
Structured-grid multigrid
with Taylor-Hood finite elements

by

c© Lukas Spies

A thesis submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Masters of Science.

Department of Scientific Computing

Memorial University

August 2016

St. John’s, Newfoundland and Labrador, Canada



Abstract

Recent years have seen renewed interest in the numerical solution of the Stokes Equa-

tions. At the same time, new computational architectures, such as GPUs and many-

core processors, naturally perform best with the regular data access and computation

patterns associated with structured-grid discretisations and algorithms. While many

preconditioning approaches ignore the underlying mesh geometry, our approach is to

develop a structured-grid implementation, taking advantage of the highly structured

data-access patterns and employing stencil-based calculations. This opens up many

opportunities for fine-grained parallelism, allowing us to take advantage of multicore

and accelerated architectures. In this thesis, we will consider an implementation of

a structured-grid monolithic Multigrid approach for Q2-Q1 finite-element discretisa-

tions, comparing its efficiency to an unstructured grid solver implemented in Trilinos.

With the aim to eventually target large heterogeneous systems, we will discuss an

implementation for moving from a serial code to the GPU by means of OpenCL and

compare the efficiency of all three versions. Speedup factors of about 6.3x were ob-

served for the GPU implementation over a serial implementation in Trilinos for a

problem on a 768x768 mesh in 2D.
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Chapter 1

Introduction

The focus of this thesis is on the development of algorithms for solving the Stokes

equations. We will focus on their use in modern high-performance computing by

performing an analysis of their implementation and efficiency targeting large hetero-

geneous systems. Using a structured-grid finite-element discretisation, we can express

all calculations in stencil form that naturally break up into many small and indepen-

dent calculations that are well suited for employing GPUs.

The Stokes equations are a well-known model of flow in situations where viscosity

is the dominant physical force. While the Stokes equations themselves are idealized

equations ignoring important physical effects such as temperature, their numerical

simulation serves as a first test case for these more complicated flows. A well-known

example is the so-called “Pitch drop experiment”, which measures the flow of a piece

of pitch that can be modelled with these equations. Also in the field of geodynamics,

magma dynamics are modelled by similar equations [1, 2], as is the dynamics of the

mantle at global scales [3, 4].

In recent years there have been many advances in the development of new ar-

chitectures (e.g., Intel’s Xeon Phi) providing large heterogeneous systems with large

numbers of CPUs and GPUs, prompting us to adapt our codes to fully take advantage

of the possible parallelisation. This has caused an increasing interest in structured-

grid approaches as these approaches can not only be parallelised very naturally, but

also come with a very logical structure hiding a lot of memory storage overhead in the

way the data is stored. Also, the regular access patterns enables us to both write GPU

codes (as we can directly address the memory) and it allows for predictable caching

increasing the overall efficiency. This reduces the memory and communication cost
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dramatically, making such approaches an ideal candidate for these new architectures.

Structured-grid approaches have been developed and are in use today, with the

Black Box Multigrid (BoxMG) algorithm [5–11] being a popular choice. BoxMG is

known to effectively solve various PDEs that have been discretised on logically struc-

tured grids in two or three dimensions. As the name suggests, this algorithm is

intended as a “black box”, i.e., the user only needs to provide a fine-grid discreti-

sation, a right-hand side and an initial guess for the solution. BoxMG uses a fixed

coarse-grid structure and, thus, can be efficiently implemented using structured data

representations. This also allows the use of direct addressing, i.e., having the actual

data object exposed to the algorithm, typically leading to better efficiency than when

using indirect addressing.

In this thesis, we extend the BoxMG approach to the linear systems that arise from

a Q2-Q1 discretisation on a structured mesh in 2D. Based on the already observed

advantages of the structured-grid algorithms in terms of performance and due to

the regular geometric structure of the underlying mesh, we can expect to see good

performance of these algorithms when moving our computations to the GPU.

1.1 Outline of Thesis

Poisson’s Equation, written in two dimensions as

−∆u = −uxx − uyy = f(x, y),

is an elliptic partial differential equation of degree 2, named after the French mathe-

matician and physicist Simon Denis Poisson. Even though it is of rather simple nature,

this type of equation is of importance in various disciplines, e.g., in electrostatics and

Newtonian gravity.

Using this equation, in Section 2.1, we derive a finite-difference discretisation.

This discretisation allows us to employ computers in our quest to find a solution.

One of the most common ways to solve such an equation is by means of relaxation.

We will consider an analysis of two of the most popular relaxation schemes, weighted

Jacobi in Section 2.3 and red-black Gauss-Seidel in Section 2.4, and demonstrate their

shortcomings. In particular, in Section 2.5, we will highlight their issue with reducing

smooth error components found in any computed approximation.
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Following the analysis of the two relaxation schemes, we will develop the two-

grid algorithm, in Section 2.6, in a first attempt to complement these approaches.

The two-grid algorithm tries to deal with the smooth components of the error by

projecting it onto a coarser grid. The step of going from a fine grid to a coarser grid

typically enables us to get a better handle on the error. While we could do a simple

direct solve on the coarser grid, offering some benefits for dealing with the error in

an approximation, this still leads to too large a problem to be solved efficiently. A

natural extension of the two-grid algorithm is, then, the multigrid algorithm, derived

in Section 2.8. As the name already suggests, instead of working with only two grids

we would work with multiple coarser grids. This allows us to get a nice handle on

both the issue of smooth error components and the size of the problem. By projecting

the error of an approximation onto a coarser grid and then in turn projecting the error

of the error equation onto the next coarser grid repeatedly, this results in an efficient

way to improve an approximation to the real solution on the finest grid. See [12, 13]

for details.

Implementing this algorithm is a rather straight-forward task that has been done

many times before, with our implementation presented in Section 2.9. We are partic-

ularly interested in speeding up the calculations by parallelising them using OpenMP,

Section 2.10. OpenMP is a specification that allows us to employ high-level paral-

lelism. It is based on compiler directives that are placed in the source code. There are

also abstraction layers that allow the writing of a single source code for multiple par-

allelisation specifications. This will not be part of this thesis, for a summary on these

abstractions see [14]. For Poisson’s equation, we will restrict our efforts to OpenMP

on multicore CPUs. The improvements achieved by this type of parallelism is shown

in Section 2.11 from different angles. One of the main focuses of our analysis will be a

comparison of a parallelised weighted Jacobi and a parallelised red-black Gauss-Seidel

as part of our multigrid solver.

The remainder of the thesis will be devoted to the Stokes equations, written in two

dimensions as

−∇ · (2νǫ(u)) +∇p = f

∇ · u = 0

over some domain Ω ∈ R
2. This type of equation often comes up, e.g., in areas of

geodynamics. It is named after George Gabriel Stokes, an Irish born mathematician
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and physicist. In Section 3.1, we will be deriving a finite-element discretisation of

this equation over the unit square, [0, 1]2, using Q2-Q1 finite elements, also called

Taylor-Hood finite elements, on a regular mesh [15]. Such a discretisation results in

specific matrices with certain structural properties that we will pay special attention

to in Section 3.2, highlighting their obvious and well-defined structure. This structure

allows us to do all of our computations using stencils, eliminating any need of using

unstructured sparse matrix storage schemes. Thus, we can compute our system matrix

in a structured way, shown in Section 3.3, saving large amounts of time that are

typically spent on handling and computing with a general sparse matrix.

Our algorithm of choice to solve Stokes equations is GMRES, the Generalised Min-

imal Residual method, developed in Section 3.5. It is an iterative algorithm, part of

the Krylov subspace methods family [16]. If we were to work with perfect precision,

this algorithm would give the exact solution in a finite number of steps. It can, how-

ever, approximate solutions to systems of equations consisting of millions of unknown

in a few iterations with satisfactory accuracy, given an appropriate preconditioner.

Preconditioning an algorithm, discussed in Section 3.6, is a way of making an

intelligent guess based on all the information available. We will be using a multigrid

preconditioner, shown in Section 3.8, to do exactly that, improving the efficiency

significantly. Its algorithm is identical in nature to the multigrid algorithm used to

solve Poisson’s equation. However, the way we move between the different meshes

needs to be adapted to take care of the more complicated element structure. Also,

we won’t be able to use many of the standard relaxation schemes like Jacobi or

Gauss-Seidel, as these involve an inverse of a matrix that is singular for the Stokes

equations. Thus, we need to find an alternative way to do relaxation. One of the

most common choices is to use a Braess-Sarazin relaxation scheme, presented in

Section 3.9 [12, 17]. After doing some rather complex matrix-matrix computations,

this allows us to compute an update for any approximation in a few rather simple

steps.

Following this, in Chapter 4, we will demonstrate our implementation of a GMRES

solver taking advantage of the highly structured underlying mesh geometry. The first

implementation is a purely sequential or serial approach, i.e., using only a single CPU.

The next step is an extension of this serial algorithm to be able to employ a single GPU

to do most of the computations. In Chapter 5, we will compare these two approaches

giving us a nice insight of the possibilities and shortcomings from employing a GPU
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based parallelism.

As a final step, in Section 5.4, we will consider a variation of the Braess-Sarazin

relaxation scheme. Instead of computing a rather complicated triple matrix product,

it should be theoretically possible to simply use the mass matrix of the system matrix

and get comparable results. This is explored in Subsection 5.4.2, comparing the two

variants and their timings.



Chapter 2

Poisson’s Equation

Before we enter the world of finite elements and the Stokes equations, we will consider

the simpler linear equation called Poisson’s equation. We will attempt to solve it by

means of a finite difference discretisation and a simple multigrid algorithm, to get

familiar with the techniques used thereafter.

In two dimensions, Poisson’s equation can be written as

−∆u = −uxx − uyy = f(x, y), (2.1)

with appropriate Dirichlet boundary conditions. Our domain of choice is the unit

square, [0, 1]2, and we know the system has a unique solution. Despite being of rather

simple nature, this type of equation is of importance in a variety of physical fields,

for example, in electrostatics and Newtonian gravity.

In order to find a solution to Poisson’s Equation, we could employ a Green’s

function or separation of variables approach. However, in real-life problems, this is

usually not a practicable path to choose due to complexity in f(x, y). Typically, it

is enough to find a numerical approximation to the solution of Poisson’s Equation.

There are various methods available that do exactly that. We will be using a finite

difference discretisation and a simple multigrid algorithm for that purpose. For more

details, see, for example, [13].
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2.1 Finite Difference Discretisation

In order to be able to numerically solve any equation, we have to find a suitable

discretisation of the solution defined by finitely many points. There are many ways

to do such a thing, maybe the simplest of which is a finite difference discretisation.

We take the domain, {(x, y) : 0 ≤ x, y ≤ 1} in two dimensions, and divide it into

n2 elements or partitions. For simplicity, the lengths of the elements is taken to be

constant of length hx = hy = 1
n
and, thus, we will use a simple h in place of either.

Now, we can introduce the grid points (xi, yj) = (ih, jh). The resulting grid of such

a discretisation is shown in Figure 2.1.

Figure 2.1: Discretised grid with typical relations between grid points, n = 4.

In order to actually discretise Equation (2.1), we simply replace its derivatives

by second-order finite difference approximations. This leads to the system of linear

equations
−ui−1,j + 2uij − ui+1,j

h2
+

−ui,j−1 + 2uij − ui,j+1

h2
= fij, (2.2)

defining ui,j for 1 ≤ i, j ≤ n− 1, with the Dirichlet boundary conditions ui0 = uin =

u0j = unj = 0, 0 ≤ i, j ≤ n. For simplicity, we denote uij as the approximation to the

true solution u(xi, yj) and fij to be the exact value of the right-hand side f(xi, yj).

We now have (n − 1)2 interior grid points and the same number of unknowns in our

problem. We order the points in lexicographical order by lines of constant i. If we
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collect all the unknowns of the ith row of the grid in the vector ui = (ui1, ..., ui,n−1)
T ,

1 ≤ i ≤ n − 1, and similarly let fi = (fi1, ..., fi,n−1)
T , then we can express the full

discretised system of equations that are formed by (2.2) in block matrix form as



















B −aI 0 · · · 0

−aI B −aI
...

0
. . . . . . . . . 0

...
. . . . . . −aI

0 · · · 0 −aI B





































u1

u2

...

un−2

un−1



















=



















f1

f2
...

fn−2

fn−1



















. (2.3)

This new linear system is symmetric, block tridiagonal and sparse. Its block

dimension is (n−1), with each diagonal block B being an (n−1)× (n−1) tridiagonal

matrix containing the coefficients of the system,

B =
1

h2





























4 −1 0 0 0 . . . 0

−1 4 −1 0 0 . . . 0

0 −1 4 −1 0 . . . 0
...

...
...

...
...

. . .
...

0 . . . 0 −1 4 −1 0

0 . . . . . . 0 −1 4 −1

0 . . . . . . . . . 0 −1 4





























. (2.4)

Each off-diagonal block matrix is a multiple of the (n− 1)× (n− 1) identity matrix,

I, with a = 1
h2 . As a short-hand notation, when referring to the discretised system as

a whole, we will denote the system as

Au = f , (2.5)

where A is the full system matrix and f is the full right-hand side. The vector u is

simply the collection of all ui’s, and the vector f is similarly the collection of all fi’s.

For each interior grid point, we can represent the associated equation in stencil

form as

Ai,j =
1

h2







−1

−1 4 −1

−1






, (2.6)
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which emphasises the typical relation between the unknowns at any interior grid point,

as also visualised in Figure 2.1.

2.2 Error and Residual Equation

Given a finite-difference discretisation, now suppose that after k iterations of some

method, we have an approximate solution u(k). Then we can formulate two measures

of the error in our approximation. The first and most obvious way is to simply take

the difference between the actual solution and our approximation,

e(k) = u− u(k). (2.7)

This measure is simply called the error or algebraic error. Taking the 2-norm (or

Euclidean norm) of the error gives us a concrete number expressing the error in our

approximation,

||e(k)||2 =





(n−1)2
∑

j=1

(e
(k)
j )2





1/2

. (2.8)

As we can see, in order to calculate the error e(k), we need to know the exact

solution itself. Unfortunately, this typically isn’t the case. Thus, instead of the error,

one often uses the residual as a measure of how well we are doing,

r(k) = f − Au(k). (2.9)

The residual simply expresses by how much our approximation u(k) fails to satisfy the

original system (2.5). Again using the 2-norm (2.8), the size of the overall residual

can be expressed using a single number. Since the system has a unique solution, we

have that r(k) = 0 only if e(k) = 0. Looking closely at the properties of the error and

the residual, we can see that the error satisfies a set of equations related to the actual

solution and right-hand side. This leads us to the residual equation,

Ae(k) = A(u− u(k)) = Au− Au(k) = f − Au(k) = r(k). (2.10)

Now assume we have some computed approximation u(k) to u. It is very easy to

compute the residual r(k) = f − Au(k). In order to improve our approximation u(k),

we might solve the residual equation for the error at step k, e(k), and then compute
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a new approximation u(k+1) by correcting it using the error information,

u(k+1) = u(k) + e(k). (2.11)

Since the exact error, e(k), is difficult to find, we generally solve only for an ap-

proximation of it, as in the relaxation schemes that follow.

2.3 (Weighted) Jacobi

There are many relaxation schemes that go along these lines of residual correction.

One of the most popular choices is the Jacobi method. The normal Jacobi update is a

simple calculation that takes in the current approximation for the four neighbouring

unknowns and the component of the right-hand side corresponding to the current

point, much in the same way as illustrated in (2.6). In component form, it can be

written as

u
(k+1)
ij =

1

4
(u

(k)
i,j−1 + u

(k)
i,j+1 + u

(k)
i−1,j + u

(k)
i+1,j + h2fij), 1 ≤ i, j ≤ n− 1. (2.12)

However, for easier notation and to be able to see better what is going on, we will

be using matrix notation. For Jacobi, the matrix A is split into

A = D − L− U, (2.13)

where D is the diagonal of A, and −L and −U are the strictly lower and upper

triangular parts of A. Substituting D − L− U in place of A, we get

(D − L− U)u = f . (2.14)

Isolating the diagonal terms of A and multiplying across by D−1 gives

u = D−1(L+ U)u+D−1f . (2.15)

From this, we can define the Jacobi iteration matrix as

RJ = D−1(L+ U)

= I −D−1A,
(2.16)
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leading to the matrix form of the Jacobi method

u(k+1) = RJu
(k) +D−1f . (2.17)

We will now do a simple yet important modification to this Jacobi iteration. First,

we do the same calculation as in (2.12), but store the intermediate result in u∗ij. Then

we can form a weighted average of the current and new approximation,

u
(k+1)
ij = (1− ω)u

(k)
ij + ωu∗ij

= u
(k)
ij + ω(u∗ij − u

(k)
ij ), 1 ≤ i, j ≤ n− 1,

(2.18)

where ω ∈ R is a weighting factor that has to be chosen. Again, denoting the above

iteration in matrix form gives us

u(k+1) = Rωu
(k) + ωD−1f , (2.19)

with Rω = (1−ω)I+ωRJ = I−ωD−1A, the weighted Jacobi iteration matrix. Using

such an iteration matrix, R, we can easily derive the following recurrence relation for

the error,

e(k+1) = Re(k), (2.20)

which we will use in the analysis of convergence of these schemes.

2.4 (Red-Black) Gauss-Seidel

Going from the Jacobi method to the Gauss-Seidel method, we only have to do a

minor change to the algorithm: components of the new approximation are used as

soon as they are computed and available. In fact, doing so removes the need to store

the intermediate results of the new approximation in a separate array. Intermediate

results are simply stored in u, overwriting the previous component and, thus, reducing

the storage cost required.

Denoting the iteration update in a similar fashion as for (2.12),

u
(k+1)
ij =

1

4
(u

(k+1)
i,j−1 + u

(k+1)
i−1,j + u

(k)
i,j+1 + u

(k)
i+1,j + h2fij), 1 ≤ i, j ≤ n− 1, (2.21)
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we can express the method in matrix notation as

u(k+1) = RGu
(k) + (D − L)−1f , (2.22)

where RG = (D − L)−1U .

From (2.3) and (2.4), we know that the diagonal of the system matrix A is positive

with all off-diagonal entries being ≤ 0. Since A is diagonally dominant, it is an

M-matrix. With this condition given, it can be shown that, if both methods are

converging, then the Gauss-Seidel method always converges faster than the Jacobi

method. However, as we eventually want to do some parallelising of the algorithm,

the Jacobi method gives the obvious advantage that it doesn’t matter in which order

the updates are computed. For Gauss-Seidel, this is not the case anymore, as it now

matters in which order new components are computed.

There are various ways to introduce a similar property to the Gauss-Seidel method.

One of the most popular ways leads to the so-called red-black Gauss-Seidel method,

an illustration of which is given in Figure 2.2. For the red-black Gauss-Seidel method,

Figure 2.2: Red-Black ordering of nodes

we first update all the “even” (red) components, i.e., whenever i+ j is even, following

which we update all the “odd” (black) components, i.e., whenever i + j is odd, both

times applying the same calculations as for the standard Gauss-Seidel iteration, (2.21).

After doing these two distinct sets of calculations once, every entry in u will have an

updated value, i.e., it is a complete partition.

In particular when looking at Figure 2.2, it becomes clear why this is of advantage

for parallelising the algorithm: In order to compute an update for a node with even
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index sum, i + j, all we need are values of nodes with odd index sum and vice

versa. Thus, it is possible to compute an update to all the nodes with even index

sum simultaneously, followed by an update to all the nodes with odd index sum

simultaneously.

There are many more relaxation methods. However, we will only be comparing

weighted Jacobi and red-black Gauss-Seidel for the Poisson problem in this chapter.

2.5 Smooth Error Components

We will be using the weighted Jacobi method as an example of why relaxation schemes

are not the final answer in finding a good approximation to the solution of essentially

any system. Recalling the weighted Jacobi iteration matrix Rω = (1−ω)I +ωRJ , we

can rewrite Rω as

Rω = I −
ωh2

4



















B −I

−I B −I
. . . . . . . . .

−I B −I

−I B



















. (2.23)

Considering Rω in this form, a relationship between the eigenvalues of Rω and A

emerges,

λ(Rω) = 1−
ωh2

4
λ(A). (2.24)

Thus, we first need to compute the eigenvalues of A,

λkl(A) =
4

h2
sin2

(

kπ

2n

)

+
4

h2
sin2

(

lπ

2n

)

, 1 ≤ k, l ≤ n− 1, (2.25)

and thus, the eigenvalues of the iteration matrix Rω are given by

λkl(Rω) = 1− ω

[

sin2

(

kπ

2n

)

+ sin2

(

lπ

2n

)]

. (2.26)

Clearly, for any value 0 < ω ≤ 1, we have |λkl(Rω)| < 1. This also gives us that

for any such ω
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λ1,1(Rω) = 1− 2ω sin2
( π

2n

)

= 1− 2ω sin2

(

πh

2

)

≈ 1−
ωπ2h2

2
, (2.27)

where λ1,1 is the eigenvalue associated with the smoothest mode. This implies that λ1,1

will always be close to 1. This is a problem, as the largest (in absolute value) eigenvalue

of the system matrix, called the Spectral Radius, ρ, is an asymptotic measure of

convergence. It predicts the worst-case error reduction over many iterations. It tells us

approximately how many iterations are required to reduce the error by a factor of 10−d,

i.e., by d decimal digits. This is the case when the condition (2.28) is approximately

satisfied,

[ρ(R))]m ≤ 10−d (2.28)

where R is the iteration matrix of the chosen method, m is the number of iterations

necessary, and d is the number of decimal digits we want to reduce the error by.

Solving for m we get

m ≥ −
d

log10[ρ(R)]
. (2.29)

The quantity − log10(ρ(R)) is called the asymptotic convergence rate. In order to get

the approximate number of iterations required to reduce the error by one decimal digit,

one simply has to consider its reciprocal. It now becomes clear, why an eigenvalue

close to 1 is a problem, as then the convergence rate decreases drastically. This can

also be seen when considering the convergence factor per iteration, ρk, expressed as

ρk =
|e(k)|

|e(k−1)|
. (2.30)

We do not want a convergence factor close to 1, as this would signal very slow con-

vergence. A plot of the convergence factor for the first 100 iterations of the weighted

Jacobi scheme is shown in Figure 2.3, where we can see that the convergence factor

starts out well below 1 but rises very quickly and, after only a few iterations, becomes

very close to 1.

Often times, in order to get a better approximation, one would decrease the grid

spacing h. However, this will only worsen the convergence of the smooth components

of the error as it would push the largest eigenvalue of A closer and closer to 1. Thus, we

need something to complement such relaxation schemes, something that can efficiently
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Figure 2.3: Convergence factor (per iteration) of Weighted Jacobi, ω = 0.7

dampen the smooth components of the error.

Even though the above analysis was done for the weighted Jacobi method, it is

important to note that the Gauss-Seidel method is qualitatively similar, and also

suffers from this problem.

2.6 Two-Grid

One idea for complementing the relaxation schemes is to first use a standard relax-

ation scheme until the smooth components of the error are dominant. These smooth

error components are then projected onto a coarser grid. In doing so, smooth error

components typically appear more oscillatory on coarser grids. This then allows again

the use of a simple relaxation scheme to dampen the coarse-grid error. Using the infor-

mation obtained therewith, we can correct our approximation on the finer grid. This

is the fundamental idea of the two-grid method, illustrated in Figure 2.4. There are

many ways to choose the coarse grid in a two-grid method. The most straightforward

way is to simply halve the degrees of freedom in each dimension, i.e., the coarse grid

has twice the grid spacing of the fine grid.

Thus, we only have to know two things in order to proceed: How to move from
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Figure 2.4: Two-grid method

the fine grid to the coarse grid (restriction), and back (interpolation)?

2.7 Restriction and Interpolation

There are many possible ways we can choose to handle the restriction and interpolation

of the vectors defined on the grid. For restriction, we will halve the degrees of freedom

and then take a weighted average of the fine-grid nearest neighbours. This type of

restriction is called full weighting, illustrated in Figure 2.5.

Figure 2.5: Weighted Restriction of fine-grid points (black)
to coarse-grid points (orange)

Denoting a component of the finer grid as vhij and a component of the coarser grid as
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v2hij , we can calculate the coarse-grid values by

v2hij =
1

16
[vh2i−1,2j−1 + vh2i−1,2j+1 + vh2i+1,2j−1 + vh2i+1,2j+1

+ 2(vh2i,2j−1 + vh2i,2j+1 + vh2i−1,2j + vh2i+1,2j)

+ 4vh2i,2j]

(2.31)

for 1 ≤ i, j ≤ n
2
− 1.

Linear interpolation follows a similar idea. Each fine-grid component is either

the same as a coarse-grid point, or is a weighted average of neighbouring coarse grid

points. It is worth noting that interpolating a coarse-grid error approximation to an

oscillatory error on the finer grid does not work very well. In order to achieve good

performance, the error on the fine grid should be smooth. An illustration of weighted

interpolation can be seen in Figure 2.6.

Figure 2.6: Weighted Interpolation of coarse-grid points (orange)
to fine-grid points (black)



18

The new components of the fine grid are then calculated by

vh2i,2j = v2hij , 1 ≤ i, j ≤
n

2
− 1

vh2i+1,2j =
1

2
(v2hij + v2hi+1,j), 0 ≤ i ≤

n

2
− 1, 1 ≤ j ≤

n

2
− 1

vh2i,2j+1 =
1

2
(v2hij + v2hi,j+1), 1 ≤ i ≤

n

2
− 1, 0 ≤ j ≤

n

2
− 1

vh2i+1,2j+1 =
1

4
(v2hij + v2hi+1,j + v2hi,j+1 + v2hi+1,j+1), 0 ≤ i, j ≤

n

2
− 1.

(2.32)

In our discussion, we considered only the case when the coarse grid has exactly

half the number of grid intervals (i.e., twice the grid spacing) as the fine grid. This

is a common choice in many settings as it is a natural and easy way to do it. For

some problems, a ratio of 3 instead of 2 can potentially give an improvement in

convergence [18]. However, for simplicity and convenience, we will stick to the choice

of a ratio of 2. Note that these choices satisfy the requirement that the combined order

of interpolation and restriction is greater than or equal to the order of the equation

(2 in the case of Poisson) [12, p. 295].

The weights used for restriction and interpolation can easily be modified for the

case when hx differs from hy, i.e., when the mesh consists of rectangles instead of

squares. This, however, will not be further explored in this thesis.

Even though the two-grid algorithm with the above interpolation and restriction

already yields a significant improvement over direct methods, it is not the final answer

in the quest to complement the relaxation schemes. This is due to the simple fact

that even though the coarser grid has half the size of the finer grid, it is still a large

problem to be solved, typically still too big to solve it efficiently. Thus, it is merely

a first step in this quest. However, extending two-grid to something that also takes

care of this issue is rather straightforward. This leads us to the multigrid algorithm.

2.8 Multigrid

As the name already suggests, in multigrid we do not only have two grids (a fine and

a coarse one), but we now deal with multiple grids, as illustrated in Figure 2.7.

Starting out with the actual problem on the finest grid, the error equation for each

grid is repeatedly restricted onto a coarser grid where it is relaxed each time, until a

coarsest grid with dimension chosen beforehand is reached. Once the coarsest of all
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Figure 2.7: Repeated Grid Coarsening

grids is reached, the error correction is repeatedly interpolated to the next finer grid

where it is again relaxed. This is done until the actual problem on the finest grid is

reached again. This results in the so-called V-cycle, shown in Figure 2.8.

Figure 2.8: Multigrid V-cycle

On the coarsest grid, before interpolating the solution, we could do what is typi-

cally done and do a direct solve of that system. Since the size of the problem at that

stage is very small due to repeated coarsening, this comes at a very low cost. Alter-

natively, it is also possible to only solve the system approximately, e.g., by relaxing

several times.

2.9 Implementation

Our language of choice to implement a multigrid solver for Poisson’s equation was

C++. As all the pieces of the puzzle combined compose a rather simple and straight-

forward algorithm, it was done without the use of any classes. Instead, the main part

of the implementation is a simple function that is called recursively for each new level,

Code 2.1.
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It takes various parameters:

• v : vector containing the current approximation

• f : vector containing the right-hand side

• level : the current level in the multigrid V-cycle

• nu1 & nu2 : Number of pre- and post-relaxation runs

• func: smoother to use (Jacobi or Gauss-Seidel)

Inside of the function body, we first run the pre-relaxation iterations, as they are

always performed, no matter on which level we currently are (lines 3-4). If the current

function call is on the coarsest level, then we jump directly to post-relaxation (lines

16-17) and pass the correction back up. At this point, on the coarsest level, it would

also be possible to perform a direct solve.

Code 2.1: V-cycle function definition, simplified

1 double ∗ vcyc l e (double ∗v , double ∗ f , int l e v e l , int nu1 , int nu2 , void (∗
func ) (double∗ ,double∗ , int ) ) {

3 for ( int j = 0 ; j < nu1 ; ++j )
4 func (v , f , l e v e l ) ;

6 i f ( l e v e l > 2) {

8 // ... Calculate residual ...

10 double ∗new f = r e s t r i c t ( r e s i dua l , l e v e l ) ;
11 double ∗ vec a s c = vcyc l e ( new v , new f , l e v e l −1, nu1 , nu2 , func ) ;
12 i n t e r p o l a t e (v , vec asc , l e v e l −1) ;

14 }

16 for ( int i = 0 ; i < nu2 ; ++i )
17 func (v , f , l e v e l ) ;

19 return v ;

21 }

If we are not on the coarsest level, we are performing three steps:
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1. Move error equation to coarser grid.

We calculate the residual of the current approximation (lines around 8), which

we will restrict to the coarser grid (line 10) and treat as the new right-hand side

on the coarser grid.

2. Recursive function call.

Having restricted the residual to the coarser grid as new right-hand side, we then

call the V-cycle function again (line 11). The new initial guess on the coarser

grid is a zero initial guess; we are optimistic and start by guessing that we are

at the right solution before typically being proven wrong.

3. Correct approximation with solution from coarser grid.

Whatever solution we get on our coarser grid, we first interpolate it to the (finer)

grid we are currently on and then simply add it on to our previous approximation

(line 12).

Both the restrict() and interpolate() functions are of very simple nature, they

consist of a few small loops implementing exactly what Equations (2.31) and (2.32) are

stating. The only addition to the interpolate() function is that it adds the interpolated

values to the already existing values - shown in Code 2.2 -, i.e., it takes proper care

of the coarse-grid correction.

Code 2.2: V-cycle: adding on of interpolated values

1 v h = v h + i n t e r p o l a t e ( v 2h ) ;

2.10 Parallelisation with OpenMP

Writing an implementation of a V-cycle solver is not a difficult task and has been done

many times by many people. However, we will also be doing some parallelising of our

code and compare performance between the serial and the parallel case. We will be

restricting our efforts to multicore CPUs and, thus, employ OpenMP to improve the

performance of our code.

“OpenMP is a specification for a set of compiler directives, library routines, and

environment variables that can be used to specify high-level parallelism in Fortran

and C/C++ programs” [19, OMPAPI.General.01].
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OpenMP parallelises code by using multithreading. In multithreading, a master

thread forks a specific number of slave threads and the system divides the task among

them. All of the threads then run concurrently, with the option of having variables

in shared memory accessible by all threads simultaneously.

The task of dividing the main task amongst all the slave threads can be controlled

by a scheduler in OpenMP. There are a four different types of schedulers available [20]:

1. static: Iterations are divided into “chunks” of a certain size. These chunks are

then assigned to threads in the team in round-robin fashion in order of thread

number.

2. dynamic: Each thread executes a chunk of iterations then requests another

chunk until no chunks remain to be distributed.

3. guided : Each thread executes a chunk of iterations then requests another chunk

until no chunks remain to be assigned. The chunk sizes start large and as chunks

are scheduled shrink to the chunk size indicated at the start.

4. auto: The decision regarding scheduling is delegated to the compiler and/or

runtime system.

In addition to a scheduler, there are also various directives to control the data access.

Memory can be marked as either one of the following:

1. shared : A single copy of a variable used by all threads simultaneously - medium

performance.

2. private: Each thread owns its individual copy of a variable - fast performance.

3. atomic: A shared variable, that is updated atomically - slow performance.

While adjusting the scheduler and data-access directives can improve the performance

of the parallelised code to some extent, they are still not sufficient to achieve excellent

performance for this class of algorithms.

Marking a section of code for parallelisation is done in a very simple way by adding

a pre-processor directive that forces the threads to be set up and ready to go before the

section is executed. In order to be able to distinguish between the threads, each one

gets a unique id allocated, with the master thread having id 0. After the parallelised
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Figure 2.9: OpenMP multithreading

section has been executed, all threads join back together with the master thread which

continues to run to the end of the program. Figure 2.9 visualises this behaviour.

Adding OpenMP parallelisation to some existing code is very easy and does not

require any changes to the underlying code basis. Adding the already-mentioned pre-

processor directives is all that is needed. An example of how to parallelise a simple

for loop with OpenMP is given in Code 2.3.

Code 2.3: Parallelising a simple for loop with OpenMP

1 #pragma omp for shared ( out )
2 for (unsigned int i = 0 ; i < 1e10 ; ++i )
3 out [ i ] = in1 [ i ]+ in2 [ i ] ;

Using this type of pre-processor directive, it becomes very easy to create a highly

parallelised version of our implementation of a multigrid solver for Poisson’s equation.

We only have to be careful to not write to the same shared memory address from two

concurrent threads at the same time.

2.11 Numerical results

We ran our implementation on a machine with 16 physical and 16 virtual cores pro-

vided by two Intel Xeon E5 CPU’s. Three different grid sizes were chosen: 4096x4096,

8192x8192, 16384x16384. For each one, the code was run both with GCC optimisation

level -O3 and without for both the Jacobi and Gauss-Seidel relaxation methods. The

results were analysed for two different criteria.

The first analysis, shown in Figure 2.10, shows the relative speed of the code. In

each case it was run until the 2-norm of the residual at step k compared to the 2-norm

of the initial residual was reduced by a factor of 10−6. All timings were set relative to

the fastest time, with the fastest time getting a value of 1 assigned to it.
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Figure 2.10: Relative speed of Jacobi and Gauss-Seidel with and without
optimisation on varying number of cores

As we would expect, enabling the typical optimisations of GCC alone gives already

a much better performance. The version with Gauss-Seidel is significantly faster

than the version with Jacobi, as fewer iterations are required to achieve the desired

convergence. However, it also becomes apparent from the graphs that with or without

any GCC optimisations, Gauss-Seidel is sped up at a much lower rate, the non-

optimised version eventually being the slowest one of the four choices. Considering

that in order to perform a red-black Gauss-Seidel iteration two for-loops are required,

this behaviour was to be expected. Given the simple structure, though, GCC is well

capable of tweaking its implementation internally to give the very nice performance

we can observe when using the optimisation flag.

Another interesting aspect to look at is when going from 16 cores up to 32 cores:

With no optimisations, this step again improves the overall performance at least to

some degree. Some of the optimisations GCC performs internally appear to be of

parallelising nature, causing some threads to compete for cores leading to the slight
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dip in performance.

We also analysed the data in regards to simply the possible speedup we can get

by introducing OpenMP, illustrated in Figure 2.11.

Figure 2.11: Speedup achieved by introducing OpenMP parallelisation on varying
number of cores

Depending on the setup and optimisation level, the benefit from adding OpenMP

is rather low. For example, when considering the Gauss-Seidel relaxation method, the

highest speedup achieved by introducing OpenMP is just below 1.3. For optimised

Jacobi, this factor goes up to just below 1.9. This is a little less than we might expect,

in particular given the hardware setup of 32 cores. Clearly, GCC does a very good job

in optimising the underlying code to give high performance without any third-party

library in use.

Interestingly, when disabling all the GCC optimisations, introducing OpenMP can

yield a very high speedup of up to 4.4 when using the Jacobi smoother. However,

OpenMP does a rather bad job in increasing the performance of red-black Gauss-

Seidel. A speedup of 1.8 is the best that seems possible. This also agrees with the
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behaviour we have seen in Figure 2.10, where red-black Gauss-Seidel with no other

optimisations but OpenMP eventually resulted in the slowest of the four cases.

In conclusion, OpenMP can indeed be an easy-to-implement way to increase the

performance of the code. Especially if some parallelisation is to be added after the code

has been written already. However, despite being so easy to use, the performance boost

that can be obtained by adding OpenMP can remain below expectations, even when

using additional control directives. A lot of it depends on the underlying hardware

that is available, and the compiler optimisations enabled.



Chapter 3

Stokes equations

Stokes flow is a type of fluid flow where viscous forces are much greater than ad-

vective inertia. Flow with such properties occurs in many places in nature, as, for

example, in geodynamics (for instance, the flow of lava), or the swimming movement

of microorganisms. The equations of motion in this regime are called the Stokes equa-

tions, which are a simplification of the steady-state Navier-Stokes equations. We will

consider the incompressible Stokes equations in the domain Ω ∈ R
2 , written as

−∇ · (2νǫ(u)) +∇p = f (3.1)

∇ · u = 0 (3.2)

in combination with appropriate boundary conditions. We denote as u the fluid

velocity, and as p the pressure, while the right-hand side, f , is an applied external

force, ν is the fluid viscosity (considered here to be constant), and ǫ(u) = 1
2
(∇u+∇uT )

is the strain-rate tensor. As a simplification, we assume the viscosity ν to be constant,

thus, we can remove the strain-rate tensor and simplify (3.1) as

− 2ν∇2u+∇p = f (3.3)

Along the boundary of the domain, we enforce Dirichlet boundary conditions for

the normal components of the velocity, while leaving the pressure without any con-

straint. Considering the case of enclosed flow, along the boundary we enforce the

no-flux condition

u · n = 0 on ∂Ω, (3.4)
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where n is an outward-pointing unit normal vector. Define the usual spaces H1
0(Ω) as

H1
0(Ω) = {v ∈ H1(Ω) : v · n = 0 on ∂Ω} (3.5)

and L2(Ω)/R as the quotient space of equivalence classes of elements of L2(Ω) that

differ by a constant. Thus, we can formulate the continuous weak form as finding

(u, p) ∈ H1
0 × L2(Ω)/R satisfying

a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω) (3.6)

b(u, q) = 0 ∀q ∈ L2(Ω)/R, (3.7)

where

a(u,v) = 2ν

∫

Ω

∇u : ∇v, (3.8)

b(v, p) =

∫

Ω

p∇ · v. (3.9)

In order to employ any numerical method or algorithm to find a solution to the

weak formulation (3.6) and (3.7), we first have to perform a suitable discretisation.

3.1 Discretisation

Before considering a discretisation, we must specify a domain to be used, which de-

pends on the application. Here, we will stick to the simplest case and consider the

unit square, [0, 1]2. There is a very natural way to think about a discretisation of

a 2-dimensional space over any domain: A simple grid or mesh consisting of regular

shapes. Two of the most popular choices of shape are triangles and rectangles. De-

pending on the domain, one or the other may be a preferable choice: If the domain

is rather irregular, e.g., containing curved boundaries, then it is possible to cover the

whole domain more accurately using triangles. If, however, the domain is of very

regular nature, e.g., a simple quadrilateral (or rectangular) domain, then rectangular

elements might offer slightly better accuracy. Since we are indeed working with a

regular square domain, the unit square, we will be using rectangles for our elements.

In particular, we will employ the so-called Taylor-Hood elements, or Q2-Q1 elements,

on a uniform mesh.
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Q2-Q1 elements are called Q2-Q1 as they use biquadratic polynomials (Q2) as

basis functions for the velocity and bilinear polynomials (Q1) as basis functions for

the pressure that are both continuous across element boundaries. In one dimension,

a typical set of basis functions, Φ, is illustrated in Figure 3.1. Each is a piecewise

defined biquadratic polynomial, with a value of 1 at one degree of freedom, and 0

at every other node. Taking the same one-dimensional basis functions in both the x

Figure 3.1: Q2 basis functions

and y directions and multiplying them together will yield the two-dimensional basis

functions for the Q2 elements.

Similarly for the Q1 elements, a typical set of basis functions, Ψ, in one dimension

is illustrated in Figure 3.2, as piecewise defined linear polynomials, each with a value

Figure 3.2: Q1 basis functions
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of 1 at one node and 0 everywhere else. Again, taking the same basis functions in

both the x and y directions and multiplying both will yield the two-dimensional basis

functions for the Q1 elements.

Having rectangles as elements and the respective basis functions defined, we simply

cover the whole domain with equally spaced rectangles. This works out perfectly for

us, as we are working with a square domain. A 2x2 element patch out of the whole grid

is illustrated in Figure 3.3. In order to accommodate our biquadratic polynomials,

Figure 3.3: 2x2 element patch

we need a total of 9 degrees of freedom per element: 4 nodes, 2 x-edges, 2 y-edges

and 1 cell center. This is necessary as we need at least 3 degrees of freedom in each

dimension for a biquadratic polynomial to be well-defined. Equivalently, whenever we

are looking at the bilinear polynomials, only 2 degrees of freedom in each dimension

are necessary for a well-defined representation of the basis functions.

This discretisation of the Stokes equations directly relates back to the weak form

defining matrices L and B by

vTLu = a(u,v), (3.10)

vTBp = b(v, p), (3.11)

qTBTu = b(u, q), (3.12)

where it is important to note that the u, v, p, and q on the right-hand side refer to
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the functions u(x, y), v(x, y), p(x, y), and q(x, y), whereas the u, v, p, and q on the

left-hand side refer to the solution vectors containing the coefficients of the functions

with respect to the basis functions.

Given necessary conditions for optimality, the weak form can be expressed as the

linear system

Ax =

[

L B

BT 0

][

u

p

]

=

[

fu

fp

]

= b, , (3.13)

where L is the discretisation of the Laplacian, B is the discretisation of the gradient

operator, andBT is the discretisation of the divergence operator. The four components

L, B, u, and fu can be broken down into their respective x and y components,

L =







Lx 0

0 Ly






, B =







Bx

By







u =







ux

uy






, fu =







fx

fy







.

This is important to know as we will be calculating the entries of the matrices in the

x and y directions separately.

3.2 Structural Properties

Using such a discretisation of the domain leads to a highly structured format for

the linear system (3.13): Any degree of freedom (i.e., node, edge or cell-center) only

interacts at most with all other degrees of freedom within no more than the four

surrounding elements (2x2 element patch). This stems from the fact that the basis

functions in use are zero everywhere else but the elements containing the node as-

sociated with the degree of freedom itself. Thus, the total number of non-zeros in

each row of the matrix corresponding to each degree of freedom are of fixed size and

independent of the grid size. They are summarised in Table 3.1 and an illustration

can be found in Figure 3.4.

If all the elements are sorted in a structured way, it becomes apparent that we will

always know exactly which values at which entries in the system matrix we have to
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3.3 Computing the System Matrix

The entries of the matrices that compose (3.13) can be easily calculated. In particular

since we only have to compute a few entries in each row. Let (i, j) be the index (row,

column) of one degree of freedom. Then we can define the Q2 basis functions as

φi−1(x) =
2

h2
(x− xi− 1

2

)(x− xi), xi−1 ≤ x ≤ xi

φi− 1

2

(x) =
4

h2
(x− xi−1)(x− xi), xi−1 ≤ x ≤ xi

φi(x) =
2

h2
(x− xi−1)(x− xi− 1

2

), xi−1 ≤ x ≤ xi

(3.14)

φi(x) =
2

h2
(x− xi+ 1

2

)(x− xi+1), xi ≤ x ≤ xi+1

φi+ 1

2

(x) =
4

h2
(x− xi)(x− xi+1), xi ≤ x ≤ xi+1

φi+1(x) =
2

h2
(x− xi)(x− xi+ 1

2

), xi ≤ x ≤ xi+1

in the x direction. Similar calculations (replacing x by y) will give the basis functions

in the y direction.

Taking (k, l) to be another degree of freedom, we can then compute the entry of

Lx in the row corresponding to (i, j) and in the column corresponding to (k, l) by

(Lx)(i,j),(k,l) =

∫

Ω

∇φ(k,l)(x, y) · ∇φ(i,j)(x, y)dΩ

=

∫

Ω

(∂xφk(x))φl(y)(∂xφi(x))φj(y) + φk(x)(∂yφl(y))φi(x)(∂yφj(y))dΩ

(3.15)

where we use that

φ(k,l)(x, y) = φk(x)φl(y). (3.16)

Taking advantage of the structural properties of Lx, this integral can be simplified
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and broken down into

(Lx)(i,j),(k,l) =

[∫ xi+1

xi−1

(∂xφk(x))(∂xφi(x))dx

]

[

∫ yj+1

yj−1

φl(y)φj(y)dy

]

+

[

∫ yj+1

yj−1

(∂yφl(y))(∂yφj(y))dy

]

[∫ xi+1

xi−1

φk(x)φi(x)dx

]

(3.17)

In order to obtain the entries for the matrix Ly, we can simply do the exact same

calculations as for Lx.

A similar approach can be taken to calculate the entries of the matrices Bx and

By. Again, let (i, j) be the index of a Q2 degree degree of freedom, but now let (k, l)

be the index of a Q1 degree of freedom. Define the one-dimensional Q1 basis function

Ψk(x) as

Ψk(x) =







































x− xk−1

xk − xk−1

if xk−1 ≤ x ≤ xk

xk+1 − x

xk+1 − xk
if xk ≤ x ≤ xk+1

0 otherwise.

(3.18)

Then the entries in the rows corresponding to (i, j) and the columns corresponding

to (k, l) of Bx and By are calculated by

(Bx)(i,j),(k,l) =

∫

Ω

(∂xφ(i,j))ψ(k,l)dA (3.19)

(By)(i,j),(k,l) =

∫

Ω

(∂yφ(i,j))ψ(k,l)dA (3.20)

Again taking advantage of the well-defined structural properties of the matrices, we

can re-write (3.19) and (3.20) as

(Bx)(i,j),(k,l) =

∫ xi+1

xi−1

(∂xφi(x))ψk(x)dx ·

∫ yj+1

yj−1

φj(y)ψl(y)dy (3.21)

(By)(i,j),(k,l) =

∫ yj+1

yj−1

(∂yφj(y))ψl(y)dy ·

∫ xi+1

xi−1

φi(x)ψk(x)dx (3.22)
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3.4 Boundary Values

The boundary of the grid has to be be treated differently than the interior. This

becomes very clear, especially when considering the interaction of each Q2 and Q1

degree of freedom with its neighbours, as shown in Figure 3.4.

• For the Q2 elements, we will enforce Dirichlet boundary conditions. This means,

that we will set the boundary of the right-hand side vectors to the true solu-

tion, with the diagonal entries in the rows of the system matrices Lx and Ly

corresponding to the boundary set to 1 and all other entries in these rows set

to 0.

• For the Q1 elements, we do not enforce any boundary conditions. However,

we do need to do different calculations for these degrees of freedom, as for each

degree of freedom along the boundary, some of the neighbours don’t exist. Thus,

the basis functions for these non-existent neighbours can be thought of as being

both constant and zero, leading to boundary values that differ from the interior.

In our experiments, we will do one more step that affects our boundary: Once we

have all the matrices and vectors set up, we will symmetrise the system matrix, which

essentially removes any interaction of interior degrees of freedom with the boundary.

This step is not a necessary step, but it is a simple step that can make the anal-

ysis a little easier. It certainly makes it easier to compare our setup with different

implementations, as these often work only with symmetric matrices.

3.5 GMRES

For solving the discretised system of the Stokes equations, we will use the method

called GMRES (Generalised Minimal RESidual method) [16, Chapter 6.5]. This

method, part of the Krylov subspace methods family, is an iterative numerical algo-

rithm for solving large, sparse systems of linear equations. Theoretically, if we were

able to work with perfect precision, this algorithm would give the exact solution in a

finite number of steps. However, it is of more interest as an approximation method, as

it can approximate solutions to systems of equations consisting of millions of unknowns

in few iterations with satisfactory accuracy, given an appropriate preconditioner.



36

3.5.1 The algorithm

Denote the system of linear equations by Ax = b, with the matrix A assumed to be a

real n× n invertible matrix with full rank, so that the system has a unique solution.

Denote the L2 or Euclidean norm (or, in short, 2-norm) of any vector v by ||v||.

Then, given some initial guess x(0), the GMRES algorithm is minimising in m

steps (m ∈ N) the 2-norm of the residual

r(m) = ||b− Ax(m)|| (3.23)

over the Krylov subspace

x(m) − x(0) ∈ Km(A, r
(0)) = span{r(0), Ar(0), ..., Am−1r(0)}. (3.24)

In order to minimise (3.23) over (3.24), an orthonormal basis {v(1), ...,v(m)} to

the subspace Km is constructed using the Arnoldi algorithm. The Arnoldi algorithm

applies a (modified) Gram-Schmidt process to the Krylov subspace, which relies on the

fact that the first vector v(1) is normalised, i.e., v(1) scaled to have a norm of 1. Lines 3-

15 of Algorithm 1 shows the steps involved in the algorithm. Denoting the n×mmatrix

formed by v(1), ...,v(m) as V (m), we can write the vector x(m) − x(0) ∈ Km(A, r
(0)) as

x(m) = x(0) + V (m)y(m) (3.25)

with y(m) ∈ R
m. From the Arnoldi algorithm, we can derive a relation between the

two matrices V (m) and V (m+1):

AV (m) = V (m)H(m) + ω(m)(e(m))T

= V (m+1)H̄(m)

= V (m+1)(Q(m))TQ(m)H̄(m)

= V (m+1)(Q(m))T R̄(m) (3.26)

where H̄(m) is the (m + 1) × m upper Hessenberg matrix filled with the values of

hij, with H
(m) being obtained from H̄(m) by deleting its last row, and where R̄(m) =

(Q(m))TH(m) is derived from the QR-factorisation of H(m) = Q(m)R̄(m). Letting e1 =

(1, 0, 0, ..., 0)T be the first vector of the standard basis of Rm+1 and setting β = ||r(0)||,

then, when v(1) = r(0)/β and since the columns of V (m) are orthonormal, we have
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that

||r(m)|| = ||b− Ax(m)|| = ||βe1 − H̄(m)y(m)||. (3.27)

Thus, the value of the approximate solution x(m) can be found by minimising

the 2-norm of the right-hand-side of (3.27). It is important to note that we don’t

actually compute y(m) at each step. We know that the vector y(m) that minimises

||βe1 − H̄(m)y|| is given by

y(m) = (R(m))−1g(m) (3.28)

with R(m) the m×m upper triangular matrix obtained from R̄(m) by deleting its last

row, and with g(m) the m-dimensional vector obtained from ḡ(m) = (γ(1), ..., γ(m+1))T

also by deleting its last component. Thus the residual vector at step m satisfies

b− Ax(m) = V (m+1)(βe1 − H̄(m)y(m))

= V (m+1)(Q(m))T (γ(m+1)e(m+1))
(3.29)

which leads to

||b− Ax(m)|| = |γ(m+1)|. (3.30)

Thus, instead of computing y(m) at each step m, we can simply consider |γ(m+1)|.

If this value is small enough, then we know the algorithm can be stopped. We then

delete the last row of R̄(m) and ḡ(m) and solve the resulting upper triangular system

to obtain y(m). Then the approximate solution x(m) = x(0) + V (m)y(m) is computed.

For a more detailed discussion of GMRES including proofs, see [16, §6.5.3].

The essence of the GMRES algorithm can be captured in these five main steps:

1. Use the Arnoldi iteration to calculate orthonormal basis vectors v(m)

2. Check whether ||r(m)|| is small enough by checking the value of |γ(m+1)|

3. Calculate y(m) from R(m) and g(m)

4. Calculate x(m) = x(0) + V (m)y(m)

5. Repeat as long as the residual r(m) is still too big

Another way to look at the GMRES algorithm is by looking at a pseudocode

implementation. Algorithm 1, taken from [16, Page 165], gives a nice summary of the

algorithm.
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Algorithm 1 GMRES algorithm

1: Compute r(0) = b− Ax(0), β = ||r(0)|| and v(1) = r(0)/β.
2: Define the (m+ 1)×m matrix H(m) and set elements hij to zero
3: for j = 1,2,...,m do
4: Compute w(j) = Av(j)

5: for i = 1, 2, ..., j do
6: hij = (w(j),v(j))
7: w(j) = w(j) − hijv

(i)

8: end for
9: hj+1,j = ||w(j)||
10: if hj+1,j = 0 then
11: m = j
12: break
13: end if
14: v(j+1) = w(j)/hj+1,j

15: end for
16: Define the (m+ 1)×m Hessenberg matrix H(m) = {hij}1≤i≤m+1,1≤j≤m

17: Compute y(m), the minimiser of ||βe1 −H(m)y||2

18: Compute x(m) = x(0) + V (m)y(m)

Examining Algorithm 1 carefully, it can be seen that there is only one possibility

for the algorithm to breakdown: In the Arnoldi loop, when w(j) = 0, i.e., when

hj+1,j = 0 at step j. As the (j + 1)st Arnoldi vector can’t be generated anymore, the

algorithm stops. However, this means that the residual vector is the zero vector, i.e.,

the algorithm gives the exact solution at this step, as any new vector generated by

the algorithm already lies in the generated subspace [16, Proposition 6.10].

3.5.2 Restarted GMRES

The restarted GMRES algorithm is a commonly used variant that allows explicit

control of memory requirements. It is motivated by the fact that GMRES is an algo-

rithm with complexity of order O(nm2), i.e., it grows quadratically with the number

of iterations. Thus, as m becomes large the growth in memory and computational

requirements become impractical. This is what restarted GMRES targets. The idea

behind it is to perform a certain number of iterations with GMRES, compute the

final approximation to the solution and take this computed approximation as the

new initial guess for a new run of GMRES. It is described in Algorithm 2, taken

from [16, Page 172].
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Algorithm 2 Restarted GMRES

1: Compute r(0) = b− Ax(0), β = ||r(0)||2, and v11(1) = r(0)/β.
2: Generate the Arnoldi basis and the matrix H̄(m) using the Arnoldi algorithm

starting with v(1).
3: Compute y(m), which minimises ||βe1 − H̄(m)y||2.
4: Compute x(m) = x(0) + V (m)y(m).
5: If satisfied then Stop, else set x(0) := x(m) and go to 1.

One well-known difficulty with this approach is that this algorithm can stagnate

when the matrix is not positive definite. For our experiments we will not be using

restarted GMRES as the addition of a preconditioner, Section 3.6, reduces the number

of iteration required for convergence to a small number (as will be seen in Chapter 5)

rendering a restart of the algorithm unnecessary. However, there is clearly a role

for it, and other limited-memory algorithms, in implementations on current GPU

architectures.

3.6 Preconditioning

When considering real-life problems, the system matrix of the discretised system is

almost always ill-conditioned in one way or another. In order to be able to efficiently

use an iterative solver like GMRES for solving such systems, it becomes necessary to

transform (or precondition) the given problem into a different one. This is done in

such a way that it results in a system that has the same solution as the ill-conditioned

problem, but with nicer properties, e.g., a better condition number or faster conver-

gence of GMRES.

3.6.1 Left- and Right-Preconditioning

To precondition a system, the main task is to find a non-singular matrix, M , that

transforms the original problem. Considering the standard form of a linear problem,

Ax = b, we can apply the preconditioning matrix M in two different ways:

1. Right-Preconditioning: MAx =Mb

2. Left-Preconditioning: AMu = b, where u =M−1x

The first thing to note about the two operators, MA and AM , is that their spec-

tra are identical. Just based on this, it is reasonable to expect both to yield similar
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convergence, however, it is known that eigenvalues alone do not always govern con-

vergence.

When preconditioning the original problem on the left, GMRES minimises the

preconditioned residual norm

||M(b− Ax)||. (3.31)

This is fine, as long as M is well-conditioned for the problem at hand. However,

if M is poorly conditioned, as any “good” M should be for an ill-conditioned A, this

can greatly change the approximation generated. In practise, this can mean that

the algorithm seems to have converged to some solution, based on the residual norm

(3.31), when in fact it is still far off in terms of the norm in (3.23).

On the other hand, when preconditioning the original problem on the right, then

the residual norm minimised by GMRES remains the same as originally the case,

GMRES is still trying to minimise

||b− Ax||2 with x =Mu (3.32)

In practise this means that GMRES will never claim to have converged when in fact it

hasn’t (yet). The solution, once obtained, is known to be the correct solution sought

after up to the desired precision. Another advantage of right-preconditioning is that

it allows flexible GMRES (FGMRES), see Section 3.7, where the preconditioner can

change from one iteration to the next. These two advantages typically make right-

preconditioning the preferred choice. The right-preconditioned GMRES algorithm

becomes Algorithm 3 [16, Page 270].

3.7 FGMRES

There is a variant of GMRES, called FGMRES (Flexible GMRES), which is equivalent

to the standard GMRES. FGMRES highlights the fact that it is possible to tweak

the GMRES algorithm to make it possible to change the preconditioner at every

step. This enables us to, e.g., adapt the preconditioning matrix Mi at iteration i

based on some criteria or for algorithmic convenience. Considering the standard

preconditioned GMRES algorithm, Algorithm 3, in Line 13, the assembled solution

x(m) is computed by means of a linear combination of the preconditioned vectors

z(i) = Mv(i), i = 1, ...,m, which are also computed in Line 3 when computing the
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Algorithm 3 Preconditioned GMRES algorithm

1: Compute r(0) = b− Ax(0), β = ||r(0)|| and v(1) = r(0)/β.
2: for j = 1,2,...,m do
3: Compute w = AMv(j)

4: for i = 1, 2, ..., j do
5: hi,j = (w,v(i))
6: w = w − hi,jv

(i)

7: end for
8: Compute hj+1,j = ||w||
9: Compute v(j+1) = w/hj+1,j

10: Define V (m) = [v(1), ...,v(m)], H̄(m) = {hi,j}1≤i≤j+1,1≤j≤m

11: end for
12: Compute y(m) = argminy ||βe1 − H̄(m)y||2
13: Compute x(m) = x(0) +MV (m)y(m)

vector w. Typically, the z(i)’s would not be stored, but only the v(i)’s, as each z(i)

can be computed by applying M to the respective v(i). However, if we instead store

the actual z(i)’s throughout the algorithm, then we can have different preconditioning

matrices M (i) at iteration i. There is no need to always choose the same M , as we

now can compute the approximate solution based on the z(i)’s,

x(m) = x(0) + Z(m)y(m) (3.33)

where Z(m) is the matrix whose columns consist of all the z(i)’s. The modified algo-

rithm can be denoted as in Algorithm 4 [16, Page 273].

3.8 Multigrid

For our preconditioner, we will be using a multigrid V-cycle, similar to as described in

Section 2.8. However, now we will use weighted restriction and interpolation adapted

to the Q2-Q1 finite-element discretisation. Figure 3.5 shows the weights chosen for

restriction for the four different types of Q2 degrees of freedom. These values come

from the finite element interpolation operators and are only accurate for square cells,

i.e., hx = hy. For rectangular cells, the values obtained by similar calculation from the

interpolation operators would differ. In order to do interpolation, the same weights

are chosen, but just in the reverse direction, i.e., each fine-grid degree of freedom gets

a weighted average of the coarse-grid degrees of freedom it contributed to with the
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Algorithm 4 Flexible GMRES algorithm

1: Compute r(0) = b− Ax(0), β = ||r(0)|| and v(1) = r(0)/β.
2: for j = 1,2,...,m do
3: Compute z(j) =M (j)v(j)

4: Compute w = Az(j)

5: for i = 1, 2, ..., j do
6: hi,j = (w,v(i))
7: w = w − hi,jv

(i)

8: end for
9: Compute hj+1,j = ||w||
10: Compute v(j+1) = w/hj+1,j

11: Define Z(m) = [z(1), ..., z(m)], H̄(m) = {hi,j}1≤i≤j+1,1≤j≤m

12: end for
13: Compute y(m) = argminy ||βe1 − H̄(m)y||2
14: Compute x(m) = x(0) + Z(m)y(m)

weight associated with the fine-grid degree of freedom. For the Q1 degrees of freedom,

we will use the same weights as for Poisson’s equation, given in Section 2.7.

Another aspect of Multigrid that we need to answer when dealing with the Stokes

equations with Taylor-Hood elements is what to do with the coarse-grid matrices Lx,

Ly, Bx and By. We will be constructing them by means of a Galerkin coarsening. Let

P be the interpolation matrix, such that for any given vector, u2h, on the coarse grid,

Ω2h, the same vector, uh, interpolated to the finer grid, Ωh, can be computed by Pu2h.

Going in reverse, i.e., restricting uh onto the coarser grid is done by multiplying with

the transpose, P Tuh. Denoting the interpolation matrix for the Q1 degrees of freedom

as P1 and, equivalently, the interpolation matrix for the Q2 degrees of freedom as P2,

then the coarse-grid matrices can be calculated by

L2h
x = P T

2 L
h
xP2

L2h
y = P T

2 L
h
yP2

B2h
x = P T

1 B
h
xP2

B2h
y = P T

1 B
h
yP2

(3.34)

For our analysis, we are using the standard restriction and interpolation matrices,

that come from the standard finite-element interpolation operators. Due to using
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(a) nodes (b) x-edges

(c) y-edges (d) cell-centers

Figure 3.5: Weighted restriction of Q2 degrees of freedom for square cells

these standard operators, the calculations in (3.34) can be replaced by a simple re-

discretisation of the fine-grid matrices on the coarser grid, both for square and rect-

angular cells.

However, we still need to do a slight modification to our system matrix on the

coarsest grid in order to be able to do a direct solve. Taking the system matrix as

described above will give us one zero eigenvalue (in the case of the coarsest grid being

a single element, we get two). As we do not enforce any boundary conditions on the

pressure, any computed solution for the pressure is only determined up to a constant.

For example, taking the vector with all 0’s for the velocity and all 1’s for the pressure

will give us a zero matrix-vector product, i.e., a constant pressure lives inside the

nullspace. The reason why we get two zero eigenvalues for a single element is due
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to the fact that the discretisation for a single element is unstable. In either case,

the matrix, as is, cannot be inverted for a direct solve. For grids larger than one

element, this problem can be easily dealt with by tying down the very last entry in

the pressure right-hand side and, thus, removing it from the nullspace. This is done

simply by adding a 1 into the very bottom right corner of the system matrix (two 1’s

for a single element). More details on this can be found in [15].

3.9 Braess-Sarazin

We will be using the so-called Braess-Sarazin smoother as a relaxation method for

our multigrid algorithm [17, 21–24]. We won’t be using a standard Jacobi- or Gauss-

Seidel-type relaxation method, as our system matrix is not positive definite. In fact,

for these relaxation schemes, we would need to invert either the diagonal or lower

triangular parts parts of the system matrix, both of which are singular and, hence,

cannot be inverted. Thus, we have to find an alternative solution, with Braess-Sarazin

being one of the more common choices. It allows us to compute a smoothing update

for both the velocity and pressure in very simple steps. It does so by computing a

simpler approximation to the true solution by solving a global saddle-point problem.

Given the Stokes equations (3.1) and (3.2) and given some approximation uold and

pold, the “ideal” Braess-Sarazin update takes the form

[

u

p

]new

=

[

u

p

]old

+ ωBS

[

tD BT

B 0

]−1




[

f

g

]

− A

[

u

p

]old


 (3.35)

with D being a diagonal matrix with entries from L, t being a scaling parameter for D,

and ωBS being an underrelaxation parameter for the global update. To solve (3.35),

we first express this system in the factorised form

[

tD 0

B S

][

I 1
t
D−1BT

0 I

][

δu

δp

]

=

[

ru

rp

]

(3.36)

where S = −1
t
BD−1BT is the Schur complement, and δu and δp are the update for

uold and pold. One thing to note about the matrix S is that by forming the matrix-

matrix-matrix product, the resulting Q1-Matrix interacts with a 4x4 element patch

instead of “only” a 2x2. From (3.36), we can extract two equations that need to be
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solved,

Sδp = rp −
1

t
BD−1ru (3.37)

δu =
1

t
D−1(ru − BT δp). (3.38)

Though it’s possible to solve this system exactly, we only solve it approximately,

giving us an “inexact” Braess-Sarazin method that is sufficiently accurate for our

purposes [25]. We will be using a single sweep of a standard Weighted Jacobi method

on (3.37) with weight ω to get a value for δp, which we then use in (3.38) to get a

value for δu. The new approximations unew and pnew are then computed as

unew = uold + ωBSδu, (3.39)

pnew = pold + ωBSδp. (3.40)

For our analysis, we will always keep ωBS fixed at 1 to simplify identification of good

choices of the other parameters, t and ω, leaving the question of optimal parameter

choices for future work.



Chapter 4

Implementation

We have implemented the FGMRES algorithm with a multigrid preconditioner in

C++, eventually adding OpenCL code for parallelisation purposes (discussed later).

The first task consists of writing classes for all of our data structures. As we are using

an object-oriented language, we are able to hide all the stencil calculations in these

classes giving us a very clean FGMRES implementation.

4.1 Data Classes

The various classes that we needed for our data structures are

• Q2Vector : A vector class holding the data for all the Q2 degrees of freedoms

in the mesh, plus a halo of ghost cells all around the mesh to simplify the

computations. Inside, the data is stored in 4 different arrays: One array holding

the values for all the nodes, one for all the x-edges, one for the y-edges, and one

for the cell-centers. All the degrees of freedom are ordered by rows, starting at

the origin (i.e., bottom left corner). The data This class is used to store the

approximations for the discretised velocity.

• Q1Vector : This is the vector class for the data for all the Q1 degrees of freedom,

plus a halo of ghost cells all around the mesh to simplify the computations . It

functions similarly to the Q2Vector class, but limits itself to the nodal values

needed for a Q1 approximation. This class is used to store the approximations

for the discretised pressure.
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• Q2Matrix : A matrix class that holds for each Q2 degree of freedom in the

mesh (node, edge, center) its interaction with its neighbours. As we saw in

Table 3.1 and Figure 3.4, all degrees of freedom in the mesh interact with a

fixed number of degrees of freedom in the neighbouring elements. Thus, inside

the Q2Matrix class, the data is stored in 4 different two-dimensional arrays,

with the same ordering as for the Q2Vector class. This class is used for the

discretised Laplacian.

• Q2Q1Matrix : A matrix class that relates all Q2 degrees of freedoms to Q1 de-

grees of freedom. The implementation is such that it can be used for computing

matrix-vector products with both the matrix and its transpose in (3.13). This

class is used for the discretised gradient.

We need to add one more data structure that we need in our Braess-Sarazin

relaxation method:

• Q1MatrixBs : A matrix class that relates to the Q1Vector class as the Q2Matrix

class relates to the Q2Vector class, with the important difference that it includes

a larger circle of neighbours for interaction as needed for the Schur complement

matrix S.

In all of our data structures, the actual data is stored in simple arrays of double’s

that are exposed as public objects. This allows us to directly index the arrays without

having to go through some type of API, giving us the best performance possible. Also,

due to the fact that we are only storing the values for the stencil calculations, we have

reduced the memory required to a minimum. This not only allows us to consider

larger problems, but it is another factor that improves the performance of the code

as it affects the memory access time in a beneficial way.

For all of our data structures, we take advantage of the object-oriented nature of

C++ and overload the required operations for the various matrix-vector and vector-

vector calculations. With the data structures taken care of, we now have to setup the

objects we will need and fill them with the initial data.

• Data: This is the main class for setting up our data. It first of all creates all

the vectors and matrices that we will need in FGMRES. The next step in the

class consists of filling the matrix entries with the right values. This is done

with calls to static member functions of the classes described below, MatrixA,
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MatrixBX, and MatrixBY. Following this, the right-hand side and initial guess

are filled in. As we are using Dirichlet Boundary Conditions, the boundary of

the right-hand-side velocity vectors is set to the true solution. The interior of

the right-hand side is calculated by means of a 9-point Gaussian Quadrature. In

order to simplify our later calculations, the resulting matrices are symmetrised.

As our interior is already symmetric, we only need to take care of the boundary

degrees of freedom. We set the initial guess to a user-selected solution (possible

values: true solution (for debugging), random initial guess, zero initial guess).

• MatrixA, MatrixBX, MatrixBY : These classes (or rather namespaces) contain

a single static inline function that fills in the values of the matrix object whose

reference has been passed in. The values to be entered have been calculated as

described in Section 3.3.

4.2 Source Code

With our discretised system fully set up, we can now turn our attention to the three

main pieces of the actual algorithm: 1) multigrid preconditioner, 2) Braess-Sarazin

smoother, and 3) FGMRES.

4.2.1 Multigrid preconditioner

The multigrid V-cycle that we will use as a preconditioner is implemented in a very

similar fashion as described in Section 2.9. Code 4.1 shows a simplified version of the

V-cycle recursive function that is called whenever a V-cycle solve is required.

The layout of the code here is very similar to Code 2.1, the main difference is

what happens on the coarsest grid. Instead of simply running our smoother a number

of times, we now do an exact solve (Line 4), discussed in detail in Chapter 5. If we

are not on the coarsest grid (Lines 5-23), we do exactly the same steps as described

before: Pre-smoothing (Lines 7-8, Equations (3.39) and (3.40)), restriction (Lines 10-

12, Figure 3.5), multigrid solve on coarser grid (Line 14), interpolation (Lines 16-18),

and post-smoothing (Lines 20-21, Equations (3.39) and (3.40)).
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Code 4.1: Preconditioner: V-cycle function definition, simplified

1 void VCycle : : run vcyc l e (Q2Vector ∗new u1 , Q2Vector ∗new u2 , Q1Vector ∗
new p , Q2Vector ∗new rhs u1 , Q2Vector ∗new rhs u2 , Q1Vector ∗
new rhs p , unsigned int c u r l e v e l ) {

3 i f ( new u1−>xdimension <= 6 | | c u r l e v e l == 1)
4 e x a c t s o l v e ( . . . ) ;
5 else {

7 for (unsigned int pre = 0 ; pre < p r e r e l e x a t i o n ; ++pre )
8 bs [ max leve l s−c u r l e v e l ] . s o l v e ( . . . ) ;

10 Q2Vector c oa r s e rh s u1 = ( /∗ u1 r e s i d u a l ∗/ ) r e s t r i c t ( ) ;
11 Q2Vector c oa r s e rh s u2 = ( /∗ u2 r e s i d u a l ∗/ ) . r e s t r i c t ( ) ;
12 Q1Vector c o a r s e r h s p = ( /∗ p r e s i d u a l ∗/ ) . r e s t r i c t ( ) ;

14 run vcyc l e ( . . . ) ;

16 ∗new u1 += coar s e u1 . i n t e r p o l a t e ( ) ;
17 ∗new u2 += coar s e u2 . i n t e r p o l a t e ( ) ;
18 ∗new p += coar s e p . i n t e r p o l a t e ( ) ;

20 for (unsigned int post = 0 ; post < po s t r e l e x a t i o n ; ++post )
21 bs [ max leve l s−c u r l e v e l ] . s o l v e ( . . . ) ;

23 }
24 }

4.2.2 Braess-Sarazin smoother

The implementation of the Braess-Sarazin smoother, called in Lines 8 and 21 of

Code 4.1, comes with a rather straight-forward layout of the code. In the setup

phase, we build up the Schur complement matrix, as it is always the same no matter

the data:

1. Extract diagonal of L and also invert it at the same time. This is a rather

trivial step and can be done with four simple loops, one for each type of degree

of freedom.

2. Multiply the inverted diagonal matrix, D−1, times the discretised gradient ma-

trix, B. Doing this calculation is, also, very straightforward, as it follows the

layout of our data structure perfectly. Thus, it can also be done with four simple

loops.
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3. Multiply the above product on the left by BT . This is the hardest part of the

setup phase. Essentially, for each Q1 node we have to figure out with which Q2

degrees of freedom it interacts. These Q2 degrees of freedom corresponds to rows

of the product calculated in the previous step, with the Q1 node corresponding

to a column. Doing this in an efficient and non-concurrent way, i.e., making

sure we don’t write to the same entry two different times (this is important

for parallelisation), requires careful coding and is not an easy task. Code 4.2

gives a small insight into the amount of work involved in getting it properly

set up for parallel computations: We do the computation node by node and

Code 4.2: Braess-Sarazin setup: Multiply D−1B on the left by BT

1 for (unsigned int node = 0 ; node < num nodes ; ++node ) {
2 for (unsigned int sur = 0 ; sur < 25 ; ++sur ) {

4 i f ( /∗ . . . a long ( or next to ) boundary wi th ’ sur ’ ou t s i d e . . . ∗/ )
5 continue ;

7 unsigned int surnode = ( node/xdimension −2)∗xdimension + ( node%
xdimension−2) + ( sur /5) ∗xdimension + sur%5;

8 double sum x = 0 , sum y = 0 ;

10 for (unsigned int k = 0 ; k < 9 ; ++k) {

12 unsigned int k sur = node−(( xdimension+1)/2)−1 + (k/3) ∗ ( (
xdimension+1)/2) + k%3;

13 i f ( /∗ . . . no connect ion between k sur and surnode . . . ∗/ )
14 continue ;

16 unsigned int s u r i , s u r j = /∗ . . . c a l c u l a t e va l u e s based on
node , surnode and k\ sur . . . ∗/

17 sum x += Bx . nodes [ k sur ] [ s u r i ]∗Dinv Bx . nodes [ k sur ] [ s u r j ] ;
18 sum y += By . nodes [ k sur ] [ s u r i ]∗Dinv By . nodes [ k sur ] [ s u r j ] ;

20 }

22 /∗ . . . a l s o compute surrounding edges and c e l l c en t e r s . . . ∗/

24 unsigned int s u r i t o j = 12 − ( node /( ( xdimension+1)/2) −
surnode /( ( xdimension+1)/2) ) ∗5 − ( node%((xdimension+1)/2) −
surnode%((xdimension+1)/2) ) ;

25 Bx Dinv Bx . nodes [ node ] [ s u r i t o j ] = sum x ;
26 By Dinv By . nodes [ node ] [ s u r i t o j ] = sum y ;

28 }
29 }



51

for each node surrounding index by surrounding index. This is the purpose of

the two for loops in Lines 1-2 that wrap around everything. Lines 4-5 ensure

that we do not go outside of the mesh. This is necessary as we do not enforce

any boundary condition on the pressure and thus compute all the way to the

boundary. Any surrounding index that would point outside of the mesh needs to

be filtered out. Line 7 computes the index of the node of the surrounding index,

in turn whose surrounding indices are looped over with the for loop started in

Line 10. However, before entering the for-loop, we set two summation variables

to 0, they will contain the total up value for the current node in the matrix

triple product. Inside of the loop, we once again compute the actual index of

the surrounding index of surnode, the surrounding index of the actual node we

compute for. In Line 13, we have to double-check if the two surrounding nodes,

surnode and k sur, actually do interact. If they don’t, we simply continue to

the next iteration, Line 14. If we are okay, then we compute the surrounding

indices based on k sur, Line 16, and build the product of the two matrices at

that entry before adding that value onto the summation variables, Lines 17-18.

All of this, Lines 10-20 have to be repeated in a similar way for the surrounding

x- and y-edges and the surrounding cell-centers. At the end of this, all that is

left is to set the calculated value to the correct location of the matrix holding

the triple matrix product, Lines 24-26.

4. All the above calculations have (naturally) been done separately (yet simulta-

neously) for the x and y components. To form the Schur complement matrix,

we now need to add up the two calculated matrix products and scale by the

inverse of the constant t.

Whenever we want to relax using our Braess-Sarazin implementation (i.e., for pre-

/post-smoothing in the V-cycle), we can simply call the solve function repeatedly. A

snippet of that function is shown in Code 4.3.

In Lines 5-6, we compute the right hand side as shown in (3.37). We then use a

simple weighted Jacobi update with a zero initial guess in Lines 8 and 9 to compute an

approximation δp. The calculated δp is then plugged into Equation (3.38) to compute

δu, Lines 11-12. These updates are then used to update our approximation, Lines

14-16.

As we will be looking at a lot more code below, we will be using a shorthand

notation for future code snippets to make them more concise. With this shorthand,
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Code 4.3: Relaxation: Braess-Sarazin solve function, simplified

1 void BraessSaraz in : : s o l v e (Q2Vector ∗ so ln u1 , Q2Vector ∗ so ln u2 , Q1Vector
∗ so ln p , Q2Vector ∗ rhs u1 , Q2Vector ∗ rhs u2 , Q1Vector ∗ rhs p ) {

3 /∗ . . . Ca l cu l a t e r e s i d u a l . . . ∗/

5 Q1Vector rhs = ( r e s i d u a l p − (Bx∗( Dx inv∗ r e s i dua l u 1 )
6 + By∗( Dy inv∗ r e s i dua l u 2 ) ) ∗ ( 1 . 0/ t ) ) ;

8 for (unsigned int index = 0 ; index < rhs . num nodes ; ++index )
9 p update . nodes [ index ] = omega/S . nodes [ index ] [ 1 2 ] ∗ rhs . nodes [ index

] ;

11 Q2Vector u1 update = Dx inv ∗( r e s i dua l u1−Bx∗p update ) ∗ ( 1 . 0/ t ) ;
12 Q2Vector u2 update = Dy inv ∗( r e s i dua l u2−By∗p update ) ∗ ( 1 . 0/ t ) ;

14 ∗ s o l n p += p update ;
15 ∗ so ln u1 += u1 update ;
16 ∗ so ln u2 += u2 update ;
17 }

Lines 14-16 of Code 4.3 would be denoted in a single line by

1 ∗ s o l n # += # update

with the # being a placeholder for the respective components.

4.2.3 FGMRES

Now that we have all the various pieces of the algorithm set up, we can pull them all

together in our GMRES implementation. As it is a rather long implementation, we

will examine it in multiple steps. Code 4.4 shows the setup of the iteration.

Line 3 initialises the iteration counter, whose value will eventually be the return

value of the function. Around Line 5, we compute the initial residual vector. Given our

operator overloading in the classes for our data structures, we can directly use the very

intuitive matrix notation. Using the initial residual, we compute the overall 2-norm

in Line 6. If the initial guess to the system is already within our desired tolerance

we wrap up, Lines 8-11, and return an iteration count of 0, Line 10. Otherwise,

we normalise the residual vectors, Line 13, compute what value for a 2-norm would

signal achieved convergence, Line 15, and store the 2-norm as the first value in our

Hessenberg system, Line 16.
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Code 4.4: GMRES: Setting up, simplified

1 int GMRES: : gmres (Q2Vector ∗ so ln u1 , Q2Vector ∗ so ln u2 , Q1Vector ∗ s o l n p ) {

3 unsigned int i t s = 0 ;

5 work #[0] = data . rh s # − ( data .A#∗data . s o l n #+data .B#∗data . s o l n #) ;
6 beta = sq r t (pow( work u1 [ 0 ] . twoNorm( ) ,2 )+pow( work u2 [ 0 ] . twoNorm( ) ,2 )+

pow(work p [ 0 ] . twoNorm( ) ,2 ) ) ;

8 i f ( beta < c onv e r g en c e l e v e l ) {
9 . . .

10 return 0 ;
11 }

13 work #[0] = work #[0]/ beta ;

15 eps1 = conve r g en c e l e v e l ∗beta ;
16 r s [ 0 ] = beta ;

18 while ( i t s < maxiter && beta > eps1 && beta > 1e−15) {

20 // Iteration loop

22 }

24 // Computing solution

26 return i t s +1;
27 }

This concludes the setup of the GMRES algorithm, and we are now ready to enter

the iteration loop. Code 4.5 shows a simplified version of the loop.

Firstly, we use our preconditioner (Lines 3-4) to improve our convergence. We then

use the preconditioned array to re-compute the residual of our system, around Line 6.

In Lines 8-14, we use the Arnoldi algorithm with a modified Gram-Schmidt process

to form an orthogonal basis to our Krylov subspace. The main work of the Arnoldi

algorithm, though, happens in Lines 8-11, were we do the actual orthogonalisation.

Lines 13-14 simply serve to normalise the new vectors. Following this, in Lines 16-29,

we update the factorisation of the Hessenberg matrix stored in hh by performing the

previous transformations on the ith column of hh. In Line 31, we simply update the

residual norm stored in beta by the newly calculated norm. Once we have convergence

within our tolerance, this will ensure that the iteration loop is terminated, Line 1. All

that is left is to increment the iteration count by 1, Line 32.
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Code 4.5: GMRES: Iteration loop, simplified

1 while ( i t s < maxiter && beta > eps1 && beta > 1e−15) {

3 cy c l e . run(&prec u1 [ i t s ] , &prec u2 [ i t s ] , &prec p [ i t s ] ,
4 &work u1 [ i t s ] , &work u2 [ i t s ] , &work p [ i t s ] ) ;

6 work #[ i t s +1] = data .A#∗prec #[ i t s ] + data .B#∗prec #[ i t s ] ;

8 for (unsigned int j = 0 ; j <= i t s ; ++j ) {
9 hh [ i t s ] [ j ] = work #[ i t s +1] . getInnerProductWith ( work #[ j ] ) + . . .

10 work #[ i t s +1] = work #[ i t s +1] − work #[ j ]∗ hh [ i t s ] [ j ] ;
11 }

13 hh [ i t s ] [ i t s +1] = . . . // 2-norm of work #[its+1]
14 work #[ i t s +1] = work #[ i t s +1]/hh [ i t s ] [ i t s +1] ;

16 for (unsigned int k = 0 ; k < i t s ; ++k) {
17 double t = hh [ i t s ] [ k ] ;
18 hh [ i t s ] [ k ] = c [ k ]∗ t + s [ k ]∗ hh [ i t s ] [ k+1] ;
19 hh [ i t s ] [ k+1] = −s [ k ]∗ t + c [ k ]∗ hh [ i t s ] [ k+1] ;
20 }

22 double gamma = sq r t (pow(hh [ i t s ] [ i t s ] , 2 ) + pow(hh [ i t s ] [ i t s +1] ,2) ) ;

24 c [ i t s ] = hh [ i t s ] [ i t s ] /gamma;
25 s [ i t s ] = hh [ i t s ] [ i t s +1]/gamma;
26 r s [ i t s +1] = −s [ i t s ]∗ r s [ i t s ] ;
27 r s [ i t s ] = c [ i t s ]∗ r s [ i t s ] ;

29 hh [ i t s ] [ i t s ] = c [ i t s ]∗ hh [ i t s ] [ i t s ] + s [ i t s ]∗ hh [ i t s ] [ i t s +1] ;

31 beta = fabs ( r s [ i t s +1]) ;
32 ++i t s ;
33 }

After we either have reached convergence or have exceeded our maximum number

of iterations, we then need to assemble the solution at the end. This is necessary

as GMRES doesn’t compute the intermediate approximations. Code 4.6 shows a

simplified version of the corresponding code.

Assembling the solution is very straightforward and happens in two simple steps:

First, we need to solve the upper triangular system, Lines 4-11. Following this, our

“solution” that GMRES gives us is stored in the array rs, which we then use together

with the preconditioned arrays to compute the final solution, Lines 13-17. As a final

step, we return the total iteration count, Line 19. The addition of 1 to the iteration
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Code 4.6: GMRES: Assembling solution, simplified

2 . . .

4 r s [ i t s ] = r s [ i t s ] / hh [ i t s ] [ i t s ] ;
5 for (unsigned int i i = 1 ; i i <= i t s ; ++i i ) {
6 unsigned int k = i t s− i i ;
7 double va l = r s [ k ] ;
8 for (unsigned int j = k+1; j <= i t s ; ++j )
9 va l = va l − hh [ j ] [ k ]∗ r s [ j ] ;

10 r s [ k ] = va l /hh [ k ] [ k ] ;
11 }

13 ∗ s o l n # = data . s o l n #;
14 for (unsigned int j = 0 ; j <= i t s ; ++j ) {
15 double va l = r s [ j ] ;
16 ∗ s o l n # = ∗ s o l n # + ( prec #[ j ]∗ va l ) ;
17 }

19 return i t s +1;
20 }

count is done to take into account that C++ starts counting at 0.

4.3 GPU Considerations

Moving to the GPU is not the easiest task, though it is also not a very hard one.

However, some consideration is needed before we are able to do this move efficiently

and with good resulting performance.

1. In order to get good performance on the GPU, we need to break our calculations

down into as small as possible independent pieces, the smaller and simpler the

better [26]. These small calculations are then wrapped in so-called kernels.

Kernels are essentially functions containing code that can be called and executed

on the GPU. Code 4.7 shows the kernel function used for multiplying a matrix by

a double. Such small and independent calculations fall out of our code naturally,

as we are expressing all our calculations in stencil form. This gives us the type

of fine-grained parallelism that we are looking for.

2. We need to choose a framework to implement our GPU code (the kernels) in.

As our structured implementation is written in C++, the two obvious choices
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Code 4.7: OpenCL: Kernel function for matrix multiplied by double

1 ke rne l void matr ix mult ip ly by number ( g l oba l const double ∗ inp1 ,
2 g l oba l const double ∗ inp2 ,
3 g l oba l double ∗ r e t ) {
4 unsigned int g l o b a l i d = g e t g l o b a l i d (0 ) ;
5 r e t [ g l o b a l i d ] = inp1 [ g l o b a l i d ]∗ (∗ inp2 ) ;
6 }

are CUDA and OpenCL:

• OpenCL (the Open Computing Language) is an open standard for parallel

programming for heterogeneous systems. With OpenCL, it is possible to

execute the exact same kernels on various types of devices (GPUs, CPUs,

DSPs, FPGAs, and more) from many different vendors.

• CUDA also offers a standard for parallel programming, though not an open

standard. Contrary to OpenCL, it is limited to running on NVIDIA GPUs.

On NVIDIA GPUs, in terms of relative performance, they both are about the

same. This is due to the fact that OpenCL is (when compiled) internally trans-

lated to the CUDA API on NVIDIA GPUs. Thus, the only somewhat noticeable

difference is in the compile time at start, but not much in the runtime. However,

OpenCL offers the flexibility and freedom to be used on more than just NVIDIA

GPUs (heterogeneous (OpenCL) vs. homogeneous (CUDA)). Due to this flexi-

bility and also the author’s strong preference of open standards and open-source

software, we will be using OpenCL to parallelise our code for GPUs.

3. When operating on the GPU, there naturally arises the need to communicate

between the CPU and GPU. Unfortunately, this communication is very expen-

sive, so minimising/hiding this need to communicate becomes a high priority.

In particular when operating on multiple GPUs simultaneously, the communi-

cation path GPU-1 → CPU-1 → CPU-2 → GPU-2 can have detrimental effects

on the overall performance.

4. At the moment, we do not have a direct solver on the GPU available. As part

of our multigrid preconditioner, we need to do a direct solve on the coarsest

level in the V-cycle. In order to do a direct solve, we currently need to move

the data back to the CPU, perform a direct solve (using UMFPACK [27–30]),
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and move the data back to the GPU. This adds unnecessary communication

costs, thus developing a direct solver on the GPU could potentially be highly

beneficial. Alternatively, we could consider doing relaxation instead of a direct

solve on the coarsest grid. This avoids the communication, but may incur extra

computations in the form of more V-cycles to achieve convergence. We will

investigate how the performance of a direct vs. an approximate solve on the

coarsest grid compare.

With all of this in mind, we wrote the necessary OpenCL kernels to perform a full

multigrid-preconditioned GMRES solve on a single GPU. The logic used in both the

serial and the parallel version is essentially identical, with no (additional) shortcuts

taken on either side. A few examples of the kernels are given below.

4.3.1 OpenCL Kernels and Handler Examples

The first thing we have to take care of when writing an OpenCL version of a code

consisting of many different classes, is how to manage the various OpenCL objects

necessary throughout the code. We chose to create a meta object class OCL that

contains all the data and to which a pointer gets passed around. A simplified version

is shown in Code 4.8. This meta class performs 5 main tasks:

1. In Lines 5 to 10 it tries to find a platform to run on. Such a platform can be,

e.g., Intel OpenCL or NVIDIA CUDA.

2. After a platform is found, it is checked for possible devices to run on, Lines 12 to

17. This could be, e.g., an Intel Xeon Phi device or an NVIDIA Tesla K20Xm

GPU.

3. Once a platform and device is found, a context is created on the device, Line

19. A context is used by the OpenCL runtime for managing queues, memory,

program and kernel objects and for executing kernels on a device specified in

the context.

4. Inside of the context, in Line 20, a command queue is created. All kernel calls

will be enqueued in this queue and are executed either in-order or out-of-order.

We will be running all of them in-order.
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Code 4.8: OpenCL: OCL meta class, simplified

1 class OCL {
2 public :
3 expl ic it OCL( . . . ) {

5 std : : vector<c l : : Platform> a l l p l a t f o rm s ;
6 c l : : Platform : : get (& a l l p l a t f o rm s ) ;
7 i f ( a l l p l a t f o rm s . s i z e ( ) == 0)
8 throw c l : : Error (CL INVALID PLATFORM) ;
9 else

10 plat form = a l l p l a t f o rm s [ 0 ] ;

12 std : : vector<c l : : Device> a l l d e v i c e s ;
13 plat form . getDev ice s (CL DEVICE TYPE ALL, &a l l d e v i c e s ) ;
14 i f ( a l l d e v i c e s . s i z e ( ) == 0)
15 throw c l : : Error (CL INVALID DEVICE) ;
16 else

17 d e f a u l t d e v i c e = a l l d e v i c e s [ 0 ] ;

19 context = c l : : Context ({ d e f a u l t d e v i c e }) ;
20 queue = c l : : CommandQueue( context , d e f a u l t d e v i c e ) ;

22 std : : s t r i n g a l l o p e n c l k e r n e l s = Kerne ls : : g e tS t r i ng ( ) ;
23 programs = c l : : Program ( context , a l l o p e n c l k e r n e l s , true ) ;
24 }

26 c l : : Platform plat form ;
27 c l : : Device d e f a u l t d e v i c e ;
28 c l : : Context context ;
29 c l : : CommandQueue queue ;
30 c l : : Program programs ;
31 } ;

5. Finally, in Line 22, we retrieve all the kernels written from another meta class

that simply parses a few text files containing the kernels. They are then compiled

in Line 23 into an executable format lying on the GPU. These kernels are now

ready to be called by our code.

After having established all the needed OpenCL objects, we can turn our attention

to converting a function from serial to OpenCL. This can be a relatively straightfor-

ward task, provided the serial version does not write to the same memory address at

two different stages in the algorithm. If it does not, then the main task of converting

to OpenCL lies in computing the correct indices based on where in the order each in-

dividual kernel call is. If the serial code does write to the same memory in more than
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one location, this task becomes a little more complicated, as parts of the code most

likely have to be re-written to avoid concurrent writes to the same memory address.

As an example, let us consider the restrict() function for a Q1Vector, Code 4.9.

Code 4.9: OpenCL: Q1Vector::restrict()

1 ke rne l void q 1 v e c t o r r e s t r i c t ( g l oba l const double ∗ const f i n e i npu t ,
2 g l oba l const int ∗ const coar se xd imens ion ,
3 g l oba l const int ∗ const coar se yd imens ion ,
4 g l oba l double ∗ const coar s e output ) {

6 unsigned int coa r s e i ndex = g e t g l o b a l i d (0 ) ;
7 unsigned int coarse xd imens ion = ∗ coar s e xd imens ion ;
8 unsigned int coarse yd imens ion = ∗ coar s e yd imens ion ;
9 unsigned int f i n e xd imens i on = coarse xd imens ion ∗2−1;

11 i f ( c oa r s e i ndex >= coarse xd imens ion ∗ coarse yd imens ion ) return ;

13 unsigned int f i n e i n d e x = (2∗ ( c oa r s e i ndex / coar se xd imens ion )+1)∗(
f i n e xd imens i on+2) + 2∗( c oa r s e i ndex%coarse xd imens ion )+1;

15 double va l = f i n e i n pu t [ f i n e i n d e x ] ;
16 va l += 0 .5 ∗ f i n e i n pu t [ f i n e i ndex −1] ;
17 va l += 0 .5 ∗ f i n e i n pu t [ f i n e i n d e x +1] ;
18 va l += 0.5 ∗ f i n e i n pu t [ f i n e i ndex −( f i n e xd imens i on+2) ] ;
19 va l += 0 .5 ∗ f i n e i n pu t [ f i n e i n d e x+( f in e xd imens i on+2) ] ;
20 va l += 0.25 ∗ f i n e i n pu t [ f i n e i ndex −1 + ( f i ne xd imens i on+2) ] ;
21 va l += 0.25 ∗ f i n e i n pu t [ f i n e i ndex −1 − ( f i n e xd imens i on+2) ] ;
22 va l += 0.25 ∗ f i n e i n pu t [ f i n e i n d e x+1 + ( f in e xd imens i on+2) ] ;
23 va l += 0.25 ∗ f i n e i n pu t [ f i n e i n d e x+1 − ( f i n e xd imens i on+2) ] ;

25 coar s e output [ ( c oa r s e i ndex / coar se xd imens ion+1)∗( coar se xd imens ion
+2) + coa r s e i ndex%coarse xd imens ion+1] = va l ;

26 }

First, in Line 6, we store the current global id. This is the index of the current call

of the kernel and corresponds to the index in our coarse mesh. Lines 7-9 are for our

convenience, storing some values that are used multiple times in variables. In Line 11

we need to check if the current kernel index is a valid mesh index. OpenCL groups all

kernel calls into work groups of a certain size (typical choices are 128, 192, or 256).

Thus, it needs to pad the indices coming from the mesh to produce a number divisible

by the work group size. Obviously, there is no need to do any work for these indices.

In Line 13, we compute the find-grid index (including ghost elements) corresponding

to the coarse-grid index, which we then use in Lines 15-23 as a base for the index of

the surrounding nodes for computing the weighted average. Finally, in Line 25, we
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write the computed value to the global array.

This kernel can be called from our C++ code with just a few lines of code, given in

Code 4.10. First, we compute the coarse-grid dimensions, Lines 1-2, and we create a

Code 4.10: C++: Calling OpenCL kernel for Q1Vector::restrict()

1 unsigned int coarse xd imens ion = xdimension /2+1;
2 unsigned int coarse yd imens ion = ydimension /2+1;

4 Q1Vector r e t ( coarse xdimens ion , coarse ydimens ion , oc l , onAnDevice ) ;

6 try {
7 c l : : Bu f f e r coar s e xd imens ion bu f ( oc l−>context ,
8 &coarse xdimens ion , (&coarse xd imens ion )+1,
9 true ) ;

11 c l : : Bu f f e r coar s e yd imens ion bu f ( oc l−>context ,
12 &coarse ydimens ion , (&coarse yd imens ion )+1,
13 true ) ;

15 auto ke rne l = c l : : make kernel
16 <c l : : Bu f f e r&, c l : : Bu f f e r&, c l : : Bu f f e r&, c l : : Bu f f e r&>
17 ( oc l−>programs , ” q 1 v e c t o r r e s t r i c t ” ) ;

19 ke rne l ( c l : : EnqueueArgs ( oc l−>queue ,
20 c l : : NDRange( r e t . gho s t num node s g l oba l o c l ) ,
21 c l : : NDRange( r e t . gho s t num node s l o c a l o c l ) ) ,
22 e l ements bu f [ 0 ] , coar se xd imens ion buf ,
23 coarse yd imens ion buf , r e t . e l ements bu f [ 0 ] ) ;

25 c l : : copy ( oc l−>queue , e l ements bu f [ 0 ] , &nodes [ 0 ] , (&nodes [
ghost num nodes −1])+1) ;

27 } catch ( c l : : Error e r r o r ) {
28 oc l−>d i sp layExcept ion ( ”Q1Vector : : r e s t r i c t ( ) ” ,
29 e r r o r . what ( ) , e r r o r . e r r ( ) ) ;
30 e x i t (1 ) ;
31 }

new Q1Vector object on the coarser mesh, Line 4. We wrap the actual use of OpenCL

objects and functions into a try-catch block, Lines 6-31, as this allows us to catch any

exception thrown by OpenCL and display a somewhat meaningful error message,

Lines 28-29 before terminating our code, Line 30. Such an exception can be thrown,

e.g., when the GPU is running out of memory, or when a faulty kernel call was done.

Inside of the try block, we first create two buffers on the GPU holding the coarse-grid

dimensions, Lines 9-13. Our code relies heavily on C++11 features, that allows us to
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do many things with OpenCL with a single line of code. Without C++11, this would

require multiple lines of code and would lead to slightly more cluttered code. With

the two buffers set up, we then proceed to create the OpenCL kernel. Again, this can

be done conveniently in a single line of code, here broken over the Lines 15-17. This

call consists of three parts: In Line 15 we call the OpenCL function make kernel(), in

Line 16 we specify how many parameters the kernel will take and of what type they

are (here we have four OpenCL buffers), and in Line 17 we specify the name of the

kernel and where to look for it. The return type of the make kernel() function is very

complex, but as it is unambiguously defined, we can simply denote it to be of type

auto and let the compiler fill the specifics in. Calling the kernel, Lines 19 to 23, is

once again very straightforward, although it does require a number of parameters to

be passed. In Line 19 we call the kernel() function, which takes as its first parameter

an object of type cl::EnqueueArgs. This object is defined over the three lines 19 to 21

and contains (a) the command queue, Line 19, (b) the total number of kernel calls to

perform, Line 20, and (c) the local work group size, Line 21. Following all this, the

remaining arguments, Lines 22 to 23, for the kernel() function are simply the buffers

that are passed on as parameters to the kernel itself. The number of parameters here

and their type has to be identical to what was specified in Line 16. After all this is

done, the Q1Vector object ret contains the computed values, the final thing that is

left to do is to copy the values from the GPU back to the CPU, Line 25. This call

is also very straightforward, it takes 4 parameters: (1) The command queue, (2) the

memory on the device, (3) the memory on the host, and (4) how much data to copy.

In a similar fashion all of the computations done in serial have been converted to

OpenCL kernels with corresponding calls from the C++ code. Once that is all done,

both versions of the code should produce the exact same results when run with the

same parameters.
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Numerical Results

The implementation for solving the Stokes equations was run on a server machine

equipped with 2 Intel Xeon E5-2650 v2 CPUs with 128GB DDR3 RAM and 2 NVIDIA

Tesla K20Xm GPUs with 6GB GDDR5 SRAM. Each Intel CPU has a total of 8 cores

with each core having 2 threads, giving a total of 32 threads (16 cores), all of them

clocked at 1866MHz. Each NVIDIA GPU has a total of 2688 processor cores, each

clocked at 732MHz.

For our first experiments, we let our code run on either a single CPU or a single

GPU. Ultimately, the goal of this project is to target heterogeneous systems, making

use of as much of the computing power available as possible. This is discussed further

in Section 6.2.

Any of our numerical experiments were run for a relative convergence of 10−10,

i.e., until the 2-norm of the residual at step m divided by that of the initial residual

is less than or equal to 10−10.

5.1 Sample Problem

For all our experiments, we will be using the sample problem from [31, equations 7.1

and 7.2] with the known analytical solution

u∗ =

(

x(1− x)(2x− 1)(6y2 − 6y + 1)

y(y − 1)(2y − 1)(6x2 − 6x+ 1)

)

(5.1)

p∗ = x2 − 3y2 +
8

3
xy (5.2)
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We compute the right-hand side vector, f , by substituting (5.1) and (5.2) into

(3.1). For simplification, we will fix the viscosity constant ν = 1
2
. A visualisation of

this analytical solution is shown in Figure 5.1. To verify the predicted convergence

rates for ux, uy, and p, we computed the difference between our discretised solution

and the continuous solution, which indeed approaches zero as the number of elements

in the mesh increases.

(a) (b)

(c)

Figure 5.1: Visualisation of analytical solution:
(a) u1 component, (b) u2 component, (c) p component

5.2 Parameter study

There are a few parameters in our code that we need to choose. The first set of

parameters that we will take a closer look at are the parameters involved in the
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Braess-Sarazin smoother: the Jacobi weight ω, and the scaling factor t. The Braess-

Sarazin weight ωBS is an underrelaxation parameter for the global update. Its best

value depends on the actual problem. For our experiments, we will keep it fixed at 1,

as this simplifies our analysis. Following this study, we will analyse the best choice

of number of levels for our multigrid V-cycle preconditioner and what should be done

on the coarsest level each time (exact vs. approximate solve).

5.2.1 Braess-Sarazin parameters

Finding appropriate values for both t and ω for the Braess-Sarazin smoother has to be

done simultaneously, as the best choice for one might affect the other. Based on some

small experiments, it seemed fitting to let ω vary over the range [0.7, 2] and t over

the range [0.1, 1]. Doing so for various grid sizes (64x64, 128x128, 256x256, 512x512)

yields the results as shown in Figure 5.2.

Figure 5.2: Braess-Sarazin parameter study: ω vertically, t horizontally;
grid sizes: 64x64, 128x128, 256x256, 512x512
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There are a few things we can observe from the graphs:

1. There is a clear but small range for t that gives best convergence across all grid

sizes with the best values between 1 and 1.1.

2. The optimal range for ω shifts slightly as the grid size increases. For the 64x64

grid size, the best value seems to be 0.7. But for the 256x256 and 512x512 grid

size the optimal value shifts to 0.75 to 0.8.

3. Choosing too large of a value for t is less of a problem than choosing too small

of a value. While a value of t = 0.8 exhausts the maximum iteration count

for all choices of ω, a value of t = 1.5 might still work okay (depending on the

corresponding choice of ω).

As a result of this parameter study, our choice of parameters will be t = 1.05 and

ω = 0.75 for the remainder of this thesis, unless stated otherwise.

5.2.2 V-Cycle Level Depth

The depth of the V-cycle can potentially have a significant impact on the overall

performance. Even though the iteration count remains about the same when changing

this, doing a direct solve on too large of a coarse system can result in a much increased

overall solve time, as can going too far down to do an approximate solve introducing

unnecessary computational overhead (particularly for OpenCL).

To find out which level depth works best, the GMRES code was run on four

different grid sizes with a varying size of the coarsest grid in the V-cycle for both an

approximate and an exact solve on the coarsest grid. Figure 5.3 shows the results

for the grid size of 512x512. The results for other grid sizes yield the same overall

picture. Note that in the the left-hand subplots (a) and (c) the limits of the x-axis

vary depending on which line is considered. The individual x-axis limits for each line

are shown in the legend of these plots.

Looking at Figure 5.3, parts (a) and (c), we can see that no matter what setting

we choose for an approximate solve on the coarsest grid of the V-cycle, doing an exact

solve gives slightly better results. The effect is rather minuscule in the serial case,

Figure 5.3 (a), compared to an approximate solve on the coarsest grid possible (2x2),

however, for the parallel implementation an exact solve offers us a speedup of about
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(a) (b)

(c) (d)

Figure 5.3: Approximate vs. exact solve on various coarsest grid sizes

12%, Figure 5.3 (c). This tells us that we cannot go wrong by opting to do an exact

solve all the time and discard the approximate solve for our numerical experiments.

When doing an exact solve on the CPU the depth of the V-cycle does not make

much of a difference, as long it is “deep enough”, Figure 5.3 (b). Taking any coarsest

grid coarser than 32x32 is observed to give roughly equally fast results. Anything

larger, though, will cause the direct solve on the coarsest grid to take up too much

time, yielding an overall increase in computation time.

For the GPU version, we get consistently the best results when choosing a 16x16

or 32x32 grid as our coarsest mesh size for the exact solve, Figure 5.3 (d). The timing

difference between these two grid sizes is only a few milliseconds, they are essentially

equal. For smaller meshes, the problem to be solved is simply not large enough for

the GPU; thus, the overhead that we introduce by moving data to and from the
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GPU becomes more significant than the increased communication cost of doing a

direct solve on the 16x16 or 32x32 mesh. Similarly to the serial version, an even

larger coarsest mesh results in a too complex direct solve, coupled with an increasing

amount of necessary communication between the GPU and CPU.

Based on this analysis, we will perform recursive coarsening to a 2x2 grid for our

serial version, and to a 32x32 grid for our parallel version, doing an exact solve on the

coarsest grid in both versions.

5.3 Results

With all our parameters set, we will now take a closer look at how our implementations

(CPU and GPU) perform, comparing them to an unstructured grid solver in Trilinos

with identical setup [21, 22]. The parameters are chosen as discussed in the previous

sections. We ran all three versions multiple times to ensure to get their best timing

possible. For all experiments, we ran all three versions over a large range of grid sizes:

64x64, 96x96, 128x128, 192x192, 256x256, 384x384, 512x512, and 768x768. Given the

elements we have chosen and the setup we are using, the total number of degrees of

freedom for each problem is much larger than it might seem at first. Table 5.1 gives

an estimate of the number of degrees of freedom associated with each grid size and

the corresponding number of non-zero entries in the system matrix. Even though

for our CPU implementation we can go to larger grid sizes than 768x768, this is the

limit for the GPU version. In fact, on the GPU, we can only run a maximum of 24

iterations of GMRES at this grid size, as this already exhausts the available memory.

However, as can be seen in Table 5.2, this is sufficient to achieve convergence, given

the right parameter choice. Should more iterations be required, e.g., to achieve even

higher accuracy, an implementation of restarted GMRES, Subsection 3.5.2, might be

a possible solution. Extending our current implementation to allow for this is a rather

straight-forward task. Our aim is to eventually target large heterogeneous systems,

Section 6.2, thus for most applications this won’t be necessary. On such systems each

GPU only operates on a small sub-partition of the full grid pushing each individual

grid size most of the time back into these size constraints and thus avoiding the

downsides of restarted GMRES. For the few applications where this poses a problem,

such an extension to our implementation is one possible solution.

There are two different timings that we can compare: The setup time and the solve
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grid size degrees of freedom (millions) number of non-zeros (millions)

64x64 0.037 0.984

96x96 0.084 2.201

128x128 0.148 3.902

192x192 0.334 8.752

256x256 0.592 15.54

384x384 1.331 34.90

512x512 2.364 62.01

768x768 5.316 139.4

1024x1024 9.447 247.7

1536x1536 21.25 557.2

2048x2048 37.77 990.4

Table 5.1: Number of degrees of freedom and non-zeros for various grid sizes

time. Our main focus will be on the solve time, as we focussed on optimising this part

when writing our code. Nevertheless, even though there are still various optimisations

of the setup phase possible, our code is already significantly more efficient than the

Trilinos solver we are comparing against. Figure 5.4 (a) shows the total setup time

of the two serial codes and Figure 5.4 (b) shows the same data on a loglog scale.

Clearly, our code is significantly faster in setting up the problem compared to the

Trilinos code, up to 2.5 times. Also, our code scales much better: In the loglog plot,

the slope of the best-fit line for the Trilinos code is about 1.10, whereas the slope of

the best-fit line for our code is only 1.015. This means that our code scales almost

perfectly and that its complexity grows almost linearly with the grid size. However,

the Trilinos code scales slightly worse than linearly. This difference doesn’t seem like

much, but as we can see in Figure 5.4 it eventually makes the large difference of

over a factor of 2 on a 2048x2048 grid. One of the reasons why the Trilinos code is

slower and scales worse in setting up the system lies in the type of matrix assembly

required. Assembling a matrix for an unstructured system is known to typically take a

substantial amount of time and is one of the primary disadvantages of finite elements

over finite differences. Careful algorithm design can reduce the associated cost making

it scale close to linearly (as we observed in Figure 5.4), but it is still an area of ongoing
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grid size iteration count

64x64 21

96x96 21

128x128 21

192x192 20

256x256 20

384x384 20

512x512 20

768x768 20

1024x1024 20

1536x1536 20

2048x2048 21

Table 5.2: Iteration count for various grid sizes for a relative
convergence tolerance of 10−10

research. For more details, see [32, 33] and [34, Chapter 6].

For the remainder of our analysis, we will focus solely on the GMRES total solve

time. The first part of Figure 5.5, part (a), compares the actual solve time in seconds

of the three versions, while the second part, Figure 5.5 (b), puts the same data onto

a loglog scale with the slope of the lines showing the respective solver behaviour.

As we can see, both of our versions, serial and parallel, outperform the Trilinos

solve. In particular, considering the second graph, we see that the serial version of

our implementation has a small but clearly noticeable better convergence behaviour

than the Trilinos solve. On the loglog scale, the best-fit slope of the Trilinos solve

time is 1.091 whereas our serial version has a best-fit slope of 1.0275. Our parallel

version on the GPU clearly outperforms either serial version, as we hoped it would.

It also scales better on the GPU: Doubling the grid size increases the solve time by a

factor less than 2, i.e., it grows less than linearly with the grid size. To find its best-fit

slope on the loglog scale, we should ignore the first three data points, i.e., the data

points for the 64x64, 96x96, and 192x192 grid size, as the GPU does not scale well

for grid sizes that are too small. Thus, considering all the data points starting with

the 192x192 grid size, the best-fit slope on the loglog scale is about 0.727. Being less

than 1 is due to the fact that the GPU can handle large amounts of small calculations
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(a) (b)

Figure 5.4: Comparison of setup time in seconds, (a) normal and (b) loglog scale

(a) (b)

Figure 5.5: Comparing (a) actual solve times, (b) solve times on loglog scale

much better than smaller amounts, i.e., larger problems can take better advantage of

the computing power of the GPU. This can also be seen by looking at Table 5.3.

The reason why the GPU shows bad performance for small problem sizes lies in

the way GPUs are designed to operate. While a CPU consist of a few cores optimised

for sequential processing, a GPU consist of typically thousands of smaller cores. Each

individual core of the GPU offers lower performance than each individual core of

the CPU, however, all the cores on the GPU combined are very efficient in handling

multiple tasks simultaneously. Thus, if the problem size is very small, only a small

partition of all the cores on the GPU are active at any given time. Since each individual

core is significantly slower than the CPU equivalent, this results in the observed lower

performance overall.
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grid size factor Trilinos factor Structured factor Parallel factor

64x64 — 446.6 — 437.00 — 729.49 —

96x96 2.25 1010 2.26 987.44 2.26 854.30 1.17

128x128 1.78 1819 1.80 1777.4 1.80 1472.7 1.72

192x192 2.25 3992 2.20 3868.2 2.18 1842.9 1.25

256x256 1.78 7167 1.80 6935.8 1.79 2659.6 1.44

384x384 2.25 16780 2.34 15923 2.30 3925.4 1.48

512x512 1.78 33410 1.99 30202 1.90 7240.0 1.84

768x768 2.25 87230 2.61 72327 2.39 13775 1.90

Table 5.3: Solve times in milliseconds and their growth rate factors (how much each
value grows relative to the previous row)

The first two columns of Table 5.3 show the grid sizes and by what factor each

grid size has increased relative to the next smaller grid size. Similarly, the following

three sets of two columns show how the timings grow relative to the solve time of the

next smaller grid size. As can be seen, the Trilinos solve time (with one exception),

though close, does not grow perfectly linearly with the grid size, but slightly worse.

The serial version of our implementation behaves similarly, though it’s closer to being

linear than the Trilinos solver. The parallel version behaves very nicely, growing on

average by a factor of 1.54 per doubling of the grid size (on average).

We can also analyse the results from another angle, the speed-up of our own

implementation compared to the Trilinos solver. These two comparisons are shown

in Figure 5.6.

These graphs confirm what we have seen already, that both the serial and parallel

version of our implementation offer better performance than the Trilinos solver. On

the largest grid size that we can run on the GPU, the speedup that we can achieve with

our parallel version compared to the Trilinos code is about a factor of 6.3. There’s

only a single case where the parallel version has lower performance than Trilinos, for

the smallest grid size of 64x64. This is due to the overhead of operating on the GPU,

and the comparably little work involved in solving this small problem.

In particular, when looking at the data from different angles, it is clear that the

move from an unstructured grid solver (Trilinos) to a structured grid solver (our own

implementation) offers an advantage in terms of performance. Also, the structured
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Figure 5.6: Speed-up of our serial and parallel structured versions relative to Trilinos

grid implementation makes it very easy to add fine-grained parallelism, which is of

advantage when moving to the GPU.

5.4 Mass matrix

To conclude, we will explore a variant of our Braess-Sarazin solver, demonstrated in

Section 3.9. In our implementation of Braess-Sarazin, we compute the triple matrix

required for the approximate Schur complement, see (3.36). This is a very expensive

calculation and rather difficult to implement, a snippet is shown in Code 4.2. Thus,

it is of interest to find a viable alternative that is cheaper to compute and yet offers

comparable efficiency.

From [15,35], we know that the continuous inf-sup condition

sup
u∈H1

p∇ · u

||u||1
≥ γ||p||L2

, (5.3)

always holds. However, going from the continuous to the discrete case, this inequality

might not always be true, since the continuous u that maximises p∇·u
||u||1

may not be in

the discrete space. Writing the discrete form as

max
u

pBTu

(uTAu)1/2
≥ γ(pTMp)1/2, (5.4)
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and doing a simple change of variable, z = A1/2u, gives us

(pBTu)T = uTBp = zTA−1/2Bp, (5.5)

which allows us to re-phrase the above inequality as

max
z

zTA−1/2Bp

(zTz)−1/2
≥ γ(pTMp)1/2. (5.6)

The max of this inequality over the discrete space is achieved by

zT = pTBTA−1/2, (5.7)

giving us
pTBTA−1Bp

(pTBTA−1Bp)1/2
≥ γ(pTMp)1/2. (5.8)

Simplifying the left-hand side of the inequality, re-arranging some terms and squaring

both sides, we get

Γ2 ≥
pTBTA−1Bp

pTMp
≥ γ2. (5.9)

The proof of the upper bound, Γ2, is trivial and can be found in [15]. This tells

us that the two matrices BTA−1B and M are spectrally equivalent. Thus, instead

of doing the work to compute the triple matrix product for the approximate Schur

complement, we should be able to simply replace that with the easy-to-compute mass

matrix, M .

In order to find out how well the mass matrix performs in practise and how it

compares to the triple matrix product, we first need to do another parameter study

for the Braess-Sarazin parameter t and the Jacobi weight ω, similarly to what was

done in Subsection 5.2.1.

5.4.1 Parameter study

Based on some small experiments, a good test range for the two parameters appears

to be [0.8, 1.4] for the Braess-Sarazin factor, t, and [1.4, 2.6] for the Jacobi weight, ω.

The result of this study is shown in Figure 5.7.

The optimal choice of values appears to be around t = 1 and ω = 2. Something

interesting to note is that we need a value for ω well greater than 1 in order to get



74

Figure 5.7: Parameter study of Braess-Sarazin parameter t and Jacobi weight ω
for various grid sizes

somewhat comparable performance, in contrast to weighted Jacobi where ω would be

expected to lie inside [0, 1]; thus, we have to employ rather extreme overrelaxation.

We will be using the aforementioned values for the two parameters in the following

analysis for comparing the efficiency of the two variants.

5.4.2 Comparison

While the mass matrix is easier to compute than the triple matrix product, this does

not guarantee an overall speedup. Figure 5.8 shows the solve times of both variants

on a loglog scale for various grid sizes. Both variants were run with their respective

optimal pairs of parameters until a relative reduction in the 2-norm of the residual of

at least 10−10 was achieved. We can see that the triple matrix product consistently

yields significantly faster solve times than when using the mass matrix in its place.

In fact, when using the mass matrix we need more iterations to converge to the same
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level of accuracy, leading to solve times of between 50% and 100% longer!

Figure 5.8: Comparison of timings when mass matrix and when triple matrix
product is used for Braess-Sarazin

However, we save a certain amount of time when setting up the Braess-Sarazin

solver with the mass matrix. If these savings are larger than the additional cost

paid during the solve phase, this approach could very well be considered as a viable

alternative. Table 5.4 shows the time that is required for computing the mass matrix

and the time required to compute the triple matrix product, for comparison to the

time lost during the solve phase. It is worth noting that for either variant we do not

compute the full matrix, as we only require the diagonal of the matrices for the single

Jacobi iteration. The timings paint a very clear picture. Computing the mass matrix

is done very quickly, almost instantaneously, whereas the triple matrix product takes

between 220 and 720 times longer to compute. Even though the relative saving is

immense when choosing the mass matrix, the absolute time saved is significantly less

than the absolute time lost due to an increased iteration count, as shown in Table 5.5.

When working with a problem of size 768x768, the overall time lost by choosing to

work with the mass matrix is about 67.5 seconds.

Even though it does require significantly more work to implement the triple matrix

product efficiently compared to the near-trivial computations required in order to

obtain the mass matrix, it pays off eventually. Table 5.6 confirms this by showing the

total iteration count required for various grid sizes. It is also important to note that
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grid size matrix product mass matrix

64x64 8.894 0.017

96x96 28.37 0.039

128x128 41.71 0.068

192x192 95.69 0.154

256x256 174.2 0.684

384x384 399.9 1.771

512x512 717.4 3.200

768x768 1604 7.237

Table 5.4: Comparison of timings (in milliseconds) when setting up the mass matrix
vs. triple matrix product

the solve time per iteration remains about the same, as we are still doing the exact

same amount of calculations during the solve phase.
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grid size setup time saved solve time lost balance

64x64 8.88 212.24 203.36

96x96 28.33 535.72 507.39

128x128 41.65 1069.6 1027.95

192x192 95.53 2447.5 2351.97

256x256 173.5 5512.5 5339.0

384x384 398.1 13587 13188.9

512x512 714.2 28578 27863.8

768x768 1597 69100 67503

Table 5.5: Time saved during setup vs. time lost during solve, in milliseconds

grid size
iteration count

triple matrix product mass matrix

64x64 21 30

96x96 21 31

128x128 21 32

192x192 20 33

256x256 20 34

384x384 20 35

512x512 20 36

768x768 20 37

1024x1024 20 38

1536x1536 20 39

2048x2048 21 41

Table 5.6: Comparison of iteration count when using triple matrix product and
when using mass matrix



Chapter 6

Conclusion and Future Work

6.1 The Stokes equations

For the Stokes equations, we considered the commonly used Q2-Q1 or Taylor-Hood

elements, which are piecewise biquadratic in velocity (Q2) and bilinear in pressure

(Q1). Using these elements, we cover the domain in identical rectangles, giving us a

very nice geometric structure of the underlying mesh. This approach produces very

sparse and regular matrices, with only a few non-zero entries in each row of the system

matrix. As this number of non-zeros per row is fixed and not dependent on the size

of the problem, this allowed us to exploit this property by formulating all of our

calculations in a clean stencil form, removing the need to use general sparse matrix

storage.

To solve the Stokes equations, we used preconditioned GMRES, the Generalised

Minimal Residual method. We employed a multigrid V-cycle as the preconditioner,

using Braess-Sarazin as the relaxation method. We use Braess-Sarazin instead of

standard Jacobi or Gauss-Seidel type methods, as these cannot be applied to the

saddle-point system at hand. For classical Braess-Sarazin, we had to compute the

triple matrix product BD−1BT , required for the Schur complement of the block-

matrix used in the Braess-Sarazin update. This allowed us to then employ a standard

weighted Jacobi relaxation scheme on an equation yielding an update to the pressure.

Based on the pressure update, we were then able to compute an update to the velocity.

The full GMRES algorithm with the multigrid preconditioner was implemented

using C++. Due to its object-oriented nature, this simplified our task of writing the

code tremendously, though there still remained some challenges in realising an efficient
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algorithm. We used OpenCL to parallelise our serial C++ algorithm for GPUs. As

all our calculations naturally break up into small and independent calculations, this

allows us to use the same logic in both the serial and parallel cases. Also, as we heavily

exploited the geometric structure of the underlying mesh, the memory requirements

were low enough so that even though we were only using a single GPU, we anticipated

being able to run our code with relatively large grid sizes. This was confirmed during

our numerical experiments.

Our first experiments were used in order to choose some of the parameters in

our algorithm. In particular, we had to pick two parameters for the Braess-Sarazin

relaxation scheme, a weight for Jacobi, ω, and a scaling factor, t, and we had to con-

sider parameters within the multigrid V-cycle, determining the depth of the cycle and

whether to use an exact or approximate solve on the coarsest level. Our experiments

showed that it is most efficient to always do an exact solve instead of an approximate

solve. When operating on a single CPU, going as far down as possible, to a 2x2

element patch, yielded the best results, whereas it was beneficial to stop at a grid of

size 32x32 when running on a single GPU.

All of our numerical results for the overall algorithm were compared to a Trilinos

solver [21], implementing the same algorithm using an unstructured grid setup. We

have seen that our structured-grid implementation clearly outperforms the Trilinos

solver, with the amount of work growing almost perfectly with the grid size. These

results were almost identical for considering both the setup and solve phases. Our

parallel version outperformed both serial versions clearly, as expected. Compared to

the Trilinos solver, we were able to achieve a speedup of about 6.3 on a grid of size

768x768, and compared to our own serial implementation we achieved a speedup of

about 5.25 on the same grid size. Also, the amount of time required grows less than

linearly with the grid size, at a rate of about 0.73 for large enough grid sizes. This is

due to the fact that the more independent calculations a GPU has to do, the better

it can perform.

We also shortly explored the possibility of replacing the complicated triple-matrix

product in the Braess-Sarazin smoother by the mass matrix of the system matrix,

A, as suggested by Prof. Wathen in personal conversation. We have seen that even

though the mass matrix and the triple matrix product are spectrally equivalent, the

mass matrix leads to poorer performance of the overall algorithm. The time saved

due to an almost trivial setup is minuscule compared to the time lost during the solve
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phase.

6.2 Future Work

Using a single GPU already yields very nice results, as we have seen. However, this is

not where we want to stop. Instead of only using a single CPU or a single GPU, we

want to be able to employ large heterogeneous systems with many CPUs and many

GPUs.

Extending our structured-grid implementation to such heterogeneous systems can

be done by using MPI. In partitioning our unit square domain into non-overlapping

partitions, this allows us to break our computations up into smaller pieces that can

each be computed by a different CPU and/or GPU. It does introduce the need of

communication between the threads of computation; however, the amount of commu-

nication can be kept at a minimum by ensuring that we

1. partition the large square domain into smaller square or rectangular partitions,

minimising the length of the boundary between different partitions;

2. using non-overlapping partitions with only ghost elements reaching across the

partition boundary.

These two conditions allow us to write an MPI-parallelised version of our structured-

grid implementation that is perfectly equivalent to our serial implementation and

scales nicely with the grid size, i.e., the communication cost is not a dominating

factor.

Once the serial code has been partitioned on a CPU level, we will again add

GPU parallelism to the mix by means of writing some OpenCL code. However, the

communication requirements with that will be significantly higher than with the pure

CPU version, as in this case values have to be repeatedly moved back and forth

between the CPUs and GPUs, in addition to the inter-CPU communication.

The problem with moving data between CPUs and GPUs lies in the fact that this

data transfer is going through the PCIe bus of the mainboard. Unfortunately, the

PCIe bus has a rather low data throughput, low enough for the performance to take a

big hit when moving a lot of data back and forth. There have been some attempts to

circumvent this problem. E.g., CUDA allows inter-GPU communication without the

need of going through the CPU if the two GPUs are located on the same mainboard,
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i.e., if there is a physical connection between them apart from the PCIe connection.

As an alternative to the CUDA-specific workaround, the only real alternative is to

develop GPUs that can connect either directly or develop a connection along the lines

of PCIe but with faster data throughput. Such “new” architectures have already

been developed. For example, Intel developed Intel MIC (Intel Many Integrated Core

Architecture) that is currently in use in its Intel Xeon Phi processors. One competitor

of Intel in the world of GPUs is NVIDIA with its Tesla branded product lines. Either

solution solves the data throughput for inter-CPU or inter-GPU communication with a

custom solution, although NVIDIA restricts that usage solely to the CUDA standard.

Thus, when moving to heterogeneous systems, we can indeed hope to get some

good speedup. It certainly allows us to solve much larger problems, as each core only

manages a small partition of the full domain. Though it will involve a lot of work, it

is well within the possibilities. However, due to simple technical limitations outside

of our reach, the speedup achieved might be much lower than anticipated given the

computing power involved.

Along with new architectures being developed, the need arises to re-write code for

each of these architectures to allow it to run on them. This has sparked interest in

the development of abstractions and tools that allow the use of a single source code to

support multiple accelerations and parallelisation strategies. The clear advantage of

these approaches is that no code would have to be re-written for any new architecture

as long as the tools in use support them. A major drawback, however, is that the

optimal algorithmic structure can vary significantly for different architectures leading

to sub-optimal performance. Hence, for each application, the advantages of using

an abstraction layer have to be carefully weighted against their disadvantages before

choosing either to use or not to use such tools.

Besides targeting heterogeneous systems, there is currently work underway to do a

better analysis of how to choose the parameters in use. For our experiments, we used

a simple parameter study to obtain the optimal values, which required us to run our

code repeatedly with many combinations of parameters. Finding a heuristic way to

determine the optimal parameter choice, e.g., by means of a Fourier analysis, would,

thus, be highly beneficial.

Another research topic is the relaxation scheme used in the multigrid V-cycle. Even

though Braess-Sarazin works rather well and also can be parallelised quite nicely, it

is not always a stable algorithm; there are known cases in which the algorithm simply
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breaks down [22]. A related approach is the Vanka relaxation scheme [36]. Instead

of solving one global saddle-point problem it solves a number of independent local

saddle-point problems. Most importantly, Vanka is known to be stable, i.e., it is

not seen to break down as easily as Braess-Sarazin. Replacing Braess-Sarazin by

Vanka may yield better results in terms of accuracy and, potentially, also in terms of

parallelisation. Each local saddle-point problem can be solved simultaneously, making

it an ideal candidate for both CPU and GPU parallelisation.

We hope to extend our code in the future to allow it to solve variable coefficient

problems. Even though most parts of our code already are flexible enough to handle

this, the main part that still requires some work is the task of Galerkin coarsening.

When coarsening the grids in our multigrid V-cycle, we currently simply do a re-

discretisation of the system matrix on these coarser grids, see Section 3.8. To allow our

code to solve variable coefficient problems, we need to find an efficient way to compute

the triple matrix product required for the Galerkin coarsening. In particular, these

triple matrix products have proven to be very memory intensive, which is a problem

when computing on a GPU. Along with an extension of our code to allow variable

coefficient problems, we also hope to extend it such that it is possible to solve nonlinear

problems, e.g., the Navier-Stokes or Incompressible Elasticity equations.
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