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I 

 

ABSTRACT 

Robots have been widely used in industry and are becoming popular in people’s daily lives. 

It makes production more efficient and everyday life more convenient. In this research, a 

robotic auto-sampler is designed, developed and tested to sample and collect two-phase 

fluids from a core flooding. 

First of all, this thesis introduces the history of parallel robot industry the state of the art. 

Then, based on the problem statement, the most reasonable concept is chosen as the 

Five-Bar parallel robot. Theoretical simulations are made including kinematic analysis to 

calculate its mechanical dimension and dynamic analysis to calculate the actuator torque. 

As a result of that, the theoretical dimensions can be obtained and actuators can be chosen. 

In the design and control phase, the entire integrated system is presented in detail. 

This thesis researches the design process of an auto-sampler based on a five-bar robot. 

From the proposed problem to the robot fabrication and programming, the entire system is 

designed, analyzed, built and tested. 
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Chapter 1 

1. Introduction 

1.1. Introduction to Robotics 

A robot is a comprehensive system. It is integrated with electrical and mechanical machines 

controlled by a computer. It should be automated and programmable based on different 

requirements. They are artificial agents used to replace human resources doing practical 

tasks. Robotics is a new interdisciplinary branch of Mechanical Engineering, Electrical 

Engineering and Computer Science. Based on the definition from International 

Organization for Standardization 8373:2012 (ISO 8373:2012) [1], a robot is an "actuated 

mechanism programmable in two or more axes with a degree of autonomy, moving within 

its environment, to perform intended tasks." (Autonomy: ability to perform intended tasks 

based on current state and sensing, without human intervention.) 

A rigid body in space can move in various ways, in translation or rotary motion, as shown 

in Figure 1-1. The rigid body can do translation in ��, �	 and �
 directions along ox, oy, 

and oz. It respectively can also rotate as ��, �	 and �
 about ox, oy and oz. These 

motions are called its degrees of freedom (DOF). There are a maximum of six degrees of 

freedom. 
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In robotics, the degree of freedom is the independent capability of every robot component 

to move related to the fixed base coordinate, excluding capability of any end-effector. The 

end-effector is the end of the manipulator to interact with the environment and it is 

connected to one arm. Generally, in order to let the end-effector reach any point and 

orientation in the space, the robot needs six degrees of freedom (DOFs). The DOFs is 

decided by the structure of the robot. 

 

Figure 1-1 Degree of Freedom [35] 

A serial manipulator consists of a succession of rigid bodies, each of them being linked to 

its predecessor and its successor by a one DOF joint. It can be a translation joint or a 

rotary joint. The end-effector, which is the end of the manipulator to interact with the 

environment, is connected to one arm. This mechanism is classical because it is similar to 



 

3 

the human arm and the idea of how the object is handled by the human arm is easy to 

transform into reality. Early robot designs mainly focused on serial manipulator research. 

 

Figure 1-2 Serial Manipulator 

Parallel manipulators, as shown in Figure 1-3, consist of multiple serial manipulators. 

End-effectors of all serial branches are connected at the coincident point or platform. 

Parallel manipulators use multiple arms to handle the object.  

 

Figure 1-3 Parallel Manipulator 
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1.2. The History of Serial Robots 

The serial robot is the most classical robot and it is the earliest robot applied in 

manufacturing industry, logistics industry, ocean engineering and space exploration 

engineering. 

In 1954, the American inventor Devol invented the first electrical programmable industrial 

robot, shown in Figure 1-4, with the robot patent published in 1961. In 1962, American 

Unimation Company developed the first robot and it was used in a General Motors factory. 

It was used to lift hot pieces of metal from a die casting machine and stack them. In order to 

raise the manufacturing efficiency of the assembly line, Chrysler, Ford and Fiat purchased 

the first generation Unimation robots and installed them in their factories as well.  

 

Figure 1-4 Programmable Article Transfer (Devol, 1961) 
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1.3. Serial Robots 

Along with the development of Computer Science, more advanced serial robots were 

developed and applied in industrial production. In this section, three types of widely 

applied serial robots are introduced based on increasing DOFs. 

1.3.1. Two DOFs Serial Robots 

The Cartesian Coordinate Robots are industrial robots whose two principal axes of control 

are linear. The two sliding joints are controlled to move back and forth. The axes are 

coincident with the Cartesian reference frame, where the x and y axes are orthogonal to 

each other. The three prismatic joints move to deliver a linear motion along the axes [16]. 

Therefore, Cartesian Coordinate Robot has three translation degrees of freedom. 

Chesley and Jelatis introduced the Cartesian device concept in 1967 [17]. It has two 

tracks along Cartesian coordinates. The original design is driven by rotary motors, wheels, 

and belts, power screws, or rack and pinion operated by a rotary motor. But most of the 

time, they require guiding rails or tracks. Now it is usually driven by linear actuators 

along the heavy tracks. As an example, Epson EZ Modules 2-Axis robot is shown in 

Figure 1-5. 
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Figure 1-5 Epson EZ Modules 2-Axis Robot [18] 

The Cartesian Coordinate Robot is usually applied as a printing machine. The simplest 

application is used in drawing machines where a pen is installed as the end-effector. 

Plotting works can be finished within its workspace. 

1.3.2. Three DOFs Serial Robots 

Selective Compliant Assembly Robot Arm (SCARA) robots have two revolute joints that 

are parallel, allowing the robot to move in a horizontal plane [19]. It is a two-axis serial 

robot and it is widely produced by robot producers. It is a classical and traditional robot 

solution for the electronics assembling industry or food packing factories. 

The SCARA robot was inspired by Hamada industrial robot design [24]. A SCARA robot 

made by KUKA is shown in Figure 1-6. 
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Figure 1-6 KUKA KR 10 SCARA R850 [20] 

SCARA robot has three DOFs and it is widely used in low-intensity industry requiring 

picking and placing tasks, such as electronics manufacturing, and medication packaging. 

Shown in Figure 1-7, SCARA is installed on the robot frame along the assembly line. It 

picks a single part from the parts feeder then places the part to the point with certain 

orientation on the product surface. 

 

Figure 1-7 Parts Mounting by SCARA [21] 
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1.3.3. Six DOFs Serial Robots 

Programmable Universal Machine for Assembly (PUMA) is a typical serial robot with six 

DOFs. After the development of the first serial robot, Unimation Company produced 

PUMA in 1978, shown in Figure 1-8. It is the first six-axis universal industrial robot. 

Until today, PUMA robot is still working on the assembly line in factories around the 

world. 

 

Figure 1-8 Unimate 500 PUMA [22] 

As shown in Figure 1-9, PUMA robot is composed of six revolute joints and two rigid 

arms. Compared to the three DOFs SCARA, PUMA has six DOFs. This attribute makes 

PUMA popular because three extra revolution DOFs allow PUMA to finish a variety of 

complicated tasks. 
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Each member of the robot arm is connected to another member at a joint. Through each 

joint passes one or more axes around, which the members of the arm rotate. PUMA robots 

are applied in parts assembling, auto body painting, welding and machining tools. 

 

Figure 1-9 PUMA 500 [23] 

1.4. Advantages of Parallel Robots 

Based on the mechanical structure of the serial robot, only one chain of successive arms is 

connected to the ground base and the end-effector. Each arm on this chain has to support 

the total weight of all arms following itself and the weight of the load at the end-effector. 

Therefore, they are both applied on the arm and cause a large flexure torque. The flexure 

deformation is not detected by the robot’s internal sensor [39]. 

The motion of the previous arm will be passed to the following arm, as well as the error, 
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because of the mechanical structure of the serial robot. If a small measurement error 

happens in the first or second arm, the error can be amplified until the last arm causing 

positioning error of the end-effector. Therefore, serial robots are not suitable for tasks 

requiring handling of heavy load and good positioning accuracy. 

However, the problems existing in serial robot design can be solved by parallel robots, due 

to their different mechanical structure compared to the serial robots.  

The end-effector of parallel robots is installed at the coincident point or plane of several 

chains of successive arms linked to the ground base. Each chain will only support the 

fractional weight of the load and each arm will support even less. Compared to the same 

size of the serial robot, this characteristic gives parallel robots a natural advantage of doing 

tasks like handling heavy loads and accurately positioning object 

1.5. The History of Parallel Robots 

The parallel mechanism can be defined as a kinematic closed loop mechanism, which 

contains one fixed platform and one floating platform connected by at least two 

independent kinematic chains. The mechanism covers at least two degrees of freedom 

(DOFs) and is actuated in parallel. The parallel mechanism was first introduced by 

Gwinnett in 1931 [2]. In his patent, he raised a cinema amusement device, which is a 

spherical parallel mechanism shown in Figure 1-10.  
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Figure 1-10 Parallel Amusement Device (from Gwinnett, 1931 [2]) 

In 1940, Pollard proposed a patent for a spray painting machine [3]. His design, shown in 

Figure 1-11, contains not only the mechanical manipulator but also an electrical 

position-controlling device. This system is actuated by multiple motors and points the 

spray gun to the car surface. This Five-Bar parallel manipulator became the first parallel 

mechanism in the world with an integrated control system. Parallel manipulators including 

Five-Bar parallel mechanism started attracting attention from academic researchers and 

industrial companies.  



 

12 

 

Figure 1-11 Spray Painting Machine (Pollard, 1940 [3]) 

After this design, Pollard upgraded his spray machine to a more complex mechanism [4], a 

parallel mechanism with three branches shown in Figure 1-12. The mechanism has three 

proximal arms and three distal arms. Three distal arms are connected to the ground via 

three revolute joints, which are actuated by three rotary actuators. Three distal arms are 

connected to three proximal arms with three ball joints. Two distal arms are connected to 

the third distal arm via two regular ball joints. The end-effector is connected to the third 

distal arm by a regular ball joint. The end-effector orientation is controlled by two 

screw-threaded shafts actuated by two rotary motors with two sets of ball joints. This is also 

an integrated system with mechanical manipulator and electrical system. Therefore, this 

was a five DOFs parallel robot. This position-control apparatus was designed to be 

installed in an automobile factory to do car painting tasks. It can be a very robust solution 

for surface tracking. 
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Figure 1-12 Position-controlling apparatus (Pollard, 1942 [4]) 

The universal tire testing machine was designed and built by Gough, an automobile 

engineer in Dunlop Rubber Co. in 1954 [5]. This machine was invented to test tires under 

aero-landing circumstances. By using this universal rig, different road situations, and 

touching angles could be determined. Since Gough requires a larger range of motions, he 

chose the symmetrical form as an octahedron. It was built in 1954 and this machine retired 

on 2001. In 1965, Stewart published the conceptual design of using hexapod as a new 

generation flight simulator [6]. There is no doubt that Stewart’s thesis had great influence 
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on the application of the hexapod in motion simulators and industrial fields. This is the 

reason why this parallel mechanism is widely used and has been called the “Gough-Stewart” 

platform. 

1.6. Parallel Robot Types and Applications 

Parallel robots will be classified and presented by increasing number of DOF of the 

manipulator. Related classical design and application of parallel robot will be introduced 

in the following sections. 

1.6.1. Two DOFs Parallel Robots 

Most tasks can be accomplished by a low degree of freedom robot. Low degree of 

freedom robots, especially two degrees of freedom robot, are popular. Its simple structure, 

controllability, and low cost are also reasons why it is popular among academic 

researchers and industrial engineers 

Five-Bar robots are driven by two rotary actuators. Its workspace also covers Cartesian 

coordinates, which is suitable for this task. An end-effector can be installed on the arm 

intersection. The robot was firstly patented by Hiroshi Makino as Assembly Robot [25]. 

The original design that he came up with is shown in Figure 1-13. 
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Figure 1-13 Assembly Robot [25] 

A Five-Bar planar manipulator is a relatively simple structure, with characteristics of high 

speed, high accuracy, low inertia and high stiffness with two DOFs. For these reasons, it 

draws a lot of attention from the academic community. Some prototypes and commercial 

products have been made, such as the Double SCARA, RP-AH series offered by Mitsubishi 

Electrics. The DexTAR, a Five-Bar planar manipulator designed by professor Bonev [12]. 

As the price is reduced, it has the potential to be widely used in production lines for picking 

and placing tasks and elements assembly tasks. 

The double-SCARA robot is shown in Figure 1-14. Its highest precision can reach plus or 

minus 0.005 mm and the payload can reach 5 kg. The maximum speed can be 0.5 s/cycle. It 

can be applied to tasks demanding high speed and high accuracy. 
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Figure 1-14 MITSUBISHI RP-5ADH [12] 

In Figure 1-15, the fastest Five-Bar robot DexTAR is shown. It is driven by two 

Kollmorgen GOLDLINE rotary motors. All arms lengths are equalized to 230 mm and 

offset distance of two motors is 275 mm. Based on simulations, the peak torque for motor 

requires 51 N.m and continuous torque request 17 N.m [12].  

 

Figure 1-15 DexTAR Robot [12] 
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Figure 1-16 5R PKM [15] 

In Figure 1-16, the 5R PKM, designed by Politecnico di Milano, is shown [15]. It is also 

driven by two gear motors with four links, however, in this design, two motors are installed 

coincidentally.  

1.6.2. Three DOFs Parallel Robots 

The Delta robot is another successful case in both scientific research and industrial 

application. In 1990, Clavel from École Polytechnique Fédérale de Lausanne, introduced 

the Delta robot [7], shown in Figure 1-17. It contains three legs actuated by three rotation 

actuators. Each leg has two separate bars connected with revolute joints or universal joints. 

The platform is connected to legs via revolute joints. These three legs give Delta robot three 

translations degrees of freedom. The fourth leg is actuated by a rotary motor and connected 
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to the platform via a universal joint. It provides the Delta robot a rotation degree of 

freedom. 

 

Figure 1-17 Delta Robot [7] 

The payload and workspace of the Delta robot are small. However, the Delta robot has 

unmatched dynamic performance. In a lab environment, Delta robot’s maximum 

acceleration can reach 50 g. Its light weight and fast speed make it become a competitive 

candidate for picking and placing tasks on factory assembly lines. 



 

19 

 

Figure 1-18 IRB 360 FlexPicker (ABB Ltd.) 

In Figure 1-18, the FlexPicker is shown. It is a mature Delta robot product, which was 

launched in 1999. Its end-effector can be extended to a cable connected vacuum system for 

rapid picking and releasing. It has been widely applied in the food industry and electronics 

industry.  
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Figure 1-19 Tricept T605 (PKM Tricept S.L.) 

Parallel robots are also widely used in industry. A prominent industrial application is the 

parallel machine tool. Traditional machines are usually serial kinematic mechanisms, such 

as computer numerical control (CNC) machines. In order to overcome the serial 

mechanism’s error accumulating problem, high standard serial CNC machines usually have 

very big arms with large mass and complicated design for each moving axis. It causes 

maintenance issues to CNC machines. While serial kinematic machine tool trades dexterity 

for high accuracy, parallel machine combines high rigidity and accuracy with a good 
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dynamic response. For traditional machine tools, they have real tracks as reference axes. 

For a parallel kinematic machine, its end-effector motion is referred to virtual axes. The 

parallel mechanism permits a height load on end-effector, which is supported by multiple 

parallel legs and distributed in a more reasonable way. A parallel machine tool can machine 

complex 3D surfaces with relatively simple structure and high rigidity. In Figure 1-19, it’s a 

parallel machine tool designed by PKM Tricept SL (former NEOS ROBOTICS AB). 

 

Figure 1-20 The Agile Eye (3-DOF) 

Agile Eye was developed by Gosselin [9]. Its original design was a 

three-degree-of-freedom robot applied as a camera orienting device. It has a compact 

mechanism structure. All rotary axes are coincident at one point. While this kind of robot 

does not have a large workspace, they are suitable for tasks needing fast orientation 
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changes. The mini camera is installed on the end-effector and it can be pointed within a 

cone of 140°  opening with plus or minus 30°  in torsion [9]. It can reach 1000°/� 

maximum angular velocity and 20000°/� maximum angular acceleration, as shown in 

Figure 1-20.  

1.6.3. Six DOFs Parallel Robots 

As mentioned in the previous section, The Hexapods is a typical parallel robot with six 

DOFs shown in Figure 1-21. Six DOFs parallel robots are widely used as aircraft 

simulators or water vehicle simulators. Many companies started building parallel robots 

and sold them around the world to train pilots on the ground.  

 

Figure 1-21 Motion Simulator [10] 

This technology has increased efficiency and made it safer to train. A C-17 simulation 

center based on the Stewart mechanism has been designed by Boeing and was delivered to 



 

23 

US air force in 2013, shown in Figure 1-22. 

 

Figure 1-22 C-17 Training Simulator  

In Newfoundland and Labrador, offshore platforms are built and offshore workers’ safety is 

a big issue. Fully trained safety boat drivers and life rescuers are in high demand. A set of 

ship bridge simulators was introduced to the Marine Institute in 1994 and upgraded in 2006, 

as shown in Figure 1-23. This simulator was also designed based on the six DOFs Stewart 

parallel robot. It can simulate a boat driven in difficult weather and sea conditions to aid in 

preparing sea captains for sea.  
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Figure 1-23 Full Mission Ship’s Bridge Simulator  

Parallel robots are also applied as micropositioning systems. In Figure 1-24, the hexapod 

parallel robot M-850 is shown. It was chosen as a surgical robot. The Fraunhofer Institute 

for Manufacturing Engineering and Automation (IPA), introduced the idea of a surgical 

robot [8]. 

 

Figure 1-24 M-850 Medical Robot 
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1.7. Auto-Samplers 

Auto-samplers are robotic systems that can automatically deliver a sample into the sample 

container. Manual sampling is still being used today but is inefficient for research 

requiring large quantities of samples to be analyzed. Compared to manual sampling, 

auto-samplers provide continuous, reproducible sampling freeing researchers of repetitive 

tasks. There are two kinds of auto-samplers; one is the rotating auto-sampler and the other 

is planar auto-sampler. 

 

Figure 1-25 Automatic analyzing apparatus [13] 

The first automatic device designed for sampling was introduced by US inventor Skeggs 

in 1959. One object of the present invention is the provision of an apparatus for 
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automatically feeding in succession a plurality of different liquid samples [13]. The 

Rotating auto-sampler was the first prototype. 

1.7.1. Rotating Auto-Samplers 

Rotating auto-samplers are composed of a rotary actuator and a linear actuator. The rotary 

actuator shaft is connected to the center of a round plate, which is the sample container 

rack. The linear actuator injects the sample into the sample container. As shown in Figure 

1-26, rotating auto-samplers are widely used in gas chromatography sampling machines 

with small amount analysis. 

 

Figure 1-26 Agilent 6850 Automatic Liquid Sampler 

1.7.2. Planar Auto-Samplers 

Planar auto-samplers have two linear actuators. These two linear actuators are 
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orthogonally installed. One linear actuator drives the sampling unit along the X axis and 

the other one drives the sampling unit along the Y axis. Planar auto-sampler, shown in 

Figure 1-27, is usually used for larger scale analysis since it can handle test tubes with 

regular size. 

 

Figure 1-27 Lamda Omnicoll 

1.8. Research Objectives 

Enhanced Oil Recovery (EOR) refers to the injection of a fluid or combination of fluids to 

alter the fluid-fluid or fluid-rock properties governing oil recovery, instead of relying on the 

reservoir pressure to aid recovery. In the absence of a robot, technicians would have to 

repeatedly sample the fluids over several days. This could potentially lead to unsafe 

operations due to worker fatigue. Under these circumstances, a robotic automatic sampler 
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is needed to replace human operation. 

The goal of this research project is to design an auto-sampler capable of collecting live oil 

samples over several days in tubes located in a tray, requiring varied processing times. 

These samples are used to analyze the composition of the oil and gas. Live oil with 

dissolved gas is delivered through one tube controlled by the user. It will flow to the 

auto-sampler, which will position and then inject the live oil into each test tube. Separation 

of the oil and gas happens in the test tube based on chemical thermodynamics. Generally, 

this whole process should last several hours. This includes operating the sampling valve 

upstream. 

Live oil conditions are at high pressure (slightly below 1,034 psi) and high temperature (up 

to 200℃). The quantity of samples will vary with experiment and one complete experiment 

may last several days. Each sample is an oil and gas mixture, which requires a guarantee of 

user safety and sampling consistency. The conditions and length of experiment time (up to 

two weeks in duration) make sampling unsuitable and dangerous for human manipulations.  

1.9. Contribution from the Thesis 

The objective of this research is to design, develop, and test an auto-sampler for fluid 

analysis from specialized core flooding experiment. The contributions from this research 

are outlined below: 
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Modeling and analysis of a Five-Bar manipulator using bond graph theory: The 

traditional method to analyze the robot dynamic performance is Newton-Euler method or 

Lagrangian method. In this research, bond graph theory is used as a new approach to 

model the Five-Bar system. It is a new method applied to the robot system and it differs 

from traditional modeling using dynamic equations, while it is a method to describe the 

energy exchange within the system. The dynamic performance of the manipulator under 

control task is modeled and analyzed. 

Five-Bar workspace and structure optimization: Traditionally, the Five-Bar workspace 

is modeled based on the geometric method. In this research, the workspace and 

singularity are modeled based on the vector method, which is more efficient and more 

general than the geometric method.  

Design and development of an Auto-Sampler based on Five-Bar manipulator: 

Auto-samplers are usually designed based on Cartesian or rotary structures. In this 

research, it is the first custom-designed Five-Bar Auto-Sampler that is designed and 

fabricated for crude oil sample handling applications. It has a linear actuator for injection 

and extraction, which is essential for live oil fluids collection. 

Development of a high performance embedded system controlling the manipulator 

using Beaglebone Black: Auto-samplers typically use low-performance micro controllers. 
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In this research, a single-board computer Beaglebone Black is applied as the core 

controller, as it is more powerful, has a low-cost and is more configurable than traditional 

MCU (Micro Control Unit). It is a new compact controller that came out in 2013 and is 

widely used in robot control, signal processing, 3D printers etc. In this research, it is the 

first time Beaglebone Black has been applied as the core controller of an auto-sampler. 

Both hardware and firmware were implemented for the control operation. 

1.10. Organization of the Thesis 

Chapter 2 introduces the overall robot design detailing the conceptual design, peripheral 

design and risk analysis.  

Chapter 3 introduces different kinematic models, for example, the geometric model and the 

vector model. Then it presents forward kinematic analysis and the explicit resolve process 

is obtained. Finally, it shows the Matlab simulation of robot workspace and singularity 

analysis.  

Chapter 4 provides the process of using the Bond-Graph method to model the 

auto-sampler’s dynamic performance. It introduces the history of bond graph modeling. 

Then it will use the bond graph to model the auto-sampler and show the obtained dynamic 

simulation results. 
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Chapter 5 provides the details of the design and fabrication of the Five-Bar auto-sampler 

system. It includes the development of the manipulator and the electronic circuit. 

Chapter 6 provides the details of the system instrumentation. The development of 

operational logic and controller is introduced. The Labview GUI is developed and 

presented in this chapter. 

Chapter 7 delivers the commissioning of the Five-Bar autosampler. The test scripts are 

proposed and related tests are performed. Three tests, operational test, failure test, and fluid 

test, are obtained with related test results. 

The final Chapter 8 summarizes the whole thesis. It gives the conclusions and future work 

can be done related to the auto-sampler in oil and gas application. The future work if the 

request is introduced in this chapter.
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Chapter 2 

2. Overall Robot Design 

In this chapter, as the start-up stage, the Auto-Sampler needs an overall plan of the design. 

The first objective is the conceptual design of the overall auto-sampler, taking into 

consideration any design constraints. The auto-sampler should be designed to follow and 

satisfy these constraints. The traditional auto-sampler is introduced and new options 

considered. These alternatives are compared based on design criteria and the most 

suitable concept is selected. The peripheral of the Auto-Sampler is designed and presented. 

In the end, a risk analysis of the Auto-Sampler unit is performed and presented. The 

detailed design method, such as kinematics analysis, dynamics analysis, and control are 

discussed in the following related chapters. 

2.1. Design Constraints 

As introduced in the previous research objective section, the auto-sampler will be used to 

sample, collect, and separate live oil samples from a high pressure, high temperature 

specialized core analysis experiment. Design constraints for the auto-sampler include the 

following points. 

� The design should be safe for user operation. 
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� The auto-sampler can complete all sampling work in the lab environment.  

� The auto-sampler will be installed in the Hibernia EOR laboratory and the 

dimensions will be limited to 1.22 m (L) � 0.92 m (W) � 1.00 m (H) 

 

(a) 10 mL Test Tube               (b) 100 mL Test Tube 

Figure 2-1 Side View of Needle and Test Tube 
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� The injection and extraction processes happen concurrently, as is shown in Figure 

2-1. The process time is limited to 48 hours for each test tube. After all test tubes 

have finished, a technician will need to intervene, switch out test tubes and restart 

the program. 

� The entire experiment can last several days.  

� The operation objects are specified for 10 mL and 100 mL test tubes. The test 

tubes should be located in the related tube rack. 

� The lab is an indoor environment; the operating temperature will be set to 20℃ 

with minor variations due to heating and ventilation.  

2.2. Conceptual Design 

Based on the previous chapter, the potential robot structure concepts are limited to three 

alternatives, including Cartesian, SCARA, and Five-Bar robots. In this section, in order to 

decide with which type of robot to design, a technical comparison matrix on weighted sum 

method (WSM) is used to screen for the best robot type. The robot types are compared and 

the most reasonable one chosen. 

2.2.1. Methodology 

In order to select the conceptual design to be developed, the weighted sum method (WSM) 

[32] is the most well-known and the simplest multi-criteria decision analysis for evaluating 
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several alternatives in terms of a number of decision criteria. 

The first step is to list all the necessary criteria for the conceptual design. The better the 

concept meets the criteria, the higher the score it can get in this criteria section. Then in the 

second step, each criterion has its own weight of importance for this research. The score the 

concept gets in the criteria is multiplied by the weighted percentage of the same criteria 

leading to the weighted score. Finally, adding up all the weighted scores from each criterion 

results in the final score for the concept. The selected concept will be the one with the 

highest final score. 

Cost (30 %)  

The cost was given the maximum weight because it is the most important aspect of the 

design product. This product is designed as lab equipment for academic purposes. Hence, a 

low-cost design was a very important criterion.  

Payload (30%)  

The task suitability of a robot is directly dependent on how many types of end-effector can 

be installed on the robot. Hence, if the robot has the capability to install heavier 

end-effectors, it will expand the possibility to finish more general tasks. In this design, a 

linear actuator will be installed as the end-effector to fulfill the vertical injection and 

extraction motion. 
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Actuator (20%) 

A simpler design is usually more robust and easier to maintain. The number of actuators is 

an important criterion. The final design should have the least number of actuators. The type 

of actuator is another part of the criteria. Rotary actuators have many advantages over 

linear actuators. Rotary actuators have a less mechanical backlash. Rotary actuators have 

higher power conversion efficiency than linear actuators. Linear actuators are usually 

transformed from rotary actuators, and this process contains energy loss during the 

transition. Linear actuators need to be guided, have alignment problems, can have hard 

spots, sticky slip, low stiffness, and small bandwidths. 

Research Value (20%) 

One of the design objectives was to push the limit of low-cost pick-and-pace and 

palletizing equipment. If the design had more potential problems to be solved, the greater 

the research value was given for the design.  

2.2.2. Results 

The total score of each criterion is three points. In terms of research value, the Cartesian 

robot is the most common one and it has been widely applied in auto-sampler design, and 

linear actuators are easy to control. SCARA has also been thoroughly researched and has 

been produced on a large scale, however, in auto-sampler design, it is a new idea. The 
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Five-Bar robot has not been widely produced and applying it as an auto-sampler is a totally 

new idea.  

In order to justify the comparison, there are three market available Cartesian type 

Auto-Samplers. They are Fisher CF1, Buchi C-660, and Lamda OMNICOLL so this 

concept gets one point. There is only one SCARA based Auto-Sampler as Agilent 7620-AS 

so that SCARA gets two points. Auto-Sampler based on Five-Bar is not available currently. 

So Five-Bar concept gets the highest score as three points. 

Table 2-1 Research Value Comparison 

Concepts Research Value Points 

Cartesian Robot 1 
SCARA Robot 2 
Five-Bar Robot 3 

In order to justify the comparison, for the electrical linear actuator, it is usually designed for 

converting the rotary motion to linear motion through a lead screw or ball screw. Energy 

will be lost during this motion conversion process. The conversion efficiency varies from 

85% to 90%, while the rotary actuator is usually greater than 95%. 

The precision of the linear actuator is worse than the rotary actuator. Cartesian robot 

motions are performed by two linear actuators while SCARA and Five-Bar motions are 

both performed by two rotary actuators. As a result, Five-Bar and SCARA are allocated 
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three points and Cartesian is designated two points. 

Table 2-2 Actuator Comparison 

Concepts Actuator Points 

Cartesian Robot 2 
SCARA Robot 3 
Five-Bar Robot 3 

As for robot payload, SCARA is not good at heavy load for its serial mechanical structure. 

The arm deflection is another problem for SCARA. As mentioned in chapter two, the 

Five-Bar is a parallel robot, and it has a better payload than SCARA robot due to its 

mechanical structure. Since the Cartesian robot supports the frame consistently over the 

entire range of motion, a typical Cartesian robot can pick and place a heavier load than a 

Five-Bar robot if the frame is heavy and strong enough. 

In order to justify the comparison results, the load/mass property is calculated. For 

Cartesian robot, for example, EPSON EZ3, it has 10 kg payload with 40 kg self-mass, so its 

load/mass is 0.25. For SCARA robot, for example, EPSON G3 has 3 kg payload with 27 kg 

self-mass, so its load/mass is 0.11. As for Five-Bar robot, in this research, our design has a 

2.7 kg payload with 8.5 kg self-mass, so its load/mass is 0.32. So Five-Bar robot has the 

highest three points, while Cartesian gets two points and SCARA gets one point. 
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Table 2-3 Payload Comparison 

Concepts Payload Points 

Cartesian Robot 2 
SCARA Robot 1 
Five-Bar Robot 3 

In order to reach the same precision level as SCARA and Five-Bar, Cartesian will need very 

precise linear actuators, which will raise the cost. SCARA robot has good precision. But as 

mentioned, the serial mechanical structure has the arm deflection problem. So with the 

same size, SCARA has to cost more in arm strength in material and better motor 

performance than Five-Bar robot.  

In order to justify the comparison, three quotations are obtained from the market. A 

Cartesian system costs $12,000 CAD, a SCARA system costs $21,000 CAD, and a 

Five-Bar system costs $15,000 CAD. The points are calculated as 12000
3 3

12000
iP −

− × , 

where �� is the price of the related system. 

Table 2-4 Cost Comparison 

Concepts Cost Points 

Cartesian Robot 3 
SCARA Robot 0.75 
Five-Bar Robot 2.25 

Based on previous comparisons and WSM introduction, results are shown as following 

Table 2-5. 
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Table 2-5 Concept Selection Results 

 Research (20%) Actuator (20%) Payload (30%) Cost (30%) Total 

Cartesian  0.2 0.4 0.6 0.9 2.1 
SCARA  0.4 0.6 0.3 0.2 1.5 
Five-Bar 0.6 0.6 0.9 0.7 2.8 

Based on results summarized in Table 2-5, the Five-Bar parallel robot was chosen as the 

design solution for the lab auto-sampler. 

2.3. Peripheral Design 

After choosing a Five-Bar manipulator conceptually, the peripheral ancillary components 

have to be designed before the manipulator design, including the test tubes chosen and the 

test tube rack design.  

The design constraints include physical size, cost, and material compatibility. The 

proposed auto-sampler must fit within a physical space of 0.92 m width ×  1.22 m length 

×  1.00 m height. 

The oil is introduced into the work cell through one 1/8’’ pressure piping tube. After the 

experiment, gas will be extracted through the tube and transmitted into the next section. 

The whole process diagram is shown in Figure 2-2. Test tubes will sit in the tube rack and 

rack, which is manually loaded by a technician.  
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Figure 2-2 Auto-Sampler within Process Flow Diagram 

2.3.1. Methodology 

The suitable test tube rack should be light weight, not dissolving with crude oil with 

relatively low cost. The common materials are aluminum alloy 6061 and acrylic. As for 

the acrylic, it is not dissolving with crude oil, as well as the Aluminum alloy 6061. As for 

the material density, aluminum 6061 is 2768��/�
 while the acrylic is 1190��/�
. 

As for the material cost, the acrylic sheet with 0.25 inch thickness is $17/��	 while the 

same size of the aluminum alloy 6061 sheet is $41/��	. Moreover, the acrylic sheet is 

easy to be cut and customized machining for two sizes of test tubes. With proper drilling, 

it can firmly hold test tube. 
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2.3.2. Result 

Two sizes of test tubes are shown in Figure 2-3. The detailed dimensions of two different 

test tubes are shown in Table 2-6. 

 

Figure 2-3 Comparison of Two Kinds of Tubes 

Table 2-6 Dimensions of Different Test Tubes 

Test Tube Inner Diameter Outer Diameter Body Diameter Length 

Small (10 mL) 7.50 mm 18.65 mm 12.70 mm 246.00 mm 

Large (100 mL) 24.80 mm 34.10 mm 32.90 mm 313.00 mm 
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Figure 2-4 Plastic Lid for Test Tube 

Each test tube will be covered by a matching lid, which consists of three parts, a plastic 

head, a rubber interlayer, and a plastic bottom, as shown in Figure 2-4. The lid has a screw 

thread and can be fixed over the mouth of the test tubes. The outer diameter is 16.00 mm, 

the inner diameter is 11.40 mm, and the gross length of plastic cap is 52.1 mm. The gross 

length of the test tube with the cap is about 278 mm. 

For the test tube rack, it is made of the acrylic. For one small rack, the length is 335 mm, the 
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width 268 mm, the height 245 mm. It holds thirty test tubes. The ridge between two cells is 

45 mm. The technician will load racks into the work cell. Details of the rack are shown in 

Figure 2-5. In order to ensure the stability of test tubes during the whole process, a flat table 

should be fixed in the work cell. It has four metal edges and a table bar to immobilize the 

rack. 

 

Figure 2-5 Small Racks for Small Test Tubes 

This is a general design because if the diameter of each small test tube hole is expanded on 

the top plate, it will turn to the rack for the large test tubes. The reasons for using the acrylic 

as the rack material are enough strength to hold glass test tubes, cheaper than same volume 

aluminum, and not dissolved by crude oil. 

2.4. Risk Analysis for Auto-Sampler 

As introduced in the previous sections, the Auto-Sampler is just one unit of the whole lab 

experiment process. The risk analysis of the rest surrounding equipment has been done by 

the Hibernia EOR lab. However, the risk analysis for Auto-Sampler is still essential and 
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important to the overall lab safety.  

2.4.1. Methodology 

In safety and risk engineering, there are two common techniques used for risk analysis, 

which are Hazard and Operability (HAZOP) and Failure Mode Effect Analysis (FMEA) 

[14]. They are applied for risk analysis with different purposes. 

HAZOP is a simple structured methodology for hazard identification and assessment. 

Piping and instrumentation diagram (P&ID), process flow diagram (PFD), material flow 

diagrams, and operating manuals are examined to identify causes and consequences for 

all possible deviations from the normal operation that could arise. FMEA is often used as 

an alternative method to HAZOP studies [14]. It is an examination of an individual 

component such as pumps, vessels, valves, etc. to identify the likely failures which may 

have undesired effects on system operation. 

The difference between those two methods is that HAZOP emphasizes the hazard 

identification of a whole process based on clear P&ID and PFD. FMEA emphasizes the 

hazard identification of a single component inside of the process. Moreover, FMEA 

identifies and eliminates concerns early in the development of a design and focuses on 

prevention of the risk. After the product concept is settled but before specific hardware is 

selected or manufactured, it is the best time to apply FMEA [14]. 
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Based on the characteristics of these two methods and PFD is shown in Figure 2-2, the 

Auto-Sampler is a single component within the whole process and FMEA is more suitable 

for the research. 

2.4.2. Results 

Table 2-7 FMEA Sheet for Auto-Sampler 

Possible Risks Cause Consequence Protection 

No safety distance Operator gets too 

close to control 

Auto-Sampler 

Reportable 

physical injury 

Auto-Sampler is remotely controlled 

through communication cable 

Auto-Sampler is isolated from 

operator by safety cage 

Ignoring the 

working condition 

of the 

Auto-Sampler 

Reportable 

physical injury 

A light tower can make sure working 

mode recognized in distance 

Offer best practice procedure to 

operator 

Start working cycle

 without safety cag

e closure 

Operator forgets to 

close the door 

before working 

cycle 

Reportable 

physical injury 

and loss of 

process 

Door sensor is designed to detect the 

door whether the door is firmly 

closed 

Power breaker is designed to cut 

power the Auto-Sampler if the door 

is not closed before working cycle 

Break in normal  

working cycle 

Safety cage is 

opened during 

normal working 

cycle 

Reportable 

physical injury 

and loss of 

process 

Door sensor is designed to detect the 

break in within the normal working 

cycle 

Power breaker is designed to cut the 

power of Auto-Sampler 

Door status signal is sent to 

controller for pausing experiment 

through communication cable 

Leak from piping  

system 

Loose piping or 

fitting 

Contamination 

and loss of 

material 

Routine equipment check and 

maintenance 

Safety cage separates operator and 

Auto-Sampler 
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The FMEA is performed for the Auto-Sampler and results are shown in Table 2-7. Based 

on the result, it will be the principle design guideline for the following auto-sampler 

design. 

2.5. Final Design and Discussion 

The auto-sampler itself is a five-bar manipulator. It has the advantages of light weight and 

robust structure. The final physical dimension of the auto-sampler is 0.45 m width× 0.55 

m length× 0.90 m height. The size is smaller than the 0.92 m width× 1.22 m length× 1.00 

m height requirement. The auto-sampler is made of aluminum and the test tube rack is 

made of acrylic. Both materials are not dissolving with crude oil.  

Based on FMEA analysis, essential components have to be considered for the 

auto-sampler system, including safety cage, light tower, door sensor, and power breaker 

switch. The safety cage will be used to separate user and the manipulator, not only for the 

safety of the user but also for avoiding interruptions to the auto-sampler system from the 

environment. The light tower will let the user and other people around the auto-sampler 

notice what the current status of the auto-sampler is in. The door sensor is an important 

part of giving the door status signal to the system controller, which will apply strategies 

based on the door status. Power breaker is used to cut the power for neutralizing the 

system when the ongoing experiment is intervened by the user unintentionally. 
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Chapter 3 

3. Kinematics Analysis 

3.1. Introduction 

The kinematic analysis describes the implicit relationship between geometrical variables 

and motion variables of the mechanism without considering forces, power, or energy 

causing motion. Robot kinematics is used to solve the motion relationship between input 

parts and output parts, such as position, velocity and acceleration and also the geometric 

configuration parameters of either task space or actuator/joint space. More precisely, for the 

Five-Bar parallel manipulator, robot position analysis was used to find the relationship 

between the input actuator angles and the end-effector output position. Robot kinematics 

has two branches: inverse kinematics and forward kinematics. Inverse kinematics uses the 

known position of the end-effector to solve the unknown positions of the actuators. 

Conversely, forward kinematics uses the known positions of the actuators to solve the 

unknown position of the end-effector. For serial robots, the forward position analysis is 

easy to calculate but the inverse position analysis is difficult. Conversely, for parallel robots, 

the inverse position analysis is easy to calculate but the forward position analysis is 

difficult [34].  
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3.2. Literature Review 

By the definition from Merlet [39], the inverse kinematics consists in establishing the 

value of the joint coordinates corresponding to the end-effector configuration. The inverse 

kinematics problem of a Five-Bar robot is defined as solving unknown two motor angles 

by known conditions, in particular, the end-effector position in Cartesian coordinates.  

In 2006, Liu introduced the Geometric method for solving the inverse kinematic problem 

[36]. In this paper, the kinematic model is built based on geometric relationships. This 

method is explicit for modeling the Five-Bar manipulator workspace. In 2010, Bonev 

concluded the previous works and introduced an explicit model based on vectors of the 

Five-Bar configuration [26]. In our study, the workspace will be simulated based on this 

model. 

In 1991, Angeles introduced the kinematics characteristics of Five-Bar manipulator [37]. 

In 1990, Gosselin and Angeles introduced analysis method for parallel mechanism [38]. 

Based on it, the explicit relationship between the end-effector velocity and the input 

angular velocity is built, which is the Jacobian matrix of the manipulator. By calculating 

the determinant value of the robot Jacobian matrix, the singularities of the robot can be 

obtained. Based on the kinematics analysis, the optimized dimensions of the robot are 

obtained from the simulation results. 
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As a planar parallel robot, the identification and analysis of the workspace in Cartesian 

coordinates are the results of the kinematic analysis. The workspace includes effective 

workspace and boundaries caused by singularities.  

The position of a point on XOY plane is inputted into the inverse kinematic model, from 

which we identify whether or not it is in the effective workspace. The forward kinematic 

model is used to calculate the boundaries caused by singularities. 

After the effective workspace is obtained, the singularity points that exist in the 

workspace are calculated. Marking all singularity points and connecting all of them, the 

boundary of the workspace is obtained. By differentiating the inverse kinematic model, 

the inverse Jacobian matrix is obtained, which links the known end-effector velocity and 

unknown actuators velocities. By differentiating the forward kinematic model, the 

forward Jacobian matrix is obtained, which links the known actuators velocities and 

unknown end-effector velocities. By substituting the point on XOY plane and its related 

actuator angles into the inverse Jacobian matrix and forward Jacobian matrix, if the 

determinant of either matrix is zero, then this point is marked as the singularity point. The 

integrated workspace of the Five-Bar robot is obtained by combining all of the effective 

workspace points and all of the singularity points connected into the boundary. 
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3.3. Kinematics Modelling Methodology 

In this section, the position analysis of Five-Bar robot will be presented. The position 

analysis includes solving inverse kinematics problem (IKP) and forward kinematics 

problem (FKP). In order to solve the IKP and FKP of Five-Bar robot, its inverse kinematic 

model, and forward kinematic model will be presented in this section. 

3.3.1. The Inverse Kinematics Model 

In Figure 3-1, a sketch of the Five-Bar robot is shown, where each variable or component is 

labeled. Inverse kinematics was used to derive the actuator angles from end-effector 

position. 

Proximal arms are labeled as L1 and L2. Distal arms are labeled as L3 and L4. Two active 

joints are connected with two fixed actuators, labeled as A1 and A2. Three passive joints 

are labeled as B1, B2, and P. It contains two DOFs on the XY plane. The end-effector is 

settled at the P joint. 

In this section, vectors will be used to solve Five-Bar robot inverse kinematics. The vector 

approach is a general method and it is applied on DexTAR calibration model, which is 

testified as a very accurate model [27]. 
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Figure 3-1 Sketch of Five-Bar Robot for Vector Method  

For the vector method, the following kinematic derivations obey the fixed base reference 

frame shown in Figure 3-1. The end-effector's position is defined as 

x
P

y

 
=  
 

           (3-1) 

In the fixed base reference coordinate, 

1 1 1 1

1 1 1 1

1 1

0 1

1 0A B A P A P

A C B C
r r r

A P A P

 
= ±  − 

uuur uuur uuur
     (3-2) 
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The operator will decide working mode of the first kinematic chain. The positive sign will 

lead to positive working mode while negative sign will lead to negative working mode. 

5

1 1
2

0
A P OP OA

L
x

r r r
y

 
−   = − = −    
 

uuur uur uuur
      (3-3) 

2 2
2 2

1 3 1 1 1L L AC C P− = −
uuuur uuur

       (3-4) 

2 2 2

1 1 1 1 1 1 12A P AC C P AC C P= + +
uuur uuuur uuur uuuur uuur

    (3-5) 

Adding (3-4) and (3-5) together gives 

2 22 2
1 3 1 1 1 1 1 1 1 1 1- 2 2 2L L A P A C A C C P A C A P+ = + =

uuuv uuuuv uuuuv uuuv uuuuv uuuv
   (3-6) 

1 1A C
uuuuv

 can be represented as 

22 2
1 3 1

1 1

1

-

2

L L A P
AC

A P

+
=

uuuv
uuuuv

uuuv       (3-7) 

1 1 1

T

A P A PA P r r=
uuuv uuuv uuuv

        (3-8) 

22
1 1 1 1 1-B C L A C=

uuuuv
       (3-9) 

Substituting equations (3-5), (3-7), (3-8), and (3-9) into (3-2) to solve equation for 
1 1A Br

uuuv
 

leads to, 

1 1

1 1
1 1

A B

A B

A B

x
r

y

 
=  
  

uuuv
        (3-10) 
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Based on equation (3-10), motor one’s desired angle �� can be solved, 

( )1 1 1 1 1
arctan ,A B A By xθ =        (3-11) 

The same process can be applied to determine the value of 2θ , 

2 2 2 2

2 2 2
2

2
2

0 1

-1 0A B A P A P

A C C B
r r r

A P A P

 
= ±  

 

uuuuv uuuv uuuv
    (3-12) 

The operator will decide working mode of the second kinematic chain. The positive sign 

will lead to positive working mode while the negative sign will lead to negative working 

mode. 

2 2

5

- -
0
2A P OP OA

L
x

r r r
y

 
   = =     

 

uuuv uuv uuuv
      (3-13) 

2 22 2
2 4 2 2 2- -L L A C C P=

uuuuuv uuuuv
      (3-14) 

2 2 2

2 2 2 2 2 2 22A P A C C P A C C P= + +
uuuuv uuuuuv uuuuv uuuuuv uuuuv

   (3-15) 

Adding (3-14) and (3-15) together leads to, 

2 22 2
2 4 2 2 2 2 2 2 2 2 2- 2 2 2L L A P A C A C C P A C A P+ = + =

uuuuv uuuuuv uuuuuv uuuuv uuuuuv uuuuv
   (3-16) 

Simplifying equation (3-16) can resolve the value of  �	�	!!!!!!!!!" , 
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22 2
2 4 2

2 2

2

-

2

L L A P
A C

A P

+
=

uuuuv
uuuuuv

uuuuv       (3-17) 

2 22

T

A P A P
A P r r=
uuuuv uuuv uuuv

        (3-18) 

22
2 2 2 2 2-B C L A C=

uuuuuv
       (3-19) 

Substituting equations (3-15), (3-17), (3-18) and (3-19) into (3-12) to solve equation for 

#$%&%!!!!!!!!!" generates, 

2 2

2 2
2 2

 
A B

A B

A B

x
r

y

 
=  
  

uuuuv
        (3-20) 

Based on equation (3-20), the desired angle for motor two can be derived, 

( )2 2 2 2 2
arctan 2 ,A B A By xθ =      (3-21) 

By using the vector approach to building the inverse kinematic model, the position of a 

point is inputted into the model, showing in equation (3-1). After calculation, the model 

gives the related actuator angles from equations (3-11), and (3-21). If the two angles are 

positive, then this point can be marked as a point inside of effective workspace. 

3.3.2. The Forward Kinematics Model 

The forward kinematics is to determine the pose of the end-effector of a parallel robot from 

its actuated joint coordinates [39]. 
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The forward kinematics of Five-Bar parallel robot solves unknown value of the 

end-effector position on Cartesian coordinate by the known two actuating motor angles. 

The vector method is used to solve forward kinematics. 

Since the two actuating motor angles �� and �	 are known, the end-effector position is  

1

1 1 2 1 2

1 2 1 2

0 -1

1 0

B D DPx
OP OB B B B B

y B B B B

   
= = + +   
   

uuuuv uuuv
uuuv uuuv uuuuv uuuuv

uuuuv uuuuv   (3-22) 

Proximal arms '��!!!!!!!!" and '�	!!!!!!!!" can be presented as, 

1 1
1

1 1

- cos
2

sin

d
L

OB

L

θ

θ

 
+ =

 
 

uuuv
        (3-23) 

2 2
2

2 2

cos
2

sin

d
L

OB

L

θ

θ

 
+ =

 
 

uuuuv
        (3-24) 

2 22 2
3 4 1 2- -L L B D DB=

uuuuv uuuuv
       (3-25) 

2 2 2

1 2 1 2 1 22B B B D DB B D DB= + +
uuuuv uuuuv uuuuv uuuuv uuuuv

      (3-26) 

Adding equations (3-25) and (3-26) together gives, 

2 22 2
3 4 1 2 1 1 2- 2 2L L B B B D B D DB+ = +

uuuuv uuuuv uuuuv uuuuv
    (3-27) 

After factorization and simplification of equation (3-27), we get 
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22 2
3 4 1 2

1

1 2

-

2

L L B B
B D

B B

+
=

uuuuv
uuuuv

uuuuv        (3-28) 

Using vector calculation rules, 

1 2 2 1-B B OB OB=
uuuuv uuuuv uuuv

         (3-29) 

1 2 1 2 1 2

T

B B B B B B=
uuuuv uuuuv uuuuv

        (3-30) 

22
3 1-DP L B D=

uuuv uuuuv
        (3-31) 

Substituting equations (3-28), (3-29), (3-30) and (3-31) into equation (3-22), the unknown 

values of x and y can be solved from the known values of �� and �	, 

1
1 2

2

m
B B

m

 
=  
 

uuuuv
          (3-32) 

where 

1 5 2 2 1 1cos - cosm L L Lθ θ= +       (3-33) 

2 2 2 1 1sin - sinm L Lθ θ=        (3-34) 

For simplification purpose, a temporary variable (� was used as, 

( )

2 2 2 2
1 2 4 1 2

1 2 2
1 21 2

-

2

B D L L m m
N

m mB B

+ +
= =

+

uuuuv

uuuuv      (3-35) 
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2 2
3 1
2 2

1 21 2

-DP L N

m mB B
=

+

uuuv

uuuuv        (3-36) 

Substituting equations (3-23), (3-32), (3-35) and (3-36) into (3-22) gives, 

2 2
3 1

1 1 1 1 2 2
1

5
2

2

-
cos - -

2

L N
x L N m m

m

L

m
θ= +

+
   (3-37) 

2 2
3 1

1 1 1 2 1 2 2
1 2

-
sin

L N
y L N m m

m m
θ= + +

+
    (3-38) 

2
23

1 1 2 12 2
1 2

1 1
2

23
1 2 1 12 2

1 2

- -

-

-

L
N m m N

m m
B P OP OB

L
N m m N

m m

 
 

+ 
= =  

 +
 + 

uuuv uuuv uuuv
   (3-39) 

2
23

1 1 2 2 1 1 2 12 2
1 2

2 2
2

23
1 1 1 2 2 2 1 12 2

1 2

cos - - cos - -

-

sin - sin -

L
L d L N m m N

m m
B P OP OB

L
L N m L m N

m m

θ θ

θ θ

 
+ 

+ 
= =  

 + +
 + 

uuuuv uuuv uuuuv
   (3-40) 

( )
1 13 arctan ,

B P B P
y xθ =         (3-41) 

( )
2 24 arctan ,

B P B P
y xθ =         (3-42) 

The forward kinematic model is obtained by vector approach. As mentioned in section 3.2, 

it is prepared for the following differentiation leading to the singularity calculation. 
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3.3.3. Robot Working Modes 

  

Minus-Plus Configuration with Positive 
Assembly Mode 

Minus-Minus Configuration with Positive 
Assembly Mode 

  
Plus-Plus Configuration with Positive 

Assembly Mode 
Plus-Minus Configuration with Positive 

Assembly Mode 

Figure 3-2 Working Modes of Five-Bar Robot 

As shown Figure 3-2, if one point is defined as the desired point on the XY plane, usually 

Five-Bar parallel robot can have four configurations to reach that point, as plus-plus, 

minus-minus, plus-minus and minus-plus [26]. Negative assembly mode is complex with 

kinematic singularities, which is not usually used in engineering application. In this work, 
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the minus-plus configuration with positive assembly mode was chosen. 

3.4. Differential Kinematics Modelling Methodology 

The differential kinematics is well defined by Tsai [34]. The vector space spanned by the 

joint variables is called joint space, and the vector space spanned by the end-effector 

location, the end-effector space. For robot manipulators, the differential kinematics is 

defined as the mathematical relation that transforms the joint rates in the actuator space to 

the velocity state in the end-effector space. 

Differential kinematics can be derived from two perspectives. From the first perspective, 

introduced by Huang [35], Jacobian matrix is implemented for the conversion between 

robot output velocities and input velocities, by differentiating inverse kinematic model and 

forward kinematic model. 

From there as the second perspective, Gosselin moved further to build the relationship 

between the output velocity ) and *+  [38]. If the output position is , and the input angle 

is *, the robot input output implicit equation can be defined as, 

�-*, ,/ = 0 

After the differentiation with respect to time, it can be written as, 
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0AV B q+ =
�

 

Where ( , )f q X
A

x

∂
=

∂
 and 

( , )f q X
B

q

∂
=

∂
and the forward kinematic Jacobian matrix can be 

derived as, 

-1-fJ A B=  

The inverse kinematic Jacobian matrix can be derived as, 

-1-iJ B A=  

In this section, we will accept Huang’s method. By using the inverse kinematic model in 

section 3.3, all effective points can be found and combined as the effective workspace, 

which is a part of the kinematic analysis. As another part of the kinematic analysis, the 

singularity should be obtained and combined into the workspace boundary. In order to do 

it, the inverse Jacobian matrix and forward Jacobian matrix should be derived.  

We can substitute any point on XOY and its related two actuator angles into inverse 

Jacobian matrix and forward Jacobian matrix. If either matrix determinant value equals 

zero, it means this point is a singularity point. If all singularity points are obtained and 

combined, the singularity points lead to the workspace boundary locus. The detailed 

methodology about singularity derivation is introduced in this section. 
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3.4.1. The Forward Differential Kinematics Model 

In this sub-section, the forward Jacobian matrix will be derived through the forward 

differential kinematics model. The determinant value of forward Jacobian matrix will 

contribute to the judgment of singularity point. 

The Jacobian matrix can be written as 1-*/. If the end-effector velocity is ) and the input 

velocity is *+ , then 

( )V J q q=
�

 

1 2 1 2 1 1 2 2
11 1 12 2

1 2

( , ) ( , ) ( , )
F F

x q q x q q q x q q q
x J q J q

t q t q t

• • •∂ ∂ ∂ ∂ ∂
= = + = +

∂ ∂ ∂ ∂ ∂
  (3-43) 

1 2 1 2 1 1 2 2
21 1 22 2

1 2

( , ) ( , ) ( , )
F F

y q q y q q q y q q q
y J q J q

t q t q t

• • •∂ ∂ ∂ ∂ ∂
= = + = +

∂ ∂ ∂ ∂ ∂
  (3-44) 

Based on equation (3-43) and equation (3-44), the relationship between end-effector output 

velocity ) and actuators input velocities *�+ , *	+  can be shown as, 

11 12 1

21 22
2

F F

F

F F

J J q
V J

x
q

y
J J

q

••

•

••

  
    = = =      

   

    (3-45) 

Expanding equations (3-37) (3-38), the end-effector position can be written as, 
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( )1 1 2,x f q q= =  

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

5
1 1 5 2 2 1 1

2 22 2
3 4 5 2 2 1 1 2 2 1 1

2 2

5 2 2 1 1 2 2 1 1

22 22 2
3 4 5 2 2 1 1 2 2 1 1

2
3 2 2

5 2 2 1 1 2 2 1 1

cos cos cos
2

cos cos sin sin

2 cos cos sin sin

cos cos sin sin
4

cos cos sin sin

L
L q L L q L q

L L L L q L q L q L q

L L q L q L q L q

L L L L q L q L q L q
L

L L q L q L q L q

− + + + − ×

− + + − + −
−

+ − + −

− + + − + −
−

+ − + −

( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 2 1 1

2 2

5 2 2 1 1 2 2 1 1

sin sin

2 cos cos sin sin

L q L q

L L q L q L q L q

×

−

+ − + −

 

 (3-46) 

( )2 1 2,y f q q= =  

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( )

1 1 2 2 1 1

2 22 2
3 4 5 2 2 1 1 2 2 1 1

2 2

5 2 2 1 1 2 2 1 1

5 2 2 1 1

22 22 2
3 4 5 2 2 1 1 2 2 1 1

2
3 2

5 2 2 1 1 2

sin sin sin

cos cos sin sin

2 cos cos sin sin

cos cos

cos cos sin sin
4

cos cos sin

L q L q L q

L L L L q L q L q L q

L L q L q L q L q

L L q L q

L L L L q L q L q L q
L

L L q L q L

+ − ×

− + + − + −
+

+ − + −

+ − ×

− + + − + −
−

+ − + ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

2 1 1

2 2

5 2 2 1 1 2 2 1 1

sin

2 cos cos sin sin

q L q

L L q L q L q L q

−

+ − + −

 

 (3-47) 

Based on equations (3-46) and (3-47), the unknown end-effector positions can be 

calculated based on known parameters such as manipulator arm lengths 2�, 2	, 2
 and 

23, the distance between two motors 24, two motor input angles *� and *	. 
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After partial differentiation equation (3-46) with respect to input actuator angles *� and 

*	, 15�� and 15�	 will be derived. Using a similar method, after partial differentiation 

equation (3-47) with respect to input actuator angles *� and *	, 15	� and 15		are derived 

and they are shown in Appendix. 

1 2
11

1

( , )
F

x q q
J

q

∂
=

∂
        (3-48) 

1 2
11

1

( , )
F

x q q
J

q

∂
=

∂
        (3-49) 

1 2
11

1

( , )
F

x q q
J

q

∂
=

∂
        (3-50) 

1 2
11

1

( , )
F

x q q
J

q

∂
=

∂
        (3-51) 

By substituting 15��, 15�	, 15	�, and 15		 into the matrix, the forward Jacobian matrix 15 

can be obtained. 

11 12

21 22

F F

F

F F

J J
J

J J

 
=  
 

       (3-52) 

3.4.2. The Inverse Differential Kinematics Model 

In this sub-section, the inverse Jacobian matrix will be derived through the inverse 

differential kinematics model. The determinant value of inverse Jacobian matrix will 
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contribute to the judgment of singularity point. 

The inverse Jacobian Matrix can be obtained by a differentiating inverse kinematic model 

with respect to time. The input actuator velocities *�+  and *	+  can be represented in 

end-effector velocities 6+  and 7+  with the following equations. 

1 1
1 11 12

( , ) ( , )
I I

q x y q x ydx x y
q J x J y

dt x t y t

• • •∂ ∂∂ ∂
= = + = +

∂ ∂ ∂ ∂
     (3-53) 

2 2
2 21 22

( , ) ( , )
I I

q x y q x ydx x y
q J x J y

dt x t y t

• • •∂ ∂∂ ∂
= = + = +

∂ ∂ ∂ ∂
     (3-54) 

The following partial differential functions provided by inverse differential kinematics 

model. 

1
11

( , )
I

q x y
J

x

∂
=

∂
        (3-55) 

1
12

( , )
I

q x y
J

y

∂
=

∂
        (3-56) 

2
21

( , )
I

q x y
J

x

∂
=

∂
       (3-57) 

2
22

( , )
I

q x y
J

y

∂
=

∂
        (3-58) 

1 11 12

21 22
2

I I

I

I I

q J J x
q J

y

V
J J

q

• •

•

• •

   
    = = =     

  

    (3-59) 
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By substituting 18��, 18�	, 18	�, and 18		 into the matrix, the forward Jacobian matrix 18 

can be obtained. 

11 12

21 22

I I

I

I I

J J
J

J J

 
=  
 

       (3-60) 

3.4.3. Singularities 

In the robot workspace, when the robot arrives at certain points, it might not be able to 

continue moving. It will lose or gain one or more degree of freedoms. These special 

positions can influence robot normal operation, worse more, break the robot mechanism. 

These special positions are called as singularities.  

In 1990, Gosselin and Angeles provided a method to calculate singularities inside the 

workspace of the parallel robot [38].  

From equations (3-52) and (3-60), the determinant values of 15 and 18 can be represented 

as, 

11 12
11 22 21 12

21 22

det( ) det( )F F

F F F F F

F F

J J
J J J J J

J J

 
= = − 

 
    (3-61) 

11 12
11 22 21 12

21 22

det( ) det( )I I

I I I I I

I I

J J
J J J J J

J J

 
= = − 

 
     (3-62) 

Based on linear algebra knowledge, when the columns of the matrix are dependent vectors 
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or the rows of the matrix are dependent vectors, the determinant value of this matrix is zero. 

Either det-15/ = 0 or det-18/ = 0 are satisfied, the point in the workspace can be 

marked as a singularity point. This will be applied to find the boundary of the workspace in 

the kinematic analysis. 

(a) Serial Singular Configuration 

When one side of arms are fully extended or fully folded, the robot falls into the serial 

singular configuration, introduced by Merlet [39]. Under this singular configuration, the 

end-effector P will not be able to move along one direction, which is ��� or �	� in this 

case. Serial singularities decide the size of robot workspace outer boundary. This type of 

singularity is a loss of degree of freedom (DOF) leading to manipulator performing the 

unpredictable motion. 

Singularity loci can be obtained through workspace boundary calculations. A Five-Bar 

manipulator has four possibilities, which are shown in Figure 3-3. The configuration in 

Figure 3-3 (a) is the first kinematic chain as ����� fully extended. The configuration in 

Figure 3-3 (b) is the second kinematic chain as �	�	� fully extended. The configuration 

in Figure 3-3 (c) is the first kinematic chain as ����� fully folded. The configuration in 

Figure 3-3 (d) is the second kinematic chain as �	�	� fully folded.  
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(a) (b) 

  

(c) (d) 

Figure 3-3 Serial Singular Configurations 

When the robot is in serial singular configuration, the singularity evaluation condition is 

det-15/ = 0. The end-effector will not be moved along ��� or �	� direction.  

(b) Parallel Singular Configuration 

While serial singularities exist along the outer boundary of robot workspace, parallel 

singularities exist within the robot workspace. This kind of singularity is also called a ‘dead 
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point’ [38], as when the robot falls into the parallel singular configuration, it will gain at 

least one DOF. The robot becomes uncontrollable.  

When ��� or �	� are in the co-linear position, the Five-Bar manipulator falls into 

parallel singularity configuration. There are two possible parallel singular configurations 

for Five-Bar manipulator. The first possible situation is that ��� or �	� are fully folded, 

and points �� and �	 are coincident shown in Figure 3-4.  

 

Figure 3-4 ��� or �	� Fully Folded 

The second possible situation is that ��� or �	� are fully extended, hence points 1B  and 

2B  are co-linear, as shown in Figure 3-5.  
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In the first parallel singular configuration, the end-effector P is on a circle with a radius  

# = 2
 = 23. So the end-effector contour can be written as, 

2
2 2 25

1 3-
2

L
x y L L

 
 + ± =
 
 

  

 

Figure 3-5 ��� or �	� Fully Extended 

In the second parallel singular configuration, the end-effector P is at the mid-point of line 

����	. So the end-effector contour can be written as, 

( ) ( )1 1 2 2

2

os osc cL q L q
x

+
=        (3-63) 

( ) ( )1 1 2 2sin sin

2

L q L q
y

+
=        (3-64) 

When the robot is in parallel singular configuration, the condition is det-18/ = 0. 
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3.5. Kinematics Optimization Methodology 

Workspace is an important criterion to evaluate the kinematic performance of the robot. A 

larger workspace means that the robot can fulfill more tasks. For pick-and-place tasks, the 

workspace is crucial since the robot can handle more objects on an assembly line. In 

comparison to serial robots, parallel robots usually cover a usually more limited workspace. 

At the same time, some sub-volumes may be unavailable in its workspace. Hence the 

end-effector orientation is not a concern but effectively optimizing the parallel robot 

workspace is important in design.  

3.5.1. Workspace Calculation Algorithm 

Based on previous sections about Inverse Kinematics Problem (IKP) and Forward 

Kinematics Problem (FKP) analysis, the workspace of a Five-Bar robot can be calculated 

as the following algorithm. It comes from the trial and error method with the help of 

high-performance computing technology. 

As shown in Figure 3-2, an effective point within the five-bar workspace can be reached by 

one working mode or multiple working modes. The workspace of each working mode 

should be calculated separately. 
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Figure 3-6 Workspace Algorithm 

Since the total length of the proximal arm and distal arm is fixed, the effective workspace of 

Five-Bar robot is limited to a square area, each side equaling to the side arm’s total length. 

In Cartesian planar space, the workspace of Five-Bar robot is located within a square area 
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with 2� + 2	 as the side length. The area can be evenly divided into = � = discrete points. 

The interval between each two close points is 
>?@>%

AB�
. These points can be compacted into a 

matrix. 

The calculation process diagram is shown in Figure 3-6. The point on the Cartesian 

coordinate acts as an input. On the one hand, it is put into the inverse kinematic model, 

derived in section 3.3, to check if it fits any working mode. If the point fits in, it will be 

marked as an effective workspace point. On the other hand, the point will be put into 

differential inverse kinematic model and differential forward kinematic model, to check the 

values of inverse Jacobian matrix and forward Jacobian matrix. If either one equals to zero, 

this point will be marked as a singularity point. All effective workspace points will 

compose the effective workspace and singularity points will compose the boundary of the 

workspace. 

3.5.2. Area Ratio Calculation Technique 

For a Five-Bar robot, its workspace is determined by the length of the proximal arm, the 

length of the distal arm and the offset of the two actuators. The relationship between the 

arm ratio and area ratio is non-linear. Based on the design, there are few restrictions for the 

area ratio calculation: 

1. Adopt inverse workspace calculation algorithm. 
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2. Only calculate the minus-plus working mode 

3. The actuators’ offset is 80mm and total side arm’s length is 480 mm. 

Different proximal arm to distal arm ratios are assigned. Applying those restrictions, 

applying the workspace calculation algorithm, the effective workspace area and ineffective 

workspace area belonging to different arm ratios can be calculated. Hence the area ratio 

versus arm ratio curve can be plotted. The optimized arm length can be calculated. 

3.6. Results 

In this section, the arm ratio result will be presented. Based on previous workspace 

algorithm, the area of the workspace can change under different arm ratio. The trend 

curve will be used to decide the arm ratio to reach the largest workspace area. After the 

arm dimension is settled, the workspace and singularity locus of each working mode will 

be calculated and plotted. 

In Figure 3-7, the arm ratio is defined as the value of proximal arm length over distal arm 

length, can influence the effective area workspace. Based on this curve, the maximum 

effective area is at 0.9 arm ratio. Hence the selected theoretical optimal dimension for distal 

arm length is 250 mm and proximal arm length is 230 mm. 
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Figure 3-7 Workspace Optimization 

By applying the kinematic analysis derived in previous sections and workspace 

calculation algorithm, we can plot the workspace of Five-Bar manipulator. 

A Five-Bar robot has four working modes shown in Figure 3-2: minus-plus mode, 

plus-minus mode, plus-plus mode and minus-minus mode. Each mode has two assembly 

modes, which are positive assembly mode and negative assembly mode. In total, a 

Five-Bar parallel robot has eight different working configurations. However, the negative 

assembly mode is complex and not useful for industrial application. The problem is more 

that the assembly mode cannot physically be achieved since bars would collide or occupy 
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the same space. Therefore, it was not considered further in this work. Only the positive 

assembly mode will be investigated. The small distal arm length leads to a larger 

workspace while it introduces longer singularity loci. On the other hand, longer distal arm 

length leads to shorter singularity loci, which results in a lower chance of losing the degree 

of freedom, but it will decrease the workspace area. 

 

Figure 3-8 Workspace of Minus-Minus Mode 

As Figure 3-8 shown, the robot configuration is a minus-minus mode with 230 mm 

proximal arm, 250 mm distal arm, and 80 mm actuators offset distance. The green area is 

the effective workspace of Five-Bar robot in minus-minus mode. The unreachable area is 
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the white area. The blue boundary of the effective workspace is caused by singularity 

points, which makes robot lose DOF, which is the locus of the workspace. 

 
Figure 3-9 Workspace of Plus-Plus Mode 

As Figure 3-9 shown, the green area is the effective workspace of five-robot effective 

workspace in plus-plus mode. As Figure 3-10 shown, the green area is the effective 

workspace of five-robot effective workspace in plus-minus mode. As Figure 3-11 shown, 

the green area is the effective workspace of five-robot effective workspace in minus-plus 

mode, which is actually the mirror image of the minus-minus working mode. The 

minus-minus mode is the mirror image of plus-plus mode because of symmetric 

configuration. It has the same size of workspace area. 
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Figure 3-10 Workspace of Plus-Minus Mode 

 

Figure 3-11 Workspace of Minus-Plus Mode 
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Figure 3-12 Five-Bar Auto-Sampler Workspace 

The workspace of this research is shown in Figure 3-12. By comparing the size of all 

configuration workspaces, the workspaces and singularity boundaries of the plus-plus 

mode is symmetric to minus-minus mode. The minus-plus mode covers the largest 

effective workspace with the smallest unreachable area. This is the single working 

configuration accepted in this research. We only use half of the workspace, which makes 

the control easier.  
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Chapter 4 

4. Dynamic Analysis 

4.1. Introduction 

Dynamic analysis is important for robot design. Unlike the kinematic analysis, the dynamic 

analysis concerns about the robot in motion with velocity and acceleration. It researches the 

relationship between the forces, the torques, and the robot motion. The purpose of the 

dynamic analysis is to build a mathematical model describing the dynamic performance of 

the mechanism. It is the foundation of designing the robot system. The simulation results 

can be used to find the requirement forces or torques of the actuator and to optimize the 

control algorithm. 

Robot dynamic analysis consists of two parts defined by Tsai [34]. When all actuators’ 

input torque or force and changing trend along the time are known, they are used to derive 

the end-effector’s trajectories in the manipulator workspace, expressed in terms of 

positions, velocity, and acceleration changing to follow a certain target trajectory. This 

process is called forward dynamic analysis. Conversely, if the end-effector’s velocity and 

acceleration change along the time are known, they are used to derive the actuators’ input 

torques. This process is called inverse dynamic analysis. Researchers mainly focus on 

inverse dynamic analysis, which is useful for robot power source design, task-oriented 
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structure design and to choose actuators. Forward dynamics is utilized for simulation and in 

control. 

In this research, the bond graph model of the five-bar robot is built. In order to justify the 

relative new bond graph approach, the traditional Lagrangian approach is performed to 

validate the bond-graph model under the same case. Finally, bond graph model will 

simulate the robot under PID control and the dynamic simulation results will be presented. 

4.2. Literature Review 

A parallel robot has a closed kinematic loop, and multiple inputs coupled to each other. 

These characteristics give parallel robots a complicated dynamics. Several methods exist 

for solving the dynamic problem. 

The Newton–Euler approach is based on Newton's law and Euler's equation, shown in 

equations (4-1) and (4-2). For linear and angular motion they are directly applied to 

individual bodies [28]. But this approach requires lots of constraint force analysis, which 

makes it difficult to lead to actuator torques. 

F ma=∑           (4-1) 

cgM r F r ma I Iα ω ω+ × = × + + ×∑ ∑     (4-2) 

The Lagrangian approach is used from the energy balance perspective [30]. The bond graph 
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is another dynamic approach [40], which is relatively new compared to the Lagrangian 

approach. 

In 2006, Hu has introduced a simplified Lagrangian model to research the dynamic 

performance of Five-Bar robot [30].  

In 2003, the reduced order model analysis method is used by Ouyang [29]. It is another 

approach for dynamic modeling of closed loop mechanisms. It is used to develop the 

dynamic model of the Five-Bar mechanism. The method that he employed for dynamic 

modeling is from Ghorbel. In 1994, Ghorbel has derived a reduced model for the 

equations of motion of constrained model for the equations of motion of constrained rigid 

bodies, including closed-chain mechanism [31]. This modeling method is an approach 

based on Lagrangian equations. 

Lagrangian modeling method is tedious and demanding of high-performance computation. 

The non-linear results are difficult to optimize. It is caused by the parallel robot 

characteristic of closed and coupling kinematic structure. As a result of that, Lagrangian 

traditional modeling method is not the best choice for Five-Bar robot dynamic analysis and 

engineering design application. It needs a new method to fulfill this objective. 

The bond graph is a method to describe system power exchange, transmission, storage, and 
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dissipation. By introducing real parameters and variables, it can objectively show the 

relationship between all variables and get explicit state equations. In 1960, bond-graph 

method was firstly introduced by Paynter [40]. By applying Bond-Graph method in the 

Five-Bar robot dynamic modeling, a more efficient dynamic model is built. The results 

will be simulated and presented in this research. Based on the dynamic analysis, the 

motor torque and arm design are optimized based on the simulation results. 

4.3. Bond Graph Modeling 

Karnopp and Rosenberg (1990) greatly expanded the bond graph. Many different types of 

systems can be described using the bond graph, for example, electrical, mechanical, 

hydraulic, biological, chemical, and economic systems [41]. 

Planar mechanisms were simulated using bond graph by other researchers. Karnopp and 

Margolis (1979) described the planar mechanism referring to the bond graph [42]. Zeid [43] 

simulated joint effects on mechanisms using bond graph theory, which precisely describes 

the energy exchange through joints. A robot system includes mechanical, electrical, 

magnetic, and control components. The Five-Bar robot modeling is based on Jian’s model 

[45].  

Bond graph roots from the energy conversion perspective. A bond graph model is 

particularly useful to describe systems in which a variety of elements in different energy 
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domains interact [44]. The electrical motor is an example as it converts electrical energy 

to mechanical energy. Another example is two jointed rods with one fixed and another 

one rotating. It transmits mechanical energy to the following rod. So the bond graph can 

be used to model the electrical motor and two jointed rods. As for a system, if a separate 

component of the system can be modeled, the system composed of these parts can be 

modeled by connecting them together. Energy exchange is used to connect between parts 

within the system. In different energy domain, effort and flow stand for different names 

and units, shown in Table 4-1. 

Table 4-1 Effort and Flow in Different Energy Domain [41] 

Energy Domain Effort (e) Unit Flow (f) Unit 

Mechanical Translation Force ( Linear Velocity �/� 
Mechanical Rotation Torque (. � Angular Velocity #DE/� 
Electrical Voltage ) Current � 
Hydraulic Pressure �D Flow Rate �
/� 

The basic energy transmission is shown in Figure 4-1, where there is a stroke on the bond 

called the causal stroke. The causal stroke on either end of the bond has a different 

meaning. (a) If the causal stroke is on the B side, it means effort is output of A, input to B; 

flow is output of B, input to A. (b) If the causal stroke is on the A side, it means effort is 

output of B, input to A; flow is output of A, input to B [41]. And the half-arrow is defined 

as the direction of positive energy flow. 
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Figure 4-1 Bond Graph Causality [41] 

The basic components in the bond graph are introduced in Table 4-2. 

Table 4-2 Basic Components in Bond Graph 

Name Category Symbol Equations Explanation 

0 Junction Effort-Eq
ual 

Junction 

 

�� + �	 + �
 = 0 

FG = FH = FI 

 

1 Junction Flow-Eq
ual 

Junction 

 

�� = �	 = �
 

F� + F	 + F
 = 0 

 

Transformer Effort-In 
Causality 

 

�� = -1/=/�	 

F	 = -1/=/F� 

(1/n) is the 
constant value 
in “TF” 

Effort-Ou
t 

Causality  

�	 = -n/�� 

F� = -=/F	 

(n) is the 
constant value 
in “TF” 

Gyrator Effort-In 
Causality 

 

�� = -1/#/F	 

�	 = -1/#/F� 

(1/r) is the 
constant value 
in “GY” 
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Effort-Ou
t 

Causality  

F	 = -r/�� 

F� = -#/�	 

(r) is the 
constant value 
in “GY” 

Modulated 
Transformer 

Effort-In 
Causality 

 

�� = -1/=/�	 

F	 = -1/=/F� 

(1/n) is the 
variable in 
“MTF”, 
defined by 
outside signal 

Effort-Ou
t 

Causality 
 

�	 = -n/�� 

F� = -=/F	 

(n) is the 
variable in 
“MTF”, 
defined by 
outside signal 

As bond graph modeling for the five-bar manipulator, the four arms are modeled as rigid 

bars. Two DC motors are modeled in the bond graph. These components are connected by 

rotation joints, which are modeled as parasitic elements. The five-bar manipulator bond 

graph model is obtained by connecting them one by one. The energy is transmitted between 

them and represented in the bond graph. 

Many new bond graph practitioners represent bond graphs as a revolutionary new approach 

that is different from Newton-Euler or Lagrangian. Bond graphs are a very convenient way 

of representing either of those methods. The biggest advantages of bond graphs for five bar 

mechanism are: 1) they make it easier to implement multibody systems since by 

constraining the velocities. It automatically satisfies Newton’s Laws. Constraint forces can 
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be easily generated by compliant joint elements. Parasitic elements can be implemented in 

ways other than bond graphs. 2) bond graphs make a model reduction, model expansion 

and interfacing mechanism models with controllers and electrical systems easier. 

4.3.1. Bond Graph Modelling of the Actuators 

DC motor converts the electrical energy (voltage) into mechanical energy (angular 

velocity). In this section, the bond graph model of the DC motor will be built. Figure 4-2 (a) 

shows the sketch of a DC motor. It comprises inductance 2L , resistance �L, motor 

constant n, rotor inertia 1, bearing friction M. 

In the bond graph, shown in Figure 4-2 (b), the energy is described as effort and flow. 

Effort multiplied by flow produces power. In this case, voltage is the effort and current 

are the flow. In the 0 junction, the flow sums to zero and the efforts are equal. In the 1 

junction, the efforts sum to zero and the flows are equal. Since inductance, resistance, and 

voltage source are in serial connection, the current is equal to both components. They are 

connected by 1 junction. GY component in DC motor is current to torque conversion 

parameter. Since the rotary friction and rotary inertia are on the same shaft, they share the 

same rotary velocity so that they are connected by 1 junction. The motor output is a flow 

output, which is the angular velocity in this case.  
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(a) 

 

(b) 

Figure 4-2 Bond Graph Model of DC Motor [46] 

For DC motor, reference [46] derived the following transformation model. DC motor 

relative parameters are shown Table 4-3. The bond graph model of the DC motor is shown 

in Figure 4-2. 

Table 4-3 DC Motor Parameters 

Parameters Quantity Units 

n (GY) 253 N. m/A 
I (Inductance) 121 μH 

I (Rotor Inertia) 98.6 g. cm	 
R (Resistance) 0.346 Ω 

R (Bearing Friction) 3 � 10B4 N. s/m 
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4.3.2. Bond Graph Modelling of Robot Arms 

Karnopp and Rosenberg (1968) made multiple rigid body models, and they proposed the 

Eulerian Junction Structure (EJS) model [44]. Another approach, multiport model, is used 

in this research is to model multibody mechanical systems, which is easy to understand and 

implement in bond graphs, is to define a set of body-fixed coordinate, and constrain them 

using velocity constraint equations. If the velocity nodes in a bond graph, then the force or 

torque equations will be automatically satisfied. The robot arm is a rigid body and multiport 

model can be applied to it. A rigid arm is shown in Figure 4-3. This model is built based on 

each body fixed frame fixed on the arm center of mass. Through frame transformation 

matrix �W
X , a point in the body frame as 

'

'

X

Y

 
 
 

 can be transformed to ground frame as 

X

Y

 
 
 

. Vice versa, if the point in the ground frame needs to be transformed to body fixed 

frame, then the inverse �W
X B�

 , or same as �W
X , should be used. 

cos( )'

sin( )'
ig

b
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= +     
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. If the equation (4-3) is differentiated, we can get 
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When the rigid arm moves, the body frame moves. The velocity represented in body frame 

needs to be transformed to ground frame. Based on equation (4-4), the linear velocity can 

be transformed and delivered from the end-effector coordinate up to ground coordinate, 

where actuator locates and is fixed to the base.  

 

Figure 4-3 Rigid Arm 

The Five-Bar workspace is planar and located in the XY plane where the influence of 

gravity is insignificant. So each arm mass is equally assumed to be 100 grams. Each arm is 

represented with an EJS model. Its rotation refers to the ground frame and it can be shown 

in �W
X  matrix. Based on the previous introduction about the bond graph, angular velocity, 

and linear velocity flow. Using bond graph and the transformation equations in (4-4), the 

relationship between velocity and angular velocity can be built. It is a suitable method to 

model the planar manipulator. 
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Figure 4-4 Five-Bar Sketch 

As Figure 4-4, all variables reference the same base coordinate. The Z-direction is 

perpendicular to the XY plane and points out of the paper. 

The bond graph sub-model of arm one is shown in Figure 4-5. In this model, the continuous 

power storage element is labeled as 1Y� and it represents arm rotation inertia referring to 

the Z-axis. The variables Z�[ and Z�\ represent beam inertia elements standing for 

gravity influence. Since this mechanism workspace is in the XY plane and the arm is fixed 

on the motor shaft, the torque created by gravity is balanced by the support torque. We 

assume gravity has limited influence on the Five-Bar robot dynamic performance. So these 

two elements are assigned very small values. The same method is used for the other arms. 
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The x-direction velocity of the proximal arm on point �� is )$�[ , and )$�\ is the 

y-direction velocity of arm one on point ��. The x-direction velocity of arm one on point 

�� is )&�[ , and )&�\ is the y-direction velocity of arm one on point ��. The x-direction 

velocity of arm one on mass center ] is )Y�[ and )Y�\ is the y-direction velocity of arm 

one on mass center G. For the adoption of symmetrical configuration, arm two �	�	 

model can be built using the same method. Point �� and point �	 are fixed on the ground, 

thus equations (4-6) and (4-7) both equal to zero. 

In this arm one (proximal arm) sub-model, proximal arm length is assigned and velocity 

equations on each end are derived as, 

1
1 1 1

2
1 115

2 2

L
AG

L
B G mm= = = =        (4-5) 

1 1 1 1 1 1sin 0
A x G x

V V AG θ ω= + × × =        (4-6) 

1 1 1 1 1 1cos 0
A y G y

V V AG θ ω= − × × =        (4-7) 

1 1 1 1 1 1sin
B x G x

V V B G θ ω= − × ×         (4-8) 

1 1 1 1 1cos
B y Gy

V V B G θ ω= − × ×         (4-9) 
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(a) Sub-model of Arm One 

 

(b) Sub-model of Arm Two 
Figure 4-5 Bond Graph Model of Arm One ���� and Arm Two �	�	 
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Arm three (distal arm) ��� is modeled with the Eulerian junction structure model which is 

shown in Figure 4-6. In this sub-model, here )&�[ is the x-direction velocity of arm one on 

point ��, and )&�\ is the y-direction velocity of arm one on point ��. By sharing the same 

velocity at point ��, proximal arm model and distal arm model can be bridged. The 

x-direction velocity of arm one on point � is )̂ [, and )̂ \ is the y-direction velocity of 

arm one on point �. The x-direction velocity of arm three on mass center ]
 is )Y
[ , and 

)Y
\ is the y-direction velocity of arm three on mass center ]
. All these velocity variables 

refer to ground frame. For the adoption of symmetrical configuration, arm four �	� model 

can be built with the same method. 

3
3 1 3 125

2

L
CG B G mm= = =        (4-10) 

3 3 1 3 3 3  sin
B x G x

V V B G θ ω×+ ×=       (4-11) 

3 3 1 3 3 3  cos
B y G y

V V B G θ ω− × ×=       (4-12) 

3 3 3 3  sin
Cx G x

V V CG θ ω− × ×=        (4-13) 

3 3 3 3  cos
Cy G y

V V CG θ ω= + × ×        (4-14) 
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(a) Sub-model of Arm Three 

 

(b) Sub-model of Arm Four 
Figure 4-6 Bond Graph Model of Arm Three ��� and Arm Four �	� 



 

96 

4.3.3. Bond Graph Modelling of Parasitic Element 

It is relatively common to encounter derivative causality in the mechanical part of the 

system due to the assumption that inertia elements such as rigid bodies are connected 

rigidly [47].  

To eliminate derivative causality, a parasitic element is built to isolate inertial components 

from the rest of the system. Since the integral causality of each energy-storing element is 

preserved, the bond graph leads to explicit differential equations, which then can be easily 

integrated using explicit algorithms [48]. 

Figure 4-7 shows the two ports parasitic element sub-model. It can be treated as a set of 

parallel spring and damper with large values. This method introduces high-frequency mode 

into the system. In this model, � = 1 � 10
 and � = 1 � 10B_, which represent damping 

and compliance. Increasing damping can improve computation times. Large damping and 

compliance values render the system stiffer and longer computations result. This may reach 

excessive values.  

 

Figure 4-7 Bond Graph Model of Isolator 
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4.3.4. Bond Graph Modelling of the Complete Robot 

As a whole robotic system, controllers are studied and the dynamic results shown in the 

following figure. In Figure 4-8, a comprehensive bond graph model is built in a bond graph 

modeling software 20-Sim. Parameters, such as arms momentum of inertia, mass, used in 

20-Sim software are evaluated and created through Solidworks model. 

From the bottom to the top, the Ideal x and Ideal y is the desired location for end-effector 

position on XY plane. Then the Ideal x and Ideal y are converted to Ideal �� and Ideal �	 

by inverse kinematics. The error between the desired angle and current angle for arm one is 

as input for PID controller, the same process for arm two. The PID control outputs are sent 

to a power source, which is limited from -24 V to 24 V. The electrical energy is converted to 

mechanical angular velocity. Through the isolators, in this case, they representing the rigid 

joints between arms, the energy is transmitted to the following arms. 
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Figure 4-8 Integrated Bond Graph of a Five-Bar Parallel Robot 
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4.3.5. Bond Graph Modelling of the Control System 

The PID control loop is named after three correcting components. The proportional, 

integral and derivative terms are summed to calculate the output of the PID controller. The 

process diagram of the PID controller in parallel form is shown in Figure 4-9. It is a popular 

controller researched since the 1890s and widely applied in industrial design since 1911 

[63]. It is reliable and it has many alternative forms and tuning methods can be applied.  

 

Figure 4-9 PID Controller Process Diagram 

The controller output is defined as the following algorithm [63]: 

0

( )
( ) ( )+ ( ) +

t

p i d

de t
u t K e t K e d K

dt
τ τ= ∫  

The F-�/ is the error input, the difference between current desired motor angle and current 

motor angle feedback. 
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The à is the proportional gain parameter. A high value of à leads to a linear large 

change for a small error value. It can raise the responsiveness and sensitivity of the system 

but it may cause the system to be unstable if the value is too high. 

The �̀ is the integral gain parameter. A high value of �̀ leads to the acceleration of the 

system towards the set point. It multiplies the accumulated error since time 0 so it can result 

in an overshoot. 

The b̀ is the derivative gain parameter. It multiplies the derivative of the error change 

over time. It raises the stability and noise resistance ability of the system. 

c is the integration variable and it takes on values from time 0 to current time �. 

The series PID controller structure is shown in Figure 4-10. This controller also has four 

parameters including proportional gain à, derivative gain b̀, and integral gain �̀. It is a 

PID controller in series form and it transfer function is the following [49]. It is modified 

from the traditional parallel PID controller. In this model, two series PID controllers are 

separately implemented for each motor control. 
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Figure 4-10 Series PID Controller 

The PID controller continuously calculates an error value as the difference between the 

desired set point and a measured process variable [63]. The desired point in Cartesian 

coordinates is converted into two desired actuator angles through the inverse kinematic 

algorithm described in the previous section. These two desired angles are set points. The 

PID input signal is the error between set point angle and the real angle feedback. 

1
Output ( )(1 )p d

i

dE
K E Edt K

K dt
= + +∫  

Three control parameters à, b̀, and �̀can influence the control result. Trial and error 

method is used to tune the controller. Until the error between the desired angle and 

controlled angle is smaller than 5% of the difference between an initial angle and final 

angle. 

4.4. Lagrangian Modeling 

The dynamic model of Five-Bar manipulator based on reduced Lagrangian method [31] 
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will be presented in this section. All the parameters are matched with parameters shown 

in Figure 3-1. By input all known parameters into the model, it will give out the needed 

toques in the end. 
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42a L λ=            (4-17) 

42b L µ=            (4-18) 

2 2 2 2
3 4c L L µ λ= − − −         (4-19) 

2 2 1 1 5cos( ) cos( )L q L q Lλ = − +        (4-20) 

2 2 1 1sin( ) sin( )L q L qµ = −         (4-21) 

13 1 3q q q= +            (4-22) 

24 2 4q q q= +            (4-23) 

Based on equations from (4-15) to (4-23), 

1 4 24
3 1

4 24

sin( )
tan

sin( )
L q

q q
L q

µ

λ
−  +

= − 
− 

       (4-24) 
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2 2 2
1 1

4 2tan tan
a b c b

q q
c a

− −
 ± + −  

= − −      
    (4-25) 
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    (4-27) 

Based on equations from (4-24) to (4-27), we can calculate the following essential 

parameters. 

11 1 1 3 1 3sin( ) sin( )L q L q qψ = − − +        (4-28) 

12 2 2 4 2 4sin( ) sin( )L q L q qψ = + +        (4-29) 

13 3 1 3sin( )L q qψ = − +          (4-30) 

14 4 2 4sin( )L q qψ = +          (4-31) 

21 1 1 3 1 3cos( ) cos( )L q L q qψ = + +        (4-32) 

22 2 2 4 2 4cos( ) cos( )L q L q qψ = − − +       (4-33) 

23 3 1 3cos( )L q qψ = +          (4-34) 

24 4 2 4cos( )L q qψ = − +          (4-35) 

11 12 13 14

21 22 23 24
'( ')

1 0 0 0

0 1 0 0

q
q

ψ ψ ψ ψ

ψ ψ ψ ψ
ψ

 
 
 =
 
 
 

       (4-36) 
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q q q q q qρ ψ ψ ρ−= −
� � � �

      (4-39) 

The dynamic model of the Five-Bar manipulator is, 

1

2

( ') ( ', ') ( ')T D q q C q q q G q
τ

τ

 
= = + + 
 

�� � �

      (4-40) 

Where c� and c	 are the torque applied on the two active joints fixed on base. Since the 

research is focusing on the Five-Bar planar manipulator, the gravity will not be 

considered. So the simplified model will be, 

1

2

( ') ( ', ')T D q q C q q q
τ

τ

 
= = + 
 

�� � �

       (4-41) 

( ') ( ') '( ') ( ')T
D q q D q qρ ρ=         (4-42) 

( ', ') ( ') '( ', ') ( ') ( ') '( ') ( ', ')T TC q q q C q q q q D q q qρ ρ ρ ρ= +
� � � �

   (4-43) 

'( ')D q  is the inertia matrix and '( ', ')C q q
�

 is the centrifugal and Coriolis terms matrix, 
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which are defined as follows: 
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( 1,2,3,4)
2

i
i

L
r i= =  represents the mass center of the each arm. ( 1,2,3,4)

i
I i =  

represents the inertia of each arm and ( 1,2,3,4)
i

m i =  represents the mass of each arm: 

2 2 2
11 1 1 3 1 3 1 3 3 1 3( 2 cos( ))d m r m L r L r q I I= + + + + +     (4-46) 

2
13 31 3 3 1 3 3 3( cos( ))d d m r L r q I= = + +       (4-47) 

2 2 2
22 2 2 4 2 4 2 4 4 2 4( 2 cos( ))d m r m L r L r q I I= + + + + +    (4-48) 

2
24 42 4 4 2 4 4 4( cos( ))d d m r L r q I= = + +       (4-49) 

2
33 3 3 3d m r I= +           (4-50) 

2
44 4 4 4d m r I= +           (4-51) 

1 3 1 3 3sin( )h m L r q= −          (4-52) 

2 4 2 4 4sin( )h m L r q= −          (4-53) 
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4.5. Bond Graph and Lagrangian Results Comparison 

By applying equations from (4-15) to (4-53), the dynamic model of the Five-Bar 

manipulator can be built. In order to compare the Bond-Graph method and traditional 

Lagrangian method, a trajectory will be assumed within the workspace. The bond graph 

model and Lagrangian model will perform the same trajectory to validate the Bond-Graph 

modelling. 

The input angles are shown as (4-54) and (4-55). 

1 112.5 22.5 cos( )tθ π= −o o         (4-54) 

2 67.5 22.5 cos( )tθ π= +o o         (4-55) 

The trajectory within workspace is shown in Figure 4-11. Based on the input angles, the 

end-effector will move back and forth along the Y axis. The position results of the 

end-effector from the Lagrangian model and Bond-Graph model are shown in Figure 4-12. 

The input angles and related angular velocities are shown and compared in Figure 4-13. 

Finally, the input torques are shown and compared in Figure 4-14. 
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Figure 4-11 Validation Trajectory 

 
Figure 4-12 Trajectory Position Comparison 
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Figure 4-13 Angles and Angular Velocities Comparison 

 

Figure 4-14 Torques Comparison 
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Based on the comparison results from the two dynamic modeling methods, the errors 

between Bond-Graph model and Lagrangian model are in reasonable scale. In Figure 4-12, 

the X position results maximum error is less than 0.5 mm comparing to 250 mm moving 

distance back and forth; the Y position results matches perfectly. From Figure 4-13 we 

can find angle one, angle two, angular velocity one and angular velocity two all matches 

perfectly. Finally in Figure 4-14, the positive or negative value means the torque direction 

and the maximum absolute value is the maximum net torque. The maximum net torque 

one from Lagrangian is 1.74 N.m while bond graph yields 1.80 N.m; the maximum net 

torque two from Lagrangian is 2 N.m while bond graph yields 2.07 N.m. The errors are 

both less than 5%. After all, we conclude bond graph is a valid modeling method for 

five-bar manipulator dynamic analysis. 

The equations are derived and the calculations are done by software. The user does less 

calculation, but the computer implementation of bond graphs does not reduce calculations 

or equations compared to any other method. 

4.6. Bond Graph Simulation Results 

In this section, bond graph simulation results are shown. The properties of the Five-Bar 

robot should be assigned. Referenced to the Z axis, the principal moment of inertia for each 

arm is shown in Table 4-4. These four parameters are determined by the dimension and 
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mass of the arm. Torque is the result of the inertia times the angular acceleration. 

Table 4-4 Principle Moment of Inertia for Each Arm 

Arm Principle Moment of Inertia Unit 

#1 (Proximal) 0.01335 �� ∙ �	 
#2 (Proximal) 0.01345 �� ∙ �	 

#3 (Distal) 0.01301 �� ∙ �	 
#4 (Distal) 0.01298 �� ∙ �	 

In the simulation, a point to point experiment is proposed. The typical point to point process 

needs two inputs, the desired X position and the desired Y-position (if this desired position 

is reachable in minus-plus configuration workspace). Then the algorithm can automatically 

calculate out all parameters and variables. Motors will move the manipulator to bring the 

end-effector towards any position set-point.  

In this section, by using the bond graph model of the complete manipulator with PID 

controller, we will set the desired point (0.390 m, 0.205 m) for end-effector and it will be 

driven from the initial point (0 m, 0.477 m) where motor one and motor two are both 

located at 90°. The control results for motor angles and end-effector position during this 

process will be shown. The motor torques and torques applied on each arm during this 

process will be presented as well. 
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(a) Theta 1 and Desired Theta 1 

 
(b) Theta 2 and Desired Theta 2 

 
(c) End-effector X Position and Ideal X 

 
(d) End-effector Y Position and Ideal Y 

Figure 4-15 Angles and Positions Controlled Results 
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Table 4-5 Angles and Positions Controlled Results 

 Theta 1 (rad) Theta 2 (rad) X Position (m) Y Position (m) 

Initial 1.5708 1.5708 0 0.4765 
Final 0.5621 0.0106 0.3900 0.2043 

Desired 0.5629 0.0084 0.3902 0.2050 
Difference (Absolute) 0.0008 0.0022 0.0002 0.0007 

Errors 0.079% 0.141% 0.051% 0.258% 

Control error is calculated as 
Desired-Final

Error= 100%
Desired-Initial

× . If the error is smaller than 

5%, we consider the control accuracy is good. 

During the process of moving from initial point to the desired point, the motor torque and 

angular velocity output change are shown in Figure 4-16 and Table 4-6; these are important 

criteria for robot design. The motor output angular velocity during the process is shown in 

Figure 4-16(a) and Figure 4-16(c). From the plot, we can see the sudden accelerate from 

idle status to a constant speed at the start. It means a high torque is needed for acceleration. 

Referring to Figure 4-16(b) and Figure 4-16(d), this sudden torque is called ‘starting 

torque’. Its negative or positive signs assign the direction of the torque and angular velocity. 

Only the absolute value of them are good for us to choose the motor. As the motor output is 

in constant angular velocity, the angular acceleration is zero, then the motor torque drops to 

almost zero. Starting torque is no more than 5 N.m, which is available for the motor in the 

real world. This is the criteria for us to choose the motor.  
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(a) Motor 1 Angular Velocity 

 

(b) Motor 1 Torque 

 
(c) Motor 2 Angular Velocity 

 

(d) Motor 2 Torque 
Figure 4-16 Motors Torque and Angular Velocity 
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Table 4-6 Motors Maximum Net Torque and Angular Velocity 

 Max. Torque (N.m) Max. Angular Velocity ω  (rad/s) 

First Motor 4.1385 0.0950 
Second Motor 4.1970 0.0951 

At initial transients, the curve is not smooth. It steps up in a very short time then drop down 

in a very short time as well. This phenomenon is caused by motor starting torque. Only the 

absolute value is important for this research instead of the change trend or time gap. 

In Figure 4-17 and Table 4-7 , the torque applied on each arm rigid body during the process 

are provided.  

In field application, these plot results can be used to analyze the material properties and 

mechanical design. The material should bear the maximum net torque applied on the arm. 

This will give a theoretical requirement for design stage, which is fulfilled in the following 

chapter. 

Same as the previous discussion, the negative sign and positive sign of the torques mean the 

torque direction. The net torque is the absolute value of the torque. Torque is the result of 

the inertia multiplies angular acceleration. At the start, the arm is accelerated from idle 

status to a constant angular velocity. It needs a relatively large torque at start. Once the arm 

is rotating at a constant angular velocity, the torque will drop to almost zero.  
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(a) Torque Applied on Arm 1 

 

(b) Torque Applied on Arm 2 

 
(c) Torque Applied on Arm 3 

 

(d) Torque Applied on Arm 4 
Figure 4-17 Toques Applied on Arms 
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Table 4-7 Maximum Net Torques Applied on Arms 

 Max. Torque (N.m) 

#1 (Proximal Arm) 3.912 
#2 (Proximal Arm) 3.971 

#3 (Distal Arm) 0.060 
#4 (Distal Arm) 0.059 

In order to verify displacement, a 3D animation was used to directly verify the whole 

process in software 20-Sim. The end-effector can successfully reach desired point (0.390 m, 

0.205 m) driven from the initial point (0 m, 0.477 m). In Figure 4-18, it shows the process 

from 0 s to 20 s. It matches the previous simulation results and it is a more direct way to 

verify and confirm the model is valid for the five-bar manipulator. 

  
(a) Initial Status (0 s) (b) Moving Status (7 s) 

  
(c) Moving Status (14 s) (d) Final Status (20 s) 

Figure 4-18 3D Animation Moving Process 
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Overall, based on the results we calculated above, we proved that even though bond graph 

is a relatively new method than traditional Lagrangian approach, it’s still a valid method 

to fulfill dynamic analysis. PID controller is proved to be an effective controller for the 

five-bar manipulator. The inverse kinematic algorithm is also proved during the 

manipulator motion simulation Furthermore, the two motors output torques should be 

both greater than 5 N.m. 
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Chapter 5 

5. Hardware Design 

In this chapter, the design of the Five-Bar robot is presented in detail. The hardware design 

is divided into two parts: mechanical design and electrical system design.  

5.1. Mechanical Design 

The solid mechanical manipulator or structure was designed in Solidworks. In order to 

keep the design consistency, mechanical parts for Five-Bar robot are designed, drawn and 

analyzed utilizing Solidworks.  

On account of using Windows OLE (Object Linking and Embedding) technology, 

advanced Parasolid kernel and good third-party software supporting technology, 

Solidworks is a good CAD (Computer Aided Design) software. It has been widely used in 

different design field such as aerospace, automotive, mechanical and everyday customer 

products. Memorial University has an academic license for Solidworks. 

The mechanical design constraints are obtained from previous chapters, 

� The auto-sampler will be located in the laboratory environment using oil and gas, so 

the manipulator material selection requires that the material not reacts and dissolve 
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with lab chemicals. 

� The dimension of the auto-sampler size is limited within 1.22 m (L) ×  0.92 m (W) ×  

1.00 m (H) 

� The five-bar manipulator is symmetric where proximal arms 1 2 230L L mm= =  and 

distal arms 3 4 250L L mm= = . 

� The motor net torque is greater than 5 N.m. 

� The payload is the maximum weight of the end-effector that can be installed on the 

robot. It is an important specification to evaluate the performance of the robot. 

End-effector is fixed on linear apparatus. The linear apparatus locates at the 

intersection point of two distal arms. The total weight on that point should be less than 

2 kg. 

� The end-effector should be able to connect 1/8 NPT Tube Fitting. 

� The two needles should be both made by 1/16 stainless steel tube. Because 1/32 needle 

will be bent while piercing the septum and 1/8 is too big for small test tube inner 

diameter. 

5.1.1. Linear Apparatus Design 

The linear apparatus is controlled by the controller independently. This means adding a 

vertical axis on the end-effector and it will accomplish ascending and descending 

end-effector after the desired point reached. A simple linear actuator can achieve it.  
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The model P5H-24-150 manufactured by SINOKOKO is good for this task. It is made of 

aluminum alloy and coil voltage is 24V DC (Direct Current). The stroke length is 150 mm 

and the maximum speed is 29 mm/s. The peak force is 350 N. The linear actuator is shown 

in Figure 5-1. The reason of choosing this linear actuator is because of its low cost within 

$100 CAD and 150 mm extend length is the only option to limit the auto-sampler height to 

1.0 meter, which is the dimension constraint mentioned in previous section. 

  

(a) Linear Actuator (b) Weight of Linear Actuator 

Figure 5-1 SINOKOKO P5H-24-150 Linear Actuator 

The detailed linear actuator characteristics and dimension are provided by SINOKOKO 

[50]. In order to stabilize the linear actuator, an actuator rack is designed to fix it at the 

intersection point of two distal arms. It is shown in Figure 5-2. The linear apparatus mass is 

382.4 grams. Its detailed dimension is shown in the linear apparatus drawing, which is 
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shown in the appendix. 

  

(a) Linear Actuator in Supporting Rack (b) Weight of Supporting Rack 

Figure 5-2 Linear Apparatus 

5.1.2. End-Effector Design 

Injection and extraction needles, installed on the end-effector, are made of sharpened 1/16 

stainless steel 304 metal flow tube for constraint mentioned above. Its outer diameter is 

1.59 mm, and its inner diameter is 0.76 mm. The end-effector is driven by a linear actuator 

along the Z axis direction. 

Since the small test tube inner diameter is only 7.50 mm, the two needles need to be located 
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very close to each other. The two needles are both sharpened to pierce the septum. The 

piercing experiment will be shown in the following section. 

According to the sampling task requirements, the end-effector should tightly fix two 1.5875 

mm diameter hollow needles and two matching Swagelok 1/8 NPT (National Pipe Thread) 

tube fittings.  

Since the payload of the robot is constant and limited as 2kg, the manufacturing material 

should be light and strong. The material should not dissolve in oil and gas. So the 

end-effector is made of aluminum alloy 6061. The design is shown in Figure 5-3. The 

end-effector is designed in two parts and they are connected by four screws. The total mass 

for assembled end effector is 93 grams. The detailed dimensions are shown in the drawings, 

which are attached in the following appendix.  

Based on the measurement, the total weight of linear actuator, linear actuator rack and 

end-effector is 1.44 kg, which satisfies the 2 kg limited payload constraint. 
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(a) (b) 

Figure 5-3 End-Effector Design 

5.1.3. Motors 

As calculated in the previous dynamic simulation, the model of 3257G024CR graphite 

commutation motor manufactured by FAULHABER was chosen. The nominal voltage is 

24V DC with 83.2 W output power. The maximum speed is up to 7000 rpm. The mass of 

the motor is 242 g. 

The motor uses the 38A planetary gearbox with 200:1 reduction rate. The maximum 

continuous output torque is 18 N.m and the intermittent torque is up to 29 N.m, which 

satisfies the torque constraint calculated in the previous chapter as 5 N.m. The net weight of 

the gearbox is 330 g. Backlash is motion lost in a mechanism caused by gaps between the 
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parts. The potential gearheads available on the market are spur gearhead and planetary 

gearhead. The spur gearhead is well-known for zero backlash but has a low output torque. 

The planetary gearhead is well-known for having a large output torque with relatively high 

backlash. An up to date, high-class planetary gearhead usually has less than 1 o  backlash. 

For this three gear-stage gearhead, it possesses only less than 0.6o  backlash. In the end, 

spur gearhead cannot reach 5 N.m requirement and the planetary gearhead is our final and 

only choice under $2000 CAD. 

5.1.4. Manipulator Design 

The five-bar manipulator design is fulfilled in this section. The constraints for this design 

is shown in the previous section. Then for the bearing selection, the SKF rating life 

equation, raised by SKF Group, is used [51]. It will calculate the force applied on bearing 

caused by the motor driven. By comparing this force with the bearing specification to 

decide whether it is feasible for our design. 

Based on previous kinematics analysis, the proximal arm length is 230 mm and the distal 

arm length is 250 mm. The motor offset is chosen as 80 mm. A few straight holes are drilled 

on the arms for weight relief and tube wiring convenience. The machine design and real 

image are shown in Figure 5-4. 
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(a) Solidworks Model of Five-Bar Manipulator 

 
(b) Fabricated Five-Bar Manipulator 

Figure 5-4 Parallel Machine Design 

The bearing life is calculated using the following SKF equations, 
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1

10 ( )a
req a e

r

L
C C K F

K
= =       (5-1) 

Since the gearbox’s continuous torque is 18 N.m and the proximal arm length is 230 mm. 

So the radial effective force can be calculated as, 

18
78 17.6 

0.23eF N lbf= = =       (5-2) 

The defined desired life (cycles) is, 

6100 10N = ×         (5-3) 

The reliability is set as, 

90%rK =          (5-4) 

The factor L equation is, 

610
N

L =          (5-5) 

For the ball bearing and it is the outer ring for the shaft 

3a =           (5-6) 

1aK =           (5-7) 

The basic dynamic load rating can be calculated, using the known parameters, as, 

1
3

10

100
= 1 17.6 84.6 =376.3

0.9reqC C lbf N= × × =（ ）      (5-8) 

The shaft diameter should match with the bearing inner diameter and the bearing outer 

diameter should match the holding hole. So the bearing inner diameter is 15 mm and the 

outer diameter is 24 mm. Based on these requirements, 6802 double sealed ball bearing 

manufactured by NSK was chosen. Its specifications are shown as following. 
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Table 5-1 6802 Double Sealed by NSK Ball Bearing Specifications 

Boundary Dimensions (mm) Basic Load (N) Factor Limiting Speeds (rpm) 

d  D  B  minr  rC  10C  0f  Grease Oil 

15 24 5 0.3 2070 1260 15.8 2800 3400 

The dimensions of each arm were chosen after a static simulation in Solidworks. The 

simulation result for the proximal arm and the shaft are shown in Figure 5-5 and Figure 5-6. 

The external load for the arm is 100 N, which is larger than the total weight of the 

auto-sampler as 8 kg. The external load for the shaft is 30 N, which is larger than the total 

weight of the end-effector and linear actuator. Under these loading conditions, the 

maximum vertical displacement of the arm is 0.1275 mm and the maximum radial 

displacement of the shaft is 0.0188 mm. 
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Figure 5-5 Static Analysis of Arm 

 

Figure 5-6 Static Analysis of Shaft 

5.1.5. Piercing Force Test 

The piercing force experiment is conducted using an Instron 5585H floor model testing 

system to perform tensile and compression tests, which is shown in Figure 5-7. It is a 

universal static testing system. By fixing the end-effector on the machine tool head and the 

test tube on the machine base platform, the tool head will drive down injecting the needle 

into the test tube through the septum and extract needles out afterward. The required force 

for injection and extraction actions are calculated and reported in Bluehill software. 



 

129 

 

Figure 5-7 Instron 5585H 

By using Instron 5585H and its relative control and its supporting analysis software 

Bluehill, the force changing during the injection and extraction process will be recorded 

and plotted on the monitor. 

First of all, the experiment object test tube with rubber membrane should be located and 

fixed on the slot table. 

Secondly, the end-effector installed with injection and extraction needle should be installed 

on the grip, which is shown in Figure 5-8. 
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Figure 5-8 Injection and Extraction Experiment 

Next, the Bulehill was used to slowly descend the load cell along the load frame. Once the 

needle almost but hadn’t touched the membrane, stop the machine and relocate the test tube 

to the center of the needles, shown in Figure 5-9, to make sure the needles are in the center 

of the test tube before injection. 
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Figure 5-9 Relocate Experiment Object 

Once two needles pierced through the membrane, the machine was stopped and the load 

frame direction was reversed to ascending until two needles were entirely extracted out of 

the test tube. Shown in Figure 5-10. 
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Figure 5-10 Injection and Extraction of Needles into Test Tube 

In the end, the experiment is complete and the result can be obtained through the Bluehill 

software. The experiment result is shown in Figure 5-11. The result indicates that the 

required maximum injection force is less than 5 N and the required maximum extraction 

force is less than 10 N. In this design mentioned previously, the P5H 24V DC linear 

actuator manufactured by SINOKOKO with maximum 350 N meets this requirement. 
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Figure 5-11 Experiment Result 

5.1.6. Safety Cage Design 

The safety of the user is the design’s highest priority. A safety cage is necessary for 

separating the robot and the user. The auto-sampler should be able to fit into the safety cage. 

A limit switch will be installed on the door of the gate to help controller monitor the door 

status. As mentioned above, the constraint dimension for the auto-sampler is 0.92 m width

×1.22 m length×1.00 m. The manufactured size is 0.45 m width×0.55 m length×0.90 m 

height, which is smaller than the size requirement. Safety cage should be transparent for 

the user to observe the experiment and be compact resistance. 

The frame structure is composed of four 609.6 mm and eight 914.4 mm aluminum T-slotted 

framing bars, making the size of the cage as 0.61 m width×0.91 m length×0.91 m height. 

They are standard, easy to construct and strong yet lightweight materials. Three surfaces 

are covered with PVC coated carbon steel mesh. The front clear door is made of 6.35 mm 
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thick impact-resistant polycarbonate sheet, which is the only impact-resistant transparent 

material with lowest cost choice. The design is shown in Figure 5-12. 

 

Figure 5-12 Safety Cage 

5.2. Electronic Hardware and Circuits 

In this section, the electrical system includes DC (direct current) power supply, robot 

controller DC power supply and power separation and conversion circuits. The main DC 

power supply is used to power two DC motors, one linear actuator and three lamps for 
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status indicating. The robot controller DC power supply is a wall adapter. Details about 

these components and related circuits will be introduced in the following sections. The 

design constraints include the following, 

� The DC power supply is providing 24 V DC with at least 4 A maximum output 

current. 

� The DC power supply should be compatible with 120 V 60 Hz input voltage. 

� The DC power supply should be at least 250 W for driving two rotary motors as 83 

W each and one linear actuator as 48 W totaling 214 W power requirement. 

� The 5V power supply should have maximum 2 An output current to support the 

controller and the LCD screen. 

5.2.1. DC Power Supply 

The main power source is the switching mode DC power supply SWS300A-24 [52]. It is 

shown in Figure 5-13. The input is voltage ranges from 85-265VAC, 47-63Hz. It is the 

single nominal output power supply and the nominal output voltage is 24V. The output 

voltage is designed adjustable, which ranges from 20V to 28.8V. The maximum output 

power is 312W with maximum output current is 13A.The SWS300A-24 efficiency is 82%. 

It has over current protection when the output current is over 13.7A and the over voltage 

protection starts when the output voltage is over 30V. 
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Figure 5-13 SWS300A-24 Power Supply 

As for its mechanical characteristics, the weight is 950 g. The operating temperature ranges 

from -10 to +65 C
o . In order to work safely, an inner built blower fan is designed for the 

active cooling purpose and many holes are drilled for the passive cooling purpose. The 

dimension of the SWS300A-24 is 52 102 198× × mm.  

5.2.2. Robot Controller Power Supply 

The robot controller is chosen as TTL controller (transistor-transistor logic). It demands a 

power rail close to +5V, which has a relatively high amount of current to drive other 

components. 

A standard switching AC/DC power adapter is chosen for this purpose [53]. The input 
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voltage ranges from 110-220VAC. The power supply gives a regulated 5V and maximum 

output current is 2A. 

 

Figure 5-14 Adafruit Switching AC/DC Power Adapter 

As for mechanical characteristics, the cord length is 1830mm and the cord diameter is 

3.5mm with a standard coaxial positive tip connector. The overall dimension is 

47 33 33× × mm. 

5.2.3. Power Separation and Conversion Circuits 

Since the robot controller uses 5V/3.3V DC but the light bulb uses 24V DC, they have 

different reference ground. One is the AGND (analog ground) and the other is DGND 

(digital ground). AGND is from the 24V DC power supply and DGND is from the 5V DC 

power supply. AGND has more noises that are high enough to influence the robot 

controller. 
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As a result of that, ground isolation was necessary. Optocoupler chip SFH617 was applied 

to isolate the two different grounds. This optocoupler provides up to 5300 V isolation 

ability. An N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) 

chip BS270 was applied as the light tower switch. In order to pass the large current, its 

high-performance version BS270s, with 240mA maximum passing current capability, was 

chosen. The voltage isolating circuit is designed and shown in Figure 5-15. 

If the sensor is the TTL voltage and the controller input is the 3.3V level, which means 2V 

to 3.3V will be considered as HIGH and 0.8V to 0V will be considered as LOW. Since they 

share the same power source, the 5V power supply, a voltage division circuit is enough to 

solve the voltage conversion. It is shown in Figure 5-16. R1 and R2 are the voltage division 

resistors and R3 is the current limiting resistor. 

 

Figure 5-15 Power Separation Circuit 
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Figure 5-16 Voltage Conversion Circuit 

The power extension board is welded and shown in Figure 5-17. The circuit schematic is 

shown in Figure 5-18. This circuit protects the controller from the powerful 24 V DC power 

supply. 

 

Figure 5-17 Power Extension Board 
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Figure 5-18 Circuit Schematic
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Chapter 6 

6. Control System 

In this chapter, the control system design of the Five-Bar robot will be introduced. It 

includes the control structure design, the instruments introduction and selection, the 

operating process design, the control units selection, and the detailed control strategies 

introduction. 

6.1. Control System Overview 

The entire lab environment is controlled by an NI DAQ (Data Acquisition) system 

PXIe-1078 32-bit, shown in Figure 6-1. It connects all other lab instruments as a system, 

such as pressure sensors, valves, and viscosity sensors. This system is controlled by 

Labview GUI and Linux embedded platform.  

(a) Front Panel (b) NI DAQ 

Figure 6-1 Lab Control Center 
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The whole control system structure is shown in Figure 6-2. The supervisory PC is 

connected to the NI DAQ via an Ethernet cable. The NI DAQ sends experiment 

requirements to the robot supervisory PC through Labview, and the supervisory PC 

converts the user command into a communicating signal sending to the robot controller. 

The Auto-Sampler robot is controlled by a Beaglebone controller. It receives a command 

from the supervisory PC and decodes it. The LCD screen and the light tower shows the 

machine status. Two proximity sensors give the absolute zero-degree position to initialize 

the relative encoder, and the door limit switch sends the door status signal to the controller. 

The Beaglebone gives the motor angle command to one slave controller through an I2C 

communication bus, then the slave controller outputs two PWM (Pulse Width Modulation) 

signals to the two amplifiers. The amplifiers drive the rotary motor, while the encoders give 

angle feedback to the controller. Another slave controller separately drives the linear 

actuator. 

The control system is constituted by two control layers; the upper layer controlling the task 

which translates into managing trajectories, and the second layer constituted by two PID 

feedback loops that manage each joint position. They are introduced in following sections.  
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Figure 6-2 Control System Structure 
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6.2. Instrumentation 

In this section, detailed characteristics for each component in this integrated system is 

presented. These devices are controlled by the robot to sense the environment or to change 

some environmental attributes. 

6.2.1. Robot Controller 

The purpose of the controller is to control the work cell, which happens to be the robot. The 

upstream is the injection valve, while the downstream is the extraction valve. They are both 

controlled by the NI DAQ. The flow rate of injection and extraction is changed to fit 

different experiment objectives. 

The robot controller should meet the following requirements: 

� The controlling of two rotary actuators and one linear actuator needs three separate 

PWM (Pulse-Width Modulation) signals. 

� The signal reading of two rotary motor encoders feedback calls for two QEIs 

(Quadrature Encoder Interfaces). 

� The signal reading of three proximity sensor outputs requires three AI (Analog Input) 

ports or three GPIO ports 

� The controlling of three separate lamps requests three AO (Analog Output) ports or 

three GPIO ports. 
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� The communication with supervisory PC via a serial port needs one UART (Universal 

Asynchronous Receiver/Transmitter) module. 

Mature industrial robot controllers designed by FANUC or ABB are usually designed for a 

certain type or series of robots manufactured by the same company. They can only be 

operated with specific control software, which is usually a closed-source program ensuring 

reliability.  

Open-source hardware (OSH) is a very promising concept. OSH consists of physical 

artifacts of technology designed and offered by the open design movement. The term 

usually means that information about the hardware is easily discerned so that others can 

make it – coupling it closely to the maker movement [57]. 

The three devices which were considered potential micro-controller candidates for the 

robot controller are BeagleBone Black (BBB), Raspberry Pi, and Arduino. Each has been 

successfully applied in many fields such as electronics, environmental science, robotics, 

network, and 3D printing. 
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Table 6-1 Robot Controllers Comparison 

BBB Raspberry Pi B+ Arduino Due Winner 

Size Same Same Same Same 

Frequency 1GHz 700MHz 84MHz BBB 

Memory 512MB DDR3 512MB SDRAM 92KB SDRAM BBB 

Flash 4GB flash SD expansion available 512KB BBB 

USB ports Single slot 4 regular slots 2 micro slots Pi 

UART 6 Modules 1 Module 4 Modules BBB 

Digital I/O 69 27 54 BBB 

Operating 

Voltage 
5V 5V 3.3V Arduino 

Price $55 $40 $46 Pi 

Operating 

System 
Yes Yes No BBB/Pi 

ADC 8ch 12-bit 0 12ch 12-bit Arduino 

DAC 0 0 2 Arduino 

Expansion 

Headers 
92 40 66 BBB 

PWM 6 7 12 Arduino 

Encoder 

Connectors 
3 0 0 BBB 

Score 

(Max=15) 
9 5 5 BBB 

A technical comparison was completed in order to choose the best from these candidates. 

Required specifications (listed in Table 6-1) were evenly weighted and the device receiving 

the highest score is deemed as the optimal device for this application. 

According to the evaluation result and the design objectives, the Beaglebone Black is 

considered the best choice. The kernel of the BBB is an AM3358, which is an ARM 
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Cortex-A8 structure with up to 1GHz frequency.  

The BBB is capable of a lot of accessories. It has the potential to use HDMI for friendly 

interface development. It can support Linux and Android as the main on-board operating 

systems, which are both supported by a strong developer community. The BBB also 

contains many subsystems to expand its function, shown in Figure 6-3. 

Another impressive feature of the BBB is that its functionality can be extended with 

daughter boards, called CAPEs, which connect to the P8 and P9 headers. They are called 

CAPEs due to the shape of the boards as they wrap around the RJ-45 Ethernet connector, as 

much as four capes can be connected at one time [58]. Developers can design their own 

CAPEs and attach them securely to the BeagleBone using extension headers [58]. This 

function produces more possibilities than other microcontrollers, which boosts BeagleBone 

hardware and software ecosystems. 
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Figure 6-3 BeagleBone Black Structure Block Diagram [59] 

6.2.2. DC Motor Driver 

The driver circuit is located between the motor and control circuit. It is used to convert the 

control signal from the robot controller to switch the signal applied to the electrical device 

and power source. For a semi-control device, the driver circuit only needs to provide an ON 

signal. For a full-control device, the driver circuit has to provide ON and OFF signals.  
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The Linux OS (Operating System) was not designed for real-time or predictable processing. 

Its kernel is not preemptive, which means that once the processor begins executing kernel 

code it cannot be interrupted [58]. Therefore, if the BeagleBone has to decode an algorithm, 

the motor control, and interact with GUI simultaneously, it may not be able to process so 

many tasks in real-time. 

There are two ways to solve this problem. First, within the BeagleBone’s kernel AM335x, 

there are two on board sub-microcontrollers called PRUs (Programmable Real-time Units), 

which can be programmed for real-time interfacing applications [58]. Another solution is to 

use a slave controller as a CAPE and let the slave controller perform the real-time control 

task. 

The DMCC (Dual Motor Control CAPE) was chosen as the driver circuit, shown in Figure 

6-4. The slave controller is a 16-bit DSC (Digital Signal Controller) dsPIC33FJ32MC304. 

It has two QEI (Quadrature Encoder Interface) modules with a 16-bit up/down position 

counter, four PWM (Pulse Width Modulation) generators with a 16-bit glitchless PWM 

mode, one I2C (Inter-Integrated Circuit) module and one RTCC (Real-Time Clock and 

Calendar) module [61]. 



 

150 

 

Figure 6-4 Dual Motor Control CAPE 

Two QEIs can accept feedback signals from two encoders, and four PWM modules can 

control up to four motors independently. The I2C can communicate with the master 

controller. 

The VNH5019A full bridge motor driver was chosen as the amplifier. Every chip is able to 

drive a single motor with up to 41 V DC nominal voltage and 30 A maximum current. 

DMCC is produced by Exadler Technologies, which has the PID control embedded in the 

firmware [62]. BeagleBone, as the master controller, sends the command based on a 

communication protocol through I2C to DMCC. DMCC, as the slave controller, will 

accomplish the motor control and send a status report back to the BeagleBone. 

The DMCC is designed by Exadler Technologies and the schematic is shown in the 
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appendix. 

6.2.3. Proximity Sensor 

A sensor is a transducer used to detect and transfer a certain physical signal to an electrical 

signal for further analysis. In this project, optical encoders and inductive proximity sensors 

are introduced. 

The inductive proximity sensor has an oscillating circuit inside. With a voltage applied to 

the oscillating circuit, it can create a magnetic field. When a metal object gets close to this 

magnetic field, an eddy will be produced inside of the metal object. As a result, the 

oscillating effect will be decreased or even stopped. The change of the oscillating effect in 

the oscillating circuit is transduced into an electrical signal and amplified afterward. By 

testing the sensor output voltage of the inductive proximity sensor, we can detect the 

approach of a metal object. 

In this project, Autonics PR12-2DN with 2 mm sensing distance proximity sensors were 

chosen as Figure 6-5. Two of them are used for robot initialization.  
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Figure 6-5 Autonics PR12-2DN 

6.2.4. Door Switch 

A limit switch is installed in the system in order to sense whether the door is opened during 

the experiment process, This switch is composed of a coil spring, snap action mechanism 

and long lever with a roller. It can be applied in household appliances, automobiles, and 

door sensing systems, shown in Figure 6-6. 

 

Figure 6-6 Hinge Lever DPDT Limit Switch 
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This limit switch is a DPDT (Double Pole Double Throw) switch and it is normally open. 

Under normal circumstance, the limit switch is pressed by the door and it is in close status. 

Once the door is opened, the limit switch will be opened as well.  

The DPDT switch has six terminals. It can control two separate circuits but they are always 

switched together by a single actuator. Based on this, the first pole is connected to 3.3V and 

the first throw is connected to the controller. The second pole is connected to a 24V DC and 

the second throw is connected to motors power line. Once the switch is opened, motor 

power will be cut for safety and a signal will be sent to the controller simultaneously. 

Choosing this switch is fully considered based its electrical specification. The power rating 

is 1 HP for 125 VAC and 2 HP for 250 VAC, which reflects the amount of current the switch 

contacts can handle at the moment the device is turned on. The amp rating is 20 A at 

125/250VAC. The switching mode power source has an inrush current up to 20 A so this 

switch is suitable. 

6.2.5. Light Tower 

A light tower is another safety feature. The light tower can warn people that the robot is 

working in a distance. 

EDWARDS SIGNALING 113SS-RGA-AQ was used, shown in Figure 6-7. It uses a 24V 

DC steady light bulb and the working current is 0.24A each. The lamp life is over 500 hours. 
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The lamp tower is a surface mounting type with three M4 mounting holes. The lens 

diameter is 52mm. 

 
Figure 6-7 Light Tower 

6.2.6. Encoder 

A two channel optical incremental encoder is another type of sensor used in this project. 

The encoder can give controller the angle value that the motor shaft has turned. It provides 

the essential feedback signal for motor control. The accuracy of the incremental encoder is 

decided by how many lines per revolution. The encoder is more accurate with a higher the 

number of lines per revolution.  

The optical incremental encoder consists of one shaft disk with many small grooves, a LED 

transmitter, and a light receiver. The output is two channels of pulse signals with a 

90-degree phase angle difference. The encoder shaft is connected with the motor shaft. The 
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motor rotating angles can be calculated by counting how many pulse peaks are created. 

Furthermore, the motor direction can be decoded by detecting the signals of the channel A 

and channel B. 

HEDM 5500 was chosen for this purpose. It is a 5V DC optical incremental encoder. Two 

outputs, channel A, and channel B, are not only helpful for increasing the accuracy, but it’s 

also helpful for recognizing the motor shaft rotating direction. Its accuracy is up to 1024 

lines per revolution. The output signal is shown in Figure 6-8. Every high peak signal in 

CH.A or CH.B is counted as plus or minus one depending on the motor rotating direction, 

which will decide the CH.A and CH.B peak arriving sequence. The 1024 lines per 

revolution means one full turn 360 degrees is divided by 1024 and every count equals 

360
0.35

1024
=

o

o

. Each full rotation is performed, and CH.I will output a high peak signal. 

 

Figure 6-8 HEDM 5500 Output Waveform [54] 
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6.2.7. Solenoid Valve 

Solenoid valve is a kind of electromechanical valve. Instead of manual control. The 

solenoid valve is controlled by an inner built solenoid. With the current going through the 

solenoid, the 2-way valve can be switched on or off. In the case of the 3-way valve, the 

outflow will be switched between the two out ports. 

In this project, the Parker Two-Way Normally Open Solenoid Valve is chosen, shown in 

Figure 6-9.  

 

Figure 6-9 Parker 2-Way Normally Open Solenoid Valve 

This product has been widely applied in different scenarios requiring general fluid and gas 

control, such as hospital sterilization equipment, lubrication equipment, and air horns. It is 

an 1/8 inch NPT (National Pipe Thread) 303 stainless steel valve. The operating pressure 

differential is from 80 PSI up to 375 PSI. Actuating voltage is 24 V DC and maximum 

current is 0.41 A. 
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6.3. Operating Process and Control Units 

In this section, the detailed operation process is introduced, and then control units for the 

work cell are selected and presented.  

6.3.1. Operating Process 

The entire operating process diagram is shown in Figure 6-10. Before using the robot 

sampler, the supervisory PC with control GUI should be opened and the robot controller 

should be powered. The status light should be checked and all necessary cables should be 

firmly connected. The test tubes are inserted in the test tube rack and brought to the 

sampling work cell. 

The user opens the door and inserts all the test tubes inside. Before turning on the power 

source, the user should close the safety cage tightly and launch the control software on the 

supervisory PC. The green light showing the start status will be powered on once the power 

source is switched on. 

The working plane is fixed. The first step is to calibrate the auto-sampler manipulator and 

make it find the home position. This is performed only once when the controller is switched 

on and if the safety cage door is closed. The robot arms will move towards the calibration 

proximity sensors, which are physically installed at the 0 degree and 180 degree position. 

Once they send feedback signals to the robot controller, the robot controller will set the 
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encoder values to zero for joint position initialization and the amber and green lights 

showing the home status will be powered on. 

After the user specifies the number of desired test tubes, the desired experiment time and 

clicks the ‘GO’ button, the auto-sampler will start the palletization process and the yellow 

light showing working status will be turned on. The sampling end-effector is positioned 

over the desired test tube position. The injection needle is brought down into the test tube. 

After the specified experiment time is over, the needle will be pulled up. 

Next, the end-effector will be moved over the next test tube. The auto-sampler will repeat 

the same operation motion until it reaches the final test tube. When all test tubes are 

palletized, the auto-sampler will turn back to the home position.  

Three lamps are lit to indicate to the user that the work is complete and to notify the 

operator to change the test tube rack or click the terminate button to close the experiment. 

If the user doesn’t click the termination button and decides to conduct another experiment, 

the user should open the safety cage door and refill the test tube rack. After the test tubes 

are in the safety cage and the door is closed tightly, the user can click the initializing button 

and re-specify all experiment details. 
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Figure 6-10 Operating Process Diagram 
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6.3.2. Labview Control GUI 

For the supervisory PC, it should have Labview installed. It is a programming environment. 

Comparing other traditional text-based programming language, Labview uses modularized 

graphical language to program. Since Labview is designed by National Instruments, which 

has a solid hardware research ability and a huge hardware family, this language is highly 

merged with the hardware. The supervisory PC and robot controller communicate via the 

serial port. The NI-Serial Driver should be installed separately for full function. The 

Labview control GUI is designed and shown in Figure 6-11. Furthermore, the Labview 

GUI control logic diagram is shown in Figure 6-12. 

 
Figure 6-11 Labview Control GUI 
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Figure 6-12 Labview Control GUI Logic Diagram 
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The PC USB port can be used as a serial port but it needs to be converted to 3.3V UART to 

suit the BeagleBone Black signaling voltage level. As a result, the FTDI TTL-232R-3V3 is 

chosen as the serial communication cable, shown in Figure 6-13. The TTL-232R cables are 

a family of USB to TTL serial UART converter cables incorporating FTDI‟s FT232RQ 

USB to Serial UART interface IC device which handles all the USB signaling and protocols 

[60]. It converts USB to 3.3V UART. 

 
Figure 6-13 FTDI TTL-232R-3V3 Serial Cable [60] 

The developed system is composed of a master PC, a controller, and a Five-Bar 

manipulator. The system is shown in Figure 6-14. 

 
Figure 6-14 Five-Bar Auto-Sampler System 
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6.4. Control Strategies 

The multi-level control structure is proposed. The robot control constitutes of two levels: 

the servo level on three axes that are two rotary axes and one linear axis, and the task level, 

shown in Figure 6-15.  

Details about lower servo level and upper task level will be introduced in the following 

sections. 

 

Figure 6-15 Multi-Level Control Structure 

The Servo control accepted the classical PID controller. PID control is a conventional 

model-free feedback control approach and has been extensively applied in industrial 

applications because of its simplicity.  

The Ziegler-Nichols rule gives researchers a systematic way to tune the PID controller and 
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improve the control performance [56]. 

6.4.1. Servo Level Control Strategy 

The servo level control includes the controlling of three axes of the robot. The classic PID 

(Proportional-Integral-Derivative) controller in parallel form is used for two rotary motor 

control. The on-off controller, so called ‘bang-bang’ controller, is applied to linear actuator. 

Ziegler-Nichols Rule 

The Ziegler-Nichols Rule is used to tune the PID controller. Based on Zeigler and Nichols 

[55], formulas are provided which enable the controller settings to be determined from 

experimental or calculated values of the lag and unit reaction rate of the process to be 

controlled. The step by step process of tuning as follows: 

1. Apply the single P-controller with integral and derivative parameters, both equaling 

zero. 

2. Adjust the proportional gain p
K , and use the trial and error method to let the system get 

into the borderline state, where the system output is in low-frequency oscillation state 

with the lowest p
K  experimental value as Kp. 

3. Observe and measure the period of the oscillation frequency. Invert the frequency 

experimental value to obtain the borderline period as Tp. 
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4. Use the following equations to calculate classic ZN parameters.   

0.6
p

K = Kp           (6-1) 

0.5
I

T = Tp           (6-2) 

p

I

I

K
K

T
=           (6-3) 

0.125
D

T = Tp           (6-4) 

D D
K T= ⋅Kp           (6-5) 

The Zeigler Nichols method is implemented to gain robust control performance. After 

tuning, the PID parameters are tabulated in Table 6-2. 

Table 6-2 PID ZN Parameters (Same on Two Controllers) 

Parameters Amount 

è 25.15 

8̀ 5.45 

f̀ 19.50 

On-Off Controller 

The on-off controller, also known as ‘bang-bang’ controller, is a controller switching 
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between two statuses back and forth. Only completely on and completely off states are 

considered in the controller. 

The linear actuator has two limit switches built inside. One is located at the back end while 

another one is located at the front end. By reading the limit switch on or off, the motor 

status is decided only between full power or no power. The voltage is positive. Once the 

extracting motion is required, the controller value is reversed leading to the voltage 

reversed to negative. 

6.4.2. Task-Level Control 

In this project, the targets are fixed test tubes in Cartesian coordinates, which means each 

target has a fixed two-dimensional coordinate value. Based on the kinematic algorithm 

introduced in the previous section, the two-dimensional coordinate values 
x

y

 
 
 

 can be 

transferred into two motor angles 1

2

θ

θ

 
 
 

. 

Any two points within the workspace, A and B, are chosen in the robot workspace, a single 

line trajectory from A to B can be created. This is the most direct trajectory. In order to let 

the end-effector move along this trajectory, this single line can be divided into many line 

segments, equaling many sub-points. The PID controller is used several times to keep the 

control results away from overshooting. 
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Based on the kinematic algorithm, each sub-point relates to a pair of angles, theta one and 

theta two. Equally, this single line trajectory can be transferred into a curve of motor one’s 

angle and a curve of motor two’s angle. 

6.4.3. Path Planning: 

If the desired trajectory is a complex geometrical path, to ensure all test tubes are ergodic, 

the path should be divided and angles should be calculated. The desired sampling task is 

actually defined by a pick-and-place procedure with palletization. It only requires reaching 

several points which are deployed on a network of rectangles. Hence, these tasks only call 

for approximate lines between the points but not necessarily keeping straight lines.  

In order to sample all thirty test tubes, the desired trajectory is planned and is shown in 

Figure 6-16. In the simulation, the designed auto-sampler configuration is used, as 

proximal arm 230 mm, distal arm 250 mm, and motor offset 80 mm. 

The outer and inner red curve edge is the edge of the workspace. The black square 

represents the test tube tray and the 30 colored solid circles represent 30 large test tubes 

with the 30 mm diameter. The initial robot configuration is shown in the blue dash line. The 

initial configuration is located where theta one and theta two both equals ninety degrees. 

The Robot starts from the initial configuration and then samples test tubes row by row. 
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After all of the test tubes are finished, the robot will return to the initial configuration. 

 

Figure 6-16 Trajectory Plan for All Test Tubes 
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Chapter 7 

7. Autosampler Commissioning  

7.1. Methodology 

Before delivery of the Five-Bar autosampler to the client, the commissioning was 

performed based on the several test scripts. The test scripts are sets of specific instructions 

that will be performed on the system to be tested in order to ensure that the system 

functions as expected. In order to test the Five-Bar autosampler, three test scripts have been 

proposed, which are operational test, failure test, and fluid test. The operational test, 

referred as the positive test, is to test the normal functions of the auto sampler under 

standard operations. The failure test, referred as the negative test, is to check the protection 

logic of the autosampler’s controller dealing with the failure situations. The fluid test, 

referred as the supplementary test, is introducing the fluid into the auto sampler to test the 

fluid control of the autosampler. 

Every test section was raised and approved by the Hibernia EOR laboratory. Meanwhile, 

the whole testing process was proceeded strictly following the test scripts under the 

Hibernia EOR laboratory’s monitoring.  
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7.2. Operational Tests 

In the operational test, it is assumed that the auto-sampler is used as correctly as it is 

designed. The operational tests comprise a collection of the important tasks which 

describe the auto-sampling process and which are handled by the robot and its controller. 

It will be powered and then properly connected with the supervisory PC. Afterward, the 

auto-sampler will be initialized, and then different modes can be chosen, including a full 

rack of 30 test tubes injected and extracted one by one with a defined experiment time, 

defined single row (five rows in total) with defined experiment time, and single test tube 

experiment. Finally, the experiment can be terminated by the user command. Two needles 

have 4 mm total width and the inner diameter of the small test tube is 7 mm. Therefore, 

the error has to be controlled within 1.5±  mm, as shown in Figure 7-1. 

 

Figure 7-1 Sketch of Piercing Holes on Septum 

All of the required operations are performed as how it should be. The robot operational 

tests showed that it could proceed with test tube sampling at the required performance. It is 
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notable that the robot can proceed with the sampling of all the test tubes or small portion of 

those. The process has reached the required accuracy for needle injection in the test tubes. 

The detailed operational test script with related test results are shown in Appendix 10.9. 

7.3. Failure Tests 

The failure tests comprise a collection of the situations which have been identified as 

potentially problematic to the auto-sampling process, the robot and people security. These 

failure tests are divided into two types of problems: hardware failures and position errors. 

In the second case, the auto-sampler is placed in many problematic positions which 

normally lead to task or system failures. 

The autosampler was powered and connected properly as the normal starting in 

operational test. However, many failure scenarios were tested before or during the normal 

experiment process. For example, it includes: random initial configurations to check 

unwanted starting positions; unexpected input for control GUI; opening the door during 

the experiment to check if the robot will be neutralized and continue the experiment after 

the door is closed; reposition the end-effector close to the singularity to see if it can cross 

the singularities; disconnect the power cord during the experiment. In the end, the robot 

effectively handled all unwanted situations and passed all of the failure tests.  

The robot failure tests showed that it could proceed with failure or error recoveries in all 
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instances. Moreover, it could proceed with calibration from any position in its workspace. 

The robotic system should be able to reduce downtime and ensure proper operations 

automatically for long periods of time. The failure test script with related test results are 

shown in Appendix 10.10. 

7.4. Fluid Tests 

The fluid tests are a repetition of some selected Operational Tests with the difference that a 

fluid is used during the process. 

The fluid test also checks the function of the solenoid valve and controller’s algorithm 

handling fluid. In this research, the fluid is chosen as the water because safety concern as 

well as the oil equipment was not commissioned at the testing time. The autosampler was 

started normally and perform all of the test tubes sampling task. In the test, the water was 

pressured by a pump. The autosampler finished all required injection and extraction. The 

fluid test was successfully passed. There was no fluid leakage or spill during the whole test. 

The fluid test script and related test results are shown in Appendix 10.11. 
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Chapter 8 

8. Conclusion and Future Work 

8.1. Conclusion 

The auto-sampler is one of the essential units in the experiment. This research contributes a 

new type of auto-sampler other than traditional planar or rotating auto-sampler for 

specialized core analysis laboratory studies. We researched a 2-DOF parallel robot. 

Specifically, we analyzed, built, and tested a Five-Bar robot. Five-Bar robots are commonly 

used but this is the first known Five-Bar robot for laboratory oil and gas auto-sampling, of 

which we aware. 

First of all, in the kinematic analysis, the inverse kinematic problem, and the forward 

kinematic problem explicit solutions are obtained through the vector method. The 

workspace and the singularities are calculated and plotted. The kinematic optimization is 

performed for reaching the largest workspace area on different combinations of arm 

dimensions. Based on the optimization results, the most reasonable combination of the arm 

dimensions reaching the research objective is acquired, and it gives support to the 

following dynamics analysis and the mechanism design. 

We compared the dynamic performance results using the traditional Lagrangian analysis 
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and the bond graph method. Comparing the results obtained from these two methods, we 

found that the errors between them are small, justifying bond graph as a valid dynamic 

analysis approach. As a result, bond graph method was used for Five-Bar robot dynamics 

analysis. PID control was applied to the bond graph model. Control results of the bond 

graph model are obtained and analyzed, showing that the motion of the Five-Bar 

manipulator can be simulated properly. The bond graph is validated as a proper dynamic 

method and the results were used to support the following engineering design for motor 

selection and manipulator design. 

The engineering design consists of the mechanical design and the electrical design. The 

strength of the structural arm design is validated by static analysis. The mechanical 

structure is designed and manufactured. The required piercing force of the injection needle 

is experimentally tested and validated. The electrical system is designed and assembled. 

The analog ground and the signal ground are separated by specifically designed power 

separation, which keeps the signal processing away from the disturbance noise of the DC 

power source. 

The instrumentation and controller are selected based on the research objectives and overall 

design requirements. All components are connected making an integrated system. The 

control strategies are designed and applied to the control algorithm. They are tuned based 
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on Ziegler-Nichols Rule. In the end, the path is planned for Auto-Sampling task 

specifically.  

8.2. Future Work 

The Five-Bar robot for auto-sampler is a promising design. The following aspects can be 

improved and further researched. 

(1) Different five-bar working modes can be switched between each other in the shared 

workspace. Experiments can be conducted to research the influence of multiple 

working modes on dynamic performance. 

(2) The error tolerance of the Five-Bar robot can be calculated.  

(3) More advanced control strategies and methods can be researched and tested. The limit 

of the control accuracy can still be improved, if required. 
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10. APPENDIX 

10.1. Jacobian Matrix Solutions 
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10.2. Linear Actuator LM-P5H Specifications 
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10.3. Drawing of Linear Apparatus 
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10.4. Drawing of Linear Apparatus 
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10.5. Drawing of Proximal Arm 

 



 

198 

10.6. Drawing of Distal Arm One 
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10.7. Drawing of Distal Arm One 
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10.8. DMCC Schematic 
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10.9. Positive Test Script and Test Results 
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10.10. Negative Test Script and Test Results 
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10.11. Supplementary Test Script and Test Results 
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