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Abstract

Pyrochlores have the chemical formula A2B2O7 with A, B, or both A and B magnetic.

It has corner-sharing tetrahedra in the structure, therefore, frustration phenomena

naturally occurs in these systems. Because of the frustration, pyrochlore have many

interesting properties, including the spin glass in Y2Mo2O7, spin liquid in Tb2Ti2O7,

disordered spin ice in Ho2Ti2O7, and ordered spin ice in Tb2Sn2O7.

In this thesis we will focus on Tb2Ti2O7. Our goal is to find the spin correlation func-

tions between different sites of Tb ions. The Hamiltonian of Tb ions is an anisotropic

nearest neighbour exchange interaction. We apply perturbation theory to the Hamil-

tonian, and it will separate the Hamiltonian into two parts. The unperturbed part

of Hamiltonian is the spin ice Hamiltonian, and other parts of the Hamiltonian are

perturbative. The perturbative parts of Hamiltonian can be written in the local coor-

dinates to give three different terms X2, X3, X4. In order to find the spin correlation

function, we calculate time dependent spin operators in the interaction picture. Then

we apply them to the unperturbed and perturbed terms of Hamiltonian to calculate

the spin correlation functions. Finally, we discuss the neutron scattering experiment

and how to apply it to test our results.
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Chapter 1

Introduction

1.1 Geometric Frustration

Geometric frustration occurs when a system cannot minimize its total classical

energy by minimizing the interaction energy between each pair of interacting degrees

of freedom pair by pair due to the geometric structure of its lattice [1]. A simple

example of geometric frustration is shown in Figure 1; three spins lie at the vertices

of an equilateral triangle with antiferromagnetic interactions between them. If we

want to minimize the energy of each spin pair, all those spins should be anti-parallel.

However, when we align the first two spins be anti-parallel, the third spin can either

point up or down. Therefore, we say the third spin is frustrated [1].

In three dimensions, geometrical frustration can occur in a tetrahedra. Suppose

we have a tetrahedron which contains four spins on its corners (Figure 1.2). If there

is an antiferromagnetic interaction between spins, then it is not possible to arrange

the spins so that all interactions between spins are antiparallel [2].

1



2

Figure 1.1: Geometric frustration on a triangle. It is impossible to align all spins
anti-parallel.

Figure 1.2: Geometric frustration on a tetrahedron (spin ice).
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Figure 1.3: Crystal water ice structure.

1.2 Ice Rule and Residual Entropy

In 1935, Linus Pauling noted that the structure of water ice (Figure 1.3) exhibits

degrees of freedom that would be expected to remain disordered even at absolute zero.

In his research he used the ice rule to explain the disordered property of crystalline

water ice. The ice rule states that in water ice two protons (H+ ions) are near to and

two are further away from each oxygen ion [5]. It was previously proposed by Bernal

and Fowler [4]. Pauling noted that the number of configurations conforming to this

“two-in and two-out” rule grows exponentially with the system size, and, therefore,

that the zero-temperature entropy of ice was expected to be extensive [5]. Pauling’s

findings were confirmed by specific heat measurements, though pure crystals of water

ice are particularly hard to create.

Pauling also noticed that because of the ice rule, crystal ice has residual entropy

even at zero temperature. Moreover, he calculated the residual entropy of crystal ice

which is R = 1
2 ln 3

2 [5].
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1.3 Spin Ice

In 1956, Philip Anderson noted that the frustrated Ising ferromagnet on a (py-

rochlore) lattice of corner-sharing tetrahedra is equivalent to Pauling’s water ice prob-

lem [3]. It is called spin ice, and it consists tetrahedra of spins, which must satisfy

the same two-in and two-out ice rule analogous to water ice [3]. We can see the spin

ice structure in Figure 1.2.

Spin ice has many interesting properties, one of which is the residual entropy

as T→ 0 [3]. Moreover, recent experiments found the evidence for the existence of

magnetic monopoles in these materials [3]. If one atom flips its spin, we can have

three-in and one-out, or three-out and one-in spin structures on tetrahedra in these

materials which can be treated as magnetic monopoles locally [3].

1.4 Spin Ice Degeneracy: Pauling’s Argument

In water ice, suppose there are N oxygen ions and 2N hydrogen ions in a mole a

ice. There are 22N configurations of hydrogen bonds between adjacent oxygen atoms,

each hydrogen nucleus having two choices of two positions, either near one oxygen

ion or the other. Now, let us consider a given oxygen atom with four surrounding

hydrogen atoms. Since each hydrogen ion has two possible positions, there are sixteen

arrangements of the four hydrogen nuclei. Among of these 6 satisfy the ice rule.

Hence the total number of configurations satisfies the ice rule is estimated to be

W = 22N(6/16) = (3/2)N [2].

Now we apply Pauling’s argument to spin ice. Suppose there are N magnetic

ions each magnetic moment can be in one of two configurations (points into or out of

a tetrahedron), there are 2N configurations. Now let us consider a single tetrahedron:

which has 4 magnetic ions. Thus, there will be 24 = 16 possible configurations for
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each tetrahedron, and among these only 6 of them satisfy the spin ice rule, therefore

we have the fraction ( 6
16)N/2 for spin ice. Therefore, the total number of configuration

is 2N( 6
16)N/2 = (3/2)N/2 [2].

1.5 Pyrochlore Lattice

The cubic pyrochlores have the chemical formula A2B2O7, where A is a rare earth

and B is a transition metal [1]. In practice, the formula of cubic pyrochlores can be

expressed as A2B2O7. It has corner-sharing tetrahedra in the structure, therefore,

frustration phenomena naturally occurs in these systems [1].

The pyrochlores have space group Fd3̄m (No.227). The details of the structure

are listed in Table 1.1 and 1.2 and shown in Figure 1.4.

Table 1.1: Atomic Positions of Pyrochlore
Ions Site Coordinate Position
A 16d (0.5, 0.5, 0.5)
B 16c (0, 0, 0)
O’ 8b (0.375, 0.375, 0.375)
O 48f (x, 0.125, 0.125)

Atom number Equivalent Position Local z-axis
1 (5/8, 5/8, 5/8) (1, 1, 1)
2 (3/8, 3/8, 5/8) (−1,−1, 1)
3 (3/8, 5/8, 3/8) (−1, 1,−1)
4 (5/8, 3/8, 3/8) (1,−1,−1)

Table 1.2: Position of the 16d Wyckoff of origin choice 1

Recently, pyrochlores are well-studied, and many interesting properties have been

revealed. Pyrochlores have residual entropy even at zero temperature [1]. Moreover,

pyrochlore can have spin ice structure, for example, disordered spin ice in Ho2Ti2O7,

ordered spin ice in Tb2Sn2O7 and quantum spin ice in Tb2Ti2O7, as well as different
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Figure 1.4: Crystal structure of R2Ti2O7. The red ions are R3+, the blue ions are
Ti4+, and the yellow and green ions are oxygen.

kinds of magnetic ordering in Er2Ti2O7 and Yb2Ti2O7 [1]. Most recently, a spin liquid

state was discovered in pyrochlores such as Ce2Sn2O7 [31]; it is a disordered state in

a system of interacting quantum spins [28]. Spin liquid was first proposed by Philip

Anderson in 1973 as the ground state for a system of spins on a triangular lattice [28].

Moreover, he proposed a theory that described high temperature superconductivity

in terms of a disordered spin-liquid state in 1987 [28].

1.6 Tb2Ti2O7

In the past few years, many experiment has been achieved to reveal the physical

properties of Tb2Ti2O7. Muon spin relaxation measurements show that at low tem-

perature Tb2Ti2O7 has paramagnetic behaviour [6]. High-resolution neutron powder-

diffraction showed that the crystal structure of Tb2Ti2O7 is the pyrochlore structure

without disorder [8]. The diffuse neutron scattering is used to examine correlations

in Tb2Ti2O7. It showed at 9 K, Tb2Ti2O7 has only short range correlations [5]. The



7

neutron spin echo experiment is used to study the dynamics of the magnetic state of

Tb2Ti2O7. From the experiment, it shows the magnetic state of Tb2Ti2O7 appears to

be freezing close to 200 mK, however, the majority of spins have dynamic fluctuations

down to below 50 mK [10]. Moreover, ultrasonic measurements show that Tb2Ti2O7

exhibits strong softening effects [11].

Recently, Tb2Ti2O7 was treated as a quantum mechanical version of the classical

spin ice [6]. Therefore, it can be used to explain some properties of Tb2Ti2O7. For

example, diffuse neutron scattering patterns cannot be explained by a classical spin

ice model [17]. Moreover, we can treat Tb2Ti2O7 as effective spin 1/2 system [17].

Hence, we can write down the Hamiltonian as effective spin 1/2 system to find the spin

correlations. The Hamiltonian of Tb2Ti2O7 is a spin ice Hamiltonian with additional

spin flip terms, which lift the macroscopic degeneracy of the classical 2-in and 2-out

ground state [7].

1.7 Outline of Thesis

In this chapter we introduced the pyrochlores. Because of the corner-shared

tetrahedron structure in pyrochlores, the geometric frustration phenomenon occurs.

More particularly, we will focus on one of the pyrochlores: Tb2Ti2O7, a quantum spin

ice material. We treat Tb2Ti2O7 using perturbation theory, by considering 3 of the 4

terms in the Hamitonian as small [32].

In the following chapter, we will introduce the perturbation theory on Tb ions

in Tb2Ti2O7 and do the first order perturbation to calculate the spin correlation of

Tb ions. In Chapter 3, we will use it on the Hamiltonian of Tb ions to find the spin

correlations between different sites of Tb ions. In Chapter 4, I will summarize the

work I did in this thesis, as well as the results I got. Moreover, I will suggest what
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work can be done in the future.



Chapter 2

Spin Correlations using

Perturbation Theory

In this chapter we will use perturbation theory to find the spin correlation func-

tion between different sites of Tb ions in Tb2Ti2O7. Therefore, we will discuss why

can we use perturbation theory and how to use it.

2.1 Spin Correlation

In statistical mechanics, the correlation function is a measure of the order in a

system. Correlation functions describe how microscopic variables, such as spin and

density, at different positions are related. Therefore, the spin correlation function can

be used to find the relationship between spins. More specifically, if we know the spin

for one atom, then based on the spin correlation function we can find the spin for

another atom [21]. We can use neutron scattering to measure the spin correlation

[21].

9
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2.2 Perturbation Theory

Perturbation theory is a mathematical method for finding an approximate so-

lution to a problem, by starting from the exact solution of a related problem. By

using perturbation theory, we can break the problem into “solvable” and “pertur-

bation” parts. Perturbation theory is applicable if the problem at hand cannot be

solved exactly, but can be formulated by adding a “small” term to the mathematical

description of the exactly solvable problem [21].

By using perturbation theory, we can express the the problem as a power series

in some “small” parameter which is known as a perturbation series. The leading term

in this power series is the solution of the exactly solvable problem, while further terms

describe the deviation in the solution, due to the deviation from the initial problem

[21]. For example, if we use the perturbation theory on A, we have

A = A0 + ε1A1 + ε2A2 + ε3A3 + . . .

where ε is a small quantity, A0 is the known solution to the exactly solvable ini-

tial problem and A1, A2, . . . represent the higher-order terms which may be found

iteratively by some systematic procedure.

An approximate “perturbative solution” is obtained by truncating the series,

usually by keeping only the first two terms, the initial solution and the “first-order”

perturbation correction

A ≈ A0 + εA1
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2.3 Hamiltonian of Tb ions

In quantum mechanics, Kramers theorem states that the energy levels of a system

with an odd total number of fermions remain at least doubly degenerate in the absence

of a magnetic field [20]. In Tb2Ti2O7, the 13-fold degeneracy of the J = 6 Tb ions is

lifted by the local crystal electric field into singlets and doublets. The ground state

doublet of Tb3+ is a non-Kramers doublet. However, on a tetrahedron, which has

point group symmetry Td, the symmetry classification of the 4 Tb3+ ions is A1⊕3E2⊕

2T1⊕T2 which happens to be isomorphic to a tetrahedron of 4 spin 1/2 spins. Hence,

there is a map from the Tb non-Kramers doublet to a spin 1/2 spinor. Therefore, one

can treat Tb ions in Tb2Ti2O7 as a spin 1/2 problem [17].

The Hamiltonian of the Tb ions can be expressed by

H = H0 +H1 (2.1)

H0 = J1X1 (2.2)

H1 = [J2X2 + J3X3 + J4X4]ε(t) (2.3)

where the Ji are the anisotropic exchange constants for the effective spin 1/2 model,

Xi are the anisotropic exchange interaction terms, and ε(t) is a function which is

approximately 1 for finite times, and that vanishes as t→ ±∞. In Tb2Ti2O7, J2,3,4 �

J1 [17].
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Figure 2.2: The structure of Tb ions, it has the corner-shared tetrahedron structure.

Tb ions located at the 16d position have a site symmetry D3d, where the 3-fold

axes point in the [111] direction. For convenience we will use local coordinates for

the Hamiltonian. The local coordinates are locally rotated so that the local z-axis is

the 3-fold axis, while the local x and y axes are chosen such that they obey the right

hand rule [32]. This is convenient because the spin quantisation axis is the z-axis by

convention, and this choice allows the spin states to be written in a symmetrical form

that maps to effective spin 1/2 states. We will discuss the transformation relations in

detail in Appendix.

In the following we will write down the angular momentum operators in local

coordinates in terms of global coordinates (superscripts are the global coordinates

and subscripts are the local coordinates) [17].

for ion 1, at (5/8, 5/8, 5/8) we have the local coordinates

J1x = Jx1 /
√

6 + Jy1 /
√

6− 2Jz1/
√

6

J1y = −Jx1 /
√

2 + Jy1 /
√

2

J1z = Jx1 /
√

3 + Jy1 /
√

3 + Jz1/
√

3;
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for ion 2, at (3/8, 3/8, 5/8) we have the local coordinates

J2x = −Jx2 /
√

6− Jy2 /
√

6− 2Jz2/
√

6

J2y = Jx2 /
√

2− Jy2 /
√

2

J2z = −Jx2 /
√

3− Jy2 /
√

3 + Jz2/
√

3;

for ion 3, at (3/8, 5/8, 3/8) we have the local coordinates

J3x = −Jx3 /
√

6 + Jy3 /
√

6 + 2Jz3/
√

6

J3y = Jx3 /
√

2 + Jy3 /
√

2

J3z = −Jx3 /
√

3 + Jy3 /
√

3− Jz3/
√

3;

for ion 4, at (5/8, 3/8, 3/8) we have the local coordinates

J4x = Jx4 /
√

6− Jy4 /
√

6 + 2Jz4/
√

6

J4y = −Jx4 /
√

2− Jy4 /
√

2

J4z = Jx4 /
√

3− Jy4 /
√

3− Jz4/
√

3.

The exchange interaction terms can be expressed in local coordinates as

X1 = −1
3
∑
<ij>

JizJjz (2.4)

X2 = −
√

2
3

∑
<ij>

[Λsisj
(JizJj+ + JjzJi+) + h.c.] (2.5)

X3 = 1
3
∑
<ij>

[Λ∗sisj
Ji+Jj+ + h.c.] (2.6)

X4 = −1
6
∑
<ij>

(Ji+Jj− + h.c.) (2.7)
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where h.c. stands for Hermitian conjugate, i and j are sites on the lattice while Si

and Sj are the corresponding Wyckoff positions (Si, Sj = 1, 2, 3, 4). Λ12 = Λ34 = 1

and Λ13 = Λ24 = Λ∗14 = Λ∗23 = ε ≡ exp(2πi
3 ), and 〈i, j〉 are nearest neighbours. These

terms are written explicitly in Table 2.1 for a single tetrahedron.

Term X1 X2 X3 X4

~J1 · ~J2 −1
3J1zJ2z −

√
2

3 [J1z(J2+ + J2−) + (J1+ + J1−)J2z] 1
3(J1+J2+ + J1−J2−) −1

6(J1+J2− + J1−J2+)
~J3 · ~J4 −1

3J3zJ4z −
√

2
3 [J3z(J4+ + J4−) + (J3+ + J3−)J4z] 1

3(J3+J4+ + J3−J4−) −1
6(J3+J4− + J3−J4+)

~J1 · ~J3 −1
3J1zJ3z −

√
2

3 [J1z(εJ3+ + ε2J3−) + (εJ1+ + ε2J1−)J3z] 1
3(ε2J1+J3+ + εJ1−J3−) −1

6(J1+J3− + J1−J3+)
~J2 · ~J4 −1

3J2zJ4z −
√

2
3 [J2z(εJ4+ + ε2J4−) + (εJ2+ + ε2J2−)J4z] 1

3(ε2J2+J4+ + εJ2−J4−) −1
6(J2+J4− + J2−J4+)

~J1 · ~J4 −1
3J1zJ4z −

√
2

3 [J1z(ε2J4+ + εJ4−) + (ε2J1+ + εJ1−)J4z] 1
3(εJ1+J4+ + ε2J1−J4−) −1

6(J1+J4− + J1−J4+)
~J2 · ~J3 −1

3J2zJ3z −
√

2
3 [J2z(ε2J3+ + εJ3−) + (ε2J2+ + εJ2−)J3z] 1

3(εJ2+J3+ + ε2J2−J3−) −1
6(J2+J3− + J2−J3+)

Table 2.1: The exchange interaction over a single tetrahedron expressed in terms of
local coordinates for each Tb ion.

2.4 Interaction Picture and Perturbative Expan-

sion

If we want to calculate 〈Jαi (t)Jβj (t′)〉 in Tb2Ti2O7, we can express it in the Heisen-

berg representation as
Tr[ρHJαHi(t)J

β
Hj(t′)]

Tr[ρH ] ,

where the time t = 0 will be used as the reference time. Here H = H0 + H1, where

H0 = J1X1 and H1 contains the other exchange terms [21]. When J1 < 0, the ground

state of H0 is the spin ice manifold, which can be described as a density matrix

ρ0 = 1
g

∑
|spin ice〉〈spin ice|

where |spin ice〉 is any configuration constrained by the spin ice rule, g = (3/2)N/2 is

the spin ice degeneracy and Tr[ρ0] = 1.
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In the interaction picture, we need to introduce a time-dependent Hamiltonian

H = H0 + ε(t)H1(t)

When t→ ±∞, the Hamiltonian is H0 [21]. If |Φ0〉 is the ground state at t = 0 then

the ground state at different times is |ΦI(t)〉 = UI(t, 0)|Φ0〉. As t → −∞, the “in”

state is

|Φ0〉 = UI(−∞, 0)|Ψ0〉 = U †I (0,−∞)|Ψ0〉

since we assume that the interaction H1 is turned off at t → −∞ and |Ψ0〉 is the

ground state of H0. Using density operators instead of pure states, we have the

Schrödinger density at this time

ρ0 = ρS(−∞)

is the spin ice manifold, and

ρI(t) = U †0(t, 0)ρS(t)U0(t, 0)

ρI(−∞) = U †0(−∞, 0)ρS(−∞)U0(−∞, 0) = ρS(−∞)

since U0 commutes with H0. At the reference time t = 0, we have

ρH = ρS(0) = U(0,−∞)ρS(−∞)U †(0,−∞)

= ρI(0) = UI(0,−∞)ρS(−∞)U †I (0,−∞)

where U(t, t′) satisfies

i~
∂U(t, t′)

∂t
= H1(t)U(t, t′)
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UI(t, t′) = U †0(t)U(t, t′)U0

i~
∂

∂t
U0(t, t0) = H0(t)U0(t, t0),

and UI can be solved perturbatively [21] to give

UI(t, t0) = 1− i

~

∫ t

t0
H1(t′)dt′ + . . .

From this point forward, we set set ~ = 1 in our expressions. Therefore, we have

Tr[ρH ] = Tr[U(0,−∞)ρS(∞)U †(0,−∞]

= Tr[ρ(∞)]

= Tr[ρ0]

= 1.

For operators in the different pictures, we have the following relationships

OI(t) = U †0(t, 0)OSU0(t, 0)

OH(t) = U †(t, 0)OSU(t, 0)

= U †(t, 0)U0(t, 0)OI(t)U †0(t, 0)U(t, 0)

= U †I (t, 0)OI(t)UI(t, 0)

This yields

Tr[ρHJαiH(t)JβjH(t′)]

= Tr[ρ0UI(−∞, t)JαiI(t)UI(t, t′)J
β
jI(t′)UI(t′,−∞)]
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We will calculate this using the perturbative expansion for UI , to first order in per-

turbation theory [17]. There will be three terms to calculate, which take the form

Tr[ρHJ1I(t)J2I(t′)] = Tr[ρ0J1I(t)J2I(t′)]− iTr
[
ρ0

(∫ −∞
t

H1(t′′)dt′′
)
J1I(t)J2I(t′)

]
− iTr

[
ρ0J1I(t)

(∫ t

t′
H1(t′′)dt′′

)
J2I(t′)

]
− iTr

[
ρ0J1I(t)J2I(t′)

(∫ t′

−∞
H1(t′′)dt′′

)]
.

(2.8)

Here we are using the interaction picture operators. The interaction picture operators

satisfy

i~
∂OI(t)
∂t

= U †0(t)[OS, H0]U0(t)

Using the commutation relations [Jiα, Jjβ] = 0 for i 6= j and [Ji±, Jiz] = ∓~Ji±,

we have the following

[Jiz, H0] = 0

JizI(t) = Jiz

[Ji+, H0] = J1

6 Ji+
∑
j

Jjz

[Ji−, H0] = −J1

6 Ji−
∑
j

Jjz

i
∂Ji+I(t)
∂t

= J1

6 Ji+I(t)
∑
j

Jjz

Ji+I(t) = Ji+e
−itJ1/6

∑
j
Jjz

Ji−I(t) = Ji−e
itJ1/6

∑
j
Jjz

where in each exponent the sum over j is the sum over nearest neighbours of i. For

each time dependent operator Ji±I(t), the summation in the exponent depends on j

which is the nearest neighbour of i. Therefore, when we apply the time dependent

operator on spin states, we need to know the states of its nearest neighbours based
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on the spin ice rule.

In this chapter we introduced the Hamiltonian of Tb ions and expressed the

Hamiltonian in interaction picture. Moreover, we described how to use perturbation

theory to find the spin correlation between different sites of Tb ions.

In next chapter we will do the calculation and find the spin correlation between

site 1 and site 2. We can find the spin correlations on other sites by applying symmetry

transformations on the spin correlation of site 1 and site 2.



Chapter 3

Calculation

In this chapter, we will calculate the spin correlation function using perturbation

theory. For simplicity, we only consider about the spin correlations between site 1

and site 2, the same procedure can be performed when we change the sites.

3.1 Spin Ice States

First, let us define the spin ice states based on the ice rule. If we only consider

one tetrahedron, based on the two in and two out states, we can have six possible

spin ice states,

|Ψ〉1 =



|+ +−−〉

|+−+−〉

|+−−+〉

| − −+ +〉

| −+−+〉

| −+ +−〉



, (3.1)

where the index 1 refers to 1 tetrahedron.

19
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If there is a spin “+” on site 1, we have a restriction to the kets

|Ψ1+〉1 =


|+ +−−〉

|+−+−〉

|+−−+〉

 (3.2)

Moreover, if there is a spin "-" on site 1, we have

|Ψ1−〉1 =


| − −+ +〉

| −+−+〉

| −+ +−〉

 (3.3)

with the same analogy we can also define the subspace for spin “+” or “-” on site two,

three and four.

If we only consider three sites in a tetrahedron, we can define the following kets:

|Φ1+〉1 =


|+−−〉

| −+−〉

| − −+〉



the subscript “1+” indicates the spin ice kets with spin “+” on site one, but in |Φ1+〉1

we does not include site one. Similarly, we also define the kets

|Φ1−〉1 =


| −++〉

|+−−〉

|+−−〉



the subscript ”1−” indicates the spin ice kets with spin “+” on site one, but in |Φ1+〉1

we does not include site one.
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Now, let us consider two tetrahedra that are joined by site number one. We

define additional states satisfying the spin ice rule as:

|Ψ1〉2 =

 |Ψ1+〉1 ⊗ |Φ1+〉1

|Ψ1−〉1 ⊗ |Φ1−〉1

 (3.4)

where the subscript “1” in |Ψ1〉2 indicates the two tetrahedra are joined by site one.

Here |Ψ1〉2 is a column vector containing 18 spin ice kets on two corner shared tetra-

hedra.

Figure 3.1: Two corner shared tetrahedra.

We will also need to consider states on three tetrahedra that satisfy the ice rule.
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Here the tetrahedra are joined by site one and two.

|Ψ12〉3 =



| − −+ +〉 ⊗ |Φ1−〉1 ⊗ |Φ2−〉1 |+−+−〉

|+−−+〉

⊗ |Φ1+〉1 ⊗ |Φ2−〉1
 | −+−+〉

| −+ +−〉

⊗ |Φ1−〉1 ⊗ |Φ2+〉1

|+ +−−〉 ⊗ |Φ1+〉1 ⊗ |Φ2+〉1



(3.5)

Here |Ψ12〉3 is a column vector containing 54 spin ice kets.

Figure 3.2: Three corner shared tetrahedra.

3.2 Lattice of Tetrahedra

The Tb ions define a corner shared tetrahedron structure. We define the tetra-

hedra in the middle as the A type tetrahedra, and each of the four surrounding

tetrahedrons as B type tetrahedra (see Figure 3.3), type A and B tetrahedra differ
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by their orientation. The Tb lattice has an overall face-centered cubic (fcc) structure,

hence, we also define the fcc lattice vectors. We have

f12 = (1/2, 1/2, 0) f13 = (1/2, 0, 1/2)

f14 = (0, 1/2, 1/2) f23 = (0,−1/2, 1/2)

f24 = (−1/2, 0, 1/2) f34 = (−1/2, 1/2, 0)

Also, fij = −fji and fij + fjk = fik [17]. The set of all type A (or type B) tetrahedra

forms an fcc lattice. Hence fij connect neighbouring type A tetrahedra on the line

defined by the Wyckoff positions (i, j).

Figure 3.3: Tb lattice. The tetrahedron in the middle is type A, the surrounding

tetrahedra are type B.

3.3 Spin Correlation Functions

From Chapter 2 we know the Hamiltonian can be expressed by the unperturbed

term H0 and perturbed term H1. Recall H0 and H1 from Chapter 2

H = H0 +H1
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H0 = J1X1

H1 = [J2X2 + J3X3 + J4X4]ε(t)

We begin by calculating the spin correlation function 〈Jinα(t)Jjn′β(t′)〉, where i, j =

1, 2, 3, 4 are the Wychoff sites, n, n′ are fcc lattice vectors, which label the A-type

tetrahedra, α, β refer to the local coordinate system. (Note that sometimes the

notation Jiα(t) is used, where i represents any site on the lattice.) When α, β = z,

the operators Jz acting on the spin ice manifold simply measure spins to be in or out,

while J± raise or lower spins. In general, the action of J± takes a state that is in the

spin ice manifold to a state that is outside the manifold, so in order to get a non-zero

expectation values, each J+ must appear with a J− and vice versa. Hence, the spin

correlation 〈JinzJjn′−〉 will be non-zero with aX2 perturbation, 〈Jin+(t)Jjn′+(t′)〉 needs

a X3 perturbation and 〈Jin+(t)Jjn′−(t′)〉 needs a X4 perturbation. 〈Jinz(t)Jjn′z(t′)〉

has no first order correlations.

3.4 Spin correlation 〈J1nz(t)J2n′z(t′)〉

From the above we know that the only non-zero unperturbed spin correlation

term of site 1 and site 2 is the unperturbed contribution,

〈J1nz(t)J2n′z(t′)〉 = Tr[ρ0J1nz(t)J2n′z(t′)] = Tr[ρ0J1nzJ2nz] (3.6)

We know that J1z|+〉 = j|+〉 and J1z|−〉 = −j|+〉 where j = 1/2 for spin 1/2 system.

Moreover, from Chapter 2 we know Jz(t) = Jz. If site 1 and site 2 are both in the
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same tetrahedron, we can get

Tr[ρ0J1nz(t)J2n′z(t′)] = 1〈Ψ|J1nzJ2n′z|Ψ〉1

= (j2 + j2 − j2 − j2 − j2 − j2)[δnn′ + δn,n′−f12 ]

= −2j2[δnn′ + δn,n′−f12 ]

(3.7)

Here δnn′ means both site 1 and site 2 are in the same A tetrahedron, δn,n′−f12 means

both site 1 and site 2 are in the same B tetrahedron which corresponds to adjacent

A tetrahedra (n = n′ − f12). When site 1 and site 2 are on different tetrahedra the

correlation function vanishes.

3.5 Spin correlation 〈J1nz(t)J2n′+(t′)〉

We now consider 〈J1nz(t)J2n′+(t′)〉. The first order correction comes from X2.

〈J1nz(t)J2n′+(t′)〉 = −iTr
[
ρ0

(∫ −∞
t

X2(t′′)ε(t′′)dt′′
)
J1nz(t)J2n′+(t′)

]
− iTr

[
ρ0J1nz(t)

(∫ t

t′
X2(t′′)ε(t′′)dt′′

)
J2n′+(t′)

]
− iTr

[
ρ0J1nz(t)J2n′+(t′)

(∫ t′

−∞
X2(t′′)ε(t′′)dt′′

)]

= −iTr
ρ0

∫ −∞
t
−
√

2
3 J2

∑
〈ij〉

[Λij(Jinz(t′′)Jjn′−(t′′)]ε(t′′)dt′′
 J1nz(t)J2n′+(t′)


− iTr

ρ0J1nz(t)
∫ t

t′
−
√

2
3 J2

∑
〈ij〉

[Λij(Jinz(t′′)Jjn′−(t′′)]ε(t′′)dt′′
 J2n′+(t′)


− iTr

ρ0J1nz(t)J2n′+(t′)
∫ t′

−∞
−
√

2
3 J2

∑
〈ij〉

[Λij(Jinz(t′′)Jjn′−(t′′)]ε(t′′)dt′′


Here 〈ij〉 is all pairs of nearest neighbours. In order to get a non-zero expectation

value of the 〈J1nz(t)J2n′+(t′)〉, we must have that j = 2n′ and 1n and i in the same

tetrahedron, or adjoining ones. Considering that i and j are nearest neighbours, we
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Figure 3.4: Two tetrahedron joined by site 2.

have

i = 1n′ and n = n′

i = 3n′ and n = n′ or n = n′ + f31

i = 4n′ and n = n′ or n = n′ + f41

i = 1n′ + f21 and n = n′ + f21

i = 3n′ + f23 and n = n′ + f23 or n = n′ + f21

i = 4n′ + f24 and n = n′ + f24 or n = n′ + f21

In the following, we will calculate the spin correlation functions from these different

contributions.

3.5.1 First three contributions

We begin with the following 3 contributions:

i = 1n′ and n = n′

i = 3n′ and n = n′
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i = 4n′ and n = n′

In each case, there are three first order terms that involve different ordering of the

operators. We use the set of spin ice states on two tetrahedra joined by site number

two: |Ψ2〉2, to compute the trace.

The first contribution:

Λ12i

√
2

3 J2

∫ −∞
t

dt′′ε(t′′)2〈Ψ1|J1n′zJ2n′−(t′′)J1n′zJ2n′+(t′)|Ψ1〉2δn,n′

= Λ12

∫ −∞
t

e−i(t
′−t′′)2jJ1/3ε(t′′)dt′′s2j29δn,n′

= Λ12i

√
2

3 J29s2j2e−it
′/3J2

[
eit

′′J12j/3

iJ12j/3 ε(t
′′)|−∞t −

∫ −∞
t

eit
′′J12j/3ε′(t′′)dt′′

]
δn,n′

= −Λ12
9J2√
2J1

s2jei(t−t
′)2jJ1/3δn,n′

where s is the matrix elements of the J± operators, s = 〈+|J+|−〉 = 〈−|J−|+〉. Please

see the detail of how to apply the time dependent operator Ji±(t) on states in the

Appendix. The second contribution:

Λ13i

√
2

3 J2

∫ −∞
t

dt′′ε(t′′)2〈Ψ1|J3n′zJ2n′−(t′′)J1n′zJ2n′+(t′)|Ψ1〉2δn,n′

= Λ13i

√
2

3 J2

∫ −∞
t

e−i(t
′−t′′)2jJ1/3ε(t′′)dt′′t2j23δn,n′

= Λ13
3J2√
2J1

s2jei(t−t
′)2jJ1/3δn,n′

The third contribution:

Λ14i

√
2

3 J2

∫ −∞
t

dt′′ε(t′′)2〈Ψ1|J4n′zJ2n′−(t′′)J1n′zJ2n′+(t′)|Ψ1〉2δn,n′

= Λ14i

√
2

3 J2

∫ −∞
t

e−i(t
′−t′′)2jJ1/3ε(t′′)dt′′t2j23δn,n′

= Λ14
3J2√
2J1

s2jei(t−t
′)2jJ1/3δn,n′
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The sum of the above 3 terms is

3J2√
2J1

s2jei(t−t
′)2jJ1/3(−3Λ12 + Λ13 + Λ14)δn,n′

= 6
√

2J2

J1
s2jei(t−t

′)2jJ1/3

The second term in the perturbation is as follows:

The first contribution:

Λ12i

√
2

3 J2

∫ t

t′
dt′′ε(t′′)2〈Ψ1|J1n′zJ1n′zJ2n′−(t′′)dt′′J2n′+(t′)|Ψ1〉2δn,n′

= Λ12i

√
2

3 J2

∫ t

t′
e−i(t

′−t′′)2jJ1/3ε(t′′)dt′′s2j29δn,n′

= Λ12
9√
2
J2

J1
s2j(ei(t−t′)2jJ11/3 − 1)

The second contribution:

Λ13i

√
2

3 J2

∫ t

t′
dt′′ε(t′′)2〈Ψ1|J1n′zJ3n′zJ2n′−(t′′)dt′′J2n′+(t′)|Ψ1〉2δn,n′

= Λ13i

√
2

3 J2

∫ t

t′
e−i(t

′−t′′)2jJ1/3ε(t′′)dt′′s2j23δn,n′

= −Λ13
3√
2
J2

J1
s2j(ei(t−t′)2jJ11/3 − 1)

The third contribution:

Λ14i

√
2

3 J2

∫ t

t′
dt′′ε(t′′)2〈Ψ1|J1n′zJ4n′zJ2n′−(t′′)dt′′J2n′+(t′)|Ψ1〉2δn,n′

= Λ14i

√
2

3 J2

∫ t

t′
e−i(t

′−t′′)2jJ1/3ε(t′′)dt′′s2j23δn,n′

= −Λ14
3√
2
J2

J1
s2j(ei(t−t′)2jJ11/3 − 1)
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The sum of the above 3 terms is

3
√

2
2
J2

J1
s2j(ei(t−t′)2jJ11/3 − 1)(3Λ12 − Λ13 − Λ14)

= −6
√

2J2

J1
s2j(ei(t−t′)2jJ11/3 − 1)

The third term in the perturbation is as follows:

The first contribution:

Λ12i

√
2

3 J2

∫ t′

−∞
dt′′ε(t′′)2〈Ψ1|J1n′zJ2n′+(t′)J1n′zJ2n′−(t′′)dt′′|Ψ1〉2δn,n′

= Λ12i

√
2

3 J2

∫ t′

−∞
e−i(t

′−t′′)2jJ1/3ε(t′′)dt′′s2j29]δn,n′

= Λ12i

√
2

3 J2e
−it′2jJ1/3

[
eit

′′J12j/3

iJ12j/3 ε(t
′′)|t′−∞ −

∫ t′

−∞
eit

′′J12j/3ε′(t′′)dt′′
]
δn,n′

= Λ12
9J2√
2J1

s2j

The second contribution:

Λ13i

√
2

3 J2

∫ t′

−∞
dt′′ε(t′′)2〈Ψ1|J1n′zJ2n′+(t′)J3n′zJ2n′−(t′′)dt′′|Ψ1〉2δn,n′

= −Λ13i

√
2

3 J2

∫ t′

−∞
e−i(t

′−t′′)2jJ1/3ε(t′′)dt′′s2j23δn,n′

= −Λ13
3J2√
2J1

s2j

The third contribution:

Λ14i

√
2

3 J2

∫ t′

−∞
dt′′ε(t′′)2〈Ψ1|J1n′zJ2n′+(t′)J4n′zJ2n′−(t′′)dt′′|Ψ1〉2δn,n′

= −Λ14i

√
2

3 J2

∫ t′

−∞
e−i(t

′−t′′)2jJ1/3ε(t′′)dt′′s2j23δn,n′

= −Λ14
3J2√
2J1

s2j
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The sum of the above 3 terms is

3
√

2J2

2J1
s2j(3Λ12 − Λ13 − Λ14)

= 6
√

2J2

J1
s2j

The sum of all three contributions is:

− 6
√

2J2

J1
s2jei(t−t

′)2jJ1/3

+ 6
√

2J2

J1
s2j(ei(t−t′)2jJ1/3 − 1)

+ 6
√

2J2

J1
s2j

= 0

Hence, the sum of all three contributions vanishes. In fact, each contribution vanishes

by itself.

3.5.2 Next three contributions

We will now consider the contributions coming from:

i = 1n′ + f21 and n = n′ + f21

i = 3n′ + f23 and n = n′ + f23

i = 4n′ + f24 and n = n′ + f24

These contributions are similar to the first three, because each contribution can be

calculated using two tetrahedra. Therefore, they also vanish.
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Figure 3.5: Three tetrahedrons joined by site 1 and 2.

3.5.3 Last four contributions

Finally, we consider the contributions:

i = 3n′ and n = n′ + f31

i = 4n′ and n = n′ + f41

i = 3n′ + f23 and n = n′ + f21

i = 4n′ + f24 and n = n′ + f21

To compute these we need spin ice states on three tetrahedra (see Figure 3.5). For

the first contribution, the first term in perturbation,

Λ13

∫ −∞
t

dt′′
√

2
3 J2ε(t′′)3〈Ψ23|J3n′zJ2n′−(t′′)J1(n′+f31)zJ2n′+(t′)|Ψ23〉3δn,n′+f31

= Λ13

∫ −∞
t

√
2

3 J2ε(t′′)e−i(t
′−t′′)2jJ11/3dt′′9s2j2δn,n′+f31

= Λ13
9J2√
2J1

s2jei(t−t
′)2jJ11/3δn,n′+f31
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The first contribution, second term in perturbation is:

Λ13

∫ t

t′
dt′′
√

2
3 J2ε(t′′)3〈Ψ23|J1(n′+f31)zJ3n′zJ2n′−(t′′)J2n′+(t′)|Ψ23〉3δn,n′+f31

= Λ13

∫ t

t′

√
2

3 J2ε(t′′)e−i(t
′−t′′)2jJ11/3dt′′9s2j2δn,n′+f31

= Λ13
9J2√
2J1

s2j(ei(t−t′)2jJ1/3 − 1)δn,n′+f31

The first contribution, third term in perturbation is:

Λ13

∫ t′

−∞
dt′′
√

2
3 J2ε(t′′)3〈Ψ23|J1(n′+f31)zJ2n′+(t′)J3n′zJ2n′−(t′′)|Ψ23〉3δn,n′+f31

= Λ13

∫ t′

−∞

√
2

3 J2ε(t′′)e−i(t
′−t′′)2jJ11/3dt′′9s2j2δn,n′+f31

= Λ13
9J2√
2J1

s2jδn,n′+f31

The sum of all these contributions gives an zero value, hence, the spin correla-

tion function vanishes. The other contributions are also zero. Hence we find that

〈J1nz(t)J2n′+(t′)〉 vanishes to first order in perturbation theory.

3.6 Spin correlation 〈J1n+J2n′+〉

For 〈J1n+J2n′+〉, the X3 term in the perturbation gives the non-zero spin corre-

lations

〈J1n+(t)J2n′+(t′)〉 = −iTr
[
ρ0

(∫ −∞
t

X3(t′′)ε(t′′)dt′′
)
J1n+(t)J2n′+(t′)

]
− iTr

[
ρ0J1n+(t)

(∫ t

t′
X3(t′′)ε(t′′)dt′′

)
J2n′+(t′)

]
− iTr

[
ρ0J1n+(t)J2n′+(t′)

(∫ t′

−∞
X3(t′′)ε(t′′)dt′′

)]

There are three tetrahedra involved for 〈J1n+J2n′+〉 (see Figure 3.6). Only nearest

neighbours will give non-zero spin correlation function, hence site 1 and site 2 need
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Figure 3.6: Three tetrahedrons joined by site 1 and 2..

to be in the same tetrahedron i.e. n = n′ or n = n′ + f12. Therefore, we have

〈J1n+(t)J2n′+(t′)〉 = −iiJ3

3

(
Tr
[
ρ0

(∫ −∞
t

J1n−(t′′)J2n′−(t′′)ε(t′′)dt′′
)
J1n+(t)J2n′+(t′)

]

− iTr
[
ρ0J1n+(t)

(∫ t

t′
J1n−(t′′)J2n′−(t′′)ε(t′′)dt′′

)
J2n′+(t′)

]
− iTr

[
ρ0J1n+(t)J2n′+(t′)

(∫ t′

−∞
J1n−(t′′)J2n′−(t′′)ε(t′′)dt′′

)])
(δn,n′ + δn,n′+f12)

(3.8)

Now we will calculate the above term by term, using the same methods as in section

3.5. The first term in perturbation is

3〈Ψ12|
(∫ −∞

t

1
3J3J1n−(t′′)J2n′−(t′′)ε(t′′)dt′′

)
J1n+(t)J2n′+(t′)|Ψ12〉3

= 3J3

4jJ1
s4ei(t−t

′)2jJ1/3(δn,n′ + δn,n′+f21)

The second term in perturbation is

3〈Ψ12|J1n+(t)
(∫ t

t′

1
3J3J1n−(t′′)J2n′−(t′′)ε(t′′)dt′′

)
J2n′+(t′)|Ψ12〉3

= 6iJ3(t− t′)s4ei(t−t
′)2jJ1/3(δn,n′ + δn,n′+f21)
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The third term in perturbation is

3〈Ψ12|J1n+(t)J2n′+(t′)
(∫ t′

−∞

1
3J3J1n−(t′′)J2n′−(t′′)ε(t′′)dt′′

)
|Ψ12〉3

= 3J3

4jJ1
s4ei(t−t

′)2jJ1/3(δn,n′ + δn,n′+f21)

Now let us consider the number of configurations. For 〈J1+nJ2+n′〉, there are three

tetrahedron involved and for each tetrahedron we have 6 possible spin ice configura-

tions, hence we have 3× 3× 6 = 54 configurations. Hence we have

〈J1n+(t)J2n′+(t′)〉 = −J3s
4ei(t−t

′)J11/3

54 (6i(t− t′) + 3
4jJ1

) (3.9)

3.7 Spin correlation 〈J1n−(t)J2n′+(t′)〉

For 〈J1n−(t)J2n′+(t′)〉, the X4 term of the perturbation gives the non-zero spin

correlations

〈J1n−(t)J2n′+(t′)〉 = −iTr
[
ρ0

(∫ −∞
t

X4(t′′)ε(t′′)dt′′
)
J1n−(t)J2n′+(t′)

]
− iTr

[
ρ0J1n−(t)

(∫ t

t′
X4(t′′)ε(t′′)dt′′

)
J2n′+(t′)

]
− iTr

[
ρ0J1n−(t)J2n′+(t′)

(∫ t′

−∞
X4(t′′)ε(t′′)dt′′

)]

There are three tetrahedra involved for 〈J1n−J2n′+〉 (see Figure 3.6). Only the

nearest neighbour will give non-zero spin correlation function, hence site 1 and site 2
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Figure 3.7: Three tetrahedra joined by site 1 and 2..

need to be in the same tetrahedron i.e. n = n′ or n = n′ + f12 Therefore, we have

〈J1n−(t)J2n′+(t′)〉 = −iJ4

6

(
Tr
[
ρ0

(∫ −∞
t

J1n+(t′′)J2n′−(t′′)ε(t′′)dt′′
)
J1n−(t)J2n′+(t′)

]

+ Tr
[
ρ0J1n−(t)

(∫ t

t′
J1n+(t′′)J2n′+(t′′)ε(t′′)dt′′

)
J2n′+(t′)

]
+ Tr

[
ρ0J1n−(t)J2n′+(t′)

(∫ t′

−∞
J1n+(t′′)J2n′−(t′′)ε(t′′)dt′′

)])
(δn,n′ + δn,n′+f12)

(3.10)

Now we will calculate the above term by term, using the same methods as before.

The first term in perturbation is

∫ −∞
t

dt′′
1
6J4ε(t′′)3〈Ψ12|J1n+(t′′)J2n′−(t′′)J1n−(t)J2n′+(t′)|Ψ12〉3

= 3J4

4jJ1
s4ei(t

′−t)2jJ1/3(δn,n′ + δn,n′+f21)

The second term in perturbation is

∫ t

t′
dt′′

1
6J4ε(t′′)3〈Ψ12|J1−n(t)J1+n(t′′)J2−n′(t′′)J2+n′(t′)|Ψ12〉3

= 3iJ4(t′ − t)s4ei(t
′−t)2jJ11/3(δn,n′ + δn,n′+f21)
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The third term in perturbation is

∫ t′

−∞
dt′′

1
6J4ε(t′′)3〈Ψ12|J1+n(t)J2+n′(t′)J1−n(t′′)J2−n′(t′′)|Ψ12〉3

= 3J4

4jJ1
s4ei(t

′−t)2jJ11/3(δn,n′ + δn,n′+f21)

For 〈J1−nJ2+n′〉, there are three tetrahedron involved and for each tetrahedron we

have 6 possible spin ice configurations, hence we have 3× 3× 6 = 54 configurations.

Hence we have

〈J1n+(t)J2n′+(t′)〉 = −3J4s
4ei(t

′−t)J11/3

54 (i(t′ − t) + 1
4jJ1

) (3.11)

where N is the number of total ions in the lattice.

3.8 Spin Correlation in Global Coordinates

In this section we express our results in global coordinates using the relations

between local and global coordinates described in the Appendix. We use symmetry

arguments to generalise our results for site 1 and 2 correlations to other sites. Since

J+ = Jx + iJy and J− = Jx− iJy, hence J+ = (J−)†. Therefore, we have the following

〈J1zJ2−〉 = (〈J1zJ2+〉)†

〈J1+J2+〉 = (〈J1−J2−〉)†

〈J1+J2−〉 = (〈J1−J2+〉)†

There are 4 independent correlation functions out of 54. As we shall show, the rest

are related by symmetry. By using the group theory, we can do the transformation
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between local coordinates with global coordinates which is provided in Appendix. Let

us define Jx1 Jx2 = a, Jx1 J
y
2 = b, Jz1Jx2 = c, Jz1Jz2 = d, we have the relationship between

local coordinates with global coordinates in table 3.1. In the following section, we will

write the global spin correlation functions using the local spin correlation functions.

JxJx JxJy JxJz JyJx JyJy JyJz JzJx JzJy JzJz

J1J2 a b −c b a c c −c d
J1J3 a −c b c d −c b c d
J1J4 d c −c −c a b c b a
J2J3 d c c −c a −b −c −b d
J2J4 a −c b c d c b c a
J3J4 a −b c −b a c −c −c d

Table 3.1: Equivalent spin correlations between different sites.

〈Jz1Jz2 〉

For ion 1 and 2, the global spin correlation function of Jz1Jz2 can be expressed by

〈Jz1Jz2 〉 = 1
6(〈J1+J2+〉+ 〈J1+J2−〉+ 〈J1−J2+〉+ 〈J1−J2−〉)

− 1
3
√

2
(〈J1zJ2−〉+ 〈J1zJ2+〉) + 〈J1−J2z〉+ 〈J1+J2z〉) + 1

3〈J1zJ2z〉

〈Jz1Jx2 〉

For ion 1 and 2, the global spin correlation function of Jz1Jx2 can be expressed by

〈Jz1Jx2 〉 = 1
12(〈J1−J2−〉+ 〈J1+J2−〉+ 〈J1−J2+〉+ 〈J1+J2+〉)

− i

4
√

3
(〈J1−J2−〉+ 〈J1+J2−〉 − 〈J1−J2+〉 − 〈J1+J2+〉)

− 1
6
√

2
(〈J1zJ2−〉+ 〈J1zJ2+〉) + i

2
√

6
(〈J1zJ2−〉 − 〈J1zJ2+〉)
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+ 1
3
√

2
(〈J1−J2z〉+ 〈J1+J2z〉)−

1
3〈J1zJ2z〉

〈Jx1 J
y
2 〉

For ion 1 and 2, the global spin correlation function of Jx1 J
y
2 can be expressed by

〈Jx1 J
y
2 〉 = −1

6(〈J1−J2−〉+ 〈J1+J2+〉) + 1
12(〈J1+J2−〉+ 〈J1−J2+〉)

− i

4
√

3
(〈J1+J2−〉 − 〈J1−J2+〉)−

1
6
√

2
(〈J1zJ2−〉+ J1zJ2+〉+ 〈J1−J2z〉

+ 〈J1+J2z〉)−
i

2
√

6
(〈J1zJ2−〉 − 〈J1zJ2+〉 − 〈J1−J2z〉+ 〈J1+J2z〉)

− 1
3〈J1zJ2z〉

〈Jx1 Jx2 〉

For ion 1 and 2, the global spin correlation function of Jx1 Jx2 can be expressed by

〈Jx1 Jx2 〉 = 1
12(〈J1−J2−〉+ 〈J1+J2+〉) + i

4
√

3
(〈J1−J2−〉 − 〈J1+J2+〉)

− 1
6(〈J1+J2−〉+ 〈J1−J2+〉)−

1
6
√

2
(〈J1zJ2−〉+ 〈J1zJ2+〉+ 〈J1−J2z〉

+ 〈J1+J2z〉) + i

2
√

6
(〈J1zJ2−〉 − 〈J1zJ2+〉+ 〈J1−J2z〉 − 〈J1+J2z〉)

− 1
3〈J1zJ2z〉

3.9 Neutron Scattering

Neutron scattering is an experiment which is sensitive to the spin correlation

function. The neutron cross-section for the scattering by identical magnetic ions
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situated at the sites Rin of a crystal is

d2σ

dΩdE ′ =r2
0
k′

k
[12gF (κ)]2

∑
α,β

(δα,β − κακβ)
∑
λ,λ′

pλ
∑
i,n

∑
i′,n′
〈λ| exp(−iκ ·RinJ

α
in|λ′〉

× 〈λ′| exp(iκ ·RinJ
β
i′n′ |λ〉δ(~ω + Eλ − Eλ′)

where ~k is variable in the momentum space, κ = ~k
|k| is the unit vector of ~k, g is a

constant which can be determined by experiment, Rin is the position vector, Jαin is

the spin function, i is the site number and n is the Wyckoff position of Tb atoms, |λ〉

is a state, and Eλ is the energy of the state.

The partial differential cross-section is

d2σ

dΩdE ′ = r2
0
k′

k
[12gF (κ)]2

∑
α,β

(δα,β − κακβ) N2π~

∫ ∞
−∞

dt
∫
dr exp(iκ · r − iωt)Γαβ(r, t)

(3.12)

where N is the number of unit cells in the crystal, and

Γαβ(r, t) = 1
N

∑
i,n

∑
i′,n′

∫
dr′〈δ(r +Rin − r′)Jαinδ(r′ −Rin(t))Jβi′n′(t)〉 (3.13)

Because the spin-dependent forces are small, therefore, we can approximate the motion

of an ion as independent of its spin orientation. Then the above equation becomes

Γαβ(r, t) = 1
N

∑
i,n

∑
i′,n′
〈JαinJ

β
i′n′(t)〉

∫
dr′〈δ(r +Rin − r′)δ(r′ −Ri′n′(t))〉. (3.14)

and 〈JαinJ
β
i′n′(t)〉 are the spin correlation functions between different sites. Essentially,

in order to calculate the neutron scattering intensity, we need to convert the spin

correlation function into k space, which is the Fourier transformation of the spin

correlation function with position.

By substituting the spin correlation functions into the above equation and setting
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J1 = 1,J2 = J3 = J4 = 0.1 and setting ω = 0 for the elastic neutron scattering. By

using equation 3.12, we can plot the neutron scattering intensity as a function of k,

as shown in Figure 3.8.

Figure 3.8: The neutron scattering intensity along (k1, k2, 0) plane.

Figure 3.8 is a contour plot in k1 and k2 plane with k3 = 0. Figure 3.8 was

obtained using Mathematica. We plot (3.12) in Mathematica and for simplicity set

k3 = 0. From the plot we can find the partial cross-section by substituting k1 and k2

into (3.12). The dark colour in the plot indicates the higher intensity and the light

colour indicates the lower intensity. From Fig 3.8 we can see that the spin correlation

function is periodic in k-space. These results are preliminary; further studies are

needed to compare with experiment.

In this chapter, we used the first order perturbation theory on the interaction

Hamiltonian to find the spin correlations between site 1 and 2. We found the spin

correlation of 〈JizJj+〉 vanishes to the nearest and next nearest neighbours, the spin

correlations of 〈Ji+Jj+〉 and 〈Ji+Jj−〉 will give non-zero results only to the nearest

neighbour. We also converted the spin correlation from local coordinates to global

coordinates and used group generator of space group to find the spin correlations on
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different sites. Finally, we discussed about the neutron scattering experiment and

how to find the scattering intensity by using the spin correlation functions. Moreover,

we did a plot of the scattering intensity along the k1 and k2 plane.



Chapter 4

Conclusion

In this thesis, we use the perturbation theory to find the spin correlations on Tb

ions in Tb2Ti2O7.

In the first chapter, we discussed the structure of pyrochlores. We also talked

about geometric frustration in the tetrahedron structure in pryochlores. We reviewed

the ice rule and residual entropy on crystal ice and applied it to spin ice materials.

Particularly, we focused our interest on one of the pryochlores, Tb2Ti2O7, which is

believed to be a quantum spin ice material. Tb2Ti2O7 has many interesting properties

such as residual entropy and elastic softening effects.

In Chapter 2, we described the spin 1/2 exchange Hamiltonian for Tb2Ti2O7.

The largest term in H has a spin ice ground state. We use perturbation theory on the

rest of the terms in the Hamiltonian to find the spin correlations between different

sites of Tb ions. In order to use perturbation theory, we found the interaction picture

representation of our operators.

In Chapter 3, we did the calculation to find the spin correlation function. From

our calculation, we found that the spin correlation 〈Jiz(t)Jj+(t′)〉 vanishes not only

on the nearest neighbours, but also on the next nearest neighbours. 〈Ji+(t)Jj+(t′)〉

42
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and 〈Ji+(t)Jj−(t′)〉 only give spin correlations between nearest neighbours. From our

calculation we find that there are only short range spin correlation of Tb ions. After

the calculation, we discussed the neutron scattering theory which is one method to

test our result experimentally. Although neutron scattering is the typical method to

find the spin correlation function, there are also other experiment methods such as

muon spin relaxation and dc susceptibility can be used to text the spin correlation

function [29].

Experiments reveal that the correlations are mainly short-range, but there are

longer range correlation seen as “pinch points” in neutron scattering patterns [31].

From higher order perturbation theory, we can reveal more details of spin correlation

function and find the spin correlation function in longer range [24]. Therefore, in the

future, we can apply higher order perturbation theory to the interaction Hamiltonian.

Recently, neutron scattering experiment shows that spin correlations in Tb2Ti2O7

extend over larger distances near 20 K [30]. Therefore, in the mean time, we can also

use neutron scattering experiments to test our theoretical calculations.



Chapter 5

Appendix

In this thesis, we use the angular momentum operators: Jz and J±. In the

interaction picture, the operator Jz is time independent, and the operator J± is time

dependent. From Chapter two we know Ji±(t) = Ji±e
∓itJ1/6

∑
j
Jjz , where the sum

over j means we need to apply the operator Jz to all the nearest neighbours of site i.

In this appendix we will discuss how to apply Jz and J± on the spin ice states.

First, let us consider the operator Jz. Because Jz is time independent, therefore, when

we apply it on the spin ice state it will give the eigenvalue of the state but will not

change the state. For example, if we have a spin ice state |+ +−−〉, then we apply

J1z on it, it will give a eigenvalue of site 1, i.e. J1z|++−−〉 = j|++−−〉. Therefore,

when J1z acts on the states

|Ψ〉1 =



|+ +−−〉

|+−+−〉

|+−−+〉

| − −+ +〉

| −+−+〉

| −+ +−〉


44
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It will produce the eigenvalue of site 1. Therefore, we have

J1z|Ψ〉 =



|+ +−−〉

|+−+−〉

|+−−+〉

| − −+ +〉

| −+−+〉

| −+ +−〉



=



j|+ +−−〉

j|+−+−〉

j|+−−+〉

−j| − −+ +〉

−j| −+−+〉

−j| −+ +−〉



.

then if we want to find 1〈Ψ|J1zJ2z|Φ〉1, we start by computing the following:

J1zJ2z|Ψ〉1 =



|+ +−−〉

|+−+−〉

|+−−+〉

| − −+ +〉

| −+−+〉

| −+ +−〉



=



jj|+ +−−〉

j(−j)|+−+−〉

j(−j)|+−−+〉

−j(−j)| − −+ +〉

−jj| −+−+〉

−jj| −+ +−〉



.

Therefore, we have

1〈Ψ|J1zJ2z|Ψ〉1 = j2 − j2 − j2 + j2 − j2 − j2 = −2j2

Now let us consider the time dependent angular momentum operator J±(t). We

know that when J+ act on a state |+〉, it will eliminate it, and when J+ act on a state

|−〉, it will raise it to |+〉. Therefore, when we apply Ji+ on the spin ice state, the

only non-zero result is contributed by the site i with spin "−". The exponent part of

Ji+(t) has the summation part ∑j Jjz, hence we need to apply Jz to all the nearest

neighbour of site i. For example, if we apply J1+(t) on spin ice state | − − + + >,
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we need to find out the nearest neighbour of site 1. By applying the spin ice rule, we

know that the nearest neighbours of site 1 have spin state "-", "+", "+", "-", "+", "+".

Therefore, ∑j Jjz = −j + j + j − j + j + j = 2j. Hence,

J1+(t)| − −+ +〉 = J1+e
−itJ1/6

∑
j
Jjz | − −+ +〉 = e−it2jJ1/6|+−+ +〉

Moreover, in order to have a non-zero result for 〈− − + + |J | − − + +〉 we need to

pair the operator J1−(t)J1+(t′). Therefore, we have

〈− −+ + |J1−(t)J1+(t′)| − −+ +〉

= 〈− −+ + |J1−(t)J1+e
−it′J1/6

∑
j
Jjz | − −+ +〉

= 〈− −+ + |J1−(t)e−i(−2j)t′J1/6|+−+ +〉

= 〈− −+ + |ei(2j)tJ1/6e−i(2j)t
′J1/6| − −+ +〉

= ei(2j)(t−t
′)J1/6

Therefore, we can apply the above argument to other spin ice state in our calcu-

lation to give the results in Chapter 3.

Here we will present some examples of calculation detail in Chapter 3. First, in

the spin correlation functions containX2, if we want to find 2〈Ψ2|J1nz(t′′)J2n′−(t′′)J1nzJ2n′+|Ψ2〉2,

we can start by computing the following:
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J1nzJ2−n′(t′′)J1nzJ2+n′(t′)




|+ +−−〉

| −+−+〉

| −+ +−〉

⊗ |Φ2+〉


| − −+ +〉

|+−+−〉

|+−−+〉

⊗ |Φ2−〉



δn,n′n′+f31

= J1nzJ2−n′(t′′)J1nze
−it′2jJ11/3s



0
| −+ + +〉

|+ + +−〉

|+ +−+〉

⊗ |Φ2−〉


δn,n′

= e−i(t
′−t′′)2jJ11/3s2j2



0
| − −+ +〉

|+−+−〉

|+−−+〉

⊗ |Φ2−〉〉



where s is the matrix elements of the J± operators, s = 〈+|J+|−〉 = 〈−|J−|+〉.

Therefore, we have

2〈Ψ2|J1nz(t′′)J2n′−(t′′)J1nzJ2n′+|Ψ2〉2 = e−i(t
′−t′′)2jJ11/3s2j2

In the spin correlation functions contain X3, if we want to find

3〈Ψ12|J1n−(t′′)J2n′−(t′′)J1n+J2n′+|Ψ12〉3

we need to compute the following:
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J1n−(t′′)J2n′−(t′′)J1n+(t)J2n′+(t′)



|+ +−−〉 ⊗ |Φ2+〉1 ⊗ |Φ1+〉1 | −+−+〉

| −+ +−〉

⊗ |Φ2+〉1 ⊗ |Φ1−〉1

| − −+ +〉 ⊗ |Φ2−〉1 ⊗ |Φ1−〉1 |+−+−〉

|+−−+〉

⊗ |Φ2−〉1 ⊗ |Φ1+〉1



(δn,n′ + δn,n′+f21)

= J1n−(t′′)J2n′−(t′′)J1n+(t)e−it′2jJ11/3s



0

0

0

| −+ + +〉 ⊗ |Φ2−〉1 ⊗ |Φ1−〉1 |+ + +−〉

|+ +−+〉

⊗ |Ψ2−〉1 ⊗ |Ψ1+〉1



(δn,n′ + δn,n′+f21)

= J1n−(t′′)J2n′−(t′′)e−i(t′+t)2jJ11/3s2



0

0

0

|+ + + +〉 ⊗ |Φ2−〉1 ⊗ |Φ1−〉1

0

0



(δn,n′ + δn,n′+f21)

= e−i(t
′+t−2t′′)2jJ11/3s4



0

0

0

| − −+ +〉 ⊗ |Ψ2−〉1 ⊗ |Ψ1−〉1

0

0



(δn,n′ + δn,n′+f21)



49

Hence,

3〈Ψ12|J1n−(t′′)J2n′−(t′′)J1n+J2n′+|Ψ12〉3 = s4e−i(t
′+t−2t′′)2jJ11/3

In the spin correlation functions contain X4, if we want to find

3〈Ψ12|J1n+(t′′)J2n′−(t′′)J1n−J2n′+|Ψ12〉3

, we need to compute the following:

J1n+(t′′)J2n′−(t′′)J1n−(t)J2n′+(t′)



|+ +−−〉 ⊗ |Φ2+〉1 ⊗ |Φ1+〉1 | −+−+〉

| −+ +−〉

⊗ |Ψ2+〉1 ⊗ |Φ1−〉1

| − −+ +〉 ⊗ |Φ2−〉1 ⊗ |Φ1−〉1 |+−+−〉

|+−−+〉

⊗ |Φ2−〉1 ⊗ |Φ1+〉1



(δn,n′ + δn,n′+f21)

= J1n+(t′′)J2n′−(t′′)J1n−(t)e−it′2jJ11/3s



0

0

0

| −+ + +〉 ⊗ |Φ2−〉 ⊗ |Φ1−〉 |+ + +−〉

|+ +−+〉

⊗ |Φ2−〉1 ⊗ |Φ1+〉1



(δn,n′ + δn,n′+f21)
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= J1n+(t′′)J2n′−(t′′)e−i(t′−t)2jJ11/3s2



0

0

0

0 | −+ +−〉

| −+−+〉

⊗ |Φ2−〉1 ⊗ |Φ1+〉1



(δn,n′ + δn,n′+f21)

= e−i(t
′−t)2jJ11/3s4



0

0

0

0 |+−+−〉

|+−−+〉

⊗ |Φ2−〉1 ⊗ |Φ1+〉1



(δn,n′ + δn,n′+f21)

Hence,

3〈Ψ12|J1n+(t′′)J2n′−(t′′)J1n−J2n′+|Ψ12〉3 = s4e−i(t
′−t)2jJ11/3

.

Now let us find the spin correlation function of other sites by applying symmetry

transformations. We will use generators of the space group: C2
z , C2

x, C3
[111], C2

[110].

By applying C2
z , we will have the following:

1↔ 2

3↔ 4
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
x

y

z

→

−x

−y

z



hence we have:

Jx1 J
y
2 = Jy1J

x
2

Jx1 J
z
2 = −Jz1Jx2

Jy1J
z
2 = −Jz1J

y
2

Jx1 J
x
3 = Jx2 J

x
4

Jx1 J
y
3 = Jx2 J

y
4

Jx1 J
z
3 = −Jx2 Jz4

Jy1J
x
3 = Jy2J

x
4

Jy1J
y
3 = Jy2J

y
4

Jy1J
z
3 = −Jy2Jz4

Jz1J
x
3 = Jz2J

x
4

Jz1J
y
3 = −Jz2J

y
4

Jz1J
z
3 = Jz2J

z
4

Jx1 J
x
4 = Jx2 J

x
3

Jx1 J
y
4 = Jx2 J

y
3

Jx1 J
z
4 = −Jx2 Jz3

Jy1J
x
4 = Jy2J

x
3

Jy1J
y
4 = Jy2J

y
3

Jy1J
z
4 = −Jy2Jz3
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Jz1J
x
4 = −Jz2Jx3

Jz1J
y
4 = −Jz2J

y
3

Jz1J
z
4 = Jz2J

z
3

Jx3 J
y
4 = Jy3J

x
4

Jx3 J
z
4 = −Jz3Jx4

Jy3J
z
4 = −Jz3J

y
4

By applying C2
x, we will have the following:

1↔ 4

2↔ 3
x

y

z

→


x

−y

−z



hence we have:

Jx1 J
x
2 = Jx3 J

x
4

Jx1 J
y
2 = −Jx3 J

y
4

Jx1 J
z
2 = −Jx3 Jz4

Jy1J
x
2 = −Jy3Jx4

Jy1J
y
2 = Jy3J

y
4

Jy1J
z
2 = Jy3J

z
4

Jz1J
x
2 = −Jz3Jx4
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Jz1J
y
2 = Jz3J

y
4

Jz1J
z
2 = Jz3J

z
4

Jx1 J
x
3 = Jx2 J

x
4

Jx1 J
y
3 = −Jy2Jx4

Jx1 J
z
3 = −Jz2Jx4

Jy1J
x
3 = −Jx2 J

y
4

Jy1J
y
3 = Jy2J

y
4

Jy1J
z
3 = Jz2J

y
4

Jz1J
x
3 = −Jx2 Jz4

Jz1J
y
3 = Jy2J

z
4

Jz1J
z
3 = Jz2J

z
4

Jx1 J
y
4 = −Jy1Jx4

Jx1 J
z
4 = −Jz1Jx4

Jy1J
z
4 = Jz1J

y
4

Jx2 J
y
3 = −Jy2Jx3

Jx2 J
z
3 = −Jz2Jx3

Jy2J
z
3 = Jz2J

y
3

By apply C3
[111], we will have the following:

1↔ 1

3→ 2→ 4→ 3
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
x

y

z

→

y

z

x



hence we have:

Jx1 J
x
2 = Jy1J

y
4

Jx1 J
y
2 = Jy1J

z
4

Jx1 J
z
2 = Jy1J

x
4

Jy1J
x
2 = Jz1J

y
4

Jy1J
y
2 = Jz1J

z
4

Jy1J
z
2 = Jz1J

x
4

Jz1J
x
2 = Jx1 J

y
4

Jz1J
y
2 = Jx1 J

z
4

Jz1J
z
2 = Jx1 J

x
4

Jx2 J
x
3 = Jy2J

y
3

Jx2 J
y
3 = Jy2J

z
3

Jx2 J
z
3 = Jy2J

x
3

Jx2 J
x
4 = Jy2J

y
4

Jx2 J
y
4 = Jy2J

z
4

Jx2 J
z
4 = Jy2J

x
4

Jx3 J
x
4 = Jy3J

y
4

Jx3 J
y
4 = Jy3J

z
4

Jx3 J
z
4 = Jy3J

x
4



55

By apply C2
[110], we will have the following:

1↔ 2

3↔ 3

4↔ 4
x

y

z

→


y

x

−z



hence we have:

Jx1 J
x
2 = Jy1J

y
2

Jx1 J
y
2 = Jy1J

x
2

Jx1 J
z
2 = −Jy1Jz2

Jz1J
x
2 = −Jz1J

y
2

Jx1 J
x
3 = Jy2J

y
3

Jx1 J
y
3 = Jy2J

x
3

Jx1 J
z
3 = −Jy2Jz3

Jy1J
x
3 = Jx2 J

y
3

Jy1J
y
3 = Jx2 J

x
3

Jy1J
z
3 = −Jx2 Jz3

Jz1J
x
3 = −Jz2J

y
3

Jz1J
y
3 = −Jz2Jx3
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Jz1J
z
3 = Jz2J

z
3

Jx1 J
x
4 = Jy2J

y
4

Jx1 J
y
4 = Jy2J

x
4

Jx1 J
z
4 = −Jy2Jz4

Jy1J
x
4 = Jx2 J

y
4

Jy1J
y
4 = Jx2 J

x
4

Jy1J
z
4 = −Jx2 Jz4

Jz1J
x
4 = −Jz2J

y
4

Jz1J
y
4 = −Jz2Jx4

Jz1J
z
4 = Jz2J

z
4

Jx3 J
x
4 = Jy3J

y
4

Jx3 J
y
4 = Jy3J

x
4

Jx3 J
z
4 = −Jy3Jz4

Jz3J
x
4 = −Jz3J

y
4
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