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Abstract

This thesis is devoted to the study of the global dynamics of some reaction and

diffusion models incorporating with spatial and/or temporal heterogeneities. We

first investigate the spatial dynamics of a reaction-advection-diffusion model for a

stream population in a time-periodic environment. Then we explore the propagation

phenomena for a Lotka-Volterra reactionadvection-diffusion competition model in a

periodic habitat. Moreover, we establish the theory of traveling waves and spreading

speeds for time-space periodic monotone semiflows with monostable structure and

apply it to a time-space version of the two-species competition model. To understand

the effects of the spatial heterogeneity on the spread of Lyme disease, we propose a

nonlocal and time-delayed reaction-diffusion model and obtain the global stability in

terms of the basic reproduction ratio and the spreading speed of the disease. At the

end of this thesis, some interesting problems are presented for further investigation.
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Chapter 1

Introduction

In spatial ecology and population biology, reaction and diffusion models are widely

used to capture the spatial and temporal dynamics of species and to better under-

stand biological invasions. In reality, the heterogeneous character of the environment

plays an important role in the spread of the invasive species. Natural barriers like

hills and rivers may bring more patterns of invasion fronts. It is also well known that

seasonal change and geographic variations in temperature, rainfall and resource avail-

ability have crucial effects on the survival and reproduction of populations. Clearly,

periodic environment of space and/or time is one of the useful approximations to un-

derstand the influence of the environmental heterogeneity on the spatially evolution

and the persistence of species arising from ecological and biological processes. At

times, an invading species is in the competition of the local species, resulting in the

extinction of the latter. This explains why agricultural scientists sometimes try to

introduce beneficial invasions to control local pest issues. Then the essential factors

of biological invasions, spreading speeds and traveling waves, may help scientists to

predict and evaluate the effectiveness of local pest control and further impacts on the
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local ecological balance.

This thesis is devote to study of the spatial dynamics of some diffusion and re-

action models in heterogeneous environments. In the following, we will give a brief

introduction of the research projects presented in the thesis.

I. A stream population model

In stream ecology, ‘drift paradox’ [65] is a crucial topic, which is concerned about

why the aquatic insects have the ability to resist washout when they face with the

downstream drift. A number of modeling works have been done to give positive an-

swers for the drift paradox [65]. Pachepsky et al. [76] introduced a reaction-advection-

diffusion model (called PA model) to handle the issue of persistence of benthic aquatic

organisms. In this PA model, the population is divided into two interacting compart-

ments: individuals living on the benthos and individuals drifting in the river, which

has important implications for population persistence. Later, Lustscher and Seo [60]

further developed this PA model by considering the temporal variability, and ana-

lytically studied the persistence conditions for the linearized PA model under the

assumption that all parameters are T -periodic step functions and the average flow

speed over one period is constant. Their model is governed by the following linear

reaction-advection-diffusion system:
∂nd
∂t

= −σ(t)nd + µ(t)nb − v(t)∂nd
∂x

+D(t)∂
2nd
∂x2 ,

∂nb
∂t

= σ(t)nd − µ(t)nb + r(t)nb, t > 0, x ∈ R,

where nd is the population density in the drift; nb is the population density on the

benthos; µ(t) is the per capita rate at which individuals in the benthic population

enter the drift; σ(t) is the per capita rate at which the organisms return to the benthic

population from drifting; D(t) is the diffusion coefficient; v(t) is the advection speed

experienced by the organisms; and r(t) is the maximum per capita growth rate of the
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benthic population.

The purpose of the first project in this thesis is to study the spatial dynamics of

the following nonlinear periodic PA model:
∂nd
∂t

= −σ(t)nd + µ(t)nb − v(t)∂nd
∂x

+D(t)∂
2nd
∂x2 ,

∂nb
∂t

= σ(t)nd − µ(t)nb + f(t, nb)nb, t > 0, x ∈ R,

where f(t, nb) is the per capita growth rate of the benthic population with no Allee

effect in the population. Biologically, our model here is more reasonable since it deals

with seasonal variations in temperature, rainfall and resource availability. In the case

of an unbounded domain, we establish the existence of spreading speeds and their

coincidence with the minimal wave speeds for monotone periodic traveling waves,

respectively. In the case of a bounded domain, we obtain a threshold result on the

global stability of either zero or the positive periodic solution.

II. A two-species competition model in a periodic habitat

Over the past decade, there have been a number of research works concerning

about traveling waves and spreading speeds in heterogeneous media, see, e.g., [100]

and references therein. More specifically, Gätner and Friedlin [23, 24] studied the

spreading speed for an equation of Fisher type in which the mobility and the growth

function vary periodically in space via probabilistic methods. Shigesada et al. [84]

first discussed the spread of a single species for a reaction-diffusion model in a patchy

habitat with the periodic mobility and growth rate (see also [83]). Later, Beresty-

cki, Hamel and Roques [6, 7] analyzed the following reaction-diffusion model in the

periodically fragmented environment:

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN ,

where A(x) and f(x, u) depend on x = (x1, .., xN) in a periodic fashion, and obtained

the existence of pulsating waves and a variational formula for the minimal wave speed.
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A general theory of spreading speeds and traveling waves in a periodic habitat was

developed by Weinberger [94] for a recursion with a periodic order-preserving compact

operator, and by Liang and Zhao [55] for monotone semiflows with α-contraction

compactness. Weng and Zhao [96] proposed a nonlocal and time-delayed reaction-

diffusion model in a periodic habitat and studied its propagation phenomena by

appealing to the abstract results in [55], which was further extended by Ouyang and

Ou [75] to obtain the stability and convergence rate of traveling waves. It is worthy

to point out that the theory in [55, 94] may not apply to scalar evolution equations

with nonlocal dispersal in a periodic habitat since the associated solution maps are

not compact. Recently, Shen and Zhang [81,82] and Coville, Dávila and Mart́ınez [13]

investigated spreading speeds and periodic traveling waves for a large class of such

equations via quite different approaches.

For two species reaction-diffusion competition models in a spatially homogeneous

environment, there have been quite a few papers on persistence, biological inva-

sions of species, traveling wave solutions and the minimal wave speeds, see, e.g.,

[27, 33, 38, 39, 44, 51] and references therein. In particular, Lewis, Li and Wein-

berger [51] studied the spreading speed of two species Lotka-Volterra competition

model and gave a set of sufficient conditions for its linear determinacy. Huang [38]

and Guo and Liang [27] concerned about the minimal speed and the linear determi-

nacy for more general cases. Huang and Han [39] further showed that the conjecture

of linear determinacy is not true in general. Meanwhile, for a spatially heterogeneous

environment, Dockery et al. [16] investigated the effect of different diffusion rates on

the survival of two phenotypes of a species, and showed that the phenotype with

the slower diffusion rate wins the competition. Recently, Lam and Ni [49] studied

the global dynamics of two species Lotka-Volterra competition diffusion model with
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spatial heterogeneous growth rates in a bounded domain. Moreover, Lutscher, Mc-

Cauley and Lewis [59] added the advection term into such a competition model to

discuss spatial patterns and coexistence mechanisms for stream populations. How-

ever, it seems that there is no research on the propagation phenomena for two species

reaction-diffusion competition model in a periodic habitat, which is the simplest form

of the heterogeneous environment.

The purpose of the second project is to study the spatial dynamics of a two species

competition reaction-advection-diffusion model in a periodic habitat:

∂u1

∂t
= L1u1 + u1(b1(x)− a11(x)u1 − a12(x)u2),

∂u2

∂t
= L2u2 + u2(b2(x)− a21(x)u1 − a22(x)u2), t > 0, x ∈ R.

Here Liu = di(x)∂
2u
∂x2 − gi(x)∂u

∂x
, i = 1, 2, u1 and u2 denote the population densities of

two competing species in an L-periodic habitat for some positive number L, di(x),

gi(x) and bi(x) are diffusion, advection and growth rates of the i-th species (i =

1, 2), respectively, and aij(x)(1 ≤ i, j ≤ 2) are inter- and intra-specific competition

coefficients. We establish the existence of the spreading speeds and its coincidence

with the minimal wave speeds for spatially periodic traveling waves and obtain a set

of sufficient conditions for the spreading speeds to be linearly determinate.

III. Time-space periodic semiflows

As in Part II, we have introduced the mathematical research works on the periodic

habitat. There are also quite a few investigations on time-periodic fronts of reaction-

diffusion equations, see, e.g., [1,2,22,61,102,104,105] and references therein. For time-

periodic semiflows in one dimensional continuous medium, Liang, Yi and Zhao [53]

used the wavefront W (x− cω) obtained for the Poincaré map Qω to construct a two-

variable function U(t, ξ) := Qt[W ](ξ + ct), which is then shown to be a time-periodic
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traveling wave for the semiflow. However, when the medium is discrete, say Z for

instance, such a construction may not give rise to a traveling wave since Qt[W ](ξ) is

not well defined for all ξ ∈ R. We will obtain traveling waves in a strong sense for

the associated Poincaré map so that this evolution approach is still applicable.

In the case where the time and space periodicity is incorporated into a reaction-

diffusion equation, it remains unclear whether there exists a transition wave in the

sense of Berestycki and Hamel [8], reflecting some interactions of time and space pe-

riods. Next we recall some works related to this question. Nolen, Rudd and Xin [69]

used a three-variable function φ(ξ, t, x), which is periodic in the last two arguments,

and an auxiliary equation to define a generalized pulsating wave. Nadin [67] intro-

duced the following equivalent definition:

Definition 1.0.1. A function u(t, x) is a pulsating traveling front of speed c in the

direction −e that connects p− to p+ if it can be written as u(t, x) = φ(x · e+ ct, t, x),

where φ ∈ L∞(R × R × RN) is such that for almost every y ∈ R, the function

(t, x) 7→ φ(y+ x · e+ ct, t, x) satisfies the above equation. The function φ is requested

to be periodic in its second and third variables and to satisfyφ(z, t, x)− p−(t, x)→ 0 as z → −∞ uniformly in (t, x) ∈ R× RN ,

φ(z, t, x)− p+(t, x)→ 0 as z → +∞ uniformly in (t, x) ∈ R× RN .
(1.1)

One may observe that the solution u(t, x) := φ(y + x · e − ct, t, x) is an almost

planar wave under the setting of gerenalized transitions waves, for which we refer

to [5, Definition 1.5]. It is also easy to see that such u(t, x) is a classical pulsating

wave in the sense of Xin [99] if cω/L is a nonzero rational number.

In Nadin [67], for reaction-diffusion equations with time-space periodicity in RN :

∂tu−∇ · (A(t, x)∇u) + q(t, x) · ∇u = f(t, x, u), (1.2)
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the minimal wave speed of such pulsating fronts was established in [67] under a

KPP type condition and the following monostability condition: (i) there is a positive

continuous space-time periodic solution p; (ii) if u is a space periodic solution such that

u ≤ p and inf(t,x)∈R×RN u(t, x) > 0, then u ≡ p; (iii) u ≡ 0 is an unstable solution in

the sense that the associated generalized eigenvalue is positive, where the generalized

eigenvalue was studied in [68]. Upper and lower bounds were given for the minimal

wave speed (if it exists) when the KPP condition does not hold. The spreading speed

as well as the tail behavior and the regularity of the wave were also studied there.

One may ask the following questions: Does the minimal wave speed exist when the

KPP type condition does not hold? Can u(t, x; y) := φ(y + x · e + ct, t, x) satisfy

the equation for any y ∈ R? Can such a result be established for systems admitting

possible semi-trivial time-space periodic solutions? We will give affirmative answers

to these questions.

Most recently, Rawal, Shen and Zhang [78] introduced the following definition of

time-space periodic traveling waves for a nonlocal dispersal Fisher-KPP equation:

Definition 1.0.2. An entire solution u(t, x) is called a traveling wave solution con-

necting u∗(t, x) and 0 and propagating in the direction of e with speed c if there is

a bounded function Φ : RN × R × RN → R+ satisfying that Φ is locally Lebesgue

measurable, u(t, x; Φ(·, 0, z)) exists for all t ∈ R,

u(t, x; Φ(·, 0, z)) = Φ(x− cte, t, z + cte), t ∈ R, z ∈ RN

lim
x·e→−∞

(Φ(x, t, z)− u∗(t, x+ z)) = 0, lim
x·e→+∞

Φ(x, t, z) = 0, uniformly in (t, z),

Φ(x, t, z − x) = Φ(x′, t, z − x′), x, x′ ∈ RN with x · e = x′ · e,

and

Φ(x, t+ T, z) = Φ(x, t, z + piei) = Φ(x, t, z), x, z ∈ RN .
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Let φ(ξ, t, x) := Φ(y, t, x− y) with ξ = y · e. It then follows that for any z ∈ RN ,

φ(x · e− ct, t, x+ z) is a solution of the given evolution equation. Note that two quite

different approaches were used in [67] and [78], respectively, to prove the existence of

traveling waves. For further investigations on KPP type nonlocal evolution equations,

we refer to Shen [80], Kong and Shen [47], and references therein.

The goal of the third project is to explore the propagation phenomena of the two-

species competition model in time-space periodic environment. To do so, we first give

a unified definition of traveling waves in a time-space periodic environment and then

establish the theory of traveling waves, almost pulsating waves and spreading speed

for time-space periodic monotone semiflows, which is further applied to the analysis

of such time-space periodic systems.

IV. A spatial model for Lyme disease

Lyme disease is a worldwide vector-borne infection caused by the spriochete bac-

terium Borrelia burgdorferi, whose primary vector in North America is the black-

legged tick (also known as Ixodes scapularis). The black-legged tick normally has

a two-year life cycle including three feeding stages: larva, nymph and adult. In

those stages, ticks could acquire blood meals from a variety of hosts like rodents

and mammals. In particular, Larvae and nymphs mainly feed on white-footed mouse

Peromyscus leucopus, and adult ticks obtain blood meals almost exclusively from

the white-tailed deer Odocoileus virginianus [11]. Since nymphs are too tiny (less

than 2mm) to detect, humans may carry Lyme disease through the bites of infectious

nymphs. For more biological discussions about the infection of Lyme disease, we refer

to [3, 45,48,62,72,89] and references therein.

To understand the invasion of Lyme disease, many mathematical modeling efforts

are made through investigating the tick and host populations dynamics [25, 41, 56,
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70, 79]. More specifically, Caraco et al. [12] proposed a reaction-diffusion model to

study the effects of the tick’s stage structure on the spatial expansion of Lyme disease

in the northeast United States. The global dynamics and the spreading speed were

obtained in [107] for the spatial model of [12]. To take the climate changes into

account, Ogden et al. [73,74] presented simulation models, Wu et al. [98] established a

temperature-driven map of the basic reproduction number of Lyme disease in Canada,

and Zhang and Zhao [103] modified the model in [12] to a reaction-diffusion system

with seasonality and studied its global dynamics and propagation phenomena. Note

that the spatially homogeneous environment is basically assumed in these works, but

the spatial heterogeneity is also vital. Geographic variations of food resources and

climates could limit the activity and the population size of ticks and hosts. Biological

studies [9,50] show that spatial patterns of the disease is highly linked to the spatial

configurations coupled with dispersal by vertebrates like mice. Furthermore, there are

few mathematical models incorporating the spatial variation to estimate the Lyme

disease risk. The patch models presented in [9, 34] considered the tick population

dynamics with the dispersal of ticks on vertebrate hosts among multiple habitats,

or between woodland and pasture, both of which are based on the assumption that

the interactions are homogeneous in every habitat. To formulate a continuous-time

model of Lyme disease including spatially dependent parameters, Wang and Zhao [92]

took the model of Carco et.al. [12] as a basis and adapted it in the following aspects:

(i) allow a spatial-dependent carrying capacity of hosts (mice), spatial-dependent

diffusion rates of hosts and disease transmission coefficients; (ii) consider the influence

of deers in disease transmissions; (iii) replace the random mobility of ticks in [12] with

nonlocal terms to reveal the spatial movements of larvae, nymphs and adult ticks

determined by their hosts (mice or deers).
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Indeed, they proposed a nonlocal reaction-diffusion model and introduced the

basic reproduction numberR0 of Lyme disease and revealed thatR0 can be a threshold

value to describe the extinction and persistence of Lyme disease evolution under

some appropriate assumptions. They also obtained a threshold result on the global

dynamics in the case where the host diffusion rates and the carrying capacity of mice

are constants.

The aim of the fourth project is to adopt the nonlocal spatial model in [92] by

incorporating the self-regulation mechanism for the tick population as discussed in

[11], and to study the spatial dynamics of Lyme disease while keeping the spatially

heterogeneous structure of the model system. In the case of a bounded domain,

we first prove the existence of the positive disease-free steady state and a threshold

type result for the disease-free system, and then establish the global dynamics of

the model system in terms of the basic reproduction number R0. In the case of

an unbound domain, we obtain the existence of the disease spreading speed and its

coincidence with the minimal wave speed. At last, we use numerical simulations

to verify our analytic results and investigate the influence of model parameters and

spatial heterogeneity on the disease infection risk.

The rest of this thesis is organized as follows. In Chapter 2, we introduce some

mathematical terminologies and theorems which are based on the theories of mono-

tone dynamical systems, spreading speeds and traveling waves. Chapter 3 is devoted

to the study of spatial dynamics of a periodic reaction-advection-diffusion model for

a stream population. In Chapter 4, we study propagation phenomena for a Lotka-

Volterra reaction-advection-diffusion competition model in a periodic habitat. In

Chapter 5, we first establish the theory of traveling waves and spreading speeds for

time-space periodic monotone semiflows with monostable structure and then apply
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it to the analysis of a two-species competition model in time-space periodic environ-

ment. In Chapter 6, we propose and investigate the global dynamics of a nonlocal

and time-delayed reaction-diffusion model for Lyme disease with a spatially heteroge-

neous structure . A brief summary and some future works are presented in Chapter

7.



Chapter 2

Preliminaries

In this chapter, we introduce some terminologies and known results which will be

used in the rest of this thesis. They are involved in monotone dynamical systems and

the theory of spreading speeds and traveling waves.

2.1 Monotone dynamics

Let E be an ordered Banach space with an order cone P having nonempty interior

Int(P ). For any x, y ∈ E, we write x ≥ y if x− y ∈ P , x > y if x− y ∈ P \ {0}, and

x� y if x− y ∈ Int(P ). If a < b, we define [a, b]E := {x ∈ E : a ≤ x ≤ b}.

Definition 2.1.1. A linear operator L : E → E is said to be positive if L(P ) ⊂ P ;

strongly positive if L(P \ {0}) ⊂ Int(P ).

Theorem 2.1.1. (Krein-Rutman theorem) [31, Theorems 7.1 and 7.2] Assume that

a compact operator K : E → E is positive and r(K) be the spectral radius of K. If

r(K) > 0, then r(K) is an eigenvalue of K with an eigenfunction x > 0. Moreover, if
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K is strongly positive, then r(K) > 0 and it is an algebraically simple eigenvalue with

an eigenfunction x� 0; there is no other eigenvalue with the associated eigenfunction

x� 0; |λ| < r(K) for all eigenvalues λ 6= r(K).

Definition 2.1.2. Let U be a subset of E. Then a continuous map f : U → U is

said to be monotone if x ≥ y implies that f(x) ≥ f(y); strictly monotone if x > y

implies that f(x) > f(y); strongly monotone if x > y implies that f(x)� f(y).

Recall that a subset K of E is said to be order convex if [u, v]E ∈ K whenever

u, v ∈ K satisfy u < v.

Definition 2.1.3. Let U ⊂ P be a nonempty, closed and order convex set. A contin-

uous map f : U → U is said to be subhomogeneous if f(λx) ≥ λf(x) for any x ∈ U

and λ ∈ [0, 1]; strictly subhomogeneous if f(λx) > λf(x) for any x ∈ U with x � 0

and λ ∈ (0, 1); strongly subhomogeneous if f(λx)� λf(x) for any x ∈ U with x� 0

and λ ∈ (0, 1).

Theorem 2.1.2. [106, Theorem 2.3.2] Assume that f : U → U satisfies either

(i) f is monotone and strongly subhomogeneous; or

(ii) f is strongly monotone and strictly subhomogeneous.

If f : U → U admits a nonempty compact invariant set K ⊂ Int(P ), then f has

a fixed point e � 0 such that every nonempty compact invariant set of f in Int(P )

consists of e.

Let X be a metric space with metric d. Recall that a continuous map f : X → X

is said to be asymptotically smooth if for any nonempty closed bounded set B ⊂ X

for which f(B) ⊂ B, there is a compact set J ⊂ B such that J attracts B, that is,
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lim
n→∞

sup
x∈B
{d(fn(x), J)} = 0. Denote the Fréchet derivative of f at u = a by Df(a) if it

exists, and let r(Df(a)) be the spectral radius of the linear operator Df(a) : E → E.

Theorem 2.1.3. (Threshold dynamics) [106, Theorem 2.3.4] Let either V = [0, b]E

with b� 0 or V = P . Assume that

(1) f : V → V satisfies either

(i) f is monotone and strongly subhomogeneous; or

(ii) f is strongly monotone and strictly subhomogeneous;

(2) f : V → V is asymptotically smooth, and every positive orbit of f in V bounded;

(3) f(0) = 0, and Df(0) is compact and strongly positive.

Then exists threshold dynamics:

(a) If r(Df(0)) ≤ 1, then every positive orbit in V converges to 0;

(a) If r(Df(0)) > 1, then there exists a unique fixed point u∗ � 0 in V such that

every positive orbit in V \ {0} converges to u∗.

In the rest of this section, we introduce the result on abstract competitive systems.

The basic setup is as follows. For i = 1, 2, let Xi be ordered Banach spaces with

positive cones X+
i such that Int(X+

i ) 6= ∅. Let X = X1 × X2, X+ = X+
1 × X+

2 ,

and K = X+
1 × (−X+

2 ). Then Int(X+) = Int(X+
1 ) × Int(X+

2 ) 6= ∅ and Int(K+) =

Int(X+
1 )× (−Int(X+

2 )) 6= ∅. We can define <,≤,� on Xi as we did in the beginning

of this section. For any x = (x1, x2), y = (y1, y2) ∈ X, we write x ≤ y if xi ≤ yi,

x� y if xi � yi, and x < y if x ≤ y but x 6= y, for i = 1, 2. For any x = (x1, x2), y =

(y1, y2) ∈ X, we write x ≤K y if x1 ≤ y1 and y2 ≤ x2, x�K y if x1 � y1 and y2 � x2,

and x <K y if x1 ≤ y1 and y2 ≤ x2 but x 6= y.
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Let f : X+ → X+ be continuous and fn be the n-fold composition of f . Recall

that f is order compact if for every (x1, x2) ∈ X+, it follows that f([0, x1]×[0, x2]) has

compact closure in X. We will make the following hypotheses on f , which capture

the essence of competition between two adequate competitors:

(P1) f is order compact and strictly ordering-preserving with respect to <K , that is,

x <K y implies f(x) <K f(y).

(P2) 0 is a repelling fixed point of f in the sense that there exists a neighborhood U0

of 0 in X+ such that for each x ∈ U0, x 6= 0, there is an integer n = n(x) such

that fn(x) 6∈ U0.

(P3) f(X+
1 ×{0}) ⊂ X+

1 ×{0}, and there exists x̂1 ∈ Int(X+
1 ) such that f((x̂1, 0)) =

(x̂1, 0)and fn((x1, 0))→ (x̂1, 0) for every x1 ∈ X+
1 \ {0}. The symmetric condi-

tions hold for f on {0} ×X2, and the fixed point is donated by (0, x̃2).

(P4) If x, y ∈ X+ satisfy x <K y and either x or y belongs to Int(X+), then f(x)�K

f(y). If x = (x1, x2) ∈ X+ with xi 6= 0, i = 1, 2, then T (x)� 0.

Let E0 = (0, 0), E1 = (x̂1, 0), E2 = (0, x̃2). We say that a fixed point E∗ of f is

positive if E ∈ Int(X+). Let I = [E2, E1]K . It is easy to see that I ≡ [0, x̂1]× [0, x̃2].

Given x ∈ X+, we write O(x) = {fn(x) : n ≥ 0} for the positive orbit of x. Its omega

limit set is defined by

ω(x) = {y ∈ X+ : fni(x)→ y for some {ni} satisfying ni →∞}.

The following result says that for a competitive system, either there is a positive fixed

point of f , representing coexistence of the two populations, or one population drives

the other to extinction.
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Theorem 2.1.4. (Trichotomy) [35, Theorem A] Let (P1)–(P4) hold. Then the omega

limit set of every orbit is contained in I and exactly one of the following holds:

(a) There exists a positive fixed E∗ of f in I;

(b) w(x) = E1 for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2;

(c) w(x) = E2 for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.

Finally, if (b) or (c) holds and x = (x1, x2) ∈ X+ \ I with xi 6= 0, i = 1, 2, then either

ω(x) = E1 or ω(x) = E2.

2.2 Propagation phenomena

Let Ω be a compact metric space, Rl be the l-dimensional Euclidean space and X :=

C(Ω,Rl). We endow X with the maximum norm | · |X and the partial ordering

induced by the positive cone X+ := C(Ω,Rl+). Assume that Int(X+) 6= ∅. Then for

ϕ1, ϕ2 ∈ X, we write ϕ1 ≥ ϕ2 if ϕ1 − ϕ2 ∈ X+, ϕ1 � ϕ2 if ϕ1 − ϕ2 ∈ Int(X+), and

ϕ1 > ϕ2 if ϕ1 ≥ ϕ2 but ϕ1 6= ϕ2.

Let C be the set of all continuous and bounded functions from R to X, and

M be the set of all non-increasing and bounded functions from R to X. For any

u, v ∈ C(M), we write u ≥ v(u � v) if u(x) ≥ v(x)(u(x) � v(x)) for all x ∈ R and

u > v if u ≥ v but u 6= v. Clearly, any element in X can be regarded as a constant

function in C or M. We endow both C and M with the compact open topology,

that is, un → u in C or M means that the sequence of un(s) converges to u(s) in X

uniformly for s in any compact set of R. We equip C and M with the norm ‖ · ‖C
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and ‖ · ‖M, respectively, which are defined by

‖u‖C =
∞∑
k=1

max|x|≤k |u(x)|X
2k

, ∀u ∈ C, (2.1)

and

‖u‖M =
∞∑
k=1

max|x|≤k |u(x)|X
2k

, ∀u ∈M.

We say a subset S of C (orM) is uniformly bounded if sup{|φ(x)|X : φ ∈ S, x ∈ R}

is bounded. For any given subset A of C (or M) and number s ∈ R, we define

A(s) := {u(s) : u ∈ A}. We use the Kuratowski measure of noncompactness in X,

which is defined by

α(B) := inf{r : B has a finite cover of diameter < r}

for any bounded set B ⊂ X. It is easy to see that B is precompact (i.e. the closure

of B) is compact if and only if α(B) = 0.

For any r ∈ X with r � 0, define Xr = {u ∈ X : 0 ≤ u ≤ r},

Cr = {φ ∈ C : φ(x) ∈ Xr, ∀x ∈ R}, Mr = {φ ∈M : φ(x) ∈ Xr, ∀x ∈ R}.

Define the translation operator Ty on C or M by Ty[u](x) = u(x − y) for any given

y ∈ R and the reflection operator R by R[u](x) = u(−x).

2.2.1 Spreading speeds

In the subsection, we will present some results on spreading speeds for monotone

semiflows in [53,54].

Let Q : Cβ → Cβ, where β ∈ X with β � 0. Assume that

(A1) Ty ◦Q = Q ◦ Ty, Q ◦ R = R ◦Q, ∀y ∈ R.
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(A2) Q is continuous with respect to the compact open topology.

(A3) {Q[u](x) : u ∈ Cβ, x ∈ R} is a precompact subset (i.e., the closure of set is

compact) of X.

(A4) Q : Cβ → Cβ is monotone (order preserving) in the sense that Q[u] ≥ Q[w]

whenever u ≥ w in Cβ.

(A5) Q : Xβ → Xβ admits exactly two fixed points 0 and β, and lim
n→∞

Qn[z] = β in

X for any z ∈ X+ with 0� z ≤ β.

Theorem 2.2.1. [54, Theorem 2.11, Theorem 2.15, Corollary 2.16] Assume that the

map Q : Cβ → Cβ satisfies assumptions (A1)–(A5). Let u0 ∈ Cβ and un = Q(un−1)

for n ≥ 1. Then there exists a real number c∗ such that the following statements are

valid:

(1) For any c > c∗, if 0 ≤ u0 � β and u0(x) = 0 for x outside a bounded interval,

then lim
n→∞|x|≥cn

un(x) = 0 in X.

(2) For any c < c∗ and any σ ∈ Xβ with σ � 0, there exists rσ > 0 such that

if u0(x) ≥ σ for x on an interval of length 2rσ, then lim
n→∞|x|≤cn

un(x) = β in

X. If, in additional, Q is subhomogeneous on Cβ, then rσ can be chosen to be

independent of σ � 0.

By Theorem 2.2.1, it follows that Q admits an asymptotic speed of spread c∗

provided that (A1)–(A5) are valid. To estimate c∗, a linear operator approach was

developed in [54]. Let M : C → C be a linear operator with the following properties:

(B1) M is continuous with respect to the compact open topology.

(B2) M is a positive operator, that is, M [u] ≥ 0 whenever u > 0.
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(B3) For any uniformly bounded subset A of C, the set {M [u](x)(θ) : u ∈ A, θ ∈

Ω, x ∈ R} is bounded in Rl.

(B4) Ty ◦M = M ◦ Ty, M ◦ R = R ◦M, ∀y ∈ R.

(B5) M can be extended to a linear operator on the linear space C̃ of all functions

u ∈ C(R, X) having the form

u(x) = v1(x)eµ1x + v2(x)eµ2x, v1, v2 ∈ C, µ1, µ2, x ∈ R,

such that if un, u ∈ C̃ and un(x)(θ)→ u(x)(θ) uniformly on any bounded set of

R×Ω, then M [un](x)(θ)→M [u](x)(θ) uniformly on any bounded set of R×Ω.

Note that hypothesis (B4) implies that M is also a linear operator on X. Define the

linear map Bµ : X → X by

Bµ[σ](θ) = M [σe−µx](0)(θ), ∀θ ∈ Ω.

In particular, B0 = M on X. If σn, σ ∈ X and σn → σ as n→∞, then σn(θ)e−µx →

σ(θ)e−µx uniformly on any bounded subset of Ω× R. Thus,

Bµ[σn] = M [σne
−µx](0)→M [σe−µx](0) = Bµ[σ],

and hence, Bµ is continuous. Moreover, Bµ is a positive operator on X. Assume that

(B6) For any µ > 0, Bµ is positive, and there is an n0 such that Bn0
µ = Bµ ◦ · · · ◦Bµ︸ ︷︷ ︸

n0

is a compact and strongly positive linear operator on X.

It then follows from [54, Lemma 3.1] that Bµ has a principal eigenvalue λ(µ) with

strongly positive eigenfunction. Moreover, we have the following property for λ(µ).

Lemma 2.2.1. [54, Lemma 3.7] λ(µ) is log convex on R.
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The next condition is needed for the estimate of the spreading speed c∗.

(B7) The principal eigenvalue λ(0) of B0 is larger than 1.

Define Ψ(µ) := lnλ(µ)
µ

, ∀µ > 0. Then, we can use the following result to estimate

the spreading speed of map Q.

Theorem 2.2.2. [54, Theorem 3.10] Let Q be an operator on Cβ satisfying (A1)–

(A5) and c∗ be the asymptotic speed of Q. Assume that the linear operator M satisfies

(B1)–(B7), and that the infimum of Ψ(µ) is attained at some finite value µ∗ and

Ψ(+∞) > Ψ(µ∗). Then the following statements are valid:

(1) If Q[u] ≤M [u] for all u ∈ Cβ, then c∗ ≤ infµ>0 Ψ(µ).

(2) If there exists some η ∈ X with η >> 0 such that Q[u] ≥ M [u] for any u ∈ Cη,

then c∗ ≥ infµ>0 Ψ(µ).

Recall that a family of operators {Qt}t≥0 is said to be a semiflow on Cβ if the

following three properties hold: (i) Q0 = I, where I is the identity mapping; (ii)

Qt ◦Qs = Qt+s, ∀t, s ≥ 0; (iii) Qt[u] is continuous jointly in (t, u) ∈ [0,∞)× Cβ.

Theorem 2.2.3. [54, Theorem 2.17] Let {Qt}t≥0 be a semiflow on Cβ with Qt[0] = 0

and Qt[β] = β for all t ≥ 0. Suppose that Q = Q1 satisfies all hypotheses (A1)–(A5),

and Qt satisfies (A1) for any t > 0. Let c∗ be the asymptotic speed of spread of Q1.

Then the following statements are valid:

(i) For any c > c∗, if v ∈ Cβ with 0 ≤ v � β and v(x) = 0 for x outside a bounded

interval, then lim
t→∞,|x|≥ct

Qt[v](x) = 0 in X.

(ii) For any c < c∗ and σ ∈ Xβ with σ � 0, there is a positive number rσ such that if

v ∈ Cβ and v(x)� σ for x on an interval of length 2rσ, then lim
t→∞,|x|≤ct

Qt[v](x) =
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β in X. If, in addition, Q1 is subhomogeneous, then rσ can be chosen to be

independent of σ � 0.

Recall that a family of operators {Qt}t≥0 is said to be a T -periodic semiflow on

C if the following three properties hold: (i) Q0 = I, where I is the identity mapping;

(ii) Qt ◦ QT = Qt+T , ∀t ≥ 0; (iii) Qt[u] is continuous jointly in (t, u) ∈ [0,∞) × C.

The mapping QT is called the Poincaré map associated with this periodic semiflow.

Theorem 2.2.4. [53, Theorem 2.1] Let {Qt}t≥0 be a T-periodic semiflow on C

with two x-independent T -periodic orbits 0 � β(t). Suppose that the Poincaré map

Q = QT satisfies all hypotheses (A1)–(A5) with β = β(0), and Qt satisfies (A1)

for any t > 0. Let c∗ be the asymptotic speed of spread of QT . Then the following

statements are valid:

(i) For any c > c∗

T
, if v ∈ Cβ with 0 ≤ v � β and v(x) = 0 for x outside a bounded

interval, then lim
t→∞,|x|≥ct

Qt[v](x) = 0 in X.

(ii) For any c < c∗

T
and σ ∈ Xβ with σ � 0, there is a positive number rσ such that if

v ∈ Cβ and v(x)� σ for x on an interval of length 2rσ, then lim
t→∞,|x|≤ct

(Qt[v](x)−

β(t)) = 0 in X. If, in addition, QT is subhomogeneous, then rσ can be chosen

to be independent of σ � 0.

Remark 2.2.1. If the reflection invariance, i.e., Q ◦ R = R ◦ Q, is not assumed

in (A1), then we have the existence of the leftward spreading speed c∗− and rightward

spreading speed c∗+, respectively, see [93]. These spreading speeds can also be estimated

by the linear operators approach.
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2.2.2 Traveling waves

In this subsection, we introduce the results in [19] on traveling waves for monotone

semiflows with weak compactness.

Let Q :Mβ →Mβ, where β ∈ X with β � 0. Assume that

(C1) Ty ◦Q = Q ◦ Ty, ∀y ∈ R.

(C2) If uk → u in M, then Q[uk](x)→ Q[u](x) in X almost everywhere.

(C3) There exists k ∈ [0, 1) such that for any U ⊂ Mβ, α(Q[U ](0)) ≤ kα(U(0)).

Here α denotes the Kuratowski measure of noncompactness in Xβ.

(C4) Q : Mβ →Mβ is monotone (order preserving) in the sense that Q[u] ≥ Q[w]

whenever u ≥ w in Mβ.

(C5) Q : Xβ → Xβ admits two fixed points 0 and β, and lim
n→∞

Qn[z] = β in X for any

z ∈ X+ with 0� z ≤ β.

In view of (C1), it follows that (C3) is equivalent to

There exists k ∈ [0, 1) such that α(Q[U ](x)) ≤ kα(U(x)), ∀U ⊂Mβ, x ∈ R.

We call (C3) as the point-α-contraction assumption (see also (A3)(a′)) in [53]).

This condition is weaker than (A3). In the case that X = Rl, (C3) is automatically

satisfied and equivalent to the condition (A3).

Let $ ∈ X with 0� $ � β. Choose φ to be a continuous function from R to X

with the following properties: (i) φ is a nonincreasing function; (ii) φ(x) = 0, ∀x ≥ 0;

(iii) φ(−∞) = $. For any given real number c, define an operator Rc by

Rc[φ](s) := max{φ(s), T−cQ[φ](s)}
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and a sequence of functions an(c; s) by the recursion

a0(c; s) = φ(s), an+1(c; s) = Rc[an(c; ·)](s).

Lemma 2.2.2. [19, Lemmas 3.2 and 3.3] The following statements are valid:

(1) For each s ∈ R, an(c; s) converges to a(c; s) in X and a(c; s) is nonincreasing

in both s and c.

(2) a(c;−∞) = β and a(c; +∞) exists in X.

(3) a(c; +∞) ∈ X is a fixed point of Q.

According to [19,93], we define two numbers

c∗+ = sup{c : a(c,+∞) = β}, c̄+ = sup{c : a(c,+∞) > 0}. (2.2)

Clearly, c∗+ ≤ c̄+. Similarly, for the leftward traveling waves two numbers with the

symbol ’-’ also can be defined by choosing a nondecreasing initial function φ in the

phase space consisting of nondecreasing and bounded functions from R to X. In what

follows, we only illustrate the theory on the rightward traveling waves for the discrete-

time and continuous-time dynamical systems, the leftward case can be treated in a

similar way.

Theorem 2.2.5. [19, Theorem 3.8] Assume that Q :Mβ →Mβ satisfies (C1)–(C5).

Let c∗+ and c̄+ with c∗+ ≤ c̄+ be defined as in (2.2). Then the following statements are

valid:

(1) For any c ≥ c∗+, there is a left-continuous traveling wave W (x− cn) connecting

β to some fixed point β1 ∈ Xβ \ {β}.
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(2) If, in addition, 0 is an isolated fixed point of Q in Xβ, then for any c ≥ c̄+

either of the following holds true:

(i) There exists a left-continuous traveling wave W (x− cn) connecting β to 0.

(ii) Q has two ordered fixed points α1, α2 in Xβ \ {0, β} such that there exist

a left-continuous traveling wave W1(x− cn) connecting α1 to 0 and a left-

continuous traveling wave W2(x− cn) connecting β to α2.

(3) For any c < c∗+, there is no traveling wave connecting β, and for any c < c̄+,

there is no traveling wave connecting β to 0.

Further, if Q maps left-continuous functions to left-continuous functions, then the

above obtained traveling waves satisfy Qn[W ](x) = W (x − cn), ∀x ∈ R and n ≥ 0.

Finally, if Q admits exactly two fixed points in Xβ, then c∗+ = c̄+ and c∗+ is the

minimal wave speed of traveling waves connecting β to 0.

Recall that a family of mappings {Qt}t≥0 is said to a continuous-time semiflow

on Mβ provide that Q0 = I, Qt ◦ Qs = Qt+s, ∀t, s ≥ 0 and the following continuity

assumption holds:

(C2)′ If un → u inMβ and tn → t, then both Qtn [u](x)→ Qt[u](x) and Qt[un](x)→

Qt[u](x) in X almost everywhere.

Theorem 2.2.6. [19, Theorem 4.2] Let {Qt}t≥0 be a continuous-time semiflow on

Mβ. Assume that for any t > 0, Qt satisfies (C1), (C3)–(C5) with fixed points

replaced by equilibria of {Qt}t≥0 in (A5). Let c∗+ and c̄+ with c∗+ ≤ c̄+ be defined as

in (2.2) with Q = Q1. Then the following statements are valid:

(1) For any c ≥ c∗+, there is a left-continuous traveling wave W (x− ct) connecting

β to some fixed point β1 ∈ Xβ \ {β}.
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(2) If, in addition, 0 is an isolated fixed point of Q in Xβ, then for any c ≥ c̄+

either of the following holds true:

(i) There exists a left-continuous traveling wave W (x− ct) connecting β to 0.

(ii) Q has two ordered fixed points α1, α2 in Xβ \ {0, β} such that there exist

a left-continuous traveling wave W1(x− ct) connecting α1 to 0 and a left-

continuous traveling wave W2(x− cn) connecting β to α2.

(3) For any c < c∗+, there is no traveling wave connecting β, and for any c < c̄+,

there is no traveling wave connecting β to 0.

Further, if Q maps left-continuous functions to left-continuous functions, then the

above obtained traveling waves satisfy Qt[W ](x) = W (x − ct), ∀x ∈ R and t ≥ 0.

Finally, if {Qt}t≥0 admits exactly two equilibria in Xβ, then c∗+ = c̄+ and c∗+ is the

minimal wave speed of traveling waves connecting β to 0.

Theorem 2.2.7. [19, Remark 3.7] and [53, Remark 2.1] Assume that the map Q :

Cβ → Cβ satisfies assumptions (A1)–(A5) with (A3) and (A5) replaced by (C3) and

(C5) in Cβ. Let u0 ∈ Cβ and un = Q(un−1) for n ≥ 1. Let c∗+ ≤ c̄+ be defined in (2.2)

for Q. Then the following statements are valid:

(1) For any c > c̄+, if 0 ≤ u0 � β and u0(x) = 0 for x outside a bounded interval,

then lim
n→∞|x|≥cn

un(x) = 0 in X.

(2) For any c < c∗+ and any σ ∈ Xβ with σ � 0, there exists rσ > 0 such that

if u0(x) ≥ σ for x on an interval of length 2rσ, then lim
n→∞|x|≤cn

un(x) = β in

X. If, in additional, Q is subhomogeneous on Cβ, then rσ can be chosen to be

independent of σ � 0.
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Moreover, if Q admits exactly two fixed points in Xβ, then c∗+ = c̄+.

The above theorem shows that c̄+ and c∗+, respectively, are the upper and lower

bounds of spreading speeds for the discrete-time system {Qn}n≥0 on Cβ. In the case

where c̄+ = c∗+, we say that this system admits a (single) spreading speed.

Theorem 2.2.7 will help to show that the coincidence of spreading speeds and min-

imal wave speeds of traveling waves for monotone semiflows with weak compactness,

although we use the different phase spaces Cβ and Mβ to present the results.



Chapter 3

A Periodic Spatial Model for A

Stream Population

In this chapter, we consider the following nonlinear stream population model:
∂nd
∂t

= −σ(t)nd + µ(t)nb − v(t)∂nd
∂x

+D(t)∂
2nd
∂x2 ,

∂nb
∂t

= σ(t)nd − µ(t)nb + f(t, nb)nb, t > 0, x ∈ R.
(3.1)

Here the biological explanation of parameters are as shown in Chapter 1. Note that

system (3.1) is cooperative and its solution maps are monotone. Thus, we can use

the general theory developed in [53,93] (see also section 2.2.1) to study the spreading

speeds for periodic system (3.1). However, the solution maps are not compact with

respect to the compact open topology due to the lack of the diffusion term in the

second equation of system (3.1). As a consequence, the theory in [53,93] may not be

applied to obtain the existence of time-periodic traveling waves for system (3.1). To

overcome this difficulty, we will utilize the theory recently developed in [19] (see also

section 2.2.2) for monotone semiflows with weak compactness. We should point out

that the verification of some abstract assumptions in section 2.2.2 is highly nontrivial
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for the solution maps of system (3.1) since one needs to consider its mild solutions

with discontinuous initial functions. It turns out that the spreading speeds are lin-

early determinate and coincide with the minimum wave speeds for monotone periodic

traveling waves. For the global dynamics of system (3.1) in a bounded domain, we

will appeal to the theory of monotone and subhomogeneous systems (see, e.g., [106]).

Since we using Hostile boundary condition in a bounded domain, if we choose a space

consisting of continuous functions vanishing at x = L, then its interior is empty, and

hence, we cannot employ the strong monotonicity. To address this issue, we first

carefully choose an appropriate function space. To avoid using the compactness for

solution maps, we prove that every forward orbit of the Poincaré map associated with

system (3.1) is asymptotically compact under an additional assumption. Those two

enable us to establish a threshold type result on the global stability of either zero or

the positive periodic solution.

This chapter is organized as follows. In section 3.1, we first obtain a threshold

dynamics for the spatially homogeneous system of model (3.1) in terms of the principal

Floquet multiplier of its linearized system at (0, 0), and then we establish the existence

of leftward and rightward spreading speeds and their coincidence with the minimal

wave speeds for monotone periodic traveling waves for system (3.1). In section 3.2, we

prove a threshold result on the global dynamics of system (3.1) in a bounded domain

[0, L]. Section 3.3 presents some numerical simulations to verify our analytic results.

3.1 Spreading speeds and traveling waves

In this section, we establish the existence of spreading speeds and traveling waves for

system (3.1), where µ(t), σ(t), v(t), D(t) are nonnegative ω-periodic functions and
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f(t, u) is ω-periodic with respect to time t for some ω > 0. For convenience, we use

the notations µmax = max
t∈[0,ω]

µ(t) and σmax = max
t∈[0,ω]

σ(t). Throughout this paper, we

assume that

(H1) D(t) > 0, µ(t) 6≡ 0, σ(t) 6≡ 0, f ∈ C(R2
+,R), and f(t, u) is locally Lipschitz in

u, uniformly for t ∈ [0, ω].

(H2) ∂f(t,u)
∂u

< 0 for all (t, u) ∈ R2
+, and there exists K0 > 0 such that

σ(t)

∫ t

−∞
e−

∫ t
s σ(τ)dτµ(s)ds− µ(t) + f(t,K0) ≤ 0, ∀t ≥ 0.

Note that when σ(t) and µ(t) are positive constants, the inequality in (H2) reduces

to f(t,K0) ≤ 0, ∀t ≥ 0. A prototypical example for (H2) is f(t, u) = b(t) − a(t)u

with a(t) > 0.

3.1.1 The spatially homogeneous system

We start with the global dynamics of the following spatially homogeneous system:
dnd
dt

= −σ(t)nd + µ(t)nb,

dnb
dt

= σ(t)nd − µ(t)nb + f(t, nb)nb, t > 0.
(3.2)

For convenience, we rewrite system (3.2) as

dy

dt
= G(t, y) (3.3)

with y =

 nd(t)

nb(t)

, and G(t, y) =

 −σ(t)y1 + µ(t)y2

σ(t)y1 − µ(t)y2 + f(t, y2)y2

.

Note that system (3.3) is cooperative and f(t, u)u ≤ f(t, 0)u, ∀(t, u) ∈ R2
+. It then

follows that for any initial value (y1(0), y2(0)) ∈ R2
+, system (3.3) has a unique non-

negative solution (y1(t), y2(t)) on [0,∞). We linearize system (3.3) at its ω-periodic
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solution (0, 0) to obtain

dz

dt
= DyG(t, 0)z =

 −σ(t) µ(t)

σ(t) −µ(t) + f(t, 0)

 z. (3.4)

Let ρ be the principal Floquet multiplier of the linear system (3.4), that is, ρ is

the spectral radius of the matrix Z(ω), where Z(t) satisfies Z(0) = I and d
dt
Z(t) =

DyG(t, 0)Z(t) for all t > 0. Then we have the following threshold type result on the

global dynamics of system (3.2).

Lemma 3.1.1. The following statements are valid:

(i) If ρ > 1, then system (3.2) admits a unique positive ω-periodic solution (u∗1(t),

u∗2(t)), and it is globally asymptotically stable for system (3.2) with initial values

in R2
+\{0};

(ii) If ρ ≤ 1, then (0, 0) is globally asymptotically stable for system (3.2) in R2
+.

Proof. Let yt(y0) := y(t, y0) be the unique solution of system (3.2) satisfying y(0, y0) =

y0. Denote X(t) = ∂yt
∂y0

(y0) and A(t) = Dy(G(t, y(t, y0))) = (aij(t))2×2. Then X(t) =

(xij(t))2×2 satisfies

X ′(t) = A(t)X(t), X(0) = I.

Since aij(t) = ∂Gi
∂yj
≥ 0, i 6= j, ∀(t, y) ∈ R+×R2

+, we have x′ik(t) ≥ aii(t)xik(t), ∀t ≥ 0

and i, k ∈ {1, 2}. It then follows that xik(t) > 0 for all t ≥ t0 whenever xik(t0) > 0

for some t0 ≥ 0. Since xii(0) = 1, we have xii(t) > 0, ∀t ≥ 0. We further prove that

xij(tij) > 0 for some tij ∈ [0, ω], ∀i 6= j, and hence xij(t) > 0,∀t ≥ ω, i 6= j. Suppose,

by contradiction, that there exist i0, j0 ∈ {1, 2} and i0 6= j0, such that xi0j0(t) = 0 for

all t ∈ [0, ω]. Then we have

0 = x′i0j0(t) =
2∑
l=1

ai0l(t)xlj0(t) = ai0j0(t)xj0j0(t), ∀t ∈ [0, ω].



3.1 Spreading speeds and traveling waves 31

Since xj0j0(t) > 0, it then follows from that ai0j0(t) ≡ 0, ∀t ∈ [0, ω]. Note that

A(t) =

 −σ(t) µ(t)

σ(t) −µ(t) + f(t, y2(t, y0)) + fy2(t, y2(t, y0))y2(t, y0)

 .
We then obtain a12(t) = µ(t) 6≡ 0 and a21(t) = σ(t) 6≡ 0, a contradiction. It follows

that ∂yt
∂y0

(y0)� 0, t ≥ ω. Thus, for any a, b ∈ R2
+ satisfy a < b, there holds

y(t, b)− y(t, a) = (b− a)

∫ 1

0

∂yt
∂y0

(a+ r(b− a))dr � 0, ∀t ≥ ω.

This implies that y(t, a)� y(t, b), ∀t ≥ ω. In particular, yω is strongly monotone. It

is easy to verify that G(t, y) has the following properties:

(a) Gi(t, y) ≥ 0 whenever (t, y) ∈ [0,∞)× R2
+ with yi = 0, i = 1, 2.

(b) For each (t, y) ∈ [0,∞) × R2
+, G(t, y) is strictly subhomogeneous in y in the

sense that G(t, αy) > αG(t, y), ∀y ∈ R2
+ and y � 0, α ∈ (0, 1).

Note that for any given M > 0, the linear periodic equation

dx

dt
= −σ(t)x+ µ(t)M

has a globally attractive positive ω-periodic solution

xM(t) = M

∫ t

−∞
e−

∫ t
s σ(τ)dτµ(s)ds.

By assumption (H2), we see that for any M ≥ K0 > 0, (xM(t),M) is an upper

solution of the cooperative system (3.2). Thus, the comparison principle implies that

solutions of system (3.2) are uniformly bounded. By Theorem 2.1.3, as applied to the

Poincaré map associated with system (3.2) on the set [0, xM(0)] × [0,M ], it follows

that system (3.2) admits a threshold dynamics (see also [106, Theorem 3.1.2]). Since

M can be chosen as large as we wish, this threshold type result holds true on R2
+.
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3.1.2 Spreading speeds

In the rest of this section, we always assume that ρ > 1. According to Lemma 3.1.1,

there exist two periodic solutions, (0, 0) and u∗(t) = (u∗1(t), u∗2(t)), to the spatially

homogeneous system (3.2). Let C be the set of all bounded and continuous functions

from R to R2 and C+ = {φ ∈ C : φ(x) ≥ 0, ∀x ∈ R}. Clearly, any vector in

R2 can be regarded as a function in C. For u = (u1, u2), w = (w1, w2) ∈ C, we

write u ≥ w(u � w) provided uj(x) ≥ wj(x)(uj(x) > wj(x)),∀1 ≤ j ≤ 2, x ∈ R,

and u > w provided u ≥ w but u 6= w. For any r ∈ R2
+ with r � 0, we set

[0, r] := {u ∈ R2 : 0 ≤ u ≤ r} and Cr := {u ∈ C : 0 ≤ u ≤ r}.

We equip C with the compact open topology and the norm defined in (2.1) with

X = R2.

Let Y be the set of all bounded and continuous functions from R to R. Let

Γ(t, x) be the Green function associated with the heat equation ∂u
∂t

= ∆u, and T1(t, s)

and T2(t, s) be the evolution operators on Y generated by the following two linear

equations:

∂n1

∂t
= −σ(t)n1 − v(t)

∂n1

∂x
+D(t)

∂2n1

∂x2
and

∂n2

∂t
= (f(t, 0)− µ(t))n2,

respectively. It then follows that

[T1(t, s)φ1](x) = e−
∫ t
s σ(τ)dτ

∫
R

Γ

(∫ t

s

D(τ)dτ, x−
∫ t

s

v(τ)dτ − y
)
φ1(y)dy,

[T2(t, s)φ2](x) = e
∫ t
s (f(τ,0)−µ(τ))dτφ2(x). (3.5)

Define B : [0,∞)× C+ → C by

B(t, φ)(x) :=

 µ(t)φ2

σ(t)φ1 + F (t, φ2)

 , (3.6)
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where F (t, u) = u(f(t, u)− f(t, 0)). In view of (H1), F (t, u) is also locally Lipschitz

in u, uniformly for t ∈ [0, ω]. Let (u1(t, x), u2(t, x)) = (nd(t, x), nb(t, x)). Then we

can rewrite system (3.1) as

∂u

∂t
= A(t)u+B(t, u), t > 0,

u(0, ·) = φ, (3.7)

where A(t) = diag(−σ(t)−v(t) ∂
∂x

+D(t) ∂2

∂x2 , f(t, 0)−µ(t)). Integrating two equations

of system (3.7), we have

u1(t, ·) = T1(t, 0)φ1 +
∫ t

0
T1(t, s)B1(s, u(s, ·))ds,

u2(t, ·) = T2(t, 0)φ2 +
∫ t

0
T2(t, s)B2(s, u(s, ·))ds.

It follows that system (3.7) with initial values can be written as an integral equation

u(t) = T (t, 0)φ+

∫ t

0

T (t, s)B(s, u(s))ds,

u(0) = φ, (3.8)

where T (t, s) = diag(T1(t, s), T2(t, s)). As usual, solutions of (3.8) are called mild

solutions to system (3.7).

Definition 3.1.1. A function u(t, x) is said to be an upper (a lower) solution of

system (3.7) if it satisfies

u(t) ≥ (≤)T (t, 0)u(0) +

∫ t

0

T (t, s)B(s, u(s))ds.

To obtain the existence and uniqueness of the solution to system (3.7), we first

establish a comparison theorem for the nonlinear integral equation (3.8) by similar

arguments to those in [86, Lemma 3.2].
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Proposition 3.1.1. Let T ∈ (0,∞], and MT be the set of all functions u from

[0, T )× R to R2
+ such that u is Borel measurable and bounded on [0, T ′]× R for any

T ′ ∈ (0, T ). Suppose w, v ∈ MT with w(0, ·) ≤ v(0, ·), and w, v are lower and upper

solutions of (3.7) on [0, T )× R, respectively. Then w ≤ v on [0, T )× R.

Proof. Let T ′ ∈ (0, T ) be given. Since w(t, x) and v(t, x) are bounded on [0, T ′]×R,

there exist B > 0 and L > 0 such that |w(t, x)| ≤ B, |v(t, x)| ≤ B, and

|F (t, x)− F (t, y)| ≤ L|x− y|, t ≥ 0, |x| ≤ B, |y| ≤ B.

Set m := w − v = (m1,m2). Then we see from the integral equation (3.8) that

m1(t, x) ≤
∫ t

0

T1(t, t− s)µ(t− s)[m2(t− s, x)]+ds, (3.9)

m2(t, x) ≤
∫ t

0

T2(t, s)(σ(s)[m1(s, x)]+ + L[m2(s, x)]+)ds,

where [a]+ = max{0, a} for a ∈ R. Let λ > 0, and set

ψλ(t) := sup
x∈R

[m1(t, x)]+e
−λt, ψλ := sup

t∈[0,T ′]

ψλ(t).

φλ(t) := sup
x∈R

[m2(t, x)]+e
−λt, φλ := sup

t∈[0,T ′]

φλ(t).

By the first inequality of (3.9), we have

ψλ(t) ≤ µmax

∫ t

0

T1(t, t− s)φλe−λsds.

Since

T1(t, s)(w(x)) = e−
∫ t
s σ(τ)dτ

∫
R

Γ(

∫ t

s

D(τ)dτ, x−
∫ t

s

v(τ)dτ − y)w(y)dy,

it follows that

ψλ ≤
µmaxφλ
λ

. (3.10)
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Using the second inequality of (3.9) and (3.10), we further obtain

m2(t, x) ≤
∫ t

0

T2(t, s)(σ(s)[m1(s, x)]+ + L[m2(s, x)]+)ds

≤
∫ t

0

T2(t, t− s)(σmax[m1(t− s, x)]+ + L[m2(t− s, x)]+)ds,

where T2(t, t− s) = e
∫ t
t−s(f(τ,0)−µ(τ))dτ . Thus, we have

φλ(t) ≤ (σmaxψλ + Lφλ)

∫ t

0

e
∫ t
t−s(f(τ,0)−µ(τ))dτe−λsds

≤ e
∫ T ′
0 (f(s,0)−µ(s))dsφλ ·

(
L

λ
+
σmaxµmax

λ2

)
.

It follows that

φλ ≤ e
∫ T ′
0 (f(s,0)−µ(s))dsφλ ·

(
L

λ
+
σmaxµmax

λ2

)
,

and hence, φλ ≤ 0 for sufficiently large λ, which implies m2(t, x) ≤ 0 on [0, T ′) × R.

Moreover, ψλ ≤
µmaxφλ

λ
≤ 0 for sufficiently large λ, which implies m1(t, x) ≤ 0 on

[0, T ′]× R. Since T ′ ∈ (0, T ) is arbitrary, we obtain w ≤ v on [0, T )× R.

Proposition 3.1.2. Suppose that φ is nonnegative, bounded and Borel measurable.

Then system (3.7) has a unique nonnegative, bounded and Borel measurable mild so-

lution u(t, ·, φ) = (u1(t, ·, φ), u2(t, ·, φ)) with u(0, ·, φ) = φ, ∀t ≥ 0. If φ is continuous

in x, so is u(t, x, φ). If φ is monotone in x, so is u(t, x, φ).

Proof. Let φ be given as in the assumption. Then we have φ ∈MT . Let a = max
x∈R

φ(x).

Define

MT := {u ∈MT : u(t, x) ≤ v(t, a) on [0, T )× R, T <∞},

where v(t, a) is a solution of system (3.4) with v(0, a) = a. Clearly, there exists B0 > 0

such that u ≤ B0 for any u ∈ MT . Let L be an appropriate local Lipschitz constant
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for F (t, u) with 0 ≤ u ≤ B0. For convenience, we let

T̂1(t, s) = T1(t, s), T̂2(t, s) = e−α(t−s)T2(t, s), B̂(t, φ) = B(t, φ) +

 0

αφ2

 .

For any given α > L, we can rewrite (3.7) as

u(t) = T̂ (t, 0)φ+

∫ t

0

T̂ (t, s)B̂(s, u(s))ds,

u(0) = φ, (3.11)

where T̂ (t, s) = diag(T̂1(t, s), T̂2(t, s)). Clearly, B̂(t, φ) ≥ B̂(t, ϕ) whenever φ ≥ ϕ.

Define

G(u)(t, x) := T̂ (t, 0)φ(x) +

∫ t

0

T̂ (t, s)B̂(s, u(s))(x)ds.

Since B̂(t, φ) is increasing in φ, and 0 and v(t, a) are solutions of system (3.11), it

follows that G(MT ) ⊂MT .

For any given u, v ∈MT , we define

dλ(u, v) := sup
[0,T )×R

|u(t, x)− v(t, x)|e−λt,

where λ > 0 is a constant. Then MT is a complete space with the metric dλ. For any

u, v ∈MT , we have

dλ(G(u), G(v)) ≤ µmax + (σmax + α + L)e
∫ T
0 (f(s,0)−µ(s))ds

λ
· d(u, v).

Choose sufficiently large λ > 0 such that µmax+(σmax+α+L)e
∫T
0 (f(s,0)−µ(s))ds

λ
< 1. It then

follows that G is a contracting mapping on (MT , dλ). By the contracting mapping

theorem, G has a unique fixed point in MT . Thus, system (3.11) has a unique

nonnegative Borel measurable solution for all t ∈ [0, Tφ). Since u(t, x, φ) ≤ v(t, a)

and v(t, a) is bounded, it follows that T =∞ and u(t, x, φ) is bounded on [0,∞)×R.
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In the case where φ is continuous in x, by including the continuity of u in the

definition of MT , we see that the resulting space remains complete under the metric

induced by ‖ · ‖λ. Further, G(MT ) ⊂MT still holds true, because G(u) is continuous

provided that φ and u are continuous.

In the case where φ is monotone in x, by including the monotonicity of u in the

definition of MT , we see that the resulting space remains complete under the metric

induced by ‖·‖λ. Suppose that u ∈MT is increasing in x, and define v(x) = u(x+c) for

any given c > 0. Clearly, v ∈ MT and u ≤ v. Using the monotonicity of B̂(t, φ) and

T̂ (t, 0) in φ, we obtain thatG(u)(x) ≤ G(v)(x) = G(u(·+c))(x) = G(u)(x+c),∀x ∈ R.

Consequently, we have G(MT ) ⊂MT .

Theorem 3.1.1. Let u∗(t) be the ω-periodic solution given in Lemma 3.1.1. Then

for any φ ∈ Cu∗(0), system (3.7) has a unique nonnegative mild solution u(t, ·, φ) =

(u1(t, ·, φ), u2(t, ·, φ)) ∈ Cu∗(t) with u(0, ·, φ) = φ ∈ Cu∗(0),∀t ≥ 0. Moreover, if u(t, x)

and u(t, x) are a pair of lower and upper solutions of system (3.7), respectively, with

u(0, ·) ≤ u(0, ·), then u(t, ·) ≤ u(t, ·),∀t ≥ 0.

Proof. By Proposition 3.1.2, it follows that for any ϕ ∈ C+, system (3.7) has a

unique nonnegative mild solution u(t, ·, φ) ∈ C+. Further, Proposition 3.1.1 implies

the comparison principle holds for system (3.7). Since u(t, ·, u∗(0)) = u∗(t) is a

solution of system (3.7) with u(0, ·) = u∗(0), our result follows from the comparison

principle.

Let {Qt}t≥0 be a family of solution maps from Cu∗(0) to Cu∗(t), that is,

Qt(φ)(x) = u(t, x, φ) = (u1(t, x, φ), u2(t, x, φ)), ∀φ ∈ Cu∗(0), x ∈ R, t ≥ 0,

where u(t, x, φ) is the mild solution of system (3.7) with u(0, ·, φ) = φ. It is easy to
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see that Q0 = I, and Qt+ω = Qt ◦ Qω for all t ≥ 0. Further, we have the following

observation.

Lemma 3.1.2. Q(t, φ) = Qt(φ) is continuous in (t, φ) ∈ R+ × Cu∗(0) with respect to

the compact open topology.

Proof. Let T (t, 0) = diag(T1(t, 0), T2(t, 0)), where T1(t, 0) and T2(t, 0) are defined as

in (3.5). We first show that for any given t0 > 0, ϕ ∈ Cβ with β = (β1, β2) � 0,

T (t, 0)ϕ is continuous at ϕ = 0 with respect to the compact open topology uniformly

for t ∈ [0, t0]. Indeed, define ‖φ‖Ωρ(z) := sup
x∈Ωρ(z)

|φ(x)|, where Ωρ(z) := [z − ρ, z + ρ].

Let a = e
∫ t0
0 [f(s,0)−µ(s)]ds. For any ε > 0 and K > 0, there exists A(ε) > 0 such that∫

|x|>A
1√
π
e−x

2
dx ≤ ε

2β1
. Choose δ = ε

2
and C(ε, t0) = 2A

√∫ t0
0
D(s)ds > 0 such that

for any t ∈ (0,
∫ t0

0
D(s)ds], we have∫

|y|>C
1√
4πt
e−

y2

4t dy ≤
∫
|y|>2A

√
t

1√
4πt
e−

y2

4t dy

≤
∫
|x|>A

1√
π
e−x

2
dx ≤ ε

2β1
.

Let M = C +
∫ t0

0
v(s)ds. Since 0 ≤ ϕ1(x) ≤ β1, we obtain∫

|y|>M

1√
4π
∫ t

0
D(s)ds

e
− (y−

∫ t
0 v(s)ds)2

4
∫ t
0 D(s)ds dy ≤ ε

2β1

,

∫
R

1√
4π
∫ t

0
D(s)ds

e
− (y−

∫ t
0 v(s)ds)2

4
∫ t
0 D(s)ds ϕ1(x− y)dy ≤ ε

2
+ ‖ϕ1‖ΩM (x),

for all t ∈ (0, t0]. It then follows that

T1(t, 0)ϕ1(x) = e−
∫ t
0 σ(s)ds

∫
R Γ(

∫ t
0
D(s)ds, y −

∫ t
0
v(s)ds)φ1(x− y)dy

≤ ε
2

+ ‖ϕ1‖ΩM (x),

and hence, T1(t, 0)ϕ1(x) < ε, ∀x ∈ [−K,K], uniformly for t ∈ (0, t0] provided that

ϕ1(x) < δ, ∀x ∈ [−K−M,K+M ]. Since lim
t→0+

T1(t, 0)ϕ1 = ϕ1, we have T1(t, 0)ϕ1(x) <
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ε, ∀x ∈ [−K,K], uniformly for t ∈ [0, t0] provided that ϕ1(x) < δ, ∀x ∈ [−K −

M,K + M ]. It then follows that for any −→ε = (ε, ε) � 0 and K > 0, there exists
−→
δ = ( ε

2
, ε
a
)� 0 andM(ε, t0) > 0 such that T (t, 0)ϕ(x) < −→ε ,∀x ∈ [−K,K], uniformly

for t ∈ [0, t0] provided that ϕ(x) <
−→
δ , ∀x ∈ [−K −M,K + M ]. This proves the

continuity of T (t, 0)ϕ at ϕ = 0 uniformly for t ∈ [0, t0]. We further prove the following

claim.

Claim. For any ε > 0 and t0 > 0, there exists δ = δ(ε, t0) > 0 and K = K(ε, t0) > 0

such that for any z ∈ R, if φ, φ̂ ∈ Cu∗(0) with |φ(x)−φ̂(x)| < δ for all x ∈ [z−K, z+K],

then |u(z, t, φ)− u(z, t, φ̂)| < ε, ∀t ∈ [0, t0].

Since system (3.1) admits the spatial translation invariance, it suffices to prove

the claim for the case where z = 0. Let ϕ(x) = φ(x) − φ̂(x) and define w(t, x) =

u(t, x, φ)− u(t, x, φ̂). Then w(t, x) = (w1(t, x), w2(t, x)) satisfies

w1(t, ·) = T1(t, 0)ϕ1 +
∫ t

0
T1(t, s)µ(s)w2(s, ·)ds,

w2(t, ·) = T2(t, 0)ϕ2 +
∫ t

0
T2(t, s) (σ(s)w1(s, ·) + f(s, u2(s, ·, φ))

−f(s, u2(s, ·, φ̂)))ds.

We proceed by considering two cases.

Case 1. φ ≥ φ̂. By Theorem 3.1.1, u(t, x, φ) ≥ u(t, x, φ̂) for all t ≥ 0, x ∈ R. Then

w(t, x) ≥ 0 and

w1(t, ·) = T1(t, 0)ϕ1 +
∫ t

0
T1(t, s)µ(s)w2(s, ·)ds,

w2(t, ·) ≤ T2(t, 0)ϕ2 +
∫ t

0
T2(t, s)σ(s)w1(s, ·)ds.

(3.12)

Now we consider the integral equations.

v(t, ·, ϕ) = T (t, 0)ϕ+

∫ t

0

T (t, s)M(s)v(s, ·, ϕ)ds, (3.13)

where T (t, s) = diag(T1(t, s), T2(t, s)), 0 ≤ s ≤ t and M(t) =

 0 µ(t)

σ(t) 0

 . Let
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Y (t) be the standard fundamental solution matrix associated with the linear equation

w′ = M(t)w. It is easy to see that v(t, ·, ϕ) = Y (t)T (t, 0)ϕ is the unique solution of

(3.13) with v(0, ·, ϕ) = ϕ. Then the comparison principle implies that

0 ≤ w(t, ·) ≤ v(t, ·, ϕ) = Y (t)T (t, 0)ϕ.

By the continuity of T (t, 0)ϕ at ϕ = 0 uniformly for t ∈ [0, t0], it follows that for any

−→ε � 0 and t0 > 0, there exists M > 0 and
−→
δ � 0 such that

u(t, 0, φ)− u(t, 0, φ̂) = w(t, 0) ≤ v(t, 0, ϕ) < −→ε , ∀t ∈ [0, t0],

provided that ϕ ∈ Cu∗(0) with ϕ(x) <
−→
δ for all x ∈ [−M,M ].

Case 2. φ � φ̂. Let Φi(x) = max{φi(x), φ̂i(x)}, Ψ(x) = min{φi(x), φ̂i(x)}, i =

1, 2. It then easily follows that

|φi(x)− φ̂i(x)| = Φi(x)−Ψi(x), ∀x ∈ R, i = 1, 2.

Using the comparison principle again, we further have

|ui(0, t, φ)− ui(0, t, φ̂)| ≤ ui(0, t,Φ)− ui(0, t, Ψ̂), ∀t ∈ [0,∞), i = 1, 2.

By the conclusion in Case 1, it then follows that for any ε > 0 and t0 > 0, there exists

M > 0 and δ > 0 such that

|ui(0, t, φ)− ui(0, t, φ̂)| < ε

2
, ∀t ∈ [0, t0], i = 1, 2,

provided that ϕ = (ϕ1, ϕ2) ∈ Cu∗(0) with |ϕi(x)| < δ
2

for all x ∈ [−M,M ].

From the claim above, we see that for any t0 > 0, φ ∈ Cu∗(0), u(t, ·, φ) is continuous

in φ with respect to the compact open topology uniformly for t ∈ [0, t0]. Clearly,

u(t, x, φ) is continuous in t with respect to the compact open topology. By the

triangle inequality, it then follows that Qt(φ) is continuous in (t, φ) with respect to

the compact open topology.
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To use the result about the spreading speeds for monotone semiflows in section

2.2, we need verify Q = Qω : Cβ → Cβ satisfies assumptions (A1)–(A5) with (A1)

replaced by the following one without reflection invariance which is based on Remark

2.2.1:

(A1)′ Ty ◦Q = Q ◦ Ty, ∀y ∈ R.

Then the following lemma holds.

Lemma 3.1.3. The poincaré map Qω satisfies all hypotheses (A1)′ and (A2)–(A5)

with β = u∗(0), X = R2 and Xβ = [0, u∗(0)].

Proof. If u(t, x) is a solution for system (3.7), then u(t, x + y), ∀y ∈ R, is also a

solution, and hence (A1)′ holds. (A2) comes from Lemma 3.1.2. (A3) is automatically

satisfied. (A4) follows directly from the comparison principle in Theorem 3.1.1, and

Lemma 3.1.1(i) implies that (A5) is also valid.

In view of Theorem 2.2.1 and Lemma 3.1.3, it follows that the map Qω admits a

rightward spreading speed c+
ω and a leftward spreading speed c−ω . In order to estimate

c±ω , we consider the following linear system:
∂nd
∂t

= −σ(t)nd + µ(t)nb − v(t)∂nd
∂x

+D(t)∂
2nd
∂x2 ,

∂nb
∂t

= σ(t)nd − µ(t)nb + f(t, 0)nb, t > 0, x ∈ R.
(3.14)

Let (u1(t, x), u2(t, x)) = e−λx(u1(t), u2(t)) be a solution of (3.14) with λ ∈ R. Then

(u1(t), u2(t)) satisfies the following ordinary differential system in R2: du1

dt
= (−σ(t) + λv(t) + λ2D(t))u1 + µ(t)u2,

du2

dt
= σ(t)u1 − µ(t)u2 + f(t, 0)u2, t > 0.

(3.15)
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Let {Mt}t≥0 be the solution map associated with (3.14). Define Bt
λ : R2 → R2 as

Bt
λ(φ) := Mt(φe

−λx)(0) = (u1(t), u2(t)).

Therefore, Bt
λ(φ) is the solution map of (3.15). Let r(λ) be the spectral radius of the

Poincaré map Bω
λ . It is easy to verify that Bω

λ is a compact and strongly positive

operator (actually, Bt
λ is strongly positive for all t ≥ ω). By Theorem 2.1.1, it follows

that r(λ) > 0 and it is a simple eigenvalue of Bω
λ with a strongly positive eigenvector

w∗ � 0. Define r+(λ) = r(λ) and r−(λ) = r(−λ) for λ ≥ 0. Then we have the

following computation formulas for c±ω .

Proposition 3.1.3. c±ω = inf
λ>0

ln r±(λ)
λ

. Moreover, c+
ω + c−ω > 0.

Proof. Using an argument similar to that in the proof of [101, Lemma 2.1], we see

that there exists a positive ω-periodic function w(t) such that v(t) = eρ+(λ)tw(t)

is a solution of (3.15), where ρ+(λ) = 1
ω

ln r+(λ) and w(0) = w∗. Thus, Bω
λ (w(0)) =

eρ+(λ)tw(t). Letting t = ω, we haveBω
λ (w(0)) = eρ+(λ)ωw(0), which implies that eρ+(λ)ω

is the principal eigenvalue of Bω
λ with strongly positive eigenvector w(0). Define the

function

Φ+(λ) :=
1

λ
ln(eρ+(λ)ω) =

ρ+(λ)ω

λ
=

ln r+(λ)

λ
, ∀λ > 0. (3.16)

When λ = 0, system (3.15) reduces to system (3.4). Since ρ > 1, we have r+(0) > 1.

Hence, condition (C7) in [54] (see also (B7) in section 2.2) is satisfied. Now we prove

that Φ+(∞) =∞. Since v(t) := eρ+(λ)tw(t) is a solution of (3.15), it follows that

v′1(t) ≥ (−σ(t) + λv(t) + λ2D(t))v1(t),

and hence,
w′1(t)

w1(t)
≥ −σ(t) + λv(t) + λ2D(t)− ρ+(λ).
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Integrating the above inequality from 0 to ω, we have

0 =

∫ ω

0

w′1(t)

w1(t)
≥ −

∫ ω

0

σ(t)dt+ λ

∫ ω

0

v(t)dt+ λ2

∫ ω

0

D(t)dt− ρ+(λ)ω.

Since
∫ ω

0
D(t)dt > 0, it follows that

Φ+(λ) =
ρ+(λ)ω

λ
≥ −1

λ

∫ ω

0

σ(t)dt+

∫ ω

0

v(t)dt+ λ

∫ ω

0

D(t)dt,

which implies that Φ+(∞) = ∞. Thus, Φ+(λ) attains its minimum at some finite

value λ∗. Since the solution u(t, x, φ) for system (3.7) is a lower solution of the linear

system (3.14), we have Qt(φ) ≤ Mt(φ) for all φ ∈ Cu∗(0), t ≥ 0. It then follows from

Theorem 2.2.2(i) that c+
ω ≤ inf

λ>0
Φ+(λ). Note that the reflection invariance property is

assumed for Mt in (B4) and Qt in (A1), but this property is not needed in the proof

of Theorem 2.2.2.

For λ > 0, let rε+(λ) be the spectral radius of the Poincaré map associated with

the following differential system: du1

dt
= (−σ(t) + λv(t) + λ2D(t))u1 + µ(t)u2,

du2

dt
= σ(t)u1 − µ(t)u2 + f(t, ε)u2, t > 0.

(3.17)

Let {M ε
t }t≥0 be the solution map associated with ∂u1

∂t
= −σ(t)u1 + µ(t)u2 − v(t)∂u1

∂x
+D(t)∂

2u1

∂x2 ,

∂u2

∂t
= σ(t)u1 − µ(t)u2 + f(t, ε)u2, t > 0, x ∈ R.

(3.18)

By the continuous dependence of the solutions on initial conditions, we know that for

any small ε ∈ (0, u∗(0)), there exists η > 0 such that the solutions ŵ(t, η) of system

(3.2) with w(0, η) = η satisfies ŵ(t, η) ≤ ε for all t ∈ [0, ω], where η = (η, η), ε = (ε, ε).

Then the comparison principle implies that

u(t, x, φ) ≤ ŵ(t, η) ≤ ε, ∀x ∈ R, φ ∈ Cη, t ∈ [0, ω].
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It follows that u(t, x, φ) satisfies ∂u1

∂t
= −σ(t)u1 + µ(t)u2 − v(t)∂u1

∂x
+D(t)∂

2u1

∂x2 ,

∂u2

∂t
≥ σ(t)u1 − µ(t)u2 + f(t, ε)u2, 0 < t ≤ ω, x ∈ R.

(3.19)

This implies that Qt(φ) is an upper solution of the linear system (3.18) for t ∈

[0, ω], φ ∈ Cη, and hence,

M ε
ω(φ) ≤ Qω(φ), ∀φ ∈ Cη.

Define the function

Φε
+(λ) :=

ln rε+(λ)

λ
, ∀λ > 0.

By performing an analysis on {M ε
t }t≥0 similar to that for {Mt}t≥0, we obtain

inf
λ>0

Φε
+(λ) ≤ c+

ω ≤ inf
λ>0

Φ+(λ)

for any sufficient small ε. Letting ε→ 0, we obtain that c+
ω = inf

λ>0
Φ+(λ).

Let v̂1(t, x) = nd(t,−x) and v̂2(t, x) = nb(t,−x), we get ∂v̂1

∂t
= −σ(t)v̂1 + µ(t)v̂2 + v(t)∂v̂1

∂x
+D(t)∂

2v̂1

∂x2 ,

∂v̂2

∂t
= σ(t)v̂1 − µ(t)v̂2 + f(t, v̂2)v̂2, t > 0, x ∈ R.

(3.20)

If we denote c−ω as the leftward spreading speed of Qω, then c−ω is the rightward

spreading speed of the map Q̂ω, where Q̂t is the solution map of system (3.20). By

the similar arguments, we have c−ω = inf
λ>0

ln r−(λ)
λ

. Moreover, we see from Lemma 2.2.1

and [57, Lemma 2.10] that c+
ω + c−ω > 0.

Let c∗± := c±ω
ω

. Then the subsequent result shows that c∗± are the spreading speeds

for system (3.7).

Theorem 3.1.2. Assume that ρ > 1, and let u(t, x, φ) be the solution of system (3.7)

with u(0, ·, φ) = φ ∈ Cu∗(0). Then the following statements are valid:
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(i) If 0 ≤ φ � u∗(0), and φ = 0 for x outside a bounded interval, then we have

limt→∞,x≥ct u(t, x, φ) = 0 for all c > c∗+, and limt→∞,x≤−ct u(t, x, φ) = 0 for all

c > c∗−;

(ii) For any c and c′ satisfying −c∗− < −c′ < c < c∗+, we have

limt→∞,−c′t≤x≤ct(u(t, x, φ)− u∗(t)) = 0 for all φ ∈ Cu∗(0) with φ > 0.

Proof. By Lemma 3.1.3, we know the Poincaré map Qω satisfies (A1)′, (A2)–(A5)

with β = u∗(0), and hence, statement (i) is a consequence of Theorem 2.2.4(i). For

the second statement, since Qt is subhomogeneous, by Theorem 2.2.4, rσ can be

chosen to be independent of σ � 0. Thus, we can denote rσ by r. By the arguments

in Lemma 3.1.1 and the comparison principle for system (3.7), it follows that for every

φ ∈ Cu∗(0) with φ > 0, Qt(φ)� 0 for all t ≥ ω. Thus, we have Qω(φ)� 0, and hence,

there is a vector σ � 0 in R2 such that Qω(φ)� σ for x on an interval of length 2r.

Taking Qω(φ) as a new initial data, we see from Theorem 2.2.4(ii) that statement (ii)

holds.

3.1.3 Traveling waves

In this section, we appeal to the theory of traveling waves for monotone semiflows with

weak compactness developed in [19] (see also section 2.2.2) to prove the existence of

leftward and rightward periodic traveling waves, and the coincidence of the spreading

speeds c∗± with the minimal wave speeds for monotone periodic traveling waves.

Recall that W (t, x− ct) is said to be a rightward periodic traveling wave of the ω-

periodic semiflow {Qt}t≥0 provided that Qt(W (0, ·)) = W (t, x− ct), ∀t ≥ 0, and the

vector-valued function W (t, z) is ω-periodic in t. We say that W (t, x − ct) connects

β(t) to 0 if W (t,−∞) = β(t) and W (t,∞) = 0 uniformly for t ∈ R+. A leftward
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periodic traveling wave V (t, x+ct) can be defined for the ω-periodic semiflow {Qt}t≥0

in a similar way.

Since Qω satisfies (A1)′, (A2)–(A5) , we first have the following result on the

nonexistence of periodic traveling waves of (3.7), which is the consequence of [53,

Theorem 2.2].

Theorem 3.1.3. Assume that ρ > 1, and let c±ω be defined as in Proposition 3.1.3

and c∗± = c±ω
ω

. Then for any c < c∗+, system (3.7) admits no traveling wave solution

W (t, x−ct) connecting u∗(t) to 0; and for any c < c∗−, system (3.7) admits no traveling

wave solution V (t, x− ct) connecting 0 to u∗(t).

Next, we consider the existence of the rightward periodic traveling waves. Let

M be the set of all non-increasing, left-continuous and bounded functions from R

to R2. We equip M with the compact open topology. Let β ∈ R2 with β � 0, set

Mβ := {u ∈M : 0 ≤ u ≤ β} and M+ := {u ∈M : u ≥ 0}.

By Propositions 3.1.1 and 3.1.2 and similar arguments to those in Theorem 3.1.1,

we have the following result.

Proposition 3.1.4. For any φ ∈Mu∗(0), system (3.7) has a unique Borel measurable

mild solution u(t, ·, φ) = (u1(t, ·, φ), u2(t, ·, φ)) ∈ Mu∗(t) with u(0, ·, φ) = φ ∈ Mu∗(0)

for all t ≥ 0, and the comparison principle holds for system (3.7).

Now we are ready to show the existence of periodic traveling waves based on the

result in section 2.2.2.

Theorem 3.1.4. Assume that ρ > 1, and let c+
ω be defined as in Proposition 3.1.3 and

c∗+ = c+ω
ω

. Then for any c ≥ c∗+, there exists a function W (t, ξ) = (W1(t, ξ),W2(t, ξ)

defined on R+ × R such that W (t, ξ) is non-increasing and left-continuous in ξ and
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that W (t, x− ct) = (W1(t, x− ct),W2(t, x− ct)) is a periodic traveling wave solution

of system (3.7) connecting u∗(t) to 0.

Proof. We first prove that Qω: Mu∗(0) →Mu∗(0) satisfies (C1)–(C4) and (A5) with

X = R2 and Xβ = [0, u∗(0)]. Indeed, it is easy to see that for any t > 0, Qt satisfies the

translation invariance (C1). By the similar arguments to those in Lemma 3.1.2, we can

verify that the continuity condition (C2) holds. (C3) is automatically satisfied with

k = 0. The monotonicity of Qω in (C4) follows from Proposition 3.1.4. (A5) follows

from Lemma 3.1.1. Since Qω satisfies (C1)–(C4) and (A5), and each Qω maps left-

continuous functions to left-continuous functions. By [19, Remark 3.7 and theorem

3.8](see also Theorems 2.2.7 and 2.2.5), it follows that Qω admits a traveling wave

U(x − cωn) = (U1(x − cωn), U2(x − cωn)) connecting u∗(0) to 0 provided cω ≥ c+
ω .

Define Pt = T−ctQt, t ≥ 0. Then Pt is an ω-periodic semiflow on Mu∗(0), and U

is a fixed point of the Poincaré map Pω associated with the periodic semiflow Pt.

It follows that Pt[U ] is an ω-periodic orbit of Pt, that is, Pt+ω[U ] = Pt[U ]. Let

W (t, x) := Pt[U ](x),∀t ≥ 0. Then Qt[U ](x) = TctPt[U ](x) = W (t, x− ct). Since U(x)

is left-continuous, non-increasing in x and connects u∗(0) to 0, we see that W (t, x−ct)

connects u∗(t) to 0, and W (t, ξ) is left-continuous and non-increasing.

By similar arguments to those in Theorem 3.1.4, we have the following result on

leftward periodic traveling waves.

Theorem 3.1.5. Assume that ρ > 1, and let c−ω be defined as in Proposition 3.1.3

and c∗− =
c−ω
ω

. Then for any c ≥ c∗−, there exists a function V (t, ξ) = (V1(t, ξ), V2(t, ξ))

defined on R+×R such that V (t, ξ) is non-decreasing and right-continuous in ξ, and

that V (t, x+ ct) = (V1(t, x+ ct), V2(t, x+ ct)) is a periodic traveling wave solution of

system (3.7) connecting 0 to u∗(t).
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3.2 Threshold dynamics in a bounded domain

In this section, we study the global dynamics of system (3.1) in a bounded spatial

domain [0, L] under the following zero-flux and hostile boundary condition for nd:

v(t)nd(t, 0)−D(t)
∂nd
∂x

(t, 0) = 0 and nd(t, L) = 0.

Let (u1, u2) = (nd, nb). Then we consider the following PDE system:

∂u1

∂t
= −σ(t)u1 + µ(t)u2 − v(t)∂u1

∂x
+D(t)∂

2u1

∂x2 ,

∂u2

∂t
= σ(t)u1 − µ(t)u2 + f(t, u2)u2, x ∈ (0, L), t > 0,

v(t)u1(t, 0)−D(t)∂u1

∂x
(t, 0) = 0, u1(t, L) = 0,

ui(0, x) = φi(x), x ∈ (0, L), i = 1, 2.

(3.21)

Due to the non-compactness of solution maps, we need to impose the following addi-

tional condition:

(H3) −µ(t) + f(t, 0) < 0, ∀t ∈ [0, ω].

Since f(t, u) ≤ f(t, 0), ∀u ≥ 0, (H3) implies that at time t, the leaving rate of the

benthic population into the drift is higher than its growth rate.

Let X = {φ ∈ C([0, L],R2) : φ(L) = 0} with the maximum norm ‖ · ‖X and

Y = {φ ∈ C1([0, L],R2) : φ(L) = 0} with the usual norm in C1. Then X and Y are

ordered Banach spaces with positive cones X+ and Y+ consisting of all nonnegative

functions in X and Y , respectively, and Y+ has nonempty interior Int(Y+). Similarly,

we define ordered Banach spaces X1 and Y1 with R2 replaced by R in the definition

of X and Y , and Int(Y1+) 6= ∅.

We can rewrite system (3.21) as an integral equation with u(0, ·, φ) = φ ∈ X+,

in view of last section’s discussion, it is easy to see that system (3.21) has a unique
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solution u(t, ·, φ) ∈ X+ on [0, tφ) with u(0, ·, φ) = φ ∈ X+, and the comparison

principle holds for (3.21). Since (0, 0) is the solution of (3.21) and V (t, a) is the

upper solution of (3.21) (also a solution of (3.2)), where 0 ≤ a = ‖φ‖X < ∞.

Using the comparison principle, we can prove the positivity and L∞-boundedness of

u(t, ·, φ). Thus, system (3.21) has a unique solution u(t, ·, φ) ∈ X+ on [0,∞) with

u(0, ·, φ) = φ ∈ X+.

Define a family of maps {Qt}t≥0 from X+ to X+ by Qt(φ) = u(t, ·, φ), ∀φ ∈ X+,

t ≥ 0. Then {Qt}t≥0 is a monotone ω-periodic semiflow from X+ to X+.

Linearizing system (3.21) at its trivial periodic solution (0, 0), we have the follow-

ing linear reaction-advection-diffusion system:

∂u1

∂t
= −σ(t)u1 + µ(t)u2 − v(t)∂u1

∂x
+D(t)∂

2u1

∂x2 ,

∂u2

∂t
= σ(t)u1 − µ(t)u2 + f(t, 0)u2, x ∈ (0, L), t > 0,

v(t)u1(t, 0)−D(t)∂u1

∂x
(t, 0) = 0, u1(t, L) = 0,

ui(0, x) = φi(x), x ∈ (0, L), i = 1, 2.

(3.22)

It follows that for any φ ∈ X(Y ), system (3.22) has a unique solution ũ(t, x, ϕ) ∈

X(Y ) with ũ(0, ·, ϕ) = ϕ and admits the comparison principle. Let P1 be the Poincaré

map associated with system (3.22). Then P1 is a strongly positive and bounded linear

operator from Y to Y . Let r1 = r(P1) be the spectral radius of P1. By substituting

u1(t, x) = e−λtϕ1(t, x) and u2(t, x) = e−λtϕ2(t, x) into (3.22), we obtain the associated

periodic eigenvalue problem:

∂ϕ1

∂t
= −σ(t)ϕ1 + µ(t)ϕ2 − v(t)∂ϕ1

∂x
+D(t)∂

2ϕ1

∂x2 + λϕ1,

∂ϕ2

∂t
= σ(t)ϕ1 − µ(t)ϕ2 + f(t, 0)ϕ2 + λϕ2, x ∈ (0, L), t > 0,

v(t)ϕ1(t, 0)−D(t)ϕ1

∂x
(t, 0) = 0, ϕ1(t, L) = 0,

ϕ1, ϕ2 are ω−periodic in t,

(3.23)

Then we have the following result.
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Lemma 3.2.1. Let (H1)–(H3) hold. If r1 ≥ 1, then the eigenvalue problem (3.23)

has a principal eigenvalue λ∗ = − 1
ω

ln r1 with a positive eigenfunction.

Proof. Let Πt(φ) = ũ(t, ·, φ), φ ∈ Y , t ≥ 0. In view of (H3), there exists a positive

number r0 such that µ(t)−f(t, 0) ≥ r0 for all t ≥ 0. Let α be the Kuratowski measure

of noncompactness in Y (see, e.g., [14]). By similar arguments to those in [36, Lemma

3.3], we can show that Πt is an α-contraction on Y with a contracting function

e−r0t. In particular, we have α(P1B) ≤ e−r0ωα(B) for any bounded set B in Y with

α(B) > 0. This implies that the essential spectral radius re(P1) of P1 satisfies

re(P1) ≤ e−r0ω < 1

Since r1 ≥ 1, we have r1 = r(P1) > re(P1). Note that P1 is a strongly positive and

bounded operator on Y . By the generalized Krein-Rutman Theorem (see, e.g., [71]

and [37, Lemma 4.4]), there is an eigenfunction ϕ∗ = (ϕ∗1, ϕ
∗
2) ∈ Int(Y+) corresponding

to r1, that is, P1(ϕ∗) = r1ϕ
∗.

Let ũ(t, ·, ϕ∗) be the solution of system (3.22) through ϕ∗, and denote v(t, x) =

eλ
∗tũ(t, x, ϕ∗). Then v(t, x) is positive for all (t, x) ∈ [0,∞) × [0, L) and ∂v1(t,L)

∂x
<

0,∀t ≥ 0. Since

v(ω, ·) = eλ
∗ωP1(ϕ∗) = eλ

∗ωr1ϕ
∗ = v(0, ·),

∂v2(t, L)

∂x
= T2(t, 0)ϕ∗

′

2 (L) +

∫ t

0

T2(t, s)σ(s)
∂v1(s, L)

∂x
ds < 0, t ≥ 0,

where T2(t, s) is defined as in (3.5). It then follows that v(t, x) is the positive eigen-

function corresponding to the principle eigenvalue λ∗ for problem (3.23).
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We also consider the following perturbed system of (3.22):

∂uε1
∂t

= −σ(t)uε1 + µ(t)uε2 − v(t)
∂uε1
∂x

+D(t)
∂2uε1
∂x2 ,

∂uε2
∂t

= σ(t)uε1 − µ(t)uε2 + f(t, ε)uε2, x ∈ (0, L), t > 0,

v(t)uε1(t, 0)−D(t)
∂uε1
∂x

(t, 0) = 0, uε1(t, L) = 0,

uεi (0, x) = φi(x), i = 1, 2,

(3.24)

and the associated eigenvalue problem:

∂ϕ1

∂t
= −σ(t)ϕ1 + µ(t)ϕ2 − v(t)∂ϕ1

∂x
+D(t)∂

2ϕ1

∂x2 + λϕ1,

∂ϕ2

∂t
= σ(t)ϕ1 − µ(t)ϕ2 + f(t, ε)ϕ2 + λϕ2, x ∈ (0, L), t > 0,

v(t)ϕε1(t, 0)−D(t)
∂ϕε1
∂x

(t, 0) = 0, ϕε1(t, L) = 0,

ϕ1, ϕ2 are ω-periodic in t.

(3.25)

Let uε(t, x, ϕ) be the solution of system (3.24) with uε(0, x, ϕ) = ϕ(x), Pε be the

Poincaré map associated with system (3.24), and rε be the spectral radius of Pε. By

similar arguments to those [37, Lemma 4.5], we have the following result.

Lemma 3.2.2. Let (H1)–(H3) hold. If r1 > 1, then there exists a small ε0 > 0

such that the eigenvalue problem (3.25) has a negative principal eigenvalue denoted

by λ∗ε = − 1
ω

ln rε, with a positive eigenfunction for all ε ∈ [0, ε0).

Let e ∈ Int(Y+). For any given φ ∈ X, we define ‖φ‖e := inf{ρ ≥ 0 : −ρe(x) ≤

φ(x) ≤ ρe(x),∀x ∈ [0, L]}. Let E := {x ∈ X : ‖x‖e < ∞} and E+ = E ∩ X+.

It then follows that (E,E+) is an ordered Banach space with Int(E+) 6= ∅, and

E is independent of the choice of e. Similarly, we can define the ordered Banach

space (E1, E1+) with e ∈ Int(Y1+). Note that we have Y1 ⊂ E1 with the continuous

inclusion. It then follows that there exists K > 0 such that ‖a‖E1 ≤ K‖a‖Y1 for any

a ∈ Y1. Now we are in a position to prove the main result of this section.
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Theorem 3.2.1. Let (H1)–(H3) hold. For any ϕ ∈ X+, let u(t, x, ϕ) be the solution

of system (3.21) with u(0, x, ϕ) = ϕ ∈ X+. Then the following statements are valid:

(i) If r1 < 1, then lim
t→∞
‖u(t, ·, ϕ)‖X = 0 for any ϕ ∈ X+.

(ii) If r1 > 1, then either of the following statements holds true:

(a) There exists δ0 > 0 such that lim
n→∞

sup ‖Qnω(ϕ)‖X ≥ δ0 for all ϕ ∈ X+\{0}.

(b) System (3.21) has a unique positive ω-periodic solution u∗(t, ·) ∈ Int(E+)

such that lim
t→∞
‖u(t, ·, ϕ)− u∗(t, ·)‖X = 0 for any ϕ ∈ E+\{0}.

Proof. In the case where r1 < 1, we have lim
n→∞

‖P n
1 ‖ = 0, which implies that

lim
n→∞

‖P n
1 ϕ‖X = 0 for any ϕ ∈ X+. It follows that lim

t→∞
‖û(t, ·, ϕ)‖X = 0. Thus, we

have lim
t→∞
‖u(t, ·, ϕ)‖X = 0 due to the comparison principle.

In the case where r1 > 1, let S = Qω. We then show that for any given ϕ ∈

X+\{0}, the forward orbit γ+(ϕ) := {Sn(ϕ) : n ≥ 0} is asymptotically compact in

the sense that for any sequence nk → ∞, there exist a subsequence nkj such that

Snkj (ϕ) converges in X+ as j → ∞. Note that Qt(ϕ) = (u1(t, x, ϕ), u2(t, x, ϕ)) is

L∞-bounded. Let S1(ϕ) = (u1(ω, x, ϕ), 0) and S2(ϕ) = (0, u2(ω, x, ϕ)). Clearly, S1 is

compact on X. By assumptions (H2) and (H3), we have

∂

∂u2

[σ(t)u1 − µ(t)u2 + f(t, u2)u2] ≤ −µ(t) + f(t, 0) < 0, ∀(t, u) ∈ R3
+.

It then follows from the arguments in [36, Lemma 4.1] that Sn2 (ϕ) is asymptotically

compact for any ϕ ∈ X+. Thus, for any sequence nk →∞, there exists subsequence

labeled as nk →∞ such that Snk2 (ϕ) converges in X+. Further, there exists a subse-

quence nkj such that S
nkj
1 (ϕ) converges in X+. Therefore, Snkj (ϕ) converges in X+

as j →∞.
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Let ω(ϕ) be the omega limit set of γ+(ϕ). It then follows that ω(ϕ) is nonempty,

compact and invariant for Qω in X.

Now we prove statement (ii)(a). By virtue of Lemma 3.2.2, we fix an ε ∈ [0, ε0).

Then there exists some δ > 0 such that ‖uε(t, ·, ϕ)‖X < ε for all t ∈ [0, ω] whenever

‖ϕ‖X < δ. Let δ0 = δ. Suppose, by contradiction, that lim
n→∞

sup ‖Qnω(ϕ0)‖X < δ0 for

some ϕ0 ∈ X+\{0}. Then there exists n0 ≥ 1 such that

‖Qnω(ϕ0)‖X < δ, ∀n ≥ n0.

For any t ≥ n0ω, we can rewrite t = nω + t′ with n ≥ n0 and t′ ∈ [0, ω). Thus, we

have

‖Qt(ϕ0)‖X = ‖Qt′(Qnω(ϕ0))‖X < ε, ∀t ≥ n0ω,

and hence, the solution u(t, x, ϕ0) of (3.21) satisfies the following system: ∂u1

∂t
≥ −σ(t)u1 + µ(t)u2 − v(t)∂u1

∂x
+D(t)∂

2u1

∂x2 ,

∂u2

∂t
≥ σ(t)u1 − µ(t)u2 + f(t, ε)u2, x ∈ (0, L),

(3.26)

for all t ≥ n0ω. Let ϕ∗ε(t, ·) ∈ Int(Y+) be the positive eigenfunction corresponding to

the principal eigenvalue λ∗ε of system (3.25). Then it is easy to see that uε(t, x) =

e−λ
∗
εtϕ∗ε(t, x) is the solution for system (3.24). Note that u2(t, ·, φ0) is uniformly

bounded on t ∈ [0,∞), there exist A and L such that 0 ≤ u2(t, ·, φ0) ≤ A and

f(t, u)− f(t, 0) + Lu ≥ 0 for all t ≥ 0 and u ∈ [0, A]. Define

û2(t, ·, φ0) =

∫ t

t
2

e−L(t−s)T2(t, s)σ(s)u1(s, ·, φ0)ds.

Since U0(t, ·) = (u1(t, ·, φ0), û2(t, ·, φ0)) ∈ Int(Y+) and U0(t, ·) ≤ u(t, ·, φ0) for t > 0.

Then there exists a sufficiently small number a > 0 such that

u(n0ω, x, ϕ0) ≥ U0(n0ω, x) ≥ aϕ∗ε(n0ω, x), ∀x ∈ [0, L].
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By the comparison principle, it follows that

u(t, x, ϕ0) ≥ aϕ∗ε(n0ω, x)e−λ
∗
ε(t−n0ω), ∀t ≥ n0ω, x ∈ [0, L].

Since λ∗ε < 0, we see that u(t, x, ϕ0) is unbounded, a contradiction. This proves

statement (ii)(a).

For (ii)(b), it is easy to see that for any φ ∈ E+, system (3.21) admits a unique

solution u(t, ·, φ) ∈ E+ with u(0, ·, φ) = φ and S = Qω is strongly monotone and

strictly subhomogeneous in E+. For any ϕ ∈ E+ \ {0} ⊂ X+ \ {0}, its omega set

limit is non-empty, invariant and compact in X. In order to prove statement (ii)(b),

we justify the following two claims.

Claim 1. For ϕ ∈ X+ \ {0} and φ∗ ∈ ω(ϕ), we have φ∗ ∈ E+ \ {0}.

Since φ∗ ∈ ω(ϕ), there exists a sequence {nk} such that u(nkω, ·, ϕ) → φ∗ =

(φ∗1, φ
∗
2) as k → ∞. For the sake of convenience, we choose e = (e1, e1) ∈ Int(Y+)

with e1 ∈ Int(Y1+). Since u(t, ·, ϕ) is uniformly bounded in X. There exists M > 0

such that u2(t, ·, ϕ) ≤M . Now let v(t, ·,m) be the solution of the following system
∂v
∂t

= −σ(t)v + µ(t)M − v(t) ∂v
∂x

+D(t) ∂
2v
∂x2 ,

v(t)v(t, 0)−D(t) ∂v
∂x

(t, 0) = 0, v(t, L) = 0,

v(0, ·) = m ∈ Y1+.

Then by standard parabolic estimates, we see that there exists C > 0 such that

‖v(t, ·,m)‖Y1 ≤ C for all t ≥ 0, and hence, ‖v(t, ·,m)‖E1 ≤ KC, this implies there

exists M0 > 0 such that v(t, ·,m) ≤ M0e for all t ≥ 0. Now take m = u1(ω, ·, ϕ1) ∈

Y1+. It follows that

0 ≤ u1(t, ·, ϕ) ≤ v(t, ·,m) ≤M0e1, t ≥ ω,
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and φ∗1 ∈ E1+.

u2(nkω, ·, ϕ) = T2(nkω, ω)u2(ω, ·, ϕ2) +

∫ nkω

ω

T2(nkω, s)(F (s, u2) + σ(s)u1(s, ·, ϕ))ds

≤ T2(nkω, ω)u2(ω, ·, ϕ2) +

∫ nkω

ω

T2(nkω, s)σ(s)u1(s, ·, ϕ)ds

Letting k → ∞, we obtain that φ∗2 ∈ E1+, together with (ii)(a), it follows that

φ∗ ∈ E+ \ {0}.

Claim 2. There exists a unique ω- periodic solution u∗(t, ·) ∈ Int(E+) of system

(3.21).

Note that S = Qω is strongly monotone and strictly subhomogeneous in E+. In

view of Lemma 3.2.2, we fix ε ∈ (0, ε0) and choose a small δ > 0 such that δφ∗ε ≤ ε. It

then follows that δφ∗ε is a subsolution of system (3.21). Now the comparison principle

implies that

u(ω, ·, δφ∗ε(0, ·)) ≥ δφ∗ε(ω, ·) = δφ∗ε(0, ·),

and hence, u(nω, ·, δφ∗ε) is nondecreasing in n. Since the positive orbit γ+(δφ∗ε) is

asymptotically compact inX, the omega limit set is nonempty, invariant and compact.

Then we see that there exists a∗ ∈ X+ such that limn→∞ u(nω, ·, δφ∗ε) = a∗ ≥ δφ∗ε(0, ·)

in X. In view of Claim 1, we can easily deduce that a∗ ∈ E+ \ {0}, and hence, the

strongly monotonicity of S and S(a∗) = a∗ yields that a∗ is the unique fixed point of

S in Int(E+). Set u∗(t, ·) := Qt(a) ≥ δφ∗ε(t, ·). Then u∗(t, ·) ∈ Int(E+) is the desired

periodic solution for t ∈ [0,∞).

Now we are ready to state the proof of (ii)(b) by using the monotone iteration

method. Recall that S is strongly monotone and subhomogeneous in E+. Then it

suffices to show that ϕ ∈ Int(E+), the statement (ii)(b) holds true. For the sake of

convenience, we take e = a∗. For any ϕ ∈ Int(E+), there exist ρ1 ∈ (0, 1) and ρ2 > 1
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such that ρ1e ≤ ϕ ≤ ρ2e and

ρ1e = ρ1S(e) ≤ S(ρ1e) ≤ S(ϕ) ≤ S(ρ2e) ≤ ρ2S(e) = ρ2e.

It easily follows from Claim 1 and the argument in Claim 2 that

lim
n→∞

Sn(ρ1e) = lim
n→∞

Sn(ρ2e) = e in X.

The squeeze theorem gives limn→∞ S
n(ϕ) = e in X. Thus, we conclude that u∗(t, ·, a∗)

is an ω-periodic solution of system (3.21), and limt→∞ ‖u(t, ·, ϕ) − u∗(t, ·)‖X = 0 for

any ϕ ∈ E+ \ {0}.

3.3 Simulations

In this section, we do some numerical simulations to illustrate our analytic results.

We choose ω = 12, σ(t) = 0.7(1 − sin(πt
6

)), µ(t) = 0.5(1 + sin(πt
6

)), and consider

the periodic logistic growth rate function f(t, u) = r(1 + b sin(πt
6

) − u/K), and the

advection velocity v(t) = c0(1.05 + cos(πt
6

)). Assume that there is positive correlation

between diffusivity and flow speed [60]. We choose D(t) = c1(1.05 + cos(πt
6

)), where

constants r, b,K, c1 > 0, c0 ≥ 0.

For illustration, we choose r = 0.15, b = 0.8, K = 50, c0 = 1.1, c1 = 0.5. For a

continuous periodic function p(t) with the period ω, we define its average as

[p] :=
1

ω

∫ ω

0

p(t)dt.

Using Proposition 3.1.3, we can numerically compute c∗+ = 0.7155 and c∗− = −0.0962.

This implies the populations are washed downstream and therefore cannot persist.

Figure 3.1 shows a plot of the spreading speed c∗+ and c∗− as functions of [v] = 1.05c0.
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Figure 3.2 indicates that the rightward spreading speed c∗+ and leftward spreading

speed c∗− both increase with the average diffusion value [D] = 1.05c1.
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Figure 3.1: Leftward and rightward spreading speeds as functions of the average ad-

vection velocity [v].
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Figure 3.2: Leftward and rightward spreading speeds as functions of the average dif-

fusion coefficient [D].

To simulate the spatial spread of the model system, we discretize system (3.1)

by the difference method on a finite interval [−L,L] with the Neumann boundary

condition, where L is sufficiently large. Figures 3.3 and 3.4 show numerical plots of

the solution through the initial condition

nd(0, x) =


24, if |x| ≤ 20

4
5
(50− |x|), if 20 ≤ |x| ≤ 50, nb(0, x) =

4

3
× nd(0, x).

0, if |x| ≥ 50

The population in the drift nd and on the benthos nb spread in one direction towards

downstream.
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Figure 3.3: The spread of nd, and the left plot shows the density of nd at different

times t = nω, with n = 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively.
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Figure 3.4: The spread of nb, and the left plot shows the density of nb at different

times t = nω, with n = 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively.
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To get rightward traveling waves, we choose the initial condition as

nd(0, x) =


30, if x ≤ −20

3
4
(20− x), if |x| ≤ 20, nb(0, x) =

9

5
× nd(0, x).

0, if x ≥ 20

The evolution of the solution is shown in Figure 3.5.

Figure 3.5: The rightward periodic traveling waves observed for nd and nb, respectively.

To simulate the global dynamics of system (3.1) in a bounded domain, we choose

the initial condition as

nd(0, x) = nb(0, x) = 0.1x2(L− x),

and the zero-flux and hostile boundary conditions as

1.1× nd(t, 0)− 0.5× ∂nd
∂x

(t, 0) = 0, nd(t, L) = nb(t, 0) = nb(t, L) = 0.
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The evolution of the solution is shown in Figure 3.6 for L = 10 and [v] = 0.4. It

indicates that in this case two components persist. The evolution of the solution is

shown in Figure 3.7 for L = 10 and [v] = 1.1. It turns out that in this case two

components cannot persist due to the large average advection velocity.

Figure 3.6: The evolution of two components when L = 10 and [v] = 0.4.

Figure 3.7: The evolution of two components when L = 10 and [v] = 1.1.



Chapter 4

A Two-species Competition Model

in A Periodic Habitat

In this chapter, we investigate the following two-species competition model in a peri-

odic habitat:

∂u1

∂t
= L1u1 + u1(b1(x)− a11(x)u1 − a12(x)u2), (4.1)

∂u2

∂t
= L2u2 + u2(b2(x)− a21(x)u1 − a22(x)u2), t > 0, x ∈ R.

We first establish the existence of two semi-trivial periodic steady states (u∗1(x), 0) and

(0, u∗2(x)), and the global stability of (u∗1(x), 0) for system (4.1) with periodic initial

data. Since the steady state (0, 0) is between (u∗1(x), 0) and (0, u∗2(x)) with respect

to the competitive ordering, we cannot directly use the theory developed in [55] for

monotone semiflows to study spreading speeds and spatially periodic traveling waves.

Recently, Fang and Zhao [19] investigated traveling waves for monotone semiflows

with weak compactness in the case where there may be boundary fixed points between

two ordered unstable and stable fixed points. Accordingly, in the application of this
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theory one needs to determine whether the given system admits a single spreading

speed and to identify the fixed points connected by traveling waves. Further, the

abstract results in [19] (see also section 2.2.2) may not directly apply to the case

of a periodic habitat. In the Appendix, we adapt this theory for such a case by

combining the abstract results in [55] and [19]. We then prove the existence of the

rightward spatially periodic traveling waves of system (4.1) connecting (u∗1(x), 0) to

(0, u∗2(x)), and show that system (4.1) admits a single rightward spreading speed via

the method of upper solutions under appropriate assumptions. We also obtain a set

of sufficient conditions for the rightward spreading speed to be linearly determinate.

Since one more spreading speed is defined differently from the classical one, it is highly

nontrivial to prove that those two speeds are identical.

This chapter is organized as follows. In section 4.1, we first obtain the existence

of two semi-trivial periodic steady states and the global stability of one semi-trivial

periodic steady state for system (4.1) with periodic initial data. In section 4.2, we

establish the existence of the minimal wave speed of the rightward spatially periodic

traveling waves and its coincidence with the minimal rightward spreading speed. In

section 4.3, we show that the rightward spreading speed is linearly determinate under

additional conditions. In section 4.4, we apply the obtained results to a prototypical

class of reaction-diffusion systems, which were studied in [16, 49] in the case of a

bounded domain. In the Appendix, we present the abstract results on traveling

waves and spreading speeds for monotone semiflows in a periodic habitat to end this

chapter.



4.1 The periodic initial value problem 64

4.1 The periodic initial value problem

In this section, we investigate the global dynamics of the spatially periodic Lotka-

Volterra competition system with periodic initial values.

Throughout this paper, we assume that di(x), gi(x), aij(x) and bi(x) are L-periodic

functions, di, gi, aij, bi ∈ Cν(R), and aij(·) > 0, 1 ≤ i, j ≤ 2, where Cν(R) is a Hölder

continuous space with the Hölder exponent ν ∈ (0, 1); there exists a positive number

α0 such that di(x) ≥ α0,∀x ∈ R, i = 1, 2, i.e., the operator Liu = di(x)∂
2u
∂x2 − gi(x)∂u

∂x

is uniformly elliptic.

Let Y be the set of all continuous and L-periodic functions from R to R, and

Y+ = {ψ ∈ Y : ψ(x) ≥ 0,∀x ∈ R} be a positive cone of Y . Equip Y with the

maximum norm ‖ · ‖Y , that is, ‖φ‖Y = maxx∈R |φ(x)|. Then (Y, Y+) is a strongly

ordered Banach lattice. Assume that L-periodic functions d, g, h ∈ Cν(R) and d(·) >

0. It then follows that the scalar periodic eigenvalue problem

λφ = d(x)φ′′ − g(x)φ′ + h(x)φ, x ∈ R,

φ(x+ L) = φ(x), x ∈ R (4.2)

admits a principal eigenvalue λ(d, g, h) associated with a positive L-periodic eigen-

function φ(x)(see, e.g., [85, Theorem 7.6.1] and [96, Lemma 3.3]). By Theorem 2.1.3

and similar arguments to those in [96, Theorem 3.2], we have the following result.

Proposition 4.1.1. Assume that L-periodic functions d, g, c, e ∈ Cν(R), and d(·) >

0, e(·) ≥ 0 but 6≡ 0. Let u(t, x, φ) be the unique solution of the following parabolic

equation:

∂u

∂t
= d(x)

∂2u

∂x2
− g(x)

∂u

∂x
+ u(c(x)− e(x)u), t > 0, x ∈ R,

u(0, x) = φ(x) ∈ Y+, x ∈ R. (4.3)
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Then the following statements are valid:

(i) If λ(d, g, c) ≤ 0, then u = 0 is globally asymptotically stable with respect to

initial values in Y+;

(ii) If λ(d, g, c) > 0, then (4.3) admits a unique positive L-periodic steady state

u∗(x), and it is globally asymptotically stable with respect to initial values in

Y+\{0}.

Let P = PC(R,R2) be the set of all continuous and L-periodic functions from R

to R2, and P+ = {ψ ∈ P : ψ(x) ≥ 0, ∀x ∈ R}. Then P+ is a closed cone of P and

induces a partial ordering on P. Moreover, we introduce a norm ‖ · ‖P by

‖φ‖P = max
x∈R
|φ(x)|.

It then follows that (P, ‖ · ‖P) is a Banach lattice.

Clearly, for any ϕ ∈ P, (4.1) has a unique solution u(t, ·, ϕ) ∈ P defined on

[0, tϕ) with tϕ ∈ (0,∞]. By the comparison principle for scalar reaction-diffusion

equations in a period habitat (see, e.g., [96, Lemma 3.1]), together with the fact that

aij(x) > 0,∀x ∈ R, 1 ≤ i, j ≤ 2, it follows that for any ϕ ∈ P+, system (4.1) has

a unique nonnegative solution u(t, ·, ϕ) defined on [0,∞), and u(t, ·, ϕ) ∈ P+ for all

t ≥ 0.

By Proposition 4.1.1, we see that there exists two positive L-periodic functions

u∗1(x) and u∗2(x) such that E1 := (u∗1(x), 0), E2 := (0, u∗2(x)) are semi-trivial steady

states of system (4.1) provided that λ(di, gi, bi) > 0, i = 1, 2. Since we mainly concern

about the case of the competition exclusion, we impose the following conditions on

system (4.1):

(H1) λ(di, gi, bi) > 0, i = 1, 2.
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(H2) λ(d1, g1, b1−a12u
∗
2) > 0.

(H3) System (4.1) has no steady state in Int(P+).

(H1) guarantees the existence of two semi-trivial steady states of system (4.1).

(H2) implies that (0, u∗2(x)) is unstable. Moreover, by Lemma 4.4.1 with µ = 0, d(x) =

d1(x) and g(x) = g1(x),∀x ∈ R, we see that (H2) implies λ(d1, g1, b1) > 0. Thus, we

can simply drop the assumption λ1(d1, g1, b1) > 0 from (H1).

Under assumptions (H1)–(H3), there are three steady states in P+: E0 = (0, 0),

E1 := (u∗1(x), 0), and E2 := (0, u∗2(x)). Next, we use the theory developed in [35] for

abstract competitive systems (see also [32]) to prove the global stability of E1.

Theorem 4.1.1. Assume that (H1)–(H3) hold. Then E1 = (u∗1(x), 0) is globally

asymptotically stable for all initial values φ = (φ1, φ2) ∈ P+ with φ1 6≡ 0.

Proof. Let u(t, x, φ) be the solution of system (4.1) with u(0, x) = φ(x). In view

of (H2), we can fix a real number ε0 ∈ (0, λ(d1, g1, b1−a12u
∗
2)). By the uniform

continuity of F (x, u) := b1(x)−a11(x)u1−a12(x)u2 on the set R× [0, 1]× [0, b], where

b = max
x∈R

u∗2(x) + 1, there exists δ0 ∈ (0, 1) such that

|F (x, u)− F (x, v)| < ε0, ∀u = (u1, u2), v = (v1, v2) ∈ [0, 1]× [0, b], x ∈ R

provided that |ui − vi| < δ0, i = 1, 2. Then we have the following observation.

Claim. lim supt→∞ ‖u(t, ·, φ)− (0, u∗2(·))‖P ≥ δ0 for any φ ∈ P+ with φ1 6≡ 0.

Suppose, by contradiction, that lim sup
t→∞
‖u(t, ·, φ̂) − (0, u∗2(·))‖P < δ0 for some

φ̂ ∈ P+ with φ̂1 6≡ 0. Then there exists t0 > 0 such that

‖u1(t, ·, φ̂)‖Y < δ0, ‖u2(t, ·, φ̂)− u∗2(·)‖Y < δ0, ∀t ≥ t0.
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Consequently, we have

F (x, u(t, x, φ̂)) > F (x, (0, u∗2(x)))− ε0 = b1(x)− a12(x)u∗2(x)− ε0, t ≥ t0, x ∈ R.

Let ψ1(x) be a positive eigenfunction corresponding to the principal eigenvalue

λ(d1, g1, b1−a12u
∗
2). Then ψ1(x) satisfies

λ(d1, g1, b1−a12u
∗
2)ψ1 =d1(x)ψ′′1−g1(x)ψ′1+(b1(x)−a12(x)u∗2(x))ψ1, x ∈ R,

ψ1(x+ L) = ψ1(x), x ∈ R. (4.4)

Since u1(0, x) = φ̂1 6≡ 0, the comparison principle (see, e.g., [96, Lemma 3.1]), as

applied to the first equation in system (4.1), implies that u1(t0, x, φ̂) > 0, ∀x ∈ R.

Then there exists small η > 0 such that u1(t0, ·) ≥ ηψ1 � 0. Thus, u1(t, x, φ̂) satisfies

∂u1

∂t
≥ L1u1 + u1(b1(x)− a12(x)u∗2(x)− ε0), t > t0, x ∈ R,

u1(t0, ·) ≥ ηψ1. (4.5)

In view of (4.4), it easily follows that v(t, ·) = ηe[λ(d1,g1,b1−a12u∗2)−ε0](t−t0)ψ1 satisfies

∂v

∂t
= L1v + v(b1(x)− a12(x)u∗2(x)− ε0), t > t0, x ∈ R,

u1(t0, ·) = ηψ1. (4.6)

By (4.5) and (4.6), together with the standard comparison principle, it follows that

u1(t, ·, φ̂) ≥ ηe[λ(d1,g1,b1−a12u∗2)−ε0](t−t0)ψ1, ∀t ≥ t0.

Letting t→∞, we see that u1(t, ·, φ̂) is unbounded, a contradiction.

By the above claim and (H3), we rule out possibility (a) and (c) in [35, Theorem

B]. Since E2 is repellent in some neighborhood of itself, [35, Theorem B] implies

that E1 is globally asymptotically stable for all initial values φ = (φ1, φ2) ∈ P+ with

φ1 6≡ 0.



4.2 Spreading speeds and traveling waves 68

Figure 4.1: The left and right plots are the competition system and the associated

cooperative system, respectively.

4.2 Spreading speeds and traveling waves

In this section, we study the spreading speeds and spatially periodic traveling waves

for system (4.1). By a change of variables v1 = u1, v2 = u∗2(x) − u2, we transform

system (4.1) into the following cooperative system:

∂v1

∂t
=L1v1+v1(b1(x)−a12(x)u∗2(x)−a11(x)v1+a12(x)v2), t > 0, x ∈ R,

∂v2

∂t
=L2v2+a21(x)v1(u∗2(x)−v2) +v2(b2(x)−2a22(x)u∗2(x)+a22(x)v2). (4.7)

Clearly, three steady states of (4.1), respectively, become

Ê0 = (0, u∗2(x)), Ê1 = (u∗1(x), u∗2(x)), Ê2 = (0, 0).

Let C be the set of all bounded and continuous functions from R to R2 and

C+ = {φ ∈ C : φ(x) ≥ 0, ∀x ∈ R}. Assume that β is a strongly positive L-periodic

continuous function from R to R2. Set

Cβ = {u ∈ C : 0 ≤ u(x) ≤ β(x), ∀x ∈ R}, Cperβ = {u ∈ Cβ : u(x) = u(x+ L), ∀x ∈ R}.
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Let X = C([0, L],R2) equipped with the maximum norm | · |X , X+ = C([0, L],R2
+),

Xβ = {u ∈ X : 0 ≤ u(x) ≤ β(x), ∀x ∈ [0, L]}, and Xβ = {u ∈ Xβ : u(0) = u(L)}.

Let BC(R, X) be the set of all continuous and bounded functions from R to X. Then

we define

X = {v ∈ BC(R, X) : v(s)(L) = v(s+ L)(0),∀s ∈ R},X+ = {v ∈ X : v(s) ∈ X+, ∀s ∈ R},

and

Xβ = {v ∈ BC(R, Xβ) : v(s)(L) = v(s+ L)(0),∀s ∈ R}.

We equip C and X with the compact open topology.

Let β = (u∗1(·), u∗2(·)), Y be the set of all bounded and continuous functions from

R to R, and T1(t) and T2(t) be the linear semigroups on Y generated by

∂v

∂t
=L1v + v(b1(x)− a12(x)u∗2(x)) and

∂v

∂t
=L2v + v(b2(x)− 2a22(x)u∗2(x)),

respectively. It follows that T1(t) and T2(t) are compact with the respect to the

compact open topology for each t > 0 (see, e.g., [96]). For any u = (u1, u2) ∈ Cβ,

define F : Cβ → C by

F (u) =

 −a11(x)u2
1 + a12(x)u1u2

a21(x)u∗2(x)u1 − a21(x)u1u2 + a22(x)u2
2

 .

Then we can rewrite system (4.7) as an integral equation form:

v(t) = T (t)v(0) +

∫ t

0

T (t− s)F (v(s))ds, t > 0,

v(0) = φ ∈ Cβ, (4.8)

where T (t) = diag(T1(t), T2(t)).
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As usual, a solution of (4.8) is called a mild solution of system (4.7). It then

follows that for any φ ∈ Cβ, system (4.7) has a mild solution u(t, ·, φ) defined on

[0,∞) with u(0, ·, φ) = φ, and u(t, ·, φ) ∈ Cβ for all t ≥ 0, and it is a classical solution

when t > 0.

We say that V (x− ct, x) is an L-periodic rightward traveling wave of system (4.7)

if V (· + a, ·) ∈ Cβ, ∀a ∈ R, u(t, x, V (·, ·)) = V (x − ct, x), ∀t ≥ 0, and V (ξ, x) is an

L-periodic function in x for any fixed ξ ∈ R. Moreover, we say that V (ξ, x) connects

β to 0 if limξ→−∞ |V (ξ, x)−β(x)| = 0 and limξ→+∞ |V (ξ, x)| = 0 uniformly for x ∈ R.

Definition 4.2.1. A function u(x, t) is said to be an upper (a lower) solution of

system (4.7) if it satisfies

u(t) ≥ (≤)T (t)u(0) +

∫ t

0

T (t− s)F (u(s))ds, t ≥ 0.

Define a family of operators {Qt}t≥0 on Cβ by Qt(φ) := u(t, ·, φ), where u(t, ·, φ)

is the solution of system (4.7) with u(0, ·) = φ ∈ Cβ. It then easily follows that

{Qt}t≥0 is a monotone semiflow on Cβ. Note that if u(t, x, φ) is a solution of (4.7),

so is u(t, x − a, φ), ∀a ∈ LZ. This implies that (D1) in the Appendix holds. By

Theorem 4.1.1, we see that for each t > 0, (D5) holds for Qt. Since T (t) is compact

with the compact open topology for each t > 0, (D2) and (D3) then follow from the

same argument as in [63, Theorem 8.5.2]. Thus, we have the following observation.

Proposition 4.2.1. Assume that (H1)–(H3) hold. Then for each t > 0, Qt satisfies

assumptions (D1)–(D5) in the Appendix.

With the help of {Qt}t≥0, we can introduce a family of operators {Q̂t}t≥0 on Xβ:

Q̂t[v](s)(θ) := Qt[vs](θ), ∀v ∈ Xβ, s ∈ R, θ ∈ [0, L], t ≥ 0, (4.9)
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where vs ∈ C is defined by

vs(x) = v(s+ nx)(θx), ∀x = nx + θx ∈ R, nx = L
[x
L

]
, θx ∈ [0, L).

By Proposition 4.5.1, it is easy to see that {Q̂t}t≥0 is a monotone semiflow on Xβ
and Q̂t satisfies (A1)–(A5) with (A3) and (A5) replaced by (C3) and (C5) for each

t > 0. Now we follow the procedure in the Appendix with m = 2. Let c∗+ and c+ be

defined as in (4.49) with P̃ = Q̂1. To show that c+ is the minimal wave speed for

L-periodic rightward traveling waves of system (4.7) connecting β to 0, we need the

following assumption:

(H4) c∗1+ + c∗2− > 0, where c∗1+ and c∗2− are the rightward and leftward spreading

speeds of (4.10) and (4.12), respectively.

We remark that in the case where either Liu = ∂
∂x

(di(x)∂u
∂x

) with di ∈ C1+ν(R),

or all the coefficient functions in (4.10) and (4.12) are even except gi is odd, i = 1, 2,

Lemma 4.4.2 shows that (H1) and (H2) guarantee (H4).

Theorem 4.2.1. Assume that (H1)–(H4) hold. Then for any c ≥ c+, system (4.7)

admits an L-periodic traveling wave (U(x−ct, x), V (x−ct, x)) connecting β to 0, with

wave profile components U(ξ, x) and V (ξ, x) being continuous and non-increasing in

ξ, and for any c < c+, there is no such traveling wave connecting β to 0.

Proof. In view of Theorem 4.5.2 (2) and (3), it suffices to rule out the second case

in Theorem 4.5.2 (2). Suppose, by contradiction, that the statement in Theorem

4.5.2 (2)(ii) is valid for some c ≥ c+. Since system (4.7) has exactly three L-periodic

nonnegative steady states and Ê0 = (0, u∗2(x)) is the only intermediate L-periodic

steady state between Ê1 = β and Ê2 = 0, it then follows that α1 = α2 = Ê0. Thus,
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by restricting system (4.7) on the order interval [Ê0, Ê1] and [Ê2, Ê0], respectively, we

see that one scalar equation

ut = L1u+ u(b1(x)− a11(x)u) (4.10)

admits an L-periodic traveling wave U(x − ct, x) connecting u∗1(x) to 0 with U(ξ, x)

being continuous and nonincreasing in ξ, and the other scalar equation

vt = L2v + v(b2(x)− 2a22(x)u∗2 + a22(x)v) (4.11)

also admits an L-periodic traveling wave V (x − ct, x) connecting u∗2(x) to 0 with

V (ξ, x) being continuous and nonincreasing in ξ.

Let W (x − ct, x) = u∗2(x) − V (x − ct, x). Then W (x − ct, x) is an L-periodic

traveling wave connecting 0 to u∗2(x) of the following scalar equation with W (ξ, x)

being continuous and nondecreasing in ξ

wt = L2w + w(b2(x)− a22(x)w). (4.12)

Note that W (x − ct, x) is an L-periodic leftward traveling wave connecting 0 to u∗2

with wave speed −c, and that systems (4.10) and (4.12) admit rightward spreading

speed c∗1+ and leftward spreading speed c∗2−, respectively, which are also the rightward

and the leftward minimal wave speeds (see, e.g., [55, Theorem 5.3]). It then follows

that c ≥ c∗1+ and −c ≥ c∗2−. This implies that c∗1+ + c∗2− ≤ 0, a contradiction.

Let λ2(µ) be the principle eigenvalue of the elliptic eigenvalue problem:

λψ = d2(x)ψ′′−(2µd2(x) + g2(x))ψ′+
(
d2(x)µ2+g2(x)µ+b2(x)−a22(x)u∗2(x)

)
ψ, x ∈ R,

ψ(x+ L) = ψ(x), x ∈ R. (4.13)

In order to prove that system (4.7) admits a single rightward spreading speed, we

impose the following assumption:
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(H5) lim supµ→0+
λ2(µ)
µ
≤ c∗1+, where c∗1+ is the rightward spreading speed of (4.10).

By virtue of Lemma 4.4.2, it follows that in the case where either Liu = ∂
∂x

(di(x)∂u
∂x

)

with di ∈ C1+ν(R), or all the coefficient functions of system (4.7) are even except gi is

odd, i = 1, 2, (H5) is automatically satisfied provided that (H1) and (H2) hold true.

Theorem 4.2.2. Assume that (H1)–(H5) hold. Then the following statements are

valid for system (4.7):

(i) If φ ∈ Cβ, 0 ≤ φ ≤ ω � β for some ω ∈ Cperβ , and φ(x) = 0,∀x ≥ H, for some

H ∈ R, then limt→∞,x≥ct u(t, x, φ) = 0 for any c > c+.

(ii) If φ ∈ Cβ and φ(x) ≥ σ, ∀x ≤ K, for some σ ∈ R2 with σ � 0 and K ∈ R,

then limt→∞,x≤ct(u(t, x, φ)− β(x)) = 0 for any c < c+.

Proof. In view of Theorem 4.5.1, it suffices to show that c+ = c∗+. If this is not valid,

then the definition of c+ and c∗+ implies that c+ > c∗+. By Theorem 4.5.2 (1) and (3),

it follows that system (4.7) admits an L-periodic traveling wave (U1(x−c∗+t, x), U2(x−

c∗+t, x)) connecting (u∗1(x), u∗2(x)) to (0, u∗2(x)) with Ui(ξ, x)(i = 1, 2) being continuous

and nonincreasing in ξ. Therefore, U2 ≡ u∗2(x), and U1(x − c∗+t, x) is an L-periodic

traveling wave connecting u∗1(x) to 0. This implies c∗+ ≥ c∗1+ where c∗1+ is the rightward

spreading of (4.10). By [5, Theorem 1.1], it follows that c∗1+ = infµ>0
λ1(µ)
µ

, where

λ1(µ) is the principal eigenvalue of the scalar elliptic eigenvalue problem:

λψ = d1(x)ψ′′ − (2µd1(x) + g1(x))ψ′ + (d1(x)µ2 + g1(x)µ+ b1(x))ψ, x ∈ R,

ψ(x+ L) = ψ(x), x ∈ R. (4.14)

For any given c1 ∈ (c∗+, c+), there exists µ1 > 0 such that c1 = λ1(µ1)
µ1

. Let φ∗1(x) be

the positive L-periodic eigenfunction associated with the principal eigenvalue λ1(µ1)
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of (4.14). Then it easily follows that

u1(t, x) := e−µ1(x−c1t)φ∗1(x) = e−µ1xeλ1(µ1)tφ∗1(x), t ≥ 0, x ∈ R,

is a solution of the linear equation

∂u1

∂t
= L1u1 + b1(x)u1.

Since c∗1+ < c1 and (H5) holds, we can choose a small number µ2 ∈ (0, µ1) such that

c2 := λ2(µ2)
µ2

< c1. Let φ∗2(x) be the positive L-periodic eigenfunction associated with

the principal eigenvalue λ2(µ2) of (4.13). It is easy to see that

u2(t, x) := e−µ2(x−c2t)φ∗2(x) = e−µ2xeλ2(µ2)tφ∗2(x)

is a solution of the linear equation

∂u2

∂t
= L2u2 + (b2(x)− a22(x)u∗2(x))u2. (4.15)

Since c1 > c2, it follows that the function

v2(t, x) := e−µ2(x−c1t)φ∗2(x) = eµ2(c1−c2)tu2(t, x), t ≥ 0, x ∈ R,

satisfies
∂v2

∂t
≥ L2v2 + (b2(x)− a22(x)u∗2(x))v2. (4.16)

Define two wave-like functions:

u1(t, x) := min{m0e
−µ1(x−c1t)φ∗1(x), u∗1(x)}, t ≥ 0, x ∈ R, (4.17)

and

u2(t, x) := min{q0e
−µ2(x−c1t)φ∗2(x), u∗2(x)}, t ≥ 0, x ∈ R, (4.18)
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where

q0 := max
x∈[0,L]

u∗2(x)

φ∗2(x)
> 0, m0 := min

x∈[0,L]

q0a22(x)φ∗2(x)

a21(x)φ∗1(x)
> 0.

Now, we are ready to verify that (u1, u2) is an upper solution to system (4.7). Indeed,

for all x− c1t >
1
µ1

ln
m0φ∗1(x)

u∗1(x)
, we have u1(t, x) = m0e

−µ1(x−c1t)φ∗1(x), and hence,

∂u1

∂t
− L1u1 − u1(b1(x)− a12(x)u∗2(x)− a11(x)u1 + a12(x)u2)

≥ ∂u1

∂t
− L1u1 − b1(x)u1 = 0.

For all x− c1t <
1
µ1

m0φ∗1(x)

u∗1(x)
, we obtain u1(t, x) = u∗1(x), and hence,

∂u1

∂t
− L1u1 − u1(b1(x)− a12(x)u∗2(x)− a11(x)u1 + a12(x)u2)

≥ ∂u1

∂t
− L1u1 − u1(b1(x)− a11(x)u1) = 0.

On the other hand, for all x− c1t>
1
µ2

ln
q0φ∗2(x)

u∗2(x)
>0, it follows that

u2(t, x) = q0e
−µ2(x−c1t)φ∗2(x),

which satisfies inequality (4.16). Since

u1(t, x) ≤ m0e
−µ1(x−c1t)φ∗1(x), ∀t ≥ 0, x ∈ R,

and µ2 ∈ (0, µ1), we obtain

∂u2

∂t
− L2u2 − a21(x)(u∗2(x)− u2)u1 − u2(b2(x)− 2a22(x)u∗2(x) + a22(x)u2)

= ∂u2

∂t
− L2u2 − (b2(x)− a22(x)u∗2(x))u2 + (u∗2(x)− u2)(a22(x)u2 − a21(x)u1)

≥ (u∗2(x)− u2)e−µ1(x−c1t)a21(x)φ∗1(x)(
q0a22(x)φ∗2(x)

a21(x)φ∗1(x)
−m0)

≥ 0.

For all x− c1t <
1
µ2

ln
q0φ∗2(x)

u∗2(x)
, we have u2(t, x) = u∗2(x). Therefore,

∂u2

∂t
− L2u2 − a21(x)(u∗2(x)− u2)u1 − u2(b2(x)− 2a22(x)u∗2(x) + a22(x)u2)

= −L2u
∗
2 − u∗2(b2(x)− a22(x)u∗2) = 0.
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It then follows that u = (u1, u2) is a continuous upper solution of system (4.7).

Let φ ∈ Cβ with φ(x) ≥ σ, ∀x ≤ K and φ(x) = 0, ∀x ≥ H, for some σ ∈ R2

with σ � 0 and K,H ∈ R. By the arguments in [95, Lemma 2.2] and the proof of

Theorem 4.5.1, as applied to Q̂1, it follows that for any c < c+, there exists δ(c) > 0

such that

lim infn→∞,x≤cn|u(n, x, φ)| ≥ δ(c) > 0. (4.19)

Moreover, there exists a sufficiently large positive constant A ∈ LZ such that

φ(x) ≤ u(0, x− A) := ψ(x), ∀x ∈ R.

By the translation invariance of Qt, it follows that u(t, x−A) is still an upper solution

of system (4.7), and hence,

0 ≤ u(t, x, φ) ≤ u(t, x, ψ) = u(t, x− A), ∀x ∈ R, t ≥ 0. (4.20)

Fix a number ĉ ∈ (c1, c+). Letting t = n, x = ĉn and n→∞ in (4.20), together with

(4.19), we have

0 < δ(ĉ) ≤ lim inf
n→∞

|u(n, ĉn, φ)| ≤ lim
n→∞

|u(n, ĉn− A)| = 0,

which is a contradiction. Thus, c∗+ = c+.

Note that the leftward case can be addressed in a similar way. Indeed, by making

a change of variable v(t, x) = u(t,−x) for system (4.7), we obtain similar results for

the rightward case of the resulting system, which is the leftward case for system (4.7).

Remark 4.2.1. In the case where either Liu = ∂
∂x

(di(x)∂u
∂x

) with di ∈ C1+ν(R) in sys-

tem (4.7), i = 1, 2, or all the coefficient functions of system (4.7) are even except gi is

odd, i = 1, 2, it follows from Lemma 4.4.2 that system (4.7) admits a single rightward

spreading speed which coincides with the minimal rightward wave speed provided that

(H1)–(H3) hold.
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4.3 Linear determinacy of spreading speed

In this section, we give a set of sufficient conditions for the rightward spreading speed

to be determined by the linearization of system (4.7) at Ê2 = (0, 0), which is

∂v1

∂t
=L1v1 + (b1(x)− a12(x)u∗2(x))v1, (4.21)

∂v2

∂t
=L2v2+a21(x)u∗2(x)v1 +(b2(x)−2a22(x)u∗2(x))v2, t > 0, x ∈ R.

Clearly, under (H2) the following scalar equation

∂u

∂t
= L1u+ u(b1(x)− a12(x)u∗2(x)− a11(x)u), t > 0, x ∈ R, (4.22)

admits a rightward spreading speed (also the minimal rightward wave speed) c0
+ =

inf
µ>0

λ0(µ)
µ

(see, e.g., [5, Theorem 1.1]), where λ0(µ) is the principle eigenvalue of the

following elliptic eigenvalue problem:

λψ=d1(x)ψ′′−(2µd1(x) + g1(x))ψ′+(d1(x)µ2+g1(x)µ+b1(x)−a12(x)u∗2(x))ψ, x ∈ R,

ψ(x+ L) = ψ(x), x ∈ R. (4.23)

The next result shows that c0
+ is a lower bound of the slowest spreading c∗+ of system

(4.7).

Proposition 4.3.1. Let (H1)–(H3) hold. Then c∗+ ≥ c0
+.

Proof. In the case where c+ > c∗+, by the same arguments as in Theorem 4.2.2,

we see that c∗+ ≥ c∗1+, where c∗1+ is the rightward spreading speed of (4.10). Since

b1(x) > b1(x) − a12(x)u∗2(x),∀x ∈ R, by Lemma 4.4.1 with d(x) = d1(x) and g(x) =

g1(x),∀x ∈ R, it is easy to see that λ1(µ) > λ0(µ),∀µ ≥ 0, where λ1(µ) is the principal

eigenvalue of (4.14). Thus, we have c∗+ ≥ c∗1+ > c0
+.
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In the case where c+ = c∗+, let u(t, ·, φ) = (u1(t, ·, φ), u2(t, ·, φ)) be the solution

of system (4.7) with u(0, ·) = φ = (φ1, φ2) ∈ Cβ. Then the positivity of the solution

implies that

∂u1

∂t
≥ L1u1 + u1(b1(x)− a12(x)u∗2(x)− a11(x)u1), t > 0, x ∈ R.

Let v(t, x, φ1) be the unique solution of (4.22) with v(0, ·) = φ1. Then the comparison

principle yields that

u1(t, x, φ) ≥ v(t, x, φ1), ∀t ≥ 0, x ∈ R. (4.24)

Since λ(d1, g1, b1 − a12u
∗
2) > 0, Proposition 4.1.1 implies that there exists a unique

positive L-periodic steady state v0(x) of (4.22). Let φ0 = (φ0
1, φ

0
2) ∈ Cβ be chosen

as in Theorem 4.2.2 (i) and (ii) such that φ0
1 ≤ v0. Assume, by contradiction, that

c∗+ < c0
+. Then we can fix a real number ĉ ∈ (c+, c

0
+). Thus, Theorem 4.2.2 implies

that limt→∞,x≥ĉt u1(t, x, φ0) = 0. By Theorem 4.5.1, as applied to system (4.22), we

further obtain limt→∞,x≤ĉt(v(t, x, φ0
1)− v0(x)) = 0. However, letting x = ĉt in (4.24),

we get limt→∞,x=ĉt(v(t, x, φ0
1)) = 0, a contradiction.

For any given µ ∈ R, letting v(t, x) = e−µxu(t, x) in (4.21), we then have

∂u1

∂t
= L1u1−2µd1(x)

∂u1

∂x
+(d1(x)µ2+g1(x)µ+b1(x)−a12(x)u∗2(x))u1,

∂u2

∂t
= L2u2−2µd2(x)

∂u2

∂x
+ a21(x)u∗2(x)u1 (4.25)

+(d2(x)µ2+g2(x)µ+b2(x)−2a22(x)u∗2(x))u2, t > 0, x ∈ R.

Substituting u(t, x) = eλtφ(x) into (4.25), we obtain the following periodic eigenvalue
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problem:

λφ1 = d1(x)φ′′1−(2µd1(x) + g1(x))φ′1 + (d1(x)µ2+g1(x)µ+b1(x)−a12(x)u∗2(x))φ1,

λφ2 = d2(x)φ′′2−(2µd2(x) + g2(x))φ′2 + a21(x)u∗2(x)φ1

+
(
d2(x)µ2+g2(x)µ+b2(x)−2a22(x)u∗2(x)

)
φ2, x ∈ R, (4.26)

φi(x) = φi(x+ L), ∀x ∈ R, i = 1, 2.

Let λ(µ) be the principal eigenvalue of the following periodic eigenvalue problem:

λψ=d2(x)ψ′′−(2µd2(x)+g2(x))ψ′

+
(
d2(x)µ2+g2(x)µ+b2(x)−2a22(x)u∗2(x)

)
ψ, x ∈ R, (4.27)

ψ(x)=ψ(x+ L), x ∈ R.

Then there exists µ0 > 0 such that c0
+ = λ0(µ0)

µ0
. Now we introduce the following

condition:

(M1) λ0(µ0) > λ(µ0).

Proposition 4.3.2. Let (H1)–(H3) and (M1) hold. Then the periodic eigenvalue

problem (4.26) with µ = µ0 has a simple eigenvalue λ0(µ0) associated with a positive

L-periodic eigenfunction φ∗ = (φ∗1, φ
∗
2).

Proof. Clearly, there exists an L-periodic eigenfunction φ∗1 � 0 associated with the

principle eigenvalue λ0(µ0) of (4.22). Since the first equation of (4.26) is decoupled

from the second one, it suffices to show that λ0(µ0) has a positive eigenfunction

φ∗ = (φ∗1, φ
∗
2) in (4.26), where φ∗2 is to be determined. Let U(t) be the solution

semigroup generated by the following linear scalar partial differential equation:

∂u

∂t
=L2u−2µ0d2(x)

∂u

∂x
+(d2(x)µ2

0+g2(x)µ0+b2(x)−2a22(x)u∗2(x))u, t > 0, x ∈ R,

u(0, ·) = ϕ ∈ Y.
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It is easy to see that U(t) is a positive and compact semigroup on Y with its generator

A = L2 − 2µ0d2(x)
∂

∂x
+ (d2(x)µ2

0+g2(x)µ0+b2(x)−2a22(x)u∗2(x)).

By [86, Theorem 3.12], A is resolvent-positive and

(λI − A)−1φ =

∫ ∞
0

e−λtU(t)φdt, ∀λ > s(A), φ ∈ Y,

where s(A) is the spectral bound of A. Note that λ(µ0) is the principal eigenvalue

of (4.27), that is, s(A) = λ(µ0). Since λ0(µ0) > λ(µ0) = s(A), we can define φ∗2 =

(λ0(µ0)I−A)−1a21u
∗
2φ
∗
1 � 0. It then follows that (φ∗1, φ

∗
2) satisfies (4.26) with µ = µ0.

Since λ0(µ0) is a simple eigenvalue for (4.22), we see that so is λ0(µ0) for (4.26).

From Proposition 4.3.2, it is easy to see that for any given M > 0, the function

U(t, x) = Me−µ0xeλ0(µ0)tφ∗(x), t ≥ 0, x ∈ R, (4.28)

is a positive solution of system (4.21). In order to obtain an explicit formula for the

spreading speeding c+, we need the following additional condition:

(M2)
φ∗1(x)

φ∗2(x)
≥ max

{
a12(x)
a11(x)

, a22(x)
a21(x)

}
, ∀x ∈ R.

Now we are in a position to show that system (4.7) admits a single rightward spreading

speed c+, which is linearly determinate.

Theorem 4.3.1. Let (H1)–(H3) and (M1)–(M2) hold. Then c+ = c∗+ = c0
+ =

infµ>0
λ0(µ)
µ

.

Proof. First, we verify that U(t, x), as defined in (4.28), is an upper solution of system
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(4.7). Since U1

U2
=

φ∗1
φ∗2

and (M2) holds true, it follows that

∂U1

∂t
−L1U1 − U1(b1(x)− a12(x)u∗2(x)− a11(x)U1 + a12(x)U2)

= a11(x)U1U2

(
U1

U2

− a12(x)

a11(x)

)
= a11(x)U1U2

(
φ∗1(x)

φ∗2(x)
− a12(x)

a11(x)

)
≥ 0, (4.29)

and

∂U2

∂t
−L2U2−a21(x)U1(u∗2(x)−U2)−U2(b2(x)−2a22(x)u∗2(x)+a22(x)U2).

= a21(x)U
2

2

(
U1

U2

− a22(x)

a21(x)

)
= a21(x)U

2

2

(
φ∗1(x)

φ∗2(x)
− a22(x)

a21(x)

)
≥ 0. (4.30)

Thus, U(t, x) is an upper solution of (4.7). Choose some φ0 ∈ Cβ satisfying the

conditions in Theorem 4.2.2 (i) and (ii). Then there exists a sufficiently large number

M0 > 0 such that

0 ≤ φ0(x) ≤M0e
−µ0xφ∗(x) = U(0, x), ∀x ∈ R.

Let W (t, x) be the unique solution of system (4.7) with W (0, ·) = φ0. Then the

comparison principle, together with the fact that c0
+µ0 = λ0(µ0), implies that

0≤W (t, x)≤U(t, x)=M0e
−µ0xeλ0(µ0)tφ∗(x)=M0e

−µ0(x−c0+t)φ∗(x), ∀t ≥ 0, x ∈ R.

It follows that for any given ε > 0, there holds

0 ≤ W (t, x) ≤ U(t, x) ≤M0e
−µ0εtφ∗(x), ∀t ≥ 0, x ≥ (c0

+ + ε)t,

and hence,

lim
t→∞,x≥(c0++ε)t

W (t, x) = 0.
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By Theorem 4.2.2 (ii), we obtain c∗+ ≤ c0
+ + ε. Letting ε → 0, we have c∗+ ≤ c0

+.

Assume, by contradiction, that c+ > c∗+. Then the proof of Proposition 4.3.1 shows

that c∗+ > c0
+, a contradiction. This implies that c+ = c∗+. In view of Proposition

4.3.1, it follows that c+ = c∗+ = c0
+.

To finish this section, we consider the following classical Lotka-Volterra competi-

tion model:

∂u1

∂t
= d1∆u1 + r1u1(1− u1 − a1u2), (4.31)

∂u2

∂t
= d2∆u2 + r2u2(1− a2u1 − u2), t > 0, x ∈ R,

where all parameters are positive constants. This system was investigated in [51]. By

straightforward computations (see, e.g., [51]), it follows that if a1 < 1, then there are

only three constant steady states E0 = (0, 0), E1 = (1, 0) and E2 = (0, 1), and hence,

(H3) is valid. Since λ(d2, 0, r2) = r2 > 0 and λ(d1, 0, r1(1− a1)) = r1(1− a1) > 0, we

see that (H1) and (H2) are also valid. Moreover, (H4) and (H5) are automatically

satisfied due to Lemma 4.4.2. Thus, system (4.31) admits a single spreading speed

c+ no matter whether it is linearly determinate.

Next, we find some conditions under which (M1)–(M2) hold for system (4.31).

By substituting di(x) = di, bi(x) = ri, aii(x) = ri, i = 1, 2, a12(x) = r1a1, and

a21(x) = r2a2 into system (4.7), we can reduce the eigenvalue problems (4.23) and

(4.27) to

λψ=d1ψ
′′−2µd1ψ

′+(d1µ
2+r1−r1a1)ψ, x ∈ R,

ψ(x+ L) = ψ(x), x ∈ R, (4.32)
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and

λψ = d2ψ
′′−2µd2ψ

′ +
(
d2µ

2− r2

)
ψ, x ∈ R,

ψ(x) = ψ(x+ L), x ∈ R. (4.33)

Then it is easy to see that two principle eigenvalues

λ0(µ) = d1µ
2 + r1 − r1a1, λ(µ) = d2µ

2 − r2

have positive constant eigenfunctions. By virtue of

c0
+ = inf

µ>0

λ0(µ)

µ
= min

µ>0

{
d1µ+

r1(1− a1)

µ

}
,

it follows that

c0
+ = 2

√
d1r1(1− a1), µ0 =

√
r1(1− a1)

d1

.

Thus, (M1) is equivalent to

λ0(µ0) = 2r1(1− a1) >
d2r1(1− a1)

d1

− r2 = λ(µ0).

On the other hand, the eigenvalue problem (4.26) can be simplified as

λφ1 = d1φ
′′
1 − 2µd1φ

′
1 + (d1µ

2 + r1 − r1a1)φ1,

λφ2 = d2φ
′′
2−2µd2φ

′
2 + a2r2φ1 + (d2µ

2 − r2)φ2, x ∈ R, (4.34)

φi(x) = φi(x+ L), ∀x ∈ R, i = 1, 2.

Substituting (φ∗1, φ
∗
2) = (1, k) into the second equation of (4.34), we get

k =
a2

(1− a1) r1
r2

(2− d2

d1
) + 1

> 0.

It then follows that (M2) is equivalent to

φ∗1
φ∗2

=
(1− a1) r1

r2
(2− d2

d1
) + 1

a2

≥ max

{
a1,

1

a2

}
,
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and hence,

(1− a1)
r1

r2

(2− d2

d1

) + 1 ≥ a1a2,

(1− a1)
r1

r2

(2− d2

d1

) ≥ 0,

that is,

d2

d1

≤ 2,

a1a2 − 1

1− a1

≤ r1

r2

(2− d2

d1

), (4.35)

which also guarantees that (M1) holds. Thus, under condition (4.35), we have c+ =

c0
+ = 2

√
d1r1(1− a1). This result is consistent with [51, Theorem 2.1].

Remark 4.3.1. Consider a more general reaction-diffusion competition system in a

periodic habitat, that is,

∂u1

∂t
= L1u1 + u1f1(x, u1, u2), (4.36)

∂u2

∂t
= L2u2 + u2f2(x, u1, u2), t > 0, x ∈ R,

where the operator Li := a
(i)
2 (x) ∂2

∂x2 + a
(i)
1 (x) ∂

∂x
with a

(i)
2 (x) > 0,∀x ∈ R, i.e., Li is

uniformly elliptic, i = 1, 2. Assume that a
(i)
j (x) and fi(x, u1, u2) are periodic in x

with the same period and Hölder continuous in x of order ν ∈ (0, 1), 1 ≤ i, j ≤ 2,

and fi(x, u1, u2) are differentiable with respect to u1 and u2, i = 1, 2. Moreover,

∂u1f1(x, u1, 0) < 0 and ∂u2f2(x, 0, u2) < 0, ∀x ∈ R, and there exists M1 > 0 and

M2 > 0 such that f1(x,M1, 0) ≤ 0, f2(x, 0,M2) ≤ 0, ∂u2f1(x, u1, u2) < 0 and

∂u1f2(x, u1, u2) < 0 for all (x, u1, u2) ∈ R × [0,M1] × [0,M2]. Then we can obtain

analogous results on traveling waves and spreading speeds under similar assumptions

to (H1)–(H5) and (M1)–(M2).
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4.4 An application

In this section, we study the spatially periodic version of a well-known reaction dif-

fusion model [16,49]:

∂u1

∂t
= d1∆u1 + u1(a(x)− u1 − cu2), (4.37)

∂u2

∂t
= d2∆u2 + u2(a(x)− u1 − u2), t > 0, x ∈ R,

where 0 < d1 < d2, 0 ≤ c ≤ 1 and a(x) is an L-periodic continuous function for some

L > 0. Note that model (4.37) with c = 1 was proposed in [16].

For convenience, we use the same notations as in sections 2 and 3. We first present

some results on the principle eigenvalue λm(µ) of (4.38).

Lemma 4.4.1. Assume that L-periodic functions d, g,m ∈ Cν(R)(ν ∈ (0, 1)). Let

λm(µ)(µ ∈ R) be the principle eigenvalue of the following elliptic eigenvalue problem:

λψ = d(x)ψ′′ − (2µd(x) + g(x))ψ′ + (d(x)µ2 + g(x)µ+m(x))ψ, x ∈ R,

ψ(x+ L) = ψ(x), x ∈ R. (4.38)

Then the following statements are valid:

(a) If m1(x) ≥ m2(x), ∀x ∈ R, and m1(x) 6≡ m2(x), then λm1(µ) > λm2(µ), ∀µ ∈

R.

(b) λm(µ) is a convex function of µ on R.

(c) If either d,m are even and g is odd, or d ∈ C1+ν(R)(ν ∈ (0, 1)) and g(x) =

−d′(x),∀x ∈ R, then λm(µ) = λm(−µ),∀µ ∈ R.

Proof. By similar arguments to those in [31, Lemma 15.5] , it is easy to prove that

(a) holds. (b) follows from the same arguments as in [96, Proposition 4.1].
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In the case where d,m are even functions and g is odd, for any given µ ∈ R, let

ψ(x) be the positive and L-periodic eigenfunction associated with λm(µ). Then we

have

λm(µ)ψ(−x) =d(−x)ψ′′(−x)− (2µd(−x) + g(−x))ψ′(−x) (4.39)

+ (d(−x)µ2 + g(−x)µ+m(−x))ψ(−x), ∀x ∈ R.

Letting ϕ(x) = ψ(−x), x ∈ R, we obtain ϕ′(x) = −ψ′(−x), ϕ′′(x) = ψ′′(−x),∀x ∈ R.

Since d(x) = d(−x),m(x) = m(−x), g(x) = −g(−x),∀x ∈ R, it follows that

λm(µ)ϕ = d(x)ϕ′′ + (2µd(x)− g(x))ϕ′ + (d(x)µ2 − g(x)µ+m(x))ϕ, ∀x ∈ R.

By the uniqueness of the principal eigenvalue, we have λm(−µ) = λm(µ),∀µ ∈ R.

In the case where d ∈ C1+ν(R)(ν ∈ (0, 1)) and −g(x) = d′(x),∀x ∈ R, for

any given µ ∈ R, let ψ(x) and φ(x) be the positive and L-periodic eigenfunctions

associated with λm(µ) and λm(−µ), respectively, that is,

(d(x)ψ′)′ − 2µd(x)ψ′ + (d(x)µ2 − d′(x)µ+m(x))ψ = λm(µ)ψ

and

(d(x)φ′)′ + 2µd(x)φ′ + (d(x)µ2 + d′(x)µ+m(x))φ = λm(−µ)φ.

Using integration by parts, we have∫ L

0

(d(x)ψ′(x))′φ(x)dx =

∫ L

0

(d(x)φ′(x))′ψ(x)dx,

and

−µ
∫ L

0
[2d(x)ψ′(x)φ(x) + d′(x)ψ(x)φ(x)]dx

= µ

∫ L

0
[2(d(x)φ(x))′ψ(x)− d′(x)ψ(x)φ(x)]dx

= µ

∫ L

0
[2d(x)φ′(x)ψ(x) + d′(x)φ(x)ψ(x)]dx.
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It then follows that

λm(µ)

∫ L

0

ψ(x)φ(x)dx = λm(−µ)

∫ L

0

φ(x)ψ(x)dx. (4.40)

Since
∫ L

0
ψ(x)φ(x)dx > 0, we have λm(µ) = λm(−µ),∀µ ∈ R.

Lemma 4.4.2. Assume that (H1) and (H2) hold. Then (H4) and (H5) are valid

provided that either all the coefficient functions of system (4.7) are even except gi is

odd, or di ∈ C1+ν(R)(ν ∈ (0, 1)) and gi(x) = −d′i(x),∀x ∈ R, i = 1, 2.

Proof. First, we prove that (H4) holds. Indeed, in either case, by Lemma 4.4.1(c)

with m(x) = b1(x) and d(x) = d1(x), it is easy to see that the principle λ1(µ) of

(4.14) is an even function of µ on R. Since λ1(µ) is convex on R and λ1(0) > 0, we

have λ1(µ) > 0,∀µ > 0. It follows that c∗1+ = infµ>0
λ1(µ)
µ

> 0. Similarly, we can show

that c∗2− > 0, this implies c∗1+ + c∗2− > 0.

To verify (H5), it suffices to show that limµ→0+
λ2(µ)
µ

= 0, where λ2(µ) is the

principal eigenvalue of (4.13). In the case where all the coefficient functions of (4.7)

are even except gi is odd, i = 1, 2, we have

d2(x)u∗′′2 (x) + g2(x)u∗′2 (x) + u∗2(x)(b2(x)− a22(x)u∗2(x)) = 0, x ∈ R.

Let u2(x) = u∗2(−x). Since d2, b2, a22 are even and g2 is odd, it follows that

d2(x)u′′2(x) + g2(x)u′2(x) + u2(x)(b2(x)− a22(x)u2(x)) = 0, x ∈ R.

This implies that u∗2(−x) is also an L-periodic positive steady state for scalar equation

(4.3) with d(x) = d2(x), g(x) = g2(x), c(x) = b2(x) and e(x) = a22(x), ∀x ∈ R. In

view of Proposition 4.1.1, the uniqueness of the L-periodic positive steady state im-

plies that u∗2(−x) = u∗2(x),∀x ∈ R. Taking d(x) = d2(x), m(x) = b2(x)− a22(x)u∗2(x),
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and g(x) = g2(x), or g(x) = −d′2(x) in (4.38), we see from Lemma 4.4.1(c) that in

two cases, λ2(µ) is an even function on R, and hence, λ′2(0) = 0. Since λ2(0) = 0, it

follows that limµ→0+
λ2(µ)
µ

= λ′2(0) = 0 < c∗1+.

Now we impose the following assumption on system (4.37):

(M) a(x) is non-constant, and a = 1
L

∫ L
0
a(x)dx ≥ 0.

Lemma 4.4.3. Let (M) hold. Then (H1)–(H3) are valid for system (4.37).

Proof. Let φ be the positive periodic eigenfunction associated with the principal eigen-

value λ(d1, 0, a), that is,

d1φ
′′ + a(x)φ = λ(d1, 0, a)φ.

Dividing the above equation by φ and integrating by parts on [0, L], we get

λ(d1, 0, a) =
1

L

∫ L

0

a(x)dx+ d1

∫ L

0

[
φ′(x)

φ(x)

]2

dx.

Since a(x) is non-constant, a simple computation shows that φ(x) is also non-constant.

Therefore, we have

λ(d1, 0, a) >
1

L

∫ L

0

a(x)dx ≥ 0.

Similarly, we can show that λ(d2, 0, a) > 0. It follows that (H1) holds, and hence,

system (4.37) has three L-periodic steady states E0 := (0, 0), E1 := (u∗1(x), 0) and

E2 := (0, u∗2(x)) in P+. Note that

d2u
∗′′
2 (x) + u∗2(x)(a(x)− u∗2(x)) = 0, x ∈ R. (4.41)

It follows that λ(d2, 0, a−u∗2) = 0. If a(x)−u∗2(x) is a constant, then a straightforward

computation shows that u∗2 must be a positive constant eigenfunction associated with
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λ(d2, 0, a − u∗2). Therefore, a(x) is also a constant, a contradiction. This shows that

a(x)− u∗2(x) is non-constant.

Note that for the eigenvalue problem (4.2) with d1(x) = d > 0 and g ≡ 0, we have

the variational formula for the principle eigenvalue (see, e.g., [6]):

λ(d, 0, h) = min
φ∈E

−d
∫ L

0
[φ′(x)]2dx+

∫ L
0
h(x)φ2(x)dx∫ L

0
φ2(x)dx

,

where E := {φ ∈ C2(R) : φ(x) = φ(x + L) > 0, ∀x ∈ R}. It easily follows that if

h(x) is non-constant, then λ(d1, 0, h) > λ(d2, 0, h) provided d2 > d1 > 0. Therefore,

we have λ(d1, 0, a − cu∗2) > λ(d2, 0, a − u∗2) = 0, that is, (H2) is valid for c ∈ [0, 1].

To verify (H3), we suppose, by contradiction, that there is an L-periodic coexistence

steady state (u0, v0)� 0 in P+. Then we have

d1u
′′

0(x) + u0(x)(a(x)− u0(x)− cv0(x)) = 0, x ∈ R,

d2v
′′

0 (x) + v0(x)(a(x)− u0(x)− v0(x)) = 0, x ∈ R.

This implies that λ(d1, 0, a − u0 − cv0) = λ(d2, 0, a − u0 − v0) = 0. By way of

contradiction, we further show that a− u0 − cv0 is non-constant, ∀c ∈ [0, 1]. It then

follows that

λ(d1, 0, a− u0 − cv0) > λ(d2, 0, a− u0 − cv0) ≥ λ(d2, 0, a− u0 − v0), ∀c ∈ [0, 1],

a contradiction.

As a consequence of Lemma 4.4.3 and Theorem 4.1.1, we have the following result.

Theorem 4.4.1. Let (M) hold. Then E1 := (u∗1(x), 0) is globally asymptotically stable

for all initial values φ = (φ1, φ2) ∈ P+ with φ1 6≡ 0.
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For simplicity, we transfer system (4.37) into the following cooperative system:

∂u1

∂t
= d1

∂2u1

∂x2
+ u1(a(x)− cu∗2(x)− u1 + cu2), (4.42)

∂u2

∂t
= d2

∂2u2

∂x2
+ u1(u∗2(x)− u2) + u2(a(x)− 2u∗2(x) + u2), t > 0, x ∈ R.

Let u∗ = (u∗1(·), u∗2(·)). Define a family of operators {Qt}t≥0 on Cu∗ by Qt(φ) :=

u(t, ·, φ), where u(t, ·, φ) is the unique solution of system (4.42) with u(0, ·) = φ ∈ Cu∗ .

Let {Q̂t}t≥0 be defined as in (4.48) and c+ be denoted by (4.49) with P̃ = Q̂1. By

virtue of Lemma 4.4.1, Lemma 4.4.2 and Proposition 4.3.1, we see that c+ ≥ c0
+ > 0.

The next result is the consequence of Theorem 4.2.2 and Remark 4.2.1.

Theorem 4.4.2. Assume that (M) holds. Let u(t, ·, φ) be the solution of system

(4.42) with u(0, ·) = φ ∈ Cu∗. Then the following statements are valid for system

(4.42):

(i) If φ ∈ Cβ, 0 ≤ φ ≤ ω � β for some ω ∈ Cperβ , and φ(x) = 0,∀x ≥ H, for some

H ∈ R, then limt→∞,x≥ct u(t, x, φ) = 0 for any c > c+.

(ii) If φ ∈ Cβ and φ(x) ≥ σ, ∀x ≤ K, for some σ ∈ R2 with σ � 0 and K ∈ R,

then limt→∞,x≤ct(u(t, x, φ)− β(x)) = 0 for any c ∈ (0, c+).

In view of Theorem 4.2.1, we have the following result on periodic traveling waves

for system (4.37).

Theorem 4.4.3. Let (M) hold. Then for any c ≥ c+, system (4.37) has an L-periodic

rightward traveling wave (U(x− ct, x), V (x− ct, x)) connecting (u∗1(x), 0) to (0, u∗2(x))

with the wave profile component U(ξ, x) being continuous and non-increasing in ξ,

and V (ξ, x) being continuous and non-decreasing in ξ. While for any c ∈ (0, c+),

system (4.37) admits no L-periodic rightward traveling wave connecting (u∗1(x), 0) to

(0, u∗2(x)).
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It is not easy to verify conditions (M1) and (M2). However, motivated by [58,83,

84], we can formally compute the lower bound c0
+ in the case where

d1 = 1, d2 > 1, a(x) =

 1, ml < x < ml + l1,

a < 1, ml − l2 ≤ x < ml, m ∈ Z,

for system (4.37) with l = l1 + l2 and a = l1+al2
l

> 0. It is easy to see that u∗1(x) ≈

a(x), u∗2(x) ≈ a(x), and hence, (4.23) becomes

λψ=ψ′′−2µψ′+(µ2+(1− c))ψ, ml < x < ml + l1,

λψ=ψ′′−2µψ′+(µ2+a(1− c))ψ, ml + l1 < x < (m+ 1)l. (4.43)

The matching conditions are

lim
x→(ml)−

ψ(x) = lim
x→(ml)+

ψ(x), lim
x→(ml+l1)−

ψ(x) = lim
x→(ml+l1)+

ψ(x), m ∈ Z,

and

lim
x→(ml)−

ψ′(x) = lim
x→(ml)+

ψ′(x), lim
x→(ml+l1)−

ψ′(x) = lim
x→(ml+l1)+

ψ′(x), m ∈ Z,

Set

φ(x) = A1e
α1x + A2e

α2x, x ∈ [0, l1], (4.44)

φ(x) = A3e
β1(l−x) + A4e

β2(l−x), x ∈ [l1, l], (4.45)

where α1,2 = µ ± q1, β1,2 = −µ ± q2, q1 =
√
λ− (1− c), and q2 =

√
λ− a(1− c).

Then the matching conditions yield the following linear relationship between the

coefficients 
1 1 −1 −1

eα1l1 eα2l2 −eβ1l2 −eβ2l2

q1 −q1 q2 −q2

q1e
α1l1 −q1e

α2l1 q2e
β1l2 −q2e

β2l2




A1

A2

A3

A4

 = 0.
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Since we look for positive eigenfunctions, the determinant of the above matrix must

be zero. Accordingly, straightforward computations show that

cosh(µl) = cosh(q1l1) cosh(q2l2) +
q2

1 + q2
2

2q1q2

sinh(q1l1) sinh(q2l2) := G(λ).

In view of

cosh−1 z = log{z + (z2 − 1)1/2}, z > 1,

we then have

µ(λ) =
1

l
log{G(λ) +

√
[G(λ)]2 − 1}.

Let λ0 be the solution of the following equation:

dµ(λ)

dλ

λ

µ(λ)
= 1,

and µ0 = µ(λ0). Thus, we obtain c0
+ = λ0

µ0
.

If l� 1, by using cosh z ≈ 1 + z2/2 and sinh z ≈ z, we get an approximation

1 + (µl)2/2 ≈ (1 + (q1l1)2/2)(1 + (q2l2)2/2) + l1l2
q2

1 + q2
2

2
,

and hence,

c0
+ = inf

µ>0

λ(µ)

µ
≈ inf

µ>0

{
µ+

(1− c)a
µ

}
.

It follows that c0
+ ≈ 2

√
(1− c)a, µ0 ≈

√
(1− c)a, a = l1+al2

l
> 0.

4.5 Appendix

In this section, we extend the abstract results in [19](see also section 2.2.2) and [55]

on spreading speeds and traveling waves to the case of a periodic habitat.

Let C be the set of all bounded and continuous functions from R to Rm with

m ≥ 1 and C+ = {φ ∈ C : φ(x) ≥ 0, ∀x ∈ R}. Clearly, any vector in Rm can be
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regarded as a function in C. For u = (u1, ..., um), w = (wm, ..., wm) ∈ C, we write

u ≥ w(u � w) provided uj(x) ≥ wj(x)(uj(x) > wj(x)),∀1 ≤ j ≤ m, x ∈ R, and

u > w provided u ≥ w but u 6= w. Assume that β is a strongly positive L-periodic

continuous function from R to Rm. Set

Cβ = {u ∈ C : 0 ≤ u(x) ≤ β(x), ∀x ∈ R}, Cperβ = {u ∈ Cβ : u(x) = u(x+ L), ∀x ∈ R}.

Let X = C([0, L],Rm) equipped with the maximum norm | · |X , X+ = C([0, L],Rm+ ),

Xβ = {u ∈ X : 0 ≤ u(x) ≤ β(x), ∀x ∈ [0, L]}, and Xβ = {u ∈ Xβ : u(0) = u(L)}.

Let BC(R, X) be the set of all continuous and bounded functions from R to X. Then

we define

X = {v ∈ BC(R, X) : v(s)(L) = v(s+ L)(0),∀s ∈ R},X+ = {v ∈ X : v(s) ∈ X+, ∀s ∈ R}

and

Xβ = {v ∈ BC(R, Xβ) : v(s)(L) = v(s+ L)(0),∀s ∈ R}.

Let

Kβ := {v ∈ BC(LZ, Xβ) : v(i)(L) = v(i+ L)(0), ∀i ∈ LZ}.

Clearly, any element in Xβ can be regarded as a constant function in Xβ, that is, any

element in Cperβ corresponds to a constant function in Xβ. We equip C and X with

the compact open topology, that is, un → u in C or X means that the sequence of

un(s) converges to u(s) in Rm or X uniformly for s in any compact set. We equip C

and X with the norm ‖ · ‖C and ‖ · ‖X , respectively, which are defined by

‖u‖C =
∞∑
k=1

max|x|≤k |u(x)|
2k

, ∀u ∈ C,

where | · | denotes the usual norm in Rm, and

‖u‖X =
∞∑
k=1

max|x|≤k |u(x)|X
2k

, ∀u ∈ X .
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Define a translation operator Ta by Ta[u](x) = u(x− a) for any given a ∈ LZ. Let

Q be a operator on Cβ, where β ∈ Int(C+) is L-periodic. In order to use the theory

developed in [19] and [55], we need the following assumptions on Q:

(D1) Q is L-periodic, that is, Ta[Q[u]] = Q[Ta[u]], ∀u ∈ Cβ, a ∈ LZ.

(D2) Q : Cβ → Cβ is continuous with respect to the compact open topology.

(D3) Q[Cβ] is precompact in Cβ with respect to the compact open topology.

(D4) Q : Cβ → Cβ is monotone (order preserving) in the sense that Q[u] ≥ Q[w]

whenever u ≥ w.

(D5) Q admits two L-periodic fixed points 0 and β in C+, and for any z ∈ Cperβ with

0� z ≤ β, there holds lim
n→∞

Qn[z](x) = β(x) uniformly for x ∈ R.

Define a homeomorphsim F : C → K by

F [φ](i)(θ) = φ(i+ θ), i ∈ LZ, θ ∈ [0, L],

and an operator P : Kβ → Kβ by

P = F ◦Q ◦ F−1. (4.46)

Next, we define P̃ : X → X by

P̃ [v](s) := P [v(·+ s)](0), ∀v ∈ X , s ∈ R. (4.47)

We further claim that

P̃ [v](s)(θ) = Q[vs](θ), ∀v ∈ X , s ∈ R, θ ∈ [0, L], (4.48)
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where vs ∈ C is defined by

vs(x) = v(s+ nx)(θx), ∀x = nx + θx ∈ R, nx = L
[x
L

]
, θx ∈ [0, L).

Indeed, since

F [φ](i)(θ) = φ(i+ θ), F−1[ψ](x) = ψ(nx)(θx),

it then follows that

P̃ [v](s) = P [v(·+ s)](0) = FQF−1[v(·+ s)](0)

= F [Q[v(n· + s)(θ·)]](0) = F [Q(vs)](0),

and hence,

P̃ [v](s)(θ) = F [Q(vs)](0)(θ) = Q[vs](θ).

In order to apply the results in [19] (see also section 2.2) to P̃ , we need to verify

that P̃ satisfies the following assumptions (C1)–(C5) in section 2.2 withM = X and

P̃ : X → X. Indeed, we prove the continuity assumption (A2) is valid for P̃ .

Proposition 4.5.1. Let β ∈ Int(C+) be L-periodic. Assume that Q : Cβ → Cβ satisfies

assumptions (D1)–(D5). Then P̃ : Xβ → Xβ satisfies assumptions (C1)–(C5) with

(C2) replaced by (A2).

Proof. For any c ∈ R, let u(·) = v(·+ c),∀v ∈ X . Then

T−cP̃ [v](s) = P̃ [v](s+ c)

= Q[vs+c] = Q[us] = P̃ [u(·)](s)

= P̃ [T−cv](s), ∀v ∈ X , s ∈ R,

and hence, (C1) holds. (A2) can be verified by similar arguments to those in [54,

Lemma 2.1], and (C4) directly follows from (D4). Clearly, 0 is the fixed point of P̃
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since Q(0) = 0. To verify (C5), we need to show that β|[0,L] is the fixed point of P̃ .

Note that β(x) is a constant function in X with x ∈ [0, L], we have

βs(·) = β(s+ n·)(θ·) = β(θ·), ∀s ∈ R.

Therefore, βs = β in C,∀s ∈ R. Moreover,

P̃ [β](s)(θ) = Q[βs](θ) = Q[β](θ) = β(θ), ∀θ ∈ [0, L].

This implies that P̃ [β] = β in X . Thus, (C5) follows from (D5). Now we prove (C3)

holds. For any given U ⊂ Xβ, it is easy to see that P̃ (U)(0) is uniformly bounded.

By (D3), it follows for any ε > 0, there exists δ > 0 such that

|Q(v)(x1)−Q(v)(x2)| < ε, ∀v ∈ Cβ

provided that x1, x2 ∈ [0, L] with |x1 − x2| < δ. So for any v ∈ U ,

|P̃ (v)(0)(θ1)− P̃ (v)(0)(θ2)| = |Q(v0)(θ1)−Q(v0)(θ2)| < ε

provided that θ1, θ2 ∈ [0, L] with |θ1 − θ2| < δ. This implies that P̃ (U)(0) is equicon-

tinuous. By Arzelà–Ascoli theorem, it follows that P̃ (U)(0) is precompact in Xβ̂, and

hence, α(P̃ (U)(0)) = 0, this proves (C3) with k = 0.

Let ω ∈ Xβ with 0 � ω � β. Choose φ ∈ Xβ such that the following properties

hold:

(i) φ(s) is nonincreasing in s;

(ii) φ(s) ≡ 0 for all s ≥ 0;

(iii) φ(−∞) = ω.
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Let c be a given real number. According to [93], we define an operator Rc by

Rc[a](s) := max{φ(s), T−cP̃ [a](s)},

and a sequence of functions an(c; s) by the recursion:

a0(c; s) = φ(s), an+1(c; s) = Rc[an(c; ·)](s).

As a consequence of similar arguments to those in [19, Lemmas 3.1–3.3], we have the

following result.

Lemma 4.5.1. The following statements are valid:

(1) For each s ∈ R, an(c, s) converges to a(c; s) in X, where a(c; s) is nonincreasing

in both c and s, and a(c; ·) ∈ Xβ.

(2) a(c,−∞) = β and a(c,+∞) existing in X is a fixed point of P̃ .

Following [19,95], we define two numbers

c∗+ = sup{c : a(c,+∞) = β}, c+ = sup{c : a(c,+∞) > 0}. (4.49)

Clearly, c∗+ ≤ c+ due to the monotonicity of a(c; ·) with respect to c. For each

t ≥ 0. Let Pt and P̃t be defined as in (4.46) and (4.48) with Q = Qt, respectively.

By [19, Remark 3.7], we have the following result.

Theorem 4.5.1. Let {Qt}t≥0 be a continuous-time semifow on Cβ with Qt[0] =

0, Qt[β] = β for all t ≥ 0 and {P̃t}t≥0 be defined as in (4.48) for each t ≥ 0, and c∗+

and c+ be denoted by (4.49) with P̃ = P̃1. Suppose that Qt satisfies (D1)–(D5) for

each t > 0. Then the following statements are valid:
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(i) If φ ∈ Cβ, 0 ≤ φ ≤ ω � β for some ω ∈ Cperβ , and φ(x) = 0,∀x ≥ H, for some

H ∈ R, then limt→∞,x≥ctQt(φ) = 0 for any c > c+.

(ii) If φ ∈ Cβ and φ(x) ≥ σ, ∀x ≤ K, for some σ � 0 and K ∈ R, then

limt→∞,x≤ct(Qt(φ)(x)− β(x)) = 0 for any c < c∗+.

Proof. Since {Qt}t≥0 is a continuous-time semifow on Cβ with Qt(0) = 0 and Qt(β) =

β for all t ≥ 0, it follows that {P̃t}t≥0 is a continuous-time semiflow on Xβ with

P̃t(0) = 0 and P̃t(β) = β for all t ≥ 0. By Proposition 4.5.1, P̃t satisfies (A1)–(A5).

For any φ ∈ Cβ, 0 ≤ φ ≤ ω � β with ω ∈ Cperβ , let

u(s)(θ) = [φ(ns + L+ θ)− φ(ns + θ)]θs + φ(ns + θ).

for s ∈ R, s = ns + θs, ns = L
[ s
L

]
, θs ∈ [0, L), θ ∈ [0, L]. Then u ∈ Xβ, and

0 ≤ u ≤ ω � β.

To prove statement (i), we suppose that there exists some H ∈ R such that

φ(x) = 0, x ≥ H and φ(x) 6≡ 0 (otherwise, it is trivial). Thus, u(s) = 0, s ≥ H + L.

By Theorem 2.2.7, it follows that limt→∞,s≥ct P̃t(u)(s) = 0 in X for any c > c+. On

the other hand, we have

P̃t[u](nx)(θx) = Qt[unx ](θx) = Qt[u(nx + n·)(θ·)](θx),

= Qt[φ(nx + ·)](θx) = Qt[φ(·)](x), x ∈ R,

and for s ∈ LZ, limt→∞,s≥ct P̃t(u)(s) = 0 in X holds true for any c > c+. Choose a

c′ ∈ (c+, c), we obtain

|Qt[φ](x)| ≤ |P̃t[u](nx)|X , ∀x ≥ ct, t ≥ L

c− c′
, (4.50)

and nx ≥ ct − L ≥ c′t. Letting t → ∞ in (4.50), we have limt→∞,x≥ctQt(φ) = 0 for

any c > c+.
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By similar arguments to the above, we can show that statement (ii) is also valid.

In view of the above theorem, we may regard c+ and c∗+, respectively, as the fastest

and slowest rightward spreading speeds for {Qt}t≥0 on Cβ. If c+ = c∗+, then we say

that this system admits a single rightward spreading speed.

Next, we address the existence and non-existence of traveling waves in a periodic

habitat for the continuous-time semiflow {Qt}t≥0. Given a continuous-time semiflow

{Qt}t≥0 on Cβ, we say that V (x− ct, x) is an L-periodic rightward traveling wave of

{Qt}t≥0 if V (·+ a, ·) ∈ Cβ, ∀a ∈ R, Qt[U ](x) = V (x− ct, x), ∀t ≥ 0, and V (ξ, x) is an

L-periodic function in x for any fixed ξ ∈ R, where U(x) := V (x, x). Moreover, we say

that V (ξ, x) connects β to 0 if limξ→−∞ |V (ξ, x)−β(x)| = 0 and limξ→+∞ |V (ξ, x)| = 0

uniformly for x ∈ R.

Since we have only shown the weak compactness (C3) for P̃t, we cannot directly

apply [19, Theorem 4.2](see also Theorem 2.2.6) to {P̃t}t≥0 on Xβ. However, {Pt}t≥0

on Kβ has the compactness because any element in Kβ is defined on the discrete

domain. Following the proof of Case 1 in [55, Theorem 4.2] and the argument in [19,

Theorem 3.8](see also Theorem 2.2.5), we obtain the existence and non-existence

of traveling waves for the discrete-time dynamical system {P n
1 } on Kβ. Thus, the

existence and non-existence of traveling waves for the continuous-time dynamical

system {Pt}t≥0 on Kβ follows from the arguments in [55, Theorem 4.4]. By similar

arguments to those in [55, Theorem 5.3], we can extend Theorem 2.2.6 to the case of

a periodic habitat so that the following result holds true.

Theorem 4.5.2. Let {Qt}t≥0 be a continuous-time semifow on Cβ with Qt[0] =

0, Qt[β] = β for all t ≥ 0, {P̃t}t≥0 be defined as in (4.48), and c∗+ and c+ be de-
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noted by (4.49) with P̃ = P̃1. Suppose that Qt satisfies (D1)–(D5) for each t > 0.

Then the following statements are valid:

(1) For any c ≥ c∗+, there is an L-periodic traveling wave W (x− ct, x) connecting β

to some equilibrium β1 ∈ Cper
β \{β} with W (ξ, x) be continuous and nonincreas-

ing in ξ ∈ R.

(2) If, in addition, 0 is an isolated equilibrium of {Qt}t≥0 in Cperβ , then for any

c ≥ c+, either of the following holds true:

(i) there exists an L-periodic traveling wave W (x − ct, x) connecting β to 0

with W (ξ, x) be continuous and nonincreasing in ξ ∈ R.

(ii) {Qt}t≥0 has two ordered equilibria α1,α2 ∈ Cper
β \{0, β} such that there exist

an L-periodic traveling wave W1(x− ct, x) connecting α1 and 0 and an L-

periodic traveling wave W2(x−ct, x) connecting β and α2 with Wi(ξ, x), i =

1, 2 be continuous and nonincreasing in ξ ∈ R.

(3) For any c < c∗+, there is no L-periodic traveling wave connecting β, and for any

c < c+, there is no L-periodic traveling wave connecting β to 0.



Chapter 5

Spatial Dynamics for Time-space

Periodic Monotone Systems

This chapter consists of two parts. In the first one, we establish the traveling waves

and spreading speeds for an ω-time periodic and L-space periodic monotone semiflow

{Qt}t∈T of monostable type on some subsets of the space C consisting of all contin-

uous functions from one-dimensional unbounded medium H to the Banach lattice

(X,X+, ‖ · ‖) with X = C(Ω,Rl), where Ω is a compact metric space, the evolution

time T is R+ or Z+, and the medium H is R or Z. In the second part, we address the

aforementioned questions by applying the obtained results to a time-space periodic

competition model in the medium R.

Let us first introduce the definition of traveling wave with speed c for time-space

periodic semiflows.

Definition 5.0.1. A function W : T × H × R → X is said to a traveling wave for
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the semiflow {Qt}t∈T provided that

Qt[W (0, ·, ·+ y)](x) = W (t, x, x+ y − ct), ∀t ∈ T , x ∈ H, y ∈ R, (5.1)

W (t, x, ξ) is ω-periodic in t, L-periodic in x, non-increasing in ξ, (5.2)

and

W (t, x,±∞) exist such that Qt[W (0, ·,±∞)] = W (t, ·,±∞). (5.3)

In (5.1), for any y ∈ R, W (0, ·, · + y) is understood as a one variable func-

tion which is an element of C. We say that W (t, x, ξ) connects ω-time periodic

and L-space periodic function β1 to β2 if limξ→−∞ |W (t, x, ξ) − β1(t, x)| = 0 and

limξ→+∞ |W (t, x, ξ)− β2(t, x)| = 0 uniformly in t ∈ T and x ∈ H.

One may observe the differences between Definitions 1.0.1 and 5.0.1. For instance,

the medium is RN in Definition 1.0.1 and R or Z in Definition 5.0.1. In section 5.1.1

we will explain how these two definitions are relevant, why (5.1) can hold for all

y ∈ R, and how the function W can be extended to obtain an entire orbit for the

given semiflow.

To address the interaction of time and space periods, we introduce the following

concept of almost pulsating waves.

Definition 5.0.2. An entire solution u(t, x) is said to be an almost pulsating wave

with speed c provided that it has the following two properties:

(i) If cω/L is a rational number, then there exist two integers p and q such that

cω/L = p/q and u(t+ qω, x+ pL) = u(t, x) for all (t, x) ∈ R2.

(ii) If cω/L is an irrational number, then there exists a sequence of integer pairs

(pk, qk) with qk → +∞ such that cω/L = limk→∞ pk/qk and

lim
k→∞

u(t+ qkω, x+ pkL) = u(t, x) (5.4)
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uniformly for all t ∈ R and x in any compact subset of R.

We say that the almost pulsating wave u(t, x) connects two time-space periodic solu-

tions β±(t, x) if limx−ct→±∞ |u(t, x)− β±(t, x)| = 0 uniformly for all (t, x) ∈ R2.

Such an almost pulsating wave will be constructed in terms of traveling wave

W (t, x, x− ct+ y) with appropriate y defined in Definition 5.0.1.

Our strategy to construct traveling waves and almost pulsating waves is based on

an evolution point of view. Firstly, for the Poincaré map Qω, we construct a family

of classical pulsating waves V (x, ξ + y) with any admissible speed c in the sense that

Qω[V (·, · + y)] = V (x, x − cω + y),∀y ∈ R, x ∈ H. Secondly, the evolution form

W (t, x, ξ) = Qt[V (·, ·+ ξ−x+ ct)](x) gives rise to the desired traveling wave. Lastly,

the periodic extension of W (t, x, x−ct+y) in the first variable is shown to be an almost

pulsating when y is appropriately chosen. An essential reason why such an approach

works is that the family of pulsating waves V (x, x − ct + y) has various properties.

Such V is corresponding to the abstract monotone function ψ in Lemmas 5.1.6 and

5.1.7. In fact, the map Qω in the periodic medium H is topologically conjugate to

another map Pω in the homogeneous discrete medium Z, and the abstract function ψ

is a traveling wave of the extension P̃ω of Pω to the homogeneous continuous medium

R. The spreading speed will be obtained by a similar idea but the phase space for P̃ω

is selected in a different way.

The mono-stability of the semiflow will be defined later in section 5.1.1 by using

its Poincaré map Qω restricted on the space of L-periodic functions. Since semi-trivial

time-space periodic solutions may exist in certain non-scalar evolution systems, we

need to introduce one more critical speed. In general, there are two kinds of spreading

speeds (and minimal wave speeds) for semiflows and they are not necessarily identical

or linearly determinate. For specific evolution systems, it is highly nontrivial to find
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appropriate conditions for the existence of a single spreading speed and its linear

determinacy. We will illustrate this by considering a two species competition model.

Our strategy to establish the minimal wave speed for the semiflow is the follow-

ing: (1) construct a map Pω in homogeneous medium Z such that it is topologically

conjugate to the Poincaré map Qω in periodic medium H; (2) extend Pω to a larger

map P̃ω in homogeneous medium R but with very weak compactness even if Qω is

compact; (3) show that P̃ω fits the framework of [19] to overcome the difficulty in-

duced by non-compactness; (4) construct the wave for {Qt}t∈T using the evolution

approach, which is applicable because the medium of P̃ω is R. The spreading speed

will be obtained by a similar idea but the phase space for P̃ω is selected in a different

way.

In the second part, we apply the theory developed for monotone semiflows to the

following two species competition reaction-advection-diffusion model with time and

space periodicity:

∂u1

∂t
= L1u1 + u1(b1(t, x)− a11(t, x)u1 − a12(t, x)u2), (5.5)

∂u2

∂t
= L2u2 + u2(b2(t, x)− a21(t, x)u1 − a22(t, x)u2), t > 0, x ∈ R.

Here Liu = di(t, x)∂
2u
∂x2 − gi(t, x)∂u

∂x
, i = 1, 2, u1 and u2 denote the population densities

of two competing species in ω-time and L-space periodic environment, respectively,

di(t, x), gi(t, x) and bi(t, x) are diffusion, advection and growth rates of the i-th species

(i = 1, 2), respectively, and aij(t, x)(1 ≤ i, j ≤ 2) are inter- and intra-specific compe-

tition coefficients. In order to verify the mono-stability assumption, we first find two

semi-trivial time-space periodic solutions (u∗1(t, x), 0) and (0, u∗2(t, x)), one of which,

under a set of conditions, is shown to be globally stable for system (5.5) with periodic

initial datum. Since (0, 0) is always a solution between the two semi-trivial time-
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space periodic solutions with respect to the competitive ordering, there might be two

spreading speeds in general. Due to the structure of competition, we can construct

upper solutions to show these two speeds (having different definitions) are identical.

Some sufficient conditions for the linear determinacy of the speed are also derived.

For the reaction-diffusion competition model studied in [43] with unbounded domain,

we obtain more explicit conditions for the existence of the minimal wave speed. In

the case where there is no spatial heterogeneity in (5.5) (i.e., all coefficients are inde-

pendent of x), our analysis shows that the minimal wave speed obtained in [104] is

also the single spreading speed for such a system.

For two species time-periodic and space-dependent reaction-diffusion competition

models in a bounded domain, Hess and Lazer [32] (see also [31]) studied the exis-

tence, stability and attractivity of nonnegative time-periodic solutions of model sys-

tems. Hutson, Mischaikow and Polác̆ik [43] investigated the effect of different diffusion

rates on the survival of two phenotypes of a species, and showed that the interaction

between temporal and spatial variability leads to a quite different result compared

with the autonomous case [16], which concluded that the phenotype with the slower

diffusion rate always wins the competition. Meanwhile, in an unbounded domain,

Zhao and Ruan [104] obtained the existence, uniqueness and stability of time-periodic

traveling waves for time-periodic but space-independent reaction-diffusion competi-

tion models. For a reaction-diffusion competition model with seasonal succession, Ma

and Zhao [61] studied the existence of single spreading speed and its linear determi-

nacy, and showed that the spreading speed coincides with the minimal wave speed of

time-periodic traveling waves. More recently, Kong, Rawal and Shen [46] proposed a

competition model with nonlocal dispersal in a time and space periodic habitats, and

investigated the spreading speed and its linear determinacy. For traveling waves in
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a time-delayed reaction-diffusion competition model with nonlocal terms, we refer to

Gourley and Ruan [26]. It is worthy to point out that our approach is quite different

from those in [46,67,78].

This chapter is organized as follows. In the next section, we establish the theory of

traveling waves, almost pulsating waves and spreading speeds for time-space periodic

semiflows of monostable type. In section 5.2, we apply this theory to the model system

(5.5) and explore its propagation phenomena by using the competition structure.

5.1 Time-space periodic semiflows

In this section, we first present some notations and assumptions and then study the

existence of traveling waves and spreading speeds for time-space periodic semiflows.

5.1.1 Preliminaries

Let Ω be a compact metric space, Rl be the l-dimensional Euclidean space and X :=

C(Ω,Rl). We endow X with the maximum norm ‖·‖ and the partial ordering induced

by the positive cone X+ := C(Ω,Rl+). Then (X,X+, ‖ · ‖) is a Banach lattice. For

ϕ1, ϕ2 ∈ X, we write ϕ1 ≥ ϕ2 if ϕ1 − ϕ2 ∈ X+, ϕ1 � ϕ2 if ϕ1 − ϕ2 ∈ IntX+, and

ϕ1 > ϕ2 if ϕ1 ≥ ϕ2 but ϕ1 6= ϕ2. For ϕ1, ϕ2 ∈ X, the least upper bound of the set

{ϕ1, ϕ2}, denoted by max{ϕ1, ϕ2}, is also an element of X. Moreover,

max{ϕ1, ϕ2}(x) = max{ϕ1(x), ϕ2(x)}.

Let H = R or Z. Define [a, b]H as a closed subset of H in the sense that if

H = R, then [a, b]H = [a, b] with a, b ∈ R and a ≤ b; and if H = Z, then [a, b]H =

{a, a + 1, a + 2, ..., b} with a, b ∈ Z and a ≤ b. For r ∈ H with r > 0, define
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rZ := {rh : h ∈ Z}. We use C to denote all continuous and bounded functions from

H to X. We endow C with the compact open topology, which can be induced by the

following metric

d(u, v) :=
∞∑
k=1

max|x|≤k ‖u(x)− v(x)‖
2k

, u, v ∈ C. (5.6)

A sequence un is said to be convergent to u in C provided that un(x) → u(x) in X

uniformly locally in x ∈ H (that is, uniformly for x in any compact subset of H). On

the other hand, if un ∈ C is uniformly bounded and converges uniformly locally to

some function u, then u ∈ C. For u1, u2 ∈ C, we write u1 ≥ u2 if u1(x) ≥ u2(x) for all

x ∈ H. A subset U of C is bounded if supu∈U d(u, 0) is finite. For u ∈ C, define the

function u[0,L]H ∈ C([0, L]H, X) by u[0,L]H(x) = u(x). Given a bounded set U ⊂ C,

we use U[0,L]H to denote the set {u[0,L]H : u ∈ U}. We use the Kuratowski measure

to define the noncompactness of U[0,L]H which is naturally endowed with the uniform

topology. The measure is defined as follows.

α(U[0,L]H) := inf{r : U[0,L]H has a finite open cover of diameter less than r}. (5.7)

The set U[0,L]H is precompact if and only if α(U[0,L]H) = 0.

Let L ∈ H be a positive number, We use Cper to denote the set of all L-periodic

functions in C. We endow Cper with the same topology as C. But the convergence of a

sequence in Cper will be in the following stronger sense: un is said to be convergent to

u in Cper provided that un(x)→ u(x) in X uniformly in x ∈ [0, L]H. For u1, u2 ∈ Cper,

we write u1 ≥ u2 if u1(x)−u2(x) ∈ X+ for all x ∈ H, u1 � u2 if u1(x)−u2(x) ∈ IntX+

for all x ∈ H, and u1 > u2 if u1 ≥ u2 but u1 6= u2.

For x ∈ H, there exist a unique kx ∈ Z and a unique θx ∈ [0, L) such that

x = kxL+ θx. Define [x]L by

[x]L = kxL.
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For m ∈ Z, we have [x+mL]L = [x]L +mL.

Let ω ∈ T be a positive number. Assume that β : T ×H → IntX+ is continuous

such that β(t, x) is ω-periodic in t ∈ T and L-periodic in x ∈ H. Then for any t ∈ T ,

β(t, ·) ∈ Cper and β(t, ·)� 0. Define

Cβ(t,·) := {φ ∈ C : 0 ≤ φ(x) ≤ β(t, x), x ∈ H}, t ∈ T

and

Cperβ(t,·) = Cβ(t,·) ∩ Cper.

For y ∈ H and any function u : H → X, define the translation operator Ty by

Ty[u](x) = u(x− y).

For t ∈ T , assume that the map Qt : Cβ(0,·) → Cβ(t,·) satisfies Qt[0] = 0 and

Qt[β(0, ·)](x) = β(t, x).

Definition 5.1.1. {Qt}t∈T is said to be an ω-time periodic and L-space periodic

monotone semiflow from Cβ(0,·) to Cβ(t,·) provided that

(i) Q0 = I, where I is the identity map.

(ii) Qt ◦Qω = Qt+ω, ∀t ∈ T .

(iii) Ty ◦Qt = Qt ◦ Ty, ∀t ∈ T , y ∈ LZ.

(iv) Qt[φ] is continuous jointly in (t, φ) ∈ T × Cβ(0,·)

(v) Qt[φ] ≥ Qt[ψ], ∀t ∈ T , whenever φ ≥ ψ in Cβ(0,·).

Properties (ii) and (iii) characterize the temporal and spatial periodicity, respec-

tively, for the semiflow. In time-periodic dynamical systems, the period map Qω is
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often called the Poincaré map. We use E to denote the set of all ω-time periodic and

L-space periodic solutions of the semiflow {Qt}t∈T from Cβ(0,·) to Cβ(t,·). Clearly, 0

and β are two elements of E. The following observation can be easily proved.

Lemma 5.1.1. The following statements are valid:

(i) p ∈ E if and only if p(0, ·) is a fixed point of Qω : Cperβ(0,·) → C
per
β(0,·).

(ii) Let u, v ∈ Cperβ(0,·). If u is a fixed point of Qω and limn→∞Qnω[v] = u, then

limt→∞ d(Qt[v], Qt[u]) = 0, where d is the metric defined in (5.6).

In (5.1)-(5.3), we have defined the traveling wave for the semiflow {Qt}t∈T . Here

we explain it in the case where the semiflow is generated by the solution maps of a

time-space periodic evolution system, including how to extend such a wave solution

to an entire solution and how it relates to the one introduced by Nadin [67].

We first explain how to extend a wave to an entire solution. For t ≥ r with

t, r ∈ T ∪ (−T ), let Sr,t : Cβ(r,·) → Cβ(t,·) be the solution map of a time-space peri-

odic evolution equation in dimension one, where r is the initial time. Then Sr,t has

following time periodicity:

Sr,t = Sr+ω,t+ω, t ≥ r, t, r ∈ T ∪ (−T ).

Suppose that we have already established the traveling wave W (t, x, ξ) for {S0,t}t∈T
in the sense of (5.1)-(5.3). In particular,

S0,t[W (0, ·, ·+ y)] = W (t, ·, ·+ y − ct), t ∈ T , y ∈ R.

For convenience, we still use W (t, x, ξ) to denote the periodic extension of W in

time. Note that for any t ≥ r with t, r ∈ T ∪ (−T ), there exists kr ∈ Z+ such that
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r + krω ≥ 0. It then follows that

Sr,t[W (r, ·, ·+ y − cr)]

= Sr+krω,t+krω[W (r, ·, ·+ y − cr)]

= Sr+krω,t+krω[W (r + krω, ·, ·+ y − cr)]

= Sr+krω,t+krωS0,r+krω[W (0, ·, ·+ y − cr + c(r + krω))]

= S0,t+krω[W (0, ·, ·+ y − cr + c(r + krω))]

= W (t, ·, ·+ y − ct), ∀t ∈ T ∪ (−T ), y ∈ R.

This shows that the periodic extension W gives rise to an entire wave solution.

Next, we point out there are many wave-like solutions satisfying (5.1). Indeed, for

a decreasing function φ ∈ Cβ(0,·), we define

U(t, x, ξ) := Qt[φ(·+ ξ + ct− x)](x).

Then one may easily verify that U is periodic in x, non-increasing in ξ and satisfies

(5.1). However, U is in general not periodic in time and not extendable to be an

entire solution. This suggests that we first look for a wave for the Poincaré map (i.e.,

period map) in a certain sense and then use it as the initial value to evolve under

the semiflow to construct the traveling wave for the semiflow. We will show that

W (t, x, ξ) := Qt[V (·, ·+ ξ + ct− x)](x) is a traveling wave of the semiflow {Qt}t∈T if

V (x, ξ) is L-periodic in x, non-increasing in ξ and satisfies

Qω[V (·, ·+ y)] = V (·, ·+ y − cω), ∀y ∈ R. (5.8)

The periodicity of W in time follows from (5.8). We call such V a traveling wave of

Qω in a strong sense.



5.1 Time-space periodic semiflows 111

Now let us roughly explain why (5.8) may hold for all y ∈ R. Indeed, we can

employ the results in [19] to show that (5.8) holds for y ∈ R \ Γ, where Γ is a

countable set. Since V will be carefully constructed such that V (·, ξ + · − [·]L) is

left-continuous in ξ and for any ξ ∈ R it belongs to the same compact set in periodic

function spaces, one is able to use the continuity of Qω to pass the limit so that (5.8)

also holds for y ∈ Γ. This procedure will be presented in an abstract way in section

2.2.

To establish the existence of traveling waves and spreading speeds, we need the

following two basic assumptions on time-space periodic semiflow {Qt}t∈T :

(A1) (Monostability) limn→∞Qnω[φ] = β(0, ·) for any φ ∈ Cperβ(0,·) with φ� 0.

(A2) (α-contraction) There exists κ ∈ [0, 1) such that

α((Qω[U ])[0,L]H) ≤ κα(U[0,L]H), ∀U ⊂ Cβ(0,·)

where α is the Kuratowski measure defined in (5.7).

Suppose u(t, x;φ) := Qt[φ](x) solves a time-space periodic evolution equation.

Since u(t, x;φ) is L-periodic in x if φ is, we only need to consider the evolution

equation with periodic initial data. By Lemma 5.1.1, it follows that β(t, x) is a

time-space periodic solution of the evolution equation, and (A1) is equivalent to

that the time-space periodic solution β(t, x) attracts any solution with initial value

φ ∈ Cperβ(0,·) and φ � 0. For a scalar reaction-diffusion equation admitting the strong

maximum principle, the condition φ � 0 may be relaxed to be φ > 0. For a system

of reaction-diffusion equations, such a condition in general cannot be relaxed because

there probably exist semi-trivial time-space periodic solutions.
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Note that the assumption (A2) is for the Poincaré map on the phase space Cβ(0,·).

If the Poincaré map Qω : Cβ(0,·) → Cβ(0,·) is compact, then (A2) is satisfied by choosing

κ = 0. For a time-space periodic evolution equation with delay, if the delay is larger

than the time period ω, then Qω is not compact but satisfies (A2).

It is worthy to point out that we do not assume that the semfilow is subhomoge-

neous (or sublinear in some literature), which is often understood as the KPP type

condition for monostable semiflows. Thus, the expected minimal wave speed may not

be linearly determinate in general.

5.1.2 Traveling waves

In this subsection, we establish the existence of traveling waves for time-space periodic

and monotone semiflows under assumptions (A1) and (A2).

Let {Qt}t∈T be an ω-time periodic and L-space periodic monotone semiflow from

Cβ(0,·) to Cβ(t,·). We define a family of mappings {St}t∈T by

St[φ](x) =
Qt[φβ(0, ·)](x)

β(t, x)
, ∀φ ∈ C1, x ∈ H.

It easily follows that {St}t∈T is an ω-time periodic and L-space periodic monotone

semiflow on C1. Without loss of generality, we then assume that β(t, x) is a positive

constant, denoted still by β, and hence, we may write Cβ instead of Cβ(t,·) for any

t ≥ 0. We do not scale L to be one since the habitat has been scaled to be Z if

it is discrete. We do not scale ω to be one since in delay differential equations, the

relationship between the time period and the delay is important.

Our strategy is to first establish a traveling wave for the Poincaré map in a stronger

sense than usual, and then use it as an initial value for the evolution to obtain the

traveling wave for the given semiflow. To establish a traveling wave for the Poincaré
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map Qω, we first use the map Qω (in periodic habitat) to construct a topologically

conjugate map Pω (in homogeneous discrete habitat), and then extend Pω into a larger

map P̃ω (in homogeneous continuous habitat), which was introduced by Weinberger

[93] for the study of spreading speeds. In general, P̃ω is not compact even if Qω is.

To overcome the difficulty caused by the non-compactness, we show that P̃ω fits the

framework of [19] (see also in section 2.2) which deals with a large class of monotone

semiflows with weak compactness.

To explain the operators Pω and P̃ω in detail, we need to introduce some no-

tations. Let M be the set of all non-increasing and bounded functions from R to

Y := C([0, L]H, X), and

X = {v ∈M : v(s)(L) = v(s+ L)(0), s ∈ R}.

Define order intervals Xβ, Yβ and Xβ, respectively, by

Xβ = [0, β]X , Yβ = [0, β]Y , and Xβ = [0, β]X .

Let

Ȳβ = {φ ∈ Yβ : φ(0) = φ(L)}.

and

Kβ = {φ ∈ C(LZ, Yβ) : φ(iL+ L)(0) = φ(iL)(L), i ∈ Z}

Lemma 5.1.2. [20, Section 4] The map F : Cβ → Kβ defined by

F [φ](iL)(θ) = φ(iL+ θ) (5.9)

is a homeomorphism. Further, the semiflow {Pt}t∈T on Kβ defined by

Pt = F ◦Qt ◦ F−1 (5.10)

is topologically conjugate to {Qt}t∈T on Cβ.
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One can verify that

F−1[v](x) = v(L[x])(x− L[x]), v ∈ Kβ. (5.11)

Define the identity map G : Xβ → Kβ by

G[φ](iL) = φ(iL). (5.12)

and the t-parameterized map P̃t by

P̃t[φ](s) = PtG[φ(·+ s)](0). (5.13)

Next we use two lemmas to prove that P̃ω maps Xβ to Xβ and that it fits the

framework of [19] (see also in section 2.2) in one-dimensional homogeneous continuous

habitat.

Lemma 5.1.3. The following statements on X are valid:

(i) Any monotone or L-periodic function from R to X can be embedded into X ,

and hence, X 6= ∅.

(ii) For r ∈ R \ {0}, rX = X and TrX = X .

(iii) For v1, v2 ∈ X , v1 + v2 ∈ X .

(iv) For v1, v2 ∈ X , the function v, defined by v(x) := max{v1(x), v2(x)}, is also in

X .

Proof. We only prove statement (i) since others are trivial. In the case where f is a

monotone function from R to X, we define v ∈ X by

v(s)(θ) = f(s+ θ). (5.14)
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Clearly, v(s) is monotone in s. In the case where f is L-periodic, we define

v(s)(θ) = f(L[s] + θ). (5.15)

Then it is easy to see that v(s) = v(0) for all s ∈ R due to the periodicity of f .

Lemma 5.1.4. Assume that the Poincaré map Qω satisfies (A1) and (A2). Then

the map P̃ω : Xβ → Xβ has the following properties:

(i) P̃ω ◦ Ty = Ty ◦ P̃ω,∀y ∈ R, where Ty is the y-length translation operator.

(ii) P̃ω : Xβ → Xβ is continuous with respect to the compact open topology.

(iii) There exists κ ∈ [0, 1) such that for V ⊂ Xβ, α(P̃ω[V ](0)) ≤ κα(V (0)), where α

is the kuratowski measure of non-compactness for bounded sets in Y .

(iv) P̃ω[φ] ≥ P̃ω[ψ] whenever φ ≥ ψ in Xβ.

(v) P̃ω : Ȳβ → Ȳβ admits two fixed points 0 and β, and for any ζ̄ ∈ Ȳβ with ζ̄ � 0,

limn→∞ P̃nω[ζ̄] = β.

Proof. We first show that P̃ω maps Xβ into Xβ and then verify the five properties one

by one. Let v ∈ Xβ be given. By definition, we have

P̃ω[v](s) = FQωF
−1G[v(·+ s)](0).

Then the monotonicity of P̃ω[v](s) follows from the monotonicity of F,Qω, F
−1 and

G. Since

TLQω = QωTL and F [φ](L)(0) = φ(L) = F [φ](0)(L),

we obtain

FQωF
−1G[v(·+s+L)](0)(0) = FQωF

−1G[v(·+s)](L)(0) = FQωF
−1G[v(·+s)](0)(L),
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which is equivalent to P̃ω[v](s + L)(0) = P̃ω[v](s)(L). This shows that P̃ω[v] ∈ Xβ,

and hence, P̃ω maps Xβ into Xβ.

Statement (i) follows directly from the definition of P̃ω. Statement (iv) follows

directly from the monotonicity of F,Qω, F
−1 and G. It remains to verify statements

(ii),(iii) and (v).

To show the continuity, it suffices to prove that P̃ω[vn]→ P̃ω[v] locally uniformly

if vn → v locally uniformly. Indeed, G[vn(·+ s)](i)→ G[v(·+ s)](i) locally uniformly

in i, s. By the topological conjugacy between Qω and Pω as well as the continuity of

Qω, it follows that PωG[vn(· + s)](0)→ PωG[v(· + s)](0) locally uniformly in s. The

continuity is then proved.

For the statement on compactness, we note that

P̃ω[V ](0)(θ) = Qω[F−1G[V ]](θ).

It then follows from (A2) and definitions of F−1 and G that

α(P̃ω[V ](0)) = α((Qω[F−1G[V ]])[0,L]H) ≤ α((F−1G[V ])[0,L]H) = α(V (0)).

For statement (v), it follows from statement (i) that

P̃ω[ζ̄](s)(θ) = P̃ω[ζ̄(·+ s)](0)(θ) = P̃ω[ζ̄](0)(θ).

Further, by the definition of P̃ω, we have

P̃ω[ζ̄](0)(θ) = QωF
−1G[ζ̄](θ).

Note that F−1G : Ȳβ → Cper
β and F−1G[ζ̄] � 0 due to ζ̄ � 0. It then follows from

(A1) that

P̃nω[ζ̄] = QnωF
−1G[ζ̄]→ β, as n→∞.

This completes the proof.
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With Lemmas 5.1.3 and 5.1.4, we can proceed as in [19] (see also in section 2.2.2) to

establish the existence of traveling waves for P̃ω. Indeed, let $ ∈ Ȳβ with 0� $ � β.

Choose φ to be a continuous function from R to X with the following properties: (i)

φ(x) is non increasing in x, (ii) φ(x) = 0 for x ≥ 0 and (iii) φ(−∞) = $. Define

φ̃ ∈ Xβ by

φ̃(s)(θ) = φ(s+ θ). (5.16)

Then φ̃ has the following properties:

(1) φ̃(s) is continuously non-increasing in s;

(2) φ̃(s) = 0 for s ≥ 0;

(3) φ̃(−∞) = $.

Next we use φ̃ to define two numbers −∞ < c∗+ ≤ c̄+ ≤ +∞. For c ∈ R and integer

n ≥ 1, we define the map Rc, 1
n

: Xβ → Xβ by

Rc, 1
n
[a](s) = max

{
1

n
φ̃(s), T−cωP̃ω[a](s)

}
and a sequence of functions am

(
c, 1

n
; s
)

by the recursion

a0

(
c,

1

n
; s

)
= φ̃(s), am+1

(
c,

1

n
; s

)
= Rc, 1

n

[
am

(
c,

1

n
; ·
)]

(s). (5.17)

Define

A0 = Xβ, Ai+1 = ∪n≥1Rc, 1
n
[Ai], i ≥ 1. (5.18)

Then we have the following result.

Lemma 5.1.5. [19, Lemmas 3.1 and 3.3] The following two statements hold true:

(i) The set A := ∩i≥0 ∪s∈R Ai(s) is non-empty and compact in Yβ, where Ai is

defined as in (5.18).
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(ii) limm→∞ am(c, 1
n
; s) exists and the limit, denoted by a(c, 1

n
; ·), is an element in

Xβ and satisfies

Rc, 1
n

[
a

(
c,

1

n
; ·
)]

(s) = a

(
c,

1

n
; s

)
, a.e. s ∈ R

and

a

(
c,

1

n
;−∞

)
= β, a

(
c,

1

n
; +∞

)
∈ Yβ is a fixed point of P̃ω.

According to [19], we define two numbers:

c∗+ := sup{c : a(c, 1; +∞) = β}, c̄+ := sup{c : a(c, 1; +∞) > 0}. (5.19)

Let Ẽ be the fixed point of P̃ω on Ȳβ. We say ψ(s− cω) is a traveling wave of P̃ω

connecting β1 ∈ Ẽ to β2 ∈ Ẽ if there exits a countable set Γ ⊂ R such that

P̃nω[ψ](s) = ψ(s− cnω), n ≥ 0, s ∈ R \ Γ (5.20)

and

ψ(−∞) = β1, ψ(+∞) = β2. (5.21)

Applying the same arguments as in the proof of [19, Theorem 3.8](Theorem 2.2.5)

to the map P̃ω : Xβ → Xβ, we have the following result.

Lemma 5.1.6. The following statements are valid:

(1) For c ≥ c∗+, P̃ω admits a traveling wave ψ connecting β to some elements

β1 ∈ Ẽ \ {β}.

(2) If, in addition, 0 is isolated in Ẽ, then for any c ≥ c̄+ either of the following

holds:
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(i) there exists a traveling wave ψ connecting β to 0.

(ii) there are two ordered elements β1, β2 in Ẽ \ {0, β} such that there exist a

traveling wave ψ1 connecting β1 to 0 and a traveling wave ψ2 connecting β

to β2.

Before moving forward to construct the traveling waves for {Qt}t∈T in the sense of

(5.1)-(5.3), we show that the set Γ can be chosen to be empty for all traveling waves

of P̃ω established in Lemma 5.1.6.

Lemma 5.1.7. Let ψ(s − cω) be a left continuous traveling wave of P̃ω established

in Lemma 5.1.6 in the sense of (5.20)-(5.21). Then P̃ω[ψ](s) is also left continuous,

and hence, P̃ω[ψ](s) = ψ(s− cω), s ∈ R.

Proof. It suffices to prove that P̃ω[ψ](s) is left continuous. Indeed, for any given s ∈ R

and a sequence sn ↑ 0, we need to show that P̃ω[ψ](s + sn) → P̃ω[ψ](s) as n → ∞,

which is equivalent to

lim
n→∞

Qω[ψ(L[·] + s+ sn)(· − L[·])](θ) = Qω[ψ(L[·] + s)(· − L[·])](θ) (5.22)

uniformly in θ ∈ [0, L] due to (5.9)-(5.13). Note that x − L[x] ∈ [0, L] for all x ∈ R

and [x] takes finitely many values in Z for x in any compact set. It then follows from

the left continuity of ψ that

lim
n→∞

ψ(L[x] + s+ sn)(x− L[x]) = ψ(L[x] + s)(x− L[x])

uniformly for x in any compact set. By the continuity of Qω with respect to the

compact open topology, we obtain the equality (5.22).

Now we are in a position to prove the main result in this subsection.
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Theorem 5.1.1. Let {Qt}t∈T be an ω-time periodic and L-space periodic monotone

semiflow from Cβ(0,·) to Cβ(t,·), and assume that (A1) and (A2) hold. Then there are

two numbers −∞ < c∗+ ≤ c̄+ ≤ +∞ such that

(1) For any c ≥ c∗+, {Qt}t∈T admits a traveling wave W connecting β to some

elements β1 ∈ E \ {β}.

(2) If, in addition, 0 is isolated in E, then for any c ≥ c̄+ either of the following

holds:

(i) there exists a traveling wave W connecting β to 0.

(ii) there are two ordered elements α1, α2 in E \ {0, β} such that there exist a

traveling wave W1 connecting α1 to 0 and a traveling wave W2 connecting

β to α2.

(3) For c < c∗+, there is no traveling wave connecting β, and for c < c̄+, there is no

traveling wave connecting β to 0.

Proof. For each admissible speed c, we have already shown that P̃ω : Xβ → Xβ admits

a wave ψ in the sense that

P̃ω[ψ](s) = ψ(s− cω), ∀s ∈ R. (5.23)

Define V (x, ξ) by

V (x, ξ) = ψ(ξ − x+ [x]L)(x− [x]L).

It is not difficult to check V is L-periodic in x and non-increasing in ξ. Then we use
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the definitions of F, F−1, Pω and P̃ω to obtain

V (x, x− cω + y) = ψ(y − cω + [x]L)(x− [x]L)

= P̃ω[ψ](y + [x]L)(x− [x]L)

= PωG[ψ(·+ y + [x]L)](0)(x− [x]L)

= FQωF
−1G[ψ(·+ y + [x]L)](0)(x− [x]L)

= QωF
−1G[ψ(·+ y + [x]L)](x− [x]L)

= QωF
−1G[ψ(·+ y)](x)

= Qω[ψ([·]L + y)(· − [·]L)](x)

= Qω[V (·, ·+ y)](x), ∀x ∈ H, y ∈ R. (5.24)

We claim that W : T ×H × R→ X defined by

W (t, x, ξ) = Qt[V (·, ·+ ξ + ct− x)](x), (5.25)

is the desired traveling wave. It suffices to show that (5.1)-(5.3) hold true. Indeed,

the space periodicity and (5.1) are easily verified. Also the limit equality (5.3) follows

directly from the time periodicity. Thus, it remains to prove the time periodicity. By

using (5.24), we obtain

W (t+ ω, x, ξ) = QtQω[V (·, ·+ ξ + c(t+ ω)− x)](x)

= Qt[V (·, · − cω + ξ + c(t+ ω)− x)](x)

= Qt[V (·, ·+ ξ + ct− x)](x)

= W (t, x, ξ), t ∈ T , x ∈ H, ξ ∈ R. (5.26)

This proves the existence of traveling waves.

Next we prove the non-existence of traveling waves. If the three-variable function

W is a wave in the sense of (5.1)-(5.3) and it connects β to some other time-space
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periodic solution β1(t, x) with β1(0, ·) < β, then we have

W (0, x, x+ y − cω) = Qω[W (0, ·, ·+ y)](x), x ∈ H, y ∈ R

with

W (0, ·,−∞) = β, W (0, ·,+∞) = β1(0, ·).

Recall that φ̃ is defined in (5.16). Thus, we may choose s0 > 0 such that

φ̃(s)(θ) ≤ W (0, θ, θ + s+ s0). (5.27)

Note that

F−1G[φ̃(·+ s+ cω)](x) = φ̃([x] + s+ cω)(x− [x]). (5.28)

Combining (5.17), (5.27) and (5.28), we obtain

a1(c, 1, s)(θ) = max{φ̃(s)(θ), T−cωP̃ω[φ̃](s)(θ)}

= max{φ̃(s)(θ), FQωF
−1G[φ̃(·+ s+ cω)](0)(θ)}

≤ max{φ̃(s)(θ), FQω[W (0, ·, ·+ s+ s0 + cw)](0)(θ)}

= max{φ̃(s)(θ), F [W (0, ·, ·+ s+ s0)](0)(θ)}

= W (0, θ, θ + s+ s0),

and inductively, an(c, 1, s)(θ) ≤ W (0, θ, θ + s+ s0), ∀n ≥ 1. This implies that

a(c, 1,+∞) = lim
s→+∞

lim
n→∞

an(c, 1, s) ≤ lim
s→+∞

lim
n→∞

W (0, ·, ·+ s+ s0) = β1(0, ·) < β,

which, together with the definition of c∗+, implies that c ≥ c∗+. Similarly, if W is a

traveling wave connecting β to 0 with speed c, then c ≥ c̄+.

We remark that there are examples arising from nonlocal or fractional diffusion

equations such that c∗+ = +∞. It is an interesting problem to find conditions to
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exclude such a possibility for semiflows, but it beyonds the purpose of this paper.

When c∗+ = +∞ ( or c̄+ = +∞), the condition c ≥ c∗+ (or c ≥ c̄+) in Theorem 5.1.1

is vacuous, and hence, there are no traveling waves. Based on the constructions of

V and W in the proof of Theorem 5.1.1, we further show the existence of almost

pulsating waves in the sense of Definition 5.0.2.

Theorem 5.1.2. Let W (t, x, ξ) be a traveling wave with speed c, as established in

Theorem 5.1.1, and Ŵ be its periodic extension in time. Define a family of entire

solutions u(t, x; y) := Ŵ (t, x, x − ct + y) indexed by y ∈ R. Then there exists a

countable set D ⊂ R such that for any y ∈ R \ D, u(t, x; y) is an almost pulsating

wave connecting two time-space periodic solutions.

Proof. It suffices to consider positive time due to the periodicity. In the case where

cω/L = p/q for some integers p and q, the periodicity of W in the first two variables

implies that

u(t+ qω, x+ pL; y) = W (t+ qω, x+ pL;x+ pL− ct− cqω + y)

= W (t, x;x− ct+ y) = u(t, x; y).

In the case where cω/L is irrational, since the set of rational numbers is dense in

R, we can choose a sequence of integer pairs (ak, bk) such that bk ≥ k, ak
bk
< cω/L,

and limk→∞
ak
bk

= cω/L. Set

mk := min

{
m ∈ Z+ :

ak +m

bk
> cω/L

}
.

It follows that

cω/L ∈
(
ak +mk − 1

bk
,
ak +mk

bk

)
, ∀k ≥ 1.
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Letting pk = ak +mk and qk = bk, we then have

lim
k→∞

qk = +∞,
∣∣∣∣cω/L− pk

qk

∣∣∣∣ ≤ 1

qk
≤ 1, ∀k ≥ 1.

By the definition of u(t, x; y) and (5.25), it easily follows that

u(t+ qkω, x+ pkL; y) = W (t, x;x+ pkL− ct− cqkω + y)

= Qt[V (·, ·+ y + pkL− cqkω)](x). (5.29)

Recall that [t]ω = [ t
ω

]ω, where [s] is the integer part of real number s. In view of

(5.24), we further infer that

u(t+ qkω, x+ pkL; y) = Qt−[t]ω [V (·, ·+ y + pkL− cqkω − c[t]ω)](x). (5.30)

Note that V (x, ξ) = ψ(ξ − x + [x]L)(x − [x]L), where ψ ∈ Xβ is an abstract non-

increasing left continuous function from R to C([0, L]H, X) (see Lemma 5.1.7), and

it is continuous almost everywhere except for a countable set Γ. Define

D = {c[t]ω − [x]L + z ∈ R : (t, x) ∈ R2, z ∈ Γ}.

Clearly, D is a countable subset of R. Now we claim that for any given y ∈ R \D,

V (x, x+ y + pkL− cqkω − c[t]ω)→ V (x, x+ y − c[t]ω) (5.31)

uniformly for all t ∈ R and x in any compact subset of R. Indeed, it is easy to see

that (5.31) is equivalent to

ψ(y + pkL− cqkω − c[t]ω + [x]L)→ ψ(y − c[t]ω + [x]L) in C([0, L]H, X) (5.32)

uniformly for all t ∈ R and x in any compact subset of R. Since ψ(±∞) exist and

pkL − cqkω ∈ [−L,L], it follows that for any ε > 0 and M > 0, there exists C1 > 0

such that

|ψ(y + pkL− cqkω − c[t]ω + [x]L)− ψ(y − c[t]ω + [x]L)| < ε
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for all (t, x) ∈ R2 satisfying

|y − c[t]ω + [x]L| ≥ C1 and |x| ≤M,

which, due to c 6= 0, is true whenever |t| ≥ t0 for some large number t0 > 0. It

remains to show that there exists an integer k0 such that for all k ≥ k0,

|ψ(y + pkL− cqkω − c[t]ω + [x]L)− ψ(y − c[t]ω + [x]L)| < ε, ∀ |t| ≤ t0, |x| ≤M,

which is implied by the continuity of ψ(s) at finitely many points s = y−c[t]ω+[x]L 6∈

Γ. This shows that (5.32) holds uniformly for all t ∈ R and x in any compact subset

of R. Note that t − [t]ω ∈ [0, ω] for all t ∈ R and Qt[φ] is continuous in (t, φ) with

respect to the compact open topology. It then follows from (5.30) and (5.31) that

limk→∞ u(t + qkω, x + pkL) = u(t, x) uniformly for all t ∈ R and x in any compact

subset of R.

Remark 5.1.1. The almost pulsating wave u(t, x) constructed in Theorem 5.1.2 also

has the property that u(t + qkω, x + pkL) → u(t, x) uniformly for all x ∈ R and t in

any compact subset of R under the following additional continuity assumption:

(A3) For any φn, φ ∈ Cβ with limn→∞ φn(x) = φ(x) uniformly for all x ∈ R,

lim
n→∞

Qt[φn](x) = Qt[φ](x),

uniformly for all (t, x) ∈ [0, ω]× R.

This is because for any given y ∈ R\D, the convergence in (5.32) are uniform for all

x ∈ R and t in any compact subset of R, and hence, the desired convergence follows

from (5.30) and the assumption (A3).
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5.1.3 Spreading speeds

So far, we have already proved that there exist two critical speeds c∗+ and c̄+ for non-

increasing traveling waves. In this subsection, we use these two numbers to describe

the rightward spreading property of solutions with appropriate initial datum.

Theorem 5.1.3. Let {Qt}t∈T be an ω-time periodic and L-space periodic monotone

semiflow from Cβ(0,·) to Cβ(t,·),, and assume that (A1) and (A2) hold. Then the fol-

lowing statements are valid:

(i) For c > c̄+, we have limx≥ctQt[φ](x) = 0 provided that φ ∈ Cβ(0,·) vanishes when

x is greater than some x0 ∈ H and φ ≤ $ � β(0, ·) for some $ ∈ Cperβ(0,·) with

$ � 0.

(ii) For c < c∗+, we have limt→∞,x≤ct |Qt[φ](x)−β(t, x)| = 0 provided that φ ∈ Cβ(0,·)

satisfies φ(x) ≥ σ when x is less than some K ∈ H for some σ ∈ X with σ � 0.

Proof. To prove these spreading properties, we again use P̃ω but on another phase

space Yβ, which is defined by

Yβ = {v ∈ C(R, Yβ) : v(s)(L) = v(s+ L)(0)},

equipped with the compact open topology. It was shown in Proposition 4.5.1 that P̃ω

maps Yβ to Yβ and P̃ω admits the five properties in Lemma 5.1.4 with Xβ replaced by

Yβ. Note that different notations are used in Proposition 4.5.1. Thus, P̃ω : Yβ → Yβ
has the same spreading property as in [19, Remark 3.7](see also Theorem 2.2.7). On

the other hand, since the semiflow {P̃t}t∈T is time periodic and defined in the medium

R, one may see from [53, Theorem 2.3] that {P̃t}t∈T has the spreading properties

stated in Theorem 5.1.3 with Cβ(0,·), Qt, and X replaced by Yβ, P̃t and Y respectively.

Next we show how to derive the spreading property of {Qt}t∈T from P̃ω.
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We look for the spreading properties of Qt which are inherited from P̃t. Indeed,

for φ ∈ C(H, X), define v ∈ Yβ by

v(s)(θ) = φ ([s]L + θ) .

Then for any s ∈ R, θ ∈ [0, L] and n ≥ 1, we have

P̃t[v](s)(θ) = PtG[v(·+ s)](0)(θ)

= FQtF
−1G[v(·+ s)](0)(θ)

= QtF
−1G[v(·+ s)](θ)

= Qt[v([·]L + s)(· − [·]L)](θ).

In particular, setting s = iL, i ∈ Z, we obtain

P̃t[v](iL)(θ) = Qt[v([·]L)(· − [·]L)](θ + iL) = Qt[φ](θ + iL),

which is equivalent to

Qt[φ](x) = P̃t[v]([x]L)(x− [x]L), x ∈ H, t ∈ T .

Thus, the statements for {Qt}t∈T hold true.

To finish this section, we note that similar arguments can be used to establish the

existence of non-decreasing traveling waves W (t, x, x+ ct) and the leftward spreading

property in terms of two critical speeds c∗− and c̄− satisfying −∞ < c∗− ≤ c̄− ≤ +∞.

5.2 Two species competition model

In this section, we first use the abstract results in last section to study the propagation

phenomena for a two species competition reaction-advection-diffusion system in time-

space periodic environment. Then we obtain sufficient conditions for these two speeds
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to be identical and linearly determinate, respectively. Two specific cases are also

discussed in detail.

5.2.1 The periodic initial value problem

In this subsection, we investigate the global dynamics of the time and space periodic

Lotka-Volterra competition system with the periodic initial values. Let ω and L be

positive real numbers. We assume that

(a) di(t, x), gi(t, x), aij(t, x) and bi(t, x) are ω-periodic in t and L-periodic in x,

di, gi, aij, bi ∈ C
ν
2
,ν(R×R), 1 ≤ i, j ≤ 2, where C

ν
2
,ν(R×R) is a Hölder contin-

uous space with the Hölder exponent ν
2

for the first component and ν ∈ (0, 1)

for the second component.

(b) aij(t, x) > 0, ∀(t, x) ∈ R× R, 1 ≤ i, j ≤ 2.

(c) There exists a positive number α0 such that di(t, x) ≥ α0,∀(t, x) ∈ R × R, i =

1, 2, i.e., the operator Liu = di(t, x)∂
2u
∂x2 − gi(t, x)∂u

∂x
is uniformly elliptic.

In the sequel, if there is no specific mention, the periodicity will always refer to the

time and space periods (ω, L).

Let P be the set of all continuous and L-periodic functions from R to R equipped

with the maximum norm ‖ · ‖P , and P+ = {ψ ∈ P : ψ(x) ≥ 0,∀x ∈ R} be a positive

cone of P . Then (P ,P+) is a strongly ordered Banach lattice. Assume that time-

space periodic functions d, g, h ∈ C ν
2
,ν(R×R) and d(·, ·) > 0. By Theorem 2.1.1(see,

e.g., [31, Theorem 7.2]) and the arguments similar to those in [31, II.14], it follows
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that the scalar parabolic eigenvalue problem

−∂v
∂t

+ d(t, x)
∂2v

∂x2
− g(t, x)

∂v

∂x
+ h(t, x)v = λv, (t, x) ∈ R× R,

v(t, x+ L) = v(t, x), v(t+ ω, x) = v(t, x), ∀(t, x) ∈ R× R (5.33)

admits a principal eigenvalue λ(d, g, h) associated with a positive time-space periodic

eigenfunction φ(t, x). Using the arguments similar to those in [106, Theorem 2.3.4] ,

as applied to the Poincaré map associated with system (5.34), we have the following

result.

Proposition 5.2.1. Assume that time-space periodic functions d, g, c, e ∈ C ν
2
,ν(R ×

R), and d(·, ·) > 0, e(·, ·) ≥ 0 (6≡ 0). Let u(t, x, φ) be the unique solution of the

following parabolic equation:

∂u

∂t
= d(t, x)

∂2u

∂x2
− g(t, x)

∂u

∂x
+ u(c(t, x)− e(t, x)u), t > 0, x ∈ R,

u(0, x) = φ(x) ∈ P+, x ∈ R. (5.34)

Then the following statements are valid:

(i) If λ(d, g, c) ≤ 0, then u = 0 is globally asymptotically stable with respect to

initial values in P+;

(ii) If λ(d, g, c) > 0, then (5.34) admits a unique positive time-space periodic solu-

tion u∗(t, x), and it is globally asymptotically stable with respect to initial values

in P+\{0}.

Let P = PC(R,R2) be the set of all continuous and L-periodic functions from R

to R2, and P+ = {ψ ∈ P : ψ(x) ≥ 0, ∀x ∈ R}. Then P+ is a closed cone of P and

induces a partial ordering on P. Moreover, we introduce a norm ‖φ‖P by

‖φ‖P = max
x∈R
|φ(x)|.
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It then follows that (P, ‖ · ‖P) is a Banach lattice.

Clearly, for any ϕ ∈ P+, (5.5) has a unique nonnegative solution u(t, ·, ϕ) defined

on [0,∞), and u(t, ·, ϕ) ∈ P+ for all t ≥ 0.

By Proposition 5.2.1, we see that there exist two positive time-space periodic

functions u∗1(t, x) and u∗2(t, x) such that E1 := (u∗1(t, x), 0), E2 := (0, u∗2(t, x)) are the

time-space periodic solutions of system (5.5) provided that λ(di, gi, bi) > 0, i = 1, 2.

Since we mainly concern about the case of the competition exclusion, we impose the

following conditions on system (5.5):

(H1) λ(di, gi, bi) > 0, i = 1, 2.

(H2) λ(d1, g1, b1−a12u
∗
2) > 0.

(H3) System (5.5) has no positive time-space periodic solution.

Condition (H1) guarantees the existence of two semi-trivial time-space periodic

solutions of system (5.5), and (H2) implies that (0, u∗2(t, x)) is unstable. Moreover, by

Lemma 4.4.1 with µ = 0, d(t, x) = d1(t, x) and g(t, x) = g1(t, x),∀(t, x) ∈ R × R, we

know that (H2) implies λ(d1, g1, b1) > 0. Thus, we could simply drop the assumption

λ1(d1, g1, b1) > 0 from (H1).

Slightly modifying the arguments in [31, Example 34.2], we have the following

observation.

Proposition 5.2.2. Let b1(t) := min
x∈[0,L]

b1(t, x), b2(t) := max
x∈[0,L]

b2(t, x), and a11(t),

a12(t), a21(t), a22(t) be defined in a similar way. Then (H3) holds true provided that∫ T

0

b1(t)dt > max
t∈[0,ω]

a12(t)

a22(t)
·
∫ T

0

b2(t)dt, and

∫ T

0

b2(t)dt ≤ max
t∈[0,ω]

a21(t)

a11(t)
·
∫ T

0

b1(t)dt.

Under assumptions (H1)–(H3), there are three nonnegative time-space periodic

solutions: E0 = (0, 0), E1 := (u∗1(t, x), 0), and E2 := (0, u∗2(t, x)). Next, we use the
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theory developed in [35] for abstract competitive systems (see also [32]) to prove the

global stability of E1.

Theorem 5.2.1. Assume that (H1)–(H3) hold. Then E1(u∗1(t, x), 0) is globally asymp-

totically stable for all initial values φ = (φ1, φ2) ∈ P+ with φ1 6≡ 0.

Proof. Since (H2) holds true, the arguments similar to those in [106, Proposition

7.1.1] imply the following observation.

Claim. There exists δ0 > 0 such that lim supn→∞ ‖u(nω, x, φ) − (0, u∗2(0, x))‖P ≥ δ0

for any φ ∈ P+ with φ1 6≡ 0.

By the above claim and (H3), we rule out possibility (a) and (c) in Theorem 2.1.4

with T (φ) = u(ω, ·, φ). Since E2 is repellent in some neighborhood of itself, Theorem

2.1.4 implies that E1 is globally asymptotically stable for all initial values φ ∈ P+

with φ1 6≡ 0.

5.2.2 Spreading speeds and traveling waves

In this subsection, we study the spreading speeds and time-space periodic traveling

waves for system (5.5). By a change of variables v1 = u1, v2 = u∗2(t, x) − u2, we

transform system (5.5) into the following cooperative system:

∂v1

∂t
=L1v1+v1(b1(t, x)−a12(t, x)u∗2(t, x)−a11(t, x)v1+a12(t, x)v2), t > 0, x ∈ R,

∂v2

∂t
=L2v2+a21(t, x)v1(u∗2(t, x)−v2) +v2(b2(t, x)−2a22(t, x)u∗2(t, x)+a22(t, x)v2).

(5.35)

Note that three time-space solutions of (5.5), respectively, become

Ê0 = (0, u∗2(t, x)), Ê1 = (u∗1(t, x), u∗2(t, x)), Ê2 = (0, 0).
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To apply Theorems 5.1.1 and 5.1.3 to (5.35), we need to specify the meaning of

the notations there. More precisely,

X = R2, H = R, T = R+, β(t, x) = Ê1, 0 = Ê2.

Other notations such as Cβ(0,·) and Cperβ(0,·) in Theorems 5.1.1 and 5.1.3 are then ac-

cordingly specified.

Let Y be the set of all bounded and continuous functions from R to R, T1(t, s)

and T2(t, s) be the linear semigroups on Y generated by

∂v

∂t
=L1v + v(b1(t, x)− a12(t, x)u∗2(t, x))

and
∂v

∂t
=L2v + v(b2(t, x)− 2a22(t, x)u∗2(t, x)),

respectively. It follows that T1(t, s) and T2(t, s) are compact with the respect to the

compact open topology for each t > s ≥ 0 (see, e.g., [31]). For any u = (u1, u2) ∈ C,

define F : [0,+∞)× C → C by

F (t, u) =

 −a11(t, ·)u2
1 + a12(t, ·)u1u2

a21(t, ·)u∗2(t, ·)u1 − a21(t, ·)u1u2 + a22(t, ·)u2
2

 .

Then we rewrite system (5.35) as an integral equation form:

v(t) = T (t, 0)v(0) +

∫ t

0

T (t, s)F (s, v(s))ds, t > 0,

v(0) = φ ∈ Cβ(0,·), (5.36)

where T (t, s) = diag(T1(t, s), T2(t, s)).

As usual, a solution of (5.36) is called a mild solution of system (5.35). It then

follows that for any φ ∈ Cβ(0,·), system (5.35) has a mild solution u(t, ·, φ) defined
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on [0,∞) with u(0, ·, φ) = φ, and u(t, ·, φ) ∈ Cβ(t,·) for all t ≥ 0, and it is a classical

solution when t > 0.

Definition 5.2.1. A function u(t) := u(t, ·) is said to be an upper (a lower) solution

of system (5.35) if it satisfies

u(t) ≥ (≤)T (t, 0)u(0) +

∫ t

0

T (t, s)F (s, u(s))ds, t ≥ 0.

Define a family of operators {Qt}t≥0 from Cβ(0,·) to Cβ(t,·) by Qt(φ) := u(t, ·, φ),

where u(t, ·, φ) is the solution of system (5.35) with u(0, ·) = φ ∈ Cβ(0,·). Next we

show that {Qt}t≥0 is an ω-time periodic and L-space periodic monotone semiflow

from Cβ(0,·) to Cβ(t,·) in the sense of Definition 5.1.1. Indeed, since for any a ∈ LZ,

v(t, x) := u(t, x− a, φ) and w(t, x) := u(t+ω, x, φ) are solutions of (5.35) with initial

conditions v(0, x) = u(0, x−a, φ) and w(0, x) = u(ω, x, φ), respectively, we see that Qt

satisfies the second and third properties in Definition 5.1.1. The fourth property and

(A2) follow from the same argument as in [63, Theorem 8.5.2]. The fifth property is

true since system (5.35) is cooperative and the comparison principle holds. Moreover,

Theorem 5.2.1 implies (A1) is valid. Thus, we have the following observation.

Proposition 5.2.3. Assume that (H1)–(H3) hold. Then {Qt}t≥0 is an ω-time peri-

odic and L-space periodic monotone semiflow from Cβ(0,·) to Cβ(t,·), and Qω satisfies

(A1) and (A2).

By Proposition 5.2.3, we see that {Qt}t≥0 satisfies all conditions in Theorem 5.1.1.

Thus, there exist two numbers c̄+ and c∗+ for the minimal speed of different kind of

traveling waves. In Theorem 5.1.1, c̄+ might be plus infinite and the information of

the limits of traveling waves at ±∞ is not fully understood for general semiflows.

Below, we will use the structure of competition to show that c̄+ is finite and derive
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some conditions under which the limits of traveling waves at ±∞ can be figured out.

By the comparison arguments, it is easy to see that c̄+ ≤ max{c∗1+, c
∗
2+}, where c∗i+

is the rightward spreading speed of the ui species in the absence of the u3−i species,

i = 1, 2. Since c∗1+ and c∗2+ are determined by two Fisher-KPP type equations (see

(5.37) and (5.39) below), it follows that c̄+ < +∞.

To show that c+ is the minimal wave speed for periodic traveling waves of system

(5.35) connecting β(t, x) to 0, we propose the following assumption:

(H4) c∗1+ + c∗2− > 0, where c∗1+ and c∗2− are the rightward and leftward spreading

speeds of two Fisher-KPP type equations (5.37) and (5.39), respectively.

Note that c∗1+ is the rightward spreading speed of u1 species when u2 species van-

ishes, and c∗2− is the leftward spreading speed of u2 species when u1 species vanishes.

When two species have opposite advection, they may separate even without competi-

tion. Assumption (H4) excludes such a possibility so that the competition plays a vital

role. We remark that in the case where Liu = ∂
∂x

(di(x)∂u
∂x

) with di ∈ C
v
2
,1+ν(R× R),

or all the coefficient functions in (5.37) and (5.39) are even in x except gi is odd in

x, i = 1, 2, Lemma 5.2.2 in the forthcoming section 5.2.4 shows that (H1) and (H2)

guarantee (H4).

Theorem 5.2.2. Assume that (H1)–(H4) hold. Then for any c ≥ c̄+, system (5.35)

admits a periodic traveling wave (U(t, x, x− ct), V (t, x, x− ct)) connecting β(t, x) to

0, with wave profile components U(t, x, ξ) and V (t, x, ξ) being continuous and non-

increasing in ξ, and for any c < c̄+, there is no such traveling wave connecting β(t, x)

to 0.

Proof. In view of Theorem 5.1.1 (2) and (3), it suffices to rule out the second case in

Theorem 5.1.1 (2). Suppose, by contradiction, that the statement in Theorem 5.1.1
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(2)(ii) is valid for some c ≥ c̄+. Note that system (5.35) has exactly three time-

space periodic solutions and Ê0 = (0, u∗2(t, x)) is the only intermediate time-space

periodic solution between Ê1 = (u∗1(t, x), u∗2(t, x)) and Ê2 = (0, 0), then we have

α1 = α2 = Ê0. Thus, by restricting system (5.35) on the order interval [Ê0, Ê1] and

[Ê2, Ê0], respectively, we see that one scalar equation

ut = L1u+ u(b1(t, x)− a11(t, x)u) (5.37)

admits a periodic traveling wave U(t, x, x− ct) connecting u∗1(t, x) to 0 with U(t, x, ξ)

being continuous and nonincreasing in ξ, and the other scalar equation

vt = L2v + v(b2(t, x)− 2a22(t, x)u∗2(t, x) + a22(t, x)v) (5.38)

also admits a periodic traveling wave V (t, x, x − ct) connecting u∗2(t, x) to 0 with

V (t, x, ξ) being continuous and nonincreasing in ξ.

Let W (t, x, x − ct) = u∗2(t, x)− V (t, x, x − ct). Then W (t, x, x − ct) is a periodic

traveling wave connecting 0 to u∗2(t, x) of the following scalar equation with W (t, x, ξ)

being continuous and nondecreasing in ξ

wt = L2w + w(b2(t, x)− a22(t, x)w). (5.39)

Note that W (t, x, x− ct) is a periodic leftward traveling wave connecting 0 to u∗2(t, x)

with wave speed −c, and that systems (5.37) and (5.39) admit rightward spreading

speed c∗1+ and leftward spreading speed c∗2−, respectively, which are also the rightward

and the leftward minimal wave speeds (see, e.g., [53, Theorem 2.1–2.3]). It then

follows that c ≥ c∗1+ and −c ≥ c∗2−. This implies that c∗1+ + c∗2− ≤ 0, a contradiction.
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Let λ2(µ) be the principle eigenvalue of the parabolic eigenvalue problem:

λψ = −∂ψ
∂t

+ d2(t, x)
∂2ψ

∂x2
−(2µd2(t, x) + g2(t, x))

∂ψ

∂x

+
(
d2(t, x)µ2+g2(t, x)µ+b2(t, x)−a22(t, x)u∗2(t, x)

)
ψ, (t, x) ∈ R× R, (5.40)

ψ(t, x+ L) = ψ(t, x), ψ(t+ ω, x) = ψ(t, x), (t, x) ∈ R× R.

In order to prove that system (5.35) admits a single rightward spreading speed,

we impose the following assumption:

(H5) lim supµ→0+
λ2(µ)
µ
≤ c∗1+, where c∗1+ is the rightward spreading speed of (5.37).

By virtue of Lemma 4.4.2, it follows that in the case where Liu = ∂
∂x

(di(x)∂u
∂x

) with

di ∈ C1+ν(R), or all the coefficient functions of system (5.35) are even in x except gi

is odd in x, i = 1, 2, (H5) is automatically satisfied provided that (H1) and (H2) hold

true.

Theorem 5.2.3. Assume that (H1)–(H5) hold. Then the following statements are

valid for system (5.35):

(i) If φ ∈ Cβ(0,·), 0 ≤ φ ≤ $ � β(0, ·) for some $ ∈ Cperβ(0,·), and φ(x) = 0,∀x ≥ H,

for some H ∈ R, then limt→∞,x≥ct u(t, x, φ) = 0 for any c > c̄+.

(ii) If φ ∈ Cβ(0,·) and φ(x) ≥ σ, ∀x ≤ K, for some σ ∈ R2 with σ � 0 and K ∈ R,

then limt→∞,x≤ct(u(t, x, φ)− β(t, x)) = 0 for any c < c̄+.

Proof. In view of Theorem 5.1.3, it suffices to show that c+ = c∗+. If this is not

valid, then the definition of c̄+ and c∗+ implies that c̄+ > c∗+. By Theorem 5.1.1 (1)

and (3), it follows that system (5.35) admits a periodic traveling wave (U1(t, x, x −

c∗+t), U2(t, x, x− c∗+t)) connecting (u∗1(t, x), u∗2(t, x)) to (0, u∗2(t, x)) with Ui(t, x, ξ)(i =
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1, 2) being continuous and nonincreasing in ξ. Therefore, U2 ≡ u∗2(t, x), and U1(t, x, x−

c∗+t) is a periodic traveling wave connecting u∗1(t, x) to 0. This implies c∗+ ≥ c∗1+ where

c∗1+ is the rightward spreading of (5.37). By the linear operators approach as shown

in [53, Theorem B] and [54, Theorem 3.10], it then follows that c∗1+ = infµ>0
λ1(µ)
µ

,

where λ1(µ) is the principal eigenvalue of the scalar parabolic eigenvalue problem:

λψ = −∂ψ
∂t

+ d1(t, x)
∂2ψ

∂x2
− (2µd1(t, x) + g1(t, x))

∂ψ

∂x

+(d1(t, x)µ2 + g1(t, x)µ+ b1(t, x))ψ, (t, x) ∈ R× R, (5.41)

ψ(t, x+ L) = ψ(t, x), ψ(t+ ω, x) = ψ(t, x), (t, x) ∈ R× R.

Note that λ1(µ)
µ

is a continuous function and lim
µ→0+

λ1(µ)
µ

= +∞. For any given c1 ∈

(c∗+, c̄+) ⊆ (c∗1+, c+), there exists µ1 > 0 such that c1 = λ1(µ1)
µ1

. Let φ∗1(t, x) be the

positive time and space periodic eigenfunction associated with the principal eigenvalue

λ1(µ1) of (5.41). Then it easily follows that

u1(t, x) := e−µ1(x−c1t)φ∗1(t, x) = e−µ1xeλ1(µ1)tφ∗1(t, x), t ≥ 0, x ∈ R,

is a solution of the linear equation

∂u1

∂t
= L1u1 + b1(t, x)u1.

Since c∗1+ < c1 and (H5) holds, we can choose a small number µ2 ∈ (0, µ1) such that

c2 := λ2(µ2)
µ2

< c1. Let φ∗2(t, x) be the positive time and space periodic eigenfunction

associated with the principal eigenvalue λ2(µ2) of (5.40). It is easy to see that

u2(t, x) := e−µ2(x−c2t)φ∗2(x) = e−µ2xeλ2(µ2)tφ∗2(t, x)

is a solution of the linear equation

∂u2

∂t
= L2u2 + (b2(t, x)− a22(t, x)u∗2(t, x))u2.
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Since c1 > c2, it follows that the function

v2(t, x) := e−µ2(x−c1t)φ∗2(t, x) = eµ2(c1−c2)tu2(t, x), t ≥ 0, x ∈ R,

satisfies
∂v2

∂t
≥ L2v2 + (b2(t, x)− a22(t, x)u∗2(t, x))v2. (5.42)

Define two wave-like functions:

u1(t, x) := min{m0e
−µ1(x−c1t)φ∗1(t, x), u∗1(t, x)}, t ≥ 0, x ∈ R, (5.43)

and

u2(t, x) := min{q0e
−µ2(x−c1t)φ∗2(t, x), u∗2(t, x)}, t ≥ 0, x ∈ R, (5.44)

where

q0 := max
(t,x)∈[0,ω]×[0,L]

u∗2(t, x)

φ∗2(t, x)
> 0, m0 := min

(t,x)∈[0,ω]×[0,L]

q0a22(t, x)φ∗2(t, x)

a21(t, x)φ∗1(t, x)
> 0.

Now, we are ready to verify that (u1, u2) is an upper solution to system (5.35). Indeed,

for all x− c1t >
1
µ1

ln
m0φ∗1(t,x)

u∗1(t,x)
, we have u1(t, x) = m0e

−µ1(x−c1t)φ∗1(t, x), and hence,

∂u1

∂t
− L1u1 − u1(b1(t, x)− a12(t, x)u∗2(t, x)− a11(t, x)u1 + a12(t, x)u2)

≥ ∂u1

∂t
− L1u1 − b1(t, x)u1 = 0.

For all x− c1t <
1
µ1

ln
m0φ∗1(t,x)

u∗1(t,x)
, we obtain u1(t, x) = u∗1(t, x), and hence,

∂u1

∂t
− L1u1 − u1(b1(t, x)− a12(t, x)u∗2(t, x)− a11(t, x)u1 + a12(t, x)u2)

≥ ∂u1

∂t
− L1u1 − u1(b1(t, x)− a11(t, x)u1) = 0.

On the other hand, for all x− c1t>
1
µ2

ln
q0φ∗2(t,x)

u∗2(t,x)
>0, it follows that

u2(t, x) = q0e
−µ2(x−c1t)φ∗2(t, x),
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which satisfies inequality (5.42). Note that

u1(t, x) ≤ m0e
−µ1(x−c1t)φ∗1(t, x), ∀t ≥ 0, x ∈ R,

and µ2 ∈ (0, µ1), we get

∂u2

∂t
−L2u2 − a21(t, x)(u∗2(t, x)− u2)u1 − u2(b2(t, x)− 2a22(t, x)u∗2(t, x) + a22(t, x)u2)

= ∂u2

∂t
−L2u2−(b2(t, x)−a22(t, x)u∗2(t, x))u2+(u∗2(t, x)−u2)(a22(t, x)u2 − a21(t, x)u1)

≥ (u∗2(t, x)− u2)e−µ1(x−c1t)a21(t, x)φ∗1(t, x)(
q0a22(t,x)φ∗2(t,x)

a21(t,x)φ∗1(t,x)
−m0)

≥ 0.

For all x− c1t <
1
µ2

ln
q0φ∗2(t,x)

u∗2(t,x)
, we have u2(t, x) = u∗2(t, x). Therefore,

∂u2

∂t
− L2u2 − a21(t, x)(u∗2(t, x)− u2)u1 − u2(b2(t, x)− 2a22(x)u∗2(t, x) + a22(t, x)u2)

=
∂u∗2
∂t
− L2u

∗
2 − u∗2(b2(t, x)− a22(t, x)u∗2) = 0.

It then follows that u = (u1, u2) is a continuous upper solution of system (5.35).

Let φ ∈ Cβ(0,·) with φ(x) ≥ σ, ∀x ≤ K and φ(x) = 0, ∀x ≥ H, for some σ ∈ R2

with σ � 0 and K,H ∈ R. By the arguments in [95, Lemma 2.2] and the proof of

Theorem 5.1.3, as applied to P̃ω, it follows that for any c < c̄+, there exists δ(c) > 0

such that

lim infn→∞,x≤cnω|u(nω, x, φ)| ≥ δ(c) > 0. (5.45)

Moreover, there exists a sufficiently large positive constant A ∈ LZ such that

φ(x) ≤ u(0, x− A) := ψ(x), ∀x ∈ R.

By the translation invariance of Qt, it follows that u(t, x−A) is still an upper solution

of system (5.35), and hence,

0 ≤ u(t, x, φ) ≤ u(t, x, ψ) = u(t, x− A), ∀x ∈ R, t ≥ 0. (5.46)
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Fix a number ĉ ∈ (c1, c̄+). Letting t = nω, x = ĉnω and n → ∞ in (5.46), together

with (5.45), we have

0 < δ(ĉ) ≤ lim inf
n→∞

|u(nω, ĉnω, φ)| ≤ lim
n→∞

|u(nω, ĉnω − A)| = 0,

which is a contradiction. Thus, c∗+ = c̄+.

Note that the leftward case can be addressed in a similar way. Indeed, by making

a change of variable v(t, x) = u(t,−x) for system (5.35), we obtain similar results

for the rightward case of the resulting system, which is the leftward case for system

(5.35).

Remark 5.2.1. In the case where Liu = ∂
∂x

(di(x)∂u
∂x

) with di ∈ C1+ν(R) in system

(5.35), i = 1, 2, or all the coefficient functions of system (5.35) are even in x except gi

is odd in x, i = 1, 2, it follows from Lemma 4.4.2 that system (5.35) admits a single

rightward spreading speed which is coincident with the minimal rightward wave speed

provided that (H1)–(H3) hold.

5.2.3 Linear determinacy of spreading speed

In this subsection, we give a set of sufficient conditions for the rightward spreading

speed to be determined by the linearization of system (5.35) at Ê2 = (0, 0), which is

∂v1

∂t
=L1v1 + (b1(t, x)− a12(t, x)u∗2(t, x))v1, (5.47)

∂v2

∂t
=L2v2+a21(t, x)u∗2(t, x)v1 +(b2(t, x)−2a22(t, x)u∗2(t, x))v2, t > 0, x ∈ R.

Clearly, under (H2) the following scalar equation

∂u

∂t
= L1u+ u(b1(t, x)− a12(t, x)u∗2(t, x)− a11(t, x)u), t > 0, x ∈ R, (5.48)
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admits a rightward spreading speed (also the minimal rightward wave speed) c0
+ =

inf
µ>0

λ0(µ)
µ

, where λ0(µ) is the principle eigenvalue of the following parabolic eigenvalue

problem:

λψ = −∂ψ
∂t

+ d1(t, x)
∂2ψ

∂x2
− (2µd1(t, x) + g1(t, x))

∂ψ

∂x
(5.49)

+(d1(t, x)µ2 + g1(t, x)µ+ b1(t, x)− a12(t, x)u∗2(t, x))ψ, (t, x) ∈ R× R,

ψ(t, x+ L) = ψ(t, x), ψ(t+ ω, x) = ψ(t, x), (t, x) ∈ R× R.

The next result shows that c0
+ is a lower bound of the slowest spreading c∗+ of system

(5.35).

Proposition 5.2.4. Let (H1)–(H3) hold. Then c∗+ ≥ c0
+.

Proof. In the case where c̄+ > c∗+, by the same arguments as in Theorem 5.2.3, we see

that c∗+ ≥ c∗1+ where c∗1+ is the rightward spreading speed of (5.37). Since b1(t, x) >

b1(t, x)− a12(t, x)u∗2(t, x),∀(t, x) ∈ R× R, by Lemma 4.4.1 (a) with d(t, x) = d1(t, x)

and g(t, x) = g1(t, x), it is easy to see that λ1(µ) > λ0(µ),∀µ ≥ 0, where λ1(µ) is the

principal eigenvalue of (5.41). Thus, we have c∗+ ≥ c∗1+ > c0
+.

In the case where c̄+ = c∗+, let u(t, ·, φ) = (u1(t, ·, φ), u2(t, ·, φ)) be the solution of

system (5.35) with u(0, ·) = φ = (φ1, φ2) ∈ Cβ(0,·). Then the positivity of the solution

implies that

∂u1

∂t
≥ L1u1 + u1(b1(t, x)− a12(t, x)u∗2(t, x)− a11(t, x)u1), t > 0, x ∈ R.

Let v(t, x, φ1) be the unique solution of (5.48) with v(0, ·) = φ1. Then the comparison

principle yields that

u1(t, x, φ) ≥ v(t, x, φ1), ∀t ≥ 0, x ∈ R. (5.50)
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Since λ(d1, g1, b1 − a12u
∗
2) > 0, Proposition 5.2.1 implies that there exists a unique

positive time-space periodic solution v0(t, x) of (5.48). Let φ0 = (φ0
1, φ

0
2) ∈ Cβ(0,·)

be chosen as in Theorem 5.2.3 (i) and (ii) such that φ0
1 ≤ v0(0, ·). Suppose, by

contradiction, c∗+ < c0
+. Choose ĉ ∈ (c̄+, c

0
+). Then Theorem 5.2.3 implies that

limt→∞,x≥ĉt u1(t, x, φ0) = 0. By Theorem 5.1.3, as applied to system (5.48), we further

obtain limt→∞,x≤ĉt(v(t, x, φ0
1) − v0(t, x)) = 0. However, letting x = ĉt in (5.50), we

get limt→∞,x=ĉt(v(t, x, φ0
1)) = 0, which is a contradiction.

For any given µ ∈ R, letting v(t, x) = e−µxu(t, x) in (5.47), we then have

∂u1

∂t
= L1u1−2µd1(t, x)

∂u1

∂x
+(d1(t, x)µ2+g1(t, x)µ+b1(t, x)−a12(t, x)u∗2(t, x))u1,

∂u2

∂t
= L2u2−2µd2(t, x)

∂u2

∂x
+ a21(t, x)u∗2(x)u1 (5.51)

+(d2(t, x)µ2+g2(t, x)µ+b2(t, x)−2a22(t, x)u∗2(t, x))u2, t > 0, x ∈ R.

Substituting u(t, x) = eλtφ(t, x) into (5.51), we obtain the following periodic eigen-

value problem:

λφ1 = −∂φ1

∂t
+ d1(t, x)

∂2φ1

∂x2
− (2µd1(t, x) + g1(t, x))

∂φ1

∂x

+ (d1(t, x)µ2 + g1(t, x)µ+ b1(t, x)− a12(t, x)u∗2(t, x))φ1, (t, x) ∈ R× R,

λφ2 = −∂φ2

∂t
+ d2(t, x)

∂2φ2

∂x2
− (2µd2(t, x) + g2(t, x))

∂φ2

∂x
+ a21(t, x)u∗2(t, x)φ1

+
(
d2(t, x)µ2+g2(t, x)µ+b2(t, x)−2a22(t, x)u∗2(t, x)

)
φ2, (t, x) ∈ R× R,

φi(t, x+ L) = φi(t, x), φi(t+ ω, x) = φi(t, x), (t, x) ∈ R× R, i = 1, 2. (5.52)
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Let λ(µ) be the principal eigenvalue of the following periodic eigenvalue problem:

λψ = −∂ψ
∂t

+ d2(t, x)
∂2ψ

∂x2
− (2µd2(t, x) + g2(t, x))

∂ψ

∂x

+
(
d2(t, x)µ2+g2(t, x)µ+b2(t, x)−2a22(t, x)u∗2(t, x)

)
ψ, (t, x) ∈ R× R,

ψ(t, x+ L) = ψ(t, x), ψ(t+ ω, x) = ψ(t, x), (t, x) ∈ R× R. (5.53)

Since there exists µ0 > 0 such that c0
+ = λ0(µ0)

µ0
. In order to show that λ0(µ0) is the

principle eigenvalue of (5.52), we introduce the following additional condition:

(D1) λ0(µ0) > λ(µ0).

Proposition 5.2.5. Let (H1)–(H3) and (D1) hold. Then the periodic eigenvalue

problem (5.52) with µ = µ0 has a simple eigenvalue λ0(µ0) associated with a positive

periodic eigenfunction φ∗ = (φ∗1, φ
∗
2).

Proof. Clearly, there exists a positive eigenfunction φ∗1 associated with the principle

eigenvalue λ0(µ0) of (5.48). Since the first equation of (5.52) is decoupled from the

second one, it suffices to show that λ0(µ0) has a positive eigenfunction φ∗ = (φ∗1, φ
∗
2)

in (5.52), where φ∗2 is to be determined. Let U(t, s), 0 ≤ s < t, be the evolution

operator generated by (5.51) with u(0, ·) ∈ P, and U1(t, s) and U2(t, s), 0 ≤ s < t be

the evolution operators generated by the following scalar parabolic equations:

∂u

∂t
=L1u− 2µ0d1(t, x)

∂u

∂x

+ (d1(t, x)µ2
0 + g1(t, x)µ0 + b1(t, x)− a12(t, x)u∗2(t, x))u, t > 0, x ∈ R,

u(0, ·) = ϕ1 ∈ P
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and

∂u

∂t
=L2u−2µ0d2(t, x)

∂u

∂x

+ (d2(t, x)µ2
0+g2(t, x)µ0+b2(t, x)−2a22(t, x)u∗2(t, x))u, t > 0, x ∈ R,

u(0, ·) = ϕ2 ∈ P ,

respectively. By the variation of constants formula for scalar parabolic equations, it

then follows that

U(t, 0)

 ϕ1

ϕ2

 =

 U1(t, 0)ϕ1

U2(t, 0)ϕ2 +
∫ t

0
U2(t, s)a21(s, ·)u∗2(s, ·)U1(s, 0)ϕ1ds

 , ∀t > 0.

And it is easy to see that U1(ω, 0) and U2(ω, 0) are strongly positive and compact

linear operators on P . Let r1 and r2 be the spectral radii of U1(ω, 0) and U2(ω, 0).

Then Theorem 2.1.1 (see e.g., [31, Theorem 7.2 ]) implies ri is the principle eigenvalue

of Ui(ω, 0), i = 1, 2, and r1 = eλ0(µ0)ω and r2 = eλ(µ0)ω. Moreover, U1(t, 0)φ∗1(0, ·) =

eλ0(µ0)tφ∗1(t, ·) > 0, ∀t > 0. By [31, Theorem 7.3] and (D1), it follows that

(r1 − U2(ω, 0))ϕ2 =

∫ ω

0

U2(ω, s)a21(s, ·)u∗2(s, ·)U1(s, 0)φ∗1(0, ·)ds > 0, (5.54)

has a unique positive solution ϕ∗2 ∈ P . Therefore, ϕ∗ = (φ∗1(0, ·), ϕ∗2) ∈ P is a positive

eigenfunction of U(ω, 0) with the eigenvalue r1 = eλ0(µ0)ω, that is, U(ω, 0)ϕ∗ = r1ϕ
∗.

Let

φ∗2(t, ·) = e−λ0(µ0)tU2(t, 0)ϕ∗2 +

∫ t

0

e−λ0(µ0)(t−s)U2(t, s)a21(s, ·)u∗2(s, ·)φ∗1(s, ·)ds.

Clearly, φ∗2(t, x) is positive for (t, x) ∈ R+ × R, and satisfies the second equation of

(5.52), and

φ∗2(ω, ·) = e−λ0(µ0)ωr1ϕ
∗
2 = ϕ∗2 = φ∗2(0, ·).
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This implies that φ∗ = (φ∗1, φ
∗
2) is the positive time and space periodic eigenfunction

associated with λ0(µ0). Since λ0(µ0) is a simple eigenvalue for (5.48), we see that so

is λ0(µ0) for (5.52).

From Proposition 5.2.5, it is easy to see that for any given M > 0, the function

U(t, x) = Me−µ0xeλ0(µ0)tφ∗(t, x), t ≥ 0, x ∈ R, (5.55)

is a positive solution of system (5.47). In order to obtain an explicit formula for the

spreading speeding c̄+, we need one more additional condition:

(D2)
φ∗1(t,x)

φ∗2(t,x)
≥ max

{
a12(t,x)
a11(t,x)

, a22(t,x)
a21(t,x)

}
, ∀(t, x) ∈ R× R.

Now we are in a position to show that system (5.35) admits a single rightward spread-

ing speed c̄+, which is linearly determinate.

Theorem 5.2.4. Let (H1)–(H3) and (D1)–(D2) hold. Then c̄+ = c∗+ = c0
+ =

infµ>0
λ0(µ)
µ

.

Proof. First, we verify that U(t, x), as defined in (5.55), is an upper solution of system

(5.35). Since U1

U2
=

φ∗1
φ∗2

and (D2) holds true, it follows that

∂U1

∂t
−L1U1 − U1(b1(t, x)− a12(t, x)u∗2(t, x)− a11(t, x)U1 + a12(t, x)U2)

= a11(t, x)U1U2

(
U1

U2

− a12(t, x)

a11(t, x)

)
= a11(t, x)U1U2

(
φ∗1(t, x)

φ∗2(t, x)
− a12(t, x)

a11(t, x)

)
≥ 0,
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and

∂U2

∂t
−L2U2−a21(t, x)U1(u∗2(t, x)−U2)−U2(b2(t, x)−2a22(t, x)u∗2(t, x)+a22(t, x)U2).

= a21(t, x)U
2

2

(
U1

U2

− a22(t, x)

a21(t, x)

)
= a21(t, x)U

2

2

(
φ∗1(t, x)

φ∗2(t, x)
− a22(t, x)

a21(t, x)

)
≥ 0.

Thus, U(t, x) is an upper solution of (5.35). Choose some φ0 ∈ Cβ(0,·) satisfying the

conditions in Theorem 5.2.3 (i) and (ii). Then there exists a sufficiently large number

M0 > 0 such that

0 ≤ φ0(x) ≤M0e
−µ0xφ∗(0, x) = U(0, x), ∀x ∈ R.

Let W (t, x) be the unique solution of system (5.35) with W (0, ·) = φ0. Then the

comparison principle, together with the fact that c0
+µ0 = λ0(µ0), leads that

0≤W (t, x)≤U(t, x)=M0e
−µ0xeλ0(µ0)tφ∗(t, x)=M0e

−µ0(x−c0+t)φ∗(t, x), ∀t ≥ 0, x ∈ R.

It follows that for any given ε > 0, there holds

0 ≤ W (t, x) ≤M0e
−µ0εtφ∗(t, x), ∀t ≥ 0, x ≥ (c0

+ + ε)t,

and hence,

lim
t→∞,x≥(c0++ε)t

W (t, x) = 0.

By Theorem 5.2.3 (ii), we obtain c∗+ ≤ c0
+ + ε. Letting ε→ 0, we have c∗+ ≤ c0

+. In the

case that c̄+ > c∗+, the proof of Proposition 5.2.4 shows that c∗+ > c0
+, a contradiction.

This implies that c̄+ = c∗+ = c0
+.
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To finish this section, we consider the following time-periodic Lotka–Volterra com-

petition model [104]:

∂u1

∂t
=
∂2u1

∂x2
+ u1(b1(t)− a11(t)u1 − a12(t)u2), (5.56)

∂u2

∂t
= d

∂2u2

∂x2
+ u2(b2(t)− a21(t)u1 − a22(t)u2), t > 0, x ∈ R.

Here d > 0 and all other coefficient functions are positive and ω-periodic in t.

For convenience, define w = 1
ω

∫ ω
0
w(t)dt with any ω-periodic function w(t). We

first make the following assumption (see (A2) in [104]):

(P1) b1 > max
t∈[0,ω]

a12(t)
a22(t)

· b2 > 0, and 0 < b2 ≤ max
t∈[0,ω]

a21(t)
a11(t)

· b1.

It is easy to see that if (P1) holds, then Proposition 5.2.2 implies that (H3) is valid. A

straightforward computation shows that λ(1, 0, b1) = b1 > 0 and λ(1, 0, b2) = b2 > 0.

Thus, (H1) holds true and system (5.56) admits three time periodic solutions (0, 0),

(u∗1(t), 0), and (0, u∗2(t)). Moreover, we can show that

λ(1, 0, b1 − a12u
∗
2) = b1 − a12u∗2 ≥ b1 − max

t∈[0,ω]

a12(t)

a22(t)
· a22u∗2 = b1 − max

t∈[0,ω]

a12(t)

a22(t)
· b2 > 0,

and hence, (H2) ia also valid. (H4) and (H5) are automatically satisfied since all

coefficient functions are independent of x (treated as even functions of x). It then

follows that system (5.56) admits a single spreading speed (also the minimal wave

speed) c̄+ no matter whether it is linearly determinate. Next, we make another

assumption (see [104, Theorem 2.5]):

(P2) 0 < d ≤ 1, a11(t)u∗1(t)− a12(t)u∗2(t) ≥ a21(t)u∗1(t)− a22(t)u∗2(t) ≥ 0,∀t ∈ R.

In what follows, we show that (P2) is sufficient for (D1) and (D2) to hold. Clearly,

λ0(µ) and λ(µ) become the principal eigenvalues of the following periodic eigenvalue
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problems:

λψ = −dψ
dt

+ (µ2 + b1(t)− a12(t)u∗2(t))ψ, t ∈ R,

ψ(t+ ω) = ψ(t), t ∈ R,

and

λψ = −dψ
dt

+
(
dµ2 + b2(t)− 2a22(t)u∗2(t)

)
ψ, t ∈ R,

ψ(t+ ω) = ψ(t), t ∈ R, (5.57)

respectively. It is easy to see that

λ0(µ) = µ2 + b1 − a12u∗2, λ(µ) = dµ2 + b2 − 2a22u∗2.

By virtue of (P2) and

c0
+ = inf

µ>0

λ0(µ)

µ
= inf

µ>0

{
µ+

b1 − a12u∗2
µ

}
,

it follows that

c0
+ = 2

√
b1 − a12u∗2 > 0, µ0 =

√
b1 − a12u∗2.

We then see from (P2) that (D1) holds true.

Let (φ1(t), φ2(t)) be a positive eigenfunction, associated with λ0(µ0), of the fol-

lowing eigenvalue problem:

λφ1 = −dφ1

dt
+ (µ2

0 + b1(t)− a12(t)u∗2(t))φ1, t ∈ R,

λφ2 = −dφ2

dt
+ a21(t)u∗2(t)φ1 +

(
dµ2

0 + b2(t)− 2a22(t)u∗2(t)
)
φ2, t ∈ R,

φi(t+ ω) = φi(t), t ∈ R, i = 1, 2. (5.58)
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Next we verify that φ2(t) ≤ u∗2(t)

u∗1(t)
φ1(t) := v(t),∀t ∈ R. Note that

− dv

dt
+ a21(t)u∗2(t)φ1(t) + (dµ2

0 + b2(t)− 2a22(t)u∗2(t)− 2µ2
0)v

=
u∗2(t)φ1(t)

u∗1(t)

[
−u

∗
1(t)

u∗2(t)

(
u∗2(t)

u∗1(t)

)′
− φ′1(t)

φ1(t)
+ a21(t)u∗1(t) + dµ2

0

+b2(t)− 2a22(t)u∗2(t)− 2µ2
0

]
=
u∗2(t)φ1(t)

u∗1(t)

[
−u

∗
1(t)

u∗2(t)

(
u∗2(t)

u∗1(t)

)′
+ b2(t)− b1(t)− a22(t)u∗2(t) + a11(t)u∗1(t)

+(d− 1)µ2
0 − a11(t)u∗1(t) + a12(t)u∗2(t) + a21(t)u∗1(t)− a22(t)u∗2(t)

]
≤ u∗2(t)φ1(t)

u∗1(t)

[
−u

∗
1(t)

u∗2(t)

(
u∗2(t)

u∗1(t)

)′
+ b2(t)− b1(t)− a22(t)u∗2(t) + a11(t)u∗1(t)

]
= 0.

In view of the comparison principle and the periodicity of φ2(t) and v(t), it then

suffices to show that φ2(t0) ≤ v(t0) for some t0 ∈ R. Assume, by contradiction, that

φ2(t) > v(t), ∀t ∈ R. Thus, we have w(t) := v(t)− φ2(t) < 0, and

dw(t)

dt
+
(
2µ2

0 − dµ2
0 − b2(t) + 2a22(t)u∗2(t)

)
w(t) ≥ 0, ∀t ∈ R.

This implies that ∫ ω

0

(2µ2
0 − dµ2

0 − b2(t) + 2a22(t)u∗2(t))dt ≤ 0.

On the other hand, we know that b2 = a22u∗2, and

1

ω

∫ ω

0

(2µ2
0 − dµ2

0 − b2(t) + 2a22(t)u∗2(t))dt = (2− d)µ2
0 + a22u∗2 > 0,

which leads to a contradiction. This shows that φ1(t)
φ2(t)
≥ u∗1(t)

u∗2(t)
, ∀t ∈ R. It then follows

from (P2) that

φ1(t)

φ2(t)
≥ u∗1(t)

u∗2(t)
≥ max

{
a12(t)

a11(t)
,
a22(t)

a21(t)

}
, ∀t ∈ R,
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which implies that (D2) is also valid. Therefore, if (P1) and (P2) hold, then the

spreading speed c̄+ is linearly determinate, equal to 2
√
b1 − a12u∗2.

Remark 5.2.2. Consider a more general reaction-diffusion competition system in a

periodic habitat, that is,

∂u1

∂t
= L1u1 + u1f1(t, x, u1, u2), (5.59)

∂u2

∂t
= L2u2 + u2f2(t, x, u1, u2), t ∈ R, x ∈ R,

where the operator Li := a
(i)
2 (t, x) ∂2

∂x2 + a
(i)
1 (t, x) ∂

∂x
with a

(i)
2 (t, x) > 0,∀(t, x) ∈ R×R,

i.e., Li is uniformly elliptic, i = 1, 2. Assume that a
(i)
j (t, x) and fi(t, x, u1, u2) are

periodic in t and x with the same periods, respectively, Hölder continuous in x of order

ν ∈ (0, 1) and in t of order ν
2
, 1 ≤ i, j ≤ 2, and fi(t, x, u1, u2) are differentiable with

respect to u1 and u2, i = 1, 2. Moreover, ∂u1f1(t, x, u1, 0) < 0 and ∂u2f2(t, x, 0, u2) <

0, ∀(t, x) ∈ R× R, u1 ∈ R+, u2 ∈ R+, and there exist M1 > 0 and M2 > 0 such that

f1(t, x,M1, 0) ≤ 0, f2(t, x, 0,M2) ≤ 0, ∂u2f1(t, x, u1, u2) < 0 and ∂u1f2(t, x, u1, u2) < 0

for all (t, x, u1, u2) ∈ R×R× [0,M1]× [0,M2]. Then we can obtain analogous results

on traveling waves and spreading speeds under similar assumptions to (H1)–(H5) and

(D1)–(D2).

5.2.4 An example

In this section, we study the time periodic version of a well-known reaction diffusion

model [43]:

∂u1

∂t
= d1∆u1 + u1(aω(t, x)− u1 − u2), (5.60)

∂u2

∂t
= d2∆u2 + u2(aω(t, x)− u1 − u2), t > 0, x ∈ R,
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where 0 < d1 < d2, aω(t, x) = a(t/ω, x) and a(t, x) is a continuous function on R×R

and it is 1-periodic in t and L-periodic in x.

For convenience, we use the same notations as in sections 2 and 3. We first present

some results on the principle eigenvalue λm(µ) of (5.61).

Lemma 5.2.1. Assume that time and space periodic functions d, g,m ∈ C
ν
2
,ν(R ×

R)(ν ∈ (0, 1)). Let λm(µ)(µ ∈ R) be the principle eigenvalue of the following parabolic

eigenvalue problem:

λψ = −∂ψ
∂t

+ d(t, x)
∂2ψ

∂x2
− (2µd(t, x) + g(t, x))

∂ψ

∂x

+(d(t, x)µ2 + g(t, x)µ+m(t, x))ψ, (t, x) ∈ R× R, (5.61)

ψ(t, x+ L) = ψ(t, x), ψ(t+ ω, x) = ψ(t, x), (t, x) ∈ R× R.

Then the following statements are valid:

(a) If m1(t, x) ≥ m2(t, x) with m1(t, x) 6≡ m2(t, x),∀(t, x) ∈ [0, ω] × [0, L], then

λm1(µ) > λm2(µ), ∀µ ∈ R.

(b) λm(µ) is a convex function of µ on R.

(c) If either d,m are even in x and g is odd in x, or d ∈ C ν
2
,1+ν(R×R)(ν ∈ (0, 1))

and g(t, x) = −∂d(t,x)
∂x

,∀(t, x) ∈ R × R and d,m are even in t, then λm(µ) =

λm(−µ),∀µ ∈ R.

Proof. By similar arguments to those in [31, Lemma 15.5] , it is easy to prove that

(a) holds. (b) follows from the same arguments as in [54].

In the case where d,m are even functions in x and g is odd in x. Let ψ(t, x) be

eigenfunction associated with λm(µ) . Set φ(t, x) = ψ(t,−x), we then have

λφ = −∂φ
∂t

+ d(t,−x)
∂2φ

∂x2
+ (2µd(t,−x) + g(t,−x))

∂φ

∂x

+(d(t,−x)µ2 + g(t,−x)µ+m(t,−x))φ, (t, x) ∈ R× R.
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Since d(t, x) = d(t,−x),m(t, x) = m(t,−x), g(t, x) = −g(t,−x),∀(t, x) ∈ R × R, we

obtain

λφ = −∂φ
∂t

+ d(t, x)
∂2φ

∂x2
+ (2µd(t, x)− g(t, x))

∂φ

∂x

+(d(t, x)µ2 − g(t, x)µ+m(t, x))φ, (t, x) ∈ R× R.

By the uniqueness of the principal eigenvalue, it follows that λm(−µ) = λm(µ), ∀µ ∈

R.

In the case where d ∈ C ν
2
,1+ν(R × R)(ν ∈ (0, 1)) and g(t, x) = −∂d(t,x)

∂x
, ∀(t, x) ∈

R× R, d, m is even in t, for any given µ ∈ R, it is easy to see that λm(µ) is also the

principle eigenvalue of

λψ =
∂ψ

∂t
+

∂

∂x

(
d(t, x)

∂ψ

∂x

)
− 2µd(t, x)

∂ψ

∂x

+(d(t, x)µ2 − ∂d(t, x)

∂x
µ+m(t, x))ψ, (t, x) ∈ R× R, (5.62)

ψ(t, x+ L) = ψ(t, x), ψ(t+ ω, x) = ψ(t, x), (t, x) ∈ R× R.

Let ϕ(t, x) and φ(t, x) be the positive periodic eigenfunctions associated with λm(µ)

and λm(−µ), respectively, and ψ(t, x) = ϕ(−t, x), ∀(t, x) ∈ R×R. Note that d,m are

even in t, so is ∂d(t,x)
∂x

, it then follows that,

λm(µ)ψ =
∂ψ

∂t
+

∂

∂x

(
d(t, x)

∂ψ

∂x

)
− 2µd(t, x)

∂ψ

∂x
+ (d(t, x)µ2 − ∂d(t, x)

∂x
µ+m(t, x))ψ

and

λm(−µ)φ = −∂φ
∂t

+
∂

∂x

(
d(t, x)

∂φ

∂x

)
+2µd(t, x)

∂φ

∂x
+(d(t, x)µ2 +

∂d(t, x)

∂x
µ+m(t, x))φ

Using integration by parts, we have∫ ω

0

∫ L

0

∂ψ(t, x)

∂t
φ(t, x)dxdt = −

∫ ω

0

∫ L

0

∂φ(t, x)

∂t
ψ(t, x)dxdt,
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∫ ω

0

∫ L

0

∂

∂x

(
d(t, x)

∂ψ(t, x)

∂x

)
φ(t, x)dxdt =

∫ ω

0

∫ L

0

∂

∂x

(
d(t, x)

∂φ(t, x)

∂x

)
ψ(t, x)dxdt,

and

−µ
∫ ω

0

∫ L

0

[
2d(t, x)

∂ψ(t, x)

∂x
φ(t, x) +

∂d(t, x)

∂x
ψ(t, x)φ(t, x)

]
dxdt

= µ

∫ ω

0

∫ L

0

[
2
∂d(t, x)φ(t, x)

∂x
ψ(t, x)− ∂d(t, x)

∂x
ψ(t, x)φ(t, x)

]
dxdt

= µ

∫ ω

0

∫ L

0

[
2d(t, x)

∂ψ(t, x)

∂x
φ(t, x) +

∂d(t, x)

∂x
ψ(t, x)φ(t, x)

]
dxdt.

It then follows that

λm(µ)

∫ ω

0

∫ L

0

ψ(t, x)φ(t, x)dxdt = λm(−µ)

∫ ω

0

∫ L

0

φ(t, x)ψ(t, x)dxdt.

Since
∫ ω

0

∫ L
0
φ(t, x)ψ(t, x)dxdt > 0, we have λm(µ) = λm(−µ),∀µ ∈ R.

With the aid of Lemma 5.2.1, we are able to provide sufficient conditions for (H4)

and (H5) to hold.

Lemma 5.2.2. Assume that (H1) and (H2) hold. Then (H4) and (H5) are valid

provided that either all the coefficient functions of system (5.35) are even in x except

gi is odd in x, or all the coefficient functions of system (5.35) are independent of t,

di ∈ C1+ν(R)(ν ∈ (0, 1)) and gi(t, x) = −d′i(x),∀(t, x) ∈ R× R, i = 1, 2.

Proof. First, we prove that (H4) holds. Indeed, in either case, by Lemma 5.2.1(c)

with m(t, x) = b1(t, x) and d(t, x) = d1(t, x), it is easy to see that the principle λ1(µ)

of (5.41) is an even function of µ on R. Since λ1(µ) is convex on R and λ1(0) > 0,

we have λ1(µ) > 0,∀µ > 0. It follows that c∗1+ = infµ>0
λ1(µ)
µ

> 0. Similarly, we can

show that c∗2− > 0, this implies c∗1+ + c∗2− > 0.

To verify (H5), it suffices to show that limµ→0+
λ2(µ)
µ

= 0, where λ2(µ) is the

principal eigenvalue of (5.40). In the case where all the coefficient functions of (5.35)
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are even in x except gi is odd in x, i = 1, 2, we have

∂u∗2
∂t

= d2(t, x)
∂2u∗2
∂x2

+ g2(t, x)
∂u∗2
∂x

+ u∗2(b2(t, x)− a22(t, x)u∗2), (t, x) ∈ R× R.

Let u0
2(t, x) = u∗2(t,−x). Since d2, b2, a22 are even in x and g2 is odd in x, it follows

that

∂u0
2

∂t
= d2(t, x)

∂2u0
2

∂x2
+ g2(t, x)

∂u0
2

∂x
+ u0

2(b2(t, x)− a22(t, x)u0
2), (t, x) ∈ R× R.

This implies that u0
2(t,−x) is also a time and space periodic positive solution for scalar

equation (5.34) with d(t, x) = d2(t, x), g(t, x) = g2(t, x), c(t, x) = b2(t, x) and e(t, x) =

a22(t, x), ∀(t, x) ∈ R × R. In view of Proposition 5.2.1, the uniqueness of the time

and space periodic positive solution implies that u∗2(t,−x) = u∗2(t, x),∀(t, x) ∈ R×R.

Taking d(t, x) = d2(t, x), m(t, x) = b2(t, x)− a22(t, x)u∗2(t, x), and g(t, x) = g2(t, x) in

(5.61), we see from the former case in Lemma 5.2.1(c) that λ2(µ) is an even function

on R, and hence, λ′2(0) = 0. Since λ2(0) = 0, it follows that limµ→0+
λ2(µ)
µ

= λ′2(0) =

0 < c∗1+.

In the case where all the coefficient functions of system (5.35) are independent of

t, di ∈ C1+ν(R)(ν ∈ (0, 1)) and gi(t, x) = −d′i(x),∀(t, x) ∈ R × R, i = 1, 2, it easily

follows from the latter case in Lemma 5.2.1(c) or the proof of Lemma 4.4.2.

Now we introduce the following assumptions on system (5.60):

(M) a(t, x) is non-trivial and even in x, and a = 1
L

∫ 1

0

∫ L
0
a(t, x)dxdt ≥ 0.

Lemma 5.2.3. Let (M) hold. Then (H1)–(H3) are valid for system (5.60) if either

of the following holds:

(a) d2 is large enough;
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(b) ω is small enough.

Proof. Since we consider the periodic initial value problem. We may regard system

(5.60) as in the following system:

∂u1

∂t
= d1∆u1 + u1(aω(t, x)− u1 − u2), (5.63)

∂u2

∂t
= d2∆u2 + u2(aω(t, x)− u1 − u2), t > 0, x ∈ (0, L),

ui(0, x) = φi(x) ∈ X := {φ ∈ C([0, L],R) : φ(0) = φ(L)}, i = 1, 2.

Let φ(t, x) be the positive time-space periodic eigenfunction associated with the prin-

cipal eigenvalue λ(d1, 0, a), that is,

−φt + d1φxx + aω(t, x)φ = λ(d1, 0, a)φ, (t, x) ∈ R× R.

Dividing the above equation by φ and integrating by parts on [0, L]× [0, ω], we get

λ(d1, 0, a) =
1

L

∫ 1

0

∫ L

0

a(t, x)dxdt+
d1

ωL

∫ ω

0

∫ L

0

[
φx(t, x)

φ(t, x)

]2

dxdt.

Since a(t, x) is non-trivial in x, a simple computation shows that φ(t, x) is also non-

trivial in x. Therefore, we have

λ(d1, 0, a) >
1

L

∫ 1

0

∫ L

0

a(t, x)dxdt = a ≥ 0.

Similarly, we can show that λ(d2, 0, a) > 0. It follows that (H1) holds provided that

(M) is valid.

In the case where d2 is large enough, let Ad2 denote the unbounded closed operator

on X with the maximum norm defined by

D(Ad2) = {u : u, u′, u′′ ∈ X}, Ad2u = d2u
′′,∀u ∈ D(Ad2).
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Then [77, Chapter 8, Lemma 2.1] implies that Ad2 generates an analytic semigroup

eAd2 t on X. By the essentially same arguments as in [43, Lemmas 3.6(c)–3.7 and

Theorem 5.3(a)], it follows that (H2) and (H3) hold true.

In the case where ω is small enough, by the arguments similar to those in [43,

Lemma 3.6(b) and Theorem 5.3(b)], we can also show that (H2) and (H3) are valid,

and hence, system (5.60) has three time-space periodic solutions E0 := (0, 0), E1 :=

(u∗1(t, x), 0) and E2 := (0, u∗2(t, x)) in P+.

As a consequence of Lemma 5.2.3 and Theorem 5.2.1, we have the following result.

Theorem 5.2.5. Let (M) and either case (a) or (b) in Lemma 5.2.3 hold. Then

E1 := (u∗1(t, x), 0) is globally asymptotically stable for all initial values φ = (φ1, φ2) ∈

P+ with φ1 6≡ 0.

For simplicity, we transfer system (5.60) into the following cooperative system:

∂u1

∂t
= d1

∂2u1

∂x2
+ u1(aω(t, x)− u∗2(t, x)− u1 + u2), (5.64)

∂u2

∂t
= d2

∂2u2

∂x2
+ u1(u∗2(t, x)− u2) + u2(aω(t, x)− 2u∗2(t, x) + u2), t > 0, x ∈ R.

The next result is the consequence of Theorem 5.2.3, Remark 5.2.1 and Proposition

5.2.4.

Theorem 5.2.6. Assume that (M) and either case (a) or (b) in Lemma 4.4.3 hold.

Let u(t, ·, φ) be the solution of system (5.64) with u(0, ·) = φ ∈ Cβ(0,·). Then there

exists a positive real number c̄+ such that the following statements are valid for system

(5.64):

(i) If φ ∈ Cβ(0,·), 0 ≤ φ ≤ ω � β for some ω ∈ Cperβ(0,·), and φ(x) = 0,∀x ≥ H, for

some H ∈ R, then limt→∞,x≥ct u(t, x, φ) = 0 for any c > c̄+.
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(ii) If φ ∈ Cβ(0,·) and φ(x) ≥ σ, ∀x ≤ K, for some σ ∈ R2 with σ � 0 and K ∈ R,

then limt→∞,x≤ct(u(t, x, φ)− u∗(t, x)) = 0 for any c ∈ (0, c̄+).

In view of Theorem 5.2.2, we have the following result on periodic traveling waves

for system (5.60).

Theorem 5.2.7. Let (M) and either case (a) or (b) in Lemma 5.2.3 hold. Then

for any c ≥ c̄+, system (5.60) has time-space periodic traveling wave (U(t, x, x −

ct), V (t, x, x − ct)) connecting (u∗1(t, x), 0) to (0, u∗2(t, x)) with the wave profile com-

ponent U(t, x, ξ) being continuous and non-increasing in ξ, and V (t, x, ξ) being con-

tinuous and non-decreasing in ξ. While for any c ∈ (0, c̄+), system (5.60) admits no

periodic rightward traveling wave connecting (u∗1(t, x), 0) to (0, u∗2(t, x)).



Chapter 6

A Nonlocal Spatial Model for

Lyme Disease

In this chapter, we consider the Lyme disease transmission in a bounded habitat Ω ⊂

R2 with a smooth boundary ∂Ω. Let Γ(t, x, y,D) be the Green function associated

with the linear parabolic equation:

∂u

∂t
= ∇ · (D(x)∇u), t > 0, x ∈ Ω,

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω,

where ν is the outward normal vector to ∂Ω. Then
∫

Ω
Γ(t, x, y,D)ϕ(y)dy denotes

the distribution at time t through the diffusion with the given initial distribution

ϕ(x). Let M(t, x) and m(t, x) be the densities of susceptible and pathogen-infected

mice, L(t, x) be the density of questing larvae, N(t, x) and n(t, x) be the densities

of susceptible and infectious questing nymphs, A(t, x) and a(t, x) be the densities of

uninfected and pathogen-infected adult ticks, and H(t, x) be the density of deers, at

time t and location x. Based on the attached rates of larvae to mice and disease
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transmission mechanisms in the model of [12], the authors of [92] introduced the

following drop-off rate of susceptible larvae from a mouse:

Nb = Pl

∫
Ω

Γ(τl, x, y,DM)[M(t− τl, y) + (1− βT (y))m(t− τl, y)]L(t− τl, y)dy,

where Pl = αe−(µL+µM )τl , and the definition of unstated parameters is referred to

Table 6.1. The drop-off rates of infected larvae, susceptible nymphs and infectious

nymphs from mice can be described in a similar way. Moreover, the density of egg-

laying adult ticks, that is, the drop-off rate of adult ticks from deers after blood meals

is given by

Tb = ξe−(µA+µh)τa

∫
Ω

Γ(τa, x, y,DH)(A(t− τa, y) + a(t− τa, y))H(t− τa, y)dy.

The per capita birth rate BM of mice is taken in [92] as the negative exponential

function:

BM(x,M +m) = rM exp

(
−M +m

KM(x)

)
,

where KM(x) is a continuous and positive function on Ω. Unlike the model in [92], we

use the linear birth rate rTb for the tick population. Assume that the self-regulation

process for adult ticks is mainly due to some density-dependent death terms and intra-

competition. Then terms δA(A+a)A and δA(A+a)a represent the self-regulation for

uninfected and infected adult ticks, respectively. Let Pn = αe−(µL+µM )τn . Accordingly,
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the earlier model in [92] can be modified as

∂M

∂t
= ∇ · (DM(x)∇M) + (M +m)BM(x,M +m)− µMM − αβ(x)Mn,

∂m

∂t
= ∇ · (DM(x)∇m) + αβ(x)Mn− µMm,

∂L

∂t
= rTb − µLL− αL(M +m),

∂N

∂t
= Nb − [γ + α(M +m) + µN ]N,

∂n

∂t
= nb − [γ + α(M +m) + µN ]n,

∂A

∂t
= Ab − (µA + ξH)A− δA(A+ a)A,

∂a

∂t
= ab − (µA + ξH)a− δA(A+ a)a,

∂H

∂t
= ∇ · (DH(x)∇H) + rh − µhH,

(6.1)

where three terms

nb = Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)m(t− τl, y)L(t− τl, y)dy,

Ab = Pn

∫
Ω

Γ(τn, x, y,DM)[M(t− τn, y) + (1− βT (y))m(t− τn, y)]N(t− τn, y)dy,

ab = Pn

∫
Ω

Γ(τn, x, y,DM)[(M(t− τn, y) +m(t− τn, y))n(t− τn, y)

+ βT (y)m(t− τn, y)N(t− τn, y)]dy

describe the drop-off rates of infected larvae, susceptible and infectious nymphs from

mice, respectively. Figure 6.1 is the schematic diagram for tick population to illustrate

the tick-mouse cycle of infection.

We suppose that all constant parameters in (6.1) are positive, DM(x), DH(x) are

positive and continuous on Ω, and β(x) is a continuous function on Ω with 0 ≤ β(x) ≤

1 but β(x) 6≡ 0, so is βT (x). Further, we impose the Neumann boundary condition
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Figure 6.1: The schematic diagram for tick population.

for M , m and H:

∂M

∂ν
=
∂m

∂ν
=
∂H

∂ν
= 0, ∀t > 0, x ∈ ∂Ω.

The biological interpretations for the parameters in system (6.1) are listed in Table

6.1.

This chapter is organized as follows. In section 6.1, we focus on the global stability

of disease-free steady state of the associated system. In section 6.2, we introduce the

basic reproduction number and obtain a threshold result on the global dynamics of

the model system with spatial heterogeneity in a bounded habitat. In section 6.3,

we investigate the propagation phenomena for a limiting system in an unbounded

habitat. Numerical simulations are given in section 6.4 to verify our analytic results.

And a short discussion section completes the paper.
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Table 6.1: Biological interpretations of parameters in model (6.1).

rM Maximal individual birth rate of mice.
r Individual birth rate of ticks.
rh Birth rate of deers.
µM Mortality rate per mouse.
µL Mortality rate per tick larva.
µN Mortality rate per tick nymph.
µA Mortality rate per adult tick.
µh Mortality rate per deer.
α Attack rate, juvenile ticks on mice.
γ Attack rate, tick nymphs on humans.
ξ Coefficient of an adult tick to attach to deers.
δA Self-regulation coefficient for adult ticks.
τl Feeding duration of tick larvae on mice.
τn Feeding duration of tick nymphs on mice.
τa Feeding duration of adult ticks on deers.
DM(x) Diffusion coefficient for mice at location x.
DH(x) Diffusion coefficient for deers at location x.
KM(x) Carrying capacity for mice at location x.
β(x) Susceptibility to infection in mice at location x.
βT (x) Susceptibility to infection in ticks at location x.

6.1 Disease-free dynamics

In this section, we study the existence of the positive disease-free steady state and its

global attractiveness. Note that in the absence of infection of Lyme disease, system

(6.1) reduces to

∂M

∂t
= ∇ · (DM(x)∇M) +MB(x,M)− µMM,

∂L

∂t
= Pa

∫
Ω

Γ(τa, x, y,DH)A(t− τa, y)H(t− τa, y)dy − (µL + αM)L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M(t− τl, y)L(t− τl, y)dy − (γ + αM + µN)N, (6.2)

∂A

∂t
= Pn

∫
Ω

Γ(τn, x, y,DM)M(t− τn, y)N(t− τn, y)dy − (µA + ξH)A− δAA2,

∂H

∂t
= ∇ · (DH(x)∇H) + rh − µhH,
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where Pa = rξe−(µA+µh)τa , and M and H are subject to the Neumann boundary

condition:
∂M

∂ν
=
∂H

∂ν
= 0, ∀t > 0, x ∈ ∂Ω.

It is easy to see that

∂H

∂t
= ∇ · (DH(x)∇H) + rh − µhH, t > 0, x ∈ Ω,

∂H

∂ν
= 0, ∀t > 0, x ∈ ∂Ω

has a positive steady state H∗ = rh
µh

, which is globally stable in C(Ω,R+). Moreover,

we assume that

(H1) rM > µM .

By a standard convergence result on the logistic type reaction-diffusion equation

(see, e.g., [10] and [106, Theorems 2.3.4 and 3.1.6]), it then follows that the following

reaction-diffusion system

∂M

∂t
= ∇ · (DM(x)∇M) +MBM(x,M)− µMM, t > 0, x ∈ Ω,

∂M

∂ν
= 0, ∀t > 0, x ∈ ∂Ω

admits a globally stable positive steady state M∗(x) in C(Ω,R+)\{0}. Thus, we first

study the global dynamics of the following limiting system:

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t− τa, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t− τl, y)dy − [γ + αM∗(x) + µN ]N, (6.3)

∂A

∂t
= Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t− τn, y)dy − (µA + ξH∗)A− δAA2.



6.1 Disease-free dynamics 164

Let τ0 = max{τa, τl, τn}, X = C(Ω,R3), X+ = C(Ω,R3
+), Y = C([−τ0, 0], X) and

Y+ = C([−τ0, 0], X+). Then (X,X+) and (Y, Y+) are ordered Banach spaces. As

usual, we identify an element ϕ ∈ Y with a function from [−τ0, 0]×R into R3 defined

by ϕ(θ, x) = ϕ(θ)(x). For any function u ∈ C([−τ0, a), X) with some a > 0 and any

t ∈ [0, a), we define ut ∈ Y by ut(θ) = u(t+ θ),∀θ ∈ [−τ0, 0].

Define linear semigroups Ti(t), 1 ≤ i ≤ 3 on C(Ω,R) by

T1(t)φ1 =e−[µL+αM∗(x)]tφ1, T2(t)φ2 =e−[γ+αM∗(x)+µN ]tφ2, T3(t)φ3 =e−(µA+ξH∗)tφ3,

respectively. Let A0
i be the generator of Ti(t). Then T (t) = (T1(t), T2(t), T3(t)) :

X → X is a semigroup generated by the operator A0 = (A0
1, A

0
2, A

0
3). Define F =

(F1, F2, F3) : Y → X by

F1(φ)(x) = PaH
∗
∫

Ω

Γ(τa, x, y,DH)φ3(−τa, y)dy,

F2(φ)(x) = Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)φ1(−τl, y)dy,

F3(φ)(x) = Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)φ2(−τn, y)dy − δAφ2
3(0, x),

for x ∈ Ω and φ = (φ1, φ2, φ3)T ∈ Y . Then system (6.3) can be written as the

following abstract functional differential equation:

du

dt
= A0u+ F (ut), t > 0,

u0 = φ ∈ Y+. (6.4)

From the expression of F , we see that F (φ) is locally Lipschitz continuous on Y+, and

F (φ) is quasi-monotone on Y+ in the sense that whenever φ ≤ ψ and φi(0) = ψi(0)

for some i ∈ {1, 2, 3}, then Fi(φ) ≤ Fi(ψ).

In view of [64, Corollary 5] (see also [97, Theorem 2.1.1 and Remark 2.1.5]), it

follows that for any φ ∈ Y+, system (6.4) admits a unique nonnegative continuous
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solution

u(t, x, φ) = (L(t, x, φ), N(t, x, φ), A(t, x, φ))

on [0, tφ) with u(θ, x, φ) = φ(θ, x) for all (θ, x) ∈ [−τ0, 0] × Ω and ut ∈ Y+ for t ≥ 0,

and the comparison principle holds for upper and lower solutions of system (6.4).

Note that there exists a positive vector ζ = (ζ1, ζ2, ζ3) ∈ R3 such that

PaH
∗ζ3 − µLζ1 = 0, PlM

∗
maxζ1 − (γ + µN)ζ2 = 0, PnM

∗
maxζ2 − δAζ2

3 ≤ 0,

where M∗
max = maxΩ M

∗(x). Then it is easy to see that for any k ≥ 1, kζ is an upper

solution of system (6.4). This implies that tφ = ∞ and the solution of (6.4) is uni-

formly bounded. We further have the following result on the asymptotic compactness

of forward orbits.

Proposition 6.1.1. For any φ ∈ Y+, the forward orbit γ+(φ) := {u(t, ·, φ), t ≥ 0} for

system (6.3) is asymptotically compact in the sense that for any sequence tn → ∞,

there exists a subsequence tnk such that u(tnk , ·, φ) converges in X as k →∞.

Proof. Our arguments are motivated by [36, Lemma 4.1]. Note that for any given

φ = (φ1, φ2, φ3) ∈ Y+, there exists η > 0 such that

|L(t, x, φ)| ≤ η, |N(t, x, φ)| ≤ η, |A(t, x, φ)| ≤ η, ∀t ≥ 0, x ∈ Ω.

In view of the Arezla-Ascoli theorem, it suffices to prove that {u(tn, x, φ)}n≥1 is

equicontinuous in x ∈ Ω for all n ≥ 1. We first show that {A(tn, x, φ)}n≥1 is equicon-

tinuous in x ∈ Ω for all n ≥ 1. By the uniform boundedness of N(t, x, φ), it is

easy to see that f(x, t) := Pn
∫

Ω
Γ(τn, x, y,DM)M∗(y)N(t − τn, y, φ)dy is uniformly

continuous in x ∈ Ω uniformly for t ≥ 0, that is, ∀ε > 0, there exists δ > 0 such that

|f(x1, t)− f(x2, t)| < ε2
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provided that |x1−x2| < δ,∀t ≥ 0, x1, x2 ∈ Ω. As in the proof of [36, Lemma 4.1], we

let vn(tn, x) = A(tn, x, φ), t ≥ 0, x ∈ Ω. Define vn(t, x) = vn(t + tn, x),∀t ≥ −tn, x ∈

Ω. Set r = µA + ξH∗ > 0. Clearly,

∂

∂t
[vn(t, x1)− vn(t, x2)]2

= 2(vn(t, x1)− vn(t, x2))[f(x1, t+ tn)− f(x2, t+ tn)

−r(vn(t, x1)− vn(t, x2))− δA(v2
n(t, x1)− v2

n(t, x2))]

≤ 4η|f(x1, t+ tn)− f(x2, t+ tn)| − 2r(vn(t, x1)− vn(t, x2))2

≤ 4ηε2 − 2r(vn(t, x1)− vn(t, x2))2

for all t ≥ −tn, |x1 − x2| < δ, x1, x2 ∈ Ω. By the variation of constants formula and

the comparison argument, we have

|vn(t, x1)− vn(t, x2)|2 ≤ e−2r(t−s)|vn(s, x1)− vn(s, x2)|2 + 4ηε2

∫ t

s

e−2r(t−θ)dθ.

Letting t = 0 and s = −tn in the above inequality, we further obtain

|vn(0, x1)− vn(0, x2)|2 ≤ e−2rtn|vn(−tn, x1)− vn(−tn, x2)|2 +
2ηε2

r
,

that is,

|A(tn, x1, φ)− A(tn, x2, φ)|2 ≤ |φ3(0, x1)− φ3(0, x2)|2 +
2ηε2

r
,

for all n ≥ 1, |x1 − x2| < δ, x1, x2 ∈ Ω. Since φ3(0, x) is uniformly continuous for

x ∈ Ω, there exists δ1 > 0 such that |φ3(0, x1)−φ3(0, x2))| < ε whenever |x1−x2| < δ1.

Thus, for any |x1 − x2| < δ0 := min{δ1, δ}, x1, x2 ∈ Ω, we have

|A(tn, x1, φ)− A(tn, x2, φ)|2 ≤ ε2 +
2ηε2

r
≤ (1 +

2η

r
)ε2.

Similarly, we can verify that {L(tn, x, φ)}n≥1 and {N(tn, x, φ)}n≥1 are also equicon-

tinuous in x ∈ Ω for all n ≥ 1.
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Linearizing (6.3) at its zero solution, we obtain

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t− τa, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t− τl, y)dy − [γ + αM∗(x) + µN ]N, (6.5)

∂A

∂t
= Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t− τn, y)dy − (µA + ξH∗)A.

Define an operator A = (A1, A2, A3) on X by

A1(φ) = PaH
∗
∫

Ω

Γ(τa, x, y,DH)φ3(y)dy − [µL + αM∗(x)]φ1,

A2(φ) = Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)φ1(y)dy − [γ + αM∗(x) + µN ]φ2, (6.6)

A3(φ) = Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)φ2(y)dy − (µA + ξH∗)φ3.

Clearly, A is closed and resolvent-positive operator (see, e.g., [88, Theorem 3.12]). Let

s(Ã) be the spectral bound of an operator Ã, that is, s(Ã) = sup{Reλ : λ ∈ σ(Ã)},

where σ(Ã) is the spectral set of an operator, and N (λI − Ã) and R(λI − Ã) be the

null space and range space of λI − Ã, respectively, where I is the identity operator.

Then we have the following observation.

Lemma 6.1.1. Assume that (H1) holds. Then s(A) is a geometrically simple eigen-

value of A with a positive eigenfunction.

Proof. Let M∗
m = min

x∈Ω
M∗(x) and c0 := min{µL + αM∗

m, γ + αM∗
m + µN , µA + ξH∗}.

For any φ = (φ1, φ2, φ3) ∈ N (λI − A), we have

λφ1 = PaH
∗
∫

Ω

Γ(τa, x, y,DH)φ3(y)dy − (µL + αM∗(x))φ1,

λφ2 = Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)φ1(y)dy − (γ + αM∗(x) + µN)φ2, (6.7)

λφ3 = Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)φ2(y)dy − (µA + ξH∗)φ3.
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For λ > −c0, we obtain from the first and second equations of (6.7) that

φ1(x) =
PaH

∗

λ+ µL + αM∗(x)

∫
Ω

Γ(τa, x, y,DH)φ3(y)dy,

φ2(x) =
Pl

λ+ γ + αM∗(x) + µN

∫
Ω

Γ(τl, x, y,DM)M∗(y)φ1(y)dy. (6.8)

It then follows that

φ2(x) =

∫
Ω

Γ(τl, x, y,DM)
M∗(y)

λ+ µL + αM∗(y)

∫
Ω

Γ(τa, y, s,DH)φ3(s)dsdy

· PaPlH
∗

λ+ γ + αM∗(x) + µN
:= F (λ, φ3)(x) (6.9)

Substituting this into the third equation of (6.7), we obtain

Lλ(φ3) := Pn

∫
Ω

Γ(τn, ·, y,DM)M∗(y)F (λ, φ3)(y)dy − (µA + ξH∗)φ3 = λφ3. (6.10)

Let G(λ) := (λ+γ+αM∗
m+µN)(λ+µA+ξH∗)(λ+ µL +αM∗

m)−PaPnPlH∗M∗2
m . Since

G(−c0) = −PaPnPlH∗M∗2
m < 0, G(+∞) = +∞, and G(λ) is strictly increasing on

[−c0,+∞), it follows that there exists a unique λ0 ∈ (−c0,∞) such that G(λ0) = 0.

Note that for any x ∈ Ω,

M∗(x)

λ0 + µL + αM∗(x)
≥ M∗

m

λ0 + µL + αM∗
m

,

and
M∗(x)

λ0 + γ + αM∗(x) + µN
≥ M∗

m

λ0 + γ + αM∗
m + µN

.

Thus, if we choose φ3 = 1, then we have

Lλ0(φ3) ≥ PaPnPlH
∗M∗2

m

(λ0 + γ + αM∗
m + µN)(λ0 + µL + αM∗

m)
− (µA + ξH∗) = λ0φ3

Since Lλ admits a principle eigenvalue µ(λ), by the essentially same arguments as

in [91, Theorem 2.3], it follows that s(A) is a geometrically simple eigenvalue with a

positive eigenfunction.
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Now we are in position to prove a threshold type result on the global dynamics of

system (6.2) in terms of s(A).

Theorem 6.1.1. Let (H1) hold. Then the following statements are valid:

(i) If s(A) < 0, then (M∗(x), 0, 0, 0, H∗) is globally attractive for positive solutions

of system (6.2).

(ii) If s(A) > 0, then system (6.2) admits a unique positive steady state E0 :=

(M∗(x), L∗(x), N∗(x), A∗(x), H∗), and E0 is globally attractive for positive so-

lutions of system (6.2).

Proof. Note that M∗(x) and H∗ are globally stable for positive solutions of the first

equation and the last equation of system (6.2), respectively. By the theory of asymp-

totically autonomous semiflows (see, e.g., [87]), it suffices to prove the threshold type

result on the global dynamics of system (6.3). To do so, we first consider the following

nonlocal evolution system without time delay:

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t, y)dy − [γ + αM∗(x) + µN ]N, (6.11)

∂A

∂t
= Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t, y)dy − (µA + ξH∗)A− δAA2.

It then easily follows that for each t > 0, the time-t map of (6.11) is strongly monotone

and strictly subhomogeneous on X+. Since the linearized system of (6.11) at (0, 0, 0)
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is

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t, y)dy − [γ + αM∗(x) + µN ]N, (6.12)

∂A

∂t
= Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t, y)dy − (µA + ξH∗)A,

we see that A is the generator of solution semigroup of (6.12). By Lemma 6.1.1, there

exists a positive function φ∗ such that Aφ∗ = s(A)φ∗, that is,

s(A)φ∗1 = PaH
∗
∫

Ω

Γ(τa, x, y,DH)φ∗3(y)dy − (µL + αM∗(x))φ∗1,

s(A)φ∗2 = Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)φ∗1(y)dy − (γ + αM∗(x) + µN)φ∗2,

s(A)φ∗3 = Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)φ∗2(y)dy − (µA + ξH∗)φ∗3.

In the case where s(A) < 0, let ut be the solution semiflow of linear time-delayed

system (6.5), that is, ut(ϕ)(θ) = u(t + θ, ·, ϕ), ∀t ≥ 0, θ ∈ [−τ0, 0], ϕ ∈ Y . It then

follows from the arguments similar to those in Proposition 6.1.1 that the bounded

forward orbit γ+(φ∗) = {ut(φ∗) : t ≥ 0} is asymptotically compact, and hence, its

omega limit set ω(φ∗) is nonempty, compact and invariant for the solution semiflow

ut. Adapting the proof in [92, Theorem 3.6], we see that every solution of linear

system (6.5) converges to zero. Thus, the fact that every nonnegative solution of

system (6.3) satisfies

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t− τa, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t− τl, y)dy − [γ + αM∗(x) + µN ]N, (6.13)

∂A

∂t
≤ Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t− τn, y)dy − (µA + ξH∗)A,
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that is, every nonnegative solution of system (6.3) is a lower solution of system (6.5),

implies that statement (i) is valid.

Next we consider the case where s(A) > 0. Note that the solution semiflow of

system (6.3) is monotone and subhomogeneous. In view of the comparison arguments

shown in [92, Proposition 3.7], it suffices to verify that system (6.11) admits a globally

stable positive steady state (L∗(x), N∗(x), A∗(x)). For small ε > 0, we consider the

following linear system without time delay:

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t, y)dy − [γ + αM∗(x) + µN ]N, (6.14)

∂A

∂t
= Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t, y)dy − (µA + ξH∗ + εδA)A.

Let Aε be the generator of the solution semigroup of (6.14). By virtue of Lemma

6.1.1, we obtain that s(Aε) is also a geometrically simple eigenvalue with a positive

eigenfunction φε. Note that when ε > 0 is small enough, the spectral bound depends

continuously on ε. It then follows that there exists a sufficiently small ε0 > 0 such

that s(Aε0) > 0. We further prove the following two claims.

Claim 1. Let û(t, ·, φ) is the solution of system (6.11). Then lim supt→∞ ‖û(t, ·, φ)‖ ≥

ε0, ∀φ ∈ X+\{0}.

For the sake of contradiction, we assume that lim supt→∞ ‖û(t, ·, φ)‖ < ε0 for some

φ0 ∈ X+\{0}. Then there exists t0 > 0 such that û(t, ·, φ0) < ε0 := (ε0, ε0, ε0), ∀t ≥ t0.
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It follows that for all t ≥ t0, û(t, ·, φ0) satisfies

∂L

∂t
= PaH

∗
∫

Ω

Γ(τa, x, y,DH)A(t, y)dy − [µL + αM∗(x)]L,

∂N

∂t
= Pl

∫
Ω

Γ(τl, x, y,DM)M∗(y)L(t, y)dy − [γ + αM∗(x) + µN ]N, (6.15)

∂A

∂t
≥ Pn

∫
Ω

Γ(τn, x, y,DM)M∗(y)N(t, y)dy − (µA + ξH∗ + ε0δA)A.

Since û(t0, ·, φ0) � 0, we can choose a small number ρ > 0 such that û(t0, x, φ0) ≥

ρes(Aε0 )t0φε0(x), ∀x ∈ Ω. Note that ρes(Aε0 )tφε0(x) is the solution of linear system

(6.14) with ε = ε0 and s(Aε0) > 0. It follows from (6.15) and the comparison principle

that û(t, x, φ0) ≥ ρes(Aε0 )tφε0(x), ∀t ≥ t0, x ∈ Ω. Letting t → ∞, we see that

û(t, x, φ0) is unbounded, a contradiction to the boundedness of û(t, x, φ0).

Claim 2. Let ω(φ) be the omega limit set of the forward orbit γ+(φ) := {û(t, ·, φ) :

t ≥ 0}. Then ω(φ) ⊂ Int(X+), ∀φ ∈ X+\{0}. .

By adapting the proof in Proposition 6.1.1, we see that γ+(φ) is asymptotically

compact, and hence, ω(φ) is nonempty, compact and invariant. Let φ ∈ X+\{0} be

given and Q(t)φ := û(t, ·, φ). It then follows from Claim 1 that set A := {0} is an

isolated invariant set for the semiflow Q(t) and ω(φ) 6⊆ A. Thus, the generalized

Butler-McGehee lemma (see, e.g., [106, Lemma 1.2.7]) implies that ω(φ) ∩ A = ∅,

and hence, ω(φ) ⊂ X+\{0}. By the strong monotonicity of Q(t) and the invariant of

ω(φ) for Q(t), it follows that ω(φ) ⊂ Int(X+).

Let t1 > 0 be fixed. Then Q(t1) is strongly monotone and strictly subhomogeneous

on X+\{0}. Note that ω(φ) is a compact and invariant set for Qt1 . It then follows

from Claim 2 and [106, Theorem 2.3.2] with K = ω(φ) that Qt1 has a unique fixed

point ue = (L∗(·), N∗(·), A∗(·)) � 0 such that ω(φ) = {ue}, ∀ϕ ∈ X+\{0}. Since

Q(t)ω(φ) = ω(φ) for all t ≥ 0, we see that ue is a positive steady state of system

(6.11). This shows that system (6.11) admits a unique positive steady state (L∗(x),



6.2 Global dynamics 173

N∗(x), A∗(x)), which is globally asymptotically stable in X+\{0}. Consequently, the

same comparison arguments as in [92, Proposition 3.7(ii)] imply that statement (ii)

holds true for system (6.2).

6.2 Global dynamics

In this section, we introduce the basic reproduction number for model (6.1) and study

the global dynamics of Lyme disease invasion. Throughout this section, we assume

that (H1) holds and s(A) > 0, where A is defined as in (6.6).

By Theorem 6.1.1, system (6.2) admits a globally stable positive steady state

(M∗(x), L∗(x), N∗(x), A∗(x), H∗), and hence, system (6.1) has a unique disease-free

steady state

E1 = (M∗(x), 0, L∗(x), N∗(x), 0, A∗(x), 0, H∗).

Linearizing (6.1) at E1 and then considering only the equations of infective compart-

ments, we get

∂m

∂t
=∇ · (DM(x)∇m) + αβ(x)M∗(x)n− µMm,

∂n

∂t
=Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)m(t− τl, y)dy − [γ + αM∗(x) + µN ]n, (6.16)

∂a

∂t
=Pn

∫
Ω

Γ(τn, x, y,DM)K∗a(t− τn, y)dy − [µA + ξH∗ + δAA
∗(x)]a,

where m is subject to the Neumann boundary condition and

K∗a(t− τn, y) = M∗(y)n(t− τn, y) + βT (y)N∗(y)m(t− τn, y).

Note that the third equation of system (6.16) is decoupled from the first two

equations. Thus, we can simply use the first two equations to define the basic repro-

duction number for model (6.1). Let X̃ = C(Ω,R2) and X̃+ = C(Ω,R2
+). Following
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the procedure in [92], we assume that the state variables are near the disease-free

steady state E1. Then we introduce infected individuals with the spatial distribution

φ = (φ1, φ2) ∈ X̃+ into the population at t = 0. As time evolves, the spatial distribu-

tion of the infective individuals m and n under the synthetical influences of mortality,

mobility and transfer of individuals among the infected compartments is described

by

∂m

∂t
=∇ · (DM(x)∇m)− µMm,

∂n

∂t
=− [γ + αM∗(x) + µN ]n,

where m satisfies the Neumann boundary condition. Let (m(t, φ), n(t, φ)) denote the

distribution of the infective individuals at time t > 0. Then we have

m(t, φ)(x) = e−µM t
∫

Ω

Γ(t, x, y,DM)φ1(y)dy,

n(t, φ)(x) = e−(γ+αM∗(x)+µN )tφ2(x).

Evidently, the distribution of new infection rate of mice induced by the infective

agents at time t is

F1(t, φ)(x) = αβ(x)M∗(x)n(t, φ)(x).

The distribution of new infection rate of nymphs induced by the infective agents at

time t is

F2(t, φ)(x) =

0 if 0 < t < τl,

Pl
∫

Ω
Γ(τl, x, y,DM)βT (y)L∗(y)m(t− τl, φ)(y)dy, if t ≥ τl.

Consequently, the distribution of total new infections of mice is∫ ∞
0

F1(t, φ)dt := F̂1(φ),
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the distribution of total new infections of nymphs is∫ ∞
0

F2(t, φ)dt = Pl

∫ ∞
0

∫
Ω

Γ(τl, ·, y,DM)βT (y)L∗(y)m(t, φ)(y)dydt := F̂2(φ), (6.17)

Clearly, F̂ = (F̂1, F̂2) is a continuous and positive operator, which maps the initial

infection distribution φ to the distribution of the total infective members produced

during the infection period. Following the idea of next generation operators (see,

e.g., [15, 90, 92]), we define the spectral radius of F̂ , r(F̂ ), as the basic reproduction

number R0 for model (6.1). Direct calculations lead to

F̂1(φ)(x) =
αβ(x)M∗(x)

γ + αM∗(x) + µN
φ2(x).

Define the operator B1 on C(Ω,R) by

B1(φ1) = ∇ · (DM(x)∇φ1)− µMφ1

By [88, Theorem 3.12], we have∫ ∞
0

m(t, φ)dt =

∫ ∞
0

m(t, φ1)dt = −B−1
1 φ1.

It then follows from (6.17) that

F̂2(φ)(x) = −Pl
∫

Ω

Γ(τl, x, y,DM)βT (y)L∗(y)B−1
1 φ1(y)dy,

By the same arguments as in [92, Theorem 3.1 and Corollary 3.2], we have the fol-

lowing result.

Theorem 6.2.1. The spectral radius R0 := r(F̂ ) is a geometrically simple eigenvalue

of F̂ with a positive eigenfunction. Moreover, let µ be the principal eigenvalue of the

following problem:

−∇ · (DM(x)∇ϕ) + µMϕ = µg(ϕ)(x), x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω,

(6.18)
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where

g(ϕ)(x) = Pl
αβ(x)M∗(x)

γ + αM∗(x) + µN

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)ϕ(y)dy.

Then R0 = 1/
√
µ.

To show that R0 is a threshold value for disease invasion, we first suppress time

delays in (6.16) and then consider the following subsystem without time delay:

∂m

∂t
=∇ · (DM(x)∇m) + αβ(x)M∗(x)n− µMm,

∂n

∂t
=Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)m(t, y)dy − [γ + αM∗(x) + µN ]n,
(6.19)

where m is subject to the Neumann boundary condition. For φ = (φ1, φ2) ∈ X̃+, we

define two operators C = (C1, C2) by

C1(φ)(x) = αβ(x)M∗(x)φ2(x),

C2(φ)(x) = Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)φ1(y)dy,

and B = (B1, B2) by

B1(φ)(x) = ∇ · (DM(x)∇φ1)− µMφ1(x),

B2(φ)(x) = −[γ + αM∗(x) + µN ]φ2(x),

and set A = C + B. It is easy to see that the spectral bound s(B) is negative. Our

next goal is to reveal that s(A) is not only an eigenvalue with the finite multiplicity

but also has the same sign as R0 − 1. To do so, we need the following assumption:

(H2) There exists some x0 ∈ Ω such that β(x0) and βT (x0) are positive.

Biologically, this means there exists some small region that infectious nymphs can

infect mice and pathogen-infected mice also can infect ticks in return.
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Theorem 6.2.2. Let (H1) and (H2) hold. Then the spectral bound s(A) is a geomet-

rically simple eigenvalue of A with a positive eigenfunction, and s(A) has the same

sign as R0 − 1.

Proof. By [88, Theorem 3.5], we see that s(A) has the same sign as r(−CB−1). Then

it follows from [92, Lemma 3.3] that r(−CB−1) = r(F̂ ) = R0. To verify s(A) is an

eigenvalue, letting φ = (φ1, φ2) ∈ N (λI −A), we have

∇ · (DM(x)∇φ1) + αβ(x)M∗(x)φ2 − µMφ1 = λφ1,

Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)φ1(y)dy − [γ + αM∗(x) + µN ]φ2 = λφ2.
(6.20)

For λ > −(γ+αM∗
m+µN) with M∗

m = min
x∈Ω

M∗(x), we obtain from the second equation

of (6.20) that

φ2(x) =
Pl

λ+ γ + αM∗(x) + µN

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)φ1(y)dy := ζ(λ, φ1)(x).

Substituting it into the first equation of (6.20), we get

Lλ(φ1)(x) := ∇· (DM(x)∇φ1)+αβ(x)M∗(x)ζ(λ, φ1)(x)−µMφ1(x) = λφ1(x). (6.21)

It easily follows from (H2) that there exists an open neighborbood U ⊂ Ω such that

β(x) > 0, βT (x) > 0, ∀x ∈ U ⊂ Ω. Let λ1 be the principal eigenvalue of the elliptic

eigenvalue problem

∇ · (DM(x)∇φ)− µMφ = λφ, x ∈ U,

φ = 0, x ∈ ∂U,

with the positive eigenfunction φ∗(x). Now define a continuous function φ0 as follows

φ0(x) =

 φ∗(x) if x ∈ U

0 if x ∈ Ω \ U.
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Since βT (x)L∗(x)φ0(x) ≥ 0( 6≡ 0),∀x ∈ Ω, the standard maximum principle implies

that
∫

Ω
Γ(τl, x, y,DM)βT (y)L∗(y)φ0(y)dy > 0, ∀x ∈ Ω. Set

A = min
x∈Ω

∫
Ω

Γ(τl, x, y,DM)βT (y)L∗(y)φ0(y)dy, β = min
x∈U

β(x), φ∗max = max
x∈U

φ∗(x),

and

λ0 =
λ1 − (γ + αM∗

m + µN) +
√

(λ1 + γ + αM∗
m + µN)2 + 4

αβM∗mA

φ∗max

2

>
λ1 − (γ + αM∗

m + µN) + |λ1 + γ + αM∗
m + µN |

2

= max{λ1,−(γ + αM∗
m + µN)}.

Clearly for x ∈ Ω \ U , we have Lλ0(φ0)(x) ≥ λ0φ
0(x). Moreover, for any x ∈ U

Lλ0(φ0)(x) = ∇ · (DM(x)∇φ0) + αβ(x)M∗(x)ζ(λ, φ0)(x)− µMφ0(x)

≥ λ1φ
∗(x) +

αβM∗
mA

λ0 + γ + αM∗
m + µN

= λ1φ
∗(x) + φ∗max(λ0 − λ1)

≥ λ1φ
∗(x) + φ∗(x)(λ0 − λ1)

= λ0φ
∗(x) = λ0φ

0(x).

Thus, eλ0tφ0(x) is a subsolution of the integral form of the linear system ut = Lλ0u.

By the arguments similar to those in [91, Theorem 2.3 and Remark 2.1], we conclude

that s(A) is a geometrically simple eigenvalue with a positive eigenfunction.

Remark 6.2.1. Let λΩ
1 be the principal eigenvalue of the elliptic eigenvalue problem

∇ · (DM(x)∇φ1)− µMφ1(x) = λφ1(x), x ∈ Ω

subject to the Neumann boundary condition, and φ∗1(x) be the associated positive eigen-

function. Instead of (H2), we assume that λΩ
1 > −(γ + αM∗

m + µN). It then follows
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that LλΩ
1
(φ∗1)(x) ≥ λΩ

1 φ
∗
1(x), and hence, s(A) is a geometrically simple eigenvalue with

a positive eigenfunction (see also [91, Corollary 2.4]).

Now we are in a position to show that the basic reproduction number R0 deter-

mines the global dynamics of system (6.1). LetM = M+m, N = N+n, A = A+a.

Then system (6.1) is equivalent to the following system:

∂M
∂t

=∇ · (DM(x)∇M) +MB(x,M)− µMM,

∂L

∂t
=Pa

∫
Ω

Γ(τa, x, y,DH)A(t− τa, y)H(t− τa, y)dy − (µL + αM)L,

∂N
∂t

=Pl

∫
Ω

Γ(τl, x, y,DM)M(t− τl, y)L(t− τl, y)dy − (γ + αM+ µN)N ,

∂A
∂t

=Pn

∫
Ω

Γ(τn, x, y,DM)M(t− τl, y)N (t− τl, y)dy − (µA + ξH)A− δAA2,

∂H

∂t
=∇ · (DH(x)∇H) + rh − µhH,

∂m

∂t
=∇ · (DM(x)∇m) + αβ(x)(M−m)n− µMm,

∂n

∂t
=Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)m(t− τl, y)L(t− τl, y)dy − (γ + αM+ µN)n,

∂a

∂t
=Pn

∫
Ω

Γ(τn, x, y,DM)Ka(t− τn, y)dy − (µA + ξH)a− δAAa,

(6.22)

where M, H and m are subject to the Neumann boundary condition, and

Ka(t, y) =M(t, y)n(t, y) + βT (y)m(t, y)(N (t, y)− n(t, y)).

By virtue of Theorem 6.1.1, (M∗(x), L∗(x), N∗(x), A∗(x), H∗) is a globally attractive

steady state of system (6.2), which is exactly the same as the first five equations of

system (6.22). By similar discussions to those in the last section, we may confine
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ourselves into

∂m

∂t
=∇ · (DM(x)∇m) + αβ(x)(M∗(x)−m)n− µMm,

∂n

∂t
=Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)m(t− τl, y)L∗(y)dy − [γ + αM∗(x) + µN ]n,

∂a

∂t
=Pn

∫
Ω

Γ(τn, x, y,DM)K∗a(t− τn, y)dy − (µA + ξH∗ + δAA
∗(x))a,

(6.23)

where m is subject to the Neumann boundary condition, and

K∗a(t, y) = M∗(y)n(t, y) + βT (y)m(t, y)(N∗(y)− n(t, y)).

Since the first two equations in (6.23) do not depend on the variable a, we first

consider the following subsystem:

∂m

∂t
=∇ · (DM(x)∇m) + αβ(x)(M∗(x)−m)n− µMm,

∂n

∂t
=Pl

∫
Ω

Γ(τl, x, y,DM)βT (y)m(t− τl, y)L∗(y)dy − [γ + αM∗(x) + µN ]n.
(6.24)

Let CM∗ = {ϕ ∈ C(Ω,R+) : ϕ(x) ≤M∗(x), ∀x ∈ Ω}, and

X := C([−τl, 0],CM∗)× C(Ω,R+).

Note that

∇ · (DM(x)∇M∗)− µMM∗(x) = −M∗B(x,M∗) = −rMM∗(x) exp

(
−M

∗(x)

KM(x)

)
≤ 0.

By [64, Corollary 4], it follows that for any φ ∈ X , system (6.24) admits a unique

mild solution û(t, ·, φ) = (û1(t, ·, φ), û2(t, ·, φ)) on [0,∞) with û1(θ, ·, φ) = φ1(θ),

û2(0, ·, φ) = φ2, θ ∈ [−τl, 0], and (û1t(φ), û2(t, ·, φ)) ∈ X for all t ≥ 0. Note that

system (6.24) is eventually strongly monotone and strictly subhomogeneous on X .

By the arguments similar to those for system (6.3) in Theorem 6.1.1 (see also the

proof of [92, Proposition 3.7]), together with Theorem 6.2.2, we have the following

result for system (6.24).
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Lemma 6.2.1. Assume that (H1)–(H2) hold and s(A) > 0. Then the following

statements are valid:

(i) If R0 < 1, then (0, 0) is globally attractive for system (6.24) in X .

(ii) If R0 > 1, then system (6.24) admits a positive steady state (m̄(x), n̄(x)) which

is globally attractive in X\{0}.

Now we are ready to prove the main result of this section on the global dynamics

of system (6.1) on W := C([−τ0, 0], C(Ω,R8
+)).

Theorem 6.2.3. Assume that (H1) and (H2) hold and s(A) > 0. Then the following

statements are valid:

(i) If R0 < 1, then every positive solution v(t, x, ϕ) of system (6.1) satisfies

limt→∞v(t, x, ϕ) = (M∗(x), 0, L∗(x), N∗(x), 0, A∗(x), 0, H∗) uniformly for

x ∈ Ω.

(ii) If R0 > 1, then system (6.1) admits a positive steady state v̄(x) =

(M∗(x) − m̄(x), m̄(x), L∗(x), N∗(x) − n̄(x), n̄(x), A∗(x) − ā(x), ā(x), H∗), and

every positive solution v(t, x, ϕ) satisfies limt→∞v(t, x, ϕ) = v̄(x) uniformly for

x ∈ Ω.

Proof. By using the theory of chain transitive sets, as illustrated in [92, Theorem 3.8],

we can lift the threshold type result for system (6.24) to the full system (6.22) and

show that every positive solution of system (6.22) converges to either

(M∗(·), L∗(·), N∗(·), A∗(·), H∗, 0, 0, 0)

or

(M∗(·), L∗(·), N∗(·), A∗(·), H∗, m̄(·), n̄(·), ā(·))
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in terms of R0. It remains to prove the positivity of the steady state of model (6.1)

in the case where R0 > 1. Let M(x) = M∗(x) − m(x). It suffices to prove that

M(x) := M∗(x) −m(x) > 0,∀x ∈ Ω̄. Clearly, we have M∗(x) ≥ m(x),∀x ∈ Ω̄. In

view of the integral form of the following equation

∂M

∂t
= ∇ · (DM(x)∇M) +M∗B(x,M∗)− [µM + αβ(x)n(x)]M, x ∈ Ω, t > 0,

∂M

∂ν
= 0, x ∈ ∂Ω, t > 0,

we have

M(x) =

∫
Ω

Γ(0, x, y,DM)M(y)dy

+

∫ t

0

e−(µM+αβ(x)n(x)(t−s)
∫

Ω

Γ(t− s, x, y,DM)M∗(y)B(y,M∗(y))dydt.

By the standard maximum principle (see e.g., [85, Theorem 7.2.2 and Corollary 7.2.3]),

it easily follows that M(x) > 0,∀x ∈ Ω. Thus, a straightforward computation implies

that

N∗(x)− n(x) =
Pl
∫

Ω
Γ(τl, x, y,DM)K̃N(y)dy

γ + αM∗(x) + µN
, x ∈ Ω

A∗(x)− a(x) =
Pn
∫

Ω
Γ(τn, x, y,DM)K̃A(y)dy

µA + ξH∗ + δAA∗(x)
, x ∈ Ω

with

K̃N(y) = [M∗(y)− βT (y)m(y)]L∗(y),

K̃A(y) = [M∗(y)− βT (y)m(y)](N∗(y)− n(y)).

Since 0 ≤ βT (y) ≤ 1, it follows that K̃N(y) > 0,∀y ∈ Ω, and hence, N∗(x)−n(x) > 0,

and K̃A(x) > 0, ∀x ∈ Ω. Thus, we obtain A∗(x)− a(x) > 0, ∀x ∈ Ω.
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Remark 6.2.2. The results in sections 5.2 and 5.3 are still valid if we take a general

per capita birth rate function B(x, u) satisfying the following conditions:

(C1) B(x, u) ≥ 0(6≡ 0), ∀(x, u) ∈ Ω× [0,+∞).

(C2) B(x, u) is continuous on Ω× [0,+∞), and strictly decreasing in u ∈ [0, c0) for

some c0 > 0.

(C3) There exists M > 0 such that 1
|Ω|

∫
Ω
B(x, 0)dx > µM > B(x, u) for all u > M

and x ∈ Ω.

It is easy to see that the birth rate function B(x, u) = rM exp
(
− u
KM (x)

)
satisfies

(C1)–(C3). Another prototypical birth rate function (see, e.g., [12, 90]) is

B(x, u) =


rM

[
1− u

kM(x)

]
, 0 ≤ u ≤ KM(x), x ∈ Ω,

0, u > KM(x), x ∈ Ω.

6.3 Propagation phenomena

In this section, we consider the spreading speed and traveling waves for system (6.23)

in an unbounded habitat. Since the first two equations in (6.23) are decoupled from

the third one, it suffices to consider system (6.24).

Assume that all the coefficients in system (6.1) are constant. Without loss of

generality, we suppose that the spatial domain Ω = R. As such, the Green function

Γ(τl, x, y,DM) can be expressed as

Γ(τl, x, y,DM) =
1√

4πDMτl
e
− (x−y)2

4DMτl .

In the case where rM > µM , we have M∗ = KM ln rM
µM

> 0. Let

χ := PaPnPlH
∗M∗2 − (γ + αM∗ + µN)(µA + ξH∗)(µL + αM∗). (6.25)
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Then a straightforward computation shows that system (6.2) admits a unique constant

positive steady state E0 = (M∗, L∗, N∗, A∗, H∗) with

L∗ =
PaH

∗

µL + αM∗A
∗, N∗ =

PlM
∗

γ + αM∗ + µN
L∗, A∗ =

χ

δA(γ + αM∗ + µN)(µL + αM∗)

provided that rM > KM and χ > 0.

Consider the spatially homogeneous system associated with (6.24):

dm

dt
=αβ(M∗ −m)n− µMm,

dn

dt
=PlβTL

∗m(t− τl)− (γ + αM∗ + µN)n.

(6.26)

Linearizing system (6.26) at (0, 0), we get

dm

dt
=αβM∗n− µMm,

dn

dt
=PlβTL

∗m(t− τl)− (γ + αM∗ + µN)n.

(6.27)

Following [108], we introduce the basic reproduction number for system (6.26). Clearly,

system (6.27) is of the form du
dt

= Fut − V u with

F

 φ1

φ2

 =

 αβM∗φ2(0)

PlβTL
∗φ1(−τl)

 , φ ∈ C([−τl, 0],R2)

and

V =

 µM 0

0 γ + αM∗ + µN

 .

Then [108, Corollary 2.1] implies that the basic reproduction number R0 = r(F̂ V −1)

with F̂ =

 0 αβM∗

PlβTL
∗ 0

, and hence, we obtain

R0 =

√
PlαββTM∗L∗

µM(γ + αM∗ + µN)
. (6.28)
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If R0 > 1, then system (6.24) admits a unique positive steady state u∗ := (m,n) with

m = M∗(1− 1

R2
0

), n =
PlβTL

∗

γ + αM∗ + µN
m. (6.29)

By [109, Theorem 3.2], as applied to system (6.26) on C([−τl, 0], [0,M∗]) × R+, we

conclude that every positive solution of (6.26) converges to u∗.

In order to use the theory of spreading speeds developed in [54], we first introduce

some basic notations. Let Z = C([−τl, 0],R2). We equip Z with the maximum norm

and the partial ordering induced by the positive cone Z+ := C([−τl, 0],R2
+). For any

u, v ∈ Z, we write u ≥ v if u − v ∈ Z+, u > v if u ≥ v but u 6= v, and u � v if

u− v ∈ Int(Z+). Define C as the set of all bounded and continuous functions from R

to Z equipped with the compact open topology, that is, um → u in C means that the

sequence of um(x) converges to u(x) in Z as m→∞ uniformly for x in any compact

subset of R. For u,w ∈ C, we write u ≥ w(u � w) provided u(x) ≥ w(x)(u(x) >

w(x)), ∀x ∈ R and u > w provided u ≥ w but u 6= w. Clearly, any element in Z

can be regarded as a constant function in C. For each r ∈ Z with r � 0, we set

Zr := {u ∈ Z : 0 ≤ u ≤ r} and Cr := {u ∈ C : u(x) ∈ Zr,∀x ∈ R}. We also identify

an element φ ∈ C as a function from [−τl, 0]× R into R by φ(θ, x) = φ(x)(θ).

Recall that a family of operators {Qt}t≥0 is said to be a semiflow on Cr provided Qt

has the following properties: (i) Q0 = I, where I is the identity map; (ii) Qt1 ◦Qt2 =

Qt1+t2 ; (iii) Qt[φ] is jointly continuous in (t, φ) on [0,∞)× Cr.

Now let {Qt}t≥0 be a family of solution maps of system (6.24) from Cu∗ to Cu∗ ,

that is,

[Qt(φ)](θ, x) = ut(θ, x, φ) = (mt(θ, x, φ), nt(θ, x, φ)), ∀φ ∈ Cu∗ , x ∈ R, θ ∈ [−τl, 0],

where u(t, x, φ) is the mild solution of system (6.24) with an initial function φ ∈ Cu∗
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and ut(θ, x, φ) = u(t + θ, x, φ), θ ∈ [−τl, 0]. The following result shows that system

(6.24) admits a spreading speed.

Theorem 6.3.1. Assume that rM > KM , χ > 0 and R0 > 1. Then there exists a

positive number c∗ such that the following statements are valid:

(i) For any c > c∗, if φ ∈ Cu∗ with 0 ≤ φ ≤ $ for some $ ∈ Z+ and $ � u∗, and

φ(x) = 0 for x outside a bounded interval, then lim
t→∞,|x|≥ct

u(t, x, φ) = 0;

(ii) For any c ∈ (0, c∗), if φ := (φ1, φ2) ∈ Cu∗ and either φ1 6≡ 0 or φ2(0, ·) 6≡ 0

holds, then lim
t→∞,|x|≤ct

u(t, x, φ) = u∗.

Proof. Without loss of generality, we assume that τl < 1. Otherwise, we do the time

rescaling s = t
τ

for a fixed τ > τl and then consider the resulting system. Using

arguments similar to those in [17, Lemma 4.3], we prove that {Qt}t≥0 is a monotone

semiflow on Cu∗ with the time-one map Q1 satisfying (A1)–(A5) in section 2.2.1. By

the similar proofs to those in [54, Theorems 2.11 and 2.15](see also Theorem 2.2.1),

we know that Q1 admits a spreading speed c∗ > 0. The following claim gives the

eventual strong positivity of {Qt}t≥0 on Cu∗ .

Claim. For any φ = (φ1, φ2) ∈ Cu∗ , if either φ1 6≡ 0 or φ2(0, ·) 6≡ 0, then u(t, x, φ)� 0

for all t > τl, x ∈ R, and hence, Qt(φ)� 0 for all t > 2τl.

If φ1 6≡ 0, then there exists a number η > 0 and an interval [a1, a2] × [b1, b2] ⊂

[−τl, 0]× R such that

φ1(θ, x) ≥ η, ∀(θ, x) ∈ [a1, a2]× [b1, b2].
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In view of the integral form of system (6.24), we have

n(τl, x, φ) = e−(γ+αM∗+µN )τlφ2(0, x)

+ PlL
∗βT

∫ τl

0

∫
R
e−(γ+αM∗+µN )(τl−s)Γ(τl, x, y,DM)φ1(s− τl, y)dyds

≥ PlL
∗βT

∫ τl

0

∫
R
e−(γ+αM∗+µN )(τl−s)Γ(τl, x, y,DM)φ1(s− τl, y)dyds

≥ PlL
∗βTη

∫ a2

a1

∫ b2

b1

e−(γ+αM∗+µN )(τl−s)Γ(τl, x, y,DM)dyds > 0, ∀x ∈ R.

It follows that n(t, x, φ) ≥ e−(γ+αM∗+µN )(t−τl)n(τl, x, φ) > 0, ∀t > τl, x ∈ R. Note

that F̃ (t, x) := αβ(M∗ − m(t, x, φ))n(t, x, φ) ≥ αβ(M∗ − m)n(t, x, φ) > 0, ∀t >

τl, x ∈ R. Then the standard maximum principle of parabolic equations implies that

m(t, x, φ) > 0, ∀t > τl, x ∈ R.

If φ2(0, x) ≥ 0 with φ2(0, x) 6≡ 0, then we have

n(t, x, φ) ≥ e−(γ+αM∗+µN )tφ2(0, x) ≥ 0(6≡ 0), ∀t ≥ 0, x ∈ R.

Thus, F̃ (t, x) ≥ 0( 6≡ 0), t ≥ 0, x ∈ R. It follows from the maximum principle of

parabolic equations (see, e.g., [85, Corollary 7.2.3]) that m(t, x, φ) > 0 for all t > 0.

Then similar to the first case, for t > τl, x ∈ R, we have

n(t, x, φ) ≥ PlL
∗βT

∫ t

0

∫
R
e−(γ+αM∗+µN )(t−s)Γ(τl, x, y,DM)m(s− τl, y)dyds

≥ PlL
∗βT

∫ t

τl

∫
R
e−(γ+αM∗+µN )(t−s)Γ(τl, x, y,DM)m(s− τl, y)dyds > 0.

It follows that u(t, x, φ) > 0 for all t > τl, x ∈ R, and hence, Qt(φ)� 0 for all t > 2τl.

Now statement (i) follows from Theorem 2.2.3(i). For statement (ii), since Qt is

subhomogeneous, then rσ in Theorem 2.2.3(ii) can be chosen to be independent of

σ � 0. Thus, we can write rσ as r̄. If φ ∈ Cu∗ and φ(θ, x) � 0 for all θ ∈ [−τl, 0]

and x on an interval I of length 2r̄, then there exists a vector σ � 0 in R2 such
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that φ(θ, x) � σ, ∀(θ, x) ∈ [−τl, 0] × I, and hence, Theorem 2.2.3(ii) implies that

lim
t→∞,|x|≤ct

u(t, x, φ) = u∗. For any given φ = (φ1, φ2) ∈ Cu∗ with either φ1 6≡ 0 or

φ2(0, ·) 6≡ 0, the above claim implies that u(t, x, φ) > 0,∀t > τl, x ∈ R. Fix a

t0 > 2τl. Then ut0(φ)� 0. By taking ut0 as a new initial data, we see that statement

(ii) is valid.

Next we show that c∗ is linearly determinate and give a formula of it. Consider

the linearized system of (6.24) at its zero solution:

∂v1

∂t
=DM

∂2v1

∂x2 + αβM∗v2 − µMv1,

∂v2

∂t
=PlβTL

∗
∫
R

Γ(τl, x, y,DM)v1(t− τl, y)dy − (γ + αM∗ + µN)v2.
(6.30)

Let {L(t)}t≥0 be the linear solution maps associated with (6.30), that is, L(t)φ =

vt(φ). Letting v(t, x) = e−µxu(t, x) in (6.30), we see that u(t, x) satisfies

∂u1

∂t
=DM

∂2u1

∂x2 + αβM∗u2 + (DMµ
2 − µM)u1,

∂u2

∂t
=PlβTL

∗
∫
R

Γ(τl, x, y,DM)eµ(x−y)u1(t− τl, y)dy − (γ + αM∗ + µN)u2.
(6.31)

Furthermore, letting u(t, x) = eλtw(x), we obtain the following nonlocal eigenvalue

problem of delay type:

λw1 =DMw
′′

1 + αβM∗w2 + (DMµ
2 − µM)w1,

λw2 =PlβTL
∗e−λτl

∫
R

Γ(τl, x, y,DM)eµ(x−y)w1(y)dy − (γ + αM∗ + µN)w2.
(6.32)

Clearly, −(γ + αM∗ + µN) is not an eigenvalue, so we solve w2 in terms of w1 from

the second equation, and then substitute it into the first one to obtain:

λw1 =DMw
′′
1 +

αβM∗PlβTL
∗e−λτl

∫
R Γ(τl, x, y,DM )eµ(x−y)w1(y)dy

λ+ γ + αM∗ + µN
+ (DMµ

2 − µM )w1.

(6.33)
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Let b(µ) = max{DMµ
2 − µM ,−γ − αM∗ − µN}. Note that∫

R
Γ(τl, x, y,DM)eµ(x−y)dy =

1√
4πDMτl

∫
R
e
− y2

4DMτl
+µy

dy = eDM τlµ
2

.

By Lemma 6.1.1 and [91, Theorem 2.3], it then follows that (6.33) admits a princi-

ple eigenvalue λ(µ) ∈ (b(µ),∞) with the constant positive eigenfunction, and λ(µ)

satisfies the following equation

∆(λ, µ) := (λ−DMµ
2 + µM)(λ+ γ + αM∗ + µN)− αβM∗PlβTL

∗e−λτl+DM τlµ
2

= 0.

(6.34)

Since ∆(λ, µ) is even in µ ∈ R, we only consider the case µ ≥ 0. Since R0 =√
PlαββTM∗L∗

µM (γ+αM∗+µN )
> 1, it is easy to see that

∆(0, µ) = (−DMµ
2 + µM)(γ + αM∗ + µN)− αβM∗PlβTL

∗eDM τlµ
2

= −DMµ
2(γ + αM∗ + µN)− αβM∗PlβTL

∗eDM τlµ
2

(
1

R2
0

− eDM τlµ2

) < 0,∀µ ≥ 0,

and

∂∆(λ, µ)

∂λ
≥ 2(λ− b(µ)) + αβM∗PlβTL

∗τle
−λτl+DM τlµ2

> 0, ∀λ > b(µ), µ ≥ 0.

If b(µ) < 0, then there exists a unique positive λ(µ) such that ∆(λ, µ) = 0. If

b(µ) ≥ 0, since ∆(b(µ), µ) < 0, we also get a uniquely positive λ(µ) being the root of

∆(λ, µ). Moreover, since λ(µ)
µ

> b(µ)
µ
≥ DMµ− µM

µ
, it follows that limµ→∞

λ(µ)
µ

= ∞.

Note that λ(µ)
µ

has the same properties as stated in [54, Lemma 3.8], and λ(µ)
µ
→ ∞

as µ → ∞. It follows that there exists a unique µ0 > 0 such that d
dµ

λ(µ)
µ

= 0 and

λ(µ0)
µ0

= infµ>0
λ(µ)
µ

> 0.

Let φ be the positive constant eigenfunction associated with λ(µ0) and c0 = λ(µ0)
µ0

.

In view of systems (6.24) and (6.30), it is easy to see that for any M > 0, u(x, t) =

Me−µ0(x−c0t)φ is an upper solution for system (6.24). Now we are in position to give

a computational formula for the spreading spreed.
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Lemma 6.3.1. Let c∗ be the spreading speed of {Qt}t≥0. Then

c∗ =
λ(µ0)

µ0

= inf
µ>0

λ(µ)

µ
> 0.

Moreover, (c∗, µ0) is uniquely determined as the solution of the system

µ > 0, ∆̃(c, µ) = 0, ∂µ∆̃(c, µ) = 0.

where ∆̃(c, µ) = ∆(cµ, µ) with ∆(λ, µ) defined as in (6.34).

Proof. Note that for any M > 0, u(x, t) = Me−µ0(x−c0t)φ is an upper solution for

system (6.24). Then Theorem 2.2.2(i), together with Theorem 6.3.1, implies that

c∗ ≤ c0 = infµ>0
λ(µ)
µ

. On the other hand, let {Lε(t)}t≥0 be the solution semigroup of

the following linear system with small ε ∈ (0,M∗):

∂u1

∂t
=DM∆u1 + αβ(M∗ − ε)u2 − µMu1,

∂u2

∂t
=PlβTL

∗
∫
R

Γ(τl, x, y,DM)u1(t− τl, y)dy − (γ + αM∗ + µN)u2.
(6.35)

Define λε(µ) be the principal eigenvalue of the following eigenvalue problem for small

ε ∈ (0,M∗):

λw1 =DMw
′′

1 + αβ(M∗ − ε)w2 + (DMµ
2 − µM)w1,

λw2 =PlβTL
∗e−λτl

∫
R

Γ(τl, x, y,DM)eµ(x−y)w1(y)dy − (γ + αM∗ + µN)w2.
(6.36)

Since Qt(0) ≡ 0, by the continuous dependence of the solutions on initial condi-

tions, it follows that for any sufficiently small ε ∈ (0,M∗), there exists η ∈ Int(Z+)

with η ≤ u∗ such that Qt(η) ≤ ε for all t ∈ [0, 1], where ε = (ε, ε). Then the

comparison principle implies that

Qt(φ) ≤ Qt(η) ≤ ε, φ ∈ Cη, t ∈ [0, 1].
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Thus, Qt(φ) satisfies

∂u1

∂t
≥DM∆u1 + αβ(M∗ − ε)u2 − µMu1,

∂u2

∂t
=PlβTL

∗
∫
R

Γ(τl, x, y,DM)u1(t− τl, y)dy − (γ + αM∗ + µN)u2,
(6.37)

for all t ∈ [0, 1]. This implies that Qt(φ) is an upper solution of the linear system

(6.35) for t ∈ [0, 1], φ ∈ Cη, and hence,

Lε(1)(φ) ≤ Q1(φ), ∀φ ∈ Cη.

Using the convexity of λε(µ) and the arguments similar to those in [54, Theorem

3.10(ii)](see also Theorem 2.2.2(ii)), we have inf
µ>0

λε(µ)
µ
≤ c∗ for all sufficiently small ε.

Letting ε → 0, we obtain that inf
µ>0

λ(µ)
µ
≤ c∗. Thus, c∗ = infµ>0

λ(µ)
µ

> 0. Since λ(µ)

can be explicitly expressed from (6.34), it follows that λ′(µ) = −∂µ∆(λ,µ)

∂λ∆(λ,µ)
, ∀µ > 0, and

d

dµ

λ(µ)

µ
=
µλ′(µ)− λ(µ)

µ2
= −µ∂µ∆(λ, µ) + λ(µ)∂λ∆(λ, µ)

µ2∂λ∆(λ, µ)
.

Consequently, (λ(µ0), µ0) is a unique solution to the system

µ > 0, ∆(λ, µ) = 0, ∂µ∆(λ, µ) +
λ

µ
∂λ∆(λ, µ) = 0.

Replacing λ with a new variable c := λ
µ
, we then have

∂c∆̃(c, µ) = ∂µ∆(cµ, µ) + c∂λ∆(cµ, µ) = ∂µ∆(λ, µ) +
λ

µ
∂λ∆(λ, µ).

It follows that (c∗, µ0) is uniquely determined as the solution of the system

µ > 0, ∆̃(c, µ) = 0, ∂µ∆̃(c, µ) = 0.

This completes the proof.
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Since the solution maps of system (6.24) do not satisfy the compactness assump-

tion in [54], we cannot use the theory of traveling waves there. We will appeal to the

theory recently developed in [19] (see also in section 2.2.2) to prove the existence of

the minimal wave speed for monotone traveling waves.

Recall that W (x − ct) is said to be a traveling wave of the semiflow {Qt}t≥0

provided that Qt[W ](x) = W (x− ct), ∀t ≥ 0, and we say that W (x− ct) connects β

to 0 if W (−∞) = β and W (+∞) = 0.

Let M be the set of all non-increasing, left-continuous and bounded functions

from R to Z. We equipM with the compact open topology. Let β ∈ Z+ with β � 0,

set Mβ := {u ∈M : u(x) ∈ Zβ,∀x ∈ R} and M+ := {u ∈M : u ≥ 0}.

It is easy to show that for any initial data φ ∈ Mu∗ , system (6.24) admits a

unique solution u(t, x, φ) on [0,∞), and ut(φ) ∈ Mu∗ for each t ≥ 0. Moreover, we

can verify that for each t > 0, Qt: Mu∗ →Mu∗ satisfies (C1) and (C4). (C2)′ follows

from the similar proof to that in [17, Lemma 4.3]. By the arguments in [19, Theorem

5.2] and [17, Theorem 5.3], we see that for each t > 0, (C3) is also satisfied for Qt.

Finally, Lemma 6.2.1 implies that for each t > 0, (A5) is valid for Qt. It follows that

for each t > 0, Qt satisfies (C1), (C3), (C4), (A5) and {Qt}t≥0 satisfying (C2)′ is a

semiflow on Mβ (see section 2.2.2). Then we have the following result.

Theorem 6.3.2. Assume that rM > KM , χ > 0 and R0 > 1, and let c∗ be defined as

in Lemma 6.3.1. Then the following statements are valid:

(i) For any c ≥ c∗, system (6.24) admits a monotone traveling wave solution W (x−

ct) connecting u∗ to 0.

(ii) For any c ∈ (0, c∗), system (6.24) has no such traveling wave solution.

Proof. The existence and nonexistence of the monotone and left-continuous wave
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profiles with speed in terms of c∗ follows from [19, Theorem 4.2 and Remark 3.7] (see

also Theorems 2.2.6 and 2.2.7). It suffices to prove the smoothness of wave profiles.

Note that W = (W1,W2) solves the following integral equations:

W1(x− ct) = e−µM t
∫
R

Γ(0, x, y,DM)W1(y)dy

+ αβ

∫ t

0

∫
R
e−µM (t−s)Γ(t−s, x, y,DM)(M∗−W1(y − cs))W2(y − cs)dyds,

W2(x− ct) = e−(γ+αM∗+µN )tW2(x)

+ PlL
∗βT

∫ t

0

∫
R
e−(γ+αM∗+µN )(t−s)Γ(τl, x, y,DM)W1(y − c(s− τl))dyds,

where c ≥ c∗ > 0. From the first equation, we see that the right-hand side is twice

differentiable with respect to x, and hence, W1 is twice differentiable. Meanwhile, the

right-hand side of the second equation is differentiable with respect to t, and hence,

W2 is differentiable.

To finish this section, we point out that the third equation in system (6.23) can

be regarded as the following non-homogeneous evolution equation:

∂a

∂t
= −(µA + ξH∗ + δAA

∗)a+ Pn

∫
R

Γ(τn, x, y,DM)K∗a(t− τn, y)dy,

with

K∗a(t, y) = M∗n(t, y) + βTm(t, y)(N∗ − n(t, y)).

By the same arguments as in [18, Theorems 3.1 and 3.2], it then follows that the sim-

ilar conclusions in Theorems 6.3.1–6.3.2 also hold for a(t, x), and hence, the number

c∗ is the spreading speed and the minimal wave speed for system (6.23).
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6.4 Numerical simulations

In this section, we use numerical computations to verify our analytic results in sections

6.2–6.4 and reveal the biological insights into the invasion of Lyme disease.

In the case of a bounded habitat, we choose Ω = (0, 1). According to biological

data in [74], we take basic parameters µM = 0.012 day−1, µL = 0.006 day−1, µN =

0.006 day−1, µA = 0.003 day−1, τL = 3 days, τN = 5 days, τA = 10 days. We also adapt

the parameter values from [12] by choosing α = 0.02 and γ = 0.005 day−1. For il-

lustration, we choose ξ = 0.01, µh = 0.001day−1, r = 10 and H∗ = 8. In [92], the

authors numerically studied the effects of host population sizes and spatial configura-

tions, and the spatial control of Lyme disease. Since our model is motivated by [92],

we only explore new phenomena in the bounded habitat [0, 1] such as influences of self-

regulation mechanism and host diffusion rates on the risk of Lyme disease infection.

More precisely, we first investigate the case where the demographic environment for

mice and deers is spatially homogeneous, but the disease transmission environment

for mice and ticks is spatially heterogeneous. To do so, we let β(x) = 0.4(1 + cos πx),

βT (x) = 0.35(1 + cos πx), and mice population size M∗ = 100.

Fix DM = 0.01 km2 · day−1, DH = 0.22 km2 · day−1 and δA = 0.065, we use

Theorem 6.2.1 to numerically compute the basic reproduction number R0 and obtain

R0 = 1.0543. While we retake β = 0.4 and βT = 0.35, exactly the spatial average of

β(x) and βT (x), it follows that R0 = 0.8647. This suggests that spatially averaged

system may underestimate the disease outbreak risk.

To observe the sensitivity of R0 on model parameters, we vary δA and keep all

other parameters the same as above, the left panel of Figure 6.2 shows that the

basic reproduction number R0 is a decreasing function of δA and goes down through
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the threshold value 1. This means the self-regulation mechanism for adult ticks could

reduce the infection risk via intrinsically controlling the population size of adult ticks.

Fix δA = 0.065 and let DM vary. Then the right panel of Figure 6.2 indicates that the

basic reproduction number R0 is also a decreasing function of DM , which indicates

that the higher random diffusion movement of mice may lower the infection risk.
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Figure 6.2: R0 as functions of δA and DM .

Clearly, when M∗(x) is spatially homogeneous, the random diffusion movement

of deers DH has no evident influence on the control of the infection risk. Now let us

include the feature of spatially dependent mice distribution. Take KM(x) = 80(1.1 +

δ sin(kπx)) with δ ∈ [−1, 1] and k = 1, 2, rM = 0.036, δA = 0.065, DM = 0.01. A

simple computation shows that the positive disease-free steady state exists uniquely

for δ ∈ [−1, 1], k = 1, 2. Figure 6.3 shows that R0 is an increasing function of DH

with KM = 80(1.1 + sin(2πx)), but the difference of R0 values for DH = 0.25 and

DH = 0.01 is 6.2177 × 10−5, which could result from the error of computation. A

further numerical calculation indicates that R0 almost remains the same in the case

that KM = 80(1.1 + sin(πx)), and hence, the random diffusion movement of deers

might have little impact on the control of the disease outbreak. This may arise from

the fact that adult ticks don’t amplify the disease directly and deers, the host of
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adult ticks, do not disperse the pathogen and cannot be infected. Next, we vary δ

to estimate the spatially heterogeneous effects on the basic reproduction number R0.

Figure 6.4 shows the different spatial dependent carrying capacity distributions of

0.05 0.1 0.15 0.2 0.25
1.23284

1.23285

1.23286

1.23287

1.23288

1.23289

1.23290

1.23291

1.23292

D
H

R
0

Figure 6.3: R0 as functions of DH with KM(x) = 80(1.1 + sin(2πx)).

mice may dilute or amplify the disease infection. A possible explanation is that too

large mouse population size could cause intensive intra-competition and the decrease

of the ratio of tick to host, ending in the dilution of infections [25,79]. When k = 1, the

spatial average of KM is increasing as δ increases, so is the population size of mice in

this whole interval. When k = 2, although the average of the carrying capacity size on

the whole area remains the same, it is very likely that when the sharply heterogeneous

carrying capacity distribution of mice occurs, the ratio of tick to mice increases on

the interval [1
2
, 1] with δ > 0, or [0, 1

2
] with δ < 0, which has a predominant effect on

the infection risk, leading to the worse disease burden.

In order to simulate the long-time behavior of system (6.24), we discretize it by the

difference method on [0, 1]. Here we should point out that the idea of the discretization

of the non-local term in system (6.24) follows from [52, Appendix]. Figure 6.5 gives

the plot of two disease infectious components, m(t, x) and n(t, x), with the initial
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Figure 6.4: Left panel: R0 decreases as δ increases with KM(x) = 80(1.1 + δ sin(πx)).

Right panel: R0 is a function of δ with KM(x) = 80(1.1 + δ sin(2πx)) .

data

m(θ, x) = 20− 5 cos(2πx), n(θ, x) =
1

5
m(θ, x), ∀θ ∈ [−τl, 0], x ∈ [0, 1].

It turns out the both infectious components can persist in that situation.

In the case of an unbounded habitat, we take Ω = R, β = 0.4, βT = 0.35,

DM = 0.03, M∗ = 100 and δA = 0.004. It follows that χ defined in (6.25) equals to

2.3273 > 0, and the basic reproduction number R0 = 3.4857 > 1. Moreover, using

Lemma 6.3.1, we numerically obtain the spreading spreed c∗ = 0.1039. Figure 6.6

suggests that c∗ is decreasing in δA, and increasing in DM .

To observe traveling waves of system (6.24), we truncate the infinite domain R to

be [−200, 200]. Choose the initial data as

m(θ, x) =


80, if − 200 ≤ x < −50, θ ∈ [−τl, 0],

40− 4
5
x, if |x| ≤ 50, θ ∈ [−τl, 0],

0, if 50 < x ≤ 200, θ ∈ [−τl, 0].

and n(θ, x) = 1
8
m(θ, x),∀x ∈ [−200, 200], θ ∈ [−τl, 0]. Then the evolution of the
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Figure 6.5: The long-time behavior of disease infectious components with R0 = 3.8720

and χ = 2.3273. Here DM = 0.03, M∗ = 100, δA = 0.004, β(x) = 0.4(1 + cosπx) and

βT (x) = 0.35(1 + cos πx).
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Figure 6.6: Spreading speed c∗ as functions of δA and DM .
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solution is as shown in Figure 6.7 .

Figure 6.7: The rightward traveling waves observed for m and n.

6.5 Discussion

In this chapter, we have modified the nonlocal spatial model of Lyme disease presented

in [92] to take into account of the self-regulation mechanism. In a bounded domain,

we first investigated the disease-free dynamics of system (6.2) and then the global

dynamics of the model system (6.1) with spatially dependent parameters in terms

of the basic reproduction number R0. In an unbounded domain, we established the

existence of the spreading speed for the disease infection and its coincidence with the

minimal wave speed for the limiting system (6.24).

Our analytic results in sections 6.2 and 6.3 greatly improved the main results

in [92], where they required more technical assumptions for the existence of principal

eigenvalues and global attractivity. Specifically, with the spatially homogeneous dif-

fusion rates and one assumption on the spatial distribution M∗(x) of mice population,

they obtained the persistence result in term of the basic reproduction number R0, and
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proved the sharp global dynamics under the structure of these spatially homogeneous

quantities and one additional condition.

Numerically, we found that the spatial averaged system would underestimate the

disease risk, and we also numerically pursued the influences of self-regulation mech-

anism of ticks and host diffusion rates on the infection risk. It turned out that both

self-regulation mechanism of ticks and random movements of mice would alleviate the

infection, but random movements of deers would take no evident effect. Moreover,

the carrying capacity of mice with strong spatial heterogeneity would increase the

infection risk. In order to study the spatial invasion of the disease in an unbounded

domain, we also computed the spreading speed numerically and plotted the traveling

waves of two infectious components. Our results show that the spreading speed is

decreased when the self-regulation of adult ticks is appropriately enhanced, and is

increasing with the random diffusion rate of mice. Combining with the numerical

results in a bounded domain, we see that the intensive self-regulation of ticks would

force disease to spread more slowly and even to go extinct, and cooling down the ran-

dom movements of mice could deteriorate the infection locally, but this might slow

down the invasion of the disease in a large area.



Chapter 7

Summary and Future Works

In this chapter, we first briefly summarize the main results in this thesis, and then

suggest some future research works.

In this thesis, we studied three reaction-diffusion models in the spatial and/or

temporal heterogeneous environments. We mainly focused on the threshold dynamics,

spreading speeds, and monostable traveling waves, which are the crucial factors to

characterize and predict the evolution of species.

To study the population persistence with the temporal heterogeneity in a stream

ecology, we modified the early models in [60,76] to a time-periodic reaction-advection-

diffusion systems (3.1) in Chapter 3. We first investigated a threshold dynamics for

the spatially homogeneous system of model (3.1) in terms of the principal Floquet

multiplier of its linearized system at (0, 0), and then we established the existence

of leftward and rightward spreading speeds and their coincidence with the minimal

wave speeds for monotone periodic traveling waves in an unbounded domain. We also

proved a threshold result on the global dynamics of the model system in a bounded

domain, at last we presented some numerical simulations to verify our analytic results.
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In Chapter 4, we extended the theory of traveling waves (and spreading speeds)

for monotone semiflows to the case of a periodic habitat, and applied this theory

to the two species competition reaction-advection-diffusion models in a spatially pe-

riodic environment. We obtained the existence of two semi-trivial periodic steady

states and the global stability of one semi-trivial periodic steady state for the model

system with periodic initial data. We established the existence of the minimal wave

speed of the rightward spatially periodic traveling waves and its coincidence with

the minimal rightward spreading speed. We also shown that the rightward spreading

speed is linearly determinate under additional conditions. A prototypical class of

reaction-diffusion systems, which were studied in [16, 49] in the case of a bounded

domain was used to illustrate our results. Furthermore, we established the theory

of traveling waves, almost pulsating waves and spreading speeds for time-space pe-

riodic semiflows of monostable type in Chapter 5, and then applied this theory to

the two species competition model in the time-space environment and explored its

propagation phenomena.

In Chapter 6, we modified the nonlocal spatial model of Lyme disease presented

in [92] to take into account of the self-regulation mechanism. In a bounded domain,

we first investigated the disease-free dynamics of the associated system and then the

global dynamics of the model system with spatially dependent parameters in terms of

the basic reproduction number R0. In an unbounded domain, we studied the spatial

spread of disease and the existence of traveling waves. We established the existence

of the spreading speed for the limiting system and its coincidence with the minimal

wave speed. we also numerically pursued the influences of self-regulation mechanism

of ticks and host diffusion rates on the infection risk. This project could give some

insights into the control of the disease spread.
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Related to the projects in this thesis, there are some open and challenging issues

for future investigation. In the first project, I considered the stream population model

in time periodic environment. However, motivated by [58], it is worthy to study the

model in time-space periodic environment and investigate the spatial dynamics and

the propagation phenomena. For the second project, It will be more interesting

if we consider the age structure of the population and derive a reaction-diffusion

and nonlocal time-delayed competition model in a periodic habitat. Moreover, I

only discussed the traveling waves with the monostable structure in Chapter 4. It

could be much more challenging to study the bistable traveling waves for two-species

competition model in a periodic habitat. For the last project, we could incorporate the

seasonal succession into the model system in Chapter 6 and investigate the spatial

dynamics of the model system. Since the full model system in Chapter 6 is non-

monotone, it will be subtle but interesting to study the existence of traveling waves.
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