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Abstract 

The main purpose of decomposing an object into simpler components is to simplify a 

problem involving the complex object into a number of subproblems having simpler 

components. In particular, a tetrahedralization is a partition of the input domain in 

R3 into a number of tetrahedra that meet only at shared faces. Tetrahedralizations 

have applications in the finite element method, mesh generation, computer graphics, 

and robotics. 

This thesis investigates four problems in tetrahedralizations and triangulations. 

The first problem is on the computational complexity of tetrahedralization detections. 

We present an O(nmlogn) algorithm to determine whether a set of line segments .C 

is the edge set of a tetrahedralization, where m is the number of segments and n is 

the number of endpoints in .C. We show that it is NP-complete to decide whether .C 

contains the edge set of a tetrahedralization. We also show that it is NP-complete to 

decide whether .C is tetrahedralizable. The second problem is on minimal tetrahedral­

izations. After deriving some properties of the graph of polyhedra, we identify a class 
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of polyhedra and show that this class of polyhedra can be minimally tetrahedralized 

in O(n2 ) time. The third problem is on the tetrahedralization of two nested convex 

polyhedra. We give a method to tetrahedralize the region between two nested con­

vex polyhedra into a linear number of tetrahedra without introducing Steiner points. 

This result answers an open problem raised by Bern [16]. The fourth problem is on 

the lower bound for ,8-skeletons belonging to minimum weight triangulations. We 

prove a lower bound on ,B (,8 = ~/2v'3 + 45) such that if ,B is less than this value, 

the ,8-skeleton of a point set may not always be a subgraph of the minimum weight 

triangulation of this point set. This result settles Keil's conjecture [62]. 
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Chapter 1 

Introduction 

1.1 General definitions 

In this section, we introduce some definitions of the geometric objects that are used 

in this thesis. 

Euclidean distance: Let Rd denote the d-dimensional Euclidean space, and p = 

(p1,p2 , ... ,pd) and q = (q1 , q2 , ... , Qd) be two points in Rd. The Euclidean distance 

between p and q, denoted as dist(p, q), is measured by the £ 2-metric: 

d 

dist(p, q) = (L IPi- Qil 2 )~. 
i=l 

The Euclidean length of the straight line segment (edge) joining p and q, denoted as 

1 
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jpqj, is equal to dist(p, q). In this thesis, we will use distance (length) as a shorthand 

for the Euclidean distance (length). 

Convex hull: A domain D in Rd is convex if and only if, for any pair of points p 

and q in D, the line segment pq is completely contained in D. The convex hull of a 

set of geometric objects S in Rd, denoted by CH(S), is the smallest convex set in 

Rd containing S. Since the intersection of convex sets is a convex set, CH(S) is the 

intersection of all convex sets that contain S. Note that the term convex hull is used 

in this thesis to denote the union of the boundary and the interior. 

Polygon: In R2 , a polygon is defined by a finite set of line segments such that each 

endpoint of a segment is shared by exactly two segments. The segments are the edges · ·. 

and their endpoints are vertices of the polygon. 

A polygon is simple if any pair of nonconsecutive edges do not share a point. A 

simple polygon is homeomorphic to a closed disc, whose boundary partitions the plane 

into two disjoint areas. The bounded area is called the interior, and the unbounded 

area is called the exterior of the polygon. 

Similarly, we can define the polygon in a piecewise linear surface in R3 , such as 

the surface of a polyhedron defined as follows. 

Polyhedron: In R 3
, a polyhedron is defined by a finite set of plane polygons such that 

each edge of the polygons is shared by exactly two polygons. These polygons and their 
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edges and vertices are the 2, 1, 0-dimensional faces of the polyhedron, respectively. In 

particular, the vertices and edges of the polygons are the vertices and edges of the 

polyhedron respectively; the polygons are the facets of the polyhedron. 

A polyhedron is simple if it is homeomorphic to a closed 3-ball. Therefore, a 

simple polyhedron does not meet itself in a handle, or touch itself at a point or an 

edge (see Figure 1.1). The boundary of such a polyhedron is a piecewise linear 3-

manifold which forms a connected planar graph. A simple polyhedron partitions the 

space into two disjoint regions. The bounded region is called the interior, and the 

unbounded region is called the exterior of the polyhedron. A simple polyhedron is 

simplicial if all of its facets ar~ triangles. 

,-

Figure 1.1: Three examples of non-simple polyhedra. 

Note that when we use the term polygon or polyhedron, we usually mean the 

union of the boundary and the interior. 

A diagonal of a polyhedron (or polygon) is a line segment between two vertices 

that lies inside the polyhedron (or polygon) and does not intersect the boundary of 

the polyhedron (or polygon) except at its endpoints. 
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A polyhedron (or polygon) is star-shaped if the entire polyhedron (or polygon) is 

visible from some point inside the polyhedron (or polygon). 

Tetrahedralization/Triangulation: A tetrahedralization (resp. triangulation) is a 

partition of the input domain in R3 (resp. R2 ) into a number of tetrahedra (resp. 

triangles) that meet only at shared faces (see Figure 1.2). 

Figure 1.2: The triangulations of a point set (left) and a simple polygon (middle). 
The tetrahedralization of a polyhedron (right). The solid and dotted lines show input; 
the dashed lines show the add~d edges. 

In R 3 , let S be a piecewise linear 3-manifold in which each facet is a triangle. If 

S is topologically equivalent to a disc, then S is called a triangulation surface. If S is 

topologically equivalent to a 3-sphere, then S is called a closed triangulation surface. 

A tetrahedralization is significantly more complicated than a triangulation. While 

different triangulations of the same input must contain the same number of triangles, 

different tetrahedralizations of the same input may contain different numbers of tetra-

hedra (see Figure 1.3). There even exists a convex n-vertex polyhedron that can be 

tetrahedralized with (n;2
) tetrahedra. The equation t = ei + n- 3 [39] describes the 

relationship between the number of tetrahedra t and the number of interior edges ei 

in a tetrahedralization of an n-vertex polyhedron. 
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Figure 1.3: Two ways of tetrahedralizing a polyhedron. 

Note that the word tetrahedralization we used in this thesis has a variety of names 

in the literature, such as triangulation [26] and tetrahedrization [48]. The word trian-· 

gulation usually refers to the 2-dimensional case or the d-dimensional case [89]. The 

word tetrahedralization is commonly used for the 3-dimensional case [16, 27]. 

Tetrahedralizations and triangulations have applications in the finite element 

method, CAD/CAM, computer graphics, and robotics [6, 17, 22, 48, 82]. 

1.2 The computational model and complexity 

Before we can analyze algorithms, we must have a computational model. In this thesis, 

the computational model for all the algorithms is the real random access machine 

(RAM) [1, 82]. In this model each of the following primitive operations can be 

performed in a unit cost: 
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1. The four arithmetic operations ( +, -, x, 7). 

2. Comparisons between two real numbers ( <, ~'=,-=f., 2, > ). 

3. Indirect addressing of memory (integer addresses only). 

Given a geometric problem, each instance of the problem is specified by a set of 

data called the input to the problem. For a given input, an algorithm that solves the 

problem under the input yields a result called the output. The size of the input (resp. 

output) equals the number of memory cells needed to store this input (resp. output). 

For geometric problems, this is usually the number of points and segments in the 

input or output. The running time of an algorithm on a given input is the number of 

primitive operations executed in solving the input. Obviously, the running time of an 

algorithm depends not only on the size of the input, but also on the input itself, e.g., 

how points and segments are placed in space and what are the lengths of segments. 

For an algorithm, we usually concentrate on its worst-case time complexity, or time 

complexity in the worst case, that is, a function t( n) that represents an asymptotic 

upper bound on the number of primitive operations executed by the algorithm when 

the input size is n. Similarly, we can define the worst-case space complexity. In 

this thesis, we will use complexity as a shorthand for the worst-case time (or space) 

complexity. When an asymptotic upper bound to the worst-case time complexity of 

an algorithm is t(n), we also say that the algorithm runs in time t(n). 
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1.3 Basic notations 

In this section, we introduce some basic notations that are used throughout this thesis. 

For a set A of geometrical objects (points, edges, facets, or polyhedra) in the 

d-dimensional Euclidean space Rd, let V(A), E(A) and F(A) be the vertex set, edge 

set and facet set of A, respectively. Similarly, let int(A), cl(A) and CH(A) be the 

interior, closure and convex hull of A, respectively. Let IAI be the cardinality of A if 

A is a set according to the context. Note that the Euclidean length of a straight line 

segment (edge) pq is also denoted as lpq I· 

Throughout this thesis, every set of geometrical objects (points, edges, facets, or 

polyhedra) is a finite set unless otherwise stated. 

Given arbitrary points a, b, c, d in R2 or R 3
, unless otherwise stated, we use ab to 

denote the line segment (edge) with endpoints a and bin R2 orR\ abc to denote the 

triangle with vertices a, b and c in R2 or R 3 , and abed to denote the tetrahedron with 

vertices a, b, c and d in R3 . 

We will compare the growth of different functions by using the notations intro­

duced by Knuth [66]. Let f and g be two positive real-valued functions of the integer­

valued variable n. 

O(g(n)) = {f(n) I there exist positive constants c and n0 such that 



f(n) ~ cg(n) for all n ~ n0 }. 

Sl(g(n)) = {f(n) I there exist positive constants c and n0 such that 

cg(n) ~ f(n) for all n ~ n0 }. 

8(g(n)) = {f(n) I there exist positive constants c1, c2 and n0 such that 

c1g(n) ~ f(n) ~ c2g(n) for all n ~ n 0 }. 

8 

In particular, a function f(n) is 0(1) if and only if it is bounded above by a constant. 

1.4 Outline of the thesis 

The rest of this thesis is organized as follows. 

In Chapter 2, we investigate the computational complexity of the tetrahedraliza­

tion detection problem. Let .C be a set of line segments in three dimensional Euclidean 

space. We prove several characterizations of the tetrahedralizations. We present an 

0( nm log n) algorithm to determine whether .C is the edge set of a tetrahedralization, 

where m is the number of segments and n is the number of endpoints in .C. We 

show that it is NP-complete to decide whether .C contains the edge set of a tetrahe­

dralization as a subset. We also show that it is NP-complete to decide whether .C 

is tetrahedralizable. The results from this chapter are due to joint work with C. A. 

Wang. 
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In Chapter 3, we present some properties of the graph of polyhedron. We identify 

a class of polyhedra and show that this class of polyhedra can be minimally tetrahe­

dralized in O(n2 ) time. The results from this chapter also are due to joint work with 

C. A. Wang, and have appeared as [110]. 

In Chapter 4, we present a method to tetrahedralize the region between two nested . 

convex polyhedra without introducing Steiner points. This method produces at most 

9n - 6 tetrahedra, where n is the number of the vertices in the two given polyhedra. 

Thus, we answer the open problem as to whether the region between two nested 

convex polyhedra can be tetrahedralized into a linear number of tetrahedra without 

Steiner points [16]. The results from this chapter are also a joint work with C.· A .. 

Wang, and have appeared in [107]. 

In Chapter 5, we study the relationship between ,8-skeletons and minimum weight 

triangulations. We prove a lower bound on ,8 value (,8 = iV2../3 + 4S) such that if ,8 is 

less than this value, the ,8-skeleton of a point set may not be always a subgraph of the 

minimum weight triangulation of the point set. Thus, we disprove Keil's conjecture 

that, for ,8 = ~../3, the ,8-skeleton is a subgraph of the minimum weight triangulation 

[62]. The results from this chapter are also a joint work with C. A. Wang; it appeared 

originally in [105], and in final form in [108]. 



Chapter 2 

Detections of the 

Tetrahedralizations 

Let .C be a set of line segments in three dimensional Euclidean space, and m be 

the number of segments and n be the number of endpoints in .C. In Section 2.1, 

we review the literature regarding tetrahedralizations. In Section 2.2, we give some 

notations and assumptions. In Section 2.3, we present three characterizations of 

tetrahedralizations. They describe a tetrahedralization from the facet, vertex, and 

combinatorial viewpoints, respectively. In Section 2.4, we describe an 0( nm log n) 

algorithm to determine whether .C forms a tetrahedralization. In Section 2.5, we 

show that the problem of deciding if .C contains a tetrahedralization is NP-complete 

by a reduction from the two dimensional analog of this problem [74]. In Section 2.6, 

10 
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we prove that the problem of deciding if .C is tetrahedralizable is NP-complete by a 

reduction from the Satisfiability problem [51]. Finally, we list some open problems in 

Section 2.7. 

2.1 Introduction 

Given a set V of points in R 3 
1 a tetrahedralization of V is a partition of the convex hull 

of V into a number of tetrahedra such that (i) each vertex of the tetrahedra belongs 

to V, (ii) each point of V is the vertex of a tetrahedron, and (iii) the intersection of 

any two tetrahedra is either empty or a shared face. 

Edelsbrunner et al. [48] studied the problem of tetrahedralizing a set of points. 

They presented several combinatorial results on extremum problems concerning the 

number of tetrahedra in a tetrahedralization. They also presented an algorithm that 

tetrahedralizes a set of n points in O(nlogn) time. A similar algorithm was given in 

[6]. If additional vertices, the so-called Steiner points, are allowed when constructing 

the tetrahedralization, then any simple polyhedron of n vertices can be partitioned 

into O(n2
) tetrahedra. Chazelle and Palios [26] described a tetrahedralization algo-

rithm for decomposing a simple polyhedron with n vertices and r reflex edges into 

O(n + r 2) tetrahedra using O(n + r 2) Steiner points. Chazelle and Shouraboura [27] 

showed that this algorithm works just the same for polyhedra of arbitrary genus. Dey 

et al. [42] described an algorithm that constructs a tetrahedralization avoiding the 
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creation of flat or long and thin tetrahedra. Other algorithms for tetrahedralizing 

polyhedra with Steiner points are presented in [7, 41, 57]. Delaunay tetrahedraliza­

tions are discussed in [59, 60, 61, 83, 96, 97]. 

On the issue of NP-completeness, Ruppert and Seidel [88] proved that finding a 

tetrahedralization of a nonconvex polyhedron without Steiner points is NP-complete; 

this problem remains NP-complete even for star-shaped polyhedra. It follows that 

the problem of deciding how many Steiner points are needed to tetrahedralize a 

polyhedron is also NP.:.complete. ' 

Given a set of line segments .C in R3 , we investigate the algorithmic complexity of 

finding tetrahedralizations regarding .C. If .C is the edge set of a tetrahedralization, 

·we say that .C forms a tetrahedralization. If .C is a superset of the edge set of a tetra­

hedralization of V(.C), we say that .C contains a tetrahedralization. If£ is a subset of 

the edge set of a tetrahedralization of V(£), we say that £ is tetrahedralizable. We 

present an O(nm logn) algorithm to determine whether£ forms a tetrahedralization, 

where m is the number of segments and n is the number of endpoints in£. If£ does 

not form a tetrahedralization, we prove that it is NP-complete to decide whether £ 

contains a tetrahedralization of V(£), and we prove that it is also NP-complete to 

decide whether C is tetrahedralizable. 



13 

2.2 Preliminaries 

Definition 2.1 For a face or polyhedron Panda line segment set L, if no segment of 

L intersects the interior of P, then we say that Pis .L-empty, as shown in Figure 2.1. 

a 

Figure 2.1: L = { ab, ac, ad, ae, be, cd}; face abc is .L-empty and face acd is not £­
empty. 

Throughout this chapter, let .C be a set of m line segments with n endpoints in 

.R3 ; let .6..c ={abc I ab, be, ca E .C, int(abc) n .C = 0} be the set of £-empty triangles 

with edges in .C; and .6.cH be the set of facets in CH(.C). Let .6.1 = .6.c- .6.cJH· . 

For simplicity, we assume throughout this chapter that no four vertices of V(.C) 

are coplanar. This assumption implies that each facet of CH(.C) is a triangle and any 

pair of segments in .C do not intersect. 

2.3 Characterizations of tetrahedralizations 

For each triangle abc E .6.1, let abc+ and abc- denote its two oriented versions with 

respect to the opposite normal directions. For the plane H containing abc, let H+ 

and H- denote its two half spaces corresponding to abc+ and abc- respectively. Let 
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nt(abc+) (resp. nt(abc-)) be the number of vertices in V(£) that lie in H+ (resp. 

H-) and form £-empty tetrahedra with abc. 

The following theorem gives characterizations of a tetrahedralization from the 

facet viewpoint. 

Theorem 2.1 (i) If 1:11 = 0, then£ forms a tetrahedralizatwn if and only if£ forms 

a tetrahedron. 

(ii) If 1:11 =/:- 0, then £ forms a tetrahedralization if and only if nt(abc+) 

nt(abc-) = 1, for each abc E 1:11 . 

1 and 

Proof (i) Sufficiency is trivial. We only prove necessity. Suppose £forms a tetrahe­

dralization. If £ does not form a tetrahedron, then there are at least two tetrahedra 

in £ which share one face. This face is an inner triangle. This contradicts the as­

sumption that 1:11 = 0. 

(ii) (Necessity). Suppose £ forms a tetrahedralization. For each abc E 1:11 , consider 

nt (abc+). Let H be the plane containing abc and H+ be the half space corresponding 

to abc+. If nt(abc+) > 1, let d and d' be two vertices of V(£) which lie in H+ and form 

the £-empty tetrahedra abed and abed'. Since abed and abed' are £-empty tetrahedra, 

int(abcd) II {ad', bd', cd'} = 0, and int(abcd') II {ad, bd, cd} = 0 (see Figure 2.2). This 

is a contradiction. Hence, nt(abc+) :::; 1. Assume nt(abc+) = 0. Let e be an arbitrary 

interior point in abc. Since abc is an £-empty inner face, there must exist a small 
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Figure 2.2: The interiors of the tetrahedra must intersect if nt(abc+) > 1. 

open ball O(e) such that O(e) n abc c int(abc) and O(e) c int(CH(.C)). Let e1 E 

O(e) n int(H+). Since .C forms a tetrahedralization, there exists a tetrahedron t 1 

containing e1 . If t 1 also contains e, then abc must be a face of t 1 , which contradicts 

the assumption that nt(abc+) = 0. Thus, t 1 does not contain e. Let ee1 intersect 

the boundary of t1 at ·e~, and e2 be the middle point of edge ee~. Then e2 is outside 

t 1. There must exist a tetrahedron t2 containing e2 . By using the same argument, 

we get an infinite sequence of points e1 , e2 , ... , ei, ... such that each ei is contained in 

a different tetrahedron k However, there are only a finite number of tetrahedra in 

a tetrahedralization. This is a contradiction. Therefore nt (abc+) = 1. Similarly, we 

can prove that nt(abc) = 1 for each abc E !}.1 . 

(Sufficiency). Suppose that nt(abc+) = 1 and nt(abc-) = 1, for each abc E /}. 1 . 

Thus, for each .C-empty inner face abc, there are exactly two vertices d and d' such 

that abed and abed' are two .C-empty tetrahedra. Let T denote the set of all these 

.C-empty tetrahedra. From the assumption, we know that T contains at least two 

tetrahedra. For any t, t' E T, int(t) n int(t') = 0 since they are .C-empty. Thus, in 
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order to prove that T is a tetrahedralization, we only need to show that the union 

of all the tetrahedra in T is CH(.C). We prove this by contradiction. Suppose there 

exists a point p E CH(.C) that is not contained in any tetrahedron ofT. Let t E T 

and select an interior point q in t such that int(pq) n .C = 0. Let Fpq = {! I f E 

~1 ,int(J) npq =I= 0}. So one facet oft belongs to Fpq· Since Fpq is a nonempty finite 

set, there must exist a facet p1p2p3 that is the nearest facet top along edge pq among 

facets of Fpq· Let H be the plane containing p1p2p3 • Without loss of generality, 

suppose that plies in the halfspace H+. Since nt(p1p2pf) = 1, there exists a point 

P4 such that P1P2P3P4 is an C-empty tetrahedra. Since p tf_ UtET t, pq must intersect 

two faces of P1P2P3P4, say P1P2P3 and P2P3P4 .. Then P2P3P4 is nearer than P1P2P3 to p 

along pq. This is a contradiction. 0 

For each vertex v E V(£), let £(v) be the edge set induced from vertex v and all 

its adjacent vertices, and T( v) be a set of tetrahedra in £ with v as a vertex such 

that each tetrahedron in T(v) is .C(v)-empty. For each tetrahedron t E T(v), the 

three facets incident to v are called side facets of v and the fourth facet is called the 

bottom facet of v. The union of all the bottom facets of vis denoted by B(v). From 

Section 1.1, we know that the triangulation surface can be considered as a portion of 

the boundary of a simplicial polyhedron, and the closed triangulation surface can be 

considered as the whole boundary of a simplicial polyhedron. 

Given the above, we have the following theorem which is the characterization of 
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a tetrahedralization from the vertex viewpoint. 

Theorem 2.2 £ forms a tetrahedralization if and only if the following conditions 

hold: 

1. for each vertex v E V(CH(£)), B(v) is a triangulation surface whose. boundary 

edges are contained in E(CH(£)); and 

2. for each vertex v E int(CH(£)), B(v) is a closed triangulation surface with v 

in its interior.· 

Proof (Necessity). Let £ form ·a tetiahedralization and v be an arbitrary vertex 

in V(£). Since each tetrahedron in T(v) is £-empty, each face of B(v) is a triangle. 

Suppose ab is an arbitrary boundary edge of B(v). If vab is an inner face of CH(£), 

from Theorem 2.1 we know that there exist vertices c and c' such that vabc and vabc' 

are two £-empty tetrahedra. So ab is an inner edge in B(v). This is a contradiction. 

Thus, if v E V(CH(£)), each boundary edge of B(v) belongs to E(CH(£)); if v E 

int(CH(£)), B(v) is a closed triangulation surface with v in its interior. 

(Sufficiency). LetT= UvEV(L:) T(v). We will prove that Tis a tetrahedralization. 

We first show that for any point pin CH(C), there exists at least one vertex v E V(£) 

such that p E T(v). If pis on the boundary of CH(£), then there exists a face abc 

containing p. Thus p E T(a). Suppose there exists an interior point p E int(CH(£)) 

which is not contained in any T(v), v E V(£). Select an arbitrary tetrahedron t E T 
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and an interior point q oft such that int(pq) n £ = 0. Let Fpq = {f I int(f) n pq =1-

0,! E B(v),v E V(£)}. Since F~q is a nonempty finite set (at least one facet oft 

belongs to Fpq), there must exist a facet abc that is the nearest facet to p along edge 

pq among facets of Fpq· Since abc is an inner face and p f. T(a), pq must intersect a 

face of B(a) which is nearer than abc top along pq. This is a contradiction. 

We now show that each tetrahedron in T(v) is £-empty. For any v E V(£), since 

each face of B(v) is a triangle, any pair of tetrahedra in T(v) are interior disjoint. 

Suppose there is a tetrahedron vabc E T( v) which is not £-empty. There are two 

cases regarding vabc. 

1. The four facets of vribc are £-empty. Let S be the set of vertices of V(.C) inside 

vabc. So the vertices of S are interior points of (J H(£). Since abc is a face in 

B ( v), there is no edge between v and S. For any u E S, there exists a T ( u) such 

that u is an interior point of the simplicial polyhedron bounded by B ( u). Let 

Fuv = {f I int(f) n uv =1- 0, f E B(x), x E V(£)}. Using an argument similar to 

the above, we can derive a contradiction for Fuv· 

2. There exists an edge pq which intersects at least one facet of vabc. Suppose 

p is outside of vabc and xyz is the nearest facet to p along pq among all the 

facets intersected by pq (See Figure 2.3(a)). If pxyz f. T(x), since xyz is a 

side facet of a tetrahedron in T(x), pq must intersect a triangle face of B(x) 

which is nearer than xyz top along pq. This is a contradiction. Thus, pxyz E 



19 

T(x). The adjacent vertices of x in B(p) form a cycle (x E int(CH(£))) or 

a chain (x E V(CH(£))). If xy (/. E(B(p)), there must exist an edge x'y' 

in the cycle (or chain) such that x'y' n int(pxy) =J. 0, and xx'y' is a face in 

B(p)(See Figure 2.3(b)). Since x'y' E .C(x), pxyz is not .C(x)-empty. This is a 

contradiction because pxyz E T(x). Thus xy E E(B(p)). Similarly, yz, zx E 

E(B(p)). Because B(p) is a triangulation surface and pq n int(xyz) =J. 0, there 

must exist a vertex p' E V(.C(p)) such that p'xy is a face in B(p) and the line 

containingpp' intersects the interior of xyz (See Figure 2.3(c)). Since pp' E .C(x) 

and pp' n int(pxyz) =J. 0, this is a contradiction because pxyz E T(x). 

v 

q p 
q 

b 

(a) (b) (c) 

Figure 2.3: (a) pq intersects face xyz. (b) x'y' intersects face pxy. (c) p'xy is a face 
in B(p) and the line containing pp' intersects face xyz. 

From cases 1 and 2 we know that for any vabc E T(v), v E V(£), vabc is £-empty. 

Hence Tis a tetrahedralization. Finally, we show that £ = E(T). For any uv E £, if 

u is not a vertex of B( v), then uv will intersect a face abc of B ( v) or will be contained 

in vabc. So vabc is not .C(v)-empty. Thus vabc (/. T(v) and abc (/. B(v). This is 

a contradiction. Hence u is a vertex of B(v) and uv E E(T(v)) c E(T). Thus 

£ ~ E(T). On the other hand, it is obvious that E(T) ~ £. Therefore£= E(T). D 
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Consider the space divided by the £-empty triangles in ~.c: C = R 3 
- { cl(abc) I 

abc E ~.c}. Let nc be the number of the bounded connected components in C. 

Each connected component of C is called a cell. Each bounded cell is denoted by 

C(1::; i ~ nc), and the unbounded cell is denoted by Co. So each cl(Ci)(O::; i::; nc) 

can be considered as a polyhedron. Recall that IAI stands for the cardinality of A 

if A is a set. Then we have the following theorem which is the characterization of a 

tetrahedralization from the combinatorial viewpoint. 

Theorem 2.3 .C forms a tetmhedralization if and only if the following conditions 

hold: 

1. (V(.C),.C) is a connected graph; 

.2. each cl( Ci) (0 ::; i S: nc) is a simple polyhedron and cl( C0 ) is £-empty; and 

3. nc = 1£1-IV(.C)I-IV(CH(.C))I + 3. 

Proof If .C forms a tetrahedralization, it is easy to see that conditions 1 and 2 

hold. From [48, Lemma 2.1] we know that condition 3 also holds. We now prove 

the sufficiency. Suppose the three conditions hold. Let F(cl(Ci))(O::; i::; nc) denote 

the facet set on the boundary of the polyhedron cl(Ci)· Since the boundary of the 

polyhedron cl( C0 ) is a maximal planar graph, it has 2IV( cl( C0 )) I - 4 facets. If the 

number of facets on the boundary of a cell is summed over all cells, then such a sum 

counts each facet twice. Thus, 2:7~ 1 IF(cl(Ci))l + 2IV(cl(C0 ))1 - 4 = 2n1, where n1 
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is the total number of facets on the boundary of cl(Ci)(O < z < nc)· Since each 

polyhedron cl( Ci) has at least 4 facets, we have 

(2.1) 

where equality holds if and only if every cl(Ci)(1 :::; 'i ~ nc) is a tetrahedron. Let 

L' = U1~i~nc E(cl(Ci)). From condition 2 we know that Euler's formula is valid for 

the cell complex consisting of cl(Ci)· So IV(L')I-IL'I + n1 -- nc = 1. Substituting it 

into (2.1), we have· 

nc ~ IL'I- IV(L')I-- IV(cl(Co))l + 3. (2.2) 

In order to show (2.2) holds for (V(£), £), we now construct (V(£), £) from 

(V(L'), L'). Note that (V(L'), L') is a subgraph of (V(£), £). In the construction 

process, we add edges one at a time so that the current graph is always connected. 

When we add an edge ab into cl(Ci), the left side of (2.2) does not change; the right 

side of (2.2) increases by 1 if a and b are already in the current graph, and does not 

change if a orb is a new vertex added to the current graph. Note that both a and b 

cannot be newly added vertices because we keep the current graph connected. Hence, 

for graph (V(£), £), we have 
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nc :S 1-CI-IV(.C)I-IV(cl(Co))l +3, (2.3) 

where equality holds if and only if every cl( Ci) (1 :S i :S nc) is an .C-empty tetrahedron. 

Since cl(Co) is .C-empty, we have V(CH(.C)) ~ V(cl(Co)). Thus, IV(CH(.C))I :S 

IV(cl(Co))l. Hence, from (2.3) we obtain nc :S I.CI-IV(.C)! -IV(CH(.C))I + 3, where 

equality holds if and only if each bounded cell is an .C-empty tetrahedron and the 

unbounded cell is the exterior of CH(.C). Therefore, it follows from condition 3 of 

the theorem that .C forms a tetrahedralization. 0 

Similarly, we can prove the two dimensional counterpart of Theorem 2.3; see 

Appendix A for the proof. 

Theorem 2.4 Let E be a set of line segments in R2 . E is a triangulation if and only 

if E is a connected plane graph, and lEI = 3IV(E)I- IV(CH(E))I- 3 (or IF(E)I = 

2IV(E)I-IV(CH(E))I- 3). 

Hopcroft and Tarjan [58] showed that O(n) time is sufficient to decide planarity 

on a conventional random access machine. From Theorem 2.4 we obtain the following 

theorem. 

Theorem 2.5 Given a set of edges E in R2 , determining whether E is a triangulation 

can be done in 0 ( n) time. 
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2.4 Deciding whether £ forms a tetrahedralization 

2.4.1 Outline of the algorithm 

In this section, let us consider a tetrahedralization detection problem -- that is, how 

to design an efficient algorithm to decide if £ forms a tetrahedralization. 

Since there are G) triangles and ( ~) tetrahedra in £, testing whether each triple 

of vertices form an £-empty triangle requires O(n3m) time and testing whether each 

quadruple of vertices form an £-empty tetrahedron requires O(n4m) time. Hence, if 

we use a brute-force method to find all the £-empty tetrahedra and check iftheir union 

is a tetrahedralization, the running time is at least O(n4m). If we apply Theorem 2.1; 

2.2 or 2.3 directly to detect the tetrahedralizatwn, the time complexity is as follows: 

• In Theorem 2.1, since all the tetrahedra in b..1 are £-empty, this approach 

requires at least O(n3m) time. 

• In Theorem 2.2, since each tetrahedra ofT( v) is £( v )-empty, every side facets 

and bottom facets of v is £(v)-empty, where the bottom facets form B(v). 

Notice that £(v) = O(m), V(£(v)) = O(n), and in the worst case, the two 

bounds are tight (For example, if (V(£), .C) is a complete graph, then £(v) = m, 

for any v E V(£)). Thus, the total running time of this approach is at least 

O(n3m). 
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• In Theorem 2.3, since each cl( Ci) is a simple polyhedron, every triangle in the 

boundary of cl(Ci) is £-empty. This approach also requires at least O(n3m) 

time. 

. From the above analysis, we know that we should avoid computing too many 

empty triangles in our algorithms. Motivated by Theorem 2.2, we compute a tri­

angulation surface Bv to be specified later, which is easier to compute than B(v). 

Connecting v with each vertex of Bv, we obtain a set of tetrahedra Tv· As the trian­

gles in Bv may not be .C( v )-empty, this modification cannot guarantee that the union 

of1~ (v E V(.C)), denoted as T, is a tetrahedralization; thus we need to add an extra 

step to check T. Fortunately, this step can be completed in O(n2
) time by testing if. 

intersections exist between tetrahed,ra in T. For any vertex v E V(C), let adj(v) be 

the set of adjacent vertices of v, and .Cv = {ab I abE .C and a, bE adj(v)}. Note that 

the relationship between .Cv and .C(v) is .C(v) = .Cv U {va I a E adj(v)}. Before we 

present the algorithm, let us give some definitions. 

Definition 2.2 We say that two segments aa' and bb' cross one another if and only 

if their interiors intersect at a single point. This point is called a cross-point. We 

say that an edge punctures a face (facet or polyhedron) if and only if their interiors 

have a nonempty intersection. 

The outline of our algorithm is as follows: 
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Algorithm TETRAHEDRALIZATION-DETECTION(£) (outline) 
Input: 
Output: 

Step 1 
Step 2 

Step 2.1 

Step 2.2 

Step 3 

Step 3.1 
Step 3.2 

Step 4 

A set of line segments £ in R3 . 

If .C does not form a tetrahedralization, return (NO). Otherwise, return 
(YES, T), where T is the set of tetrahedra in the tetrahedralization .C. 
Compute CH(.C). If E(CH(.C)) Cf:. .C, then return (NO). 
(CHECK-TRIANGULATION) For each vertex von the boundary of CH(.C), 
check if .Cv contains a specified triangulation surface: 

For each segment pp' E .Cv, if there exists a segment qq' E .Cv such 
that qq' punctures face vpp', then delete pp' from .Cv. 
If the updated .Cv is the edge set of a triangulation surface (denoted 
as Bv) whose boundary edges are contained in E(CH(.C)), then let 
Tv be the set of tetrahedra vabc, where abc is a bounded face in Bv. 
Otherwise, return (NO). 

(CHECK-CLOSED-TRIANGULATION) For each vertex v inside CH(.C), 
check if .Cv contains a specified closed triangulation surface with v in 
its interior: 

Same as Step 2.1. 
If the updated Lv is the edge set of a closed triangulation surface 
(denoted as Bv) with v in its interior, then let Tv be the set of 
tetrahedrayabc, where abc is a face in Bv. Otherwise, return (NO). 

LetT= UvEV(.C)Tv· For each tetrahedron abed E T, if abed ETa n 'nri 
T.~ r1 Td, then return (YES, T); otherwise return (NO). 

The details of this algorithm are given in Section 2.4.2. The following theorem 

shows the characterization of a tetrahedralization from the algorithmic viewpoint. 

This characterization will be used in this section. 

Theorem 2.6 .C forms a tetrahedralization if and only if TETRAHEDRALIZATION-

DETECTION(£) (outline) returns (YES, T). 

Proof (Necessity). Let .C form a tetrahedralization. From Theorem 2.2 we know that 

for each vertex v E V(CH(.C)), B(v) is a triangulation surface, and for each vertex 

v E int(CH(.C)), B(v) is a closed triangulation surface with v in its interior. For each 



26 

face abc in B(v), we have vabc E T(v) which is defined prior to Theorem 2.2. Since 

T( v) is .C( v )-empty, vab, vbc and vca are .C( v )-empty. Thus, ab, be and ca cannot be 

deleted in Steps 2.1 and 3.1. Since each face abc is still in the updated .Cv, we have 

Bv = B(v) and Tv = T(v). For each vabc E Tv, since .C forms a tetrahedralization, 

we know that vabc also belongs to Ta, Tb and Tc. Therefore TETRAHEDRALIZATION­

DETECTION(£) returns (YES, T), where T = UvEV(.c)Tv. 

(Sufficiency). Suppose TETRAHEDR.ALIZATION-DETECTION(.C) returns (YES, T). 

We shall prove that .C forms a tetrahedralization. We first show that .C = E(T). For 

any uv E .C, since uv tf. .Cv, segment uv and vertex u cannot be deleted in Steps 2.1 

and 3.1. So uv E E(1~) ~ E(T). Hence .C ~ E(T). On the other hand, since we 

never add new segments in the algorithm, we have E(T) ~ .C. Therefore .C =::. E('I'). 

We now show that T is a tetrahedralization. 

From Step 1, we know that the boundary of CH(£) is contained in T. If there 

exists an interior point of CH(.C) which is not contained in T, similar to the argument 

in the proof of Theorem 2.2, we can derive a contradiction. Thus, CH(£) is covered 

by T. We finally show that each tetrahedron in T is £-empty. Suppose there is a 

tetrahedron abed E T which is not .C-empty. There are two cases concerning the 

nonemptiness of abed. 

1. The four facets of abed are .C-empty. Let S be the set of vertices of V(.C) inside 

abed. Since abed ETa n n n Tc n Td, there is no edge between {a, b, c, d} and S. 
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For a vertex s E V(CH(S)), we haves E int(CH(£)); but Ls cannot contain a 

closed triangulation surface with s in its interior. Thus Step 3.2 returns (NO). 

This is a contradiction. 

2. There exists a segment pq which punctures at least one facet of abed. Suppose p 

lies outside abed and xyz is the nearest facet top among all the facets punctured 

by pq. If pxyz tj. Tx, since xyz is a side facet of a tetrahedron in Tx, pq must 

intersect a triangle face of Bx which is nearer than xyz to p along pq. This is 

. a contradiction. Thus, pxyz E Tx CT. From Step 4 we know that pxyz E Tp. 

Hence xyz is a triangle face in Bp. This contradicts the assumption that pq 

punctures xyz. 

Therefore, for any abed E T, abed is £-empty. This completes the proof. D 

2.4.2 Details of the algorithm 

Let -< denote the lexicographical order on points. We also use -< to define the lex-

icographical order on tetrahedra. Let abed and a'b'e'd' be two tetrahedra. Then 

abed -< a'b'c'd' if and only if a -< a'· or a = a' and b -< b'· or a = a' b = b' and ' ' ' ' 

e -< e'; or a = a', b = b', e = e', and d -< d'. For the tetrahedra ofT produced in 

the algorithm, we store them in a red-black tree [36], ordered according to -<. In 

order to search tetrahedra easily, we constrain the vertices in the representation of 

the tetrahedron also in -< order, that is, a -< b -< e -< d for any abed E T. We store a 
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number count(t) with each tetrahedron t E T, which indicates the number of times 

when t is qualified to be inserted into T. According to the deletion process in Steps 

2.1 and 3.1, we know that for each segment pp' in Bv, face vpp' is not punctured by 

any segment in the updated .Cv. Thus we have the following definition. 

Definition 2.3 The (closed) triangulation surface Bv produced in Steps 2 and 3 of 

. TETRAHEDRALIZATION-DETECTION (.C) (outline) is called puncture-free. 

Note that the puncture-free property is sensitive to the order in which segments are 

deleted from .Cv - that is, the puncture-free (closed) triangulation surface may be 

different if the order of segment deletion is changed. 

In TETRAHEDRALIZATION-DETECTION(.C), lines 2-5 corresponds to Step 1 in the 

outline; lines 7-11 corresponds to Step 2; lines 12-16 corresponds to Step 3; and lines 

17-31 corresponds to Step 4. 

Algorithm TETRAHEDRALIZATION-DETECTION (.C) 

Input: A set of line segments .C in R3 . 

Output: If .C does not form a tetrahedralization, return (NO). Otherwise, return 
(YES, T), where T is the set of tetrahedra in the tetrahedralization .C. 

1 T +- 0. 
(* T is implemented by a red-black tree. *) 

2 Compute CH(.C). 
3 if E(CH(.C)) ~ .C 
4 then return (NO) and stop. 
5 endif 
6 for each vertex v E V(.C) 
7 do if v E V(CH(.C)) 
8 then Pick a plane Hv through v that is tangent to CH(.C) and 



translate Hv to a position H~ such thatCH(£) is between 
the old Hv and H~. 
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9 

10 

Project each vertex of adj ( v) and each segment of Lv from v 
onto plane H~; let L~ be the image of Lv under the projection. 
CHECK-TRIANGULATION(v, L~; Bv)· 

11 

(* Check if Lv contains a puncture-free triangulation 
surface Bv. *) 
Let Tv be the set of tetrahedra vabc, where v -< a -< b -< c 
and abc is a bounded face in the triangulation surface Bv. 

12 
13 

else Pick a sphere Sv with center v such that £, is contained in Sv. 

14 

15 

16 endif 

Project each vertex of adj ( v) and each segment of Lv from v 
onto sphere Sv; let L~, be the image of Lv under the projection. 
CHECK-CLOSED-TRIANGULATION(v, L:1 ; Bv). 
(* Check if Lv contains a puncture-free closed triangulation 
surface Bv with v in its interior. *) 
Let Tv be the set of tetrahedra vabc, where v -< a -< b -< c 
and abc is a face in the closed triangulation surface Bv. 

17 for each tetrahedron t E Tv 
18 do if t t/. T 
19 then Insert t into 'T 
20 count(t) f- 1 
21 else count(t) f- count(t) + 1 
22 endif 
23 endfor 
24 endfor 
25 for each tetrahedron t E T 
26 do if count(t) < 4 
27 then return (NO) and stop. 
28 endif 
29 endfor 
30 return (YES, T) and stop. 
31 end 

In CHECK-TRIANGULATION(v, L~; Bv), we use the plane sweep algorithm to check 

if Lv contains a puncture-free triangulation surface by using L~. Plane sweep al-

gorithms are very suitable for finding intersections in a set of geometric objects 
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[93, 15, 23, 80]. From Steps 2.1 and 3.1 of the outline we know that our aim is 

to find the crosses in L~ and remove these crosses by deleting one of the crossing seg-

ments according to their puncture relationship. Hence, in our plane sweep algorithm, 

an imaginary vertical sweep line passes through L~ from left to right. The status 

of the sweep line is a set of segments intersecting it. The status changes while the 

sweep line moves. We place the status into a dynamic data structure Y. The status 

structure Y is updated only at the endpoints of L~. Note that the definition of the 

cross-point in this thesis is different from the intersection point in [93, 15, 23, 80]. In 

their definitions, two segments pp' and qq' intersect if and only if pp' n qq' is a sin-

gleton, which is different from .the cross-point in the endpoints. This small difference · 

causes a significant difference in the conditions for deciding crosses. 

In CHECK-TRIANGULATION(v, L~; Bv), we choose an xy-coordinate system such 

that each segment in L~ is not vertical to the x-axis. Lines 1---11 check if L~ satisfies 

two necessary conditions for containing a triangulation: one is left(p) =/= 0; the other 

is E(CH(L~)) ~ L~. Lines 12-16 is our plane sweep algorithm for removing cross-

points. Lines 17--22 check if the updated L~ is a triangulation and produce the 

triangulation surface Bv. 

CHECK-TRIANGULATION(v, L~; Bv) 
1 for each point p in V(L~) except the endpoint with the largest x-coordinate 
2 do Let left(p) be a set of segments whose left endpoint is p; store left(p) 

with the endpoint p. 
3 if left(p) = 0 
4 then return (NO) and stop. 



5 endif 
6 endfor 
7 Compute CH(L~). 
8 if E(CH(L~)) ~ L~, 
9 then Calculate nv = JV(L~)J and n~ = JV(CH(L~))J. 

10 else return (NO) and stop. 
11 endif 
12 y +- (/J 

(* The status structure Y is implemented by a red-black tree. *) 
13 Sort all the endpoints of segments in L~ from left to right, breaking ties by 

putting points with lower y-coordinates first. 
14 for each point a in the sorted list of endpoints 
15 do UPDATE-STATUS(a) 
16 endfor 
17 Calculate JL~J (L~ has been updated). 
18 if JL~J = 3nv- n~- 3 

.19 then L~ is a plane triangulation. 
20 Let Bv be the triangulation surface whose edge set (namely, 

the updated .Cv) corresponds to L~ under the projection. 
(* Bv is puncture-free according to DELETE-SEGMENT to be 
specified later. *) 

21 else return (NO) and stop. 
22 endif 
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UPDATE-STATUS(a) describes how to update the status structure Y at endpoint 

a. Line 1 deletes the segments whose right endpoint is a from Y since the sweep line 

has passed through these segments. Line 2 inserts the segments whose left endpoint is 

a into Y since the sweep line will intersect these segments. Lines 3-9 find and remove 

the cross-points between the new inserted segments in left(a) and the old segments 

in above(a) and below(a). 

UPDATE-STATUS( a) 
1 Delete the segments whose right endpoint is a from Y. 
2 Insert the segments of left( a) into Y. The order of these segments in Y 

should correspond to the order in which they are crossed by a sweep line 



(or longitude in CHECK-CLOSED-TRIANGULATION to be specified later) 
just to the right of a. 

3 Let above( a) be the set of segments above left(a) in Y, and below( a) be 
the set of segments below left( a) in Y. 

4 if above( a) =/= 0, 
5 then HANDLE-ABOVE-SEGMENTS(left(a), above(a)) 
6 endif 
7 if below( a) =/= 0, 
8 then HANDLE-BELOW-SEGMENTS(left(a), below(a)) 
9 endif 
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In HANDLE-ABOVE-SEGMENTS(left(a), above(a)), line 1 finds a pair of neighbour 

segments, one in left( a), the other in above( a). If these two segments cross each other, · 

then delete one of them (line 2). If necessary, repeat the above steps recursively (lines 

3-15). 

HANDLE-ABOVE-SEGMENTS(left(a), above(a)) 
1 Let aa' be the uppermost segment in left(a) and bb' be the lowest 

segment in above(a). 
2 DELETE-SEGMENT(aa', bb') 
3 if aa' is deleted· from Y 
4 then Delete aa' from left(a) 
5 if left( a) = 0 
6 then return (NO) and stop. 
7 else HANDLE-ABOVE-SEGMENTS(left(a), above(a)) 
8 endif 
9 endif 

10 if bb' is deleted from Y 
11 then Delete bb' from above(a) 
12 if above( a) =/= 0 
13 then HANDLE-ABOVE-8EGMENTS(left(a), abovc(a)) 
14 endif 
15 endif 

Similar to HANDLE-ABOVE-SEGMENTS, we have the following procedure. 
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HANDLE-BELOW-SEGMENTS(left(a), below(a)) 
1 Let aa" be the lowest segment in left(a) and cc' be the uppermost 

segment in below( a). 
2 DELETE-SEGMENT(aa", cc') 
3 if aa" is deleted from Y 
4 then Delete aa" from left( a) 
5 if left( a) = 0 
6 then return (NO) and stop. 
7 else HANDLE-BELOW-SEGMENTS(left(a), below(a)) 
8 endif 
9 endif 

10 if cc' is deleted from Y 
11 then Delete cc' from below(a) 
12 ifbelow(a) =1- 0 
13 then HANDLE-BELOW-SEGMENTS(left(a), below(a)) 
14 endif 
15 endif 

DELETE-SEGMENT describes how to remove the cross-point by deleting one seg-

ment according to their puncture relationship. 

DELETE-SEG MENT(PIP2, Ql Q2) 
1 Let p~p~ E .Cv be the preimage of p1p2 and q~ q~ E .Cv be 

the preimage of q1 q2 under the projection. 
2 if p~p~ punctures face vq~ q~ 
3 then Delete q1 q2 from Y and L~, and delete q~ q~ from .Cv. 
4 endif 
5 if q~ q~ punctures face vp~p~ 
6 then Delete p1p2 from Y and L~, and delete p~p; from .Cv. 
7 endif 

In CHECK-CLOSED-TRIANGULATION(v, L~; Bv), we extend the plane sweep idea 

to a sphere. We will sweep the sphere with a rotating semi-circle on the sphere to 

check if .Cv contains a puncture-free closed triangulation surface by using L~. Notice 

that each element pq E L~ is a segment of a circle; we simply call it segment. Since 



34 

pq is the image of a line segment projected from the center v of the sphere, the arc 

length of pq is less than that of half of a big circle on the sphere, where a. big circle is 

a circle with the same center and radius as the sphere. Any two different big circles 

cross each other at two points which divide the two circles into four semi-circles. 

Thus, the intersection of any two different segments of L~ is at most a single point. 

Similar to Definition 2.2, we define that two circle segments of L~ cross if and only 

if their interiors intersect at a single point. In order to use an argument similar to 

the plane sweep algorithm, we choose an xy-coordinate system on the sphere Sv. 

Without loss of generality, we suppose that Sv is a unit sphere. Select a pair of points 

yl y' (j_ V(L~) as the north and south poles so that no segment of L~ lies on the' 

longitude. Choose the equator as the x-axis and an arbitrary longitude as the y-axis. 

The intersection of the xy-axes is the origin. For an arbitrary point p E Sv- {y, y'}, 

let the longitude through p intersect the x-axis at a point whose :r-coordinate is Px; 

and let the latitude through p intersect they-axis at a point whose y-coordinate is Py· 

Then the coordinates of pis defined as (Px,Py)· For example, the coordinates of y and 

y' are (0, 1r /2) and (0, -1r /2), respectively. Note that the domain of the x-coordinate 

is [0, 27r); and the domain of the y-coordinate is ( -1r /2, ·rr /2) (refer to Figure 2.4). For 

any segment pq E £~, since pq does not lie on any longitude, there must exist a point 

p' E pq such that int(pp') n y-axis = 0. If Px < p~, then pis called the left endpoint of 

pq; if Px > p~, then p is called the right endpoint of pq; as shown in Figure 2.4. We 

say that point p is above (below) q if and only if Py > qy (Py < qy). 
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( n/2, 0) 

Figure 2A: p is the left endpoint, q and r are the right endpoints of pq and pr. 

In the next procedure, lines 1-6 check if L~ satisfies a necessary condition for 

containing a triangulation on the sphere. Lines 7-16 implement the sphere sweep 

algorithm for removing cross-points. Lines 17-22 check if the updated L~ ,is a trian-

gulation on Sv and produce the closed triangulation surface Bv. 

CHECK-CLOSED-TRIANGULATION(v, L~; Bv)· 
1 for each point p'in V(L~) 
2 do Let left(p) be a set of segments whose left endpoint is p; store left(p) 

with the endpoint p. 
3 if left(p) = 0 
4 then return (NO) and stop. 
5 endif 
6 endfor 
7 y +---0 

(* The status structure Y is implemented by a red-black tree. *) 
8 Sort the endpoints of V(L~) lexicographically by nondecreasing coordinates. 

Let X be the sorted list of the endpoints. 
9 for each point a E X in the sorted order 

10 do UPDATE-STATUS(a) 

11 endfor 
12 for each point a EX in the sorted order 
13 do while ax < 1r 



14 do UPDATE-STATUS(a) 
15 endwhile 
16 endfor 
17 Calculate IL~I and JV(L~) J (L~ has been updated). 
18 if JL~I = 3JV(L~)I- 6 
19 then L~ is a maximal planar graph (triangulation) on Sv. 
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20 Let Bv be the closed triangulation surface whose edge set (namely, 
the updated .Cv) corresponds to L~ under the projection. 
(* Bv is puncture-free according to DELETE-SEGMENT. *) 

21 else return (NO) and stop. 
22 endif 

2.4.3 Correctness 

The following lemma shows that CHECK-TRIANGULATION is correct. 

Lemma 2.1 Let CHECK-TRIANGULATION be run on a vertex v and segment setL~,. 

(i) If the procedure pmduces Bv 1 then Bv is a puncture-free triangulation 8urface. 

(ii) If the procedure return8 (NO), then .C cannot form a tetrahedralization. 

Proof (i) Let Bv be produced by the procedure. We will prove that Bv is a puncture-

free triangulation surface as it is claimed in line 20. We first show that Bv is a plane 

graph by proving that the plane sweep algorithm of lines 12-16 removes all the cross-

points of segments. Let P1P2 and Q1Q2 be two segments in L~ such that p1 -< p2 , 

Q1 -< Q2, and P1P2 crosses Q1Q2 at point x. Without loss of generality, we assume that 

PI -< Q1 and P1P2 is above Q1Q2 in Y. Thus, when q1q2 is inserted into Y in UPDATE-

STATUS(q1), p 1p2 is already in Y. We distinguish the following two cases concerning 

the relative position of p 1p2 and q1q2 in Y. 
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1. p1p2 and Q1Q2 are adjacent in Y. P1P2 or q1q2 is deleted when DELETE-SEGMENT 

(p1p2 , q1q2 ) is run. Thus, the cross-point x is removed. 

2. p1p2 and q1q2 are not adjacent in Y. We distinguish two subcases when UPDATE-

STATUS(q1) is running, namely, 

(a) All the segments between p1p2 and q1 q2 in Y are deleted by running 

HANDLE·-ABOVE-SEGMENTS(left(q1), above(q1)) recursively, as illustrated 

in Figure 2.5. So p1p2 and q1q2 become neighbours in Y. Hence, by using 

the samE argument as case 1, the cross-point x can be removed. 

0 X 

Figure 2.5: Suppose the deletion order of segments in Y between p1p2 and q1q2 is 
I I 

pp 'QlQI· 

(b) After UPDATE-STATUS(q1 ) is completed, there exists a set Ex of segments 

in Y between p1p2 and q1 q2 . Note that q1 -< a' for any segment aa' E Ex 

(a -< a'). From case 1, we know that each pair of neighbour segments in 

be the set of vertices which lie in the triangle p 1xq1 • We now prove that 

Vx # f/J. If both a2 and b2 lie outside the triangle p1xq1 , a 1 a 2 must cross 
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b1b2 ; as shown in Figure 2.6(a). Then consider the set of segments in 

Y between a1 a2 and b1 b2 . This segment set is smaller than Ex by two 

segments. Since each pair of neighbour segments in Ex do not cross each 

other, by narrowing Ex recursively, we can finally find a segment bb' E Ex 

(b -< b') which does not cross any other segments in Ex. Since q1 -< b', we 

know that b' lies in the triangle p1xq1 . Hence, Vx # f/J. 

For each vertex x' E Vx, since the procedure produces Bv, we always have 

left(x') =/= f/J in line 5 of HANDLE-ABOVE-SEGMENTS(left(x'), above(x')). Thus, 

there must exist a segment abE Ex such that ab crosses p1p2 or q1q2 , say p1p2 , 

and ab is adjacent to p1p2 in Y when running HANDLE-ABOVE-SEGMENTS. If 

p1p2 is deleted, then the cross-point x is removed; otherwise, if all the segments 

in Ex which cross p1p2 or q1q2 are deleted, there must exist a vertex x* E Vx 

such that left(x*) = f/J (refer to Figure 2.6(b)). This is a contradiction. Hence, 

after each UPDATE-STATUS(x'), x' E Vx, is run, p1p2 or q1q2 or both of them 

will be deleted and the cross-point x is removed. 
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Since lines 12-16 remove all cross-points, the updated L~ must be a plane graph. 

Since the equality in line 18 holds, it follows from Theorem 2.4 that the updated L~ 

is .a plane triangulation. Therefore Bv is a triangulation surface. From the deletion 

process in DELETE-SEGMENT, we know that Bv is puncture-free. 

(ii) Let £ form a tetrahedralization. From Theorem 2.2 we know that for each 

vertex v E V(CH(£)), B(v) is a triangulation surface. Since each tetrahedron in 

T(v) is £(v)-empty and Lv C £(v) (T(v) and £(v) are defined prior to Theorem 2.2), 

B(v) iB puncture-free under any order of segment deletion for Lv. Let L~ be the 

segment set in H~ which corresponds to the edge set of B(v) under the projection. 

So L~ is a plane triangulation. Notice that V(L~) = V(L~) and L~ ~ .L~ .. Thus, 

E(CH(L~)) = E(CH(L~)) ~ L~; the procedure does not return (NO) in line 10. For 

each point p E V(L~) except the vertex with the largest x-coordinate 1 since each angle 

in any triangles of L~ is less than 1r, we have left(p) # 0. So the procedure does not 

return (NO) in line 4. Since B(v) is puncture-free under any order of segment deletion, 

L~ is the updated L~ after lines 12-16 is run. So the procedure does not return (NO) 

in line 6 of HANDLE-ABOVE-SEGMENTS and HANDLE-BELOW-SEGMENTS. Since L~ 

is a triangulation, the equality in line 18 holds. Thus the procedure does not return 

(NO) in line 21. 

Hence, if£ forms a tetrahedralization, the procedure does not return (NO). There-

fore, if the procedure returns (NO), then £cannot form a tetrahedralization. 0 
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In the procedure CHECK-CLOSED-TRIANGULATION, lines 7-11 is the sphere sweep 

algorithm which is similar to the plane sweep algorithm of lines 12-16 in CHECK-

TRIANGULATION. When we insert segments into Y whose left endpoints are near 21r, 

these segments may cross the y-axis. These segments may cross the segments which 

have been deleted from Y but belong to the updated L~, as illustrated in Figure 2.7. 

Hence, we must remove these crosses. For any segment pp' E L~, since the arc length of 

pp' is less than 1r, we repeat the sphere sweep algorithm in lines 12--16 for the vertices 

whose x-coordinate is less than 1r. Using a similar argument to that used in the proof 
. ' 

of Lemma 2.1, we can prove the correctness of CHECK-CLOSED-TRIANGULATION. 

( n/2, 0) 

Figure 2.7: ab, ad, bd, cd belong to the updated L~, but pc,pe cross them after 
UPDATE-STATUS(p) is run. 

Lemma 2.2 Let CHECK-CLOSED-TRIANGULATION be run on a vertex v and seg-

ment set L~. 

(i) If the procedure produces Bv, then Bv is a puncture-free closed triangulation sur-

face. 
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(ii) If the procedure returns (NO), then .C cannot form a tetrahedralization. 

Comparing TETRAHEDRALIZATION-DETECTION with its outline, we know that 

Step 1 is the same as lines 2-5. It follows from Lemma 2.1 that Step 2 is implemented 

by lines 7-11 correctly. It follows from Lemma 2.2 that Step 3 is implemented by lines 

12-16 correctly. Step 4 corresponds to lines 17--29. For any four points a, b, e, d E 

V(.C), from the definition of Tv we know that abed belongs to at most four Tv, namely, 

Ta, Tb, Tc and Td. Thus, in lines 17-23, we count the number of Tv that abed belongs 

to. In lines 25--29, we decide if abed belongs to exactly four Tv. Hence, Step 4 is 

implemented by lines 17-29 correctly. 

Therefore, from Theorem 2.6 we knowthat TETRAHEDRALIZATION-DETECTION 

is correct. 

Theorem 2.7 If TETRAHEDRALIZATION-DETECTION zs run on a set of line seg­

ments .C, then the algorithm returns (YES, T) if and only if .C forms a tetrahedral-

ization. 

2.4.4 Running time 

The following lemmas show the upper bounds of the running times of the major 

procedures. 

Lemma 2.3 Ifma segments are deleted in HANDLE-ABOVE-SEGMENTS (or HANDLE-
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BELOW-SEGMENTS), then the running time of the procedure is O(malogm). 

Proof Recall that Y is implemented by a red-black tree, and each red-black tree op­

eration on Y, such as insertion, deletion and neighbour finding, takes O(logm) time. 

Thus, for each segment deleted in HANDLE-ABOVE-SEGMENTS (or HANDLE-BELOW­

SEGMENTS), lines 1,2,4 and 11 take O(logm) time each. Hence, if ma segments are 

deleted, the total running time is 0 ( ma log m). 0 

Lemma 2.4 If mi segments are inserted and md segments are deleted in UPDATE­

STATUS, then the running time of the procedure is O((mi + md) logm). 

Proof Suppose ma segments are deleted from Y and L~ in lines 5 and 8. From 

Lemma 2.3 we know that the running time to delete these segments is O(ma logm). 

The remaining md - ma segments are deleted from Y in line 1; this takes 0 ( ( md -

ma) logm) time. For each segment of left(a), it takes O(logm) time to insert the 

segment into Y. The total time is thus O((mi + md) logm). 0 

Lemma 2.5 The running time of CHECK-TRIANGULATION and CHECK-CLOSED­

TRIANGULATION is O(mlogm). 

Proof We first analyze the running time of CHECK-TRIANGULATION. Lines 1-6 take 

O(m) time. Line 7 takes O(nlogn) time by using the prune-and-search algorithm 

of Kirkpatrick and Seidel (64]. Lines 8-11 take O(m) time. Line 12 takes 0(1) 
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time. Line 13 takes O(nlogn) time by using either merge sort or heapsort. In the 

for loop of lines 14-16, each segment is inserted into Y one time (line 2 of UPDATE­

STATUS), and deleted from Y one time (line 1 of UPDATE-STATUS or line 3 or 6 of 

DELETE-SEGMENT). From Lemma 2.4 we know that the running time of lines 14-16 

is O(mlogm). Lines 17-22 take O(m) time. Hence, the total time is O(mlogm). 

Similarly, we can prove the running time of CHECK-CLOSED-TRIANGULATION is 

also O(mlogm). D 

Remark: Although L~ lies on the sphere in CHECK-CLOSED-TRIANGULATION, we 

need not solve nonlinear equations for finding cross-points of circle segments. In fact, 

when we project .Cv from v onto sphere Sv, we only need to store the two endpoints 

of each circle segment and its preimage. Notice that computing cross-points of circle 

segments is only done at one point in the algorithm, namely, line 2 of UPDATE­

STATUS. Suppose we want to insert segment aa' into Y in UPDATE-STATUS(a). We 

need to compute the cross-points of longitude yay' and some segments pq E Y. Let 

p'q' be the preimage of pq. We solve a system of linear equations consisting of the 

line p'q' and the plane containing points y, a, y' to find the intersection Xa, and we 

then project Xa onto Sv. This image of Xa is the intersection of longitude yay' and 

pq. Therefore, in the whole algorithm, the only computation involving a nonlinear 

function is the projection of points onto a sphere. This can be done easily. 

From the above lemmas, we can finally prove the following theorem. 
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Theorem 2.8 Jf TETRAHEDRALIZATION-DETECTION is run on m line segments 

with n endpoints, then the running time is O(nmlogn) and the running space is 

O(n2). 

Proof Line 1 takes 0(1) time. Line 2 takes O(nlogn) time. Lines 3-5 take O(m) 

time. The for loop of lines 6-24 iterates at most n times. It follows from Lemma 2.5 

that each iteration takes O(mlogm) time. Thus, the running time of lines 6-24 is 

O(nmlogm). Since a triangulation of n points has O(n) edges and faces, we have 

ITvl = O(n). It follows that ITI . O(n2). Thus, lines 25-29 take O(n2 ) time. 

Therefore, the total time is O(nlogn+m+nmlogm+n2
) = O(nmlogn). Since the 

space forT is O(n2
), and this dominates all other spaces, the total space is O(n2). D 

Remark: Since there exists a tetrahedralization whose graph is complete [48], from 

Theorem 2.3 we know that ITI = 1£1 - IV(£)1 - IV(CH(£))1 + 3 = O(n2). So 

the running space of the algorithm is worst-case optimal. As the lower bound for 

the problem of reporting all line segment intersections is n(mlogm + k), where k is 

the number of intersection points [9, 25], the sweep algorithms described in CHECK­

TRIANGULATION and CHECK-CLOSED-TRIANGULATION are optimal. We conjecture 

that the running time of TETRAHEDRALIZATION-DETECTION is also optimal in the 

worst case. 
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2.5 Deciding whether £ contains a tetrahedraliza-

tion 

In this section, we discuss the complexity of deciding if a set of line segments £ in R3 

contains a tetrahedralization (the TETRAD problem). There are two NP-complete 

problems related to TETRAD. Ruppert and Seidel proved that the problem of deciding 

if a 3-dimensional nonconvex polyhedron can be tetrahedralized is NP-complete [88] 

(the NCP problem). Lloyd proved that the problem of deciding if a line segment set 

E in R2 contains a triangulation is NP-complete [74] (the TRID problem). Either 

of the problems can reduce to TETRAD; and the reduction of NCP to TETRAD is 

easier than that of TRID to TETRAD. However, we will show a reduction of TRID 

to TETRAD because the two lemmas that are used to prove this reduction may have 

other applications independent of this proof. 

Let E, a set of line segments in R2 , be an instance of TRID. If we apply the 

coplanarities of segments, we can easily transform E to an instance of TETRAD by 

placing a vertex above the plane containing E and connecting this vertex with each 

endpoint of E. Hence, we only consider the nondegenerate case in our proof. Our 

aim is to construct a segment set£ without four coplanar endpoints. We first project 

the vertices of V (E) onto a semi-sphere above E; the new vertex set is denoted by 

Vu. Secondly, we symmetrically construct another convex point set VL which is a 

mirror image of Vu w.r.t. the plane containing E, and we then twist VL by a small 
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amount such that no four points are coplanar. Thirdly, we place a vertex x* above 

the semi-sphere. Finally, for each segment ab E E, we add a line segment between the 

two corresponding points of a and b in Vu (denoted as Eu); we also add edges to each 

pair of vertices in VL (denoted as EL), add edges to each pair of vertices between Vu 

and VL (denoted as Eu L), and add edges between x* and each vertex of Vu (denoted 

as L*). Let £ = L* U Eu U EL U EuL· This completes the construction (for more 

details, see the proof of Theorem 2.9). The following two lemmas solve the problems 

related to the existence of tetrahedralization in EL and EuL, respectively. 

Lemma 2.6 Let Q be a simple polyhedron satisfying V(Q) = V(CH(Q)). The region 

R between Q and CH(Q) is tetrahedralizable. 

Proof If Q is convex, then R = 0; otherwise, there must exist at least one reflex 

edge, say ab, on the boundary of Q (denoted as bd(Q)). The two faces on bd(Q) 

which share ab are denoted as abc and abd. If int(cd) n Q =/:. 0, there are two cases as 

follows. 

(d) 

Figure 2.8: (a) cd E E(Q). (b) (c) int(cd) n int(Q) =/:. 0. (d) int(cd) n Q = 0. 

1. cd E E(Q). Refer to Figure 2.8(a). If acd and bed are the two faces on bd(Q) 
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which share cd, then the four faces abc, abd, acd and bed form a tetrahedron. 

This contradicts the assumption that ab is a reflex edge. Thus either acd or 

bed is not a face of bd(Q). Without loss of generality, assume bed is not a face 

of bd(Q) and let H(bcd) be the plane containing it. Suppose a' is an interior 

point of Q and lies in the neighbourhood of a. Since ab is reflex, the vertex a 

will be on the same side of H(bcd) as a'. This contradicts the assumption that 

a E V(CH(Q)). 

2. int(cd) n int(Q) =f. 0. Refer to Figure 2.8(b)(c). Let H(bcd) be the plane 

containing face bed. Since ab is reflex, there exists at least one edge, say ae, 

which intersects face bed. Thus vertices a and e lie on the opposite sides of 

H(bcd). Because abc and abd lie on bd(Q), we have a rf. V(CH(Q)). This is a 

contradiction. 

Thus int(cd) n Q = 0. Refer to Figure 2.8(d). Now we can construct a new 

polyhedron Q1 from Q by flipping ab to cd. Thus, E(Q1) = (E(Q)- { ab}) U { cd} and 

F(Q1) = (F(Q)-{abc, abd})U{acd, bed}. Hence Q C Q~, and Q1-Q ={abed}. Since 

V(QI) = V(Q) = V(CH(Q)), we know that V(Q1) = V(CH(Q 1)). Let R1 denote 

the region between Q1 and CH(QI). If Q1 is convex, then R1 = 0 and R ={abed}; 

otherwise, using the same argument, we can construct a polyhedron Q2 such that 

V(Q2) = V(CH(Q2)), Q1 C Q2, and Q2- Q1 = {a1b1c1di}. Since the number of 

edges is finite, we can perform this procedure until we find a convex polyhedron Qk 
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in step k. Since Rk = CH(Qk)- Qk = f/J, we know that R can be tetrahedralized into 

D 

Remark: Note that the condition V(Q) = V(CH(Q)) is necessary. Without this 

condition, even if Q is a star-shaped polyhedron, the region R = CH(Q) -- Q may be 

untetrahedralizable. Figure 2.9(a) serves as a counterexample, where PA = x*abc is a 

tetrahedron and P8 = abca'b'c' is a Schonhardt's polyhedron [90] (refer to Section 2.6) 

inside P A. Both of them share the face abc. If we remove the face abc, the other faces 

of PA and P8 may bound a star-shaped polyhedron, denoted as Q. It is obvious that 

V(Q) i= V(CH(Q)). Since Schonhardt's polyhedron is untetrahedralizable [90]\ the 

region R ==- CH(Q)- Q = P8 is untetrahedralizable. 

~: .. 
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Figure 2.9: (a) abca'b'c' is an instance of Schonhardt's polyhedron, which cannot be 
untetrahedralized. (b) A regular quasi-prism. 

Now let us consider how to tetrahedralize the region between two isomorphic 

piecewise linear surfaces, which can be applied to find a tetrahedralization in EuL-



49 

Let 81 and 82 be two piecewise triangle surfaces (also called triangulations in 

R3
) such that V(81) = Vu, V(82) = VL and 81 is isomorphic to 82. That is, there 

exists a bijection 'ljJ : V(81) --+ V(82) with xy E E(81) {::} '1/J(x)'l/J(y) E E(82). 

Construct a geometric graph 812 such that V(812 ) = V(81) U V(82) and E(812) = 

E(81) U E'(82) U {x'!jJ(x) I x E V(81)}. If ab is on the boundary of 81, then we call 

ab'ljJ(b)'ljJ(a) a boundary quadrilateral; moreover, if a'ljJ(b) E E(CH(V(812 ))), then we 

call a'ljJ(b) a convex diagonal of the boundary quadrilateral ab'ljJ(b)'!jJ(a). ·By adding 

the convex diagonal of each boundary quadrilateral of 812 , we obtain a new geometric 

graph 8, called a quasi-prism. For each face abc on 81 , if CH( {a, b, '1/J(a), '1/J(b)}) n 

CH( {b, c, '1/J(b), '1/J(c)}) = {b'!jJ(b) }, CH( {a, b, ~/J(a), '1/J(b)}) n CJ/( {a, c, '1/J(a), '1/J(c) }) = 

{ a'ljJ(a)} and CH( {b1 c, '1/J(b), '1/J(c)}) n CH( {a, c, '1/J(a), '1/J(c)}) = { c'!/J(c)}, then we call 

8 regular (see Figure 2.9(b)). 

We can use the following algorithm to tetrahedralize any regular quasi-prism 8. 

This tetrahedralization can be considered as a constrained tetrahedralization since all 

the edges in 8 must be used to build the tetrahedralization. 

Algorithm QUASI- PRISM-TETRAHEDRALIZATION 

Input: A regular quasi-prism 8. 
Output: A tetrahedralization T of 8. 
1 S' f- 81, T f- E(S), and A f- {xI X is a boundary vertex in SI} 
2 while A # 0, do 
3 Choose an arbitrary vertex a E A. 

* adj 8 , (a) denotes the set of vertices adjacent to a in 8' * 
4 if adj 8,(a) # 0 
5 then T ~ T U {a'!jJ(x) I x E adj8 ,(a)}, 
6 A~ (A- {a}) U adj 8 ,(a) 
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7 else A +--- (A - {a}) 
8 endif 
9 S' +--- S' - a 
10 endwhile 

The following lemma shows that QUASI-PRISM-TETRAHEDRALIZATION is correct. 

Lemma 2. 7 If S is a regular quasi-prism, then QuASI- PRISM-TETRAHEDRALIZATION 

always outputs a tetrahedralization of S. 

a 
(a) 

\jf(a) 
(b) 

Figure 2.10: (a) The vertices of adj 8 ,(a) form a chain a1a2a3a4 . (b) Six pyramids 
with apex a. 

Proof Let a E A be chosen in line 3 of the algorithm and suppose adj 8 ,(a) i= 0 in 

line 4. If S' is a triangulation, then the vertices in adj 8 , (a) form a chain, denoted by 

C (a) = a1 a2 ... ak (see Figure 2.10 (a)). So T (a) = E ( C (a)) U { aai I 1 ~ i ~ k} is a sub-

triangulation in sl. Similarly, we know that T('ljJ(a)) = E(C('ljJ(a))) u {'!jJ(a)'ljJ(ai) I 

1 ~ i ~ k} is a sub-triangulation in s2. Thus S(a) = T(a)UT('ljJ(a))u{ a'ljJ(a), ai'l/J(ai) I 

1 ~ i ~ k} is a sub-quasi-prism of S. There are two phases to tetrahedralize S(a). 

In the first phase (line 5), we partition S(a) into a number of pyramids, each with 

apex a and the base equal to a face of S(a) not incident to a (see Figure 2.10(b)). 
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There are two kinds of bases, triangular and quadrilateral. Each triangular pyramid 

will be a tetrahedron in the resulting tetrahedralization. Each quadrilateral pyramid 

with base aiai+l '¢( ai+I)'¢( ai), 1 ::::; i ::::; k - 1, can be divided into two tetrahedra in 

the second phase. That is, when we choose ai or ai+l in line 3, we will insert edge 

ai'l/J(ai+I) or ai+I'¢(ai) in line 5. This partitions the quadrilateral pyramid into two 

triangular pyramids. 

If S' is a chain, then adj8, (a) contains one or two vertices. Let a1 E adj8, (a). 

When we insert edge a'¢(a1) (line 5), it divides the quadrilateral aa1'¢(a1)'¢(a) into 

two triangles. This partitions a quadrilateral pyramid produced earlier into two tetra­

hedra. 

The above argument can also apply to other cases in which S' consists of several 

components. We have proven that the algorithm divides S into a number of triangular 

pyramids. Now we show that these pyramids intersect only in their shared vertices, 

edges or facets. Since Scan be considered as a set of triangular quasi-prisms, we only 

need to show that each of them has this property. 

Let aa1a2'¢(a)'¢(ai)'¢(a2) be an arbitrary triangular quasi-prism in the above pro­

cedure when we choose a in line 3 (refer to Figure 2.10(b)). Since S is regular, 

the three tetrahedra aa1 '¢(a1)'¢(a), aa2'¢(a2)'¢(a) and a1a2'¢(a2)'¢(ai) are pairwise 

disjoint except at the shared edges. Thus, the three triangular pyramids with bases 

'¢(a)'¢(ai)'¢(a2), a1a2'¢(a1), a2'¢(ai)'¢(a2), or '¢(a)'¢(ai)'¢(a2), a1a2'¢(a2), a1 '¢(a1)'¢(a2) 
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are disjoint except at the shared vertices, edges, or faces. D 

Theorem 2.9 The TETRAD problem is NP-complete. 

Proof We first show that the TETRAD problem belongs to NP. Suppose we are given 

a set of segments [, in R3 . A nondeterministic algorithm needs only guess a subset 

L' ~ .C. From Theorem 2.8 we know that checking whether L' is a tetrahedralization 

can be accomplished in polynomial time. 

We shall show that the TETRAD problem is NP-hard by proving a reduction 

of TRID to TETRAD. Given a set of line segments E in a plane H (an instance of 

TRID), the reduction algorithm constructs a set of line segments £ in R3 with no four 

endpoints coplanar (an instance of TETRAD) such that E contains a triangulation if 

and only if £ contains a tetrahedralization. 

Let x be the center of the smallest circle containing E and r be the radius of the 

circle. Construct a big sphereS with center x and a very large radius, say lOOr. The 

plane H cuts S into two parts. The upper semi-sphere is denoted as Su and the lower 

semi-sphere is denoted asS£. Vertically project the vertices of V(E) onto Su and SL, 

and denote them as Vu and VL, respectively. For each ab E E, add a line segment 

between the two corresponding points of a and bin Vu. So we obtain a new edge set 

Eu corresponding to E. Let EL be the set of all the edges with endpoints in VL, and 

EuL be the set of all the edges between Vu and VL· Place a vertex x* in the vertical 
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line through x and far above Su such that it can see all the vertices of Vu, that is, 

for any u E Vu, int(x*u) n Su = 0. Let L* = {x*u I u E Vu }. 

Let .C = L* U Eu U EL U EuL· Notice that each triangle face in Eu and its 

corresponding triangle face in EL form a triangular prism in .C. In order to prevent 

four vertices from lying in the same plane, we twist SL (with VL together) by a small 

amount such that no four vertices are coplanar and each prism become a regular 

quas1-pnsm. 

We have constructed a set of segments .C with no four endpoints coplanar. It is 

easy to see that this construction can be done in polynomial time. Since the vertical 

projection of x* onto H is the center x, any edges that connect x* with vertices of VL 

must lie inside CH(.C). Thus, .C has the property that E(CH(.C)) ~.C. 

We now show that E contains a triangulation if and only if .C contains a tetrahe­

dralization. First, suppose that E contains a triangulation T. Then there must exist 

two corresponding triangulations Tu in Eu and TL in EL, respectively. The three 

triangulations are isomorphic to each other. Thus, there exists a regular quasi-prism 

with the upper surface Tu and the lower surface TL. From Lemma 2.7 we know that 

this regular quasi-prism can be tetrahedralized by using edges in Ern· This tetra­

hedralization is denoted as TuL· On the other hand, since the boundary of TuL is 

a simple polyhedron satisfying V(TuL) = V(CH(TuL)), it follows from Lemma 2.6 

that the region between CH(TL) and the lower surface TL can be tetrahedralized by 
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using edges in EL. This tetrahedralization is denoted as TLR· Since x* can see all the 

vertices of Vu, Tu and L* form a tetrahedralization denoted as TL*. Therefore TuL, 

TLR and TL* constitute a tetrahedralization in .C. 

Conversely, suppose that .C contains a tetrahedralization r. We first prove that 

L* c E(f). Since E(CH(.C)) c E(f), the edges incident to x* in E(CH(L*)) belong 

to E(r). If there exists a segment x*v E L* which does not belong to E(f), then 

x*v must intersect a triangle face in the tetrahedralization r. This is a contradiction 

because v lies on the upper semi-sphere. Thus, L * C E(r). In the tetrahedralization 

r, the bases of the triangular pyramids with apex x* form a triangulation Tx· in Eu. 

Hence E also contains a triangulation that corresponds to Tx•. 0 

2.6 Constrained tetrahedralizations 

Let S be a planar straight line graph (PSLG) which is defined as a set of vertices 

and noncrossing (that is, intersecting only at endpoints) line segments in the plane. 

A constrained triangulation of S is a triangulation of V(S) such that all the edges 

of E(S) are used as edges in the triangulation. For any PSLG, there exist several 

knids of constrained triangulations; and among these types, the constrained Delaunay 

triangulations have many applications [35, 38, 50, 77]. Similarly, we can define a 

constrained tetrahedralization for a set G of vertices and noncrossing line segments in 

the space as a tetrahedralization of the vertices and endpoints V (G) such that all the 
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segments E(G) are used as edges in the tetrahedralization [8, 20, 34, 95, 98]. We also 

say that G can be tetrahedralized. In this section, we discuss the complexity problem 

of deciding if a set of vertices and line segments Q in R3 can be tetrahedralized (briefly, 

the CT problem). 

Ruppert and Seidel proved that it is NP-complete to tetrahedralize a 3-dimensional 

nonconvex polyhedron [88]. We shall extend their proof to show that the CT problem 

is also NP-complete. They proved this NP-completeness result by using a transfor­

mation from the Satisfiability problem [51]. That is, for any Boolean formula in 

conjunctive normal form, a nonconvex polyhedron is constructed such that it can 

be tetrahedralized if and only if the Boolean formula is satisfiable. The main tool 

in their construction is a gadget, called a niche, which is derived from Schonhardt's 

polyhedron [90]. As illustrated in Figure 2.11(a), the way to construct Schonhardt's 

polyhedron is as follows. Start with a triangular prism; fix the bottom face a1b1c1 

so that it cannot move; twist the top face abc so that each rectangular face of the 

prism folds into two triangles with a reflex edge between them. If the top face abc is 

removed from the Schonhardt's polyhedron, then the resulting figure that consists of 

seven triangular faces on six vertices is called a niche; and face a1 b1 c1 is called the 

base of the niche. In this section, we use S N to denote a niche, and S N to denote the 

corresponding Schonhardt 's polyhedron. 

Definition 2.4 A point p can see a point q in the base a 1b1c1 of a niche SN if the 
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a 

Figure 2.11: (a) A Schonhardt's polyhedron that cannot be tetrahedralized. (b) 
aa1 b1 b', bb1 e1 e' and ee1 a1 a' are plane quadrilaterals. view( a1 b1 e1) is the truncated 
cone a1b1e1a"b"e"; illum(a1b1e1) is the truncated cone a'b'e'a"b"e". 

interior of the segment pq intersects the interior of S N but does not intersect any 

faces of S N. The set of points that can see the entire base a 1 b1 e1 of S N is called the 

the three planes passing through the faces aa1b1 , bb1e1 , and ee1a1 , respectively, in-

tersect at point v. They produce eight cones with v as the apex. We are inter-

ested in the cone containing base a1 b1 c1 , which is called the view cone of a1 b1 e1 . 

(see Figure 2.11(b)). Note that each point of view(a1b1e1) can see the seven faces 

of SN from the inside; moreover, if the apex v is below the base a1b1e1 , then all 
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the points in the symmetric cone can see the seven faces of S N from the outside as 

shown in Figure 2.12(a). If we twist the top face abc of SN further, view(a1b1c1) and 

I 
I 
I 
I 

(a) 

cone 

symmetric 
cone 

a 

(b) 

Figure 2.12: (a) v is the apex of the double cone. (b) illum(a1b1c1 ) 

view(a1b1c1 ) = int(va1b1c1) (the shaded tetrahedron). 
0 and 

Proof Refer to Figure 2.13. Since aib lies outside S N and abj punctures face bb1 c1 , 

we know that aib lies outside S~. Similarly, bjc and cka lie outside S~. So S~ is 
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' 

Figure 2.13: {a1b1c1 , aa1b1, bb1c1, cc1a1, abb1, bcc1, caa1} and {aibjck, aaibj, bbjck, cckai, 
abbj, beck, caai} form two niches respectively. 

is trivial. So we assume that illum(aibjck) -=J- 0. Let aa~, aa~, aa~' be the intersection 

segments of face abc and the planes passing through aa1 b1, aaib1 , aaibj respectively. 

Since ai lies outside S N and the planes containing aa1 b1 and aaib1 intersect at line 

ab1 , we have dist(b, aD < dist(b, aD. Since aibj punctures aa1b1 and the planes con-

taining aaibl and aaibj intersect at line aai, we have dist(b, aD < dist(b, an. Thus 

dist(b, a~) < dist(b, an. Similarly, dist(c, bD < dist(c, b'j) and dist(a, cD < dist(a, c%). 

Hence, the triangle face bounded by aa~, bb~, cc~ contains the triangle face bounded 

by aa~', bb'j, cc%. Note that illum(a1b1c1) is bounded by face abc and the three planes 

D 
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in view(a1b1c1). Since ai lies outside SN, there exists a point q E view(aibjck) which 

is in the neighbourhood of ai such that q lies outside S N. Thus view( aibjck) ct. 

view( a1 b1 c1). 

Theorem 2.10 Let£ be a set of segments containing a niche SN with base a1b1c1. 

Jfview(a1b1c1) n V(£) = 0, then£ cannot be tetrahedralized. 

Proof Suppose £ can be tetrahedralized and Tis the tetrahedron set of the tetra­

hedralization. Let S N = { a1 b1 e1, aa1 b1, bb1 e1, ee1 a1, abb1, bee1, eaa1} with base a1 b1 e1, 

as shown in Figure 2.14. Consider face a1b1e1 . From Theorem 2.1, we know that 

there must exist a vertex a2 in the niche side of the plane containing a1 b1 e1 such that 

tetrahedron a2a1b1e1 E T. Since view(a1b1e1 ) n V(£) = 0, a2 lies outside view(a1b1e1). 

So a2a1 , a2b1 or a2e1 must puncture a facet of S N. Since a2a1 b1 e1 is £-empty, a2 can­

not lie between view( a1 b1 ei) and S N, and a2a1 , a2b1 , or a2c1 cannot puncture facets 

abc, abb1 , bee1, or caa1. Thus, without loss of generality, suppose a2c1 punctures aa1b1• 

Consider face a2b1e1. There exists a vertex b2 such that tetrahedron a2 b2b1e1 E T. It 

follows from Lemma 2.8 that {a2b1e1, aa2b1, bb1e1, ee1a2, abb1, bee1, caa2} is a niche 

with base a2b1e1 , and illum(a2b1e1) C illum(a1b1ei). Similar to the above argu­

ment, we can suppose a2b2 punctures bb1c1. Then consider a2b2c1, and so on, as 

shown in Figure 2.14. In general, consider aibjek with aibj, aick puncturing aa1b1 , 

bjai, bjek puncturing bb1c1 , and ekbj, ekai puncturing ce1a1 . From Theorem 2.1 we 

know that there exists a vertex p such that tetrahedron paibjek E T. It follows from 
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Figure 2.14: view(a1b1c1) n V(£) = 0 and tetrahedra a2a1b1c1, a2b2b1c1, a2b2c2c1 are 
£-empty. 

pai, pbj, or pck cannot puncture faces abc, abb1 , bcc1 or caa1 . Thus, if pck punctures 

consider aibjck+l· Since the number of vertices in V(£) is finite, this process will stop 

when we consider a face such as ai' bj' ck'. That is, there does not exist a vertex p 

such that pai'bj'Ck' is an £-empty tetrahedron. Since ai'bj'Ck' is an inner triangle, this 

contradicts Theorem 2.1. Therefore £cannot be tetrahedralized. D 

Let P be the nonconvex polyhedron constructed m [88] for showing the NP-
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Figure 2.15: Polyhedron P constructed in [88] (not to scale). 

completeness of tetrahedralizing nonconvex polyhedra. As illustrated in Figure 2.15, 

the starting point for constructing P is the polyhedron consisting of a row of n squares 

yfy1z~z}(1 s; is; n) in plane z = 1 and m triangles c2k_ 1c2kc2k+1 (1 s; k s; m) in plane 

z = 0. The coordinates of the squares' vertices are yf (0, n + 1 - i, 1), v1(0, n- i, 1), 

i (1 . 1) d i (1 1 . 1) N t th i i+l d i i+l u t· zr , n- z, , an Zp , n + - z, . o e at y3 = y1 an Zr = Zp . ver Ices 

ck(1 s; k :S m) lie on a parabola in the xy-plane. The coordinates of ck are (ak, f3k, 0), 

where ak = 0.5 + 0.005(k -1)/m and f3k = 0.25a~- 0.25ak + 0.0625. To each square 

yfy~z~z~, a roof is attached which contains the variable's three literal vertices xi, x~ 

and x~. As mentioned above, niches are used as gadgets that force any tetrahedral-

ization to have certain properties; for example, they can force tetrahedra to appear. 

For each variable, there is a variable niche attached to y{y~y1 of the roof. For each 
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clause, there is a clause niche attached to c2k_1c2kc2k+l in the bottom. Refer to [88] 

for the detailed placement and coordinates of the roofs and niches. 

The ideas of our proof of NP-completeness is as follows. Since the boundary of 

the constrained tetrahedralization is a convex hull, we intend to construct a convex 

polyhedron that contains P. If we simply use CH(P) as our convex polyhedron, 

it is not clear how to tetrahedralize the region between P and CH(P) because the 

boundary of P is too complicated. In order to simplify the boundary of P, we cover 

each niche by using a cap that is defined as a pyramid with base y{y~y~(l ::; i ::; n) 

or c 2k_ 1c 2kc2k+l (1 ::; k ::; m) (see Figure 2.16 or 2.17). From the structure of P, we 

know that the apex of the view cone lies outside P. So we can place the cap's tip 

inside the symmetric cone of the view cone such that it can see the seven faces of the 

niche from the niche's "outside" (see Figure 2.12( a)). Hence, the region between the 

niche and its cap can be tetrahedralized by adding segments between the cap's tip 

and all other vertices. The boundary of P is updated by these caps. Since the new 

boundary is simple, we can tetrahedralize the region between it and its convex hull. 

Note that in our construction, each face of the niche is an inner face. So segments 

can puncture these faces. We avoid these cases by using a similar argument to the 

proof of Theorem 2.10. 

Theorem 2.11 The CT problem is NP-complete. 

Proof We first show that CT is in NP. For a given set g of vertices and segments in 
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R3 , a nondeterministic algorithm need only guess a tetrahedralization of V (Q). It is 

easy to see that checking whether Q is a subset of the tetrahedralization can be done 

in polynomial time. 

We next prove that CT is NP-hard by showing that a restricted version of the 

Satisfiability problem can be reduced to CT in polynomial time. The reduction 

algorithm begins with an instance of the Satisfiability problem. Let ¢ be a Boolean 

formula with m clauses over n variables. We restrict ¢ to conjunctive normal form in 

which each variable appears exactly three times in three different clauses, once as a 

negative literal, and twice as a positive literal. We shall construct a set of segments 

Q such that ¢ is satisfiable if and only if Q is tetrahedralizable. Our construction is 

based on the nonconvex polyhedron P described above. 

For any variable niche with base qfq~qH1 :::; i :::; n), let qi be the apex of the 

view cone of qf q~q~ which lies outside P. Note that in the construction of P in 

[88], the variable niche is specified in detail because its base qiq~q~ must see the two 

truth-setting vertices z~ and z~, and the three literal vertices xi, xt x~ on the roof 

of the variable must satisfy the "blocking" condition for the clause niches. From the 

placement of the variable niche, we know that the x-coordinate of qi is greater than 

-1. So we can select a vertex ai in the plane x = -1 such that ai can see the seven 

faces of the niche from the outside. Then connect ai with the six vertices of the niche 

and the three vertices of face yfy~y~ which contains the niche such that the 13 facets 

of P bounded by triangle yfy~y~ form 13 tetrahedra with ai (see Figure 2.16). So we 
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Figure 2.16: aiyfy~y1 is the cap of the niche. ai can see the seven faces of the niche 
and six faces on face yfy~y1. 

can update the boundary of P by using facets aiyfy~, aiy~y1, aiy1y{ (1 ~ i ~ n) to 

replace the 13 facets in each cap. In particular, from the structure of P, we can select 

a row of points in the plane x = -1 such that segments aiai+1
, y~y~+l (1 ~ i ~ n-1) 

and aiy~(l ~ i ~ n) lie on the convex hull of V(P) U { ai 11 ~ i ~ n }. Let P 1 be the 

updated boundary of P. 

The construction of the clause niche is much simpler than that of the variable 

niche. For the kth clause niche, its illuminant contains the segment with endpoints 

(a2k, 0, 1) and (a2k, n, 1), where a 2k = 0.5 + 0.005(2k- 1)/m. Since this segment 

intersects y} z} and y3 z!}, the kth niche must be contained in the region bounded 

z7}c2kc2k+1 respectively. From the illuminant lemma [88] we can construct the niche 

in this region as small as possible such that ai(1 ~ i ~ n) cannot see bk(1 ~ k ~ m) 

(to be specified later). Similarly to the placement of ai, for the kth clause niche, select 

a vertex bk in the plane z = -0.00001 such that bk can see the seven faces of the niche 
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from the outside but bk cannot see ai(1 :::; i :::; n). Then connect bk with the six vertices 

of the niche and the three vertices of the triangle face to which the niche is attached. 

Then we update the current boundary of P 1 by using three facets to replace the 13 

facets in each cap. In particular, we place bk(1 :::; k :::; m) in the plane z = -0.00001 

on the convex hull of P U {ai 11:::; i:::; n} U {bk 11:::; k:::; m} (see Figure 2.17). Let 

P2 be the updated boundary of P 1 . 

Figure 2.17: bkc2k_ 1c2kc2k+l is the cap of the niche. bk can see the seven faces of the 
niche and six faces inside c2k-1 c2kc2k+l· 

It is easy to see that the region between P2 and CH(P2 ) consists of three parts. 

The first part is the convex polyhedron with vertex set { ai I 1 :::; i :::; n} U {yf I 

1 :::; i :::; n} U {y3, c1}. The second part is the convex polyhedron with vertex set 

{bk I 1 :::; k:::; m} U {c2k+l I 0:::; k:::; m} U {y},z}}. So these two parts can be 

tetrahedralized easily by adding some segments. The third part consists of n - 1 

wedge-shaped polyhedra between the n variable roofs. Since each roof is convex, each 

wedge-shaped polyhedron can be tetrahedralized by adding some segments [54]. 

Let Q be the segment set consisting of E(P), E(CH(P2 )) and all the segments 

we have added between P and CH(P2 ). Q can be considered as the edge set of 
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the tetrahedralization between P and CH(P2 ). Since P and P2 can be constructed 

in polynomial time, and n - 1 wedge-shaped polyhedra can be tetrahedralized in 

polynomial time, g can be constructed in polynomial time. 

We claim that formula ¢ is satisfiable if and only if g is tetrahedralizable. We 

first suppose that there exists a constrained tetrahedralization T for g. For any 

variable niche p1p2p3q1q2q3 (see Figure 2.16) in P with base q1q2q3 (for simplicity, we 

drop the i superscripts), it follows from Theorem 2.1 that there exists a vertex q4 in 

the niche side of the plane passing through q1q2q3 such that q1q2q3q4 E T. Note that 

view(q1q2q3)nV(Q) = {zr,zp}. Ifq4 (j. {zr,zF}, then usinganargumentsimilartothe 

proof of Theorem 2.10, q1q4, q2q4, or q3q4 can only puncture the faces p1q1q2,p2q2q3, or 

p3q3q1. Without loss of generality, suppose q3q4 punctures p1q1q2 . From the structure 

of g, we know that no other points can form an £-empty tetrahedron with face q2q3q4. 

This is a contradiction to Theorem 2.1. Thus q4 must lie in the illuminant of the niche. 

Similarly, for any clause niche in P, the vertex which forms a tetrahedron with the 

base of the niche must lie inside its illuminant. From the proof of Theorem 1 in [88], 

we can obtain a truth assignment for ¢. Conversely, suppose ¢ is satisfiable. Using 

the method of [88], we can add some segments to tetrahedralize P. These added 

segments together with g form a constrained tetrahedralization of V(Q). D 

Remark: Note that the NP-completeness of tetrahedralizing nonconvex polyhedra 

does not depend on coplanarities of faces or other degeneracies. The structure of P 
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can be modified easily so that the vertices of P are in a nondegenerate position [88, 

page 250]. Consequently, we can also modify the structure of g so that the vertices 

of g are in a nondegenerate position. Thus, the NP-completeness result is still valid 

for tetrahedralizing a set of vertices and segments in the general position. 

2. 7 Conclusions 

In this chapter, we have given some new results on the computational complexity 

of tetrahedralization detections. We have presented an 0 ( nm log n) algorithm to 

determine whether .C is a tetrahedralization. If .C is not a tetrahedralization, we 

have proven that it is NP-complete to decide whether .C contains a tetrahedralization 

of V(.C), and we have also proven that it is NP-complete to decide whether .C is a 

subset of a tetrahedralization of V(.C). The proofs of the NP-completeness results are 

constructive. The former is constructed from its two dimensional analog [74]. The 

latter is constructed from the nonconvex polyhedron used in [88]. 

We conclude this chapter with some open problems that in one way or the other 

relate to the material discussed in this chapter. 

• Given a set of line segments .C in R3
, how can we efficiently detect if .C forms a 

simple polyhedron ? 

• How hard is it to decide if a collection of sticks (i.e., line segments subject to 
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rigid motions) can be joined to form a triangulation (or tetrahedralization)? 

• Given a collection of triangles (resp. tetrahedra) without adjacency information, 

how hard is it to decide if they can be assembled into a triangulation (resp. 

tetrahedralization) ? 

• How hard is it to decide if a collection of sticks can be joined to form a convex 

polyhedron ? 

• Given a collection of polygons without adjacency information, how hard is it to 

decide if they can be assembled into a convex polyhedron ? 



Chapter 3 

Minimal Tetrahedralizations of a 

Class of Polyhedra 

Given a simple polyhedron in three dimensional Euclidean space, different tetrahedral­

izations of that polyhedron may contain different numbers of tetrahedra. A minimal 

tetrahedralization is a tetrahedralization with the minimum number of tetrahedra. In 

Section 3.1, we survey related results in this area. In Section 3.2, we present several 

properties of the graph of polyhedra. In Section 3.3, we prove various properties of the 

structure of the minimal tetrahedralizations of BP-polyhedra and some special two­

level BP-polyhedra defined in Section 3.3.1. In Section 3.4, we present a quadratic 

time algorithm for identifying and tetrahedralizing an augmented BP-polyhedra. Fi­

nally, we discuss issues arising from these results in Section 3.5. 

69 
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3.1 Introduction 

A tetrahedralization of a polyhedron is a partition of that polyhedron into a number of 

tetrahedra that meet only at shared vertices, edges, or triangles. All convex polyhedra 

are tetrahedralizable, but not all nonconvex polyhedra can be tetrahedralized [71, 90]. 

If Steiner points are allowed, then all polyhedra are tetrahedralizable. Chazelle [24] 

showed that a simple polyhedron of n vertices can always be partitioned into O(n2
) 

convex regions if Steiner points are allowed, and this bound is tight in the worst case. 

Clearly, this is also a tight bound for tetrahedralization in the worst case. 

For optimal tetrahedralization problems, very few results are known. Since dif­

ferent tetrahedralizations of the same polyhedron may contain different numbers of 

tetrahedra, a natural optimization problem is how to tetrahedralize a polyhedron with 

the minimum number of tetrahedra. A tetrahedralization with the minimum number 

of tetrahedra is referred to as a minimal tetrahedralization. Recently, Below et al. 

[12] proved that the minimum number of tetrahedra in the tetrahedralization of a 

convex polyhedron can be decreased if Steiner points are allowed. Chin et al. [33, 32] 

studied approximation algorithms for computing the minimal tetrahedralization of a 

convex polyhedron. Richter-Gebert [84] proved that finding a minimal tetrahedral­

ization of the boundary of a 4-polytope is NP-complete. Furthermore, Below et al. 

[13, 14] proved that finding a minimal tetrahedralization of a convex polyhedron is 

NP-complete. Thus, it becomes significant to study which kind of polyhedra can be 
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minimally tetrahedralized in polynomial time. It is obvious that stacked polyhedra 

can be minimally tetrahedralized in O(n2
) time [86, 39]. Wang and Yang [106] pre­

sented another kind of special polyhedra, the so-called k-vet polyhedra, and proved 

that the k-vet polyhedra can be minimally tetrahedralized under some conditions. 

In this chapter, we present some properties of the graph of polyhedra. Then we 

identify a class of polyhedra called BP-polyhedra and show that this class of polyhedra 

can be minimally tetrahedralized in O(n2 ) time. 

3.2 Properties of the graph of polyhedra 

3.2.1 Definitions and assumptions 

p 

q 

Figure 3.1: A BP-net (left) and a bipyramid (right). 

Let P be a simple polyhedron. As in Chapter 2, we assume throughout this 

chapter that the vertices of P are in a general position such that no four vertices of P 

are coplanar. Note that vertices not in a general position can be perturbed by various 



72 

methods [48, 91]. This assumption implies that each facet of Pis a triangle and that 

no diagonals intersect. A minimal tetrahedralization of P is a tetrahedralization 

that contains the minimum number of tetrahedra among all tetrahedralizations of 

P. The graph of P, denoted by G(P), is the graph with vertex set V(P) and edge 

set E(P). Throughout this chapter, we study properties of G(P) and the minimal 

tetrahedralization of P. 

Let v0v1 ... vm be a path on G(P). If m > 2 and there exist two vertices p, q E V(P) 

such that all vi (0 ~ i :S m) are adjacent to p and q, then the subgraph induced 

from p, q, vi (0 ~ i ~ m) is called a bipyramid net (for short, BP-net), denoted by 

B(pvovl···vmq) (see Figure 3.1(1eft)). Furthermore, if v0 = Vm, that is, if v0v 1 •.• Vm 

is a cycle, then B(pv0v1 .•. vmq) is called a bipyramid (see Figure 3.l(right)). Vertices 

p and q are called poles of the BP-net or bipyramid. The edge pq is the polar edge. 

Obviously, a BP-net can be obtained from a bipyramid by splitting a path pviq into 

two paths pviq and pv~q, illustrated in Figure 3.2. 

p p 

V; Vi 

q q 

Figure 3.2: The relationship between a bipyramid (left) and a BP-net (right). 
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3.2.2 Properties of G(P) 

For each edge ab on the surface of P, there must exist two vertices c and d such that 

abc and abd are two facets on the surface of P. Let tri(ab) denote the set of two 

vertices that determine the two triangles sharing ab. The set of all adjacent vertices 

of a vertex v in G ( P) is denoted by adj ( v). The degree of v is denoted by deg( v). 

Theorem 3.1 If IV(P) I > 4, then any two vertices of degree 3 are not adjacent in 

G(P). 

Proof Refer to Figure 3.3. Suppose ab E E(P), and deg(a) = deg(b) = 3. Let 

tri(ab) = { c, d}. Since deg(a) = 3, adj(a) = {b, c, d}; hence tri(ac) = {b, d}. Similarly, 

tri(bc) = {a,d}, tri(ad) = {b,c}, tri(bd) = {a,c}, and tri(cd) = {a,b}. Thus, P = 

abed is a tetrahedron and IV(P)I = 4. This is a contradiction. Therefore any two 

vertices of degree 3 are not adjacent if IV(P) I > 4. 

a 

c 
' 
' ' ' 
' ' ' ' ' ' ' 

' ' 
' 

-------d'',,, 

b 

Figure 3.3: The illustration for Theorem 3.1 and Corollary 3.1. 

0 

Corollary 3.1 Let a, bE V(P), and deg(a) = deg(b) = 3. P is a tetrahedron if and 

only if abE E(P) (see Figure 3.3). 
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Theorem 3.2 Let deg(a) = 3, a E V(P). If IV(P)I > 5, then there is at most one 

vertex in adj (a) whose degree is less than 5. 

Proof Refer to Figure 3.4(left). Let adj(a) = {a1 , a2 , a3 }. It follows from Theo­

rem 3.1 that deg(ai) > 3, i = 1, 2, 3. Suppose there exists one vertex a1 whose degree 

is 4, and adj(a1) = {a, a2 , a3 , b }. Then a2 b, a3b E E(P). Now consider the edge a2 a3 • 

If tri(a2a3) = {a, b}, then P = aa1a2 a3b, and IV(P)I = 5, which contradicts the 

condition of the theorem. Thus, tri(a2a3 ) ={a, c}. Therefore, deg(ai) 2: 5, i = 2, 3. 

This completes the proof. D 

a 

b 

Figure 3.4: The illustration for Theorem 3.2 (left) and Corollary 3.2 (right). 

Corollary 3.2 Let a, a1 , a2 E V(P), deg(a) = 3, and deg(a1) = deg(a2 ) = 4. P is a 

hexahedron if and only if ai E adj(a), i = 1, 2 (see Figure 3.4). 

For the vertex of degree 4 in P, its adjacent vertices have the following property: 

Theorem 3.3 Let deg(a) = 4,a E V(P). If IV(P)I > 6, then there are at most two 

nonadjacent vertices in adj (a) whose degrees are less than 5. 
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following two cases: 

1. deg(a1 ) = 3 (Refer to Figure 3.5(left)). Then a2a4 E E(P). Thus, deg(ai) 2: 

which contradicts the condition of the theorem. Thus, deg( ai) > 4, i = 2, 4. 

condition of the theorem. The degree of a3 can be equal to 4. 

c b 

Figure 3.5: Case 1 (left) and Case 2 (right) of the proof of Theorem 3.3. The left 
figure is also a type I octahedron. 

2. deg(a1) = 4 (Refer to Figure 3.5(right)). We know that a, a2 , a4 E adj(a1). If 

P = aa1a2a3a4b, and IV(P) I = 6 which contradicts the condition. Therefore, 

deg(a4) > 4. Similarly, we can prove that deg(a2 ) > 4. The degree of a3 can be 

equal to 4. This ends the proof. 

0 
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From the definition of a BP-net, we know that for a BP-net B(pv0v1 .•. vmq), 

deg(vi) = 4 (1 :S i :S m- 1). Now we consider the inverse case. 

Theorem 3.4 Let a1a2 ... ak be a path in G(P), k > 1. Ifdeg(ai) = 4 (1 :S i :S k), then 

the subgraph induced from ai (1 :S i :S k) and their adjacent vertices is a bipyramid 

or a BP-net. 

Proof Consider the following four cases of k. 

1. k = 2 (see Figure 3.6 (left)). Let tri(a1a2 ) = {b, c}, adj(a1 ) = {a2 , b, c, d} and 

adj(a2 ) = {a1,b,c,e}. Then bd,cd,be,ce E E(P). Thus, the graph induced 

from {a 1 ,a2 ,b,c,d,e} is a BP-net ifdyf e or a bipyramid ifd= e. 

b b 

d e d e 

c c 

Figure 3.6: Case 1 (left) and Case 2(a) (right) of the proof of Theorem 3.4. 

2. k=3. Consider the following two cases of tri(a1a2). 

(a) tri(a1a2 ) = {b, c} (see Figure 3.6 (right)). Then adj(a2 ) = {a1 , a3 , b, c}. 

Thus, a3 b, a3c E E(P). Let d E adj(a1), e E adj(a3 ), then bd, cd, be, ce E 

E(P). Therefore, the graph induced from { a1 , a2 , a3 , b, c, d, e} is a BP-net 

if d # e or a bipyramid if d = e. 
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b 

a3 

Figure 3.7: Case 2(b) of the proof of Theorem 3.4 (a type II octahedron). 

(b) tri(a1a2) = {a3, b}. Let adj(a2 ) = {a1 , a3, b, c}. Hence, a3c, beE E(P). If 

c E adj(a1), then P = a1a2 a3bc and deg(a3 ) = 3, which is a contradiction. 

Thus, adj(a1) = { a2 , a3, b, d}. Therefore a3d, bd E E(P). Since adj(a3) = 

{a1 , a2 , c, d}, cd E E(P). Thus, the graph induced from {a1 , a2 , a3 , b, c, d} 

is a bipyramid (in particular, an octahedron), illustrated in Figure 3.7. 

3. 4 ~ k ~ 6. Consider the following two cases of tri(a1a2). 

(a) tri(a1a2 ) = {b, c} (refer to Figure 3.6 (right)). Then adj(a2 ) = {a1 , a3 , b, c}. 

It follows that adj(ai) ={ai-l, ai+1 , b, c}, 3 ~ i ~ k- 1. Let dE adj(a1), 

e E adj(ak)· Then bd, cd, be, ce E E(P). Thus the graph induced from 

{ a1 , ... , ak, b, c, d, e} is a BP-net if d -::f. e or a bipyramid if d =e. 

(b) tri(a1a2) = {ai, b}, 3:::; i:::; k. Using the same argument as Case 2(b), we 

can prove that the graph induced from a1 , ... , ak and their adjacent vertices 

is an octahedron (bipyramid). For example, we can set c = a4 , d = a5 , b = 

a6 in Figure 3.7. 
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4. k > 6. In this case, the graph induced from a1 , ... , ak and their adjacent vertices 

cannot be an octahedron. Thus, we can prove that this graph is a BP-net or 

bipyramid using the same argument as Case 2(a) and Case 3(a). 

D 

Theorems 3.3 and 3.4 imply the following three properties of octahedra. 

Corollary 3.3 There are only two different types for the graphs of octahedra. 

Call the two types of graphs of octahedra in Corollary 3.3 a type I octahedron 

(illustrated in Figure 3.5(left)) and a type II octahedron (illustrated in Figure 3.7). 

Corollary 3.4 Let a, a1 , a2 E V(P), a1a2 E E(P), deg(a1) = 3, deg(a) = 4 and 

deg(a2 ) = 5. P is a type I octahedron if and only if ai E adj(a), i = 1, 2. 

Corollary 3.5 Let a, a1 , az E V(P), a1a2 E E(P), and deg(a) = deg(a1) = deg(a2 ) = 

4. P is a type II octahedron if and only if ai E adj(a), i = 1, 2. 
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3.3 Minimal tetrahedralizations of BP-polyhedra 

3.3.1 Definitions 

For a simple polyhedron, the tetrahedralization is a partition of the polyhedron into a 

number of tetrahedra that meet only at shared faces. The tetrahedralization consists 

of all the edges of the polyhedron and some of its diagonals. If P has a tetrahedral­

ization in which there are no diagonals, then P is called a stacked polyhedron [86, 39]. 

Obviously, if P is a stacked polyhedron, then P can be obtained from tetrahedra by 

successive additions of tetrahedra on the triangle facets. 

Let B(pv0v1 ... vmq) be a BP-net on the surface of P. B(pv0v1 .•. vmq) is proper if it 

satisfies the following two conditions: 

1. pq is a diagonal or pq E E(P), and 

2. each pqvjvJ+1 (0 ~ j ~ m- 1) is a tetrahedron which is included in the poly­

hedron P. 

If B(pv0v1 .•• vmq) is a proper BP-net, then the union of all the tetrahedra pqvjVJ+I 

(0 ~ j ~ m- 1) is called a tetrahedralized BP-net (see Figure 3.8(a)). It is clear 

that the tetrahedralized BP-net is a stacked polyhedron. For two proper BP-nets on 

the surface of P, if the intersection of the interiors of their tetrahedralized BP-nets is 

empty, then the two proper BP-nets are disjoint (see Figure 3.8(b)). 
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(b) 

Figure 3.8: (a) The tetrahedralized BP-net with tetrahedra pqvjVj+l (0::; j ::; m -1). 
It can be considered as a stacked polyhedron. (b) The BP-nets B(u1v 1v2v3v4u4) and 
B(v1u 1u 2u3u4v4) are disjoint. After trimming off the two BP-nets, we obtain the 
tetrahedron u 1 v1 u4 v4. 

Let B(p(i)v~i)vii) ... v~q(i)) (1 :S i :S k) be all the disjoint proper BP-nets on 

the surface of P. After removing the vertices v) i) (j = 1, ... , mi - 1, i = 1, ... , k) 

and their adjacent edges and adding edges p(i)q(i), i = 1, ... , k, we obtain a new 

polyhedron P 1 . When there is no confusion, this process of removing vertices and 

adding edges is called trimming o.ffBP-nets. IfP1 is a stacked polyhedron (the empty 

polyhedron is regarded as a stacked polyhedron), then P is called a BP-polyhedron 

(see Figure 3.8(b)). Recursively, if P 1 is a BP-polyhedron, then P is called a two-level 

BP-polyhedron, and P 1 is called the internal BP-polyhedron of P. Let P' be a BP-

polyhedron (or two-level BP-polyhedron). If Pis constructed from P' by successive 

additions of tetrahedra on the triangle facets, then P is called an augmented BP-

polyhedron (or two-level BP-polyhedron). 

In the definition of a BP-polyhedron, since BP-nets B(p(i)v~i)vii) ... vg~q(i)) (1 :S 

i ::; k) are disjoint and proper, the order in which the process of trimming off is done 
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does not affect the resulting polyhedron P1 . 

Let D be the set of diagonals in a tetrahedralization of P. Then we say that D 

creates a tetrahedralization of P. Let A be an area on the surface of P such that 

the boundary of A is a simple polygon on the surface of P. Consider ab E D. If 

a, b E V(A), then ab is called a type-! diagonal (or diag-1, for short) on A. We 

also say that A associates with a diag-I of D. If a is an interior vertex of A, and 

b ~ V(A), then ab is called a type-11 diagonal (or diag-11, for short) on A. We 

also say that A associates with a diag-II of D. As illustrated in Figure 3.9, the 

polyhedron P consists of the solid edges and the dotted edge. P is constructed as 

follows: Start with a bipyramid B(pv0v1v2v3v4v0q), attach a tetrahedron apv0v4 to the 

facet pv0v4 of the bipyramid so that edge aq is contained in the interior of P. Let D = 

{ vov2, v2v4, av2, aq} be the set of diagonals which creates the tetrahedralization with 

tetrahedra {pv0v1v2,qv0v1v2,pv2v3v4,qv2v3v4,apv0v2,aqv0v2,apv2v4,aqv2v4,aqv0v4}. 

Consider the BP-net B(pv0v1 v2v3v4q) as an area on the surface of P. This BP-net 

associates with two diag-Is of D (i.e., v0 v2, v2v4) and one diag-II of D (i.e., av2). 

Let tetra(abc) denote the set of vertices that form the tetrahedra with abc in a 

tetrahedralization of P. Obviously, itetra(abc)l = 1 or 2. Each vertex in tetra(abc) is 

called the tetra-vertex of abc. 
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a 

q 

Figure 3.9: The solid edges and the dotted edge form the edge set of a polyhedron 
P. The dashed edges are diagonals of P which create a tetrahedralization of P. 

3.3.2 BP-polyhedra 

In this section, we prove the structure of the minimal tetrahedralizations of BP-

polyhedra. The main result is the following: 

Theorem 3.5 Let P be a BP-polyhedron, and p(i)q(i) (1 ~ i ~ k) be all the polar 

edges of the disjoint proper BP-nets on the surface ofP. The set {p(i)q(i) 11 ~ i ~ k} 

creates a unique minimal tetrahedralization of P. 

Proof Let B(p(i)v~i)viil ... v~q(i)) (1 ~ i ~ k) be all the disjoint proper BP-nets on 

the surface of P. After removing the vertices v)i) (j = 1, ... , mi- 1, i = 1, ... , k) and 
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their adjacent edges from P, and adding edges p(i) q(i) ( 1 :::; i :::; k), we obtain a new 

polyhedron Q. From the definition of a BP-polyhedron we know that Q is a stacked 

polyhedron. Since each B(p(i)Vbi)vii) ... v~q(i)) and its polar edge p(i)q(i) also construct 

a stacked polyhedron, the edge set {p(i)q(i) I 1 :::; i :::; k} creates a tetrahedralization 

of P. {p(i) q(i) I 1 :::; i :::; k} may contain edges that belong to E(P) or edges that 

are coincident. Without loss of generality, we can assume that all the edges p(i)q(i) 

(1 :::; i :::; k) are different diagonals. Now we show that {p(i)q(i) 11 :::; i :::; k} creates a 

unique minimal tetrahedralization by contradiction. 

Suppose that the diagonal set T creates a minimal tetrahedralization of P such 

that T 1- {p(i)q(i) I 1 :::; i :::; k} and ITI :::; k. Let T0 = T n {p(i)q(i) I 1 :::; i :::; k} 

and T1 = T- T0 • Since the BP-net is not a tetrahedralization, there must exist some 

edges ofT whose endpoints belong to the BP-net. Thus, we can classify the BP-nets 

into two sets /30 and /31 , which are defined as follows: for each BP-net in {30 , its polar 

edge belongs to T0 , and for each BP-net in /31 , its polar edge does not belong to T. 

First, we prove the following lemma: 

Lemma 3.1 Each BP-net B(pv0v 1 ... vmq) in /31 must associate with at least: 

(1) two diag-Is ofT, or 

(2) one diag-I and one diag-II ofT, or 

{3) three diag-Ils ofT, or 
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(4) two diag-Ils ofT with a common endpoint. 

Proof Each triangle facet on the surface of P has only one tetra-vertex and each 

triangle facet in the interior of P has exactly two tetra-vertices. From the definition 

of a BP-net, we know that m :2 3. Consider the triangle facet v0pv1 . Its tetra-vertex 

cannot be q since B(pv0v1 ... vmq) is in (31 ; that is, pq tJ. T. We have the following three 

cases: 

1. v2 E tetra(v0pv1 ) (see Figure 3.10(left)). Then v0 v2 E T, which is a diag-I. 

Consider the interior facet v0 v2p. v1 is one tetra-vertex. The other tetra-vertex 

may be vi(3::; i ::; m), or the vertex a which does not belong to B(pv0v1 ... vmq). 

Thus, v0vi E T or v2a E T. In total, the BP-net associates with at least two 

diag-ls, or one diag-1 and one diag-II. 

Figure 3.10: Case 1 (left) and Case 2 (right) of the proof of Lemma 3.1. 

2. vi E tetra(vopvl), 3:::; i:::; m (see Figure 3.10(right)). Then v0vi, v1vi E T, which 

are diag-ls. Thus, the BP-net associates with at least two diag-ls. 

3. b E tetra(v0pvl) and b tJ. V(B(pv0 ... vmq)). Then v1b E T, which is a diag-11. 

There are three cases for the tetra-vertex of v1pv2 • 
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(a) vi E tetra(v1pv2), 3 :::; i :::; m. Then v1vi E T, which is a diag-I (see 

Figure 3.11(left)). Thus, the BP-net associates with at least one diag-I 

and one diag-II. 

Figure 3.11: Case 3(a) (left) and Case 3(c)ii (right) of the proof of Lemma 3.1. 

(b) c E tetra(v1pv2 ) and c tf_ V(B(pv0 .•. vmq)). Then v1c, v2 c E T, which are 

diag-IIs. Thus, the BP-net associates with at least three diag-Ils. 

(c) b E tetra(v1pv2 ). Then v2b E T. Consider v2pv3 • If m > 3, the tetra­

vertex of v2pv3 may be Vi ( 4 :::; i :::; m), or the vertex b, or the vertex 

b' tf_ V(B(pv0 ... vmq)). Thus, v2vi E T, or v3b E T, or v2b', v3 b' E T. 

Therefore, B(pv0 ... vmq) associates with at least one diag-I and two diag­

IIs, or at least three diag-Ils. If m=3, we have the following two cases: 

1. dE tetra(v2pv3 ) and d tf_ V(B(pv0 •.• vmq)). Then v2d E T, which is a 

diag-II. Thus, B(pv0 ..• vmq) associates with at least three diag-Ils. 

11. bE tetra(v2pv3 ). Then v3b E T. We can discuss the symmetric triangle 

facets v0 qv1 , v1qv2 , v2qv3 using the above argument. Either we prove 

the lemma, or we get the same case as above; that is, qb E T (see 

Figure 3.1l(right)). Thus, B(pv0 ... vmq) associates with two diag-IIs 
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{ v1 b, v2b} with a common endpoint b. This completes the proof of 

Lemma 3.1. 

0 

Note that each diag-1 associates with only one BP-net and each diag-11 associates 

with at most two BP-nets. Also note that each pair of diag-IIs with a common 

endpoint cannot be used to tetrahedralize two BP-nets. Since T =j:. {p(i)q(i) 11 :::; i :::; 

k }, we know that T1 =j:. 0. It follows from Lemma 3.1 that the total number of edges 

in T1 that associate with the BP-nets in (31 is greater than 1!31 1. Since we assumed 

that all the edges p(i)q(i), 1 :::; i :::; k are different, the total number of edges in T0 is 

lf3ol· Thus 

This contradicts the assumption that ITI :::; k. Therefore, {p(i)q(i) 11 :::; i :::; k} creates 

a unique minimal tetrahedralization of P. This ends the proof of Theorem 3.5. 0 

From an extension of Lemma 3.1, we can derive the following corollary on the 

minimal tetrahedralizations of augmented BP-polyhedra. 

Corollary 3.6 Let P be a simple polyhedron. After removing all the degree 3 vertices 

in G(P) recursively, we obtain a new polyhedron P'. If P' is a BP-polyhedron, then 

{p(i)q(i) 11:::; i:::; k} creates a unique minimal tetrahedralization ofP, where p(i)q(i) 

(1 :::; i :::; k) are the polar edges of all the disjoint proper BP-nets on the surface of 
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P'. 

Proof Let B~ (1 ::::; i ::::; k) be all the disjoint proper BP-nets on the surface of P'. 

Since G(P') is obtained by trimming off some stacked polyhedra from G(P), for each 

B~ there must exist Bi on the surface of P such that B~ is obtained by trimming off 

stacked polyhedra from Bi (here, an empty polyhedron is also considered as a stacked 

polyhedron). It is obvious that Lemma 3.1 still holds for such Bi. Therefore, we can 

prove the corollary with an argument similar to that used in the proof of Theorem 3.5. 

0 

3.3.3 Two-level BP-polyhedra 

Now we consider the minimal tetrahedralization of two-level BP-polyhedra. Let P be 

a two-level BP-polyhedron, P 1 be the internal BP-polyhedron of P, and BP-net(P) 

(resp. BP-net(P1)) denote the set of all BP-nets on the surface ofP (resp. P 1). From 

the definition of a two-level BP-polyhedron, we know that the BP-nets in BP-net(P) 

and BP-net(P1 ) are proper and disjoint, respectively. As P 1 is obtained by trimming 

off BP-net(P) from P, each BP-net in BP-net(P1 ) has at least one edge that is the 

polar edge of a BP-net in BP-net(P) and does not belong to E(P). In this section, 

we only prove the structure of the minimal tetrahedralization for a special two-level 

BP-polyhedron, that is, each BP-net in BP-net(PI) contains only one edge that is 

the polar edge of a BP-net in BP-net(P). The following five lemmas give properties 
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of the relationship between BP-nets and the minimal tetrahedralization. 

Lemma 3.2 Let B = B(xz0 z1 ..• ZmY) be a proper BP-net on the surface of P. By 

deleting the interior edges of B and adding edge xy, we obtain a new proper BP-

Figure 3.12). Let T create a tetrahedralization of P, and B 1 be the area on the surface 

xy, pq (j_ T, then T must have at least: 

{1} three diag-Is on B 1, or 

(2) two diag-Is and one diag-II on B 1 , or 

{3} one diag-I and three diag-Ils on B 1, or 

(4) five diag-Ils on B 1, or 

( 5) four diag-lis on B 1 with a common endpoint. 

Figure 3.12: After trimming off BP-net B = B(xz0 z1 •.• ZmY) from B 1 (left), we obtain 
a new BP-net Fh = B(pv0v1 v2v3 q) (right). 

Proof We only prove the lemma for m = 3. It can be similarly proved for m > 3. 
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Consider the facets z0v1z1. v2,z3 rf. tetra(z0v1z1) since v1v2,zoz3 rf. T. Thus, 

tetra(z0v1z1) may contain z2, or v0 , or v3 , or the vertex c which does not belong to 

B 1. Therefore, we have the following cases: 

1. z2 E tetra(z0v1zi). Then z0 z2 E T, which is a diag-I (see Figure 3.13(left)). 

Consider the interior facet z0 v1z2 . z1 E tetra(z0v1z2), and the other vertex in 

tetra(z0v1z2) may be v0 , or v3 , or the vertex a which does not belong to V(B 1 ). 

Figure 3.13: Case 1 (left) and Case 1(a) (right) of the proof of Lemma 3.2. 

(a) v0 E tetra(z0v1z2). Then z2v0 E T, which is a diag-I (see Figure 3.13(right)). 

1. If v2 or v3 belongs to tetra(z0z2v0 ), then v0v2 or v0v3 E T, which is a 

diag-I. In total, there are at least three diag-Is on B 1. 

n. If a' E tetra(zoz2vo) which does not belong to V(B 1 ), then z2a' E T, 

which is a diag-11. In total, there are at least two diag-Is and one 

diag-II on B1. 

(b) v3 E tetra(z0v1z2). Then v1v3, z2v3 E T, which are diag-Is (see Fig­

ure 3.14(1eft)). Thus, there are at least three diag-Is on B 1. 
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Figure 3.14: Case 1(b) (left) and Case 1(c) (right) of the proof of Lemma 3.2. 

(c) a E tetra(z0v1z2). Then v1a, z2a E T, which are diag-IIs (see Figure 3.14 

(right)). Considering z0 z2v2 , at least one diag-1 or diag-II is incident on 

z0 , or z2 , or v2. In total, there are at least two diag-Is and two diag-Ils, or 

one diag-1 and three diag-Ils on B 1 . 

2. v0 E tetra(z0v1z1 ). Then z1v0 E T, which is a diag-1 (see Figure 3.15(left)). 

Consider the interior facet z1v0v 1 • z0 E tetra(z1v0v1), and the other vertex in 

tetra(z1v0v1) may be z2, or z3 , or v3 , or the vertex b which does not belong to 

Figure 3.15: Case 2 (left) and Case 2(a) (right) of the proof of Lemma 3.2. 

(a) z2 E tetra(z1 v0v 1 ). Then z2v0 E T, which is a diag-1 (see Figure 3.15(right) ). 
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i. If z0 , or z3 , or v2 , or v3 belongs to tetra(z1z2v0 ), then at least one 

diag-I is incident on z1, or z2 , or v0 . In total, there are at least three 

diag-Is on B 1. 

u. If b' E tetra(z1z2v0 ) which does not belong to V(BI), then z1b', z2 b' E 

T, which are diag-Ils. In total, there are at least two diag-Is and two 

diag-Ils on B1. 

(b) z3 E tetra(z1v0v1). Then z1z3 E T, which is a diag-I. Considering z1z3v0, 

at least one diag-I or one diag-II is incident on z1, or z3 , or v0 . In total, 

there are at least three diag-Is, or two diag-Is and one diag-II on B 1. 

(c) v3 E tetra(z1v0v1). Then z1v3, v0v3, v1v3 E T, which are diag-Is. In total, 

there are at least four diag-Is on B 1. 

(d) b E tetra(z1v0vi). Then z1b, v1b E T, which are diag-Ils. Considering 

z1z2v2 , at least one diag-I or diag-II is incident on z1, or z2 , or v2 • In total, 

there are at least two diag-Is and two diag-IIs, or one diag-I and three 

diag-Ils on B 1. 

3. v3 E tetra(zov1z1). Then z1v3, v1v3 E T, which are diag-Is (see Figure 3.16(left)). 

Considering the interior facet z1 v1 v3 , at least one diag-I or diag-II is incident 

on z1, or v1, or v3 . In total, there are at least three diag-Is, or two diag-Is and 

one diag-II on B 1. 

4. c E tetra(zov1z1) and c rf. V(B 1 ). Then z1c, v1c E T, which are diag-Ils (see 
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Figure 3.16: Case 3 (left) and Case 4 (right) of the proof of Lemma 3.2. 

Figure 3.16(right)). Consider z1v1z2. If z0 E tetra(z1v1z2), then the intersection 

of the interiors of tetrahedra z0z1v1z2 and z0v1z1c is not empty. Thus z0 r:f. 

tetra(z1v1z2). 

(a) z3 E tetra(z1v1z2). Then z1z3 E T, which is a diag-I. Considering z1z2v2, 

at least one diag-I or diag-II is incident on z1 , or z2, or v2. In total, there 

are at least two diag-Is and two diag-Ils, or one diag-I and three diag-Ils 

on B 1 . 

(b) v3 E tetra(z1v1z2). Then v 1v 3 , z 1v 3 , z 2v 3 E T, which are diag-Is. In total, 

there are at least three diag-Is and two diag-Ils on B 1 . 

(c) v 0 E tetra(z1v1z2). Then z 1v 0 , z 2v 0 E T, which are diag-Is. In total, there 

are at least two diag-Is and two diag-Ils on B 1. 

(d) d E tetra(z1v1z2). Then v1c', z1c', z2c' E T, which are diag-Ils. In total, 

there are at least five diag-Ils on B 1. 

(e) c E tetra(z1v1z2). Then z2c E T, which is a diag-II. Consider z1z2v2. 

i. zo, Z3, v 0 or v3 belongs to tetra(z1z2v2). At least one diag-I is incident 
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on z1 , or z2 , or v2 . In total, there are at least one diag-I and three 

diag-IIs on B 1. 

11. c" E tetra(z1z2v2 ) and c" tJ V(B 1). Then z1c",z2c",v2c" E T. In total, 

there are at least six diag-Ils on B 1 . 

111. c E tetra(z1 v2z2). Then v2c E T. Consider the other triangle facets in 

B 1 (except z0 v1z1 , z1 v1z2 , z1 v2z2). If there is at least one triangle facet 

whose tetra-vertex is d =/= c, then B 1 associates with at least one diag-I 

and four diag-IIs, or five diag-Ils; otherwise, if all the vertices in B 1 

are adjacent to c, then there are four diag-IIs on B 1 with a common 

endpoint c. This completes the proof of Lemma 3.2. 

0 

Using a similar method to that in the above proof, we can prove the following 

three lemmas. For their proofs, see Appendix B, C and D, respectively. 

Lemma 3.3 Let B = B(xz0z1 .•. ZmY) be a proper BP-net on the surface of P. By 

deleting the interior edges of B and adding edge xy, we obtain a new proper BP­

net, denoted by B2 = B(pvov1v2v3q), where v2 = x, v3 = y, p = z0 , q = Zm (see 

Figure 3.17). LetT create a tetrahedralization ofP, and B 2 be the area on the surface 

ofP which contains v0 , v1, v2, v3, zi(O::::; i ::::; m) and is bounded by pv0 , pv3, qv0 , qv3. If 

xy, pq tJ T, then T must have at least: 

(1) three diag-Is on B2 , or 
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(2) two diag-ls and one diag-11 on B 2 , or 

(3) one diag-1 and three diag-IIs on B 2, or 

(4) five diag-IIs on B 2 , or 

(5) four diag-IIs on B 2 with a common endpoint. 

il.?-------v--;;::-----:-:-t----~v J 

(y) 

Figure 3.17: After trimming off BP-net B = B(xz0z1 ... ZmY) from B 2 (left), we obtain 
a new BP-net B2 = B(pv0v1 v2v3q) (right). 

Lemma 3.4 Let B = B(xz0 z1 ... zmy) be a proper BP-net on the surface of P. By 

deleting the interior edges of B and adding edge xy, we obtain a new proper BP-

Figure 3.18). LetT create a tetrahedralization ofP, and B 3 be the area on the surface 

xy, pq tj. T, then T must have at least: 

(1) three diag-Js on B 3 , or 

(2) two diag-ls and one diag-11 on B 3 , or 

(3) one diag-1 and three diag-IIs on B 3 , or 

(4) five diag-JJs on B 3 , or 

(5) four diag-IIs on B 3 with a common endpoint. 
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Figure 3.18: After trimming off BP-net B = B(xz0 z1 ..• ZmY) from B 3 (left), we obtain 
a new BP-net B3 = B(pv0v1 v2v3q) (right). 

Lemma 3.5 Let B = B(xz0 z1 ... ZmY) be a proper BP-net on the surface of P. By 

deleting the interior edges of B and adding edge xy, we obtain a new proper BP-net, 

denoted by B4 = B(pv0v1v2v3q), where p = x, v3 = y, v2 = z0 (see Figure 3.19). LetT 

create a tetrahedralization ofP, and B4 be the area on the surface ofP which contains 

then T must have at least: 

(1) three diag-Is on B 4 , or 

(2) two diag-Is and one diag-II on B 4 , or 

(3) one diag-I and three diag-Ils on B4 , or 

(4) five diag-Ils on B 4 , or 

(5) four diag-Ils on B4 with a common endpoint. 

From Lemmas 3.2-3.5, we can derive the following property: 

Lemma 3.6 Let B = B(xzozl···ZmY) be a proper BP-net on the surface of P. By 

deleting the interior edges of B and adding edge xy, we obtain a new proper BP-net, 
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Figure 3.19: After trimming off BP-net B = B(xz0 z1 ... ZmY) from B 4 (left), we obtain 
a new BP-net B4 = B(pv0v1v2v3 q) (right). 

denoted by B = B(pv0v1 ... v1q), where xy is an edge of B. LetT create a tetrahedral-

ization of P, and B be the graph induced from the vertices of B and B. If xy, pq tJ. T, 

then T must have at least: 

(1) three diag-Is on B, or 

(2) two diag-Is and one diag-II on B, or 

(3) one diag-I and three diag-!Is on B, or 

(4) five diag-!Is on B, or 

(5) four diag-!Is on B with a common endpoint. 

Proof From the structure of B1 , B2 , B3 , and B4 in Lemmas 3.2-3.5, we know that 

B must contain at least one of Bi, i = 1, 2, 3, 4 in its structure. Thus, Lemma 3.6 is 

implied by Lemmas 3.2-3.5. D 

Now we prove the structure of the minimal tetrahedralization for the special two-

level BP-polyhedron mentioned prior to Lemma 3.2. 

Theorem 3.6 Let P be a two-level BP-polyhedron, and P 1 be the internal BP-polyhedron 
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of P. Let P E(P) be the set of all the polar edges of the disjoint proper BP-nets on 

the surface of P, and P E(P1 ) be the set of all the polar edges of the disjoint proper 

BP-nets on the surface of P1 • If each BP-net of G(PI) contains only one edge of 

PE(P), then PE(P) U PE(P1) creates a unique minimal tetrahedralization ofP. 

Proof Let Bj = B(p(j)vaj)vij) ... v1~)q(j)) (1 :s; j :s; k1) be the disjoint proper BP-nets 

on the surface of P1. Notice that each Bj contains a polar edge of a BP-net on the 

surface of P. Let Bi = B(x(i) zai) zii) ... z~y(i)) (1 :S; i :S; k2 ) be the disjoint proper 

BP-nets on the surface of P such that each Bj (1 :S; j :S; ki) contains the polar edge 

of Bj with the same subscripts. Note that after deleting the interior edges of Bi 

(1 :S; i :S; k2 ) and adding polar edges x(i)y(i), we obtain the internal BP-polyhedron 

P1 . From the above notation, we know that P E(P) = { x(i)y(i) I 1 :S; i :S; k2 } 

and P E(P1 ) = {p(j)q(j) I 1 :S; j :S; k1}. It is obvious that P E(P) UP E(P1 ) is a 

tetrahedralization of P. Without loss of generality, we can assume that all the edges 

in P E(P) and P E(P1) are different diagonals. Now we prove, by contradiction, that 

P E(P) UP E(P1) creates a unique minimal tetrahedralization. 

Suppose that the diagonal set T creates a minimal tetrahedralization of P such 

that T # P E(P) uP E(PI) and ITI :S; k1 + k2 . Let Bi (1 :s; j :s; k1 ) be the graph 

induced from the vertices of Bj and Bj. Define 



f3oo = { B j I 1 ::; j ::; k1, xU) yU), p(j) q(j) E T}, 

f3n = { B j I 1 ::; j ::; k1, x(j) yU), p(j) q(j) tf_ T}, 
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We now discuss the three sets (31 , (301 and (311 respectively. Note that Lemmas 3.1 

and 3.6 hold for any diagonal set that creates a tetrahedralization of P. 

1. For each Bi E (31 , since x(ily(i) tf_ T, from Lemma 3.1 we know that the BP-net 

must associate with at least two diag-Is ofT, or one diag-I and one diag-II of 

T, or three diag-IIs ofT, or two diag-IIs ofT with a common endpoint. 

2. For each Bj E (301 , if xUlyU) tf_ T, then Bj (contained in Bj) must associate with 

the same number of diagonals as Case 1. If xUlyU) E T and pUlqU) tf_ T, then 

Bj U {xUlyUl} is a tetrahedralized BP-net, and can be considered as a stacked 

polyhedron attached on the surface of Bj. It is obvious that Lemma 3.1 still 

holds for Bj U Bj U {xUlyUl}. Thus, in total, Bj must associate with at least 

three diag-Is ofT, or two diag-Is and one diag-II ofT, or one diag-I and three 

diag-IIs ofT, or one diag-I and two diag-Ils ofT with a common endpoint. 

3. For each Bj E (311 , it follows from Lemma 3.6 that Bj must associate with at 

least three diag-Is ofT, or two diag-Is and one diag-II ofT, or one diag-I and 
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three diag-Ils ofT, or five diag-Ils ofT, or four diag-Ils ofT with a common 

endpoint. 

Since each BP-net is not a tetrahedralization, there must exist some edges ofT 

whose endpoints belong to the BP-net. Note that each diag-I associates with only one 

BP-net; each diag-II associates with at most two BP-nets. Also note that each pair of 

diag-IIs with a common endpoint cannot be used to tetrahedralize two BP-nets; and 

each quadruple of diag-Ils with a common endpoint cannot be used to tetrahedralize 

two elements in /311 . It follows from the above cases that 

This contradicts the assumption that ITI ~ k1 + k2 . Therefore, P E(P) U P E(P1) 

creates a unique minimal tetrahedralization of P. D 

Using a similar argument to that in the proof of Corollary 3.6, we can prove 

the following corollary on minimal tetrahedralizations of augmented two-level BP­

polyhedra. 

Corollary 3. 7 Let P be a simple polyhedron. By removing all the degree 3 vertices in 

G(P) recursively, we obtain a new polyhedron P. IfP is the two-level BP-polyhedron 

described in Theorem 3.6, then PE(P) U PE(P1) creates a unique minimal tetrahe­

dralization of P. 
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3.4 Algorithm 

In this section, we present an algorithm for computing the minimal tetrahedralization 

of augmented BP-polyhedra. This algorithm is mainly based on Corollary 3.6. The 

input of the algorithm is a simple polyhedron P. There are two kinds of output: if 

P is an augmented BP-polyhedron, then the algorithm generates the set of all the 

tetrahedra in the minimal tetrahedralization of P; otherwise, the algorithm reports 

that P is not an augmented BP-polyhedron. Corollary 3.6 can be rewritten as an 

algorithm as follows: 

1. Trim off all the stacked polyhedra from P and produce a new polyhedron P 1. 

2. Trim off all the BP-nets from P1 and produce a new polyhedron P2 . 

3. Trim off all the stacked polyhedra from P2 and produce a new polyhedron P3 . 

4. If P3 is empty, then the minimal tetrahedralization of P consists of all the tetra­

hedra trimmed off from P; otherwise, P is not an augmented BP-polyhedron. 

In order to design an efficient algorithm, we mix the above steps; that is, trim 

off the stacked tetrahedron or BP-net when it is found as in the following algorithm. 

Step 1 of this algorithm does the necessary preprocessing. The main body of this 

algorithm (Step 2) is an iterative procedure that handles each vertex of P to find a 

tetrahedron or BP-net. Here is an outline of the algorithm. 



Algorithm MINTETRA. 

Input: A simple polyhedron P. 
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Output: If P is not an augmented BP-polyhedron, then return (NO). Otherwise, 
return (YES, T), where T is the tetrahedron set of the unique minimal 
tetrahedralization of P. 

1. Let adj(u) denote the adjacency list of the vertex u. V +-- V(P) and U +-- 0. 
2. for each vertex u E V, do 

(* Check the degree of u. *) 
2.1. ifdeg(u) = 3 (suppose adj(u) = {u1,u2,u3}), then 
2.1(a). if there exists one ui(i = 1, 2, 3) of degree 3, then 

2.1(b). 

T +-- {uu1u2u3 }. return (YES, T) and stop (Theorem 3.1). 
end if 
if deg(ui) > 3, i = 1, 2, 3, then 

T +-- {uu1u2u3}, V +-- V- {u}. 
Update the adjacency list of ui, i = 1, 2, 3. 
fori= 1, 2, 3, 

if ui E U and deg( ui) ~ 4, then 
U +-- U - { Ui}, V +-- { Ui}. 

endif 
endfor 

end if 
endif 

2.2. if deg( u) > 4, then 
U +-- {u}, V +-- V- {u}. 
if V = 0, then 

return (NO) and stop. 
endif 

end if 
2.3. ifdeg(u) = 4 (suppose adj(u) = {u1,u2,u3,u4}), then 
2.3(a). if there exists at least one ui of degree 4 (suppose deg(u1) = 4), then 

there exists a BP-net B(pu'uu1u"q) (Theorem 3.4). 
if pq is a diagonal, then 

V +-- V- {u,u1}, T +-- {pqu'u,pquu1 ,pqu1u"}. 
if IV U Ul = 0, then 

return (YES, T) and stop. 
endif 
if IV U Ul f. 0, then 

Update the adjacency list of p, q, u', u" (Note that pq is a new 
edge). Move p, q, u' or u" from U to V if it is in U and its degree 
is less than 5. 

end if 
endif 



2.3(b). 

2.3(c). 

endif 
if there exists one ui of degree 3 (suppose deg(u1) = 3), then 

Change u into u1, go to step 2.1. 
endif 
if deg(ui) > 4, i = 1, 2, 3, 4, then 

U +-- { u, u1, u2, u3, u4}, V +-- V- { u, u1, u2, u3, u4}. 
ifV = 0, then 

return (NO) and stop. 
endif 

end if 
endif 

endfor 
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In Algorithm MINTETRA, we keep track of three lists. For each vertex u of P, an 

adjacency list adj ( u) contains all the adjacent vertices of u in the current polyhedron. 

The current polyhedron means the polyhedron in the current iteration after trimming 

off some tetrahedra from P (these tetrahedra are stored in T). U is a list of vertices 

each of whose degree has been checked in Step 2 and is greater than 4 in the current 

polyhedron except those vertices entering U in Step 2.3(c). V is a list of candidate 

vertices in the current polyhedron. There are two cases for a vertex u staying in V: 

1. The degree of u has not been checked in Step 2. 

2. When the degree of u is checked the first time, its degree is greater than 4. 

Thus, u is moved from V to U in Step 2.2. However, after trimming off the 

tetrahedra in Steps 2.1(b) and 2.3(a), the degrees of some vertices in U may 

decrease. If the new degree is less than 5, then the algorithm moves the vertex 

from U to V. 
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In order to prove the correctness of Algorithm MINTETRA, let us first assume that 

the input P is an augmented BP-polyhedron. As mentioned above, the main body 

(Step 2) of the algorithm performs the vertex trimming described by Corollary 3.6. 

In Step 2, the degree of each vertex u E V is checked. If a stacked tetrahedron is 

found (i.e., deg(u) = 3), then trim it off and add it to T in Step 2.1. If a BP-net 

is found (i.e., deg(u) = deg(ui) = 4), then trim it off and add the tetrahedralized 

BP-net to T in Step 2.3(a). Let B(pv0v1 •.• vmq) be a proper BP-net in P. If we 

only trim off a part of the BP-net, say, B(pvivi+1 Vi+2vi+3q), 0 ::::; i ::::; m - 3, then 

the remaining part of the BP-net, that is, B(pv0 .•. viq) and B(pvi+3 •.• vmq), consists 

of two stacked polyhedra in the current polyhedron (because pq has been added). 

All tetrahedra in these stacked polyhedra will be trimmed off one at a time in the 

subsequent iterations. Thus, Step 2.3(a) actually trims off a BP-net and produces at 

most two stacked tetrahedra in the current polyhedron; this does not influence the 

other BP-nets because all the BP-nets are proper and disjoint. From Corollary 3.6 

we know that the minimal tetrahedralization of an augmented BP-polyhedron can be 

considered as a set of stacked polyhedra and tetrahedralized BP-nets. Therefore, the 

output T of the algorithm is the tetrahedron set of the minimal tetrahedralization 

of P. If the algorithm returns (YES, T), it is easy to see that P is an augmented 

BP-polyhedron since we add only the polar edges in the algorithm. 

From the above discussion, we have proven that Algorithm MINTETRA is correct. 

Theorem 3. 7 If Algorithm MINTETRA is run on a simple polyhedron P, then the 
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algorithm returns (YES, T) if and only if P is an augmented BP-polyhedron. 

For the complexity of the algorithm, we have the following theorem. 

Theorem 3.8 If Algorithm MINTETRA is run on a simple polyhedron P, then its 

running time is O(n2 ) and its space is O(n). 

Proof Since G(P) is a planar graph, we have IE(P) I = O(n). Thus, Step 1 requires 

O(n) time and O(n) space for the adjacency list. Step 2 is an iterative step. Step 

2.1(a) requires constant time. Step 2.1(b) requires O(n) time and O(n) space for 

updating the adjacency list and checking if ui E U. Step 2.2 requires constant time. 

Step 2.3(a) requires O(n) time and O(n) space for updating the adjacency list and 

checking if pq is a diagonal and if ui E U. Steps 2.3(b) and 2.3(c) require constant 

time. 

In Step 2, each vertex u E V(P) is checked at most two times. If deg(u) = 3, 

it is checked only one time because it is trimmed off in Step 2.1. If deg( u) 2: 4, it 

is checked at most two times, the first time when it moves from V to U in Steps 

2.2 and 2.3(c), the second time when it moves from U to V in Steps 2.1(b) and 

2.3(a). So the for loop iterates O(n) times. Thus, the total running time in Step 

2 is O(n2
). Therefore, computing the minimal tetrahedralization of an augmented 

BP-polyhedron takes O(n2 ) time and O(n) space. 0 
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3.5 Discussion 

By definition, a BP-polyhedron must satisfy two conditions, one regarding the BP­

net (i.e., the BP-nets are proper and disjoint) and the other regarding the stacked 

polyhedron (i.e., the new polyhedron generated is a stacked polyhedron). For a poly­

hedron P containing BP-nets on its surface, if either of the two conditions cannot be 

satisfied, then the polar edges of these BP-nets may not create any tetrahedralization 

of P. Two counterexamples are presented below. 

The first counterexample is Schonhardt's polyhedron depicted in Figure 2.11(a). 

The construction of this polyhedron was described in Section 2.6. Schonhardt's 

p 

/ 

Vz 

/ 
/ 

/ 
/ 

Figure 3.20: Schonhardt's polyhedron is a BP-net. 

polyhedron is also a BP-net, specifically a bipyramid. As shown in Figure 3.20, 

B(pvovl v2v3q) is a BP-net. However, because the polar edge pq lies outside of the 

polyhedron, it is not a proper BP-net. Thus, we cannot obtain the result of Theo-
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rem 3.5. In fact, it is well known that Schonhardt's polyhedron cannot be tetrahe­

dralized [90]. 

The second counterexample is a convex polyhedron constructed from Schonhardt's 

polyhedron. Let p1p2p3q1q2q3 be a Schonhardt's polyhedron, where P1P2P3 is the 

top triangle, q1q2q3 is the bottom triangle, and P1q2,p2q3,P3Q1 are three reflex edges. 

Let B(p1q1a1a2P2Q2), B(p2q2b1b2p3q3) and B(p3q3c1c2plql) be disjoint proper BP-nets 

added to the polyhedron such that p1q2,p2q3,p3q1 are the polar edges of the BP-nets 

respectively (Figure 3.21). We can arrange ai,bi,ci, i = 1, 2 such that the constructed 

polyhedron P is convex. 

Figure 3.21: Schonhardt's polyhedron with three BP-nets. 

After removing the vertices ai, bi, ci and their adjacent edges from P and adding 

the polar edges P1Q2, P2Q3, p3q1 , we get Schonhardt's polyhedron which is not a stacked 

polyhedron. Thus, we cannot guarantee that {p1q2 , p2q3 , p3q1 } creates a minimal 

tetrahedralization of P. 
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In Section 3.3.1, we defined the two-level BP-polyhedron. Similarly, we can define 

the h-level BP-polyhedron recursively. Let B(p(i)v~i)vii) ... v~q(i)) 1 ::; i ::; k be all 

the disjoint proper BP-nets on the surface of P. After removing the vertices vY) 

(j = 1, ... , mi- 1, i = 1, ... , k) and their adjacent edges from P, and adding edges 

p(i)q(i) (1 :S i :S k), we obtain a new polyhedron Ph_ 1 . If Ph- 1 is a (h- 1)-level 

BP-polyhedron, then P is called an h-level BP-polyhedron, and Ph- 1 is called the 

internal BP-polyhedron of P, where his a positive integer. The stacked polyhedron 

can be defined as the 0-level BP-polyhedron. Obviously, the 1-level BP-polyhedron is 

a BP-polyhedron as defined in Section 3.3.1. Let P' be an h-level BP-polyhedron. If 

P is constructed from P' by successive additions of tetrahedra on the triangle facets, 

then P is called an augmented h-level BP-polyhedron. 

In Theorems 3.5 and 3.6, we proved that all polar edges create a unique minimal 

tetrahedralization of the BP-polyhedron and the special two-level BP-polyhedron 

respectively. Motivated by these results, we make the following conjecture: 

Conjecture. If Pis an augmented h-level BP-polyhedron (h ~ 2), then all polar 

edges of the BP-nets on the surface of P and Pi (1 ::; i ::; h- 1) create a unique 

minimal tetrahedralization of P, where Pi is the internal BP-polyhedron of Pi+1 . 

By applying a similar method to that used in the proof of Theorems 3.5 and 3.6, 

we can prove most cases of this conjecture; however, the proofs involved are long. It 
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is our hope that a simpler proof exists; however, we suspect that such a proof will 

probably be based on a very different strategy. 



Chapter 4 

A Linear Size Tetrahedralization of 

Two Nested Convex Polyhedra 

In this chapter, we present a method to tetrahedralize the region between two nested 

convex polyhedra without introducing Steiner points. In Section 4.1, we survey the 

literature regarding the tetrahedralizations of two nested convex polyhedra and give 

the basic idea of our algorithm. In Section 4.2, we give some notations and definitions. 

In Section 4.3, we describe our tetrahedralization algorithm. In Section 4.4, we prove 

that the number of tetrahedra produced by our algorithm is at most 9n - 6. Finally, 

we conclude our work in Section 4.5. 

109 
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4.1 Introduction 

Tetrahedralizations are significantly more complicated than triangulations. While a 

simple polygon with n vertices is always triangulatable and each triangulation con­

tains exactly n - 2 triangles, a simple polyhedron with n vertices may not be tetra­

hedralizable [90] and the number of tetrahedra in its tetrahedralizations may vary 

from O(n) to O(n2
) even if it is tetrahedralizable [24]. Therefore, the following two 

problems need to be investigated: to identify classes of polyhedra which are tetrahe­

dralizable and to find tetrahedralization methods for these polyhedra which produce 

a linear or even an optimal number of tetrahedra. 

So far, very few non-trivial classes of simple polyhedra are known to be tetrahe­

dralizable without introducing Steiner points. Goodman and Pach [54] showed the 

following two kinds of polyhedra are tetrahedralizable: the polyhedra induced by the 

region between two side-by-side convex polyhedra, and the polyhedra induced by the 

region between two nested convex polyhedra. Let n be the number of vertices in the 

two polyhedra. In the side-by-side case, Bern [16] proved that O(n2 ) tetrahedra are 

necessary to tetrahedralize the region between two side-by-side convex polyhedra. In 

the nested case, Bern [16] presented a method to tetrahedralize the region between 

two nested convex polyhedra with O(n logn) tetrahedra and no Steiner points in 

O(nlogn) time. He proposed an open question as to whether the region between two 

nested convex polyhedra can be tetrahedralized with a linear number of tetrahedra 
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without using Steiner points. Chazelle and Shouraboura [27] presented an algorithm 

which produces O(n) tetrahedra by introducing Steiner points, so they only partially 

solved Bern's problem. 

In this chapter, we answer Bern's question in the affirmative by presenting an 

algorithm to tetrahedralize the region between two nested convex polyhedra with a 

linear number of tetrahedra without introducing any Steiner points. The basic idea 

comes from the following analysis. The "cap removal" method invented by Chazelle 

and Palios [26] has been pushed to its limit in the two nested convex polyhedra case 

by Bern [16]. Let P and Q be two convex polyhedra such that Q is contained in P. 

A "cap" with tip v of P is the closed region between P and the convex hull of all 

vertices of P and Q except v. After a cap is removed, some vertices SQ c V(Q) may 

lie on the surface of CH((V(P)- {v}) U V(Q)). Thus the subsequent cap removal 

process will avoid choosing a tip vertex belonging to SQ. For simplicity, Bern uses 

P - Q to denote the region between P and Q as well as the remainder after the 

subsequent removals of the caps. His method is to remove one cap at a time with the 

tip vertices in V(P) until P- Q contains only the vertices of Q. Note that a cap can 

be decomposed into k tetrahedra if it contains k triangle facets in its bottom. Thus, 

the number of tetrahedra produced by this method depends on the number of vertices 

in the caps. Bern's method may result in O(nlogn) tetrahedra by removing the caps 

whose tips have the smallest degree among the remaining vertices of V(P) on the 

surface of P- Q, where n is the number of vertices in P and Q. The reason why 
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the above bound is difficult to improve is as follows. In the worst case, the vertices 

with small degrees on the surface of P- Q may lie on the surface of Q. This forces 

the method to choose the vertices of P with large degrees. Bern showed that if the 

number of P- Q vertices is i, then the degree of the minimum-degree vertex of P 

can be 6
;. Overall the bound will be n(2 + 6Hn), where Hn is the n-th Harmonic 

number. 

Our observation is that Bern's method depends on the degree of the tip vertices of 

the caps. We will avoid this by removing a "big cap" (called bigcap) which contains 

some vertices of P and Q visible from v. Our method is to remove one bigcap at a 

time with the tip vertices in V(P) until P- Q contains only the vertices of Q. Notice 

that the number of tetrahedra is bounded by the summation of the number of interior 

edges and the number of vertices in P and Q. We can prove that the total number of 

interior edges is at most 8n. Thus, our bigcap-removal method will produce at most 

9n - 6 tetrahedra for tetrahedralizing P - Q. 

4.2 Preliminaries 

Let P and Q be two convex polyhedra. We say that Q is nested in P if Q is entirely 

contained in P, where they may share some common facets, edges, or vertices. Let 

P- Q denote the closed region between P and Q, and n denote the number of vertices 

in P- Q. A vertex u E V(P) U V(Q) is visible to (or can see) a point v in P- Q if 
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Figure 4.1: A cap with tip v (left) and a bigcap with tip v (right), where the shaded 
area is on the surface of Q. 

and only if the interior of the line segment uv lies inside P- Q and does not intersect 

Q. We define that u is visible to itself. Similarly, a vertex u E V(P) U V(Q) is visible 

to (or can see) a facet whose vertices belong to V(P) U V(Q) if and only if u can see 

every point in the facet including its boundary. 

For a vertex v E V(P), a cap with tip v is the closed region between P and 

CH((V(P) - { v}) U V(Q)) (see Figure 4.l(left)). A bigcap with tip v is the closed 

region between P and CH((V(P)- Uv) U V(Q)), where 

Uv = { u I u E V(P), u and its incident facets are visible to v} 

(see Figure 4.l(right)). Note that a bigcap with tip vis "bigger" than a cap with tip v. 

As our algorithm removes one cap or constrained bigcap at a time with the tip vertices 

in V(P) until all vertices of P are removed, let P always denote the current convex 

hull of the remaining vertices of P and Q during the processing of the algorithm. 
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Now let us consider a constrained bigcap that will be used in our algorithm. Let S 

be the union of some chains on the surface of P such that V(S) C V(P). Define 

u; = {u I u E V(P)- V(S),u and its incident facets are visible to v} 

If the closed region between P and CH((V(P) - UJ) U V(Q)) is a simple polyhe-

dron, then it is called an S-bigcap of v, denoted as S-bigcap(v). S-bigcap(v) can 

be considered as a bigcap restricted by S (see Figure 4.2). Note that a bigcap with 

Figure 4.2: This figure illustrates an S-bigcap with tip u0 , where S = u2u3 ... u7 and 
U!o = {ui,u8,vi,v2,v3}· The vertices q1,q2,q3,q4 belong to V(Q), and all the other 
vertices belong to V(P). After S-bigcap(u0) is removed, the dashed edges lie on 
bottom( u 0 ), where the shaded area is on the surface of Q. The solid edges inside 
polygon q1u1Y1Y2Y3Y4U2 form dome(u0 ). 
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tip v is the S-bigcap of v with V(S) = 0. The intersection of S-bigcap(v) and 

CH((V(P)- u;) U V(Q)) is called the bottom of S-bigcap(v), denoted as bottom(v), 

and the intersection of S-bigcap(v) and Pis called the dome of S-bigcap(v), denoted 

as dome(v). 

Lemma 4.1 S -bigcap( v) is a star-shaped polyhedron with v in its kernel. 

Proof Since S-bigcap( v) is a simple polyhedron, any interior vertex of dome( v) does 

not lie on bottom( v), and any interior vertex of bottom( v) does not lie on dome( v). 

From the definition of u;, we know that v can see each facet on dome(v). Suppose 

that there exists a point x on bottom(v) which is not visible to v. Since bottom(v) 

lies on the surface of the convex polyhedron CH((V(P)- u;) U V(Q)), the portion 

of bottom( v) which prevents v from seeing x also blocks v from seeing some points on 

the boundary of bottom( v). It follows that v cannot see some points on the boundary 

of dome(v). This is a contradiction. Thus, v can see every points on bottom(v). 

Therefore, S-bigcap( v) is a star-shaped polyhedron with v in its kernel. D 

From Lemma 4.1, we know that S-bigcap( v) is a star-shaped polyhedron consisting 

of a convex surface (i.e., dome(v)) and a concave surface (i.e., bottom(v)) (refer to 

Figures 4.1 and 4.2). Figure 4.3 illustrates how an S-bigcap with tip vertex v is 

removed from convex polyhedron P. 

The union of all facets on the surface of CH((V(P) - u;) U V(Q)) which is 

visible to v if S-bigcap(v) has not been removed is called the view of v, denoted as 
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v 

Figure 4.3: An S-bigcap with tip v is removed. The dashed edges lie on the surface 
of Q and the shaded area lies on the surface of P and P. 

v 

d e 

Figure 4.4: The tetrahedron vabc is S-bigcap(v). The triangle face abc is bottom(v). 
The surface consisting of triangle facets abc, abd, bee and caf is the view( v). The 
shaded region is a portion of Q. 

view(v). bottom(v) may be a subset of view(v), as illustrated in Figure 4.4. Let 

{vi 11 S i S m} be a set of vertices of P. If we remove S( vi)-bigcap( vi) (1 ::; i S m) 

in different vertex orders, the resulting polyhedron P may be different. For a given 

vertex order, say, i = 1, 2, ... , m, after all S(vi)-bigcap(vi) are removed, the intersection 

of the surface of the resulting P and U~1 view( vi) is called the view of vi in the removal 

order i = 1,2, ... ,m, and is denoted by view(v1 ,v2 , ... ,vm)· 
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Lemma 4.2 view(v) does not contain any vertices of V(P)- V(S) in its interior. 

Proof Consider an arbitrary S-bigcap(v). Suppose that view(v) contains a vertexp E 

V(P)- V(S) in its interior. Then p tf. V(S). Since P and CH((V(P)- U~) U V(Q)) 

are convex, p and its incident facets are visible to v. It follows that p E U ~. Thus, p 

cannot lie on the surface of CH((V(P)- U~) UV(Q)). This contradicts the definition 

of view(v). D 

From this lemma, we can derive the following result. 

Corollary 4.1 view(v1 , v2 , ... , vm) does not contain any vertices ofV(P)-UZ:1 V(S(vi)) 

in its interior. 

4.3 Algorithm 

In this section, we describe an algorithm to tetrahedralize P- Q into a linear number 

of tetrahedra. The idea of our algorithm is as follows. First we remove caps with 

tip vertices of small degree until some vertices of Q appear on the current surface of 

P. We find the boundary vertices of the portion of Q which appear on the surface 

of P, denoted as Qa. We also find a set of polygons on the surface of P, denoted 

as Pa, such that the polygons of Pa surround Q a and contain a minimum number 

of edges. Note that some polygons in Pa may collapse to a chain or even a vertex. 

Let Q~1ew be the boundary of the union of all facets on the surface of P which is 
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visible to a vertex of Qa· In order to extend the portion of Q which appears on the 

current surface, we remove some S-bigcap(vi) (vi E V(Pa)) in the order i = 1, 2, ... , m 

such that the vertices of Pa are removed and the vertices of Q~iew are removed or 

on the boundary of view(v1 , v2 , ... , vm) (this boundary is denoted as H). Update Qa 

and Pa. If Q~iew is removed, then repeat the above process to extend the portion 

of Q which appears on the surface of P. If some vertices of Q~iew exist on Pb and 

are not adjacent to any vertex of V(Qa), we remove all these vertices by removing 

some S-bigcaps. Then Q~iew will be removed after we remove the S-bigcaps with 

tip vertices in the updated Pa. We now find the new Q~iew and repeat the above 

process until P = Q. From Lemma 4.1, we can tetrahedralize S-bigcap(v) by adding 

edges between v and each other vertex in S-bigcap(v). It is easy to see that after an 

S-bigcap is removed, the remainder P- Q is still a region between two nested convex 

polyhedra. 

Algorithm BIGCAP-REMOVE 

1. Remove the caps with the tip vertices of degree less than 6 until a portion 

of Q appears on the current surface of P when we remove the cap with tip 

p E V(P). Let Pa be a set of polygons which only contain the boundary 

polygon of bottom(p) at this step. Compute 

Qa = {q I q E V(Q), there exists a vertex v E V(P) such that vq E E(P)}. 
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2. Compute 

v: ={vI v E V(Pa) and there exists at least one edge Q1Q2 E E(Q) 

such that vq1q2 is a facet on the surface of P}. 

The vertices in V[ partition the polygons of Pa into a set of chains Ca (see 

Figure 4.5). Let Sa(v), v E V(Pa), be the union of the chains inCa except the 

chain containing v. 

Figure 4.5: The outer boundary is a polygon in Pa and the shaded area is a portion of 
Q. V[ = {v1,v4 ,v7 ,v10 } partitions the polygon into four chains: v1v2v3v4, V4V5V6V7, 
V7V8VgV 10 and V10V11 V12v13v14 V1 . 

3. Let Q~iew be the boundary of the union of all facets on the surface of P which 

is visible to a vertex of Qa. 

(a) Find the minimum number of vertices v1, v2, ... , Vm', Vm'+l, ... , Vm E V(Pa) 

such that v1 , ... , Vm' E V(Pa) - V[, Vm'+l, ... , Vm E V[ and after remov-
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ing Sa(vi)-bigcap(vi) in the order i = 1, 2, ... , m, the vertices of Pa are 

removed and the vertices of Q~iew are removed or on the boundary of 

view( v1 , v2 , ... , vm). If there exist more than one optimal solutions, we 

break ties by selecting the solution with the minimum number of edges 

added (refer to Remark 1). For each i = 1, 2, ... , m, after Sa(vi)-bigcap(vi) 

is removed, update chains in Ca which contain vi such that each edge in 

the new chain forms a triangle with a vertex of V(Q). 

(b) Remove Sa(vi)-bigcap(vi) in the order i = 1, 2, ... , m. The boundary of 

(c) For each Sa(vi)-bigcap(vi) (i = 1, 2, ... , m), if there exist facets in bottom( vi) 

which are not triangles, then triangulate these facets arbitrarily. Tetrahe­

dralize Sa ( vi)-bigcap( vi) by adding edges between vi and each other vertex 

in Sa(vi)-bigcap(vi)· 

4. If P = Q, then stop. Output the tetrahedra produced in Steps 3c and 6b. 

5. Compute 

Q~ = {q I q E V(Q), there exists a vertex v E V(P) such that vq E E(P)}. 

Since P has changed after the S-bigcaps are removed in Step 3b, we know that 

Q~ and Qa may be different. Let P~ be a set of the smallest polygons in the 

area bounded by H on the current surface of P such that the polygons of P~ 
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surround Q~ and do not intersect Q~. Here, the smallest polygon is a polygon 

with minimum number of edges (see Figure 4.6). If Qdiew is removed, then set 

Figure 4.6: The outer boundary is H and the shaded area is a portion of Q. Q~ 

consists of the seven vertices of the shaded area. v2v3v7v9v12v13 is the smallest polygon 
surrounding Q~ and not intersecting Q~. 

Qa f- Q~ and Pa f- P~. Go to Step 2. 

6. For each vertex q E V(Qa) n V(Q~), consider the triangle qy~y~, where y~y~ 

is an edge in P~. If q is visible to some vertices of the chain in Pb whose two 

endpoints are y~ and y~ and whose interior vertices are not adjacent to any 

vertex in V(Q~), then let y1y2 ... yk denote this chain with y1 = y~ and Yk = y~. 

(Refer to Remark 2.) 

(a) The area on P whose boundary is y1y2 ... yk can be considered as a trian-

gulation surface of the polygon y1y2 ... Yk· All chords of the chain YIY2 .. ·Yk 

which belong to E(P) form a partial order according to the subset-relation 
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of their corresponding chain (see Figure 4.7). It is easy to see that YIYk is 

a maximal element of this partial order. 

(b) For each chord YiYj (1 ::=; i < j ::=; k) in the decreasing partial order, if 

there exists a vertex y1 (i < l < j) such that {Yi+I, ... , Yj-I} is contained 

in the interior of dome(y1), then remove Sb-bigcap(y1), where Sb = Pb -

Yi+IYi+2 ... yj-I· Tetrahedralize Sb-bigcap(y1) by using the method described 

in Step 3c. 

(c) Update the chain YIY2 .. ·Yk and Pb by replacing the chain YiYi+I .. ·Yj with 

edge YiYj· Then repeat Steps 6b and 6c until vertices Y2, y3, ... , Yk-I are 

removed. 

7. Set Qa +-- Q~ and Pa +-- P~. Go to Step 2. 

Remark 1: In Step 3a, we find the minimum number of vertices VI, v2 , ... , Vm', Vm'+I, 

... , Vm E V(Pa) such that VI, ... , Vm' E V(Pa) - V[, Vm'+I, ... , Vm E V[ and after 

removing Sa(vi)-bigcap(vi) in the order i = 1, 2, ... , m, the vertices of Pa are removed 

and the vertices of Q~iew are removed or on Pb. For each vertex v of V[, there exists 

a chain on Q such that v is adjacent to each vertex of the chain. These chains form 

the boundary of the portion of Q which appears on the surface of P (this boundary 

is denoted as Qa)· Thus, for each edge qiq2 E Qa, there exists a vertex v E V[ such 

that vqiq2 is a triangle facet on the surface of P. If we do not remove the vertex v, 
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the triangle facet vq1q2 will always stay on the surface of P. Let 

Note that bridge(Qa) spans the connection structure between Qa and Pa. We want 

to hold this structure as long as possible in the removal process of Step 3b. So we 

remove the vertices of V(Pa)- V[ first, and then remove the vertices of V[. In order 

to control the number of edges added when removing S-bigcaps in Step 3b, we find 

the minimum number of vertices among V(Pa) and treat these vertices as the tip 

vertices of the removed S-bigcaps, and we break ties by selecting the solution with 

the minimum number of edges added. 

Figure 4. 7: All chords on the triangulation surface of the polygon y1y2 ... y8 form a 
partial order. For example, y1y3 -< Y1Ys -< y1y8 (since chain(y1y3 ) is a subchain of 
chain(y1y5 ) and chain(y1y5 ) is a subchain of chain(y1y8)). 

Remark 2: In Step 6a, the area enclosed by the polygon y1y2 ... yk on Pis a triangu-

lation surface without an interior vertex (refer to Lemma 4. 7). For each chord YiYj, 

there is a corresponding subchain in y1y2 ... yk with endpoints Yi and yj, denoted as 

chain(YiYj)· Define YiYj -< Yi'YJ' if and only if chain(YiYj) is a subchain of chain(yi'Yj' ). 

Thus, all the chords form a partial order (see Figure 4. 7). Since any triangulation 
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has at least two "ears", there always exists at least one chord YiYi+2 (1 :::;; i :::;; k - 2) 

on the triangulation surface of y1y2 ... yk. This guarantees that there exists a vertex 

Yi+l such that {Yi+l} is contained in the interior of dome(Yi+1). Thus, Step 6b can 

always find a chord YiYj with a vertex Yt such that {Yi+1, ... , Yj-1} is contained in 

the interior of dome(yz). Suppose there exist vertices Yt and Yt' in chords YiYj and 

Yi'Yj' such that {Yi+l, ... , Yj-1} and {Yi'+l, ... , Yj'-d are contained in the interiors of 

dome(y1) and dome(Yt') respectively. If YiYj -< Yi'Yj', then the boundary of bottom(y1) 

may be enclosed by the boundary of bottom(yz') on the surface of P. In order to 

avoid this case, we consider each chord in the decreasing partial order. 

Now let us consider the correctness of the BIGCAP-REMOVE algorithm. we first 

prove that Sa(v)-bigcap(v) and Sb-bigcap(v) are actually S-bigcaps. 

Lemma 4.3 Sa ( v) -bigcap(v) in Step 3a and Sb-bigcap(v) in Step 6b are S -bigcaps. 

Proof Consider an Sa(v)-bigcap(v). From the definition of S-bigcap, we only need 

to prove the closed region between P and CH((V(P) - U~a(v)) U V(Q)) is a simple 

polyhedron. Let R denote this closed region, R1 be the intersection of the surfaces of 

Rand P, and R2 be the intersection of the surfaces of Rand CH((V(P)- U~a(v)) U 

V(Q)). Notice that P and CH((V(P) - U~a(v)) U V(Q)) are two nested convex 

polyhedra. Since U~a(v) contains at least one vertex, i.e., v, R is a solid with positive 

volume and the intersection of the surfaces of P and CH((V(P)- U~a(v)) U V(Q)) is 

a polygon, denoted as R 12 . From the definition of U~a(v), we know that R1 does not 
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contain a vertex of Q in its interior. We now prove R2 does not contain a vertex of 

Pin its interior. Suppose R2 contains a vertex p E V(P) in its interior. Then p and 

its incident facets are visible to v. Recall that Sa( v) is the union of the chains in Ca 

except the chain containing v. From the structure of these chains we know that each 

vertex of Sa(v) cannot be the interior vertex of R2 • Thus p tf. V(Sa(v)). It follows 

that p E u;a(v). Thus, p cannot lie on the surface of CH((V(P)- u;a(v)) U V(Q)). 

This is a contradiction. Hence, R2 does not contain a vertex of P in its interior. It 

follows that the intersection of R1 and R2 is the polygon R12 . Therefore, R is a simple 

polyhedron. Similarly, we can prove that Sb-bigcap( v) is an S-bigcap. 0 

From Lemmas 4.1 and 4.3, we have the following result. 

Corollary 4.2 Sa(v)-bigcap(v) and Sb-bigcap(v) are star-shaped polyhedra with v in 

their kernels. 

From Corollary 4.2, we know that Step 3c is correct. We now prove the correctness 

of Step 3a. 

Lemma 4.4 In Step 3a, if we select all the vertices of V(Pa) in any order, such as 

PI, P2, ... , Pk E V(Pa) (where k = IV(Pa) J), then, after removing Sa(Pi)-bigcap(pi) i = 

1, 2, ... , k, the vertices ofQ~iew are removed or on the boundary ofview(p1,p2 , ... ,pk)· 

Proof Suppose there is an order of vertices p1,p2 , ... ,pk E V(Pa) (where k = JV(Pa)J) 

such that after Sa(Pi)-bigcap(pi) are removed in the order i = 1, 2, ... , k, there still 



I 
I 

' ' ',,~~"-----

X~ 
. z 

126 

H 

Figure 4.8: q E V(Qa) is visible to x E V(Q~iew). Pi (i = 1, 2, 3 ... ) lies on Pa. The 
solid lines lie on P and the dashed lines lie on Q. The plane H passes through q and 
separates Q and tetrahedron qxyz. 

exists a vertex x E V ( Q ~iew) on the resulting surface of P. Let P' be the polyhedron 

before Sa(Pi)-bigcap(pi) are removed, and xyz be a facet on the surface of P' which 

is visible to a vertex q E V(Qa)· Since Q and tetrahedron qxyz are convex, there 

must exist a plane which passes through q and separates Q and tetrahedron qxyz. 

This plane cuts a polygon of Pa which surrounds Qa into two parts (see Figure 4.8). 

On the side of the plane which does not contain Q, there exists at least one vertex 

of Pa, say p*. It is easy to see that p* can see facet xyz. Thus xyz lies on view(p*). 

If x is an interior vertex of a view(pj) (1 ~ j ~ k), then x will be removed when 

we remove Sa(Pj)-bigcap(pj)· Hence, x must lie on the boundary of view(p*) and lie 

on the boundary or exterior of view(p), p E V(Pa) - {p*}. Therefore, x lies on the 

0 

From this lemma, we can derive the following result. 
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Lemma 4.5 In Step 3a, there always exists the minimum number of vertices v1, v2, 

... ,Vm',Vm'+l, ... ,Vm E V(Pa) such that VI, ... ,Vm1 E V(Pa)- v:, Vm'+l, ... ,Vm E v: 
and after removing Sa(vi)-bigcap(vi), i = 1, 2, ... , m, the vertices of Pa are removed 

and the vertices of Q~iew are removed or on Pb. 

Proof Note that we can select the vertices in any order in Lemma 4.4. Thus, there 

exists a sequence of vertices p1,p2 , ... ,pk E V(Pa) (where k = IV(Pa)l) such that 

v: ={Pi I k- IV:I + 1 ::::; i::::; k} and after removing Sa(Pi)-bigcap(pi) in the order 

i = 1, 2, ... , k, the vertices of Pa are removed and the vertices of Q~iew are removed 

or on Pb· Thus, the solution space of the optimization problem is not empty. Hence, 

there always exists an optimal solution. 0 

Lemma 4.6 Pb does not contain any vertices of P in its interior. 

Proof Since H is the boundary of view(v1 , v2 , ... , vm), from Corollary 4.1 we know 

that Pb does not contain any vertices of V(P)- U~1 V(Sa(vi)) in its interior. From 

the structure of Sa (vi), we know that each vertex of Sa (vi) cannot be an interior vertex 

of view( v1 , v2 , ... , vm). Thus, Pb does not contain any vertices of P in its interior. 0 

Now let us consider the property of the chains in Step 6. 

Lemma 4. 7 Let y1y2 ... yk be a chain in Pb such that YIYk is an edge in P~ and each 

Yi (1 < i < k) is not adjacent to any vertex of Q. Let A be the area on the surface 

of P which is bounded by the polygon y1y2 ... yk and does not contain any vertex in 
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V(H) - {y1 , y2 , •.• , yk}. The interior of A does not contain any vertex of P and Q. 

Proof It follows from Lemma 4.6 that the interior of A does not contain any vertex 

of P. Suppose QA c V(Q) is a set of interior vertices of A. From Step 3c we know 

that view(v1 , v2 , ... , vm) is a triangulation surface. Since Yi (1 < i < k) is not adjacent 

to any vertex of QA, there must exist some vertices of P which are interior vertices 

of A and adjacent to some vertices of QA. This is a contradiction. 0 

From Lemma 4. 7 and Remark 2 we know that Step 6b is correct. 

In the BIGCAP-REMOVE algorithm, after an S-bigcap is removed in Steps 3 or 

6, the remainder P - Q can be considered as two nested convex polyhedra P and Q 

sharing some vertices, edges or facets (refer to Figure 4.3). Thus, the algorithm can 

iteratively remove S-bigcaps until P = Q. From the above lemmas and analysis, we 

know that Algorithm BIGCAP-REMOVE is correct. 

Theorem 4.1 Let P and Q be two nested convex polyhedra such that Q is contained 

in P. Algorithm BIGCAP-REMOVE outputs a tetrahedralization of P- Q. 
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4.4 The number of tetrahedra 

In this section, we analyze the number of tetrahedra produced by the BIGCAP­

REMOVE algorithm. When we remove an S-bigcap(v), bottom(v) may contain some 

vertices and edges of Q. An upper bound on the number of the interior edges in 

bottom( v) and not in E( Q) is given in the following lemma. 

Lemma 4.8 For an S -bigcap(v ), let Pv be the boundary of bottom( v) and Qv be the 

portion of Q which appears in bottom( v). Let Ei ( v) be the set of the interior edges 

ofbottom(v) which do not lie on Qv. Then IEi(v)l :5: IV(Pv)l + 3IV(Qv)l- 3. 

Proof Since the total number of edges in a triangulation of bottom(v) is 3(IV(Pv) I+ 

IV(Qv)l) -IE(Pv)l- 3, we know that the total number of interior edges of bottom(v) 

is 3(IV(Pv)l + IV(Qv) I)- 2IE(Pv)l- 3. Thus, IEi(v) I :5: IV(Pv) I+ 3IV(Qv) 1-3, where 

equality holds if and only if Qv does not contain an interior edge of bottom( v) on the 

surface of Q. 0 

The following lemma shows the relationship between the number of tetrahedra 

and the number of interior edges in a tetrahedralization of P - Q. 

Lemma 4.9 Let P and Q be two convex simplicial polyhedra such that P contains 

Q and P does not intersect Q. Let t and ei be the number of tetrahedra and interior 

edges in a tetrahedralization of P - Q respectively. Then t = ei + n - 6 
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Proof Let np, ep, fp (resp. nQ, eQ, JQ) denote the number of vertices, edges and 

facets of P (resp. Q), respectively. Let e and f denote the number of edges and 

facets in a tetrahedralization of P - Q respectively. Since P and Q are simplicial 

polyhedra, each facet on P and Q is a triangle. From Euler's formula we know that 

np- ep + fp = 2. Since the edges on the surface of P can be counted in two ways, 

that is, 3fp = 2ep, we have fp = 2np- 4. Similarly, we have !Q = 2nQ - 4. Since 

the facets in a tetrahedralization of P - Q can be counted in two ways, that is, 

4t = 2f- fp- JQ, we have f = 2t + (fp + !Q)/2 = 2t + n- 4. From Euler's formula 

in three-dimensional space we know that n- e + f- t = 2. Thus, t = e- 2n + 6. 

Since ep = 3np- 6 and eQ = 3nQ- 6, we have t = ei + n- 6. 0 

From Lemma 4.9 we know that the number of tetrahedra in a tetrahedralization 

of P - Q is linear if and only if the number of interior edges is linear. We will 

distribute the edges added in the algorithm to the vertices of P and Q. The number 

of edges assigned to a vertex v is called the weight of v, denoted as w ( v). Initially, let 

w(v) = 0 for v E V(P) U V(Q). We will assign a weight to each vertex such that the 

summation of w(v) for v E V(P) U V(Q) is equal to the total number of edges added 

in the algorithm. 

The process of assigning a weight to each vertex is called the weighting process. 

The following lemmas describe the weighting process such that the weight of each 

vertex involved is bounded by a constant. 
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Lemma 4.10 For Step 1 of the BIGCAP-REMOVE algorithm, there exists a weighting 

process such that the weight of the tip of each cap is less than or equal to 2. 

Proof In Step 1 of the algorithm, we have the following three cases: 

1. If a vertex v of degree 3 is removed, no edge is added toP- Q. Thus w(v) = 0. 

2. If a vertex v of degree 4 is removed, one edge is added to P - Q to construct 

P. We set w(v) +- w(v) + 1. Thus w(v) = 1. 

3. If a vertex v of degree 5 is removed, two edges are added toP- Q to construct 

P. We set w(v) +- w(v) + 2. Thus w(v) = 2. 

Therefore, the weight of the tip of each cap removed in Step 1 is less than or equal 

to 2. 0 

Lemma 4.11 Let s3 be a set of vertices involved in Step 3 of the BIGCAP-REMOVE 

algorithm. There exists a weighting process such that w(v), v E S3 , increases by at 

most 4. 

Proof In Step 2, the vertices of V[ partition the polygons of Pa into a set of 

chains Ca. Consider a chain x 1x2 .•. xk in Ca. Since the polygon in Pa which contains 

x 1x 2 ... xk is the smallest polygon surrounding a portion of Qa, denoted as Q(x1 ... xk), 

there are two patterns regarding the connection between Q(x1 ... xk) and this chain: 

(1) no vertex of xi (2 :::; i :::; k- 1) is adjacent to any vertex of Q(x1 ••. xk) (called 
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pattern-!, see Figure 4.9(a)), and (2) each vertex Xi (1 ~ i ~ k) is adjacent to the 

same vertex q* E V(Q(x1 ... xk)) (called pattern-II, see Figure 4.9(b)). For each vertex 

xi (2 ~ i ~ k - 1) of the chain which is selected as the tip of Sa(xi)-bigcap(xi) in 

Step 3b, let polygon Px; be the boundary of bottom(xi) and Vx; be the vertex set 

of Sa(xi)-bigcap(xi)· Because we add an edge xiv for each vertex v E Vx; -{xi} in 

Step 3c, we set w ( v) +---- w ( v) + 1 for v E Vx; - {Xi}. Consider the following two cases 

regarding bottom(xi)· 

(a) (b) 

Figure 4.9: Pattern-! is illustrated in (a) and pattern-II is illustrated in (b). The 
outer boundary lies on the surface of P and the shaded areas lie on the surface of Q. 

• If bottom( xi) does not contain any vertex of Q in its interior, then the triangu-

lation surface of polygon Px; has IV ( PxJ I - 3 interior edges. So in pattern-I, for 

each vertex p E V(PxJ except three vertices, set w(p) +--- w(p) + 1; in pattern-

II, for each vertex p E V(PxJ except vertex q* and two other vertices, set 

w(p) +--- w(p) + 1. 

• If there is a set of vertices and edges Qx; on the surface of Q which appear 
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in the interior of bottom(xi), from Lemma 4.8 we know that the number of 

the interior edges on the triangulation surface between Px; and Qx; is less than 

or equal to IV(PxJI + 3IV(QxJI - 3. So for each vertex y of V(Px;) (except 

three vertices in pattern-!, or vertex q* and two other vertices in pattern-H), 

set w(y) +-- w(y) + 1; and for each vertex y of V(QxJ, set w(y) +-- w(y) + 3. 

Now let us consider removing each S-bigcap with tip in v;. For each vertex 

x E v;, there is a chain q1q2 ... qk, qi E V(Qa) (1 ::; i ::; k), such that each qi is 

adjacent to x (refer to Figure 4.5). Let polygon Px be the boundary of bottom(x) 

and Vx be the vertex set of Sa(x)-bigcap(x). Because we add an edge xv for each 

vertex v E Vx- {x} in Step 3c, we set w(v) +-- w(v) + 1 for v E Vx- {x}. Consider 

the following two cases regarding bottom(x). 

• If bottom( x) does not contain any vertex of Q in its interior, then the triangu­

lation surface of polygon Px has IV(Px) I - 3 interior edges. So for each vertex 

y E V(Px) except three vertices, set w(y) +-- w(y) + 1. 

• If there is a set of vertices and edges of Q which appear in the interior of 

bottom(x), similarly to the above case, set w(y) +-- w(y) + 1 for each vertex 

y E V(Px) except three vertices, and set w(y) +-- w(y) + 3 for each vertex y of 

Q in the interior of bottom(x). 
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We now analyze how w(v), v E S 3 increases. There are five cases depending upon 

the locations of vertices 

1. v E V(P) is an interior vertex of a dome(x), x E V(Pa)· We add an edge 

between x and v if xv ~ E(P). So w(v) = 1. 

2. v E V(P) lies on the boundary of bottom( vi), vi E V(Pa), i = 1, 2, ... , m (refer 

to Step 3). Since v1 , v2 , ... , Vm is an optimal solution in Step 3a, vertex v cannot 

be shared by more than 2 boundaries of the bottoms of vi (1 :::; i :::; m). Thus, 

w ( v) increases by at most 4. 

3. v E V(Pa) is the tip of an Sa(v)-bigcap(v) removed in Step 3b. w(v) does not 

increase when Sa(v)-bigcap(v) is removed. 

4. v E V( Q) does not lie on Qa. v must be in the interior of a bottom( vi) (1 :::; 

i:::; m). So w(v) increases by at most 4. 

5. v belongs to V(Qa)· From the above weighting process, we know that w(v) 

increases by at most 2. 

Therefore, the weight of w(v), v E S 3 , increases by at most 4 in Step 3. D 

Lemma 4.12 Let s6 be a set of vertices involved in Step 6b of the BIGCAP-REMOVE 

algorithm. There exists a weighting process such that w ( v), v E S6 , increases by at 

most 4. 
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Proof In Step 6, consider the chain y1y2 ... yk in Pb. Let Yz ( i < l < j) be the vertex in 

Step 6b such that {yi+1, ... , Yj-I} is contained in the interior of dome(yz). Let polygon 

Py1 be the boundary of bottom(y1) and Vy1 be the vertex set of Sb-bigcap(y1). Similar 

to the proof of Lemma 4.11, we set w ( v) +--- w ( v) + 1 for v E Vy1 - {Yz}. Consider the 

following two cases regarding bottom(y1). 

• If bottom(y1) does not contain any vertex of Q in its interior, then the triangu­

lation surface of polygon Py1 has IV ( Py1) I - 3 interior edges. So for each vertex 

y E V(Py1 ) except Yi, Y} and one other vertex, set w(y) +--- w(y) + 1. 

• If there is a set of vertices and edges of Q which appear in the interior of 

bottom(y1), similarly to the proof of Lemma 4.11, set w(y) +--- w(y) + 1 for each 

vertex y E V(PyJ except Yi, Y} and one other vertex, and set w(y) +--- w(y) + 3 

for each vertex y of Q in the interior of bottom(y1). 

Now let us analyze how w ( v), v E S6 increases. There are four cases depending 

upon the locations of vertices. 

1. v E V(P) is an interior vertex of a dome(y), y E V(H). We add an edge 

between y and v if yv ¢ E(P). So w(v) = 1. 

2. v E V(P) lies on the boundary of bottom(y), y E V(Pb) - V(P~) (refer to 

Step 6b). Since we select chord YiY j ( 1 ~ i < j ~ k) in the decreasing partial 

order, the bottom of the removed S-bigcap is as "big" as possible. So vertex v 
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cannot be shared by more than 2 boundaries of the bottoms of the tip vertices. 

Thus, w(v) increases by at most 4. 

3. v E V(Pb) is the tip of an S-bigcap removed in Step 6b. w(v) does not increase 

when the S-bigcap is removed. 

4. vis in V(Q). v must be in the interior of the bottom of a vertex in Pb. So w(v) 

increases by at most 4. 

0 

From the above Lemmas, we can derive the main result of this chapter. 

Theorem 4.2 Let P and Q be two nested convex polyhedra such that Q is contained 

in P. The BIGCAP-REMOVE algorithm produces at most 9n- 6 tetrahedra for the 

region P- Q. 

Proof For any v E V(P) removed in Step 1, from Lemma 4.10 we know that 

w(v) ~ 2. For any remaining v E V(P), there are two cases: 

• If v never appears in V(Pa), then from Lemma 4.11 or Lemma 4.12 we know 

that w(v) ~ 4. 

• If v appears in V(Pa) or V(Pb), then from Lemma 4.11 or Lemma 4.12 we know 

that w(v) increases by at most 4 when v becomes a vertex in Pa or Pb. Since v 
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will be removed after Pa or Pb are removed, we know that w(v) increases by at 

most 4 when vis removed. Thus, we have w(v) ~ 8. 

For any v E V(Q), there are also two cases: 

• If v never appears in V(Qa), then from Lemma 4.11 or Lemma 4.12 we know 

that w(v) ~ 4. 

• If v appears in V(Qa), then from Lemma 4.11 or Lemma 4.12 we know that 

w(v) increases by at most 4 when v becomes a vertex in Qa. From the algorithm 

we know that v cannot stay in V ( Q a) after Pa and Pb are removed. Thus we 

have w(v) ~ 8. 

In summary, for any vertex of P and Q, the upper bound of its weight is 8. Since 

the number of the edges added in the algorithm is equal to the summation of w(v) 

for v E V(P) U V(Q), we know that the number of the edges added in the algorithm 

is less than 8n. Notice that the number of the interior edges in our tetrahedralization 

of P - Q is less than or equal to that of the edges added in the algorithm (equality 

holds if and only if P and Q are simplicial polyhedra). It follows from Lemma 4.9 

that the number of tetrahedra in our tetrahedralization of P - Q is at most 9n - 6. 

D 
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4.5 Concluding remarks 

In this chapter, we have described an algorithm, called BIGCAP-REMOVE, to tetra­

hedralize the region between two nested convex polyhedra P and Q. This algorithm 

avoids using Steiner points and can also work for the degenerate case in which more 

than three vertices of P and Q are coplanar. This algorithm also produces at most 

9n- 6 tetrahedra. Thus we have solved the open problem proposed by Bern [16]. 

In Step 3a of the algorithm, in order to control the number of edges added when 

removing S-bigcaps, we find the minimum number of vertices v1 , v2 , ... , Vm E V(Pa) 

such that after removing Sa(vi)-bigcap(vi) in the order i = 1, 2, ... , m, the vertices of 

Pa are removed and the vertices of Q~iew are removed or on Pb. From Lemma 4.5, 

we know that Step 3a is correct. However, we do not know how to solve this opti­

mization problem in polynomial time. Hence BIGCAP-REMOVE is not a polynomial 

time algorithm. We conjecture that the region between two nested convex polyhedra 

can be tetrahedralized with a linear number of tetrahedra in polynomial time. 



Chapter 5 

A Lower Bound on the value of f3 

for /)-Skeletons Belonging to 

MWTs 

The minimum weight triangulation problem is one of the most longstanding open 

problems in computational geometry. Computing subgraphs of the minimum weight 

triangulation is one approach to attacking this problem. Keil [62] conjectured that 

the ,8-skeleton is a subgraph of the MWT when ,8 = ~v'3. In Section 5.1, we survey 

related results in this area. In Section 5.2, we construct a counterexample to Keil's 

conjecture. In Section 5.3, we prove a new lower bound for the ,8-skeleton. Finally, 

we conclude our work in Section 5.4. 
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5.1 Introduction 

Let S be a finite set of points in the Euclidean plane. A triangulation of S is a max­

imum set of non-crossing edges with their endpoints in S. It partitions the interior of 

the convex hull of S into non-overlapping triangular faces. The weight of a triangula­

tion is the sum of the lengths of its edges. A minimum weight triangulation, denoted 

by MWT, of S is a triangulation that minimizes the weight among all triangulations 

of S. 

Computing an MWT is one of the outstanding open problems listed by Garey and 

Johnson [51]. The complexity status of this problem has been unknown since it was 

proposed in 1975 [92]. Works on this problem can be classified into several types: 

determining the complexity of the MWT problem [74], designing approximation al­

gorithms [56, 72, 73, 81], using the integer programming method [67, 99], designing 

efficient algorithms for restricted classes of point sets [2, 4, 52, 65, 75, 103], and com­

puting subgraphs of the MWT [11, 45, 62, 100, 111]. Computing subgraphs of the 

MWT seems to be a promising approach, as the edges which are always in the MWT 

play a very important role in both exact and approximation algorithms for computing 

the MWT. If we can compute a subgraph of the MWT that is connected (actually it 

is sufficient that the subgraph has a constant number of connected components [28]), 

then the remaining edges could be added by triangulating the resulting polygonal 

regions using dynamic programming. 
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Basically, there are two approaches to computing subgraphs of the MWT. The 

first approach is based on the LMT -skeleton, and was presented independently by 

Dickerson et al. [45] and Belleville et al. [11]. Several variants of the LMT-skeleton 

have been considered recently [3, 10, 29, 44, 55]. In particular, the improved LMT­

skeleton heuristic proposed by Beirouti and Snoeyink [10] can compute the exact 

MWT of tens of thousands of points in minutes. 

The second approach was first studied by Gilbert [52], who showed that the short­

est edge inS is in MWT(S). Yang et al. [111] showed that all mutual nearest-neighbor 

edges are also in MWT(S). Keil [62] proved that the ,8-skeleton of S for ,8 = J2 is 

a subgraph of MWT(S), where the ,8-skeleton was introduced by Kirkpatrick and 

Radke [63] and defined as follows: For ,8 > 1, the ,8-skeleton of S is a set of edges 

with endpoints in S and each edge e in the set satisfies the empty-disks condition, 

i.e., no element in S lies inside the two disks of diameter ,Biel that pass through both 

endpoints of e. Yang [109] extended Keil's result to ,8 ~ 1.27905. Cheng and Xu [30] 

improved further to ,8 ~ 1.17682. 

The key to the proof that the ,8-skeleton belongs to the MWT in Keil's pioneering 

paper is the validity of the following two lemmas, namely the length lemma and the 

remote length lemma. 

Lemma 5.1 {Length Lemma [62] ) Let x andy be the endpoints of an edge in the 

J2-skeleton of a set S of points in the plane. Let p and q be two points in S such that 
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p value 

both lemmas hold [ 16] ~"12 

remote length lemma holds [9] ~= 1.17682 ~ -skeleton belongs to MWT 

? 

length lemma fails [16] ~<{473 ~ -skeleton may not belong to MWT 

Figure 5.1: An illustration for Keil's conjecture. 

the line segment pq intersects the segment xy. Then lpql is greater than lxyl, lxpl, 

lxql, IYPI, and lyql. 

Lemma 5.2 (Remote Length Lemma [62] ) Let x andy be the endpoints of an 

edge in the v2-skeleton of S, and p, q, r, and s be four other distinct points inS with 

p and r lying on one side and q and s on the other side of the line through xy. Assume 

pq and r s intersect xy, and pq does not intersect r s. Then, either I pq I> I pr I or 

Irs 1>1 pr I· 

Keil mentioned that the length lemma holds for (3 ~ ~J3. For (3 < ~-J3, there 

exists a four-point counterexample for the length lemma. Thus, for (3 < ~J3, the 

,8-skeleton may not belong to the MWT. Keil conjectured that the ,8-skeleton is 

a subgraph of MWT for (3 = ~J3 (~ 1.15470). Cheng and Xu [30] proved that 

the remote length lemma is still true for (3 = h/2v'3 + 9 (~ 1.17682). This is 

very close to the bound conjectured by Keil. Recently, Aichholzer et al. [3] proved 
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that, for f3 > ~J3, the /3-skeleton of convex polygons and a certain class of star­

shaped polygons is a subgraph of the MWT. The situation to date is summarized in 

Figure 5.1. 

In this chapter, we disprove Keil's conjecture by presenting a new lower bound on 

the value of /3 (i.e., /3 = h/2J3 + 45 ~ 1.16027) such that if /3 < ~V2J3 + 45, the 

/3-skeleton is not always a subgraph of the MWT. 

5.2 A counterexample of Keil's conjecture 

In this section, we construct a set of points whose /3-skeleton does not belong to its 

MWT when ~J3 ~ /3 < ~V2J3 + 45. Thus, this is not only a counterexample of 

Keil's conjecture (/3 = ~J3), but can also be used to prove the new lower bound 

(/3 = ~v2J3 + 45). 

Throughout this chapter, let a be the angle that the chord xy (x, y E S) subtends 

at one of the circles (refer to Figure 5.2). It follows from the definition of the /3-

skeleton that /3 = 1/ sin a. Thus, the definition of a /3-skeleton can be rewritten as 

follows: xy ( x, y E S) is an edge in the /3-skeleton (/3 > 1) of S if and only if there does 

not exist a point z E S such that Lxzy > arcsin(1/ /3). Notice that the /3-skeleton 

defined in this thesis is a superset of that used in [62] (refer to Lemma 1 of [62]). 

When f3 = ~J3, we have a = 1r /3. Thus, the length lemma is violated for a > 1r /3 
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[62]. 

Figure 5.2: Some relationships among the edges and angles. 

In [30], Cheng and Xu proved the following property that describes a critical 

structure. From this structure, they derived an improved version of the remote length 

lemma for f3 = ~)2..;3 + 9. Thus, by using the same proof strategy in [62], they 

proved that the /3-skeleton is a subgraph of the MWT for any f3 > ~)2..;3 + 9. 

Lemma 5.3 {[30}) When f3 = ~)2..;3 + 9, there exists a point set S such that xy, 

x, y E S, is an edge in the {3-skeleton of S and p, q, r, s E S are other distinct points 

satisfying the following conditions (refer to Figure 5.2): 

(i) Lxpy = Lxqy = Lxry = Lxsy = arcsin(l/ /3), x E pq, y E rs, pq n rs = 0, and 

p and r lie on the same side of the line through xy; 

(ii) !Pql = !Pr! = Irs!; and 

(iii) pqsr is a regular trapezoid such that Lxpr and Lyrp are acute. 
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In the remainder of this chapter, let a = Lxpy and () = Lxpr. From Lemma 5.3, 

we derive the following equations that can be used in our proofs: 

X 

. 3 
sma = V

2
V3 + 

9
, 

. fiJ3 sm() = 
2 

, 
.;3-1 

cos()= 2 ' 

sin 20 = /2J3(;_a- 1
), cos 20 = 1- v'3. 

\ 

\ 

' q' d' 1 

I 

s' .' 

Figure 5.3: The arrangement of sites (darkened dots). 

b . 

dl\ ·.,_a_ 
·~ 

Now, we describe the arrangement of a set of 2n + 4 sites (the value of n will 

be determined later) such that the ,8-skeleton is not included in the MWT for ,8 E 
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Let x and y be two different points in the plane and draw two circles, d1 and 

d~, with the same diameter kV2-/3 + 9lxyl, such that both circles pass through x 

and y (refer to Figure 5.3). The union of the regions bounded by d1 and d~ is the 

forbidden neighbourhood with f3 = kV2-/3 + 9 for points x and y [62]. Denote 

the two big arcs with endpoints x and y in d1 and d~ by arc(xd1y) and arc(xd~y), 

respectively. Similarly, for any fixed f3 E [ ~-/3, ~V2-/3 + 45 ), draw two circles, d2 

and d~, with the same diameter f31xyl that pass through x and y. Denote the two 

big arcs with endpoints x andy in d2 and d~ by arc(xd2 y) and arc(xd~y), and let the 

centers of d1 and d2 lie on the same side of the line through xy. Since ~V2-/3 + 45 < 

kV2-/3 + 9, the region bounded by arc(xd2y) Uarc(xd~y) is included in that bounded 

by arc(xd1y) U arc(xd~y). Let points p, r E arc(xd1y), q, s E arc(xd~y) such that the 

four points satisfy the three conditions of Lemma 5.3. Let pq intersect arc( xd~y) at 

q', rs intersect arc(xd~y) at s', and pr intersect arc(xd2y) at p' and r', where p' is 

nearer to p than to r. 

From Lemma 5.3, we have 

I pq' 1=1 rs' 1<1 pr I · 

Now, we choose a pair of points a and bon r'r which are very close to point r such 
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that the triangle 6abc lies outside d2 and inside d1, where c is the intersection point 

of s'b and ya. Let m be a point on ab very near to b, and let ern be an arc of a circle 

whose center is at the far right-hand side such that any line tangential to the circle 

at the arc ern will intersect ray cs and the arc ern cuts the acute angle between the 

line segments s' c and yc (this ensures that ern will be 'convex' facing s', q', x, Pi and 

'concave' facing y). We now arrange a site on points x, y, s', and q', respectively. We 

alsoarrange n sites (R = {r1, r 2 , ... , rn}) evenly on the arc ern such that the maximum 

distance from ri E R tor is ~· Symmetrically, we arrange n sites (P = {p1, p2 , ... , Pn}) 

near p in the same manner as those near r. The value of 6 is determined as follows: 

let E = iss'!, B= IPrl- max{IPiYI I 1 ~ i ~ n}, re= IPrl + IPYI- 2lpq'l, and then, 

we set 6 = ~ min { E, B, re}. We need to guarantee that 6 is positive so that the above 

arrangement is significant. We show how this is achieved in the following lemma: 

Lemma 5.4 For (3 E [ ~v'3, tV2v'3 + 45 ), 6 > 0. 

Proof Since tV2v'3 + 45 < ~V2v'3 + 9, d~ is strictly included in d~. Thus, E = 

iss'!> 0. 

Now we prove that B > 0. Consider the triangle 6ypq. Since Lxpy=Lxqy < 7r /3, 

we have IPYI < IPql. Thus, IPYI < IPrl. It follows from the arrangement that Lp1piy > 

7r /2, i = 2, ... , n. So IPiYI < IP1YI < IPYI· Hence, IPiYI < IPri, i = 1, ... , n. It follows 

that B > 0. 

Finally, we prove that re > 0. Refer to Figure 5.4. Let o/ = Lxq'y. In triangles 
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Figure 5.4: For the proof of Lemma 5.4. 

6pry and 6pq' y, by the law of sines we have 

I pr I I PY I 
sin ( 1r - () - ( () - a)) sin () ' 

(5.1) 

I pq' I I PY I 
sin ( 1r - a' - a) sin a' · 

(5.2) 

Then, by (5.1) we have 



I I sin(2e- a) I I 2[il3 I I pr= . py= py. 
sm f) J2J3 + 9 

By (5.2), we have 

21 pq' I 2sin(a' +a) I I 
• I py 

sma 
cosa' . 

(2cosa + 2-.-sma) I py I 
s1n a' 

( 2 cos a + 2 ( -. -
1
-) 2 - 1 * sin a) I py I 

sma' 

(2cosa + 2J(/3) 2 -1 *sin a) I py I 

( 2[il3 (J2v'3+45)2 3 ) I I < +2 -1* PY 
J2v'3 + 9 6 J2v'3 + 9 

( 
2fil3 +2J

2../3+9 * 3 
) I PY I 

J2v'3 + 9 36 J2v'3 + 9 

( 
2fil3 + 1) I PY I 

J2v'3 + 9 

I pr I+ I PY I· 

Thus, ::e=l pr I + I py I -2 I pq' I> 0. Therefore, t5 is positive. 
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D 

By the above arrangement, we obtain a point setS= {q', x,pn,Pn-l, ... ,p1, r 1 , r2, 

... , rn, y, s'}, which can be used to prove the new lower bound. Before we prove this 

in the next section, we will summarize some properties of the set S in the following 
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lemma. 

Lemma 5.5 LetS= {q',x,pn,Pn-l,···,Pl,rl,rz, ... ,rn,Y,S1
} be the point set de­

scribed above. Then, 

(i) the line segments s'ri (i = 1, ... , n) and yri (i = 1, ... , n- 1} do not cross each 

other in their interiors, and neither do the line segments q' Pi ( i = 1, ... , n) and XPi 

(i = 1, ... , n- 1}. 

(ii) 

(iii) 

(iv) 

(v) 

I pq' I> I P1q' I> I pzq' I> ···>I Pnq' I · 

I PiY 1<1 Piri I, i = 1, ... , n. 

I Plri 1>1 Pnrn I, I PiY 1~1 PnY I, i = 1, ... , n. 

Proof (i). Since the arc em is 'convex' with respect to s' and 'concave' with respect 

toy, the line segments s'ri (i = 1, ... , n) and yri (i = 1, ... , n- 1) do not cross each 
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other in their interiors. Symmetrically, q'pi and xpi also do not cross. 

(ii). Since all the sites of R lie on arc Crii which is almost a straight line and 

Lriys' > 1rj2, we have Ls'r1r > 1rj2, and Ls'riri-I > 1rj2, i = 2, ... ,n. Thus, Irs' I> 

I r1 s' I> I r2s' I> · · · >I r ns' I· Symmetrically, the other inequalities also hold. 

(iii). Because the maximum distance from Pi top and from ri tor is 6/2, we have 

I pr 1<1 Piri I +6. From (ii), we know that I ris' 1<1 rs' I· Since I rs' 1=1 rs I -E = 

I pr I -E, we have 

I riB' I < I pr I -E 

< I Piri I +6 - E 

< I Piri I (since E 2: 26). 

(iv). Since I pr I - I PiY 12: B, we have 

I PiY I < I pr I -B 

< I Piri I +6- B 

< I Piri I (since B2: 26). 
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(v). In triangle l:::.,plpnrn, Lp1pnrn is obtuse. Then, I P1rn 1>1 Pnrn I· In triangle 

a regular trapezoid and LPiPnrn is obtuse, we have I Piri 1>1 Pnrn I· Therefore, 

I p1ri 1>1 Pnrn I· Similarly, in triangle l:::.,piPi+IY, i = 1, ... ,n- 1, LPiPi+IY is obtuse. 

Then, I PiY 1>1 Pi+1Y I, i = 1, ... , n- 1. Hence, I PiY 1>1 PnY I· 0 

5.3 The proof of the lower bound 

LetS= {q',x,pn,Pn-1,···,P1,r1,r2,···,rn,Y,S1
} be the point set constructed in the 

previous section. In this section, we prove a new lower bound by showing that, for 

{3 E [ ~v'3, iV2v'3 + 45 ), the line segment xy belongs to the {3-skeleton of S, but 

does not belong to MWT(S). 

All the triangulations of S can be divided into two groups related to xy: if a 

triangulation contains edge xy, then it belongs to the first group; otherwise, it belongs 

to the second group. Let Txy denote the MWT over the first group and T denote the 

MWT over the second group. The relationship between Txy and T can be stated as 

follows: 

Lemma 5.6 Txy and T differ only in the edges in the interior of the simple polygon 

Proof The convex hull of S includes sites q', x,p1, r1, y, s'. Thus, edges q'x, xp1,p1r1, 
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r 1y, ys', s'q' belong to any triangulations of S. Lemma 5.5 (i) implies that no edge 

with endpoints in S intersects the interior of the edges xp2, xp3, ... , xpn, yr2, yr3, ... , 

triangulations of S. Therefore, the difference between Txy and Tis the internal edges 

D 

• q' Exy s' q' E' 

Figure 5.5: An illustration for the edge sets Exy (left) and E' (right). 

For an edge set F, let w(F) denote the sum of the lengths of all the edges in F. 

Let Exy be a subset of Txy, which consists of all the edges of Txy in the interior of the 

polygon L. Then we have the following property: 

Lemma 5.7 w(Exy) > n(l Pnrn I+ I PnY 1)- I P1r1 I+ I xy I+ I xs' 1-

Proof In quadrilateral xys'q', since xs' = yq', xs' or yq' belongs to Exy· Without 

loss of generality, we can suppose that xs' E Exy (refer to Figure 5.5(1eft)). Let 

E~Y = (Exy- {xy, xs'}) U {p1r 1}. Since E~Y- {p1r 1} consists of the 2n- 1 diagonals 

in the triangulation of the polygon p1 .. ·PnXYr n ... r 1 , there are 2n edges in E~Y. Since 

there are at most n edges with endpoint y, we can group these 2n edges in E~Y into 

n pairs of edges such that for each pair of edges, there exists at most one edge with 
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endpoint y. Thus, the n pairs of edges can be classified into two sets, denoted by 

cl = {(PuY, Pvrw) I 1 ::; u, v, w ::; n }, and c2 = {(purw, Pvrx) I 1 ::; u, v, w, X ::; n }. 

Consider each edge PuY· We have I PuY 12::1 PnY I by Lemma 5.5(v). Consider each 

edge Purw. If u < w, then LPuPwrw is obtuse. Thus, I Purw I> I Pwrw I· Furthermore, 

we have I Purw 1>1 PwY I by Lemma 5.5(iv). Since PwPnrnrw is a regular trapezoid and 

LPwPnrn is obtuse, we have I Pwrw 1>1 Pnrn I· Thus I Purw 1>1 Pnrn I· If u > w, we 

can prove that I Purw I> I PuY I and I Purw I> I Pnrn I by using the similar argument. If 

u = w, it is obvious that I Purw 12::1 Pnrn 1- Therefore, for each pair (PuY,Pvrw) E cl, 

we have 

where the equality holds if and only if u = v = w = n. For each pair (pur Wl Pvr x) E c2, 

we have 

Since there are n pairs in C1 and C2 , we have 

Hence, 

w(Exy) > n(l Pnrn I + I PnY 1)- I P1r1 I+ I xy I + I xs' I · 

D 
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Lemma 5.8 Suppose (3 E [ ~J3, iV2J3 + 45 ). If n > 2re~38 (I P1r1 I - I xy I 

+ I P1S1 I - I xs' I) then w(Txy) > w(T). 

Proof Let E be a subset ofT, which consists of all the edges ofT in the interior of 

of L(see Figure 5.5(right)). Since xy tf. E', w(E) :::; w(E') by the definition ofT. 

Thus, 

n 

w(E) :S w(E') = 2 L I Piq' I + I P1s' I · 
i=l 

From the structure of S, we know that I Pnrn 1>1 pr I -15 and I PnY 1>1 py I -&. 

Since re=l pr I + I py I -2 I pq' I, we have 

36 36 
I Pnfn I+ I PnY 1>1 pr I+ I PY I -2 = 21 pq' I +re- 2· 

By the definition of 15, we know that re ~ 215. Thus, re- 3; > 0. Let E' = re - 3;. 

Hence, 

I Pnfn I + I PnY I> 2 I pq' I +E', 
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By Lemma 5.7, we have 

w(Exy) > n(l Pnrn I + I PnY I)+ I xy I - I P1r1 I + I xs' I 

> n(2 I pq' I +t')+ I xy I - I P1r1 I + I xs' I 
n 

> 2 L I PiQ
1 I +nt' + I xy I - I P1 r1 I + I xs' I · 

i=l 

Thus, from the condition of the lemma, we have 

w(Exy)- w(E) > nt'+ I xy I- I P1r1 I+ I xs' I- I P1s' I> 0. 

Therefore, w(Txy) > w(T). D 

From the above lemmas, we can prove the main result: 

Theorem 5.1 (3 = i}2-/3 + 45 is a lower bound for the (3-skeleton belonging to 

MWTs. 
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5.4 Concluding remarks 

In [62], Keil conjectured that the ,8-skeleton is a subgraph of the MWT when ,8 = ~J3. 

In [30], Cheng and Xu proved that ,8 = ~V2J3 + 9 is an upper bound on the value 

of ,8 of a ,8-skeleton belonging to MWTs of a planar point set. In this chapter, we 

proved that ,8 = iV2J3 + 45 is a lower bound. Therefore, we have settled Keil's 

conjecture. However, closing the gap between the upper and lower bounds is still an 

open problem. 

In related work, Aichholer et al. [2] discussed light edges. For an edge e joining 

two points of a planar point setS, if lei is shorter than all other edges with endpoints 

in S which intersect e, then e is called light; otherwise, e is called non-light. In 

[30, 62, 100, 111], all the edges which have been identified to always be in the MWTs 

are light edges. Unfortunately, the example presented by Bose et al. [21] showed that 

the graph consisting of all these identified edges is not connected. In order to find 

a connected subgraph of MWTs, it seems that a future study should concentrate on 

nontrivial non-light edge identification. 

From Lemma 5.8, we know that some q'pi and s'ri (1 ::; i ::; n) must be in 

MWT(S). These are non-light edges because their lengths are longer than lxYI· It is 

the author's opinion that the method used in the proofs of this chapter may be useful 

for finding non-light edges that must be in the MWTs of a planar point set. 



Chapter 6 

Conclusions and Future Research 

Tetrahedralizations and triangulations are fundamental problems in computational 

geometry [37, 17, 46, 47, 53, 82]. In this thesis, we have investigated four problems 

regarding tetrahedralizations and triangulations. There are still many issues which 

need to be studied in this research area, such as Steiner triangulations [18, 19, 49], 

robust tetrahedralizations [7, 43, 94], graph drawing of optimal triangulations [69, 70, 

101, 102, 104], and mesh refinement [31, 85, 87, 96]. 

The open questions concerning specific aspects of our research have been given at 

the end of each chapter. We now close this thesis by listing some interesting open 

problems in the area of tetrahedralization [76, 78, 79]. 

Flip graph connectivity 

158 
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In R3 , a strictly convex hexahedron formed from five vertices can be tetrahedral­

ized in two ways: either as a pair of tetrahedra separated by a face, or as three 

tetrahedra surrounding an interior diagonal (see Figure 1.3). If two (three) adjacent 

tetrahedra of the tetrahedralization form a strictly convex hexahedron, then a flip 

replaces the tetrahedra by the other possible tetrahedralization of the hexahedron 

containing three (two) tetrahedra. The flip can be considered to be a face "flip", 

where one interior face is "flipped" for three interior faces or vice versa. 

Let S be a set of points in R 3 • The flip graph of the tetrahedralizations of S is the 

graph whose vertices are all the tetrahedralizations of S and whose edges represent 

flips between them. That is, two vertices ( tetrahedralizations) are connected by an 

edge if they differ by a flip. 

Question [ 48, 60]: Is the flip graph connected for a set of points in the general position 

in R 3 ? 

As usual, the general position means that no three points are collinear and no 

four points are coplanar. It is even unknown if the flip graph of tetrahedralizations 

contains an isolated vertex, i.e., whether there exists a tetrahedralization in which 

no three tetrahedra surround an edge, nor two tetrahedra share a face and form a 

convex hexahedron. 

The following are some partial and related results on this problem. In R2 , the 

flips correspond to convex quadrilateral diagonal switches. Since every triangulation 
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of a set of points can be transformed into the Delaunay triangulation by a sequence of 

edge flips [68], the flip graph of triangulations in R2 is connected. de Loera et al. [40] 

proved that in R2 all triangulations of n points have at least n- 3 flip neighbours and 

in R3 all tetrahedralization of n points in the convex position and with no three points 

collinear have at least n- 4 flip neighbours. The flip operation can be generalized in 

higher dimension. In R6 , Santos [89] constructed a triangulation of 324 points (not 

in general position) which admit no flip operations. In R234
, he also constructed a 

triangulation of 552 points in the convex position but not in the general position, 

which admit no flip operations. Thus, in R6 and R234 there exist point sets (not in 

general position) whose flip graphs of triangulations can have isolated vertices. 

Hamiltonian tetrahedralizations 

Given a tetrahedralization T, the dual graph ofT has a vertex for each tetrahedron 

and an edge for each pair of tetrahedron that share a triangle facet. 

Question [5]: Can every convex polyhedron be tetrahedralized such that the dual graph 

of the tetrahedralization has a Hamiltonian path? 

This is important because a tetrahedralization that has a Hamiltonian path can 

be pipelined by some graphics rendering engines so that it can be displayed quickly. 

In R 2
, the dual graph of a triangulation has a vertex for each triangle and an 

edge for each pair of triangles that share an edge. Arkin et al. [5] proved that every 
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convex polygon can be triangulated such that the dual graph of the triangulation has 

a Hamiltonian path and that this property does not necessarily hold for nonconvex 

polygon. 

Tetrahedralizations of non-strictly convex polyhedra 

A non-strictly convex polyhedron is a convex polyhedron with facets of more than 

three edges. For such polyhedra in some geometric modeling, the non-triangle facets 

may be triangulated in several different ways. We then need to tetrahedralize this 

polyhedron such that all the tetrahedra are compatible with the triangulated surface, 

in the sense that each triangle on the surface is a facet of a tetrahedron. 

Question [16]: How hard is it to decide whether a non-strictly convex polyhedron 

with a triangulated surface can be tetrahedralized without Steiner points? 

The following are some related results. If a polyhedron is strictly convex, it can 

be easily tetrahedralized by the "starring" method [16]: selecting a vertex v of the 

polyhedron, and then form tetrahedra from v and each triangle facet that is not 

adjacent to v. If a polyhedron is not convex, Ruppert and Seidel [88] proved that 

finding a tetrahedralization of a nonconvex polyhedron without Steiner points is NP­

complete; this problem remains NP-complete even for star-shaped polyhedra. 
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Appendix A 

The proof of Theorem 2.4 

Proof Refer to [37, Theorem 9.1] for a proof of necessity. Now we prove the suf­

ficiency. Suppose (V(E), E) is a connected plane graph. After iteratively deleting 

the leaves and their adjacent edges from (V(E), E), we obtain a new graph denoted 

as (V(E'), E'). Note that (V(E'), E') is a connected plane graph without degree 1 

vertices. For (V(E'), E'), let F(E') be the set of bounded faces and bd(E') be the set 

of the boundary edges of the unbounded face. From Euler's formula we know that 

IV ( E') I - IE' I + IF ( E') I = 1. Since each bounded face has at least three edges and 

each edge is shared by two faces, we have that 3IF(E')I + lbd(E')I ::; 2IE'I, where 

equality holds if and only if each bounded face is a triangle. Substituting Euler's 

formula into this inequality, we obtain 
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IE'I::; 3IV(E')I-Ibd(E')I- 3. (A.1) 

In order to maintain connectivity, we recover E from E' by adding edges one at 

a time in the inverse order of the deletion for constructing E' from E. When we add 

an edge in a bounded face, the left side of (A.1) increases by 1 and the right side of 

(A.1) increases by 3. So the inequality (A.1) still holds, where the equality holds if 

and only if each bounded face is an E-empty triangle. When we add an edge in the 

unbounded face, there are two cases that occur. Let ab be the edge need to add and 

b be a new vertex in the current graph, and B be an empty set at the beginning of 

the adding process. From (A.1) we know the following inequality holds before adding 

edges. 

/E'I ::; 3IV(E') I - (lEI + lbd(E') I) - 3. (A.2) 

If b rt V(CH(E)), then the left side of (A.2) increases by 1 and the right side of (A.2) 

increases by 3. If bE V(CH(E)), then put b into B. So the left side of (A.2) increases 

by 1 and the right side of (A.2) increases by 2. Thus, after adding all the edges, the 

inequality (A.2) still holds. Since V(CH(E)) ~ B U V(bd(E')) (refer to Figure A.l), 

we have that /E(CH(E))/ = /V(CH(E))/::; /B/ + /V(bd(E'))/ = /B/ + /bd(E')/, where 

equality holds if and only if E(CH(E)) = bd(E'). Hence, from (A.2) we obtain 
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e 

k 

Figure A.l: V(bd(E')) = {a,b,c,d,e,j,g},B = {j,k,l} and V(CH(E))= {a, j, d, k, 
e, g, l}. 

lEI:::; 3IV(E)I-IV(CH(E))I- 3, (A.3) 

where equality holds if and only if each bounded face is an E-empty triangle and the 

unbounded face is the exterior of CH(E). Therefore, it follows from the condition of 

the theorem that E is a triangulation. D 



Appendix B 

The proof of Lemma 3.3 

Proof Refer to Figure 3.17. We only prove the lemma for m = 3; it can be proven 

in a similar fashion for m > 3. Consider the facet z0z1 v2. v3 , z3 rt tetra(z0z1 v2) since 

v2v3 , z0z3 tj. T. Thus, tetra(z0z1 v2) may contain z2, or v0 , or v1 , or the vertex c which 

does not belong to V(B 2 ). Therefore, we have the following cases: 

1. z2 E tetra(z0z1v2). Then z0z2 E T, which is a diag-1 (see Figure B.1(left)). 

Consider the interior facet z0z2v2. z1 E tetra(z0z2v2), and the other vertex in 

tetra(z0z2v2) may be v0 , or v1 , or the vertex a which does not belong to V(B 2 ). 

(a) vo E tetra(z0z2v2). Then z2v0 , v0v2 E T, which are diag-ls. In total, there 

are at least three diag-ls on B2. 

(b) v1 E tetra(z0z2v2). Then z2v1 E T, which is a diag-1. Considering z0z2v1 , 
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at least one diag-I or diag-II is incident on z0 , or z2, or vi. In total, there 

are at least three diag-Is, or two diag-Is and one diag-II on B 2. 

(c) a E tetra(z0z2v2). Then v2a, z2a E T, which are diag-Ils. Considering 

z0vi v2, at least one diag-I or diag-II is incident on z0 , or vi, or v2. In total, 

there are at least two diag-Is and two diag-Ils, or one diag-I and three 

diag-IIs on B2. 

Figure B.1: Case 1 (left) and Case 2 (right) of the proof of Lemma 3.3. 

2. vi E tetra(zoziv2). Then z1vi E T, which is a diag-I (see Figure B.l(right)). 

Consider the interior facet ZIVIV2 • z0 E tetra(ziviv2), and the other vertex in 

tetra(ziviv2) may be z2, or z3 , or v0 , or the vertex b which does not belong to 

at least one diag-I or diag-II is incident on zi, or z2 , or VI· In total, there 

are at least three diag-Is, or two diag-Is and one diag-II on B2. 

(b) z3 E tetra(ziviv2). Then ziz3 E T, which is a diag-I. Considering ziz3vi, 

at least one diag-I or one diag-II is incident on zi, or z3 , or v1 . In total, 
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there are at least three diag-Is, or two diag-Is and one diag-II on B2. 

(c) v0 E tetra(z1v1v2). Then z1v0 , v0v2 E T, which are diag-Is. In total, there 

are at least three diag-Is on B2. 

(d) bE tetra(z1v1v2). Then z1b, v 1b, v2 b E T, which are diag-Ils. In total, there 

are at least one diag-I and three diag-Ils on B2. 

3. v0 E tetra(z0z1v2). Then z1v0 , v0v2 E T, which are diag-Is (see Figure B.2(1eft)). 

Considering the interior facet z1 v0v2 , at least one diag-I or diag-II is incident 

on z1, or v0 , or v2. In total, there are at least three diag-Is, or two diag-Is and 

one diag-II on B2. 

Figure 8.2: Case 3 (left) and Case 4 (right) of the proof of Lemma 3.3. 

4. c E tetra(zoz1 v2) and c (j. V(B2 ). Then z1c, v2c E T, which are diag-Ils (see 

Figure B.2(right)). Consider z1z2v2. 

(a) Z3 E tetra(z1z2v2). Then z 1z3 E T, which is a diag-I. Considering z3v1 v2, 

at least one diag-I or diag-II is incident on z3 , or v1, or v2. In total, there 

are at least two diag-Is and two diag-IIs, or one diag-I and three diag-IIs 

on B 2 . 
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(b) v0 E tetra(z1z2v2). Then z1v0, z2v0, v0v2 E T, which are diag-ls. In total, 

there are at least three diag-Is and two diag-IIs on B 2 • 

(c) v1 E tetra(z1z2v2 ). Then z1v1 , z2v 1 E T, which are diag-ls. In total, there 

are at least two diag-ls and two diag-IIs on B 2 . 

(d) c' E tetra(z1z2v2). Then z1c', z2c', v2c' E T, which are diag-IIs. In total, 

there are at least five diag-IIs on B 2 • 

(e) c E tetra(z1z2v2 ). Then z2c E T, which is a diag-11. Consider z0v1v2 • 

1. z2 or v0 belong to tetra( z0v1 v2). At least one diag-I is incident on z0, 

or v1 , or v2 . In total, there are at least one diag-1 and three diag-IIs 

on B2. 

11. c" E tetra(z0v1v2 ) and c" tf_ V(B 2 ). Then v1c", v2c" E T. In total, 

there are at least five diag-IIs on B 2 • 

111. c E tetra( z0v1 v2 ). Then v1 c E T. Consider the other triangle facets in 

B2 (except zoz1 v2, z1z2v2, z0v1 v2). If there is at least one triangle facet 

whose tetra-vertex is d #- c, then B 2 associates with at least one diag-1 

and four diag-IIs, or five diag-IIs; otherwise, if all the vertices in B 2 

are adjacent to c, then there are four diag-IIs on B 2 with a common 

endpoint c. This completes the proof of Lemma 3.3. 

0 



Appendix C 

The proof of Lemma 3.4 

Proof Refer to Figure 3.18. We only prove the lemma for m = 3; it can be proven 

in a similar fashion for m > 3. Consider the facet pz1z2 . v2 , q tf. tetra(pz1z2 ) since 

pv2 , pq tf. T. Thus, tetra(pz1z2 ) may contain v0 , or v1 , or v3 , or the vertex c which 

does not belong to V(B 3 ). Therefore, we have the following cases: 

1. v0 E tetra(pz1z2). Then z1v0 , z2v0 E T, which are diag-Is (see Figure C.1(1eft)). 

Considering z1z2v2 , at least one diag-I or diag-II is incident on z1 , or z2 , or v2 . 

In total, there are at least three diag-Is, or two diag-Is and one diag-II on B3 . 

2. v1 E tetra(pz1z2 ). Then z2v1 E T, which is a diag-I (see Figure C.1(right)). 

Consider the interior facet pz2v1 . z1 E tetra(pz2v1 ), and the other vertex in 

tetra(pz2v1) may be v0 , or v3 , or the vertex a which does not belong to V(B 3 ). 
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Figure C.1: Case 1 (left) and Case 2 (right) of the proof of Lemma 3.4. 

(a) v0 E tetra(pz2vi)· Then z2v0 E T, which is a diag-I. Considering z2v0vi, at 

least one diag-I or diag-II is incident on z2, or v0 , or VI· In total, there are 

at least three diag-Is, or two diag-Is and one diag-II on B 3 • 

(b) v3 E tetra(pz2vi)· Then viv3 E T, which is a diag-I. Considering z2viv3, at 

least one diag-I or one diag-II is incident on z2, or VI, or v3 . In total, there 

are at least three diag-Is, or two diag-Is and one diag-II on B 3 . 

(c) a E tetra(pz2vi)· Then z2a, viaE T, which are diag-Ils. Considering viv2 q, 

at least one diag-I or one diag-II is incident on vi, or v2, or q. In total, 

there are at least two diag-Is and two diag-IIs, or one diag-I and three 

diag-Ils on B 3 . 

3. v3 E tetra(pz1z2). Then ziv3 E T, which is a diag-I (see Figure C.2(1eft)). 

Consider the interior facet zi v2v3. z2 E tetra(zi v2v3), and the other vertex in 

tetra(ziv2v3) may be v0, or vi, or q, or the vertex b which does not belong to 

V(B3 ). 

(a) Vo E tetra(ziv2v3). Then zivo, v0v2, v0v3 E T, which are diag-Is. In total, 
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there are at least four diag-Is on B 3 

(b) VIE tetra(ziv2v3). Then viv3 E T, which is a diag-I. Considering viv2q, at 

least one diag-I or one diag-II is incident on vi, or v2, or q. In total, there 

are at least three diag-Is, or two diag-Is and one diag-II on B 3 . 

(c) q E tetra(ziv2v3). Then ziq E T, which is a diag-I. Considering ZIVIQ, at 

least one diag-I or one diag-II is incident on ZI, or VI, or q. In total, there 

are at least three diag-Is, or two diag-Is and one diag-II on B 3 • 

(d) b E tetra(ziv2v3 ). Then zib, v2 b E T, which are diag-Ils. Considering 

viv2q, at least one diag-1 or one diag-II is incident on vi, or v2, or q. In 

total, there are at least two diag-Is and two diag-IIs, or one diag-I and 

three diag-Ils on B 3 . 

Figure C.2: Case 3 (left) and Case 4 (right) of the proof of Lemma 3.4. 

4. c E tetra(pz1z2) and c (j. V(B3). Then z1c, z2c E T, which are diag-Ils (see 

Figure C.2(right)). Consider ziz2v2. 

(a) vo E tetra(ziz2v2). Then ZIVo, z2v0, v0v2 E T, which are diag-Is. In total, 

there are three diag-Is and two diag-Ils on B 3 • 
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(b) v1 E tetra(z1z2v2). Then z2v1 E T, which is a diag-I. Considering v1v2 q, at 

least one diag-I or one diag-II is incident on v1, or v2, or q. In total, there 

are at least two diag-Is and two diag-IIs, or one diag-I and three diag-Ils 

on B3. 

(c) v 3 E tetra(z1z2v2). Then z1v3 E T, which is a diag-I. Considering v 1v2 q, at 

least one diag-I or one diag-II is incident on v1, or v2, or q. In total, there 

are at least two diag-Is and two diag-Ils, or one diag-I and three diag-Ils 

on B3. 

(d) q E tetra(z1z2v2). Then z1q, z2q E T, which are diag-Is. In total, there are 

at least two diag-Is and two diag-Ils on B 3 . 

(e) c' E tetra(z1z2v2). Then z1c', z2c', v2c' E T, which are diag-Ils. In total, 

there are at least five diag-Ils on B 3 • 

(f) c E tetra(z1z2v2). Then z2c E T, which is a diag-II. Consider z1 v1 v2. 

1. q or v0 belongs to tetra(z1v1v2). At least one diag-I is incident on z1, 

or v1, or v2. In total, there are at least one diag-I and three diag-Ils 

on B 3 • 

n. c" E tetra(z1v1v2) and c" tj_ V(B3 ). Then z1c", v1c", v2c" E T. In total, 

there are at least six diag-IIs on B 3 . 

111. c E tetra(z1v1v2). Then v1c E T. Consider the other triangle facets in 

B3 (except pz1z2, z1z2v2, z1v1v2). If there is at least one triangle facet 

whose tetra-vertex is d =!= c, then B 3 associates with at least one diag-I 
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and four diag-IIs, or five diag-IIs; otherwise, if all the vertices in B 3 

are adjacent to c, then there are four diag-IIs on B 3 with a common 

endpoint c. This completes the proof of Lemma 3.4. 

0 



Appendix D 

The proof of Lemma 3.5 

Proof Refer to Figure 3.19. We only prove the lemma for m = 3; it can be proven 

in a similar fashion for m > 3. Consider the facet pziz2 . v3 , q rt tetra(pziz2) since 

pv3 , pq rt T. Thus, tetra(pziz2) may contain z3 , or v0 , or VI, or v2, or the vertex c 

which does not belong to V(B4). Therefore, we have the following cases: 

1. z3 E tetra(pziz2). Then ziz3 E T, which is a diag-I (see Figure D.l(left)). 

Consider the interior facet pziz3 . z2 E tetra(pziz3 ), and the other vertex in 

tetra(pziz3 ) may be v0 , or VI, or v2, or the vertex a which does not belong to 

(a) v0 E tetra(pziz3 ). Then ZIVo, z3v0 E T, which are diag-Is. In total, there 

are at least three diag-Is on B 4 • 
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(b) VI E tetra(pziz3 ). Then zivi, z3vi E T, which are diag-Is. In total, there 

are at least three diag-Is on B 4• 

(c) v2 E tetra(pziz3). Then z3v2 E T, which is a diag-I. Considering pviv2 , at 

least one diag-1 or one diag-11 is incident on p, or vi or v2 . In total, there 

are at least three diag-Is, or two diag-Is and one diag-11 on B 4 • 

(d) a E tetra(pziz3 ). Then zia E T, which is a diag-II. Consider pziv2 • 

1. v0 E tetra(pziv2). Then zivo, v0v2 E T, which are diag-ls. In total, 

there are at least three diag-Is and one diag-11 on B 4 • 

11. viE tetra(pziv2). Then ZIVI E T, which is a diag-I. In total, there are 

at least two diag-Is and one diag-11 on B 4 • 

111. a' E tetra(pziv2 ) and a' tj. V(B4 ). Then zia', v2a' E T. In total, there 

are at least one diag-1 and three diag-lls on B 4. 

IV. a E tetra(pziv2 ). Then v2a E T. Consideringpviv2 , at least one diag-1 

or one diag-11 is incident on p, or VI, or v2 • In total, there are at least 

two diag-Is and two diag-lls, or one diag-1 and three diag-lls on B 4 • 

Figure D.l: Case 1 (left) and Case 2 (right) of the proof of Lemma 3.5. 
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2. v0 E tetra(pziz2 ). Then ZIVo, z2v0 E T, which are diag-Is (see Figure D.l(right)). 

Considering pz2v0, at least one diag-I or diag-11 is incident on p, or z2 , or v0. In 

total, there are at least three diag-Is, or two diag-Is and one diag-11 on B 4 . 

3. vi E tetra(pziz2). Then ZIVI, z2vi E T, which are diag-Is. Considering pz2vi, 

at least one diag-I or diag-11 is incident on p, or z2 , or VI· In total, there are at 

least three diag-Is, or two diag-Is and one diag-11 on B 4• 

4. v2 E tetra(pziz2). Then z2v2 E T, which is a diag-I (see Figure D.2(1eft)). 

Consider the interior facet pz2v2 • zi E tetra(pz2v2 ), and the other vertex in 

tetra(pz2v2 ) may be z3 , or v0 , or vi, or the vertex b which does not belong to 

(a) Z3 E tetra(pz2v2 ). Then z3v2 E T, which is a diag-1. Considering pz3v2 , at 

least one diag-I or diag-11 is incident on p, or z3 , or v2 . In total, there are 

at least three diag-Is, or two diag-Is and one diag-11 on B 4 . 

(b) v0 E tetra(pz2v2 ). Then z2v0 , v2v0 E T, which are diag-Is. In total, there 

are at least three diag-Is on B 4• 

(c) vi E tetra(pz2v2 ). Then z2vi E T, which is a diag-1. Considering pz2vi, at 

least one diag-I or one diag-II is incident on p, or z2 , or vi. In total, there 

are at least three diag-Is, or two diag-Is and one diag-11 on B 4 . 

(d) bE tetra(pz2v2 ). Then z2b, v2b E T, which are diag-lls. Considering pviv2, 

at least one diag-I or one diag-11 is incident on vi, or v2 , or p. In total, 
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there are at least two diag-Is and two diag-IIs, or one diag-I and three 

diag-Ils on B 4 . 

Figure D.2: Case 3 (left) and Case 4 (right) of the proof of Lemma 3.5. 

5. c E tetra(pziz2) and c (j. V(B4 ). Then zic, z2c E T, which are diag-IIs (see 

Figure D. 2 (right)). Consider pzi v2. z3 cannot be the tetra-vertex of pzi v2 

(otherwise, z3 E tetra(pzi z2), which contradicts c E tetra(pzi z2)). 

(a) v0 E tetra(pziv2). Then ziv0 ,v0v2 E T, which are diag-Is. In total, there 

are two diag-Is and two diag-Ils on B 4 • 

(b) viE tetra(pziv2). Then ZIVI E T, which is a diag-I. Considering ZIVIV2, at 

least one diag-I or one diag-II is incident on zi, or VI, or v2. In total, there 

are at least two diag-Is and two diag-IIs, or one diag-I and three diag-Ils 

on B4. 

(c) c' E tetra(pziv2). Then zic', v2c' E T, which are diag-II. Considering pviv2 , 

at least one diag-I or one diag-II is incident on vi, or v2, or p. In total, 

there are at least one diag-I and four diag-IIs, or five diag-IIs on B 4 . 

(d) c E tetra(pziv2). Then v2c E T, which is a diag-II. Consider pviv2 . 
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i. v0 E tetra(pv1v2 ). Then v0v2 E T, which is a diag-I. In total, there are 

at least one diag-I and three diag-IIs on B 4• 

n. v3 E tetra(pv1 v2). Then v1 v3 E T, which is a diag-I. In total, there are 

at least one diag-I and three diag-IIs on B 4• 

m. c" E tetra(pv1v2 ) and c" tf. V(B4 ). Then v1c", v2c" E T. In total, there 

are at least five diag-IIs on B 4 . 

IV. c E tetra(pv1v2). Then v1c E T. Consider the other triangle facets in 

B 4 (except pz1 z2 , pz1 v2 , pv1 v2 ). If there is at least one triangle facet 

whose tetra-vertex is d # c, then B 4 associates with at least one diag-I 

and four diag-IIs, or five diag-IIs; otherwise, if all the vertices in B 4 

are adjacent to c, then there are four diag-IIs on B 4 with a common 

endpoint c. This completes the proof of Lemma 3.5. 
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