CYTOLOGICAL STUDY OF SOME CHROMATIN BOUND ENZYMES IN ALLIUM CEPA L BY IN VITRO AUTORADIOGRAPHY CENTRE FOR NEWFOUNDLAND STUDIES # TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permission) JEREMIAH F. PAYNE Cytological Study of Some Chromatin Bound Enzymes in Allium ceps L. by in vitro Autoradiography Jeremiah F. Payne, B. Sc. A Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Fhilosophy Department of Biology Memorial University of Newfoundland July 1975 St. John's Newfoundland "The biologist who is interested in cell physiology should not be a morphologist, or a physiologist, or a biochemist: He should not only be capable of using physiological and biochemical methods as well as the microscope, but he should utilize them all in attacking his problem." Jean Brachet #### ABSTRACT Autoradiography has been used with triffated precursors to cytologically demonstrate <u>in witro</u> nuclear TeA polymerase, DNA polymerase, poly(ADP-ribose)polymerase and ENA methylase in frozen sections of plant tissue (<u>Allium cops</u> i. cultivar white Barletta). DNA polymerase, poly(ADP-ribose)polymerase and ENA methylase have been cytologically established for the first tips (Free any tissue quirse). This is also the first report of the presence of poly(ADP-ribose)polymerase in higher plants. Different NNA polymerase activities can be reliably demonstrated in cytologic sections. Both nucleolar and nucleoplasmic RNA polymerases appear preformed in onion seed and bulb root tissues. Nucleolar and nucleoplasmic activity is observed in the endospera from the beginning of hydration while in the embryo axis, distinct nucleolar activity is preceded by general nucleoplasmic labelling. Soth nucleolar and nucleoplasmic polymerases were found in bulb roots before appropriating. No G, cells were found in the ungerminated seed, while a small population occurred in the bulb roots. Rare occurrence of S phase nuclei and mitoric figures indicated that alow growth is maintained in the bulb roots and the G, Gills do not represent a true physiologically blocked population. Ultrastructural studies substantiated possible slow growth and (or) degenerative changes in the roots of stored bulbs. INA polymerase activity can be adequately ratained in apparent S.phase nuclei of root meristems. A low layer of activity was demonstrated in the ungerminated seed in the apparent absence of de novo protein synthesis. Nuclei in storage cotyledonary cells, in contrast to ather tissues, were not afficient templates for exogenous INA polymeras In viero mido acid theorporation in cytologic section was decreased with untabglied precursors and polyuridylic acid, but her with profein synthesis inhibitors. . NNA methylase activity was cytologically detacted in root meristematic meclai. Attivity was found over entire muclei with no preferential nucleolar activity. An enryme tentatively identified blochemically as holy(ADPribode)polymerase has been recorded for the first time from a higher plant (tissue, Incorporation from nhortinguida adenine dinucleotide was demonstrated in cytologic weetlond of root meristenatic cells. Incorposation was distributed own whole nucled with no preferential nucleothy labelling. Intense activity was found in all tissues of uncerdinated need embryos. ### ACKNOWLE DGENENTS - I am graceful to my supervisor, Dr. N. K. Sal, sho introduced me to plant cell physiology, for his friendship and guidance during this investigation, and for the independence I was given in development of the study. I am also grateful to Dr. V. N. Stock who freely iteratived use of her laboratory facilities during the early part for this investigation and my supervisory committee for hime and effort. - The technical staff respecially E. Fitzgerald, were often helpful and R. Ficken always kindly gave photographic assistance. - I am also grateful to the Mology Department, Office of the Demi of Graduate Studies and the Government of Newfoundland and Labrador for provision of a fellowship for over two years while a full-time graduate student. - Both my wife and I thank our relatives for help in financial difficulties. #### TABLE OF CONTENTS | <u>Page</u> | |--| | Abstract | | Acknowledgements | | Table of Contents iv | | List of Tables | | List of Figures | | List of Abbreviations xii | | A. Introduction | | General Introduction | | Nucleic Acid Metabolism in Germinating Seeds! An | | Overview: | | RNA Polymerase | | I. RNA Synthesis in Germinating Seeds 8 | | II. Cytological Establishment of a Technique | | for RNA Polymerase Activity | | III. Nucleolar Morphology in Relation to RNA | | Synchesis | | Cell Cycle Studies in Relation to Early Growth | | Processes | | DNA Polyderase | | I. DNA Synthesiz in Germinating Seeds 13 | | TI. Templates for DNA Polymerase in | | Ungerminated Seeds | | III. Cytological Establishment of a Technique | | for DNA Polymerase activity | | | | 실험성 하는 경험이는 가는 밤 보고 | Page | |--|------| | Protein Synthesis | 16 | | I. Protein Synthesis in Germinating Seeds | 16 | | II. Cytological Establishment of a Technique for | | | Nuclear Amino Acid Incorporation | 17 | | Methylases. | 19 | | I. Nucleic Acid and Protein Methylation | w. | | Reactions in Germinating Seeds | 19 | | II. Cytological Establishment of a Technique for | 14. | | Chromatin Methylase | 20 | | Poly (ADP-ribose) Polymerase. | 23 | | Poly (ADP-ribose) polymerase in Germinating | J. | | Seeds | 23 | | II. Establishment of a Technique for Poly (ADP- | | | ribose) Polymerase | 23 | | Materials and Methods | 24 | | II. RNA Polymerase. | . 27 | | II. Tissue Preparation for Electron Microscopy | 28. | | III. Detection of G2 Cell Nuclei , | 30. | | IV. DNA Polymerase. | 30 | | V: DNA Polymerase Template Activity. | -34 | | VI. Amino Acid Incorporation | 36. | | VII. Methylases. | 37. | | VIII. Poly (ADP-ribose) Polymerase | 39 | | to protect the state of the transfer tr | | | Results and Discussion | |--| | 에 그의 어떤 생님이 아니는 얼마를 하는 것이 되었다. 그 회사에 가장 그는 그는 지난 어디를 보고 되었다. | | I. RNA Polymerase | | II. Ultrastructural Observation on Nucleoli | | III. Cell Cycle | | IV. DNA Polymerase | | V. DNA Polymerase Template Activity | | VI. Ultrastructural Observation on Chromatin 3 1 | | 71. Ditiastructural observation on chromatin (3) | | VII. Amino Acid Incorporation | | VIII. Observation on Cytoplasmic Contents of | | | | Ungerminated Embryos | | IX. Poly (ADP-ribose) Polymerase | | 는 회사는 역사는 사람들이 되는 회사 있다. 역사가 하루 환경한 이상을 받았다는 것은 경기를 보고 있다. | | Summary and Conclusions | | | | Bibliography | | Appendix I | | | | Appendix II | #### LIST OF TABLES | able . | Page | |--|--------| | 1. In Vitro Incorporation from 3H-UTP in Frozen | | | Sections of Onion Seed | 41 | | 2. In Vivo Incorporation from 3H-uridine by Onion Seed | Towns. | | Tissue | 53 | | 3. Comparison of Total Number of G2 Cells in Sprouting | | | Onion Bulb Roots and Percentage of Cells in S. Phase | . 76 | | 4. Percentage Onion Seed Root Tip Meristematic Nuclei | | | Displaying Intense In Vitro Incorporation from '3H-TTP | 92 | | 5. Effect of Changes in Reaction Mixture on In Vitro | | | Incorporation from M-TTP in Tissues of Ungerminated | | | Onion Seed Embryos | 109 | | 6. Effect of Exogenous DNA Polymerase on Incorporation Fr | rom | | ³ H-TTP in Ungerminated Onion Seed Embryos | 117 | | 7. Effect of Unlabelled Amino Acids on In Vitro | | | Ancorporation from 3H-amino acid mixture in Ungerminat | ed: | | Onion Seed Embryo | 127 | | 8. Effect of Polyuridylic Acid on In Vitro Incorporation | 35.3 | | from ³ H-Phenylalanine in Ungerminated Onion Seed Embry | ro 128 | | 9. Effect of a Combination of Protein Synthesis Inhibitor | rs | | on In Vitro Incorporation from ³ H-leucine in Germinate | ed . | | Onion
Seed Root Tips | 129 | | 10. Percentage Onion Seed Root Tip Meristematic Nuclei | | | Displaying Intense In Vitro Incorporation from 3HNAD | 158 | ## LIST OF FIGURES. | Lgure | <u>. 1</u> | <u>age</u> | |---------|---|-----------------| | 1. | Schematic Diagrams of A. an Onion Bulb, B. an | | | 1 | Onion Bulb Root Tip and C. an Onion Seed | 26 | | 2A. | In Vitro Incorporation from 3H-UTP into Unhydrated | | | | Onion Seed Endosperm after 0.5 hr Enzyme Incubation . | 43 | | 2В. | In Vitro Incorporation from 3R-UTP into Unhydrated | | | 300 | Onion Seed Endosperm after 1 hr Enzyme Incubation | 45 | | 2C. | In Vitro Incorporation from 3H-UTP into Onion Seed. | | | | Endosperm after 2 hrs Hydration | 47 | | 2D. | in Vitro Incorporation from 3H-UTP into Onion Seed | | | | Endosperm after 7 hrs Hydration | 49 | | 3. | In Vitro Incorporation from 3H-UTP in Ungerminated | 14.6 g 30 1. ja | | | Onion Seed Embryos | 51 | | 4. | In Vitro Incorporation from H-Uridine in Onion Bulb | | | | Root Meristems | 55 | | 5. | In Vitro Incorporation from 3H-UTF in Onion Bulb | 2004 400 | | | Unsprouted Roots | 57 | | 6. | Electron Micrograph of a Nucleolus from Onion Seed | | | 1 | Embryo Tissue demonstrating the Continuity of the | | | 83 | Nucleolar Chromatin | | | 7. | Electron Micrographs of Nucleoli from the Cotyledon | | | 1.2 | Tip of Onion Seed Embryos | 65 | | . 8. | Electron Micrograph of a Nucleolus from an | a de la | | | Unsprouted Onion Bulb Root | 68 | | a. h. s | 6 | | | Figure | Page | |------------|---| | 9. | Identification of Unlabelled and Labelled Mitotic | | Santa Per | Figures in Sprouted Onion Bulb Roots for G2 Analysis, 74 | | 10. | Detection of S Phase Nuclei and Mitotic Figures in | | | Unsprouted Onion Bulb Roots | | 11. | Electron Micrograph Showing Cell Wald Breakdown in | | | Unsprouted Onion Bulb Roots 81 | | 12. | Electron Micrograph Showing Concentric Whorl of Rough | | W. J. | Endoplasmic Reficulum (rer) from an Unsprouted Onion | | | Bulb Root Cell, 83 | | 13. | Electron Micrograph Showing Stacks of Rough | | | Endoplasmic Reticulum and Detached Vesicles from an | | | Unsprouted Onion Bulb Root Cell | | 14.6 | in Vitro Incorporation from 3H-TTP in Onion Seed Root | | | Tip Meristematic Nuclei | | 15. | In Vitro Incorporation from 3H-TTP in Faulgen Stained | | 4470 | Squaskes of Sprouted Onion Bulb Root Meristems 94 | | 16. | In Vatro Incorporation from ³ H-TTP in Onion Seed Root | | J. 1. 1. 1 | Tip Meristematic Nuclei after Freeze Permembilization | | | of Thick Tissue Slices | | 17. | In Vitro Incorporation from 3H-TTP in Onion Seed Root | | | Tip Meristematic Nuclei after Toluene Permeabilization | | 1991 | of Thick Tissue Slikes | | 18/ | In Vitro Incorporation from 3H-TTP in Onion Seed Root | | 1. | Tip Meristematic Nuclei after Freeze Permeabilization | | i | of Thick Tissue Slices | | I | | | 1 | | | Fi | gu | 21 | |----|----|----| | | | | Page | 19. | In Vitro Incorporation from 3H-TTP in Onion Seed Root | |-------|--| | | 10 VICIO INCOSPORACION ITOM N. III IN ONION BEEG MOST | | | Cap Nuclei after Freeze and Toluene Permeabilization. 103 | | 2.2 | oap Mucher arter Freeze and fordene Fermeautification. 103 | | 20 | In Vitro Incorporation from 3H-TTP in Ungerminated | | 20. | in vitro incorporation from "H-IIP in ungerminated . | | | | | | Onion Seed Embryos | | | | | 21. | In Vitro Incorporation from CH-TTP in Ungerminated | | 1.0 | | | | Onion Seed Embryos | | | | | -22. | In Vitro Incorporation from 3H-TTP with Exogenous DNA | | A | The second of th | | | Polymerase in Ungerminated Onion Seed Embryos 114 | | 1. 16 | the contract of o | | 23. | In Vitre Incorporation from 3H-TTP with Exogenous DNA | | | | | | Polymerase in Ungerminated Onion Seed Embryos [116 | | | | | 24. | Electron Micrograph Showing Gondensation State of the | | | | | 1 1 | Chromatin in Onion Seed Embryo Tissue 122 | | | | | 25. | Electron Micrograph Showing Condensation State of the | | | | | · | Chromatin in Onion Seed Embryo Epicotyl Nuclei 124 | | 2 17 | The state of s | | 26. | In Vitro Incorporation from 3H-leucine in Onion Seed | | | In view incorporacion viola in reactine an outon seed | | | Root Tip Meristematic Nuclei | | | ROOT TIP MELISCEMENT MUCLEI, | | 271 | Electron Micrograph Showing Storage Body Contents in | | 21 | areacton arcrograph anowing storage body contents in | | | Onion Seed Embryo Cotyledon Tissue | | 100 | onion seed Emplyo Cotyledon Hissue | | 28. | Electron Micrograph Showing Storage Body Contents in | | . 20. | Lieutron micrograph showing Storage body Contents in | | | Onion Seed Embryo Cotyledon Tissue | | 200 | Onion Seed Emoryo Cotyledon Hissue | | . 29. | Electron Micrograph Showing Storage Body Contents in | | . 29. | Electron Micrograph Showing Storage Body Contents in | | 3 300 | Name Carlos and Control of the Late Control of the | | 150 | Onion Seed Embryo Epicotyl Tissue | | 30. | | | 30. | Incorporation from 3H-methionine into Onion Seed Root | | | Table and the first of firs | | | Tip Nuclei | X | 31. In Vitro Incorporation i | |--| | methionine into Onion Se | | , actizonine theo onion be | | Meristematic Nuclei | | | | 32. In Vitro Incorporation i | | | | Dinucleotide into Onion | | Nuclei and Ungerminated | | Macros unia, diagrammator | | 33. Radiochromatogram Detect | | | | as Possible Products of | | | | | | | | | | | | | | Note that the latest | | | | | | Take about the facilities for | | | | | | ng NATON THE STATE OF | | | | | | | | | | 1. 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | | | | | SCHOOL TO THE STATE OF | | S | | | | # J | | Tara a | | | | | | | Page. In Vitto Incorporation from ³H-S-adenosyl-methylmethionine into Onion Seed and Bulb Root Tip Meristematic Nuclei 150 In Vitto Incorporation from ³H-Nicotinamide Adenine
Radiochromatogram Detection of AMP-ribose and AMP as Possible Products of a Poly (ADP-ribose) polymer.160 #### LIST OF ABBREVIATIONS | | 되어는 집투자 하느라 그렇는 가는 건강하 | |--|---| | ADPr | Adenosine diphosphate ribose | | ATP | Adenonsine-5-triphosphate | | and the second second | degrees centigrade | | | | | Ci | curies | | cRNA | chromosomal RNA | | CTP | cytldine-5-triphosphate | | dATP | deoxyadenosine-5-triphosphate | | 2,4-D | 2,4 dichlorophenoxyacetic acid | | dCTP | deoxycytidine-5-triphosphate | | Charles San Age 1 | | | age of the force of the co | deoxyguanosine-5-triphosphate | | DNA | deoxyribonucleic acid | | DNAseI | deoxyribonuclease I | | dTT | dithiothreitol | | The second secon | guanosine-5-triphosphate | | Hepes. | Hydroxyethylpiperazine ethanesulfonic acid | | hnRNA | heterogenous RNA | | mRNA | messenger RNA | | NAD | nicotinamide adenine dinucleotide | | NEM | N-ethyl maleimide | | NOR | nucleolar organizing region | | pCMB | p-chloromercuribenzoate | | PEI | polyethyleneimine | | poly (ADP-ribose) | poly (adenosine diphosphate ribose) | | The state of the state of | | | poly U | 그리 얼마나 말하다는 그리고 하는 사람들이 되는 것이 되었다. 그는 그 없는 것이 없는 것이다. | | RNA | ribonucleic acid | #### -444 rBNA ribosomal RNA s.a. specific activity SAM S-adenosyl-methionine snRNA, small molecular weight, monodisperse RNA Tris tris (hydroxymethyl) methylamine tRNA transfer RNA TTP thymidine-5-trisphosphate UTF uridine-5-trisphosphate #### INTRODUCTION ## General introduction The understanding of the role of nucleic acids in the flow of information from game to protein has been significantly advanced wince the early 1920's when it was eill believed that ribonucleic acid was a unique "plant nucleic acid" and the only function suggested for decoyribonucleic acid was togact as a pH buffer within the nucleus (Brachet, 1957). Most of the basic concepts of gene activity, however, has been gained from biochemical studies of DNA, RNA and protein syntheses in microbes coupled with elegant experiments in microbical genetics. Although much remains to be learned about the control mechanisms of gene activity and expression in prokaryotes, an understanding of basic concepts has burreconed under an intensity and deliverseconed und Similarly, there are still many problems to be solved in understanding regulatory mechanisms for DNA synthesis and the transcription of genetic information in wukaryotic cells. A great effort is being centered on the structure and function of chromatin. Research areas include delineating specific chromatin solecules, analyzing their physiochemical properties either pure or in teconstituted mixtures, and studying chromatin enzymology. From these studies it is hoped to gain insight on the role of chromatin in cell growth and differentiation. The term chromatin was used as early as 1882 (Flemming, 1882) to describe the basic staining material of the cell nucleus, and in current use denotes the diffuse interphase form of the chromosomes of eukaryotic cells. It is now well recognized as a complex containing, in addition to DNA, small amounts of RNA, basic proteins (histones) about equal in mass to DNA, and a variable amount of highly heterogeneous acidic proteins (Simpson, 1973). There are also ecattered reports of the possible presence of lipid and saccharide components forming various complexes as liporibonucleoprotein or mucopolysaccharides. While differences exist, particularly for acidic proteins, similar complexes of DNA with five main classes of histone have been isolated from almost all types of cells, both in conimals and plants. Despite this similar constant chromatin structure, phenotypic variation as different as onion bulb root tips and nerve tissue is found. The major question in chromatin physiology is how control of expression of genetic information occurs in eukaryotic cells so as to allow such diversity. It is well known that chromatin serves as a substrate for a number of enzymes involved in DNA replication, DNA transcription, DNA repair processes and chemical modifications of nuclear proteins (Simpson, 1973). The best known of these enzymes are the DNA dependent BNA and MNA polymerases. Other enzymes known to be involved in chemical modification of template proteins include the kinases, acctylance, and methylases with the kinases being the ones best characterized. These kinases are believed to phosyhorylate histones altering their interaction with IRA, and thereby modifying template properties. It is now believed, however, that methylation of chromatin proteins als probably the most complex of the modification reactions, with several different enzyme activities being described. In addition to protein methylation reactions, methylates, which have not been well characterized are known to set on chromatic DNA and 280A. In 1968 work at Jensen's laboratory in California (Fisher, 1968) showed that a reliable level of incorporation from tritiated UIF could be retained in nuclei, when frozen sections of plant tissue were incubated in an assay mixture similar to that used in blochemical studies for the demonstration of the acid insoluble product of ENA polymerses. As noted by Fisher, such lopen methods can extend the more common autoradiographic studies of isotopic incorporation by living tissues. With the in vitro method, problems which may be circumvented include substrate or precursor penetration and metabolism, dilution of isotope by endogenous precursors, Fable changes in synthetic matterns, technical difficulties of incubating, injecting or otherwise administering in livope in vivo in a particular structure or tissue, as well as elimination of the possibility of enzyme product, novement within the cell. This concept of chromatin enzyme demonstration by autoradiography with tritiated precursors on frozen sections was exploited in the studies reported here. Experiments were first performed to determine if the cytological RNA polymerase method of Fisher could be used with germinating seed tissues to demonstrate the enzyme in differentnuclear regions and (or) in different tissues. This was followed by experiments to determine if the products of DNA-polymerase, nucleic acid or protein methylase; and the recently discovered polymer forming enzyme poly (ADP-ribose) polymerase could be reliably demonstrated in the nuclear chromatin of frozen sections after incubation and autoradiographic preparation procedures. In addition experiments were carried out to see if protein synthetic activity could be similarly retained in nuclei (it is realized that it is still questionable what components of the presumed nuclear protein synthetic apparatus, is associated with chromatin at the time of protein synthesis). A reliable demonstration of these enzymes could prove fruitful in studies of chromatin physiology in the differentiating cell. Besides affording a direct observation of enzyme activity patterns in different tissues, an open in vitro system offers a potential for studies of the effect of various factors such as hormones and enzyme inhibitors or activators in specific tissues. It is realized that all techniques, these notwithstanding, have their limitations, but it is always hoped that in studies of cell systems undergoing any aspect of development, growth and differentiation, establishing enzyme activities histochemically, can help to bridge the often apparent gap between elegant histologic studies of tissue differentiation and the more sophisticated methods of biological chemistry and physiology. The use of plant tissues represent not only the author's personal bias towards plant cell physicology but an unserstanced send embryo is also a convenient model for developmental studies. In the germinating seed a partially differentiated embryo resumes its course of development after a period of 'quisecence'. Populations of cells are 'blocked' in various differentiated
states, and thus exhibit a characteristic pattern of metabolism in the germinative phase. Thus, each tissues has a determined metabolic pattern and a stored 'blueprint' for further development when the seed is triggered into growth by environmental, stimuli. Storage cotyledon and endospern tissues are sometimes spoken of as having reached a 'committed' stage of development state they are usually unable to divide, and change phase unlike potential merigicant tissues which contain an 'uncommitted' blueprint. It should be attenued that the primary aimfof these studies is not to demonstrate or characterize assential enzyme activities peculiar to seed garmination. From the present state of knowledge of the endartyotic cell there is no reason to believe that the basic concepts of chromatin form and function differ videly in either plant or animal cell differentiation. It is realized, however, that may novel enzyme methodology is best interpreted in relation to the whole organism, as well as in relation to specific cell of subcellular functions. In these studies an attempt was made to relate entyme activity to resting or growth characteristics of the "functioning" organism. The work thus is involved in the wider context of early seed germination or build sprouting. A large portion of current remeatch on germination in devoted to elucidating the mechanisms of synthesis and activation of enzymes and proteins during the early Mours of germination. The techniques used here to demonstrate enzymes in situ will add to these studies. ## Nucleic acid metabolism in germinating seeds: An overview The more general aspects of nucleic acid metabolism in germinating seeds have received some attention and much work has dealt with the protein or nucleic acid synthetic capacity of dry or germinating seeds and the overfall picture, that has developed is one of, a limited mains acid incorporating ability, with both protein and RNA synthesis occurring earlier than RNA replication in germination. Germination characteristics of various species, however, have not been clucidated in terms of overall nucleic acid or protein synthesic capacity. A review of the literature at the beginning of these studies revealed a lack of knowledge on nucleic acid metabolism in plant provth, specifically in relation to seed germination, typified by cells passing from a resting state, which oid last for many years, to a proliferative growth phase. It was separant that the level of understanding laked far-behind developments in cell growth and differentiation in other fields. It was controversial (and still is) as to what types of RNA, either presumptive ribosomal or messenger, were synthesized at the initiation of germination, while in nummalian systems a whole spectrum of RNA polymars were being identified in cell and tissue studies. Plant tissue RNA polymerases were little characterized and no information existed on possible different polymerases present in nucleolar and extranucleolar chromatin. At least one study (Barker and Rieber, 1967), however, presented circumstantial evidence for RNA polymerase in ungerminated seeds. Little information which might explain the lag period of DNA synthesis in germination, except the general observation of a requirement for a protein synthesis period, was available. There was little or no data establishing DNA polymerase or precursor enzymes for DNA synthesis in dry or germinating seeds. In 1970 a paper on the partial purification of DNA polymerase in germinating corn reported the first attempt at extensive characterization of the enzyme in germinating seed (Stout and Arens, 1970). There seemed a virtual look of information on DNA repair replication activities and much evidence has pointed to a need for 'replication' proteins in DNA synthesis, other than those involved in precursor production, or polymerases and ligases; no evidence on these has been forthcoming from seed germination systems. Similarly, there was a limited literature on chromatin availability in relation to RNA and DNA polymerase activity in plant growth, and no data on possible chromatin modification reactions as methylations or ribosylations. The study reported here involves attempts to demonstrate RNA and DNA polymerase in dry or germinating seeds. In addition to the two chromatin polymerases, two chromatin modification systems were investigated methylation reactions by methylases and ribosyl reactions by poly(ADPribose) polymerase. Thus, in addition to establishing & histochemicalbasis for these enzymes in chromatin, it was hoped to gain at least a ladited insight into their role in whole organism physiology. A general problem in seed germination protein synchesis is the lack of distinct protein formation until after several hours germination, even though shino acid incorporation is apparent early in imbibition. An attempt was made to determine if amino acids were incorporated an vitro in nuclei of dry or germinating seeds. ## RNA polymerase ## I RNA synthesis in germinating seeds A characteristic of germinating seeds is the regeneration of the ribosoxial system (Marre, 1967; Barker and Rieber, 1967; Sturani, 1968; Fayne and Boulter, 1969; Chan et al., 1971) with concomitant production of endymes (Chrispeals and Varner, 1967) for sicilization of reserve food. In some plants the first RNA to be synthesized in seed germination is believed to be mostly ribosomal and transfer RNA (Meiera, 1971; Frankland et al., 1971; Jakob, 1972; Walbet, 1972) while in others it is suggested that m RNA synthesis predominates (van de Walle, 1969; Delkour, 1970). This may, however, be related to the DNA-replicative state of the presumptive meristematic nuclei. Protein synthesis is activated in germinating wheat embryos after 30 min. imbibition (Marcus et al. 1966) while RNA synthesis is observed in germinating seeds only after a period of several hours (Holdgate and Goodwin, 1964; Chandra and Varner, 1965; Chen and Katchalski, 1968; Chakravorty, 1969; Price and Murray, 1969; Tanifugi et al., 1970; Chen et al., 1971). The earliest incorporation (3 hr.) of a pyrimidine precursor into a seed embryo has been reported for wheat (Chen et al., 1971). Rejmin and Buchowicz (1971) have detected immediate incorporation of RNA precursors in intact wheat seeds, after soaking in precursors for 8 hours at 2°C. during which time no incorporation was detected in the acid insoluble fraction. Studies in both dormant and non-dormant tissues (Tuan and Bonner, 1964; Jarvis et al., 1968; Duda and Cherry, 1971) have shown that gibberellic acid may control early germination by gene derepression which increases the amount of DNA template available for transcription and subsequently RNA polymerase activity. Such increased activity, however, has only been apperent after several hours or even a few days germination. Barker and Reiber (1967) reported that the nuclear fraction of dry pea seeds was able to incorporate a low level of ATP into acid precipitable material after 1 hour incubation, suggesting the presence of RNA polymerase activity in resting seeds. II Establishment of a cytological technique for RNA polymerase activity An attempt was made to investigate in vitro RNA polymenae activity in dry and germinating onion meeds by fragen section autoradiography. Previous work (Mailery, 1971) characterized nucleic acid metabolism in the root spex during, germination and Muuridine was not incorporated into RNA in vivo before 18 hours germination. ## III Nucleolar morphology in relation to RNA synthesis Since nucleolar morphology is believed to be related to rthosonal DNA synthesis in the cell cycle, preliminary electron picroscopic observations ever make on this bramelle in both onton seed embryo and bull root tissues. Ithe nucleolists between to be associated With a secondary chromosome houst cities—Geoliurock 1934; Ferguson-Smith, 1964), the sense in Libbs region coding for ribosomal BNA (Wallace and Birnatell, 1966; Ritoses and Spiegelman, 1965). The ultrastructure and cytochemistry of the nucleolar mass, in Allium root meristematic cells have been intensely actudied (Choulandra, 1966s; Choulandra, 1966s); Choulandra, 1970; Lanoghine and Lord, 1975). Using DNA synthesis as a marker, cell interphase, can b subdivided into G, S, and G, periods (Howard and Pelc, 1953); S; designates the period of DNA synthesis, while G, ("gap 1") and G, ("gap/2") denote the intervals of interphase during which no nuclear DNA synthesis takes place, with G, preceding and G, following the S period. In growth initiation studies (e.g. seed germination) it is important to establish cell cycle states since synthetic patterns depend on the relative proportion of cells in G, S, or G. For instance, cell cycle biochemical studies have demonstrated a requirement for a period of protein synthesis before a cell at rest in G. can enter and continue a DNA synthetic cycle and the required proteins may be programmed from preexisting RNA's or RNA species partially or totally synthesized de novo at the time of metabolic activation. If cells were, however, arrested in G, and thus had already gone through their DNA synthetic phase, the initial/pattern of macromolecular synthesis could be both qualitatively and quantitatively different. Of equal interest, besides as a marker for specific synthesis, is the task of emphishing a physiological role for G₂ blocked populations. In the domain or quiescent state some plant-species contain mixed G₁ and G₂ populations, while other species contain only G₁ cells (Sryans, 1969s, 5). Some cells "rest" in 8 but this is believed to be rare in root periaces of higher plants (Brunori and D'Amato, 1967; Davidson, 1966; Stein and Quartler, 1963). "Conditions similar to cell tycle \tau resting' periods can be experimentally induced. Excised pea roots may be induced to accumulate exclusively in 6 or 6 periods of the sitotic cycle when cultured in medium without exogeneous carbohydrate (Whn't Wer and Rost, 1972)
similar to that found in the dormant dry seed radicle (Brunori et al., 1970). It, remains to be determined if 'cell, carbohydrate starvation has 4 hypsiological role in vivo. In masmals, proteinaceous substances (chalones) that affect call arrest or blockage in 0, or 0, have been reported (Bullough and Debl, 1971; Frankfurt, 1971). A recent report (Evans and Van't Hof, 1974) has demonstrated that a mon-proteinacrosus factor from the cotyledon of peas-promotes call arrest in 0, in mature root tissue as well as stationary phase, root and choot meristers. Since this factor is non-proteinaceous; it is doubtful if any homology exists between plaint and antmal chalones. In this study, both onion bulb roots and seeds were checked for 62 cells. Since preliminary studies suggested slow growth or degenerative changes under storage, ultrastructural observations were carried out to investigate such changes. #### DNA polymerase #### I DNA synthesis in germinating seed DNA synthesis occurs after the initiation of protein and (or) RNA synthesis in germinating seeds (Jakob and Boyey, 1969; Chen and Osborne, 1970; Melera, 1971; Mory et al., 1972) and early protein synthesis may be required for subsequent DNA replication. The replication lag period could be due to such general control mechanisms as (a) lack of an active template (b) shortage of enzymes for DNA precursor production or (c) enzymes directly involved in replication, as DNA polymerases and ligases or (d) the presence of inhibitor(s) which may act at any point in the replication process. When this study was initiated there was little or no biochemical information on the presence of DNA polymerases in ungerminated seeds. In 1970 the first report (Stout and Arens, 1970) on the partial purification and characterization of a DNA polymerase from a higher plant (germinating Zea mays) appeared. Experiments were designed to investigate if the DNA polymerase replication complex could be retained in S phase nuclei of germinating onion seed in cytologic sections. The method developed was also used to assess DNA polymerase activity in dry seeds. The germinating onion seed is a suitable organism for studying DNA synthesis requirements, since there is more than a 30 hour lag before in vivo DNA synthesis (Melera, 1971). II Templates for DNA polymerase in ungerminated onion seed embryos The Lig in DNA replication in germinating seeds could be due to lack of 'active' templates for DNA polymerase. The relation between chromatin states and BNA polymerase activity in plant tissue has received some attention (Jarvis et al., 1988; McComb et al., 1970; Johnson and Purves, 1970; Teinsere et al., 1972) and at least one report has demonstrated template sodification (in soybean hypocotyl tissue) by a plant hormone (2,4-D) effecting an increase in DNA polymerase activity (Leffler et al., 1971). Experiments were carried out on cytologic sections to see if tissues of the ungerminated onion seed retained active templates for exogenous DNA polymerase. ## III Establishment of a cytological technique for DNA polymerase Experiments were cartied out to determine if the DNA replicase complex could be retained in cytologic sections of germinating onion seeds. The events that lead to polymerization of DNA in the cell are poorly defined. DNA polymerases, whose physiological function avait elucidation, have been characterized in a number of cell systems (especially bacterial) on the basis of type of primer, thermal stability, chromatographic behaviour, molecular weight, and sensitivity to ionic strength, sulfhydryl reagents, nucleoside triphosphates, nucleases and antisers. Progress in the study of these enzymes in mammalian cells has been hampered because they are hard to purify, coupled with a loss of activity in separation procedures. In general, DNA polymerase activity of mammalian non-symehronized cells has been shown to be distributed in both cytoplasm, and nuclear fractions with most of the activity in the cytoplasm (Janus et pl. 1971). Recent work (Weissbach et al. 1971; Haines et al. 1971; Long and Garren, 1972; Chiu and Sung, 1972) has however, demonstrated differences between the mollear and cytoplasmic enkymes, and even cytoplasmic polymerases have been shown to consist of many molecular species (Toshida et al. 1974). In vitro DNA polymerase activity, either extensively or partially purified has received little attention in plant tissue (Stout and Arens, 1970; Leffler et al. 1971; Most et al. 1972; Dunham and Cherry, 1973; Srivastava, 1974). Most of these investigations have appeared since these statics were initiated. It has been suggested (Stavrtanopoulos et al., 1971) that the clucidation of DNA blosynthesis requires the scolation of a multisuryme complex, which gam effect the unwinding of the DNA template, as well as its transcription, replication, excision, repair and ligation. Oytological studies at the level of the DNA replication complex could prove fruitful in an understanding of its biological role in the cell cycle and especially its expression in tissue differentiation. With an efficient cyclological technique for DNA polymerase, the possible effects of various hormones, subcellular fractions, and the many substances which have been shown to affect DNA synthesis could be impartisated, for instance, in the specific cell types of a model differentiating system as a root meristam, whose tissues are not separable by conventional biochemical methods. Nordover, at the level of electron microsecotic autoreatiography, and opportunity becomes possible for investigation of DNA polymerase activity in the euchromatin and heterochromatin of various tissues. #### Protein synthesis ## I. Protein Synthesis in germinating seeds Dry seeds retain the capacity for amino acid incorporation; several studies have shown that seeds contain ribosomes capable of protein synthesis as well as preformed mRNA (reviewed by Boulter, 1970; Zalik and Jones, 1973; Mayer and Shain, 1974). Upon imbibition, the activation of protein synthesis may be due to such processes as the information of polymers from existing ribosomes and mRNA (Marcus, 1969) or ribosomal dissociation into subunits before the attachment of mRNA (App et al., 1971). Although low levels of amino acid incorporation can be detected early in germination, there is doubt as to the early formation of protein products. Preformed mRNA's have been suggested to be present in dry seeds, but there is little evidence of protein formation from such stored templates (Thie and Dure, 41972) and some studies (Marcus, 1969; Walton and Soofi, 1969) noted no distinct protein formation before radicle protrusion. Experiments were designed to determine amino acid incorporation could be cytologically demonstrated in vitro in the nuclei of either dry or germinating onion seed tissues. Although investigations have been profuse, there still exists a controversy on the ability of cell nuclei to carry out protein synthesis and there appears to be no information available for the presence of the complex machinery of protein synthesis in the nuclei of unserminated seed. # II Establishment of a cytological technique for nuclear amino acid incorporation An attempt van made to determine if the complex machinery of protain blooynthesis (or any of its components as amino act) synthetases) could be retained in cytologic sections, superclaid in the cell nuclei A nuclear capacity for protein synthesis is important because of the probability that near of the proteins synthesis and there have be in valved in regulation of gape activity, and there is good evidence that which the nuclei of many cell types, protein synthesis proceeds at rates comparation to those peasured in the cytoplasm (Goldstein, 1970). The question of protein synthesis by cell buclet has been controversial for at least two decades. There have been inpumerable reports of amino and incorporation by isolated nuclei from various species, but the purity of such preparations has often been questioned; Similarly most autoradiographic data has suggested a role for nuclei (and nucleii) in protein synthesis, but peptide bigration to and from nuclei is well known. It has been equally difficult to prove that some proteins known to be preferentially associated with the nucleus (e.g. histones) are actually synthesized there. There are, however, several good pieces of evidence for nuclear protein synthesis in at least some species. In mammalian liver, nuclear proteins are rapidly labelled in vivo and inhibition kinetics differ from those displayed by cytoplasmic proteins. (Kuehl, 1967; Kuehl, 1969). Nucleoli of Hela cells can selectively Tabel proteins (Zimmerman et al., 1969), thus making contamination by cytoplasmic components unlikely artifacts, since in the latter case many types of proteins would have been labelled. One of the strongest arguments for intranuclear protein synthesis is the fact that asino acid untake in isolated nuclei from calf thymus is not inhibited in the presence of high concentrations of ribonuclease unlike cytoplasmic incorporating systems which are inactivated by trace amounts of the enzymes (McCarty, et al., 1966). This is consistent with a protective role afforded to the nuclear protein synthetic complex by the nuclear membrane. Conversely, the fact that DNAse can enter the nucleus and inhibit amino acid incorporation (Allfrey et al., 1957) by release ofnuclear specific inhibiting histones (Allfrey and Mirsky, 1963) further substantiates evidence for nuclear protein synthesis. Strong evidence for protein synthesis in thymus comes from the demonstration of Na dependent protein synthesis, where it has been shown that the Na ions are involved in amino acid transport (Allfrey et al., 1961; Tsuzuki, 1969). Some in vivo autoradiographic studies have also demonstrated evidence for nuclear protein synthesis. For instance, in a thorough autoradiographic study on the incorporation of several aniso acids (labelled with
various isotopes) into cissues of different assumalism species, it was shown that after an initial, brief, seriod of equilibration of free maino acid pools in the nucleus sind cytoplasm, the increase in protein redioactivity with time is the same in the nucleus and the cytoplasm (Schultz et al., 1965). Nevertheless, it can be argued (Goldstein, 1970) that since an average complete protein solecule is synthesized in a minute or two (Dintzis, 1961) and if diffusion across a cell takes only a fraction of a second, a radioactive amina acid incorporated into the C-terminal and of a protein could appear in the nucless in a few seconds. Thus, it can be seen that demonstration of an <u>in vitro</u> eyologic system for amino acid incorporation could also contribute to the controversy over shility of nuclei to carry out protein synthesis. In these studies, both dry and garminating seeds were used, in attempts to demonstrate in <u>vitro</u> amino acid incorporation. In conjunction with labelling displayed by dry seed trission, ultrastructural observations on possible subcellular incorporation sites were also investigated. ### Methy lases I Nucleic acid and protein methylation reactions in germinating seeds Little evidence on nethylation reactions in either chromatin maciete acids or proteins have been obtained from plants. There is a lack of information on the methylation of even NNA species, which have been extensively investigated in animal tissues. It has been demonstrated, however, that the plant bormone glibberellic acid can enhance the methylation of both transfer and ribosomal NNA species in endosperntissue (Chandra and Duynstee, 1971) and methylation of NNA components in nucleolar rich fractions of pea embryos has been reported (Tanifuji et al., 1970). A recent investigation (Jakob and Tal, 1973) has pointed out the difficulty of studying plant NNA methylation reactions with methylatchionine due to its rapid incorporation into pectia, which is hard to separate electrophoretically from NNA. ## II Establishment of a cytological technique for chromatin methylases In this study an attempt was made to determine if germinating onton seeds coptain cytologically demonstrable chromatin bound methylases. Although RNA methylation has been extensively characterized there is little information on methylation in other macromolecules. The presence of methylated base; and sugar components in transfer and ribosems: RNA and well established in the last decade (Borek and Srinivasan, 1966); Strinvasan and Borek, 1966; Starr and Sells, 1969). Methylation processes are believed to play a role in both the ammin actd acceptor and transfer functions of t-RNA as well as ribosome maturation. An intensive effort has also gone into the study of RNA methylase activity during tissue development. Although DNA methylation has not been intensively studied, both bacterial and eukarvotic DNA's are known to be methylated at the polymer level (Gold et al., 1966; Shapiro, 1968). The function of DNA methylation reactions remain obscure but it has been established that in bacteria, methylases play a role in host range specificity (Boyer, 1971; Meselson et al. 1972). Some research has centered on the relation between DNA synthesis and methylation characteristics in prokaryotic and In bacteria it is known that the methylation of newly synthesized DNA occurs near the point of replication (Billen: 1968; Lrck 1968) with only a few seconds elapsing between DNA synthesis and methylation: In animal cells, DNA methylation begins shortly after the start of DNA synthesis, but may continue for several hours or even several generations after DNA synthesis is complete (Adams and Hogarth, 19 It is however, not known, what this means as far as genetic activity in cell and tissue differentiation is concerned. Genetically active genes are relatively more methylated suggesting that DNA methylation somehow plays a role in mechanisms responsible for transcription (Comings, 1972). Other work (Silber et al., 1966; Vanyushen et al., 1970) has suggested that the degree and pattern of methylation may be related to the degree of cell maturity. Nucleoproteins are also known to be methylated at the polymer level Paik and Kim, 1971) with individual amino acids being methylated by specific enzymes. The occurrence of such methylated residues in nature is very diverse but this in itself suggests a unified functional role for methylated proteins. How this role expresses itself in modification of protein structure largely remains to be determined. An interesting aspect of protein methylation is the presumed role of side chain methylation as one of the mechanisms involved in histone control of genetic activity. Isolated nuclei from a number of animal tissues methylate histones in vitro at lysine and arginine residues (Stellwagen and Cole, 1969) and it has been suggested (Tidwell et al., 1968) that methylation is somehow involved in condensation of euchromatin in maration for mitosis. The methylation of histones could stabilize chromatin structure in preparation for cell division. Nucleoprotein methylation has been mainly concerned with histone modifications although there are some reports on non-histone methylation. At least one study has reported a direct correlation between DNA synthesis and non-histone chromosomal protein methylation (Goodman and Benjamin, 1973). Other work with animal tissues (Paik and Kim, 1971) has similarly demonstrated that little methylation occurs throughout the cell cycle, except during late S and G phases. Thus, although a large number of methylases are known to be involved in nucleic acid and protein methylation reactions, information on such polymer modifications in plant growth has attracted little attention except for a few reports on RNA methylation. This study is an attempt to demonstrate the occurrence of methylages in germinating seeds by frozen section autoradiography. #### Poly (ADF-ribose)polymerase #### I Poly(ADP-ribose)polymerase in germinating seeds Besides methylation, another enzymic process believed to function in chromatin medification by glycosylation reactions was investigated. The nuclear enzyme poly(ADF-riboss)polymerase has not received any attention in plant biochemistry. Initial experiments were attempted to establish the enzyme in germinating seeds by biochemical techniques. This was followed by attempts to demonstrate the enzyme cytologically in germinating and dry seed fissues. ### II Establishment of a technique for poly(ADP-ribose)polymerase In selftion to DNA and NNA polymerance, a poly(ADP-ribose)polymerase which catalyses the formation of an ADP-ribose homopolymer from NADhad been established in the nuclei of several enkaryotes (Fujimura and Sugimura-1971; Sugimura, 1973). The polymerase was first discovered (but tdentified incorrectly) in 1963 by French workers (Chambon et al., 1963), who observed that the incorporation of radioactivity from ATP into acid insoluble material in avian-tiver nuclei was enhanced waveral fold with No. The polyser was subsequently shown to be covalently actached to chromosomal procedure (Michigusa et al., 1969; Otabe et al., 1969) and is balleved to have a rold in regulation of chromatin function. The primary purpose of this study was to establish histochemical techniques, in vifto, for the chromatin bound enzymes (a) RNA polymerase (b) DNA polymerase. (c) nucleic acid and protein methylases and (d) poly (ADD-ribose) polymerase. "It enzymes remain bound to chromatin during incubation procedures, and if enzyme products were not solubilized upon funchation-or autoralization the preparation then the enzymes should be cytologically demonstrable with tritiated inotopic precursors. ### MATERIALS AND METHODS Dry and germinating onion seeds (Allium ceps. L. cultivar white-Barketts) were primarily used in these studies. In the dry seed the embryonic axis which contains recognizable epicoryl, procambial, and cotyledonary nones life coiled in the endospers (Figure 1C). In some experiments, unsprouted bulb roots which are embedded to varying degrees in the bulb base were used (Figure 1A). An onion bulb is a modified bud with a reducted stem (digs.) In the bulb roots, cap calls, cap initials, and cortical cells can be differentiated (Figure 1B). The germinated seed radicle has a similar snatesy. Figure 1. Schematic Disgrams of A. an Ohion Bulb. B. an Ohion Bulb Root Tip and C. an Onion Seed. The basic amatomy of germinated onion seed root tip is signifiar to B. The unsprouted bulb roots are smbedded in the bulb disc. Throughout this study the term sprouting will be used for root tip protrusion from the bulb base, and germination for root tip protrusion from the seed coat. The term root meristem will refer to a growing root: the term radicle will not be used. By seed embryo will be meant the sholl ruftmentary plant acclusive of endosperm. The core of the embryo will appetimes for convenience be generally referred to as the vascular cylinder. B. weat taken from themen and Kavaljian (1966) and C. from Essu (1965). #### RNA polymerase RNA polymerase activity was investigated cytologically by a modification of Fisher's method (Fisher, 1968). Whole seeds were sectioned at 8u in a cryostat (-20°C), placed on microscope slides and dried for 8-10 minutes in a vacuum desiccator at roomtemperature. Onion bulb discs were excised, frozen in a stream of CO, and sectioned. The bulbs used here were grown in the Departmental green house and stored at room temperature or at 2-4 C. Slides were placed in Petri dishes lined with filter paper scaked in 2mM dithiothreitol (dTT) and approximately 0.25 ml of substrate was added to each slide. The assay mixture contained 40mM Tris-Cl 10mM MgCl, or Mg(CH,COO), 150mM KC1. 0.5mM EDTA, 1.0mM dTT, 0.25mM each of GTP, ATP, CTP and 50 or 100µ Gi 3H-UTP (s.a. 21 Ci mM) The reaction was stopped by immersing slides in acetic acid: ethanol (1:3). The slides were then washed with 5%
trichloroacetic acid (TCA) for 30 minutes at 406, Autoradiographs were prepared by dipping slides in undiluted NTB, liquid emulsion (Kodak). After 14 days the slides were developed and stained with scidic azure B. Controls were carried out with pancreatic RNAse (1 mg ml in sodium acetate, pH 5.0 or Tris, pH 7.5 buffers) or pancreatic DNAsel (1 mg ml in sodium acetate, pH, 5.0 buffer with 5mM MgSO,). To investigate in vivo ENA synthesis, seeda were hydrated for varying periods with (a) 100 or 1000 ct ml -1 3 d-uridina (s.s. 22 Ct ml -1) ^{*.}M.U.N. Biology Department, St. John's campus. (b) the complete nucleotide mixture used for frezen sections except cold nucleotides from 0.25-3mM and 3H-UTP from 100-1000uCi ml were tried in three separate experiments using progressively higher concentrations of precursors. In each experiment a batch of seeds was continuously exposed to the nucleotide mixture or alternatively after 3,6,9, and 12 hours of growth, was pulled for three hours. Seeds were incubated in the dark at 23°C, either intact or after slicing off a portion of the seed coat to eliminate the problem of seed coat nucleotide impermeability. Hydration was on 7 cm pieces of No. 2 filter paper in Petri dishes with 1.5 ml of precursor. A germination test revealed 95% of the seed stock viable. In all experiments at least 10 seeds were taken at each three hour interval. From seeds fixed in acetic acid: ethanol for at least 2 hours. 5u paraffin sections were processed for autoradiography. Paraffin sections were prepared according to routine procedures (Jensen, 1962). From each seed sample at least 100 sections were examined. To investigate in vivo RNA synthesis in onion bulb roots. 2 or 8 month old bulbs were grown in 100uCi 3H-uridine (s.a. 22 Ci mm-1) the dark at 22°C. Grain counts were made from 5u sections of paraffin embedded tissue. Several batches of bulbs were used for H-uridine incorporation and rooting tests. #### Tissue preparation for electron microscopy For electron microscopical studies, tissues of dissected seed ^{*} Throughout this thesis the symbol + refers to the standard error of the mean. embryos and quiescent roots were fixed in a mixture of paraformaldehyde and glutaraldehyde in 200mN Na_NPO_NCI_PO_1 buffer pH 7.5 (Karnovsky, 1963) at room temperature for at least one hour, rinsed in buffer several times and positised with 1800_4 in phosphate buffer. Tissues were dehydrated with ethanol and propylene oxide, embedded in Epon and cured at temperatures from 370-60°C over approximately 2 days. Sections were cut with glass knives on a Porter Blum MT-I ultramicrotome, stained with urahyl acetate and lead citrate and observed with a Zeiss 98 electron microdacope. Half micros sections for light microscopy were stained with basic toluidine blue or aware B (12 solutions, pH 11.0). thin sectioning. These included (a) dissolving fixatives in various buffers as phosphate, cacodylate or collidine (b) fixing with different combinations of paraformaldehyde, glutaraldehyde, accolein, and osmic acid (c) embedding with different proportions of Epon reafas (d) varying the epoxy infiltration step from 1 hour to 1 week under vacuum (e) curring at high temperature (100°C) immediately after tissue infiltration (f) substituting Spurr embedding media with a repeat of the above procedures. Methacrylate embedding procedures were not tried. Several procedures were tried to prepare endbsperm tissues for The methyl green-pyronin method was used to differentiate between RNA and DNA on paraffin sections (Jensen 1962). Onion bulbs were exposed for varying periods to 10 uCi ml-1 H-thymidine (s.a. 6.7Ci mM) dissolved in distilled water. Seeds were similarly germinated on 7 cm2 pieces of No. 2 filter paper in Petri dishes with 1.5 ml of tritiated precursor. Root tips were excised and fixed in acetic acid: ethanol (1:3) for at least 2 hours. The tips were hydrolyzed in 1N HCl, stained and squashed according to the Feulgen procedure (Jensen, 1962). Cover slips were removed after freezing in liquid nitrogen, the slides dried, and autoradiographed. Slides were developed after 7-10 days. Quiescent roots were also dissected from the bulb disc, exposed to 3H-thymidine for 0.5-1.0 hour and processed for autoradiography. Paraffin sections were prepared from both quiescent and sprouted onion bulb roots exposed to 3H-thymidine, and autoradiographed to see if the first cells to enter S phase were confined to any particular tissue(s). Some quiescent roots were fixed in formalin-acetic acid-ethanol (FAA) (20:1:1), and thick (20µ) paraffin sections prepared to check for mitotic figures. # DNA polymerase The method used for demonstration of DNA polymerase activity on frozen sections of germinated seed radicles was similar to that used for RNA polymerase. The assay mixture contained in 0.5 mls 50mM Tris-Cl-(pH 8.4), 0.25mM each of d CTP, d GTP, d ATP, 100uCl 3H-TTP (s.a. 18Ci mM) 5mM Mg(CH,COO),, or MgCl,, 1mM dTT. In one experiment 3H-d ATP was substituted for 3H-TTP and glycine-NaOH (pH 9.0) buffer was used instead of Tris. Separate experiments were performed with the basic incubation mixture minus each of the deoxynucleosides or with Had TMP (s.a. 10C1 mm 1) substituting for 3H-TTP. Ethanol was removed from the isotopes under a gentle stream of No before use. When No was not available compressed air was used. No facilities were available to check for purity after ethanol evaporation. Besides 8u cryostat sections whole (excised) or slices (60-80") of fresh root tips were frozen in (a) Na (b) 002 or (c) at -20°C and incubated in the assay medium. Here the concentrations of deoxynucleotides in the incubation mixture were increased from 0.25-2.0mM in successive experiments. Whole or sliced roots were also shaken for 10-15 minutes at 24°C in a suspension of 1% toluene in 70mM K, HPO, (pH 7.4) (Moses and Richardson, 1970), rinsed with buffer and assayed. Tissues were treated with INAseT (100mg ml -1 enzyme, 5mM MgSO,, 50mM Tris-C1 pH 7.4) or RNAse (100 g m1 enzyme, Tris-C1 pH 7.4) after incubation or alternatively DNAse was included in the incubation mixture. Attempts were made to activate the template with varying concentrations of (a) DNAseI or (b) increase activity with exogenous ATP. The sulfhydryl reagents, N-ethyl maleimide (NEM) (lmM) and p-chloromercuribenzoate (pCMB) (lmb) were bried as inhibitors in separate experiments. In vivo labelling was with 3H-thymidine (s.a. 6.7Ci ml-1). ^{*} Liquid nitrogen (N₂) boils at -195.8°C and solid carbon dioxide (CO₂) malts at -56.6°C. For the -20°C temperature a refrigerator was used. In vive and in virto experiments were terminated with accide acid: ethanol after I hour! Large pieces, of tissue were paraffin embedded and sectioned at 80. Authyridiographs were developed in D19. (Kodak) after 16 days exposure. Root tipe, 1.1.5mm long, from seeds germinated on moist filter paper in the dark at 20°C were used in the study preliminary work demonstrated that the labelling index after a 1 hour pulse with "M-thymidine reached a constant value (~30°D) at this length. In in vitro experiments (except on the Bu sections affixed to microscope slides), five whole or sticed (60-800) roots were incubated per experiment. To assess DMA polymerase activity in dry seeds, embryos were individually dissected from dry seeds with a dissecting microscope and sectioned. The incubation mixture was essentially that used for detection of DMA polymerase activity in actively growing root meristense except here the concentrations of nucleotides were ingreased to 0.5 mM. Reactions were terminated with acetic acid: ethanol with 50mM Na,P,O, after 1 hour incubation at 32°C. Preliminary observations demonstrated that sections of the dry embryoin contrast to tissues fits germinated seeds, retained a greater structural integrity in the hypotonic incubation media. Consequently, sections were not placed on microscope slides for enyme incubation but were placed directly into visis with 0.5ml of the incubation mixture. After termination of the reaction, the mixture was contrifuged at 500 g to pellet the sections. The sections were then washed several times with cold ^{*} Na,P.O. 10H.0 (sodium pyrophosphate) 5% TCA, 95% ethanol and ethyl ether. Sections were finally suspended to 50% ethanol, spread on microscope slides with a Pasteur pipette, dried and autoradiographs were exposed for 21 days. In some experiments cycloheximide was added to inhibit protein synthesis (if any were occurring on the tissue sections in the assay. medium). Preliminary investigations demonstrated the efficiency of cycloheximide as a protein synthesis inhibitor in actively growing : root meristems. Whole roots (5.0-7.0mm long) were exposed to 1000ci 3H-leucine (s.s. 3.2Ci mM or 3H-leucine + 25 mm of cycloheximide in 50mM Tris-C1 (pH 7.3) for 1 hour. In autoradiographs exposed for 1 week, proviscular, cortical, and root cap tissues were completely 'blackened' (both nuclei and cytoplasm) while in cycloheximide controls only a few grains appeared. In another experiment 1000g ml RNAse was added to destroy any functional translational system in the dry seed sections. The sulfhydryl inhibitors NEM and pCMB were used at 2mM concentration. In an attempt to 'activate the template' of the dry seed, concentrations of DNAsel from 25 mg ml 1 to 50 mg ml 1 or alternatively 1-3mM ATP or other nucleoside triphosphates were included in the incubation mixture. Attempts to permeabilize small slices of tissue with toluene (Moses and Richardson, 1970) instead of freeze sectioning, were tried but abandoned because of insufficient activity. Preliminary experiments indicated a lack of in vivo thymidine or amino acid incorporation for several hours (-30) similar to early reports for DNA (Bryant, 1969) and protein (Mallery: 1971) synthesis in germinating Allius cepa. To establish the intitation of protein and DNA synthesis is vivo out this batch of seeds, seeds were hydrated and at varying
times a portion of the seed coat was removed exposing the embryo, and either 25%Cl 3H-leucine or 3H-argining was added for protein synthesis and 3H-thysidine for DNA synthesis. Paraffin sections were prepared and autoradiographed. Nuclei from frozen sections of the dry seed were considered to demonstrate in vitro DNA polymerase activity if they displayed twice as much label as the surrounding cytoplasm. Approximately 20% of the unimbibed seeds contained sufficient activity for analysis. In all DNA polymerase experiments, assay mixtures with added 3H-TIP were stored frozen at 20°C until used (usually 1-6 weeks). ## DNA polymerase template activity Frozen sections were prepared from ungerminated onion seed tissues and incubated with exogenous micrococcal DNA polymerase. The asset medium contained 50mM Tris-Cl (pH 8.0), 0.5mM each of d CTP, d GTP, d ATP, 50mCi 3m-TTP (s.s. 20C1 mm⁻¹) 5mM Mg(Cl₃COO₂), 10mM KCl, 0.5mM dTT, d Img. purified micrococcal DNA polymerase (Signa). Tissues were frozen inside the cryostat at approximately -0°C, instead of with CO₂: Sections were not collected until at least most of the embedding sel) were being simultaneously cut, shout one quarter to one one half way within the axis cylinder. Sections were then alternatively collected for control or experimental incubations at 30°C for 1 hour. Reactions were atopped with acetic acid: ethanol and fixed owneright. Sections least disrupted were collected under a dissecting microscope with fine forceps. Tissues were washed with cold 5% TCA (10 ml voluses) in vials and allowed to settle for 15-20 min. (no centrifugation). The CA treatment was repeated, and the sections washed with cold distilled water until all acid was diluted (by pH check). After removal of the TCA the sections were brought to room temperature and rinsed twice more with distilled water. It is not known if the long period required for washing in the acid solution causes any product hydrolysis. To check for the presence of S phase cells in various regions of the embryonic axis, seeds were germinated until the tadicle had protruded 0.5-2.0mm from the seed coat and exposed to a high specific activity solution of ³M-chymidine (250 Cft ml⁻¹, s.a. 6.76t ml⁻¹). After 4 to 6 hours exposure, seeds were fixed in acetic-acid: ethanol, the embryonic axis dissected out, washed with TCA and distilled water, and autoradiographs were prepared from paraffin sections. In in vitro expanients with exogenous BNA polymerase, autoradiographic exponure time was reduced to:7 days (compared with 21 days for endogenous assays) to reduce activity from contaminating endogenous polymerase(s). Frozen sections (Z(w)) from germinated seed radicles (1.5-3.0mm) and endosperm were incubated for in vitro anino acid incorporation. The assay mixture contained 5mm% Tris-CI (pit 8.0) 25 Ct ml⁻¹ of a fittiated anino acid mixture containing the labelled acids, alianipe, arginine, aspartic acid, glutamic acid, glycine, bistidine, bydroxyproline, isoleucine, leucine, lysine, methiculine, phenylalanine, proline, serine, threonine, tyrosine, valine, bask Mg(Gl(COO)₂, 25mm KGl) Tank ATF 1eM GTF, Cyclohexifide (100 mg ml⁻¹) was added to sope incubations. Sections (200) were our from dry seek embryos and incubated with the same assay gatture except here 'control' reactions' contained an analogous mixture [0.05%] of unlabelled amino acids. The effect of polyuridylic acid (poly-U) on phenylalamine incorporation in embryo sections was tested. 25 Gl ml⁻¹ of ³H-phenylalamine (s.a.13.4Ct ml⁻¹) was substituted for amino acid mixture and tissues were incubated with or without 100mg of poly-U. Frozen sections from germinated seed radicles (1.5-3.0mm) were also incubated in an assay stature containing 50mH Hegess (FH 7.2) and Hg(GH_3000)_2, 0.4mM (NH₂)_2 80, 0.6 blocks, 1.0mM attr. 50mct mi⁻¹ 3-leucine (42.7Ct mb): Control reactions contained a combination of 100mg mi⁻¹ each of chloromethentical, cyclohectmide and purcocyclin. All reactions were stopped with acetic acid: ethanol after incubating for 1 hour at 36°C, tissues were rinsed with 5% TCA, and audbrokingraphs exposed for 14 days. Isotopes solutions were partially neutralized with NaOH before addition to assay mixtures which were stored frozen at -20°C. To check for possible sites of amino acid incorporation in dry embryos, preliminary histological studies were carried out. by light and electron microscopy. Background information on histology was provided by histochemical ataining for various substances on frozen or paraffin prepared sections and by inspection of thick Epon sections (0.5-1.00) after toluidine blue or axure B staining. For instrochemical demonstration of cell substances, the following staining reactions were performed (a) Millon for protein (b) periodic acid-Schiff for carbohydrate (c) methyl green-pyronin [f for NNA and NNA (a) sudan-black-B for lipid and (e) cid haematin for phospholipid (Pearse, 1961; Jensen 1962). To check for carbohydrate constaining bodies on Epon sections, the method of Jacobsen (Jacobsen et al., 1971) was used. For electron microscopy tissues were processed in the usual manner. Attempte were also made to see if different types of storage bodies (or other organelles) could be differentiated on thick tissue siless by scanning electron microscopy Scurfield et al., 1970). #### Methylases In initial experiments, methionine was used as substrate. Onion seeds were germinated, radicles (1.5-3.0mm) excised, and longitudinal sites (approximately 100-2004) were placed in an assay mixture containing (a) 50mM Tris-Cl (pH f. 4); 50mCi ml⁻¹ ³H-methyl-methionine (s.a. 150m Ci mm² j) (b) 50mM Tris-Cl (pH 7.4); 10mM MgCl₂, 150mM KCl; 1.0mM dTr, 0.5mM each of GTr ATP, GTF, UTP, 50mCi ³H-methyl methionine. Alternatively, frozen sections of germinated roog tips were incubated in solution (b): In subsequent experiments, S-adenouyl-methiosine (SAM) was used as methyl donor. Ethnool was removed from the isotope under N₂ and the N₂SO₄ partially neturalized with NaOH before buffer addition. The assay mixture contained 50M Tris-Cl (pH 8.0), 1MY NCI, 0.02MM OTT; 50MC ml⁻¹ S-adenouyl-L-methiotime-H-methyl (d.a. 7.3, Cl ml⁻¹). Frozen sections from sprouted bulb roots (2.0-5.0mm) were also used. To check for incorporation into DNA or DNA, bost fixed itseases were treated with either DNAsel (250g ml.² enzyme, 0.38M Ng(CH_GOOD) in distilled water (pH 5.5 adjusted) or DNAse (200g ml.² enzyme in distilled water (pH 5.8) for 2.5 hours, in some experiments trypsin (400g ml.²) was added to activate 'DNA methylation (Toof and Societie, 1973). All reactions were stopped with acetic acid: athanol and fixed for at least two hours. Inick tissue elices were embedded in paraffin and autoradiographs prepared. Frozen sections were washed in TCA and rinsed is distilled water over a period of several hours similar to the pre-tedure for BNA polymerase tamblete activity. Autoradiographs were exposed for 7-21 days. #### Poly(ADP-ribose)polymerase Frozen sections were prepared from both dry and setminated seeds. The assay mixture contained 50mM Tris-C1 (pH 8.3), 5mM Mg(CH₃COP)₂, 3.3mM NaP, 50mM Kc1, 3.0mM dTT 50µCi nl ¹ nicotinantide adentine disuclectide ³R-adentine (e.s. 3.46 Ci mb³) (Lehmann et al., 1974). Incubations were for 1 hour at 25°C; autoradiographs were prepared as for methylase assays and developed after 7-21 days exposure. In biochemical assays, 20-30 embryos were dissected from dry seeds, homogenized in 2 mL of the assay mixture, and incubated for 10 minutes at 27°C. The reaction was stopped with 5% cold TCA and the precipitate was held at 4°C for 10 minutes. The precipitate collected by centrifugation at 2000g, was resuspended and washed with 5% TCA (repeated 3 times) and dissolved in 0.4 mls 0.1 M NaOH. After 15 minutes the following were added: - 0.4 ml 100mM HC1, 0.4 ml 200mM Tris-C1 (pH 7,5), 0.2 ml 100mM Mg(CH, COO), and type VII snake venom phosphodiesterase (100µg) (Sigma). Possible nucleotidase contaminants in phosphodiesterase were inactivated by preincubation at an elevated temperature and low pH (Sulkowski and Laskowski, 1971). Upon addition of 'purified' phosphodiesterase the assay mixture was incubated for 1 hour at 27°C; 4 mg of propose were then added and the mixture further incubated for 30 minutes at 27°C. 2 ml of ethanol was then added and the solution stored at -20°C. Aliquots of the solution were applied to thin layer cellulose polyethyleneimine (PEI) plates (pre-washed in 0.9 M acetic acid) and run with IM acetic acid to the origin followed by 0.9 M acetic acid: 0.3 M LiCl. Radiochromatograms were scanned with a Packard chromatogram scanner, #### RESULTS AND DISCUSSIO #### RNA polymerase RNA polymerase activity was detected cytologically when frozen. sections of dry and imbibed seeds were incubated with 3H-UTP. Incorporation is initiated very rapidly and was evident in 15 minute samples of dry seeds (Table 1). Endosperm cells (approximately 50%) demonstrated heavy nucleolar labelling after 30 minutes hydration. After 1 hour, at least 80% of the cells were labelled, a value of 90% being reached by 2 Hours. In the endosperm all periods of incubation displayed cells with both nucleo plasmic and nucleolar activity (Figure 2A-D), with nucleolar incorporation being characteristically distinct. It is not known to what extent clustered or fused nucleolar masses give the false appearance of heavy nucleoplasmic, labelling. No distinct nucleolar labelling was detected in embryonic tissue until after 7 hours hydration; in this period, activity was distributed over the chromatin (Figure 3), displaying a lag of 1 hour before its initiation. Even after I hour, however, labelling extended throughout the whole embryonic axis. The exact time of 'initiation' of nucleolar activity in the embryo has not been determined but samples of frozen sections from seeds hydrated for 12, 24 and 30 hours display intense nucleolar incorporation. Only low 'background' was seen in cells
when DNAse was included in the enzyme incubation mixture or when tissues were post treated with RNAse. Table 1. In Vitro Incorporation from H-UTP in Frozen Sections of Onion Seed | Presoak
(hr) | time Incubați | | | % cel
dosperm Embryo | ls labelled
and Cotyled | |-----------------|---------------|----|-----|-------------------------|----------------------------| | 0.00 | | | | ± 1.9* | | | 0.25 | | | | ± 3.0
± 0.9 | | | 1.00
6.00 | | A | | 7 | 0 ± 1.2
2 ± 0.9 | | 12.00
24.00 | | | .00 | >90
>90 | >90
>90 | | 30.00 | 1.00 | 30 | .00 | >90 | >90 | The assay mixture contained 0.25 als of 0.04 M Tris-Cl buffer pH 7.4, 10mM MgCl₂, 150mM KCl, 0.5mM EDTA, 1.0mM dTT, 0.25mM each of GTP, ATP, CTP and 100 MCT. 38-UTF (e.g. 21Ct mm⁻¹). Mean and \pm s.e. for approx. 10.0 x 10^3 cells from a sample of 300 sections from 10 seeds. ^{**} Samples from 12-30 hr vere also incubated for 0.25 and 3 hr in separate experiments. Figure 2A. In Vitro Incorporation from ³H-UTP into Unhydrated Onion Seed Endosperm after 0.5 hr Enzyme Incubation. Autoradiographs displaying typical patterns of incorporation from ³H-UTP into endospers sections. Note the preferential labelling of up to 4 mucleoil (arrows) in some micles; Most of the cytoplasmic labelling is probably background. The assay mixture contained 0.25 ml of 0.05 M Tria-Cl buffer pH 7.4, 10mM MgCl₂, 150mM Kcl, 0.5mM TTMA, 1,0mM dTT, 0.25mM sech of CTP, ATP, CTP and 100s, Cf ml ¹ 3H-UTP (s.a. 21Ci mm ¹); Astoradiographs were exposed for 14 days, x700. Figure 2B. In <u>Vitro</u> Incorporation from ³H-UTP into Unhydrated Onion Seed Endosperm after 1 hr Enzyme Incubation. Autoraddographs displaying typical patterns of incorporation from 3R-UFF, after / hr incubation. Note that some suciet have an intense general distribution of label, while others have preferential nucleolar activity. (arrows). Autoradiographic preparation was the same as for Figure 2A. x700. Figure 2C. In Vitro Incorporation from 3H-UTF into Onion Seed Autoradiographs displaying typical patterns of incorporation from 3H-UTP after 2 hrs hydration. Note the similarity to shorter hydration periods with both specific nucleular (arrows) and genetal nuclear labeling. Note dislodged nucleus (top picture); nuclear displacement was not common however. Some nuclei was completely blackened. Autoradiographic preparation was the same as for Figure 2A. x700. incorporation in India fatter 7 hrs hydration. Again note the similarity to shorter hydration periods with specific distinct nucleolar activity (arrows) as well as varying degrees of intensity of general nuclear labelling; The top picture contains a nucleus with approximately 6 labelled regions; this was the largest number seen throughout the experiances. Autoradiographic preparation was the same as for Figure 2A, x700. Autoradiographs displaying typical patterns of Figure 3. In Vitro Incorporation from ³R-UTP in Ungerminated Onion Seed Embryos. Autoradiog Capha from different sections displaying incorporation from ³H-UTP libe cortical cells of ungerminated embryos (hydrated for \$\geq\$hrs). Note the general distribution of nuclear label (arrows). The assay mixture contained 0.25 ml of 0.05 M Pris-Cl Paffer pH 7.4, 10mM McIl, 15 mk KCl, 0.56 M EDTA, 1.0 mm AIT, 0.25 ml each of CTP, ATP, CTP, and SOuct 3 H-UTP (s.a., 21Cl ms⁻¹). Autoradiographs were exposed for 14 days, x700. Even with the uniform of high specific activity, no incorporation was detected in vivo before 18 hours continuous incubation (Table 2), which is in agreement with previous work on allium cspa seed germination (Malera, 1971). Removal of a portion of the seed cost did not increase the of incorporation, but permitted in earlier detection of activity. In intact seeds, activity is not detected until the radicle has broken the nucleoside imperminable seed cost (Malera, 1971). Intact seeds incubated for periods to 20 hours in the complete nucleotide madia, of varying concentrations and specific activities, did not incorporate any precursors. In onion bulbs stored 2 gonths post harvest, rooting and "B-uridine incorporation was not detected in the most repidly byrouting bulbs for 30 hours while in those stored for 8 months, ENA synthesis was detected as early as 6 hours (Figure 4). In frozen sections of 2 month old (non-sprouted) bulb roots however, at least 90% of the cells displayed nucleolar and nucleoplasmic ENA polymerase activity (Figure 5). In some cells the nucleoli are preferentially labelled while in others, grains are generally distributed over the shole nucleus. ENA polymerase extends for approximately 18000 along the root axis, with very low or no incorporation in the root cap zone. In tissues surrounding the quiescent roots some nuclei also displayed a low level of incorporation. Table 2. In Vivo Incorporation from 3H-uriding by Onion Seed Tissues. | | % seeds | demonstrating and endosperm | activity
(time-hr) | in embryo | |--|---------|-----------------------------|-------------------------|-----------| | Precursor | 0-18 hr | 18-21 h | | 21-36 hr | | ³ H-uridine
³ H-UTP | 0 / | , 70
, 0 | 1.4.7
1.4.7
1.4.4 | 95 | Seeds were hydrated in (a) H-uridine (1000ct ml 1, 500uct ml 1, 1000uct ml 1, 200uct ml 1, 100uct ml 1, 200uct ml 1, 100uct ml 1, 200uct 200uc Figure 4. In Vivo Incorporation from ³H-Uridine in Onion Bulb Root Meristems. Grain counts of in vivo Meuridine incorporation in a region 800 u from the root spex in quiescent root meristen cells of Allium capa bulbs; 0——0: 8 months post harvest; 0——0: 2 months post harvest; Each point on the graph represents mean grain counts from 5 u paraffin sections prepared from the 7-10 bulbs displaying the first emergent roots. Autoradiographs were exposed for 7 days. Figure 5. In Vitro Incorporation from ³H-UTP in Onion Bulb Unsprouted Roots. Autoradiograph displaying incorporation from ³H-UTP into cortical cells. Note the preferential nucleolar (arrows) labelling of some cells. The assay mixture contained 0.25 ml of 0.04 M Tris-Cb buffer pN 7.4. OneM McI2, 150 mM KCI, 0.55 mM EDIA, 1.0 mM dTT, 0.25 mM each of GTP, ATP, CFF and SOUCI ml ¹³H-UTP (6.s. 21Ct mM ³). Autoradiographs were exposed for 14 days. x700. Some of the cytoplasmic labelling could be removed by peat incubation with BMAMee, but no attempt was made to critically establish cytoplasmic BMA polymerase activity. Since hish concentrations of RMAMe can digest total cell BMA, to which even small amounts of radioactivity may be adsorbed, digestive ensymes as ENAMe may not be reliable when low levels of incorporation are being assessed (especially on frozen sections). To check for cytoplasmic polymerase, ENA synthesis inhibitors (e.g., actinonycin T, w-amantin) may be useful. It has been suggested (Mazus and Buchowicz, 1972) that mature seeds may have a complete enzyme system for the immediate initiation of RNA synthesis from low molecular weight precursors, even before protein synthesis begins. Rejman and Buchowicz (1971) demonstrated a more rapid synthesis of RNA in whole wheat seeds as opposed to the excised embryos used by Chen et al., (1968, 1971) in earlier studies. He suggested that this was probably due to the absence of endosperm or aleurone layer which may promote embryonic synthetic activity in the intact seed. reverse situation, where an embryo factor, gibberellin, increases carbohydrase activity in barley aleurone is known (Radley, 1959; Yomo, 1958). The results of this study suggest that the early RNA synthesis recorded for whole wheat seeds may initially be restricted to aleurone tissue, with a lag before embryo activity commences. It is not known if the enzymes reported for nucleotide synthesis in dry wheat (Duda and Cherry, 1971) and pea seeds (Price and Murray, 1969) can be demonstrated in the excised dry embryo alone, It is now accepted that nucleolar RNA is not derived from extranucleolar chromosomal activity (Birnstiel et al.; 1962; Goldstein and Eastwood, 1966) and it has been shown that the multiple RNA polymerases of rat liver nuclei isolated in high and low salt concentrations have the lonic requirements for ribosomal (nucleolar) or non ribosomal (nucleoplasmic) RNA formation. Eukstyotic RNA polymerases sensitive to -amanitin are helieved to originate in the nucleoplasm as opposed to the nucleolar portion of the nucleus and are believed to be responsible for the transcription of the DNA-like RNA (Lindell et al., 1970, Jacob et al., 1970; Horgen and Griffen, 1971). A recent in vivo autoradiographic study of germinating corn (Deltour, 1970) suggests that early RNA, synthesized in the chromatin, moves to the nucleolus at later stages of growth. The initiation of an intense nucleolar activity would appear to give the same results, unless labelling patterns could be critically quantitated. Onion sends hydrated for 12, 24 and 36 hours demonstrated embryonic nucleolar RNA polymerase activity, even after short incubation periods. Some onion bulb root cells demonstrated preferential nucleolar activity while in others, The ribosomial genes in wheat embryon are located entirely within the chromosomial DNA (Chen and Obborne, 1970) and nucleolar attributes have been reported for pumpils, harly (Matsuda and Siegel, 1968) and wheat roots (Botta et al. 1965). It has been shown (since the present which on onion tissues was completed) by cytological hybridization, in situ that "H-rEMA grains were more generally distributed over the whole nucleus. tractions from onion root cells are hybridized over judicali (Avanyi et al., 1973). The onion seed demonstrates nucleolar activity in endoughern from the beginning of germination and nucleolar activity in the subryo after an initial lag of a few hours, which is characterized by predominantly chromatin labelling. A repid activation of endospers nucleoli with subsequent development of the enzymatic machinery for metabolism of polymeric reserves is coincident with
evidence from both plant. (Bal and Gross, 1994; Pas, 1963) and anisal payetems (Susch and Smetana, 1970) showing rapid growth or high protein production. In such very active cells, nucleoiar labelling precedes that of the It has been suggested (Chen et al., 1971) that early transcription in the wheat embryo may be represend by a regulatory, or an earlier translational, step involving DNA-dependent TNA polymerane activity. Gibberellin-is reported (Chen and Osborne; 1970b) to function only when a cofactor(s) (probably limiting in dry embryos) is available; by controlling the expression of preformed messages, but it has also been suggested (Tuan and Bonner, 1964; Jarvis et al., 1968; Duda and Cherry, 1971 Jarvis and Hunter, 1971) that it may act primarily by changes in the transcriptional profess. In both onion seed and bulb tissues such enzymes as RNA polymerane, DNA modifying enzymes ("unwindames"), various factors and hormones needed for transcription appear; to be preformed. Moreover, if repressive factors are present, their effect is rapidly logt. It is of interest that an endogenous inhibitor of mater BMA polymerame has been recently purified (Arens and Stout, 1974). Factors responsible for the dag in embryo-transcription and the specific control of nucleolational chromatin activity remain obscure. ## Ultrastructural observations on nucleoli In Allium cepa the interphase nucleolus may be described (Chouinard, 1966ab thouinard and Leblond, 1966; Chouinard 1970) as. consisting of four components intermingled with no definite segregation 1. nucleolar chromatin-dense compact fibrillar patches 2. fibrillar component surrounding the nucleolar chromatin 3. granular component vacuolar lacunae having a lighter fibrillar matrix. In dry embryonic cells the granular component is poorly defined or lacking and vacuolation is not apparent (Figure 6). The bulk of the nucleolus is made up of fibrillar material, less dense than the surrounding nuclear chromatin. The nucleolar organizing region (NOR) passes through the fibrillar material and is continuous with the nuclear chromatin (Figure 6) There are dense fibrillar areas (about 100A fibers) embedded in a less. dense fibrillar matrix in the nucleolar chromatin; the denser areas which resemble the filamentous chromatin are sometimes arranged in an orderly pattern of 2-4 rows. In the tip of the cotyledon the granular component is again lacking, but the nucleoli are often seen to be extensively vacuolated (Figure 7A). Here the nucleolar material frequently appears as two hemispheres abutting a common NOR (Figure 7B). igure 6. Electron Micrograph of a Nucleolus from Onton Seed Embryo Tissue Demonstrating the Continuity of the Nucleolar Chromatin The muckeolar chromatin (nch) is continuous with the extranucleolar chromatin (ch) material. Note the absence of a gramular component and vacuoles. (f, fibrillar material). x27,600. Figure 7. Electron Micrographs of Nacleoli from the Cotyledon tips of Onion Seed Embryos. In A. note the absence of a granular component and the a separation of nucleolar material into two vacuolated (v) spheres abutting the spheolar chromatin. In the nucleolar chromatin (sich) is continuous with the nuclear chromatin (ch), x27,600. Suitable sections of endosperm fissue could not be obtained for study of nucleolar fine structure. An interesting feature found in half fideron Epon sections, however, was the presence of large "ring shaped nucleoli", the 'ring' periphery characteristically staining with bank dyes. These large nucleoli were not associated with any particular region of the endosperm. When sethyl green pryonin was used to differentiate between DNA and RNA on paraffin sections of endospers, pink staining RNA rich nuclear masses (most likely nucleoli) varied in size and number in different cells. In the quiescent root some nucleoit have a distinct granular zone (Figure 8) although generally not as marked as in growing roots. Condensed chromatin is associated with the NOR which may be well embedded in the fibriliar matrix (Figure 8). The NOR consists of dense patches, surrounded by a less dense matrix which directly abuts the condensed chromatin It has been well established that nucleolar morphology is physiologically related to ribosomial RNA synthesis and maturation. In dormant Jerusalem artithoke cells an extensive granular zone develops upon metabolic getivation (chaking in distilled water) (Fowke and Satterfield, 1968; Jordan and Chapsan, 1971; Rose and Setterfield, 1971) with concantant nucleolar RNA synthesis (Rose at al. 1972), A predominantly fibrillar nucleolar RNA synthesis (Rose at al. 1972), A predominantly fibrillar nucleolar to believed indicative of minimal or no activity in rRNA synthesis in animal or plant tissue. The fibrillar nucleolar of unescent root tips (Myde, 1967) have low rates of RNA synthesis (Barlow, 1970). Stullar changes in nucleolar activity and RNA synthesis have been noted during the development of the wheat coleoptile (Rose, 1974). Note the presence of granular (g) and fibrillar (f) components and electron dense material within the nucleolar chromatin (nch). x42,000. There have been many reports that nucleolar vacuolation is related to physiological activity (Luchr, 1928; Hopker, 1953; Soudek, 1960; Kordan and Morgenstern 1962; Deltour and Bronchart, 1971) with a correlation between nucleolar vacuolation and incorporation of RNA precursors in both plant (Johnston, 1969) and animal (Zybina, 1968) tissue. In a critical study of vacuolation. however, Barlow (1970) demonstrated that the rate and not the degree of vacuolation was related to RNA synthesis. Similarly, discs cut from Jerusalem artichoke tubers show nucleolar vacuolation before activation (Jordan and Chapman, 1971) while in carrot discs vacuolation occurs only after 24 hour activation (Jordan and Chapman, 1973). The presence of nucleolar vacuoles in the onion seed embryo cotyledon tip is tenable with the hypothesis that the degree of vacuolation need not be dynamically related to nucleolar synthetic activity, but no explanation can be put forth for histological differences with other regions of the embryo. In both ondon seed embryo, and quisseent root meristems the NOR is seen to be embedded in the nucleolus. Startes in artichoke tuber and carrot discs (Jordan and Chapman, 1971; Jordan and Chapman, 1973) show that a region identified as the NOR moves from an extreme external position on the nucleolar periphery into the fibrillar region upon metabolic activation, suggesting that the chromosomal region moves eway from the periphery into the nucleolus during periods of increased 1-RNA synthesis, with a position external to the nucleolus representing little or no active RNA synthesis. Support for this view is found in ultrastructural studies of amphibian devite nucleoli (Eustein, 1969) and an external position has also been noted for NOR of quiescent center root tip cells (Byde, 1967), which are known to be metabblically inactive. The work reported here suggests that a distinct association of the NOR with the nucleolar periphery (e.g. lying on top of the nucleolus) as an indicator of 'represed' r-RNA synthesis may not be a strict generality applicable to all plant cell activity since in both the onitm seed ambryo and quiescent root the NOR can often be found partially removed from the nucleolar rim. Throughout the fibrillar region of many plant nucleoli, rune a coarse exem which is thought to consist of loops of chromosimal origin (Ia Cour, 1965); Both autoradiographic and cytochemical techniques have shown that such skein containing nucleolar zones are the sites of synthesis of rapidly labelied RNA (Ia Cour and Crawley, 1965). Nork with both animal and plant cells have identified the nucleonems (Estable and Soteloj 1955) or the corresponding meandering filamentous thread-like structure as the NOR. It is believed that when the organized segments peacetrate the nucleolus, they fransform into filamentous structures which course throughout the fibrillar zones in a tomplax fashion: Characteristic of the coarse nucleolar loops is the presence of numerous lacunar spaces which have been shown to contain chromath and to be optimized throughout the private of the coarse nucleolar loops. These lacunar of numerous intunous with perinucleolar segments of chromosomes: These lacunae contain loose fibrillar material and sometimes within this harrix dense central cores have been found. High resolution autoradiography has shown DNA in both the dense and light portions of the nucleolar loops (Lafontaine and Lord, 1973). An hypothesis has been put forward (Choulnard, 1974) that the state of condensation of the central chromatin core is believed to reflect the degree of unwinding or re winding of transcriptionally active microfibrils of chromatin extending into the fibrillar region. Thus, when the NOR is active in the synthesis of nucleolar material, its chromatin, including that within the lacunar spaces, would be expected to be 'unwound' and in an extended state. Conversely, a repression of the activity of the nucleolar organizing segment would result in a 'rewinding' of the chromatin microfibrils associated with the dense fibrillar region, and the appearance of chromatin in a condensed state within the. lacunar spaces. An earlier report (Bal and Payne, 1972) on the characteristic presence of discrete masses of condensed chromatin arranged in a relatively orderly pattern within the elongated lacunar spaces of nucleoli in onion embryo tissues, has been offered as partial evidence (Choulmard 1974) for the above hypothesis. An interesting feature in thick sections of nucleoil in some mature endoupers cells, is prominent dentral vacuoles occupying nest of the nuclear volume having the appearance of "ring shaped nucleoil" (Busch and Smetana, 1970). Such nucleoil frequently occur in blood cells, spermatoxytes and occytes where they seem to be inter-related. with cell maturation and
differentiation. The grand ring shaped buckeoid are believed to arise by nucleoid fusion, the number of nucleoid originally produced in each nucleus being constant. This is supported by observations on nucleoil from parafifs sections of option seed endosperm where nuclear pyronin-positive BNA-containing bodies vary in size and number in different cells. Such heterogeneity in nucleoilar size and number is not found, however, in tissues of the embryo exis. An attempt should be made to define more clearly the role of nucleoiar fusion in cell differentiation. A recent mathematical model has demonstrated (Masofer, 1974) that in some cells the frequency of nucleoiar fusion is significantly higher than the assumption of incleoiar fusion is a controlled physiological process. ## Cell cycle There was no evidence of G₂ arress in the dry seed, while a proportion of cells in the bulb roots contained a post, replicative G₂ population (Figure 9). G₂ cells were found not only at the beginning of sprouting (as early as 3 hours) but were also detected in root tips 12.0-15.0mm long after 24 to 48 hours growth. Similarly G₂ cells were found in root tips that had only protruded 1.0-2.0mm after 48 hours sprouting. Such heterogeneity is not unreasonable since the quiescent roots in the intact-bulb display various sizes and degree of development and differentiation. For instance, large roots often appear around the - Figure 9. Identification of Unlabelled and Labelled Mitotic Figures in Sprouted Onion Bulb Roots for G_2 Analysis. - A. Autoradiograph displaying an unlabelled (arrow) mitotic figure (G_2 cell). - B. Autoradiograph displaying a labelled (arrow) mitotic figure. In <u>Vivo</u> incorporation from ³H-thymidine (10uCi m1⁻¹ s.a. 6.7Ci mM⁻¹) into sprouting onion bulb roots with continuous nucleoside exposure. The mitotic figure in A. is considered to be a G₂ cell, similar cells were not found in germinating onion seeds. Autoradiographs were prepared from Feulgen squashes and exposed for 7 days. x500. circumference of the bulb base and can be astly recognized with the unaided eye while small non-protruging roots located in the center of the base may only be seen after tissue tessing or paraffin sectioning. Because of the hereogeneity in root protrusion and growth, the total mamber of cells found in 0, was compared with percentage labelled classes in S. phase (Table 3). Since C₂ cells can be found a few hours after exprouting to two days, they do not appear to be an homogenous group, but have, differing C₂M rates. The duration of the mitotic cycle has been studied in growing root tips of illium caps bulbs (MacQuade, 1956; Matagne, 1968) with rates of G₂ from 3-4-hours and M rates from 4-5 hours. It was also reasoned, that if an homogenous population of C₂ cells were present in root meristems, it would likely be found associated with a particular tissue region. No such C₂ tones were found on autoradiographs of thick paraffinjections. Further study demonstrated that in quiescent roots, it is unlikely that there exists 'true' 6; cells in terms of physiologically blocked to the control of t able 3. Comparison of Total Number of G₂ Cells in Sprouting Onion Bulb Roots and Percentage of Cells in S Phase | Percentage
labelle | ³ H-thymidi
d classes | ne | | | otal numbe
f G ₂ cells | |-----------------------|-------------------------------------|-----------|---------|----------|--------------------------------------| | all a so | | .7: . | the w | <u> </u> | 100 | | | Design of the second | £, 69 | | | 6 40 | | 0- | 10 | | 1754 | | 325 | | . 11- | 20 | · . n. | S | | 280 | | | | . 1. | | 100 | | | 21- | 30 | 1 1 1 1 1 | 146 | | 300 | | And the | 30 | | | | 150 | | 1, 1, 1 | 1 1 | 1. 1. | and the | Sec. 15. | 6 8 13 | in vivo incorporation of H-thynidine (100Ci al s. s. 6.7 Ci mk 1) into syrouting onlaw bulb roots with continuous nucleoside exposure Autorathographe vere prepared from Feulgen squashes and exposed for 7 days. 80 squashes were analyzed and approximately 2000 cells were scored from each. Experiments were performed on the same batch of onton bulbs over a storage period of 4 months (atcrage was at room temperature under uncontiolled atmospheric hundity. No G, cells were detected in 37 squashes of germinated onion seeds Figure 10. Detection of S. Phase Nuclei and Mitotic Figures in Unsprouted Onion Rulb Roots. A. Autoradiograph displaying an S phase nucleus (arrow) .. . B. Autoradiograph displaying a mitotic figure (arrow). Unsprouted boots were dissected from the bulb base and exposed to 1000ff ml⁻¹ 3H-thymidine (s.a. 6.762 ms⁻¹) for 0.5 hrs. Forh s phase and mrtoric figures were found in the 'resting' stable. Mutoradiographs were prepared from Faulgen squashes and exposed for 7 days. x900. sections of quiescent roots incubated for 15 minutes in solutions of tritiated amino acids, consistent with a protein synthetic capability. Such ascromolecular synthetic potential is consistent with an elevated metabolic rate. The necessity of a high metabolic rate for the initiation of DNA solutions bear demonstrated in a number of call types (Malamud and Baserga, 1968; Polger et al. 1968; Robbins and Norrill, 1969) and in species as diverse as peas and mammals, the higher rate is associated with the synthesis of RNA and protein (Robbins and Morrill, 1969; Webster and van'Hof, 1969). Ultrastriptureal studies presented further evidence against the presence of 'trie' G₂ blocked cell populations in nuclei of 'quiescent root maristgmes. It is more likely that a low level of growth continues in the bulb roots with a few cells continuously entering S: phase and dividing. It is not known if there is any relationship between growth and degenerative changes which seem to occur in the quiescent tissue. In bulbs stored for 4-5 menths there was cell wall dissolution in cortical and provascular tissues. This dissolution sometimes resulted in the formation of groups of free pyrnotic suclei in an extensively vacuolated cytoplasm (Figure II). Rough endoplasmic reticulum (RER) was common and in appropriate sections were arranged in unique concentric whorls (Figure 12). In some RER stacks, thosome attached vesicles appeared to arise by fragmentation from the ends of the claternae (Figure I3). These wesicles were scattered at random figure 11. Electron Micrograph Showing Cell Wall breakdown in Unsprouted Onion Bulb Roots. Note the formation of masses of 'free figating' pycnotic nuclei (8): 56000. Figure 12. Electron Micrograph Showing Concentric Whorl of Rough Endoplasmic Seticulum (rer) from an Unsprouted Onion Bulb Root Cell. x18,500. Figure 13. Electron Micrograph Showing Stacks of Rough Endoplasmic Reticulum (rer) and Detached Vesicles (arrows) from an Unaprouted Onion Bulb Root Cell. (c.w., cell wall). 227,500. throughout the cytoplasm and some were associated with the cell wall. In addition lomasome like configurations and multivesicular bodies were common. Ultrastructural studies of quiescent roots support the idea of a metabolic state in which synthetic and (or) degradative activities are not completely repressed. It is not known if the RER is involved in the synthesis, packaging, and elaboration of enzymes which may be secreted at the cell wall via ER derived vesicles. Production of ER membranes and the enzyme systems necessary for their formation implies the operation of considerable control at the molecular level. It has been suggested, however, (Sassen, 1965) that during endogenous breakdown of cell walls, Golgi membranes are necessary for the transport of the necessary enzymes. Conversely, it has been well established that during cell wall growth, material is passed into the wall across the plasmalemma by reverse pinocytosis of Golgi derived vesicles (Sievers, 1963; Mollenhauer and Moore, 1966; Pickett-Heaps and Northcote, 1966; Wooding, 1968). A view of Golgi membranes as well as rough and smooth ER as distinct morphological and physiological entities may be misleading. For instance, normally in Golgi, ribosomes are not attached to the membranes, but polyribosomes have been recently conclusively demonstrated to be associated with the forming Golgi face (Mollenhauer and Morré, 1974). A role for ER instead of Golgi in cell wall degradation, however, is not without precedent since in the development of sieve tubes in phloem tissue a functional role has been implicated for such membranes (Northcote and Wooding, 1966; Northcote and Wooding, 1968). It is believed that the ER serves to remove specific material from the cell wall reducting in pore formation, but it is not known if it acts as a supply route for degrading glycolyses or is involved in transport for the removal of material after its breakdown. Thus, any speculation of a role for ER involvement in cell wall degradation in quiescent roots should be approached with caution at this time. It is not known if the unique ER whorls in quiescent roots are of any physiological significance. They have been reported before in petato tuber buds (Shih and Rappaport, 1971) and dormant embryos (Rougarede and Pilet, 1964; Varner and Schidlowsky, 1963) and have been induced to form under conditions of low coygen tenelon (Whaley bt al., 1964; Perner, 1966). They are also known from various types of animal tissue (Ruthmann, 1958; Herman et al., 1962), and are often observed to form after treatment with metabolic inhibitors (Hwang et al., 1974). A critical study of their formation in liver cells in the propulation of protein synthesis inhibitors (Hwang et al., 1974), has revealed that whorl-like membrane structures may be indicative of a normal transient stage of membrane formation and (or) repair. A variety of plasms membrage logacome-like modifications were frequently found in onion quiescent roots (Bal, 1973; the present work); no such structures were found in seed tissues. Such membrane modifications are known throughout the plant kingdom, but evidence for their presence in 'true' quiescent
tissues as seeds and spores is lacking. The function ## DNA polymerasi A significant level of in vitro DNA polymerase activity was detected in 8¹ cryostat sections of germinating seed root tips (Figure 14), igure 14. <u>In Vitro</u> incorporation from ³H-TTP in Onion Seed Root Tip Meristematic Nuclei. ## Autoradiographs displaying - A. Incorporation from ³µ-TTP into cortical meristematic, cells. - B. Incorporation from ³H-TTP with DNAse treatment - C. Incorporation from ³H-TTP with KCl treatment Prozen sections were prepared from germinated root tips (2-4 mm long). The assay mixture contained 0.05M Tris-Cl buffer pH 8.4, 0.26mM each of d CTP, d CTP, d ATP, 75mCi ml⁻¹ 3H-TTP (s.a. 18C1 mb⁻¹), 5mM WgCl₂, 1mM d TT. In B. 100mg DMAseI was included in the reaction mixture; in C. 4M KCl was included. A similar lack of incorporation was observed with NEM (1mM) and pCMS (1mM) treated tissues. Autoradiographs were exposed for 14 days, x700. and approximately 30% of the cells were labelled (Table 4). Enzyme activity could also be detected in whole roots or tissue slices permeabilized with toluene or by freeze thawing, but incorporation was not as intense. Permeabilizing by freezing also allowed sufficient activity to be demonstrable in Feulgen stained squashes (Figure 15). In whole or root slices prefrozen in N2, CO2 or at -20°C, activity was often more apparent in peripheral cell layers (Figure 16A). but incorporation was also seen in cortical and provascular tissues (Figure 16B), Similar results were noted for toluene treatments (Figure 17). Successive freeze thaw treatments did not increase the efficiency of the methods (Figure 18). Precursor hydrolysis was cytochemically demonstrated in cell walls, especially in external cell layers and throughout the root cap, but increasing deoxynucleoside concentrations from 0.25-2:0mM and 3H-TTP to 250uCi ml 1 did not significantly alter incorporation in the larger pieces of tissue, Although pretreatment with toluene increased the permeability of the tissue to precursors, consistency of results was reduced when sections greater than approximately 200u were used; the method could however, permit'a composite picture of incorporation to be attained. Activity was detected if 3H-dATP was substituted for 3H-TTP. At least 90% of the activity disappeared if tissues were pre or post treated with DNAse. Similarly nuclear activity was abolished if tissues were heated to 80-90°C or pretreated with 1% phenol. especially performed on whole roots or The latter treatments were tissue slices to see if the cytoplasmic labelling often found in the root Number of nuclei section counted nuclei displaying 127.34+56.39 28.32±7.50 Frozen sections were prepared from germinated seeds. Assay mixture same as for Figure 14. 15 sections were analyzed for activity. Nuclei considered to display intense activity are marked by arrows in Figure 14. Autoradiographs were exposed for 14 days. Autoradiographs of Feulges stained squashes of root meristen cells displaying incorporation from ³H-TTP after perseabilizing by freezing at A. -20°C or B. two successive freeze thaw treatments with nitrogen. The reaction mixture contained 0.05M 7ris-Cl baffer pH 8.4, 0.25mM each of d CTP, d GTP, d ATP, 100cCi ml⁻¹ ³H-TTP (s.a. 18Cd ser⁻¹) 5mM %gCl₂, laM dTT. Autoradiographs, were exposed for 14 days. x700. Figure 15. In Vitro Incorporation from ³B-TTP in Onion Seed Root Tip Meristematic Nuclei after Freeze Permeabilization of Thick Tissue Slices. ## Autoradiographs displaying - A. Incorporation from 3B-TTF into cortical cells adjacent to the root periphery (p) after one freeze that treatment with nitrogen. - B. Incorporation from ³H-TTP into cortical cells after one freeze that treatment at -20°C. The assay mixture contained 0.05 M Tris-Cl buffer pH 8.4, 0.5mM each of d CIP, d GIP, d AIP, 1000Cl ml⁻¹ 3H-TTP (s.s. 20Ct ml⁻¹) 5mM Mg (CB₅COO), 1mM dTT, Autoradiographs were prepared from paraffin sections and exposed for 14 days. x200. Figure 17. In Vitro Incorporation from ³H-TIP in Onion Seed Root Tip Meristematic Nuclei after Toluene Permeabilization of Thick Tissue Slices. ### Autoradiographs displaying - A. Incorporation from ³H-TTP into cortical cells adjacent to the root periphery (p). - B. Incorporation from ³H-TIP into cells adjacent to the excision surface approximately 1600-2000u from the root apex. Germinated seed roots (2-4mm long) were exclaed and shaken in 1% toluene in 0.07M KgiFPQ, buffer pH 7.4 for 1-min. The assay mixture contained 0.05M Tris-Cl buffer pH 8.4, 0.5mM each of d CTP, d GTP, d ATP, 50cCi mi⁻¹ 3M-TTP (s.a. 20 Ci mi⁻¹), 5mM Mg(CI)(500)₂, lmM d TI. Autoradiographs were prepared from paraffin sections and exposed for 14 days. x700. Figure 18: In Vitto Incorporation from ³H-TTF in Onion Seed Root Tip Meristematic Nuclei After Freeze Permeabilization of Thick Tissue Slices. ### Autoradiographs displaying - A. Incorporation from 3H-TTP into cortical cells adjacent to the root periphery (p) after two successive freeze than treatments with nitrogen. - B. Incorporation from ³H-TFP into cortical cells after two successive freeze thaw treatments at -20°C. The assay mixture bontained 0.05% Tris-Cl buffer pH 8.4, 0.5mM each of d CTP, d GTP, d ATP, 75uCi ml⁻¹ 3m-7mP (a.a. 20Ci ml⁻¹) 5mM MgCl₂, 1mM dTT. Autoradiographs were prepared from paraffin sections and exposed for 14 days. x700. cap come after freezing or toluene permeabilization treatments (Figure 19) was removed. Variability in incorporation was, however, great and a number of experiments would have to be performed before any conclusions could be reached. The exclusion of individual deoxytriphosphates reduced grain densities to approximately one third. This experiment was performed on a set of root tips permeabilized by freezing at -20°C and incubated-with one particular batch of H-TTP (s.a. 48Ci mM⁻¹). Only one experiment was done and should be repeated with other separate batches of nucleotides. Each experiment has to be done with separate shipments of isotopes and one experiment cannot be compared with another meaningfully unless facilities are available to establish the purity and specific activities of incubation mixtures. A number of treatments affected enzyme activity. High concentrations of potassium chloride (Kornberg and Gefter, 1970; Chiu and Sung, 1972) inhibited incorporation (Figure 140); this could be partially due to an indirect 'salting away! of the chromatin as nuclear staining was reduced with increasing molatity. The sulflydryl compounds, NEM and pCMB were good inhibitors. Activity was not enhanced if small concentrations of DNAse (concentrations were progressively reduced from 50 kg ml⁻¹, 135 units, to 0.2 kg ml⁻¹, 1 unit, in separate experiments) or if ATP (0.5-3.0 kM) were included in the incubation mixture. Concentrations of DNAse as low as 5 kg ml⁻¹ in the assay mixture abolished activity, and 20 kg ml⁻¹ molbilized the nuclei to an extent where only fibrous remmants remained; this is # Autoradiographs displaying - A. Incorporation from ³H-TTP into cells approximately, 300-500m from the root apex after freezing at -20°C. - B. Incorporation from ³H-TIP into cells approximately, 180-2004 from the root apex after toluene treatment. Note the extensive cytoplasmic labelling (arrow). Treatment and assay mixture were similar to Figure 18 for A and Figure 19 for B. contrasted with a partially purified DNA polymerase fraction: from corn seedlings (Stout and Arens, 1970) where DNAse concentrations to 50 µg ml⁻¹ (135 units) in the assay mixture markedly stimulated activity (3 fold) on native primer. A low level of DNA polymerse was detected in the preemergent onton embryo. Activity was not confined to any particular timsus, but could be found in provescular, epicotyl, cotyledonary and root cap zones, with the cotyledonary cells displaying the least incorporation (Figure 20-21). Inclusion of NEM or pCMB in the incubation mixture reduced activity considerably (Table 5) and no significant incorporation was found after DNAse treatment. No increase in activity was found with low concentrations of DNAse or in the presence of high nucleotide concentrations (Table 5). When cycloheximide or RNAse was included in the incubation mixture, activity appeared to be unchanged (Table 5). The low level of polymerase activity in the dry embryo is contrasted with the intense labelling seem in S phase cells. NNA polymerases are unable to initiate NNA synthesis 'de novo' on a single stranded template, without a primer containing a free -JOH end (Bollum <u>et al., 1969; Baltimore</u> and Smoler, 1971). In vivo experiments demonstrated a population of approximately 30% of meristem cells in S phase. A similar number in the <u>in vitro</u> struction displayed MNA polymerase activity, suggesting that deoxynucleoside polymerization is true replication and is proceeding on the primed template, which has Figure 20. In Vitro Incorporation from 3H-TTP in Ungerminated Onion Seed Embryos. Autoradiographs displaying a low level of - Incorporation from ³H-TTP into cells adjacent to the embryo periphery approximately 1000-1500a from the root apex. - B. Incorporation from ³H-TTP into presumptive meristematic cells approximately 500-800u from the root apex. Frozen sections were prepared from dissected embryos. The assay mixture contained 0.05M Tris-Cl buffer pH 8.4, 0.5mM each of d CTP, d GTP, d ATP, 100uci ml 1 3 H-TFP (6.a. 18Gi mm 1), 5mM Mg(CH,COO)₂. Autogadiographs were exposed for 21 days. x700. Figure 21. In Vitro Incorporation from ³H-TTP in Ungerminated Onion Seed Embryos, Autoradiographs displaying a low level of - A. Incorporation from 3H-TTP into provascular cells approximately 1200u from the root apex. - B. Incorporation from ³H-TTP into cells approximately 300u from the root apex. Autoradiograph preparation was the same as for Figure 20. Table 5. Effect of Changes in Reaction Mixture on in <u>Vitro</u> Incorporation from AR-TIP in Tissues of Ungerminated Chion Seed
Embryos. | Reaction mixture | % labelled cells | Reaction Mixture | % labelled
cells | |--|------------------|---|---------------------| | | ~ | | | | complete
.+0.025 µg m1 ⁻¹ DNAseI | 19*
18 | +100 µg ml ⁻¹ RNAse
+2mM pCMB | 16 <2 • | | .40.1 µg ml ⁻¹ DNAseI | • 17 | +2mM NEM | <2 | | +50.0 µg ml DNAseI | 16 | + 1 or 3mM ATP
+ 1 or 8mM GTP | | | +10.0 ug ml ⁻¹ cycloheximide | | + 1 or ban Gir | | Frozen segitions were prepared from dissected embryos. The assay mixture concanned 0.05% Tris-Cl buffer pH 8.4, 0.5mM each of d CFP, d GFP, d AFP, 100%Cl "H-TFP [s.a. 1861 mbr 1") 5mm mg (cd, 000)₂, lam dTT. Nuclei considered to be sabelled are shown in figures 20 and 21. Autoradiographs Sere exposed for 27 days. * Mean from sample of 150 sections. already initiated a round of DNA replication (Burger, 1971; Howell and Walker, 1972) in the cells at S phase. A favorable level of DNA polymerase activity was demonstrable in these studies, especially on 8th cryostat acctions. In bacterial systems the rate of true DNA replication in vitro is much lower than in vivo rates (Schaller at al., 1972; Smith at al., 1970). Two types of DNA synthesis are known, one for replication of .-DNA, the other for repair of DNA. A number of studies with toluene (Moses and Richardson, 1970; Massmithi and Kolber, 1970; Burger, 1971; Matsushita et. al., 1971; Howell and Walker, 1972; Brown et al., 1972); sucrose (Wickner and Hurwitz, 1972) or Briz-58 (Gamesan, 1971) have shown that a major part of DNA polymerase activity may reflect normal replication of DNA while, for instance, Tris-EDTA permeabilized cells (Buttin and Wright, 1968) are believed to display predominantly repair synthesis. A frequent characteristic of replicative DNA synthesis is a requirement for ATP (or other nucleoside triphosphates) and an inhibition by sulfhydryl reagents as NEM or p-CMB, whereas repair synthesis does not require exogenous ATP and is not inhibited by sulfhydryl compounds. Also purified preparations of E coli DNA polymerase II (Kornberg and Gefter, 1970) as well as a distinct species of DNA polymerase (other than I or II) isolated from E coli mutants (Kornberg and Gefter, 1971), differ from polymerase I (believed to function mostly in DNA repair) in their sensitivity to sulfhydryl reagents. In eukaryotic systems, such p-CMB or p-HMB (Weissback et al., 1971; Haines et al., 1971; Long and Garren, 1972) and NEM sensitivities (Chiu and Sung, 1972) have also been noted for DNA polymerases. In the system reported here (both toluene and cryostat sections), NEM or p-CMS inhibited activity whereas inclusion of nucleosides as ATP in the incubation mixture were without effect, similar to the ATP effect reported for <u>Chlamydononas</u> (Howell and Walker, 1972). The lack of DNAse primed incorporation also argues against the major role of repair replication in The root meristes wells in vitro. A low level of terminal decognucleotidyl transfer activity has been reported for tubacco plant tissue (Srivastava, 1972). Such activity is (a) abolished when other decognucleotides are added to the ingubation mixture, (b) is not inhibited by the sulfhydryl reagent p-COS and (c) is markedly inhibited when native chromatin is used as a primer. Thus, it is doubtful if terminal transferase activity is more than minimal in the system reported here. The presence of a low level of DNA polymerase activity in the ungerminated seed is of interest. Much evidence has been presented. (Bonhoeffer and Messer, 1969; Gross, 1972) that protein synthesis is required for the initiation of chromosome replication. In <u>E coli</u> Lark and Renger (1969) observed the existence of at least two regulatory proteins with different sensitivities to chloramphenicol. Both kinds of proteins are necessary for initiation and have to be made smew in sach cycle. The ability, however, to sustain DNA replication in the absence of protein synthesis varies according to the system studied (Notta et al., 1966; Wanks and Moors, 1970; Wanks et al., 1972). In an earlier study of protein metabolism during Allium germination (Mallery, 1971) a significant amount of ³⁸-leucise incorporation was shown to occur only after 30-36 hours from the starz of imbibition. Similar results were obtained by autoradiography in the statics. These observations and the use of cycloheximide and RNAse in enzyme assay media, ouggest that newly translated protein is not required to 'initiate or sustain' the DNA polymerase activity is ungerminated onton seeds. ### DNA polymerase template activity NNA polymerase primed activity was demonstrable in frozen sections of ungerminated onion seed embryos. When DNA polymerase was added, activity increased significantly above background levels. Activity was preferentially found in provascular, epicotyl, and epidermal tissues in preference to storage cotyledonary cells (Pigure 22-23, Table 6). Even with a saturating level of emgenous enzyme, activity remained low with no dramatic differences between tissue types (Table 6). Most incorporation was associated with nuclei, and no attempt was made to assess cytoplasmic activity. Since an excess of DNA polymerase was used in these experiments, it suggests that nor than increased polymerase levels are required to stimulate the nuclear template of the uncerminate seed tissue. Figure 22: In <u>Vitro</u> Incorporation from ³H-TTP with Exogenous DNA Polymerase in Ungerminated Onion Seed Embryos. #### Autoradiographs displaying - A. Preferential Incorporation from H-TTP in epidermal (e) cells of the cotyledon(c). - .B. Preferential Incorporation from ³H-TTP in provascular (py) cells. Frozen sections were prepared from dissected embryos. The assay mixture contained 0.05M Tris-Cl buffer pH 8.0, 0.5mM each of d CTP, d CTP, d ATP, 50uCi nc⁻¹ "H-TTP (s.a. 28Ci mb⁻¹), 5mM Mg(CH₃CCO)₂, 10mM KCl, 0.5mM dTI, 1 mg micrococcal DMA polymerase. Autoradiographs were exposed for 7 days, x700. guraç23. <u>In Vitro Incorporation from ³H-TTP with Exogenous DNA</u> Polymerase in Ungerminated Onion Seed Embryos. Autoradiograph displaying preferential incorporation from ³H-TTP into epicotyl cells. Autoradiograph preparation was the same as for Figure 22, x700. Fable 6. Effect of Exogenous DNA Polymerase on Incorporation from ³H-TTF in Ungerminated Onion Seed Embryos. plus DNA polymerase (grains nucleus 1) minus DNA polymerase (grains nucleus-1) | | Pr. | ** | × . | |------------------------------|-------------------|----|-----------| | Provascular + epicotyl cells | 5.06+1.89 | | 0.44+0.17 | | epidermal cells | 4.0 <u>+1</u> .19 | | 0.47+0.23 | Prozen sections were prepared from dissected embryon. The assay mixture contained 0.05M Tris-cl buffer H 8.0, 0.5mM each of d CTP, d GTP, d GTP, 50m CI ³M-TTP (s.s. 28Ci me⁻¹) 5mM Mg(Cil₂000)₂, 10mM KCl, 0.4mM dTT, 1 mg micrococcal DNA polymerase. Autoradiographs were exposed for 7 days. For grain counts of provascular and epicotyl cells 19 sections were analyzed from both control and experimental slides. For counts of epidermal cells 8 sections were analyzed. Here pieces of tissue having intact root caps were used and counts were made on the epidermal cell layer on both sides of the cap. Exogenous DNA polymerase primed activity in ungerminated seed tissues implies the retention of accessible 3'-termini (initiator-DNA), since all known DNA polymerases use free-30H ends of denatured DNA as intitator sites (Schekman et al. 1974). The purified micro-coccal DNA polymerase used in the present study requires a primer and template and is incapable of initiating new polynucleotide strands (Harwood and Wells, 1970). It cannot add random nucleotides into a DNA template by an end addition sechanism like terminal transferases. The length of denatured DNA required for the micrococcal enzyme is not known, but at least 20 nucleotides are required for calf thypus DNA polymerase (Bollum, 1959) in contrast to terminal decoynucleotidy1 transferase which has much shorter chain length requirements (Bollum et al., 1964; kato et al., 1967). It would be interesting to establish the physicochemical state of the chromatin in nuclei displaying preferential primed activity. In (mouse) degenerating lens nuclei, the IBA after denaturation acts as a better template for exogenous calf thymus DNA polymerase (Modak and Bollum, 1970). Modak et al.,1968; Modak et al.,1969) and this has been interpreted a an indicator of DNA strand acission (Modak et al.,1968; Modak et al.,1969) resulting in liberation of 3-OH ends (Modak and Bollum, 1970). Cytological studies with exogenous DNA polymerase on brain tissums(ms(ce) of various ages (Modak and Price, 1971) as well as similar studies with other mammalian cells have led to the suggestion (Modak and rice, 1971) that during laging INA undergoes strand breaks which are accumulated and exogenous polymerases can detect such template breaks. It would be of interest to test seeds of varying ages or seeds abcread under different environmental regimes for (strand break) genome damage. It is not known if seeds contain a DNA repair replication mechanism; repair replication occurs in non-replication mechanism; repair replication occurs in non-replication occurs in an accordance (beautiful and halverson, 1963); but no studies have been done on tissues which simulate the metabolic state of seeds. The concept of somatic mutations as major factors in againg tissues is not new (Cartis, 1966). Visible damage to chromosoms occur in post mitotic animal Tissues and has been found to be an index of seed age (Abdalla and Roberts, 1968). Studies of accelerated ageing treatment in seeds (Berjak and Villiers, 1972a; Berjak and Villiers, 1972b) suggest that loss of seed viability may be due to general damage to macromolocules including nucleic acids. There is also blochemical evidence for NNA damage in aged seeds (Roberts et al., 1973). Since protein synthesis is not
initiated in germinating onion seeds before several hours hydration, it would be interesting to see if primer termini (measured with exogenous DNA polyarense) only increase concurrently With such synthesis. An increase of termini in the absence of protein synthesis would imply that activation of preexisting enzymes or other non enzymatic control mechanisms associated with hydration, play a role in DNA volvmerase template activation. #### Ultrastructural observations on chromatin - Since studies with exogenous DNA polymerases indicated possible tissue differences in the state of the chromatin, 'a preliminary fine structural study of nuclear chromatin in various regions of the dry embryo was made. All regions were generally characterized by large dense chromatin masses of various sizes and shapes interspersed with electron transparent regions of dispersed fibrillar material (Figure 24). In some sections heterochromatic masses were reticulate and tortuous while in others they were much more discontinuous. The electron dense material was sometimes extensively vacuolated in storage tissue cells. In presumptive meristematic zones e.g., the micotyl, the degree of condensation of the chromatin often appeared to be less than in . cotyledonary cells but no conclusions could be reached without a detailed analysis of serial sections. An interesting feature of epicotyl chromatin is the presence of sharply delimited light portions frequently found dispersed within the electron dense chromatin (Figure 25). These light portions appear as distinct chromatin entitles separable from the relatively electron transparent lacunar spaces which though present in the dry embryo, are much more common in chromatin of actively growing tissues. It is quite probable, however, that the small amounts of fibrillar material sometimes observed in lacunae represent an altered state of the same light chromatin masses. No tissues of the onion embryo contained nuclear chromatin Figure 24. Electron Micrograph Showing Condensation State of the Chromatin in Onion Seed Embryo Tissue. Electron Micrograph demonstrating general condensation state of the chromatin (ch) in onton seed embryo tissue. This section was taken from a cotyledomary cell. Similar and greater degrees of condensation were common for nuclear chromatin in both cells of the vascular cylinder and cotyledon throughout the embryo axis. 256,000. Figure 25. Electron Micrograph Showing Condensation State of the Chromatin in Onion Seed Embryo Epidoeyl Nuclei. > Electron Micrograph of an epicotyl nucleus demonstrating sharply delimited electron transparent portions (arrows) dispersed within the electron dense chromatin (ch). x26,000. comparable to the decondensed states common in growing root tips. From preliminary studies of nuclear chromatin, no (readily) apparent relation between ultrastructure and rate of incorporation by exogenous DNA polymerase in various cell types could be observed. Electron microscope autoradiography, however, with exogenous polymerase or transferase may be useful in defining template sites. Ultrastructural cytochemical probes of DNA template states, especially in relation to BNA synthesis, have been developed (Frenster et al., 1974) and single stranded DNA have recently been identified immunologically at the ultrastructural level (Suzuki et al., 1974). There is some information on the fine structural sites of nuclear DNA synthesis in eukaryotes. Evidence has been presented for the synthesis of DNA on dispersed (Hay and Revel, 1963; Milner and Hayce, 1968; Blondel, 1968; Littau et al., 1964) and dense chromatin (Comings, 1967; Kilnger et al., 1967) although it is now generally believed that early replicating DNA is synthesized in a dispersed form (Kurofwa, 1973; Kurofwa, 1974; Lafontaine and Lord, 1974). Even heterchromatin containing late replicating DNA is synthesized in a dispersed form with rapid organization into dense chromatin (Lafontaine and Lord, 1974). In onion seed tissues, no nuclei having chromatin states comparable to meristematic cells were observed. Dry seed nuclear chromatin is similar to that present in G, interphase cells in growing Allium perum L. (Lafontaine and Lord, 1974) but in the seed, chromatin condensation is undoubtedly more pronounced. Studies on chromatin ultrastructure in different seed tissues at varying periods of germination could be fruitful in elucidating template modification, especially if coupled with cytochemical probe techniques. # Amino acid incorporation F When root tip sections from garminated seeds were assayed in the complete sminn acid mixture, incorporation was distinct but unaffected by cycloheximide. In dry seed sections assayed in the complete mixture, cycloheximide was replaced by a mixture of unlabelled amin acids ('cold chase'), and this was effective in distinctly reducing activity (Table 7). Instead of an increase, there was a small but significant reduction in activity when dry seed sections were assayed with ³N-phenylalanine in the presence of the artificial 'messanger' poly-U (Table 8) ³N-leucine incorporation was not affected by a combination of protein synthesis inhibitors (Table 9). In all amino acid incorporation experiments, activity was distributed over both cytoplasm and nuclei with no preferential labelling (Figure 26). Since there was no apparent reduction in activity with inhibitors, it is unlikely that the labelling found here represents amino acid incorporation into protein. Reduction of activity with 'cold' amino acids could be due to decreased enzymatic amino acid charging to endogenous t-RMA but this cannot be presently established. Similarly, it is not known if the polyanion, polyuridylic acid, acts Table 7. Effect of Unlabelled Amino Acids on <u>In Vitro</u> Incorporation from an ³H-amino acid mixture in Ungerminated Onion Seed Embryos. minus 'cold' amino acids (grains/50a') (grains/50a') cotyledonary trasse 48.79+14.73* 4.72+2,15 Frozen sections were prepared from dissected embryos. The assay mixture contained 0.05M Tris-Cl buffer pH 8.0, 25uCi ml⁻¹ of an ³H-amino acid mixture containing alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, bydroxyproline, isoleucine, leucine, lyaine, methionine, phenylalanine, proline, serine, threonine, tryosine, valine, 6mM Mg(CH₃COO)₂, 25mK KCl, 2mM ATP, lmM GTP. Control reactions contained a 0.1% solution of unlabelled amino acids. Autoradiographs were exposed for 14 days. For grain counts 16 sections were analyzed. Counts were made in an area 1000–1300u from the root apex on both sides of the vascular cylinder. For calculation of mean and standard deviation 40% of the areas observed had grain counts greater than 60 per 50u² but were included as containing 60 per 50u² in these calculations. Counting difficulty was experienced with grain counts greater than 60 per 50u². able 8. Effect of Polyuridylic Acid on <u>In Vitro</u> Incorporation from 3. H-Phenylalanine in Ungerminated Onion Seed Embryos. minus Poly-U (grains/50u²) plus Poly-U₂ (grains/50u²) cotyledonary tissue 30.43+7.12 12.36+3.08 Prozen sections were prepared from dissected embryos. The assay intrure contained 0.05 N Tris-Cl buffer pH 8.0, The phenylalantne 25uct ml⁻¹ (s.a. 13.4Ci mc¹⁻¹), 6mN Mg (CH,0001₂, 25mM KCl, 2mM ATP, 1mM GTP, 100ug poly-U ml⁻¹ was added in some experiments. Autoradiographs were exposed for 14 days. For grain counts, 16 sections were analyzed. Counts were made in an area 1000-1500u from the root approximates. Table 9. Effect of a Combination of Protein Synthesis Inhibitors on In <u>Vitro Incorporation from ³H-leucine in Germinated Onion</u> Seed Root Tips. minus inhibitors (grains/50u2) plus inhibitors (grains/50u²) ______ 25.71+6.01 23.47+4.37 Frozen sections were prepared from germinated onion seed root tips (2-4 mm long). The assay mixture contained 0.05M Hepes buffer pH 7.2, 50ct 3 H-laucine (s.a. 42.761 mb⁻¹), 4mt Mg (CH₂COO)₂, 0.4mt (NH₂A)₂SO₄, 0.5mt MGCl₂, 2.0mt dTT. Control reactions contained a combination of 100ug ml⁻¹ each of chloramphenical, cycloheximide, and purcosycin. Autoradiographs were exposed for 14 days. For grain counts 16 sections were analyzed. Counts were made over cortical tissue. Figure 26. In <u>Vitro</u> Incorporation from ³H-leucine in Onion Seed Root-Tip Meristematic Nuclei #### Autoradiographs displaying - A. Incorporation from 3H-leucine into cortical tissue - B. Incorporation from 3H-leucine into epicotyl tissue Note that grains were found over nuclei and cytoplasm (arrows). Frozen sections were prepared from gentinated onion seed root tips (2-4 mm long). The assay mixture contained 0.05M Hepes buffer pH 7.2, '50uti ml. 1 3-leucine (s.s. 42.7 ci ml. 1). 4mm Mg(CH_500)_2, 0.4mm (NH_2)_2SO_4 0.6mt MnCl_2, 2.0mt dTT. Autoradiographs were exposed for 14 days. A similar grain distribution over nuclear and cytoplasmic regions was found in all in vitro smino acid incorporation experiments. x700. by inhibiting an engagement reaction as amino acyl synthetase. If amino acid acylation reactions are responsible for the activity on cytologic sections, nuclear and cytoplasmic incorporation patterns, as well as amino acid localization in both presumptive meristenatic and storage tissues of the uncerminated seed are of interest. One explanation for the lack of protein synthesis in cytologic sections, could be that essential components of the protein synthesizing apparatus are diluted and disrupted into the incubation media. Factors such as those involved in binding of aminoacyl-t RNA to the ribosomes are found in soluble fractions of cell homogenates (Lucas-Lenard and Haenni, 1968) while others as peptidyl transferase may remain associated with macromolecules as ribosomal subunits (Vasqu et al., 1969). Dilution and disruption of essential components would not be surprising in view of the large number of highly coordinated events involved in protein synthesis including aminoacylation of t RNA. the initiation of polypeptide chains, their
elongation and termination. Several biochemical studies have reported amino acid incorporation in vitro within the confines of the nuclear membrane and this supports the argument that on tissue sections, nuclear rupture with the loss of essential components, accounts for failure to demonstrate protein synthesis, Besides 'physical' disruption of essential components, degradative enzymes as ribonucleases and proteases could play a role (Payne and Loening, 1970; Payne and Boulter, 1974). If protein synthesis were detectable in autoradiographs, it would likely consist of ribosome bound peptide fragments. By virtue of the experimental method, peptide fragments released from ribosomen would be lost into the incubation media and (or) removed by washing. (It is realized, however, that some 'non specific' adsorption is possible). Although in the present studies there was no evidence for protein synthesis in acid insoluble 'particulate' components retained in tissue sections, it is possible that amino acid incorporation into 'soluble' proteins can be demonstrated biochemically. Although the efficiency of amine acid incorporation in different cell fractions depends on a number of factors as type of buffer, pH, concentrations of various nucleotides and ions, etc., the design used here (in some experiments) contained the components of a typical "cell free" ribosomal system consisting of K⁺, Ng⁺⁺, ATF, GTF, labelled and unlabelled amino acids, and the various endogenous components such as t-ENAs and ribosomes. In addition "messenger' RNA was presumed to be present either endogenously or supplied as a synthetic i.e., poly U. Three different inhibitors were used in combination because of reported inconsistencies of their effectiveness in different itsues and subcellular fractions. Cycloheximide is generally recognized as an inhibitor of the translocation of t RNA on 80 S ribosomes (Kaji, 1973) but its effectiveness as a protein synthesis inhibitor has been reported to be variable in plants (Boulter, 1970). Chloramphenicol is regarded as an inhibitor of peptidyl transferase on bacterial ribosomes and is known to be an effective inhibitor of chloraplastic and mitochondrial protein synthesis (Boulter, 1970). Puromycin, which acts on normal peptide chain elongation by participating in peptidyl transferase reactions, inhibits amino acid incorporation by cytoplasmic, chloroplastic, mitochondrial and nuclear modeties. Rat liver amino acid incorporation is reported to be insensitive to purconycin and cyclo-heximide, but completely inhibited by chloramphenicol (Ono and Tarayama, 1968), while Dipteran nuclei are repotedly sensitive to chloramphenicol and purconycin but not cycloheximide (Helmsing, 1970). In preliminary studies, cycloheximide sensitive in vivo 3 d-arginine incorporation in onion root meristems, was well established, but because of reported differences for protein synthesis inhibitor, effectiveness in vitro, they were used in combination in some experiments reported here. It is not known if the inhibition of "H-phenylalamine incorporation by poly-U is enzymatic; most evidence points to a stimulatory role for the polymer and this has been demonstrated in plant tissues (Ellis and MacDonald, 1968; Payre et al., 1971). Inhibition of cell free phage induced protein synthesis by homopolynucleotides has been reported for a bacterial system (Moller and Ehrenstein, 1963). Polytibonucleotides are also known to react with MAN (Quatter and Vedel, 1973) and poly-U binding to chromosomes has been cytologically demonstrated (Jones et al., 1973). Purther studies are required before the nature of amino acid incorporation inhibition by poly-U on tissue sections can be assessed. The reduction in amino acid incorporation in tissues incubated- with excess unlabelled amino acids is of special interest. It. remains to be determined if the labelling observed in cytological sections is, ensymatic binding of amino acids to transfer NNA species by aminoacyl t RNA synthetases. Variations in isoaccepting t RNA populations on their cognate synthetases occur in cells during development and such changes may reflect the involvement of t RNA in regulatory processes (Sucoka and Kano-Sucoka, 1970; lititauer and Incuye, 1973). Although t RNA metabolism in relation to growth and development has received little attention in plants, some interest has been recently generated in this area of cell regulation (Vanderhoef et al., 1970; Norris at al., 1973; Melera at al., 1974; Bick and Strehler, 1972). # Observations on cytoplasmic contents of ungerminated embryos Although attempts to cytologically demonstrate in vitro protein synthesis were unsuccessful, since a reduction of main acid incorporation occurred in dry seed tissues, in the presence of unlabelled maino acids and also with poly-U, ultrastructural studies were carried out on cytoplassic contents to check for structures that might be involved in the enzymatic retention of maino acids. If the incorporation on frozen sections represents amino acid charging of transfer ENA, such activity should be associated with cells or cell regions containing 'groundplasm' and structures as ribosomes, mitochondria, or proplastide, where such ENA species would normally be found. Functional amino acyl synthetasy of transfer ENA would not be expected to be 'embedded' in storage bodies often found filling storage cells of dry seeds. At least it would be difficult to reconcile a physiological function. Any speculation for the presence of such protein synthesis components in demaly packed storage cells is only tenable if ENA containing structures are associated with such storage bodies. Exploratory histologic studies on frozen or paraffin section demonstrated lipid, phospholipid, and protein staining particulate masses throughout the embryonic axis. Carbohydrate containing substances were only reliably seen to be associated with cell walls. Besides nuclear DNA and nucleolar RNA, no other nucleic acid staining was seen. The cytoplasm often displayed a pink tint with the RNA stain, but color was not decreased after RNA hydrolysis. On thick Epon sections cut from various embryo regions, only a few cell types were readily distinguished on the basis of cytoplasmic contents. These included (a) cells with few storage bodies found in epicotyl and provascular tissue (b) cells with an abundance of particles staining intensely with basic dyes and displaying a red metachromasia or (c) cells with an abundance of small bodies staining less intensely and not displaying metachromasia. No serial sectioning was done, however, and the differing cytoplasmic contents may merely reflect different regions of the same 'cell. Organelles identified by electron microscopy as protein bodies (Swift and Buttrose, 1972; Jones, 1974; Lott et al., 1971; Jacobsen et al., 1971; Briarty et al., 1969) were particularly abundant in all regions (Figure 27). (Terms as 'aleurone grain', profein bodies or 'protein granules' are often used synonymously (Briarty et al., 1969)). The protein bodies conform to the more intensely staining structures on thick sections. Membrane bound protein bodies were either electron dense or relatively transparent; transparent types contained a more flocculent material. Characteristic of the electron dense bodies are one or more cavities free of any electron dense substance. These cavities conform to globoid containing phytin storage regions (Swift and Buttrose, 1972; Lott et al., 1971; Jacobsen et al. 1971). Protein bodies are formed as a result of protein accumulation in vacuoles or filling of the endoplasmic reticulum (Bain and Mercer, 1966; Englemann, 1968) after an increase in the ribosome content of the cytoplasm. In appropriate sections of the onion seed, vacuolar regions containing small electron dense peripheral deposits were often observed (Figure 27-28) and they are interpreted as initial maturational steps in protein body formation (Simola, 1971; Briarty et al. 1969; Bain and Mercer, 1966; Opik, 1968). Free or membrane bound ribosomes were not associated with 'matured' protein bodies. Also profusely distributed in the onion seed were electron transparent organelles known as lipid bodies (Figure 29) (Swift and Buttrose, 1972; Lott at al., 1971) or spherosomes (Briarty et al., 1969; Figure 27. Electron Micrograph Showing Storage Body Contents in Onion Seed Embryo Cotyledon Tissues. Electron micrograph demonstrating storage body contents in cotyledonary cells. More (a) the electron dense protein bodies (pb), often centaining electron transparent cavities (b) the relatively transparent gobular (lb) and sheet (lbs) like lipid bodies and (c) vacuolar regions containing electron dense substances conforming to maturing protein bodies (mpb). Similar cytoplasmic contents were found in both vascular cylinder and cotyledon tissues throughout the embryo axis, but type of particle and density of packing often varied. x6000. Figure 28. Electron Micrograph Showing Storage Body Contents in Onion Seed Embryo Cotyledon Tissue. Some vacuolar regions have a flocculent material while others contain electron dense particles (or patches) of various sizes. These are believed to be maturational steps of protein body formation(mpb). (pb, protein body; lbs, lipid body sheets). x6000. Figure 29. Electron Micrograph Showing Storage Body Contents in Onion Seed Embryo Epicotyl Tissue. Note the ribosome studding (arrow) of lipid bodies (1b). Such ribosome studding was common for lipid bodies in all tissues of the embryo dags. The cell section shown here has an abundance of lipid bodies, but this is not meant to typify cells in this region, for other epicotyl cells contained cytoplasmic contents similar to Figures 27 and 28. x27,500. Jones, 1969; Jacobsen, 1971; Jones, 1974). They appeared characteristically globular but were also found in cytoplasmic sheets. The bodies were not restricted to the cell periphery but dispersed throughout, often surrounding
protein granules. Limiting membranes were not distinguishable but Tiboscmal studding was a characteristic feature. There is some evidence that 11p1ds are elaborated by portions of the E.R. (Stein and Stein, 1967; Stein and Stein, 1968) and it has been suggested (Frey-Wyssling and Muhlethaler, 1965) that spherosomes are formed from E.R. in an immature state. In comparison to the abundance of storage bodies, there was a scarcity of smaller definable organellés as mitochondria or plastids in onion seed embryos. Peroxidase and phosphatase rich bodies were detected by light microscopy, but have not been resolved at the E.M. level. Besides surrounding the ligid bodies, ribosomes were often seen in cell regions where storage particles were not densely packed. Structures conforming to rough E.R. or Golgi were only seen infrequently. If in vitro amino acid labelling in dry embryo tissues is due to charging of endogenous transfer RNA, activity should be preferentially found in cell regions (or types) where 'groundplasm' is present. It was tenable to speculate that activity would be lower in cotyledon tissues densely packed with storage bodies, but auto-radiographs displayed little or no differences in incorporation between difference embryo regions. It is not known if the ribosomes surrounding the spherosomes are indicative of a potential for protein synthesis (or a residual ontogenetic characteristic) and have associated anino-acyl synthetase activity. Scanning E.M. autoradiography could be useful for grain visualization on large cell organiles such as storage bodies which retain an adequate three dimensional structure after freeze drying and costing procedures. Preliminary investigations demonstrated that in thick sections of onion seeds, various storage bodies retained good structural integrity after air or freeze drying procedures, with or without fixation. ### Methylases Experiments with methicatine assamethyl donor failed to demonstrate reliable levels of any methylase activity. With both methicatine and EMA nucleotides in the enzyme assay mixture, incorporation was distributed over nuclei and cytoplasm, (Figure 30) but substantial amounts of activity remained in both meristenatic and ungeratinated embryo tissues after INAse or RNAse digestion. The same result was obtained with both thick razor slices or frozen sections. Where nucleotides were included in the incubation mixture, it was hoped to increase MNA synthesis; the synthesis of new EMA polymers may be important if methylation proceeds repidly. In experiments with ungerminated embryos, the rationals was to incubate under conditions Figure 30. Incorporation from ³H-Methionine into Onion Seed Root Tip Nuclei. ### Autoradiograph displaying In Yavo incorporation, from ³H-methioning into epicotyl cells of a thick slice of tissue taken from a seed germinated for 36 hrs. Note label over nuclei and cytoplasm (arrows). The assay mixture contained 0.00M Tris-Cl buffer pH 7.4, 10cM MgCl₂, 150cM MgCl, 1.0cM dTT, 0.5cM each of GTP, ATP, UTF 50uCl ml⁻¹ 3H-methyl-methionine (s.a. 190c cl ml⁻¹). Autoradiographs were exposed for 14 days. of minimal or no protein synthesis, so that label entering nucleic acids could be more easily recoived from incorporation into peptide polymers (or other compounds). Preferential nuclease sensitive incorporation into nuclear, nucleolar, or cytoplasmic regions was not obtained in any experiments. Activity is possibly due to incorporation (or non specific adsorption) into a number of tissue substances, but incorporation into protein, the most obvious candidate for an amino acid as methionine or charging of transfer RNA residues, was not investigated. It is teachle that methyl groups from methionine are incorporated into protein and (or) nucleic acid polymers (and other compounds) but at such low levels that different activities are not distinguishable. NA methylase activity only was detected when SAM was substituted for methonine as methyl donor (Figure 31). In meristematic tissues incubated with SAM, nuclei displayed a reliable level of activity and most incorporation was gensitive to RNAse but not DNAse. Activity was distributed over cell nuclei with so preferential nucleolar incorporation. Attempts to 'activate' EMA methylation with exogenous trypsin were unsoccessful. When trypsin was included in the reaction mixture, tissue digestion was extensive and no meaningful interpretation of activity was possible. Thus, in plant meristematic cells, SAM can be used as methyl donor to demonstrate satisfactory levels of cytological EMA methylase, in contrast to DNA or projetin polymer methylation reactions. Figure 31. In Vttro Incorporation from ³H-S-adenomyl-methyl-methionine into Onion Seed or Bulb Root Tip Meristematic Nuclei. ### Autoradiographs displaying - A. Incorporation from SAM into cortical cells of an onion seed root tip. - B. Incorporation from SAM into cortical cells of an onion bulb root tip. - C. Incorporation from SAM into cortical cells of a bulb root tip after RNAse digestion. Frozen sections were prepared from onion seed or bulb root tipe (2-4 mm long). The assay mixture contained 0.05M Tris-Cl buffer pH 8.0, 3MM KCI, 0.02mM dTT, 50x61 ml⁻¹ 3H-s-adenosyl-methyl-methionine (s.a. 7.3 Ci ml⁻¹). In C. tissues were post treated with RNAse. Astoradiographs were exposed for 21 days. x800. The type of RMA cytologically methylated is of interest. It was once believed that t RMA methylases in nucleated cells were localized in the nucleolus (Birmstiel et al., 1963; Sirlin et al., 1963) but it has since been established that most t RMA methylase activity is found in the cytoplasm (Toutsui et al., 1966; Simon et al., 1967; Baguley and Staehelin, 1968). Studies have also suggested that methyl groups of r RMA are incorporated into nucleolar 45 s RMA (Greenberg and Pennan, 1966; Zimmernan and, Boller, 1967); in this study, however, there appeared to be no preferential nucleolar labelling. Mensenger RNA (nRNA) is believed to be derived from a heterogenous class of RNA (nRNA). This hnRNA, in contrast to nucleolar rRNA, is characterized by heterogeneity in size with no detectable discrete species (Weinberg, 1973) and it is believed to be synthesized solely in the nucleoplasm (Pennah, 1966). Although it is metabolically labile, it is known to be synthesized at such a rate, that after a short labelling period, it represents most of the acid precipitable radioactivity incorporated into cellular RNA (Darnell, 1968). It is tenable that a large proportion of RNA retained in the nucleoplasm of tissue sections is similar to this hnRNA, but hnRNA is one of the few species of RNA that is believed not to be methylated (Weinberg, 1973). In addition to the ribosomal RNA of the nucleolus and the haRNA of the nucleoplasm, work in the early 1960's (Muramatsu and Busch, 1965; Muramatsu and Hodnett, 1966), presented evidence for the presence in ^{*} I have been informed (Dr. B. Sells) that methylated m-RNA has been reported. Cell 1: 37-41 (1974). sukaryotic cell nuclei of a class of RNA (several species) now known as 'small molecular weight stable nuclear RNA (SnRNA). A Although SORNA's, have been found in a number of different cell types, they have not been investigated in plants. Most SnRNA species are found outside the nucleolus while others are heldeved to be nucleolar '(Meinberg, 1973) and this RNA is methylated post transcriptionally. It is believed that nucleoplasmic SnRNA is associated with protein after synthesis (Walters et al., 1970) but it is easily dissociated from chromatin by low molar salt and even isotonic buffers (Weinberg, and Pennan, 1969; Rein, 1971). It is not known if this RNA species is retained on tissue sections under the present experimental method. Another species of RNA, chromosomal RNA (CRNA) was described in 1965 (Nuang and Bonner, 1965) and its properties and function in different organisms have been reviewed (Nolmes at al., 1972). Chromosomal RNA is believed to be covalently bound to chromatin histone (Ruang and Bonner, 1965; Jacobsen and Bonner, 1971) but there is evidence that c RNA resembles r RNA (Chamus and McConnell, 1969). If the activity observed in cytologic studies conforms to methylated c RNA, it is interesting that it is not localized preferentially in the nucleolus. If there were a low level of methyl group transfer to protein polymers on cytologic sections, it is doubtful that it could be easily datacted assuming plant protein methylase products compare with those characterized biochemically from animal tissues. Methylase I transfers methyl groups to argining particularly in added histone (Faik and Kim, 1968; Paik and Kim, 1969) and is mainly found outside the nucleus; Methylase II transfers methyl groups to maino acid carboxyl groups and is similarly found outside the nucleus; Methylase III in found in cell nuclei (Allfrey et al., 1964; Kim and Paik, 1965; Sekeris et al., 1967), and transfers methyl groups to lysine residues in added histone: It is not known, if incorporation into histone by methylases I and III would be substantially removed by the acetic call used in fixation (Dick and Johns, 1968). Also since methyl groups transferred to carboxylic acid residues by methylase II, form ester linkages, they may be unstable to acid hydrolysis (Kim and Paik, 1970; Kim and Paik, 1971) and lost from tissue sections by acetic acid and TCA treatment. Although NNA aestylases have not been well characterized in plants, their existence was established in the early 1960's (Birmstiel et al., 1962; Srinivasan and Borek, 1964). Of specific interest to plant cell physiology is the observation that the methylation of puring residues of both t NNA and r NNA is enhanced by the plant hornohe gibberellic acid (Chandra and Duynstee, 1971). Evidence questioning in vivo work on plant NNA methylation, has demonstrated that plants incorporate methyl groups much more rapidly into pectin or its precursors than into NNA, and pectin also
contaminates NNA fractions on acrylamide gals? Another potential source of contamination in plants could also be henicellulosic residues (Bonner and Vainer, 1965). The present cytologic work'supports the presence of active NNA methylases in plants. Information from several sources has led to acceptance of SAM as the immediate methyl donor in NNA although evidence has not shown that methionine is the major endogenous source fall EMA methylation in plants. Other substrates besides nucleic acid and protein polymers possibly compete for methionine; SAM is the methyl donor for methylation of phosphatidylchanolasaine to phosphatidylcholine (Wilson at al., 1960), a ubiquitous component of membranes of higher organisms (Rothfield and Finkelstein, 1968). Spermidine and putrescine polymannes, which are common in higher plants (Smith, 1971) have high synthetic rates in rapidly growing tissue (Tabor and Tabor, 1972) and plant seedling cell free extracts are known to decarboxylate SAM (Baxter and Coscia, 1973) in the synthesis of polymannes. Thus, although protein and DNA polymers as well as many other compounds, can potentially compete for SAM, an efficient level of BNA methylase can be cytologically demonstrated in plant root maristematic cells. Since RNA and protein synthesis does not begin in onion seed embryos until after several hours hydration, it would be interesting to determine if RNA methylase exists in ungerminated seeds. Information on the ability of condensed chromatin in different 'resting' cells to effect in situ sethylation would be informative. Lack of activity could be due to absence of functioning enzymes or the proper template requirements. This could be established by biochemical assay with 'artificial' undermethylated RNA polymers. ## Poly(ADP-Ribose)Polymerase A high level of incorporation from M-NAD was cytologically detected in both meristematic and ungerminated onion embryo tissues (Figure 32). In the growing roots at least 30% of the cells were 'Neavily' labelled (Table 10). Labelling was intensely distributed over the nuclei with no preferential nucleolar activity; distributed over the nuclei with no preferential nucleolar activity; distributed in witcoln and the preferential nucleolar activity; distributed in witcoln and premarks activity. It is interesting that in the ungerminated embryo, an intense incorporation was observed in all tissues from root cap epidermis to the cotyledon tip and at least 90% of the cells in the embryonic axis were labelled. Endosperm tissue, however, contained little or no activity. When reaction products from enzyme digests were chromatographed on thin layer plates, radioactive regions with mobilities similar to ADP-ribose and 5-AMP were localized on chromatograms (Figure 33). Thus, at least part of the activity cytologically demonstrable is tentatively identified as incorporation of MAD into, a poly(ADP-ribose)polymer. A great deal of interest has centered around observations on several mammalian tissues that ADP-ribosylation of nuclear proteins causes an inhibition of endogenous DNA polymerase activity in isolated nuclei (Burzio and Koide, 1970; Hilz and Kittler, 1971; Nagao et el., 1972; Lahnann and Shall, 1972). Poly(ADP-ribose)polymerase activity from a number of sources has also been reported to be low in S phase (Smulson Yigure 32. In Vitro Incorporation from ³H-Nicotinaside Adenine Dissoclectide into Onion Seed Root Tip Meristematic Nuclei and Ungerminated Seed Tissues. ### Autoradiographs displaying - A. Incorporation from ³H-NAD into cortical cells of an onion seed root tip. x800. - B. Incorporation from ³H-NAD into cells of the root cap apex of an ungerminated onion embryo, x150. Frozen sections were prepared from germinated onton seed root tips (2-4 mm long) or ungerminated embryos. The assay mixture contained 0.05M Tris-Gl buffer pH 8.3, 5mM Ng(CH₃ CO₂), 3.3mM NaF, 50mM KCI, 3.0mM dTT, 50uCi ml⁻¹, 3.3mM NaF, 50mM kCI, 3.0mM dTT, 50uCi ml⁻¹). Autoradiographs were exposed for 7 days. Table 10. Percentage Onion Seed Root Tip Meristematic Nuclei Displaying Interse In Vitro Incorporation from ³H-NAD. | Number of nuclei section 2 counted | | | I nuclei displaying intense* Incorporation from ³ H-NAD | | | |------------------------------------|--|--|--|-----------|--| | 115.0 <u>+</u> 50.52 | | | 3: | 3.18+7.50 | | Frozen sections were prepared from germinated onion seed roof tipe (2-4 mm long). The assay mixture contained 0.05M Tris-Cl befer pH 8.3, 5mM NgCl₂, 3.3mM NaF, 50mM KCl, 3.0mM dTT, 50mCl ³B-MAD (e.g. 3.46 Cl mi⁻¹). Autoradiographs were exposed for 7 days. 16 sections were analyzed for activity. * Nuclei displaying intense incorporation had grain densities beyond the resolution of individual grains. Figure 33. Radiochromatogram Detection of AMF-ribose and AMF as possible Products of a Poly(ADP-ribose)Polymer. The away mixture contained 0.03M Tris-Cl buffer pH 8.3, 5mM Ng(CH,000)₂, 3.3mM NaF, 50mM KCl, 3.6mM dTT, 50mCl mi-1 ³HRNIO (s.m. 3,4661 mM⁻¹). Embryo homogenates were incubated, washed with TCA, hydrolyzed with NaOU, neutralized, incubated with phosphodiesterase followed by promase incubation. Ethanol dissolved digests were run on polyethyleneimine cellulose plates. Scans were at a linear range of 100 c₁p.m., time constant 100 sec., and a chart speed of 0.1 cm hr. 5-APP and ADP r standards were detected under UV light. The two major activity peaks (A) and (B) are C¹⁴ marker spots used for calculating R_c values. et al., 1971; Sugimira et al., 2073; Haines et al., 1969). Arcole for the polymer in INA synthesis has come from observations that it can release INA polymerase from chromatin and block the activity of certain endonucleases (Burzio and Koide, 1973; Yoshihara and Koide, 1973; Yoshihara et al., 1973; Yoshihara et al., 1973; Yoshihara et al., 1975), which possess the ability to activate the template for INA synthesis (Burzio and Koide, 1973; Hewish and Burgoyne, 1973; Ishida et al., 1974). It has also been reported that the polymer can inhibit liver INAse (Yamada et al., 1974). Other evidence has not upheld a megative correlation between DNA replication and spoly/ADF-ribose) activity (Lehmann and Shall, 1972; Lehmann et al., 1973; Burzio and Koide, 1971; Burzio and Koide, 1972; Muller et al., 1974). Recent work further suggests a role for the polymer in template activation and DNA synthesis, stimulation. It was shown that in He in cells ribosylation of nuclear proteins is related to template activation for DNA synthesis, as demonstrated by bacterial polymerase probes (Roberts et al., 1973). Stimulation of DNA synthesis by ribosylation—was detected throughout the cell cycle of He La cells, with maximal enhancement in C₂. Binding studies with DNA polymerase (Roberts et al., 1974) indicate exposure or generation of additional 3-OH primer sites due to ribosylation reactions. The reason for these different effects on DNA synthesis are not known. There is some evidence, however, that the presence or absence of poly(ADP-ribose) inhibitable nucleases, which may have primer function, can explain the contradictory evidence about the role of the polymer in DNA replication (Roberts et al., 1974). An early report suggested that cells having high levels of RNA synthesis also have high specific poly (ADP-ribose) polymerase activity (Haines et al., 1969). It has been similarly demonstrated with actinomycin D that continuing RNA synthesis is necessary for maintaining the activity of the polymerase (Smulson and Rideau, 1972). Other workers have, however, detected no such relationship, and some (Lehmann et al., 1974) have cautioned against the concentrations of actinomycin inhibitor used in comparing RNA synthesis and poly(ADP-, ribose) polymerase kinetics. It has also been demonstrated that purified preparations of poly(ADP-ribose)polymerase are inhibited by actinomycin D (Yoshihara, 1972). Besides earlier in vitro work (Burzio and Koide, 1971) showing that incubation of chromatin with NAD did not affect its capacity for RNA synthesis, it is noted that transcription, as probed by bacterial RNA polymerases (in contrast to DNA polymerases) is not affected by poly(ADP-ribose) formation during the cell cycle (Roberts et al., 1973). It has been suggested from in vitro studies that poly(ADPribose) is covalently bound to nuclear proteins, principally histones (Rishizuka-et al., 1968; Rishizuka et al., 1969; Otake et al., 1969) and ABP-ribose is attached to histones in vivo both as a monomer and a polymer (Ueda et al., 1975). Since the polymer seems primarily bound to histone, which is non covalently linked to DNA and RNA, it is encouraging that a high level of activity can be retained cytologically after fixation in acetic-acid: alcohol and after repeated washes in TCA and distilled water. Optimum conditions for enzyme activity were not determined. Glycohydrolases which degrade the polymer are known to be present in a number of mammalian tissues (Niva and Sugimura, 1971; Ueda et al.,1972; Miyakawa et al.,1972; Stone and Shall, 1973) and polymer degradation has been noted in several cell systems after varying periods of incubation. Enzyme activity would also be influenced by enzymes effecting NAD breakdown as NADase, NAD pyrophosphorylase, and phosphodiesterase. It is not whown what role polymer or precursor degradative enzymes play in influencing enzyme activity in either the dry seed or the actively_growing meristem. In the germinating seed meristem approximately 30% (Table 10) of the cells demonstrated an intense activity similar to results for in vitro DNA polymerase on frozes sections. It is thus tenable to speculate a positive correlation with active 8-phase nuclei, supporting the most recent hypothesis for poly(ADP-ribose) polymerase function. In the ungrainated seed, however, intense activity was found in tissues other than presumptive meristems. Although little if any thymidine (at high
specific activity) was found to be incorporated in vivo in storage cotyledom cells, an intense poly(ADP-ribose) polymerase was found there, as in all tissues of the ungerminated embryo. The pattern of label in the ungerminated seed, excepting the endosperm, is reminescent of EMA. polymerass activity in the early hours of hydration, before nucleolar labelling becomes distinct. Putuge hypothesis on the role of this enzyme in the eskaryotic cell will have to consider its presence in plants as well as the pattern of enzyme activity in various seed tissues. It is difficult at this time to assess a biological role for bly(ADP-ribose). Studies reported here add further novel characteristics. Although much evidence has centered around involvement of the polymer in DNA synthesis, its role in RNA transcription and chromosome structure remain to be elucidated. It is possible that it may be involved in cell cycle chromatin modifications similar to phosphorvlation acetylation, and methylation reactions. ADP-ribosylation may be a general mechanism for regulation of enzymic activities. In addition to chromatin ribosylation reactions, other compounds such as diphtheria toxin, catalyze the transfer of the ADP-ribose moiety of NAD to peptide elongation and transfer factors (Honjo et al, 1968; Robinson and Maxwell, 1972). After infection of E coli with bacteriophage, the DNA-dependent RNA polymerase is modified by ADP-ribosylation of the sub units (Goff, 1974; Zilling et al. 1974). Many 'non specific' functions cannot be ruled out for the enzyme, supporting the hypothesis that ADP-ribosylation by poly (ADP-ribose) polymerase may play a dynamic role in the cell in regulating enzyme activities. # SUMMARY AND CONCLUSION Autoradiography has been used to cytologically demonstrate michel BNA polymerase, DNA polymerase, DNA polymerase. DNA polymerase and poly(ADP-ribose)polymerase and RNA methylase have been cyrologically established for the first time (from any tissue coirce) and poly(ADP-ribose)polymerase had been recorded for the first time (from a higher plant. Attempts to demonstrate in vitro protein synthesis of tissue soctions were unsuccessful. Noth nucleolar and nucleoplasmic RNA polymerases were demonstrated in endospers tissues of uncerminated onton seed and in unagrouted both roots when incubated in an assay mixture containing 8-UTP. Throughout the tissues of the embryonic axis, general nucleoplasmic labelling was observed before any label was found to be distinctly associated with nucleoil. It is not known if nucleolar fusion in the endospern tissue effects a net concentration of RNA polymerases enzyme, thus permitting its carlier detection, or if nucleolar polymerases are activated more readily in the endospern than in the embryo axis. In the unstrouted more readily in the endospern than in the embryo axis. In the unstrouted more readily detected. The mathed permits the distinction between, nucleolar and nucleoplasmic polymerases and it would be interpating to establish it they are the same enzymes as the NNA polymerases I and III, which have been fractionated from plant chromatin. The nucleoli in both onlow bulb root and seed tissues are predominantly fibrillar, characteristic of tissues with minimal or no rubesomal NNA synthesis. In appropriate sections of the centro, pucheolar chromatin is continuous with extranucleolar chromosomal material and one or more rows of condensed chromatin masses are found throughout the nucleolar organizing region. The condensed masses are probably representative of a repressed state of chromatin microlibrils, 'normally' active in the transcription of ribosomal MNA synthesis. The presence of extensively vacuolated nucleoli in the seed cotyledon tip supports the hypothesis that vacuoles need not be dynamically associated with ribosomal MNA synthesis. In any physiclogical studies (in plant tissue) on the . initiation of cell activity after a period of 'rest' it is important to establish any characteristic suggestive of growth or degenerative changes. Analysis of onion seed and bulb roots for G₂ cells revealed the presence of a distinct number of G₂ cells in the bulb roots. Further studies demonstrated that the unsprouted roots are capable of a low level of growth and cell division. Ultrastructural work also demonstrated possible growth and (or) degenerative thanges under storage. These included extensive cell well degradation, vesicle formation from attacks of endoplasmic reticulum, and presence of various types of membrane modifications, some resembling autophagic vacuales. A significant level of nuclear DNA polymerase activity can be detected in frozen sections of root meristem cells when incubated in an assay mixture with "B-TTP. Nuch lower levels of activity are obtained when tissue slices or intact roots are pretreated with toluene or freeze-thawed at -20°C, -60°C or -200°C. Such procedures, however, permit composite pictures of activity to be more easily obtained. Incorporation is optimal in the presence of all four deoxyribonucleoside triphosphates and displays sulfhydryl group dependence. The nuclei displaying in vitro TNA polymerase are believed to be those in S phase at the time of tissue preparation and are not nuclei displaying DNA repair. activity mediated by the experimental method. A low level of DNA polymerase activity can be detected in the imperminated onion seed embro. This activity is found in the presence of cycloheximide or ribonuclesse and thus appears not to be dependent on de novo protein synthesis. It needs to be established whether the activity in the dry seed is involved in DNA repair mechanisms in seed storage. When ungerminated onion seed embryo tissues were incubated in the presence of saturating levels of micrococal DNA polymerase, incorporation from ³H-TIT is higher in presumptive mexistenatic tissues as the epicotyl, provascular and epidermal cells than in storage cotyledonary tissues. This indicates retention of a more efficient template and (or) primer in these tissues for the enzyme. It should be datablished if DNA strand science occurs in aging seed rissues. Ultrastructural studies demonstrated extensive condensation of the chromatia in all regions of the embryonic axis. Although qualitative differences in the condensation state are apparent between some nuclei of presumptive meristematic tissues, such as the epicotyl, as compared to storage cotyledon cells, extensive serial sectioning is required before any association between muclear ultrastructure and template activity of nuclear chromatin can be made. These studies should be supplemented with E. M. cytochemical probes for DNA templates. Nuclear or cytoplasmic in vitro protein synthesis could not be established on cytologic sections. A high level of mino acid incorporation was retained over both nuclei and cytoplasm, but was not decreased with cycloheximide or a combination of cycloheximide, chloramphenical and purcaycin. Activity was decreased in ungerminated embryos in the presence of either an excess of unlabelled amino acids or with poly-U and it should be established if amino-acyl-synthetases are responsible for the incorporation. Ultrastructural studies of the cytoplasmic contents of various regions of the embryo demonstrated possible areas for retention of activity by charged transfer RMA. Although densely packed protein and lipid bodies are found in all regions, cells often display regions of groundplasm containing tilengames, endoplasmic reticulum and mitochondria. Although protein bodies appear not to Se associated with ribosomes, most lipid bodies are characteristically studded with such organelles. CONTRACTOR OF THE PARTY Attempts to establish a cytological method for either protein, DNA or DNA methylases, were successful only for DNA methylase activity. With methicinine as substrate in an in vitro assay mixture, RNA methylase could not be reliably demonstrated in either germinated or ungerminated seeds. A suitable level of DNA methylase, activity was demonstrated in metistematic root tips of either germinated seeds or sprouted bulbs, when S-adenosyl-1-methiconine was substituted for methiconine. Activity was generally distributed over the whole nucleus with no preferential nucleolar incorporation. Approximately 30% of the meristematic cells displayed BNA methylase activity in both bulb and seed root tips. It needs to be established which species of BNA are being methylated while still bound to chromatin. No attempt was made to investigate activity in ungerminated seeds using activated methicaine. An enzyme tentatively identified as poly(ADP-ribose) polymerase has been recorded for the first time in a higher plant. When cell extracts were incubated in an apany mixture with 3H-MAD, an acid insoluble polymer was figured. Labelled 5-MAP and ADPr were detected after phosphodiesterase and processe digastion. The enzyme was also demonstrated cytologically. When root peristes cells were incubated, approximately 90% of the cells displayed an intense incorporation. The activity was distributed over the whole nucleus with no preferential nucleolar incorporation. When tissues of the ungerminated seed were incubated with NAD, intense activity occurred in all tissues from root cap epidermal cells to the tip of the cotyledón with more than 90% of the cells displaying activity. Rediable activity could not be established in endospera tissues of ungerminated or germinating seeds. Most work to date suggests a role for poly(ADP-ribose) o'wnorms in tamplate modification for DNA synthesis. The demonstration of similar numbers of cells displaying DNA polymerase and poly(ADP-ribose) polymerase in-root neristems support this hypothesis. A physiological role for the high activity retained in tissues of the ungerminated seed will have to be considered in future hypotheses on the function of this enzyme. The <u>in vitro</u> procedures established in these studies for the formation of insoluble isotope containing
products by chromatin bound enzymes, should be useful in further studies of cell or tissue differentiation. To extend the method it will be of interest to see how reliably reaction products can be retained in chromatin of various animal tissues. ### BIBLIOGRAPHY - Abdalla, F. H. and E. H. Roberts (1968). Effect of temperature moisture and oxygen on the induction of chromosome damage in seeds of barley, broad beans and peas during storage. Ann. Bot. (Lond.) 32: 119-136. - Adams, R.L.P. and C. Hogarth (1973). DNA methylation in isolated nuclei: old and new DNA's are methylated. Biochim. Biophys. Acta 331: 214-220. - Allfrey, V. G., A. E. Mirsky and S. Osawa (1957). Protein synthesis in isolated cell nuclei. J. Gen. Physiol. 40: 451-490 - Allfrey, V. G., R. Meudt, J. W. Hopkins and A. E. Mirsky (1961). Sodium dependent transport reactions in the cell nucleus and their role in protein and nucleic acid synthesis. Proc. Natl. Acad. Sci. U.S.A. 47: 907-932. - Allfrey, V. G. and A. E. Mirsky (1963). Mechanisms of synthesis and control of protein and ribonucleic acid synthesis in the ceil Paucleus. Gold Spring Harb. Symp. Quant. Biol. 28: 247-262. - Affrey, V. G., R. Faulkner and A. E. Hirsky (1964). Acetylation and methylation of histones and their possible role in the megulation of RNA synthesis. Proc. Natl. Acad. Aci. U.S.A. 51: 786-794. - App, A. A., M. C. Bulis and W. J. McCarthy_(1971). Dissociation of ribosomes and seed germination. Plant Physiol. 47: 81-86. - Arens, M. Q. and E. R. Stout (1974). Purification and comparative mechanistic studies on an endogenour inhibitor of maize RNA polymerase. Biochim. Biophys. Acta 353: 121-131. - Avanzi, S., F. Maggini and A. M. Innocenti (1973). Amplification of ribosomal cistrons during the maturation of metaxylem in the root of Allium ceps. Protoplasma 76: 197-210. - Baguley, B. C. and M. Staehelin (1968). The specificity of transfer ribonucleic acid methylase from rat laver. Biochemistry 7: 45-50. - Bain, J. M. and F. V. Mercer (1966). Subcellular organization of the developing cotyledons of <u>Pisum sativum</u> L. Aust. J. Biol. Sci. 19: 49-67. - Bal, A. K. (1973). Studies in the quiescent root meristem of the bulb of <u>Allium cepa</u> L.: Fine structure and DNA synthesis. Dev. Growth Diff. 15: 225-239. - Bal A. K. and P. R. Gross (1964). Asynchronour synthesis of RNA introdecli of root meristem. Science (Wash. D.G.) 142: 808-810. - Bal, A. K. and J. F. Payne (1972). Nucleolar ultrastructure in the dilescent embryonic cells of the dry seed of <u>Allium</u> ceps L. Experientia (Basel) 28: 680-682. - Baltimore, D. and D. Smoler (1971). Primer requirement and template specificity of the DNA polymerase of RNA tumor viruses. Proc. Natl. Acad. Sci. U.S.A. 68: 1507-1511. - Barker, G. R. and M. Rieber (1967). The development of polysomes in the seed of Pisum arvense. Biochem. J. 105: 1195-1201. - Barlow, P. W. (1970). RNA synthesis in the root apex of <u>Zea mays</u>. J. Exp. Bot. <u>21</u>: 292-299. - Baxter, C. and C. J. Coscia (1973). In vitro synthesis of spermiding in the higher plant Vinca rosea. Biochem. Biophys. Res. Commun. 54: 147-154. - Berjak, P. and T. A. Villiers (1970). Ageing of plant embryos I. The establishment of the sequence of development and senescence in the root cap during germination. New Phytol. 69: 929-938. - Berjak, P. and T. A. Villiers (1972a). Ageing of plant embryos II. Age induced damage and its repair during early germination. New Phytol. 71: 135-144. - Berjak, P. and T. A. Villiers (1972b). Ageing in plant embryos IV. Loss of regulatory control in aged embryos. New Phytol. 71: 1069-1074. - Birk, M. D. and B. L. Strehler (1972). Leucyl-t RNA synthetase activity in old cotyledons: evidence on repressor accumulation Mech. Ageing and Dev. 1: 33-42. - Billen, D. (1968). Methylation of the bacterial chromosome: an event at the "replication point"? J. Mol. Biol. 31: 477-486. - Birnstiel, M. L., J. H. Rho and M. I. Chipchase (1962). Practionation of isolated pea nuclei. Blochim. Biophys. Acta 55: 734-740. - Birnstiel, M. L., E. Fleissner and E. Borek (1963). Nucleolus: a center of RNA methylation. Science 142: 1577-1580. - Blondel, B. (1968). Relation between nuclear fine structure and ³Hthyaddine incorporation in a synchronous cell culture. Exp. Gell Res. 51: 348-356. - Bollum, F. J. (1959). Thermal conversion of non-priming deoxyribonucleic acid to primer. J. Biol. Chem. 234: 2733-2734. - Bollum, F. J., E. Groeniger and M. Yoneda (1964). Polydeoxyadenylic acid. Proc. Nat. Acad. Sci. U.S.A: 51: 833-859: - Bonner, J. and J. E. Varner (1965). Plant Biochemistry. Academic Press, New York. p 298-321. - Bonhoeffer, F. and W. Messer (1969). Replication of the bacterial chromosome. Annu. Rev. Genet. 3: 233-246. - Borek, E. and P. R. Srinivasan (1966). The methylation of nucleic acids. Ann. Rev. Biochem. 35: 275-298. - Boulter, D. (1970). Protein synthesis in plants. Annu. Rev. Plant Physiol. 21: 91-114. - Boyer, H. (1971). DNA restriction and modification mechanisms in bacteria. Annu. Rev. Microbiol. 25: 153-176. - Brachet, J. (1957). Biochemical Cytology. Academic Press, New York. p 1-4. - Briarty, L. G., D. A. Coult and D. Boulter (1969). Protein bodies of developing seeds of <u>Vicis faba</u>. J. Exp. Bot. <u>20</u>: 358-372. - Brown, N. C., C. L. Weisseman III and T. Matsushita (1972). Inhibition of bacterial NNA replication by 6-(p-hydroxyphenylazo)-uracil. Not. New Biol. 237: 72-74. - Brunori, A. and F. D'Amato (1967). The DNA content of nuclei in the embryo of dry seeds of Pinus pinea. Catyologia 20: 153-161. - Brunari, A., J. Georgieva and F. D'amato (1970). Further observations on the X draddation response of Greells in dry seeds. Mutat. Res. 9: 881-487. - Brushaber, J. A. and S. F. Jenkins (1971). Lomasomes and vesicles in Poria monticola. Can. J. Bot. 49: 2075-2079. - Bryant, T. R. (1969a). DNA synthesis and cell division in germinating onion I. Onset of DNA synthesis and mitosis. ...Caryologia 22: 127-138. - Brunt R (1969b) DNA synthesis and cell division in germinating onion II. Mitotic cycle and DNA content., Caryclogia 22: 139-148. - Bullough, W. S. and J.U.R. Deol (1971). The pattern of tumour growth Symp. Soc. Exp. Biol. 25: 255-275. - Burger, R. M. (1971). Toluene treated <u>Escherichia coli</u> replicate only that DNA which was about to be replicated <u>in vivo</u>. Proc. Nat. Acad. Sci. U.S.A. 68: 2124-2126. - Burzio, L. and S. S. Koide (1970). A functional role of poly ADPR. in DNA synthesis. Biochem. Biophys. Res. Commun. 40: 1013-1020. - Burzio, L. and S. S. Koide (1971). Mode, of inhibition of DNA synthesis induced by adenosine diphosphoribosylation of nuclear protein. Biochem. Biophys. Res. Commun. 42: 1185-1190. - Burzio, L. and S. S. Koide (1973). Activation of the template activity of isolated rpt liver nuclei for DNA synthesis and its inhibition by NAD. Biochem. Biophys. Res. Commun. 53: 572-579. - Busch, H. and K. Smetana (1970). The Nucleolus. Academic Press, New York. - Buttin, G. and M. Wright (1968). Ensymatic DNA degradation in E. coli: its relationship to synthetic processes at the chromosome level. Cold Spring Harb. Symp. Quant. Biol. 33: 259-269. - Chakravorty, A. K. (1969). Ribosomal RNA synthesis in the germinating black eye pes (Vigna unguiculata) 1. The effect of cycloheximide on RNA synthesis in the early stages of germination. Biochim. Bighpus. Acta. 179: 67-82. - Chambon, F., J. D. Weill and P. Mandel (1963). Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthysizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11: 39-43. - Chandra, C. R. and J. E. Varner (1965). Gibberellic acid controlled metabolism of RNA in aleurone cells in barley. Blochim. Biophys. Acta 108: 583-592. - Chandra, G. R. and E. E. Duynstee (1971). Methylation of ribonucleic acids and hormone induced anylase synthesis in the aleurone cells. Biochim. Biophys. Acta 232: 514-523. - Chen, D., S. Sarid and E. Katchalski (1968). Studies on the nature of messenger RNA in germinating wheat embryos. Proc. Nat. Acad. Sci. U.S.A. 60: 902-909. - Chen, D. and D. J. Osborne (1970a). Ribosomal genes and DNA replication in germinating wheat embryo. Nature 225: 336-340. - Chen, D. and D. J. Osborne (1970b). Hormones in the translational control of early germination in wheat embryo. Nature (Lond.) 226: 1157-1160. - Chen, D., C. Schultz and E. Katchalski (1971). Early ribosomal RNA transcription and appearance of cytoplasmic ribosomes during gefmination of the wheat embryo. Nat. New Biol. 231: 69-72. - Chouinard, L. A. (1966a). Nucleolar architecture in root meristematric cells of <u>Allium cepa</u>. Natl. Cancer Inst. Monogr. <u>23</u>: 125-143. - Chouinard, L. A. (1966b). Localization of intranucleolar DNA in root meristematic cells of <u>Allium cepa</u>. J. Cell Biol. 31: 139A. - Chouinard, L. A. (1970). Localization of intranucleolar DNA in root meristematic cells of <u>Allium</u> ceps. J. Cell Sci. 6: 73-85. - Chouinard, L. A. (1974). An electron-microscope study of the intranucleolar chromatin in root meristematic cells of Allium ceps. J. Cell Sci. 15: 645-657 - Chouinard, L. A. and Leblond, C. P. (1967). Sites of protein synthesis in nucleoli of root/meristematic cells of <u>Allium</u> cepa as shown by radioautography with (3H) arginine. J. Cell Sci. 2: 473-480. - Chiu, J. F. and S. C. Sung (1972). Solubilization and characterization of a particulate form of DNA polymerase from adult rat brain nucleis Biochim. Biophys. Acta 262: 397-400. - Crispeels, M. J. and J. E. Varner (1967). Hormonal control of enzyme synthesis: on the mode of action of gibberellic acid and abscisin in alcurone layer of barley. Plant Physicl. 9 42, 1008-1016. - Comings, D. E. (1967). The duration of replication of the imactive X chromosoms in humans based on the persistence of the heter-chromatic sex chromatin body during DNA synthesis. Cytogenetics 6: 20-37. - Comings, D. E. (1972). Methylation of euchromatic and heterochromatic DNA. Exp. Cell
Res. 74: 383-390. - Curtis, H. J. (1966). A composite theory of ageing. Gerontologist 6: 143-149. - Dahmus, M. and D. McConnell (1969). Chromosomal ribonucleic acid of rat ascites cells. Biochemistry 8: 1524-1534. - Darnell, J. E. (1968). Ribonucleic acids from animal cells. Bacteriol. Rev. 32: 262-290. - Das, N. K. (1963). Chromosomal and nucleolar RNA synthesis in root tips during mitosis. Science 140: 1231-1233. - Davidson, D. (1966). The onset of militosis and DNA synthesis in roots of germinating beans. Am. J. Bot, 53: 491-495. - Deltour, R. (1970). RNA synthesis and translocation in root cells of Zea mays during early stages of germination. Planta 92: 235-239. - Deltour, R. and R. Bronchart (1971). Changements de l'ultrastructure des cellules radiculaires de Zea mays au debut de la germination. Plants (Berl.) 97: 197-207. - Devik, F. and K. Halvorson (1963). Observations by biochemical analysis and autoradiography on labelled deoxyribonucleic acid in normal and regenerating liver of sice. Nature 197: 148-150. - Dick, C. and E. W. Johns (1968): The effect of two acetic acid containing fixatives on the histone content of calf thymus deoxyribonucleoprotein and calf thymus tissue. "Expt. Call Res. 51: 626-632." - Dintzis, H. M. (1961). Assembly of the peptide chains of hemoglobin. Proc. Nat. Acad. Sci. U.S.A. 47: 247- 261 - Duda, C. T. and J. H. Cherry (1971). Chromatin and nuclei directed ribonucleic acid synthesis in sugar beet root. Flant Physiol. 47: 262-268. - Dunham, V. L. and J. H. Cherry (1973). Nultiple DNA polymerase activity solubilized from higher plant chromatin. Biochem. Biophys. Res. Commun. 54: 403-410. - Ebstein, B. S. (1969). The distribution of DNA within the nucleoli of the amphibian occyté as demonstrated by critiated actinomycin D radioautography. J. Cell Sci. 5: 27-46. - Ellis, R. J. and I. R. MacDonald (1968). Characterization of amino acadd incorporation by subcellular fractions from sterile beet disks. Planta (Berl.) 83; 248-256. - Englemann, E. M. (1966). Ontogeny of aleuone grains in cotton em- - Esau, K. (1965). Plant Anatomy. John Wiley and Sons (Inc.), New York and Sydney, p 726. - Estable, C. and J. R. Sotelo (1955). The behavior of the nucleolonema during mitosis. Symposium on Fine Structure of Cellisa. Groningen. Nordhoff, p. 170-190. - Evans, L. S. and J. Van't Hof (1974). Promotion of cell arrest in C2 in root and shoot meristems in Plaum by a factor from the catyledons. Exp. Cell Res. 37: 259-264. - Ferguson-Smith, M. A. (1964). The sites of nucleolus formation in. human pachytene chromosomes. Cytogenetics (Basel) 3: 124-134. - Pisher, D. B. (1968). Localization of ondegenous RNA polymerase activity in frozen sections of plant tissues. J. Cell Biol. 39: 745-749. - *Flemming, W. (1882). Zellsubstanz, Kern and Zeiltheiling, Vogel, Leipzig. - Fowke, L. C. and G. Setterfield (1968). 'Cytological responses in Jerusalem artichoke tuber slices during ageing and subsequent auxin treatment. Biophemistry and Physiology of Plant Growth Substances. The Runge Press, Ottawal p 581-602. - Fowke, L. C. and G. Setterfield (1969). Pultivesicular structures and cell wall growth. Can. J. Bot. 47: 1873-1877. - Frankfurt, O. S. (1971). Epidermal chalone, Effect on cell cycle and on development of hyperplasia. Exp. Cell Res. 64: 140-144. [&]quot;Original reference not consulted - Frankland, B. Jarvis, B. C. and J. H. Cherry (1971). RNA synthesis and the germination of light sensitive lettuce seeds. Planta (Serl.) 97: 39-49. - Frenster, J. H., S. L. Nakatsu and M. A. Masek (1974). Ultrastructural probes of DNA template within human bone marrow, and lymph node cils. Adv. Cell Mol. Biol. pl-1-9. - Frey-Wyssling, A. and A. K. Muhlethaler (1965). Ultrestructural Plant Cytology. American Elsevier, New York. - Pujimura, S. and T. Sugimura (1971). Polymerization of the adenosine 5'-disphsphate-ribose moiety of NAD. Methods Enzymol. 18B. p 223-230. - Ganesan, A. T. (1971). Adenosine triphosphate dependent synthesis of biologically active DNA by azide poisoned bacteria. Proc. Nat. Acad. Sci. U.S.A. 68: 1296-1300. - *Goff, C. G. (1974). International Seminar on Poly (ADP-ribose) and ADP-ribosylation of protein, Sept, 10-12. Hokkaido, Japan. - Gold, M., M. Gefter, R. Hausmann and J. Hurwitz (1965). Methylation of DNA. J. Gen. Physiol. 42: 5-28. - Goldstein, L. and J. H. Eastwood (1966). On the primary site of nuclear RNA synthesis, a retraction. J. Cell. Biol. 31: 195. - Goldstein, L. (1970). On the question of protein synthesis by cell nuclei. Adv. Cell Biol. 1: 187-210. - Rodman, R. M. and W. S. Benjamin (1973). Nucleoprotein methylation in salivary gland chromosomes of Sciara coprophila: a correlation with DNA synthesis. Exp. Cell Res. 77: 63-72. - Greenberg, H. and S. Penman (1966). Methylation and processing of ribosomal RNA in He La cells. J. Mol. Biol. 21: 527-535. - Gross, J. D. (1972). DNA replication in bacteria. Curr. Top. Microbiol. Immunol. 57: 39-74. - Haines, M. E., I. R. Johnston, A. P. Mathias and D. Ridge (1969). The synthesis of micotinamide adeline dinucleotide and poly adenosine diphosphate ribose in Various classes of rat liver nuclei. Biochem J. 115: 881-887. - Haines, N. E., A. M. Holmes and I. R. Johnston (1971)? Distinct cytoplasmic and nuclear DNA polymerases from rat liver. FEBS (Fed. Eur. Blochem. Soc.) Lett. 17: 63-67. - Hall, J. L. (1970). Pinocytotic vesicles and ion transport in plant cells. Nature (Lond.) 226: 1253-1254. - Harwood, S. J. and R. D. Wells (1970). <u>Micrococcus Luteus</u> decsyribonucleic acid polyserage. Studies on the initiation of decxyribonucleic acid synthesis in vitro. J. Biol. Chem. 245: 5625-5634. - Hasofer, A. M. (1974). A probability model for the fusion of nucleold in metabolic cells. J. Theor. Biol. 45: 305-310. - Hay, E. D. and J. P. Revel (1963). The find structure of the DNP. component of the nucleus, an electron microscopic study utilizing autoradiography to localize DNA synthesis. J. Cell Biol. 16: 29-51. - Helmsing, P. J. (1970). Protein synthesis of polytene nuclei in vitro. Biochim. Biophys. Acta 224: 579-587. - Herman, L., L. Eber and P. J. Fitzgerald (1962). Liver cell degeneration with ethionine administration. Fifth International Congress on Electron Microscopy. Academic Press, New York p. 5-6. - Hewish, D. and L. A. Burgoyne (1973). The calcium dependent endonuclease activity of isolated nuclear preparations. Relationship between the occurrence and the occurrence of other classes of enzymes found in nuclear preparations. Biochem. Biophys. Res. Commun. 52: 475-481. - Hilz, H. and M. Kittler (1971). Lack of correlation between poly-(ADF-ribose) formation and DNA synthesis. Hoppe-Zeyler's Z. Physiol. Chem. 352: 1693-1704. - Holdgate, D. P. and T. W. Goodwin (1964). Metabolism of nucleic acids during early stages of the germinative process in tye (Secale cereale) Phytochemistry (OMf.), 4: 845-850. - Holmes, D. S., J. E. Mayfield, G. Sander and J. Bonner (1972). Chromosomal RNA: its properties. Science (Wash. D.C.) 177: 72-74. - Honjo, T., Y. Nishizuka, O. Hayaishi and I. Kato (1968). Diphtheria toxin-dependent adenosine diphosphate ribosylation of mainoacyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 243: 3553-3555. - Hopker, W. (1953). Uber den Nucleolus der Nervenzelle. Z Zellforsch. Mickrosk. Anat. 38: 218-229. - Borgen, P. A. and D. H. Griffin (1971). Specific inhibitors of the three RNA polymerases from the squatic fungus Bistocladiella emersonii. Proc. Natl. Acad. Sci. U.S.A. 68: 338-341. - Hotta, Y., A. Bassel and H. Stern (1965). Nuclear DNA and cytoplasmic DNA from tissues of higher plants. J. Cell Biol. 27: 451-457. - Hotta, Y., L. G. Parchman and H. Stern (1968). Protein synthesis during meiosis. Proc. Natl. Acad. Sci. U.S.A. 60: 575-582. - Howard, A. and S. R. Pelc (1953). Synthesis of desoxyribonucleic acid in normal and irradiated calls and its relation to chromosome breakage: Heredity 6: 261-273. - Howell, S. H. and L. L. Walker (1972), Synthesis of DNA in toluenetreated <u>Chlamydomonas reinhardi</u>. Proc. Natl.Acad. Sci. U.S.A. 69: 490-494. - Huang, R.C.C. and J. Bonner (1965). Histone bound RNA, a component of native nucleohistone. Proc. Natl.Acad. Sci. U.S.A. 54: 960-967. - Hwang, K. M., L. C. Yang, C. K. Carrico, R. A. Schulz, J. B. Schenkman and A. C. Sartorelli (1974). Production of membrane whorls in rat liver by some inhibitors of protein synthesis. J. Cell Biol. 62: 20-31. - Hyde, B. B. (1967). Changes in nucleolar ultrastructure associated with differentiation in the root tip. J. Ultrastruct. Res. 18: 25-54. - Ihle, J. N. and L. S. Dure (1972). The developmental biochemistry of cotton seed embryogenesis and germination III. Regulation of the biosynthesis of enzymes utilized in germination. J. Biol. Chem. 247: 5048-5055. - Ishida, R., H. Akiyoshi and T. Takahashi (1974). Isolation and purification of calcium and magnesium dependent endonuclease from rat liver nuclei. Biochem. Biophys. Res. Commun. 55: 703-710. - Jacobsen, J. V., R. B. Knox and N. N. Pyliatus (1971). The structure and composition of aleurone grains in the barley sleurone layer. Flanta (Berl.) 101: 189-209. - Jacobson, R. and J. Bonner (1971). Studies of the chromosomal NNA and of the chromosomal NNA binding proteins of higher organisms. Arch. Blochem. Blophys. 146: 557-563. - Jakob, K. M. (1972). RNA synthesis during the DNA synthesis period of the first cell. cycle in the root meristem of germinating Victa faba. Exp. Cell Res. 72: 370-376. -an 207 - Jakob, K. M. and F. Bovey (1969). Early nucleic acid and protein synthesis and mitoses in the primary root cap of germinating Victa faba. Expt. Cell Res. 54; 118-126. - Jakob, K. M. and I. Tal (1973). Methyl methionine labelling of a higher plant tissue: the incorporation into RNA and pectific acid of nucleic acid extracts. Biochim. Biophys. Acta 308: 296-309. - Jacob, S. T., E. M. Sajdel and H. N. Munro (1970). Specific action of α-amenitin on mammalian RNA polymerase
protein. Nature (Lond.) 225: 60-62. - Jansz, H. S., D. Nei and G. M. van der Zandvliet (1971). International review of cytology. DNA biosynthesis. p 115-167. - Jarvis, B. C., B. Frankland and J. H. Cherry T958s). Increased DNA template and RNA polymerase. associated with the breaking of sept dormancy. Flant Physiol. 43: 1734-1736. - Jarvis, B. C. B. Frankland and J. H. Cherry (1968b). Increased in the breaking of domancy of hazel seed by gibberelik acid. Flants (Berl.) 83: 257-266. - Jarvis, B. C. and C. Hunter (1971). Changes in the capacity for protein synthesis in embryonic axes of hazel fruits during the breaking of domancy by GA₂. Planta 101: 124-179. - Jensen, W. A. (1962). Botanical Histochemistry, W. H. Freeman and Co., San Francisco, London. - Jensen, W. A. and L. G. Kavaljian (1966). Plant Biology Today. Advances, and Challenges. Wadsworth Publishing Co. Belmont, California p. 19. - Johnson, K. D. and W. K. Perves (1970). Ribonucleic acid synthesis, by cucumber chromatin. Developmental and hormone induced changes. Plant Physiol. 46: 581-585. - Johnson, J. K. (1969). A study of nucleolar vacuoles in cultured tobacco cells using radioautography, actinosycin D, and electron nicroscopy. J. Cell Biol. 43: 127-206. - Jones, K. W., J. O. Bishop and A. Brito-da-Cunhs (1973). Complex formation between poly-r(U) and various chromosomal loci in Rhynchosciara. Chromosoms (Berl.) 42: 375-390. - Jones, R. L. (1969). Giberellic acid and the fine structure of barley aleurone cells II. Changes during the synthesis and secretion of "-amylase. Plants (Serl.) 88: 73-66. - Jones, R. L. (1974). The structure of the lettuce endosperm. Planta 121: 133-146. - Jordan, E. G. and J. M. Chapman (1971). Ultrastructural changes in the nucleoil of Jerusalem artichoke (Hellanthus tuberosus) tuber discs. J. Exp. Bot. 22: 627-634. - Jordan, E. G. and J. M. Chapman (1973). Nucleolar and nuclear envelope ultrastructure in relation to cell activity in dises of carrot root (Daucus cerota L.). J. Exp. Bot. 24: 197-209. - Kaji, A. (1973). Mechanisms of protein synthesis and use of inhibitors in the study of protein synthesis. Prog. in Mol. Subcell. Biol. 2: 63-158. - Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixature of high osmolarity for use in electron microscopy. J. Cell Biol. 27: 437a. - Kato, K. I., J. M. Goncalves, G. E. Houts and F. J. Bollum (1967). Deoxynuclectide polymerizing enzymes of calf thymus gland II properties of the terminal deoxynucleotidyltransFerase. J. Biol. Chem. 242: 2780-2789. - Kim, S. and W. K. Paik (1965). Studies on the origin of E-Nmethyl-L-lysine in protein. J. Blol. Chem. 240: 4629-4634. - Kim, S. and W. K. Paik (1970). Purification and properties of protein methylase II. J. Biol. Chem. 245: 1806-1813. - Kim, S. and W. K. Paik (1971a). Studies on the structural requirements of substrate protein for protein methylase II. Biochemiatry 10: 3141-3145. - Kim, S. and W. K. Paik (1971b). New assay for protein methylase II. Activity suitable for richlogacetic acid soluble substrate, based on distillation of methanol. Analyt. Bioches. 22: 255-261. - Klinger, H. P., H. G. Schwarzscher and J. Weiss (1967). DNA content and size of sex chromatin positive female nuclei during the cell cycle. Cytogenetics (Basel) 5: 1-19. - Kordan, H. A. and L. Morgenstern (1962). A comparison of addition normal and proliferating citrus fruit tissue in vitro. Exp. pell Res. 28: 133-138. - Kornberg, T. and M. L. Geffer (1970). DNA synthesis in cell free extracts of a DNA polymerase defective mutant. Biochem. Biophys. Res. Commun. 40: 1348-1355. - Kornberg, T. and M. L. Gefter (1971). Purification and DNA synthesis in cell free extracts: properties of DNA polymerase. II. Proc. Natl Acad. Sci. U.S.A. 68: 761-764. - Kuehl, L. (1967). Evidence for nuclear synthesis of lactic dehydrogenase in rat liver. J. Biol. Chem. 242; 21-9-2206. - Kuehl, L. (1969). Effects of various inhibitors on nuclear protein synthesis in rat liver. J. Cell Biol. 41: 660-663. - Kuroiwa, T. (1973). Fibe structure of interphase nuclei VI. Initiation and replication sites of DNA synthesis in the nuclei of <u>Physarum polycephalum</u> as revealed by electron microscope autoradiography. Chromosoma 44: 291-299. - Kuroiwa, T. (1974). Fine structure of interphase nuclei III. Replication site analysis of PNA during the S period of Grepis capillaris. Esp. Cell. Res. 83: 387-398. - La Cour, L. F. (1966). The internal structure of nucleoli. Chromonomes Today. Oliver and Boyd, Edinburgh and London, p. 15-160. - La Cour, L. F. and J.W.C. Crawley (1965). The site of rapidly labelled ribonucleic acid in nucleoli. Chromosoma (Berl.) 16: 124-132. - Lafontsine, J. G. and A. Lord (1973). An ultrastructural and radiographic investigation of the nucleo lonemal component of plant interphase nucleoli. J. Cell Sai. 12: 369-383. - Lafontaine, J. G. and A. Lord (1974). An ultrastructural and radioautographic study of the evolution of the interphase nucleus in plant meristematic cells (Milium porrum): J. Cell Sci. 14: 263-287. - Lark, C. (1968). Studies on the in vivo methylation of DNA in Escherichia. coli 15T. J. Mol. Biol. 31: 389-399. - Lark, K. G. and H. Renger (1969). Initiation of DWA replication in E scherichia coli 197: Chronological dissection of three physiological processes required for initiation. J. Mol. Biol. 42: 221-235. - Leffler, H. R., "T. J. O'Brien, D. V. Glover and J. H. Cherry (1971). Enhanced deoxyribonucleic scid polymerase scrivity of chromatin from soybean hypocortyle treated with 2. 4-dichlorophenoxyecetic acid. Plant Physiol. 48: 43-45. - Clemann, A. R., S. K. Bell and S. Shall (1973). Changes in poly (adenosine diphosphate ribose) polymerase on stimulation of pig lymphocytes with phytoheanaglutfin. Blochem. Soc. Trans. 1: 594. - Lahmann, A. R., S. K. Bell, S. Shall and W. J. D. Whish (1974). The relationship between cell growth, macromolecular synthesis and poly ADP-ribose polymerase in lymphoid cells. Exp. Cell Res. 83: 63-72. - Lehmann, A. R. and S. Shall (1972). No inhibition of endogenous DNA phlymerase by synthesis of poly (ADP-ribose) in muclei from Pyphold cells. FEBS (Fed. Eur. Biochem. Soc.) Lett. 26: 181-184. - Leuhr, V. (1928). Ein beftrag zur kenntnia der vorgange in sich differenzierenden und streckenden pflanzenzellen. Bot Arch. 21: 110-216. - Lindell, A. J., P. Weinberg, P. N. Morris, R. G. Roeder and K. J. Rutter (1970). Specific inhibition of nuclear RMs polymerase II by αamenitin. Science (Wash. D.C.) [170] 447-448. - Littau, V. C., V. G. Allfrey, J. H. Frenster and A. E. Mirsky (1964). Active and inactive regions of chromatin as revealed by electron microscopy sutoradiography. Proc. Natl. Acad. Sci. U.S.S. 52: 93-162. - Littauer, U. Z. and H. Inou e (1978) ... Regulation of t RNA. Annu. Rev. Biochem. 42: 439-470. - Long, G. L. and L. D. Garren (1972). DNA polymerase from beef adrenal nuclei. Biochem. Biophys. Res. Commun. 46: 1228-1235. - Lott, J.N.A., P. L. Larsen and J. J. Darley (1971). Protein bodies from the cotyledons of <u>Gueurbits maxims</u>. Can. J. Bot. 49: 1777-1782. - Luciss-Lenard, J. bod. A. L. Haenni (1968). Requirement of guanouine 5-triphosphate for ribosomal binding of aminoacyl s RNA. Proc. Natl. Acad. Sci. U.S.A. 59: 554-460. - * Original reference not consulted. - MacQuade, H. A., M. Friedkin and A. A. Atchinson (1956). Radiation effects of thymidine -2-1 °C. II (Chromosome aberrations caused by thymidine -2-1 °C and thymine -2-1 °C in the onion root tip. Exp. °Cell Res. 11: 256-264. - MacRobbie, E.A.C. (1969). Ion fluxes to the vacuole of Nitella translucens. J. Exp. Bot. 20: 236-256. - Malamud, D. and R. Baserga (1968). Glycogen concentrations and DNA synthesis in isoproterenol stimulated salivary glands. Exp. Cell Res. 50: 581-588. - Mallery, C. B. (1971). Protein metabolism of Allium radicle tips during germination. Physiol. Plant. 25: 448-455. - Marchant, R. and A. W. Robards (1968). Membrane systems associated with the plasmalemma of plant cells. Ann. Bot. (Lond.) 32: 457-471. - Marcus, A. (1969). Seed germination and the capacity for protein synthesis. Symp. Soc. Exp. Bio. 23: 143-160. - Marcus, A., J. Feeley and T. Volcani (1966). Protein synthesis in imbibed seeds III. Kinetics of amino acid incorporation, ribosome activation and polysome formation. Plant Physiol. 41: 1167-1172. - Marre, E. (1967): Current Topics in Developmental Biology, Academic Press, New York, p 76. - Masamichi, K. and A. R. Kolber (1970). Temperature sensitive mutants of the DNA replication system in <u>Escherichis coli</u>. Nature <u>228</u>: 1157-1160. - Matagne, R. (1968). Duration of mitotic cycles and patterns of DNA replication in chromosomes of Allium cepa. Caryologia 21: 209-224. - Matsuda, K. and A. Siegel (1967). Bybridization of plant ribosomal RNA to DNA. The isolation of a DNA component rich in ribosomal RNA cigtron. Rroc. Natl. Acad. Sci. U.S.A. 58: 673-680. - Marsushita, T., K. P. White and N. Sueoka (1971). Chromosome replication in toluenized <u>Bacillus</u> subtilis cells. Nat. New Biol.232; 111-114. - Mayer, A. M. and Y. Shain (1974). Control of seed germination. Annu. Rev. Plant Physiol. 25: 167-193. - Magus, B. and J. Buchowicz (1972). Activity of enzymes involved in pyrimidine metabolism in the germinating wheat grains. Phytochemistry (Oxf.) 11: 77-82. - RcCarty, K. S., J. T. Parsons, W. A. Carter and J. Laszlo (1966). Protein synthetic capacities of liver nuclear subfractions. J. Biol. Chem. 241: 5489-5499. - McClintock, B. (1934). The relation of a particular chromosome element to the development of the nucleol1 in Zea mays. 2. Zellforsch. Mikrosk. Anat. 21: 294-328. - McComb, A. J., J. A. McComb and C. T. Duda (1970). Increased Thomucleic deld polymerase activity associated with chromatin from intermodes of dwarf pea plants treated with gibberellic acid. Plant Physiol. 46: 221-223. - Melera, P. W. (1971). Nucleic acid metabolism in germinating omion I. Changes in root tip nucleic acid during germination.
Plant Physiol. 48: 73-81. - Melera, F. W., C. Moment and R. P. Rusch (1974). Analysis of isoaccepting t RNAs during the growth phase mitotic, cycle of "Physarum polycephalum, Biochemistry 13: 4139-4142. - Meselson, M., R. Yuan and J. Heywood (1972). Restriction and modification of DNA. Annu Rev. Biochem. 41: 447-466. - Mesquita, J. F. (1972). Ultrastructure de formations comparables sux vacuoles autophagiques dan la cellules de racine de 1' Allium cepa L. et Lupinus albus L. Cytologia 37: 95-110. - Milner, G. R. and F. G. Hayhoe (1968). Ultrastructural localization of nucleic acid synthesis in human blood cells. Nature (Lond.) 218: 785-787. - Miyakswa, N., K. Ueda and O. Hayaishi (1972). Association of poly ADP-ribose glycohydrolase with liver chromatin. Biochem. Biophys. Res. Commun. 69: 239-245. - Hiwa, M. and T. Sugimure (1971). Splitting of the ribose-ribose. linkage of poly (adenosine diphosphate ribose) by a calfthymus extract. J. Biol. Chem. 246: 6362-6364. - Modak, S. P. and F. J. Bollum (1970). Terminal lens cell differentfaction III. Initiator activity of DNA during nuclear degeneration. Exp. Cell Res. 62: 421-432. - Modak, S. P., R. C. von Borstel and F. J. Bollum (1968). A study of nuclear degeneration using calf thysus DNA polymerase. J. Cell. Biol. 39: 93a. - Modak, S. P., R. C. von Borstel and F. J. Bollum (1969). Terminal Lens cell differentiation II template activity of DNA during nuclear degeneration. Exp. Cell Res. 55: 103-113. - Modak, S. P. and G. E. Frice (1971). Exogenous DNA polymerase catalyzed incorporation of deoxyribonucleotide monophosphate in mulei of fixed mouse brain cells. Changes associated with age and x-irradiation. Exp. Cell' Res. 65; 289-296. - Mollenhauer, H. H. and D. J. Morre (1966). Golgi apparatus and plant secretion. Annu. Rev. Plant Physiol. 17: 27-46. - Mollenhauer, H. H. and D. J. Morre (1974). Folyribosomes associated with the golgi apparatus. Protoplasma 79: 333-336. - Miler, W. J. and G. von Ehrenstein (1963). Inhibition of cell free protein synthesis by homopolyhucleotides. Biochem. Biophys. Res. Commun. 11: 325-329. - Mory, Y. Y., D. Chen and S. Sarid (1972). Onset of decoxyribonucleic acid synthesis in germinating wheat embryos. Plant Physiol. 49: 20-23. - Hoses, R. E. and C. C. Richardson (1970). Replication and repair of DNA in cells of <u>Bacherichia</u> coll treated with toluene. Proc. Natl. Acad. Sci. U.S.A. 67: 674-684. - Höller, W.E.C., A. Totsuka, I. Nusser, J. Öbermeter, J. H. Rhode and B. K. Zahm (1974). Poly (adenosine diphosphate ribose) polymerase in quail oviduct. Changes during estrogen and progesterone induction. Nucleic Acid Res. 1: 1317-1327. - Muramatsu, M. and H. Busch (1965). Studies on the multer and nucleolar ribonucleic acid of regenerating rat 11ver. 1. Biol. Chem. 240: 3960-3966. - Muramatsu, M., J. L. Bodnett and H. Busch (1966). Bask compositions of fractions of nuclear and nucleolar ribonucleic acid obtained by sedimentation and chromatography. J. Biol. Chem. 241: 1344-1550. - Nagao, M., M. Yamada, M. Miya, and T. Sugimura (1972). Depression of DNA polymerase activity in chromatin by incubation with NAD. Blochem. Biophys. Res. Commun. 48: 219-223. - Nishizuks, Y., K. Ueda, T. Honjo and O. Hayaishi (1968). Enzymic adenosine diphosphate ribosylation of histone and poly adenosine diphosphate ribose synthesis in rat liver nuclei. J. Biol. Chem. 243: 3765-3767. - Mishizuka, Y., K. Ueda, K. Yoshihara, H. Yamamura, M. Takeda and O. Hayatshi (1969). Enzymic adenosine diphosphoriforylation of nuclear proteins. Cold Spring Harbor Symp. Quant. Biol. 34: 781-786. - Norris, R. D., P. J. Lea and L. Fowden (1973). Aminoacyl t RNA synthetases in <u>Tritique</u> <u>aestivum</u> L. during seed development and gernination. J. Exp. Bot. 24: 615-65. - Northcote, D. H. and F.B.P. Wooding (1966). Development of sieve tubes in <u>Acer pseudoplatanus</u>. Proc. R. Soc. Lond. B. Biol. Sci. 163: 524-537. - Northeote, D. H. and F.B.P. Wooding (1968). The structure and function of phloem. Sci. Prog. <u>56</u>: 35-58. - Nougardee, A. and P. E. Pilet (1964). Infrastructure des cellules du soutellum des Triticum vulgare Vill milcours des prémieres phases de la germination. C. R. Hébd Seances. Acad. Sci. Ser. D. Sci. Nat. 258: 2641-2664. - One, H. and H. Terayame (1968). Amine acid incorporation into proteins in isolated rat liver nuclei. Siochen. Biophys. Acta 166: 175-185. - Opik, H. (1968). Development of the cotyledon cell structure in ripening Phaseolus vulgaris seeds. J. Exp. Bot. 19: 64-76. - Otake, H., W. Miwa, S. Fujimura and T. Sugimura (1969). Binding of - Paik, W. K. and S. Kim (1968). Protein methylase I. Purification and properties of the enzyme. J. Biol. Chem. 243: 2108-2114. - Raik, W. K. and S. Kim (1969). Enzymatic methylation of histones. Arch. Biochem. Biophys. 134: 632-637. - Paik, W. K. and S. Kin (1971). Protein methylation. Science (Wash. D.C.) 174: 114-119. - Payne, E. S., D. Boulter, A. Brownrigs, D. Lonsdale, A. Yarwood and J. N. Yarwood (1971). A polyuridylic acid directed cell free system from 60 day old developing seeds of <u>Vicia fabs</u>. Phytochemistry (Oxf.) 10: 2293-2298. - Payne, P. I. and D. Boulter (1969). Free and membrane bound ribosomes of the cotyledops of <u>Vicla faba</u> L. II Seed germination. Flanta (Egri.) 87: 65-68. - Payne, P. I, and D. Boulter (1974). Katabolism of plant cytoplasmic ribosomes: RNA breakdown in senescent cotyledons of germiating broad beam seedlings. Planta (Berl.) 117: 251-258. - Payne, P. I. and V. E. Loening (1970). RNA breakdown accompanying the isolation of pea root microsomes. An analysis by polyacrylamide gel electrophoresis. Blochem. Blophys. Acts. 224: 128-135. - Pearse, A.G.E. (1971). Histochemistry Theoretical and Applied. J. A. Churchill Ltd., London. - Penman, S. (1966). RNA metabolism in the He La cell nucleus. J. Mol. Biol. 17: 117-130. - Perner, E. (1966). Das Endoplasmatische Reticulum in der Radicula von Pisum sachrum wahrend der Keimung. Z. Pflanzenphysiol. 55: - Pickett-Heaps, J. D. and D. H. Northcote (1966). Relationship of cellular organizations for the plant cell wall. J. Exp. Sot. 17: 20-26. - Polgar, P. R., J. M. Foster and S. R. Cooperband (1968). Glycolysis as an energy source for stimulation of lymphocytes by phytohemograturing. Exp. Cell. Res. 49: 231-237. - Price, C. E. and A. W. Murray (1969). Purine metabolism in germiniting wheat embryos. Biochem. J. 115: 129-133. - Quetier, F. and F. Vedel (1973). Interaction of polyribonucleotides with plant mitochondrial DNA. Blochem. Blophys. Res. Commun. 54: 1326-1334. - *Radley, M. (1959). Chem. and Ind. p 877. - Rein, A. (1971). The small molecular weight monodisperse nuclear RNA's in mitotic cells. Biochim. Biophys. Acta 232: 306-313. - Rejman, E. and J. Suchowier (1971). The sequence of initiation of MAA... DNA and protein synthesis in the wheat grains during germination. Phytochemistry (Oxf.) 10: 2951-2957. - Ritossa, F. M. and S. Spiegelman (1965). Localization of DNA complementary to ribosomal RNA in the nucleolar organizer region of <u>Drosophila</u> melanogaster. Proc. Natl.Acad. Sci. U.S.A. 53: 737-745. - * Original reference not consulted. - Robbins, E. and G. A. Morrill (1969). Oxygen uptake during the He La cell life cycle and its correlation with macromolecular synthesis. J. Cell Biol. 43:629-633. - Roberts, B. E., P. I. Payne and D. J. Osborne (1973). Protein synchests and the bishlitty of rye grains. Loss of activity of privien-synthesizing systems in vitro associated with a loss of visbility. Biochem. J. 131: 775-286. - Roberts, J. H., E. Stark and M. Smulson (1973). Stimulation of DNA synthesis by adenosine diphosphoribosylation of Bella nuclear proteins during the tell cycle. Biochem. Biophys. Res. Commun. 52: 43-50. - Roberts, J. H., P. Stark and M. Smulson (1974). Poly (ADP-ribose) release of template restriction in He La cells. Proc. Natl. Acad. U.S.A. 71: 3212-3216. - Robinson, E. and E. S. Maxwell (1972). Chemical properties of elongation factor 2. amino acid composition, NB, terminal feelule, and sulflyydyl rescivity; J. Biol. (chem. 247: 7023-7028. - Rose, R. J. (1974). Changes in nucleolar activity during the growth and development of the wheat coleoptile. Protoplasma 79: 127-143. - Rose, R. J., G. Setterfield and L. C. Fowke (1972). Activation of nucleoli in tuber slices and the function of nucleolar vacuoles. Exp. Cell Res. 71: 1-16. - Rose, R. U. and G. Setterfield (1971). Cytological Studies on the inhibition'by 5-filescoursell of ribosome synthesis and growth; in derusales artithoke tuber alices. Planta (Serl.) 101: 216-230. - *Rothfield, L. Membrane Biochemistry. p 463-496, - Rithmann, A. (1958). Basophilic lamellar systems in the crayfish spermatocyte. J. Biophys. Biochem. Cytol. 4: 267-274. - Sassen, M.N.A. (1965). Breakdown of the plant cell wall during the cell fusion process. Acta Bot. Neerlandica 14: 165-196. - Schiller, H., B. Otto, V. Nasilein, J. Nag. R. Herrmann and F. Bonhoeffer (1972). Deoxyribonucleic acid replication in vitro. J. Mol. Biol. 63: 183-200 - Schekman, R., A. Weiner and A. Kornberg (1974). Multienzyme systems of DNA replication. Science (Wash. D.C.) 186: 988-993. Autorities and the second of the control con ^{*} Original reference not consulted. - Schultz, B., P. Citoler, K. Hempel. K. Citoler and W. Maurer (1955). Oytoplasmic protein synthesis in cells of various types and in relation to nuclear protein synthesis. Symp. Int. Soc. Cell Biol. 4: 107-139. - Scurfield, C., S. R. Silva and H. D. Ingle (1970). Vessel wall structure: an Afrestigation using ecanning electron microscopy. Aust. J. Bot. 18: 301-312. - Sekeris, G. E., K. E. Sekeris and D. Gallwitz (1967). The methylation of the histones of rat liver indelst in vitro. Hoppe-Seyler's Z. Physiol. Chem. 348: 1660-1666. - Shapiro, H. S. (1970). Handbook of Biochemistry, H. A. Sober Ed., Chemical Rubber Co. Cleveland, p. H. 80-103. - Shih, C. Y. and L. Rappsport (1971). Regulation of bud rest in tubers of potato,
<u>Solamum tuberiosum</u> L. VIII Early effects of gibberellin A3 and abscista catid on ultrastructure. Plaint Physiol. 483 31-35. - Sievers, A. (1963). Bertelligung des golgi-apparates bie der bildung der zellwand von wurzelhaaren. Protoplasma 56; 188-192. - Silber, R., E. Berman, B. Goldstein, R. Stein, G. Farnham and J. R. Bertino (1966). Methylation of nucleic acide in normal and leukemic leukoytes. Stochim. Biophys. Acta 123: 638-640. - Simola, L. K. (1971). Subcellular organization of developing embryo of Bidens dernua. Physical Plant. 25: 98-105. - Simon, L. N., A. J. Glasky and T. H. Rejal (1967). Enzymes in the central nervous system 1. RNA methylase. Siochim. Biophys. Acta. 1422. 99-104. - Simpson, R. T. (1973). Structure and function of chromatin. Adv. Enzymol. 38: 41-108. - Sirlin, J. L., J. Jacob and C. J. Tandler (1963). Transfer of the methyl groups of methionine to nucleolar ribonucleic acid. Biochem. J. 39: 447-452. - Smith, T. A. (1971). The occurrence, metabolism and function of amines in plants. Biol. Rev. (Camb.) 461, 201-241. - Saulson, M. and C. Rideau (1971). Activity of palyadenosine diphosphoribosa polymerase during the human cell cyale. Biochem Biophys. Res. Commun. 43: 1266-1273. - Smulson, M. and C. Rideau (1972). Nuclear polyadenosine diphosphorihosylation-during-restricted macromolecular synthesis of Hela cells. * Blochem. Biophys. Acta 272: 408-416. - Soudek, D. (1960). The correlation between the growth of the cell and nucleolar secretion in Basidiobolus ranging eidem. Exp. Cell Res. 20: 447-452. - Srinivasan, P. R. and E. Borek (1964). Species variation of RNA methylases: Biochemistry 3: 616-619. - Srinivasan, F. R. and E. Borek (1967). Enzymatic alteration of macromolecular structure. Prog. Nucleic Acid Res. Mol. 5 Biol. p 357-189. - "Srivastava, B.I.S. (1972). Association of terminal deoxynucleotidyl transferase activity with chromatin from plant tissue. Biochem. Biophys. Res. Commun. 48: 270-273. - Srivastava, B.I.S. (1974). A 75 DNA polymerase in the cytoplasmic fraction from higher plant. Life Sci. 14: 1947-1954.* - Starr, J. L. and B. H. Sells (1969). Methylated ribonucleic adds: Physiol. Rev. 49: 623-669. - Stavrianopoulos, J. G., J. D. Karkas and E. Chargaff (1971). Nucleic acid polymerase of the developing chicken gmbryo, A DNA polymerase preferring a hybrid template. Proc. Natl. Acad. Sci. U.S.A. 68: 2207-2211. - Stein, O. and H. Quastler (1963). The use of tritiated thymidine in the study of tissue activation during germination in Zea mays. Am. J. Bot. 50: 1006-1011. - Stein, Q. and Y. Stein (1967). Lipid synthesis intracellular transport; storage, and secretion I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rate. J. Cell Biol. 33: 319-339. - Stein, O. and Y. Stein (1968). Lipid synthesis, intracellular transport, and storage III. Electron microscopic radioautographic study of the rat heart perfused with tritiated oldic acid. J. Cell Biol. 36: 63-77: - Stellwagen, R. H. and R. D. Cole (1969). Chromosomal Proteins. Annu. Rev. Biochem, 38: 951-990. - Stone, P. R. , W. J. D. Whish and S. Shall (1973). Synthesis and degradation of poly (adenosine diphosphate ribose) in mouse fibroblasts (LS cells). Biochem. Soc. Trans. 1: 692-693. - Stout, E. R. and M. Q. Arens (1970). DNA polymerase from maize seedlings: Biochem. Biophys. Acta. 213: 90-100. - Sturani, E. (1968). Protein synthetic activity of ribosomes from developing castor bean endosperm. Life Sci. 7: 527-537. - Sueoka, N. and T. Kano-Sueoka (1970). Transfer RNA and cell differentiation. Prog. Nucleic Acid Res. Mol. Biol. 10: 23-55. - Sugimura, T. (1973). Poly (adenosine diphosphate ribose). Prog. Nucleic Acid Res. Mol. Biol. 13: 127-151. - Sugimura, T., M. Yamada, M. Miwa, T. Matsushama, T. Hidaka, M. Nagao, N. Inui and S. Takayama (1973). Biochem. Soc. Trans. 1: 642-644. - Sulkowski, E. and M. Leskowski (1971). Inactivation of 5-nucleotidase in commercial preparations of venom sconuclesse (phosphodiesterase). Blochem. Phys. Acta 240: 443-447. - Suzuki, I., Y. Tsuitsui and T. Takahashi (1974). Ultrastructural detection of single stranded DNA in, rat liver nucleus by the electron microgropic immuno-peroxidase method. Exp. Cell Res. 89: 306-310. - Swift, J. G. and M. S. Buttrose (1972). Freeze etch studies of protein (bodies in wheat scutellum. J. Ultrastruct. Res. 40: 378-390. - Tabor, H. and C. W. Tabor (1972). Biosynthesis and metabolism of 1, 4-diaminobutane, spermidine, spermine, and related amines. Adv. Enzymol. 36: 203-268. - Tanifujii, S., M. Hige, T. Shimada and S. Higo (1970). High molecular weight RNA synthesized in nucleoli of higher plants. Biochem. Biophys. Acta 217: 418-425. 2 - Teissere, M., P. Penom and J. Ricard (1973). Movement control of chromatin availability and of the activity of purified RNA polymerase in higher plants. FEBS (Fed. Eur. Biochem. Soc.) Lett. 30: 65-70. - Tidwell, T., V. G. Allfrey and A. E. Mirsky (1968). The methylation of histones during regeneration of the liver. J. Biol. Chem. 243: 707-715. The said - Tosi, L. and E. Scarano (1973). Effect of trypsin on DNA methylation in isolated nuclei from developing sea urchin embryos. Biochem, Biophys. Res. Commun. 55: 470-476. - Tsutsui, E., P. R. Srinivasan and E. Borek (1966). t RNA methylase in tumors of animal and human origin: Proc. Natl. Acad. Sci. U.S.A. 56: 1003-1009. - Tsuzuki, J. (1969). The effect of monovalent cations on the incorporation of various manno acids on protein synthesis by isolated rat spleen nuclei. Biochim. Biophys. Acta 182: 580-582. - Tuan, D.Y.H. and J. Bonner (1964). Dormancy associated with repression of genetic activity. Plant Physiol. 39: 768-772. - Ueda, K., J. Oka, S. Narumiya, M. Miyakawa and O. Hayaishi (1972). Poly APP-ribose glycohydrolase from rat liver nuclei, a noval enzyme degrading the polymer. Biochim. Biophys. Res. Commun. 46: 516-523. - Uede, K., A. Omachi, M. Kawaichi and O. Hayaishi (1975). Natural occurrence of poly (ADP-ribosyl) histones in rat liver. Proc. Natl. Acad. Sci. U.S.A. 72: 205-209. - Vanderhoef, L. N., R. F. Bohannon and J. L. Key (1970). Purification of transfer RNA and studies on aminoacyl-t RNA synthetases from higher plants. Phytochemistry (Oxf.) 9: 2291-2304. - Van de Walle, C. and G. Bernier (1969). The onset of cellular synthetic activity in roots of germinating corn. Exp. Cell Res. 55: 378-384. - Van't Hof, J. (1966). Experimental control of DNA synthesizing and dividing cells in excised root rips of <u>Plsum</u>. Am. J. Bot. 53: 970-976: - Van t Hof, J. (1968). Control of cell progression through the mitotic cycle by carbohydrate provision. 1. Regulation of cell [division in excised plant tissue J. Cell Biol. 37, 773-780. - Van't Hof, J. and T. L. Rost (1972). Cell proliferation in complex tissues. The control of the mitotic cycle of cell populations in cultured root meristems of sunflower <u>Helianthus</u>. Am. J. Bot. <u>59</u>: 769-774. - Vanyushen, B. F., S. G. Tkacheva and A. N. Belozersky (1970). Rare bases in animal DNA. Nature (Lond.) 225: 948-949. Section 2 - Varner, J. E. and G. Schidlowsky (1963). Enzyme formation in the catyledons and endosperm of germinating seeds: Proc. Seed Protein Conf. U.S.D.A., New Orleans. p. 145-190. - Vasquez, E., E. Battamer, R. Neth, G. Hellev and R. E. Munro (1969). The function of 80S ribosomal subunits and effects of some antibiotics. Cold Spring Harbor Symp. Quant. Biol. 34: 369-375. - Walbot, V. (1972). Rate of RNA synthesis and t-RNA end labelling during early development of Phaseolus Planta (Rerl.)108: 161-1715. - Wallace, H. and M. L. Birnstiel (1966). Ribosomal cistrons and the nucleolar organizer. Biochim. Biophys. Acta 114, 296-310. - Walters, R. A., L. R. Gurley, A. G. Saponara and N. D. Enger (1970). Low molecular weight methylated ribofucieic acid species in Chinese hamster cell fractions absorb to bentonite. Biochim. Biophys. Acta 199: 525-527. - Walton, D. C. and G. S. Soofi (1969). Germination of <u>Phaseolus</u> vulgaris III. The role of nucleic acid and protein synthesis in the initiation of axis elongation. Plant Cell Physiol. 10: 307-315. - Wanka, F. and J. Moors (1970). Selective inhibition by cycloheximide of nuclear DNA synthesis in synchronous cultures of Chlorella. Biochem. Biophys. Res. Commun. 41: 85-90. - Wanka, F., J. Moors and F.N.C.M. Krijzer (1972). Dissociation of nuclear DNA replication from concomitant protein synthesis in synchronous cultures of <u>Chlorella</u>. Biochim. Biophys. Acta 269: 153-161. - Webster, P. L. and J. Van't Hof (1969). Dependence on energy and aerobic metabolism of initiation of DNA synthesis and mitosis by G₁ and G cells. Exp. Cell Res. 55: 88-94. - Weinberg, R. A. (1973). Nuclear RNA metabolism. Annu. Rev. Biochem. 42: 329-354. - Weinberg, R. A. and S. Penman (1969). Metabolism of small molecular weight monodisperse RNA. Biochim. Biophys. Acta 190: 10-29. - Weissbach, A., A. Schlabach, B. Fridlender and A. Bolden (1971). DNA polymerase from human cells. Nat. New Biol. 231: 167-170. . - Whaley, W. G., J. E. Kephart and H. H. Mollenhauer (1964). The cynamics of cytoplasmic membranes during development. Symp. of Soc. for Study of Developmental Biology. Cellular Membranes in Development. Academic Press, New York p. 135-173. - Wheeler, H. and P. Hanchey (1970). Pinocytosis and membrane dilation in uranyl created plants. Science (Wash, D.C.), 171: 68-71. - Wickner, R. B. and J. Rurwitz (1972). DNA replication in <u>Escherichia coli</u> made permeable by treatment with high sucrose. <u>Biochem. Biophys. Res. Commun. 47</u>: 202-211. - Wilson, J. D., K. D. Cibson and S. Udenfriend (1960). Studies on the precursors of the methyl groups of choline in rat liver. J. Biol. (chem. 235: 3213-3217. - Wooding, F.B.P. (1968). Radioautographic and chemical studies of incorporation into sycamore vascular tissue walls. J. Cell Sci. 3: 71-80. - Yamada, M., M. Nagao, M. Miwa and T. Sugimura (1974).
Inhibition of Deoxyribonuclease in an extract of rat liver nuclei by poly (AMP-ribose). Biochem. Biophys. Res. Commun. 56: 1093-1099. - *Yomo, H. (1958). Hokko Kyokaishi. - Yoshida, S., T. Kondo and T. Ando (1974). Multiple molecular species of cytoplasmic DNA polymerase from calf thymus. Biochim. Biophys. Acta 353: 463-474. - Yoshihara, K. (1972). Complete dependency of poly (ADP-ribose) synthesis on DNA and its inhibition by actinomycin D. Biochem. Biophys. Res. Commun. 47: 119-125. - Yoshihara, K. and S. S. Koide (1973). Release of DNA polymerase from frat liver chromatin of incubation with NAD. FEBS (Fed. Eur. Biochem. Soc) Lett. 35; 262-264. - Yoshihara, K., Y. Tanigawa, L. Burzio and S. S. Kotde (1975), Evidence for adenosine diphosphase ribosylation of Ca²⁺, Wg²⁺ dependent endonuclesse, Proc. Natl. Acad. Sci. U.S.A. 72: 289-293. - Yoshihara, K., T. Yoshihori and S. S. Koide (1974). Inhibition of rat. live Ca²⁷. Mgs²⁷ dependent endownclease activity by nicotinamide adenine discolectide and poly (adenosine diphosphate ribose) synthetase. Biochem. Biophys. Ages. Commun. 59: 658-665. ^{*} Original reference not consulted. THE PERSONAL PROPERTY OF THE PROPERTY OF - Zalik, S. and B. L. Jones (1973). Protein biosynthesis. Annu. Rev. Plant Physiol. 24: 47-68. - Zilling, W., H. Fujiki and R. Mailhimmer (1974). International Seminar on pody (ADF-ribose) and ADF-ribosylation of protein. Hokkaido, Japan. p 27-28. - Zimmerman, E. F., J. Hackney, P. Nelson and I. M. Arias (1969). Protein synthesis in isolated nuclei and nucleoil of the La cells. Biochemistry 8: 2636-2646. - Zimmerman, E. P. and B. W. Holler (1967). Methylation of 455 ribosomal RNA precursors in Hela cells. J. Mol. Biol. 23: 149-161. - Zybina, E. V. (1968). The structure of nucleus and nucleolus during ovogenesis of mice. Isitologiya 10: 36-42. STATE OF THE PARTY. ### APPENDIX ## Additional Studies Nork at establishing a role in the plant cell cyclefor cyclic nuclectides as well as investigations into possible syntheses of the physiologically felated prostaglanding, were carried out under tenure of the graduate fellowship, but are not reported here. ### APPENDIX II ### List of Primary Publications - Payne, J. F. and A. K. Bal (1972). Rapid activation of RNApolymerases in quieacent root maristem cells of <u>Allium</u> <u>Cepa</u> L. bulbs. 2. für Pf[anzemphysio]. 67: 464-467. - Payne, J. F. and A. K. Bal (1972). RNA polymerase activity - Bal, A. K. and J. F. Payne (1972). Nucleolar ultrastructure. In the quiescent embryonic cells of the dry seed of Allium ceps I. Experientia 28: 680-682. - Payne, J. F. and A. K. Bal (1973). Histochemical detection of in vitro DNA polymerase activity: Histochemic 35: 311-317. - Payne, J. F. and A. K. Bal (1973). DNA polymerase activity in embryos of Allfum cepa seed. Phytochem. 12: 2613-2616. - Payne, J. F. and A. K. Bal (1974). Histochemical detection of cyclic nucleotide phosphodiesterase activity in germinating onlow seed. Plant Sci. Let. 2: 319-330. - Payne, J. F. and W. R. Penrose (1975). Induction of benzo(a) pyrene hydroxylase in fish by petroleum. Bull. Environ. Cont. and Toxicol. (in press)