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Abstract 

Let R be an associative ring with identity 1 i= 0. An element a E R is called clean 

if there exists an idempotent e and a unit u in R such that a == e + u, and a is called 

strongly clean if, in addition, eu == ue. The ring R is called clean (resp., strongly clean) 

if every element of R is clean (resp., strongly clean). The notion of a clean ring was given 

by Nicholson in 1977 in a study of exchange rings and that of a strongly clean ring was 

introduced also by Nicholson in 1999 as a natural generalization of strongly 7r-regular 

rings. Besides strongly 7r-regular rings, local rings give another family of strongly clean 

rings. 

The main part of this thesis deals with the question of when a matrix ring is strongly 

clean. This is motivated by a counter-example discovered by Sanchez Campos and Wang

Chen respectively to a question of Nicholson whether a matrix ring over a strongly clean 

ring is again strongly clean. They both proved that the 2 x 2 matrix ring M2 (Z(2) ) is not 

strongly clean, where Z(2) is the localization of Z at the prime ideal (2). The following 

results are obtained regarding this question: 

• Various examples of non-strongly clean matrix rings over strongly clean rings. 

• Completely determining the local rings R (commutative or noncommutative) for 

which M2 (R) is strongly clean. 

• A necessary condition for M 2 (R) over an arbitrary ring R to be strongly clean. 

• A criterion for a single matrix in Mn(R) to be strongly clean when R has IBN and 
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every finitely generated projective R-module is free. 

• A sufficient condition for the matrix ring Mn(R) over a commutative ring R to be 

strongly clean. 

• Necessary and sufficient conditions for Mn(R) over a commutative local ring R to 

be strongly clean. 

• A family of strongly clean triangular matrix rings. 

• New families of strongly w-regular (of course strongly clean) matrix rings over non

commutative local rings or strongly w-regular rings. 

Another part of this thesis is about the so-called g( x )-clean rings. Let C ( R) be the 

center of Rand let g(x) be a polynomial in C(R)[x]. An element a E R is called g(x)

clean if a == e + u where g(e) == 0 and u is a unit of R. The ring R is g(x)-clean if 

every element of R is g( x )-clean. The ( x2 
- x )-clean rings are precisely the clean rings. 

The notation of a g(x)-clean ring was introduced by Camillo and Simon in 2002. The 

relationship between clean rings and g(x )-clean rings is discussed here. 



Acknowledgements 

First and foremost, I would like to acknowledge my supervisor Dr.Yiqiang Zhou for 

his instrumental guidance and financial support throughout my Ph.D study. His teach

ing and our weekly meetings gave me invaluable mathematical insights and made me a 

mathematician. I also thank my master supervisor, Dr. Mingyi Wang who introduced 

me to the palace of algebra and patiently taught me four algebra courses. 

I am grateful to Dr. Booth, Dr. Parmenter, and Dr. Xiao for teaching me gradu

ate courses. Their courses helped me to be a better mathematician. I appreciate our 

Graduate Officer, Dr. Edgar Goodaire. He always cares about my study and life and 

his greetings always make me feel life is a little easier. Thanks to Dr. Bahturin for 

introducing me to basic concepts of Lie algebra and Hopf algebra. 

I give special thanks to Dr. Alexander Diesl and Dr.Thomas Dorsey for their helpful 

communications on strongly clean matrix rings. Thanks also to my fellow graduates, 

Jason, Heather and Oznur for their friendship. 

I acknowledge the Department of Mathematics and Statist ics of Memorial University 

of Newfoundland for providing a friendly atmosphere and facilities. I also thank the 

School of Graduate Studies, the Department of Mathematics and Statistics, and Atlantic 

Algebra Center for financial support and the A.G. Hatcher Memorial Scholarship. 

Lastly, I am indebted to Lingling. Without her support, brave love, and companion

ship, graduate study would have been more difficult and far less pleasant. 

April 2007. 



Page iv 

I am very grateful to Drs. Goodaire, Nicholson, and Parmenter. As examiners, they 

read the earlier version of the thesis carefully and corrected many typos and found several 

mistakes. These helped me to write out this version. 

August 2007. 

Xiande Yang. 



Contents 

Abstract • 
I 

Acknowledgements ••• 
111 

List of symbols 2 

Introduction 4 

1 Preliminaries 9 

1.1 Local rings . 9 

1.2 Hensel's Lemma and Henselian rings 13 

2 Strongly Clean Matrix Ring M2 (R) 15 

2.1 Non-strongly clean matrix rings over commutative local rings 15 

2. 2 Strongly clean matrices via similarity . . . . . . . . 22 

2.3 When is M 2 (R) over a local ring R strongly clean? 32 

2.4 Applications and examples ... .. ..... .. . 37 

2.5 A necessary condition for M 2 (R) over an arbitrary ring R to be strongly 

clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

3 Strongly Clean Matrix Ring Mn(R) 44 



CONTENTS 

3.1 SRC factorization and strongly clean matrices 

3.2 Strongly clean matrix rings over commutative local rings 

4 Strongly Clean Triangular Matrix Rings 

4.1 Strongly clean triangular matrix rings . . 

5 Strongly 7r-Regular Rings 

5.1 Finite extensions of strongly 7r-regular rings 

Page 1 

44 

58 

74 

74 

82 

82 

5.2 A criterion for M 2 (R) over a local ring R to be strongly 7r-regular 83 

6 g(x)-Clean Rings 92 

6.1 g( x )-clean rings . . . . 92 

6.2 ( x2 + ex + d)-clean rings . . . 96 

6.3 ( xn - x )-clean rings . . . . . . . . . . 101 

Bibliography 103 



List of symbols 

R 

MR, RM 

End(MR) 

C(R) 

r(a) 

1( a) 

U(R) 

J(R) 

N 

z 
Q 

cc 
PID 

UFD 

ED 

IBN 

Z(p) 
.......... 

Zp 

associative ring with identity 1 "I 0 

unitary right (left) R-module 

endomorphism ring of a right R-module M 

center of a ring R 

right annihilator of a E R 

left annihilator of a E R 

group of multiplicative units in a ring R 

Jacobson radical of a ring R 

natural numbers excluding 0 

ring of integers 

field of rational numbers 

field of complex numbers 

principal ideal domain 

unique factorization domain 

Euclidean domain 

invariant basis number 

localization of Z at the prime ideal (p) 

completion of Z at the prime ideal (p), 

or ring of p-adic integers 



CONTENTS 

R[x] 

R[[x]] 

m 

EBiE/Ai 

rriE/ Ai 

detA, IAI 

tr(A), tr A 

GLn(R) 

polynomial ring over R in indeterminate x 

formal power series ring over R in indeterminate x, 

or completion of R[x] at ideal (x) in R[x] 

maximal ideal of a ring R 

prime ideal of a ring R 

n x n matrix ring over a ring R 

n x n upper triangular matrix ring over a ring R 

direct sum of modules or other algebraic systems 

direct product of modules or other algebraic systems 

determinant of a matrix A over a commutative ring 

trace of a matrix A 

general linear group over R, 

or multiplicative group of units in Mn(R) 

gcd(f(x),g(x)) greatest common divisor of f(x) and g(x) in a UFD R[x] 

deg(J(x)) 

SR(!' g) 

Max(R) 

which is manic if R is a field 

degree of the polynomial! ( x) 

resultant of polynomials! ( t), g( t) E R[t] 

maximal spectrum{m: mis a maximal ideal in R} 

of a commutative ring R 

fractionization of a commutative ring R 

by a multiplicatively closed set S 

Jacobson radical of the right R-module M 

characteristic polynomial of the matrix A E Mn(R) 

over a commutative ring R 

quotient field of an integral domain R 

domain {n + mw: n,m E Z} where w E C\Q,w2 E Z 

Page 3 



Introduction 

Let R be an associative ring with identity 1 i= 0, C(R) be the center of R, and g(x) be a 

polynomial in the polynomial ring C(R)[x]. By Nicholson [51, 52], an element a in a ring 

R is called clean if there exist an idempotent e and a unit u in R such that a == e + u 

and a is called strongly clean if, in addition, eu == ue. The ring R is called clean 

(resp., strongly clean) if every element of R is clean (resp., strongly clean). Following 

Camillo-Simon [18] and Nicholson-Zhou [54], an element a E R is called g( x )-clean if 

a == e + u where g( e) == 0 and u is a unit of R and R is g( x )-clean if every element of R is 

g( x )-clean. Thus, the ( x2 
- x )-clean rings are precisely the clean rings. An element a in a 

ring R is called strongly rr-regular if both chains aR ~ a2 R ~ · · · and Ra ~ Ra2 ~ · · · 

terminate and the ring R is called strongly rr-regular if every element of R is strongly 

7r-regular [10], or equivalently, the chain aR ~ a2 R ~ · · · terminates for all a E R [26]. 

This thesis deals with some aspects of clean rings, strongly clean rings, strongly 7r

regular rings and g(x )-clean rings. The subject falls under the area of study of exchange 

rings and largely overlaps with the study of von Neumann regular rings. 

In 1964, Crawley and Jonsson introduced the well-known exchange property [25] when 

they worked on direct sum refinements for algebraic systems. Let T be a cardinal number. 

A module Mis said to have the T-exchange property if for every module X and each 

direct decomposition X == M' EBY == EBiE/Ni with M' rv M and card(!) < T, there are 

submodules N; < Ni, i E I, such that X == M
1 

EB (EBiEJN;), and Mis said to have the 

exchange property (or to be an exchange module) if M has the T-exchange property 

for every cardinal number T. A module Mis said to have the finite exchange property 
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if M has then-exchange property for every positive integer n. Modules with the exchange 

property often have isomorphic refinements for direct sum decompositions [31, pp. 39-

41, Theorem 2.9 and Theorem 2.10]. In 1972, Warfield introduced exchange rings [63). A 

ring R is called an exchange ring if the regular module RR has the exchange property 

(equivalently, R is an exchange ring if for any a E R, there exists an idempotent e E R 

such that e E aR and 1 - e E (1 - a)R by [51, p.167] or [37, Theorem 2.4]) . It is well 

known that the definition of an exchange ring is left-right symmetric and a module MR 

has the finite exchange property iff the endomorphism ring End(MR) is an exchange 

ring [63]. A ring is semiregular if it is von Neumann regular modulo the Jacobson 

radical and idempotents lift modulo Jacobson radical. For example, semiperfect rings 

are semiregular. Exchange rings include semiregular rings, Jr-regular rings (including von 

Neumann regular rings), unital C*-algebras of real rank zero (3, Theorem 7.2], and many 

other classes of rings. 

In [51], Nicholson proved that clean rings are exchange rings and an exchange ring 

whose idempotents are central is clean. In 1994, Camillo and Yu observed that a ring 

constructed by Bergman [39] is exchange but not clean. Thus, for the first time, people 

know that clean rings form a proper class of exchange rings. Since the publication of 

Camillo-Yu's paper, clean rings have attracted more and more authors and they are now 

a quite active subject and much progress has been made. Recall that a ring R is unit 

regular if every element a E R can be written as a == ava with some v E U(R) , or 

equivalently, a == eu for some idempotent e E R and some unit u E U(R). Thus, clean 

rings are the additive analogs of unit regular rings. Surprisingly, every unit regular ring 

is clean by Camillo, Khurana and Yu in [15) and [17] where it is also proved that every 

semiperfect ring is clean. In 2006, Camillo, Khurana, Lam, Nicholson and Zhou proved 

that the endomorphism ring of a continuous module is clean [16]. These results show 

that the class of clean rings is quite large. 

In 1999, Nicholson discovered the nice connection between the well known Fitting's 

Lemma and a certain class of clean rings which he called strongly clean rings. Local rings 
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are strongly clean [52]. One notices that strongly clean rings are the additive analogs of 

strongly regular rings where each element a can be written as a == eu == ue with e 

an idempotent and u a unit. In 1947, Arens and Kaplansky [5] first investigated rings 

that are now called strongly 7r-regular elements and rings. Azumaya [10] defined left and 

right w-regular elements and strongly w-regular rings. He proved that if a E R is strongly 

w-regular, then there exist b E R and n > 0 such that an == an+lb and ab == ba (10, 

Theorem 3]. Strongly w-regular rings include one-sided perfect rings, strongly regular 

rings and algebraic algebras over a field . In 1988, Burgess and Menal [14] proved that 

strongly w-regular rings are strongly clean (so strongly regular rings and one-sided perfect 

rings are strongly clean). For an element a in the endomorphism ring End(MR) of the 

right R-module MR, Armendariz, Fisher and Snider [6] proved that a is strongly w

regular iff it satisfies Fitting's Lemma, that is, there exists an n E N such that M == 

I man EB K eran. Nicholson [52] observed that a is strongly 7r-regular iff there exists a 

direct sum decomposition MR == PR EB QR such that the restriction alp : P ---+ P is an 

isomorphism and a IQ : Q ---+ Q is nil potent; and that a is strongly clean iff it satisfies the 

general Fitting's Lemma, that is, there exists a direct sum decomposition MR == PR EB QR 

such that the restriction alp : P---+ P and (1- a) IQ : Q ---+ Qare isomorphisms. Thus, he 

not only proved that every strongly w-regular element is strongly clean but also showed 

that strongly clean rings are a natural generalization of strongly w-regular rings. Thus, 

various questions can be asked whether certain properties of a strongly w-regular ring 

can be extended to a strongly clean ring. In considering the Morita invariant property 

of strongly clean rings, Nicholson [52] raised two questions: Let R be strongly clean with 

e2 == e E R. Is eRe strongly clean? Is Mn(R) strongly clean? In her 2002 unpublished 

manuscript [60], Sanchez Campos answered the first question affirmatively and gave a 

counter-example to the second question. In 2004, Wang and Chen [62], independently, 

published a counter-example to the second question. Thus, an interesting question follows 

naturally: ( *) When is the matrix ring Mn ( R) strongly clean? 

In 2000, Camillo and Simon proved that if V is a countable dimensional vector space 
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over a division ring D and if g(x) E C(D)[x] has two distinct roots in C(D), then End(VD) 

is g(x)-clean [18]. In 2004, Nicholson and Zhou generalized Camillo and Simon's result by 

proving that End(RM) is g( x )-clean where RM is a semisimple module over an arbitrary 

ring Rand g(x) E (x - a)(x - b)C(R)[x] with a, b E C(R) and b, b - a E U(R) [54] . So 

one may ask: What is the relation between clean rings and g(x )-clean rings? 

In this thesis, partial answers to question ( *) are obtained when the underlying ring 

is local or strongly w-regular. Thus, new families of strongly clean rings are obtained. 

Some of these strongly clean rings are neither local nor strongly w-regular. We also 

discuss the strongly clean property for triangular matrix rings over local rings and the 

strongly w-regular property of matrix rings over strongly w-regular rings or local rings. 

At last, g(x)-clean rings are touched. Related to question(*), a recent result of Borooah, 

Diesi and Dorsey [12] shows that the matrix ring Mn(R) over a commutative local ring 

R is strongly clean iff R is an n-SRC ring (see Definition 3.1.8). 

The thesis is organized as follows: 

In chapter 1, two important classes of local rings through localization and completion 

are introduced for later use. 

In chapter 2, various non-strongly clean matrix rings over strongly clean rings are 

presented; a criterion for a single matrix in Mn(R) to be strongly clean is given when 

R has IBN and every finitely generated projective R-module is free; a criterion for the 

matrix ring M2 (R) to be strongly clean is given when R is commutative local; a complete 

characterization of the local ring R is obtained for M2 (R) to be strongly clean and many 

more examples of strongly clean rings are obtained; and at last, a necessary condition 

for M2 (R) over an arbitrary ring R to be strongly clean is obtained. 

In chapter 3, the SRC factorization is generalized from a commutative local ring to a 

commutative ring; a sufficient condition for the matrix ring Mn(R) over a commutative 

ring R to be strongly clean is proved; and necessary and sufficient conditions for the 

matrix ring Mn(R) over a commutative local ring R to be strongly clean are given. 
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In chapter 4, a family of strongly clean triangular matrix rings over some local rings 

are obtained. 

Chapter 5 is about when a matrix ring is strongly Jr-regular. 

In chapter 6, g(x)-clean rings are discussed. 



Chapter 1 

Preliminaries 

Local rings are one of the classes of rings considered in this thesis. Later we will 

see that there are two kinds of local rings that behave totally differently with respect 

to the strongly clean property of matrix rings over them. In this chapter, we briefly 

mention several properties of local rings and give a number of examples of them, in

cluding localization and the ring of p-adic integers for later use. A special class of local 

rings, Henselian rings, is also introduced. More detailed information on local rings and 

Henselian rings can be found in [8, 29, 59]. 

1.1 Local rings 

A proper ideal m is called maximal if there is no proper ideal of R strictly containing 

m. Recall that a ring R is local if the non-invertible elements of R form an ideal. The 

results in the next theorem are well known. 

Theorem 1.1.1 [2, Theorem 15.15} For a ring R, the following statements are equiva

lent: 

1. R is a local ring. 
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2. R has a unique maximal left ideal. 

3. J ( R) is a maximal left ideal. 

4. The set of elements of R without a left inverse is closed under addition. 

5. J(R) == {x E RIRx =/= R}. 

6. R/ J(R) is a division ring. 

7. J(R) == {x ER: x is not invertible}. 

8. If x E R, then either x or 1 - x is invertible. 

In the rest of this section, all rings are commutative. 

Definition 1.1.2 A subset S of a ring R is multiplicatively closed if 1 E S, 0 ~ S, 

and 8182 E S for all 81, 82 E S. 

Theorem 1.1.3 Let R be a commutative ring and S be a multiplicatively closed subset 

in R. 

1. Define a relation rv on R x S: ( r1, 81) rv ( r 2 , s2 ) iff there exists some 8 E S such 

that (r182 - r2s1)8 == 0. Then rv is an equivalence relation. 

2. Denote the equivalence class of (a, s) as ~ or a/ 8. Define addition a/ 8 + b/t 

(at+ bs)/ st and multiplication (a/ 8)(b/t) ==ab/ st. Then these operations are well

defined. 

3. The set of all these equivalence classes with the addition and multiplication in ( 2) 

forms a ring, denoted as s-1 R. 

4. fJ: R ~ s-1 R, fJ(r) == r/1 is a ring homomorphism with fJ(8) invertible in s-1 R for 

all 8 E S. 
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5. Let R' be a commutative ring and '¢ : R -t R
1 

a ring homomorphism with '¢( s) 

invertible in R' for all s E 3. Then there exists a unique ring homomorphism 

c.p : 3-1 R -t R' such that the following diagram commutes: 

Proof We only prove ( 5). 

() 
R---. 3-1R 

1/J ...... ~·· .... 
.. ··· 

1>'. 

.. ·· 
. . . . 

For existence, define c.p : 3-1R -t R
1 

by c.p(r/s) = '¢(r)'¢(s)-1
. Suppose that 

r / s = r' / s'. Then there exists some t E 3 such that (rs' - r's )t == 0. Therefore, 

('l/J(r)'l/J(s') - '¢(r
1

)'¢(s)) ?jJ(t) = 0. Notice that '¢(t) is invertible. So '¢(r)'¢(s
1

)-'¢(r
1

)'¢(s) == 

0 and thus, '¢(r)'¢(s)-1 == '¢(r')'¢(s')-1
. That is, c.p is well-defined. Clearly, c.p is a homo

morphism and the diagram commutes. 

For uniqueness, suppose h : 3-1 R -t R
1 

is another homomorphism that makes the 

diagram commute: 

() 
R---3-1R 

. . . 
J>' 

. . . . 

. . . . 
. 

Then h(r/l) == hB(r) = '¢(r) for all r ER. So h(l/s) == h((s/1)- 1
) == [h(s/1)]-1 == '¢(s)- 1 

for alls E 3. Hence, h(r/s) == h(r/l)h(l/s) == '¢(r)'¢(s)-1 for all r/s E 3-1R. Notice 

that c.p( r / s) == '¢( r )'¢( s )-1 for all r / s E 3-1 R. Therefore, h == c.p. D 

Definition 1.1.4 Let 3 be a multiplicatively closed subset of a commutative ring R. 

Then a fraction ring of R with respect to 3 is a commutative ring, denoted by 3-1 R 

too, and a ring homomorphism(): R -t 3 - 1 R such that B(s) is invertible for every s E 3 
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and s-1 R is universal with the property: If R' is a commutative ring and 'ljJ : R ~ R
1 

is 

a ring homomorphism with 'ljJ ( s) invertible for all s E S, then there exists a unique ring 

homomorphism cp : s-1 R ~ R
1 

with cpB == 'ljJ, i.e., the following diagram is commutative: 

S. 

() 
R--- s-1R 

'l/J ... J< ,• 
. ,• 

>•' 

. . . . . 

. . . 
. . . 
. . 

. . . . 

So the ring s-1 R constructed in Theorem 1.1.3 is a fraction ring of R with respect to 

Corollary 1.1.5 If S contains no zero divisors, then () : R ~ s-1 R is manic; if R is 

an integral domain and S == R\ {O}, then we call s-1 R the quotient field and denoted by 

Qc(R); if S is any multiplicatively closed subset of R, then s-1 R is a subring of Qc(R). 

Proof Suppose B(r) == r/1 == 0. Then r/1 == O/s for some s ES. So (rs - O)t == 0 for 

some t E S. Hence rst == 0. Since S contains no zero divisor, we get r == 0. That is, () is 

manic. The rest is easy to prove. D 

A proper ideal p in a commutative ring R is prime if xy E p implies x E p or y E p. 

It is well known that p is a prime ideal of Riff R/p is a domain and mis a maximal ideal 

of Riff R/m is a field . 

Theorem 1.1.6 Let p be a prime ideal of a commutative ring R. Then S == R\p is 

a multiplicatively closed set and s-1 R is a local ring, denoted by Rp ( Rp is called the 

localization of R at the prime ideal p ). 

Corollary 1.1. 7 Let Z be the ring of integers. Then for any prime number p E Z, 

Z(p) == { m/n E Q : m, n E Z, n =I= 0, p and n coprime } is a local ring and Z is a subring 

of Z(p). 
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Some other local rings appear as power series rings R[[x]] where R is local and the 

-ring of p-adic integers Zp· 

Example 1.1.8 Let R be a local ring. Then the power series ring R[[x]] is a local ring 

with m == (x) == R[[x]]x + J(R). In particular, if F is a field, then F[[x]] is a local ring 

with m == (x) = F[[x]]x. 

-Example 1.1.9 Let p E Z be a prime number. The ring of p-adic integers Zp is a local 

ring. 

-The ring of p-adic integers is ZP = {2::~ 0 aipi : ai E {O, 1, · · · , p - 1}}. Let x == 
-L:~ 0 aipi and y = L:~ 0 bipi in Zp. Define x + y == L:~ 0 cipi where the coefficients ci are 

defined inductively: by the division algorithm in Z, there exist unique integers 0 < c0 < p 

and h0 < 1 such that a0 + b0 = Co+ ph0 ; and unique integers 0 < c1 < p and h1 E Z such 

that al + b1 + ho = c 1 + ph1; and inductively, unique integers 0 < ck < p and hk E Z 

such that ak +bk + hk- 1 == ck + phk, k E N. Similarly, define xy = L:~ 0 dipi where 

aobo =do+ pho, akbo + ak-1b1 + · · · + aobk + hk-1 = dk + phk, do, dk E {O, 1, · · · .,p - 1}, 
- -and h0 , hk E Z (k = 1, 2, · · · ). Then Zp forms a ring. It is a local ring with m = pZP. 

In commutative algebra, an important class of local rings is constructed by the com

pletion of a ring with respect to certain ideals. In fact , for a local ring R, R[[x]] is the 

-completion of R[x] with respect to the ideal (x) = xR[x] and ZP is the completion of Z 

with respect to the ideal pZ (see [29]). 

1.2 Hensel's Lemma and Henselian rings 

In this section, we introduce Hensel's Lemma and Henselian rings. Later we will see 

that matrix rings over them are strongly clean. 

Let I be an ideal of a ring R. For f (t) == a0 + a1t + · · · + antn E R[t], we write 

f(t) = ao +alt+···+ antn E ~[t] . 

Definition 1.2.1 (Hensel's Lemma) Let R be a commutative ring with a maximal 
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ideal m. We say that R satisfies Hensel's Lemma if R satisfies the following property: 

For any manic polynomial J(t) E R[t], if f (t) = a(t) /3(t) such that a(t) is manic, a(t) 

and f3(t) are coprime in ~[t], then there exist unique polynomials g(t), h(t) E R[t] with 

g(t) manic such that f(t) = g(t)h(t), g(t) = a(t) and h(t) = /3(t). 

Definition 1.2.2 A commutative local ring R is called a Henselian ring if R satisfies 

Hensel's Lemma {11, 49}. 

The following is a generalization of a Henselian ring which will be used later. 

Definition 1.2.3 [7} A local ring R (may not be commutative) with R = R/ J(R) being 

a field is called a general Henselian ring if R satisfies the following condition : For 

any manic polynomial f(t) E R[t], if f(t) = a(t)f3(t) with a(t), /3(t) E R[t] coprime and 

a(t) manic, then there exist unique polynomials g(t), h(t) E R[t] with g(t) manic such 

that f(t) == g(t)h(t), g(t) = a(t), and h(t) = f3(t). 

It is well known in commutative algebra [29, Theorem 7.18) that the ring of p-adic 
........ 

integers Zp and the formal power series ring F[[x]] are Henselian rings where pis a prime 

number in Z and F is a field. 



Chapter 2 

Strongly Clean Matrix Ring M2(R) 

As we mentioned in the introduction, the matrix ring M2 (Z(2)) over the local domain 

Z(2) is not strongly clean (60, 62]. In section 2.1, more negative examples are given. In 

section 2.2, we give a criterion for a single matrix in Mn(R) to be strongly clean when 

R has IBN (see Definition 2.2.3) and every finitely generated projective R-module is free 

and then we easily get a criterion for the matrix ring M2 (R) to be strongly clean when R 

is commutative local. In section 2.3, we determine when M2 (R) is strongly clean where 

R is a local ring. In section 2.4, many examples of strongly clean 2 x 2 matrix rings over 

local rings are given. At last, in section 2.5 , we give a necessary condition for M2 (R) 

over an arbitrary ring R to be strongly clean. Section 2.1 and some part of section 2.2 

come from (22, 23]. 

2.1 Non-strongly clean matrix rings over commutative local 

• rings 

If R is a commutative local domain, when is Mn(R) strongly clean? In this section , 

we prove that Mn ( R) is not strongly clean if R is any of the following types: 
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• Z(p), the localization of Z at a prime ideal (p). 

• S[x]p, the localization of the polynomial ring S[x] at a prime ideal p, where S is a 

commutative domain . 

• Z[w]p, the localization of Z[w] at a prime ideal p, where w E C\Q with w2 E Z such 

that Z[w] is a UFD (Unique Factorization Domain) . 

We first notice that, for any ring Rand for integers n > m > 1, if Mn(R) is strongly clean, 

then so is Mm(R). This observation follows from the next result of Sanchez Campos [60). 

For an element a E R, r( a) and 1( a) denote the right and left annihilators of a in R 

respectively. If a= e + u with e2 = e, u E U(R) and eu = ue, then we say a= e + u is a 

strongly clean expression of a. 

Theorem 2.1.1 {60, Theorem 2.3} Let R be a strongly clean ring. Then, for any e2 = 

e E R, eRe is strongly clean. 

Proof Let a E eRe with a = g + u where g2 = g E R , u E U(R), and gu = ug. 

For any x E r(a), ax = 0 implies gx = -ux. So x = -u-1gx = -gu-1x . Hence, 

gx == x. So x E r(l - g), i.e., r(a) C r(l - g). Similarly, we have l(a) C l(l - g) . So 

(1 - g)(l - e) = (1 - e)( l - g) == 0 because (1 - e) E r(a) n l(a) . Hence eg == ge == ege 

is an idempotent in eRe. So eu = ue = eue E U(eRe) because e, g, a, and u commute. 

Therefore, a = ege + eue is a strongly clean expression of a in eRe. So eRe is strongly 

clean. D 

The next theorem gives a necessary condition for the 2 x 2 matrix ring over a com

mutative ring to be strongly clean. 

Theorem 2.1.2 Let R be a commutative ring. If M2 (R) is strongly clean, then, for any 

w E J(R), x 2 - x = w is solvable in R. 
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Proof For w E J(R), let A = C ~k) where k = w(l + 4w)-1. By hypothesis, let 

( ) ( ac db) and A == E + U be a strongly clean expression of A in M2 R where E == 

U == ( 1 
- a -k -b). The invertibility of U gives 

1- c -d 

det U == d(a - 1) + (k + b)(l - c) E U(R). (2.1 .1) 

By EU== UE we get 

b == -kc, c == a - d. (2.1.2) 

Since k E J(R), b E J(R) by (2.1.2). So (k + b)(l - c) E J(R). Thus, (2.1.1) gives 

d E U(R) and a - 1 E U(R). (2.1.3) 

E 2 == E implies 

a - a 2 == be, d - d2 == be. (2.1.4) 

Since b E J(R), it follows by (2.1.3) and (2.1.4) that a, l-d E J(R). So l+a-d E J(R) . 

Hence, a - d E U(R). But by (2.1.4) , a - a2 == d - d2
, and so (a+ d - l)(a - d) == 0. 

Thus, a+ d == 1. Hence, c ==a - d ==a - (1 - a)== 2a - 1 by (2.1.2). So we have 

a - a2 ==be== -kc2 == -k(2a - 1)2 

== -k(4a2 
- 4a + 1) == 4k(a - a2

) - k, 

where the first equality follows from (2.1.4) and the second by (2.1.2). So (1-4k)(a2 -a) == 

k. Hence, a2 -a == (1-4k)-1k == w by k == w(1+4w) - 1 . Thus, a is a solution of x2 -x == w. 

D 

Later we will see that this condition is also sufficient for commutative local rings 

(Corollary 2.2.12) and in addition we will generalize this to arbitrary rings (Theorem 

2.5.1). 

It was proved in [60] and in [62] that M2 (Z(2)) is not strongly clean. This is a special 

case of the following result. 
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Corollary 2.1.3 For any prime p E Z, Mn(Z(p)) is not strongly clean for every n > 2. 

Proof Notice that p E J(Z(p)) and x2 
- x + p == 0 has no solution in Q because the 

discriminant 1 - 4p < 0. So by Theorem 2.1.2, M2(Z(p)) is not strongly clean. Hence, 

Mn(Z(p)) is not strongly clean by Theorem 2.1.1. D 

Corollary 2.1.4 Let S be a commutative domain, p a prime ideal of S[x], and S[x]p the 

localization of S[x] at p. Then Mn(S[x]p) is not strongly clean for every n > 2. 

Proof Take h(x) E J(S[x]p) with h(x) E S[x] such that the degree, deg h, of h(x) is an 

odd number. We claim that y2 
- y = h(x) has no solution in S[x]p; so M2 (S[x]p) is not 

strongly clean by Theorem 2.1.2. Otherwise, there exists ~/:\ E S[x]p such that 

(f(x)) 2 _ f(x) = h(x). 
g(x) g(x) 

That is 

f(x)[f(x) - g(x)] == h(x)g(x)2
. 

Either deg f > deg g or deg f < deg g or deg f = deg g clearly leads to a contradiction. 

Hence, Mn(S[x]p) is not strongly clean for every n > 2 by Theorem 2.1.1. D 

We can give more negative examples after the following lemmas. 

Lemma 2.1.5 Let R be a commutative domain and A E M2 (R). Then A is an idempo

tent iff A = 0 or A = I or A = (~ 1b_a) where be== a - a2 in R. 

Proof The verification is straightforward. D 

An element a in a ring R is called a square if a = b2 for some b E R. The trace and 

the determinant of a square matrix A over a commutative ring are denoted by trA and 

det A respectively. 
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Lemma 2.1.6 Let R be a commutative domain and A == (a
11 

a
12

) E M2(R) with 
a21 a22 

s == a 11 - a 22 and t == (trA)2 - 4 <let A. If A and I - A are non-invertible and if A is a 

strongly clean element in M2 ( R), then s2 t is a square in R. 

Proof Since A and A - I are non-invertible in M2 (R) and A is strongly clean in M2(R), 

by Lemma 2.1.5, there exist a, b, c ER with be== a - a2 such that 

A== E +(A - E), where E == (a b ) , 
c 1-a 

is a strongly clean expression of A in M2(R). It follows from E(A - E) == (A - E)E that 

sb == ai2 ( 2a - 1), sc == a21 ( 2a - 1). 

Since be == a - a2 and t == s2 + 4a12a21 , we have a 12a21 (2a - 1 )2 == s2 bc == s2 (a - a2
), which 

gives (s2 + 4a12a21)a2 - (s2 + 4a12a21)a + ai2a21 == 0. That is, ta2 
- ta+ ai2a21 == 0. It 

follows that [t(2a - 1)]2 == t(4ta2 
- 4ta + t) == t(-4a12a21 + t) == t(s2 

- t + t) == s2t. D 

Corollary 2.1.7 Let R be a commutative domain and p ER be a nonunit and q ER. 

If A= (p:I :) is a strongly clean element in M2(R), then 4qp+ 1 is a square in R. 

Proof Since pis a nonunit of R, A and A - I are non-invertible in M2(R). In this case , 

s == (p+ 1) -p == 1 and t == (trA)2 -4detA == (2p+ 1)2 - 4(p2 + p-pq) == 1+4pq. So 

by Lemma 2.1.6, 4pq + 1 == s2t is a square in R. D 

Throughout the following discussion, let w denote a complex number such that w2 E Z 

and w ~ Q and let Z[w] == {n + mw : n, m E Z}. Then Z[w] is a domain and the 

representation n + mw of elements of Z[w] is unique. The study of such domains Z[w] 

has evolved into a subject in algebraic number theory. Every nonzero nonunit in Z[w] is 

a product of irreducibles, but it is difficult to determine which choices of w make Z[w] a 

UFD, a PID (Principal Ideal Domain), or an ED (Euclidean Domain) [61]. One of the 
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main results of this section is the following theorem. In this theorem, any subring of Z[w] 

is assumed to contain the natural number 1. 

Theorem 2.1.8 Suppose that Z[w] is a UFD. Let R be a subring of Qc(Z[w]) such that 

SC RC Qc(S) for some subring S of Z[w] . Then the following are equivalent: 

2. Mn ( R) is strongly clean for all n > 1. 

3. Mn ( R) is strongly clean for some n > 1. 

4. M2 ( R) is strongly clean. 

Proof "( 1) ==> (2)" because being artinian is a property of Morita invariant and 

artinian rings are one-sided perfect and one-sided perfect rings are strongly clean. "( 2) ==> 

( 3)" is clear. 

"( 3) ==> ( 4 )". This is by Theorem 2.1 .1. 

"( 4) ==> ( 1 )". Suppose that R -/= Qc( R) . 

Case 1. There exists a nonzero nonunit p E S such that p ~ Z. Since p E Z[w], write 

p == u + vw with u , v E Z. Then v -/= 0. Choose q E Z to be a prime number such tha t 

q > max{(2v)2 lw2 1+1,4lul}. 

By ( 4), A = (P: 1 : ) is a strongly clean element of Mb ( R). Therefore, by Corollary 

2.1.7, 4qp+ 1 is a square in R. Because 4qp+ 1 E Z[w] and Z[w] is a UFD, 4qp+ 1 == x 2 

is solvable in Qc(Z[w]) if and only if the equation is solvable in Z(w). Therefore, there 

exists ~ E Z[w] such that 

~2 == 4qp + 1. (2.1.5) 

Write~== n + mw with n, m E Z. Then it follows from (2.1.5) that 

(2.1 .6) 
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2qv ==nm. (2.1 .7) 

Since q is a prime number, either qln or qlm. If qln, write n == qn1 . Then 2v == n1m by 

(2.1.7). Since v # 0, n1 # 0, so m == ~~. Thus, (2.1.6) yields 

showing that 

Note that 

2v 
4qu + 1 == q2ni + (-)2w2, 

ni 

q 

2v 2v 
l(-)2w2 - ll < (-)2lw2I + 1 < (2v)2lw2I + 1 < q, 

ni ni 

(2.1.8) 

(2.1.9) 

so it follows from (2.1.9) that (~~) 2w2 -1 == 0. Thus, (2.1.8) yields 4qu == q2ni, so q == ~' 

contrary to the fact that q > 4lul. 

So it must be that qlm. Write m == qm1. Then 2v == nm1 by (2.1.7). Since v # 0, 

m 1 # 0, son== k. By (2.1.6), we have 
m1 

Since (~~ )2 - 1 > 0 and q > (~~ )2 - 1 (because q > (2v)2lw2
1 + 1), it must be that 

( k )2 - 1 = 0. This shows that q = iu 2 = i1r1
21 < 4juj, a contradiction. 

m1 m 1w m 1 w 

Case 2. Every nonzero nonunit z E S is an element of Z. We claim that S == Z. If 

not, then there exists n + mw E S with n, m E Zand m # 0. Because R # Qc(R), R has 

a nonzero nonunit z such that z E S. By hypothesis, z E Z. So z(n + mw) is a nonzero 

nonunit of S. But z(n + mw) ~ Z since zm # 0. This contradiction shows that S == Z. 

Thus, by hypothesis, Z C R C Q. Take a prime number p E R but ~ ~ R. Choose a 

prime number q with q > p + 2. Then by ( 4), A = (P: 1 
: ) is a strongly clean element 

of M2(R). Therefore, by Corollary 2.1.7, 4qp + 1 is a square in R. Since R C Q and 

4qp + 1 E Z, there exists m E Z such that m2 == 4qp + 1 and m > 1. Therefore, 

m+l m-1 
qp == 2 2 
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It can be verified that 

m+l 
--=l====?m=l 

2 ' 
m+l 

2 =p====?q=p-l , 

m+l 
2 ==q====?q=p+l, 

m+l 
-- = qp ====? qp = 2. 

2 

and 

But this is impossible by the choice of q. The proof is complete. 
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D 

Corollary 2.1.9 Let R = Z[w] be a UFD (for example, w = A, A, v'2, v'3, etc.). 

Then for any prime ideal p of R, Mn(Rµ) is not strongly clean for every n > 2. 

Proof By Rp C Rp C Qc(Rµ) and Theorem 2.1.8, we get the result. D 

2.2 Strongly clean matrices via similarity 

In this section, we give a necessary and sufficient condition for a matrix of Mn(R) 

to be strongly clean where R has IBN (see Definition 2.2.3) and every finitely generated 

projective R-module is free. As an easy consequence of this result, a criterion for a 2 x 2 

matrix over a commutative local ring to be strongly clean and a criterion for M2 (R) over 

a commutative local ring R to be strongly clean are obtained. At the end of this section 

we present a family of non-trivial strongly clean matrix rings. 

A matrix A E Mn(R) is called singular if A is non-invertible and nonsingular if A 

is invertible. Here we give a more detailed definition related to singularity of a matrix. 

Definition 2.2.1 A singular matrix A E Mn(R) is called purely singular if I - A 

is singular and semi-purely singular if I - A is nonsingular. A nonsingular matrix 

A E Mn(R) is called purely nonsingular if I - A is nonsingular and semi-purely 

nonsingular if I - A is singular. 
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Every matrix belongs to exactly one of the above four types. All types of matrices are 

strongly clean except purely singular ones. So we have the following lemma. 

Lemma 2.2.2 The matrix ring Mn(R) is strongly clean if and only if its purely singular 

matrices are strongly clean. 

Definition 2.2.3 [45, Definition 1.3} A ring R is said to have right IBN (Invariant 

Basis Number) if, for any natural numbers n, m, (Rn)R rv (Rm)R implies that n == m. 

Notice that this definition means that any two bases of a finitely generated free module 

FR have the same finite number of elements. This common number is defined to be the 

rank of FR. Similarly, we can define left IBN. It is known that a ring has right IBN iff it 

has left IBN. So we can speak of the IBN property of a ring without distinction of "left" 

or "right". 

The following lemma will be useful later. 

Lemma 2.2.4 {52, Theorem 3} Let MR be a module. Then the following are equivalent 

for <p E End(MR): 

1. <p is strongly clean in End( MR). 

2. There is a decomposition M == P EB Q where P and Q are <p-invariant, and 'PIP and 

(1 - <p)IQ are isomorphisms. 

Pictorially, <p is strongly clean iff MR has a PQPQ-decomposition: 

MR - p EB Q -

~1~ 1-~ l ~ 
- p EB Q. -MR 

Similar characterizations for <p to be clean, strongly Jr-regular, or strongly regular were 

given in [16]. 

It is well known that Mn(R) rv End((Rn)R) and (Rn)R is a left Mn(R)-module. Fix 

a basis of (Rn)R· Then every element v E (Rn)R can be considered as an n x 1 matrix. 
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Furthermore, on one hand, every right R-module endomorphism <p E End( (Rn) R) corre

sponds to exactly one matrix TE Mn(R) and cp(v) = Tv where Tv is the multiplication 

of matrices T and v; and on the other hand, every matrix T E Mn(R) corresponds to 

exactly one right R-module endomorphism <p E End((Rn)R) and Tv = cp(v). So for every 

matrix TE Mn(R), we always use <pr E End((Rn)R) to correspond to T and <pr(v) = Tv. 

For convenience, in section 2.5 and section 3.1, we will directly use TE Mn(R) to denote 

the endomorphism <pr E End((Rn)R) and we say "the kernel of T" instead of" the kernel 

of <pr" and "the image of T" instead of "the image of <pr" . 

Now we can prove the following theorem: 

Theorem 2.2.5 Let R be a ring having IBN and every finitely generated projective R

module be free. Then a purely singular matrix TE Mn(R) is strongly clean ifjT is similar 

to C = ( To 
0 

) where T0 is semi-purely nonsingular and T1 is semi-purely singular. 
0 T1 

Proof "=}". Suppose T is purely singular and strongly clean. Let { E1, E2, · · · , En} be a 

basis of (Rn)R and, under this basis, Tis the matrix corresponding to 'PT· Then 

By Lemma 2.2.4, there exist R 1 # 0 and R 2 # 0 such that 

with 'PrlRi and (1 - <pr)IR2 being right R-module isomorphisms. The direct summands 

R 1 and R2 are projective right R modules and so they are both free. In addition, they 

satisfy 

(2.2.1) 

since R has IBN. Suppose rank(R1 ) = k. Then by equality (2.2.1), we can assume 

that {771,772,··· ,77n} is a basis of (RR)n where {771,772,··· ,77k} is a basis of R1 and 

{77k+1, 77k+2, · · · , 77n} is a basis of R2. Since 'PrlRi : Ri --7 Ri and (1 - <pr)IR2 : R2 --t R2 

are both isomorphisms, we have 

(2.2.2) 
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with some T0 being nonsingular and 

I 

(1 - <pr)IR2 ('l}k+1, 'l}k+2, · · · , 'l}n) == ('l}k+l, 'l}k+2, · · · , 'l}n)T1 

with some T; being nonsingular. By equality (2.2.3), we get 

I 

== ( 'l}k+ 1, 'l}k+2, · · · , 'l}n) I n-k - ( 'l}k+ 1, 'l}k+2, · · · , 'l}n) TI 

I 

== ( 'l}k+I, 'l}k+2, ' ' · , 'l}n) (I n-k - Tl)· 

Claim. T1 == In-k - T; is singular. 

Let C== ( To 
0 

) . If T1 is nonsingular, then 
0 T1 

== (<pr ( 1}1 ) , <pr ( 1}1 ) , · · · , <pr ( 'l}n)) 

= ( 7Jl > 7J2 > .. • ,7]n) ( :O ;I ) 
== ( 1}1, 1}2, · · · , 'l}n)C. 
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(2.2.3) 

Now ( To 
0 

) ( Tc)
1 0 

) == ( r0
-

1 0 
) ( To 

0 
) == In. So C is nonsingular and 

0 T1 0 T 1-
1 0 T 1-

1 0 T1 

<pr is an isomorphism under the basis { 1}1 , 1}2 , · · · , 'l}n}. But <pr is not an isomorphism 

because T is purely singular. Hence, T1 == In- k - T; is singular. We proved the claim. 

Since {t:1,E2, ···,En} and {'l}1,'l}2, · · · ,'l}n} are both bases of (Rn)R, we have 

By the uniqueness of the expression of every element of a free module, we get P2P1 == In. 

Similarly, we get P 1P2 == In. Hence, P 2P 1 == P 1P 2 == In· Let P == P 1 == p2-
1. Now 
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So PTP-1 = ( : 0 0 
) . Since In-k - T1 == T; is nonsingular, we get T1 is semi-purely 

Ti 

singular. 

I 

Let Ik - T0 == T0 . Then 

p-1 (In - T)P ==In - p-1TP 

_ J _ ( To O ) _ ( Ik o ) _ ( To o ) 
- n 0 Ti - 0 ln-k 0 Ti 

If T~ is nonsingular, then In-Tis nonsingular which contradicts the fact that Tis purely 

singular. So T0 is semi-purely non-singular. 

"¢:". Suppose there exists P E GLn(R) such that p-1T P == C == ( To 
0 

) where 
0 Ti 

T0 is semi-purely nonsingular of order k and T1 is semi-purely singular. Then 

C ( 0 0 ) ( To 0 ) 
== 0 ln-k + 0 Ti - ln-k 

h ( 
O 0 ) . . d d ( To 0 ) . . l · S · w ere is an i empotent an is a nons1ngu ar matrix. ince 
0 ln - k 0 Ti - ln - k 

C is strongly clean and the matrix which is similar to a strongly clean matrix is also 

strongly clean, T is strongly clean. D 

Every PID has IBN and every submodule of a finitely generated free module over a 

PID is a free module [55, Theorem VI.1]. Every local ring has IBN [45, Example 1.6] and 

every projective module over a local ring is free (see [2, Corollary 26. 7] or [44, Theorem 

19.29]). The well-known Quillen-Suslin Theorem [59, p.149] says that if R is a PID, 
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then every finitely generated projective R[t1 , · · • , tk]-module is free. So the class of rings 

having IBN and every finite generated projective module over them free is large. Here 

we get a criterion for a single matrix over such a ring to be strongly clean. 

Corollary 2.2.6 Let R be a ring having IBN, assume every finitely generated projective 

R-module be free, and let T E Mb(R) be purely singular. Then T is strongly clean i.ff T 

is similar to ( ~ ~ ) with v - 1, u E U(R) and v, u - 1 tt U(R). 

Proof By Theorem 2.2.5 and Lemma 2.2.2. D 

The claims of the next two examples follow by Corollary 2.2.6. 

Example 2.2. 7 Suppose that both A E M2 (Z) and I - A are non-invertible, then A is 

strongly clean if! A is similar to one of the elements in { ( ~ ~) , ( ~1 ~) , ( ~ ~) and ( ~1 ~) } . 

Example 2.2.8 Let Z[i] = {a+ bi : a, b E Z} be the ring of the Gaussian integers. If 

A E M2 (Z[i]) and I - A are non-invertible, then A is strongly clean i.ff A is similar to 

one of the elements in { C; t~) : to E {1 , - 1, i, - i}, ti E {o, 2, 1 - i , 1 + i}} . 

For a local ring, we have 

Corollary 2.2.9 Let R be a local ring and let T E M2 (R) be purely singular. Then T 

is strongly clean i.ff it is similar to ( 
1 
+ io ~ ) with j 0 , j 1 E J ( R) . 
0 Jl 

Proof By Corollary 2.2.6. D 
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Corollary 2.2.10 Let R be a local ring. Then the following are equivalent: 

1. M2 ( R) is strongly clean. 

2. Every purely singular matrix in .M2(R) is similar to ( 
1 :io ~ ) with Jo, ]1 E J(R). 

)1 

3. Every purely singular matrix in M2 ( R) is similar to a diagonal matrix. 

Proof "( 1) ::::} (2)". By Lemma 2.2.2 and Corollary 2.2.9. 

"(2) ::::} ( 3)". This is trivially true. 

"( 3) ::::} ( 1 )". By Lemma 2.2.2 and the fact that every diagonal matrix over a local 

ring is strongly clean. D 

Using the techniques of [22] and [23), the author of [46, Theorem 2.6] proved the 

equivalences ( 1) <=> ( 3) <=> (4) of the next result. Here we give a much simpler proof. 

Corollary 2.2.11 Let R be a commutative local ring. Then the following are equivalent 

for the matrix A E M2 ( R): 

1. A is purely singular and strongly clean. 

2. A is similar to (to 0
), where 1 - t0 E J(R) and t1 E J(R). 

0 t1 

3. IAI E J(R) and 1 - tr(A) E J(R) and A is similar to a diagonal matrix. 

4. IAI E J(R) and 1 - tr(A) E J(R) and x 2 
- tr(A)x + IAI == 0 is solvable in R. 

Proof "(1)::::} (2)". It follows by Corollary 2.2.9. 

"(2) => (3)". It is clear. 

"( 3) =? ( 4)". Suppose that ( 3) holds and assume A is similar to ( ~ ~). Since 

similarity preserves the determinants and the traces of matrices, one obtains that IAI == ab 

and tr(A) == a+ b. So both a and b are roots in R of x2 - tr(A)x + IAI. Hence, (4) holds. 
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"(4) ==> ( 1 )". Suppose that (4) holds. Let a E R be a root of x2 - tr(A)x + IAI. 

Then b == tr(A) - a is also a root of x2 - tr(A)x + IAI. Thus, a+ b == tr(A) and ab== IAI. 

Since tr(A) E U(R) and IAI E J(R), one of a, b must be a unit and the other must be 

in J(R). Without loss of generality, we assume that a E U(R) and b E J(R). Write 

A == (au ai
2
). From a11 + a22 == tr(A) E U(R), either a11 or a22 is a unit. Without 

a21 a22 

loss of generality, we may assume that a 22 E U(R). Let P == ( a
21 a -au), and thus 

b - a22 ai2 

PE GL2(R) since IPI == aa22 + b(a11 - a) - IAI E U(R). Then 

p AP-1 == _1 ( a21 a -au) (au ai2) ( a12 au -a) 
I Pl b - a22 a12 a21 a22 a22 - b a21 

1 ( * 
== I Pl ai2(-b2 + tr(A)b - IAI) 

= (: :) 

is strongly clean in M2 ( R), and so is A. By direct calculation, the hypothesis shows that 

A tf_ GL2(R) and I - A tf_ GL2 (R), that is, A is purely singular. D 

The following is essentially (23, Theorem 8] and is also contained in [12, Proposition 

24]. 

Corollary 2.2.12 Let R be a commutative local ring. Then M2 (R) is strongly clean ifj 

for every w E J ( R), t 2 
- t == w is solvable in R. 

Proof "¢=". Let A E M2(R) and assume that A is a purely singular matrix. Then 

IAI E J(R) and 1 - tr(A) E J(R). Thus, tr(A) E U(R). By hypothesis, there exists 

a E R such that a2 - a+ tri~1) 2 == 0. Thus, (tr(A)a)2 - tr(A)(tr(A)a) + IAI == 0. So 

t2 - tr(A)t + IAI == 0 is solvable in R. Hence A is strongly clean in M 2 (R) by Corollary 

2.2.11. 

"~". Let w E J(R) and A= C ;). Then IAI =II-Al== -w E J(R). So A is a 

purely singular strongly clean matrix. Thus, by Corollary 2.2.11, t2 - tr(A)t + IAI == 0 

is solvable in R. That is, t2 - t == w is solvable in R (This direction can be proved by 
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Theorem 2.1.2). D 

Let C2 = { 1, g} be the abelian group of order 2. The proof of ( 2) of the next lemma 

for the group ring RC2 is contained in the proof of (38, Proposition 3) and ( 1) follows 

from [50]. Here we give a simple proof. 

Lemma 2.2.13 Let R be a commutative local ring. 

1. If 2 E J(R), then J(RC2) = {ro+r1g: ro+r1 E J(R)} and RC2/ J(RC2) rv R/ J(R) . 

In particular, RC2 is local. 

2. If 2 E U(R), then RC2 rv R EB R. 

Proof (1). Write RC2 = {a+ bg : a, b E R}. Note that if a 2 
- b2 E U(R), then 

(a+ bg) - 1 = (a2 
- b2

)-
1(a - bg) . Let~= {a+ bg: a+ b E J(R)}. Then~ is an ideal of 

RC2. For any a+ bg E ~' 1 +(a+ bg) = (1 +a)+ bg E U(RC2) because (1 + a) 2 
- b2 == 

1 + [2a +(a+ b)(a - b)] E U(R). So~ C J(RC2). But it is clear that J(RC2 ) C ~ ' so 

~ = J(RC2). Thus, R/ J(R) ~ RC2/ J(RC2) given by r + J(R) r-+ r + J(RC2 ) is a ring 

isomorphism. 

(2) . This is because(): RC2 ~ R EB R, a+ bg r-+ (a+ b, a - b), is an isomorphism. D 

Lemma 2.2.14 Let R be a local ring, w E J(R), and u E U(R) be central. The following 

are equivalent: 

1. x2 
- ux = w is solvable in R. 

2. x 2 - ux == w is solvable in U ( R). 

3. x2 - ux == w is solvable in J(R). 

Proof If x 0 satisfies the equation, then so does u - x 0 , and in this case x 0 (u - x 0 ) = 

-w E J(R). Hence one of x 0 and u - x0 is in J(R) and the other belongs to U(R) . D 
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Corollary 2.2.15 Let R be a commutative local ring. The following are equivalent: 

1. M2 (R) is strongly clean. 

2. M2 (RC2 ) is strongly clean. 

Proof "(2) => (1 )". This is because M2 (R) is an image of M2 (RC2 ). 

"(1) => (2)". Let S = RC2. 

Case 1. 2 E U(R). By Lemma 2.2.13, RC2 rv RtIJR. So M 2 (RC2 ) rv M2 (R) tBM2 (R) 

is strongly clean. 

Case 2. 2 E J(R). By Lemma 2.2.13, RC2 is a commutative local ring. For w E J(S) , 

we show that there exist x0 , x 1 E R such that x2 
- x = w where x = x0 + x 1g. By Lemma 

2.2.13, w = r0 + r1g where r0 + r1 E J(R). By Corollary 2.2.12, there exists a0 ER such 

that a6 - ao = ro + ri. Let xo = ao - x1. Then 

x2 
- x = w < > 2xi + (1 - 2ao)x1 == -r1. 

So it suffices to show that 2y2 + ( 1-2a0 )y == -r1 is solvable in R. Because 2a0 -1 E U ( R), 

the substitution y == (2a0 - 1 )z shows that 

2y2 + (1 - 2ao)Y == -r1 {==:::> 2z2 
- z == b 

where b == -r1 ( 2a0 -1 )-2
. So it suffices to show that 2z2 

- z == b is solvable in R. Because 

2b E J(R), Corollary 2.2.12 ensures that there exists z0 ER such that z5 - z0 == 2b. And 

by Lemma 2.2.14 we can assume that z0 E J(R); so 1- z0 E U(R). Then z == b(z0 -1)-1 

satisfies 2z2 
- z == b. D 

The first known strongly clean matrix ring over a local ring which is not a division 
--ring is M2 (Zp) ([22, Theorem 2.4]). Here it follows easily from the following. 

Corollary 2.2.16 M2 (R) is strongly clean if R is a Henselian ring. In particular, 
--M2(Zp) and M2 (F[[x]]) are strongly clean where F is a field. 
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Proof Let w E J(R). We prove t 2 
- t == w is solvable in R. Let () : R ~ R/ J(R), r ~ r, 

be the natural ring homomorphism. Then ()' : R[t] ~ 1 fn) [t], f (t) == a0 + · · · + antn ~ 

f(t) == a0 + · · · + antn, is a map. Let g(t) == t 2 
- t - w E R[t]. Then g(t) == t(t - 1) 

with gcd(t, t - 1) == 1. So, by Hensel's Lemma (Definition 1.2.1), g(t) == (t - ~1 )(t - ~2 ) 

for some ~1 E R and ~2 E R. That is, t2 
- t == w is solvable. So M2 ( R) is strongly clean. D 

The authors of [12] proved that, for any n > 1, Mn(R) is strongly clean when R is 

Henselian. We will discuss this in Chapter 3. 

2.3 When is M2(R) over a local ring R strongly clean? 

In section 2.2 we got the criteria for Tu1b(R) over a commutative local ring R to be 

strongly clean. In this section, we completely determine when M2(R) over a local ring 

(probably not commutative) is strongly clean. 

Lemma 2.3.1 Let R be a local ring and let A E M2 (R). Then either A is invertible or 

I - A is invertible or A is similar to (
1 
+ wo 

1
) where w0 , w1 E J ( R). 

w1 0 

Proof Write A = (: : ) and assume neither A nor I - A is invertible. We proceed with 

three cases. 

Case 1. b E U ( R). Let P == ( 
1 0

) and Q == ( 
1 

- bdb- 1 b (I - d)b- 1 
~). Then p~I = 

( 1 0 ) 1 ( 1 0) ( a + bdb-
1 1) 

1 1 
and Q- == 

1 
• Moreover, B :== P AP-1 == and 

db- b- -(1 - d)b- 1 be - bdb- 1a 0 

Q(I A)Q i ( i - a+ b(1 - d)b- 1 -b) s· . h A I A . . .bl . c 11 - - == . ince ne1 t er nor - is 1nvert1 e, 1 t 10 ows 
(1 - d)b - 1 (1 - a) - c 0 

that c - db- 1a == b- 1(bc - bdb-1a) E J(R) and (1 - d)b- 1(1 - a) - c E J(R). So 

b- 1 
- db- 1 

- b-1a E J(R) or 1 - bdb-1 
- a E J(R). 

Let w0 == -1 + bdb- 1 +a and w1 == b(c - db- 1a). Then w0 , w1 E J(R) and A is similar to 

B == (i + wo 1) . 
w1 0 
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Case 2. c E U(R). Let P = G ~). Then PAP- 1 = (: :). The lemma holds by 

Case 1. 

Case 3. b ~ U(R) and c ~ U(R). Then b, c E J(R). It follows that a E U(R) or 

d E U(R) . Because G ~) (: :) G ~)-1 

= (: :) , we may assume that a E U(R). 

Because A is not invertible, dis not a unit of R, sod E J(R). Let P = C ~). Then 

i ( i 0) i ( a - b b ) . p- = and PAP- = . Since a+c-b-d E U(R), the lemma 
-i i a+c-b-d b+d 

holds by Case 2. D 

For a ring Rand a polynomial f (t) = a0 + ait + a2t2 · · · + antn E R[t], an element r E R 

is called a left (respectively, right) root of f ( t) if a0 + rai + r 2a2 + · · · + rnan == 0 

(respectively, a0 +air+ a2r 2 + · · · + anrn = 0). It should be noted that a left root off (t) 

need not be a right root although f (t) can be rewritten as f (t) = a0 +tai +t2a2 +· · ·+tnan. 

Lemma 2.3.2 Let R be a local ring and let u E U(R) and w0 , wi E J(R) .. Then 

(
i + wo u) is strongly clean ifj t 2 - (1 + w0 )t - uwi has two left roots, one in 1 + J(R) 

w1 0 

and the other in J ( R). 

Proof "~". Suppose that A = (i + wo u) is strongly clean. Clearly, neither A nor 
w1 0 

I - A is invertible. So, by Corollary 2.2.9, there exists an invertible matrix P = (: : ) 

such that P Ap-i == (to 0
) where 1 - t 0 , ti E J(R). 

0 t1 

(
a -

1 
O ) ( i a- lb) If a, d E U(R), let Q = 

0 
d_

1 
• Then QP = d _

1
c 

1 
and (QP)A(QP) - 1 = 

Q(PAP-1)Q- 1 = (a-ltoa ~ ) with 1- a-itoa,d-itid E J(R). 
0 d- tid 

If a~ U(R) or d ~ U(R), then a E J(R) or d E J(R). Since Pis invertible, it follows 

that both b and c are in U(R). Let Q = c . Then QP = c and 
( 

0 -1) ( 1 - 1 d) 
b- 1 0 b- 1a 1 

(QP)A(QP)- 1 = Q(PAP-i )Q-1 = (c- itic o ) with 1 - b- 1tob, c- 1t1c E J(R) . 
O b- 1tob 
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Therefore, replacing P by QP, we may assume that P = C ~) such that PAP- 1 = 

C: t~) where 1 - to, ti E J(R) or 1 - ti, t0 E J(R) . Notice that 

PAP-1 
= C: 0 ) ( I + wo + bw1 

t1 {:::} c(i + wo) + w1 
u) co 
cu - tic 

tob) 
t1 

1 + wo + bwi == to (1) 

u == tob (2) 

c(l + wo) + wi ==tic (3) 

cu== ti ( 4). 

By (1), t0 E U(R), so the case that 1 - ti, t0 E J(R) cannot happen. Thus, it must be 

that 1- t0 E J(R) and ti E J(R). Thus, by (2) and ( 4), b E U(R) and c E J(R). Clearly, 

(3) and ( 4) give 

c(l + w0 ) + wi == cuc or uc(l + w0 ) + uwi == ucuc. 

Hence Ai == uc E J(R) is a left root of t 2 
- (1 + w0 )t - uwi . 

On the other hand, (1) and (2) give 

Let A2 == ub-i E U(R). Then (--\2 )
2 - --\2(1 + w0 ) - uwi == 0. Thus , --\2 - 1 - w0 == 

(--\2 )-iuwi E J(R). So ,,\2 is also a left root of t2 - (1 + w0 )t - uwi which is in 1 + J(R) 

"¢". Suppose that Ai E J(R) and ,,\2 E 1 + J(R) are two left roots of t 2 - (1 + w0 )t- uwi . 

Let t 0 == --\2 and ti == u- i Aiu and let P == ( i .\
21u). It is easy to see that P is 

u - 1 .\1 i 

invertible. Moreover, 

PA= C-~A1 A21
1
u) (1:~0 :) = c~~~::~:;:l u_;A1u) 

C: t~) p = (~ u-10A1u) C-~A1 A21
1
u) = C-~2A~ u_;A1u) · 
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So PA= (~ 0
) P because )q, ,,\2 are left roots of t 2 - ( 1 + w0 )t - uw1 . Hence A is 

t1 

similar to c~ 0
). So A is strongly clean. D 

t1 

Lemma 2.3.3 Let R be a ring with w0 , w1 , t0 E R. Consider two polynomials f(t) = 

t2 
- (1 + w0 )t-w1 and g(t) = t2 

- (1- w0 )t- (w0 + w1 ) over R. Then the following hold 

for to ER: 

1. to is a left root of f(t) iff 1 + wo - to is a right root of f(t). 

2. to is a left root of f(t) iff 1 - to is a left root of g(t). 

Proof ( 1 ). This is because that (1 + Wo - to)2 
- (1 + wo)(l + Wo - to) - W1 == t6 - to(l + 

Wo) - W1. 

(2). This follows by the fact that (1-t0 )
2 -(1-t0)(1-w0 )-(w0 +w1 ) == t5-t0 (l+w0 )-w1 . 

D 

Theorem 2.3.4 The following are equivalent for a local ring R: 

1. M2 (R) is strongly clean. 

2. For any A E M 2 (R) 7 either A is invertible or I - A is invertible or A is similar to 

a diagonal matrix. 

3. For any w0 ,w1 E J(R) 7 
(l+wo ~) is strongly clean. 

WI 

4. For any w0 ,w1 E J(R) 7 G WJ ) 

1 +wo 
is strongly clean. 

5. For any w0 , w 1 E J(R) 7 t2 
- (1 + w0 )t - w 1 has two left roots7 one in 1 + J(R) and 

the other in J ( R). 

6. For any w0 ,w1 E J(R) 7 t2 
- (1 + w0 )t-w1 has a left root in J(R). 
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7. For any w0 , w1 E J(R), t2 - (1 + w0 )t - w1 has a left root in 1 + J(R) . 

8. The right version of ( 5) or ( 6) or ( 7) holds. 

Proof "( 1) ¢:? ( 2 )". "( 1) =} ( 2 )" is by Corollary 2.2.10, and "( 2) =} ( 1 )" is clear. 

"( 1) ==> ( 3)". It is obvious. 

"( 3) ¢? ( 4 )". This holds because G 
"( 3) ¢:? ( 5)". This is by Lemma 2.3.2. 

1) (1 +WO 1) (0 1)-l = (0 WI ) . 0 WI 0 1 0 1 1 + WO 

"(5) =} (1)". Let A E M2 (R) and assume that neither A nor I - A is invertible. By 

Lemma2.3.1,Aissimilarto (l+wo 
1
) wherew0,w1 E J(R). By(5),t2 -(l+w0 )t-w1 

WI 0 

has two left roots, one in l+J(R) and the other in J(R). So, by Lemma 2.3.2, (
1 

+wo 
1

) 
WI 0 

is strongly clean. Hence A is strongly clean. 

"( 5) =} ( 6)". This is clear. 

"( 6) =} ( 5)". Given w0 , w1 E J(R), t2 
- (1 + w0 )t - w1 has a left root in J(R) by ( 6). 

Again by (6), t2 - (1 - w0 )t - (w0 + w1 ) has a left root,\ E J(R). By Lemma 2.3.3( 2), 

1 - ,\ E 1 + J(R) is a left root of t2 
- (1 + w0 )t - w1 . So (5) holds. 

"( 5) ¢:? ( 7)". The proof is the same as that of "( 5) ¢:? ( 6)". 

Furthermore, Lemma 2.3.3 ( 1) proves the equivalence of ( 5) and its right version; the 

equivalence of ( 6) and the right version of ( 7) and the equivalence of ( 7) and the right 

version of ( 6) both follow because of Lemma 2. 3. 3 ( 2). D 

Corollary 2.3.5 (Corollary 2.2.12} Let R be a commutative local ring. Then M2 (R) is 

strongly clean if! for every w E J(R), t 2 
- t = w is solvable in R. 

Proof We prove that the solvability of t2 
- t = w in R for all w E J(R) implies that of 

t2 
- (1 + w0 )t = w1 with every w0 , w1 E J(R) . Let t == (1 + w0 )x. Then we have 

2 W1 x-x==---
(l + wo) 2 

(2.3.1) 
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with (l+w~o)2 E J(R). If t2 
- t == w is solvable in R for all w E J(R), then (2.3.1) is 

solvable. Hence, t2 
- (1 + w0 )t == w1 with every w0 , w 1 E J(R) is solvable. D 

2.4 Applications and examples 

Conditions ( 5)-( 8) of Theorem 2.3.4 are "easy-to-verify" criteria for a 2 x 2 matrix 

ring over a local ring to be strongly clean. In this section we use them to give new families 

of strongly clean rings. 

The authors of [12] proved that matrix rings over Henselian rings are all strongly 

clean. For a general Henselian ring (see Definition 1.2.3), we have the following theorem. 

Theorem 2.4.1 Let R be a general Henselian ring. Then M2 (R) is strongly clean. 

Proof Let w0 , w 1 E J(R) and let f(t) == t2 
- (1 + w0 )t - w 1 . Then f(t) == t 2 

- t == 

t( t - 1) E R[t]. By hypothesis, there exist manic polynomials t - a, t - b E R[t] such that 

f (t) == (t - a)(t - b) and t - a == t and t - b == t - 1. It follows that a E J(R) is a left 

root of f(t). Hence M2 (R) is strongly clean by Theorem 2.3.4. D 

The next example, which appeared in [7, Example 16], gives a general Henselian ring 

that is not commutative. 

Example 2.4.2 Let R be a (not necessarily commutative) ring and d: R ~ R a deriva

tion, that is , d( ab) == d( a )b+ad( b) for a, b E R. Consider the set of the formal expressions 

n 

R((a-1
)) = { L aiai: ai ER}. 

i>-oo 

For a == L~>-oo aiai' /3 == LT>-oo bjaj E R( ( a-1
))' define addition a+ /3 componentwise 

and define multiplication according to the Leibnitz rule: 

n m 

i>- oo j >-oo i,j;k>O 
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where for any i E Z, 

(1) == 

Thus, for a E R, 

i(i-1)- ··(i-k+l) 
k(k-J) .. ·I 

1 

[8, a] == aa - aa == d(a) and 

[8-l, a] == a-Ia - aa-l 

' if k > 0, 

' if k == 0. 

== -d(a)a-2 + d2(a)a-3 +. · · + (-l)kdk(a)a-<k+i) + .... 

Page 38 

Hence ana == ~~ 0 (i)di(a)an-ifor any negative integer n. By {58}, R((a-1 )) is a ring, 

called the ring of formal pseudo-differential operators (Volterra operators) with coeffi

cients from R. These rings are extensively used in applied mathematics and analysis. 

Our interest here is in the subring R[[0-1
]] = { ~?>-oo aiOi : ai E R} is a subring of 

c R((a-1)). 

When R == F is a field, F[[a-1 
]] is a local ring that is clearly not commutative with 

Jacobson radical F[[a-1]]a-1 by {58, Proposition 1 (i)J, and F[[a-1
]] is a general Henselian 

ring by (7, Example 16}. So M2 (F[[a-1
]]) is strongly clean by Theorem 2.4.1. 

In order to give another family of strongly clean matrix rings, we need a new notion. 

Following [13], a local ring R is called bleached if, for all j E J(R) and u E U(R), the 

additive abelian group endomorphisms lu- rj : R ~ R (x ~ ux-xj) and lj - ru : R ~ R 

(x ~ jx - xu) are surjective. By [13, Example 13], some of the bleached local rings 

include: commutative local rings, division rings, local rings R with J(R) nil , local rings 

R for which some power of each element of J(R) is central in R, local rings R for which 

some power of each element of U(R) is central in R, power series rings over bleached 

local rings, and skew power series rings R[[x; a]] of a bleached local ring R with a an 

automorphism of R. 

Definition 2.4.3 A local ring R is called weakly bleached if, for all j 1,j2 E J(R) , the 

additive abelian group endomorphisms l1+J1 - rj2 and lj2 - r 1+Ji are surjective. 
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By Nicholson [52, Example 2] (also see [13, Theorem 18]), a local ring R is weakly 

bleached iff the 2 x 2 upper triangular matrix ring 1f 2(R) is strongly clean. Because there 

exists a local ring R such that 1f 2 ( R) is not strongly clean by [13], local rings need not 

be weakly bleached. On the other hand, bleached rings are clearly weakly bleached. We 

now cite an example of [13] to show that weakly bleached rings need not be bleached. 

Example 2.4.4 Let k be a field, and let R == k[t1 , t 2 , · · · ](t1 ) be a ring of polynomials 

in countably many indeterminates, localized at the prime ideal ( t 1). Let a be the en

domorphism of k[t1 , t 2 , · · ·] that is the identity on k and satisfies a(ti ) == ti+I for all i . 

Then a extends to the localization R. By {13, Example 38}, the local ring R[[x; a]] is 

not bleached. However, 1rn(R[[x; a]]) is strongly clean for all n > 1 by {13, Theorem 40}. 

Hence R[[x; a]] is weakly bleached. 

Theorem 2.4 .. 5 Let R be a weakly bleached local ring and let a : R ~ R be an endo

morphism with a(J(R)) C J(R). Then the following are equivalent for n > l: 

1. M2 (R) is strongly clean. 

2. M 2 ( R[[x; a]]) is strongly clean. 

3. M 2 (R[x; a]/(xn)) is strongly clean. 

Proof "(2) ~ (3) ~ (1)" . This follows because any image of a strongly clean ring is 

again strongly clean. 

"(1) ~ (2)". Let S == R[[x; a]]. Note that J(S) == J(R) + Sx. By Theorem 2.3.4, it 

suffices to show that , for any w0 , w1 E J(S), t 2 - (1 + w0 )t - w1 has a left root in J(S). 

Write 

Wo == bo + bi x + · · · , 

t == t0 + t 1 x + · · · , 
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where b0 , c0 E J(R). Then t2 - t(l + w0 ) - w1 = 0 ¢;> 

t6 - to ( 1 + bo) - Co = 0 (Po) 

tk[l - ak(to) + ak(bo)] - totk = [t1a(tk-1) + · · · + tk-1ak-1(t1)] 

-[tobk + · · · + tk-1ak-1(b1)] - ck (Pk) 

fork= 1, 2, · · ·. By Theorem 2.3.4, t 2 
- (1 + b0 )t - Co has a left root t0 E J(R). Thus, 

1 - ak(t0 ) + ak(b0 ) E 1 + J(R), so (Pk) is solvable for tk (because R is weakly bleached) 

for k = 1, 2, · · ·. Thus, ~itixi E J(S) is a left root of t 2 
- (1 + w0 )t - w 1 . The proof is 

complete. D 

The next result is [23, Theorem 9] when a = lR. 

Corollary 2.4.6 Let R be a commutative local ring and let a : R -7 R be an endomor

phism with a(J(R)) C J(R). Then the following are equivalent for n > l: 

1. M2 ( R) is strongly clean. 

2. M2 (R[[x; a]]) is strongly clean. 

3. M2 (R[x; a]/(xn)) is strongly clean. 

It is unknown whether Henselian rings are exactly those commutative local rings over 

which the matrix rings are strongly clean (see [12]). But the next example gives a local 

ring R that is not general Henselian such that :&1b(R) is strongly clean. 

Example 2.4.7 Let D be a division ring and a an endomorphism of D. Then M2 (D[[x; a]]) 

is strongly clean by Theorem 2.4. 5. If, in particular, D = C and a is the complex conju

gation, then D[[x; a]] is not general Henselian by (7, Example 17}. 

The next corollary follows by Theorems 2.4.1 and 2.4.5. 

Corollary 2.4.8 If R is a weakly bleached general Henselian ring and a is an endomor

phism of R with a(J(R)) C J(R), then M2 (R[[x; a]]) is strongly clean. 
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2.5 A necessary condition for M2(R) over an arbitrary ring R 

to be strongly clean 

In this section, we give a necessary condition for the matrix ring M2 (R) over an 

arbitrary ring R to be strongly clean. This is a generalization of Theorem 2.1.2 and [27, 

Theorem 3.7.2]. It is also related to 2.3.4. The method comes from [27]. 

Theorem 2.5.1 Let R be a ring for which M2 (R) is strongly clean. Then 

1. For any w0 , w1 E J(R) , the polynomial t2 
- (1 + w0 )t - w1 has a right root in J(R) 

and a right root in 1 + J(R). 

2. For any w0 , w1 E J(R), the polynomial t 2 
- (1 + w0 )t - w1 has a left root in J(R) 

and a left root in 1 + J(R). 

Proof (1). Let A = ( ~~ wo ~ ) and { e1 = ( ~ ) , e2 = ( ~ ) } be the standard basis 

for R2 . As we discussed before Theorem 2.2.5, under this basis, A corresponds to <f>A· For 

computation simplicity, we identify the matrix A with the corresponding endomorphism 

<{>A E End((R2)R) · It is clear that A and I - A are non-invertible. So (R2)R has a 

non-trivial R 1R2R 1 R2-decom position 

(R2)R - R1 EB R2 -

Al~ I-A 1 ~ 
- R1 EB R2. -(R2)R 

with 0 # R1 < (R2
)R and 0 # R2 < (R2

)R. For notation convenience, let bar denote 

the natural epimorphisms. For example, the natural homomorphism R __, R == R/ J(R ) 

is denoted by r ~ r == r + J(R). Let rad(R2
) be the Jacobson radical of the module 

(R2)R· Since A : R1 __, R 1 is an isomorphism, we get an isomorphism A : (R1 + 
rad(R2 ))/rad(R2

) ~ (R1 + rad(R2 ))/rad(R2
) with A(r) == A(r) . Similarly, I - A : 

(R2 + rad(R2 ))/rad(R2
) ~ (R2 + rad(R2 ))/rad(R2

) is also an isomorphism. For A and 

I - A, we have 

(2.5 .1) 
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and 

(2.5.2) 

. 2 - - -2 _- - - - -2 
Since R1 EB R2 == R , we have R1 EB R2 == R . By elR EB (e2 - el)R == R , (2.5.1), and 

- - -- - 2 
(2.5.2), we get R1 == e1R and R2 == (e2 - e1)R. Let E : R == R1 EB R2 --t R1 be the 

projection onto R1 with kernel R2. Then I - E : R2 == R1 EB R2 --t R2 is the projection 

onto R2 with kernel R1. Let 171 == Ee2, 172 == (I - E)e2 . Then 171 E R1 and 172 E R2· So 

Ee2 +(I - E)e2 == e2 == el+ (e2 - el)· Hence, Ee2 +(I - E)e2 == e2 == el+ (e2 - ei). 
- --- -- ---2 

Since Ee2 and e1 are in R1, (I - E)e2 and (e2 - el) are in R2, and Rl EB R2 == R , we 

get 171 == Ee2 == e 1 and 17 2 = (I - E) e2 = ( e2 - e 1 ) . So { 171 , 17 2 } == { E e2 , (I - E) e2 } == 
-2 -2 -

{e1,(e2 - e1)} is a basis for R . Let 8: R2 
--t R with 8(171) == 171 == Ee2 =el and 

8(172) == 172 == (I - E)e2 == (e2 - el). Then 171R + 172R + rad(R2) == R2. However, 

rad(R2) is superfluous in R2 by Nakayama's Lemma, so we get 171R + 172R == R2. That 

is, { 171, 172} generate R2 as a right R-module. Let 171 r 1 + 172r2 = 0. Then 171 r 1 = 0 and 

ry2r2 = 0 because ry1 E R1, and T/2 E R2. Let T/1 = ( :~ ) and T/2 = ( :: ). Then by 

ry1 = Ee2 =el = ( ~ ) and ry2 = (I-E)e2 = (e2-ei) = ( -~ ) , we get X 1 , Y2 E l+J(R) , 

Y1 E J(R) , and X2 E -1 + J(R). So r1 == 0 by 171r1 == ( xiri ) ( 
0 

) and r2 == 0 by 
y1r1 0 

172r 2 == ( x
2
r

2 
) = ( 

0 
) . So 171 and 172 are R-linearly independent. Hence, { 171, 172} is a 

y2r2 0 

basis for R2
. Ifr1 E R1 such that r1==171l1+172l2 with l1 , l2 ER, then (r1-171l1)-172l2 == 0. 

Hence, r 1 - 171l1 == 0 and 172l2 == 0. So r 1 == 171l1 and l1 is uniquely determined because 

r 1 == ( xill ) with x1 E U(R). So 171 is a basis for R1 . Similarly, R2 == 172 R is free with 
Y1li 

basis T/2· Let T/~ = TJ1X}1 = ( : ) with x = y1x}1 E J(R). Then T/~ is also a basis 

for R1. Now A : R1 --t R1 is an isomorphism. Let A17~ == 17~ r with r E R. That is, 

( ~~ wo ~ ) ( : ) ( : ) r. So ( I+::+ x ) ( :r ). Hence, r = 1 + Wo + x. 
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( )
2 ( ) 

. 1 + WO 1 1 + WO 1 
Notice that - (1 + w0 ) - Iw1 == 0. So 

WI 0 WI 0 

( 
1 + wo 1 ) 

2 

_ ( 1 + wo 1 ) ( 1 + Wo) _ 1 w1 
WI 0 WI 0 (2.5.3) 
2 I I I 

==A ry1 - A(l + wo)TJ1 - W1TJ1 == 0. 

By direct computation, we get 

2 I I ( ) 2 ( 1 ) ( ) 2 ( ( 1 + WQ + X) 
2 

) A ry1 == ry1 1 + wo + x == 1 + w0 + x == , 
x x(l + wo + x) 2 

(2.5.4) 

A( 1 + Wo )ry~ == ( (1 + wo)2 
wi(l + wo) 

1 + wo ) ( 1 ) == ( ( 1 + wo) 
2 

+ ( 1 + wo) x ) ' 

0 x WI(l+wo) 
(2.5.5) 

and 

(2.5.6) 

Comparing (2.5.3), (2.5.4), (2.5.5), and (2.5.6), we get (1 + w0 + x)2 
- (1 + w0 )(l + w0 + 

x) - w1 == 0. That is, 1 + w0 + x E 1 + J(R) is a right root of t2 
- (1 + w0 )t - w1 == 0. 

By Lemma 2.3.3, we know t2 
- (1 + w0 )t - w 1 == 0 also has a right root in J(R). 

(2). The proof is similar to the above. D 



Chapter 3 

Strongly Clean Matrix Ring Mn(R) 

In this chapter, we discuss the strongly clean property of Mn(R) where R is commu

tative or R is commutative local. In [13], the authors determined the commutative local 

rings R for which Mn(R) is strongly clean when n is an arbitrary and fixed positive integer 

by considering the so-called SRC factorization of polynomials of R[t]. In section 3.1, we 

generalize the SRC factorization from a commutative local ring to a commutative ring. 

We obtain a sufficient condition for Mn(R) over a commutative ring R to be strongly 

clean. We also obtain a necessary and sufficient condition for Mn(R) to be strongly clean 

where R has IBN and every finitely generated projective R-module is free. In section 

3.2, we prove that the strongly clean property of Mn(R) implies that of Mn(R[[x]]) and 

of Mn ( ~~j) if R is commutative local and n, k are positive integers. We also discuss the 

strongly clean property of Mn(RC2 ) where R is commutative local and C2 is the abelian 

group of order two. Section 3.2 comes from [66). 

3.1 SRC factorization and strongly clean matrices 

In this section, we discuss the SRC factorization of polynomials of R[t] and the 

strongly clean property of Mn(R) where R is a commutative ring or R has IBN and 
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every finitely generated projective R-module is free. 

Let R be a commutative ring and A E Mn(R). For f (t) == a0 + a1t + · · · + antn E R[t], 

write f(A) == a0In+a1A+· · ·+anAn E Mn(R) and let R[A] == {f(A) : f(t) E R[t]}. Then 

R[A] is a subring of Mn(R). Because R[t] ~ R[A], f (t) ~ f (A), is a ring homomorphism 

and R[A] ~ Mn(R) is the inclusion homomorphism, we obtain that (Rn)R is a left R[t]

module with tv == Av for all v E (Rn)R· As discussed before Theorem 2.2.5, fixing a 

basis of (Rn)R, we identify a matrix A E Mn(R) with the corresponding endomorphism 

<p A E End ( (Rn) R) , and we say "the kernel of A" instead of "the kernel of <p A" and "the 

image of A" instead of "the image of <p A" , and so on. 

Theorem 3.1.1 Let R be a commutative ring and A E Mn(R) with characteristic poly

nomial XA(t) == det(tI - A). If there exist manic polynomials fi(t) E R[t], polynomials 

a(t), b(t), c(t) E R[t], and e; == ei E R (i == 0, 1) such that XA(t) == fo(t)f1(t) with 

fi(ei) E U(R)(i==0,1) and f0(t)a(t) + J1(t)b(t) == c(t) with c(A) E GLn(R), then A is 

strongly clean. 

Proof Let A E Mn(R) and let f0 (t), f 1 (t), a(t), b(t), c(t), e0 , and e1 be given as in the 

theorem. Then f0 (t)a(t) + f 1 (t)b(t) == c(t) implies fo(A)a(A) + f 1 (A)b(A) == c(A) . Notice 

that f0 (A), f 1 (A), a(A) , b(A) and c(A) commute with each other. So we get 

fo(A)a(A)c(A)- 1 + !1 (A)b(A)c(A)-1 == In . 

Claim 1. Rn== Ker(fo(A)) EB Ker(f1(A)). 

Let x E Rn. Then by (3.1.1) 

x == [fo(A)a(A)c(A) - 1] (x) + [f1(A)b(A) c(A)-1] (x). 

By the Cayley-Hamilton Theorem for characteristic polynomials, we have 

(3.1.1) 

[fo(A) a(A)c(A)-1] (x) E Ker(f1(A)) and [f1(A)b(A)c(A)- 1] (x) E Ker(fo(A)). 

If x E Ker(fo(A)) n Ker(f1 (A)), then 

x == [fo(A)a(A)c(A)-1] (x) + [f1(A)b(A)c(A)-1] (x) == 0. 
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So Rn == Ker(fo(A)) EB Ker(f1 (A)) . 

Claim 2. (A - eoI)IKer(fo(A)) and (e1I - A)IKer(fi(A)) are isomorphisms. 

For simplicity, we write (A - eof)Ker(fo(A)) in stead of (A - eof) IKer(fo(A)) and similarly 

for others. Let fo(t) == tk + 2:7 ~ aiti and f1(t) == tn-k + E~ 0k-l biti with fo(eo) E U(R) 

and f1(e 1 ) E U(R). Then 

f o(A) IKer(fo(A)) == 0 

::::} aof + aiA + · · · + ak-1Ak-l + Ak == 0 on Ker(fo(A)) 

::::} aof + ai (A - eof + eof) + · · · + ak-l (A - eof + e0 I)k-l 

+(A - eof + eof)k == 0 on Ker(fo(A)) 

::::} f0 (e0 )I + g(A)(A - e0 I) == 0 on Ker(fo(A)) for some g(t) E R[t] 

::::} ( eof - A)g(A) (Jo( eo) )-1 == I on Ker(fo(A) ). 

By direct computation, Ker(f0 (A)) is both e0I- and A-invariant . So Ker(f0 (A)) is both 

(e0 I-A)- and (g(A)f0 (e0 )-1 )-invariant. Let e0I-A == V. Then, e0I-A ==Vis an isomor

phism on Ker(J o (A)), i.e., AKer(fo(A)) == ( eof)Ker(fo(A)) + VKer(fo(A )) · ( eof)Ker(fo(A)) VKer(fo(A)) == 

VKer(fo(A)) ( eof)Ker(fo(A)) because eo is a central idempotent. 

J 1 (A) ltextKer(f1 (A)) == 0 

::::} f1 (A) == bof + b1A + · · · + bn-k-1An-k-l + An-k == 0 on textKer(f1 (A)) 

::::} !1 (A) == bof + bi (A - eiI + eiI) + · · · + (A - e1I + e1I)n-k == 0 on textKer(f1 (A)) 

::::} f 1(e1)I + h(A)(A - e1I) == 0 on Ker(f1(A)) for some h(t) E R[t] 

::::} (e1I - A)h(A) (f1(e1))-1 ==I on Ker(f1(A)). 

Similarly, Ker(f1(A)) is both (e1J)- and A-invariant. Let A-e1I == W. Then A-e1I == W 

is an isomorphism on Ker(f1 (A)), i.e., AKer(fi (A)) == ( eil)Ker(fi(A)) + WKer(Ji(A) ). Clearly, 

( ei J)Ker(f1 (A)) WKer(Ji(A)) == WKer(f1 (A)) ( eiI)Ker(fi(A)). 

Let E == [(eof)Ker(fo(A)) EB (e1I)Ker(f1(A))J and u == [VKer(fo(A)) EB WKer(f1(A))]. Then 

by the above argument, E is an idempotent and U is a unit and EU == U E. So 

A== [(eof)Ker(fo(A)) EB (e1I)Ker(Ji(A))J + [VKer(fo(A)) EB WKer(fi(A))J == E + U is the strongly 
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clean expression. D 

Recall that, for a commutative ring R, a pair of polynomials (f0 (t), f 1(t)) in R[t] is 

unimodular if fo(t)R[t] + f1(t)R[t] = R[t] or equivalently, f 0 (t)a(t) + f 1(t)b(t) = 1 with 

a(t) and b(t) in R[t]. 

Corollary 3.1.2 Let R be a commutative ring and let (f0 (t), f 1(t)) be a unimodular pair 

of manic polynomials in R[t] with fi(ei) E U(R) for some et = ei E R (i == 0, 1). Then 

any matrix A with characteristic polynomial XA ( t) = f 0 ( t) f 1 ( t) is strongly clean. 

Proof This is because f 0 (t)a(t)+ f 1(t)b(t) == 1 where a(t), b(t), c(t) E R[t] with c(t) == 1.D 

Example 3.1.3 In (z [HJ) [t] (Notice this ring is not a UFD), f(t) = t4 -4t3 +5t2
-

2t has a factorization f(t) == fo(t)f1(t) where f 0 (t) = t 2 
- 2t + 1, f 1(t) == t 2 

- 2t, e0 == 0, 

and e1 == 1 satisfy the assumption of Corollary 3.1.2. So every matrix in M 4 (z [NJ) 
with characteristic polynomial f ( t) is strongly clean. In particular, 

A= 

1 1 0 0 

A== 
0 1 0 0 

0 -5 -4 3 

0 -8 -8 6 

E M4 (z [ vC5J) is strongly clean. In fact, 

0 0 0 0 

0 0 0 0 

0 1 1 0 

0 0 0 1 

E 2 = E= 

0 0 0 0 

0 0 0 0 

0 1 1 0 

0 0 0 1 

is a strongly clean expression with 

and U == 

1 1 0 0 

0 1 0 0 

0 -6 -5 3 

0 -8 -8 5 

E GL4 (Z [vCSJ). 

For a commutative ring R, we use Max(R) to denote the maximal spectrum of R, 

that is, Max( R) == { m : m is a maximal ideal in R}. For each m E Max( R) , the natural 
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ring homomorphism R -+ ~ with r ~ r == r + m induces a map R[t] -+ ~[t] with 

f (t) == ao + ait + · · · + antn ~ f (t) == ao + ait + · · · + antn. 

Definition 3.1.4 A commutative ring R is said to have the weakly unimodular prop

erty if, for any pair (Jo( t) , f 1 ( t)) of manic polynomials in R[t], the unimodularity of 

(fo(t) , f1(t)) in ~[t] for all m E Max(R) implies the unimodularity of (fo(t),f1(t)) in 

R[t]. 

A ring R is semilocal if R/ J(R) is semisimple. A commutative ring is semilocal iff it 

has finitely many maximal ideals. 

Proposition 3.1.5 Commutative semilocal rings have the weakly unimodular property. 

Proof Let R be a commutative semilocal ring. Then R has finitely many maximal 

ideals, say m1 , · · · , mn. Let fo(t) , f1(t) E R[t] be monic polynomials and (fo(t) , f 1(t)) 

be unimodular in ~[t] fork== 1, 2,· · · ,n. Since f0 (t)~[t] + f1 (t)~[t] = ~[t], we get 

fo(t)R[t] + f1(t)R[t] + mk[t] = R[t]. Hence, fo(t)ak(t) + f1(t)bk(t) + ck(t) == 1 for some 

ak(t), bk(t) E R[t] and ck(t) E mk[t]. Therefore, 

' ' ' 1 == rrk=l (fo(t)ak(t) + f1(t)bk(t) + ck(t)) = fo(t)a (t) + !1(t)b (t) + c (t) 

for some a' (t), b' (t) E R[t] and c' (t) E J(R)[t]. Thus, R[t] = f0 (t)R[t] + f 1(t)R[t] + 

c' ( t )R[t] = f o( t )R[t] +Ji ( t )R[t] + J( R)R[t]. Notice that fo(t)R[t~J1 (t)R[t) is a finitely gener

ated R-module and J ( R) fo(t)R[tfltJ1 (t)R[tJ = J(R)~J~ltt~[t)~~nt~lg)R[tJ = Jo(t )R[tf !J1 (t)R[tJ · So, 

fo(t)R[t] + f1(t)R[t] == R[t] by Nakayama's Lemma. Therefore, (f0 (t) , f 1(t)) is unimodu-

lar in R[t]. D 
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Corollary 3.1.6 Commutative local rings have the weakly unimodular property. 

Proof Local rings are semilocal rings. D 

When R[t] is a UFD, we let gcd(h( t), g( t)) be the greatest common divisor of the 

polynomials h(t),g(t) E R[t]. If Risa field , we require gcd(h(t) ,g(t)) to be the manic 

greatest common divisor of the polynomials h( t), g( t) E R[t]. 

Proposition 3.1. 7 Every UFD has the weakly unimodular property. 

Proof Let f0 (t),fi(t) E R[t] be manic polynomials and (fo(t),fi(t)) be unimodular in 

~[t] for every m E Max(R). Then gcd (f0 (t),fi(t)) = 1 in ~[t]. We want to prove that 

gcd(f o( t), Ji ( t)) is a unit in R[t]. Suppose gcd(f 0 ( t), f i ( t)) is not a unit. 

Case 1. gcd(fo(t) , fi(t)) = m ER but m ~ U(R). 

Then there exists m0 E Max(R) such that m E m0 . So gcd (fo(t) , fi(t))= m = 0 in 

~ [t]. This is a contradiction. 

Case 2. gcd(f0 (t), fi(t)) = g(t) E R[t] with deg(g(t)) > 1 in R[t] . 

Then for any m E Max( R), gcd (J 0 ( t), Ji ( t)) =I= 1 in ~ [t] because the coefficient of the 

leading term of g( t) is a unit. 

Hence, (J0 (t), fi(t)) is unimodular in R[t] . D 

In [12], the authors defined SRC factorization as the following. 

Definition 3.1.8 Let R be a commutative local ring. A factorization h(t) = h0 (t)hi (t) 

in R[ t] of a monic polynomial h( t) is said to be an SR factorization if h0 ( t) and hi ( t) are 

monic and ho ( 0), hi ( 1) E U ( R). The ring R is an n-SR ring if every monic polynomial 

of degree n in R[t] has an SR factorization. A factorization h(t) = h0 (t)h1 (t) in R[t] of 

a monic polynomial h( t) is said to be an SRC factorization if it is an SR factorization 

and ho(t), hi(t) are co-prime in the PID R[t] (== J~) [t]). The ring R is an n-SRC ring 
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if every monic polynomial of degree n in R[t] has an SRC factorization. 

A local ring has only two idempotents 0 and 1. Commutative local rings are weakly 

unimodular. By Corollary 3.1.6, we know that, for a commutative local ring R and 

for manic polynomials fo(t) and f 1(t) in R[t], gcd(fo(t),f1(t)) = 1 iff (fo(t),f1 (t)) is 

unimodular in J~) [t] iff (f0 (t), f 1(t)) is unimodular in R[t]. So we generalize Definition 

3.1.8 as follows: 

Definition 3.1.9 Let R be a commutative ring and let f (t) E R[t] be a monic polynomial 

of degree n. A factorization f(t) = f 0(t)f1(t) in R[t] is called an n-SR factorization 

if fi(t) is monic in R[t] and fi(ei) E U(R) for some er = ei E R (i = 0, 1). The 

factorization f ( t) = f o ( t) f 1 ( t) is an n-SRC factorization if, in addition, (Jo ( t), f 1 ( t)) 

is unimodular in R[t]. The ring R is an n-SR ring if every monic polynomial of degree 

n has an SR factorization and R is an n-SRC ring if every monic polynomial of degree 

n has an SRC factorization. We call R an SR (SRC) ring if every monic polynomial in 

R[t] has an SR (SRC) factorization. 

From now on, the notions "SR" and "SRC" are in the sense of Definition 3.1.9. 

Proposition 3.1.10 Let R be a commutative ring. Then R is strongly clean ifj R is 

1-SR ifj R is 1-SRC. 

Proof Suppose that R is strongly clean. Let f (t) = t+a E R[t]. Write -a= e+u where 

e2 = e E R, u E U(R) and eu = ue. So f(e) = -u E U(R). Hence, f(t) = fo(t)f1(t) 

with f 0 (t) = t +a and f 1(t) = 1 is an SR factorization. Obviously, this is also an SRC 

factorization. 

Suppose that R is 1-SR. Let a E R. Then f (t) = t - a has an SR factorization in 

R[t] . It must be that f(t) = f 0 (t) or f(t) = f 1(t). So there exists e2 = e ER such that 

f(e) = e - a E U(R). Thus, a is strongly clean. D 
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Proposition 3.1.11 Let R be a commutative ring and let f (t) E R[t] be a manic poly

nomial of degree deg(f(t)) == n > 1. If f(t) has an n-SRC factorization, then all matrices 

with characteristic polynomial f ( t) are strongly clean. 

Proof This is essentially the case in Corollary 3.1.2. D 

Theorem 3.1.12 Let R be a commutative ring. If R is an n-SRC ring, then the matrix 

ring Mn(R) is strongly clean. 

Proof For any matrix A E Mn(R), the characteristic polynomial, XA(t), of A has an 

n-SRC factorization. So A is strongly clean by Proposition 3.1.11. That is, Mn(R) is 

strongly clean. D 

Corollary 3.1.13 {12) Every Henselian ring R is n-SRC for each positive integer n. 

That is, R is SRC. So matrix rings over a Henselian ring are strongly clean. 

Proof Let f(t) be any monic polynomial in R[t]. Then f(t) in J~)[t] can be factorized 

as f(t) == fo(t)f1(t) with fi(t) E J~)[t] monic, gcd (fo(t),f1(t)) == 1, and fi(i) E U(R) 

( i == 0, 1). So by Hensel ' s Lemma (see Definition 1. 2 .1) , there exist monic polynomials 

f i(t) E R[t] such that fi(i) E U(R) (i == 0, 1). By Corollary 3.1.6, (fo(t), f 1 (t)) is unimod

ular. So R is n-SRC for each positive integer n. The rest follows from Corollary 3.1.12. D 

If R is commutative local, then R is n-SRC iff Mn(R) is strongly clean by [12] . But 

for a commutative ring R, R being n-SRC ring is not a necessary condition for Mn(R) 

to be strongly clean. 

Example 3.1.14 Let R be a Boolean ring with more than 2 elements. Then R is not a 

2-SRC ring. But Mn(R) is strongly clean for any positive integer n. 

Proof Since R is a Boolean ring with more than 2 elements, there exists a polynomial 
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J(t) = t2 +et E R[t] withe#- 0, 1. Suppose that f(t) = f0 (t)f1(t) is an SRC factorization 

in R[t]. 

Case 1. If one of fi(t) (i = 0, 1) is f(t), say f0 (t) = f(t) = t2 +et, then there exists 

an element a E R such that f0 (a) = a+ ea == 1. So 1 + e == 1. Hence, e == 0. This is a 

contradiction. 

Case 2 . If Jo( t) = t - a and f 1 ( t) = t - b, then there exist e0 , e1 E R such that 

fo(eo) ==ea-a= 1 and f1(e1) == ei -b == 1. Notice that f(t) == t2 -(a+b)t+ab == t2 +et. 

So we have 

a + b == ea + ei = e and 
(3.1.2) 

ab== (1 + e0)(1 + ei) == 0. 

By equality (3.1.2), we get (1 + e)(l + e1) = 0. So 1 + e1 E eR. Hence, there 

exists some r E R such that e1 == 1 + er = 1 + ere. Therefore, by the first equality 

in (3.1.2), e0 = 1 + e +ere. So f0 (t) == t + e +ere and f 1(t) == t +ere. If there exist 

m(t), n(t) E R[t] such that f0 (t)m(t) + J1(t)n(t) == 1, then (f1(t) +e)m(t) + f 1(t)n(t) == 1. 

So f 1 (t)(m(t) + n(t)) + em(t) == 1. Lett= 0. Then we get ere(m(O) + n(O)) + em(O) == 1, 

i.e., e[ere(m(O) + n(O)) + m(O)] == 1. So e = 1. This is also a contradiction. 

So R is not a 2-SRC ring. 

By Remark 5.1.4, if R is Boolean, then Mn ( R) is strongly clean for any positive inte-

ger n > 1. D 

Now we give some necessary conditions for a matrix to be strongly clean. 

In the following, we always consider e0 == 0 and e1 == 1 for the SR factorization 

because of Theorem 2.2.5. 

Proposition 3.1.15 Let R be a commutative ring such that every finitely generated 

projective R-module is free. If T E Mn(R) is strongly clean, then xr(t) has an n-SR 

J actorization. 
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Proof If Tis semi-purely nonsingular, then XT(t) = det(tl-T) = fo(t)f1(t) = XT(t) · 1 

with f0 (t) == XT(t) and f 1(t) = 1. If Tis semi-purely singular, then XT(t) = det(tl-T) = 

fo(t)f1(t) = 1 · XT(t) with fo(t) = 1 and f 1(t) = XT(t). If Tis purely singular, then, by 

Theorem 2.2.5, Tis similar to C = ( To 
0 

) where T0 is semi-purely nonsingular and T1 
0 T1 

is semi-purely singular. So XT(t) == XT0 (t) · XT1 (t) with fo(t) = XT0 (t) and fl(t) = XT1 (t) 

is an n-SR factorization. D 

Example 3.1.16 In M2(Z), A= ( : : ) is not strongly clean. In fact, J (t) = XA(t) = 

t 2 
- 6t - 10 does not have an SR factorization because f(O) = -10, f(l) = -15 and 

f(t) = (t - 5-{76)(t - 5+{76). 

Proposition 3 .1.15 shows that if T is not purely singular, then XT ( t) has a trivial 

SRC factorization, that is, one of the factors is 1 and the other is XT( t) itself. 

Given a monic polynomial f (t) == tn + an_1tn-l + · · · + a1t + a0 E R[t], the matrix 
0 0 0 

1 0 0 

0 1 0 

0 0 0 

0 0 0 

0 -an-2 

1 -an-1 

is called the companion matrix off (t). 

Lemma 3.1.17 (43, Theorem VII.4.3} Let F be a field and f (t) be a monic polynomial 

in F[t]. Then f ( t) is the characteristic and minimal polynomial of the companion matrix 

C1. 

Proposition 3.1.18 Let R be a commutative ring such that every finitely generated 

projective R-module is free and f (t) = tn + an- 1tn-l + · · · + alt+ ao E R[t]. If the 

companion matrix Cf is strongly clean, then Xe 
1 

( t) = f ( t) has an n-SRC factorization. 

Proof If C1 is not purely singular, then f (t) has a trivial SRC factorization. So we can 

assume C1 is purely singular. Then by Theorem 2.2.5, there exists P E Mn(R) such 

that p - 1c1 P = ( To 
0 

) with T0 being k x k semi-purely nonsingular matrix and T1 
0 Ti 
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being (n - k) x (n - k) semi-purely singular matrix where 0 < k < n. Then for every 

maximal ideal min R, C1 E Mn(~) and C1 == 01 has f(t) E ~[t] as the characteris

tic and minimal polynomial by Lemma 3.1.17. So f(t) == x 01 (t) == XT
0
(t) · XT

1 
(t) == 

det(tlk -To) · det(tln-k -Ti). If gcd(det(tJk -To), det(tln-k -To))== g(t) with degree 

deg(g(t)) > 1, then the minimal polynomial of C1 is det(tlk-To)9~~~(tln-k-'i\) which has 

degree less than deg(x01 ) == deg(f). This is a contradiction. So f 0 (t) == det(tJ - T0 ) and 

f 1 ( t) == det ( tl - T1) give an n-SRC factorization for Xe 1 ( t) == f ( t). D 

Theorem 3.1.19 Let R be a commutative ring such that every finitely generated projec

tive R-module is free and let f(t) E R[t] be a manic polynomial of degree deg(f(t)) == n. 

Then the following are equivalent: 

1. For all A E Mn(R) with XA(t) == f(t), A is strongly clean. 

2. The companion matrix Cf is strongly clean. 

3. f (t) has an n-SRC factorization. 

Proof "( 1) ==> ( 2 )". This is clear. 

"(2) ==> (3)". By Proposition 3.1.18. 

"(3) ==> (1 )". By Proposition 3.1.11. D 

Corollary 3.1.20 Let R be a commutative ring such that every finitely generated pro

jective R-module is free. Then a purely singular matrix A E Mn(R) is strongly clean iff 

XA ( t) has an n-SR factorization XA ( t) == f o ( t) f 1 ( t) and A is similar to ( To 
0 

) where 
0 T1 

XTo ( t) == f o ( t) and XT1 ( t) == f 1 ( t). 

Proof "==>". By Theorem 2.2.5, A is similar to ( To 
0 

) where T0 is semi-purely 
0 T1 

nonsingular and T1 is semi-purely singular. By the proof of Proposition 3.1.15, XA(t) has 

an n-SR factorization XA(t) == fo(t)f1(t) where XT0 (t) == fo(t) and XT1 (t) == f1(t). 
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"¢=". By rfheorem 3.1 .19, T0 and T1 are strongly clean because xr0 (t) == f 0 (t) and 

Xr1 ( t) == f 1 ( t) have trivial SRC factorizations. So A is strongly clean because the strongly 

clean property is invariant under similarity. D 

Example 3.1.21 Let R == Z(p) with p 3 (mod 4). Then the manic polynomial f(t) == 

[(t - l)(t2 + 1) + p][t(t2 + 1) + p] with f 0 (t) == (t- l)(t2 +1) + p and f 1(t) == t(t2 +1) + p 

is the only SR factorization (so it does not have SRC factorization) f 27, Example 3.17}. 
0 0 1-p 

0 0 0 

Let A == 
0 0 1 

0 0 0 

1 0 -1 

0 1 0 

A is similar to ( c~o 

0 0 0 

1 0 -1 

0 1 0 
By direct computation, we obtain XA ( t) == f ( t) and . 

0 0 -p 

0 0 0 

0 0 0 

0 
) . So by Corollary 3.1. 20, A is strongly clean. 

c1i 

The class of rings R having IBN such that every finitely generated projective R-module is 

free is bigger than the class of local rings. By Theorem 3.1. 22, matrix rings over rings in 

the first class do not produce more strongly clean rings than the matrix rings over local 

rings. But Theorem 2.2.5, Theorem 3.1.19 and Corollary 3.1.20 can be used to obtain 

all strongly clean matrices over these rings. This is one of the reasons that we introduce 

Definition 3.1.9. 

A ring R is called an I-finite ring if R does not have an infinite set of non-zero 

orthogonal idempotents. Camillo-Yu [17] proved that R is semiperfect iff R is I-finite 

and clean. Here, for rings R having IBN such that every finitely generated projective 

R-module is free, we have the following result. 

Theorem 3.1.22 Let R be a ring having IBN such that every finit ely generated projec

tive R-module is free. The fallowing are equivalent: 

1. R is a strongly clean ring. 

2. R is a clean ring. 



CHAPTER 3. STRONGLY CLEAN MATRIX RING MN(R) Page 56 

3. R is a local ring. 

4. R is an exchange ring. 

5. R is a semiperfect ring. 

If, in addition, R is commutative, then the above are equivalent to each of the following: 

6. R is 1-SR. 

7. R is 1-SRC. 

Proof "( 3) => ( 1) => ( 2 )". This is clear. 

"(2) => (4 )". This is by [51]. 

"(4) => (3)". We prove R has only 0 and 1 as its idempotents. Suppose e2 = e ER. 

Then R = Re EB R( 1 - e). Since R has IBN and every finitely generated projective R

module is free, we get Re= 0 or R(l-e) == 0. So e == 0 ore== 1. Now let r ~ U(R). Then 

because R is an exchange ring, there exists e2 == e such that e E Rr and 1 - e E R( 1 - r). 

That is, 1 E Rr or 1 E R(l - r). But r ~ U(R), so 1 E R(l - r). Similarly, 1 E (1- r)R. 

So 1 - r E U(R). Therefore, R is local. 

"( 3) => ( 5)" . This is clear. 

" ( 5) => ( 2)" . This is by [ 1 7] . 

For the rest of the proof, let R be commutative. 

"( 3) => ( 7)". Suppose that f (t) == t + a. Let f0 (t) == t + a and f 1 (t) == 1 if a E 

U ( R); and f o ( t) == 1 and f 1 ( t) == t + a if a E J ( R). Then f ( t) == f o ( t) f 1 ( t) is an SRC 

factorization. 

"( 7) => ( 6)". This is clear. 

"(6) => (3)". Let a ~ U(R) . Then f(t) == t + ra has an SR factorization by (6). 

But f(t) only has the trivial factorization. So f 1 (t) = f(t) . That is, 1 + ra E U(R). 

Therefore, R is local. D 
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By Theorem 3.1.19 and Theorem 3.1.22, we get the following: 

Corollary 3.1.23 Let R be a commutative ring such that every finitely generated pro

jective R-module is free. Then Mn(R) is strongly clean iff R is a local n-SRC ring. 

Corollary 3.1.24 (12} Let R be a commutative local ring. Then Mn(R) is strongly clean 

iff R is an n-SRC ring. 

We defined SR and SRC factorization over commutative rings. In fact , we can define 

them over any noncommutative ring. Here we define them over local rings. 

Definition 3.1.25 Let R be a local ring and R[t] = 1 {1) [t]. A manic polynomial 

f(t) E R[t] is said to have an SR factorization if f(t) = g0 (t)g1(t) == h1(t)h0 (t) , where 

g0 (t),g1(t), h0 (t), h1(t) E R[t] are monicpolynomials such thatg0 (0),g1(l) , h0 (0) , h1(l) E 

U ( R) . If, in addition, R [ t] 9o ( t) + R [ t] 91 ( t) == R [ t] and ho ( t) R [ t] + h 1 ( t) R [ t] = R [ t] hold, 

then f ( t) is said to have an SRC factorization. 

It is interesting to compare the next result with [12, Corollary 15, Proposition 17] , 

which states that, for a commutative local ring R, M2 (R) is strongly clean, iff every 

companion matrix in M2 (R) is strongly clean, iff every manic quadratic polynomial over 

R has an SR factorization, iff every manic quadratic polynomial over R has an SRC 

factorization. 

Theorem 3.1.26 The following are equivalent for a local ring R: 

1. M2 ( R) is strongly clean. 

2. Every companion matrix in M2 ( R) is strongly clean. 

3. Every manic quadratic polynomial over R has an SR factorization. 

4. Every manic quadratic polynomial over R has an SRC factorization. 
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Proof "(1) <=> (2)". This holds by "(1) <=> (4)" of Theorem 2.3.4. 

"(1) * (4)". Suppose f (t) = t2 +at+ b E R[t]. 

Case 1. f (0) E U(R). 
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Let f0 (t) = t 2 +at+ band f 1(t) = 1. Then J(t) = f0(t)f1(t) is an SRC factorization. 

Case 2. f (l) E U(R). 

Let f0 (t) = 1 and f 1 (t) = t 2 +at+ b. Then f(t) = f0(t)f1(t) is an SRC factorization. 

Case 3. f (0), f (l) E J(R). 

Then b E J(R) and -a== 1 + (b - f(l)) E 1 + J(R) . By Theorem 2.3.4, f(t) has a 

left root t0 E J(R) and a left root t 1 E 1 + J(R). Thus, J(t) = (t - t1 )(t +a+ t 1 ) = 

( t - t0 ) ( t + a + t0 ) is clearly an SRC factorization. 

"(4) * ( 3)". It is obvious. 

"(3) * (1)". For w0 , w 1 E J(R) , f(t) = t2 - (1 + w0 )t - w 1 has an SR factorization . 

This clearly shows that f(t) has a left root in J(R) and a left root in 1 + J(R) by (3). 

Hence, ( 1) holds by Theorem 2.3.4. D 

3.2 Strongly clean matrix rings over commutative local rings 

In this section, all rings are assumed to be commutative local. If n > 2 and if 

R is a commutative local ring such that Mn(R) is strongly clean, we prove that both 

Mn(R[[x]]) and Mn ( ~~l) (k > 1) are strongly clean and that Mn(RC2 ) is strongly clean 

when 2 E U(R) or 2 == 0 in R. We do not know whether Mn(RC2 ) is still strongly clean 

when 0-/= 2 E J(R). These generalize results in [32]. This section comes from [66]. 

For a ring homomorphism () : R -* S, define ()' : R[x] ~ S[x] by ()' (E rixi) 

EB( ri)xi. In particular , for a maximal ideal m in R , we use T/ to represent the natural 

ring epimorphism T/ : R ~ ~ with T/(r) = r + m = r. Then T/ induces a map T/
1 

R[t] -* ~[t] == R[t] with T/
1 

(E~ 0 riti) = E~ 0 T/(ri)ti == E~ 0 riti. 
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Lemma 3.2.1 Let () : R -t S be an onto ring homomorphism. If R is n-SRC, then S 

is n-SRC. 

Proof Notice that Rand Sare commutative local. The following diagram is commuta

tive where(): R/ J(R) -t S/ J(S), r + J(R) ~ ()(r) + J(S), is an isomorphism: 

R 

R 
J(R) 

(} s 

(j s -J(S). 

-' 
It induces the commutative diagram with () an isomorphism: 

R[t] 
e' 

?)~ l 
I 

J~) [t] 
(j 

Jfs) [t] · 

Let h'(t) E S[t] be a monic polynomial of degree n. Then there exists a monic polynomial 

h(t) E R[t] of degree n such that()' (h(t)) == h
1 

(t). Since R is an n-SRC ring, there exists 

an SRC factorization h(t) == h0 (t)h1(t) in R[t]. Let ()' (hi(t)) == h:(t), i == 0, 1. Then 

h
1 

(t) == h~(t)h~ (t) with h:(i) == ()' (hi(i)) E U(S). By the commutativity of the latter dia-
I I 

gram,() TJ~(hi(t)) == TJ~()' (hi(t)) == TJ~(h:(t)) for i == 0, 1. Because() is an isomorphism and 

gcd(TJ~(h0 (t)), TJ~(h1 (t))) == 1, we get gcd(TJ~(h~(t)), TJ~(h~(t))) == 1. So h
1

(t) == h~(t)h~(t) 

is an SRC factorization in S[t]. Hence Sis an n-SRC ring. D 

For a ring epimorphism () : R -t S, S being n-SRC does not imply that R is n-SRC. 

For example, let () : Z(p) -t Zp be the natural ring epimorphism. Then Mn(Z(p) ) is not 

strongly clean for any n > 1 by Corollary 2.1.3. So Z(p) is not n-SRC by Corollary 3.1.24, 

but ZP is certainly n-SRC. 

Let R be a commutative ring. For f (x) == a0 + a1x + · · · + anxn and g(x) == b0 + b1x + 
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· · · + bmxm in R[x], the (n + m) x (n + m) determinant 

m 

SR(f , g) == 
bo 

bo 
n 

bo 

is called the resultant of f(x) and g(x) [19, 47]. 

The following lemma is known. We give the proof here. 

Lemma 3.2.2 {19, Lemma 2, p.321} Let E be an algebraically closed field. Let f(x) == 

ao+a1x+· · ·+anxn (an#- 0), and g(x) == bo+b1x+· · ·+bmxm (bm #- 0) be two polynomials 

in E[x] such that f (ai) == 0 and g(/3j) == 0 where ai and /3j E E for i == 1, 2, · · · , n and 

j == 1, 2, · · · , m. Then SR(f, g) == a~g(a1)g(a2) · · · g(an) == b1:nf(f31)f(f32) · · · f (f3m)· 

Proof The proof is by induction. Suppose n == 1. Then f ( x) == a0 + a1 x and a == -ao/ a1 

is the root off (x) and 

SR(f, g) == 

a1 ao 

bm bm-1 · · · b1 bo 
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Adding a times column j to column j + 1, j = 1, · · · , m, one obtains 

SR(f, g) = 

g( a) 

ai 0 

ai 0 

= ar;ig(a). 

ai 0 

bm bm-1 b1 g( a) 

Suppose the lemma holds for n = k. We want to prove it when n = k + 1. Let 

a,a1 , · · · ,ak be the roots of f(x). Then f(x) = (x - a)f1(x) where f 1(x) =Co+ c1x + 

c2x2 +· · ·+ ck_1xk-1 +ak+ixk. Hence, the coefficients of f(x) and f 1(x) have the following 

relations: 

a0 + coa = 0 

al + C1Q' =Co 

a2 + C2Q' = C1 

ak-1 + Ck- 1 l1' = Ck- 2 

ak + ak+1a = ck-1 
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and 

SR(j, g) == 

bo 

Adding a times column j to column j + 1, j == 1, 2, · · · , m + k, we get SR(f, g) == 

co 0 

co 

ak+l Ck-1 

bm bma + bm-1 g(a) ag(a) 

bm bma + bm- 1 g(a) 

bm bma + bm-1 · · · 

0 

co 0 

ak- lg(a) akg(a) 

ak- 2g(a) ak-lg(a) 

ag(a) g(a) 

Adding -a times row j + 1 to row j, j == m + 1, · · · , m + k, we get 
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Co 0 

Co 0 

Co 0 

SR(J, g) == bm bm-l 

Co 

. . . Co 

bo 

== g(a)SR(f1,g). 

By induction hypothesis, 5R(f1, g) == ak+1g( a1 )g( a2) · · · g( ak). So SR(f, g) == 

ak+1g(a)g(a1)g(a2 ) · · · g(ak)· Similarly, we can prove the other equality. 

The next lemma is an exercise in (47, I.D.8]. 
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D 

Lemma 3.2.3 Let R be a commutative local ring, T/R : R --t Jtit) be the natural ring 

homomorphism, and A== (rij) E Mn(R), A= (rij) E Mn(J~)). Then detA E U(R) iff 

detA # 0. 
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Proof Define 7(J1J2 · · ·Jn) == 
1, if JiJ2 ···Jn is an even permutation, 

By definition 
-1 , if J1J2 · · ·Jn is an odd permutation. 

of determinant, 

<let A == ~ (-1)7 (j1j 2 .. ·Jn)r-1 · · r2 · · · · · · r · ~ Jl )2 nJn 

J1)2"')n 

. . . 
J 1)2 '")n 

. . . 
J 1)2"')n 

. . . 
J 112 .. ·Jn 

== 7JR(det(A)). 

So detA E U(R) iff detA E U(S) since() is an epimorphism. D 

Theorem 3.2.4 Let R be a commutative local ring and let n > 1. Then R is an n-SRC 

ring iff so is R[[x]]. 

Proof "==}" . Clearly R[[x]] is a commutative local ring with J(R[[x]]) == J(R) + xR[[x]] . 
. i _ - . R[[x]) R - _ 

Define () . R[[x]] ~ R by B(L:i>O rix ) - ro, and () . J(R[[x]]) ~ J(R) by B(r + J(R[[x]])) -

B(r) + J(R) == r + J(R) , r ER. Then() is onto, ()is an isomorphism, and the following 

diagram is commutative: 

R[[x]] 
() 

R 

'IR [[x]] 1 
R[[x]J () R 

J(R[[x]]) J(R). 

Also it induces the commutative diagram 

R[[x]][t] 

'l~[[x]] 1 
R[[x]] [ ] 

J(R[[x]]) t 

e' 

I 

8 
J~) [t] 
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I 

with () an isomorphism. Let h( t) == tn + E~ 0
1 Ji ti E R[[x]][t] with Ji == Ej>o rijx1 E 

R[[x]]. 

Case 1. If h(O) E U(R[[x]]), then let h0 (t) == h(t), h1(t) == 1; and if h(l) E U(R[[x]]), 

then let h0 (t) == 1, h1(t) == h(t). In either case, h(t) has a trivial SRC factorization in 

R[[x]][t]. 

Case 2. If h(O) == Jo E J(R[[x]]) and h(l) == 1 + E~ 0
1 Ji E J(R[[x]]), then roo E 

J(R) and 1+E~ 01 rio E J(R). Let h
1

(t) == ()'(h(t)). Then h
1

(t) == tn + E~ 0
1rioti, 

h
1 

(0) == r00 E J(R), and h
1 

(1) == 1 + E~ 0
1 rio E J(R). Since R is n-SRC, there exist 

h~(t) == tk + E7 ~ aioti and h~(t) == tn-k + E~ 0k-I bioti in R[t] such that h~(O) E U(R), 

h~(l) E U(R), gcd(17~(h~(t)),17~(h~(t))) = 1, and h
1

(t) == h~(t)h~(t). Let h0 (t) = tk + 
E7 ~ Aiti E R[[x]][t] with Ai == Ej>o aijXj, and hi (t) == tn-k + E~ 0k-I Biti E R[[x]][t] 

with Bi = Ej>O bi1x1. Next we prove that there exist Ai, B1 E R[[x]] (i == 0, · · · , k - 1 

and j == 0, · · · , n - k - 1) such that h(t) = h0 (t)h1 (t). Notice that 

h ( t) = ho ( t) h 1 ( t) 
n-1 k-1 n-k-1 

tn- k + L Biti {::} tn + L Jiti = tk + L Ai ti 
i=O 
n-1 oo 

{::} tn + L L rijXj 
i=O j=O 

n - 1 oo 

{::} tn + L rioti + L 
i=O j=l 

i=O i=O 
k-1 00 

ti== tk + L Laijx1 ti 
i=O j=O 

n-1 
L ri1ti x1 

i=O 

n- k-1 
tn-k + L 

i=O 

k - 1 00 k- 1 n-k-1 oo 

- tk + Laioti + L Laijti x1 tn-k + L bioti + L 
i=O j = l i=O i=O 

{::} the conditions ( P0 ) and (Pm) hold for all m E N, 

00 

L bijXj ti 
j=O 

n- k- 1 
L bijti x1 
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where 

k-l n-k-l n-l 
(Po) : tk + L aioti tn-k + 

L biot'" = tn + L Tioti, 
i=O i=O i=O 
k-l n-k-l k-l n-k-1 

tk + L aioti L bimti + Laimti tn-k + 
L bioti 

i=O i=O i=O i=O 
m-1 k-1 n-k-1 n-1 

+L L aijti L bi,m-jti = L Timti. 
j=l i=O i=O i=O 

Notice that by the choice of h~(t) and h~ (t), (Po) holds for suitable aio(O < i < k-1) and 

bio ( 0 < i < n - k - 1). Assume that for s > 1, there exist aij ( 0 < i < k - 1, 0 < j < s - 1) 

and bij(O < i < n-k-l, 0 < j < s-l) in R such that (Pm) holds for all m = 0, 1, · · · s-1. 

We next show that there exist ais(O < i < k - 1) and bjs(O < j < n - k - 1) in R such 

that (Ps) holds. Notice that (Ps) is equivalent to 

k-1 n-k-1 k-1 n-k-1 
( *) : tk + L aioti L bisi2 + L aisti tn-k + 

L bioti 
i=O i=O i=O i=O 

n-l s-1 k-l n-k-1 
= Lristi -L L aijti L bi,s-ji2 

i=O j = l i=O i=O 

where all r~s are known elements of R. Thus, ( *) is equivalent to: 

I 

bn-k-1,s + ak-1,s = r n-1 s 
' 

I 

ak-1,obn- k- l,s + bn-k-2,s + bn-k-1,oak-l,s + ak- 2,s = T n-2,s 

I 

aoobos + booaos = ros· 

As a linear system in variables ais(O < i < k - 1) and bjs(O < j < n - k - 1) , the matrix 
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form of ( **) is AX == B where 

1 bn-k-i O 
' 

1 

1 ak-i o 
' 

xr = ( ak-l,s 

BT - ( ' - r n-i,s 

1 

I 

rn-2 s 
' 

· · · boo 

bn-k-i,o 

1 bn-k-i 0 
' 

aoo 

1 

ao,s bn-k-i ,s 

r~s r~s ) · 

boo 

aoo 

bn-k-2 s 
' 

Page 67 

boo 

aoo 

. . . bi ,s bo,s ) ' 

Denote TJ~h~(t) == h~(t) (i == 0, 1). Since gcd(h~(t), h;(t))== gcd(77~h~(t) , TJ~h~(t)) == 1, 

there exist g~ ( t) ( i == 0, 1) such that 

h~(t). g~(t) + h~(t). g~(t) == 1. (3.2.1) 

Let E be an algebraically closed extension field of R/ J(R) and suppose h~(ai) == 0 
- -, -, 

where ai E E for i == 1, 2, · · ·, k. Then, by Lemma 3.2.2, detA == ?R(hi(t) , h0 (t)) == 

h~(ai)h~(a2 ) · · · h~(ak) -/= 0 (by (3.2.1)). So A is invertible. By Lemma 3.2.3, A is 

invertible, so AX == B is solvable. This proves the existence of ais(O < i < k - 1) and 

bjs(O < j < n - k- l) such that (Ps) holds. Hence there exist h0 (t) and hi(t) in R[[x]][t] 

as claimed before such that h(t) == h0(t)hi(t). 
I 

Because () is an isomorphism and because gcd( TJ~()' ( h0 ( t)), TJ~()' (hi ( t))) == 1, we have 

gcd(TJ~[[x]](ho(t)), T/~[[x]](hi(t))) == 1. So h(t) has an SRC factorization. Hence R[[x]] is an 

n-SRC ring. 

"¢::" holds by Lemma 3.2.1 . D 

Theorem 3.2.5 Let R be a commutative local ring and let n, k EN. Then the following 

are equivalent: 
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1. Mn ( R) is strongly clean. 

2. Mn(R[[x]]) is strongly clean. 

3. Mn ( ~:]) is strongly clean. 

4. Mn ( R[[x1, X2, · · · , xk]]) is strongly clean. 

( 
R[x1 X2 · · · xk] ) 

5. Mn ( ni 'n2 '. • • ' nk) is strongly clean. 
X1 ,X2' ,Xk 

Proof Note that all underlying rings are commutative local. 

"(1) ~ (2)". This follows by Corollary 3.1.24 and Theorem 3.2.4. 

"(2) =} (3) =} (1)". Since R is an image of ~~J and ~~J is an image of R[[x]], the 

implications follow by Corollary 3.1.24 and Lemma 3.2.1. 

"(1) ~ (4)". By the equivalence (1) ~ (2) and induction. 

"( 1) ~ ( 5)". By the equivalence of ( 1) ~ ( 3) and induction. D 

Example 3.2.6 If Risa Henselian ring and m,s,n1,··· ,n8 EN, then, by Carol-

( [[ ]]) ( 
R[x1, X2, · · · , Xs] ) 

lary 3.1. 24 and Theorem 3. 2. 5, Mn R X1' X2' ... 'Xs and Mn ( n1 n2 • . • ns) are 
XI ,X2' ,Xs 

strongly clean. 

Corollary 2.2.15 proved that for a commutative local ring R, M 2 (R) is strongly clean 

iff so is M2 (RC2 ). Next, we extend this result from 2 to an arbitrary positive integer n. 

Theorem 3.2. 7 Let R be a commutative local ring with 2 E U(R) or charR == 2. Then 

Mn(R) is strongly clean iff so is Mn(RC2). 

Proof "¢" . This holds because Mn(R) is an image of Mn(RC2). 

"=?". If 2 E U(R), then RC2 rv R x R by Lemma 2.2.13. So Mn(RC2) rv Mn(R) EB 

Mn(R) is strongly clean. 

Now assume that charR == 2. Then RC2 is commutative local by [50]. We can assume 

n > 2. Write C2 == {1,g} and let f(x) == xn + E~ 0
1 (ri + r~g)xi E (RC2 )[x] such that 
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f(O) == ro + r~g E J(RC2) and f(l) == 1 +I:~ 0
1(ri + r~g) E J(RC2). Let w: RC2---+ R, 

a+ bg t--t a+ b, be the augmentation map. As in the proof of Theorem 3.2.4, we have 

two commutative diagrams with w and w' isomorphisms: 

w 

w 

I 
w 

_, 
w 

R 

R 
J(R)' 

Since Min(R) is strongly clean, f
1

(x) :== w'(J(x)) == xn+ I:~ 0
1 (ri+r~)xi has a non-trivial 

SRC factorization J' (x) = f~(x)J; (x) in R[x]. Write f~(x) = a0+a1x+· · ·+am_1xm-1+xm 

and J; (x) == bo + blx + · · · + bn-m-1Xn-m-l + xn-m where 1 < m < n . Next we show that 

there exist y· z· ER (i = 0 · · · m - 1 J. = 0 · · · n - m - 1) such that 
i, J ' ' ' ' ' 

m-1 

fo(x) = xm + L [Yi+ (ai - Yi) g] xi, 
i=O 

n - m - 1 

f1(x) = xn- m + L [zi +(bi - zi) g] xi, 
i=O 

f(x) = fo(x)f1(x). 

The equality f(x) = f0(x)f1(x) is equivalent to 

n-1 

xn + L rixi == 
i=O 

m - 1 

xm + LYiXi 
i=O 

n-m-1 

xn-m + L ZiXi 
i = O 

m-1 n-m-1 

i = O i=O 
n-1 m-1 n - m - 1 

L r~xi = (xm + LYiXi) [ L (bi - zi)xi] 
i = O i=O i=O 

n-m-1 m-1 

+ xn-m + L ZiX2 L (ai - Yi) xi 
i=O i=O 

(3.2.2) 

(3.2.3) 
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Clearly, the second equality of (3.2.3) follows from f'(x) == f~(x)J; (x ) and from the first 

equality of (3.2.3). So it suffices to show that there exist Yi , Zj E R (i == 0, · · · , m -1 , j == 

0, · · · , n - m - 1) that make the first equality of (3.2.3) hold. The first equality of (3.2.3) 

is equivalent to 

YoZo + (ao - Yo)(bo - zo) == ro 

YoZ1 + Y1Zo + (ao - Yo)(b1 - z1) + (a1 - Y1)(bo - zo) == r1 

Ym-2 + Ym-IZn-m-1 + Zn-m-2 + (am-1 - Ym-1)(bn-m-l - Zn-m-I) == Tn-2 

Ym-1 + Zn-m-1 == Tn-1, 

which , since char(R) == 2, is equivalent to 

co :== ro + aobo == boYo + aozo 

c1 :== r1 + aob1 + aibo == biYo + boY1 + aoz1 + ai zo 

(3.2.4) 

Cn-2 :== Tn- 2 + am-lbn-m-1 

== Ym-2 + bn-m-IYm-1 + Zn-m-2 + am-I Zn-m-1 

Cn-1 :== r n-1 == Ym-1 + Zn-m-1 · 

As a linear system in variables Yi(i == 0, · · · , m - 1) and zi(i == 0, · · · , n - m - 1) , the 

matrix form of (3.2.4) is AX == C where 

1 bn-m-1 

1 bn-m-1 

1 

1 

1 am-I .. ' 
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xr == (Ym-1, Ym-2 ... 'Yo, Zn-m-1, ... 'zo), and 

CT == ( Cn-1 , Cn-2 , · · ' , Co) · 

An argument similar to the proof of Theorem 3.2.4 shows that A is invertible. So 

AX == C is solvable. This shows the existence of the Yi and Zj such that f ( x) 

f o ( x) f 1 ( x). Hence Mn ( RC2 ) is strongly clean. D 

Proposition 3.2.8 Let R be a commutative local ring with 0-/:- 2 E J(R) and let M3 (R) 

be strongly clean. If for any m, n E R and u E U ( R), 4x3 - 2mx2 + ux + n == 0 is solvable 

in R, then M3 (RC2 ) is strongly clean. 

Proof The two diagrams in the proof of Theorem 3.2.7 are still valid. Let 

I 

with f (0) == ro + r0g E J(RC2) and 

Then 

f
1 

(x) == w' (f(x)) == (ro + r~) + (r1 + r~)x + (r2 + r;)x2 + x3 E R[x] 

I I 

with J (0) == ro + r0 E J(R) and 

I I I I 

f (1) == (ro + r0 ) + (r1 + r1) + (r2 + r2) + 1 E J(R). 

Since M3 ( R) is strongly clean, j' ( x) has a non-trivial SRC factorization f' ( x) == f ~ ( x) f~ ( x ) 

in R[x]. We can assume that {f~(x), f~ (x)} == { a0 + x, b0 + b1x + x2
}. Then 

(3.2.5) 

Next we show that there exist y0 , zo, z1 E R such that f(x) == f0 (x)f1(x) and J; (x ) == 

w' (fi(x)) ( i == 0, 1) where {fo(x), f1(x)} =={[Yo+ (ao -yo)g] + x, [zo + (bo - zo)g] + [z1 + 
(b1 - z1)g]x + x2

}. The condition J(x) == f0 (x)f1(x) is equivalent to 
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ro = YoZo + (ao - Yo)(bo - zo) 

r1 = YoZ1 + (ao - Yo)(b1 - z1) + zo 

(3.2.6) 
r~ = zo(ao - Yo)+ Yo(bo - zo) 

r~ = z1(ao - Yo)+ Yo(b1 - z1) + bo - zo 

Since the first three equalities of (3.2.6) and (3.2.5) clearly imply the last three equalities 

of (3.2.6), it suffices to show that there exist y0 , z0 , z1 E R such that the first three 

equalities of (3.2.6) hold. Rewrite the first three equations of (3.2.6) as 

2yozo - boYo - aozo = ro - aobo 

(3.2.7) 

Clearly (3.2. 7) is equivalent to 

(3.2.8) 

where m = (2r2 + 2ao - b1) , u = (4aor2 - 2aob1 + 2r1 - bo - aob1 + a5), and n = 

- a6r2 + a6b1 - aor1 + aobo - ro . As in the last part of the proof of Theorem 3.2.4, 

bo - aob1 + a5 = R(J~(x), f~ (x)) E U(R). Sou E U(R). By hypothesis, the first equation 

of (3.2.8) is solvable for y0 in R. Hence, (3.2.8) is solvable for y0 , z0 and z1 in R. So 

M3 (RC2 ) is strongly clean. D 

Corollary 3.2.9 If R is a Henselian ring, then M3 (RC2 ) , M3 ((RC2)[[x]]), and 

Ml3 ( (R~vri) are strongly clean for any k E N. 
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Proof We show that M3 (RC2) is strongly clean. By Corollary 3.1.24 and Proposition 

3.2.8, it suffices to show that when 2 E J(R) and for any m, n E R and u E U(R), 

h(x) = 4x3 
- 2mx2 + ux + n has a root in R. Let h;(x) = x +:and h~(x) = u. Then 

TJ~(h(x)) = TJ~(h~(x))TJ~(h; (x)). By Hensel's Lemma, there exist h1(x) = x+s3 and h0 (x) 

in R[x] such that TJ~(h1 (x)) = TJ~(h;(x)), TJ~(h0 (x)) == TJ~(h~(x)), and h(x) == h1(x)h0 (x). 

So h(x) has a solution x = -s3 E R. Hence M3 (RC2 ) is strongly clean. By Theorem 

3.2.4, M3 ((RC2)[[x]]), and M3 cRi1lrl) are strongly clean. D 



Chapter 4 

Strongly Clean 'friangular Matrix 

Rings 

Our main result states that the triangular matrix rings over commutative local rings 

are strongly clean. This chapter comes from [22] . 

4.1 Strongly clean triangular matrix rings 

For each n > 1, a ring R is clean iff 'Ifn(R) is clean [38]. When is 'Ifn(R) strongly 

clean? Several efforts have been made towards this question. By [52 , Example 2], 1f 2(R) 

is strongly clean if R is a commutative local ring. It was proved in [62] that if R is a 

commutative local ring for which every element is uniquely the sum of an idempotent 

and a unit (or equivalently, R/ J(R) rv Z2 by [1 , Corollary 22]), then 'If n(R) is a strongly 

clean ring for every n > 1. The main result is the fallowing Theorem 4 .1.1. For a ring 

R, we write Rn (resp., Rn) for the set of all 1 x n (resp., n x 1) matrices over R. For 

{3 E Rn, (3T E Rn denotes the transpose of (3. 

Theorem 4.1.1 If R is a commutative local ring, then 'If n(R) is a strongly clean ring 

for every n > 1. 
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Proof We prove the claim by induction on n. For n = 1, the result holds since local 

rings are strongly clean. 

Assume that n > 1 and every ( aij) E 'Jr n-l ( R) has a strongly clean expression ( aij) = 

(eij) + (uij) such that, for any 1 < i < n - 1, eii = 0 if aii E U(R). Now let 

A= 

0 0 ann 

Claim. There exist ( eij )2 = ( eij) E 1f n ( R) and ( uij) E U (1f n ( R)) such that 

( aij) = ( eij) + ( Uij), ( eij) ( Uij) = ( uij) ( eij) 

and that, for any 1 < i < n, 

eii = 0 if aii E U(R). 

Write 

a) where A1 = 
ann 

0 a2,n - 1 

0 0 an-1,n- 1 

By the induction hypothesis, A1 has a strongly clean expression 

such that 

for any 1 < i < n - 1, eii = 0 if aii E U ( R) . 

(4.1.1) 

(4.1.2) 

Case 1. ann E J(R). Take enn = 1 and Unn = ann - 1. Then u - (unn + l)I is a unit in 

1fn- 1(R). Let 81 = [U - (unn + l)J]-1(E - I)a and let 

F = (E 81 ), and V = (u a-81) E 1fn(R). 
0 enn 0 Unn 

Because E and U - ( Unn + 1 )J commute, E and [U - ( Unn + 1 )J]-1 commute, so E81 = 0. 

Thus, it follows that F 2 = F. By the definition of 81 , we have 

(E - I)a = [U - (unn + l)J]81 = U81 - Unn81 - 81 , SO 
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It follows that FV ==VF. Moreover, it is easily seen that A== F+ V and VE U('Irn(R)) . 

Therefore, the claim is proved in the case where ann t/:. U(R). 

Case 2. ann E U(R). Take enn == 0 and Unn == ann· To prove the claim in this case, it 

suffices to show that there exists !I E Rn- I such that 

F 2 == F == (E ' 1 
) , FV == VF, and V == (u 0 

- '
1

) . 
0 e nn 0 Unn 

Note that 

F 2 == F <-==> E r I == ! I, and 

Thus, it suffices to show that the system 

EX ==X 

has a solution X == (xI, · · · , Xn-I)T in Rn-I· 

For this purpose, fix some notation and let 

aii a i,i+ l a i,n- 1 eii e i ,i + l 

0 a i+ l ,i + l ai+ l ,n- 1 0 ei+ l ,i + l 

Ai - Ei --
' 

-

0 0 an - 1 ,n - 1 0 0 

U ii Ui ,i + l U i ,n -1 

0 Ui+ l ,i+ l ui -- U i + l ,n-l 

0 0 U n - 1,n- l 

and write 

(A) 

(r) 

ei,n- 1 

ei + l ,n - 1 

en- 1,n- l 

(4.1.3) 
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where 

and write 

Thus, equation i,i + 1, · · · ,n- l in (A) form 

(A(i)). 

That is 

(Ai) 

(A(i + 1)). 

And equation i, i + 1, · · · , n - 1 in (r) become a system 

(f(i)) 

which is 

First we consider the following two equations: 

If an-1,n-1 E U(R), then en-1,n-1 = 0 by the induction hypothesis; so Xn - 1 = 0 satisfies 

both (An- 1) and (rn-1). If an-1,n-1 t/:. U(R), then it must be that en-l,n-l = 1 because 

an-1,n-1 = en-1 ,n-1 + Un-1,n-1· Since ann E U(R) by our assumption , an-1,n-1 - ann E 

U(R); so Xn - 1 = (an - 1,n- 1 - ann) -
1
an-1,n is a solution of both (An- 1) and (r n- 1). There

fore, Xn - l E R exists to satisfy both (An-l) and (r n-1). 

Now assume that i < n - 2 and there exists Xi+l E Rn-i-l satisfying (A(i + 1)) and 

(f(i + 1)) . We next show that there exists xi ER such that X i satisfies both (A(i)) and 

(f( i)), or, equivalently, xi satisfies both (Ai) and (fi). We proceed with two cases. 
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Subcase 1. aii E U(R). Then eii == 0 by the induction hypothesis. Choose Xi== eiXi+I· 

Thus, xi satisfies (Ai)· Next we show that Xi satisfies (ri) as well. It follows from (4.1 .1) 

that Ai == Ei + Ui is a strongly clean expression of Ai. Because eii == 0, Ef == Ei implies 

that 

(4.1.4) 

Note that eii == 0 implies that uii == aii, so it follows from EiUi == UiEi (using ( 4.1.3)) 

that 

which gives 

showing 

The left hand side of (r i) is 

(aii - ann)Xi + /3iXi+l == (aii - ann)eiXi+l + /3i(Ei+1Xi+1) (by (A(i + 1))) 

== [ ( aiiei + /3iEi+l) - annei]Xi+l 

== (eiAi+I - annei)Xi+l (by (4.1 .5)) 

== ei(Ai+l - annl)Xi+l 

== eiEi+1ai+1 by (f(i + 1)) 

== eiai+I (by (4.1.4)) 

(4.1.5) 

Subcase 2. aii t/:- U(R). It must be that eii == 1 because aii == eii + Uii is a strongly clean 

expression of aii· Thus, aii - ann E U(R) . Choose 

Xi == ( aii - ann)-1 
( eiiain + eiai+l - /3iXi+I). 

Thus, xi satisfies (ri)· Next we show that xi satisfies (Ai), that is , eiX i+I == 0. 
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Because eii == 1, E[ == Ei implies that eiEi+l == 0. So, by (A(i + 1)) , we have 

eiXi+l == ei(Ei+lXi+i) == 0. Thus, xi satisfies (Ai)· Therefore, by the induction principle, 

there exists X E Rn-I satisfying (A) and (r) . So the claim is proved in this case. The 

proof of Theorem 4.1.1 is now complete. D 

Remark 4.1.2 If a== e1 + u 1 and b == e2 + u2 are strongly clean expressions of a and b 

in R respectively and v E R, there do not always exist a 1 , a 2 E R such that 

is a strongly clean expression in 1r 2 (R). For example, a == 1 + 4, b == 0 + 2 are strongly 

clean expressions in Z(3 )> but G ~) C :1
) + (: : 2

) cannot be a strongly clean 

expression for any ai, a2 E Z(3). 

Corollary 4.1.3 If R == IT Ri is a direct product of commutative local rings Ri, then 

1r n ( R) is strongly clean for every n > 1. 

Proof Tn(R) rv IT Tn(Ri) is strongly clean because each Tn(Ri) is strongly clean by 

Theorem 4.1.1. D 

Corollary 4.1.4 Let R be a commutative semilocal ring. The following are equivalent: 

1. R is semiperfect. 

2. 1r n ( R) is strongly clean for every n > 1. 

3. 1r n ( R) is strongly clean for some n > 1. 

Proof " ( 1 ) ==> ( 2 )" . Since R is semi perfect, there exist orthogonal local idem potents 

ei,i == 1, · · · , m, such that 1 == e i +···+ em. So R == e1Re1 x · · · x emRem is a direct 

product of commutative local rings, so the implication follows by Corollary 4.1.3. 
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"( 2) ==? ( 3)". This is clear. 

"( 3) ==? ( 1 )" . Let e E 'Ir n ( R) whose ( 1, 1 )-entry is 1 and all other entries are 0. Then 

R ~ e'Irn(R)e is clean by Theorem 2.1.1. So idempotents lift modulo J(R). Hence R is 

semi perfect. D 

We mention a related result. It was proved by Chen [21] that, for a bimodule RMs 

over two rings Rand S, (: ;) is strongly ?r-regular iff both Rand Sare strongly ?r

regular. It follows that if Risa strongly 7f-regular ring then 'Irn(R) is strongly 7f-regular 

and hence is strongly clean. 

We point out that Theorem 4.1.1 can be generalized to any "skew" triangular matrix 

ring over a commutative local ring defined as follows: For a ring R and an endomorphism 

a of R, let 'Irn(R,a) = {(aij)n xn : aij E R and aij = 0 if i > j}. For (aij) , (bij) E 

'Irn(R , a) , define 

where Cij = 0 for i > j, and cij = ~{=iaikak-i( bkj) for i < j. It can be easily verified that 

'Irn(R, a) is a ring, called the skew triangular matrix ring over R. Clearly, 'Irn(R, IR) == 

11' n ( R) , and 11' 2 ( R, a) coincides with the formal triangular matrix ring (: ~) where 

RM =RR with xr = xa(r) for x E M, r E R. If a is an automorphism, then 'Irn(R) ~ 

'Irn(R, a) via (aij) 1-+ (bij) where bij = a 1- i(aij)· The proof of Theorem 4.1.1 can be 

slightly modified to prove the following 

Theorem 4.1.5 If R is a commutative local ring and a is an endomorphism of R with 

a(J(R)) C J(R) , then 'Irn(R, a) is a strongly clean ring for every n > 1. 

We conclude by giving an example showing that there exist endomorphisms a of a 

commutative local domain R which are not automorphisms such that a(J(R)) C J(R). 

Example 4.1.6 Let R = Z[x](x ) = {~~~;: f( x ),g(x ) E Z[x],g(O) =/:- O} be the localization 
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of Z[x] at (x), and let a: R ____. R be given by :i:? 1-+ :i~~. Then a(J(R)) = a(xR) = 0 C 

J(R), but a is neither manic nor epic. 

We would like to point out that Theorem 4.1.1 has been extended recently in [13) from 

a commutative local ring to a bleached local ring (see the definition before Definition 

2.4.3). 



Chapter 5 

Strongly 7r-Regular Rings 

Strongly Jr-regular rings are strongly clean. To enlarge the class of strongly Jr-regular 

rings is a task itself. Furthermore, this work also enlarges the class of strongly clean 

rings. In section 5.1, we get a new class of strongly Jr-regular rings using a result of 

Hirano. In particular, matrix rings over Boolean or strongly regular rings are strongly 

Jr-regular (and hence strongly clean). This section comes from [ 66]. In section 5. 2, we 

present a new family of strongly Jr-regular rings which are matrix rings over local rings. 

5.1 Finite extensions of strongly Jr-regular rings 

Let S be a ring and R be a subring of S such that they share the same identity. The 

ring S is called a finite extension of R if S, as a right R-module, is generated by a 

finite set X of generators. 

Theorem 5.1.1 {42} Let R be a ring whose prime fa ctor rings are artinian. Then every 

finite extension of R is strongly Jr-regular. 

Note that, by [20], there exists a strongly Jr-regular ring R such that M2 (R) is not 

strongly Jr-regular. A ring R is called right duo if every right ideal is an ideal. 
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Corollary 5.1.2 Let R be a right duo strongly Jr-regular ring, let C be a locally finite 

group, and let n > 1. Then Mn(RC) is strongly Jr-regular. 

Proof To show the claim, without loss of generality, we may assume that C is a finite 

group. Then Mn( RC) is a finite extension of RC and RC is a finite extension of R. So 

Mn( RC) is a finite extension of R. Since R is right duo strongly Jr-regular, every prime 

factor ring R == R/ I is again right duo strongly Jr-regular. So R must be a strongly 

Jr-regular domain. Hence, Risa division ring (of course artinian). The claim now follows 

by Theorem 5.1.1. D 

Corollary 5 .1. 3 Let R be a right duo strongly Jr-regular ring, let C be a locally finite 

group, and let n, k > l. Then Mn( (RG)[[x]]) and Mn c~~lt]) are strongly clean. 

Proof By Corollary 5.1.2, the matrix ring Mn( RC) is strongly Jr-regular. Then Mn ((RC)[[x ]]) 

""Mn(RG)[[x]] and Mn c~~lt]) are strongly clean by [24, Corollary 2.2]. D 

Remark 5.1.4 Notice that Boolean rings are strongly regular rings and strongly regular 

rings are right duo and strongly Jr-regular. 

5.2 A criterion for M2(R) over a local ring R to be strongly 

Jr-regular 

It is pointed out in [12] that, for a commutative local ring R , Mn(R) is strongly 7r

regular iff R is strongly Jr-regular iff J(R) is nil. In this section, we characterize the local 

rings R for which M2 (R) is strongly Jr-regular. 

Lemma 5.2.1 {52} Let MR be a module. The following are equivalent for <p E End( MR): 

1. <p is strongly Jr-regular in End( MR). 
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2. There is a decomposition M == P E9 Q where P and Q are <.p-invariant, and 'PIP is 

an isomorphism and 'PIQ is nilpotent. 

Units and nilpotent elements of a ring are clearly strongly 7r-regular elements. These 

are called the trivial strongly 7r-regular elements. A strongly 7r-regular element is 

called non-trivial if it is not trivial. Fixing a basis of (Rn)R, we know there is a one-to

one correspondence between the matrix in Mn(R) and the endomorphism in End((Rn)R). 

So, in the following, for A E Mn(R), we denote 'PA E End((Rn)R)· Using Lemma 5.2.1, 

we can prove the following theorem. 

Theorem 5.2.2 Let R be a ring having IBN such that every finitely generated projective 

R-module is free. Then A E Mn(R) is a non-trivial strongly 71"-regular matrix iff A is 

similar to ( To 
0 

) , where T0 is an invertible matrix and T1 is a nilpotent matrix. 
0 T1 

Proof "=?". Suppose T is a non-trivial strongly 7r-regular matrix. Then by Lemma 

5.2.1, there exist R1 f= 0 and R2 f= 0 such that 

'PT : (RR)n == R1 E9 R2 ~ (RR)n == R1 E9 R2 

with 'PTIRi being a right R-module isomorphism and 'PTIR2 being a nilpotent right R

module endomorphism. The direct summands R1 and R2 are projective right R-modules 

and so they are both free right R-modules. They satisfy 

(5.2.1) 

since R has IBN. Suppose { E1, E2, · · · , En} is a basis of (RR)n and under this basis, 'PT is 

the endomorphism corresponding to the matrix T. Then 

Suppose rank(R1 ) == k. Then by equality (5.2.1), we can assume that {771 , 772, · · · , 17n} is 

a basis of (RR)n where {771 , 112, · · · , 17k} is a basis of R1 and {17k+1, 17k+2, · · · , 17n} is a basis 
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of R2. Since <prlRi : R1 -4 Ri is an isomorphism and <prlR2 : R2 -4 R2 is nilpotent, we 

have 

with some T0 being invertible and 

'PTIR2(7lk+1, 7lk+2, ... 'T/n) = (TJk+l, T/k+2, ... 'T/n)T1 

with some T1 being nilpotent. Let C== ( To 
0 

) . Then 
0 T1 

Now 

<pr( T/1, T/2, · · · , TJn) = (<pr( T/l), <pr( T/1), · · · , <pr( TJn)) 

= ( 7]1 ' 7]2 , .. · ,7]n) ( :a ;
1 

) 

= ( T/1, T/2, · · · , T/n) C. 

0 
) where T0 is invertible and T1 is nilpotent. 

T1 

(5.2.2) 

(5.2.3) 
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"{::::" . Suppose there exists P E GL(n, R) such that p-1rp = C = 
( 

To 0 ) 

0 T1 

where T0 E Mk(R) is invertible and T1 E Mn-k(R) is nilpotent. 

( 
r.m O ) index of T1 be m. Then cm = ~ 

0 
. So (Mn(R))Cm 

Let the nilpotency 

(Mn(R))cm+l and 

cm(Mn(R)) = cm+1(Mn(R)). Hence, Tis strongly 7r-regular. D 

Corollary 5.2.3 Let R be a local ring. Then A E M2 (R) is a non-trivial strongly 1f

regular matrix iff A is similar to (to 0
), where t0 E U(R) and t1 E R is nilpotent. 

0 ti 

Corollary 5.2.4 Let R be a commutative local ring. Then the following are equivalent 

1. A is a non-trivial strongly 1f-regular matrix. 

2. A is similar to (to 0
), where t0 E U(R) and t 1 E R is nilpotent. 

0 ti 

3. IAI E R is nilpotent and tr(A) E U(R) and A is similar to a diagonal matrix. 

4. IAI ER is nilpotent, tr(A) E U(R), and x2 
- tr(A)x + IAI = 0 is solvable in R. 

Proof "(1) =} (2)". It follows by Corollary 5.2.3. 

"(2) =} (3)". It is clear. 

"( 3) =} ( 4 )". Same as the proof of "( 3) =} ( 4 )" of Corollary 2.2.11. 

"(4) ==> (1)". Suppose that (4) holds. Let a E R be a root of x2 
- tr(A)x + IAI. 

Then b := tr(A) - a is also a root of x2 
- tr(A)x + IAI. Thus, a+ b = tr(A) and 

ab = IAI. Hence one of a, b must be a unit and the other must be nilpotent. Without 

loss of generality, we assume that a E U(R) and b is nilpotent. Write A = (au ai
2
). 

a2i a22 

From a 11 + a22 = tr(A) E U(R), either a 11 or a 22 is a unit. Without loss of generality, 

we may assume that a22 E U(R) . Let P = ( a
21 a -au). Then P E GL2 (R) since 

b - a22 ai2 



CHAPTER 5. STRONGLY 7r-REGULAR RINGS Page 87 

IPI = aa22 + b(a11 - a) - IAI E U(R). Thus 

p AP-I = _1 ( a21 a - au) (au 
IPI b- a22 ai2 a21 

1 ( * 
= I Pl ai2(-b2 + tr(A)b - IAI) 

= (~ ~) 
for some c, d E R. Since IAI = cd and tr( A) = c + d, one of c and d must be a unit and 

the other must be nilpotent. Thus, by direct calculation we know ( ~ ~) is a non-trivial 

strongly 7r-regular matrix. Hence, A is strongly 7r-regular. D 

As pointed out in [12], it follows from the results in the literature that for any com

mutative ring R, Mn(R) is strongly 7r-regular iff so is Rand that, for a commutative local 

ring R, Mn(R) is strongly 7r-regular iff so is R, iff J(R) is nil. Let R be the commutative 

local ring of p-adic integers. Then M 2(R) is a strongly clean ring but it is not strongly 

7r-regular. Below, we characterize the local rings R for which M2(R) is strongly 7r-regular. 

Lemma 5.2.5 Let A = (: :) E M2 (R) where R is a local ring. If A f/: M2 (J(R)) U 

GL2 (R), then A is similar to (: ~) where r ER and w E J(R). 

ProofCasel. bEU(R). LetP= ( 1 0
). ThenPAP-1= ( a+bdb- i 

- bdb- 1 b b( c - db - 1 a) 

P AP- 1 tJ. GL2(R) , we have b(c - db- 1a) E J(R) . So the claim holds. 

~). Since 

Case 2. c E U(R). Since C ~) (: :) C ~) = (: :) , the claim holds by Case 

1. 

Case 3. b, c E J(R) . By hypothesis, either a E U(R) and d E J(R) or a E J(R) and 

dEU(R).WemayassumethataEU(R)anddEJ(R).ThenC ~1)(: :)C ~)= 

(
a - c a + b - c - d) . Since a+ b - c - d E U(R), the claim holds by Case 1. 

c c +d 
D 
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Lemma 5.2.6 Let R be a local ring and A= (: ~) where u E U(R) and w E J(R). 

Then A is strongly 'If-regular iff t 2 - ut - w has two left roots, one in U(R) and the other 

nilpotent. 

Proof "==>". It is clear that A tJ_ GL2 (R) and A is not nilpotent. Since A is strongly 

Jr-regular, by Corollary 5.2.3, there exists P E GL2 (R) such that P AP-1 = ( ~ ~) where 

either v E U(R) and j is nilpotent or vis nilpotent and j E U(R). As shown in the proof 

ofLemma2.3.2,thereexistsP= C ~) EGL2(R)suchthatPAP-1 = (~~),where 

either v E U ( R) and j is nilpotent or v is nilpotent and j E U ( R). From PA = ( ~ ~) P, 

one obtains 

u+bw==v 

1 == vb 

cu+ w == jc 

c == J. 

Thus, v can not be nilpotent, so it must be that v E U(R) and j is nilpotent. It follows 

that c2 - cu - w == 0 and (b- 1 )
2 

- b- 1u - w == 0. So the implication holds. 

"~". Assume that t 2 
- ut - w has two left roots b, c with b E U(R) and c being 

nilpotent. Let P = C b~ 1 ) and D = G :). Then Pis invertible and PA= DP. So 

A is strongly 'If-regular by Corollary 5.2.3. D 

Theorem 5.2. 7 The following are equivalent for a local ring R: 

1. M 2 ( R) is strongly 'If-regular. 

2. M 2 (J(R)) is nil and, for any u E U(R) and w E J(R), t 2 -ut - w has two left roots, 

one in U ( R) and the other in J ( R). 

3. M2 (J(R)) is nil and, for any u E U(R) and w E J(R) , t 2 
- ut - w has two right 

roots, one in U(R) and the other in J(R) . 
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Proof "(1) ==? (2)". (1) clearly implies that M 2 (J(R)) is nil. For u E U(R) and 

w E J(R), let A=(: ~). By (1), A is strongly Jr-regular. Hence, by Lemma 5.2.6, 

t 2 
- ut - w == 0 has two left roots, one in U(R) and the other is nilpotent. So (2) holds. 

"(2) ==? (1)". Let A E ~1b(R). We want to show that A is strongly n-regular. 

Because of (2), we may assume that A tj. M2 (J(R)) and A tj. GL2 (R). Thus, by Lemma 

5.2.5, we may assume that A= (: ~) where u ER and w E J(R). If u E J(R), then 

A2 E M2 (J(R)). So A is nilpotent and hence is strongly n-regular. Therefore, we may 

further assume that u E U(R). By (2), t 2 
- ut - w == 0 has two left roots, one in U(R) 

and the other in J(R) which is nilpotent. Thus, by Lemma 5.2.6, A is strongly n-regular. 

"(1) ~ (3)". Similar to the proof of "(1) ~ (2)". D 

As mentioned before, for a commutative local ring R, M2 (R) is strongly n-regular iff 

J(R) is nil. As a contrast of this, there exists a local ring R with J(R) locally nilpotent 

(thus, M 2 (J(R)) is nil), but M 2 (R) is not strongly n-regular by [20]. Notice that for a left 

perfect ring R, Mn(R) is again left perfect, so it is strongly n-regular. Our concluding 

example gives a noncommutative local ring that is not one-sided perfect such that M2 (R) 

is strongly n-regular. 

Example 5.2.8 Let G == {ar : 0 < r E JR} be a semigroup with multiplication defined 

by aras == O'.r+s· Then C has identity ao. Let DC be the semigroup ring of C over a 

division ring D that is not a field and let ( a 1) be the ideal of DC generated by a 1 . Let 

R == (DG)/(a1) be the quotient ring. Thus, R == ffi{Dar : 0 < r < 1} is a left vector 

space over D with a basis { ar : 0 < r < 1} and the multiplication of R is given by 

O'.r+s' if r + s < 1, 

0, if r + s > 1. 

The ring R {with unity a 0 ) is noncommutative and the following hold: 

1. R is a local ring with J ( R) locally nilpotent. 
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2. R is not one-sided perfect. 

3. M 2 (R) is strongly n-regular. 

Proof ( 1 ). It is clear that J(R) = EB{ Dar : 0 < r < 1} is locally nilpotent. Since 

R/ J(R) rv D, R is local. 

(2). If let Xi == a 2-i E J(R) for i == 1, 2, · · ·, then for any n > 0, Xn · · · x 2x 1 = 

x 1x 2 · · • Xn == O'.r =/:- 0 where r = 1 - 2~. So J(R) is neither left nor right T-nilpotent and 

thus R is not one-sided perfect. 

(3). Because J(R) is locally nilpotent, M 2 (J(R)) is nil. So, by Theorem 5.2.7, it 

suffices to show that, for any u E U(R) and any w E J(R), t 2 
- ut- w has two left roots, 

one in U(R) and the other in J(R). Write 

where 0 == ro < ri < · · · < rn < 1. Rewrite u == L:urO'.r and w 

Ur = Wr == 0 for r t/:. { ro, · · · , r n}. Write t == L:trO'.r. Then 

t 2 
- tu - w == 0 {=} t(t - u) = w 

to(to - uo) = 0 

Lr+s=k tr(ts - Us)= Wk for 0 < k < 1 

to(to - uo) = 0 (Po) 

tk(to - uo) + totk ==Wk+ touk - Lr+s<k tr( ts - Us) for 0 < k < 1 (Pk) 

From (Po), to == 0 or to = uo. For t0 = 0 or t0 == u0 , we next show that one can 

find tk E D for each 0 < k < 1 such that almost all tk are zero and (Pk) holds for all 

0 < k < 1. Thus, L:r>otrO'.r gives a left root of t 2 
- ut - win J(R) when t0 = 0 and a left 

root in U(R) when t 0 == uo. 

Let m > 0 be an integer such that mr1 > 1 and let 
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Then C is a finite set, so we can write C = { s0 , s1 , s2 , · · ·} with 0 = s0 < s1 < · · ·. Take 

t 0 = 0 or t 0 = u0 and choose tr = 0 if r ~ C. Suppose that, for k = Sz where l > 0 is an 

integer, we have chosen tr for all 0 < r < k. Since (Pk) is solvable for tk , we then choose 

tk to be the (unique) solution to (Pk)· A simple induction shows that all the required 

tr 's exist. The proof is complete. D 



Chapter 6 

g(x)-Clean Rings 

In section 6.1, we discuss some general properties of g( x )-clean rings which are similar 

to those of clean rings. In section 6.2, we focus on (x2 +ex+ d)-clean rings, in particular, 

on (x2 - 2x)-clean and (x2 - nx)-clean rings. In section 6.3, we consider (xn - x)-clean 

rings. Theorem 6.2.2 and Theorem 6.2.5 are the main results. This chapter comes from 

(33]. 

6.1 g(x)-clean rings 

In this section, we discuss some general properties similar to those of clean rings. 

Definition 6.1.1 Let g(x) be a fixed polynomial in C(R)[x]. An element r ER is called 

g(x)- clean if r == e + u where g(e) == 0 and uE U(R). Following Camillo and Simon 

(18}, we say that R is g(x)-clean if every element of R is g(x)-clean. 

The (x2 
- x )-clean rings are precisely the clean rings. The following two examples explain 

the relations between g( x )-clean rings and clean rings. 

Example 6.1.2 There exists an ( x 4 - x )-clean ring which is not clean. R ecall that 
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Z(7) == { 1:: E Q : gcd ( 7, n) == 1}. The proof of ( 67, Theorem 3.1 j shows that Z(7) C3 is an 

(x4 
- x)-clean ring. But Z(7)C3 is not clean by {38, Example 1}. 

Example 6.1.3 Let R be a Boolean ring containing more than two elements and let 

c E R with 0 =/=- c =/=- 1. Let g(x) == x2 + (1 + c)x + c == (x + l)(x + c). Then R is not 

g( x )-clean: 

If c == e + u where u is a unit and g(e) == 0, then it must be that u == 1 and so 

e == c - 1 == c + 1. But, clearly, g( c + 1) =/=- 0. However, R is certainly clean. 

Let Rand S be rings and e: C(R) -+ C(S) be a ring homomorphism with 0(1) == 1. 

For g(x) == ~aixi E C(R)[x], let e' (g(x)) == ~O(ai)xi E C(S)[x]. Then e induces a map 

e' from C(R)[x] to C(S)[x]. Clearly, if g(x) is a polynomial with coefficients in Z , then 

e' (g( x)) == 9( x). 

Proposition 6.1.4 Let 0 : R -+ S be a ring epimorphism. If R is g( x )-clean, then S is 

e' (g( x) )-clean. 

Proof Let g(x) == a0 + a1x + · · · + anxn E C(R)[x]. Then e' (g(x)) == 8(a0 ) + 8(a1 )x + 
· · · + O(an)xn E C(S)[x]. For any s E S, there exists r ER such that O(r) == s. Since R 

is g(x)-clean, there exist e E Rand u E U(R) such that r == e + u and g(e) == 0. Then 

s == O(r) == O(e)+O(u) with O(u) E U(S) and e' (g(O(e)) == 0, that is, Sise' (g(x))-clean. D 

Let R-+ R/ I, r ~ r == r +I, g(x) E C(R)[x], and g( x ) E f [x] . 

Corollary 6.1.5 Let R be g(x)-clean. Then, for any ideal I of R, R/I is g(x )-clean 

where g(x) E C(R/ I) [x]. 

We say R is lifting g-roots modulo I if g(a) == 0, a E R, implies g(b) == 0 for 

b E R and b - a E I . This is the generalization of lifting idempotents modulo I where 

g(x) == x 2 
- x. 
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Proposition 6.1.6 Let IC J(R) be an ideal of R, TJ: R _, R/I with TJ(r) == r +I== r, 

and g(x) == E~ 0 aixi E C(R)[x] with g(x) == E~ 0 aixi E C(R/ I)[x]. If R/ I is g(x)-clean 

and R is lifting g-roots modulo I, then R is g( x )-clean . 

Proof For any r E R, let r +I== r == e + u where g(e) == 0 and u E U(R/ I). Because 

roots of g(x) lift modulo I, we can assume e E R such that g(e) == 0. Sor - e - u == i 

for some i EI. Hence r == e + (u + i) with u + i E U(R). Thus, r is g(x)-clean, that is, 

R is g(x )-clean. D 

We omit the argument of the following proposition since the proof is standard. 

Proposition 6.1.7 Letg(x) E Z[x] and let {R}iEJ be a family of rings. Then the direct 

product IliEI R is g(x)-clean ifj every R, i EI, is g(x)-clean. 

Canonically, we can identify a ring R with { ain : a E R}, a subring of Mn ( R), where 

In is the identity matrix of Mn(R). Thus, we can identity g(x) == L:aixi E C(R)[x] with 

E aiinxi E C(Mn(R))[x] . 

Proposition 6.1.8 Let R be a ring, g(x) E C(R)[x], and n EN. Then R is g(x)-clean 

ifj the upper triangular matrix ring 1r n ( R) is g( x )-clean. 

Proof "==*". Let A == (ai1) E 1rn(R) with aij == 0 for 1 < j < i < n. Since R is 

g( x )-clean, for any 1 < i < n, there exist eii E R and uii E U ( R) such that aii == eii + uii 

with g(eii) == 0. Suppose g(x) == E~ 0 aixi E C(R)[x]. Let A== E + U with 

uu a12 a1,n - l aln 
e u 0 0 

0 u22 a2 ,n- 1 a2n 
0 e22 0 

E== and U == 
0 0 Un- 1,n- 1 an-1 ,n 

0 0 enn 
0 0 0 Unn 
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+ 

ao 0 

0 ao 

0 0 

0 

0 

So 1f n(R) is g(x)-clean. 

0 

0 

0 

0 

ao 

+ 

0 

0 

0 0 

0 

0 

g(e11) 0 

0 g(e22) 

0 0 

+ ... + 

0 

0 

g(enn) 

Page 95 

= 0. 

"¢=" . Define () : 'Irn(R) ~ R by ()(A) = a 11 . Then () is a ring epimorphism. By a 

proof similar to that of Proposition 6.1.4, we have R is g(x)-clean. D 

In [38], the authors proved that if R is clean, then so is Mn(R) for all n > 1. Here 

we have a similar result for g( x )-clean rings. 

Proposition 6.1.9 Let R be a ring and g(x) E C(R)[x] . If R is g(x)-clean, then. Mn(R) 

is g(x )-clean for all n > 1. 

Proof We prove the claim by induction on n. The case n = 1 is clear. Assume the claim 

holds for Mn-l (R) where n > 1. If a E Mn(R), write a = ( : : ) in block form where 

A E Mn_ 1(R) and b ER. By hypothesis, A= E+U where EE Mn-i(R) is a root of g(x ) 

and U is a unit of Mn-i(R). Then b- YU- IX ER. So, since R is g(x)-clean, we have 

b-YU-IX=e+uwhereeERisarootofg(x)anduEU(R). Then a-(: : ) =/3, 

where /3 = ( u x _1 ) • We obtain 
Y u+YU X 

( 
In-I 0 ) ( U X ) ( In- I -u-I X ) = ( U 0 ) . 

- Yu- I 1 Y u+Yu-IX 0 1 0 u 

So j3 is a unit of Mn(R). Since (: : ) is a root of g(x) , a E Mn(R) is g(x)-clean. 0 
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Proposition 6.1.10 Let R be a ring and g(x) E C(R)[x]. Then the formal power series 

ring R[[t]] is g(x)-clean iff R is g(x)-clean. 

Proof " ¢=". Let f = Ei>O aiti E R[[t]]. Since R is g(x )-clean, ao = e + u where e E R, 

u E U(R) and g(e) == 0. Then f == e+ (u+ Ei>l aiti) with u+ Ei>l aiti E U(R[[t]]). So 

f is g(x)-clean. Hence, R[[t]] is g(x)-clean. 

"==?". Since () : R[[t]] ---+ R, Ei>O aiti .-..+ a0 , is a ring epimorphism. By Proposition 

6.1.4, R is g( x )-clean. D 

Remark 6.1.11 Generally the polynomial ring R[t] is not g(x)-clean for a non-zero 

polynomial g(x) E C(R)[x]. For example7 the polynomial ring R[t] with R commutative 

is not (x2 - x)-clean in {38} and is not (xn - x)-clean by (67}. 

6.2 (x2 +ex+ d)-clean rings 

In this section, we consider some types of (x2 +ex+ d)-clean rings. 

If V is a countably infinite dimensional vector space over a division ring D, then 

End(Vn) is clean by Nicholson and Varadarajan [53]. Further, Camillo and Simon (12] 

proved that End(Vn) is g(x)-clean provided that g(x) E C(D)[x] has two distinct roots 

in C(D). Recently, this result has been extended as the following. 

Example 6.2.1 (54} Let R be a ring and MR be a semisimple module over R. If g(x ) E 

(x - a)(x - b)C(R)[x] where a, b E C(R) are such that b and b - a are both units in R 7 

then End(MR) is g(x)-clean. 

Example 6.2.1 implies that the endomorphism ring of a semisimple module is clean (let 

a== 0 and b == 1). But it is surprising that Example 6.2.1 does not say more than this. 

Theorem 6.2.2 Let R be a ring and g(x) E (x - a)(x - b)C(R)[x] where a, b E C(R) 

are such that b - a E U ( R). Then the fallowing hold: 
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1. R is clean iff R is (x - a)(x - b)-clean. 

2. If R is clean, then R is g ( x )-clean. 

Proof ( 1 ). "==>". Let r E R. Since R is clean, ~ ~ == e + u where e2 == e E R and 

u E U(R). Thus, r == [e(b - a)+ a] + u(b - a), where u(b - a) E U(R) and e(b - a)+ a 

is a root of (x - a)(x - b). Hence R is (x - a)(x - b)-clean. 

"-¢==". Let r ER. Since R is (x - a)(x - b)-clean, r(b- a)+ a== e + u where e is a 

root of (x - a)(x - b) and u E U(R). Thus, r == ~ ~ + bua' where bua is a unit of Rand 

( e-a ) 2 == (e-a)(e-b+b-a) == (e-a)(b-a) == e-a So R is clean. 
b-a (b-a)2 (b-a)2 b-a · 

( 2). This follows from ( 1 ) . D 

Note that the converse of (2) need not hold by Example 6.1.2 and Example 6.1.3. 

Corollary 6.2.3 Let R be a ring. Then R is clean iff R is (x2 + x)-clean. 

Proof This is the case of Theorem 6.2.2 (1) when a== 0 and b == -1. D 

Remark 6.2.4 Though the clean rings are just the (x2 + x )-clean rings, a clean element 

need not be an ( x2 + x )-clean element. For example, 1 + 1 == 2 E Z is clean but it is not 

(x2 + x)-clean in Z. 

For any n E N, let Un(R) denote the set of elements of R that can be expressed as a 

sum of k units of R with 1 < k < n [40]. Rings generated by units are discussed in many 

papers (see, for example, [40, 41, 57]). 

It is an open question whether or not the clean property of the matrix ring Mn(R) 

(n > 1) implies that of R [38]. But the (x2 
- 2x)-clean property of Rand of the matrix 

ring Mn(R) (n > 1) are equivalent and the (x2 
- 2x)-clean rings are precisely those 

rings whose elements can be expressed as the sum of a unit and a square root of 1. The 
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equivalence "( 7) ¢:;> ( 8)" in the next theorem belongs to (35] and "( 6) =} ( 7)" has been 

proved by Camillo and Yu [17]. 

Theorem 6.2.5 Let R be a ring and m, n, k E N. Then the following are equivalent: 

1. R is ( x2 - 2n x )-clean. 

2. R is ( x 2 + 2nx )-clean. 

3. R is ( x2 
- 2x )-clean. 

4. R is (x2 + 2x)-clean. 

5. R is (x2 - 1)-clean. 

6. R is clean and 2 E U(R). 

7. For any a ER, a can be expressed as a== u + v where u E U(R) and v2 == 1. 

8. Mk(R) is (x2 - 2x)-clean. 

9. Mk(R[[t]]) is (x2 - 2x )-clean. 

( 
R[t]) . 2 10. Mk (tm) is (x - 2x)-clean. 

Proof "(1) =} (6)". We prove 2 E U(R). Suppose 2 ¢:_ U(R). Then R == R/(2nR)-/:- 0. 

Let 2n == e + u with e2 
- 2ne == 0 and u E U(R). Since 0 == 2n == e + u, we have 

e == -u E U(R). But e2 == e2 == 2ne == 0. This is a contradiction. So 2 E U(R). Then R 

is clean by ( 1) of Theorem 6.2.2 with a == 0 and b == 2n. 

"( 6) =} ( 1 )". By ( 1) of Theorem 6.2.2, R is (x2 - 2nx )-clean. 

Similarly, we can prove "(2) ¢:;> ( 6)", "( 3) ¢:;> ( 6)" and "(4) ¢:;> ( 6)". 

"(6) =} (7)". Let a ER. By "(3) ¢:;> (6)", l-a == e+u where e2 == 2e and u E U(R). 

Then a== (-u) + (1 - e) with -u E U(R) and (1 - e)2 == 1 ([17, Proposition 10]). 
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"( 7) ==? ( 6)". Let a E R. By ( 7), 1 - a== u + v where u E U(R) and v2 == 1. Thus, 

a== (-u) + (l -v) with -u E U(R) and (1-v) 2 == 2(1-v). By "(3) {::} (6)", we proved 

that ( 7) implies ( 6). 

"( 5) ==? ( 7)". If R is (x2 
- 1)-clean, then for any r E R , there exist v , u E U(R) such 

that r == v + u and v2 == 1. 

"(7) ==? (5)" . Let a ER. Then a can be expressed as a== u + v with u ,v E U(R) 

and v2 == 1. So v is the root of x2 
- 1. Hence R is ( x2 

- 1 )-clean. 

"(8) {::} (7)". By (35, Theorem 1.5]. 

"(9) {::} (3)". Since R is (x2 
- 2x)-clean iff R[[t]] is (x2 

- 2x)-clean by Proposition 

6.1.10, we get the equivalence of (9) and (3) by "(8) {::} (3)". 

"( 10) {::} ( 3)". By Proposition 6.1.4, "( 3) ==? ( 9) ==? ( 10) ==? ( 3)". D 

Remark 6.2.6 Let m, k E N. Similar to Theorem 6.2.5, it can be proved that, for a 

ring R and a fixed integer n > 0, the following are equivalent: 

1. R is (x2 - nmx)-clean. 

2. R is ( x2 + nkx )-clean. 

3. R is ( x 2 - nx )-clean. 

4. R is (x2 + nx )-clean. 

5. R is a clean ring with n E U(R) . 

But the other corresponding items in Theorem 6. 2. 5 are unknown if 2 ~ U ( R). 

Example 6.2.7 Let R be a ring with n E U(R). Then, for any continuous or discrete 

R-module M (see definition in [48}) , the endomorphism ring Endn(M) is an (x2 - nx )

clean ring. 
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Proof By a result in [16], every endomorphism ring of continuous or discrete module is 

clean. So by Theorem 6.2.2, EndR(M) is an (x2 
- nx)-clean ring. For example, when R 

is a division ring, EndR(M) is an (x2 - nx)-clean ring for any n EN. D 

Let C(X) denote the ring of all continuous real valued functions from a topological 

space X to the real number field IR and C*(X) denote the subring of C(X) consisting of 

all bounded functions in C(X) [34, pp. 10-11]. A topological space Xis called strongly 

zero-dimensional if X is a non-empty completely regular Hausdorff space and every 

finite functionally open cover {Ui}f 1 of the space X has a finite open refinement {Vi}i 1 

such that Vi n Vj == 0 for any i =!= j [30]. 

Example 6.2.8 Let X be a strongly zero-dimensional topological space. Then both 

Mk(C(X)) and Mk(C*(X)) are (x2 
- nx)-clean rings for any n, k EN. 

Proof By [9, Theorem 2.5], C(X) and C*(X) are clean. So they are (x2 
- nx)-clean 

by Theorem 6.2.2 and n is invertible in C(X) and C*(X). Then, by Propositio_n 6.1.9 , 

Theorem 6.2.5 and Remark 6.2.6, Mk(C(X)) and Mk(C*(X)) are (x2 - nx)-clean rings 

for any n,k EN. D 

Example 6.2.9 Let F be a field with characteristic char F == c, let V be an infinite 

dimensional vector space over F, and let R be the subring of End(F V) generated by the 

identity and the finite rank transformations. Then Mk(R) is an (x2 
- nx)-clean ring 

where n, k E N and c does not divide n. 

Proof By [36, Example 5.15], R is a unit-regular ring. So by [38], R is clean. Then R 

is an (x2 
- nx)-clean ring since n E Risa unit. Hence, by Proposition 6.1.8, Mk(R) is 

an (x2 
- nx)-clean ring for any n, k EN. D 

Example 6.2.10 Ehrlich {28} defined the unit-regular rings. She proved that if R is a 
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unit-regular ring with 2 E U ( R), then every element rur = r E R with certain u E U ( R) 

can be expressed as r = 2r~-1 u- 1 + ~u-1 , that is, R = U2 (R). In fact, for every unit

regular ring with 2 E U(R), the matrix ring Mk(R), for any k EN, is an (x2 
- 2x)-clean 

ring by {38} and Theorem 6.2.5. 

Proposition 6.2.11 Let R be a ring with d E U(R). If R is (x2 +ex+ d)-clean, then 

R = U2 (R). In particular, if R is (x2 + x + l)-clean, then R == U2 (R) is (x4 - x)-clean. 

Proof Let r E R. Then r = e + u with u E U(R) and e2 + ce + d == 0. So 

e(e + c) = (e + c)e = -d E U(R). Hence e E U(R). That is, r E U2(R). There

fore, R = U2 (R). Now the other conclusion is easy. D 

6.3 (xn - x)-clean rings 

A ring R is called potent if idempotents lift modulo J(R) and every left (or right) 

ideal not contained in J(R) contains a nontrivial idempotent (an idempotent that is not 

0 or 1 is called a nontrivial idempotent) . Every exchange ring is potent, so is every clean 

ring [51] . Notice that any potent ring containing no infinite family of orthogonal nonzero 

idempotents is a semi perfect ring [17]. Since Z(7)C3 is not a semi perfect ring [64] but is 

a Noetherian ring, it is not potent (hence not exchange). Thus, by Example 6.1.2, an 

(x4 
- x )-clean ring need not be potent. By Ye [67, p . 5624], the directly infinite regular 

ring with 2 invertible constructed by Bergman [39, Example 1] is not (xn - x)-clean for 

every n > 2. 

Proposition 6.3.1 Let R be a ring with n E N. Then R is ( ax 2n - bx )-clean iff R is 

( ax2n + bx )-clean. 

Proof "==>" . Suppose R is (ax 2n-bx )-clean. Then for any r ER, -r == e+u, ae2n-be == 

0 and u E U(R) . Sor == (-e) + (-u) where (-u) E U(R) and a(-e )2n + b(-e ) == 0. 

Hence, r is ( ax2n + bx )-clean. Therefore, R is ( ax2n + bx )-clean. 
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" -¢= ". Suppose R is ( ax2n +bx )-clean. Let r E R. Then there exist e and u such that 

-r == e+u, ae2n+be == 0 and u E U(R). Sor= (-e)+(-u) satisfies a(-e)2n-b(-e) = 0. 

Hence, R is (ax 2n - bx)-clean. D 

By Proposition 6.3.1, we get that Z(7)C3 is also (x4 + x)-clean. 

Example 6.3.2 Let 2 < n E N. If for every a E R, a = u + v where u E U(R) and 

vn- 1 = 1, then R is (xn - x)-clean. 

The following lemma is well-known. 

Lemma 6.3.3 Let a E R. The following are equivalent for n > 1: 

1. a= a(ua)n for some u E U(R). 

2. a= ve for some en+l = e and some v E U(R). 

3. a= fw for some Jn+l = f and some w E U(R). 

Proof "(1) => (2)" . Suppose that (1) holds and let e = ua. Then a = u-:- 1e with 

"( 2) => ( 3)". Suppose that ( 2) holds and let f = vev-1 . Then a = f v with Jn+l = f . 

"(3) => (1)". Suppose that (3) holds. Then (aw-I)n+I = Jn+l = f = aw-1 . It 

follows that a= fw =(aw- I )n+Iw = a(w- 1a)n. D 

Proposition 6.3.4 Let R be an (xn-x)- clean ring where n > 2 and a ER. Then either 

{i) a = u + v where u E U(R) and vn- l = 1; or {ii) both aR and Ra contain nontrivial 

idempotents. 

Proof Write a = u + e where u is a unit and en = e. Then aen- I = uen- I + e. 

So a(l - en- l) = u(l - en- l ). Since 1 - en-I is an idempotent, by Lemma 6.3.3, 

u(l - en- l) = f w where w E U(R) and f 2 = f E R. So f = a(l - en- l )w- 1 E aR. 

Suppose (i) does not hold. Then 1 - en- I -/= 0. Hence, f -/= 0. Thus, aR contains a non 
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trivial idempotent. Similarly, Ra contains a non trivial idempotent. D 

An element r E R is called n-clean if r == e + u1 + · · · + Un with e2 == e E R and 

ui E U(R) for 1 < i < n. And R is called n-clean if every element of R is n-clean (65]. 

Proposition 6.3.5 Let n EN. If the ring R is (xn - x)-clean, then R is 2-clean. 

Proof Let r E R. Then r == t + v for some tn == t and v E U(R). Since t(== tn) is a 

strongly 'If-regular element and strongly 'If-regular element is strongly clean(it is of course 

clean) [52], t == e + u for some e2 == e E R and u E U(R). So r == e + u + v is 2-clean. 

Hence, R is a 2-clean ring. D 

In fact , all (x2 - x)-clean rings and (x2 +ex + d)-clean rings with d E U(R) discussed 

above are 2-clean rings. 
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