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ABSTRACT 

i 
 

Abstract 

Tracer tests are widely used in the oil and gas industry. The response curves from 

tracer tests can provide reservoir engineers with important reservoir information, such 

as flow direction, presence of faults, reservoir heterogeneities and fluid saturation. As 

tracer tests provide reservoir engineers representative results from the reservoir, they 

are very useful for enhanced oil recovery. 

This research begins by numerical modeling of one-dimensional single-phase tracer 

flow and develops to a complete two-phase partitioning tracer flow that includes 

convection, Langmuir adsorption, partitioning between phases, hydrodynamic 

dispersion and radioactive decay. This model implemented in Matlab (2014b) is an 

improvement of previously-used models as it includes radioactive decay and uses 

Langmuir adsorption instead of linear adsorption. It is also fast and easy to use. 

The different tracer models are discussed and compared. A case study reveals that the 

adsorption model chosen, the partitioning coefficients and the reservoir wetting 

conditions all have effects on the tracer profiles and breakthrough times. This can be 

applied to tracer test design and analysis. 
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Chapter 1 Introduction 

Tracer tests are field tests performed by injecting and producing a tracer in a reservoir 

to determine key reservoir properties, such as flow direction, knowledge of the 

existence of and communication across faults, reservoir heterogeneities, residual oil 

saturation and connate water saturation (BjØrnstad, 1992). Before any enhanced oil 

recovery method is applied in the field, a reservoir simulation is conducted to estimate 

additional information and provide guidance for the upcoming production. 

Trustworthy input parameters from tracer tests give confidence to reservoir simulation 

results. 

Laboratory testing of reservoir rock provides important information about the 

reservoir but may not be representative of the entire field. Tracer tests can provide 

useful data at the field scale as additional information to lab tests. As tracer tests are 

conducted in the field and may occupy a large portion of the formation, they provide 

information from a different scale than laboratory testing, i.e. field scale as opposed to 

core scale. 

This chapter presents a brief introduction to the different types of tracers and an 

introduction of tracer tests. This is followed by an introduction to the application of 

tracer tests to provide qualitative and quantitative reservoir information. Finally, the 

objectives of this research are outlined with my specific contributions highlighted. 
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1.1 Tracers 

Tracers are chemicals or radioactive chemicals that can be mixed with fluids without 

changing the properties of the fluids. As tracers move with their carrying fluids, the 

tracer response curves (tracer concentration distributions) can reflect both the flowing 

conditions and the movements of the carrying fluids. Generally, tracers can be 

classified into three categories: radioactive tracer, chemical tracer and fluorescent 

tracer (Melo et al., 2001). 

Radioactive tracers contain isotopes that emit beta or gamma radiation, depending on 

the isotope. Alpha radiation radioactive tracers are seldom used because of their low 

penetration; they can easily be stopped by a few centimeters of air or a thin sheet of 

paper. Radioactive tracers are the most commonly used tracers and have low detection 

values. With higher sensitivities, radioactive tracers can be detected easily by liquid 

scintillation, solid scintillation or semiconductor detectors (Bj Ø rnstad, 1992). 

However, due to radioation effects, there are safety and environmental concerns 

associated with their use. The most frequently used radioactive tracers and their half-

life are listed in Table 1.1 (Dugstad, 2006). 

Applications of nonradioactive chemical tracers are also found in the literature. 

Chemical tracers are cheaper than radioactive tracers, but their lack of sensitivity 

results in relatively difficult detection (Melo et al, 2001). Chemical water tracers are 

categorized into dyes, ionic and organic tracers. Chemical gas tracers that have been 
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successfully used include inert gases such as nitrogen, argon and inorganic 

compounds such as sulfur hexafluoride (Lichtenberger, 1991). 

Fluorescent tracers are safe and easy to detect. They are also inexpensive. However, 

the major disadvantage is their reaction with reservoir rocks. The excessive and 

unpredictable reactions make the test hard to control and analyze. Therefore, they are 

seldom used in tracer tests (Melo et al, 2001). 

Table 1.1: Frequently used radioactive tracers, after (Dugstad, 2006) 

Tracer Name 
Half-life 

(year) 

HTO Tritiated Water 12.32 

CH3TOH Tritiated Methanol 12.32 

14
CO2 14C Labelled Carbon Dioxide 5730 

S
14

CN
-
 14C Labelled Thiocyanate 5730 

85
Kr 85 Labelled Krypton 10.76 

Tracers can also be classified by their interactions with fluid phases and reservoir 

rocks, i.e. passive tracers and active tracers (Dugstad, 2006). 

Passive tracers follow the fluid phase passively without chemical or physical reactions 

with the fluids and reservoir rocks. The tracer and the traced phase must not influence 

the behavior of each other. Because of their stable flow behavior in the flowing 

system, passive tracers are usually used to measure fluid directions, interwell 

communications, indication of stratifications, and the detection of heterogeneities and 

faults, which are the primary goals of tracer tests (BjØrnstad, 1992). Passive tracer 



CHAPTER 1                                                                                                                INTRODUCTION  

 

4 

 

tests have been applied to the oil field for several decades and are proven and mature 

techniques. 

Active tracers exhibit interactions with the system, either with the fluids or with the 

reservoir rock. The interactions can be phase partitioning or adsorption on the rock, 

both of which can be predicted quantitatively and used to measure properties of the 

system. The partitioning behavior of tracers makes it possible to measure residual oil 

saturation and connate water saturation based on their levels of chromatographic 

separation. The adsorption behavior of tracers has the potential to measure ion 

exchange capacity, which is important in polar or ionic surfactants injections (IAEA, 

2012). 

1.2 Types of Tracer Tests 

Currently, two types of tracer tests are commonly used: single-well tracer tests 

(SWTT) and inter-well tracer tests (IWTT). 

Single-well tracer test (SWTT) 

In SWTTs, tracers are injected in one well and, after a period of time, produced from 

the same well. The operational steps of SWTT are shown in Figure 1.1 (Deans and 

Carlisle, 2006). 
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Figure 1.1: SWTT operational steps 

For a SWTT, as illustrated above, instead of injecting two tracers (ester and alcohol) 

together into the reservoir, a primary tracer (ester) is injected to form a secondary 

tracer (alcohol).  

Well 

(injection/production) 

Reservoir 

Ester 

Ester 

Ester and alcohol 

Ester Alcohol Ester and alcohol 
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When two phases are present, both the ester and alcohol would partition into the two 

phases at a certain concentration ratio. The partitioning coefficient is defined as the 

tracer concentration in the oil phase divided by the tracer concentration in the water 

phase. The partitioning coefficient of alcohol is very small, which means that the 

partitioning of alcohol into oil can be neglected so that the alcohol travels only with 

the water phase. Therefore, the velocity of water can be obtained by testing the 

alcohol velocity. However, the ester has a larger partitioning coefficient and partitions 

between the oil phase and the water phase, which results in a much slower velocity. If 

the two tracers were injected together, the alcohol would travel a longer distance than 

the ester, as shown in Figure 1.2 (Deans and Carlisle, 2006). 

Figure 1.2: The separation of alcohol and ester if injected together 

Then, during the production period, the alcohol travels faster and catches up with ester 

so that the two tracers arrive at the wellbore at the same time, as shown in Figure 1.3. 

 

 

  

Ester Alcohol 
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The difference in arrival time of the two tracers provides important information when 

analyzing the response curves; hence the method of injecting two tracers together does 

not work for a SWTT (Deans and Carlisle, 2006).  

Figure 1.3: The production of alcohol and ester if injected together for a SWTT 

Inter-well tracer test (IWTT) 

The procedure for conducting an IWTT is similar to the SWTT. The difference is that 

IWTT uses one well for tracer injection and another well for tracer production (Figure 

1.4). Therefore, instead of injecting a primary tracer to form a secondary tracer inside 

the reservoir, during an IWTT, two tracers with different partitioning coefficients are 

injected together. In addition, an IWTT usually occupies a larger portion of formation 

than SWTT; hence IWTTs are more often used to test fluid directions and well 

communication, it is also more time consuming (Dugstad, 2006). 

Ester and alcohol 

 

 

   

Ester Alcohol 
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Figure 1.4: The production period of alcohol and ester if injected together  

1.3 Application 

The results from tracer tests can be used qualitatively, interpreted analytically or 

modeled numerically (Guan et al, 2005). Each of these three applications produces 

different information from tracer tests. The qualitative approach is the simplest and 

earliest method used in the petroleum industry. Analytical interpretation is more 

complicated than the qualitative approach and results in quantitative information 

based on simple assumptions. Numerical modeling is the most complex and accurate 

method, as it includes reservoir conditions and tracer behaviors. 

1.3.1 Qualitative Approach 

The qualitative application of tracer test in the petroleum industry started in the early 

1950s when reservoir engineers first applied tracer tests. This method is primarily 

Production well Injection well 

Alcohol Ester Ester and alcohol 
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used to measure well connectivities and flow directions based on the arrival and non-

arrival of tracers at producing wells (Sturm and Johnson, 1951). It is easy to conduct 

and it is the most widely-used tracer test technique. However, this approach has a high 

potential for misinterpretation. The misinterpretation can be caused by inadequate 

measurement of tracer responses, tracer loss by adsorption or radioactive decay or 

concentration below the detection limit (Shook et al, 2004). 

1.3.2 Analytical Interpretation 

The analytical interpretation of tracer test started in 1965 with Brigham and Smith. 

Since then, analytical methods have been commonly applied to tracer tests. Analytical 

interpretation provides quantitative information, for example the residual oil saturation 

can be obtained through tracer test analysis based on the partitioning behavior of 

tracers. However, in order to interpret the results analytically, assumptions are made 

throughout the analysis, which makes it less accurate compared to numerical modeling 

(Brigham and Smith, 1965). 

1.3.3 Numerical Modeling 

Although numerical modeling is the most accurate procedure to analyze a tracer test, it 

is not widely used in the petroleum industry as it is complex and time-consuming. The 

numerical method involves tracer test simulation and history matching by modifying 

the reservoir properties (Hagoort, 1982). Powerful computer software has been 

developed for numerical modeling and simulation of tracer tests, but usually requires a 
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huge amount of reservoir information and the models are not integrated for all the 

scenarios.  

1.4 Research Objectives 

This research focuses on the numerical modeling of tracer flow. The purpose of this 

research is to build complete one-dimensional tracer models for both single-phase 

miscible displacement (convection, Langmuir adsorption, hydrodynamic dispersion 

and radioactive decay) and two-phase partitioning displacement (convection, 

Langmuir adsorption, partitioning between phases, hydrodynamic dispersion and 

radioactive decay), and then to implement them in Matlab® using explicit finite 

difference methods. This model is an improvement to existing literature as it includes 

radioactive decay and uses Langmuir adsorption instead of linear adsorption, which 

makes the model more accurate and closer to reality.  It is also fast and easy to use. 

The motivation of this research is to develop a complete and accurate model of tracer 

test applying numerical method, and using this model to discuss the effect of 

adsorption type, partitioning coefficient and reservoir wetting condition on tracer 

profile and breakthrough time through case studies. 

The numerical modeling results of the different models are compared with each other 

and also compared with analytical solutions to investigate the effect of each factor 

(adsorption, hydrodynamic dispersion, partitioning and radioactive decay). In the end, 

a case study is conducted using the most complete two-phase tracer model to 
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investigate the effect of adsorption type, partitioning coefficient and reservoir wetting 

condition on tracer profile and breakthrough time. 

1.5 Outline of Thesis 

Chapter 2 presents a review of current literature on tracer tests. The history of tracer 

tests and the behavior of tracer flow inside a porous media are presented and the 

concepts of different kinds of waves are introduced, which helps to better understand 

and later develop this research. 

Chapter 3 provides useful mathematical concepts and theories related to this thesis. A 

brief introduction to mass conservation, fractional flow theory and relative 

permeability are presented, which are applied in the tracer models in Chapter 4. 

In Chapter 4, both the analytical model and numerical model for single-phase tracer 

flow are presented. Subsequently, the analytical models using different conditions and 

the complete numerical model of two-phase tracer flow are introduced. 

Chapter 5 presents a case study applying the complete tracer model to interpret the 

tracer concentration distributions with different input parameters and a discussion on 

the effects of partitioning coefficient, adsorption type, and wetting condition on tracer 

breakthrough time. 



CHAPTER 1                                                                                                                INTRODUCTION  

 

12 

 

Chapter 6 gives the conclusions and suggestions for further research. Figure 1.5 shows 

the research map of this study. 

Figure 1.5: Research map 
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Chapter 2 Literature Review 

2.1 History of Tracer Test Modeling 

In the early 1950s, reservoir engineers started to apply tracer tests in the petroleum 

industry.
 
At that time, they were used to obtain simple reservoir communication 

information qualitatively, such as the directional flow characteristics in the reservoir 

(Sturm and Johnson, 1951) and the presence of channels in the formation (Carpenter 

et al., 1952). 

Brigham and Smith (1965) made attempts to analyze tracer tests quantitatively. They 

built a semi-analytical model to predict the breakthrough time and the peak 

concentration of tracers for a five-spot flow pattern. In their model, only convection 

and diffusion were considered.  

Cooke (1971) proposed the first inter-well tracer test to predict residual oil saturation. 

Two tracers with different partitioning coefficients were injected together into the 

formation, which resulted in different levels of retardation relative to the carrying 

fluid, because the retardation is caused by partitioning between phases. The residual 

oil saturation was obtained based on the separation of the two tracers. 

Tomich et al. (1973) presented a method to measure residual oil saturation from a 

single-well tracer test. This test was carried out in a watered-out formation. After the 

primary tracer was injected, the well was shut in to allow the primary tracer to react 
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with the water in the reservoir, which formed a secondary tracer. The two tracers had 

different partitioning coefficients and separated during the production period and 

arrived at the wellbore at different times. Based on the difference in arrival time, the 

residual oil saturation was estimated. 

Deans and Shallenberger (1974) modified the residual oil saturation measurement 

model of Tomich et al. (1973) and reported the first single well tracer test to measure 

connate water saturation. This test was carried out in a formation that was producing 

water-free oil. The procedure and the theory are the same as the residual oil saturation 

measurement. The determination of connate water saturation is also based on the 

relative arrival time of the two tracers. 

In the 1980s, numerical simulations were applied to interpret tracer tests. Hagoort 

(1982) developed a two-phase immiscible tracer model. The model has the following 

restrictions: straight-line relative permeabilities; oil and water have equal density and 

viscosity, and a special capillary pressure function.  

Johansen et al. (1989) extended the model to a two-phase partitioning adsorption 

model with multiple tracers. An analytical solution with an arbitrary number of tracers 

was obtained and a simulator for tracers in one-dimensional, two-phase flow was 

introduced. 

Datta Gupta et al. (1986) conducted a numerical simulation for a three-dimensional 

multiphase, multicomponent tracer model. The model is solved using the IMPES 
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(implicit pressure, explicit saturations) formulation with diffusion and adsorption 

included but no partitioning between phases or radioactive decay. 

From the 1990s to present, most modeling of tracer tests has been conducted using 

commercial computer software. The most well-developed and widely-used software is 

UTCHEM, which is a chemical flooding simulator. The tracer model in UTCHEM can 

simulate a tracer test including diffusion, linear adsorption, partitioning between 

phases and radioactive decay. This study focuses on the development of a tracer model 

with diffusion, Langmuir adsorption, partitioning between phases and radioactive 

decay, which adds complexity of the previous models. 

The most established classic laboratory tests for wettability determination in previous 

study is Amott-Harvey imbibition test (Amott, 1959) and the US Bureau of Mines test 

(Donaldson et al., 1969). The case study of this research shows that tracer tests could 

be a method to determine reservoir wettability. 

2.2 Theory of Tracer Flow in Porous Media 

Bear (1972) discussed the transport mechanisms of chemical species in porous media 

including the transport of tracers. In general, tracer transport is governed by 

convection, hydrodynamic dispersion, adsorption and partitioning. For radioactive 

tracers, radioactive decay also needs to be incorporated. In this section, all the 

important mechanisms for tracer flow are discussed. Previous models used the same 

methodology; however, not all the mechanisms discussed here are concluded in the 
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models. 

2.2.1 Convection 

Convection refers to the bulk flow of fluids governed by Darcy’s Law (Darcy, 1856). 

The flow is caused by potential gradients in the system. In a reservoir, the gradients 

are caused by density differences between the flowing fluids and by pressure 

differences in production and injection wells. 

The convection expression for one-dimensional flow of a species is given by: 

𝐹𝑐𝑜𝑛𝑣 = 𝑢𝐶,                                                                 (2.1) 

where 𝐹𝑐𝑜𝑛𝑣  is the mass flux caused by convection ( 𝑘𝑔 ∙ 𝑚−2 ∙ 𝑠−1 ), 𝑢  is the 

volumetric flux (𝑚/𝑠) and 𝐶 is the tracer mass concentration (𝑘𝑔/𝑚3). 

2.2.2 Hydrodynamic Dispersion 

Hydrodynamic dispersion consists of molecular diffusion and mechanical dispersion 

(Lake, 1989). The mechanisms of molecular diffusion and mechanical dispersion are 

different. Molecular diffusion is the process of mixing caused by molecular 

concentration gradients; however, mechanical dispersion is a result of the different 

flow paths that particles take through the porous media, which is strongly velocity 

dependent. Due to hydrodynamic dispersion, tracer flow spreads as it propagates and 

occupies an increasing portion of the flow domain.  
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Even though the mechanisms of molecular diffusion and mechanical dispersion are 

different, they can be expressed together and assumed to have a Fickian form (Fick, 

1855): 

𝐹𝐷 = −𝐷
𝜕𝐶

𝜕𝑥
 ,                                                     (2.2) 

where 𝐹𝐷 is the mass flux caused by hydrodynamic dispersion (𝑘𝑔 ∙ 𝑚−2 ∙ 𝑠−1), 𝐷 is 

the hydrodynamic dispersion coefficient (𝑚2/𝑠), 𝐶 is the tracer mass concentration 

(𝑘𝑔/𝑚3) and 𝑥 is the travel distance of tracer (𝑚). Throughout this thesis, dispersion 

refers to hydrodynamic dispersion if not otherwise specified. 

2.2.3 Adsorption 

In this thesis, adsorption refers to the amount of tracer molecules that attach to the 

solid surface resulting in tracer concentration loss in the fluids. In this research, we 

build and solve the tracer model with Langmuir adsorption. The case study in Chapter 

5 compares this model with zero adsorption model and linear adsorption model to 

investigate the effect of adsorption model on tracer breakthrough time. 

The Langmuir adsorption isotherm represents the equilibrium distribution of ions 

between the fluid phase and the stationary phase and after equilibrium no further 

adsorption takes place. It assumes monolayer adsorbate attached to a finite number of 

sorption sites and there are no interactions between adsorbed molecules and 

neighboring sites (Langmuir, 1916). 
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The Langmuir adsorption is given by: 

𝐶𝑆 =
𝑎𝐶

1 + 𝑏𝐶
 ,                                                         (2.3) 

where  𝐶  is the tracer mass concentration ( 𝑘𝑔/𝑚3 ), 𝐶𝑆  is the adsorbed tracer 

concentration (𝑘𝑔/𝑚3 ), 𝑎  and 𝑏  are empirical constants. The unit of 𝑏  is 𝑚3/𝑘𝑔 , 

which is the reciprocal of the unit of 𝐶 and 𝑎 is dimensionless. As shown from Eq. 

(2.3), the adsorbed concentration 𝐶𝑆  ( 𝑘𝑔/𝑚3 ) depends only on the tracer 

concentration in single-phase flow.  

Linear adsorption is a special case of Langmuir adsorption isotherm: 

𝐶𝑆 = 𝑎𝐶 ,                                                             (2.4) 

where 𝑏𝐶 ≪ 1. 

As linear adsorption is a simplification of Langmuir adsorption at a certain 

circumstance (𝑏𝐶 ≪ 1), Langmuir adsorption would be more accurate and can be 

applied to a wider range compared to linear adsorption. Figure 2.1 shows the general 

form of the Langmuir adsorption and linear adsorption isotherm.  
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Figure 2.1: Langmuir adsorption and linear adsorption isotherm 

2.2.4 Radioactive Decay 

Radioactive decay is the process by which an unstable atom releases energy and 

matter to reach a stable form. This only applies to radioactive tracers and may cause a 

relatively large amount of concentration loss in the fluids.  

The decay process of an atom is statistically random and unpredictable. However, if 

the number of atoms is large enough, the rate of decay can be formulated: 

𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ,                                                         (2.5) 

where 𝑁 is the number of atoms and 𝜆 is the decay constant defined by: 
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𝜆 =
𝑙𝑛2

𝑡1 2⁄
 ,                                                           (2.6) 

where 𝑡1 2⁄  is the half-life of the radioactive tracer. Half-life is the time interval 

required for one-half of the atomic nuclei of a radioactive sample to decay and it is a 

constant for a specific radioactive isotope. 

Integration of Eq. (2.5) gives the standard equation for exponential radioactive decay: 

𝑁(𝑡) = 𝑁0𝑒
−𝜆𝑡 ,                                                    (2.7) 

where 𝑁0 is the initial number of atoms and 𝑁(𝑡) is the number of atoms after time 𝑡.  

2.3 Waves  

In physics, a wave is usually described as a disturbance that travels through a medium 

as an energy transport phenomenon. The wave discussed in this thesis however, refers 

to the tracer concentration change that propagates through the permeable media. 

Waves can be divided into the following types based on the change of shape while 

propagating (Lax, 1957). 

1）Rarefaction waves 

The shape of a rarefaction wave remains unchanged while propagating and all the 

points maintain the same relative position as shown in Figure 2.2. This may happen in 

single phase flow when only convection and linear adsorption is present, which makes 

the different concentrations travel with the same velocity. 

http://en.wikipedia.org/wiki/Physics
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Figure 2.2: Rarefaction wave 

2）Self-sharpening waves and shock waves 

The shape of a self-sharpening wave shrinks upon propagation which means the 

neighboring compositions get closer. Shock waves take shape when discontinuities 

happen as a result of self-sharpening waves. If slower waves (closer to the initial 

conditions) form ahead of faster waves, a leading shock wave will originate when 

faster waves catch up to the slower waves. The formation of a shock wave is shown in 

Figure 2.3 and this phenomenon happens only when the dispersion term is missing 

(Section 4.1.2). 
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Figure 2.3: Formation of shock waves 

3）Diffusive waves 

The shock wave happens when the dispersion term is missing, which is a 

simplification for an analytical solution. In real cases, dispersion can never be 

avoided. The effect of dispersion enlarges the mixing zone and results in diffusive 

waves shown in Figure 2.4. 
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Figure 2.4: Diffusive wave 
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Chapter 3 Mathematical Method Development and Results 

3.1 Mathematical Background 

In this chapter, useful mathematical concepts and theories related to this thesis are 

discussed. The mass conservation for components in multiphase flow, the fractional 

flow theory and the relative permeability are introduced, all of which are applied in 

the tracer models in Chapter 4 

3.1.1 Mass Conservation 

The mass conservation for components in multiphase flow is developed by Bear 

(1972). In his development, he included accumulation term, flux term and source 

term. These are all discussed in this section. 

The mass conservation equation for each component in each phase is given as: 

𝜕𝑊𝑖𝑗

𝜕𝑡
+ ∇⃗⃗ ∙ 𝑁⃗⃗ 𝑖𝑗 − 𝑅𝑖𝑗 = 0       𝑖 = 1,… , 𝑁𝑐     𝑗 = 1,… , 𝑁𝑝 ,              (3.1) 

where 𝑊𝑖𝑗  is the component concentration in units of mass of 𝑖 in phase 𝑗 per bulk 

volume (𝑘𝑔/𝑚3), which is the accumulation term; 𝑁⃗⃗ 𝑖𝑗  is the mass flux term (𝑘𝑔 ∙

𝑚−2 ∙ 𝑠−1); 𝑅𝑖𝑗 is the source term (𝑘𝑔 ∙ 𝑚−3 ∙ 𝑠−1), 𝑁𝑐 is the number of components 

and 𝑁𝑝 is the number of phases. 

For one-dimensional flow, Eq. (3.1) is simplified to: 
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𝜕𝑊𝑖𝑗

𝜕𝑡
+

𝜕𝑁𝑖𝑗

𝜕𝑥
− 𝑅𝑖𝑗 = 0       𝑖 = 1,… , 𝑁𝑐     𝑗 = 1,… , 𝑁𝑝 .              (3.2) 

The terms in Eq. (3.2) are discussed in detail below. 

Accumulation term 

Let 𝑉 be the bulk volume. Then, the volume occupied by fluid phase 𝑗 is ∅𝑆𝑗𝑉 and the 

volume occupied by the solid phase is (1 − ∅)𝑉, where ∅ is porosity and 𝑆𝑗  is the 

saturation of phase 𝑗. 

Define 𝜀𝑗 as the volume fraction occupied by fluid phase 𝑗. Then 𝜀𝑗 can be formulated 

as the volume of phase 𝑗 divided by the bulk volume 𝑉: 

𝜀𝑗 = ∅𝑆𝑗 for fluid phases,                                     (3.3) 

and 

𝜀𝑗 = 1 − ∅ for solid phase.                                    (3.4) 

Then, the total mass of phase 𝑗 can be expressed as 𝜌𝑗𝜀𝑗𝑉 where 𝜌𝑗 is the density of 

phase 𝑗. 

We define 𝜔𝑖𝑗 to be the mass fraction of component 𝑖 in phase 𝑗, which is the mass of 

component 𝑖 in phase 𝑗 divided by total mass of phase 𝑗: 

𝜔𝑖𝑗 =
𝑊𝑖𝑗𝑉

𝜌𝑗𝜀𝑗𝑉
=

𝑊𝑖𝑗

𝜌𝑗𝜀𝑗
 .                                                 (3.5) 
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Thus, the accumulation term 𝑊𝑖𝑗 is expressed as: 

𝑊𝑖𝑗 = 𝜀𝑗𝜌𝑗𝜔𝑖𝑗 = 𝜀𝑗𝐶𝑖𝑗 ,                                             (3.6) 

where 𝐶𝑖𝑗 = 𝜌𝑗𝜔𝑖𝑗 is the mass concentration of component 𝑖 in phase 𝑗 (𝑘𝑔/𝑚3). 

Flux term 

As a component is transported through porous media by the mechanism of convection 

or hydrodynamic dispersion, the flux is the sum of the two mechanisms. As both 

convection and hydrodynamic dispersion have already been discussed in section 2.2, 

the flux term can be obtained by summing Eq. (2.1) and Eq. (2.2): 

𝑁𝑖𝑗 = 𝑢𝑗𝐶𝑖𝑗 − 𝜀𝑗𝐷𝑖𝑗

𝜕𝐶𝑖𝑗

𝜕𝑥
 ,                                              (3.7) 

where 𝑢𝑗  is volumetric flux of phase 𝑗 (𝑚/𝑠) and 𝐷𝑖𝑗 is overall dispersion coefficient 

of component 𝑖 in phase 𝑗 (𝑚2/𝑠). 

Source term 

The source term 𝑅𝑖𝑗 is the generation or vanish rate of component 𝑖 in phase 𝑗 due to 

chemical or biological reactions. 𝑅𝑖𝑗  is formulated based on the following 

relationship: 

𝑅𝑖𝑗 = 𝜀𝑗𝑟𝑖𝑗 ,                                                     (3.8) 

where 𝑟𝑖𝑗 is the reaction rate of component 𝑖 in phase 𝑗 (𝑘𝑔 ∙ 𝑚−3 ∙ 𝑠−1). 
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For radioactive tracers, the reaction rate for radioactive decay is given by 𝑟𝑖𝑗 = −𝜆𝐶𝑖𝑗 

which was reformulated from Eq. (2.5) in section 2.2. 

Combining the source term for a radioactive tracer is given by: 

𝑅𝑖𝑗 = −𝜀𝑗𝜆𝐶𝑖𝑗 .                                                   (3.9) 

Substitution of Eq. (3.6), Eq. (3.7) and Eq. (3.9) into Eq. (3.2) gives the one-

dimensional mass conservation equation for component 𝑖 in phase 𝑗: 

𝜕(𝜀𝑗𝐶𝑖𝑗)

𝜕𝑡
+

𝜕(𝑢𝑗𝐶𝑖𝑗)

𝜕𝑥
− 𝜀𝑗𝐷𝑖𝑗

𝜕2𝐶𝑖𝑗

𝜕𝑥2
+ 𝜀𝑗𝜆𝐶𝑖𝑗 = 0 .                         (3.10) 

In this thesis, only one tracer exists, i.e., this is a one-component system. The 

conservation equations for the tracer in each phase can be written as: 

Water phase:    
𝜕

𝜕𝑡
(∅𝑆𝑤𝐶𝑤) +

𝜕

𝜕𝑥
(𝑢𝑤𝐶𝑤) − ∅𝑆𝑤𝐷𝑤

𝜕2𝐶𝑤

𝜕𝑥2
+  ∅𝑆𝑤𝜆𝐶𝑤 = 0 .    (3.11) 

Oil phase:         
𝜕

𝜕𝑡
(∅𝑆𝑜𝐶𝑜) +

𝜕

𝜕𝑥
(𝑢𝑜𝐶𝑜) − ∅𝑆𝑜𝐷𝑜

𝜕2𝐶𝑜

𝜕𝑥2
+  ∅𝑆𝑜𝜆𝐶𝑜 = 0 .           (3.12) 

Solid phase:       
𝜕

𝜕𝑡
[(1 − ∅)𝐶𝑠] = 0 .                                                                            (3.13) 

Then, the general two-phase, single-tracer conservation equation can be obtained by 

summing the above three equations: 

∅
𝜕

𝜕𝑡
[𝐾𝐶𝑤(1 − 𝑆𝑤) + 𝐶𝑤𝑆𝑤] + (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
+ 𝑢𝑇

𝜕

𝜕𝑥
[𝐾𝐶𝑤(1 − 𝑓𝑤) + 𝐶𝑤𝑓𝑤] 

−∅
𝜕

𝜕𝑥
[𝑆𝑤𝐷𝑤

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝑆𝑤)𝐷𝑜𝐾

𝜕𝐶𝑤

𝜕𝑥
] + ∅𝜆[𝑆𝑤𝐶𝑤 + 𝐾𝐶𝑤(1 − 𝑆𝑤)] = 0 ,    (3.14) 
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where 𝐾 =
𝐶𝑜

𝐶𝑤
⁄  is the partitioning coefficient, 𝑢𝑇 = 𝑢𝑤 + 𝑢𝑜 =constant the total 

volumetric flux and 𝑓𝑤 =
𝑢𝑤

𝑢𝑇
⁄  is the fractional flow function. 

3.1.2 Relative Permeability and the Corey Model 

Absolute permeability refers to the permeability of rock when saturated with one 

fluid, i.e., 100% saturation of one fluid. Effective permeability is the permeability of a 

fluid when more than one fluid saturates the rock. Relative permeability is defined as 

the ratio of the effective permeability of a given fluid to the absolute permeability of 

the rock: 

𝑘𝑟𝑗 =
𝑘𝑗

𝑘
 ,                                                           (3.15) 

where 𝑘𝑟𝑗  is the relative permeability of phase 𝑗, 𝑘𝑗  is the effective permeability of 

phase 𝑗 and 𝑘 is the absolute permeability. 

In an oil-water system, the relative permeabilities of both water (𝑘𝑟𝑤) and oil (𝑘𝑟𝑜) are 

functions of water saturation 𝑆𝑤. The Corey model is an empirical prediction model 

for relative permeability calculations (Corey et al., 1954): 

𝑘𝑟𝑤 = 𝑎𝑤(𝑆𝑤̅)𝑛𝑤  ,                                                 (3.16) 

𝑘𝑟𝑜 = 𝑎𝑜(1 − 𝑆𝑤̅)𝑛𝑜  ,                                           (3.17) 

where  
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𝑆𝑤̅ =
𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
,                                           (3.18) 

and 𝑎𝑤, 𝑎𝑜, 𝑛𝑤 and 𝑛𝑜 are empirical constants. Furthermore, 𝑆𝑤c is the connate water 

saturation and 𝑆𝑜𝑟 is the residual oil saturation. 

Both oil relative permeability and water relative permeability can be plotted as 

functions of water saturation if 𝑎𝑤 , 𝑎𝑜 , 𝑛𝑤 ,  𝑛𝑜 , 𝑆𝑤c  and 𝑆𝑜𝑟  are given. Figure 3.1 

shows one example of relative permeability curves ( 𝑎𝑤 = 0.4 , 𝑎𝑜 = 0.9 , 𝑛𝑤 =

3, 𝑛𝑜 = 3, 𝑆𝑤c = 0.2 and 𝑆𝑜𝑟 = 0.2).  

 

Figure 3.1: Relative permeability curves 
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3.1.3 Fractional Flow Theory 

In 1942, the Buckley-Leverett theory is developed for waterflooding. Since then, it 

has been applied to areas of enhanced oil recovery. The fractional flow of a phase is 

defined as the flow rate of a particular phase divided by the total flow rate. When 

considering an oil-water displacement with a dipping angle α, the fractional flow of 

water in an oil-water system can be determined as shown below (Buckley and 

Leverett, 1942; Johansen, 2008). 

First, applying Darcy’s law to oil and water: 

𝑢𝑜 = −
𝑘𝑘𝑟𝑜

𝜇𝑜
(
𝜕𝑃𝑜

𝜕𝑥
+ 𝜌𝑜𝑔𝑠𝑖𝑛𝛼) ,                                  (3.19) 

𝑢𝑤 = −
𝑘𝑘𝑟𝑤

𝜇𝑤
(
𝜕𝑃𝑤

𝜕𝑥
+ 𝜌𝑤𝑔𝑠𝑖𝑛𝛼) ,                                (3.20) 

where 𝜇𝑜, 𝜇𝑤, 𝜌𝑜, 𝜌𝑤 are the viscosity and density of oil and water, respectively. Here, 

𝑢𝑜 is the oil flux and 𝑢𝑤 is the water flux. 

Let 𝑃𝑜  and 𝑃𝑤  be the pressures of the oil phase and water phase, respectively, and 

assume the system is water-wet. Then, 𝑃𝑐, which is the capillary pressure between oil 

phase and water phases, is defined by: 

𝑃𝑐 = 𝑃𝑜 − 𝑃𝑤  .                                                     (3.21) 

Substitution of Eq. (3.21) into Eq. (3.19) gives: 
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𝑢𝑜 = −
𝑘𝑘𝑟𝑜

𝜇𝑜
(
𝜕(𝑃𝑤 + 𝑃𝑐)

𝜕𝑥
+ 𝜌𝑜𝑔𝑠𝑖𝑛𝛼) .                            (3.22) 

We define the phase mobility by: 

𝜆𝑤 =
𝑘𝑘𝑟𝑤

𝜇𝑤
 ,                                                    (3.23) 

𝜆𝑜 =
𝑘𝑘𝑟𝑜

𝜇𝑜
 .                                                    (3.24) 

Then, Eq. (3.22) and Eq. (3.20) become: 

𝑢𝑜 = −𝜆𝑜 (
𝜕𝑃𝑤

𝜕𝑥
+

𝜕𝑃𝑐

𝜕𝑥
+ 𝜌𝑜𝑔𝑠𝑖𝑛𝛼) ,                           (3.25) 

𝑢𝑤 = −𝜆𝑤 (
𝜕𝑃𝑤

𝜕𝑥
+ 𝜌𝑤𝑔𝑠𝑖𝑛𝛼) .                                     (3.26) 

Therefore, 

𝑢𝑇 = 𝑢𝑜 + 𝑢𝑤 = −𝜆𝑜 (
𝜕𝑃𝑤

𝜕𝑥
+

𝜕𝑃𝑐

𝜕𝑥
+ 𝜌𝑜𝑔𝑠𝑖𝑛𝛼) − 𝜆𝑤 (

𝜕𝑃𝑤

𝜕𝑥
+ 𝜌𝑤𝑔𝑠𝑖𝑛𝛼) .   (3.27) 

From Eq. (3.26): 

𝜕𝑃𝑤

𝜕𝑥
= −

𝑢𝑤

𝜆𝑤
− 𝜌𝑤𝑔𝑠𝑖𝑛𝛼 .                                         (3.28) 

Substitution of Eq. (3.28) into Eq. (3.27) gives: 

𝑢𝑇 = −𝜆𝑇 (−
𝑢𝑤

𝜆𝑤
− 𝜌𝑤𝑔𝑠𝑖𝑛𝛼) − 𝜆𝑜

𝜕𝑃𝑐

𝜕𝑥
− 𝜆𝑜𝜌𝑜𝑔𝑠𝑖𝑛𝛼 − 𝜆𝑤𝜌𝑤𝑔𝑠𝑖𝑛𝛼 ,       (3.29) 

where 

𝜆𝑇 = 𝜆𝑤 + 𝜆𝑜 .                                                 (3.30) 
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Rearranging Eq. (3.29) gives, 

𝑢𝑤 = 𝜆𝑤 (
𝑢𝑇 + 𝜆𝑜

𝜕𝑃𝑐

𝜕𝑥
+ 𝜆𝑜𝜌𝑜𝑔𝑠𝑖𝑛𝛼 + 𝜆𝑤𝜌𝑤𝑔𝑠𝑖𝑛𝛼

𝜆𝑇
− 𝜌𝑤𝑔𝑠𝑖𝑛𝛼) .        (3.31) 

Then, the fractional flow function for water is defined as, 

𝑓𝑤 =
𝑢𝑤

𝑢𝑇
=

𝜆𝑤

𝜆𝑇
+

𝜆𝑜𝜆𝑤

𝑢𝑇𝜆𝑇

𝜕𝑃𝑐

𝜕𝑥
−

𝜆𝑜𝜆𝑤

𝑢𝑇𝜆𝑇
𝛥𝜌𝑔𝑠𝑖𝑛𝛼 .                       (3.32) 

Throughout the thesis, we consider only horizontal flow; hence Eq. (3.32) reduces to: 

𝑓𝑤 =
𝑢𝑤

𝑢𝑇
=

𝜆𝑤

𝜆𝑇
+

𝜆𝑜𝜆𝑤

𝑢𝑇𝜆𝑇

𝜕𝑃𝑐

𝜕𝑥
 .                                         (3.33) 

Let, 

𝐹𝑤 =
𝜆𝑤

𝜆𝑇
 ,                                                       (3.34) 

then, 

𝑓𝑤 =
𝑢𝑤

𝑢𝑇
= 𝐹𝑤 +

𝜆𝑜𝜆𝑤

𝑢𝑇𝜆𝑇

𝜕𝑃𝑐

𝜕𝑥
 .                                          (3.35) 

Eq. (3.34) can be written as: 

𝐹𝑤 =
𝜆𝑤

𝜆𝑇
=

1

1 +
μw

μo

kro

krw

 ,                                              (3.36) 

which is a special format of fractional flow function when capillary pressure is not 

considered. 
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From the Corey Model discussed in the previous section (Corey, 1954): 

𝑘𝑟𝑜

𝑘𝑟𝑤
=

𝑎𝑜(1 −
𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
)𝑛𝑜

𝑎𝑤(
𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
)𝑛𝑤

 .                                (3.37) 

Substituting Eq. (3.37) into Eq. (3.36) gives: 

 𝐹𝑤 =
1

1 +
𝜇𝑤

𝜇𝑜
 
𝑎𝑜(1 −

𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
)𝑛𝑜

𝑎𝑤(
𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
)𝑛𝑤

 .                        (3.38) 

An example of the fractional flow (𝐹𝑤 ) is plotted in Figure 3.2 corresponding to 

Figure 3.1, and is shown with its common S-shape. 

 

Figure 3.2: Fractional flow function 
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3.2 One-Dimensional, Single-Phase Single Tracer Modeling 

In this section, a miscible displacement model is discussed for single-component 

tracer flow, which means the tracer mixes with the original phase in all proportions 

and the system acts as single phase. As this is a one-dimensional tracer slug 

displacement, we describe the leading edge and the trailing edge of the tracer slug. 

Simplifications are made through different assumptions and either analytical methods 

or numerical methods are applied for specific situations. 

The general single-phase, one-dimensional conservation equation for a tracer flow is 

derived based on the following assumptions: 

1) The tracer is ideal, i.e. the properties of the carrying phase are not affected by the 

tracer. 

2) The flow is single phase, which means neither fractional flow effects nor capillary 

pressure effects are considered. 

3) The flow is one dimensional. 

4) Both fluid and rock are incompressible. 

5) The process is isothermal. 

6) The flow is horizontal (no gravity effect). 

As discussed in Chapter 2, tracer flow is governed by the following mechanisms: 1) 

Convection; 2) Hydrodynamic dispersion (diffusion and dispersion); 3) Adsorption; 

and 4) Radioactive Decay. A general one-dimensional, single-phase tracer 
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conservation equation is obtained by substituting 𝑆𝑤 = 1  in the two-phase tracer 

conservation equation, i.e., Eq. (3.14) to give:  

∅
𝜕𝐶

𝜕𝑡
+ (1 − ∅)

𝜕𝐶𝑆

𝜕𝑡
+ 𝑢𝑇

𝜕𝐶

𝜕𝑥
− ∅𝐷

𝜕2𝐶

𝜕𝑥2
+ ∅𝜆𝐶 = 0 ,                   (3.39) 

where 𝐶 is the mass concentration of tracer (𝑘g/𝑚3), 𝐶𝑆 is the sorbed concentration of 

tracer (𝑘g/𝑚3), 𝑢𝑇 is the total volumetric flux (𝑚/𝑠), 𝑥 is the distance (𝑚), 𝑡 is the 

time (𝑠), ∅ is porosity, 𝐷 is hydrodynamic dispersion coefficient (𝑚2/𝑠) and  𝜆 is the 

decay constant (𝑠−1). 

After the equation is introduced, the main task is to find the solution of concentration 

as a function of position and time for the general single-phase one-dimensional tracer 

flow equation, Eq. (3.39). Although the complete model, Eq. (3.39) lacks an analytical 

solution, additional assumptions are made to make this possible. Analytical methods 

for solving the convection dispersion equation and the convection adsorption equation 

are introduced in Section 3.2.1 and Section 3.2.2, which give better understanding of 

the tracer flow behavior. Other complex equations can only be solved by numerical 

methods and were implemented in Matlab codes by the author (Section 3.2.3 and 

Section 3.2.4). 

3.2.1 Convection Dispersion Model 

The analytical method to solve the convection dispersion equation is described below 

(Bird et al., 1960; Johansen, 2008). 
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When the convection term and the dispersion term are non-zero, Eq. (4.39) becomes: 

∅
𝜕𝐶

𝜕𝑡
+ 𝑢𝑇

𝜕𝐶

𝜕𝑥
− ∅𝐷

𝜕2𝐶

𝜕𝑥2
= 0 ,                                           (3.40) 

The above equation is known as the convection dispersion equation. 

Dimensionless variables 𝑥∗, 𝑡∗ and 𝐶∗ are defined to simplify the equation: 

𝑥∗ =
𝑥

𝐿
 ,                                                                 (3.41) 

𝑡∗ =
𝑢𝑇𝑡

∅𝐿
 ,                                                               (3.42) 

𝐶∗ =
𝐶 − 𝐶𝑅

𝐶𝐿 − 𝐶𝑅
 ,                                                         (3.43) 

where 𝐶𝐿 is the left-end concentration of the system (𝑘g/𝑚3) and 𝐶𝑅 is the right-end 

concentration of the system (𝑘g/𝑚3). 𝐿 is the distance between injection well and 

production well (𝑚). 

Applying the dimensionless variables yields: 

𝜕𝐶∗

𝜕𝑡∗
+

𝜕𝐶∗

𝜕𝑥∗
−

1

𝑁𝑝𝑒

𝜕2𝐶∗

𝜕𝑥∗2
= 0,                                              (3.44) 

where 

𝑁𝑝𝑒 =
𝑢𝑇𝐿

∅𝐷
 ,                                                            (3.45) 

is the Peclet number, which is used to define the ratio of convective mass transfer over 
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dispersion mass transfer. A large Peclet number means that convection is relatively 

dominant in the fluid flow.  

In the case of injecting a slug of tracer into a horizontal reservoir, as shown in Figure 

3.3, the boundary condition for the leading edge is: 𝐶∗(𝑥, 0) = 0; 𝐶∗(0, 𝑡) = 1 and 

the trailing edge is: 𝐶∗(𝑥, 0) = 1; 𝐶∗(0, 𝑡) = 0. 

Figure 3.3: Overview of tracer injection in a horizontal reservoir 

The convection term in Eq. (3.44) can be taken out by transforming from Eulerian 

coordinates to Lagrangian coordinates. The Eulerian coordinates correspond to spatial 

points and the Lagrangian coordinates correspond to material points. Therefore, by 

assuming the reference point travels with the same velocity as the convection wave, 

the convection term is vanishing. To reach this target, the following transform is 

introduced: 

𝜉 = 𝑥∗ − 𝑡∗ ,                                                              (3.46) 

𝜏 = 𝑡∗ .                                                                 (3.47) 

Applying the chain rule: 

Leading edge 

𝐶∗ = 0 

𝐶∗ = 1 

Trailing edge 
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𝜕𝐶∗

𝜕𝑡∗
= −

𝜕𝐶∗

𝜕𝜉
+

𝜕𝐶∗

𝜕𝜏
 ,                                                  (3.48) 

𝜕𝐶∗

𝜕𝑥∗
=

𝜕𝐶∗

𝜕𝜉
 .                                                         (3.49) 

Substitution of Eq. (3.48) and Eq. (3.49) into Eq. (3.44) gives the convection 

dispersion equation based on dimensionless Lagrangian coordinates: 

𝜕𝐶∗

𝜕𝜏
=

1

𝑁𝑝𝑒

𝜕2𝐶∗

𝜕𝜉2
 .                                                    (3.50) 

Then, the Boltzmann Transformation is introduced to convert the partial differential 

equation above to an ordinary differential equation which can be easily solved. A 

variable 𝜂 is defined as a combination of 𝜉 and 𝜏: 

𝜂 =
𝜉

2√𝜏 𝑁𝑝𝑒⁄
 .                                                    (3.51) 

The partial derivatives of 𝜂 are: 

𝜕𝜂

𝜕𝜏
= −

𝜂

2√𝜏 𝑁𝑝𝑒⁄
 ,                                                 (3.52) 

𝜕𝜂

𝜕𝜉
=

1

2√𝜏 𝑁𝑝𝑒⁄
 .                                                   (3.53) 

Then, the partial derivatives of 𝐶∗  can be expressed in terms of 𝜂 by applying the 

chain rule again: 
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𝜕𝐶∗

𝜕𝜉
=

𝜕𝐶∗

𝜕𝜂

𝜕𝜂

𝜕𝜉
=

1

2√𝜏 𝑁𝑝𝑒⁄

𝜕𝐶∗

𝜕𝜂
 ,                                    (3.54) 

𝜕2𝐶∗

𝜕𝜉2
=

1

4𝜏 𝑁𝑝𝑒⁄

𝜕2𝐶∗

𝜕𝜂2
 ,                                           (3.55) 

𝜕𝐶∗

𝜕𝜏
=

𝜕𝐶∗

𝜕𝜂

𝜕𝜂

𝜕𝜏
= −

𝜂

2𝜏

𝜕𝐶∗

𝜕𝜂
 .                                       (3.56) 

Inserting these expressions into Eq. (3.50) gives: 

−
𝜂

2𝜏

𝜕𝐶∗

𝜕𝜂
=

1

𝑁𝑝𝑒

1

4𝜏 𝑁𝑝𝑒⁄

𝜕2𝐶∗

𝜕𝜂2
 .                                   (3.57) 

The variable 𝜏 can be eliminated and 𝜂 is the only variable in the equation, which 

means the equation is reduced to an ordinary differential equation successfully: 

2𝜂
𝑑𝐶∗

𝑑𝜂
+

𝑑2𝐶∗

𝑑𝜂2
= 0 ,                                                (3.58) 

with the following boundary conditions: 

𝐶∗(∞) = 0 ,                                                         (3.59) 

𝐶∗(−∞) = 1 .                                                      (3.60) 

To reduce this second-order ordinary differential equation to first-order ordinary 

differential equations, another variable is defined: 

𝛿 =
𝑑𝐶∗

𝑑𝜂
 .                                                          (3.61) 
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Then, Eq. (3.58) becomes: 

2𝜂𝛿 +
𝑑𝛿

𝑑𝜂
= 0 .                                                 (3.62) 

The above equation can be easily solved as follows: 

𝛿 = 𝛼𝑒−𝜂2
,                                                 (3.63) 

then, 

𝑑𝐶∗

𝑑𝜂
= 𝛼𝑒−𝜂2

 .                                                (3.64) 

After integration, 

𝐶∗(𝜂) = 𝐶∗(0) + 𝛼 ∫ 𝑒−𝜂2
𝜂

0

𝑑𝜂 .                                      (3.65) 

Combining the boundary conditions, 𝛼 and 𝐶∗(0) is calculated: 

𝛼 = −
1

√𝜋
 ,                                                        (3.66) 

𝐶∗(0) = −
√𝜋

2
𝛼 =

1

2
 .                                                (3.67) 

Then, the concentration distribution can be expressed as a function of 𝜂: 

𝐶∗(𝜂) =
1

2
[1 − 𝑒𝑟𝑓(𝜂)] ,                                            (3.68) 

where 

𝑒𝑟𝑓(𝜂) =
2

√𝜋
∫ 𝑒−𝜂2

𝜂

0

𝑑𝜂 ,                                         (3.69) 
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is a special function in mathematics called the Error Function, the values of which are 

shown in Table 3.1. 

Table 3.1: Error Function table 

𝒙 𝒆𝒓𝒇(𝒙) 𝒙 𝒆𝒓𝒇(𝒙) 

0.00  0.0000  0.90  0.7969  

0.05  0.0564  0.95  0.8208  

0.10  0.1124  1.00  0.8427  

0.15  0.1680  1.10  0.8802  

0.20  0.2227  1.20  0.9103  

0.25  0.2763  1.30  0.9340  

0.30  0.3206  1.40  0.9523  

0.35  0.3793  1.50  0.9661  

0.40  0.4203  1.60  0.9763  

0.45  0.4754  1.70  0.9838  

0.50  0.5205  1.80  0.9890  

0.55  0.5633  1.90  0.9927  

0.60  0.6039  2.00  0.9953  

0.65  0.6420  2.10  0.9970  

0.70  0.6778  2.20  0.9981  

0.75  0.7111  2.30  0.9988  

0.80  0.7421  2.40  0.9993  

0.85  0.7707  2.50  0.9996  

The final form of the solution is obtained by back substituting the dimensionless 

variables into Eq. (3.68), 

𝐶(𝑥, 𝑡) = 𝐶𝑅 +
1

2
(𝐶𝐿 − 𝐶𝑅) [1 − 𝑒𝑟𝑓 (

𝑥 − 𝑡

2√𝑡 𝑁𝑝𝑒⁄
)] ,                  (3.70) 

and also the dimensionless form is shown below, 
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𝐶∗ =
1

2
[1 − 𝑒𝑟𝑓 (

𝑥∗ − 𝑡∗

2√𝑡∗ 𝑁𝑝𝑒⁄
)] .                               (3.71) 

The above dimensionless concentration equation is plotted in Figure 3.4, which gives 

an overview of concentration propagation for a fixed Peclet number: 𝑁𝑝𝑒 = 200 and 

different times: 𝑡1
∗ = 0.2, 𝑡2

∗ = 0.4, 𝑡3
∗ = 0.7. The figure shows that the leading edge 

propagates along the 𝑥 direction as a diffusive wave, which is caused by dispersion 

only.  

 

Figure 3.4: Leading edge of dimensionless concentration distribution (𝑪∗) 

propagates over time for 𝑵𝒑𝒆 = 𝟐𝟎𝟎 

Figure 3.5 is plotted for the dimensionless concentration distribution at a constant 

dimensionless time 𝑡∗ = 0.4 with different Peclet numbers: 𝑁𝑝𝑒1 = 50, 𝑁𝑝𝑒2 = 200, 
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𝑁𝑝𝑒3 = 1000. The figure shows that the size of the mixing zone increases as the 

Peclet number decreases. This is because 𝑁𝑝𝑒 is defined as the ratio of convection rate 

over dispersion rate, therefore a smaller 𝑁𝑝𝑒 means dispersion is more significant, i.e., 

the mixing zone grows faster. 

 

Figure 3.5: Leading edge of dimensionless concentration distribution (𝑪∗) with 

different Peclet numbers 

The trailing edge can be solved similarly as the leading edge. The only difference is to 

change the boundary conditions to 𝐶∗(𝑥, 0) = 1; 𝐶∗(0, 𝑡) = 0 . The final form of 

solution is: 
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𝐶(𝑥, 𝑡) = 𝐶𝑅 +
1

2
(𝐶𝐿 − 𝐶𝑅) [1 + 𝑒𝑟𝑓 (

𝑥 − 𝑡

2√𝑡 𝑁𝑝𝑒⁄
)] ,                      (3.72) 

and also the dimensionless form: 

𝐶∗ =
1

2
[1 + 𝑒𝑟𝑓 (

𝑥∗ − 𝑡∗

2√𝑡∗ 𝑁𝑝𝑒⁄
)] .                                    (3.73) 

The dimensionless concentration is also plotted as shown in Figure 3.6 for 𝑁𝑝𝑒 = 200 

with three time steps: 𝑡1
∗ = 0.2, 𝑡2

∗ = 0.4, 𝑡3
∗ = 0.7. 

 

Figure 3.6: Trailing edge of dimensionless concentration distribution (𝑪∗) 

propagates over time for 𝑵𝒑𝒆 = 𝟐𝟎𝟎 
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the distinctive shape of the tracer slug collapse time (i.e., the time when the trailing 

edge of tracer slug catches with the leading edge) can be calculated based on Eq. 

(3.71) and Eq. (3.73).  

The dimensionless tracer slug size (the time interval of tracer injection) is defined 

beforehand as: 

∆𝑡∗ = 𝑡𝑙
∗ − 𝑡𝑡

∗ ,                                                         (3.74) 

where 𝑡𝑙
∗ is the dimensionless travelling time of the leading edge, i.e., the length of 

time after the tracer slug is injected; and 𝑡𝑡
∗ is the dimensionless travelling time of the 

trailing edge, i.e., the length of time after stopping tracer slug injection. Therefore, ∆𝑡 

expresses the duration of tracer injection and it is one of the key factors that affect the 

tracer slug collapse time. 

As both the trailing edge and the leading edge act as diffusive waves, the 

concentration profile would collapse when the trailing edge catches up with the 

leading edge. Three tracer slugs are plotted in Figure 3.7 for the following three time 

steps listed in Table 3.2, which gives a brief view of the tracer dimensionless 

concentration distribution over time. For the case shown in Figure 3.7, 𝑁𝑝𝑒 = 1000, 

∆𝑡∗ = 0.2. 
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Table 3.2: Time steps for Figure 3.7 

 Time  step 1 Time  step 2 Time  step 3 

 𝑡𝑡1
∗ = 0.1  𝑡𝑡2

∗ = 0.35  𝑡𝑡3
∗ = 0.55 

𝑡𝑙1
∗ = 0.3 𝑡𝑙2

∗ = 0.55 𝑡𝑙3
∗ = 0.75 

Figure 3.7: Tracer slug propagation for convection dispersion equation for 

𝑵𝒑𝒆 = 𝟏𝟎𝟎𝟎 

Actually, many series of 𝑡𝑙
∗ and 𝑡𝑡

∗ were tried by trial and error and it was found that 

at 𝑡𝑙
∗ = 0.75, 𝑡𝑡

∗ = 0.55, Point A starts to catch up with Point B in Figure 3.7, and 

this is the collapse time that the trailing edge starts to catch up with the leading edge.  

This collapse time can also be calculated manually. As illustrated in Figure 3.7, the 

concentration of both Point A and Point B are close to 1.0 and were both chosen to be 
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0.995 for approximate calculation. The collapse happens when the travel distance of 

Point A equals to the travel distance of Point B. Hence, the collapse time can be 

calculated based on this relationship: 

𝑥𝐴
∗ = 𝑥𝐵

∗ ,                                                            (3.75) 

where 𝑥𝐴
∗ is the travel distance of Point A and 𝑥𝐵

∗ is the travel distance of Point B. 

For Point A on the trailing edge: 

1

2
[1 + 𝑒𝑟𝑓 (

 𝑥𝐴
∗ − 𝑡𝑡

∗

2√𝑡𝑡
∗ 𝑁𝑝𝑒⁄

)] = 0.995 .                                   (3.76) 

Thus, 

𝑒𝑟𝑓 (
𝑥𝐴

∗ − 𝑡𝑡
∗

2√𝑡𝑡
∗ 𝑁𝑝𝑒⁄

) = 0.99 .                                           (3.77) 

Checking the value of error function in Table 3.1 gives: 

𝑥𝐴
∗ − 𝑡𝑡

∗

2√𝑡𝑡
∗ 𝑁𝑝𝑒⁄

≅ 2 .                                                     (3.78) 

Therefore, 

𝑥𝐴
∗ = 4√𝑡𝑡

∗ 𝑁𝑝𝑒⁄ + 𝑡𝑡
∗ .                                             (3.79) 

The travel distance of Point B can be obtained in the same way: 
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𝑥𝐵
∗ = −4√𝑡𝑙

∗ 𝑁𝑝𝑒⁄ + 𝑡𝑙
∗ .                                           (3.80) 

Substituting Eq. (3.79) and Eq. (3.80) into Eq. (3.75) gives: 

4√𝑡𝑡
∗ 𝑁𝑝𝑒⁄ + 𝑡𝑡

∗ = −4√𝑡𝑙
∗ 𝑁𝑝𝑒⁄ + 𝑡𝑙

∗ ,                                (3.81) 

which can be simplified to: 

√𝑡𝑙
∗ − √𝑡𝑡

∗ =
4

√𝑁𝑝𝑒

 .                                               (3.82) 

Substituting ∆𝑡∗ = 𝑡𝑙
∗  − 𝑡𝑡

∗ gives: 

√𝑡𝑙
∗ − √𝑡𝑙

∗ − ∆𝑡∗ =
4

√𝑁𝑝𝑒

 .                                        (3.83) 

The collapse time 𝑡𝑙
∗ for various ∆𝑡∗  and 𝑁𝑝𝑒  can be calculated using the above 

equation. 

Applying the values used in the case above, and calculating the collapse time using 

Eq. (3.83) gives: 𝑡𝑙
∗ = 0.73 and 𝑡𝑡

∗ = 𝑡𝑙
∗ − ∆𝑡∗ = 0.53, which is almost the same as 

the results obtained from Matlab. The result from Matlab was obtained by trial method 

and observations of the result; the result from calculation is a manual calculation. 

However, both the results reflect the collapse time properly. 

In summary, the solution of tracer profile from convection dispersion equation acts as 

a diffusive wave, which is caused by dispersion. The collapse time obtained using 
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analytical method coincides with the trial and observation method from Matlab. 

3.2.2 Convection Adsorption Model 

In this section, the convection adsorption equation is solved analytically: 

∅
𝜕𝐶

𝜕𝑡
+ (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
+ 𝑢𝑇

𝜕𝐶

𝜕𝑥
= 0 ,                                    (3.84) 

where 𝐶𝑠 is the adsorption concentration, which represents the interaction between the 

stationary phase and the flowing phase. The Langmuir adsorption isotherm (Figure 

3.8) was chosen which has already been discussed in Chapter 2: 

𝐶𝑆 =
𝑎𝐶

1 + 𝑏𝐶
 ,                                                    (3.85) 

where 𝑎  and 𝑏  are empirical constants. The unit of 𝑏  is 𝑚3/𝑘𝑔  and 𝑎  is 

dimensionless.  

The tracer model with Langmuir adsorption is a special case of polymer flooding. 

The convection adsorption tracer results in this thesis therefore follow from the 

polymer case, which was solved and analyzed by Johansen and Winther in 1988 

(Johansen and Winther, 1988). 
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Figure 3.8: Langmuir adsorption isotherm (𝑪𝑺) 

Applying chain rule to Eq. (3.84) gives: 

(1 +
1 − ∅

∅

𝑑𝐶𝑆

𝑑𝐶
)
𝜕𝐶

𝜕𝑡
+

𝑢𝑇

∅

𝜕𝐶

𝜕𝑥
= 0.                                         (3.86) 

Applying the same dimensionless variables as the above section gives: 

[1 +
1 − ∅

∅

𝑑𝐶𝑆

𝑑𝐶
]
𝜕𝐶∗

𝜕𝑡∗
+

𝜕𝐶∗

𝜕𝑥∗
= 0 .                                        (3.87) 

In this section, the same case of injecting a slug of tracer into a horizontal reservoir is 

discussed for the same boundary conditions. The boundary conditions for leading edge 

are: 𝐶∗(x, 0) = 0; 𝐶∗(0, t) = 1 and for trailing edge are: 𝐶∗(x, 0) = 1; 𝐶∗(0, t) = 0. 

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

C (kg/m
3
)

C
S
 (

k
g

/m
3
)



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

51 

 

The total derivative 
𝑑𝐶∗

𝑑𝑡∗  of concentration is: 

𝜕𝐶∗

𝜕𝑡∗
+

𝑑𝑥∗

𝑑𝑡∗

𝜕𝐶∗

𝜕𝑥∗
=

𝑑𝐶∗

𝑑𝑡∗
 .                                                  (3.88) 

Then, comparing Eq. (3.87) and Eq. (3.88) gives: 

𝑑𝐶∗

𝑑𝑡∗
= 0,                                                               (3.89) 

𝑑𝑥∗

𝑑𝑡∗
=

1

1 +
1 − ∅

∅
𝑑𝐶𝑆

𝑑𝐶

 .                                                  (3.90) 

According to Eq. (3.89) and Eq. (3.90), any given value of 𝐶∗  propagates with a 

characteristic constant velocity given by Eq. (3.90). Hence, the propagation velocity 

𝑣(𝐶)∗ is: 

𝑣(𝐶)∗ =
1

1 +
1 − ∅

∅
𝑑𝐶𝑆

𝑑𝐶

=
1

1 +
1 − ∅

∅
𝑎

{1 + 𝑏[𝐶∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

 .     (3.91) 

Figure 3.9 is plotted for the dimensionless propagation velocities of different tracer 

concentrations with ∅ = 0.2,  𝐶𝐿 = 10 𝑘𝑔/𝑚3 , 𝐶𝑅 = 0 and Langmuir parameters: 

𝑎 = 10, 𝑏 = 10 𝑚3/𝑘𝑔. The propagation velocity increases smoothly from the low 

concentration to the high concentration.  
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Figure 3.9: Dimensionless propagation velocities (𝒗(𝑪)∗) of different 

concentrations 

After the velocity is calculated, the location of the concentration can be obtained by 

multiplying the propagation velocity with time 𝑡∗: 

𝑥∗ =
1

1 +
1 − ∅

∅
𝑎

{1 + 𝑏[𝐶∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

𝑡∗ .                        (3.92) 

Keeping the same Langmuir parameters and choosing three time steps: 𝑡1
∗ = 0.1, 

𝑡2
∗ = 0.4, 𝑡3

∗ = 0.8, the plot of the concentration distribution as a function of position 

is shown in Figure 3.10. The expanding shape is caused by adsorption.  
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Figure 3.10: Dimensionless concentration distributions (𝑪∗) for trailing edge as a 

function of position at three time steps 

Figure 3.11 shows the flowing concentration for 𝑡∗ = 0.8  with the boundary 

conditions for trailing edge. The concentration moves continuously as a function of 

position.  
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Figure 3.11: Dimensionless Concentration distribution (𝑪∗) for trailing edge with 

boundary conditions for convection adsorption model 
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Figure 3.12: Dimensionless concentration distribution (𝑪∗) for leading edge with 

boundary conditions for convection adsorption model 

Instead of a continuous change in concentration as for the trailing edge, the leading 

edge is as a shock. Trying to use the same procedure to plot the leading edge, we 

obtain Figure 3.12. 

If can be seen from Figure 3.12 clearly that for 𝑥∗  values between 0.07 and 0.74, 

there are three concentration values for each position, which cannot be true physically. 

The main reason for this phenomenon is the absence of the dispersion term. However, 

the problem can be solved by treating the leading edge as a shock, which is a self-

sharpening wave with a discontinuous change in concentration. The shock is drawn in 
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Figure 3.13 as a dashed vertical line connecting the initial condition and the inlet 

condition together. 

 

Figure 3.13: Dimensionless leading edge concentration distribution (𝑪∗) as a 

function of position for convection adsorption model 

After the shock is defined, the shock velocity can be calculated shown in the 

following steps. 

First, recall Eq. (3.90) : 
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=

1
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1 − ∅

∅
𝑑𝐶𝑆

𝑑𝐶

 .                                                  (3.93) 

Then, the shock velocity is obtained based on the Rankine-Hugoniot relation which 
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represents material balance across the shock wave (Johansen and Winther, 1988): 

𝑣∆𝐶
∗ =

1

1 +
1 − ∅

∅
∆𝐶𝑆

∆𝐶

=
1

1 +
𝐶𝑆𝐿 − 𝐶𝑆𝑅

𝐶𝐿 − 𝐶𝑅

 ,                                   (3.94) 

where ‘𝐿’, ‘𝑅’ represent the left-end and right-end values of the shock, respectively. 

From Eq. (3.85): 

𝐶𝑆𝐿 =
𝑎𝐶𝐿

1 + 𝑏𝐶𝐿
 ,                                                 (3.95) 

𝐶𝑆𝑅 =
𝑎𝐶𝑅

1 + 𝑏𝐶𝑅
 .                                                 (3.96) 

For a tracer slug injection, 

𝐶𝑅 = 0 .                                                      (3.97) 

Substituting Eq. (3.95), Eq. (3.96) and Eq. (3.97) to Eq. (3.94) gives: 

𝑣∆𝐶
∗ =

1

1 +
1 − ∅

∅
𝑎

1 + 𝑏𝐶𝐿

 .                                     (3.98) 

Obviously, for constant 𝑎 , 𝑏  and 𝐶𝐿 , the shock velocity stays constant. The shock 

propagation with ∅ = 0.2 ,  𝐶𝐿 = 10 𝑘𝑔/𝑚3 and Langmuir parameters: 𝑎 = 10 , 

𝑏 = 10 𝑚3/𝑘𝑔 is shown in Figure 3.14 for three time steps:  𝑡1
∗ = 0.3, 𝑡2

∗ = 0.6, 

𝑡3
∗ = 1.0. 
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Figure 3.14: Dimensionless concentration distributions (𝑪∗) for leading shock as a 

function of position for convection adsorption model 

As the trailing edge acts as a spreading wave with a growing width and the leading 

edge forms a shock with constant velocity, the tracer slug would collapse when the 

trailing edge catches up with the leading edge.  
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The tracer slug collapse time of the trailing edge and leading shock were investigated 

by trial and error. The results are shown in Figure 3.15. It was found that at 𝑡𝑙
∗ = 0.7, 

𝑡𝑡
∗ = 0.5, the trailing edge starts to catch up with the leading edge which is the tracer 

slug collapse time. This collapse time was found by numerical simulation. However, 

the collapse time can also be obtained by analytical calculation discussed below. 

Figure 3.15: Tracer slug propagation for convection adsorption equation 

As illustrated in the above figure, the trailing edge is spreading along the 𝑥 direction 

with time while the leading edge propagates as a shock. The collapse happens when 

the point on the trailing edge with a dimensionless concentration equals to 1.0 (Point 

A in Figure 3.15) hits the leading edge. That is to say, when the collapse happens, the 

travel distance of Point A equals to the travel distance of the leading shock. Hence, the 
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breakthrough time can be calculated based on this relationship. 

𝑥𝐴
∗ = 𝑥𝑠ℎ𝑜𝑐𝑘

∗ ,                                                      (3.99) 

where 𝑥𝐴
∗ is the travel distance of point A and 𝑥𝑠ℎ𝑜𝑐𝑘

∗ is the travel distance of the 

leading shock. 

For Point A (𝐶∗ = 1.0), 

𝑥𝐴
∗ =

1

1 +
1 − ∅

∅
𝑎

{1 + 𝑏[(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

𝑡𝑡
∗ 

=
1

1 +
1 − ∅

∅
𝑎

{1 + 𝑏[(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

(𝑡𝑙
∗ − ∆𝑡∗) .    (3.100) 

Substituting  𝐶𝑅 = 0 to Eq. (3.100) gives: 

𝑥𝐴
∗ =

1

1 +
1 − ∅

∅
𝑎

(1 + 𝑏𝐶𝐿)2

(𝑡𝑙
∗ − ∆𝑡∗) .                              (3.101) 

For the leading shock, 

𝑥𝑠ℎ𝑜𝑐𝑘
∗ = 𝑣∆𝐶

∗𝑡𝑙
∗ =

1

1 +
1 − ∅

∅
𝑎

1 + 𝑏𝐶𝐿

𝑡𝑙
∗ .                           (3.102) 

Therefore, 

1

1 +
1 − ∅

∅
𝑎

(1 + 𝑏𝐶𝐿)2

(𝑡𝑙
∗ − ∆𝑡∗) =

1

1 +
1 − ∅

∅
𝑎

1 + 𝑏𝐶𝐿

𝑡𝑙
∗ .        (3.103) 



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

61 

 

In the above equation, the only unknown is 𝑡𝑙
∗  which can be solved easily by 

substituting other parameters. 

Then, applying the values in the above case study, i.e., ∅ = 0.2 , 𝑎 = 10 , 𝑏 =

10 𝑚3/𝑘𝑔, 𝐶𝐿 = 10 𝑘𝑔/𝑚3, ∆𝑡∗ = 0.2 to Eq. (3.103) to calculate the collapse time 

gives: 𝑡𝑙
∗  = 0.701, 𝑡𝑡

∗ = 0.501. 

Comparing this to the result obtained from Matlab (𝑡𝑙
∗ = 0.7, 𝑡𝑡

∗ = 0.5), shows good 

agreement. 

The above explanation and analysis concludes that the trailing edge of the tracer 

profile from convection adsorption equation acts as a spreading wave, while the 

leading edge of the tracer profile acts as a shock wave. The collapse time obtained 

using analytical method shows excellent agreement with the collapse time obtained 

through trial and observation method from Matlab. The analytical method is time 

saving compared to the observation method, but can only be applied to the models that 

have analytical solutions. The observation method can be applied to all the models, 

which have either analytical solutions or numerical solutions. 

3.2.3 Convection Dispersion Adsorption Model 

In this section, convection, dispersion and adsorption are all considered resulting the 

following equation:  
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∅
𝜕𝐶

𝜕𝑡
+ (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
+ 𝑢𝑇

𝜕𝐶

𝜕𝑥
− ∅𝐷

𝜕2𝐶

𝜕𝑥2
= 0 .                       (3.104) 

This equation is a second order parabolic partial differential equation satisfied by a 

function 𝐶(𝑥, 𝑡) dependent on two free variables (space and time) and it can be solved 

using numerical methods. In this section, a finite difference method is applied to 

convert the differential equation to an approximating difference equation. 

First, both the Peclet number and the dimensionless variables are applied to Eq. 

(3.104) as in the previous section: 

 [1 +
1 − ∅

∅

𝑎

{1 + 𝑏[𝐶∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2
]
𝜕𝐶∗

𝜕𝑡∗
=

1

𝑁𝑝𝑒

𝜕2𝐶∗

𝜕𝑥∗2
−

𝜕𝐶∗

𝜕𝑥∗
 .      (3.105) 

Then, we discretize the domain into a grid of evenly spaced points and each point is 

defined in (𝑥, 𝑡) space shown in Figure 3.16. 
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Figure 3.16: Domain in (𝒙∗,𝒕∗) space 

As can be seen clearly in Figure 3.16, each point is characterized by: 

𝑥𝑖
∗ = 𝑥0

∗ + 𝑖∆𝑥∗ ; 𝑖 = 0,···, 𝑖𝑚𝑎𝑥 ,                                  (3.106) 

𝑡𝑛
∗ = 𝑡0

∗ + 𝑛∆𝑡∗ ; 𝑛 = 0,···, 𝑛𝑚𝑎𝑥  ,                                (3.107) 

𝐶𝑖
𝑛∗

= 𝐶∗(𝑥𝑖
∗, 𝑡𝑛

∗) .                                                     (3.108) 

Here, ∆𝑥∗ is the space step length and ∆𝑡∗ is the time step length. 

Then, the finite difference approximation for Eq. (3.105) is given by: 

𝐶𝑖
𝑛+1∗

− 𝐶𝑖
𝑛∗

∆𝑡∗
[1 +

1 − ∅

∅

𝑎

{1 + 𝑏[𝐶𝑖
𝑛∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

] 

𝑡∗ 

𝑥∗ 

∆𝑡∗  

∆𝑥∗ 

𝐶𝑖
𝑛∗

 
𝑛 

𝑖 
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=
1

𝑁𝑝𝑒

𝐶𝑖+1
𝑛 ∗

− 2𝐶𝑖
𝑛∗

+ 𝐶𝑖−1
𝑛 ∗

∆𝑥∗2
−

𝐶𝑖+1
𝑛 ∗

− 𝐶𝑖−1
𝑛 ∗

2∆𝑥∗
 .                            (3.109) 

This is an explicit scheme because the space derivatives and the adsorption are 

evaluated at time level 𝑛. 

Rearranging Eq. (3.109) gives: 

𝐶𝑖
𝑛+1∗

=
∆𝑡∗

1 +
1 − ∅

∅
𝑎

{1 + 𝑏[𝐶𝑖
𝑛∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

 

[
1

𝑁𝑝𝑒

𝐶𝑖+1
𝑛 ∗

− 2𝐶𝑖
𝑛∗

+ 𝐶𝑖−1
𝑛 ∗

∆𝑥∗2
−

𝐶𝑖+1
𝑛 ∗

− 𝐶𝑖−1
𝑛 ∗

2∆𝑥∗
] + 𝐶𝑖

𝑛∗
              (3.110) 

Then, we input code to Matlab according to the above equation. By choosing grid size 

and time step size, and applying the boundary conditions, we are able to get the 

results. 

The grid size and time step size chosen are 1000 and 200. Usually, a small time step 

would help to get less numerical smearing and numerical instability. We plot the 

concentration distribution combining the boundary conditions in Matlab for leading 

edge, 𝐶∗(x, 0) = 0; 𝐶∗(0, t) = 1  shown in Figure 3.17, and the trailing edge with 

boundary conditions 𝐶∗(x, 0) = 1; 𝐶∗(0, t) = 0, shown in Figure 3.18. The values 

chosen for the parameters are ∅ = 0.2, 𝑁𝑝𝑒 = 100 , 𝑎 = 1.5, 𝑏 = 30 𝑚3/𝑘𝑔 , 𝐶𝐿 =

100 𝑘𝑔/𝑚3, 𝐶𝑅 = 0 and three time steps: 𝑡1
∗ = 0.2, 𝑡2

∗ = 0.4, 𝑡3
∗ = 0.7.  

Figure 3.19 shows how the model is solved sequentially using finite difference 
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methods. The numerical modeling of all the models that presented in this thesis 

applies the same approach. 

 

Figure 3.17: Leading edge of concentration distribution (𝑪∗) over time 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x*

C
*

 

 

t
1
* = 0.2

t
2
* = 0.4

t
3
* = 0.7



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

66 

 

 

Figure 3.18: Trailing edge of concentration distribution (𝑪∗) over time 

Figure 3.19: Finite Difference Method to Solve the Models 

In order to see the difference between the convection dispersion scenario and 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x*

C
*

 

 

t
1
* = 0.2

t
2
* = 0.4

t
3
* = 0.7

Partial Differential Equation 

Finite Difference Approximation 

Finite Difference Method 

Plot Results in Matlab 

Choose Time steps 

Apply Boundary Conditions 



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

67 

 

convection dispersion adsorption scenario, the leading edge of adsorption condition 

and non-adsorption condition at 𝑡∗ = 0.7 are plotted in the same plot shown in Figure 

3.20. 

 

Figure 3.20: Comparison of dimensionless concentration distribution (𝑪∗) 

between adsorption and non-adsorption scenario 

Figure 3.20 shows that, when adsorption is added, the concentration decreases because 

of the effect of adsorption. As for the adsorption case, some of the tracer attached to 

the solid phase, which results in a faster rate of tracer concentration loss. 

In conclusion, for convection dispersion adsorption equation, the tracer slug is delayed 

by adsorption when compared with convection dispersion equation due to the 

0.4 0.45 0.5 0.55 0.6
0.0

0.2

0.4

0.6

0.8

1.0

x*

C
*

 

 

Adsorption

Non-adsorption



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

68 

 

concentration loss caused by adsorption. 

3.2.4 Convection Dispersion Adsorption Radioactive Decay Model 

The convection dispersion adsorption radioactive equation is with all the four terms 

considered and it is the complete model for one-dimensional single-phase tracer flow.  

∅
𝜕𝐶

𝜕𝑡
+ (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
+ 𝑢𝑇

𝜕𝐶

𝜕𝑥
− ∅𝐷

𝜕2𝐶

𝜕𝑥2
+ ∅𝜆𝐶 = 0 .                  (3.111) 

This equation can be solved similarly as Eq. (3.110) in the above section by using 

finite difference method.  

First, the dimensionless form is given using the same dimensionless variables as 

above, 

[1 +
1 − ∅

∅

𝑎

{1 + 𝑏[𝐶∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2
]
𝜕𝐶∗

𝜕𝑡∗
 

=
1

𝑁𝑝𝑒

𝜕2𝐶∗

𝜕𝑥∗2
−

𝜕𝐶∗

𝜕𝑥∗
− 𝑀[𝐶∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅] ,                      (3.112) 

where 

𝑀 =
𝜆∅𝐿

𝑢
 ,                                                     (3.113) 

is a dimensionless constant defined for simplification. If the medium and the fluid 

flow rate are defined, 𝑀 depends only on the radioactive tracer type defined by the 

decay constant 𝜆 (𝑠−1). 
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Applying finite difference method gives: 

𝐶𝑖
𝑛+1∗

= 𝐶𝑖
𝑛∗

+
∆𝑡∗

1 +
1 − ∅

∅
𝑎

{1 + 𝑏[𝐶𝑖
𝑛∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

 

[
1

𝑁𝑝𝑒

𝐶𝑖+1
𝑛 ∗

− 2𝐶𝑖
𝑛∗

+ 𝐶𝑖−1
𝑛 ∗

∆𝑥∗2
−

𝐶𝑖+1
𝑛 ∗

− 𝐶𝑖−1
𝑛 ∗

2∆𝑥∗
− 𝑀[𝐶𝑖

𝑛∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]] . (3.114) 

Plot 𝐶∗(𝑥∗, 𝑡∗) combining the boundary conditions for leading edge and trailing edge 

shown in Figure 3.21 and Figure 3.22 respectively. The values chosen for the plots are 

∅ = 0.2 , 𝑁𝑝𝑒 = 100 ,  𝑀 = 0.0008 , 𝑎 = 1.5 , 𝑏 = 30 𝑚3/𝑘𝑔 ,  𝐶𝐿 = 100 𝑘𝑔/𝑚3 , 

𝐶𝑅 = 0 and steps: 𝑡1
∗ = 0.2, 𝑡2

∗ = 0.4, 𝑡3
∗ = 0.7. 

 

Figure 3.21: Leading edge of dimensionless concentration distribution (𝑪∗) over 

time for 𝑴 = 𝟎. 𝟎𝟎𝟎𝟖 
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Figure 3.22: Trailing edge of dimensionless concentration distribution (𝑪∗) over 

time for 𝑴 = 𝟎. 𝟎𝟎𝟎𝟖 

Figure 3.21 and Figure 3.22 have a significant difference compared with all the plots 

in the previous sections. The difference is that the concentration distribution is much 

lower than 1.0 because of the radioactive decay which happens at the beginning of the 

tracer injection.  

As explained above, the decay constant 𝜆 is the only factor that affects the constant 𝑀 

if the medium and the fluid flow rate are selected. Hence, for different types of 

radioactive tracer injected into the same flowing medium with the same fluid flow 

rate, different types of radioactive tracers will give different values of constant 𝑀. 
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Ploting 𝐶∗(𝑥∗, 𝑡∗)  for ∅ = 0.2 , 𝑁𝑝𝑒 = 100 , 𝑎 = 1.5 , 𝑏 = 30 𝑚3/𝑘𝑔  at time step 

𝑡∗ = 0.7  for 𝑀1 = 0.0000 , 𝑀2 = 0.0008 , 𝑀3 = 0.0020 , 𝑀4 = 0.0050  for leading 

edge are shown in Figure 3.23.  

 

Figure 3.23: Leading edge of dimensionless concentration distribution (𝑪∗) for 

different decay constants 

As shown in Figure 3.23, the concentration distribution is relatively high for a small 

value of 𝑀. This holds true, because a large half-life 𝑡1 2⁄  means that the speed of 

radioactive decay is slow, so that the concentration distribution is relatively high and a 

large half-life 𝑡1 2⁄  results in a small value of constant 𝑀 according to Eq. (3.113) and 
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decay, the concentration loss is very small compared to the radioactive cases. We can 

draw the conclusion that the effect of radioactive decay is severe and it can cause a 

large concentration loss. 

The concentration distribution for the trailing edge with different values of 𝑀 is also 

plotted shown in Figure 3.24 and the result is similar with the leading edge. 

 

Figure 3.24: Trailing edge of dimensionless concentration distribution (𝑪∗) for 

different decay constants 

In conclusion, the tracer profile from the convection dispersion adsorption radioactive 

decay equation has a large tracer concentration loss because of the radioactive decay 

effect. The effect of radioactive decay on tracer concentration is severe and the smaller 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x*

C
*

 

 

M
1
 = 0.0000

M
2
 = 0.0008

M
3
 = 0.0020

M
4
 = 0.0050



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

73 

 

the half-life, the larger the concentration loss. 

3.3 One-Dimensional, Two-Phase Tracer Modeling 

In this section, the flow of two phases and a partitioning tracer is discussed, i.e., the 

tracer partitions between the two phases. This two-phase tracer model is based on the 

following assumptions: 

1) The tracers are ideal so that the fluid properties are not affected. 

2) The flow is one dimensional. 

3) Both phases and rock are incompressible. 

4) The process is isothermal. 

5) The flow is horizontal (no gravity effect). 

The general form of the two-phase tracer flow model has already been discussed in 

Section 3.1. Then, incorporating the tracer flow model with the fractional flow 

function gives the conservation equations for oil, water and tracer shown below. 

Water conservation: 

∅
𝜕𝑆𝑤

𝜕𝑡
+ 𝑢𝑇

𝜕𝑓𝑤
𝜕𝑥

= 0.                                           (3.115) 

Oil conservation: 

𝑢𝑇 = 𝑢𝑤 + 𝑢𝑜 = constant .                                   (3.116) 
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Tracer conservation: 

∅
𝜕

𝜕𝑡
[𝐾𝐶𝑤(1 − 𝑆𝑤) + 𝐶𝑤𝑆𝑤] + (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
+ 𝑢𝑇

𝜕

𝜕𝑥
[𝐾𝐶𝑤(1 − 𝑓𝑤) + 𝐶𝑤𝑓𝑤] 

−∅
𝜕

𝜕𝑥
[𝑆𝑤𝐷𝑤

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝑆𝑤)𝐷𝑜𝐾

𝜕𝐶𝑤

𝜕𝑥
] + ∅𝜆[𝑆𝑤𝐶𝑤 + 𝐾𝐶𝑤(1 − 𝑆𝑤)] = 0, (3.117) 

where 

𝑓𝑤 =
𝑢𝑤

𝑢𝑇
= 𝐹𝑤 +

𝜆𝑜𝜆𝑤

𝑢𝑇𝜆𝑇

𝜕𝑃𝑐

𝜕𝑥
 ,                                          (3.118) 

and 

𝐹𝑤 =
𝜆𝑤

𝜆𝑇
=

1

1 +
𝜇𝑤

𝜇𝑜

𝑘𝑟𝑜

𝑘𝑟𝑤

 ,                                              (3.119) 

as already discussed in Section 3.1.3 and 𝐶𝑤 is the tracer concentration in the water 

phase. 

The above is the two-phase tracer model. Throughout this section, the system is 

assumed to be horizontal for simplicity and initially filled with oil at connate water 

saturation. Then, the tracer is injected with a water slug. 

3.3.1 Convection Partitioning Model 

In this section, only convection and partitioning between phases are applied and 

capillary pressure is negligible in order to simplify Eq. (3.115) to Eq. (3.117). The 

following is the simplified two-phase tracer model. This model can be solved using an 
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analytical method. The convection partitioning tracer model results here follow from 

the more general compositional model from gas injection which was solve and 

analyzed by Johansen et al. in 2005 (Johansen et al., 2005). 

Water conservation:           ∅
𝜕𝑆𝑤

𝜕𝑡
+ 𝑢𝑇

𝜕𝐹𝑤
𝜕𝑥

= 0.                                                     (3.120) 

Oil conservation:                𝑢𝑇 = 𝑢𝑤 + 𝑢𝑜 = constant .                                          (3.121) 

Tracer conservation:          ∅
𝜕

𝜕𝑡
[𝐾𝐶𝑤(1 − 𝑆𝑤) + 𝐶𝑤𝑆𝑤] 

+𝑢𝑇

𝜕

𝜕𝑥
[𝐾𝐶𝑤(1 − 𝐹𝑤) + 𝐶𝑤𝐹𝑤] = 0 .                             (3.122) 

First, we consider Eq. (3.120), the water fractional flow function. 

Introducing the following dimensionless variables: 

𝑥∗ =
𝑥

𝐿
 ,                                                              (3.123) 

𝑡∗ =
𝑢𝑇𝑡

∅𝐿
 ,                                                           (3.124) 

gives: 

𝜕𝑆𝑤

𝜕𝑡∗
+

𝑑𝐹𝑤
𝑑𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥∗
= 0 .                                                 (3.125) 

Using the total derivative of 𝑆𝑤 with respect to 𝑡∗: 

𝜕𝑆𝑤

𝜕𝑡∗
+

𝑑𝑥∗

𝑑𝑡∗

𝜕𝑆𝑤

𝜕𝑥∗
=

𝑑𝑆𝑤

𝑑𝑡∗
 ,                                              (3.126) 
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and comparing Eq. (3.125) and Eq. (3.126) gives: 

𝑑𝑆𝑤

𝑑𝑡∗
= 0 ,                                                          (3.127) 

𝑑𝑥∗

𝑑𝑡∗
=

𝑑𝐹𝑤
𝑑𝑆𝑤

 .                                                       (3.128) 

From Eq. (3.127) and Eq. (3.128), the water saturation is constant over time and the 

propagation velocity of a constant water saturation is given by: 

𝑣(𝑆𝑤)∗ =
𝑑𝐹𝑤
𝑑𝑆𝑤

 .                                                     (3.129) 

Note that the velocity is the dimensionless velocity. This velocity is given by the slope 

of the tangent in the fractional flow plot.  

Recall Eq. (3.38): 

 𝐹𝑤 =
1

1 +
𝜇𝑤

𝜇𝑜
 
𝑎𝑜(1 −

𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
)𝑛𝑜

𝑎𝑤(
𝑆𝑤 − 𝑆𝑤c

1 − 𝑆𝑤c − 𝑆𝑜𝑟
)𝑛𝑤

 .                        (3.130) 

In the plot of the fractional flow function in Figure 3.25, the following values are 

chosen: 𝜇𝑤 = 1 𝑐𝑝 , 𝜇𝑜 = 2 𝑐𝑝 , 𝑎𝑤 = 0.4 , 𝑎𝑜 = 0.9 , 𝑛𝑤 = 3 , 𝑛𝑜 = 3 , 𝑆𝑤c = 0.2 , 

𝑆𝑜𝑟 = 0.2. The corresponding relative permeability curves are shown in Figure 3.26. 
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Figure 3.25: Fractional flow function 

 

Figure 3.26: Relative permeability curve 
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the position of any given saturation at time 𝑡 can be calculated by: 

𝑥∗ =
𝑑𝐹𝑤
𝑑𝑆𝑤

𝑡∗ .                                                        (3.131) 

The derivative of 𝐹𝑤  was calculated in Matlab, and the saturation distribution as a 

function of position is plotted for two time steps: 𝑡1
∗ = 0.4, 𝑡2

∗ = 0.8 in Figure 3.27. 

 

Figure 3.27: Saturation distribution as a function of position 

Figure 3.27 cannot hold true physically, because one position must have only one 

saturation value. According to the Buckley-Leverett construction, this saturation is 

resolved by saturation discontinuities and a shock front is formed. 
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x*

S
w

 

 

t
1
* = 0.4

t
2
* = 0.8



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

79 

 

in Figure 3.25, because for the contact point of continuous saturation and the shock, 

the velocity should be the same. This gives: 

𝑣∆𝑠 =
∆𝐹𝑤
∆𝑆𝑤

 .                                                        (3.132) 

This is the Rankine-Hugoniot condition for mass concentration across the shock. From 

Eq. (3.132), the shock front velocity can be calculated as the slope of the tangent 

drawn from 𝑆𝑤c in Figure 3.25 and velocity for this case can be calculated which 

equals to 2.2. Then, the saturation profile for the given boundary conditions: 𝑆(𝑥, 0) =

0.2;  𝑆(0, 𝑡) = 0.8 is plotted in Figure 3.28. 

 

Figure 3.28: Saturation profile of leading edge 
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Next, we describe the calculation of the tracer concentration. 

Through formula expansion, Eq. (3.122) changes to: 

𝐾
𝜕𝐶𝑤

𝜕𝑡
+ (1 − 𝐾)

𝜕𝐶𝑤

𝜕𝑡
𝑆𝑤 + (1 − 𝐾)

𝜕𝑆𝑤

𝜕𝑡
𝐶𝑤 

+
𝑢𝑇

∅
[𝐾

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝐾)

𝜕𝐶𝑤

𝜕𝑥
𝐹𝑤 + (1 − 𝐾)

𝜕𝐹𝑤
𝜕𝑥

𝐶𝑤] = 0 .         (3.133) 

From Eq. (3.120) : 

(1 − 𝐾)
𝜕𝑆𝑤

𝜕𝑡
𝐶𝑤 +

𝑢𝑇

∅
(1 − 𝐾)

𝜕𝐹𝑤
𝜕𝑥

𝐶𝑤 = 0 .                          (3.134) 

Substituting into Eq. (3.133) gives: 

𝜕𝐶𝑤

𝜕𝑡
+

𝑢𝑇

∅

[𝐾(1 − 𝐹𝑤) + 𝐹𝑤]

[𝐾(1 − 𝑆𝑤) + 𝑆𝑤]

𝜕𝐶𝑤

𝜕𝑥
= 0 .                               (3.135) 

Applying the same dimensionless variables as before gives: 

𝜕𝐶𝑤
∗

𝜕𝑡∗
+

[𝐾(1 − 𝐹𝑤) + 𝐹𝑤]

[𝐾(1 − 𝑆𝑤) + 𝑆𝑤]

𝜕𝐶𝑤
∗

𝜕𝑥∗
= 0 .                                 (3.136) 

Similarly, the total derivative of 𝐶𝑤
∗
 with respect to 𝑡∗: 

𝜕𝐶𝑤
∗

𝜕𝑡∗
+

𝑑𝑥∗

𝑑𝑡∗

𝜕𝐶𝑤
∗

𝜕𝑥∗
=

𝑑𝐶𝑤
∗

𝑑𝑡∗
 .                                             (3.137) 

Comparing Eq. (3.136) and Eq. (3.137) gives: 

𝑑𝐶𝑤
∗

𝑑𝑡∗
= 0 ,                                                        (3.138) 
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𝑑𝑥∗

𝑑𝑡∗
=

[𝐾(1 − 𝐹𝑤) + 𝐹𝑤]

[𝐾(1 − 𝑆𝑤) + 𝑆𝑤]
=  

 𝐹𝑤 +
𝐾

1 − 𝐾

𝑆𝑤 +
𝐾

1 − 𝐾

 .                           (3.139) 

From Eq. (3.138) and Eq. (3.139), the concentration of tracer in the water phase is 

constant over time and 
𝑑𝑥∗

𝑑𝑡∗
 is the propagation velocity of tracer concentration in the 

water phase, i.e., 

𝑣(𝐶𝑤)∗ =
 𝐹𝑤 +

𝐾
1 − 𝐾

𝑆𝑤 +
𝐾

1 − 𝐾

 ,                                           (3.140) 

where we assume the partitioning coefficient 𝐾 is constant. This coefficient can be 

measured in the laboratory at reservoir conditions and is considered to be known. 

From Eq. (3.140), the concentration propagation velocities for different concentrations 

can be interpreted geometrically as the slope of lines connecting Point A 

(−
𝐾

1−𝐾
, −

𝐾

1−𝐾
) and points on the fractional flow curve, for example the slope of Line 

AB, AC and AD shown in Figure 3.29. Most tracers have 𝐾 values between 0.1 and 

10. In this case, 𝐾 = 3 and 𝑣(𝐶𝑤) =
 𝐹𝑤−1.5

𝑆𝑤−1.5
 have been used. 

Assume Line AB is the tangent of the fractional flow curve drawn from Point A and 

Point B which has saturation 𝑆𝑤 = 𝑆𝑤
∗  (𝑆𝑤

∗  is the saturation value shown in Figure 

3.29), the corresponding tracer velocity 𝑣(𝐶𝑤) is equal to 𝑣(𝑆𝑤) because the slope of 

Line AB is equal to the water saturation propagation velocity 
𝑑𝐹𝑤

𝑑𝑆𝑤
. For an arbitrary 

point C in Figure 3.29 that has the saturation larger than 𝑆𝑤
∗ , 𝑣(𝐶𝑤) > 𝑣(𝑆𝑤), which 
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indicates that the tracer concentration propagates faster than the water saturation. 

Thus, the tracer will then catch up with smaller water saturations which have 

relatively large velocities until the tracer moves together with 𝑆𝑤
∗ . Similarly, for the 

saturations smaller than 𝑆𝑤
∗ , the saturation, for example point D in Figure 3.29, the 

water saturation moves faster than the tracer concentration. Larger water saturations 

will overtake the tracer until it moves together with 𝑆𝑤
∗ .  

In other words, the tracer will move together with a characteristic water saturation 𝑆𝑤
∗  

and the velocity is the slope of the tangent drawn from point (−
𝐾

1−𝐾
, −

𝐾

1−𝐾
). The 

propagation velocity of tracer concentration calculated for this case is 𝑣(𝐶𝑤) = 0.67 

and travels with 𝑆𝑤
∗ = 0.68 which is shown in Figure 3.30. 
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Figure 3.29: Construction to show tracer concentration velocity  

 

Figure 3.30: Propagation of saturation and tracer concentration 
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3.3.2 Convection Adsorption Partitioning Model 

In this section, the adsorption term is added to the tracer convection partitioning 

equation. Assume this is a water-wet formation; therefore adsorption only happens 

from the water phase. Capillary pressure is assumed to be negligible. 

Water conservation:           ∅
𝜕𝑆𝑤

𝜕𝑡
+ 𝑢𝑇

𝜕𝐹𝑤
𝜕𝑥

= 0.                                                     (3.141) 

Oil conservation:                𝑢𝑇 = 𝑢𝑤 + 𝑢𝑜 = constant .                                          (3.142) 

Tracer conservation:          ∅
𝜕

𝜕𝑡
[𝐾𝐶𝑤(1 − 𝑆𝑤) + 𝐶𝑤𝑆𝑤] + (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
 

+𝑢𝑇

𝜕

𝜕𝑥
[𝐾𝐶𝑤(1 − 𝐹𝑤) + 𝐶𝑤𝐹𝑤] = 0 .                       (3.143) 

As the water fractional flow model stays the same, the water saturation distribution 

remains unchanged from the previous section. 

For the tracer model, the problem solving process is similar as section 3.3.1. 

Rearranging Eq. (3.143) and applying Langmuir adsorption gives: 

𝐾
𝜕𝐶𝑤

𝜕𝑡
+ (1 − 𝐾)

𝜕𝐶𝑤

𝜕𝑡
𝑆𝑤 + (1 − 𝐾)

𝜕𝑆𝑤

𝜕𝑡
𝐶𝑤 +

1 − ∅

∅

𝑎

(1 + 𝑏𝐶𝑤)2

𝜕𝐶𝑤

𝜕𝑡
 

+
𝑢𝑇

∅
[𝐾

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝐾)

𝜕𝐶𝑤

𝜕𝑥
𝐹𝑤 + (1 − 𝐾)

𝜕𝐹𝑤
𝜕𝑥

𝐶𝑤] = 0 .                       (3.144) 

Substituting Eq. (4.96) into the above equation gives: 

[𝐾 + (1 − 𝐾)𝑆𝑤 +
1 − ∅

∅

𝑎

(1 + 𝑏𝐶𝑤)2
]
𝜕𝐶𝑤

𝜕𝑡
+

𝑢𝑇

∅
[𝐾 + (1 − 𝐾)𝐹𝑤]

𝜕𝐶𝑤

𝜕𝑥
= 0.  (3.145) 
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Therefore, 

𝜕𝐶𝑤

𝜕𝑡
+

𝑢𝑇

∅

[𝐾 + (1 − 𝐾)𝐹𝑤]

[𝐾 + (1 − 𝐾)𝑆𝑤 +
1 − ∅

∅
𝑎

(1 + 𝑏𝐶𝑤)2]

𝜕𝐶𝑤

𝜕𝑥
= 0 .        (3.146) 

Applying the same dimensionless variables as before gives: 

𝜕𝐶𝑤
∗

𝜕𝑡∗
+

[𝐾 + (1 − 𝐾)𝐹𝑤]

[𝐾 + (1 − 𝐾)𝑆𝑤 +
1 − ∅

∅
𝑎

(1 + 𝑏𝐶𝑤)2]

𝜕𝐶𝑤
∗

𝜕𝑥∗
= 0 .           (3.147) 

The total derivative of 𝐶𝑤
∗
 with respect to 𝑡∗: 

𝜕𝐶𝑤
∗

𝜕𝑡∗
+

𝑑𝑥∗

𝑑𝑡∗

𝜕𝐶𝑤
∗

𝜕𝑥∗
=

𝑑𝐶𝑤
∗

𝑑𝑡∗
 .                                           (3.148) 

Comparing Eq. (3.147) and Eq. (3.148) gives: 

𝑑𝐶𝑤
∗

𝑑𝑡∗
= 0 ,                                                      (3.149) 

𝑑𝑥∗

𝑑𝑡∗
=

[𝐾 + (1 − 𝐾)𝐹𝑤]

[𝐾 + (1 − 𝐾)𝑆𝑤 +
1 − ∅

∅
𝑎

(1 + 𝑏𝐶𝑤)2]
 

= 
 𝐹𝑤 +

𝐾
1 − 𝐾

𝑆𝑤 +
𝐾

1 − 𝐾 +
1 − ∅

∅(1 − 𝐾)
𝑎

(1 + 𝑏𝐶𝑤)2

 .                       (3.150) 

From Eq. (3.149) and Eq. (3.150), the concentration of tracer in the water phase is 

constant over time and 
𝑑𝑥∗

𝑑𝑡∗
 is the propagation velocity of tracer concentration in the 

water phase, i.e., 
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𝑣(𝐶𝑤)∗ =
 𝐹𝑤 +

𝐾
1 − 𝐾

𝑆𝑤 +
𝐾

1 − 𝐾 + ℎ(𝑐)

 ,                                     (3.151) 

where 

ℎ(𝑐) =
1 − ∅

∅(1 − 𝐾)

𝑎

(1 + 𝑏𝐶𝑤)2
 ,                                  (3.152) 

for simplicity. 

From Eq. (3.151), the propagation velocity of a tracer is the slope of the tangent drawn 

from point (−
𝐾

1−𝐾
, −

𝐾

1−𝐾
− ℎ(𝑐)) to the fractional flow function curve. According to 

Eq. (3.152), the values of ℎ(𝑐)  changes when 𝐶𝑤  changes. That is to say, different 

concentrations have different corresponding points from which tangent lines are 

drawn to calculate their velocities. In this case, 𝐾 = 3 , 𝑎 = 1.5 , 𝑏 = 10 𝑚3/𝑘𝑔 , 

∅ = 0.2. The values of ℎ(𝑐) corresponding to 𝐶𝑤 are calculated shown in Table 3.3. 

According to the Table 3.3, as 𝐶𝑤 changes from 0.00 to 1.00, the corresponding point 

(−
𝐾

1−𝐾
, −

𝐾

1−𝐾
− ℎ(𝑐)) to draw tangents changes from Point A (4.5, 1.5) to Point B 

(1.52, 1.5) shown in Figure 3.31.  
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Figure 3.31: Construction to show tracer concentration velocity calculation 

Table 3.3 shows the calculated velocity of the different concentrations at leading edge 

and trailing edge. It is shown that for both leading edge and trailing edge, the larger 

concentration moves faster, which results in a spreading wave along propagation. 
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Table 3.3: Velocity of concentrations at leading edge and trailing edge 

𝑪𝒘 𝒉(𝒄) 
leading edge 

velocity 

trailing edge 

velocity 

0.00  -3.00  0.1326  0.3541  

0.01  -2.48  0.1565  0.4028  

0.03  -1.78  0.1988  0.5008  

0.05  -1.33  0.2438  0.5879  

0.07  -1.04  0.2829  0.6673  

0.10  -0.75  0.3333  0.7684  

0.15  -0.48  0.4051  0.8955  

0.20  -0.33  0.4584  0.9842  

0.25  -0.24  0.4986  1.0469  

0.30  -0.19  0.5287  1.0923  

0.40  -0.12  0.5668  1.1474  

0.50  -0.08  0.5920  1.1786  

0.70  -0.05  0.6186  1.2160  

0.90  -0.03  0.6337  1.2354  

1.00  -0.02  0.6392  1.2404  

First, we will discuss the concentration propagation of the trailing edge.  

Figure 4.32 is plotted for the propagation velocities of different tracer concentrations 

for the trailing edge. The propagation velocity increases smoothly from low to high 

concentrations. 
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Figure 3.32: Dimensionless propagation velocity (𝒗(𝑪)∗) of concentration for 

trailing edge 

After the velocities are calculated, the concentration propagation as a function of 

location can be obtained by multiplying the propagation velocities with time. Figure 

3.33 shows the concentration distribution at different time steps.  
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Figure 3.33: Dimensionless concentration distribution (𝑪∗) for trailing edge as a 

function of position 

Then, we apply trailing edge with boundary conditions. Figure 3.34 is the 

concentration for 𝑡∗ = 0.4  with the boundary conditions of the trailing edge. The 

concentration moves continuously until if truncates at the boundary conditions which 

is physically correct. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x*

C
*

 

 

t
1
*=0.1

t
2
*=0.4

t
3
*=0.8



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

91 

 

 

Figure 3.34: Dimensionless concentration distributions for trailing edge (𝑪∗) as a 

function of position for 𝒕∗ = 𝟎. 𝟒 

Then, if we reverse the inlet condition and the initial condition of trailing edge, the 

concentration distribution for the leading edge can be obtained. Figure 3.35 shows the 

concentration distribution of the leading edge at 𝑡∗ = 0.8  with the boundary 

conditions. 

From Figure 3.35, each positon has three different values between 0.1 and 0.5 which 

does not make sense physically. Thus, the leading edge should be treated as a shock 

wave, the dashed line shown in Figure 3.36. 
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Figure 3.35: Dimensionless concentration distribution (𝑪∗) for leading edge with 

boundary conditions for 𝒕∗ = 𝟎. 𝟖 
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Figure 3.36: Dimensionless leading edge concentration distribution (𝑪∗) as a 

function of position 

3.3.3 Convection Adsorption Dispersion Partitioning and Radioactive 

Decay Model 

The general model of two-phase tracer with all the factors included (partitioning 

between phases; dispersion; adsorption; radioactive decay) is solved numerically in 

this section. Recall Eq. (3.115), Eq. (3.116) and Eq. (3.117) : 

Water conservation:         ∅
𝜕𝑆𝑤

𝜕𝑡
+ 𝑢𝑇

𝜕𝑓𝑤
𝜕𝑥

= 0.                                                       (3.153) 

Oil conservation:                𝑢𝑇 = 𝑢𝑤 + 𝑢𝑜 = constant .                                          (3.154) 
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Tracer conservation:          ∅
𝜕

𝜕𝑡
[𝐾𝐶𝑤(1 − 𝑆𝑤) + 𝐶𝑤𝑆𝑤] + (1 − ∅)

𝜕𝐶𝑠

𝜕𝑡
 

+𝑢𝑇

𝜕

𝜕𝑥
[𝐾𝐶𝑤(1 − 𝑓𝑤) + 𝐶𝑤𝑓𝑤] − ∅

𝜕

𝜕𝑥
[𝑆𝑤𝐷𝑤

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝑆𝑤)𝐷𝑜𝐾

𝜕𝐶𝑤

𝜕𝑥
] 

+∅𝜆[𝑆𝑤𝐶𝑤 + 𝐾𝐶𝑤(1 − 𝑆𝑤)] = 0 .                                                                     (3.155) 

First, we apply the water fractional flow function. 

Apply Eq. (3.118) and the same dimensionless variables (𝑥∗, 𝑡∗) to Eq. (3.153) gives: 

𝜕𝑆𝑤

𝜕𝑡∗
+

𝜕𝐹𝑤
𝜕𝑥∗

= −
1

𝑢𝑇𝐿
(
𝜕𝑁

𝜕𝑥∗

𝜕𝑆𝑤

𝜕𝑥∗
𝑃𝐶

′ +
𝜕𝑃𝐶

′

𝜕𝑥∗

𝜕𝑆𝑤

𝜕𝑥∗
𝑁 +

𝜕𝑆𝑤
2

𝜕𝑥∗2
𝑁𝑃𝐶

′) ,          (3.156) 

where 

𝑁 =
𝜆𝑤𝜆𝑜

𝜆𝑇
 ,                                                       (3.157) 

for simplification, and  𝜆𝑤 and 𝜆𝑜 are the phase mobility of water and oil which have 

already been discussed in section 3.1.3. 

The capillary pressure 𝑃𝐶 can be expressed as a function of the water saturation 𝑆𝑤 

following a hyperbolic relationship: 

𝑃𝐶 = 𝑚𝑆𝑤
2 + 𝑝𝑆𝑤 + 𝑞 ,                                           (3.158) 

where 𝑚, 𝑝, 𝑞 are constants. 

The following conditions are applied to calculate 𝑚, 𝑝, 𝑞: 
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𝑃𝐶(𝑆𝑤 = 1) = 0 ,                                                (3.159) 

𝑃𝐶
′ (𝑆𝑤 = 1) = 0 ,                                               (3.160) 

𝑃𝐶(𝑆𝑤 = 𝑆𝑤𝑐 = 0.2) = 8 × 106 .                                (3.161) 

Then, the three constants are calculated and substitute into Eq. (3.148) gives: 

𝑃𝐶 = 1.25 × 107𝑆𝑤
2 + 2.5 × 107𝑆𝑤 + 1.25 × 107 .                     (3.162) 

According to the above equation, the capillary pressure 𝑃𝐶 as a function of the water 

saturation 𝑆𝑤 is plotted and shown in Figure 3.37. 

 

Figure 3.37: Capillary pressure as a function of water saturation 
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𝑆𝑖
𝑛+1 − 𝑆𝑖

𝑛

∆𝑡∗
+

𝐹𝑖
𝑛 − 𝐹𝑖−1

𝑛

∆𝑥∗
= −

1

𝑢𝑇𝐿
[
𝑁𝑖

𝑛 − 𝑁𝑖−1
𝑛

∆𝑥∗

𝑆𝑖+1
𝑛 − 𝑆𝑖−1

𝑛

2∆𝑥∗
𝑃𝐶

′
𝑖

𝑛
 

+
𝑃𝐶

′
𝑖

𝑛
− 𝑃𝐶

′
𝑖−1

𝑛

∆𝑥∗

𝑆𝑖+1
𝑛 − 𝑆𝑖−1

𝑛

2∆𝑥∗
𝑁𝑖

𝑛 +
𝑆𝑖−1

𝑛 − 2𝑆𝑖
𝑛 + 𝑆𝑖+1

𝑛

∆𝑥∗2
𝑃𝐶

′
𝑖

𝑛
𝑁𝑖

𝑛] .          (3.163) 

Rearranging the formula gives: 

𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 − ∆𝑡∗{
𝐹𝑖

𝑛 − 𝐹𝑖−1
𝑛

∆𝑥∗
+

1

𝑢𝑇𝐿
[
𝑁𝑖

𝑛 − 𝑁𝑖−1
𝑛

∆𝑥∗

𝑆𝑖+1
𝑛 − 𝑆𝑖−1

𝑛

2∆𝑥∗
𝑃𝐶

′
𝑖

𝑛
 

+
𝑃𝐶

′
𝑖

𝑛
− 𝑃𝐶

′
𝑖−1

𝑛

∆𝑥∗

𝑆𝑖+1
𝑛 − 𝑆𝑖−1

𝑛

2∆𝑥∗
𝑁𝑖

𝑛 +
𝑆𝑖−1

𝑛 − 2𝑆𝑖
𝑛 + 𝑆𝑖+1

𝑛

∆𝑥∗2
𝑃𝐶

′
𝑖

𝑛
𝑁𝑖

𝑛]} .        (3.164) 

Plotting 𝑆 (𝑥, 𝑡) as a function of 𝑥 with boundary conditions: 𝑆(𝑥, 0) = 0.2;  𝑆(0, 𝑡) =

0.8 shown in Figure 3.38. 

 

Figure 3.38: Saturation distribution 
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equation.  

First, substituting Eq. (3.118) and Langmuir adsorption to Eq. (3.155) gives: 

𝜕

𝜕𝑡
[𝐾𝐶𝑤 + (1 − 𝐾)𝐶𝑤𝑆𝑤] +

1 − ∅

∅

𝑎

(1 + 𝑏𝐶𝑤)2

𝜕𝐶𝑤

𝜕𝑡
 

+
𝑢𝑇

∅

𝜕

𝜕𝑥
[𝐾𝐶𝑤 + (1 − 𝐾)𝐶𝑤(𝐹𝑤 +

𝜆𝑜𝜆𝑤

𝑢𝑇𝜆𝑇

𝜕𝑃𝑐

𝜕𝑥
)] 

−
𝜕

𝜕𝑥
[(𝐷𝑤 − 𝐾𝐷𝑜)𝑆𝑤

𝜕𝐶𝑤

𝜕𝑥
+ 𝐾𝐷𝑜

𝜕𝐶𝑤

𝜕𝑥
] + ∅𝜆[𝑆𝑤𝐶𝑤 + 𝐾𝐶𝑤(1 − 𝑆𝑤)] = 0 .    (3.165) 

Then, 

𝐾
𝜕𝐶𝑤

𝜕𝑡
+ (1 − 𝐾)𝑆𝑤

𝜕𝐶𝑤

𝜕𝑡
+ (1 − 𝐾)𝐶𝑤

𝜕𝑆𝑤

𝜕𝑡
+

1 − ∅

∅

𝑎

(1 + 𝑏𝐶𝑤)2

𝜕𝐶𝑤

𝜕𝑡
 

+
𝑢𝑇

∅
[𝐾

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝐾)𝑓𝑤

𝜕𝐶𝑤

𝜕𝑥
+ (1 − 𝐾)𝐶𝑤

𝜕𝐹𝑤
𝜕𝑥

] − (𝐷𝑤 − 𝐾𝐷𝑜)
𝜕𝑆𝑤

𝜕𝑥

𝜕𝐶𝑤

𝜕𝑥
 

−(𝐷𝑤 − 𝐾𝐷𝑜)𝑆𝑤

𝜕2𝐶𝑤

𝜕𝑥2
− 𝐾𝐷𝑜

𝜕2𝐶𝑤

𝜕𝑥2
+ 𝜆[𝑆𝑤𝐶𝑤 + 𝐾𝐶𝑤(1 − 𝑆𝑤)] = 0 .  (3.166) 

Rearranging formula gives: 

[𝐾 + (1 − 𝐾)𝑆𝑤]
𝜕𝐶𝑤

𝜕𝑡
+ (1 − 𝐾)𝐶𝑤

𝜕𝑆𝑤

𝜕𝑡
+

1 − ∅

∅

𝑎

(1 + 𝑏𝐶𝑤)2

𝜕𝐶𝑤

𝜕𝑡
 

+
𝑢𝑇

∅
[𝐾 + (1 − 𝐾)𝐹𝑤]

𝜕𝐶𝑤

𝜕𝑥
+

𝑢𝑇

∅
(1 − 𝐾)𝐶𝑤

𝜕𝐹𝑤
𝜕𝑥

− (𝐷𝑤 − 𝐾𝐷𝑜)
𝜕𝑆𝑤

𝜕𝑥

𝜕𝐶𝑤

𝜕𝑥
 

−[(𝐷𝑤 − 𝐾𝐷𝑜)𝑆𝑤 + 𝐾𝐷𝑜]
𝜕2𝐶𝑤

𝜕𝑥2
+ 𝜆[𝑆𝑤𝐶𝑤 + 𝐾𝐶𝑤(1 − 𝑆𝑤)] = 0 .   (3.167) 

Applying the dimensionless variables to Eq. (3.165) gives: 
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[𝐾 + (1 − 𝐾)𝑆𝑤 +
1 − ∅

∅

𝑎

{1 + 𝑏[𝐶𝑤
∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}2

]
𝜕𝐶𝑤

∗

𝜕𝑡∗
 

= −(1 − 𝐾)[𝐶𝑤
∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]

𝜕𝑆𝑤

𝜕𝑡∗
− [𝐾 + (1 − 𝐾)𝐹𝑤]

𝜕𝐶𝑤
∗

𝜕𝑥∗
 

−(1 − 𝐾)[𝐶𝑤
∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]

𝜕𝐹𝑤
𝜕𝑥∗

+ (
1

𝑁𝑝𝑒𝑤
− 𝐾

1

𝑁𝑝𝑒𝑜
)
𝜕𝑆𝑤

𝜕𝑥∗

𝜕𝐶𝑤
∗

𝜕𝑥∗
 

+ [(
1

𝑁𝑝𝑒𝑤
− 𝐾

1

𝑁𝑝𝑒𝑜
) 𝑆𝑤 + 𝐾

1

𝑁𝑝𝑒𝑜
]
𝜕2𝐶𝑤

∗

𝜕𝑥∗2
− 𝑀{𝑆𝑤[𝐶𝑤

∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅] 

+𝐾(1 − 𝑆𝑤)[𝐶𝑤
∗(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]} ,                          (3.168) 

where 

𝑁𝑝𝑒𝑤 =
𝑢𝑇𝐿

∅𝐷𝑤
 ,                                                (3.169) 

𝑁𝑝𝑒𝑜 =
𝑢𝑇𝐿

∅𝐷𝑜
 ,                                                (3.170) 

𝑀 =
𝜆∅𝐿

𝑢𝑇
 .                                                 (3.171) 

Then, find the finite difference approximation for Eq. (3.168): 

[𝐾 + (1 − 𝐾)𝑆𝑤𝑖
𝑛 +

1 − ∅

∅

𝑎

{1 + 𝑏[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}
2]

𝐶𝑤𝑖
𝑛+1∗

− 𝐶𝑤𝑖
𝑛∗

∆𝑡∗
 

= −(1 − 𝐾)[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]
𝑆𝑤𝑖

𝑛+1 − 𝑆𝑤𝑖
𝑛

∆𝑡∗
 

−[𝐾 + (1 − 𝐾)𝐹𝑤𝑖
𝑛]

𝐶𝑤𝑖+1
𝑛 ∗

− 𝐶𝑤𝑖−1
𝑛 ∗

2∆𝑥∗
 

−(1 − 𝐾)[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]
𝐹𝑤𝑖

𝑛 − 𝐹𝑤𝑖−1
𝑛

∆𝑥∗
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+(
1

𝑁𝑝𝑒𝑤
− 𝐾

1

𝑁𝑝𝑒𝑜
)

𝑆𝑤𝑖+1
𝑛 − 𝑆𝑤𝑖−1

𝑛

∆𝑥∗

𝐶𝑤𝑖+1
𝑛 ∗

− 𝐶𝑤𝑖−1
𝑛 ∗

2∆𝑥∗
 

+ [(
1

𝑁𝑝𝑒𝑤
− 𝐾

1

𝑁𝑝𝑒𝑜
) 𝑆𝑤𝑖

𝑛 + 𝐾
1

𝑁𝑝𝑒𝑜
]
𝐶𝑤𝑖+1

𝑛 ∗
− 2𝐶𝑤𝑖

𝑛∗
+ 𝐶𝑤𝑖−1

𝑛 ∗

∆𝑥∗2
 

−𝑀{𝑆𝑤𝑖
𝑛[𝐶𝑤𝑖

𝑛∗
(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅] + 𝐾(1 − 𝑆𝑤𝑖

𝑛)[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]} ,   (3.172) 

Rearranging formula gives: 

𝐶𝑤𝑖
𝑛+1∗

= 𝐶𝑤𝑖
𝑛∗

+
∆𝑡∗

[𝐾 + (1 − 𝐾)𝑆𝑤𝑖
𝑛 +

1 − ∅
∅

𝑎

{1 + 𝑏[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]}
2]

 

× {−(1 − 𝐾)[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]
𝑆𝑤𝑖

𝑛+1 − 𝑆𝑤𝑖
𝑛

∆𝑡∗
 

−[𝐾 + (1 − 𝐾)𝐹𝑤𝑖
𝑛]

𝐶𝑤𝑖+1
𝑛 ∗

− 𝐶𝑤𝑖−1
𝑛 ∗

2∆𝑥∗
 

−(1 − 𝐾)[𝐶𝑤𝑖
𝑛(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅]

𝐹𝑤𝑖
𝑛 − 𝐹𝑤𝑖−1

𝑛

∆𝑥∗
 

+(
1

𝑁𝑝𝑒𝑤
− 𝐾

1

𝑁𝑝𝑒𝑜
)

𝑆𝑤𝑖+1
𝑛 − 𝑆𝑤𝑖−1

𝑛

∆𝑥∗

𝐶𝑤𝑖+1
𝑛 ∗

− 𝐶𝑤𝑖−1
𝑛 ∗

2∆𝑥∗
 

+ [(
1

𝑁𝑝𝑒𝑤
− 𝐾

1

𝑁𝑝𝑒𝑜
) 𝑆𝑤𝑖

𝑛 + 𝐾
1

𝑁𝑝𝑒𝑜
]
𝐶𝑤𝑖+1

𝑛 ∗
− 2𝐶𝑤𝑖

𝑛∗
+ 𝐶𝑤𝑖−1

𝑛 ∗

∆𝑥∗2
 

−𝑀𝑆𝑤𝑖
𝑛[𝐶𝑤𝑖

𝑛∗
(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅] − 𝑀𝐾(1 − 𝑆𝑤𝑖

𝑛)[𝐶𝑤𝑖
𝑛∗

(𝐶𝐿 − 𝐶𝑅) + 𝐶𝑅] }, (3.173) 

Plotting 𝐶𝑤
∗(𝑥, 𝑡)  combined with the boundary conditions for the leading 

edge:𝐶𝑤
∗(𝑥, 0) = 0 ; 𝐶𝑤

∗(0, 𝑡) = 1  and trailing edge: 𝐶𝑤
∗(𝑥, 0) = 1; 𝐶𝑤

∗(0, 𝑡) = 0 , 



CHAPTER 3                                    MATHEMATICAL METHOD DEVELOPMENT AND RESULTS 

100 

 

the propagation of tracer slug in the water phase is shown in Figure 3.38. For this 

case, the parameter used are𝐾 = 0.2, ∅ = 0.2, 𝑁𝑝𝑒𝑤 = 100, 𝑁𝑝𝑒𝑜 = 500, 𝑎 = 1.5, 

𝑏 = 10 𝑚3/𝑘𝑔 , 𝑀 = 0.0003 , 𝐶𝐿 = 100 𝑘𝑔/𝑚3 , 𝐶𝑅 = 0  with four time steps: 

𝑡1
∗ = 0.16, 𝑡2

∗ = 0.40, 𝑡3
∗ = 0.64, 𝑡4

∗ = 0.88.  

Figure 3.39 shows that as the tracer slug propagates along 𝑥  direction, its shape 

spreads because of dispersion; there is also concentration loss as a result of adsorption, 

partitioning between phases and radioactive decay. Thus, the tracer slug dimensionless 

concentration could not reach 1.0. 

 

Figure 3.39: Tracer slug propagation in water phase 

By comparing Figure 3.38 (water propagation) and Figure 3.39 (tracer slug 

propagation in the water phase), we can see that the tracer slug moves together with 
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water saturation along 𝑥  direction, but relatively slow because of the retardation 

caused by partitioning between phases and adsorption. The water breaks through first, 

then the tracer slug breaks through.  

The effects of decay constant and Peclet number on tracer slug propagation are 

discussed below. Figure 3.40, 3.41 and 3.42 are plotted for decay constants: 𝑀1 =

0.00006, 𝑀2 = 0.0001, 𝑀3 = 0.0003, respectively for three time steps: 𝑡1
∗ = 0.2, 

𝑡2
∗ = 0.5, 𝑡3

∗ = 0.8. 

 

Figure 3.40: Tracer slug propagation in water phase for 𝑴 = 𝟎. 𝟎𝟎𝟎𝟎𝟔 

As can be seen from Figure 3.40, upon propagation, the tracer slug size has an 

observable decrease. When comparing with Figure 3.41 and Figure 3.42, the tracer 

slug concentration loss increases when the decay constant increases. At dimensionless 
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time step 𝑡3
∗ = 0.8, the dimensionless concentration peak for 𝑀 = 0.00006  is 0.7 

shown in Figure 3.40; however, it becomes much lower equals to 0.55 for 𝑀 =

0.0001 (Figure 3.41) and 0.18 for 𝑀 = 0.0003 (Figure 3.42). This phenomenon is 

also observed and discussed in Section 3.2.4. A large decay constant 𝑀 represents a 

large effect of radioactive decay, which results in a large concentration loss.  

 

Figure 3.41: Tracer slug propagation in water phase for 𝑴 = 𝟎. 𝟎𝟎𝟎𝟏 
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Figure 3.42: Tracer slug propagation in water phase for 𝑴 = 𝟎. 𝟎𝟎𝟎𝟑 

In order to investigate the effect of Peclet number, Figure 3.43, 3.44 and 3.45 are 

plotted for Peclet numbers: 𝑁𝑝𝑒1 = 50 , 𝑁𝑝𝑒2 = 100 , 𝑁𝑝𝑒3 = 500 , respectively, for 

three time steps: 𝑡1
∗ = 0.2 , 𝑡2

∗ = 0.5 , 𝑡3
∗ = 0.8 . The dimensionless concentration 

peak of each time step is at the same level. The mixing zone decreases with the Peclet 

number increases, but the change is inconsequential. This is because the effect of 

Peclet number is not that severe when comparing to the large concentration loss 

caused by radioactive decay effect. Thus, we conclude that a small Peclet number 

results in a large tracer slug mixing zone; however, the effect is minor compared with 

other effects. 
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Figure 3.43: Tracer slug propagation in water phase for 𝑵𝒑𝒆 = 𝟓𝟎 

 

Figure 3.44: Tracer slug propagation in water phase for 𝑵𝒑𝒆 = 𝟏𝟎𝟎 
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Figure 3.45: Tracer slug propagation in water phase for 𝑵𝒑𝒆 = 𝟓𝟎𝟎 
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Chapter 4 Results and Discussion 

4.1 Comparison of Models 

The models in Chapter 3 are plotted at 𝑡1
∗ = 0.3 , 𝑡2

∗ = 0.5 for the purpose of 

comparison shown below. The breakthrough time of each model (𝑡𝐵
∗) is also plotted 

in each figure to show the effects of flowing mechanisms on tracer breakthrough 

times. 

 

Figure 4.1: Tracer slug propagation for convection dispersion model 

The tracer slug mixing zone increases upon propagation in the convection dispersion 

model in Figure 4.1 and breaks through at 𝑡𝐵
∗ = 0.78. Both the leading edge and 

trailing edge act as spreading waves, which is caused by dispersion. The tracer 

dimensionless concentration peak at every time step equals to 1.0. 
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Figure 4.2: Tracer slug propagation for convection adsorption model 

Figure 4.2 shows that the leading edge for convection adsorption model acts as shock 

while the trailing edge acts as a spreading wave, and the trailing edge starts to catch 

up with the leading edged upon propagation. The tracer dimensionless concentration 

peak still equals to 1.0, same as the previous case; however, the tracer slug size 

shrinks because of the concentration loss caused by adsorption. The tracer slug 

breakthrough time got delayed by adsorption (𝑡𝐵
∗ = 0.85). 
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Figure 4.3: Tracer slug propagation for convection dispersion adsorption model 

Figure 4.3 shows the tracer slug propagation when dispersion is added to the 

convection adsorption model. It is illustrated that both the leading edge and trailing 

edge of the tracer slug got smoothed by the effect of dispersion. The dimensionless 

concentration peak still equals to 1.0 for this case. The tracer slug breaks through 

earlier than the convection adsorption case at 𝑡𝐵
∗ = 0.83. 

Figure 4.4 shows the convection dispersion adsorption radioactive decay model for 

tracer slug propagation. The tracer slug has a large concentration loss when 

radioactive decay effect is added. The tracer dimensionless concentration peak can 

never reach 1.0 because of the large concentration loss caused by radioactive decay. 

The tracer slug breakthrough time does not change much at 𝑡𝐵
∗ = 0.84. 
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Figure 4.4: Tracer slug propagation for convection dispersion adsorption 

radioactive decay model 

 

Figure 4.5: Tracer slug propagation for convection dispersion adsorption 

partitioning radioactive decay model 
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Figure 4.5 shows the tracer slug propagation for the two-phase complete model, which 

includes convection, dispersion, adsorption, partitioning between phases and 

radioactive decay. The tracer slug concentration peak got declined a lot when 

compared to Figure 4.4, which is caused by the effect of partitioning between phases. 

The dimensionless concentration peak is around 0.2 when the tracer slug got 

produced. The breakthrough time also got delayed at 𝑡𝐵
∗ = 0.95  as a result of 

partitioning. 

4.2 Case Study 

This case study is conducted using the two-phase tracer model discussed in the above 

chapter to interpret the profiles of tracer distributions with different input parameters. 

4.2.1 Objectives 

The objective of this case study is to discuss the effects of partitioning coefficient (𝐾), 

adsorption type and wetting condition on tracer concentration distribution and 

breakthrough time. Twenty-seven runs were designed, using three different 

partitioning coefficients, three different adsorption models and three different wetting 

conditions. The concentration profiles and the tracer breakthrough times for different 

cases are compared followed by a sensitivity analysis of input parameters. 
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Table 4.1: Factors designed for case study 

Partitioning coefficient (𝑲) 0.1 0.5 0.9 

Adsorption type (𝑪𝒔) Zero adsorption Langmuir adsorption Linear adsorption 

Wetting condition Water-wet Intermediate-wet Oil-wet 

4.2.2 Input Parameters 

The input partitioning coefficients and adsorption models are listed in Table 4.1. The 

input wetting conditions are more complex as wetting conditions affect the input 

imbibition capillary pressure curves and the input relative permeability curves. 

However, relative permeability curves are associated with capillary pressure curves 

and can be obtained from capillary curves through the Purcell approach (Purcell, 

1949). In two-phase flow, the relative permeability of the wetting phase and non-

wetting phase can be calculated use the following equations (Purcell, 1949; Kewen 

and Horne, 2006): 

𝑘𝑟,𝑤𝑒𝑡 =
∫ 𝑑𝑆𝑤/(𝑃𝑐)

2𝑆𝑤

0

∫ 𝑑𝑆𝑤/(𝑃𝑐)21

0

 ,                                                (4.1) 

𝑘𝑟,𝑛𝑜𝑛−𝑤𝑒𝑡 =
∫ 𝑑𝑆𝑤/(𝑃𝑐)

21

𝑆𝑤

∫ 𝑑𝑆𝑤/(𝑃𝑐)21

0

 ,                                            (4.2) 

where 𝑘𝑟,𝑤𝑒𝑡 and 𝑘𝑟,𝑛𝑜𝑛−𝑤𝑒𝑡 are the wetting phase relative permeability and the non-

wetting phase relative permeability, respectively. The wetting phase saturation is 

defined as 𝑆𝑤 and 𝑃𝑐 is the capillary pressure, which is a function of 𝑆𝑤. 

Imbibition capillary pressure curves always have a point at which capillary pressure is 
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equal to zero, hence it is impossible to use the above Purcell method, a primary 

drainage capillary pressure is chosen to calculate the normalized relative permeability 

curves. Then, the normalized relative permeability curves are transformed to different 

shapes representing different wetting conditions. The detailed steps are shown below. 

Step 1: use a parabolic equation to represent a leverett J-function curve:  

𝐽 = 5𝑆𝑤
2 − 10𝑆𝑤 + 5.357 ,                                            (4.3) 

and the curve is shown in Figure 4.6 below. 

 

Figure 4.6: Leverett J-function curve 
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and the curves are plotted in Figure 4.7. 

 

Figure 4.7: Normalized relative permeability curves 

Step 3: the connate water saturations and residual oil saturations are chosen for the 

water-wet condition, intermediate-wet condition and oil-wet condition, as shown in 

Table 4.2. Then, the normalized relative permeability curves are squeezed to fit 

different wetting conditions shown in Figure 4.8, Figure 4.9 and Figure 4.10. 

Table 4.2: Connate water and residual oil saturations for different wetting 

conditions 

  water-wet intermediate-wet oil-wet 

𝑆𝑤𝑐 0.3 0.2 0.1 

𝑆𝑜𝑟 0.2 0.3 0.4 
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Figure 4.8: Squeezed relative permeability curves for water-wet condition 

 

Figure 4.9: Squeezed relative permeability curves for intermediate-wet condition 
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Figure 4.10: Squeezed relative permeability curves for oil-wet condition 

Step 4: use cotangent function to imitate the imbibition capillary pressure curves for 

different wetting conditions: 

𝑃𝑐 = 𝑐𝑜𝑡𝑓 + 𝑚 ,                                                        (4.4) 

where, 

𝑓 =
𝑆𝑤 − 𝑆𝑤𝑐

𝑆𝑜𝑟 − 𝑆𝑤𝑐
𝜋 ,                                                     (4.5) 

and 𝑚 is a constant and is chosen to be 𝑚 = 4, 𝑚 = 1 and 𝑚 = −1 for water-wet, 

intermediate-wet and oil-wet respectively, in this case study. The same connate water 
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saturations and residual oil saturations (Table 4.2) are used for the simulation of 

capillary pressure curves. The curves are shown in Figure 4.11. 

Figure 4.11: Imbibition capillary pressure curve for water-wet, intermediate-wet 

and oil-wet conditions 

Step 5: calculate the USBM (US Bureau of Mines) index for different wetting 

conditions and use the index to get the input relative permeability curves from the 

squeezed relative permeability curves in Step 3. 
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𝐼𝑈𝑆𝐵𝑀 = 𝑙𝑜𝑔
𝐴1

𝐴2
 ,                                                     (4.6) 

where 𝐴1 is the area between the positive part of the capillary pressure curve and the 

zero capillary pressure line and 𝐴2  is the area between the negative part of the 

capillary pressure curve and the zero capillary pressure line. The USBM index 

calculated from the above three figures are: 

𝐼𝑈𝑆𝐵𝑀1 = 0.9, for water-wet condition, 

𝐼𝑈𝑆𝐵𝑀2 = 0.3, for intermediate-wet condition, 

𝐼𝑈𝑆𝐵𝑀3 = −0.9, for oil-wet condition. 

In order to get the final input relative permeability curves to fit the criteria in Table 

4.3, the following formulas are used: 

𝑘𝑟𝑤,𝑖𝑛𝑝𝑢𝑡 = [1 − 0.4 × (1 + 𝐼𝑈𝑆𝐵𝑀)]𝑘𝑟𝑤 ,                         (4.7) 

𝑘𝑟𝑜,𝑖𝑛𝑝𝑢𝑡 = 0.4 × (1 + 𝐼𝑈𝑆𝐵𝑀)𝑘𝑟𝑜 ,                                      (4.8) 

where 𝑘𝑟𝑤,𝑖𝑛𝑝𝑢𝑡 and 𝑘𝑟𝑜,𝑖𝑛𝑝𝑢𝑡 are the final input relative permeabilities, 𝑘𝑟𝑤  and 𝑘𝑟𝑜 

are the relative permeability values from Step 3. 

Then, the final input relative permeability curves can be plotted, as shown in Figure 

4.12, Figure 4.13 and Figure 4.14. These relative permeability curves should be input 

in pairs with their corresponding imbibition capillary pressure curves (Figure 4.11). 
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Table 4.3: Criteria for relative permeability curves 

  water-wet oil-wet 

𝑆𝑤@intersection point 

> 50% < 50% 

𝐾𝑟𝑤@𝑆𝑜𝑟 < 0.3 > 0.5 

𝑆𝑤𝑐 > 25% < 15% 

 

Figure 4.12: Input relative permeability curves for water-wet condition 
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Figure 4.13: Input relative permeability curves for intermediate-wet condition 

 

Figure 4.14: Input relative permeability curves for oil-wet condition 
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4.2.3 Results and Discussions 

The above input parameters are applied in the tracer model in chapter 3. Twenty-seven 

runs were conducted as designed previously. The breakthrough time of each case is 

listed in Table 4.4. 

Table 4.4: Breakthrough time for each run 

Run# 𝑲 Adsorption Type Wetting Condition 𝑻𝒃 

1 0.1 Zero Adsorption Water-wet 0.80 

2 0.1 Zero Adsorption Intermediate-wet 0.69 

3 0.1 Zero Adsorption Oil-wet 0.60 

4 0.1 Langmuir Adsorption Water-wet 0.88 

5 0.1 Langmuir Adsorption Intermediate-wet 0.75 

6 0.1 Langmuir Adsorption Oil-wet 0.65 

7 0.1 Linear Adsorption Water-wet 0.95 

8 0.1 Linear Adsorption Intermediate-wet 0.88 

9 0.1 Linear Adsorption Oil-wet 0.78 

10 0.5 Zero Adsorption Water-wet 0.85 

11 0.5 Zero Adsorption Intermediate-wet 0.78 

12 0.5 Zero Adsorption Oil-wet 0.73 

13 0.5 Langmuir Adsorption Water-wet 0.93 

14 0.5 Langmuir Adsorption Intermediate-wet 0.86 

15 0.5 Langmuir Adsorption Oil-wet 0.81 

16 0.5 Linear Adsorption Water-wet 0.98 

17 0.5 Linear Adsorption Intermediate-wet 0.97 

18 0.5 Linear Adsorption Oil-wet 0.93 

19 0.9 Zero Adsorption Water-wet 0.90 

20 0.9 Zero Adsorption Intermediate-wet 0.87 

21 0.9 Zero Adsorption Oil-wet 0.86 

22 0.9 Langmuir Adsorption Water-wet 0.98 

23 0.9 Langmuir Adsorption Intermediate-wet 0.96 

24 0.9 Langmuir Adsorption Oil-wet 0.95 

25 0.9 Linear Adsorption Water-wet 1.00 

26 0.9 Linear Adsorption Intermediate-wet 0.99 

27 0.9 Linear Adsorption Oil-wet 0.98 
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Next, the effects of partitioning coefficient, adsorption type and wetting condition on 

tracer breakthrough time were analyzed. Figures 4.15, 4.16 and 4.17 show the change 

of tracer breakthrough time under different wetting conditions for a certain adsorption 

type (zero adsorption, linear adsorption and Langmuir adsorption). 

 

Figure 4.15: Breakthrough time as a function of partitioning coefficient and 

wetting condition for zero adsorption 

Figure 4.15 shows that for zero adsorption case, the breakthrough time of water-wet, 

intermediate-wet and oil-wet conditions increases as the partitioning coefficient 

increases. The breakthrough time of water-wet is the highest, intermediate-wet is in 

between and oil-wet is the lowest. This observation can be used to imply reservoir 

wetting condition. 

Figure 4.16 and Figure 4.17 show that the linear adsorption case and the Langmuir 

adsorption case have the similar trend as the zero adsorption case, i.e., the 
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breakthrough time of water-wet, intermediate-wet and oil-wet conditions increases 

when the partitioning coefficient increases. Similarly, the breakthrough time of water-

wet is the highest, intermediate-wet is in between and oil-wet is the lowest; however, 

the difference in breakthrough time is not as severe as the zero adsorption case. 

 

Figure 4.16: Breakthrough time as a function of partitioning coefficient and 

wetting condition for linear adsorption 

 

Figure 4.17: Breakthrough time as a function of partitioning coefficient and 

wetting condition for Langmuir adsorption 
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the shortest, and in water-wet condition is the longest. The observation of this 

phenomenon provides a method to indicate reservoir wetting through tracer tests. The 

figures also show that as the partitioning coefficient increases, the breakthrough time 

increases. When the partitioning coefficient is small, the difference in breakthrough 

time is severe for different wetting conditions. As the partitioning coefficient 

increases, the difference in breakthrough time is small. 

Figures 4.18, 4.19 and 4.20 are plotted to show the effect of adsorption type under a 

certain wetting condition, i.e. water-wet, intermediate-wet or oil-wet. 

 

Figure 4.18: Breakthrough time as a function of partitioning coefficient and 

adsorption type for water-wet condition 
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Figure 4.19: Breakthrough time as a function of partitioning coefficient and 

adsorption type for intermediate-wet condition 

 

Figure 4.20: Breakthrough time as a function of partitioning coefficient and 

adsorption type for oil-wet condition 

As can be seen from the above figures, for all the three wetting conditions, linear 

adsorption gives the longest breakthrough time and zero adsorption gives the shortest 

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

B
re

a
k

th
ro

u
g

h
 t

im
e 

T
b

 

Partitioning coefficient K 

Linear Adsorption

Langmuir Adsorption

Zero Adsorption

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

B
re

a
k

th
ro

u
g

h
 t

im
e 

T
b

 

Partitioning coefficient K 

Linear Adsorption

Langmuir Adsorption

Zero Adsorption



CHAPTER 4                                                                                            RESULTS AND DISCUSSION 

125 

 

breakthrough time, and Langmuir adsorption is in between. The Langmuir and linear 

adsorption models predict similar breakthrough times when partitioning coefficient is 

large; however, with a small partitioning coefficient, adsorption model has an effect. 

Thus, an accurate adsorption model is important for tracer breakthrough time 

prediction.  

In conclusion, this case study indicates that adsorption type, partitioning coefficient 

and reservoir wetting condition do have effects on tracer flow. Investigating the effect 

of partitioning coefficient gives guidance for tracer test design; investigating the effect 

of adsorption type gives instruction for tracer test modeling; investigating the effect of 

wetting condition shows that tracer test could be applied to determine reservoir 

wetting. 
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Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

This research covers the numerical modeling of one-dimensional single-phase tracer 

flow and two-phase partitioning tracer flow that includes convection, Langmuir 

adsorption, partitioning between phases, hydrodynamic dispersion and radioactive 

decay. The final complete model implemented in Matlab is an improvement of 

previously-used models as it includes radioactive decay and uses Langmuir adsorption 

instead of linear adsorption. From the discussion and comparison of different tracer 

models, we conclude that: 

1. The tracer profile from convection dispersion equation acts as a diffusive wave, 

i.e., the mixing zone tracer slug expends, which is caused by dispersion. The 

larger the dispersion coefficient, the larger mixing zone of the tracer slug. 

2. The effects of adsorption and partitioning between phases decrease the tracer slug 

propagation. Thus, the breakthrough time is delayed by adsorption and 

partitioning between phases. 

3. Radioactive tracers get large tracer concentration losses caused by the radioactive 

effect and the smaller the half-life, the larger the concentration loss. 

4. The complete model with convection, Langmuir adsorption, partitioning between 

phases, hydrodynamic dispersion and radioactive decay can predict the tracer slug 

propagation and the tracer breakthrough time accurately. 
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Finally, for the case study, different adsorption models, different partitioning 

coefficients and different reservoir wetting conditions were chosen and the 

conclusions are: 

1. The tracer slug in an oil-wet porous media breaks through earlier than the 

intermediate-wet condition and the latest break through is for the water-wet 

condition. This can be used to measure reservoir wetting conditions.  

2. When the partitioning coefficient increases, the breakthrough time increases.  

3. A small partitioning coefficient results in a relatively large difference in 

breakthrough time for different wetting conditions. The difference in breakthrough 

time is inconsequential when the partitioning coefficient is close to 1. 

4. A linear adsorption model gives the longest breakthrough time, a zero adsorption 

model gives the shortest breakthrough time, and a Langmuir adsorption model is 

in between. When partitioning coefficients are large, Langmuir and linear 

adsorption models behave similarly. When partitioning coefficients are small, 

there are marked differences in adsorption models. Thus, an accurate adsorption 

model is important for tracer breakthrough time prediction. 

5.2 Recommendations 

Recommendations for future work include: 

1. The model could be extended to two-dimensional or even three-dimensional three-

phase flow using stream line models combined with the one-dimensional models. 
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2. A further experimental tracer study is recommended to compare with numerical 

tracer models. 

3. The effect of adsorption on tracer flow should be studied in more detail. In this 

thesis, we only show that differences can be observed when using different 

adsorption models. However, for tracers with very low adsorption capacity, the 

difference could be small, while for easily adsorbed tracers, it would be important 

to choose an accurate adsorption model. The differences are also affected by the 

value of partitioning coefficients. Thus, further work could be done in finding the 

critical conditions for using different adsorption models. 
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