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Abstract

Marine controlled-source electromagnetic (CSEM) surveying is a geophysical technique
for mapping subsurface electrical resistivity structures in the offshore environment. The
method is highly sensitive to resistivity contrasts, which result in interpretable electric field
responses. This has caused the method to gain attention in recent years concerning its ca-
pabilities as a direct hydrocarbon indicator on a three-dimensional scale. The technique
has a significant advantage in being both an independent and complementary method to
seismic imaging, allowing for considerable opportunities in joint inversion and interpreta-
tion using data that has been previously collected. While raw CSEM data contains rich
information about the subsurface, modelling and inversion are required to convert such
data into interpretable resistivity estimates. To this end, improvement of modelling tools
is integral to the quality and accuracy of interpreted CSEM data.

This study used forward modelling based on the CSEM3DFWD code written by Seyed-
Masoud Ansari at Memorial University. The finite-element method is employed over un-
structured, tetrahedral meshes that allow irregular geological contacts to be accurately
modeled. 1D and 3D models have been built with two main goals: to assess the accu-
racy of CSEM3DFWD by comparing results to known analytical methods; and to assess
the thresholds of detection in 3D models that are complete with bathymetry, horizons of
geological contacts, and reservoir geometries that are analogous to those in the Flemish
Pass Basin, offshore Newfoundland. Matches of these electric field amplitude and phase
results with known semi-analytical methods for 1D models verify the accuracy of the mod-
elling method, allowing an assessment study of detectability of likely reservoirs offshore
Newfoundland to be carried out. With this ability to generate accurate synthetic CSEM
data for realistic Earth models, more educated decisions can be made concerning marine
exploration scenarios: the results of 3D CSEM surveys can be more accurately interpreted
and more mindful assessments of risk can be made, increasing the likelihood of reaching
successful hydrocarbon plays.
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Chapter 1

Introduction

1.1 Overview

The marine controlled-source electromagnetic (CSEM) method is a geophysical technique

for mapping subsurface electrical resistivity. It has gained attention in recent years as an

independent, yet compatible method to seismic acquisition and subsequent interpretation:

the integration of the two methods reduces ambiguity of the interpretation of either inde-

pendent method (e.g. Harris and MacGregor, 2006; Hoversten et al., 2005; Johansen et

al., 2007; and Harris et al., 2009). While raw CSEM data contains rich information about

the subsurface, modelling and inversion are required to convert raw data into interpretable

resistivity estimates. Improvement of modelling tools will assist in closing the present gap

between acquisition and interpretation of CSEM data. To this end, the focus of this study

is to explore the limits of the latest modelling capabilities within the context of marine

EM scenarios.

The study will begin by testing 1D halfspaces and layered Earth models with known
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analytical results, to serve as confirmation of the validity of the code used for forward-

modelling. The parameters — namely, resistivities — of these models will be dictated by

parallel values used in the complex 3D real Earth models that comprise the main focus

of this study. These resistivities (ρ; presented in Ωm) may equally be represented as con-

ductivities (σ in S/m), using the relationship ρ = 1/σ — both resistivity and conductivity

will be used in this study interchangeably. In both the 3D and 1D modelling scenarios

in this study, a subsurface structure is designed and discretized using unstructured tetra-

hedral meshes. The solution of an electric field matrix formulation is calculated via an

interative forward solver, CSEM3DFWD, using the unstructured mesh as the basis of the

finite-element approach. The comparison between results of simplistic models versus the

models complete with bathymetry, stratigraphy, and complex hydrocarbon trap structures

will be integral in evaluating the limits of resistivity detection — the principle motivation

and aim of this study.

1.2 Historical and Academic Development of CSEM

The historical motivations and methods that were fundamental in the development of the

deepwater marine CSEM method used in modern hydrocarbon exploration are described

extensively by Constable and Srnka (2007). The technique emerged through work by

Charles Cox of the Scripps Institution of Oceanography in the late 1970s (Cox, 1981). The

original motivation for these CSEM experiments was to study the shallow and resistive

parts of the oceanic lithosphere by replacing the relatively high frequency energy lost during

magnetotelluric surveys with energy supplied by a deep-towed, man-made transmitter.
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Cox’s experimentation over the oceanic lithosphere yielded interesting results: the oceanic

lithosphere proved to be remarkably resistive, with the lower crust and upper mantle values

approaching 105 Ωm. This resistivity, combined with the high apparent conductivity of

the ocean (104 S) acts to trap horizontal electric currents associated with MT fields or

horizontal water flow in the ocean for very large distances — a consequence of the diffusive

propagation of electromagnetic signals in the conductive media. The presence of the source

at far offset implies propagation through the rocks below the ocean floor, and the variation

electric field results are a function of the subsurface resistivities and depth (Cox et al.,

1986)

While Cox’s work with the oceanic lithosphere was fundamental in the development of

the marine CSEM method, alterations had to be made to his method to suit the bias of

geologic interest towards features that have undergone tectonic activity and typically had

significant bathymetric relief; namely, eliminating the use of the source transmitter on the

seabed, as this proved impractical for the rough terrain of the ridge axis. Martin Sinha

and his group at the University of Cambridge developed a neutrally buoyant transmitter

antenna that allowed the deep-towed transmitter to be carried about 100 m above the

seafloor (Sinha et al., 1990). Through trials executed by a collaboration of Cambridge and

Scripps on the East Pacific Rise (Evans et al., 1991), the Reykjanes Ridge (MacGregor et

al., 1998) and the Valu Fa Ridge (MacGregor et al., 2001), this method was proven to be

both an efficient method of circumventing terrain issues, and later, by Exxon in the early

1980s (Srnka, 1986), desirable in the hydrocarbon exploration environment. Unfortunately,

a combination of non-ideal water depths, a lack of computational capability, limited digital

acquisition capacities, and the growing emphasis on 3D marine seismic technology meant

3



that this work was before its time in terms of commercial viability.

It was not until the late 1990s when Statoil began examining the use of CSEM that it

was concluded that ”if the target is not too small compared with its depth of burial, and

the water depth is sufficient to suppress the air wave, then the controlled source signature

of the oil-filled layer is detectable, yielding controlled source amplitudes that are a factor

of 2 to 10 different than models without the oil layer. The signals are above the noise

threshold, and the experimental parameters (frequency, range, antenna length and power)

are practicable” (Westerdahl et al., 2009). With this positive result, Statoil proceeded with

field trials in offshore Angola in late 2000 (Ellingsrud et al., 2002).

The high resistivity contrast between hydrocarbon-filled pore space and water-filled

pore space allows for the CSEM method to act as a direct hydrocarbon indicator in areas

where seismic data can be ambiguous (Johansen et al., 2005; Stefatos et al., 2009; and

MacGregor et al., 2007). As evident from EM induction well-logging, this difference in

resistivity creates a strongly visible oil-water contact in borehole scenarios, which is a

vital indicator in offshore hydrocarbon well development. An attractive advantage of the

CSEM method is not only the ability to model the grade and geometry of the hydrocarbon

reservoir, but to do this without the need of expensive deep-water drilling.

Hesthammer and Boulaenko (2005) argued that integration of EM methods with con-

ventional seismic and well log data has the potential to greatly improve exploration success

rates (e.g. Hansen and Mittet, 2009) and that the application of the CSEM technology

in conjunction with traditional prospect evaluation workflows provides the potential to

increase the chance of discovering hydrocarbons. As such, as part of a risked value and
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cost consideration, the technology offers an opportunity to de-risk and prioritize drilling

targets and, most significantly, reduce the risk of drilling dry wells. It is critical to note

that resistivity mapping using CSEM data must be mindfully applied to hydrocarbon ex-

ploration, as the resistivity contribution is non-unique to hydrocarbons: that is, materials

such as salt, volcanics and low-porosity lithologies may cause false positive interpretations

(e.g. Gist et al., 2013). These false positives can be avoided through a workflow of forward

modelling, inversion, and integrating seismic, well, and regional data.

A recent publication by Hesthammer et al. (2010) provides statistical results from

wells on prospects containing CSEM data. Of the 22 calibration surveys acquired over

existing surveys, 19 (86%) show a significant CSEM anomaly, categorized by a normalized

anomalous amplitude response (NAR) value above 15% for the fundamental frequency. Of

the 14 calibration surveys acquired over prospects that are proven dry, 13 (93%) show no

significant CSEM anomaly. For exploration wells drilled on a prospect with a significant

CSEM anomaly, the success rate is doubled (from 35 to 70%) for wells drilled on prospects

without. The NAR value represents the percent difference of the results over a resistively

anomalous body to the background trend of a homogeneously resistive region (Figure 1.1).

This is analogous to the approach used in this study, where percent difference values are

normalized by structurally equivalent reservoirs that are non-hydrocarbon saturated (see

Chapter 4 for details).
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Figure 1.1: A Normalized Amplitude Response plot from the Barents Sea included in Hes-
thammer et al. (2010) showing a maximum NAR of 20%. The yellow boxes represent
the receiver positions for this survey, and the blue highlighted section represents the re-
sponse to the anomalous region.This technique of reservoir detection is analogous to the
normalization method used in this study.

1.3 The CSEM Method

As previously stated, this study will involve the forward modelling of synthetic CSEM data

using unstructured meshes. In order to optimize the array configurations and appropriate

parameters for synthetic modelling, it is vital to understand the CSEM method and each of

its components; namely, how the sources and receivers pertain to marine CSEM scenarios.

Figures 1.2 to 1.4 display the components and preferred configurations of the standard

broadband marine CSEM survey. The standard source used in these scenarios is a hori-

zontal electric dipole (HED) which allows the excitement of both vertical and horizontal

current flow in the seabed and maximizes resolution for a variety of structures. A verti-

cal magnetic dipole, for example, would excite mainly horizontal current flow (Chave et
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al., 1991). The lack of vertical component prevents structures at depth from being pen-

etrated, and thus, being well-resolved. Horizontal magnetic dipoles excite both vertical

and horizontal currents, but are less favoured than electric dipoles for operational reasons

(Edwards, 2005). Transmitted electric fields are directly proportional to the source dipole

moment, A, given by the dipole length times the emission current (in this study is 100 m

times 1 A/m). Data for interpretation are normalized by the dipole moment, resulting in a

decrease in the system noise floor as A gets larger. This allows wider source-receiver offsets

to be recorded and deeper structures to be detected. Dipole lengths are typically 100-300

m (Constable, 2006), as longer lengths would create significant practical challenges when

towing transmitter antennae. A short source length can be modelled by an ideal dipole

whose moment is equal to the current times the length of the real source. This practice

is employed by the semi-analytical method of Key (2009), which is compared to the real

Earth models of this study. In practice, a high-voltage AC current is transmitted down a

towing cable to a transmitter unit close to the seafloor. Frequencies between 0.1 and 10 Hz

may be employed by the HED, with lower frequencies accessing deeper targets, and higher

frequencies increasing the resolution of shallow structures (Eidesmo et al., 2002). As the

structures in this study are relatively deep, surpassing 3000 m, frequencies between 0.25

and 1.0 Hz have been considered.

As computational technologies allow for more complex models to be examined, the

characteristics of CSEM continues to yield several advantages, particularly in marine en-

vironments. The highly conductive sea acts as a low pass filter for fluctuating EM fields

generated above it either in the ionosphere or magnetosphere, significantly decreasing noise

contributions — a significant advantage for the use of CSEM in marine scenarios. The
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Figure 1.2: Schematic of the typical measurement instrumentation for broadband marine
MT. CSEM recievers are very similar (from Key, 2003).
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(a)

(b)

Figure 1.4: Enlarged view of select equipment from Figure 1.3.

deepwater environment acts to nearly eliminate the effect of above-water EM sources, in-

cluding the anthropogenic ones. As a result, weak electromagnetic fields that propagate

in the underlying sediments from a sea-bottom artificial source are measurable at large

transmitter-receiver separations of the order of kilometres. Transmitter currents of 1000

A or more can be passed through seawater with simple electrode systems and reasonable

power consumption (of order 100 kW), and transmitter antennae several hundred metres

long can be easily towed along their length through the seawater — a strenuous task for

similar land surveys. Though high currents are typically used in practice, the data in this
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study are synthesized using a 1.0 Am source; results will have the same magnitude as data

normalized by the dipole moment of the source.

Measurements are typically taken by the receiver (Figure 1.2) at two orientations: radial

electric field, in which the receiver is positioned along the axis of the transmitter and

measures a linearly polarized field oriented along this axis; and azimuthal electric fields,

in which the linearly polarized field is oriented parallel to the transmitter (Figure 1.5).

Studies that have explored the different behaviour of the azimuthal and radial modes in

the presence of a thin resistor (e.g., Eidesmo et al., 2002; Constable and Weiss, 2006), have

concluded that when the direction inline with the transmitter dipole antenna is considered,

the electric field lines are oriented purely radially, and have a significant vertical component

(thus, strongly exciting the subsurface vertically, as desired for the CSEM method). This

configuration is accurately recorded by radially-oriented receiver. When the associated

currents interact with tabular resistors — such as the thin reservoirs investigated — they

produce a galvanic distortion that is made visible by an increase in electric field amplitude.

In contrast, electric fields in the broadside direction to the transmitter do not produce the

galvanic distortion, eliminating the detection of the reservoir. As a result, only the inline

transmitter response is synthesized for this study, as it most appropriately models the

resistive hydrocarbon reservoir environments considered.

1.4 CSEM Surveys of Offshore Newfoundland

Recent CSEM surveys taken offshore Newfoundland, on the east coast of Canada, have

shown considerable application opportunities and relevance for this project. In 2006,
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Figure 1.5: The dipole geometry of a near-seafloor transmitter. The maximum vertical
electric fields (see red field lines) are below the transmitter in the inline direction. In
these lines, fields are of purely radial geometry along the axis of the surface and able to
generate galvanic effects when they intersect sub-horizontal, tabular bodies such as oil
and gas reservoirs. In the broadside direction, electric fields are purely azimuthal and
largely horizontal, producing little interaction with the reservoir (from Constable, 2010,
and Constable and Weiss, 2006).
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ExxonMobil performed a 3D CSEM survey over the Orphan Basin, located 400 km east of

St. John’s, Newfoundland, in 2500 m of water on the edge of the continental shelf (Figures

1.6 and 1.7). 3D seismic data displayed a structural high on the base Cretaceous uncon-

formity (Enachescu et al., 2005), and inversion of the CSEM data detected high resistivity

along two of the fault blocks in the region, which resulted in a follow-up survey in 2009

(Gist et al., 2013 and Cameron et al., 2015).

Unfortunately, structural complexities in the Orphan Basin led to false positives from

the CSEM data (Gist et al., 2013) caused by the high resistivity of the thin-resistive layers.

The results of the CSEM survey were accurate in estimating the vertical resistivity around

the target horizon, but the target itself had a resistivity more consistent with a more

extensive hydrocarbon reservoir than the well outcome suggested. These false positives are

exactly the class of conclusions that can be mitigated with additional information, such as

acoustic impedance from the seismic indicating alternative reasons for high resistivity.

Most recently, in 2014, EMGS collected a 3D wide-azimuth CSEM and 3D marine MT

survey over 1986 km2 over the North Flemish Pass Basin, approximately 450 km east of

St. John’s, Newfoundland (Wu, et al., 2015; Figure 1.7). These surveys will allow for

calibration over the Mizzen, Harpoon and Bay du Nord discoveries, which have recently

attracted attention due to their high production potential (upwards of 600 MMbbl; Wu,

et al., 2015).

Discovered in 2010 by Statoil Canada Ltd. and Husky Energy, the main reservoir struc-

ture in the Flemish Pass Basin is defined as a fault-bounded, doubly-plunging horst block,

with hydrocarbon discoveries in sandstone reservoirs of Upper Jurassic (Tithonian) age
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(Haynes et al., 2013). Specific extensions, depths and offset of the hydrocarbon-saturated

sand package are inconclusive from current seismic data, allowing opportunity for the con-

struction of various trap structures, as explored in this study. Working from this known

area of production, the 3D models in this study will incorporate seismic horizons provided

by Suncor for the water bottom, base of Cretaceous and top of Tithonian to represent

the bathymetry, resistivity change due to lithology, and stratigraphic trap of the potential

reservoir, respectively. As Cretaceous and Tertiary sediments of the Flemish Pass Basin

are sedimentary equivalents in the well-studied Jeanne D’Arc Basin (see Figure 1.7), their

incorporation opens several venues for potential analogues. The resistivities of the regions

used in the 3D modelling sequence of this study have been dictated by Suncor’s exploration

interest (Figure 1.8). Specific potential structural trap scenarios have also been provided,

and have served as the basis of reservoir modelling (Figures 1.9 and 1.10).

Preliminary evaluation of the Flemish Pass Basin suggests that it has the criteria to

be a good candidate for a quality CSEM survey. The field is relatively conventional: the

primary reservoir interval represents a high net to gross sandstone reservoir, with average

porosities greater than 20% and measured permeabilities in the multi-Darcy range. This

will create significant resistivity changes in the pore space, optimizing the main advantage

of CSEM surveying (Cameron et al., 2015). The potential of this region has been recently

highlighted by Electromagnetic Geoservices (EMGS), who in 2016, have entered into a

data licensing agreement with an undisclosed company for provision of the 3D CSEM data

in the Flemish Pass region (Offshore Energy Today, 2016).
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1.5 Thesis Overview

In order to capitalize on the growing interest of local oil and gas companies in the facets

of CSEM, this study will use the finite-element method to generate synthetic CSEM data

for scenarios that are relevant to the Newfoundland offshore environment. This data, in

conjunction with known well log resistivities and seismically-derived horizons and struc-

tures, will work in complement with seismic in the region, but most prolifically, will provide

quantitative insight into hydrocarbon environments that are well-detected by the CSEM

method.

This is achieved by generating a series of scenarios which increase in structural and

geological complexity. These models are meshed using an unstructured tetrahedal mesh,

which are used to solve the forward EM problem with the finite-element method (described

in detail in Chapter 2). These results are verified via known semi-analytical methods.
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Figure 1.6: Location of Newfoundland and Labrador’s major offshore oil fields (black dots)
and of the Flemish Pass Basin. Geographically, the basin is located in the bathymetrical
saddle between the Grand Banks of Newfoundland and the Flemish Cap (from Enachescu,
2014).
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Figure 1.7: Regional map of offshore Newfoundland with license boundaries and generalized
basin outlines from the C-NLOPB (from Ainsworth et al., 2015).
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Figure 1.8: Type stratigraphic section of the defining resistivity sections of the survey area.
The resistivity values have been provided by Suncor Energy, and are derived by them from
well log estimates.
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(a)

(b) (c)

Figure 1.9: Schematic representations of Models 1 to 3 (see Section 4.5 for description)
of the structural trap scenarios provided by Suncor Energy. These are used as the basis
of structural reservoir development for the forward modelling. Blue represents the water
layer; grey the region to the Base Tertiary horizon; yellow the late and early Cretaceous
regions; yellow the sand package that will represent the reservoir of interest; and pink
Jurassic and older sediment. The schematic does not consider the basement region, as it
does not represent the entire computational domain to be considered, only the structurally
complex reservoir region.
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(a)

(b)

Figure 1.10: Schematic representations of Models 4 and 5 (see Section 4.5 for description)
of the structural trap scenarios provided by Suncor Energy. These are used as the basis
of structural reservoir development for the forward modelling. Blue represents the water
layer; grey the region to the Base Tertiary horizon; yellow the late and early Cretaceous
regions; yellow the sand package that will represent the reservoir of interest; and pink
Jurassic and older sediment. The schematic does not consider the basement region, as it
does not represent the entire computational domain to be considered, only the structurally
complex reservoir region.
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Chapter 2

Synthetic Modelling and

Mathematical Methods

2.1 The Finite-Element Method

For three-dimensional geophysical electromagnetic (EM) problems, such as those explored

in this study, there is the choice of three approaches for synthesizing data for subsurface

resistivity distributions: the integral equation (IE), finite-difference (FD) and finite-element

(FE) methods. While each have their specific advantages and disadvantages, it is most

important to assess a method’s ability to model the specific environment in question.

While the IE method has an extensive repertoire historically (e.g. Hohmann, 1975; Lajoie

and West, 1976), the approach is most successful for a localized conductivity anomaly in

an otherwise simple background model; it is unsuitable for the complex, realistic models
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considered in this study. The FD method, likewise, has an extensive body of research

behind it (e.g., Wang and Hohmann, 1993; Mackie et al., 1994) and although the models

which the FD method is suitable for can be significantly more complex than the IE method,

one is limited to a rectilinear formation in meshing. This prevents the FD method from

accurately modelling the curves of complex-shaped volumes and irregular geometries in

the subsurface, forcing inaccuracies in the resolution of the models. This is particularly

significant in the modelling of hydrocarbon systems, as accurate volumes are highly valued

when assessing the success of a geologic play whose real Earth geometry (i.e. bathymetry,

stratigraphy and fault structure) cannot be modelled by simple planes.

As a result, 3D forward modelling of EM data using the finite-element method (FEM)

has received increased attention. The FE solution to the EM problem is given by expanding

the approximate EM field in terms of localized basis functions, weighting the residual of

the relevant differential equations and integrating over the whole computational domain

(Jin, 2002; Monk, 2003). Each of these techniques can be readily applied to unstructured

meshes, allowing irregular interfaces to be modelled accurately. This method also gives

flexibility in local refinement in regions of interest (e.g. in source and observation points

and regions of exceptionally complex geology) and coarsening the mesh close to domain

boundaries to reduce the total number of cells required.

The concept of formulation of the finite-element method is the principle of minimization

(Coggon, 1971). For EM data, this has been shown to be most accurately achieved by edge-

element (vector) basis functions (Nédéléc, 1980) and this continues to be the established

FEM approach applied to geophysical EM models. This process involves solving the vector

Helmholtz equation. Since solving this PDE for discretized linear basis functions of EM
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fields generated by low frequencies (as is the case of this study) is not efficient, the electric

field can be decomposed into magnetic vector (A) and electric scalar (φ) potentials (Haber

et al., 2000; Ansari and Farquharson, 2014). In conjunction with the Coulomb gauge condi-

tion, Haber et al. (2000) performed such an A-φ decomposition of the electric field to derive

a strongly decoupled system of differential equations for a FD solution. This method was

historically performed using the FE method for structured rectangular meshes (Mitsuhata

and Uchida, 2004; Farquharson and Miensopust, 2011), but was presented by Schwarzbach

(2009) on unstructured meshes using a mixed E-V formulation of the Helmholtz equation,

which used nodal-elements for the scalar potential V and edge elements for the electric field.

With this added scalar term, the rate of convergence for low frequencies improved. The

forward modelling component of this study uses the CSEM3DFWD formulation developed

by Ansari and Farquharson (2014), with details discussed in Section 2.2. This method was

chosen based on its availability to Memorial University and for the full A-φ decomposition

for unstructured tetrahedral grids that solutions in the environments considered require.

2.2 The Forward Problem

Details of the forward modelling method can be seen in Ansari and Farquharson (2014),

where the development of the CSEM3DFWD code is discussed at great length. Through

manipulation of Faraday’s law of induction and Ampère’s law, the E-field Helmholtz equa-

tion is obtained:

∇×∇× E + iωµ0σE = −iωµ0J
s (2.1)
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where E is the electric field and Js is the current density of the EM source. The equation

is also defined by the angular frequency, ω, and magnetic permeability of free space, µ0.

Using the divergence conditions of the electric field and magnetic flux density as well as

Faraday’s law of induction, we can replace E with potentials:

E = −iωA−∇φ, (2.2)

which gives:

∇×∇×A + iωµ0σA + µ0σ∇φ = µ0J
s, (2.3)

where σ represents the conductivity of the region.

While this now gives the complex functions of position and frequency required for

the A-φ decomposition, the conservation of charge equation is incorporated into an extra

equation in order to develop a square system diagonally dominated by the terms from the

vector and scalar potentials:

iω∇ · (σA)−∇ · (σ∇φ) = −∇ · Js. (2.4)

Solving this system of equations given by Equations 2.3 and 2.4 involves the natural

boundary conditions of A and φ (Jin, 2002) as follows:

(n×A)Γ = 0 (2.5)
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and

φΓ = 0, (2.6)

where Γ is the outer boundary, and n is the normal vector for the boundary surfaces of

the domain.

This system is now discretized and solved using the FE approach. This solution is based

on the method of weighted residuals (Jin, 2002). This method approximates the solution

by means of weighting the residual of the differential equation by test functions and seeking

to minimize these weighted residuals over the whole domain. The process uses a vector

residual formed by approximated vector and scalar potentials (Ã and φ̃, respectively) that

are expressed in terms of basis functions and the coefficients of these functions are chosen

to minimize weighted residuals. This is presented as a convergence curve, where the value

of the residual is expressed as a function of iteration number (e.g. Figure 2.1).

To solve such equations, the computational domain is divided into unstructured tetra-

hedral elements, as described in Section 2.3. The approximated potentials are expressed

in terms of basis functions:

Ã =

nA∑
j=1

ÃjNj (2.7)

and

φ̃ =

nφ∑
k=1

φ̃kNk, (2.8)

where Nj and Nk are vector and scalar basis functions, respectively. The piecewise linear
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Figure 2.1: Sample of a convergence curve included in this study. The value of the weighted
residual, which is minimized through an interative process, is presented as a function of
iteration number.
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polynomials that are used for these basis functions are based on the number of edges (nA)

and nodes (nφ) in each element; in the case of the tetrahedral element, these values are 6

and 4, respectively. These polynomials develop the nodal-element basis functions for the

scalar potential and edge-element basis functions for the vector potential. The tangential

components of the vector basis functions, Nj, are continuous from one tetrahedron to the

next, and the scalar basis functions, Nj, are continuous to insure that the tangential com-

ponents of ∇Nj are continuous across interfaces between regions of distinct conductivities.

The approximate potentials are separated into their real and imaginary parts, which gen-

erates a real-valued matrix form for the system of equations required to solve the forward

problem.

In preparation for solving the system of equations described above, homogenous Dirich-

let boundary conditions for the vector and scalar potentials are implemented at the mesh

boundary (Equations 2.5 and 2.6). The resulting system of equations is solved using the

GMRES iterative solver from SPARSKIT (Saad, 1990) and is preconditioned using an in-

complete LU decomposition approach (Saad, 2003). Once the system has been solved for

real and imaginary parts of the vector and scalar potential, the electric field amplitude is

obtained using Equation 2.2.

2.3 Model Building

Modelling marine CSEM systems demands accurate methods that represent highly complex

domains and replicate a wide range of scales associated with geological complexities. While

previous rectilinear approaches are satisfactory for simplified environments, it is important
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that modelling methods — specifically in the meshes used to parameterize Earth models

— are more sophisticated when exploring more realistically complex situations. Unstruc-

tured tetrahedral meshes enable arbitrary, general geological interfaces and bathymetry

to be represented accurately. These meshes can also significantly reduce the problem size

involved in forward and inverse calculations in comparison to rectilinear grids: cell volumes

are easily increased in particular regions of the subsurface, while avoiding cells with large

aspect ratios which can produce modelling challenges for numerical modelling.

As an example of rectilinear versus unstructured tetrahedral meshes, Figure 2.2 displays

the representations of a geologically complex area in the Eastern Deeps zone of Voisey’s

Bay, Labrador, Canada. The first panel shows the wireframe geological model. The second

panel shows a geophysical model parameterized in terms of a conventional rectilinear mesh,

while the unstructured tetrahedral mesh is shown in the third panel. Rectilinear meshes

can be seen to create inaccurate and poorly resolved representations of sharply dipping

and conductively contrasting structures. A characteristic “staircase” pattern is seen across

the sloping zones of both the ore body and the outcrop. The flexibility of unstructured

meshes allows the sloping surfaces to be modelled smoothly, and a more accurate model

can be generated.

Unstructured tetrahedral meshes can be created using publicly available software pack-

ages. This thesis uses Triangle v.1.6 (Shewchuk, 1996, 2002) to generate triangular 2D

meshes, and TetGen v.1.4.3 (Si and Gartner, 2004, 2005; Si, 2007) to generate 3D tetrahe-

dral meshes. 2D mesh generation is required for surface and structural boundaries, whereas

3D mesh generation is required to fill the volumes between the surfaces in the 3D model.
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In order to parameterize a region using TetGen, the region must be first defined by a set

of node-defined, non-intersecting facets. In a simple case, the nodes represent the vertices

of a polygon, and the facets represent the faces of this polygon (Figure 2.3). This set of

facets is referred to as a piecewise polygonal complex (PPC), and TetGen works to create a

volumetric mesh by first subdividing the PPC facets into triangles, then creating tetrahedra

from these triangles and extending the tetrahedralization throughout the volume.

TetGen operates by reading .poly files where the defining information of the region is

stored: this includes a list of the nodes, facets, holes, and regions which constitute the

computational domain. In a standard .poly file (Figure 2.4), the coordinates of a minimum

amount of nodes to define the PPC are listed, and inputted into a facet list to describe

how the nodes are connected to create faces. The regional attribute list allows for physical

properties to be assigned to each of the regions. Also, the attribute list can be used to

restrict cell volume when desired.

Several command switches are employed by TetGen to ensure quality control on the

mesh. The −p flag generates the tetrahedral mesh for a PPC and outputs three files:

.node, .ele, and .face. The .node file contains a list of three-dimensional points in Cartesian

coordinates, the .ele file the list of tetrahedra, and the .face file list of triangular faces.

Using the −q flag applies a minimum radius-edge ratio and the −a flag applies a maximum

tetrahedra volume constraint. These constrictions can be very beneficial in ensuring a

proper aspect ratio of tetrahedra, and will minimize errors in the resulting EM forward

model created by triangular facets with small angles. Volume constraints effectively allow

control over the coarseness or refinement of the region. The −A flag assigns the attributes

defined in the regional attribute list, and the −n flag is used to produce a .neigh file that
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Figure 2.3: Configuration of nodes and facets for the simple block model comprised of a
1000 m × 1000 m × 100 m block in a 40 km × 40 km × 40 km halfspace. Note that the
numbering of vertices in this model corresponds to the nodes in the .poly file (Figure 2.4).
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Figure 2.4: The .poly file for the simple block model shown in Figure 2.3. The first section
shows the Cartesian cooordinates of the nodes, the second section the connection of the
nodes into faces, and the third section the representative position of attribute regions. The
last column in the third section reperesents the maximum volume for a tetrahedra in that
region.
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specifies the neighbours of each cell.

Using TetGen to define simple models is very straight forward. In regions that can be

approximated using blocks, each vertex of the block is defined by a node, creating 8 nodes

per block. Each facet is then defined by 4 of these nodes, to create 6 faces per block. For

more complex regions, this representation becomes cumbersome and the resulting process

of model generation is problematic. A suite of programs developed by Peter Lelièvre enable

more complex polygonal structures (Lelièvre et al., 2012). For example, the canonical disk

model described in Ansari and Farquharson (2014) used the disk software created by

Lelièvre to define the nodes and facets of a flat, thin, circular cylinder to approximate

the hydrocarbon reservoir. This is achieved by approximating the edges of the circles

that form the top and bottom of the cylinder as minute segments through the joining

of 60 nodes around the circumference. In realistic models with varying bathymetry and

irregular contacts, the program FacetModeller can be used — a graphical user interface

for creating and editing PPCs developed initially by Gary Blades as part of the High

Performance Computing for Geophysical Applications project at Memorial Unviersity, and

subsequently revised and extended by Peter Lelièvre. Nodes can be manually added and

edited from georeferenced cross-sections in a 2D working window, and combined with

sections in the same volume of interest in a 3D viewer window. For this project, the

lithological boundaries were meshed using Triangle (as described above), then edited and

combined using FacetModeller (Figures 2.5 and 2.6; see details in Chapters 3 and 4).
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(a)

(b)

Figure 2.5: Panel (a) xz view of FacetModeller at y = 7500 m showing the nodes and
ajoining facets that comprise a reservoir section (lavender, green, yellow) of Model 1 (see
Section 4.5 for details) with the Base Cretaceous layer (purple); panel (b) 3D view of the
entire reservoir section in panel (a) including nodes of the Water Bottom (gold) and Base
Tertiary (salmon) horizons
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Chapter 3

Simple Earth Models

3.1 Introduction

In order to ensure validity of all subsequent modelling scenarios and to develop the mod-

elling ability and code familiarity of the user, a series of one-dimensional models were

developed and data synthesized using CSEM3DFWD. The computed results were com-

pared to those of the DIPOLE1D forward modelling code of Key (2009), which uses a

semi-analytic method that is appropriate for a horizontally layered (i.e. 1D) Earth model

only. The modelling scenarios assessed will progressively increase in complexity: from a re-

finement assessment using homogeneous halfspaces to layered Earths, and then to canonical

disk reservoir models and Flemish Pass stratigraphy models.

As previously described, the maximum measurable increase in electric field in the CSEM

method will occur in the inline direction, as the purely radial electric field lines strongly
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excite the subsurface vertically. As this sensitivity study is mainly concerned with the

basic detectability of these resistive reservoirs, only the inline results will be displayed.

This represents the typical survey design carried forward in oil and gas exploration (e.g.,

Eidesmo et al., 2002; Constable and Weiss, 2006; Brad Bonnell and Mike Livingston,

Suncor Energy).

The results are equally products of the offset of a target from the source. At the source

position (i.e. 0 m offset) electric energy of the source is at its maximum, and thus dominates

the electric field amplitude in all scenarios (example, Figure 3.2). As a result, affects of

the reservoir on the electric field amplitude will only be visible at an offset distance from

the source, when the source energy has dissipated with distance.

In order for an example to successfully run and thus deliver results for a particular

model, the memory required must not exceed the maximum amound available. The mem-

ory used is proportional to two parameters: the Krylov subspace used in the GMRES

solver and the amount of cells in the model. As the Krylov and cell number also dictate

the refinement, convergence ability and thus accuracy of the results in question, a balance

must be achieved. Each of these models are run on a 48 node, 600-core, 14-GPU hybrid

CPU/GPU computer cluster, which are comprised of both 12-core and 16-core nodes with

24 GB and 64 GB of memory, respectively. Despite the memory capacity of the 16-core

node, computational issues (i.e. segmentation faults) were experienced for models using

over 30 GB of memory.

Simpler models (ie. models discussed in this chapter) can achieve results on a 200

Krylov subspace, using 1 GB of memory on average for a standard running time of 30
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minutes. More complex models, incorporating bathymetry, and reservoir geometries re-

quire an increase in the Krylov subspace to 400 to reach appropriate convergence, and use

upwards of 25 GB of memory for models of approximately 1,500,000 cells. As this memory

use approaches the limit of capability for the GPU cluster, it is imperitive to be mindful

of minimizing the cell usage of the more complex models.

3.2 Halfspaces

The preliminary stages of model development involved a series of simple halfspace Earth

models. The primary purposes of these models were two-fold: (a) comparing this study’s

results to known analytical results tests the accuracy of or show limitations in this study’s

methods, and (b) determining the appropriate amount of refinement required about the

source and observation locations in the mesh. The models were designed with the intent

to balance an adequate amount of refinement to generate quality results with an amount

of cells that does not require excessive computer memory.

The following series comprises a homogeneous halfspace of 1.0 S/m representing the

conductivity of the sediment, with an overlying layer of 3.2 S/m representing the conduc-

tivity of seawater. Each model uses varying levels of refinement: the refinement in a region

is achieved by constraining the maximum volume of the cells in that region, with more re-

finement corresponding to smaller cells in that particular region. Regions of refinement are

required around the source, to accurately model the rapid decrease in the electric field close

to the source and at the observation locations, specifically, having small tetrahedra close

to each observation. This is achieved by placing a thin rectangular prism in appropriate
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positions, acting to decrease the cell size via volume constraint in the prism. It would be

ideal to surround both the source and observation locations by this restricting volume: this

is achievable for the source location, but is limited for the observation locations existing

on the water bottom, as adding a region above and below the observations would result

in an invalid intersection between the facets of the refinement prism and the facets of the

water bottom horizon. The addition is given the same conductivity as the region that it

lies in (e.g. the source refinement prism will have a conductivity of 3.2 S/m, as it lies in

the water region).

As an example of the importance of refinement, Figure 3.1 shows a 30 km × 30 km ×30

km mesh that has a region of refinement extending from -5 to 5 m in the x- and y-directions

respectively, and from 800 to 1000 m in the z-direction, which generates a tetrahedral mesh

comprised of 15,261 cells, 2,603 nodes and 145 edges. This region of refinement is selected

to refine the area around the line source extending from x = -100 to 0 m. However, the z-

distance is considerable from the -100 m source position and seabed observation locations.

This resulted in large cells in these areas, which is reflected in the results shown in Figure

3.2. Note that the results follow the pattern of the semi-analytical results, but the large

cells at the observation locations generate a stair-stepping pattern — multiple observations

are within individual cells — meaning that this refinement is too coarse. The results were

generated for a 1 Am, 1 Hz source, using a Krylov subspace dimension of 200 for the

GMRES solver. A total of 5800 iterations were used by the GMRES solver, although

proper convergence of 10−12 was reached after approximately 900 iterations (Figure 3.3).
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(a)

(b)

Figure 3.1: Cross-sections centered at y = 0 m of the halfspace model with Very Coarse
refinement. Panel (a) full view; panel (b) enhanced view of the refinement. The source
is an electric line source, extending from -100 to 0 m in the x-direction. The water layer
(grey) has a conductivity of 3.2 S/m, and the sediment layer (pink) has a conductivity of
1.0 S/m.
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(a)

(b)

Figure 3.2: Panel (a) inline electric field amplitude and panel (b) phase results for the
Very Coarse Mesh (Figure 3.1) using a 1 Am, 1 Hz source. Red circles indicate values
computed using the mesh in Figure 3.1; the black lines indicate the semi-analytical results
from DIPOLE1D. Steps in the 3D response are a result of the coarse refinement.41



Figure 3.3: Convergence curve for the GMRES iterative solver for the results of the Very
Coarse Mesh (Figure 3.2).
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Figure 3.4 shows the mesh generated with similar dimensions to that in Figure 3.1, but

with modified refinement extending similarly in the x- and y-directions, but positioned

between 95 and 105 m above the interface of the two media; the region of refinement

encompasses the source position. This results in a mesh with 12,678 cells, 2,167 nodes and

87 edges. The source parameters, interative solver inputs and physical properties are the

same as in the previous example. The results for this example are shown in Figures 3.5

and 3.6. In relation to the results in Figure 3.2, the results in Figure 3.5 have a slightly

more accurate match to the analytical results, with the data having less of a staircasing

pattern around the source (i.e. 0 m offset). Notably, the area of refinement in this model is

smaller than in the previous case, but is more appropriately positioned to the source region,

thus, improving results, particularly surrounding the source region. However, neglecting

to create refinement at the observation locations results in cells that are still too large to

generate acceptable results, with the stair-casing still evident in Figure 3.5.

Figures 3.7 and 3.8 show a mesh with added refinement at the observation locations,

significantly decreasing the cell size for this area of the mesh. The respective refinement

regions extend from -101 to 1 m in the x-direction, -1 to 1 m y-directions and 98 to 105

m above the interface in the z-direction for the source, and -4500 to 4500 m in the x-

direction, -5 to 5 m in the y-direction and 10 to 20 m below the interface in the z-direction

(Figure 3.8). This creates a substantial increase in number of cells, nodes, and edges to

266,152, 43,410, and 3,135, respectively. This acts to generate significantly improved data,

which matches accurately the semi-analytical results (Figure 3.9) and reaches appropriate

convergence (Figure 3.10). The refinement at the source and observation locations in this

example will act as the basis for all refinement in subsequent models.
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(a)

(b)

Figure 3.4: Cross-sections centered at y = 0 m of the halfspace model with Coarse refine-
ment. Panel (a) full view; panel (b) enhanced view of the refinement. The source is an
electric line source, extending from -100 to 0 m in the x-direction. The water layer (grey)
has a conductivity of 3.2 S/m, and the sediment layer (pink) has a conductivity of 1.0 S/m
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(a)

(b)

Figure 3.5: Panel (a) inline electric field amplitude and panel (b) phase results for the
Coarse Mesh (Figure 3.4) using a 1 Am, 1 Hz source. Red circles indicate values computed
using the mesh in Figure 3.4; the black lines indicate the semi-analytical results from
DIPOLE1D. 45



Figure 3.6: Convergence curve for the GMRES iterative solver for the results of the Coarse
Mesh (Figure 3.4).
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Figure 3.7: Cross-section of the entire computational domain centered at y = 0 m of the
halfspace model with Fine refinement around both source and observation locations. The
source is an electric line source, extending from -100 to 0 m in the x-direction. The water
layer (grey) has a conductivity of 3.2 S/m, and the sediment layer (pink) has a conductivity
of 1.0 S/m.
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(a)

(b)

Figure 3.8: Cross-section centered at y = 0 m of the halfspace model with Fine refinement
around both source and observation locations. Panel (a) enhanced view of observation
refinement; panel (b) enhanced view of source refinement. The regions of source and ob-
servation refinement (maroon) have the same conductivities as their encompassing regions:
3.2 S/m and 1.0 S/m, respectively.
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(a)

(b)

Figure 3.9: Panel (a) inline electric field amplitude and panel (b) phase results for the Fine
Mesh (Figure 3.7) using a 1 Am, 1 Hz source.. Red circles indicate values computed using
this mesh; the black lines indicate the semi-analytical results from DIPOLE1D.
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Figure 3.10: Convergence curve for the GMRES iterative solver for the results of the Fine
Mesh (Figure 3.9).
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3.3 Water Depths

As this study focuses on the use of marine CSEM methods, it is imperative to understand

the effect of various water depths on electric field results; an investigation of these effects

is reported now. For each water depth model, a source of 1 Am at 1 Hz frequency was

x-oriented from -100 to 0 m at 100 m above the seabed. The model was comprised of three

layers: air (10−8 S/m), water (3.2 S/m) and sediment (1.0 S/m) over a 60 km × 60 km

× 60 km domain. Source refinement was added via a region extending -101 to 1 m in the

x-direction and -1 to 1 m in the y-direction and 95 to 105 m above the water-sediment

interface in the z-direction, and observation refinement extended from -12000 to 12000 m

in the x-direction, -5 to 5 in the y-direction, and 10 to 20 m depth in the z-direction, in the

same vein as the refinement in Figure 3.8. Each run uses a Krylov subspace of 200 and is

compared to the modified analytical results of Key’s DIPOLE1D. Because Key’s data used

a dipole located at the point (0, 0, -100) m, and in this study a realistic 100 m long electric

dipole situated from -100 to 0 m in the x-direction is considered, the amplitude of the semi-

analytical results were multiplied by 100 and shifted 50 m in the negative x-direction for

comparison. The numbers of cells, nodes, and edges for each mesh are shown in Table 3.1.

The increase in water depths leads to a larger region volume and a corresponding decrease

in the constriction on the cell size. As a result, the region allowed for larger and thus less,

cells in the region and in the computational domain as a whole; for example, increasing the

water depth from 300 m to 3000 m decreases the number of cells from 1,072,599 to 277,628.

Therefore, an increase in the number of cells and computer memory usage is observed as

the water depth decreases. The meshes for three of the six different water depths (300 m,
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1150 m, and 3000 m) are shown in Figures 3.11 to 3.14.

Water Depth (m) Cells Nodes Edges

300 1,072,599 174,952 4,343
500 546,588 89,412 3,890

1000 329,394 53,842 3,506

1150 313,960 51,314 3,394

1500 288,427 47,179 3,397

3000 277,628 45,287 3,266

Table 3.1: Numbers of cells, nodes and edges for water depth models.

The most notable difference between the water-sediment halfspace models considered in

the previous section and the water depth models here is the effect of air on the electric field

amplitude results (see Figure 3.15). At an offset that is comparable to the water depth,

the effect of the highly resistive air layer dominates the effect of the water and sediment.

As a result, there is a sharp change in the slope of the curve of the electric field amplitude

(for example at offset ≈ ± 5200 m in Figure 3.15).

The electric field amplitudes and phases for all the water depths considered are shown

in Figures 3.16 and 3.17. The results for the individual meshes, and the comparison with

DIPOLE1D results, are displayed in Appendix A. Figures 3.16 and 3.17 also include results

for the air-halfspace model (0 m water depth) and water-halfspace model (30000 m water

depth), which act as maximum and minimum cases, respectively for electric field amplitude

response.

These results appropriately and predictably display the “shallow-water problem” in off-

shore time-harmonic CSEM exploration: depths less than 300 m pose a significant challenge

52



for detection of subsurface targets because the weakly attenuated atmospheric response

overprints the weaker response of the target.

This effect is particularly evident in the decrease of amplitude directly over the source

(at 0 m) between the 0 m and 300 m water depth models. As water depth increases, there

is a dampening of the rate of decrease, as the effect of the resistive air layer resides at

larger offset (Figure 3.16). A similar pattern is visible in the phase results (Figure 3.17):

in shallow water results, the resistive air layer creates a dramatic decrease, and subsequent

levelling of the phase value at larger offsets that is absent in deep water results. In an

effort to prepare for future 3D models which occur over deepwater reservoirs, a focus was

put on water depths greater than 1000 m. Specifically, the 1150 m water depth in these 1D

models was chosen as being the most representative of the water depth over the Flemish

Pass Basin, which is the main scenario of interest in this thesis.
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(a)

(b)

Figure 3.11: Cross-sections centered at y = 0 m of the 300 m water depth model. Panel
(a) full view; panel (b) enhanced view of the central section of the mesh and water layer.
The air layer has a conductivity of 10−8 S/m, the water layer (navy) has a conductivity of
3.2 S/m and the sediment layer (pink) has a conductivity of 1.0 S/m.
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(a)

(b)

Figure 3.12: Cross-sections centered at y = 0 m of the 1150 m water depth model. Panel
(a) full view; panel (b) enhanced view of the central section of the mesh and water layer.
The air layer has a conductivity of 10−8 S/m, the water layer (navy) has a conductivity of
3.2 S/m and the sediment layer (pink) has a conductivity of 1.0 S/m.
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Figure 3.13: Full view cross-section centered at y = 0 m of the 3000 m water depth model.
The air layer has a conductivity of 10−8 S/m, the water layer (navy) has a conductivity of
3.2 S/m and the sediment layer (pink) has a conductivity of 1.0 S/m.
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Figure 3.14: Cross-section centered at y = 0 m featuring an enhanced view of the central
section of the mesh and water layer of the 3000 m water depth model. The air layer has
a conductivity of 10−8 S/m, the water layer (navy) has a conductivity of 3.2 S/m and the
sediment layer (pink) has a conductivity of 1.0 S/m.
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Figure 3.15: Comparison of the inline electric field amplitude for 1000 m water depth
model of this study (red circles) and the semi-analytical results from DIPOLE1D (black
line), and the water-sediment halfspace model (navy line). Offsets from -12000 to 12000
m were chosen to display the affect of air, which is most significant at large offsets.
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(a)

(b)

Figure 3.16: Electric field amplitude results of each of the water depth models. Panel
(a) view from -4500 m to 4500 m offset; panel (b) view from 3000 m to 4500 m offset to
enhance amplitude difference. Note the absence of the 0 m and 300 m results in panel (b).
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Figure 3.17: Phase results of each of the water depth models. The 0 m and 30000 m depths
represent the air and water halfspaces, respectively.
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3.4 Canonical Disk Reservoirs

In the literature, the canonical disk model — a thin circular resistive reservoir in a homo-

geneous subsurface — has developed into a standard basic 3D model for marine CSEM

hydrocarbon exploration (e.g. Weiss and Constable, 2006). As a means of exploring the

capabilities of the CSEM3DFWD modelling code, and for verification against published

results, a series of tests were ran for various depths and thicknesses of a disk reservoir.

For each model in the series, the reservoir was centered at x = 0 m, y = 0 m and

had a lateral extent of 2 km (Figures 3.18 and 3.19). The depth for thickness models was

maintained at 1000 m, and thickness for depth models was maintained at 100 m. The

disk depth position is representative of the z-position of the center of the disk, i.e., a 100

m thick disk positioned at 1000 m depth extended in the z-direction from 950 m to 1050

m depth. The reservoir had a conductivity of 0.01 S/m (reflective of the resistive nature

of the oil reservoir), which existed in 1.0 S/m sediment, with 1000 m of 3.2 S/m water

overlain by a semi-infinite air layer of 10−8 S/m. The model and mesh for the 50 m thick

reservoir at 1000 m depth is shown in Figure 3.19; similar figures for the other models are

given in Appendix B.

In order to reduce the computation memory required because of the added complexity

of the disk relative to the models in previous sections, the computational domain was

reduced to 40 km × 40 km × 40 km. The mesh parameters for each model are given

in Tables 3.2 and 3.3. The larger disks and the associated decreased constriction on cell

size, generally allowed for larger, and thus fewer, cells. Note that the 100 m thickness

model is equivalent to the 1000 m depth model, and is therefore omitted from the series
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of thickness model results. As in the water depth models, the source is an electric line

source excited by a 1 Am, 1 Hz current extending from -100 to 0 m in the x-direction

and 100 m above the seafloor. Source and observation refinement were added by means

of two regions: source refinement extending from -101 to 1 m in the in the x-direction,

-2.5 to 2.5 m in the y-direction and 95 to 105 m above the seafloor in the z-direction; and

the observation refinement extending from -5 to 5 m and from 10 to 15 m in the y- and

z- directions, and from -12000 to 12000 m in the x-direction. This was an increase over

that used for the water depth models in order to explore results at farther offsets; as a

consequence, cell numbers increased significantly. For each result, quality was ensured by

the assessment of the convergence of the GMRES solver, and by confirming that for each

example the resisdual decreased a considerable number of orders of magnitude.

The results for all thickness models are shown in Figures 3.20 and 3.21 and the reuslts

for the disk depth models are shown in Figures 3.22 and 3.25. The resistive disk creates a

distinct increase in electric field amplitude response, as shown in the difference in amplitude

between the models including and omitting the reservoir (Figures 3.20 and 3.24). With the

increase of depth, there is an associated increase in offset for the detection of the reservoir

(Figure 3.24) and the onset of the air layer. With increase in disk thickness, there is an

increase in the effect of the resistive reservoir.
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Disk Thickness (m) Cells Nodes Edges

50 601,072 98,259 5,779
100 495,363 81,136 5,552

200 463,817 76,029 5,397

500 470,250 77,057 5,396

Table 3.2: Mesh parameters for disk thickness models.

Disk Depth (m) Cells Nodes Edges

500 1,381,200 225,233 16,298
1000 1,398,890 227,757 16,475

2000 1,387,588 226,035 16,308

2500 1,356,281 220,792 16,110

3000 1,688,778 274,666 19,339

4000 1,658,862 269,782 19,207

Table 3.3: Mesh parameters for disk depth models.
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(a)

(b)

Figure 3.18: xy slice centered at z = 1000 m through the midpoint of the thickness of the
disk. The disk has a conductivity of 0.01 S/m and the sediment 1.0 S/m. Panel (a) full
view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure 3.19: Cross-sections centered at y = 0 m of the disk model with a 50 m disk
thickness and 1000 m depth. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure 3.20: Electric field amplitude results for each of the disk thickness models. Panel
(a) view from -4500 to 4500 m offset; panel (b) view from 1500 to 4000 m offset to highlight
amplitude difference.
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Figure 3.21: Phase results for each of the disk thickness models.
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Figure 3.22: Electric field amplitude results for each of the disk depth models showing
offset from -12000 to 12000 m to show results including the affects of the overlying air
layer.

68



Figure 3.23: Electric field amplitude results for each of the disk depth models showing
offset from 0 to 7000 m to emphasize the range of offsets between the source and where
the air layer effect begins.
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Figure 3.24: Electric field amplitude results of each of the disk depth models showing
offsets from 800 to 4500 m to emphasize the affect of the reservoir.
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Figure 3.25: Phase results for each of the disk depth models.
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3.5 Flemish Pass Stratigraphy Models

Before creating the complex 3D Earth models, it is advantageous to have a thorough under-

standing of the effects of the overlying lithology on the detection of a resistive hydrocarbon

reservoir. Conductivities and thicknesses for these lithologies relevant to the Flemish Pass

Basin were provided by Suncor Energy (Brad Bonnell, personal communication; Figure

1.8). The models were composed of an air layer extending the full width of the upper

z-boundary (at z = −20000 m) with a conductivity of 10−8 S/m, and a 1150 m deep water

layer at 3.2 S/m. This was underlain by two layers extending to the domain in the x- and

y-directions which represent the Cretaceous- and Tertiary-aged strata. The upper layer

(from Water Bottom to Base Tertiary) has a thickness of 1450 m and conductivity of 0.769

S/m, while the lower layer (from Base Tertiary to Base Cretaceous) has a thickness of

500 m and conductivity of 0.467 S/m (Figure 3.26). The Jurassic reservoir is composed of

two 525 m packages representing a sandstone, hydrocarbon-filled reservoir (0.01 S/m) with

overlying shale beds (0.111 S/m), respectively. This deviates from the model displayed in

Figure 1.8: each of the thin packages were accurately approximated to bulk thicknesses

of 525 m each, which were the minimum possible thickness for which meshes and results

could be generated. Thinner layers generated substantially more cells in the region, which

resulted in memory complications with computation.

The following series of modelling scenarios are be comprised of square reservoir sections

of increasing lateral extent and constant thickness to assess the detectability of each size.

The reservoir sections are centred at x = y = 0, with the lateral extent of each model

displayed in Table 3.4.
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The entire domain had dimensions 40 km × 40 km × 40 km, and the mesh statistics

for each model are displayed in Table 3.4. Two regions were added for the purpose of

refinement: source refinement extending from -101 to 1 m in the x-direction, in the y-

direction from -2.5 to 2.5 m, and in the z-direction from 99.0 m to 105.0 m above the

water-sediment interface, while observation refinement extended from -15000.0 to 15000.0

m in the x-direction, -5 to 5 m in the y-direction and 10 to 15 m below the water-sediment

interface — a similar arrangement as the previous examples. The number of cells for each

model remained consistent at ∼1.5 million cells, but increased dramatically for the infinite

reservoir (Table 3.4). The extension of these layers to the boundary of the computational

domain forces the generation of smaller, and thus more, cells at the very boundaries of

the model. The models and meshes for three of the reservoir extents are shown here:

No Reservoir (representing the lowest case of hydrocarbon success, Figure 3.26); 10000 m

(representing an intermediate case of hydrocarbon success, Figures 3.27 and C.12); and

infinite extension (representing the highest case of hydrocarbon success, Figures 3.28 and

C.20).

Each model was electrically excited by a 1.0 Hz, 1.0 Am electric line source. The

electric field amplitudes and phases for all extents of the reservoir are shown in Figures

3.29 to 3.31. Two models were used for the sake of comparison: the No Layers model

(equivalent to Figure 3.12) represents a homogenous halfspace of basement resistivity (1.0

S/m) with a 1150 m water depth, meaning the effects of both the layers and reservoirs can

be analyzed; and the No Reservoir model (i.e. those shown in Figure 3.26) which allows a

comparison to be made that emphasizes the reservoir only. In each result, the addition and

extension of the reservoir creates an increase in the electric field amplitude after the effect
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of the source has been overcome — at ∼3000 m offset (Figure 3.30). As offset increases,

the electric field amplitude for each model follows a similar pattern: once the resistive

reservoir is no longer detected, the amplitude dips, and proceeds to approach the results

of No Reservoir; this dip occurs at greater offsets for larger reservoir extents. The increase

in the amplitude of the No Reservoir results over the No Layers results is generated by

the decrease in conductivity of the two lithological layers (0.769 and 0.467 S/m) relative

to the basement layer in the No Layers model (1.0 S/m). Similar effects are seen with the

comparison of phase data (Figure 3.31). The addition of the layers (in comparison to the

1.0 S/m halfspace) dampens the increase in phase at ∼1000 m offset, and the extension of

the reservoir increases the offset at which the steady increase in phase is turned over and

the phase levels off due to the air layer effect.

Reservoir Extent (m) Cells Nodes Edges

No Reservoir 1,414,116 230,778 17,470
2500 1,445,854 235,836 17,621

5000 1,531,613 249,588 17,330

7500 2,141,679 348,544 22,938

10000 1,658,773 269,989 17,446

12500 1,604,967 261,515 18,589

15000 1,441,716 235,249 17,747

Infinite 2,535,009 412,588 19,505

Table 3.4: Mesh parameters for simple Flemish Pass Basin reservoir models.

74



(a)

(b)

Figure 3.26: Cross-section centered at y = 0 m of the 1D layered Earth model with two
infinite subsurface layers. Panel (a) full view; panel (b) enhanced view of the reservoir. The
first (green) infinite layer has a conductivity of 0.769 S/m and second (magenta) infinite
layer has a conductivity of 0.467 S/m.
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(a)

(b)

Figure 3.27: Cross-sections centred at y = 0 m of the simple Flemish Pass Basin reservoir
model with two infinite subsurface layers and a 10000 m wide reservoir section composed
of a shale upper layer (conductivity of 0.111 S/m; brown) and sand reservoir lower layer
(conductivity of 0.01 S/m; yellow). Panel (a) full view; panel (b) enhanced view of the
reservoir. As in Figure 3.26, the first ( green) infinite layer has a conductivity of 0.769 S/m
and second (magenta) infinite layer has a conductivity of 0.467 S/m.
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(a)

(b)

Figure 3.28: Cross-section centred at y = 0 m of the Flemish Pass Basin reservoir model
with two infinite subsurface layers and a infinite reservoir section composed of a shale upper
layer (conductivity of 0.111 S/m; brown) and sand reservoir lower layer (conductivity of
0.01 S/m; yellow). The first (green) infinite layer has a conductivity of 0.769 S/m and
second (magenta) infinite layer has a conductivity of 0.467 S/m.
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Figure 3.29: Electric field amplitude results for each of the different lateral extents of
the simple Flemish Pass Basin reservoir model. The results of the No Reservoir model is
significantly hidden by the results of the 2500 m model
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Figure 3.30: Electric field amplitude results for the simple Flemish Pass Basin models
showing offsets from 3000 to 12000 m to emphasize the increase in electric field amplitude
with reservoir extent.
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Figure 3.31: Phase results for each of the simple Flemish Pass Basin reservoir models.
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Chapter 4

Three-Dimensional Models of the

Flemish Pass Basin

4.1 Introduction

The aim of this study, and purpose of previous sections, was to steadily increase the

complexity of models to conclude with 3D models that are relevant to offshore scenarios.

In order to achieve this, the trade-off between structural accuracy and sizable volume of

provided seismic-derived data representing lithological horizons was assessed: the volume

of nodes in the original data supplied was far too dense for computational capabilities,

but sparse data generates deviations from the real Earth model. Once the horizons were

accurately represented into a model and mesh, various reservoir scenarios based on known

potential structures from Suncor were explored.
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4.2 Incorporating Seismic-Derived Horizon Data

Three horizons were provided by Suncor (Brad Bonnell, personal communication) for the

area to represent both bathymetry and lithology for specific formations in the Flemish

Pass Basin: 1) the Water Bottom horizon; 2) the Base Tertiary horizon; and 3) the Top

Tithonian horizon. Each of these seismically-derived layers were picked by Suncor Energy

to represent the fundamental structures and strata of the area.

The horizons were prepared as a series of data points in UTM coordinates, forming

approximately 20 km × 20 km grids, each comprising approximately 130,000 nodes each.

Figure 4.1 shows the extreme node density — the lack of node spacing between each black

dot creates no negative space in the 2D projection of the horizon, and hence, a blackness

of the images. To convert from UTM coordinates to a more convenient local coordinate

system, the entire domain was first shifted -840,600 m in the x-direction and -5,323,140 m

in the y-direction, along with a rotation 24.0 degrees counterclockwise; this acted to centre

the horizon domain about x = y = 0 m in the local coordinate system and to align the data

perpendicular to the standard modelling domain, preventing tedious position conversions

in future models. This transformation was achieved using the transform Fortran code

developed by Peter Lelièvre.

In order to limit the computation time and memory usage, it was imperative to sig-

nificantly reduce the number of nodes in each of these horizons. This was achieved by a

process of node decimation: a certain node spacing was chosen and nodes were eliminated

using the remove range Fortran code developed by Peter Lelièvre.

During the process of node decimation, a series of attempts were made to find a balance
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(a) (b)

(c)

Figure 4.1: Panel (a) a projection of the Base Tertiary horizon data onto the plane z = 0
m. Each node is a single 1pt black dot, but limited node spacing creates no negative space.
The outer boundaries of the select view extend from -20 km to 20 km in both the x- and
y-directions; panel (b) shows the rotated Base Tertiary horizon and; panel (c) 5 km × 5
km enlarged view of the data that better indicates the node density.
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between sufficiently accurate reproduction of a horizon and the number of nodes and cells

in a model. As a dense node spacing generates smaller cells and represents the horizon

more accurately, initial attempts used a small node spacing of 500 m. However, despite

the decimation, over 13,000 nodes were used for each horizon, and discretizing the model

produced over 2,800,000 cells in the mesh, far exceeding the computational capabilities of

available computers.

As accurate modelling results require refinement about the source and observation

locations, the next attempt maintained dense node spacing in the vicinity of the source

and observation locations, but the node spacing was increased to 1000 m in the remaining

region (herein referred to as the Hybrid Configuration). This was achieved by removing, but

saving, all nodes extending from -15000 to 15000 m in the x-direction and -20 to 20 m in the

y-direction, decimating the remaining nodes, then combining the nodes of the decimated

region with the dense nodes from the removed region, resulting in the configuration seen

in Figure 4.2; this was completed for each horizon to maintain structural resolution in

the most vital regions. Successful EM modelling results for this configuration could not

be achieved: convergence of the GMRES solver did not meet the appropriate criteria of

successful convergence, and the corresponding results were visibly poor (Figure 4.3).

The failure of the Hybrid Configuration resulted in a series of further node spacing

attempts (Figure 4.4 and Table 4.1), while continuously being mindful of the required

balance between node elimination and horizon accuracy. A node spacing of 1000 m was

finally chosen for each horizon based on these trials. Please note that though Table 4.1

represents the node statistics for the Water Bottom horizon, the same node spacing was

also used for the other horizons in the model.
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Figure 4.2: Hybrid dense-sparse node spacing configuration of the Water Bottom horizon
projected onto z = 0 m.
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Node Spacing (m) Nodes Remaining Nodes Removed

0 132,588 0
500 1,341 131,247

750 617 131,971

1000 350 132,238

1250 220 132,368

1500 158 132,430

2000 96 132,492

Table 4.1: Statistics of attempted node-spacing decimation for the Water Bottom horizon.

Once the appropriate node configuration had been chosen, an outer boundary was de-

fined for the perimeter of the computational domain. This boundary extended from -20

km to 20 km in the x- and y-directions (Figure 4.5). This dataset was then exported to

a .poly file and meshed in 2D using Triangle (see Chapter 2) to generate a mesh of each

horizon (Figure 4.6). These 2D sections were then converted to 3D using a Fortran inter-

polation code developed by Peter Lelièvre, which output the .node and .ele files necessary

to input into the 3D option in FacetModeller. FacetModeller was used to join the nodes of

the boundaries of each horizon to one another by defining facets between adjacent layers

(Figure 4.7). This data was then exported to a .poly file and the entire 3D domain was

able to be meshed using TetGen (Figure 4.8), as described in Chapter 2.
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(a)

(b)

Figure 4.3: Panel (a) electric field amplitude and panel (b) convergence curve results for
the hybrid dense-sparse node configuration.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Projections of the Water Bottom data onto a 12 km × 12 km plane at z = 0 m
displaying each of the trialled node spacing configurations. Panel (a) 500 m spacing; panel
(b) 750 m spacing; (c) 1000 m spacing; (d) 1250 m spacing; (e) 1500 m spacing; (f) 2000
m spacing.
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Figure 4.5: A projection of the Water Depth data from Figure 4.4c onto the plane z = 0
m with the boundary section (white area) extending from -20 to 20 km in the x- and
y-directions. The boundary is defined by 2D facets about the perimeter, displayed as red
lines.
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Figure 4.6: A projection of the Water Depth data onto the plane z = 0 m and extending
from -20 to 20 km in the x- and y-directions after a 2D mesh has been generated over
the region. Note the addition of nodes along the boundary and in the intermediate area
between horizon data and the boundary.
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Figure 4.7: The 3D process of joining the 2D horizons by facets. The Water Bottom horizon
(teal) and Base Tertiary (yellow) sections are joined by a facet (pink) by connecting the
boundary nodes of each horizon to this facet. While this process is repeated for each face
of the region, only one facet is shown here for simplification. Note the topography of the
Water Bottom horizon that is visible in this perspective view.
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It is significant to mention that because of the addition of bathymetry information

from the Water Bottom horizon, the plane z = 0 m now represents sealevel, as opposed

to the water-sediment interface of the 1D models in previous sections. As a result, the

source — while still extending from -100 to 0 m in the x−direction — is now located

at z = 1050 m, which is 100 m above the water depth average of 1150 m. Because the

Water Bottom layer is relatively flat — varying only 54 m across the 20 km × 20 km

grid — observation locations were placed along the water depth average, and box-type

refinement was used around the source and observation locations (see Figure 3.8). These

two refinement regions are based on the experience gained from the modelling sequence

covered in Chapter 3, but have been shifted 1050 m in the +z-direction to account for

the depth change mentioned above; all models discussed in this chapter will follow this

refinement pattern unless otherwise stated. While the development of each model followed

a similar workflow, the specifics of each are described in their respective sections.
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(a) (b)

(c) (d)

Figure 4.8: A progression of lithology slices displaying each layer of a model with 3D Water
Depth and Base Tertiary horizons added. Grey represents the air layer, navy the water
layer, green the Base Tertiary section and light blue the basement. Panel (a) displays the
entire mesh; panel (b) displays the top of the Water Bottom layer (note the change in layer
colour to enhance mesh view); panel (c) shows the top of the Base Tertiary layer; and
panel (d) displays the top of the Basement layer.
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4.3 Bathymetry

The simplest case in 3D modelling is adding bathymetry to a water-depth model. This

is achieved by adding a flat layer at z = 0 m, and setting the conductivity of the section

between this layer and the Water Bottom layer to 3.2 S/m. The region over the flat layer

represents an infinite air layer, with a conductivity of 10−8 S/m. Two conductivities for

the sediment layer were tested to analyse the effect of basement properties on the overall

model. One conductivity — 0.769 S/m — represents the properties of the Tertiary section

(Figures 1.8 to 1.10; Section 3.5), while the other — 1.0 S/m — is representative of standard

basement conductivities (e.g. Key, 2009; Chandola et al., 2007; Constable et al., 2009)

The mesh was generated over a 40 km × 40 km × 40 km domain, creating 1,166,642

cells, 190,388 nodes and 14,451 edges (Figure 4.9). The region was electrically excited by a

1.0 Hz, 1 Am, 100 m line source situated at x = -100 to 0 m; this configuration will be used

for all subsequent 3D models. Because of the added complexity of the model, the Krylov

subspace was increased to 400 in order to decrease the number of iterations required by

the GMRES solver to reach convergence (Figure 4.11).

Figure 4.10 displays the results of the bathymetry models. The increase in conductivity

of the sediments from 0.769 S/m to 1.0 S/m decreases the electric field amplitude with

offset, but results of each converge to the same result once the air layer is detected (beyond

∼7 km offset). The conductivity increase narrows the phase data i.e. the areas of detection

happen at shorter offsets for the more conductive sediments. As with the electric field

amplitude, the results for each are identical in areas where the source energy (near offset)

and air resistivity (far offset) are the dominant contributions.
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In order to be accurately compared to real Earth scenarios, the magnitude of noise in

raw data and the percent detectability of comparative models must be defined: the noise

floor is defined by Constable (2010) as 10−15 V/m. For the sake of this study, the threshold

of detection of the reservoir is 12.6% percent difference between the hydrocarbon-saturated

and dry reservoir models, which is reflective of the maximum uncertainty of CSEM results

from Myer et al. (2012).
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(a)

(b)

Figure 4.9: Cross-sections centered at y = 0 m of the bathymetry model. Panel (a) full
view; panel (b) enhanced view of the bathymetry.
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(a)

(b)

Figure 4.10: Panel (a) electric field amplitude and panel (b) phase results for the two
bathymetry models in Figure 4.9 (Bathymetry Model). Red represents the results of sedi-
ments having conductivity values of the Tertiary section of the Flemish Pass Basin (0.769
S/m); blue represents the results of sediments with a basement value of 1.0 S/m.
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(a)

(b)

Figure 4.11: Convergence curves for the GMRES iterative solver for the results of the two
bathymetry models (Figure 4.9). Panel (a) using Tertiary conductivity (0.769 S/m) ; panel
(b) using 1.0 S/m conductivity.
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4.4 Cretaceous and Tertiary Layers with Bathymetry;

Background Geological Structure

Proceeding to increasing model complexity, the effect of the additional seismic-derived

horizons was explored. The first horizon — representing the Base Tertiary — dips very

shallowly toward the negative x-direction, representing the north west in UTM coordinates.

The layer depth decreases from 3100 m to 2500 m below sealevel in the positive x-direction

(Figure 4.12), and decreases from 2800 to 2700 m below sesalevel in the +y-direction

(Figure 4.13). The addition of this layer to the bathymetry generates 1,223,429 cells,

199,522 nodes, and 17,208 edges across the 40 km × 40 km × 40 km computational

domain. The region is given a conductivity of 0.769 S/m, as recommended by Suncor

Energy, with the basement layer given a conductivity of 1.0 S/m. As with the bathymetry

model, the Krylov subspace for the GMRES solver was increased to 400 to ensure proper

convergence (Figure 4.17).

The second horizon — representing the Base Cretaceous — has a slightly more complex

structure: due to the nature of the dip of the overlying Base Tertiary horizon and it’s

unconforming contact, the Tithonian layer does not follow the same trend. The horizon

remains relatively horizontal at 3600 m depth from sealevel, with the dip of the overlying

Base Tertiary horizon creating a ∼600 m thickening in the positive x-direction, as the

contact rises from 3100 m below sealevel to 2500 m (Figure 4.14). The horizon is near-

horizontal in the positive y-direction with slight (∼200 m) thickening at the boundaries of

the horizon data (Figure 4.15). The addition of this horizon complicates the nature of the

mesh, and generates 1,354,151 cells, 221,095 nodes and 23,260 edges. The two horizons
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have conductivity values of 0.769 S/m and 0.476 S/m, respectively.

The results for the two models described above are shown in Figure 4.16. As shown from

Figure 4.16, the addition of the 0.476 S/m Cretaceous layer does not cause the results to

deviate from the single layer model greatly, but the layer is detectable by its slight electric

field amplitude increase, which is more noticeable at positive x-offsets (right of the profile)

where the Tertiary layer has thinned. There is a comparably minimal effect on phase,

slightly delaying the turn-over of the onset of the air layer effect until larger offsets. As

the modelled reservoir geometries in further sections are truncated by the Base Tertiary

unconformity, the Top Tithonian horizon is eliminated from future models.
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(a)

(b)

Figure 4.12: Cross-sections centered at y = 0 m of the single-layered (i.e. Tertiary-only)
model. Panel (a) full view; panel (b) enhanced view of the layer and bathymetry.
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(a)

(b)

Figure 4.13: Cross-sections centered at x = 0 m of the single-layered (i.e. Tertiary-only)
model. Panel (a) full view; panel (b) enhanced view of the layer and bathymetry.
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(a)

(b)

Figure 4.14: Cross-sections centered at y = 0 m of the multi-layered (i.e. Tertiary and Cre-
taceous) model. Panel (a) full view; panel (b) enhanced view of the layer and bathymetry.
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(a)

(b)

Figure 4.15: Cross-sections centered at x = 0 m of the multi-layered (i.e. Tertiary and Cre-
taceous) model. Panel (a) full view; panel (b) enhanced view of the strata and bathymetry.
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(a)

(b)

Figure 4.16: A comparison of the (a) electric field amplitude and (b) phase results of the
Tertiary-only (Figures 4.12 and 4.13; red circles) and Tertiary plus Cretaceous (Figures
4.14 and 4.15).
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(a)

(b)

Figure 4.17: Convergence curves for the GMRES iterative solver for the results of the
models in panel (a) Figure 4.12 (One Layer) and (b) Figure 4.14 (Two Layers).
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4.5 Reservoir Geometries

As the main motivation of this study was to explore scenarios that are relevant to real-world

offshore environments, the climax for results involves the comparisons of proposed, but as

yet unknown, reservoir structures in the subsurface. Through communication with Brad

Bonnell of Suncor Energy, a series of schematics of these potential geometries (Figures 1.9

and 1.10) with suggested conductivities (Table 4.2) was developed, without the need of dis-

closing proprietary information. The resistivities for the water-filled sand package is based

on a saline-fluid saturation, hence the higher conductivity of 1.5 S/m. The main aims of this

series were to produce a thorough understanding of the CSEM detectability of the reser-

voir — as in previous models — and to explore results with added reservoir complexities.

This includes using various resistivity values to represent the quality of reservoir (typically,

reservoir quality is proportional to hydrocarbon resistivity, as the greater volume of hydro-

carbons will generate a higher resistivity; Archie, 1942), altering the source position, and

incorporating various oil-water contacts representing partially-saturated reservoirs, as is

often the case in offshore scenarios (Heasley, et al., 2000). As a consequence, the series of

results can be matched to real world CSEM measurements and the most probable reservoir

match can be accurately proposed.

The general stratigraphy of the series of reservoir models is shown in Figure 4.18, using

Model 1 as an example: a complex reservoir section — whose age ranges from Jurassic

to Late Cretaceous — is truncated by a Tertiary-aged unconformity at ∼3000 m depth

(defined by the 3D Base Tertiary horizon provided). This Tertiary overburden can be

assumed as homogeneous, and extends to the seabed. The reservoir section extends to
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Region Colour Region Age or Characteristic Region Conductivity (S/m)

Air 10−8

Water 3.2

Water Bottom to Base Tertiary 0.769

Late Cretaceous 1.1

Early Cretaceous 0.5

Hydrocarbon-Filled Sand Package 0.01

Water-Filled Sand Package 1.5

Jurassic 0.6

Basement 1.0

Table 4.2: Characteristics of the regions used in the reservoir geometry models.

7150 m depth for each model but a model-dependent lateral extent is indicated for each

respective model.

In preliminary stages of model-building, the reservoir was unattached to the unconfor-

mity to explore the general capabilities of constructing such a complex structure (Model

1, whose results are discussed in Subsection 4.5.1 is used as an example in Figures 4.19

and 4.20). Attachment of this reservoir to the unconformity is vital in generating an ac-

curate 3D Earth model. Unfortunately, the addition of a 3D contact at the Base Tertiary

unconformity complicates the task of model-building greatly: imperfect alignment of the

horizon’s nodes creates an irregular reservoir boundary that would be near-impossible to

duplicate for consistent model assessments. This is illustrated in Figures 4.21 to 4.24. Fig-

ure 4.21 shows the nodes defining the Base Tertiary in the model. Figure 4.22 shows the

complex structure of the entire boundary extending from x = y = -7500 to 7500 m. Figure

4.23a displays the great number of irregular cells that would be involved in the process
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of attaching the reservoir to this Base Tertiary horizon. Figure 4.24a shows all of the

nodes that could potentially be incorporated into the boundary attachment. To attach the

reservoir to the Base Tertiary horizon, the specific facets and nodes which are involved in

the attachment process must be duplicated in both the horizon and the reservoir. Having

the range of boundary possibilities as indicated in Figures 4.23a and 4.24a would make

boundary creation in the reservoir an incredibly painstakingly labourious process.

To simplify this attachment process, nodes were removed from 500 m on either side of

the boundary of attachment on the Base Tertiary layer (Figure 4.21b), creating a node gap

around the boundary, but maintaing nodes inside and outside the boundary. Four nodes

were then manually entered at each corner of the boundary at 2500 m depth — the average

depth of the horizon. Facets were then introduced, joining these nodes using FacetModeller

(Figure 4.21c). The horizon was next exported to a .poly file, where it was meshed using

the 2D meshing software Triangle (Figure 4.21d; using the process described in Chapter

2). By explicitly defining the reservoir boundary, the reservoir connection process — and

thus model generation process — is significantly streamlined. This is visualized by the

reduction of boundary possibilities displayed in Figures 4.22b, 4.23b and 4.24b: there is

one obvious choice in the straight line boundary directly at x = 7500 m. This process was

repeated for each of the boundaries in each respective models, for example, at x = -7500

m and at y = -7500 and 7500 m in Model 1.
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Figure 4.18: Schematic representation of the kind of structural trap scenarios considered
in this section (this corresponds to Model 1; see Subsection 4.5.1; compliments of Brad
Bonnell, Suncor Energy).
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Figure 4.19: Cross-section centered at y = 0 m of a preliminary version of Model 1. Note
the lack of attachment of the reservoir section to the Base Tertiary unconformity.
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Figure 4.20: Enhanced cross-section centered at y = 0 m of the initial attempt of building
Model 1. Violet arrows indicate areas of detachment from the reservoir boundaries and
truncated fault that must be attached to the Base Tertiary to accurately represent the
structure in the subsurface. Note that this Figure represents a very preliminary stage in
the model building process: in finialized models, the Base Cretaceous layer (cornflower
blue) is removed to more accurately represent timing of deposition, causing cell size and
cell density to be significantly altered in subsequent models.

112



(a) (b)

(c) (d)

Figure 4.21: 2D projections of the Base Tertiary horizon onto the plane z = 0 m. Panel
(a) nodes of the horizon without reservoir boundary alteration; panel (b) nodes of the
horizon after a boundary gap has been created for the connection of the reservoir onto
the horizon; panel (c) the horizon including boundary gap, reservoir connection vertices
at points (x, y, z) = (-5000, -5000, 2500) m, (-5000, 5000, 2500) m, (5000, -5000, 2500) m,
and (5000, 5000, 2500) m, and connecting facets joining these vertices; (d) 2D projection
of the final meshed horizon.
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(a)

(b)

Figure 4.22: 3D map view visualizations of the Base Tertiary unconformity. Panel (a)
unaltered horizon; panel (b) horizon with straightened boundary contacts.
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(a)
(b)

Figure 4.23: Enhanced 3D map view of the facet selection process for the unaltered horizon
(panel a) and horizon with straightened boundary contacts (panel b) with highlighted facets
(pink) for potential boundary contact of the reservoir with the Base Tertiary unconformity.
Note the simplification generated by the line precisely at x = 7500 m in the straightened
case (panel b) against the extreme complexity in the unaltered case (panel a). This process
was repeated for each reservoir boundary. 115



(a)
(b)

Figure 4.24: Enhanced map view for the unaltered horizon (panel a) and horizon with
straightened boundary contacts (panel b). Highlighted nodes (pink) are those that may
potentially be joined to make a boundary contact of the reservoir with the Base Tertiary
unconformity. Note the decreased range and added linearity in the straighted case (panel
b). This process was repeated for each reservoir boundary.
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Using the schematics suggested by Suncor Energy as a guide, the specific reservoir

geometries were created in FacetModeller. The same refinement for source and observation

locations as for previous models was added manually. The model was then discretized

using TetGen, which provided the neccessary inputs for the CSEM3DFWD modelling

code. Once the results of an initial model were deemed accurate, variations were made

based on potential reservoir charactersitics and source configuration. The results of each

of the scenarios are discussed below, and include absolute and percent difference curves

between each reservoir configuration and the results of the Dry Reservoir for the resepective

scenario. The magnitude of percent difference indicates the detectability of the resistive

reservoir, while smooth curves in the absolute difference results suggest the range of offsets

that are capable of detecting the reservoir.

4.5.1 Model 1

The first geometry in the suite of potential reservoir configurations is composed of a single

fault block system (Figure 4.25) with a lateral extent from -7500 to 7500 m in both the x-

and y-directions (herein Model 1). The model was built based on the schematic provided by

Suncor Energy (Figure 4.18) The reservoir is truncated by the Base Tertiary unconformity,

as each subsequent model will be. The sand reservoir (yellow) is offset by the normal fault

of the block system, and is overlain by a Late Cretaceous layer (purple), which extends

across the entire extent of the reservoir. This is complemented by a wedge package in the

West (left side of Figure 4.25), representing the Early Cretaceous.

The mesh in Figure 4.25 contains 1,363,926 cells, 222,354 nodes and 19,342 edges. In
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order to generate results for this complex model, an increase in computational power was

required, which was achieved by an increase in the Krylov subspace to 400 and number of

iterations to 8000. Despite these attempts to generate positive results, and with several

changes to refinement strategies and physical parameters (specifically, reduction and even-

tual elimination of conductivity contrast between the Early and Late Cretaceous sections),

accurate electric field results could not be achieved, confirmed by a poor convergence curve

(Figure 4.26). It was proposed that this issue was due to the creation of cells with a poor

aspect ratio by the Early Cretaceous wedge structure. This proposal is supported by the

results for the model having the wedge structure removed, but other model specifics main-

tained (Figures 4.27). Though the mesh statistics have increased slightly — 1,442,887 cells,

235,143 nodes and 19,855 edges — the results are accurate (Figures 4.28 and 4.29) with

excellent convergence (Figure 4.30).
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(a)

(b)

Figure 4.25: Cross-sections centered at y = 0 m of the single fault block system used in
Model 1 including the problematic wedge structure (dark green). Panel (a) full view; panel
(b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.26: Numerical results for Model 1 with Wedge (Figure 4.25). Panel (a) electric
field amplitude; panel (b) residual norm.
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This accurate base model (i.e. with the wedge model omitted, Figure 4.5.1) allows for

changes in reservoir characteristics to be easily generated for comparison purposes. This

section will explore different conductivities homogeneously saturating the pore space of

the sand reservoir, creating definitive quality standards: 1.0 S/m represents a reservoir

containing no fluid in the pore space (herein referred to as Dry Reservoir), 0.25 S/m

represents a poor reservoir (herein referred to as Poor Reservoir), with 0.01 S/m (or 100

Ωm) and 0.001 S/m (or 1000 Ωm) representing variations of reservoir quality. The results

for these four scenarios are shown in Figures 4.28 to 4.30.

Deviations of each of the reservoir scenarios from the Dry Reservoir result indicate

reservoir detection. As a general trend, the electric field amplitude for each of the resistive

reservoirs deviates positively from those for the Dry Reservoir before the air layer effect

causes the slopes of the curves to decrease. The amplitude of the Poor Reservoir declines

below the Dry Reservoir at ∼8000 m offset. This decrease is created by the detection

of a resistivity contrast: wider offsets will detect the 1.0 S/m reservoir that lays directly

under offsets greater than 7500 m; as the Poor Reservoir has a conductivity of 0.25 S/m,

its contrast with the basement will be greater than the 1.0 S/m (i.e. Dry) reservoir, thus,

a more dramatic decrease. This pattern is also visible for the 100 Ωm and 1000 Ωm

Reservoirs, but their curves cross the Dry Reservoir at a wider offset (∼ 9500 m) due to

the higher, more detectable resistivity value. The results for the 100 Ωm Reservoir are

very similar to the 1000 Ωm Reservoir, and are hidden by the curves of the more resistive

reservoir in Figures 4.28 and 4.29.

The ability to detect a reservoir and its quality are quantified by the difference in electric

field amplitude with the dry reservoir. The absolute difference and percent difference
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normalized by the dry reservoir were calculated for the scenarios described above and

are plotted in Figure 4.31. As in Figure 4.28, any deviation of the results from the Dry

Reservoir indicates the possibility of detection. As seen from Figure 4.31, information of

the subsurface is lost surrounding the source position, as direct source energy overwhelms

the electric field amplitude response. Reservoir detection does not begin until ∼ -3000 m

for offsets to the left of the source and ∼ 4000 m to the right for both 100 Ωm and 1000

Ωm Reservoirs, but is relatively unapparent in the Poor Reservoir case, with maximum

percent difference at ∼10% at ∼ -8000 and 8000 m offset. Because this percent difference

is an absolute value, this is likely reflective of areas where the Poor Reservoir had a lower

electric field amplitude than the Dry Reservoir, and it may be concluded that the Poor

Reservoir is undetectable in this model. However, the magnitude of percent increase of

the highly resistive models (peaking at ∼160% and ∼245% for negative offsets and ∼120%

and ∼140% for positive offsets of the 100 Ωm and 1000 Ωm Reservoirs, respectively) shows

great promise of reservoir detection for this model. The slight disparity between results

between negative and positive offsets are due to the depth of the reservoir that is detected

by these offsets: the reservoir on the hanging wall (positioned under negative offsets) exists

at ∼3000 m depth, while the reservoir on the footwall (positioned under positive offsets)

is positioned at ∼4000 m depth.
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(a)

(b)

Figure 4.27: Cross-sections centered at y = 0 m of the single fault block system used in
Model 1 excluding the problematic wedge structure (compare with Figure 4.25). Panel (a)
full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.28: Panel (a) electric field amplitude results Model 1 (Figure 4.27) for each respec-
tive reservoir quality; and panel (b) enhanced view of the electric field amplitude results
for offsets of 5000 m to 12000 m. The results of the 100 Ωm Reservoir are hidden by the
results of the 1000 Ωm Reservoir.
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Figure 4.29: Phase results for Model 1 (Figure 4.27) for the four reservoir qualities.
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(a) (b)

(c) (d)

Figure 4.30: Convergence curves for Model 1 (Figure 4.27). Panel (a) Dry Reservoir; panel
(b) Poor Reservoir; panel (c) 100 Ωm Reservoir; panel (d) 1000 Ωm Reservoir.
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(a)

(b)

Figure 4.31: Panel (a) absolute differences in the electric field amplitude results of the Dry
Reservoir and the 100 Ωm Reservoir for Model 1 (Figure 4.27); panel (b) corresponding
percent differences in the electric field amplitude results. Each percent difference has been
normalized by the results of the dry reservoir.
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4.5.2 Model 2

Figure 4.32 shows the schematic provided by Suncor Energy second reservoir geometry

(herein Model 2), and Figure 4.33 shows the mesh. The region is comprised of four distinct

faults cutting the -5000 to 5000 m reservoir in the x-direction. The horizontal sand packages

were deposited between the Early (green in the mesh) and Late (purple in the mesh)

Cretaceous regions, and are strongly displaced by the fault system, placing them in the

positions given in Table 4.3. Their thickness remains constant at ∼250 m. The change

in lateral extent was suggested by Suncor Energy based on the most likely scenario in the

Flemish Pass basin for this particular reservoir geometry. The reservoir and fault block

system is invariant over its -5000 m to 5000 m extent in the y-direction.

Package Number Left x-Position (m) Right x-Position (m) Depth to Package (m)

1 -5000 -4600 6250
2 -3800 -2200 3100

3 -2200 1200 4050

4 1750 3500 2800

Table 4.3: Positions of the sand packages used in Model 2 (Figure 4.33).

To aid in model construction, regions of nodes were removed from the Base Tertiary

horizon in areas where attachment to Package 3 were to occur i.e. 500 m from either

side of the lines x = 1750 m and x = 3500 m, and across the full extent of the reservoir

(Figures 4.34 and 4.35). The creation of these straight contacts allowed for connection of

the sand package where the Late Cretaceous is removed — in a similar vein as the reservoir

boundary contact technique described at the beginning of Section 4.5 for Model 1. Two

nodes were added at the contact of the reservoir with the lines x = 1750 m and x = 3500
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m; these nodes were then joined by 2D facets using FacetModeller, the horizon exported

into a .poly file, where the horizon can be discretized in 2D and incorporated into the 3D

model. Production of this 3D model generated 1,427,609 cells, 232,695 nodes and 20,456

edges. Source and observation parameters and refinement are the same as those described

in Section 4.5.

The electric field results for Model 2 are displayed in Figures 4.36 to 4.38, and each

achieved proper convergence (Figure 4.39). Detectability of reservoir characteristics is

quantified by the results in Figure 4.40. The significant difference in the results of the

100 and 1000 Ωm Reservoirs reveal responses due to the hydrocarbon-filled reservoir. The

difference values for the Poor Reservoir are quite large at large positive offsets, and thus

there is potential for detection of this reservoir. However, the greater offset at which this

significant difference is occuring could result in a lack of detention of this reservoir. The

peak in percent difference of the Poor Reservoir is not indicitive of reservoir detection,

but of a decrease in resistivity contrast between reservoir and bedrock at the edge of the

reservoir muting the rate of decrease of the electric field amplitude (Figure 4.37) deviating

from the effect of the Dry Reservoir to which it is compared.

The electric field amplitude of each reservoir classification in Model 2 has a lower mag-

nitude of response than the corresponding reservoirs in Model 1. This is likely due to the

decrease in reservoir extension (from -7500 to 7500 m in Model 1 to -5000 to 5000 m in

Model 2) and the additional depth associated with the faulted blocks in Model 2’s forma-

tion. This is reflected in a decrease in the overall percent difference responses (Figure 4.40),

with peaks of the 100 Ωm and 1000 Ωm Reservoirs reaching ∼15% percent difference for

negative offsets (at ∼ -6500 m) and ∼40% for positive offsets (at ∼ 6500 m). Though
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these values have decreased in magnitude, they still suggest detectability of the resistive

reservoir.
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Figure 4.32: Schematic representation of the structural trap scenario used in Model 2
(compliments of Brad Bonnell, Suncor Energy).
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(a)

(b)

Figure 4.33: Cross-sections centered at y = 0 m of the multiple fault block system used in
Model 2. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a) (b)

Figure 4.34: Development of the contact between the sand package and the Base Tertiary
unconformity for Model 2. Panel (a) projection of the nodes of the Base Tertiary horizon
onto the plane z = 0 m. 2D facets used for the contact, reservoir boundary and model
boundary are in red. Panel (b) map view of the discretized horizon. Each model boundary
extends between -20 and 20 km in the x- and y-directions.
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Figure 4.35: Map view of the Base Tertiary horizon with the nodes that form the straight
boundary contacts for the perimeter of the reservoir highlighted in pink (at x = -5000 and
5000 m and y = -5000 and 5000 m) and the nodes that form the straight contacts for each
edge of the sand package at the unconformity highlighted in yellow (at x = 1750 and 3700
m).

134



Figure 4.36: Electric field amplitude results for Model 2 (Figure 4.33).
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(a)

(b)

Figure 4.37: Enhanced views of the electric field amplitude results for Model 2 (Figure
4.33).
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Figure 4.38: Phase results for Model 2 (Figure 4.33).
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(a) (b)

(c) (d)

Figure 4.39: Convergence curves for Model 2 (Figure 4.33). Panel (a) Dry Reservoir; panel
(b) Poor Reservoir; panel (c) 100 Ωm Reservoir; panel (d) 1000 Ωm Reservoir.
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(a)

(b)

Figure 4.40: Panel (a) absolute differences in the electric field amplitude results of the Dry
Reservoir and the 100 Ωm Reservoir of Model 2 (Figure 4.33); panel (b) corresponding
percent differences in the electric field amplitude results. Each percent difference has been
normalized by the results of the dry reservoir.
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4.5.3 Model 3

The geometry used for the third reservoir configuration (herein Model 3) is very similar to

that of Model 2, but with an earlier, and therefore deeper, deposition of the sand packages

that constitute the hydrocarbon reservoir (derived from the schematic in Figure 4.41).

These packages are now Early Cretaceous in age and are therefore deposited between the

Jurassic and Late Cretaceous regions — the previous Early Cretaceous region in Model 2

is removed. Despite this alteration, the thickness, lateral extent and offset of each of the

packages mimic those of Model 2. With the later deposition, Packages 1-4 (as described in

Table 4.3) are positioned at the following depths, from east to west: 6250 m, 4000 m, 4800

m, and 3650 m. The source and observation configurations, parameters and refinements,

along with reservoir boundary attachment technique, follow those used in Models 1 and 2.

Discretization of the computational domain produced 1,363,239 cells, 222,266 nodes

and 18,699 edges (Figure 4.42), and forward modelling produced the results shown in

Figures 4.43 to 4.45, with the corresponding convergence curves shown in Figure 4.46. As

expected, the deeper position but similar structure of the reservoir packages in Model 3

produce lower amplitudes, but similar trending results, to those for Model 2, with maximum

percent difference (and therefore detection ability) of the highest quality reservoir (1000

Ωm) at∼7% (Figure 4.47), whereas Model 2 had a maximum percent difference of∼40% for

essentially the same reservoir. Though the synthetic data show clear percentage differences,

it is very unlikely that such a configuration would be detectable in a real-world scenario

when noise is taken into account. Again, the Poor Reservoir maximum difference results

exceeds that of both higher quality reservoirs (100 Ωm and 1000 Ωm), but at significantly
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greater offsets, where the amplitudes are substantially smaller.

The effect of the increase in depth of the reservoir is quantified by the absolute and

percent differences between the electric field amplitudes of Models 2 and 3 (Figure 4.48).

Figure 4.48b shows a 30-35% increase in the response for the 100 Ωm and 1000 Ωm Reser-

voirs for intermediate offsets for Model 2 relative to Model 3 as a consequence of Model

2’s shallower burial depth. The apparent noisiness of the results in Figure 4.48 is because

different meshes were used for the two models.
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Figure 4.41: Schematic representation of the structural trap scenarios used in Model 3
(compliments of Brad Bonnell, Suncor Energy).
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(a)

(b)

Figure 4.42: Cross-sections centered at y = 0 m of the multiple fault block system used in
Model 3. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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Figure 4.43: Electric field amplitude results for Model 3 (Figure 4.42).
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(a)

(b)

Figure 4.44: Enhanced views of the electric field amplitude results for Model 3 (Figure
4.42).

145



Figure 4.45: Phase results for Model 3 (Figure 4.42).
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(a) (b)

(c) (d)

Figure 4.46: Convergence curves for Model 3 (Figure 4.42). Panel (a) Dry Reservoir; panel
(b) Poor Reservoir; panel (c) 100 Ωm Reservoir; panel (d) 1000 Ωm Reservoir.
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(a)

(b)

Figure 4.47: Panel (a) absolute differences in the electric field amplitude results of the
Dry Reservoir and the 100 Ωm Reservoir for Model 3; panel (b) percent differences in the
electric field amplitude results. Each percent difference has been normalized by the results
of the dry reservoir.

148



(a)

(b)

Figure 4.48: Panel (a) absolute differences in the electric field amplitude results of the 100
Ωm Reservoir version of Model 2 with the 100 Ωm Reservoir version of Figure Model 3;
panel (b) percent differences in the electric field amplitudes. Each percent difference has
been normalized by the results for Model 3.
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4.5.4 Models 4 and 5

The schematic shown in Figures 4.49 (herein, Model 4) and 4.50 (herein, Model 5), and the

models shown in Figures 4.51 and 4.52 each exhibit a similar, single fault-block structure,

extending from -7500 to 7500 m in both the x- and y-directions (there is no variation of the

structure in the y-direction). Model 4 positions the sand package at a relatively shallow

depth (∼3100 m; Figure 4.51), while Model 5 represents a relatively deep reservoir (∼4750

m; Figure 4.52). The fault exhibits an extreme reverse offset, particularly in comparison

to the normal displacement of the package in Model 1 (Figure 4.27). The thrust of this

fault has placed the Jurassic (magenta) section at the Base Tertiary unconformity to the

east, with the Cretaceous sand package or Late Cretaceous region at this unconformity

for Model 4 and Model 5, respectively, to the West. Using a similar technique as the sand

package attachment for Model 2, nodes were removed on either side of the line x = 1750 m,

allowing for a horizontal contact between the fault and the unconformity for both Models

4 and 5. The reservoir is solely located at negative offsets in both models.

Discretization of Model 4 generated 1,462,283 cells, 238,361 nodes and 120,178 edges,

while Model 5 contained 1,446,120 cells, 235,745 nodes and 19,809 edges. The results for

the two models using the same source and observation parameters as for previous sections

are shown in Figures 4.53 to 4.61. The detectability of each reservoir is indicated by the

absolute and percent differences of each of the reservoirs compared to the corresponding

Dry Reservoir (Figure 4.56 for Model 4 and Figure 4.60 for Model 5). The general increase

in electric field amplitude over the reservoir sections can be seen in Figures 4.53 and 4.57.

The effect of the increase in the depth of the reservoir between Models 4 and 5 is quantified
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by the absolute and percent differences in electric field amplitude of Models 4 with respect

to Model 5 (Figure 4.61). The reservoir is far more detectable in Model 4, as shown by

the massive (∼1650%) percent difference in electric field amplitude for offsets over the

reservoir. The electric field amplitudes for both models exceed the thresholds of detection

(Figures 4.56 and 4.60).

These simple reservoir configurations are fundamental to the understanding of de-

tectability with offset. Since the reservoir is solely located at negative offsets in these two

models and is comprised of a single, sub-horizontal sand package, increases in amplitude

detection must solely be from the contribution and detection of that reservoir (compared

to the multiple reservoir sections in Models 1 to 3). For example, in the case of Model

4, the 3000 m deep package that extends from -7500 m to 0 m in the x-direction is not

detected until ∼ -8800 m offset for both highly resistive reservoirs. Conversely, in Model

5 — a 4800 m deep reservoir extending from -6000 m to -2000 m in the x-direction —

the reservoir package is detected at similar offsets but with lower magnitudes of percent

differences.
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Figure 4.49: Schematic representation of the structural trap scenarios used in Model 4
(compliments of Brad Bonnell, Suncor Energy).
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Figure 4.50: Schematic representation of the structural trap scenarios used in Model 5
(compliments of Brad Bonnell, Suncor Energy).
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(a)

(b)

Figure 4.51: Cross-sections centered at y = 0 m of the multiple fault block system used in
Model 4. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.52: Cross-sections centered at y = 0 m of the multiple fault block system used in
Model 5. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.53: Panel (a) electric field amplitude results for Model 4 (Figure 4.51) for each
respective reservoir quality; and panel (b) enhanced view of the electric field amplitude
results.
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Figure 4.54: Phase results for Model 4 (Figure 4.51).
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(a) (b)

(c) (d)

Figure 4.55: Convergence curves for Model 4 (Figure 4.51). Panel (a) Dry Reservoir; panel
(b) Poor Reservoir; panel (c) 100 Ωm Reservoir; panel (d) 1000 Ωm Reservoir.
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(a)

(b)

Figure 4.56: Panel (a) absolute differences in the electric field amplitude results of the
100 Ωm Reservoir model with the Dry Reservoir for Model 4 (Figure 4.51); panel (b)
percent differences in the electric field amplitude results. Each percent difference has been
normalized by the results of the dry reservoir.
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(a)

(b)

Figure 4.57: Panel (a) electric field amplitude results for Model 5 (Figure 4.52) for each
respective reservoir quality; and panel (b) enhanced view of the electric field amplitude
results.
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Figure 4.58: Phase results for Model 5 (Figure 4.52).
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(a) (b)

(c) (d)

Figure 4.59: Convergence curves for Model 5. Panel (a) Dry Reservoir; panel (b) Poor
Reservoir; panel (c) 100 Ωm Reservoir; panel (d) 1000 Ωm Reservoir.
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(a)

(b)

Figure 4.60: Panel (a) absolute differences in the electric field amplitude results of the
100 Ωm Reservoir model with the Dry Reservoir for Model 5 (Figure 4.52); panel (b)
percent differences in the electric field amplitude results. Each percent difference has been
normalized by the results of the dry reservoir.
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(a)

(b)

Figure 4.61: Panel (a) absolute differences in the electric field amplitude results for Model
4 with respect to those for Model 5; panel (b) percent differences in the electric field
amplitude results. Each percent difference has been normalized by the results of Model 5.
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4.6 Source Position

As it is unlikely that the source will be positioned in the direct centre of the target area, a

series of source configurations were also assessed. Since resistive bodies in the subsurface

are only detectable from offsets of the source (e.g. Section 4.5), changing the source position

changes the associated offset and hence target of detection. For example, by positioning

the source on a reservoir edge, structures in the centre of the reservoir geometry that were

previously overwhelmed by source energy, are now more detectable.

Three different source configurations were considered for the models from Section 4.5:

the Left Edge Source, positioned from -7600 to -7500 m for reservoirs extending from x =

-7500 to 7500 m (i.e. Models 1, 4 and 5), and from -5100 to -5000 m for reservoirs extending

from x = -5000 to 5000 m (i.e. Models 2 and 3); the Centre Source, positioned from -100

to 0 m, as in Section 4.5; and the Right Edge Source, positioned from 7500 to 7600 m for

reservoirs extending from -7500 to 7500 m, and 5000 to 5100 m for reservoirs extending

from -5000 to 5000 m. As a result of these position changes, source refinement was altered:

it followed a similar strategy as Section 4.5, but shifted in the x-direction to the appropriate

source position. For example, the source refinement region for the Left Edge Source of the

-7500 to 7500 m reservoir extended from -1 to 1 m in the y-direction and 1045 to 1055 m

above the sealevel in the z-direction as before, but now extended from -7510 to -7490 m in

the x-direction.

The results were computed for each of these source positions over a 100 Ωm reservoir,

with 1.0 Hz, 1.0 Am source parameters. In order to compare the variations of electric

field with offset for the source positions more easily, the results were shifted to show the
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electric field amplitude and phase with offset from the respective source, as opposed to

the offset from the centre of the domain, as in the previous section. Because the left

and right sources considered offsets outside of the observation locations of the previous

examples, the observation refinement region was extended to between -19000 to 19000 m in

the x-direction, but maintained the same geometry as previously. This increased the mesh

statistics substantially: for example the cell number in Model 1 increased from 1,363,926 for

the Centre Source model (Section 4.5.1) to 1,733,784 for the new source configuration (Table

4.4). This also increases the number of iterations required for appropriate convergence of

the GMRES solver. Each model number of this section corresponds to the same model

in Section 4.5, using the conductivities in Table 4.2. Cell, node and edge statistics for all

models are displayed in Tables 4.4 and 4.5

Model Number Cells Nodes Edges

Model 1 1,733,784 282,789 23,595
Model 2 1,722,604 280,885 23,933

Model 3 1,657,970 270,270 22,262

Model 4 1,675,125 278,789 22,966

Model 5 1,643,688 268,065 22,812

Table 4.4: Mesh characteristics for the left source configuration.

4.6.1 Model 1

Forward modelling results for each of the source configurations of Model 1 are shown in

Figures 4.62 and 4.63; the corresponding convergence curves are shown in Figure 4.64.

Through analysis of the reservoir geometry (Figure 4.27) with the offset from source
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Model Number Cells Nodes Edges

Model 1 1,717,611 280,033 23,472
Model 2 1,761,600 287,109 24,569

Model 3 1,685,037 274,693 22,262

Model 4 1,709,888 276,969 23,164

Model 5 1,746,695 284,752 23,395

Table 4.5: Mesh characteristics for the right source configuration.

position, the region of detection for each source position can be interpreted. The Left

Edge Source shows a positive amplitude deviation from the Centre Source with positive x-

direction offsets, and negative amplitude deviation with negative x-direction offsets. This

indicates that the Left Edge Source is more capable of detecting both the more resistive

reservoir section to the right of the source, and the more conductive basement the left.

The Right Edge Source detects the conductive basement to with a decrease in electric field

amplutide to the right of the source (positive x-offset), and the resistive reservoir to the

left with an increase in electric field amplitude (negative x-offset); however, because the

reservoir to the immediate left is at a greater depth, the increase is not as large as with

the Left Edge Source.

This is comparably reflected in the difference results (Figure 4.65). The percent dif-

ference results — which are produced by normalizing the hydrocarbon-saturated reservoir

results by the dry reservoir for each respective source configuration — give distinctive offset

positions of reservoir detection, indicated by peaks in the results. As the entire reservoir

exists only at positive offset (right) of the Left Edge Source, the peak occurs at a positive

offset: ∼375% difference at ∼ 9000 m offset from the source, or at x ≈ 2500 m in the com-
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putational domain. This suggests that source energy overwhelms the amplitude response

until the detection of the reservoir at this position, but the large magnitude of response

is reflective of the proximity of the source to the shallowest portion of the reservoir, as

the source is positioned at the edge of the hanging wall (see Figure 4.27). The reservoir

exists at both negative (left) and positive (right) offset positions for the Centre Source as

indicated by two peaks: ∼250% at ∼ -8500 and 8500 m offsets. The narrower offsets are

indicative of poorer detection of the reservoir in comparision of the Left Edge Source config-

uration, but magnitudes of percent difference between the shallow (hanging wall) and deep

(footwall) parts of the reservoir are indicative of the reservoir depth. Mirroring the Left

Edge Source configuration, the entire reservoir is at negative offsets (left) of the Right Edge

Source, resulting in a single peak at negative offset: ∼130% at ∼ -8500 m offset. Though

the fault displacement of the reservoir is slightly detected by a minor positive inflection at

∼ -6500 m offset, differentiating each portion of the reservoir from each other is difficult.

Detection is shown in the absolute difference by smooth curves: from 4000 to 12000 m

offsets for the Left Edge Source, -12000 m to -3000 m and 3000 to 12000 m offsets for the

Centre Source, and -12000 m to -3000 m offsets for the Right Edge Source. Detection is

also apparent in the phase results (Figure 4.63) with a large dip in the phase curve before

levelling off and returning to the phase value of the Centre Source (and the air layer effect).

This is most evident in the dip in the Left Edge Source at ∼ 10000 m offset.
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(a)

(b)

Figure 4.62: Panel (a) electric field amplitude results for Model 1 with source positions
from x = -7600 to -7500 m (Left Edge Source), -100 to 0 m (Centre Source), and 7500 to
7600 m (Right Edge Source); panel (b) electric field amplitude results for Model 1 plotted
as a function of offset from their respective source.
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(a)

(b)

Figure 4.63: Panel (a) phase results for Model 1 with source positions from x =-7600 to
-7500 m (Left Edge Source), -100 to 0 m (Centre Source), and 7500 to 7600 m (Right Edge
Source); panel (b) phase results plotted as a function of offset from their respective source.

170



(a)

(b)

Figure 4.64: Convergence curves for Model 1. Panel (a) Left Edge Source; panel (b) Right
Edge Source.
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(a)

(b)

Figure 4.65: Panel (a) absolute differences in the electric field amplitude results for Model
1 and the Dry Reservoir; panel (b) corresponding percent differences in the electric field
amplitude. Each percent difference has been normalized by the results of the dry reservoir
for the same source position.
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4.6.2 Models 2 and 3

The reservoir geometry of Model 2 (Figure 4.33) is relatively horizontal in its extent, and

has sections at greater depths than Model 1 because of the increased number of fault

blocks. As a result, the electric field amplitude and phase results of Model 2 (Figures 4.66

and 4.67) and convergence (Figure 4.68) do not show the dramatic deviations as for Model

1. Though comparison of the amplitude response for each source configuration is difficult,

regions of detection can be delineated by analyzing model differences (Figure 4.69).

The Right Edge Source maximizes the detection of the two shallowest reservoir packages

(Packages 2 and 4; Table 4.3) as indicated by two percent difference peaks at ∼-8000

and -4000 m offsets with magnitudes of 75% and 40%, respectively. The peak at ∼ -

10000 m offset represents a negative amplitude difference generated by increased reservoir

to basement contrast between the 100 Ωm Reservoir and Dry Reservoir models at this

position. The Centre Source’s source energy masks the detection of the central reservoir

structures, but accurately detects reservoirs with negative (∼ -6000 m) and positive (∼ 6000

m) offsets from the source position. The magnitude difference between these reservoirs is

indicative of the change in depth of each package: the reservoir detected at negative offsets,

with a depth of ∼3200 m has a maximum percent difference of 13%, while the reservoir at

positive offsets, at ∼2500 m depth, has a maximum percent difference of 40%. The Left

Edge Source has a similar, mirrored trend in results as the Right Edge Source, but has lower

magnitudes. The Left Edge Source is positioned at further offset from the shallowest, and

therefore strongest response package (Package 4 in Table 4.3), and therefore gives a lower

magnitude response in the detection of this reservoir than the Right Edge Source. Deeper
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structures are slightly detected via an inflection at ∼ 5500 m, but the percent differences

straddle the threshold of reservoir detection.

Model 3 (see Figure 4.42) comprises a similar reservoir structure as Model 2, with an

earlier, and therefore deeper, deposition of the reservoir packages (see details in Section

4.5.3). As a result, the electric field amplitude and phase responses to the resistive reservoirs

— and therefore reservoir detectability — are significantly reduced, and exhibit much

smaller magnitudes (see Figures 4.70 and 4.71 and convergence curve in Figure 4.72). The

Left Edge Source percent difference apparent for Model 2 (see Figure 4.69) is only slightly

resolved at ∼ 9000 m offset with a peak difference of 8%, which falls below the threshold

of reservoir detection in real world scenarios. In fact, the only result that exists above the

threshold is the Right Edge Source’s detection of Package 4 (Table 4.3) at ∼ -9000 m offset

at 12% difference, though there are several peaks visible along the profile in these synthetic

data. For example, the Centre Source configuration detects resistivity contrasts at offsets

of ∼ -9000, -6000, 5500 and 8800 m. Though peak values, each of these responses has less

than 7% difference, and therefore would be undetectable in experimental recreation of the

scenario.
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(a)

(b)

Figure 4.66: Panel (a) electric field amplitude results for Model 2 with source positions
from x = -5100 to -5000 m (Left Edge Source), -100 to 0 m (Centre Source), and 5000 to
5100 m (Right Edge Source); panel (b) electric field amplitude results plotted as a function
of offset from source.
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(a)

(b)

Figure 4.67: Panel (a) phase results for Model 2 with source positions from x = -5100 to
-5000 m (Left Edge Source), -100 to 0 m (Centre Source), and 5000 to 5100 m (Right Edge
Source); panel (b) phase results plotted as a function of offset from source.
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(a)

(b)

Figure 4.68: Convergence curves for Model 2. Panel (a) Left Edge Source; panel (b) Right
Edge Source.
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(a)

(b)

Figure 4.69: Panel (a) absolute differences in the electric field amplitude results for Model
2 and the Dry Reservoir; panel (b) percent differences in the electric field amplitudes. Each
percent difference has been normalized by the results for the dry reservoir for the same
source. 178



(a)

(b)

Figure 4.70: Panel (a) electric field amplitude results for Model 3 with source positions
from x = -5100 to -5000 m (Left Edge Source), -100 to 0 m (Centre Source), and 5000 to
5100 m (Right Edge Source); panel (b) electric field amplitude results plotted as a function
of offset from source.

179



(a)

(b)

Figure 4.71: Panel (a) phase results for Model 3 with source positions from x = -5100 to
-5000 m (Left Edge Source), -100 to 0 m (Centre Source), and 5000 to 5100 m (Right Edge
Source); panel (b) phase results forModel 3 plotted as a function of offset from source.
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(a)

(b)

Figure 4.72: Convergence curves for Model 3. Panel (a) Left Edge Source; panel (b) Right
Edge Source.
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(a)

(b)

Figure 4.73: Panel (a) absolute differences in the electric field amplitudes for Model 3 and
the Dry Reservoir; panel (b) percent differences in the electric field amplitudes. Each
percent difference has been normalized by the results for the dry reservoir of each source.
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4.6.3 Models 4 and 5

Models 4 (Figure 4.51) and 5 (Figure 4.52) represent a single fault block structure as in

Model 1, but the hydrocarbon-saturated sand package is removed by the Base Tertiary

unconformity from the Jurassic footwall. As a consequence, results give excellent insight

into the issue of reservoir detection with offset, as changes between hydrocarbon-saturated

and dry reservoirs originate from a single region. This is of particular interest in the source

configuration assessment, as it can optimally define the ideal source position — i.e. whether

near or far offset — relative to a target reservoir. The results for Model 4 are shown in

Figures 4.74 to 4.77, and those for Model 5 are shown in Figures 4.78 to 4.81.

Since the sand package in Model 4 extends from x = -7500 to 1800 m, the Left Edge

Source and Centre Source configurations represent source positions close to each end of

the package. As a result, both show similarly high magnitude peaks at ∼ -9000 m offset

at 1250% for the Centre Source response and ∼ 9000 m offset at 2115% for the Left Edge

Source response (see Figure 4.77). The position of offset is due to the position of the

reservoir with respect to the source, and the large magnitude of difference is due to the

large lateral extent (∼9300 m in the x-direction) and shallowness (∼3000 m depth) of the

highly resistive reservoir, generating a large electric field amplitude response. The Right

Edge Source is positioned 5700 m to the right of the right-most edge of the reservoir, and

therefore detectability is significantly decreased, shown with a 27% peak at ∼ -8500 m

offset. Though this magnitude is significantly less than the results for the Left Edge Source

and Centre Source, it is still above the standard threshold of detection for this study.

The magnitude of the peaks of percent difference for Model 5 (see Figure 4.81) are
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significantly decreased in magnitude due to the increased depth (∼4750 m) and narrower

lateral extent of the reservoir (from x = -6400 to -50 m): the Left Edge Source has a peak

magnitude of 55% at ∼7500 m offset, while the Centre Source has a peak magnitude of

75% at ∼ -9000 m offset. These values are well above the magnitude of detection. These

differences are seen between ∼ -12000 to -5000 m offset for the Centre Source and Left Edge

Source between ∼ 3000 to 12000 m offset. The right-most peak of ∼ 10000 m offset for the

Left Edge Source is due to a negative percent difference once detection of the neighbouring

Jurassic (0.6 S/m) region is detected. The Right Edge Source is incapable of producing

any detectable changes in the reservoir, reflected in minute deviations from zero percent

difference. This is expected given the great offset between the source and reservoir for this

configuration.
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(a)

(b)

Figure 4.74: Panel (a) electric field amplitude results for Model 4 with source positions
from x = -7600 to -7500 m (Left Edge Source), -100 to 0 m (Centre Source), and 7500 to
7600 m (Right Edge Source); panel (b) electric field amplitudes plotted as a function of
offset from source.
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(a)

(b)

Figure 4.75: Panel (a) phase results for Model 4 with source positions from x = -7600 to
-7500 m (Left Edge Source), -100 to 0 m (Centre Source), and 7500 to 7600 m (Right Edge
Source); panel (b) phase results plotted as a function of offset from source.
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(a)

(b)

Figure 4.76: Convergence curves for Model 4. Panel (a) Left Edge Source; panel (b) Right
Edge Source.
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(a)

(b)

Figure 4.77: Panel (a) absolute differences in the electric field amplitude results for Model
4 and the Dry Reservoir; panel (b) corresponding percent differences in the electric field
amplitudes. Each percent difference has been normalized by the results of the dry reservoir
for the same source location.
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(a)

(b)

Figure 4.78: Panel (a) electric field amplitude results for Model 5 with source positions
from x = -7600 to -7500 m (Left Edge Source), -100 to 0 m (Centre Source), and 7500 to
7600 m (Right Edge Source); panel (b) electric field amplitude results plotted as a function
of offset from source.
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(a)

(b)

Figure 4.79: Panel (a) phase results for Model 5 with source positions from x = -7600 to
-7500 m (Left Edge Source), -100 to 0 m (Centre Source), and 7500 to 7600 m (Right Edge
Source); panel (b) corresponding phase results plotted as a function of offset from source.
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(a)

(b)

Figure 4.80: Convergence curves for the Model 5. Panel (a) Left Edge Source; panel (b)
Right Edge Source.

191



(a)

(b)

Figure 4.81: Panel (a) absolute differences in the electric field amplitude results for Model
5 and the Dry Reservoir; panel (b) corresponding percent differences in the electric field
amplitudes. Each percent difference has been normalized by the results of the dry reservoir
for the same source location.

192



4.7 Oil Water Contact Models

Previous models based their reservoir resistivities on 100% hydrocarbon saturation. Al-

though the change of quality parameters (e.g. 0.25 S/m for the Poor Reservoir versus 0.001

S/m for the highest saturation case) can account for heterogeneous or uncertain reservoir

saturation estimates, the nature of the densities of water and hydrocarbons create sharp oil-

water contacts (OWC) in marine environments. As the hydrocarbon (ρHC ≈ 800 kg/m3)

has a much lower density than water (ρw ≈ 1000 kg/m3), it is typically stratified to the

upper portion of the reservoir volume (Dennis et al., 2005).

Two configurations were considered for each of the models: Case 1 had water satu-

ration, with a conductivity of 1.5 S/m, for approximately one-third of the reservoir and

hydrocarbon saturation, with a conductivity of 0.01 S/m, in the remaining two thirds;

Case 2 assesses the reverse case, with one-third hydrocarbon saturation and two-thirds

hydrocarbon saturation. These segments were generated by adding subvertical facets us-

ing FacetModeller in appropriate locations for each of the OWCs. Several subhorizontal

configurations were explored (e.g. Figure 4.82), but generated poor cells at the small-angle

contact region. This produced poor results that were subsequently omitted. Subvertical

OWCs in the models assisted in giving a better representation of a percent volume satura-

tion estimate, which is a detectable measure in offshore exploration (Salathiel, 1973). The

resolution of the CSEM method would create a negligible difference in a real-world scenario

between the results of the more modellable subvertical OWCs and the more geologically

accurate subhorizontal OWCs. Mesh statistics for each of the oil-water contact models are

listed in Table 4.6.
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Figure 4.82: Sample enhanced view cross-section centered at y = 0 of a subhorizontal oil-
water contact model for Model 3. This model configuration was omitted in further results.
Water-filled pore space is indicated by steel blue, while hydrocarbon-filled pore space is
indicated in yellow.
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Model Number Cells Nodes Edges

Model 1 1,313,366 214,253 19,431
Model 2 1,426,508 232,550 21,555

Model 3 1,395,236 227,488 20,179

Model 4 1,401,915 228,549 20,492

Model 5 1,374,965 224,139 20,145

Table 4.6: Mesh characteristics for each oil-water contact model.

4.7.1 Model 1

In the oil-water contact geometry used in Model 1, two facets were added to each sand

package creating y-trending near-vertical planes at x ≈ -5000 and -2000 m for the hanging

wall package, and x ≈ 4400 and 6400 m for the footwall package, dividing each package

into three equal regions using the method shown in Figure 4.83. In the high case scenario,

Case 1 (Figure 4.84), the two right-most regions are saturated with hydrocarbons (0.01

S/m) while the left-most region is water saturated (1.5 S/m); in the low case scenario, Case

2 (Figure 4.85), the two left-most regions are water saturated, with the remaining region

saturated with hydrocarbons. Every model in this and subsequent sections will follow this

workflow of package separation and allotment of pore space saturation.

The results for the two cases for Model 1 are shown in Figures 4.86 to 4.88. Results are

compared to Model 1’s electric field and phase responses for the Dry Reservoir to determine

overall detection and with the 100 Ωm Reservoir for assessment of the detection decrease

associated with added water to the pore space (Figure 4.88). The conductive contribution

of the water in the sand package significantly decreases the electric field amplitude (Figure

4.86a): the amplitudes for Case 1 are typically higher than the Dry Reservoir results
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(a) (b)

(c) (d)

Figure 4.83: Sequence of oil-water contact sectioning of a reservoir comprised of a water-
saturated region (blue), a hydrocarbon-saturated region (yellow) and fault block (green).

and lower than the 100 Ωm Reservoir results; the results for Case 2 almost completely

parallel those for the Dry Reservoir, suggesting poor detectability. The phase information

(Figure 4.86b) distinguishes these reservoir parameters from one another, specifically, with

the slightly higher phase associated with Case 2 results compared to the Dry Reservoir

between ∼-8000 to -6000 m offset — a distinction that could not be made in the electric

field amplitude results. The contribution of the respective reservoirs to their phase results

is defined by the broadness of the side lobes before the air layer levelling off: the more

resistive the detected body is, the wider the lobe. This is consistent with results in Chapter
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3.

Figure 4.88 displays the difference of each case in comparison to the Dry Reservoir

(labelled Case 1 and Case 2) and to one another (labelled ∆ (Case 1, Case 2)). The

smooth curves in the absolute difference results between ∼ -9000 to -3000 m offsets and

peak results at ∼ 7000 m (∼60% difference) show detectability of the hanging wall reservoir

of Case 1. The peaks at ∼ -9500 and 9000 m represent the negative difference between

Case 1 and the Dry Reservoir, as Case 1 has a larger resistivity contrast with the basement

at the edge of the reservoir. The reservoir in the footwall is detected by a peak at ∼ 7000

m, but likely falls below the threshold of detection at 8% difference. The reservoirs in Case

2 are very poorly detected, as all results fall below the threshold for detection. This is

supported by the high magnitude difference between Case 1 and Case 2 at the reservoir

detection offsets.

In Figure 4.89, the results of each oil-water contact case are compared to the 100 Ωm

Reservoir, where percentage values are representative of the percent amplitude decrease

between the fully hydrocarbon saturated sand package and each case. As anticipated,

Case 1 has a lower magnitude of percent difference than Case 2 at negative offsets — for

example, 55% versus 63% for detection of the hanging wall reservoir — as it contains a

higher hydrocarbon saturation value.
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(a)

(b)

Figure 4.84: Cross-sections centered at y = 0 m of Case 1 of an oil-water contact model for
Model 1. Panel (a) full view; panel (b) enhanced view of the reservoir geometry. Water-
filled pore space is indicated by steel blue, while hydrocarbon-filled pore space is indicated
in yellow. 198



(a)

(b)

Figure 4.85: Cross-sections centered at y = 0 m of Case 2 of an oil-water contact model for
Model 1. Panel (a) full view; panel (b) enhanced view of the reservoir geometry. Water-
filled pore space is indicated by steel blue, while hydrocarbon-filled pore space is indicated
in yellow.
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(a)

(b)

Figure 4.86: Forward modelling results for Model 1, Case 1 and for Model 1, Case 2. Panel
(a) electric field amplitude; panel (b) phase.
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(a)

(b)

Figure 4.87: Convergence curves of each of the Model 1 oil-water contact models. Panel
(a) Case 1; panel (b) Case 2.
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(a)

(b)

Figure 4.88: Differences in the electric field amplitude results for Model 1, Case 1 and Model
1, Case 2 and those for the Dry Reservoir (Figure 4.27). Panel (a) absolute differences;
panel (b) percent differences normalized by the results of the dry reservoir for Cases 1 and
2, and by the results of Case 2 for ∆(Case 1, Case 2).
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(a)

(b)

Figure 4.89: Differences in the electric field amplitude results for Model 1, Case 1 and
Model 1, Case 2 with those for the 100 Ωm Reservoir (Figure 4.27) . Panel (a) absolute
differences; panel (b) percent differences normalized by the results of the fully saturated
reservoir.
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4.7.2 Models 2 and 3

The segregation of regions for the oil-water contact models for Models 2 and 3 is shown in

Figures 4.90 to 4.93, and followed the method described in Section 4.7.1. The results are

shown in Figures 4.94 to 4.102. Detection of all reservoirs in these models is significantly

less than in Model 1, shown by the minimum deviation of amplitudes and phases for those

from the lowest resistivity (Dry Reservoir): the only visual difference in the results is for

positive offsets in Model 2 and the response of the shallowest package (Package 4; Table

4.3; Figure 4.94). As expected, the high case (Case 1) generates a higher amplitude result

than the low case (Case 2) between ∼ 3000 and 8500 m offset. The difference is more

obvious in the phase results (Figure 4.95), with slightly greater digression from the highest

and lowest cases in the same region of offset. There is no visual distinction of the electric

field amplitude results of Model 3, but there is a slight detection at the peak phase value

at ∼7000 m offset (Figure 4.99b).

For Model 2, only Case 1 exceeds the threshold of detection for the shallowest sand

package (Package 4), having a peak difference value of 17% (Figure 4.97) — considerably

less than the 37% peak of the fully-saturated model (Figure 4.40). The difference between

Case 1 and Case 2 peaks at the same offsets for reservoir detection for the fully-saturated

model. The lower case (Case 2) is nearly completely undetectable, with all values falling

below the threshold of detection, and only peaking at 5% for the offsets detecting Package

4. This great difference is also apparent in the comparison with the 100 Ωm Reservoir

(Figure 4.98), with maximum percent difference of Case 2 at 25% and Case 1 at 15% in

the offset detection of Package 4.
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As in previous examples, the contribution of the reservoirs in Model 3 are nearly com-

pletely masked by the effects of the overburden. While Package 4 generates a peak at ∼

8000 m offset, it is still below the limits of detection. These results are to be expected,

as even the most resistive reservoir tested for this geometry fell below percent detection

(1000 Ωm Reservoir at 7%; Figure 4.47).
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(a)

(b)

Figure 4.90: Cross-sections centered at y = 0 m of Case 1 of an oil-water contact model
for Model 2. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.91: Cross-sections centered at y = 0 m of Case 2 of an oil-water contact model
for Model 2. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.92: Cross-sections centered at y = 0 m of Case 1 of an oil-water contact model
for Model 3. Panel (a): full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.93: Cross-sections centered at y = 0 m of Case 2 of an oil-water contact model
for Model 3. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.94: Electric field amplitude results for Model 2, Case 1 and Model 2, Case 2.
Panel (a) full offset results; panel (b) enlarged view to enhance amplitude difference.
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Figure 4.95: Phase results for Model 2, Case 1 and Model 2, Case 2.
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(a)

(b)

Figure 4.96: Convergence curves for each of the Model 2 oil-water contact models. Panel
(a) Case 1; panel (b) Case 2.

212



(a)

(b)

Figure 4.97: Differences in the electric field amplitude results for Model 2, Case 1 and
Model 2, Case 2. Panel (a) absolute differences; panel (b) percent differences normalized
by the results of the dry reservoir for Cases 1 and 2, and by the results of Case 2 for
∆(Case 1, Case 2).
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(a)

(b)

Figure 4.98: Differences in the electric field amplitude results for Model 2, Case 1 and
Model 2, Case 2 with the 100 Ωm Reservoir. Panel (a) absolute differences; panel (b)
percent differences normalized by the results of the fully saturated reservoir, i.e. the 100
Ωm Reservoir.
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(a)

(b)

Figure 4.99: Forward modelling results for Model 3, Case 1 and Model 3, Case 2. Panel
(a) electric field amplitude; panel (b) phase.
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(a)

(b)

Figure 4.100: Convergence curves for each of the Model 3 oil-water contact models. Panel
(a) Case 1; panel (b) Case 2.
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(a)

(b)

Figure 4.101: Differences in the electric field amplitude results for Model 3, Case 1 and
Model 3, Case 2. Panel (a) absolute differences; panel (b) percent differences normalized
by the results of the dry reservoir for Cases 1 and 2, and by the results of Case 2 for
∆(Case 1, Case 2).
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(a)

(b)

Figure 4.102: Differences in the electric field amplitude results for Model 3, Case 1) and
Model 3, Case 2 with the 100 Ωm Reservoir. Panel (a) absolute differences; panel (b)
percent differences normalized by the results of the fully saturated reservoir.
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4.7.3 Models 4 and 5

The method described in Section 4.7.1 was employed over the reservoir sections of Models 4

and 5 and further discretized to form the oil-water contact models shown in Figures 4.103 to

4.106. The electric field results are shown in Figures 4.107 to 4.115. As in previous results

(namely, Figure 4.53), the shallow depth and lateral extension of the single sand package in

Model 4 generates strong results, with substantial divergence of electric amplitude results

from those for the Dry Reservoir. However, it is because of this large volume that great

drops in magnitude are seen as water-saturation of the reservoir increases and thus overall

resistivity values decrease (Figure 4.107). While results in Model 5 are less dramatic with

the added overburden above the reservoir, there is still a distinct separation of Case 1 and

Case 2 both from each other and the Dry and 100 Ωm Reservoirs (Figure 4.111). Similar

results are apparent in the phase values for each model (Figures 4.107b and 4.112).

As in the results for the meshes in Figures 4.51 and 4.52, all oil-water contact reservoir

contributions — and thus percent and absolute differences — are at negative offsets, which

is reflective of the position of the reservoir relative to the source (described in Section 4.5.4).

The peaks generated by reservoir detection of the oil-water contact models (Figure 4.109)

have a distinctly different shape from the fully-saturated model, namely from an added

inflection at ∼ -6000 m offset. This is likely detection of the resistivity change from the

water-saturated sediment, but the high magnitude of the greatest peak — 200% at ∼-8000

m offset — falls well within the range of detectability. The low magnitude (< 5%) percent

differences for the results in Case 2 are inconclusive to any reservoir contribution. Both

cases exhibit very large deviations from the 100 Ωm Reservoir, with up to 90% difference
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with Case 2 and 85% with Case 2 (Figure 4.110).

The poor detectability of the deeper reservoir in fully-saturated models (Figure 4.60)

is further augmented by the addition of water into the reservoir pore space (Figure 4.114

and 4.115). The highest peak in percent difference (which, at 12% is bordering detection

levels) is due to a negative percent change at the reservoir edge hightened by the more

conductive water-saturation. This is supported by high magnitude (35% at maximum)

digression from the 100 Ωm Reservoir.
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(a)

(b)

Figure 4.103: Cross-sections centered at y = 0 m of Case 1 of an oil-water contact model
for Model 4. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.104: Cross-sections centered at y = 0 m of Case 2 of an oil-water contact model
for Model 4. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.105: Cross-sections centered at y = 0 m of Case 1 of an oil-water contact model
for Model 5. Panel (a): full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.106: Cross-sections centered at y = 0 m of Case 2 of an oil-water contact model
for Model 5. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure 4.107: Forward modelling results for Model 4, Case 1 and 4.104 Model 4, Case 2.
Panel (a) electric field amplitude; panel (b) phase.
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(a)

(b)

Figure 4.108: Convergence curves for each of the Model 4 oil-water contact models. Panel
(a) Case 1; panel (b) Case 2.
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(a)

(b)

Figure 4.109: Differences in the electric field amplitude results for Model 4, Case 1 and
Model 4, Case 2. Panel (a) absolute differences; panel (b) percent differences normalized
by the results of the dry reservoir for Cases 1 and 2, and by the results of Case 2 for
∆(Case 1, Case 2).
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(a)

(b)

Figure 4.110: Differences in the electric field amplitude results for Model 4, Case 1 and
Model 4, Case 2 with the 100 Ωm Reservoir. Panel (a) absolute differences; panel (b)
percent differences normalized by the results of the 100 Ωm Reservoir.
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(a)

(b)

Figure 4.111: Electric field amplitude results for Model 5, Case 1 and Model 5, Case 2.
Panel (a) full offset results; panel (b) enlarged view to enhance amplitude difference.
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Figure 4.112: Phase results for Model 5, Case 1 and Model 5, Case 2.
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(a)

(b)

Figure 4.113: Convergence curves for each of the Model 5 oil-water contact models. Panel
(a) Case 1; panel (b) Case 2.
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(a)

(b)

Figure 4.114: Differences in the electric field amplitude results for Model 5, Case 1 and
Model 5, Case 2. Panel (a) absolute differences; panel (b) percent differences normalized
by the results of the dry reservoir for Cases 1 and 2, and by the results of Case 2 for
∆(Case 1, Case 2).
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(a)

(b)

Figure 4.115: Differences in the electric field amplitude results for Model 5, Case 1 and
Model 5, Case 2 with the 100 Ωm Reservoir (Figure 4.52). Panel (a) absolute differences;
panel (b) percent differences normalized by the results of the fully saturated reservoir i.e.
the 100 Ωm Reservoir.
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Chapter 5

Conclusion

Controlled Source Electromagnetics (CSEM) is a frontier method of resistivity mapping

that has a significant ability to detect and delineate highly resistive hydrocarbon reservoirs

in the subsurface. Raw CSEM data can be used as an independent exploratory tool or as a

supplemental integration to existing borehole, seismic and seabed logging data, garnering

the potential to be a fundamental component in risk assessment for drilling potential

targets.

In the current period, knowledge of the CSEM method and its results are fairly limited.

CSEM surveys — particularly in three-dimensions — were previously discounted for their

expense. However, through the use of forward modelling to synthesize these data, conclu-

sions can be drawn to more efficiently and cost-effectively assess the quality and necessity

of CSEM surveying as a geophysical tool. This study makes use of the finite-element

method to model the behaviour of electromagnetic fields throughout a discretized mesh
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of the resistivity variations in the Earth’s subsurface. Though this method is less studied

than its counterparts, the nature of finite-elements allow for the computational domain

to be discretized using unstructured tetrahedral meshes, which more accurately represent

geological contacts than previous methods employing rectilinear meshes. This accuracy

is particularly important when modelling hydrocarbon reservoirs, as precise estimates of

reservoir volumes are required to assess the economic potential of the target.

The effectiveness of the forward-modelling approach was assessed through a series of

test scenarios in both one- and three-dimensions: the 1D models allowed for verification of

the CSEM3DFWD approach with those of known analytical and semi-analytical solutions,

while the 3D models gave an understanding of potential 3D CSEM results of proposed

structures analogous to those found offshore Newfoundland.

The process for the 1D models was stepwise in its approach: each model designed in

the sequence increased in complexity (i.e. added layers or structures) to specifically assess

the effect of each addition. Immediately — through the process of modelling homogeneous

halfspaces — the difficulty of choosing the appropriate refinement to generate accurate

results was encountered. The halfspaces — at approximately 15,000 cells — are excellent

for this experimental approach, as their low memory usage allow for models to be ran

quickly (on the order of 30 - 90 minutes), and a refinement configuration to be chosen

quickly for the finite-element model in question. In the context of this study, the preferred

and most accurate refinement method involved adding small, rectangular regions about the

source and directly below the seabed for the observation location. This constraint generates

numerous, small cells at these locations which effectively increased the areas where the

electric field has been computed. This effect is represented visually by smooth results,
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whose accuracy are validaded with the comparison to known semi-analytical methods.

The main aim of the 3D suite of models is to explore limits of detectability for proposed

subsurface structures, as there are no semi-analytical results available for comparison. The

high level of detection for several of the reservoir and array configurations assessed in this

study give great promise to future use and development of CSEM technologies. Though

shallow reservoirs were naturally more easily detected, the detectability with depth and

reservoir complication (with above-threshold reservoirs resolved at over 3500 m depth)

suggests that the method is now capable of handling even more complex scenarios. There

is also an obvious decrease in the detectability with deeper structures, and structures that

have decreases in the conductivity of the reservoir section due to foreign saturations (i.e.

water in the pore space). Though high detectability is preferred, as it indicates a potential

economic play, low detectability will assist in de-risking potential drilling scenarios that

are less promising.

It is important to note that the results of this study are restricted due to the non-unique

nature of the forward problem. This study may be built on to include a synthetic inversion

study, which would increase confidence in the detectability of hydrocarbon reservoirs (or

other resistive bodies of interest) using the CSEM method.

The results of this study have several potential applications. The flexibility of the

model-generating software establishes opportunities for several other environments to be

considered: any scenario dominated by resistivity contrasts is a great candidate for CSEM

modelling. The data generated for the specific environments expressed in this study may

be integrated into known data sets to redefine risk and potential for emerging assets. The
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collection of real-world data over these assets will confirm the direct potential of the CSEM

method.
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Appendix A

Water Depth Models

Phase results from Key’s DIPOLE1D semi-analytical method were shifted -270 degrees in

order to match the results of this study.
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(a)

(b)

Figure A.1: Panel (a) electric field amplitude and panel (b) phase results for the 300 m
Water Depth model (Figure 3.11). Red circles indicate values computed using the mesh in
Figure 3.11; the black lines indicate the results from DIPOLE1D.
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Figure A.2: Convergence cuve for the 300 m Water Depth model (Figure 3.11).
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(a)

(b)

Figure A.3: Cross-sections centered at y = 0 m of the 500 m Water Depth model. Panel
(a) full view; panel (b) enhanced view of the central section of the mesh and water layer.
The air layer has a conductivity of 10−8 S/m, the water layer (navy) has a conductivity of
3.2 S/m and the sediment layer (pink) has a conductivity of 1.0 S/m.
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Figure A.4: Electric field amplitude results for the 500 m Water Depth model (Figure A.3)
shown as red circles, with the results from DIPOLE1D as black lines.

Figure A.5: Convergence curve of the 500 m Water Depth model (Figure A.3).
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(a)

(b)

Figure A.6: Cross-sections centered at y = 0 m of the 1000 m water depth model. Panel
(a) full view; panel (b) enhanced view of the central section of the mesh and water layer.
The air layer has a conductivity of 10−8 S/m, the water layer (navy) has a conductivity of
3.2 S/m and the sediment layer (pink) has a conductivity of 1.0 S/m.
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Figure A.7: Electric field amplitude results for the 1000 m Water Depth model (Figure
A.6) shown as red circles, with the results from DIPOLE1D as black lines.

Figure A.8: Convergence curve of the 1000 m Water Depth model (Figure A.6).
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(a)

(b)

Figure A.9: Panel (a) electric field amplitude and panel (b) phase results for the 1150 m
Water Depth model (Figure 3.12). Red circles indicate values computed using the mesh in
Figure 3.12; the black lines indicate the semi-analytical results from DIPOLE1D.
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Figure A.10: Convergence cuve for the 1150 m Water Depth model (Figure 3.12).
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(a)

(b)

Figure A.11: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure 3.13 (3000 m Water Depth). Red circles indicate values computed
using the mesh in Figure 3.13; the black lines indicate the results from DIPOLE1D.
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Figure A.12: Convergence curve for the 3000 m Water Depth model (Figure 3.13).
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Appendix B

Additional Canonical Disk Models
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(a)

(b)

Figure B.1: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh of the 50 m Disk Thickness scenario in Figure 3.19.

260



Figure B.2: Convergence curve for the model and mesh of the 50 m Disk Thickness scenario
in Figure 3.19.
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(a)

(b)

Figure B.3: Cross-sections centered at y = 0 m of the disk model with 200 m Thickness
and 1000 m depth. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure B.4: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh of the 200 m Disk Thickness scenario (Figure B.3) .
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Figure B.5: Convergence curve for the model and mesh of the 200 m Disk Thickness
scenario (Figure B.3) .
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(a)

(b)

Figure B.6: Cross-sections centered at y = 0 m of the disk model with 500 m Thickness
and 1000 m depth. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure B.7: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh for the 500 m Disk Thickness scenario (Figure B.6).
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Figure B.8: Convergence curve for the model and mesh for the 500 m Disk Thickness
scenario (Figure B.6) .
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(a)

(b)

Figure B.9: Cross-sections centered at y = 0 m of the disk model at 500 m Depth and 100
m thickness. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure B.10: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh of the 500 m Disk Depth scenario (Figure B.9).
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Figure B.11: Convergence curve for the model and mesh of the 500 m Disk Depth scenario
(Figure B.9).
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(a)

(b)

Figure B.12: Cross-sections centered at y = 0 m of the disk model at 1000 m Depth and
100 m thickness. Panel (a) full view; panel (b) enhanced view of the reservoir.

271



(a)

(b)

Figure B.13: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh of the 1000 m Disk Depth scenario (Figure B.12).
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Figure B.14: Convergence curve of the 1000 m Disk Depth scenario (Figure B.12) .
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(a)

(b)

Figure B.15: Cross-sections centered at y = 0 m of the disk model at 2000 m Depth and
100 m thickness. Panel (a) full view; panel (b) enhanced view of the reservoir.

274



(a)

(b)

Figure B.16: Panel (a) electric field amplitude and panel (b) phase results of the 2000 m
Disk Depth scenario (Figure B.15).
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Figure B.17: Convergence curve of the(2000 m Disk Depth scenario (Figure B.15).
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(a)

(b)

Figure B.18: Cross-sections centered at y = 0 m of the disk model at 2500 m Depth and
100 m thickness. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure B.19: Panel (a) electric field amplitude and panel (b) phase results of the 2500 m
Disk Depth scenario (Figure B.18).
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Figure B.20: Convergence curve of the 2500 m Disk Depth scenario (Figure B.18).
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(a)

(b)

Figure B.21: Cross-sections centered at y = 0 m of the disk model at 3000 m Depth and
100 m thickness. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure B.22: Panel (a) electric field amplitude and panel (b) phase results of the 3000 m
Disk Depth scenario (Figure B.21) .
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Figure B.23: Convergence curve of the 3000 m Disk Depth scenario (Figure B.21).

282



(a)

(b)

Figure B.24: Cross-sections centered at y = 0 m of the disk model at 4000 m Depth and
100 m thickness. Panel (a) full view; panel (b) enhanced view of the reservoir.
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(a)

(b)

Figure B.25: Panel (a) electric field amplitude and panel (b) phase results of the 4000 m
Disk Depth scenario (Figure B.24).
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Figure B.26: Phase results of the 4000 m Disk Depth scenario (Figure B.24).
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Appendix C

Additional Reservoir Models
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(a)

(b)

Figure C.1: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure 3.26 (Two Infinite Layers).
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Figure C.2: Convergence curve for the model and mesh in Figure 3.26 (Two Infinite Lay-
ers).
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(a)

(b)

Figure C.3: Cross-section centered at y = 0 m of the simple Flemish Pass Basin model with
two infinite subsurface layers and a 2500 m reservoir section composed of a shale upper
layer (0.111 S/m) and sand reservoir lower layer (0.01 S/m). The first (green) infinite layer
has a conductivity of 0.769 S/m and second (magenta) infinite layer has a conductivity of
0.467 S/m. 289



(a)

(b)

Figure C.4: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure C.3. Red circles represent the results of the 2500 m reservoir model
and black lines represents the results with no reservoir as seen in Figure C.1.
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Figure C.5: Convergence curve for the model and mesh in Figure C.3.
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(a)

(b)

Figure C.6: Cross-section centered at y = 0 m of the simple Flemish Pass Basin model
with two infinite subsurface layers and a 5000 m reservoir section composed of a shale
upper layer (conductivity of 0.111 S/m) and sand reservoir lower layer (conductivity of
0.01 S/m). The first (green) infinite layer has a conductivity of 0.769 S/m and second
(magenta) infinite layer has a conductivity of 0.467 S/m.
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(a)

(b)

Figure C.7: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure C.6. Red circles represent the results of the 5000 m reservoir model
and black lines represents the results with no reservoir as seen in Figure C.1.
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Figure C.8: Convergence curve for the model and mesh in Figure C.6.
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(a)

(b)

Figure C.9: Cross-section centered at y = 0 m of the simple Flemish Pass Basin model with
two infinite subsurface layers and a 7500 m reservoir section composed of a shale upper
layer (0.111 S/m) and sand reservoir lower layer (0.01 S/m). The first (green) infinite layer
has a conductivity of 0.769 S/m and second (magenta) infinite layer has a conductivity of
0.467 S/m.
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(a)

(b)

Figure C.10: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure C.9. Red circles represent the results of the 7500 m reservoir model
and black lines represents the results with no reservoir as seen in Figure C.1.
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Figure C.11: Convergence curve for the model and mesh in Figure C.9.
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(a)

(b)

Figure C.12: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure 3.27 (10000 m Reservoir). Red circles represent the results of the
10000 m reservoir model and black lines represents the results with no reservoir as seen in
Figure C.1.
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Figure C.13: Convergence curve for the model and mesh in Figure 3.27 (10000 m Reservoir
Model).
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(a)

(b)

Figure C.14: Cross-section centered at y = 0 m of the simple Flemish Pass Basin model
with two infinite subsurface layers and a 12500 m reservoir section composed of a shale
upper layer (0.111 S/m) and sand reservoir lower layer (0.01 S/m). The first (green)
infinite layer has a conductivity of 0.769 S/m and second (magenta) infinite layer has a
conductivity of 0.467 S/m.
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(a)

(b)

Figure C.15: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure C.14. Red circles represent the results of the 12500 m reservoir model
and black lines represents the results with no reservoir as seen in Figure C.1.

301



Figure C.16: Convergence curve for the model and mesh in Figure C.14.
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(a)

(b)

Figure C.17: Cross-section centered at y = 0 m of the simple Flemish Pass Basin model
with two infinite subsurface layers and a 15000 m reservoir section composed of a shale
upper layer (0.111 S/m) and sand reservoir lower layer (0.01 S/m). The first (green)
infinite layer has a conductivity of 0.769 S/m and second (magenta) infinite layer has a
conductivity of 0.467 S/m.
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(a)

(b)

Figure C.18: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure C.17. Red circles represent the results of the 15000 m reservoir model
and black lines represents the results with no reservoir as seen in Figure C.1.
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Figure C.19: Convergence curve for the model and mesh in Figure C.17.
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(a)

(b)

Figure C.20: Panel (a) electric field amplitude and panel (b) phase results for the model
and mesh in Figure 3.28 (Infinite Reservoir Model). Red circles represent the results of the
infinite reservoir model and black lines represents the results with no reservoir as seen in
Figure C.1.
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Figure C.21: Convergence curve for the model and mesh in Figure 3.28 (Infinite Reservoir
Model).
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Appendix D

Extended Reservoir Geometries
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(a)

(b)

Figure D.1: Cross-sections centered at y = 0 m of the multiple fault block system used in
Model 4. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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(a)

(b)

Figure D.2: Cross-sections centered at y = 0 m of the multiple fault block system used in
Model 5. Panel (a) full view; panel (b) enhanced view of the reservoir geometry.
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