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Abstract

SeaWEED(Sea Wave Energy Extraction Device) is a multi-body floating wave energy

converter (WEC) with hinged joints developed by Grey Island Energy Inc.(GIE) in

Canada. Initial conceptual studies have been carried out to evaluate the performance

of the first generation device by testing an 1:16 scale model in a wave basin. The

experimental results were compared with the numerical solutions. Based on the ex-

perimental studies, improvements were made and a second generation model with a

new geometry of the hull and a new connection structure was developed. This thesis

is mainly focused on the numerical analysis and optimization of the second generation

SeaWEED model. In the numerical studies, the hydraulic power take-off (PTO) sys-

tem was simulated by a linear spring damper system coupled with the motion of the

hinged bodies. The vertical hinge motion was computed at a series of wave periods

using WAMIT. Optimization was focused on the PTO damping and the geometrical

parameters in terms of the draft and the length of the truss structure between hinged

bodies by using the response surface method. The optimization was conducted in

regular waves and in irregular sea states. An optimal combination of length, draft

and PTO damping was recommended for an intended operation location.
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Chapter 1

Introduction

1.1 A Review of Wave Energy Conversion

1.1.1 Historical Perspective

During the past decades, increasing global energy consumption has accompanied in-

creasing awareness of growing environmental problems and resource crises. Thus,

many scientists and researchers have turned their eyes to the extraction of green and

renewable energies, such as solar, wind and ocean energy. Ocean wave energy is a

concentrated form of wind energy that is originally transferred from solar energy.

The wave power density is measured by power per length of wave crest, [W/m]; while

wind and solar energy are measured in the unit of [W/m2] (Waters, 2008). Compared

with solar and wind energy, ocean waves contain a higher intensity of power. For

example in Sweden with a mild wave climate, the average solar radiation in Sweden

is 0.12 kW/m2, the average wind power flow density is 0.23 kW/m2 near the coasts of

Sweden (Bergström, 2007), and the average wave power is approximately 5.2 kW/m2

on the west coast (Waters et al., 2009). Global wave power worldwide was estimated

to be in the order of 1 TW by Falnes et al. (2002). The vast amount of wave power

1
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on the ocean surface has led many to consider how to make use of it.

Although initial research on wave energy dates back to 1799 (Ross, 1995), it was not

until the oil crisis in the 1970s that the topic began drawing worldwide attention.

(Cruz, 2007) mentioned that in the 1960s, pioneer work in wave energy conversion

was conducted by Japanese navy who built a marker buoy that used waves to power

its lamp. After the oil crisis in 1973, Salter (1974) proposed the use of wave power and

presented a design concept of a cam-shaped oscillating wave energy converter (WEC),

known today as the Salter’s Duck. This became a landmark that spurred worldwide

research in WECs. Budar and Falnes (1975) defined the damped oscillator system as

a ‘point absorber’ as its horizontal length is much shorter than the wavelength. Evans

(1976) reviewed the theoretical principles of wave energy conversion and analytically

derived the motion of the point absorber in waves.

Wave energy conversion is a hydrodynamic process with complex diffraction and ra-

diation problems in which a system of mathematical hydrodynamic theories needed

to be established. Wehausen and Laitone (1960) published a comprehensive review of

Surface Waves, providing an important theoretical resource for the hydrodynamics of

water waves. In the latter half of the 1970s, research of wave energy conversion was

mainly focus on wave theories and hydrodynamics (Falcão, 2010). Le Mehaute (1976)

gave a general review of hydrodynamics and wave theories in his book. Newman

(1977) presented an analytical system of marine hydrodynamic theories in terms of

wave effects, motion of bodies in waves and hydrodynamic forces, based on Wehausen

(1971)’s derivation of ship motion and hydrodynamic coefficients such as added-mass

and damping. In the book of Mei (1989), theories of hydrodynamics, wave energy ab-

sorption and basic principles of wave energy extraction were discussed. Falnes (2002)

developed a complete mathematical system for wave energy converters of oscillat-

ing bodies and the principles of optimum control in order to maximize the energy
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absorption of the device.

1.1.2 Classification of Devices

A variety of WEC designs have been proposed over the last two decades. Clément et al.

(2002) gave a detailed review of the development and current status of wave energy

conversion in a number of coastal nations in Europe including the United Kingdom,

Ireland, Sweden, Denmark, Portugal, and Norway. Until 2015, there are more than

one hundred projects of wave energy converters and more than one thousand patents

worldwide (Day et al., 2015). Extensive numerical and experimental studies have been

carried out to evaluate the performance of the WECs. Generally, the various designs

of WECs can be classified into three types according to their working principles:

oscillating water columns (OWCs), oscillating bodies, and wave overtopping devices.

Falcão (2010) presented a well-known diagram of the classification of WECs, as shown

in Figure 1.1 below.

1.1.2.1 Oscillating Water Columns

Oscillating water columns (OWCs) can be either fixed or floating. They have a partly

submerged structure where an internal free surface exists in the inner chamber; air

is trapped above the internal free surface. The oscillation of the free surface forces

the air flow to propel an air turbine that drives the electrical generator. In Portugal,

the shoreline of the OWC started construction in Pico of the Azores in 1986 (Falcão,

2000), which is a fixed structure built upon the shore, as shown in Figure 1.2. An

example of a floating OWC is the Spar Buoy which consists of a longer submerged

tail and a floater that heaves vertically in waves. As shown in Figure 1.3, a 1:16 scale

model of Spar Buoy with a 1-meter diameter and a 3-meter draft was built and tested

by the National Renewable Energy Centre (NAREC) in the UK.
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Figure 1.1: Classification of wave energy converters (Falcão, 2010).

Figure 1.2: Pico Plant Azores (Falcão, 2000).
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Figure 1.3: Prototype of Spar Buoy (NAREC, 2012).

1.1.2.2 Oscillating Bodies

Oscillating bodies are often based on the hydraulic power take-off system (PTO),

which converts mechanical motion power into electrical power. This type of device

can be a single-body that moves relative to the sea-bed or multi-bodies with rela-

tive motions between each body. The mechanical translational or angular motions

in terms of heave or pitch drive the hydraulic PTO system to extract the power.

Oscillating bodies can be further categorized as either floating devices or submerged

devices. Floating devices include point absorbers and attenuators. Salter’s Duck

(1974), developed in the UK, is a typical point absorber oscillating body wave energy

converter, which is still regarded as being one of the most efficient. The Wavebob,

developed in Ireland by Weber et al. (2009), is an axisymmetric two-body heaving

absorber. In Sweden, a two-body point absorber IPS buoy was invented by Noren

(1981). A concept of point absorber WECs called FO3 was developed by Fred. Olsen
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Ltd. (Taghipour et al., 2008). It consists of a number of heaving floaters attached to

a floating platform. The vertical heave motions are converted into angular movements

by the hydraulic system that drive the hydraulic motors. A 3D model simulation of

the FO3 WEC is shown in Figure 1.4.

Figure 1.4: A 3D simulation of the FO3 wave energy converter (Taghipour et al.,
2008)

An attenuator type WEC typically has a slender body and is installed parallel to the

wave propagation direction. In Denmark, a half scale attenuator type WEC Wave

Star was deployed by Bjerrum (2008), consisting of a number of floaters on movable

arms. Another well-known example of an attenuator type oscillating body WEC is

Pelamis, developed by Pizer et al. (2000)). In 2008, a wave farm consisting of 750 kW

Pelamis devices was tested in northern Portugal. In 2010, another Pelamis wave farm

was tested in Orkney, Scotland. Figure 1.5 shows a prototype of Pelamis by Yemm

(2008).
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Figure 1.5: Prototype of Pelamis (Yemm, 2008).

1.1.2.3 Overtopping Devices

Overtopping devices capture wave power by converting potential energy into electrical

energy. The water waves come into the reservoir above the sea level and return to

the sea through conventional low head hydro-turbines. Wave Dragon (Hansens et al.,

2000) is a well-known overtopping wave energy converter. A 1:4.5 scale prototype of

Wave Dragon was deployed in Denmark in 2003, as shown in Figure 1.6. The Sea

Slot-cone Generator (SSG) is another overtopping type WEC, consisting of several

reservoirs (Margheritini et al., 2009).

1.2 A Review of Simulation-Based Design Meth-

ods

The development of WECs can benefit from the advancement of simulation tools as

the manufacture of prototypes requires much more time and cost. Due to the advance-
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Figure 1.6: Wave overtopping of the Wave Dragon prototype leads to power genera-
tion(Hansens et al., 2000).

ment in computational power and tools, computer simulations have been increasingly

applied to evaluate and optimize complex hydrodynamic problems. Compared to

the design of physical experiments, simulation-based design (SBD) has many benefi-

cial features, thus the design methodology is normally different from the design of a

physical one (Jones and Johnson, 2009). For example, most of the simulation-based

experiments are deterministic, meaning that they do not have the random errors from

the physical world, i.e., running with the same input and constraints will result in the

identical response; thus the replication, randomization and blockings are not applica-

ble in the SBDs. In addition, an SBD is able to consider a large number of variables

at the same time, which is not feasible in the real world.

Tahara et al. (2011) presented the general expression of simulation-based optimization

problems. A M dimensional real space with design variables x = (x1, x2, . . . , xM)T .

The N objectives of the optimization are F = (F1, F2, . . . , FN)T . The optimization
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problem is formulated as

min or max f(x),x ∈ X ⊆ RM

hj(x) = 0, j = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . , q

xli ≤ xi ≤ xui

(1.1)

where f is a N-dimensional vector of objective functions, x is a vector of design vari-

ables, hj and gj are the equality and inequality constraints to the variables respec-

tively, and the superscripts l and u refer to the lower and upper bounds of the variables.

1.2.1 Optimization Objectives and Constraints

The objective of the design is to minimize or maximize the objective function or

functions. For the optimization of WECs, the objective can be maximizing the yearly

energy production while minimizing the production cost (Babarit et al., 2005).

For PTO optimization, it is usually a single-objective problem for which the maximum

power absorption performance is the goal. For geometrical optimization, there is

sometimes a compromise between the superior power absorption and economical costs.

Thus it is usually a multi-objective problem, for which both the power absorption

performance and the cost of building the device are taken in to consideration.

Kurniawan and Moan (2013) stated that for geometry design of a WEC, especially

wave absorbers, the minimum of submerged surface area, submerged volume, as well

as the surface curvature will lead to the lowest construction cost as well as construction

difficulty. Babarit et al. (2005) conducted a geometric optimization of the SEAREV

by focusing two objectives: to maximize the absorbed power at a given site and to

minimize the total mass in order to minimize the cost. To simplify the multi-objective
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problem, some researchers consider two types of ratios as simple criteria for optimizing

wave absorbers: the ratio of the submerged surface area to the absorbed power and

the ratio of the reaction force to the absorbed power (French et al., 1996).

During optimization, constraints must be satisfied while achieving the objectives. For

the optimization of WECs, there are several general constraints including the slam-

ming constraints and force constraints. For example, for wave absorbers, Kurniawan

and Moan (2013) constrained the displacement of the body, which was set as a ratio

of the wave amplitude. For slender hinged-body WECs, the hinged joints normally

have a restrained angle so that the angular motions of the bodies are constrained.

Also, the generator normally has limited capacity that a upper bound of absorbed

power will be set.

1.2.2 Surrogate Modeling Methodology for Simulation-Based

Design

As it is mentioned before that simulation-based experiments have the merit of faster

implementation that can largely reduce the time and expense of making physical

prototypes. However, the complexity of the problem, long running time and high

computation cost can become obstacles for simulation-based experiments. Meanwhile,

unknown of gradients of the model often becomes another barrier. Kushner and Clark

(2012) discussed an approach called stochastic counterpart (SC) method, which is

known as the concept of ‘surrogate models’ or ‘meta-models’ approach. The idea of the

surrogate modeling approach is to spread samples x among the design space of interest,

based on which to construct a mathematical surrogate model A(x) to represent the

relation between factors and responses, which approximates the real objective function

F (x). Then, the optimization procedures are implemented by studying the surrogate

model A(x) with higher efficiency and lower expense. The model A(x) is determined
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by minimizing the discrepancy between A(x) and the objective function F (x) over

the sampling points x. The major benefit of using surrogate models is that they are

cheap and efficient.

However, surrogate modeling is heuristic; it does not ensure the exact correct answer

for the original system. Rubinstein (1997) found that when the sample size N goes

to infinity, the surrogate model converges to the true model. Thus, one has to make

compromise between the accuracy of the model and the efficiency in calculation, since

an accurate model may need a larger sample size which results in longer time to

compute. In general, using surrogate models requires additional computer simulation

experiments to verify the results and performing physical experiments to validate

the model and the optimized solutions (Johnson et al., 2008). Surrogate modeling

approaches for the simulation-based experiments generally involve four steps:

• Design a sampling plan within the design space;

• Use a surrogate model to fit the relation between inputs and the response(s);

• Verification and validation of the surrogate model;

• Finding the optima based on the surrogate model.

1.2.2.1 Design of Sampling Plans

There are numerous approaches to design a sampling plan. A straightforward design

approach is full factorial design (Ryan and Morgan, 2007). A full factorial design

consists of two or more factors, each with discrete levels; and the experimental cases

take on all possible combinations of these levels across all such factors. Full factorial

design can take most information into consideration that the effect of each factor on

the responses and the interaction between factors and responses can be more clearly
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studied. However, when the number of combinations is very high that the full factorial

design is not logistically feasible, a more efficient and design needs to be conducted.

Nowadays, for computer simulation experiments, a very popular and standard design

approach is the space-filling design. Space-filling design is to spread the input sam-

ples over the design space as uniformly as possible Pronzato and Müller (2012). A

distinctive feature of space-filling design is that, in the design space of interest, every

sample point is unique; and the uniqueness of each sample point is kept even when

the space dimension is curtailed. This feature makes the space-filling design approach

comprehensive and compendious, since an additional sample point which contains

repetitive feature provides no more requisite information.

Pronzato and Müller (2012) investigated the previous literature and pointed that

when experiment is deterministic with no randomness, such as most of the simulation-

based experiments, space-filling design is an appropriate choice; when the experiment

is stochastic, like the real-world experiments, or some stochastic computer simulations

containing randomness or noises, such as Discrete Event Simulation (DES) (Johnson

et al., 2011), it is recommended to use response surface designs (RSM) such as central

composite design (CCD), factorial design (FD), or optimal designs.

Under the category of space-filling design, a host of methods were proposed over the

last several decades. Currently, one of the most popular methods is Latin hypercube

design (LHD). The Latin hypercube sampling approaches was proposed by McKay

et al. (1979), in which the sampling points are distributed far from each other, yielding

the maximin distance and without replication in each projection. In a large number

of literatures, it is often coupled with the use of Gaussian process (GP) models to fit

the surrogate model surface.

In early 1980s, a uniform design (UD) approach is created and developed by Fang

(1980) with the seeking of a uniform distribution of the sample points in the design
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space. Fang et al. (2000) discussed UD theory in detail and gave the instructions of

the UD applications. The concrete steps of performing a UD is summarized by Fang

and Lin (2003).

• Choose factors and experimental domain as well as determine suitable number

of levels for each factor;

• Choose a suitable UD to accommodate the number of factors and levels;

• From the UD table, randomize the run order if necessary and conduct the ex-

periments;

• Find a suitable model to fit the data. E.g., regression analysis, neural networks,

wavelets, multivariate splines, etc.;

• Knowledge discovery from the built model. Optimize response if required.

Fang and Lin (2003) suggested that the UD can be followed by regression models for

fitting the model surface when the relationship between the responses and factors is

nonlinear or when the design levels are equal or more than two.

Islam and Lye (2009) performed a second-order computer experimental design to

investigate the relationship between the thrust coefficient and the five parameters.

They did a comparison between using two classical response surface designs in terms

of central composite design (CCD), Box–Behnken designs (BBD) and a space-filling

design UD with using a second-order centered quadratic regression model to fit the

surface of response. It is showed in their paper that the UD performed the best

in this certain problem with fewer runs than CCD and better accuracy among the

three approaches. They discovered that when dealing with four or more factors and

when the true model is highly nonlinear, uniform design gives an efficient and robust
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performance. The choice of the sample size of UD should be based on the seeking of

minimal runs and the complexity of the model.

Recently, a new space-filling design approach called fast flexible filling (FFF) designs

is introduced by Lekivetz and Jones (2014); it works for both rectangular and non-

rectangular regions of design space. In their paper, they made a comparison between

minimax design, uniform design and an orthogonal maximin Latin hypercube design

(OLHD) (Joseph et al., 2008); it is showed that the FFF design used minimal inputs

and gave out a model with high accuracy.

In fact, no one design type is generally better than the others (Johnson et al., 2011).

The accuracy of the surrogate model is largely related to the sample size and the

complexity of the objective function. To choose an appropriate design, one needs to

consider the feature of the problem to be solved and also the coupled model fitting

methods.

1.2.2.2 The Choice of a Surrogate Model

Accompanying with the design of a sampling plan, a surrogate model needs to be

chosen to fit the relationship between the responses and the variable samplings over

the design space. There are many strategies for the model fitting for deterministic

computer experiments, such as Gaussian process models (also known as kriging),

polynomial models (also known as response surface models), radial basis function

models, multivariate adaptive regression splines (MARS) and neural networks. The

choice of a model fitting technique is typically based on the current knowledge on how

a specific system operates (Chen et al., 2002).

Polynomial models, or response surface models, were first developed by Box and

Wilson (1951). In their paper, they used first and second order polynomials to ap-

proximate the underlying models. The main idea of this approach is to use a sequence
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of experimental sub-regions to obtain an optimal response. Polynomial models are

ideal ways for uncertainty analysis; they are easy to estimate and apply even when

little is known about the problem. However, for the problems which are highly non-

linear, multimodal, or multidimensional, polynomial models may not be suitable to

apply. Also, polynomial models normally offer limited information about where to

add samples to improve the model (Forrester et al., 2008). Gaussian process (GP)

regression model, so-called ‘Kriging’, has its origins in geostatistics (Matheron, 1963).

Sacks et al. (1989) introduced the application of Kriging to computer experiments,

and this approach is now widely used for obtaining the metamodels (Santner et al.,

2013). The basic idea of kriging is using an interpolating predictor that the predicted

surface can interpolate the observed responses. This interpolation seems ideal for the

deterministic computer experiments; however, drawbacks still exist in using kriging:

One of the problems is that the model fitting is slower than the polynomial models.

Also, assumptions of the correlation function are difficult to verify (Chen et al., 2002);

once the correlation parameters are misspecified, the kriging model will not be robust.

Joseph et al. (2008) proposed a modified form of Kriging, called blind Kriging. The

idea of blind Kriging is to use an unknown mean model instead of the constant mean

of the ordinary Kriging. The application examples in their paper showed that a blind

Kriging model is easier to interpret and more robust.

Friedman (1991) introduced multivariate adaptive regression splines (MARS), using

non-parametric regression technique. Dyn et al. (1986) described radial basis func-

tions; under certain assumptions, they are able to build global approximation surfaces

to interpolate smooth data. Lippmann (1987) introduced the approach of neural net-

work. Simpson et al. (2001) considered the use of neural network in computer exper-

iments and they commented that ‘Neural networks are best for approximating deter-

ministic functions in regression-type applications’. Neural networks have been applied
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with a large quantity of parameters, however, ‘the requisite gathering of training data

and calculation of model parameters can be extremely computationally expensive’

(Simpson et al., 2001). There many other alternative model fitting techniques. Wang

and Shan (2007) presented a list of commonly used surrogate model choices; and they

discussed their application to engineering design and optimizations.

1.2.2.3 Search the Optima Based on the Surrogate Model

After the surrogate model is established, optimization tools are applied to search the

optimal solution(s) of the system. Existing optimization techniques are commonly

classified into, for example, global searchers as compared to local optimizers (Tekin

and Sabuncuoglu, 2004); or gradient-free optimization approaches as compared to

gradient-based approaches (Rubinstein, 1997). For unimodal smooth functions, local

optimizers are very efficient. However, for multimodal functions, when there are many

valleys or multiple local optima, local optimizers often provide less than satisfactory

results (Forrester et al., 2008).

Under the category of local optimizers, they are divided into two groups: gradient-

based local optimizers, and gradient-free local optimizers. Those gradient-based local

optimizers, which use slope information to explore the best path towards the local op-

timum, include the Newton method, quasiNewton methods (Wedderburn, 1974) and

conjugate gradient optimizers (Hestenes and Stiefel, 1952). For those local optimizers

without knowing the gradient information are also called direct search. These include

the Simplex method, the complex method (Box, 1965) and the pattern search (Hooke

and Jeeves, 1961).

Compared to local optimizers, global searchers are aimed to find the global optima,

including genetic algorithms (Golberg, 1989), simulated annealing (Kirkpatrick et al.,

1983), particle swarm optimization (PSO) (Eberhart and Kennedy, 1995), etc.
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Current trend has been towards gradient-free global searchers, for the gradient in-

formation is not always available or accurate due to noises. In recent years, hybrid

algorithms with a combination of global and local have been proposed: Campana

et al. (2009) proposed a two phase global-local approach based on the PSO.

1.3 Thesis Overview

The SeaWEED wave energy converter, which was invented by Grey Island Energy

Incorporation in Newfoundland, Canada is currently under development in its second

generation. It is an oscillating body type wave energy converter with multiple bodies.

The converter has three hinged parts consisting of four modules that are connected by

rigid truss structures. The electric power is generated by the vertical hinge motions

at two hinged joints where the power take-off (PTO) system is located. After the

model tests for the first generation of SeaWEED, improvements have been made and

it led to the design of the second generation, which was numerically evaluated and

optimized in this thesis.

For the optimization objective of SeaWEED, it is an early stage of the design that a

detailed cost function for the device is not feasible. Thus, a single objective was set

as to maximize the power absorption performance of the device. The optimization

of the device focused both on the PTO damping and the geometrical parameters in

terms of the draft and the length of the interconnecting truss structures.

During the optimization process, a critical problem is that the optimal PTO param-

eter is related to the added-mass and hydrodynamic damping, as derived by Evans

(1976), which is further related to the underwater geometry of the device. In other

words, the variable of PTO damping is not independent of the geometrical param-

eters. Therefore, they are not able to be set as optimization variables at the same



18

time.

For our problem, two-step iterative optimization was implemented:

• At the very beginning, a sampling plan of truss length L and draft T combina-

tions was determined. Each combination of L and T defines a geometry of the

model. In the first step of optimization, the variable is the PTO damping and

it is optimized for each geometry.

• In the second step, the variables are truss length L and draft T. The corre-

sponding optimal damping value is iterated in each geometry. Therefore, for a

certain wave condition, the truss length and draft are optimized along with the

corresponding PTO damping value.

Both full factorial design and uniform design were used in this thesis. The capacity of

the computer allows full factorial experiments with three parameters and five levels

for each parameter. Full factorial design gives more information on how the variables

effect the responses and the interaction between each other. Uniform design was used

based on the knowledge to the problem and the model which is more efficient. For

each design, the polynomial regression analysis was utilized to fit the response surface

in the software of Design-Expert. Additional simulation experiments were conducted

to verify the surrogate model. The optimal solutions were searched by using a global

optimization method which is known as Derringer’s desirability function developed

by Derringer and Suich and described in the book of Response Surface Methodology

by Myers et al. (2009).

An overview of each chapter is presented as following:

Chapter 1 presents a review of the development of wave energy converters and

simulation-based optimization design methodologies.

Chapter 2 introduces the SeaWEED WEC in its first and second generations. The
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special designed PTO mechanism of SeaWEED is illustrated.

Chapter 3 derives the mathematical formulations of the boundary value problem of

floating hinged arrays and presents the mathematical description of the power take-off

system. The power absorption formulations of the hinged type WEC in regular waves

and in irregular sea states are derived.

Chapter 4 describes the 1:16 scale model test and the frequency domain simulation.

The experimental results are compared with the numerical solutions to validate the

numerical approach. Also, a convergence study is presented to verify the the numerical

approach and to determine an appropriate panel number for the numerical modeling

of the second generation of SeaWEED.

Chapter 5 discusses the optimization of the second generation SeaWEED in terms

of the PTO optimization and the geometrical optimization. The full factorial design

and uniform design were applied and the surrogate model was fitted by polynomial

regression analysis. The optimal PTO damping and optimal truss length and draft

were determined in regular waves in order to maximize the absorbed power. The

optimal parameters and maximized power absorption in an intended location are

computed.

Chapter 6 concludes the work that has been done and discusses the limitations of

current work.



Chapter 2

SeaWEED Wave Energy Converter

2.1 An Introduction of SeaWEED

SeaWEED (Sea Wave Energy Extraction Device) is a multi-body attenuating WEC,

extracting power by allowing relative pitch movements between adjacent bodies. The

first generation of SeaWEED is shown in Figure2.1.

Figure 2.1: The first generation of SeaWEED system.

A complete SeaWEED system is a four module array consisting of a non-energy

producing nose module in the front, followed by two energy producing modules, with

another non-energy producing module at the rear. Two hydraulic PTO systems are

positioned at the stern of two producing modules. The four modules are at the same

length and are connected by the tie-rods. Figure 2.2 illustrates the SeaWEED PTO

20
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and its placement in the SeaWEED system.

Figure 2.2: Illustration of the PTO and the complete first generation SeaWEED
system.

After the model tests for the first generation of SeaWEED, improvements have been

made and it led to the design of the second generation, which was numerically evalu-

ated and optimized in this thesis. Note that the PTO mechanism remains the same

as that in the first generation. A fully assembled second generation of SeaWEED

device is presented in Figure 2.3. The geometry of the hull modules was modified by

using flat panel to reduce fabrication cost. Also the connecting parts were enhanced

by using truss structure. As shown in Figure 2.4, the second generation of SeaWEED

device consists of four modules that are connected by rigid truss structures.

SeaWEED is designed to operate in a water depth of approximately 50 meters de-

pending on the connecting member length and the sea spectrum of the area of interest.

The SeaWEED system will utilize onboard electrical generator and standard subsea
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Figure 2.3: Fully assembled second generation of SeaWEED system.

Figure 2.4: Four modular sections of SeaWEED.

electrical cables to generate and transmit the energy to shore. The cost of this subsea

electrical cable can be significant compared to the cost of a single SeaWEED system.

However, only one cable to shore is required for a SeaWEED farm, which becomes

cost effective as additional SeaWEED devices are installed. An offshore farm of Sea-

WEED WECs can be utilized to provide electricity to coastal communities; it can

also be utilized by Oil and Gas Companies to power autonomous offshore oil rigs or

subsea infrastructure. In the real operating environment, SeaWEED will experience

several types of motion which are heave and pitch, roll, and yaw. The electrical power

is only converted from the vertical pitch motion, which is called hinge motion in this

thesis.
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2.2 Power Take-Off Mechanism of SeaWEED

The hydraulic PTO components of SeaWEED are completely internalized in the pro-

ducing modules, utilizing a water tight multi-axis joint in the stern of each module

a single bellows surrounding the joint as added protection. This design will not only

protect all PTO components from the harsh marine environment but also prevent

the environment contamination by the leak of the system’s hydraulics. Figure 2.5

illustrates the power take-off system of SeaWEED.

Figure 2.5: SeaWEED power take-off system.

The SeaWEED PTO system is driven by movements between interconnected mod-

ules. A multi-axis joint is located in the stern of a producing module. The relative

motion between interconnected modules drives a swash plate located internally to tilt

in various planes and thus compress or extend the hydraulic rams. The hydraulic

rams work in conjunction with struts to harness energy and contribute to system

movements. This energy is captured by the upper and lower pairs of hydraulic rams

(in black) as illustrated in Figure 2.6.

The design of attenuator devices normally allows flexibility in all directions in order

to relieve stresses that may lead to joint fatigue. For floating attenuators in waves,

the vertical motion such as heave and pitch is restorable since gravity provides the
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Figure 2.6: Profile views of the SeaWEED hydraulic power take-off system.

restoring force. However, for horizontal motion as yaw, there is no significant restoring

force to bring the device back to its neutral position. Therefore, some form of artificial

force is needed to realign the system horizontally once a wave has passed. Pelamis

Yemm et al. (2012) accomplished the restoring of both pitch and yaw by inclining the

system to the water surface with a roll bias angle, as shown in Figure 2.7. For the first

generation of Pelamis, P1, the joint did not allow for a gentle restoration of the system

to a neutrally aligned position, causing fatigue in the joints and resulted in failure

over time. As a result of the P1’s failure, the PTO joint section was redesigned. The

second generation of Pelamis, P2, utilized a single multi-axis joint system, which was

repositioned closer to the centre of the module, allowing for better system flexibility

and altered the position of the four hydraulic power capture rams to compensate for

system realignment, as shown in Figure 2.8. The redesign of P2 successfully reduced

the joint fatigue compared to P1,however, it has also significantly added to the P2’s

cost and reduced the amount of energy capture.

For such multi-body attenuating WECs, the power capture in yaw direction may

not be economical considering the cost and risk. Therefore, SeaWEED is to strictly

capture the purest form of ocean energy in the vertical motion, allowing free roll

motion and fluidic damped yaw motion.
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Figure 2.7: Schematic of Pelamis selectable–tunable joint response (Yemm et al.,
2012).

Figure 2.8: Pelamis P2 hydraulic PTO joint (Yemm et al., 2012).
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2.3 Competitive Advantages

The design of SeaWEED is aimed to be economical and easy to manufacture, install

and maintain. For different wave climates, the best structure length might be varied.

To manufacture the device for different locations, the overall length is able to be

tuned by the connecting member length. SeaWEED is constructed in modules, and

the efficient manufacturing and installation can be performed in any small or medium

sized dockyard. SeaWEED also has a storm mode system that allows the device to

semi-submerge and ride out adverse storm conditions, yet ensuring the safety and an

optimal energy output.



Chapter 3

Theoretical Background and

Mathematical Formulation

3.1 Motion of Hinged Bodies in Waves

3.1.1 Two General Approaches for Multi-Body System

For multi-body system with constrained joints in waves, there are two types of ap-

proaches that can be adopted based on the potential flow theory. The first type of

approach is regarded as a ‘two-step’ approach (Sun et al., 2011). For the first step,

the diffraction problem without constraints is solved while the bodies are allowed to

oscillate freely in all of their rigid body degrees of freedom (DOF). The total number

of DOF is six times the number of bodies. After the wave excitation forces and the

hydrodynamic coefficients are solved, in the second step, the method of connection

between the modules is considered and the motion equations with constraints are

solved. A detailed derivation and application of this ‘two-step’ approach was pre-

sented by Langley (1984). This approach is highly flexible when solving a multi-body

system with complex constraints.

27
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The second approach to analyze the multi-body system is to directly solve the cou-

pled diffraction and radiation problems with consideration of the connection and con-

straints, as discussed by Newman (1994) and Lee and Newman (2000). This method

is more efficient as it considers fewer DOFs than the first one so that fewer radiation

problems need to be solved. For the multi-body system of SeaWEED WEC with

hinged joints, the second approach is applied.

3.1.2 Newman’s Approach for Hinged Arrays

Motion of a hinged array with identical rigid modules and uniform mass distribution

was discussed by Newman (1997). Here, we will focus on general hinged arrays with

rigid modules in different lengths and non-uniform mass distribution.

Assume there are N rigid bodies connected together by hinged joints ideally without

friction. Each body is one module in the hinged array. The conventional Cartesian

coordinate system is applied to the hinged array, with x = 0 at the midpoint of the

array, y = 0 at the vertical centerplane, z-axis upwards, and z = 0 at the undisturbed

water surface.

As shown in Figure 3.1, N bodies are connected by N − 1 hinge joints. Two ends

and the hinge joints from stern to bow are defined as x0, x1, ...xn, ..., xN . The hinge

joints are located at x1, x2, ..., xn, ..., xN−1. The length of each module between two

adjacent joints can be different.

A hinge mode is defined as the elevation of the corresponding hinge joint while other

joints remain at z = 0. For N hinged modules, there are N − 1 hinge modes. Figure

3.1 shows the definition of general hinge modes by giving an example of an array with

four hinged modules.

It is seen from Figure 3.2 that each hinge mode is only to do with two adjacent bodies.

In head-sea states, conservative vertical motions in terms of heave and pitch are taken
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Figure 3.1: An array of hinged modules.

Figure 3.2: Illustration of general hinge modes.
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into consideration as they might be coupling with the hinge modes. The heave and

pitch modes are illustrated in Figure 3.3.

Figure 3.3: Illustration of heave and pitch modes.

For a hinged array with N modules, there are 2 + (N − 1) modes of interest in head-

sea states. The first two modes are defined as heave and pitch while the next N − 1

modes are the hinge modes. Mathematically, each of the heave, pitch and all the

hinge modes can be represented by the shape function: fj(x), j = 1, ..., N + 1.

fj(x) describes the shape of mode with unit amplitude. The formulated expression of

the vertical modes is as following:

Heave, when j = 1, is expressed as:

f1(x) = 1 (3.1)

Pitch, when j = 2, is expressed as:

f2(x) = −x (3.2)
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Hinge mode at xn, n = 1, 2, 3, . . . , N − 1 is expressed by the tent function, as shown

in Figure 3.4. When j = n+ 2, n = 1, 2, 3, . . . , N − 1 hinge modes are expressed as

fn+2(x) = 1
xn − xn−1

(x− xn−1), xn−1 ≤ x < xn (3.3)

fn+2(x) = 1
xn − xn+1

(x− xn+1), xn ≤ x < xn+1 (3.4)

fn+2(x) = 0, x < xn−1 or x ≥ xn+1 (3.5)

where n+ 2 is the index of the hinge mode within [3, N + 1].

Figure 3.4: General tent function.

3.1.3 Mass Matrix of a Hinged Array

Newman (1997) defined the mass matrix Mij to represent the internal mass distribu-

tion of the hinged array. He derived the shape functions of hinge modes which are

symmetric or anti-symmetric about the mid-ship section, and formulated the non-

dimensional mass matrix for the hinged array. Here, the derivation of Mij focused

on general asymmetric hinge modes. Each general mode fj(x) is defined by the tent
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function, as shown in Figure 3.4, and the dimensional mass matrix Mij is calculated

by

Mij =
∫
L
m(x)fi(x)fj(x)dx (3.6)

where L is the total length of the array, i and j are indices of each mode including

heave, pitch and hinge modes. i = 1, 2, ..., N + 1, j = 1, 2, ...N + 1, N is the number

of the bodies in the array. Mij is an orthogonal matrix.

The terms of the mass matrix Mij are formulated as following,

M11 =
∫ xN+1

x0
m(x)dx (3.7)

M22 =
∫ xN+1

x0
m(x)x2dx (3.8)

Mn+2,n+2 =
∫ xn

xn−1
m(x)( x− xn−1

xn − xn−1
)2dx+

∫ xn+1

xn

m(x)( xn+1 − x
xn+1 − xn

)2dx (3.9)

Mn+2,(n+1)+2 =
∫ xn+1

xn

m(x)( xn+1 − x
xn+1 − xn

)( x− xn
xn+1 − xn

)dx = M(n+1)+2,n+2 (3.10)

M12 =
∫ xN+1

x0
−m(x)xdx = M21 (3.11)

M1,n+2 =
∫ xn

xn−1
m(x) x− xn−1

xn − xn−1
dx+

∫ xn+1

xn

m(x) xn+1 − x
xn+1 − xn

dx = Mn+2,1 (3.12)

M2,n+2 =
∫ xn

xn−1
m(x)(−x) x− xn−1

xn − xn−1
dx+

∫ xn+1

xn

m(x)(−x) xn+1 − x
xn+1 − xn

dx = Mn+2,2

(3.13)
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where n=1,2,...,N-1.

Mij is symmetric. M11 and M22 are the heave and pitch terms on the diagonal of the

matrix. Mn+2,n+2 is the term of each hinge mode on the diagonal. Mn+2,(n+1)+2 is the

off-diagonal coupled term between two adjacent hinge modes. M12, M1,n+2, M2,n+2

and their symmetrical terms are the off-diagonal coupled terms between conventional

modes and hinge modes. The rest of the terms are zero. Knowing the mass distribu-

tion m(x) of the array, the mass matrix can be obtained by doing segmental integral

of equation 3.6.

3.1.4 Boundary Value Problem of Hinged Arrays

For floating WECs with hinged bodies, it is the relative motion between each body

that drives the power take-off (PTO) system to convert mechanical power into elec-

tricity. To evaluate the relative hinge motions, the boundary value problem for the

hinged array needs to be solved.

The following theory is based on the assumptions that:

• The boundary conditions are linearized, i.e., linear body surface condition, linear

free surface condition and linear bottom condition.

• The hydrodynamic force components are linearized, i.e., linear radiation force,

linear diffraction force, linear Froude-Krylov force and linear restoring force.

• The viscosity of the fluid is assumed to be neglected so that the potential flow

theory is adopted.

In potential theory, the fluid velocity is described by the gradient of the velocity

potential Φ, which is governed by Laplace’s equation in the fluid domain.

∇2Φ = 0 (3.14)
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The harmonic time dependence allows the definition of a complex velocity potential

ϕ, related to Φ by

Φ = Re(ϕeiωt) (3.15)

where Re denotes the real part, ω is the frequency of the incident wave and t is the

time. The boundary value problem will be expressed in terms of the complex velocity

potential ϕ while the product of all complex quantities are with the factor eiωt.

The linearized free surface boundary condition is

∂ϕ

∂z
−Kϕ = 0 on z = 0 (3.16)

where K = ω2/g is the infinite-depth wave number and g is the acceleration of gravity.

The bottom condition is
∂ϕ

∂z
= 0 on z = −h (3.17)

where h is the water depth.

On the lateral boundaries, radiation conditions are statisfied.

The linearization of the problem permits the decomposition of the velocity potential

ϕ into three components,

ϕ = ϕI + ϕR + ϕD (3.18)

where ϕI is the incident wave potential, ϕR is the radiation potential and ϕD is the

diffraction potential.

For incident wave potential, it is calculated by

ϕI = igA

ω

cosh[k(z + h)]
cosh kh e−ik(x cosβ+y sinβ) (3.19)

where ω is the wave frequency, g is the acceleration of gravity, A is wave amplitude,
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β is the angle of the incident wave related to the x-axis of the Cartesian coordinate

system, k is the wavenumber which is calculated from

ω2

g
= k tanh kh (3.20)

where h is the water depth. For deep water cases, the incident wave potential can be

written as

ϕI = igA

ω
ekz−ik(x cosβ+y sinβ) (3.21)

where the wavenumber k = K .

The radiation potential is defined as

ϕR = iω
J∑
j=1

ξjϕj (3.22)

where ξj represents the complex motion amplitude of mode j, and ϕj is the corre-

sponding unit-amplitude radiation potential of mode j, j = 1, 2, 3, ..., J . J represents

the number of modes including six conservative modes and extra hinge modes. In

WAMIT, with consideration of six conventional modes: surge, sway, heave, roll, pitch,

yaw, the hinge modes are defined to be from mode 7 to mode J .

The boundary conditions of the radiation problem are as following: In the fluid do-

main, the Laplace equation should be satisfied

∇2ϕj = 0 (3.23)

On the free surface where z = 0, the boundary condition satisfies

∂ϕj
∂z
−Kϕj = 0 (3.24)
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On the body surface, the boundary condition satisfies

∂ϕj
∂n

= nj (3.25)

where nj is the normal component of the displacement on the body surface of mode

j. (n1, n2, n3) = n, (n4, n5, n6) = x× n, and for vertical hinge mode nj = fjnz.

For diffraction problem, the corresponding boundary conditions are as following. In

the fluid domain

∇2ϕD = 0 (3.26)

On the free surface where z = 0

∂ϕD
∂z
−KϕD = 0 (3.27)

On the body surface
∂ϕD
∂n

= −∂ϕI
∂n

(3.28)

The corresponding forces to each mode is calculated by

Fi =
∫∫ ′

Sb

pnidS (3.29)

where p is the fluid pressure, Sb is the body boundary surface . According to Bernoulli

equation, the pressure is calculated from

p = −ρv
2

2 − ρgz − ρ
∂ϕ

∂t
+ pa (3.30)

where the pa term is neglected since the integration over the wetted surface is zero.

The first term evaluates a second-order pressure. The second term evaluates the
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hydrostatic pressure and the third term evaluates the hydrodynamic pressure in waves.

After linearization, the first-order pressure can be represented by

p = −ρ∂ϕ
∂t
− ρgz = −ρiωϕ− ρgz (3.31)

where z is the vertical axis of Cartesian coordinates. Substitute equation 3.31 to

equation 3.29,

Fi = −ρ
∫∫ ′

Sb

(iωϕ+ gz)nidS (3.32)

The added-mass and damping matrices are defined by the unit-amplitude radiation

potential related to the first term of equation 3.32,

ω2aij − iωbij = −iωρ
∫∫

S
ϕjnidS (3.33)

where aij is the added-mass matrix and bij is the hydrodynamic damping matrix.

Both i and j are in the values from 1, 2, ...6 and 7, 8...J , where J is the number of

modes including extra hinge modes.

The wave-exciting force is calculated from

Xi = −iωρ
∫∫

Sb

(ϕI + ϕD)nidS (3.34)

For hydrostatic force, it can be calculated from restoring matrix cij which is defined

by the second term of equation 3.32,

cij = ρg
∫∫

Sb

znjdS (3.35)

For a hinge mode, we defined its shape function by fi(x) which represents the vertical

displacement along x-axis of mode i. Thus the vertical displacement z in equation
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3.35 can be replaced by fi. nj is defined as the normal component of displacement on

the surface. For hinge mode, only vertical displacement exits, thus

nj = fjnz (3.36)

Therefore, for hinge modes, the hydrostatic restoring matrix is represented by inte-

grating the shape function along the length

cij = ρg
∫∫

Sb

fi(x)fj(x)nzdS (3.37)

Therefore, a linear system of motion equations is given in the following form:

J∑
j=1

ξj[−ω2(Mij + aij) + iωbij + cij] = Xi (3.38)

where both i and j are in the values of 1, 2, ..., 6, 7, 8...J .

Solving the linear equation system of equation 3.38 will get the motion amplitude ξj

for each mode (Newman, 1994).

In the thesis, the motion of the hinged device was solved by using WAMIT, a commer-

cial software based on potential flow theory. WAMIT defines six conservative modes

which are surge, sway, heave, roll, pitch and yaw. The extra hinge modes are defined

from 7 to N + 5, assuming there are N hinged parts. The mass matrix of the hinged

array needs to be input by users. In the head-sea condition, mode 3 (heave), mode 5

(pitch) and the hinge modes from 7 to N + 5 are of interest.
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3.2 Numerical Modeling of Power Take-Off system

3.2.1 Power Absorption in Regular Waves

The mechanism of power extraction can be modelled by a linear spring and damper

system (Evans, 1976). A linear external damping coefficient is applied to enable power

absorption and an external spring force is to tune the device to the incoming wave

conditions. The system is represented by

mξ̈i + diξ̇i + kiξi = Fi (3.39)

where di is the PTO damping for the ith mode, ki is the PTO stiffness for the ith

mode. Note that in the design of SeaWEED PTO system, there is no PTO stiffness

in the hydraulic rams thus ki = 0. m is the mass parameter of the structure; ξi

is the motion amplitude of mode i; and Fi is the hydrodynamic force of mode i

defined by equation 3.29. The hydrodynamic forces corresponding to each mode

of motion consist of radiation component(added mass and hydrodynamic damping),

wave-exciting component and hydrostatic component.

Fi = Frad,i +Xi + Fres,i (3.40)

where Frad,i and Fres,i are the ith mode of the radiation force and restoring force; Xi is

the corresponding wave exciting force including the diffraction force and the incident

wave force (Froude-Krylov force).

The PTO force is contributed by the term with PTO damping,

FP = diξ̇i (3.41)
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where i is the mode that contributes to the power absorption.

The time-averaged absorbed power per unit length by the device is calculated by

P̄ = 1
T

∫
T
FP · ξ̇idt = 1

T

∫
T
diξ̇iξ̇idt = 1

2ω
2di|ξi|2 (3.42)

The total available wave power of incident wave per meter of crest in regular waves

is (Thorpe, 1999)

Pw = Ew · Cg = ρg2A2

4ω (3.43)

where Ew = 1
2ρgA

2 is the wave energy, A is the wave amplitude, and Cg = g
2ω is group

velocity in deep water. The unit of Pw is Watts/m.

The power absorption performance of the device can be evaluated by the power cap-

ture width, according to the following equation

Cwidth = P̄

Pw
= 2ω3

ρg2 di|
ξi
A
|2 = 2ω3

ρg2 di|RAO|
2 (3.44)

where ω is the frequency, ρ is the water density, g is the gravitational acceleration, di

is system damping coefficient corresponding to mode i, ξi is the motion amplitude of

the ith hinge joint in waves. ξi

A
is defined as the response amplitude operator (RAO).

The unit of Cwidth is the meter.

3.2.2 Power Absorption in Irregular Sea States

A sea state can be characterized by two parameters: the significant wave height Hs

and the mean wave period Tp. The JONSWAP spectrum derives from the Joint

North Sea Wave Project (Hasselmann et al., 1973) and constitutes a modification to

the Pierson-Moskowitz spectrum to account for the regions that have geographical
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boundaries that limit the fetch in the wave generating area, e.g., the North Sea.

SA(ω) =
5H2

sω
4
p

16ω5 exp[−5
4(ωp
ω

)4]γa(1− 0.287 ln γ) (3.45)

a = exp[−(ω − ωp)2

2σ2ω2
p

] (3.46)

σ =


0.07 when ω ≤ ωp

0.09 when ω > ωp

(3.47)

where ωp = 2π/Tp is the modal frequency corresponding to the highest peak of the

spectrum, in radians/sec, Hs is the significant wave height in meters, γ is the peaked-

ness parameter from 1-7, with a mean value of 3.3.

In irregular sea states, the amplitude of each component of the irregular wave is

formulated by

A(ω) =
√

2SA(ω)dω (3.48)

where SA is the wave spectrum, A is the wave amplitude. Correspondingly, the

response amplitude is represented by the response spectrum

ξ(ω) =
√

2Sξ(ω)dω (3.49)

The relation between response spectrum and wave spectrum is

Sξ(ω) = SA(ω)|RAO(ω)|2 (3.50)

Substitute equation 3.49 and 3.50 into equation 3.42, then the average power absorp-
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tion in an irregular sea state is

Pabs =
∫ ∞

0
diω

2SA(ω)|RAO(ω)|2dω (3.51)

The available wave power of a irregular sea state is computed by substituting A2 =

2SA(ω) into equation 3.43 that the overall available power for each sea state is

Pavai(ω) = L
∫ ∞

0
ρgcg(ω)SA(ω)dω (3.52)

where L is the length of the structure, cg is the group velocity that in deep water

cg = g
2ω , Sξ(ω) is the wave spectral density. The power absorbed proportion is

prop. = Pabs
Pavai

(3.53)

3.2.3 Power Absorption at a Certain Location

In a chosen operation site, according to the annual wave climate, the total absorbed

power is the summation of the average power of every single sea state weighted by

their probability of occurrence:

Pannual =
N∑
k=1

ηkPabsk
(3.54)

where Pannual is the total annual absorbed power, ηk is the probability factor of a sea

state, Pabsk
is the absorbed power for the kth sea state.

3.2.4 Power Absorption of SeaWEED

In Figure 3.5, (b) and (c) illustrate two hinge modes of SeaWEED with the elevation

at PTO joint 1 and PTO joint 2. The numbering of the joints is from stern to bow.
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Figure 3.5: Hinge modes of SeaWEED illustrated in angular motions.

The vertical elevation amplitudes at each joint are z1 and z2 respectively. r1, r2 and

r3 are lengths of the three hinged segments of SeaWEED.

The motion of SeaWEED WEC in waves is computed by WAMIT. The hinge motion

in WAMIT is considered as the vertical elevation at the hinge joint. Thus, the PTO

damping parameters at the hinge joints are translational, in the unit of N·s/m.

Therefore, the average power absorption equation containing translational damping

terms d1 and d2 is calculated as

ΣP̄ = 1
2ω

2(d1z
2
1 + d2z

2
2) (3.55)

In irregular seas, according to equation 3.51 the average power absorption of a Sea-
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WEED device can be calculated by

ΣPabs =
∫ ∞

0
ω2SA(ω)(d1z

2
1 + d2z

2
2)/A2dω (3.56)

where SA(ω) is the wave spectrum density at each frequency component, A is the wave

amplitude. In the numerical study, PTO damping parameters are set to be equal at

two joints.



Chapter 4

Model Test and Frequency Domain

Simulation

4.1 Model Test of the First Generation Seaweed

4.1.1 Overview of the Model Test

The one-sixteen scale model test of the first generation SeaWEED model was con-

ducted by the Grey Island Energy (GIE) Incorporation. The total assembled device

consists of four hulls and two PTO joints.

The first generation SeaWEEDmodel was tested in Offshore Engineering Basin (OEB)

at NRC-IOT located in St. John’s, NL. The OEB is a large tank with dimensions of

75m x 32m x 3.2m. The model test followed the Marine Renewable Energy Guide for

Tank Testing provided by European Marine Energy Centre (EMEC) (Holmes, 2009).

For the experiments conducted, the following instruments were calibrated and utilized:

linear transducer and pressure sensor onboard the third module along with a pressure

sensor and flow meter on the test bed. A prototype of the hydraulic PTO system was

built. Water flows from the SeaWEED model through hydraulic lines where pressure

45
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is built up to a desired level in an accumulator. The power was calculated by the

product of hydraulic pressure and flow rate.

The 1:16 model was tested with a head sea direction in monochromatic waves. After

all the systems and measuring components were installed during the tank test, the

draft was over the midsection of the body, as shown in Figure 4.1, which was higher

than planned. The parameters of the 1:16 model and full scale model are shown in

Table 4.1.

Figure 4.1: The 1:16 model of the first generation SeaWEED in wave tank.

Table 4.1: Parameters of the first generation SeaWEED model.

Parameters 1:16 model scale (m) Full scale (m)

Total length 9.04 145.0

Module length 1.0 16.0

Tie-rod length 1.68 27.0

Beam 0.55 8.80

Height 0.43 6.88

Planned draft 0.16 2.5

Model test draft 0.28 4.48
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4.1.2 Comparison between Experimental and Numerical Re-

sults

The one-sixteenth scale model test was conducted for four wave periods, which are

6s, 8s, 9s and 10s in full scale. The results of the model test were compared with

the numerical solutions in frequency domain. The experimental power absorption

was obtained from the pressure and the flow rate in the hydraulic system. Since

no generator was equipped for this round of testing, there is no upper limit of the

generator capacity, i.e., the power absorption results were not constrained with a

upper bound.

Figure 4.2: The 1:16 model of the first generation SeaWEED in waves.

As shown in Figure 4.2, during the model test, the incoming waves go through the

hinged array and the model responses with joint elevation. In numerical simulation,

the SeaWEED device was considered as three rigid bodies connected by two hinged

joints that allow their relative motions. The waves go through the body leading

the vertical displacements at the joints. As only the relative motions between two

adjacent bodies are intended for power generation, studies have been focused on the

vertical motion at two hinge joints. The vertical elevations at joint 1 and joint 2 were

computed by using WAMIT, and the PTO damping was calculated from the total
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power loss between unconstrained motion power and absorbed power.

Figure 4.3, 4.4, and 4.5 presented the comparison of power absorption between tank

test and numerical simulation at the wave heights of 3, 4, and 5 meters in full scale.

The curves are generated by numerical computation and the points are resulted from

the mode test. It is shown that at a wave height of 2 meters, the numerical results

match perfectly with the tank test results, while at 6 seconds and 12 seconds, the tank

test results are slightly higher than the numerical results. When the wave height goes

higher, the linear assumption might not be applicable. Therefore, in the real test, the

device cannot response ideally to the wave, and the elevation amplitude will be lower

than the ideal numerical solution which is computed based on the linear assumption.

This explains why the numerical results become higher than the tank test when the

wave height exceeds 4 meters. From the figures, it is apparent that both the curves

and tank test points reach the maximum power absorption at 8.5 seconds of wave

period. The trends are consistent with each other. The comparison validated the

numerical approach that was applied in this thesis.

4.1.3 Improvements

During the model test, problems have been found and improvements were made for

the design of the second generation model. The draft of the first generation model

during the test was deeper than planned. Also, the tie-rod experienced deflection

during certain wave conditions. Improvements were made on the hull geometry and

connection structure for the second generation model. The new design of the flat hull

geometry was aimed to simplify the manufacture process that reduce the manufac-

turing time and cost. Also the interconnecting structure was changed to truss which

has more strength.

The numerical approach was validated by comparing to the experimental results of
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Figure 4.3: Comparison of the absorbed power between model test and numerical
simulation for the first generation of SeaWEED model at a wave height of 3 meters.
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Figure 4.4: Comparison of the absorbed power between model test and numerical
simulation for the first generation of SeaWEED model at a wave height of 4 meters.
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Figure 4.5: Comparison of the absorbed power between model test and numerical
simulation for the first generation of SeaWEED model at a wave height of 5 meters.

the first generation model. Before it was applied to analyze and optimize the second

generation of SeaWEED model, a verification study was performed to verify the pre-

processing mass matrix code and a convergence study was performed to determine

the appropriate panel number for the numerical simulation.

4.2 Frequency Domain Simulation on the Second

Generation of SeaWEED

As shown in Figure 4.6, the SeaWEED wave energy converter consists of four hulls

(a nose, the first producing unit, the second producing unit and a tail) and three

connecting trusses. The initial designed principal parameters of a SeaWEED device
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Table 4.2: Initially designed principal parameters of SeaWEED in full scale.

Parameters The second generation SeaWEED 1:1 Model

Total length (m) 140.0

Beam (m) 8.0

Height (m) 5.0

Design draft (m) 1.5

Length of truss (m) 30.0

Length of producing units (m) 16.0

Length of nose and tail units (m) 9.0

Number of PTO joints Two

Initial PTO damping (N· s/m) 7×105

are given in Table 4.2, where the connecting truss length is 30 meters.

Figure 4.6: Dimension of Initial Designed SeaWEED wave energy converter.

In numerical simulation, the SeaWEED is considered as three rigid segments con-

nected by two hinged joints that allow their relative motions. The three segments are

in different lengths, as given in Table 4.3.
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Table 4.3: Lengths of three segments for the initially designed SeaWEED, from stern
to bow.

Segment No. Elements included Length (m)

1 Tail unit and connecting truss 39

2 The first producing unit and connecting truss 46

3 The second producing unit, connecting truss and nose unit 55

4.2.1 Convergence Study

The motion of SeaWEED was computed by WAMIT. WAMIT is a radiation/diffrac-

tion program based on a three-dimensional panel method and potential theory (Lee

and Newman, 2013). For motions of hinged vessels, WAMIT permits the analysis of

‘generalized modes’ for hinge motions in addition to the six rigid conventional mo-

tions. N-body hinged array will have six conventional modes and N − 1 hinge modes

(Newman, 1997) and the indices of hinge modes are defined from index 7 to N + 5.

In WAMIT, the multiple bodies of a hinge array will be considered as one body, i.e.

NBODY=1. The body is sub-divided into separate hinged segments, to permit the

analysis of a hinged structure using generalized modes. The mass matrix of SeaWEED

was calculated by pre-processing code and was input into WAMIT.

The numerical model of SeaWEED was built by 3-D panels. A convergence study was

performed to determine the best panel numbers of computing. Figure 4.7 shows the

relation between panel numbers and the corresponding residuals, by setting the results

from a panel number of 105 as the reference. The RAOs of free hinged SeaWEED

at six wave periods were computed and the mean squared error (MSE) was used to

evaluate the accuracy of the results. Table 4.4 shows the number of panels and the

corresponding mean squared errors. Due to the capacity of the computer, a panel

number of 4096 was chosen for the following computations. The same panel number

was used in the numerical simulation of the first generation SeaWEED model.
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Table 4.4: Convergence study on the panel numbers.

Case No. Panel Numbers Mean Square Error

1 488 0.00546

2 1104 0.00121

3 3760 0.00035

4 4200 0.00003

5 7328 0.00001

6 10000 0.00000
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Figure 4.7: Convergence study on the panel numbers to model SeaWEED in WAMIT.
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4.2.2 Motion of the Second Generation of SeaWEED inWaves

In this section, hinge motions of SeaWEED were computed with and without consid-

ering the PTO constraints to the joints. The simulated wave condition is:

• Wave depth: 50 meters

• Wave heading: 180 degree head-sea

• Wave period: 1.0 to 18.5 seconds

Unrestrained free hinge motions with no PTO effect were presented in figure 4.8. The

RAO curves present the vertical elevations at hinge joints that caused by relative

pitch motions between two adjacent bodies. It is shown that from 1.0 to 18.5 seconds,

both curves have three peaks while the main peaks both occur at the period of 9

seconds. At the periods of 4.5 seconds and 6.5 seconds, there are two side peaks of

elevation at two hinge joints. The side peaks of hinge joint 2 are more significant than

of hinge joint 1. It is caused by the interaction between the three hinged segments.

The lengths and mass distributions of the segments are different so that each segment

has a different natural frequencies. After 7.5 seconds, both curves go smoothly; the

vertical elevations of the hinge joints reach the maximum RAOs of 2.12 and 2.00

respectively at 9 seconds.

An initial value of external damping at 7×105 N·s/m was added to the hinge joints

to simulate the PTO effect. Figure 4.9 presents the damped hinge motion at two

PTO joints. It is shown that the restrained RAO curves are smoother and reach

the maximum response amplitudes of 0.95 and 0.8 respectively at the period of 9.5

seconds.

Considering the wave condition of offshore areas, the wave periods of from 5.5 sec-

onds to 12 seconds were the range of interest. Figure 4.10 presents the restrained
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Figure 4.8: Free hinge motion of SeaWEED.
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Figure 4.9: Restrained hinge motion of SeaWEED with a 7×105 N·s/m PTO damping.
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hinge motion with a 7×105 N·s/m PTO damping within 5.5 to 12 seconds; Figure

4.11 presents the corresponding power extraction width. The curve of power capture

width reaches the maximum at 8.5 seconds. Therefore, it is shown that the primarily

designed SeaWEED will have its best power absorption performance in a wave period

of 8.5 seconds.
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Figure 4.10: Restrained hinge motion of SeaWEED with a 7×105 N·s/m PTO damp-
ing within 5.5 to 12 seconds.

In the next chapter, the damping value will be optimized to achieve a better power

extraction width curve. Meanwhile, the connecting truss length and the draft will

also be tuned in regular waves and at an intended operation site.
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Figure 4.11: Power capture width of the primarily designed second generation of
SeaWEED with a 7×105 N·s/m PTO damping within 5.5 to 12 seconds.



Chapter 5

Numerical Optimization of the

Second Generation SeaWEED

Model

5.1 Design of the Optimization Experiments

For different wave periods or different intended locations, the optimal length, draft

and PTO parameter of SeaWEED might be varied. In this chapter, the optimization

process involved geometrical parameters optimization and PTO optimization. The

geometrical optimization variables are the truss length L, and the draft T . The PTO

optimization variable is the damping d. In the SeaWEED PTO system, there is no

restoring spring force in upper and lower hydraulic rams thus no external stiffness

value was added. For the optimization in regular waves, the response is the power

extraction width integration
∫ T+
T− CwidthdT , where T− and T+ are the lower and upper

bounds of wave periods. No constraints were set for the optimization in regular waves.

For the optimization at an intended site, the response is the annual power absorption
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and the results were calculated based on the response amplitudes at different wave

heights; the constraints are:

• The angular movements of the PTO joints cannot exceed 30 degrees about its

equilibrium position.

• The absorbed power cannot exceed 750 kW due to the capacity of the generator.

Response surface method was employed to optimize the power absorption performance

by finding the best PTO damping and the best combination of truss length and draft of

SeaWEED. Details on the response surface method can be found in the work of Myers

and Montgomery (Myers et al., 2009). Software of Design-Expert with statistical and

visual tools for design of experiments (DOE) was adopted to analyze the simulation

results and to build the mathematical model which predicts the interaction between

variables and responses and further provide the estimated mathematical optimization

solutions.

The optimization process, assisted by using Design-Expert, is summarized as follows.

Firstly, a group of rough simulation experiments were performed in order to determine

the range of variables. After that, samplings were planned by full factorial design

(Ryan and Morgan, 2007) or uniform design (Fang et al., 2000) within the determined

space. Simulations were conducted in WAMIT and the data were post-processed by

Fortran codes. Then the results were imported into Design-Expert and a best fitting

model was chosen to fit the relation between L, T , d variables and the response

by polynomial regression. The optimal solutions were predicted according to the

polynomial model.
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5.2 Numerical Optimization in Regular Waves

5.2.1 Optimization of PTO Parameters

The PTO damping was optimized by using Design-Expert. Based on the initial study,

the damping values at two joints were regarded as equal and were set to be from

1×105 N· s/m to 1×106 N· s/m for the optimization. A sampling plan of 13 runs was

designed. The objective was to maximize the power capture width within the wave

period of 5.5 seconds to 12 seconds. The integration area of the power capture width

curve wave periods was computed by
∫ T+
T− CwidthdT , where T− and T+ are the lower and

upper bounds of wave periods, in order to evaluate the power absorption performance

of the device in regular waves. The relation curve between the PTO damping and

the integration of power capture width was fitted by polynomial regression method

in Design-Expert, as shown in Figure 5.1.

A sixth-order nonlinear model was suggested with 99.95% accuracy by the analysis

of Design-Expert to fit the relation between the variable and the response. It can be

observed that for initial designed model, a PTO damping of 322500 N· s/m is the best

for achieving the optimal power absorption performance among 5.5 to 12 seconds of

wave period. The predicted power capture width integration is 44.86 m · s according

to the numerical model of the curve.

A verification study was performed by setting the damping value at 322500 N· s/m;

the computed power capture width integration was 44.82 m· s, which verified the

polynomial model and optimal solution by the Design-Expert. The optimized power

capture width at a damping of 322500 N· s/m was compared with the primary design

at a 700000 N· s/m damping, as shown in Figure5.2. It is shown that the optimal

power capture width curve is higher than the original width curve among 5.5 to 12

seconds. The optimal curve has a small peak at 7 seconds of wave period, which is
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Figure 5.1: Response curve of the power capture(absorption) width integration with
different damping values of the SeaWEED model with a 30-meter length of interme-
diate truss and a 1.5-meter draft.
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because that the hinge elevation at joint 2 is influenced by the coupling effect from

the first joint, as shown in Figure 5.3.
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Figure 5.2: Power capture width comparison between original designed damping and
optimal damping.

5.2.2 Optimization of the Geometrical Parameters

For different wave conditions, the optimal truss length and draft of the device can

be varied. A full factorial sampling plan for a series of truss lengths and drafts was

designed. Since the optimal value of PTO damping was influenced by the wetted

surface and underwater geometry, it was not regarded as independent to the geomet-

rical parameters. Thus a two-step optimization was performed. Each combination
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Figure 5.3: RAO curves at two hinge joints of the initial model with an optimal PTO
damping.

of truss length and draft defined a model. For each model, the damping was tuned

to the optimal value by repeating the PTO optimization process. Table 5.1 gives a

description of the geometrical optimization design.

Table 5.1: Overview of the optimization design in regular waves.

Variables L (m) T (m) d (N· s/m)

Lower value 10 1.5 105

Upper value 100 4.0 106

Levels 10 5 5

Response Capture width integration (m·s)

For simulation based optimization, one of the advantages is the efficiency that the

sampling space can be larger than in the physical experiment. By full factorial de-
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sign, a total number of 250 simulation cases were computed and the data were post

processed by own codes. Response surfaces were generated by Design-Expert to find

the optimal geometrical parameters at each wave period.

Figure 5.4 to 5.10 present the response surfaces of capture width integration with

different truss length, drafts, and PTO damping at each wave period within 6 to 12

seconds. Each surface was generated at an optimal damping value shown on the left

of the figure. Quartic polynomial models were suggested by Design-Expert to fit the

relation between the variables and the response. The contours represent the non-

dimensional response from 0 to 1. The flag with ’1’ indicates the location of optimal

truss length and draft to achieve a maximum power capture integration. For example

in Figure 5.10, when the wave period is 12 seconds, the predicted optimal truss length

is 62.3 meters and the draft is 2.2 meters. For a quartic model, sometimes there is

more than one optimal solution. Considering the cost and structure strength, the

solution with minimum truss length and draft was chosen.

Figure 5.4: Response surface of the power capture width integration in regular waves
with a wave period at 6 seconds.

A summary of optimization solutions for each wave period is shown in Table 5.2. The
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Figure 5.5: Response surface of the power capture width integration in regular waves
with a wave period at 7 seconds.

Figure 5.6: Response surface of the power capture width integration in regular waves
with a wave period at 8 seconds.
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Figure 5.7: Response surface of the power capture width integration in regular waves
with a wave period at 9 seconds.

Figure 5.8: Response surface of the power capture width integration in regular waves
with a wave period at 10 seconds.
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Figure 5.9: Response surface of the power capture width integration in regular waves
with a wave period at 11 seconds.

Figure 5.10: Response surface of the power capture width integration in regular waves
with a wave period at 12 seconds.
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optimal combinations of truss length L, Draft T and PTO damping d were presented

at each wave period.

Table 5.2: Optimization solutions at each wave period.

Wave period (s) L (m) T (m) d (N s/m)

6 10 1.57 3.04×105

7 10.2 1.99 3.05×105

8 15.5 2.1 4.13×105

9 28.5 2.13 5.06×105

10 36.2 2.17 7.41×105

11 51.4 2.18 9.15×105

12 62.3 2.2 1.05×106

It can be observed that, from 6 seconds to 12 seconds of wave period, the optimal truss

length increases from 10 meters to 62 meters, and the optimal draft and damping are

also increased. For a certain wave period, the best length, draft and PTO damping

of SeaWEED are able to be predicted by interpolation. Figure 5.11, 5.12 and 5.13

show the optimized truss length, draft and damping values at each wave period. It

is noticeable that the optimal draft of the device is not as sensitive as truss length

to wave period. When the wave period is increased, the optimal draft value reaches

stable at around 2.0 meters. Optimal PTO damping value rises significantly when

the wave period is increased.

5.3 Numerical Optimization at an Intended Site

In a chosen operation site, the device was optimized according to the wave climate

and the total average power is calculated according to equation 3.54.
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Figure 5.11: Optimal truss length at each wave period.
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Figure 5.13: Optimal PTO damping at each wave period.

The wave climate of an intended operation site off Cork Harbour in Ireland is presented

in Figure 5.14. The probability of a sea state was calculated from the percentage of

the occurrence hours in a simulated year. The irregular sea states are represented

by a significant wave height (Hs) and a peak period (Tp). As shown in the wave

climate table that the sea states with highest probability of occurrence are around 8.5

seconds of peak periods; and mostly occurred significant wave heights are within 1.25

to 3.75 meters. The estimated annual power absorption over the year was calculated

according to the given wave climate. Table 5.3 gives an overview of the optimization

at an intended site. The response is the power absorption in kW. At each wave height,

the response amplitude ξi was constrained by the the hinge angle ξi/r ≤ sin 30◦, where

r is the rotating arm which is the length of the corresponding hinge segment. The

absorbed power for each sea state component was constrained to be less than 750 kW

considering the capacity of the generator.
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Table 5.3: Optimization overview for an intended site.

Variables L (m) T (m) d (N· s/m)

Lower value 10 1.5 105

Upper value 100 4.0 106

Levels 10 5 5

Response Power absorption kW

Constraints Joint deflection angle ≤ 30 Degrees

Constraints Power absorption ≤ 750 kW

Figure 5.14: Wave climate table for a sea location off Cork Harbour in Ireland; the
datasheet comprises wave data collected from the SmartBay buoy moored in Cork
Harbour (SmartBay, 2015).
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Same as the geometrical optimization process in regular waves, three factors were

considered in terms of truss length, draft and the PTO damping. Two steps of opti-

mization were conducted again. The sampling plan was designed by using the uniform

design (UD) methodology, as it ensures the accuracy at a low number of runs. Eigh-

teen combinations of truss length and draft defined 18 models. As it is known from

the previous PTO optimization process that a fifth order model should be used for

fitting the curve of damping effect, here for each model, only five levels of damping

were needed. The response surface with the variables of the truss length and draft

was fitted by a quartic model.

As shown in Figure 5.15, a circle in the middle of the response surface indicates the

prediction of the annual power that exceeds the amount of 150 kW for a simulated

year. The predicted highest annual power was 150.523 kW with a 32-meter truss

length and a 2.2 meter draft.

Verification tests were performed to study the accuracy of the polynomial model. The

results are shown in Table 5.4. It is shown that the average error ratio for the five

tests is 0.32%, which means the polynomial model is reliable and valid for fitting the

relationship between variables and the response.

To verify the optimal solution, the annual power of the model with a 32-meter truss,

a 2.2-meter draft, and a 4×105 N· s/m PTO damping was computed. The calculated

annual power absorption was 149.799 kW and the error ratio for the prediction is

0.35%, as shown in Table 5.5.

In conclusion, the polynomial model was reliable with a low error ratio. For the

intended operation site in Cork Harbour, Ireland, The predicted optimal truss length

is 32 meters, the draft is 2.2 meters and the PTO damping 4×105 N· s/m. The

predicted annual power absorption is around 150 kW in the simulated annual wave

climate.
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Figure 5.15: Response surface of the annual power absorption at an intended location.

Table 5.4: Verification studies on the polynomial model.

Variable/Response No. 1 No. 2 No. 3 No. 4 No. 5

Truss length L (m) 15 25 36 42 50

Draft T (m) 2 2.5 3.2 1.5 2.5

PTO damping d (Ns/m) 450000 250000 850000 950000 550000

Predicted power (Watts) 94983.00 117267.00 127478.00 99132.00 136075.00

Calculated power (Watts) 94703.37 117168.52 126944.00 98791.20 135474.83

Error ratio 0.30% 0.08% 0.42% 0.34% 0.44%

Average error ratio 0.32%
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Table 5.5: Optimal solution, predicted annual power and computed annual power
absorption.

Variable/Response Value Unit

Truss length L 32.0 m

Draft T 2.2 m

PTO damping d 4×105 N· s/m

Predicted annual power 150.523 kW

Computed annual power 149.992 kW

Error ratio 0.35%

5.4 Comparison of the Power Absorption Perfor-

mance

5.4.1 Comparison between the Original and Optimized Sea-

WEED Models

The truss length, draft and PTO damping of the second generation SeaWEED model

were optimized due to the intended location. Comparison studies were performed

on power capture width and annual power absorption between the original designed

model and the optimized models. Table 5.6 presents the three models been compared

in terms of the original designed model, PTO optimized model and overall optimized

model. The PTO optimized model is based on the original designed parameters

with only PTO damping been optimized. The overall optimized model indicates that

its geometrical parameters and PTO damping were all optimized according to the

intended sea site. Figure 5.16 shows the power capture width curves of the three

models among 5.5 seconds to 12 seconds of wave period. The overall optimized model
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Table 5.6: Parameters of the models been compared.

Models Truss length (m) Draft (m) PTO damping (N· s/m)

Orginal designed model 30 1.5 700000

PTO optimized model 30 1.5 322500

Overall optimized model 32 2.2 400000

has the highest capture width among 7.0 to 12 seconds. It is because that the given

wave climate of the intended location has its most frequent peak period at around 8.5

seconds. Figure 5.17 shows the absorbed power at regular sea states when the wave
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Figure 5.16: Comparison of the power capture widths between three of the second
generation SeaWEED models.

height is 3 meters. The upper limit of the power absorption is 750 kW due to the

capacity of the generator. It is shown that the overall optimized model achieve the

best power absorption among the wave periods of interest.
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Figure 5.17: Comparison of the absorbed power between three of the second genera-
tion SeaWEED models at a 3-meter wave height.

5.4.2 Comparison between the First and the Second Gener-

ation of SeaWEED models

The study on the first generation model in Chapter 4 shows that at the wave height

of 3 meters, the results between numerical simulation and model tests matched well.

A comparison between the first and the second generation of SeaWEED models is

presented in Figure 5.18; both power absorption curves were computed at a 3-meter

wave height. The second generation model is the overall optimized model, and the

upper limit of the power absorption is 750 kW. It is shown that among the wave periods

of interest, the second generation model achieves over double power absorption than

the first generation model. The optimization in geometrical parameters draft and truss

length and PTO damping significantly improved the power absorption performance.

It is noted that the enhancement of the interconnecting truss structure to prevent



77

deformation is not able to be reflected in this numerical study.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 6  7  8  9  10  11  12

A
bs

or
be

d 
po

w
er

 (
kW

)

Wave period (s)

 

The second generation model
The first generation model

Figure 5.18: Comparison of the absorbed power between the first and the second
generation SeaWEED models at a 3-meter wave height.



Chapter 6

Conclusions and Limitations

6.1 Conclusions

The numerical simulation and optimization was performed for a hinged type wave

energy converter called SeaWEED. SeaWEED belongs the oscillating body type of

WEC. It has three members that are connected by hinged joints where the hydraulic

PTO systems are located.

The system of SeaWEED was numerically simulated by a three-body hinged array

with joint constraints. In hydrodynamic analysis, the PTO system was simulated as

a linear-spring-damper system. Since the design of the hydraulic rams of SeaWEED

does not have any spring force, the PTO stiffness was assumed as zero during the

numerical simulation.

The work that have been done in this thesis is concluded as following:

• A detailed review on the wave energy converter and surrogate model optimiza-

tion methodology was performed. The theories regarding a multi-body hinged

array and power absorption mechanism were discussed and the formulations

were derived.

78
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• The numerical approach was validated by comparing numerical results of the

first generation SeaWEED model to experimental results of the 1:16 scale model

test conducted by Grey Island Energy Incorporation. Problems found in the

model test led to improvements in the hull geometry, a lower draft and a different

connection structure and ultimately the second generation of SeaWEED.

• Hydrodynamic analysis and optimization was focused on the numerical model of

the second generation SeaWEED. Hydrodynamic computations were performed

based on the potential-flow theory by using WAMIT and combining with own

pre- and post-processing codes. Convergence study was performed to deter-

mine the appropriate number of panels that is used to model the geometry of

SeaWEED.

• For the optimization, the PTO damping and the geometrical parameters in

terms of truss length and draft were tuned to optimize the power absorption

performance in regular waves and at an intended operation site. Considering

the optimal PTO damping was not an independent factor of the geometrical

parameters, a two-step optimization was conducted. Firstly, the PTO damping

was optimized for each model sample. Each model sample was defined by the

geometrical variables of truss length and draft. Then, the optimal truss length

and draft were determined under a certain wave condition.

• During the sampling plan of the simulation-based experiments, a full factorial

design was used in the optimization in regular waves, which contained more

runs and provided a more accurate model. For the damping effect, a sixth-order

polynomial curve was generated by the software of Design-Expert for fitting the

relation between damping and power absorption performance. For geometrical

optimization, a quartic polynomial surface was predicted by using polynomial
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regression method to fit the relation between the geometrical variables and power

capture width integration in regular waves. After the orders of the polynomial

models were determined, the optimization in irregular sea states was sampled

by the uniform design with fewer runs and better efficiency. The polynomial

regression model that fits the response surface was verified by extra simulation

experiments. The optimal solutions were predicted based on the polynomial

model, and the optimal truss length, draft and PTO damping were determined

for different regular wave conditions and an intended site.

6.2 Limitations

The numerical analysis and optimization of the second generation of SeaWEED has

its limitations. Firstly, the stiffness effect of the hydraulic system was assumed to be

negligible. However, in actual mechanical operation, a small effect of stiffness may

exist in the bolted joints and the rams, which may lead to a smaller hinge motion and

less power absorption.

Secondly, in the frequency domain simulation, potential flow theory and a linear as-

sumption of the boundary conditions was applied to solve the body motions. However,

for such slender body in high waves or rough sea states, when the boundaries are non-

linear, the linear assumption is not applicable. Therefore, CFD methods could be

more accurate for solving such problems.

In conclusion, the numerical approach in this thesis was verified and validated. Further

model tests are being conducted to validate the numerical solutions for the second

generation of SeaWEED model.
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