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Abstract

Computer modeling is a powerful technique to provide explanations and make pre-

dictions in drug development using computational methods. Molecular conformations

affect drug binding and biological activity, so the preferred conformation of a drug

molecule plays an important role in design and synthesis of new drugs. We have

developed a conformational search method to automatically identify low energy con-

formations of drug molecules in an explicit solvent. This method uses replica-exchange

molecular dynamics and clustering analysis to efficiently sample conformational space

and identify the most probable conformations. The method produces distinct primary

conformations for a molecule in explicit solvent, implicit solvent, and gas phase. Drug

development is also concerned with membrane permeation. Many drugs have intra-

cellular targets, and the rate and mechanism of membrane permeation affects their

biological behavior. Transmembrane diffusion coefficients can be calculated using

Generalized Langevin methods. We have compared the velocity autocorrelation and

the position autocorrelation methods using molecular dynamics simulations of vari-

ous solutes in homogeneous liquids, and of a water molecule harmonically restrained

at various points within a lipid bilayer. Our results indicate that known limitations

when using the position autocorrelation function can potentially be resolved using the

velocity autocorrelation function. The effects of the spring constant and the choice of

thermostat on both methods are also discussed.
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Introduction
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1.1 Introduction

Computers can be used to study the properties and behaviors of physical systems by

modeling processes that govern their behavior. Using these techniques, computational

methods can interpret and validate experimental results, and explore properties that

are difficult to study experimentally. The rapid increase in computational power has

led to an increase in capability and popularity of computational methods [1, 2]. In

this thesis, we will present the development of computer modeling methods that can

aid the development of new pharmaceutical drugs.

One problem that benefits from computational methods is the identification of

molecular conformations. A conformation is an isomer that differs in its rotation

around a single bond. Conformational isomers of molecules can occur with different

probabilities because of the effects of interactions within the molecule and interactions

with the environment that variably stabilize or destabilize a given conformation [3, 4].

The conformation of a molecule affects its biological activity and chemical reactivity.

Conformational analysis is particularly important in the field of drug development

because the conformation of a drug affects its binding behavior and efficacy [5]. Drug

receptors are highly sensitive to the structure of molecules binding to them [6], so

identifying potential conformations and their relative probability is an important part

of drug development. For example, crystal structure analysis of the insomnia drug

suvorexant determined that the drug takes on a π-stacked horseshoe conformation

when binding to the human OX2 orexin receptor [7]. Molecular simulations indicated

that this conformation is a low-free-energy state and a favorable design feature for

other distinct orexin receptor antagonists.

Computer modeling can be used to identify the lowest energy conformation of a

molecule in solution, which can be difficult to achieve experimentally. Automated
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conformational search methods are particularly useful because they can quickly gen-

erate the lowest energy conformations of many different molecules automatically [8].

These methods can be systematic [9, 10, 11], Monte Carlo based [12], use genetic algo-

rithms [13, 14], or other methods [15, 16, 17, 18, 19]. A popular conformational search

method is molecular dynamics (MD) [20, 1, 21]. Each method has its advantages and

drawbacks, so methods are continually being developed and refined.

Experimentally determining molecular conformations is difficult due in part to

the complexity of the system, or to the difficulty in synthesizing the compound. The

process is further hampered by the fact that a molecule can have a large number of

conformations. Exhaustively generating all possible conformations for a molecule and

calculating their energies is computationally intensive [8]. Not all conformations are

equally probable; instead, the most probable conformation relates through a Boltz-

mann distribution as the lowest energy conformation [18, 22]. Conformational search

methods are used to identify different conformations, and calculate their relative en-

ergies.

Some of the main issues in conformational searching involve balancing accuracy

with computational efficiency [18, 19]. How a model represents the particles affects

the number of computations required; a coarse-grained model that groups atoms

into beads only calculates inter-bead interactions, while a fine-grained model that

represents individual atoms has to compute interatomic interactions. Presence and

representation of a solvent also play a role; including a representation of the solvent

is more accurate but requires more computations. The methods themselves vary in

how they search conformational space. Some methods exhaustively scan the complete

conformational space. This will identify all possible conformations, so it is a rigorous

method but also becomes computational expensive for systems with a large number
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of possible conformations. Other methods use an algorithm to sample a represen-

tative set of configurations, which reduces the number of configurations that must

be generated but introduces error due to incomplete sampling. There are also many

methods to speed up the simulation by smoothing the energy surface, scaling system

parameters, or running multiple copies of the system, many of which can affect the

accuracy of the simulation or the number of computations required [18]. New methods

are needed to overcome the limitations in current methods. These new methods must

also balance accuracy and efficiency in order for them to be used in practice.

z

Figure 1.1: Schematic of a cell membrane. Lipid molecules form a planar bilayer
(black) with aqueous phases corresponding to the cell interior and exterior (blue). If
there is a concentration gradient of a solute (red) between the two phases (∆C), there
will be a net flux of the solute across the membrane. The rate of flux depends on the
properties of the bilayer and solute.

A second area where computer modeling can be used is in modeling the permeation

of molecules across cell membranes (Figure 1.1). Cell membranes contain and protect

cellular proteins and molecules. These semi-permeable membranes allow passage of

specific molecules through passive permeation [23]. The flux (J) is related to the

concentration gradient across the bilayer (∆C), and the permeability coefficient (Pm),
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J = Pm ·∆C (1.1)

Pm depends on the properties of the solute, the composition of the membrane, and

the conditions that permeation occurs under. This permeation process is illustrated

in Figure 1.2.

Figure 1.2: A water molecule permeating in a lipid bilayer membrane. The solute per-
meates through the membrane along the transmembrane coordinate that corresponds
to the depth of the solute in the membrane (z).

Membrane permeability is an important factor in understanding cell function and

biological barriers to drug delivery [24]. For example, the membrane permeability

of the anti-psychotic drug chlorpromazine can be affected by the presence of the

large unilamelar vesicle POPS and cholesterol [25]. Isothermal titration calorimetry

indicated these additions change the affinity of chlorpromazine to the membrane,

affecting its permeability coefficient. Many drugs have intracellular targets, but the
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rate and mechanism at which they permeate a membrane can be difficult to determine

experimentally [23].

These two problems showcase the variety and capability of computational methods.

The field of drug development has benefited greatly from advancements in computer

modeling. The next sections will highlight the significance of these two computational

problems.

1.2 Conformations

A B

Figure 1.3: Boat (A) and chair (B) conformations of cyclohexane.

Conformations occur due to the different steric, electrostatic, and solute-solvent

interactions [18, 1]. Cyclohexane has two prominent conformations, see Figure 1.3.

Because of these interactions, the chair conformation is preferred over the boat con-

formation. These two conformations have significantly different energies. Conforma-

tional properties can be used as the basis for design, development, and synthesis of

new drugs [6]. Identifying the most probable conformation is an important, but often

challenging, part of the drug development process.
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1.3 Transmembrane Diffusion

1.3.1 Lipid Bilayers

Lipid molecules are comprised of a polar head group that is linked to an alkyl chain by

an ester linkage. For example, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC),

is a lipid with a zwitterionic phosphocholine head group, a glycerol ester group, and

two saturated 16-carbon alkyl chains. Figure 1.4 shows the structure of a DPPC lipid

molecule.

O
N+ P

O

O

O-

O

O

O

O

tailsesterhead group

Figure 1.4: The molecular structure of a DPPC lipid. The phosphocholine head group
is highlighted in red, the glycerol ester group is highlighted in green, and the alkyl
tail is highlighted in blue.

In aqueous solutions, some types of lipid molecules will spontaneously form super-

molecular structures like vesicles, micelles, and bilayers [26]. Lipid bilayers are planar

structures comprised of two opposing monolayers. The polar head groups of the bi-

layer face the aqueous solutions, while the nonpolar alkyl tails form a hydrophobic

membrane interior. Permeating molecules must be removed from the aqueous solvent

and enter the non-polar interior, so molecules that are highly soluble in water will

be energetically disfavored from permeating. The permeation of a water molecule

through a model membrane is illustrated in Figure 1.2.

Lipid bilayers are of particular biological importance. Cell membranes of living
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organisms are predominantly comprised of phospholipid bilayers. They serve to con-

tain cellular components and serve as a barrier to chemical species entering or exiting

the cell. Transmembrane proteins selectively control the passage of specific, critical

species like ions. Many other endogenous or exogenous molecules cross cell membranes

by passive diffusion [24]. This is particularly important for the development of new

drug molecules because many of these molecules must pass through a cell membrane

through passive diffusion to reach their site of action.

1.3.2 Membrane Permeation

The process of membrane permeation can be modeled using computer simulations.

The inhomogeneous solubility-diffusion model expresses Pm in terms of the poten-

tial of mean force (w(z)) and the diffusivity profile (D(z)) for a solute crossing the

bilayer along the transmembrane axis, z [27, 28, 29, 30]. The permeability coeffi-

cient is expressed as an integral of these terms over an interval [z1, z2] that spans the

membrane,

1

Pm
=

∫ z2

z1

ew(z)/kBT

D(z)
dz (1.2)

There are established computational methods for calculating w(z), but less effort

has been devoted to the calculation of D(z). Because a solute crossing a cell membrane

will experience a range of chemical environments, D(z) is dependent on the depth of

the solute (z-position) in the membrane. Diffusion of a solute through a membrane

cannot be determined using homogeneous models or calculations because the diffusion

constant varies greatly as the solute moves from bulk water, through the interface, and

into the membrane interior (Figure 1.2). Electron Paramagnetic Resonance (EPR)

experiments have shown that the diffusion coefficient of a solute across a lipid bilayer
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varies considerably as a function of membrane depth [31].

Diffusion

Fundamentally, diffusion is the process by which matter spontaneously moves from a

region of high concentration to a region of low concentration, and it plays a role in

protein-ligand binding and membrane permeation. On a macroscopic scale, diffusion

is described by Fick’s Law,

J = −Ddpx(z)

dz
(1.3)

where px(z) is the concentration along the z-axis, and D is the diffusion coefficient.

Larger diffusion coefficients correspond to faster flux along a coordinate.

Diffusion is directly related to the hydrodynamic friction of the solvent through

the Einstein relation,

D =
kBT

mξ
(1.4)

where kB is the Boltzmann constant (1.38×10−23JK−1), m is the mass of the particle,

and ξ represents the friction exerted on the particle by the surrounding liquid. For

spherical particles with weak intermolecular interactions with the solvent, the friction

can be approximated using the radius of the particle a and the viscosity of the liquid

η with a mass m,

ξ =
6πaη

m
(1.5)

Molecular dynamics simulations can model diffusion. The trajectories generated

from a MD simulation provide an atomic-scale model that directly corresponds to the

process of diffusion. Diffusion coefficients of solutes in homogeneous solutions can be

calculated from a MD trajectory using the Einstein equation [32] or the Kubo relation

[33]. More sophisticated techniques are needed to describe the diffusivity of solutes

in heterogeneous environments where the diffusivity has a position dependence.
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There are several methods to calculate diffusion across a membrane using MD

simulations. These methods differ in how they compute the diffusivity from the tra-

jectory. Two of the more common methods use Bayesian inference [34, 35] or the

Generalized Langevin equation [23, 29]. Generalized Langevin methods calculate the

diffusivity of a solute from a MD trajectory where the solute is harmonically restrained

at a position along the z-axis. Chapter 3 of this thesis investigates these methods for

use in calculating transmembrane diffusivity profiles.

1.4 Theory and Methods for Molecular Simulation

A variety of theoretical models and computational methods were used in this thesis.

These methods are briefly described in the following sections.

1.4.1 Molecular Dynamics

Molecular dynamics is a technique that uses Newton’s equations of motion to simu-

late the dynamics of a system over time [36]. These simulations must be performed

numerically, where the positions of the atoms are propagated through a series of time

steps,

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
Fi(t)

mi

∆t2 (1.6)

The position of a particle i can be determined for some later time t+ ∆t given

its position at the current time t by computing the forces Fi acting on that particle

with a mass of mi [21]. To limit error associated with this process, the time step for

simulations of molecular systems must be small (≈ 1− 2 fs).

Molecular dynamics simulations are often used to sample an isothermal-isobaric

(NpT) or an isothermal-isochoric (NVT) ensemble [21]. This is accomplished by

modifying the equations of motion of the dynamics so that a simulation will sample
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the necessary ensemble. To sample a constant temperature ensemble, the dynamics

are said to be coupled to a thermostat. For an NpT simulation, the dynamics are said

to be coupled to a barostat, which causes the simulation cell to vary over the course

of the simulation so that system samples the ensemble consistent with the specified

pressure.

Molecular dynamics has advantages over other atomistic methods such as Monte

Carlo, which propagates movement using a random step direction [18, 36]. Temporal

information is retained through the trajectory, allowing for computation of transport

properties like diffusion, reaction rates, and protein folding times. Since the changes

in the intermolecular degrees of freedom are guided, MD generates accepted config-

urations. This is advantageous over Monte Carlo methods, where the intermolecular

degrees of freedom change randomly. This is inefficient as the resulting configurations,

especially with more flexible molecules, are more likely to be rejected. Molecular dy-

namics is, however, more computationally expensive than other methods like Monte

Carlo because of its guided step direction, especially with complex systems.

The MD simulations presented in this thesis are atomistic, meaning that atoms are

represented individually. Atomistic models provide a more accurate representation of

a system because they compute the individual interactions between atoms, allowing

us to accurately describe molecular systems. The length of the simulation is on the

nanosecond scale. Because of this fine-grained representation, atomistic models are

more computationally expensive and require longer simulations. Molecular dynamics

simulations can also be coarse grained, representing atoms as conglomerate beads

rather than individual atoms [18].
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1.4.2 Force Fields

The dynamics of the system are governed by the forces acting on the constituent

atoms. These forces include bonded forces (i.e., bonds stretching, angle bending,

dihedral rotations...), and non-bonded forces (i.e., electrostatic, Pauli repulsion, and

London dispersion) [37]. The equations used to describe the forces on the atom are

collectively referred to as the force field [22].The total potential energy function for a

force field is [37],

V(r) =
∑
bonds

kb(r − req)2 +
∑

angles

kθ(θ − θeq)2 +
∑

dihedrals

υn
2

[1 + cos(nϕ− ψ)]+

∑
i

∑
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj
4πεo

1

rij

(1.7)

where req is the equilibrium bond length, θeq is the equilibrium angle, kb, kθ , and Vn

are the force constants, n is the multiplicity, ϕ is the torsional angle, and ψ is the

phase angle for torsional parameters. The last summation represents the non-bonded

interactions, including London dispersion forces, Pauli repulsion, and electrostatic

interactions. εij and σij are the Lennard-Jones well depths and radii for a given pair

of atoms, and qi is the partial charge of atom i. At each step of a MD simulation, the

energy and forces on the atoms must be calculated for the current atomic positions

using this force field.

The underlying force field ultimately determines the properties of the system that

are calculated using MD simulations [38]. As a result, it is essential to use a force field

that accurately describes the properties of the system. The parameters of the force

field are often determined using experimental data of the condensed-phase properties

of small molecules or quantum mechanical calculations [39, 40, 41, 42]. Using these

parameters, force fields have been developed that describe larger molecules and even
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biomacromolecules like lipids [37, 43, 44].

1.4.3 Periodic Boundary Conditions and Long Range Forces

Figure 1.5: An example periodic simulation cell for a DPPC lipid bilayer. The lipid
tails (blue) form a layer in the centre of the cell. The head groups of the lipids form
an interface with the water molecules (red) that form solvent layers above and below
the bilayer.

In order to simulate a bulk solution, periodic boundary conditions (PBC) are used.

A unit cell is repeated such that a particle in one cell interacts with particles in a

neighboring cell, and a particle that leaves the cell on one side reappears on the other

side [38]. A periodic cell used to simulate a lipid bilayer is depicted in Figure 1.5.

Periodic systems formally have an infinite number of non-bonded interactions be-

tween the atoms comprising the system. Dispersion interactions have the form of
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V(r) ∝ 1/r6, so the strength of these interactions becomes negligible after at a rela-

tively short distance (e.g., 10 Å). As a result, these interactions can be truncated at

a fixed distance using a smoothed potential.

Electrostatic interactions cannot be as easily truncated as dispersion interactions

because Coulombic interactions are very long-range (V(r) ∝ 1/r). Particle Mesh

Ewald (PME) divides these interactions into short and long-range using a Gaussian

distribution function [45]. The long-range component of these interactions are cal-

culated by mapping the charges onto a grid and then the interactions are calculated

using the Fast Fourier Transform [38, 22]. The remaining real space component of

the electrostatic interactions are now short-range, so they can be truncated at modest

distances.

There are many other modeling techniques that vary in their scale from microscopic

methods, like MD, to macroscopic methods like kinetic models and fluid dynamics.

Kinetic models use coupled ordinary differential equations to represent chemical re-

actions [46]. They can also be coupled to partial differential equations to describe

fluid dynamics. These methods are often applied to population dynamics, or other

kinetic rate problems [22]. Fluid dynamic models represent fluid as a continuum using

the Navier–Stokes equation [47]. These models assume that the density of a fluid is

high enough to describe it as continuum, and can thus specify a mean velocity and

a mean kinetic energy [48]. This allows the model to easily define properties such as

temperature and density at any point in the continuum. Fluid dynamics is used to

describe transport phenomena and other equations of fluid motion.

1.4.4 Solvation Methods

An important part of a MD simulation is the representation of the solvent. The pres-

ence and representation of a solvent can affect the conformation of a molecule [22, 4].
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Solute–solvent interactions affect the conformation by limiting the solutes movement

and available conformations. A simulation in the gas phase, while computationally

much simpler, is able to access conformations unavailable to a solvated molecule. The

resulting trajectory does not represent the configurations a solvated system would

take.

A solvent can be represented either implicitly or explicitly. The Generalized Born

Implicit Solvent (GBIS) method represents the solvent as a dielectric continuum [49].

Explicit solvent models represent the solvent as discrete particles and explicitly cal-

culate solute–solvent interactions.

1.4.5 Replica-Exchange Molecular Dynamics

One of the limitations of MD is that simulations can become stuck in a local minimum

without enough energy to cross some barrier in the energy landscape. This means

that the simulation does not fully sample conformational space, and thus may not

find the lowest energy conformation [50].

One method to overcome this is Replica-Exchange Molecular Dynamics (REMD).

Multiple copies of the system are simulated at distinct temperatures. Periodically,

neighboring replicas attempt to exchange temperatures and velocities. Because repli-

cas at higher temperature are able to overcome barriers in the energy landscape,

REMD simulations are better able to sample the conformational space [51, 52].

1.4.6 Clustering Analysis

A REMD simulation returns a trajectory describing all the configurations the system

occupied during the simulation. Clustering analysis is used to extract the configura-

tion the system took on most during a simulation, which equates to the most probable

and thus the lowest energy conformation. Conformations are grouped based on some
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Cartesian distance metric [53]. The lowest energy conformation equates to the largest

cluster.

1.5 Outline

The original research presented in this thesis is divided into two chapters. A con-

formational search method for explicitly solvated molecules is described in Chapter

2. Chapter 3 evaluates methods for calculating transmembrane diffusion coefficients

based on the Generalized Langevin Equation.
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2.1 Introduction

Many molecules can exist in multiple conformational isomers. Conformational iso-

mers have the same chemical bonds, but differ in their 3D geometry because they

hold different torsional angles [1]. The conformation of a molecule can affect chemi-

cal reactivity, molecular binding, and biological activity [2, 3]. Conformations differ

in stability because they experience different steric, electrostatic, and solute-solvent

interactions. The probability, p, of a molecule existing in a conformation with index

i, is related to its relative Gibbs energies through the Boltzmann distribution,

pi =
exp(−∆Gi/kBT )∑
j exp(−∆Gj/kBT )

(2.1)

where kB is the Boltzmann constant, T is the temperature, and ∆G is the relative

Gibbs energy of the conformation. The denominator enumerates over all conforma-

tions.

Alternatively, the probability of a conformation can be expressed in classical sta-

tistical thermodynamics in terms of integrals over phase space,

pi =

∫
i
exp(−V(~r)/kBT )d~r∫
exp(−V(~r)/kBT )d~r

(2.2)

The integral over configurational space in the numerator is restricted to coor-

dinates corresponding to conformation i. The denominator is an integral over all

configurational space. V(~r) is the potential of the system at when the atoms hold

coordinates ~r.

Computational chemistry has enabled conformational analysis to be performed

systematically and quantitatively with algorithms to generate different conformations

and calculate their relative stability. Automated conformational search algorithms

can generate possible conformations, and molecular mechanical or quantum methods
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can determine their relative energies.

Conformational search methods can be classified as either exhaustive/systematic

or heuristic. Exhaustive methods scan all, or a significant portion of the configuration

space. Subspaces corresponding to high energy structures can be eliminated without

a loss in quality using a priori knowledge regarding the structure of the configuration

space to be searched [4]. These methods are usually limited to small molecules due

to the computational cost of searching so much of the configuration space. Heuris-

tic methods generate a representative set of conformations by only visiting a small

fraction of configuration space [5]. These methods can be divided into non-step and

step methods. Non-step methods generate a series of system configurations that are

independent of each other. Step methods generate a complete system configuration

in a stepwise manner by a) using configurations of molecular fragments, or b) using

the previous configuration [4].

2.1.1 Solvent Effects

A solvent can also affect the conformation of a molecule by effects like solvent-solute

hydrogen bonding, dipole-dipole interactions, etc. [4] Incorporating the effect of solva-

tion can complicate conformation searches. It is common to perform a conformation

in the gas phase, neglecting solvent effects altogether. Alternatively, the solvent can

be included in the simulation either implicitly or explicitly.

Implicit models approximate the solvent as a dielectric continuum interacting with

the molecular surface [6]. Depending on the model used, the computational cost of

calculating the solvation can be modest, allowing solvation effects to be included in

the conformation search. A common and efficient implicit solvent method used with

molecular mechanical models is the Generalized Born Implicit Solvent (GBIS) method

[7]. A limitation of this type of model is that features like solute-solvent hydrogen
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bonding and solute-induced changes in the solvent structure are difficult to describe

accurately when the solvent is described as a continuum.

Explicit solvation methods surround the solute with a number of solvent molecules

that are represented as discrete particles. Provided that this model accurately de-

scribes solvent molecules and their interactions with the solute, some of the limitations

in accuracy associated with implicit solvent models can be overcome. Although the

accuracy of these models is potentially an improvement over continuum models, the

inclusion of explicit solvent molecules presents challenges in conformation searches.

Some conformational search algorithms that arbitrarily change dihedral angles cannot

be used in an explicit solvent because an abrupt change in a solute dihedral angle can

cause an overlap with solvent molecules.

A significant drawback of explicit solvent representations is that the computational

cost of these simulations is increased considerably due to the additional computations

needed to describe the interactions involving solvent molecules. Longer simulations

are also needed to thoroughly sample the configurations of the solvent; the stability of

each conformation is the result of a time average over an ensemble of possible solvent

configurations (i.e., its Gibbs/Helmholtz energy), rather than the potential energy of

one minimum-energy structure.

2.1.2 Previous Work

Many conformational search methods have been developed. Sakae et al. used a com-

bination of genetic algorithms and replica exchange [8]. They employed a two point

crossover, where consecutive amino acid residues were selected at random from each

pair, and then the dihedral angles were exchanged between them. Superior conforma-

tions were selected using the Metropolis criterion, and these were then subjected to

replica-exchange. Supady et al. also used a genetic algorithm where the parents were
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chosen using a combination of three energy-based probability metrics [9].

One example of a systematic method is the tree searching method of Izgorodina

et al. [10]. The method optimizes all individual rotations, and then ranks their

energies. It then eliminates those with relative energies greater than the second lowest

energy conformation from the previous round, and performs optimizations on only the

remaining subset. After a set number of rotations, the lowest ranked conformation is

selected. Brunette and Brock developed what they called a model-based search, and

compared it to traditional Monte Carlo [11]. The model-based search characterizes

regions of space as funnels by creation an energy-based tree where the root of the

tree corresponds to the bottom of the funnel. The funnel structure illustrates the

properties of the energy landscape and the sample relationships. Cappel et al. tested

the effects of conformational search protocols on 3D quantitative structure activity

relationship (QSAR) and ligand based virtual screening [12].

Perez-Riverol et al. developed a parallel hybrid method that follows a systematic

search approach combined with Monte Carlo-based simulations [13]. The method was

intended to generate libraries of rigid conformations for use with virtual screening

experiments.

Some methods have been extended to incorporate physical data. MacCallum et

al. developed a physics-based Bayesian computational method [14] to find preferred

structures of proteins. Their Modeling Employing Limited Data (MELD) method

identifies low energy conformations from replica-exchange molecular dynamics simu-

lations that are subject to biases that are based on experimental observations.

2.1.3 Conformation Searches Using Molecular Dynamics

Molecular dynamics (MD) simulations are a popular method for sampling the confor-

mational space of a molecule. Equations of motion are propagated in a series of short
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time steps that generates a trajectory describing the motion of the system. These

simulations are usually coupled to a thermostat to sample a canonical or isothermal–

isobaric ensemble for the appropriate thermodynamic state. This approach is nat-

urally compatible with explicit solvent models because the dynamics will naturally

sample the solvent configurations. For a sufficiently long MD simulation, the confor-

mational states of the molecule will be sampled with a probability that reflects their

relative Gibbs/Helmholtz energies. This is in contrast to many conformational search

methods that can search for low potential energy conformations.

One of the limitations of MD is that very long simulations may be needed to

sample the conformational states of a molecule with the correct weighting. This

occurs because MD simulations will only rarely cross high barriers between minima,

so a simulation at standard or physiological temperatures may be trapped in its initial

conformation and will not sample the full set of available conformations.

Replica Exchange Molecular Dynamics (REMD) enhances the sampling efficiency

of conventional MD by simulating multiple copies of the system at a range of tempera-

tures. Each replica samples an ensemble of configurations occupied at its correspond-

ing temperature. Periodically, attempts are made to exchange the configurations of

neighboring systems (see Figure 2.1). The acceptance or rejection of these exchanges

is determined by an algorithm analogous to the Metropolis Monte Carlo algorithm,

which ensures that each replica samples its correct thermodynamic distribution. This

type of simulation is well suited for parallel computing because replicas can be divided

between many computing nodes. Exchanges between the replicas are only attempted

after hundreds or thousands of MD steps, so communication overhead between replicas

is low compared to a single parallel MD simulation.
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Figure 2.1: Schematic of exchange attempts between four replicas simulated at tem-
peratures T1, T2, T3, and T4. After a large number of exchanges, each replica will have
been simulated at the full range of temperatures. The lowest temperature replica will
have contributions from each simulation.

REMD simulations can sample the conformational space of a molecule more com-

pletely because the higher temperature replicas can cross barriers more readily. Anal-

ysis of the statistical convergence of REMD simulations has shown that when there

are significant barriers to conformational isomerization, an REMD simulation of m

replicas is more efficient than a single-temperature simulation running m times longer

[15]. The lowest temperature replica is typically the temperature of interest. Ex-

changes allow each replica to be simulated at each temperature in the set. Barriers

that prevent complete sampling at low temperatures can be overcome readily at high

temperatures.

After a sufficiently long REMD simulation, the trajectory for this replica will

contain a correctly-weighted distribution of the conformations available at this tem-

perature. This trajectory must be analyzed to group the structures sampled into

distinct conformations.
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Figure 2.2: The work-flow for the conformation search method presented in this paper.
A parent script executes OpenBabel, VMD, and NAMD to generate the set of lowest
energy conformations.

2.1.4 Cluster Analysis

The product of an REMD simulation is a trajectory for each temperature. For a suf-

ficiently long simulation where the simulations were able to cross barriers freely, the

configurations will be sampled according to their equilibrium probability. A discrete

set of conformations must be identified from this trajectory. Cluster analysis can

be used to identify discrete conformations in this ensemble by identifying groups of

conformations that have similar geometries according to a chosen metric. Clustering

works by assigning a metric to each configuration, measuring the distance between
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pairs of these configurations, and then grouping similar configurations into conforma-

tions based on this distance metric. Cluster analysis allows common conformations

to be identified from the configurations of a trajectory using little to no a priori

knowledge.

2.1.5 Work Undertaken

In this paper, we present the implementation of a work flow for conformation searches

using REMD and cluster analysis (see Figure 2.2). This method supports confor-

mation searches for molecules in the gas phase, implicit solvents, and explicit sol-

vents. The method is implemented by integrating open source software using Python

scripting. Examples of the conformations search results for two drug molecules are

presented.

2.2 Theory

2.2.1 Replica Exchange Molecular Dynamics

In replica exchange molecular dynamics, m non-interacting replicas of the system are

run, each at its own temperature, Tm . Periodically, replicas i and j exchange coordi-

nates and velocities according to a criterion derived from the Boltzmann distribution

[16, 17]. In the implementation used here, exchanges are only attempted between

replicas with neighboring temperatures in the series. Exchange attempts for replica i

alternate between attempts to exchange with the i − 1 replica and the i + 1 replica.

The exchanges are accepted or rejected based on an algorithm that ensures detailed

balance, similar to the Metropolis criterion [18]. By this criterion, the probability of

accepting an exchange is,
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Pacc = min

[
1, exp

(
1

kB

(
1

Ti
− 1

Tj

)
(V(~ri)− V(~rj))

)]
(2.3)

where V is the potential energy, and ~ri specifies the positions of the N particles in

system i. A conformational exchange is accepted if this probability is greater than a

random number between 0 and 1, which is taken from a uniform distribution. In a

successful exchange, the coordinates of the particles of the two replicas are swapped.

When the momenta of the particles are swapped, they are also scaled by a factor of√
Ti
Ti+1

to generate a correct Maxwell distribution of velocities. The process of REMD

is illustrated in the following pseudocode.

Algorithm 1: Algorithm for Replica-Exchange Molecular Dynamics

Function REMD (cycles c, replicas n, steps m)
for c cycles do

for a ← 0 to n do
perform m steps of NVT MD;

for neighboring pairs of replicas {i, i+1} do
choose random z ∈ (0,1) ;

Pacc = min
[
1, exp

(
1
kB

(
1
Ti
− 1

Ti+1

)
(V(~ri)− V(~ri+1)

)]
;

if z < Pacc then
~ri↔~ri+1 ;
~pi↔~pi+1 ;

2.2.2 Cluster Analysis

Configurations in the REMD trajectory are grouped into clusters that correspond to

distinct conformations. The lowest energy conformation will correspond to the cluster

with the greatest number of configurations. The process of clustering conformations

involves using some pattern proximity function to measure the similarity between pairs

of conformations. This clustering algorithm groups these configurations according to
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this function [19].

In this work, the solute root mean square deviation (RMSD) metric is used to

identify the highly probable conformations from the REMD trajectory. The RMSD

provides a metric for the quality threshold of the similarity of two solute configura-

tions. It is calculated from the Cartesian coordinates of the two configurations rk
(i)

rk
(j) each having n atoms using [20],

dij =

[
1

N

n∑
k=1

∣∣∣r(i)
k − r

(j)
k

∣∣∣2]1/2

(2.4)

The quality threshold clustering algorithm groups objects such that the diameter

of a cluster does not exceed a set threshold diameter. The number of clusters (N) and

the maximum diameter must be specified by the user prior to the clustering analysis. A

candidate cluster is formed by selecting a frame from the trajectory (a conformation)

as the centroid. The algorithm iterates through the rest of the configurations in

the trajectory, and the conformation with the smallest RMSD with respect to the

centroid is added to the cluster. Configurations are added to this cluster until there

is no remaining configuration with an RMSD less than the threshold. The clustered

configurations are removed from consideration for further clusters, and a new cluster

is initiated. This process is repeated until N clusters have been generated.

2.3 Computational Work Flow

The first section describes a work flow that was developed to perform an explicitly-

solvated conformational search of small drug molecules. In the second section, appli-

cations of the work flow are described, and the results are compared to gas phase and

Generalized Born Implicit Solvent (GBIS) implementations.

Our method automatically performs conformational searches in the gas phase,
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implicit aqueous solvent, and explicit aqueous solvent for each solute structure. The

work flow makes use of several open source programs, as illustrated in Figure 2.2. The

conformation search work flow can be divided into 5 steps.

1. Generation of initial 3D molecular structure.

2. Solvation of solute (for explicit solvent method only).

3. Equilibration MD simulation.

4. REMD simulation.

5. Cluster analysis.

1. Structure Generation

The initial 3D structure is generated using the OBBuilder class of OpenBabel version

2.3.2. OpenBabel is a chemistry file translation program that is capable of converting

between various file formats, but can also automatically generate 2D and 3D chem-

ical structures and perform simple conformation searches [21]. Our work-flow uses

OpenBabel to converts the SMILES string input, which is an ASCII string represen-

tation of a molecular structure, into an initial 3D structure that is saved in Protein

Data Bank (pdb) format. OpenBabel supports many other chemical file formats, so

alternative input formats can also be used. To generate a reasonable initial confor-

mation, a conformation search is performed using the OBConformerSearch class of

OpenBabel. This algorithm uses rotor keys, which are arrays of values specifying the

possible rotations around all rotatable bonds [22]. Structures for each combination

of rotor keys are generated and the potential energies for these conformations are

calculated. The lowest energy structure for a rotor key is identified [23]. Once all

possible conformations have been generated, the algorithm selects the one with the
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lowest energy. The Generalized Amber Force Field (GAFF) is used for all OpenBabel

MM calculations [24]. Solvation effects are not included in this model.

One drawback of OpenBabel is that the current version can generate wrong stereoiso-

mers for chiral centers in fused rings for some molecules. In these cases, the user should

check the initial structure to ensure that the correct stereoisomers is modeled.

2. Solvation of Solute

The Antechamber utility of the Ambertools suite is used to generate the necessary

topology (.rtf) and parameter (.prm) files of the solute [25]. This utility automatically

detects the connectivity, atom types, and bond multiplicity of organic molecules and

generates the parameter file and topology files based on the Generalized Amber Force

Field (GAFF). The psfgen plugin of VMD is used to generate a Protein Structure File

(PSF) for the molecule from the RTF file. For simulations with an explicit solvent,

the Solvate plugin of VMD is used to add a 10 Å layer of water in each direction from

the furthest atom from the origin in that direction. This creates a periodic unit cell

that is sufficiently large so that solute-solute interactions and finite-size effects are

small. For ionic molecules, the autoionize VMD plugin is used to add Na+ or Cl– ions

such that the net charge of the simulation cell is zero.

3. Equilibration

For simulations with an explicit solvent, MD simulations are performed with NAMD

to equilibrate the system prior to the conformational search. For the gas phase and

GBIS models, a 1 ns MD simulation using a Langevin thermostat is performed. For the

explicit solvent simulations, a 1 ns isothermal-isochoric (NVT) simulation is followed

by a 1 ns isothermal-isobaric ensemble (NpT) simulation A Langevin thermostat and

a Langevin piston barostat are used to regulate the temperature and pressure of the
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system, respectively.

To simplify visualization and analysis, the center of mass of the solute is restrained

to remain at the center of the simulation cell using a weak harmonic restraining force.

This restraint is imposed with the Colvar (Collective Variables) module of NAMD

using a force constant of 5.0 kcal Å−2.

4. Replica Exchange MD

Using the equilibrated system, a replica exchange MD simulation is performed to

sample the configurational space of the system. A total of 24 replicas are simulated,

with a range of temperatures between 298 and 500 K. The temperatures of the replicas

are spaced according to a geometric series [26, 16]. A 1 ns equilibration followed by

a 10 ns sampling simulation is performed for each replica. Configurations are saved

and exchanges are attempted every 1000 time steps. The REMD simulations were

performed at constant volume, which was the final volume of the NpT equilibration

simulation.

5. Cluster Analysis

The trajectory of the lowest temperature replica is analyzed by clustering analysis

to identify the most probable conformations. The positions of the solute atoms in

each frame of the trajectory are rotated and translated to minimize the RMSD. The

cluster routine of the measure module of VMD is used to identify highly-weighted

conformations. This routine uses the quality threshold clustering algorithm, with the

RMSD as the metric. An RMSD cutoff of 1.0 Å was used. In this work flow, 5 clusters

are generated. The clusters are sorted in order of the largest to smallest numbers of

configurations included, the first of which is the most important as it represents the

most probable conformation for the lowest temperature replica. The configurations
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that are part of each cluster are saved to separate trajectory files. The conformation

is defined by the set of configurations grouped into this trajectory file.

2.4 Implementation and Usage

The work flow is implemented in a Python script that calls external programs and

processes the data from these programs. This script is responsible for handling user

input and integrating the work flow into the a PBS-type queuing system. PBS is a

distributed workload management system, which is responsible for queuing, schedul-

ing, and monitoring the computational workload on a system [27]. The program is

executed by the command,

python fluxionalize.py -p [number of processors, default is 2]

-n [name, default is ‘‘test’’]

-l [location/directory, default is current working directory]

-c [number of clusters to save in {[}name{]}_out per instance, default is 1]

-i [input]

When the calculation has completed, the following files/directories will have been

generated in the specified/default location:

[name] out contains the conformation pdb files for each instance

[name].out the logfile from the queue containing all the runtime command line outputs

[name].tar.gz contains all the files used and generated by the work flow, compressed for space

OpenBabel is used to parse the molecular structure provided by the user and con-

vert it to an initial 3D conformation, so any of the input formats supported by Open-

Babel can be used. The examples presented here use SMILES (Simplified Molecular
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Input Line Entry System) strings as the input. SMILES denotes chemical structure

as ASCII-type strings. If using a SMILES string, the input for the fluxionalize.py

script is in the form of -i ’[SMILES string]’. For other files types, the input is in the

form of: -i [file]. In this case, if no name is specified with the -n option, then the file

name is used in its place.

2.4.1 Availability

The code and required source files are available freely from GitHub at https://

github.com/RowleyGroup/fluxionalize.

2.5 Technical Details

The current version of this code uses OpenBabel 2.3.2 [21] and VMD 1.9.1 [28]. All

MD and REMD simulations were performed using NAMD 2.10 [29]. Bonds containing

hydrogen were constrained using the SHAKE algorithm [30]. Lennard-Jones interac-

tions were truncated using a smoothed cutoff potential between 9 Å and 10 Å. A

Langevin thermostat with a damping coefficient of 1 ps−1 was used. The simulation

time step was 1 fs. Generalized born model simulations used a dielectric constant

of 78.5 and an ion concentration of 0.2 M. For the simulations with an explicit sol-

vent, water molecules were described using the TIP3P model [31]. The molecule and

solvent were simulated under cubic periodic boundary conditions. The electrostatic

interactions were calculated using the Particle Mesh Ewald (PME) method with a 1 Å

grid spacing [29]. Isothermal–isobaric MD simulations used a Nosé–Hoover Langevin

piston barostat with a pressure of 101.325 kPa, a decay period of 100 fs, and an

oscillation period of 2000 fs.

The potential energy terms for the solute were described using the General Amber



41

Force Field (GAFF) [24]. Atomic charges are assigned using the restrained electro-

static potential fit (RESP) charge fitting method [32], where the atomic charges were

fit to the AM1-BCC model [33].

2.6 Examples
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Figure 2.3: Chemical structures of molecules used to demonstrate conformation search
work-flow. (a) Cabergoline and (b) α-Amanitin are mid-sized pharmaceuticals with
significant conformational flexibility. The intramolecular and solute-solvent interac-
tions result in complex conformation distributions.

To demonstrate the capabilities and performance of our method, conformation

searches were performed on two drug molecules: α-amanitin and the neutral state

of cabergoline (Figure 2.3) [34] [35]. α-Amanitin serves as a good example of the

effectiveness of the work-flow. There are significant differences between the primary

conformations in the gas phase, implicit solvent, and explicit solvent models. The most

probable conformations derived from these models are overlaid in Figure 2.4. The gas

phase structure is more compact than the explicit solvent structure, which is consistent

with the tendency of gas phase molecules to form intramolecular interactions, while

solution structures can extend to interact with the solvent. The implicit solvent model

structure is more similar to the explicit solvent structure, but is still distinct from the

explicit solvent structure. Figure 2.5 shows the four most probable conformations from

the explicit solvent simulations. The clustering algorithm successfully categorized
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conformations with different configurations of the fused rings and orientations of the

pendant chains.

A B C D

Figure 2.4: Comparison of the most probable explicitly solvated α-amanitin confor-
mations where a) is the most probable, and b) is the second most probable, and so
forth.

Cabergoline has a simpler chemical structure, containing no long chains and a

more rigid ring structure. The most probable conformations with the explicit solvent

(see Figure 2.6 (b)) are all quite similar; the RMSD values are under 0.98. Significant

differences are apparent in the primary conformations of the explicit, GBIS, and gas

phase simulations (see Figure 2.6 (a)). In particular, the configuration of the alkyl

chains are sensitive to the effect of solvation. Generally, more rigid molecules will

likely be less sensitive to solvation effects.

A B C

Figure 2.5: Most probable α-amanitin conformations. The explicitly solvated (a)
and GBIS (c) conformations show the effect of the solvent, as compared to the more
compact conformation in the gas phase (b).
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Cabergoline contains two nitrogen centers that are formally chiral. Some confor-

mation search algorithms have difficulty with type of moiety because the chirality of

these centers can be switched by inversion of the nitrogen center. These inversion

moves must be explicitly implemented into the structure generation algorithm of the

method. Because the method presented here uses REMD, these inversions occur ther-

mally, so conformations corresponding to these inverted configurations are identified

automatically.

A B

Figure 2.6: The lowest energy conformations of cabergoline calculated using the im-
plicit and explicit solvent models. a) Most probable conformations, where the explicit
solvent is blue, gas phase is red, and GBIS is grey. b) Most probable conformations
calculated using explicit solvent models. In order of most to least probable: blue, red,
grey, orange.

The computational cost of these simulations is moderate. The most computationally-

intensive step is the REMD simulations in the explicit solvent. These simulations

completed after approximately 80 hours when run on 72 2100 MHz AMD Opteron

6172 processors. Although the computational resources needed for REMD confor-

mational searches are considerably greater than for the high-throughput heuristic

methods that are currently used in high-throughput screening, these calculations are

currently tractable. As the cost of these simulations scales well, this type of simulation

could become routine when computational resources are widely available.

The average acceptance rates for the exchanges in the REMD simulations are
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collected in Table 2.1. The acceptance probabilities of the gas phase and implicit

solvent models were high (> 80%). REMD in an explicit solvent was found to be an

efficient means to sample the configuration space, with acceptance probabilities of 27%

and 31% for the simulations of α-amanitin and cabergoline, respectively. REMD can

be inefficient for simulations in explicit solvents because the acceptance probability

decreases with the heat capacity of the system, which is proportional to the number

of atoms in the system [36].

Molecule Simulation Average
Acceptance Rate

α-amanitin
Explicit 0.27
Gas Phase 0.83
GBIS 0.84

cabergoline
Explicit 0.31
Gas Phase 0.88
GBIS 0.88

Table 2.1: Acceptance rates of exchanges for replica exchange simulations, averaged
over all replicas. The gas phase and GBIS simulations have very high acceptance
rates, but the explicit solvent simulations have much lower acceptance

For large molecules that must be enclosed in a large solvent box, a prohibitively

high number of replicas would be needed to ensure a sufficiently exchange probability.

For small and medium sized molecules, like the ones used here, the simulation cell is

small enough so that the exchange acceptance probability is > 0.25.

The initial coordinate (.pdb) files for the explicitly solvated structures, and for

the gas phase and implicitly solvated structures can be found on the Github. Also

available are the coordinate (.pdb) files for the four most probable explicitly solvated

conformations (see Figure 2.4, and Figure 2.6 (b)), the coordinate files for the most

probable conformations in gas phase and implicit solvent (see Figure 2.5 and Figure

2.6(a)), and the SMILES strings for α-amanitin and cabergoline.
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2.7 Conclusions

In this chapter, we described a work-flow for performing conformational searches

using REMD and clustering analysis for molecules in the gas phase, implicit solvents,

and explicit solvents. The work-flow consists of five primary steps: generation of a 3D

structure, solvation of the solute (for the explicit solvent method), an equilibration MD

simulation, a REMD simulation, and cluster analysis. This method is implemented in

Python scripting by integrating several open source packages (i.e., OpenBabel, VMD,

and NAMD). The work-flow makes use of the greater conformation sampling achieved

by REMD, and then performs cluster analysis to find the most probable conformations

sampled in the trajectory. Two drug molecules were used as examples of the work-flow,

which show significant differences between conformations in the gas phase, implicit

solvent, and explicit solvent. This work-flow has the potential to be applicable to

many fields such as drug design, cheminformatics, and molecular structure studies.
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3.1 Introduction

The rate of diffusion of a solute is fundamental to biochemical transport processes

like protein-ligand binding and membrane permeation. The diffusivity of a solute is

particularly significant to the permeation of solutes through lipid bilayer membranes.

In the inhomogeneous solubility diffusion model, the diffusion coefficient of a solute

can be estimated from the potential of mean force (w(z)) and the diffusion coefficients

(D(z)) of the solute as a function of its position along the transmembrane axis (z)

[1, 2, 3, 4, 5]. In this model, the permeability coefficient (Pm) can be expressed as an

integral over an interval of z that spans the bilayer.

1

Pm
=

∫ z2

z1

ew(z)/kBT

D(z)
dz (3.1)

There are several mature methods for calculating w(z) using molecular simulations

[6, 4], but the calculation of the D(z) profile has received less attention. The Einstein

[7] or Kubo [8] relations can be used to calculate the diffusion coefficient of a solute

in a homogeneous solution by analysis of a molecular dynamics (MD) trajectory, but

these methods have limited applicability for inhomogeneous systems like a bilayer. In

these systems, the variation of the solute’s diffusivity is large because the frictional

environment varies dramatically as the solute moves from bulk water, through the

interface, and into the membrane interior.

The fluctuation-dissipation equation provides one method to calculate the diffu-

sion coefficient from the autocorrelation of the force exerted on a solute constrained at

a point along the reaction coordinate. This method requires the imposition of a con-

straint on the z -position of the solute and the calculation of the force autocorrelation

function, which can converge slowly. More elaborate statistical techniques have also

been developed to interpret diffusion coefficients from MD simulations [9, 10, 11, 12],
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although implementing and applying these methods can be an involved process.

The Generalized Langevin Equation (GLE) provides distinct methods for calcu-

lating diffusion coefficients. If a degree of freedom of a system is restrained using a

harmonic potential, its motion can be described by the GLE solution for a harmonic

oscillator in a frictional bath. The diffusion coefficient of the solute along this co-

ordinate can then be calculated by analysis of this trajectory. Roux and coworkers

developed techniques to calculate these properties from the velocity autocorrelation

function (VACF) [13, 14, 15]. Hummer later derived a simplified expression to cal-

culate D(z) from the position autocorrelation function (PACF) [9]. Although the

PACF-based method has been used to calculate D(z) in several membrane perme-

ation studies, Lee et al. showed that there are some practical issues associated with

this method [4].

In this paper, we present a comparison of these GLE-based methods for calculating

the diffusivity of small molecule solutes in various liquids and with various simulation

conditions. A general, automatic method for the calculation of the diffusion coefficient

from the VACF is developed. The diffusivity profile of a water molecule across a lipid

bilayer is calculated using the PACF and VACF methods.

3.2 Theory

3.2.1 GLE Methods for Calculating Diffusion Coefficients

The GLE of a harmonic oscillator takes the form,

mz̈(t) = −kz(t)−
∫ t

0

ż(τ) ζ(t− τ)dτ +R(t) (3.2)
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Here, k is the spring constant of the oscillator, ζ(t) is the dynamic friction kernel (or

memory kernel), and R(t) is the random force.

The effect of the balance of the system (i.e., the solution and the bilayer) on

the oscillator is introduced through the friction and the random force terms. The

analytical solutions for the PACF (Cz(t)) and VACF (Cv(t)) of a harmonic oscillator

in a dissipative bath are [16],

Cz(t) = var(z)e−γ(ω̄)t/2µ

[
cos(Ωt) +

γ(ω̄)

2µΩ
sin(Ωt)

]
(3.3)

Cv(t) = var(ż)e−γ(ω̄)t/2µ

[
cos(Ωt)− γ(ω̄)

2µΩ
sin(Ωt)

]
(3.4)

Here, γ is the friction coefficient, ω̄ is the renormalized frequency of the oscillator, µ

is the reduced mass of the oscillator, and var(z) is the variance of z.
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Figure 3.1: Position autocorrelation and velocity autocorrelation functions of a H2O
molecule in liquid hexane restrained with a harmonic potential with a spring constant
of k = 10 kcal mol−1 Å−2. For this system, both functions are exponentially-decaying
oscillatory functions.

From this equation, the autocorrelation functions of a harmonically-restrained

solute in a condensed phase are expected to be damped oscillatory functions, with the
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rate of decay depending on the friction imposed on the restrained degree of freedom.

This form is apparent in the PACF and VACF of a harmonically-restrained water

molecule in liquid hexane (Figure 3.1), although the oscillatory nature of the ACFs

are not always apparent if the rate of decay is high.

These autocorrelation functions provide a connection between the dynamics of a

restrained solute and the friction it experiences from the solvent. Extending the work

of Straub and Berne [17], Roux and coworkers derived an expression for the diffusion

coefficient of the solute from the GLE of a harmonic oscillator [13, 14, 15],

D(zi = 〈z〉i) = lim
s→0

−Ĉv(s; zi)〈δz2〉i〈ż2〉i
Ĉv(s; zi) [s〈δz2〉i + 〈ż〉i/s]− 〈δz2〉i〈ż2〉i

(3.5)

〈z2〉 and 〈ż2〉 are the variances of the position and velocity of the oscillator, re-

spectively. Ĉv is the Laplace transform of the velocity autocorrelation function. The

diffusion coefficient is the limit of this equation as s → 0, where s is the coefficient

of the Laplace transform. As a practical matter, this limit cannot be taken directly

because of a singularity at s = 0, so the limit must be extrapolated from D(s) in the

range where the function is well-behaved.

Hummer derived a simpler form of this equation that uses the PACF instead of

the VACF [9],

D(zi = 〈z〉i) =
var(z)2∫∞

0
Cz (t) dt

. (3.6)

An advantage of this form is that is it not necessary to store the velocity time

series, compute a Laplace transform, or perform the extrapolation step; the diffusion

coefficient can be calculated in a straightforward way from the variance and PACF

alone. The derivation of these expressions from the GLE is presented in Appendix A.
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3.2.2 Practical Calculation of Correlation Functions

The presented GLE-based methods for calculating the diffusion coefficients both re-

quire the calculation of a correlation function for the motion of the solute when the

solute is restrained to some position along the transmembrane coordinate (z) by a

harmonic potential,

V(r) =
1

2
k(z − z0)2 (3.7)

where k is the spring constant of the restraint, and z0 is the reference position. The

diffusion coefficient can be calculated at different positions along the coordinate by

selecting different reference positions for the restraint.

Beginning from an equilibrium configuration for the membrane system, a time

series of the z-coordinate of the center of mass of the solute is collected by performing

a MD simulation. The simulation must be sufficiently long to allow the calculation

of correlation functions that are well-converged for the relaxation time of the system.

This typically requires a simulation that is at least 1 ns in duration. These simulations

are performed with restraint reference positions at intervals that span the membrane

(e.g., z0 = −40,−39, ..., 0, ..., 39, 40 Å).

The time series of the position, z, or the velocity, ż, along the z-coordinate can

be used to calculate the position or velocity autocorrelation functions, respectively.

The PACF is denoted as Cz(t) while the VACF is denoted as Cv(t). The correlation

functions for a time series with regularly spaced intervals can be calculated most

directly by a summation over the trajectory [18],

Cz(t) = 〈δz(0)δz(t)〉 =
1

nsamples

nsamples∑
i=0

δz(i)δz(t+ i) (3.8)

where δz(t) = z(t)− 〈z〉.
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Because these correlation functions converge to zero after the relaxation time of

the system, it should be sufficient to calculate the correlation function over a short

interval (e.g., 0 – 5 ps). For particularly long time series, the correlation functions

could be calculated more efficiently using Fourier transforms [19, 20].

These GLE-based methods are attractive for calculating transmembrane diffusivity

because many biomolecular simulation codes (e.g., NAMD and GROMACS) natively

support the imposition of a harmonic restraint like Eq. 3.7 and for the time series

generated by this simulation to be saved to disk. This procedure is identical to that

used to perform an umbrella sampling simulation to calculate the potential of mean

force for the permeation of a solute. In principle, both properties could be calculated

from the same data, although in practice there are some issues regarding this practice

(vide infra).

3.2.3 Practical Calculation of Diffusion from VACF

Calculation of D(z) using the VACF-based method requires a procedure to find the

limit as s→ 0 in Eq. 3.5. The limit cannot be taken directly due to a singularity at

s = 0. There are two additional singularities in D(s), and the function is only well-

behaved in the interval between them, so the value of D(s = 0) must be extrapolated

from the range between the 2nd and 3rd singularities. To facilitate routine calculation

of D(z) using the VACF method, we developed an algorithm to extrapolate D(z, s =

0) from D(z, s). The full details of the algorithm are described in Appendix B.

3.3 Technical Details

Molecular dynamics simulations of the solutes in the homogeneous solvents were per-

formed using NAMD 2.10 [21]. The SHAKE algorithm was used to constrain bonds
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containing hydrogen [22]. Lennard-Jones interactions were truncated at 12 Å using

a smoothed cutoff potential. A Langevin thermostat at 298.15 K with a damping

coefficient of 1 ps−1 was used for equilibration. The time series for the calculation

of the diffusion coefficients using the GLE-based methods were performed under (mi-

crocanonical) NVE conditions. The simulation time step was 2 fs. The electrostatic

interactions were calculated using the Particle Mesh Ewald (PME) method with a

32 × 32 × 32 grid [23]. Diffusion coefficients were calculated from the average of

three trajectories. For each simulation, a 1 ns MD simulation was performed under

isothermal-isobaric (NpT) conditions to equilibrate the system before a 10 ns produc-

tion simulation under NVE conditions. In order to calculate the diffusion coefficient

using the GLE-based methods, a harmonic restraint along the z axis was imposed on

the center of mass of the solute with a spring constant of 10 kcal mol−1 Å−2.

The force field of Fischer and Lago was used in simulations of O2 [24]. The TIP3P

model was used in the simulations involving water [25]. The CHARMM General Force

Field was used to describe the aliphatic solvents [26].

A lipid bilayer system was used comprising 64 DPPC lipids arranged into a sym-

metric bilayer, with the bilayer running along the xy plane. The bilayer was sur-

rounded by a solvent layer containing 4551 water molecules. The dimensions of the

simulation cell were roughly 44 Å × 44 Å × 114 Å.

A 40 ns steered MD simulation was performed to generate the initial configura-

tions for the restrained simulations. A water molecule from solution was pulled along

the z -axis over the course of this simulation. Configurations were selected at 1 Å

separations relative to the center of mass of the bilayer, spanning a −40 Å to 40 Å

interval. The permeating water molecule was restrained to these reference positions

using a harmonic restraint with a 10 kcal mol−1 Å−2 spring constant. 10 ns MD sim-

ulations were performed to equilibrate these restrained simulations. The time series
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used to calculate the D(z) profiles were calculated from 2 ns MD simulations in the

microcanonical ensemble. 2 ns equilibration simulations were performed to generate

distinct starting points for the successive series. The profiles presented in Figure 3.6

are calculated from the average of the each of these 3 simulations, symmetrized about

the center of the bilayer. The temperature of the system was 314 K.

3.3.1 Implementation of Diffusivity Calculations

The diffusivity calculations using the PACF and VACF GLE methods from MD time

series has been implemented in our code, ACFCalculator, which is freely available

under the GNU Public License [27]. This program can read time series files generated

from CHARMM, NAMD, and GROMACS.

3.4 Results and Discussion

3.4.1 Validation of GLE Methods with Homogeneous Liquids

The diffusivities of H2O and O2 molecules in bulk liquids of water (TIP3P model),

pentane, and hexane were calculated using the GLE methods (Figure 3.2). These

diffusivities were also calculated using the Einstein equation,

D =
1

6t
〈|r(t)− r(0)|〉. (3.9)

The diffusivities calculated using the GLE methods can be compared to the dif-

fusivities calculated using the Einstein equation, which provides an independent and

rigorous comparison. The diffusivities calculated using these three methods are com-

pared in Figure 3.3.

Generally, all three methods yield comparable values, although the VACF method



61

D
(s

) (
× 

10
−3 
Å2   / 

fs
)

0

1

2

3

4

5

6

s (fs−1)
0 0.01 0.02 0.03 0.04 0.05

s1 s2

Figure 3.2: D(s) curve (Eq. 3.5) for a harmonically-restrained O2 molecule in liquid
hexane (k = 10 kcal mol−1 Å−2). The diffusion coefficient (D(s = 0) = 1.04×10−3 Å2

fs−1) is estimated by linearly extrapolating D(s) from the region of lowest curvature
between singularities s1 and s2.

is generally in closer agreement with the Einstein method, and has the smallest stan-

dard deviation of all three methods. The GLE methods appear to be effective for

these solutes for both aqueous and paraffinic solutions, which are representative of

the environments in a lipid-bilayer.

Effect of Thermostat Friction of Calculated Diffusivity

Molecular dynamics simulations are often performed using stochastic thermostats.

For example, a Langevin thermostat can be used to sample the canonical (NVT)

ensemble of the system by introducing artificial frictional and random forces on the

dynamics of the molecules. These forces change the dynamics of the molecules, so

transport properties like diffusion will be affected. To assess the effect of this, the

self-diffusion coefficient of TIP3P-model water was calculated using the GLE methods

from simulations with a Langevin thermostat and frictional coefficients in the range

commonly used in biomolecular MD simulations (γ = 1 ps−1 – 10 ps−1). We compared

this to the diffusion coefficients calculated from a NVE MD simulation, which lacks
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Figure 3.3: The diffusivity of O2 (left) and H2O (right) in liquid water (TIP3P model),
pentane, and hexane calculated the PACF and VACF GLE methods. For reference
the diffusivity calculated from the RMSD using the Einstein equation is also shown.

any artificial thermostat forces, and from an NVT MD simulation using the Lowe–

Andersen thermostat, which is a stochastic thermostat that has a smaller effect on

diffusion coefficients. The diffusivity of TIP3P-model water calculated using these

methods is presented in Figure 3.4.

Both the PACF and VACF methods show a decline in the diffusion coefficient

as the thermostat frequency is increased. This can be attributed to the damping

of the dynamics of the oscillating solute due to the frictional force imposed by the

thermostat. The PACF method is more sensitive to this effect; the diffusion coefficient



63

calculated using the PACF method drops to 2.0× 10−4 Å2/fs when γ = 10 ps−1, but

it only drops to 4.0×10−4 Å2/fs when using the VACF method. This difference is due

to the application of the Laplace transform in the VACF method, which reduces the

influence of the correlation function at long times. The effect of thermostat frequency

has a larger effect on the correlation functions at longer times because the dynamics

have been subjected to these forces for a longer period.
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Figure 3.4: The effect of the Langevin thermostat frictional coefficients (γ) on the
diffusion coefficients of TIP3P-model water (left). The diffusion coefficients calcu-
lated with both the PACF and VACF GLE methods are decreased as the friction
of the Langevin thermostat are increased. The reference values for a simulation
performed under NVE conditions (i.e., no thermostat) and those performed using
a Lowe–Andersen thermostat (LA) are shown for comparison (right). The dotted line
indicates the diffusivity calculated using the Einstein equation and the NVE simula-
tion.

Simulations to calculate the potential of mean force must use a thermostat in order

to sample the correct ensemble. If the same simulation is to be used to calculate D(z)

as is used to calculate w(z), it is important to use a small frictional coefficient, or to

use a thermostat that does not have a large effect on diffusivity (e.g., Nosé–Hoover or

Lowe–Andersen).
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Effect of Restraint Spring Constant on Calculated Diffusivity

Several factors affect the choice of the spring constant to restrain the solute. The

assumption underlying these GLE-based methods is that the dynamics of the solute

can be described as a harmonic oscillator in a frictional bath. In heterogeneous en-

vironments like a lipid bilayer, the underlying free energy surface can be rough, so

the harmonic restraining force should be strong enough to dominate over these forces.

Likewise, to calculate a diffusion coefficient at an arbitrary point along this coordi-

nate, the restraining force must be sufficiently large so that the average position along

the coordinate is close to the reference position (e.g. 〈z〉i ≈ z0,i.

To test for systematic errors that could result from the choice of the spring con-

stant, simulations were performed to calculate the diffusivity of water using the GLE-

based methods with spring constants ranging from 1 kcal mol−1 Å−2 to 50 kcal mol−1

Å−2(Figure 3.5 a). The PACF method shows some variation with the spring con-

stant, but there is no systematic trend, and all the simulations performed with the

various spring constants give a prediction in reasonable agreement with the diffusivity

calculated using the Einstein method.

The VACF method is more sensitive to the spring constant. There is a roughly

linear decrease in the calculated diffusivity when the spring constant is increased. The

origin of this trend is apparent Figure 3.5 b. The variance of the simulation and the

Laplace transform of the VACF both affect the locations of singularities and curvature

of D(s). Simulations performed with larger spring constants have greater curvature

in D(s), and an extrapolation range that is located at a larger value of s, making the

linear extrapolation technique used here less reliable. As the shape of D(s) is sensitive

to both the spring constant restraining the solute and the dynamic friction function

of the surroundings, this method should be used with caution.
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Figure 3.5: (a) The diffusivity of TIP3P-model water calculated using the GLE meth-
ods with various spring constants for the harmonic restraining force (k). The diffusiv-
ity calculated using the Einstein method is indicated by the dashed gray line. (b) The
D(s) profiles calculated using the VACF method (Eq. 3.5) corresponding to select
values of the spring constant, k. The dotted lines indicate the extrapolation. The
reference diffusion coefficient is indicated by a black dot on the y-axis.

3.4.2 Transmembrane Diffusivity Profiles

To compare these methods for calculating the diffusivity of solutes permeating through

a lipid bilayer, simulations were performed where a water molecule was restrained at

positions that span the bilayer in the interval z = [−40 Å, 40Å] along the transmem-

brane axis. The solute was restrained with a harmonic spring constant of k = 10 kcal

mol−1 Å−2. These profiles are presented in Figure 3.6.

The PACF and VACF methods predict similar diffusion coefficients in solution
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Figure 3.6: Diffusion coefficients of a water molecule permeating through a DPPC lipid
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the density contribution of the various membrane components in the bilayer. The
VACF method predicts systematically higher rates of diffusion inside the bilayer. The
profiles are symmetrized about the center of the bilayer. Error bars were calculated
from the standard deviations of the three independent simulations.

(|z| > 35 Å), but differ inside the bilayer. The PACF method predicts low diffusivity in

the upper regions of the lipid tails (5 Å< |z| < 20 Å). Both methods predict relatively

high diffusivities in the disordered region at the centre of the bilayer (5 Å< |z| < 20

Å), although the VACF method predicts much higher diffusivities (1.5× 10−3 Å2/fs).

3.4.3 Slow Decay of the PACF

The difference between the PACF and VACF diffusion profiles can be rationalized

by examining the correlation functions used to calculate the diffusivities. Lee et al.
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showed that that the PACF of a solute harmonically restrained inside a lipid bilayer

can decay far slower than those in bulk liquids [4]. In some cases, the PACF can

have a significantly non-zero value even after 5 ps. The denominator of Eq. 3.6

should formally be integrated until Cz(t) converges to zero, although in practice, it is

typically only computed for some predefined interval. This causes calculated diffusion

coefficient to become sensitive to the bounds chosen for the integration. The diffusion

coefficients calculated using Eq. 3.6 can be significantly decreased for bilayer depths

where the PACF decays slowly.
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Figure 3.7: Position autocorrelation functions of a water molecule restrained at dif-
ferent depths in a DPPC bilayer. The PACF converges to zero in less than 1000 fs
when the solute is in the bulk solution (z0 = 40 Å), but does not converge to zero
even after 4 ps when the solute is immersed in the bilayer (z0 = 0 Å and z0 = 15 Å)
The red curves shows the VACF. The VACF converges to zero for all solute depths.
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This slow decay is apparent in the PACFs of a water molecule restrained at dif-

ferent reference positions along the z-axis of a DPPC lipid bilayer system (Figure

3.7). When the solute is in the bulk water above the bilayer (z0 = 40 Å), the PACF

converges to zero in less than 1000 fs. The PACF holds a significant non-zero value

when the solute is immersed in the bilayer (z0 = 15 Å).

The PACF indicates that there is a degree of correlation in the position of the

solute after an elapsed time. In most bulk liquids, the frictional forces are sufficiently

strong so that the position of the restrained solute is no longer correlated after 1–2

ps (i.e., its current position is independent of its previous). The long tails on the

PACFs for simulations inside the bilayer indicate that the position of the solute can

have significant correlations for much longer intervals than in bulk liquids.

Figure 3.8: Time series of a water molecule restrained to oscillate around the center
of a DPPC bilayer by a harmonic potential (k = 10 kcal mol−1 Å−2). Fluctuations in
the position occur with a life time on the order of 200 ps during this 1 ns simulation.

These long-timescale correlations are apparent in the time series of a simulation

of a water molecule restrained at the center of the bilayer (Figure 3.8). Analysis of
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the time series shows fluctuations that can extend over 100 ps. These long-timescale

fluctuations can be attributed to slow rearrangements of the bilayer that hinder the

oscillation of the solute and the changes in the hydration state of hydrogen-bonding

solutes. This type of long-timescale correlation of the position of a solute restrained

inside lipid bilayers has been previously noted by Neale et al. as a challenge in

calculating the PMF of solute permeation [28, 29, 6].

The VACF does not exhibit the same slow decay. The VACF converges to zero

in less than 2000 fs for all reference positions, including the solution, interface, and

bilayer center. In the lipid tail region (z0 = 0 Å), the PACF only decays to 10%

of its initial value after 4 ps, while the VACF decays to a value near 0 after only

500 fs. Physically, the VACF does not show long term correlations because even if a

long-timescale fluctuation occurs in the position of the solute, the oscillations in the

velocity of the solute are not strongly affected. This suggests that the VACF-based

method to calculate D(z) could resolve the issues related to the slow decay that affect

the PACF-based method.

3.5 Conclusions

Two methods based on the Generalized Langevin Equation were examined for their

utility in calculating transmembrane diffusivity profiles. The first method uses the

position autocorrelation function (PACF) of a solute harmonically restrained at a

chosen bilayer depth, while the second method uses the velocity autocorrelation func-

tion (VACF) of a solute also harmonically restrained. The VACF method requires

the diffusivity to be extrapolated from an equation involving the Laplace transform of

the VACF, so an algorithm was developed to calculate solute diffusivity automatically

using this method.
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When tested on simulations of bulk liquids, the VACF method predicted diffusiv-

ities that were in closer agreement with the reference Einstein method than with the

PACF method, and had a smaller standard error. The PACF method was also more

sensitive to the application of a stochastic thermostat to the simulation, so this method

should only be used with thermostats that do not strongly affect transport proper-

ties. On the other hand, the PACF method was less sensitive to the spring constant

chosen for the harmonic restraining force, although the VACF method presented here

predicted systematically lower diffusion coefficients if higher spring constants were

used. Generally, the VACF method should be used cautiously, and checks should be

performed to ensure the extrapolation technique is accurate for a given simulation.

The methods predicted significantly different diffusivities for a water molecule per-

meating a DPPC lipid bilayer. When the solute is immersed in the bilayer, the PACF

can have a very slow decay due to long-timescale fluctuations. This spuriously lowers

the calculated diffusion coefficients, particularly in depth of the bilayer correspond-

ing to the lipid tails. In contrast, the VACF decays quickly at all bilayer depths, so

it is not affected by these long-timescale fluctuations. The intramembrane diffusion

coefficients calculated using the VACF method are systematically higher than those

calculated using the PACF method, suggesting that permeabilities calculated using

the PACF method are underestimated.
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4.1 Conclusion

Computer modeling methods play an important role in the development of new phar-

maceutical drugs, and can be used to study a variety of properties and behaviors

of chemical systems. In this thesis we have addressed two significant problems in

drug development that benefit from computer modeling: molecular conformations

and transmembrane diffusion.

In Chapter 2, a conformational search method for explicitly solvated molecules

was presented. Molecular conformations affect the biological activity and binding

affinity of drug molecules. The presence and representation of a solvent can have

significant effects on a conformation. Many conformational search methods only de-

scribe a molecule in the gas phase or with an implicit solvent. We have developed

a work-flow for performing a conformational search on explicitly solvated molecules

using replica-exchange molecular dynamics and clustering analysis. Replica-exchange

molecular dynamics has enhanced conformational sampling over conventional molec-

ular dynamics because of exchanges with higher temperature replicas. Clustering

analysis effectively identifies the most probable conformation from a REMD trajec-

tory. The work-flow makes use of several open-source software packages and integrates

them using Python scripting. Two drug molecules were used as examples. There were

significant differences in the lowest energy conformations generated for these molecules

in an explicit solvent, an implicit solvent, and in the gas phase.

Chapter 3 discussed Generalized Langevin methods for calculating transmembrane

diffusion coefficients. Membrane permeation is a fundamental biochemical transport

process, and relies on the rate of diffusion of a solute. While diffusion can be calcu-

lated simply for a solute in a homogeneous system, the diffusivity of the solute varies

considerably when it is at different depths inside the membrane. Methods based on
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the Generalized Langevin Equation (GLE) can provide position-dependent diffusivi-

ties from a molecular dynamics simulation where the system is restrained to a position

along the z-axis by a harmonic potential.

The Generalized Langevin methods presented in this thesis express the diffusion

coefficient using the velocity autocorrelation function (VACF) or using the position

autocorrelation function (PACF). For the permeation of a solute through a lipid bi-

layer, the diffusion coefficients calculated using these methods provided significantly

different results. The PACF method is sensitive to long correlations of the solute

due to inhomogeneities in the bilayer, resulting in underestimations of the diffusion

coefficient. The method based on the VACF does not have this issue and predicts

higher rates of diffusion inside the bilayer. Our implementation of the VACF method

generally predicts diffusion coefficients in closer agreement with the standard rates

computed using the Einstein equation, and is less sensitive to an applied Langevin

thermostat. It has the drawback of being more sensitive to the spring constant of the

restraint potential.

4.2 Future Work

Our work-flow for the conformational search method has the potential to be appli-

cable to many fields such as drug design, cheminformatics, and molecular structure

studies. Further work on the method could include other solvents to better repre-

sent potential systems. The molecules tested here were both small drug molecules,

and an implementation of this work-flow that can work with larger molecules would

be beneficial. An important part of any conformational search method is balancing

efficiency with accuracy, and improvements to the computational speed while main-

taining the benefits of REMD and clustering analysis in this work-flow would increase
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its applicability.

Currently our implementation of the VACF method is limited by its sensitivity

to the spring constant, and further work is needed to fix these issues. The method

is also sensitive to the extrapolation technique; within the center of the membrane

the D(s) function may not have a well-defined linear section, causing our method

to over-estimate the diffusion coefficient. Fixing issues with the extrapolation will

improve the accuracy of this method. As with any computational method, improving

the efficiency is an important area for improvement. This method would benefit from

a more efficient extrapolation technique, and from improvements to its root finding

algorithm.
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Appendix A

Derivation of Expression for D(s)

from the GLE

The Generalized Langevin Equation (GLE) for a harmonic oscillator in a frictional

bath has the form,

mz̈(t) = −
(
∂V
∂z

)
−
∫ t

0

ż(τ) ζ(t− τ)dτ +R(t) (A.1)

For a harmonic oscillator, this simplifies to:

mz̈(t) = −k · z(t)−
∫ t

0

ż(τ) ζ(t− τ)dτ +R(t) (A.2)

where k is the spring constant of the restraining harmonic potential.

To derive an expression for the diffusion coefficient of the solute, we multiply Eq. (11)

through by ż(0) (i.e., initial velocity),
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m ż(0) z̈(t) = −ż(0) k z(t)−
∫ t

0

ż(0) ż(τ) ζ(t− τ)dτ +R(t) ż(0) (A.3)

m ż(0)

[
d

dt
ż(t)

]
= −k ż(0) z(t)−

∫ t

0

ż(0) ż(τ) ζ(t− τ)dτ +R(t) ż(0) (A.4)

Replacing z(t) with an integral of ż(t) gives:

m ż(0)
d

dt
ż(t) = −k ż(0)

∫ t

0

ż(t)dt−
∫ t

0

ż(0) · ż(τ) ζ(t− τ)dτ +R(t) ż(0) (A.5)

By taking the ensemble average of both sides of the equation, we obtain:

m
d

dt
〈ż(0) ż(t)〉 = −k

∫ t

0

〈ż(0) · ż(t)〉 dt−
∫ t

0

〈ż(0) · ż(τ)〉 ζ(t− τ)dτ + 〈R(t) · ż(0)〉

(A.6)

Random force times initial velocity will average to zero: i.e., 〈R(t) ż(0)〉 = 0.

The velocity autocorrelation function (VACF) is defined as Cv = 〈ż(0) ż(t)〉, thus Eq.

(A.6) becomes:

m
d

dt
[Cv] = −k

∫ t

0

Cv dt−
∫ t

0

Cv ζ(t− τ)dτ (A.7)

A Laplace transform of both sides of the equation (i.e., Eq. (A.7)) gives:

m L
(

d

d
[Cv]

)
= −k L

(∫ t

0

Cv dt

)
− L

(∫ t

0

Cv ζ(t− τ)dτ

)
(A.8)

Taking advantage of some Laplace transform identities, the above equation simplifies

to:

m [s Ĉv(s)− Cv(0)] = −k 1

s
Ĉv(s) − Ĉv(s) ζ̂(s) (A.9)
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where Ĉv = L(Cv). Rearranging the above equation, Eq. (A.9), we can solve for

ζ̂:

ζ̂(s) =
−m [s Ĉv(s)− Cv(0)]− k

s
Ĉv(s)

Ĉv(s)
(A.10)

We can then take the reciprocal of the above expression and multiply by kBT :

kBT

ζ̂(s)
=

−Ĉv(s)kBT

m[sĈv(s)− Cv(0)] +
k

s
Ĉv(s)

(A.11)

D can be related to ζ using Einstein relation D = kBT
ζ

, and taking the limit as s

approaches 0:

D = lim
s→0

kBT

ζ̂(s)
= lim

s→0

−Ĉv(s) kBT

m [s Ĉv(s)− Cv(0)] +
k

s
Ĉv(s)

(A.12)

where D is the diffusion constant.

This equation can be simplified further using the following identities: Cv(0) = 〈ż(0) · ż(0)〉 =

〈ż2〉; k =
kBT

〈z2〉
; m =

kBT

〈ż2〉

Using these relations, Eq. (A.12) becomes,

D = lim
s→0

−Ĉv(s) kBT
kBT

〈ż2〉
[s Ĉv(s)− 〈ż2〉] +

kBT

〈z2〉
1

s
Ĉv(s)

(A.13)

We can remove the dependence on kBT by multiplying the denominator and the

numerator by the product of the variance of position and velocity:,
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D = lim
s→0

−Ĉv(s) kBT
kBT

〈ż2〉
[s Ĉv(s)− 〈ż2〉] +

kBT

〈z2〉
1

s
Ĉv(s)

× 〈ż
2〉〈z2〉
〈ż2〉〈z2〉

(A.14)

and simplifying Eq. (A.14) to:

D = lim
s→0

−Ĉv(s) 〈ż2〉〈z2〉

s Ĉv(s)〈z2〉 − 〈ż2〉〈z2〉+
1

s
Ĉv(s)〈ż2〉

(A.15)

D(s) = lim
s→0

−Ĉv(s) 〈ż2〉〈z2〉

Ĉv(s)

[
s 〈z2〉+

1

s
〈ż2〉

]
− 〈ż2〉〈z2〉

(A.16)

The limit of this expression, Eq. (A.16), can not be taken directly because as s→ 0,

Ĉv(s) = 0. However, an alternative expression can be derived by replacing Ĉv(s) with

Ĉz(s). We arrive at this using the definition of the position in terms of the integral

over the velocity,

z(t)− z(0) =

∫ t

0

ż(t′) dt′ (A.17)

The mean square displacement along the z axis can be given in terms of a correlation

function by squaring this expression and taking the ensemble average:

〈[z(t)− z(0)]2〉 =

∫ t

0

∫ t

0

〈ż(t′) · ż(t′′)〉dt′dt′′ (A.18)

The integral can be separated into two integrals by a change of variables,[1]

〈
[z(t)− z(0)]2

〉
=

∫ 0

−t

∫ t+τ

0

〈ż(0) · ż(τ)〉dτdt′′ +

∫ t

0

∫ t

τ

〈ż(0) · ż(τ)〉dτdt′′ (A.19)

〈[z(t)− z(0)]2〉 = 2

∫ t

0

(t− τ)〈ż(0) · ż(τ)〉dτ (A.20)
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For timescales beyond the relaxation time of the system, the integral will converge to

a finite value and become independent of t, yielding,

〈[z(t)− z(0)]2〉 = 2t

∫ ∞
0

〈ż(0) · ż(τ)〉dτ (A.21)

〈
[z(t)− z(0)]2

〉
=

∫ t

0

∫ t

0

〈ż(t′) · ż(t′′)〉dt′dt′′ (A.22)

〈
[z(t)− z(0)]2

〉
=

∫ t

0

∫ t

0

〈ż(t′) · ż(t′′)〉dt′dt′′ (A.23)

Using the above simple relation based on the classical equations of motion, the ex-

pression for the mean squared displacement can be written as,

〈
[z(t)− z(0)]2

〉
=

(∫ t

0

dt′〈ż(t′)〉
)2

(A.24)

Taking the time derivative of both sides of the equation leads to,

∂

∂t
〈[z(t)− z(0)]2〉 =

∂

∂t

(∫ t

0

dt′〈ż(t′)〉
)2

(A.25)

Expansion of the LHS yields,

∂

∂t
〈z2(t)− 2z(t)z(0) + z2(0)〉 = 2

∫ t

0

dt′〈ż(t′) · ż(t)〉 (A.26)

This equation can be simplified by noting that the average values of z(0)2 and

z(t)2 will be zero for a harmonic oscillator,

∂

∂t
〈[−2z(t) · z(0)]〉 = 2

∫ t

0

dt′〈ż(t′) · ż(t)〉 (A.27)



85

This further simplifies to,

∂

∂t
〈z(t) · z(0)〉 = −

∫ t

0

dt′〈ż(t′) · ż(t)〉 (A.28)

Applying the property of time translational invariance to the RHS of the above ex-

pression leads to,

∂

∂t
〈z(t) · z(0)〉 = −

∫ t

0

dt′〈ż(t′ − t) · ż(0)〉 (A.29)

If we let τ = t′ − t; dτ = dt′. Eq. (A.29) becomes,

∂

∂t
〈z(t) · z(0)〉 = −

∫ t

0

〈ż(τ)ż(0)〉 dτ (A.30)

To simplify the expression, we define Cz(t)=〈z(t) · z(0)〉 and Cv(τ)=〈ż(τ) · ż(0)〉,

then,

∂

∂t
Cz(t) = −

∫ t

0

Cv(τ) dτ (A.31)

The Laplace transform of the above expression leads to,

s Ĉz(s)− Cz(0) = −1

s
Ĉv(s) (A.32)

Ĉv(s) = s Cz(0)− s2 Ĉz(s) (A.33)

Therefore Ĉv(s) = s 〈z2〉 − s2 Ĉz(s); [N.B.: Cz(0) = 〈z(0) · z(0)〉 = 〈z2〉]

Substituting Ĉv(s) into Eq. (A.16) results in,

D(s) = lim
s→0

−[s 〈z2〉 − s2 Ĉz(s)] 〈ż2〉〈z2〉[
s 〈z2〉 − s2 Ĉz(s)

] [
s 〈z2〉+

1

s
〈ż2〉

]
− 〈ż2〉〈z2〉

(A.34)
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Which simplifies to,

D(s) = lim
s→0

−〈ż2〉〈z2〉 [〈z2〉 − s Ĉz(s)]
Ĉz(s) [−s2 〈z2〉 − 〈ż2〉] + s〈ż2〉2

(A.35)

D(s) = lim
s→0

〈ż2〉〈z2〉 [〈z2〉 − s Ĉz(s)]
Ĉz(s) [s2 〈z2〉+ 〈ż2〉]− s〈ż2〉2

(A.36)

Noting that lims→0 Ĉz(s) =
∫∞

0
Cz(t)dt, Eq. (A.36) gives

D(s) = lim
s→0

〈ż2〉〈z2〉2

Ĉz(s)〈ż2〉
= lim

s→0

〈z2〉2

Ĉz(s)
=

var(z)2∫∞
0
Cz(t) dt

(A.37)



Appendix B

Description of D(s) Extrapolation

Method

The calculation of the diffusion coefficient of the solute from the velocity autocorre-

lation function requires a numerical solution to the equation,

D(zi = 〈z〉i) = lim
s→0

−Ĉv(s; zi)〈δz2〉i〈ż2〉i
Ĉv(s; zi) [s〈δz2〉i + 〈ż〉i/s]− 〈δz2〉i〈ż2〉i

(B.1)

The singularity at s = 0 requires that the value of D(s = 0) be extrapolated

numerically from an interval of the equation that is well-behaved. This interval lies

between the 2nd and 3rd singularities of D(s), denoted s1 and s2, (Figure B.1).

To identify the locations of s1 and s2, the roots of the denominator are found

numerically. The method first finds the location of the minimum of the denominator,

smin, using Brent’s method [2]. s1 and s2 correspond to the roots in the denominator

of Eq. 3.5, which are located numerically using Tom’s 748 method to find the roots

in the [0.00001, smin] and [smin, 1] intervals, respectively [3]. The minimum of D(s)

(smin) in the [s1, s2] interval is then found using Brent’s method.

A region of low curvature in D(s) is found by calculating the second derivative
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Figure B.1: Denominator of Eq. 3.5 for a harmonically-restrained water molecule in
a simulation cell of liquid water (TIP3P model, k=10 kcal mol−1 Å−2). The 2nd and
3rd singularities of D(s) (s1 and s2 respectively) are identified by finding the roots in
this equation.

of D(s) over the interval [smin, s2] by two iterations of numerical differentiation. A

smoothing algorithm is applied at each iteration to reduce the effect of numerical

error. The position of minimum curvature in D(s) is then identified by a numerical

search. The value of D(s = 0) is extrapolated from this point of minimum curvature.

To improve the numerical stability of the algorithm, a segment with low curvature

is extended around the point of minimum curvature. This segment of the curve is fit to

a linear equation using least squares regression analysis. D(s = 0) is determined from

the y-intercept of this linear approximation of D(s). The coefficient of determination

from this fit (R2) is an indicator of how reliable the extrapolation is.

This method relies on the effective linear extrapolation of D(s) to the y-intercept.

A segment where the curvature is low is essential for an accurate extrapolation. The

researcher should plot D(s) to ensure the function has a nearly-linear segment between
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the singularities. The ACFCalculator program will indicate the magnitude of curva-

ture where the extrapolation is being performed. If this value is high, the simulation

should be repeated with a smaller spring constant.
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