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Abstract

This thesis studies the theories and phenomenology of modified gravity, along with their applications in
cosmology, astrophysics, and effective dark energy. This thesis is organized as follows. Chapter 1 reviews
the fundamentals of relativistic gravity and cosmology, and Chapter 2 provides the required Co-authorship
Statement for Chapters 3 ∼ 6. Chapter 3 develops the L = f (R,R2

c ,R
2
m,Lm) class of modified gravity

that allows for nonminimal matter-curvature couplings (R2
c B RµνRµν, R2

m B RµανβRµανβ), derives the “co-
herence condition” fR2 = fR2

m
= − fR2

c
/4 for the smooth limit to f (R,G,Lm) generalized Gauss-Bonnet

gravity, and examines stress-energy-momentum conservation in more generic f (R,R1, . . . ,Rn,Lm) grav-
ity. Chapter 4 proposes a unified formulation to derive the Friedmann equations from (non)equilibrium
thermodynamics for modified gravities Rµν − Rgµν/2 = 8πGeffT (eff)

µν , and applies this formulation to the
Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon,
quadratic, f (R,G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Chapter 5 systemati-
cally restudies the thermodynamics of the Universe in ΛCDM and modified gravities by requiring its com-
patibility with the holographic-style gravitational equations, where possible solutions to the long-standing
confusions regarding the temperature of the cosmological apparent horizon and the failure of the second
law of thermodynamics are proposed. Chapter 6 proposes the Lovelock-Brans-Dicke theory of alternative

gravity with LLBD = 1
16π

[
φ

(
R + a√

−g
∗RR + bG

)
−

ωL
φ
∇αφ∇

αφ

]
, where ∗RR and G respectively denote the

topological Chern-Pontryagin and Gauss-Bonnet invariants; as a quick application, Chapter 7 looks into
traversable wormholes and energy conditions in Lovelock-Brans-Dicke gravity, along with an extensive
comparison to wormholes in Brans-Dicke gravity. Chapter 8, for a large class of scalar-tensor-like grav-
ity S =

∫
d4x
√
−g

(
LHE + LG + LNC + Lφ

)
+ Sm whose action contains nonminimal couplings between

a scalar field φ(xα) and generic curvature invariants {R} beyond the Ricci scalar, proves the local energy-
momentum conservation and introduces the “Weyl/conformal dark energy”. Chapter 9 investigates the pri-
mordial nucleosynthesis in L = ε2−2βRβ+16πm−2

Pl Lm gravity from the the semianalytical approach for 4He,
and from the empirical approach for D, 4He, and 7Li; also, consistency with the gravitational baryogenesis is
estimated. Within the same gravitational framework as in Chapter 9, Chapter 10 continues to study thermal
relics as hot, warm, and cold dark matter, and revises the Lee-Weinberg bound for the mass of speculated
heavy neutrinos.

KeyWords cosmic acceleration, dark energy, modified gravity, physical cosmology, early Universe
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Chapter 1

Introduction and overview: Physical

cosmology and relativistic gravity

In this chapter, we will prepare for the whole thesis by reviewing the foundations of some necessary topics,
including the standard model of cosmology within the gravitational framework of general relativity (GR),
accelerated expansion of the Universe, dark energy, and modified theories of relativistic gravity beyond GR.

Throughout this chapter, for the spacetime geometry, we adopt the metric signature (−,+ + +) along with
the conventions Γαβγ = Γαβγ = gαµΓµβγ for the Christoffel symbols (i.e. the first index being contravariant),
Rαβγδ = ∂γΓ

α
δβ−∂δΓ

α
γβ+ΓαγλΓ

λ
δβ−ΓαδλΓ

λ
γβ for the Riemann curvature tensor, and Rµν = Rαµαν for the Ricci tensor.

Moreover, for the physical quantities, we primarily use the natural unit system of high energy physics which
sets c = ~ = kB = 1 and is related to le système international d’unités by 1 GeV = 1.1604 × 1013 kelvin =

1.7827 × 10−27 kg = (1.9732 × 10−16 meters)−1 = (6.5820 × 10−25 seconds)−1.

1.1 Standard cosmology

“My goal is simple. It is complete understanding of the universe: why it is as it is and why it exists at all.”
Stephen Hawking

1.1.1 Einstein’s equation

To look into modern cosmology, firstly let us quickly recall GR. Since gravity dominates at large scales, we
need not concern ourselves with local complexity arising from the electromagnetic and nuclear interactions.
GR, with the equivalence principle and the general principle of relativity as two cornerstones, is the first
established and best accepted theory of relativistic gravity. From the perspective of the action principle, the
field equation of GR can be derived by the stationary variation of the Hilbert-Einstein action

IHE =

∫
d4x
√
−g

(
R + 16πGLm

)
, (1.1)
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where G is Newton’s constant, Lm denotes the matter Lagrangian density, and 16πG
∫

d4x
√
−g Lm C Im

constitutes the matter action. Extremizing IHE with respect to the inverse metric, i.e. δIHE/δgµν = 0 with
the variational derivative given by

δIHE

δgµν
B

∑
(−1)n∂α1 · · · ∂αn

∂IHE

∂
(
∂α1 · · · ∂αngµν

) =
∂IHE

∂gµν
− ∂α

∂IHE

∂(∂αgµν)
+ ∂α∂β

∂IHE

∂(∂α∂βgµν)
, (1.2)

one obtains Einstein’s equation [1]

Rµν −
1
2

R gµν = 8πGT (m)
µν , (1.3)

where the stress-energy-momentum tensor T (m)
µν for the physical matter is defined via

δIm = −
1
2
× 16πG

∫
d4x
√
−g T (m)

µν δg
µν with T (m)

µν B
−2
√
−g

δ
(√
−g Lm

)
δgµν

. (1.4)

Due to the minimal curvature-matter coupling in IHE, T (m)
µν is covariant conserved (see Subsection 1.2.9 for

more details),
∇µT (m)

µν = 0 , (1.5)

which is consistent with the contracted Bianchi identity ∇µ
(
Rµν − 1

2 Rgµν
)

= 0 and supplements Einstein’s
equation.

Einstein’s equation relates the geometry of the spacetime continuum with the physical energy-momentum
distribution. Given T (m)

µν , one can solve Einstein’s equation for gµν, such as the Schwarzschild solution for
the vacuum exterior of a static spherically symmetric body, and the Kerr solution for the vacuum exterior of
a stationary axially symmetric body. Inversely, one can “design” the spacetime metric with desired geomet-
ric properties, and then reconstruct the matter fields; for example, the Morris-Thorne metric for traversable
Lorentzian wormholes was proposed this way, which requires T (m)

µν to violate the standard null energy con-
dition within GR [2].

1.1.2 Friedmann and continuity equations

Modern observations strongly support the traditional cosmological principle: for example, the Sloan Digital
Sky Survey found that the distribution of galaxies in the Universe appears homogeneous at scales & 100
Mpc [3], while the Wilkinson Microwave Anisotropy Probe (WMAP) confirmed that the cosmic microwave
background (CMB) radiation is highly isotropic in the full-sky temperature map [4]. Mathematically, the
most general spacetime for a spatially homogeneous and isotropic universe is described by the Friedman-
Robertson-Walker (FRW) metric. In the (t, r, θ, ϕ) comoving coordinates, its line element reads

gµνdxµdxν = ds2 = −dt2 +
a(t)2

1 − kr2 dr2 + a(t)2r2
(
dθ2 + sin2θ dϕ2

)
, (1.6)

where the curvature index k is normalized to one of {+1 , 0 ,−1} which correspond to closed, flat and open
universes, respectively. The metric function a(t) refers to the cosmic scale factor, which is a function of the
comoving time and needs to be determined by Einstein’s equation.
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At cosmological scale, the matter content of the Universe is usually portrayed by a perfect-fluid type
stress-energy-momentum tensor, which in the metric-independent form reads

T µ (m)
ν = diag

[
− ρm, Pm, Pm, Pm

]
. (1.7)

With this T (m)
µν and the FRW metric Eq.(1.6), the t − t component of Einstein’s equation leads to the first

Friedmann equation

H2 +
k
a2 =

8πG
3
ρm , (1.8)

while the spatial components yield the second Friedmann equation

Ḣ −
k
a2 = −4πG

(
ρm + Pm

)
or 2Ḣ + 3H2 +

k
a2 = −8πGPm , (1.9)

where H refers to the Hubble parameter

H B
ȧ
a

=
d ln a

dt
, (1.10)

with ä/a = Ḣ+H2 and the overdot denoting the derivative with respect to the comoving time t. Practically, H
describes the fractional change of the distance between any pair of galaxies per unit time, and thus measures
the expansion rate of the Universe.

Eqs.(1.8) and (1.9) jointly govern the the evolution of the generic FRW Unverse. The first and sec-
ond Friedmann equations are just first and second order differential equations for the scale factor a(t), re-
spectively, as a(t) is the only FRW metric function to be specified. Moreover, Eq.(1.5) for local energy-
momentum conservation1 gives rise to the continuity equation

ρ̇m + 3H(ρm + Pm) = 0 . (1.11)

It is actually consistent with the adiabatic cosmic expansion: for the energy U = ρmV in the comoving
volume V = a3, the first law of thermodynamics dU = TdS − PmdV with dQ = TdS = 0 yields

[
d(ρma3) +

Pmda3]/dt = 0, which still expands into Eq.(1.11).

1.1.3 Multiple components in the Universe

The physical content of the observable Universe is quite diverse. Primarily, she contains nonrelativistic
baryonic matter of the SU(3)c×SU(2)W×U(1)Y minimal standard model, cold/nonrelativistic dark matter
beyond the minimal standard model, photons like the cosmic microwave background (CMB), and neutrinos
like the cosmic neutrino background. Accordingly, it is often useful to decompose the total energy density ρm

and pressure Pm into different components, say ρm =
∑
ρ(i)

m = ρb(baryon) + ρdm(dark matter) + ργ(photon) +

1As usual, we regard ∇µT (m)
µν = 0 or ∂µ

(√
−g T (m)

µν

)
= 0 as local conservation, and ∂µ

[√
−g

(
T (m)
µν + tµν

)]
= 0 as the speculated

global conservation, where tµν denotes an energy-momentum pseudotensor for the gravitational field.

3



ρν(neutrino) + · · · , and the same for Pm =
∑

P(i)
m .

Given a type of physical matter, its pressure P(i)
m is related to its energy density ρ(i)

m by some generic
function P(i)

m = P(i)
m

(
ρ(i)

m

)
as the equation of state (EoS); usually, a simplest linear relation P(i)

m = w(i)
m · ρ

(i)
m

is assumed, where the proportionality coefficient w(i)
m refers to the EoS parameter associated to each energy

component. This way, the second Friedmann equation (1.9) can be rewritten into Ḣ− k
a2 = −4πG (1 + wm) ρm,

where wm B Pm/ρm, and practically wm can be regarded either as that of the absolutely dominant matter, or
the weighted average for all relatively dominant components

wm =

∑
P(i)

m

ρm
=

∑
w(i)

m ρ
(i)
m

ρm
=

∑
αi w(i)

m , (1.12)

with the weight coefficient given by αi = ρ(i)
m /ρm.

One should note that physically meaningful wm cannot take an arbitrary value; instead, wm for classical
matter fields is constrained by the null, weak, strong, and dominant energy conditions, which are a corner-
stone in many areas of GR, such as the classical black hole thermodynamics [5, 6]. As shown in Table 1.1,
these energy conditions collectively require −1/3 ≤ wm ≤ 1 or less stringently −1 ≤ wm ≤ 1, along with
the positivity of the energy density; only a small handful exceptions involving quantum effects are found to
violate these energy conditions, such as the quantum Casimir effect and the semiclassical Hawking radiation.

Table 1.1: Standard energy conditions in GR for classical matter fields, which revise the Table 2.1 in Ref.[6], with `α being an
arbitrary null vector, and vα an arbitrary timelike vector.

energy condition tensorial statement perfect-fluid statement

null T (m)
αβ `

α`β ≥ 0 ρm (wm + 1) ≥ 0

weak T (m)
αβ vαvβ ≥ 0 ρm ≥ 0, wm ≥ −1

strong
(
T (m)
αβ −

1
2 T (m)gαβ

)
vαvβ ≥ 0 ρm

(
wm + 1

3

)
≥ 0, ρm (wm + 1) ≥ 0

dominant −Tα(m)
β vβ future directed ρm ≥ 0, −1 ≤ wm ≤ 1

Following Table 1.1, let us illustrate the EoS parameters for some typical matter fields.

• wm ' 1/3 for radiation or relativistic matter, nowadays including photons, the three generations of
massless or light neutrinos, and possibly other particles in the hot early Universe (see Chapters 9 and
10). This is because radiation has no intrinsic scale; as such, its stress-energy-momentum tensor must
be conformally invariant with a vanishing trace, i.e. gµνT (m)

µν = −ρrad + 3Prad = 0, which implies
wm = 1/3 for radiation.

• wm ' 0 for nonrelativistic matter, which is dubbed as pressureless “dust” in cosmological literature.

• wm = −1 for vacuum energy. As a supplement to Eq.(1.7), the complete expression of T (m)
µν for perfect

fluid reads

T (m)
µν = (ρm + Pm) uµuν + Pm gµν , (1.13)

4



where uµ is the comoving four-velocity along the cosmic Hubble flow. For pure vacuum energy, T (m)
µν

should be Lorentzian invariant and observer-independent, which requires ρm + Pm ≡ 0 in Eq.(1.13),
and consequently wm = −1.

• wm ' 1 for stiff matter. A typical example is the canonical and homogeneous scalar field φ(t) in the
FRW Universe, which is given by the Lagrangian density Lφ = −1

2∇αφ∇
αφ − V(φ) and has the EoS

parameter

wφ =
Pφ
ρφ

=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
. (1.14)

wφ can fall into the domain 1/3 . wφ ≤ 1 when the scalar field is so fast-rolling that the kinetic-energy
term 1

2 φ̇
2 dominates over the potential V . Specifically, one has wφ ' 1− when 1

2 φ̇
2 � V or V = 0.

Once wm is known, the spatially decaying rate of ρm with respect to the scale factor can be immediately
determined, as the continuity equation (1.11) or equivalently “d ln ρm = −3(1 + wm)d ln a” integrates to yield

ρm = ρm0

(
a
a0

)−3(1+wm)

∝ a−3(1+wm) . (1.15)

Here the integration constants {ρm0, a0} respectively specify the present-day matter density and scale factor
of the Universe. Hence, for the examples of matter fields listed above, we have

ρm ∝ a−4 (radiation) , ρm ∝ a−3 (dust) , ρm ∝ a−6 (stiff) , and ρm = contant (vacuum) . (1.16)

Considering its sharp decreasing rate, ρm of stiff matter could only, if ever, play important roles in the early
Universe. On the other hand, since ρm for vacuum energy remains constant despite the cosmic expansion,
it will eventually become the dominant component in an always expanding Universe – provided that ρm of
vacuum is nonzero. In addition, when wm is time-dependent, Eq.(1.11) along with wm = wm(t) = wm(a)
implies

ρm = ρm0 exp
{
−3

∫ a

a0

[
1 + wm(â)

]dâ
â

}
, (1.17)

or equivalently

ρm = ρm0

(
a
a0

)−3
[
1+w̃m(a)

]
with w̃m(a) =

1
ln(a/a0)

∫ a

a0

wm(â)
dâ
â
. (1.18)

1.1.4 Acceleration of the late-time Universe and dark energy

“Observations always involve theory.”
Edwin Powell Hubble

In terms of the scale factor itself rather than the Hubble parameter, the second Friedmann equation (1.9)
can be rewritten into the acceleration equation

ä
a

= −
4πG

3
(ρm + 3Pm) = −

4πG
3

∑(
1 + 3w(i)

m

)
ρ(i)

m . (1.19)
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Hence, the Universe would be undergoing decelerated spatial expansion if it were dominated by ordinary
matter with −1/3 < wm ≤ 1, as was commonly believed two decades ago. There is a minus sign inside the
so-called “deceleration parameter” q B −aä/ȧ2, which was introduced for the traditional belief of cosmic
deceleration.

However, this old thought of cosmic expansion was revolutionized in the year 1998, when the Supernova
Search Team Collaboration (Adam G. Riess et al.) [7] and the Supernova Cosmology Project Collaboration
(S. Perlmutter et al.) [8] reported their measurements on high-redshift type-Ia supernovae that their peak
luminosities appear dimmer than expected; among the different explanations like changes in the chemical
composition of the progenitor stars, failure of type-Ia supernovae as standard candles, and absorptions by
intergalactic dust, the most natural possibility is that lights from these supernovae have traveled greater
distances than previously predicted, which implies the Universe undergoing accelerated spatial expansion!
Shortly afterwards, speed-up of the Universe was solidified by other sources of observational data like the
CMB anisotropy [4], Hubble constant [9], and galaxy (super)clusters [10, 11]. There is no doubt that the
cosmic acceleration was of greatest importance and had far-reaching implications in contemporary physics.

According to Eq.(1.19), the spatial acceleration ä > 0 happens for the FRW Universe when ρm +3Pm < 0
(assuming the positivity of the energy density ρm > 0); that is to say, the cosmic perfect-fluid must be
dominated by some exotic component with large negative pressure that satisfies w(i)

m < −1/3 and thus violates
the standard energy conditions. This component has been dubbed as dark energy.

One might think dark energy to be a bit counter-intuitive, whose large negative pressure produces repul-
sive gravitational effect to accelerate the Universe. Contrarily, in our daily experience, it feels that positive
pressure is repulsive and would push particles away from each other, while negative pressure (i.e. tension)
is attractive and would pull particles together. How to reconcile this conflict? The answer is simple: such
“daily experience” is unreliable. In fact, it is the gradient of the positive pressure that pushes particles away,
and the gradient of negative pressure/tension that pulls particles together; for example, air in the atmosphere
can flow towards lower-pressure regions, while the gas inside a tank has no macroscopic kinetics as there is
no lower-pressure region to expand into. However, the cosmic perfect fluid is homogeneous and isotropic,
and the pressure Pm =

∑
P(i)

m has no spatial gradient; instead, similar to the role of ρm, Pm also serves as a
source of gravity that affects the expansion ȧ and acceleration ä of the Universe, as shown by the Friedmann
equations (1.8), (1.9) and (1.19).

1.1.5 Cosmological constant and ΛCDM cosmology

The cosmological constant, which is conventionally denoted by Λ, was originally introduced as a geometric
term that slightly extends Einstein’s equation (1.3) into the Einstein-Λ equation

Rµν −
1
2

R gµν + Λ gµν = 8πGT (m)
µν . (1.20)

It still satisfies the covariant invariance ∇µ
(
Rµν − 1

2 Rgµν + Λgµν
)
≡ 0 for consistency with the local conser-

vation ∇µT (m)
µν = 0, and from a variational approach, it arises from the Hilbert-Einstein-Λ action

IHEΛ =

∫
d4x
√
−g

(
R − 2Λ + 16πGLm

)
. (1.21)
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Historically, Einstein firstly employed Λ in an attempt to maintain a static universe [12], and abandoned it
after Edwin Hubble’s discovery of extragalactic recession and cosmic expansion.

However, relativists never really forgot Λ. After the establishment of cosmic acceleration, the cosmolog-
ical constant immediately became the simplest model of dark energy, as Λ measures the ground-state energy
density of the vacuum and has the EoS parameter wΛ = −1. Note that nowadays Λ is generally treated as
an energy component supplementing T (m)

µν rather than a geometric term supplementing the Einstein tensor
Gµν B Rµν− 1

2 Rgµν, and the terms “cosmological constant” and “vacuum energy” are used interchangeablely
in cosmology. In this sense, Eq.(1.20) can be rearranged into

Rµν −
1
2

R gµν = 8πG
(
T (m)
µν −

Λ

8πG
gµν

)
, (1.22)

and thus the energy density and pressure of the vacuum are given by

ρΛ = −PΛ =
Λ

8πG
. (1.23)

In Eq.(1.22), T (m)
µν still collects the cosmic Hubble flow of ordinary and dark matters that are diluted along

spatial expansion, while Λ plays the role of an unlimited vacuum energy reservoir; this way, Λ deserves to
be highlighted as an individual term that is unabsorbed by T (m)

µν .
Substituting the FRW metric into the Einstein-Λ equation (1.20) or (1.22), one obtains the expansion

equation with multiple energy components,

H2 =
8πG

3

(
ρM + ρr

)
+

Λ

3
−

k
a2 , (1.24)

where ρM = ρb(baryon)+ρcdm(cold dark matter) for nonrelativistic matter, and ρr = ρr(radiation) = ργ(photon)
+ρν(neutrino). Recall that ρm ∝ a−3, ρr ∝ a−4 and ρΛ = constant, so Eq.(1.24) can be converted into

H2 =
8πG

3

[
ρM0

(a0

a

)3
+ ρr0

(a0

a

)4
]

+
Λ

3
−

k
a2

0

(a0

a

)2
, (1.25)

where the “0” in the subscript means “the present-day value”. Define the the fractional densities as

ΩM0 =
ρM0

ρcr0
, Ωr0 =

ρr0

ρcr0
, ΩΛ0 =

ρΛ

ρcr0
=

Λ

3H2
0

, Ωk0 = −
k

a2
0H2

0

, (1.26)

where ρcr0 denotes the critical density of the current Universe,

ρcr0 B
3H2

0

8πG
, (1.27)
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and Eq.(1.25) becomes

H2 = H2
0

[
ΩM0

(a0

a

)3
+ Ωr0

(a0

a

)4
+ ΩΛ0 + Ωk0

(a0

a

)2
]
. (1.28)

Moreover, if we introduce the cosmological redshift parameter

a0

a
= 1 + z , (1.29)

which reduces to 1
a = 1+z in the popular convention a0 = 1, then Eq.(1.28) further leads to the parameterized

Friedmann equation

H = H(z; H0, p) = H0
√

ΩM0(1 + z)3 + Ωr0(1 + z)4 + ΩΛ0 + Ωk0(1 + z)2 , (1.30)

where p = (ΩM0,Ωr0,ΩΛ0) for the ΛCDM cosmology2 under discussion. In fact, the phase-space vector p
varies for different dark-energy or cosmological models, and typically, the phase space {p} is explored by the
Markov-Chain Monte-Carlo engine CosmoMC [13].

Since ΩM0 + Ωr0 + ΩΛ0 + Ωk0 = 1 in accordance with Eq.(1.28), one learns that k = 0 and the universe
would be spatially flat if ΩM0 + Ωr0 + ΩΛ0 = 1; k = −1 and the universe would be spatially open if
ΩM0 + Ωr0 + ΩΛ0 < 1; k = +1 and the universe would be spatially closed if ΩM0 + Ωr0 + ΩΛ0 > 1. This
agrees with the intuitive expectation that over-dense physical energy wraps and closes the space.

On the other hand, following Eqs.(1.23), (1.26), (1.27) and (1.29), the Friedmann acceleration equation
(1.19) can be parameterized into

ä
a

= −
4πG

3

∑(
1 + 3w(i)

m

)
ρ(i)

m +
Λ

3

= −H2
0

[1
2

ΩM0(1 + z)3 + Ωr0(1 + z)4 −ΩΛ0

]
,

(1.31)

which does not contain an Ωk0 term as Eq.(1.19) for ä/a is independent of the spatial curvature. In cosmology
and astrophysics, there are two principal types of constraints for the viability of Λ and more complicated
dark-energy models (see Subsection 1.1.8 below): one is related to the cosmic structure growth, while the
other is relevant with the expansion history of the Universe, for which Eq.(1.30) and its modified forms
play a fundamental role. Eq.(1.31) is however not so important as Eq.(1.30) in testing dark energies, and is
mainly used to check the deceleration-acceleration phase transition. In fact, instead of Eq.(1.31), it proves
more convenient to use the dimensionless deceleration parameter q B −aä/(ȧ)2 = −ä/(aH2); with H2

parameterized by Eq.(1.30), it follows that q is related to the componential energy densities by

q = −
ä

aH2 =

1
2ΩM0(1 + z)3 + Ωr0(1 + z)4 −ΩΛ0

ΩM0(1 + z)3 + Ωr0(1 + z)4 + ΩΛ0 + Ωk0(1 + z)2 .
(1.32)

2The full meaning of ΛCDM is the inflationary and Big Bang cosmology with the present-day Universe dominated by the
cosmological constant and cold dark matter, while cosmic inflation will be partially discussed in Subsection 1.1.9.
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1.1.6 Observational data

For the cosmic fluid, how is the total energy allocated to its multiple components? Also, how quickly does
the Universe expand? To answer these questions, in Table 1.2 we collect nine global FRW parameters from
the second Planck data release [14], where {Ωb0h2,Ωcdm0h2} are best-fit values in the flat ΛCDM model,
{h,ΩΛ0,ΩM0, zeq, t0} are derived values in flat ΛCDM, and {Ωk,wm} are derived values in nonflat extended
ΛCDM. Here h denotes the normalized value of the Hubble constant H0 in the unit of 100 km/s/Mpc, which
is dimensionless and more convenient to use in numerical calculations.

Table 1.2: Nine global FRW parameters based on the 2015 Planck data in Ref.[14] , where {Ωb0h2,Ωcdm0h2, h,ΩΛ0,ΩM0, t0, zeq}
come from the “TT,TE,EE+lowP+lensing+ext” column of its Table 4, and {Ωk,wm} from the “TT, TE, EE+lensing+ext” column
of its Table 5.

symbol meaning value

Ωb0h2 h2-coupled fractional density of baryons 0.02230 ± 0.00014

Ωcdm0h2 h2-coupled fractional density of cold dark matter 0.1188 ± 0.0010

h normalized Hubble constant, H0 = 100h km/s/Mpc 0.6774 ± 0.0046

ΩΛ0 fractional density of Λ 0.6911 ± 0.0062

ΩM0 fractional density of nonrelativistic matter 0.3089 ± 0.0062

zeq redshift of matter-radiation equality 3371 ± 23

t0 age of the observable Universe 13.799 ± 0.021 Gyr

Ωk0 fractional density of spatial curvature 0.0008+0.0040
−0.0039

wm EoS parameter of dark energy −1.019+0.075
−0.080

An immediate implication of Table 1.2 is that the Universe is nearly flat: the base ΛCDM model with a
flatness assumption matches well with the observed expansion history (and structure growth), and the nonflat
extended ΛCDM turns out to carry a tiny fractional density Ωk0 = 0.0008+0.0040

−0.0039 for the spatial curvature.
Besides Table 1.2, the WMAP nine-years data and other sources like the Baryon Acoustic Oscillations (BAO)
yield Ωk0 = −0.0027+0.0039

−0.0038 [15], independently the time-delay measurements of two strong gravitational
lensing systems along with the seven-years WMAP data find Ωk0 = 0.003+0.005

−0.006 [16], while recent analyses
based on BAO data give Ωk0 = −0.003 ± 0.003 [17]. Recall that in Subsection 1.1.2 we started from the
generic FRW metric Eq.(1.6) which allows for a nontrivial spatial curvature; this was mainly for theoretical
generality, and also because the Universe may not be absolutely flat.

With zeq = 3371± 23 measured for the redshift of matter-radiation equality in the early Universe, we can
find out the present-day fractional density Ωr0 for relativistic matter. The matter-radiation equality ρM(t) =

ρr(t) yields

ρM0

(
a0

aeq

)3

= ρr0

(
a0

aeq

)4

⇒
ρM0

ρr0
=

ΩM0

Ωr0
=

a0

aeq
= 1 + zeq , (1.33)

and it follows that
Ωr0 =

ΩM0

1 + zeq
= 9.1607 × 10−5 . (1.34)
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Hence, it is generally an acceptable approximation to neglect Ωk0 and Ωr0 in the parameterized Friedmann
equations (1.30) and (1.31).

With Ωk0 ' 0 ' Ωr0 and ΩM0 + ΩΛ0 ' 1 in Eq.(1.32), Table 1.2 gives rise to the present-day (z = 0)
deceleration parameter

q0 '
1
2

ΩM0 −ΩΛ0 = −0.5367 , (1.35)

which, as expected, corresponds to an accelerated phase. Moreover, numerically the present-day critical
density is [18]

ρcr0 B
3H2

0

8πG
= 1.8785h2 × 10−29 g/cm3 = 1.0538h2 × 10−5 GeV/cm3 , (1.36)

and with h = 0.6774, one obtains

ρcr0 = 0.8620 × 10−29 g/cm3 = 0.4835 × 10−5 GeV/cm3 , (1.37)

from which the current vacuum energy density ρΛ = ΩΛ0ρcr0 and dust density ρM0 = ΩM0ρcr0 can be
immediately determined. In addition, one might have noticed that the quantities {Ωb0h2 ,Ωcdm0h2 , h} in
Table 1.2 imply

Ωb0 = (0.02230 ± 0.00014) h−2 = 0.04904 ± 0.00111

Ωcdm0 = (0.1188 ± 0.0010) h−2 = 0.2642 ± 0.0072 ,
(1.38)

and the recovered value Ωb0 + Ωcdm0 = (0.14110 ± 0.00114)h−2 = 0.31324 ± 0.00831 slightly differs from
ΩM0 = 0.3089 ± 0.0062. This is because {Ωb0h2 ,Ωcdm0h2} come directly from the best fitting (i.e. the
maximal-likelihood fitting) of the observational data, while the value ΩM0 = 0.3089 ± 0.0062 is a simple
subtraction ΩM0 = 1 −ΩΛ0 after ΩΛ0 = 0.6911 ± 0.0062 being derived, and the latter approach carries extra
systematic errors for neglecting {Ωk0 ,Ωr0}.

1.1.7 Some implications of ΛCDM

Having introduced the ΛCDM model, the parameterized Friedmann equations, and the observational data,
we will proceed to investigate some interesting implications.

(1) Dimming of type Ia supernovae. In Subsection 1.1.4, we emphasized that detections of high-z type Ia
supernovae shed first light on the cosmic acceleration. In fact, the difference between the apparent mL

and absolute ML magnitudes of luminosity (i.e. the distance modulus µL B mL − ML) for this type of
standard candle is positively related to the luminosity distance dL by [19]

mL − ML = 5 log10

(
dL

Mpc

)
+ 25 , (1.39)
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and with Ωk0 ' 0 ' Ωr0 in Eq.(1.30), dL is given by [20]

dL =
1 + z
H0

∫ z

0

dẑ√
ΩM0(1 + ẑ)3 + ΩΛ0

, (1.40)

which integrates to yield

dL =


2

H0

(
1 + z −

√
1 + z

)
if ΩM0 = 1 ,Ωde0 = 0 ,

1
H0

z(1 + z) if ΩM0 = 0 ,Ωde0 = 1 .
(1.41)

Since z(1 + z) > 2
(
1 + z −

√
1 + z

)
for z > 03, thus a supernova would have a longer luminosity

distance and appear dimmer/reddened in a Λ-dominated universe.

(2) The cosmological constant problem. In Subsection 1.1.5 we mentioned that the terms “cosmological
constant” and “vacuum energy” can be used interchangeablely in cosmology. However, from the
perspective of quantum field theory or high energy physics, “vacuum energy” becomes a more serious
terminology. Adding up all vacuum modes below the ultraviolet cutoff at the Planck scale, one obtains
the quantum vacuum energy density (i.e. zero-point energy density) ρQFT

Λ
∼ m4

Pl/(16π2) = 3.7873 ×
1073GeV−4 where mPl B 1/

√
G = 1.2209 × 1019 GeV denotes the Planck mass [21], while in light of

Eq.(1.37), the cosmological ρΛ has the observed density

ρΛ = ΩΛ0ρcr0 = 0.4835 × 10−5 GeV/cm3 = 3.7151 × 10−47 GeV4 . (1.42)

Thus, ρQFT
Λ

/ρΛ = 1.0194×10120, with a huge energy discrepancy of 120 orders of magnitude, and this
discrepancy is often called the cosmological constant problem or the vacuum catastrophe.

(3) Deceleration-acceleration transition before Λ-dominance. With the approximations Ωk0 ' 0 ' Ωr0,
Eq.(1.32) becomes

q(z) '
1
2ΩM0(1 + z)3 −ΩΛ0

ΩM0(1 + z)3 + ΩΛ0
. (1.43)

Thus, the Universe transits from the decelerated state to the accelerated state at

z1 '

(
2ΩΛ0

ΩM0

)1/3

− 1 = 0.6478 , (1.44)

and at z1, the fractional densities for nonrelativistic matter and Λ are respectively

ΩM = ΩM0(1 + z1)3 = 0.6667 , ΩΛ = 1 −ΩM = 0.3333 . (1.45)

3According to the definition a0/a B 1 + z, one has −1 < z < ∞, where z → ∞ traces back to the initial Big Bang with a → 0,
and z→ −1 corresponds to the distant future of eternal expansion with a � a0. In astronomical observations, the domain of interest
is z > 0, which means “looking into the past”.
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In addition, ΩΛ begins to dominate over ΩM at the time

ΩM0(1 + z2)3 ' ΩΛ0 ⇒ z2 '

(
ΩΛ0

ΩM0

)1/3

− 1 = 0.3080 . (1.46)

Comparing z1 with z2, one can see that the Universe enters the accelerating phase considerably earlier
than the cosmological constant becomes the dominant component.

1.1.8 wCDM and more complicated examples of dark energy

As reflected by Table 1.2, it is really shocking that ordinary matter only comprises 4% ∼ 5% of the total
energy of the Universe, and enormous efforts have been spent to understand dark matter and dark energy. As
an alternative to the cosmological constant, quite a few theories of dark energy have been developed [22].
The simplest extension of ΛCDM is to consider dark energy with a constant EoS parameter wde < −1/3; this
way, ρde evolves by ρde ∝ a−3(1+wde), and thus the parameterized Friedmann equations (1.30) and (1.32) are
generalized into

H = H0
√

ΩM0(1 + z)3 + Ωr0(1 + z)4 + Ωde0(1 + z)3(1+wde) + Ωk0(1 + z)2 , (1.47)

and
ä
a

= −H2
0

[1
2

ΩM0(1 + z)3 + Ωr0(1 + z)4 −Ωde0(1 + z)3(1+wde)
]
. (1.48)

This situation is usually called the wCDM model of the Universe, which recovers ΛCDM for wde = wΛ = −1,
and to date, ΛCDM and wCDM are two best tested models in astrophysics and cosmology.

More generally, dark energy may have a time-dependent EoS parameter wde = wde(z) < −1/3, and the
evolution of ρde respects Eq.(1.17). This way, the parameterized wCDM Friedmann equations (1.47) and
(1.48) are further extended into

H = H0

√
ΩM0(1 + z)3 + Ωr0(1 + z)4 + Ωde0 exp

{
3
∫ z

0

1 + wde(ẑ)
1 + ẑ

dẑ
}

+ Ωk0(1 + z)2 , (1.49)

and
ä
a

= −H2
0

[
1
2

ΩM0(1 + z)3 + Ωr0(1 + z)4 −Ωde0 exp
{

3
∫ z

0

1 + wde(ẑ)
1 + ẑ

dẑ
} ]

. (1.50)

Some typical examples of dark energy with an evolving wde are collected as follows.

(1) Scalar fields and φCDM. For a homogeneous scalar field φ(t) in the FRW Universe whose kinetics
traces back to the standard Lagrangian density Lφ = − 1

2∇αφ∇
αφ − V(φ), its EoS parameter wφ(t)

is still given by Eq.(1.14). One might have noticed that, contrary to stiff matter, wφ(t) behaves like
wφ(t) ' −1+ when φ(t) rolls slowly so that the potential V(φ) absolutely dominates over the kinetic-
energy effect 1

2 φ̇
2. Also, wφ(t) can fall into the domain −1 < wφ(t) . −1/3 when φ(t) is suitably

strongly self-interacting with appropriate V(φ)-dominance.

Hence, such a scalar field acts exactly like dark energy, and then leads to the φCDM extension of
ΛCDM. Typical examples of this class include the canonical quintessence scalar field Lφ = − 1

2∇αφ∇
αφ

−V(φ) with −1+ < wde < −1/3 [23], and the noncanonical phantom scalar field Lφ = 1
2∇αφ∇

αφ−V(φ)
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with wde < −1− [24]. In addition, the double-scalar-field quintom model Lφ = −1
2∇αφ∇

αφ +
1
2∇αϕ∇

αϕ − U(φ, ϕ) has the EoS parameter

w(quintom)
de =

1
2 φ̇

2 − 1
2 ϕ̇

2 − U
1
2 φ̇

2 − 1
2 ϕ̇

2 + U
, (1.51)

which allows to cross the so-called “phantom divide” wde = −1 when φ̇2 = ϕ̇2 [25]. Moreover, by
generalizing the Lagrangian density into L = − f ( 1

2∇αφ∇
αφ) + V(φ) and keeping −1 < wde < −1/3,

i.e. replacing the kinetic term 1
2∇αφ∇

αφ by some positively defined function f ( 1
2∇αφ∇

αφ), one obtains
the “kinetic quintessence” or k-essence model [26].

(2) Dark energy with nonlinear EoS rather than Pde = wdeρde, such as the generalized Chaplygin gas
whose pressure and energy density satisfies Pde = −A/ραde ({A, α} being positive constants), and this
model has even been used to provide a unified description of dark matter and dark energy [27, 28].

(3) Phenomenological modifications of the GR Friedmann equations (1.8), (1.9) and (1.19), such as the

holographic dark energy with ρde =
3c̃

8πG
R−1

IR where c̃ is a constant and RIR is the infrared cut-off scale

[29], QCD ghost ρde = αH2 [30], Ricci dark energy ρde ∝ 2H2 + Ḣ [31], andc Pilgrim dark energy
ρde = αH2 + βH4 models [32]. They can help produce the expected cosmic acceleration, but the
physical motivations for these modifications of the standard Friedmann equations are unclear.

However, as we shall shortly see in Section 1.2, dark energy is not the only choice, and relativistic gravities
beyond GR can also provide solutions to the cosmic acceleration problem.

1.1.9 Acceleration of the early Universe: Inflation

“Inflation hasn’t won the race, but so far it’s the only horse.”
Andrei Linde

In Subsections 1.1.4∼1.1.8, we have discussed the spatial acceleration of the late-time Universe. In fact,
it is generally believed that acceleration also happens in the very early Universe, i.e. violent inflation right
after the initial Big Bang and before the radiation-dominated era.

Unlike the problem of late-time acceleration which was inspired by astronomical observations, the mo-
tivations behind the cosmic inflation are mainly theoretical. Let’s take anisotropies of the CMB background
as an example. According to the 2015 Planck data [14], the last scattering which is the source of the CMB
photons happens at the redshift z∗ = 1089.90 ± 0.23, or equivalently a∗ = 1/1090.90. Moreover, with
ΩM0 = 0.3089 ± 0.0062, ΩΛ0 = 0.6911 ± 0.0062 and Ωr0 ' 0 ' Ωk0 in the parameterized Friedmann equa-
tion (1.30), the particle horizon at z∗ and the angular diameter distance to the last-scattering surface [20] are
respectively

d∗ = a∗

∫ a∗

0

da
a2H(a)

=
1

1 + z∗

∫ ∞

z∗

dz
H(z)

'
8.7561 × 10−5

H0
, (1.52)

D∗A = a∗

∫ 1

a∗

da
a2H(a)

=
1

1 + z∗

∫ z∗

0

dz
H(z)

'
2.6550 × 10−3

H0
. (1.53)
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Accordingly, the angular size between causally connected patches on the full-sky CMB map is simply

θ∗ =
d∗
D∗A
' 3.2980 × 10−2 rad ' 1.8896◦ , (1.54)

so regions separated by θ > 1.8896◦ should have little heat exchange. However, ever since the discovery of
CMB, it has been long known that the CMB temperature is highly uniform and isotropic, and recent WMAP
and Planck data have shown that the CMB unisotropy exists only at . 10−5 level [14, 15]. This is completely
unnatural in light of Eq.(1.54), so there must be some mechanism to synchronize the CMB temperature; as a
result, an era of cosmic inflation has been proposed, which supplements the hot Big Bang theory to overcome
its shortcomings [33].

In the simplest model, the inflation era is dominated by the inflaton scalar field φ(xα), whose kinetics is
given by the action

Iφ =

∫
d4x
√
−g

(
−

1
2
∇αφ∇

αφ − V(φ)
)
. (1.55)

The stress-energy-momentum tensor of Iφ is

T (φ)
µν = −

2
√
−g

δ
(√
−gLφ

)
δgµν

= ∇µφ∇νφ −

(
1
2
∇αφ∇

αφ + V
)

gµν , (1.56)

and under the flat FRW metric Eq.(1.6), the perfect inflaton fluid T µ(φ)
ν =

[
− ρφ, Pφ, Pφ, Pφ

]
leads to

ρφ =
1
2
φ̇2 + V and Pφ =

1
2
φ̇2 − V . (1.57)

Thus, according to Eqs.(1.8) and (1.19), in the inflation era the cosmic expansion satisfies the Friedmann
equations

H2 =
8πG

3

(
1
2
φ̇2 + V

)
and

ä
a

= −
8πG

3

(
φ̇2 − V

)
, (1.58)

which indicate that the Universe accelerates when the potential energy V(φ) dominates over the kinetic
energy 1

2 φ̇
2. Clearly the slow-rolling inflaton field does not belong to the stiff matter in Eq.(1.14), which

contrarily requires φ to be fast-rolling so that φ̇2 � V; instead, inflaton behaves pretty like the quintessence
described in the previous subsection, and this similarity had inspired the investigations to unify the early and
the late-time accelerations into a common framework (eg. [34]).

In Chapter 9 we will calculate the “gravitational baryogenesis” that dynamically produces the required
baryon-antibaryon asymmetry for an expanding Universe by violating the combined charge, parity and time
reversal symmetry in thermal equilibrium. The net baryon abundance relies on the upper temperature bound
Td for the tensor-mode fluctuations at the inflationary scale, while the energy scale of inflation is related to
the tensor-to-scalar ratio r̃ by [35]

Td = upper lim
(
V1/4

)
' 1.06 × 1016 ×

( r̃
0.01

)1/4
[GeV] . (1.59)

This result is extremely useful as the ratio r̃ can be measured in astrophysical observations (for example,
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the observed B-mode power spectrum in inflationary gravitational waves by the BICEP2 experiment gives
r̃ = 0.20+0.07

−0.05 [36], and Planck has placed a 95% upper limit on r̃ < 0.113 by the combinations of Planck
power spectra, Planck lensing and external data [14]). However, one should note that Eq.(1.59) is built upon
the standard paradigm of single-field slow-rolling inflation as above, and in the situation of nonstandard
cosmic expansion that modifies Eq.(1.58), the inflation scenario and thus Eq.(1.59) should also be updated
when one looks for Td.

1.2 Modified gravity

“No one will be able to read the great book of the universe if he does not
understand its language which is that of mathematics.”

Galileo Galilei

1.2.1 Lovelock theorem and modifications of GR

As an alternative to the various models of dark energy with large negative pressure that violates the standard
energy conditions, the accelerated expansion of the Universe has inspired the reconsideration of relativistic
gravity and modifications of GR, which can explain the cosmic acceleration and reconstruct the entire ex-
pansion history without dark energy. To date, quite a few alternative or modified theories of gravity have
been developed, and a good way to organize and understand these theories is through the classic Lovelock’s
theorem, as they actually encode the possible ways to go beyond Lovelock’s theorem and its necessary condi-
tions [37] which limit the second-order field equation in four dimensions to Rµν −Rgµν/2 + Λgµν = 8πGT (m)

µν ,
i.e. Einstein’s equation carrying the cosmological constant Λ. Note that for brevity, we will use the ter-
minology “modified gravity” to denote both modified and alternative theories of relativistic gravity without
discrimination whenever appropriate.

As shown in Subsection 1.1.1, it is somewhat amazing that although the Ricci scalar R = gαβRαβ =

gαβgµνRαµβν contains up to second-order derivative of gµν, the Euler-Lagrange-type derivative δIHE/δgµν in
Eq.(1.2) leads to a second-order rather than fourth-order field equation. This is because the higher-order
curvature terms turn out to be total derivatives, the integration of which becomes a negligible surface integral
over the boundary (i.e. the well-known Gibbons-Hawking-York boundary term [5]) in light of the Stokes
theorem. In fact, there exist infinitely many algebraic Riemannian invariants R̃= R̃

(
gρσ ,Rαµβν

)
as a function

of the products/contractions of the metric tensor gρσ and the Riemann tensor Rαµβν. In general, the action∫
d4x
√
−g R̃ leads to fourth-order gravitational field equations by the variational derivative

δ
(√
−gR̃

)
δgµν

=
∂
(√
−gR̃

)
∂gµν

− ∂α
∂
(√
−gR̃

)
∂(∂αgµν)

+ ∂α∂β
∂
(√
−gR̃

)
∂(∂α∂βgµν)

. (1.60)

However, remarkably it has been proved that in four dimensions, the following Lanczos-Lovelock action is
the most general one which could yield a second-order gravitational field equation [37]

ILL =

∫
d4x
√
−g ·

(
a · R − 2Λ + b · δαβγηRµναβR

γη
µν + c · G + 16πGLm

)
, (1.61)
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where {a = 1 ,Λ , b , c} are all constants and we have set a = 1 in LLL without any loss of generality, while
G refers to the Gauss-Bonnet invariant:

G B R2 − 4RαβRαβ + RαµβνRαµβν . (1.62)

The first two terms in ILL are just the Hilbert-Einstein-Λ action as in Eq.(1.21). For the third term,
√
−g δαβγηRµναβR

γη
µν ≡ εαβγηRµναβR

γη
µν actually refers to the Chern-Pontryagin density, where εαβµν =

√
−gδαβµν refers to the totally antisymmetric Levi-Civita pseudotensor with ε0123 =

√
−g, ε0123 = 1√

−g , and

{εαβµν, εαβµν} can be obtained from each other by raising or lowering the indices with the metric tensor.
εαβγηRµναβR

γη
µν is proportional to the divergence of the topological Chern-Simons four-current Kµ [38]:

εαβµνR
µν

γδR
αβγδ = −8 ∂µKµ with Kµ = εµαβγ

(
1
2

Γ
ξ
ατ∂βΓ

τ
γξ +

1
3

Γ
ξ
ατΓ

τ
βηΓ

η
γξ

)
, (1.63)

and b
∫

d4x
√
−g δαβγηRµναβR

γη
µν ≡ b

∫
d4x εαβγηRµναβR

γη
µν is equivalent to a surface integral in all dimen-

sions [39] with no contribution to the field equation. Similarly for the fourth term, the covariant density
√
−gG has the topological current [40]

√
−gG = −∂µJµ with Jµ =

√
−g εµαβγε ξζ

ρσ Γ
ρ
ξα

(
1
2

Rσζβγ −
1
3

ΓσλβΓ
λ
ζγ

)
, (1.64)

and c
∫

d4x
√
−gG reduces to a surface integral in four (and lower-than-four) dimensions4 and therefore

makes no difference to the field equation, either; equivalently, the Bach-Lanczos tensor which vanishes
identically in four and lower-than-four dimensions arises from the variational derivative δ

(√
−gG

)
/δgµν = 0,

δ
(√
−gG

)
δgµν

= −
1
2
G gµν + 2R Rµν − 4R α

µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ
ν ≡ 0 . (1.66)

Thus, the Lanczos-Lovelock action Eq.(1.61) finally yields the same field equation as the Hilbert-Einstein-
Λ action Eq.(1.21)). That is to say [37]:

Lovelock theorem: In four dimensions, the Einstein-Λ equation Rµν − Rgµν/2 + Λgµν = 8πGT (m)
µν is the only

second-order gravitational field equation in pure metric gravities.

Here by metric gravity we mean its mathematical scope is pseudoRiemannian geometry that is equipped
with a metric tensor, a metric-compatible covariant derivative, and a torsion-free Levi-Civita connection.
Hence, according to the Lovelock theorem, we can take the following approaches to develop relativistic
theories of gravity as modifications or alternatives of GR.

4On the other hand, the Euler-Poincaré topological density for a four-dimensional Lorentzian manifold is (with χ(S 2n) normal-
ized to 2)

E(4) =
1

128π2 ε
µνρσεαβζηRµναβRρσζη =

1
32π2

(
R2 − 4RαβRαβ + RαµβνRαµβν

)
=
G

32π2 . (1.65)

Hence,
∫

d4 x
√
−gG just gives rise to the Euler number χ which is a constant characterizing the topology of the spacetime. Hence,

once again we have δ
∫

d4 x
√
−gG ≡ 0.
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(1) Consider fourth- and even higher-order theories of gravity, such as the L = f (R)+16πGLm [41], L =

R+ f (G)+16πGLm [42] and L = f (R,G)+16πGLm [43] models in existing literature5. Fourth-order
gravity focuses on the nine parity-even (thus respect time-reversal and space-reflection symmetries)
invariants out of the 14 independent algebraic Riemannian invariant which are introduced based on
the Petrov and the Segre classifications of a spacetime [44], while higher-than-fourth-order theories
will take differential Riemannian invariants into account. However, since fundamental physical laws
are all expressed as second-order differential equations (like the Maxwell, Schrödinger and Einstein
equations), higher-than-fourth-order theories are generally regarded with skepticism and not favored.
However, fortunately fourth-order gravity is partially acceptable, because most of the results can be
translated into second-order ones in the more general Einstein-Palatini formulation and can be helpful
in quantizing gravity.

(2) Go to higher dimensions. For example, reconsider the Lanczos-Lovelock action Eq.(1.61) (with a = 1)
in five dimensions, collect all terms nontrivially contributing to the field equation, and one obtains the
action of the well-known Einstein-Gauss-Bonnet gravity:

IEGB =

∫
d(5)x

√
−g ·

(
R − 2Λ + c · G + 16πGLm

)
. (1.67)

This time, δ
(√
−gG

)
/δgµν will add a nonzero Bach-Lanczos tensor − 1

2G gµν + 2R Rµν − 4R α
µ Rαν −

4RαµβνRαβ + 2RµαβγR αβγ
ν to the second-order field equation. More generally, Lovelock gravity arises

as the topological generalizations of the Hilbert-Einstein action to generic N dimensions that still
preserves second-order field equations [45].

(3) Go beyond pure Riemann geometry and metric gravity, and consider more geometric degrees of
freedom (like torsion and independent affine connections) as field quantities, such as the telepar-
allel equivalence of GR in the pure-torsion Weitzenböck spacetime, modified teleparallel gravity
I =

∫
dx4 √−g

[
f (T ) + 16πGLm

]
with T being the torsion scalar [46], Einstein-Cartan gravity [47],

and metric-affine gravity [47]. The diagram below quickly illustrates the relations between Rieman-
nian spacetime and some other geometric spacetimes.

Affinely connected metric spacetime

∇αgµν=0
ymetric compatible

Riemann-Cartan spacetime
torsion=0

−−−−−−−−−−−−−−−−−−−−−−→
Levi-Civita connection

Riemannian spacetime

Vielbein
ycurvature=0 curvature=0

y
Weitzenböck spacetime

torsion=0
−−−−−−−−−→ Flat Minkowski spacetime

Figure 1.1: Relativistic gravities and torsion

(4) Consider extra physical degrees of freedom, most typically an extra scalar field. From the viewpoint
of classical field theory, the field quantity for gravity is the metric gµν (rank-2 tensor), and that for

5We will deal with total Lagrangian density instead of the full action whenever appropriate for the sake of simplicity.
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electromagnetic interaction is the covector potential Aµ (rank-1 tensor). Thus, it is natural to assume
the existence of a scalar field (rank-0 tensor) or multi-scalar fields mediating a long-range interac-
tion. Chern-Simons gravity [38], Brans-Dicke theory [48], generic scalar-tensor theories [49], Gauss-
Bonnet effective dark energy [50], Horndeski [51] and Galileon [52] gravities are all fruits of this
type.

(5) Einstein’s equation implies the minimal coupling between the curvature invariants used in ILL and the
matter Lagrangian density Lm. Thus, allowing for possibly nonminimal curvature-matter coupling6

[54] opens a new window for modified gravity, and has brought theories like L = f (R) + 16πGLm +

f̃ (R)Lm [55], generic L = f (R ,Lm) [56], and L = f (R, gµνT (m)
µν ) + 16πGLm [57].

1.2.2 f (R) gravity and construction of effective dark energy

From this subsection on, we will look into the theoretical structures of some specific modified gravities. We
will begin with the minimally coupled f (R) gravity, which is the simplest class of fourth-order gravity. As a
straightforward generalization of the Hilbert-Einstein action IHE, f (R) gravity is given by [41]

I =

∫
d4x
√
−g

[
f (R) + 16πGLm

]
, (1.68)

which replaces the Ricci scalar R in IHE =
∫ √
−g d4x (R + 16πGLm) by an arbitrary function f (R).

To find out the covariant field equation, one needs to vary the f (R) action with respect to the inverse
metric, which leads to

δI =

∫
d4x

[√
−g · δ f (R) + f (R) · δ

√
−g + 16πG · δ

(√
−gLm

) ]
=

∫
d4x
√
−g

( fR · δR
δgµν

−
1
2

gµν f − 8πGT (m)
µν

)
δgµν ,

(1.69)

where fR = fR(R) B d f (R)/dR, and the definition of T (m)
µν in Eq.(1.4) has been used. Here one should note

that total derivatives in the isolated variation δR are not necessarily pure divergences anymore, because the
nontrivial coefficient fR will be absorbed into the nonlinear and higher-order-derivative terms produced by
δR. Based on the Palatini identity δRαµβν = ∇βδΓ

α
µν − ∇νδΓ

α
µβ [5], contraction of the indices {α, β} yields

δRµν = ∇λδΓ
λ
µν − ∇νδΓ

λ
λµ . (1.70)

Thus, fR · δR = fR · δ(gµνRµν) = fR ·
(
Rµνδgµν + gµνδRµν

)
= fR ·

[
Rµνδgµν + gµν(∇λδΓλµν − ∇νδΓ

λ
λµ)

]
. Recall

that variation of the Christoffel symbol satisfies [5]

δΓλµν =
1
2

gλαδΓαµν =
1
2

gλα
(
∇µδgαν + ∇νδgαµ − ∇αδgµν

)
, (1.71)

6The terms geometry-matter coupling and curvature-matter coupling are both used in this thesis. They are not identical: the
former can be either nonminimal or minimal, while the latter by its name is always nonminimal since a curvature invariant contains at
least second-order derivative of the metric tensor. Here nonminimal coupling happens between algebraic or differential Riemannian
scalar invariants and Lm, so we will mainly use curvature-matter coupling.
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and the the indices of δgαβ can be raised by δgαβ = −gαρgβσδgρσ, so

fR · gµν (∇λδΓλµν − ∇νδΓ
λ
λµ)

= fR · gµν
{

1
2

gλα ∇λ
(
∇µδgαν + ∇νδgαµ − ∇αδgµν

)
−

1
2

gλα ∇ν
(
∇µδgαλ + ∇λδgαµ − ∇αδgλµ

)}
= fR ·

1
2

gµνgλα
{(
∇λ∇µδgαν + ∇λ∇νδgαµ − ∇λ∇αδgµν

)
−

(
∇ν∇µδgαλ + ∇ν∇λδgαµ − ∇ν∇αδgλµ

)}
= fR ·

(
∇µ∇νδgµν − gµν2δgµν

)
�

(
− ∇µ∇ν fR + gµν2 fR

)
δgµν .

(1.72)

where 2 denotes the covariant d’Alembertian 2 B gαβ∇α∇β. Integrating Eq.(1.72) by parts and neglecting
the total-derivative terms, one obtains

fR · δR =
(

fRRµν + gµν2 fR − ∇µ∇ν fR
)
· δgµν , (1.73)

Thus, the extremization δI/δgµν = 0 finally gives rise to the field equation

fRRµν −
1
2

f gµν +
(
gµν2 − ∇µ∇ν

)
fR = 8πGT (m)

µν . (1.74)

However, in cosmology it is not so convenient to utilize Eq.(1.74) directly. Instead, it proves much more
enlightening and helpful to rewrite the f (R) field equation into a GR form, which people feel more familiar
to deal with. This way, Eq.(1.74) can be rearranged into

Rµν −
1
2

Rgµν = 8πG f −1
R T (m)

µν + f −1
R ·

[
1
2
(
f − fRR

)
gµν +

(
∇µ∇ν − gµν2

)
fR

]
, (1.75)

and it can be compactified into the GR form Rµν − 1
2 Rgµν = 8πGeffT (eff)

µν , where Geff denotes the effective
gravitational coupling strength, and T (eff)

µν represents the effective stress-energy-momentum tensor. From
Eq.(1.75) one can observe that

8πGeffT (eff)
µν = 8πG f −1

R

{
T (m)
µν + (8πG)−1

[ 1
2
(
f − fRR

)
gµν +

(
∇µ∇ν − gµν2

)
fR

]}
= 8πG f −1

R

[
T (m)
µν + T (MG)

µν

]
,

(1.76)

so we have Geff = G f −1
R and T (eff)

µν = T (m)
µν + (8πG)−1

[
1
2 ( f − fRR) gµν +

(
∇µ∇ν − gµν2

)
fR

]
. Thus, T (eff)

µν

contains two parts: T (m)
µν for the physical matter content, and the remaining part T (MG)

µν = (8πG)−1
[

1
2 ( f −

fRR)gµν + (∇µ∇ν − gµν2) fR
]

to collect all nonlinear and higher-order terms of modified gravity [hence the

superscript (MG)] so that T (eff)
µν = T (m)

µν + T (MG)
µν . Eq.(1.75) takes a similar form with the Einstein−Λ equation

(1.22) of ΛCDM cosmology, with T (MG)
µν plays the role of the cosmological constant Λ or other candidates of

dark energy. In this spirit, we regard Eq.(1.75) as the form of f (R) field equation that constructs the effective
dark energy.

Generally an effective dark-energy fluid of modified gravity T µ (MG)
ν = diag

[
−ρ(MG), P(MG), P(MG), P(MG)

]
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is assumed, along with a total effective fluid T µ (eff)
ν = diag

[
− ρeff, Peff, Peff, Peff

]
. Then substitute the FRW

metric Eq.(1.6) into the T (MG)
µν of f (R) gravity, and we obtain the modified Friedmann equations

H2 +
k
a2 =

8π
3

G
fR
ρm +

1
3 fR

(1
2

fRR −
1
2

f − 3H ḟR
)
, (1.77)

Ḣ −
k
a2 = −4π

G
fR

(
ρm + Pm

)
−

1
2 fR

(
f̈R − H ḟR

)
, (1.78)

while the density and pressure of the effective dark-energy fluid are respectively

ρ(MG) =
1

8πG

(1
2

fRR −
1
2

f − 3H ḟR
)

and P(MG) =
1

8πG

(1
2

f −
1
2

fRR + f̈R + 2H ḟR
)
. (1.79)

Note that compact notations have been used in Eqs.(1.77) and (1.78), as fR itself is treated as a function
of the comoving time t. Otherwise, one can further write ḟR into fRR Ṙ and f̈R into fRR R̈ + fRRR Ṙ2, and the
Ricci scalar for the FRW spacetime is already known to be R = R(t) = 6

(
Ḣ +2H2 + k

a2

)
. This in turn indicates

that second-order and third-order derivative {Ḧ,
...
H} (or equivalently third-order and fourth-order derivative

{
...
a ,

....
a }) get involved in Eqs.(1.77) and (1.78), and these terms are gone once we return to GR with fR = 1.
f (R) gravity plays an important role in this thesis. For example, Chapter 4 involves the derivation of

Eqs.(1.77) and (1.78) from the unified first law of gravitational thermodynamics on the apparent horizon
of the FRW Universe. Chapter 9 will investigate the primordial nucleosynthesis in power-law f (R) gravity
from the the semianalytical approach for 4He, and from the empirical approach for {D, 4He, 7Li}; also,
consistency with the gravitational baryogenesis will be estimated. Still in power-law f (R) gravity, Chapter
10 will study thermal relics as hot, warm, and cold dark matter, and revises the Lee-Weinberg bound for the
mass of speculated heavy neutrinos.

1.2.3 Quadratic gravity

Having seen f (R) gravity, we will continue with modified gravities that depend on curvature invariants
beyond the Ricci scalar, and a simplest example is the quadratic modification of GR. The Lagrangian density
of quadratic gravity is constructed by the linear superposition of GR with some typical quadratic (as opposed
to cubic and quartic) algebraic curvature invariants, such as R2, RµνRµν, S µνS µν (with S µν B Rµν − 1

4 R gµν
being the traceless part of the Ricci tensor), RµανβRµανβ, CµανβCµανβ [with Cαβγδ = Rαβγδ + 1

2

(
gαδRβγ −

gαγRβδ + gβγRαδ − gβδRαγ
)

+ 1
6

(
gαγgβδ − gαδgβγ

)
R being the conformal Weyl tensor, which is the totally

traceless part in the Ricci decomposition of Riemann tensor]. This way, generally quadratic gravity can be
given by

L = R + aR2 + bRµνRµν + cS µνS µν + dRµανβRµανβ + eCµανβCµανβ + 16πGLm , (1.80)

where the coefficients {a, b, c, d, e} are all constants. However, these quadratic invariants are not completely
independent with each other, as

S µνS µν = RµνRµν −
1
4

R2 , CµανβCµανβ = RµανβRµανβ − 2RµνRµν +
1
3

R2 , (1.81)
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while RµανβRµανβ can be absorbed into the Gauss-Bonnet invariant by RµανβRµανβ = G − R2 + 4RµνRµν with
G making no contribution to the field equation. Hence, it is sufficient to consider the following form of
quadratic gravity [58]

I =

∫
d4x
√
−g

(
R + a · R2 + b · RαβRαβ + 16πGLm

)
. (1.82)

Variation of this action with respect to the inverse metric yields

δI =

∫
d4x
√
−g

[
δR
δgµν

+ a ·
2RδR
δgµν

+ b ·
δRαβRαβ

δgµν
−

1
2

gµν
(
R + aR2 + bRαβRαβ

)
− 8πGT (m)

µν

]
δgµν, (1.83)

where
δR2/δgµν = 2R Rµν + 2

(
gµν2 − ∇µ∇ν

)
R , (1.84)

and δRµνRµν can be reduced into the variation of the Riemann tensor [59],

δRαβRαβ = δ
[
Rαβ ·

(
gαρgβσRρσ

)]
= 2R α

µ Rαν · δgµν + 2Rµν · δRαµαν

=
(
2R α

µ Rαν − ∇α∇νR α
µ − ∇α∇µR α

ν + 2Rµν + gµν ·∇α∇βRαβ
)
δgµν .

(1.85)

Thus, the field equation is

−
1
2
(
R + a·R2 + b·RαβRαβ

)
gµν +

(
1 + 2aR

)
Rµν + 2a

(
gµν2 − ∇µ∇ν

)
R

+ b·
(
2R α

µ Rαν − ∇α∇νR α
µ − ∇α∇µR α

ν + 2Rµν + gµν∇α∇βRαβ
)

= 8πGT (m)
µν .

(1.86)

Considering that the second Bianchi identity ∇γRαµβν + ∇νRαµγβ + ∇βRαµνγ = 0 implies

∇β∇αRαβ =
1
2
2R and (1.87)

∇α∇µRαν + ∇α∇νRαµ = ∇µ∇νR − 2RαµβνRαβ + 2R α
µ Rαν , (1.88)

Eq.(1.86) can be recast into

−
1
2
(
R + a·R2 + b·RαβRαβ

)
gµν +

(
1 + 2aR

)
Rµν + 2a

(
gµν2 − ∇µ∇ν

)
R

+ b·
[
2RαµβνRαβ +

(1
2

gµν2 − ∇µ∇ν
)

R + 2Rµν
]

= 8πGT (m)
µν .

(1.89)

In the spirit of constructing the effective dark energy via Rµν − 1
2 Rgµν = 8πGeff

(
T (m)
µν + T (MG)

µν

)
, one can
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rewrite the field equation (1.89) into

Rµν −
1
2

Rgµν =
8πG

1 + 2aR

{
T (m)
µν + (8πG)−1

[1
2

(
bRαβRαβ − aR2

)
gµν + (2a + b)∇µ∇νR

−
(
2a +

b
2
)

gµν2R − 2b
(
2RµανβRαβ + 2Rµν

)]}
.

(1.90)

From the coefficient of T (m)
µν we learn that the effective gravitational coupling strength for quadratic gravity

is Geff = G/(1 + 2aR), while the modified-gravity effects contribute to the effective total fluid by T (MG)
µν =

(8πG)−1
[

1
2

(
bR2

c − aR2
)
gµν + (2a + b)∇µ∇νR −

(
2a + b

2
)
gµν2R − 2b

(
2RµανβRαβ + 2Rµν

)]
. Substitute the FRW

metric into Eq.(1.113), we obtain the modified Friedmann equations

H2 +
k
a2 =

8πG
3(1 + 2aR)

{
ρm +

1
8πG

[
a
2

R2 −
b
2

RαβRαβ +
b
2

R̈ −
(
4a + b

)
HṘ + 4bRt

αtβ + 2b2R t
t

]}
, (1.91)

Ḣ −
k
a2 =

−8πG
2(1 + 2aR)

{
ρm + Pm +

1
8πG

[(
2a + b

)
R̈ −

b
2

HṘ + 4b(Rt
αtβ − Rr

αrβ)R
αβ + 2b2

(
R t

t − R r
r
)]}

,

(1.92)

while the density and pressure of the effective dark-energy fluid are respectively

ρ(MG) =
1

8πG

(
a
2

R2 −
b
2

RαβRαβ +
b
2

R̈ −
(
4a + b

)
HṘ + 4bRt

αtβ + 2b2R t
t

)
, (1.93)

P(MG) =
1

8πG

(
b
2

RαβRαβ −
a
2

R2 +
(
2a +

b
2
)

R̈ +
(
4a +

b
2
)
HṘ − 4b Rr

αrβR
αβ − 2b2R r

r

)
. (1.94)

Just like the treatment of f (R) gravity in Subsection 1.2.2, to keep the expressions of ρ(MG) , P(MG) and
the Friedmann equations (1.91) and (1.92) clear and readable, we continue using compact notations for R ,
RαβRαβ , Ṙ , R̈ , Rt

αtβR
αβ, Rr

αrβR
αβ, 2R t

t and 2R r
r , and one should keep in mind that for the FRW metric

Eq.(1.6), these geometric quantities are already known and can be fully expanded into higher-derivative and
nonlinear terms of H or a.

Quadratic gravity is one of the earliest modified gravities; it dates back to late 1970s and was employed
to help quantize gravity [58]. In this thesis, quadratic gravity will be involved in Chapter 3 as a special
example of f (R,RαβRαβ,RαµβνRαµβν,Lm) gravity. Moreover, Chapters 3 and 4 will involve the gravitational
thermodynamics of the FRW Universe governed by quadratic gravity, including the derivation of Eqs.(1.91)
and (1.92) on the cosmological apparent horizon, and proofs of the standard and generalized second laws of
thermodynamics for the Universe enclosed by different horizons.

1.2.4 f (R,G) gravity

When discussing Lovelock’s theorem in Subsection 1.2.1, we showed that an isolated Gauss-Bonnet in-
variant

∫
d4x
√
−gG does not affect the field equation. However, things become different for generalized
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G−dependence. As an example, consider the generalized Gauss-Bonnet gravity given by the action [43]

I =

∫
d4x
√
−g

[
f (R,G) + 16πGLm

]
, (1.95)

where f (R,G) is a generic function of the Ricci scalar R and the Gauss-Bonnet invariant G. Variation of the
f (R,G) action leads to

δI =

∫
d4x

[√
−g · δ f (R,G) + f (R,G) · δ

√
−g + 16πG · δ

(√
−gLm

) ]
=

∫
d4x
√
−g

[ fR · δR
δgµν

+
fG · δG
δgµν

−
1
2

gµν f − 8πGT (m)
µν

]
δgµν ,

(1.96)

where fR = fR(R,G) B d f (R,G)/dR, and fG = fG(R,G) B d f (R,G)/dR.
Following the standard procedures of variational derivative as before, we have δ

(√
−g fRR

)
/δgµν �

fRRµν + (gµν2 − ∇µ∇ν) fR. Moreover, fG · δG = fG ·
(
δR2 − 4δRαβRαβ + δRαµβνRαµβν

)
, with

fG ·
δR2

δgµν
� 2 fGRRµν + 2

(
gµν2 − ∇µ∇ν

) (
fGR

)
, (1.97)

fG ·
δRαβRαβ

δgµν
� 2 fGR α

µ Rαν + 2
(

fGRµν
)
− ∇α∇ν

(
fGR α

µ

)
− ∇α∇µ

(
fGR α

ν

)
+ gµν∇α∇β

(
fGRαβ

)
, (1.98)

fG ·
δRαµβνRαµβν

δgµν
� 2 fGRµαβγR αβγ

ν + 4∇β∇α
(

fGRαµβν
)
, (1.99)

where total-derivative terms have been removed. Recall that besides Eqs.(1.87) and (1.88), the second
Bianchi identity also has the following implications which transform the derivative of a high-rank curva-
ture tensor into those of lower-rank tensors plus nonlinear algebraic terms:

∇αRαµβν = ∇βRµν − ∇νRµβ (1.100)

∇αRαβ =
1
2
∇βR (1.101)

∇β∇αRαµβν = 2Rµν −
1
2
∇µ∇νR + RαµβνRαβ − R α

µ Rαν . (1.102)

Using Eqs.(1.87), (1.88) and (1.100)-(1.102) to expand the second-order covariant derivatives in Eqs.(1.97)-
(1.99), and after some algebra, we finally obtain

fG ·
δG

δgµν
B H (GB)

µν = fG
(
2RRµν − 4R α

µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ
ν

)
+ 2R

(
gµν2 − ∇µ∇ν

)
fG

−4Rµν2 fG + 4R α
µ ∇α∇ν fG + 4R α

ν ∇α∇µ fG − 4gµνRαβ∇α∇β fG + 4Rαµβν∇β∇α fG ,
(1.103)

where unlike Eqs.(1.97)-(1.99), the second-order derivatives {2,∇α∇ν, etc} now only act on fG. Recall that
the Bach-Lanczos tensor vanishes identically in four dimensions, as in Eq.(1.66), so 2RRµν − 4R α

µ Rαν −
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4RαµβνRαβ + 2RµαβγR αβγ
ν = 1

2Ggµν, which simplifies Eq.(1.103) into

H
(GB)
µν =

1
2

fGGgµν + 2R
(
gµν2 − ∇µ∇ν

)
fG − 4Rµν2 fG + 4R α

µ ∇α∇ν fG

+4R α
ν ∇α∇µ fG − 4gµνRαβ∇α∇β fG + 4Rαµβν∇β∇α fG ,

(1.104)

whose trace is
gµνH(GB)

µν = fGG + 2R2 fG − 4Rαβ∇α∇β fG . (1.105)

Thus, the field equation of f (R,G) gravity reads

fR Rµν −
1
2

f gµν +
(
gµν2 − ∇µ∇ν

)
fR +H

(GB)
µν = 8πG T (m)

µν , (1.106)

where { f , fR, fG} are all functions of (R,G).
In the extant literature, the effects of the generalized and thus nontrivial Gauss-Bonnet dependence for

the field equations are generally depicted in the form analogous to Eq.(1.103), such as the string-inspired
Gauss-Bonnet effective dark energy [50] with L = 1

16πG R − γ
2∇µϕ∇

µϕ − V(ϕ) + f (ϕ)G, as well as the
L = R + f (G) + 16πG [42], L = f (R,G) + 16πLm [43] and f (R,G,Lm) [60] generalized Gauss-Bonnet
gravities. Here we emphasize that the Gauss-Bonnet effects therein could all be simplified into similar forms
of Eq.(1.104) via our method.

The generalized G dependence is very important to this thesis. For example, in Chapter 3, L =

f (R,G)+16πLm gravity will be extended into L = f (R,G,Lm) gravity that allows for nonminimal curvature
couplings (see also Subsection 1.2.10), and the smooth transition from L = f (R,RαβRαβ,RαµβνRαµβν,Lm)
gravity to L = f (R,G,Lm) gravity will be derived. In Chapters 4 and 5, gravitational thermodynamics of
the Universe governed by L = f (R,G) + 16πLm gravity will be involved. Moreover, in Chapters 6 and
7, Lovelock-Brans-Dicke gravity will be developed and the applications to traversable wormholes will be
extensively discussed, where the nonminimal coupling between a scalar field and G will play a key role.

1.2.5 Generalized Brans-Dicke gravity with self-interaction potential

So far, we have looked into f (R), quadratic, and f (R,G) gravities, which are all fourth-order theories. In
this subsection, we will consider the modification of GR by a scalar field which serves as an extra physical
degree of freedom. Perhaps the best known theory of this type is Brans-Dicke gravity with action [48]

I =

∫
d4x
√
−g

(
φR −

ωBD

φ
∇αφ∇

αφ + 16πLm

)
, (1.107)

where the constant ωBD refers to the Brans-Dicke parameter. However, we choose to move a step further and
consider the following generalized Brans-Dicke gravity,

I =

∫
d4x
√
−g

(
φR −

ω(φ)
φ
∇αφ∇

αφ − V(φ) + 16πGLm

)
, (1.108)
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which has a Brans-Dicke field ω(φ) in place of ωBD and a self-interaction potential V(φ). Here Eq.(1.108)
has adopted the convention 16πGLm with a Newtonian constant G, as opposed to 16πLm in Eq.(1.107)
which encodes G into φ−1, so as to facilitate the comparison with f (R) gravity in next subsection. Varying
Eq.(1.108) with respect to the inverse metric, one obtains

δI =

∫
d4x
√
−g

[
φ
δR
δgµν

−
ω

φ
∇αφ∇βφ

δgαβ

δgµν
−

1
2

(
φR −

ω

φ
∇αφ∇

αφ − V
)
gµν − 8πGT (m)

µν

]
δgµν . (1.109)

Thus, the gravitational field equation is

φ
(
Rµν −

1
2

Rgµν
)
−
ω

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)

+
(
gµν2 − ∇µ∇ν

)
φ +

1
2

Vgµν = 8πT (m)
µν . (1.110)

In addition to the metric tensor, the scalar field φ in Eq.(1.108) serves as a second physical field. Variation
of Eq.(1.108) with respect to φ yields the kinematical wave equation

2ω
φ
2φ = −R −

φωφ − ω

φ2 · ∇αφ∇
αφ + Vφ , (1.111)

with 2φ = gαβ∇α∇βφ = 1√
−g∂α

(√
−g gαβ∂βφ

)
, ωφ = ωφ(φ) B dω(φ)/dφ, and Vφ = Vφ(φ) B dV(φ)/dφ. By

the trace of the field equation (1.110), −R =
1
φ

(
8πT (m) −

ω

φ
∇αφ∇

αφ − 32φ − 2V
)
, Eq.(1.111) can be recast

into the following dynamical wave equation or Klein-Gordon equation

(
2ω + 3

)
2φ = 8πT (m) − ωφ · ∇αφ∇

αφ − 2V + φVφ , (1.112)

which explicitly relates the propagation of φ(xα) to the trace T (m) of the matter tensor for the stress-energy-
momentum distribution.
In the spirit of constructing the effective dark energy via Rµν − 1

2 Rgµν = 8πGeff

(
T (m)
µν + T (MG)

µν

)
, the field

equation (1.110) can be rewritten as

Rµν −
1
2

Rgµν = 8π
G
φ

T (m)
µν +

1
φ

(
∇µ∇ν − gµν2

)
φ +

ω

φ2

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)
−

1
2φ

Vgµν , (1.113)

so Geff = G/φ in accordance with the coefficient of T (m)
µν , and T (MG)

µν = (8πG)−1
[(
∇µ∇ν−gµν2

)
φ+ω

φ

(
∇µφ∇νφ−

1
2φgµν∇αφ∇αφ

)
− 1

2 Vgµν
]
. Substituting the FRW metric into Eq.(1.113), one obtains the modified Friedmann

equations

H2 +
k
a2 =

8π
3

G
φ
ρm +

1
3φ

(
− 3Hφ̇ +

ω

2
φ̇2 +

1
2

V
)
, (1.114)

Ḣ −
k
a2 = −4π

G
φ

(
ρm + Pm

)
−

1
2φ

(
φ̈ + 5Hφ̇ + ωφ̇2 − V

)
, (1.115)
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while the density and pressure of the generalized Brans-Dicke effective dark-energy fluid are respectively

ρ(MG) =
1

8πG

(
ω

2φ
φ̇2 − 3Hφ̇ +

1
2

V
)

with P(MG) =
1

8πG

(
−
ω

2φ
φ̇2 + φ̈ + 2Hφ̇ −

1
2

V
)
. (1.116)

Moreover, the scalar field’s dynamical wave equation (1.112) under the FRW metric becomes

(
2ω + 3

)(
φ̈ + 3Hφ̇

)
= 8π

(
ρm − 3Pm

)
− φ̇2ωφ − φVφ + 2V . (1.117)

Here note that Eq.(1.117) does not mean that φ propagates the same way in vacuum (ρm = 0 = Pm) and in
radiation (ρm = 3Pm). H differs for these two situations according to the first Friedmann equation (1.114).

1.2.6 Equivalence between f (R) and nondynamical Brans-Dicke gravity

One might have a feeling of familiarity when going through the generalized Brans-Dicke gravity – yes, its
behaviours are pretty similar to L = f (R) + 16πGLm gravity as discussed in Subsection 1.2.2. In fact,
removing the kinetic term of φ in Eq.(1.108) so that I =

∫
d4x
√
−g

[
φR − V(φ) + 16πGLm

]
, and comparing

its field equation with that of f (R) gravity, one has

φRµν −
1
2

(
φR − V(φ)

)
gµν +

(
gµν2 − ∇µ∇ν

)
φ = 8πGT (m)

µν ,

fR Rµν −
1
2

f (R) gµν +
(
gµν2 − ∇µ∇ν

)
fR = 8πG T (m)

µν .

(1.118)

Clearly, these two equations become identical for the following relations:

fR = φ and f (R) = φR − V(φ) or fR R − f (R) = V(φ) . (1.119)

More rigourously, introduce an auxiliary field χ = χ(xα) and consider the following dynamically equivalent
action of f (R) gravity,

I =

∫
d4x
√
−g

[
f (χ) + fχ · (R − χ) + 16πGLm

]
, (1.120)

whose variational derivative with respect to χ yields the constraint

fχχ(R − χ) = 0 , (1.121)

with fχ = fχ(χ) B d f (χ)/dχ and fχχ = fχχ(χ) B d2 f (χ)/dχ2. If fχχ does not vanish identically, Eq.(1.121)
leads to χ = R. Redefining the χ field into the scalar field φ = fχ and introducing the potential V(φ) =

φ · R(φ) − f
(
R(φ)

)
, then L = f (R) + 16πGLm gravity becomes equivalent to L = φR − V(φ) + 16πGLm

gravity.
That is to say, the f (R) fourth-order modified gravity in Subsection 1.2.2 and the generalized Brans-Dicke

alternative gravity in Subsection 1.2.5 are not totally independent. Instead, the former can be regarded as a
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subclass of the latter with a vanishing Brans-Dicke function ω(φ) ≡ 0 for the kinetic term ∇αφ∇αφ, and the
equivalence is realized by Eq.(1.119). For example, applying the replacements fR 7→ φ and fR R − f (R) 7→
V(φ) to Subsection 1.2.2, one obtains the modified Friedmann equations

H2 +
k
a2 =

8π
3

G
φ
ρm +

1
3φ

(
− 3Hφ̇+

1
2

V
)

and Ḣ −
k
a2 = −4π

G
φ

(
ρm + Pm

)
−

1
2φ

(
φ̈+ 5Hφ̇−V

)
, (1.122)

along with

ρ(MG) =
1

8πG

(
− 3Hφ̇ +

1
2

V
)

and P(MG) =
1

8πG

(
φ̈ + 2Hφ̇ −

1
2

V
)
, (1.123)

which match Eqs.(1.114)∼(1.116) with ω(φ) ≡ 0.

1.2.7 Scalar-tensor-chameleon gravity

The generalized Brans-Dicke gravity can be further extended into the scalar-tensor-chameleon gravity, which
is given by the action (e.g. [61], and the usage of “chameleon” will be clarified soon)

I =

∫
d4x
√
−g

[
F(φ)R − Z(φ) · ∇αφ∇αφ − 2U(φ) + 16πGE(φ)Lm

]
, (1.124)

where {F(φ) ,Z(φ) ,U(φ) , E(φ)} (and {F ,Z ,U , E} for brevity) are arbitrary functions of the scalar φ, and
E(φ) is the “chameleon” function nonminimally coupled to the matter Lagrangian density Lm. Vary the
action with respect to the inverse metric,

δI =

∫
d4x
√
−g

{
F(φ)

δR
δgµν

−
1
2

[
F(φ)R − Z(φ) · ∇αφ∇αφ − 2U(φ)

]
gµν

−Z(φ)∇αφ∇βφ
δgαβ

δgµν
+

16πGE(φ)
√
−g

δ
(√
−gLm

)
δgµν

 δgµν ,
(1.125)

and it is easy to find the gravitational field equation:

F
(
Rµν −

1
2

Rgµν
)

+ (gµν2 − ∇µ∇ν)F − Z
(
∇µφ∇νφ −

1
2

gµν∂αφ ∂αφ
)

+ Ugµν = 8πGET (m)
µν . (1.126)

On the other hand, the wave equation δI/δφ = 0 reads

2Z2φ = 2Uφ − FφR − Zφ · ∇αφ∇αφ − EφLm , (1.127)

where Uφ = Uφ(φ) = dU(φ)/dφ, and similarly for {Fφ ,Zφ , Eφ}. Eqs.(1.126)∼(1.127) indicate that due to the
presence of E(φ), the net gravitational effects of T (m)

µν becomes reliant on the distribution of the scalar field,
while the wave equation explicitly depends on the physical matter Lm (or T (m) = gµνT (m)

µν if one substitutes
the trace of Eq.(1.126) into Eq.(1.127) to replace R). That is to say, both the field and the wave equations
become environment-dependent: they vary among different cosmic epoches as the dominant matter changes
and φ evolves, and they alters in different regions of the Universe. This is why the theory under consideration
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is dubbed scalar-tensor-chameleon gravity.
To construct the effective dark energy, we rearrange Eq.(1.126) into the form of Rµν− 1

2 Rgµν = 8πGeff

(
T (m)
µν

+T (MG)
µν

)
as

Rµν −
1
2

Rgµν = 8πG
E
F

T (m)
µν +

1
F

(
∇µ∇ν − gµν2

)
F +

Z
F

(
∇µφ∇νφ −

1
2

gµν∇αφ∇α
)
−

U
F

gµν , (1.128)

so one can observe that Geff = E
F G and T (MG)

µν = 1
8πGE

[(
∇µ∇ν−gµν2

)
F + Z

(
∇µφ∇νφ−

1
2 gµν∇αφ∇αφ

)
−Ugµν

]
.

Substitution of the FRW metric into Eq.(1.128) leads to the modified Friedmann equations

H2 +
k
a2 =

8π
3

GE
F

ρm +
1

3F

(
− 3HFφ φ̇ +

1
2

Z φ̇2 + U
)
, (1.129)

Ḣ −
k
a2 = −4π

GE
F

(
ρm + Pm

)
−

1
2F

(
Fφ φ̈ + Fφφ φ̇

2 + 5HFφ φ̇ − Z φ̇2 − 2U
)
, (1.130)

where we have used Ḟ = Fφφ̇ and F̈ = Fφφ̈ + Fφφ φ̇
2, while the energy density and pressure for T µ (MG)

ν =

diag[−ρ(MG), P(MG), P(MG), P(MG)] are

ρ(MG) =
1

8πG E

(
− 3HFφφ̇ +

1
2

Z φ̇2 + U
)

P(MG) =
1

8πG E

(
Fφφ̈ + Fφφ φ̇

2 + 2HFφφ̇ −
1
2

Z φ̇2 − U
)
.

(1.131)

In the absence of the chameleon function, E(φ) ≡ 1, Eφ = 0, and with F(φ) 7→ φ, Fφ 7→ 1, Fφφ 7→ 0,
Z(φ) 7→ ω(φ)

φ , U(φ) 7→ 1
2 V(φ), we recover the situation of generalized Brans-Dicke gravity in Subsection

1.2.5.
Note that to date it is still not clear whether cosmic acceleration arises from new physical fields or new

laws of gravity, and scalar-tensor theories have the advantage of taking both possibilities into account. To
move one step further, Horndeski [51] or Galileon [52] gravity is the most general scalar-tensor theory that
contains at most second-order derivatives of the scalar field. For cosmological interest, the covariant Galileon
gravity has the action [53]

I =

∫
d4x
√
−g

(
R −

c1

2
V(φ) −

c2

2
∇αφ∇

αφ −
1
2

5∑
i=3

ciLi + 16πGLm

)
, (1.132)

where {ci} are constant coefficients, and

L3 = 22φ∇αφ∇αφ/M3 , (1.133)

L4 = ∇αφ∇
αφ

[
2(2φ)2 − 2(∇α∇βφ)(∇α∇βφ) −

1
2

R∇αφ∇αφ
]
/M6 , (1.134)

L5 = ∇αφ∇
αφ

[
(2φ)3−3(2φ)(∇α∇βφ)(∇α∇βφ)+2(∇α∇βφ)(∇β∇γφ)(∇γ∇αφ)−6(∇αφ)(∇α∇βφ)(∇γφ)Gβγ

]
/M9,

(1.135)
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with M3 = mPlH2
0 to balance the dimensions. The full Galileon gravity is however too complicated to deal

with, so in applications like best-fitting or prediction of cosmological parameters, one usually drops {L4,
L5} by setting c4 = c5 = 0, and preserves the {c1, c2, c3} terms to constitute the cubic Galileon theory.

1.2.8 A unified form of modified gravity

1.2.8.1 Field equations and modified Friedmann equations

We have looked into f (R), quadratic, f (R,G), generalized Brans-Dicke, scalar-tensor-chameleon gravities,
and derived their field equations. One may have noticed that in the construction of effective dark energy for
the modified Friedmann equations, they follow a similar pattern. More generally, consider modified gravities
with the Lagrangian density

L = LG(R,RαβRαβ,R i , ϑ ,∇µϑ∇
µϑ , · · ·

)
+ 16πGLm , (1.136)

where Ri = Ri
(
gαβ ,Rµανβ ,∇γRµανβ , . . .

)
refers to a generic Riemannian invariant beyond the Ricci scalar

and ϑ denotes a scalarial extra degree of freedom unabsorbed by Lm . Its field equation takes the form

Hµν = 8πGT (m)
µν with Hµν B

1
√
−g

δ
(√
−g LG

)
δgµν

, (1.137)

where total-derivative/boundary terms should be removed in the derivation of Hµν. In the spirit of con-
structing the effective dark energy from modified-gravity effects, Eq.(1.137) can be intrinsically recast into
a compact GR form by isolating the Rµν inHµν:

Gµν ≡ Rµν −
1
2

Rgµν = 8πGeffT (eff)
µν with Hµν =

G
Geff

Gµν − 8πGT (MG)
µν , (1.138)

where T (eff)
µν = T (m)

µν + T (MG)
µν , and all terms beyond GR have been packed into T (MG)

µν and Geff. Here T (MG)
µν

collects the modified-gravity nonlinear and higher-order effects, while Geff denotes the effective gravitational
coupling strength which can be directly recognized from the coefficient of the matter tensor T (m)

µν – for
example, as previously shown, we have Geff = G/ fR(R) for f (R), Geff = G/(1 + 2aR) for quadratic, Geff =

G/ fR(R,G) for f (R,G) generalized Gauss-Bonnet, Geff = G/φ for (generalized) Brans-Dicke, and Geff =

GE(φ)/F(φ) for scalar-tensor-chameleon gravities. Moreover, T (eff)
µν is assumed to be an effective perfect-

fluid content,

T µ (eff)
ν = diag

[
−ρeff, Peff, Peff, Peff

]
with Peff/ρeff C weff, (1.139)

along with ρeff = ρm + ρ(MG) and Peff = Pm + P(MG).
Substituting the FRW metric Eq.(1.6) and the effective cosmic fluid Eq.(1.139) into the field equation
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(1.138), one could obtain the modified Friedmann equations

H2 +
k
a2 =

8πGeff

3

[
ρm + ρ(MG)

]
and

Ḣ −
k
a2 = −4πGeff

[
ρm + Pm + ρ(MG) + P(MG)

]
or 2Ḣ + 3H2 +

k
a2 = −8πGeff

[
ρm + ρ(MG)

]
.

(1.140)

Obviously, by setting G(eff) = G and ρ(MG) = 0 = P(MG), we immediately recover the standard Friedmann
equations in GR. Here one should note that the FRW metric depicts the observed Universe, so it is indepen-
dent of and a priori applies to all theories of metric gravity. That is to say, we needn’t worry about whether
or not the FRW metric is a solution to the modified field equations when studying the cosmology in modified
gravity; it must be a solution, and if not, it is the gravity theory that fails.

1.2.8.2 Generalized energy conditions

Having derived the modified Friedmann equations, let us go back to the generic field equation (1.138). Recall
that T (m)

µν has to respect a set of standard energy conditions to be physically meaningful in GR, so we cannot
help but ask that are there similar restrictions to T (eff)

µν ? The answer is yes, and T (eff)
µν has to obey a set of

generalized energy conditions.
In a region of a spacetime, for the expansion rate θ(`) of a null congruence along its null tangent vector

field `µ, and the expansion rate θ(u) of a timelike congruence along its timelike tangent uµ, θ(`) and θ(u)

respectively satisfy the Raychaudhuri equations [6]

`µ∇µθ(`) =
dθ(`)

dλ
= κ(`)θ(`) −

1
2
θ2

(`) − σ
(`)
µνσ

µν
(`) + ω(`)

µνω
µν
(`) − Rµν`µ`ν , (1.141)

uµ∇µθ(u) =
dθ(u)

dτ
= κ(u)θ(u) −

1
3
θ2

(u) − σ
(u)
µνσ

µν
(u) + ω(u)

µνω
µν
(u) − Rµνuµuν . (1.142)

The inaffinity coefficients are zero κ(`) = 0 = κ(u) under affine parameterizations, the twist vanishes ωµνωµν =

0 for hypersurface-orthogonal foliations, and being spatial tensors
(
σ(`)
µν`

µ = 0 = σ(u)
µν uµ

)
the shears always

satisfy σµνσµν ≥ 0. Thus, to guarantee dθ(`)/dλ ≤ 0 and dθ(u)/dτ ≤ 0 under all circumstances – even in
the occasions θ(`) = 0 = θ(u), so that the congruences focus and gravity is always an attractive force, the
following geometric nonnegativity conditions are expected to hold:

Rµν`µ`ν ≥ 0 , Rµνuµuν ≥ 0 . (1.143)

Note that although this is the most popular approach to derive Eq.(1.143) for its straightforwardness and
simplicity, it is not perfect. In general θ(`) and θ(u) are nonzero and one could only obtain 1

2θ
2
(`) + Rµν`µ`ν ≥ 0

and 1
3θ

2
(u) + Rµνuµuν ≥ 0. Thus, it is only safe to say that Eq.(1.143) provides the sufficient rather than

necessary conditions to ensure dθ(`)/dλ ≤ 0 and dθ(u)/dτ ≤ 0. Fortunately, this imperfectness is not a
disaster and does not negate the conditions in Eq.(1.143); for example, one can refer to Ref. [62] for a
rigorous derivation of the first inequality in Eq.(1.143) from the Virasoro constraint in the worldsheet string
theory.

Following Eq.(1.138) along with its trace equation R = −8πGeffT (eff) and the equivalent form Rµν =

8πGeff

(
T (eff)
µν −

1
2 gµνT (eff)

)
, the geometric nonnegativity conditions in Eq.(1.143) can be translated into the
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generalized null and strong energy conditions (GNEC and GSEC for short)

GeffT (eff)
µν `µ`ν ≥ 0 (GNEC) , Geff

(
T (eff)
µν uµuν +

1
2

T (eff)
)
≥ 0 (GSEC) , (1.144)

where `µ`µ = 0 for the GNEC, and uµuµ = −1 in the GSEC for compatibility with the metric signature
(−,+ + +). We further supplement Eq.(1.144) by the generalized weak energy condition

GeffT (eff)
µν uµuν ≥ 0 (GWEC) , (1.145)

and the generalized dominant energy condition (GDEC) that GeffT (eff)
µν uµuν ≥ 0 with GeffT (eff)

µν uµ being a
causal vector.

Note that for the common pattern of field equations in modified gravities, we have chosen to adopt
Eq.(1.138) rather than Rµν − 1

2 Rgµν = 8πGT̂ (eff)
µν , where G is Newton’s constant. That is to say, we do not

absorb Geff into T (eff)
µν so that GeffT (eff)

µν = GT̂ (eff)
µν ; as a consequence, Geff shows up in the generalized energy

conditions as well. This is because the effective matter-gravity coupling strength Geff plays important roles
in many physics problems, such as the Wald entropy of black-hole horizons [63], although the meanings and
applications of Geff have not been fully understood (say the relations between Geff and the weak, Einstein,
and strong equivalence principles).

For the FRW Universe, a unified formulation to derive the Friedmann equations from (non)equilibrium
thermodynamics on the apparent horizon will be developed in Chapter 4, while in Chapter 5, after systematic
restudies of the FRW cosmological thermodynamics by requiring its compatibility with the holographic-style
gravitational equations, possible solutions will be proposed for the confusions regarding the temperature of
the apparent horizon and the failure of the second law of thermodynamics. Both chapters are based on Rµν −
1
2 Rgµν = 8πGeffT (eff)

µν , and these unified formulations will be applied to f (R), quadratic, f (R,G) generalized
Gauss-Bonnet, generalized Brans-Dicke, scalar-tensor-chameleon, and dynamical Chern-Simons gravities.

1.2.9 More insights into T (m)
µν and energy-momentum conservation

In the theoretical structures of modified gravity, a remaining problem of concern is convariance of the field
equations and validity of the local conservation equation ∇µT (m)

µν = 0 for physical matter. We will look into
this problem in this subsection.

1.2.9.1 Some comments on T (m)
µν

Before tackling the conservation problem, we would like to make some quick comments on T (m)
µν . In fact, the

matter Lagrangian density Lm in the Hilbert-Einstein action IHE and consequently T (m)
µν can be rescaled into

I =

∫
d4x
√
−g

(
R + 8λπG Lm

)
, (1.146)

and

T (m)
µν B −

λ
√
−g

δ(
√
−gLm)
δgµν

, (1.147)
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where λ > 0 is a constant, and one still recovers Einstein’s equation Rµν − 1
2 Rgµν = 8πGT (m)

µν . It is simply a
convention to set λ = 2 in Eqs.(1.1), (1.4), and (1.21).

Also, in general Lm does not explicitly depend on the derivatives of the metric tensor [1], i.e. Lm =

Lm
(
gµν, ψm, ∂µψm

)
, Lm

(
gµν, ∂αgµν, ∂α···gµν, ψm, ∂µψm

)
where ψm collects the matter fields. For example,

Lm = Lm(gµν, Aα,∇βAα) = − 1
16πFαβFαβ with Fαβ B ∇αAβ−∇βAα for source-free electromagnetic field, and

Lm = Lm(gµν, φ,∇αφ) = −1
2 gαβ∇αφ∇βφ − V(φ) for a massive scalar field. With δ

√
−g = − 1

2
√
−g gµνδgµν,

T (m)
µν defined in Eq.(1.4) can be expanded and then recast into

T (m)
µν = gµνLm − 2

δLm

δgµν
. (1.148)

Instead of Eq.(1.4) or (1.148), it had been suggested that T (m)
µν could be derived solely from the equations

of motion
∂Lm

∂ψm
− ∇µ

∂Lm

∂(∂µψm)
= 0 for the ψm field in Lm

(
gµν, ψm, ∂µψm

)
[65]; however, further analyses

have shown that this method does not hold a general validity, and Eqs.(1.4) and (1.148) remain as the most
reliable approach to T (m)

µν [66].

1.2.9.2 ∇µT (m)
µν = 0 and generalized contracted Bianchi identity

During the brief review of GR in Subsection 1.1.1, we have seen that in the contravariant derivative of
Einstein’s equation, Bianchi’s identity ∇µ

(
Rµν − 1

2 Rgµν
)
≡ 0 immediately guarantees ∇µT (m)

µν = 0. Similarly
for f (R) gravity, taking the contravariant derivative of the field equation (1.74), we find

∇µT (m)
µν = ∇µ

[
fRRµν −

1
2

f gµν +
(
gµν2 − ∇µ∇ν

)
fR

]
= Rµν∇µ fR + fR∇µRµν −

1
2

fRgµν∇µR +
(
∇ν2 −2∇ν

)
fR

= Rµν∇µ fR + fR∇µ
(
Rµν −

1
2

Rgµν
)
− Rµν∇µ fR ≡ 0 ,

(1.149)

where we have applied ∇µ(Rµν − Rgµν/2) = 0 and the third-order-derivative commutation relation (∇ν2 −
2∇ν) fR = −Rµν∇ν fR. Hence, ∇µT (m)

µν = 0 holds in L = f (R) + 16πGLm gravity.
For quadratic and f (R,G) gravities in Subsections 1.2.3 and 1.2.4, direct proofs by the contravariant

derivatives of their field equations (as in GR and f (R)) are hard to establish. Instead, we will move ahead to
the bigger scenario of I =

∫
d4x
√
−g

[
f (R, · · · ,R)+16πGLm

]
gravity with extended dependence on generic

algebraic or differential Riemannian invariants R = R (gαβ ,Rµανβ ,∇γRµανβ , . . .). Formally we write down
the variation as δI �

∫
d4x
√
−g

[
H

(G)
µν − 8πT (m)

µν

]
δgµν, where H (G)

µν resembles and generalizes the Einstein
tensor by

H
(G)
µν �

1
√
−g

δ
[√
−g f (R, · · · ,R)

]
δgµν

. (1.150)

Due to the coordinate invariance of the gravitational part IG =
∫

d4x
√
−g f (R, · · · ,R), H (G)

µν satisfies the
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generalized contracted Bianchi identity [67, 68]

∇µ

 1
√
−g

δ
[√
−g f (R, · · · ,R)

]
δgµν

 = 0 , (1.151)

or just ∇µH (G)
µν = 0 by the definition of H (G)

µν . Similar to the relation Gµν = Rµν − 1
2 Rgµν, one can further

expandH (G)
µν to rewrite Eq.(1.151) into

∇µ
(

fRRµν +
∑

fRRµν −
1
2

f (R, · · · ,R) gµν

)
= 0 , (1.152)

where fR = fR(R, · · · ,R) B ∂ f (R, · · · ,R)/∂R, fR = fR(R, · · · ,R) B ∂ f (R, · · · ,R)/∂R, andRµν � ( fRδR) /δgµν

– note that in the calculation of Rµν, fR will serve as a nontrivial coefficient if fR , constant and should be ab-
sorbed into the variation δR when integrated by parts. Specifically, when f (R, · · · ,R) = R+a ·R2 +b ·RαβRαβ

or f (R, · · · ,R) = f (R,G), Eq.(1.151) becomes the generalized contracted Bianchi identities for quadratic
and generalized Gauss-Bonnet gravities, respectively, which implies ∇µT (m)

µν = 0.

1.2.9.3 ∇µT (m)
µν = 0 in Brans-Dicke and scalar-tensor-like gravity

In modified gravities that contain nonminimal couplings between scalar fields and the curvature invariants,
the generalized contracted Bianchi identity Eq.(1.151) for I =

∫
d4x
√
−g

[
f (R, · · · ,R) + 16πGLm

]
gravity

is no longer valid, and the conservation problem becomes more complicated than for pure tensorial gravity.
For generalized Brans-Dicke gravity in Subsection 1.2.5, let us take contravariant derivative of its field

equation (1.110). With the Bianchi identity ∇µ
(
Rµν − 1

2 Rgµν
)

= 0 and the third-order-derivative commutator
(∇ν2 −2∇ν) φ = −Rµν∇µφ, it follows that

∇µ
[
φ

(
Rµν −

1
2

Rgµν

)
+

(
gµν2 − ∇µ∇ν

)
φ +

1
2

Vgµν

]
=

1
2
∇νφ ·

(
− R + Vφ

)
; (1.153)

moreover,

∇µ
[
−
ω

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)]

=
1
2
∇νφ ·

(
ω − ωφ

φ2 ∇αφ∇
αφ −

2ω
φ
2φ + Vφ

)
=

1
2
∇νφ ·

(
R − Vφ

)
, (1.154)

where the kinematical wave equation (1.111) has been employed for the replacement ω−ωφ
φ2 ∇αφ∇

αφ− 2ω
φ 2φ =

R − Vφ. Adding up Eqs.(1.153) and (1.154), one could see that the generalized Brans-Dicke field equation
(1.110) is covariant invariant and ∇µT (m)

µν = 0.
More generic scalar-tensor gravities can involve the nonminimal couplings between scalar fields and

more complicated curvature invariants, which needs more effort to confirm the stress-energy-momentum
conservation. For example, in the construction of Lovelock-Brans-Dicke gravity in Chapter 6, we will
discuss the nonminimal φ−couplings to Chern-Pontryagin density and Gauss-bonnet invariant, and prove
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∇µT (m)
µν = 0. Moreover, for a large class of scalar-tensor-like gravity

I =

∫
d4x
√
−g

[
R + f (R, · · · ,R) + h(φ) · f̂ (R, · · · ,R) − λ(φ) · ∇αφ∇αφ − V(φ) + 16πGLm

]
, (1.155)

where h(φ) is an arbitrary function of the scalar field φ = φ(xα), and f̂ (R, · · · ,R) has generic dependence
on curvature invariants R; the covariant invariance of its field equation and ∇µT (m)

µν = 0 will be proved in
Chapter 8.

1.2.9.4 ∇µT (m)
µν = 0 and minimal geometry-matter coupling

So far we have been establishing the stress-energy-momentum conservation by the covariant invariance of
the field equations, and alternatively, one can look at ∇µT (m)

µν = 0 from the perspective of minimal geometry-
matter coupling. For GR, f (R), quadratic, f (R,G) and generalized Brans-Dicke gravities, the matter fields
are always minimally coupled to the spacetime geometry, with an isolated matter density Lm in the total
lagrangian density Ltotal = Lgravity + 16πGLm, and thus there are no curvature-matter coupling terms like
R ·Lm; in other words, the gravity/geometry part and the matter part in the total action are fully separable,
Itotal = Igravity + Im.

Consider an arbitrary infinitesimal coordinate transformation xµ 7→ xµ + δxµ, where δxµ = kµ is an
infinitesimal vector field that vanishes on the boundary, i.e. kµ = 0 |∂M, so that the spacetime manifoldM
is mapped onto itself. Since Lm = Lm

(
gµν, ψm, ∂µψm

)
is a scalar invariant that respects the diffeomorphism

invariance under the active transformation xµ 7→ xµ + kµ, Noether’s conservation law directly yields

∇µ

 1
√
−g

δ
(√
−g Lm

)
δgµν

 = 0 . (1.156)

Comparison with Eq.(1.4) yields that Eq.(1.156) can be rewritten into −
1
2
∇µT (m)

µν = 0. That is to say, under

minimal geometry-matter coupling with an isolated Lm in the total Lagrangian density, the matter tensor T (m)
µν

in Eq.(1.4) has been defined in a practical way so that T (m)
µν is automatically symmetric, Noether compatible,

and covariant invariant, which naturally guarantees the stress-energy-momentum conservation ∇µT (m)
µν = 0.

In this sense, and borrowing Hµν = 8πGT (m)
µν in Eq.(1.137) as the generic field equation, one can regard the

vanishing divergence ∇µHµν = 0 to either imply or confirm the conservation ∇µT (m)
µν = 0.

1.2.10 Nonminimal curvature-matter couplings: f (R,Lm) gravity

In this subsection, we will consider an unusual modification of GR: allowing for nonminimal curvature-
matter couplings like R ·Lm. We will take generic I =

∫
d4x
√
−g f (R,Lm) gravity as an example, which

was proposed in Ref.[56] and is the maximal extension of GR and IHE within the dependence of {R,Lm}.
Variation of the action I =

∫
d4x
√
−g f (R,Lm) yields

δI =

∫
d4x
√
−g

(
fR ·

δR
δgµν

+ fLm ·
δLm

δgµν
−

1
2

gµν f
)
δgµν , (1.157)
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where fR = fR(R,Lm) B d f (R,Lm)/dR, fLm = fLm(R,Lm) B d f (R,Lm)/dLm, according to Eq.(1.148),
one has

fLm ·
δLm

δgµν
=

1
2

fLm ·
(
gµνLm − T (m)

µν

)
. (1.158)

With fRδR/δgµν already calculated in Eq.(1.73) [though now it becomes fR = fR(R,Lm) as opposed to
fR = fR(R)], δI/δgµν = 0 leads to the field equation

fRRµν −
1
2

f gµν +
(
gµν2 − ∇µ∇ν

)
fR =

1
2

fLm

(
T (m)
µν − gµνLm

)
, (1.159)

whose trace is fRR− 2 f (R,Lm) + 32 fR = 1
2 fLm

(
T (m) − 4Lm

)
. Moreover, taking the contravariant derivative

of Eq.(1.159), one can see that ∇µT (m)
µν = 0 no longer holds. Instead, ∇µT (m)

µν satisfies the divergence equation

∇µT (m)
µν =

(
Lm gµν − Tµν

)
∇µ ln fLm . (1.160)

This generalized conservation equation indicates that there would be direct energy exchange between space-
time geometry and the energy-matter content under nonminimal curvature-matter couplings; for example,
Eq.(1.160) has been interpreted as a matter creation process with an irreversible energy flow from the gravi-
tational field to the created matter in accordance with the second law of thermodynamics [69, 70].

Specifically, when the matter content is minimally coupled to the spacetime metric, the coupling coeffi-
cient fLm reduces to become a constant. In accordance with the gravitational coupling strength in GR, this
constant is necessarily equal to 16πG. That is,

fLm = constant = 16πG and f (R ,Lm) = f̃ (R) + 16πGLm . (1.161)

while the field equation (1.159) becomes (with the tilde on f̃ omitted)

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR = 8πGT (m)

µν , (1.162)

which recovers the situation of minimally coupled f (R) gravity in Subsection 1.2.2. Moreover, as an ex-
tension of f (R,Lm) gravity, in Chapter 3 we will extensively investigate f (R,RαβRαβ,RαµβνRαµβν,Lm) and
f (R,G,Lm) gravities, including the equations of nongeodesic motion in different matter fields and the gen-
eralized energy-momentum conservation.

1.3 Summary

In this chapter, we have reviewed the fundamentals of GR, physical cosmology, dark energy, and relativistic
gravity. All necessary preparations have been made, and after the Statement of Co-authorship in Chapter 2,
we will begin to investigate the applications of modified gravities from Chapter 3 until Chapter 10.
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1.4 Addendum

1.4.1 Sign conventions

Throughout this thesis, we adopt the geometric conventions Rαβγδ = ∂γΓ
α
δβ − ∂δΓ

α
γβ · · · and Rµν = Rαµαν

along with the metric signature (−,+ + +). In the literature of relativistic gravity and cosmology, there exists
another set of conventions that uses Rαβγδ = ∂δΓ

α
γβ − ∂γΓ

α
δβ · · · and the metric signature (+,− − −), while the

definitions of Christoffel symbols and the contraction Rµν = Rαµαν remain the same [1].
The table below shows the changes of signs from the (−,+ + +) system into the (+,− − −) system, and

one should bear in mind that the definition of the Riemann tensor differs by an overall minus sign between
the two sets of conventions.

Metric tensor and its inverse gαβ , gαβ Changing sign

Christoffel symbols of first kind Γαβγ =
1
2

(
∂γgαβ + ∂βgαγ − ∂αgβγ

)
Changing sign

Christoffel symbols of second kind Γαβγ =
1
2

gαδ
(
∂γgdb + ∂βgδγ − ∂δgβγ

)
No change

Riemann tensor (redefined) Rαβγδ = ∂γΓ
α
βδ − ∂δΓ

α
βγ + Γε βδΓ

α
εγ − Γε βγΓ

α
εδ Changing sign

Ricci tensor Rαβ = Rγαγβ Changing sign

Scalar curvature R = gαβRαβ No change

Einstein tensor Gαβ = Rαβ −
1
2

gαβR Changing sign

Stress-energy-momentum tensor T (m)
αβ Changing sign

Cosmological constant Rαβ −
1
2

gαβR + gαβΛ = Tαβ No change

1.4.2 Fundamentals of error analysis

Besides the theories and phenomenology, this thesis also investigates the cosmological applications of mod-
ified gravity. Especially, in Chapters 9 and 10 we will deal with observational data, so let us quickly review
the fundamentals of error analyses.

Given a set of discrete measurements {xi} for the observable x, the best estimated value is the average or
mean value

x̄ =
1
n

n∑
1

xi , (1.163)

and the standard deviation of x is given by

σ =

√∑n
1(xi − x̄)2

n − 1
. (1.164)
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while the standard deviation (or standard error) of the mean value x̄ is

σm =
σ
√

n
=

√∑n
1(xi − x̄)2

n(n − 1)
. (1.165)

Then the measured value of x can be written as x = x̄ + ∆x = x̄ + σm.
For the algebraic combination of multiple and uncorrelated measurements, the propagation of indepen-

dent errors satisfy the following rules.

(1) If two mutually independent quantities are being added or subtracted, i.e. y = xi ± x j, then

∆y =

√
(∆xi)2 +

(
∆x j

)2
; (1.166)

(2) If two mutually independent quantities are being multiplied or divided, i.e. y = xix j or y = xi/x j(i , j),
then

∆y
y

=

√(
∆xi

xi

)2

+

(
∆x j

x j

)2

. (1.167)

Particularly, if one takes the power of a quantity, i.e. y = xn, Eq.(1.167) implies ∆y =
√

nxn−1∆x.

Note that these rules were already used in Eq.(1.38) to derive {Ωb0, Ωcdm0} from {Ωb0h2, Ωcdm0h2, h}.
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Chapter 3. Lessons from f (R,R2
c,R

2
m,Lm) gravity: Smooth Gauss-Bonnet

limit, energy-momentum conservation and nonminimal coupling
[Phys. Rev. D 90 (2014), 024059]

David Wenjie Tian∗1 and Ivan Booth†2

1 Faculty of Science, Memorial University, St. John’s, NL, Canada, A1C 5S7
2 Department of Mathematics and Statistics, Memorial University, St. John’s, NL, Canada, A1C 5S7

Abstract

This paper studies a generic fourth-order theory of gravity with Lagrangian density f (R,R2
c ,R

2
m,Lm),

where R2
c and R2

m respectively denote the square of the Ricci and Riemann tensors. By considering ex-
plicit R2 dependence and imposing the “coherence condition” fR2 = fR2

m
= − fR2

c
/4, the field equations of

f (R,R2,R2
c ,R

2
m,Lm) gravity can be smoothly reduced to that of f (R,G,Lm) generalized Gauss-Bonnet

gravity with G denoting the Gauss-Bonnet invariant. We use Noether’s conservation law to study the
f (R1,R2 . . . ,Rn,Lm) model with nonminimal coupling between Lm and Riemannian invariants Ri, and
conjecture that the gradient of nonminimal gravitational coupling strength ∇µ fLm is the only source for
energy-momentum nonconservation. This conjecture is applied to the f (R,R2

c ,R
2
m,Lm) model, and the

equations of continuity and nongeodesic motion of different matter contents are investigated. Finally, the
field equation for Lagrangians including the traceless-Ricci square and traceless-Riemann (Weyl) square
invariants is derived, the f (R,R2

c ,R
2
m,Lm) model is compared with the f (R,R2

c ,R
2
m,T ) + 2κLm model, and

consequences of nonminimal coupling for black hole and wormhole physics are considered.

PACS numbers: 04.20.Cv , 04.20.Fy , 04.50.Kd

3.1 Introduction

There are two main proposals to explain the accelerated expansion of the Universe [1]. The first assumes
the existence of negative-pressure dark energy as a dominant component of the cosmos [2, 3]. The second
approach seeks viable modifications of both general relativity (GR) and its alternatives [4, 5].

Focusing on modifications of GR, the original Lagrangian density can be modified in two ways: (1) ex-
tending its dependence on the curvature invariants, and (2) considering nonminimal curvature-matter coupling.
The simplest curvature-invariant modification is f (R) + 2κLm gravity [5, 6] (κ = 8πG/c4 ≡ 8πG and c = 1
hereafter), where the isolated Ricci scalar R in the Hilbert-Einstein action is replaced by a generic function of
R. In this case standard energy-momentum conservation ∇µTµν = 0 continues to hold. Further extensions have
introduced dependence on such things as the Gauss-Bonnet invariant G [4, 7] and squares of Ricci and Rie-
mann tensors {R2

c ,R
2
m} [8], leading to models with Lagrangian densities like R+ f (G)+2κLm, f (R,G)+2κLm

∗Email address: wtian@mun.ca
†Email address: ibooth@mun.ca
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and R + f (R,R2
c ,R

2
m) + 2κLm. In all these models, the spacetime geometry remains minimally coupled to the

matter Lagrangian density Lm.
On the other hand, following the spirit of nonminimal f (R)Ld coupling in scalar-field dark-energy models

[9], for modified theories of gravity an extra term λ f̃ (R)Lm was respectively added to the standard actions
of GR and f (R) + 2κLm gravity in [10] and [11], which represents nonminimal curvature-matter coupling
between R and Lm. These ideas soon attracted a lot of attention in other modifications of GR after the
work in [11], and nonminimal coupling was introduced to other gravity models such as generalized Gauss-
Bonnet gravity [6, 12] with terms like λ f (G)Lm. From these initial models, some general consequences of
nonminimal coupling were revealed. Most significantly, Lm enters the gravitational field equation directly,
nonminimal coupling violates the equivalence principle, and in general, energy-momentum conservation is
violated with nontrivial energy-momentum-curvature transformation. In [13], f (R,Lm) theory as the most
generic extension of GR within the dependence of {R,Lm} was developed, while another type of nonminimal
coupling, the f (R,T )+2κLm model, was considered in [14].

In this paper, we consider modifications to GR from both invariant-dependence and nonminimal-coupling
aspects, and introduce a new model of generic fourth-order gravity with Lagrangian density f (R,R2

c ,R
2
m,Lm).

This can be regarded as a generalization of the f (R,Lm) model [13] by adding R2
c and R2

mdependence, and an
extension of the f (R,R2

c ,R
2
m)+2κLm model [8] by allowing nonminimal curvature-matter coupling. Among

the fourteen independent algebraic invariants which can be constructed from the Riemann tensor and metric
tensor [15, 16], besides R we focus on Ricci square R2

c and Riemann square (Kretschmann scalar) R2
m, not

only because they are the two simplest square invariants (as opposed to cubic and quartic invariants [16]), but
also because they provide a bridge to generalized Gauss-Bonnet theories of gravity [6] and quadratic gravity
[17, 18]. By studying this model, we hope to get further insights into the effects of nonminimal coupling and
dependence on extra curvature invariants.

This paper is organized as follows. First of all, the field equations for L = f (R,R2
c ,R

2
m,Lm) gravity are de-

rived and nonminimal couplings with Lm and T are compared in Sec. 3.2. In Sec. 3.3, we consider an explicit
dependence on R2, and introduce the condition fR2 = fR2

m
=− fR2

c
/4 to smoothly transform f (R,R2,R2

c ,R
2
m,Lm)

gravity to the generalized Gauss-Bonnet gravity L = f (R,G,Lm); employing G, quadratic gravity is revis-
ited and traceless models like L = f (R,R2

S ,C
2,Lm) are discussed. In Sec. 3.4, we commit ourselves to

understanding the energy-momentum divergence problem associated with f (R,R2
c ,R

2
m,Lm) gravity and most

generic L = f (R1,R2 . . . ,Rn,Lm) gravity with nonminimal coupling, as an application of which, the equa-
tions of continuity and nongeodesic motion are derived in Sec. 3.5. Finally, in Sec. 3.6, two implications
of nonminimal coupling for black hole physics and wormholes are discussed. In the Appendix generalized
energy conditions of f (R,R1,R2 . . . ,Rn,Lm) and f (R,R2

c ,R
2
m,Lm) gravity are considered. Throughout this

paper, we adopt the sign convention Rαβγδ = ∂γΓ
α
δβ−∂δΓ

α
γβ · · · with the metric signature (−,+++), and follow

the straightforward metric approach rather than first-order Einstein-Palatini.
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3.2 Field equation and its properties

3.2.1 Action and field equations

The action we propose for a generic fourth-order theory of gravity with possibly nonminimal curvature-matter
coupling is

S =

∫
d4x
√
−g f (R ,R2

c ,R
2
m ,Lm) , (3.1)

where R2
c and R2

m denote the square of Ricci and Riemann curvature tensor, respectively,

R2
c B RαβRαβ , R2

m B Rαµβν Rαµβν . (3.2)

Varying the action Eq.(3.1) with respect to the inverse metric gµν, we get1

δS =

∫
d4x
√
−g

{
−

1
2

f gµν · δgµν + fR ·δR + fR2
c
· δR2

c + fR2
m
· δR2

m + fLm · δLm

}
, (3.3)

where fR B ∂ f /∂R , fR2
c
B ∂ f /∂R2

c , fR2
m
B ∂ f /∂R2

m , and fLm B ∂ f /∂Lm . δR2
c and δR2

m can be reduced into
variations of Riemann tensor,

δR2
c = δ

[
Rαβ ·

(
gαρgβσRρσ

)]
= 2R α

µ Rαν · δgµν + 2Rµν · δRαµαν , (3.4)

δR2
m = δ

[
Rαβγε ·

(
gαρgβσgγζgεηRρσζη

)]
= 4RµαβγR αβγ

ν · δgµν + 2Rαβγε ·
(
Rρβγε δgαρ + gαρ δR

ρ
βγε

)
, (3.5)

while δRλαβγ traces back to δΓλαβ through the Palatini identity

δRλαβγ = ∇β
(
δΓλγα

)
− ∇γ

(
δΓλβα

)
. (3.6)

Also, as is well known, δΓλαβ = 1
2 gλσ

(
∇αδgσβ + ∇βδgσα − ∇σδgαβ

)
[19, 20], and we keep in mind that when

raising the indices on δgαβ a minus sign appears: δgαβ = −gαµ gβν δgµν. Then, Eqs.(3.4-3.6) yield

fR ·δR �
[

fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR

]
· δgµν C H(f R)

µν · δg
µν , (3.7)

fR2
c
· δR2

c �
[
2 fR2

c
R α
µ Rαν−∇α∇ν

(
R α
µ fR2

c

)
−∇α∇µ

(
R α
ν fR2

c

)
+2

(
Rµν fR2

c

)
+gµν∇α∇β

(
Rαβ fR2

c

)]
· δgµν C H(f R2

c )
µν · δg

µν,

(3.8)

and fR2
m
· δR2

m �
[
2 fR2

m
·RµαβγR αβγ

ν + 4∇β∇α
(
Rαµβν fR2

m

)]
· δgµν C H(f R2

m)
µν · δgµν . (3.9)

Here, 2 ≡ ∇α∇α represents the covariant d’Alembertian, and the symbol � denotes an effective equivalence
by neglecting a surface integral after integration by parts twice to extract {H(f R)

µν ,H(f R2
c )

µν ,H(f R2
m)

µν }. Especial-
ly, Eq.(3.9) has utilized the combination 2∇β∇α

(
Rαµβν fR2

m

)
+2∇β∇α

(
Rανβµ fR2

m

)
= 4∇β∇α

(
Rαµβν fR2

m

)
, where the

symmetry of ∇β∇α
(
Rαµβν fR2

m

)
under the index switch µ ↔ ν is guaranteed by ∇β∇αRαµβν = ∇β∇αRαµβν ,

1The terms geometry-matter coupling and curvature-matter coupling are both used in this paper. They are not identical: the
former can be either nonminimal or minimal, while the latter by its name is always nonminimal since a curvature invariant contains at
least second-order derivative of the metric tensor. Here nonminimal coupling happens between algebraic or differential Riemannian
scalar invariants and Lm, so we will mainly use curvature-matter coupling.
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∇α∇β fR2
m

= ∇β∇α fR2
m

as well as the µ ↔ ν symmetry of its remaining expanded terms. Note that in these
equations, total derivatives in individual variations {δR , δR2

c , δR
2
m} are not necessarily pure divergences any-

more, because the nontrivial coefficients { fR , fR2
c
, fR2

m
} will be absorbed by the variations into the nonlinear

and higher-order-derivative terms in {H(f R)
µν ,H(f R2

c )
µν ,H(f R2

m)
µν }.

In the fLm · δLm term in Eq.(3.3), we make use of the standard definition of stress-energy-momentum
(SEM) density tensor used in GR (e.g. [10]- [14]), which is introduced in accordance with minimal geometry-
matter coupling and automatic energy-momentum conservation (for further discussion see Sec. 3.4.1),

Tµν B
−2
√
−g

δ(
√
−g Lm)
δgµν

(3.10)

= Lm gµν − 2
δLm

δgµν
. (3.11)

The equivalence from Eq.(3.10) to Eq.(3.11) is built upon the common assumption that Lm does not explicitly
depend on derivatives of the metric, Lm = Lm(gµν, ψm) , Lm(gµν, ∂αgµν, ψm) with ψm collectively denoting
all relevant matter fields.

After some work, Eqs.(3.3), (3.7), (3.8), (3.9) and (3.11) eventually give rise to the field equation for
f (R,R2

c ,R
2
m,Lm) gravity:

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR + H(f R2

c )
µν + H(f R2

m)
µν =

1
2

fLm

(
Tµν −Lm gµν

)
, (3.12)

where H(f R2
c )

µν and H(f R2
m)

µν were introduced in Eqs.(3.8) and (3.9) to collect all terms arising from R2
c- and R2

m-
dependence in f ,

H(f R2
c )

µν + H(f R2
m)

µν = 2 fR2
c
· R α

µ Rαν + 2 fR2
m
·RµαβγR αβγ

ν − ∇α∇ν
(
R α
µ fR2

c

)
− ∇α∇µ

(
R α
ν fR2

c

)
+ 2

(
Rµν fR2

c

)
+ gµν∇α∇β

(
Rαβ fR2

c

)
+ 4∇β∇α

(
Rαµβν fR2

m

)
.

(3.13)

Note that { f , fR, fR2
c
, fR2

m
} herein are all functions of (R,R2

c ,R
2
m,Lm), and H(f R)

µν = fRRµν+
(
gµν2 − ∇µ∇ν

)
fR has

been written down directly to facilitate comparison with GR and f (R)+2κLm or f (R,Lm) gravity. Taking the
trace of Eq.(3.12), the simple algebraic equality R =−T (where T = gµνTµν) in GR is now generalized to the
following differential relation,

−2 f + fR R + 2 fR2
c
· R2

c + 2 fR2
m
·R2

m + 2
(
3 fR + fR2

c
R
)
+ 2∇α∇β

(
Rαβ fR2

c
+ 2Rαβ fR2

m

)
= fLm

(1
2

T − 2Lm
)
. (3.14)

Compared with Einstein’s equation Rµν−Rgµν/2 = κTµν in GR, nonlinear terms and derivatives of the

metric up to fourth order have come forth and been encoded into {H(f R)
µν ,H(f R2

c )
µν ,H(f R2

m)
µν } on the left hand side of

Eq.(3.12). On the right hand side, the matter Lagrangian density Lm explicitly participates in the field equation
as a consequence of the confrontation between nonminimal curvature-matter coupling in f (R,R2

c ,R
2
m,Lm) and

the minimal-coupling definition of Tµν in Eq.(3.10). Note that not all matter terms have been moved to the
right hand side, because − 1

2 f gµν is still Lm-dependent before a concrete f (R,R2
c ,R

2
m,Lm) model gets specified

and rearranged.
Also, fLm = fLm(R,R2

c ,R
2
m,Lm) represents the gravitational coupling strength and never vanishes, so in

vacuum one has Lm = 0 and Tµν = 0 , yet fLm , 0. Such a generic coupling strength fLm will unavoidably
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violate Einstein’s equivalence principle and the strong equivalence principle unless it reduces to a constant.

3.2.2 Field equation under minimal coupling

When the matter content is minimally coupled to the spacetime metric, the coupling coefficient fLm reduces to
become a constant. In accordance with the gravitational coupling strength in GR, this constant is necessarily
equal to Einstein’s constant κ (and doubled just for scaling tradition). That is,

fLm = constant = 2κ , f (R ,R2
c ,R

2
m ,Lm) = f̃ (R ,R2

c ,R
2
m) + 2κLm . (3.15)

We have neglected the situation when fLm is a pointwise scalar field φ = φ(xα), which should be treated as a
scalar-tensor theory mixed with metric gravity: in fact, φ(xα) Lm is also a type of nonminimal coupling, but it
goes beyond the scope of this paper and will not be discussed here. Under minimal coupling as in Eq.(3.15),
the field equation (3.12) becomes (with tildes on f̃ omitted)

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR + H(f R2

c )
µν + H(f R2

m)
µν = κ Tµν , (3.16)

which coincides with the result in [8]. The weak field limit of this minimally coupled model has been system-
atically studied in [21].

3.2.3 Two types of nonminimal curvature-matter coupling

Apart from the L = f (R,R2
c ,R

2
m,Lm) model under discussion, another type of curvature-matter coupling was

introduced in [14] by the L = f (R,T ) + 2κLm model, where a curvature invariant was nonminimally coupled
to the trace of the SEM tensor T = gµνTµν rather than the matter Lagrangian density Lm. In this spirit, we
consider the following nonminimally coupled action,

S =

∫
d4x
√
−g

{
f (R ,R2

c ,R
2
m ,T ) + 2κLm

}
. (3.17)

By the standard methods we find that its field equation is:

−
1
2

f gµν + fR ·Rµν +
(
gµν2 − ∇µ∇ν

)
fR + H(f R2

c )
µν + H(f R2

m)
µν = − fT ·

(
Tµν + Θµν

)
+ κTµν , (3.18)

where { f , fR, fR2
c
, fT } are all functions of (R,R2

c ,R
2
m,T ) , H(f R2

c )
µν + H(f R2

m)
µν is given by Eq.(3.13), − fT

(
Tµν + Θµν

)
comes from the T -dependence in f (R,R2

c ,R
2
m,T ), and

Θµν B
gαβ δTαβ
δgµν

. (3.19)

As will be extensively discussed in Section 5, for some matter sources Lm cannot be uniquely specified, and
therefore the equations of continuity and motion based on Eq.(3.12) have to rely on the choice of Lm. In
such situations Tµν is easier to set up than Lm, so at first glance, it seems as if the new field equation (3.18)
could avoid the flaws from nonminimal Lm-coupling, at the cost of employing a supplementary matter tensor
Θµν. However, the definition of Θµν is still based on the relation Tµν = Lmgµν − 2δLm/δgµν in Eq.(3.11), and
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explicit calculations have revealed that [14]

Θµν = −2Tµν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
. (3.20)

Thus, both Lm and its second-order derivative with respect to the metric are hidden in Θµν, and consequently,
both f (R,R2

c ,R
2
m,T ) + 2κLm and f (R,R2

c ,R
2
m,Lm) theories are sensitive to the Lm in use. The equations of

continuity and nongeodesic motion will differ for different choices of Lm for the same matter source.
The L = f (R,R2

c ,R
2
m,Lm) model and the L = f (R,R2

c ,R
2
m,T ) + 2κLm model are both reasonable real-

izations of nonminimal curvature-matter coupling, and in this paper we have adopted the former case as a
generalization of the existing L = f (R,Lm) [13] and L = f (R,R2

c ,R
2
m) + 2κLm [8] theories. Also, it looks

redundant and unnecessary to further consider the superposition of nonminimal Lm- and T -couplings, which
can be depicted by the action

S =

∫
d4x
√
−g f (R ,R2

c ,R
2
m ,Lm ,T ) , (3.21)

whose field equation is

−
1
2

f gµν + fR ·Rµν +
(
gµν2 − ∇µ∇ν

)
fR + H(f R2

c )
µν + H(f R2

m)
µν =

1
2

fLm ·
(
Tµν −Lm gµν

)
− fT ·

(
Tµν + Θµν

)
. (3.22)

Practically it is implicitly assumed in Eq.(3.21) that nonminimal couplings happen between (R ,R2
c ,R

2
m ,Lm)

and (R ,R2
c ,R

2
m ,T ) respectively, and there is no matter-matter Lm-T coupling which would cause severe

theoretical complexity and physical ambiguity. In fact, Lm and T are not independent, as Eq.(3.11) implies
that

T = gαβTαβ = 4Lm − 2gαβ
δLm

δgαβ
. (3.23)

3.3 R2-dependence, smooth transition to generalized Gauss-Bonnet gravity,
and quadratic gravity

Generalized (Einstein-)Gauss-Bonnet gravity is perhaps the most popular and typical situation in which there
is dependence on R and the quadratic invariants {R2

c ,R
2
m} [7, 25]. However, to the best of our knowledge,

there is no demonstration of how generic fourth-order model f (R,R2
c ,R

2
m,Lm) (or f (R,R2

c ,R
2
m) + 2κLm model

if minimally coupled [8]) may be smoothly reduced into generalized Gauss-Bonnet theories. We tackle this
problem by considering an explicit dependence on R2 in f (R,R2

c ,R
2
m,Lm) gravity.

3.3.1 Two generic R2-dependent models

Based on the f (R,R2
c ,R

2
m,Lm) gravity, we consider the following situation with an explicit dependence on R2:

L = f (R ,R2 ,R2
c ,R

2
m ,Lm) . (3.24)

Here we have formally split the generic R-dependence of f (R,R2
c ,R

2
m,Lm) into an R- and R2-dependence,

fR δR 7→ fR δR + fR2 δR2, to lay the foundation for subsequent discussion. However, this f (R,R2,R2
c ,R

2
m,Lm)

Lagrangian density is not more generic than f (R,R2
c ,R

2
m,Lm) by one more variable R2. Absorbing fR2 into
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δR2 =2R δR by the replacement fR 7→ 2R fR2 in Eq.(3.7), we learn that R2-dependence would contribute to the
field equation by

fR2 ·δR2 �
[
2R fR2 ·Rµν + 2

(
gµν2 − ∇µ∇ν

) (
R· fR2

)]
·δgµν C H(f R2)

µν · δg
µν , (3.25)

and a resubstitution of fR 7→ fR+2R fR2 into Eq.(3.12) directly yields the field equation for f (R,R2,R2
c ,R

2
m,Lm)

gravity,

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR + H(f R2)

µν + H(f R2
c )

µν + H(f R2
m)

µν =
1
2

fLm

(
Tµν −Lm gµν

)
, (3.26)

where { f , fR, fR2} and the { fR2
c
, fR2

m
} in {H(f R2

c )
µν + H(f R2

m)
µν } are all functions of (R,R2,R2

c ,R
2
m,Lm).

Here we have assumed no ambiguity between the R-dependence and the R2-dependence in Eq.(3.24). To
explicitly avoid this problem, one could consider a Lagrangian density of the form,

L = f̃ (R) + f (R2 ,R2
c ,R

2
m ,Lm) . (3.27)

However, potential coupling between R2 and Lm can still be turned around and retreated as R − Lm cou-
pling, so this f̃ (R) + f (R2,R2

c ,R
2
m,Lm) model is still equally generic with f (R,R2

c ,R
2
m,Lm) as well as the

f (R,R2,R2
c ,R

2
m,Lm) just above. Setting f 7→ f̃ + f and fR 7→ f̃R + 2R fR2 in Eq.(3.12), we get the field

equation for Eq.(3.27),

−
1
2
(
f̃ + f

)
gµν + f̃R Rµν +

(
gµν2 − ∇µ∇ν

)
f̃R + H(f R2)

µν + H(f R2
c )

µν + H(f R2
m)

µν =
1
2

fLm

(
Tµν −Lm gµν

)
, (3.28)

where f̃R = f̃R(R), fR2 = fR2(R2,R2
c ,R

2
m,Lm), and { fR2

c
, fR2

m
} remain dependent on (R,R2,R2

c ,R
2
m,Lm). More-

over, Eq.(3.28) can instead be obtained from Eq.(3.26) by the replacement fR 7→ f̃R.
For subsequent investigations, it will be sufficient to just employ the former model L = f (R,R2,R2

c ,R
2
m,Lm)

and its field equation (3.26).

3.3.2 Reduced field equation with fR2 = fR2
m

= − fR2
c
/4

Now recall that the second Bianchi identity ∇γRαµβν + ∇νRαµγβ + ∇βRαµνγ = 0 implies the following simplifi-
cations, which rewrite the derivative of a high-rank curvature tensor into that of lower-rank curvature tensors
plus nonlinear algebraic terms:

∇αRαµβν = ∇βRµν − ∇νRµβ (3.29)

∇αRαβ =
1
2
∇βR (3.30)

∇β∇αRαβ =
1
2
2R (3.31)

∇β∇αRαµβν = 2Rµν −
1
2
∇µ∇νR + RαµβνRαβ − R α

µ Rαν (3.32)

∇α∇µRαν + ∇α∇νRαµ = ∇µ∇νR − 2RαµβνRαβ + 2R α
µ Rαν , (3.33)
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along with the symmetry ∇β∇αRαµβν = ∇β∇αRανβµ and ∇α∇µRαν + ∇α∇νRαµ = 2
(
2Rµν − ∇β∇αRαµβν

)
. Ap-

plying these relations to expand all the second-order covariant derivatives in Eq.(3.26), it turns out that:

Theorem: When the coefficients { fR2 , fR2
c
, fR2

m
} satisfy the following proportionality conditions,

fR2 = fR2
m

= −
1
4

fR2
c
C F , (3.34)

where F = F(R,R2,R2
c ,R

2
m,Lm), then the field equation (3.26) reduces to

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR +H

(F)
µν =

1
2

fLm

(
Tµν −Lm gµν

)
, (3.35)

where

H
(F)
µν B 2R fR2 ·Rµν − 4 fR2

m
·R α

µ Rαν +
(
2 fR2

c
+ 4 fR2

m

)
·RαµβνRαβ + 2 fR2

m
·RµαβγR αβγ

ν

+ 2R
(
gµν2 − ∇µ∇ν

)
fR2 − R α

µ ∇α∇ν fR2
c
− R α

ν ∇α∇µ fR2
c

+ Rµν2 fR2
c

+ gµν ·Rαβ∇α∇β fR2
c

+ 4 Rαµβν∇β∇α fR2
m

( fR2 = fR2
m

= − fR2
c
/4)

≡ 2RF ·Rµν − 4F ·R α
µ Rαν − 4F ·RαµβνRαβ + 2F ·RµαβγR αβγ

ν

+ 2R
(
gµν2 − ∇µ∇ν

)
F + 4R α

µ ∇α∇νF + 4R α
ν ∇α∇µF

− 4Rµν2F − 4gµν ·Rαβ∇α∇βF + 4 Rαµβν∇β∇αF .

(3.36)

H
(F)
µν δgµν = fF δF and second-order-derivative operators {2,∇α∇ν, etc} only act on the scalar functions { fR2 , fR2

c
,

fR2
m
} in contrast to H(f R2)

µν +H(f R2
c )

µν +H(f R2
m)

µν in Eq.(3.24)2.

Note that similar techniques have been employed in [24] to finalize the field equation of the dilaton-Gauss-
Bonnet model. The simplified field equation (3.35) after imposing the proportionality condition Eq.(3.34) to
Eq.(3.26) will serve as a bridge connecting f (R,R2,R2

c ,R
2
m,Lm) gravity to generalized Gauss-Bonnet gravity.

We refer to the proportionality condition Eq.(3.34) as the coherence condition to highlight the fact that it
aligns the behaviors of { fR2 , fR2

c
, fR2

m
}, and call F therein the coherence function.

3.3.3 Generalized Gauss-Bonnet gravity with nonminimal coupling

Generic L = f (R,G,Lm) model

A nice way to realize the coherence condition Eq.(3.34) is to let {R2,R2
c ,R

2
m} participate in the action through

the well-known Gauss-Bonnet invariant G,

G B R2 − 4R2
c + R2

m . (3.37)

In this case, Eq.(3.24) reduces to become the Lagrangian density of a generalized Gauss-Bonnet gravity model
allowing nonminimal curvature-matter coupling,

L = f (R ,G ,Lm) . (3.38)

2This is also why we use the denotationH (F)
µν rather than H(F)

µν
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Then the proportionality in Eq.(3.34) is naturally satisfied with the coherence function F recognized as fG B
∂ f /∂G. Given F 7→ fG, Eqs.(3.36) and (3.35) give rise to the field equation for f (R,G,Lm) gravity right
away,

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR +H

(GB)
µν =

1
2

fLm

(
Tµν −Lm gµν

)
, (3.39)

where

H
(GB)
µν B 2 fG ·RRµν − 4 fG · R α

µ Rαν−4 fG ·RαµβνRαβ+2 fG ·RµαβγR αβγ
ν + 2R

(
gµν2 − ∇µ∇ν

)
fG

+ 4R α
µ ∇α∇ν fG + 4R α

ν ∇α∇µ fG − 4Rµν2 fG − 4gµν ·Rαβ∇α∇β fG + 4 Rαµβν∇β∇α fG ,
(3.40)

and { f , fR, fG} are all functions of (R,G,Lm) , andH (GB)
µν δgµν = fG δG.

No contributions from a pure Gauss-Bonnet term

As for the G-dependence, Eqs.(3.39) and (3.40) are best simplified when fG = λ =constant; that is to say, G
joins L straightforwardly as a pure Gauss-Bonnet term, with Lagrangian density L = f (R,Lm) + λG, for
which Eq.(3.39) gives rise to the field equation (with f = f (R,Lm), fR = fR(R,Lm)):

λ·
(
−

1
2
G gµν + 2R Rµν − 4R α

µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ
ν

)
−

1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR =

1
2

fLm

(
Tµν −Lm gµν

)
.

(3.41)

At first glance, it may seem that, after G decouples from f (R,G,Lm) to form a pure term λG, the isolated
covariant density λ

√
−gG would still make a difference to the field equation by the λ·

(
. . .

)
term in Eq.(3.41).

This result conflicts our a priori anticipation that, since G is a topological invariant, variation of the Euler-
Poincaré topological density

√
−gG should not change the gravitational field equation. In fact, by setting

fR2 = fR2
c

= fR2
m

= 1 in Eqs.(3.8), (3.9) and (3.25), one has

δR2/δgµν = 2R Rµν + 2
(
gµν2 − ∇µ∇ν

)
R , (3.42)

δR2
c/δg

µν = 2R α
µ Rαν − ∇α∇νR α

µ − ∇α∇µR α
ν + 2Rµν + gµν ·∇α∇βRαβ , and (3.43)

δR2
m/δg

µν = 2 RµαβγR αβγ
ν + 4∇β∇αRαµβν , (3.44)

which together with the Bianchi implications Eqs.(3.29)-(3.33) exactly lead to

δ
(√
−gG

)
/δgµν = −

1
2
G gµν + 2R Rµν − 4R α

µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ
ν . (3.45)

Thus one can recover the term λ·
(
. . .

)
in Eq.(3.41) by directly varying the quadratic invariants comprising G.

However, in four dimensions G is a most special invariant among all algebraic and differential Riemannian
invariants R = R(gαβ,Rαµβν,∇γRαµβν, . . . ,∇γ1∇γ2 . . .∇γnRαµβν) in the sense that it respects the Bach-Lanczos
identity

δ

∫
dx4 √−gG ≡ 0 , (3.46)
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which prevents the Gauss-Bonnet covariant density λ
√
−gG from contributing to the field equation. This

identity can be verified by carrying out the variational derivative [19, 26]

δ
(√
−gG

)
δgµν

=
∂
(√
−gG

)
∂gµν

− ∂α
∂
(√
−gG

)
∂(∂αgµν)

+ ∂α∂β
∂
(√
−gG

)
∂(∂α∂βgµν)

≡ 0 . (3.47)

On the other hand, algebraic identities satisfied by the Riemann tensor also guarantee that −1
2G gµν + 2R Rµν −

4R α
µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ

ν = 0 [19].
Hence, the λ ·

(
. . .

)
term in Eq.(3.41), as a remnant of degrading the generic f (R,G,Lm) gravity and all

existing generalized Gauss-Bonnet theories, is removable, and Eq.(3.41) for L = f (R,Lm) + λG gravity
finally becomes

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR =

1
2

fLm

(
Tµν −Lm gµν

)
, (3.48)

which coincides with the field equation of L = f (R,Lm) gravity [13]. Although a pure Gauss-Bonnet term
in the Lagrangian density cannot change the gravitational field equation δ

(√
−g L

)
/δgµν = 0, it does join the

dynamical equation δ
(√
−g L

)
/δφ = 0 when G is coupled to a scalar field φ(xa) (e.g. [24]), and can still cause

nontrivial effects in other aspects (e.g. [17]).

Recovery of some typical models

f (R,G,Lm) is the maximally generalized Gauss-Bonnet gravity when {R,G,Lm} are the only scalar invari-
ants taken into account, and all existing (R,G,Lm)-dependent models can be recovered as a specialized
f (R,G,Lm) gravity. For example,

Reference Lagrangian density Specialization

[7] R/(2κ2)+ f (G)+Lm fR 7→1/(2κ2) , fG 7→ fG , fLm 7→1

[12] R/2+Lm+λ f (G) Lm fR 7→1/2 , fG 7→λLm fG , fLm 7→1+λ f (G)

[12] R/2+ f (G)+Lm+λ F(G) Lm fR 7→1/2 , fG 7→ fG+λLmFG , fLm 7→1+λF(G)

[25] f (R,G)+2κLm fR 7→ fR , fG 7→ fG , fLm 7→2κ

For a detailed review of generalized Gauss-Bonnet gravity, see [6] in which various types of nonminimal
coupling are also extensively discussed.
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3.3.4 Quadratic gravity

Following the discussion of (generalized) Gauss-Bonnet gravity, we would like to revisit the simplest case
with R2

c-dependence (and R2
m-dependence), the so-called quadratic gravity (e.g. [17]):

L = R + ã·R2 + b̃·R2
c + c̃·R2

m + d̃ ·R2
S + ẽ·C2 + 2κLm (3.49)

= R + (ã − c̃ − d̃/4 − 2ẽ/3)·R2 + (b̃ + 4c̃ + d̃ + 2ẽ)·R2
c + (c̃ + ẽ)·G + 2κLm

� R + a·R2 + b·R2
c + 2κLm . (3.50)

The first row is a general linear superposition of some popular quadratic invariants {R2,R2
c ,R

2
m,R

2
S ,C

2} with
constant coefficients {ã, b̃, . . .}, where {R2

S =R2
c − R2/4 ,C2 =R2

m − 2R2
c + R2/3} respectively denote the square

of traceless Ricci tensor and Weyl tensor (see the next subsection). In Eq.(3.50) the pure Gauss-Bonnet term
(c̃ + d̃)·G has been neglected for reasons indicated above. Substitution of

fR 7→ 1 , fR2 7→ a , fR2
c
7→ b , fR2

m
7→ 0 and fLm 7→ 2κ (3.51)

into Eq.(3.26) and Eq.(3.13) yields the field equation for the quadratic Lagrangian density Eq.(3.50),

−
1
2
(
R + a·R2 + b·R2

c
)

gµν +
(
1 + 2aR

)
Rµν + 2a

(
gµν2 − ∇µ∇ν

)
R + H(QRc)

µν = κ Tµν , (3.52)

where
H(QRc)
µν = b·

(
2R α

µ Rαν − ∇α∇νR α
µ − ∇α∇µR α

ν + 2Rµν + gµν∇α∇βRαβ
)
. (3.53)

Moreover, via the Bianchi implications Eq.(3.31) and Eq.(3.33), H(QRc)
µν can be rewritten as

H(QRc)
µν = b·

(
2RαµβνRαβ +

(1
2

gµν2 − ∇µ∇ν
)

R + 2Rµν
)
. (3.54)

Using this to rewrite Eq.(3.52), we obtain the commonly used form of the field equation [17, 18].
On the other hand, one can instead drop the Ricci square in favor of the Kretschmann scalar, and accord-

ingly manipulate Eq.(3.49) via

L = R + (ã + b̃/4 − ẽ/6)·R2 + (b̃/4 + c̃ + d̃/4 + 2ẽ)/2·R2
m − (b̃/4 + d̃/4 − ẽ/2)·G + 2κLm

� R + a·R2 + b·R2
m + 2κLm . (3.55)

Now, substitute fR 7→ 1, fR2 7→ a, fR2
c
7→ 0, fR2

m
7→ b and fLm 7→ 2κ into Eqs.(3.26) and (3.13) to obtain

−
1
2
(
R + a·R2 + b·R2

m
)

gµν +
(
1 + 2aR

)
Rµν + 2b

(
gµν2 − ∇µ∇ν

)
R + H(QRm)

µν = κ Tµν , (3.56)

where
H(QRm)
µν = b·

(
2RµαβγR αβγ

ν + 4∇β∇αRαµβν
)
, (3.57)

and H(QRm)
µν can be recast by the Bianchi property Eq.(3.33) into

H(QRm)
µν = b·

(
2RµαβγR αβγ

ν + 4RαµβνRαβ − 4R α
µ Rαν + 42Rµν − 2∇µ∇νR

)
. (3.58)
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3.3.5 Field equations with traceless Ricci and Riemann squares

It is worthwhile to mention that, as is well known in Riemann geometry, many other tensors can be built
algebraically out of {R2,Rαβ,Rαµβν}with their squares recast into {R,R2

c ,R
2
m}, such as the traceless Ricci tensor,

traceless Riemann tensor (Weyl tensor), Schouten tensor, Plebanski tensor, Bel-Robinson tensor, etc. It can
be convenient or sometimes preferable for specific purposes to employ these tensors in the field equation, so
in this subsection we will take a quick look at how the squares of these tensors in the Lagrangian density
contribute to the gravitational field equation. It is unnecessary to exhaust all these tensors here and we will
just consider the squares of traceless Ricci tensor and Weyl tensor as an example.

Traceless Ricci square

The traceless counterpart of Ricci tensor S αβ (gαβS αβ = 0) and its square (denoted as R2
S ) is,

S αβ = Rαβ −
1
4

R gαβ ⇒ R2
S B S αβS αβ = R2

c −
1
4

R2 . (3.59)

Consider f (. . . ,R2
S ) as a generic function of R2

S , where . . . collects the dependence on all other possible scalar
invariants, and the variation δ f (. . . ,R2

S ) = δ f (. . . ,R2
c − R2/4) yields

fR2
S
· δR2

S = fR2
S
·
(∂R2

S

∂R2
c
δR2

c +
∂R2

S

∂R
δR

)
= fR2

S
·
(
δR2

c −
1
2

R δR
)
. (3.60)

Absorbing fR2
S

into δR2
c by replacing fR2

c
with fR2

S
in Eq.(3.8), merging R fR2

S
into δR by replacing fR with

R fR2
S

in Eq.(3.7), and finally replacing all Ricci tensors in fR2
S
δR2

c and R fR2
S
δR by their traceless counterparts

Rαβ=S αβ + Rgαβ/4, then fR2
S
·
(
δR2

c −
1
2 R δR

)
= fR2

S
·δR2

S becomes

fR2
S
·δR2

S =

[
2 fR2

S
S α
µ S αν −

1
2

R fR2
S

S µν − ∇α∇ν
(
S α
µ fR2

S

)
−∇α∇µ

(
S α
ν fR2

S

)
+ 2

(
S µν fR2

S

)
+ gµν∇α∇β

(
S αβ fR2

S

)]
·δgµν C H

(f R2
S )

µν · δgµν ,
(3.61)

which is consistent with the field equation in [22]. Thus, for a Lagrangian density dependent on the traceless

Ricci square L = f (. . . ,R2
S ), the contributions of fR2

S
·δR2

S to the field equation is just H
(f R2

S )
µν as in Eq.(3.61).

Weyl square

Being the totally traceless part of the Riemann tensor in the Ricci decomposition, the Weyl conformal tensor
Cαβγδ (gαγgβδCαβγδ = 0) and its square (denoted as C2) are respectively

Cαβγδ = Rαβγδ +
1
2

(
gαδRβγ − gαγRβδ + gβγRαδ − gβδRαγ

)
+

1
6

(
gαγgβδ − gαδgβγ

)
R , and (3.62)

C2 B CαµβνCαµβν = R2
m − 2R2

c +
1
3

R2 = R2
m − 2R2

S −
1
6

R2 = G + 2R2
c −

2
3

R2 . (3.63)
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Given a function f (. . . ,C2) = f (. . . ,R2
m − 2R2

c + R2/3) = f (. . . ,R2
m − 2R2

S − R2/6) = f (. . . ,G+ 2R2
c − 2R2/3),

the variation δ f (. . . ,C2) yields

fC2 ·δC2 = fC2 ·
(
δR2

m − 2 δR2
c +

2
3

R δR
)

= fC2 ·
(
δR2

m − 2 δR2
S −

1
3

R δR
)

= fC2 ·
(
δG + 2 δR2

c −
4
3

R δR
)
.

(3.64)

Which of these expressions is most convenient to use will depend on which other Riemann invariants are
involved in the Lagrangian density. As such we stop at this stage: the exact expression of H(fC2)

µν δgµν B fC2·δC2

depends on which expansion we choose for C2.

3.4 Nonminimal coupling and energy-momentum divergence

From this section on, we switch our attention to another important aspect of L = f (R,R2
c ,R

2
m,Lm) gravity:

the stress-energy-momentum-conservation problem. Taking the contravariant derivative of the field equation
(3.12), we find

fLm∇
µTµν =

(
Lm gµν−Tµν

)
∇µ fLm− fR∇νR− fR2

c
∇νR2

c− fR2
m
∇νR2

m +2∇µH(f R)
µν +2∇µH(f R2

c )
µν +2∇µH(f R2

m)
µν , (3.65)

where { f , fR, fR2
c
, fR2

m
} remain as functions of the invariants (R,R2

c ,R
2
m,Lm), and {H(f R)

µν ,H(f R2
c )

µν ,H(f R2
m)

µν } have
already been concretized in Eqs.(3.7)-(3.9). However, despite the extended variable-dependence in fR(R,R2

c ,

R2
m,Lm) as opposed to f (R) + 2κLm gravity, we still have3

1
2

(
− fR∇νR + 2∇µH(f R)

µν

)
= − fR ∇µ

(1
2

R gµν
)

+ ∇µ
(

fR ·Rµν
)

+
(
∇ν2 −2∇ν

)
fR = 0 . (3.66)

It vanishes as a consequence of the contracted Bianchi identity ∇µ(Rµν − Rgµν/2) = 0 and the third-order-
derivative commutation relation (2∇ν − ∇ν2) fR = Rµν∇ν fR . Thus, Eq.(3.65) further reduces to

fLm∇
µTµν =

(
Lm gµν − Tµν

)
∇µ fLm − fR2

c
∇νR2

c − fR2
m
∇νR2

m + 2∇µH(f R2
c )

µν + 2∇µH(f R2
m)

µν , (3.67)

which constitutes the equation of energy-momentum divergence in f (R,R2
c ,R

2
m,Lm) gravity. It can be regard-

ed as a generalization of the following divergence equation in f (R,Lm) gravity [13],

∇µTµν =
(
Lm gµν − Tµν

)
∇µ ln fLm , (3.68)

with ∇µ ln fLm ≡ f −1
Lm
∇µ fLm , which in turn can be recovered from Eq.(3.67) by setting fR2

c
= 0 = fR2

m
.

In standard GR, ∇µTµν = 0 is the mathematical expression of conservation of stress-energy-momentum.
However for our models it is clear that this does not vanish and so this fundamental conservation law does
not hold in the standard form. Then, how to understand the energy-momentum nonconservation/divergence
equation (3.67)? Is it further reducible and how does it influence the equations of continuity and motion given
concrete matter sources? We will investigate these questions in a more generic framework.

3This is actually the stress-energy-momentum conservation condition of f (R) gravity with Lagrangian density L = f (R) + 2κLm

and field equation − f (R) gµν/2 + fRRµν + (gµν2 − ∇µ∇ν) fR = κTµν , except that fR = fR(R).
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3.4.1 Automatic energy-momentum conservation under minimal coupling

Consider a generic gravitational Lagrangian LG = f (R) where f (R) is an arbitrary function of an (n+2)-order
algebraic (n = 0) or differential (n ≥ 1) Riemannian invariant R:

R = R(gαβ ,Rαµβν ,∇γRαµβν , . . . ,∇γ1∇γ2 . . .∇γnRαµβν) , (3.69)

so that variational derivative of the covariant density
√
−g LG will lead to a (2n + 4)-order model of gravity.

Such an LG = f (R) is still a covariant invariant for which Noether’s conservation law would yield [27]

∇µ

 1
√
−g

δ
(√
−g f (R)

)
δgµν

 = 0 , (3.70)

which can be expanded into

fR(R) ·∇νR = 2∇µH(fR)
µν with H(fR)

µν · δg
µν B fR · δR , (3.71)

where H(fR)
µν is defined the same way as {H(f R)

µν ,H(f R2
c )

µν ,H(f R2
m)

µν } in Eqs.(3.7)-(3.9). It absorbs fR into δR and
collects all nonlinear and higher-order terms generated by fR · δR.

These results can be directly generalized to the situation where LG relies on multiple Riemannian invari-
ants, LG = f (R1,R2, . . . ,Rp) ≡ LG(gαβ,Rαµβν,∇γRαµβν, . . . ,∇γ1∇γ2 . . .∇γqRαµβν), and we have∑

i

fRi ∇νRi = 2
∑

i

∇µH(fRi)
µν with H(fRi)

µν · δg
µν B fRi · δRi , (3.72)

where fRi = fRi(R1 ,R2 , . . . ,Rp), with each Ri given by Eq.(3.69) to certain order derivatives of Riemann
tensor, and H(fRi)

µν = H(fRi)
µν (R1 ,R2 , . . . ,Rp) absorbs fRi into δRi.

Since f (R1,R2, . . . ,Rp) is a purely geometric entity solely dependent on the metric and derivatives of
Riemann tensor, Eqs.(3.71) and (3.72) arising from Noether’s theorem are also called the “generalized (con-
tracted) Bianchi identities” [27, 28]. As the simplest example, when f (R1,R2, . . . ,Rp) = R, Eq.(3.71) or
Eq.(3.72) immediately reproduces the standard contracted Bianchi identity ∇µ(Rµν − Rgµν/2) = 0 which is
often used in GR.

On the other hand, for the matter Lagrangian density Lm, Noether’s conservation law yields

∇µ

 1
√
−g

δ
(√
−g Lm

)
δgµν

 = 0 = −
1
2
∇µTµν with Tµν B

−2
√
−g

δ
(√
−g Lm

)
δgµν

, (3.73)

where Tµν is the standard stress-energy-momentum (SEM) tensor as in Eq.(3.10). This way of defining Tµν
from Noether’s law therefore naturally guarantees energy-momentum conservation ∇µTµν = 0. Moreover, in
the case of minimal coupling, it is unnecessary to consider a covariant matter density of the form

√
−g h(Lm),

since h(Lm) can always be treated as a whole, h(Lm) 7→ L̃m.
Hence, for a generic Lagrangian density where Lm is minimally coupled to the spacetime geometry:

L = LG + 2κLm = f (R1 ,R2 , . . . ,Rp) + 2κLm , (3.74)
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and whose field equation arises from extremizing the action or equivalently
1
√
−g

δ (
√
−g L )
δgµν

= 0:

−
1
2

f gµν +
∑

i

H(fRi)
µν = κTµν , (3.75)

the generalized Bianchi identities Eq.(3.72) for pure geometric LG together with the Noether-type defi-
nition of Tµν in Eq.(3.73) yield that contravariant derivatives of the left (geometry) and right (matter) -
hand side of the field equation (3.75) vanish independently4. This ensures automatic fulfillment of energy-
momentum conservation in any minimally coupled gravity theories of the form Eqs.(3.74) and (3.75), such as
L = f (R,R2

c ,R
2
m)+2κLm gravity and L = f (R,G)+2κLm gravity.

3.4.2 Divergence of SEM tensor under nonminimal coupling

Now consider a generic Lagrangian density L = f (R1, . . . ,Rp,Lm) which allows nonminimal coupling
between Lm and Riemannian invariants Ri. Noether’s law yields the following equation for the divergence of
the energy-momentum tensor,

∇µ

 1
√
−g

δ
(√
−g f (R1, . . . ,Rp,Lm)

)
δgµν

 = 0 , (3.77)

with expansion
fLm∇

µTµν =
(
Lm gµν − Tµν

)
∇µ fLm −

∑
i

fRi∇νRi + 2
∑

i

∇µH(fRi)
µν , (3.78)

where { fLm , fRi} are all dependent on (R1 . . . ,Rp,Lm), and H( fRi)
µν δgµν B fRiδRi as usual. Note that, “con-

servation” of
√
−g f (, . . . ,Rp,Lm) yields an unavoidable “divergence” term

(
Lmgµν−Tµν

)
∇µ fLm essentially

because of how Tµν was defined; that is to say, for the nonminimally coupled L = f (R1, . . . ,Rp,Lm) under
discussion, we have continued to use the definition of Tµν from Eq.(3.73) which was adapted to minimal cou-
pling. Also, for L = f (R,R1, . . . ,Rp,Lm) gravity where the first invariant is identified as the Ricci scalar,
the same argument as Eq.(3.66) yields that − fR∇νR + H( f R)

µν = 0 for fR = fR(R,R1, . . . ,Rp,Lm).
For the moment, we cannot directly use Eq.(3.72) to eliminate −

∑
i fRi∇νRi by 2

∑
i ∇

µH(fRi)
µν in Eq.(3.78)

as they are no longer purely geometric entities. In principle, the coefficient fRi = fRi(R1, . . . ,Rp,Lm) allows
for arbitrary dependence on Lm, and this complexity gets even further promoted after taking the contravariant
derivative of the effective tensor H(fRi)

µν ( fRi). Also, note that, for the Lagrangian density L = f (R,R2
c ,R

2
m,Lm)

and L = f (R,Lm) , the generic result Eq.(3.78) soon recovers Eqs.(3.65) and (3.68), which were obtained in
an alternative way from directly taking contravariant derivatives of their field equation.

As we have already learned, in Eq.(3.78) the term
(
Lmgµν − Tµν

)
∇µ fLm originates from the contradiction

4Instead of directly starting from Eq.(3.10), one can consider Tµν from the perspective of diffeomorphism (or gauge) invariance
by requiring that the total action SG + Sm be invariant under an arbitrary and infinitesimal active transformation gµν 7→ gµν + δζgµν =

gµν + ∇µζν + ∇νζµ, where ζµ vanishes at the boundary.

δSm = −
1
2
δ

∫
d4 x
√
−g Tµν δgµν = −δ

∫
d4 x
√
−g Tµν ∇

µζν � δ

∫
d4 x
√
−g (∇µTµν) ζν . (3.76)

Now the automatic conservation ∇µTµν = 0 would become a consequence of the (generalized) Bianchi identities which arise from the
diffeomorphism invariance of SG. Both ways trace back to Noether’s law.
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between the nonminimalRi−Lm coupling and the minimal definition of Tµν. However, how can we understand
the other divergence terms −

∑
i fRi∇νRi and 2

∑
i ∇

µH(fRi)
µν ? Fortunately, investigations of L = f̃ (R)+2κLm+

f (R) Lm gravity shed some light on this question.

3.4.3 Lessons from f̃ (Ri)+2κLm+ f (Ri)Lm model

Now, consider a further specialized model with Lagrangian density

L = f̃ (R1, . . . ,Rp) + 2κLm + f (R1, . . . ,Rq) ·Lm . (3.79)

Sec. 3.4.1 has shown us that, energy-momentum conservation (divergence-freeness) is automatically satisfied
for the minimally coupled component f̃ (R1, . . . ,Rp) + 2κLm, so we just need to concentrate on the nonmini-
mally coupled term f (R1, . . . ,Rq) ·Lm. Following the discussion in Sec. 3.4.2 just above, treat f (R1, . . . ,Rq) ·
Lm as an invariant, so that Noether conservation of the covariant Lagrangian density

√
−g f (R1, . . . ,Rq) ·Lm

yields

∇µ

 1
√
−g

δ
(√
−g f (R1, . . . ,Rq) ·Lm

)
δgµν

 = 0 , (3.80)

which in turn implies that

f ∇µTµν =
(
Lm gµν − Tµν

)
∇µ f −

∑
i

fRi(R1, . . . ,Rq) ·∇νRi + 2
∑

i

∇µ
(
Lm fRi · δRi

δgµν

)
. (3.81)

Note that in the last term, Lm fRi(R1, . . . ,Rq)·δRi acts as a unity rather than a triple multiplication and cannot
be expanded via the product rule when acted upon by ∇µ: In fact, Lm fRi(R1, . . . ,Rq) ·δRi C H(Lm fRi)

µν · δgµν

and thus Lm fRi is merged into δRi.
Now recall that, based on the Petrov and Serge classifications, there are fourteen independent algebraic

Riemannian invariants I = I
(
gαβ,Rαµβν

)
characterizing a four-dimensional spacetime [15, 16], among which

nine are of even parity and five are of odd parity, though this minimum set can be slightly expanded after
considering the matter content. As a special example of Eq.(3.81), energy-momentum divergence of the
nonminimally coupled Lagrangian f (I1, . . . ,I9) ·Lm was studied in [23], where {I1, . . . ,I9} refer to the nine
parity-even algebraic Riemannian invariants. Explicit calculations of H(Lm fIi)

µν and ∇µH(Lm fIi)
µν show that [23],

for each individual Ii in L = f (Ii ,Lm),

− fIi(Ii) ·∇νIi + 2∇µ
(
Lm fIi(Ii)·δIi

δgµν

)
= 0 , (3.82)

and most generally for f (I1, . . . ,I9) ·Lm with an arbitrary multiple dependence of these nine invariants,

−
∑

i

fIi(I1, . . . ,I9) ·∇νIi + 2
∑

i

∇µ
(
Lm fIi(I1, . . . ,I9)·δIi

δgµν

)
= 0 . (3.83)

Hence, the equation of energy-momentum divergence for L = f̃ (I1, . . . ,I9) + 2κLm + f (I1, . . . ,I9) · Lm

gravity finally becomes

f (I1, . . . ,I9) ·∇µTµν =
(
Lm gµν − Tµν

)
·∇µ f (I1, . . . ,I9) . (3.84)
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3.4.4 Conjecture for energy-momentum divergence

Now, let’s summarize the facts we have confirmed so far:

1. In the simplest L = f (R,Lm) gravity [13], one has − fR∇νR + 2∇µH(f R)
µν = 0, so R-dependence in L = f

makes no contribution and
(
Lm gµν − Tµν

)
∇µ fLm is the only energy-momentum divergence term;

2. In L = f (R,R1,R2, . . . ,Rp,Lm) gravity, − fR∇νR + 2∇µH(f R)
µν = 0 for fR = fR(R,R1,R2, . . . ,Rp,Lm);

3. In L = f̃ (I1, . . . ,I9) + 2κLm + f (I1, . . . ,I9) ·Lm gravity [23], one has individually − fIi(Ii) ·∇νIi +

2∇µH(Lm fIi)
µν = 0 and collectively −

∑
i fI(Ii) ·∇νIi + 2

∑
i ∇

µH(Lm fIi)
µν = 0, so

(
Lm gµν − Tµν

)
∇µ fLm is

the only nonconservation term, while Ii-dependence in f ·Lm makes no contribution;

4. In the case of minimal coupling, all algebraic and differential Riemannian invariants Ri act equally and
indiscriminately in front of Noether’s conservation law and generalized Bianchi identities.

Starting with these results, the belief that for the situation of generic nonminimal curvature-matter coupling all
Riemannian invariants continue to play equal roles in energy-momentum nonconservation/divergence leads us
to propose the following:

Weak conjecture: Consider a Lagrangian density allowing generic nonminimal coupling between the matter
density Lm and Riemannian invariants R,

L = f (R1 ,R2 . . . ,Rn ,Lm) , (3.85)

where
Ri = Ri

(
gαβ ,Rαµβν ,∇γRαµβν , . . . ,∇γ1∇γ2 . . .∇γmRαµβν

)
.

Then contributions from the Ri-dependence of L = f in the Noether-induced divergence equation cancel out
collectively,

−
∑

i

fRi · ∇νRi + 2
∑

i

∇µH(fRi)
µν = 0 , (3.86)

and the equation of energy-momentum conservation/divergence takes the form5

fLm · ∇
µTµν =

(
Lm gµν − Tµν

)
∇µ fLm , (3.87)

where H(fRi)
µν B

fRi(R1, . . . ,Lm)·δRi

δgµν
, fRi = fRi(R1, . . . ,Lm) , and fLm = fLm(R1, . . . ,Rn,Lm).

Moreover, inspired by the behavior of R in Eq.(3.66) that − fR∇νR + 2∇µH(f R)
µν = 0 in spite of fR =

fR(R,R2
c ,R

2
m,Lm), we further promote the weak conjecture to the following:

5When talking about its nontrivial divergence, Tµν can be understood as the T (NC)
µν which comes from the Lm under nonminimal

coupling, because the contribution T (MC)
µν to the total SEM tensor by an isolated (i.e. minimally coupled) covariant matter density

√
−g Lm automatically satisfies the standard stress-energy-momentum conservation.
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Strong conjecture: For every invariant Ri in L = f (R1,R2 . . . ,Rn,Lm), the divergence terms arising from
each Ri-dependence in L = f cancel out individually,

− fRi · ∇νRi + 2∇µH(fRi)
µν = 0 , (3.88)

and the equation of energy-momentum conservation/divergence remains the same as in Eq.(3.87),

fLm · ∇
µTµν =

(
Lm gµν − Tµν

)
∇µ fLm .

Specifically, when the possible nonminimal coupling reduces to ordinary minimal coupling, Eq.(3.85) will
be specialized into L = f (R1, . . . ,Rn)+2κLm as in Eq.(3.74), so Eqs.(3.86) and (3.88) in the weak conjecture
are naturally satisfied because of the generalized Bianchi identities Eqs.(3.71) and (3.72). Also, if the conjec-
ture were correct, then the generalized Bianchi indentities Eqs.(3.71) and (3.72) could be generalized again,
and they cannot serve as a sufficient condition for judging minimal coupling.

Furthermore, reading left to right the nonconservation equation (3.87) clearly shows that the energy-
momentum divergence is transformed into the gradient of nonminimal gravitational coupling strength fLm .
On the other hand, if the weak or even the strong conjecture were true, does it mean that differences between
the set of Riemannian invariants which the Lagrangian density depends on are trivial? The answer is of course
no, because the gradient ∇µ fLm is superposed by the gradient of Lm and the gradients of all characteristic
Riemannian invariants Ri used in L = f :

fLm · ∇
µTµν =

(
Lm gµν−Tµν

)
·

(
fLmLm · ∇

µLm +
∑

i

fLmRi · ∇
µRi

)
, (3.89)

where fLmLm = ∂ fLm/∂Lm , fLmRi = ∂ fLm/∂Ri. Note that, if we adopt Eq.(3.89) rather than Eq.(3.87) as
the final form of nonconservation equation, the coefficient (Lm gµν − Tµν) = 2δLm/δgµν associated to the
divergences {∇µLm ,∇

µRi} helps to clarify that they exclusively come from the Lm-dependence in L = f .
Following the weak conjecture, we now formally rewrite the divergence equation (3.67) for f (R,R2

c ,R
2
m,

Lm) gravity into
fLm · ∇

µTµν =
(
Lm gµν − Tµν

)
∇µ fLm + Eν , (3.90)

where
Eν B − fR2

c
∇νR2

c − fR2
m
∇νR2

m + 2∇µH(f R2
c )

µν + 2∇µH(f R2
m)

µν , (3.91)

and Eν is expected to vanish by the weak conjecture, while Eν ≡ 0 trivially holds under minimal coupling
because of generalized Bianchi identities. Since we have not yet proved that Eν = 0, we preserve Eν in the
divergence equation (3.90) and proceed to use it to check the equations of continuity and motion with different
matter sources.

3.5 Equations of continuity and nongeodesic motion

Once the matter content in the spacetime is known, Eq.(3.90) can be concretized in accordance with the
particular forms of Tµν, which would imply the equations of continuity of the energy-matter content and the
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equation of (nongeodesic) motion for a test particle6. This topic will be studied in this section, and note that
Tµν and Lm will be adapted to the (−,+ + +) metric signature.

3.5.1 Perfect fluid

The stress-energy-momentum (SEM) tensor of a perfect fluid (no internal viscosity, no shear stresses, and
zero thermal-conductivity coefficients) with mass-energy density ρ = ρ(xα), isotropic pressure P = P(xα) and
equation of state P = w ρ, is given by [20]

T (PF)
µν = (ρ + P) uµuν + P gµν

= ρ uµuν + P (gµν + uµuν)

= ρ uµuν + P hµν ,

(3.92)

where uµ is the four-velocity along the worldline, satisfying uµuµ = −1 and uµ∇νuµ = 0 ; hµν is the projected
spatial 3-metric, hµν B gµν + uµuν with inverse hµν = gµν + uµuν , hµνuµ = 0, and hµνhµν = 3. Substituting
Eq.(3.92) into Eq.(3.90) and multiplying both sides by uν, we get

uµ ∇µρ + (ρ + P)∇µuµ = −(Lm + ρ) uµ ∇µ ln fLm − f −1
Lm

uνEν , (3.93)

which generalizes the original continuity equation of perfect fluid in GR, uµ∇µρ + (ρ + P)∇µuµ = 0.
On the other hand, after putting Eq.(3.92) back to Eq.(3.90), use hξν to project the free index ν, and it

follows that
(ρ + P)·uµ∇µuξ = −hξµ ·∇µP + hξµ ·(Lm − P)∇µ ln fLm + f −1

Lm
hξνEν , (3.94)

where we have employed the properties hξν · uµ∇µuν = gξν · uµ∇µuν = uµ∇µuξ. In general, ρ + P , 0 (in fact
ρ + P ≥ 0 by all four energy conditions in GR, and equality happens only for matters with large negative
pressure). Thus we obtain the following absolute derivative along uξ as the equation of motion:

Duξ

Dτ
≡

duξ

dτ
+ Γ

ξ
αβu

αuβ = a ξ(PF) + a ξ( fLm ) + a ξ(E) , (3.95)

where τ is an affine parameter (e.g. proper time) for the timelike worldline along which dxα = uαdτ, and the
three proper accelerations are given by

a ξ(PF) ≡ −hξµ · (ρ + P)−1 ∇µP

a ξ( fLm) ≡ −hξµ · (ρ + P)−1 (
P −Lm

)
∇µ ln fLm

a ξ(E) ≡ −hξν · (ρ + P)−1 f −1
Lm
Eν .

(3.96)

Thus, three proper accelerations are responsible for the nongeodesic motion. a ξ(PF) is the standard acceleration

from the pressure of fluid as in GR [20], a ξ( fLm ) comes from the curvature-matter coupling, while a ξ(E) is a
collaborative effect of the {R2

c-, R2
m-}dependence in the action and their generic nonminimal coupling to Lm.

This is consistent with the result in [11] in the absence of {R2
c , R2

m}. Also, all three accelerations are orthogonal

6The method and discussion in this section are also valid for a generic L = f (R1,R2 . . . ,Rn,Lm) gravity as in Eq.(3.86), and we
just need to define the effective 1-form Ẽν = −

∑
i fRi (R1 . . .Lm) ·∇νRi + 2

∑
i ∇

µH(f Ri)
µν in place of the Eν for f (R,R2

c ,R
2
m,Lm) gravity.

Specifically, Ẽν ≡ 0 under minimal coupling, and furthermore Ẽν vanishes universality if the weak conjecture were correct.
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to the worldline with tangent uξ, since

a ξ(PF)uξ = 0 , a ξ( fLm )uξ = 0 , a ξ(E)uξ = 0 . (3.97)

Both Eq.(3.93) and Eqs.(3.95) and (3.96) depend on the choice of the perfect-fluid matter Lagrangian
density. If Lm = −ρ [20, 29], the continuity equation (3.93) becomes

uµ ∇µρ + (ρ + P)∇µuµ = − f −1
Lm

uνEν , (3.98)

which is free from the gradient of the geometry-matter coupling strength f −1
Lm

uµ∇µ fLm , while a ξ( fLm ) reduces
to

a ξ( fLm ) ≡ −hξµ · ∇µ ln fLm , (3.99)

which does not rely on the equation of state P = w ρ.
On the other hand, for the choice Lm = P [29, 30], Eq.(3.93) and Eq.(3.96) respectively yields

uµ ∇µρ + (ρ + P)∇µuµ = −(ρ + P) uµ ∇µ ln fLm − f −1
Lm

uµEµ , (3.100)

and
a ξ( fLm ) ≡ 0 . (3.101)

Although the continuity equation (3.100) looks pretty ordinary, the proper acceleration a ξ( fLm ) vanishes iden-
tically for Lm = P and consequently the nongeodesic motion in the gravitational field of the perfect fluid
becomes independent of the gradient of the nonminimal coupling strength uµ∇µ fLm .

As shown in [31], both Lm = P and Lm = −ρ are correct matter densities and both lead to the SEM
tensor given in Eq.(3.92). Differences of physical effects only occur in the situation of nonminimal coupling,
where Lm becomes a direct and explicit input in the energy-momentum divergence equation. In fact, as for
the matter Lagrangian density Lm for a perfect fluid, one can also adopt the following ansatz,

Lm = (aρ + bP)·gαβuαuβ + (cρ + dP)·gαβgαβ = (4c − a) ρ + (4d − b) P . (3.102)

Applying this to Eq.(3.11), the equality with Eq.(3.92) yields a = −1/2 = b and c = −1/4 = −d, so

Lm =

(
−

1
2
ρ −

1
2

P
)
·gαβuαuβ +

(
−

1
4
ρ +

1
4

P
)
·gαβgαβ = −

1
2
ρ +

3
2

P . (3.103)

This density makes Eqs.(3.93), (3.95) and (3.96) act normally, losing the aforementioned extraordinary prop-
erties associated with Lm = −ρ and Lm = P.

3.5.2 (Timelike) Dust

The (timelike) dust source with mass-energy density ρ has SEM tensor [20, 30]

T (Dust)
µν = ρ uµuν , (3.104)
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where uµ = gµνuν with uν being the tangent vector field along the worldline of a timelike dust particle. One can
still introduce the spatial metric hµν ≡ gµν + uµuν orthogonal to uµ, with {uµ , hµν} sharing all those properties
as in the case of perfect fluid, so dust acts just like a perfect fluid with zero pressure, P = 0. Substituting
Eq.(3.104) back into Eq.(3.90) and multiplying by uν on both its sides yields

uµ ∇µρ + ρ∇µuµ = −
(
Lm + ρ

)
uν∇ν ln fLm − f −1

Lm
uνEν , (3.105)

which modifies the continuity equation of dust ∇µ(ρuµ) = 0 in GR. Meanwhile, projection of the free index ν
by hξν in ∇µT (Dust)

µν gives rise to the modified equation of motion

Duξ

Dτ
≡

duξ

dτ
+ Γ

ξ
αβu

αuβ = â ξ( fLm ) + â ξ(E) , (3.106)

where  â ξ( fLm ) ≡ hξµ · ρ−1 Lm ∇µ ln fLm

â ξ(E) ≡ −hξν · ρ−1 f −1
Lm
Eν .

(3.107)

Being pressureless, the dust inherits just the two extra accelerations â ξ( fLm ) and â ξ(E), and both remain orthogo-
nal to the worldline with tangent uξ,

â ξ( fLm )uξ = 0 , â ξ(E)uξ = 0 . (3.108)

3.5.3 Null dust

The SEM tensor for null dust with energy density % is (e.g. [30])

T (ND)
µν = % `µ`ν , (3.109)

where `µ = gµν`ν with `ν being the tangent vector field along the worldline of a null dust particle, `µ`µ = 0.
T (ND)
µν together with the energy-momentum divergence equation (3.90) yields

`ν `
µ∇µ% + % `µ∇µ`ν + % `ν∇µ`

µ =
(
Lm gµν − % `µ`ν

)
∇µ ln fLm + f −1

Lm
Eν . (3.110)

Multiplying both sides with `ν, `ν`ν = 0, `ν∇µ`ν = 0, we obtain the following constraint:

fLm `
ν∇ν fLm = −`νEν . (3.111)

Now, introduce an auxiliary null vector field nµ as null normal to `µ such that nµnµ = 0, `µnµ = −1, which
induces the two-dimensional spatial metric gµν = −`µnν − nµ`ν + qµν, satisfying the conditions

qµνqµν = 2 , qµν`ν = 0 = qµνnν , `α∇αqµν = 0 . (3.112)

Multiplying Eq.(3.110) by nν, and with nν∇µ`ν = −`ν∇µnν, we get the continuity equation

`µ∇µ% + %∇µ`
µ + %`ν`µ∇µnν = −

(
Lm nµ + % `µ

)
∇µ ln fLm − f −1

Lm
nνEν , (3.113)
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while projecting Eq.(3.110) with hξν gives rise to the equation of motion along `ξ,

% `µ∇µ`
ξ = % `ξ`ν`µ∇µnν + hξν Lm ∇ν ln fLm + f −1

Lm
hξνEν , (3.114)

D`ξ

Dλ
≡

d`ξ

dλ
+ Γ

ξ
αβ`

α`β = ǎξ(ND) + ǎξ( fLm ) + ǎξ(E) , (3.115)

where λ is an affine parameter for the null worldline along which dxα = `αdξ, and the three proper accelera-
tions are respectively 

ǎ ξ(ND) ≡ `ξ`ν`µ∇µnν

ǎ ξ( fLm ) ≡ hξµ · %−1Lm ∇ν ln fLm

ǎ ξ(E) ≡ hξν · %−1 f −1
Lm
Eν .

(3.116)

As we can see, compared with timelike dust, one more proper acceleration ǎ ξ(ND) shows up in the case of null
dust, and we will refer to it the affine acceleration or inaffinity acceleration.

3.5.4 Scalar field

The matter Lagrangian density and SEM tensor of a massive scalar field φ(xα) with mass m in a potential V(φ)
are respectively given by

Lm = −
1
2
(
∇αφ∇

αφ + m2φ2) + V(φ) ,

Tµν =∇µφ∇νφ −
1
2

gµν
(
∇αφ∇

αφ + m2φ2 − 2V(φ)
)
,

(3.117)

thus Lm gµν − Tµν = −∇µφ∇νφ. For the ν component, the equations of continuity and motion are both given
by (

2φ − m2φ + Vφ
)
·∇νφ = −∇νφ ·∇µφ∇

µ ln fLm + f −1
Lm
Eν . (3.118)

Specifically, by setting V(φ) = 0 and under minimal coupling ( fLm =constant, Eν=0), we get

2φ − m2φ = 0 , (3.119)

which is the standard covariant Klein-Gordon equation for spin-zero particles in GR.

3.6 Further physical implications of nonminimal coupling

We have seen that under nonminimal curvature-matter coupling, the divergence of the standard SEM density
tensor is equal to the gradient of the coupling strength ∇µ fLm which, in general, will be nonvanishing. As such,
the usual energy-momentum conservation laws for particular matter fields will be modified as compared to
the corresponding fields in general relativity. At the same time, as is discussed in the Appendix , nonminimal
coupling also affects the energy conditions. The standard energy energy conditions of general relativity are
phrased in terms of the stress-energy tensor and require positive energies (null and strong) and causal flows
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of matter (dominant). However, in applications these conditions are generally used to constrain the Riemann
tensor and so the allowed geometries of spacetime and structures like singularities or horizons. For standard
general relativity the two approaches are essentially equivalent but for modified gravity they are not: if the
Einstein equations are modified then the bounds on the Ricci tensor that achieve the desired effects generally
do not translate into the usual restrictions on the stress-energy-momentum. Thus one is faced with a choice:
either keep the standard GR results and give up the usual energy conditions or keep the usual energy conditions
but lose those results.

In this section we consider some immediate physical consequences of this choice. All of these are con-
sequences of the Raychaudhuri equations for null and timelike geodesic congruences and so the difference
between the standard energy conditions and those needed to enforce the focussing theorems is crucial to these
discussions. These are considered in some detail in the Appendix and in the following T (eff)

µν refers to an ef-
fective stress-energy tensor for which the standard form of the energy conditions will leave those theorems
intact.

3.6.1 Black hole physics

Many results in black hole physics follow from understanding a black hole horizon as a congruence of null
geodesics whose evolution is governed by the (twist-free) Raychaudhuri equation:

dθ(`)

dλ
= κ(`)θ(`) −

1
2
θ2

(`) − σ
(`)
µνσ

µν
(`) − Rµν`µ`ν , (3.120)

where `µ =
(
∂
∂λ

)µ
is a null tangent to the horizon, and κ(`), θ(`) and σ(`)

µν are respectively the associated acceler-
ation/inaffinity, expansion and shear.

The second law of black hole mechanics follows from this equation along with the requirement that the
congruence of null curves that rules the event horizon have no future endpoints (see, for example, the discus-
sion [20]). Now choosing an affine parameterization for the congruence κ(`) = 0 it is straightforward to see
that the righthand side of (3.120) is nonpositive as long as Rµν`µ`ν ≥ 0. In standard GR this follow from the
null energy condition: Tµν`µ`ν ≥ 0. It then almost immediately follows that θ(`) must be everywhere nonneg-
ative. Else θ(`) → −∞ and the congruence focuses. However, for modified gravity we will usually lose the
equivalence Tµν`µ`ν ≥ 0 ⇔ Rµν`µ`ν ≥ 0 and so we will be faced with a modified area increase theorem if we
require the standard energy conditions.

By similar arguments, again involving the null Raychaudhuri equation, the energy conditions play a crucial
role in the theorems that require trapped surfaces to be contained in black holes and singularities to lie in their
causal future [20]. Thus for black hole physics, modifications of the energy conditions are a serious business
which can affect core results and intuitions.

3.6.2 Wormholes

On the other hand, for those interested in faster-than-light travel changing the energy conditions would be a
boon. Introducing the nonminimal gravitational coupling strength fLm brings new flexibility and the possibility
of supporting wormholes, as shown in [32] and [33] for a λR · Lm coupling term. More generally for the
L = f (R,R1, . . . ,Rn,Lm) gravity, based on the generalized null and weak energy conditions developed in
the Appendix, it proves possible to defocus null and timelike congruences and form wormholes by violating
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these generalized conditions, while having the standard energy conditions in GR [20] maintained to exclude
the need for exotic matters. It also leads to an extra constraint fLm/ fR ≥ 0 as in Eq.(3.138).

From Eq.(3.139) in the Appendix, for a null congruence `µ, one can maintain the standard null energy
condition Tµν`µ`ν ≥ 0 while violating T (eff)

µν `µ`ν ≤ 0 (and so evade the focusing theorems) if

0 ≤ Tµν `µ`ν ≤ 2 f −1
Lm

(∑
i

H(fRi)
µν `µ`ν − `ν`µ∇µ∇ν fR

)
. (3.121)

Similarly for a timelike congruence, one has Tµν uµuν ≥ 0 while T (eff)
µν uµuν ≤ 0, and Eq.(3.140) leads to

0 ≤ Tµνuµuν ≤ f −1
Lm

(
f − R fR + 2

∑
i

H(fRi)
µν uµuν − 2

(
uµuν∇µ∇ν + 2

)
fR

)
−Lm . (3.122)

Specifically for L = f (R,R2
c ,R

2
m,Lm) gravity, these two conditions are concretized as

0 ≤ Tµν `µ`ν ≤ 2 f −1
Lm

(
H(f R2

c )
µν `µ`ν + H(f R2

m)
µν `µ`ν − `ν`µ∇µ∇ν fR

)
and (3.123)

0 ≤ Tµνuµuν ≤ f −1
Lm

(
f − R fR + 2H(f R2

c )
µν uµuν + 2H(f R2

m)
µν uµuν − 2

(
uµuν∇µ∇ν + 2

)
fR

)
−Lm , (3.124)

where {H(f R2
c )

µν , H(f R2
m)

µν } have been given in Eqs.(3.8) and (3.9).
Moreover, Eqs.(3.121)(3.122) indicate that in the case without dependence on Riemannian invariants be-

yond R, i.e. L = f (R,Lm), a wormhole can be solely supported by the nonminimal-coupling effect if

0 ≤ Tµν `µ`ν ≤ −2 f −1
Lm

`ν`µ∇µ∇ν fR and (3.125)

0 ≤ Tµνuµuν ≤ −Lm + f −1
Lm

(
f − R fR − 2

(
uµuν∇µ∇ν + 2

)
fR

)
. (3.126)

For example, let L = f (R,Lm) = R + 2κLm + λRLm, and the field equation (3.48) becomes

Rµν −
1
2

Rgµν + λ ·
(
LmRµν + (gµν2 − ∇µ∇ν)Lm

)
= (κ +

1
2
λR)Tµν (3.127)

To have a quick realization of Eq.(3.125), we further assume λ = 1, Tµν = diag[−ρ(r), P(r), P(r), P(r)],
Lm = P(r) (recall Sec. 3.5.1), and adopt the following simplest wormhole metric,

ds2 = −dt2 + dr2 + (r2 + L2) ·
(
dθ2 + sin2θ dφ2

)
, (3.128)

with minimum throat scale L and outgoing radial null vector field `µ∂µ = (−1, 1, 0, 0). Then the condition
Eq.(3.125) reduces to become

0 ≤ −ρ + 3P ≤
(
1 +

r2

L2

)
∂r∂rP , (3.129)

which clearly shows that the standard null energy condition remains valid while spatial inhomogeneity of the
pressure ∂r∂rP supports the wormhole.

Finally, note that it remains to be carefully checked whether solutions exist that meet these conditions.
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3.7 Conclusions

In this paper, we have derived the field equation for L = f (R,R2
c ,R

2
m,Lm) fourth-order gravity allowing

for participation of the Ricci square R2
c and Riemann square R2

m in the Lagrangian density and nonminimal
coupling between the curvature invariants and Lm as compared to GR. It turned out that Lm appears explicitly
in the field equation because of confrontation between the nonminimal coupling and the traditional minimal
definition of the SEM tensor Tµν. When fLm = constant = 2κ, we recover the minimally coupled L =

f (R,R2
c ,R

2
m) + 2κLm model. Also, we have showed that both the curvature-Lm nonminimal coupling and the

curvature-T coupling are sensitive to the concrete forms of Lm.
Secondly, by considering an explicit R2-dependence, we have found the smooth transition from f (R,R2

c ,

R2
m,Lm) gravity to the L = f (R,G,Lm) generalized Gauss-Bonnet gravity by imposing the coherence con-

dition fR2 = fR2
m

= − fR2
c
/4. When f (R,G,Lm) reduces to the case f (R,Lm) + λG where G appears as a pure

Gauss-Bonnet term, an extra term λ
(
− 1

2G gµν + 2R Rµν − 4R α
µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ

ν
)

is left behind
in the field equation representing the contribution from the covariant density λ

√
−gG. We have shown that this

term actually vanishes and thus λG makes no difference to the gravitational field equation.
After studying the Gauss-Bonnet limit of f (R,R2

c ,R
2
m,Lm) gravity, we moved on to more generic theories

focusing on how the the standard stress-energy-momentum conservation equation ∇µTµν = 0 in GR is violat-
ed. Under minimal coupling with L = f (R1, . . . ,Rp) + 2κLm, we commented that the generalized Bianchi
identities and the Noether-induced definition of SEM tensor lead to automatic energy-momentum conserva-
tion. Under nonminimal coupling with L = f (R1, . . . ,Rp,Lm), we have proposed a weak conjecture and
a strong one which state that the gradient of the nonminimal gravitational coupling strength ∇µ fLm is the
only divergence term balancing fLm∇

µTµν, while contributions from Ri-dependence in the divergence equa-
tion all cancel out. Using the energy-momentum nonconservation equation specialized for f (R,R2

c ,R
2
m,Lm)

gravity, we have derived the equations of continuity and nongeodesic motion in the matter sources for per-
fect fluids, (timelike) dust, null dust, and massive scalar fields. These equations directly generalize those in
f (R1, . . . ,Rp,Lm) gravity.

Also, within f (R1, . . . ,Rp,Lm) gravity, we have considered some implications of nonminimal coupling
and Ri-dependence for black hole and wormhole physics. Moreover, it is expected that the L = f (R,R2

c ,R
2
m,

Lm) model can provide many more possibilities to realize the late-time phase transition from cosmic deceler-
ation to acceleration, and the energy-momentum nonconservation relation fLm · ∇

µTµν =
(
Lmgµν − Tµν

)
∇µ fLm

under nonminimal coupling can cause interesting consequences in early-era cosmic evolution and compact as-
trophysical objects if is effective as a high-energy phenomenon. These topics will be extensively investigated
in prospective studies.
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Appendix: Generalized energy conditions for f (R,R1, . . . ,Rn,Lm) gravity

For the generic L = f (R,R1, . . . ,Rn,Lm) gravity introduced in Section 4, the variational principle or equiv-

alently
1
√
−g

δ (
√
−g L )
δgµν

= 0 yields the field equation:

−
1
2

f gµν + fR Rµν +
(
gµν2 − ∇µ∇ν

)
fR +

∑
i

H(fRi)
µν =

1
2

fLm ·
(
Tµν −Lm gµν

)
, (3.130)

where H(fRi)
µν · δgµνB fRi · δRi. An immediate and very useful implication of this field equation is a group of

generalized null, weak, strong and dominant energy conditions (abbreviated into NEC, WEC, SEC and DEC
respectively), which has been employed in Sec. 3.6.2 in studying effects of nonminimal coupling in supporting
wormholes.

Recall that in a (region of) spacetime filled by a null or a timelike congruence, the expansion rate along
the null tangent `µ or the timelike tangent uµ is given by the respective Raychaudhuri equation [20]:

`µ∇µθ(`) =
dθ(`)

dλ
= κ(`)θ(`) −

1
2
θ2

(`) − σ
(`)
µνσ

µν
(`) + ω(`)

µνω
µν
(`) − Rµν`µ`ν and (3.131)

uµ∇µθ(u) =
dθ(u)

dτ
= κ(u)θ(u) −

1
3
θ2

(u) − σ
(u)
µνσ

µν
(u) + ω(u)

µνω
µν
(u) − Rµνuµuν . (3.132)

Under affine parametrizations one has κ(`) = 0 = κ(u), for hypersurface-orthogonal congruences the twist
vanishes ωµνωµν = 0, and the shear as a spatial tensor (σ(`)

µν`
µ = 0, σ(u)

µν uµ = 0) always satisfies σµνσµν ≥ 0.
Thus, to ensure dθ(`)/dλ ≤ 0 and dθ(u)/dτ ≤ 0 under all conditions so that “gravity always gravitates” and the
congruence focuses, the following geometric nonnegativity conditions should hold:

Rµν`µ`ν ≥ 0 (NEC) , Rµνuµuν ≥ 0 (SEC) . (3.133)

On the other hand, the field equation (3.12) can be recast into a compact GR form,

Gµν ≡ Rµν −
1
2

Rgµν = κ T (eff)
µν , R = −κ T (eff) , Rµν = κ

(
T (eff)
µν −

1
2

gµνT (eff)
)
, (3.134)

where all terms beyond GR (Gµν = κTµν) in Eq.(3.130) have been packed into the effective SEM tensor T (eff)
µν ,

T (eff)
µν =

1
2κ

fLm

fR

(
Tµν −Lm gµν

)
+

1
2κ

fLm

fR

(
( f − R fR) gµν + 2

(
∇µ∇ν − gµν2

)
fR − 2

∑
i

H(fRi)
µν

)
. (3.135)

The purely geometric conditions Eq.(3.133) can be translated into matter nonnegativity conditions through
Eq.(3.134),

T (eff)
µν `µ`ν ≥ 0 (NEC) , T (eff)

µν uµuν ≥
1
2

T (eff)uµuµ (SEC) , T (eff)
µν uµuν ≥ 0 (WEC) , (3.136)

where uµuµ = −1 in SEC for the signature (−,+ + +) used in this paper. Then the generalized NEC in
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Eq.(3.136) is expanded into (as κ > 0)

fLm

fR
Tµν `µ`ν +

2
fR

(
`ν`µ∇µ∇ν fR −

∑
i

H(fRi)
µν `µ`ν

)
≥ 0 , (3.137)

which is the simplest one with Lm absent. Now, consider a special situation where fR =constant and H(fRi)
µν =0

(i.e. dropping all dependence on Ri in f ), so Eq.(3.137) reduces to
(

fLm/ fR
)
·Tµν`µ`ν ≥ 0; since Tµν`µ`ν ≥ 0

due to the standard NEC in GR, which continues to hold here as exotic matters are unfavored, we obtain an
extra constraint

fLm

fR
≥ 0 , (3.138)

with which Eq.(3.137) becomes

Tµν `µ`ν + 2 f −1
Lm

(
`ν`µ∇µ∇ν fR −

∑
i

H(fRi)
µν `µ`ν

)
≥ 0 , (3.139)

and the WEC in Eq.(3.136) can be expanded into

Tµνuµuν + Lm + f −1
Lm

(
R fR − f + 2

(
uµuν∇µ∇ν + 2

)
fR − 2

∑
i

H(fRi)
µν uµuν

)
≥ 0 . (3.140)

In general, the pointwise nonminimal coupling strength fLm can take either positive or negative values. How-
ever, recall that within f (R) + 2κLm gravity, physically viable models specializing f (R) should satisfy fR > 0
and fRR > 0 [5]; if this were still true in f (R,R1, . . . ,Rn,Lm) gravity, we would get fLm > 0 by the extra con-
straint Eq.(3.138), which would be in strong agreement with the case of minimal coupling when fLm = 2 κ > 0.

Applying Eqs.(3.135), (3.139) and (3.140) to the Lagrangian density L = f (R,R2
c ,R

2
m,Lm), we immedi-

ately obtain

T (eff)
µν =

1
2κ

fLm

fR

(
Tµν −Lm gµν

)
+

1
2κ

fLm

fR

(
( f − R fR) gµν + 2

(
∇µ∇ν − gµν2

)
fR − 2H(f R2

c )
µν − 2H(f R2

m)
µν

)
. (3.141)

as the effective SEM tensor for for f (R,R2
c ,R

2
m,Lm) gravity. Then relative to the standard SEM tensor the

generalized null and weak energy conditions respectively become

Tµν `µ`ν + 2 f −1
Lm

(
`ν`µ∇µ∇ν fR − H(f R2

c )
µν `µ`ν − H(f R2

m)
µν `µ`ν

)
≥ 0 and (3.142)

Tµνuµuν + Lm + f −1
Lm

(
R fR − f + 2

(
uµuν∇µ∇ν + 2

)
fR − 2H(f R2

c )
µν uµuν − 2H(f R2

m)
µν uµuν

)
≥ 0 , (3.143)

where {H(f R2
c )

µν , H(f R2
m)

µν } have been given in Eqs.(3.8) and (3.9).
Also, with Eq.(3.135) one can directly obtain the concrete forms SEC and DEC for L = f (R,R1, . . . ,Rn,

Lm) gravity, which however will not be listed here.
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Chapter 4. Friedmann equations from nonequilibrium thermodynamics of

the Universe: A unified formulation for modified gravity
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Abstract

Inspired by the Wald-Kodama entropy S = A/(4Geff) where A is the horizon area and Geff is the ef-
fective gravitational coupling strength in modified gravity with field equation Rµν−Rgµν/2 = 8πGeffT (eff)

µν ,
we develop a unified and compact formulation in which the Friedmann equations can be derived from
thermodynamics of the Universe. The Hawking and Misner-Sharp masses are generalized by replacing
Newton’s constant G with Geff, and the unified first law of equilibrium thermodynamics is supplemented
by a nonequilibrium energy dissipation term E which arises from the revised continuity equation of the
perfect-fluid effective matter content and is related to the evolution of Geff. By identifying the mass as
the total internal energy, the unified first law for the interior and its smooth transit to the apparent horizon
yield both Friedmann equations, while the nonequilibrium Clausius relation with entropy production for
an isochoric process provides an alternative derivation on the horizon. We also analyze the equilibrium
situation Geff = G = constant, provide a viability test of the generalized geometric masses, and discuss
the continuity/conservation equation. Finally, the general formulation is applied to the FRW cosmol-
ogy of minimally coupled f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R,G)
generalized Gauss-Bonnet and dynamical Chern-Simons gravity. In these theories we also analyze the
f (R)-Brans-Dicke equivalence, find that the chameleon effect causes extra energy dissipation and entropy
production, geometrically reconstruct the mass ρmV for the physical matter content, and show the self-
inconsistency of f (R,G) gravity in problems involving Geff.

PACS numbers: 04.20.Cv , 04.50.Kd , 98.80.Jk

4.1 Introduction

Ever since the discovery of black hole thermodynamics [1], physicists have been searching for more and
deeper connections between relativistic gravity and fundamental laws of thermodynamics. One avenue of
investigation by Gibbons and Hawking [2] found that the event horizon with radius ` for the de Sitter space-
time also produces Hawking radiation of temperature 1/(2π`). Jacobson [3] further showed within general
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relativity (GR) that on any local Rindler horizon, the entropy S = A/4G and the Clausius relation TdS = δQ
could reproduce Einstein’s field equation, with δQ and T being the energy flux and the Unruh temperature
[4].

Besides global and quasilocal black-hole horizons [5, 6] and the local Rindler horizon, another familiar
class of horizons are the various cosmological horizons. Frolov and Kofman [7] showed that for the flat
quasi-de Sitter inflationary universe, dE = TdS yields the Friedmann equation for the rolling inflaton field,
and with metric and entropy perturbations it reproduces the linearized Einstein equations. By studying
the heat flow during an infinitesimal time interval on the apparent horizon of the FRW universe within
GR, Cai and Kim [8] showed that the Clausius thermal relation TdS = δQ = −Aψ yields the second
Friedmann gravitational equation with any spatial curvature, from which the first Friedmann equation can
be directly recovered via the continuity/conservation equation of the perfect-fluid matter content. This work
soon attracted much interest, and cosmology in different dark-energy content and gravity theories came into
attention.

In [9] it was found that extensions of this formulation from GR to f (R) and scalar-tensor theories are
quite nontrivial, and the entropy formulas S = A fR/4G and S = A f (φ)/4G for black-hole horizons prove in-
consistent in recovering Friedmann equations. In the meantime, Eling et al. [10] studied nonequilibrium ther-
modynamics of spacetime and found that f (R) gravity indeed corresponds to a nonequilibrium description
and therefore needs an entropy production term to balance the energy supply; the nonequilibrium Clausius
relation δQ = T (dS + dpS ) with S = A fR/(4G) then recovers the Friedmann equations. This nonequilib-
rium picture has been widely accepted, and relativistic gravity theories with nontrivial coefficient for Rµν
or equivalently T (m)

µν (hence nontrivial gravitational coupling strength Geff) in their field equations always re-
quire a nonequilibrium description. Following [10], Friedmann equations are recovered from nonequilibrium
thermodynamics within scalar-tensor gravity with horizon entropy S = A f (φ)/(4G) [11]. Besides the most
typical f (R) [9, 10] and scalar-tensor [9, 11] gravity, Friedmann equations from the Clausius relation are also
studied in higher-dimensional gravity models like Lovelock gravity [8, 11] and Gauss-Bonnet gravity [8].

In the early investigations within modified and alternative theories of gravity, the standard definition of
the Misner-Sharp mass [12] was used. However, the interesting fact that higher-order geometrical term or
extra physical degrees of freedom beyond GR act like an effective matter content encourages the attempts to
generalize such geometric definitions of mass in modified gravity. [13] generalized the Misner-Sharp mass in
f (R) gravity, and also for the FRW universe in the scalar-tensor gravity. In [14], a masslike function was em-
ployed in place of the standard Misner-Sharp mass, so that for f (R) and scalar-tensor gravity the Friedmann
equations on the apparent horizon could be recovered from the equilibrium Clausius relation TdS = δQ
without the nonequilibrium correction of [10]. Moreover, the opposite process of [8] to inversely rewrite
the Friedmann equations into the thermodynamic relations has been investigated as well. For example, [15]
studies such reverse process for GR, Lovelock and Gauss-Bonnet gravity, [16] for f (R) gravity, [17] for the
braneworld scenario, and [18] for generic f (R ,φ ,∇αφ∇αφ) gravity. Also, the field equations of various
modified gravity are recast into the form of the Clausius relation in [19]. One should carefully distinguish
the problem of “thermodynamics to Friedmann equations” with “Friedmann equations to thermodynamics”,
to avoid falling into the trap of cyclic logic.

Considering the discreteness of these works following [8] and the not-so-consistent setups of thermo-
dynamic quantities therein, we are pursuing a simpler and more concordant mechanism hiding behind
them: the purpose of this paper is to develop a unified formulation which derives the Friedmann equa-
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tions from the (non)equilibrium thermodynamics of the FRW universe within all relativistic gravity with
field equation Rµν − Rgµν/2 = 8πGeffT (eff)

µν with a possibly dynamical Geff. These theories include fourth-
order modified theories of gravity in the metric approach (as opposed to Palatini) (eg. [20, 21]) with
Lagrangian densities like L = f (R) + 16πGLm [22] , L = f (R,G) + 16πGLm [23] (G denoting the
Gauss-Bonnet invariant), L = f (R,RµνRµν,RµανβRµανβ) + 16πGLm [24] and quadratic gravity [25]; al-
ternative theories of gravity1 like Brans-Dicke [26] and scalar-tensor-chameleon [27] in the Jordan frame;
typical dark-energy models L = R + f (φ ,∇αφ∇αφ) + 16πGLm [28], and even generic mixed models like
L = f (R ,φ ,∇αφ∇αφ) + 16πGLm (eg. [18]). All have minimal geometry-matter coupling with isolated
matter Lagrangian density Lm. The situation with nonminimal curvature-matter coupling terms [29, 30] like
RLm will not be considered in this paper, although the nonminimal chameleon coupling φLm [27, 31] in
scalar-tensor gravity is still analyzed.

This paper is organized as follows. Sec. 4.2 makes necessary preparations by locating the marginally
inner trapped horizon as the apparent horizon of the FRW universe, revising the continuity equation for ef-
fective perfect fluids, and introducing the energy dissipation term E for modified gravity with field equation
Rµν − Rgµν/2 = 8πGeffT (eff)

µν . In Sec. 4.3, we generalize the geometric definitions of mass using Geff, sup-
plement the unified first law of thermodynamics into dE = Aψ + WdV + E by E, and match the transverse
gradient of the geometric mass with the change of total internal energy to directly obtain both Friedmann e-
quations. We continue to study the thermodynamics of the apparent horizon by taking the smooth limit from
the interior to the horizon in Sec. 4.4, and alternatively obtain the Friedmann equation from the nonequilib-
rium Clausius relation T (dS + dpS ) = δQ = −(Aψt + E), where dpS represents entropy production which is
generally nontrivial unless Geff = constant . After developing the generic theories, Sec. 4.5 provides a viabil-
ity test for the generalized geometric masses, discusses the continuity equation, and analyzes the equilibrium
case of Geff = G = constant with vanishing dissipation E = 0 and entropy production dpS = 0. Finally in
Sec. 4.6, the theory is applied to f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R,G)
generalized Gauss-Bonnet and dynamical Chern-Simons gravity, with comments on existing treatment in
f (R) and scalar-tensor theories. Throughout this paper, especially for Sec. 4.6, we adopt the sign convention
Γαδβ = Γαδβ, Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · · and Rµν = Rαµαν with the metric signature (−,+ + +).

4.2 Preparations and setups

4.2.1 FRW cosmology and location of the apparent horizon

The Friedman-Robertson-Walker (FRW) metric provides the most general solution describing a spatially
homogeneous and isotropic Universe. It is not just a theoretical construct: it matches with observations. As
such it must, a priori, be a solution of any aspiring modified or alternative theory of gravity [20]. In the
comoving coordinates (t, r, θ, ϕ) the line element reads (eg. [8])

ds2 = −dt2 +
a(t)2

1 − kr2 dr2 + a(t)2r2
(
dθ2 + sin2θ dϕ2

)
= hαβ dxαdxβ + Υ2

(
dθ2 + sin2θ dϕ2

)
,

(4.1)

1For brevity, we will use the terminology “modified gravity” to denote both modified and alternative theories of relativistic
gravity without discrimination whenever appropriate.
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where the curvature index k is normalized to one of {−1 , 0 ,+1} which correspond to closed, flat and open
universes, respectively; the metric function a(t) is the scale factor, which is an arbitrary function of the
comoving time and is to be determined by the particular gravitational field equations. hαβ B diag[−1 , a(t)2

1−kr2 ]
is the transverse two-metric spanned by xα = (t, r), and Υ B a(t) r is the astrophysical circumference/areal
radius. Although observations currently support a flat universe with k = 0, we will allow for all three
situations k = {0 ,±1} of spatial homogeneity and isotropy throughout this paper.

This solution is spherically symmetric and so in studying its physical and geometric properties it is
convenient to work with a null tetrad2 adapted to this symmetry:

`µ =

 1 ,

√
1 − kr2

a
, 0 , 0

 , nµ =
1
2

 1 ,−

√
1 − kr2

a
, 0 , 0

 , mµ =
1
√

2 Υ

(
0, 0, 1,

i
sinθ

)
, (4.2)

where the null vectors `µ and nµ have respectively been adapted to the outgoing and ingoing null directions.
The tetrad obeys the cross normalization `µnµ = −1 and mµm̄a = 1, and thus the inverse metric satisfies
gµν = −`µnν − nµ`ν + mµm̄ν + m̄µmν. In this tetrad, the outward and inward expansions of radial null flow are
found to be

θ(`) = −
(
ρNP + ρ̄NP

)
=

2rȧ + 2
√

1 − kr2

a r
= 2H + 2Υ−1

√
1 −

kΥ2

a2 (4.3)

and

θ(n) = µNP + µ̄NP =
rȧ −

√
1 − kr2

a r
= H − Υ−1

√
1 −

kΥ2

a2 , (4.4)

where ρNP B −mµm̄ν∇ν`µ and µNP B m̄µmν∇νnµ are two Newman-Penrose spin coefficients, and H is
Hubble’s parameter

H B
ȧ
a
, (4.5)

with the overdot denoting the derivative with respect to the comoving time t. In our universe in which ȧ > 0
and H > 0 the outward expansion θ(`) is always positive while θ(n) can easily be seen to vanish when

rA =
1

√
ȧ2 + k

⇔ ΥA =
1√

H2 +
k
a2

. (4.6)

On this surface

θ(`) = 4H > 0 , (4.7)

and thus Υ = ΥA is a marginally inner trapped horizon [5] with θ(n) < 0 for Υ < ΥA and θ(n) > 0 for
Υ > ΥA. It is identified as the apparent horizon of the FRW universe3. Unlike the cosmological event
horizon ΥE B a

∫ ∞
t a−1dt [33], which is the horizon of absolute causality and relies on the entire future

2The null tetrad formalism and all Newman-Penrose quantities in use here are adapted to the metric signature (−,+ + +), which
is the preferred convention for quasilocal black hole horizons (see eg. the Appendix B of [6]). Also, the tetrad can be rescaled by
`µ 7→ e f `µ and nµ 7→ e− f nµ for an arbitrary function f , and consequently θ(`) 7→ e f θ(`) and θ(n) 7→ e− f θ(n).

3By the original definition [32] an apparent horizon is always marginally outer trapped with θ(`) = 0. However in this paper
we follow the more general cosmological vernacular convention which defines an apparent horizon to be either a marginally outer
trapped or marginally inner trapped surface. In a contracting universe with ȧ < 0 and H < 0, however, we would have a more
standard marginally outer trapped horizon with θ(`) = 0 and θ(n) = 2H < 0 at Υ = ΥA.
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history of the universe, the geometrically defined apparent horizon ΥA is the horizon of relative causality
and is observer-dependent: if we center our coordinate system on any observer comoving with the universe,
then rA is the coordinate location of the apparent horizon relative to that observer. ΥA is practically more
useful and realistic in observational cosmology as it can be identified by local observations in short duration.
In fact, it has been found that [34] for an accelerating universe driven by scalarial dark energy with a possibly
varying equation of state, the first and second laws of thermodynamics hold on ΥA but break down on ΥE.
Moreover for black holes, Hajicek [35] has argued that Hawking radiation happens on the apparent horizon
rather than the event horizon. Hence in this paper we will focus on the cosmological apparent horizon ΥA.
Note that in spherical symmetry ΥA can equivalently be specified by setting gµν∂µΥ∂νΥ= hαβ∂αΥ∂βΥ = 0,
which locates the hypersurface on which ∂αΥ becomes a null vector. Hereafter, quantities related to or
evaluated on the apparent horizon Υ = ΥA will be highlighted by the subscript A.

In some calculations we will find it useful to work with the metric with radial coordinate Υ rather than r.
To that end note that the total derivative of the physical radius Υ = a(t)r yields

adr = dΥ − HΥdt , (4.8)

so the FRW metric Eq.(4.1) can be rewritten into

ds2 =

(
1 −

kΥ2

a2

)−1 (
−

(
1 −

Υ2

Υ2
A

)
dt2 − 2HΥ dtdΥ + dΥ2

)
+ Υ2

(
dθ2 + sin2θ dϕ2

)
. (4.9)

For Eqs.(4.1) and (4.9), the coordinate singularity r2 = 1/k or Υ2 = a2/k can be removed in the isotropic
radial coordinate r̄ with r B r̄ (1 + kr̄2

4 )−1. Following Eq.(4.9) and keeping in mind that t is not orthogonal to
Υ in the (t ,Υ , θ , ϕ) coordinates, the transverse component of the tetrad can be rebuilt as as

`µ =

 1 ,HΥ +

√
1 −

kΥ2

a2 , 0 , 0

 , nµ =
1
2

 1 ,HΥ −

√
1 −

kΥ2

a2 , 0 , 0

 , (4.10)

with which we obtain the same expansion rates {θ(`) , θ(n)} and the horizon location ΥA as from the previous
tetrad Eq.(4.2).

4.2.2 Modified gravity and energy dissipation

For modified theories of relativistic gravity such as f (R), f (R,G) and f (R,RµνRµν,RµανβRµανβ) classes of
fourth-order gravity, and alternative theories such as Brans-Dicke and generic scalar-tensor-chameleon grav-
ity, the field equations can be recast into the following compact GR form,

Gµν ≡ Rµν −
1
2

Rgµν = 8πGeff T (eff)
µν with T (eff)

µν = T (m)
µν + T (MG)

µν , (4.11)

where the effective gravitational coupling strength Geff relies on the specific gravity model and can be directly
recognized from the coefficient of the stress-energy-momentum (SEM) density tensor T (m)

µν for the physical
matter content, which is defined from extremizing the matter action functional δIm = − 1

2

∫
d4x
√
−gTµνδgµν .

For example, as will be extensively discussed later in Sec. 4.6, we have Geff = G/ fR for f (R) gravity, Geff =

G/φ for Brans-Dicke, Geff = G/(1+2aR) for quadratic gravity, Geff = G/( fR +2R fG) for f (R,G) generalized
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Gauss-Bonnet gravity, and Geff = G for dynamical Chern-Simons gravity. All terms beyond GR
(
Gµν =

8πGT (m)
µν

)
have been packed into Geff and T (MG)

µν , which together with T (m)
µν comprises the total effective SEM

tensor T (eff)
µν . Furthermore, we assume a perfect-fluid-type content, which in the metric-independent form is

T µ (eff)
ν = diag

[
− ρeff, Peff, Peff, Peff

]
, ρeff = ρm + ρ(MG) , Peff = Pm + P(MG) , (4.12)

so that T µ(m)
ν = diag[−ρm, Pm, Pm, Pm] and T µ (MG)

ν = diag[−ρ(MG), P(MG), P(MG), P(MG)]. Here ρm and Pm

respectively collect the energy densities and pressures of all matter components in the universe, say ρm =

ρm(baryon dust) + ρm(radiation) + ρm(dark energy) + ρm(dark matter) + · · · and the same for Pm, while the
effects of modified gravity have been encoded into Geff, ρ(MG) and P(MG). For the spatially homogeneous
and isotropic FRW universe of maximal spatial symmetry, the coupling strength Geff, the energy densities
{ρeff , ρm , ρ(MG)} and the pressures {Peff , Pm , P(MG)}, are all functions of the comoving time t only.

If we take the covariant derivative of the field equation (4.11), then it follows from the contracted Bianchi
identities that the generalized stress-energy-momentum conservation ∇µG

µ
ν = 0 = 8π∇µ

(
Geff T µ (eff)

ν

)
holds

for all modified gravity. With respect to the FRW metric Eq.(4.1), only the t-component of this conservation
equation is nontrivial and leads to the universal relation

ρ̇eff + 3H
(
ρeff + Peff

)
= −

Ġeff

Geff

ρeff , (4.13)

which serves as the generalized continuity equation for the perfect fluid of Eq.(4.12). Compared with
the continuity equation of a cosmological perfect fluid ρ̇m + 3H

(
ρm + Pm

)
= 0 within GR, the extra term

−(Ġeff/Geff) ρeff shows up in Eq.(4.13) to balance the energy flow. Since it has the same dimension as the
effective density flow ρ̇eff, we introduce the following differential energy by multiplying Vdt = 4

3πΥ3 dt to
it,

E B −
4
3
πΥ3 Ġeff

Geff

ρeff dt . (4.14)

and call it the term of nonequilibrium energy dissipation. Note that at this stage in Eq.(4.14) for E, the
4
3πΥ3 ρeff should not be combined into some kind of physically defined mass Vρeff =Meff as its meaning is
not clear yet (this is just an issue for security to avoid cyclic logic).
E is related to the temporal evolution of Geff and its coupling to ρeff. Whether E drives the evolution of

Geff or contrarily is produced by the evolution of Geff is however not yet certain. Also, as will be seen later,
E plays an important role below in supplementing the unified first law of equilibrium thermodynamics and
calculating the entropy production. .

4.3 Thermodynamics inside the apparent horizon

For the FRW universe as a solution to the generic field equation (4.11), we substitute the effective gravita-
tional coupling strength Geff for Newton’s constant G and thus generalize the Hawking mass MHk [39] for
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twist-free spacetimes into

MHk B
1

4πGeff

(∫
dA
4π

) 1
2
∫ (
− Ψ2 − σNPλNP + Φ11 + ΛNP

)
dA

≡
1

4πGeff

(∫
dA
4π

) 1
2
(
2π −

∫
ρNP µNP dA

)
.

(4.15)

Since we are dealing with spherical symmetry, MHk can equivalently be written as

MMS B
Υ

2Geff

(
1 − hαβ∂αΥ∂βΥ

)
, (4.16)

which similarly generalizes the Misner-Sharp mass MMS [12]. As will be shown later in Sec. 4.5.1, the
geometric definitions Eqs.(4.15) and (4.16) fully reflect the spirit of geometrodynamics that the effective
matter content ρeff = ρm +ρ(MG) curves the space homogeneously and isotropically through the field equation
(4.11) to form the FRW universe. Moreover, the Misner-Sharp mass of black holes in Brans-Dicke gravity
with Geff = 1/φ has been found to satisfy Eq.(4.16) [36], which also encourages us to make the extensions in
Eqs.(4.15) and (4.16). Note that the Hawking and Misner-Sharp masses restrict their attentions to the mass
of the matter content and do not include the energy of gravitational field.

With Ψ2 = σNP = λNP = 0, Φ11 = −
(
Ḣ − k

a2

)
/4, ΛNP =

(
Ḣ + 2H2 + k

a2

)
/4 or ρNP µNP = −θ(`)θ(n)/4 in

the tetrad Eq.(4.2), and hαβ= diag[−1 , a2

1−kr2 ] for the transverse two-metric in Eq.(4.1), either Eq.(4.15) and
Eq.(4.16) yield that the mass enveloped by a standard sphere of physical radius Υ in the FRW universe is

M =
Υ3

2Geff

(
H2 +

k
a2

)
. (4.17)

Immediately, the total derivative or the transverse gradient of M = M(t, r) is

dM =
Υ3H
2Geff

(
2Ḣ + 3H2 +

k
a2

)
dt +

3Υ2

2Geff

(
H2 +

k
a2

)
adr −

Υ3Ġeff

2G2
eff

(
H2 +

k
a2

)
dt (4.18)

=
Υ3H
Geff

(
Ḣ −

k
a2

)
dt +

3Υ2

2Geff

(
H2 +

k
a2

)
dΥ −

Υ3Ġeff

2G2
eff

(
H2 +

k
a2

)
dt , (4.19)

where Eq.(4.8) has been used to reexpress Eq.(4.18) into Eq.(4.19) in terms of the (t ,Υ) normal coordinates.
Hayward derived a unified first law of equilibrium thermodynamics [37, 38] for the differential element

of energy change within GR under spherical symmetry, which however will be taken as a first principle
in our work. For modified gravity of the form Eq.(4.11), we supplement Hayward’s result by the energy
dissipation term E introduced in Eq.(4.14), so that the change of energy along the outgoing null normal `µ

across a sphere of radius Υ with surface area A = 4πΥ2 and volume V = 4πΥ3/3 is

dE = Aψ + WdV + E , (4.20)

where the covector invariant ψ is the energy/heat flux density, the scalar invariant W is the work density, and
WdV = WAdΥ. We formally inherit the original definitions of {ψ ,W} [37] but make use of the total effective
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SEM tensor T (eff)
µν rather than just T (m)

µν as in GR:

ψα B T β
α (eff) ∂βΥ + W ∂αΥ with W B −

1
2

Tαβ
(eff) hαβ , (4.21)

where T (eff)
αβ denote the components of T (eff)

µν along the transverse directions. Note that the definitions of ψ
and W also guarantee that they are independent of the coordinate systems or observers and the choice of
metric signature. Moreover, with the matter content of effective perfect fluid assumed in Eq.(4.12), ψ and W
explicitly become

W =
1
2

(
ρeff − Peff

)
and (4.22)

ψ = −
1
2

(
ρeff + Peff

)
HΥ dt +

1
2

(
ρeff + Peff

)
a dr

= −
(
ρeff + Peff

)
HΥ dt +

1
2

(
ρeff + Peff

)
dΥ ,

(4.23)

where W no longer preserves the generalized energy conditions4 as opposed to the situation of GR [37]
unless Geff is positive definite. Hence, the unified first law Eq.(4.20) leads to

dE = −AΥH Peff dt + A ρeff adr −
4
3
πΥ3 Ġeff

Geff

ρeff dt (4.24)

= −A
(
ρeff + Peff

)
HΥ dt + A ρeff dΥ −

4
3
πΥ3 Ġeff

Geff

ρeff dt . (4.25)

Hence, by identifying the geometrically defined mass M as the total internal energy, matching the co-
efficients of dt and dr in Eqs.(4.18) and (4.24) or the coefficients of dt and dΥ in Eqs.(4.19) and (4.25), we
obtain

H2 +
k
a2 =

8πGeff

3
ρeff and (4.26)

Ḣ −
k
a2 = −4πGeff

(
ρeff + Peff

)
or 2Ḣ + 3H2 +

k
a2 = −8πGeffPeff , (4.27)

where we have recognized the last term in Eqs.(4.18) and (4.19) for dM equal to the dissipation E in dE as
they are both relevant to the evolution of Geff.

In fact, by substituting the FRW metric Eq.(4.1) into the field equation (4.11), it can be verified that
Eqs.(4.26) and (4.27) are exactly the first and the second Friedmann equations governing the dynamics of
the scale factor a(t) for the FRW cosmology. Hence, the gravitational equations (4.26) and (4.27) have been
derived from the unified first law of nonequilibrium thermodynamics dE = Aψ+WdV +E instead of the field
equation (4.11), and this is not a result of cyclic logic as Eqs.(4.26) and (4.27) are preassumed as unknown.

4For the field equation (4.11) along with R = −8πGeff T (eff) and Rµν = 8πGeff

(
T (eff)
µν −

1
2 gµνT (eff)) , the Raychaudhuri equations

([32] or the appendix of [21]) imply the following null, weak and strong energy conditions (abbreviated into NEC, WEC and SEC
respectively):

GeffT (eff)
µν `µ`ν ≥ 0 (NEC) , GeffT (eff)

µν uµuν ≥ 0 (WEC) , GeffT (eff)
µν uµuν ≥

1
2

GeffT (eff)uµuµ (SEC) ,

where uµuµ = −1 in the SEC for the metric signature (−,+ + +) used in this paper. All energy conditions require Geff

(
ρeff − Peff

)
≥ 0

for the effective matter content Eq.(4.12).
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By the way, for the two versions of the second Friedmann equation in Eq.(4.27), the former is generally
more preferred than the latter, because the former directly reflects the evolution of the Hubble parameter H
(especially for k = 0 of the observed universe), and in numerical simulations the values of Ḣ and H2 can
differ dramatically (eg. [7] with H2 � Ḣ) and thus be problematic to work with when put together.

Once one of the Friedmann equations is known, the other one can be obtained using the continuity equa-
tion (4.13). For example, taking the time derivative of the first Friedmann equation H2 +k/a2 = 8πGeff ρeff/3,

2H
(
Ḣ −

k
a2

)
=

8π
3

(
Ġeffρeff + Geff ρ̇eff

)
, (4.28)

and applying the continuity equation

Ġeff ρeff + Geff ρ̇eff + 3Geff H
(
ρeff + Peff

)
= 0 ,

one recovers the second Friedmann equation Ḣ − k/a2 = −4πGeff (ρeff + Peff). Inversely, integration of the
second Friedmann equation with the continuity equation leads to the first Friedmann equation by neglecting
an integration constant or otherwise treat it as a cosmological constant [8] and incorporate it into ρeff.

4.4 Thermodynamics On the apparent horizon

Having derived the Friedmann equations from the thermodynamics of the FRW universe inside the apparent
horizon Υ < ΥA, we will continue to study this thermodynamics-gravity correspondence on the horizon
Υ = ΥA, and in the meantime require consistency between the interior and the horizon. In fact, existing
papers about this problem almost exclusively focus on the horizon alone [8, 9, 11, 14], as a companion
to the thermodynamics of black-hole and Rindler horizons. In this section, the apparent horizon Υ = ΥA

will be studied via two methods: (1) Following Sec.4.3, applying the nonequilibrium unified first law dE =

Aψ + WdV + E and dE = dM in the smooth limit Υ → ΥA; (2) Using the nonequilibrium Clausius relation
T (dS + dpS ) = δQ = −(Aψ + E) with entropy production dpS and the continuity equation (4.13).

4.4.1 Method 1: Unified first law and dE=̂dM

As shown by Eq.(4.6) in Sec.4.2, the cosmological apparent horizon, in this case a marginally inner trapped
horizon of the expanding FRW universe locates at ΥA = 1/

√
H2 + k/a2, and according to Eq.(4.17), the

mass within the horizon is MA = ΥA/(2Geff). Following Sec. 4.2.2 and taking the smooth limit Υ → ΥA

from the interior to the horizon, Eqs.(4.18) and (4.24) yield in the (t , r) comoving transverse coordinates that

dM =̂
Υ3

AH

2Geff

(
2Ḣ + 3H2 +

k
a2

)
dt +

3a
2Geff

dr −
ΥAĠeff

2G2
eff

dt (4.29)

dE =̂ −AAΥAH Peff dt + AA ρeff adr −
4
3
πΥ3

A
Ġeff

Geff

ρeff dt , (4.30)
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while Eqs.(4.19) and (4.25) in the (t ,Υ) coordinates give rise to

dM =̂
Υ3

AH

Geff

(
Ḣ −

k
a2

)
dt +

3
2Geff

dΥ −
ΥAĠeff

2G2
eff

dt (4.31)

dE =̂ − AA
(
ρeff + Peff

)
HΥA dt + AA ρeff dΥ −

4
3
πΥ3

A
Ġeff

Geff

ρeff dt , (4.32)

where the symbol =̂ will be employed hereafter to denote “equality on the apparent horizon”, a standard
denotation widely used for equality on quasilocal black-hole horizons (eg. [6]). Note that for the dr com-
ponents in Eqs.(4.29) and (4.30) as well as the dΥ components in Eqs.(4.31) and (4.32), one just needs to
evaluate their coefficients in the limit Υ → ΥA; although both horizon radii rA = rA(t) and ΥA = ΥA(t) are
functions of t according to Eq.(4.6), the differentials dr and dΥ should not be replaced by ṙAdt and Υ̇Adt for
Υ → ΥA, because the horizon is not treated as a thermodynamical system alone by itself. As expected, in
the limit Υ→ ΥA the equality dM =̂ dE recovers the Friedmann equations again,

H2 +
k
a2 =̂

8πGeff

3
ρeff and Ḣ −

k
a2 =̂ − 4πGeff

(
ρeff + Peff

)
or 2Ḣ + 3H2 +

k
a2 =̂ − 8πGeffPeff .

Specifically note note from Eqs.(4.31) and (4.32) that on the horizon the dissipation term satisfies

4
3
πΥ3

A
Ġeff

Geff

ρeff =̂
1
2

ΥA
Ġeff

G2
eff

, (4.33)

which, without being further simplified, will be used in the next subsection to reduce the expression of the
on-horizon entropy production.

4.4.2 Method 2: Nonequilibrium Clausius relation

The modified theories of gravity under our consideration with the field equation (4.11) are all diffeomorphism
invariant, and therefore we can obtain the Wald-Kodama dynamical entropy of the FRW apparent horizon by
Wald’s Noether-charge method [41, 42, 38] as

S B
∫

dA
4Geff

=̂
AA

4Geff

=̂
πΥ2

A

Geff

, (4.34)

with Geff = Geff(t). In fact, the field equations of modified and alternative gravity have been deliberately
rearranged into the form of Eq.(4.11) with an effective gravitational coupling strength Geff to facilitate the
definition of the horizon entropy Eq.(4.34). Moreover, the absolute temperature of the horizon is assumed to
be [8]

T ≡
1

2πΥA
, (4.35)

which agrees with the temperature of the semiclassical thermal spectrum [40] for the matter tunneling into
the region Υ < ΥA from the exterior Υ > ΥA, as measured by a Kodama observer using the line element
Eq.(4.9). In fact, if the dynamical surface gravity [43] for the FRW spacetime is defined as κ B − 1

2∂ΥΞ

with Ξ B hαβ∂αΥ∂βΥ ≡ 1 − Υ2(H2 + k
a2

)
= 1 − Υ2/Υ2

A, then κ = Υ/Υ2
A =̂ 1/ΥA and the temperature

ansatz Eq.(4.35) satisfies T = κ/(2π). This formally matches the Hawking temperature of (quasi-)stationary
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black holes in terms of the traditional definition of surface gravity [1] based on Killing vectors and Killing
horizons. Hence it follows from Eqs.(4.34) and (4.35) that

TdS =̂
Υ̇A

Geff

dt −
1
2

ΥA
Ġeff

G2
eff

dt with Υ̇A = −HΥ3
A

(
Ḣ −

k
a2

)
. (4.36)

Assuming that at the moment t = t0 the apparent horizon locates at ΥA0, then during the infinitesimal
time interval dt the horizon will move to5 ΥA0 + Υ̇A0dt. In the meantime, for the isochoric process (dΥ = 0)
for the volume of constant radius ΥA0, the amount of energy across the horizon Υ = ΥA0 during this dt is just
dE =̂ AAψt + EA evaluated at t = t0, as has been calculated in Eq.(4.32) with the dΥ component removed.

Compare dE =̂ AAψt + EA with Eq.(4.36), and it turns out the Clausius relation TdS =̂ δQ =̂ − dE for
equilibrium thermodynamics does not hold. To balance the energy change, we have to introduce an extra
entropy production term dpS [10] (subscript p being short for “production”) so that

TdS + TdpS =̂ − dE =̂ −
(
AAψt + EA

)
. (4.37)

Hence, it follows from Eqs.(4.32) and (4.36) that

TdpS =̂ − TdS − AAψt − EA

=̂ −

(
Υ̇A

Geff

dt + AAψ

)
+

1
2

ΥA
Ġeff

G2
eff

dt − EA

=̂ −

(
Υ̇A

Geff

− AA
(
ρeff + Peff

)
HΥA

)
dt +

1
2

ΥA
Ġeff

G2
eff

+
4
3
πΥ3

A
Ġeff

Geff

ρeff dt .

(4.38)

We have combined the Υ̇A component of TdS in Eq.(4.36) with AAψt , which reproduces the second Fried-
mann equation

Υ̇A

Geff

− AA
(
ρeff + Peff

)
HΥA =̂ 0 ⇒ Ḣ −

k
a2 =̂ − 4πG

(
ρeff + Peff

)
, (4.39)

while the Ġeff component of TdS in Eq.(4.36) and the energy dissipation EA add up together and give rise to
the entropy production

TdpS =̂
1
2

ΥA
Ġeff

G2
eff

dt +
4
3
πΥ3

A
Ġeff

Geff

ρeff dt and dpS =̂ πΥ2
A

Ġeff

G2
eff

dt +
8
3
π2 Υ4

A
Ġeff

Geff

ρeff dt . (4.40)

Hence, for the Wald-Kodama dynamical entropy Eq.(4.34), TdS manifests its effects in two aspects: the
Υ̇A bulk term is the equilibrium part related to the expansion of the universe and the apparent horizon, while
the Ġeff term is the nonequilibrium part associated to the evolution of the coupling strength. The former
balances the energy flux Aψt and leads to the Friedmann equation (4.39), while the latter, together with the
generic energy dissipation E evaluated on the horizon, constitute the two sources shown up in Eq.(4.40)

5The second Friedmann equation (4.27) can be rewritten into the evolution equation for the apparent-horizon radius ΥA:

Υ̇A = 4πHΥ3
AGeff

(
ρeff + Peff

)
,

which shows that for an expanding universe (H > 0), ΥA can be either expanding, contracting or even static, depending on the values
of Geff and the effective equation of state parameter weff = Peff/ρeff.
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responsible for the entropy production.
As discussed before in Sec. 4.3, the first Friedmann equation H2 + k/a2 =̂ 8πGeff ρeff/3 can be obtained

from Eq.(4.39) with the help of the continuity equation (4.13). For the consistency between the horizon and
the interior in the relation dE =̂ dM =̂ − T (dS + dpS ), we have adjusted the thermodynamic sign convention
into T (dS + dpS ) =̂ δQ =̂ − dE =̂ − (AAψt + EA).

In this paper, following the spirit of [10], primarily we call the modified gravity an equilibrium or
nonequilibrium theory from the thermodynamic point of view depending on whether the equilibrium Clau-
sius relation TdS =̂ δQ =̂ − dE =̂ − AAψt or its nonequilibrium extension with entropy production TdS +

TdpS =̂ − dE =̂ −
(
AAψt + EA

)
works on the apparent horizon. Moreover, Eq.(4.40) clearly shows that both

sources for the nonequilibrium entropy-production dpS trace back to the dynamics/evolution of Geff. Hence,
we further regard all those quantities containing Ġeff as nonequilibrium, such as the energy dissipation el-
ement introduced in Eq.(4.14). In the same sense, TdS itself in Eq.(4.36) is no longer a thermodynamical
quasistationary expression, and we regard its Υ̇A bulk component as equilibrium, while its Ġeff component
as nonequilibrium. This way, the thermodynamic terminology “nonequilibrium” and “equilibrium” in our
usage throughout this paper have been clarified.

Eq.(4.40) demonstrates that the entropy production effect is generally unavoidable in modified gravity
unless Geff = constant . An increasing coupling strength Geff leads to an entropy increment, while more
interestingly, a decreasing Geff would produce negative entropy for the universe. Yet Eq.(4.40) only reflects
the entropy production dpS on the horizon, and the total entropy change of the horizon as well as the entire
universe needs further clarification within the generalized second law of thermodynamics within modified
gravity. This problem is not tackled in this paper as we concentrate on the (unified) first law of thermody-
namics. In addition, note that the dynamics of Geff is different from the idea of varying gravitational constant
in Dirac’s “large numbers hypothesis” [44], which means nonconstancy of Newton’s constant G over the
cosmic time scale within GR.

If we take advantage of the on-horizon dissipation equation (4.33) in dM =̂ dE, that is to say, with the
assistance of the first method in Sec. 4.4.1, the entropy production equation (4.40) can be much simplified
into

TdpS =̂ ΥA
Ġeff

G2
eff

dt and dpS =̂ 2πΥ2
A

Ġeff

G2
eff

dt . (4.41)

It can reduce the calculations in specifying the amount of entropy production, when we need not distinguish
the two sources represented by the two terms in Eq.(4.40). This simplification also indicates the dM = dE
method nicely complements the Clausius method.

4.5 Further discussion on the unified formulation

So far a unified formulation has been developed to derive the Friedmann equations from nonequilibrium
thermodynamics within generic metric gravity Rµν − Rgµν/2 = 8πGeffT (eff)

µν , and the whole operation is:

(1) Inside the apparent horizon Υ < ΥA, the total derivative dM of the geometric mass and the unified first
law of nonequilibrium thermodynamics dE = Aψ+WdV +E yield Friedmann equations via dE = dM.
This method also applies to the horizon by taking the smooth limit Υ→ ΥA.

(2) Alternatively, consider the change of total internal energy during the time interval dt. When evaluated
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on the horizon Υ = ΥA, the extended nonequilibrium Clausius relation TdS + TdpS =̂ δQ yields the
second Friedmann equation, which can reproduce the first one with the continuity equation.

(3) Derivations for the interior Υ < ΥA and the horizon ΥA should be consistent, which sets up the
thermodynamic sign convention T (dS + dpS ) =̂ δQ =̂ − dE =̂ − (AAψt + EA) .

In this section we will further investigate some problems involved in the unified formulation.

4.5.1 A viability test of the extended Hawking and Misner-Sharp masses

We have replaced G with Geff to generalize the Hawking mass and the Misner-Sharp mass into Eqs.(4.15)
and (4.16), respectively. Such geometric mass worked well in deriving the Friedmann equations in the
unified formulation for the correctness of this extension. Here we provide another piece of evidence by
demonstrating that equality between the physical effective mass M = ρeffV and the generalized geometric
masses automatically reproduces the Friedmann equations.

The total derivative of the physically defined effective massM = ρeffV =
(
ρm + ρ(MG)

)
V reads

dM = d
(
ρeffV

)
= ρeff dV + V ρ̇eff dt

= ρeffA dΥ − V
(
3H

(
ρeff + Peff

)
+

Ġeff

Geff

ρeff

)
dt

= 4πΥ2ρeff dΥ − 4πΥ3H
(
ρeff + Peff

)
−

4
3
πΥ3 Ġeff

Geff

ρeff dt ,

(4.42)

where we have used the continuity equation (4.13) to replace ρ̇eff. Compare Eq.(4.42) with Eq.(4.19),

dM =
Υ3H
Geff

(
Ḣ −

k
a2

)
dt +

3Υ2

2Geff

(
H2 +

k
a2

)
dΥ −

Υ3Ġeff

2G2
eff

(
H2 +

k
a2

)
dt ,

and straightforwardly, by assuming the physically defined effective mass M = ρeffV equal to the geomet-
ric effective mass in Eq.(4.17), which comes from Eqs.(4.15) and (4.16) that are defined solely out of the
spacetime metric, we will automatically recover the two Friedmann equations from dM = dM:

H2 +
k
a2 =

8πGeff

3
ρeff , Ḣ −

k
a2 = −4πGeff

(
ρeff + Peff

)
.

In this sense we argue that the generalized definitions in Eqs.(4.15) and (4.16) for the Hawking and the
Misner-Sharp masses are intuitive. Also, the equality toM = ρeffV indicates that Eqs.(4.15) and (4.16) only
refer to the effective matter content and do not include the energy of gravitational field.

Having obtained the first Friedmann equation (4.26), we can now combine Eqs.(4.17) and (4.26) to
eventually see that

MMS =
Υ3

2Geff

(
H2 +

k
a2

)
=

Υ3

2Geff

·
8πGeff

3
ρeff =

4
3
πΥ3 ρeff = V ρeff = M , (4.43)

so the geometric effective mass Eq.(4.17) is really equal to the physically defined mass V ρeff with the effec-
tive density determined by Eqs.(4.11) and (4.12). Note that [13] has generalized the Misner-Sharp masses
for the f (R) gravity with Geff = G/ fR and the scalar-tensor gravity with Geff = G/ f (φ), and their results
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actually refer to the pure mass Vρm of the physical matter content compared with our generalizations, as will
be clearly shown in Sec. 4.6.1 and Sec. 4.6.4 later. Also, the following masslike function was assumed in
[14]

Masslike B
Υ

2Geff

(
1 + hαβ∂αΥ∂βΥ

)
≡

Υ

2Geff

(
2 −

Υ2

Υ2
A

)
=̂

ΥA

2Geff

, (4.44)

in an attempt to recover the Friedmann equations on the horizon itself from the equilibrium Clausius relation
without the entropy-production correction dpS . However, it is not suitable in our more general formulation
in Sec. 4.3 and Sec. 4.4, especially in the dM = dE approach for the whole region Υ ≤ ΥA, and it does not
pass the test just above as in Eq.(4.42).

On the other hand, recall that in recent studies on the interesting idea of “chemistry” of anti-de Sitter
black holes [45], the mass M has been treated as the enthalpy H rather than total internal energy E, i.e.
M = H = E + PV where the pressure P is proportional to the cosmological constant Λ. Since Λ the the
simplest modified-gravity term, similarly, is it possible to identify the mass M in a sphere of radius Υ ≤ ΥA

in the FRW universe as the enthalpy H = E + P̃V for some kind of pressure P̃ (it can be Peff, P(MG),
etc.)? We find that the answer seems to be negative. The equality between Eqs.(4.18)(4.19) for dM and
Eqs.(4.24)(4.25) for dE, as well as the consistency among Eqs.(4.19), (4.25) and (4.42) clearly shows that
the mass M should be identified as the total internal energy E. Moreover, if forcing the equality M = H ,
then dM = dH = d(E + P̃V) implies that necessarily that P̃ ≡ 0 and ˙̃P ≡ 0 and thus we still have M ≡ E.

4.5.2 The continuity/conservation equation

As emphasized before in Sec. 4.1, we are considering ordinary modified gravity under minimal geometry-
matter coupling, Ltotal = Lgravity + 16πGLm, with an isolated matter density Lm in the total lagrangian
density and thus no curvature-matter coupling terms like RLm; or equivalently, the gravity/geometry part
and the matter part in the total action are fully separable, Itotal = Igravity + Im. For the matter action
Im =

∫
d4x
√
−gLm itself, the SEM tensor T (m)

µν is defined by the following stationary variation (eg. [21]),

δIm = δ

∫
d4x
√
−g Lm = −

1
2

∫
d4x
√
−g T (m)

µν δgµν with T (m)
µν B

−2
√
−g

δ
(√
−g Lm

)
δgµν

. (4.45)

On the other hand, since Lm is a scalar invariant, Noether’s conservation law yields

∇µ

 1
√
−g

δ
(√
−g Lm

)
δgµν

 = 0 . (4.46)

Comparison with Eq.(4.45) yields that Eq.(4.46) can be rewritten into −
1
2
∇µT (m)

µν = 0. Hence, the definition

of the SEM tensor T (m)
µν as in Eq.(4.45) is Noether-compatible, and the definition of T (m)

µν by itself automati-
cally guarantees stress-energy-momentum conservation

∇µT (m)
µν = 0 . (4.47)
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For a time-dependent perfect-fluid matter content T µ (m)
ν = diag [−ρm(t) , Pm(t) , Pm(t) , Pm(t)] (say for the

FRW universe), ∇µT (m)
µν = 0 gives rise to the continuity equation

ρ̇m + 3H
(
ρm + Pm

)
= 0 . (4.48)

Hence, the total continuity equation (4.13) can be reduced into

ρ̇(MG) + 3H
(
ρ(MG) + P(MG)

)
= −

Ġeff

Geff

(
ρm + ρ(MG)

)
. (4.49)

Also, note that ρm collects the energy density of all possible physical material content,

ρm =
∑

ρm(i) = ρm(baryon dust) + ρm(radiation) + ρm(dark energy) + ρm(dark matter) + · · · , (4.50)

and for each type of component ρm(i), by decomposing Eq.(4.48) we have individually

ρ̇m(i) + 3H
(
ρm(i) + Pm(i)

)
= Qm(i) with

∑
Qm(i) = 0 , (4.51)

where Qm(i) denotes the energy exchange due to the possible self- and cross-interactions among different
matter components.

These results are applicable to the situation of minimal geometry-matter couplings. The thermodynam-
ics of nonminimally coupled theories like L = f (R ,T (m)) + 16πGLm [46] (where T (m) = gµνT

µν
(m)) and

L = f (R ,T (m) ,RµνT
µν
(m)) + 16πGLm [47] have been attempted using the traditional formulation as in [9]

for f (R) gravity. However, more profound thermodynamic properties may hide in these theories, as there
is direct energy exchange between spacetime geometry and the energy-matter content under nonminimal
curvature-matter couplings [29, 30, 21]. For example, very recently Harko [48] has interpreted the general-
ized conservation equations in L = f (R ,Lm) and L = f (R ,T (m)) + 16πGLm gravity as a matter creation
process with an irreversible energy flow from the gravitational field to the created matter in accordance with
the second law of thermodynamics. The unusual thermodynamic effects in these theories go beyond the
scope of this paper, but for the chameleon effect [27, 31] which is another type of nonminimal coupling
in scalar-tensor alternative gravity, we manage to find the extra energy dissipation and entropy production
caused by the chameleon field, as will be shown later in Sec. 4.6.4.

4.5.3 “Negative temperature” on the horizon could remove the entropy production dpS

In Sec. 4.4.2, by studying the energy change during dt across the horizon we have derived the second Fried-
mann equation from the nonequilibrium Clausius relation T (dS + dpS )=̂ −

(
AAψt + EA

)
with a necessary

entropy-production element dpS . However, we also observe that if the geometric temperature of the horizon
were to be defined by the following “negative temperature”

T ≡ −
1

2πΥA
< 0 , (4.52)
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which is the opposite to Eq.(4.35), then it is easily seen from Sec. 4.4.2 that

T dS − AAψt − EA =̂

(
Υ̇A

Geff

dt − AAψt

)
−

1
2

ΥA
Ġeff

G2
eff

dt + EA


=̂ −

HΥ3
A

Geff

(
Ḣ −

k
a2

)
+ AA

(
ρeff + Peff

)
HΥA

 dt−

1
2

ΥA
Ġeff

G2
eff

−
4
3
πΥ3

A
Ġeff

Geff

ρeff

 dt .

(4.53)

In the last row of Eq.(4.53), the vanishing of the former parentheses leads to the second Friedmann equation,
while in the second parentheses, the Ġeff component of T dS and the overall energy dissipation term EA

cancel out each other to yield the first Friedmann equation. Hence, with the negative horizon temperature
Eq.(4.52), both Friedmann equations could be obtained from the standard equilibrium Clausius relation

T dS =̂ dE =̂ AAψt + EA (4.54)

without employing an entropy-production term dpS .
However, the negative temperature ansatz Eq.(4.52) is problematic in various aspects. For example, neg-

ative absolute temperature is forbidden by the third law of thermodynamics (as is well known, the so-called
“negative temperature” state in atomic physics actually occurs at a unusual phase of very high temperature
where the entropy decreases with increasing internal energy, T−1 B ∂S /∂E < 0). Also, if tracing back
to the past history of the expanding Universe, one will find the horizon carrying a more and more negative
temperature T while enclosing a more and more (positively) hot interior. From these perspectives, the obser-
vation from Eq.(4.52) that T = −1/(2πΥA) could provide a most economical way to recover the Friedmann
equations on the apparent horizon from equilibrium thermodynamics may just be an interesting coincidence.

4.5.4 Equilibrium situations with Geff = G = constant and thus E = 0

When the effective gravitational coupling strength Geff reduces to become Newton’s constant G, the field
equation (4.11) reduces to

Rµν −
1
2

Rgµν = 8πG T (eff)
µν = 8πG

(
T (m)
µν + T (MG)

µν

)
. (4.55)

For theories in this situation, the Lagrangian density generally takes the form

L = R + f (RµνRµν ,RµανβRµανβ ,R i · · · ) + ω
(
φ ,∇µφ∇

µ
φ
)

+ 16πGLm , (4.56)

whereRi denotes an arbitrary algebraic or differential Riemannian invariantRi = Ri
(
gαβ ,Rµανβ ,∇γRµανβ , . . . ,

∇γ1∇γ2 . . .∇γqRµανβ
)

which is beyond the Ricci scalar R and makes no contribution to the coefficient of Rµν in
the field equation. ω is a generic function of the scalar field φ = φ(xµ) and its kinetic term ∇µφ∇µφ. For ex-
ample, the L = R + f (RµνRµν ,RµανβRµανβ) + 16πGLm fourth-order gravity and typical scalarial dark-energy
models [28] (like quintessence, phantom, k-essence) all belong to this class.

To apply the unified formulation developed in Sec. 4.3 and Sec. 4.4 for this situation, we just need to
replace Geff by G, set Ġeff = 0, and remove the energy dissipation term E. Hence, the Hawking or Misner-
Sharp mass enclosed by a sphere of radius Υ is M = (Υ3/2G)

(
H2 + k/a2). Compare the transverse gradient
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dM of the mass with the change of internal energy dE = Aψ + WdV , and by matching the coefficients of

dM =
Υ3H
2G

(
2Ḣ + 3H2 +

k
a2

)
dt +

3Υ2

2G

(
H2 +

k
a2

)
adr

dE = −4πΥ3 H Peff dt + 4πΥ2 ρeff adr
(4.57)

in the comoving coordinates (t , r) , or

dM =
Υ3H

G

(
Ḣ −

k
a2

)
dt +

3Υ2

2G

(
H2 +

k
a2

)
dΥ

dE = −4πΥ3 H
(
ρeff + Peff

)
dt + 4πΥ2 ρeff dΥ ,

(4.58)

in the astrophysical areal coordinates (t ,Υ), one obtains the Friedmann equations with Geff = G:

H2 +
k
a2 =

8πG
3

ρeff and Ḣ −
k
a2 = −4πG

(
ρeff + Peff

)
or 2Ḣ + 3H2 +

k
a2 = −8πGPeff . (4.59)

Moreover, in the smooth limit Υ → ΥA Eqs. (4.57) and (4.58) recover the complete set of Friedmann
equations on the apparent horizon Υ = ΥA by dM =̂ dE. Alternatively, with the absolute temperature T and
the entropy S of the horizon being

T =̂
1

2πΥA
and S =̂

AA

4G
=̂
πΥA

G
, (4.60)

we have

TdS =
Υ̇A

G
dt and AAψt =̂ − AA

(
ρeff + Peff

)
HΥA dt . (4.61)

Thus, the equilibrium Clausius relation TdS =̂ δQ =̂ − AAψt with Eq.(4.61) for an isochoric process leads to
the second Friedmann equation Ḣ − k/a2 =̂ − 4πG

(
ρeff + Peff

)
. Taking into account the continuity equation

with vanishing dissipation E = 0:
ρ̇eff + 3H

(
ρeff + Peff

)
= 0 , (4.62)

integration of the second Friedmann equation leads to the first equation H2 + k/a2 = 8πG ρeff/3, where the
integration constant has been neglected or absorbed into ρeff. Moreover, the continuity/conservation equation
(4.62) together with conservation of T (m)

µν in Eq.(4.48) lead to

ρ̇(MG) + 3H
(
ρ(MG) + P(MG)

)
= 0 . (4.63)

For the componential convariant Lagrangian density
√
−g f (RµνRµν ,RµανβRµανβ ,R i · · · ) in Eq.(4.56), this

is actually the “generalized contracted Bianchi identities” [21] in perfect-fluid form under the FRW back-
ground.

4.6 Examples

In this section, we will apply the unified formulation in Sec. 4.3 and Sec. 4.4 to some concrete theories of
modified gravity. Compatible with the FRW metric Eq.(4.1) in the signature (−,+ + +), we will adopt the
geometric sign convention Γαδβ = Γαδβ , Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · · and Rµν = Rαµαν.
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4.6.1 f (R) gravity

The f (R) gravity [22] is the simplest class of fourth-order gravity, which straightforwardly generalizes the
Hilbert-Einstein Lagrangian density LHE = R + 16πGLm into L = f (R) + 16πGLm by replacing the Ricci
scalar R with its arbitrary function f (R). The field equation in the form of Eq.(4.11) is

Rµν −
1
2

Rgµν = 8π
G
fR

T (m)
µν +

1
fR

(
1
2
(
f − fRR

)
gµν +

(
∇µ∇ν − gµν2

)
fR

)
, (4.64)

where fR B ∂ f (R)/∂R and 2 ≡ ∇α∇α denotes the covariant d’Alembertian. From the coefficient of T (m)
µν we

learn that the effective gravitational coupling strength for f (R) gravity is

Geff =
G
fR
, (4.65)

and thus the modified-gravity SEM tensor is

T (MG)
µν =

1
8πG

(
1
2
(
f − fRR

)
gµν +

(
∇µ∇ν − gµν2

)
fR

)
, (4.66)

which has collected the contributions from nonlinear and fourth-order curvature terms. Substituting the FRW
metric Eq.(4.26) into this T (MG)

µν and keeping in mind T µ (MG)
ν = diag[−ρ(MG), P(MG), P(MG), P(MG)], the energy

density and pressure from the f (R) modified-gravity effect are found to be

ρ(MG) =
1

8πG

(1
2

fRR −
1
2

f − 3H ḟR
)

and P(MG) =
1

8πG

(1
2

f −
1
2

fRR + f̈R + 2H ḟR
)
. (4.67)

Given Geff = G/ fR, the Hawking or Misner-Sharp mass in a sphere of radius Υ in the universe is

M =
fRΥ3

2G

(
H2 +

k
a2

)
with MA =̂

fRΥA

2G
. (4.68)

Also, the geometric nonequilibrium energy dissipation term associated with Geff and the geometric Wald-
Kodama entropy of the horizon ΥA

E =
4
3
πΥ3 ḟR

fR
ρeff dt and S =

AA fR
4G

. (4.69)

Note that in E the term 4
3πΥ3 ρeff should not be combined into the mass Vρeff = M at this stage for the

reason stressed after Eq.(4.14). Applying the unified formulation developed in Sec. 4.3 and Sec. 4.4 to
the FRW universe governed by f (R) gravity, for the interior and the horizon Υ ≤ ΥA, the unified first law
dE = Aψ + WdV + E = dM of nonequilibrium thermodynamics and the nonequilibrium Clausius relation
T (dS + dPS ) =̂ δQ =̂ − (AAψ + EA) give rise to

H2 +
k
a2 =

8π
3

G
fR
ρm +

1
3 fR

(1
2

fRR −
1
2

f − 3H ḟR
)
, (4.70)

Ḣ −
k
a2 = −4π

G
fR

(
ρm + Pm

)
−

1
2 fR

(
f̈R − H ḟR

)
. (4.71)
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In the meantime, the nonequilibrium entropy production dpS on the horizon turns out to be

dpS =̂ − 2πΥ2
A

ḟR
G

dt . (4.72)

Substituting the FRW metric Eq.(4.1) into Eq.(4.64), we have verified that, Eqs.(4.70) and (4.71) are
exactly the Friedmann equations of the FRW universe in f (R) gravity. Such thermodynamics-gravity corre-
spondence within f (R) gravity has been investigated before in [9, 10] with different setups for the quantities
{M , ρ(MG) , P(MG) · · · } and thus {ψ ,W · · · }; compared with these earlier works, we have revised the thermo-
dynamic setups and improved the result of entropy production.

Also note that, compact notations have been used in Eqs.(4.70) and (4.71), and fR itself is treated as a
function of the comoving time t. Otherwise, one can further write ḟR into fRR Ṙ and f̈R into fRR Ṙ + fRRR Ṙ2

as in [9, 15], and for the FRW spacetime with metric Eq.(4.1), we have already known the Ricci scalar that

R = R(t) = 6
(
Ḣ + 2H2 +

k
a2

)
, (4.73)

which in turn indicates the third-derivative
...
H and thus fourth-derivative

....
a get involved in Eqs.(4.70) and

(4.71), and these terms are gone once we return to GR with fR = 1.
In [13], Cai et al. have generalized the Misner-Sharp energy/(mass) to f (R) gravity by the integration and

the conserved-charge methods. Specifically for the FRW universe, they found that the energy/mass within a
sphere of radius Υ is

Eeff =
Υ

2G

((
1 − hαβ∂αΥ∂βΥ

)
+

1
6

Υ2 (
f − fRR

)
− Υ hαβ ∂α fR ∂βΥ

)
=

Υ3

2G

( 1
Υ2

A

fR +
1
6

(
f − fRR

)
+ H ḟR

)
,

(4.74)

with ΥA = 1/
√

H2 + k/a2 . What are the differences between this Eeff and our extended Misner-Sharp mass
in Eqs.(4.16) and (4.17) in this paper? In the first and second row of Eq.(4.74), the first terms therein are
respectively the definition Eq.(4.16) and the concrete mass Eq.(4.17) in our usage. To further understand the
remaining terms in Eq.(4.74), one can manipulate it into

Eeff =
fRΥ3

2G

(
H2 +

k
a2

)
−

Υ3

2G

(1
6
(
fRR − f

)
− H ḟR

)
=

fRΥ3

2G

(
H2 +

k
a2

)
−

4
3
πΥ3 ·

1
8πG

(1
2

fRR −
1
2

f − 3H ḟR
)
.

(4.75)

Recall that in Eq.(4.43), we have already proved the geometric mass Eq.(4.17) with which we start our
formulation is equal to the physically defined mass ρeff V =

(
ρm + ρ(MG)

)
V . Then from the density ρ(MG) in

Eq.(4.67) and the mass M in Eq.(4.68) for f (R) gravity in our unified formulation, it turns out that the Eeff in
Eq.(4.75) is actually

Eeff = M − ρ(MG)V =
(
ρm + ρ(MG)

)
V − ρ(MG)V = ρmV . (4.76)

Hence, the “generalized Misner-Sharp energy Eeff” in [13] for the FRW universe within f (R) gravity exactly
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match the pure mass of the physical matter content in our formulation of f (R) cosmology.

4.6.2 Generalized Brans-Dicke gravity with self-interaction potential

Now, consider a generalized Brans-Dicke gravity with self-interaction potential in the Jordan frame given by
the following Lagrangian density,

LGBD = φR −
ω(φ)
φ
∇αφ∇

α
φ − V(φ) + 16πGLm , (4.77)

where, to facilitate the comparison with the proceeding case of f (R) gravity, we have adopted the convention
with an explicit G in 16πGLm , rather than just 16πLm which encodes G into φ−1 [26]. The gravitational
field equation δ(

√
−g LGBD)/δgµν = 0 is

Rµν −
1
2

Rgµν = 8π
G
φ

T (m)
µν +

1
φ

(
∇µ∇ν − gµν2

)
φ +

ω(φ)
φ2

(
∇µφ∇νφ −

1
2

gµν ∇αφ∇αφ
)
−

1
2φ

V gµν , (4.78)

from which we directly read that the effective coupling strength and the modified-gravity SEM tensor are

Geff =
G
φ

and (4.79)

T (MG)
µν =

1
8πG

((
∇µ∇ν − gµν2

)
φ +

ω(φ)
φ

(
∇µφ∇νφ −

1
2

gµν ∇αφ∇αφ
)
−

1
2

V gµν

)
, (4.80)

where T (MG)
µν encodes the gravitational effects of the scalar field φ. Put the FRW metric Eq.(4.26) back

to T (MG)
µν with T µ (MG)

ν = diag[−ρ(MG), P(MG), P(MG), P(MG)], and the energy density and pressure from φ are
found to be

ρ(MG) =
1

8πG

(
− 3Hφ̇ +

ω

2φ
φ̇

2 +
1
2

V
)

with P(MG) =
1

8πG

(
φ̈ + 2Hφ̇ +

ω

2φ
φ̇

2 −
1
2

V
)
. (4.81)

since Geff = G/φ, the geometric mass enveloped in a sphere of radius Υ is

M =
φΥ3

2G

(
H2 +

k
a2

)
with MA =̂

φΥA

2G
, (4.82)

which in fact matches the Misner-Sharp mass of black holes in standard Brans-Dicke gravity in [36]. Also
the nonequilibrium energy dissipation term E associated with the evolution of Geff and the Wald-Kodama
entropy S of the horizon are

E =
4
3
πΥ3 φ̇

φ
ρeff dt and S =̂

AAφ

4G
. (4.83)

Following the unified formulation developed in Sec. 4.3 and Sec. 4.4 to study dM = dE = Aψ + WdV + E

for the region Υ ≤ ΥA and T (dS + dPS ) =̂ δQ =̂ − (AAψ + EA) for the horizon itself, we find

H2 +
k
a2 =

8π
3

G
φ
ρm +

1
3φ

(
− 3Hφ̇ +

ω

2φ
φ̇

2 +
1
2

V
)
, (4.84)
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Ḣ −
k
a2 = −4π

G
φ

(
ρm + Pm

)
−

1
2φ

(
φ̈ − Hφ̇ +

ω

φ
φ̇

2
)
, (4.85)

where as we can see, the scalar kinetics ω(φ)
φ
∇αφ∇

αφ and the potential V(φ) does not influence the evolution
of the Hubble parameter H, and meanwhile the dynamics of φ and its nonminimal coupling to R in Eq.(4.149)
leads to the entropy production

dpS =̂ − 2πΥ2
A
φ̇

G
dt (4.86)

for the horizon. We have already verified that Eqs.(4.84) and (4.85) are just the Friedmann equations of the
FRW universe in the generalized Brans-Dicke gravity by directly applying the FRW metric Eq.(4.1) to the
gravitational field equation (4.78). Specifically when ω(φ) ≡ ωBD=constant and V(φ) = 0 (and erase G as
G 7→ 1/φ in standard Brans-Dicke), the thermodynamics-gravity correspondence just above reduces to the
situation for the standard Brans-Dicke gravity [26] and its FRW cosmology. Moreover, our results improves
the setups of {ρ(MG) , P(MG) ,ψ ,W · · · } and the entropy production in [9] and [11] for a similar scalar-tensor
theory with L = f (φ)R/(16πG) − 1

2∇αφ∇
αφ − V(φ) + Lm.

4.6.3 Equivalence between f (R) and modified Brans-Dicke without kinetic term

The two models analyzed just above have exhibited pretty similar behaviors. Next we consider a modified
Brans-Dicke gravity L = φR − V(φ) + 16πG Lm, which is just the Lagrangian density Eq.(4.149) in
Sec. 4.6.2 without the kinetic term −ω(φ)

φ
∇αφ∇

α. Compare its field equation with that of the L = f (R) +

16πG Lm gravity in Sec. 4.6.1:

φRµν −
1
2

(
φR − V(φ)

)
gµν+

(
gµν2 − ∇µ∇ν

)
φ = 8πG T (m)

µν ,

fR Rµν −
1
2

f (R) gµν+
(
gµν2 − ∇µ∇ν

)
fR = 8πG T (m)

µν .

(4.87)

Clearly, these two field equations become identical with the following relations:

fR = φ and f (R) = φR − V(φ) ⇒ fR R − f (R) = V(φ) . (4.88)

That is to say, the f (R) fourth-order modified gravity in Sec. 4.6.1 and the generalized Brans-Dicke alterna-
tive gravity in Sec. 4.6.2 are not totally independent. Instead, the former can be regarded as a subclass of
the latter with vanishing coefficient ω(φ) ≡ 0 for the kinematic term ∇αφ∇α, and the equivalence is built
upon Eq.(4.88). Applying the replacements fR 7→ φ and fR R − f (R) 7→ V(φ) to Sec. 4.6.1, we obtain the
modified-gravity SEM tensor as

T (MG)
µν =

1
8πG

((
∇µ∇ν − gµν2

)
φ −

1
2

V gµν

)
, (4.89)

the energy density and pressure in T µ (MG)
ν = diag[−ρ(MG), P(MG), P(MG), P(MG)] as

ρ(MG) =
1

8πG

(
− 3Hφ̇ +

1
2

V
)

and P(MG) =
1

8πG

(
φ̈ + 2Hφ̇ −

1
2

V
)
, (4.90)
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as well as the geometric mass M, nonequilibrium energy dissipation term E, horizon entropy S and the
nonequilibrium entropy production dpS to be

M =
φΥ3

2G

(
H2 +

k
a2

)
, E =

4
3
πΥ3 φ̇

φ
ρeff dt , S =̂

AAφ

4G
and dpS =̂ − 2πΥ2

A
φ̇

G
dt . (4.91)

Finally the following equations are obtained from thermodynamics-gravity correspondence

H2 +
k
a2 =

8π
3

G
φ
ρm +

1
3φ

(
−3Hφ̇+

1
2

V
)

and Ḣ −
k
a2 = −4π

G
φ

(
ρm + Pm

)
−

1
2φ

(
φ̈−Hφ̇

)
. (4.92)

It is easy to verify that, these thermodynamics quantities and equations precisely match the generalized
Brans-Dicke in Sec. 4.6.2 with ω(φ) ≡ 0.

Conversely, if start from these setups just above or those in Sec. 4.6.2 with ω(φ) ≡ 0, the formulation in
Sec. 4.6.1 can be recovered by applying the replacements φ 7→ fR and V(φ) 7→ fR R − f (R).

4.6.4 Scalar-tensor-chameleon gravity

Consider the following Lagrangian density for the generic scalar-tensor-chameleon gravity [27] in the Jordan
frame ,

LSTC = F(φ) R − Z(φ)∇αφ∇αφ − 2U(φ) + 16πGE(φ) Lm , (4.93)

where {F(φ) ,Z(φ) , E(φ)} are arbitrary functions of the scalar field φ, and E(φ) is the chameleon function
describing the coupling between φ and the matter Lagrangian density Lm. The name “chameleon” comes
from the fact that in the presence of E(φ), the wave equation δ(

√
−g LSTC)/δφ = 0 of φ becomes explicitly

dependent on the matter content of the universe (eg. Lm or T (m) = gµνT (m)
µν ), which makes the wave equation

change among different cosmic epoches as the dominant matter content varies [31]. The gravitational field
equation δ(

√
−g LSTC)/δgµν = 0 is

Rµν −
1
2

Rgµν = 8πG
E(φ)
F(φ)

T (m)
µν +

1
F(φ)

(
∇µ∇ν − gµν2

)
F(φ) +

Z(φ)
F(φ)

(
∇µφ∇νφ −

1
2

gµν ∇αφ∇α
)
−

U(φ)
F(φ)

gµν ,

(4.94)
so from the coefficient of T (m)

µν we recognize

Geff =
E(φ)
F(φ)

G and (4.95)

T (MG)
µν =

1
8πGE(φ)

((
∇µ∇ν − gµν2

)
F(φ) + Z(φ)

(
∇µφ∇νφ −

1
2

gµν ∇αφ∇αφ
)
− U(φ)gµν

)
. (4.96)

Note that [27] however adopted Geff = G/F(φ) to study the second law of thermodynamics for the flat
FRW universe, the chameleon function E(φ) excluded from Geff. Substituting the FRW metric Eq.(4.26)
into T (MG)

µν , the energy density and pressure for T µ (MG)
ν = diag[−ρ(MG), P(MG), P(MG), P(MG)] are found to be

ρ(MG) =
1

8πG E(φ)

(
− 3HḞ +

1
2

Z(φ) φ̇2 + U
)

and P(MG) =
1

8πG E(φ)

(
F̈ + 2HḞ +

1
2

Z(φ) φ̇2 − U
)
,

(4.97)
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where the compact notations Ḟ and F̈ can be replaced by Fφ φ̇ and Fφ φ̈ + Fφφ φ̇2, respectively. As Geff =

GE(φ)/F(φ), the Hawking or Misner-Sharp geometric mass becomes

M =
F(φ)Υ3

2GE(φ)

(
H2 +

k
a2

)
with MA =̂

F(φ)ΥA

2GE(φ)
, (4.98)

while the nonequilibrium energy dissipation E in the conservation equation and the Wald-Kodama entropy
of the horizon S are respectively

E =
4
3
πΥ3 G

F(φ)2

(
E(φ)Ḟ − F(φ)Ė

)
ρeff dt and S =

AAF(φ)
4GE(φ)

, (4.99)

where in E the compact notation E(φ)Ḟ − F(φ)Ė can be expanded into (EFφ − FEφ) φ̇. Moreover, using the
unified formulation developed in Sec. 4.3 and Sec. 4.4, for the interior and the horizon we obtain

H2 +
k
a2 =

8π
3

GE(φ)
F(φ)

ρm +
1

3F(φ)

(
− 3HḞ +

1
2

Z(φ) φ̇2 + U
)
, (4.100)

Ḣ −
k
a2 = −4π

GE(φ)
F(φ)

(
ρm + Pm

)
−

1
2F(φ)

(
F̈ − HḞ + Z(φ) φ̇2

)
. (4.101)

With Ḟ = Fφφ̇ and F̈ = Fφφ̈ + Fφφ φ̇2, they can be recast into

H2 +
k
a2 =

8π
3

GE(φ)
F(φ)

ρm +
1

3F(φ)

(
− 3HFφ φ̇ +

1
2

Z(φ) φ̇2 + U
)
, (4.102)

Ḣ −
k
a2 = −4π

GE(φ)
F(φ)

(
ρm + Pm

)
−

1
2F(φ)

(
Fφφ̈ + Fφφφ̇2 − HFφφ̇ + Z(φ)φ̇2

)
. (4.103)

At the same time, the nonequilibrium entropy production turns out to be

dpS = 2πΥ2
A

1
GE(φ)2

(
FEφ − EFφ

)
φ̇ dt . (4.104)

We have verified by direct substitution of the FRW metric Eq.(4.1) into Eq.(4.94) that Eqs.(4.102) and (4.102)
are indeed the Friedmann equations of the FRW universe in the scalar-tensor-chameleon gravity.

Compare the scalar-tensor-chameleon theory with the generalized Brans-Dicke gravity in Sec. 4.6.2,
and we find that besides the nonminimal coupling F(φ)R in the Lagrangian density, the chameleon field
E(φ) coupled to Lm causes extra nonequilibrium energy dissipation and entropy production, as shown by
Eqs.(4.99) and (4.104). On the other hand, in the absence of the chameleon function, E(φ) ≡ 1, Eφ = 0, and
with F(φ) 7→ φ, Fφ 7→ 1, Fφφ 7→ 0, Z(φ) 7→ ω(φ)/φ, U 7→ 1

2 V , we recover the generalized Brans-Dicke in
Sec. 4.6.2.

In [13], for the scalar-tensor gravity L = F(φ)R/(16πG) − 1
2∇αφ∇

αφ − V(φ) + Lm , the generalized
Misner-Sharp mass/energy in the FRW universe is found to be

Eeff =
Υ3

2G

(
F(φ)

(
H2 +

k
a2

)
+ HḞ −

4π
3

(1
2
φ̇

2 + V
) )
. (4.105)

(Note: A typo in Eq.(A8) of [13] is corrected here by either checking the derivation of Eq.(A8), or by refer-
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ring to Eq.(4.74) with the correspondence fR = φ and fR R − f (R) = V as in Eq.(4.88), despite the nonzero
kinetic term − 1

2∇αφ∇
αφ.) Compared with Eq.(4.93), [13] actually adopts a different scaling convention for

the Lagrangian density; in accordance with Eq.(4.93), we rescale [13] by

L = F(φ)R −
1
2
∇αφ∇

α
φ − V(φ) + 16πGLm , (4.106)

and consequently

Eeff =
Υ3

2G

(
F(φ)

(
H2 +

k
a2

)
+ HḞ −

1
6

(1
2
φ̇

2 + V
) )
, (4.107)

which can be expanded into

Eeff =
F(φ)Υ3

2G

(
H2 +

k
a2

)
−

4
3
πΥ3 ·

1
8πG

(
− 3HḞ +

1
4
φ̇

2 +
1
2

V
)
. (4.108)

As a subclass of the generic scalar-tensor-chameleon gravity Eq.(4.93) with E(φ) 7→ 1 , Z(φ) 7→ 1
2 and

U 7→ 1
2 V for the Lagrangian density Eq.(4.106), the energy density ρ(MG) in Eq.(4.97) and the mass M in

Eq.(4.98) reduce to become

ρ(MG) =
1

8πG

(
− 3HḞ +

1
4
φ̇

2 +
1
2

V
)

and M =
F(φ)Υ3

2G

(
H2 +

k
a2

)
, (4.109)

which finally recast Eq.(4.110) into

Eeff = M − ρ(MG)V =
(
ρm + ρ(MG)

)
V − ρ(MG)V = ρmV . (4.110)

Hence, the “generalized Misner-Sharp energy Eeff” for the FRW universe within the scalar-tensor gravity in
[13] is in fact the pure Misner-Sharp mass of physical matter for the same gravity in our work, just like the
case of f (R) gravity in Sec. 4.6.1.

4.6.5 Reconstruction of the physical mass ρmV in generic modified gravity

Before proceeding to analyze more examples, we would like to give some remarks on the problem of recon-
structing physical mass. Recall that in GR the mass ρmV of the physical matter (like baryon dust, radiation)
can be geometrically recovered by the Hawking mass for twist-free spacetimes [39] and the Misner-Sharp
mass for spherically symmetric spacetimes [12]. In modified gravity, the physical matter content determines
the FRW spacetime geometry Eq.(4.1) through more generic field equations which usually contain nonlinear
and higher-order curvature terms beyond GR. Thus, how to reconstruct the mass of the physical matter from
the spacetime geometry?

In [13], Cai el al. generalized the Misner-Sharp mass of GR into higher-dimensional Gauss-Bonnet
gravity and the f (R) (plus the scalar-tensor FRW) gravity in four dimensions. As just shown in Sec.4.6.1 and
Sec. 4.6.4, for the FRW universe the results in [13] do match the physical material mass ρmV in our unified
formulation. In fact, for the FRW universe governed by generic modified gravity with the field equation
Rµν − Rgµν/2 = 8πGeffT (eff)

µν , the massM(m) = ρmV of the physical matter content can be reconstructed from
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an geometric approach by

M(m) =
Υ3

2Geff

(
H2 +

k
a2

)
−

4πΥ3

3
ρ(MG) , (4.111)

where ρ(MG) is the density of modified-gravity effects collecting the nonlinear and higher-order geometric
terms and joining T µ (MG)

ν = diag[−ρ(MG), P(MG), P(MG), P(MG)], as concretely shown just before for f (R),
generalized Brans-Dicke and scalar-tensor-chameleon gravity. When going beyond the FRW geometry in
modified gravity, however, the validity of

M
(m)
Hk =

1
4πGeff

(∫
dA
4π

) 1
2
∫ (
− Ψ2 − σNPλNP + Φ11 + ΛNP

)
dA −

4πΥ3

3
ρ(MG)

=
1

4πGeff

(∫
dA
4π

) 1
2
(
2π −

∫
ρNP µNP dA

)
−

4πΥ3

3
ρ(MG)

(4.112)

to recover the physical mass ρmV for an arbitrary twist-free spacetime based on the effective Hawking mass
Eq.(4.15) in our unified formulation, and the feasibility of

M
(m)
MS =

Υ

2Geff

(
1 − hαβ∂αΥ∂βΥ

)
−

4πΥ3

3
ρ(MG) , (4.113)

for generic spherically symmetric spacetimes based on the effective Misner-Sharp mass Eq.(4.16), remain to
be examined.

4.6.6 Quadratic gravity

For quadratic gravity [25], the Lagrangian density is constructed by combining the Hilbert-Einstein density
of GR with the linear superposition of some well-known quadratic (as opposed to cubic and quartic) algebraic
curvature invariants such as R2, RµνRµν, S µνS µν (with S µν B Rµν − 1

4 R gµν), RµανβRµανβ, CµανβCµανβ (Weyl
tensor square), say L = R + a R2 + b RµνRµν + c S µνS µν + d RµανβRµανβ + e CµανβCµανβ + 16πGLm where
{a, b, c, d, e} are real-valued constants. However, these quadratic invariants are not totally independent of
each other, as S µνS µν = RµνRµν− 1

4 R2, CµανβCµανβ = RµανβRµανβ−2RµνRµν+R2/3, and moreover RµανβRµανβ

can be absorbed into the Gauss-Bonnet invariant G B R2 − 4RµνRµν + RµανβRµανβ which does not contribute
to the field equation since δ

∫
d4x
√
−gG/δgµν ≡ 0 (eg. [21]). Hence, it is sufficient to consider the following

Lagrangian density for quadratic gravity

LQG = R + a R2 + b RµνRµν + 16πGLm , (4.114)

and the field equation is [21]

−
1
2
(
R + a · R2 + b · R2

c
)

gµν +
(
1 + 2aR

)
Rµν + 2a

(
gµν2 − ∇µ∇ν

)
R + b · H(QG)

µν = 8πG T (m)
µν , (4.115)

where R2
c is the straightforward abbreviation for the Ricci tensor square RµνRµν to shorten some upcoming

expressions below, and

H(QG)
µν = 2RµανβRαβ +

(1
2

gµν2 − ∇µ∇ν
)

R + 2Rµν . (4.116)
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It can be rewritten into

Rµν −
1
2

Rgµν = 8π
G

1 + 2aR

(
T (m)
µν + T (MG)

µν

)
(4.117)

where
Geff =

G
1 + 2aR

and (4.118)

T (MG)
µν =

1
8πG

(
1
2

(
b · R2

c − aR2
)

gµν + (2a + b)∇µ∇νR −
(
2a +

b
2
)

gµν2R − 2b
(
2RµανβRαβ + 2Rµν

))
.

(4.119)

Substitute the FRW metric Eq.(4.1) into T (MG)
µν , and with T µ (MG)

ν = diag[−ρ(MG), P(MG), P(MG), P(MG)] we get

ρ(MG) =
1

8πG

(
a
2

R2 −
b
2

R2
c +

b
2

R̈ −
(
4a + b

)
HṘ + 4b Rt

αtβ + 2b2R t
t

)
, (4.120)

P(MG) =
1

8πG

(
b
2

R2
c −

a
2

R2 +
(
2a +

b
2
)

R̈ +
(
4a +

b
2
)

HṘ − 4b Rr
αrβR

αβ − 2b2R r
r

)
. (4.121)

where we have used Rt
αtβ = −Rtαtβ and 2R t

t = −2Rtt in ρ(MG) under the FRW metric Eq.(4.1). Also, since
Geff = G/φ, the geometric mass enclosed in a sphere of radius Υ is

M =
(1 + 2aR) Υ3

2G

(
H2 +

k
a2

)
with MA =̂

(1 + 2aR) ΥA

2G
, (4.122)

while the nonequilibrium energy dissipation E associated with the evolution of Geff and the Wald-Kodama
entropy E of the horizon are respectively

E =
4
3
πΥ3 2aṘ

1 + 2aR
ρeff dt and S =

AA (1 + 2aR)
4G

. (4.123)

Following the unified formulation developed in Sec. 4.3 and Sec. 4.4 to study dM = dE = Aψ + WdV + E

for the region Υ ≤ ΥA and T (dS + dPS ) =̂ δQ =̂ − (AAψ + EA) for the horizon itself, we find

H2 +
k
a2 =

8π
3

G
1 + 2aR

ρm +
1

3(1 + 2aR)

(
a
2

R2 −
b
2

R2
c +

b
2

R̈ −
(
4a + b

)
HṘ + 4b Rt

αtβ + 2b2R t
t

)
(4.124)

Ḣ−
k
a2 = −4π

G
1 + 2aR

(
ρm +Pm

)
−

1
2(1 + 2aR)

((
2a+b

)
R̈−

b
2

HṘ+4b (Rt
αtβ−Rr

αrβ)R
αβ+2b2

(
R t

t −R r
r
))
,

(4.125)
while the nonequilibrium entropy production on the horizon is

dpS =̂ − 4πΥ2
A

aṘ
G

dt . (4.126)
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We have verified that the thermodynamic relations Eqs.(4.124) and (4.125) are equivalent to the gravitational
Friedmann equations by substituting the FRW metric Eq.(4.1) into the quadratic field equations (4.117) and
(4.119).

Just like the treatment of f (R) gravity in Sec. 4.6.1, to keep the expressions of ρ(MG) , P(MG) and the
Friedmann equations (4.124) and (4.125) clear and readable, we continue using compact notations for R ,
R2

c , Ṙ , R̈ , Rt
αtβR

αβ , Rr
αrβR

αβ , 2R t
t and 2R r

r , and one should keep in mind that for the FRW metric
Eq.(4.1), these quantities are already known and can be fully expanded into higher-derivative and nonlinear
terms of H or a.

4.6.7 f (R,G) generalized Gauss-Bonnet gravity

The generalized Gauss-Bonnet gravity under discussion is given by the Lagrangian density LGB = f (R,G)+

16πGLm [23] whereG = R2−4RµνRµν+RµανβRµανβ is the Gauss-Bonnet invariant. This is in fact a subclass of
the L = f (R ,RµνRµν ,RµανβRµανβ)+16πGLm gravity [24] with explicit dependence on R2 and satisfying the
“coherence condition” fR2 = fR2

m
= − fR2

c
/4 [21] (R2

m and R2
c are the intuitive abbreviations for the Riemann

tensor square RµανβRµανβ and the Ricci tensor square RµνRµν, respectively). The field equation for f (R,G)
gravity reads

Rµν −
1
2

Rgµν = 8π
G

fR + 2R fG
T (m)
µν +

(
fR + 2R fG

)−1
(
1
2

(
f − ( fR + 2R fG) R

)
gµν

+
(
∇µ∇ν − gµν2

)
fR + 2R

(
∇µ∇ν − gµν2

)
fG + 4Rµν2 fG + H(GB)

µν

)
,

(4.127)

where

H(GB)
µν B 4 fG ·R α

µ Rαν + 4 fG ·RµανβRαβ − 2 fG ·RµαβγR αβγ
ν − 4R α

µ ∇α∇ν fG

−4R α
ν ∇α∇µ fG + 4gµν ·Rαβ∇α∇β fG − 4 Rαµβν∇β∇α fG ,

(4.128)

and { f , fR, fG = ∂ f /∂G} are all functions of (R,G). Note that in H(GB)
µν the second-order-derivative operators

{2,∇α∇ν, etc} only act on the scalar functions fG. Hence,

Geff =
G

fR + 2R fG
and (4.129)

T (MG)
µν =

1
8πG

(
1
2

(
f − ( fR + 2R fG) R

)
gµν +

(
∇µ∇ν − gµν2

)
fR + 2R

(
∇µ∇ν − gµν2

)
fG + 4Rµν2 fG + H(GB)

µν

)
.

(4.130)

Substitute the FRW metric Eq.(4.1) into T (MG)
µν with T µ (MG)

ν = diag[−ρ(MG), P(MG), P(MG), P(MG)], and in
compact notations we obtain

ρ(MG) =
1

8πG

(
1
2

( fR + 2R fG) R −
1
2

f − 3H ḟR − 6RH ḟG + 4R t
t ( f̈G + 3H ḟG) − H t

t (GB)

)
, (4.131)
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P(MG) =
1

8πG

(
1
2

f −
1
2

( fR + 2R fG) R + f̈R + 2H ḟR + 2R( f̈G + 2H ḟG) − 4R r
r ( f̈G + 3H ḟG) + H r

r (GB)

)
,

(4.132)

where we have used the properties R t
t = −Rtt and H t

t (GB) = −H(GB)
tt in ρ(MG) under the FRW metric Eq.(4.1).

Since Geff = G/( fR + 2R fG), the geometric mass within a sphere of radius Υ is

M =
( fR + 2R fG) Υ3

2G

(
H2 +

k
a2

)
with MA =̂

( fR + 2R fG) ΥA

2G
, (4.133)

while the nonequilibrium energy dissipation E associated with the evolution of Geff and the Wald-Kodama
entropy S of the horizon are respectively

E =
4
3
πΥ3 ḟR + 2Ṙ fG + 2R ḟG

fR + 2R fG
ρeff dt and S =

AA ( fR + 2R fG)
4G

. (4.134)

Following the unified formulation developed in Sec. 4.3 and Sec. 4.4 to study dM = dE = Aψ + WdV + E

for the region Υ ≤ ΥA and T (dS + dPS ) =̂ δQ =̂ − (AAψ + EA) for the horizon itself, we find

H2 +
k
a2 =

8π
3

G
fR + 2R fG

ρm +
1

3
(
fR + 2R fG

) (
1
2

(
fR + 2R fG

)
R −

1
2

f − 3H
(
ḟR + 2R ḟG

)
+4R t

t
(
f̈G + 3H ḟG

)
− H t

t (GB)

)
,

(4.135)

Ḣ −
k
a2 = −4π

G
fR + 2R fG

(
ρm + Pm

)
−

1
2
(
fR + 2R fG

) (
f̈R − H ḟR + 2R f̈G − 2RH ḟG

+4
(
R t

t − R r
r
) (

f̈G + 3H ḟG
)
− H t

t (GB) + H r
r (GB)

)
,

(4.136)

while the nonequilibrium entropy production on the horizon is

dpS =̂ − 2πΥ2
A

ḟR + 2Ṙ fG + 2R ḟG
G

dt . (4.137)

We have verified that the thermodynamic relations Eqs.(4.135) and (4.136) are really the gravitational Fried-
mann equations by substituting the FRW metric Eq.(4.1) into the generalized Gauss-Bonnet field equations
(4.127) and (4.128). Moreover, by setting fG = 0 and thus ḟG = f̈G = 0 , the situation of the f (R ,G)
generalized Gauss-Bonnet gravity reduces to become the case of f (R) gravity in Sec. 4.6.1.

4.6.8 Self-inconsistency of f (R,G) gravity

The f (R,G) example just above is based on Eqs.(4.127) and (4.128), which together with their contravariant
forms constitute the standard field equations of the f (R,G) gravity that are proposed in [23] and adopted in
existing papers related to generic dependence on G. On the other hand, recall that in four dimensions the
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Gauss-Bonnet invariant G is proportional to the Euler-Poincaré topological density as

G =
(1
2
εαβγζRγζηξ

)
·
(1
2
εηξρσRρσαβ

)
= ∗R ηξ

αβ
∗R αβ

ηξ , (4.138)

where εαβγζ refers to the totally antisymmetric Levi-Civita (pseudo)tensor with ε0123 =
√
−g. The integral∫

dx4 √−gG is equal to the Euler characteristic number χ (just a constant) of the spacetime, and thus

δ

δgµν

∫
dx4 √−gG ≡ 0 . (4.139)

By explicitly carrying out this variational derivative, one could find the following Bach-Lanczos identity
[49]:

2RRµν − 4R α
µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ

ν ≡
1
2
G gµν, (4.140)

with which the standard field equations (4.127) and (4.128) of the f (R,G) gravity can be simplified into

Rµν −
1
2

Rgµν = 8π
G
fR

T (m)
µν +

1
fR

(
1
2
(
f − fGG − fRR

)
gµν +

(
∇µ∇ν − gµν2

)
fR

+ 2R
(
∇µ∇ν − gµν2

)
fG + 4Rµν2 fG +H

(GB)
µν

)
,

(4.141)

where

H
(GB)
µν B −4R α

µ ∇α∇ν fG − 4R α
ν ∇α∇µ fG + 4gµν ·Rαβ∇α∇β fG − 4 Rαµβν∇β∇α fG . (4.142)

This way, the effective gravitational coupling strength is recognized to be

Geff =
G
fR
, (4.143)

as opposed to the Geff = G/( fR + 2R fG) in Eq.(4.129); this is because the 2 fGRRµν term directly joining
Eq.(4.127) is now absorbed by the 1

2 fGG gµν term in Eq.(4.141) due to the Bach-Lanczos identity and thus
no longer shows up in Eq.(4.141). The SEM tensor from modified-gravity effects becomes

T (MG)
µν =

1
8πG

(
1
2
(
f − fGG− fRR

)
gµν+

(
∇µ∇ν−gµν2

)
fR + 2R

(
∇µ∇ν−gµν2

)
fG+4Rµν2 fG+H

(GB)
µν

)
, (4.144)

which with the FRW metric Eq.(4.1) gives rise to

ρ(MG) =
1

8πG

(
1
2

( fRR + fGG) −
1
2

f − 3H ḟR − 6RH ḟG + 4R t
t ( f̈G + 3H ḟG) −H t

t (GB)

)
(4.145)

and

P(MG) =
1

8πG

(
1
2

f −
1
2

( fRR + fGG) + f̈R + 2H ḟR + 2R( f̈G + 2H ḟG)− 4R r
r ( f̈G + 3H ḟG) +H r

r (GB)

)
. (4.146)

Since the Geff = G/ fR coincides with that of f (R) gravity, the Hawking or Misner-Sharp geometric mass
M, the nonequilibrium energy dissipation E, the horizon entropy S and the entropy production element dpS
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are all the same with those of f (R) gravity, as derived before in Eqs.(4.68), (4.69) and (4.72) in Sec. 4.6.1,
respectively. Then the thermodynamical approach of Sec. 4.3 and Sec. 4.4 yields

H2 +
k
a2 =

8π
3

G
fR
ρm +

1
3 fR

(
1
2
(
fRR + fGG

)
−

1
2

f − 3H
(
ḟR + 2R ḟG

)
+ 4R t

t
(
f̈G + 3H ḟG

)
−H t

t (GB)

)
(4.147)

and

Ḣ−
k
a2 = −4π

G
fR

(
ρm + Pm

)
−

1
2 fR

(
f̈R−H ḟR + 2R f̈G−2RH ḟG+ 4

(
R t

t −R r
r
)(

f̈G+ 3H ḟG
)
−H t

t (GB) +H r
r (GB)

)
,

(4.148)
which match the Friedmann equations obtained from substituting the FRW metric Eq.(4.1) into the simplified
f (R,G) field equation (4.141).

However, these thermodynamical quantities and relations of f (R,G) gravity differ dramatically with
those in the previous Sec. 4.6.7. The contrast may be seen even more evidently in the L = R + f (G) +

16πGLm modified Gauss-Bonnet gravity [50] which is a special subclass of the f (R,G) theory. It follows
from Sec. 4.6.7 that Geff = G/(1 + 2R fG) for f (R,G) = R + f (G), and it is a nonequilibrium scenario with
nonvanishing energy dissipation E and entropy production dpS on the apparent horizon. On the contrary, we
have Geff = G in accordance with Eq.(4.141) as fR = 1, which corresponds to an equilibrium gravitational
thermodynamics with E = 0 = dpS .

Note that the existence of the two distinct formulations for the thermodynamics of f (R,G) gravity does
not indicate a failure of our unified formulation. Instead, it reveals a self-inconsistency feature of the f (R,G)
theory itself. Although the simplified field equations (4.141) and (4.142) are equivalent to Eqs.(4.127) and
(4.128) in Sec. 4.6.7 via the identity Eq.(4.140), practically they will behave differently with each other in
any problems relying on the input of the effective coupling strength Geff. Moreover, we also expect this
self-inconsistency of f (R,G) gravity to arise in other problems such as the black-hole thermodynamics.

4.6.9 Dynamical Chern-Simons gravity

So far we have applied our unified formulation to the f (R), generalized Brans-Dicke, scalar-tensor-chameleon,
quadratic and f (R,G) gravity; they are all nonequilibrium theories with nontrivial Geff in the coefficient of
T (m)
µν . As a final example we will continue to consider the (dynamical) Chern-Simons modification of GR

[51], which is a thermodynamically equilibrium theory with Geff = G. Its Lagrangian density reads

LCS = R +
aϑ

2
√
−g
∗R̂R − b∇µϑ∇µϑ − V(ϑ) + 16πGLm, (4.149)

where ϑ = ϑ(xµ) is a scalar field, {a, b} are constants, and ∗R̂R denotes the parity-violating Pontryagin
invariant

∗R̂R = ∗Rαβγδ Rαβγδ =
(1
2
εαβµνR

µν
γδ

)
Rαβγδ . (4.150)

∗R̂R is proportional to the divergence of the Chern-Simons topological current Kµ [51]:

∗R̂R = −2 ∂µKµ and Kµ = 2εµαβγ
(1
2

Γ
ξ
ατ∂βΓ

τ
γξ +

1
3

Γ
ξ
ατΓ

τ
βηΓ

η
γξ

)
, (4.151)
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with ε0123 = 1/
√
−g, hence the name Chern-Simons gravity. Variational derivative of

√
−gLCS with respect

to the inverse metric gµν yields the field equation

Rµν −
1
2

Rgµν = 8πGT (m)
µν −

a
√
−g

Cµν + b
(
∇µϑ∇νϑ −

1
2

gµν∇αϑ∇αϑ
)
−

1
2

V(ϑ)gµν , (4.152)

where
Cµν = ∇αϑ ·

(
εαβγµ∇

γR β
ν + εαβγν∇

γR β
µ

)
+ ∇α∇βϑ ·

(
∗Rβµνα + ∗Rβνµα

)
. (4.153)

Eq.(4.152) directly shows that the Chern-Simons gravitational coupling strength is just Newton’s constant,
Geff = G, and

T (MG)
µν = −a Cµν + b

(
∇µϑ∇νϑ −

1
2

gµν∇αϑ∇αϑ
)
−

1
2

V(ϑ)gµν. (4.154)

With the FRW metric Eq.(4.26), this T (MG)
µν leads to

ρ(MG) =
1

16πG

(
b ϑ̇2 + V(ϑ)

)
and P(MG) =

1
16πG

(
b ϑ̇2 − V(ϑ)

)
. (4.155)

Since Geff = G = constant, we can make use of the reduced formulation in Sec.4.5.4 for equilibrium situa-
tions. The geometric mass and the horizon entropy are respectively

M =
Υ3

2G

(
H2 +

k
a2

)
with MA =̂

ΥA

2G
(4.156)

and

S =
AA

4G
=
πΥ2

A

G
, (4.157)

which are the same with those of GR [8]. Also, there are no energy dissipation E and the on-horizon entropy
production dpS ,

E = 0 and dpS = 0 . (4.158)

Following the procedures in Sec.4.5.4, for the interior and the horizon we obtain from the thermodynamical
approach that

H2 +
k
a2 =

8πG
3
ρm +

1
6

(
b ϑ̇2 + V(ϑ)

)
(4.159)

and
Ḣ −

k
a2 = −4πG

(
ρm + Pm

)
−

b
2
ϑ̇2 . (4.160)

By substituting the FRW metric Eq.(4.1) into the field equation (4.152), we have confirmed that Eqs.(4.159)
and (4.160) are really the Friedmann equations of the FRW universe governed by the Chern-Simons gravity.

4.7 Conclusions

In this paper, we have developed a unified formulation to derive the Friedmann equations from (non)equilibrium
thermodynamics within modified gravity with field equations of the form Rµν − Rgµν/2 = 8πGeffT (eff)

µν . We
firstly made the necessary preparations by locating the marginally inner trapped horizon ΥA of the expanding
FRW universe as the apparent horizon of relative causality, and then rewrote the continuity equation from
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∇µ(GeffT (eff)
µν ) = 0 to introduce the energy dissipation element E which is related with the evolution of Geff.

With these preparations, we began to study the thermodynamics of the FRW universe. We have gener-
alized the Hawking and Misner-Sharp geometric definitions of mass by replacing Newton’s constant G with
Geff, and calculated the total derivative of M in the comoving (t, r) and the areal (t,Υ) transverse coordinates.
Also, we have supplemented Hayward’s unified first law of thermodynamics into dE = Aψ + WdV + E

with the dissipation term E, where the work density W and the heat flux covector ψ are computed using the
effective matter content T (eff)

µν . By identifying the geometric mass M enveloped by a sphere of radius Υ < ΥA

as the total internal energy E, the Friedmann equations have been derived from the thermodynamic equality
dM = dE.

On the horizon Υ = ΥA, besides the smooth limit Υ → ΥA of dM = dE from the untrapped interior
Υ < ΥA to the horizon, we have employed an alternative Clausius method. By considering the heat flow
during the infinitesimal time interval dt for an isochoric process using the unified first law dE =̂ AAψt + EA

and the generic nonequilibrium Clausius relation T (dS +dpS ) =̂ δQ respectively, we have obtained the second
Friedmann equation Ḣ−k/a2 =̂−4πGeff

(
ρeff + Peff

)
from the thermodynamics equality T (dS +dpS ) =̂ δQ =̂−

dE =̂ − (AAψt + EA), while the first Friedmann equation H2 + k/a2 =̂ 8πGeffρeff/3 can be recovered using
the generalized continuity equation Ġeffρeff + Geffρ̇eff + 3GeffH

(
ρeff + Peff

)
= 0. Here we have taken the

temperature ansatz T = 1/(2πΥA) in [8] and the Wald-Kodama dynamical entropy S =̂ AA/(4Geff) for the
horizon, and the equality T (dS + dpS ) =̂ − (AAψt + EA) has also determined the entropy production dpS
which is generally nonzero unless Geff = constant . In the meantime, we have adjusted the thermodynamic
sign convention by the consistency between the thermodynamics of the horizon and the interior.

After developing the unified formulation for generic relativistic gravity, we have extensively discussed
some important problems related to the formulation. A viability test of the generalized effective mass has
been proposed, which shows that the equality between the physically defined effective mass M = ρeffV =

(ρm +ρ(MG))V and the geometric effective mass automatically yields the Friedmann equations. Also, we have
argued that for the modified-gravity theories under discussion with minimal geometry-matter coupling, the
continuity equation can be further simplified due to the Noether-compatible definition of T (m)

µν . Furthermore,
we have discussed the reduced situation of the unified formulation for Geff = G = constant with vanishing
dissipation E = 0 and entropy production dpS = 0, which is of particular importance for typical scalarial
dark-energy models and some fourth-order gravity.

Finally, we have applied our unified formulation to the f (R), generalized Brans-Dicke, scalar-tensor-
chameleon, quadratic, f (R,G) generalized Gauss-Bonnet and dynamical Chern-Simons gravity, to derive the
Friedmann equations from thermodynamics-gravity correspondence, where compact notations have been
employed to simplify the thermodynamic quantities {ρ(MG) , P(MG)}. In addition, we have verified that, the
“generalized Misner-Sharp energy” for f (R) and scalar-tensor gravity FRW cosmology in [13] matches the
pure mass ρmV of the physical matter content in our formulation, and then continued to reconstruct the
physical mass ρmV from the spacetime geometry for generic modified gravity. We also found the self-
inconsistency of f (R,G) gravity in such problems which require to specify the Geff.

In our prospective studies, we will apply the unified formulation developed in this paper to the gener-
alized second law of thermodynamics for the FRW universe, and extend our formulation to more generic
theories of modified gravity which allow for nonminimal curvature-matter couplings. Moreover, we will
try to loosen the restriction of spherical symmetry and look into the problem of thermodynamics-gravity
correspondence in the Bianchi classes of cosmological solutions.
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Abstract

The thermodynamics of the Universe is restudied by requiring its compatibility with the holographic-
style gravitational equations which govern the dynamics of both the cosmological apparent horizon and
the entire Universe, and possible solutions are proposed to the existent confusions regarding the apparent-
horizon temperature and the cosmic entropy evolution. We start from the generic Lambda Cold Dark
Matter (ΛCDM) cosmology of general relativity (GR) to establish a framework for the gravitational ther-
modynamics. The Cai–Kim Clausius equation δQ = TAdS A = −dEA = −AAψt for the isochoric process
of an instantaneous apparent horizon indicates that, the Universe and its horizon entropies encode the
positive heat out thermodynamic sign convention, which encourages us to adjust the traditional positive-
heat-in Gibbs equation into the positive-heat-out version dEm = −TmdS m − PmdV . It turns out that the
standard and the generalized second laws (GSLs) of nondecreasing entropies are always respected by the
event-horizon system as long as the expanding Universe is dominated by nonexotic matter −1 ≤ wm ≤ 1,
while for the apparent-horizon simple open system the two second laws hold if −1 ≤ wm < −1/3; also,
the artificial local equilibrium assumption is abandoned in the GSL. All constraints regarding entropy
evolution are expressed by the equation of state parameter, which show that from a thermodynamic per-
spective the phantom dark energy is less favored than the cosmological constant and the quintessence.
Finally, the whole framework is extended from GR and ΛCDM to modified gravities with field equations
Rµν − Rgµν/2 = 8πGeffT (eff)

µν . Furthermore, this paper argues that the Cai–Kim temperature is more suit-
able than Hayward, both temperatures are independent of the inner or outer trappedness of the apparent
horizon, and the Bekenstein–Hawking and Wald entropies cannot unconditionally apply to the event and
particle horizons.

PACS numbers: 04.20.Cv , 04.50.Kd , 98.80.Jk

5.1 Introduction

The thermodynamics of the Universe is quite an interesting problem and has attracted a lot of discussion.
Pioneering work dates back to the investigations of cosmic entropy evolutions for the spatially flat de Sitter
Universe [1] dominated by a positive cosmological constant, while recent studies have covered both the first

∗Email address: wtian@mun.ca
†Email address: ibooth@mun.ca
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and second laws of thermodynamics for the Friedmann-Robertson-Walker (FRW) Universe with a generic
spatial curvature.

Recent interest on the first law of thermodynamics for the Universe was initiated by Cai and Kim’s deriva-
tion of the Friedmann equations from a thermodynamic approach [2]: this is actually a continuation of Jacob-
son’s work to recover Einstein’s equation from the equilibrium Clausius relation on local Rindler horizons
[3], and also a part of the effort to seek the connections between thermodynamics and gravity [4] following
the discovery of black hole thermodynamics [5]. For general relativity (GR), Gauss-Bonnet and Lovelock
gravities, Akbar and Cai reversed the formulation in [2] by rewriting the Friedmann equations into the heat
balance equation and the unified first law of thermodynamics at the cosmological apparent horizon [6]. The
method of [6] was soon generalized to other theories of gravity to construct the effective total energy dif-
ferentials by the corresponding modified Friedmann equations, such as the scalar-tensor gravity in [7], f (R)
gravity in [8], braneworld scenarios in [9, 10], generic f (R, φ,∇αφ∇αφ) gravity in [11], and Horava-Lifshitz
gravity in [12]. Also, at a more fundamental level, the generic field equations of F(R, φ,− 1

2∇αφ∇
αφ,G)

gravity are recast into the form of Clausius relation in [13].
Besides the first laws on the construction of various energy-conservation and heat-transfer equations,

the entropy evolution of the Universe has also drawn plenty of attention. However, the cosmic entropies
are almost exclusively studied in the generalized rather than the standard second laws [14–25]. In fact,
investigations via the traditional Gibbs equation dEm = TmdS̃ m − PmdV show that in GR and modified
gravities, the evolution of the physical entropy S̃ m for the matter inside the apparent and the event horizons
departs dramatically from the desired nondecreasing behaviors; especially that S̃ m inside the future-pointed
event horizon always decreases under the dominance of nonexotic matter above the phantom divide. Thus
the generalized second law (GSL) has been employed, which adds up S̃ m with the geometrically defined
entropy of the cosmological causal boundaries and anticipates the total entropy to be nondecreasing so that
the standard second law could be rescued. For example, GSL has been studied in [14] for a flat Universe
with multiple entropy sources (thermal, geometric, quantum etc.) by the entropy ansatz S = |H|α (α > −3),
in [15] for the event-horizon system of a quintom-dominated flat Universe, and [16] for various interacting
dark energy models.

Moreover, the GSL has also been used as a validity constraint on modified and alternative theories of
gravity. For instance, the GSL has been imposed on the event-horizon system of the flat Universe of f (R)
gravity in [17], tentatively to the flat apparent-horizon system of generic modified gravities in [18], to the
higher-dimensional Gauss-Bonnet and Lovelock gravities in [19], to the Gauss-Bonnet, Randall-Sundrum
and Dvali-Gabadadze-Porrati braneworlds in [20], the Horava-Lifshitz gravity in [21], F(R,G) generalized
Gauss-Bonnet gravity in [22], f (T ) generalized teleparallel gravity in [23], scalar-tensor-chameleon gravity
in [24], and the self-interacting f (R) gravity in [25]. Note that in the studies of GSLs, the debatable “local
equilibrium assumption” has been widely adopted which supposes that the matter content and the causal
boundary in use (mainly the apparent or the event horizon) would have the same temperature [16, 19–
22, 24, 25].

Unlike laboratory thermodynamics which is a well-developed self-consistent framework, the thermody-
namics of the Universe is practically a mixture of ordinary thermodynamics with analogous gravitational
quantities, for which the consistency between the first and second laws and among the setups of thermody-
namic functions are not yet verified. For example, the Hayward temperature κ/2π [7, 9] or |κ|/2π [8, 10]
which formally resembles the Hawking temperature of (quasi)stationary black holes [5] has been adopted in

106



the first laws, while in GSLs both |κ|/2π [18–20, 24, 25] and the Cai–Kim temperature [16, 21, 22] are used.
Moreover, in existent literature we have noticed six questions regarding the gravitational thermodynamics of
the Universe:

(1) For the Cai–Kim and the Hayward temperatures, which one is more appropriate for the cosmological
boundaries? By solving this temperature confusion, the equations of total energy differential at the
horizons could also be determined;

(2) For the Bekenstein–Hawking entropy in GR and the Wald entropy in modified gravities, are they
unconditionally applicable to both the cosmological apparent and the event horizons?

(3) Is the standard second law for the physical matter really ill-behaved and thus needs to be saved by the
GSL? This constitutes the cosmological entropy confusion;

(4) Is the artificial local equilibrium assumption really necessary for the GSL?

(5) The region enveloped by the apparent horizon is actually a thermodynamically open system with the
absolute cosmic Hubble flow crossing the horizon; how will this fact influence the entropy evolution?

(6) Are the thermodynamic quantities fully consistent with each other when the cosmic gravitational ther-
modynamics is systemized?

In this paper, we will try to answer these questions.
This paper is organized as follows. Starting with GR and the ΛCDM Universe (where Λ denotes generic

dark energy), in Sec. 5.2 we derive the holographic-style dynamical equations governing the apparent-
horizon dynamics and the cosmic spatial expansion, which yield the constraints from the EoS parameter
wm on the evolution and metric signature of the apparent horizon. Section 5.3 demonstrates how these
holographic-style gravitational equations imply the unified first law of thermodynamics and the Clausius
equation, and shows the latter encodes the positive-heat-out sign convention for the horizon entropy. In
Sec. 5.4 the Cai–Kim temperature is extensively compared with Hayward, with the former chosen for fur-
ther usage in Sec. 5.5, where we adjust the traditional Gibbs equation into the Positive Out convention to
investigate the entropy evolution for the simple open systems enveloped by the apparent and event horizons.
Finally the whole framework of gravitational thermodynamics is extended from ΛCDM model and GR to
generic modified gravity in Sec. 5.6. Throughout this paper, we adopt the sign convention Γαβγ = Γαβγ,
Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · · and Rµν = Rαµαν with the metric signature (−,+ + +).

5.2 Dynamics of the cosmological apparent horizon

5.2.1 Apparent horizon and observable Universe

The FRW metric provides the most general description for the spatially homogeneous and isotropic Universe.
In the (t, r, θ, ϕ) coordinates for an observer comoving with the cosmic Hubble flow, it has the line element
(e.g. [2, 26])

ds2 = −dt2 +
a(t)2

1 − kr2 dr2 + a(t)2r2(dθ2 + sin2θdϕ2)
= hαβdxαdxβ + Υ2(dθ2 + sin2θdϕ2), (5.1)
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where a(t) refers to the scale factor to be specified by the gravitational field equations, and the index k denotes
the normalized spatial curvature, with k = {+1 , 0 ,−1} corresponding to closed, flat and open Universes, re-
spectively. hαβ B diag[−1 , a(t)2

1−kr2 ] represents the transverse two-metric spanned by xα = (t, r), and Υ B a(t) r
stands for the astronomical circumference/areal radius. Based on Eq.(5.1), one can establish the following
null tetrad adapted to the spherical symmetry and the null radial flow,

`µ =

(
1 ,

√
1 − kr2

a
, 0 , 0

)
, nµ =

1
2

(
− 1 ,

√
1 − kr2

a
, 0 , 0

)
, mµ =

1
√

2 Υ

(
0, 0, 1,

i
sinθ

)
, (5.2)

which has been adjusted to be compatible with the metric signature (−,+ + +) (e.g. Appendix B in [27]). By
calculating the Newman-Penrose spin coefficients ρNP B −mµm̄ν∇ν`µ and µNP B m̄µmν∇νnµ, the outward
expansion rate θ(`) = −

(
ρNP + ρ̄NP

)
and the inward expansion θ(n) = µNP + µ̄NP are respectively found to be

θ(`) = 2H + 2Υ−1

√
1 −

kΥ2

a2 , θ(n) = −H + Υ−1

√
1 −

kΥ2

a2 , (5.3)

where H refers to the time-dependent Hubble parameter of cosmic spatial expansion, and H B
ȧ
a

with the
overdot denoting the derivative with respect to the comoving time t. For the expanding (H > 0) Universe,
θ(`) and θ(n) locate the apparent horizon Υ = ΥA by the unique marginally inner trapped horizon [28] at

ΥA =
1√

H2 +
k
a2

, (5.4)

with θ(`) = 4H > 0, θ(n) = 0, and also ∂µΥ becomes a null vector with gµν∂µΥ∂νΥ = 0 at ΥA. Immediately
the temporal derivative of Eq.(5.4) yields the kinematic equation

Υ̇A = −HΥ3
A

(
Ḣ −

k
a2

)
. (5.5)

Just like ΥA and Υ̇A, hereafter quantities evaluated on or related to the apparent horizon will be highlighted
by the subscript A.

{`µ, nµ} in Eq.(5.2) coincide with the outgoing and ingoing tangent vector fields of the null radial congru-
ence that is sent towards infinity by the comoving observer at r = 0, and ingoing signals from the antitrapped
region Υ > ΥA (where θ(`) > 0, θ(n) > 0) can no longer cross the marginally inner trapped ΥA and return to
the observer. However, the region Υ ≤ ΥA is not necessarily the standard observable Universe in astronomy
where ultrahigh redshift and visually superluminal recession can be detected [29, 30]: ΥA is a future-pointed
horizon determined in active measurement by the observer, while the observable Universe is the past-pointed
region measured by passive reception of distant signals and thus more related to the past particle horizon.

Note that we are working with the generic FRW metric Eq.(5.1) which allows for a nontrivial spatial
curvature. This is not just for theoretical generality: in fact, astronomical observations indicate that the
Universe may not be perfectly flat. For example, in the oΛCDM sub-model with a strict vacuum-energy
condition wΛ = −1, the nine-years data from the Wilkinson Microwave Anisotropy Probe (WMAP) and other
sources like the Baryon Acoustic Oscillations (BAO) yield the fractional energy density Ωk = −0.0027+0.0039

−0.0038
[31] for the spatial curvature, independently the time-delay measurements of two strong gravitational lensing
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systems along with the seven-years WMAP data find Ωk = 0.003+0.005
−0.006 [32], while most recently analyses

based on BAO data give Ωk = −0.003 ± 0.003 [33].

5.2.2 Holographic-style dynamical equations

The matter content of the Universe is usually portrayed by a perfect-fluid type stress-energy-momentum
tensor, and in the metric-independent form it reads

T µ (m)
ν = diag

[
− ρm, Pm, Pm, Pm

]
with Pm/ρm C wm , (5.6)

where wm refers to the equation of state (EoS) parameter. Substituting this T (m)
µν and the metric Eq.(5.1) into

Einstein’s equation Rµν − 1
2 Rgµν = 8πGT (m)

µν , one obtains the first and the second Friedmann equations

H2 +
k
a2 =

8πG
3
ρm and

Ḣ −
k
a2 = −4πG

(
1 + wm

)
ρm = −4πGhm

or 2Ḣ + 3H2 +
k
a2 = −8πGPm ,

(5.7)

where hm = ρm + Pm =
(
1 + wm

)
ρm refers to the enthalpy density.

Primarily, the first and second Friedmann equations are respectively the first and second order differential
equations of the scale factor a(t), which is the only unspecified function in the metric Eq.(5.1). On the other
hand, recall the location and the time-derivative of the cosmological apparent horizon in Eqs. (5.4) and (5.5),
and thus Eq.(5.7) can be rewritten into

Υ−2
A =

8πG
3

ρm , (5.8)

Υ̇A = 4πGHΥ3
A
(
1 + wm

)
ρm = 4πGHΥ3

Ahm , (5.9)

which manifest themselves as the dynamical equations of the apparent horizon. However, they also describe
the dynamics of spatial expansion for the entire Universe, so for this usage we will dub Eqs.(5.8) and (5.9) the
“holographic-style” dynamical equations since they reflect the spirit of holography [we are using the word
“holographic” in a generic sense as opposed to the standard terminology holographic principle in quantum
gravity and string theory [34] or the holographic gravity method [35]].

Eq.(5.8) immediately implies that, for the late-time Universe dominated by dark energy ρm = ρΛ, the
apparent horizon serves as the natural infrared cutoff for the holographic dark energy model [36], in which
the dark-energy density ρ(HG)

Λ
relies on the scale of the infrared cutoff ΥIR by ρ(HG)

Λ
= 3Υ−2

IR /(8πG).
Moreover, with the apparent-horizon area AA = 4πΥ2

A, it follows from Eq.(5.8) that

ρmAA =
3

2G
, (5.10)

so Eq.(5.9) can be further simplified into

Υ̇A =
3
2

HΥA
(
1 + wm

)
. (5.11)
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With the help of Eqs.(5.8) and (5.11), for completeness the third member (the Pm one) in Eq.(5.7) can be
directly translated into

Υ−3
A

(
Υ̇A −

3
2

HΥA
)

= 4πGHPm , (5.12)

and we keep it in this form without further manipulations for later use in Sec. 5.3.1.
From a mathematical point of view, it might seem trivial to rewrite the Friedmann equations (5.7) into

the holographic-style gravitational equations (5.8)-(5.12). However, considering that existent studies on the
gravitational thermodynamics of the cosmological apparent horizon always start from the relevant Fried-
mann equations [6–12, 14–25], we wish that the manipulations of Eq.(7) into Eqs.(8)-(12) could make the
formulations physically more meaningful and more concentrative on the horizon ΥA itself. Also, we will pro-
ceed to investigate some useful properties of the apparent horizon as necessary preparations for the horizon
thermodynamics.

Eq.(5.11) clearly shows that, for an expanding Universe (H > 0) the apparent-horizon radius ΥA can
be either expanding, contracting or even static, depending on the domain of the EoS parameter wm or
equivalently the sign of the enthalpy density hm. In the ΛCDM cosmology, ρm could be decomposed into
all possible components, ρm =

∑
ρ(i)

m = ρm(baryon) + ρm(radiation) + ρm(neutrino) + ρm(dark matter) +

ρm(dark energy) + · · · , and the same for Pm. In principle there should be an EoS parameter w(i)
m = P(i)

m /ρ
(i)
m

associated to each energy component. However, practically we can regard wm either as that of the absolutely
dominating matter, or the weighted average for all relatively dominating components

wm =

∑
P(i)

m

ρm
=

∑
w(i)

m ρ
(i)
m

ρm
=

∑
αi w(i)

m , (5.13)

with the weight coefficient given by αi = ρ(i)
m /ρm, and thus wm varies over cosmic time scale. Then it follows

from Eq.(5.11) that:

wm dominating matter enthalpy density Υ̇A

−1/3 ≤ wm (≤ 1) and

−1 < wm < −1/3

ordinary matter, and

quintessence [37]
hm > 0 Υ̇A > 0, expanding

wm = −1
cosmological constant or

vacuum energy [38]
hm = 0 Υ̇A = 0, static

wm < −1 phantom [39] hm < 0 Υ̇A < 0, contracting

The dominant energy condition [40] ρm ≥ |Pm| imposes the constraint −1 ≤ wm ≤ 1 for nonexotic matter.
Here we retain the upper limit wm ≤ 1 but loosen the lower limit, allowing wm to cross the barrier wm = −1
into the exotic phantom domain wm < −1. The upper limit however is bracketed as (≤ 1) to indicate that it is
a physical rather than mathematical constraint.
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5.2.3 Induced metric of the apparent horizon

The total derivative of Υ = Υ(t, r) yields adr = dΥ − HΥdt, which recasts the FRW line element Eq.(5.1)
into the (t,Υ, θ, ϕ) coordinates as

ds2 =

(
1 −

kΥ2

a2

)−1 (
−

(
1 −

Υ2

Υ2
A

)
dt2 − 2HΥdtdΥ + dΥ2

)
+ Υ2

(
dθ2 + sin2θdϕ2

)
. (5.14)

Although the comoving transverse coordinates (t, r) are easier to work with, we will switch to the more
physical coordinates (t,Υ) whenever necessary. The metric Eq.(5.14) reduces to become a three-dimensional
hypersurface in the (t, θ, ϕ) coordinates at the apparent horizon ΥA = ΥA(t), and with Eq.(5.11), the induced
horizon metric turns out to be

ds2 =
(
HΥA

)−2(
Υ̇A − 2HΥA

)
Υ̇Adt2 + Υ2

A
(
dθ2 + sin2θdϕ2)

=
9
4
(
wm + 1

)(
wm −

1
3
)
dt2 + Υ2

A
(
dθ2 + sin2θdϕ2). (5.15)

Here wm shows up in the coefficients of dt2, and indeed the spirit of geometrodynamics allows and encour-
ages physical parameters to directly participate in the spacetime metric, just like the mass, electric charge
and angular momentum parameters in the Kerr-Newmann solution. It is easily seen that the signature of the
apparent horizon solely relies on the domain of wm regardless of the Universe being expanding or contracting.

(1) For −1 < wm < 1/3, the apparent horizon ΥA has the signature (−,++) and is timelike, which shares
the signature of a quasilocal timelike membrane in black-hole physics [28, 41].

(2) For wm < −1 or 1/3 < wm (≤ 1), the signature is (+,++) and thus ΥA is spacelike. This situation has
the same signature with the dynamical black-hole horizons [42].

(3) For wm = −1 or wm = 1/3, ΥA is a null surface with the signature (0,++), so it coincides with the
cosmological event horizon ΥE B a

∫ ∞
t a−1dt̂ [26, 43] which by definition is a future-pointed null

causal boundary, and it shares the signature of isolated black-hole horizons [27].

Note that these analogies between ΥA and black-hole horizons are limited to the metric signature, while the
behaviors of their expansions {θ(`), θ(n)} and the horizon trappedness are entirely different. Among the two
critical values, wm = −1 corresponds to the de Sitter Universe dominated by a positive cosmological constant
(or vacuum energy) [1], while wm = 1/3 refers to the highly relativistic limit of wm and the EoS of radiation,
with the trace of the the stress-energy-momentum tensor gµνT (m)

µν = (3wm − 1)ρm vanishing at wm = 1/3. As
will be shown later in Sec. 5.4, wm = 1/3 also serves as the “zero temperature divide” if the apparent-horizon
temperature were measured by κ/2π in terms of the Hayward surface gravity κ.

5.2.4 Relative evolution equations

The nontrivial t-component of ∇µT µ (m)
ν = 0 with respect to the metric Eq.(5.1) leads to the continuity equa-

tion for the cosmic perfect fluid
ρ̇m + 3H

(
1 + wm

)
ρm = 0 . (5.16)

Thus for the relative evolution rate of the energy density ρ̇m/ρm, its ratio over that of the cosmic scale
factor ȧ/a = H synchronizes with the instantaneous value of the EoS parameter, ρ̇m

ρm

/
ȧ
a = −3

(
1 + wm

)
.
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This relation is not alone, as one could easily observe from Eq.(5.11) that the relative evolution rate of the
apparent-horizon radius Υ̇A/ΥA is normalized by ȧ/a into Υ̇A

ΥA

/
ȧ
a = 3

2 (1 + wm). These two equations reveal
the interesting result that throughout the history of the Universe, the relative evolution rate of the energy
density is always proportional to that of the apparent-horizon radius:

ρ̇m

ρm

/
Υ̇A

ΥA
= −2 . (5.17)

In fact, integration of Eq.(5.17) yields ln ρm ∝ −2 ln ΥA and thus ρm ∝ Υ−2
A , which matches the holographic-

style dynamical equation (5.8) with the proportionality constant identified as 3
8πG .

5.3 Thermodynamic implications of the holographic-style dynamical equa-
tions

In Sec. 5.2, based on Eqs.(5.8)-(5.12) we have analyzed some properties of the cosmological apparent hori-
zon ΥA to facilitate the subsequent discussion; one can refer to [43] for more discussion of the horizon ΥA.
From this section on, we will continue to investigate the thermodynamic implications of the holographic-
style gravitational equations (5.8)-(5.12).

5.3.1 Unified first law of thermodynamics

The mass M = ρmV of cosmic fluid within a sphere of radius Υ, surface area A = 4πΥ2 and volume
V = 4

3πΥ3, can be geometrically recovered from the spacetime metric and we will identify it as the total
internal energy E. With the Misner-Sharp mass/energy [44] EMS B

Υ
2G

(
1 − hαβ∂αΥ∂βΥ

)
for spherically

symmetric spacetimes, Eq.(5.1) with hαβ= diag[−1 , a2

1−kr2 ] for the Universe yields

E =
Υ3

2GΥ2
A

, (5.18)

and its equivalence with the physically defined mass E = M = ρmV is guaranteed by Eq.(5.8). Equation
(5.18) can also be reconstructed in the tetrad Eq.(5.2) from the Hawking energy [45] EHk B

1
4πG

(∫
dA
4π

)1/2 ∫ (
−

Ψ2 − σNPλNP + Φ11 + ΛNP
)
dA ≡ 1

4πG

(∫
dA
4π

)1/2 (
2π −

∫
ρNPµNPdA

)
for twist-free spacetimes. Immediately,

the total derivative or transverse gradient of E = E(t, r) is

dE = −
1
G

Υ3

Υ3
A

(
Υ̇A −

3
2

HΥA
)

dt +
3

2G
Υ2

Υ2
A

adr (5.19)

= −
Υ̇A

G
Υ3

Υ3
A

dt +
3

2G
Υ2

Υ2
A

dΥ , (5.20)

where the relation adr = dΥ − HΥdt has been employed to rewrite Eq.(5.19) into Eq.(5.20), with the trans-
verse coordinates from (t, r) to (t ,Υ). According to the holographic-style dynamical equations (5.8), (5.9)
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and (5.12), the energy differentials Eqs.(5.19) and (5.20) can be rewritten into

dE = −AΥHPm dt + A ρm adr (5.21)

= −A
(
1 + wm

)
ρm HΥ dt + A ρm dΥ . (5.22)

Eqs.(5.21) and (5.22) can be formally compactified into

dE = Aψ + WdV , (5.23)

where ψ and W are respectively the energy supply covector

ψ = −
1
2
ρm

(
1 + wm

)
HΥ dt +

1
2
ρm

(
1 + wm

)
adr (5.24)

= − ρm
(
1 + wm

)
HΥ dt +

1
2
ρm

(
1 + wm

)
dΥ , (5.25)

and the work density

W =
1
2
(
1 − wm

)
ρm . (5.26)

Eq.(5.23) is exactly the unified first law of (equilibrium) thermodynamics proposed by Hayward [46], and
one can see from the derivation process that it applies to a volume of arbitrary areal radius Υ, no matter
Υ < ΥA, Υ = ΥA or Υ > ΥA. Moreover, W and ψ can respectively be traced back to the scalar invariant
W B − 1

2 Tαβ
(m)hαβ and the covector invariant ψα B T β

α (m)∂βΥ + W∂αΥ [46], which are valid for all spherically
symmetric spacetimes besides FRW, and have Eqs.(5.24), (5.25) and (5.26) as their concrete components
with respect to the metric Eq.(5.1).

Note that the “unified” first law Eq.(5.23) for the gravitational thermodynamics of the Universe is totally
different from the first laws in black-hole thermodynamics which balance the energy differential with the
first-order variations of the Arnowitt-Deser-Misner type quantities (such as mass, electric charge, and angular
momentum). Instead, Eq.(5.23) is more related to the geometrical aspects of the thermodynamics-gravity
correspondence.

5.3.2 Clausius equation on the apparent horizon for an isochoric process

Having seen that the full set of holographic-style dynamical equations (5.8), (5.9) and (5.12) yield the unified
first law dE = Aψ+WdV for an arbitrary region in the FRW Universe, we will focus on the volume enclosed
by the apparent horizon ΥA. Firstly, Eq.(5.9) leads to

Υ̇A

G
dt = AA

(
1 + wm

)
ρm HΥA dt , (5.27)

and the left hand side can be manipulated into

Υ̇A

G
dt =

1
2πΥA

(
2πΥAΥ̇A

G
dt

)
=

1
2πΥA

d
dt

πΥ2
A

G

 . (5.28)
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Applying the geometrically defined Hawking-Bekenstein entropy [5] (in the units ~ = c = k [Boltzmann] =

1) to the apparent horizon

S A =
πΥ2

A

G
=

AA

4G
, (5.29)

then employing the Cai–Kim temperature [2, 47]

TA ≡
1

2πΥA
, (5.30)

thus TAdS A = Υ̇A/Gdt and Eq.(5.28) can be rewritten into

TAdS A = δQA = − AAψt = − dEA

∣∣∣∣
dΥ=0

, (5.31)

where ψt is the t-component of the energy supply covector ψ = ψt +ψΥ = ψαdxα in Eq.(5.25). This basically
reverses Cai and Kim’s formulation in [2], and differs from [6] by the setup of the horizon temperature.
Eq.(5.31) is actually the Clausius equation for equilibrium and reversible thermodynamic processes, and
the meaning of reversibility compatible with the cosmic dynamics is clarified in Appendix 5.7. Comparing
Eq.(5.31) with the unified first law Eq.(5.23), one could find that Eq.(5.31) is just Eq.(5.23) with the two
dΥ components removed and then evaluated at ΥA. Assuming that the apparent horizon locates at ΥA0 ≡

ΥA(t = t0) at an arbitrary moment t0, then during the infinitesimal time interval dt the horizon will move to
ΥA0 + Υ̇A0dt; meanwhile, for the isochoric process of the volume V(ΥA0) (i.e. a “controlled volume”), the
amount of energy across the horizon ΥA0 is just dEA = AA0ψt evaluated at t0, and for brevity we will drop
the subscript “0” whenever possible as t0 is arbitrary.

The energy-balance equation (5.31) implies that the region Υ ≤ ΥA enveloped by the cosmological
apparent horizon is thermodynamically an open system which exchanges both heat and matter (condensed
components in the Hubble flow) with its surroundings/reservoir Υ ≥ ΥA. Here we emphasize again that
ΥA is simply a visual boundary preventing ingoing null radial signals from reaching the comoving observer,
and the absolute cosmic Hubble flow can still cross ΥA. Also, unlike nonrelativistic thermodynamics in
which δQ exclusively refers to the heat transfer (i.e. electromagnetic flow), the δQA in Eq.(5.31) is used
in a mass-energy-equivalence sense and denotes the Hubble energy flow which generally contains different
matter components.

Finally, for the open system enveloped by ΥA, we combine the Clausius equation (5.31) and the unified
first law Eq.(5.23) into the total energy differential

dEA = AAψt dt + AA
(
ψΥ + W

)
dΥA

= − TAdS A + ρm AAdΥA

= − TAdS A + ρm dVA .

(5.32)

In fact, by the continuity equation (5.16) one can verify −TAdS A = VAdρm, which agrees with the thermo-
dynamic connotation that the heat −TAdS A = δQA measures the loss of internal energy that can no longer
be used to do work. In this sense, one may further regard dEA + TAdS A to play the role of the relativistic
differential Helmholtz free energy dFA for the instantaneous ΥA0 of temperature TA0,

dFA B dEA + TAdS A = ρm dVA = (ψΥ + W) dVA , (5.33)
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which represents the maximal work element that can be extracted from the interior of ΥA0; one could also
identify the relativistic differential Gibbs free energy dGA, which means the “useful” work element, as

dGA B dEA + TAdS A + PmdVA = ρm (1 + wm) dVA . (5.34)

Note that dFA and dGA contain +TAdS A with a plus instead of a minus sign, because the Cai–Kim Clausius
relation dEA = −TAdS A encodes that the horizon entropy S A is defined in a “positive heat out” rather than
the traditional positive-heat-in thermodynamic sign convention, as will be extensively discussed in Sec. 5.5.1.

5.4 Solution to the horizon-temperature confusion

5.4.1 The horizon-temperature confusion

In the thermodynamics of (quasi)stationary black holes [5], the Hawking temperature satisfies T = κ̃/(2π)
based on the traditional Killing surface gravity κ̃ and the Killing generators of the horizon. For the FRW
Universe, one has the Hayward inaffinity parameter κ [46] in place of the Killing inaffinity, which yields the
Hayward surface gravity on the apparent horizon,

κ B
1
2

hαβ∇α∇βΥ =
1

2
√
−h

∂α
(√
−h hαβ∂βΥ

)
≡ −

Υ

Υ2
A

(
1 −

Υ̇A

2HΥA

)
= −

1
ΥA

(
1 −

Υ̇A

2HΥA

) ∣∣∣∣
ΥA
,

(5.35)

where hαβ = diag[−1 , a2

1−kr2 ] refers to the transverse two-metric in Eq.(5.1). Then formally following the
Hawking temperature, the Hayward temperature of the apparent horizon ΥA is defined either by [7, 9]

TA B
κ

2π
= −

1
2πΥA

(
1 −

Υ̇A

2HΥA

)
(5.36)

or [8, 10, 18–20, 24, 25]

T
(+)
A B

(κ |
2π

=
1

2πΥA

(
1 −

Υ̇A

2HΥA

)
, (5.37)

where we use the symbol (κ | to denote the partial absolute value of κ, because existing papers have a priori
abandoned the possibility of Υ̇A/(2HΥA) ≥ 1 for T (+)

A . Equation (5.37) is always supplemented by the
assumption [8, 10, 18–20, 24, 25]

Υ̇A

2HΥA
< 1 (5.38)

to guarantee a positive T (+)
A which is required by the third law of thermodynamics, and even the condition

[18]
Υ̇A

2HΥA
<< 1 (5.39)

so that T (+)
A can be approximated into the Cai–Kim temperature [2, 47]

T
(+)
A ≈

1
2πΥA

= TA . (5.40)
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Historically the inverse problem “from thermodynamics to gravitational equations for the Universe” [2]
was formulated earlier, in which the Cai–Kim temperature works perfectly for all theories of gravity. Later
on, the problem “from FRW gravitational equations to thermodynamics” [6–8] (as the logic in this paper)
came into attention in which the Hayward temperature seems to become effective. Considering that two
different temperatures make the two mutually inverse problems asymmetric, attempts have been made to
reduce the differences between them, mainly the assumptions Eqs.(5.38) and (5.39).

Note that when the conditions Eqs.(5.39) and (5.40) are applied to Eq.(5.36), TA would become a nega-
tive temperature. [7] has suggested that it might be possible to understand this phenomenon as a consequence
of the cosmological apparent horizon being inner trapped [θ(`) > 0, θ(n) = 0], as opposed to the positive tem-
peratures of black-hole apparent horizons which are always marginally outer trapped [θ(`) = 0, θ(n) < 0].
However, this proposal turns out to be inappropriate; as will be shown at the end of Sec. 5.4.3, the signs of
TA actually keep pace with the metric signatures rather than the inner/outer trappedness of the horizon ΥA.

5.4.2 Effects of TAdS A and T (+)
A dS A

In Sec. 5.3.2, we have seen TAdS A = AAψt for the Cai–Kim TA = 1/(2πΥA), and now let’s examine the
effects of TA and T (+)

A . Given the Bekenstein–Hawking entropy S A = AA/4G, the dynamical equation Υ̇A =

AAHΥAG
(
1+wm

)
ρm and the energy supply covector ψ = ψt +ψΥ = −

(
1+wm

)
ρmHΥAdt + 1

2
(
1+wm

)
ρm dΥA,

one has

TAdS A = −
Υ̇A

G
+

Υ̇A

2GHΥA
Υ̇Adt

= −AAHΥA
(
1 + wm

)
ρmdt +

1
2

AA
(
1 + wm

)
ρmdΥA

= AAψt + AAψΥ = AAψ . (5.41)

Similarly, for the T (+)
A defined in Eq.(5.37),

T
(+)
A dS A = −

(
AAψt + AAψΥ

)
= −AAψ . (5.42)

Hence, for the two terms comprisingTA andT (+)
A , the± 1

2πΥA
dS A is balanced by∓AAψt, while the± Υ̇A

2HΥA
dS A

is equal to ±AAψΥ. As obtained in e.g. [6]-[12], for the open system enveloped by the cosmological appar-
ent horizon, combining Eqs.(5.41) and (5.42) with the unified first law Eq.(5.23) leads to the total energy
differential

dEA = TAdS A + WdVA

= −T
(+)
A dS A + WdVA ,

(5.43)

as opposed to dEA = −TAdS A + ρmdVA for the Cai–Kim TA.
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5.4.3 “Zero temperature divide” wm = 1/3 and preference of Cai–Kim temperature

Now apply the dynamical equation (5.11) to {TA, T (+)
A } and the assumptions in Eqs.(5.38) and (5.39). With

Υ̇A = 3
2 HΥA

(
1 + wm

)
, the Hayward surface gravity becomes

κ = −
1

ΥA

(
1 −

Υ̇A

2HΥA

)
= −

3
4ΥA

(1
3
− wm

)
, (5.44)

so it follows that 

wm >
1
3

: κ > 0 , | κ | =
3

4ΥA

(
wm −

1
3
)

wm =
1
3

: κ = | κ | = 0

wm <
1
3

: κ < 0 , | κ | =
3

4ΥA

(1
3
− wm

) . (5.45)

The Hayward temperature TA in Eq.(5.36) and its partially absolute value T (+)
A in Eq.(5.37) become

TA = −
3

8πΥA

(1
3
− wm

)
= −

1
4

TA
(
1 − 3wm

)
T

(+)
A =

3
8πΥA

(1
3
− wm

)
=

1
4

TA
(
1 − 3wm

)
.

(5.46)

Fortunately TA and T (+)
A remain as state functions, although Eqs.(5.36) and (5.37) carry {Υ̇A,H} and look

like process quantities (see Appendix 5.7 for more discussion). Moreover, the supplementary assumption
Eq.(5.38) for T (+)

A > 0 turns out to be

Υ̇A

2HΥA
=

3
4
(
1 + wm

)
< 1 ⇒ wm < 1/3 . (5.47)

Thus the condition Υ̇A
2HΥA

� 1 in Eq.(5.39) could be directly translated into wm � 1/3, which is however
inaccurate: in fact, if directly starting from Eq.(5.46), the approximation T (+)

A ≈ TA = 1/(2πΥA) will require

wm → −1 . (5.48)

It is neither mathematically nor physically identical with wm � 1/3 which could only be perfectly satisfied
for wm → −∞ in the extreme phantom domain.

Eqs.(5.44) – (5.48) have rewritten and simplified the original expressions of the Hayward temperatures
{TA , T (+)

A } in Eqs.(5.36, 5.37) and their supplementary conditions Eqs.(5.38, 5.39). Based on these results
we realize that it becomes possible to make an extensive comparison between {TA , T (+)

A } and the Cai–Kim
TA = 1/(2πΥA), which reveals the following facts.

(1) TA is negative definite for 1/3 < wm (≤ 1), positive definite for wm < 1/3, and TA ≡ 0 for wm = 1/3.
We will dub the special value wm = 1/3 as the Hayward “zero temperature divide”, which is inspired
by the terminology “phantom divide” for wm = −1 in dark-energy physics [38]. Hence, TA does not
respect the third law of thermodynamics. Moreover, one has TA = 0 at wm = 1/3 and thus TAdS A = 0;
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following Eq.(5.41), this can be verified by

AAψ = −AAHΥA
(
1 + wm

)
ρmdt +

1
2

AA
(
1 + wm

)
ρmdΥA

= AAρm
(
1 + wm

)(1
2

Υ̇A − HΥA
)
dt

=
9

8G
HΥA

(
1 + wm

)(
wm −

1
3
)
dt. (5.49)

(2) The condition wm < 1/3 for the validity of T (+)
A is too restrictive and unnatural, because wm = 1/3

serves as the EoS of radiation and (1 ≥) wm > 1/3 represents all highly relativistic energy components.
For example, it is well known that a canonical and homogeneous scalar field φ(t) in the FRW Universe
has the EoS (e.g. [2])

w(φ)
m =

Pφ
ρφ

=

1
2 φ̇

2 − V(φ)
1
2 φ̇

2 + V(φ)
. (5.50)

w(φ)
m can fall into the domain 1/3 ≤ w(φ)

m ≤ 1 when the dynamical term 1
2 φ̇

2 dominates over the potential
V(φ), and we donot see any physical reason to a priori rule out this kind of fast-rolling scalar field.

(3) The equality TAdS A = AA
(
ψt + ψΥ

)
= −T

(+)
A dS A implies that TAdS A and T (+)

A dS A need to be
balanced by dt and also the dΥA component of ψ, and thus the other dΥA component from WdVA =

WAAdΥA should be nonvanishing as well. Hence, TAdS A and T (+)
A dS A always live together with

WdVA to form the total energy differential Eq.(5.43) rather than some Clausius-type equation δQ̃ =

T
(+)
A dS A = −TAdS A = −AAψ, and there exists no isochoric process (dΥ = 0) for {TA , T (+)

A }.

(4) The “highly relativistic limit” wm = 1/3 is more than the divide for negative, zero or positive Hay-
ward temperature TA; it is also the exact divide for the induced metric of the apparent horizon to be
spacelike, null or timelike, as discussed before in Sec. 5.2.3. That is to say, the sign of the temperature
synchronizes with the signature of the horizon metric. However, there are no such behaviors for analo-
gies in black-hole physics: for example, a slowly-evolving quasilocal black-hole horizon [41, 50] can
be either spacelike, null or timelike, but the horizon temperature is always positive definite regardless
of the horizon signature.

(5) Unlike the Cai–Kim temperature TA, the Hayward {TA, T (+)
A } used for the problem “from gravita-

tional equations to thermodynamic relations for the Universe” do not work for the problem “from
thermodynamic relations to gravitational equations”. That is to say, {TA , T (+)

A } break the symmetry
between the formulations of these two mutually inverse problems.

On the other hand, the Cai–Kim temperature TA = 1/(2πΥA) is positive definite throughout the history
of the Universe, it provides symmetric formulations of the conjugate problems “gravity to thermodynamics”
and “thermodynamics to gravity”, and it is the Hawking-like temperature measured by a Kodama observer
for the matter tunneling into the untrapped interior Υ < ΥA from the antitrapped exterior Υ > ΥA [47]. In
fact, besides the assumption Eq.(5.39) for the approximation T (+)

A ≈ TA in Eq.(5.40), there have been efforts
to redefine the dynamical surface gravity in place of Eq.(5.35) for the dynamical apparent horizon ΥA; for
example, inspired by the thermodynamics of dynamical black-hole horizons [42], the inaffinity κ B − 1

2∂ΥΞ
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with Ξ B hαβ∂αΥ∂βΥ ≡ 1 − Υ2/Υ2
A has been employed for the FRW Universe in [48], with which the

Cai–Kim temperature satisfies TA =
κ

2π
at the horizon Υ = ΥA and thus absorbs the Hayward temperature

TA = κ/(2π).
With these considerations, we adopt the Cai–Kim TA for the absolute temperature of the cosmological

apparent horizon. This way, we believe that the temperature confusion is solved as the Cai–Kim TA is
favored.

Furthermore, imagine a contracting Universe with ȧ < 0 and H < 0, and one would have a marginally
outer trapped apparent horizon with θ(`) = 0 and θ(n) = 2H < 0 at Υ = ΥA. Hence, whether Υ = ΥA is
outer or inner trapped only relies on the Hubble parameter to be negative or positive. In Sec. 5.2.3 we have
seen that the induced-metric signature of ΥA is independent of H, and neither will the Hayward {TA , T (+)

A }.
Also, Eqs.(5.52) and (5.53) clearly show that, the equality −TAdS A = AAψt = dEA of the Cai–Kim TA

validates for either H > 0 or H < 0. Hence, we further conclude that:

Corollary 1 Neither the sign of the Hayward nor the Cai–Kim temperature is related to the inner or
outer trappedness of the cosmological apparent horizon.

5.4.4 A quick note on the QCD ghost dark energy

Among the various types of quantum chromodynamics (QCD) ghost dark energy in existent literature, the
following version was introduced in [51] and further discussed in [52],

ρ(QCD)
Λ

= αΥ−1
A

(
1 −

Υ̇A

2HΥA

)
, (5.51)

where α is a positive constant with the dimension of [energy]3. It is based on the idea that the vacuum energy
density is proportional to the temperature of the apparent horizon ΥA, which was chosen as the Hayward {TA

, T (+)
A } in [51]. Following the discussion just above, we can see that Eq.(5.51) turns out to be problematic

because ρ(QCD)
Λ

is not positive definite, with ρ(QCD)
Λ

≤ 0 when the Universe is dominated by superrelativistic
matter 1/3 ≤ wm (≤ 1). In fact, more viable forms of the QCD ghost dark energy can be found in e.g. [53].

5.5 The (generalized) second laws of thermodynamics

Having studied the differential forms of the energy conservation and heat transfer and distinguished the
temperature of of the apparent horizon, we will proceed to investigate the entropy evolution for the Universe.

5.5.1 Positive heat out thermodynamic sign convention

As a corner stone for our formulation of the second laws and solution to the entropy confusion, we will match
the thermodynamic sign convention encoded in the Cai–Kim Clausius equation TAdS A = δQA = −AAψt.
Following Secs. 5.3.1 and 5.3.2, we first check whether the heat flow element δQA and the isochoric energy
differential dEA0 = d(ρmVA0) take positive or negative values. δQA will be calculated by TAdS A, while dEA

is to be evaluated independently via AAψt = −AA
(
1 + wm

)
ρmHΥAdt. Hence, in the isochoric process for an
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instantaneous apparent horizon ΥA0,

TAdS A =
Υ̇A

G
dt =

3
2G

HΥA
(
1 + wm

)
dt , (5.52)

dE
∣∣∣
ΥA0

= −AAρm
(
1 + wm

)
HΥAdt = −

3
2G

HΥA
(
1 + wm

)
dt, (5.53)

where Eqs. (5.10) and (5.11) have been used to replace AAρm and Υ̇A, respectively. For an expanding
Universe (H > 0), this clearly shows that:

(1) If the Universe is dominated by ordinary matter or quintessence, −1 < wm (≤ 1), the internal energy is
decreasing dEA = AAψt < 0, with a positive Hubble energy flow δQA = TAdS A > 0 going outside to
the surroundings;

(2) Under the dominance of the cosmological constant, wm = −1 and {ρm,ΥA,TA, S A} = constant; the
internal energy is unchanging, dEA = AAψt = 0 and δQA = TAdS A = 0;

(3) When the Universe enters the phantom-dominated state, wm < −1, the internal energy increases dEA =

AAψt > 0 while δQA = TAdS A < 0.

Hence, based on the intuitive behaviors at the domain −1 < wm (≤ 1) for nonexotic matter, we set up the
positive heat out thermodynamic sign convention for the right hand side of dEA = −δQA. That is to say,
heat emitted by the system takes positive values (δQA = δQout

A > 0), while heat absorbed by the system takes
negative values. Obviously, this setup is totally consistent with the situations of wm ≤ −1. Also, because
of the counterintuitive behaviors under phantom dominance, one should not take it for granted that, for a
spatially expanding Universe the cosmic fluid would always flow out of the isochoric volume V(Υ = Υ0)
with dE = VA0dρm < 0.

5.5.2 Positive heat out Gibbs equation

In existent papers, the cosmic entropy is generally studied independently of the first laws, and the entropy
Ŝ m of the cosmic energy-matter content (with temperature Tm) is always determined by the traditional Gibbs
equation dE = TmdŜ m − PmdV (e.g. [14]-[24]). This way, ˙̂S m departs dramatically from the expected non-
decreasing behaviors, so people turn to the generalized version of the second law for help, which works with
the sum of Ŝ m and the geometric entropy of the cosmological apparent or event horizons.

This popular treatment is very problematic. In fact, the equation dEm = TmdŜ m − PmdV encodes the
“positive heat in, positive work out” convention for the physical entropy Ŝ m and the heat transfer TmdŜ m.
However, as extensively discussed just above, the geometric Bekenstein–Hawking entropy S A = AA/4G for
the cosmological apparent horizon is compatible with the positive-heat-out convention. One cannot add the
traditional positive-heat-in Ŝ m with the positive-heat-out S A, and this conflict1 leads us to adjust the Gibbs
equation into

dEm = −Tm dS m − PmdV , (5.54)
1Note that there is no such conflict for black holes, because both the black-hole horizon entropy and the matter entropy are

defined in the positive-heat-in convention.
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where S m is defined in the positive-heat-out convention favored by the Universe for consistency with the
holographic-style gravitational equations (5.8), (5.9) and (5.12). This way, one can feel free and safe to
superpose or compare the matter entropy S m and the horizon entropy {S A, etc.}, and even more pleasantly,
it turns out that this S m is very well behaved.

Moreover, note that although the Gibbs equation is usually derived from a reversible process in a closed
system (“controlled mass”), Eq.(5.54) actually applies to either reversible or irreversible processes, and either
closed or open systems, because it only contains state quantities which are independent of thermodynamic
processes.

For the energy E = M = ρmV in an arbitrary volume V = 4
3πΥ3 = 1

3 AΥ, Eq.(5.54) yields TmdS m =

−d(ρmV) − PmdV = −Vdρm − (ρm + Pm)dV , and thus

TmdS m = 3H(ρm + Pm)Vdt −
(
ρm + Pm

)
AdΥ

= ρmA(1 + wm)
(
HΥdt − dΥ

)
,

(5.55)

where the continuity equation (5.16) has been used. Based on Eq.(5.55), we can analyze the entropy evo-
lution Ṡ m for the matter inside some special radii such as the apparent and event horizons. Note that these
regions are generally open thermodynamic systems with the Hubble energy flow crossing the apparent and
possibly the event horizons, so one should not a priori anticipate Ṡ m ≥ 0; instead, we will look for the
circumstances where Ṡ m ≥ 0 conditionally holds.

5.5.3 The second law for the interior of the apparent horizon

For the matter inside the apparent horizon Υ = ΥA(t), Eq.(5.55) along with the holographic-style dynamical
equations (5.10) and (5.11) yield

TmdS (A)
m = ρmAA(1 + wm)

(
HΥA − Υ̇A

)
dt

=
3

2G
(1 + wm)HΥA

(
1 −

3
2

(1 + wm)
)
dt

= −
9

4G
HΥA

(
wm + 1

)(
wm +

1
3
)
dt .

(5.56)

Obviously the second law of thermodynamics Ṡ (A)
m ≥ 0 holds for −1 ≤ wm ≤ −1/3. Moreover, recall that the

spatial expansion of the generic FRW Unverse satisfies

ä
a

= −
4πG

3
(
1 + 3wm

)
ρm , (5.57)

with ä > 0 for wm < −1/3. Hence, within GR and the ΛCDM model, we have:

Theorem 1 The physical entropy S (A)
m inside the cosmological apparent horizon satisfies Ṡ (A)

m ≡ 0 when
wm = −1/3 or under the dominance of the cosmological constant wm = −1, while Ṡ (A)

m > 0 for the stage of
accelerated expansion (ä > 0) dominated by quintessence −1 < wm < −1/3.
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5.5.4 The second law for the interior of the event and particle horizons

Consider the future-pointed cosmological event horizon ΥE B a
∫ ∞

t a−1dt̂ which measures the distance that
light signals will travel over the entire future history from t̂0 = t. ΥE satisfies

Υ̇E = HΥE − 1 , (5.58)

so for the cosmic fluid inside ΥE, Eq.(5.55) leads to

TmdS (E)
m = ρmAE(1 + wm)

(
HΥE − Υ̇E

)
dt

= ρmAE(1 + wm)dt .
(5.59)

Hence, we are very happy to see that:

Theorem 2 The physical entropy S (E)
m inside the cosmological event horizon satisfies Ṡ (E)

m ≡ 0 if the
Universe is dominated by the cosmological constant wm = −1, while Ṡ (E)

m > 0 for all nonexotic matter
−1 < wm (≤ 1) above the phantom divide.

The importance of this result can be best seen for a closed (k = 1) Universe, when the event horizon
ΥE has a finite radius and bounds the entire spacetime. Then the physical entropy of the whole Universe is
nondecreasing as long as the dominant energy condition holds −1 ≤ wm (≤ 1).

Similarly for the past particle horizon ΥP B a
∫ t

0 a−1dt̂ (e.g. [26, 43, 54]), which supplements the
event horizon ΥE and measures the distance that light has already traveled from the beginning of time (or
equivalently the most distant objects one could currently observe), it satisfies Υ̇P = HΥP + 1 and thus
Eq.(5.55) yields

TmdS (P)
m = ρmAP(1 + wm)

(
HΥP − Υ̇P

)
dt

= −ρmAP(1 + wm)dt .
(5.60)

Besides Ṡ (P)
m ≡ 0 for wm = −1, Ṡ (P)

m < 0 always holds at the domain −1 < wm (≤ 1), which means that the
physical entropy is always decreasing when we trace back to the earlier age for the younger Universe that
has a larger particle horizon radius ΥP or horizon area AP.

Note that with the traditional Gibbs equation dEm = TmdŜ m−PmdV where Ŝ m is defined in the positive-
heat-in convention, for the interiors of the future ΥE and the past ΥP one would always obtain

Tm dŜ (E)
m = dE(E)

m + PmdVE = −ρmAE(1 + wm)dt

Tm dŜ (P)
m = dE(P)

m + PmdVP = ρmAP(1 + wm)dt .
(5.61)

It would imply that in the future ˙̂S
(E)

m > 0 would never be realized and a younger Universe (larger AP) would
however carry a larger internal entropy Ŝ (P)

m , unless the Universe were in an exotically phantom-dominated
(wm < −1) state in her history. We believe that Eqs.(5.59, 5.60) provide a more reasonable description for
the cosmic entropy evolution than Eq.(5.61), regard this result as a support to the positive-heat-out Gibbs
equation (5.54), and argue that Eqs.(5.54), (5.59) and (5.60) have solved the cosmological entropy confusion
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caused by Eq.(5.61) in traditional studies.

5.5.5 GSL for the apparent-horizon system

Historically, to rescue the disastrous result of the traditional Eq.(5.61), the generalized second law (GSL)
for the thermodynamics of the Universe was developed, which adds up the geometrically defined entropy
of the cosmological boundaries (mainly S A, S E) to the physical entropy of the matter-energy content S m,
aiming to make the total entropy nondecreasing under certain conditions. This idea is inspired by the GSL of
black-hole thermodynamics [49], for which Bekenstein postulated that the black-hole horizon entropy plus
the external matter entropy never decrease (for a thermodynamic closed system).

Eq.(5.59) clearly indicates that the second law Ṡ m ≥ 0 is well respected in our formulation, but for com-
pleteness we will still re-investigate the GSLs. For the simple open system consisting of the cosmological
apparent horizon ΥA and its interior, Eqs.(5.29) and (5.56) yields

Ṡ (A)
m + Ṡ A = −

1
Tm

9
4G

HΥA
(
wm + 1

)(
wm +

1
3
)

+
2πΥAΥ̇A

G

= −
1

Tm

9
4G

HΥA
(
wm + 1

)(
wm +

1
3
)

+
1

TA

3
2G

HΥA
(
wm + 1

)
.

(5.62)

In existing papers it is generally assumed that the apparent horizon would be in thermal equilibrium with
the matter content and thus TA = Tm [16, 19–22, 24, 25], or occasionally less restrictively Tm = bTA (b =

constant) [17, 18]. However, such assumptions are essentially mathematical tricks to simplify Eq.(5.62),
while physically they are too problematic, so we directly move ahead from Eq.(5.62) without any artificial
speculations relating TA and Tm.

The GSL Ṡ (A)
m + Ṡ A ≥ 0 could hold when 1

TA

3
2G HΥA

(
wm + 1

)
≥ 1

Tm

9
4G HΥA

(
wm + 1

)(
wm + 1

3
)
, and with

{H,ΥA,TA,Tm} > 0 it leads to

(
wm + 1

)(Tm

TA
−

3
2
(
wm +

1
3
))
≥ 0 , (5.63)

or equivalently
(
wm + 1

)(
Tm −

3
2 (wm + 1

3 )TA
)
≥ 0. Hence, for the apparent-horizon system the GSL trivially

validates with Ṡ m + Ṡ A ≡ 0 under the dominance of the cosmological constant wm = −1, and:

(1) For −1 < wm < −1/3 which corresponds to an accelerated Universe dominated by quintessence,
Ṡ m + Ṡ A > 0 always holds, because Tm/TA > 0 and 3

2
(
wm + 1

3
)
< 0 [or because both Ṡ m > 0 and

Ṡ A > 0];

(2) For −1/3 ≤ wm (≤ 1) which corresponds to ordinary-matter dominance respecting the strong energy
condition ρm + 3Pm ≥ 0 [40], the GSL Ṡ m + Ṡ A ≥ 0 conditionally holds when

Tm

TA
≥

3
2
(
wm +

1
3
)

; (5.64)

(3) For the phantom domain wm < −1, the GSL never validates because it requires Tm/TA ≤
3
2 (wm+ 1

3 ) < 0
which violates the the third law of thermodynamics.
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5.5.6 GSL for the event-horizon system

Now consider the system made up of the cosmological event horizon and its interior. Unlike the apparent
horizon, the entropy S E and temperature TE of the event horizon ΥE are unknown yet; one should not take
it for granted that ΥE would still carry the Bekenstein–Hawking entropy S E = AE/4G and further assume a
Cai–Kim temperature TE = 1/(2πΥE) to it.

Considering that S E would reflect the amount of Hubble-flow energy crossing an instantaneous event
horizon ΥE = ΥE0, it is still safe to make use of the unified first law Eq.(5.22) and thus

TEdS E = δQE = −dE
∣∣∣
ΥE0

= AE
(
1 + wm

)
ρm HΥE dt . (5.65)

Hence for the event horizon system we have

Ṡ (E)
m + Ṡ E =

1
Tm

(1 + wm)ρmAE +
1

TE
AE

(
1 + wm

)
ρmHΥE

= ρmAE
(
1 + wm

)( 1
Tm

+
1

TE

ΥE

ΥH

)
, (5.66)

where ΥH B 1/H refers to the radius of the Hubble horizon [30, 43], an auxiliary scale where the recession
speed would reach that of light (c = 1 in our units) by Hubble’s law, and it is more instructive to write H as
1/ΥH when compared with ΥE and ΥA. Since {TA,TE,H,ΥE} > 0, we pleasantly conclude from Eq.(5.66)
without any unnatural assumption on {Tm,TE} that:

Theorem 3 The GSL Ṡ (E)
m + Ṡ E ≥ 0 for the event horizon system always holds for an expanding Universe

dominated by nonexotic matter −1 ≤ wm (≤ 1).

Note that Mazumder and Chakraborty have discussed GSLs for the event-horizon system in various
dark-energy (and modified-gravity) models in [55, 56], where S E is calculated by the unified first law and
the importance of wm is fully realized, although it is the weak rather than the dominant energy condition that
is emphasized therein and the possibility of a Bekenstein–Hawking entropy for ΥE is not analyzed.

So far we have seen that though the apparent horizon ΥA is more compatible with the unified first law
and the Clausius equation, the second law is better respected by the cosmic fluid inside the event horizon ΥE

– this is because ΥE better captures the philosophical concept of “the whole Universe”. For both horizons ΥA

and ΥE, the second law is better formulated than the GSL. Moreover, from the standpoint of the second laws
and the GSLs, the phantom (wm < −1) dark energy is definitely less favored than the cosmological constant
(wm = −1) and the quintessence (−1 < wm < −1/3).

5.5.7 Bekenstein–Hawking entropy and Cai–Kim temperature for the event horizon?

The entropy of the event horizon ΥE has just been calculated from the unified fist law. Now let’s return to
the question: Can the Bekenstein–Hawking entropy and/or the Cai–Kim temperature be applied to ΥE? With
the assumption S E = AE/4G, Eq.(5.65) yields

TE
2πΥEΥ̇E

G
= TE

2πΥE
(
HΥE − 1

)
G

= AE
(
1 + wm

)
ρmHΥE, (5.67)
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which further leads to (
ΥE − ΥH

)
TE =

G
2π

ρmAE
(
1 + wm

)
. (5.68)

An expanding FRW Universe always satisfies ΥE ≥ ΥH, so the third law of thermodynamics TE > 0 requires
−1 ≤ wm (≤ 1); also, ΥE = ΥH when wm = −1 and TE becomes unspecifiable from Eq.(5.68). Moreover, if
ΥE = ΥH, then a

∫ ∞
t a−1dt̂ = a

ȧ , thus

ȧ
∫ ∞

t
a−1dt̂ = 1 ⇒

ä
ȧ
−

ȧ
a

= 0 ⇒ aä = ȧ2 , (5.69)

where we have taken the time derivative of the left-most integral expression. In the meantime, when wm = −1
we have

ȧ2 + k
a2 =

8
3
πGρm ,

ä
a

=
8
3
πGρm ⇒ aä = ȧ2 + k. (5.70)

Comparison of Eqs.(5.69) and (5.70) shows that in addition to wm = −1, ΥE = ΥH also requires k = 0; note
that in case of the flat Universe, the apparent and the Hubble horizons coincide, ΥA = ΥH, so TE=TA which
remedies the failure of Eq.(5.68) at wm = −1. Hence,

Corollary 2 The validation of a Bekenstein–Hawking entropy on the cosmological event horizon requires
that (i) the scale factor a(t) satisfies the constraint Eq.(5.68), (ii) the dominant energy condition always holds,
(iii) the event and Hubble horizons would coincide and the spatial curvature vanishes under the dominance
of the cosmological constant.

If one further assumes a Cai–Kim-like TE = 1/(2πΥE) for the event horizon, Eq.(5.68) would tell us that

GρmAE
(
1 + wm

)
+

ΥH

ΥE
= 1 . (5.71)

Does this constraint always hold? Since ΥE ≥ ΥA, thus ρmAE ≥ ρmAA = 3
2G , with which Eq.(5.71) yields

3
2
(
1 + wm

)
+

ΥH

ΥE
≤ 1 . (5.72)

This result can be rearranged into

wm ≤ −
1
3
−

ΥH

ΥE
< −

1
3
, (5.73)

which, together with the requirement −1 ≤ wm (≤ 1) from Eq.(5.68) for a generic positive TE, give rise to
the condition −1 ≤ wm < −1/3. Hence,

Corollary 3 In addition to a Bekenstein–Hawking entropy, the validation of a Cai–Kim temperature on
the cosmological event horizon further requires the scale factor to satisfy Eq.(5.71), and restricts the FRW
Universe to be dominated by the cosmological constant wm = −1 or quintessence −1 < wm < −1/3.

Similar conditions hold for the past particle horizon as well. [54] has derived the GSL inequalities for the
Hubble-, apparent-, particle- and event-horizon systems with the logamediate and intermediate scale factors
by both the first law and the Bekenstein–Hawking formula, in which one could clearly observe that these
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two methods yield different results in the case of the event (and particle, Hubble) horizons.
Based on these considerations we argue that for consistency with the cosmic gravitational dynamics, the

geometrically defined A/4G only unconditionally holds on the apparent horizon ΥA, which does not support
the belief that the Bekenstein–Hawking entropy could validate for all horizons in GR (e.g. [14, 43]).

5.6 Gravitational thermodynamics in ordinary modified gravities

For the ΛCDM Universe within GR, we have re-studied the first and second laws of thermodynamics by
requiring the consistency with the holographic-style dynamical equations (5.8), (5.9) and (5.11), which pro-
vides possible solutions to the long-standing temperature and entropy confusions. Following the clarification
of the Cai–Kim temperature and the positive-heat-out sign convention, we will take this opportunity to ex-
tend the whole framework of gravitational thermodynamics to modified and alternative theories of relativistic
gravity [57, 58]; also, this is partly a continuation of our earlier work in [64] where a unified formulation has
been developed to derive the cosmological dynamical equations in modified gravities from (non)equilibrium
thermodynamics.

For the generic Lagrangian density Ltotal = LG(R,RµνRµν,R i , ϑ ,∇µϑ∇
µϑ , · · ·

)
+ 16πGLm, where Ri =

Ri
(
gαβ ,Rµανβ ,∇γRµανβ , . . .

)
refers to a generic Riemannian invariant beyond the Ricci scalar and ϑ denotes

a scalarial extra degree of freedom unabsorbed by Lm , the field equation reads

Hµν = 8πGT (m)
µν with Hµν B

1
√
−g

δ
(√
−g LG

)
δgµν

, (5.74)

where total-derivative/boundary terms should be removed in the derivation of Hµν. In the spirit of recon-
structing the effective dark energy [63], Eq.(5.74) can be intrinsically recast into a compact GR form by
isolating the Rµν in Hµν:

Gµν ≡ Rµν −
1
2

Rgµν = 8πGeffT (eff)
µν with Hµν =

G
Geff

Gµν − 8πGT (MG)
µν , (5.75)

where T (eff)
µν = T (m)

µν + T (MG)
µν , and all terms beyond GR have been packed into T (MG)

µν and Geff. Here T (MG)
µν

collects the modified-gravity nonlinear and higher-order effects, while Geff denotes the effective gravitational
coupling strength which can be directly recognized from the coefficient of the matter tensor T (m)

µν – for
example, as will be shown in Sec.5.6.8, we have Geff = G/ fR for f (R), Geff = GE(φ)/F(φ) for scalar-tensor-
chameleon, Geff = G/φ for Brans-Dicke, Geff = G/(1 + 2aR) for quadratic, and Geff = G for dynamical
Chern-Simons gravities. Moreover, T (eff)

µν is assumed to be an effective perfect-fluid content,

T µ (eff)
ν = diag

[
−ρeff, Peff, Peff, Peff

]
with Peff/ρeff C weff, (5.76)

along with ρeff = ρm + ρ(MG) and Peff = Pm + P(MG).
Modified gravities aim to explain the cosmic acceleration without dark-energy components, so in this

section we will assume the physical matter to respect the null, weak, strong and dominant energy conditions
[40], which yield ρm > 0 and −1/3 ≤ wm ≤ 1. This way, the quintessence (−1 < wm < −1/3), the
cosmological constant (wm = −1) and the most exotic phantom (wm < −1) are ruled out.
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5.6.1 Holographic-style dynamical equations in modified gravities

Substituting the FRW metric Eq.(5.1) and the effective cosmic fluid Eq.(5.76) into the field equation (5.75),
one could obtain the modified Friedmann equations

H2 +
k
a2 =

8πGeff

3
ρeff and

Ḣ −
k
a2 = − 4πGeff

(
1 + weff

)
ρeff = −4πGeffheff

or 2Ḣ + 3H2 +
k
a2 = −8πGeffPeff,

(5.77)

where heff B
(
1 + weff

)
ρeff denotes the effective enthalpy density. With Eqs. (5.4) and (5.5), substituting the

apparent-horizon radius ΥA and its kinematic time-derivative Υ̇A into Eq.(5.77), the Friedmann equations
can be rewritten into

Υ−2
A =

8πGeff

3
ρeff (5.78)

Υ̇A =4πHΥ3
AGeff

(
1 + weff

)
ρeff (5.79)

=
3
2

HΥA
(
1 + weff

)
(5.80)

Υ−3
A

(
Υ̇A −

3
2

HΥA
)

= 4πGeffHPeff, (5.81)

along with AAρeff = 3
2Geff

. Similar to Eqs.(5.8)-(5.12) for ΛCDM of GR, Eqs.(5.78)-(5.81) constitute the full
set of FRW holographic-style gravitational equations for modified gravities of the form Eq.(5.75).

5.6.2 Unified first law of nonequilibrium thermodynamics

Following our previous work [64], to geometrically reconstruct the effective total internal energy Eeff, one
just needs to replace Newton’s constant G by Geff in the standard Misner-Sharp or Hawking mass used in
Sec. 5.3.1, which yields

Eeff =
1

2Geff

Υ3

Υ2
A

. (5.82)

The total derivative of Eeff = Eeff(t, r) along with the holographic-style dynamical equations (5.78), (5.79)
and (5.81) yield

dEeff = −
1

Geff

Υ3

Υ3
A

(
Υ̇A −

3
2

HΥA
)
dt +

3
2Geff

Υ2

Υ2
A

adr −
Ġeff

2G2
eff

Υ3

Υ2
A

dt (5.83)

= −AΥHPeffdt + Aρeffadr − V
Ġeff

Geff

ρeffdt. (5.84)
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By the replacement adr = dΥ − HΥdt, Eqs.(5.83) and (5.84) can be recast into the (t,Υ) transverse coordi-
nates as

dEeff = −
Υ̇A

Geff

Υ3

Υ3
A

dt +
3

2Geff

Υ2

Υ2
A

dΥ −
Ġeff

2G2
eff

Υ3

Υ2
A

dt (5.85)

= −A
(
1 + weff

)
ρeffHΥdt + AρeffdΥ − V

Ġeff

Geff

ρeffdt. (5.86)

Both Eqs.(5.84) and (5.86) can be compactified into the thermodynamic equation

dEeff = AΨ +WdV + E, (5.87)

whereW and Ψ respectively refer to the effective work density and the effective energy supply covector,

W =
1
2
(
1−weff

)
ρeff, (5.88)

Ψ = −
1
2
(
1 + weff

)
ρeffHΥdt +

1
2
(
1 + weff

)
ρeffadr

= −
(
1 + weff

)
ρeffHΥdt +

1
2
(
1 + weff

)
ρeffdΥ, (5.89)

and similar to Sec. 5.3.1, W and Ψ can trace back to the Hayward-type invariants W B − 1
2 Tαβ

(eff)hαβ and

Ψα B T β
α(eff)∂βΥ +W∂αΥ under spherical symmetry. The E in Eq.(5.87) is an extensive energy term

E B −V
Ġeff

Geff

ρeff dt. (5.90)

As will be shown in the next subsection, E contributes to the irreversible extra entropy production, so we
regard Eq.(5.87) as the unified first law of nonequilibrium thermodynamics [64], which is an extension of
the equilibrium version Eq.(5.23) in GR. Moreover, it follows from the contracted Bianchi identities and
Eq.(5.75) that ∇µG

µ
ν = 0 = 8π∇µ

(
GeffT µ(eff)

ν
)
, and for the FRW metric Eq.(5.1) it leads to

ρ̇eff + 3H
(
ρeff + Peff

)
=
Ė

V
= −

Ġeff

Geff

ρeff, (5.91)

so E also shows up in the generalized continuity equation as a density dissipation effect.

5.6.3 Nonequilibrium Clausius equation on the horizon

The holographic-style dynamical equation (5.79) can be slightly rearranged into Υ̇A
Geff

dt = AA(1+weff)ρeffHΥAdt,
so we have

1
2πΥA

· 2πΥA

 Υ̇A

Geff

dt −
1
2

ΥA
Ġeff

G2
eff

dt

 +
1

2πΥA
· 2πΥA

1
2

ΥA
Ġeff

G2
eff

dt + VA
Ġeff

Geff

ρeffdt


= AA

(
1 + weff

)
ρeffHΥAdt + VA

Ġeff

Geff

ρeffdt.

(5.92)
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It can be formally compactified into the thermodynamic relation

TA
(
dS A + dpS (A)

)
= −

(
AAΨt + EA

)
= −dEA

eff

∣∣∣∣
dΥ=0

, (5.93)

where Ψt is just the t-component of the covector Ψ in Eq.(5.89), EA is the energy dissipation term Eq.(5.90)
evaluated at ΥA, and TA = 1

2πΥA
denotes the Cai–Kim temperature on ΥA. Here S A refers to the geometrically

defined Wald entropy [65] for the dynamical apparent horizon,

S A =
πΥ2

A

Geff

=
AA

4Geff

=

∫
dAA

4Geff

, (5.94)

where S A takes such a compact form due to ΥA = ΥA(t) and Geff = Geff(t) under the maximal spatial
symmetry of the Universe, while dpS (A) represents the irreversible entropy production within ΥA

dpS (A) = 2πΥA

1
2

ΥA
Ġeff

G2
eff

dt + VA
Ġeff

Geff

ρeffdt


= 2πΥ2

A
Ġeff

G2
eff

dt,

(5.95)

where we have applied the following replacement

1
2

ΥA
Ġeff

G2
eff

= VA
Ġeff

Geff

ρeff, (5.96)

whose validity is guaranteed by Eq.(5.78). Due to the extra entropy production element dpS (A), we regard
Eq.(5.93) as the nonequilibrium Clausius equation, which depicts the heat transfer plus the extensive energy
dissipation for the isochoric process of an arbitrary instantaneous ΥA. With the nonequilibrium unified first
law Eq.(5.87), Eq.(5.93) can be completed into the total energy differential

dEA
eff = AAΨtdt + AA (ΨΥ +W) dΥA + EA

= −TA
(
dS A + dpS (A)) + ρeffdVA.

(5.97)

5.6.4 The second law for the interiors of the apparent and the event horizons

For the cosmic entropy evolution, the second law of thermodynamics should still apply to the physical
matter content {ρm, Pm} rather than the mathematically effective {ρeff, Peff}. Under minimal geometry-matter
couplings, the Noether compatible definition of T (m)

µν automatically guarantees ∇µT (m)
µν = 0, so the total

continuity equation (5.91) can be decomposed into the ordinary one for the physical matter and the remaining
part for the modified-gravity effect [64]:

ρ̇m + 3H(ρm + Pm) = 0

ρ̇(MG) + 3H
(
ρ(MG) + P(MG)

)
= −

Ġeff

Geff

(
ρm + ρ(MG)

)
.

(5.98)

For the physical energy Em = ρmV = Eeff − ρ(MG)V within an arbitrary volume, the positive-heat-out Gibbs
equation (5.54) still yields TmdS m = −d(ρmV) − PmdV = −Vdρm − (ρm + Pm)dV , which together with

129



Eq.(5.98) leads to

TmdS m = 3H(ρm + Pm)Vdt −
(
ρm + Pm

)
AdΥ

= ρmA(1 + wm)
(
HΥdt − dΥ

)
.

(5.99)

Hence, for the physical entropy S (A)
m inside the apparent horizon ΥA(t), Eq.(5.99) and the holographic-style

dynamical equation (5.80) yield

TmdS (A)
m = ρmAA

(
1 + wm

)(
ΥAH − Υ̇A

)
dt

= −
3
2
ρmAA

(
1 + wm

)
HΥA

(1
3

+ weff

)
dt

= −
9
2
ρmVAH

(
1 + wm

)(1
3

+ weff

)
dt.

(5.100)

where ρmAA cannot be simplified by Eq.(5.10) of GR. Recall that −1/3 ≤ wm ≤ 1 in modified gravities, thus:

Theorem 4 The physical entropy S (A)
m inside the cosmological apparent horizon satisfies Ṡ (A)

m ≥ 0 only
when weff ≤ −1/3.

Moreover, inside the event horizon ΥE(t), Eq.(5.99) along with Υ̇E = HΥE − 1 give rise to

TmdS (E)
m = ρmAE(1 + wm)

(
HΥE − Υ̇E

)
dt

= ρmAE(1 + wm)dt.
(5.101)

Hence, for the FRW Universe governed by modified gravities and filled with ordinary matter −1/3 ≤ wm ≤ 1:

Theorem 5 The physical entropy S (E)
m inside the cosmological event horizon always satisfies Ṡ (E)

m > 0
regardless of the modified-gravity theories in use.

5.6.5 GSL for the apparent-horizon system

Unlike the standard second law for the matter content {ρm, Pm}, GSLs further involve the modified-gravity
effects {ρ(MG), P(MG)}which influence the horizon entropy. Compared with the ΛCDM situation in Sec. 5.5.5,
there are three types of entropy for the apparent-horizon system in modified gravities: the physical S (A)

m for
the internal matter content, the Wald entropy S A of the horizon ΥA, and the nonequilibrium extensive entropy
production. From Eqs.(5.93) and (5.100), we have

Ṡ (A)
m + Ṡ A + Ṡ (A)

p

= −
1

Tm

3
2
ρmAA

(
1 + wm

)
HΥA

(1
3

+ weff

)
+

2πΥAΥ̇A

Geff

+ πΥ2
A

Ġeff

G2
eff

=
3
2

ΥA

ΥH

− 1
Tm

ρmAA
(
1 + wm

)(1
3

+ weff

)
+

1
TA

1
Geff

(
1 + weff

)
+

1
TA

1
3H

Ġeff

G2
eff

 ,
(5.102)

where Ṡ (A)
p B dpS (A)/dt, TA = 1/(2πΥA), and Υ̇A = 3

2 HΥA
(
1 + weff

)
. Generally the GSL for the apparent-

horizon system does not hold because the region Υ ≤ ΥA only comprises a finite portion of the Universe

130



and is thermodynamically open with the absolute Hubble flow crossing ΥA. However, Eq.(5.102) shows that
Ṡ (A)

m + Ṡ A + Ṡ (A)
p ≥ 0 could validate when

Tm

TA

1 + weff

Geff

+
1

3H
Ġeff

G2
eff

 ≥ ρmAA
(
1 + wm

)(1
3

+ weff

)
, (5.103)

where AA cannot be further replaced by 1/(πT 2
A) to nonlinearize TA since TA is not an extensive quantity.

Specifically for equilibrium theories with Geff = constant, like the dynamical Chern-Simons gravity [61, 64],
Eq.(5.103) reduces to become

(
1 + weff

)Tm

TA
≥ ρmAAG

(
1 + wm

)(1
3

+ weff

)
, (5.104)

which appears analogous to Eq.(5.63) of ΛCDM.
For the apparent-horizon GSL, these results have matured the pioneering investigations in [18] for

generic modified gravities and other earlier results in e.g. [22, 24] for specific gravity theories by the nonequi-
librium revision of the unified first law, selection of the Cai–Kim temperature, dropping of the artificial
assumption Tm = T

(+)
A , and discovery of the explicit expression for the entropy production dpS (A).

5.6.6 GSL for the event-horizon system

For the event-horizon system, dS E +dpS (E) should be directly determined by the nonequilibrium unified first
law Eq.(5.86),

TE
(
dS E + dpS (E)

)
=δQ(E) = −dE(E)

eff

∣∣∣
ΥE0

= −
(
AEΨt + EE

)
=AE

(
1 + weff

)
ρeffHΥEdt + VE

Ġeff

Geff

ρeffdt.

(5.105)

Then Eqs.(5.101) and (5.105) yield

Ṡ (E)
m + Ṡ E + Ṡ (E)

p =
1

Tm
ρmAE(1 + wm) +

1
TE

(
AE

(
1 + weff

)
ρeffHΥE + VE

Ġeff

Geff

ρeff

)
. (5.106)

Inspired by the validity of the event-horizon GSL for Sec. 5.5.6 and the standard second law Eq.(5.101), we
a priori anticipate Ṡ (E)

m + Ṡ E + Ṡ (E)
p ≥ 0 to hold, which imposes the following viability constraint to modified

gravities
Tm

TE

((
1 + weff

)
H +

Ġeff

Geff

)
ρeff ≥ −ρm(1 + wm)Υ−1

E . (5.107)

Considering that −1/3 ≤ wm ≤ 1, its right hand side is negative definite, so a sufficient (yet not necessary)
condition to validate the GSL is ((

1 + weff

)
H +

Ġeff

Geff

)
ρeff ≥ 0. (5.108)

These results improve the earlier investigations in e.g. [56] for the event-horizon GSL in modified gravities.
Note that the discussion in Sec. 5.6.3 is based on the holographic-style gravitational equations and only

applies to the apparent-horizon system; if presuming a Wald entropy AE/4Geff and employing the entropy
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production to balance all differential terms involving the evolution effect Ġeff, one would obtain

TE
(
dS E + dpS (E)

)
=

(
TE

2πΥEΥ̇E

Geff

+ VE
Ġeff

Geff

ρeff

)
dt, (5.109)

with dpS (E) specified as

dpS (E) =

TEAE
Ġeff

4G2
eff

+ VE
Ġeff

Geff

ρeff

 dt. (5.110)

Comparison of Eqs.(5.105) and (5.109) yields the condition

TE
2πΥE

(
HΥE − 1

)
Geff

= AE
(
1 + weff

)
ρeffHΥE, (5.111)

and thus the whole discussion in Sec. 5.5.7 for ΛCDM can be parallelly applied to modified gravities with
G 7→ Geff, ρm 7→ ρeff and wm 7→ weff, which again implies that the entropy A/4Geff and the Cai–Kim
temperature 1/(2πΥ) only unconditionally hold on the cosmological event horizon.

5.6.7 A note on existing methods of GSL

Existent papers on GSL of modified gravities (in the traditional positive-heat-in Gibbs equation TmdŜ m =

dE + PmdV) usually replace ρm + Pm by ρ̃(MG) + P̃(MG) in Eq.(5.99), with {̃ρ(MG), P̃(MG)} set up in the field
equation involving both Newton’s constant G and the dynamic Geff:

Rµν −
1
2

Rgµν = 8πGT̃ (eff)
µν = 8πG

(
T̃ (m)
µν + T̃ (MG)

µν

)
, (5.112)

where T̃ µ(eff)
ν = diag

[
−ρ̃eff, P̃eff, P̃eff, P̃eff

]
, ρ̃eff = ρ̃m + ρ̃(MG), P̃eff = P̃m + P̃(MG), and the tilde ∼ means

that the possibly dynamical aspect of Geff in Eq.(5.75) has been absorbed into T̃ (eff)
µν to formally maintain a

constant coupling strength G; also note that for these tilded quantities the conservation equation becomes
˙̃ρeff + 3H

(
ρ̃eff + P̃eff

)
= 0 and ρ̇m + 3H(ρm + Pm) = 0 under minimal coupling (an energy exchange term be-

tween ρm and ρ̃(MG) was analyzed for minimal f (R) gravity in [25], which however should be a feature of non-
minimal coupling). This way, for the apparent-horizon system with Tm

˙̂S m = 4πΥ2
A
(
ρm +Pm

) (
ΥA − HΥ̇A

)
dt,

one would have the GSL (e.g. [22, 24, 25] for the F(R,G), scalar-tensor-chameleon and interacting f (R)
gravities)

˙̂S
(A)

m + Ṡ A =
1

Tm

G
Geff

(
Υ̇A

GHΥA
− 4πΥ2

A
(
ρ̃(MG) + P̃(MG)

))(
Υ̇A − ΥAH

)
+

2πΥAΥ̇A

Geff

, (5.113)

where Geff is recognized from the coefficient of Gρ̃m = Geffρm to utilize the Wald entropy S A = AA/4Geff.
In Eq.(5.113) we have incorporated the holographic-style gravitational equations [simply Eqs.(5.78)-(5.81)
with Geff 7→ G and ρeff 7→ ρ̃eff, Peff 7→ P̃eff] for compactness, as well as the relation

ρm + Pm =
G

Geff

(
ρ̃m + P̃m

)
. (5.114)

However, Eq.(5.113) is not self-consistent, not just for the conflicting sign conventions encoded in Ŝ (A)
m and

S A, but also because it uses two different coupling strength for {Ŝ (A)
m , S A}, and fails to capture the extra
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entropy production dpS (A) which arises in all modified gravities with nontrivial Geff [64, 67]. To overcome
these flaws in this popular method, the adjusted Gibbs equation (5.54) along with the setups in Eqs.(5.75,
5.76) and the holographic-style Eqs.(5.78)-(5.81) lead to

TmṠ m = −
1

Geff

(
Υ̇A

HΥA
− 4πΥ2

AGeff

(
ρ(MG) + P(MG)

))(
Υ̇A − ΥAH

)
= −

HΥ5
A

Geff

(
Ḣ −

k
a2 + 4πGeff

(
ρ(MG) + P(MG)

))(
Ḣ + H2

)
,

(5.115)

which together with Eq.(5.93) yields

Ṡ (A)
m + Ṡ A + Ṡ (A)

p = −
HΥ5

A

Geff

(
Ḣ −

k
a2 + 4πGeff

(
ρ(MG) + P(MG)

))(
Ḣ + H2

)
+

2πΥAΥ̇A

Geff

+ πΥ2
A

Ġeff

G2
eff

. (5.116)

Eq.(5.116) improves Eq.(5.113) into a totally self-consistent and more natural method that employs a single
gravitational coupling strength Geff in accordance with the standard entropy AA/4Geff. The approach by
Eq.(5.116) looks more concentrative on {ρ(MG), P(MG)} of the modified-gravity effects; however, it has im-
plicitly ignored the nonexotic character of the cosmic fluid ρm + 3Pm ≥ 0, and complicated the mathematical
calculations. Hence, in this paper we have chosen to work with Eqs.(5.100, 5.102) rather than Eqs.(5.115,
5.116 ) for the apparent-horizon system, and similarly Eq.(5.101, 5.106) for the event-horizon system.

5.6.8 Applications to concrete modified gravities

The formulation of gravitational thermodynamics in this section applies to all ordinary modified gravities of
the form Eq.(5.75). One can just reverse the process and logic in [64] to see the detailed applications of the
first laws for different gravity theories, and in this paper we will focus on the concretization of the second
laws, for which we have drawn the following generic conclusions:

(1) Ṡ (E)
m > 0 always holds, while Ṡ (A)

m ≥ 0 when weff ≤ −1/3;

(2) Ṡ (E)
m + Ṡ E + Ṡ (E)

p ≥ 0 should hold with Eq.(5.107) as a validity constraint for modified gravities, while
Ṡ (A)

m + Ṡ A + Ṡ (A)
p ≥ 0 could conditionally hold only when Eq.(5.103) is satisfied.

To concretize these conditions, one just needs to find out the effective gravitational coupling strength Geff,
the effective EoS parameter

weff =
(Peff + ρeff) − ρeff

ρeff

= −1 +
(1 + wm)ρm +

(
ρ(MG) + P(MG)

)
ρm + ρ(MG)

,

(5.117)

the “modified-gravity energy density” ρ(MG), and ρ(MG) + P(MG).
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f (R) gravity

For the FRW Universe governed by the L = f (R) + 16πGLm gravity [59], we have Geff = G/ fR and [64]

ρ(MG) =
1

8πG

(1
2

fRR −
1
2

f − 3H ḟR
)

(5.118)

ρ(MG) + P(MG) =
1

8πG

(
f̈R − H ḟR

)
(5.119)

weff = − 1 +
8πG(1 + wm)ρm + f̈R − H ḟR
8πGρm + 1

2 fRR − 1
2 f − 3H ḟR

. (5.120)

The GSL for the event-horizon system requires f (R) gravity to respect the following viability condition

Tm

TE

 8πG(1 + wm)ρm + f̈R − H ḟR
8πGρm + 1

2 fRR − 1
2 f − 3H ḟR

H −
ḟR
fR

 × (5.121)(
8πGρm +

1
2

fRR −
1
2

f − 3H ḟR

)
≥ −8πGρm(1 + wm)Υ−1

E ,

while for the apparent-horizon open system, the second law and the GSL respectively hold in the situations

8πG(1 + wm)ρm + f̈R − H ḟR
8πGρm + 1

2 fRR − 1
2 f − 3H ḟR

≤ −
2
3
, (5.122)

Tm

TA

 fR
8πG(1 + wm)ρm + f̈R − H ḟR
8πGρm + 1

2 fRR − 1
2 f − 3H ḟR

−
ḟR

3H

 ≥ GρmAA
(
1 + wm

)  8πG(1 + wm)ρm + f̈R − H ḟR
8πGρm + 1

2 fRR − 1
2 f − 3H ḟR

−
2
3

 .
(5.123)

Scalar-tensor-chameleon gravity

For the scalar-tensor-chameleon gravity [24] with the Lagrangian density LSTC = F(φ)R − Z(φ)∇αφ∇αφ −
2U(φ) + 16πGE(φ)Lm, we have Geff =

E(φ)
F(φ)G and [64]

ρ(MG) =
1

8πGE

(
− 3HḞ +

1
2

Zφ̇2 + U
)

(5.124)

weff = −1 +
8πGE(1 + wm)ρm + F̈ − HḞ + Zφ̇2

8πGEρm − 3HḞ + 1
2 Zφ̇2 + U

, (5.125)

where in this subsection we temporarily adopt the abbreviations E ≡ E(φ), F ≡ F(φ), U ≡ U(φ) and
Z ≡ Z(φ). Eq.(5.107) for the GSL of the event–horizon system imposes the constraint

Tm

TE

8πGE(1 + wm)ρm + F̈ − HḞ + Zφ̇2

8πGEρm − 3HḞ + 1
2 Zφ̇2 + U

H +
FEφ − EFφ

EF
φ̇


×

(
8πGρm − 3H

Ḟ
E

+
Z
E
φ̇2 +

U
E

)
≥ −8πGρm(1 + wm)Υ−1

E ,

(5.126)
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while weff ≤ −
1
3 and the apparent-horizon GSL Eq.(5.107) can be directly realized with Eq.(5.129) and

ρ(MG) + P(MG) = 1
8πGE

(
F̈ − HḞ + Zφ̇2

)
. Moreover, in the specifications E 7→ 1, F 7→ φ, Z 7→ ω/φ,

U 7→ 1
2 V , we recover the generalized Brans-Dicke gravity [62] with a self-interacting potential, LGBD =

φR − ω
φ∇αφ∇

αφ − V(φ) + 16πGLm, and Eq.(5.130) reduces to become

Tm

TE

8πG(1 + wm)ρm + φ̈ − Hφ̇ + ω
φ φ̇

2

8πGρm − 3Hφ̇ + ω
2φ φ̇

2 + 1
2 V

H −
φ̇

φ

 × (5.127)(
8πGρm − 3Hφ̇ +

ω

2φ
φ̇2 +

V
2

)
≥ −8πGρm(1 + wm)Υ−1

E .

Scalar-tensor-chameleon gravity

For the scalar-tensor-chameleon gravity [24] with the Lagrangian density LSTC = F(φ)R − Z(φ)∇αφ∇αφ −
2U(φ) + 16πGE(φ)Lm in the Jordan conformal frame, which generalizes the Brans-Dicke gravity, we have
Geff =

E(φ)
F(φ)G and [64]

ρ(MG) =
1

8πGE

(
− 3HḞ +

1
2

Zφ̇2 + U
)

(5.128)

weff = −1 +
8πGE(1 + wm)ρm + F̈ − HḞ + Zφ̇2

8πGEρm − 3HḞ + 1
2 Zφ̇2 + U

, (5.129)

where in this subsection we temporarily adopt the abbreviations E ≡ E(φ), F ≡ F(φ), U ≡ U(φ) and
Z ≡ Z(φ), while H is still the Hubble parameter. Eq.(5.107) for the GSL of the event–horizon system
imposes the constraint

Tm

TE

8πGE(1 + wm)ρm + F̈ − HḞ + Zφ̇2

8πGEρm − 3HḞ + 1
2 Zφ̇2 + U

H +
FEφ − EFφ

EF
φ̇

 × (
8πGρm − 3H

Ḟ
E

+
Z

2E
φ̇2 +

U
E

)
≥ −8πGρm(1 + wm)Υ−1

E ,

(5.130)

while weff ≤ −
1
3 and the apparent-horizon GSL Eq.(5.107) can be directly realized with Eq.(5.129) and

ρ(MG) + P(MG) = 1
8πGE

(
F̈ − HḞ + Zφ̇2

)
. Moreover, in the specifications E 7→ 1, F 7→ φ, Z 7→ ω/φ,

U 7→ 1
2 V , we recover the generalized Brans-Dicke gravity [62] with a self-interacting potential, LGBD =

φR − ω
φ∇αφ∇

αφ − V(φ) + 16πGLm, and Eq.(5.130) reduces to become

Tm

TE

8πG(1 + wm)ρm + φ̈ − Hφ̇ + ω
φ φ̇

2

8πGρm − 3Hφ̇ + ω
2φ φ̇

2 + 1
2 V

H −
φ̇

φ

 × (
8πGρm − 3Hφ̇ +

ω

2φ
φ̇2 +

1
2

V
)

≥ −8πGρm(1 + wm)Υ−1
E .

(5.131)

Quadratic gravity

For the quadratic gravity LQG = R + aR2 + bRµνRµν + 16πGLm whose Lagrangian density is an effective
linear superposition of the quadratic independent Riemannian invariants [58, 60], with {a, b} being constants,
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we have Geff = G
1+2aR and [64]

ρ(MG) =
1

8πG

(
a
2

R2 −
b
2

R2
c +

b
2

R̈ −
(
4a + b

)
HṘ + 4bRt

αtβ + 2b2R t
t

)
, (5.132)

weff = −1 +
8πG(1 + wm)ρm +

(
2a + b

)
R̈ − b

2 HṘ + 4b(Rt
αtβ − Rr

αrβ)R
αβ + 2b2

(
R t

t − R r
r
)

8πGρm + a
2 R2 − b

2 R2
c + b

2 R̈ −
(
4a + b

)
HṘ + 4bRt

αtβ + 2b2R t
t

, (5.133)

where R2
c B RµνRµν, 2 = gµν∇µ∇ν, and we have used the compact geometric notations [64]. Hence, GSL of

the event-horizon system requires

Tm

TE

8πG(1 + wm)ρm +
(
2a + b

)
R̈ − b

2 HṘ + 4b(Rt
αtβ − Rr

αrβ)R
αβ + 2b2

(
R t

t − R r
r
)

8πGρm + a
2 R2 − b

2 R2
c + b

2 R̈ −
(
4a + b

)
HṘ + 4bRt

αtβ + 2b2R t
t

H −
2aṘ

1 + 2aR


×

(
8πGρm +

a
2

R2 −
b
2

R2
c +

b
2

R̈ −
(
4a + b

)
HṘ + 4bRt

αtβ + 2b2R t
t

)
≥ −8πGρm(1 + wm)Υ−1

E ,

(5.134)

while weff ≤ −
1
3 and Eq.(5.107) can be directly concretized with Eq.(5.133) and

ρ(MG) + P(MG) =
1

8πG

((
2a + b

)
R̈ −

b
2

HṘ + 4b(Rt
αtβ − Rr

αrβ)R
αβ + 2b2

(
R t

t − R r
r
))
. (5.135)

Chern-Simons gravity

Finally let’s analyze the dynamical Chern-Simons gravity LCS = R+ aϑ√
−g
∗R̂R−b∇µϑ∇µϑ−V(ϑ)+16πGLm

[61] which has a constant gravitational coupling strength Geff = G, where ∗R̂R = ∗RαβγδRαβγδ denotes the
Chern-Pontryagin invariant and {a, b} are constants. We have [64]

ρ(MG) =
1

16πG

(
bϑ̇2 + V(ϑ)

)
(5.136)

weff = −1 +
8πGρm(1 + wm) + bϑ̇2

8πGρm + 1
2 bϑ̇2 + 1

2 V(ϑ)
, (5.137)

and thus Eq.(5.107) leads to the viability condition

Tm

TE

(
8πGρm(1 + wm) + bϑ̇2

)
≥ −8πGρm(1 + wm)

ΥH

ΥE
, (5.138)

which, for ϑ̇ , 0, yields a constraint for b,

b ≥ −8πGρm(1 + wm)
(
ΥH

ΥE

TE

Tm
+ 1

)
ϑ̇−2. (5.139)

For the FRW cosmology, ∗R̂R makes no contribution to the gravitational equations, so LCS effectively acts
as L = R − b∇µϑ∇µϑ − V(ϑ) + 16πGLm, which formally resembles the scalarial dark energy [37, 39]. On
the other hand, note that although Eqs.(5.138) and (5.139) are always satisfied for b > 0, which corresponds
to a canonical kinetic ϑ-field that is quintessence-like (L = − 1

2∇µφ∇
µφ − V(φ)), ϑ is allowed to be slightly
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phantom-like (L = 1
2∇µφ∇

µφ − V(φ)) for some b < 0 by Eq.(5.139). Hence, Eq.(5.139) does not coincide
with the situation of ΛCDM in Sec. 5.5.6, where Ṡ (E)

m + Ṡ E ≥ 0 holds if and only if wm ≥ −1.

5.7 Conclusions and discussion

In this paper the thermodynamic implications of the holographic-style dynamical equations for the FRW
Universe have been studied. We started from the ΛCDM model of GR to clearly build the whole framework
of gravitational thermodynamics, and eventually extended it to modified gravities. A great advantage of our
formulation is all constraints are expressed by the EoS parameters.

The holographic-style gravitational equations govern both the apparent-horizon dynamics and the cosmic
spatial expansion. We have shown how they imply Hayward’s unified first law of equilibrium thermodynam-
ics dE = Aψ + WdV [46] and the isochoric-process Cai–Kim Clausius equation TAdS A = δQA = −AAψt

[2, 8, 47]. The derivations of the Clausius equation in Sec. 5.3.2 actually involves a long standing confusion
regarding the setup of the apparent-horizon temperature, and extensive comparisons in Sec. 5.4 have led to
the argument that the Cai–Kim TA = 1/(2πΥA) is more appropriate than the Hayward TA = κ/2π and its
partial absolute value T (+)

A . Meanwhile, we have also introduced the “zero temperature divide” wm = 1/3
for TA = κ/2π, and proved the signs of both temperatures are independent of the inner or outer trappedness
of the apparent horizon.

The “positive heat out” sign convention for the heat transfer and the horizon entropy has been decoded
from TAdS A = −dE, provided that the third law of thermodynamics holds with a positive TA. With the
horizon temperature and entropy clarified, the cosmic entropy evolution has been investigated. We have
adjusted the traditional matter entropy and Gibbs equation into dEm = −TmdS m−PmdVA in accordance with
the positive heat out convention of the horizon entropy. It turns out that the cosmic entropy is well behaved,
specially for the event-horizon system, where both the second law and the GSL hold for nonexotic matter
(−1 ≤ wm ≤ 1). Also, we have clarified that the regions {Υ ≤ ΥA, Υ ≤ ΥE} enveloped by the apparent and
even horizons are simple open thermodynamic systems2 so that one should not a priori expect the validity
of nondecreasing entropy, and abandoned the local equilibrium assumptions restricting the interior and the
boundary temperatures.

Finally we have generalized the whole formulations from the ΛCDM model to ordinary modified gravi-
ties whose field equations have been intrinsically compactified into the GR form Rµν−Rgµν/2 = 8πGeffT (eff)

µν .
To our particular interest, we found that inside the apparent horizon the second law Ṡ m ≥ 0 nontrivially
holds if weff ≤ −1/3, while inside the event horizon Ṡ m ≥ 0 always validates regardless of the gravity the-
ories in use. These generic conclusions have been concretized in f (R), scalar-tensor-chameleon, quadratic
and dynamical Chern-Simons gravities.

Note that the volume V and surface area A used throughout this paper are interpreted as flat-space quan-
tities in [26]. However, Υ and A are the proper radius and area for the standard sphere S2 in the 2 + 2 (rather
than 3 + 1) decomposition ds2 = hαβdxαdxβ + S2 of Eq.(5.1), while the role of V as a proper quantity is still
not clear.

There are still some interesting problems arising in this paper and yet unsolved. For example, the dis-
cussion in Sec. 5.5.7 further raises the question that, what is the temperature TE for the event horizon? Note

2Even the philosophical “whole Universe” would be an open system if there were matter creations which would cause irre-
versible extra entropy production, and one typical mechanism triggering this effect is nonminimal curvature-matter coupling [66].
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that if TE , TA, there would be a spontaneous heat flow between ΥA and ΥE – would it affect the cosmic
expansion? On the other hand, it is not clear whether or not the apparent and the event horizons could be
heated by the absolute Hubble energy flow and consequently TE = Tm and TA = Tm: this would avoid the
temperature gradient between ΥA and ΥE, but throughout this paper we have not yet seen any evidence for
TA to be heated into Tm.

Moreover, besides the traditional GSLs, the “cosmic holographic principle” in [26] which argues that the
physical entropy Ŝ (A)

m inside the apparent horizon ΥA could never exceed the apparent-horizon entropy S A,
is also problematic in comparing Ŝ (A)

m with S A – this principle should be restudied in the unified positive-
heat-out sign convention. Moreover, is ΥA the only hologram membrane for the FRW Universe? Can the
relative evolution equation (5.17) be used in astrophysical and cosmological simulations? Also, how would
the cosmic entropy evolve in a contracting Universe? We hope to find out the answers in prospective studies.
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Appendix: The minimum set of state functions and reversibility

Eqs.(5.29) and (5.30) clearly indicate that just like ordinary thermodynamics, the geometrically defined
horizon temperature TA and horizon entropy S A remain as state functions, which are independent of thermo-
dynamic processes that indeed correspond to the details of cosmic expansion ȧ(t) and the apparent-horizon
evolution Υ̇A. Just like the regular temperatures of thermodynamic systems, the Cai–Kim TA remains as
an intensive property with TA = TA(t) = 1/2πΥA(t); one should not treat it as an extensive property by

TA = TA(VA) = 1/(2π 3
√

3
4πVA). Some other state functions involved here include the apparent-horizon

radius ΥA, the energy density ρm(t), the pressure Pm(t) and thus the EoS parameter wm = ρm/Pm. These
state quantities are not totally independent as they are related with one another by the Friedmann equations
(5.7), the holographic-style dynamical equation (5.8), and the thermodynamic relations in Secs. 5.3.1 and
5.3.2. Here we select the following quantities to comprise a minimum set of independent state functions for
Secs. 5.2 and 5.3:

Minimum set =
{
ρm ,wm ,TA

}
. (5.140)

Based on this set, the product of ρm and wm yields the pressure Pm. Through Eq.(5.10) ρm recovers the
horizon area AA and thus determines the entropy S A. Treating TA as an intensive property, we do not take
the approach from Eq.(5.8) or Eq.(5.10) for the recovery ρm → AA → ΥA → TA, and instead let TA enter
the minimum set directly as the Cai–Kim temperature ansatz. Similarly, for modified gravities with the
dynamical equations (5.78)-(5.81), we choose the minimum set to be {ρeff,weff,Geff,TA}.

The fact that Eq.(5.31) is the Clausius equation for (quasi)equilibrium or reversible thermodynamic pro-
cesses without extra entropy production raises the question that, what does reversibility mean from the
perspective of cosmic and apparent-horizon dynamics? From the explicit expression of the heat transfer
δQA = TAdS A = AA

(
1 + wm

)
ρmHΥAdt where the state quantity TAdS A is balanced by the process quantity

δQA, we naturally identify H as a process quantity; moreover, if one reverses the initial and final states of
TAdS A, the state quantities {ρm(t) ,wm ,ΥA , AA} can be automatically reversed. Hence, by reversibility we
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mean an imaginary negation −H of the Hubble parameter that results in a spatial contraction process which
directly evolves the Universe from a later state back to the earlier state of TAdS A without reversing the time
arrow and causing energy dissipation.

[68] suggests that since the energy-matter crossing the apparent horizon for the (accelerated) expand-
ing Universe will not come back in the future, it should cause extra entropy production, and [68] further
introduced the entropy flow vector and the entropy production density for it. In fact, the reversibility of
TAdS A = δQA simply allows for such a possibility in principle, rather than the realistic occurrence of the
reverse process, so we believe that the entropy-production treatment in [68] is inappropriate. As shown in
Sec. 5.6.3, irreversibility and entropy production is a common feature for such (minimally coupled) modified
gravities with a nontrivial effective gravitational coupling strength (Geff , constant) when their field equa-
tions are cast into the GR form Rµν −Rgµν/2 = 8πGeffT (eff)

µν , and the time evolution of Geff causes irreversible
energy dissipation and constitutes the only source of entropy production.
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Abstract

According to Lovelock’s theorem, the Hilbert-Einstein and the Lovelock actions are indistinguish-
able from their field equations. However, they have different scalar-tensor counterparts, which correspond
to the Brans-Dicke and the Lovelock-Brans-Dicke (LBD) gravities, respectively. In this paper the LBD
model of alternative gravity with the Lagrangian density LLBD = 1

16π

[
φ
(
R + a

√
−g
∗RR + bG

)
−

ωL
φ
∇αφ∇

αφ
]

is developed, where ∗RR and G respectively denote the topological Chern-Pontryagin and Gauss-Bonnet
invariants. The field equation, the kinematical and dynamical wave equations, and the constraint from
energy-momentum conservation are all derived. It is shown that, the LBD gravity reduces to general
relativity in the limit ωL → ∞ unless the “topological balance condition” holds, and in vacuum it can be
conformally transformed into the dynamical Chern-Simons gravity and the generalized Gauss-Bonnet dark
energy with Horndeski-like or Galileon-like kinetics. Moreover, the LBD gravity allows for the late-time
cosmic acceleration without dark energy. Finally, the LBD gravity is generalized into the Lovelock-scalar-
tensor gravity, and its equivalence to fourth-order modified gravities is established. It is also emphasized
that the standard expressions for the contributions of generalized Gauss-Bonnet dependence can be further
simplified.

Key words: Lovelock’s theorem, topological effects, modified gravity
PACS numbers: 04.20.Cv , 04.20.Fy , 04.50.Kd

6.1 Introduction

As an alternative to the various models of dark energy with large negative pressure that violates the standard
energy conditions, the accelerated expansion of the Universe has inspired the reconsideration of relativistic
gravity and modifications of general relativity (GR), which can explain the cosmic acceleration and reconstruct
the entire expansion history without dark energy.

Such alternative and modified gravities actually encode the possible ways to go beyond Lovelock’s the-
orem and its necessary conditions [1], which limit the second-order field equation in four dimensions to
Rµν−Rgµν/2+Λgµν = 8πGT (m)

µν , i.e. Einstein’s equation supplemented by the cosmological constant Λ. These
directions can allow for, for example, fourth and even higher order gravitational field equations [2–5], more
than four spacetime dimensions [6, 7], extensions of pure pseudo-Riemannian geometry and metric gravity
[7, 8], extra physical degrees of freedom [9–12], and nonminimal curvature-matter couplings [13, 14]. From

∗Email address: wtian@mun.ca
†Email address: ibooth@mun.ca
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a variational approach, these violations manifest themselves as different modifications of the Hilbert-Einstein
action, such as extra curvature invariants, scalar fields, and non-Riemannian geometric variables.

For the Lovelock action in Lovelock’s theorem and the Hilbert-Einstein-Λ action, it is well known that they
yield the same field equation and thus are indistinguishable by their gravitational effects. When reconsidering
Lovelock’s theorem, we cannot help but ask whether the effects of these two actions are really the same in all
possible aspects. Is there any way for the two topological sources in the Lovelock action to show nontrivial
consequences? As a possible answer to this question, we propose the Lovelock-Brans-Dicke gravity.

This paper is organized as follows. In Sec. 6.2, the Lovelock-Brans-Dicke gravity is introduced based
on Lovelock’s theorem, and its gravitational and wave equations are derived in Sec. 6.3. Section 6.4 studies
the behaviors at the infinite-Lovelock-parameter limit ωL → ∞, and Sec. 6.5 derives the constraint from
energy-momentum conservation. Section 6.6 shows that in vacuum the Lovelock-Brans-Dicke gravity can
be conformally transformed into the dynamical Chern-Simon gravity and the generalized Gauss-Bonnet dark
energy with Horndeski-like or Galileon-like kinetics. Then the possibility of realizing the acceleration phase
for the late-time Universe is discussed in Sec. 6.7. Finally, in Sec. 6.8 the Lovelock-Brans-Dicke theory
is extended to the Lovelock-scalar-tensor gravity, and its equivalence to fourth-order modified gravities is
analyzed. Throughout this paper, we adopt the sign conventions Γαβγ = Γαβγ, Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · · and

Rµν = Rαµαν with the metric signature (−,+ + +).

6.2 Lovelock-Brans-Dicke action

An algebraic Riemannian invariant R̃ = R̃
(
gαβ ,Rαµβν

)
in the action

∫
d4x
√
−g R̃ generally leads to fourth-

order gravitational field equations by the variational derivative

δ
(√
−gR̃

)
δgµν

=
∂
(√
−gR̃

)
∂gµν

− ∂α
∂
(√
−gR̃

)
∂(∂αgµν)

+ ∂α∂β
∂
(√
−gR̃

)
∂(∂α∂βgµν)

. (6.1)

Lovelock found out that in four dimensions the most general action leading to second-order field equations is
[1]

S =

∫
d4x
√
−g L + Sm with

L =
1

16πG

(
R − 2Λ +

a
2
√
−g

εαβµνR
µν

γδR
αβγδ + bG

)
,

(6.2)

where Λ is the cosmological constant, {a , b} are dimensional coupling constants, and without any loss of
generality we have set the coefficient of R equal to one. Also, εαβµν refers to the totally antisymmetric Levi-
Civita pseudotensor with ε0123 =

√
−g, ε0123 = 1√

−g , and {εαβµν, εαβµν} can be obtained from each other by
raising or lowering the indices with the metric tensor. In Eq.(6.2), εαβµνR

µν
γδR

αβγδ and G respectively refer to
the Chern-Pontryagin density and the Gauss-Bonnet invariant, with

G B R2 − 4RµνRµν + RµανβRµανβ. (6.3)

The variational derivatives δ(εαβµνR
µν

γδR
αβγδ)/δgµν and δ(

√
−gG)/δgµν yield total derivatives which serve

as boundary terms in varying the full action Eq.(6.2). The Chern-Pontryagin scalar εαβµνR
µν

γδR
αβγδ is propor-
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tional to the divergence of the topological Chern-Simons four-current Kµ [11],

εαβµνR
µν

γδR
αβγδ = −8 ∂µKµ with

Kµ = εµαβγ
(
1
2

Γ
ξ
ατ∂βΓ

τ
γξ +

1
3

Γ
ξ
ατΓ

τ
βηΓ

η
γξ

)
,

(6.4)

and similarly, the topological current for the Gauss-Bonnet invariant is (see Refs.[15, 16] for earlier discussion
and Ref.[17] for further clarification)

√
−gG = −∂µJµ with

Jµ =
√
−g εµαβγε ξζ

ρσ Γ
ρ
ξα

(
1
2

Rσζβγ −
1
3

ΓσλβΓ
λ
ζγ

)
.

(6.5)

Hence, the covariant densities εαβµνR
µν

γδR
αβγδ and

√
−gG in Eq.(6.2) make no contribution to the field equa-

tion δS/δgµν = 0.
According to Lovelock’s theorem, one cannot tell whether Einstein’s equation Rµν − 1

2 Rgµν = 8πGT (m)
µν

comes from the customary Hilbert-Einstein action

SHE =
1

16πG

∫
d4x
√
−g R + Sm , (6.6)

or from the induced Lovelock action1

SL =

∫
d4x
√
−g LL + Sm with

LL =
1

16πG

(
R +

a
√
−g
∗RR + bG

)
,

(6.7)

where for simplicity we switch to the denotation

∗RR B
1
2
εαβµνR

µν
γδR

αβγδ (6.8)

for the Chern-Pontryagin density, as the symbol ∗RR has been widely used in the literature of Chern-Simons
gravity [11, 18, 19]. In Eqs.(6.2), (6.6) and (6.7), the matter action Sm is given in terms of the matter La-
grangian density Lm by Sm =

∫
d4x
√
−g Lm, and the stress-energy-momentum density tensor T (m)

µν is defined
in the usual way by [20]

δSm = −
1
2

∫
d4x
√
−g T (m)

µν δg
µν with T (m)

µν B
−2
√
−g

δ
(√
−g Lm

)
δgµν

. (6.9)

The indistinguishability between SL and SHE from their field equations begs the question: Does Einstein’s
equation come from SL or SHE? Is there any way to discriminate them?

1Note that not to confuse with the more common “Lovelock action” for the topological generalizations of the Hilbert-Einstein
action to generic N dimensions that still preserves second-order field equations, as in Ref.[6].
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Recall that GR from SHE has a fundamental scalar-tensor counterpart, the Brans-Dicke gravity [9],

SBD =

∫
d4x
√
−g LBD + Sm with

LBD =
1

16π

(
φR −

ωBD

φ
∇αφ∇

α
φ

)
,

(6.10)

which proves to be a successful alternative to GR that passes all typical GR tests [21], and it is related to GR
by

LHE =
R

16πG

⇒ LBD =
1

16π

(
φR −

ωBD

φ
∇αφ∇

α
φ

)
.

(6.11)

That is to say, Brans-Dicke firstly replaces the matter-gravity coupling constant G with a pointwise scalar field
φ(xα) in accordance with the spirit of Mach’s principle, G 7→ φ−1, and further adds to the action a formally
canonical kinetic term −

ωBD

φ
∇αφ∇

α
φ governing the kinetics of φ(xα). Applying this prescription to the

Lovelock action Eq.(6.7), we obtain

LL =
1

16πG

(
R +

a
√
−g
∗RR + bG

)
⇒ LLBD =

1
16π

[
φ

(
R +

a
√
−g
∗RR + bG

)
−
ωL

φ
∇αφ∇

α
φ

]
,

(6.12)

where the Lovelock parameter ωL is a dimensionless constant. Based on Eq.(6.12), we obtain what we dub as
the Lovelock-Brans-Dicke (henceforth LBD) gravity with the action

SLBD =

∫
d4x
√
−g LLBD + Sm , (6.13)

or the Lanczos-Lovelock-Brans-Dicke gravity, as Lovelock’s theorem is based on Lanczos’ discovery that an
isolated ∗RR or G in the action does not affect the field equation [22].

Unlike the δ(∗RR)/δgµν and δ(
√
−gG)/δgµν in δSL/δgµν, the

[
φδ(∗RR)

]
/δgµν and

[
φδ(
√
−gG)

]
/δgµν for

δSLBD/δgµν are no longer pure divergences, because the scalar field φ(xα) as a nontrivial coefficient will be
absorbed into the variations of ∗RR and

√
−gG when integrating by parts. Hence, although SL and SHE are

indistinguishable, their respective scalar-tensor counterparts SLBD and SBD are different.
Note that the cosmological-constant term −2Λ in Eq.(6.2) is temporarily abandoned in LL; otherwise, it

would add an extra term −2Λφ to LLBD, which serves as a simplest linear potential. This is primarily for
a better analogy between the LBD and the Brans-Dicke gravities, as the latter in its standard form does not
contain a potential term V(φ), and an unspecified potential V(φ) would cause too much arbitrariness to LLBD.

Also, Lovelock’s original action Eq.(6.2) concentrates on the algebraic curvature invariants; in fact, one
can further add to Eq.(6.2) the relevant differential terms 2R, 2∗RR, and 2G (2 = gαβ∇α∇β denoting the
covariant d’Alembertian), while the field equation will remain unchanged. This way, the gravitational La-
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grangian density in Eq.(6.7) is enriched into

L =
1

16πG

(
R +

a∗RR
√
−g

+ bG + c2R + d2∗RR + e2G
)
, (6.14)

with {c, d, e} being constants, and its Brans-Dicke-type counterpart extends Eq.(6.12) into

L =
1

16π

[
φ

(
R +

a
√
−g
∗RR + bG

)
−
ωL

φ
∇αφ∇

α
φ + φ

(
c2R + d2∗RR + e2G

)]
, (6.15)

where φ · (c2R + d2∗RR + e2G) have nontrivial contributions to the field equation. However, unlike ∗RR and
√
−gG which are divergences of their respective topological current as in Eqs.(6.4) and (6.5), {2R, 2∗RR,

2G} are total derivatives simply because the d’Alembertian 2 satisfies
√
−g2Θ = ∂α

(√
−g gαβ∂βΘ

)
when

acting on an arbitrary scalar field Θ; in this sense, these differential boundary terms which contain fourth-order
derivatives of the metric are less interesting than ∗RR and G. In this paper, we will focus on the LBD gravity
LLBD Eq.(6.12) built upon the original Lovelock action and Lovelock’s theorem, rather than Eq.(6.15) out of
the modified action Eq.(6.14).

6.3 Gravitational and wave equations

In this section we will work out the gravitational field equation δSLBD/δgµν = 0 and the wave equation
δSLBD/δφ = 0 for the LBD gravity. First of all, with δgαβ = −gαµgβνδgµν, δΓλαβ = 1

2 gλσ
(
∇αδgσβ + ∇βδgσα −

∇σδgαβ
)
, and the Palatini identity δRλαβγ = ∇β

(
δΓλγα

)
−∇γ

(
δΓλβα

)
[23], for the first term φR in LLBD it is easy

to work out that
1
√
−g

δ(
√
−gφR)
δgµν

� −
1
2
φRgµν + φRµν +

(
gµν2 − ∇µ∇ν

)
φ, (6.16)

where � means equality by neglecting all total-derivative terms which are boundary terms for the action.

6.3.1 Coupling to the Chern-Pontryagin invariant

The Chern-Pontryagin density ∗RR in LLBD measures the gravitational effects of parity violation through∫
d4xφ∗RR for its dependence on the Levi-Civita pseudotensor. In addition to Eq.(6.8), ∗RR is related to the

left dual of the Riemann tensor via

∗RR =
1
2

(
εαβµνR

µν
γδ

)
Rαβγδ = ∗RαβγδRαβγδ . (6.17)

Applying the Ricci decomposition Rαβγδ = Cαβγδ+ 1
2

(
gαγRβδ−gαδRβγ+gβδRαγ−gβγRαδ

)
− 1

6

(
gαγgβδ−gαδgβγ

)
R

to Eq.(6.17) and using the cyclic identity Cαβγδ + Cαγδβ + Cαδβγ = 0 for the traceless Weyl tensor, one could
find the equivalence

∗RR = ∗CC B
1
2

(
εαβµνC

µν
γδ

)
Cαβγδ = ∗CαβγδCαβγδ , (6.18)

which indicates that the Chern-Pontryagin density is conformally invariant [15] under a rescaling gµν 7→
Ω(xα)2 · gµν of the metric tensor.

With the Chern-Simons topological current Kµ in Eq.(6.4), one can integrate by parts and obtain
∫

d4xφ∗RR
= −4

∫
d4xφ

(
∂µKµ

)
= −4

∫
d4x ∂µ

(
φKµ) + 4

∫
d4x

(
∂µφ

)
Kµ. Hence, instead of directly varying φ∗RR with
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respect to the inverse metric, we firstly vary the four-current Kµ by the Levi-Civita connection. It follows that

δ

∫
d4xφ∗RR � 4

∫
d4x

(
∂µφ

)
δKµ

= 2
∫

d4x
(
∂µφ

)
εµαβγRξ ρβγδΓ

ρ
αξ

= 2
∫

d4x
(
∂µφ

)
εµαβγRξν βγ

(
∇ξδgαν − ∇νδgαξ

)
� − 2

∫
d4x

[(
∂µφ

)
εµαβγ∇ξR

ξν
βγ +

(
∂µ∂ξφ

)
εµαβγRξν βγ

]
δgαν

= − 4
∫

d4x
[(
∂µφ

)
εµαβγ∇βR ν

γ +
(
∂µ∂ξφ

)
∗Rµαξν

]
δgαν (6.19)

= 4
∫

d4x
[(
∂µφ

)
εµαβγ∇

βRγν +
(
∂µ∂ξφ

)
∗Rµ ξ

α ν

]
δgαν, (6.20)

where, in the third row we expanded δΓραξ and made use of the cancelation Rξν βγ∇αδgξν = 0 due to the skew-

symmetry for the indices ξ ↔ ν; in the fourth row, we applied the replacement ∇ξR
ξν
βγ = ∇βR ν

γ − ∇γR ν
β in

accordance with the relation
∇αRαµβν = ∇βRµν − ∇νRµβ, (6.21)

which is an implication of the second Bianchi identity ∇γRαµβν +∇νRαµγβ + ∇βRαµνγ = 0; in the last step,
we raised the indices of δgαν to δgαν and thus had the overall minus sign dropped. In Eq.(6.20) we adopted
the usual notation ∂µφ ≡ gµ̂µ∂µ̂φ, and note that

(
∂µ∂ξφ

)
∗Rµ ξ

α ν ,
(
∂µ∂ξφ

)
∗Rµαξν since in general the metric

tensor does not commute with partial derivatives and thus ∂µ∂ξφ = gµµ̂∂µ̂
(
gξξ̂∂ξ̂φ

)
, gµµ̂gξξ̂∂µ̂∂ξ̂φ. Relabel

the indices of Eq.(6.19) and we obtain the variational derivative

1
√
−g

δ
(
φ∗RR

)
δgµν

C H(CP)
µν and

√
−g H(CP)

µν = 2∂ξφ ·
(
εξµαβ∇

αRβν + εξναβ∇
αRβµ

)
+ 2∂α∂βφ ·

(
∗Rα β

µ ν + ∗Rα β
ν µ

)
. (6.22)

Compared with Eq.(6.16), H(CP)
µν does not contain a − 1

2φ
∗RRgµν term, because ∗RR by itself already serves as

a covariant density as opposed to the usual form
√
−gR for other curvature invariants.

Note that the nonminimal coupling between a scalar field and ∗RR is crucial to the Chern-Simons gravity;
however, its original proposal Ref. [11] had adopted the opposite geometric system which uses the metric
signature (+,− − −), the conventions {Rαβγδ = ∂δΓ

α
γβ · · · , Rµν = Rαµαν}, Einstein’s equation Rµν − 1

2 Rgµν =

−8πGT (m)
µν , and the definition ∗RR = −∗Rαβγδ Rαβγδ = −1

2

(
εαβµνR

µν
γδ

)
Rαβγδ. This has caused quite a few

mistakes in the subsequent Chern-Simons literature that adopt different conventions, and we hope the details
in this subsection could correct these misunderstandings. Also, in Eq. (6.22), the quantities {εξµαβ, Kµ,
∗RR, Rβν , ∗Rβµαν} have the same values in both sets of sign conventions. See our note Ref.[24] for further
clarification of this issue.
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6.3.2 Coupling to the Gauss-Bonnet invariant

The third term φG in LLBD represents the nonminimal coupling between the scalar field and the Gauss-Bonnet
invariant G = R2 − 4R2

c + R2
m, where we have employed the straightforward abbreviations R2

c B RαβRαβ and
R2

m B RαµβνRαµβν to denote the Ricci and Riemann tensor squares. Following the standard procedures of
variational derivative as before in δ

(√
−gφR

)
/δgµν, we have

δ
(√
−gφG

)
√
−g δgµν

=
δ(φR2)
δgµν

− 4
δ(φR2

c)
δgµν

+
δ(φR2

m)
δgµν

−
1
2
φGgµν, (6.23)

with

δ
(
φR2

)
δgµν

� 2φRRµν + 2
(
gµν2 − ∇µ∇ν

) (
φR

)
(6.24)

δ
(
φR2

c

)
δgµν

� 2φR α
µ Rαν + 2

(
φRµν

)
− ∇α∇ν

(
φR α

µ

)
−∇α∇µ

(
φR α

ν

)
+ gµν∇α∇β

(
φRαβ

)
(6.25)

δ
(
φR2

m

)
δgµν

� 2φRµαβγR αβγ
ν + 4∇β∇α

(
φRαµβν

)
, (6.26)

where total-derivative terms have been removed. Recall that besides Eq.(6.21), the second Bianchi identity
also has the following implications which transform the derivative of a high-rank curvature tensor into that of
lower-rank tensors plus nonlinear algebraic terms:

∇αRαβ =
1
2
∇βR (6.27)

∇β∇αRαβ =
1
2
2R (6.28)

∇β∇αRαµβν = 2Rµν −
1
2
∇µ∇νR + RαµβνRαβ − R α

µ Rαν (6.29)

∇α∇µRαν + ∇α∇νRαµ = ∇µ∇νR − 2RαµβνRαβ + 2R α
µ Rαν. (6.30)

Using Eq.(6.21) and Eqs.(6.27)-(6.30) to expand the second-order covariant derivatives in Eqs.(6.24)-(6.26),
and putting them back into Eq.(6.23), we obtain

1
√
−g

δ(
√
−gφG)
δgµν

C H(GB)
µν with

H(GB)
µν =φ

(
2RRµν − 4R α

µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ
ν

)
+ 2R

(
gµν2 − ∇µ∇ν

)
φ + 4R α

µ ∇α∇νφ + 4R α
ν ∇α∇µφ

− 4Rµν2φ − 4gµνRαβ∇α∇βφ + 4Rαµβν∇β∇αφ −
1
2
φGgµν,

(6.31)

where the second-order derivatives {2,∇α∇ν, etc} only act on the scalar field φ.
However, we realize that Eq.(6.31) is still not the ultimate expression. In four dimensions,

√
−gG is
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proportional to the Euler-Poincaré topological density,G =
(

1
2εαβγζR

γζηξ
)
·
(

1
2εηξρσRρσαβ

)
= ∗R ηξ

αβ ·
∗R αβ

ηξ , and
the integral 1

32π2

∫
dx4 √−gG equates the Euler characteristic χ(M) of the spacetime. Thus δ

δgµν
∫

dx4 √−gG =

32π2 δ
δgµν χ(M) ≡ 0. Based on Eqs.(6.24)-(6.26), one could easily obtain the Bach-Lanczos identity from the

explicit variational derivative δ
(√
−gG

)
/δgµν,

2RRµν − 4R α
µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ

ν ≡
1
2
Ggµν, (6.32)

with which Eq.(6.31) can be best simplified into

H(GB)
µν = 2R

(
gµν2 − ∇µ∇ν

)
φ + 4R α

µ ∇α∇νφ + 4R α
ν ∇α∇µφ

− 4Rµν2φ − 4gµν · Rαβ∇α∇βφ + 4Rαµβν∇β∇αφ,
(6.33)

whose trace is
gµνH(GB)

µν = 2R2φ − 4Rαβ∇α∇βφ. (6.34)

In the existent literature, the effects of the generalized and thus nontrivial Gauss-Bonnet dependence for
the field equations are generally depicted in the form analogous to Eq.(6.31), such as the string-inspired Gauss-
Bonnet effective dark energy [12] with L = 1

16πG R − γ
2∂µϕ∂

µϕ − V(ϕ) + f (ϕ)G, as well as the R + f (G) [3],
the f (R,G) [4] and the f (R,G,Lm) [14] generalized Gauss-Bonnet gravities. Here we emphasize that the
Gauss-Bonnet effects therein could all be simplified into the form of Eq.(6.33).

6.3.3 Gravitational field equation

Collecting the results in Eqs.(6.16), (6.22), and (6.33), we finally obtain the gravitational field equation

φ

(
Rµν −

1
2

Rgµν

)
−
ωL

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)

+
(
gµν2 − ∇µ∇ν

)
φ + aH(CP)

µν + bH(GB)
µν = 8πT (m)

µν ,

(6.35)

where H(CP)
µν vanishes for all spherically symmetric or conformal flat spacetimes. Eq.(6.35) yields the trace

equation
−φR +

ωL

φ
∇αφ∇

α
φ + (3 + 2bR)2φ − 4bRαβ∇α∇βφ = 8πT (m), (6.36)

where H(CP)
µν is always traceless, gµνH(CP)

µν ≡ 0 – this is not a surprise because it equivalently traces back to the
effects of the dual square ∗CC of the traceless Weyl tensor.

Note that in existent studies the invariants ∗RR and G have demonstrated their importance in various
aspects. For example, as shown by Eq.(6) of Ref.[25] [recall the equivalence ∗RR = ∗CC in Eq.(6.18)], in the
effective field theory for the initial cosmic inflation, the only leading-order fluctuations to the standard inflation
action in the tensor modes are the parity-violation Chern-Pontryagin and the topological Gauss-Bonnet effects.
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6.3.4 Wave equations

Straightforward extremization of SLBD with respect to the scalar field yields the kinematical wave equation

2ωL

φ
2φ = −R +

ωL

φ2 ∇αφ∇
α
φ −

(
a
√
−g
∗RR + bG

)
, (6.37)

with 2φ = 1√
−g∂α

(√
−g gαβ∂βφ

)
. We regard Eq.(6.37) as “kinematical” because it does not explicitly relate

the propagation of φ to the matter distribution Lm or T (m) = gµνT (m)
µν .

Combine Eq.(6.37) with the gravitational trace equation (6.36), and it follows that

(2ωL + 3 + 2bR)2φ = −

(
a
√
−g
∗RR + bG

)
φ + 8πT (m) + 4bRαβ∇α∇βφ, (6.38)

which serves as the generalized Klein-Gordon equation that governs the dynamics of the scalar field.

6.4 The ωL → ∞ limit and GR

From the dynamical equation (6.38), we obtain

2φ =
1

2ωL + 3 + 2bR

{
−

(
a
√
−g
∗RR + bG

)
φ + 8πT (m) + 4bRαβ∇α∇βφ

}
. (6.39)

The topology-gravity coupling strengths {a, b} should take finite values – just like the Newtonian constant G
for matter-gravity coupling. Similarly the curvature invariants {R, ∗RR,G} for a physical spacetime should be
finite, and we further assume the scalar field φ to be nonsingular. Thus, in the limit ωL → ∞, Eq.(6.39) yields
2φ = O

(
1
ωL

)
and

φ = 〈φ〉 + O

(
1
ωL

)
=

1
G

+ O

(
1
ωL

)
, (6.40)

where 〈φ〉 denotes the expectation value of the scalar field and we expect it to be the inverse of the Newtonian
constant 1/G. Under the behaviors Eq.(6.40) in the infinite ωL limit, we have H(CP)

µν = 0 = H(GB)
µν , and the field

equation (6.35) reduces to become Einstein’s equation Rµν − 1
2 Rgµν = 8πGT (m)

µν .
On the other hand, from Eq.(6.39) we can also observe that 2φ ≡ 0 in the special situation

−4bRαβ∇α∇βφ +

(
a
√
−g
∗RR + bG

)
φ = 8πT (m), (6.41)

and the scalar field becomes undeterminable from the dynamical equation (6.39).
The term −4bRαβ∇α∇βφ comes from the trace gµνH(GB)

µν , while ∗RR and G are respectively related to
the topological instanton number [15] and the Euler characteristic. Thus, all terms on the left hand side of
Eq.(6.41) are related to topological effects nonminimally coupled with φ, and they cancel out the trace of the
matter tensor. In this sense, we call Eq.(6.41) the topological balance condition.
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Putting 2φ ≡ 0 and the condition Eq.(6.41) back into the trace equation (6.36), we obtain

ωL

φ2 ∇αφ∇
α
φ = R +

a
√
−g
∗RR + bG (6.42)

= −ωL2 lnφ, (6.43)

where in the second step we further made use of the expansion 2 lnφ = ∇α
(

1
φ
∇αφ

)
= − 1

φ2∇αφ∇
αφ+ 1

φ
2φ =

− 1
φ2∇αφ∇

αφ for 2φ ≡ 0. Thus it follows that

ωL∇α
(
lnφ

)
∇α

(
lnφ

)
= R +

a
√
−g
∗RR + bG . (6.44)

For ωL → ∞, this equation gives the estimate

∥∥∥∇α(lnφ)
∥∥∥ ∼

√
R + a√

−g
∗RR + bG

ωL
∼ O

(
1
√
ωL

)
, (6.45)

which integrates to yield lnφ = constant + O
(

1√
ωL

)
. Hence, φ satisfies

φ ∼ φ0 + O

(
1
√
ωL

)
, (6.46)

where the constant φ0 is the average value of φ. In accordance with Eq.(6.42) and the estimate Eq.(6.46), the
term −ωL

φ

(
∇µφ∇νφ −

1
2 gµν∇αφ∇αφ

)
in the field equation (6.35), which arises from the source −ωL

φ
∇αφ∇

αφ in
SLBD, will not vanish. This way, the ωL → ∞ limit could not recover Einstein’s equation and GR in situations
where the topological balance condition Eq.(6.41) holds, although the existence of such solutions remains to
be carefully checked.

This is similar to the Brans-Dicke theory given by the action Eq.(6.10), which recovers GR in the limit
ωBD → ∞, unless the stress-energy-momentum tensor has a vanishing trace T (m) = 0 [26], such as the matter
content being radiation with Prad = 1

3ρrad and T (m)
rad = −ρrad + 3Prad = 0.

6.5 Energy-momentum conservation

In modified gravities with the generic Lagrangian density L = f (R,Ri, · · · ), whereRi = Ri
(
gαβ,Rαµβν,∇γRαµβν,

· · · ,∇γ1∇γ2 . . .∇γnRαµβν
)

and the “· · · ” in L = f refer to arbitrary curvature invariants beyond the Ricci scalar,
the energy-momentum conservation is naturally guaranteed by Noether’s law or the generalized contracted
Bianchi identities [27]

∇µ

 1
√
−g

δ
[√
−g f (R,Ri, · · · )

]
δgµν

 = 0, (6.47)

which can be expanded into

fRRµν +
∑

fRiR
(i)
µν −

1
2

f (R,Ri, · · · ) gµν = 0, (6.48)
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where fR B ∂ f (R,Ri, · · · )/∂R, fRi B ∂ f (R,Ri, · · · )/∂Ri, and R(i)
µν �

(
fRiδRi

)
/δgµν. However, in the more

generic situations of scalar-tensor-type gravities with L = f (φ,R,Ri, · · · ) +$
(
φ ,∇αφ∇

αφ
)

where nonmin-
imal couplings between the scalar fields and the curvature invariants are involved, such as the LBD proposal
under discussion, the conservation problem is more complicated than pure tensorial gravity.

Now let’s get back to the LBD field equation (6.35). By the coordinate invariance or the diffeomorphism
invariance of the matter action Sm in which Lm is neither coupled with the curvature invariants nor the
scalar field φ, naturally we have the energy-momentum conservation ∇µT (m)

µν = 0 for the matter content.
Thus, the covariant derivative of the left hand side of Eq.(6.35) should also vanish. With the Bianchi identity
∇µ

(
Rµν − 1

2 Rgµν
)

= 0 and the third-order-derivative commutator (∇ν2 −2∇ν)φ = −Rµν∇µφ, it follows that

∇µ
[
φ

(
Rµν −

1
2

Rgµν

)
+

(
gµν2 − ∇µ∇ν

)
φ

]
= −

1
2

R∇νφ. (6.49)

Moreover, for the scalar field, we have

∇µ
[
−
ωL

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)]

=
1
2
∇νφ ·

(
ωL

φ2 ∇αφ∇
α
φ −

2ωL

φ
2φ

)
=

1
2
∇νφ ·

(
R +

a
√
−g
∗RR + bG

)
,

(6.50)

where the kinematical wave equation (6.37) has been employed.
For the Chern-Pontryagin and the Gauss-Bonnet parts in Eq.(6.35), consider the componential actions

SCP =
∫

d4xφ∗RR and SGB =
∫

d4x
√
−gφG. Under an arbitrary infinitesimal coordinate transformation

xµ 7→ xµ + δxµ, where δxµ = ξµ is an infinitesimal vector field which vanishes on the boundary, so that the
spacetime manifold is mapped onto itself. Then SCP and SGB vary by

δSCP = −

∫
d4xφ ∂µ

(
ξµ∗RR

)
�

∫
d4x∗RR

(
∂µφ

)
ξµ, (6.51)

δSGB = −

∫
d4xφ ∂µ

(
ξµ
√
−gG

)
�

∫
d4x
√
−gG

(
∂µφ

)
ξµ. (6.52)

For the first step in Eqs.(6.51) and Eqs.(6.52), one should note that xµ 7→ xµ + ξµ is a particle/active trans-
formation, under which the dynamical tensor fields transform, while the background scalar field φ(xα) and
the coordinate system parameterizing the spacetime manifold remain unchanged [28]. On the other hand, the
inverse metric transforms by gµν 7→ gµν + δgµν with δgµν = −£~ξg

µν = ∇µξν + ∇νξµ, and thus we have

δSCP =2
∫

d4x
√
−g H(CP)

µν ∇
µξν � −2

∫
d4x
√
−g

(
∇µH(CP)

µν

)
ξν, (6.53)

δSGB =2
∫

d4x
√
−g H(GB)

µν ∇
µξν � −2

∫
d4x
√
−g

(
∇µH(GB)

µν

)
ξν. (6.54)

Comparing Eqs.(6.51) with (6.53), and Eqs.(6.52) with (6.54), we obtain the relations

∇µH(CP)
µν = −

1
2

∗RR
√
−g
· ∂νφ , (6.55)
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∇µH(GB)
µν = −

1
2
G · ∂νφ . (6.56)

Adding up Eqs.(6.49), (6.50), (6.55), and (6.56), one could find that the covariance divergence for the left
hand side of the field equation (6.35) vanishes, which confirms the energy-momentum conservation in the
LBD gravity.

Eqs.(6.55) and (6.56) for the nontrivial divergences of H(CP)
µν and H(GB)

µν , by their derivation process, reflect
the breakdown of diffeomorphism invariance for SCP and SGB in SLBD. They have clearly shown the influ-
ences of nonminimal φ-topology couplings to the covariant conservation, as opposed to the straightforward
generalized Bianchi identities

∇µ
(

1
√
−g

δ∗RR
δgµν

)
= 0 and ∇µ

(
1
√
−g

δ(
√
−gG)
δgµν

)
= 0. (6.57)

6.6 Conformal transformations

The standard LBD action SLBD in Eq.(6.12) can be transformed into different representations by conformal
rescaling of the spacetime line element, which geometrically preserves the angles between spacetime vectors
and physically retains local causality structures.

6.6.1 Dynamical Chern-Simons gravity

As a simplest example, consider the specialized SLBD in vacuum and for spacetimes of negligible gravitational
effects from the nonminimally φ−coupled Gauss-Bonnet term. With Sm = 0 and b = 0, Eq.(6.12) reduces to
become

S =
1

16π

∫
d4x

[
√
−g

(
φR −

ωL

φ
∇αφ∇

α
φ

)
+ aφ∗RR

]
. (6.58)

For a pointwise scaling field Ω = Ω(xα) > 0, we can rescale the metric gµν of the original frame into g̃µν via
g̃µν = Ω2gµν; it follows that gµν = Ω−2g̃µν, gµν = Ω2g̃µν,

√
−g = Ω−4 √−g̃, and2 [10]

R = Ω2
[
R̃ + 62̃(ln Ω) − 6g̃αβ∂α(ln Ω) ∂β(ln Ω)

]
. (6.59)

Hence, for the reduced LBD action Eq.(6.58), the conformal transformation

gµν =
1

Gφ
· g̃µν (6.60)

along with the redefinition of the scalar field {ϑ = ϑ(xα), φ = φ(ϑ)} lead to

S �
1

16πG

∫
d4x

 √−g̃

R̃ − 2ωL + 3
2φ(ϑ)2

(
dφ
dϑ

)2

∇̃αϑ∇̃
αϑ

 + aφ(ϑ)∗RR
]
, (6.61)

2Compared with R = Ω2
[
R̃ + 62̃Ω/Ω − 12g̃αβ∂αΩ∂βΩ/Ω

2
]
, Eq.(6.59) best isolates pure-divergence terms and thus most simpli-

fies the action once the coefficient of R is reset into unity. Moreover, by employing ln Ω instead of Ω, the transformations R → R̃
becomes skew-symmetric to R̃→ R.
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where the scalar field ϑ no longer directly couples to the Ricci scalar R̃, and thus the 62̃(ln Ω) component
in Eq.(6.59) has been removed as it simply yields a boundary term 6

∫
∂α

[√
−g∂α(ln Ω)

]
d4x for the action.

Also, Eq.(6.61) has utilized the fact that the (1, 3)-type Weyl tensor Cα
βγδ and thus ∗RR = ∗CC = ∗̃CC = ∗̃RR

are conformally invariant. It is straightforward to observe from Eq.(6.61) that the kinetics of ϑ is canonical
for ωL > −3/2, noncanonical for ωL < −3/2, and nondynamical for ωL = −3/2; here we are interested in the
canonical case. For the specialization

dϑ = ±
√

2ωL + 3
dφ
φ
, (6.62)

which integrates to yield

ϑ = ±
√

2ωL + 3 ln
φ

φ0
, (6.63)

where φ0 is an integration constant, or inversely

φ = φ0 exp
(
±

ϑ
√

2ωL + 3

)
, (6.64)

the action Eq.(6.65) finally becomes

S =
1

16πG

∫
d4x

[ √
−g̃

(
R̃ −

1
2
∇̃αϑ∇̃

αϑ

)
+ aφ0 exp

(
±

ϑ
√

2ωL + 3

)
∗̃RR

]
. (6.65)

Hence, the conformal rescaling gµν = g̃µν/Gφ along with the new scalar field ϑ(xα) recast the reduced LBD
action Eq.(6.58) into Eq.(6.65), which is an action for the dynamical Chern-Simons gravity [19], though the
nonminimal ϑ–∗̃RR coupling is slightly more complicated than the straightforward ϑ∗̃RR as in the popular
Chern-Simons literature. Moreover, the conformal invariance of ∗RR guarantees that the effect of

∫
d4xφ∗RR

could never be removed by conformal transformations.
Note that the matter action Sm(gµν, ψm) would be transformed into Sm(g̃µν/Gφ, ψm) (in general S m does

not contain derivatives of the metric tensor [20]), which are different in the φ–Sm or φ–Lm couplings; conse-
quently T (m)

µν fails to be conformally invariant unless it is traceless T (m) = 0 [10]. This is why we focus on the
vacuum situation.

6.6.2 Generalized Gauss-Bonnet dark energy

Similarly, in vacuum and for spacetimes of negligible Chern-Simons parity-violation effect, SLBD reduces into

S =
1

16π

∫
d4x

[
√
−g

(
φR + bφG −

ωL

φ
∇αφ∇

α
φ

)]
. (6.66)

Under the local rescaling gµν 7→ g̃µν = Ω2gµν for the metric, the Gauss-Bonnet scalar satisfies [29]

G = Ω4
{
G̃ − 8R̃αβ∇̃α∇̃β(ln Ω) − 8R̃αβ∇̃α(ln Ω)∇̃β(ln Ω) + 4R̃ 2̃(ln Ω) − 82̃(ln Ω) · ∇̃α(ln Ω)∇̃α(ln Ω)

+ 8 [2̃(ln Ω)]2 − 8∇̃α∇̃β(ln Ω) · ∇̃α∇̃β(ln Ω) − 16∇̃α∇̃β(ln Ω) · ∇̃α(ln Ω)∇̃β(ln Ω)
}
.

(6.67)
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Set the factor of conformal transformation to be Ω =
√

Gφ so that the Ricci scalar decouples from the scalar

field, and redefine the scalar field via φ(xα) 7→ ϕ(xα) =
√

2ωL + 3 ln φ

φ0
or equivalently φ = φ0 exp

(
ϕ

√
2ωL+3

)
;

then it follows that

ln Ω =
1
2

lnφ +
1
2

ln G

=
1
2

ϕ
√

2ωL + 3
+

1
2

lnφ0 +
1
2

ln G .
(6.68)

With {lnφ0, ln G} being constants, substitution of Eq.(6.68) into Eq.(6.67) yields

√
−gG =

√
−g̃

(
G̃ +

K(∇̃ϕ)
√

2ωL + 3

)
and (6.69)

K(∇̃ϕ) = − 2R̃αβ
(
2∇̃α∇̃βϕ + ∇̃αϕ∇̃βϕ

)
+ 2̃ϕ ·

(
2R̃ + 22̃ϕ − ∇̃αϕ∇̃αϕ

)
− 2∇̃α∇̃βϕ ·

(
∇̃α∇̃βϕ + ∇̃αϕ∇̃βϕ

)
.

(6.70)

Here one can observe that since the coefficient Ω−4 in
√
−g = Ω−4 √−g exactly neutralizes the Ω4 in Eq.(6.67),

the nonminimally φ-coupled Gauss-Bonnet effect
∫

d4x
√
−gφG could never be canceled by a conformal

rescaling gµν = Ω−2g̃µν. Hence, the reduced LBD action Eq.(6.66) is finally transformed into

S =
1

16πG

∫
d4x

√
−g̃

{
R̃ −

1
2
∇̃αϕ∇̃

αϕ + bφ0 exp
(

ϕ
√

2ωL + 3

) [
G̃ +K(∇̃ϕ)

] }
, (6.71)

which generalizes the canonical Gauss-Bonnet dark energy in vacuum S = 1
16πG

∫
d4x
√
−g

(
R − 1

2∇αϕ∇
αϕ +

f (ϕ)G
)

[12] by the Horndeski-like [30] or Galileon-like [31] kinetics in K(∇̃ϕ) for the scalar field.
Note that in the two examples just above, because of the nonminimal coupling to the scalar field φ(xα),

negligible Gauss-Bonnet effect does not imply a zero Euler characteristic χ(M) = 1
32π2

∫ √
−gGd4x = 0 for

the spacetime, and similarly, negligibility of the Chern-Simons effect does not indicate a vanishing instanton
number

∫
∗RR d4x = 0, either.

Also, for the actions of the Chern-Simons gravity and the Gauss-Bonnet dark energy in the Jordan frame,
in which a scalar field is respectively coupled to ∗RR and G, we cannot help but ask that why the scalar field is
not simultaneously coupled to the Ricci scalar? We have previously seen from Eq.(6.47) that all algebraic and
differential Riemannian invariants stand equal in front of the generalized Bianchi identities, so are there any
good reasons for the scalar field to discriminate among different curvature invariants? We hope that the LBD
gravity help release this tension (at least in empty spacetimes), as the scalar field φ indiscriminately couples to
all the LBD invariants {R, ∗RR,G}, and the LBD gravity takes the Chern-Simons gravity and the Gauss-Bonnet
dark energy as its reduced representations in the Einstein frame.

6.7 Cosmological applications

Having extensively discussed the theoretical structures of the LBD gravity, in this section we will apply this
theory to the Friedman-Robertson-Walker (FRW) Universe and investigate the possibility to realize the late-
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time cosmic acceleration.

6.7.1 Generalized Friedmann and Klein-Gordon equations

The field equation (6.35) can be recast into a GR form,

Rµν −
1
2

Rgµν = κ2Geff

(
T (m)
µν + T (φ)

µν + T (CP)
µν + T (GB)

µν

)
, (6.72)

where κ2 = 8π, and Geff = 1/φ denotes the effective gravitational coupling strength. T (m)
µν + T (φ)

µν + T (CP)
µν +

T (GB)
µν C T (eff)

µν compromises the total effective stress-energy-momentum tensor, with

κ2T (CP)
µν = −aH(CP)

µν , κ2T (GB)
µν = −bH(GB)

µν , and (6.73)

κ2 T (φ)
µν =

(
∇µ∇ν − gµν2

)
φ +

ωL

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)
.

Note that besides the effects of the source term −ωL
φ
∇αφ∇

αφ in LLBD via δ
(
−
√
−g ωL

φ
∇αφ∇

αφ
)
/δgµν, the(

∇µ∇ν − gµν2
)
φ part from δ

(√
−gφR

)
/δgµν is also packed into T (φ)

µν . Moreover, with the four distinct com-
ponents of T (eff)

µν sharing the same gravitational strength 1/φ, Eq.(6.72) implicitly respects the equivalence
principle that the gravitational interaction is independent of the internal structures and compositions of a test
body or self-gravitating object [21].

For the FRW metric of the flat Universe with a vanishing spatial curvature index,

ds2 = −dt2 + a(t)2
3∑

i=1

(
dxi

)2
, (6.74)

∗RR = 0 due to the maximal spatial symmetry, while the Ricci and Gauss-Bonnet scalars are respectively

R = 6
aä + ȧ2

a2 = 6
(
Ḣ + 2H2

)
G = 24

ȧ2ä
a3 = 24H2

(
Ḣ + H2

)
,

(6.75)

where overdot denotes the derivative over the cosmic comoving time, and H B ȧ/a represents the time-
dependent Hubble parameter. Thus, an accelerated/decelerated flat Universe has a positive/negative Euler-
Poincaré topological density. With a perfect-fluid form T µ

ν = diag
[
−ρ, P, P, P

]
assumed for each component

in T (eff)
µν [in consistency with the metric signature (−,+ + +)], the cosmic expansion satisfies the generalized

Friedmann equations ( ȧ
a

)2
=

1
3φ

(
κ2ρm − 3Hφ̇ +

ωL

2φ
φ̇

2 − 12bH3
φ̇

)
, (6.76)

ä
a

= −
1

6φ

{
κ2 (ρm + 3Pm) + 3φ̈ + 3Hφ̇ +

2ωL

φ
φ̇

2 + 12bH2
φ̈ + 12b

(
2Ḣ + H2

)
Hφ̇

}
, (6.77)
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where T (CP)
µν = 0 for FRW. Moreover, the kinematical wave equation (6.37) and the dynamical wave equation

(6.38) respectively lead to

2ωL

φ

(
φ̈ + 3Hφ̇

)
= 6

aä + ȧ2

a2 +
ωL

φ2 + φ̈ + 24bH2 ä
a
, (6.78)

(
2ωL + 3 + 12b

aä + ȧ2

a2

) (
φ̈ + 3Hφ̇

)
= 24bH2 ä

a
φ − 8π (3Pm − ρm) + 12b

(
ä
a
φ̈ +

aä + 2ȧ2

a2 Hφ̇
)
. (6.79)

In principle, one could understand the evolutions of the scale factor a(t) and the homogeneous scalar field φ(t)
by (probably numerically) solving Eqs.(6.76)-(6.79). However the solutions will be complicated, so we will
start with some solution ansatz for {a(t), φ(t)}, which are easier to work with.

6.7.2 Cosmic acceleration in the late-time approximation

The physical matter satisfies the continuity equation

ρ̇m + 3H(ρm + Pm) = 0, (6.80)

and for pressureless dust Pm = 0, it integrates to yield

ρm = ρ(m)
0 a−3 =

ρ(m)
0

a3
0

t−3β, (6.81)

where we have assumed a power-law scale factor

a = a0tβ with β > 1. (6.82)

Here {a0, β} are constants, and β > 1 so that ä > 0. Similarly, we also take a power-law ansatz for the scalar
field,

φ = φ0tγ. (6.83)

Based on Eqs.(6.81)-(6.83), the dynamical wave equation (6.38) with T (m) = −ρm for dust yields

γ (2ωL + 3)
(
3β − 1 + γ

)
=
κ2ρ(m)

0

φ0a3
0

t2−3β−γ + 24b
β3(β − 1)

t2 − 12bβ2
γ

(
3β − 3 + γ

)
t2 , (6.84)

and in the late-time (large t) approximation it reduces to

γ
(
γ + 3β − 1

)
=

1
φ0

κ2ρ(m)
0

a3
0 (2ωL + 3)

t2−3β−γ, (6.85)

which can be satisfied by

γ = 2 − 3β and φ0 =
κ2ρ(m)

0

a3
0 (2ωL + 3)

(
2 − 3β

) . (6.86)
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Moreover, the first Friedmann equation (6.76) leads to

3β2 = κ2 ρ
(m)
0

a3
0φ0

t2−3β−γ − 3βγ +
ωL

2
γ

2 − 12b
β3γ

t2 , (6.87)

and with Eq.(6.86), in the late-time approximation it becomes

3β2 = (2 − 3β) (2ωL + 3) − 3β(2 − 3β) +
ωL

2
(2 − 3β)2. (6.88)

For β = 2, Eq.(6.88) trivially holds for an arbitrary ωL, while for β , 2, we have β in terms of ωL via

β =
2 (ωL + 1)
3ωL + 4

. (6.89)

Note that Eqs.(6.86) and (6.89) reuire ωL , −4/3, ωL , −3/2 (β , 2), and β , 2/3; they are simply conse-
quences of the power-law-solution ansatz and the late-time approximations rather than universal constraints
on ωL, and according to Eq.(6.89), the last condition β , 2/3 trivially holds with β→ 2/3 for ωL → ∞. As a
consistency test, the kinematical equation (6.37) yields

ωL

(
1
2
γ2 − γ + 3βγ

)
= 3β(2β − 1) + 12b

β3(β − 1)
t2 (6.90)

with the late-time approximation

ωL

(
1
2
γ2 − γ + 3βγ

)
= 3β(2β − 1), (6.91)

which holds for Eqs.(6.86) and (6.89). Substituting Eqs.(6.81), (6.82), (6.83), (6.86) and (6.89) into the second
Friedmann equation (6.77), we obtain

ä
a

= −
2(ωL + 1)(ωL + 2)

(3ωL + 4)2 t−2, (6.92)

and the deceleration parameter reads

q B −
äa
ȧ2 =

1
2

(
1 + 3

Peff

ρeff

)
=

ωL + 2
2(ωL + 1)

. (6.93)

Eqs.(6.92) and (6.93) clearly indicate that the late-time acceleration could be realized for −2 < ωL < −1
(ωL , −4/3, ωL , −3/2), although this domain of ωL makes the kinetics of the scalar field noncanonical.
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6.8 Lovelock-scalar-tensor gravity

6.8.1 From LBD to Lovelock-scalar-tensor gravity

The LBD gravity can be generalized into the Lovelock-scalar-tensor (LST) gravity with the action

SLST =

∫
d4x
√
−g LLST + Sm and

LLST =
1

16πG

(
f1(φ)R + f2(φ)

∗RR
√
−g

+ f3(φ)G −
ω(φ)
φ
∇αφ∇

α
φ − V(φ)

)
,

(6.94)

where
{
fi(φ), ω(φ)

}
are generic functions of the scalar field, and V(φ) is the self-interaction potential. Note

that this time Newton’s constant G is included in the overall coefficient 1/16πG of LLST, as is the case of the
ordinary scalar-tensor gravity. The gravitational field equation is

f1(φ)
(
Rµν −

1
2

Rgµν

)
+

(
gµν2 − ∇µ∇ν

)
f1(φ) −

ω(φ)
φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)

+
1
2

V(φ)gµν + H̃(CP)
µν + H̃(GB)

µν = 8πT (m)
µν ,

(6.95)

where H̃(CP)
µν denotes the contribution from f2(φ)∗RR,

√
−g H̃(CP)

µν =2∂ξ f2(φ) ·
(
εξµαβ∇

αRβν + εξναβ∇
αRβµ

)
+ 2∂α∂β f2(φ) ·

(
∗Rα β

µ ν + ∗Rα β
ν µ

)
, (6.96)

and H̃(GB)
µν attributes to the effect of

√
−g f3(φ)G,

H̃(GB)
µν = 2R

(
gµν2 − ∇µ∇ν

)
f3(φ) − 4Rµν2 f3(φ) + 4R α

µ ∇α∇ν f3(φ) + 4R α
ν ∇α∇µ f3(φ)

− 4gµνRαβ∇α∇β f3(φ) + 4Rαµβν∇β∇α f3(φ).
(6.97)

It is straightforward to derive the kinematical wave equation by δSLST/δφ = 0, which along with the trace of
Eq.(6.95) could yield the dynamical wave equation, and they generalize the wave equations (6.37, 6.38) in the
LBD gravity. The wave equations however will not be listed here as the interest of this section is only the field
equation δS/δgµν = 0.

6.8.2 Equivalence of LST with fourth-order gravities

It is well known that the f (R) gravity is equivalent to the nondynamical (i.e. ωBD = 0) Brans-Dicke gravity
[27], and such equivalence holds for the LBD gravity as well. Consider the fourth-order modified gravity

L =
1

16πG

[
f (R,G) + h

(
∗RR
√
−g

)]
, (6.98)

for which the field equation is

fRRµν +
(
gµν2 − ∇µ∇ν

)
fR −

1
2

f (R,G)gµν +H
(CP)
µν +H

(GB)
µν = 8πT (m)

µν , (6.99)
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where

√
−gH (CP)

µν = 2∂ξh∗RR ·
(
εξµαβ∇

αRβν + εξναβ∇
αRβµ

)
+ 2∂α∂βh∗RR ·

(
∗Rα β

µ ν + ∗Rα β
ν µ

)
, (6.100)

and

H
(GB)
µν = 2R

(
gµν2 − ∇µ∇ν

)
fG − 4Rµν2 fG + 4R α

µ ∇α∇ν fG + 4R α
ν ∇α∇µ fG

− 4gµνRαβ∇α∇β fG + 4Rαµβν∇β∇α fG,
(6.101)

with fR = fR(R,G) = ∂ f (R,G)/∂R, fG = fG(R,G) = ∂ f (R,G)/∂G, and h∗RR = dh(∗RR/
√
−g)/d(∗RR/

√
−g).

For the nondynamical LST gravity with ω(φ) ≡ 0 in Eq.(6.95), compare it with Eq.(6.99) and at the level of
the gravitational equation, one could find the equivalence

f1(φ) = fR , f3(φ) = fG , f2(φ) = h∗RR,

V(φ) = − f (R,G) + fRR .
(6.102)

In the V(φ) relation we have applied the replacement f1(φ) = fR, and note that V(φ) does not contain a fGG
term which has been removed fromH (GB)

µν because of the Bach-Lanczos identity Eq.(6.32).

6.8.3 Partial equivalence for “multi-scalar LBD gravity”

Removing the ωL term in Eq.(6.35) and then comparing it with Eq.(6.99), one could find that an equivalence
between the nondynamical LBD gravity (now equipped with an extra potential −U(φ) in LLBD) and the
f (R,G) + h

(
∗RR√
−g

)
gravity would require fR = fG = φ = h∗RR, and U(φ) = − f (R,G) + fRR. These conditions

are so restrictive that the f (R,G) + h
(
∗RR√
−g

)
gravity would totally lose its generality. Instead, introduce three

auxiliary fields {χ1, χ2, χ3} and consider the dynamically equivalent action

S =
1

16π

∫
d4x
√
−g

[
f (χ1, χ2) + fχ1 · (R − χ1) + fχ2 · (G − χ2)

+ h(χ3) + hχ3 ·

(
∗RR
√
−g
− χ3

) ]
+ Sm ; (6.103)

its variation with respect to χ1, χ2, and χ3 separately yields the constraints

fχ1χ1(R − χ1) = 0 , fχ2χ2(G − χ2) = 0 , and hχ3χ3

( ∗RR
√
−g
− χ3

)
= 0 , (6.104)

where fχ j B ∂ f (χ1, χ2)/∂χ j, fχ jχ j B ∂2 f (χ1, χ2)/∂χ2
j , hχ3 B ∂h(χ3)/∂χ3 and hχ3χ3 B ∂2 f (χ3)/∂χ2

3. If fχ1χ1 ,
fχ2χ2 and hχ3χ3 do not vanish identically, Eq.(6.104) leads to χ1 = R, χ2 = G and χ3 =

∗RR√
−g . Redefining the

fields {χ1, χ2, χ3} by

φ = fχ1 , ψ = fχ2 , ϕ = hχ3 (6.105)
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and setting

V(φ,ψ,ϕ) = φ · R(φ,ψ) + ψ · G(φ,ψ) + ϕ ·
∗RR
√
−g

(ϕ) − f
(
R(φ,ψ),G(φ,ψ)

)
− h

(
∗RR
√
−g

(ϕ)
)
, (6.106)

then the f (R,G) + h
(
∗RR√
−g

)
gravity is partially equivalent to the following “multi-scalar LBD gravity” carrying

three nondynamical scalar fields

L =
1

16π

(
φR + ϕ

∗RR
√
−g

+ ψG − V(φ,ψ,ϕ)
)
, (6.107)

where the coupling coefficients {a, b} appearing in LLBD have been absorbed into the scalar fields {ϕ,ψ}. Also,
by “partially equivalent” we mean that Eq.(6.106) as is stands is only partially on-shell; to recover Eq.(6.98)
from the multi-field action of Eq.(6.107), one would have to add extra Lagrange multipliers identifying the
different fields, but this would break the exact equivalence between such modified Eq.(6.107) and Eq.(6.98).

6.9 Conclusions and discussion

The Hilbert-Einstein action SHE and the Lovelock action SL yield identical field equations and thus are ob-
servationally indistinguishable. However, the former takes the Brans-Dicke gravity as its scalar-tensor coun-
terpart, while the latter’s companion is the LBD gravity, and these two theories are different.

We have extensively studied the theoretical structures of the LBD gravity, including the gravitational and
wave equations, the ordinary ωL → ∞ limit that recovers GR, the unusual ωL → ∞ limit satisfying the
topology balance condition Eq.(6.41) and thus departing from GR, the energy-momentum conservation, the
conformal transformations into the dynamical Chern-Simons gravity and the generalized Gauss-Bonnet dark
energy, as well as the extensions to LST gravity with its equivalence to fourth-order modified gravity.

We have taken the opportunity of deriving the field equation to look deeper into the properties of the
Chern-Pontryagin and Gauss-Bonnet topological invariants. Especially, for the f (φ)G Gauss-Bonnet dark
energy as well as the f (R,G) and f (R,G,Lm) gravities, the contributions of the generalized Gauss-Bonnet
dependence could be simplified from the popular form like Eq.(6.31) into our form like Eq.(6.33).

An important goal of alternative and modified gravities is to explain the accelerated expansion of the
Universe, and we have applied the LBD theory to this problem, too. It turned out that the acceleration could be
realized for −2 < ωL < −1 under our solution ansatz. Note that our estimate of cosmic acceleration in Sec. 6.7
is not satisfactory. For example, the kinematical equation (6.90) clearly shows that because of the higher-order
time derivative terms arising from the φG dependence, the simplest solution ansatz {φ = φ0tγ, a = a0tβ} with
{β=constant, γ=constant} are not compatible with each other unless the late-time approximation is imposed,
while such approximations further lead to the behaviors analogous to the Brans-Dicke cosmology [32].

Section 6.7 has shown that, the effects from the parity-violating Chern-Pontryagin term φ∗RR are inef-
fective for the FRW cosmology because of its spatial homogeneity and isotropy. However, it is believed that
φ∗RR could have detectable consequences on leptogenesis and gravitational waves in the initial inflation epoch
[33] where φ acts as the inflaton field. The inflation problem usually works with the slow-roll approximations
φ̈ � φ̇ � H and requires the existence of a potential well V(φ); thus, at least for the description of the initial
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inflation, the LBD gravity should be generalized to carry a potential:

L̂LBD =
1

16π

[
φ

(
R + a

∗RR
√
−g

+ bG
)
−
ωL

φ
∇αφ∇

α
φ − V(φ)

]
, (6.108)

with V(φ) = 2Λφ being the simplest possibility.
Our prospective studies aim to construct the complete history of cosmic expansion in LBD gravity [prob-

ably equipped with V(φ)], throughout the dominance of radiation, dust, and effective dark energy. Moreover,
it is well known that primordial gravitational waves can trace back to the Planck era of the Universe and serve
as one of the most practical and efficient tests for modified gravities, so it is very useful to find out whether the
gravitational-wave polarizations carry different intensities in this gravity. There are also some other problems
from the LBD gravity attracting our attention, such as its relation to the low-energy effective string theory. We
will look for the answers in future.
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Chapter 7. Traversable wormholes and energy conditions in
Lovelock-Brans-Dicke gravity [arXiv:1507.07448]

David Wenjie Tian∗
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Abstract

This paper studies traversable wormholes and the states of energy conditions in Lovelock-Brans-
Dicke gravity, which involves the nonminimal couplings of a background scalar field with the Chern-
Pontryagin density and the Gauss-Bonnet invariant. The flaring-out condition indicates that a Morris-
Thorne-type wormhole can be maintained by violating the generalized null energy condition, and thus
also breaking down the generalized weak, strong, and dominant energy conditions; meanwhile, analyses
of the zero-tidal-force solution show that the standard null energy condition in general relativity can still
be respected by the physical matter threading the wormhole. This way, the topological sources of gravity
have to dominate over the effects of ordinary matter, and the scalar field is preferred to be noncanonical.
By treating Brans-Dicke gravity as a reduced situation of Lovelock-Brans-Dicke gravity, we also exam-
ine the Brans-Dicke wormholes and energy conditions.

PACS numbers: 04.50.Kd, 04.20.Cv, 04.90.+e
Key words: traversable wormhole; Lovelock-Brans-Dicke gravity; Chern-Pontryagin density; Gauss-
Bonnet invariant; flaring-out condition; generalized and standard energy conditions

7.1 Introduction

A wormhole is a fascinating passage as a shortcut connecting two distant regions in a spacetime or bridging
two distinct universes. Pioneering investigations of wormholes can date back to the Einstein-Rosen bridge
[1] in general relativity (GR), and earlier constructions of wormholes, such as those converted from the Kerr-
Newman family of black holes, suffer from severe instability against small perturbations and immediate
collapse of the throat after formation [2].

Modern interest in wormholes are mainly based on the seminal work of Morris and Thorne on traversable
Lorentzian wormholes [3], and the way to convert them into time machines [4]. Morris and Thorne firstly
designed the metric with the desired structures of a traversable wormhole, and then recovered the matter
fields through Einstein’s equation. It turns out that the energy-momentum tensor has to violate the null
energy condition, and thus it needs exotic matter to maintain the wormhole tunnel [3]. The standard energy
conditions, however, are a cornerstone in many areas in GR, such as the classical black hole thermodynamics
[5, 6]. Thus, much effort has been made to minimize the violation of the energy conditions and reduce the
encounter of exotic matter at the throat (e.g. [3, 7, 8]).

∗Email address: wtian@mun.ca
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The search for promising candidates of exotic matter is not an easy job, and only a small handful situa-
tions are recognized, such as the quantum Casimir effect and the semiclassical Hawking radiation, while all
classical matter fields obey the standard energy conditions. With the development of precision cosmology
and the discovery of cosmic acceleration, various models of dark energy with exotic equations of state have
been proposed, which provide new possibilities to support wormholes, such as those supported by the cos-
mological constant [9], phantom- or quintom-type energy [10, 11], generalized or modified Chaplygin gas
[12, 13], and interacting dark sectors [14].

On the other hand, as an alternative to the mysterious dark energy, modified and alternative theories of
relativistic gravity beyond GR have been greatly developed to explain the accelerated expansion of the Uni-
verse. The higher order terms or extra degrees of freedom in these theories yield antigravity effects, which
overtake the gravitational attraction of ordinary matter at the cosmic scale. Lobo took Weyl conformal gravity
as an example and suggested that modified gravities provide another possibility to support traversable worm-
holes [15]: it is the generalized energy conditions that are violated, while the standard energy conditions
as in GR may remain valid. To date, this proposal has been applied to exact solutions of Morris-Thorne-
type wormholes in various modified gravities, such as the metric f (R) [16], nonminimal curvature-matter
coupling [17], braneworld scenario [18], Brans-Dicke [19], modified teleparallel [20], metric-Palatini hybrid
f (R) [21], and Einstein-Gauss-Bonnet gravities [22].

In this paper, we will look into traversable wormholes and the standard energy conditions in Lovelock-
Brans-Dicke gravity [23], which takes into account the gravitational effects of spacetime parity and topology
by the nonminimal couplings of a background scalar field to the Chern-Pontryagin density and the Gauss-
Bonnet invariant. This paper is organized as follows. We firstly review the gravity theory in Sec. 7.2, and
derive its generalized energy conditions in Sec. 7.3. Then the conditions to support Morris-Thorne-type
wormholes are investigated in Sec. 7.4, which are extensively examined by a zero-tidal-force solution in
Sec. 7.5. Also, comparison with wormholes in Brans-Dicke gravity is studied in Sec. 7.6. Throughout this
paper, we adopt the geometric conventions Γαβγ = Γαβγ, Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · · and Rµν = Rαµαν with the

metric signature (−,+ + +).

7.2 Lovelock-Brans-Dicke gravity

Recently we have discussed a new theory of alternative gravity which has been dubbed as Lovelock-Brans-
Dicke (LBD) gravity [23]. This theory is given by the action

SLBD =

∫
d4x
√
−g LLBD + Sm with

LLBD =
1

16π

[
φ

(
R +

a
√
−g
∗RR + b̂G

)
−
ωL

φ
∇αφ∇

αφ − 2V(φ)
]
,

(7.1)

where φ = φ(xα) is a background scalar field, {a, b̂} are dimensional coupling constants (note: b̂ is hatted to
be distinguished from b = b(r) in Secs. 7.4, 7.5 and 7.6, which is a standard denotation for the shape function
in wormhole physics), ωL denotes the dimensionless Lovelock parameter tuning the kinetics of φ(xα), V(φ)
refers to a self-interaction potential, and as usual the matter action is given by the matter Lagrangian density
via Sm =

∫
d4x
√
−g Lm. In Eq.(7.1), ∗RR and G denote the Chern-Pontryagin density and the Gauss-Bonnet
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invariant, respectively,

∗RR B ∗RαβγδRαβγδ =
1
2
εαβµνR

µν
γδR

αβγδ ,

G B R2 − 4RµνRµν + RµανβRµανβ ,
(7.2)

where ∗Rαβγδ B 1
2εαβµνR

µν
γδ is the left dual of Riemann tensor, and εαβµν represents the totally antisymmetric

Levi-Civita pseudotensor with ε0123 =
√
−g and ε0123 = 1/

√
−g. Note that unlike the other two curvature

invariants {R , G}, the term ∗RR in LLBD is divided by
√
−g; this is because ∗RR itself already serves as a

covariant density for SLBD, as opposed to
√
−g R and

√
−gG therein.

SLBD is inspired by the connection between GR and Brans-Dicke gravity, and proposed as the Brans-
Dicke-type counterpart for the classic Lovelock action in Lovelock’s theorem [24], i.e. SL = 1

16πG

∫
d4x
√
−g(

R − 2Λ + a√
−g
∗RR + bG

)
+Sm. SL is the most general action made up of algebraic curvature invariants that

yields second-order field equations in four dimensions, and limits the field equation to be Einstein’s equation
equipped with a cosmological constant Λ. The Chern-Pontryagin and the Gauss-Bonnet invariants in SL

do not influence the field equation, because ∗RR and
√
−gG are equal to the divergences of their respective

topological currents (see Ref.[23] and the relevant references therein); instead, the nonminimally φ–coupled
covariant densities φ∗RR and

√
−g φG in the LBD action Eq.(7.1) will have nontrivial contributions to the

field equation. Recall that for the two invariants ∗RR and G, the former is related to the spacetime parity with∫
d4x ∗RR proportional to the instanton number of the spacetime, while the latter’s integral 1

32π2

∫
dx4 √−gG

equates the Euler characteristic of the spacetime. Hence, LBD gravity has taken into account the gravitational
effects of the spacetime parity and the Euler topology.

The extremized variational derivative δSLBD/δgµν = 0 yields the gravitational field equation

φ

(
Rµν −

1
2

Rgµν

)
+

(
gµν2 − ∇µ∇ν

)
φ + aH(CP)

µν + b̂H(GB)
µν

−
ωL

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)

+ V(φ)gµν = 8πT (m)
µν ,

(7.3)

where H(CP)
µν B 1√

−g
δ(φ∗RR)
δgµν collects the contributions from the Chern-Pontryagin density with nonminimal

coupling to φ(xα),

√
−g H(CP)

µν = 2∂ξφ ·
(
εξµαβ∇

αRβν + εξναβ∇
αRβµ

)
+ 2∂α∂βφ ·

(
∗Rα β

µ ν + ∗Rα β
ν µ

)
, (7.4)

and H(GB)
µν B 1√

−g
δ(
√
−g φG)
δgµν refers to the effect of extra degrees of freedom from the nonminimally φ−coupled

Gauss-Bonnet invariant,

H(GB)
µν = 2R

(
gµν2 − ∇µ∇ν

)
φ + 4R α

µ ∇α∇νφ + 4R α
ν ∇α∇µφ

− 4Rµν2φ − 4gµν · Rαβ∇α∇βφ + 4Rαµβν∇β∇αφ ,
(7.5)

with 2 B gαβ∇α∇β denoting the covariant d’Alembertian. Compared to the field equations of the f (R,G) and
f (R,G,Lm) generalized Gauss-Bonnet gravities with generic G−dependence [25, 26], we have removed the
algebraic terms in H(GB)

µν by the Bach-Lanczos identity 2RRµν−4R α
µ Rαν−4RαµβνRαβ+2RµαβγR αβγ

ν ≡ 1
2Ggµν.
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Immediately, the trace of the field equation (7.3) is found to be

−φR +
ωL

φ
∇αφ∇

αφ +
(
3 + 2b̂R

)
2φ − 4b̂Rαβ∇α∇βφ + 4V(φ) = 8πT (m), (7.6)

where gµνH(GB)
µν = 2R2φ − 4Rαβ∇α∇βφ, T (m) = gµνT (m)

µν , and H(CP)
µν is always traceless.

On the other hand, for the scalar field φ(xα), the extremization δSLBD/δφ = 0 directly leads to the
kinematical wave equation

2ωL2φ = −

(
R +

a
√
−g
∗RR + b̂G

)
φ +

ωL

φ
∇αφ∇

αφ + 2Vφφ , (7.7)

with 2φ = gαβ∇α∇βφ = 1√
−g∂α

(√
−g gαβ∂βφ

)
, and Vφ B dV(φ)/dφ. Along with the trace equation (7.6), it

yields the dynamical wave equation

(
2ωL + 3 + 2b̂R

)
2φ = −

(
a
√
−g
∗RR + b̂G

)
φ + 8πT (m) + 4b̂Rαβ∇α∇βφ + 2Vφφ − 4V(φ) , (7.8)

which explicitly relates the propagation of φ(xα) to the trace T (m) of the matter tensor for the energy-
momentum distribution.

In this paper, we will work out the conditions to support traversable wormholes and examine the energy
conditions in LBD gravity; especially, we will pay attention to the gravitational effects of the scalar field and
H(GB)
µν , while H(CP)

µν does not influence Morris-Thorne-type wormholes. To begin with, we firstly derive the
generalized energy conditions for LBD gravity.

7.3 Generalized LBD energy conditions

In a region of a spacetime, for the expansion rate θ(`) of a null congruence along its null tangent vector field
`µ, and the expansion rate θ(u) of a timelike congruence along its timelike tangent uµ, θ(`) and θ(u) respectively
satisfy the Raychaudhuri equations [6]

`µ∇µθ(`) =
dθ(`)

dλ
= κ(`)θ(`) −

1
2
θ2

(`) − σ
(`)
µνσ

µν
(`) + ω(`)

µνω
µν
(`) − Rµν`µ`ν , (7.9)

uµ∇µθ(u) =
dθ(u)

dτ
= κ(u)θ(u) −

1
3
θ2

(u) − σ
(u)
µνσ

µν
(u) + ω(u)

µνω
µν
(u) − Rµνuµuν . (7.10)

The inaffinity coefficients are zero κ(`) = 0 = κ(u) under affine parameterizations, the twist vanishes ωµνωµν =

0 for hypersurface-orthogonal foliations, and being spatial tensors
(
σ(`)
µν`

µ = 0 = σ(u)
µν uµ

)
the shears always

satisfy σµνσµν ≥ 0. Thus, to guarantee dθ(`)/dλ ≤ 0 and dθ(u)/dτ ≤ 0 under all circumstances – even in
the occasions θ(`) = 0 = θ(u), so that the congruences focus and gravity is always an attractive force, the
following geometric nonnegativity conditions are expected to hold:

Rµν`µ`ν ≥ 0 , Rµνuµuν ≥ 0 . (7.11)

Note that although this is the most popular approach to derive Eq.(7.11) for its straightforwardness and
simplicity, it is not perfect. In general θ(`) and θ(u) are nonzero and one could only obtain 1

2θ
2
(`) + Rµν`µ`ν ≥ 0
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and 1
3θ

2
(u)+Rµνuµuν ≥ 0. Thus, it is only safe to say that Eq.(7.11) provides the sufficient rather than necessary

conditions to ensure dθ(`)/dλ ≤ 0 and dθ(u)/dτ ≤ 0. Fortunately, this imperfectness is not a disaster and does
not negate the conditions in Eq.(7.11); for example, one can refer to Ref. [27] for a rigorous derivation of
the first inequality in Eq.(7.11) from the Virasoro constraint in the worldsheet string theory.

On the other hand, consider generic relativistic gravities with the Lagrangian density Ltotal = 1
16πGLG

(R,RµνRµν,R i , · · · , ϑ,∇µϑ∇
µϑ

)
+Lm, where Ri = Ri

(
gαβ ,Rµανβ ,∇γRµανβ , . . .

)
refers to a generic curvature

invariant beyond the Ricci scalar, and ϑ denotes a scalarial extra degree of freedom unabsorbed by Lm. The
field equation reads

Hµν = 8πGT (m)
µν with Hµν B

1
√
−g

δ
(√
−g LG

)
δgµν

, (7.12)

where total-derivative terms should be removed in the derivation of Hµν. In the spirit of reconstructing an
effective dark energy, Eq.(7.12) can be intrinsically recast into a compact GR form by isolating the Ricci
tensor Rµν out ofHµν:

Rµν −
1
2

Rgµν = 8πGeffT (eff)
µν with Hµν =

G
Geff

Gµν − 8πGT (MG)
µν , (7.13)

where Geff denotes the effective gravitational coupling strength, and it is recognized from the coefficient of
the matter tensor T (m)

µν . T (eff)
µν refers to the total effective energy-momentum tensor, and T (MG)

µν = T (eff)
µν − T (m)

µν ,
with T (MG)

µν collecting all the modified-gravity nonlinear and higher-order effects. Thus, all terms beyond GR
have been packed into T (MG)

µν and Geff.
Following Eq.(7.13) along with its trace equation R = −8πGeffT (eff) and the equivalent form Rµν =

8πGeff

(
T (eff)
µν −

1
2 gµνT (eff)

)
, the geometric nonnegativity conditions in Eq.(7.11) can be translated into the

generalized null and strong energy conditions (GNEC and GSEC for short)

GeffT (eff)
µν `µ`ν ≥ 0 (GNEC) , Geff

(
T (eff)
µν uµuν +

1
2

T (eff)
)
≥ 0 (GSEC) , (7.14)

where `µ`µ = 0 for the GNEC, and uµuµ = −1 in the GSEC for compatibility with the metric signature
(−,+ + +). We further supplement Eq.(7.14) by the generalized weak energy condition

GeffT (eff)
µν uµuν ≥ 0 (GWEC) , (7.15)

and the generalized dominant energy condition (GDEC) that GeffT (eff)
µν uµuν ≥ 0 with GeffT (eff)

µν uµ being a
causal vector.

Note that for the common pattern of the field equations in modified gravities, we have chosen to adopt
Eq.(7.13) rather than Rµν − 1

2 Rgµν = 8πGT̂ (eff)
µν , where G is Newton’s constant. That is to say, we do not

absorb Geff into T (eff)
µν so that GeffT (eff)

µν = GT̂ (eff)
µν ; as a consequence, Geff shows up in the generalized energy

conditions as well. This is because the effective matter-gravity coupling strength Geff plays important roles
in many physics problems, such as the Wald entropy of black-hole horizons [28] and the cosmological
gravitational thermodynamics (e.g.[29]), although the meanings and applications of Geff have not been fully
understood (say the relations between Geff and the weak, Einstein, and strong equivalence principles).

Geff and T (eff)
µν vary among different theories of modified gravity, which concretize Eqs.(7.14) and (7.15)
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into different sets of generalized energy conditions. For LBD gravity summarized in Sec. 7.2, we have

Geff = φ−1 and T (eff)
µν = T (m)

µν + T (φ)
µν + T (CP)

µν + T (GB)
µν , (7.16)

with the components of T (eff)
µν given by

8πT (CP)
µν = −aH(CP)

µν , 8πT (GB)
µν = −b̂H(GB)

µν ,

8πT (φ)
µν =

(
∇µ∇ν − gµν2

)
φ +

ωL

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)
− Vgµν .

(7.17)

Hence, for LBD gravity, the GNEC, GWEC and GSEC are respectively

φ−1`µ`ν
(
8πT (m)

µν + ∇µ∇νφ +
ωL

φ
∇µφ∇νφ − aH(CP)

µν − b̂H(GB)
µν

)
≥ 0 , (7.18)

φ−1uµuν
(
8πT (m)

µν + ∇µ∇νφ +
ωL

φ
∇µφ∇νφ − aH(CP)

µν − b̂H(GB)
µν

)
+ φ−1

(
2φ +

ωL

2φ
∇αφ∇

αφ + V
)
≥ 0, (7.19)

and φ−1uµuν
(
8πT (m)

µν + ∇µ∇νφ +
ωL

φ
∇µφ∇νφ − aH(CP)

µν − b̂H(GB)
µν

)
+

1
2
φ−1

(
8πT (m) + 4b̂Rαβ∇α∇βφ − (1 + 2b̂R)2φ − 2V

)
≥ 0 , (7.20)

while the GDEC can be concretized in the same way. Among all generalized energy conditions, Eq.(7.18)
clearly shows that the GNEC is not influenced by the background potential V = V(φ) of the scalar field.

Particularly, LBD gravity reduces to become GR for the situation φ(xα) ≡ G−1 = constant and V(φ) = 0,
as ∗RR and

√
−gG in Lovelock’s action SL do not affect the field equation. Then Eqs.(7.14) and (7.15)

reduce to become the standard energy conditions for classical matter fields [5]:

T (m)
µν `µ`ν ≥ 0 (NEC) , T (m)

µν uµuν ≥ 0 (WEC) , T (m)
µν uµuν ≥

1
2

T (eff)uµuµ (SEC) . (7.21)

7.4 Conditions to support wormholes in LBD graity

7.4.1 Generic conditions supporting static, spherically symmetric wormholes

It has been nearly three decades since the classical work of Morris and Thorne, and nowadays the Morris-
Thorne metric for static spherically symmetric wormholes is still the most useful and popular ansatz to study
traversable wormholes. The metric reads [3]

ds2 = −e2Φ(r)dt2 +

(
1 −

b(r)
r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (7.22)

where Φ(r) and b(r) are the redshift and the shape functions, respectively, and the radial coordinate r ≥ r0

ranges from a minimum value r0 at the wormhole throat to infinity. Φ(r) is related to the gravitational redshift
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of an infalling body, and it must be finite everywhere to avoid the behavior e2Φ(r) → 0 and consequently the
existence of an event horizon. b(r) determines the shape of the 2-slice {t = constant, θ = π/2} in the
embedding diagram; it satisfies b(r) < r to keep the wormhole Lorentzian, b(r0) = r0 at the throat, and
b(r)/r → 0 at r → ∞ if asymptotically flat. Moreover, the embedding of the 2-slice ds2 =

(
1 − b(r)

r

)−1
dr2 +

r2dϕ2 yields the geometrical “flaring-out condition” (b− b′r)/b2 > 0, which reduces to become b′(r0) < 1 at
the throat r = r0 with b(r0) = r0 [3]. Here and hereafter the prime denotes the derivative with respect to the
radial coordinate r.

Following the metric Eq.(7.22), in the null tetrad adapted to the spherical symmetry and the null radial
congruence,

lµ =

e−Φ(r),

√
1 −

b(r)
r

, 0, 0

 , nµ =
1
2

e−Φ(r),−

√
1 −

b(r)
r

, 0, 0

 , mµ =
1
√

2 r

(
0, 0, 1,

i
sinθ

)
, (7.23)

one could find the outgoing expansion rate θ(l) and the ingoing expansion rate θ(n) to be

θ(l) = − (ρNP + ρ̄NP) =
2
r

√
1 −

b(r)
r

, θ(n) = µNP + µ̄NP = −
1
r

√
1 −

b(r)
r
, (7.24)

where ρNP B −mµm̄ν∇ν`µ and µNP B m̄µmν∇νnµ are two Newman-Penrose spin coefficients. Thus the
metric ansatz Eq.(7.22) guarantees that the spacetime is everywhere untrapped as θ(l) = 2θ(n) > 0, which is
a characteristic property of traversable wormholes [30]. Also, Eq.(7.24) shows that the expansion rates are
independent of the redshift function Φ(r), and the spacetime is free of apparent horizons for r > r0.

Since the outward-flaring constraint (b − b′r)/b2 > 0 solely comes from the embedding geometry, it
is independent of and applicable to all gravity theories. In GR through Einstein’s equation, this condition
implies that all infalling observers threading a Morris-Thorne wormhole will experience the violation of the
standard null energy condition T (m)

µν `
µ`ν ≥ 0 [3, 4]. Similarly, according to the GR form of the field equation

(7.13), the flaring-out condition implies that wormholes in LBD gravity are supported by the breakdown
of the LBD generalized energy conditions as in Eqs.(7.18) and (7.19). On the other hand, in principle it
may still be possible to preserve the standard energy conditions in Eq.(7.21). Thus, to fulfill the constraint
(b − b′r)/b2 > 0 in LBD gravity, a possible way to violate the GNEC while keeping the standard NEC, i.e.
φ−1T (eff)

µν `µ`ν < 0 and T (m)
µν `

µ`ν ≥ 0, can be

0 ≤ 8π`µ`νT (m)
µν ≤ `µ`ν

(
aH(CP)

µν + b̂H(GB)
µν − ∇µ∇νφ −

ωL

φ
∇µφ∇νφ

)
. (7.25)

As another example, violation of the GWEC and preservation of the WEC, i.e. φ−1T (eff)
µν uµuν < 0 and

T (m)
µν uµuν ≥ 0, can be realized if

0 < 8πT (m)
µν uµuν < uµuν

(
aH(CP)

µν + b̂H(GB)
µν − ∇µ∇νφ −

ωL

φ
∇µφ∇νφ

)
−

(
ωL

2φ
∇αφ∇

αφ + 2φ + V
)
. (7.26)

Eqs.(7.25) and (7.26) indicate that H(CP)
µν and H(GB)

µν , which represent the effects of the spacetime parity and
topology, jointly with T (φ)

µν should dominate over the material source of gravity. Also, a noncanonical scalar
field (ωL < 0) is preferred than a canonical one (ωL > 0) to help support the wormhole.

Note that in Eqs.(7.25) and (7.26) we have assumed φ−1 = Geff > 0. This is inspired by the fact in f (R)
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gravity that the effective coupling strength Geff = d f (R)/dR C fR has to satisfy fR > 0 to guarantee that in
the particle content via the spin projectors, the graviton itself and the induced scalar particle are not ghosts
[31]. Similarly, in scalar-tensor gravity L = 1

16πG
[
f (φ)R − h(φ)∇αφ∇αφ − 2U(φ)

]
+Lm in the Jordan frame,

Geff = f (φ)−1 should also be positive definite so that the graviton is not a ghost [32]. More generally, for
modified gravities of the field equation (7.13), an assumption Geff > 0 can not only simplify the generalized
energy conditions Eqs.(7.14) and (7.15), but also help reduce the violation of these conditions.

In Sec. 7.5, we will demonstrate by a zero-tidal-force solution that Eq.(7.25) can really be satisfied
while Eq.(7.26) is partially falsified for the same numerical setups. To facilitate the discussion, we further
concretize the tensorial inequalities Eqs.(7.25) and (7.26) into an anisotropic perfect fluid form.

7.4.2 Supporting conditions in anisotropic fluid scenario

In accordance with the nonzero and unequal components of the Einstein tensor Gµ
ν, one can assume an

anisotropic perfect-fluid form T µ
ν = diag

[
−ρ(r), Pr(r), PT (r), PT (r)

]
for T µ (eff)

ν and each of its components.
Here T µ

ν is adapted to the metric signature (−,+++), with ρ standing for the energy density, Pr for the radial
pressure, and PT for the transverse pressure orthogonal to the radial direction. In wormhole physics, it is Pr

that helps to open and maintain the wormhole tunnel, so in the context below we will be more concentrative
on Pr rather than PT . Then the generalized energy conditions in Sec. 7.3 imply Geff(ρeff + Pr

eff
) ≥ 0 for the

GNEC, Geffρeff ≥ 0 and Geff(ρeff +Pr
eff

) ≥ 0 for the GWEC, Geff(ρeff +Pr
eff

+2PT
eff

) ≥ 0 and Geff(ρeff +Pr
eff

) ≥ 0
for the GSEC, as well as Geffρeff ≥ 0 and Geffρeff ≥

∣∣∣GeffPr
eff

∣∣∣ for the GDEC, with Geff removable when
Geff > 0.

In fact, the perfect-fluid form of T µ
ν clearly shows that violation of the null energy condition – that is to

say, giving up the dominance of the energy density over the pressure, will imply the simultaneous violations
of the weak, strong, and dominant energy conditions. This chain of violation happens for both the standard
and the generalized energy conditions, and in this sense, it is sufficient to consider the violation of the null
energy condition. According to the GNEC in LBD gravity, it requires φ−1(ρeff +Pr

eff
) < 0 to make wormholes

flare outward, with ρeff = ρm +ρφ+aρCP + b̂ρGB and Pr
eff

= Pr
m + Pr

φ+aPr
CP + b̂Pr

GB; under the Morris-Thorne
metric, we have ρCP = 0 = Pr

CP,

8πρφ =

(
1 −

b
r

) (
Φ′φ′ + φ′′ +

2φ′

r
+
ωL

2
φ′2

φ

)
+
φ′

2r2

(
b − b′r

)
+ V , (7.27)

8πPr
φ =

(
1 −

b
r

) (
φ′′ + ωL

φ′2

φ

)
− 8πρφ , (7.28)

8πρGB =
1
r5

[
− 4brφ′′(b − r) − 2φ′(2r − 3b)(b − b′r) + 4Φ′2φ′r2

(
bb′r + 2r2 − b′r2 + b2 − 3br

)
+ 2Φ′′φ′r2

(
bb′r − b′r2 − b2 + br

)
+ 4Φ′Φ′′φ′r3 (b − r)2 + Φ′3r3

(
r2 − 8br + 4b2

)
+ Φ′φ′r

(
8r2 − 16br + 4b′r2 + b′2r2 − 6bb′r + 9b2

) ]
, and (7.29)
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8πPr
GB =

2
r5

[
φ′

(
b − b′r

) (
3b − 4r + b′r

)
+ 2φ′′br(r − b) + 4Φ′φ′r

(
Φ′r + 2

)
(b − r)2

]
− 8πρGB . (7.30)

7.5 Zero-tidal-force solution

In this section we will continue to work out an exact solution of Morris-Thorne wormholes in LBD gravity,
so as to better analyze the flaring-out condition for the wormhole throat, and examine the states of the
generalized and standard energy conditions.

There are two functions to be specified in the Morris-Thorne metric Eq.(7.22). To be more concentrative
on the wormhole throat and the embedding geometry, we will consider a zero redshift function Φ(r) = 0 or
e2Φ(r) = 1, which corresponds to vanishing tidal force and stationary observers [3]. In this situation, the LBD
curvature invariants and the Einstein tensor read

R =
2b′

r2 , ∗RR = 0 = G , Gµ
ν = r−3 · diag

[
− b′r, −b, b − b′r, b − b′r

]
, (7.31)

and thus the componential field equations Gµ
ν = 8πφ−1T µ (eff)

ν directly illustrate the influences of the flaring-
out condition (b − b′r)/b2 > 0 to T µ (eff)

ν = diag
[
−ρeff, Pr

eff
, PT

eff
, PT

eff

]
.

To simplify the dynamical wave equation (7.8), we assume the potential V(φ) to satisfy the condition
Vφφ = 2V , which integrates to yield

V(φ) = V0φ
2 , (7.32)

where V0 is an integration constant. Moreover, we adopt the following power-law ansatz for the static and
spherically symmetric scalar field,

φ(r) = φ0

(r0

r

)A
, (7.33)

where φ0 and the power index A are constants, and r0 is the throat radius r0 = min(r).
With these setups, the kinematical wave equation (7.7) leads to

(2 + ωLA) rb′ − ωLA(A − 1)b + ωLA(A − 2)r − 4V0φ0

(r0

r

)A
r3 = 0 . (7.34)

Solving this equation for b(r) with the boundary condition b(r = r0) = r0, we obtain the shape function

b(r) =

2V0φ0r3
0

[(
r0
r

)ωLA(1−A)
ωLA+2

−
(

r0
r

)A−3
]

ωLA2 − 2ωLA + A − 3
+
ωLA (A − 2) r − 2r0

(
r0
r

)ωLA(1−A)
ωLA+2

ωLA2 − 2ωLA − 2
,

(7.35)

and thus

b − b′r =

2V0φ0r3
0

[(
1 +

ωLA(1−A)
ωLA+2

) (
r0
r

)ωLA(1−A)
ωLA+2

− (A − 2)
(

r0
r

)A−3
]

ωLA2 − 2ωLA + A − 3
+

2r0

ωLA + 2

(r0

r

)ωLA(1−A)
ωLA+2

.
(7.36)
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At the throat r = r0, the flaring-out constraint (b − b′r)/b2 is evaluated as

b′(r0) =
4V0φ0r2

0 + ωLA

ωLA + 2
< 1 . (7.37)

There are five parameters in b(r), among which {r0, φ0, A,V0} attribute to our solution ansatz for the
homogeneous scalar field φ(r) and the potential V(φ), while ωL comes from LBD gravity. To illustrate the
wormhole geometry, we will adopt the following setups for these parameters.

(1) Without any loss of generality, let r0 = 1 for the throat radius, and φ0 = 1.

(2) According to Eq.(7.33), asymptotic flatness of the spacetime requires A > 0 so that the scalar field
monotonically falls off as r → ∞; moreover, φ(r) is positive definite and meets the expectation Geff =

φ−1 > 0 for the effective gravitational coupling strength, so that the graviton of LBD gravity is non-
ghost for the sake of quantum stability.

(3) A repulsive potential hill V(φ) > 0 tends to open and maintain the wormhole tunnel, while a trapping
potential well V(φ) < 0 would collapse the wormhole tunnel. Thus, in our numerical modelings, let
V0 = 1 > 0 so that V(φ) serves as a potential hill.

(4) Furthermore, it follows from Eq.(7.37) that the Lovelock parameter satisfies

ωL < −
2
A
< 0 for r0 = φ0 = V0 = 1 and A > 0 . (7.38)

This agrees with the indication of Eqs.(7.25) and (7.26) that a noncanonical (ωL < 0) scalar field could
best help support the wormhole.

With the numerical setups in Eq.(7.38), only two parameters ωL and A remain flexible in determining the
behaviors of b(r) and (b − b′r)/b2, where A tunes the spatially decaying rate of the scalar field; appropriate
values of ωL and A should validate b(r) < r, b − b′r > 0, and ωL < −

2
A < 0. In Fig. 7.1, b(r) is plotted at the

domain r ≥ r0 = 1, and the wormhole solution Eq.(7.35) is confirmed to be Lorentzian. In Fig. 7.2, we plot
b− b′r and equivalently verify the flaring-out condition (b− b′r)/b2 > 0. In both figures, we fix A = 2.3 and
illustrate the dependence on ωL (note that inside Figs. 7.1 ∼ 7.4, ωL is temporarily written as ω for the sake
of greater clarity).
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Figure 7.1: With r0 = φ0 = V0 = 1, A = 2.3 and in the domain r ≥ r0 = 1, b(r) is plotted as the solid curves for various ωL,
along with the dotted diagonal for the auxiliary function b(r) ≡ r. For ωL = {−2,−4,−6,−8,−10 · · · } < −2/A = −2/2.3 in light
of the numerical setups in Eq.(7.38), b(r) always falls below the auxiliary diagonal b(r) ≡ r. Thus, 1 − b(r)/r is positive definite
and the wormhole solution Eq.(7.35) is Lorentzian. Moreover, the curve b(r) approaches the dotted line when ωL goes to −∞, i.e.

lim
ωL→−∞

b(r)/r = 1.

Figure 7.2: With r0 = φ0 = V0 = 1, A = 2.3 and in the domain r ≥ r0 = 1, b − b′r is plotted for ωL = {−2,−4,−6,−8,−10 · · · } <
−2/A = −2/2.3 and manifests itself to be positive definite. This equivalently confirms the outward-flaring condition (b−b′r)/b2 > 0
of the embedding geometry. Moreover, the curve b − b′r tends to coincide with the horizontal r−axis when ωL approaches −∞, i.e.

lim
ωL→−∞

b − b′r = 0, which is consistent with the tendency lim
ωL→−∞

b(r)/r = 1 in Fig. 7.1.

With the Einstein tensor Gµ
ν given by Eq.(7.31) and φ−1 > 0, adding up the componential field equations

Gt
t = −8πφ−1ρeff and Gr

r = 8πφ−1Pr
eff

, one could obtain b − b′r = −r3 · 8πφ−1(ρeff + Pr
eff

). Thus, for the
numerical setups summarized by Eq.(7.38), Fig. 7.2 not only verifies the positive definiteness of b − b′r, but
also implies the violation of the GNEC φ−1(ρeff +Pr

eff
) < 0 – and consequently the GWEC, GSEC and GDEC

in LBD gravity. On the other hand, can the standard energy conditions in Eq.(7.21) still hold along the radial
direction for the matter threading the wormhole? The energy density ρm and the radial pressure Pr

m vary for
different types of physical matter, and ρm + Pr

m relies on the the equation of state Pr
m = Pr

m(ρm). Thus, we
choose to calculate ρm + Pr

m from an indirect approach. Considering that φ
8πGt

t = −(ρm + ρφ + aρCP + b̂ρGB)
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Figure 7.3: With r0 = φ0 = V0 = 1, A = 2.3, b̂ = −1 and in the domain r ≥ r0 = 1, 8π(ρm + Pr
m) is plotted as the solid curves,

while the dotted horizontal depicts the zero reference level. The first subfigure shows that for ωL = {−4,−6,−8,−10}, 8π(ρm + Pr
m)

is positive definite with the expected asymptote lim
r→∞

8π(ρm + Pr
m) = 0+, so the standard NEC is respected. However, as ωL further

decreases, 8π(ρm + Pr
m) gradually falls below the dotted horizontal near the throat r ' r0 = 1, which has been illustrated for

ωL = {−30,−40,−50, · · · ,−1000} in the second subfigure by magnifying the region r0 = 1 ≤ r ≤ 1.0006. Thus, large negative
values of ωL (numerical analysis gives ωL . −12.9) are unfavored in light of 8π(ρm + Pr

m) > 0.

and φ
8πGr

r = Pr
m + Pr

φ + aPr
CP + b̂Pr

GB, ρm and Pr
m can be recovered by

8πρm = b′rφ − 8πρφ − 8πb̂ρGB , 8πPr
m = −bφ − 8πPr

φ − 8πb̂Pr
GB , (7.39)

where, according to Eqs.(7.27)-(7.30) with Φ(r) = 0, we have

8πρφ =

(
1 −

b
r

) (
φ′′ +

2φ′

r
+
ωL

2
φ′2

φ

)
+
φ′

2r2

(
b − b′r

)
+ V (7.40)

8πPr
φ =

(
1 −

b
r

) (
φ′′ + ωL

φ′2

φ

)
− 8πρφ (7.41)

8πρGB =
2
r5

[
φ′

(
b − b′r

)
(3b − 2r) + 2brφ′′(r − b)

]
(7.42)

and 8πPr
GB =

2φ′

r4 (b − b′r)(b′ − 2) . (7.43)

In Fig. 7.3, 8π(ρm + Pr
m) is plotted as the solid curves, where we let b̂ = −1 < 0 for the Gauss-Bonnet

matter-topology coupling strength so that the Gauss-Bonnet part of LBD gravity could yield antigravitational
effect to help maintain the wormhole tunnel. ρm + Pr

m is positive definite for ωL = {−4,−6,−8,−10} < −2/A
and thus the standard NEC ρm + Pr

m ≥ 0 is respected by the physical matter, despite the violation of the
GNEC due to φ−1(ρeff + Pr

eff
) < 0; in fact, this has realized the null-energy supporting condition of Eq.(7.25)

in an anisotropic perfect fluid form. However, large negative values of ωL is unfavored: careful numerical
analysis finds that the standard NEC becomes slightly violated, i.e. ρm + Pr

m < 0 for ωL . −12.9 in the very
close vicinity of the wormhole throat.

Validity of the standard weak, strong and dominant energy conditions requires us to check the positivity
of the physical matter density ρm. Plotting 8πρm for ωL = {−4,−6,−8,−10 · · · } in Fig. 7.4, we find ρm < 0
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Figure 7.4: With r0 = φ0 = V0 = 1, A = 2.3, b̂ = −1 and in the domain r ≥ r0 = 1, 8πρm is plotted as the solid curves for
ωL = {−4,−6,−8,−10}. Although ρm > 0 in the distance, one always observes ρm < 0 near the throat r0 = 1, and thus the
violation of the standard WEC, SEC and DEC. Moreover, as shown in the second subfigure for ωL = {−13,−23,−33, · · · ,−1003},
the intersection point between 8πρm and the dotted zero reference level moves leftwards when ωL decreases, so the violation of
ρm ≥ 0 gradually reduces.

Figure 7.5: With r0 = φ0 = V0 = 1, ωL = −6, A = 2.3 and in the domain r ≥ r0 = 1, we plot 8π(ρm + Pr
m) and 8πρm for different

Gauss-Bonnet topology-gravity coupling strength, as is given the decreasing series b̂ = {−2,−4,−6,−8,−10}. The standard NEC
always holds with ρm + Pr

m ≥ 0. Moreover, the intersection point between 8πρm and the dotted reference level moves leftwards when
b̂ < 0 increases from b̂ = −10 to −2„ so the violation of ρm ≥ 0 gradually reduces.

181



Figure 7.6: With r0 = φ0 = V0 = 1, ωL = −6, b̂ = −4 and in the domain r ≥ r0 = 1, we plot 8π(ρm + Pr
m) and 8πρm for different

decaying rate of the scalar field, as is given by the increasing series A = {1.3, 2.3, 3.3, 4.3}. The standard NEC always holds with
ρm + Pr

m ≥ 0. Moreover, the intersection point between 8πρm and the dotted reference level moves leftwards when A > 0 increases
from A = 1.3 to 4.3, so the violation of ρm ≥ 0 gradually reduces.

near the wormhole throat, and the violation of ρm ≥ 0 can be reduced with the decrement of ωL in the domain
ωL < −2/A; actually, this has negated the weak-energy supporting condition of Eq.(7.26) in the anisotropic
perfect fluid form, despite the validity of the null-energy Eq.(7.25). As expected, when one goes way from
the wormhole throat, the normal behaviors ρm ≥ 0 and lim

r→∞
ρm = 0+ are recovered, and thus the standard

WEC becomes valid as ρm + Pr
m ≥ 0 for r > r0 = 1 in light of Fig. 7.3.

Having seen from Fig. 7.4 that the decrement of the noncanonical ωL could reduce the violation of
ρm ≥ 0, we cannot help but ask are there any other factors that could help protect the standard WEC? The
answer is yes. In Figs. 7.5 and 7.6, we respectively fix {ωL = −6 , A = 2.3} and {ωL = −6 , b̂ = −4} to plot
{8π(ρm + Pr

m) , 8πρm}. It turns out that when the standard NEC is obeyed, i.e. ρm + Pr
m ≥ 0, the increment

of b̂ (Gauss-Bonnet topology-gravity coupling strength) in the repulsive domain b̂ < 0 and the increment of
A (decaying-rate index of the scalar field) in the domain A > 0 could both help minimize the violation of
ρm ≥ 0 near the wormhole throat.

7.6 Implication: Wormholes in Brans-Dicke gravity

In the limits a → 0 and b̂ → 0 for the parity-gravity and the topology-gravity coupling coefficients in
SLBD, and in the absence of the potential V(φ), LBD gravity reduces to become Brans-Dicke gravity with
the standard action [33]

SBD =
1

16π

∫
d4x
√
−g

(
φR −

ω̂

φ
∇αφ∇

αφ

)
+ Sm , (7.44)

where ω̂ refers to the Brans-Dicke parameter (in distinction with ωL for the Lovelock parameter). The
gravitational field equation δSBD/δgµν = 0 and the kinematical wave equation δSBD/δφ = 0 are respectively

φ

(
Rµν −

1
2

Rgµν

)
+

(
gµν2 − ∇µ∇ν

)
φ −

ω̂

φ

(
∇µφ∇νφ −

1
2

gµν∇αφ∇αφ
)

= 8πT (m)
µν , (7.45)
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and 2ω̂ ·2φ = −φR +
ω̂

φ
∇αφ∇

αφ . (7.46)

With the trace of the field equation −φR+ ω̂
φ∇αφ∇

αφ+32φ = 8πT (m), Eq.(7.46) leads to the dynamical wave
equation (2ω̂+ 3)2φ = 8πT (m); however, the kinematical equation (7.46) is preferred so that temporarily we
need not worry about T (m) for the physical matter.

Figure 7.7: With r0 = φ0 = 1 and A = 1.3, we plot b(r) and b − b′r as the solid curves. The first subfigure shows that
for ω̂ = {−1, 0, 1, 2, 3 · · · } > −2/A = −2/1.3, b(r) always falls below the dotted diagonal of the auxiliary function b(r) ≡ r,
and thus guarantees the Lorentzian signature as 1 − b(r)/r > 0. Moreover, the second subfigure verifies b − b′r > 0 for
ω̂ = {−1, 0, 1, 2, 3, 4 · · · } > −1/1.3, so the flaring-out condition (b − b′r)/b2 > 0 of the embedding geometry is satisfied.

For Morris-Thorne wormholes in Brans-Dicke gravity, consider a zero-tidal-force solution Φ(r) = 0,
and inherit the ansatz φ(r) = φ0

(
r0
r

)A
(φ0 > 0, A = constant) of Eq.(7.33) for the scalar field. Directly

solving Eq.(7.46) for b(r) with the boundary condition b(r0) = r0, or just substituting {V0 ≡ 0, ωL 7→ ω̂} into
Eqs.(7.35) and (7.36), we obtain

b(r) = r +
2r − 2r0

(
r0
r

) ω̂A(1−A)
ω̂A+2

ω̂A2 − 2ω̂A − 2
and b − b′r =

2r0

ω̂A + 2

(r0

r

) ω̂A(1−A)
ω̂A+2

. (7.47)

In light of the flaring-out condition at the wormhole throat, the parameters {A, ω̂} have to meet the require-
ment

b′(r0) = 1 −
2

ω̂A + 2
< 1 ⇒ ω̂A > −2 . (7.48)

Note that this condition does not conflict with the ωLA < −2 in Eq.(7.38): Eq.(7.48) comes from Eq.(7.37)
with {V0 ≡ 0, ωL 7→ ω̂}, while Eq.(7.38) specifies Eq.(7.37) by r0 = φ0 = V0 = 1; the choices V0 ≡ 0 and
V0 = 1 (and also V0 = −1, if one would like to check it), i.e. the potential being vanishing, repulsive or
attractive, lead Eq.(7.37) to totally different situations.
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Figure 7.8: With r0 = φ0 = 1 and A = 1.3, we plot 8π(ρm + Pr
m) for ω̂ = {−1, 0, 1, 2, 3, 4} as the solid curves, which always fall

below the dotted horizontal for the zero reference level. Thus, the standard NEC is always violated. As ω̂ grows from -1 to 4, the
curve of 8π(ρm + Pr

m) gradually moves upward, so in a sense the violation of 8π(ρm + Pr
m) ≥ 0 can be reduced for greater values of

ω̂ in the domain ω̂ > −2/A.

Figure 7.9: With r0 = φ0 = 1 and A = 1.3, we plot 8πρm for ω̂ = {−1, 0, 1, 2, 3, 4} as the solid curves. These curves stay above the
zero reference level for ω̂ = {0, 1, 2, 3, 4} and coincide with it for ω̂ = −1; since the curves for ω̂ = {0, 1, 2, 3, 4} are stickily close
to each other in the first subfigure, we magnify them at 1.2 < r < 1.45 for greater clarity in the second subfigure, which shows that
from bottom to top or from left to right, the curves correspond to ω̂ = 0, ...4 in sequence. Although the energy density is nonnegative
for ω̂ ≥ −1, the standard WEC, SEC and DEC still fail as 8ρm + Pr

m < 0 for all ω̂ > −2/A by Fig. 7.8.

Among the three parameters in b(r), {ω̂ , A} jointly determine the wormhole structure, while r0 acts as
an auxiliary parameter; for the same reasons indicated in the proceeding section, we inherit the numerical
setups {r0 = φ0 = 1, A > 0} to illustrate the Brans-Dicke wormhole Eq.(7.47), which implies ω̂ > −2/A from
Eq.(7.48). To start with, the Lorentzian-signature condition r > b(r) and the outward-flaring constraints
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b − b′r > 0 are confirmed in Fig. 7.7.
Next, let’s check the states of the standard energy conditions in Eq.(7.21). For the matter threading the

wormhole, the energy density and radial pressure can be indirectly reconstructed from the field equations
8πρm = b′rφ − 8πρφ and 8πPr

m = −bφ − 8πPr
φ, where

8πρφ =

(
1 −

b
r

) (
φ′′ +

2φ′

r
+
ω̂

2
φ′2

φ

)
+
φ′

2r2

(
b − b′r

)
, (7.49)

8πPr
φ =

(
1 −

b
r

) (
φ′′ + ω̂

φ′2

φ

)
− 8πρφ . (7.50)

With φ0 = 1 = r0 in φ(r) = φ0
(

r0
r

)A
and the zero-tidal-force solution Eq.(7.47), it follows that

8π(ρm + Pr
m) =

2ω̂A
(
ω̂A2 + A2 + 4A − 2

)
+ 4

(
A2 + A − 1

)
(ω̂A + 2)(ω̂A2 − 2ω̂A − 2)

r
ω̂A(A−1)
ω̂A+2

rA+3 −
2A(ω̂A + A + 1)
(ω̂A2 − 2ω̂A − 2)

r
rA+3 ,

(7.51)

8πρm =
1
r

+
r(ω̂ + 6) −

[
ω̂ + 3 +

3ω̂A(A−1)
ω̂A+2

]
r
ω̂A(A−1)
ω̂A+2

r2(ω̂A2 − 2ω̂A − 2)
. (7.52)

Based on Eqs.(7.51) and (7.52), the behaviors of 8π(ρm + Pr
m) and 8πρm are illustrated in Figs. 7.8 and 7.9

with the numerical setups {r0 = φ0 = 1, A = 1.3 > 0, ω̂ > −2/A}. Unfortunately, despite the nonnegative
energy density, the standard null – and thus weak, strong and dominant energy conditions are always violated
along the radial direction as ρm + Pr

m < 0 for r ≥ r0; to make matters slightly better, Fig. 7.8 indicates that
in a sense such violation could be reduced for greater values of ω̂ in the domain ω̂ > −2/A. Moreover, as
shown in Fig. 7.10 which fixes ω̂ = 1 and studies the influences of A instead, we notice that even ρm ≥ 0 no
longer holds throughout r ≥ r0 for a spatially quickly decaying (A & 2) scalar field.

Comparing Figs. 7.8 ∼ 7.10 of Brans-Dicke gravity with Fig. 7.3, one could find that due to the presence
of the potential hill V(φ) > 0 and the possibly antigravitational Gauss-Bonnet effect, LBD gravity could “bet-
ter” protect the standard NEC when supporting wormholes. The results in this section supplement the earlier
investigations in Ref.[19]. Moreover, recall that in scalar-tensor theory with the total Lagrangian density
L = 1

16πG
[
f (φ)R − h(φ) · ∇αφ∇αφ − 2U(φ)

]
+Lm in the Jordan frame, we have the following conditions for

the sake of ghost-freeness and quantum stability [32]: the graviton is non-ghost if f (φ) > 0 (as mentioned
before in Sec. 7.4.1), while the scalar field φ(xα) itself is non-ghost if

3
2

(
d f (φ)

dφ

)2

+ f (φ)h(φ) > 0 . (7.53)

For Brans-Dicke gravity with f (φ) = φ and h(φ) = ω̂/φ, it requires φ > 0 and ω̂ > −3/2 to be totally
ghost-free. Thus, the lessons from Figs. 7.8 ∼ 7.10 are consistent with the argument of Ref.[32] that in
scalar-tensor gravity, there exists no static, spherically symmetric wormholes that are both ghost-free and
obeying the standard NEC.
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(a) From top to bottom, A =0.1, 0.4, · · · , 1.3. (b) From top to bottom, A =1.2, 2.2, 3.2, 4.2.

(c) From top to bottom, A =1.1, 0.9, · · · , 0.1. (d) From top to bottom, A =2, 3, · · · , 8.

Figure 7.10: With r0 = φ0 = 1 and ω̂ = 1, we plot 8π(ρm + Pr
m) and 8πρm for different values of A which governs the spatially

decaying rate of the scalar field. Figs. 7.10a and 7.10b, with a similar appearance to Fig. 7.8, show ρm + Pr
m < 0 for A > 0 so that

the standard NEC is violated; moreover, with Fig. 7.10c in an analogous pattern to Fig. 7.9, one finds ρm > 0 for slow decaying rate
A = {0.1, 0.3, · · · , 1.1}. As the most interesting observation, Fig. 7.10d shows that ρm is no longer positive definite throughout r ≥ r0

for high decaying rate A & 2.

186



7.7 Discussion and conclusions

In Secs. 7.4 and 7.5, we have seen that ρCP and Pr
CP did not help in supporting Morris-Thorne wormholes;

this is because H(CP)
µν identically vanishes for all spherically symmetric spacetimes (no matter static or dy-

namical). In fact, it can be directly verified that the spacetime parity will come into effect via nonzero H(CP)
µν

in generic axially symmetric spacetimes, say the metric below that generalizes Morris-Thorne into rotating
wormholes [7]:

ds2 = −e2Φ(r,θ)dt2 +

(
1 −

b(r, θ)
r

)−1

dr2 + r2
[
dθ2 + sin2 θ (dt − ωdϕ)2

]
, (7.54)

where, as in the Kerr or Papapetrou metric, ω = ω(r, θ) is the angular velocity dϕ/dt acquired by a test
particle falling to the point (r, θ) from infinity.

Also, the wormhole geometry is not only related to the energy-momentum distribution of the physical
matter through the gravitational field equation, but also to the propagation of the scalar field through the
kinematical wave equation. Hence, in Secs. 7.5 and 7.6, for the sake of simplicity, we have chosen to
“recover” the shape function b(r) and thus the wormhole geometry from the kinematics of φ(r), i.e. Eqs.(7.7)
and (7.46), while the field equations were employed to analyze the energy conditions. When seeking for zero-
tidal-force solutions with a vanishing redshift function Φ(r) = 0, this provides a simpler method than that
in Ref.[19] for Brans-Dicke gravity, or Ref.[21] for hybrid metric-Palatini f (R) gravity which is equivalent
to the mixture of GR and the ω̂ = −3/2 Brans-Dicke gravity; they solve for b(r) from the dynamical wave
equation (i.e. Klein-Gordon equation) rather than the kinematical wave equation, and thus have to involve
the trace of the matter tensor T (m) = −ρm + Pr

m + 2PT
m right from the beginning. However, when looking

for more general solutions with Φ(r) , 0, one should still turn to the method in Refs.[19] and [21], as it
becomes insufficient to determine the two Morris-Thorne functions {Φ(r) , b(r)} from a single kinematical
wave equation.

To sum up, in this paper we have investigated the conditions to support traversable wormholes in LBD
gravity. The flaring-out condition, which arises from the wormholes’ embedding geometry and thus applies
to all metric gravities, requires the violation of the standard NEC in GR and the GNEC in modified grav-
ities. Moreover, the breakdown of the null energy condition simultaneously violates the weak, strong and
dominant energy conditions. With these considerations, we have derived the generalized energy conditions
Eqs.(7.14), (7.15), (7.18) and (7.19) for LBD gravity in the form that explicitly contains the effective grav-
itational coupling strength Geff = φ−1. These energy conditions have been used to construct the conditions
supporting Morris-Thorne-type wormholes, including the tensorial expressions Eqs.(7.25) and (7.26), and
their anisotropic-perfect-fluid forms in Sec. 7.4.2. Moreover, in Sec. 7.5 we have obtained an exact solution
of the Morris-Thorne wormhole with a vanishing redshift function and the shape function Eq.(7.35), which
is supplemented by the homogeneous scalar field φ(xα) = φ(r) in Eq.(7.33) and the potential V(φ) = V0φ

2.
With the flexible parameters in Eq.(7.35) for b(r) specified by {φ0 = r0 = V0 = 1, A > 0, ωL < −2/A}, we
have further confirmed the Lorentzian signature, the flaring-out condition, breakdown of the GNEC, and va-
lidity of the standard NEC. Finally, we also investigated zero-tidal-force wormholes in Brans-Dicke gravity,
and have shown that the condition ρm + Pr

m ≥ 0 is not so well protected as in LBD gravity.
Note that natural existence of dark energy becomes effective only at scales greater than 1Mpc [35].

Similarly in modified gravties, the higher-order terms or extra degrees of freedom are astrophysically recog-
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nizable only at galactic and cosmic levels. Hence, supporting wormholes by dark energy requires to mine
and condense dark energy, while supporting wormholes by modified gravity requires unusual distributions
of ordinary matter. For example, in LBD gravity, the joint effects of H(CP)

µν , H(GB)
µν and T (φ)

µν have to become
dominant over the physical matter source T (m)

µν , and the scalar field is preferred to be noncanonical. As a
closing remark, we have to admit that wormholes in existing studies are mainly theoretical exercises and
hypothetical objects, and there seems a long way ahead before wormholes can be artificially constructed and
put to astronomical use.
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Chapter 8. Local energy-momentum conservation in scalar-tensor-like

gravity with generic curvature invariants
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Abstract

For a large class of scalar-tensor-like gravity whose action contains nonminimal couplings between
a scalar field φ(xα) and generic curvature invariants {R} beyond the Ricci scalar R = Rα

α, we prove the
covariant invariance of its field equation and confirm/prove the local energy-momentum conservation.
These φ(xα)−R coupling terms break the symmetry of diffeomorphism invariance under a particle trans-
formation, which implies that the solutions to the field equation should satisfy the consistency condition
R ≡ 0 when φ(xα) is nondynamical and massless. Following this fact and based on the accelerated
expansion of the observable Universe, we propose a primary test to check the viability of the modified
gravity to be an effective dark energy, and a simplest example passing the test is the “Weyl/conformal
dark energy”.

PACS numbers: 04.20.Cv , 04.20.Fy , 04.50.Kd
Key words: energy-momentum conservation, diffeomorphism invariance, effective dark energy

8.1 Introduction

An important problem in relativistic theories of gravity is the divergence-freeness of the field equation and
the covariant conservation of the energy-momentum tensor. In general relativity (GR), Einstein’s equation
Gµν ≡ Rµν − 1

2 Rgµν = 8πGT (m)
µν has a vanishing covariant divergence due to the contracted Bianchi identities

∇µGµν ≡ 0, which guarantees the local energy-momentum conservation ∇µT (m)
µν = 0 or ∂ µ(

√
−g T (m)

µν ) = 0
for the matter tensor T (m)

µν . In modified gravities beyond GR and its Hilbert-Einstein action, the conservation
problem becomes more complicated and has attracted a lot of interest.

In Ref.[1], the generalized Bianchi identities were derived for the Palatini formulation of the nonlinear
f (R) gravity, and its local energy-momentum conservation was further confirmed in Ref.[2] by the equiva-
lence between Palatini f (R) and the ω = −3/2 Brans-Dicke gravity. Ref.[3] investigated a mixture of f (R)
and the generalized Brans-Dicke gravity, and proved the covariant conservation from both the metric and
the Palatini variational approaches. For Einstein-Cartan gravity which allows for spacetime torsion, both
the energy-momentum and the angular momentum conservation were studied in Ref.[4] by decomposing the

∗Email address: wtian@mun.ca
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Bianchi identities in Riemann-Cartan spacetimes. In Refs.[3, 5–7], the nontrivial divergences ∇µT (m)
µν were

analyzed for the situations where the matter Lagrangian density is multiplied by different types of curvature
invariants in the action. Also, interestingly in Ref.[8], the possible consequences after dropping the energy-
momentum conservation in GR, such as the modified evolution equation for the Hubble parameter, were
investigated.

Besides the covariant invariance ∇µT (m)
µν = 0 for the matter tensor T (m)

µν that has been standardly defined
in GR and modified gravities (cf. Eq.(8.20) below), the conservation problem has also been studied for more
fundamental definitions of energy-momentum tensors from a wider perspective, i.e. from a first-principle
approach making use of Noether’s theorem and the classical field theory. For example, the Noether-induced
canonical energy-momentum conservation for the translational invariance of the Lagrangian was studied in
Ref.[9] for general spacetimes with torsion and nonmetricity. The conservation equations and the Noether
currents for the Poincaré-transformation invariance were studied in Ref.[10] for the 3+1 and 2+1 dimensional
Einstein gravity and the 1+1 dimensional string-inspired gravity. Also, Refs.[11] and [12] extensively dis-
cussed the diffeomorphically invariant metric-torsion gravity whose action contains first- and second-order
derives of the torsion tensor, and derived the full set of Klein-Noether differential identities and various types
of conserved currents.

In this paper, our interest is the covariant invariance of such modified gravities whose actions involve
nonminimal couplings between arbitrary curvature invariants {R} and a background scalar field φ(xα). For
example, φ(xα) is coupled to the Ricci scalar R = Rαα in Brans-Dicke and scalar-tensor gravity in the Jordan
frame [13], to the Chern-Pontryagin topological density in the Chern-Simons modification of GR [14], and
to the Gauss-Bonnet invariant G = R2 − 4RαβRαβ + RαµβνRαµβν in the Gauss-Bonnet effective dark energy
[15]. In theory, one could consider the nonminimal coupling of φ(xα) to an arbitrarily complicated curvature
invariant beyond the Ricci scalar. In such situations, however, the covariant invariance of the field equation
has not been well understood, so we aim to carefully look into this problem by this work. Note that it
might sound more complete to analyze the global conservation ∂ µ[

√
−g(T (m)

µν + tµν)] = 0, where tµν refers
to the energy-momentum pseudotensor for the gravitational field, but to make this paper more clear and
readable, we choose to concentrate on the local conservation ∇µT (m)

µν = 0, while the incorporation of tµν will
be discussed separately.

This paper is organized as follows. In Sec. 8.2, we introduce the generic class of modified gravity with
the nonminimal φ(xα)−couplings to arbitrary Riemannian invariants {R}, calculate the divergence for dif-
ferent parts of the total action, prove the covariant invariance of the field equation, and confirm the local
energy-momentum conservation. Section 8.3 investigates the reduced situations that the scalar field is non-
dynamical and massless, and derives the consistency constraint R ≡ 0 which suppresses the breakdown
of diffeomorphism invariance. Finally, applications of the theories in Secs. 8.2 and 8.3 are considered in
Sec. 8.4. Throughout this paper, we adopt the geometric conventions Γαβγ = Γαβγ, Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · ·

and Rµν = Rαµαν with the metric signature (−,+ + +).
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8.2 General theory

8.2.1 Scalar-tensor-like gravity

Consider a theory of modified gravity or effective dark energy given by the following action,

S =

∫
d4x
√
−g

(
LHE + LG + LNC + Lφ

)
+ Sm , (8.1)

where LHE refers to the customary Hilbert-Einstein Lagrangian density as in GR,

LHE = R , (8.2)

while LG denotes the extended dependence on generic curvature invariants R,

LG = f (R, · · · ,R) . (8.3)

Here R = R
(
gαβ ,Rµανβ ,∇γRµανβ , . . .

)
is an arbitrary invariant function of the metric as well as the Rie-

mann tensor and its derivatives up to any order. For example, R can come from the fourteen1 algebraically
independent real invariants of the Riemann tensor [16] and their combinations, say RαβRαβ + RαµβνRαµβν +

RαµβνRαβRµν, which will yield fourth–order field equations; or differential Riemannian invariants that will
lead to sixth– or even higher–order field equations, like R∇α∇αR + RαµRβν∇α∇βRµν.

In the total Lagrangian density, LNC represents the nonminimal coupling effects,

LNC = h(φ) · f̂ (R, · · · ,R) , (8.4)

where h(φ) is an arbitrary function of the scalar field φ = φ(xα), and f̂ (R, · · · ,R) has generic dependence
on curvature invariants, with the dots “· · · ” in f̂ (R, · · · ,R) and the f (R, · · · ,R) above denoting different
choices of R. Moreover, the kinetics of φ(xα) is governed by

Lφ = −λ(φ) · ∇αφ∇αφ − V(φ) . (8.5)

In the (−,+ + +) system of conventions, φ(xα) is canonical if λ(φ) > 0, noncanonical if λ(φ) < 0, and
nondynamical if λ(φ) = 0.

Finally, as usual, the matter action Sm in Eq.(8.1) is given by the matter Lagrangian density via

Sm = 16πG
∫

d4x
√
−g Lm

(
gµν, ψm, ∂µψm

)
, (8.6)

where the variable ψm collectively describes the matter fields, and ψm is minimally coupled to the metric
tensor gµν. Unlike the usual dependence on ∂µψm in its standard form, Lm = Lm

(
gµν, ψm, ∂µψm

)
does not

contain derivatives of the metric tensor – such as Christoffel symbols or curvature invariants, in light of the
minimal gravity-matter coupling and Einstein’s equivalence principle; physically, this means Lm reduces to
the matter Lagrangian density for the flat spacetime in a freely falling local reference frame (i.e. a locally

1When one combines the spacetime geometry with matter fields in the framework of GR, the amount of independent algebraic
invariants will be extended to sixteen in the presence of electromagnetic or perfect-fluid fields [17].
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geodesic coordinate system).
To sum up, we are considering the modifications of GR into the total Lagrangian density L = R +

f (R, · · · ,R) + h(φ) · f̂ (R, · · · ,R) − λ(φ) · ∇αφ∇αφ − V(φ) + 16πGLm, which has been rescaled so that the
numerical coefficient 16πG is associated to Lm. It can be regarded as a mixture of the nonlinear higher-order
gravity L = R + f (R, · · · ,R) + 16πGLm in the metric formulation for the curvature invariants, and the
generalized scalar-tensor gravity L = h(φ) · f̂ (R, · · · ,R) − λ(φ) · ∇αφ∇αφ − V(φ) + 16πGLm in the Jordan
frame for the scalar field. Hereafter we will mainly work with actions, and for simplicity we will sometimes
adopt the total Lagrangian density in place of the corresponding action in full integral form.

8.2.2 Divergence-freeness of gravitational field equation

Pure curvature parts

For the Hilbert-Einstein part of the total action, i.e. SHE =
∫

d4x
√
−g LHE, its variation with respect to

the inverse metric yields the well-known result δSHE �
∫

d4x
√
−g Gµνδgµν. By the symbol � we mean the

equality after neglecting all total derivatives in the integrand or equivalently boundary terms of the action
when integrating by parts, and the Einstein tensor Gµν = Rµν − 1

2 Rgµν respects the twice-contracted Bianchi
identity ∇µGµν = 0.

For the gravitational action SG =
∫

d4x
√
−g LG for the extended dependence on generic Riemannian

invariants, formally we write down the variation as δSG �
∫

d4x
√
−g H(G)

µν δgµν, where H(G)
µν resembles and

generalizes the Einstein tensor by

H(G)
µν �

1
√
−g

δ
[√
−g f (R, · · · ,R)

]
δgµν

. (8.7)

Due to the coordinate invariance of SG, H(G)
µν satisfies the generalized contracted Bianchi identities [18, 19]

∇µ

 1
√
−g

δ
[√
−g f (R, · · · ,R)

]
δgµν

 = 0 , (8.8)

or just ∇µH(G)
µν = 0 by the definition of H(G)

µν . Similar to the relation Gµν = Rµν − 1
2 Rgµν, one can further

expand H(G)
µν to rewrite Eq.(8.8) into

∇µ
(

fRRµν +
∑

fRRµν −
1
2

f (R, · · · ,R) gµν

)
= 0 , (8.9)

where fR B ∂ f (R, · · · ,R)/∂R, fR B ∂ f (R, · · · ,R)/∂R, and Rµν � ( fRδR) /δgµν – note that in the calculation
of Rµν, fR will serve as a nontrivial coefficient if fR , constant and should be absorbed into the variation δR
when integrated by parts.
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Nonminimal φ(xα)-curvature coupling part

For the componential action SNC =
∫

d4x
√
−g LNC for the nonminimal coupling effect, formally we have

the variation δSNC �
∫

d4x
√
−g H(NC)

µν δgµν, where

H(NC)
µν �

1
√
−g

δ
[√
−g φ f̂ (R, · · · ,R)

]
δgµν

. (8.10)

Unlike H(G)
µν with Eq.(8.8), H(NC)

µν does not respect some straightforward generalized Bianchi identities; this
is because SNC involves the coupling with the background scalar field φ(xα) and is no longer purely tensorial
gravity. Thus, we will analyze the divergence of H(NC)

µν by the diffeomorphism of SNC.
Consider an arbitrary infinitesimal coordinate transformation xµ 7→ xµ + δxµ, where δxµ = kµ is an

infinitesimal vector field that vanishes on the boundary, kµ = 0 |∂Ω, so that the spacetime manifold is mapped
onto itself. SNC responds to this transformation by

δSNC =

∫
d4x h(φ) · ∂µ

[
kµ
√
−g f̂ (R, · · · ,R)

]
(8.11)

� −

∫
d4x
√
−g f̂ (R, · · · ,R) ·

(
hφ∂µφ

)
kµ, (8.12)

where hφ B dh(φ)/dφ. For Eq.(8.11), one should note that φ(xα) acts as a fixed background, as it only relies
on the coordinates (i.e. spatial location and time) and is independent of the spacetime metric; moreover, the
coordinate shift xµ 7→ xµ+kµ is an active transformation, under which the dynamical tensor field gµν and thus
√
−g f̂ (R, · · · ,R) transform, while the background field φ(xα) and the coordinate system parameterizing the

spacetime remain unaffected [20].
Under the active transformation xµ 7→ xµ + kµ, the metric tensor varies by gµν 7→ gµν + δgµν with δgµν =

£~kgµν = ∇µkν + ∇νkµ, and therefore gµν 7→ gµν + δgµν with δgµν = −£~kgµν = −∇µkν − ∇νkµ. Recalling the
definition of H(NC)

µν with H(NC)
µν being symmetric for the index switch µ↔ ν, one has

δSNC = −2
∫

d4x
√
−g H(NC)

µν ∇
µkν � 2

∫
d4x
√
−g

(
∇µH(NC)

µν

)
kν, (8.13)

Comparing Eq.(8.12) with Eq.(8.13), we conclude that H(NC)
µν has a nontrivial divergence for φ(xα) , constant,

and
∇µH(NC)

µν = −
1
2

f̂ (R, · · · ,R) · hφ∂νφ . (8.14)

In fact, Eq.(8.14) reflects the breakdown of diffeomorphism invariance in the presence of a fixed background
scalar field. As a comparison, it is worthwhile to mention that under an observer/passive transformation
where the observer or equivalently the coordinate system transforms, both the tensor fields and the back-
ground scalar field will be left unchanged, so the symmetry of observer-transformation invariance continues
to hold [20].
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Purely scalar-field part

Next, for the purely scalar-field part Sφ =
∫

d4x
√
−g Lφ with the variation δSφ �

∫
d4x
√
−g H(φ)

µν δgµν,
explicit calculations find

H(φ)
µν = −λ(φ) · ∇µφ∇νφ +

1
2

(
λ(φ) · ∇αφ∇αφ + V(φ)

)
gµν . (8.15)

Taking its contravariant derivative, we immediately obtain the nontrivial divergence

∇µH(φ)
µν = −

1
2

(
λφ · ∇αφ∇

αφ + 2λ(φ) ·2φ − Vφ
)
· ∇νφ , (8.16)

where λφ B dλ(φ)/dφ, Vφ B dV(φ)/dφ, and 2 denotes the covariant d’Alembertian with 2φ = gαβ∇α∇βφ =
1√
−g∂α(

√
−g gαβ∂βφ). On the other hand, extremizing the entire action Eq.(8.1) with respect to the scalar

field, i.e. δS/δφ = 0, one could obtain the kinematical wave equation

2λ(φ) ·2φ = − f̂ (R, · · · ,R) · hφ − λφ · ∇αφ∇αφ + Vφ . (8.17)

We regard it as “kinematical” because it does not explicitly relate the propagation of φ(xα) to T (m) = gµνT (m)
µν

for the matter distribution, while the “dynamical” wave equation can be obtained after combing Eq.(8.17)
with the trace of the gravitational field equation. Substitute Eq.(8.17) into the right hand side of Eq.(8.16),
and it follows that

∇µH(φ)
µν =

1
2

f̂ (R, · · · ,R) · hφ∇νφ , (8.18)

which exactly cancels out the divergence of H(NC)
µν in Eq.(8.14) for the nonminimal-coupling part SNC.

Covariant invariance of field equation and local energy-momentum conservation

To sum up, for the modified gravity or effective dark energy given by Eq.(8.1), its field equation reads

Gµν + H(G)
µν + H(NC)

µν + H(φ)
µν = 8πGT (m)

µν , (8.19)

where, unlike Gµν and H(φ)
µν , the exact forms of

{
H(G)
µν , H(NC)

µν

}
will not be determined until the concrete

expressions of {LG , LNC} or
{
f (R, · · · ,R) , f̂ (R, · · · ,R)

}
are set up. In Eq.(8.19), the energy-momentum

tensor T (m)
µν is defined as in GR via [21]

δSm = −
1
2
× 16πG

∫
d4x
√
−g T (m)

µν δg
µν with T (m)

µν B
−2
√
−g

δ
(√
−g Lm

)
δgµν

, (8.20)

with Sm rescaled by 16πG in Eq.(8.6). Instead of the variational definition Eq.(8.20), it had been suggested

that T (m)
µν could be derived solely from the equations of motion

∂Lm

∂ψm
− ∇µ

∂Lm

∂(∂µψm)
= 0 for the ψm field

in Lm
(
gµν, ψm, ∂µψm

)
[22]; however, further analyses have shown that this method does not hold a general

validity, and Eq.(8.20) remains as the most reliable approach to T (m)
µν [23].
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Adding up the (generalized) contracted Bianchi identities ∇µGµν = 0 and Eq.(8.8), and the nontrivial
divergences Eqs.(8.14) and (8.18), eventually we conclude that the left hand side of the field equation (8.19)
is divergence free, the local energy-momentum conservation ∇µT (m)

µν = 0 holds, and the tensorial equations
of motion for test particles remain the same as in GR.

In fact, the matter Lagrangian density Lm = Lm
(
gµν, ψm, ∂µψm

)
is a scalar invariant that respects the

diffeomorphism invariance under the active transformation xµ 7→ xµ + kµ, and Noether’s conservation law
directly yields

∇µ

 1
√
−g

δ
(√
−g Lm

)
δgµν

 = 0 , (8.21)

which can be recast into −
1
2
∇µT (m)

µν = 0. That is to say, under minimal geometry-matter coupling with

an isolated Lm in the total Lagrangian density, the matter tensor T (m)
µν in Eq.(8.20) has been defined in a

practical way so that T (m)
µν is automatically symmetric, Noether compatible, and covariant invariant, which

naturally guarantees the local conservation∇µT (m)
µν = 0. In this sense, one can regard the vanishing divergence

∇µ
(
Gµν + H(G)

µν + H(NC)
µν + H(φ)

µν

)
= 0 for Eq.(8.19) to either imply or confirm the conservation ∇µT (m)

µν = 0.
One should be aware that in the presence of nonminimal gravity-matter couplings, like R ·Lm or more

generally F (R, · · · ,R) ·Lm in the total Lagrangian density, the divergence ∇µT (m)
µν becomes nonzero as well

and obeys the relation ∇µT (m)
µν = F (R, · · · ,R)−1 ·

(
Lm gµν − T (m)

µν

)
· ∇µF (R, · · · ,R) instead [5–7], which

recovers the local conservation ∇µT (m)
µν = 0 for F (R, · · · ,R) = constant.

Also, at a more fundamental level, the T (m)
µν in Eq.(8.20) for GR and modified gravities, though practical

with all desired properties, is not defined from the first-principle approach, i.e. directly from symmetry
and Noether’s theorem in the classical field theory. In this larger framework, the T (m)

µν in Eq.(8.20) is often
referred to as the Hilbert energy-momentum tensor: it symmetrizes the canonical energy-momentum tensor
of translational invariance by adding a superpotential term, and it is a special case of the Belinfante energy-
momentum tensor that minimally couples to gravity [24].

8.3 Nondynamical massless scalar field

8.3.1 Nondynamical massive scalar field

Due to the λ(φ)-dependence in Sφ, its Lagrangian density becomes Lφ = −V(φ) when λ(φ) ≡ 0; considering
that V(φ) is usually related to the mass of the scalar field in cosmology and high energy physics, we will call
φ(xα) nondynamical and massive for the situation λ(φ) ≡ 0 and V(φ) , 0. As such, instead of producing
a propagation equation 2φ, the extremization δS/δφ = 0 leads to the following constraint for the potential
V(φ):

Vφ = f̂ (R, · · · ,R) · hφ . (8.22)

In the meantime, Eqs.(8.15), (8.16), and (8.17) reduce to become

H(φ)
µν =

1
2

V(φ) gµν and ∇µH(φ)
µν =

1
2

Vφ∇νφ =
1
2

f̂ (R, · · · ,R) · hφ∇νφ . (8.23)
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Thus, for a nondynamical yet massive scalar field, ∇µH(φ)
µν can still balance the nontrivial divergence ∇µH(NC)

µν

of the nonminimal φ(xα)-curvature coupling effect, while the potential or the mass of the scalar field is
restricted by the condition Eq.(8.22).

8.3.2 Nondynamical massless scalar field

Within the situation λ(φ) ≡ 0, it becomes even more interesting when the potential vanishes as well in
Eqs.(8.5), (8.15), (8.16), and (8.17); we will call the scalar field nondynamical and massless2 for λ(φ) = 0 =

V(φ). With Lφ = 0, the total action simplifies into

S =

∫
d4x
√
−g

(
R + LG + LNC + 16πGLm

)
. (8.24)

Since H(φ)
µν = 0 and ∇µH(φ)

µν = 0, the divergence ∇µH(NC)
µν for the nonminimal coupling part as in Eq.(8.14) can

no longer be neutralized. Instead, with ∇µGµν = 0, the generalized contracted Bianchi identities Eq.(8.8), and
the covariant conservation ∇µT (m)

µν = 0 under minimal geometry-mater coupling, the contravariant derivative
of the field equation Gµν + H(G)

µν + H(NC)
µν = 8πGT (m)

µν forces ∇µH(NC)
µν to vanish. Together with Eq.(8.14), this

implies that to be a solution to the gravity of Eq.(8.24), the metric tensor gµν must satisfy the constraint

f̂ (R, · · · ,R) ≡ 0 for φ(xα) , constant . (8.25)

Since the nonzero divergence ∇µH(NC)
µν = − 1

2 f̂ (R, · · · ,R) · hφ∂νφ measures the failure of diffeomorphism
invariance in the componential action SNC, the consistency condition Eq.(8.25) indicates that the symmetry
breaking of diffeomorphism invariance is suppressed in gravitational dynamics of Eq.(8.24).

Here one should note that the variation δS/δφ = 0 yields the condition f̂ (R, · · · ,R) · hφ = 0, which also
leads to f̂ (R, · · · ,R) ≡ 0 if the scalar field is nonconstant. In addition, the constraint f̂ (R, · · · ,R) ≡ 0 does
not mean H(NC)

µν = 0 or the removal of LNC from the action Eq.(8.24). This can be seen by an analogous
situation in GR: all vacuum solutions of Einstein’s equation have to satisfy the condition R ≡ 0, but the GR
action S =

∫
d4x
√
−g (R + 16πGLm) still holds in its standard form.

After LG and LNC get specified in Eq.(8.24), how can we know whether it yields a viable theory or not?
In accordance with Eq.(8.25), we adopt the following basic assessment.

Primary test: For the action Eq.(8.24) to be a viable modified gravity or effective dark energy carrying
a nondynamical and massless scalar field, an elementary requirement is that the function f̂ (R, · · · ,R) in
LNC vanishes identically for the flat and accelerating Friedmann-Robertson-Walker (FRW) Universe with
the metric

ds2 = −dt2 + a(t)2
3∑

i=1

(
dxi

)2
and ä(t) > 0 , (8.26)

where a(t) is the cosmic scale factor and the overdot means derivative with respect to the comoving time.

This primary test is inspired by the fact that the observable Universe is homogeneous and isotropic at

2We simply use “massive” and “massless” to distinguish the situation V(φ) , 0 from V(φ) = 0 when the scalar field is
nondynamical. However, we do not follow this usage to call φ(xα) “dynamical and massless” when {λ(φ) , 0,V(φ) = 0}, as it
sounds inappropriate to from the spirit of relativity.
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the largest cosmological scale, and the discovery that the Universe is nearly perfectly flat and currently
undergoing accelerated spatial expansion. These features have been extensively examined and received
strong support from the surveys on the large scale structures, the expansion history, and the structure-growth
rate of the Universe, such as the measurements of the distance modulus of Type Ia supernovae, peaks of the
baryon acoustic oscillation, and temperature polarizations of the cosmic microwave background. Clearly,
the primary test is updatable and subject to the progress in observational cosmology.

8.3.3 Weyl dark energy

Following the primary test above, one can start to explore possible modifications of GR into the total La-
grangian density L = R+ f (R, · · · ,R)+h(φ) f̂ (R, · · · ,R)+16πGLm and then check the consistency condition
f̂ (R, · · · ,R) ≡ 0 under the flat FRW metric Eq.(8.26). In the integrand of the Hilbert-Einstein action for GR,
the Ricci scalar R is the simplest curvature invariant formed by second-order derivatives of the metric; sim-
ilarly, we can start with the simplest situation that f̂ (R, · · · ,R) is some quadratic Riemannian scalar. One
possible example is the square of the conformal Weyl tensor Cαβγδ = Rαβγδ + 1

2

(
gαδRβγ − gαγRβδ + gβγRαδ −

gβδRαγ
)
+ 1

6

(
gαγgβδ−gαδgβγ

)
R, which is the totally traceless part in the Ricci decomposition of the Riemann

tensor. In this case, we consider the action

SC2 =

∫
d4x
√
−g

(
R + γφC2 + 16πGLm

)
, (8.27)

where γ , 0 is a coupling constant, and

C2 B CαµβνCαµβν ≡
1
3

R2 − 2RµνRµν + RµανβRµανβ . (8.28)

It is straightforward to verify that C2 ≡ 0 for arbitrary forms of the scale factor a(t) in the flat FRW metric.
We would like to dub Eq.(8.27) as the “Weyl dark energy” or “conformal dark energy”. The field equation
is Rµν − 1

2 Rgµν + γH(C2)
µν = 8πGT (m)

µν , where

H(C2)
µν = −

1
2
φC2gµν + 2φ

(
1
3

RRµν − 2R α
µ Rαν + RµαβγR αβγ

ν

)
+

2
3

(
gµν2 − ∇µ∇ν

)
(φR) − 22

(
φRµν

)
+ 2∇α∇ν

(
φR α

µ

)
+ 2∇α∇µ

(
φR α

ν

)
− 2gµν∇α∇β

(
φRαβ

)
+ 4∇β∇α

(
φRαµβν

)
, (8.29)

and according to Eq.(8.14), its covariant divergence is

∇µH(C2)
µν = −

γ

2
C2 ∇νφ . (8.30)

The Weyl dark energy SC2 , where the scalar field is nondynamical and massless, can be generalized into the
dynamical case

S =

∫
d4x
√
−g

(
R + h(φ)C2 − λ(φ) · ∇αφ∇αφ − V(φ) + 16πGLm

)
, (8.31)

for which the constraint C2 ≡ 0 is no longer necessary and should be removed.
The complete validity of the Weyl dark energy SC2 or its extension Eq.(8.31), including the value of
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the coupling strength γ in SC2 , should be carefully constrained by the observational data from astronomical
surveys. Following the field equation of SC2 , consider a C2CDM model (i.e. C2 cold dark matter) for the
Universe instead of ΛCDM. Then the first Friedmann equation under the flat FRW metric reads

H2 =
8
3
πG

[
ρM0

(a0

a

)3
+ ρr0

(a0

a

)4
+ ρC2

]
, (8.32)

where the densities of nonrelativistic matter ρM(t) and relativistic matter ρr(t) have been related to their
present-day values ρM0 and ρr0 via by the continuity equation ρ̇+ 3Hρ(1 + w) = 0, with the equation of state
parameters being wM = 0 and wr = 1/3, respectively. Also, H B ȧ/a is the evolutionary Hubble parameter,
and ρC2 denotes the effective energy density of the Weyl dark energy,

ρC2 = γ [5φ̇
ä
a

ȧ
a
− 2φ̇

ä2

a2

ȧ
a
− φ̇

ȧ3

a3 − 2φ̇
ȧ5

a5 + 5φ
...
a
a

ȧ
a

+ 2φ
ä3

a3

−4φ
ä
a

ȧ2

a2 − 4φ
...
a
a

ä
a

ȧ
a

+ 4φ
ä2

a2

ȧ2

a2 − 6φ
ä
a

ȧ4

a4 + 8φ
ȧ6

a6

]
.

(8.33)

Employing the cosmological redshift z B a0/a − 1 as well as the replacements ä/a = Ḣ + H2 and
...
a/a =

Ḧ + 3ḢH + H3, Eq.(8.32) can be parameterized into

H(z; H0, p) = H0

√
ΩM0(1 + z)3 + Ωr0(1 + z)4 + ΩC2 , (8.34)

where H0 represents the Hubble constant H(z = 0), ΩM0 = 8πGρM0/(3H2
0), Ωr0 = 8πGρr0/(3H2

0), and

ΩC2 =
32πG

H2
0

γ

{
φ̇H

[
5
(
Ḣ + H2

)
− 2

(
Ḣ + H2

)2
− H2 − 2H4

]
+ φH

(
5 − 4Ḣ − 4H2

) (
Ḧ + 3ḢH + H3

)
+ 8φH6 + φ

(
Ḣ + H2

) [ (
2Ḣ + 2H2 + 4H2

) (
Ḣ + H2

)
− 4H2 − 6H4

]}
. (8.35)

Typically, we can use the Markov-Chain Monte-Carlo engine CosmoMC [25] to explore the parameter space
p = (ΩM0,Ωr0, γ) for the Weyl dark energy SC2 , and find out how well it matches the various sets of
observational data. This goes beyond the scope of this paper and will be analyzed separately.

8.4 Applications

8.4.1 Chern-Simons gravity

The four-dimensional Chern-Simons modification of GR was proposed by the action [14] (note that not to
confuse with the traditional gauge gravity carrying a three-dimensional Chern-Simons term [26])

SCS =

∫
d4x
√
−g

(
R + γφ

∗RR
√
−g

+ 16πGLm

)
. (8.36)

The scalar field φ = φ(xα) is nonminimally coupled to the Chern-Pontryagin density ∗RR B ∗RαβγδRαβγδ =
1
2εαβµνR

µν
γδR

αβγδ, where ∗Rαβγδ B 1
2εαβµνR

µν
γδ is the left dual of the Riemann tensor, and εαβµν represents

the totally antisymmetric Levi-Civita pseudotensor with ε0123 =
√
−g and ε0123 = 1/

√
−g. The field equation
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reads Rµν − 1
2 Rgµν + γH(CP)

µν = 8πGT (m)
µν , where H(CP)

µν � 1√
−g

δ(φ∗RR)
δgµν collects the contributions from the φ(xα)-

coupled Chern-Pontryagin density,

√
−g H(CP)

µν = 2∂ξφ ·
(
εξµαβ∇

αRβν + εξναβ∇
αRβµ

)
+ 2∂α∂βφ ·

(
∗Rα β

µ ν + ∗Rα β
ν µ

)
. (8.37)

According to the general theory in Secs. 8.2.2 and 8.3.2, the Chern-Simons gravity Eq.(8.36) involves
a nondynamical and massless scalar field. Identifying f̂ (R, · · · ,R) as ∗RR/

√
−g and with h(φ) = γφ in

Eqs.(8.14) and (8.25), we obtain the divergence

∇µH(CP)
µν = −

γ∗RR
2
√
−g
· ∂νφ , (8.38)

as well as the constraint ∗RR ≡ 0 for nontrivial φ(xα). It can be easily verified that ∗RR vanishes for the
flat and accelerating FRW Universe, and thus passes the primary test in Sec. 8.3.2. Also the condition
∗RR ≡ 0 only applies to the action Eq.(8.36), and is invalid for the massive Chern-Simons gravity L =

R + γφ
∗RR√
−g − V(φ) + 16πGLm or the dynamical case L = R + γφ

∗RR√
−g − λ(φ) · ∇αφ∇αφ + 16πGLm.

8.4.2 Reduced Gauss-Bonnet dark energy

The Gauss-Bonnet dark energy was introduced by the action S(1)
GB =

∫
d4x
√
−g

(
R + h(φ)G − λ̄∇αφ∇αφ −

V(φ) + 16πGLm

)
[15], where λ̄ ∈ {±1, 0}, and the scalar field is nonminimally coupled to the Gauss-Bonnet

invariant G B
(

1
2εαβγζR

γζηξ
)
·
(

1
2εηξρσRρσαβ

)
≡ R2 − 4RαβRαβ + RαµβνRαµβν. If φ(xα) is nondynamical with

λ̄ = 0, the action S(1)
GB reduces to become S(2)

GB =
∫

d4x
√
−g

(
R + h(φ)G − V(φ) + 16πGLm

)
, and according

to Eq.(8.22) with f̂ (R, · · · ,R) identified as the Gauss-Bonnet invariant, V(φ) has to satisfy the constraint
Vφ = G hφ. Moreover, the nonminimally coupled h(φ)G part in S(1)

GB and S(2)
GB contributes to the field equation

by

H(GB)
µν = 2R

(
gµν2 − ∇µ∇ν

)
h + 4R α

µ ∇α∇νh + 4R α
ν ∇α∇µh

− 4Rµν2h − 4gµν · Rαβ∇α∇βh + 4Rαµβν∇β∇αh , (8.39)

where, compared with the original field equation in Ref.[15], we have removed the algebraic terms in H(GB)
µν

by the Bach-Lanczos identity 1
2Ggµν ≡ 2RRµν − 4R α

µ Rαν − 4RαµβνRαβ + 2RµαβγR αβγ
ν [27]. The divergence

of H(GB)
µν , in accordance with Eq.(8.14), reads

∇µH(GB)
µν = −

1
2
G · hφ∂νφ . (8.40)

However, it would be problematic if one further reduces S(2)
GB into

S
(3)
GB =

∫
d4x
√
−g

(
R + h(φ)G + 16πGLm

)
, (8.41)

where φ(xα) is both nondynamical and massless. The metric tensor has to satisfy G ≡ 0 to be a solution to
the field equation Rµν − 1

2 Rgµν + H(GB)
µν = 8πGT (m)

µν for the reduced Gauss-Bonnet dark energy S (3)
GB. For the
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flat FRW Universe with the metric Eq.(8.26), the Gauss-Bonnet invariant is

G = 24
ȧ2ä
a3 , (8.42)

and thus G vanishes only if the Universe were of static state (ȧ = 0) or constant acceleration (ä = 0). Hence,
the constraint G ≡ 0 for S (3)

GB is inconsistent with the cosmic acceleration, which indicates that unlike S (1)
GB

and S (2)
GB, S (3)

GB is oversimplified and can not be a viable candidate of effective dark energy.

8.4.3 Generalized scalar-tensor theory

SinceSHE andSG in Eq.(8.1) respect the diffeomorphism invariance and the (generalized) contracted Bianchi
identities, in this subsection we will ignore them and focus on the following scalar-tensor-type gravity in the
Jordan frame:

SST =

∫
d4x
√
−g

(
f (R, φ) + LNC + Lφ + 16πGLm

)
=

∫
d4x
√
−g

(
f (R, φ) + h(φ) · f̂ (R, · · · ,R) − λ(φ) · ∇αφ∇αφ − V(φ) + 16πGLm

)
,

(8.43)

where f (R, φ) is a hybrid function of the Ricci scalar and the scalar field. f (R, φ) contributes to the field
equation by

H f (R,φ)
µν �

1
√
−g

δ
(√
−g f (R, φ)

)
δgµν

= −
1
2

f (R, φ) · gµν + fRRµν +
(
gµν2 − ∇µ∇ν

)
fR , (8.44)

where fR = fR(R, φ) = ∂ f (R, φ)/∂R. With the Bianchi identity ∇µ
(
Rµν − 1

2 Rgµν
)

= 0 and the third-order-
derivative commutator (∇ν2 −2∇ν) fR = −Rµν∇µ fR, explicit calculations yield

∇µH f (R,φ)
µν = −

1
2

fφ · ∇νφ , (8.45)

where fφ = fφ(R, φ) = ∂ f (R, φ)/∂φ. On the other hand, the kinematical wave equation δSST/δφ = 0 reads
2λ(φ)·2φ = − fφ− f̂ ·hφ−λφ ·∇αφ∇αφ+Vφ, which recasts the divergence ∇µH(φ)

µν = − 1
2

(
λφ ·∇αφ∇

αφ+2λ(φ)·2φ

−Vφ
)
· ∇νφ as in Eq.(8.16) into

∇µH(φ)
µν =

1
2

(
fφ + f̂ (R, · · · ,R) · hφ

)
· ∇νφ . (8.46)

Hence, with Eqs.(8.14), (8.45) and(8.46), we immediately learn that the field equation H f (R,φ)
µν +H(NC)

µν +H(φ)
µν =

8πGT (m)
µν for the scalar-tensor-type gravity SST is divergence free. By the total Lagrangian density for the

sake of simplicity, the concretization of Eq.(8.43) includes, for example, standard Brans-Dicke gravity L =

φR− ωBD
φ ∇αφ∇

αφ+16πLm (where Newton’s constant G is encoded into φ−1 in the spirit of Mach’s principle)

[13], generalized Brans-Dicke gravity L = φR − ω(φ)
φ ∇αφ∇

αφ − V(φ) + 16πGLm with a self-interaction

potential, Lovelock-Brans-Dicke gravity L = φ
(
R + a√

−g
∗RR + bG

)
−

ωL
φ ∇αφ∇

αφ − V(φ) + 16πGLm [27],

Lovelock-scalar-tensor gravity L = f1(φ)R +
f2(φ)
√
−g
∗RR + f3(φ)G − ω(φ) · ∇αφ∇αφ − V(φ) + 16πGLm [27],

minimal dilatonic gravity L = φR−2ΛU(φ) [28], Gauss-Bonnet dilatonic gravity L = R−∇αφ∇αφ+e−γφG
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or L = e−γφ(R − ∇αφ∇αφ + G) motivated by the low-energy heterotic string theory [29], and the standard
scalar-tensor gravity L = F(φ)R− Z(φ) · ∇αφ∇α −V(φ) + 16πGLm [30]; all these examples satisfy the local
energy-momentum conservation ∇µT (m)

µν = 0 and have divergence-free field equations.

8.4.4 Hybrid metric-Palatini f (R) gravity

So far we have been using the metric formulation for the curvature invariants; however, the local conser-
vation can be proved for the Palatini or hybrid metric-Palatini f (R) gravity without referring to the Palatini
formulation of the (generalized) Bianchi identities. Consider the following hybrid metric-Palatini f (R) action

S
(1)
H f =

∫
d4x
√
−g

(
R + f (R̂) + 16πGLm

)
, (8.47)

where R is the usual Ricci scalar for the metric gµν, while R̂ = R̂(g, Γ̂) = gµνR̂µν(Γ̂) denotes the Palatini
Ricci scalar, with the Palatini Ricci tensor given by R̂µν(Γ̂) = R̂αµαν(Γ̂) = ∂αΓ̂ανµ − ∂νΓ̂

α
αµ + Γ̂ααζ Γ̂

ζ
µν − Γ̂αµζ Γ̂

ζ
αν.

Variation of SH f with respect to the independent connection Γ̂αµν yields ∇̂α(
√
−g fR̂gµν) = 0, where ∇̂ is the

covariant derivative of the connection and fR̂ B d f (R̂)/dR̂. Thus, ∇̂ is compatible with the auxiliary metric
fR̂gµν C ĝµν, as

√
−ĝ ĝµν =

√
−g fR̂gµν. Relating ĝµν to gµν by the conformal transformation gµν 7→ ĝµν, and

accordingly rewriting R̂µν and R̂ in the metric formulation, one could find that S(1)
H f is equivalent to [31]

S
(2)
H f =

∫
d4x
√
−g

(
R + φR +

3
2φ
∇αφ∇

αφ − V(φ) + 16πGLm

)
, (8.48)

where φ(xα) = fR̂(R̂) and V(φ) = fR̂R̂− f (R̂). S(2)
H f is just the mixture of GR and the ωBD = −3/2 Brans-Dicke

gravity. Recall that Eq.(8.43) has employed the generic function f (R, φ) for SST, which includes the hybrid
situations like f (R, φ) = R + φR. Hence, following Sec. 8.4.3, it is clear that the hybrid scalar-tensor gravity
S

(2)
H f and thus the hybrid metric-Palatini f (R) gravity S(1)

H f have divergence-free field equations and respect
the local energy-mentum conservation.

8.5 Conclusions

In this paper, we have investigated the covariant invariance of the field equation for a large class of hybrid
modified gravity L = R + f (R, · · · ,R) + h(φ) · f̂ (R, · · · ,R)−λ(φ) · ∇αφ∇αφ−V(φ) + 16πGLm. For the four
components LHE = R, LG = f (R, · · · ,R), LNC = h(φ) · f̂ (R, · · · ,R), and Lφ = −λ(φ) · ∇αφ∇αφ−V(φ), we
have calculated their contributions

{
Gµν,H

(G)
µν ,H

(NC)
µν ,H(φ)

µν

}
to the gravitational field equation along with the

respective divergences, which proves the divergence-freeness of the field equation (8.19) and confirms/proves
the local energy-momentum conservation under minimal gravity-matter coupling.

H(NC)
µν and H(φ)

µν fail to obey the generalized contracted Bianchi identities due to the presence of the
background scalar field φ(xα), but fortunately, the two nontrivial divergences ∇µH(NC)

µν and ∇µH(φ)
µν exactly

cancel out each other. When φ(xα) is nondynamical and massless, i.e. λ(φ) = 0 = V(φ), the divergence
∇µH(NC)

µν = − 1
2 f̂ (R, · · · ,R) · hφ∂νφ is forced to vanish, which implies the constraint f̂ (R, · · · ,R) ≡ 0 for

nonconstant φ(xα). We have suggested a primary viability test for the gravity L = R + f (R, · · · ,R) + h(φ) ·
f̂ (R, · · · ,R) + 16πGLm by requiring that f̂ (R, · · · ,R) vanishes identically for the flat and accelerating FRW
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Universe, and a simplest example is the Weyl dark energy L = R + γφC2 + 16πGLm.
With the general theory developed in Secs. 8.2.2 and 8.3.2, we have considered the applications to the

Chern-Simons gravity, Gauss-Bonnet dark energy, and various (generalized) scalar-tensor gravities. In fact,
the theory LST = f (R, φ) + h(φ) · f̂ (R, · · · ,R)−λ(φ) · ∇αφ∇αφ−V(φ) + 16πGLm in Sec. 8.4.3 can be further
extended into LEST = f (R, · · · ,R, φ) − λ(φ) · ∇αφ∇αφ − V(φ) + 16πGLm, for which we conjecture that the
covariant conservation still holds, with

H( f )
µν �

1
√
−g

δ
[√
−g f (R, · · · ,R, φ)

]
δgµν

and ∇µH( f )
µν = −

1
2

fφ(R, · · · ,R, φ) · ∇νφ . (8.49)

However, this divergence relation has not yet been proved in this paper, and we hope it could be solved in
future.

In prospective studies, we will take into account the existent candidates of the energy-momentum pseu-
dotensor tµν for the gravitation field (cf. Ref.[32] for a review), and discuss the global conservation ∂ µ[

√
−g(T (m)

µν

+tµν)] = 0. Also, we will make use of more fundamental definitions of the energy-momentum tensor, and
look deeper into the conservation problem in modified gravities from the perspective of Noether’s theorem
and the classical field theory.
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Chapter 9. Big Bang nucleosynthesis in power-law f (R) gravity: Corrected
constraints from the semianalytical approach [arXiv:1511.03258]
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Abstract

In this paper we investigate the primordial nucleosynthesis in L = ε2−2βRβ + 16πm−2
Pl Lm gravity,

where ε is a constant balancing the dimension of the field equation, and 1 < β < (4 +
√

6)/5 for the
positivity of energy density and temperature. From the semianalytical approach, the influences of β
to the decoupling of neutrinos, the freeze-out temperature and concentration of nucleons, the opening
of deuterium bottleneck, and the 4He abundance are all extensively analyzed; then β is constrained to
1 < β < 1.05 for ε = 1 [s−1] and 1 < β < 1.001 for ε = mPl (Planck mass), which correspond to the
extra number of neutrino species 0 < ∆Neff

ν ≤ 0.6296 and 0 < ∆Neff
ν ≤ 0.0123, respectively. Supple-

mentarily from the empirical approach, abundances of the lightest elements (D, 4He, 7Li) are computed
by the model-independent best-fit formulae for nonstandard primordial nucleosynthesis, and we find the
constraint 1 < β ≤ 1.0505 and equivalently 0 < ∆Neff

ν ≤ 0.6365; also, the 7Li abundance problem cannot
be solved by L = ε2−2βRβ + 16πm−2

Pl Lm gravity within this domain of β.

PACS numbers 26.35.+c, 98.80.Ft, 04.50.Kd
Key words Big Bang nucleosynthesis, power-law f (R) gravity, thermal history

9.1 Introduction

In the past few decades, the increasingly precise measurements for the cosmic abundances of the lightest
elements have imposed stringent constraints to the thermal history of the very early Universe. The observed
protium, deuterium (D) and 4He abundances prove to agree well with those predicted by the standard Big
Bang nucleosynthesis (BBN) in general relativity (GR).

As is well known, any modification to the Hubble expansion rate and the time-temperature correspon-
dence would affect the decoupling of neutrinos, the freeze-out of nucleons, the time elapsed to open the
deuterium bottleneck, and the abundances of 4He along with other lightest elements. To better meet the ob-
servations regarding the very early Universe, nonstandard BBN beyond the SU(3)C×SU(2)W×U(1)Y minimal
standard model [1] or beyond the standard gravitational framework of GR have received a lot of attention,
such as nonstandard BBN in scalar-tensor gravity [2–5], Brans-Dicke gravity with a varying energy term
related to the cosmic radiation background [6], f (R) gravity [7–9], and f (G) generalized Gauss-Bonnet
gravity [10]. Also, Ref.[11] tried to recover the standard BBN within Brans-Dicke gravity under the unusual
assumption that the BBN era were dominated by the Brans-Dicke scalar field rather than the standard-model

∗Email address: wtian@mun.ca
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radiation. Nonstandard BBN helps constrain these modified gravities from the properties of the very early
Universe, which supplements the more popular constraints from the accelerated expansion of the late-time
Universe.

To our interest, nonstandard BBN in L = m2−2β
Pl Rβ+16πm−2

Pl Lm gravity has been involved in Ref.[7] and
studied in Refs.[8, 9], where mPl refers to the Planck mass. Ref.[7] proposed the power-law f (R) gravity L =

m2−2β
Pl Rβ+ 16πm−2

Pl Lm with the dimension of Rβ balanced by m2−2β
Pl , and checked the decoupling temperature

of nucleons; however, the BBN energy scale was extended to T ≤ 100 MeV, and in the “interaction rate
= expansion rate” criterion, the interconversion rate Γnp between neutrons and protons was inappropriately
approximated by that at the high-temperature domain T � mn − mp ' 1.2933 MeV. Ref.[8] endeavored
to complete the BBN research of Ref.[7], and calculated the primordial 4He synthesis in L = m2−2β

Pl Rβ +

16πm−2
Pl Lm gravity from the semianalytical approach; however, we noticed that it still faces the following

problems:

(1) The decoupling of neutrinos, which is the initial event towards BBN, was not analyzed.

(2) For the concentration of free neutrons, its evolution was numerically calculated using the standard
Hubble expansion rate of GR rather than the generalized f (R) Hubble rate.

(3) The temperature at the opening of the deuterium bottleneck relies on the time-temperature relation and
varies for different value of β, but it was manually fixed at 1/25 of the deuteron binding energy.

(4) Due to the inconsistent setups of the geometric conventions, the domain of β was incorrectly set to be
(4 −

√
6)/5 < β < 1, which had led to quite abnormal behaviors for β ≈ (4 −

√
6)/5 (this is a common

mistake in Refs.[7, 8]).

(5) With the dimension of Rβ balanced by m2−2β
Pl , L = m2−2β

Pl Rβ + 16πm−2
Pl Lm gravity is mathematically

and gravitationally equivalent to

I =

∫
d4x
√
−g

(
Rβ + 16πm2β−4

Pl Lm
)

=

∫
d4x
√
−g

(
Rβ + 16πG2−βLm

)
, (9.1)

and thus the deviation between f (R) = R and Rβ (i.e. the non-unity of β) would indicate a change
of the matter-gravity coupling strength from Newton’s contant G to G2−β. Consequently, if aiming
to constrain the parameter β for L = m2−2β

Pl Rβ + 16πm−2
Pl Lm gravity, one just needs to examine the

measurements of Newton’s constant rather than recalculate testable processes like BBN.

Ref.[9] solved the problem (4) by correcting the domain of β into 1 < β < (4 +
√

6)/5, and re-constrained
the parameter β by the abundances of both deuterium and 4He. However, the computations were carried out
using the public BBN code, and the details regarding the influences of β to the BBN procedures were not
brought to light. In addition, the problem (5) still exists in Ref.[9].

In this work, we aim to overcome the problems (1)-(5) above, and reveal every detail of the BBN process
in f (R) ∝ Rβ gravity. This paper is analyzed as follows. Section 9.2 introduces the generalized Friedmann
equations for the radiation-dominated Universe in generic f (R) gravity, sets up the power-law f (R) gravity
with the total Lagrangian density L = ε2−2βRβ + 16πm−2

Pl Lm (ε being some constant balancing the dimen-
sions of the field equation), with the nonstandard Hubble expansion and the generalized time-temperature
relation derived. The decoupling of neutrinos is studied in Sec. 9.3, while the freeze-out temperature T f

n
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and concentration X f
n for free neutrons are computed in Sec. 9.4. In Sec. 9.5, the opening of the deuterium

bottleneck and the primordial 4He abundance are found out, which exerts constraints to the parameter β com-
pared with the 4He abundance in astronomical measurement. The semianalytical discussion in Secs. 9.3∼9.5
for L = ε2−2βRβ + 16πm−2

Pl Lm gravity is taken the GR limit β → 1+ in Sec. 9.7 to recover the standard
BBN. Moreover, the primordial abundances of deuterium, 4He and 7Li are calculated in Sec. 9.8 from the
empirical approach using the model-independent best-fit formulae, which supplements the results from the
semianalytical approach.

Throughout this paper, for the physical quantities involved in the thermal history of the early Universe,
we use the natural unit system of particle physics which sets c = ~ = kB = 1 and is related to le système
international d’unités by 1 MeV = 1.1604× 1010 kelvin = 1.7827× 10−30 kg = (1.9732× 10−13 meters)−1 =

(6.5820 × 10−22 seconds)−1. On the other hand, for the spacetime geometry, we adopt the conventions
Γαβγ = Γαβγ, Rαβγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ · · · and Rµν = Rαµαν with the metric signature (−,+ + +).

9.2 Gravitational framework: from generic to power-law f (R) gravity

As a straightforward generalization of GR with the Hilbert-Einstein action IHE =
∫ √
−g d4x

(
R+16πm−2

Pl Lm
)
,

f (R) gravity is given by the action I =
∫

d4x
√
−g

[
f (R, ε) + 16πm−2

Pl Lm
]
, where ε is some constant (not an

independent variable) balancing the dimensions of the field equation (see Ref.[12] for comprehensive re-
views of f (R) gravity in mathematical relativity without the ε term), and the Planck mass mPl takes the value
mPl B 1/

√
G ' 1.2209 × 1022 MeV. Variation of the f (R) action with respect to the inverse metric, i.e.

δI/δgµν = 0 yields the field equation

fRRµν −
1
2

f +
(
gµν2 − ∇µ∇ν

)
fR = 8πm−2

Pl T
(m)
µν , (9.2)

where fR B d f (R, ε)/dR, 2 B gαβ∇α∇β denotes the covariant d’Alembertian, and the stress-energy-
momentum tensor T (m)

µν of the physical matter is defined by the matter Lagrangian density Lm via T (m)
µν B

−2√
−g

δ(√−gLm)
δgµν .

This paper considers the spatially flat, homogeneous and isotropic Universe, which, in the (t, r, θ, ϕ)
comoving coordinates, is depicted by the Friedmann-Robertson-Walker (FRW) line element ds2 = −dt2 +

a(t)2dr2 +a(t)2r2(dθ2 +sin2θdϕ2), where a(t) denotes the cosmic scale factor. Assume a perfect-fluid content
T
µ(m)
ν = diag[−ρ, P, P, P], where the energy density ρ and the pressure P satisfy the equation of state ρ = 3P

around BBN that is absolutely radiation-dominated (with negligible contaminations from baryons). Then
Eq.(9.2) under the flat FRW metric yields the modified Friedmann equations

3
ä
a

fR −
1
2

f − 3
ȧ
a

fRRṘ = −8πm−2
Pl ρ , (9.3)

(
ä
a

+ 2
ȧ2

a2

)
fR −

1
2

f − fRRR̈ − fRRR(Ṙ)2 − 3
ȧ
a

fRRṘ = 8πm−2
Pl P , (9.4)

where overdot denotes the time derivative, fRR B d2 f (R, ε)/dR2, and fRRR B d3 f (R, ε)/dR3. Moreover, the
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equation of covariant conservation ∇µT (m)
µν = 0 leads to

ρ̇ + 3
ȧ
a

(ρ + P) = 0 , (9.5)

which integrates to yield ρ = ρ0
(

a0
a

)4
∝ a−4 under radiation dominance, with {ρ0, a0} being the present-

day values of {ρ, a}. Near the BBN era, ρ attributes to the energy densities of all relativistic species,
ρ =

∑
ρi(boson) + 7

8
∑
ρ j(fermion) =

∑ π2

30 g(b)
i T 4

i (boson) + 7
8
∑ π2

30 g( f )
j T 4

j (fermion), where {g(b)
i , g( f )

j } are
the numbers of intrinsic degrees of freedom (mainly spin and color) for bosons and fermions, respectively.
Thus, one has the generalized Stefan-Boltzmann law

ρ =
π2

30
g∗T 4 with g∗ B

∑
boson

g(b)
i

(Ti

T

)4
+

7
8

∑
fermion

g( f )
j

(
T j

T

)4

, (9.6)

where, T ≡ Tγ refers to photons’ temperature, which is the common temperature of all relativistic species in
thermal equilibrium.

This paper works with the specific power-law f (R) gravity

I =

∫
d4x
√
−g

(
ε2−2βRβ + 16πm−2

Pl Lm
)
, (9.7)

where β = constant > 0, and ε has the unit of [s−1] or [MeV]. Among Eqs.(9.3), (9.4) and (9.5), only
two equations are independent, and we choose to work with Eqs.(9.3) and (9.5). With ρ = ρ0

(
a0
a

)4
and

f (R) = ε2−2βRβ, the generalized first Friedmann equation (9.3) yields

a = a0tβ/2 ∝ tβ/2 , H B
ȧ
a

=
β

2t
, and (9.8)

[
12(β − 1)

β
H2

]β (
− 5β2 + 8β − 2

)
β − 1

= 32πε2β−2m−2
Pl ρ , (9.9)

where H refers to the cosmic Hubble parameter. Note that unlike the approximated power-law ansatz a =

a0tα (α = constant > 0) for generic f (R) gravity, a = a0tβ/2 is an exact solution to L = ε2−2βRβ+16πm−2
Pl Lm

gravity for the radiation-dominated Universe; for GR with β → 1+, Eq.(9.8) recovers the behavior a ∝ t1/2

which respects the GR Friedmann equation 3ȧ2/a2 = −8πm−2
Pl ρ0

(
a0
a

)4
.

Moreover, the weak, strong and dominant energy conditions for classical matter fields require the energy
density ρ to be positive definite. As a consequence, the positivity of the left hand side of Eq.(9.9) limits β to
the domain

1 < β <
4 +
√

6
5
. 1.2899 ; (9.10)

note that the Ricci scalar for the flat FRW metric with a = a0tβ/2 reads1 R = 6
(

ä
a + ȧ2

a2

)
=

3β(β−1)
t2 , so R > 0

and Rβ is always well defined in the domain Eq.(9.10).
Eqs.(9.6) and (9.9) imply that the expansion rate of the Universe is related to the radiation temperature

1With ä/a = Ḣ + H2, ä/a = R/6 − H2 and ä/a + 2ȧ2/a2 = R/2 − 2Ḣ − 3H2, the Friedmann equations (9.3) and (9.4) can also
be written into

H2 =
1

3 fR

(
8πm−2

Pl ρ +
R fR − f

2
− 3H fRRṘ

)
, (9.11)
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by

H =

√
β

12(β − 1)
×


√

(β − 1) g∗
−5β2 + 8β − 2


1/β 

√
32π3

30
T 2

mPl

1/β

ε1− 1
β

=

√
β

12(β − 1)
×


√

(β − 1) g∗
−5β2 + 8β − 2


1/β (

0.7164 · T 2
MeV

)1/β
ε

1− 1
β

s [s−1] ,

(9.13)

where TMeV refers to the pure value of temperature in the unit of MeV, T = TMeV × [1 MeV], εs is the value
of ε in the unit of [s−1], and numerically T 2/mPl = T 2

MeV/8.0276 [s−1].
Moreover, as time elapses after the Big Bang, the space expands and the Universe cools. Eq.(9.13) along

with H = β/(2t) leads to the time-temperature relation

t =
√

3β(β − 1)


√
−5β2 + 8β − 2

(β − 1) g∗


1/β √ 30

32π3

mPl

T 2

1/β

ε
1
β−1

=
√

3β(β − 1)


√
−5β2 + 8β − 2

(β − 1) g∗


1/β 1.3959

T 2
MeV

1/β

ε
1
β−1
s [s] .

(9.14)

Eqs.(9.13) and (9.14) play important roles in studying the primordial nucleosynthesis and the gravitational
baryogenesis. The candidate of ε is not unique, and for the calculations in the subsequent sections, we will
utilize two choices of ε to balance the dimensions:

(i) ε2 = mPlH0ΩM0. mPl is the energy scale of the Planck era, the Hubble constant H0 represents the
present-day energy scale, while the fractional density ΩM0 emphasizes the effect of physical mat-
ter in modified gravity. Numerically, following the 2015 PDG and Planck data [23, 24], one has
mPl [MeV→ 1/s] ' 0.1854 × 1044 [s−1], ΩM0 = 0.3089, and H0 = 67.74 km/s/Mpc = 2.1954 ×
10−18 s−1 (with 1 Mpc= 3.0856 × 1019 km), so

ε =
√

mPlH0ΩM0 = 3.5459 × 1012 [s−1] = 2.3344 × 10−9 MeV . (9.15)

(ii) ε = 1 [s−1] = 6.5820 × 10−22 MeV. This choice can best respect and preserve existent investigations
in mathematical relativity for the f (R) class of modified gravity, which have been analyzed for L̃ =

f (R) + 16πm−2
Pl Lm without caring the physical dimensions. Supplementarily, we have εs = 1.

9.3 Weak freeze-out of neutrinos

According to the SU(3)C×SU(2)W×U(1)Y minimal standard model, primordial nucleosynthesis is prepared
after the temperature drops below T ∼ 10 MeV, when all mesons have decayed into more stable stable nucle-
ons. The electron-positron annihilation has not occurred at T . 10 MeV, and e± are far more abundant than

2Ḣ + 3H2 = −
1
fR

(
8πm−2

Pl P +
f − R fR

2
+ fRRR̈ + fRRR(Ṙ)2 + 3H fRRṘ

)
. (9.12)

which are often used in the construction of effective dark energy for the late-time Universe.
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nucleons; e±, photons, neutrinos and nucleons are kept in thermal equilibrium by electromagnetic reactions
like the elastic scattering e± + νe → e± + νe and e± + p → e± + p, and by the prototype weak interactions
for the neutron-proton transition. To the interest of BBN, neutrons and protons are interconverted by the
two-body reactions

n + νe 
 p + e− , n + e+ 
 p + ν̄e , (9.16)

as well as the neutron decay/fusion
n
 p + e− + ν̄e . (9.17)

When the reaction rate Γ(n 
 p) is faster than the Hubble expansion rate H, the interconversions in
Eqs.(9.16) and (9.17) are fast enough to maintain neutrons and protons in weak-interaction and thermal
equilibrium, until neutrinos decouple when the temperature drops to T f

ν .
Let Xn (Xp) be the number concentration of free neutrons (protons) among all nucleons, including those

possibly entering unstable baryons or complex nuclei. Initially in equilibrium for T ≥ T f
ν , we have Xn =

Xeq
n = nn/(nn + np) and thus Xp = Xeq

p = np/(nn + np). Regarding neutrons and protons as the two energy
states of nucleons, and approximating the Fermi-Dirac and the Bose-Einstein energy distribution functions
by the Maxwell-Boltzmann function, one has

Xeq
n

Xeq
p

= exp
(
−

Q
T

+
µe − µνe

T

)
' exp

(
−

Q
T

)
, (9.18)

or
Xeq

n =
1

1 + exp
(

Q
T

) , (9.19)

where Q B mn − mp = 1.2933 MeV denotes the neutron-proton mass difference (with mn = 939.5654
MeV, mp = 938.2721 MeV), µe / µνe is the chemical potential (i.e. energy associated to particle number) of
electrons/neutrinos, and we have applied the standard-model assumption µνe = 0 and the fact that µe � T
for T & 0.03 MeV. Eq.(9.19) implies that Xeq

n → 1/2 = Xeq
p for T � 1.2933 MeV, and as the temperature

drops along the cosmic spatial expansion, Xeq
n gradually decreases in favor of the lower-energy proton state.

Neutrinos are in equilibrium with photons, nucleons and electrons via weak interactions and elastic
scattering. The dominant reaction that keeps the neutrino numbers in equilibrium at this pre-BBN era is
νe + ν̄e ↔ e− + e+, for which the interaction rate is [13]

Γνe ' 1.3G2
FT 5 ' 0.2688 T 5

MeV [s−1] , (9.20)

where GF = 1.1664×10−11MeV−2 is Fermi’s constant in beta decay and generic weak interactions. Neutrinos
decouple when Γνe = H, and according to Eqs.(9.13) and (9.20), the weak freeze-out temperature T f

ν is the
solution to

T 5−2/β
MeV = 1.0741 ×

√
β

β − 1
×

2.3577 ·

√
β − 1

−5β2 + 8β − 2


1/β

×

(√
g∗

10.8305

)1/β

ε
1−1/β
s . (9.21)

After the weak freeze-out,neutrinos effectively stopped interacting, and the two-body reactions {n + νe →
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(a) (b)

Figure 9.1: Decoupling temperature T f
ν (in MeV) for neutrinos. Fig.(9.1a) is for ε =

√
mPlH0ΩM0 = 6.58 × 10−22 MeV, Fig.(9.1a)

is for ε = 1 sec−1 = 6.58 × 10−22 MeV, and the dotted vertical line represents the asymptote β = (4 +
√

6)/5.

p + e−, p + ν̄e → n + e+} in Eq.(9.16) and the three-body fusion p + e− + ν̄e → n in Eq.(9.17) cease; the
reactions following T f

ν are
p + e− → n + νe , n + e+ → p + ν̄e , (9.22)

as well as the beta decay of neutrons
n→ p + e− + ν̄e . (9.23)

Figs. (9.1a) and (9.1b) illustrate the dependence of T f
ν on β for both choices of ε, and some typical

values of T f
ν for a discrete set of β have been collected in Tables 9.1 and 9.2. In the calculation of T f

ν , we
have used g∗ = g∗(T ≥ T f

ν ), gb = 2 (photon), g f = 2 × 2 (e±) + 2 × 3.046 (neutrino) = 10.092, and thus the
effective number of degree of freedom g∗ = gb + 7

8 g f = 10.8305, with all these relativistic species in thermal
equilibrium at the same temperature. Here for the effective number of species for massless/light neutrinos
during BBN, we adopt Neff = 3.046 rather than Neff = 3; this correction attributes to the fact that the
neutrino decoupling during BBN is a thermal process of finite time rather than an instantaneous event [25],
and in other processes like baryogenesis, decoupling of dark matter and hydrogen recombination, one should
return to Neff = 3. Also, although the detected oscillation phenomenon requires neutrinos to carry nonzero
mass [15–17], the mass is negligible during BBN and neutrinos remain relativistic. For example, the latest
cosmological data on the large scale structure and the anisotropies of the cosmic microwave background
imply

∑
mν = 0.320± 0.081 eV for the summed mass of three known neutrino flavors [26], while the Planck

data has placed an tighter constraint
∑

mν < 0.194 eV in the 95 % limit [24].
From Figs. (9.1a), (9.1b) and the “T f

ν [MeV]” columns in Tables 9.1 and 9.2, one can clearly ob-
serve that T f

ν goes higher when β increases, and T f
ν is minimized in the GR limit β → 1, with min(T f

ν ) =

lim
β→1

T f
ν =1.3630 MeV. Thus, as expected, neutrinos still decouple before the electron-positron annihilation

in L = ε2−2βRβ + 16πm−2
Pl Lm gravity. Since t ∝ T−2/β in light of Eq.(9.14), the time t f

ν elapsed from Big
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Bang to the weak freeze-out shortens when β increases, and t f
ν is maximized in the GR limit β → 1, with

max(t f
ν ) = lim

β→1
t f
ν = 0.3955 s.

9.4 Freeze-out of free neutrons

9.4.1 Temperature at the freeze-out of neutrons

After the decoupling of neutrinos, the neutron concentration Xn deviates from the equilibrium value Xeq
n in

Eq.(9.19), and the evolution of Xn satisfies

dXn

dt
= −Γn→pXn + Γp→n (1 − Xn) = −Γn→p

(
1 + e−

Q
T

) (
Xn − Xeq

n

)
, (9.24)

where Γn→p (/Γp→n) denotes the reaction rate to convert neutrons (/protons) into protons (/neutrons). When
nucleons and leptons are carried apart by the Hubble expansion faster than their collisions, the reactions in
Eq.(9.22) cease, and the only reaction alive is the beta decay of free neutrons in Eq.(9.23).

To find out the resultant reaction rate Γn→p for the two-body reactions in Eq.(9.22), one can apply the
Bernstein-Brown-Feinberg approximations in the early BBN era [20]: (i) Neglect the recoil energy of nu-
cleons; this way, let {pe , pνe} be the momenta of electrons and electron neutrinos, with the corresponding
energies {Ee =

√
p2

e + m2
e , Eνe = pνe}, and then the energy conservation yields Ee = Eνe + Q. (ii) Nucleons

freeze out before the e− − e+ annihilation, so that photons are not yet reheated and T = Tγ = Tνe = Te± ;
as will be verified a posteriori in the “T f

n [MeV]” columns of Tables 9.1 and 9.2, this assumption holds
in both GR and L = ε2−2βRβ + 16πm−2

Pl Lm gravity. (iii) Approximate the Fermi-Dirac energy distribu-
tion function by the Boltzmann function, and neglect the blocking effect due to Pauli’s exclusion princi-
ple. As a result, the reaction rates can be computed by Γ(nνe → pe−) = A

∫ ∞
0 dpνe p2

νe
peEe exp

(
−

Eνe
T

)
,

Γ(ne+ → pν̄e) = A
∫ ∞

0 dpe p2
e pνe Eνe exp

(
−

Ee
T

)
, and thus

Γn→p = 2Γ(nνe → pe−) = 4AT 3
(
12T 2 + 6T Q + Q2

)
, (9.25)

while the decaying rate of free neutrons is

Γ(n→ pe−ν̄e) = A
∫ √Q2−m2

e

0
dpe p2

e pνe Eνe

=
A
5

√
Q2 − m2

e

(
1
6

Q2 −
3
4

Q2m2
e −

2
3

m4
e

)
+

A
4

m4
e Q · arcosh

(
Q
me

)
= 1.5752 × 10−2AQ5 =

1
τn
,

(9.26)

where me = 0.5110 MeV= 0.3951Q, pe takes the upper limit
√

Q2 − m2
e in accordance with the energy

conservation Eνe = Q − Ee, and τn denotes the mean lifetime of free neutrons. Eq.(9.26) implies that the
effective coupling constant A satisfies

4A =
253.9332
τn Q5 , (9.27)
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which, along with Eq.(9.25), leads to

Γn→p '
253.9332
τn x5

(
x2 + 6x + 12

)
[s−1] with x B

Q
T
. (9.28)

Here the dimensionless variable x has been employed, which will considerably facilitate the subsequent
calculations.

We will adopt Eq.(9.28) as the neutron-proton reaction rates, which neglects the beta-decay rate of free
neutrons. This approximation is acceptable: the free-out of neutrons closely follows the weak freeze-out of
neutrinos, whose decoupling time satisfies max(t f

ν ) = lim
β→1

t f
ν = 0.3955 s << τn = 880.0 ± 0.9 [s], where

we adopt the PDG recommended value for the mean time of neutron decay [23]; this will become more
clear after the computation of t f

n (the time elapsed from Big Bang to neutrons’ decoupling) below, as will
be collected in the “t f

n [s]” columns of Tables 9.1 and 9.2. Also, for the sake of higher precision, we have

updated the original formula Γn→p '
255
τn x5

(
x2 + 6x + 12

)
[s−1] by Bernstein et al. [20] into Eq.(9.28).

The concentration Xn freezes out at Γn→p(x) = H(x), where the Hubble parameter is recast into

H(x) =

√
β

12(β − 1)
×


√

(β − 1) g∗
−5β2 + 8β − 2


1/β (

1.1983
x2

)1/β

ε
1−1/β
s [s−1] =

H(Q)
x2/β [s−1] , (9.29)

with the constant H(Q) B H(T = Q) = H(x = 1) being β-dependent. Hence, Γn→p(x) = H(x) yields

253.9332
τn

x2 + 6x + 12
x5 =

√
β

12(β − 1)
×


√

(β − 1) g∗
−5β2 + 8β − 2


1/β (

1.1983
x2

)1/β

ε
1−1/β
s , (9.30)

so the freeze-out temperature T f
n = 1.2933

x f
n

[MeV] can be found out by solving x = x f
n from

x2 + 6x + 12
x5−2/β = 1.0004×

τn

880.0
×

√
β

β − 1
×

3.8613 ·

√
β − 1

−5β2 + 8β − 2


1/β (√

g∗
10.3835

)1/β

ε
1−1/β
s . (9.31)

An exact and generic solution to Eq.(9.31) with 1 < β < (4 +
√

6)/5 is difficult (if not impossible) to work
out, so we numerically solve Eq.(9.31) for a series of β, as shown in the “T f

n [MeV]” columns of Tables 9.1
and 9.2, where x f

n has been transformed back into T f
n . One can clearly observe that T f

n increases along with
the increment of β.

9.4.2 Freeze-out concentration of free neutrons

To figure out the concentration of free neutrons at the freeze-out temperature T f
n , firstly rewrite Eq.(9.24)

into

dXn

dt
=

dXn

dx
dx
dT

dT
dt

= −
dXn

dx
· x ·

Ṫ
T

= −Γn→p
(
1 + e−x) (Xn − Xeq

n

)
. (9.32)

216



Eqs.(9.6) and (9.13) imply that

T =

(
30
π2g∗

ρ

)1/4

=

 30ε2−2βm2
Pl(−5β2 + 8β − 2)

32π3g∗(β − 1)

[
3β(β − 1)

]β
1/4

t−β/2 ∝ t−β/2 , (9.33)

so Ta = constant and Ṫ/T = −ȧ/a = −β/(2t) = −H(Q)x−2/β, which recast Eq.(9.32) into

dXn

dx
= −Γn→p

x
2
β−1

H(Q)
(
1 + e−x) (Xn − Xeq

n

)
. (9.34)

Define a new function F(x) B Xn(x) − Xeq
n (x) to measure the departure of Xn from the ideal equilibrium

concentration Xeq
n = 1/(1 + ex), and transform dXn/dx into the evolution equation of F(x):

dF(x)
dx

+ Γn→p
x

2
β−1

H(Q)
(
1 + e−x) F(x) =

ex

(1 + ex)2 . (9.35)

Its general solution can be written as F(x) = F̃(x)E(x), where

F̃(x) = exp

−∫ x
Γn→p

y
2
β−1

H(Q)
(
1 + e−y) dy

 , (9.36)

and E(x) satisfies
dE(x)

dx
=

1

F̃(x)

ex

(1 + ex)2 . (9.37)

Integrating F̃(x)E(x), we obtain

F(x) =

∫ x
dx̃

ex̃

(1 + ex̃)2 exp

−∫ x

x̃
Γn→p

y
2
β−1

H(Q)
(
1 + e−y) dy

 , (9.38)

and the reverse of F(x) = Xn(x) − Xeq
n (x) leads to

Xn(x) = Xeq
n (x) +

∫ x
dx̃

ex̃

(1 + ex̃)2 exp

−∫ x

x̃
Γn→p

y
2
β−1

H(Q)
(
1 + e−y) dy

 , (9.39)

which satisfies the initial condition Xn(T � Q) = Xn(x→ 0) = Xeq
n . Without beta decay of free neutrons, Xn

would eventually freeze out to some fixed value after T n
f or x f

n . Effectively setting x = ∞ in Eq.(9.39), we

obtain the freeze-out concentration X f
n B Xn(x = ∞)

X f
n =

∫ ∞

0
dx̃

ex̃

(1 + ex̃)2 exp

−∫ ∞

x̃
Γn→p

y
2
β−1

H(Q)
(
1 + e−y) dy


=

∫ ∞

0
dx̃

ex̃

(1 + ex̃)2 exp

−253.9332
H(Q) τn

∫ ∞

x̃

y2 + 16y + 12

y6− 2
β

 (1 + e−y) dy

 ,
(9.40)

where Xeq
n (x = ∞) = 0. Similar to the treatment to Eq.(9.31), we have numerically integrated X f

n for the
same set of β, as collected in the “X f

n ” columns of Tables 9.1 and 9.2, which show that X f
n considerably
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grows with the increment of β.

9.5 Opening of deuterium bottleneck and helium synthesis

The number densities of neutrons, protons and deuterons (D), which are very nonrelativistic particles at the
energy scale T . T f

n . 10 MeV, are separately [13, 19]

nn = 2
(mnT

2π

)3/2
e
µn−mn

T , np = 2
(
mpT
2π

)3/2

e
µp−mp

T , nD = 3
(mDT

2π

)3/2
e
µD−mD

T , (9.41)

so the equilibrium of chemical potentials µD = µn + µp leads to

XD B
2nD

nn + np
=

3
2

nnnp

nn + np

(
2π
T

mD

mnmp

)3/2

e(mn+mp−mD)/T

=
3
2

XnXpnb

(
2π
T

mD

mnmp

)3/2

eBD/T ,

(9.42)

where nb = nn + np, and BD = mn + mp − mD = 2.2246 MeV refers to the deuteron binding energy (with
mD = 1875.6129 MeV, mn = 939.5654 MeV, and mp = 938.2721 MeV [23]). Moreover, nb is related to the
photon number density by nb = η10 × 10−10 × nγ = η10 × 10−10 ×

2ζ(3)
π2 T 3, where η10 B 1010 × nb/nγ rescales

the photon-to-baryon ratio. Then Eq.(9.42) becomes

XD = 10−10 ×
3ζ(3)
π2 η10XnXp

(
2π
T

mD

mnmp

)3/2

eBD/T T 3

' 5.6474 × 10−14 × η10XnXpeBD/TMeVT 3/2
MeV .

(9.43)

Note that the value of η10 can be determined through

η10 ' 1010 ×
ρcritΩb0/mp

nγ
= 273.4604 Ωbh2 = 6.0982 , (9.44)

where we have h for the normalized Hubble constant in the unit of 100 km/s/Mpc, nγ = 410.7/cm3 for
the cosmic background photons, ρcrit = 1.8785 h2 × 10−29 g/cm3 for the critical density of the Universe,
mp = 1.6726 × 10−24g for the proton mass, and Ωb0h2 = 0.02230 ± 0.00014 [23, 24].

After the freeze-out of free neutrons, the Universe further expands and cools. Finally the high-energy
photons at the Planck distribution tail are no longer energetic enough to photodissociate a deuteron, and the
deuterium bottleneck opens. Taking the logarithm of Eq.(9.43), one obtains

BD

TMeV
−

3
2

ln
BD

TMeV
= ln

XD

5.6474 × 10−14 × η10X f
n

(
1 − X f

n

)
B3/2

D

= 27.4976 − ln
[
X f

n

(
1 − X f

n

) ]
+ ln

XD

η10/6.0982
.

(9.45)
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Solve it by iteration, and the deuteron concentration at the temperature TMeV can be approximated by

BD

TMeV
' 27.4976 − ln

[
X f

n

(
1 − X f

n

) ]
+ ln

XD

η10/6.0982
+

3
2

ln
{

27.4976 − ln
[
X f

n

(
1 − X f

n

) ]
+ ln

XD

η10/6.0982

}
,

(9.46)

so

T−1
MeV ' 12.3607 − 0.4495 ln

[
X f

n

(
1 − X f

n

) ]
+ 0.4495 ln

XD

η10/6.0982

+ 0.6743 ln
{

27.4976 − ln
[
X f

n

(
1 − X f

n

) ]
+ ln

XD

η10/6.0982

}
.

(9.47)

On the other hand, the evolution of XD satisfies the Boltzmann equation

dXD

dt
= −

1
2
〈σv〉 X2

Dnb . (9.48)

dXD/dt becomes visible when it is comparable to XD, and | dXD/dt| ' XD yields XD '
2

〈σv〉 nbt
1
2 〈σv〉 X2

Dnb '

XD, which can be regarded as the opening of the deuterium bottleneck. Recall that

nb = η10 × 10−10 ×
2ζ(3)
π2 T 3 = 0.2346 × 10−10 η10T 3 = 3.0536 × 1021 η10T 3

MeV [cm−3] , (9.49)

and

1
t

=
1√

3β(β − 1)


√

β − 1
−5β2 + 8β − 2


1/β (√

g∗
3.3835

)1/β (
1.3177 T 2

MeV

)1/β
ε

1− 1
β

s [s] , (9.50)

so X(open)
D '

2
〈σv〉 nbt

expands into

X(open)
D =

6.2009 × 10−23

〈σv〉

(
6.0982
η10

) (√
g∗

3.3835

)1/β
ε

1− 1
β

s√
β(β − 1)

1.3178 ·

√
β − 1

−5β2 + 8β − 2


1/β

×

{
12.3607 − 0.4495 ln

[
X f

n

(
1 − X f

n

) ]
+ 0.4495 ln

XD

η10/6.0982

}3− 2
β

.

(9.51)

Solving this equation by iteration, one obtains

X(open)
D =

6.2009 × 10−23

〈σv〉

(
6.0982
η10

) (√
g∗

3.3835

)1/β
ε

1− 1
β

s√
β(β − 1)

1.3178 ·

√
β − 1

−5β2 + 8β − 2


1/β

×

{
12.3607 − 0.4495 ln

[
X f

n

(
1 − X f

n

) ]}3− 2
β

+ 0.4495 ln
· · ·

η10/6.0982
,

(9.52)

where · · · denotes the repeating iteration terms. Here g∗ ' 3.3835; this because around the temperature
T (open)

D � me = 0.5110 MeV after the electron-positron annihilation, only photons and neutrinos remain
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as relativistic species with Tν/Tγ = Tν/T = (4/11)1/3 (this ratio is independent of the number of neutrino

species), hence g∗(T . me) = 2 + 7
8 × 3.046 × 2 ×

(
4

11

)4/3
' 3.3835.

At TBBN, XD peaks and Xn drops below the concentration predicted by beta decay. The deuterium
bottleneck has broken and the remaining free neutrons are quickly fused into 4He via the strong interaction
through the sequence of reactions [13]

n + p→ D ,

D + n→ 3H + p→ 4He ,

D + p→ 3He + n→ 4He .

(9.53)

Following the time-temperature relation Eq.(9.14) with TMeV = TBBN, nucleosythesis occurs at

tBBN =
√

3β(β − 1)

0.7589 ·

√
−5β2 + 8β − 2

β − 1


1/β 

√
3.3835

g∗


1/β (

T (BBN)
MeV

)−2/β
ε

1
β−1
s [s] . (9.54)

while the neutron concentration at BBN is

XBBN
n = X f

n exp

 t f
n − tBBN

τn

 , (9.55)

and the primordial 4He abundance is Yp ' 2XBBN
n . For different values of β, tBBN, XBBN

n and Yp have been
numerically calculated, and the results have been collected in Tables 9.1 and 9.2.

9.6 Comparison with ε = mPl

To facilitate the comparison with Refs.[7–9], we will also consider the situation of ε = mPl = 1.2209× 10−22

MeV 0.1854× 1044 [s−1], or 1/`Pl where `Pl =
√

G refers to Planck length. As emphasized in problem (5) of
the Introduction, this choice of ε suffers from the ambiguity with the change of Newton’s constant. To make
matters worse, the weak freeze-out temperature of neutrinos is depicted in Fig. 9.2, and the relevant energy
scales have been collected in Table 9.3; they clearly show that the process of nucleosynthesis breaks down for
1.06 . β < (4+

√
6)/5, as the interactions of muons, tauons, their associated neutrinos, and unstable hadrons

beyond nucleons are all involved, which make it impossible to examine the full domain 1 ≤ β < (4 +
√

6)/5.
For completeness, we calculate the full set of nucleosynthesis parameters in Table 9.4.
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Table 9.3: g∗ for the T ν
f in Fig. 9.2, based on the data of Particle Data Group. where me = m(electron) = 0.5110 MeV,

mµ = m(muon) = 105.6584 MeV, mπ = m(pion±) = 139.5702 MeV, Tc = T (quark-hadron phase transition) ≈ 150 MeV,
mc = m(charm quark) = 1275 MeV, mτ = m(tauon) = 1776.82 MeV, and we have taken mπ± = 139.5702 > mπ0 = 134.9766
MeV. Note that between 100∼200 MeV, g∗s is also subject to the phase transition of quantum chromodynamics for strange quarks.

Temperature Temperature new particles g∗ − 0.0805 g∗

me < T < mµ 0.5110 < T < 105.6584 – 10.75 10.8305

mµ < T < mπ 105.6584 < T < 139.5702 µ± 14.25 14.3305

mπ < T < Tc 139.5702 < T < Tc π0, π± 17.25 17.3305

Tc < T < mc Tc < T < 1275 u, ū, d, d̄,
s, s̄, gluon

61.75 61.8305

mc < T < mτ 1275 < T < 1776.82 c, c̄ 72.25 72.3305

mτ < T < mb 1776.82 < T < 4180 τ± 75.75 75.8305

Figure 9.2: T f
ν (in MeV) for ε = mPl = 1.2209 × 10−22 MeV, with g∗ fixed to 10.8305.

9.7 GR limit

When f (R, ε) = R in Eqs.(9.2), (9.3) and (9.4), one recovers Einstein’s equation Rµν − 1
2 Rgµν = 8πm−2

Pl T
(m)
µν ,

as well as the standard Friedmann equations 3
ȧ2

a2 = −8πm−2
Pl ρ and 3

ä
a

= −4πm−2
Pl (ρ + 3P). For the specific

power-law f (R) gravity under discussion, it reduces from L = ε2−2βRβ + 16πm−2
Pl Lm to GR in the limit
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β→ 1+, with

lim
β→1+

√
β

β − 1
×


√

β − 1
−5β2 + 8β − 2


1/β

= 1 , (9.56)

and

lim
β→1+

√
β(β − 1)

(
−5β2 + 8β − 2

β − 1

) 1
2β

= 1 = lim
β→1+

[
β(β − 1)

]β (−5β2 + 8β − 2
β − 1

)
, (9.57)

so from Eqs.(9.13), (9.14) and (9.33) one recovers the standard Hubble expansion [note: by “standard” we
mean the standard Big Bang cosmology of GR]

H =
1
2t

=

(
8π3

90
g∗

)1/2 T 2

mPl
' 1.6602

√
g∗

T 2

mPl
' 0.2068

√
g∗ T 2

MeV [s−1] . (9.58)

as well as the the standard time-temperature relation

t =

√
90

32π3 g−1/2
∗

mPl

T 2 '
2.4177
√

g∗ T 2
MeV

[s] or tT 2
MeV '

2.4177
√

g∗
. (9.59)

EquatingH to the neutrino reaction rate Γνe in Eq.(9.20), i.e. 0.2688 T 5
MeV = 0.2068

√
g∗ T 2

MeV, one can find
that neutrinos decouple at T = 1.3630 MeV and t = 0.3955 [s]. Furthermore, equating H to the combined
two-body reaction rate Γn→p in Eq.(9.28),

H(x) =
H(Q)

x2 =
253.9332

τn

x2 + 6x + 12
x5 , (9.60)

where H(Q) = 0.3459
√

g∗, it turns out that nucleons freeze out at x = 1.9020, T f
n = 0.6800 MeV, and

t f
n = 1.5889 [s]. According to Eq.(9.39) with β→ 1+, the neutron concentration after the weak freeze-out of

neutrinos is determined by

Xn(x) = Xeq
n +

∫ x
dx̃

ex̃

(1 + ex̃)2 exp
[
−

∫ x

x̃
Γn→p

y
H(Q)

(
1 + e−y) dy

]
= Xeq

n +

∫ x
dx̃

ex̃

(1 + ex̃)2 exp
[
−

255
H(Q) τn

∫ x

x̃
y−4

(
y2 + 16y + 12

) (
1 + e−y) dy

]
,

(9.61)

and thus in the absence of neutron decay Xn would freeze out to the concentration Xn(x→ ∞)

X f
n =

∫ ∞

0
dx̃

ex̃

(1 + ex̃)2 exp
[
−

255
H(Q) τn

x̃2 + 3x̃ + 4 + e−x̃(x̃ + 4)
x̃3

]
= 0.1480 . (9.62)

Nucleosynthesis begins at T ' 0.079 MeV, which corresponds to tBBN = 210.6045 [s]. Hence, the neutron
concentration at BBN is

XBBN
n = X f

n exp

 tBBN − t f
n

τn

 = 0.1167 . (9.63)

and the primordial helium abundance is

Yp ' 2XBBN
n = 0.2334. (9.64)

225



These numerical results are also collected in Tables 9.1 and 9.2 in the bottom row.
Big Bang nucleosynthesis could not progress further in producing heavier elements with mass number

A > 7 due to the Coulomb barrier and the lack of stable A = 8 nuclei. In the semianalytical approach, our
discussion will end with the primordial helium synthesis. The title of this paper emphasizes “Big Bang nucle-
osynthesis” rather than the narrower “primordial helium synthesis”, because we will proceed to investigate
the synthesis of {D, 4He, 7Li} from the empirical approach.

9.8 Empirical constraints from D and 4He abundances

So far we have calculated the primordial nucleosynthesis in L = ε2−2βRβ+16πm−2
Pl Lm gravity and GR from

the semianalytical approach. We have seen that primordial synthesis and abundances of the lightest elements
(D, 4He, and also 3H, 3He, 7Li) rely on the baryon-to-photon ratio η10 = 1010 × nb/nγ and the expansion
rate H of the Universe. In addition to the semianalytical approach, the abundances can be also be estimated
in an empirical way at high accuracy [27, 28]. For modified gravity with a nonstandard Hubble expansion
H, introduce the nonstandard-expansion parameter S as the ratio of H to the standard expansionH = 1/(2t)
in GR, and this ratio varies among different gravity theories. In L = ε2−2βRβ + 16πm−2

Pl Lm gravity under
discussion, one has

S B
H
H

⇒ S = β , (9.65)

and S takes such a concise form thanks to the exact solution a ∝ tβ/2 and H = β/(2t) for the radiation-
dominated FRW Universe. It has been found that, for the priors 4 . η10 . 8 and 0.85 . S . 1.15, the
primordial deuterium and 4He abundances satisfy the best-fit formulae [27, 28]

yD B 105 ×
D

1H
= 46.5 × (1 ± 0.03) ×

[
η10 − 6(S − 1)

]−1.6
(9.66)

and
Yp = (0.2386 ± 0.0006) + 2 × 10−4 × (τn − 885.7) +

η10

625
+

S − 1
6.25

, (9.67)

the reverse of which respectively yield

S =
η10

6
−

1
6

[
46.5 × (1 ± 0.03)

yD

]1/1.6

+ 1 (9.68)

and
S = 6.25 ×

[
Yp − (0.2386 ± 0.0006) + 2 × 10−4 × (885.7 − τn)

]
−
η10

100
+ 1 . (9.69)

Recall that we have the baryon-to-photon ratio η10 = 6.0352 ± 0.0739 for Ωbh2 = 0.02207 ± 0.00027 as
in Eq.(9.44), the neutron half life τn = 880.0 ± 0.9 [s], and the recommended values of the D and 4He
abundances from the Particle Data Group [23],

yD = 2.53 ± 0.04 , Yp = 0.2465 ± 0.0097 . (9.70)

Thus, Eqs.(9.68) and (9.69) lead to

S = 0.9777 ± 0.0708 or 0.9069 ≤ S = β ≤ 1.0485 (D) , (9.71)
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S = 0.9961 ± 0.1035 or 0.8926 ≤ S = β ≤ 1.0997 (4He) . (9.72)

Here for the errors of mutually independent quantities in {xi ± ∆xi, x j ± ∆x j} 7→ y + ∆y, we have applied the

propagation rules that ∆y =

√
(∆xi)2 +

(
∆x j

)2
for y = xi ± x j, and ∆y

y =

√(
∆xi
xi

)2
+

(
∆x j
x j

)2
for y = xix j or

y = xi/x j(i , j).
Combining Eq.(9.71) with Eq.(9.72), we find 0.8926 ≤ S = β ≤ 1.0485, which satisfies the prior 0.85 .

S . 1.15; taking into account the positive energy density/positive temperature condition 1 < β < (4 +
√

6)/5
in Eq.(9.10), we further obtain 1 < S = β ≤ 1.0485. Since S is related to the extra number of effective
neutrino species by

S =

(
1 +

7
43

∆Nν

)1/2

⇒ ∆Nν =
43
7

(β2 − 1) , (9.73)

thus for 1 < S = β ≤ 1.0485, ∆Neff
ν B Neff

ν − 3 is constrained by

0 < ∆Neff
ν ≤ 0.6107 . (9.74)

Note that the theoretically predicted primordial abundance for 7Li is found to respect the best-fit formula

yLi B 1010 ×
Li
1H

=
(1 ± 0.1)

8.5
×

[
η10 − 3(S − 1)

]2
, (9.75)

which, for the domain 1 < S = β ≤ 1.0485, gives rise to

yLi = 4.0892 ± 0.0012 (β = 1.0485) to 4.3022 ± 0.0012 (β = 1) . (9.76)

Hence,
4.0880 ≤ yLi < 4.3034 , (9.77)

which is much greater than the observed abundance yLi = 1.6 ± 0.3 [23]. This indicates that the lithium
problem remains unsolved in L = ε2−2βRβ + 16πm−2

Pl Lm gravity.

9.9 Consistency with gravitational baryogenesis

We just investigated the primordial nucleosynthesis in L = ε2−2βRβ + 16πm−2
P Lm gravity from the semiana-

lytical and the empirical approaches. The nucleons building the lightest nuclei come from the net baryons left
after baryogenesis, and in this section we will quickly check the consistency of L = ε2−2βRβ + 16πm−2

P Lm

gravity with the baryon-antibaryon asymmetry using the framework of gravitational baryogenesis [30],
which, compared with traditional Sakharov-type mechanisms, dynamically produces the required baryon
asymmetry for an expanding Universe by violating the combined symmetry of charge conjugation, parity
transformation and time reversal (CPT) while being in thermal equilibrium. In this mechanism, the domi-
nance of baryons over antibaryons attribute to the coupling between the gradient of the Ricci curvature scalar
R and some current JµB leading to net baryon-lepton charges:

∫
d4x
√
−g

(
∂µR

)
JµB

M2
∗

=

∫
d4x
√
−g

Ṙ
(
nB − nB̄

)
M2
∗

, (9.78)
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where M∗ refers to the cutoff scale of the effective theory, and is estimated to take the value of the reduced
Plank mass M∗ ' mP/

√
8π.

The baryon asymmetry can be depicted by the dimensionless baryon-to-entropy ratio nB/s of the radiation-
dominated Universe, with

nB '
1
6

gbµBT 2 and s =
2π2

45
g∗sT 3 , (9.79)

where gb = 28 = 2 (photon) + 2× 8 (gluon) + 3× 3 (W±,Z0) + 1 (Higgs) for T > m(top quark) ' 1.733× 105

MeV, and µB B −Ṙ/M2
∗ acts as the effective chemical potential. Also, g∗s denotes the entropic effective

number of degree of freedom, and is defined like g∗ by

g∗s B
∑

boson

g(b)
i

(Ti

T

)3
+

7
8

∑
fermion

g( f )
j

(
T j

T

)3

; (9.80)

one has g∗s = g∗ at the baryogenesis era when all standard-model particles are relativistic and in equilibrium,
g f = 2×3 (neutrino) + 2×6 (charged lepton) + 12×6 (quark) = 90, and g∗s = g∗ = gb + 7

8 g f = 106.75 (Note
that when calculating g f , we use Neff

ν = 3 rather than Neff
ν = 3.046, because baryogenesis happens before

primordial nucleosythesis and it’s unnecessary to consider the “non-instantaneity” of neutrinos’ decoupling.).
In L = ε2−2βRβ + 16πm−2

P Lm gravity for which ∂µR or Ṙ is nontrivial, Eqs.(9.14) and (9.79) lead to

nB

s
= −

15
4π2

gb

g∗s

Ṙ
M2
∗T

∣∣∣∣∣∣
Td

=
45
2π2

gb

g∗s

β(β − 1)
t3M2

∗Td

=
5
√

3
2π2

gb

g∗s

1√
β(β − 1)


√

(β − 1) g∗
−5β2 + 8β − 2


3/β 

√
32π3

30
T 2

d

εmP

3/β
ε3

M2
∗Td

,

(9.81)

where Td ' 3.3×1019 MeV is the upper bound on the tensor-mode fluctuations at the inflationary scale [31].
Following the observational value Ωbh2 = 0.02207 ± 0.00027 [24], we have the net-baryon-to-entropy

ratio nb/s =
nb
nγ
/7.04 = 3.8920 × 10−9Ωbh2 = (8.5897 ± 0.1051) × 10−11, which remains constant during

the expansion of the early Universe and imposes a constraint to nB/s. For ε = [s−1] = 6.58 × 10−22 MeV,
Eq.(9.81) respects this constraint for all 1 < β < (4 +

√
6)/5, as shown in Fig. 9.3a, with minor violation for

1.001426 < β < 1.007925, as magnified in Fig. 9.3b; however, this minor violation can be easily removed
by a fluctuation of M∗ and Td. For ε = mPl, this constraints is satisfied for 1 < β < 1.04255, as shown in Fig.
9.4.
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(a) (b)

Figure 9.3: nB/s for ε = 1 [s−1] = 6.58 × 10−22 MeV.

Figure 9.4: nB/s for ε = mPl
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9.10 Conclusions

In this paper, we have reinvestigated the nonstandard BBN in L = ε2−2βRβ + 16πm−2
Pl Lm gravity, which has

overcome the inappropriateness in Refs.[8] and [9]. The main results, compared with the standard BBN or
the GR limit in Sec. 9.7, manifest themselves as Eq.(9.13) for the nonstandard Hubble expansion, Eq.(9.14)
for the generalized time-temperature correspondence, Eq.(9.21) for the neutrino decoupling temperature T f

ν ,
Eq.(9.31) for the freeze-out temperature T f

n of nucleons, Eq.(9.39) for the out-of-equilibrium concentration
Xn, and Eq.(9.40) for the freeze-out concentration X f

n . As reflected by the data points in Tables 9.1 and 9.2,
we have shown that every step of BBN is considerably β−dependent when running over the entire domain
1 < β < (4 +

√
6)/5.

On the other hand, for the constants used in this paper, mPl, mn, mp, mD, ms, mµ, mπ0 , mc, mτ, mb, and
GF , their values are all taken from the latest recommended values from Particle Data Group [23]. In the
semianalytical approach, β is constrained to 1 < β < 1.05 for ε = 1 [s−1] and 1 < β < 1.001 for ε = mPl. In
the empirical approach, we have found 1 < β ≤ 1.0505 which corresponds to an extra number of neutrino
species by 0 < ∆Neff

ν ≤ 0.6365. In theory, it might be possible for modified gravities to severely rescale
the thermal history of the early Universe without changing the state of the current Universe. This requires
a careful examination of the joint influences to BBN, cosmic radiation background and structure formation,
and we will look into the possibility of such strongly modified gravities in our prospective studies.

Acknowledgement

This work was supported by NSERC grant 261429-2013.

230



Bibliography

[1] Y. I. Izotov, T. X. Thuan The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis. Astrophys.
J. Lett. 710 (2010), L67-L71. [arXiv:1001.4440]

[2] Thibault Damour, Bernard Pichon. Big Bang nucleosynthesis and tensor-scalar gravity. Phys. Rev. D 59 (1999), 123502.
[astro-ph/9807176]

[3] Julien Larena, Jean-Michel Alimi, Arturo Serna. Big Bang nucleosynthesis in scalar tensor gravity: The key problem of the
primordial 7Li abundance. Astrophys. J. 658 (2007), 1-10. [astro-ph/0511693]

[4] Alain Coc, Keith A. Olive, Jean-Philippe Uzan, Elisabeth Vangioni. Big bang nucleosynthesis constraints on scalar-tensor
theories of gravity. Phys. Rev. D 73 (2006), 083525. [astro-ph/0601299]

[5] Alain Coc, Keith A. Olive, Jean-Philippe Uzan, Elisabeth Vangioni. Non-universal scalar-tensor theories and big bang nucle-
osynthesis. Phys. Rev. D 79 (2009), 103512. [arXiv:0811.1845]

[6] R. Nakamura, M. Hashimoto, S. Gamow, K. Arai. Big-bang nucleosynthesis in Brans-Dicke cosmology with a varying Λ

term related to WMAP. Astron. Astrophys. 448 (2006), 23. [astro-ph/0509076]

[7] G. Lambiase, G. Scarpetta. Baryogenesis in f (R) theories of gravity. Phys. Rev. D 74 (2006), 087504. [astro-ph/0610367]

[8] Jin U Kang, Grigoris Panotopoulos. Big-Bang Nucleosynthesis and neutralino dark matter in modified gravity. Phys. Lett. B
677 (2009), 6-11 [arXiv:0806.1493]

[9] Motohiko Kusakabe, Seoktae Koh, K. S. Kim, Myung-Ki Cheoun. Corrected constraints on big bang nucleosynthesis in a
modified gravity model of f (R) ∝ Rn. Phys. Rev. D 91 (2015), 104023. [arXiv:1506.08859].

[10] Motohiko Kusakabe, Seoktae Koh, K. S. Kim, Myung-Ki Cheoun. Constraints on modified Gauss-Bonnet gravity during big
bang nucleosynthesis. [arXiv:1507.05565]

[11] Antonio De Felice, Gianpiero Mangano, Pasquale D. Serpico, and Mark Trodden. Relaxing nucleosynthesis constraints on
Brans-Dicke theories. Phys. Rev. D 74 (2006), 103005. [astro-ph/0510359]

[12] Antonio De Felice, Shinji Tsujikawa. f (R) theories. Living Rev. Rel. 13 (2010), 3. [arXiv:1002.4928]
Shin’ichi Nojiri, Sergei D. Odintsov. Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant
models. Phys. Rept. 505 (2011), 59-144. [arXiv:1011.0544]
Salvatore Capozziello, Valerio Faraoni. Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and
Astrophysics. Dordrecht: Springer, 2011.

[13] Edward W. Kolb, Michael S. Turner. The Early universe. Addison-Wesley: Redwood City, USA, 1990.

[14] F. Iocco, G. Mangano, G. Miele, O. Pisanti, P.D. Serpico. Primordial Nucleosynthesis: from precision cosmology to funda-
mental physics. Phys. Rept. 472 (2009), 1-76. [arXiv:0809.0631]

[15] Super-Kamiokande Collaboration (Y. Fukuda et al.). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81
(1998) 1562-1567. [hep-ex/9807003]

231

http://dx.doi.org/10.1088/2041-8205/710/1/L67
http://arxiv.org/abs/1001.4440
http://dx.doi.org/10.1103/PhysRevD.59.123502
http://arxiv.org/abs/astro-ph/9807176
http://dx.doi.org/10.1086/511028
http://arxiv.org/abs/astro-ph/0511693
http://dx.doi.org/10.1103/PhysRevD.73.083525
http://arxiv.org/abs/astro-ph/0601299
http://dx.doi.org/10.1103/PhysRevD.79.103512
http://arxiv.org/abs/0811.1845
http://dx.doi.org/10.1051/0004-6361:20042618
http://arxiv.org/abs/astro-ph/0509076
http://dx.doi.org/10.1103/PhysRevD.74.087504
http://arxiv.org/abs/astro-ph/0610367
http://arxiv.org/abs/0806.1493
http://arxiv.org/abs/1506.08859
http://arxiv.org/abs/1507.05565
http://dx.doi.org/10.1103/PhysRevD.74.103005
http://arxiv.org/abs/astro-ph/0510359
http://arxiv.org/abs/arXiv:1002.4928
http://arxiv.org/abs/1002.4928
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://arxiv.org/abs/1011.0544
http://dx.doi.org/10.1016/j.physrep.2009.02.002
http://arxiv.org/abs/0809.0631
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/hep-ex/9807003


[16] SNO Collaboration (Q.R. Ahmed et al.). Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar
neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87 (2001) 071301. [nucl-ex/0106015]

[17] RENO Collaboration (J.K. Ahn et al.). Observation of Reactor Electron Antineutrino Disappearance in the RENO Experi-
ment. Phys. Rev. Lett. 108 (2012) 191802. [arXiv:1204.0626]

[18] P.J.E. Peebles. Primordial helium abundance and the primordial fireball. II. Astrophys.J. 146 (1966), 542-552.

[19] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley
& Sons: New York, USA, 1972.

[20] Jeremy Bernstein, Lowell S. Brown, Gerald Feinberg. Cosmological helium production simplified. Rev. Mod. Phys. 61
(1989), 25.

[21] Rahim Esmailzadeh, Glenn D. Starkman, Savas Dimopoulos. Primordial nucleosynthesis without a computer. Astrophys. J.
378 (1991), 504-518.

[22] V. Mukhanov. Nucleosynthesis without a Computer. Int. J. Theor. Phys. 43 (2004), 669-693. [astro-ph/0303073]

[23] Particle Data Group (K.A. Olive et al). Review of Particle Physics. Chin. Phys. C 38 (2014), 090001. Online updates:
http://pdg.lbl.gov.

[24] Planck Collaboration (P.A.R. Ade et al.). Planck 2015 results. XIII. Cosmological parameters. [arXiv:1502.01589]

[25] Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Teguayco Pinto, Ofelia Pisanti, Pasquale D. Serpico. Relic neutrino
decoupling including flavour oscillations. Nucl. Phys. B 729 (2005), 221-234. [hep-ph/0506164]

[26] Richard A. Battye, Adam Moss. Evidence for massive neutrinos from cosmic microwave background and lensing observa-
tions. Phys. Rev. Lett. 112 (2014), 051303. [arXiv:1308.5870]

[27] James P. Kneller, Gary Steigman. BBN for pedestrians. New J. Phys. 6 (2004), 117. [astro-ph/0406320]

[28] Gary Steigman. Primordial nucleosynthesis in the precision cosmology era. Ann. Rev. Nucl. Part. Sci. 57 (2007), 463-491.
[arXiv:0712.1100]

[29] A.D. Sakharov. Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. JETP Lett. 5 (1967),
24-27. Reprinterd at: Soviet Physics Uspekhi (1991), 34(5): 392.

[30] Hooman Davoudiasl, Ryuichiro Kitano, Graham D. Kribs, Hitoshi Murayama, Paul J. Steinhardt. Gravitational Baryogenesis.
Phys. Rev. Lett. 93 (2004), 201301. [hep-ph/0403019]

[31] G. Lambiase, G. Scarpetta. f (R) theories of gravity and gravitational baryogenesis. J. Phys.: Conf. Ser. 67 (2007), 012055.

[32] Andrew G. Cohen, David B. Kaplan. Thermodynamic generation of the baryon asymmetry. Phys. Lett. B 199 (1987), 251.

[33] Sean M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, 2004, USA.

[34] Timothy Clifton, John D. Barrow. The Power of General Relativity. Phys. Rev. D 72 (2005), 103005. Erratum: Phys. Rev. D
90 (2014), 029902. [gr-qc/0509059]

232

http://dx.doi.org/10.1103/PhysRevLett.87.071301
http://arxiv.org/abs/nucl-ex/0106015
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://dx.doi.org/10.1086/148918
http://dx.doi.org/10.1103/RevModPhys.61.25
http://dx.doi.org/10.1086/170452
http://dx.doi.org/10.1023/B:IJTP.0000048169.69609.77
http://arxiv.org/abs/astro-ph/0303073
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://pdg.lbl.gov
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.041
http://arxiv.org/abs/hep-ph/0506164
http://dx.doi.org/10.1103/PhysRevLett.112.051303
http://arxiv.org/abs/1308.5870
http://dx.doi.org/10.1088/1367-2630/6/1/117
http://arxiv.org/abs/astro-ph/0406320
http://arxiv.org/abs/0712.1100
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://arxiv.org/abs/hep-ph/0403019
http://dx.doi.org/10.1088/1742-6596/67/1/012055
http://dx.doi.org/10.1016/0370-2693(87)91369-4
http://dx.doi.org/10.1103/PhysRevD.90.029902
http://dx.doi.org/10.1103/PhysRevD.90.029902
http://arxiv.org/abs/gr-qc/0509059


Chapter 10. Hot, warm and cold dark matter as thermal relics in power-law
f (R) gravity [arXiv:1512.09117]

David Wenjie Tian∗

Faculty of Science, Memorial University, St. John’s, NL, Canada, A1C 5S7

Abstract

We investigate the thermal relics as hot, warm and cold dark matter in L = ε2−2βRβ + 16πm−2
Pl Lm

gravity, where ε is a constant balancing the dimension of the field equation, and 1 < β < (4 +
√

6)/5 for
the positivity of energy density and temperature. If light neutrinos serve as hot/warm relics, the entropic
number of statistical degrees of freedom g∗s at freeze-out and thus the predicted fractional energy density
Ωψh2 are β−dependent, which relaxes the standard mass bound Σmν. For cold relics, by exactly solve
the simplified Boltzmann equation in both relativistic and nonrelativistic regimes, we show that the Lee-
Weinberg bound for the mass of heavy neutrinos can be considerably relaxed, and the “WIMP miracle”
for weakly interacting massive particles (WIMPs) gradually invalidates as β deviates from β = 1+. The
whole framework reduces to become that of GR in the limit β→ 1+.

PACS numbers 26.35.+c, 95.35.+d, 04.50.Kd
Key words thermal relics, dark matter, f (R) gravity

10.1 Introduction

With the development of observational astrophysics and cosmology, the investigations of galaxy rotation
curves, gravitational lensing and large scale structures have provided strong evidences for the existence
and importance of dark matter. The abundance of dark matter has been measured with increasingly high
precision, such as Ωdmh2 = 0.1198±0.0026 by the latest Planck data (Planck Collaboration, 2015); however,
since our knowledge of dark matter exclusively comes from the gravitational effects, the physical nature of
dark-matter particles remain mysterious.

Nowadays it becomes a common view that to account for the observed dark matter, one needs to go
beyond the SU(3)c×SU(2)W×U(1)Y minimal standard model. There are mainly two leading classes of dark-
matter candidates: axions that are non-thermally produced via quantum phase transitions in the early uni-
verse, and generic weakly interacting massive particles (WIMPs) (Lee & Weinberg, 1977) that freeze out of
thermal equilibrium from the very early cosmic plasma and leave a relic density matching the present-day
Universe. In this paper, we are interested in the latter class, i.e. dark matter created as thermal relics. We
aim to correct and complete the pioneering investigations in Kang & Panotopoulos (2009) for cold relics
in L = m2−2β

Pl Rβ + 16πm−2
Pl Lm gravity, and provide a comprehensive investigation of thermal relics as hot,

warm and cold dark matter in L = ε2−2βRβ + 16πm−2
Pl Lm gravity.

∗Email address: wtian@mun.ca
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This paper is organized as follows. Sec. 10.2 sets up the gravitational framework of L = ε2−2βRβ +

16πm−2
Pl Lm gravity, while Sec. 10.3 generalizes the time-temperature relation for cosmic expansion and

derives the simplified Boltzmann equation. Sec. 10.4 studies hot/warm thermal relics, and shows the influ-
ences of β and ε to the bound of light neutrino mass. Sec. 10.5 investigates cold thermal relics by solving
the simplified Boltzmann equation, while Sec. 10.6 rederives the Lee-Weinberg bound on fourth-generation
massive neutrinos, and examines the departure from electroweak energy scale. Finally, the GR limit of the
whole theory is studied in Sec. 7.

Throughout this paper, for the physical quantities involved in the calculations of thermal relics, we
use the natural unit system of particle physics which sets c = ~ = kB = 1 and is related to le système
international d’unités by 1 MeV = 1.16×1010 kelvin = 1.78×10−30 kg = (1.97×10−13 meters)−1 = (6.58×
10−22 seconds)−1. On the other hand, for the spacetime geometry, we adopt the conventions Γαβγ = Γαβγ,
Rαβγδ = ∂γΓ

α
δβ · · · and Rµν = Rαµαν with the metric signature (−,+ + +).

10.2 Gravitational framework of power-law f (R) gravity

In this paper, DM thermal relics will be studied for the Universe governed by the power-law-type f (R)
gravity, which is given by the action

I =

∫
d4x
√
−g

(
ε2−2βRβ + 16πm−2

Pl Lm
)
, (10.1)

where β = constant > 0, R denotes the Ricci scalar of the spacetime, and ε is some constant balancing
the dimensions of the field equation (see Sec.2 of Tian (2015) for a more detailed setup). Also, mPl refers
to the Planck mass, which is related to Newton’s constant G by mPl B 1/

√
G and takes the value mPl '

1.2209 × 1022 MeV. Variation of the action with respect to the inverse metric, i.e. δI/δgµν = 0 yields the
field equation

βRβ−1Rµν −
1
2

Rβgµν + β
(
gµν2 − ∇µ∇ν

)
Rβ−1 = 8πε2β−2m−2

Pl Tµν , (10.2)

where 2 denotes the covariant d’Alembertian 2 B gαβ∇α∇β, and the stress-energy-momentum tensor Tµν
is defined by the matter Lagrangian density Lm via Tµν B −2√

−g
δ(√−gLm)

δgµν . For the physical matter in the
Universe, we will assume a perfect-fluid description T µ

ν = diag[−ρ, P, P, P], where ρ and P are respectively
the energy density and the pressure, and ρ = 3P in the radiation dominated era for DM decoupling.

On the other hand, in the (t, r, θ, ϕ) comoving coordinates, the flat Friedmann-Robertson-Walker (FRW)
metric for the spatially homogeneous and isotropic Universe reads

gµνdxµdxν = ds2 = −dt2 + a(t)2dr2 + a(t)2r2
(
dθ2 + sin2θdϕ2

)
, (10.3)

where a(t) denotes the cosmic scale factor. Under the flat FRW metric, the energy-momentum conservation
equation ∇µTµν = 0 gives rise to the continuity equation

ρ̇ + 3
ȧ
a

(ρ + P) = 0 , (10.4)

which integrates to yields ρ = ρ0
(

a0
a

)4
∝ a−4 with the constants {ρ0, a0} being the present-day values of
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the radiation density and scale factor. Substituting ρ = ρ0
(

a0
a

)4
and Eq.(10.3) into Eq.(10.2), one obtains the

exact solution
a = a0tβ/2 ∝ tβ/2 , H B

ȧ
a

=
β

2t
, (10.5)

along with the generalized Friedmann equation[
12(β − 1)

β
H2

]β (
− 5β2 + 8β − 2

)
β − 1

= 32πε2β−2m−2
Pl ρ , (10.6)

where overdot denotes the temporal derivative and H refers to the cosmic Hubble parameter. Moreover, the
weak, strong and dominant energy conditions for classical matter fields require the energy density ρ to be
positive definite, and consequently, the positivity of the left hand side of Eq.(10.6) limits β to the domain

1 < β <
4 +
√

6
5
. 1.2899 ; (10.7)

note that the Ricci scalar for the flat FRW metric with a = a0tβ/2 reads

R = 6
(
ä
a

+
ȧ2

a2

)
=

3β(β − 1)
t2 , (10.8)

so R > 0 and Rβ is always well defined in this domain.

10.3 Thermal relics

10.3.1 Time-temperature relation of cosmic expansion

For the very early Universe, the radiation energy density ρ attributes to all relativistic species, which are expo-
nentially greater than those of the nonrelativistic particles, and therefore ρ =

∑
ρi(boson)+ 7

8
∑
ρ j(fermion) =∑ π2

30 g(b)
i T 4

i (boson) + 7
8
∑ π2

30 g( f )
j T 4

j (fermion), where {g(b)
i , g( f )

j } are the numbers of statistical degrees of free-
dom for relativistic bosons and fermions, respectively. More concisely, normalizing the temperatures of all
relativistic species with respect to photons’ temperature Tγ ≡ T , one has the generalized Stefan-Boltzmann
law

ρ =
π2

30
g∗T 4 with g∗ B

∑
boson

g(b)
i

(Ti

T

)4
+

7
8

∑
fermion

g( f )
j

(
T j

T

)4

, (10.9)

where, in thermodynamic equilibrium, T is the common temperature of all relativistic particles. To facilitate
the discussion of thermal relics, introduce a dimensionless variable

x B
mψ

T
(10.10)

to relabel the time scale, where mψ denotes the mass of dark-matter particles. x is a well defined variable
since the temperature monotonically decreases after the Big Bang: Reheatings due to pair annihilations at
T & 0.5486 MeV = m(e±) only slow down the decrement of T rather than increase T (Scherrer & Turner,
1986).

Substitute Eq.(10.9) into Eq.(10.6), and it follows that the cosmic expansion rate is related to the radiation
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temperature by

H =

√
β

12(β − 1)


√

(β − 1) g∗
−5β2 + 8β − 2


1/β 

√
32π3

30
T 2

mPl

1/β

ε1− 1
β

=

√
β

12(β − 1)


√

(β − 1) g∗
−5β2 + 8β − 2


1/β 

√
32π3

30
m2

mPl

1/β

ε1− 1
β x−2/β ,

(10.11)

which can be compactified into

H = H(m)x−2/β with H(m) B H(T = mψ) . (10.12)

As time elapses after the Big Bang, the space expands and the Universe cools. Eq.(10.11) along with H =

β/(2t) leads to t =
β

2H =
βx2/β

2H(m) and the time-temperature relation

t =
√

3β(β − 1)


√
−5β2 + 8β − 2

(β − 1) g∗


1/β √ 30

32π3

mPl

T 2

1/β

ε1/β−1

=
√

3β(β − 1)


√
−5β2 + 8β − 2

(β − 1) g∗


1/β √ 30

32π3

mPl

m2
ψ

1/β

ε1/β−1x2/β .

(10.13)

In the calculations below, we will utilize two choices of ε to balance the dimensions in L = ε2−2βRβ +

16πm−2
Pl Lm gravity:

(i) ε = 1 [sec−1]. This choice can best respect and preserve existent investigations in mathematical
relativity for the f (R) class of modified gravity, which have been analyzed for L̃ = f (R) + 16πm−2

Pl Lm

without caring the physical dimensions.

(ii) ε = mPl ' 0.1854 × 1044 [1/s], or 1/`Pl where `Pl =
√

G refers to Planck length. The advantage
of this choice is there is no need to employ extra parameters outside the mathematical expression
L̃ = f (R) + 16πm−2

Pl Lm.

10.3.2 Boltzmann equation

For dark-matter particlesψ in the very early Universe (typically before the era of primordial nucleosynthesis),
there are various types of interactions determining the ψ thermal relics, such as elastic scattering between ψ
and standard-model particles, and self-annihilation ψ + ψ
 ψ + ψ + · · · . In this paper, we are interested in
ψ initially in thermal equilibrium via the pair annihilation into (and creation from) standard-model particles
` = γ, e±, µ±, τ± · · · ,

ψ + ψ̄
 ` + ¯̀ . (10.14)

As the mean free path of ψ increases along the cosmic expansion, the interaction rate Γψψ̄ of Eq.(10.14)
gradually falls below the Hubble expansion rate H, and the abundance of ψ freezes out. The number density
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of ψ satisfies the simplified Boltzmann equation

ṅψ + 3Hnψ = − 〈σv〉
[
n2
ψ −

(
neq
ψ

)2
]
, (10.15)

where 〈σv〉 is the thermally averaged cross-section. We employ the following quantity to describe the evo-
lution of ψ at different temperature scales:

Y B
nψ
s
∝

nψ
g∗sT 3 , (10.16)

where s is the comoving entropy density s B S/V ,

s =
∑

i

ρi + Pi − µini

Ti
'

2π2

45
g∗sT 3 with g∗s B

∑
boson

g(b)
i

(Ti

T

)3
+

7
8

∑
fermion

g( f )
j

(
T j

T

)3

. (10.17)

Here we have applied Pi = ρi/3 and µi � Ti in s for relativistic matter, and g∗s denotes the entropic number
of statistic degrees of freedom. According to the continuity equation Eq.(10.4) and the thermodynamic
identities

∂P
∂T

∣∣∣∣∣
µ

= s ,
∂P
∂µ

∣∣∣∣∣
T

= n , (10.18)

one has
d(sa3)

dt
= −

µ

T
d(na3)

dt
, (10.19)

so the comoving entropy density sa3 of a particle species is conserved when the comoving particle number
density nψa3 is conserved or the chemical potential µ is far smaller than the temperature. Thus, d(sa3)/dt =

0 = a3(ṡ + 3Hs), ṡ/s = −3H, and the time derivative of Y becomes

dY
dt

=
ṅψ
s
−

ṡ
s
Y =

ṅψ
s

+ 3HY = s−1
(
ṅψ + 3Hnψ

)
. (10.20)

Substitute the simplified Boltzmann equation (10.15) into Eq.(10.20), and one obtains

dY
dt

= −s 〈σv〉
(
Y2 − Y2

eq

)
. (10.21)

Now rewrite dY/dt into dY/dx. Since

T =

(
30
π2g∗

ρ

)1/4

=

30ε2−2βm2
Pl(−5β2 + 8β − 2)

32π3g∗(β − 1)

[
3β(β − 1)

]β
1/4

t−β/2 ∝ t−β/2 , (10.22)

thus Ṫ/T = −β/(2t) = −H(t) = −H(x) = −H(m)x−2/β, and dY
dx

dx
dT

dT
dt = dY

dx (−x) Ṫ
T = dY

dx (−x)
(
−H(m)x−2/β

)
,

which recast Eq.(10.21) into

dY
dx

= −
x

2
β−1

H(m)
〈σv〉 s

(
Y2 − Y2

eq

)
= −
〈σv〉 s

Hx

(
Y2 − Y2

eq

)
. (10.23)
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Defining the annihilation rate of ψ as Γψ B neq 〈σv〉, then Eq.(10.23) can be rewritten into the form

x
Yeq

dY
dx

= −
neq

H
〈σv〉

( Y
Yeq

)2

− 1

 = −
Γψ

H

( Y
Yeq

)2

− 1

 , (10.24)

which will be very useful in calculating the freeze-out temperature of cold relics in Sec. 10.5.

10.4 Hot/warm relic dark matter and light neutrinos

10.4.1 Generic bounds on ψ mass

Having set up the modified cosmological dynamics and Boltzmann equations in L = ε2−2βRβ + 16πm−2
Pl Lm

gravity, we will continue to investigate hot dark matter which is relativistic for the entire history of the
Universe until now, and warm dark matter which is relativistic at the time of decoupling but become nonrel-
ativistic nowadays.

In the relativistic regime T � 3mψ or equivalently 0 < x � 3, the abundance of mψ is given by

Yeq = Y (R)
eq =

45ζ(3)
2π4

bψgψ
g∗s

' 0.2777
bψgψ
g∗s

, (10.25)

where ζ(3) = 1.20206, bψ = 1 for bosons and bψ = 3/4 for fermions. Yeq only implicitly depends on x
through the evolution of g∗s along the temperature scale. Then, the relic abundance is still given by Yeq at
the time of freeze-out x f :

Y∞ B Y(x→ ∞) = Y (R)
eq (x f ) = 0.2777 ×

bψgψ
g∗s(x f )

. (10.26)

At the present time with Tcmb = 2.7255 K (Particle Data Group, 2015), the entropy density is

s0 =
2π2

45
g∗s0T 3

cmb = 2891.2 cm−3 , (10.27)

where in the minimal standard model with three generations of light neutrinos (Nν = 3),

g∗s0 = 2 +
7
8
× 2 × Nν ×

(
Tν0

Tcmb

)3

' 3.9091 . (10.28)

Thus, the present-day number density and energy density of hot/warm relic ψ can be found by

nψ0 = s0Y∞ = 802.8862 ×
bψgψ

g∗s(x f )
cm−3 , (10.29)

ρψ0 = mψnψ0 = 802.8862 ×
bψgψ

g∗s(x f )

(mψ

eV

) eV
cm3 , (10.30)

which, for ρcrit = 1.05375 × 104 h2 eV/cm3, correspond to the fractional energy density

Ωψh2 =
ρψ0

ρcrit
h2 ×

bψgψ
g∗s(x f )

(mψ

eV

)
= 0.0762 ×

bψgψ
g∗s(x f )

(mψ

eV

)
. (10.31)
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This actually stands for an attractive feature of the paradigm of thermal relics: the current abundance Ωψh2 of
relic dark matter (hot, warm, or cold) can be predicted by ψ’s microscopic properties like mass, annihilation
cross-section, and statistical degrees of freedom.

Since hot/warm relics can at most reach the total dark matter density Ωψh2 = 0.1198 ± 0.0026 (Particle
Data Group, 2015), Ωψh2 has to satisfy Ωψh2 . 0.1198, and it follows from Eq.(10.31) that mψ is limited by
the upper bound

mψ . 1.5723 ×
g∗s(x f )
bψgψ

eV . (10.32)

Moreover, particles of warm dark matter become nonrelativistic at present time, which imposes a lower
bound to mψ,

mψ & Tψ0 = Tψ f
a f

a0
=

(
g∗s0

g∗s(x f )

)1/3

Tcmb = 2.3496 × 10−4 ×

(
3.9091
g∗s(x f )

)1/3

eV , (10.33)

where we have applied g1/3
∗s aT = constant due to sa3 = constant. Eqs.(10.32) and (10.33) lead to the mass

bound for warm relics that

2.3496 × 10−4 ×

(
3.9091
g∗s(x f )

)1/3

.
mψ

eV
. 1.5723 ×

g∗s(x f )
bψgψ

. (10.34)

10.4.2 Example: light neutrinos as hot relics

Light neutrinos are the most popular example of hot/warm dark matter (Lesgourgues & Pastor, 2006). One
needs to figure out the temperature T ν

f and thus g∗s(T = T ν
f ) when neutrinos freeze out from the cosmic

plasma. The decoupling occurs when the Hubble expansion rate H balances neutrinos’ interaction rate Γν.
For the cosmic expansion, it is convenient to write Eq.(10.11) into

H = 0.2887 ×

√
β

β − 1
×


√

(β − 1) g∗
−5β2 + 8β − 2


1/β (

0.7164 · T 2
MeV

)1/β
ε

1− 1
β

s [1/s] , (10.35)

where TMeV refers to the value of temperature in the unit of MeV, T = TMeV × [1 MeV], εs is the value of ε
in the unit of [1/s], and numerically T 2/mPl = T 2

MeV/8.0276 [1/s].
On the other hand, the event of neutrino decoupling actually indicates the beginning of primordial nu-

cleosynthesis, when neutrinos are in chemical and kinetic equilibrium with photons, nucleons and electrons
via weak interactions and elastic scattering. The interaction rate Γν is (Kolb & Turner, 1990)

Γν ' 1.3G2
FT 5 ' 0.2688 T 5

MeV [1/s] , (10.36)

where GF is Fermi’s constant in beta decay and generic weak interactions, and GF = 1.1664× 10−11MeV−2.
Neutrinos decouple when Γν = H, and according to Eqs.(10.35) and (10.36), the weak freeze-out temperature
T f
ν is the solution to

T 5−2/β
MeV = 1.0741 ×

√
β

β − 1
×

0.7164 ·

√
(β − 1) g∗
−5β2 + 8β − 2


1/β

ε
1−1/β
s . (10.37)

239



Figs. 10.1 and 10.2 have shown the dependence of T f
ν on β for ε = 1 sec−1 = 6.58 × 10−22 MeV and

ε = mPl = 1.2209 × 10−22 MeV, respectively. Fig. 10.2 clearly illustrates that T f
ν spreads from 1.3030 MeV

to over 1000 MeV, which goes far beyond the scope of 1 ∼ 10 MeV; thus, as shown in Table 10.1, g∗s varies
and the mass bound Σmν in light of Eq.(10.34) is both β−dependent and ε−dependent.

Figure 10.1: T f
ν (in MeV) for ε = 1 sec−1 = 6.58 × 10−22 MeV

Figure 10.2: T f
ν (in MeV) for ε = mPl = 1.2209 × 10−22 MeV

10.5 Cold relic dark matter

Now let’s consider cold dark matter which is already nonrelativistic at the time of decoupling. In the non-
relativistic regime T � 3mψ or equivalently x � 3, the number density and entropy density are given by
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Table 10.1: g∗s for the T ν
f in Fig. 10.2, based on the data of Particle Data Group. Note that between 100∼200 MeV, g∗s is also

subject to the phase transition of quantum chromodynamics for strange quarks.

Temperature Temperature (in MeV) g∗s

me < T < ms (strange) 0.5110 < T < 95 43/4

ms < T < mµ 95 < T < 105.6584 57/4

mµ < T < mπ 105.6584 < T < 134.9766 69/4

mπ < T < Tc 134.9766 < T < Tc 205/4

Tc < T < mc (charm) Tc < T < 1275 247/4

mc < T < mτ 1275 < T < 1776.82 289/4

mτ < T < mb (bottom) 1776.82 < T < 4180 303/4

nψ = gψ

m2
ψ

2π

3/2

x−3/2e−x , s =
2π2

45
g∗sm3

ψx−3 = s(m) x−3 , (10.38)

so one obtains the equilibrium abundance of nonrelativistic ψ particles

Yeq = Y (NR)
eq =

45
4π4

(
π

2

)1/2 gψ
g∗s

x3/2e−x ' 0.1447 ×
gψ
g∗s

x3/2e−x . (10.39)

Thus, nψ and Yeq = Y (NR)
eq are exponentially suppressed when the temperature drops below mψ. Moreover,

since cold relics are nonrelativistic when freezing out, one can expand the thermally averaged cross-section
by 〈σv〉 = c0 + c1v2 + c2v4 + · · · + cqv2q + · · · , where c0 corresponds to the decay channel of s−wave,
c1 to p−wave, c2 to d−wave, and so forth; recalling that 〈σv〉 ∼

√
T in light of the Boltzmann velocity

distribution, thus the annihilation cross-section can be expanded by the variable x into

〈σv〉 = 〈σv〉0 x−n with n = q/2 . (10.40)

Then the Boltzmann equation (10.23) becomes

dY
dx

= −
s(m) 〈σv〉0

H(m)
x

2
β−4−n

(
Y2 − Y2

eq

)
= −

s(m) 〈σv〉0
H(m)

x
2
β−4−n

Y2 − 0.0209
(

gψ
g∗s

)2

x3e−2x

 , (10.41)

where

s(m) 〈σv〉0
H(m)

=
1.519525

(5.750944)1/β

√
β − 1
β


√
−5β2 + 8β − 2

β − 1


1/β

g∗s
(
√

g∗)1/β ε
1
β−1 m3− 2

β m1/β
Pl 〈σv〉0 . (10.42)

Though initially in equilibrium Y ≈ Yeq = Y (NR)
eq , the actual abundance Y gradually departures from the

equilibrium value Y (NR)
eq as the temperature decreases; Y freezes out and escapes the exponential Boltzmann
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suppression when the interaction rate Γψ equates the cosmic expansion rate H. Transforming Eq.(10.41) into
the form

x
Yeq

dY
dx

= −
s(m) 〈σv〉0

H(m)
Yeq

( Y
Yeq

)2

− 1

 x
2
β−3−n

= −
Γψ

H

( Y
Yeq

)2

− 1

 , (10.43)

and the coupling condition Γψ(x f ) = H(x f ) at the freeze-out temperature Tψ

f = mψ/x f yields

Γψ

H
(x f ) = 1 =

s(m) 〈σv〉0
H(m)

Yeqx
2
β−3−n

' 0.1447
s(m) 〈σv〉0

H(m)
gψ
g∗s

x
2
β−3/2−ne−x . (10.44)

Thus, it follows that

ex f = 0.1447
s(m) 〈σv〉0

H(m)
gψ
g∗s

x
2
β−3/2−n

=
0.2199

(5.7509)1/β

√
β − 1
β


√
−5β2 + 8β − 2

β − 1


1/β

gψ
(
√

g∗)1/β ε
1
β−1 m3− 2

β m1/β
Pl 〈σv〉0 x

2
β−3/2−n
f .

(10.45)

After taking the logarithm of both side, Eq.(10.45) can be iteratively solved to obtain

x f = ln

 0.2199
(5.7509)1/β

√
β − 1
β


√
−5β2 + 8β − 2

β − 1


1/β

gψ
(
√

g∗)1/β ε
1
β−1 m3− 2

β m1/β
Pl 〈σv〉0

 (10.46)

+

(
2
β
−

3
2
− n

)
ln

ln
(

0.2199
(5.7509)1/β

√
β − 1
β


√
−5β2 + 8β − 2

β − 1


1/β

gψ
(
√

g∗)1/β ε
1
β−1 m3− 2

β m1/β
Pl 〈σv〉0

)
+

(
2
β
−

3
2
− n

)
ln

[
· · · · · ·

]
,

where g∗ has been treated as a constant, as the time scale over which g∗ evolves is much greater than the time
interval near x f .

10.5.1 Abundance Y before freeze-out

To work out the actual abundance Y before the decoupling of ψ, employ a new quantity ∆ B Y − Yeq, and
then Eq.(10.41) can be recast into

d∆

dx
= −

s(m) 〈σv〉0
H(m)

x
2
β−4−n

∆
(
∆ + 2Yeq

)
−

dYeq

dx
. (10.47)

In the high-temperature regime x � x f before ψ freezes out, Y is very close to Yeq, so that ∆ � Yeq and
d∆/dx � −dYeq/dx. With Yeq = Y (NR)

eq in Eq.(10.39), Eq.(10.47) can be algebraically solved to obtain

∆ = −
dYeq

dx
H(m)

s(m) 〈σv〉0

xn+4− 2
β

2Yeq + ∆
=

(
1 −

3
2x

)
H(m)

s(m) 〈σv〉0

xn+4− 2
β

2 + Yeq/∆
'

(
1 −

3
2x

)
H(m)

2s(m) 〈σv〉0
xn+4− 2

β , (10.48)
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and consequently

Y = ∆ + Yeq =

(
1 −

3
2x

)
H(m)

s(m) 〈σv〉0

xn+4− 2
β

2 + Yeq/∆
+

45
4π4

(
π

2

)1/2 gψ
g∗s

x3/2e−x

'

(
1 −

3
2x

)
H(m)

2s(m) 〈σv〉0
xn+4− 2

β + 0.1447 ×
gψ
g∗s

x3/2e−x .

(10.49)

10.5.2 Freeze-out abundance Y∞

After the decoupling of ψ particles, the actual number density nψ becomes much bigger than the ideal e-
quilibrium value neq

ψ . One has Y � Yeq, Y ≈ ∆, and the differential equations (10.41) or (10.47) leads to

dY
dx

= −
s(m) 〈σv〉0

H(m)
x

2
β−4−n Y2 or

dY
dx

= −
s(m) 〈σv〉0

H(m)
x

2
β−4−n Y2 , (10.50)

which integrates to yield the freeze-out abundance Y∞ B Y(x = x f ) ≈ Y(x→ ∞) that

Y∞ =

(
3 + n −

2
β

)
H(m)

s(m) 〈σv〉0
x

3+n− 2
β

f

=

(
3 + n − 2

β

)
x

3+n− 2
β

f

1.5195
(5.7509)1/β

√
β−1
β

(√
−5β2+8β−2

β−1

)1/β
g∗s

(
√

g∗)1/β ε
1
β−1 m3− 2

β m1/β
Pl 〈σv〉0

.
(10.51)

Following Y∞, the number density and energy density of ψ are directly are directly found to be

nψ0 = s0Y∞ =
2891.2

(
3 + n − 2

β

)
x

3+n− 2
β

f

1.5195
(5.7509)1/β

√
β−1
β

(√
−5β2+8β−2

β−1

)1/β
g∗s

(
√

g∗)1/β ε
1
β−1 m3− 2

β m1/β
Pl 〈σv〉0

cm−3 , (10.52)

ρψ0 = mψnψ0 =
2891.2

(
3 + n − 2

β

)
x

3+n− 2
β

f

1.5195
(5.7509)1/β

√
β−1
β

(√
−5β2+8β−2

β−1

)1/β
g∗s

(
√

g∗)1/β ε
1
β−1 m2− 2

β m1/β
Pl 〈σv〉0

eV
cm3 , (10.53)

which gives rise to the fractional energy density

Ωψh2 =
ρψ0

ρcrit
h2 =

2743.7248
(
3 + n − 2

β

)
x

3+n− 2
β

f

1.5195
(5.7509)1/β

√
β−1
β

(√
−5β2+8β−2

β−1

)1/β
g∗s

(
√

g∗)1/β ε
1
β−1 m2− 2

β m1/β
Pl 〈σv〉0

. (10.54)

Unlike Eq.(10.31) for hot/warm relics, the relic density Ωψh2 for cold dark matter is not only much more
sensitive to the temperature of cosmic plasma, but also relies on the annihilation cross-section.

10.6 Example: Fourth generation massive neutrinos and Lee-Weinberg bound

An example of cold relics can be the hypothetical fourth generation massive neutrinos (Lee & Weinberg,
1977, Kolb & Olive, 1986, Lesgourgues & Pastor, 2006). For the Dirac-type neutrinos whose annihilations
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are dominated by s−wave (n = 0), the interaction cross-section reads

〈σv〉0 ' G2
Fm2 = 1.3604 × 10−10

( mψ

GeV

)2
GeV−2 (10.55)

where GF is Fermi’s constant in beta decay and generic weak interactions, and GF = 1.16637× 10−5GeV−2.
Then with gψ = 2 and g∗ ∼ 60, the neutrinos decouple at

x̃ f = ln

0.5983 × 10−10

(44.5463)1/β

√
β − 1
β


√
−5β2 + 8β − 2

β − 1


1/β

ε
1
β−1 m5− 2

β m1/β
Pl

 (10.56)

+

(
2
β
−

3
2
− n

)
ln

ln
(
0.5983 × 10−10

(44.5463)1/β

√
β − 1
β


√
−5β2 + 8β − 2

β − 1


1/β

ε
1
β−1 m5− 2

β m1/β
Pl

)
+

(
2
β
−

3
2
− n

)
ln

[
· · · · · ·

]
,

which, through Eq.(10.57), gives rise to the fractional energy density

Ωψh2 =
ρψ0

ρcrit
h2 =

2743.7248 × 1010 ×
(
3 + n − 2

β

)
x̃

3+n− 2
β

f

0.5983
(44.5463)1/β

√
β−1
β

(√
−5β2+8β−2

β−1

)1/β
ε

1
β−1 m5− 2

β m1/β
Pl

. (10.57)

With the same amount of anti-particles, we finally have Ωψψ̄0h2 = 2Ωψh2 . 0.1198. Thus the Lee-Weinberg
bound (Lee & Weinberg, 1977, Kolb & Olive, 1986) for massive neutrinos are relaxed in L = ε2−2βRβ +

16πm−2
Pl Lm gravity.

10.7 Conclusions

In this paper, we have comprehensively investigated the thermal relics as hot, warm and cold dark matter
in L = ε2−2βRβ + 16πm−2

Pl Lm gravity. When light neutrinos act as hot and warm neutrinos, the upper
limit of neutrino mass Σmν relies on the value of β and the choice of ε. For cold relics, we have derived
the freeze-out temperature T f = m/x f in Eq.(10.46), Y before the freeze-out in Eq.(10.49), the freeze-out
value Y∞ in Eq.(10.51), and the dark-matter fractional density Ωψh2 in Eq.(10.57). Note that we focused on
power-law f (R) gravity because unlike the approximated power-law ansatz a = a0tα (α = constant > 0) for
generic f (R) gravity, a = a0tβ/2 is an exact solution to L = ε2−2βRβ + 16πm−2

Pl Lm gravity for the radiation-
dominated Universe; for GR with β→ 1+, Eq.(10.5) reduces to recover the behavior a ∝ t1/2 which respects
3ȧ2/a2 = −8πm−2

Pl ρ0a−4.
When light neutrinos serve as hot/warm relics, the entropic number of statistical degrees of freedom g∗s at

freeze-out and thus the predicted fractional energy density Ωψh2 are β−dependent, which relaxes the standard
mass bound Σmν. For cold relics, by exactly solve the simplified Boltzmann equation in both relativistic
and nonrelativistic regimes, we show that the Lee-Weinberg bound for the mass of heavy neutrinos can be
considerably relaxed, and the “WIMP miracle” for weakly interacting massive particles (WIMPs) gradually
becomes invalid when β departs β = 1+. The whole framweork reduces to become that of GR in the limit
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β→ 1+.
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Chapter 11

Summary and prospective research

Based on the concordant observations from high-redshift type-Ia supernovae, galaxy clusters, and cosmic
microwave anisotropy, an amazing fact has been established that the Universe is undergoing accelerated
expansion. Within general relativity and in light of the second Friedmann equation ä

a = − 4πG
3 (ρ + 3P), the

Universe must be dominated by some exotic dark energy with large negative pressure that violate the standard
energy conditions. Quite a few models of dark energy have been developed, such as the cosmological
constant Λ with the equation of state parameter w = −1, extra scalar fields (quintessence −1 < w < −1/3,
phantom w < −1, quintom), generalized Chaplygin gas, and phenomenological modifications of Friedmann
equations. However, to date our knowledge of dark energy solely comes from the gravitational consequences
at large cosmic scales, and its nature in particle physics is totally mysterious.

Alternatively, instead of considering dark energy, one can go beyond the gravitational framework of gen-
eral relativity, explaining the cosmic acceleration and reconstructing the entire expansion history in modified
theories of relativistic gravity. Such modified gravities actually encode the possible ways to go beyond Love-
lock’s theorem and its necessary conditions, which limit the second-order field equation in four dimensions to
Rµν −Rgµν/2 + Λgµν = 8πGT (m)

µν , i.e. Einstein’s equation supplemented by the cosmological constant. These
directions can allow for, for example, fourth and even higher order gravitational field equations like f (R)
gravity, more than four spacetime dimensions like Gauss-Bonnet and Lovelock gravities, extensions of pure
pseudo-Riemannian geometry and metric gravity like Einstein-Cartan and teleparallel gravities, extra phys-
ical degrees of freedom like Brans-Dicke and Chern-Simmons gravities, and nonminimal curvature-matter
couplings like f (R,Lm) gravity.

This thesis studied the theories and phenomenology of modified gravity, along with the applications in
cosmology, astrophysics, and effective dark energy. To begin with, Chapter 1 has reviewed the fundamentals
of general relativity, dark energy, modified gravity, the standard ΛCDM model, and observational cosmology.
These are the preparations for the discussion in Chapters 3∼10.

Chapter 3 has proposed the L = f (R,R2
c ,R

2
m,Lm) class of modified gravity that allows for nonmini-

mal matter-curvature couplings (R2
c B RµνRµν, R2

m B RµανβRµανβ). This framework unifies most of exist-
ing fourth-order gravities. When the “coherence condition” fR2 = fR2

m
= − fR2

c
/4 is satisfied for explicit

R2−dependence, it has a smooth limit to the f (R,G,Lm) generalized Gauss-Bonnet gravity. Furthermore,
it is promoted to the f (R,R1, . . . ,Rn,Lm) theory to investigate the stress-energy-momentum conservation,
and conjectured that fLm∇

µT (m)
µν =

(
Lmgµν − T (m)

µν
)
∇µ fLm . Also, the equations of nongeodesic motions, the

generalized energy conditions and their consequences on black holes, the conditions to maintain traversable
wormholes by nonminimal couplings, the L = f (R,R2

c ,R
2
m,T

(m)) gravity which contains f (R,G,T (m)), are

247



all discussed.
Chapter 4 has developed a unified formulation to derive the Friedmann equations from (non)equilibrium

thermodynamics for modified gravities Rµν − Rgµν/2 = 8πGeffT (eff)
µν , and applied this formulation to the

Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon,
quadratic, f (R,G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Ref.[3] extended Hay-
ward’s unified first law from equilibrium to nonequilibrium thermodynamics, found out the evolution of the
effective gravitational coupling strength Ġeff as the only source of irreversible energy dissipation and entropy
production, and generalized the Hawking and the Misner-Sharp masses. Moreover, a self-inconsistency of
f (R,G) gravity due to the non-uniqueness of Geff is discovered.

Chapter 5 has systematically restudied the thermodynamics of the Universe in ΛCDM and modified
gravities by requiring its compatibility with the holographic-style gravitational equations. Possible solutions
to the long-standing confusions regarding the temperature of the cosmological apparent horizon and the
failure of the second law of thermodynamics in cosmology are proposed. We concluded that the Cai-Kim
temperature is more suitable than Hayward-Kodama, and both temperatures are independent of the inner or
outer trappedness. Moreover, the Cai-Kim-Clausius equation TAdS A = −AAψt encodes the positive heat out
sign convention, which adjusts the traditional positive-heat-in Gibbs equation of laboratory thermodynamics
into dEm = −TmdS m − PmdV . This way, it is also shown that the Bekenstein-Hawking and Wald entropies
only apply to the apparent horizon, the phantom dark energy is less favored than the cosmological constant
and the quintessence from a thermodynamic perspective, the artificial “local equilibrium assumption” can
be abandoned, the apparent horizon is a natural infrared cutoff for holographic dark energy for the late-time
Universe, and an existing model of QCD ghost dark energy fails to carry positive energy density.

Chapter 6, inspired by Lovelock’s theorem, has proposed the Lovelock-Brans-Dicke theory of alternative

gravity with LLBD = 1
16π

[
φ

(
R + a√

−g
∗RR + bG

)
−

ωL
φ
∇αφ∇

αφ

]
, where ∗RR and G respectively denote the

topological Chern-Pontryagin and Gauss-Bonnet invariants. This theory reduces to general relativity in
the limit ωL → ∞ unless the “topological balance condition” holds, it can be conformally transformed
into dynamical Chern-Simons gravity and Gauss-Bonnet dark energy, and allows for the late-time cosmic
acceleration without dark energy. Furthermore, LBD gravity is generalized into the Lovelock-scalar-tensor
gravity, and its equivalence to fourth-order modified gravities is established. As a quick application of
Chapter 6, Chapter 7 has looked into traversable wormholes and energy conditions in Lovelock-Brans-Dicke
gravity, along with an extensive comparison to wormholes in Brans-Dicke gravity.

Chapter 8, for a large class of scalar-tensor-like gravity S =
∫

d4x
√
−g

(
LHE + LG + LNC + Lφ

)
+ Sm

whose action contains nonminimal couplings between a scalar field φ(xα) and generic curvature invariants
{R} beyond the Ricci scalar, has proved the local energy-momentum conservation and introduced the “Weyl/-
conformal dark energy”.

Chapter 9 has investigated the primordial nucleosynthesis in L = ε2−2βRβ+16πm−2
Pl Lm gravity. From the

semianalytical approach, the influences of β to the decoupling of neutrinos, the freeze-out temperature and
concentration of nucleons, the opening of deuterium bottleneck, and the 4He abundance are all extensively
analyzed; then β is constrained to 1 < β < 1.05 for ε = 1 [1/s] and 1 < β < 1.001 for ε = mPl (Planck
mass), which correspond to the extra number of neutrino species 0 < ∆Neff

ν ≤ 0.6296 and 0 < ∆Neff
ν ≤

0.0123, respectively. Supplementarily, abundances of the lightest elements (D, 4He, 7Li) are computed by
the model-independent best-fit empirical formulae for nonstandard primordial nucleosynthesis, and we find
the constraint 1 < β ≤ 1.0505 and equivalently 0 < ∆Neff

ν ≤ 0.6365; also, the 7Li abundance problem
cannot be solved by L = ε2−2βRβ + 16πm−2

Pl Lm gravity for this domain of β. Finally, consistency with the
mechanism of gravitational baryogenesis is estimated.
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Still in L = ε2−2βRβ + 16πm−2
Pl Lm gravity, Chapter 10 has studied thermal relics as hot, warm, and cold

dark matter. If light neutrinos serve as hot/warm relics, the predicted fractional energy density Ωψh2 and
the mass bound Σmν are β− and ε−dependent. For cold relics, by exactly solving the simplified Boltzmann
equation in both relativistic and nonrelativistic regimes, we show that the Lee-Weinberg bound for the mass
of heavy neutrinos can be considerably relaxed, and the “WIMP miracle” for weakly interacting massive
particles gradually invalidates as β deviates from β = 1+.

We believe that theoretical physicists should keep close eyes on the progress of experiments and ob-
servations. In prospective research, we will continue applying relativistic gravities to physical problems in
astrophysics and precision cosmology. Here are some of our projects in progress or under preparation.

(1) Test and constrain dark energy and modified gravity by the expansion history and structure growth
of the Universe, using the observations of type-Ia supernovae (Union 2.1 compilation), anisotropy of
cosmic microwave background (WMAP, Planck), baryon acoustic oscillation (SDSS, BOSS), direct
Hubble rate H(z) (differential age, clustering of galaxies/quasars), and so forth.

(2) In minimally coupled modified gravities and with respective to the SU(3)c×SU(2)W×U(1)Y minimal
standard model, study the gravitationally induced baryogenesis by nonstandard cosmic expansion;
investigate hot, warm and cold dark matter as thermal relics of the very early Universe; calculate the
primordial helium synthesis from the semi-analytical approach, and nucleosynthesis of deuterium and
lithium from the empirical approach; and look into hydrogen recombination and cosmic microwave
background.

(3) The very early Universe in f (R,T (m)) = R+2λRT (m) gravity: Impacts of nonminimal curvature-matter
coupling to gravitational baryogenesis, thermal-relic dark matter, and primordial nucleosynthesis.

One typical curvature-matter coupling is the L = f (R,T (m)) + 16πm−2
Pl Lm model [57], where the Ricci

scalar R is nonminimally coupled to the trace of the stress-energy-momentum tensor T (m) = gµνT (m)
µν .

The field equation is

−
1
2

f gµν + fR ·Rµν +
(
gµν2 − ∇µ∇ν

)
fR = − fT (m) ·

(
T (m)
µν + Θµν

)
+ 8πm−2

Pl T (m)
µν ,

where − fT (m)
(
T (m)
µν + Θ

(m)
µν

)
comes from the T (m)-dependence in f (R,T (m)), and

Θ
(m)
µν B

gαβ δT (m)
αβ

δgµν
= −2T (m)

µν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
.

For L = R + 8λπm−2
Pl T (m) + 16πm−2

Pl Lm, where λ is a constant and Θ
(m)
µν = −2T (m) + Pmgµν, we have

the modified Friedmann equations 3H2 = 8πm−2
Pl (1 + 4

3λ)ρm and 3Ḣ = −16πm−2
Pl (1 + λ)ρm for the

radiation-dominated era. Thus Ḣ +
2(1 + λ)
1 + 4

3λ
H2 = 0, which integrates to yield the exact solutions

H =
1 + 4

3λ

2(1 + λ)
t−1 and a(t) = a0t

1+ 4
3 λ

2(1+λ) .
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With H and a obtained, it becomes possible to calculate gravitational baryogenesis, relic dark matter
and primordial nucleosynthesis in f (R,T (m)) = R + 2λRT (m) gravity, and thus construct the thermal
history of the early Universe, which is expected to constrain the possible domain of λ. Also, one
should keep in mind the “matter creation effect” due to the nontrivial conservation ∇µT (m)

µν , 0 under
R−T (m) coupling. (In fact, it is difficult to solve the Friedmann equations in modified gravity, so every
exact solution of a(t) is valuable!)

(4) Following particle physics, it is natural to assume the interactions of dark energy with dark matter
and even the cosmic neutrino background. We will look into the consequences of such interactions:
(i) curvature oscillation 2R in a local region (galaxies, clusters, etc.) with dense (ρ � ρcr0) and
evolving(ρ = ρ(t)) matter fields, along with the occurrence and removal of curvature singularities;
(ii) enhancement of the matter power spectra by massive neutrinos, and constraints on the summed
neutrino mass.

(5) Neutron stars can form in iron core-collapse or electron capture supernovae – in the latter case [71], a
8 − 10M� massive star with a degenerate ONeMg core collapses as the capture of electrons destroys
the internal equilibrium by a sudden loss of hydrostatic pressure. This mechanism is far from being
fully understood, and we will study the conditions for electron capture along with their influences to
the neutron star’s characteristic parameters, propagation of the neon burning front towards the stellar
center, and impact to the population of binary and isolated neutron stars in globular clusters.

The projects I will be working on will be subject to the accumulations of my physics knowledge, the
progress of my skills on numerical calculations, and my inspirations from the arXiv daily updates. Physics
is the most attractive career to me, and I will try to advance my professional attainment with heart and soul.
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