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Abstract

With the boom in the development of multi-core machines and the development

of multi-threaded applications as such, concurrent programming has gained increas-

ingly more significance than ever before. However, concurrent programming using

traditional methods such as locks, mutex and monitors is not easy, as they require

a programmer to predetermine the lock management scheme for each case. This

approach is error-prone. Besides, it is very difficult to trace the bugs in such pro-

grams. Software transactional memory (STM) is a new technology that solves this

problem by offering automatic management of locks. As such, in recent years STM

has gained a lot of attention in both industry and academia. However, most of the

work in STM is restricted to non-nested transactions, while the domain of nested

transactions remains largely unexplored.

One of the striking features of STM is its ability to support composability of trans-

actions through three types of nesting, namely flat nesting, closed nesting and open

nesting. In this thesis, we study the complexities involved in designing STM proto-

cols for closed nested transactions. To this end, we extend Imbs and Raynal’s STM

protocol [1], which is designed for non-nested transactions, to closed nested trans-

actions. We propose several extensions, employing different modes of concurrency

for subtransactions in the transaction tree : (i) serial execution (no concurrency) of

subtransactions at each level; (ii) pessimistic concurrency control at all nodes; (iii)

optimistic concurrency control at all nodes; and (iv) a mixture of optimistic concur-

rency control at some nodes while pessimistic concurrency control at other nodes in

the same transaction tree.

ii



Acknowledgements

The accomplishment of this thesis would not have been possible without the

intelligent guidance and sustained support of my supervisor, Dr. Krishnamurthy

Vidyasankar, at every stage of my Master’s program. I am truly indebted to him.

I am also thankful to faculty and staff of Computer Science Department at MUN,

namely- Dr. Edward Brown, Dr. Manrique Mata-Montero, Elaine Boone, Sharon

Deir, Regina Edwards, and Darlene Oliver.

I am highly grateful to Sumeet Ghosh, Karan Bhawasinka, Wagdi M. Alrawagfeh,

Cristy S. Hynes and Saima Siddiqui for their sustained support and constant encour-

agement. Finally, I thank my parents, Dileshwar Prasad and Shanti Devi, as well as

my uncle/aunty- Priya Sinha, Pradeep Sinha, Amarendra D. Singh, Rajesh Khosla-

for their support all through and believing in me.

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Why Software Transactional Memory? . . . . . . . . . . . . . . . . . 1

1.2 Software transactional memory (STM) . . . . . . . . . . . . . . . . . 4

1.3 Nesting in STM: transaction tree . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Flat nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Closed nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Open nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iv



2 Preliminaries: background 11

2.1 Transaction tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Super transaction and super tree . . . . . . . . . . . . . . . . . . . . 12

2.3 Shared objects: global copy vs local copy . . . . . . . . . . . . . . . . 12

2.4 Common features of a nested transaction in our model . . . . . . . . 13

2.5 Informal discussion about linearizability of nested transactions . . . . 14

2.6 Concurrency control mechanism: a relevant study . . . . . . . . . . . 16

2.6.1 Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Damien Imbs and Michel Raynal’s STM Protocol . . . . . . . 17

2.6.2.1 About correctness . . . . . . . . . . . . . . . . . . . 20

3 Computation model, base formalism, and proof outline 22

3.1 Computation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Histories and base formalism . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Events and histories at shared memory level . . . . . . . . . . 23

3.2.2 History at transaction level . . . . . . . . . . . . . . . . . . . 24

3.2.3 Level-wise history . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Local timeline and linearization point at a level . . . . . . . . . . . . 26

3.3.1 Local timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Linearization point at a level . . . . . . . . . . . . . . . . . . . 26

3.4 Construction of level-wise history . . . . . . . . . . . . . . . . . 27

3.4.1 External read . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Visible read objects . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Commit write . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



3.4.4 Mapping of level-wise history . . . . . . . . . . . . . . . . . . 29

3.5 About correctness of nested transactions . . . . . . . . . . . . . . . . 35

3.5.1 Avoiding cyclic conflict between transactions across

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.2 When to abort an incompatible subtransaction . . . . . . . . . 40

3.6 Consistency criterion: level-wise opacity . . . . . . . . . . . . . . . . 41

3.7 Outline of the proof technique . . . . . . . . . . . . . . . . . . . . . . 42

3.7.1 Bottom up approach for constructing level-wise histories . . . 43

3.7.2 Level-wise history of committed transactions . . . . . . . . . . 44

3.7.3 Reduction of a non-committed transaction . . . . . . . . . . . 45

3.7.4 Closure (history) for a transaction . . . . . . . . . . . . . . . . 46

3.7.5 Handling aborted and active transactions . . . . . . . . . . . . 48

3.7.6 Summary of the proof technique . . . . . . . . . . . . . . . . . 49

4 SimpSTM: A simple STM protocol for (closed) nested transactions 50

4.1 SimpSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2.1 Variable state . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2.2 Transaction state . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Working of SimpSTM . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Proof of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Definition of linearization point . . . . . . . . . . . . . . . . . 57

4.2.2 Proof for committed transactions . . . . . . . . . . . . . . . . 58

vi



4.2.3 Proof for aborted transactions . . . . . . . . . . . . . . . . . . 64

5 ParSTM 70

5.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Optimistic behaviour at the global level (tψ): . . . . . . . . . . 70

5.1.2 Pessimistic behaviour at the nested level (p-node, tπ): . . . . . 71

5.1.2.1 Partial concurrency at the nested level . . . . . . . . 72

5.1.2.2 Handling deadlock situations . . . . . . . . . . . . . 73

5.2 Implementing 2PL for nested transactions . . . . . . . . . . . . . . . 78

5.3 Issue of incompatible read operations/transactions . . . . . . . . . . . 81

5.4 The protocol: ParSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.2 State of shared objects . . . . . . . . . . . . . . . . . . . . . . 88

5.4.3 State of transaction . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.4 Methods common to both root as well as non-root nodes (t∗) . 89

5.4.5 Methods specific to non-root nodes (tπ) . . . . . . . . . . . . . 91

5.4.6 Methods specific to root-node (tρ) . . . . . . . . . . . . . . . . 93

5.4.7 Regarding abort of a transaction and its descendants . . . . . 94

5.4.8 Optimization: abort of incompatible descendants . . . . . . . 95

5.5 Consistency checking and linearization points at level t . . . . . . . . 95

5.5.1 Consistency checking during external read operation . . . . . . 95

5.5.2 Linearization points of events in a level-wise history . . . . . . 96

5.5.3 Ordering of external read/search at t with overlapping local

operations of t . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



5.5.4 Linearization point of nested transaction . . . . . . . . . . . . 97

5.6 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 Proof for committed transactions . . . . . . . . . . . . . . . . 99

5.6.2 Proof for aborted transactions . . . . . . . . . . . . . . . . . . 108

6 HParSTM 112

6.1 Overview of HParSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Discussion of contention management . . . . . . . . . . . . . . . . . . 113

6.2.1 Standard cases . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1.1 Consistency checking at the time of a read operation 113

6.2.1.2 Avoiding cyclic conflict through transitivity across levels114

6.2.1.3 Keeping track of incompatible read operations . . . . 116

6.2.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2.1 Tracking overwrite at intermediate ancestor level . . 117

6.2.2.2 Significance of vts . . . . . . . . . . . . . . . . . . . 118

6.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 Transaction state . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Working of HParSTM: . . . . . . . . . . . . . . . . . . . . . . 122

6.3.3 About management of sets . . . . . . . . . . . . . . . . . . . . 125

6.3.4 About deadlock freedom . . . . . . . . . . . . . . . . . . . . . 125

6.4 Consistency checking and linearization points at level t . . . . . . . . 126

6.4.1 Linearization points of events in a level-wise history . . . . . . 126

6.4.2 Definition of linearization point of a transaction . . . . . . . . 127

6.5 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



6.5.1 Proof for committed transactions . . . . . . . . . . . . . . . . 129

6.5.2 Proof for aborted transactions . . . . . . . . . . . . . . . . . . 139

7 MxSTM 140

7.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.1 About nesting of transactions . . . . . . . . . . . . . . . . . . 140

7.1.1.1 Behaviour of a p-node . . . . . . . . . . . . . . . . . 141

7.1.1.2 Behaviour of an o-node . . . . . . . . . . . . . . . . . 142

7.2 Design challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.1 Handling special cases for MxSTM . . . . . . . . . . . . . . . 143

7.2.1.1 Issue of duplicate request at a p-node . . . . . . . . . 143

7.2.1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.2 Comparing MxSTM with ParSTM and HParSTM . . . . . . . 147

7.2.2.1 Changes w.r.t. both ParSTM and HParSTM . . . . . 147

7.2.2.2 Specific changes w.r.t. HParSTM . . . . . . . . . . . 148

7.2.2.3 Specific changes w.r.t. ParSTM . . . . . . . . . . . . 149

7.2.2.4 New methods . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.1 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.2 State of pessimistic read object, xpr, and helper methods . . . 153

7.3.3 Methods common to o-node and p-node (t∗) . . . . . . . . . . 153

7.3.4 State of local objects and methods associated with p-node (tπ) 155

7.3.5 State of local objects and methods associated with o-node (tω) 156

7.3.6 About deadlock freedom . . . . . . . . . . . . . . . . . . . . . 158

ix



7.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4.1 Definition of linearization points of events . . . . . . . . . . . 159

7.4.1.1 At a p-node tπ: . . . . . . . . . . . . . . . . . . . . . 159

7.4.1.2 At an o-node tω: . . . . . . . . . . . . . . . . . . . . 160

7.4.2 Definition of linearization point of a transaction t . . . . . . . 161

7.4.2.1 At p-node (i.e., parent tp of t is a p-node) : . . . . . . 161

7.4.2.2 At o-node (i.e., parent tp of t is an o-node): . . . . . 161

7.4.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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7.4.3.2 History (Ĥtπ) produced at a p-node (tπ) . . . . . . . 175

8 Conclusion and future work 176

x



List of Tables

2.1 Protocol 2.1: D. Imbs and M. Raynal’s STM Protocol [9] . . . . . . 18

xi



List of Figures

1.1 Bank Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Bank Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Transaction trees and super tree (dotted lines denote access of shared

objects by nodes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Execution of nested transactions . . . . . . . . . . . . . . . . . . . . . 16

2.3 Traditional optimistic approach of concurrency . . . . . . . . . . . . . 16

2.4 Optimistic approach under Imbs and Raynal’s protocol . . . . . . . . 19

3.1 Transaction tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Level wise history of events (The read and write steps by descendants

at a level are highlighted in bold.) . . . . . . . . . . . . . . . . . . . 32

3.3 Reading a value inconsistent w.r.t. to an ancestor (The order of events

at different levels is indicated by the bold numbers in bracket.) . . . . 36

3.4 Cyclic conflict through transitivity across levels . . . . . . . . . . . . 37

3.5 Incompatible transactions . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 When to abort an incompatible transaction . . . . . . . . . . . . . . . 40

xii



3.7 Bottom to top approach constructing histories and composing steps of

subtransactions ( ~t12 ⇒ t12{t121, t122}; ~t1 ⇒ t1{t11, ~t12}) . . . . . . . . . 43

3.8 Transaction tree (thick circle:committed; thin circle:active; dotted cir-

cle:aborted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Closed nested transactions (dark circle: committed; thin circle: active;

dotted circle:aborted) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Linearization points of transactions . . . . . . . . . . . . . . . . . . . 66

5.1 Optimistic mode of concurrency at global level (single circle) and pes-

simistic mode at nested level (double circle) . . . . . . . . . . . . . . 71

5.2 Partial concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Implementing 2PL for nested transactions: (1) cascaded locking of x at

all the ancestors up to t1 during rt1111(t1.x) (shown by dotted arrows),

and (2) unlocking t111.x only upon completion of t1111 (shown by solid

arrow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Incompatible transactions in ParSTM . . . . . . . . . . . . . . . . . . 81

6.1 Regarding consistency of read operations . . . . . . . . . . . . . . . . 113

6.2 Reading from different levels . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Zones of different modes of concurrency in nested transactions (single

circle: o-node; double circle: p-node) . . . . . . . . . . . . . . . . . . 141

7.2 Duplicate reads (SP: search parent) . . . . . . . . . . . . . . . . . . . 143

7.3 Handling release of locks in case of abort of a transaction with duplicate

reads (SP: search parent; UTA: unlock to ancestors) . . . . . . . . . . 144

xiii



Chapter 1

Introduction

1.1 Why Software Transactional Memory?

Modern systems are often complex, dynamic and distributed in nature. As such, par-

allel and distributed computations have become inherent in these systems. To meet

the requirements of the changing times, we have seen significant shift of paradigm

in technological advancements from single core machines to multi-core machines in

hardware sector. To complement the growth in the hardware sector, ever-increasing

emphasis is being laid on the parallel programming paradigm to utilize the resources

better for faster computations.

In concurrent programming, several threads compete to access shared data. More-

over, parallel programs execute in a non-deterministic manner and hence synchroniza-

tion of concurrently executing threads is a critical issue. Otherwise, threads may read

inconsistent values, or may see a thread’s intermediate values of computation. If sev-

eral threads modify a resource simultaneously, then the final value may not correspond

1



to any thread’s computation. Mutual exclusion, facilitated by applying locks on the

shared objects, is a mechanism that prevents several threads from accessing a shared

resource at the same time. However, lock-based solutions have inherent drawbacks.

In case of large grained locking where the set of data controlled by a single lock is

too large, the concurrency is drastically hampered, whereas in case of fine grained

locking, it is very difficult to manage the locks associated with each data item. To

illustrate why it is not easy for programmers to manually manage the locks in paral-

lel programming paradigm, let us consider a simple bank account example (using the

usual implementation of synchronized methods) as shown in Figure 1.1.

Consider the case where several clients execute the transfer concurrently on the

same (shared) account. The initial balance in the account is 0. Each client first

deposits a given amount, and then withdraws the same amount. Thus, at the end

of execution of a transaction, the final value of the balance should remain 0. In a

multithreaded environment, the above example presents a scenario which suffers from

a race condition, i.e., the concurrent threads compete with one another to gain access

to the shared object (bank account). When several threads executing concurrently

try to invoke the transfer method, their operations are not synchronized. In other

words, the deposit and withdraw operations of one thread can be interleaved with

those of another thread. Therefore, we often encounter cases in which the final value

of the balance at the end of a transaction’s execution is non-zero. The non-zero value

does not correspond to the expected execution of any of the threads. This will not

be the case if the transactions are executed atomically in a serial fashion, i.e., the

atomicity of the transactions is violated here.

One may argue that the above issue can be addressed by enclosing the deposit

2



Account class

class Account()

{
int balance = 0;

void withdraw(int n)

{
this.lock();

balance -= n;

this.unlock();

}

void deposit(int n)

{ this.lock();

balance += n;

this.unlock();

}

}

Client program

void transfer( Account acc, int amount )

{
acc.deposit(amount);

acc.withdraw(amount);

}

Figure 1.1: Bank Example 1

3



Client program

void transactional transfer( Account acc, int amount )

{
acc.deposit(amount);

acc.withdraw(amount);

}

Figure 1.2: Bank Example 2

and withdraw procedures within lock() and unlock() calls. That’s right, but it again

emphasizes the same point. The programmer has to worry about different lock man-

agement issues for different granularity and set of locking. Concurrent programming

involving manual management of locks is more error-prone, and locks are unable to

support modular programming, i.e., gluing together smaller programs to form larger

programs.

Hence, there is clearly a need for a system for dynamic management of locks in

a parallel programming environment. This is where Software Transactional Memory

(STM) comes into the picture.

1.2 Software transactional memory (STM)

Software Transactional Memory (STM) aims at providing a mechanism for handling

low-level concurrency control for accessing shared objects in a multi-threaded envi-

ronment in such a way that programmers may write programs without having to

worry about the underlying concurrency management [9, 17, 10, 5]. It allows pro-

4



grammers to denote atomic regions declaratively, and the underlying STM system

provides transactional guarantees. For example, under STM, the client code for the

bank account example in Figure 1.1 would change as shown in Figure 1.2. The locking

of the objects is managed dynamically by STM to ensure effectively atomic execution

of the set of statements within the transactional block.

1.3 Nesting in STM: transaction tree

One of the unique features of STM is the composability of the transactions [13, 14, 8,

16, 12, 18, 7]. In other words, a set of smaller transactions can be combined to form

a larger transaction through nesting. The execution of nested subtransactions can

be conceptually represented by a dynamic tree called transaction tree [12], in which

the transactions are related by parent-child relationship. A transaction that has no

parent is termed as a root transaction. A root transaction has the highest level (0).

The level of a child transaction in a transaction tree is one level lower than that of its

parent. Whenever a transaction t invokes a new child transaction t
′
, a new node t

′
is

added in the transaction tree as a child of t. When a (sub)transaction t
′′

is aborted

(or discarded due to an ancestor’s abort), node t
′′

is removed from the transaction

tree. The committed transactions are retained in the transaction tree.

Nested transactions are created when an atomic region is created inside an outer

atomic region. The different types of nesting are (a) flat nesting (b) closed nesting,

and (c) open nesting.

5



1.3.1 Flat nesting

In flat nesting, the steps of a flat nested subtransaction are treated as if they are

steps of the root transaction itself. The commit of a subtransaction is local to its

parent only, i.e., its read/write sets are merged with those of its parent. The write

operations of a flat nested transaction are reflected on the global objects only when

their local read/write sets are propagated to the root level through the commit of the

intermediate ancestors (in any), and the root transaction commits. However, when a

subtransaction aborts, the entire root transaction is aborted.

1.3.2 Closed nesting

As far as the commit of a closed nested transaction is concerned, it is similar to that

of a flat nested transaction. Unlike a flat nested transaction, the abort of a closed

nested subtransaction does not cause the abort of its ancestors. In event of an abort,

its local read/write sets are not merged with those of its parent, thereby not affecting

the state of its parent.

1.3.3 Open nesting

Here, when a nested subtransaction commits, the effects of its write steps are imme-

diately reflected on the globally shared data [15]. Thus, its changes become visible

to all other transactions in the system, although its ancestors may still be executing.

In case any of its ancestors aborts, compensating actions are required to undo the

effects of the changes it made to globally shared data.

6



1.4 Motivation

So far, a number of lock-based as well as timestamp-based protocols have been pro-

posed for efficiently supporting non-nested transactions in STM. However, very little

work has been carried out in exploiting the full potential of parallel nesting. Designing

a protocol for supporting parallel nesting is not trivial; there is an inherent complexity

involved in contention management across different levels and guaranteeing level-wise

serial execution of nested subtransactions [6, 11, 4, 16]. As such, most of the work

in STM so far has been carried out for normal (non-nested) transactions. Those that

consider nested transactions support only serial execution of nested subtransactions

[8, 12]. Recent works [1, 2, 3, 18] go further to support parallelism at the child-level,

under the restriction that the parent transaction does not execute while it has active

children.

Given the complexities involved in designing STM protocols for nested transac-

tions, our interest lies in not only obtaining a higher degree of concurrency for nested

transactions but also exploring and employing various modes of concurrency for nested

transactions.

Note that this thesis deals with closed nested transactions only. It is directed

towards the theoretical study of developing a comprehensive insight into the com-

plexities involved in designing STM protocols for closed nested transactions. There-

fore, the term ‘nested transaction’ henceforth will be used to mean ‘closed nested

transaction’, unless specified otherwise.
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1.5 Contributions

The major contributions of this thesis are as follows:

• A detailed analysis of the complexities associated with designing STM protocols

for closed nested transactions: We examine in what ways designing an STM

protocol for nested transaction varies from the one for non-nested transactions.

Further, we study the various cases to be considered while designing an STM

protocol for nested transactions. Finally, we also provide solutions for handling

the various cases.

• A set of protocols, for closed nested transactions, employing different modes

of concurrency: We provide a set of STM protocols for closed nested transac-

tions in an incremental mode of development. Starting with a simple protocol

(SimpSTM: Chapter 4) with no concurrency at the nested level, we progress to

achieving full concurrency at all the nodes of the transaction tree. Further, we

also employ a mixture of optimistic and pessimistic modes of concurrency at

different nodes (MxSTM, Chapter 7).

• A system for formally proving the correctness of nested transactions: Formally

proving the correctness of the STM protocols for nested transactions is in itself a

challenging task. We provide a system for constructing (mapping) and analyzing

the histories produced by nested transactions and determining their correctness

(level-wise serializability).
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1.6 Organization of thesis

In Chapter 2, we provide the discussion of the background. In Chapter 3, we dis-

cuss the formalism used for developing the protocols for nested transactions in later

chapters.

• In these two chapters, we briefly discuss some of the concepts (semantics) of an

existing work [9]. We use these semantics in each of the protocols presented in

this thesis. We also describe the system model as well as the formalism used.

Finally, we discuss the correctness criteria and the proof system for establishing

the correctness of the STM protocols.

In each of the Chapters 4, 5, 6 and 7, we present the STM protocols for closed

nested transactions, following an incremental mode of development.

• In Chapter 4, we present a simple STM protocol, SimpSTM, for nested trans-

actions, under the constraint that nested subtransactions execute in a serial

fashion, one at a time. Thus, there is no concurrency at the nested level. This

protocol lays the foundation for more complex protocols that are presented in

later chapters. Further, it also provides a comprehensive set of proofs, that are

used (referenced) in the remaining chapters (5, 6 and 7) for establishing the

correctness of the protocols in these chapters.

• In Chapter 5, we present another protocol, ParSTM, that employs optimistic

approach of concurrency control at the root level, and a pessimistic one at the

nested level. Thus, there is some (partial) concurrency at the nested level.
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• In Chapter 6, we present a protocol called HParSTM in which an optimistic

approach of concurrency control is used at each node of the transaction tree,

thereby offering full concurrency at all the levels. This is the first protocol, that

we know of in the literature, in which the siblings can execute concurrently

along with their ancestors.

• In Chapter 7, we present a protocol, MxSTM, obtained by mixing (integrating)

the protocols presented in Chapters 5 (for pessimistic part) and 6 (for optimistic

part). Under this protocol, in a transaction tree, at some nodes an optimistic

approach of concurrency control is followed while at others pessimistic behaviour

is exhibited. This means we can obtain different degrees of concurrency at

different nodes (levels).

Finally in Chapter 8, we provide conclusions and directions for future work.
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Chapter 2

Preliminaries: background

2.1 Transaction tree

As stated earlier, the execution of nested subtransactions can be conceptually repre-

sented by a dynamic tree called transaction tree [12], in which the transactions are

related by parent-child relationship. A transaction that has no parent is termed as

a root transaction. A root transaction has the highest level (0). A root transaction

operates at the global level. The level of a child transaction in a transaction tree

is one level lower than that of its parent. Whenever a transaction t invokes a new

transaction t
′
, a new node t

′
is added as a child of t in the transaction tree. When

a (sub)transaction t
′′

is aborted, then the subtree rooted at t
′′

is removed from the

transaction tree. The committed (sub)transactions are retained in the transaction

tree.

The children of a node t are represented as t1, t2, ..., tk, etc. and denoted as

children(t). The active (not yet committed/aborted) children of t are given by
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activeChildren(t). We shall denote the transaction (sub)tree rooted at node t as

transTree(t). Thus, transTree(root) represents the entire transaction tree. Alter-

natively, in case t is a subtransaction, we shall invariably use subTree(t) to represent

transTree(t). For a subtransaction t, the term outsideTrans(t) is used to denote the

transTree(root), excluding the transTree(t). A non-leaf node is composed of one

or more child transaction(s) and is called a composite transaction. In a transaction

tree, all transactions other than the root transaction are nested transactions.

2.2 Super transaction and super tree

For sake of uniformity in notation, we would like to refer to globally shared objects

in the same way as we refer to local objects of a transaction. For this, we associate

all the globally shared objects with a highest level fictitious transaction called super

transaction (denoted by tψ), such that all the transactions, previously referred to

as root-level transactions, are now children of the super transaction. We call the

resulting tree the super tree (see Figure 2.1).

2.3 Shared objects: global copy vs local copy

Global object tψ.x: In our model, for each shared object x, the system contains a

global copy that is non-null valued and is accessible by all the transactions. It is not

associated with the super transaction, and not with any transaction.

Local object t.x: This local copy of x associated with t is denoted by t.x. The

object t.x is accessible to t as well as its descendants in the transaction tree.
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(a) Transaction trees (b) Super tree

Figure 2.1: Transaction trees and super tree (dotted lines denote access of shared
objects by nodes).

2.4 Common features of a nested transaction in

our model

In our model, the common semantics associated with a closed nested transaction t in

a transaction tree are as follows.

1. Transaction t maintains its own local copy of an object it reads or writes.

2. While reading an object x, t reads from its local copy t.x. If a local copy is

not available, then it tries to read from its nearest ancestor t
′

having a local

copy of x. In the worst case, t reads from tψ.x. The read value should be

“consistent” w.r.t. t as well as each of its intermediate ancestors up to t
′
. (We

discuss “consistency” later on.)

3. The write operations are performed in the local space.

4. The read and write operations are logged in local read set and local write set
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respectively.

5. Transaction t commits only if the combined steps of its committed children and

its own steps are “consistent”. Otherwise it aborts.

6. If t is a non-root transaction and commits, its local read and write sets are

merged with the corresponding read and write sets of its parent. When a root

transaction commits, its write set values are transferred to the globally shared

objects. Thus, the changes due to the write steps of a committed subtransaction

t are reflected on the globally shared objects only when all the ancestors of t

commit.

7. In case of abort of t, its read and write sets are ignored, and no changes are

made to the parent’s objects. Here, the results of t as well as its descendants

are discarded, and are not propagated to t’s ancestors. Therefore, they are not

accessible to transactions in outsideTrans(t).

2.5 Informal discussion about linearizability of nested

transactions

Linearizability: An execution is linearizable if each transaction in the execution ap-

pears to have occurred at a single instant of time, called its linearization point, during

its lifespan. In addition, no two transactions can have the same linearization point.

In other words, the steps of the transactions can be ordered to obtain a sequential

history in which transactions seem to execute serially, one after the other, in the order
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of their linearization points. Here, the ordering of the steps of the transactions must

respect the constraint that the linearization point of each transaction lies at some

point of time within its lifespan. This constraint distinguishes linearizability from

serializability.

For sake of convenience of argument, we use the expression “a transaction t is

linearizable” to mean that “the steps of t are such that a unique linearization point

for t can be obtained w.r.t. other transactions in a (linearizable) execution”.

Linearizability of nested transactions: Consider any non-leaf node t in a transac-

tion tree. Transaction t may perform some read or write operations, or invoke a new

child. Let the set of its children be denoted by Sc. Then, the entire execution of

each child tc in Sc should appear to occur atomically at t’s level. Observe here that

the steps of its children on t’s local objects may be interleaved with one another and

with t’s own local operations. To accommodate this, consider each of the local read

or write operations of t to have been carried out by a fictitious new child with that

operation being its only operation. Then, the execution of each child should be such

that it is linearizable with its sibling transactions. Similarly, at the root level, it is

required that the overall execution of each root-level transaction is performed in a

linearizable manner. These points are illustrated by Figure 2.2. Figure 2.2b depicts

the level-wise serial (linear) execution for the transaction tree shown in Figure 2.2a.
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(a) Nested transactions (b) Equivalent level-wise serial execution

Figure 2.2: Execution of nested transactions

t1
starts

t2
starts

rt1(x) t2 validates &
writes wt2(x) wt2(y)

rt1(y) t1 comes up
for validation

Figure 2.3: Traditional optimistic approach of concurrency

2.6 Concurrency control mechanism: a relevant

study

2.6.1 Opacity

Opacity is the most widely accepted correctness criterion for STM systems [1, 9, 11].

The consistency criterion we use for our protocols is level-wise opacity (defined in the

next chapter), based on the definition of opacity for non-nested transactions. Opacity

states that both committed and aborted transactions should read from a consistent

state of the shared memory. The state resulting from a linearizable execution of some

committed transactions is taken to be consistent. To illustrate the idea, consider

history Ĥ1 under the case of traditional optimistic approach, as depicted in Figure 2.3.
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Ĥ1 = 〈rt1(x) wt2(x) wt2(y) ct2 rt1(y)〉

First, t1 reads x. Then, t2 modifies the values of x and y, and commits after

successful validation. Next, t1 reads y. Now, t1 comes up for validation and fails

because the value of x it read previously has been already overwritten by t2. The x

and y values that t1 read are not from a consistent state.

According to opacity, we want aborted transactions also to read from consistent

states only, i.e., in case of above example (Ĥ1), t1 should be forbidden to read from y.

This notion of forbidden read operation is elegantly captured in the protocol presented

by Damien Imbs and Michel Raynal in [9]. The mechanism presented in [9] has been

used in each of the algorithms proposed in this thesis. A clear understanding of this

protocol will help in seeing through some of the complex protocols presented in the

later chapters. We shall discuss this protocol in the next section.

2.6.2 Damien Imbs and Michel Raynal’s STM Protocol

The Protocol 2.1 has been designed for non-nested transactions. (Capital letters

have been used in [9] to denote transactions and shared objects.) It uses a single

copy of each base object x. Each transaction has its own local copy of the base

object associated with its read or write steps. (Recall that t.x denotes the local copy

of object x associated with transaction t, whereas tψ.x denotes the globally shared

copy.) To keep track of the conflicts between the transactions, the following control

variables are used (with slightly different notations in [9] as OW,RSX , FBDX).

tψ.ow : a (overwritten) set that contains the ids of the transactions that read some

object tψ.x that was modified later (so, there is a conflict).

17



operation readt (x):
(01) if (t.x does not exist) then
(02) allocate local space for t.x;
(03) t.lrs← t.lrs ∪ {x};
(04) lock tψ.x; t.x← tψ.x; tψ.x.rs← tψ.x.rs ∪ {t}; unlock tψ.x;
(05) if (t ∈ tψ.x.fbd ) then return (abort); end if
(06) end if;
(07) return(value of t.x)
———————————————————————————————–
operation writet(x, v):
(08) t.read only ← false; // t.read only is set to true initially.
(09) if (t.x does not exist) then allocate local space for t.x end if;
(10) t.x← v;
(11) t.lws← t.lws ∪ {x};
———————————————————————————————–
operation try to committ ():
(12) if (t.read only )
(13) then return(commit);
(14) else lock all the objects in t.lrs ∪ t.lws ;
(15) if (t ∈ tψ.ow) then release all the locks; return(abort) end if;
(16) for each x ∈ t.lws do tψ.x← t.x end for;
(17) tψ.ow ← tψ.ow ∪ (∪x∈t.lwstψ.x.rs);
(18) for each x ∈ t.lws do tψ.x.fbd← tψ.ow; tψ.x.rs← ∅; end for;
(19) release all the locks;
(20) return(commit)
(21) end if

Table 2.1: Protocol 2.1: D. Imbs and M. Raynal’s STM Protocol [9]
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t1
starts

t2
starts

rt1(x)

add t1
to x.rs

t2 validates &
writes wt2(x) wt2(y)

add t1 to ow,
x.fbd, y.fbd

rt1(y)

disallow
(abort) as
t1 is in y.fbd

Figure 2.4: Optimistic approach under Imbs and Raynal’s protocol

tψ.x.rs : a (read) set associated with each shared object tψ.x. It stores the ids of the

transactions that read from the object tψ.x since its last update. Thus, the

reads are visible to other transactions.

tψ.x.fbd : a (forbidden) set associated with each global object tψ.x. The predicate

t ∈ tψ.x.fbd means that the transaction t has read an object tψ.y that since

then has been overwritten (hence t ∈ tψ.ow ), and the overwriting of tψ.y is

such that any future read of tψ.x by t will be invalid (i.e., the value obtained

by t from tψ.y and any value it will obtain from tψ.x in the future cannot be

mutually consistent).

To illustrate how these data structures, tψ.x.rs, tψ.x.fbd and tψ.ow prevent the

forbidden read, consider the example of Ĥ1 again through Figure 2.4. For the following

discussion, all the references to line numbers are associated with Protocol 2.1. When

a transaction t1 performs a read operation on a shared object tψ.x, it adds its id in

tψ.x.rs (line 04). Later, when another transaction t2 modifies objects tψ.x and tψ.y, it

adds t1 to tψ.ow (line 17), followed by updating both tψ.x.fbd and tψ.y.fbd (line 18).

Now, if t1 tries to access tψ.y, it will detect the conflict by noticing its id in tψ.y.fbd,
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and consequently abort (due to line 05). Observe that tψ.ow contains the ids of all

the transactions that previously read any object whose value since then has been

modified, and tψ.x.fbd is updated using tψ.ow. As such, none of those transactions

(in tψ.x.fbd) will be allowed to read tψ.x, or any other object that is written after the

update of tψ.x. Therefore, a cyclic conflict between transactions through transitivity

is not possible.

Besides, a transaction t maintains two local sets, t.lrs (local read set) and t.lws

(local write set) to document its read/write operations (lines 03, 11). Before commit-

ting, the validation phase consists of ensuring that the transaction does not belong to

set tψ.ow (line 15). However, a transaction that has no write operation is committed

immediately (lines 12-13), and is thus treated differently.

2.6.2.1 About correctness

For each transaction t, its linearization point `t, is defined as follows:

1. If a transaction t aborts, `t is placed just before t is added to the set tψ.ow (line

17 of the try to committ() operation of transaction that entails its abort).

2. If t is a read only transaction, `t is placed at the earliest of (1) the occurrence

time of the test during its last read operation (line 05 of the readt(x) operation)

and (2) the time just before t is added to tψ.ow (if it ever is).

3. If t is an update transaction that commits, `t is placed just after the execution

of line 17 by t (update of tψ.ow ).

Using these linearization points, a set of proofs (listed under part (1) of Section

3.7.6) are provided in [9] to show that the history produced by this protocol is indeed
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linearizable. The formalism as well as the set of proofs presented in the rest of the

chapters are based along the same lines as presented in [9].

In the next chapter, we provide the formalism as well as the outline of the proof

system used for showing the correctness of the protocols discussed in this thesis.
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Chapter 3

Computation model, base

formalism, and proof outline

3.1 Computation model

Our system is similar to the one used in [9]. The computational model consists of

processes, base objects, locks and atomic registers. There are n asynchronous sequen-

tial processes (i.e.,threads) denoted p1, ..., pn that cooperate through base read/write

atomic registers and locks. Each of the shared objects is protected by an individual

lock. Each process is made up of a sequence of transactions, and has its own memory.

The processes issue transactions one at a time.

A transaction is a sequence of read and write operations that can examine (read)

and modify (write), respectively, the state of the base objects. It consists of a sequence

of events that are an operation invocation, an operation response, a commit invocation,

a commit response, and an abort event. An operation is considered terminated if its
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response event has occurred. Similarly, a transaction is considered completed if its

commit response or abort event has occurred.

Further, each transaction satisfies the following constraints: (1) a transaction

performs one operation at a time, and (2) a composite transaction must wait until

all of its children have completed before entering the validation for its commit.

The set of transactions is denoted by T . The set of objects is denoted by X and

the set of possible values associated with them is V .

3.2 Histories and base formalism

3.2.1 Events and histories at shared memory level

There is an event associated with each operation on a shared memory (objects, locks,

sets). Let H be the set of all events produced by the STM system. Each access on a

shared object is atomic. As such, there is a total order on the events in H. Thus, at

the shared memory level, an execution can be represented by the pair Ĥ = 〈H, <H〉,

where <H denotes the total ordering on its events. Ĥ is called shared memory history.

We use the following notations (similar to those used in [9]).

- Bt marks the event associated with the beginning of transaction t, and Et denotes

its completion. Et can be of two types At or Ct, where At is the event “abort

of t”, and Ct is event “commit of t”.

- ALti(tj.x, op) denotes the event (response) associated with the acquisition of the

lock on tj.x, issued by transaction ti during an invocation of operation op, where

op is readti(x), or try to committi() (abbreviated in the proof as ttc).
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- Similarly, we have RLti(tj.x, op) denoting the corresponding event (response) asso-

ciated with the release of the lock.

As each access to a shared object is atomic in nature (due to use of either an

atomic register or a lock), we denote each read or write operation as a single

event for sake of simplicity.

- rti(tj.x, v) denotes the read operation performed by transaction ti on the object

tj.x (i.e. object x of transaction tj), where v is the value returned by that read

operation.

- wti(tj.x, v) denotes the write of value v by transaction ti on the object tj.x.

For sake of simplicity, in the histories discussed in this thesis, Bt has been omitted

as it can be intuitively inferred to occur just before the first read/write operation of

transaction t. However, Ct or At has been used as a single event to mark the end

(commit or abort) of the transaction.

3.2.2 History at transaction level

Given an execution, letH′ denote the set of transactions issued during that execution.

The order relation between the transactions in H′ , denoted by →H′ , is defined as

follows: t1 →H′ t2 if t1 ends before t2 begins, and t1 and t2 are concurrent if t1 9H′ t2

and t2 9H′ t1. Thus, at the transaction level, the execution is defined by a partial

order Ĥ′ = 〈H′ ,→H′ 〉, that is called transaction history [9].

The reads from relation between transactions, denoted→rf , is defined as: t1
t.x−→rf

t2, if t2 read a value written by t1 in t’s object t.x.
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A transaction history Ĥσ = 〈Hσ,→Hσ〉 is sequential if no two of its transactions

are concurrent. Hence, in a sequential history, for t1 6= t2, t1 9Hσ t2 ⇔ t2 →Hσ t1,

that is, →Hσ is a total order. A sequential transaction history is legal if each of

its read operations returns the value of the most recent write on the same object.

A sequential transaction history Ĥσ is equivalent to a transaction history Ĥ′ if (1)

Hσ = H′ (i.e., they are made of the same transactions with the same invocations and

the same responses), and the total order →Hσ respects the partial order →H′ (i.e,

→H′⊂→Hσ).

A transaction history Ĥλ is linearizable if there exists a history Ĥseq that is se-

quential, legal and equivalent to Ĥλ.

The set of transactions that commit in Ĥ are given by committed(Ĥ), and the

aborted ones are given by aborted(Ĥ). The set of transactions that have committed

or aborted is given by complete(Ĥ). The history restricted to committed transactions

is denoted by permanent(Ĥ) or Π(Ĥ).

3.2.3 Level-wise history

As discussed earlier, each node t in the transaction tree has its own set of local

copies of objects. These objects are accessible (shared) by t and its descendants. The

formalism discussed in Sections 3.2.1 and 3.2.2 can be applied to these objects as well.

Thus, at each level (node) of the super tree, we have a separate history. We call this

history a level-wise history. Here, Ht denotes the set of all events associated with the

objects of node t, and <Ht gives the total order on these events. Thus, a level-wise
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shared memory history is given by Ĥt = 〈Ht, <Ht〉. Similarly, Ĥ′t = 〈H′t,→H′t〉 is used

to denote a level-wise transaction history at t, whereas Ĥσ
t = 〈Hσ

t ,→Hσt 〉 denotes a

level-wise sequential transaction history.

3.3 Local timeline and linearization point at a level

3.3.1 Local timeline

With each transaction t in the transaction tree, we associate a notion of local timeline

spanning the lifespan of that transaction, and it is denoted by τt. An instant of time,

i, in τt is denoted by τ it . Let tc be a child of t. Then, the linearization point, `tc ,

for tc is the time in τt at which the entire execution of tc can be treated to have

occurred. Thus, the linearization point of a child transaction is defined within the

lifespan of itself as well as its parent. The time corresponding to `tc in τt is denoted

by τ
`tc
t . Similarly, as the accesses to shared object t.x are atomic in nature, the

times corresponding to rtc(t.x) and wtc(t.x) in τt can be denoted by τ
rtc (x)
t and τ

wtc (x)
t

respectively. The timeline associated with tψ is taken to be infinite.

3.3.2 Linearization point at a level

To determine the linearization point of a transaction t at its parent’s (tp) level in the

super tree, we do not need to consider t’s steps at all the levels; we only need to take

into account t’s steps on its ancestors’ objects.

For example, consider the transaction subtree rooted at t12 in Figure 3.1, and let

us denote it by TRt12 . For determining the linearization point for t12 at t1’s level,
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tψ

t1

t11 t12

t121 t122

t2

Figure 3.1: Transaction tree

we can treat TRt12 as a single transaction. The steps of the transactions within the

nodes of TRt12 are local to TRt12 and therefore do not affect TRt12 ’s linearizability at

t1’s level. The steps of TRt12 (those of t12, t121, t122) on the objects of t1 and tψ are

important.

3.4 Construction of level-wise history

3.4.1 External read

While reading, if t does not have a local copy of an object x, then it tries to read the

value of x from its nearest ancestor having a (non-null valued) local copy of x. Such

a read operation that takes place outside the local space of t is termed as external

read operation of t.
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Example: With reference to Figure 3.1, read operations rt122(t12.y), rt122(t1.x) and

rt122(tψ.z) are external reads of t122.

3.4.2 Visible read objects

A subtransaction t may have read an object x from its ancestor t
′
, other than its

parent tp. Transaction tp may not have a local copy tp.x. When t commits, it creates

tp.x using its local copy t.x. Thus, the value of tp.x at this point corresponds to the

one obtained in the read step of t. Subsequently, this value of tp.x can be accessed

by tp and its other descendants. In other words, the read of t becomes visible at its

parent tp.

Example: With reference to Figure 3.1, Ĥ1 = 〈rt121(t1.x, 0) ct121 rt122(t12.x, 0)〉

Here, when t121 commits and merges with t12, the value 0 of t121.x (that it read from

t1.x) is made available in its parent’s corresponding local copy t12.x. Therefore, t122

is able to read the value 0 from t12.x.

Note: We can notice here that a subtransaction reads a value from the nearest

local copy of the object visible to it. That nearest copy could be made available due

to a visible read operation or due to a write operation.

If t aborts, then no merging of its read steps’ values with those of its parent takes

place. Therefore, its read steps are not visible at the parent or any ancestor’s level.

3.4.3 Commit write

When a closed nested subtransaction t commits and merges with its parent tp, for

each object x that is updated in its local space, t updates tp.x with the value of t.x at
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the time of committing. We refer to this write operation as commit write. Note that

the value of t.x at the time of t’s commit corresponds to the “last write” operation

that took place on t.x.

Again with reference to Figure 3.1,

Example: Ĥ2 = 〈wt121(t121.x, 0) ct121 wt12(t12.x, 1) wt12(t12.y, 2) wt122(t122.y, 3) ct122 ct12〉.

Observe that x is first updated by t121, and then by t12 itself. Therefore, when t12

commits, the last write on t12.x corresponds to wt12(t12.x, 1). Similarly, the last write

on t12.y corresponds to wt122(t122.y, 3).

Now, upon commit, t121, t122 and t12 use the values corresponding to the respective

last writes on their local objects x and y to update respective objects x and y of their

respective parents. Therefore, Ĥ2 can be extended as follows to reflect the commit

writes at the parent level.

Ĥ2 = 〈wt121(t121.x, 0) wt121(t12.x,0) ct121 wt12(t12.x, 1) wt12(t12.y, 2) wt122(t122.y, 3)

wt122(t12.y,3) ct122 wt12(t1.x,1) wt12(t1.y,3) ct12〉.

Observe that wt121(t12.x, 0), wt122(t12.y, 3), wt12(t1.x, 1) and wt12(t1.y, 3) shown in

bold fonts here are commit writes.

3.4.4 Mapping of level-wise history

The level wise history of events at node t (Ĥt, defined in Section 3.2.3) includes the

following steps:

i. read operations performed on t’s local objects by t or its committed descendants.

ii. local write operations by t on its local objects.

iii. commit write operations on t’s local objects by t’s committed children.
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iv. external read operations on t’s ancestors’ objects by t and its committed de-

scendants. To take into account these external read operations, we treat them

as if they took place on t’s corresponding objects.

Our interest lies in showing that Ĥt is equivalent to a sequential history of t’s

children and its local operations. The operations on t’s objects by t’s descendants

may be interleaved with t’s own local operations on its objects. With this end in

view, Ĥt is obtained after employing the following transformation using a mapping

function fm(Ĥor
t ), where Ĥor

t is the original history of events involving node t and

its descendants. We call the resulting history mapped level-wise history or simply

level-wise history.

The following transformations (rules) are employed through fm(Ĥor
t ):

1. Mapping local read/write operations of t: Each operation opt(t.x) (where op

denotes read or write) performed by t on its local object t.x is considered to have

been successfully performed by a (different) fictitious child transaction t
′

whose

only operation is opt′ (t.x) and has “committed”. For example, local operations

of t in H1
t = 〈rt(t.x) wt(t.x, v1) wt(t.y, v2) rt(t.x)〉 are mapped respectively to

H2
t = 〈rt1(t.x) ct1 wt2(t.x, v1) ct2 wt3(t.y, v2) ct3 rt4(t.x) ct4〉, where t1, t2, t3 and

t4 are the fictitious children of t. This way the local (read or write) steps of t

also are transformed into the steps of its children.

2. Mapping operations of t’s descendants on t’s objects: Let tc be a child of t, and td

be a descendant of tc. Then, the read operation performed on t.x by td is taken

to have been performed by tc (for the reason that td is a part of tc after all). For

example, a history H3
t = 〈rtc(t.x) rtd(t.y)〉 is mapped to H4

t = 〈rtc(t.x) rtc(t.y)〉.
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This means, in Ĥt we work as if all the steps on t’s local objects were performed

only by its children.

3. Mapping external reads of t and its descendants on objects of t’s ancestors: Let

t
′

be an ancestor of t. Then, a read operation on t
′
.x by tc or its descendant

(td) is treated as if it was performed by tc on t’s object t.x. For example,

rtd(t
′
.x) is mapped to rtc(t.x). In case this read operation was performed by t

itself, then we first apply step (1) to transform this operation into step of its

fictitious (committed) child transaction, and then apply step (2). (This way we

incorporate the external read operations made by transactions in transTree(t)

at the level of t’s ancestors into Ĥt.) For example, 〈rtd(t
′
.x) rtc(t

′
.y) rt(t

′
.z)〉 is

mapped to 〈rtc(t.x) rtc(t.y) rt1(t.z)〉 in Ĥt.

For better understanding consider the following example, using Figure 3.1. For

sake of simplicity, we shall consider the history of the committed transactions only.

We shall assume that a transaction begins just before it executes its first operation.

Further, ct and at denote t’s commit and abort respectively.

Now, we consider the execution shown in Figure 3.2 and construct the correspond-

ing history (Ĥ3) for it. This history is constructed by considering, at each level t, the

following steps on its object t.x: (a) the read operations performed by t’s descendants,

(b) the commit-writes performed by the committed children, and (c) the local read

and write operations performed by t itself. The construction of the resulting history

is illustrated as follows. The external reads and commit writes by descendants at

ancestors’ levels have been highlighted using bold font to improve readability of the

history. At a parent level ti,

[
tj : {} wtj(ti.x)...ctj

]
denotes the place holder for
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tψ

[
t2 : {} wt2(tψ.x) ct2

]
rt11(tψ.x) rt1(tψ.y) rt122(tψ.z)

[
t1 : {} wt1(tψ.x) wt1(tψ.y) ct1

]

t1

[
t11 : {} wt11(t1.x) ct11

]
rt121(t1.y) rt122(t1.x)[

t12 : {} wt12(t1.y) ct12

]
wt1(t1.x)

t11

wt11(t11.x) rt11(t11.x)

t12

[
t121 : {} wt121(t12.y) ct121

]
wt12(t12.y)

rt12(t12.y) rt122(t12.y) ct122

t121wt121(t121.y) t122

t2 wt2(t2.x)

Figure 3.2: Level wise history of events (The read and write steps by descendants at
a level are highlighted in bold.)
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subsequence produced with the commit (merging of) the child tj. Here, {} points to

the history produced at node tj and wtj(ti.x) is a commit write. The subsequence

pertaining to tj at ti’s level is completed by inserting the history produced at node

tj in place of {}. For example,

[
t2 : {} wt2(tψ.x) ct2

]
at tψ’s level is completed using

wt2(t2.x) wt2(tψ.x) ct2 (underlined part is the subsequence produced at t2 and is put

in place of {}). Following this approach in bottom to top manner, we obtain the

resulting history equivalent to Ĥ3 given below.

Ĥ3 = 〈wt2(t2.x) wt2(tψ.x) ct2 rt11(tψ.x) rt1(tψ.y) rt122(tψ.z) wt11(t11.x) rt11(t11.x)

wt11(t1.x) ct11 rt121(t1.y) rt122(t1.x) wt121(t121.y) wt121(t12.y) ct121 wt12(t12.y) rt12(t12.y)

rt122(t12.y) ct122 wt12(t1.y) ct12 wt1(t1.x) wt1(tψ.x) wt1(tψ.y) ct1〉

To show the linearizability of nested subtransactions, we construct the level-wise

histories in a bottom up manner, i.e., we consider non-leaf nodes t12, t1 and tψ in

order. The corresponding level-wise histories at different levels are as follows:

Ĥt12 = 〈rt122(tψ.z) rt121(t1.y) rt122(t1.x) wt121(t12.y) ct121 wt12(t12.y) rt12(t12.y)

rt122(t12.y) ct122 ct12 〉

After Mapping:

Ĥt12 = 〈rt122(t12.z) rt121(t12.y) rt122(t12.x) wt121(t12.y) ct121 wt112(t12.y) ct112
rt212(t12.y) ct212

rt122(t12.y) ct122 〉

⇒ Ĥσ
t12 = 〈t121, t112, t122, t212〉 (Recall that t112, t

2
12 here denote the fictitious children of

t12, representing its local read and write operations.)

{Observation :

rt122(t12.z) due to rt122(tψ.z) (Rule 3);

rt121(t12.y) due to rt121(t1.y) (Rule 3);

rt122(t12.x) due to rt122(t1.x) (Rule 3);
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wt112
(t12.y) ct112

, rt212(t12.y) ct212
due to wt12(t12.y) and rt12(t12.y) respectively

(Rule 1) }

Ĥt1 = 〈rt11(tψ.x) rt1(tψ.y) rt122(tψ.z) wt11(t1.x) ct11 rt121(t1.y) rt122(t1.x) wt12(t1.y) ct12

wt1(t1.x) 〉

After mapping:

Ĥt1 = 〈rt11(t1.x) rt11(t1.y) ct11
rt12(t1.z) wt11(t1.x) ct11 rt12(t1.y) rt12(t1.x) wt12(t1.y) ct12

wt21(t1.x) ct21〉

⇒ Ĥσ
t1 = 〈t11, t11, t12, t21〉

{ Observation :

rt11(t1.x) due to rt11(tψ.x) (Rule 3);

rt11(t1.y) ct11
due to rt1(tψ.y) (Rule 1);

rt12(t1.z) due to rt122(tψ.z) (Rule 3);

rt12(t1.y) due to rt121(t1.y) (Rule 2);

rt12(t1.x) due to rt122(t1.x) (Rule 2);

wt21
(t1.x) ct21

due to wt1(t1.x) (Rule 1) }

Ĥtψ = 〈wt2(tψ.x) ct2 rt11(tψ.x) rt1(tψ.y) rt122(tψ.z) wt1(tψ.x) wt1(tψ.y) ct1〉

After mapping:

Ĥtψ = 〈wt2(tψ.x) ct2 rt1(tψ.x) rt1(tψ.y) rt1(tψ.z) wt1(tψ.x) wt1(tψ.y) ct1〉

⇒ Ĥσ
tψ

= 〈t2, t1〉

{Observation :

rt1(tψ.x) due to rt11(tψ.x) (Rule 2);

rt1(tψ.z) due to rt122(tψ.z) (Rule 2) }
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Now that we have obtained the serial order for transactions at all the levels,

the serializability of the transactions at the nested levels can be represented in

the following manner. The ordering of the children, t1 and t2, of a transaction

t can be shown by enclosing them within the {...} brackets immediately after t,

e.g., t{t1, t2}. Thus, serializability of the entire execution can be shown as follows:

t2, t1{t11, t11, t12{t121, t112, t122, t212}}.

Note: The composition of level-wise histories at different levels is done in the

bottom to top order. The steps of the children are composed to obtain the history at

the parent level.

3.5 About correctness of nested transactions

3.5.1 Avoiding cyclic conflict between transactions across

levels

Considering the level-wise history individually cannot guarantee the consistency of

the overall state of the transaction tree. It is quite possible that, in the level-wise

histories, a subtransaction t is linearizable at its parent level, tp. However, when t’s

steps are taken as part of tp at another ancestor’s level, t renders tp non-linearizable

at the higher level due to a cyclic conflict.

Hence, to ensure the correctness, the STM protocols must guarantee that there is

no cyclic conflict between transactions across different levels. The various cases are

discussed as follows. In this section, we only consider the partial history relevant to

the discussion. Observe that this scenario does not apply to non-nested transactions,

35



t1

(2) wt11(t1.x) wt11(t1.y) ct11

t11 t12

t121 t122

(3) rt121(t1.y)

(1) rt12(t1.x)

Figure 3.3: Reading a value inconsistent w.r.t. to an ancestor
(The order of events at different levels is indicated by the bold numbers in bracket.)

and is specific to nested transactions.

1. Reading a value that is inconsistent w.r.t. an intermediate ancestor

Consider the partial history Ĥ4 depicted in Figure 3.3.

Ĥ4 = 〈rt12(t1.x), wt11(t1.x), wt11(t1.y), ct11 , rt121(t1.y)〉

Here t12 reads t1.x. Then, t11 modifies t1.x and t1.y. At this point, the value

of t1.y becomes inconsistent for t12. Next, t121 tries to read t1.y. Observe here

that t121 is a part (child) of t12. If it commits, its steps would become part of its

ancestor t12’s steps. That means t121’s step rt121(t1.y) would render its ancestor

t12 non-linearizable at higher level, t1, in the following manner.

Imagine t121 commits and merges with t12 after rt121(t1.y). Now, rt121(t1.y) can

be replaced by rt12(t1.y) (due to merging of steps of t121 with t12). With this
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t1

(2) wt11(t1.x) wt11(t1.y) ct11

t11 t12

t121 t122

(1) rt121(t1.x)

(3) rt12(t1.y)

Figure 3.4: Cyclic conflict through transitivity across levels

transformation, history Ĥ4 maps to Ĥ4′ = 〈rt12(t1.x), wt11(t1.x), wt11(t1.y), ct11 , rt12(t1.y)〉.

In Ĥ4′ , observe that t12 is not linearizable with t11. The value of t1.x read by

t12 is modified later by t11, requiring the serial order t12, t11. However, t12 read

t1.y after t11 modified it. Thus, we get the serial order t11, t12. Hence, there is

a cycle between t11 and t12.

Remark: When a transaction t reads an object t
′
.x from an ancestor t

′
, its

value should be consistent w.r.t. not only t but also each of t’s intermediate

ancestors in the path from t to t
′
.

2. Reading inconsistent value through transitivity

Consider the following history depicted in Figure 3.4.

Ĥ5 = 〈rt121(t1.x) wt11(t1.x) wt11(t1.y) ct11 rt12(t1.y) ?〉

First, t121 reads from t1.x. Later, t11 commits after modifying t1.x and t1.y.

Next, t12 reads t1.y. At this point, considering t121 is a descendant (part) of t12,

there is cyclic conflict between t11 and t12. The value of t1.x read by t121 is later
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t1

(2) wt11(t1.x) wt11(t1.y) ct11

t11 t12

t121 t122

(1) rt121(t1.x)

(3) rt122(t1.y)

Figure 3.5: Incompatible transactions

modified by t11, requiring the serial order t12, t11. Next, t12 read t1.y after t11

modified t1.y, thus giving the serial order t11, t12. Hence, there is a cycle. Note

that, t121 being a part (child) of t12, if t121’s read steps are merged with those

of t12, it brings t12 in cyclic conflict with t11 and renders it non-linearizable at

t1’s level.

Remark: The STM protocol for nested transactions should ensure that no

cyclic relationship occurs between transactions across different levels through

transitivity.

3. Incompatible transactions

Consider the example depicted in Figure 3.5. The corresponding history is as

follows.

Ĥ6 = 〈rt121(t1.x), wt11(t1.x), wt11(t1.y), ct11 , rt122(t1.y)〉

Here, t121 first reads from t1.x. Later, t11 modifies t1.x and t1.y. Next, t122
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reads t1.y. Observe that t11 modified t1.x which was previously read by t121,

giving the order t121, t11. Next, t122 read t1.y after t11 modified it. This gives the

serial order t11, t122. Now, note here if both t121 and t122 are allowed to commit

and merge their read sets with that of t12, then it brings t12 now in cyclic

conflict with t11 and renders the history non-linearizable at t1’s level. Here,

the two read operations, rt121(t1.x) and rt122(t1.y) are mutually incompatible

at the higher level, and hence are called incompatible read operations, and the

two transactions, t121 and t122, are called incompatible transactions. (We shall

revisit incompatible transactions and formally define them in Chapter 5.)

Incompatibility point

Let t and t
′

be two transactions such that t
′

is a descendant of t and t
′

is

incompatible with t. Then, the incompatibility point of t
′

at t’s level is defined

as the earliest instant of time in τt at which t
′

becomes incompatible with t,

and is denoted by τ
i
t
′

t .

Remark: The STM protocol should ensure that at any point of time, the read

set of a transaction does not contain incompatible read operations. To this end,

we observe the following two constraints: (i) a transaction is not allowed to

perform a read operation from an ancestor that is not compatible with it, and

(ii) two incompatible child transactions are not both allowed to merge (commit)

with the parent.
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t1

rt111(t1.x) wt12(t1.x) wt12(t1.y) ct12 rt112(t1.y) ?

t11

t111 t112

t12

Figure 3.6: When to abort an incompatible transaction

3.5.2 When to abort an incompatible subtransaction

Consider the execution depicted in Figure 3.6 and observe that the read operations

r111(t1.x) and r112(t1.y) are incompatible. Therefore, t111 and t112 are mutually in-

compatible. Incompatibility comes into picture here at the time of r112(t1.y) (say

τ 1). Note that the two incompatible transactions in picture here are not related by

ancestor-descendant relation. Now the question here is whether we should abort one

of the two incompatible transactions at time τ 1, given the case that t111 and t112 here

are not related by ancestor-descendant relation at time τ 1. The answer is no.

At time τ 1, we cannot abort t112 because t111 is not part of its ancestor yet, and

hence its step r112(t1.y) is consistent w.r.t. its ancestors t11 and t1. Similarly, we

cannot abort t111 as t112 is not part of its ancestor yet. Thus, at this point, the reads

of each of the subtransactions are consistent w.r.t. its ancestor. There is no point in

forcefully aborting one of the subtransactions as we cannot guarantee that the other

transaction will be able to commit eventually. The only requirement is that only
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one of the subtransactions should be allowed to commit. On commitment of either of

them, the other should be aborted. Hence, deferring the determination of aborting an

incompatible subtransaction until the commit phase offers the flexibility of allowing

both subtransactions to continue their execution as long as they are compatible with

their ancestor.

3.6 Consistency criterion: level-wise opacity

Several definitions of Opacity for non-nested transactions have been proposed [1, 9,

11]. The definition [9] that is close to the spirit of this thesis is given below.

Definition 3.1 (Opacity). A history Ĥ is opaque if it satisfies the following prop-

erties:

1. The history Π(Ĥ) is equivalent to a sequential history (where all non-concurrent

transactions are ordered as in Ĥ) that is legal.

2. All transactions that abort in complete(Ĥ) are invisible and their reads are con-

sistent.

The above definition is meant for non-nested transactions. It separates the history

of committed transactions from that of the aborted ones : (i) history of committed

transactions is equivalent to a sequential and legal history, and (ii) aborted trans-

actions are invisible and have consistent reads. A sequential history is legal if every

transaction reads an object’s value that corresponds to the last transaction that up-

dated the value of that object. An invisible transaction is the one that does not update
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the value of any base object [? ]. As such, the results of an aborted transaction are

invisible to other transactions.

Now, we extend Definition 3.1 to level-wise opacity for nested transactions as

follows:

Definition 3.2 (Level-wise opacity). A level-wise history Ĥt is opaque if it satisfies

the following properties:

1. The history Π(Ĥt) is equivalent to a sequential history (where all non-concurrent

transactions are ordered as in Ĥt) that is legal.

2. For all t
′ ∈ aborted(H′t), (i) until the time just before the abort, the execution

of t
′

was consistent, and (ii) after the abort, t
′

and its descendants are invisible

for outsideTrans(t
′
).

The proofs for correctness of the protocols presented in this thesis are based on

Definition 3.2.

3.7 Outline of the proof technique

Owing to the hierarchical structure of nested transactions, the correctness of the

overall execution can be shown by considering the execution at each level of the super

tree. We shall discuss the various aspects of proof system in the following sections.
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tψ

t1

t11 t12

t121 t122

t2

(a) Considering Ĥt12

tψ

t1

t11 ~t12

t2

(b) Considering Ĥt1

tψ

~t1 t2

(c) Considering Ĥtψ

Figure 3.7: Bottom to top approach constructing histories and composing steps of
subtransactions ( ~t12 ⇒ t12{t121, t122}; ~t1 ⇒ t1{t11, ~t12})

3.7.1 Bottom up approach for constructing level-wise histo-

ries

In the nesting of transactions, the linearization point of a child transaction lies within

the life span of its parent. Therefore, we show the linearizability of transactions level

by level. We construct the histories in a bottom up manner using the mapping

function, and in the process determine the linearizability of the transactions at each

level. We illustrate the level-wise linearizability of transactions using Figure 3.7.

First, we consider the history Ĥt12 at node t12 and determine the linearizability of its

children t121 and t122. Next, we consider Ĥt1 , and determine the linearization points

for t11 and t12. Note that, in this case, while determining the linearization point for

t12, we consider the combined steps of t12 and its children t121 and t122. Finally, we

look at the global history through Ĥtψ and determine the linearization points for the

root level transactions t1 and t2.

This way, while working through the level-wise histories, we consider the steps of
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t1

t11

t111

t12

t121 t122

t1221 t1222

t123

t13

Figure 3.8: Transaction tree (thick circle:committed; thin circle:active; dotted cir-
cle:aborted)

a transaction t (that may have accessed objects from different ancestors) at different

levels and show its consistency (level-wise opacity) at each level.

To show correctness, we separate the history of committed transactions from that

of the aborted ones. First, we consider the history restricted to committed transac-

tions, Π(Ht), at each level, and show the level-wise linearizability of the committed

transactions at each level.

3.7.2 Level-wise history of committed transactions

The level-wise history of committed transactions at node t is denoted by Π(Ĥt). To

obtain Π(Ĥt), consider the transaction subtree rooted at node t (i.e., transTree(t)).

In transTree(t), excepting the case of t, we prune all the aborted subtransactions,

and their descendants. The resulting tree is denoted by prunedTree(t). Note that t is

included in prunedTree(t), even if t itself is an aborted or an active transaction. For
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the sake of the example, treat the active nodes shown in Figure 3.8 as committed ones.

Now, prunedTree(t1) comprises of nodes t1, t11, t12, t13, t121 and t123; prunedTree(t12)

contains t12, t121 and t123. Similarly, prunedTree(t122) contains t122, t1221 and t1222.

Note that transactions t111 and t122 (including subtree rooted at t122) are not con-

sidered in prunedTree(t1) and prunedTree(t12) as they are aborted. Note that t122

is not considered in prunedTree(t12) and hence not considered in prunedTree(t1) as

well.

Now, Π(Ĥt) is defined to contain the steps of only the transactions in prunedTree(t)

on the objects of t and t’s ancestors. In other words, Π(Ĥt) contains only the steps

of t and its committed children (after applying the mapping function). For example,

Π(Ĥt1) contains the operations of t1, t11, t12, t13, t121 and t123 on objects of t1 and tψ,

whereas Π(Ĥt12) contains the operations of t12, t121 and t123 on objects of t12, t1 and

tψ.

3.7.3 Reduction of a non-committed transaction

Let t be a non-committed (active or aborted) child of a transaction tp in the trans-

action tree. Recall that a subtransaction tc can update the values of the objects of

its ancestors only upon its commit. Thus, transaction t could have only read the

objects of its parent tp or other higher level ancestors. With this end in view, given a

t ∈ aborted(H′tp) or t ∈ active(H′tp) (where t is a child of tp), we construct tγ = γ(t)

(γ stands for “reduced”) as follows. Transaction tγ is obtained by taking into account

only the external read steps performed by t (and the committed transactions that

are part of t) on the objects of its ancestors (prior to its abort, if it is an aborted
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transaction). Its local read and write steps are discarded (as they are local to t), and

it is treated as commited. In case of an aborted transaction, the corresponding abort

event is replaced by a commit event. This way, tγ can be viewed as a committed read

only transaction at its parent level.

3.7.4 Closure (history) for a transaction

In our model for nested transactions, if a local copy of an object is not available, then

a subtransaction reads from the local space of its nearest ancestor having a copy of

that object. Hence, considering t being a subtransaction in a transaction tree, the

consistency of read step of t, at time τ , depends upon the state of its ancestors at

that time. The state of an ancestor at time τ depends upon (a) its local (read/write)

and external (read) operations, and (b) steps of its committed children, until time

τ . Aborted or active transactions of t or its ancestors, at time τ , do not have any

bearing on the consistency of t.

Given a history H for a transaction tree, the closure of history (or simply closure)

for a transaction t is denoted as HCt , and obtained in following three steps :

(i) H′ : Consider the prefix of H up to the last read/write operation of t.

(ii) H′′ : Discard the steps of (a) aborted transactions and (b) active transactions

(other than t or its ancestors) in H′ .

(iii) HCt : For the active transactions (t as well as its active ancestors), append

commit events in H′′ , committing each child before its parent. These transac-

tions are thereby treated as read only committed children at their parent level.
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(Note that the local writes, if any, of t and its ancestors are not mapped to

corresponding commit writes at their parent level.)

Observe that a closure represents a history of committed transactions. For illus-

tration, consider H6 corresponding to the execution of transaction tree in Figure 3.8.

Ĥ6 = 〈wt11(t11.x) rt111(t11.x) at111 wt11(t1.x) ct11 wt1(t1.y) rt13(t1.y)rt121(t1.x) ct121

rt1221(t12.x) ct1221 wt122(t122.z) rt1222(t122.z) rt122(t122.x) F rt123(t12.x) at122 ct123〉

Take the case of aborted transaction t122. In Ĥ6, the last (read) operation of t122

is rt122(t122.x). Hence, we cut Ĥ6 right after rt122(t122.x). (The cutting point is marked

by F.) Thus, HCt122 is as follows:

Step (i) : Cut the history Ĥ6 at F.

Ĥ′6 = 〈wt11(t11.x) rt111(t11.x) at111 wt11(t1.x) ct11 wt1(t1.y) rt13(t1.y) rt121(t1.x) ct121

rt1221(t12.x) ct1221 wt122(t122.z) rt1222(t122.z) rt122(t122.x) 〉

Step (ii) : Discard the steps of t111, t13, t123, t1222 as they are non-committed in

Ĥ′6 and do not belong to {t1, t12, t122}. (Removed part is underlined.)

Ĥ′6 = 〈wt11(t11.x) rt111(t11.x) at111 wt11(t1.x) ct11 wt1(t1.y) rt13(t1.y) rt121(t1.x) ct121

rt1221(t12.x) ct1221 wt122(t122.z) rt1222(t122.z) rt122(t122.x) 〉

⇒ 〈wt11(t11.x) wt11(t1.x) ct11 wt1(t1.y) rt121(t1.x) ct121 rt1221(t12.x) ct1221

wt122(t122.z) rt122(t122.x) 〉

Step (iii) : Complete non-committed transactions t1, t12 and t122 in Ĥ′′6 . (Added

part is underlined.)

ĤCt1226 = 〈wt11(t11.x) wt11(t1.x) ct11 wt1(t1.y) rt121(t1.x) ct121 rt1221(t12.x) ct1221
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wt122(t122.z) rt122(t122.x) ct122 ct12 ct1〉

Here, ĤCt1226 is history of committed transactions, comprising of the steps of

t1, t11, t12, t121, t122 and t1221. Now, following the discussion in Section 3.4.4, the level-

wise sequential history is given by {t1{t11, t12{t121, t122{t1221}}}}.

3.7.5 Handling aborted and active transactions

An aborted transaction is totally discarded, i.e., its read steps as well as write steps are

ignored at its parent’s and other ancestors’ levels. However, to show the correctness of

aborted transactions, we consider one aborted transaction at a time in a transaction

tree. Let ta be such an aborted transaction. Then, we obtain the closure for ta (ĤCta )

by looking at the execution of transaction tree until the time just before the abort of

ta.

Note that an active or aborted transaction only performs read operations on its

ancestors’ objects. Updating of the parent’s objects occurs only upon its commit,

provided it is an update transaction. Therefore, it is fair to treat an aborted (or active)

transaction as a read only committed child at its parent’s level and show that each of

its (external) read steps were consistent. By construction (step (iii)) of ĤCta , ta and its

ancestors are reduced to read only committed children at their parent’s level. Further,

ĤCta represents a history a committed transactions. With this end in view, the

correctness of an aborted transaction follows directly from the proofs for committed

transactions. We construct the level-wise history of committed transactions using

ĤCta , and show the correctness in the same way as done for committed transactions.

Observe that the closure can also be used for showing the correctness of any
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(active) transaction at any point of its execution.

3.7.6 Summary of the proof technique

The set of proofs, based on Definition 3.2, can be divided into following three parts.

1. For committed transactions, Π(Ĥt) is equivalent to a legal sequential history

Ĥσ
t which is obtained by ordering the transactions in H′t using the definition of

linearization points based on the STM protocol (discussed for the protocols in

later chapters):

(a) →Hσt is total order.

(b) →H′t⊆→Hσt

(c) tw
t.x−→rf tr ⇒ @t′w such that (tw →Hσt t

′
w →Hσ tr) ∧ (wt′w(t.x) ∈ Ht).

(d) tw
t.x−→rf tr ⇒ tw →Hσt tr.

Here, tr, tw and tw′ are the children of node t.

2. There is no cyclic conflict between transactions across different levels:

(a) If t1, t2 are incompatible children of t, then ¬(t1 ∈ Π(H′t) ∧ t2 ∈ Π(H′t))).

(b) A subtransaction cannot operate after it becomes incompatible with any

of its ancestors.

3. For an aborted transaction ta:

(a) After the abort of ta, the results of ta and its descendants are not visible

to transactions in outsideTrans(ta).

(b) Steps of transaction γ(ta) at its ancestral levels are consistent.
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Chapter 4

SimpSTM: A simple STM protocol

for (closed) nested transactions

Figure 4.1: Closed nested transactions (dark circle: committed; thin circle: active;
dotted circle:aborted)
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The STM protocol discussed in Section 2.6.2 was designed for non-nested trans-

actions. In this section, we extend that protocol and design a protocol (called “Simp-

STM”) for (closed) nested transactions. SimpSTM is designed under the constraint

that the subtransactions of the nested transactions are executed in a sequential fash-

ion. More precisely, this constraint is defined as follows:

Constraint 4.1 (Sequential execution of subtransactions ). Given a transac-

tion tree, let tp be any node with t1 and t2 as any two of its children. Then, we have

either Et1 <Htp Bt2 or Et2 <Htp Bt1, denoting that a new child is invoked only after

the previously created (if any) child has completed. Further, tp does not execute any

step while it has an active child.

Technically, the steps of all the transactions in a transaction tree are executed

by the same thread. When tp invokes a child tc, the thread previously executing the

steps of tp, executes the steps of tc (and its descendants). Transaction tp stays idle

(waits) until tc completes (commits or aborts) and the thread (control) is returned to

tp.

Besides the features listed in Section 2.4, the key features of SimpSTM are as

follows.

• At a time, only one node in a transaction tree executes its steps. This is due to

the constraint that the subtransactions in a transaction tree are executed in a

sequential fashion.

• When t reads from the globally shared object tψ.x, the read value is consistent

w.r.t. the entire transaction tree.
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4.1 SimpSTM

4.1.1 Pseudocode

Protocol 4.1: SimpSTM

1. tψ.ow, a set of ids ∈ T

2. State of globally shared object tψ.x:
3. val ∈ V
4. rs and fbd, sets of ids ∈ T

Common to root and non-root nodes :

5. State of a transaction’s local object
t.x:

6. val ∈ V

7. State of transaction t:
8. parent ∈ T , parent’s id (initially ⊥)
9. mts, set of ids ∈ T (initially ∅)

10. lws, lrs, sets of ids ∈ X (initially ∅)

11. Operation begint(tp) :
12. t.parent← tp;
13. t.mts← {t};

14. Operation invoke childt(tc) :
15. begintc(t);

16. Operation readt(x) :
17. if (t.x exists) then return t.x.val;
18. v = search parenttp(x, t, t.mts);
19. if (v = null) then t.abort(); end if
20. t.x.val← v;
21. t.lrs← t.lrs ∪ {x};
22. return v;

23. Operation writet(x,v) :
24. t.x.val← v;
25. t.lws← t.lws ∪ {x};

26. Operation merget(tc) :
27. for each x ∈ (tc.lws ∪ tc.lrs) do
28. t.x.val← tc.x.val; end for
29. t.lws← t.lws ∪ tc.lws;
30. t.lrs← t.lrs ∪ tc.lrs;
31. t.mts← t.mts ∪ tc.mts;

32. Operation abortt() :
33. return (abort);

34. Operation search parentt(x, td, smts) :
35. if (t.x exists) then return t.x.val; end if
36. s← t.mts ∪ smts;
37. return tp.search parent(x, td, s);

For reading global objects (at tψ’s level) :

* Invoked by root transaction only

38. Operation search parenttψ (x, td, smts) :
39. lock tψ.x;
40. if(tψ.x.fbd ∩ (smts) 6= ∅) then
41. unlock tψ.x; return null; end if
42. v ← tψ.x.val;
43. tψ.x.rs← tψ.x.rs ∪ {td};
44. unlock tψ.x;
45. return v;

Specific to non-root node (t) :

46. Operation try to committ() :
47. slrs ← t.lrs∪ tp.lrs; slws ← t.lws∪ tp.lws;
48. if (slws 6= ∅ ∧ slrs 6= ∅) then
49. if (t.mts ∩ tψ.ow 6= ∅) then
50. t.abort(); end if end if
51. mergetp(t);
52. return (commit);

Specific to root node (tρ) :

53. Operation try to committρ() :
54. if (tρ.lws = ∅) then
55. return (commit); end if
56. lock all the objects in tρ.lws ∪ tρ.lrs ;
57. if (tρ.mts ∩ tψ.ow 6= ∅) then
58. release all the locks;
59. tρ.abort(); end if
60. tψ.ow ← tψ.ow ∪ (

⋃
x∈tρ.lws tψ.x.rs);

61. for each x ∈ tρ.lws do
62. tψ.x.val← tρ.x.val;
63. tψ.x.fbd← tψ.ow;
64. tψ.x.rs← ∅; end for
65. release all the locks;
66. return (commit);
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4.1.2 Data structures

4.1.2.1 Variable state

At the global level (tψ):

We use the same data structures (tψ.x and tψ.ow) and the associated semantics

for globally shared objects, as used in [9] (discussed in Section 2.6.2). There is a lock

associated with each globally shared object tψ.x. The value of a base object tψ.x is

given by tψ.x.val. The set tψ.ow is kept in an atomic register, and is not protected by a

lock. Here, we assume an atomic register that can perform both reading and writing

together atomically, as in read-modify-write. Various techniques for implementing

such an atomic register have been discussed in the Section 3.4 of [9]. However, these

techniques have not been discussed in this thesis to keep it within the scope. Note

that only such atomic objects have been assumed throughout this thesis.

At the local level (t):

In the local space of a transaction t, a local copy of an object t.x has only a value

field (denoted as t.x.val). It does not have the pair of sets, rs and fbd, associated

with the globally shared objects.

4.1.2.2 Transaction state

Each transaction t (t 6= tψ) stores the id of its parent in parent. The set mts (merged

transaction set) contains the id(s) of t as well as t’s descendants that have successfully

merged with t. Thus, mts is used to take into account the fact that a transaction

can be composed of one or more committed descendants, and therefore, the combined

steps of the transactions in mts should be considered while checking the consistency
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of t. Further, the set lrs (local read set) is used to record the ids of objects read by

t, whereas lws (local write set) is used for recording the ids of objects written by t.

4.1.3 Working of SimpSTM

In SimpSTM, the allocation of space for local copies of objects in the local space of a

transaction is automatically done whenever required. The procedures of the protocol

are discussed as follows.

begint(tp): Each transaction begins with this procedure. Here, tp is the id of the

parent transaction that invoked t. If t is a root level transaction, then tp is tψ. The

set t.mts is initialized with {t}.

invoke childt(tc): This method is used by the parent t to invoke a new child

transaction tc. Note that t invokes a new child only when it does not already have a

child that is currently active.

readt(x) : When t needs to read an object x, it checks its local space. If a local

copy exists, then it reads from t.x. Otherwise, it tries to read from the local space of

its parent, tp. If tp also does not have a local copy of tp.x, then tp, in turn, requests its

own parent, and so on. This is done by calling search parent, a recursive procedure,

that searches from the parent level to higher level ancestors, until a local copy of x is

found. In the worst case, the search leads to reading from the globally shared copy

tψ.x. If the read operation is successful, then t assigns the read value to its local copy

t.x and adds x to t.lrs. In case search parent returns null, t aborts.

search parentt(x, td, smts) : This method associated with t is invoked by its chil-

dren to search for a local copy of an object x for the descendant td. Set smts is the
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union of t
′
.mts of each intermediate ancestor t

′
in the path from td to t.

Case I: Reading from non-global level (t 6= tψ)

Transaction t returns the value of its local copy x if t.x exists. Otherwise, it

merges its t.mts with smts and invokes the search parent method of its parent.

Case II: Reading from global level (t = tψ)

Here, this method is invoked by the root transaction. In this case, the globally

shared object tψ.x is locked. If none of the transactions in smts belongs to tψ.x.fbd

then, td is added to tψ.x.rs and the value of tψ.x is returned. Otherwise, null is

returned to indicate an attempt to read an inconsistent value.

Note: In order to focus on the key concept and facilitating readability of the

pseudocode, the method search parent has been implemented everywhere using a

recursive approach (memory overhead) instead of the iterative approach.

writet(x, v) : All the writes take place in local space initially. Here, t updates the

value of its local object t.x to v, and then adds x to t.lws.

merget(tc) : A child transaction tc calls this method to merge its local results with

its parent t. The subtransaction tc may have read some object, from an ancestor,

whose local copy is not available with its parent. A copy of each such object is

created in its parent’s local space. Next, for each object x in tc.lws, the value of

t.x.val is set to tc.x.val. Subsequently, the sets tc.lrs, tc.lws, tc.mts are merged with

the corresponding sets of the parent t.

try to committ() : The nature of a commit process of a transaction t depends

upon its type, i.e., whether t is a non-root transaction or a root transaction.

Case I: t is a non-root level transaction (t) Here we need to take into account if the

merging of child transaction t can turn a read-only or a write-only parent transaction
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tp into an update transaction, and possibly make tp inconsistent if t read some global

object that has been modified. Therefore, we consider the joint local read sets and

local write sets of t and tp to check if the resultant parent is bound to be an update

transaction. In that case, we first validate t’s steps by ensuring that none of the ids in

t.mts belong to tψ.ow. Upon successful validation, t merges its local results with its

parent, and commits. If the validation is not successful, then t aborts. No merging

of steps takes place in the event of an abort. In case tp is found to be a read-only

or a write-only transaction, then it commits (and merges its steps with those of its

parent) without having to validate its steps.

Case II: t is a root-level transaction (tρ)

Here, if tρ is a read only transaction (i.e. tρ.lws = ∅), it commits immediately.

Otherwise, it obtains locks on all global objects whose ids are present in its local read

and write sets. Next, it checks if any transaction belonging to tρ.mts is present in

tψ.ow. If yes, then the transaction releases all the locks and aborts. Otherwise, for

each x present in tρ.lws, it updates tψ.x.val using the value of its local copy tρ.x.

All the ids present in tψ.x.rs of each tψ.x updated by tρ are added to tψ.ow. Next,

for each x ∈ tρ.lws, tψ.x.fbd is updated using tψ.ow, followed by clearing tψ.x.rs.

Finally, all the locks are released and tρ commits.

Observe that, compared to Imbs and Raynal’s Protocol 2.1, the root transaction

in SimpSTM behaves differently by making use of set mts. If there are no nested sub-

transactions, mts will contain the id of only the root transaction, thereby SimpSTM

will work like Protocol 2.1.

call abortt() : This method is invoked when a transaction t has to abort.
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4.2 Proof of correctness

We prove that the properties (1)-(3) stated in Section 3.7.6 are satisfied. First, we

consider the level-wise history of committed transactions and show that the properties

(1) and (2) are satisfied. Next, we consider the aborted transactions, and show that

property (3) is satisfied.

Composite transaction:

Note that for a composite transaction t1, its consistency depends also upon the

consistency of steps of its descendants that have merged with it. In other words,

the steps of all the subtransactions that have successfully merged with t1 are also

represented in t1 now. For this purpose, we shall use the notation t̂1 to denote “some

transaction in t1.mts.” Observe that t1.mts always contains t1.

Let β(t̂1, t2.s, τ) be the predicate denoting “at time τ of an event/operation, t̂1

belongs to a set s of transaction t2”. In that case, at time τ , we have t1.mts∩t2.s 6= ∅.

4.2.1 Definition of linearization point

Extending the proof of Protocol 2.1 by Imbs & Raynal [9] for nested transaction, the

linearization point `t of a transaction t in a transaction tree is defined within the

lifespan of its parent, tp. Depending on whether t is a root level transaction or a

non-root level transaction, its linearization point is defined as follows.

Case I: t is a non-root transaction (i.e., t 6= tρ)

1. If t commits, then `t is the point at which t merges with its parent (line 51).

2. If t aborts, then `t is the point at which it performed its last successful read

operation on its ancestor’s object (at the time of invocation line 18).

57



Case II: t is a root level transaction (i.e., t = tρ)

3. If a transaction t aborts, `t is placed just before t̂ is added to the set tψ.ow (line

60 of the try to committ() operation that entails its abort).

4. If t is a committed read only transaction, `t is placed at the earliest of (1)

the occurrence time of the test during its last read operation (line 40 of the

search parent operation) and (2) the time just before t̂ (any id in t.mts) is

added to tψ.ow (if it ever is).

5. If an update transaction t commits, `t is placed just after the execution of line

60 by t (update of tψ.ow ).

Note: For any aborted transaction, if it does not have any external read operation

at its level then its linearization point lies at the time of its creation (line 11).

The above definition of linearization points is used to obtain the level-wise sequen-

tial history Ĥσ
t by ordering t’s children according to their linearization points. Next,

we shall provide the set of proofs for properties stated in Section 3.7.6.

4.2.2 Proof for committed transactions

All the histories considered in this section are the histories restricted to committed

transactions only (i.e. Π(Ĥt),Π(Ĥ′t) and Π(Ĥσ
t )). For committed transactions, we

show the following.

(a) →Hσt is total order.

(b) →H′t⊆→Hσt .
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(c) tw
t.x−→rf tr ⇒ @t′w such that (tw →Hσt t

′
w →Hσ tr) ∧ (wt′w(t.x) ∈ Ht).

(d) tw
t.x−→rf tr ⇒ tw →Hσt tr.

Let us recall the notations. Here, Ĥt denotes a level-wise shared memory history

(of events) at node t in the transaction tree. Similarly, Ĥ′t denotes a level-wise trans-

action history (that follows partial order), whereas Ĥσ
t denotes a level-wise sequential

transaction history (that follows total order). Further, tw
t.x−→rf tr denotes that tw

and tr are the two children of t such that tr reads from t.x (t’s object) the value that

was written by tw.

Lemma 4.1. →Hσt is total order.

Proof. Trivial from the ordering of linearization points for transactions, and Con-

straint 4.1.

Lemma 4.2. →H′t⊆→Hσt .

Proof. This lemma follows from the fact that, given any transaction t1 ∈ H
′
t , its

linearization point is placed within its lifetime. Therefore, if t1 →H′t t2 (t1 ends before

t2 begins), then t1 →Hσt t2.

Lemma 4.3. If t1 ∈ Π(Hψ) then β(t̂1, tψ.ow, τ)⇒ `t1 <Hψ τ .

Proof. Note that Hψ denotes the history produced at the global level (i.e., associated

with globally shared copy of objects), and t1 is a root level transaction. We have to

show that the linearization point for t1 cannot lie after the time τ at which t̂1 has

been added to tψ.ow. There are two cases:

- If t1 is read-only and commits, again by construction, its linearization point `t1 is

59



placed, at the latest, just before the time at which t̂1 (first time a transaction in

t1.mts) is added to t.ow (if it ever is), which proves the lemma.

- If t1 writes and commits, its linearization point `t1 is placed during try to commit(),

while t1 holds the locks of every object of tψ that it has read. If t̂1 was in tψ.ow before

it acquired all the locks, it would not commit (due to lines 56-59). Let us notice that

t̂1 can be added to tψ.ow only by another root-level update transaction, holding a

lock on the globally shared object previously read by t̂1 . As t1 releases the locks just

before committing (lines 65-66), it follows that `t1 occurs before the time at which t̂1

is added to tψ.ow, which again proves the lemma.

Lemma 4.4. tw
t.x−→rf tr ⇒ @t′w such that (tw →Hσ t

′
w →Hσ tr) ∧ (wt′w(t.x) ∈ Ht).

Proof. We have two cases here : (1) t 6= tψ and (2) t = tψ.

Case I: t 6= tψ (History of non-root level transactions)

It means Ĥt is the history at some node other than the super transaction (tψ).

In this case, the proof follows directly from the Constraint 4.1, which states that the

subtransactions are executed in a sequential manner, and only one of the transactions

in a transaction tree executes at a time. This implies that tw was the latest transaction

to modify t.x before tr was started.

Case II: t = tψ (History of root-level transactions)

By contradiction, let us assume that there are three root-level transactions, tw, t
′
w

and tr, and a global object tψ.x such that:

−tw
tψ .x−−→rf tr

−wt′w(tψ.x, v
′
) ∈ Htψ

−tw →Hσtψ t
′
w →Hσtψ tr.
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As both tw and t
′
w write tψ.x in shared memory, they have necessarily commit-

ted (a write in shared memory occurs only at lines 61-64 during the execution of

try to commit(), i.e., tw, tw′ ∈ Π(Htψ). Moreover, their linearization points `tw and

`t′w occur while they hold the lock on tψ.x (before committing), from which we have

the following implications:

tw →Hσtψ t
′
w ⇔ `tw <Htψ `t′w ,

`tw <Htψ `t′w ⇒ RLtw(tψ.x, ttc) <Htψ ALt′w(tψ.x, ttc)

⇒ wtw(tψ.x, v) <Htψ wt′w(tψ.x, v
′
),

tw
tψ .x−−→rf tr ⇒ RLtw(tψ.x, ttc) <Htψ ALtr(tψ.x, read(x)),

Please note that access to the object tψ.x is protected by a lock and, hence, is

atomic in nature. Since tr reads the value written by tw, it means that tw
tψ .x−−→rf tr ⇒

the event rtr(tψ.x, v) follows wtw(tψ.x, v) but precedes wt
w
′ (tψ.x, v

′
), i.e,

(tw
tψ .x−−→rf tr) ∧ (wtw(tψ.x, v) <Htψ wt′w(tψ.x, v

′
) ⇒ wtw(tψ.x, v) <Htψ rtr(tψ.x, v) <Htψ

wt′w(tψ.x, v
′
).

When a subtransaction in t̂r (t̂r accounts for the possibility that tψ.x could be read

by tr or any of its descendants that merged with tr) reads an object tψ.x, it always

adds its id to tψ.x.rs before releasing the lock on tψ.x (lines 43-44 ). Therefore, the

predicate β(t̂r, tψ.x.rs, RLt̂r(tψ.x, read(x))) is true (tψ.x.rs is set to ∅ only after being

added to the set tψ.ow ). Using this observation, we have the following:

rtr(tψ.x, v) <Htψ wt′w(tψ.x, v
′
) ∧ β(t̂r, tψ.x.rs, RLt̂r(tψ.x, read(x)))

⇒ β(t̂r, tψ.x.rs, ALt′w(tψ.x, ttc)),

β(t̂r, tψ.x.rs, ALt′w(tψ.x, ttc)) ∧ (wt′w(tψ.x, v
′
) ∈ Htψ) ⇒ β(t̂r, tψ.ow, `t′w) ⇒ `tr <Htψ

`t′w ⇔ tr →Hσt t
′
w.
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which proves that, contrary to the initial assumption, t
′
w cannot precede tr in the

sequential transaction history Ĥσ
tψ

.

Lemma 4.5. tw
t.x−→rf tr ⇒ tw →Hσt tr.

Proof. Again we have two cases:

Case I: t 6= tψ

Follows directly from Constraint 4.1.

Case II: t = tψ

The proof is made up of two parts. First it is shown that tw
tψ .x−−→rf tr ⇒

¬β(t̂r, tψ.ow, `tw), and then it is shown that ¬β(t̂r, tψ.ow, `tw) ∧ tw
tψ .x−−→rf tr ⇒

tw →Hσtψ tr.

Proof of tw
tψ .x−−→rf tr ⇒ ¬β(t̂r, tψ.ow, `tw). Let us assume by contradiction

that the predicate β(t̂r, tψ.ow, `tw) is true. Due to lines 56, 60, 63, 65 we have

β(t̂r, tψ.ow, `tw)⇒ β(t̂r, tψ.x.fbd,RLtw(tψ.x, ttc))

If the read of tψ.x from shared memory by tr is before the write by tw, we can-

not have tw
tψ .x−−→rf tr. So, in the following we consider that the read of tψ.x from

shared memory by tr is after its write by tw. We have then RLtw(tψ.x, ttc) <Htψ

ALt̂r(tψ.x, .read(x)), and consequently β(t̂r, tψ.x.fbd,RLtw(tψ.x, ttc))⇒

β(t̂r, tψ.x.fbd, ALtr(tψ.x, ttc)).

As t̂r ∈ tψ.x.fbd when it locks tψ.x, it follows that read operation fails (due to

lines 40-41, 37, 17-18), and consequently we cannot have tw
tψ .x−−→rf tr. Summarizing

the previous reasoning we have β(t̂r, tψ.ow, `tw) ⇒ ¬(tw
tψ .x−−→rf tr), and taking the

contrapositive we finally obtain tw
tψ .x−−→rf tr ⇒ ¬β(t̂r, tψ.ow, `tw)

Proof of ¬β(t̂r, tψ.ow, `tw) ∧ tw
tψ .x−−→rf tr ⇒ tw →Hσt tr. As defined earlier, the
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linearization point `tr depends on whether tr is a read only or an update transaction.

The proof considers the two possible cases.

- If tr is an update transaction that commits, its linearization point `tr (that is

defined at line 60 when it updates the set tψ.ow ) occurs after its invocation of

try to commit(). Due to this observation, the fact that tw releases its locks after its

linearization point, and tw
tψ .x−−→rf tr, we have `tw <Htψ `tr , i.e., tw →Hσtψ tr.

- If tr is a read only transaction that commits, its linearization point `tr is placed

either before the time tr is added to tψ.ow, or at the time of the test during its

last read operation (line 40). In either case, we have wtw(tψ.x, v) <Htψ `tw <Htψ

RLtw(tψ.x, ttc) <Htψ ALt̂r(tψ.x, read(x)) <Htψ rtr(tψ.x, v) <Htψ `tr , from which we

have `tw <Htψ `tr , i.e., tw →Hσtψ tr. Hence, in all cases, we have tw
tψ .x−−→rf tr ⇒

tw →Hσtψ tr.

Proof of non-existence of cyclic relation between transactions across

levels

Cyclic conflict between transactions across levels comes into the picture when the

read set of a subtransaction contains incompatible read operations. In SimpSTM,

at any time only one subtransaction in a transaction tree actively executes its steps

while its ancestors remain idle. The values of local objects of its ancestors, other

than tψ, remain consistent as they do not change while t is active. Therefore, the

only way cyclic conflict between transactions at different levels can occur is when a

subtransaction t reads a value from a global object tψ.x that is inconsistent for t or

any of its intermediate ancestors. Hence, we prove the following.

Lemma 4.6. When a subtransaction t reads a value from an object tψ.x, it is con-
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sistent w.r.t. t as well as each of its intermediate ancestors in the transaction tree.

Proof. The state of a transaction consists of its steps as well as the steps of its

committed children. In SimpSTM, the ids of transactions that form the current

state of a transaction t is given by the set t.mts. Before a subtransaction t tries

to read from a global object tψ.x, it recursively searches the local space of each of

its intermediate ancestors (lines 17, 35). In the process, the content of mts of t as

well as each of its ancestors is added to set smts (lines 18, 36). Thus, by the time

we come to read from tψ.x, smts contains the ids of all the non-aborted transactions

currently in the transaction tree. Now, before reading from tψ.x, we check that the

value of tψ.x is consistent with each of the transactions whose id is in smts by ensuring

tψ.x.fbd ∩ smts = ∅ (line 40). The value is read only if it is consistent. Otherwise, t

aborts (lines 40-41, 37, 18-19).

Theorem 4.1. Every level-wise history of committed transactions, Π(Ĥσ
t ), produced

by SimpSTM satisfies the level-wise opacity consistency criterion.

Proof. The proof follows from definition of linearization points, and Lemmas 4.1

through 4.6.

4.2.3 Proof for aborted transactions

As stated earlier (Constraint 4.1), the subtransactions are executed in a sequential

manner. That means in a transaction tree, only one subtransaction commits or aborts

at a time. To prove the correctness (opacity criterion) for an aborted subtransaction

(say ta), we prove the following property (2) of Definition 3.2 : (i) Until the time just
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before the abort of ta, the execution of ta was consistent, and (ii) after the abort, ta

and its descendants are invisible for outsideTrans(ta).

During the execution of the transaction tree, several nested subtransactions might

abort. To prove the correctness for aborted transactions, it is important that we

consider the steps of one aborted transaction at a time. This criterion is inherently

captured in the construction of a closure for a transaction. To make the idea clear,

consider the following history (shown in Figure 4.2):

Ĥ1 = 〈rt1(tψ.x), rt11(t1.x), rt11(tψ.y), wt11(t11.y), wt2(tψ.y), ct2 , at11 , rt12(tψ.z), ct12 , rt13(tψ.y),

wt13(t13.x), wt3(tψ.y), ct3 , at13 , ct1〉.

In history Ĥ1, t1, t11, t12 and t13 form parts of the same transaction tree, with t1

being the root transaction, and t11, t12, t13 being its children. Transactions t2 and t3

are two other root-level transactions. Here, subtransactions t11 and t13 abort in order.

Let us observe how the linearization point for t1 (the transaction tree associated with

t1) shifts when we consider the steps of its children (in case of aborted children, we

consider their reduced forms). Let us determine the linearization point for t1 at the

times of the aborts of t11 and t13 respectively.

At the time of abort of t11: Since t2 modified tψ.y after it was read by t11 (descen-

dant of t1), t1’s linearization point, denoted by `1t1 , occurs before that of t2. Thus,

the serial order at root level is t1, t2.

At the time of abort of t13: Here t13 is able to read the fresh value of tψ.y written

by t2 (as t11 is not considered a part of t1 at this point). Further, tψ.y is modified by

t3 before the abort of t13. Hence, linearization point for t1 at this juncture lies at `t13 .

Consequently, the serial order of root-level transactions is t2, t1, t3. Notice how the

serial order of root transactions t1 and t2 is different in this case, owing to the shift
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event timeline

wt3(tψ.y) ct3t3

`t3

tψ.ow ← tψ.ow ∪ {t13}

wt2(tψ.y) ct2t2

`t2

tψ.ow ← tψ.ow ∪ {t1}

rt1(tψ.x) ct1t1

`t1

tψ.x.rs← tψ.x.rs ∪ {t1}

rt11(t1.x) rt11(tψ.y) wt11(t11.y) at11t11

`t11

tψ.y.rs← tψ.y.rs ∪ {t11}

`t11

rt12(tψ.z) ct12t12

`t12

tψ.z.rs← tψ.z.rs ∪ {t12}

`t12

rt13(tψ.y) wt13(t13.x) at13t13

`t13

tψ.x.rs← tψ.x.rs ∪ {t13}

`t13

Figure 4.2: Linearization points of transactions
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of linearization point of t1.

Observation: Notice that if we consider the steps of both aborted subtransac-

tions, t11 and t12, then it is not possible to determine the linearization point of

t1. The operations rt11(tψ.y) wt2(tψ.y) ct2 dictates the serial order t1, t2, whereas

wt2(tψ.y) ct2 at11 rt13(tψ.y) demands the order t2, t1. For this reason, we consider one

aborted subtransaction at a time, and the steps of the previously aborted subtransac-

tions are ignored (also implied by part(ii) of property(2) of Definition 3.2). Hence, the

part of the Ĥ1 considered at the time of abort of t11 is ĤCt111 = 〈rt1(tψ.x) rt11(t1.x) rt11(tψ.y) wt11(t11.y)

wt2(tψ.y) ct2 at11〉, whereas the history considered at the time of abort of t13 is

ĤCt131 = 〈rt1(tψ.x) wt2(tψ.y)ct2 rt12(tψ.z) ct12 rt13(tψ.y) wt13(t13.x) wt3(tψ.y) ct3 at13〉.

Note that the steps of the previously aborted subtransaction, t11, are ignored in the

latter case.

Treatment of aborted transaction:

To prove the part(i) of property (2) of Definition 3.2, we consider the state of the

transaction tree, at a time (τt1a) just before the abort of a subtransaction (say) ta, and

obtain the closure for ta.

Now, we prove part(i) of the property(2) of Definition 3.2.

Lemma 4.7. Until the time just before the abort of ta, the execution of ta was con-

sistent, i.e., γ(ta) is linearizable at its ancestors’ levels.

Proof. The closure for ta, ĤCta represents a history of committed transactions, in-

cluding all the steps of ta. Hence, level wise histories of committed transactions can

be obtained using ĤCta and the correctness can be proved in the same way as done

for the history of committed transactions in Section 4.2.2.
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Next, we prove part(ii) of property(2) of Definition 3.2.

Lemma 4.8. If t
′ ∈ aborted(H′t), then results (read and write sets) of t

′
and its

descendants are not made available to its ancestors (including t).

Proof. By construction of SimpSTM, when a subtransaction commits, it writes in

the memory location of its parent only (lines 51, 26-31 for closed nested transactions,

and 61-64 in case of a root level transaction whose parent is the fictitious transaction

tψ). At this point, we can observe that, at the time of committing, transaction t

also contains the results of its descendants (if any) that have merged with it. Before

writing into the memory location of its parent, transaction t undergoes consistency

checking (lines 48-49, 57-58). If the consistency checking fails at this point, then the

transaction aborts (lines 50, 59) without modifying the objects of its parent. This

means the results of t
′

are not propagated to t. This in turn implies that, even if t

commits later, results of t
′

will not be carried upward to t’s parent or other ancestors

for that matter. Thus, if t
′

aborts, its results cannot be available to its ancestors.

Lemma 4.9. If t
′ ∈ aborted(H′t), then t

′
and its descendants (if any) are invisible to

transactions ∈ outsideTrans(t′).

Proof. Again, by construction, if a local copy of an object is not available with a

transaction t, then it tries to read from the local space of its ancestors only, through

the recursive call to search parent method (lines 18, 34-37, 38-45), not from any other

transaction in the super tree. Now, given the hierarchical composition of transactions,

a transaction t
′′

in outsideTrans(t
′
) can witness the results of t

′
only if they are made

available to the (least) common ancestors of t
′

and t
′′

in the super tree.
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As the results of an aborted transaction are not made available to its ancestors

(by Lemma 4.8), none of the transactions in outsideTrans(t
′
) can see the results of

t
′
. Hence, t

′
is invisible to transactions in outsideTrans(t

′
).

Theorem 4.2. If t
′ ∈ aborted(H′t), then t

′
satisfies level-wise opacity.

Proof. The proof follows directly from Lemmas 4.7 through 4.10.

Theorem 4.3. Each level wise history Ĥt produced by SimpSTM satisfies level-wise

opacity.

Proof. The proof follows from the conjunction of Theorem 4.1 and Theorem 4.2.
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Chapter 5

ParSTM

5.1 The main idea

In Chapter 4, we saw that SimpSTM was designed with the constraint that the

subtransactions in the transaction tree are executed sequentially, i.e., one after the

other. As such, under SimpSTM there is no concurrent execution of the nodes in the

transaction tree. So, the idea here is to relax that constraint (Constraint 4.1) and

introduce some degree of concurrency among the nodes. To this end, we employ an

optimistic approach at the global level, and a pessimistic approach (2PL for nested

transactions) at the intra-transaction (transaction tree) level.

5.1.1 Optimistic behaviour at the global level (tψ):

Here, the locking of global objects (associated with tψ) is done in the same optimistic

manner as done under SimpSTM. In other words, when a transaction t accesses a

global object tψ.x for a read or write operation, it releases the lock on tψ.x immediately
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tψ

t1

t11 t12

t2 t3

t31 t32

Figure 5.1: Optimistic mode of concurrency at global level (single circle) and pes-
simistic mode at nested level (double circle)

after the execution of its operation, i.e., t does not retain the lock on tψ.x throughout

its lifetime. This allows other transactions to access tψ.x in the meantime.

5.1.2 Pessimistic behaviour at the nested level (p-node, tπ):

With each node t in the transaction tree, there is a local copy t.x of each object

x that is accessed by t or its descendants. Each of these objects is protected by a

lock. To indicate the point that each node in the transaction tree exhibits pessimistic

behaviour, we call it a p-node and denote it by tπ in general (Figure 5.1). A p-node

denotes a transaction whose objects are accessed through a pessimistic approach of

concurrency control. More precisely, when an object tp.x of a node, tp, is locked by

its child transaction tc, then tc retains the ownership of that lock until tc completes

its execution (commit or abort). That means, until tc completes, neither tp nor any

other child of tp can access (obtain the lock on) tp.x. They have to wait to access

tp.x.
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t1

t11

wt11(t11.x)

t111 t112

t12

t121 t122

wt122(t122.x)

t1221 t1222

rt111(t11.x) rt112(t11.x)

rt1222(t122.x)

Figure 5.2: Partial concurrency

Note: When tp itself locks an object tp.x for its local operation, it unlocks tp.x after

the completion of its operation, thereby making it available for subsequent access by

its descendants.

5.1.2.1 Partial concurrency at the nested level

Owing to the pessimistic approach (similar to 2PL for nested transactions) at the

nested level, partial concurrency is achieved at the intra-transactional level. The

different cases can be studied as follows.

(i) Same copy of object is accessed sequentially: For example, consider a node

t11 in a transaction tree given in Figure 5.2. Transactions t111 and t112 are the two

children of t11. Now, t111 and t112 can access different objects of t11 concurrently.

However, if the two children want to access the same object of t11, then one of them

has to wait. In another words, if t111 wants to access t11.x and t112 wants to access
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t11.y, then they can access the respective objects of t11 concurrently. If both t111 and

t112 want to access the same object t11.x, then the lock on t11.x is granted to only one

of them, say t111, at a time, and t112 has to wait until t111 terminates and releases the

lock on t11.x.

(ii) Different copies of the same object can be accessed concurrently: Now consider

the case at nodes t11 and t122. Local copies of x are created at these nodes due to

their respective local writes, wt11(t11.x) and wt122(t122.x). Now, these two different

local copies, t11.x and t122.x, can be accessed concurrently. For example, accessing of

t11.x by t111 and t122.x by t1222 can take place concurrently.

5.1.2.2 Handling deadlock situations

A deadlock situation may occur between children (descendants) when they try to lock

the same set of objects of the parent (ancestor). A child node may be waiting for a

lock on the parent’s object. The reverse is not true as the parent does not access its

child’s object. Further, the parent performs one read or write operation on one local

object at a time, and releases the lock on its local object as soon as the operation

completes. Therefore, there is no deadlock situation between the parent and the child.

To handle the possibility of a deadlock between the children, each node in the

transaction tree maintains a wait-for graph, whose access is controlled by a lock.
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Protocol 5.1: management of wait-for graph, wfgt:

town(x) = t
′
,∃t′ : 〈x, t′ , t′〉 ∈ t.wfg

i Operation request lockt(x, tc) :
ii lock t.wfg;
iii add edge 〈x, tc, town(x)〉 to t.wfg;
iv if (t.wfg contains a cycle) then
v remove 〈x, tc, town(x)〉 from t.wfg;

vi unlock t.wfg; return false; end if
vii unlock t.wfg; return true;

viii Operation align requestt(x, tc) :
ix lock t.wfg; told ← town(x);
x 〈x, told, told)〉 ← 〈x, tc, tc)〉;

xi replace all 〈x, t′ , told)〉 with 〈x, t′ , tc〉;

xii if (t.wfg contains a cycle) then
xiii Undo the effects of lines x-xi;
xiv remove edge 〈x, tc, told〉;
xv unlock t.wfg; return false; end if
xvi unlock t.wfg; return true;

xvii Operation secure lockt(x, tc) :
xviii if (¬request lockt(x, tc)) then return

false; end if
xix lock t.x;
xx if (¬align requestt(x, tc)) then

unlock t.x; return false; end if
xxi return true;

Please refer to Protocol 5.1 for the following discussion.

(a) Construction of wait-for graph wfgt at a node t:

The wait-for-graph wfgt consists of nodes and directed edges between them. The

nodes in the graph represent t and its children. An entry in wfgt is denoted by the tu-

ple 〈x, t1, t2〉. Initially, for each object x, there is an entry (owner node) 〈x, tinit, tinit〉,

tinit is a fictitious transaction.

Meaning of a tuple 〈x, t1, t2〉:

• t1 = t2 = t
′

: Denotes a node t
′

that is the current owner of lock on t.x. The

owner transaction in such a tuple is denoted by town(x).

• t1 6= t2 : Denotes an edge from node t1 to node t2, indicating t1 is waiting for a

lock on t.x which is currently held by t2.

We construct the graph by considering only the edges, i.e., those entries 〈x, t1, t2〉

in which t1 6= t2. Further, to ensure the correctness (in face of concurrent execution),

the access to wfgt is protected by a lock.

(b) Managing wfgt:
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Recall that a local object x associated with node t is denoted as t.x. To successfully

access t.x, a node tc secures a lock on t.x by following three steps: (i) request a lock

on t.x, (ii) lock t.x, and (iii) align the requests of other transactions for locking t.x.

(i) request lockt(x, tc) : When a node tc requests a lock on t.x, wfgt is locked first.

Let town(x) be the current owner of t.x. We add an edge 〈x, tc, town(x)〉. In this case,

it simply indicates a node tc is waiting for a lock on t.x, and other subtransactions

might be trying to lock t.x at the same time. Now, if addition of edge 〈x, tc, town(x)〉

leads to a cycle in wfgt, then we remove the edge 〈x, tc, town(x)〉 from wfgt and return

false to indicate failure (deadlock situation). Otherwise, true is returned to indicate

that the request does not cause deadlock and tc waits until it obtains a lock on t.x.

(ii) lock t.x: A number of subtransactions might be waiting for a lock on t.x. When

the lock on t.x is released by the previous owner, told, one of the waiting transactions

is selected in a non-deterministic way as the new owner of the lock.

(iii) align requestt(x, tc): When tc gets the lock, it first needs to rearrange the

edges in wfgt to reflect ownership of lock on t.x, and let other transactions, waiting

for a lock on t.x, wait for tc to release the lock. To this end, it replaces all the edges

〈x, t′ , told〉 with 〈x, t′ , tc〉. If this change leads to a cycle in wfgt, then it is rolled back

along with removal of edge 〈x, tc, told〉 from wfgt, and false is returned to indicate

failure. If the alignment is successful, then tc sets itself as the new owner, town(x), and

true is returned.

(iv) secure lockt(x, tc): If request lock, lock t.x and align request are completed

successfully, it returns true. Otherwise, false is returned.

While trying to secure a lock, a transaction tc does not need to keep a lock on wfgt

all the time. Observe that the lock on wfgt is released at the end of request lock as
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well as align request. This allows other transactions also to lock wfgt and complete

their request align steps, while tc waits for the opportunity to lock its object.

(c) Correctness of wfgt:

To show the correctness of wait-for graph constructed this way and its manage-

ment, we show the following:

i Acyclicity of wait-for graph is maintained.

ii Access to wait-for graph through secure lock method is non-blocking.

iii Access to wait-for graph by the owner for its local operation does not bring it in

cyclic conflict with its children.

Lemma i. Acyclicity of wait-for graph is maintained.

Proof. As discussed earlier, a successful acquisition of lock on parent’s object t.x

requires the following: (i) checking that the request for the lock does not cause a

cycle in wfgt, (ii) acquiring the lock on t.x, and (iii) resetting the wait-for relations

corresponding to the others’ requests for a lock on t.x, ensuring that the resetting

does not lead to a cycle in wfgt.

The correctness follows from the argument that acyclic property of the wfgt is

maintained at all the time. Note that access to wfgt is protected by a lock (lines

ii, ix). This means only one transaction updates wfgt at a time.

Initially, when none of the objects have been locked, there are only nodes 〈x, tinit, tinit〉,

and no edges. This means there is no cycle in wfgt initially. Since the request for

accessing t.x is made through method secure lock, the first edge in wfgt is added

through method request lock. Next we show that before and after the completion of

methods request lock and align request, wfgt is acyclic.
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During request lock, wfgt is locked (line ii) and a new edge is added (line iii) to

wfgt only if it does not cause a cycle (lines iv − vi). This means, if wfgt is acyclic

at the starting of request lock, then it is acyclic at the end of the operation as well.

Next, during align request, the edges in wfgt are rearranged (lines x-xi) only if the

new arrangement does not lead to a cycle in wfgt. Also, note that the corresponding

edge 〈x, t, t′〉 is reduced to a node 〈x, t, t〉. Otherwise, if a cycle is detected, the

previous state of wfgt is restored (lines xii − xv). This means that the acyclic

property of wfgt is preserved after align request operation.

Now, we have following conclusions: (m,n > 0 and denote the number of execu-

tions of a method)

(Initial state) → wfgt is acyclic.

⇒ (initial state) → (request lock)m → wfgt is acyclic.

⇒ (initial state) → (request lock)m(align request)n → wfgt is acyclic.

Thus, the acyclic property of wfgt is always preserved. In other words, wfgt

ensures there is no deadlock situation (cycle).

Lemma ii. Access to the wait-for graph through the secure lock method is non-

blocking.

Proof. The lemma implies that when a subtransaction t1 accesses secure lock to

obtain a lock on object x, it does not prevent other subtransactions from accessing

secure lock until t1’s invocation of secure lock has completed.

The lock on wfgt is held only for the duration of request lock and align request

(lines ii-vi and ix-xvi). After successfully calling request lock, while t1 waits for

actually getting a lock on x (line xix), other subtransactions are free to lock wfgt
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through request lock or align request. This allows other transactions to validate

their requests for locking objects. Similarly, upon completion of align request, t1

releases the lock on wfgt immediately.

Lemma iii. Access to wait-for graph by the owner for its local operation does not

bring it in cyclic conflict with its children.

Proof. When a transaction t tries to lock its object t.x for its local read/write oper-

ation, the edge 〈x, t, t′〉, where t
′

is the current owner of the lock, is added in wfgt.

At that time, there is no edge 〈y, t′′ , t〉 for any y and t
′′
. Since t performs only one

local operation at a time, it does not have any other lock. When t gets the lock on

t.x, in the align request operation, some edges 〈x, t′′′ , t〉 may be added, but 〈x, t, t′〉

is deleted at that time. Therefore, there will be no edge out-directed from t to any

other node. Thus, t can never be in a directed cycle.

5.2 Implementing 2PL for nested transactions

Recall that each local copy of an object with a transaction is protected by a simple

mutex based lock. Then, the two phase locking for nested transactions is achieved as

follows:

1. When a subtransaction t reads an object t
′
.x from an ancestor t

′
, it (recursively)

locks the object t
′′
.x at each ancestor t

′′
in the path from t to t

′
(including

t
′
). Transaction t does not release the lock on them upon termination of its

(successful) read operation.
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t1

t11

t111

t1111 t1112

lock t1.x

lock t11.x

lock t111.x

unlock t111.x

(a) When t1111 commits, lock on x is
released only up to the parent t111

t1

t11

t111

t1111 t1112

lock t1.x

lock t11.x

lock t111.x

unlock t111.x

unlock t11.x

unlock t1.x

(b) When t1111 aborts, lock on x is released
up to the original owner t1

Figure 5.3: Implementing 2PL for nested transactions: (1) cascaded locking of x at all
the ancestors up to t1 during rt1111(t1.x) (shown by dotted arrows), and (2) unlocking
t111.x only upon completion of t1111 (shown by solid arrow).
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2. Transaction t releases locks to its ancestor(s) only upon its completion.

Case i : If t commits, it releases lock on x only at its parent level.

Case ii : If t aborts, lock on x is released all the way up to the ancestor t
′

from which it was originally read.

For example, consider Figure 5.3. Transaction t1111 recursively searches for a local

copy of x with its ancestors, before finally reading from t1.x, and, in the process,

locks object x at each of its ancestors up to t1. Upon successful read operation, t1111

does not release these locks; rather it retains them through its lifetime. That means

no other transaction can obtain the lock on x at any of its ancestors up to t1, i.e.,

t111, t11 and t1. In other words the value of x at t1111’s ancestors up to t1 cannot be

changed while t1111 is active.

Moreover, when t1111 commits, it unlocks x only at its parent t111, not at other

ancestors. Therefore, at this point, only t111.x becomes available to t111 and its other

descendants. However, if t1111 aborts, it unlocks x at all the ancestors up to t1.

Similarly, if t111 commits later on, only t11.x is unlocked. Otherwise, if t111 aborts,

locks on t11.x as well as t1.x are released. In other words, if the subtransactions in

the path from t1111 to t1 commit one by one, they release the lock on x only at their

respective parent level. However, if any of the subtransactions in that path abort,

the lock on x is released up to t1.
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(3) wt2(tψ.x) wt2(tψ.y) ct2

t1

t11 t12

t2

(2) wt2(t2.x) wt2(t2.y)
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Figure 5.4: Incompatible transactions in ParSTM

5.3 Issue of incompatible read operations/transactions

We resume the discussion of incompatible transactions, referred to in Section 3.5.1.

For sake of simplicity, consider a simple two-level transaction tree with t1 as root

transaction. Let t11 and t12 be the two children of t1, and t2 be another root transac-

tion. Now, referring to Figure 5.4, consider the following history.

Ĥ1 = 〈rt11(tψ.x) wt2(t2.x) wt2(t2.y) wt2(tψ.x) wt2(tψ.y) ct2 rt12(tψ.y) (c11 c12)?〉

Recall that the lock on global objects (tψ.x, tψ.y) are released soon after the read or

write operations on them. Here, local copies of objects x and y are not available with

transactions initially. As such, t11 (locks and) reads from tψ.x, adds its id to tψ.x.rs

before releasing the lock on tψ.x. Next, another root transaction t2 modifies tψ.x and

tψ.y, consequently adding t11 to tψ.x.fbd, tψ.y.fbd and tψ.ow respectively. Now, t12

wants to read tψ.y. When t12 locks tψ.y, it can notice t11 in tψ.y.fbd. However, as

t11 has not yet committed and become part of t1 (t12’s ancestor), it is legal for t12 to

read tψ.y.

81



Now, let us look at how the steps of the children affect the linearizability of the

root transaction t1. When a closed nested transaction commits, its steps become

part of the parent transaction. Following this point, consider the steps of t11 first

to determine the linearization point of t1. Transaction t11 read tψ.x before it was

modified by t2. This implies that linearization point of t1 precedes that of t2, if t11

commits. Next, consider the steps of t12. The read step rt12(tψ.y) returns the value

written by t2, implying the linearization point of t1 should be placed after that of t2, if

t12 commits. Hence, a contradiction (if both t11 and t12 commit). Here, the conflicting

write operations of t2 are sandwiched between the respective read operations of t11 and

t12 on the global objects. Therefore, t1 cannot be linearized at the global level (Ĥψ),

if both t11 and t12 are allowed to commit. In other words, the two read operations,

rt11(tψ.x) and rt12(tψ.y), are incompatible for t1. Thus, incompatible operations and

transactions are defined as follows.

Definition 5.1 (Incompatible operations and transactions). Let t1, t2 be any

two transactions in the super tree, and t (t 6= tψ) be the least common ancestor of t1

and t2. Let rt1(tψ.x) and rt2(tψ.y) be successful read operations of t1 and t2 respectively

on global objects tψ.x and tψ.y. Then, these two read operations are incompatible if

t1 ∈ tψ.y.fbd at the time of rt2(tψ.y) or vice-versa. The two transactions, t1 and t2,

are termed as incompatible transactions.

Each transaction maintains an atomic object called cm (consistency management)

that has two sets its (incompatible transaction set) and mts (merged transaction set).

The set its is used to keep track of incompatible transactions, whereas mts, initially

containing its own id, is used to keep track of descendants that have merged with it. It
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works as follows. Let us denote the root level transaction as tρ. Suppose a transaction

t in transTree(tρ) reads from the global object tψ.x. To keep a record of all the

transactions in transTree(tρ) that have read some global object, each transaction

maintains a special set called vts (visited transaction set). Note that each transaction,

before reading any global object tψ.x, adds its id to tρ.vts. Thus, the set tρ.vts contains

the ids of all the transactions in transTree(tρ) that have read some global object.

Now, upon reading tψ.x, the ids of transactions that are present in both tρ.vts and

tψ.x.fbd are added to t.cm.its.

Later, when t tries to merge with its parent tp, it ensures that t is not incompatible

with tp, by ensuring that tp.cm.mts ∩ t.cm.its = ∅ and tp.cm.its ∩ t.cm.mts = ∅.

Now, let us examine history Ĥ1 again under this scheme. Here, t1 plays the role

of the root transaction tρ. Initially, we have t11 ∈ t11.cm.mts, t12 ∈ t12.cm.mts, t1 ∈

t1.cm.mts, t11.cm.its = ∅ and t12.cm.its = ∅. In this history, at the time t12 accesses

tψ.y, clearly t11 ∈ tψ.y.fbd and t1.vts. Therefore, t12 adds t11 to t12.cm.its.

Note: To avoid concurrent merging of incompatible subtransactions, we impose

the constraint that at each level only one child of a (parent) transaction can merge

with it at a time. This is achieved by use of a mrg lock for merging.

If t11 (commits and) merges with t1 first, then t11 is added to t1.cm.mts. Later,

when t12 tries to merge, it would fail (abort) as t1.cm.mts ∩ t12.cm.its = {t11} 6= ∅.

Similarly, if t12 merges first, then t12 is added to t1.cm.mts and t11 to t1.cm.its. As

a result, t11 will not be able to commit as t1.cm.its ∩ t11.cm.mts = {t11} 6= ∅. Thus,

we can ensure that two incompatible children of a transaction cannot both commit.

If we consider the previous case by replacing t12 with t1 (and so replacing rt12(tψ.y)

with rt1(tψ.y)) in Ĥ1, the solution still works by not allowing t11 to commit in the
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first place (even if t11 is a read only transaction).

Remark. Observe that in Ĥ1, if t1 (a read only transaction) commits with the

results of t11 (i.e., rt11(tψ.x)), then its linearization point, at its parent tψ’s level, lies

before wt2(tψ.x). In the alternate case, if t1 commits with the results of t12 (i.e.,

rt12(tψ.y)), then t1’s linearization point lies after wt2(tψ.y). This way, the protocol

offers flexibility for read only subtransactions.
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5.4 The protocol: ParSTM

5.4.1 Protocol

Protocol 5.2: ParSTM

State of global object/ set :

1. tψ.x with fields
2. val ∈ V
3. rs, fbd ⊂ T
4. tψ.ow ⊂ T

State of response object:
5. resx(value, level, s):
6. val ∈ V , set to value
7. lvl ∈ L, set to level
8. sits ⊂ T , set to s

Helper methods:
9. Operation check compatibility(cmta , cmtd) :

10. return ((cmta .mts ∩ cmtd .its = ∅) ∧
(cmta .its ∩ cmtd .mts = ∅));

11. Operation update cm(cm, sm, si) :
12. cm.mts← cm.mts ∪ sm,
13. cm.its← cm.its ∪ si;

Common to both nodes (tπ/tρ) :

t∗ denotes tπ/tρ.

14. State of local object t∗.x :
15. val ∈ V , initially null

16. State of local atomic object t∗.cm :
17. mts ⊂ T
18. its ⊂ T
19. State of transaction t∗:
20. parent ∈ T , parent’s id (tp)
21. lvl ∈ L
22. lrs, lws ⊂ X
23. vts ⊂ T
24. pls ⊂ X
25. prs ⊂ X × L
26. wfg ⊂ X × T × T
27. mrg : lock

28. Operation begint∗(tp, level) :
29. t∗.parent← tp;
30. t∗.lvl← level;
31. t∗.cm.mts← {t∗};

32. Operation invoke childt∗(tc) :
33. begintc(t∗, t∗.lvl − 1);

34. Operation unlock parent lockst∗(s) :
35. for each x : x ∈ (s ∩ t∗.pls) do

36. t∗.pls← t∗.pls \ {x};
37. unlock tp.x; end for

38. Operation unlock to ancestorst∗(s) :
39. sanc ← ∪x.lvl>tp.lvls
40. t∗.unlock parent locks(s);
41. if (sanc 6= ∅) then
42. tp.unlock to ancestors(sanc) end if

43. Operation get local lockt∗(x, t1) :
44. if (¬secure lockt∗(x, t1)) then
45. t1.abort(); end if

46. Operation get lockst∗(s, tc) :
47. for each x ∈ s do
48. get local lockt∗(x, tc);
49. tc.pls← tc.pls ∪ {x}; end for

50. Operation writet∗(x,v) :
51. get local lockt∗(x, t∗);
52. t∗.x.val← v;
53. unlock t∗.x;
54. t∗.lws← t∗.lws ∪ {x};

55. Operation abortt∗():
56. t∗.unlock to ancestors(t∗.prs);
57. t∗.unlock parent locks(t∗.pls);
58. t∗.abort active desc();
59. return (abort);

60. Operation abort active desct∗():

61. for each t
′ ∈ activeChildren(t∗) do

62. t
′
.force abort(); end for

63. Operation force abortt∗():

64. for each t
′ ∈ activeChildren(t∗) do

65. t
′
.force abort(); end for

66. return (abort);

67. Operation abort incompat desct∗(si):
68. sa ← si ∩ t∗.vts;
69. if (sa = ∅) then return; end if
70. for each (tc ∈ activeChildren(t∗)) do
71. if (tc.cm.mts ∩ sa 6= ∅) then
72. tc.abort();
73. else
74. tc.abort incompat desc(sa);
75. end if
76. end for
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77. t∗.vts← t∗.vts \ sa;

Specific to non-root node (tπ) :

78. Operation readtπ (x) :
79. get local locktπ (mrg, tπ);
80. get local locktπ (x, tπ);
81. resx ← φ;
82. if (tπ.x.val = null) then
83. resx ← search parenttp(x, tπ, tπ, tπ.cm);
84. if (resx = null) then
85. aborttπ (); end if
86. tπ.x.val← resx.val;
87. tπ.lrs← tπ.lrs ∪ {x};
88. update cm(tπ.cm, ∅, resx.sits);
89. tπ.prs← tπ.prs ∪ 〈x, resx.lvl〉;
90. tπ.pls← tπ.pls ∪ {x};
91. end if
92. unlock tπ.mrg;
93. v ← tπ.x.val;
94. unlock tπ.x;
95. tπ.abort incompat desc(resx.sits);
96. return v;

97. Operation search parenttπ (x, tc, to, cmd) :
98. if (¬secure locktπ (x, tc)) then
99. return null; end if

100. cm← tπ.cm;
101. if (tπ.x.val 6= null) then
102. if(¬check compatibility(cm, cmd))then
103. unlock tπ.x;
104. return null; end if
105. resx ← 〈tπ.x.val, tπ.lvl, ∅〉;
106. else
107. update cm(cm, cmd.mts, cmd.its);

108. tπ.vts← tπ.vts ∪ {to};
109. resx ← search parenttp(x, tπ, to, cm);
110. if (resx = null) then
111. unlock tπ.x;
112. return resx; end if
113. tπ.prs← tπ.prs ∪ 〈x, resx.lvl〉;
114. tπ.pls← tπ.pls ∪ {x};
115. end if
116. return resx;

117. Operation try to mergetπ (tc) :
118. get local locktπ (mrg, tc);
119. s← ∪{x : 〈x, ∗〉 ∈ tc.pls}
120. tπ.get locks(tc.lws \ s, tc)
121. if(¬check compatibility(tπ.cm, tc.cm))then
122. unlock tπ.mrg;
123. aborttc(); end if
124. for each x ∈ tc.lws do
125. tπ.x.val← tc.x.val; end for
126. for each x ∈ tc.lrs : tπ.x.val = null do
127. tπ.x.val← tc.x.val; end for
128. tπ.lws← tπ.lws ∪ tc.lws;
129. tπ.lrs← tπ.lrs ∪ tc.lrs;
130. update cm(tπ.cm, tc.cm.mts, tc.cm.its);
131. unlock tπ.mrg;
132. tc.unlock parent locks(tc.pls) ;

133. Operation try to committπ () :
134. try to mergetp(tπ);
135. tπ.abort incompat desc(tπ.cm.its);
136. return (commit);

Specific to root node (tρ) : Protocol
5.3

Protocol 5.3: ParSTM (Special case of root node, tρ)

137. Operation search parenttρ(x, tc, to, cmd) :
138. if (¬secure locktρ(x, tc)) then
139. return null; end if
140. cm← tρ.cm;
141. if (tρ.x.val 6= null) then
142. if(¬check compatibility(cm, cmd))then
143. unlock tρ.x;
144. return null; end if
145. return resx ← 〈tρ.x.val, tρ.lvl, ∅〉;
146. else
147. sm ← cm.mts ∪ cmd.mts;
148. tρ.vts← tρ.vts ∪ {to};
149. lock tψ.x;
150. if (tψ.x.fbd ∩ sm = ∅) then
151. tψ.x.rs← tψ.x.rs ∪ {to};
152. si ← tψ.x.fbd ∩ tρ.vts;
153. resx ← 〈tψ.x.val, tρ.lvl, si〉;
154. unlock tψ.x;
155. return resx;
156. else

157. unlock tψ.x;
158. unlock tρ.x;
159. return null; end if
160. end if

161. Operation readtρ(x) :
162. get local locktρ(mrg, tρ); si ← ∅;
163. get local locktρ(x, tρ);
164. if (tρ.x.val = null) then
165. lock tψ.x;
166. if (tψ.x.fbd ∩ tρ.mts 6= ∅) then
167. unlock tψ.x; aborttρ(); end if
168. tψ.x.rs← tψ.x.rs ∪ {tρ};
169. tρ.x.val← tψ.x.val;
170. si ← tψ.x.fbd ∩ tρ.vts;
171. update cm(tρ.cm, ∅, si);
172. unlock tψ.x;
173. tρ.lrs← tρ.lrs ∪ {x};
174. end if
175. unlock tρ.mrg;
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176. v ← tρ.x.val;
177. unlock tρ.x
178. tρ.abort incompat desc(si);
179. return v;

180. Operation try to committρ() :
181. if (tρ.lws = ∅) then
182. return commit; end if
183. for each tψ.x : x ∈ (tρ.lrs ∪ tρ.lws) do
184. lock tψ.x;
185. tρ.pls← tρ.pls ∪ {x} end for

186. if (tρ.cm.mts ∩ tψ.ow 6= ∅) then
187. aborttρ(); end if
188. tψ.ow ← ∪x∈tρ.lwstψ.x.rs;
189. for each x ∈ tρ.lws do
190. tψ.x.val← tρ.x.val
191. tψ.x.fbd← tψ.ow;
192. tψ.x.rs← ∅ end for
193. tρ.unlock parent locks(tρ.pls);
194. return (commit);

Preview of the protocol

Unlike SimpSTM, at each node t in the transaction tree the access to a local copy

of an object, say t.x, is protected by a lock. The descendants of t have to lock t.x

before reading it. If the read operation fails, the lock on t.x is released. However,

if the read is successful, then the lock on t.x is retained until the subtree containing

that descendant completes (as discussed in Section 5.2).

For example, referring to Figure 5.3, say t1111 wants to read x, and the value for x

is available with t1, and not with any of the intermediate ancestors, t11 and t111. As

described later in the protocol, the method for reading an object x from the parent’s

local space is search parenttp(x, ...), where tp is the id of the parent. Then, t1111

calls search parentt111(x, ...), and obtains the lock on t111.x in the process. Since

t111 does not have a local copy of x with itself, t111 calls search parentt11(x, ...) and

obtains a lock on t11.x. Similarly, t11 calls search parentt1(x, ...) and locks t1.x. If

the read operation on t1.x is successful, then the locks on t1.x, t11.x and t111.x are

not released. However, if the read operation is unsuccessful, then the locks on these

objects are released (to reflect the effect that unsuccessful read operation does not

lead to locking of objects).
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In alternate case, in which even t1 does not have a local copy of object x, the

search parent(x, ...) method propagates to tψ, and an attempt is made to read from

the global object tψ. Here we should observe the difference in how global objects are

treated. If the read operation tψ.x succeeds, then the lock on tψ.x is released, but we

retain the locks on the objects of the ancestors in the transaction tree, i.e., t111.x, t11.x

and t1.x. In case the read is unsuccessful, then the locks on all of these objects are

released.

Further, note the following. When a subtransaction tc writes an object tc.x which

has not been previously read from the parent, tp, then a local write operation on tc.x

does not entail obtaining a lock on the parent’s object tp.x.

5.4.2 State of shared objects

Globally shared objects: Same as used for SimpSTM in Chapter 4. Recall that, at the

global level, each object tψ.x is protected by a lock, and has the following fields: (1)

val for value, (2) a set rs for storing ids of transactions that have read tψ.x, and (3) a

set fbd for storing ids of transactions forbidden to access tψ.x. The set tψ.ow is used

to indicate ids of transactions that read an object whose value has been overwritten

later.

Locally shared objects: A local copy t.x, available (locally) with a transaction t, has

only the value field, and is protected by a lock.

Response object: A response object, resx, is used as a data structure to communicate

〈 value, level, a set containing incompatible transactions 〉 information across levels

while reading a value of object x from higher levels.
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5.4.3 State of transaction

Each transaction t keeps a reference to its parent’s id using parent (also denoted by

tp). The information regarding the level of t is contained in lvl. The read and write

steps are logged using sets lrs (local read set) and lws (local write set) respectively.

The ancestors’ objects on which t acquires locks are recorded in pls (parent’s lock

set). The set prs (pessimistic read set) records, for each object read, the object id

as well as the original level from which its value was obtained. The descendants of t

that have visited it are tracked though set the vts (visited transaction set) kept in an

atomic variable. Finally, t also maintains a wait-for graph, wfg that is used by its

children and t itself to detect and resolve deadlock situation while acquiring a lock on

t’s objects. An atomic object cm (consistency management) contains sets mts and

its that are used to keep track of merged transactions and incompatible transactions

respectively. Here also the atomic object used is an atomic register that can perform

read and write together atomically, as mentioned in the Section 4.1.2.1. Further,

lock mrg is used while searching for a local copy at the parent level, and during the

merging of a child’s sets with those of its parent.

5.4.4 Methods common to both root as well as non-root

nodes (t∗)

begint∗(tp, level): Each transaction t∗ begins with this method, where tp denotes the

id of its parent and level denotes its level in the super tree. The set mts (merged

transaction set) is initialized with t∗.

invoke childt∗(tp): This method is used by transaction t∗ to invoke a new child
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transaction tc.

unlock parent lockst∗(s): This method is used by transaction t∗ to release the

locks on the parent objects in set s.

check compatibility(cmta , cmtd): It is used to check the compatibility between two

transactions using their respective consistency management objects.

update cm(cm, sm, si): It is used to perform the update of an atomic object cm,

whereby contents of sm and si are respectively appended to corresponding sets mts

and its of cm. Owing to the atomic nature of cm, this update occurs in a single

atomic step.

get local lockt∗(x, t1) : This method is used to obtain a lock on object t∗.x for

transaction t1. In case of failure to lock t∗.x, transaction t1 is aborted.

get lockst∗(s, tc): This method is invoked by t∗’s child tc to obtain locks on t∗’s

objects in set s. If an attempt to lock t∗.x using the secure lock method is successful,

then x is added to tc.pls (and prs) to indicate that tc is in possession of a lock on its

parent’s object t∗.x.

writet∗(x, v): self-explanatory.

abortt∗(): Upon aborting, t∗ releases all the ancestral locks acquired through its

own operations or those of its descendants. Next, as the children of the aborted

transaction have to be aborted as well, t∗ invokes the abort active desc method of all

of its active children.

abort active desct∗(): This method is used by the parent t∗ to force the abort of

its active descendants. This is issued as a consequence of an abort of t∗.

force abortt∗(): This method is used to abort a descendant such that it immedi-

ately returns abort, without having the need to release the parent locks in its poses-
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sion. This invoked by an aborting ancestor.

abort incompat desct∗(si): This method is used to abort the incompatible descen-

dants of t∗. The set si contains the ids of subtransactions that are incompatible with

t∗. This method propagates down the subtree rooted at t∗ in cascading manner. At

each of the descendants td we check if td is incompatible with t∗. If td is found incom-

patible, then we abort (discard) the subtree rooted at td. Otherwise, we check each

of the active children of td iteratively.

5.4.5 Methods specific to non-root nodes (tπ)

readtπ(x): To read an object x, transaction tπ locks its local object tπ.x. If tπ.x.val

is not null, then the value of tπ.x is returned after unlocking tπ.x. In case tπ.x is

null-valued, then tπ tries to read the value from its ancestors, using the method

search parent. Before tπ invokes search parent method, it locks tπ.mrg to ensure

that no incompatible child merges with it while it tries to read the value of x from

its ancestor. Now, if the read is not successful, then tπ aborts. Otherwise, the value

of tπ.x is updated. Further, x is added to tπ.pls to indicate the ownership of parent

lock, and prs is updated to record the external read. The set tπ.cm.its is updated

with any incompatible descendant using resx.sits. The lock tπ.mrg is unlocked and

incompatible descendants (if any) of tπ are aborted. Object x is added to tπ.lrs.

Finally, tπ.x is unlocked and the value of tπ.x is returned.

search parenttπ(x, tc, to, cmd): This method propagates recursively in a bottom-

to-top manner. This method of tπ is invoked by its child transaction, tc, to search for

a local copy of object x available with tπ. The descendant originally trying to read
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the value of tπ.x is to. First, a lock on tπ.x is obtained. In case the value of tπ.x

is non-null, the compatibility of to and its ancestors up to tc with tπ is checked. If

compatible, then a response object resx, containing 〈tπ.x.val, tπ.lvl, ∅〉, is returned.

Otherwise, null is returned to indicate an unsuccessful read. Alternatively, if a local

(non-null valued) copy of x is not available with tπ, then tπ forwards the search for

a local copy of x to its parent node. If the resx object obtained from the parent is

null, then tπ.x is unlocked before returning null. Otherwise, 〈x, resx.lvl〉 is recorded

in tπ.prs and tπ.pls is updated before returning resx.

try to mergetπ(tc): This method is invoked by the child transaction tc. The steps

are self-explanatory. However, it should be noted here that the order of steps in line

118 (obtaining mrg lock) and line 120 (locking of parent’s objects) is important in

order to avoid a deadlock situation between the child and the parent.

Observe that parent tπ, during it read step, obtains the lock tπ.mrg (line 79) first

and then locks its local object tπ.x (line 80) before reading from its ancestor. Here,

during the merging phase, the child transaction tc also tries to first obtain the lock on

tπ.mrg (line 118) before object tπ.x (in case it does, line 120). Only the transaction

successful in obtaining the lock on tπ.mrg proceeds to lock tπ.x. Note that locking

of both tπ.mrg and tπ.x is done through secure lock method to ensure any cyclic

dependency is captured in the wait-for graph tπ.wfg. In case a deadlock is detected,

the transaction will be aborted. After the merge is complete, locks are released up to

the parent level.

try to committπ(): self-explanatory.
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5.4.6 Methods specific to root-node (tρ)

search parenttρ(x, tc, to, cmd): The behaviour of search parent method associated

with the root transaction (tρ) is somewhat different from the one associated with

non-root transactions. This is due to that fact that, if a local copy of the desired

object is not available with the root transaction, then it tries to read directly from

the globally shared copy of the object.

First, it secures a lock on its local object tρ.x. If tρ.x.val is non-null and to

along with to’s ancestors up to tc are compatible with tρ, then a response object resx

containing 〈tρ.x.val, tρ.lvl, ∅〉, is returned. If not compatible, then the lock on tρ.x is

released and null is returned to indicate failure.

If tρ.x is null-valued, then an attempt is made to read tψ.x. At this point, sm

is updated with the mts of all the nodes in the path from to to tρ (including tρ).

Subtransaction to is added to tρ.vts. Now, after locking tψ.x, it is checked if any

transaction in sm is forbidden to access tψ.x (i.e., present in tψ.x.fbd). If yes, then

tψ.x.rs is unlocked and null is returned to indicate failure. Otherwise, to is added to

tψ.x.rs before unlocking tψ.x.rs, and a response object containing 〈tψ.x.val, tρ.lvl, s〉

(s contains ids of descendants of to, if any, forbidden to read tψ.x) is returned.

readtρ(x): If a local copy of an object x is not available, then a non-root node calls

the search parent method of its parent. In contrast, a root node, having no parent,

tries to read directly from the globally shared copy in that case. First, it locks the

merge lock tρ.mrg and local copy tρ.x in order. If tρ.x is null-valued, then it locks

tψ.x. Next, it checks the consistency of its step by ensuring that no transaction in

tρ.cm.mts belongs to tψ.x.fbd. If the check fails, then tψ.x is unlocked and tρ aborts.
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Otherwise, tρ is added to tψ.x.rs, tρ.x.val is updated using tψ.x.val, and tρ.cm.its is

updated using tψ.x.fbd and tρ.vts, before unlocking tψ.x and tρ.mrg. Incompatible

descendants (if any) of tρ are aborted and x is added to tρ.lrs. Finally the value of

tρ.x is returned after unlocking it.

try to committρ(): self-explanatory.

5.4.7 Regarding abort of a transaction and its descendants

When a transaction t in a transaction tree aborts, the execution of the entire subtree

rooted at t, i.e., subTree(t), has to be discarded and hence all the transactions in the

subTree(t) are aborted. When a subtransaction aborts, the key thing is to release

the locks on objects of t’s ancestors acquired by transactions in subTree(t).

By construction of ParSTM, whenever t or any of its descendants obtains a lock on

an object of t’s ancestor, it is duly recorded at t’s level (lines 113-114, 89-90 during

external read; 49 during merging). Thus, when t aborts, it can act on behalf of

the entire transactions in subTree(t) and releases the locks of its ancestors’ objects

acquired by transactions in subTree(T ). Subsequently, when the descendants of t are

forced to abort due to the abort of their ancestor t, they do not need to worry about

releasing any locks in their possession (lines 58, 62, 66). This is owing to the fact that

(i) an abort of t means that execution at the subtree level t is suspended anyway, and

(ii) locks on objects of t’s ancestors are already released by t (line 56-57).

The same strategy is followed for an abort of a transaction and its descendants in

subsequent Chapters 6 and 7.

94



5.4.8 Optimization: abort of incompatible descendants

By construction of ParSTM, observe that during an external read or upon merging

of a child, an ancestor ta can detect early that its descendant, say td, is incompatible

with it (due to line 88 or 130). As an incompatible child is not allowed to merge

with its parent (due to line 121), it follows that td is bound to abort eventually when

an attempt will be made to merge its execution with that of its ancestor ta. To this

end, we optimize by forcing the abort of incompatible descendants, such as td, the

moment the ancestor ta identifies them as incompatible (lines 95 or 135). This policy

of preemptive abort of incompatible descendants by an ancestor has been followed in

the protocols discussed in forthcoming Chapters 6 and 7 as well.

5.5 Consistency checking and linearization points

at level t

5.5.1 Consistency checking during external read operation

When a descendant td tries to read a value from its ancestor t, the consistency checking

(line 102 or 142) at t involves use of its local sets t.cm which are not protected by

any lock during this operation. During this check, it is possible that the contents of

t.cm may change, either due to concurrent external read of t (line 88) or merging of

its child (line 130).
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5.5.2 Linearization points of events in a level-wise history

The level wise event history Ĥt consists of the following events: (i) local read/write

operations of t, (ii) external reads of t’s descendants w.r.t. t, (iii) external reads of t

itself, (iv) write operations due to merging of t’s children tc, and (v) commits of t’s

children.

Let `op denote the linearization point of an event. Then, the linearization points

of the various events in the history are defined as follows:

i Local read/write operation of t

(a) readt(t.x) : `op corresponds to the time when it unlocks t.x (line 94 or 177)

(b) writet(t.x) : `op corresponts to the time when it unlocks t.x (line 53)

ii External read operation of t

(a) readt(ta.x) : `op corresponds to the time just after t.cm is updated (line

88 or 171)

iii External read of a descendant td on t’s object or that of t’s ancestor ta:

(a) readtd(t.x) : `op corresponds to the time just after td reads t.cm for con-

sistency checking (line 100 or 140)

(b) readtd(ta.x) : `op corresponds to the time just after td reads t.cm for con-

sistency checking (line 100 or 140)

iv Write due to merging of child tc

(a) writetc(t.x) : `op corresponds to the time just after tc updates t.x (line 125

or 127)

v Commit of child tc
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(a) Ctc : `op corresponds to the time just after t.cm is updated (line 130)

5.5.3 Ordering of external read/search at t with overlapping

local operations of t

Let td be a descendant of t that performs the read operation readtd(t.x) on object t.x.

Let the events of reading the atomic object t2.cm by t1 be denoted by Rt1(t2.cm) and

its local update by Wt2(t2.cm). Then, the ordering of readtd(t.x) during the following

concurrent operation can be specified as follows:

i External read operation readt(ta.y):

As update of t.cm is atomic in nature, events Rtd(t.cm) (line 100 or 140) and

Wt(t.cm) (line 88 or 171) are linearizable, i.e., either Rtd(t.cm) < Wt(t.cm) or

Rtd(t.cm) > Wt(t.cm). Consequently, the ordering of readtd(t.x) and readt(ta.y)

follows the same order as Rtd(t.cm) and Wt(t.cm).

ii Local merge/commit operation try to merget(tc):

Similarly, here events Rtd(t.cm) (line 100 or 140) and Wt(t.cm) (line 130) are

linearizable. We have either Rtd(t.cm) < Wt(t.cm) or Rtd(t.cm) > Wt(t.cm).

Accordingly, readtd(t.x) and Ctc are ordered as well.

Two concurrent read operations readtd1(t.x) and readtd2(t.y) can be ordered arbi-

trarily w.r.t. to each other.

5.5.4 Linearization point of nested transaction

Definition of linearization point `t of a transaction t:

Case I: t is a non-root transaction (tπ)
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1. If t commits, its linearization point, `t, lies at the time just after it updates the

parent’s cm (consistency management) object (line 130).

2. If t aborts, `t lies at the time it accessed tπ.cm for the consistency check of its

last successful read operation (lines 100 or 140).

Case II: t is a root transaction (tρ)

3. If t is a read only transaction that commits, `t is placed at the earliest of (1)

the time of the test during its last read operation (line 150 or 166) and (2) the

time just before t̂ (any id in t.cm.mts) is added to tψ.ow, if it ever is (line 188).

4. If an update transaction t commits, `t is placed just after the execution of line

188 by t (update of tψ.ow).

5. If transaction t aborts, `t is placed just before t̂ is added to the set tψ.ow (line

188 of the try to committ() operation that entails its abort).

5.6 Proof

Here, the set of proofs is divided into three parts, dealing with: (1) (optimistic part)

the history of committed transactions at the global level (Π(Ĥtψ), (2) (pessimistic

part) the level-wise history of committed transactions produced at the nodes (Π(Ĥtπ))

of a transaction tree, and (3) aborted transactions.

First, considering the history of committed transactions, we present the proof for

the optimistic part, using the history produced at the global level (Htψ), and the
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proof for the pessimistic part using the history produced at the nodes (Htπ) in the

transaction tree.

Note: All the line numbers under this section refer to Protocol 5.2 and 5.3 (Section

5.5).

5.6.1 Proof for committed transactions

In this section, we only consider the histories restricted to committed transactions.

Part I: History (Ĥtψ) produced at the global level (tψ)

Ĥtψ deals with the linearizability of root transactions only. Thus, in effect, it

is as good as dealing with non-nested transactions. The case of a root transaction

here is similar to the one under SimpSTM. Let us observe the similarities for a root

transaction tρ under SimpSTM and ParSTM.

• Set tρ.cm.mts contains the ids of tρ and its descendants that have successfully

merged with it.

• Sets tρ.lrs and tρ.lws are used to record read and write operations respectively

by tρ or its descendants in tρ.cm.mts

• tρ.cm.mts is used for consistency checking during the read operation on a global

object tψ.x (tψ.x.fbd∩tρ.cm.mts = ∅) as well as during commit process (tψ.ow∩

tρ.cm.mts = ∅).

The correctness for the root transactions can be proved in the same way as done

in Chapter 4. The only extra requirement here is the proof for the incompatible
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transactions. As discussed earlier, the merging of incompatible subtransactions with

the parent would render the parent non-linearizable at the higher level. Hence, we

need to show that incompatible transactions will not be merged together.

Lemma 5.1. Let Ĥt be a level-wise history. Let t1 and t2 be any two distinct transac-

tions in {t ∪ children(t)}. If rt̂2(tψ.x) : β(t̂1, tψ.x.fbd, ALt̂2(tψ.x, readt̂2(tψ.x))), then

we have (1) if t1, t2 6= t, then ¬(t1 ∈ Π(Ĥt) ∧ t2 ∈ Π(Ĥt)) or (2) t1 = t ∧ t2 /∈ Π(Ĥt)

or (3) t2 = t ∧ t1 /∈ Π(Ĥt).

Proof. Here, incompatibility of transactions comes into the picture when subtransac-

tions read from the globally shared objects.

Since t1 and t2 are distinct (incompatible) transactions, either both the transac-

tions are children of t, or one of the two is t, while the other one is a child of t. First,

we show that

rt̂2(tψ.x) : β(t̂1, tψ.x.fbd, ALt̂2(tψ.x, readt̂2(tψ.x)))⇒ t̂1 ∈ t2.cm.its.

rt̂2(tψ.x) : β(t̂1, tψ.x.fbd, ALt̂2(tψ.x, readt̂2(tψ.x))) means that when subtransac-

tion t̂2 acquired lock on tψ.x to perform a read operation, t̂1 ∈ tψ.x.fbd. Observe

that, by construction, before releasing the lock on tψ.x, transaction t̂2 adds t̂1 to

t̂2.cm.its (lines 152-155, 88; 171) using intersection of tρ.vts and tψ.x.fbd (due to line

148). Later, t̂2 releases the lock on its local copy t̂2.x (lines 94, 177). Thus, we have

following implications:

rt̂2(tψ.x) : β(t̂1, tψ.x.fbd, ALt̂2(tψ.x, readt̂2(x)))⇒ β(t̂1, t̂2.cm.its, RLt̂2(tψ.x, readt̂2(x)))

⇒ t̂1 ∈ t̂2.cm.its (due to line 153-155, 88; 170-171).

Recall that t̂2 denotes a (sub)transaction in t2.cm.mts. If t̂2 6= t2, then it means

t̂2 is t2’s descendant that merged with t2, and in the process merged its its with that
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of t2 (line 130).

Therefore, t̂1 ∈ t̂2.cm.its ∧ t̂2 ∈ t2.cm.mts⇒ t̂1 ∈ t2.cm.its.

⇒ t1 and t2 are incompatible transactions.

Now, we want to show that the two incompatible transactions, t1 and t2, cannot

be merged together. Let us consider the first case in which t1, t2 are children of t. We

have to show t1 ∈ Π(Ĥt)⇒ t2 /∈ Π(Ĥt) and vice versa.

Case I: t1, t2 ∈ children(t).

Observe that, for merging with its parent, each child transaction tc has to first

obtain its parent’s (tp) lock tp.mrg (line 118). This ensures that only one child of tp

merges with it at a time. Now, we have the following two subcases to consider:

Case I(a): ALt1(t.mrg, ttc) <Ht ALt2(t.mrg, ttc) (assuming t1 ∈ Π(Ĥt)).

ALt1(t.mrg, ttc) <Ht ALt2(t.mrg, ttc)

⇒ RLt1(t.mrg, ttc) <Ht ALt2(t.mrg, ttc) ⇒ β(t̂1, t.cm.mts,RLt1(t.mrg, ttc)) (due to

line 130)

⇒ β(t̂1, t.cm.mts,ALt2(t.mrg, ttc))

This means, when t2 locks t.mrg to merge with t, it will discover that it is in-

compatible with t as t.cm.mts already contains t̂1, i.e., t̂1 ∈ t.cm.mts ∩ t2.cm.its.

Consequently t2 aborts (due to line 121-123). Thus, t1 ∈ Π(Ĥt)⇒ t2 /∈ Π(Ĥt).

Case I(b): ALt2(t.mrg, ttc) <Ht ALt1(t.mrg, ttc) (assuming t2 ∈ Π(Ht)).

The proof is symmetric to Case I(a). ALt2(t.mrg, ttc) <Ht ALt1(t.mrg, ttc)

⇒ RLt2(t.mrg, ttc) <Ht ALt1(t.mrg, ttc) ⇒ β(t̂1, t.cm.its, RLt2(t.mrg, ttc)) (due to
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lines 152-155, 88; 130).

⇒ β(t̂1, t.cm.its, ALt1(t.mrg, ttc))

In this case, t1 aborts later on (due to lines 121-123) as t.cm.its already contains

t̂1, i.e., t.cm.its ∩ t1.cm.mts = t̂1 6= ∅. We have t2 ∈ Π(Ht)⇒ t1 /∈ Π(Ht).

Case II: Either t1 = t, or t2 = t.

Case II(a): t1 = t.

t1 = t⇒ t1 is the parent of t2

⇒ t1 is an ancestor of each t̂2 ∈ t2.cm.mts.

⇒ read operation rt̂2(tψ.x) : β(t̂1, tψ.x.fbd, ALt̂1(tψ.x, readt̂2(tψ.x))) is not possible

(failure due to lines 107, 155, 150; 159, 84-85).

Case II(b): t2 = t.

Similar to Case I(b). t2, being the ancestor t, adds t̂1 to t.cm.its anyway, leading

to abort of t1 right away (due to lines 153-155, 88; 170-171; 102-104; 153-155; 83-85).

Further, observe that t might be involved in reading from its ancestor a value that

is incompatible with its child that is trying to merge with it. This situation is avoided

by ensuring that, while t is reading (from its ancestors), its child cannot merge with

it. This is due to the fact that, during its read operation, t locks t.mrg which is

required to be locked by its child transaction in order to merge with t.

Thus, the conjunction of the cases I and II proves the lemma.

102



Lemma 5.1 shows that the read set of a transaction cannot contain incompatible

read operations, thereby ensuring its linearizability at ancestor levels.

Theorem 5.1. The level-wise history Π(Ĥtψ) of committed transactions, produced at

the global level, satisfies level-wise opacity.

Proof. The proof follows from the combination of the definition of linearization points

(2 and 3) for root transactions, Lemma 5.1, and on the basis of the set of proofs

(Lemmas 4.3, 4.4 and 4.5) outlined for root transactions in Chapter 4.

Part II: History (Ĥtπ) produced at a node tπ of transaction tree

We shall prove that the execution of the children of tπ follows the 2PL protocol for

nested transactions, i.e., the children of tπ hold the lock on the parent’s (tπ) objects in

a pessimistic manner. They retain the lock on the parent’s object until they complete

(commit/ abort). In other words, we shall prove that any two children of tπ, say t1

and t2, can execute concurrently only if they do not operate on a common object tπ.x.

We show that 2PL policy is followed by the child transaction for locking its parent’s

objects through the following two points.

Let node tc be a child of node t in a transaction tree.

1. If tc successfully acquires a lock on t’s local object t.x, then the lock on t.x is not

released until all the transactions in the subtree rooted at tc complete (commit

or abort).

2. When tc commits or aborts, it releases all the locks in its possession at its parent

(t) level.
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Next, we provide the set of proofs to show that the history produced by ParSTM

at the nodes of a transaction tree satisfies the above conditions.

Lemma 5.2. Let t be a child of tπ. If t acquires a lock on tπ’s object, tπ.x, then t

releases the lock on tπ.x only upon its completion.

Proof. By construction, t acquires a lock on tπ.x either during its read operation (lines

98, 138) or while trying to merge with the parent (line 120 during try to merge).

If t.x is null-valued, then t tries to obtain a value for t.x by invoking the method

search parenttπ (line 109) of the parent. Note that, in the definition of the method

search parenttπ , there is locking of object tπ.x (lines 98, 138), but no unlocking of

tπ.x in case of a successful read operation. Unlocking is done only if the read is

unsuccessful (lines 102-103, 110-111, 142-143). The only other case when t locks tπ’s

objects is during the validation phase (line 120, try to merge method) towards the

end of t’s execution. Again by construction of the protocol, the lock on tπ.x is released

upon commit (successful validation; lines 132) or on abort (line 123, 55-57). Thus, t

retains the lock on tπ.x until its completion.

Lemma 5.3. If t has read from tπ.x, then no other transaction, tπ or any other child

of tπ, can modify tπ.x until t completes its execution.

Proof. If t has read tπ.x, then it means that t currently holds the (exclusive) lock on

tπ.x (lines 98, 138). By construction, any read (lines 80, 98, 138, 163) or write (lines

51, 119) operation is controlled using a lock associated with tπ.x. That means, to

operate on tπ.x, tπ or its children must first acquire a lock on tπ.x. The lock on tπ.x

can be acquired by another transaction (tπ or any of its children) only after t releases

the lock on tπ.x first. Since t releases the lock on tπ.x only upon its completion

104



(by Lemma 5.2), it means tπ.x cannot be modified by another transaction until t

completes.

Lemma 5.4. Let t1
tπ .x−−→α t2 be the relation defined as: t2 accesses (the parent’s

object) tπ.x after it was accessed by t1 for its read/write operation. Then, t1
tπ .x−−→α

t2 ⇒ t1 →Hσtπ t2.

Proof. We have t1
tπ .x−−→α t2 ⇒ ALt1(tπ.x, r/w) <Htπ ALt2(tπ.x, r/w)

⇒ ALt1(tπ.x, r/w) <Htπ RLt1(tπ.x, ttc) <Htπ ALt2(tπ.x, r/w) <Htπ RLt2(tπ.x, ttc)

(using Lemma 5.2).

⇒ RLt1(tπ.x, ttc) <Htπ RLt2(tπ.x, ttc)

⇒ `t1 <Htπ `t2

⇒ t1 →Hσtπ t2

Lemma 5.5. The level wise event history Ĥt at node t is linearizable.

Proof. The proof follows from the definition of the linearization points of the events

for a level wise histroy, in Section 5.2.2.

While a descendant td reads or checks for a value at an ancestor t, several other

operations (external reads of other transactions, t’s local or external read operation, or

commit of t’s child) could be happening concurrently at t. Descendant td can become

incompatible with t either due to external read of t or commit of a t’s child. We shall

show that the consistency checking on the value read by td from t is guaranteed to

be correct.

Now, similar to the definition of β(t1, t.ow, τ), let us define γinc(t1, t, τ) to indicate

that transaction t1 becomes incompatible with transaction t at time τ . In other words,
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at time τ , check compatibility(t1.cm, t.cm) = false. Using this definition, we shall

prove the next lemma.

Lemma 5.6. Let td be a descendant of t such that history opt, readtd(t.x) ∈ Ĥt,

where opt denotes an external read operation or a commit of t’s child at time τ .

Then, we show that (i) opt, readtd(t.x) can be ordered, and (ii) opt < readtd(t.x) ⇒

¬γinc(td, t, τ), i.e., t and td are not inconsistent before time τ .

Proof. By definition of the linearization points for opt and readtd(t.x) in Ĥt w.r.t.

access to t.cm, and t.cm being an atomic variable, it follows opt, readtd(t.x) in Ĥt are

linearizable, i.e., opt < readtd(t.x) in Ĥt or opt > readtd(t.x) in Ĥt

To prove part (ii), let us assume by contrast that γinc(td, t, τ), i.e., at the comple-

tion of opt at time τ , check compatibility(t.cm, td.cm) = false.

Now, for opt < readtd(t.x), we have the following two cases:

Case I: opt is an external read operation of t

By definition of linearization points for events in a level wise history (Section

5.5.3), we have

`opt < `readtd (t.x)

⇒ update of t.cm (line 88 or 171) such that check compatibility(t.cm, td.cm) = false

occurs before t.cm is read (line 100 or 140) for consistency check of td. (Recall that

t.cm is kept in an atomic variable.)

γinc(td, t, τ) < `readtd (t.x)

⇒ check compatibility(t.cm, td.cm) = false during consistency check for readtd(t.x)

(line 102 or 142)

⇒ readtd(t.x) fails (due to lines 102-104 or 142-144), i.e., opt < readtd(t.x) is not
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possible in this case.

Case II: opt is commit of t’s child

By definition of the linearization points for events in a level wise history (Section

5.5.3), we have

`opt < `readtd (t.x)

⇒ update of t.cm (line 130) such that check compatibility(t.cm, td.cm) = false oc-

curs before t.cm is read (line 100 or 140) for consistency check of readtd(t.x). (Recall

that t.cm is kept in an atomic variable.)

γinc(td, t, τ) < `readtd (t.x)

⇒ check compatibility(t.cm, td.cm) = false during consistency check for readtd(t.x)

(line 102 or 142)

⇒ readtd(t.x) fails (due to lines 102-103 or 142-144), i.e., opt < readtd(t.x) is not

possible in this case also.

Hence, after analysis of the both the cases, we conclude that opt < readtd(t.x)⇒

check compatibility(t.cm, td.cm) = true upon completion of opt.

Theorem 5.2. Level wise transaction history of committed transactions Π(Ĥσ
tπ) pro-

duced at a node tπ follows 2PL for nested transactions, and satisfies level-wise opacity.

Proof. The proof follows from lemmas 5.2 to 5.6 that show that the execution of

subtransactions in the transaction tree is based on the 2PL for nested transactions,

and is linearizable (using the definition of linearization points). Thus, it satisfies

level-wise opacity.
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5.6.2 Proof for aborted transactions

Before diving into showing the correctness of aborted transactions, we prove that in

case of an abort of a subtransaction, the objects locked by it are indeed released up

to the respective ancestors from which they were read. To complete the scenario, we

shall also show that the objects are released only up to the parent level in case of

commit.

Lemma 5.7. When a subtransaction t commits, it releases the locks only up to its

parent. However, in case of its abort, it releases the locks on ancestors’ objects held

by t and its descendants all the way up to the respective level from which they were

read.

Proof. The locks obtained by a transaction t at an ancestor level, either through

search parent method or its commit, are recorded in t.prs (lines 90, 120; 49). Proving

that the locks are released only up to the parent level in case of commit is straight

forward. In case of a commit, locks are released through unlock parent locks method

(line 132). Observe that this method only unlocks objects at t’s parent level (line 37).

It does not propagate to higher levels. Thus, in case of a commit, the locks are

released only up to the parent level.

In case of an abort of t, it is t’s responsibility to release all the locks on its

ancestors’ objects held by t or its descendants. Such locks obtained by t itself are

tracked during search parent (line 113-114) or during try to merge (lines 120, 49).

The locks obtained on behalf of t’s descendants are logged during search parent (lines
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113-114). Thus, t is able to track all the locks held by it or its descendants on t’s

ancestors’ objects.

Now, in case of t’s abort, unlock to ancestors method is invoked (line 56) to

release the locks for objects in t.prs at higher levels. Observe that unlock to ancestors

is cascading in nature. Using the level information associated with objects in t.prs

(pessimistic read set), first lock at parent level is released (line 40), and then at higher

level ancestors in a cascading manner (line 42) until the required level is reached (line

39, 41). This way, locks are released all the way up to the respective level from which

an object was originally read in the chain, and not just up to the parent level.

To show the correctness of aborted transactions, we consider one aborted trans-

action ta at a time in the transaction tree and obtain its closure. The level-wise

histories at different levels are obtained in the same fashion as done in Chapter 3

(refer to Section 3.7). However, we should show that the closure does not contain

incompatible read operations.

Owing to the concurrent execution of transactions at the nested levels, it is quite

possible that two active transactions in the transaction tree are mutually incompat-

ible. We need to show that these two transactions are not part of ta or any of its

ancestors in the closure for ta.

Lemma 5.8. Let H denote the execution of the entire transaction tree in which ta

is an aborted subtransaction whose last operation occurs at time τ ta. Then, ta is

compatible with other transactions in the closure HCta for ta.

Proof. Following the definition of the closure HCta for ta, let readta(t.x) be the last

109



operation of ta. Clearly, readta(t.x) is the last operation in HCta .

Assume that t1 and t2 are two incompatible transactions belonging to HCta . Let P

denote the set containing ta as well as its ancestors, and S denote all the transactions

whose steps are represented in HCta . Clearly, t1, t2 ∈ S. In other words, t1, t2 either

belong to P or have successfully merged with some transactions in P . Also, now we

have two cases.

Case I: t1 and t2 are two committed descendants that have merged with a node t

in P . This is not possible as at any level, two incompatible subtransactions are not

allowed to merge with the parent (follows from Lemma 5.1). This implies that both

t1 and t2 cannot be part of S (i.e., ¬(t1 ∈ S ∧ t2 ∈ S)). Hence, the contradiction.

Case II: t1 is part of ti and t2 is part of tj, where ti, tj are two distinct transactions

in P .

Clearly, ti and tj have an ancestor-descendant relationship. For simplicity, let ti

be an ancestor of tj.

Now, if t1 = ti, then t1 can become incompatible with t2 by performing an external

read operation, say rt1(tp.x), that is incompatible with the previous read steps of

t2. By construction of ParSTM, before completion of rt1(tp.x), the incompatible

descendant tj (as it contains t2) is aborted (line 95). Now ta clearly being a descendant

of ti, it means the last operation of ta (at time τ ta) occurred before rt1(tp.x). This in

turn contradicts the fact that rt1(tp.x) is part of HCta , as all the steps after τ ta are

discarded in HCta (Section 3.7.4, step (i)).

Alternatively, ti can become incompatible with tj (containing t2) when t̂1 commits

and merges with ti. Even in this case, by construction of ParSTM, tj will be aborted

before t̂1 commits (due to line 135). That means t1 /∈ S. Hence, the contradiction.
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Note that an incompatible descendant tj (containing t2) cannot exist after becom-

ing incompatible with its ancestor ti (due to lines 85 or 135). That means all the

steps of t2 were consistent and completed before it became incompatible with ti.

Thus, we conclude that all the steps in HCta are compatible.

Theorem 5.3. The history Π(HCta ) for an aborted transaction ta satisfies level-wise

opacity.

Proof. Using Lemma 5.5, it has been proved that HCta consists of compatible steps

only. Moreover, recall that by construction of a closure, transaction ta and its active

ancestors are transformed into committed transactions in HCta . That means, Π(HCta )

represents a history of committed transactions. Now the set of proofs for a history

of committed transactions in Section 5.5.1 can be applied directly to Π(HCta ). This

implies that Π(HCta ) too satisfies level-wise opacity.
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Chapter 6

HParSTM

6.1 Overview of HParSTM

In the previous chapter, we discussed ParSTM that exercised pessimistic concurrency

control at the nested level. In this chapter we discuss HParSTM that leverages full

concurrency by allowing all transactions in a transaction tree to execute concurrently.

In simplest terms, this is achieved by replicating the optimistic concurrency control

mechanism discussed for non-nested transactions in Section 2.1 at every level (node)

of a transaction tree.

In other words, a control variable ow (overwritten set) and lock-based local copy of

objects, using sets rs (read set) and fbd (forbidden set) as control variables, are used

at each level. Moreover, similar semantics are associated with the operations on these

control variables. A (sub)transaction t’s local copy of object x, t.x, is accessible to t

as well as its descendants. When the descendants of t access t.x, they add their ids to

t.x.rs. Later, if t.x is modified by t or its children, then the ids of descendants present
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(a) For history H1
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t11 t12

(2) wt122(t12.x)
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(3) rt1212(t12.y) ?

(b) For history H2 and H4

Figure 6.1: Regarding consistency of read operations

in t.x.rs are added to t.ow, followed by updating x.fbd using t.ow, and clearing t.x.rs

(similar to Protocol given Section 2.1: lines 17-18 in Table 2.1).

6.2 Discussion of contention management

6.2.1 Standard cases

Most of the scenarios and approaches presented in this section have already been

discussed in previous chapters. However, to set the context for HParSTM, we shall

discuss the various cases in light of the protocol in this chapter.

6.2.1.1 Consistency checking at the time of a read operation

Each transaction t uses mts (merged transaction set) to keep track of the descendants

that have merged with t. When a subtransaction t tries to read from an object t
′
.x
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from its ancestor t
′
’s local space, it should ensure that none of the transactions in

mts of t or any of its intermediate ancestors belongs to t
′
.x.fbd.

Example:

H1 = rt121(t12.x), wt122(t12.x), wt122(t12.y)c122, rt1212(t12.y)?

Referring to Figure 6.1a, t121 (t1212’s ancestor) reads from t12.x, therefore t121 ∈

t12.x.rs. Later, t122 modifies t12.x and t12.y, while merging with t12, resulting in

t121 ∈ t12.x.fbd, t12.y.fbd and t12.ow. Later, t1212 tries to read t12.y. Now, although

t1212 /∈ t12.y.fbd, it is prevented from reading t12.y (which is t122.y) as its intermediate

ancestor t121 belongs to t12.y.fbd.

H2 = rt1211(t12.x)c1211, wt122(t12.x), wt122(t12.y)c122, rt1212(t12.y)?

Consider another example using Figure 6.1b. In H2, instead of t121 reading from

t12.x, its child t1211 reads from t12.x and merges with t121. In this case, when t1212

tries to read t12.y, it will notice t1211 ∈ t12.y.fbd. Now, as t1211 has already become

part of t121, it is illegal for t1212 to access t12.y and is consequently prevented.

6.2.1.2 Avoiding cyclic conflict through transitivity across levels

In the nesting of transactions, there is a possibility of cyclic conflict between trans-

actions not only at the same level (between sibling transactions) but also between

transactions at different levels (ancestors and descendants). The cyclic conflict be-

tween sibling subtransactions is automatically taken care of by the control variables

at their parent’s level. The cyclic conflict between transactions at different levels is
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t11 t12

t121
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t1211 t1212
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(1) rt1212(t12.x)

(3) rt1212(t121.y) ?

(b) For history H5

Figure 6.2: Reading from different levels

handled by aborting a subtransaction as soon as it becomes incompatible with its

ancestor.

Example:

H3 = rt1211(t12.x), wt12(t12.x), wt12(t12.y), rt121(t12.y)?

Refer to Figure 6.2a for history H3. Here, first t1211 reads from t12.x (⇒ t1211 ∈

t12.x.rs). Later, t12 modifies t12.x and t12.y (⇒ t1211 ∈ t12.x.fbd and t12.y.fbd).

Next, t121 successfully reads from t12.y (as t121 /∈ t12.y.fbd) and creates its own local

copy t121.y. Observe that rt1211(t12.x) is incompatible with rt121(t12.y). Therefore, t121

immediately aborts t1211.
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6.2.1.3 Keeping track of incompatible read operations

In case of ParSTM, the incompatible read operations are introduced when subtransac-

tions read from the global objects which are operated through optimistic concurrency

control. In case of HParSTM, this may happen while reading from any ancestor in

the super tree. This is due to the fact that the objects at each level in HParSTM

are operated through optimistic concurrency control. As discussed in Section 5.3,

here also each transaction keeps track of its incompatible transactions using set its

(incompatible transaction set).

Example:

H4 = rt1211(t12.x), wt12(t12.x), wt12(t12.y), rt1212(t12.y), (c1211, c1212)?

Consider the history H4 using Figure 6.1b. Here, t1211 ∈ t12.x.rs. Next, t12, on

wt12(t12.x) and wt12(t12.y), adds t1211 to t12.x.fbd, t12.y.fbd and t12.ow. Now, t1212,

during rt1212(t12.y)), finds t1211 ∈ t12.y.fbd.

Here t1212 is incompatible with t1211. Both t1211 and t1212 share the common

ancestor t121 under t12, and the conflicting write operations of t12 are sandwiched

between the respective read operations of t1211 and t1212 on t12’s objects. Therefore,

t1212 adds t1211 to its its.

6.2.2 Special cases

In this section, we discuss the special cases presented by HParSTM as well as the

solutions to address them.
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6.2.2.1 Tracking overwrite at intermediate ancestor level

In ParSTM, when a subtransaction t reads an object x from its ancestor ta, the

pessimistic locking scheme ensures that the value of x is not changed at each of its in-

termediate ancestors, including ta. The optimistic concurrency control in HParSTM

offers no such guarantee. This poses a challenge for maintaining consistency. To

illustrate the scenario, consider the following case.

Example:

H5 = rt1212(t12.x), wt1211(t121.x), wt1211(t121.y)c1211, rt1212(t121.y)?

In history H5, t1212 first reads t12.x. Later, t1211 modifies objects x and y in t121’s

(t1212’s ancestor) local space, thus t1211 modifies the value of the object x previously

read by t1212. Now, if t1212 is allowed to read the value of y written by t1211 in t121’s

local space, then a cyclic conflict is established between t1211 and t1212. As t1212 has

read t121.y written by t1211, the serial order should be t1211, t1212. This means that

t1212 should have read a value of object t121.x written by t1211, instead of the value of

t12.x, which is not true. Hence, the cycle.

Solution. When a subtransaction t reads an object t
′
.x from its ancestor t

′
,

besides adding its id to t
′
.x.rs, it adds its id to read set t

′′
.x.rs of the null-valued

local object t
′′
.x of each of the intermediate ancestors t

′′
as well. Now, since t1212

accessed t12.x before t1211 merges with their common ancestor t121, it means t121.x.rs

already contained t1212 before t121.x is modified. Hence, after modification of t121.x

and t121.y, we have t1212 ∈ t121.x.fbd, t121.y.fbd and t121.ow. This ensues that t1212 is
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forbidden to access t121.y or any other object t121.z written along/after the write of

t121.x.

6.2.2.2 Significance of vts

H6 = rt122(t12.x), c122, rt1211(t12.x)wt12(t12.x), wt12(t12.y), rt1212(t12.y), (c121, c1212)?

Consider H6 in which we extend H4 by adding rt122(t12.x), c122. Transaction t122 is

a committed child of t12 and has read t12.x. Subtransaction t1211 also has read t12.x.

Later, when t12 writes t12.x and t12.y, both t122 and t1211 are added to t12.x.fbd and

t12.y.fbd. Next, t1212 reads t12.y. Here, t122 and t1212 are compatible, but not t1211

and t1212. Observe that during r1212(t12.y), t12.y.fbd contains both t1211 and t122, but

t1212 should add only t1211 (not t121) to its its. Otherwise, t1212 will definitely be not

able to merge with t12, even under a valid scenario.

This is where set vts comes handy. Note that t122 and t1211 belong to different

subtrees under t12. Differently, set t121.vts contains t1211 but not t122 for the same

reason. Hence, t1212 uses t121.vts during rt1212(t12.y) to filter out t122 and add only

t1211 to t1212.cm.its.
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6.3 Protocol

Protocol 6.1: HParSTM

1. State of base object x:
2. val :∈ V
3. rs and fbd : ⊂ T

State of response object:
4. resx(value, level, s):
5. val ∈ V , set to value
6. lvl ∈ L, set to level
7. sits ⊂ T , set to s

Helper methods:
8. Operation check compatibility(cmta , cmtd) :
9. return ((cmta .mts ∩ cmtd .its = ∅) ∧

(cmta .its ∩ cmtd .mts = ∅));

10. Operation update cm(cm, sm, si) :
11. cm.mts← cm.mts ∪ sm,
12. cm.its← cm.its ∪ si;

13. State of local atomic object t∗.cm :
14. mts ⊂ T
15. its ⊂ T
16. State of transaction t:
17. parent ∈ T , parent’s id (tp)
18. lvl ∈ L;
19. pls ⊂ X
20. lrs, lws ⊂ X
21. mrg : locks
22. mts, its, vts and ow ⊂ T

23. Operation begint(tp, level) :
24. t.parent← tp;
25. t.lvl← level;
26. t.mts← {t};

27. Operation invoke childt(tc) :
28. tc.begin(t, t.lvl − 1);

29. Operation unlock parent lockst(s) :
30. for each x ∈ (s ∩ t.pls) do
31. t.pls← t.pls \ {x};
32. unlock tp.x; end for

33. Operation abortt() :
34. t.unlock parent locks(t.pls);
35. t.abort active desc();
36. return (abort);

37. Operation abort incompat desct(si) :
38. sa ← si ∩ t.vts;
39. if (sa = ∅) then return; end if

40. lock t.mrg;
41. for each (tc ∈ activeChildren(t)) do
42. if (tc.cm.mts ∩ sa 6= ∅) then
43. tc.abort();
44. else
45. tc.abort incompat desc(sa); end if
46. end for
47. unlock t.mrg;
48. t.vts← t.vts \ sa;

49. Operation abort active desct():

50. for each t
′ ∈ activeChildren(t) do

51. t
′
.force abort(); end for

52. Operation force abortt():

53. for each t
′ ∈ activeChildren(t) do

54. t
′
.force abort(); end for

55. return (abort);

56. Operation get local lockt(x) :
57. lock t.x;

58. Operation get lockst(s, tc) :
59. for each x ∈ s do
60. get local lockt(x, tc);
61. tc.pls← tc.pls ∪ {x}; end for

62. Operation writet(x,v) :
63. lock t.x;
64. t.x.val← v;
65. t.ow ← t.ow ∪ t.x.rs;
66. t.x.fbd← t.ow;
67. t.x.rs← ∅;
68. unlock t.x;
69. t.lws← t.lws ∪ {x};

70. Operation search parentt(x, tc, to, cmd) :
71. lock t.x;
72. cm← t.cm;
73. t.x.rs← t.x.rs ∪ {to};
74. if (t.x.val 6= null) then
75. if(¬check compatibility(cm, cmd)∨
76. (t.x.fbd ∩ cmd.mts 6= ∅)) then
77. unlock t.x;
78. return null; end if
79. si ← t.x.fbd ∩ tc.vts;
80. resx ← 〈t.x.val, t.lvl, si〉;
81. unlock t.x;
82. else
83. update cm(cm, cmd.mts, cmd.its);
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84. t.vts← t.vts ∪ {to};
85. resx ← search parenttp(x, t, to, cm);
86. unlock t.x;
87. end if
88. return resx;

89. Operation readt(x) :
90. lock t.mrg;
91. lock t.x;
92. resx ← φ;
93. if (tπ.x.val = null) then
94. resx ← search parenttp(x, t, t, t.cm);
95. if (resx = null) then
96. abortt(); end if
97. t.x.val← resx.val;
98. t.lrs← t.lrs ∪ {x};
99. update cm(t.cm, ∅, resx.sits);

100. end if
101. unlock t.mrg;
102. v ← t.x.val;
103. unlock t.x;
104. t.abort incompat desc(resx.sits);
105. return v;

106. Operation try to merget(tc) :

107. lock t.mrg;
108. t.get locks(tc.lrs ∪ tc.lws, tc);
109. if (¬check compatibility(t.cm, tc.cm)∨
110. (tc.lws 6= ∅∧(tc.cm.mts∩t.ow 6= ∅))then
111. unlock t.mrg;
112. tc.abort(); end if
113. for each x ∈ tc.lws do
114. t.x.val← tc.x.val; end for
115. for each x ∈ tc.lrs : t.x.val = null do
116. t.x.val← tc.x.val; end for
117. t.ow ← t.ow ∪ (∪x∈tc.lwst.x.rs);
118. for each x ∈ tc.lws do
119. t.x.fbd← t.ow;
120. t.x.rs← ∅; end for
121. t.lrs← t.lrs ∪ tc.lrs;
122. t.lws← t.lws ∪ tc.lws;
123. update cm(t.cm, tc.cm.mts, tc.cm.its);
124. unlock t.mrg;
125. tc.unlock parent locks(tc.pls);

126. Operation try to committ() :
127. tp.try to merge(t);
128. tp.abort incompat desc(t.cm.its);
129. return (commit);

Protocol 6.2: HParSTM (Special case of root node, tρ)

130. Operation search parenttρ(x, tc, to, cmd) :
131. lock tρ.x;
132. cm← tρ.cm;
133. t.x.rs← t.x.rs ∪ {to};
134. if (tρ.x.val 6= null) then
135. if(¬check compatibility(cm, cmd))∨
136. (tρ.x.fbd ∩ cmd.mts 6= ∅)) then
137. unlock tρ.x;
138. return null; end if
139. resx ← 〈tρ.x.val, tρ.lvl, ∅〉;
140. unlock tρ.x;
141. else
142. sm ← cm.mts ∪ cmd.mts;
143. tρ.vts← tρ.vts ∪ {to};
144. lock tψ.x;
145. if (tψ.x.fbd ∩ sm = ∅) then
146. tψ.x.rs← tψ.x.rs ∪ {to};
147. si ← tψ.x.fbd ∩ tρ.vts;
148. resx ← 〈tψ.x.val, tρ.lvl, si〉;
149. else
150. resx ← null; end if
151. unlock tψ.x;
152. unlock tρ.x;
153. end if
154. return resx

The following methods are same as in Pro-
tocol 5.3.

155. Operation readtρ(x) :
156. lock tρ.mrg;
157. lock tρ.x;
158. si ← ∅;
159. if (tρ.x.val = null) then
160. lock tψ.x;
161. if (tψ.x.fbd ∩ tρ.cm.mts 6= ∅) then
162. unlock tψ.x;
163. aborttρ(); end if
164. tψ.x.rs← tψ.x.rs ∪ {tρ};
165. tρ.x.val← tψ.x.val;
166. si ← tψ.x.fbd ∩ tρ.vts;
167. update cm(tρ.cm, ∅, si);
168. unlock tψ.x;
169. tρ.lrs← tρ.lrs ∪ {x}; end if
170. unlock tρ.mrg;
171. v ← tρ.x.val;
172. unlock tρ.x
173. tρ.abort incompat desc(si);
174. return v;

175. Operation try to committρ() :
176. if (tρ.lws = ∅) then
177. return commit; end if
178. for each tψ.x : x ∈ (tρ.lrs ∪ tρ.lws) do
179. lock tψ.x;
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180. tρ.pls← tρ.pls ∪ {x} end for
181. if (tρ.cm.mts ∩ tψ.ow 6= ∅) then
182. aborttρ(); end if
183. tψ.ow ← ∪x∈tρ.lwstψ.x.rs;
184. for each x ∈ tρ.lws do

185. tψ.x.val← tρ.x.val
186. tψ.x.fbd← tψ.ow;
187. tψ.x.rs← ∅ end for
188. tρ.unlock parent locks(tρ.pls);
189. return (commit);

6.3.1 Transaction state

A transaction t begins with begin(tp, level), where tp denotes the id of the parent of t.

The tp is tψ for a root-level transaction. The set lrs (local read set) is used to record

the objects read from the ancestors, whereas set lws (local write set) is used to record

its write steps. The access to each copy of a base object is protected by a lock. The

set ow is used to store the ids of those descendants of t that have read a value from

its locally shared objects whose values have been modified since the reading. The

local variable parent stores the reference to t’s parent tp.

Each transaction maintains a consistency management object, cm, which consists

of sets mts and its. Set mts (merged transaction set) contains the ids of t as well

as those descendants of t whose results have been propagated to (merged with) t.

A descendant t
′

of t is included in t.mts only when t
′

and all of its intermediate

ancestors up to t commit. The set its (incompatible transaction set) denotes a set

of transactions that t is incompatible with and hence cannot be merged together.

Further, a set pls (parent lock set) is used to keep track of the locks obtained on

parent’s objects. Further, lock mrg is used for merge and read operations.

Observe that a transaction in HParSTM does not maintain set prs as is done in

ParSTM in Chapter 5. This is owing to the fact that an external read in HParSTM
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does not result in pessimistic locking of ancestors at multiple levels. A transaction

only needs to abort the locks up to its parent level (obtained in try to merge opera-

tion), even in case of its abort.

6.3.2 Working of HParSTM:

In HParSTM, the allocation of space for local copy of an object (x) in the local space

of a transaction is automatically done whenever required. For a transaction t, this

typically happens when a transaction (t or its descendant) tries to obtain a lock on a

local copy t.x of t, and t.x does not already exist. At the time of allocation of space

for a local copy of object x with transaction t, the initial state of t.x is: t.x.val = null,

t.x.rs = ∅ and t.x.fbd = ∅. Further, in the text, wherever a transaction is looking for a

local copy of an object to read, we mean a non-null valued copy of that object. Several

steps of the protocol are self-explanatory or similar to the ones already discussed in

previous chapters. We describe only the salient features. The key procedures of the

protocol are discussed as follows.

begint(tp, level), invoke childt(tc): Self-explanatory.

unlock parent lockst: Set pls contains the ids of parent’s objects on which t

currently holds the locks. Locks on these objects are released using the method.

abortt() : This method is invoked when a transaction t has to be aborted. Before

aborting, transaction t releases all the locks on parent’s objects in its possession.

Finally, t calls the abort() method of its active children (if any). Observe that, in

comparision to ParSTM, there is no unlock to ancestors needed in this case, as there

is no multi-level pessimistic locking on ancestors’ objects in case of HParSTM.
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check compatibilityt(cma, cmd) : Discussed earlier.

abort incompat desct(si) : Discussed earlier.

abort active desct() : Discussed earlier.

get local lockt(x) : This method is used to lock object t.x.

get lockst(s, tc) : This method is invoked by the child tc to obtain locks on parent

t’s objects in set s.

writet(x, v) : In order to perform a write operation in its local space, transaction

t locks its local copy t.x, updates the value of x.val, adds x.rs to ow before clearing

x.rs, and updates x.fbd using ow. Then, t unlocks t.x, followed by addition of x in

t.lws.

readt(x) : Same as the one discussed in case of ParSTM in Chapter 5, except

that pls is not updated in this case as the lock on parent’s object is released upon

completion of the read operation.

search parentt(x, tc, to, cmd) : This method is similar to the search parentmethod

discussed in Chapter 5. This method is invoked by the child transaction tc on behalf

of a descendant to (original descendant requiring to read value of nearest copy of x)

to search for a local copy of x at its parent t’s level. First, t.x is locked, and to is

added to t.x.rs. If t.x is not null-valued, then we ensure that none of the transactions

in mts of to and its intermediate ancestors up to tc (1) belongs to t.x.fbd and (2)

is incompatible with t. Otherwise, t.x is unlocked and null is returned to indicate

failure. If the consistency check is valid, then incompatible descendants, si, of to

are obtained using t.x.fbd and tc.vts, and value of resx(t.x.val, t.lvl, si) is returned,

followed by unlocking of t.x.

In case t.x is null valued, to is added to t.vts. Next, t forwards the search to
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its parent after updating cmd (cumulative cm). Finally, the value obtained from

the parent level is returned after unlocking t.x. Unlike ParSTM, local object t.x is

unlocked not only in case of failed search but also in case of a successful search.

try to merget(tc) : This method is invoked by the child transaction tc to merge its

local sets with the parent t. Access control between competing children is achieved

by using a mrg lock. Only one child transaction can merge at a time. For each x ∈

(tc.lrs ∪ tc.lws) a lock is obtained on object t.x. Next, for consistency, compatibility

of tc with t as well as its membership in t.ow is checked. If the consistency check of

tc with t is successful, then for each object x ∈ (tc.lrs ∪ tc.lws), the value of t.x is

updated using that of tc.x. Set t.ow is updated by merging the cumulative content

of t.x.rs for each x ∈ tc.lws. For each x ∈ (tc.lws), t.x.fbd is updated with t.ow and

t.x.rs is reset. The sets tc.lrs, tc.lws and tc.cm are merged with the corresponding

sets of the parent t. Finally, all the locks previously obtained by tc are released.

try to committ() : If t is a nested transaction, then it tries to merge with its

parent.

In case t is a root-level (non-nested) transaction, then the behaviour of the vali-

dation process for t is the similar to that proposed in [9] for a non-nested transaction,

as already discussed in Chapters 4 and 5. When the root transaction commits, the

objects in its local write set are modified globally, i.e., the change is reflected in the

globally shared copy of objects available with tψ. The root transaction first checks if

it has only read steps. If it is found to be read only, then the transaction commits

immediately. Otherwise, it locks all the objects in its sets t.lrs and t.lws. Then, it

checks if any of the subtransactions in its set t.mts belongs to the tψ.ow set. If yes,

then it means that the consistency of the root transaction has been compromised, and
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the transaction releases all the locks before aborting. Otherwise it updates the values

of all the global objects in its write set, followed by updating tψ.ow and tψ.x.fbd

for each x it writes. Finally, the root transaction releases all the locks and com-

mits. Observe that, during the commit of a root transaction, there is no checking of

incompatibility or update operations for the sets cm, lrs, lws of its parent.

6.3.3 About management of sets

The local objects/sets associated with a transaction (other than tψ) exist only during

the lifespan of that transaction. The local memory allotted to that transaction is

freed as soon as it completes. Only the globally shared objects/sets, associated with

the fictitious transaction tψ, exist throughout the run of the STM system. As such

the size of their content may grow very large if not managed over the run of the STM

system. We can adopt the following approach for suppressing the ids of transactions

that have been aborted or committed. When t commits or aborts, we subtract set

t.vts from the sets (tp. ∗ .rs, tp. ∗ .fbd and tp.ow) at the parent level.

6.3.4 About deadlock freedom

In general, a deadlock situation may arise between two descendants, say t1 and t2,

of a node t if each descendant requests a lock on t’s object such that it is currently

held by the other descendant. In other words, say t1 and t2 already hold lock on t.x

and t.y respectively. Now, if t1 and t2 try to lock t.y and t.x respectively (notice the

reverse order of objects), a deadlock situation will arise where each subtransaction

will be waiting indefinitely for a lock held by the other. Observe that for a deadlock

125



situation to possibly occur, the participating transaction should try to lock at least

two shared objects. Otherwise, deadlock is not possible.

Unlike ParSTM, in HParSTM the lock on an object is released soon after the

external read on it by a descendant. That means when a transaction t’s object is

locked by its descendant for an external read, that lock/descendant cannot be an

accomplice in a deadlock situation. If more than one descendant requests the lock for

the same object, then only one of them gets the lock while others wait for their chance

until the lock is released at the completion of the current external read operation.

The only exception is when a descendant tries to merge with its parent. At that

time, it may try to obtain and hold lock on more than one object of the parent.

Thus, deadlock may occur when more than one child tries to merge with the parent

at the same time. We prevent this case by restricting only one child to merge with

the parent by using mrg lock.

6.4 Consistency checking and linearization points

at level t

6.4.1 Linearization points of events in a level-wise history

The level wise event history Ĥt comprises of the following events: (i) local read/write

operations of t, (ii) external reads of t’s descendants w.r.t. t, (iii) external reads of

t itself, (iv) write operations due to merging of t’s child tc, and (v) commits of t’s

children.

Let `op denote the linearization point of an event. Then, the linearization points
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of the various events in the history are defined as follows:

i Local read/write operation of t

(a) readt(t.x) : `op corresponds to the time when it unlocks t.x (line 103 or

172)

(b) writet(t.x) : `op corresponds to the time when t updates t.ow (line 68)

ii External read operation of t

(a) readt(ta.x) : `op corresponds to the time when t.cm is updated (line 99)

iii External read of a descendant td on t’s object or that of t’s ancestor ta:

(a) readtd(t.x) : `op corresponds to the time when td reads t.cm for consistency

checking (line 72 or 132)

(b) readtd(ta.x) : `op corresponds to the time when td reads t.cm for consistency

checking (line 72 or 132)

iv Write due to commit of child tc

(a) writetc(t.x) : `op corresponds to the time when tc updates t.x (line 114)

v Commit of child tc

(a) Ctc : `op corresponds to the time when t.cm is updated (line 123)

6.4.2 Definition of linearization point of a transaction

The definition of linearization points of root nodes in HParSTM is similar to what is

defined in Chapters 4 and 5. A comprehensive set of proofs has been furnished for

the same as well in those chapters. In this chapter, we shall focus on the definition

of linearization points for non-root nodes in HParSTM and provide a set of proofs
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for the same. With this end in view, the linearization points for non-root nodes are

defined as follows.

1. If t is an update transaction that commits, its linearization point, `t, lies at the

time just after it updates the parent’s tp.ow and tp.cm (consistency manage-

ment) object (line 123).

2. If t is a read only commited transaction, then `t is placed at the earliest of (i)

the time it reads tp.cm for its last successful external read operation (lines 72,

132), and (ii) the time just before t̂ (any id in t.mts) is added to tp.ow (if it

ever is) (lines 65, 117).

3. If a transaction t aborts, `t is determined as if it were a read only transaction,

i.e., `t lies at the earliest of (i) the time it reads tp.cm for its last successsful

external read operation (lines 72, 132), and (ii) the time just before t̂ (any id

in t.mts) is added to tp.ow (if it ever is) (lines 65, 117).

Observe that in HParSTM, the linearization point of each transaction has been

defined w.r.t. access/update of consistency management set t.cm and t.ow instead

of set t.ow alone as was done in [9]. This is so due to the fact that in HParSTM

the consistency checking is based on combination of checking the membership in sets

t.cm and t.ow. Checking t.ow alone is not sufficient.
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6.5 Proof

Owing to the construction of HParSTM, the local objects available with a transaction

t are operated on the same way (by t’s children) as the global copies of objects. In

Chapter 4, we have already outlined the proofs for the correctness for the history

produced at the global level (Htψ). The same set of proofs can be applied here for the

level-wise history produced at any node of the super tree. In other words, to draw a

parallelism, at each level t the local objects available with node t can be treated as

global copies of objects, and t’s children as root-level transactions. The additional

element we need to account for in the proofs for HParSTM is the compatibility of

transactions.

6.5.1 Proof for committed transactions

Recall that, in ParSTM, the consistency at each level was achieved using locks asso-

ciated with objects in a pessimistic manner. HParSTM differs in the sense that the

objects at each node are accessed in an optimistic manner. Further, Unlike ParSTM

where sets fbd and ow have been used only at the global level Htψ , HParSTM uses

these sets at each level. For this reason, the proofs for HParSTM are slightly differ-

ent as well.

For a given level-wise historyHt of committed transactions produced by HParSTM,

we need to prove:

1. →Hσt is total order.

2. →H′t⊆→Hσt .
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3. If t1, t2 are two incompatible transactions, then they cannot merge together.

4. tw
t.x−→rf tr ⇒ @t′w such that (tw →Hσt t

′
w →Hσt tr) ∧ (wt′w(t.x) ∈ Ht).

5. tw
t.x−→rf tr ⇒ tw →Hσt tr.

Proofs of (a) →Hσt is total order, and (b) →H′t⊆→Hσt follows directly from the

definition of linearization points discussed above.

Next, we prove the remaining parts.

Lemma 6.1. Let Ĥt be a level-wise history of HParSTM. Let t1 and t2 be any two

distinct transactions ∈ {t ∪ children(t)}, and t
′

be an ancestor of t. If rt̂2(t
′
.x) :

β(t̂1, t
′
.x.fbd, ALt̂2(t

′
.x, readt̂2(t

′
.x))), then we have (1) if t1, t2 6= t, then ¬(t1 ∈

Π(Ĥt) ∧ t2 ∈ Π(Ĥt), or (2) t1 = t ∧ t2 /∈ Π(Ĥt) or (3) t2 = t ∧ t1 /∈ Π(Ĥt).

Proof. Since t1 and t2 are distinct transactions, either both the transactions are chil-

dren of t, or one of the two is t, while the other one is a child of t. First, we show

that

rt̂2(t
′
.x) : β(t̂1, t

′
.x.fbd, ALt̂2(t

′
.x, readt̂2(t

′
.x)))⇒ t̂1 ∈ t2.cm.its.

rt̂2(t
′
.x) : β(t̂1, t

′
.x.fbd, ALt̂2(t

′
.x, readt̂2(t

′
.x))) means that when subtransaction

t̂2 acquired the lock to perform a read operation on the object t
′
.x of t’s ancestor t

′
,

t̂1 ∈ t
′
.x.fbd. Observe that, by the construction of HParSTM, before releasing the

locks on its object t‘.x, t̂1 is added to resx.its (line 79-80, 147-148, 99) using t̂1 ∈ t.vts

(due to line 84, 147) followed by releasing the lock on its own local copy of object

t2.x (line 103). Thus, we have following implications:

rt̂2(t
′
.x) : β(t̂1, t

′
.x.fbd, ALt̂2(t

′
.x, readt̂2(x))) ⇒ β(t̂1, resx.its, RLt̂2(t

′
.x, readt̂2(x)))

By construction resx.its is used to update t2.cm.its before unlocking t2.x (lines 79-80,
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147-148, 99, 103). Thus, we have

RLt̂2(t
′
.x, readt̂2(x)) <Ht RLt̂2(t2.x, readt̂2(x))⇒ β(t̂1, t̂2.cm.its, RLt̂2(t̂2.x, readt̂2(x)))

(due to line 79-80, 147-148).

Finally, t̂1 ∈ t̂2.cm.its ∧ t̂2 ∈ t2.cm.mts ⇒ t̂1 ∈ t2.cm.its (due to merging, t̂2 is a

descendant of t2).

Now, let us consider the first case in which t1, t2 are children of t. We have to

show t1 ∈ Π(Ĥt)⇒ t2 /∈ Π(Ĥt) and vice versa.

Case I: t1, t2 ∈ children(t).

The try to merget(tc) method is invoked by the child to merge its local sets

with those of its parent. Synchronization of concurrent requests from the children is

achieved by means of a special lock, called merge lock (denoted, t.mrg). That means

only one child transaction can merge with t at a time. Now, we have following two

subcases to consider:

Case I(a): ALt1(t.mrg, ttc) <Ht ALt2(t.mrg, ttc) (assuming t1 ∈ Π(Ĥt)).

ALt1(t.mrg, ttc) <Ht ALt2(t.mrg, ttc)

⇒ RLt1(t.mrg, ttc) <Ht ALt2(t.mrg, ttc) ⇒ β(t̂1, t.cm.mts,RLt1(t.mrg, ttc)) (due to

line 123)

⇒ β(t̂1, t.cm.mts,ALt2(t.mrg, ttc))

This means, when t2 tries to merge with t, it will discover that it is incompatible

with t and consequently abort (due to line 109-112). Thus, t1 ∈ Π(Ĥt)⇒ t2 /∈ Π(Ĥt).
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Case I(b): ALt2(t.mrg, ttc) <Ht ALt1(t.mrg, ttc) (assuming t2 ∈ Π(Ht)).

ALt2(t.mrg, ttc) <Ht ALt1(t.mrg, ttc)

⇒ RLt2(t.mrg, ttc) <Ht ALt1(t.mrg, ttc) ⇒ β(t̂1, t.cm.its, RLt1(t.mrg, ttc)) (due to

line 123).

⇒ β(t̂1, t.cm.its, ALt2(t.mrg, ttc))

In this case, t1 aborts later on (due to line 109-112) while trying to merge with t.

We have t2 ∈ Π(Ht)⇒ t1 /∈ Π(Ht).

Case II: Either t1 = t, or t2 = t.

Case II(a): t1 = t.

t1 = t⇒ t1 is the parent of t2

⇒ t1 is an ancestor of each t̂2 ∈ t2.cm.mts.

⇒ read operation rt̂2(t
′
.x) : β(t̂1, t

′
.x.fbd, ALt̂1(t

′
.x, readt̂1(t

′
.x))) is not possible (failure

due to lines 123, 75-78, 135-138, 95-96).

Case II(b): t2 = t.

Similar to Case I(b). t2, being the ancestor t, adds t̂1 to t.its anyway, leading to

abort of t1 (due to lines 79-80, 88; 147-148, 99, 104).

Thus, the conjunction of the cases I and II proves the lemma.
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Lemma 6.2. Given a level-wise hstory Ĥt, let t1 ∈ Π(Ĥt). Then,

β(t1, t.ow, τ)⇒ `t1 <Ht τ .

Proof. We have to show that the linearization point for a transaction cannot lie after

the time at which its id has been added to t.ow. There are two cases:

- If t1 is a read only commited transaction, then `t1 is placed at the earliest of (i)

the time it reads t.cm for its last successsful external read operation, and (ii) the time

just before t̂1 (any id in t1.mts) is added to t.ow (if it ever is), which proves the lemma.

- If t1 writes and commits, its linearization point `t1 is placed during try to commit(),

while t1 holds the locks of every object of t that it has read. If t̂1 was in t.ow before

it acquired all the locks, it would not commit (due to lines 110-112, 181-182). Let

us notice that t̂1 can be added to t.ow only by t or an update child transaction of t

holding a lock on a base object previously read by t̂1 . As t1 releases the locks just

before committing (lines 123, 125; 183, 188), it follows that `t1 occurs before the time

at which t̂1 is added to t.ow (if it ever is), which again proves the lemma.

Similarly, we shall prove the next lemma. Recall that γinc(t1, t, τ) has been defined

in Chapter 5 to mean that transaction t1 becomes incompatible with transaction t at

time τ .

Lemma 6.3. Given a level-wise history Ĥt, let t1 ∈ Π(Ĥt). Then,

γinc(t1, t, τ)⇒ `t1 <Ht τ .

Proof. The proof is similar to that of the previous lemma.
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We have to show that the linearization point for a transaction t1 cannot lie after

the time at which t1 has become incompatible with t. There are two cases:

- If t1 is a read only committed transaction, then `t1 is placed at the earliest of

(i) the time it reads t.cm for its last successsful external read operation, and (ii) the

time just before t̂1 (any id in t1.mts) is added to t.ow (if it ever is). For a successful

read operation t1 must read t.cm (line 72 or 132) before time τ at which we have

γinc(t1, t, τ). Otherwise, t1 will fail the subsequent consistency check at line 75 or 135

and consequently abort, leading to an unsuccessful read operation. Thus, `t1 occurs

before τ , which proves the lemma.

- If t1 writes and commits, its linearization point `t1 is placed during try to commit(),

while t1 holds the lock on t.mrg lock. If t̂1.cm was incompatible with t.cm before it

acquired lock on t.mrg (line 107), it would not commit (due to failure to pass the

consistency check at line 109). Let us notice that t.cm is updated either during an

external read of t (line 99 or 167) or by merging of its committed child (line123 ).

Further, while t.mrg is locked by a child, t cannot perform an external read oper-

ation as it must lock t.mrg as well first (line 90). As t1 releases the lock on t.mrg

just before committing (lines 123, 124), it follows that `t1 occurs before the time τ at

which γinc(t1, t, τ), which again proves the lemma.

Lemma 6.4. tw
t.x−→rf tr ⇒ @t′w such that (tw →Hσt t

′
w →Hσt tr) ∧ (wt′w(t.x) ∈ Ht).

Proof. By contradiction, let us assume that there are transactions tw, t
′
w and tr and

an object t.x such that:
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−tw
t.x−→rf tr

−wt′w(t.x)v
′ ∈ Ht

−tw →Hσt t
′
w →Hσt tr.

As both tw and t
′
w write t.x in shared memory, they have necessarily committed (a

write in shared memory occurs only at lines 114, 185 (and 64 in case of fictitious child

transaction) during the execution of try to commit, i.e., tw, tw′ ∈ Π(Ĥt)). Moreover,

their linearization points `tw and `t′w occur while they hold the lock on t.x (before

committing), from which we have the following implications:

tw →Hσt t
′
w ⇔ `tw <Ht `t′w ,

`tw <Ht `t′w ⇒ RLtw(t.x, ttc) <Ht ALt′w(t.x, ttc)

⇒ wtw(t.x)v <Ht wt′w(t.x)v
′
,

(tw
t.x−→rf tr) ∧ (wtw(t.x)v <Ht wt′w(t.x)v

′
)⇒ wtw(t.x)v <Ht rtr(t.x)v <Ht wt′w(t.x)v

′
.

When a subtransaction in t̂1 (i.e., t1 or any of its descendants that merged with

t1) reads an object t.x, it always adds its id to t.x.rs and to null-valued t
′
.x.rs of each

of its intermediate ancestors t
′

(if any) upon acquiring a lock on t.x (lines 73, 133).

Therefore, the predicate β(t̂1, t.x.rs, RLt̂1(t.x, read(x))) is true (t.x.rs is set to ∅ only

after being added to the set t.ow). Using this observation, we have the following:

rtr(t.x)v <Ht wt′w(t.x)v
′ ∧ β(t̂r, t.x.rs, RLt̂r(t.x, read(x)))

⇒ β(t̂r, t.x.rs, ALt′w(t.x, ttc)),

β(t̂r, t.x.rs, ALt′w(t.x, ttc)) ∧ (wt′w(t.x)v
′ ∈ Ht) ⇒ β(t̂r, t.ow, `t′w) ⇒ `tr <Ht `t′w ⇔

tr →Hσt t
′
w.

which proves that, contrary to the initial assumption, t
′
w cannot precede tr in the

sequential transaction history Ĥσ
t .
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Similar to ParSTM discussed in Chapter 5, we also need to show that in HParSTM

the value read by a descendant from its ancestor is consistent at the time of reading.

Recall that a descendant td can become incompatible with an ancestor t either due to

an external read of t or a commit of a t’s child. We shall show that the consistency

checking of the value read by td from t is guaranteed to be correct.

Lemma 6.5. Let td be a descendant of t such that history opt, readtd(t.x) ∈ Ĥt,

where opt denotes an external read operation or a commit of t’s child at time τ .

Then, we show that (i) opt, readtd(t.x) can be ordered, and (ii) opt < readtd(t.x) ⇒

¬γinc(td, t, τ), i.e., t and td are not inconsistent before time τ .

Proof. By definition of linearization points for opt and readtd(t.x) in Ĥt w.r.t. access

to t.cm, and t.cm being an atomic variable, it follows opt, readtd(t.x) in Ĥt are ordered

according to their linearization points.

To prove part (ii), let us assume by contrast that γinc(td, t, τ), i.e., at the comple-

tion of opt at time τ , check compatibility(t.cm, td.cm) = false.

Now, for opt < readtd(t.x), we have the following two cases:

Case I: opt is an external read operation of t

By definition of linearization points for events in a level wise history (Section 6.1),

we have

`opt < `readtd (t.x)

⇒ update of t.cm (line 99) such that check compatibility(t.cm, td.cm) = false occurs

before t.cm is read (line 72 or 132) for consistency check of td. (Recall that t.cm is

kept in an atomic variable.)

τ < `readtd (t.x) such that γinc(td, t, τ) = true
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⇒ check compatibility(t.cm, td.cm) = false during the consistency check for readtd(t.x)

(line 75 or 135)

⇒ readtd(t.x) fails (due to lines 75-78, 135-138, 95-96), i.e., opt < readtd(t.x) is not

possible in this case.

Case II: opt is a commit of t’s child

By definition of linearization points for events in a level wise history (Section

5.5.3), we have

`opt < `readtd (t.x)

⇒ update of t.cm (line 123) such that check compatibility(t.cm, td.cm) = false oc-

curs before t.cm is read (line 72 or 132) for consistency check of readtd(t.x) (Recall

that t.cm is kept in an atomic variable).

τ < `readtd (t.x) such that γinc(td, t, τ) = true

⇒ check compatibility(t.cm, td.cm) = false during consistency check for readtd(t.x)

(line 75 or 135)

⇒ readtd(t.x) fails (due to lines 75-78, 135-138, 95-96), i.e., opt < readtd(t.x) is not

possible in this case also.

Hence, after analysis of both the cases, we conclude that opt < readtd(t.x) ⇒

¬γinc(td, t, τ) upon completion of opt.

Lemma 6.6. tw
t.x−→rf tr ⇒ tw →Hσt tr.

Proof. The proof is made up of two parts. First it is shown that tw
t.x−→rf tr ⇒

¬β(t̂r, t.ow, `tw), and then it is shown that ¬β(t̂r, t.ow, `tw)∧tw
t.x−→rf tr ⇒ tw →Hσt tr.
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Proof of tw
t.x−→rf tr ⇒ ¬β(tr, t.ow, `tw). Let us assume by contradiction that the

predicate β(t̂r, t.ow, `tw) is true. Due to lines 66, 119 (or 186) we have β(t̂r, t.ow, `tw)⇒

β(t̂r, t.x.fbd, RLtw(t.x, ttc))

If the read of t.x from shared memory by tr is before the write by tw, we cannot

have tw
t.x−→rf tr. So, in the following we consider that the read of t.x from shared mem-

ory by tr is after its write by tw. We have then RLtw(t.x, ttc) <Ht ALt̂r(t.x, read(x)),

and consequently β(t̂r, t.x.fbd, RLtw(t.x, ttc))⇒

β(t̂r, t.x.fbd, ALtr(t.x, ttc)).

As t̂r ∈ t.x.fbd when it locks t.x, it follows that the read operation fails at line

75-76, 135-136 (or 145) and consequently we cannot have tw
t.x−→rf tr. Summarizing

the previous reasoning we have β(t̂r, t.ow, `tw) ⇒ ¬(tw
t.x−→rf tr), and taking the

contrapositive we finally obtain tw
t.x−→rf tr ⇒ ¬β(t̂r, t.ow, `tw)

Proof of ¬β(t̂r, t.ow, `tw) ∧ tw
t.x−→rf tr ⇒ tw →Hσt tr. As defined earlier, the

linearization point `tr depends on whether tr is a read only or an update transaction.

The proof considers the two possible cases.

- If tr is an update transaction that commits, its linearization point `tr (that is

defined at line 123 after it updates the set t.ow and t.cm) occurs while merging

(try to commit()). Due to this observation, the fact that tw releases its locks after

its linearization point, and tw
t.x−→rf tr, we have `tw <Ht `tr , i.e., tw →Hσt tr.

- If tr is a read only transaction that commits, its linearization point `tr is placed just

before the earliest time at which it is added to t.ow (lines 65, 117), or at the time

it accesses t.cm for its read operation (lines 72 or 132). In the latter case, we have

wtw(t.x)v <Ht `tw <Ht RLtw(t.x, ttc) <Ht ALt̂r(t.x, read(x)) <Ht rtr(t.x)v <Ht `tr

from which we have `tw <Ht `tr , i.e., tw →Hσt tr. Hence, in all cases, we have tw
t.x−→rf
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tr ⇒ tw →Hσt tr.

Theorem 6.1. Every level-wise history of committed transactions, Π(Ĥσ
t ), produced

by HParSTM satisfies the level-wise opacity consistency criterion.

Proof. The proof follows from the definition of linearization points, and Lemmas 6.1

through 6.4.

6.5.2 Proof for aborted transactions

The correctness of aborted transaction is established in the same way as done in

Chapter 5. For each aborted transaction ta we consider its closure ĤCta (Section

3.7.4). Observe that ĤCta represents a history of committed transactions. Next,

using ĤCta , we construct the level history at each of the ancestors of ta and prove the

consistency at each level, as done for the history of committed transactions.
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Chapter 7

MxSTM

7.1 The main idea

The idea here is to have nodes employing different (optimistic/ pessimistic) concur-

rency control mechanism in the transaction tree (super tree) for STM. There are two

types of nodes: p-nodes and o-nodes. The local objects of a p-node are operated on in

a pessimistic manner. On the other hand, the local objects of an o-node are operated

on in an optimistic manner. Thus, on the basis of the management of the locks, we

have two types of objects in the picture.

7.1.1 About nesting of transactions

In the nesting of transactions, a node can be a p-node or an o-node. Depending

upon the type of node (p-type or o-type), we get different behaviours (pessimistic or

optimistic) at that node. Also, depending upon the various combinations of p-type

and o-type nodes, we can obtain different degrees of concurrency in a subtree. For
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Figure 7.1: Zones of different modes of concurrency in nested transactions (single
circle: o-node; double circle: p-node)

example, consider node t13 in Figure 7.1. Node t13 is an o-node. Two of its children,

t131 and t133, are p-nodes, whereas the other child, t132, is an o-node. Also consider

the path from t1 to t1121. Nodes t1 and t1121 are o-nodes, whereas the intermediate

nodes, t11 and t112, are p-nodes.

7.1.1.1 Behaviour of a p-node

As stated earlier, a p-node denotes a transaction which employs a pessimistic approach

to concurrency control. More precisely, when an object x (denoted as tp.x) of a p-

node, tp, is locked by its child transaction tc, then tc retains the ownership of that lock

until tc completes its execution (commit/abort). That means, tp or any other child

of tp wanting a lock on tp.x now has to wait until tc releases the lock on tp.x upon

its completion. However, it should be noted that if it is a local operation of tp, then

it releases the lock on its local object after its read/write operations. This way, the
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pessimistic approach offers limited concurrency. Since a child may try to lock more

than one objects at a time during its normal operation, there is a possibility of a

deadlock situation between the children. Hence, a p-node maintains a wait-for graph,

whose access is controlled by a lock, to detect and resolve this deadlock situation

between its children.

7.1.1.2 Behaviour of an o-node

An o-node denotes a transaction that applies optimistic concurrency control mecha-

nism. Let tp be an o-node, and tc be one of its children. Here, when tc acquires a

lock on tp.x for its read operation, it does not retain the lock throughout its lifetime,

rather it releases the lock immediately after the termination of its operation. Thus,

tp.x becomes available for use by tp or its children. Hence, there is greater degree of

concurrency offered by an o-node.

7.2 Design challenge

In previous chapters, we already designed the protocols for emulating the behaviours

of p-node and o-node. We shall denote an o-node by tω, and a p-node by tπ. Each

of the nodes in HParSTM is an o-node, and the (non-root) nodes in ParSTM is a p-

node. Hence, the job here is to integrate the two protocols, ParSTM and HParSTM,

to obtain the desired result in a correct fashion.

As discussed before, the set of ancestors of a node t in the transaction tree can be

a combination of o-nodes and p-nodes. This introduces a challenge of ensuring that

the locks of p-nodes and o-nodes are managed in the right fashion, especially while
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tπ1

tω11

tπ111 tω112

SP1(x, tπ111)

SP1(x, tπ111) SP2(x, tω112)

SP2(x, tω112)

(a) Duplicate reads from same level

tπ0

tω1

tπ11

tω111

tπ1111 tω1112

SP3(x, t1111)

SP3(x, t1111)

SP3(x, t1111)

SP3(x, t1111)

SP4(x, t1112)

SP4(x, t1112)

SP4(x, t1112)

(b) Duplicate reads from different levels

Figure 7.2: Duplicate reads (SP: search parent)

reading from the ancestors.

7.2.1 Handling special cases for MxSTM

7.2.1.1 Issue of duplicate request at a p-node

In MxSTM, the interleaving of o-nodes and p-nodes introduces a unique case (chal-

lenge), not faced in any of the previous protocols. If a p-node, tπ1, has an o-node,

143



tω1

tπ11

tω111

tπ1111 tω1112

SP1(x, tπ1111)

SP1(x, tπ1111)

SP1(x, tπ1111) SP2(x, tω1112)

SP2(x, tω1112)

SP2(x, tω1112)

(a) Duplicate reads by tπ1111 and tω1112

tω1

tπ11

tω111

tπ1111 tω1112

UTA(x, t1111)

UTA(x, t1111) SP3(x, t1112)

SP3(x, t1112)

SP3(x, t1112)

(b) Abort of tπ1111

Figure 7.3: Handling release of locks in case of abort of a transaction with duplicate
reads (SP: search parent; UTA: unlock to ancestors)
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tω11, as one of its children, then tπ1 may get more than one request for reading same

object through tω11 on behalf of tω11’s descendants.

To explain the case, let us refer to Figure 7.2. In Figure 7.2a, tπ1 and tπ111 are

p-nodes whereas rest of the nodes are o-nodes. Let us say that the value of an object

x is only available with tπ1.

Step 1: Now, tπ111 reads object tπ1.x through propagation of search parent re-

quest through its ancestors tω11 and tπ1 in order. Recall that tπ1 being a p-node, its

objects are accessed in pessimistic manner, i.e., tω11 retains the lock on its parent’s

object tπ1.x. However, the lock on the object of the o-node tω11.x is released after the

operation.

Step 2: Now, suppose tω112 wants to read x and invokes search parent procedure.

The request propagates up to tω11 (because tω11.x was unlocked after completion of

external read by tπ111 and is available for locking again). Observe that tω11 already

holds the lock on tπ1.x owing to previous external read operation on tπ1.x. At this

point the question is how should the second search parent request for x from tω11 be

handled at tπ1?

As tω11 already holds the lock on tπ1.x, it is logical to argue that tω11 should foward

the request search parent to tπ1 and should return the value of tπ1.x, without trying to

lock it again. However, this behavior is something new and not witnessed in ParSTM.

In ParSTM, the object of a p-node could be read by only one transaction at a time. In

this case, the value of object tπ1.x is read by tπ111 and tω112 at the same time. In other

words, tπ1.x has been read more than once by its descendant tω11. In Figure 7.2a,
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both tπ111 and tω112 read from the same level tπ1. However, it is possible that the two

duplicate reads obtain values from different levels, as shown in Figure 7.2b. This can

happen when the value becomes available later at an intermediate o-node ancestor,

owing to update of x due to its local write or merging of its child.

Now, let us refer to Figure 7.3 and take the case of an abort of one of the trans-

actions that performed the duplicate reads earlier. In Figure 7.3a transactions tπ1111

and tω1112 perform duplicate reads on tω1.x through tω111. Next, in Figure 7.3b, one of

the two transactions, say tπ1111, aborts. In ParSTM, when a subtransaction aborts,

it releases the lock up to the original ancestor from which it read the value. This

behavior creates a problem here. Transaction tω111 should not release the lock on

tπ11.x as it is read by another descendant tω1112 which is still active. The lock on

tπ11.x should be released only in one of the following three cases:

a. Both tπ1111 and tω1112 abort.

b. Transaction tω111 commits.

c. Transaction tω111 aborts.

7.2.1.2 Solution

Each node (o-node as well as p-node) maintains a data structure called prs (pessimistic

read set) containing objects xpr that has a field trc (total read count) to keep track

of total number of pessimistic reads, and a dictionary lcs (level count set) of 〈lvl, rc〉

key-value pairs, where lvl is the level of the farthest pessimistic node through which

object x was read, and rc is the number of reads of x from that level. For the sake of

simplicity, we shall denote an entry (〈lvl, rc〉) in t.prs.xpr.lcs corresponding to level l

such that l = lvl as t.prs.xpr(l).
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Further, each object xpr in prs is individually lockable. Thus, the locks on two

different objects, say xpr and ypr, can be concurrently obtained.

Working:

While reading a value of x by a descendant td from an ancestor ta if there happens

to be a p-node (if any), tπ, in the path from ta to td (top to bottom order), then

t.prs.xpr.trc is incremented by 1 at each descendant t of tπ in the path from tπ to td

(excluding tπ). Conversely, when td aborts, then t.prs.xpr.trc decremented by 1 at

each intermediate node in the path from td to tπ (excluding tπ) and if t.prs.xpr.trc

equals 0 and t holds the lock on its parent’s object tp.x, then t releases the lock on

tp.x.

7.2.2 Comparing MxSTM with ParSTM and HParSTM

The methods in HParSTM and ParSTM were carefully designed so that they can be

integrated to form MxSTM, with the smallest number of changes in the individual

methods. The idea was to keep the code modular, easy to understand and reusable.

A comparative study of MxSTM against HParSTM and ParSTM reveals that most

of the code from HParSTM and ParSTM has been reused as is. However, a few

adjustments had to be made in order to handle the special cases unique to MxSTM.

7.2.2.1 Changes w.r.t. both ParSTM and HParSTM

resx: Object resx has been updated to include two additional boolean fields, namely

is pread (Is Pessimistic Read) and is plocked (Is Parent object Locked). Thus, resx

has following structure:
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resx:{
i val ∈ V

ii lvl ∈ L
iii its ∈ T

iv is pread ∈ boolean
v is plocked ∈ boolean

}

readt∗(x): Read method has been updated to include tracking of external read

through a pessimistic ancestor (if any).

prs: In ParSTM (Chapter 5), prs was defined as a set containing 〈x, level〉 pairs.

Here, prs is extended to contain more complex objects xpr, as discussed in Section

7.2.1.2.

unlock to ancestors: This method too has been updated to take into consideration

the external ‘pessimistic read count’ of an object before unlocking it at the parent

level (if needed).

7.2.2.2 Specific changes w.r.t. HParSTM

search parent: This method has been updated to handle duplicate requests of its de-

scendants that propagate to its ancestor that is a p-node, by tracking their pessimsitic

read counts at its level. Other methods are the same as in HParSTM.

unlock to ancestors: Unlike HParSTM, an o-node tω here has to participate in the

release of locks up to higher level ancestors, in case some transaction in subTree(tω),

through their external read operations, obtained pessimistic locks on objects of tω’s

pessimistic ancestors.

abort: Similarly, abort involves releasing the locks not only to the parent level,

but also up to higher level ancestors, if needed.
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7.2.2.3 Specific changes w.r.t. ParSTM

search parent: This method has been updated similiarly as done for HParSTM.

Other methods are the same as in ParSTM.

vts: In MxSTM, not only the root node but also the intermediate ancestors can

employ optimistic concurrency control (o-nodes). As such, vts of a child p-node can

be used by its parent (an o-node) to update its.

7.2.2.4 New methods

We introduce the following methods in MxSTM to manage the external read count

on ancestors object.

trc incre (Total read count Increment): To increment the total read count of external

pessimistic read using a lock.

trc decre (Total read count Decrement): To decrement the total read count of external

pessimistic read using a lock.

prc incre (Pessimistc read count Increment): To increment the external pessimistic

read count of an object from a level.

prc decre (Pessimistc read count Decrement): To decrement the external pessimistic

read count of an object at a level and release the lock on the parent’s object accord-

ingly.
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7.3 Protocol

7.3.1 Pseudocode

Protocol 7.1: MxSTM

Common to both o-node and p-node :

t∗ denotes tπ/tω.

1. State of pessimistic read object xpr:
2. trc ∈ N , default 0
3. lcs ⊂ L×N :
4. lvl ∈ L
5. rc ∈ N , default 0

6. Operation diff lrc(x1pr,x2pr, l2):
7. for each (〈l, n〉 ∈ ∪lvl≥l2x2pr.lcs) do
8. x1pr(l).rc← x1pr(l).rc− n;
9. x1pr.trc← x1pr.trc− n; end for

10. x1pr.lcs← x1pr.lcs \ {∪rc=0x1pr.lcs};

11. State of transaction t∗:
12. parent ∈ T , parent’s id (tp)
13. type ∈ { o-node, p-node }
14. lrs, lws ⊂ X
15. cm{mts, its} and vts ⊂ T
16. pls ⊂ X
17. mrg : lock
18. prs ⊂ Xpr : individual items lockable

19. Operation begint∗(tp, level, type) :
20. t∗.parent← tp;
21. t∗.lvl← level;
22. t∗.cm.mts← {t∗};
23. t∗.type← type;

24. Operation invoke childt∗(tc, type):
25. begintc(t∗, t∗.lvl − 1, type);

26. Operation unlock parent lockst∗(s):
27. for each x ∈ (s ∩ t∗.pls) do
28. unlock tp.x;
29. t∗.pls← t∗.pls \ {x}; end for

30. Operation unlock to ancestorst∗(s):
31. sanc ← ∪xpr.trc>0∧MaxLevel(xpr)>tp.lvls
32. t∗.prc decre(s);
33. if (sanc 6= ∅) then
34. tp.unlock to ancestors(sanc); end if

35. Operation trc incret∗(x):
36. lock t∗.prs.xpr;

37. t∗.prs.xpr.trc← t∗.prs.xpr.trc+ 1;
38. unlock t∗.prs.xpr;

39. Operation trc decret∗(x):
40. lock t∗.prs.xpr;
41. t∗.prs.xpr.trc← t∗.prs.xpr.trc− 1;
42. if (t∗.prs.xpr.trc = 0
43. ∧x ∈ t∗.pls) then
44. unlock tp.x;
45. t∗.pls← t∗.pls \ {x}; end if
46. unlock t∗.prs.xpr;

47. Operation prc incret∗(x, l):
48. lock t∗.prs.xpr;
49. t∗.prs.xpr(l).rc← t∗.prs.xpr(l).rc+ 1;
50. unlock t∗.prs.xpr;

51. Operation prc decret∗(sprs):
52. for each (xpr ∈ sprs) do
53. lock t∗.prs.xpr
54. diff lrc(t∗.prs.xpr, xpr, t∗.lvl);
55. if (t∗.prs.xpr.trc = 0
56. ∧x ∈ t∗.pls) then
57. unlock tp.x;
58. t∗.pls← t∗.pls \ {x}; end if
59. unlock t∗.prs.xpr;
60. end for

61. Operation get lockst∗(s, tc):
62. for each x ∈ s do
63. t∗.get local lock(x, tc);
64. tc.pls← tc.pls ∪ {x}; end for

65. Operation abortt∗():
66. t∗.abort active desc();
67. t∗.unlock to ancestors(t∗.prs);
68. t∗.unlock parent locks(t∗.pls);
69. return (abort);

70. Operation abort active desct∗():

71. for each t
′ ∈ activeChildren(t∗) do

72. t
′
.force abort(); end for

73. Operation force abortt∗():

74. for each t
′ ∈ activeChildren(t∗) do
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75. t
′
.force abort(); end for

76. return (abort);

77. Operation abort incompat desct∗(si):
78. sa ← si ∩ t∗.vts;
79. if (sa = ∅) then return; end if
80. for each (tc ∈ activeChildren(t∗)) do
81. if (tc.cm.mts ∩ sa 6= ∅) then
82. tc.abort();
83. else
84. tc.abort incompat desc(sa);
85. end if
86. end for
87. t∗.vts← t∗.vts \ sa;

88. Operation readt∗(x):
89. t∗.get local lock(mrg, t∗);
90. t∗.get local lock(x, t∗);
91. resx ← φ;
92. if (t∗.x.val = null) then
93. trc incret∗(x);
94. f ← x ∈ t∗.pls;
95. resx ← search parenttp(x, t∗, t∗, t∗.cm, f);
96. if (resx = null) then
97. trc decret∗(x);
98. abortt∗(); end if
99. t∗.x.val← resx.val;

100. t∗.lrs← t∗.lrs ∪ {x};
101. update cm(t∗.cm, ∅, resx.sits);
102. if (¬f ∧ resx.is plocked) then
103. t∗.pls← t∗.pls ∪ {x}; end if
104. if (¬resx.is pread) then
105. t∗.trc decre(x)
106. else
107. t∗.prc incre(x, resx.lvl); end if
108. end if
109. v ← t∗.x.val;
110. unlock t∗.x;
111. t∗.abort incompat desc(resx.sits);
112. unlock t∗.mrg;
113. return v;

114. Operation try to committ∗():
115. try to mergetp(t∗);
116. return (commit);

Specific to p-node (tπ) :

117. State of object x :
118. val ∈ V
119. State of transaction tπ:
120. wfg ⊂ X × T × T : lockable

121. Operation get local locktπ (x, t1):
122. if (¬secure locktπ (x, t1)) then
123. t1.abort(); end if

124. Operation release locktπ (x, isLocked):
125. if (isLocked) then
126. unlock tπ.x; end if

127. Operation writetπ (x,v):
128. lock tπ.x;
129. tπ.x.val← v;
130. unlock tπ.x;
131. tπ.lws← tπ.lws ∪ {x};

132. Operation search parenttπ (x, tc, to, cmd, f):
133. if (¬f) then
134. if (¬secure locktπ (x, tc)) then
135. return null; end if
136. end if
137. cm← tπ.cm;

// Check if value is locally available
138. if (tπ.x.val 6= null) then
139. if(¬check compatibility(cm, cmd))then
140. release locktπ (x,¬f);
141. return null; end if
142. resx ← 〈tπ.x.val, tπ.lvl, ∅, true, true〉;
143. return resx;
144. end if

// Otherwise, try to read from its parent
145. update cm(cm, cmd.mts, cmd.its);
146. tπ.vts← tπ.vts ∪ {to};
147. tπ.trc incre(xl);
148. f2← x ∈ tπ.pls;
149. resx ← search parenttp(x, tπ, to, cm, f2);
150. if (resx = null) then
151. release locktπ (x,¬f);
152. tπ.trc decre(x);
153. return null; end if
154. if (¬resx.is pread) then
155. tπ.trc decre(x);
156. else
157. tπ.prc incre(x, resx.lvl); end if
158. if (resx.is plocked ∧ ¬f2) then
159. tπ.pls← tπ.pls ∪ {x}; end if
160. resx.is pread← true;
161. resx.is plocked← true;
162. return resx;

163. Operation try to mergetπ (tc)
164. tπ.get local lock(mrg, tc));
165. s← ∪{x : x ∈ tc.pls}
166. tπ.get locks(tc.lws \ s, tc)
167. if(¬check compatibility(tπ.cm, tc.cm))then
168. unlock tπ.mrg;
169. tc.abort(); end if
170. for each x ∈ tc.lws do
171. tπ.x.val← tc.x.val; end for
172. for each x ∈ tc.lrs : tπ.x.val = null do
173. tπ.x.val← tc.x.val; end for
174. tπ.lws← tπ.lws ∪ tc.lws;
175. tπ.lrs← tπ.lrs ∪ tc.lrs;
176. update cm(tπ.cm, tc.cm.mts, tc.cm.its);
177. tc.unlock parent locks(tc.pls) ;
178. tπ.abort incompat desc(resx.sits);
179. unlock tπ.mrg;
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Specific to o-node (tω) :

180. State of base object x:
181. val ∈ V
182. rs and fbd ⊂ T

183. State of transaction tω:
184. ow ⊂ T
185. Operation get local locktω (x, t1):
186. lock tω.x;

187. Operation writetω (x,v)
188. lock tω.x;
189. tω.x.val← v;
190. tω.ow ← tω.ow ∪ tω.x.rs;
191. tω.x.fbd← tω.ow;
192. tω.x.rs← ∅;
193. unlock tω.x;
194. tω.lws← tω.lws ∪ {x};

195. Operation search parenttω (x, tc, to, cmd, f):
196. lock tω.x;
197. cm← tω.cm;
198. tω.x.rs← tω.x.rs ∪ {to};

// Check if value is locally available
199. if (tω.x.val 6= null) then
200. if(¬check compatibility(cm, cmd)∨
201. (tω.x.fbd ∩ cmd.mts 6= ∅)) then
202. unlock tω.x;
203. return null; end if
204. si ← tω.x.fbd ∩ tc.vts;
205. resx ← 〈tω.x.val, tω.lvl, si, false, false〉;
206. unlock tω.x;
207. return resx;
208. end if

// Otherwise, try to read from its parent
209. update cm(cm, cmd.mts, cmd.its);
210. tω.vts← tω.vts ∪ {to};
211. tω.trc incre(x);
212. f2← x ∈ tω.pls;
213. resx ← search parenttp(x, tω, to, cm, f2);

214. if (resx = null) then
215. tω.trc decre(x);
216. unlock tω.x;
217. return null; end if
218. if (¬resx.is pread) then
219. tω.trc decre(x);
220. else
221. tω.prc incre(x, resx.lvl)
222. end if
223. if (resx.is plocked ∧ ¬f2) then
224. tω.pls← tω.pls ∪ {x}; end if
225. resx.is plocked← false;
226. unlock tω.x;
227. return resx;

228. Operation try to mergetω (tc):
229. tω.get local lock(mrg, tc));
230. tω.get locks(tc.lrs ∪ tc.lws, tc);
231. if (¬check compatibility(tω.cm, tc.cm)∨
232. (tc.lws 6= ∅ ∧ (tc.cm.mts ∩ tω.ow 6=

∅))then
233. unlock tω.mrg;
234. tc.abort(); end if
235. for each x ∈ (tc.lws) do
236. tω.x.val← tc.x.val; end for
237. for each x ∈ tc.lrs : tω.x.val = null do
238. tω.x.val← tc.x.val; end for
239. tω.ow ← tω.ow ∪ (∪x∈tc.lwstω.x.rs);
240. for each x ∈ tc.lws do
241. tω.x.fbd← tω.ow;
242. tω.x.rs← ∅; end for
243. tω.lrs← tω.lrs ∪ tc.lrs;
244. tω.lws← tω.lws ∪ tc.lws;
245. update cm(tω.cm, tc.cm.mts, tc.cm.its);
246. tc.unlock parent locks(tc.pls);
247. tω.abort incompat desc(resx.sits);
248. unlock tω.mrg;

Special case of root node, tρ :

if (tρ is a p-node): use Protocol 5.3
if (tρ is a o-node): use Protocol 6.2
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7.3.2 State of pessimistic read object, xpr, and helper meth-

ods

xpr: The pessimistic read object, xpr consists of trc (total read count), and lcs (level

count set) which is a hashtable of 〈lvl, rc〉 key-value pairs, where lvl denotes the level

of the highest level p-node ancestor through which the value of x was obtained, and rc

(read count) is the number of times the value was read through that level. An entry

in lcs corresponding to a level l is denoted by xpr(l). Thus, xpr(l).lvl and xpr(l).rc

denote the corresponding lvl and rc of that entry respectively.

diff lrc(x1pr, x2pr, l2): This helper method is used to decrement the level-wise

read count of x1pr by the read count of the corresponding level-wise entry in x2pr.

The parameter l2 is used to filter out entries in x2pr.lcs whose level is lower than the

level to which x1pr belongs.

7.3.3 Methods common to o-node and p-node (t∗)

The common methods have already been discussed in previous chapters. There-

fore, we discuss only the main methods and leave out the discussion of other (self-

explanatory) methods.

begint∗(tp, level, ntype): Each transaction t∗ begins with this method, where tp

denotes the id of its parent, level is the level of the node in the super tree, and ntype

is the type of the transaction, p-type or o-type. Here, ntype has been introduced for

enabling easy identification of the type of a transaction.

unlock to ancestorst∗(s): In MxSTM , the unlock to ancestors method uses the

method prc decre to decrement the level-wise read count at each level, and release
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the pessimistic lock on the parent’s objects accordingly.

trc incret∗(x): As discussed before.

trc decret∗(x): As discussed before.

prc incret∗(x, l): As discussed before.

prc decret∗(s): As mentioned before, this method is used to decrement the level-

wise read count of object t∗.prs.xpr for each object xpr in sprs using an individual lock

on t∗.prs.xpr. Upon decrementing, if the resulting t∗.prs.xpr.trc is 0 then the lock on

parent’s object tp.x is released. This method is used by an aborting subtransaction

to release the pessimistic lock on its ancestor’s objects.

abortt∗(): Before aborting, transaction t∗ releases the locks on its ancestor’s ob-

jects obtained by t∗ or its descendants, followed by forcefully aborting its active

descendants.

abort incompat desct∗(): This method is used by an ancestor to abort its incom-

patible descendants.

readt∗(x): To read from its local copy of its object, t∗.x, transaction t∗ locks t∗.x.

If t∗.x is null-valued, then t∗ invokes the method search parent(x) to get the value

from its parent’s local copy of x.

Before invoking the search parentmethod of its parent, it first increments tπ.prs.xpr.trc.

This ensures that, if it does already possess a lock on the parent’s object, then that

lock is not released in the meantime due to the abort of a descendant. This is im-

portant as in this case tπ assumes that it will continue to hold the lock on tp.x and

informs its parent not to lock tp.x while invoking tp.search parent. If resx returned

from tp.search parent is null, then tπ.prs.xpr.trc is decremented to reset it to its

previous value. Alternatively, if resx.is plocked is true, then the lock on the par-

154



ent’s object was retained in the process and therefore tπ adds x to tπ.pls. Further,

if resx.is pread is true, then tπ.prs.xpr(resx.lvl) is incremented. The objects read

by t∗ are recorded in its local read set, t∗.lrs. The compatibility set cm is updated

accordingly. At the end of the operation, the lock on t∗.x is released.

try to committ∗() : A (nested) transaction t∗ merges its local read/write sets with

those of its parent, and updates the value of the local objects of its parent.

7.3.4 State of local objects and methods associated with p-

node (tπ)

State of local object x : In the case of a p-node, local object x has only the value field,

and is protected by a lock.

State of a p-node (tπ): The id of the parent of a transaction tπ is denoted by

parent. The sets, lrs (local read set) and lws (local write set) record the objects read

and written respectively by tπ. A p-node also maintains a wait-for gragh, wfg, for its

children, to detect and resolve deadlock situation among them. The set prs is used

to keep track of the level-wise external pessimistic read count.

writetπ(x, v): self-explanatory.

search parenttπ(x, tc, ...): The call to this method is cascaded in nature, and is

invoked by the child node tc to obtain a lock on object tπ.x of its parent, tπ. In case

of a duplicate request where tc already holds a lock on tπ.x, tπ.x need not be locked.

Now, if tπ does not have a local value for tπ.x, then it tries to obtain the value from

its own parent (tπ.parent), before returning that value to its child tc. Like the read

operation, this method also, in case of forwarding the request to its parent, updates
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its prs.xpr to ensure correct checking and recording of ownership on its parent’s lock.

If resx.is plocked returned from its parent is true, then it indicates that the lock

on the parent’s object was retained in the process and therefore tπ adds x to tπ.pls.

Finally, if the resx needs to be passed further down, the tπ sets resx.is pread and

resx.is plocked to true to indicate to its child that the value was read through a

p-node (i.e., tπ) and a pessimistic lock on its parent was retained in the process.

try to mergetπ(tc): This method is invoked by the child node to merge its results

(values of objects, read set, write set, etc.) with the parent. Please note that, in case

the child transaction writes a local object x without having previously read its value

from the parent, then it does not possess the lock on that object of the parent. Hence,

at the time of merging, locks on such objects of the parent are obtained. Next, the

value of all the objects, belonging to lws and lrs of the child node, is updated using

the local copy of the child node. Finally, the compatibility object cm and sets lrs

and lws of the child node are merged with those of its parent, before releasing the

locks.

7.3.5 State of local objects and methods associated with o-

node (tω)

State of local object x : Here, a local object x has three components, namely value

field (val), read set (rs) and forbidden set (fbd). Each local copy is protected by a

lock.

State of an o-node (tω): Here, a transaction uses the parent field to store the id of

its parent. Further, sets, lrs and lws, are used to record the objects read and written

156



respectively by tω. The set ow (overwritten set) denotes the of those children of tω,

that read an object tω.x which has been modified (overwritten) later. An o-node also

maintains the set prs to keep track of the level-wise external pessimistic read count.

writetω(x, v): First, tω.x is locked. The value of tω.x is updated. The ids of all the

children that previously read tω.x are added to tω.ow, followed by updating tω.x.fbd

using tω.ow, and clearing tω.x.rs. Finally, tω.x is unlocked, and x is added to tω.lws.

search parenttω(x, tc, ...): Similar to the search parent(x) method of a p-node,

this method is invoked by the child node. If the value of the requested object is null,

then the value is obtained from the parent by invoking the search parent(x) of its

own parent (recursive call). Unlike in case of a p-node, before returning the value

of the object to the child node (tc), it is checked if it is legal for tc to read tω.x by

checking for the membership of tc in tω.x.fbd as well as doing a compatibility check.

If the validation is not successful, then tc is aborted. Otherwise, tc is added to tω.x.rs

before unlocking tω.x and returning the value. Similar to the operation for p-nodes,

tω.prs.xpr is updated accordingly. Note that in the case of an o-node, it only sets

resx.is plocked to false to inform its child that a pessimistic lock was not obtained

at its parent level in the process.

try to mergetω(tc): This method is invoked by the child node, tc. First, all the

objects belonging to tc.lrs∪tc.lws in the parent’s (tω’s) local space are locked, followed

by locking tω.mrg. The validation for tc consists of ensuring tc.lws 6= ∅ and tc /∈ tω.ow

as well as checking for compatibility. If the validation is not successful, then tc is

aborted. Otherwise, the value of the parent’s objects that are present in tc.lrs and

tc.lws are updated using tc’s local copy of those objects. Next, the ids of transactions

in tω.x.rs of each tω.x that is modified are added to tω.ow. The set tω.ow is used to
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update tω.x.fbd of each tω.x that is modified, followed by clearing tω.x.rs. If tω is not

the super transaction, then tc.lrs and tc.lws are merged with the corresponding sets

of the parent, tω.

7.3.6 About deadlock freedom

To show that MxSTM is deadlock- free, we shall examine p-nodes and o-nodes. Ob-

serve that, by construction (also, refer to discussion in Section 5.1.2.2 and Section

6.3.4), any access to local objects of a p-node is duly recorded in its wait-for-graph,

wfg, to prevent any deadlock situation. Thus, no deadlock is possible involving ob-

jects of p-nodes. In other words, locks on such objects cannot be held for an indefinite

period of time.

In case of an o-node, say tω, locks on its objects are released soon after the com-

pletion of the external read on them. However, when the object tω.x is locked as

part of the search parent operation that escalates up to a tω’s ancestor, say tπ1, that

is a p-node, then tπ1’s local object tπ1.x may not be immediately available. In that

case, the lock on tω.x will be held until tπ1.x becomes available. As the lock on tπ1.x

cannot be held indefinitely (based on the discussion earlier about p-nodes), it follows

that the lock on tω.x cannot be held forever. In the meantime, while tω.x is locked,

any other request for tω.x (for a read or commit of a child node) will ensue in a wait

that is deadlock-free. Thus, locking of tω’s objects for external reads on them is free

from deadlocks.

During commit, deadlock freedom is ensured by allowing only one child to merge

with the parent, by using the parent’s mrg lock. In the case of a p-node, the wait-
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for-graph is used in addition for this purpose.

7.4 Correctness

7.4.1 Definition of linearization points of events

7.4.1.1 At a p-node tπ:

Let `op denote the linearization point of an event. Then, the linearization points of

the various events in the history are defined as follows:

i Local read/write operation of tπ

(a) readtπ(tπ.x) : `op corresponds to the time when it unlocks tπ.x (line 110)

(b) writetπ(tπ.x) : `op corresponds to the time when it unlocks tπ.x (line 130)

ii External read operation of tπ

(a) readtπ(ta.x) : `op corresponds to the time just after tπ.cm is updated (line

101)

iii External read of a descendant td on tπ’s object or that of tπ’s ancestor ta:

(a) readtd(tπ.x) : `op corresponds to the time just after td reads tπ.cm for

consistency checking (line 137)

(b) readtd(ta.x) : `op corresponds to the time just after td reads tπ.cm for

consistency checking (line 137)

iv Write due to commit of child tc

(a) writetc(tπ.x) : `op corresponds to the time just after tc updates tπ.x (line

171)
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v Commit of child tc

(a) Ctc : `op corresponds to the time when tπ.cm is updated (line 176)

7.4.1.2 At an o-node tω:

i Local read/write operation of tω

(a) readtω(tω.x) : `op corresponds to the time when it unlocks tω.x (line 110)

(b) writetω(tω.x) : `op corresponds to the time when tω updates tω.ow (line

190)

ii External read operation of tω

(a) readtω(ta.x) : `op corresponds to the time when tω.cm is updated (line 101)

iii External read of a descendant td on tω’s object or that of tω’s ancestor ta:

(a) readtd(tω.x) : `op corresponds to the time when td reads tω.cm for consis-

tency checking (line 197)

(b) readtd(ta.x) : `op corresponds to the time when td reads tω.cm for consis-

tency checking (line 197)

iv Write due to commit of child tc

(a) writetc(tω.x) : `op corresponds to the time when tc updates tω.x (line 236)

v Commit of child tc

(a) Ctc : `op corresponds to the time just after tω.cm is updated by tc (line

245).
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7.4.2 Definition of linearization point of a transaction t

7.4.2.1 At p-node (i.e., parent tp of t is a p-node) :

1. If t commits, its linearization point, `t, lies at the time just after it updates the

parent’s cm (consistency management) object (line 176).

2. If t aborts, `t coincides with the last time when t reads tp.cm for its successsful

external read operation at tp’s level (line 137).

7.4.2.2 At o-node (i.e., parent tp of t is an o-node):

1. If t is an update transaction that commits, its linearization point, `t, lies at the

time just after it updates the parent’s ow and cm (consistency management)

object (line 245).

2. If t is a read only committed transaction, then `t is placed at the earliest of (i)

the time it reads tp.cm for its last successsful external read operation (line 197),

and (ii) the time just before t̂ (any id in t.cm.mts) is added to tp.ow (if it ever

is) (lines 190, 239).

3. If a transaction t aborts, `t is determined as if it were a read only transaction,

i.e., `t lies at the earliest of (i) the time it reads tp.cm for its last successsful

external read operation (line 197), and (ii) the time just before t̂ (any id in

t.cm.mts) is added to tp.ow (if it ever is). (lines 190, 239).
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This definition of linearization points should be used when we consider the various

level-wise histories of MxSTM to establish the correctness.

7.4.3 Proof

To show that the protocols presented in ParSTM and HParSTM have been integrated

in a correct fashion to obtain MxSTM, we show that the following two points indeed

hold true: (1) at o-nodes, the lock management is done in an optimistic fashion,

whereas (2) at p-nodes, the locks are managed in a pessimistic manner (2PL for

nested transactions).

Lemma 7.1. In MxSTM, the locks associated with an o-node (tω) are managed in

an optimistic manner, whereas those associated with a p-node (tπ) are operated in a

pessimistic manner.

Proof. Let us take the case of an o-node, tω, first. Consider an object tω.x. We need

to show that lock on tω.x is retained only for the duration of the read/write operation,

not for the entire lifespan of the transaction. We consider all the methods (cases) in

which tω.x is locked, and show that tω.x in unlocked at end of each of these methods.

• readt∗(t∗.x): t∗.x locked at line 90, and released at line 110.

• search parenttω(x, tc, to, cmd, f): tω.x locked at line 196, and released at line

202, 206, 216 or 226.

• writetω(x, v): tω.x locked at line 188, and released at line 193.

• try to mergetω(tc): tω.x locked at line 230, and released at line 246 (or 234 due

to abort).
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Next, we show that when the lock on tπ.x is obtained by tπ’s child tc in a successful

read/write operation, it is released by tc only upon its completion (commit/abort).

The readtπ(x) and writetπ(x, v) methods are used for local read/write operations of

tπ. As such, tπ releases the lock immediately after its read/write operation on its

local object tπ.x.

Let us now consider the corresponding methods of tπ in which tπ.x is locked by

its children.

• search parenttπ(x, tc, to, cmd, f): tπ.x locked at line 134, but the object is not

unlocked in case of successful read. Unlocking is done only if the read step is

unsuccessful (lines 140 or 151).

• try to mergetπ(tc): tπ.x locked at line 166. This operation is performed by a

transaction during its commit phase which marks the end of the lifespan of

the transaction. The child transaction tc releases all the locks on its parent’s

objects only upon successful merging/committing (line 177) or upon aborting

(line 169).

Observe that, when a subtransaction performs an external read on an object tπ.x of

p-node tπ, it holds the lock on that object until it terminates. Thus, the lock obtained

during an external read is held for the lifespan of the descendant transaction. On the

other hand, in case of an o-node tω, the lock on tω.x is released upon completion of

the external read operation. Here, such a lock is held only until the external read

operation completes.

Next, we show that MxSTM handles incompatible transactions correctly.
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Lemma 7.2. MxSTM ensures correct checking of incompatible transactions at each

level.

Proof. Checking for incompatibility of transactions is done using the sets, mts and its.

The incompatibility of transactions is introduced due to reading from and update of

objects at higher level o-nodes. Hence, we need to show that (1) when a subtransaction

t reads an object tω.x from an ancestor tω, t is added to tω.x.rs, irrespective of the

type of t or its intermediate ancestors, and (2) the sets, cm.mts and cm.its, are

updated at every level.

The recursive method search parentt∗(x, tc, to, cmd, f) that is used by a subtrans-

action to read from ancestors, has the same signature for both types of nodes. As

such, the id of the subtransaction, to, originally initiating the method is propagated

upwards. If the value is successfully returned from an o-node (ancestor, tω), then to is

added to tω.x.rs (line 198). When tω.x is updated, to is added to tω.x.fbd and tω.ow.

This ensures that later, when some other subtransaction td that is incompatible with

to, reads from tω, the set td.cm.its is updated correctly.

Further, observe that every node t∗ (o-node as well as p-node) maintains the sets,

t∗.cm.its and t∗.cm.mts. The set t∗.cm.mts is updated at the time of merge operation

(lines 176, 245), whereas t∗.cm.its is updated while reading from an ancestor (line

101) and during the merge process (lines 176, 245).

Next, we shall show that the protocol handles duplicate requests at a p-node

correctly. First, we shall show that at any level (node), for a given object x, only one

request can come from the same child. Then, we shall show that at a p-node, tπ, any
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subsequent duplicate request for accessing tπ.x from a child tc that already retains

lock tπ.x is handled correctly. Correctness here means (i) as tc already holds the lock

for tπ.x, it should be allowed to access tπ.x directly, and (ii) in case the subsequent call

fails for some reason, tπ.x should not be unlocked in the current operation context,

to preserve the state of previous successful call.

Lemma 7.3. At any level (node) t, only one request for external read on an object

t.x can come from the same child tc at a time.

Proof. As per the statement of the lemma, note that the types of t and tc do not

matter and the lemma is applicable in general. Further, we know that the external

read is performed through the search parent method.

Observe that before invoking t.search parent, the lock on tc.x needs to be obtained

(line 90 for tc’s own read; line 134 in case of p-node; line 196 in case of o-node). In

case tc is a p-node, then looking at line 133 one can argue that tc.x is not locked at

line 133 in all cases. However, it should be noted that the exception at line 133 is only

applied for a descendant td of tc that already has a lock on tc.x. Thus, the statement

that only one transaction holds the lock on tc.x at a time is true.

Now, one may question if two or more concurrent invocations for reading x can

come from td? The answer is ‘no’. To put the answer in perspective, let us look at the

behaviour of concurrent requests for external reads. The invocation of search parent

is initiated by the read operation. Let us consider two descendants, td1 and td2 of td

such that td is their least common ancestor. Both the descendants want to read x.

For the sake of the argument, let us also assume that requests of td1 and td2 reach td

concurrently. Now, based on the earlier discussion, only one of the two descendants
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can possibly obtain the lock on td.x first. That means the request of only one of

the descendants will be propagated forward beyond td while the other request has to

wait. That means only one request for external read on an object x can come from

the same descendant.

Thus, following this line of argument, we conclude that only one request for an

external read on t.x can come from a child tc at a time.

Lemma 7.4. At a p-node, duplicate request by a child is allowed in a non-blocking

manner.

Proof. Let tπ be a p-node and tc be its child that has already read tπ.x through the

search parent method. We shall show that the subsequent request by tc to read tπx

is allowed, given that tc is consistent with tπ. Observe that tc may be required to

make the duplicate read at tπ for its own purpose or on behalf of its descendant.

Let Ro and Rd denote the original and duplicate requests respectively. Based on

Lemma 7.3, we have Ro < Rd, i.e., the duplicate request occurs after the original

request has completed. Now, given that Ro < Rd , we have

x ∈ tc.pls during Rd (due to lines 142, 158-159)

⇒ tc does not have to wait for lock during Rd (due to lines 94, 133)

Now, if tc is compatible with tπ (line 139) during Rd, then tc can read tπ.x (line 142)

Thus, tc can make duplicate requests at its parent level without having to wait

for a lock on tπ.x.

Further observe that, as no new request for locking tπ’s object is made, the du-

plicate request does not alter the existing wait-for dependency for locks at tπ’s level.

Hence, a deadlock scenario does not arise in this case.
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Lemma 7.5. Sets pls and prs are managed correctly during an external read.

Proof. Set pls (parent lock set) is used to denote whether a subtransaction currently

holds a lock on an object of its parent, where as prs (pessimistic read set) is used

to track the number of read count and the level of the highest level pessimistic node

whose object was locked during an external read involving this transaction.

Let us consider a subtransaction t with its parent tp.

Case pls:

First, for pls, let us show that an object x is added to t.pls at a transaction t only

if t retains the lock on its parent’s object tp.x upon a successful external read. By

construction of the Protocol, x is added to t.pls only if the response object resx from

its parent tp has its property is plocked (Is Parent Locked) set to true (lines 102-103;

158-159; 223-224).

Now, if tp is an p-node, then resx.is plocked is set to true only in case of a

successful external read operation (line 142, 161) at tp. Otherwise, tp returns null

which does not lead to adding x to t.pls (lines 96-98; 150-153; 214-217).

On the other hand, if tp is an o-node, resx.is plocked is set to false even in case

of a successful external read. Consequently, tc does not add x to tc.pls while reading

from an o-node.

Case prs:

Let td be a descendant that reads x from its ancestor ta. Let tπ be the highest

level p-node in the path from ta to td. Then, we show that:

(a) In case of a successful read, t.prs is updated (increment t.prs.xpr(tπ.lvl).rc by 1)
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at each descendant t of tπ in the path from tπ to td.

(b) Conversely, when td aborts, t.prs.xpr(tπ.lvl).rc is decremented by 1 at each inter-

mediate ancestor t in the path from td to tπ, excluding tπ.

Proof for part(a):

Before invoking search parent of the parent tp, the invoking child transaction t

optimistically increments its t.prs.xpr.trc by 1 (lines 93, 147, 211). By construction of

search parent in MxSTM , observe that if the response object resx passes through a

p-node, tπ, then resx.is pread is set to true (line 160). Thereafter, all the subsequent

descendants of tπ in the path from td increment prs.xpr(tπ.lvl).rc by 1 (line 107, 157,

221). If resx is null or resx.is pread is false, then t.prs.xpr.trc is decremented by 1

to compensate for the optimistic increment made to t.prs.xpr.trc at the begining of

the invocation (line 97, 105, 152, 155, 215, 219). Thus, we see that prs is correctly

updated during external read operation.

Proof for part(b):

Now, we shall show that when td aborts, t.prs.xpr is decremented at each of

the ancestors in the path from td to tπ, excluding tπ. Observe that the entries in

td.prs.xpr contains the read count as well as level of tπ. Upon aborting, td invokes

unlock to ancestors with its prs. Observe that the recursive operation unlock to ancestors

propagates upward up to tπ’s child in the path from td to tπ (lines 31, 34). At each level

t, the entries in t.prs.xpr are decremented by an amount equal to the corresponding

level-wise entries in td.prs.xpr (line 32, 54, 6-10).

Lemma 7.6. MxSTM guarantees safety during duplicate external read and unlock to ancestors
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occurring at the same time at a level.

Proof. Given parent tp of node tc is a p-node, if x ∈ tc.pls holds true at the time of

invocation of search parenttp , then invocation of unlock to ancestor at tc does not

alter the relation x ∈ tc.pls while search parenttp is executing.

In other words, if a descendant td of tc previously read x through tp then the lock

on tp.x is retained by tc and x is added to tc.pls. In that case, x ∈ tc.pls evaluates

to true at the time of the subsequent invocation of tp.search parent(x). Now, we

have to show that invocation of tp.unlock to ancestors(x, ...) due to abort of td, after

the invocation of tp.search parent(x) by tc, does not unlock tp.x. This is important

because this invocation tp.search parent(x) assumes that tc already holds the lock

on tp.x and does not try to lock tp.x for tc.

By the design of the Protocol, following Lemma 7.5, if x ∈ tc.pls holds true during

a search parent invocation, then it also means tc.prs.xpr.trc > 0. Let tc.prs.xpr.trc =

n1. Then, we have n1 > 0. Observe that before invoking tp.search parent(x), tc in-

vokes tc.trc incre(x) to increment tc.prs.xpr.trc by 1. Conversely, the execution of

tc.unlock to ancestors(x, ...) invokes tc.prc decre(s) to decrement tc.prs.xpr.trc by a

count ≤ n1. Thus, given tc.trc incre(x) < tc.prc decre(s), we have:

Before execution of tc.trc incre(x) , tc.prs.xpr.trc = n1

After execution of tc.trc incre(x) , tc.prs.xpr.trc = n1 + 1 = n2

Before execution of tc.prc decre({〈x, l, n〉}) , tc.prs.x.rc = n2

After execution of tc.prc decre({〈x, l, n〉}) , tc.prs.x.rc = n3

In the worst case scenario, n could be as large as n1, but even then we have:
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n3 = n2 − n ≥ n2 − n1 ≥ 1 > 0

Since the critrerion for unlocking tp.x is that tc.prs.xpr.trc = 0, n3 ≥ 1 6= 0⇒ tp.x

is not unlocked during the execution of tc.unlock to ancestors(x, ...), i.e., x ∈ tc.pls

still holds true.

Lemma 7.7. Duplicate external read operations at a level obtaining values from dif-

ferent ancestral levels are logged correctly.

Proof. Let R1 be the first external read operation by a descendant td1 of an o-node,

tω, on its ancestor tπ. Observe that the intermediate ancestors of tω up to tπ could be

a combination of o-nodes and p-nodes. Let tω′ be such an intermediate ancestor such

that tω′ .x becomes non-null after R1 has completed. This can happen either due to

a local write by tω′ or a commit of its child. Let R2 be the subsequent external read

operation by tω’s another descendant, td2, such that it obtains the value from tω′ .x.

Further, let tπ′ be the highest level p-node in the path from tω′ to td2. Then we have

to show that tω.prs.xpr.lcs contains 〈tπ.lvl, 1〉 as well as 〈tπ′ .lvl, 1〉.

By construction of MxSTM, during R1, 〈tπ.lvl, 1〉 is added to tω.prs.xpr.lcs (due

to lines 142 or 160, 221, 49). Similarly, when R2 completes, 〈tπ′ .lvl, 1〉 is added to

tω.prs.xpr.lcs (due to lines 205, 160, 221, 49).

Lemma 7.8. At a level tc, if the highest level p-node tπ′ registered by a duplicate

external read operation R2 is different from the p-node tπ registered by the original

read operation R1, then the level t from which value has been read by R2 is an o-node
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and it lies between tπ and tπ′.

Proof. Here R1 is the original external read operation through a subtransaction tc

such that the value was read from an ancestor ta and the highest level p-node registered

in the process is tπ. R2 is the subsequent duplicate external read operation such that

it registers tπ′ as the highest level p-node. Node t is the ancestor from which R2

obtains its value. Then, we show that (a) t is not an ancestor of ta, (b) t is an o-node,

and (c) t lies between tπ and tπ′ in the ancestral path.

Proof of part (a): As R1 read from ta, it means ta is non-null valued. That means

that invocation of search parent during R2 cannot go beyond ta. Hence, t cannot be

an ancestor of ta.

Further, t cannot be ta as in that case, the highest level p-node registered by R2

would be same as the one registered by R1. Hence, t is a descendant of ta.

Proof of part (b):

If t is an p-node, then t.x is locked due to the pessimistic locking of t.x for the

original read operation R1. As such, t.x cannot be updated to have a new value. Also

observe that the original external read operation propagated to tπ because t.x was

null-valued initially. As t.x remains null-valued, R2 cannot read from t.x. However,

if t is an o-node, t.x can be updated in the mean time to have a new value. This

means, t is an o-node.

Proof of part (c):

By contrast, assume that t lies between ta and tπ. Then, the p-node registered by

R2 would be tπ itself (due to lines 205, 160, 221, 49). That means t cannot be an

ancestor of tπ. The only alternative then is that t is a descendant of tπ. Further, for
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tπ′ to be registered as the highest level p-node, tπ′ has to lie in the ancestral path up

to t. That means, t is an ancestor of tπ′ . In other words, t lies in the ancestral path

between tπ and tπ′ .

Lemma 7.9. An abort of a subtransaction releases the lock up to the appropriate

level.

Proof. Let td be a subtransaction that has performed an external read operation

through its ancestor tπ that is a p-node. Observe that the lock on tπ is retained in

the process as it is a p-node. Now, if t̂d (td or a transaction containing td in its mts)

aborts, then the idea is that the lock on tπ.x should be released.

Observe that upon successful external read operation, subtransaction td records

the level of the ancestor ta it read x from. If there is a p-node ancestor tπ involved in

the path from ta to td, then level information xpr〈tπ.lvl, n〉 is captured in set prs at

each descendant of tπ in the path from tπ to td. Later, if any of these descendants, say

t, aborts, then t invokes unlock to ancestors using xpr〈tπ.lvl, n〉 in t.prs. As, at in-

termediate ancestor level t, we have tπ.lvl > t.lvl, the unlock to ancestors invocation

is propagated up to immediate child of tπ in the path from tπ to td (due to line 31,

33-34). During unlock to ancestors, at the intermediate level t, t.prs.xpr(tπ.lvl).rc is

decremented by n and if resulting t.prs.xpr.trc is 0 and t holds the lock on its parents

object tp.x, then tp.x is unlocked.

Thus we see that upon the abort of a subtransaction, it releases the lock up to

the appropriate level.

Lemma 7.10. A failed duplicate request at a p-node does not alter the state of the

172



original request.

Proof. As in Lemma 7.4, let us consider a p-node, tπ, with its child tc such that

tc is an o-node and already retains the lock on tπ.x owing to its previous invo-

cation of tπ.search parent on behalf its descendant td1. Now, suppose tc invokes

tπ.search parent(x, tc, ...) again on behalf of its another descendant td2 such that the

request fails at tπ’s level.

Typically, in the search parent method of a p-node, the lock tπ.x is released in

case of failure of the operation (lines 140, 151). As a duplicate request does not

participate in locking tπ.x (lines 148-149, 212-213), unlocking tπ.x in case of failure

would invalidate the expectation that the lock on tπ.x should be retained on behalf

of the prior original request by td1. The failure of td2’s attempt for an external read

should have no effect on the state of td1. This is ensured by unlocking tπ.x only if the

lock on tπ.x was obtained in the context of the current operation (lines 94-95, 148-

149, 212-213, 125-126). As the lock on tπ.x is not obtained in the case of a duplicate

request, no unlocking of tπ.x is done in the case of failure either. Thus, the state of

the original request is preserved.

Lemma 7.11. Abort of descendants is non-blocking.

Proof. Abort of descendants is initiated by an ancestor in a top-to-bottom manner

in a transaction tree (lines 70-72, 74-75). The methods used for this puprose are -

abort, force abort, abort incompat desc. Observe that no lock is obtained in any of

these methods. Therefore, abort of descendants is non-blocking.
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7.4.3.1 History (Ĥtω) produced at an o-node (tω)

The history Htω produced at an o-node tω is similar to the history produced at a

node t by HParSTM (Chapter 6). By construction, the objects of tω in MxSTM are

accessed in the same way as in HParSTM (as discussed already in Section 7.1.1.2).

Observe that, MxSTM has been designed in a way that we do not check the types of

transactions involved while accessing the objects. It is automatically taken care of, by

keeping the signature of the methods (e.g., search parent, etc) intact but modifying

their definitions, wherever required, accordingly for o-node and p-node. Further, recall

that the linearization point of a child depends upon the type of its parent, not its

own type (Section 7.4.1). Thus, when we consider the history at tω, the type of its

children does not matter. Its child could be a p-node or o-node. This means that the

level-wise history at an o-node in MxSTM can be constructed in the same way as in

case of a node in HParSTM.

While constructing the level-wise history at a node tω, in bottom-to-top manner

in a transaction tree (Section 3.4 and 3.7), we concern ourselves only with the objects

of tω, and treat the subtree rooted at a tω’s child as single transaction. We do not

need to care about the composition of transactions in that subtree, or the type of

that child .

The set of proofs used for HParSTM can be directly applied to show the correctness

for Htω .

Next, we show that the history produced at an p-node, tπ, in MxSTM is same as

that produced at a node in ParSTM.
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7.4.3.2 History (Ĥtπ) produced at a p-node (tπ)

Similarly, by construction (Section 7.1.1.1), we observe that the methods associated

with tπ node in MxSTM are similar to the methods defined for a non-root node in

ParSTM (Chapter 5). In other words, the objects associated with tπ in MxSTM

are operated in the same fashion as are the objects of a non-root node in ParSTM.

Therefore, the historyHtπ , produced at a node tπ by MxSTM, is similar to the history

Ht produced locally at a (pessimistic) node t by ParSTM. Hence, the set of proofs

used for Ht can be applied for Htπ .

175



Chapter 8

Conclusion and future work

This thesis provides a comprehensive study into the complexities involved in designing

STM protocols for closed nested transactions. Compared to non-nested transactions,

nested transactions pose a set of new problems unique to them that need to be treated

differently. To this end, we provide a formalism for closed nested transactions and

extend the definition of opacity used for non-nested transactions to define level-wise

opacity as a consistency criterion for nested transactions. In addition, we describe a

model for mapping the execution of nested transactions to obtain level-wise histories

in a transaction tree. We also provide a framework for formally proving the correctness

of STM protocols for nested transactions. This framework can be used for establishing

the correctness of other STM protocols for nested transactions.

Furthermore, we design a set of four STM protocols (SimpSTM, ParSTM, HParSTM,

and MxSTM) for closed nested transactions. These protocols offer different modes of

concurrency. Starting with SimpSTM, a simple protocol which offers no concurrency

at the nested level (subtransactions are executed serially), we progress to ParSTM
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which uses pessimistic concurrency control scheme at nested level and offers partial

concurrency: two subtransactions in the transaction tree can execute concurrently as

long as they do not try to access the same object; otherwise they execute sequentially.

Next, we obtain full concurrency in HParSTM by employing optimistic concurrency

control mechanism at each node of the transaction tree. Finally, we combine ParSTM

and HParSTM to obtain a hybrid protocol, MxSTM, in which some nodes operate

under optimistic concurrency control while others under pessimistic concurrency con-

trol mechanism. The protocols ParSTM and HParSTM are carefully crafted in a

modular way, using shared interface, such that the two can be easily integrated to

obtain MxSTM. Special cases have been duly discussed and addressed.

In future, it would be interesting to implement and test the protocols against

standard benchmarks to analyze their performance, especially under varying levels of

nesting. Further, MxSTM can be very useful in developing new applications where

different degrees of concurrency can be employed at different levels. For example,

the level where most of the child threads are read only, o-node (optimistic approach)

can be used, and the one where the frequency of updates by children is high, p-node

(pessimistic approach) can be employed.
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