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Abstract

Let R be an associative ring with identity 1 # 0. An element a € R is called clean
if there exists an idempotent e and a unit v in R such that a = e + u, and a is called
strongly clean if, in addition, eu = ue. The ring R is called clean (resp., strongly clean)
if every element of R is clean (resp., strongly clean). The notion of a clean ring was given
by Nicholson in 1977 in a study of exchange rings and that of a strongly clean ring was
introduced also by Nicholson in 1999 as a natural generalization of strongly mw-regular
rings. Besides strongly m-regular rings, local rings give another family of strongly clean

rings.

The main part of this thesis deals with the question of when a matrix ring is strongly
clean. This is motivated by a counter-example discovered by Sanchez Campos and Wang-
Chen respectively to a question of Nicholson whether a matrix ring over a strongly clean
ring is again strongly clean. They both proved that the 2 x 2 matrix ring M(Z2)) is not
strongly clean, where Z) is the localization of Z at the prime ideal (2). The following

results are obtained regarding this question:

e Various examples of non-strongly clean matrix rings over strongly clean rings.

e Completely determining the local rings R (commutative or noncommutative) for

which M, (R) is strongly clean.
e A necessary condition for My(R) over an arbitrary ring R to be strongly clean.

e A criterion for a single matrix in M,(R) to be strongly clean when R has IBN and
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every finitely generated projective R-module is free.

e A sufficient condition for the matrix ring M, (R) over a commutative ring R to be

strongly clean.

e Necessary and sufficient conditions for M,,(R) over a commutative local ring R to

be strongly clean.
e A family of strongly clean triangular matrix rings.

e New families of strongly m-regular (of course strongly clean) matrix rings over non-

commutative local rings or strongly m-regular rings.

Another part of this thesis is about the so-called g(z)-clean rings. Let C'(R) be the
center of R and let g(z) be a polynomial in C(R)[z|. An element a € R is called g(z)-
clean if a = e + u where g(e) = 0 and u is a unit of R. The ring R is g(z)-clean if
every element of R is g(z)-clean. The (z* — z)-clean rings are precisely the clean rings.
The notation of a g(z)-clean ring was introduced by Camillo and Simén in 2002. The

relationship between clean rings and g(z)-clean rings is discussed here.
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Introduction

Let R be an associative ring with identity 1 # 0, C(R) be the center of R, and g(x) be a
polynomial in the polynomial ring C(R)[z]. By Nicholson [51, 52|, an element a in a ring
R is called clean if there exist an idempotent e and a unit u in R such that a = e + u
and a is called strongly clean if, in addition, eu = we. The ring R is called clean
(resp., strongly clean) if every element of R is clean (resp., strongly clean). Following
Camillo-Simén [18] and Nicholson-Zhou [54], an element a € R is called g(z)-clean if
a = e+ u where g(e) = 0 and u is a unit of R and R is g(z)-clean if every element of R is
g(x)-clean. Thus, the (z* — z)-clean rings are precisely the clean rings. An element a in a
ring R is called strongly m-regular if both chainsaR D a?R D --- and Ra D Ra®> D - --
terminate and the ring R is called strongly m-regular if every element of R is strongly

m-regular [10], or equivalently, the chain aR 2 a*R D --- terminates for all a € R [26].

This thesis deals with some aspects of clean rings, strongly clean rings, strongly -
regular rings and g(z)-clean rings. The subject falls under the area of study of exchange

rings and largely overlaps with the study of von Neumann regular rings.

In 1964, Crawley and Jonsson introduced the well-known exchange property [25] when
they worked on direct sum refinements for algebraic systems. Let 7 be a cardinal number.
A module M is said to have the 7-exchange property if for every module X and each
direct decomposition X = M @Y = @;;N; with M = M and card(I) < 7, there are
submodules N,; < N;, 1 € I, such that X = M @ (@,L-E]N;), and M is said to have the
exchange property (or to be an exchange module) if M has the 7-exchange property

for every cardinal number 7. A module M is said to have the finite exchange property
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if M has the n-exchange property for every positive integer n. Modules with the exchange
property often have isomorphic refinements for direct sum decompositions [31, pp. 39-
41, Theorem 2.9 and Theorem 2.10]. In 1972, Warfield introduced exchange rings [63]. A
ring R is called an exchange ring if the regular module Ry has the exchange property
(equivalently, R is an exchange ring if for any a € R, there exists an idempotent e € R
such that e € aR and 1 — e € (1 — a)R by [51, p.167] or [37, Theorem 2.4]). It is well
known that the definition of an exchange ring is left-right symmetric and a module Mg
has the finite exchange property iff the endomorphism ring End(Mg) is an exchange
ring [63]. A ring is semiregular if it is von Neumann regular modulo the Jacobson
radical and idempotents lift modulo Jacobson radical. For example, semiperfect rings
are semiregular. Exchange rings include semiregular rings, m-regular rings (including von
Neumann regular rings), unital C*-algebras of real rank zero [3, Theorem 7.2], and many

other classes of rings.

In [51], Nicholson proved that clean rings are exchange rings and an exchange ring
whose idempotents are central is clean. In 1994, Camillo and Yu observed that a ring
constructed by Bergman [39] is exchange but not clean. Thus, for the first time, people
know that clean rings form a proper class of exchange rings. Since the publication of
Camillo-Yu’s paper, clean rings have attracted more and more authors and they are now
a quite active subject and much progress has been made. Recall that a ring R is unit
regular if every element a € R can be written as a = ava with some v € U(R), or
equivalently, a = eu for some idempotent e € R and some unit v € U(R). Thus, clean
rings are the additive analogs of unit regular rings. Surprisingly, every unit regular ring
is clean by Camillo, Khurana and Yu in [15] and [17] where it is also proved that every
semiperfect ring is clean. In 2006, Camillo, Khurana, Lam, Nicholson and Zhou proved
that the endomorphism ring of a continuous module is clean [16]. These results show

that the class of clean rings is quite large.

In 1999, Nicholson discovered the nice connection between the well known Fitting’s

Lemma and a certain class of clean rings which he called strongly clean rings. Local rings
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are strongly clean [52]. One notices that strongly clean rings are the additive analogs of
strongly regular rings where each element a can be written as a = eu = ue with e
an idempotent and u a unit. In 1947, Arens and Kaplansky [5] first investigated rings
that are now called strongly 7-regular elements and rings. Azumaya [10] defined left and
right m-regular elements and strongly m-regular rings. He proved that if a € R is strongly
m-regular, then there exist b € R and n > 0 such that a® = a™'b and ab = ba [10,
Theorem 3]|. Strongly m-regular rings include one-sided perfect rings, strongly regular
rings and algebraic algebras over a field. In 1988, Burgess and Menal [14] proved that
strongly m-regular rings are strongly clean (so strongly regular rings and one-sided perfect
rings are strongly clean). For an element « in the endomorphism ring End(Mpg) of the
right R-module Mg, Armendariz, Fisher and Snider [6] proved that « is strongly =-
regular iff it satisfies Fitting’s Lemma, that is, there exists an n € N such that M =
Ima™ @ Kera™. Nicholson [52] observed that « is strongly m-regular iff there exists a
direct sum decomposition Mg = Pr @ Qg such that the restriction a|p : P — P is an
isomorphism and a|g : @ — @ is nilpotent; and that « is strongly clean iff it satisfies the
general Fitting’s Lemma, that is, there exists a direct sum decomposition Mr = Pr®Qr
such that the restriction a|p : P — P and (1 —a)|g : @ — Q are isomorphisms. Thus, he
not only proved that every strongly m-regular element is strongly clean but also showed
that strongly clean rings are a natural generalization of strongly w-regular rings. Thus,
various questions can be asked whether certain properties of a strongly m-regular ring
can be extended to a strongly clean ring. In considering the Morita invariant property
of strongly clean rings, Nicholson [52] raised two questions: Let R be strongly clean with
e’ = e € R. Is eRe strongly clean? Is M,,(R) strongly clean? In her 2002 unpublished
manuscript [60], Sdnchez Campos answered the first question affirmatively and gave a
counter-example to the second question. In 2004, Wang and Chen [62], independently,
published a counter-example to the second question. Thus, an interesting question follows

naturally: (%) When is the matrix ring M,,(R) strongly clean?

In 2000, Camillo and Simén proved that if V' is a countable dimensional vector space
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over a division ring D and if g(z) € C(D)[x] has two distinct roots in C'(D), then End(Vp)
is g(z)-clean [18]. In 2004, Nicholson and Zhou generalized Camillo and Simén’s result by
proving that End(rM) is g(x)-clean where g M is a semisimple module over an arbitrary
ring R and g(z) € (z — a)(x — b)C(R)[z] with a,b € C(R) and b, b —a € U(R) [54]. So

one may ask: What is the relation between clean rings and g(z)-clean rings?

In this thesis, partial answers to question (x) are obtained when the underlying ring
is local or strongly m-regular. Thus, new families of strongly clean rings are obtained.
Some of these strongly clean rings are neither local nor strongly m-regular. We also
discuss the strongly clean property for triangular matrix rings over local rings and the
strongly m-regular property of matrix rings over strongly w-regular rings or local rings.
At last, g(x)-clean rings are touched. Related to question (%), a recent result of Borooah,
Diesl and Dorsey [12] shows that the matrix ring M, (R) over a commutative local ring

R is strongly clean iff R is an n-SRC ring (see Definition 3.1.8).
The thesis is organized as follows:

In chapter 1, two important classes of local rings through localization and completion

are introduced for later use.

In chapter 2, various non-strongly clean matrix rings over strongly clean rings are
presented; a criterion for a single matrix in M, (R) to be strongly clean is given when
R has IBN and every finitely generated projective R-module is free; a criterion for the
matrix ring M, (R) to be strongly clean is given when R is commutative local; a complete
characterization of the local ring R is obtained for M(R) to be strongly clean and many
more examples of strongly clean rings are obtained; and at last, a necessary condition

for My(R) over an arbitrary ring R to be strongly clean is obtained.

In chapter 3, the SRC factorization is generalized from a commutative local ring to a
commutative ring; a sufficient condition for the matrix ring M, (R) over a commutative
ring R to be strongly clean is proved; and necessary and sufficient conditions for the

matrix ring M, (R) over a commutative local ring R to be strongly clean are given.



CONTENTS Page 8

In chapter 4, a family of strongly clean triangular matrix rings over some local rings

are obtained.
Chapter 5 is about when a matrix ring is strongly m-regular.

In chapter 6, g(x)-clean rings are discussed.



Chapter 1

Preliminaries

Local rings are one of the classes of rings considered in this thesis. Later we will
see that there are two kinds of local rings that behave totally differently with respect
to the strongly clean property of matrix rings over them. In this chapter, we briefly
mention several properties of local rings and give a number of examples of them, in-
cluding localization and the ring of p-adic integers for later use. A special class of local
rings, Henselian rings, is also introduced. More detailed information on local rings and

Henselian rings can be found in [8, 29, 59].

1.1 Local rings

A proper ideal m is called maximal if there is no proper ideal of R strictly containing
m. Recall that a ring R is local if the non-invertible elements of R form an ideal. The

results in the next theorem are well known.

Theorem 1.1.1 [2, Theorem 15.15] For a ring R, the following statements are equiva-

lent:

1. R s a local ring.
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2. R has a unique maximal left ideal.

3. J(R) is a mazimal left ideal.

4. The set of elements of R without a left inverse is closed under addition.
5. J(R) = {z € R|Rz # R}.

6. R/J(R) is a division ring.

7. J(R) = {z € R: z is not invertible}.

8. If x € R, then either x or 1 — x is invertible.

In the rest of this section, all rings are commutative.

Definition 1.1.2 A subset S of a ring R is multiplicatively closed if 1 € 5,0 ¢ S,
and s1S, € S for all 51,59 € S.

Theorem 1.1.3 Let R be a commutative Ting and S be a multiplicatively closed subset

mn R.

1. Define a relation ~ on R x S: (ry,81) ~ (ry, S2) uff there exists some s € S such

that (r183 — res1)s = 0. Then ~ is an equivalence relation.

2. Denote the equivalence class of (a,s) as 2 or a/s. Define addition a/s + b/t =

(at + bs)/st and multiplication (a/s)(b/t) = ab/st. Then these operations are well-
defined.

3. The set of all these equivalence classes with the addition and multiplication in (2)

forms a ring, denoted as S™'R.

4. 0: R— S7'R, 6(r) =r/1 is a ring homomorphism with 0(s) invertible in S~'R for
alls € S.
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5. Let R be a commutative ring and ¥ : R — R’ a ring homomorphism with 1(s)
invertible in R for all s € S. Then there erists a unique ring homomorphism

¢ :S™'R — R such that the following diagram commutes:

0
R - S7'R

Proof We only prove ().

For existence, define ¢ : ST'R — R by ¢(r/s) = ¥(r)¥(s)~!. Suppose that
r/s = r'/s. Then there exists some ¢t € S such that (rs — r's)t = 0. Therefore,
(W(r)v(s) — w(r')(s)) ¥(t) = 0. Notice that 1(t) is invertible. So ¢(r)y(s’) = (r )¢ (s) =
0 and thus, ¥(r)y¥(s)™! = ¥(r' ) (s)~'. That is, ¢ is well-defined. Clearly, ¢ is a homo-

morphism and the diagram commutes.

For uniqueness, suppose h : ST!R — R is another homomorphism that makes the

diagram commute:

6
R - S7'R

Then h(r/1) = hé(r) = ¢(r) forallr € R. So h(1/s) = h((s/1)7!) = [h(s/1)]7! = ¥(s)™!
for all s € S. Hence, h(r/s) = h(r/1)h(1/s) = ¥(r)y(s)~! for all r/s € S™'R. Notice
that (r/s) = ¥(r)y(s)~! for all r/s € S~ R. Therefore, h = . O

Definition 1.1.4 Let S be a multiplicatively closed subset of a commutative ring R.
Then a fraction ring of R with respect to S is a commutative ring, denoted by S™'R

too, and a ring homomorphism 6 : R — S™'R such that 6(s) is invertible for every s € S
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and ST'R is universal with the property: If R is a commutative ring and 1 : R — R’ s
a ring homomorphism with ¥(s) invertible for all s € S, then there exists a unique ring

homomorphism ¢ : ST'R — R with 0 = 1, i.e., the following diagram is commutative:

r—" - ST'R

So the ring S™!R constructed in Theorem 1.1.3 is a fraction ring of R with respect to

S.

Corollary 1.1.5 If S contains no zero diwvisors, then 6 : R — S™'R is monic; if R is
an integral domain and S = R\{0}, then we call S™'R the quotient field and denoted by
Q:(R); if S is any multiplicatively closed subset of R, then S™'R is a subring of Q.(R).

Proof Suppose §(r) = r/1 = 0. Then r/1 = 0/s for some s € S. So (rs — 0)t = 0 for
some t € S. Hence rst = 0. Since S contains no zero divisor, we get » = 0. That is, 6 is

monic. The rest is easy to prove. [

A proper ideal p in a commutative ring R is prime if zy € p implies x € p or y € p.
It is well known that p is a prime ideal of R iff R/p is a domain and m is a maximal ideal

of R iff R/m is a field.

Theorem 1.1.6 Let p be a prime ideal of a commutative ring R. Then S = R\p is
a multiplicatively closed set and S™'R is a local ring, denoted by R, ( R, is called the

localization of R at the prime ideal p).

Corollary 1.1.7 Let Z be the ring of integers. Then for any prime number p € Z,
Ly ={m/n € Q:m,n € Z,n # 0,p and n coprime } is a local ring and Z is a subring
Of Z(p).
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Some other local rings appear as power series rings R[[z]] where R is local and the

ring of p-adic integers Zp.

Example 1.1.8 Let R be a local ring. Then the power series ring R|[z|| is a local ring
with m = (z) = Rl|z]|x + J(R). In particular, if F is a field, then F[[z]] is a local ring
with m = (z) = F|[z]|x.

Example 1.1.9 Let p € Z be a prime number. The ring of p-adic integers Zp s a local

ring.

The ring of p-adic integers is Z, = {5>2saiptra; €{0,1,--- ,p—1}}. Let z =
S oap andy = o bipt in Z,. Define z+y = > oo Dt where the coefficients ¢; are
defined inductively: by the division algorithm in Z, there exist unique integers 0 < cog < p
and hg < 1 such that ag + by = cg + pho, and unique integers 0 < ¢; < p and hy € Z such
that a; + by + ho = ¢1 + phy; and inductively, unique integers 0 < ¢ < p and hy € Z
such that ax + bx + hx—1 = cx + phx, k € N. Similarly, define zy = > .o, d;p* where
agby = do + pho, arbo + ax_1by + - - - + agby + hx_1 = dy + phy, do,dy € {0,1,--- ;p— 1},
and ho,hy € Z (k=1,2,---). Then 2;: forms a ring. It is a local ring with m = pr.

In commutative algebra, an important class of local rings is constructed by the com-
pletion of a ring with respect to certain ideals. In fact, for a local ring R, R|[z]| is the
completion of R[z| with respect to the ideal (z) = zR|z] and Zv is the completion of Z
with respect to the ideal pZ (see [29]).

1.2 Hensel’s Lemma and Henselian rings

In this section, we introduce Hensel’s Lemma and Henselian rings. Later we will see

that matrix rings over them are strongly clean.

Let I be an ideal of a ring R. For f(t) = ap + a1t + -+ + a,t" € R[t], we write
) =ag+at+ - +axt" € [,

Definition 1.2.1 (Hensel’s Lemma) Let R be a commutative ring with a mazimal
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ideal m. We say that R satisfies Hensel’s Lemma if R satisfies the following property:
For any monic polynomial f(t) € Rl[t], if f(t) = a(t) B(t) such that a(t) is monic, a(t)
and B(t) are coprime in £[t], then there exist unique polynomials g(t), h(t) € RJ[t] with
g(t) monic such that f(t) = g(t)h(t), g(t) = a(t) and h(t) = B(t).

Definition 1.2.2 A commutative local ring R s called a Henselian ring if R satisfies

Hensel’s Lemma [11, 49].
The following is a generalization of a Henselian ring which will be used later.

Definition 1.2.3 [7] A local ring R (may not be commutative) with R = R/J(R) being
a field 1s called a general Henselian ring if R satisfies the following condition : For
any monic polynomial f(t) € R[t], if f(t) = a(t)B(t) with a(t), B(t) € R[t] coprime and
a(t) monic, then there exist unique polynomials g(t), h(t) € R[t] with g(t) monic such
that f(t) = g(t)h(t), g(t) = a(t), and h(t) = B(t).

It is well known in commutative algebra [29, Theorem 7.18] that the ring of p-adic
integers Z, and the formal power series ring F[[z]] are Henselian rings where p is a prime

number in Z and F' is a field.



Chapter 2

Strongly Clean Matrix Ring My (R)

As we mentioned in the introduction, the matrix ring My(Z)) over the local domain
Z(2) is not strongly clean [60, 62]. In section 2.1, more negative examples are given. In
section 2.2, we give a criterion for a single matrix in M, (R) to be strongly clean when
R has IBN (see Definition 2.2.3) and every finitely generated projective R-module is free
and then we easily get a criterion for the matrix ring My(R) to be strongly clean when R
is commutative local. In section 2.3, we determine when Mjy(R) is strongly clean where
R is a local ring. In section 2.4, many examples of strongly clean 2 X 2 matrix rings over
local rings are given. At last, in section 2.5, we give a necessary condition for My (R)
over an arbitrary ring R to be strongly clean. Section 2.1 and some part of section 2.2

come from [22, 23].

2.1 Non-strongly clean matrix rings over commutative local
rings

If R is a commutative local domain, when is M,,(R) strongly clean? In this section,

we prove that M, (R) is not strongly clean if R is any of the following types:
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e Z(p), the localization of Z at a prime ideal (p).

o S[z],, the localization of the polynomial ring S[z] at a prime ideal p, where S is a

commutative domain.

o Z|w]y, the localization of Z[w] at a prime ideal p, where w € C\Q with w? € Z such
that Z[w] is a UFD (Unique Factorization Domain).

We first notice that, for any ring R and for integers n > m > 1, if M[,,( R) is strongly clean,
then so is M,,(R). This observation follows from the next result of Sdnchez Campos [60].
For an element @ € R, r(a) and I(a) denote the right and left annihilators of a in R
respectively. If a = e + u with e? = e,u € U(R) and eu = ue, then we say a = e+ u is a

strongly clean expression of a.

Theorem 2.1.1 [60, Theorem 2.3] Let R be a strongly clean ring. Then, for any e* =
e € R, eRe 1s strongly clean.

Proof Let a € eRe with a = g + u where ¢° = g € R,u € U(R), and gu = ug.

1z. Hence,

For any = € r(a), az = 0 implies gz = —uz. So z = —u"'gr = —gu~
gr =x. Soz € r(1 —g), i.e,, rla) C r(1 — g). Similarly, we have I(a) C I(1 — g). So
(1—g)(1—e)=(1—-¢€)(1—g)=0because (1 —e) € r(a) NI(a). Hence eg = ge = ege
is an idempotent in eRe. So eu = ue = eue € U(eRe) because e, g,a, and u commute.

Therefore, a = ege + eue is a strongly clean expression of a in eRe. So eRe is strongly

clean. ]

The next theorem gives a necessary condition for the 2 x 2 matrix ring over a com-

mutative ring to be strongly clean.

Theorem 2.1.2 Let R be a commutative ring. If My(R) is strongly clean, then, for any

w € J(R), z° — x = w 1s solvable in R.
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1 -k
1 0

Proof For w € J(R), let A = ( ) where £ = w(1 + 4w)~!. By hypothesis, let

A = E + U be a strongly clean expression of A in My(R) where E = (a Z) and

l1—c¢c —d

U= (1_a _k—b) The invertibility of U gives
detU =d(a— 1)+ (k+b)(1 —c) € UR). (2.1.1)
By EU = UE we get
b= —kc, c=a—d. (2.1.2)

Since k € J(R), b € J(R) by (2.1.2). So (k+b)(1 —c¢) € J(R). Thus, (2.1.1) gives
d € U(R) and a — 1 € U(R). (2.1.3)

E? = F implies
a—a’*=bc, d—d° =bc (2.1.4)

Since b € J(R), it follows by (2.1.3) and (2.1.4) that a,1—-d € J(R). So 1+a—d € J(R).
Hence, a —d € U(R). But by (2.14), a —a* =d—d?* and so (a+d—1)(a—d) = 0.
Thus,a+d=1. Hence,c=a—-d=a— (1 —a) =2a — 1 by (2.1.2). So we have

a—a®=bc=—kc® =—k(2a - 1)
= —k(4a® — 4a + 1) = 4k(a — a?) — £,
where the first equality follows from (2.1.4) and the second by (2.1.2). So (1—4k)(a®*—a) =

k. Hence, a’—a = (1—4k)™'k = w by k = w(1+4w)~!. Thus, ais a solution of z?—z = w.

0

Later we will see that this condition is also sufficient for commutative local rings

(Corollary 2.2.12) and in addition we will generalize this to arbitrary rings (Theorem

2.5.1).

It was proved in [60] and in [62] that M(Zs)) is not strongly clean. This is a special

case of the following result.
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Corollary 2.1.3 For any prime p € Z, M, (Zy) is not strongly clean for every n > 2.

Proof Notice that p € J(Z¢) and z* — z + p = 0 has no solution in Q because the
discriminant 1 — 4p < 0. So by Theorem 2.1.2, My(Z,)) is not strongly clean. Hence,
M,,(Zy)) is not strongly clean by Theorem 2.1.1. O

Corollary 2.1.4 Let S be a commutative domain, p a prime ideal of S|z|, and S|z], the

localization of S[x] at p. Then M, (S|z],) is not strongly clean for every n > 2.

Proof Take h(z) € J(S[z],) with h(z) € S[z] such that the degree, degh, of h(z) is an
odd number. We claim that y* — y = h(z) has no solution in S[z],; so My(S|[z],) is not

strongly clean by Theorem 2.1.2. Otherwise, there exists % € S|z], such that
f(z)y _ flz)
() - = h(z).
g(z)”  g(z)

That 1s

Either deg f > degg or deg f < degg or deg f = deg g clearly leads to a contradiction.
Hence, M, (S|z],) is not strongly clean for every n > 2 by Theorem 2.1.1. []

We can give more negative examples after the following lemmas.

Lemma 2.1.5 Let R be a commutative domain and A € My(R). Then A is an idempo-
tent iff A=0or A=1or A= (% ° ) where bc = a —a® in R.

¢ 1—a

Proof The verification is straightforward. [

An element a in a ring R is called a square if a = b for some b € R. The trace and
the determinant of a square matrix A over a commutative ring are denoted by trA and

det A respectively.
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Lemma 2.1.6 Let R be a commutative domain and A = (a” m) € My(R) with
a21 az2

s=ay — ayp and t = (trA)?> —4det A. If A and I — A are non-invertible and if A is a

strongly clean element in My(R), then s*t is a square in R.

Proof Since A and A — I are non-invertible in My (R) and A is strongly clean in M (R),
by Lemma 2.1.5, there exist a, b, c € R with bc = a — a? such that

A=FE+ (A—-E), where F = (a 1i ),
is a strongly clean expression of A in My(R). It follows from F(A — F) = (A— E)E that

sb=aj2(2a — 1), sc = as(2a —1).

Since bc = a —a? and t = s® +4a2a3,, we have ajpa9;(2a—1)? = s?bc = s*(a —a?), which
gives (s + 4ay2a01)a® — (8% + 4ajpag; )a + ajpag;, = 0. That is, ta®? — ta + ajpag = 0. It

follows that [t(2a — 1)]* = t(4ta® — 4ta + t) = t(—4aypa0 +t) = t(s? =t +t) = s*t. O

Corollary 2.1.7 Let R be a commutative domain and p € R be a nonunit and q € R.

If A= (p+ : p) is a strongly clean element in My(R), then 4gp + 1 is a square in R.
q P

Proof Since p is a nonunit of R, A and A — I are non-invertible in My(R). In this case,
s=(p+1)—p=1landt=(trd)? —4det A= (2p+1)2-4(p* +p—pq) =1+ 4pq. So
by Lemma 2.1.6, 4pq + 1 = s*t is a square in R. O

Throughout the following discussion, let w denote a complex number such that w? € Z
and w ¢ Q and let Zw] = {n + mw : n,m € Z}. Then Z[w| is a domain and the
representation n + mw of elements of Z|w| is unique. The study of such domains Z[w]
has evolved into a subject in algebraic number theory. Every nonzero nonunit in Z[w] is

a product of irreducibles, but it is difficult to determine which choices of w make Z[w] a

UFD, a PID (Principal Ideal Domain), or an ED (Euclidean Domain) [61]. One of the
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main results of this section is the following theorem. In this theorem, any subring of Z|w]

is assumed to contain the natural number 1.

Theorem 2.1.8 Suppose that Z|w] is a UFD. Let R be a subring of Q.(Z[w]) such that
S C R C QS) for some subring S of Z|w]. Then the following are equivalent.

1. R = Q(R)(= Qc(5)).
2. M, (R) is strongly clean for alln > 1.

3. M, (R) is strongly clean for somen > 1.

4. My(R) is strongly clean.

Proof “(1) = (2)” because being artinian is a property of Morita invariant and
artinian rings are one-sided perfect and one-sided perfect rings are strongly clean. “(2) =

(8)” is clear.

“(8) = (4)”. This is by Theorem 2.1.1.

“(4) = (1)”. Suppose that R # Q.(R).

Case 1. There exists a nonzero nonunit p € S such that p ¢ Z. Since p € Z[w], write

p=u-+vw with u,v € Z. Then v # 0. Choose q € Z to be a prime number such that
q > maz{(2v)°|w?| + 1,4|ul}.

By (4), A = (p R ) is a strongly clean element of My(R). Therefore, by Corollary
2.1.7, 4gp+ 1 is ; sqlfare in R. Because 4gp+ 1 € Z[w] and Z[w] is a UFD, 4gp + 1 = z*
is solvable in Q.(Z|w]) if and only if the equation is solvable in Z(w). Therefore, there
exists £ € Z[w] such that

£ =4gp+1. (2.1.5)

Write £ = n + mw with n,m € Z. Then it follows from (2.1.5) that

4qu + 1 = n* + m?w?, (2.1.6)
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2qu = nm. (2.1.7)

Since ¢ is a prime number, either g|n or glm. If ¢|n, write n = gny. Then 2v = nym by

(2.1.7). Since v # 0, n; # 0, so m = 2. Thus, (2.1.6) yields

2V
4qu + 1 = ¢°n® + (a)zwz, (2.1.8)
showing that
2
g | () w?—1]. (2.1.9)
ni
Note that
2v 2001 9 5
[(—=)%w® = 1] < (—)*|w?| + 1 < (20)*|w’| +1 < g,
(15 ny

so it follows from (2.1.9) that (2)?w?—1 = 0. Thus, (2.1.8) yields 4qu = ¢°n3, so ¢ = 54—%,
contrary to the fact that g > 4|ul.

So it must be that g|lm. Write m = ¢gm;. Then 2v = nm, by (2.1.7). Since v # 0,
my # 0,s0n = 31—”1 By (2.1.6), we have

2
dqu+1 = ( U) + ¢?miw?, thatis, q(4u — gminw?) =(—)*-1.
mi my

Since (%) =1 > 0 and ¢ > (7*)* — 1 (because ¢ > (2v)?|w?| + 1), it must be that

(%:_)2 — 1 =10. This shows that ¢ = # = _;?EJTI < 4|u|, a contradiction.

Case 2. Every nonzero nonunit z € S is an element of Z. We claim that S = Z. If
not, then there exists n+mw € S with n,m € Z and m # 0. Because R # Q.(R), R has
a nonzero nonunit z such that z € S. By hypothesis, z € Z. So z(n 4+ mw) is a nonzero
nonunit of S. But z(n + mw) ¢ Z since zm # 0. This contradiction shows that S = Z.
Thus, by hypothesis, Z C R C Q. Take a prime number p € R but 2 gé R. Choose a

+1
q

of My(R). Therefore, by Corollary 2.1.7, 4¢p + 1 is a square in R. Since R C Q and

prime number g with ¢ > p+ 2. Then by (4), A = (p d ) is a strongly clean element
D

4gp + 1 € Z, there exists m € Z such that m? = 4gp+ 1 and m > 1. Therefore,

m+1 m-—1
2 9

qap =
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It can be verified that

1
L met,
m + 1
5  TP=4q=P- 1,
1
T—;L————-q:q:erl, and
m + 1
— == =2
But this is impossible by the choice of q. The proof is complete. ]

Corollary 2.1.9 Let R = Z|w] be a UFD (for example, w = v/—1,/=2,v/2,V3, etc.).
Then for any prime ideal p of R, M,(R,) ts not strongly clean for every n > 2.

Proof By R, C R, C ).(R,) and Theorem 2.1.8, we get the result. O

2.2 Strongly clean matrices via similarity

In this section, we give a necessary and sufficient condition for a matrix of M, (R)
to be strongly clean where R has IBN (see Definition 2.2.3) and every finitely generated
projective R-module is free. As an easy consequence of this result, a criterion for a 2 x 2
matrix over a commutative local ring to be strongly clean and a criterion for My(R) over
a commutative local ring R to be strongly clean are obtained. At the end of this section

we present a family of non-trivial strongly clean matrix rings.

A matrix A € M,(R) is called singular if A is non-invertible and nonsingular if A

is invertible. Here we give a more detailed definition related to singularity of a matrix.

Definition 2.2.1 A singular matrizr A € M, (R) is called purely singular if [ — A
is singular and semi-purely singular if I — A is nonsingular. A nonsingular matriz
A € M, (R) is called purely nonsingular if I — A is nonsingular and semi-purely

nonsingular if I — A is singular.
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Every matrix belongs to exactly one of the above four types. All types of matrices are

strongly clean except purely singular ones. So we have the following lemma.

Lemma 2.2.2 The matriz ring Ml,,(R) is strongly clean if and only if its purely singular

matrices are strongly clean.

Definition 2.2.3 [/5, Definition 1.3/ A ring R is said to have right IBN (Invariant

Basis Number) if, for any natural numbers n,m, (R")gr = (R™)gr itmplies that n = m.

Notice that this definition means that any two bases of a finitely generated free module
F'r have the same finite number of elements. This common number is defined to be the
rank of Fr. Similarly, we can define left IBN. It is known that a ring has right IBN iff it
has left IBN. So we can speak of the IBN property of a ring without distinction of “left”
or “right”.

The following lemma will be useful later.

Lemma 2.2.4 [52, Theorem 3] Let Mg be a module. Then the following are equivalent
for ¢ € End(MRg):

1. ¢ 1is strongly clean in End(Mpg).

2. There is a decomposition M = P ® Q) where P and Q) are p-invariant, and ¢|p and

(1 —¢)|g are isomorphisms.

Pictorially, ¢ is strongly clean ift Mg has a PQPQ-decomposition:
Mp =P & @
solg 1—-wa%
Mrp = P & Q.
Similar characterizations for ¢ to be clean, strongly m-regular, or strongly regular were

given in [16].

It is well known that M, (R) = End((R")g) and (R")g is a left M,,(R)-module. Fix

a basis of (R")g. Then every element v € (R")g can be considered as an n x 1 matrix.
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Furthermore, on one hand, every right R-module endomorphism ¢ € End((R")g) corre-
sponds to exactly one matrix 7" € M,,(R) and ¢(v) = Tv where Tv is the multiplication
of matrices T' and v; and on the other hand, every matrix T € M,,(R) corresponds to
exactly one right R-module endomorphism ¢ € End((R")r) and Tv = p(v). So for every
matrix T' € M,,(R), we always use o7 € End((R")g) to correspond to T and o (v) = Tw.
For convenience, in section 2.5 and section 3.1, we will directly use T' € M, (R) to denote
the endomorphism ¢ € End((R")r) and we say “the kernel of 77 instead of “ the kernel

M

of pr” and “the image of T instead of “the image of pr”.

Now we can prove the following theorem:

Theorem 2.2.5 Let R be a ring having IBN and every finitely generated projective R-

module be free. Then a purely singular matriz T € M, (R) s strongly clean iff T' is similar

to (= ( 7(;0 ;3 ) where Ty 15 semi-purely nonsingular and T, is semi-purely singular.
1

Proof “=". Suppose T is purely singular and strongly clean. Let {€;,€, - ,€,} be a

basis of (R")r and, under this basis, T is the matrix corresponding to ¢7. Then

LpoT(ela €2, " 7€n) = ((,OT((‘:]), (IOT(E2)) Tt aQPT(En)) = (611 €2, " ,En)T.

By Lemma 2.2.4, there exist R; # 0 and R, # 0 such that

QT - (Rn)R = R1 @Rg — (Rn)R == Rl @Rg

with @r|r, and (1 — ¢7)|g, being right R-module isomorphisms. The direct summands
R, and R, are projective right R modules and so they are both free. In addition, they
satisfy

n = rank((R")gr) = rank(R,) + rank(Ry) (2.2.1)

since R has IBN. Suppose rank(R;) = k. Then by equality (2.2.1), we can assume
that {m,n2,--- ,n.} is a basis of (Rgr)"™ where {n;,n2, -+ ,nx} is a basis of R; and
{Mk+1, Mk+2, - , M} is a basis of Ry. Since pr|g, : R1 — Ry and (1 — ¢71)|g, : Ro — Ry

are both isomorphisms, we have

(PTlRl (771,772a e 7nk) — (771,772, e 7nk)T0 (222)
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with some Ty being nonsingular and

/

(1 — o) Ry (M1, M2y 5 Mn) = (M1, Mhet2, ** + 5 M) 13 (2.2.3)

with some T} being nonsingular. By equality (2.2.3), we get

(@Tle)(’UHl,’UHz, o 77771)

/

e (T]k-l-lank-}—Za e 7?7n)In—k - (nk-l-l)nk—}-Qa e :T]n)Tl

/

= (nk+17nk+2) e 77771)(]71—];; - Tl)

Claim. T\ = I, — Tl' is singular.

Let C'= ( 7(;0 | ) . If T} is nonsingular, then

T,

(PT(UI: N2, - 77711)

- (@T(nl): @T(nl): T 7‘PT(nn))

T 0
=(771a772,"'777n)( ° )

0 T

- (771,772,‘ tt 77771)0'

To 0 Ty 0 Ty 0 To O . :
Now | °° ° L= 0 . = [,. So C is nonsingular and
0 T 0 Ty 0 Ty 0 T

¢r is an isomorphism under the basis {n1,72, - ,m.}. But ¢r is not an isomorphism

because T is purely singular. Hence, T} = I,_; — T} is singular. We proved the claim.

Since {€1, €, -+ ,€,} and {1,792, -+ ,m,} are both bases of (R")g, we have

(€1,€2,*+ ,€n) = (M, W25+ , ) P21,
(M2, 5 1n) = (€1, €2, &) Pa.
So (€1,€2,+++ ,€n) = (€1,€2,"+ ,€n) PaPy = (€1,€2,+ ,€x)1p.
By the uniqueness of the expression of every element of a free module, we get P, P, = I,,.
Similarly, we get PP, = I,,. Hence, PP, = PP, =1I,. Let P = P, = P;'. Now
pr(er, €2, ,€n) = (€1,€2, + ,€)T,

(€1, €2, ,€n) = @r((M, M2, , M) P1)
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= ‘PT((UIW% e vnn))Pl

T
:(7717772:"'a77n)( ° O)Pl

0 T

:(613627"')EH)P2(T0 O)Pl

0 T
¥ 0 O
= (€1,€9, ++ ,€,) P P.
(17 2y :n) (D T})

0

Ty

So PTP~! = ( 7;0 ) .Since I,_x — T = Tll is nonsingular, we get 77 is semi-purely

singular.
Let Iy — Ty = T,. Then
PYI,-T)P=1I,-P'TP

0 O I 0 To O
= I — = -
0 T 0 I,k 0 Th
[ Lk-To 0 [Ty o0
0 L w—T o T, )

If T(; is nonsingular, then I,, — T is nonsingular which contradicts the fact that T is purely

singular. So T} is semi-purely non-singular.

“<”. Suppose there exists P € GL,(R) such that P~!'TP = C = ( YI;O ;3 ) where

T is semi-purely nonsingular of order k£ and 77 is semi-purely singular. Then

() (2 )
0 Il g 0 Ty — In_

0 0 i 2 To 0
where is an idempotent and
0 TIn—k 0 T1—I

C' 1is strongly clean and the matrix which is similar to a strongly clean matrix is also

) is a nonsingular matrix. Since

strongly clean, 7' is strongly clean. [

Every PID has IBN and every submodule of a finitely generated free module over a
PID is a free module [55, Theorem VI.1]. Every local ring has IBN [45, Example 1.6] and
every projective module over a local ring is free (see [2, Corollary 26.7] or [44, Theorem

19.29]). The well-known Quillen-Suslin Theorem [59, p.149] says that if R is a PID,
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then every finitely generated projective R|[t;,- - - ,tx]-module is free. So the class of rings
having IBN and every finite generated projective module over them free is large. Here

we get a criterion for a single matrix over such a ring to be strongly clean.

Corollary 2.2.6 Let R be a ring having IBN, assume every finitely generated projective
R-module be free, and let T' € My(R) be purely singular. Then T is strongly clean iff T
is similar to ( 3 ’ ) withv —1,u € U(R) and v,u—1¢ U(R).

Proof By Theorem 2.2.5 and Lemma 2.2.2. [

The claims of the next two examples follow by Corollary 2.2.6.

Example 2.2.7 Suppose that both A € My(Z) and I — A are non-invertible, then A is
strongly clean iff A is similar to one of the elements in { (; g) , (“1 O) , (1 0) and (_1 0) }

0O O 0 2 0 2

Example 2.2.8 Let Z[i] = {a + bi : a,b € Z} be the ring of the Gaussian integers. If
A € My(Z[i]) and I — A are non-invertible, then A is strongly clean iff A is similar to

. to O
one of the elements in { ( 0 ) tt0 € {1,—1,i,—i},t; € {0,2,1 — 1,1 +i}}.
0

For a local ring, we have

Corollary 2.2.9 Let R be a local ring and let T € My(R) be purely singular. Then T
° ) with jo, 1 € J(R).

is strongly clean off it is stmilar to ( 14[—)3‘0 |
J1

Proof By Corollary 2.2.6. [
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Corollary 2.2.10 Let R be a local ring. Then the following are equivalent:

1. My(R) is strongly clean.

X ) with jo, j1 € J(R).

2. Every purely singular matriz in My(R) is similar to ( 14(—)3’0
J1

3. Every purely singular matriz in My (R) is similar to a diagonal matriz.

Proof “(1) = (2)”. By Lemma 2.2.2 and Corollary 2.2.9.
“(2) = (8)”. This is trivially true.

“(8) = (1)”. By Lemma 2.2.2 and the fact that every diagonal matrix over a local

ring is strongly clean. [

Using the techniques of [22] and [23], the author of [46, Theorem 2.6] proved the

equivalences (1) < (8) < (4) of the next result. Here we give a much simpler proof.

Corollary 2.2.11 Let R be a commutative local ring. Then the following are equivalent

for the matriz A € My(R):

1. A is purely singular and strongly clean.

0
3]

2. A is similar to (ts ), where 1 —ty € J(R) and t, € J(R).
3. |A| € J(R) and 1 —tr(A) € J(R) and A is similar to a diagonal matriz.
4. |Al € J(R) and 1 —tr(A) € J(R) and z* — tr(A)z + |A| = 0 is solvable in R.

Proof “(1) = (2)”. It follows by Corollary 2.2.9.

“(2) = (3)”. Tt is clear.

0

“(8) = (4)”. Suppose that (&) holds and assume A is similar to (a Z) Since
similarity preserves the determinants and the traces of matrices, one obtains that |A| = ab

and tr(A) = a+b. So both a and b are roots in R of z* —tr(A)z + |A|. Hence, (4) holds.
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“(4) = (1)”. Suppose that (4) holds. Let a € R be a root of z? — tr(A)z + |A|.
Then b = tr(A) — a is also a root of z° — tr(A)z + |A|. Thus, a +b = tr(A) and ab = |A].
Since tr(A) € U(R) and |A| € J(R), one of a,b must be a unit and the other must be
in J(R). Without loss of generality, we assume that a € U(R) and b € J(R). Write
A = (Z: a”). From ay; + agy = tr(A) € U(R), either a;; or ag is a unit. Without

a2

b— az2 a2

P € GLy(R) since |P| = aass + b(a;; — a) — |A| € U(R). Then

loss of generality, we may assume that ay; € U(R). Let P = ( o ama“), and thus

PAP_l 1 az1 a—ail a1l aig a2 al —a
|P| b— a2z a2 a1 a2 a2 — b a1
B 1 * az1(—a? + tr(A)a — |A|)
P aia( wh? 4 tr(A)b — |A|) *
[ 0
=1 T

is strongly clean in M;(R), and so is A. By direct calculation, the hypothesis shows that
A ¢ GLy(R) and I — A ¢ GLy(R), that is, A is purely singular. O

The following is essentially [23, Theorem 8] and is also contained in [12, Proposition

24].

Corollary 2.2.12 Let R be a commutative local ring. Then My(R) is strongly clean iff
for every w € J(R), t> —t = w 1is solvable in R.

Proof “«<”. Let A € My(R) and assume that A is a purely singular matrix. Then
|A| € J(R) and 1 — tr(A) € J(R). Thus, tr(A) € U(R). By hypothesis, there exists
a € R such that a* —a + E;'f%%ﬁ" = 0. Thus, (tr(A)a)? — tr(A)(tr(A)a) + |A] = 0. So
t? — tr(A)t + |A| = 0 is solvable in R. Hence A is strongly clean in M (R) by Corollary
2.2.11.

“=”. Let w € J(R) and A = (1 t:) Then |A| =|I — Al = —w € J(R). So Ais a
purely singular strongly clean matrix. Thus, by Corollary 2.2.11, t* — tr(A)t + |A] = 0

is solvable in R. That is, t* — t = w is solvable in R (This direction can be proved by
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Theorem 2.1.2). O]

Let Cy = {1, g} be the abelian group of order 2. The proof of (2) of the next lemma
for the group ring RC, is contained in the proof of [38, Proposition 3] and (1) follows

from [50]. Here we give a simple proof.

Lemma 2.2.13 Let R be a commutative local Ting.

1. If2 € J(R), then J(RC5) = {ro+r1g : ro+7r1 € J(R)} and RCy/J(RC,) &£ R/J(R).

In particular, RCy 1s local.
2. If2€ U(R), then RC; = R® R.

Proof (1). Write RC, = {a + bg : a,b € R}. Note that if a® — b* € U(R), then
(a+bg) ' = (a*—-b*)""a—bg). Let A= {a+bg:a+be J(R)}. Then A is an ideal of
RC,. For any a+bg € A, 1+ (a+ bg) = (1+ a) + bg € U(RC,) because (1 +a)? — b =
1+ [2a+ (a+b)(a—0b)] € UR). So A C J(RC;). But it is clear that J(RCy) C A, so
A = J(RC,). Thus, R/J(R) — RCy/J(RC,) given by r + J(R) — r + J(RC5) is a ring

isomorphism.

(2). This is because 6 : RCy — R® R, a + bg — (a + b,a — b), is an isomorphism. []

Lemma 2.2.14 Let R be a local ring, w € J(R), andu € U(R) be central. The following

are equivalent:

2 _uz = w is solvable in R.

i. %
2. x* —ux = w 1is solvable in U(R).

3. x* —ux = w 1is solvable in J(R).

Proof If z, satisfies the equation, then so does u — xy, and in this case xo(u — zg) =

—w € J(R). Hence one of xy and u — xg is in J(R) and the other belongs to U(R). O
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Corollary 2.2.15 Let R be a commutative local ring. The following are equivalent:

1. M (R) s strongly clean.

2. My(RC5) is strongly clean.

Proof “(2) = (1)”. This is because M(R) is an image of My(RCj).

“(1)=(2)". Let S = RCs.

Case 1. 2 € U(R). By Lemma 2.2.13, RCy = R® R. So M,(RC;,) = My(R)®M,(R)
1s strongly clean.

Case 2. 2 € J(R). By Lemma 2.2.13, RC5 is a commutative local ring. For w € J(S),
we show that there exist zg, z; € R such that z* —z = w where z = 7y +1,9. By Lemma
2.2.13, w = 19 + r1g where ro + 7, € J(R). By Corollary 2.2.12, there exists ag € R such

that a2 — ap = 7o + 1. Let 2o = ap — 1. Then

$2“$=w<:>2$%+(1—2(1,0)$1 = —1.

So it suffices to show that 2y*+(1—2a¢)y = —r; is solvable in R. Because 2aq—1 € U(R),

the substitution y = (2ag — 1)z shows that
20 4+ (1 — 2a0)y = -1y <= 22> — 2z =1b

where b = —r1(2ag—1)72. So it suffices to show that 2z° — z = b is solvable in R. Because
2b € J(R), Corollary 2.2.12 ensures that there exists zo € R such that z§ — 2o = 2b. And
by Lemma 2.2.14 we can assume that z5 € J(R); so 1 —2¢ € U(R). Then z = b(zy—1)!

satisfies 222 — z = b. O]

The first known strongly clean matrix ring over a local ring which is not a division

—~

ring is My(Z,) ([22, Theorem 2.4]). Here it follows easily from the following.

Corollary 2.2.16 M,y (R) is strongly clean if R is a Henselian ring. In particular,

~

My(Z,) and My(F[[z]]) are strongly clean where F' is a field.
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Proof Let w € J(R). We prove t* —t = w is solvable in R. Let 6 : R — R/J(R), r — T,
be the natural ring homomorphism. Then 6 : R[t] — %[t], f(t) =ao+ -+ apt" —
f(t) =@+ --- +anpt", is a map. Let g(t) = t> —t —w € R[t]. Then g(t) = t(t — 1)
with ged(¢,t — 1) = 1. So, by Hensel’'s Lemma (Definition 1.2.1), g(t) = (¢t — &) (t — &)
for some &; € R and & € R. That is, t* —t = w is solvable. So My(R) is strongly clean. [J

The authors of [12] proved that, for any n > 1, M,(R) is strongly clean when R is

Henselian. We will discuss this in Chapter 3.

2.3 When is My(R) over a local ring R strongly clean?

In section 2.2 we got the criteria for My(R) over a commutative local ring R to be
strongly clean. In this section, we completely determine when M,(R) over a local ring

(probably not commutative) is strongly clean.

Lemma 2.3.1 Let R be a local ring and let A € My(R). Then either A is invertible or
I — A is invertible or A is similar to (1+w° 1) where wy,w; € J(R). |

w1 0

Proof Write A = (a Z) and assume neither A nor I — A is invertible. We proceed with

c

three cases.
Case 1. b € U(R). Let P = ( : 0) and Q = ( : 0). Then P! =
—bdb=1 b (1—dp=1 1
(dbl‘l b?1> and Q7! = (——(1~—1d)b‘1 (1)) Moreover, B := PAP~! = (ba+§j§: :)) and
—a = ~4 s . : o ‘ .
QUI-A)Q ! = ((i d):_bl((ll d);) Ob . Since neither A nor I — A is invertible, it follows
— —a)—c

that ¢ — db~'a = b=1(bc — bdb~'a) € J(R) and (1 — d)b~}(1 — a) — ¢ € J(R). So
bl —db ' —bla e J(R) or 1 —bdb! —a € J(R).

Let wg = —1+bdb™! +a and w; = b(c — db~'a). Then wy, w; € J(R) and A is similar to

B: <1+w0 1).
w1 0
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0 1
1 0

Case 2. c € U(R). Let P = (
Case 1.

). Then PAP™! = (z C). The lemma holds by

a

Case 3. b ¢ U(R) and ¢ ¢ U(R). Then b,c € J(R). It follows that a € U(R) or
-
d € U(R). Because ((1) ;) (a Z) ((1) [l)) = (Z c), we may assume that a € U(R).

1

Because A is not invertible, d is not a unit of R, so d € J(R). Let P = 0). Then

1

=1 3 a+c—b—-d b4+d

holds by Case 2. [l

p-l — (1 O) and PAP~! = ( S ’ ) Since a+c—b—d € U(R), the lemma

For a ring R and a polynomial f(¢) = ag + a1t + agt®- - - + a,t"™ € R[t], an element r € R
is called a left (respectively, right) root of f(t) if ag + ra; + r%ay + -+ + r"a, = 0
(respectively, ag + a1r + agr? + - - - + a,r™ = 0). It should be noted that a left root of f(t)
need not be a right root although f(¢) can be rewritten as f(t) = ap+ta, +tas+- - -+t"a,.

Lemma 2.3.2 Let R be a local ring and let w € U(R) and wo,w, € J(R). Then
(1 i g) is strongly clean iff t* — (1 4+ wp)t — uwy has two left roots, one in 1+ J(R)

wq

and the other in J(R).

14+ wo

w1

Proof “=". Suppose that A = ( Z) is strongly clean. Clearly, neither A nor

I — A is invertible. So, by Corollary 2.2.9, there exists an invertible matrix P = (a Z)

such that PAP™1 = (to 0

0

) where 1 — tg,t; € J(R).

1 1 a 1b

d~le 1

If a,d € U(R), let Q = (a; di). Then QP = ( ) and (QP)A(QP)™! =

with 1 — a~'tpa,d"'t,d € J(R).

a toa 0

-1 =1 _
QPAPT)Q™ = ( 0 dltid
Ifag¢ U(R)ord¢ U(R), then a € J(R) or d € J(R). Since P is invertible, it follows
that both b and c are in U(R). Let Q = ( ° 1) Then QP = ( : d) and

b=l 0 b—la 1
c e 0

QPIA@P) =QPAP™Q = (T D ) with 1-b7ab,c~Mrc € J(R),
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Therefore, replacing P by ()P, we may assume that P = (1

C

’;) such that PAP-! =

(to 0) where 1 — to,t; € J(R) or 1 —t,,ty € J(R). Notice that

0 4
PAP_l _ (to 0) o (1+wo+bw1 u) _ (to tgb)
0 t c(l+wp)+w1 cu tic t
(
1—I—w0—|—bw1=t0 (1)
u = tob (2)

C(l e 'LUQ) + wp = tlc (3)

cu =t (4).

\

By (1), to € U(R), so the case that 1 — ¢;,¢y € J(R) cannot happen. Thus, it must be
that 1 —ty € J(R) and t; € J(R). Thus, by (2) and (4), b € U(R) and ¢ € J(R). Clearly,
(3) and (4) give

c(1 4+ wp) + w1 = cuc or uc(l + wy) + vw;, = ucuc.

Hence A\; = uc € J(R) is a left root of t* — (1 + wp)t — uw;.

On the other hand, (1) and (2) give
(14 wo)b+ bwb=u or b= (1 4+ wp) +w; = b~ ub™".

Let Ay = ub™! € U(R). Then (X\2)? — A(1 +wp) —uw; = 0. Thus, Ay — 1 —wy =
(A2) tuw; € J(R). So Ay is also a left root of t* — (1 4+ wp)t — uw; which is in 1+ J(R)

“«<". Suppose that A\; € J(R) and Ay € 1+ J(R) are two left roots of t2 — (14 wg)t — uw;.
-
Let to = Ay and t; = v 'M\ju and let P = ( oo

u~ 1) 1

). It is easy to see that P is

invertible. Moreover,
PA— 1 Mlu (14w w _ 14 wo + A Tuw u
w1 1 w1 0 u_l)\l(l + wo) + w1 uI\u
o 0\ p_ (X 0 I A N R u
0 t 0 w)\u w1\ 1 'u._l}\% uwI\u -
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86 P4 = (tg to) P because A, \y are left roots of t* — (1 + wp)t — uw;. Hence A is
1

similar to (tg f). So A is strongly clean. [
1

Lemma 2.3.3 Let R be a ring with wg, wy,tq € R. Consider two polynomials f(t) =
t2 — (1 +wg)t —wy and g(t) = t* — (1 — wp)t — (wo +wy) over R. Then the following hold
for ty € R:

1. to is a left root of f(t) iff 1 + wo — tg is a right root of f(t).
2. to is a left root of f(t) iff 1 —to is a left root of g(t).

Proof (1). This is because that (1+wp —t9)* — (1 +wp)(1 +wo — to) — w1 = 3 —to(1+
Wp) — Wy.

(2). This follows by the fact that (1—t¢)*—(1—tg)(1—wp) — (wo+w1) = t5—to(1+we) —w;.
[

Theorem 2.3.4 The following are equivalent for a local ring R:

1. My(R) s strongly clean.

2. For any A € My(R), either A is invertible or I — A is invertible or A is similar to

a diagonal matriz.

14w 1

8. For any wo,w; € J(R), ( ) is strongly clean.

w1 0

4. For any wy,w;, € J(R), (O -

L +w0) 15 strongly clean.

5. For any wy,w; € J(R), t* — (1 + wp)t — w; has two left roots, one in 1+ J(R) and
the other in J(R).

6. For any wy,w; € J(R), t2 — (1 + wg)t — wy has a left root in J(R).
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7. For any wg,w; € J(R), t2 — (1 +wp)t — w; has a left root in 1+ J(R).

8. The right version of (5) or (6) or (7) holds.

Proof “(1) < (2)”. “(1) = (2)” is by Corollary 2.2.10, and “(2) = (1)” is clear.

“(1) = (8)”. It is obvious.

-1
“(8) < (4)”. This holds because (O 1) (Hwo 1) (0 1) B (0 . )
1 0 - 0 1 0 1 14w

“(8) < (5)”. This is by Lemma 2.3.2.

“(5) = (1)”. Let A € M(R) and assume that neither A nor I — A is invertible. By
Lemma 2.3.1, A is similar to (1 o 1) where wo, w; € J(R). By (5), t* — (1 +wg)t —w,

w1 0

has two left roots, one in 1+ J(R) and the other in J(R). So, by Lemma 2.3.2, (1 :}wo ;)
is strongly clean. Hence A is strongly clean. |

“(5) = (6)”. This is clear.

“(6) = (5)”. Given wy,w; € J(R), t* — (1 + wg)t — wy has a left root in J(R) by (6).
Again by (6), t* — (1 — wg)t — (wp + w;) has a left root A € J(R). By Lemma 2.3.3(2),
1—Xel+ J(R)is a left root of t* — (1 4+ wp)t — wy. So (&) holds.

“(5) « (7)”. The proof is the same as that of “(5) < (6)”.

Furthermore, Lemma 2.3.3 (1) proves the equivalence of (§) and its right version; the
equivalence of (6) and the right version of (7) and the equivalence of (7) and the right
version of (6) both follow because of Lemma 2.3.3 (2). O]

Corollary 2.3.5 [Corollary 2.2.12] Let R be a commutative local ring. Then My(R) is
strongly clean iff for every w € J(R), t* —t = w s solvable in R.

Proof We prove that the solvability of t* — ¢ = w in R for all w € J(R) implies that of
t* — (1 + wp)t = wy with every wo,w; € J(R). Let t = (1 + wp)z. Then we have

2 _ w1
Tt — 1= 1+ wo)? (2.3.1)
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with 78y € J(R). If t> —t = w is solvable in R for all w € J(R), then (2.3.1) is

solvable. Hence, t* — (1 + wg)t = w; with every wo, w; € J(R) is solvable. O

2.4 Applications and examples

Conditions (5)-(8) of Theorem 2.3.4 are “easy-to-verify” criteria for a 2 x 2 matrix
ring over a local ring to be strongly clean. In this section we use them to give new families

of strongly clean rings.

The authors of [12] proved that matrix rings over Henselian rings are all strongly

clean. For a general Henselian ring (see Definition 1.2.3), we have the following theorem.
Theorem 2.4.1 Let R be a general Henselian ring. Then My(R) is strongly clean.

Proof Let wy,w; € J(R) and let f(¢t) = t2 — (1 + wo)t — w,. Then f(t) = 2 -t =
t(t — 1) € R[t]. By hypothesis, there exist monic polynomials ¢t —a,t — b € R|[t] such that
fO)=(t—a)(t—b)andt—a=tandt—b=t—1. It follows that a € J(R) is a left
root of f(t). Hence My(R) is strongly clean by Theorem 2.3.4. ]

The next example, which appeared in [7, Example 16], gives a general Henselian ring

that 1s not commutative.

Example 2.4.2 Let R be a (not necessarily commutative) ring and d : R — R a deriva-

tion, that is , d(ab) = d(a)b+ad(b) fora,b € R. Consider the set of the formal expressions
R((87Y)) = { 3 wda € R}.
1>—00
Fora=3) " _ a0, B=>""__ b0 €R((07)), define addition o + B componentwise

and define multiplication according to the Leibnitz rule:

af= (Y ad)( Y bo) =D (ad (b;)0"*,

1>—00 j>—00 1,7:k>0
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where for any 1 € Z,

i(i—1)--(i—k+1) :
(z) — k(k—1)---1 y ?’fk o 0’

1 Cifk=0.

Thus, fora € R,

[0,a] = 0a — ad = d(a) and
[07',al =0""'a —ad™’
= —d(a)07 2+ d%(a)0 2 + - + (=1)*d* ()0~ D 4 ...

Hence 0"a = Y o0q(M)d(a)0™ *for any negative integer n. By [58], R((07')) is a ring,
called the ring of formal pseudo-differential operators (Volterra operators) with coeffi-
cients from R. These rings are extensively used in applied mathematics and analysis.
Our interest here is in the subring R[[07']] = {Z?>_oo a;0" : a; € R} is a subring of
C R((071)).

When R = F is a field, F[[07']] is a local ring that is clearly not commutative with

Jacobson radical F[[07']]07! by [58, Proposition 1(1)], and F[[07']] is a general Henselian
ring by [7, Example 16]. So My(F[[07]]) is strongly clean by Theorem 2.4.1.

In order to give another family of strongly clean matrix rings, we need a new notion.

Following [13], a local ring R is called bleached if, for all j € J(R) and u € U(R), the
additive abelian group endomorphisms [, —r;: R - R (z — uzx—zj)and -7, : R — R
(x — jx — zu) are surjective. By [13, Example 13|, some of the bleached local rings
include: commutative local rings, division rings, local rings R with J(R) nil, local rings
R for which some power of each element of J(R) is central in R, local rings R for which
some power of each element of U(R) is central in R, power series rings over bleached
local rings, and skew power series rings R||z;o]] of a bleached local ring R with ¢ an

automorphism of R.

Definition 2.4.3 A local ring R is called weakly bleached if, for all j,,j, € J(R), the

additive abelian group endomorphisms L4, — 15, and l;, — 144, are surjective.
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By Nicholson [52, Example 2] (also see [13, Theorem 18]), a local ring R is weakly
bleached iff the 2 x 2 upper triangular matrix ring Ty(R) is strongly clean. Because there
exists a local ring R such that Ty(R) is not strongly clean by [13], local rings need not
be weakly bleached. On the other hand, bleached rings are clearly weakly bleached. We

now cite an example of [13]| to show that weakly bleached rings need not be bleached.

Example 2.4.4 Let k be a field, and let R = k[t1,t2, |, be a ring of polynomials
in countably many indeterminates, localized at the prime ideal (t1). Let o be the en-
domorphism of klt1,ta,---| that is the identity on k and satisfies o(t;) = t;41 for all 1.
Then o extends to the localization R. By [13, Example 38/, the local ring R[[z;0]] is
not bleached. However, T, (R|[x;c]]) is strongly clean for alln > 1 by [18, Theorem 40].
Hence R||x;0]] is weakly bleached.

Theorem 2.4.5 Let R be a weakly bleached local ring and let o : R — R be an endo-
morphism with o(J(R)) C J(R). Then the following are equivalent for n > 1:

1. My(R) is strongly clean.
2. My(R|[z;cl]) is strongly clean.

3. My(R|x;0]/(z™)) is strongly clean.

Proof “(2) = (8) = (1)”. This follows because any image of a strongly clean ring is

again strongly clean.

“(1) = (2)”. Let S = R|[[z;0]]. Note that J(S) = J(R) + Sz. By Theorem 2.3.4, it
suffices to show that, for any wg,w; € J(S), t* — (1 + wg)t — w; has a left root in J(S).
Write

wog = by +bix + -,
W)y =C +CT+ -,

bty Byt ran
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where by, ¢y € J(R) Then t* — t(l + wo) —w =0%&
4

t2 — to(1 4 b) — co =0 (Fo)

., .

te[l — o*(to) + 0% (bo)] — totx = [t1o(tk-1) + -+ - + tro10* 71 (t1)]

\ —[tobg + -+ + tg_10%71(by)] — cx (Py)

for k = 1,2,---. By Theorem 2.3.4, t? — (1 + by)t — ¢y has a left root ty € J(R). Thus,
1 —o*(ty) + o*(by) € 1 + J(R), so (Py) is solvable for t; (because R is weakly bleached)
for k =1,2,---. Thus, E;t;z* € J(S) is a left root of * — (1 + wy)t — w;. The proof is
complete. L

The next result is [23, Theorem 9] when ¢ = 1.

Corollary 2.4.6 Let R be a commutative local ring and let 0 : R — R be an endomor-

phism with o(J(R)) C J(R). Then the following are equivalent for n > 1:
1. My(R) is strongly clean.

2. My(R|[z;0]]) is strongly clean.

8. My(R[x;a]/(x™)) is strongly clean.

It is unknown whether Henselian rings are exactly those commutative local rings over
which the matrix rings are strongly clean (see [12]). But the next example gives a local

ring R that is not general Henselian such that My(R) is strongly clean.

Example 2.4.7 Let D be a division ring and o an endomorphism of D. Then My(Dl[z; o]])
15 strongly clean by Theorem 2.4.5. If, in particular, D = C and o is the complex conju-
gation, then D||x;ol] is not general Henselian by [7, Example 17].

The next corollary follows by Theorems 2.4.1 and 2.4.5.

Corollary 2.4.8 If R is a weakly bleached general Henselian ring and o is an endomor-

phism of R with o(J(R)) C J(R), then My(R|[[z; 0]]) is strongly clean.
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2.5 A necessary condition for My(R) over an arbitrary ring R

to be strongly clean

In this section, we give a necessary condition for the matrix ring My(R) over an
arbitrary ring R to be strongly clean. This is a generalization of Theorem 2.1.2 and (27,

Theorem 3.7.2]. It is also related to 2.3.4. The method comes from [27].

Theorem 2.5.1 Let R be a ring for which My(R) is strongly clean. Then

1. For any wo,w, € J(R), the polynomial t* — (1 4+ wo)t — wy has a right root in J(R)
and a right root in 1+ J(R).

2. For any wy,w; € J(R), the polynomial t* — (1 + wo)t — w; has a left root in J(R)
and a left root in 1+ J(R).

Proof (1). Let A = ( e )and {el = ( ; ) €y = ( (1) )} be the standard basis

w1 0

for R?. As we discussed before Theorem 2.2.5, under this basis, A corresponds to ¢ 4. For
computation simplicity, we identify the matrix A with the corresponding endomorphism
©a € End((R?)g). It is clear that A and I — A are non-invertible. So (R?)r has a
non-trivial R, Ry R, Rs-decomposition
(R)r = Bi © Ry
Alg I—Alg
(R )r = Ri @ Rs.
with 0 # R; < (R*)gr and 0 # Ry < (R?)g. For notation convenience, let bar denote
the natural epimorphisms. For example, the natural homomorphism R — R = R/J(R)
is denoted by r — 7 = r + J(R). Let rad(R?) be the Jacobson radical of the module
(R*)gr. Since A : Ry — R; is an isomorphism, we get an isomorphism A : (R, +
rad(R?))/rad(R?) — (R; + rad(R?))/rad(R?) with A(F) = A(r). Similarly, T — 4 :
(Ry + rad(R?))/rad(R?*) — (Ry + rad(R?))/rad(R?) is also an isomorphism. For 4 and

I — A, we have

ol i
ol

R = AR;) C AR = Im ( ) _R (2.5.1)
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and

B = (T - A)®) € (T - A)(F) = Im (

ol <l
o B

):@—am. (2.5.2)

Since Ry ® Ry = R?, wehave R, @ o = R.. ByaiR® (& — )R = R, (2.5.1), and
(2.5.2), we get B, = e,Rand Ry = (6, — €, )R. Let E: R> = R, ® Ry, — R, be the
projection onto R; with kernel Ry. Then I — E : R> = R; ® R, — R, is the projection
onto R, with kernel R;. Let 1y = Fey,ne = (I — E)e;. Then n; € Ry and n, € Ry. So
Eey + (I — E)ey = e; = e; + (e3 — e;). Hence, E&, + (I — E)e; =& =&, + (€, — &).

Since Fé, and &, are in R;, (I — E)é, and (&, — &) are in Ry, and Ry ® Ry = R°, we
get T, = Fe, =€, and 7, = (I — E)e; = (&, — &). So {7;,7,} = {Ee&, (I — E)&;} =
{€,,(&; — €1)} is a basis for R’. Let 0 : R? > R with 0(m) = n, = Ee, = & and
O(ny) =7y, = (I — E)é; = (&; — &). Then mR + myR + rad(R?) = R?. However,
rad(R?) is superfluous in R? by Nakayama’s Lemma, so we get n; R + no R = R*. That
is, {m,n2} generate R* as a right R-module. Let n;r; + nory = 0. Then n;r; = 0 and
nery = 0 because n; € Ry, and 75 € Ry. Let n; = ( = ) and n, = ( = ) Then by

Y1 Y2

ﬁl = E@g —=e; = ( (1) ) and -772 = (T—F)ég = (gg—gl) = ( , WE get T1,Ys € 1+J(R),

y1 € J(R), and z5 € —1 + J(R). Sorl"——ObymTl:(m”)z (3) and 7, = 0 by

yiri

1

NoTy = ( e ) = ( ° ) So n; and 7, are R-linearly independent. Hence, {n;,7:} is a

Yyara 0
basis for R?. If 7y € R; such that ry = nly+naly with ly,ly € R, then (ry—mn1;)—n3ly = 0.

Hence, r; — n1l; = 0 and m3ls = 0. So r; = n1l; and [, is uniquely determined because

r, = ( w1k ) with ; € U(R). So 1, is a basis for R;. Similarly, Ry = 1o R is free with

yil1

") with z = y1z7" € J(R). Then n, is also a basis

T

basis 72. Let n, = maz;' = (
for R;. Now A : Ry — R, is an isomorphism. Let An, = n,r with r € R. That is,

(1+w0 ;)(1) — (l)r. So (1+w0+$> == (T ) Hence, r = 1 + wy + z.
w1 T & w1 T
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2
Noticethau;(Hw0 1) —(1+w° ;)(1+w0)—fw1=0. So

w1 0 w1

(o) = (o ) avmmma) o

= A%y — A(L + wo)m — winy = 0.

By direct computation, we get

! / w 1‘2
A% =01+ wo + 2)% = ( : )(1+w0+a:)2= ( s ) (2.5.4)

T z(1 + wo + x)?
' (1+4+wo)? 14w 1 (1 4+wo)? + (1 + wo)x
A<1+wo>m=(w1(1+lo, )()=((w) ’ ) (2.5.5)

and

wq

w1, = (2.5.6)

T
Comparing (2.5.3),(2.5.4),(2.5.5), and (2.5.6), we get (1 + wo + x)% — (1 4+ wp)(1 + wp +
) —w; = 0. That is, 1 + wop + € 1 + J(R) is a right root of t* — (1 + wy)t — w; = 0.
By Lemma 2.3.3, we know * — (1 4+ wp)t — w; = 0 also has a right root in J(R).

(2). The proof is similar to the above. O



Chapter 3

Strongly Clean Matrix Ring M, (R)

In this chapter, we discuss the strongly clean property of M,,(R) where R is commu-
tative or R is commutative local. In [13], the authors determined the commutative local
rings R for which M, ( R) is strongly clean when n is an arbitrary and fixed positive integer
by considering the so-called SRC factorization of polynomials of R[t]. In section 3.1, we
generalize the SRC factorization from a commutative local ring to a commutative ring.
We obtain a sufficient condition for M,,(R) over a commutative ring R to be strongly
clean. We also obtain a necessary and sufficient condition for M,,(R) to be strongly clean
where R has IBN and every finitely generated projective R-module is free. In section
3.2, we prove that the strongly clean property of M, (R) implies that of M, (R|[[z]]) and
of M, (%fi)l) if R is commutative local and n, k are positive integers. We also discuss the
strongly clean property of M,,(RC>) where R is commutative local and C, is the abelian

group of order two. Section 3.2 comes from [66].

3.1 SRC factorization and strongly clean matrices

In this section, we discuss the SRC factorization of polynomials of R[t] and the

strongly clean property of M, (R) where R is a commutative ring or R has IBN and
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every finitely generated projective R-module is free.

Let R be a commutative ring and A € M,(R). For f(t) = ap+ait+---+a,t" € R[t],
write f(A) = aplp,+a1 A+ -+a, A" € M,(R) and let R[A] = {f(A) : f(t) € R[t]}. Then
R[A] is a subring of M, (R). Because R[t] — R[A], f(t) — f(A), is a ring homomorphism
and R[A| — M,,(R) is the inclusion homomorphism, we obtain that (R")p is a left R|[t]-
module with tv = Av for all v € (R")g. As discussed before Theorem 2.2.5, fixing a
basis of (R™)g, we identify a matrix A € M, (R) with the corresponding endomorphism
va € End((R™)Rg), and we say “the kernel of A” instead of “the kernel of ¢4” and “the

image of A” instead of “the image of ¢4”, and so on.

Theorem 3.1.1 Let R be a commutative ring and A € M, (R) with characteristic poly-
nomial x4(t) = det(tI — A). If there exist monic polynomials f;(t) € R|[t], polynomials
a(t),b(t),c(t) € R[t], and € = e; € R (1 = 0,1) such that xa(t) = fo(t)f1(t) with
file;) € U(R)(1=0,1) and fo(t)a(t) + f1(t)b(t) = c(t) with c(A) € GL,(R), then A is

strongly clean.

Proof Let A € M,(R) and let fy(t), fi(t),a(t),b(t),c(t),eq, and e; be given as in the
theorem. Then fo(t)a(t)+ f1(t)b(t) = c(t) implies fo(A)a(A)+ fi(A)b(A) = c(A). Notice
that fo(A), f1(A),a(A),b(A) and c(A) commute with each other. So we get

fo(A)a(A)e(A)™" + fi(A)b(A)c(A) ™ = In. (3.1.1)

Claim 1. R" = Ker(fo(A)) ® Ker(f(A)).

Let z € R". Then by (3.1.1)

z = [fo(A)a(A)c(A)7] (z) + [fi(A)b(A)c(A) 7] (2).

By the Cayley-Hamilton Theorem for characteristic polynomials, we have
[ fo(A)a(A)c(A)7] (z) € Ker(f1(A)) and [f1(A)b(A)c(A)7] (z) € Ker(fo(A)).
If x € Ker(fo(A)) [ Ker(f1(A)), then

v = [fo(A)a(A)e(4)™] (2) + [f1(A)B(A)e(4)™] () = 0.



CHAPTER 3. STRONGLY CLEAN MATRIX RING My(R) Page 46

So R™ = Ker(fo(A)) ® Ker(f1(A)).
Claim 2. (A — eg!)|Kker(fo(4)) @nd (1] — A)|Ker(s,(4)) are isomorphisms.
For simplicity, we write (A — eol )ker(fo(4)) in stead of (A — eo])|ker(fo(4)) and similarly
for others. Let fo(t) = t* + S5 a;t* and fi(t) = t** + .05 bt? with fo(eo) € U(R)
and fi(e;) € U(R). Then
fo(A)|ker(fo(a)) = 0
= aol + 1A+ + aj_1 4" + A¥ = 0 on Ker(fo(A))
= agl +a1(A—egl +epl)+ -+ ar_1(A — el + eol)k_l
+ (A = eo + eol)* = 0 on Ker(fo(A))
= foleo)I + g(A)(A — egl) = 0 on Ker(fy(A)) for some g(t) € R[t]
= (eol — A)g(A) (fo(eo))™ = I on Ker(fo(A)).
By direct computation, Ker(fy(A)) is both eg/- and A-invariant. So Ker(fo(A)) is both
(eoI —A)- and (g(A) fo(eg)™!)-invariant. Let egJ—A = V. Then, eg/—A = V is an isomor-
phism on Ker(fo(A)), 1.e., Axer(so(a)) = (€0 )ker(fo(4)) +Vier(fo(a))- (€0d)Ker(fo(a)) Viker(fo(4)) =

Vker(fo(4))(€0] )Ker(fo(4)) because eg is a central idempotent.

fl(A)ItextKer(fl (a) =0
= f1(A) = bol +bjA+ -+ by 1AV 4+ A"F = 0 on textKer(f,(A))
= f1(A) =bol +bi(A—eil+e )+ + (A—el+e])" " =0 on textKer(f;(A))
= fi(e1)! + h(A)(A —e1I) = 0 on Ker(f1(A)) for some h(t) € RJt]
= (er] — A)h(A) (fi(e1))™" = I on Ker(f1(A)).
Similarly, Ker(f;(A)) is both (e;])- and A-invariant. Let A—e;] = W. Then A—e; ] = W
is an isomorphism on Ker(fi1(A)), i.e., Aker(f;(4)) = (€11)Ker(fy(4)) + Wker(f,(4)). Clearly,

(€1 )Kker(f1(4) Wker(f1(4)) = Wker(f1(4)) (€1 )Ker (11 (4))-

Let E = [(€o])ker(fo(a)) ® (e1])ker(fi(ay] and U = [Vier(so(a)) @ Wker(f:(ay]- Then
by the above argument, E is an idempotent and U is a unit and FU = UFE. So

A= [(eOI)Ker(fo(A)) D (GII)Ker(fl(A))] < [VKer(fQ(A)) D WKer(fl(A))] = FE+Uis the StI‘OHgly
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clean expression. [

Recall that, for a commutative ring R, a pair of polynomials (fo(t), f1(t)) in R[t] is
unimodular if fy(t)R[t| + f1(t)R[t] = R[t] or equivalently, fo(t)a(t) + f1(t)b(t) = 1 with
a(t) and b(t) in R[t].

Corollary 3.1.2 Let R be a commutative ring and let (fo(t), f1(t)) be a unimodular pair
of monic polynomials in R[t] with f;(e;) € U(R) for some e? =¢; € R (1 = 0,1). Then

i

any matriz A with characteristic polynomial x 4(t) = fo(t) fi(t) is strongly clean.

Proof This is because fo(t)a(t)+ fi(t)b(t) = 1 where a(t), b(t), c(t) € R[t] with ¢(t) = 1.0

Example 3.1.3 In (Z [\/=5]) [t] (Notice this ring is not a UFD), f(t) = t*—4t3+5¢t> —
2t has a factorization f(t) = fo(t)fi(t) where fo(t) =t — 2t + 1, fi(t) =2 - 2t, eg = 0,
and e, = 1 satisfy the assumption of Corollary 3.1.2. So every matriz in My (Z [\/m—5|)

with characteristic polynomial f(t) is strongly clean. In particular,

1 1 0 0
0 1 0 0 .
A == o s 4 3 | € My (Z [\/—5|) 18 strongly clean. In fact,
0 -8 -8 6
0 0 0 O 1 1 0 0
0 0 0 O 0 1 0 0 . . .
A= + 1 a strongly clean expression with
01 1 0 0 -6 -5 3
0 0 0 1 0 -8 -8 5
00 0 0 1 1 0 0
0 0 0 0 0 1 0 0
F?=F= and U = EG’L4(Z[\/—5|).
01 1 0 0 -6 -5 3
0 0 0 1 6 ~& —8 B

For a commutative ring R, we use Max(R) to denote the maximal spectrum of R,

that is, Max(R) = {m : m is a maximal ideal in R}. For each m € Max(R), the natural
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ring homomorphism R — £ with r — 7 = r + m induces a map R[t] — Z£[t] with

f(t) =ag+ait+ -+ a,t" = f(t) =ap + @it + - -+ at™

Definition 3.1.4 A commutative ring R is said to have the weakly unimodular prop-
erty if, for any pair (fo(t), f1(t)) of monic polynomials in RI[t|, the unimodularity of
(fo(t), f1(t)) in %[t] for all m € Maz(R) implies the unimodularity of (fo(t), f1(t)) in
R[t].

A ring R is semilocal if R/J(R) is semisimple. A commutative ring is semilocal iff it

has finitely many maximal ideals.
Proposition 3.1.5 Commutative semilocal rings have the weakly unimodular property.

Proof Let R be a commutative semilocal ring. Then R has finitely many maximal
ideals, say my,--- ,m,. Let fo(t), f1(t) € R[t] be monic polynomials and (%(t),?:(t))
be unimodular in %[t] for k =1,2,--- ,n. Since %(t)m%[t] + Tf(t)-‘%[t] = }%[t]’ we get
fo(t)R[t] + f(t)R[t] + mi[t] = RI[t]. Hence, fo(t)ax(t) + f1(t)bi(t) + cx(t) = 1 for some
ar(t), bi(t) € R[t] and ck(t) € mg[t]. Therefore,

1=, (fo(t)ak(t) + fu(t)be(t) + cu(t)) = fo(t)a () + f1(E)b (t) + ¢ (2)

for some a (t),b (t) € R[t] and ¢ (t) € J(R)[t]. Thus, R[t] = fo(t)R[t] + f1(t)R[t] +

¢ (R[] = fo(t)R[t]+ f1(t) R[t] + J(R)R[t]. Notice that +r=rrlirorm is a finitely gener-
Rlt] _ J(R)R[t]+fo(O)R[E+fL (R[] _ Rlt]
ated R-module and J(R) pomprrmam = = pRE+AORT = RORAAGRE OO

fo(t)R[t] + f1(t)R[t] = R][t] by Nakayama’s Lemma. Therefore, (fo(t), f1(¢)) is unimodu-
lar in R[t]. O
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Corollary 3.1.6 Commutative local rings have the weakly unimodular property.

Proof Local rings are semilocal rings. L

When RJ[t] is a UFD, we let gcd(h(t), g(t)) be the greatest common divisor of the
polynomials h(t),g(t) € R[t]. If R is a field, we require ged(h(t), g(t)) to be the monic
greatest common divisor of the polynomials h(t), g(t) € R[t].

Proposition 3.1.7 Every UFD has the weakly unimodular property.

Proof Let fy(t), f1(t) € R[t] be monic polynomials and (fo(t), f1(t)) be unimodular in
L1t] for every m € Max(R). Then ged (fo(t), f1(t)) = 1 in £[t]. We want to prove that
ged(fo(t), f1(t)) is a unit in R[t]. Suppose ged( fo(t), f1(t)) is not a unit.

Case 1. ged(fo(t), fi(t)) =m € Rbut m ¢ U(R).

Then there exists m, € Max(R) such that m € m,. So ged (fo(t), fi(t))=m = 0 in
2L 1¢]. This is a contradiction.
Mo

Case 2. ged(fo(t), f1(t)) = g(t) € R[t] with deg(g(t)) > 1 in R[f].

Then for any m € Max(R), ged (fo(t), f1(t)) # 1 in £[t] because the coefficient of the

leading term of g(t) is a unit.

Hence, (fo(t), fi(t)) is unimodular in R[t]. O

In [12], the authors defined SRC factorization as the following.

Definition 3.1.8 Let R be a commutative local ring. A factorization h(t) = ho(t)hq(t)
in R[t] of a monic polynomial h(t) is said to be an SR factorization if ho(t) and h(t) are
monic and ho(0), h1(1) € U(R). The ring R is an n-SR ring if every monic polynomial
of degree n in R[t| has an SR factorization. A factorization h(t) = ho(t)hi(t) in R[t] of
a monic polynomial h(t) is said to be an SRC factorization if it is an SR factorization

and ho(t), hi(t) are co-prime in the PID R[t] (= —J—-{%[t]). The ring R is an n-SRC ring
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if every monic polynomial of degree n in R[t] has an SRC factorization.

A local ring has only two idempotents 0 and 1. Commutative local rings are weakly
unimodular. By Corollary 3.1.6, we know that, for a commutative local ring R and
for monic polynomials fo(¢) and fi(¢) in R[], ged (fo(t), f1(t)) = 1 iff (fo(t), f1(t)) is
unimodular in %[t] iff (fo(t), f1(t)) is unimodular in R[t]. So we generalize Definition

3.1.8 as follows:

Definition 3.1.9 Let R be a commutative ring and let f(t) € R[t] be a monic polynomial
of degree n. A factorization f(t) = fo(t)fi(t) in R[t] is called an n-SR factorization
if fi(t) is monic in R[t] and fi(e;) € U(R) for some €2 = ¢; € R (i = 0,1). The
factorization f(t) = fo(t)f1(t) is an n-SRC factorization if, in addition, (fo(t), fi(t))
is unimodular in R[t]. The ring R is an n-SR ring if every monic polynomial of degree
n has an SR factorization and R s an n-SRC ring if every monic polynomial of degree
n has an SRC factorization. We call R an SR (SRC) ring if every monic polynomial in
R[t] has an SR (SRC) factorization.

From now on, the notions “SR” and “SRC” are in the sense of Definition 3.1.9.

Proposition 3.1.10 Let R be a commutative ring. Then R s strongly clean iff R is
1-SR iff R s 1-SRC.

Proof Suppose that R is strongly clean. Let f(t) = t+a € R][t]. Write —a = e+u where
e’ =e € R, u € U(R) and eu = ue. So f(e) = —u € U(R). Hence, f(t) = fo(t)fi(t)
with fo(t) =t + a and f1(t) = 1 is an SR factorization. Obviously, this is also an SRC

factorization.

Suppose that R is 1-SR. Let a € R. Then f(t) = t — a has an SR factorization in
R[t]. Tt must be that f(t) = fo(t) or f(t) = f1(t). So there exists €2 = e € R such that
f(e) =e—a € U(R). Thus, a is strongly clean. O
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Proposition 3.1.11 Let R be a commutative ring and let f(t) € R[t] be a monic poly-
nomial of degree deg(f(t)) =n > 1. If f(t) has an n-SRC factorization, then all matrices

with characteristic polynomial f(t) are strongly clean.

Proof This is essentially the case in Corollary 3.1.2. ]

Theorem 3.1.12 Let R be a commutative ring. If R is an n-SRC ring, then the matrix
ring M,,(R) s strongly clean.

Proof For any matrix A € M, (R), the characteristic polynomial, x4(t), of A has an
n-SRC factorization. So A is strongly clean by Proposition 3.1.11. That is, M, (R) is
strongly clean. ]

Corollary 3.1.13 [12] Every Henselian ring R is n-SRC for each positive integer n.

That 1s, R is SRC. So matrix rings over a Henselian ring are strongly clean.

Proof Let f(t) be any monic polynomial in R[t]. Then f(t) in 3—(%[1&] can be factorized
as f(t) = fo(t)fr(t) with fi(t) € %[t] monic, ged (fo(t), fi(t)) = 1, and fi(i) € U(R)
(¢ = 0,1). So by Hensel’s Lemma (see Definition 1.2.1), there exist monic polynomials
fi(t) € R[t] such that f;(i) € U(R) (¢ = 0,1). By Corollary 3.1.6, (fo(t), fi(t)) is unimod-
ular. So R is n-SRC for each positive integer n. The rest follows from Corollary 3.1.12. [

If R is commutative local, then R is n-SRC iff M,(R) is strongly clean by [12]. But
for a commutative ring R, R being n-SRC ring is not a necessary condition for M, (R)

to be strongly clean.

Example 3.1.14 Let R be a Boolean ring with more than 2 elements. Then R is not a

2-SRC ring. But M, (R) s strongly clean for any positive integer n.

Proof Since R is a Boolean ring with more than 2 elements, there exists a polynomial
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f(t) = t*+et € R[t] with e # 0,1. Suppose that f(t) = fo(t)f1(¢) is an SRC factorization
in R[t].

Case 1. If one of f;(t) (: =0,1) is f(t), say fo(t) = f(t) = t* + et, then there exists
an element a € R such that fo(a) =a+ea=1 Sol+e=1 Hence, e=0. Thisis a

contradiction.

Case 2. If fy(t) =t —a and fi(t) = t — b, then there exist ey,e; € R such that
foleo) =eg—a =1and fi(e;) = e, —b = 1. Notice that f(t) = t*—(a+b)t+ab = t* +et.

So we have

a+b=ey+e; =e and
(3.1.2)

ab=(14+ep)(1+¢€;)=0.

By equality (3.1.2), we get (1 +e)(1+e€;) = 0. Sol+e € eR. Hence, there
exists some r € R such that e = 1+ er = 1+ ere. Therefore, by the first equality
in (3.1.2), e = 1+ e+ ere. So fo(t) =t+ e+ ere and fi(t) =t + ere. If there exist
m(t),n(t) € R[t] such that fo(t)m(t)+ fi(t)n(t) = 1, then (fi(t) +e)m(t)+ f1(t)n(t) = 1.
So fi(t)(m(t)+n(t))+em(t) = 1. Let t = 0. Then we get ere(m(0)+n(0))+em(0) =1,
i.e., elere(m(0) + n(0)) + m(0)] = 1. So e = 1. This is also a contradiction.

So R is not a 2-SRC ring.

By Remark 5.1.4, if R is Boolean, then M,,(R) is strongly clean for any positive inte-
ger n > 1. [

Now we give some necessary conditions for a matrix to be strongly clean.

In the following, we always consider ey = 0 and e; = 1 for the SR factorization

because of Theorem 2.2.5.

Proposition 3.1.15 Let R be a commutative ring such that every finitely generated
projective R-module is free. If T € M, (R) s strongly clean, then xr(t) has an n-SR

factorization.
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Proof If T is semi-purely nonsingular, then xr(t) = det(t/ —T) = fo(t) f1(t) = xr(t) - 1
with fo(t) = xr(t) and f1(t) = 1. If T is semi-purely singular, then xr(t) = det(¢t/—-T) =

fo(t) f1(t) = 1 xr(t) with fo(t) = 1 and f,(t) = xr(t). If T is purely singular, then, by

To 0

Theorem 2.2.5, T is similar to C = where Ty is semi-purely nonsingular and 7T}

Ty

is semi-purely singular. So xr(t) = xz,(t) - Xz, (£) with fo(t) = xz(t) and fu(t) = x (¢)

is an n-SR factorization. ]

Example 3.1.16 InMy(Z), A = ( z j ) is not strongly clean. In fact, f(t) = xa(t) =

t? — 6t — 10 does not have an SR factorization because f(0) = —10, f(1) = —15 and
f() = (6 — =) - ST,

Proposition 3.1.15 shows that if 7" is not purely singular, then y7(¢) has a trivial
SRC factorization, that is, one of the factors is 1 and the other is xr(t) itself.

Given a monic polynomial f(t) = t" + a,_1¢"* + -+ + a1t + ag € R[t], the matrix

(000---0 —ao\

1 0 0 --- O —aj

010 -~ 0 -—a
Ce=1 . . . . . :2 is called the companion matrix of f(t).

o oo --- 0

—0n-—-2
\ o 0o o0 --. 1 —ap-1 }

Lemma 3.1.17 [48, Theorem VIL.4.3] Let F be a field and f(t) be a monic polynomial

in F'[t]. Then f(t) is the characteristic and minimal polynomial of the companion matriz

.

Proposition 3.1.18 Let R be a commutative Ting such that every finitely generated
projective R-module is free and f(t) = t" + ap_1t""' 4+ -+ + a1t + ag € R[t]. If the

companion matriz Cy is strongly clean, then xc,(t) = f(t) has an n-SRC factorization.

Proof If Cy is not purely singular, then f(¢) has a trivial SRC factorization. So we can
assume C is purely singular. Then by Theorem 2.2.5, there exists P € M, (R) such
m%P”QPz(? °

= ) with Ty being k£ X k semi-purely nonsingular matrix and T}
1
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being (n — k) x (n — k) semi-purely singular matrix where 0 < £ < n. Then for every

maximal ideal m in R, Cy € M, (%) and C; = Cs has f(t) € £[t] as the characteris-

tic and minimal polynomial by Lemma 3.1.17. So f(t) = X7 (t) = x7,(8) - x7,(t) =
det(tIy — To) - det(tl,_x — T1). If ged(det(tly — To), det(tlh—x — To)) = ¢(t) with degree

det(tIx—To) det(tl,_x—T1) which has
g(t)

degree less than deg(xz;) = deg(f). This is a contradiction. So fy(t) = det(t] —T) and
fi(t) = det(tl — T1) give an n-SRC factorization for x¢,(t) = f(t). O]

deg(g(t)) > 1, then the minimal polynomial of C; is

Theorem 3.1.19 Let R be a commutative ring such that every finitely generated projec-
tive R-module is free and let f(t) € Rl[t] be a monic polynomial of degree deg(f(t)) = n.

Then the following are equivalent:

1. For all A € M,(R) with xa(t) = f(t), A is strongly clean.
2. The companion matriz C; is strongly clean.

3. f(t) has an n-SRC factorization.

Proof “(1) = (2)”. This is clear.
“(2) = (3)”. By Proposition 3.1.18.

“(8) = (1)”. By Proposition 3.1.11. O

Corollary 3.1.20 Let R be a commutative ring such that every finitely generated pro-
jective R-module s free. Then a purely singular matric A € M, (R) is strongly clean iff
xa(t) has an n-SR factorization x a(t) = fo(t)f1(t) and A is similar to ( S ) where

vl = Foft) ond mft) = Rl |

To O
0 T
nonsingular and 77 is semi-purely singular. By the proof of Proposition 3.1.15, x a(t) has

an n-SR factorization x4(t) = fo(t) f1(t) where xr1,(t) = fo(t) and x1,(t) = fi(¢).

Proof “=7. By Theorem 2.2.5, A is similar to ( ) where Ty 1s semi-purely
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“<”. By Theorem 3.1.19, Ty and 7; are strongly clean because xr,(t) = fo(t) and
xT,(t) = f1(t) have trivial SRC factorizations. So A is strongly clean because the strongly

clean property 1s invariant under similarity. [

Example 3.1.21 Let R = Z,) with p =3 (mod 4). Then the monic polynomial f(t) =
[(t = 1)(2 + 1) + p][t(t? + 1) + p] with fo(t) = (¢t —1)(t*+ 1) +p and f1(t) = t(t*+ 1) +p
is the only SR factorization (so it does not have SRC factorization) [27, Fxample 3.17].

(o 0 1—p 0 0 0
00 0 1 0 -1
Let A = 2 2 (1) 3 (1) Op . By direct computation, we obtain xa(t) = f(t) and
1 0 -1 00 0
01 0 00 ©
Cs O

A is similar to ( . ) So by Corollary 3.1.20, A is strongly clean.
byl

0

The class of rings R having IBN such that every finitely generated projective R-module is
free is bigger than the class of local rings. By Theorem 3.1.22, matrix rings over rings in
the first class do not produce more strongly clean rings than the matrix rings over local
rings. But Theorem 2.2.5, Theorem 3.1.19 and Corollary 3.1.20 can be used to obtain
all strongly clean matrices over these rings. This is one of the reasons that we introduce

Definition 3.1.9.

A ring R is called an [-finite ring if R does not have an infinite set of non-zero
orthogonal idempotents. Camillo-Yu [17] proved that R is semiperfect iff R is [-finite
and clean. Here, for rings R having IBN such that every finitely generated projective

R-module is free, we have the following result.

Theorem 3.1.22 Let R be a ring having IBN such that every finitely generated projec-

tive R-module s free. The following are equivalent:

1. R 1s a strongly clean ring.

2. R s a clean ring.
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3. R s a local ring.
4. R is an exchange ring.

5. R 1s a semiperfect ring.

If, in addition, R is commutative, then the above are equivalent to each of the following:
6. R is 1-SR.

7. R is 1-SRC.

Proof “(8) = (1)=-(2)”. This is clear.

“(2) = (4)”. This is by [51].

“(4) = (8)”. We prove R has only 0 and 1 as its idempotents. Suppose €2 = e € R.
Then R = Re @ R(1 — e). Since R has IBN and every finitely generated projective R-
module is free, we get Re = 0or R(1—e) =0. Soe=0o0re = 1. Nowlet r ¢ U(R). Then
because R is an exchange ring, there exists e = e such that e € Rrand 1 —e € R(1—7).
Thatis, 1€ Rrorle€ R(1—r). Butr ¢ U(R),so 1 € R(1—r). Similarly, 1 € (1-7r)R.
So 1 —r € U(R). Therefore, R is local.

“(8) = (5)”. This is clear.

“(5) = (2)”. This is by [17].

For the rest of the proof, let R be commutative.

“(3) = (7)”. Suppose that f(t) = t+a. Let fo(t) = t+aand fi(t) = 1ifa €
U(R); and fo(t) = 1 and fi(t) =t +aifa € J(R). Then f(t) = fo(t)fi(t) is an SRC
factorization.

“(7) = (6)”. This is clear.

“(6) = (3)”. Let a ¢ U(R). Then f(t) = t + ra has an SR factorization by (6).
But f(¢) only has the trivial factorization. So fi(t) = f(t). That is, 1 + ra € U(R).
Therefore, R is local. []
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By Theorem 3.1.19 and Theorem 3.1.22, we get the following:

Corollary 3.1.23 Let R be a commutative ring such that every finitely generated pro-
jective R-module is free. Then M, (R) is strongly clean iff R is a local n-SRC ring.

Corollary 3.1.24 [12] Let R be a commutative local ring. Then M, (R) is strongly clean
iff R is an n-SRC ring.

We defined SR and SRC factorization over commutative rings. In fact, we can define

them over any noncommutative ring. Here we define them over local rings.

Definition 3.1.25 Let R be a local ring and R[t] = 7—%[1&]. A monic polynomial
f(t) € R[t] is said to have an SR factorization if f(t) = go(t)gi(t) = hi(t)ho(t), where
90(t), g1(t), ho(t), hi(t) € R|[t] are monic polynomials such that go(0), g1(1), ho(0), k(1) €
U(R). If, in addition, R[t]go(t) + R[t]gi(t) = R[t] and ho(t)R[t] + hi(t)R[t] = R][t] hold,

then f(t) is said to have an SRC factorization.

It is interesting to compare the next result with [12, Corollary 15, Proposition 17],
which states that, for a commutative local ring R, My(R) is strongly clean, iff every
companion matrix in My(R) is strongly clean, iff every monic quadratic polynomial over
R has an SR factorization, iff every monic quadratic polynomial over R has an SRC

factorization.

Theorem 3.1.26 The following are equivalent for a local ring R:

1. My(R) is strongly clean.
2. FEvery companion matriz in My(R) is strongly clean.
3. Every monic quadratic polynomial over R has an SR factorization.

4. Every monic quadratic polynomial over R has an SRC factorization.
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Proof “(1) < (2)”. This holds by “(1) < (4)” of Theorem 2.3.4.
“(1) = (4)”. Suppose f(t) =t*+at+ b € R[t].
Case 1. f(0) € U(R).
Let fo(t) = t2+at+band fi(t) = 1. Then f(t) = fo(t)f1(t) is an SRC factorization.
Case 2. f(1) € U(R).
Let fo(t) = 1 and fi(t) = t2+at +b. Then f(t) = fo(t)f1(t) is an SRC factorization.
Case 3. £(0), f(1) € J(R).

Then b € J(R) and —a =1+ (b— f(1)) € 1+ J(R). By Theorem 2.3.4, f(t) has a
left root ¢y € J(R) and a left root t; € 1+ J(R). Thus, f(t) = (t —t)(t+a+t) =
(t — to)(t + a+ tp) is clearly an SRC factorization.

“(4) = (8)”. Tt is obvious.

“(8) = (1)”. For wo,w; € J(R), f(t) = t* — (1 + wp)t — w; has an SR factorization.
This clearly shows that f(t) has a left root in J(R) and a left root in 1+ J(R) by (3).
Hence, (1) holds by Theorem 2.3.4. O

3.2 Strongly clean matrix rings over commutative local rings

In this section, all rings are assumed to be commutative local. If n > 2 and if
R is a commutative local ring such that M, (R) is strongly clean, we prove that both
M, (R[[z]]) and M, (%[,?)l) (k > 1) are strongly clean and that M,,(RC5) is strongly clean
when 2 € U(R) or 2 =0 in R. We do not know whether M,,( RC,) is still strongly clean
when 0 # 2 € J(R). These generalize results in [32]. This section comes from [66].

For a ring homomorphism 6 : R — S, define 6 : R[z] — S[z] by 6 (> riz') =
> 0(r;)x*. In particular, for a maximal ideal m in R, we use 7 to represent the natural
ring epimorphism n : R — % with n(r) = r + m = 7. Then 7 induces a map 7 :

R[t] — %[t] = R[t] with n (37, rit!) = i n(ra)t = Yo, it
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Lemma 3.2.1 Let0: R — S be an onto ring homomorphism. If R s n-SRC, then S
s n-SRC.

Proof Notice that R and S are commutative local. The following diagram is commuta-
tive where 6 : R/J(R) — S/J(S),r + J(R) — 0(r) + J(S), is an isomorphism:

0

R — S
an lns
R 6 g
J(R) ©J(S)”

It induces the commutative diagram with § an isomorphism:

/

R[] -2 S}

! !
MR Ns

R 8 s
uiald Tl

Let h'(t) € S[t] be a monic polynomial of degree n. Then there exists a monic polynomial
h(t) € R[t] of degree n such that 6 (h(t)) = h'(t). Since R is an n-SRC ring, there exists
an SRC factorization h(t) = hg(t)hi(t) in R[t]. Let 6 (hs(t)) = h;(t), i = 0,1. Then
W (t) = ho(t)hy(t) with h (i) = 8 (hi(i)) € U(S). By the commutativity of the latter dia-
gram, _éln}z(hi(t)) = 0ol (hi(t)) = ng(h;(t)) for i = 0, 1. Because g is an isomorphism and
ged(nr(ho(t)), nr(ha(t))) = 1, we get ged(ng(ho(t)), ns(hi(t))) = 1. So h'(t) = he(t)hy(2)
is an SRC factorization in S[t]. Hence S is an n-SRC ring. O

For a ring epimorphism 6 : R — .S, S being n-SRC does not imply that R is n-SRC.
For example, let 0 : Z,y — Z, be the natural ring epimorphism. Then M, (Z,) is not
strongly clean for any n > 1 by Corollary 2.1.3. So Z,) is not n-SRC by Corollary 3.1.24,
but Z, is certainly n-SRC.

Let R be a commutative ring. For f(z) = ap+a1x+ -+ a,z" and g(z) = bg+ bix +
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o+ bpx™ in R[z], the (n +m) X (n + m) determinant

an an__l ) . .o ao \
An, O —1 Qg
> m
Qn Qp-1 agp |’
R(f,g) =
bm bm—l bO 3
bm  Om—1 bo
> N
bm bm_1 bO ’

is called the resultant of f(z) and g(z) [19, 47].

The following lemma is known. We give the proof here.

Lemma 3.2.2 [19, Lemma 2, p.321] Let E be an algebraically closed field. Let f(z) =
ag+a,z+- - -+a,z” (a, #0), and g(x) = bo+byx+- - - +b,x™ (b, # 0) be two polynomials
in Elz| such that f(a;) = 0 and g(B;) = 0 where o; and B; € E fori=1,2,--- ,n and
j=12,---,m. Then R(f,9) = az'g(o1)g(az) - glan) = b5, f(B1) f(B2) - - - f(Brm)-

Proof The proof is by induction. Suppose n = 1. Then f(z) = ag+a;z and a = —ag/a;
is the root of f(z) and

R(f,9) =
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Adding a times column j to column 5 + 1, j = 1,--- ,m, one obtains

a, a + ag

aq a1 + ap

R(f,9) =
aq a1 + ag
by bm—1 + b by + -+ medmml g(oz)
(03] O
ay 0
= = af'g(a)
aq 0
bm bm—l e bl g(a)

Suppose the lemma holds for n = k. We want to prove it when n = k£ + 1. Let
a,ai,- -, o be the roots of f(x). Then f(z) = (xz — a) fi(x) where fi(x) = ¢o + c1z +
cox?+- -+ cp_12¥ 1+ a1 2. Hence, the coefficients of f(z) and f,(z) have the following

relations: )

a0+coa=0
a; + ;& = ¢
Ao + Cox = Cy

-------------------

Ag—1 Tt Ck—1Q = Ck—2

Ak + Qg4+10 = Ck—1
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and

R(f,9) =

Adding o times column 7 to column 7+ 1, 5=1,2,--

Adding —a timesrow 7+ 1torow j, j=m+1,---

Ak+1 Ak ai
Q41 aj
Q41
bm bm— 1 bl
O,

225

bm—l

Ak+1 Ck-1 co
ak41 Gl
ak+1 Ck—1
bm bma + bm—1 g(c) ag(a)
bm bma + by —1 g(a)
bm bma + bm—1

aq

by b

,m+ k, we get R(f,g) =

0
co 0
Co 0
afF~lg(a)  aFg(a)
a*=2g(a) aFlg(a)
ag(a) g(a)
,m+ k, we get




CHAPTER 3. STRONGLY CLEAN MATRIX RING My (R) Page 63
Ak+1  Ck—1 Co 0
(k+1  Ck—1 Co 0
Ak+1 Ck—1 cg O
§R(f: g) = bm bm—l S bl bO
bm bm——l bl bO
bm bm——l b1 bo
bm bm—l bl g(a)
Ug41 Ch-1 -+ - Co
Qg1 Ch-1 c0 ot Qo
Ak+1  Ck—1 Co
— g(Ot) bm bm-1 bl bO
by bm—1 b1 bo
bm bm—l bl bO
bm bmvl bl b(}
= g(@)R(f1,9).
By induction hypothesis, ( f1,9) = a}’,19(01)g(c2) - - - g(ax). So R(f,g) =
apq19(a)glon)g(az) - - - g(ag). Similarly, we can prove the other equality. O]
The next lemma is an exercise in [47, 1.D.§].
Lemma 3.2.3 Let R be a commutative local ring, ng : R — J—(%—) be the natural ring

homomorphism, and A = (r;) € M,(R), A = (73;) € Mn(ff‘(}%)' Then det A € U(R) iff

det A # 0.
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)
1, if 5170+ 7, 1S an even permutation,
Proof Define 7(j1js - - jn) = { By definition

\ —1,if 5172 - - - jn is an odd permutation.

of determinant,

det 4 = Z (_1)T(j1j2--'jn)7nlj1 Tagy T i

j1j2“'jn
= > (=) Iy )ne(rag,) - nR(Tag,)
J1J2 +Jn
= Z (—1)70 2 dm) (g e )
jljZ"'jn
— Z nR[(_l)T(jljZ”'jn)rrljl % T'sz e R Tnjn]
j1j2"'jn
= ngr(det(A)).
So detA € U(R) iff detA € U(S) since 6 is an epimorphism. [

Theorem 3.2.4 Let R be a commutative local ring and let n > 1. Then R is an n-SRC
ring iff so is R|[[z]].

Proof “=". Clearly R|[z]] is a commutative local ring with J(R[[z]]) = J(R) + zR][z]].
Define 6 : R[[z]] — R by 0(3,5¢7:z") = 1o, and 6 : %{%1—) o % by 6(r + J(R[[z]])) =
O(r)+ J(R) =7+ J(R), r € R. Then 6 is onto,  is an isomorphism, and the following

diagram is commutative:

R[z] —4— R

"IR[[x]] l lnR

Rl&) 8 . R
T(RI=]) TR

Also it induces the commutative diagram

!

R[[z]]}tf] —*— RIt]

/ /
MR([2]] MR

!

Re) 1 P . R
TREDE —— Tl
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with 8 an isomorphism. Let h(t) = t" + 3.1 fit' € R[[z]][t] with f; = D0 TiT’ €
R|[z]].

Case 1. If h(0) € U(R][z]]), then let ho(t) = h(t), hi(t) = 1; and if h(1) € U(R|[[z]]),
then let ho(t) = 1, hi(t) = h(t). In either case, h(t) has a trivial SRC factorization in

R{[«]][t].

Case 2. If h(0) = fo € J(R[[z]]) and h(1) = 1+ 3.7 fi € J(R[[z]]), then 7o €
J(R) and 1+ Y7o € J(R). Let h'(t) = 6'(h(t)). Then h'(t) = t" + Y7 riot,

h'(0) = roo € J(R), and A'(1) = 1+ 37 ro € J(R). Since R is n-SRC, there exist
ho(t) = Zz "~ aiot® and hj(t) =tk + S0 ““1bott in R[t] such that hy(0) € U(R),
hi(1) € U(R), ged(np(ho(t)), mr(h1(t)) = 1, and h'(t) = ho(t)hy(t). Let ho(t) = t* +

S L Aitt € Rl[z])[t] with A; = >0 @i, and hy(t) = t"F + S Bitt € R[[x])[t]
with B; = 3.0 bi;z7. Next we prove that there exist A;, B; € R[[z]] (i = 0,--- ,k — 1
and j =0,---,n — k — 1) such that h(t) = ho(t)h1(t). Notice that

h(t) = ho(t)hi(t)

n—1 k—1 n—k—1
S+ fit = (t’“ + ) Aiti) (t”"“ + > Bz-ti)
1=0 1=0 J

1=0
n—1 00 k—1 00 n—k—1 00
S+ ) (Z rz-j;cj) t=[t"+) (Z awxj) ti] [t”‘k + (Z bwaﬁ) #}
i=0 \j=0 i=0 X\ j=0 =0 =0
n—1 00 n—1
St 4+ Z T’igti -+ Z ( T'ijti) z’
i=0 j=1 \i=0
k—1 00 k—1 n—k—1 00 n—k—1
— tk A~ Z (L&'oti .2 Z ( a,z-jti) SL‘j:I |:tn_k I bioti + Z ( Z szti) $j:|
1=0 1=1 1=0 1=0 1=1 1=0

& the conditions (Fy) and (FP,,) hold for all m € N,
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where

k-1 n—k—1 n—1
(Po) : (t’“ +) aioti) (t“"“ + Y bmti) =1"+ ) 7t
1=0

k—1 n—k—1 = k—1 iy n—k—1
(Pm) : (tk -} Zaioti) ( Z bimti) ~t= (Z aimti) (tn_k .2 Z bigti)
1=0 ] 1=0 L 1=0 . 1=0
-+ (Z az-jti) ( Z bi,m_jti)] = Z ?’imti.
g=1 1=0 1=0 1=0

Notice that by the choice of hy(t) and h;(t), (Py) holds for suitable a;(0 < i < k—1) and
bio(0 < ¢ <n—k—1). Assume that for s > 1, there exist a;;(0 <i < k—-1,0<j <s—1)
and b;;(0 <i<n—k—1,0 < j <s—1)in Rsuchthat (P,) holdsforallm =0,1,---s—1.
We next show that there exist a;s(0 <7 <k —1) and b;5(0 < j <n—k—1)in R such
that (Ps) holds. Notice that (P;) is equivalent to

k—1 n—k—1 k—1 n—k—1
(%) : (t’“—l—Zaioti ( > bisti) e (Z aisti) (t"“’“ + > bioti)
1=0 =)

1=0 1=0 (

s 1 s—1 k—1 n—k—1
=5 ']"ristZ — !( aijtz> ( Z bi,s_jtz)]
1=0 g=1 1=0 je=()

/

== 7ﬂz)s + Tllst +oee rn-—l,stnﬂ—l
where all 7, are known elements of R. Thus, (*) is equivalent to:

’
!
bnmk—l,s + Ag—1,s = Tn—l,s

/
ak-1,00n—k-1,s + bn_k—2s + bn_k—1,00k-1,s + Qk—2,s = Tp,_o
() <

/
apob1s + a10bos + b1oaos + booar1s = 74

/
kaoobos + booGos = Ty,

As a linear system in variables a;5(0 < ¢ <k —1) and b,5(0 < j <n—k — 1), the matrix
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form of (xx) is AX = B where

/ 1 bp—k—1,0 - s -+~ boo \
1 bn~—k—~1,0 . - bOO
1 b b
J n—k—l,O 00
At = :
1 ak—l,O . v “ s e aOO
1 Qk-10 " Sk Qoo
\ 1 Qk-1,0 *** Qoo )
X = b b brs b
— k-1, QAk-—2s **° Q15 Qpg n—k—1,s n—k—2,s " °° l,s 0,s ’
¢ A / / / /
B = ( Tn—1s Th—2s """ Tis Tos ) )

Denote ngh;(t) = hi(t) (i = 0,1). Since ged(hy(t), hy(t))= ged(nrho(t), nghi(t)) = 1,
there exist E(t) (¢ =0,1) such that

ho(t) - go(t) + Ri(t) - g1 () = 1. (3.2.1)

Let E be an algebraically closed extension field of R/J(R) and suppose hy(c;) = 0
where o; € E for ¢ = 1,2,--- k. Then, by Lemma 3.2.2, detA = %(E(t),gg(t)) =
Ry(aq)hi (o) - Ry(og) # 0 (by (3.2.1)). So 4 is invertible. By Lemma 3.2.3, A is
invertible, so AX = B is solvable. This proves the existence of a;;(0 < i < k — 1) and
bjs(0 < j <n—k—1)such that (P;) holds. Hence there exist ho(t) and hy(t) in R[[x]][t]

as claimed before such that h(t) = ho(t)h(t).

Because § is an isomorphism and because ged(nR8 (ho(t)),nz0 (hi(t))) = 1, we have
gcd(n}z“m”(ho(t)), n}a[[x”(hl(t))) = 1. So h(t) has an SRC factorization. Hence R[[x]] is an
n-SRC ring.

“4<" holds by Lemma 3.2.1. L]

Theorem 3.2.5 Let R be a commutative local ring and let n,k € N. Then the following

are equivalent:
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1. M, (R) is strongly clean.
2. M, (R|[[z]]) is strongly clean.

3. M, @ is strongly clean.
(z*)

4. ML (R[[z1,22, - ,xk]]) is strongly clean.

R - |
5. M, (( n[fcl’ff’ xfj)) is strongly clean.
:Bl ,$2 ,- P )mk

Proof Note that all underlying rings are commutative local.

“(1) < (2)”. This follows by Corollary 3.1.24 and Theorem 3.2.4.
“(2) = (8) = (1)”. Since R is an image of ?—%-)1 and %—[%] is an image of R||z|], the
T

implications follow by Corollary 3.1.24 and Lemma 3.2.1.
“(1) < (4)”. By the equivalence (1) < (2) and induction.

“(1) < (5)”. By the equivalence of (1) < (3) and induction. O

Example 3.2.6 If R is a Henselian ring and m,s,ny, -+ ,ns, € N, then, by Corol-
lary 3.1.24 and Theorem 3.2.5, M, (R|[[z1, z2,- - - , z4]]) and M, ( Bloy, 2, -, 2] ) are

(39711173732, U ’3;?3)

strongly clean.

Corollary 2.2.15 proved that for a commutative local ring R, My(R) is strongly clean

iff so is My(RC,). Next, we extend this result from 2 to an arbitrary positive integer n.

Theorem 3.2.7 Let R be a commutative local ring with 2 € U(R) or charR = 2. Then
M, (R) is strongly clean iff so is M,,(RC5).

Proof “«<”. This holds because M,,(R) is an image of M,,(RC)).

|12

“=". 1If 2 € U(R), then RC; = R x R by Lemma 2.2.13. So M,(RC3) = M, (R) &

M.,,(R) is strongly clean.

Now assume that charR = 2. Then RC) is commutative local by [50]. We can assume

n > 2. Write Cy = {1,9} and let f(z) = 2™ + .77 (r; + r;9)z* € (RCy)[z] such that
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f(0) = 1o+ o9 € J(RCy) and f(1) = 1+ Y7~ (r;i + r;g) € J(RC,). Let w: RCy — R,
a + bg — a + b, be the augmentation map. As in the proof of Theorem 3.2.4, we have

. . . —_— —t .
two commutative diagrams with @ and @ isomorphisms:

ch —*3*“* R
T]R02l \I’WR
RC> Ww R
J(RC?) " J(R)’

/
nRCz l

RCo w
T(Re) @]

/

. _R
b ioitdl

n—1

Since M,,(R) is strongly clean, f (z) := w'(f(z)) = 2"+ Y 1y (ri+7;)2" has a non-trivial
SRC factorization f' (z) = fy(z)f,(z) in R[z]. Write fy(z) = ap+a1z+- - Fam_12™ 2™
and f{(m) =byg+biz+- -+ b, 12" ™ 4+ 2" ™ where 1 < m < n. Next we show that

there exist y;,2; e R(:1=0,---,m—1,7=0,--- ,n—m — 1) such that

m—1
fol@) = 2™+ ) lyi + (a: — wi) 9] 7,
1=0
n—m-—1
fl(l’) — phm + Z [Z% + (bz _ z'i,) g] .CCi, (322)
1=0

1=0 1=0 i==0
m—1 R—~pi—~1
+ (a; ~—y7,)a:*] [ Z (b; zz)w“} ,
1=0 1=
n—1 m—1 n—m-—1 (323)
riat = (2" + ) ya)[ ) (b — z)o]
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Clearly, the second equality of (3.2.3) follows from f’(z) = f,(z) f,(z) and from the first
equality of (3.2.3). So it suffices to show that there exist y;,2; € R (1 =0,--- ,m—1,j =
0,---,n—m—1) that make the first equality of (3.2.3) hold. The first equality of (3.2.3)

1s equivalent to

(

Yo2o + (a0 — Yo)(bo — 20) =70

Yo21 + Y120 T+ (ao — yo)(b1 — 21) + (al — yl)(bo - ZO) =T

Ym—2 + Ym—-12n—m—1 + Zp—m—2 + (am—l - ym—l)(bn—m—l — Zn—m—l) = T'n-2

\ym——l + Zpn—m—1 = T'n—1,

which, since char(R) = 2, is equivalent to
(
co := 1o + apgbo = boyo + @020

c1 =711+ agby + a1by = b1yo + boyr + apz1 + a120
< | (3.2.4)
Cn—2 ‘= Tp—2 T am—lbn—-m——l

= Ym-—2 + bn—m-—lym-—l + Zn—m—2 + Qm—-1Zn—m—1

Cn—1 ‘=Tp-1 = Ym-1 + Zn-m-1-
\

As a linear system in variables y;(i = 0,--- ,m — 1) and z(i = 0,--- ,n —m — 1), the
matrix form of (3.2.4) is AX = C where
( 1 by 1 by by \
1 Bq o o by by
AT _ 1 bn—m—l bl bO
1 g1 a; Qg
1 Am—1 ai Qg
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T __

X - (ym—lrym—2 Yoy Rn—m—1,y " 320)7 a'nd
5 -

" = (Cn—lacn—Qa"' 700)

An argument similar to the proof of Theorem 3.2.4 shows that A is invertible. So
AX = (' is solvable. This shows the existence of the y; and z; such that f(z) =
fo(z) fi(z). Hence M,,(RC5) is strongly clean. O

Proposition 3.2.8 Let R be a commutative local ring with 0 # 2 € J(R) and let Mi3(R)
be strongly clean. If for any m,n € R and u € U(R), 42> —2mz® +ux +n = 0 is solvable
in R, then M3(RC3) is strongly clean.

Proof The two diagrams in the proof of Theorem 3.2.7 are still valid. Let
f(@) = (ro +19) + (11 + 719)T + (12 + r9g)x* + 2 € RCy[z]
with f(0) = ro + rog € J(RC,) and

f(1) = (ro + rég) + (r1 + T;g) + (rq + r;g) + 1€ J(RC,).

Then
Fz)=w(f(z) = (ro+71y) + (r1 + )z + (ro + 15)2® + z° € Rz]
with f (0) = ro 4+, € J(R) and
F)=(ro+ry) +(ri+7r)+ (ro+1r)+ 1€ J(R).

Since M3 (R) is strongly clean, f () has a non-trivial SRC factorization f'(z) = f,(z)f,(z)
in R[z]. We can assume that {f,(z), f{(z)} = {ao + z, by + bz + 2°}. Then

(
/
To -+ To = aobo

141 = aob + b (3.2.5)

!
?“2+7"2:ao+b1.
\

Next we show that there exist yo, 20,21 € R such that f(z) = fo(z)fi(z) and f,(z) =

w'(fi(z)) (i =0,1) where {fo(z), f1(z)} = {lyo + (a0 — yo)g] + =, [z0 + (b0 — 20)g] + [21 +
(by — z1)g]x + 2?}. The condition f(z) = fo(x)fi(z) is equivalent to
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To = Yo2o + (a0 — Yo)(bo — 20)
r1 = Yoz1 + (a0 — Yo)(b1 — 21) + 2o
To =21+ Yo
(3.2.6)

ro = 20(ao — Yo) + Yo(bo — 20)
T’l = Zl(ao e yo) “+ yo(bl == Zl) =+ b(_) = 20

!/
7"2=b1—*21+a0“y0.

\

Since the first three equalities of (3.2.6) and (3.2.5) clearly imply the last three equalities

of (3.2.6), it suffices to show that there exist yg, 20,21 € R such that the first three

equalities of (3.2.6) hold. Rewrite the first three equations of (3.2.6) as

f

2Y020 — boyo — apzo = To — agbyg

< 2y021 e b1y0 + 20— Q21 =11 — a0b1 (327)
<1 = T2 — Yo.
\
Clearly (3.2.7) is equivalent to
4
4y — 2mys +uyo +n =0
20 = 2y5 — (2r2 — b1 + ao)yo + ao(re — b1) + 1 (3.2.8)
Z1 = T2 — Yo.
where m = (2ry + 2a9 — b1),u = (daory — 2agby + 2r; — bg — agh; + a3), and n =

—adry + aiby — agry + aghg — ro. As in the last part of the proof of Theorem 3.2.4,

by — agby + a2 = R(f,(z), fi(z)) € U(R). So u € U(R). By hypothesis, the first equation

of (3.2.8) is solvable for yo in R. Hence, (3.2.8) is solvable for yg, 29 and 2; in R. So

Mjs(RC5) is strongly clean.

Corollary 3.2.9 If R is a Henselian ring, then M3(RC,), M3((RCy)|[z]]), and

M (m—(i%@) are strongly clean for any k € N.

L
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Proof We show that M3(RC5) is strongly clean. By Corollary 3.1.24 and Proposition
3.2.8, it suffices to show that when 2 € J(R) and for any m,n € R and u € U(R),
h(z) = 423 — 2ma® + uz + n has a root in R. Let hj(z) = z + 2 and hy(z) = u. Then
ne(h(z)) = ngp(he(z))ng(h (x)). By Hensel’s Lemma, there exist hy(z) = z+s3 and ho(x)
in Rlz] such that 1jy(h1(2)) = g(hy(2)), T(ho(2)) = nig(hi(2)), and A(z) = ha(@)ho(z).
So h(z) has a solution x = —s3 € R. Hence M3(RC5) is strongly clean. By Theorem

3.2.4, M3((RCy)[[z]]), and M3 (gRTiiﬂ)ﬂ) are strongly clean. O



Chapter 4

Strongly Clean Triangular Matrix
Rings

Our main result states that the triangular matrix rings over commutative local rings

are strongly clean. This chapter comes from [22].

4.1 Strongly clean triangular matrix rings

For each n > 1, a ring R is clean iff T, (R) is clean [38]. When is T, (R) strongly
clean? Several efforts have been made towards this question. By [52, Example 2|, Ty (R)
is strongly clean if R is a commutative local ring. It was proved in [62] that if R is a
commutative local ring for which every element is uniquely the sum of an idempotent
and a unit (or equivalently, R/J(R) = Z, by [1, Corollary 22]), then T, (R) is a strongly
clean ring for every n > 1. The main result is the following Theorem 4.1.1. For a ring
R, we write R"™ (resp., R,) for the set of all 1 x n (resp., n x 1) matrices over R. For

B € R™, BT € R, denotes the transpose of 8.

Theorem 4.1.1 If R is a commutative local ring, then T,(R) is a strongly clean ring

for every n > 1.
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Proof We prove the claim by induction on n. For n = 1, the result holds since local

rings are strongly clean.

Assume that n > 1 and every (a;;) € T,—1(R) has a strongly clean expression (a;;) =

;i) + (ui;) such that, forany 1 <:1<n—-1,¢e; =0if a;; € U(R). Now let
j j

@11 @12 -+ Qin
0 a2 -+ a2n

A= . . i & Tn(R)
0 0 . i Ann

Claim. There exist (e;;)* = (e;;) € T,(R) and (u;;) € U(T,(R)) such that
(ai;) = (ei;) + (ui;), (ei;)(ui;) = (ui;)(es;)
and that, for any 1 <17 < n,
ei; = 01if a;; € U(R).

Write
11 a1z - al,n—1
Al o 0 azz2 - a2 n—1
A= where A, = S | and a = (An, " ,Gn1n)’.
0 Ann : : : ,
0 0 v an—-1,n-1

By the induction hypothesis, A; has a strongly clean expression

Al =F + U, where E = (eij),U = (uij) (411)

such that
for any 1<i<n-—-1, e; =0 if a; € U(R). (4.1.2)

Case 1. a,, € J(R). Take e, = 1 and u,, = ap, — 1. Then U — (uy, + 1) is a unit in

T,._1(R). Let 61 = [U — (unn + D)I|7Y(E — I and let
F= (E’ 51), and V = (U ““‘”) e Ta(R).

Enn 0 Unn

Because F and U — (up, + 1)I commute, E and [U — (up, + 1)I]7! commute, so Ed§;, = 0.
Thus, it follows that F? = F. By the definition of §;, we have

(E — I)a = [U — (unn -+ 1)]]61 = U51 - unnél — 51, SO
U51 -+ (a - 51) = Fa+ unn51 = E(CX - 51) ¥ 5lunn-
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It follows that F'V = V' F. Moreover, it is easily seen that A = F+V and V € U(T,(R)).

Therefore, the claim is proved in the case where a,, ¢ U(R).

Case 2. a,, € U(R). Take e,, = 0 and u,, = a,,. To prove the claim in this case, it

suffices to show that there exists v; € R,_1 such that

F2=F:(f ’“), FV =VF, and V = (U ‘*‘“).

€nn 0 Unn

Note that
F?=F < Ev, =7, and
FV=VF = (U+E - anl)n = Ea
< (A1 — apnl)y1 = Ea.

Thus, it suffices to show that the system

(

EX - X (A)
<
\ (A} —aml)X = Ea (T")
has a solution X = (zy, -+ ,2p_1)? in R,_;.

For this purpose, fix some notation and let

aii aiit1 o Ain—1 €ij €i,i41 e €in—1
0 441441 <+ Gig1np-—-3 0 eit1,i+1 ¢ €iy1n-1
Az — ) E% — )

0 0 "t Gn—-1,n-1 0 0 t en—1,n-1

Uij Ui, 341 Uin—-1

0 wig1,i41 Uitl,n—1

Uz’ — )
0 0 ‘vt Up—1,n—1

and write

A, = (aii Bi )’ E, = (eii ei ) (4.1.3)
0 A¢+1 0 Ei+l
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where
6?1 — (ai,’i+17 e 7a"i,'n—1)7 €; = (ei,’H—l) e Je?:,n'—l);
and write
Xy = (IL'?:, o ,ilfn-—l)T, and o; = (aina e ;anwl,n)T-
Thus, equation 7,7+ 1,--- ,n — 1 in (A) form
That 1s r
< Culs T €iXi31 = (As)
kEi—HX’H-l = A4+l (A(Z 2 1))
And equation 7,7+ 1,--- ,n — 1 in (I') become a system
(Ai - annI)Xi = E;o; (F(Z))
which i1s r
(Gis = G )05+ BiXipi = Enlin + €051 (I')
k(Az'+1 — afnnI)Xi—i—l = L1044 (F(Z o 1))
First we consider the following two equations:
: €n—1,n—-1Ln-1 = Tnp-1 (An—l)
\(an—l,n——l — ann)mn—l = €n—-1,n-10n—1n (Fn—l)-

If a,_1,-1 € U(R), then e,_1,_1 = 0 by the induction hypothesis; so z,,_; = 0 satisfies
both (A,-1) and (I',—1). If ap—1,-1 € U(R), then it must be that e,_;,_; = 1 because

Qn-1n-1 = €n—1n-1 + Upn-1n—1. SIDCE Gp, € U(R) by our assumption, a,_1,-1 — Anp €

U(R); S0 Tp—1 = (Gpn_1n-1— Qnpn) 'an_1, is a solution of both (A,_;) and (I',_;). There-

fore, z,_, € R exists to satisfy both (A,_;) and (I',_1).

Now assume that ¢+ < n — 2 and there exists X, € R,,_;_1 satisfying (A(i + 1)) and

(I'(i 4+ 1)). We next show that there exists z; € R such that X; satisfies both (A(z)) and

(I'(¢)), or, equivalently, x; satisfies both (A;) and (I';). We proceed with two cases.
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Subcase 1. a; € U(R). Then e; = 0 by the induction hypothesis. Choose z; = ¢; Xj41.
Thus, z; satisfies (A;). Next we show that x; satisfies (I';) as well. It follows from (4.1.1)
that A; = E; + U, is a strongly clean expression of A;. Because e¢; = 0, E? = E; implies
that

ei = e Ei . (4.1.4)
Note that e; = 0 implies that u; = ay;, so it follows from E;U; = U;F; (using (4.1.3))
that

eii(B; — €:) + el = uge; + (6 — &) By,

which gives

6?:(A1:+1 — E@'+1) . eiU'H-l = a;€e; + ﬁiEi-H — eiEH-l)

showing

e;Air1 = aze; + GiEit. (4.1.5)

The left hand side of (I;) is

(a5 — ann)Ti + BiXit1 = (@i — ann)eiXipr + Bi( Eip1 Xiya) (by (A(Z+1)))
= [(asie; + BiEiv1) — @nnei] Xip
= (€idit1 — ann€;)Xiy1 (by (4.1.5))
= €i(Ait1 — annd) Xi
= €¢;Eip1ai4 by (T'(i+ 1))
= ¢;a;41 (by (4.1.4))
= e;ia;n + €;ai+1 (because e; = 0).

Hence z; = e;X;;, satisfies both (A;) and (I';).

Subcase 2. a;; ¢ U(R). It must be that e;; = 1 because a;; = e;; + uy; is a strongly clean
expression of a;. Thus, a; — an, € U(R). Choose
T; = (G4 — Gnn) " (€410in + €i0i41 — BiXin1).

Thus, z; satisfies (I';). Next we show that z; satisfies (A;), that is , ;X1 = 0.
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Because e; = 1, E? = E; implies that ¢;F;;; = 0. So, by (A(z + 1)), we have
e; Xir1 = €;(F;11X;41) = 0. Thus, z; satisfies (A;). Therefore, by the induction principle,
there exists X € R,_; satisfying (A) and (I'). So the claim is proved in this case. The

proof of Theorem 4.1.1 is now complete. O

Remark 4.1.2 Ifa =e; 4+ u; and b = ey + ug are strongly clean expressions of a and b

in R respectively and v € R, there do not always exist oy, a9 € R such that

6= o))

is a strongly clean expression in Ty(R). For example, a = 1+ 4,b = 0+ 2 are strongly

clean expressions in L), but ( ) ( ) (i a;) cannot be a strongly clean

expression for any oy, ay € Z).

Corollary 4.1.3 If R = [[ R; is a direct product of commutative local rings R;, then

T,.(R) is strongly clean for every n > 1.

Proof T,(R) = J[T.(R;) is strongly clean because each T,(R;) is strongly clean by
Theorem 4.1.1. L]

Corollary 4.1.4 Let R be a commutative semilocal ring. The following are equivalent:

1. R is semiperfect.
2. T,(R) s strongly clean for every n > 1.

3. T.(R) s strongly clean for some n > 1.

Proof “(1) = (2)”. Since R is semiperfect, there exist orthogonal local idempotents
€,t=1--+- m,suchthat 1l =e; +---4+e¢,. So R=eRe X - Xe,Re, is a direct

product of commutative local rings, so the implication follows by Corollary 4.1.3.
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“(2) = (83)”. This is clear.

“(8) = (1)". Let e € T,(R) whose (1,1)-entry is 1 and all other entries are 0. Then
R = eT,(R)e is clean by Theorem 2.1.1. So idempotents lift modulo J(R). Hence R is

semiperfect. O

We mention a related result. It was proved by Chen [21] that, for a bimodule g Mg
over two rings R and 5, (? 1;1) is strongly m-regular iff both R and S are strongly -
regular. It follows that if R is a strongly w-regular ring then T, (R) is strongly m-regular

and hence is strongly clean.

We point out that Theorem 4.1.1 can be generalized to any “skew” triangular matrix
ring over a commutative local ring defined as follows: For a ring R and an endomorphism
o of R, let T,(R,0) = {(Gij)nxn : a;;j € R and a;; = 0 if ¢ > j}. For (ayy), (bij) €
T,.(R, o), define

(aij) + (bij) = (ai; + bi;) and (as;) * (bi) = (ci5),

where ¢;; = 0 for ¢ > j, and ¢;; = Ziziaikok"i(bkj) for i < j. It can be easily verified that
T,.(R,o0) is a ring, called the skew triangular matrix ring over R. Clearly, T, (R, 1g) =
T,.(R), and Ty(R, o) coincides with the formal triangular matrix ring (};’ A;) where
rM =grR with xr = zo(r) for x € M,r € R. If ¢ is an automorphism, then T, (R) =
T,.(R,0) via (a;;) — (b;;) where b;; = 6'7*(a;;). The proof of Theorem 4.1.1 can be

slightly modified to prove the following

Theorem 4.1.5 If R s a commutative local ring and o s an endomorphism of R with

o(J(R)) C J(R), then T, (R,0) is a strongly clean ring for every n > 1.

We conclude by giving an example showing that there exist endomorphisms ¢ of a

commutative local domain R which are not automorphisms such that o(J(R)) C J(R).

Example 4.1.6 Let R = Z[z|(;) = (L9 . f(2), g(z) € Z[z], g(0) # 0} be the localization

g9(z)
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of Z[x] at (x), and let 0 : R — R be given by 5(%% — ﬁ%. Then o(J(R)) = o(zR) =0 C

J(R), but o is neither monic nor epic.

We would like to point out that Theorem 4.1.1 has been extended recently in [13] from
a commutative local ring to a bleached local ring (see the definition before Definition

2.4.3).



Chapter 5

Strongly m-Regular Rings

Strongly m-regular rings are strongly clean. To enlarge the class of strongly m-regular
rings is a task itself. Furthermore, this work also enlarges the class of strongly clean
rings. In section 5.1, we get a new class of strongly m-regular rings using a result of
Hirano. In particular, matrix rings over Boolean or strongly regular rings are strongly
m-regular (and hence strongly clean). This section comes from [66]. In section 5.2, we

present a new family of strongly w-regular rings which are matrix rings over local rings.

5.1 Finite extensions of strongly m-regular rings

Let S be a ring and R be a subring of S such that they share the same identity. The
ring S is called a finite extension of R if §, as a right R-module, is generated by a

finite set X of generators.

Theorem 5.1.1 [/2] Let R be a ring whose prime factor rings are artinian. Then every

finite extension of R is strongly mw-reqular.

Note that, by [20], there exists a strongly w-regular ring R such that My(R) is not
strongly m-regular. A ring R is called right duo if every right ideal is an ideal.
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Corollary 5.1.2 Let R be a right duo strongly w-reqular ring, let G be a locally finite
group, and let n > 1. Then M,,(RG) s strongly m-reqular.

Proof To show the claim, without loss of generality, we may assume that G is a finite
group. Then M, (RG) is a finite extension of RG and RG is a finite extension of R. So
M, (RG) is a finite extension of R. Since R is right duo strongly w-regular, every prime
factor ring R = R/I is again right duo strongly m-regular. So R must be a strongly
m-regular domain. Hence, R is a division ring (of course artinian). The claim now follows

by Theorem 5.1.1. [

Corollary 5.1.3 Let R be a right duo strongly mw-reqular ring, let G be a locally finite

group, and let n,k > 1. Then M,,((RG)|[z]]) and M, ((R(fg)[x]

Proof By Corollary 5.1.2, the matrix ring M,,( RG) is strongly n-regular. Then M, ((RG)[[z]])

=M, (RG)|[z]] and M, BGiz] are strongly clean by |24, Corollary 2.2]. L]
(z*)

) are strongly clean.

Remark 5.1.4 Notice that Boolean rings are strongly reqular rings and strongly reqular

rings are right duo and strongly m-reqular.

5.2 A criterion for My(R) over a local ring R to be strongly
m-regular

It is pointed out in [12] that, for a commutative local ring R, M,,(R) is strongly =-
regular iff R is strongly 7-regular iff J(R) is nil. In this section, we characterize the local

rings R for which My(R) is strongly m-regular.

Lemma 5.2.1 [52] Let Mg be a module. The following are equivalent for ¢ € End(Mg):

1. ¢ is strongly w-reqular in End(MRg).
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2. There is a decomposition M = P ® Q) where P and Q) are p-invariant, and ¢|p s

an isomorphism and ¢|g is nilpotent.

Units and nilpotent elements of a ring are clearly strongly 7-regular elements. These
are called the trivial strongly m-regular elements. A strongly m-regular element is
called non-trivial if it is not trivial. Fixing a basis of (R")g, we know there is a one-to-
one correspondence between the matrix in M, (R) and the endomorphism in End((R™)g).
So, in the following, for A € M,,(R), we denote ¢4 € End((R")g). Using Lemma 5.2.1,

we can prove the following theorem.

Theorem 5.2.2 Let R be a ring having IBN such that every finitely generated projective

R-module is free. Then A € M, (R) is a non-trivial strongly m-regular matriz iff A s
To 0

simalar to
0 T

), where Ty s an wnvertible matriz and T is a nilpotent matrix.

Proof “=". Suppose T is a non-trivial strongly w-regular matrix. Then by Lemma

5.2.1, there exist R; # 0 and R, # 0 such that

or: (Rr)"=R1® Ry —» (Rg)"=R1® Ry

with ¢r|g, being a right R-module isomorphism and @7|g, being a nilpotent right R-
module endomorphism. The direct summands R; and R, are projective right R-modules

and so they are both free right R-modules. They satisfy
n = rank((Rgr)") = rank(R;) + rank(Ry) (5.2.1)

since R has IBN. Suppose {€1, €, -+ ,€,} is a basis of (Rg)™ and under this basis, @7 is

the endomorphism corresponding to the matrix 7'. Then

or(€1, €2, €)= (pr(er),or(€), -+ ,or(€n)) = (€1,€2,-+ ,€x)T.

Suppose rank(R;) = k. Then by equality (5.2.1), we can assume that {n;, 7, - , 7.} is

a basis of (Rgr)™ where {n1,72, - ,mx} is a basis of Ry and {nky1, k42, " , 7} is a basis
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of Ry. Since yr|g, : R1 — R; is an isomorphism and or|g, : R — Rs is nilpotent, we

have

90T|R1(7711772: P :nk) — (nlan%" ) 7nk)T0

with some Ty being invertible and

O Ry (M1, k2 5 M) = (M1, Met2y+* ) T

To 0

with some 7] being nilpotent. Let C= ( -
1

) . Then

or(M, M2, M) = (er(m), er(m), -+, or(nn))

To 0
—‘(?7117723"'77711)( 0 TI)
= (m1,m2, "+ ,M)C.

Since {€1,€2, - ,€,} and {n1,m2,- - , 7.} are both bases of (Rg)", we have

(€1, €2, s €n) = (M1, M2, , M) P,
(M,m2, -+ 1) = (€1, €2, &) Pa.
So (€1,€2, - ,€,) = (€1,€2,"++ ,€x)Po Py = (€1,€9,- -+ ,€0)1,,
and P, P, = I,,. Similarly, we get P, P, = I,,.
Hence, P,P, = PP, = I,,. That is, P:= P, = P; .
Now
or(€r, €, €)= (€1,€2, - ,€,)T,
pr(er, €2, €n) = o((M1, M2y M) P1)

— @T((nlnn% T ;T’n))Pl
T0 O
2(77177727"'777?1)( )Pl

0 Th
To O
= (€1,€9, - . €, )P P,
( 1,2, ) n) 2 ( 0 T ) ]
=1 0 O
= (€1,€9, "+ ,€, )P P 2
(17 29 ) n) ( 0 Tl)

0 O
0 T

So PTP~! = ( ) where Tj is invertible and 73 is nilpotent.

(5.2.2)

(5.2.3)
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“<”. Suppose there exists P € GL(n, R) such that P7'TP = C = ( T(;O ; )
1

where Ty € M (R) is invertible and 77 € M,,_x(R) is nilpotent. Let the nilpotency
index of T} be m. Then C™ = (Tgn 2). So (Mn(R))C™ = (M,(R))C™"" and
C™(M,(R)) = C™*(M,(R)). Hence, T is strongly m-regular. ]

Corollary 5.2.3 Let R be a local ring. Then A € My(R) is a non-trivial strongly -
0

a = . = & to
reqular matriz iff A is similar to (o t
1

), where to € U(R) and t, € R is nilpotent.

Corollary 5.2.4 Let R be a commutative local ring. Then the following are equivalent

fO’f‘ A e MQ(R)

1. A is a non-trivial strongly w-reqular matriz.

0
t1

2. A s similar to (tg ), where tg € U(R) and t; € R is nilpotent.

3. |A| € R is nilpotent and tr(A) € U(R) and A is similar to a diagonal matriz.

4. |A| € R is nilpotent, tr(A) € U(R), and z* — tr(A)z + |A| = 0 1s solvable in R.

Proof “(1) = (2)”. It follows by Corollary 5.2.3.
“(2) = (83)". It is clear.
“(8) = (4)”. Same as the proof of “(8) = (4)” of Corollary 2.2.11.

“(4) = (1)”. Suppose that (/) holds. Let a € R be a root of z* — tr(A)z + |A].
Then b := tr(A) — a is also a root of z* — tr(A)z + |A|. Thus, a + b = tr(A) and
ab = |A|. Hence one of a,b must be a unit and the other must be nilpotent. Without
loss of generality, we assume that a € U(R) and b is nilpotent. Write A = (Z: ZZ)

From aj; + ag = tr(A) € U(R), either a;; or ags is a unit. Without loss of generality,
we may assume that asy € U(R). Let P = ( v ) Then P € GLy(R) since

b— a2 a2

a—all
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|P| = aag + b(ay; — a) — |A| € U(R). Thus

PAP—] _1_ a1 a—a a1 a2 aiz a1l —a
IPl b— as2 a1z a1 a22 azz — b az1
_ _1_ * a21(—a? + tr(A)a — |A])
P a12(—b2 + tr(A)b — |A]) *
. e D
~\o d

for some ¢,d € R. Since |A| = cd and tr(A) = ¢+ d, one of ¢ and d must be a unit and
c O
0 d
strongly m-regular matrix. Hence, A is strongly m-regular. O

the other must be nilpotent. Thus, by direct calculation we know ( ) is a non-trivial

As pointed out in [12], it follows from the results in the literature that for any com-
mutative ring R, M, (R) is strongly m-regular iff so is R and that, for a commutative local
ring R, M,,(R) is strongly m-regular iff so is R, iff J(R) is nil. Let R be the commutative
local ring of p-adic integers. Then My(R) is a strongly clean ring but it is not strongly

m-regular. Below, we characterize the local rings R for which My(R) is strongly m-regular.

Lemma 5.2.5 Let A = (a 2) € My(R) where R is a local ring. If A ¢ My(J(R)) U

T

GLy(R), then A is similar to ( ;) where r € R and w € J(R).

Proof Case 1. b € U(R). Let P = ( ' 0). Then PAP~! = ( @ bdb™? 1). Since
—bdb~! b b(c —db~la) 0

PAP~! ¢ GLy(R), we have b(c — db~'a) € J(R). So the claim holds.

Case 2. ¢ € U(R). Since ((1) (1)) (a Z) (? [1)) = (j c), the claim holds by Case
1.

Case 3. b,c € J(R). By hypothesis, either a € U(R) and d € J(R) or a

€ J(R) a
d € U(R). We may assume that a € U(R) and d € J(R). Then ({1) “11) ( Z) (; 1) =

(a_c a+b;:—d). Since a + b — ¢ — d € U(R), the claim holds by Case 1. O
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Lemma 5.2.6 Let R be a local ring and A = (u 1) where u € U(R) and w € J(R).

w 0

Then A is strongly m-reqular iff t* — ut — w has two left roots, one in U(R) and the other

nilpotent.

Proof “=". It is clear that A ¢ GLy(R) and A is not nilpotent. Since A is strongly
m-regular, by Corollary 5.2.3, there exists P € GLy(R) such that PAP™! = (v 0) where

0 J
either v € U(R) and j is nilpotent or v is nilpotent and 7 € U(R). As shown in the proof

of Lemma 2.3.2, there exists P = (1 i) € GLy(R) such that PAP™! = (v 0), where

g 0 J
either v € U(R) and j is nilpotent or v is nilpotent and j € U(R). From PA = (g j) P,
one obtains
ru +bw =v
1 =wvb

cu+w = jc

| gi= -
Thus, v can not be nilpotent, so it must be that v € U(R) and j is nilpotent. It follows

that ¢2 —cu —w =0 and (b™')? — b~'u — w = 0. So the implication holds.

“<”. Assume that t? — ut — w has two left roots b,c with b € U(R) and c being
nilpotent. Let P = (1 b_l) and D = (b 0). Then P is invertible and PA = DP. So

c 1 0 c
A is strongly m-regular by Corollary 5.2.3. [

Theorem 5.2.7 The following are equivalent for a local ring R:
1. My(R) s strongly m-reqular.

2. My(J(R)) is nil and, for any uw € U(R) and w € J(R), t* —ut —w has two left roots,
one in U(R) and the other in J(R).

8. My(J(R)) is nil and, for any v € U(R) and w € J(R), t* — ut — w has two right
roots, one in U(R) and the other in J(R).
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Proof “(1) = (2)”. (1) clearly implies that My(J(R)) is nil. For u € U(R) and
wEﬂMJﬁAz(UI

w 0
t? — ut — w = 0 has two left roots, one in U(R) and the other is nilpotent. So (2) holds.

). By (1), A is strongly m-regular. Hence, by Lemma 5.2.6,

“2) = (1)". Let A € My(R). We want to show that A is strongly m-regular.
Because of (2), we may assume that A ¢ My(J(R)) and A ¢ GLy(R). Thus, by Lemma
where u € R and w € J(R). If u € J(R), then

5.2.5, we may assume that A = | :

w 0
A? € My(J(R)). So A is nilpotent and hence is strongly m-regular. Therefore, we may
further assume that u € U(R). By (2), t* — ut — w = 0 has two left roots, one in U(R)

and the other in J(R) which is nilpotent. Thus, by Lemma 5.2.6, A is strongly m-regular.

“(1) < (83)”. Similar to the proof of “(1) & (2)”. -

As mentioned before, for a commutative local ring R, M(R) is strongly n-regular iff
J(R) is nil. As a contrast of this, there exists a local ring R with J(R) locally nilpotent
(thus, My(J(R)) is nil), but My(R) is not strongly m-regular by [20]. Notice that for a left
perfect ring R, M, (R) is again left perfect, so it is strongly w-regular. Our concluding
example gives a noncommutative local ring that is not one-sided perfect such that M,(R)

is strongly m-regular.

Example 5.2.8 Let G = {a, : 0 < r € R} be a semigroup with multiplication defined
by a,as = arys. Then G has identity ag. Let DG be the semigroup ring of G over a
division ring D that is not a field and let (o) be the ideal of DG generated by c;. Let
R = (DG)/(a1) be the quotient ring. Thus, R = @{Da, : 0 < r < 1} is a left vector
space over D with a basis {a, : 0 < r < 1} and the multiplication of R is given by

(

ar+8, i.fT—I_S< ].,
Qrlg =

0, fr+s>1.

\

The ring R (with unity ag) is noncommutative and the following hold:

1. R is a local ring with J(R) locally nilpotent.
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2. R 1is not one-sided perfect.
3. Ms(R) s strongly m-regular.

Proof (1). It is clear that J(R) = @{Da, : 0 < r < 1} is locally nilpotent. Since
R/J(R) = D, R is local.

(2). If let z; = ay—« € J(R) for i = 1,2,---, then for any n > 0, z, -+ 2oz, =

T1Ty- Ty =, # 0 where r = 1 — =. So J(R) is neither left nor right 7-nilpotent and
2 g

thus R is not one-sided perfect.

(8). Because J(R) is locally nilpotent, My(J(R)) is nil. So, by Theorem 5.2.7, it
suffices to show that, for any u € U(R) and any w € J(R), t* — ut — w has two left roots,
one in U(R) and the other in J(R). Write

U = UgQpy + ULy + -+ - + Upay,, With 0 # ug € D,
W = Wolyp, + W10, + +++ + wpa,, With wy = 0,
where 0 = 19 < 71 < -+ < r, < 1. Rewrite u = Yu,a, and w = Xw,qa, where
u, = w, =0 for r ¢ {rg,--- ,r,}. Write t = Lt,c,. Then
tr—tu—w=0&tt—u)=w
r

tg(to — ’LLO) == |
Al

1 Zr+3:k tT‘(tS — us) = Wk fOl‘ 0 < k: < ]_

to(to = Uo) = (PO)
Sl

te(to — uo) + totk = wr +toug — ), x tr(ts —us) for 0 <k <1 (FP)

\

From (F,), to = 0 or tg = ug. For tg = 0 or tg = ug, we next show that one can
find ¢y € D for each 0 < k < 1 such that almost all t; are zero and (Fy) holds for all
0 < k < 1. Thus, X,>ot,, gives a left root of t* — ut — w in J(R) when to = 0 and a left

root in U(R) when ty = uo.

Let m > 0 be an integer such that mr; > 1 and let

= {'r,,;o+n-1 bRl ki R {0,1,--- ,m},r, 7y, - ,Ti; € {rg,- - ,rn}}.
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Then C' is a finite set, so we can write C = {sg, s1, 82, } with 0 = 59 < s; < ---. Take
to = 0 or tg = ug and choose t, = 0 if r ¢ C. Suppose that, for £ = s; where [ > 0 is an
integer, we have chosen ¢, for all 0 < r < k. Since (F) is solvable for t;, we then choose
tr to be the (unique) solution to (Px). A simple induction shows that all the required

t.'s exist. The proof is complete. ]



Chapter 6

g(z)-Clean Rings

In section 6.1, we discuss some general properties of g(z)-clean rings which are similar
to those of clean rings. In section 6.2, we focus on (z° + cx + d)-clean rings, in particular,
on (z2 — 2x)-clean and (z? — nx)-clean rings. In section 6.3, we consider (z" — z)-clean
rings. Theorem 6.2.2 and Theorem 6.2.5 are the main results. This chapter comes from

33].

6.1 g(x)-clean rings

In this section, we discuss some general properties similar to those of clean rings.

Definition 6.1.1 Let g(z) be a fixred polynomial in C(R)[x]. An elementr € R is called
g(z)- clean if r = e + u where g(e) = 0 and ue U(R). Following Camillo and Simdn
[18], we say that R is g(x)-clean if every element of R is g(x)-clean.

The (2% — x)-clean rings are precisely the clean rings. The following two examples explain

the relations between g(z)-clean rings and clean rings.

Example 6.1.2 There exists an (z* — x)-clean ring which is not clean. Recall that
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Ly ={2 € Q:gcd(7,n) = 1}. The proof of [67, Theorem 3.1] shows that Zz)Cs is an

4

(z* — z)-clean ring. But Z7)Cs is not clean by [38, Example 1].

Example 6.1.3 Let R be a Boolean ring containing more than two elements and let
c€ Rwith0#c#1. Let glz) =z*+ (1+c)zx+c= (z+ 1)(z +c¢). Then R 1is not

g(z)-clean.:

If c = e+ u where u is a unit and g(e) = 0, then it must be that uw = 1 and so

e=c—1=c+ 1. But, clearly, g(c+ 1) # 0. However, R is certainly clean.

Let R and S be rings and 6 : C(R) — C(S) be a ring homomorphism with 6(1) = 1.
For g(z) = Ya;z* € C(R)[z], let § (g(z)) = L6(a;)x* € C(S)[z]. Then 6 induces a map
9 from C(R)[z] to C(S)[z]. Clearly, if g(z) is a polynomial with coefficients in Z, then
0'(9(z)) = g(z).

Proposition 6.1.4 Let 6 : R — S be a ring epimorphism. If R is g(x)-clean, then S is
0 (g(x))-clean.

Proof Let g(z) = ag + a17 + - -+ + anz™ € C(R)[z]. Then 6 (g(z)) = 0(ag) + 8(ai)z +
o+ 0(ap)z™ € C(S)[z]. For any s € S, there exists r € R such that 6(r) = s. Since R
is g(z)-clean, there exist e € R and u € U(R) such that r = e + v and g(e) = 0. Then
s = 0(r) = 6(e)+6(u) with §(u) € U(S) and 6’ (g(f(e)) = 0, that is, S is 8 (g(z))-clean. O

Let R— R/I,r »T=r+1, g(z) € C(R)[z], and g(z) € £[z].

Corollary 6.1.5 Let R be g(z)-clean. Then, for any ideal I of R, R/I is g(x)-clean
where g(x) € C(R/I)z].

We say R is lifting g-roots modulo I if g(a) = 0, a € R, implies g(b) = 0 for

b€ Rand b —a € I. This is the generalization of lifting idempotents modulo I where

g(z) = 2% — x.
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Proposition 6.1.6 Let I C J(R) be an ideal of R, n: R— R/I withn(r)=r+1=T,
and g(z) = > ja;x" € C(R)[z] withg(z) = > yaix* € C(R/I)[z]. If R/I isG(x)-clean
and R is lifting g-roots modulo I, then R is g(x)-clean .

Proof Forany r € R, let r+ 1 =7 =€+ 4 where g(é€) = 0 and @ € U(R/I). Because
roots of g(x) lift modulo I, we can assume e € R such that g(e) =0. Sor —e —u =1
for some 7 € I. Hence r = e + (u + ¢) with u + ¢ € U(R). Thus, r is g(z)-clean, that is,
R is g(x)-clean. O

We omit the argument of the following proposition since the proof is standard.

Proposition 6.1.7 Let g(z) € Z[x] and let {R; }ic1 be a family of rings. Then the direct
product [ [,.; R; is g(x)-clean iff every Ry, i € I, is g(x)-clean.

Canonically, we can identify a ring R with {al, : a € R}, a subring of M,(R), where
I, is the identity matrix of M, (R). Thus, we can identity g(z) = > a;z* € C(R)[z] with
S al,xt € C(My(R))[z].

Proposition 6.1.8 Let R be a ring, g(z) € C(R)|z], and n € N. Then R is g(x)-clean
iff the upper triangular matriz ring T,(R) is g(x)-clean.

Proof “=". Let A = (a;;) € To(R) with a;; = 0for 1 < j < ¢ < n. Since R is
g(z)-clean, for any 1 < i < n, there exist e; € R and u;; € U(R) such that a; = e + uy
with g(e;;) = 0. Suppose g(z) = > " a;z* € C(R)[z]. Let A= E + U with

( uil1 a1z v al1,n—1 Qin
ei1 0 e 0
0 ug2 - a2 n—1 azn

0
b= S : and U =

0 0 Un—-1,n-1 Gan—-1,n
0 0 Enn
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Then U € GL,(R) and g(F) = apl, + a1 E+ -+ an, E™ =

agp 0 o 0 aijell 0 e 0
0 ao 0 0 aies? 0
= + +oet
0 0O .-+ ag 0 0 “v+ alénn
amel} 0 0 gle1r) 0 0
0 ameqs 0 0 g(e22) 0
0 0 amenty, 0 0 Q(enn)

So T,(R) is g(x)-clean.

“<". Define § : T,(R) — R by 6(A) = ay;. Then 6 is a ring epimorphism. By a

proof similar to that of Proposition 6.1.4, we have R is g(x)-clean. O

In [38], the authors proved that if R is clean, then so is M, (R) for all n > 1. Here

we have a similar result for g(x)-clean rings.

Proposition 6.1.9 Let R be a ring and g(z) € C(R)[x]. If R is g(z)-clean, then M,(R)

is g(z)-clean for allm > 1.

Proof We prove the claim by induction on n. The case n = 1 is clear. Assume the claim

holds for M,,_1(R) where n > 1. If @ € M,,(R), write a = ( i f ) in block form where

A€ M, 1(R) and b € R. By hypothesis, A = E+U where E € M,,_1(R) is a root of g(z)
and U is a unit of M,_,(R). Then b— YU X € R. So, since R is g(z)-clean, we have
b—YU ' X = e+u where e € Ris aroot of g(z) and u € U(R). Then a— ( Bo ) = 1,

0 e

U X
Y u+YU 'X

In.y 0 U X Ina -U'X\ _ (U o0
—yu-1 i Y uw+YU-lX 0 1 N0 w /)

E 0
0 e

where 3 = ( ) . We obtain

So (3 is a unit of M, (R). Since ( ) is a root of g(z), @ € M,(R) is g(x)-clean. [J
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Proposition 6.1.10 Let R be a ring and g(x) € C(R)[x]. Then the formal power series
ring R|[t]] is g(z)-clean iff R is g(x)-clean.

Proof “ <”. Let f = 3. ,ait" € R[[t]]. Since R is g(x)-clean, ap = e + u where e € R,
w € U(R) and g(e) = 0. Then f = e+ (u+ ;5 a;t’) with u+ 3.5, ait* € U(R[[t]]). So
f is g(x)-clean. Hence, R|[[t]] is g(z)-clean.

“=". Since 0 : R[[t]] — R, }_;50at' — ao, is a ring epimorphism. By Proposition
6.1.4, R is g(x)-clean. O

Remark 6.1.11 Generally the polynomial ring R[t] is not g(x)-clean for a non-zero
polynomial g(z) € C(R)[z]. For example, the polynomial ring R[t] with R commutative
is not (z* — x)-clean in [38] and is not (z™ — z)-clean by [67].

6.2 (z?+ cz + d)-clean rings

In this section, we consider some types of (2% + cx + d)-clean rings.

If V is a countably infinite dimensional vector space over a division ring D, then
End(Vp) is clean by Nicholson and Varadarajan [53]. Further, Camillo and Simén [12]
proved that End(Vp) is g(z)-clean provided that g(z) € C(D)[z] has two distinct roots
in C(D). Recently, this result has been extended as the following.

Example 6.2.1 [54] Let R be a ring and Mg be a semisimple module over R. If g(x) €
(x — a)(x — b)C(R)[z] where a,b € C(R) are such that b and b — a are both units in R,
then End(Mg) is g(x)-clean.

Example 6.2.1 implies that the endomorphism ring of a semisimple module is clean (let

a =0 and b = 1). But it is surprising that Example 6.2.1 does not say more than this.

Theorem 6.2.2 Let R be a ring and g(z) € (z — a)(x — b)C(R)|z| where a,b € C(R)
are such that b —a € U(R). Then the following hold:
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1. R is clean iff R is (x — a)(z — b)-clean.

2. If R is clean, then R is g(x)-clean.

Proof (1). “=”. Let r € R. Since R is clean, ==¢ = e + u where ¢*> = ¢ € R and

) b—a

u € U(R). Thus, r = [e(b—a) + a] + u(b — a), where u(b —a) € U(R) and e(b—a) + a

is a root, of (x — a)(x — b). Hence R is (z — a)(z — b)-clean.

“<”. Let r € R. Since Ris (z — a)(x — b)-clean, r(b — a) + a = e + u where e is a

root of (z — a)(z — b) and v € U(R). Thus, r = $== + -, where - is a unit of R and

e—a e—a)(e—b+b—a e—a)(b—a e—a "
(E]:)2 — ( )(E)_a)_; ) == ( (b_)g)z ) e b—a SO R is clean.

(2). This follows from (1). O

Note that the converse of (2) need not hold by Example 6.1.2 and Example 6.1.3.
Corollary 6.2.3 Let R be a ring. Then R is clean iff R is (x* + x)-clean.

Proof This is the case of Theorem 6.2.2 (1) when a =0 and b = —1. [

Remark 6.2.4 Though the clean rings are just the (z* + x)-clean rings, a clean element
need not be an (z° + x)-clean element. For example, 1 +1 = 2 € Z is clean but it is not

(z* + x)-clean in Z.

For any n € N, let U, (R) denote the set of elements of R that can be expressed as a
sum of k£ units of R with 1 < k < n [40]. Rings generated by units are discussed in many

papers (see, for example, [40, 41, 57]).

It is an open question whether or not the clean property of the matrix ring M, (R)
(n > 1) implies that of R [38]. But the (z? — 2x)-clean property of R and of the matrix
ring M,,(R) (n > 1) are equivalent and the (z? — 2z)-clean rings are precisely those

rings whose elements can be expressed as the sum of a unit and a square root of 1. The
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equivalence “(7) < (8)” in the next theorem belongs to [35] and “(6) = (7)” has been
proved by Camillo and Yu [17].

Theorem 6.2.5 Let R be a ring and m,n,k € N. Then the following are equivalent.:

1. R is (z* — 2"z)-clean.
2. R is (z* + 2"x)-clean.
3. R is (x* — 2z)-clean.
4. R is (z* + 2x)-clean.
5. R is (2% — 1)-clean.
6. R is clean and 2 € U(R).
7. For any a € R, a can be expressed as a = u + v where u € U(R) and v* = 1.
8. My(R) is (z% — 2z)-clean.
9. My (R[[t]) is (x* — 2x)-clean.
R[t]

10. M (W) is (x% — 2x)-clean.

Proof “(1) = (6)”. We prove 2 € U(R). Suppose 2 ¢ U(R). Then R = R/(2"R) # 0.
Let 2" = e + u with e — 2" = 0 and v € U(R). Since 0 = 2" = € + u, we have
€ = -7 € U(R). But = €2 = 27¢ = 0. This is a contradiction. So 2 € U(R). Then R
is clean by (1) of Theorem 6.2.2 with a = 0 and b = 2™

“(6) = (1)”. By (1) of Theorem 6.2.2, R is (z® — 2"x)-clean.
Similarly, we can prove “(2) < (6)”, “(8) < (6)” and “(4) < (6)”.

“(6) = (7). Leta € R. By “(8) & (6)”,1—a = e+u where e? = 2e and u € U(R).
Then a = (—u) + (1 — e) with —u € U(R) and (1 — e)* = 1 ([17, Proposition 10}).
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“(7) = (6)”. Let a € R. By (7), 1 —a =u+ v where u € U(R) and v* = 1. Thus,
a=(—u)+(1—v) with —u € U(R) and (1 —v)* = 2(1 —v). By “(8) & (6)”, we proved
that (7) implies (6).

“(5) = (7). If Ris (z* — 1)-clean, then for any r € R, there exist v,u € U(R) such

that r = v + v and v? = 1.

“(7) = (5)". Let a € R. Then a can be expressed as a = u + v with u,v € U(R)

and v? = 1. So v is the root of z2 — 1. Hence R is (22 — 1)-clean.
“(8) < (7). By [35, Theorem 1.5].

“(9) & (3)”. Since R is (z* — 2x)-clean iff R[[t]] is (z* — 2z)-clean by Proposition
6.1.10, we get the equivalence of (9) and (8) by “(8) < (3)”.

“(10) < (8)”. By Proposition 6.1.4, “(3) = (9) = (10) = (3)”. O

Remark 6.2.6 Let m,k € N. Similar to Theorem 6.2.5, it can be proved that, for a

ring R and a fived integer n > 0, the following are equivalent:
1. R is (z® — n™zx)-clean.
2. R is (z? + n*z)-clean.
8. R is (z® — nz)-clean.
4. R is (2% + nz)-clean.
5. R is a clean ring with n € U(R).
But the other corresponding items in Theorem 6.2.5 are unknown if 2 ¢ U(R).

Example 6.2.7 Let R be a ring withn € U(R). Then, for any continuous or discrete
R-module M (see definition in [48]), the endomorphism ring Endr(M) is an (x* — nzx)-

clean ring.
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Proof By a result in [16], every endomorphism ring of continuous or discrete module is
clean. So by Theorem 6.2.2, Endgr(M) is an (z* — nx)-clean ring. For example, when R

2

is a division ring, Endr(M) is an (z* — nx)-clean ring for any n € N. O

Let C(X) denote the ring of all continuous real valued functions from a topological
space X to the real number field R and C*(X) denote the subring of C(X) consisting of
all bounded functions in C(X) [34, pp. 10-11]. A topological space X is called strongly
zero-dimensional if X is a non-empty completely regular Hausdorft space and every
finite functionally open cover {U;}*_, of the space X has a finite open refinement {V;},

such that V; NV; = 0 for any 7 # j [30].

Example 6.2.8 Let X be a strongly zero-dimensional topological space. Then both
M (C(X)) and Mi(C*(X)) are (z* — nz)-clean rings for any n,k € N.

Proof By [9, Theorem 2.5], C(X) and C*(X) are clean. So they are (z® — nz)-clean
by Theorem 6.2.2 and n is invertible in C(X) and C*(X). Then, by Proposition 6.1.9,
Theorem 6.2.5 and Remark 6.2.6, M (C(X)) and My (C*(X)) are (z® — nz)-clean rings
for any n,k € N. [

Example 6.2.9 Let F' be a field with characteristic char F' = ¢, let V' be an infinite
dimensional vector space over F', and let R be the subring of End(rV') generated by the
identity and the finite rank transformations. Then My(R) is an (z° — nz)-clean ring

where n, k € N and ¢ does not divide n.

Proof By [36, Example 5.15], R is a unit-regular ring. So by [38], R is clean. Then R

is an (z? — nx)-clean ring since n € R is a unit. Hence, by Proposition 6.1.8, M (R) is

2

an (x° — nx)-clean ring for any n,k € N. [

Example 6.2.10 Fhrlich [28] defined the unit-regular rings. She proved that if R is a
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unit-reqular ring with 2 € U(R), then every element rur = r € R with certain u € U(R)
can be expressed as v = 42y~ + 2u”!, that is, R = Uz(R). In fact, for every unit-
reqular ring with 2 € U(R), the matriz ring M (R), for any k € N, is an (z° — 2z)-clean

ring by [38] and Theorem 6.2.5.

Proposition 6.2.11 Let R be a ring with d € U(R). If R is (z°® + cx + d)-clean, then
R = Uy(R). In particular, if R is (z® + z + 1)-clean, then R = Uy(R) is (z* — z)-clean.

Proof Let € R. Thenr = e+ u with u € U(R) and e +ce+d = 0. So
e(e+c) = (e+cle = —d € U(R). Hence e € U(R). That is, r € Uy(R). There-
fore, R = U>(R). Now the other conclusion is easy. ]

6.3 (2" — x)-clean rings

A ring R is called potent if idempotents lift modulo J(R) and every left (or right)
ideal not contained in J(R) contains a nontrivial idempotent (an idempotent that is not
0 or 1 is called a nontrivial idempotent). Every exchange ring is potent, so is every clean
ring [51]. Notice that any potent ring containing no infinite family of orthogonal nonzero
idempotents is a semiperfect ring [17]. Since Z7)Cs is not a semiperfect ring [64] but is
a Noetherian ring, it is not potent (hence not exchange). Thus, by Example 6.1.2, an
(z* — z)-clean ring need not be potent. By Ye [67, p. 5624], the directly infinite regular
ring with 2 invertible constructed by Bergman [39, Example 1] is not (z™ — x)-clean for

every n > 2.

Proposition 6.3.1 Let R be a ring with n € N. Then R is (az®™ — bz)-clean iff R is

(az?" + bx)-clean.

Proof “ = 7. Suppose R is (az®"—bz)-clean. Then for any r € R, —r = e+u, ae’*—be =
0 and u € U(R). Sor = (—e) + (—u) where (—u) € U(R) and a(—e€)*® + b(—e) = 0.

Hence, r is (az®™ + bz)-clean. Therefore, R is (az®™ + bx)-clean.
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“ &< 7. Suppose R is (az®" + bx)-clean. Let r € R. Then there exist e and u such that
—r = e+u, ae’+be = 0and u € U(R). Sor = (—e)+(—u) satisfies a(—e)*" —b(—e) = 0.
Hence, R is (az*™ — bx)-clean. O

By Proposition 6.3.1, we get that Z)Cs is also (z* + z)-clean.

Example 6.3.2 Let 2 < n € N. If for everya € R, a = u+ v where u € U(R) and

v" 1 =1, then R is (z™ — z)-clean.
The following lemma is well-known.

Lemma 6.3.3 Let a € R. The following are equivalent for n > 1:

1. a=a(ua)® for some u € U(R).
2. a = ve for some e""! = e and some v € U(R).

8. a= fw for some f"* = f and some w € U(R).

Proof “(1) = (2)”. Suppose that (1) holds and let e = ua. Then a = u™'e with

n+1

€ = €.

“(2) = (8)”. Suppose that (2) holds and let f = vev™. Then a = fv with frtl = f.

“(83) = (1)”. Suppose that (&) holds. Then (aw™!)"*!' = f"*! = f = qw™!. Tt

follows that a = fw = (aw™!)""'w = a(w™ta)™ O

Proposition 6.3.4 Let R be an (2" —z)-clean ring where n > 2 and a € R. Then either

(i) a = u + v where u € U(R) and v"~! = 1; or (it) both aR and Ra contain nontrivial

idempotents.
Proof Write a = u + e where u is a unit and e® = e. Then ae™! = ue" ! + e.
So a(l —e™!) = u(l —e™!). Since 1 — €™ ! is an idempotent, by Lemma 6.3.3,

u(l — e™ ') = fw where w € U(R) and f? = f € R. So f = a(l —e"Hw™! € aR.
Suppose (i) does not hold. Then 1 — e ! # 0. Hence, f # 0. Thus, aR contains a non
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trivial idempotent. Similarly, Ra contains a non trivial idempotent. O

An element r € R is called n-clean if r = e +u; + -+ + u,, with €2 = e € R and

u; € U(R) for 1 <7 < n. And R is called n-clean if every element of R is n-clean [65].
Proposition 6.3.5 Let n € N. If the ring R is (" — z)-clean, then R is 2-clean.

Proof Let r € R. Then r = ¢t 4+ v for some t" =t and v € U(R). Since t(= t") is a
strongly m-regular element and strongly m-regular element is strongly clean(it is of course
clean) [52], t = e + u for some e? = e € R and u € U(R). Sor = e+ u+ v is 2-clean.

Hence, R is a 2-clean ring. L]

In fact, all (z? — z)-clean rings and (z* + cx + d)-clean rings with d € U(R) discussed

above are 2-clean rings.
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