UNIVERSITY

Algorithms for the Evaluation of Forecasts, Filters and Smoothers from a State-Space Model with the Feature of Time Dependent Dimension

by
© Wen Teng

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science.

Department of Mathematics and Statistics
Memorial University

September 2016

St. John's, Newfoundland and Labrador, Canada

Abstract

This thesis illustrates two approaches for the evaluation of forecasting, filtering and smoothing from a flexible state-space model. Parameters of this model can be time dependent and the dimension of its state or observed vectors can vary over time. The first approach consists of establishing an algorithm based on the Kalman filter and Kalman smoother as well as properties derived from the model. Another approach is to reconstruct the model. In addition, an extension of the model is proposed.

Acknowledgements

I am very grateful to have the chance of studying at Memorial University and should thank many people for their help.

At first, I would like to express my sincere gratitude to my supervisor Dr. J Concepción Loredo-Osti for his patience, motivation and continuous support during my master's study. His guidance helped a lot in writing of this thesis.

Besides my supervisor, I also would like to thank the faculty and staff at Department of Mathematics and Statistics. My deep thanks go to Dr. Zhaozhi Fan for his excellent course, help and brilliant advices regarding my study and career. Taking courses of Dr. Alwell Oyet and Dr. Hong Wang is also important for me, it leaves me a wonderful memory. Many other faculty or staff give me support and encouragement in different ways, thank you all so much.

At last, I want to thank those friends met in St. John's for participation in my life.

Table of contents

Title page i
Abstract ii
Acknowledgements iii
Table of contents iv
1 Introduction 1
2 Preliminary knowledge of the state-space model 3
2.1 The state-space model and representation 4
2.2 Forecasting, filtering and smoothing 8
2.2.1 Kalman filter 10
2.2.2 Kalman smoother 13
3 Discussion of the joint distribution of estimators 15
3.1 Recursive method 17
3.2 Model reconstruction method 27
3.3 Extension of the state-space model 37
4 Summary and future work 42
Bibliography 44

Chapter 1

Introduction

This thesis would mainly explore the relationship among estimators like forecasts, filters and smoothers of a state-space model. We will propose a flexible state-space model, in which any subset of parameters can be time dependent. In addition, the dimension of the state and observed vectors of our model could vary over time, which is only assumed in limited literature, for instance, the article of Mclauchlan and Murray [1996]. The relationship among estimators could be well described by their joint distribution. Based on the algorithms - Kalman filter and Kalman smoother, we adopt two methods to obtain the complete information of the distribution. One method is established by researching on some properties derived from the model, the other one can be accomplished by reconstructing the model, which is a classic approach in the study of state-space model (see Anderson and Moore [2012]). Besides these, inspired by the work of Qian [2014], we extend our state-space model into a new one, and propose a procedure to calculate forecasts, filters and smoothers of the new model through the model reconstruction method.

The rest of the thesis is organized as follows. Chapter 2 provides an introduction to our state-space model and preliminary concepts associated with it as well as a brief
introduction to Kalman filter and Kalman smoother. The organization and content of the second chapter is referred to the books of Shumway and Stoffer [2010] as well as Hamilton [1994], however we should notice that our model differs from theirs due to the time-varying dimension of the state and observed vectors. Chapter 3 illustrates the main work of this thesis. In the first section of chapter 3, an algorithm has been established to assist us in studying the joint distribution, and in the second section of it, we examine the model reconstruction method. we also extend the model in the third section. Chapter 4 gives a summary and indicate our further work.

Chapter 2

Preliminary knowledge of the state-space model

Starting with the breakthrough papers of Kalman [1960] as well as Kalman and Bucy [1961], the state-space model has been widely applied in many fields such as statistics, economics, engineering and medicine. Harvey [1990], Hamilton [1994], Tsay [2010], Durbin and Koopman [2012] and Tsay [2014] present its theory and applications in time series analysis. The article of Basdevant [2003] contains an application on macroeconomics, Mergner [2009] addresses applications in the area of finance and Jones [1984] provides an example of applications on health science. In order to solve practical problems, building a good state-space model is essential. We should know how to cast a structural model into an appropriate state-space form. The representation is not unique, for one can enlarge the state vector but describe the same process.

The primary and standard tools for analyzing a state-space model are filtering and smoothing algorithms. Filtering provides an estimate of the state vector at a given time point conditional on the information observed up to that point. Smoothing enables us to estimate the state vector at any time given all the available observations.

The best known filtering and smoothing algorithms are Kalman filter and Kalman smoother, that could be found in a large amount of literature, for example, books of Shumway and Stoffer [2010], Anderson and Moore [2012], Brockwell and Davis [2013].

In the first section of this chapter, we describe a state-space model which is the focus of this thesis, and give an instance to illustrate the state-space representation. In the second section, we would discuss the forecasting, filtering and smoothing problems and introduce the solution - the Kalman filter and Kalman smoother algorithms.

2.1 The state-space model and representation

Many linear dynamic systems can be written in a state-space form. Before exploring the state-space representation, we consider a simple dynamic system: first-order autoregression

$$
\begin{equation*}
z_{t}=\phi z_{t-1}+\varepsilon_{t} \tag{2.1}
\end{equation*}
$$

where $\varepsilon_{t} \sim$ i.i.d. $N\left(0, \sigma^{2}\right)$. Since the future values $\left\{z_{t+1}, z_{t+2}, \cdots\right\}$ of this process only depend on the present value z_{t}, we can easily to analyze the dynamics and make forecasts for this process. For example, we solve equation (2.1) by recursive substitution:

$$
\begin{align*}
z_{t+m} & =\phi z_{t+m-1}+\varepsilon_{t+m} \\
& =\phi\left(\phi z_{t+m-2}+\varepsilon_{t+m-1}\right)+\varepsilon_{t+m} \tag{2.2}\\
& =\phi^{m} z_{t}+\phi^{m-1} \varepsilon_{t+1}+\phi^{m-2} \varepsilon_{t+2}+\cdots+\phi \varepsilon_{t+m-1}+\varepsilon_{t+m}
\end{align*}
$$

for $m=1,2, \cdots$, which implies an optimal (in a mean square error sense) m-ahead forecast

$$
E\left(z_{t+m} \mid z_{t}, z_{t-1}, \cdots\right)=\phi^{m} z_{t}
$$

In order to represent a more complicated linear dynamic system by the state-space model, we should derive the dynamics of the system from an $\left(n_{t} \times 1\right)$ observation vector y_{t}. The system dynamics is expressed by the change of a possibly unobserved $\left(r_{t} \times 1\right)$ vector x_{t} known as the state vector of the system. The dynamics of a linear system can be illustrated as a generalization of (2.1):

$$
\begin{equation*}
x_{t}=g_{t}+F_{t} x_{t-1}+v_{t} \tag{2.3}
\end{equation*}
$$

where F_{t} denotes an $\left(r_{t} \times r_{t-1}\right)$ matrix, g_{t} is an $\left(r_{t} \times 1\right)$ predetermined vector, the $\left(r_{t} \times 1\right)$ vector v_{t} is taken to be $N\left(0, Q_{t}\right)$ and $\left\{v_{t}\right\}_{t=1}^{\infty}$ is an independent sequence. State vector x_{0} is assumed to be the initial value of the state, furthermore, we assume that it is $N(\gamma, O)$ and independent of $\left\{v_{t}\right\}_{t=1}^{\infty}$. We usually name (2.3) the state equation.

Note that 0 in the last paragraph symbolizes a zero matrix fitted its position, for instance, population mean 0 for vector v_{t} is an $\left(r_{t} \times 1\right)$ zero matrix. In the following context, symbol 0 would be used like this way for convenience. Similarly, Q_{t} and O in the last paragraph are covariance matrices fitted their positions.

Like (2.2), we can write

$$
\begin{align*}
x_{t+m}= & \tilde{F}_{t+m}^{m} x_{t}+\tilde{F}_{t+m}^{m-1} g_{t+1}+\tilde{F}_{t+m}^{m-2} g_{t+2}+\cdots+\tilde{F}_{t+m}^{1} g_{t+m-1}+g_{t+m} \tag{2.4}\\
& +\tilde{F}_{t+m}^{m-1} v_{t+1}+\tilde{F}_{t+m}^{m-2} v_{t+2}+\cdots+\tilde{F}_{t+m}^{1} v_{t+m-1}+v_{t+m}
\end{align*}
$$

for $m=1,2, \cdots$, where

$$
\tilde{F}_{t+m}^{n}=F_{t+m} \times F_{t+m-1} \times \cdots \times F_{t+m-(n-1)}
$$

for $n=1,2, \cdots, m$. Thus, the optimal m-ahead forecast can be written as

$$
\begin{align*}
& E\left(x_{t+m} \mid x_{t}, x_{t-1}, \cdots\right) \tag{2.5}\\
& =\tilde{F}_{t+m}^{m} x_{t}+\tilde{F}_{t+m}^{m-1} g_{t+1}+\tilde{F}_{t+m}^{m-2} g_{t+2}+\cdots+\tilde{F}_{t+m}^{1} g_{t+m-1}+g_{t+m}
\end{align*}
$$

Assume that the observation vectors are related to the state vectors through the equation

$$
\begin{equation*}
y_{t}=a_{t}+H_{t} x_{t}+w_{t} \tag{2.6}
\end{equation*}
$$

where y_{t} is an $\left(n_{t} \times 1\right)$ vector representing the observation of the system at time t, H_{t} is an ($n_{t} \times r_{t}$) matrix of coefficients, and w_{t} is an $\left(n_{t} \times 1\right)$ vector which could be thought as measurement error; w_{t} is presumed to be $N\left(0, R_{t}\right)$ (R_{t} is covariance matrix fitted its position), $\left\{w_{t}\right\}_{t=1}^{\infty}$ is an independent sequence and also independent of $\left\{v_{t}\right\}_{t=1}^{\infty}$ as well as the initial value of state x_{0}. Equation (2.6) also includes a_{t}, an $\left(n_{t} \times 1\right)$ observed or predetermined vector. For example, a_{t} could include the information of lagged values of y. We usually call (2.6) the observation equation of the system.

The state equation (2.3) and observation equation (2.6) constitute a state-space representation for the dynamic system of y. In this paper, we would focus on the system described by (2.3) and (2.6).

Note that the dimension of both state and observed vectors of this model can change over time. The time-varying dimension of observed vectors has been well understood and practiced. For instance, if some elements of an observation have missed, then its size is accordingly reduced. If the observation itself has missed, the updating step of the Kalman filter would be skipped (see Jones [1980], Harvey and Pierse [1984]). However the time-varying dimension of state vectors had not been enough appreciated until recently. Jungbacker et al. [2011] put common factors and idiosyncratic disturbances corresponding to missing data in the state vector when
consider a factor model with missing data, then the state vector varies in dimension over time due to the variation in the amount of missing data. In our model, the dimension of state vectors is allowed to vary over time, not only for the generality of the model but also for the convenience to introduce the model reconstruction method in next chapter.

Because a_{t} is deterministic, the state vector x_{t} and measurement error w_{t} contain everything in the past which is relevant for the future values of y,

$$
\begin{align*}
& E\left(y_{t+m} \mid x_{t}, x_{t-1}, \cdots, y_{t}, y_{t-1}, \cdots\right) \\
& =E\left(a_{t+m}+H_{t} x_{t+m}+w_{t+m} \mid x_{t}, x_{t-1}, \cdots, y_{t}, y_{t-1}, \cdots\right) \tag{2.7}\\
& =a_{t+m}+H_{t} E\left(x_{t+m} \mid x_{t}, x_{t-1}, \cdots, y_{t}, y_{t-1}, \cdots\right) \\
& =a_{t+m}+H_{t} E\left(x^{t+m} \mid x_{t}, x_{t-1}, \cdots\right)
\end{align*}
$$

where $E\left(x^{t+m} \mid x_{t}, x_{t-1}, \cdots\right)$ can be obtained from (2.5)
We take a p th order autoregression as a simple example of a system which can be written in state-space form,

$$
\begin{equation*}
y_{t}-\mu=\phi_{1}\left(y_{t-1}-\mu\right)+\phi_{2}\left(y_{t-2}-\mu\right)+\cdots+\phi_{p}\left(y_{t-p}-\mu\right)+\varepsilon_{t} . \tag{2.8}
\end{equation*}
$$

Then we write (2.8) as

$$
\left[\begin{array}{c}
y_{t}-\mu \tag{2.9}\\
y_{t-1}-\mu \\
\vdots \\
y_{t-p+1}-\mu
\end{array}\right]=\left[\begin{array}{ccccc}
\phi_{1} & \phi_{2} & \cdots & \phi_{p-1} & \phi_{p} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]\left[\begin{array}{c}
y_{t-1}-\mu \\
y_{t-2}-\mu \\
\vdots \\
y_{t-p}-\mu
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t} \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

The first row of (2.9) indicates (2.8) and other rows simply state the identity. We use the following notations:

$$
\begin{gathered}
x_{t} \stackrel{\text { def }}{=}\left(y_{t}-\mu, y_{t-1}-\mu, \cdots, y_{t-p+1}-\mu\right)^{\prime}, \\
v_{t} \stackrel{\text { def }}{=}\left(\varepsilon_{t}, 0, \cdots, 0\right)^{\prime}, \\
F \stackrel{\text { def }}{=}\left[\begin{array}{ccccc}
\phi_{1} & \phi_{2} & \cdots & \phi_{p-1} & \phi_{p} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] \\
H \stackrel{\text { def }}{=}(1,0, \cdots, 0)^{\prime} .
\end{gathered}
$$

Hence equation (2.9) can be written as

$$
x_{t}=F x_{t-1}+v_{t},
$$

which is the state equation. The observation equation is

$$
y_{t}=\mu+H x_{t} .
$$

2.2 Forecasting, filtering and smoothing

The relevant state-space model is taken as previously mentioned:

- state equation

$$
\begin{align*}
x_{t} & =g_{t}+F_{t} x_{t-1}+v_{t} \\
x_{0} & \sim N(\gamma, O) \tag{2.10}\\
v_{t} & \sim N\left(0, Q_{t}\right),
\end{align*}
$$

- observation equation

$$
\begin{align*}
& y_{t}=a_{t}+H_{t} x_{t}+w_{t} \tag{2.11}\\
& w_{t} \sim N\left(0, R_{t}\right),
\end{align*}
$$

for $t=1,2, \cdots$. Note that all the elements of $g_{t}, a_{t}, F_{t}, H_{t}, \gamma, O, Q_{t}$ and R_{t} are known with certainty, and $\left\{v_{t}\right\},\left\{w_{t}\right\}$ as well as x_{0} are mutually independent.

In practice, the main aim for the analysis of a state-space model is to provide estimators for the underlying unobserved state x_{t} on the basis of observations $Y_{s}=$ $\left\{y_{s}, y_{s-1}, \cdots, y_{1}\right\}$. When $s<t$, the problem is called forecasting; when $s=t$, it is called filtering; when $s>t$, it is called smoothing. Besides the estimators, we also want to measure their precision. The solution to these problems can be accomplished by Kalman filter and Kalman smoother.

For convenience, we will use the following notations:

$$
\begin{gathered}
x_{t}^{s} \stackrel{\text { def }}{=} E\left(x_{t} \mid Y_{s}\right) \\
P_{t_{1}, t_{2}}^{s_{1}, s_{2}} \stackrel{\text { def }}{=} E\left\{\left(x_{t_{1}}-x_{t_{1}}^{s_{1}}\right)\left(x_{t_{2}}-x_{t_{2}}^{s_{2}}\right)^{\prime}\right\}
\end{gathered}
$$

and

$$
P_{t_{1}, t_{2}}^{s} \stackrel{\text { def }}{=} P_{t_{1}, t_{2}}^{s, s}, \quad P_{t}^{s_{1}, s_{2}} \stackrel{\text { def }}{=} P_{t, t}^{s_{1}, s_{2}}, \quad P_{t}^{s} \stackrel{\text { def }}{=} P_{t, t}^{s, s} .
$$

Because $x_{t}-x_{t}^{s}$ and any vector from Y_{s} are uncorrelated, by the assumption of normality, $x_{t}-x_{t}^{s}$ is independent from Y_{s}, which implies

$$
E\left\{\left(x_{t_{1}}-x_{t_{1}}^{s}\right)\left(x_{t_{2}}-x_{t_{2}}^{s}\right)^{\prime} \mid Y_{s}\right\}=E\left\{\left(x_{t_{1}}-x_{t_{1}}^{s}\right)\left(x_{t_{2}}-x_{t_{2}}^{s}\right)^{\prime}\right\}=P_{t_{1}, t_{2}}^{s}
$$

Before introducing Kalman filter and Kalman smoother, we should notice that, for our model, the dimension of state vectors is time-varying, which is different from the usual models normally with fixed size of state vectors. However this feature of our model does not affect the proof of following algorithms at all. Therefore Kalman filter and smoother do work as expected for the model.

2.2.1 Kalman filter

First, we present the Kalman filter. Kalman filter can be described as a recursive algorithm for calculating the one-ahead forecast and the filter of x_{t} through the information observed. The advantage of Kalman filter is that it specifies how to update the filter from x_{t-1}^{t-1} to x_{t}^{t} via the observation y_{t}, without having to reprocess the entire observations $\left\{y_{t}, \cdots, y_{1}\right\}$.

Now we begin to present Kalman filter. The algorithm is started by setting the initial condition:

$$
x_{0}^{0}=\gamma, \quad P_{0}^{0}=O,
$$

where γ and O are the mean and variance of the distribution of x_{0} respectively. Then next step is to calculate the forecast of x_{t} conditional on Y_{t-1}. We have

$$
\begin{equation*}
x_{t}^{t-1}=g_{t}+F_{t} x_{t-1}^{t-1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{t}^{t-1}=F_{t} P_{t-1}^{t-1} F_{t}^{\prime}+Q_{t} . \tag{2.13}
\end{equation*}
$$

Therefore x_{t}^{t-1}, P_{t}^{t-1} could be obtained from $x_{t-1}^{t-1}, P_{t-1}^{t-1}$ via (2.12) and (2.13). The final step is to get the filter of x_{t} conditional on Y_{t}. We have

$$
\begin{equation*}
x_{t}^{t}=x_{t}^{t-1}+K_{t}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right), \tag{2.14}
\end{equation*}
$$

where the Kalman gain, K_{t}, is defined as

$$
K_{t} \stackrel{\text { def }}{=} P_{t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1} .
$$

P_{t}^{t} can be obtained as

$$
\begin{equation*}
P_{t}^{t}=\left(I_{r_{t}}-K_{t} H_{t}\right) P_{t}^{t-1} \tag{2.15}
\end{equation*}
$$

where $I_{r_{t}}$ represents an $\left(r_{t} \times r_{t}\right)$ identity matrix. Therefore we obtain x_{t}^{t}, P_{t}^{t} from x_{t}^{t-1}, P_{t}^{t-1} through (2.14) and (2.15).

To summarize, the Kalman filter is an recursive algorithm that could be stated as

- Initial condition:

$$
x_{0}^{0}=\gamma, \quad P_{0}^{0}=O
$$

- Forecast equation:

$$
\begin{gathered}
x_{t}^{t-1}=g_{t}+F_{t} x_{t-1}^{t-1} \\
P_{t}^{t-1}=F_{t} P_{t-1}^{t-1} F_{t}^{\prime}+Q_{t} .
\end{gathered}
$$

- Filter equation:

$$
\begin{gathered}
x_{t}^{t}=x_{t}^{t-1}+K_{t}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right) \\
P_{t}^{t}=\left(I_{r_{t}}-K_{t} H_{t}\right) P_{t}^{t-1} \\
\left(K_{t}=P_{t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1}\right)
\end{gathered}
$$

We should notice that some or all parameters of the model could vary with time and the state or observation dimension could change with time as well. The variance P_{t}^{t-1} and P_{t}^{t} are not functions of the data and could be evaluated without calculating the forecast x_{t}^{t-1} and filter x_{t}^{t}.

We have had the one-ahead forecast from forecast equation of Kalman filter, an m-ahead forecast can be calculated by (2.4):

$$
\begin{align*}
x_{t+m}^{t} & =E\left(x_{t+m} \mid Y_{t}\right) \tag{2.16}\\
& =\tilde{F}_{t+m}^{m} x_{t}^{t}+\tilde{F}_{t+m}^{m-1} g_{t+1}+\tilde{F}_{t+m}^{m-2} g_{t+2}+\cdots+\tilde{F}_{t+m}^{1} g_{t+m-1}+g_{t+m}
\end{align*}
$$

Thus the error of this forecast can be obtained from (2.4) and (2.16),

$$
x_{t+m}-x_{t+m}^{t}=\tilde{F}_{t+m}^{m}\left(x_{t}-x_{t}^{t}\right)+\tilde{F}_{t+m}^{m-1} v_{t+1}+\tilde{F}_{t+m}^{m-2} v_{t+2}+\cdots+\tilde{F}_{t+m}^{1} v_{t+m-1}+v_{t+m},
$$

where it follows that the mean squared error of the forecast, P_{t+m}^{t}, is

$$
\begin{align*}
P_{t+m}^{t} & =E\left\{\left(x_{t+m}-x_{t+m}^{t}\right)\left(x_{t+m}-x_{t+m}^{t}\right)^{\prime}\right\} \\
& =\tilde{F}_{t+m}^{m} P_{t}^{t}\left(\tilde{F}_{t+m}^{m}\right)^{\prime}+\tilde{F}_{t+m}^{m-1} Q_{t+1}\left(\tilde{F}_{t+m}^{m-1}\right)^{\prime}+\cdots+\tilde{F}_{t+m}^{1} Q_{t+m-1}\left(\tilde{F}_{t+m}^{1}\right)^{\prime}+Q_{t+m} . \tag{2.17}
\end{align*}
$$

2.2.2 Kalman smoother

Up to this point we have been concerned with the forecast and filter of the state vector, however in some applications the value of the state is of interest in its own right. It is desirable to use the information through the end of the sample to conduct the inference about the past values of the state. Such an inference is known as a smoothed estimate, the estimator is x_{t}^{T} for $t=1,2, \cdots, T-1$, and the corresponding mean squared error is P_{t}^{T}, where T denote the time for the last observation.

The smoothed estimates can be calculated by Kalman smoother, which is a recursive algorithm for obtaining the smoother x_{t}^{T} and its mean squared error P_{t}^{T}. Now we present the Kalman smoother as follows. First, we run the observed data through Kalman filter to obtain $\left\{P_{t}^{t-1}\right\}_{t=1}^{T},\left\{P_{t}^{t}\right\}_{t=1}^{T}$ from (2.13), (2.15) respectively, and accordingly obtain $\left\{x_{t}^{t-1}\right\}_{t=1}^{T},\left\{x_{t}^{t}\right\}_{t=1}^{T}$ from (2.12), (2.14). We set x_{T}^{T}, P_{T}^{T} as the initial value of this algorithm, therefore the sequence of smoothed estimates $\left\{x_{t}^{T}\right\}_{t=1}^{T}$ can be calculated in reverse order by iterating on

$$
\begin{equation*}
x_{t-1}^{T}=x_{t-1}^{t-1}+J_{t-1}\left(x_{t}^{T}-x_{t}^{t-1}\right) \tag{2.18}
\end{equation*}
$$

where

$$
J_{t-1} \stackrel{\text { def }}{=} P_{t-1}^{t-1} F^{\prime}\left(P_{t}^{t-1}\right)^{-1}
$$

for $t=T-1, T-2, \cdots, 1$. The corresponding mean squared errors are similarly found by iterating on

$$
\begin{equation*}
P_{t-1}^{T}=P_{t-1}^{t-1}+J_{t-1}\left(P_{t}^{T}-P_{t}^{t-1}\right) J_{t-1}^{\prime} \tag{2.19}
\end{equation*}
$$

in reverse order for $t=T-1, T-2, \cdots, 1$.
To summarize, the Kalman smoother is a recursive algorithm which could be stated

- Initial conditions:
run Kalman filter to obtain

$$
\left\{P_{t}^{t-1}\right\}_{t=1}^{T}, \quad\left\{P_{t}^{t}\right\}_{t=1}^{T}, \quad\left\{x_{t}^{t-1}\right\}_{t=1}^{T}, \quad\left\{x_{t}^{t}\right\}_{t=1}^{T} .
$$

- Smoother equation:
run equations below in reverse order

$$
\begin{gathered}
x_{t-1}^{T}=x_{t-1}^{t-1}+J_{t-1}\left(x_{t}^{T}-x_{t}^{t-1}\right), \\
P_{t-1}^{T}=P_{t-1}^{t-1}+J_{t-1}\left(P_{t}^{T}-P_{t}^{t-1}\right) J_{t-1}^{\prime} . \\
\left(J_{t-1}=P_{t-1}^{t-1} F^{\prime}\left(P_{t}^{t-1}\right)^{-1}\right)
\end{gathered}
$$

Chapter 3

Discussion of the joint distribution of estimators

As we discussed in the last chapter, from the algorithm named Kalman filter, we can obtain the filter x_{t}^{t}, m-ahead forecast x_{t+m}^{t} (by (2.16)) and corresponding mean squared errors P_{t}^{t}, P_{t+m}^{t} (by (2.17)). Furthermore, we could also obtain the smoother $x_{t-m}^{t}(m=1,2, \cdots, t-1)$ and the corresponding mean squared error P_{t-m}^{t} from the algorithm called Kalman smoother. Up to this point, we have a procedure to compute these estimators and their mean squared errors, then naturally the next aim is to obtain the joint distribution of these estimators based on the given data or observations Y_{T}, which provides an evaluation of these estimators.

Based on the model which consists of (2.10) and (2.11), It is easy to notice that vectors $\left\{x_{T+m}, \cdots, x_{1}, y_{T}, \cdots, y_{1}\right\}$ have a joint normal distribution, which means that the joint conditional distribution of $\left\{x_{T+m}, \cdots, x_{1}\right\}$ given Y_{T} is normal. We can
illustrate the result as:

$$
\left[\begin{array}{c}
x_{T+m} \\
\vdots \\
x_{T} \\
\vdots \\
x_{1}
\end{array}\right] \left\lvert\, Y_{T} \sim N\left(\left[\begin{array}{c}
x_{T+m}^{T} \\
\vdots \\
x_{T}^{T} \\
\vdots \\
x_{1}^{T}
\end{array}\right],\left[\begin{array}{ccccc}
P_{T+m}^{T} & \cdots & P_{T+m, T}^{T} & \cdots & P_{T+m, 1}^{T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
P_{T, T+m}^{T} & \cdots & P_{T}^{T} & \cdots & P_{T, 1}^{T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
P_{1, T+m}^{T} & \cdots & P_{1, T}^{T} & \cdots & P_{1}^{T}
\end{array}\right]\right)\right.
$$

We already know the method to obtain $x_{T+m}^{T}, \cdots, x_{T}^{T}, \cdots, x_{1}^{T}$ and $P_{T+m}^{T}, \cdots, P_{T}^{T}, \cdots, P_{1}^{T}$, thus next step is to develop an approach to obtain the conditional covariances $P_{s, t}^{T}$ for $s, t \in\{1,2, \cdots, T+m\}$ and $s \neq t$. We could work out this problem by focusing on matrix

$$
\left[\begin{array}{ccccc}
P_{T+m}^{T} & \cdots & P_{T+m, T}^{T} & \cdots & P_{T+m, 1}^{T} \tag{3.1}\\
\vdots & \cdots & \vdots & \cdots & \vdots \\
P_{T, T+m}^{T} & \cdots & P_{T}^{T} & \cdots & P_{T, 1}^{T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
P_{1, T+m}^{T} & \cdots & P_{1, T}^{T} & \cdots & P_{1}^{T}
\end{array}\right]
$$

We consider two approaches to address this problem. In the first section of this chapter, we propose an algorithm to calculate the related conditional covariances. Since this algorithm is recursive, we call it recursive method. On the other hand, in the second section, we will reconstruct the state-space model to propose another way to solve the problem. We call it model reconstruction method, which could be found in the book of Anderson and Moore [2012] (chapter 7). Besides giving a solution to this problem, by the model reconstruction method, we would also extend our statespace model into a relatively more general one and try to develop the corresponding method to do filtering, forecasting, smoothing of the new model. This extension would be introduced in the third section.

3.1 Recursive method

Based on the original model ((2.10) and (2.11)), we develop an algorithm to obtain the conditional covariance

$$
P_{a, b}^{s, t}=E\left\{\left(x_{a}-x_{a}^{s}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\} .
$$

Before deriving the algorithm, we should introduce a lemma.

Lemma. For the model consisting of (2.10) and (2.11), the following equations hold:

1. $\left(P_{a, b}^{s, t}\right)^{\prime}=P_{b, a}^{t, s}$.
2. $P_{a, b}^{s, t}=P_{a, b}^{t}=P_{a, b}^{t, s}$, if $s \leq t$.
3. $P_{a, b}^{t}=F_{a} P_{a-1, b}^{t}$, if $a>\max (b, t)$.
4. $P_{b}^{t}=F_{b} P_{b-1}^{t} F_{b}^{\prime}+Q_{b}$, if $b>t$.
5. $P_{t, b}^{t}=\left(I_{r_{t}}-K_{t} H_{t}\right) P_{t, b}^{t-1}$, if $t>b$.
6. $P_{a, b}^{t}=P_{a, b}^{a}+J_{a}\left(P_{a+1, b}^{b}-P_{a+1, b}^{a}\right)+J_{a}\left(P_{a+1, b+1}^{t}-P_{a+1, b+1}^{b}\right) J_{b}^{\prime}$, if $t>a>b$.

Proof.

1. Based on the definition of $P_{a, b}^{s, t}$, we have

$$
\left(P_{a, b}^{s, t}\right)^{\prime}=E\left\{\left(x_{a}-x_{a}^{s}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\}^{\prime}=E\left\{\left(x_{b}-x_{b}^{t}\right)\left(x_{a}-x_{a}^{s}\right)^{\prime}\right\}=P_{b, a}^{t, s} .
$$

2. Denote $\mathcal{G} \stackrel{\text { def }}{=} \sigma\left(Y_{t}\right)$, the σ-algebra generated by $\left\{y_{t}, y_{t-1}, \cdots, y_{1}\right\}$. If vector
function g is \mathcal{G}-measurable, thus

$$
\begin{aligned}
E\left\{\left(x_{a}-x_{a}^{t}\right) g^{\prime}\right\} & =E\left(x_{a} g^{\prime}\right)-E\left(x_{a}^{t} g^{\prime}\right) \\
& =E\left\{E\left(x_{a} g^{\prime} \mid Y_{t}\right)\right\}-E\left(x_{a}^{t} g^{\prime}\right) \\
& =E\left(x_{a}^{t} g^{\prime}\right)-E\left(x_{a}^{t} g^{\prime}\right) \\
& =0 .
\end{aligned}
$$

Note that x_{b}^{t} and $x_{b}^{s}(s \leq t)$ are \mathcal{G}-measurable, thus we have

$$
E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b}^{t}\right)^{\prime}\right\}=0 \text { and } E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b}^{s}\right)^{\prime}\right\}=0,
$$

then

$$
\begin{aligned}
P_{a, b}^{t} & =E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\} \\
& =E\left\{\left(x_{a}-x_{a}^{t}\right) x_{b}^{\prime}\right\} \\
& =E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b}-x_{b}^{s}\right)^{\prime}\right\} \\
& =P_{a, b}^{t, s} .
\end{aligned}
$$

By the property 1 of this lemma, we have

$$
P_{b, a}^{t, s}=P_{b, a}^{t} \Rightarrow P_{a, b}^{s, t}=P_{a, b}^{t} .
$$

Therefore when $s \leq t, P_{a, b}^{s, t}=P_{a, b}^{t}=P_{a, b}^{t, s}$ holds.
3. Since $a>t$, by (2.10), we have

$$
x_{a}^{t}=g_{a}+F_{a} x_{a-1}^{t}
$$

hence

$$
\begin{aligned}
x_{a}-x_{a}^{t} & =g_{a}+F_{a} x_{a-1}+v_{a}-\left(g_{a}+F_{a} x_{a-1}^{t}\right) \\
& =F_{a}\left(x_{a-1}-x_{a-1}^{t}\right)+v_{a} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P_{a, b}^{t} & =E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\} \\
& =E\left\{\left[F_{a}\left(x_{a-1}-x_{a-1}^{t}\right)+v_{a}\right]\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\} \\
& =F_{a} E\left\{\left(x_{a-1}-x_{a-1}^{t}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\} \\
& =F_{a} P_{a-1, b}^{t},
\end{aligned}
$$

where the third equation holds as $E\left\{\left(v_{a}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\}=0$ when $a>\max (b, t)$.
4. We already know that

$$
x_{b}-x_{b}^{t}=F_{b}\left(x_{b-1}-x_{b-1}^{t}\right)+v_{b},
$$

thus

$$
\begin{aligned}
P_{b}^{t} & =E\left\{\left(x_{b}-x_{b}^{t}\right)\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\} \\
& =E\left\{\left[F_{b}\left(x_{b-1}-x_{b-1}^{t}\right)+v_{b}\right]\left[F_{b}\left(x_{b-1}-x_{b-1}^{t}\right)+v_{b}\right]^{\prime}\right\} \\
& =E\left\{\left[F_{b}\left(x_{b-1}-x_{b-1}^{t}\right)\left(x_{b-1}-x_{b-1}^{t}\right)^{\prime} F_{b}^{\prime}\right]\right\}+E\left(v_{b} v_{b}^{\prime}\right) \\
& =F_{b} P_{b-1}^{t} F_{b}^{\prime}+Q_{b},
\end{aligned}
$$

where the third equation holds since

$$
E\left\{\left[F_{b}\left(x_{b-1}-x_{b-1}^{t}\right)\right] v_{b}^{\prime}\right\}=0 \text { and } E\left\{v_{b}\left[F_{b}\left(x_{b-1}-x_{b-1}^{t}\right)\right]^{\prime}\right\}=0
$$

when $b>t$.
5. From the filter equation (2.14) of Kalman filter, we obtain

$$
\begin{aligned}
x_{t}^{t} & =x_{t}^{t-1}+K_{t}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right) \\
& =x_{t}^{t-1}+K_{t}\left[\left(a_{t}+H_{t} x_{t}+w_{t}\right)-a_{t}-H_{t} x_{t}^{t-1}\right] \\
& =x_{t}^{t-1}+K_{t}\left[H_{t}\left(x_{t}-x_{t}^{t-1}\right)+w_{t}\right] \\
& =x_{t}^{t-1}+K_{t} H_{t}\left(x_{t}-x_{t}^{t-1}\right)+K_{t} w_{t} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
P_{t, b}^{t} & =P_{t, b}^{t, b} \\
& =E\left\{\left(x_{t}-x_{t}^{t}\right)\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\} \\
& =E\left\{\left(x_{t}-x_{t}^{t-1}-K_{t} H_{t}\left(x_{t}-x_{t}^{t-1}\right)-K_{t} w_{t}\right)\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\} \\
& =E\left\{\left[\left(I_{r_{t}}-K_{t} H_{t}\right)\left(x_{t}-x_{t}^{t-1}\right)-K_{t} w_{t}\right]\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\} \\
& =\left(I_{r_{t}}-K_{t} H_{t}\right) E\left\{\left(x_{t}-x_{t}^{t-1}\right)\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\} \\
& =\left(I_{r_{t}}-K_{t} H_{t}\right) P_{t, b}^{t-1, b} \\
& =\left(I_{r_{t}}-K_{t} H_{t}\right) P_{t, b}^{t-1}
\end{aligned}
$$

where the first and last equations hold because of property 2 and the fact $t>b$, and the fifth equation holds because

$$
K_{t} E\left\{w_{t}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=0
$$

when $t>b$.
6. From (2.18) of Kalman smoother, we have

$$
x_{a}^{t}=x_{a}^{a}+J_{a}\left(x_{a+1}^{t}-x_{a+1}^{a}\right),
$$

thus

$$
x_{a}-x_{a}^{t}=x_{a}-x_{a}^{a}-J_{a}\left(x_{a+1}^{t}-x_{a+1}^{a}\right),
$$

then

$$
\begin{equation*}
x_{a}-x_{a}^{t}+J_{a} x_{a+1}^{t}=x_{a}-x_{a}^{a}+J_{a} x_{a+1}^{a} . \tag{3.2}
\end{equation*}
$$

Similarly, the following holds:

$$
\begin{equation*}
x_{b}-x_{b}^{t}+J_{b} x_{b+1}^{t}=x_{b}-x_{b}^{b}+J_{b} x_{b+1}^{b} . \tag{3.3}
\end{equation*}
$$

Next, multiply the left side of (3.2) by the transpose of the left hand side of (3.3), and equate this to the corresponding result of the right hand sides of (3.2) and (3.3). Then taking expectation of both sides, we arrive to

$$
\begin{align*}
& P_{a, b}^{t}+E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b+1}^{t}\right)^{\prime}\right\} J_{b}^{\prime}+J_{a} E\left\{x_{a+1}^{t}\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\}+J_{a} E\left\{x_{a+1}^{t}\left(x_{b+1}^{t}\right)^{\prime}\right\} J_{b}^{\prime} \\
& =P_{a, b}^{a, b}+E\left\{\left(x_{a}-x_{a}^{a}\right)\left(x_{b+1}^{b}\right)^{\prime}\right\} J_{b}^{\prime}+J_{a} E\left\{x_{a+1}^{a}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}+J_{a} E\left\{x_{a+1}^{a}\left(x_{b+1}^{b}\right)^{\prime}\right\} J_{b}^{\prime} . \tag{3.4}
\end{align*}
$$

Here vectors x_{b+1}^{t} and x_{a+1}^{t} are $\sigma\left(Y_{t}\right)$-measurable, then

$$
\begin{equation*}
E\left\{\left(x_{a}-x_{a}^{t}\right)\left(x_{b+1}^{t}\right)^{\prime}\right\}=0 \text { and } E\left\{x_{a+1}^{t}\left(x_{b}-x_{b}^{t}\right)^{\prime}\right\}=0 . \tag{3.5}
\end{equation*}
$$

Since $b<a \Rightarrow \sigma\left(Y_{b}\right) \subseteq \sigma\left(Y_{a}\right)$ and x_{b+1}^{b} is $\sigma\left(Y_{b}\right)$-measurable, x_{b+1}^{b} should be
$\sigma\left(Y_{a}\right)$-measurable, which implies

$$
\begin{equation*}
E\left\{\left(x_{a}-x_{a}^{a}\right)\left(x_{b+1}^{b}\right)^{\prime}\right\}=0 \tag{3.6}
\end{equation*}
$$

We have

$$
\begin{aligned}
P_{a+1, b+1}^{t}= & E\left\{\left(x_{a+1}-x_{a+1}^{t}\right)\left(x_{b+1}-x_{b+1}^{t}\right)^{\prime}\right\} \\
= & E\left(x_{a+1} x_{b+1}^{\prime}\right)-E\left\{E\left[x_{a+1}\left(x_{b+1}^{t}\right)^{\prime} \mid Y_{t}\right]\right\}-E\left\{E\left(x_{a+1}^{t} x_{b+1}^{\prime} \mid Y_{t}\right)\right\} \\
& +E\left\{x_{a+1}^{t}\left(x_{b+1}^{t}\right)^{\prime}\right\} \\
= & E\left(x_{a+1} x_{b+1}^{\prime}\right)-E\left\{x_{a+1}^{t}\left(x_{b+1}^{t}\right)^{\prime}\right\}
\end{aligned}
$$

thus

$$
\begin{equation*}
E\left\{x_{a+1}^{t}\left(x_{b+1}^{t}\right)^{\prime}\right\}=E\left(x_{a+1} x_{b+1}^{\prime}\right)-P_{a+1, b+1}^{t} . \tag{3.7}
\end{equation*}
$$

Because $b<a \Rightarrow \sigma\left(Y_{b}\right) \subseteq \sigma\left(Y_{a}\right)$, we have

$$
\begin{aligned}
E\left(x_{a+1}^{a} \mid Y_{b}\right) & =E\left\{E\left(x_{a+1} \mid Y_{a}\right) \mid Y_{b}\right\} \\
& =E\left(x_{a+1} \mid Y_{b}\right) \\
& =x_{a+1}^{b},
\end{aligned}
$$

therefore

$$
\begin{aligned}
E\left\{x_{a+1}^{a}\left(x_{b+1}^{b}\right)^{\prime}\right\} & =E\left\{E\left(x_{a+1}^{a}\left(x_{b+1}^{b}\right)^{\prime} \mid Y_{b}\right)\right\} \\
& =E\left\{E\left(x_{a+1}^{a} \mid Y_{b}\right)\left(x_{b+1}^{b}\right)^{\prime}\right\} \\
& =E\left\{x_{a+1}^{b}\left(x_{b+1}^{b}\right)^{\prime}\right\}
\end{aligned}
$$

Then, as in the proof of (3.7), we could establish

$$
\begin{equation*}
E\left\{x_{a+1}^{a}\left(x_{b+1}^{b}\right)^{\prime}\right\}=E\left(x_{a+1} x_{b+1}^{\prime}\right)-P_{a+1, b+1}^{b} . \tag{3.8}
\end{equation*}
$$

We have

$$
E\left\{x_{a+1}^{a}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=E\left\{x_{a+1}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}-E\left\{\left(x_{a+1}-x_{a+1}^{a}\right)\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\} .
$$

Here

$$
E\left\{\left(x_{a+1}-x_{a+1}^{a}\right)\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=P_{a+1, b}^{a, b}=P_{a+1, b}^{a},
$$

where the last equation holds because of property 2 as well as $b<a$; and

$$
E\left\{x_{a+1}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=E\left\{\left(x_{a+1}-x_{a+1}^{b}\right)\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=P_{a+1, b}^{b},
$$

where the first equation holds as x_{a+1}^{b} is $\sigma\left(Y_{b}\right)$-measurable, which implies that

$$
E\left\{x_{a+1}^{b}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=0
$$

Therefore

$$
\begin{equation*}
E\left\{x_{a+1}^{a}\left(x_{b}-x_{b}^{b}\right)^{\prime}\right\}=P_{a+1, b}^{b}-P_{a+1, b}^{a} \tag{3.9}
\end{equation*}
$$

From (3.5), (3.6), (3.7), (3.8), (3.9) and $P_{a, b}^{a, b}=P_{a, b}^{a}$ (by property 2), (3.4) reduces to

$$
P_{a, b}^{t}=P_{a, b}^{a}+J_{a}\left(P_{a+1, b}^{b}-P_{a+1, b}^{a}\right)+J_{a}\left(P_{a+1, b+1}^{t}-P_{a+1, b+1}^{b}\right) J_{b}^{\prime} .
$$

Up to this point, we have proven the lemma, then what we shall do next is to state the algorithm. This algorithm is in essence a recursive one like Kalman filter as well as Kalman smoother and it is established on the basis of these two algorithms. We could calculate any conditional covariance $P_{a, b}^{s, t}$ by this algorithm in terms of the
model we introduced ((2.10) and (2.11)).

Algorithm.

step 1 For any conditional covariance $P_{a, b}^{s, t}$ of the model consisting of (2.10) and (2.11), assume i is a variable, let

$$
\begin{cases}P_{a, b}^{s, t}=P_{a, b}^{s, t}, i=1 & \text { if } a \geq b \\ P_{a, b}^{s, t}=\left(P_{a, b}^{s, t}\right)^{\prime}, i=0 & \text { otherwise }\end{cases}
$$

step 2 Due to the property 2 , assume $n=\max (s, t)$, we have $P_{a, b}^{n}=P_{a, b}^{s, t}$.
step 3 Consider $P_{a, b}^{n}$ in several conditions (note that $a \geq b$ always holds due to step 1):

$$
\begin{cases}\text { go to step 4.1 } & \text { if } a>n, b=a, \\ \text { go to step 4.2 } & \text { if } a>n, b<a, b>n, \\ \text { go to step 4.3 } & \text { if } a>n, b=n, \\ \text { go to step 4.4 } & \text { if } a>n, b<n, \\ \text { go to step 4.5 } & \text { if } a=n, b=a \\ \text { go to step 4.6 } & \text { if } a=n, b<a, \\ \text { go to step 4.7 } & \text { if } a<n, b=a, \\ \text { go to step 4.8 } & \text { if } a<n, b<a\end{cases}
$$

step 4.1 In this condition, $P_{a, b}^{n}=P_{a}^{n}(a>n)$, by property 4 of lemma, this can be calculated by iterating on

$$
\begin{equation*}
P_{a}^{n}=F_{a} P_{a-1}^{n} F_{a}^{\prime}+Q_{a} \quad(a>n) \tag{3.10}
\end{equation*}
$$

until P_{n}^{n}, and P_{n}^{n} can be obtained by Kalman filter. After obtaining the value of $P_{a, b}^{n}$, go to step 5 .
step 4.2 By property 3 of lemma, $P_{a, b}^{n}$ can be calculated by iterating on

$$
\begin{equation*}
P_{a, b}^{n}=F_{a} P_{a-1, b}^{n} \quad(a>\max (b, n)) \tag{3.11}
\end{equation*}
$$

until $P_{b}^{n}(b>n)$ which can be calculated by iterating on (3.10) until P_{n}^{n}, then P_{n}^{n} can be obtained by Kalman filter. After obtaining the value of $P_{a, b}^{n}$, go to step 5.
step 4.3 For this condition, $P_{a, b}^{n}=P_{a, n}^{n}(a>n)$, and it can be calculated by iterating on equation (3.11) until P_{n}^{n}, then P_{n}^{n} can be obtained by Kalman filter. After obtaining the value of $P_{a, b}^{n}$, go to step 5 .
step 4.4 By property 3 and 5 of lemma, $P_{a, b}^{n}$ can be calculated by iterating on (3.11) until $P_{n, b}^{n}$, and $P_{n, b}^{n}$ can be calculated by iterating on

$$
\begin{equation*}
P_{n, b}^{n}=\left(I_{n}-K_{n} H_{n}\right) P_{n, b}^{n-1}=\left(I_{n}-K_{n} H_{n}\right) F_{n} P_{n-1, b}^{n-1} \quad(n>b) \tag{3.12}
\end{equation*}
$$

until P_{b}^{b} which can be obtained by Kalman filter. After obtaining the value of $P_{a, b}^{n}$, go to step 5.
step 4.5 In this condition, $P_{a, b}^{n}=P_{n}^{n}$, it can be obtained by Kalman filter. After obtaining the value of $P_{a, b}^{n}$, go to step 5 .
step 4.6 Under this condition, $P_{a, b}^{n}=P_{n, b}^{n}(b<n)$, it can be calculated by iterating on (3.12) until P_{b}^{b}, and P_{b}^{b} can be obtained by Kalman filter. After obtaining the value of $P_{a, b}^{n}$, go to step 5 .
step 4.7 For this condition, $P_{a, b}^{n}=P_{a}^{n}(a<n)$, it can be obtained by Kalman smoother. After obtaining the value of $P_{a, b}^{n}$, go to step 5.
step 4.8 By property 6 of lemma, $P_{a, b}^{n}$ can be calculated by iterating on

$$
P_{a, b}^{n}=P_{a, b}^{a}+J_{a}\left(P_{a+1, b}^{b}-P_{a+1, b}^{a}\right)+J_{a}\left(P_{a+1, b+1}^{n}-P_{a+1, b+1}^{b}\right) J_{b}^{\prime} \quad(n>a>b)
$$

until $P_{n, n-a+b}^{n}$, where $P_{a, b}^{a}$ can be calculated by the procedure of step $4.6, P_{a+1, b}^{b}$ can be calculated by the procedure of step $4.3, P_{a+1, b}^{a}$ can be calculated by the procedure of step 4.4 and $P_{a+1, b+1}^{b}$ can be calculated by the procedure of step 4.2. As for $P_{n, n-a+b}^{n}$, since $n-a+b<n$, it could be calculated by the procedure of step 4.6. After obtaining the value of $P_{a, b}^{n}$, go to step 5 .
step 5 Considering the procedure of step 1 , by the property 1 of lemma, we have

$$
\begin{cases}P_{a, b}^{s, t}=P_{a, b}^{n} & \text { if } i=1 \\ P_{a, b}^{s, t}=\left(P_{a, b}^{n}\right)^{\prime} & \text { if } i=0\end{cases}
$$

Then the calculation of $P_{a, b}^{s, t}$ is done.
By this algorithm, we could calculate any conditional covariance of the given statespace model $((2.10)$ and $(2.11))$, which implies that we can compute the value of every parameter of matrix (3.1), thus the original problem has been solved.

To derive this algorithm, we have developed several properties for the model. The algorithm is established on the basis of Kalman filter and Kalman smoother, which are repeatedly called to carry on the calculation.

This method is easy to apply, and it is especially suitable when we are only interested in some specific elements of the covariance matrix (3.1), because the algorithm is oriented to calculate the single conditional covariance. Certainly, this algorithm can
be revised to make it more efficient if we were interested in values of almost all these parameters of matrix (3.1). However, for this situation, the method to be introduced in the next section would be more efficient. Therefore, the advantage of this method is to be able to calculate a single value.

3.2 Model reconstruction method

The key point of the model reconstruction method is to find an alternative expression of the original state-space model consisting of (2.10) and (2.11), then apply Kalman filter. With this process we can obtain enough information to calculate the related conditional covariances, thus solve the original problem.

At first, let us consider the state equation (2.3), for $t=2,3, \cdots$, which can be written as

$$
\left[\begin{array}{c}
x_{t} \tag{3.13}\\
x_{t-1} \\
x_{t-2} \\
\vdots \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
g_{t} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]+\left[\begin{array}{cccc}
F_{t} & 0 & \cdots & 0 \\
I_{r_{t-1}} & 0 & \cdots & 0 \\
0 & I_{r_{t-2}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & I_{r_{1}}
\end{array}\right]\left[\begin{array}{c}
x_{t-1} \\
x_{t-2} \\
\vdots \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
v_{t} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $I_{r_{t}}$ represents an $\left(r_{t} \times r_{t}\right)$ identity matrix and, as we have mentioned before, 0 symbolizes a zero matrix fitted its position. The first r_{t} rows of (3.13) indicate the state equation and other rows simply state the identity.

By using the following notation:

$$
p_{t} \stackrel{\text { def }}{=} \begin{cases}r_{t}+r_{t-1}+\cdots+r_{1} & t=1,2, \cdots \\ r_{0} & t=0\end{cases}
$$

$$
\begin{aligned}
& \underset{\left(p_{t} \times 1\right)}{Z_{t}} \stackrel{\text { def }}{=}\left[\begin{array}{c}
x_{t} \\
x_{t-1} \\
\vdots \\
x_{1}
\end{array}\right], \underset{\left(p_{t} \times 1\right)}{G_{t}} \stackrel{\text { def }}{=}\left[\begin{array}{c}
g_{t} \\
0 \\
\vdots \\
0
\end{array}\right], \underset{\left(p_{t} \times 1\right)}{V_{t}} \stackrel{\text { def }}{=}\left[\begin{array}{c}
v_{t} \\
0 \\
\vdots \\
0
\end{array}\right], \\
& \underset{\left(p_{t} \times p_{t-1}\right)}{\Phi_{t}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
F_{t} & 0 & \cdots & 0 \\
I_{r_{t-1}} & 0 & \cdots & 0 \\
0 & I_{r_{t-2}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & I_{r_{1}}
\end{array}\right],
\end{aligned}
$$

(3.13) can be written as

$$
\begin{equation*}
Z_{t}=G_{t}+\Phi_{t} Z_{t-1}+V_{t} \tag{3.14}
\end{equation*}
$$

We define

$$
\underset{\left(p_{t} \times p_{t}\right)}{Q_{t}^{*}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
Q_{t} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

hence the vector V_{t} follows $N\left(0, Q_{t}^{*}\right)$ and $\left\{V_{t}\right\}_{t=1}^{\infty}$ is an independent sequence. We denote $Z_{0} \stackrel{\text { def }}{=} x_{0}$ and set Z_{0} as the initial value of sequence $\left\{Z_{t}\right\}_{t=1}^{\infty}$, obviously Z_{0} is independent of $\left\{V_{t}\right\}_{t=1}^{\infty}$. By the definition of Z_{0}, equation (3.14) holds from $t=1$. Therefore, if we set Z_{t} as a state vector, (3.14) would be a state equation.

Similarly, for observation equation (2.6), it can be written as

$$
y_{t}=a_{t}+\left[\begin{array}{llll}
H_{t} & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
x_{t} \tag{3.15}\\
x_{t-1} \\
\vdots \\
x_{1}
\end{array}\right]+w_{t}
$$

By using the following notation:

$$
\underset{\left(1 \times p_{t}\right)}{\Lambda_{t}} \stackrel{\text { def }}{=}\left[\begin{array}{llll}
H_{t} & 0 & \cdots & 0
\end{array}\right]
$$

(3.15) can be expressed as

$$
\begin{equation*}
y_{t}=a_{t}+\Lambda_{t} Z_{t}+w_{t} . \tag{3.16}
\end{equation*}
$$

It is easy to notice that (3.16) can be seen as an observation equation of (3.14), which means they can constitute an alternative representation for the original state-space model:

- state equation

$$
\begin{aligned}
Z_{t} & =G_{t}+\Phi_{t} Z_{t-1}+V_{t} \\
Z_{0} & \sim N(\gamma, O) \\
V_{t} & \sim N\left(0, Q_{t}^{*}\right),
\end{aligned}
$$

- observation equation

$$
\begin{aligned}
& y_{t}=a_{t}+\Lambda_{t} Z_{t}+w_{t} \\
& w_{t} \sim N\left(0, R_{t}\right),
\end{aligned}
$$

for $t=1,2, \cdots$.
To distinguish from notations used for the original model, we adopt the following notations:

$$
\begin{gathered}
Z_{t}^{s} \stackrel{\text { def }}{=} E\left(Z_{t} \mid Y_{s}\right) \\
C_{t_{1}, t_{2}}^{s_{1}, s_{2}} \stackrel{\text { def }}{=} E\left\{\left(Z_{t_{1}}-Z_{t_{1}}^{s_{1}}\right)\left(Z_{t_{2}}-Z_{t_{2}}^{s_{2}}\right)^{\prime}\right\}
\end{gathered}
$$

and

$$
C_{t_{1}, t_{2}}^{s} \stackrel{\text { def }}{=} C_{t_{1}, t_{2}}^{s, s}, \quad C_{t}^{s_{1}, s_{2}} \stackrel{\text { def }}{=} C_{t, t}^{s_{1}, s_{2}}, \quad C_{t}^{s} \stackrel{\text { def }}{=} C_{t, t}^{s, s} .
$$

Now we apply Kalman filter to this model. First, the initial condition becomes

$$
Z_{0}^{0}=\gamma, \quad C_{0}^{0}=O
$$

where γ and O are the mean and variance of the distribution of Z_{0}. Next step is to calculate the forecast of Z_{t} conditional on Y_{t-1}. By forecast equations (2.12) and (2.13), we have

$$
\begin{equation*}
Z_{t}^{t-1}=G_{t}+\Phi_{t} Z_{t-1}^{t-1} \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t}^{t-1}=\Phi_{t} C_{t-1}^{t-1} \Phi_{t}^{\prime}+Q_{t}^{*} \tag{3.18}
\end{equation*}
$$

The final step is to obtain the filter of Z_{t} conditional on Y_{t}. By filter equations (2.14) and (2.15), we have

$$
\begin{equation*}
Z_{t}^{t}=Z_{t}^{t-1}+K_{t}^{*}\left(y_{t}-a_{t}-\Lambda_{t} Z_{t}^{t-1}\right) \tag{3.19}
\end{equation*}
$$

where

$$
K_{t}^{*} \stackrel{\text { def }}{=} C_{t}^{t-1} \Lambda_{t}^{\prime}\left(\Lambda_{t} C_{t}^{t-1} \Lambda_{t}^{\prime}+R_{t}\right)^{-1} .
$$

C_{t}^{t} can be accomplished as

$$
\begin{equation*}
C_{t}^{t}=\left(I_{p_{t}}-K_{t}^{*} \Lambda_{t}\right) C_{t}^{t-1} \tag{3.20}
\end{equation*}
$$

where $I_{p_{t}}$ represents an $\left(p_{t} \times p_{t}\right)$ identity matrix.
By the definition of $Z_{t}^{t-1}, Z_{t}^{t}, C_{t}^{t-1}$ and C_{t}^{t},

$$
\begin{gathered}
Z_{t}^{t-1}=\left[\begin{array}{c}
x_{t}^{t-1} \\
x_{t-1}^{t-1} \\
\vdots \\
x_{1}^{t-1}
\end{array}\right], Z_{t}^{t}=\left[\begin{array}{c}
x_{t}^{t} \\
x_{t-1}^{t} \\
\vdots \\
x_{1}^{t}
\end{array}\right], \\
C_{t}^{t-1}=\left[\begin{array}{cccc}
P_{t}^{t-1} & P_{t, t-1}^{t-1} & \cdots & P_{t, 1}^{t-1} \\
P_{t-1, t}^{t-1} & P_{t-1}^{t-1} & \cdots & P_{t-1,1}^{t-1} \\
\vdots & \vdots & \cdots & \vdots \\
P_{1, t}^{t-1} & P_{1, t-1}^{t-1} & \cdots & P_{1}^{t-1}
\end{array}\right], \\
C_{t}^{t}=\left[\begin{array}{cccc}
P_{t}^{t} & P_{t, t-1}^{t} & \cdots & P_{t, 1}^{t} \\
P_{t-1, t}^{t} & P_{t-1}^{t} & \cdots & P_{t-1,1}^{t} \\
\vdots & \vdots & \cdots & \vdots \\
P_{1, t}^{t} & P_{1, t-1}^{t} & \cdots & P_{1}^{t}
\end{array}\right],
\end{gathered}
$$

Note that C_{T}^{T} is the lower right part of the conditional covariance matrix (3.1) and, if we look back on the algorithm of recursive method, calculation of elements from C_{T}^{T} are most laborious, therefore C_{T}^{T} provides a partial but important solution to the original problem. C_{T}^{T} can be calculated through the Kalman filter for the rewritten
model. The rest of the matrix (3.1) can be easily calculated as follows. Assume that we have already computed the value of C_{T}^{T}, then by the property 3 of lemma,

$$
P_{T+i, j}^{T}=F_{T+i} P_{T+i-1, j}^{T}
$$

holds for $i=1,2, \cdots, m$ and $j=1,2, \cdots, T$. Therefore the upper right part of matrix

$$
\left[\begin{array}{ccc}
P_{T+m, T}^{T} & \cdots & P_{T+m, 1}^{T} \tag{3.1}\\
\vdots & \cdots & \vdots \\
P_{T+1, T}^{T} & \cdots & P_{T+1,1}^{T}
\end{array}\right]
$$

can be obtained from C_{T}^{T}. In addition, by the property 4 of lemma,

$$
P_{T+i}^{T}=F_{T+i} P_{T+i-1}^{T} F_{T+i}^{\prime}+Q_{T+i}
$$

holds for $i=1,2, \cdots, m$. Thus, we can obtain all the values of elements on the main diagonal of matrix (3.1) from C_{T}^{T}. As for $P_{T+i, T+j}^{T}(i=1,2, \cdots, m, j=1,2, \cdots, m$ and $i>j$), by the property 3 of lemma, we have

$$
P_{T+i, T+j}^{T}=F_{T+i} P_{T+i-1, T+j}^{T},
$$

which implies $P_{T+i, T+j}^{T}$ can be obtained from the P_{T+j}^{T} on the main diagonal. Thus, by this procedure, all the values from the upper triangular part of matrix (3.1) can be computed. Since the covariance matrix is symmetric, we can compute the whole covariance matrix (3.1) accordingly.

In summary, to compute matrix (3.1), we start by calculation C_{T}^{T} via Kalman filter. Then obtain the values of the upper triangular part from C_{T}^{T} by some easy procedures, thus the whole matrix by symmetry.

Although we have solved the original problem, a close look into (3.17), (3.18), (3.19) and (3.20) reveals more information. (3.17) and (3.18) can be written as

$$
\left[\begin{array}{c}
x_{t}^{t-1} \tag{3.21}\\
x_{t-1}^{t-1} \\
x_{t-2}^{t-1} \\
\vdots \\
x_{1}^{t-1}
\end{array}\right]=\left[\begin{array}{c}
g_{t} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]+\left[\begin{array}{cccc}
F_{t} & 0 & \cdots & 0 \\
I_{r_{t-1}} & 0 & \cdots & 0 \\
0 & I_{r_{t-2}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & I_{r_{1}}
\end{array}\right]\left[\begin{array}{c}
x_{t-1}^{t-1} \\
x_{t-2}^{t-1} \\
\vdots \\
x_{1}^{t-1}
\end{array}\right]
$$

and

$$
\begin{align*}
& {\left[\begin{array}{c:ccc}
P_{t}^{t-1} & P_{t, t-1}^{t-1} & \cdots & P_{t, 1}^{t-1} \\
\hdashline P_{t-1, t}^{t-1} & P_{t-1}^{t-1} & \cdots & P_{t-1,1}^{t-1} \\
\vdots & \vdots & \cdots & \vdots \\
P_{1, t}^{t-1} & P_{1, t-1}^{t-1} & \cdots & P_{1}^{t-1}
\end{array}\right]} \\
& \tag{3.22}\\
& =\left[\begin{array}{cccc}
P_{t-1}^{t-1} & P_{t-1, t-2}^{t-1} & \cdots & P_{t-1,1}^{t-1} \\
P_{t-2, t-1}^{t-1} & P_{t-2}^{t-1} & \cdots & P_{t-2,1}^{t-1} \\
\vdots & \vdots & \cdots & \vdots \\
P_{1, t-1}^{t-1} & P_{1, t-2}^{t-1} & \cdots & P_{1}^{t-1}
\end{array}\right] \Phi_{t}^{\prime}+Q_{t}^{*} \\
& =\left[\begin{array}{ccccc}
F_{t} P_{t-1}^{t-1} F_{t}^{\prime}+Q_{t} \vdots F_{t} P_{t-1}^{t-1} & \cdots & F_{t} P_{t-1,1}^{t-1} \\
\hdashline P_{t-1}^{t-1} F_{t}^{\prime} & P_{t-1}^{t-1} & \cdots & P_{t-1,1}^{t-1} \\
\vdots & \vdots & & \cdots & \vdots \\
P_{1, t-1}^{t-1} F_{t}^{\prime} & P_{1, t-1}^{t-1} & \cdots & P_{1}^{t-1}
\end{array}\right]
\end{align*}
$$

The r_{t} rows from the top of (3.21) state

$$
x_{t}^{t-1}=g_{t}+F_{t} x_{t-1}^{t-1}
$$

which is the forecast equation (2.12) of original model. Considering the equation (3.22), we have

$$
P_{t}^{t-1}=F_{t} P_{t-1}^{t-1} F_{t}^{\prime}+Q_{t}
$$

which is the forecast error (2.13), and we also have

$$
P_{t, i}^{t-1}=F_{t} P_{t-1, i}^{t-1},
$$

for $i=1,2, \cdots, t-1$, it is just a instance of property 3 of lemma.
Then consider (3.19), which could be written as

$$
\begin{align*}
{\left[\begin{array}{c}
x_{t}^{t} \\
x_{t-1}^{t} \\
\vdots \\
x_{1}^{t}
\end{array}\right] } & =\left[\begin{array}{c}
x_{t}^{t-1} \\
x_{t-1}^{t-1} \\
\vdots \\
x_{1}^{t-1}
\end{array}\right]+C_{t}^{t-1} \Lambda_{t}^{\prime}\left(\Lambda_{t} C_{t}^{t-1} \Lambda_{t}^{\prime}+R_{t}\right)^{-1}\left(y_{t}-a_{t}-\Lambda_{t} Z_{t}^{t-1}\right) \\
& =\left[\begin{array}{c}
x_{t}^{t-1} \\
x_{t-1}^{t-1} \\
\vdots \\
x_{1}^{t-1}
\end{array}\right]+C_{t}^{t-1}\left[\begin{array}{c}
H_{t}^{\prime} \\
0 \\
\vdots \\
0
\end{array}\right]\left(\left[\begin{array}{llll}
H_{t} & \hat{0} & \cdots & \hat{0}
\end{array}\right] C_{t}^{t-1}\left[\begin{array}{c}
H_{t}^{\prime} \\
0 \\
\vdots \\
0
\end{array}\right]+R_{t}\right)^{-1}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right) \\
& =\left[\begin{array}{c}
x_{t}^{t-1} \\
x_{t-1}^{t-1} \\
\vdots \\
P_{t}^{t-1} H_{t}^{\prime} \\
P_{t-1, t}^{t-1} H_{t}^{\prime} \\
\vdots \\
P_{1, t}^{t-1} H_{t}^{\prime}
\end{array}\right]\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right) . \tag{3.23}
\end{align*}
$$

By (3.23), we have

$$
\begin{equation*}
x_{i}^{t}=x_{i}^{t-1}+P_{i, t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right), \tag{3.24}
\end{equation*}
$$

for $i=1,2, \cdots, t$. Particularly, when $i=t$, (3.24) becomes

$$
\begin{equation*}
x_{t}^{t}=x_{t}^{t-1}+P_{t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1}\left(y_{t}-a_{t}-H_{t} x_{t}^{t-1}\right), \tag{3.25}
\end{equation*}
$$

which is the filter equation (2.14). In addition, if we consider (3.24) together with (3.25), the following holds:

$$
\begin{align*}
x_{i}^{t} & =x_{i}^{t-1}+P_{i, t}^{t-1}\left(P_{t}^{t-1}\right)^{-1}\left(x_{t}^{t}-x_{t}^{t-1}\right) \tag{3.26}\\
& =x_{i}^{t-1}+P_{i, t-1}^{t-1} F_{t}^{\prime}\left(P_{t}^{t-1}\right)^{-1}\left(x_{t}^{t}-x_{t}^{t-1}\right),
\end{align*}
$$

for $i=1,2, \cdots, t-1$. We should notice that (3.26) also provides another way to calculate smoothed estimators $x_{i}^{t}(i<t)$. Assume we already know the values of sequence $\left\{P_{a, b}^{s}\right\} \quad(a, b \leq s \leq t)$ and have run Kalman filter, then we can obtain x_{i}^{t} $(i<t)$ from x_{i}^{i} by iterating on (3.26). As for the calculation of $P_{a, b}^{s}(a, b \leq s \leq t)$, this can be accomplished as follows.

Let us consider (3.20), that can be written as

$$
\begin{align*}
& {\left[\begin{array}{cccc}
P_{t}^{t} & P_{t, t-1}^{t} & \cdots & P_{t, 1}^{t} \\
P_{t-1, t}^{t} & P_{t-1}^{t} & \cdots & P_{t-1,1}^{t} \\
\vdots & \vdots & \cdots & \vdots \\
P_{1, t}^{t} & P_{1, t-1}^{t} & \cdots & P_{1}^{t}
\end{array}\right]} \\
& =C_{t}^{t-1}-C_{t}^{t-1} \Lambda_{t}^{\prime}\left(\Lambda_{t} C_{t}^{t-1} \Lambda_{t}^{\prime}+R_{t}\right)^{-1} \Lambda_{t} C_{t}^{t-1} \\
& =\left[\begin{array}{cccc}
P_{t}^{t-1} & P_{t, t-1}^{t-1} & \cdots & P_{t, 1}^{t-1} \\
P_{t-1, t}^{t-1} & P_{t-1}^{t-1} & \cdots & P_{t-1,1}^{t-1} \\
\vdots & \vdots & \cdots & \vdots \\
P_{1, t}^{t-1} & P_{1, t-1}^{t-1} & \cdots & P_{1}^{t-1}
\end{array}\right]-\left[\begin{array}{c}
P_{t}^{t-1} H_{t}^{\prime} \\
P_{t-1, t}^{t-1} H_{t}^{\prime} \\
\vdots \\
P_{1, t}^{t-1} H_{t}^{\prime}
\end{array}\right]\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1}\left[\begin{array}{c}
P_{t}^{t-1} H_{t}^{\prime} \\
P_{t-1, t}^{t-1} H_{t}^{\prime} \\
\vdots \\
P_{1, t}^{t-1} H_{t}^{\prime}
\end{array}\right] . \tag{3.27}
\end{align*}
$$

(3.27) indicates that

$$
\begin{equation*}
P_{i, j}^{t}=P_{i, j}^{t-1}-P_{i, t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1} H_{t} P_{t, j}^{t-1} \tag{3.28}
\end{equation*}
$$

for $i=1,2, \cdots, t$ and $j=1,2, \cdots, t$. When $i=j=t$, equation (3.28) becomes the error of filter (2.15). Like (3.26), equation (3.28) also gives an alternative approach to calculate the covariance of smoother of original model $P_{i, j}^{t}(i, j<t)$. Equation (3.28) can be written as

$$
P_{i, j}^{t}= \begin{cases}P_{t}^{t} & i=j=t \tag{3.29}\\ F_{t} P_{t-1, j}^{t-1}-P_{t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1} H_{t} F_{t} P_{t-1, j}^{t-1} & i=t, j<t \\ P_{i, t-1}^{t-1} F_{t}^{\prime}-P_{i, t-1}^{t-1} F_{t}^{\prime} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1} H_{t} P_{t}^{t-1} & i<t, j=t \\ P_{i, j}^{t-1}-P_{i, t-1}^{t-1} F_{t}^{\prime} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1} H_{t} F_{t} P_{t-1, j}^{t-1} & i<t, j<t\end{cases}
$$

Therefore if we have run Kalman filter, by (3.29), the value of $P_{i, j}^{t}(i, j \leq t)$ could be obtained by iterating on equation (3.28). Since t could be any positive integer, based on Kalman filter, we have already developed a method to calculate $P_{a, b}^{s}(a, b \leq s \leq t)$. Since equation (3.28) can also be used to calculate the conditional covariances of smoothers like the property 6 of lemma, it could substitute for the property 6 in the recursive method. It is easy to notice that equations (3.26) and (3.28) could constitute an alternative method to calculate the smoothed estimators and their covariance. The calculation through this procedure is not as simple as for the Kalman smoother, however it could provide a way to obtain covariances for smoothers, not only variances.

3.3 Extension of the state-space model

The state-space model we adopted ((2.10) and (2.11)) actually is a rather general one, we can clearly notice that parameters of this model can vary with time and the state or observation dimension can vary over time too. However we can still extend our state-space model to make it more versatile.

Consider a new model:

- state equation

$$
\begin{align*}
& x_{t}= \begin{cases}g_{t}+F_{t, t-1} x_{t-1}+\cdots+F_{t, 1} x_{1}+v_{t} & t=2,3, \cdots \\
g_{1}+F_{1,0} x_{0}+v_{1} & t=1\end{cases} \tag{3.30}\\
& x_{0} \sim N(\gamma, O) \\
& v_{t} \sim N\left(0, Q_{t}\right),
\end{align*}
$$

- observation equation

$$
\begin{align*}
& y_{t}=a_{t}+H_{t, t} x_{t}+\cdots+H_{t, 1} x_{1}+w_{t} \quad(t=1,2, \cdots) \tag{3.31}\\
& w_{t} \sim N\left(0, R_{t}\right)
\end{align*}
$$

Like before, assume all the elements of g_{t}, $a_{t}, F_{t, i}(0<i<t), H_{t, j}(0<j \leq t), \gamma$, O, Q_{t} and R_{t} are known with certainty, and $\left\{v_{t}\right\},\left\{w_{t}\right\}$ as well as x_{0} are mutually independent. For convenience, we call the new model G-model and the original one N -model.

Compared to N-model, the present observation and state of G-model may depend on some or all state vectors in the past. In fact, lagged variables in the observation equation (3.31) are useful, the article of Qian [2014] gives us several cases for the applications of this. However allowing more than one lagged state vector in the state equation (3.30) is rarely seen in the literature, since it would make state vectors lose Markov property. In practice, we usually set $F_{t, t-2}=\cdots=F_{t, 1}=0$, for now we assume they are given functions. These changes in model can broaden the scope of application of model, however they also make it more difficult to obtain forecasts, filters and smoothers. The original Kalman filter and smoother become inapplicable for this model, furthermore it is hard to propose a new edition of Kalman filter and smoother for G-model based on the original idea invovled in the proof for N -model. Fortunately it is straightforward to calculate these estimators for G-model through the model reconstruction procedure introduced in last section. Next, we would illustrate these results.

We denote

$$
\underset{\left(p_{t} \times p_{t-1}\right)}{\Phi_{\bullet}^{\bullet}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
F_{t, t-1} & F_{t, t-2} & \cdots & F_{t, 1} \\
I_{r_{t-1}} & 0 & \cdots & 0 \\
0 & I_{r_{t-2}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & I_{r_{1}}
\end{array}\right]
$$

and

$$
\underset{\left(1 \times p_{t}\right)}{\Lambda_{t}^{\bullet}} \stackrel{\text { def }}{=}\left[\begin{array}{llll}
H_{t, t} & H_{t, t-1} & \cdots & H_{t, 1}
\end{array}\right] .
$$

By using notations Z_{t}, G_{t}, V_{t} in the last section, the state equation (3.30) can be written as

$$
\begin{equation*}
Z_{t}=G_{t}+\Phi_{t}^{\bullet} Z_{t-1}+V_{t} \tag{3.32}
\end{equation*}
$$

which holds from $t=1$. Similarly, the observation equation (3.31) can be written as

$$
\begin{equation*}
y_{t}=a_{t}+\Lambda_{t}^{\bullet} Z_{t}+w_{t} . \tag{3.33}
\end{equation*}
$$

If we treat Z_{t} as a state vector, (3.32) can be seen as the state equation for Z_{t} and (3.33) can be the corresponding observation equation. Therefore the equations (3.32) and (3.33) constitute a N -model for state Z_{t}. Considering the relationship between x_{t} of the G-model and Z_{t} of the N -model, we should expect to obtain forecasts, filters and smoothers for G-model by applying Kalman filter to N-model ((3.32) and (3.33)).

Now we apply Kalman filter. At first, we set the initial condition:

$$
Z_{0}^{0}=\gamma, \quad C_{0}^{0}=O
$$

By the forecast equation (2.12) and (2.13), we have

$$
\begin{equation*}
Z_{t}^{t-1}=G_{t}+\Phi_{t}^{\bullet} Z_{t-1}^{t-1} \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t}^{t-1}=\Phi_{t}^{\bullet} C_{t-1}^{t-1}\left(\Phi_{t}^{\bullet}\right)^{\prime}+Q_{t}^{*} \tag{3.35}
\end{equation*}
$$

By the filter equation (2.14) and (2.15), we have

$$
\begin{equation*}
Z_{t}^{t}=Z_{t}^{t-1}+C_{t}^{t-1}\left(\Lambda_{t}^{\bullet}\right)^{\prime}\left(\Lambda_{t}^{\bullet} C_{t}^{t-1}\left(\Lambda_{t}^{\bullet}\right)^{\prime}+R_{t}\right)^{-1}\left(y_{t}-a_{t}-\Lambda_{t}^{\bullet} Z_{t}^{t-1}\right) \tag{3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t}^{t}=C_{t}^{t-1}-C_{t}^{t-1}\left(\Lambda_{t}^{\bullet}\right)^{\prime}\left(\Lambda_{t}^{\bullet} C_{t}^{t-1}\left(\Lambda_{t}^{\bullet}\right)^{\prime}+R_{t}\right)^{-1} \Lambda_{t}^{\bullet} C_{t}^{t-1} \tag{3.37}
\end{equation*}
$$

Due to the complex structure of Φ_{t}^{\bullet} and Λ_{t}^{\bullet}, it is difficult to derive good results such as (3.26) or (3.28) from equation (3.34) to (3.37). For example, even if only one element of C_{t}^{t} is needed, we still have to compute all the elements of C_{t}^{t-1}. Hence we prefer to calculate these data by using (3.34) to (3.37) directly. Since

$$
Z_{t}^{t}=\left[\begin{array}{c}
x_{t}^{t} \\
x_{t-1}^{t} \\
\vdots \\
x_{1}^{t}
\end{array}\right]
$$

we can obtain the filters and smoothers of G-model from the filters of corresponding

N-model. Based on the state equation (3.30),

$$
\begin{equation*}
x_{T+m}^{T}=g_{T+m}+F_{T+m, T+m-1} x_{T+m-1}^{T}+\cdots+F_{T+m, T} x_{T}^{T}+\cdots+F_{T+m, 1} x_{1}^{T} \tag{3.38}
\end{equation*}
$$

hold for $m=1,2, \cdots$ and $T=1,2, \cdots$. As we already know the filters and smoothers, the forecast x_{T+m}^{T} can be obtained by iterating on equation (3.38). Therefore, by the procedure introduced in last section, we can get forecasts, filters and smoothers of the new model.

Chapter 4

Summary and future work

The calculation of estimators of the underlying unobserved states on the basis of observations is a classic and important problem of state-space models. This has been accomplished by Kalman filter and Kalman smoother. Even though we can also have errors of these estimators through Kalman filter and smoother, the statistical relationships between these estimators can not be accordingly obtained. Several articles, reports or books have given lag-one covariances for smoothers, enlightened by this, at first we propose an algorithm to calculate any covariance for these estimators, which provides a good solution to the problem. In fact, based on the same observation, these estimators follow a normal distribution. All the parameters of the distribution can be calculated by our new algorithm and Kalman filter and smoother. In addition, we also try another method to solve this problem. We reconstruct the model and apply Kalman filter to the new model. Then we can obtain a partial solution, by which the complete solution could be achieved through some easy procedures. We continue to explore the result and derive some interesting properties, which provide another view to establish the algorithm for the calculation of covariances. In the end, we extend the definition of our state-space model, and obtain a more general new model. By
the model reconstruction method, we can obtain an approach to calculating those estimators as well.

There are still some problems for further research. The algorithm established in the first section of chapter 3 is designed for the calculation of single specific conditional covariance, which means the output of this algorithm is just one covariance. If we want large numbers of covariances, we have to fulfil the algorithm several times, there must be large redundancies in the process. It persuades us to reconstruct the algorithm for those cases, although this work should be easy. Another problem is that we want an easier and clearer way to get estimators like forecasts, filters and smoothers for the new model in third section of chapter 3, even though the application of model reconstruction method could get them successfully. The structure of the new model is so complicated that we could not expect an easy algorithm like Kalman filter or Kalman smoother, however we do hope to get an easy algorithm like what we have established in this article, at least for some special cases of the new model. These problems provide the aim for our future work.

Bibliography

Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012.

Olivier Basdevant. On applications of state-space modelling in macroeconomics. Reserve Bank of New Zealand Discussion Paper No. DP2003/02, 2003.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer Science \& Business Media, 2013.

James Durbin and Siem Jan Koopman. Time series analysis by state space methods. Number 38. Oxford University Press, 2012.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press Princeton, 1994.

Andrew C Harvey. Forecasting, structural time series models and the Kalman filter. Cambridge university press, 1990.

Andrew C Harvey and Richard G Pierse. Estimating missing observations in economic time series. Journal of the American Statistical Association, 79(385):125-131, 1984.

Richard H Jones. Maximum likelihood fitting of arma models to time series with missing observations. Technometrics, 22(3):389-395, 1980.

Richard H Jones. Fitting multivariate models to unequally spaced data. In Time series analysis of irregularly observed data, pages 158-188. Springer, 1984.

Borus Jungbacker, Siem Jan Koopman, and Michel Van der Wel. Maximum likelihood estimation for dynamic factor models with missing data. Journal of Economic Dynamics and Control, 35(8):1358-1368, 2011.

Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction theory. Journal of basic engineering, 83(1):95-108, 1961.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1):35-45, 1960.

Philip F Mclauchlan and David W Murray. Active camera calibration for a head-eye platform using the variable state-dimension filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1):15-22, 1996.

Sascha Mergner. Applications of state space models in finance. 2009.

Hang Qian. A flexible state space model and its applications. Journal of Time Series Analysis, 35(2):79-88, 2014.

Robert H Shumway and David S Stoffer. Time series analysis and its applications: with R examples. Springer Science \& Business Media, 2010.

Ruey S Tsay. Analysis of financial time series. 2010.

Ruey S Tsay. Multivariate time series analysis : with r and financial applications. 2014.

