003.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer

Science & Business Media, 2013.

James Durbin and Siem Jan Koopman. Time series analysis by state space methods.

Number 38. Oxford University Press, 2012.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press

Princeton, 1994.

Andrew C Harvey. Forecasting, structural time series models and the Kalman filter.

Cambridge university press, 1990.

Andrew C Harvey and Richard G Pierse. Estimating missing observations in economic

time series. Journal of the American Statistical Association, 79(385):125–131, 1984.

Richard H Jones. Maximum likelihood fitting of arma models to time series with

missing observations. Technometrics, 22(3):389–395, 1980.



45

Richard H Jones. Fitting multivariate models to unequally spaced data. In Time

series analysis of irregularly observed data, pages 158–188. Springer, 1984.

Borus Jungbacker, Siem Jan Koopman, and Michel Van der Wel. Maximum likelihood

estimation for dynamic factor models with missing data. Journal of Economic

Dynamics and Control, 35(8):1358–1368, 2011.

Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction

theory. Journal of basic engineering, 83(1):95–108, 1961.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Journal of basic Engineering, 82(1):35–45, 1960.

Philip F Mclauchlan and David W Murray. Active camera calibration for a head-eye

platform using the variable state-dimension filter. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18(1):15–22, 1996.

Sascha Mergner. Applications of state space models in finance. 2009.

Hang Qian. A flexible state space model and its applications. Journal of Time Series

Analysis, 35(2):79–88, 2014.

Robert H Shumway and David S Stoffer. Time series analysis and its applications:

with R examples. Springer Science & Business Media, 2010.

Ruey S Tsay. Analysis of financial time series. 2010.

Ruey S Tsay. Multivariate time series analysis : with r and financial applications.

2014.


