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Abstract 

A novel Xenopus gene called Xre/3 has been recently described, which encodes a member 

of the Rel/NF-KB family of transcriptional activators (Yang et al., 1998; Lake et al., 

2001). Xre/3 mRNA is expressed during early cleavage stages, followed by a dramatic 

decline to undetectable levels at gastrulation. Later in development, messages localize to 

the prospective forebrain, dorsal mid-hindbrain, notochord, and otocyst. Overexpression 

of Xre/3 by microinjecting synthetic RNA into two-cell stage embryo in the animal pole 

region causes embryos to develop abnormal growths, or tumours (Yang et al., 1998). 

Ectopic expression of Xre/3 seems to have a major effect on pre-gastrula development. 

Overexpressed in the dorsal region of the embryo it caused a reduction in dorsoanterior 

structures in embryos, with a majority of embryos having small heads, kinked backs and 

shortened tails. Most of them failed to initiate gastrulation movements, as compared to 

controls. When animal caps from embryos injected with Xre/3 were treated with 

XTC-CM, Xre/3 reduces activin-induced elongation of animal caps. Xre/3, however, does 

not reduce FGf ... mediated induction of animal caps, or the expression of Xbra in FGF-

treated embryos. The results presented here show that Xre/3 inhibits mesoderm induction, 

but not by interfering with bFGF pathway, but by regulating activin A signalling. 

. . 
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CHAPTERl 

INTRODUCTION. 

1.1 Xenopus laevis as a model of choice in the study of development of 
vertebrates. 

At the molecular level, the basis of development is thought to be highly conserved 

between frogs and humans (Wallingford, 1999). Similar developmental pathways seem to 

be responsible for the induction of genes and the response to induction. This implies that 

the discoveries of gene product interactions found in animal models should give us a 

better understanding of developmental processes in humans. The research that is done all 

over the world by many workers brings us closer to understanding how a highly 

structured organism can be formed from a simple egg (Wallingford, 1999). 

A B 

Figure 1.1 South African Clawed Frog named Xenopus laevis and its oocytes. 
(A) Representative picture of female frog. (B) Xenopus laevis oocytes (1.0-2.0 mm in 
diameter), which are pigmented dark brown in one hemisphere (animal hemisphere), and 
show the yellow colour of the egg yolk on the other hemisphere (vegetal hemisphere). 

Xe no pus laevis (Figure 1.1) is used extensively for biological studies all over the 

world. It is perhaps the best known of the fourteen species of the Genus Xe no pus. This 
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frog is native to the mountain area of South Africa and the middle of the African continent. 

Xenopus laevis live their entire lives in an aquatic environment. The term "Xenopus" is 

Latin for "peculiar foot," an apt description for the enormously webbed, five-toed, 

three-clawed rear feet typical of the group. "laevis" means "smooth'• (Deuchar, 1975). 

Xenopus laevis has the following taxonomic hierarchy (Nieuwkoop and Faber, 

1994): Class, Amphibia; Subclass, Apsidospondyli; Order, Anura; Suborder, Opisthocoela; 

Family, Pipidae; Sub-family, Xenopodinae; Genus, Xenopus; Species, laevis. 

One reason for Xe no pus being so widely studied is that it is a vertebrate that 

undergoes external fertilization, and thus fertilized eggs of Xenopus are easy to obtain. 

Female frogs can be induced to lay eggs by injection with the human hormone, 

chorinonic gonadotropin, about 14 to 16 hours before egg collection. It is also easy to 

maintain and feed this species of frog, which can live in dechlorinated tap water while fed 

manufactured animal feed. Early embryos (see Figure 1.1 B) contain the yolky reserve 

nutrition for the initial stages of development, and can be cultured at room temperatures 

in simple salt solutions. The comparatively large size of eggs (about 1.2 to 1.4 mm), their 

hardiness and resistance to infection facilitates dissections, microinjections and other 

physical manipulations. The development of embryos is relatively rapid; they go from 

fertilization through neurulation in approximately 18 hours at 22°C (David and Sargent, 

1988; Hausen and Riebesell, 1991; Jones and Smith 1999a). 

Thus, Xenopus laevis is a popular animal model for the study of embryonic 

development, differentiation, cell cycle, analysis of gene function, identification of 
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molecules that are involved in early vertebrate development and elucidation of signalling 

pathways that are involved in tumourigenesis (Wallingford, 1999). 

1.2 An overview of development of Xenopus laevis. 

12 months 

Xenopus ; · · ~ ' • JI; 

: . '-.. - ~ . . .. -, .. 
• .... .,.. ~ • .J· ·: 

• ., • w ._, · - ... I· 
... • ~. w ... • •• • ,. 

~- ... ' ' }" ... . . . . 
7 hr J.~.· "biastula 

late tailbud 

neurula 

Figure 1.2 Xenopus laevis life cycle. Pictures were reproduced from 
Nieuwkoop and Faber (1994). 

The basic stages in frog development are illustrated in Figure 1.2. The Xenopus 

laevis egg (Figure 1.1 B) is a huge cell (1.2 to 1.4 mm in diameter) with a single animal-

vegetal axis. The animal cytoplasm of the egg usually contains the nucleus of the oocyte, 
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while the vegetal half of the egg is the site for the storage of yolk. The lower hemisphere 

(the vegetal pole), is lightly pigmented, the upper animal half is darkly pigmented 

(Hausen and Riebesell, 1991; Arendt and Nubler-Jung, 1999). When deposited in the 

water and ready for fertilization, the haploid egg is arrested at meta.phase of meiosis II 

(Hausen and Riebesell, 1991; Jones and Smith, 1999a). 

1.2.1 Fertilization. 

During fertilization the sperm enters the egg at the animal hemisphere, the egg 

completes meiosis, followed by the fusion of male and female nuclei and the formation of 

a diploid zygote nucleus (Deuchar, 1975; Hausen and Riebesell, 1991). Entrance of the 

sperm initiates a sequence of events: re-orientation of the zygote with respect to gravity 

so that the less dense pigmented half of the embryo is at the top, which occurs within 

twenty minutes of fertilization; rotation of the egg's cortex relative to its cytoplasmic core 

by thirty degrees in an animal-vegetal direction within forty minutes after fertilization, 

which is revealed by the appearance of a light-coloured band, known as the gray crescent 

in other amphibian species (Jones and Smith, 1999a; Figure 1.3), opposite the point 

where the sperm entered. The site of sperm entry establishes a dorso-ventral axis in early 

embryos (Jones and Smith, 1999a). Through mechanisms that are not yet completely 

clear, the cortical rotation establishes a signaling centre, often referred to as the 

''Nieuwkoop Centre," which directs the development of the dorso-anterior region of the 

embryo (Gerhart et al., 1989; Jones and Smith, 1999a; Arendt and Nubler-Jung, 1999). 
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A Animal pol 
B 

midline 

Vi ntr. I Dor I 
• • • • • . -·------

i.lllj~~:~-Gray axis 
of 
rotation 

---c~;--m~~ 
, 

crescent • , 

Direction of 
cortical rotation 

Figure 1.3 Nieuwkoop centre is established by cortical rotation. 

Nieuwkoop 
center 

(A) Position of the gray crescent in fertilizedXenopus egg, established as a result of 
cortical rotation. 
(B) Location of the Nieuwkoop centre, which defines left and right sides in the 
embryo (reproduced from Wolpert et al., 1998). 

1.2.2 Development before the Midblastula Transition stage. 

After fertilization, a series of rapid and synchronous mitotic divisions, called 

cleavage (Figure 1.2 and 1.4), transforms the amphibian egg into a blastula made of 

numerous cells called blastomeres (Deuchar, 197 5). About ninety minutes (21°C) after 

fertilization, a furrow appears that runs longitudinally through the poles of the egg, 

passing through the point at which the sperm entered and bisecting the gray crescent. 

This divides the egg into two halves, the future left and right ... hand sides of the embryo 

(Figure 1.3 B), forming the 2-cell stage. It is followed by a second cleavage, thirty 

minutes later (Figure 1.4), which runs through the poles but at right angles to the first 

furrow .. The second cleavage forms the 4~cell stage. The furrow in the third cleavage runs 

horizontally but in a plane closer to the animal than to the vegetal pole and separates the 

animal and the vegetal poles. It produces the 8-cell stage. The next few cleavages also 
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proceed in synchrony, producing a 16-cell and then a 32·cell embryo. This rapid series of 

cleavage divisions continue beyond the 32-cell stage, resulting in the formation of 

progressively smaller blastomeres, which are larger at the vegetal pole than the animal 

pole (Hausen and Riebesell, 1991; Keller, 1991; Jones and Smith, 1999a). 

The first eleven cleavage cycles in Xenopus are relatively constant in length. 

During this period of rapid cleavage most cells within the embryo divide nearly 

synchronously every thirty minutes. The cells are not motile during this period (Newport 

and Kirschner, 1982a,b; Masui and Wang, 1998) and although it is usually thought that 

de novo zygotic transcription is repressed, recent evidence indicates that transcription of 

some important patterning genes may be necessary as early as the 256-cell stage (Yang et 

al., 2002). A large majority of the activities, nonetheless depend on maternal gene 

products (mRNA and proteins) deposited during the formation of the egg. During this 

entire process there has been no growth of the embryo. In a few hours at room 

temperature, continued cleavage has produced a hollow ball of thousands of cells called 

the blastula. A fluid-filled cavity, the blastocoel, forms within it (Deuchar, 1975; Hausen 

and Riebesell, 1991; Jones and Smith, 1999a). 

6 



Stage 1 (I -cell) 
ventral view 

Stage 7 blastula 
ventral view 

4 hours 

! 

{ 
I 

Stage 19 
dorsal view 

20 hours 45 min 

Stage 2 (2-cell) 
ventral view 

-90 min 

Stage 8 blastula 
ventral view 

S hours 

Stage 23 
lateral view 
1day45 min 

Stage 45 
lateral view 
4 days 2 hours 

Stage 3 ( 4-cell) 
2 hours 

Stage 10.5 
vegetal view 

11 hours 

Stage 4 (8 cell) 
dorso·lateral view 
2 hours 15 min 

Stage 14 
posterior-dorsal view 

16 hours lS min 

Stage 28 
lateral view 
1day8 hours 

Mature frog 
-60 days 

Figure 1.4 Xenopus laevis development. Pictures were reproduced from Nieuwkoop 
and Faber (1994). 
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1.2.3 Midblastula transition. 

During the early embryonic development of Xenopus laevis there is a period 

during which the embryonic genome is relatively transcriptionally silent (Newport and 

Kirschner, 1982a). This transcriptional repression is relieved at the 12 to 13th division 

cycle, when there is as much as a 50-fold increase in the transcription of some genes 

(Newport and Kirschner 1982a,b; Shiokawa et al., 1989). 

From the beginning, the Xenopus egg contains quite large amounts of maternal 

mRNA. There is, however, little new mRNA synthesis until 12 cleavages have taken 

place and the embryo contains approximately 4096 cells. The cell cycle is rapid and 

synchronous, oscillating between DNA synthesis and mitosis with no discernible gap (G) 

phases. This well-defined interval, during which the gradual activation of the embryonic 

transcription_ coincides with the acquisition of cell motility after the 12th cleavage and 

transition from synchronous to asynchronous cleavage cycles, is collectively referred as 

the midblastula transition (MBT) (Newport and Kirschner, 1982a; Stancheva and 

Meehan, 2000). 

Within one hour after the 12th cleavage division, the rate of mitosis slows 

significantly (Jones and Smith, 1999a), and several new cell activities appear, including 

activation of RNA transcription in all cells of the embryo, acquisition of motility with the 

formation of Iamellipodia, and the first evidence of lengthened, variable G 1 and 02 

phases in the cell cycle (Newport and Kirschner, 1982a). The first cleavages take place 

at regular 30 to 35 minute intervals in all cells, but at the 12th cleavage they become 

asynchronous as animal and vegetal cells take different amounts of time to complete the 
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next cycle of mitosis. Transcriptional activation after the 12th cleavage division coincides 

with the transition to mitotic asynchrony (Yasuda and Schubiger, 1992). 

At the MBT there are profound changes in the cell cycle. The average cycle 

length progressively increases between the 12th and 16th cycles, as they acquire gap 

phases between DNA replication and mitosis (Newport and Kirschner, 1982a). 

The MBT also marks a dramatic change in the response of the embryo to DNA 

damage. When ionizing radiation is administered any time before the MBT, Xenopus 

embryos initiate apoptosis by triggering different pro-apoptotic factors (Anderson et al., 

1997; Hensey and Gautier, 1997). However, if ionizing radiation is given after the MBT, 

embryos are resistant to apoptosis by multiple mechanisms, including activation of anti­

apoptotic pathways, the inactivation of pro-apoptotic proteins through heterodimerization, 

and by promotion of cell cycle delay by an increase in the level of cyclin-dependent 

kinase inhibitor p27XicI (Finkielstein et al., 2001). 

The control of the MBT is not well known. The timing of the MBT does not 

depend upon rounds of cell division, upon time since fertiliz.ation, upon cell-cell 

interactions, upon rounds of DNA replication or upon initiation of new transcription 

(Newport and Kirschner, 1982a). MBT events such as maternal cyclin E degradation and 

sensitivity to apoptosis are regulated by a developmental timer insensitive to inhibition of 

DNA, RNA or protein synthesis (Maller et al., 2001). Newport and Kirschener (1982b) 

suggested that the timing of the MBT seems to be dependent on reaching a critical ratio 

of DNA to cytoplasm - the quantity of DNA present per unit mass of cytoplasm. Direct 

evidence for this comes from the fact that transcription can be activated prematurely by 
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increasing the amount of DNA artificially in the egg. The amount of DNA needed to 

induce premature transcription is equal to the amount of nuclear DNA present after 

twelve cleavages, suggesting that there may be some fixed amount of a general repressor 

of transcription present initially in the egg cytoplasm, and that the MBT is triggered by 

the DNA through titration of suppressor components present in the egg. As the zygote 

cleaves, the amount of DNA gets larger and larger, when the amount of cytoplasm does 

not increase. Both cell cycle lengthening and the relief of transcriptional repression at the 

MBT were proposed to be regulated by stoichiometric titration of a repressor by the 

exponentially increasing amount of DNA in the embryo. The amount of repressor in 

relation to DNA gets smaller and smaller until it is insufficient to bind to all the available 

sites on the DNA and the repression is lifted (Newport and Kirschner, 1984). 

There are probably several other separate events that regulate this developmental 

switch during MBT. Later models propose that other mechanisms contribute, including a 

decrease in the levels of the maternal DNA methyltransferase (xDnmtl), an enzyme 

involved in methylation of DNA (Stancheva and Meehan, 2000). The Xenopus genome, 

similar to other vertebrates, is methylated at the fifth position of cytosine at CpG 

dinucleotides. DNA methylation contributes to the transcriptional silencing during the 

first twelve cleavages of the zygote, and loss of this epigenetic modification is associated 

with premature activation of developmentally decisive genes and apoptosis of embryo 

cells (Stancheva and Meehan, 2000; Stancheva et al., 2001). Stancheva and Meehan 

(2000) used antisense RNA to deplete maternal levels of xDnmtl, which led to 

hypomethylation of the genome during the first embryonic cleavages and premature gene 
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activation, which causes severe developmental defects in Xe no pus. These results support 

a model where by the repressive effect of DNA methylation at gene promoters is utilized 

to regulate the precise timing of gene expression at MBT. 

Veenstra et al. (1999) found that the transcriptional silence observed before the 

MBT is due to a deficiency in the transcription machinery and can be relieved by increase 

is translation of maternally stored components of basal transcription such as TATA­

binding protein (TBP) RNA, which is strongly upregulated at the MBT (Veenstra et al., 

1999). 

1.2.4 Gastrulation. 

Before gastrulation, the Xenopus blastula has a thin blastocoel roof composed of 

small animal blastomeres, which represents prospective ectoderm, and a massive 

blastocoel floor of large, yolk-rich vegetal blastomeres, which will contribute to the 

endoderm. They enclose the blastocoel, a fluid-filled cavity (Keller, 1986; Dale and 

Slack, 1987a). Pre-gastrula movements in the embryo involve the increase in volume of 

the blastocoel by accumulation of fluid, and expansion and thinning of the blastocoel roof 

in a movement called epiboly (Keller, 1980). Gastrulation follows the blastula stage, and 

involves all the morphogenetic events between the blastula stage and the time when the 

three genn layers are clearly established. The movements of gastrulation involve massive 

rearrangements during which cells change their neighbours and environments, allowing 

for the interactions and inductive processes between various regions of the developing 

body. 
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Dorsal 

Endoderm gut, liver, lungs 

Mesoderm skeleton, muscle. kidney, heart, blood 

Ectoderm skin, nervous system 

Ventral 

Figure 1.5 Three germ layers. Genn layers are specified early in development: 
endodenn, mesoderm and ectoderm that give rise to the associated structures. 
Reproduced from Wolpert et al., 1998. 

Gastrulation transforms the amphibian blastula, a simple hollow ball of cells with 

radial symmetry, into a structured embryo with different cell types that can interact with 

each other, with a distinct body axis and three germ layers: ectodenn, endoderm and 

mesoderm (Figure 1.5) (Keller, 1986; Leptin, 1995). The endodenn in Xenopus is 

derived from cells located in the vegetal hemisphere of the early embryo. The cells of the 

endoderm contribute to the organs of the gastrointestinal and respiratory tracts, including 

the pancreas, liver, gall bladder, stomach, intestine, and lungs. The ectoderm is derived 

from the cells located in the animal hemisphere of the early Xe no pus embryo, and gives 

rise to the epidermis (the outer layer of the skin) and the nervous system. Mesoderm 

gives rise to the connective tissue, muscles, vascular and urogenital systems (Dale and 

Slack, 1987a). The activities of the cells of the mesoderm drive much of the gastrulation 

process (Keller, 1986). 

Initial stages of gastrulation (Figure 1.6) are characterized by a formation of bottle 

cells in the dorsal-vegetal part of the embryo, which can be visible by the appearance of a 

pigmented depression and the associated line of pigment. The bottle cells initiate 
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involution of the cells of mesoderm and endoderm through the blastopore lip. The cells of 

mesodenn and endoderm migrate in the direction of the animal pole, until they form a 

complete, double layered archenteron roof (Hausen and Riebesell, 1991; Jones and 

Smith, 1999b). Invagination of mesoderm and endodenn proceeds laterally and ventrally, 

forming the floor of the archenteron and the side-walls of the embryo. Finally the 

blastopore closes completing gastrulation (Deuchar, 1975). 

The signals that coordinate and control the movements of gastrulation and the 

patterns of specialization of the tissues in its neighbourhood are located at the site where the 

invagination starts, the dorsal lip, which is also called the Spemann Organizer (Alberts et al., 

1989). The Spemann Organizer in amphibians is defined as a population of gastrula cells 

capable of inducing the formation of a second body axis when transplanted into a responsive 

environment such as the ventral side of another gastrula (Spemann and Mangold, 1924 ). 

Only 5% of cells of the gastrula located in the dorsal marginal zone make up the Spemann 

Organizer. At least half the cells of the gastrula require signals from the organizer for their 

normal development. When the organizer is absent due to early removal or interference with 

its formation, the embryo gastrulates but develops none of the neural or mesodermal 

structures characteristic of the antero-posterior axis (Stewart and Gerhart, 1990). The Spemann 

Organizer has a role in establishing left-right asymmetry in the developing embryo (Figure 

1.3 B) (Harland and Gerhart, 1997) and also induces the nervous system of the correct size, 

place, and orientations, as well as dorsal axial mesoderm such as somites (Hemmati-Brivanlou 

and Melton, 1992). In recent years genes involved in mediating organizer function have been 

discovered which have greatly advanced the molecular understanding of organizer signalling. 
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These include genes that are involved in the bone morphogenetic protein (BMP) pathways: 

noggin (Smith and Harland, 1992), chordin (Sasai et al., 1994),fo/listatin (Hemmati-

Brivanlou et al., 1994), Xnr3 (Smith et al., 1995) and cerberus (Bouwmeester et al., 1996). 

marginal 
zone 

Blastula 
stage 10 

convergent 
extension 

Animal pole 

Vegetal pol yolk cells 

D mesoderm D ectoderm D endoderm 

Gastrula 
stage 10.5 

archenteron 

convergent 
extension 

involution 

Gastrula 
stage 12 

Gastrula 
stage 11 

Figure 1.6 Pattern of cell movement during gastrulation in Xenopus development. 
Gastrulation is initiated by the formation of the bottle cells in the blastopore region, 
which is followed by the involution of mesoderm (red) over the dorsal lip of the 
blastopore. Marginal zone mesoderm and endoderm (yellow) move inside. At the same 
time the ectoderm (blue) of the animal cap spreads downwards. The mesoderm 
converges and extends along the antero-posterior axis. Reproduced from Wolpert et 
al., 1998. 
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Spemann Organizer formation is initiated by activation of the early Wnt signaling 

pathway, which in turn activates the expression of organizer-specific genes (Harland and 

Gerhart, 1997; De Robertis et al., 2000). Wnts are a family of secreted proteins involved 

in a wide range of developmental processes, and inXenopus the Wnt pathway is used in 

mesoderm induction to specify the dorso-ventral axis, also for posterization of nervous 

system and subsequent patterning (Harland and Gerhart, 1997). A current model of 

organizer formation involves synergistic interactions between mesoderm-inducing 

signals, such as transforming growth factor-f3 (TGF-P) and fibroblast growth factors 

(FGFs), and dorsal determinants (Lemaire and Kodjabachian, 1996). 

When Spemann Organizer genes are expressed in the ventral marginal zone, some 

of these genes can perform most of the organizer activities, while others perform only a 

limited repe~oire. Among the genes that can induce secondary axis are elements of the 

early Wnt signaling pathway, such as siamois (Lemaire et al., 1995), organizer-specific 

transcription factors such as goosecoid (Cho et al., 1991), and organizer-secreted BMP 

antagonists such as chordin and noggin (Sasai et al., 1994). 

1.2.5 Movements of gastrulation. 

During gastrulation, directed coordinated movements of large cell groups is 

accompanied by changes in cell morphology and cell adhesion. The behavior of cells 

underlying these movements, their timing and patterning are very complex and still not 

completely understood (Popsueva et al., 2001). 
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Figure 1. 7. Cell movement during convergent extension of the mesoderm in 
amphibians. The cells have active lamellipodia (finger-like projections) and move 
between each other (intercalate), causing the tissue to narrow and elongate along the 
antero-posterior axis (reproduced from Wolpert et al., 1998). 

The movement of gastrulation seems to be driven by a combination of 

mechanisms: convergent extension (Figure 1.7) or narrowing and lengthening of the 

marginal zone (Gerhart and Keller, 1986); epiboly (Figure 1.6) or spreading of cells of 

the animal hemisphere, when the animal pole epithelium expands by cell rearrangement, 

becoming thinner as it spreads; involution of marginal zone cells inside embryo (Keller 

and Danilchik, 1988); invagination of the bottle cells (Figure 1.6) and their migration 

with the involuted mesodermal cells towards the animal pole over fibronectin-rich matrix 

lining the roof of the blastocoel (Winklbauer, 1990; Wilson and Keller, 1991; Popsueva 

et al., 200 I). Convergent extension in the marginal zone is the main driving force for 

gastrulation in Xenopus (Gerhart and Keller, 1986; Kuhl et al., 2001 ), when cells form 

lamellipodia (Figure I. 7), with which they attempt to crawl over one another (Shih and 

Keller, 1992). Endogenous Wnt/beta-catenin signaling activity is essential for convergent 

extension movements due to its effect on gene expression (Kuhl et al., 2001). Recent 

evidence suggests that intercellular calcium signaling plays an important role in 
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vertebrate convergent extension, and that calcium waves may represent a widely used 

mechanism by which large groups of cells can coordinate complex cell movements 

(Wallingford et al., 2001). 

Other important mechanisms, which contribute to these morphogenetic 

movements are cell adhesion to the extracellular matrix mediated by transmembrane 

receptors called integrins (Hynes, 1992), and cell-cell adhesion between migrating cells, 

which are mediated via cadherins (Ca2+-dependent transmembrane adhesion proteins) 

(Huber et al., 1996). In addition to integrins, cadherins, and extracellular matrix proteins, 

several other genes, such as milk (Ecochard et al., 1998), XRhoA and XRndl 

(Wunnenberg-Stapleton et al., 1999), and disheveled (Sokol, 1996; Wallingford et al., 

2000) were demonstrated to affect cell movements during gastrulation. 

A fme balance of spatially and temporally regulated adhesion must be maintained 

during gastrulation movements. Cell adhesion strength must be at intermediate level for 

optimal cell movements (Huttenlocher et al., 1995; Palecek et al., 1997). Reduction of 

adhesion between blastomeres is necessary for activin-induced animal cap elongation 

and, most likely, for gastrulation, which was demonstrated by in vitro experiments 

(Brieher and Gumbiner, 1994; Zhong et al., 1999). However, excessive reduction of 

adhesion leads to inhibition of gastrulation (Popsueva et al., 2001 ). 

1.2.6 Mesoderm induction. 

All animal tissues derive from the three germ layers and the mesoderm plays a 

pivotal role in organizing the body axis. Mesodermal cells lead the movement of 

gastrulation, are required for the patterning of the nervous system, and themselves give 
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rise to the muscular, skeletal, circulatory and excretory systems (Hemmati-Brivanlou and 

Melton, 1992). In Xenopus, mesoderm originates from a band of cells in the blastula 

embryo that make up the marginal zone. Through the processes of gastrulation and 

tailbud extension, the various mesoderm derivatives, including the notochord, somites, 

pronephros, heart, and blood islands, arrive at their proper positions along the dorsal­

ventral, anterior-posterior, and left-right axis of the developing tadpole. The specification 

of multiple cell and tissue types within the mesodenn requires a complex interplay 

between localized maternal determinants and secreted maternal and zygotic inductive 

factors (Kessler and Melton, 1994; Harland and Gerhart, 1997; Heasman, 1997; Smith 

and Kumano, 2000). The timing of mesodenn induction in vivo is still unknown. It has 

been roughly estimated to occur between the 32-cell stage and the late blastula (Ding et 

al., 1998), when signals from the vegetal hemisphere induce the equatorial region of the 

embryo to form mesoderm rather than ectodenn (Smith, 1993)- Much of the induction 

and patterning of mesodenn occurs during the processes of gastrulation and tailbud 

extension (Smith and Kumano, 2000). 

It has been shown (Figure 1.8) by fate-mapping studies (Lane and Smith, 1999), 

as well as with models of mesoderm morphogenesis during gastrulation (Keller, 1991), 

that ventral mesodenn originates from the vegetal-most portion of the blastula marginal 

zone, a domain called the leading edge mesoderm. Ventral mesodenn originates from the 

entire ring of the marginal zone (Lane and Smith, 1999; Mills et al., 1999; Ciau-Uitz et 

al., 2000), and not just from those cells furthest away from the Spemann Organizer, as it 

is frequently depicted (Jones and Smith, 1999b; De Robertis et al., 2000). 
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Figure 1.8 Fate map of the late Xenopus blastula, lateral view. 
The normal fate of the blastula is shown. Reproduced from Wolpert et al., 1998. 

On the other hand, sotnites arise from the animal region of the blastula marginal 

zone, and the entire ring of the animal marginal zone, excluding the sector occupied by 

the Spemann Organizer, gives rise to somites (Lane and Smith, 1999). 

Animal 

Ventral 

Vegetll 

Dorsal 

organizer 
tissue 

Figure 1.9 Four-signal model of mesoderm induction. 
Two signals originate in the vegetal region, one (1) on the ventral side, which specifies 
ventral mesoderm, and the other (2) on dorsal side, which specifies the Spemann 
Organizer region (0). The third signal (3) from the dorsal region dorsalizes the 
mesoderm by inhibiting the action of the fourth ( 4) ventralizing signal. Reproduced from 
Wolpert et al., 1998. 
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Four-signal model (Figure 1.9) of mesoderm induction (Slack, 1994; Wolpert et 

al., 1998) was developed over the years of extensive research by many workers. Peter 

Nieuwkoop (1969a,b) first demonstrated the phenomenon of mesodermal induction, by 

observing the behaviour of explants of amphibian embryos. Isolated animal caps develop 

into a kind of epidermis. Vegetal explants either do not develop into recognizable tissues, 

or develop some posterior endodennal characters. When animal caps are grafted into the 

vegetal explants, they form mesoderm (Nieuwkoop, l 969a,b; Harland and Gerhart, 

1997). Nieuwkoop concluded that the mesodenn and the head endodenn develop 

exclusively from the animal cap cells, which were induced by the vegetal cells 

(Nieuwkoop and Ubbels, 1972; Harland and Gerhart, 1997). Boterenbrood and 

Nieuwkoop (1973) found that explants of dorsal vegetal cells induce dorsal mesoderm, 

and explants of ventral vegetal cells induce ventral mesodenn (Harland and Gerhart, 

1997). Slack and Smith (1983), Dale et al. (1985), Dale and Slack (1987b) proposed a 

three-signal model of mesodenn induction (Harland and Gerhart, 1997). According to 

this model, two signals originate in the vegetal region, one on the dorsal side from the 

region of the Nieuwkoop centre, and the other from the ventral region. The dorsal signal 

specifies the Spemann Organizer, which itself becomes the most dorsal mesoderm tissue 

of the tadpole, notochord, while the remaining circumference around the marginal zone is 

initially specified as ventral. The bone morphogenetic protein (BMP) gradient·model of 

mesoderm patterning attempts to explain the dorsal-to-ventral specification of mesoderm 

derivatives in Xenopus (Dale and Jones, 1999; Smith and Kumano, 2000). In this model, 

a gradient of BMP activity is generated in the marginal zone through the action of the 
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Spemann Organizer. The Spemann Organizer is the source of a number of secreted 

factors (Figure 1.10), including noggin, chordin, follistatin, and Xnr-3, that antagonize 

the activity of a uniformly expressed field of BMPs in the marginal zone (Harland and 

Gerhart, 1997; Heasman, 1997; Dale and Jones, 1999; Smith and Kumano, 2000). This 

model proposes that as a result of the antagonistic actions between BMPs and inhibitory 

factors, mesoderm closest to the Spemann Organizer is exposed to the lowest levels of 

BMPs and is thereby specified as dorsal; conversely, mesodenn farthest away from the 

Spemann Organizer is exposed to the highest levels of BMPs and is specified as ventral. 

This model has continued to be a useful interpretation of the embryological results, 

although it has been modified. Wolpert et al. (1998) proposed a four-signal model where 

the third signal, from the ventral region, ventralizes the mesoderm and the fourth signal 

dorsalizes it by inhibiting the action of the third signal (Figure 1.9). 

Animal 

Ventral 

Veg eta I 

-- Dorsal 

rganizer 
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~ BMP-4 

Xwnt-8 

chord in, 
noggin 

Figure 1.10 Distribution of protein signals in Xenopus blastula. 
Modified from Wolpert et al., 1998. 
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In many laboratories considerable research has been conducted to characterize the 

molecules involved in mesoderm induction and axial patterning, and it is generally 

agreed that mesoderm induction in the marginal zone of Xenopus embryos is mediated by 

diffusible growth factor-like molecules. Several molecules have been proposed as 

candidates for mesoderm-inducing signals, including members of the fibroblast growth 

factor (FGF) family such as basic FGF (bFGF) and embryonic FGF ( eFGF), as well as 

members of the transforming growth factor f3 (TGF-~) family such as Vgl, the bone 

morphogenetic proteins BMP-2 and -4 and activins A and B. The use of the animal cap 

assay has greatly assisted in the identification and purification of candidate inducing 

factors. When animal cap tissue is explanted from a blastula embryo and cultured in 

isolation it develops into a ball of epidermis. In the presence of an inducing factor or if 

animal cap explants are cultured in combination with tissue taken from the vegetal 

hemisphere, the animal cap will differentiate into mesodermal derivatives, including 

notochord, muscle and blood (Slack, 1994). These animal-vegetal combinations, also 

known as 'Nieuwkoop' combinations, provide a powerful tool for investigating the 

endogenous mesoderm-inducing signals. Experiments of this type also showed that the 

vegetal hemisphere could be divided into two regions based upon the dorsoventral nature 

of inductions elicited in such combinations (Dale and Slack, 1987a). 

Dorsal and ventral type mesoderm is qualitatively different and different factors 

induce the differentiation of specific mesodermal tissues. As tested by microinjection of 

RNAs and/or by animal cap assays the demonstration that FGFs and BMP-4 (Jones et al., 

1992; Dale et al., 1992) induce ventral-type mesoderm, such as blood, mesenchyme and 
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mesothelium, whereas activin (Asashima et al., 1990; Thomsen et al., 1990) and some 

members of the Xwnt family (Smith and Harland, 1991; Ku and Melton, 1993; Wolda et 

al., 1993) induce dorsal-.type mesodenn such as muscle and notochord in the mesoderm 

induction assay quickly established them as candidates for the endogenous inducing 

signals. However, it is not simple, as the concentration of the factor and the determination 

state of the competent cells can greatly influence the type of response. For example 

activin A at low concentration also induces ventral type tissues (Grunz, 1983) and Xwnt .. 

8 after MBT has a ventralizing effect (Christian and Moon, 1993). 

According to the above, dorsalizing signals such as activin A should activate 

those genes which are preferentially expressed in the dorsal blastopore lip, like Xlim- 1, 

goosecoid or XFD- 1; ventralizing signals such as FGF should activate the genes which 

are transcribed in the ventral: posterior area, likeXhox- 3, and probably both signals 
' 

should activate the genes which are initially activated throughout the marginal zone, like 

Xbra or Xsna. It was confirmed by several laboratories (Cho et al., 1991; Smith and 

Harland, 1992; Taira et al., 1992) that activin A and bFGF were able to activate 

transcription of distinct genes in isolated animal caps. Most genes (Xsna, Mix.1, Xlim-1, 

Goosecoid, XFD-1) were induced by activin A, but only some of them (Xsna, Xhox-3, 

Xnot) by bFGF. This corresponds to the fact that different threshold concentrations of 

activin A can induce either ventral or dorsal mesodenn. By contrast, bFGF induces only 

tissues of ventral or of intermediate mesoderm. However, genes like goosecoid, XFD-1, 

Xlim- 1, noggin, which are primarily transcribed in the dorsal blastopore lip, do respond 

exclusively to activin A (Cho et al., 1991; Smith and Harland, 1992; Taira et al., 1992). 
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On the other hand, mesoderm induction by FGF can be modified to a more dorsal-type in 

a number of ways. For example, it has been shown that co-treatment with the dorsalizing 

agent lithium (Slack et al., 1988; Kao and Elinson, 1988) and the injection of Xwnt- 8 

mRNA into animal caps results in a more dorsal-type induction following FGF treatment 

(Christian et al., 1992). This has led to the proposal that an FGF could also be a 

component of the dorsal mesoderm-inducing signal. 

One way to assay for inductive potential of the factors is by the "animal cap serial 

dilution assay". This involves exposing isolated midblastula stage animal caps to serial 

dilutions of the suspected inducer and cultured for up 3 days, after which mesoderm 

induction is assessed by either morphological or molecular criteria. A positive response is 

indicated by elongation of the explants and formation of vesicles. A commonly used 

molecular marker is muscle-specific alpha-cardiac actin mRNA. A more recent assay is 

the detection of brachyury (Xbra) mRNA (Godsave et al., 1988; Kimelman and Maas, 

1992; Thompson and Slack, 1992). Members of the fibroblast growth family, in 

particular bFGF, and the TGF-~ family, notably activins, are potent inducers in this 

assay. Activin protein and bFGF can be detected in the early embryo (Hemmati­

Brivanlou and Melton, 1992). 

1.2. 7 Role of Activin A in mesoderm induction. 

Activin satisfies all the requirements to be an endogenous mesoderm-inducing 

signal. Activin A, which is a member of the TGF-~ class of growth factors, was first 

identified by Smith et al. (1990) to be an active ingredient, produced by a Xenopus tissue 

culture (XTC) cell line. Isolated animal pole regions cultured in XTC-conditioned 
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medium differentiate into dorsal mesodermal tissues, muscle and notochord, while 

controls form epidermis (Smith et al., 1990). It is important to note that the XTC factor, 

the vegetalizing factor and a factor isolated from amniotic fluid, have been proven to be 

identical or closely related to activin A (Tiedemann et al., 1992). 

Activin protein is present inXenopus oocytes and blastulae (Fukui et al., 1994) 

and acts as a morphogen. It induces various cell types and expression of a range of 

mesodermal markers in a concentration-dependent manner (Green and Smith, 1991). 

Activin response elements (AREs) have been reported in several activin-inducible 

transcription factor genes, such as the homeobox genes goosecoid (Watabe et al., 1995), 

Mix.2 (Huang et al., 1995), HNFJ a (Weber et al., 1996), andXlim-1 (Rebbert and 

Dawid, 1997), a T-box geneXbra (Latinkic et al., 1997), and aforkhead gene XFD-1 

(Kaufmann et al., 1996). Although the mechanisms regulating transcription of these 

genes remain poorly understood, molecules such as:forkhead activin signal transducer-I 

(FAST-1), Smad2, Smad3, and Smad4 were identified as components of activin response 

factors (ARFs) (Chen et al., 1996, 1997; Yeo et al., 1999). Xenopus xFAST was found to 

take part as an endogenous mediator ofmesendoderm induction (Watanabe and 

Whitman, 1999). 

Smad proteins are a group of recently identified family of proteins which mediate 

signalling for the TGF-(3 superfamily of cytokines, including TGF-p, activin, BMPs, and 

many others (Heldin et al., 1997). TGF-P initiates signaling through activation of type I 

receptor (Wrana et al., 1994; Derynck and Feng 1997), which phosphorylates and 

activates Smad2 and/or Smad3 (Heldin et al., 1997; Nakao et al., 1997a). Following 
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phosphorylation, Smad2 and Smad3 associate and form complexes with the shared 

partner Smad4. These complexes then migrate to the nucleus, and regulate gene 

transcription through either direct DNA binding, via the MHl domain of the Smad 

proteins, or association with other specific transcription factors, such as Xenopus F AST-1 

in which Smad protein complexes participate in transcriptional activation of target genes 

(Derynck et al., 1998). The expression of inhibitory Smad7, which is induced by TGF-'3 

itself, provides an autoinhibitory feedback loop (Nakao et al., 1997a). This protein 

inhibits TGF-p, activin and BMP signalling by interacting with the type I receptors of the 

TGF-J3 superfamily, or competing for the complex formation between pathway-specific 

Smads and Smad4 (Nakao et al., 1997b). 

1.2.8 Role of bFGF in mesodermal induction. 

Members of the FGF family of secreted signalling molecules are implicated in the 

regulation of cell survival, proliferation, migration and differentiation in embryonic and 

adult life of vertebrates (Fernig and Gallagher, 1994). In later stages, FGF signalling is 

required for various aspects of organogenesis, including the growth and patterning of the 

brain, initiation and outgrowth of the limb buds and tooth morphogenesis (Thesleff and 

Sharpe, 1997; Reifers et al., 1998). The FGF family consists of two closely related 

isoforms (basic and acidic FGF). The existence of at least twenty FGFs have been 

discovered in vertebrates that are characterized by the presence of a conserved 120 amino 

acid core region. FGF signaling is established by specific interactions between ligands 

and receptors followed by a pathway in which these signals eventually activate genes that 
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encode transcription factors (Galsie et al., 1997; Miyake et al., 1998; Klint and Claesson­

Welsh, 1999). 

Both bFGF mRNA and protein have been shown to be present in the early 

embryo, while bFGF mRNA levels are high in oocytes, they drop by 25-fold during 

oocyte maturation and abruptly increase at the MBT when zygotic transcription ofbFGF 

is activated. There is evidence that bFGF is present in the marginal zone and vegetal pole 

of the early blastula (Shiurba et al., 1991; Song and Slack, 1994). However, a more recent 

report shows that the distribution ofbFGF protein and mRNA is found predominantly in 

the animal hemisphere of the blastula. Basic FGF is widely expressed in later 

development through neurula and tailbud stages in the central nervous and somatic tissue 

(Song and Slack, 1994). A number of biological experiments provides further evidence 

that bFGF is not a component of the vegetal inducing signal and casts doubt on a major 

role for bFGF in mesoderm induction. Basic FGF lacks a signal peptide. Although in 

some systems FGFs lacking a signal peptide have been shown to be secreted by novel 

mechanisms (Jackson et al., 1992; Mignatti et al., 1992), there is good evidence that 

bFGF is not secreted efficiently from cells of the early Xenopus embryo (Isaacs et al., 

1994). 

The receptors for bFGF are from the tyrosine kinase receptor family. Dominant 

negative receptor mutants obtained by microinjection of RNA encoding truncated bFGF 

receptors cause severe deficiencies in developing embryos. bFGF signalling was found to 

be an essential component of the activin pathway. Animal caps dissected from embryos 

injected with dominant inhibitory mutants of truncated bFGF receptors did not elongate 
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upon activin treatment; transcription of Xbra, Xnot, Mix 1 and cardiac actin genes is 

greatly inhibited, while transcription of some other genes, like goosecoid, Xlim- 1 and 

Xwnt- 8 is only slightly diminished (Cornell and Kimelman, 1994; LaBonne and 

Whitman, 1994). 

There is rapidly growing information on molecules which may act downstream of 

the FGF receptor. bFGF signalling may be mediated by the bFGF receptor-ras-raf-MAP 

kinase kinase (MEK) MAP kinase pathway. FGFs elicit their signalling through the 

binding to the transmembrane tyrosine kinase FGF receptor (FGFRs). The four existing 

FGFRs genes encode seven receptor isoforms with different binding affmities for the 

various FGFs (Ornitz et al., 1996). Binding FGF to the receptor induces dimerisation of 

the FGFRs. Activation of receptor leads to the autophosphorylation of a tyrosine residue 

of the receptor. This modification leads to the recruitment and phosphorylation of the 

lipid-anchored protein FRS2, which then interacts with the Src Homology 2 (SH2) 

domain-containing adapter protein Grb2 (Kouhara et al., 1997). Grb2 then allows the 

binding of the guanine nucleotide exchange factor Sos, which meditates the activation of 

the membrane-bound monomeric G-protein Ras (Lowenstein et al., 1992). This in turn 

induces the activation of the kinase cascade comprising Raf, mitogen-activated protein 

kinase (MAPK) and MAPK kinase (MEK), the last member of which fmally enters the 

nucleus and phosphorylates target transcription factors (Sternberg and Alberola-Ila, 

1998). 

Animal cap cells are competent to respond to mesoderm induction by FGFs from 

early cleavage stages until the late blastulae stages inXenopus laevis (Slack et al., 1988) 
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At low concentrations of FGF, inductions are of an extreme ventral character (Slack et 

al., 1987). Such animal caps form vesicles consisting of an "outer jacket" of epidennis 

surrounding loosely packed mesenchyme and a layer of mesothelium, while at higher 

concentrations the inductions are of a more lateral character with most of the explants 

contain a significant number of muscle blocks. However, even at the highest doses, 

explants taken from the animal pole region never form notochord in response to FGF 

treatment. FGFs have also been shown to be implicated in the establishement of 

anteroposterior and dorsoventral body axis (Lamb and Harland, 1995; Furthauer et al., 

1997). 

1.2.9 Xenopus brachyury, a marker of mesoderm inducti.on. 

Xbra is theXenopus homologue of mouse brachyury (Smith et al., 1991), which 

has been implicated in mesoderm formation and notochord differentiation. The 

corresponding gene encodes a transcription factor containing the T-box and is expressed 

specifically in nascent mesoderm and in the differentiating notochord (Kispert and 

Herrmann, 1993; Herrmann and Kispert, 1994). lnXenopus the gene is activated after 

MBT in the marginal zone; transcripts are found at gastrula stage in a ring of involuting 

mesodenn and later within the notochord. As shown by animal cap explants, Xbra 

expression occurs as a result of mesoderm induction both in response to the natural signal 

as well as to bFGF and activin A. The expression of Xbra defines a developmental stage 

at which Xbra-expressing cells can respond to dorsal-inducing factors, like Xwnt-8 and 

noggin (Cunliffe and Smith, 1994). 
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1.2.10 Neurulation and beyond. 

By late gastrula (stage 12-12.5), the blastopore is nearly closed and the yolk plug 

is small (Figure 1.4). By this stage the three germ layers have reached their defmitive 

position (Keller, 1991 ). 

Neurulation is the formation of the neural tube, the early embryonic precursor of 

the central nervous system. The first sign of neurulation in Xenopus is the thickening of 

the inner layer of dorsal ectoderm (Jones and Smith, 1999a). As ectodermal cells elongate 

and become columnar, they appear on the dorsal side of the embryo as a raised plate of 

cells, the neural plate. Then it proceeds by the formation of the dark pigment line along 

the dorsal midline of the embryo and neural folds, which form on the edges of the neural 

plate (Papalopulu and Kintner, 1994). These rise up, fold towards the midline and fuse 

together to form the neural tube, which sinks beneath the epidermis. The neural plate and 

neural tube extend along the anterior-posterior axis of the embryo. The elongation of the 

neural plate and neural tube is due to convergent extension, just as is found for the 

involuting/invaginating cells during gastrulation. The involuting dorso-anterior 

mesoderm induces the adjacent mesoderm to form anterior neural tissue. As the 

mesoderm migrates toward the former animal pole, it contacts progressively more 

overlying ectoderm, which is also induced to form anterior neural tissue. The anterior 

neural tube gives rise to the brain; further back, the neural tube will develop into the 

spinal cord (Kessler and Melton, 1994; Jones and Smith, 1999a). 

The most lateral part of the neural plate, which is not incorporated into the neural 

tube, becomes the neural crest Neural crest cells migrate from their initial position just 
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dorsal to the neural tube to many different positions in the body and give rise to the 

neurons of the sensory and autonomous (i.e., sympathetic and parasympathetic) nervous 

system, as well as other, non-neural cells such as melanocytes (pigment cells) (Jones and 

Smith, 1999a). 

Neuroectoderm can be induced by elimination of BMP signalling by signals 

released from dorsal mesoderm such as: noggin, chordin, and follistatin (Weinstein and 

Hemmati-Brivanlou, 1999). Noggin and chordin were initially identified as secreted 

factors that can dorsalize the mesodenn. Follistatin is an activin antagonist that can also 

dorsalize mesoderm when injected as mRNA. Messenger RNA for all three factors can 

cause induction of neural tissues from the isolated animal cap of Xe no pus. Likewise, all 

three are expressed in the dorsal lip and axial mesoderm of neurulae. BMP-4, is a TGF-B 

family member that has strong mesoderm ventralizing and antineuralizing activity, which 

is expressed throughout the gastrula of Xenopus, except for the dorsal lip and animal cap 

regions (Figure 1.10). The proposed neural inducers (noggin, chordin and follistatin) all 

promote the formation of anterior neural tissue. Thus, additional factors are required to 

produce posterior neural ectoderm. Possible factors involved in posteriorization are FGF, 

retinoic acid and Wnt-3a (Sasai and De Robertis, 1997). 

Finally, during and after neurulation, the mesoderm becomes subdivided into 

different tissues along the dorsoventral axis; the most dorsal mesodennal cell type is the 

notochord, a rod of vacuolated cells running the length of the embryo. Lateral to the 

notochord, are the cells of the somites, which in Xenopus form predominantly muscle, 

and lateral and ventral to the somites are the cells of the pronephros. The lateral 
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mesoderm goes on eventually to form structures such as the limbs, and the most ventral 

mesoderm becomes blood (Jones and Smith, 1999a). 

Work of Agius et al. (1999) suggests that double inhibition of both theXnr-1 and 

BMP-4 transduction pathways by Cerberus is sufficient for head induction in ventral 

mesoderm explants (Agius et al., 1999). Two homeobox genes, Xrxl and Xvax2, were 

identified to control key aspects of eye development. In particular, Xrxl appears to play a 

role in the early specification of anterior neural regions fated to give rise to retina and 

forebrain structures, and in promoting cell proliferation within these territories. On the 

other hand, Xvax2 is involved in regulating the eye proximo-distal and/or dorsoventral 

polarity, and the morphogenetic movements taking place during formation of the optic 

stalk and cup (Lupo et al., 2000). The secreted signalling molecule Sonic hedgehog (Shh) 

is essential for development of organizing structures at the ventral midline and the 

specification of neurons and glia (Goodrich and Scott, 1998). In addition, recent evidence 

has indicated that Shh regulates the proliferation of granule neuron precursors in the 

cerebellum (Dahmane and Ruiz-i-Altaba, 1999; Wallace, 1999; Wechsler ... Reya and 

Scott, 1999). Proliferative effects associated with the Shh pathway activation have also 

been described in the developing neural tube (Goodrich et al., 1997, Kalyani and Rao, 

1998; Rowitch et al., 1999) and retina (Jensen and Wallace, 1997; Levine et al., 1997). 

The main vertebrate features can be recognized in a tadpole stage of the frog. 

At the anterior end the brain is divided up into a number of regions .. There are also three 

branchial arches, from which the most anterior one will form the lower jaw. More 

posteriorly, the somites and the notochord are well developed. A transverse section 
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through the trunk of a Xenopus larva shows a characteristic vertebrate pattern along the 

dorsoventral axis, with the notochord occupying the dorsal midline (Wolpert et al., 1998). 

The somites are found ventral and lateral to the notochord, followed by lateral plate and 

mesenchyme. The Xenopus tadpole gut is composed of an outer smooth muscle layer, 

derived from the mesodenn, and an inner epithelial layer, derived from the endoderm 

(Chalmers and Slack, 1998). The post-anal tail of the tadpole is fonned last. After 

organogenesis is completed, the mature tadpole hatches out of its jelly covering and 

begins to swim and feed. Later the tadpole larva will undergo metamorphosis to give rise 

to the adult frog; the tail regresses and the limbs form (Figure 1.4, stage 45) (Wolpert et 

al., 1998). 

1.3 Role of ReV NF-KB in the early develonment in Xenopus. 

J.3.1 Signal transduction by ReVNF-KIJ proteins. 

Rel/Nuclear factor-KB (NF-KB) is a dimeric transcription factor comprised of 50 

kDa and 65 kDa subunits. NF ·KB was discovered as a regulator of immunoglobulin 1C 

light-chain transcription through the "KB" site in the intron enhancer. Consistent with its 

role in K gene expression, NF-KB was found constitutively in the nucleus in 

B lymphocytes .. The primary role of the Rel/NF-KB transcription factors is to control a 

variety of physiological aspects of immune and inflammatory responses (Sen and 

Baltimore, 1986). 

In mammals, the Rel family is composed of Rel (c-Rel), RelA (p65), NF-KB I 

(p50), NF-KB2 (p52) and RelB, which have sequence similarity over approximately 300 

amino acids in the amino-terminal half of the protein (the Rel homology domain (RHD), 
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which encompasses sequences required for DNA binding, dimerization with other 

subunits and interaction with the inhibitor of rl3 (lrl3) family of inhibitor proteins 

(Baeuerle and Henkel, 1994; Baldwin, 1996). NF-rl3 subunits are able to homo- or 

heterodimerize to form transcription factor complexes with a range of DNA-binding and 

activation potentials. Although all Rel members bind DNA, only RelA (p65), c-Rel, and 

RelB have extended carboxy-terminal transcriptional transactivating domains (Verma et 

al., 1995). 

NF-rl31 and NF-rl32, which are derived by proteolytic cleavage from the N­

terminus of the precursors p105 and plOO respectively, only comprise the RHD and are 

devoid of intrinsic transactivating function (Baeuerle and Henkel, 1994). The 

predominant form ofNF-rlJ-like DNA binding activity found in most cells is the 

RelA/NF-rl31 heterodimer. With the exception ofRelB, which only dimerizes with 

NF-rl31 or NF-rl32, the remaining subunits form all possible heterodimer or homodimer 

combinations (Baeuerle and Henkel, 1994). Rel/NF-rl3 transcription factors bind to 10 

base pair DNA sites (rl3 sites) as dimers. The activity ofNF-rlJ is tightly regulated by 

interaction with inhibitory rl3 (lrl3) proteins. In most cells Rel/NF-rl3 is present as a 

latent, inactive, Irl3 -bound complex in the cytoplasm (Gilmore, 1999). 

Various intracellular pathways evoked by a wide range of biological factors and 

environmental conditions (Figure 1.11) including inflammatory cytokines, phorbol esters, 

bacterial toxins (such as lipopolysaccharide), viruses, growth factors, UV light, free 

radicals and a variety of mitogens (Baeuerle and Henkel, 1994) can activate the 

Rel/NF-rl3 dimer by signaling degradation of the Rel/NF-rl3 inhibitor Irl3 protein 

34 



(Gilmore, 1999). The IKB family members have in common a series of ankyrin repeats, 

which interact with the DNA-binding domain and the nuclear localization signal (NLS) 

of NF-KB, thus maintaining the transcription factor as an inactive complex (Zandi et al., 

1997). IKB degradation uncovers a NLS in each subunit of the Rel/NF-KB dimer and 

allows the dimer to translocate from its inactive cytoplasmic location into the nucleus 

(Baeuerle and Henkel, 1994). 

Almost all signals that lead to activation of NF-KB converge in a high molecular 

weight complex that contains a serine-specific IKB kinase (IKK). The IKK is an unusual 

kinase in that it contains two related kinases, IK.Ka and IK.Kp, that are active as a dimer 

(Figure 1.11 ). Upon cellular activation, these inhibitors are rapidly phosphorylated on 

two amino-terminal serines, then ubiquitinated, and degraded by the 268 proteasome, 

releasing a functional NF-KB (Zandi et al., 1997). The unmasked NF-KB can then enter 

the nucleus to activate the expression of a variety of genes including those encoding 

cytokines, growth factors, acute phase response proteins, immunoreceptors, other 

transcription factors, cell adhesion molecules, viral proteins and regulators of apoptosis 

(Ghosh and Chen, 1999). One of the target genes activated by NF-KB is IKBa. Newly 

synthesized IKBa can enter the nucleus, remove NF-KB from DNA, and export the 

complex back to the cytoplasm to restore the original latent state (Gilmore, 1999). Rel/ 

NF-KB are expressed in a wide variety of tissues and transactivate genes that are involved 

in the immune response, apoptosis, cancer, and development. 
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Figure 1.11 NF-rlJ activation and its inhibition. 
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Such extracellular inducers as: reactive oxygen species (ROS), ubiquitin (Uh), 
ultraviolet light (UV) can activate IKB kinase (IKK). Activated IKK can phosphorylate 
IKBa associated with NF-KB p50/p65 heterodimer. The activation of IKK and 
phosphorylation oflKBa can be blocked by antioxidants and NO. Phosphorylated 
IKB a then serves as a substrate for ubiquitination, which is followed by degradation of 
IKBa by proteasomes. The inhibitors of proteasomes or proteases can block this process. 
After degradation of IKBa, the p50/p65 complex translocates into the nucleus and binds 
to the KB-sites of gene promoters. Both glucocorticoids and NO can decrease the DNA­
binding activity of NF-KB. 
Activation ( ~ ); inhibition ( ---1 ). 
Reproduced from Chen et al., 1999. 
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J.3.2 Involvement of ReV NF-KB proteins in cell growth, apoptosis and oncogenesis. 

There is growing evidence describing roles for Rel/NF-KB family members in 

controlling the balance between the normal cell cycle, apoptosis and oncogenesis. 

Deregulated NF-KB activity has been associated with oncogenesis. As many as 100/o of 

all human B- and T-cell neoplasias can have alterations in the Rel or IKB genes 

(Baldwin, 1996). In addition, reports show elevated Rel/ NF-KB levels in several human 

cancers, including primary breast cancers (Sovak et al., 1997), non-small cell lung 

carcinoma (Mukhopadhyay et al., 1995), thyroid cancer (Gilmore et al., 1996), T- or B­

cell lymphocyte leukemia (Bargou et al., 1996), and several virally-induced tumours, 

such as HTL V-1-induced acute leukemia of CD4+ T cells (Miwa et al., 1997); Epstein­

Barr virus-induced Burkitt's and Hodgkin's lymphoma (Berger et al., 1997). 

NF-KB is activated by oncogenic Ras and is required by Ras to induce foci in NIH 

3T3 cells (Finco et al., 1997). Hodgkin's lymphoma cells depleted of NF-KB activity 

revealed strongly impaired tumour growth in mice (Bargou et al., 1997). The only 

member of this group that remains consistently oncogenic in vitro and in vivo is v-Rel, 

which induces oncogenic transformation in avian lymphoid cells (Gilmore et al., 1996; 

Carrasco et al., 1996). Still, the exact mechanisms by which these proteins contribute to 

the disregulation of cell growth remain unclear. 

Members of the Rel/NF-KB protein family have been implicated in signal 

transduction programs to regulate apoptosis in a variety of cell types, either in positive or 

negative ways. The role of NF-KB in the apoptosis process is not straightforward, 

whether Rel/ NF-KB promotes or inhibits apoptosis appears to depend upon the specific 
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cell types and the type of inducer (Gilmore, 1999). The fmding that NF-KB is activated 

during or immediately before cell apoptosis under certain stimulatory conditions has led 

to the suggestion that this transcription factor may function to promote apoptosis 

(Marianneau et al., 1997; Baichwal and Baeuerle, 1997). Treatment of human 

thymocytes and promyelocytic leukemia cells with etoposide activates NF-KB and 

induces apoptosis (Bessho et al., 1994). NF-KB is concomitantly activated with TNF a­

induced apoptosis in certain cell types (Kitajima et al., 1996). It has also been shown that 

inhibition ofNF"'KIJ gene activity by certain antioxidants prevents apoptosis (Bessho et 

al., 1994). 

Numerous recent studies have clearly demonstrated an anti-apoptotic role for 

NF-KB (Li and Stark, 2002). Rel/NF-KB was found to prevent cell death elicited by the 

cytokine tumour necrosis factor alpha (TNF-a). The ability of NF-KB to protect cells 

against chemotherapeutic drugs or TNF-mediated apoptosis function, demonstrates the 

need for NF-KB function for cell survival (Chen et al., 1999). In the absence of NF-KB 

activation, TNF can trigger the caspase cascade by interacting with Fas-associated death 

domain protein, which then recruits and activates caspase-8 (Salvesen and Dixit, 1997; 

Green and Reed, 1998; Thornberry and Lazebnik, 1998). Active caspase-8 promotes cell 

death by either directly processing other downstream caspases or cleaving the cytosolic 

Bid protein, a proapoptotic family memberofBcl-2 (Green and Reed, 1998; Luo et al., 

1998). Truncated Bid translocates to mitochondria, resulting in the release of 

cytochrome c from mitochondria into the cytosol and the subsequent activation of 

apoptosis (Luo et al., 1998). However, in the presence of NF-KB activation, the caspase-
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8-mediated apoptotic pathway is suppressed (Wang et al., 1998). Inhibition of NF-KB led 

to apoptosis in cells expressing oncogenic forms of Ras (Mayo et al., 1997)_ Neiman et 

al. (1991) showed that v-Rel .. transformed chicken tumour cells were resistant to 

apoptosis-inducing stimuli, such as radiation and dexamethasone, when grown in cell 

culture (Neiman et al., 1991). 

Recent demonstrations that cellular proliferation defects, attributed to the absence 

of NF-KB, are associated with a delay in cell cycle progression in Gl (Bargou et al., 

1997) in addition to the previously described physical association with NF-KB and 

CBP/p300 (Perkins et al., 1997), establishes a link between NF-KB and regulators of the 

cell cycle. In addition, numerous studies indicate that NF-KB also functions in promoting 

cell growth. For instance, p50/p52 double-knockout animals fail to generate mature 

osteoclasts and B cells (lotsova et al. , 1997), which also shows the critical roles of 

NF ... KB in development. 

1.3.3 Role of ReVNF-KIJ proteins in development. 

The role of NF-KB has expanded from an immune response factor for the 

development and function of B cells, to that regarding the development and function of 

many other cells, including T cells, thymocytes, dendritic cells, macrophages, and 

fibroblasts. Rel/NF-kappaB is also a critical factor in the embryonic development of 

multiple organ systems including the liver, lung, and limbs. Recent reports demonstrate 

the expression of Rel/NF-KB proteins in the proliferative zone of the developing avian 

limb bud and the requirement of NF-KB for the proper growth of this tissue. Inhibition of 

NF-KB activity in limb mesenchyme leads to an arrest in limb growth and a reduction in 
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expression of Shh, Twist and altered expression pattern of BMP-4, Lhx-2, FGF-8, Msx-1 

(Bushdid et al., 1998; Kanegae et al., 1998). 

From a molecular standpoint, the development of the lung shows marked 

similarities to that of the limb. Both processes utilize many of the same signals to direct 

morphogenesis of the developing lung. Specifically, FGFs, BMP-4, and Shh regulate 

branching and proliferation of the lung epithelium (Hogan, 1999). NF-KB acts as a 
\ 

mediator of epithelial-mesenchymal interactions in the developing chick limb, directing 

gene expression that ultimately regulates cell growth or differentiation. High-level 

expression of Re/A was found in the nonbranching lung mesenchyme but was not 

detected in the branching structures of the lung. Inhibition of mesenchymal NF-KB in 

lung cultures resulted in increased epithelial budding, while activation of NF-KB in the 

lung mesenchyme repressed budding. Expression patterns of several genes were altered 

in response to changes in mesenchymal NF-KB activity, including FGF-10, BMP-4, and 

TGF-Pl. NF-KB represents the first transcription factor reported to direct the branching 

morphogenesis of the developing chick lung, functioning within the chick lung 

mesenchyme to limit growth and branching of the adjacent epithelium (Muraoka et al., 

2000). 

There is evidence that NF-KB activates the Shh signalling pathway in the 

development of vertebrates (Bushdid et al., 1998; Kanegae et al., 1998). The only 

transcription factor shown to be directly downstream of Shh is the zinc-finger containing 

protein Gli, in vertebrates. In addition to normal development of limb (Bushdid et al., 

1998; Kanegae et al., 1998) and lung (Muraoka et al., 2000), Shh/Gli signalling is 
r 

i' 
,<, 
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required for normal patterning of the skeletal and nervous system, as well as in 

tumourigenesis (Matise and Joyner, 1999; Park et al., 2000). 

Other examples of the role of Rel/NF-KB proteins in development: in a mouse 

gene knockout study, disruption of the Re/A (p65) locus led to embryonic death at 15- 16 

days of gestation, accompanied by massive degeneration of the liver as a result of 

apoptosis (Beg et al., 1995). Mice with suppressed NF-KB reveal defective early 

morphogenesis of hair follicles, exocrine glands and teeth. These affected epithelial 

appendices normally display high NF-KB activity, the suppression of which results in 

increased apoptosis. Furthermore, NF-KB is required for peripheral lymph node 

formation and macrophage function (Schmidt-Ullrich et al., 2001). Additionally, 

disruption of the IKKJ locus in mice severely impairs signal activation of NF-KB and 

results in truncation of both the fore- and hindlimbs (Takeda et al., 1999). In NF-KBJ 

(p50) gene knockout mice, development of immune cells was defective but these mice 

appeared to have normal embryogenesis (Sha et al., 1995; Weih et al., 1995). 

Dorsal, a Drosophila fly homolog of NF-KB family members, is vital for the 

establishment of the embryonic dorso .. ventral axis during development, it is localized to 

nuclei of blastoderm cells in a dorsal-to ventral gradient (Drier et al., 2000). Genetic and 

biochemical studies indicate that dorsal activates body patterning genes such as twist and 

snail that specify mesodermal and neurogenic cell lineages. Activation of twist and snail, 

in ventral regions of early embryos, is the first step in the differentiation of the 

Drosophila mesoderm (Drier and Steward, 1997; Govind, 1999). lnXenopus laevis 

embryonic members of the Toll/Spiitzle signalling pathway could induce a secondary 
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body axis, which suggests a possibility that a Dorsal-like morphogen might also exist in 

amphibians (Armstrong et al., 1998). The exact role ofNF-KB family members in the 

development of cell lineages and embryonic development remains to be defined. 

J.3.4. Involvement of ReVNF-kB in mesoderm induction. 

In addition to acting as a mediator of epithelial-mesenchymal interactions in the 

developing chick lung (Muraoka et al., 2000) and limb tissue (Kanegae et al., 1998; 

Bushdid et al., 1998), Rel/NF-kB proteins were also found to have a role in mesoderm 

induction (Beck et al., 1998). Suppression of Xenopus RelA (XrelA) activity in early 

oocytes by expression of dominant inhibitor mutant of XrelA in animal caps blocks the 

induction of mesoderm and prevents the maintenance of Xbra expression by bFGF, 

showing that this mutant inhibits gastrula stage FGF signaling downstream of MAP 

kinase and Xbra expression. In addition, this mutant also prevents activin-generated 

elongation movements in animal caps (Beck et al., 1998). 

1.3.5 Interaction of NF-kB in activin signalling pathway. 

Several studies show that NF-KB and TGF-f3 signaling pathways were found to 

interplay and oppose each other in coordinating cellular physiological responses. TGF-P 

was found to antagonize the activation of important target genes of pro inflammatory 

stimuli of NF-KB in macrophages and lymphocytes, such as inducible nitric oxide 

synthetase (iNOS) and major histocompatibility complex (MHC) class I and class II 

antigens (Geiser et al., 1993; Vodovotz et al., 1996). Conversely, several stimuli of 

NF-KB inhibit activities of TGF-f3 in matrix synthesis, inflammation, apoptosis, and 

hematopoiesis (Oberhammer et al., 1992; Snoeck et al., 1996). Bitzer et al. (2000) report 
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a mechanism of suppression of TGF-P signaling by NF-kB/RelA-dependent pathways. 

Their results suggest that activation ofNF-KB/RelA by a variety of pathogenic and 

proinflammatory stimuli inhibits TGF-P signaling at the level of TGF-P type I receptor 

function through increase of transcription of the Smad7 gene and elevation of 

intracellular levels of Smad7 protein (Bitzer et al., 2000). Smad7 is a regulatory protein 

which is able to inhibit TGF-P and activin signalling in a negative-feedback loop, 

mediated by a direct regulation by Smad3 and Smad4 via a Smad-binding element (SBE) 

in the Smad7 promoter. Interestingly, it was found that the Smad7 promoter was also 

regulated by nuclear factor KB (NF-KB). Expression of the NF-KB p65 subunit was able 

to inhibit the Smad7 promoter (Nagarajan et al., 2000). Activin A was also found to 

induce growth arrest of rat hepatocytes in vitro and in vivo. It was also demonstrated that 

the induction of Smad7 by the al-adrenergic agonist, norepinephrine, enhances 

epidermal growth factor-stimulated DNA synthesis and inhibits activin A-induced growth 

inhibition) is dependent on NF-KB (Kanamaru et al., 2001). These observations indicate 

that there exists an intrinsic interaction between these two signalling pathways that might 

be dependent on the cellular context, as well as the nature of gene expression. 

1.3.6 ReVNF-KIJ proteins in Xenopus laevis development 

In Xenopus laevis, a number of Rel/NF-KB proteins have been identified that are 

known to be expressed in the early stages of Xenopus development: Xrel2 (Tannahill and 

Wardle, 1995), XrelA (Kao and Hopwood, 1991; Richardson et al., 1995; Kao and 

Lockwood, 1996), and XrelB (Suzuki et al., 1995), XplOO (Suzuki et al., 1998) and 

Xrel3 (Yang et al., 1998). 
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Wild type XrelA has a role in dorsoventral patterning. XrelA mRNA is present 

throughout oogenesis and during early embryogenesis. The mRNA is relatively evenly 

expressed over the whole embryo during the early embryonic stages (Kao and Hopwood, 

1991; Richardson et al., 1995), but the protein becomes localized to the nuclei of animal 

and marginal zone cells at MBT stages (Bearer, 1994). The presence of Rel-related factor 

in the nuclei of these cells prior to MBT suggests that XrelA may be involved in 

programming animal cells to respond to vegetal-inducing factors (Bearer, 1994). 

XrelA overexpression experiments have suggested its involvement both in 

patterning of the head and tail of the embryo (Richardson et al., 1995) and also in dorsal-

ventral development (Kao and Lockwood, 1996). High levels of overexpressed XrelA 

causes gastrulation arrest while lower levels resulted in embryos that appeared to 

gastrulate normally but show exogastrulation to variable degrees with a split posterior 

axis made up of a duplicated notochord and nervous system in tail. If these embryos were 

-
left to develop up to the stage 30 they show little evidence of a dorsal axis, head or tail 

and look similar to UV ventralized embryos (Scharf and Gerh~ 1980). They also lack 

visible segmentation or somites but seem to have nervous tissue. The least affected 

embryos have a kink in the mid-axial region, which is associated with the locally 

disrupted segmentation and a small, poorly organized spinal cord in the mid-body. In all 

embryos the affected regions are characterized by disruption of tissue organization, poor 

segmentation and reduction in size of the nervous system. The most normal tissue is the 

notochord. 
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The expression of early markers of dorsal and mesodermal-specific genes were 

not affected by XrelA (Richardson et al., 1995). Kao and Lockwood (1996) extended the 

fmdings of Richardson et al. (1995) and showed that XrelA has a significant effect on 

dorsoventral patterning. Embryos injected with XrelA RNA only in the dorsal marginal 

zone reduces dorsal development and attenuates in vitro dorsal morphogenetic 

movements. XrelA alters normal dorsoanterior patterning by altering gastrulation 

movements, specifically delaying blastopore lip formation, attenuating convergent 

extension, and reducing notochord formation. XrelA strongly reduces the strong axis 

duplication-producing effects caused by overexpression of a dominant negative mutant of 

Xenopus glycogen synthase kinase-313, (Xgsk-36). Overexpression in dorsal regions of 

XrelA reduces dorsoanterior development in a dominant manner, while overexpression of 

dominant negative Xgsk-38 mutants in ventral regions induces a complete secondary axis 

(Kao and Lockwood, 1996). 

Xenopus XrelB appears to have a different role in development from the XrelA 

XrelB transcripts are present at all stages of oocyte maturation and in adult tissues 

examined. However, in staged embryos XrelB is undetectable from neurula to stage 28 

and resumes expression at stage 47 (Suzuki et al., 1995). 

Xp 100 transcript expression patterns suggest the possibility that Xp 100 could be 

involved in the late-stage development of Xenopus laevis, especially in the maturation of 

somites. Xp I 00 transcripts are present at all stages of oocyte maturation and in all adult 

tissues examined; they decrease at the gastrula stage and resume their expression at the 

neurula stage. Xp I 00 is highly expressed in somitogenic mesoderm at the neurula stage, 
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while in the gastrula and tailbud stages XplOO transcripts are not localized to restricted 

regions (Suzuki et al., 1998). 

Xenopus Xrel2 also seems to have key functions in early vertebrate development, 

since it is expressed throughout development but with higher levels in pre-gastrula 

embryos. Ectopic expression ofXrel2 disrupts normal morphogenesis at the early 

gastrula stages suggesting that the NF-KB /Rel family has developmental functions at 

stages earlier than previously thought. It does not seem to be involved in diversion of 

animal caps from an ectodennal to a mesodermal cell fate (Tannahill and Wardle, 1995). 

1.3. 7 Xre/3, a novel member of the c-rel proto-oncogene sub-family. 

Xrel3 is the first and only rel gene that was found to be expressed in a spatio-

temporally restricted manner in an early vertebrate embryo. In situ hybridization analysis 

indicates that Xrel3 mRNA is expressed in two phases of early development. Xrel3 

mRNA is present in early cleavage stages of the embryos up to the late blastula, and then 

-
the message levels decline at gastrulation to undetectable levels. In later neurula and 

larval stage embryos the messages accumulate in the forebrain, dorsal aspect of the mid-

and hindbrain, the otocysts and notochord of forebrain and otic placode and in the dorsal 

part of the mid-hindbrain. Protein analysis indicate that it shares only 64% sequence 

similarity to Xrel2 and none of the non-coding sequence is shared between Xrel3 and any 

of the Rel genes (Yang et al., 1998). 

The significant finding about this gene is that when Xre/3 is overexpressed in 

early embryos by microinjecting synthetic mRNA into two-cell stage embryo in the 

prospective ectodermal region. (animal pole), the embryos develop abnormal growths, or 
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tumours, after neurula stages (Yang et al., 1998; Lake et al., 2001), similar to tumours 

induced by overexpression of Glil gene (Dahmane et al., 1997), a zinc-finger 

transcription factor that is also involved in neural differentiation in Xenopus and is an 

oncogene that is up-regulated in human gliomas, sarcomas (Kinzler et al., 1987; Roberts 

et al., 1989) and basal cell carcinoma (Dahmane et al., 1997). These tumours were 

actually observed as "warty patches" caused by overexpression ofXrelA, described 

previously by Richardson and colleagues (Richardson et al., 1995). Larger tumours are 

produced withXre/3 as compared to with Glil and lower doses of Xrel3 mRNA (-200-

500 pg) are necessary to induce tumour formation as compared to Glil mRNA (2000 pg; 

Dahmane et al., 1997). 

The size of the tumours is proportional to the dosage of RNA injected, and their 

position on the embryo depends on the location of injection: epidermal tumours develop 

from animal pole injection (prospective ectoderm) while tumours in the endoderm 

-
(digestive system) develop from vegetal pole injection (Yang et al., 1998). TheXre/3-

induced epidermal tumours were found to express Otx2, Shh and Glil, as well as high 

levels of Xre/3 mRNA, but not in unaffected skin or uninjected embryos (Lake et al., 

2001), demonstrating a possible correlation betweenXrel3, Shh and Glil expression. Shh 

protein is secreted from the notochord during embryonic development. One of its 

functions is to impart dorsal-ventral pattern to the spinal cord (Pownall, 1994). Similarly, 

abnormal upregulation of Glil expression of uncontrolled and inappropriate stimulation 

of the Shh signalling pathway, which leads to Glil upregulatio~ results in basal cell 

carcinoma (Hahn et al., 1999; Britto et al., 2000). 
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When embryos were injected into the dorsal side of a zygote with a dominant 

interference mutant of Xre/3, the C-tenninal deletion mutant, Xrel3delta58, which 

dimerizes with endogenous Xrel3 and prevents its binding to DNA (Lake et al., 2001), 

the embryos developed normally until neurulation, when they failed to develop head 

structures and lacked expression of Shh, Glil and Otx-2 (Lake et al., 2001), genes that are 

required for head development (Hynes et al., 1997; Acampora et al., 2000). These results 

demonstrate that Xre/3 is required for Xe no pus head development and for the 

transcriptional activation of genes of the Shh/Glil pathway in the embryonic tumours 

(Lake et al., 2001). Still the relationship between the initiation of tumours by Xrel3 and 

Shh/Glil signaling remains to be established. Because Xre/3-induced tumours express 

neural patterning genes (Lake et al., 2000), and Xre/3 is expressed in the developing 

brain (Yang et al., 1998), it is likely to have a role in neural development. 

Given that Xre/3 is expressed in two stages of development (before and after 

-

gastrulation) I predicted that Xrel3 might have distinct functions in both pre· and post-

gastrula development. It is possible to assume that tumour formation could result from 

Xrel3 activation of oncogenic genes such as Shh and, subsequently Glil, or since Xrel3 

caused larger tumours to fonn than Glil, Xrel3 might be acting as a regulator of 

tumourigenesis. Shh and Glil mRNA were detected in tumours at a time when their 

endogenous expression is activated, that is during late gastula or early neurula. This event 

is long after the injection of Xre/3 in the two-call stage embryos, and by the neurula stage 

the effects of the initially injected RNA will have turned over by late gastrulation, it is 

likely that Xrel3 initiates a series of events that lead to hyperproliferation of the injected 
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cells. The tumours developed from an event that occurred before activation of these 

oncogenes. Also, since Xre/3 mRNA overexpression induced tumours when it was 

injected into the vegetal pole (prospective digestive system) (Yang et al., 1998), suggests 

that Xre/3 may have a more generalized role in tumour fonnation. 

1.4 Objectives. 

The purpose of this research was to determine a possible role of Xre/3 in pre­

gastrula embryos, specifically what happens inXre/3-expressed embryos before and after 

the MBT, and also further investigate the origin and cause of tumours with respect to 

Xre/3 overexpression. 

1.4.1 Objective 1. 

I wanted to gain further insight into the role of Rel/NF-KB in regulating cell 

growth and development, with the particular emphasis on the timing in development of 

the requirement for proliferating-promoting activity of Xre/3. I observed and analysed the 

early events in development before MBT stage that lead to tumour formation later in 

neurula stages. I investigated possible mechanisms that trigger tumour formation that 

occur before the MBT. 

I propose that ectopic Xre/3 expression does affect pre-gastrula development. 

I wanted to extend the findings by Yang et al. (1998) on what morphological and 

phenotypical effects would be on the embryo development if Xre/3 was overexpressed in 

different concentrations, or in different sites of the two-cell stage embryos. 
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1.4.2 Objective 2. 

Xre/3 regulates cell differentiation during embryogenesis and can be explained if 

we propose that at least one of its cellular effects is to delay the onset of MBT. As 

mentioned above (see section 1.2.3), the MBT is an early developmental event 

characterized by loss of embryonic cell division synchrony, slowing of DNA synthesis, 

activation of zygotic transcription and activation of cell differentiation (Newport and 

Kirschner, 1982a,b). There are several testable possibilities that can be explored to 

determine if this is the case. These are to determine whether Xre/3: 

1. Delays the start of embryonic transcription of zygotic genes; 

2. Inhibits the expression of molecular markers of the MBT; 

3. Inhibits growth factor-induced differentiation. 

In 1999, it was demonstrated (Kao, unpublished data) that Xre/3-injected animal 

caps are composed of more cells than control animal caps, resulting in a thickened 

, 

blastocoel roof. I would like to determine how Xre/3 regulates the MBT. 

I propose that overexpression of Xre/3 delays the entry of embryos into the MBT stage. 

The cells delay initiation of transcription of zygotic genes by a few hours, and/or will fail 

to migrate normally, which will result in more cells that abnormally accumulate in one 

region, failing to spread. I propose that the function in the pre-gastrula development of 

Xre/3 is to maintain cells in the pre-MBT, proliferative state. 

1.4.3 Objective 3. 

I would like to determine if Xre/3 overexpression delays the expression of 

markers of the MBT. Markers of embryonic transcription, Ornithine Decarboxylase 
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(ODC) and Elongation Factor 1 a (Ef-1 a) become expressed in all cells after the MBT 

(Krieg et al., 1989; Amaldi et al., 1993), and the expression of their mRNA will be 

assayed using reverse transcriptase-linked polymerase chain reaction (RT-PCR). ODC 

levels normally increase at gastrulation while Ef-1 a levels increase immediately at the 

MBT (Krieg et al., 1989; Amaldi et al., 1993). If these genes are expressed later than 

usual inXre/3-injected embryos, then I will conclude thatXre/3 delays MBT. 

1.4.4 Objective 4. 

In addition to loss of cell division synchrony and activation of embryonic 

transcription, the cells at MBT become responsive to factors that induce them to form 

mesoderm. To test whether Xre/3- expressing cells lose their ability to respond to 

mesoderm inducing factors, they will be treated with the potent mesoderm inducers, 

activin A and /or FGF and assayed for mesoderm marker expression using RT-PCR. I 

would like to determine Xrel3 involvement in mesodenn formation. I will examine the 

effect of Xre/3 expression on mesoderm induction, differentiation, and expression of 

mesodermal markers, such as Xbra (Smith et al., 1991) described above (see section 

1.2.9). I propose that Xre/3 may be an important regulator of the initiation of cell 

differentiation in development, and causes tumours by preventing differentiation. 

1.4.5 Objective 5. 

To determine possible involvement of Xre/3 in FGF or activin pathways. To 

determine the role of Xre/3 in regulation of FGF- and/or activin-mediated mesoderm 

induction. Although activin plays a role in dorsal and anterior mesoderm formation 
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(McDowell and Gurdon, 1999), its activity is dependent on FGF induction (Schulte­

Merker et al., 1994 ), and, unlike FGF (Beck et al., 1998) there has been no direct link 

between Activin and Rel protein activity. This area is still nonetheless certainly 

worthwhile to investigate for future consideration. 
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CHAPTER2. 

MATERIALS AND METHODS. 

2.1 Animals and embryos. 

Mature wild-type and albino Xenopus laevis adult males and females were 

obtained from Nasco Co., (WI, USA). They were kept in dechlorinated tap water at room 

temperature (RT) between 18°C and 22°C, and fed Purina Trout Chow twice a week. 

Females were induced to ovulate by injection of 500 l.U. (0.5 mL) of human chorionic 

gonadotropin (HCG, Sigma Chemical Co., MO, USA) into their dorsal lymph sacs, and 

placed in dechlorinated water and kept overnight in the dark at RT. Embryos were 

usually available after 14 to 16 hours. 

To obtain testes, a male Xenopus was killed by heavy anesthesia using 3-aminobenzoic 

acid ethyl ester (methanesulfonate salts, MS222, Sigma). The testes are pale, curved 

structures about 1 cm long, which are positioned on either side of the spine. They were 

removed by making an incision in the ventral surface of the animal and they were stored 

in normal amphibian medium (NAM) (See Appendix A Table 1; Slack, 1984) at 4°C for 

up to one to two weeks. 

Xenopus females start laying eggs in the morning after injection (Jones and Smith, 

l 999b ). Embryos were obtained by in vitro fertilization as follows: a sperm suspension 

was made by macerating 1/8 of a testis in NAM solution in the Petri dish (Fisher). The 

sperm suspension was spread evenly over the entire bottom of·a Petri dish (35 mm in 

diameter). Eggs squeezed from a gravid female by gentle peristasis of their ventro-lateral 

surfaces were spread over the sperm suspension, and 0.9 mL of distilled water was 
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immediately added. After five minutes the eggs were flooded with more water. After 

about fifteen minutes the eggs rotate so that their heavily pigmented animal hemisphere is 

uppermost (see Figure 2.1 ). This is a reliable sign of successful fertilization (Jones and 

Smith, 1999b ). 

Embryos were "dejellied" in 2% cysteine hydrochloride (Sigma Chemicals Co), 

pH adjusted to 7.8-8.1with1% sodium hydroxide (NaOH) (Fisher), and rinsed in 

distilled water and then in NAM/20 solution (Appendix A, Table lB). Embryos were 

cultured in NAM/20 solution in Petri dishes at 14°C, 18°C and 23°C (RT), and staged 

(see Introduction Figure 1.5) according to Nieuwkoop and Faber (1994). Eggs began to 

cleave about ninety minutes after fertilization, which is when the RNA injections were 

carried out (Jones and Smith, 1999b). 

Figure 2.1 Fertilized wild-type oocytes, rotating so that their pigmented animal si.de 
is uppermost, view from above. 

2.2 Microinjection equipment. 

Microinjection needles were prepared from capillary tubing(# 3-000-203-G/X 

made by Drummond Scientific Company; USA) using a needle electrode puller (PB-7, 

Narishige, USA, Inc.). The diameter of the needles I made were no more than 15 µm. 

Needles were baked to 180°C to destroy RNAse activity, and stored in a dust-free 
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atmosphere. Needles were sharpened using a Pipette grinder (Model EG-4, Narishige 

USA, Inc; settings: speed 50, angle 20°) for thirty seconds and viewed with an Olympus 

SZ40 stereomicroscope. 

2.3 Embryo microinjection and manipulation. 

Two-cell stage embryos were microinjected with mRNA (Introduction Figure 1.5 

for stages) in 4% Ficoll (Fisher) in NAM/2 (Appendix A, Table lB) solution. Embryos to 

be injected were positioned within a plastic mesh grid. 

Injections of RNA were carried out using a Drummond microinjection system 

(Nanoject II, Drummond Scientific Co., USA) under a dissecting stereomicroscope. The 

injection needle was attached to the Drummond micromanipulator injection system. 

About 2 µL of the injection sample was dispensed onto a small piece of parafilm and 

pulled up into the needle. Injection volumes ranged from 5-10 nL of the sample into a 

fertilized egg. Mic.roinjection of embryos was done as described by Kao and Lockwood 

(1996) using 500-1000 pg capped, synthetic Xre/3 mRNA made using the Ribomax RNA 

production kit (Promega). Dilutions prior to injections were performed using Diethyl 

Pyrocarbonate (DEPC, Sigma)-treated water. For controls equal volumes ofDEPC-water 

were injected. Injected embryos were left to develop until the desired stage at 14°C, 18°C 

and 23°C (RT). 

2.4 Preparation of synthetic RNA. 
I 

Synthetic mRNA was transcribed and capped as per Krieg and Melton (1987), 

using the SP6 RiboMAX Large Scale RNA production systems (Promega Co., WI, USA) 
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and 7-methyl guanine cap analogue (New England Biolabs, Inc., Missisauga, Ontario). 

Template DNA was linearized using the restriction endonuclease Not! (Pharmacia 

Biotech, PA, USA) prior to in vitro transcrip~ion. Purified linear DNA was examined by 

1 % agarose gel electrophoresis prior to transcription to verify complete linearization and 

to ensure the presence of a clean (non-degraded) DNA fragment of the expected size. 

Digested and undigested DNA was compared. The reaction was phenol/chloroform 

extracted and precipitated in I 00% ethanol and 1/10th volume of 3M sodium acetate 

(pH 5.3) to purify. DNA was re-suspended in 10 µL of dH20 and run on a gel to estimate 

the concentration of the pure DNA from the intensity of the band (compared with the 

intensity of 1650 of kb ladder, which corresponds to the 80 ng/µL of DNA). For the RNA 

transcription procedures we used _,5 µg of DNA. Template, rNTPs, cap analogue and 

RNA polymerase were assembled at room temperature in an 1. 7 mL Eppendorf 

centrifuge tube to a total volume _,50 µL (see Appendix B, Table 2 for solutions and 

amounts used). The reaction mixture was then gently pipetted up and down; centrifuged 

briefly using Micromax centrifuge (International Equipment Company, USA); incubated 

at 3 7°C in a Fisher water bath for tow to four hours prior to the addition of a 5 µL (SU) of 

RQl-RNase-free DNase (lU/µL; Promega) and continued incubation at 37°C for twenty 

minutes. Following transcription the DNA template was removed by adding _,100 µL of 

nuclease-free H20 and then phenol/chloroform extracted with equal volumes of buffer 

saturated phenol and water saturated chloroform (155 µLeach). The remaining top 

aqueous layer from the extraction was then ethanol precipitated as follows: 1/10of3M 

sodium acetate (pH 5.2) plus 2.5 x volume of absolute ethanol for 2-5 minutes on ice, 
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centrifuged full speed (13,200 rpm) for 5 minutes, washed pellet with 70% ethanol and 

then re-suspended. The newly synthesized RNA was ethanol precipitated further two 

times prior to re-suspension in 50 µL of nuclease-free H20 and stored in -70°C. Pwity of 

the RNA was detennined through a comparison of optical density readings at the 

wavelengths of 260 and 280 (OD260 and OD2so ). An 00260 /OD2so ratio of greated that or 

equal to 2.0 indicated that the RNA was pure. Concentrations were determined through 

the comparison of OD260 readings (quantify the RNA by UV light absorbance at 260 nm 

using Spectrophotometer DU-64 (Beckman, USA); OD260 unit = 40 µg/mL of RNA), 

and by electrophoresis of the RNA on 0.8-1% agarose gel.. The presence of a single band 

of about 850 to 1000 bp in size indicated that the RNA was intact. 

2.5 Embrvo manipulations and analysis. 

To start the investigation of the effect of Xre/3-overexpression on the 

phenotypical and morphological changes that can occur in the early development of 

Xenopus laevis, different concentrations of Xre/3 mRNA (0 ng; 0.5 ng; 1.0 ng; 2.0 ng and 

4.0 ng) were injected into the animal pole region of pigmented two-cell-stage embryos. 

Embryos were cultured in 4% Ficoll. The development was monitored using Nieuwkoop 

and Faber (1994) and about thirty embryos per each stage were fixed in Smith's fixative: 

a mixture of one part formalin and nine parts Smith's reagent, consisting of 2.5 mL 

glacial acetic acid, 0.5 g potassium dichromate and 100 mL double-distilled water; and 

left overnight in a dark place to prevent light penetration. The next day embryos were 

washed with tap water and stored in 4% formaldehyde at RT. Fixed embryos were 

analyzed at stages: 11, 20, and 25 (Nieuwkoop and Faber, 1994), scored for abnormalities 

57 



and photographed using an Olympus U-PMTVC camera (RS-Photometrics, Japan) 

attached to an Olympus SZ-PT stereomicroscope (Japan). Lights were provided by Eco-

Light 20 Fiber Optic light source (Applied Scientific Devices Corp, USA). 

Wild-type embryos were injected with 0.5 ng of Xre/3 mRNA or DEPC-treated 

water as controls into different zones of two-cell stage embryos (100 embryos each): 

animal, marginal and vegetal regions (Figure 2.2). As controls the same volumes of 

DEPC-treated water were used. Representatives from control and injected embryos were 

collected, fixed at stages 9, 11.5-12, 20, and 32 in Smith's fixative (as above) and left 

overnight in a dark place to prevent light penetration. The next day embryos were washed 

with tap water and stored in 4% formaldehyde at room temperature. Fixed embryos were 

scored for abnormalities and photographed. 

A 

] Vegetal pole C 

Figure 2.2 Different sites of injections. (A) Animal; (B) Marginal; (C) Vegetal. 
Injections were performed into two-cell stage embryos (about 90 minutes following 
fertilization). 
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For the assessment of the effects that the injection site at the marginal zone has on 

the development, wild-type embryos were injected with 0.5 ng of Xre/3 mRNA or control 

RNA in the dorsal or lateral (Figure 2.3) marginal zone (>100 embryos each). To fix the 

position of the dorsal side, fertilized eggs were immersed in agarose wells in 4% Ficoll 

solution and tilted with the sperm entry point facing gravity as described previously 

(Gimlich, 1986; Kao and Lockwood, 1996). RNA was injected at the animal-vegetal 

pigment border at the two-cell stage on either side of the cleavage furrow for dorsal 

injections. For lateral injections, embryos were allowed to start second division and were 

injected on either side of the forming cleavage furrow, when it reached the marginal zone 

(Figure 2.3). The development was monitored and about 30 embryos per each stage were 

fixed in Smith's fixative (as above) and analyzed at stages: 10.5, 20, and 32. Embryos 

were scored for abnormalities and photographed. Each of these experiments was 

performed at least three times. 

A 
] Animal pole 

] Marginal zone 

J Vegetal pole 

B 

Figure 2.3 Different sites of injections. (A) Dorsal marginal zone; (B) Ventral marginal 
zone. Injections were performed into two-cell stage embryos (about 90 minutes following 
fertilization). 

To continue with the investigation of the morphological changes that can occur in 

the early development of Xenopus laevis as a result of Xrel3 overexpression, different 
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concentrations of Xre/3 mRNA were injected into pigmented two-cell-stage embryos into 

the animal pole region. Embryos were cultured in 4% Ficoll solution. Two whole 

embryos from each stage were collected at stages 7, 9 and 11 for RT-PCR analysis 

(Hopwood et al., 1989) with such primers as: Histone, ODC, EF-1 a, Xbra, Chordin and 

Xre/3 to check if overexpression of Xre/3 will have any effect on activation of these 

markers (see below sections 2.9-2.14). The expression of these transcripts was analyzed 

on 2% agarose gel and normalized by histone. 

2.6 35S-UTP incorporation experiment. 

Pigmented two-cell-stage embryos were coinjected with 1000 pg of Xre/3 mRNA 

, and 50 nCi [a-35S] UTP (400 Ci/ mmole, Amersham) and cultured in 4% Ficoll, in 

parallel with the control siblings injected with 50 nCi [a-358] UTP only and 

non-injected controls. Starting from stage 7, samples of 15 injected and control embryos 

were collected at each time point (stages 7, 8, 9, 10 and 11) and frozen at -20°C prior to 

being processed. Total RNA was purified by the use ofNETs RNA extraction method 

(Hopwood et al., 1989) adjusting the volumes accordingly for 15 embryos, and 20 µL of 

total RNA from each sample were immobilized on glass fiber filters (GF/A) (Whatman). 

The filters were washed subsequently with ice-cold 20%, 10%, and 5% trichloroacetic 

acid (Fisher). Incorporated label was detected by a Liquid Scintillation Analyzer 

(Beckman LS-3801, USA) (Stancheva and Meehan, 2000). 

2. 7 Animal Conjue:ates 
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Vitelline membranes were removed (Figure 2.4) from stage 7-8 embryos using 

sharpened forceps in 50% NAM solution. Animal pole regions (caps) were dissected 

from the centre of the pigmented regions of the embryos. This was done using a pair of 

forceps as scissors, while keeping the embryos still using a pair of forceps held in the 

other hand. Dissected animal caps were placed with their originally outer surface down 

and cultured in NAM/2 in Petri dishes coated with 2% agarose at 18-22°C, allowing them 

to heal slightly. Explants were then either cultured in NAM/2 or for experiments 

involving explants and mesodermal induction, the NAM/2 medium also contained 0.1 % 

BSA (albumin, bovine; Sigma) plus different concentrations of basic fibroblast growth 

factor (bFGF; a gift from Laura Gillespie; Health Sciences Center, St. John's, NF) or 

activin-producingXenopus tissue culture conditional medium XTC-CM (a gift from 

Laura Gillespie). 

Dissect animal 
cap explant 

Animal 

Stage 8 blastula 
ventral view 

5 hours 

Culture animal cap explant in 
NAM/2 + BSA (lmg/mL) 

Control 

+Factor 

Figure 2.4 Dissection of animal caps from stage 7-8 embryos, which were cultured in 
NAM/2 or in the case of mesoderm induction experiment NAM/2 medium also contained 
0.1 % BSA plus factors: bFGF or activin 
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2.7.1 Analysis of the express~on levels of markers ofMBT. 

For the analysis of the MBT markers inXre/3-injected embryos, ---200 wild-type 

embryos were injected into the animal pole at the two-cell stage with 1.0 ng Xre/3 RNA 

or injected with control and let develop until stage 7 at room temperature. Animal caps 

(five caps at each time point) were isolated from control andXre/3-injected embryos 

starting at stage 7. Samples were collected every thirty minutes initially until stage 9, and 

then collected at such stages as 10 and 11. Total RNA was extracted from collected 

animal caps according to NETs/LiCl protocol (Hopwood et al., 1989). Reverse 

transcription was performed with random primers (see below sections 2.9-2.14). PCR 

was performed with 32P-ATP trace labelling and gene-specific primers for EF-1 a, ODC 

and histone. The expression of these transcripts was analyzed on 6% polyacrylamide 

sequencing gel.. Levels of EF-1 a and ODC were normalized by histone. Levels of each 

marker on the gel were assessed by spot densitometry analysis (see section on 

quantitation of PCR products in section 2.14 ). 

For the analysis of the expression levels of DNA methyltransferase (Dnmtl) enzyme 

in Xrel3 and control embryos, ~ 100 wild-type embryos were injected into the animal pole at 

the two-cell stage with 1.0 ng Xre/3 RNA or injected with control and let develop until stage 7 

at room temperature. Animal caps (five caps at each time point) were isolated from control 

andXre/3-injected embryos starting at stage 7. RT-PCR (Hopwood et al., 1989) was 

performed with gene ... specific primers for XDnmtl and histone (see below sections 2.9-2.14). 

The expression of these transcripts was analyzed on 2% agarose gel. Levels of XDnmt 1 were 

normalized by histone and assessed by spot densitometry analysis. 
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2.8 Induction of mesoderm in Xrel3-injected animal caps usine bFGF 
or activin. 

Animal caps were dissected at stage 8 (Figure 2.4) from embryos injected in the 

animal pole region with 0.5 ng either Xre/3 or control, treated with varying concentration 

of recombinant Xenopus bFGF or with XTC-CM, which was heated to the temperature of 

95°C for five minutes prior to use. Explants were left to develop overnight in NAM/2 

medium also contained 0.1 % BSA and photographed for elongation characteristics of 

mesoderm induction at stage 13. About 8-10 animal caps were harvested at stage 10.5 for 

RT-PCR analysis using primers for Xbra, Xre/3 and Histone. Levels of these markers 

were normalized by histone levels. 

2.9 Scoring the results of Animal Caps assay 

The results of the mesoderm induction assay were scored in several ways: 

1. Observation of gastrulation-like movements. Normally, isolated animal pole tissue 

heals by rounding up after being dissected from the embryo, and it forms a sphere. 

Treatment with a mesoderm-inducing factor causes the animal pole cells to undergo 

gastrulation-like movements. The animal caps elongate in a characteristic fashion. 

Activin cause more dramatic gastrulation movements than do members of the FGF 

family. Elongation movements are visible after approximately four hours of culture. 

2. Observation of later morphology. After three days of culture, when sibling embryos are 

at tadpole stages, animal caps treated with mesoderm-inducing factors form characteristic 

structures. In the case of activin, these have been termed "embryoids" (Jones and Smith, 

1999b). 
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2.10 RNA extraction 

Total RNA from Xenopus embryos was prepared as follows: 

Two to four embryos or eight to ten animal caps, at the appropriate stage, were 

transferred to 1. 7 mL Eppendorf tubes and homogenized with a pipette in 200 µL of 

NETS (100 mM sodium chloride; 10 mM ethylenediamine tetraacetic acid (EDTA), pH 

8.0; 10 mM Tris-HCI, pH 8.0 and 0.2% sodium dodecyl sulfate) plus 10 µL of Proteinase 

K (20 mg/mL) (Boehringer Mannheim Canada, Quebec). The homogenates were then 

transferred to a Fisher water bath and incubated at 50-60°C for thirty minutes, after which 

200 µL buffer saturated phenol and 20 JiL 2M sodium acetate (pH 5.2) were added. The 

tubes were then vortexed and centrifuged at RT for 5 minutes at 13,200 revolutions per 

minute (rpm) using a IEC Micromax Digital microcentrifuge. The top aqueous layer was 

extracted, put in a fresh tube, and 200 JiL ice-cold isopropanol plus 1 µL glycogen 

(Boehringer Mannheim Canada, Quebec) were added to it. The tubes were then placed 

for at least thirty minutes at -70°C for precipitation. The pellet of nucleic acids was 

obtained after centrifugation at 4°C at highest speed for ten minutes in a Fisher Scientific 

Model 235C Microcentrifuge. The pellets were washed with ice cold 70% ethanol, 

centrifuged again for five minutes, then vacuum dried briefly. In order to remove DNA 

present in the samples, the dried pellets were resuspended in 50 µL of DEPC-treated 

water plus 50 µL of SM lithium chloride (LiCl). The mixtures were vortexed (SIP 

American Scientific products, USA) briefly and left to incubate on ice for 1 hour, after 

which they were centrifuged at 4 °C at highest speed for fifteen minutes to obtain the 

pellet. The supernatant was carefully removed and the pellet was washed again with ice 
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cold 70% ethanol, re-centrifuged at 4°C for five minutes, vacuum dried briefly in BEL­

ART Desiccator and resuspended in 39 µL DEPC-treated water on ice. To remove 

remaining traces of DNA, O.lU (l µL) RNAguard RNAse inhibitor (Phannacia Biotech, 

PA, USA), 5 µL 10 X transcription buffer (400 mM Tris-HCI, pH 7.5; 20 mM 

Spermidine (Gibco BRL); 60 mM magnesium chloride) and SU (5 µL) RQI RNAse free 

DNAse (Promega Corporation, WI, USA) were added. The tubes were vortexed, 

centrifuged at room temperature briefly and incubated at 3 7°C for twenty to thirty 

minutes at a Fisher water bath. The final volume was brought up to 100 µL by adding 50 

µL of DEPC-treated water and phenol/chloroform extracted with an equal volume of a 

1:1 mixture of phenol/chloroform (100 µLeach). The samples were vortexed briefly and 

centrifuged at room temperature for two to three minutes at 13,200 rpm. The remaining 

aqueous layer was then precipitated with 2.5x volumes of ice cold 95-100% ethanol, 

1/lOth volume of 3M sodium acetate (pH 5.2) and 0.02 mg (1 µL) glycogen for at least 

two hours at -70°C. Tubes were centrifuged at 4 °C for ten minutes. The ethanol 

supematants were removed and the pellets washed in ice-cold 70% ethanol. Once air­

dried, the pellets were re-suspended inl 0 µL DEPC .. treated water and stored in -70°C 

freezer. Concentrations were determined through a comparison of OD260 readings 

(quantify the RNA by UV light absorbance at 260 nm; OD260 unit = 40 µg/mL of RNA), 

and by electrophoresis of the RNA on 0.8-1 % agarose gel. The presence of two distinct 

bands on an agarose gel around 850 bp and 1650 bp corresponds to the 188 and 288 

subunits respectively and indicates that the RNA has not degraded. 
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2.11 Reverse transcriptase-Iinked polxmerase chain reaction <RT·PCR) 

Approximately 1 µg of isolated embryo RNA was diluted in a total volume of 

10 µL DEPC-treated water in 0.5 mL Eppendorftubes. If the RNA was stored at -70°C 

before use, it was thawed on ice first. Once resuspended, the RNA was left to denature at 

65°C in a water bath. After ten minutes of incubation, the RNA was removed and 

immediately placed on ice to prevent internal pairing of RNA strands. To each tube of 

RNA, a reverse transcription mixture of RNAguard RNAse inhibitor (Pharmacia), 5x first 

strand buffer (Gibco BRL), deoxyribonucleotide triphosphates (dNTPs, Pharmacia), 

random hexanucleotide primers (Boehringer Mannheim), DTI (Gibco BRL) and Reverse 

Transcriptase enzyme (M- ML V, Gibco BRL) were added (see Table 3 for volumes and 

reagents added). The reaction mixtures were then incubated for one hour in a 3 7°C water 

bath, followed by ten minutes incubation at 95°C in order to inactivate the reverse 

transcriptase enzyme. The prepared complementaty DNA (cDNA) was stored at-20°C 

(Figure 2.5). 

2.12 PCR 

Primer sequences for Xre/3, Histone, Dnmtl, were taken from such gene 

sequences (see Appendix A, Table 4 for references) and for EF-1 a,, Chordin, Xbra, ODC 

primers were designed from the gene sequences (see references in Table 4, Appendix A), 

using Macintosh OLIGOS 4.01 Primer Analysis Software (Copyright, 1993, National 

Biosciences, Inc., MN, USA). This computer program scanned random 19-20 bp 
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stretches of the gene and analyzed them for duplex formation, hairpin formation, GC 

content, melting temperatures (Tm) and internal stability. From the analysis it was 

possible to determine two appropriate 19 to 20 bp regions that flanked a reasonably sized 

region (--250 bp) of the gene. The sequences of these two regions were then sent to 

Oligos Etc., where the primers were manufactured (see Appendix A, Table 4 for specific 

sequences). 

Amplification reactions were assembled into 0.5 mL Eppendorftubes, according 

to Table 5 (Appendix A), using the following components: 10 x PCR buffer (Gibco 

BRL), magnesium chloride (50 mM, Gibco BRL), dNTPs (Pharmacia), cDNA sample, 

distilled water and gene-specific primers for: Xre/3, Histone, Dnmtl, EF-1 a, Xbra, 

Chordin, ODC. For hot RT-PCR [a-32P] dATP trace labeling (Dupont Canad~ Inc., 

Biothechnology Systems, Mississauga, Ontario) was added. The last step was the 

addition of Platinum Taq DNA polymerase (Gibco BRL) and the remaining sterile water 

to make the final volume of 50 µL in each sample tube (Appendix A, Table 5). Each 

reaction mixture was vortexed briefly and 50 µL of light mineral oil added as a layer on 

top of the reaction mixture to prevent evaporation during the thermocycling program. 

Each reaction mixture was assembled into a Perkin Elmer Cetus DNA Thermal 

Cycler 480. The cycling parameters were as follows: 94 °C hot incubation for five 

minutes, to eliminate primer dimers and to allow for more specific primer annealing, 

followed by 23 cycles for histone, ODC, EF-1 a, XDnmtl, primers; 30 cycles for Xbra, 

Chordin andXre/3, with the program: 60°C for 1 min for annealing of primers; 72°C for 

one min for primer extension, 94°C for 1 min for denaturation. Reactions were then 
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extended at 72°C for 7 min. Tm for primers was 60°C (Figure 2.5). The number of cycles 

in the thennocycling program above was determined for primers by testing a range of 

cycles from 15 to 35 (Figure 2.6). This was done to determine the linear range of 

amplification and at which cycle number the amplification reaction reaches its plateau 

(Figure 2.6 B). Once the program was completed the PCR products were stored at 4°C 

until run on 2% agarose gel or on a polyacrylamide gel for hot RT-PCR. 
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Figure 2.5 Outline of the RT-PCR reaction. 
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Figure 2.6 (A) Schematic diagram of amplification of DNA during PCR reaction. 
(B) A standard graph of PCR reaction follows a S-shaped curve with optimal 
amplification of product at linear range and saturation at the plateau. 
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2.13 Agarose gel electrophoresis 

The PCR product were run on 2% agarose gel in lxTBE buffer (89 mM Tris base, 

89 mM boric acid and 2 mM EDTA, pH 8.0). The agarose gel was loaded in Bio-Rad 

SUBtm Cell (Fisher) and were run at a constant power of 104 Watts using 

Electrophoresis Power Supply FB 105 (Fisher) and left to run for approximately 30-40 

minutes. The gels were then visualized and photographed using an agarose gel 

illuminator (Transilluminator 4000, Stratogene ). 

2.14 Polyacrylamide gel electrophoresis 

The radiolabelled PCR products were run on 6% acrylamide/bisacrylamide, 8M 

urea denaturing sequencing gels. For 100 mL of sequencing gel mix, 48 g Urea, 15 mL 

40% acrylamide/bisacrylamide (BioRad, Mississauga, Ontario), 10 mL 1 OxTBE and 

distilled water up to the 100 mL is required. Polymerization of the gels was initiated by 

the free radicals supplied by -450 µL of 10% ammonium persulfate (APS; 0.1 g in 1 mL 

of distilled water) and stabilized by -44 µL N, N ,N',N'·tetramethylethylenediamine 

(TEMED; BioRad). The gels were prepared three hours ahead of the reactions and were 

run at a constant power of 60 Watts with lxTBE buffer (89 mM Tris base, 89 mM boric 

acid and 2 mM EDTA, pH 8.0) and left to run for approximately 1.5 hours. The gels were 

then fixed with 10% glacial acetic acid/10% methanol and transferred onto 3 MM 

Whatman paper (Millipore, Missisauga, Ontario). The gels were dried on a Bio-Rad 

Model 583 gel dryer at 80°C for approximately one hour, packed in a Fisher Biotech 

Autoradiography Cassette-FBXC 810, containing an intensifying screen, with Dupont 

REFLECTION Autoradiography Film and left at -70°C for about one day. 
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2.15 Quantitation of PCR products 

Exposed films were developed with a Kodak RP X-OMAT Processor within the 

Radiology Department of the Health Sciences Centre (St. John's, NL) and the relative 

amounts of each gene expressed were quantitated using an Ultrascan XL enhanced laser 

densitometer. The PCR product bands on each autoradiograph were scanned with a laser 

that passed vertically through their centres. The gelscan XL computer program (version 

2.1, Copyright 1989, Pharmacia LKB Biotechnology Graphic Software Systems, Inc., 

Bromma, Sweden) generated integration curves from the scans, with the areas under the 

curves representing the intensities of the darkened DNA bands from the autoradiographs. 

The area values were recorded and the relative amounts of the PCR products calculated. 

72 



CHAPTER 3. 

RESULTS. 

3.1 Analysis of phenotypes and morpholoeical features of embryos 
injected with different concentrations of Xre/3 mRNA. 

Xre/3 mRNA is expressed in two phases of early development inXenopus laevis. 

Initially, messages accumulate during early stages up to the late blastula followed by a 

dramatic decline to undetectable levels at gastrulation. Messages then appear again 

during neurula stages. Because Xre/3 overexpression is known to develop tumours (Yang 

et al., 1998) that appear in the neurula stage, I wished to identify what factors might 

contribute to the formation of tumours in the earlier stages of development, in particular 

before the onset of embryonic transcription and gastrulation. I started by investigating the 

morphological changes that occured in the early development of Xenopus laevis when 

different concentrations of Xre/3 mRNA were injected. The minimum concentration that 

gave any indication of tumour fonnation is 0.1 ng (Yang et al., 1998). 

Pigmented two-cell-stage embryos were injected in the animal pole region with 

different concentrations of Xre/3 mRNA: 0 ng; 0.5 ng; 1.0 ng; 2.0 ng; 4.0 ng, and 

cultured in 4% Ficoll. The development was monitored and about thirty embryos per 

stage were fixed and analyzed at stages: 11, 20, and 25. The effect of overexpression of 

increasing concentrations of Xrel3 in embryos is shown in Figures 3.1-3.4. The frrst 

observable abnormality is during gastrulation when the gastrulation movements of the 

majority of Xre/3-injected embryos seems to be retarded as determined by slowing in the 

rate of the blastopore closure at stage 11 (Figure 3.la and 3.2). Embryos injected with 
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lower concentrations of Xre/3 (0.5-1.0 ng) developed as controls (0 ng). While it took 

more time to gastrulate, they nonetheless complete gastrulation and neurulation. Darkly 

pigmented tumour-like spots on the ventral surface were observed in all embryos injected 

withXrel3 mRNA of 0.5 ng and higher (Figure 3.1 b-c, 3.3) on the epidermis in the 

ventral or lateral regions, consistent with previously published results (Yang at el., 1998; 

Lake et al., 2001 ). Very high concentrations of Xre/3 (2.0-4.0 ng) arrested the 

development of embryos at gastrula or neurula stages (Figure 3.lb-d, 3.3). 

The consequences of the gastrulation problems were clearly seen at the tailbud 

stages since virtually all theXre/3-injected embryos showed a defect (Figure 3.ld, 3.4). 

The phenotypes are somewhat variable and the representative examples of stage 25 

embryos are shown in Figure 3.ld. At later stages of developmentXre/3-injections of 0.5 

to 1.0 ng seemed to have caused the formation of microcephaly, shortened and bent 

trunks as well as tumours. In some cases tumours were so large they inhibited normal · 

development of these embryos (Figure 3.ld). 
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Figure 3.1. Developmental abnormalities in Xenopus laevis when different 
concentrations of Xre/3 are overexpressed in the animal region of early 
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embryos. Embryos were injected at the two-cell stage in the animal pole region with 
different concentrations of Xre/3 mRNA: 0 ng; 0.5 ng; 1.0 ng; 2.0 ng; 4.0 ng. Embryos 
were fixed and photographed at stage 11 (a), 20 (b-c) and 25 (d). Formation of tumours 
as dark pigmented spots are visible in the Xrel3-injected embryos (arrows), starting with 
concentration 0.5-4.0 ng. No dark spots are seen in the control embryos (0 ng). High 
concentrations of Xre/3 arrested the development of embryos. Scale bar, 1 mm. 
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Figure 3.2. Stage 11 phenotypes observed upon overexpression of different 
concentrations of Xre/3 mRNA at the animal pole regions of two-cell 
stage embryos. 
a Embryos were injected at the 2-cell stage in the animal pole with different 
concentrations of Xre/3 mRNA: 0 ng, 0.5 ng, 1.0 ng, 2.0 ng and 4.0 ng. Embryos were 
fixed and assessed at stages 11. Horizontal axis represents the phenotypes obtained. 
Pictures of representative phenotypes are shown on top of histograms. Vertical axis 
represents the percentage of embryos relative to a total number of embryos injected and 
scored in three separate experiments (for values see Appendix Table 1). 
b Representative scheme and picture of normal embryo at stage 11. Scale bar, 1 mm. 
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Figure 3.3. Stage 20 phenotypes observed upon overexpression of different 
concentrations of Xre/3 mRNA at the animal pole regions of two-cell 
stage embryos. 
a Embryos were injected at the 2-cell stage in the animal pole with different 
concentrations of Xre/3 mRNA: 0 ng, 0.5 ng, 1.0 ng, 2.0 ng and 4.0 ng. Embryos were 
fixed and assessed at stages 20. Horizontal axis represents the phenotypes obtained. 
Pictures of representative phenotypes are shown on top of histograms. Vertical axis 
represents the percentage of embryos relative to a total number of embryos injected and 
scored in three separate experiments (for values see Appendix Table I). 
b Representative scheme and picture of normal embryo at stage 20. Scale bar, 1 mm. 
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Figure 3.4. Stage 25 phenotypes observed upon overexpression of different 
concentrations of Xrel3 mRNA at the animal pole regions of two-cell 
stage embryos. 
a Embryos were injected at the 2-cell stage in the animal pole with different 
concentrations of Xre/3 mRNA: 0 ng, 0.5 ng, 1.0 ng, 2.0 ng and 4.0 ng. Embryos were 
fixed and assessed at stages 25. Horizontal axis represents the phenotypes obtained. 
Pictures of representative phenotypes are shown on top of histograms. Vertical axis 
represents the percentage of embryos relative to a total number of embryos injected and 
scored in three separate experiments (for values see Appendix Table I). 
b Representative scheme and picture of normal embryo at stage 25. Scale bar, I mm. 
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3.2 Analysis of phenotypes and morphological f ea tu res of Xre/3-injected 
embr,yos in animal, marginal or vegetal regions. 

To determine if the site of injection is important in phenotypes of embryos 

produced, I followed the development of wild-type embryos injected with 0.5 ng of Xre/3 

mRNA or DEPC-treated water as control into different zones of two-cell stage embryos 

(one hundred embryos each): animal, marginal and vegetal regions. As controls, I used 

the same volumes of DEPC ... treated water. Representatives from control and injected 

embryos were collected, fixed and photographed at the following stages: blastula (stage 

9-10), gastrula (stages 11.5-12), neurula (stage 20) and tadpole (stage 32). 

Figure 3.5 shows the phenotypes of animal region injections. The phenotypes are 

somewhat variable. Variable phenotypes are often noted in Xenopus overexpression 

experiments and are thought to arise, in part, from inadequate diffusion or differential 

stability of the injected mRNA. At stage 10 no noticeable differences were observed 

between controls and injected (Figure 3.5a-d). Most of the injected embryos appeared to 

gastrulate normally (Figure 3.5e-h), while --26% (Figure 3.6, stage 12) exhibited delays 

in blastopore closure. As the development proceeded to neurula stage, injected embryos 

appeared to have dark pigment accumulations on the ventral side, which preceeded the 

dark tumour ... like formations observed at later stages (Figure 3.5g-h, k-1, n) described 

previously (Yang et al., 1998; Lake et al., 2001). Abnormal head and facial development 

was also associated with animal pole injections (Figure 3.50). In some cases the tumours 

were so large that they inhibited normal development of embryos. Tumours appeared on 

the surface of most of the injected withXre/3 embryos at stage 20 (--57%; Figure 3.5n) 
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only on the epidermis in the ventral or lateral regions. At later stages the embryos began 

to display a variety of phenotypes (Figure 3.5n-o). The mildest phenotype displayed was 

a distinct kink in the trunk that may have resulted from a failure of the anteroposterior 

axis to extend properly during gastrulation. The most severe phenotype is complex, often 

with the appearance of the microcephaly (Figure 3.50), and in some cases accompanied 

by axis truncation. The anteroposterior axis is often warped and can be split with yolk 

cells bulging through an open neural tube. A phenotype intermediate between the mild 

and severe cases can be seen in which the head and tail are relatively normal but the trunk 

is more severely affected. At later stages tumour-like epidermal outgrowths persisted in 

only '""24% of embryos (Figure 3.6) in the ventral surface and lateral surfaces (Figure 

3.5n). Control embryos injected with the same volumes of DEPC-treated water developed 

normally (Figure 3.5m). 

An even more severe effect was caused by the injection of 0.5 ng Xre/3 mRNA into 

marginal zone, where 96% of the embryos at stage 32 (Figure 3.7-3.8) either exhibited 

severe developmental defects or arrested at gastrula and neurula stages. Figure 3.7 shows 

the phenotypes of marginal zone injections. At stage 9 no noticeable differences were 

observed between control andXre/3-injected embryos (Figure 3.7a-d). As the 

development proceeded to gastrulation (stage 11.5) noticeable delays in gastrulation were 

observed inXre/3-injected embryos as compare to controls, such as delays in closure of 

blastopore (Figure 3.8). Embryos injected withXre/3 RNA seemed to undergo 

neurulation but exhibited developmental abnormalities compared to controls (Figure 

3.7k ... l, stage 20), which seemed to directly result from the defects in gastrulation. Later 
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stages show variable phenotypes (Figure 3. 7n,o ), from a distinct kink in the trunk to the 

appearance of microcephaly (Figure 3.70), axis truncation (Figure 3.7n, Figure 3.8) and 

neural tube defects with yolk cells bulging through. In intermediate cases a comparatively 

normal head is formed (Figure 3.7n) indicating the involution of the dorsal mesodenn has 

occurred, but trunk structures are absent or severely diminished (Figure 3.7n-o). A 

considerable number (-34%) of the injected embryos died during gastrulation and 

neurulation (Figure 3.8). A few embryos also developed tumour-like outgrowths at a 

time later in development (~7% at stage 32; Figure 3.8) on the ventral surface, below the 

surface of the embryo, covered by epidermal layer of cells (Figure 3.70). Histological 

analysis is needed to determine the nature of these outgrowths. Control embryos injected 

with the same volumes ofDEPC-treated water developed normally (Figure 3.7m). 

Figure 3.9 shows the phenotypes ofvegetal region injections. No noticeable 

differences between injected and controls were observed at stage 9 (Figure 3.9a-d). 

Embryos injected withXre/3 (~38%; Figure 3.10) at the vegetal region seemed to have a 

delay in closure of the blastopore (Figure 3.9h) during gastrulation at stage 12 as 

compared to control-injected embryos, but nonetheless embryos injected with Xrel3 

appeared to proceed to neurula stages (Figure 3.9k-l). Injections into vegetal pole also 

caused some tumour-like outgrowths, but as with marginal-injections these tumours were 

below the surface of the embryos covered over by ectoderm in the ventral region (Figure 

3.9n). Control embryos injected with the same volumes ofDEPC-treated water developed 

normally (Figure 3.9m). 
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In conclusion, the site of injection seemed to play a major role in the phenotypes of 

embryos produced. Before gastrulation, as early as stage 9, different injection sites did 

not produce any noticeable differences betweenXre/3-injected and controls. 

Overexpression of Xre/3 into the animal region of the two-cell stage embryos showed 

that most of injected embryos appeared to gastrulate normally and developed normal 

axial structures, but some exhibited delays in blastopore closure. Tumours appeared on 

the surface of most of the embryos injected with Xre/3 mRNA at stage 20 on the 

epidermis in the ventral or lateral regions. These embryos also show abnormal head and 

facial development, and in later stages often with the appearance of the microcephaly, in 

some cases accompanied by axis truncation. The anteroposterior axis is often warped and 

can be split with yolk cells bulging through an open neural tube. 

Marginal zone injections with Xre/3 either exhibited severe gastrulation defects or 

arrested at gastrula and neurula stages, as compared to controls. Later stages show 

variable phenotypes from a distinct kink in the trunk to the appearance of microcephaly, 

axis truncation, and neural tube defects with yolk cells bulging through. In intermediate 

cases a comparatively normal head is formed, indicating the involution of the dorsal 

mesoderm has occurred, but trunk structures are absent or severely diminished. A 

considerable number of injected embryos died during gastrulation and neurulation. A few 

embryos also developed tumour-like outgrowths later in development on the ventral 

surface, but these tumours were below the surface of the embryo, covered by epidermal 

layer of cells, as compared with the epidermal outside tumours of embryos with animal 
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pole injections. Histological analysis would be necessary to determine the nature of these 

outgrowths. 

Embryos injected with Xre/3 into the vegetal region seemed to have a delay in 

closure of the blastopore, during early stages of gastrulation, but the majority of them 

gastrulated or/and neurulated. Injections into vegetal pole also caused some tumour-like 

outgrowths, but as with marginal-injections these tumours were below the surface of the 

embryos covered over ectoderm in the ventral region. 
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Figure 3.5. Tumour formation in Xenopus laevis when Xre/3 is overexpressed in the 
animal region of early embryos. 
Embryos were injected at the 2-cell stage in the animal pole region with either 0.5 ng 
Xrel3 m.RNA (c-d, g-h, k-1, n-o) or DEPC-treated water as control (a-b, e-f, i-j, m). 
Embryos were fixed and photographed at stage 9-10 (a-c), 12 (e-h), 20 (i-j) and 
32 (m-o). Formation of tumours as dark pigmented spots (arrows) are visible in the 
Xre/3-injected embryos (g-h, k-1, n-o ). No dark spots are seen in the control embryos. In 
spite of the formation of tumours, most of the Xre/3-injected embryos gastrulated 
normally and developed normal axial structures (h, n). Scale bar, 1 mm. 
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Figure 3.6. Phenotypes observed upon overexpression of Xre/3 mRNA at the animal 
regions of two-cell stage embryos. 
Embryos were injected at the 2-cell stage in the animal pole region with either 0.5 ng 
Xre/3 mRNA or DEPC-water as control. Embryos were fixed and assessed at stages 12, 
20 and 32. Horizontal axis represents the phenotypes obtained. Pictures of representative 
phenotypes are shown on top of histograms. 
Vertical axis represents the percentage of embryos relative to a total number of embryos 
injected and scored in three separate experiments (for values see Appendix Table 2). 
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Figure 3.7. Gastrulation defects in Xenopus laevis when Xrel3 is overexpressed in 
the marginal zone of early embryos. 
Embryos were injected in the marginal zone of both cells at the 2-cell stage with either 
0.5 ng Xre/3 mRNA (c-d, g-h, k-1, n-o) or DEPC-treated water as control (a-b, e-f, i-j, 
m). Embryos were fixed and photographed at stage 9 (a-c), 12 (e-h), 20 (i-j) and 32 (m­
o). Xre/3-injected embryos fail to close the blastopore and complete gastrulation (h, k-1) 
and display posterior axial deficiencies (n-o ). While a comparatively normal head is 
formed (n), indicating the involution of the dorsal mesoderm has occurred, trunk 
structures are absent or severely diminished (n-o). Scale bar, 1 mm. 
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Figure 3.8. Phenotypes observed upon overexpression of Xre/3 mRNA at the 
marginal zone of two-cell stage embryos. 
Embryos were injected at the 2-cell stage in the marginal zone with either 0.5 ng Xre/3 
mRNA or DEPC-treated water as control. Embryos were fixed and assessed at stages 12, 
20 and 32. Horizontal axis represents the phenotypes obtained. Pictures of representative 
phenotypes are shown on top of histograms. 
Vertical axis represents the percentage of embryos relative to a total number of embryos 
injected and scored in three separate experiments (for values see Appendix Table 2). 
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Figure 3.9. Formation of internal tumours and gastrulation defects in Xenopus laevis 
when Xrel3 is overexpressed in the vegetal region of early embryos. 
Embryos were injected in the vegetal pole at the 2-cell stage with either 0.5 ng Xre/3 
mRNA (c-d, g-h, k-1, n) or DEPC-treated water as control (a-b, e-f, i-j, m). Embryos 
were fixed and photographed at stage 9 (a-c), 12 (e-h), 20 (i-j) and 32 (m-n). Xre/3-
injected embryos delay the closure of the blastopore (k-1) and display abnormal tumour­
like lumps in later stages (n), while a comparatively normal head is formed. Scale bar, 
1 mm. 
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Figure 3.10. Phenotypes observed upon overexpression of Xrel3 mRNA at the 
vegetal region of two-cell stage embryos. 
Embryos were injected at the 2-cell stage in the vegetal pole region with either 0.5 ng 
Xre/3 mRNA or DEPC-treated water as control. Embryos were fixed and assessed at 
stages 12, 20 and 32. Horizontal axis represents the phenotypes obtained. Pictures of 
representative phenotypes are shown on top of histograms. 
Vertical axis represents the percentage of embryos relative to a total number of embryos 
injected and scored in three separate experiments (for values see Appendix Table 2). 
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3.3 Effects of Xre/3 injected into the dorsal mar2inal zone. 

At about eight to ten hours following fertilization, the blastula undergoes the 

movements of gastrulation with the f onnation of the dorsal blastopore lip in the 

subsequatorial region of the embryo. Concomitant with epiboly, or spreading of the animal 

pole cells, the marginal zone undergoes involution and then migrates towards the animal 

pole, to underlie the future neural plate. The extent of mesodennal migrations is an important 

determinant for the degree of anterior development (Kao and Danilchik, 1991 ). 

Since marginal zone injections described above appeared to cause gastrulation defects 

in embryos, I decided to correlate the injection site of Xre/3 with the disruption in 

gastrulation. I wanted to test the effects that overexpression of Xrel3 had if injected into 

either the dorsal or lateral marginal zone. To fix the position of the dorsal side, fertilized eggs 

were immersed in agarose wells in 4% Ficoll solution and tilted with the sperm entry point 

facing gravity as described previously (Gimlich, 1986; Kao and Lockwood, 1996). RNA was 

injected at the animal-vegetal pigment border at the two-cell stage on either side of the 

cleavage furrow for dorsal injections. For lateral injections, embryos were allowed to enter 

the second cell division and were injected on either side of the forming cleavage furrow, 

when it reached the marginal zone. 

Injections of 0.5 ngXre/3 RNA into the dorsal side caused severe phenotypes. Of the 

embryos injected dorsally withXre/3, 90% developed axial abnormalities, which include the 

reduction in dorsoanterior structures. About 79% of embryos had kinked backs and shortened 

tail, and 31% were observed to have small heads (Figure 3.1 lj and 3.12). Most of them failed 

to form the blastopore lip and initiate gastrulation movements (Figure 3.1 lb). Also the 
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failures in closure of the blastopore lead to defects during neurulation (Figure 3.1 lf). 

Injection of controls in the dorsal side had no effect on development (Figure 3.1 la, e, i and 

3.12). 

When injected into the lateral side, 0.5 ng of Xrel3 RNA had a lesser but also 

significant effect on development. A large number of embryos developed gastrulation ( 51 % ) 

or neurulation (36%) abnormalities (Figure 3.1 ld, h, land 3.12). In lateral injections there 

was a reduction in numbers of dorsoanterior defects as compared to dorsal injection 

phenotypes, but still about 48% the embryos injected laterally had kinked backs and 

shortened tails, and 12% were observed to have small heads (Figure 3.1 ld, h, 1and3.12). 

Tumours were formed in 23% of the embryos injected dorsally and 10% injected laterally 

(Figure 3.12-3.13). The large numbers of dorsoanterior defects in lateral injections could be 

due to diffusion of Xre/3 RNA to the dorsal side. 

The results presented here indicate that Xre/3 overexpression affects the dorsoventral 

patterning by negatively regulating dorsal development. Dorsal and ventral type mesoderm 

is qualitatively different and different factors induce the differentiation of specific 

mesodermal tissues. The injection site is of importance in the extent of the disruption in 

gastrulation. More damage and disruption in gastulation and subsequently neurulation was 

observed when embryos were injected into the dorsal marginal site, as compared to the 

lateral marginal site. Embryos injected with Xre/3 RNA into the dorsal side were more 

sensitive to gastrulation defects than injected into the lateral side. 
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Figure 3.11. Overexpression of Xrel3 into the dorsal marginal zone causes a 
reduction in dorsal structures in embryos. 
Wild-type embryos were injected at the two-cell stage with 0.5ng Xre/3 mRNA (b, d, f, 
h, j, I) or control (a, c, e, g, i, k) in the dorsal ( a-b, e-f, i-j) or lateral (b-c, g-h, k-1) region 
of marginal zone (MZ). Embryos were fixed and photographed at stage 10.5 (a-d), 20 (e­
h) and 33 (i-1). Most of embryos injected dorsally with Xre/3 failed to form a dorsal lip 
and the formation of a circular blastopore lip was at a delayed time (b ), when compared 
to control embryos (a). Formation of a dorsal lip was observed in laterally injected 
embryos (d). Formation of tumours as dark pigmented spots are visible in the Xre/3-
injected embryos (j, I). No dark spots are seen in the control embryos (i, k). 
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Figure 3.12. Distribution of phenotypes caused by overexpression of Xre/3 into the 
dorsal marginal zone. 
Horizontal axis represents the phenotypes obtained. Vertical axis represents the 
percentage of embryos relative to a total number of embryos injected and scored in three 
separate experiments (for values see Appendix Table 3). 
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Figure 3.13. Distribution of phenotypes caused by over expression of Xrel3 into the 
lateral marginal zone. 
Horizontal axis represents the phenotypes obtained. Vertical axis represents the 
percentage of embryos relative to a total number of embryos injected and scored in three 
separate experiments (for values see Appendix Table 3). 
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3.4 Possible involvement of Xre/3 in regulation of MBT. 

Previous results from our lab (Kao et al., unpublished data) indicated that in 

embryos injected withXrel3 RNA, the blastocoel roof, or prospective ectoderm of late 

blastula and gastrula stage embryos were composed of more cells than in corresponding 

controls with an average blastocoel roof thickness of about 10 µm as opposed to 6.5 µm 

in controls. In spite of the increased number of cells, the embryos gastrulated normally 

and developed normal axial structures. After gastrulation, tumours present within the 

epidermal layer showed many more cells than the corresponding epidermis of control 

embryos, which is arranged in a typical stratified squamous histology with apparent little 

cell division. The tumour cells showed rounded morphology, and numerous mitotic 

figures were present within the tumours. Also, when fluorescently labeled injected animal 

cap cells were transferred to an uninjected host in early blastula stage, the cells do not 

distribute amongst the epidermis as in controls (Kao, unpublished data). These 

observations led to the hypothesis on the possible role of Xre/3 in pre-gastrula embryos, 

and that the tumours develop in Xre/3-overexpressed embryos from an event that 

occurred before gastrula, possibly at MBT. MBT occurs at stage 8.5 of Xenopus 

development, after the 12th cleavage division (approximately 4096 cells), and is 

associated with major changes in cell cycle checkpoints, slowing down the rate of DNA 

synthesis, initiation of zygotic transcription, loss of cell cycle synchrony and increase in 

cell motility (Newport and Kirschner, 1982a,b). It is possible thatXrel3 overexpression 

retains cells in the pre-MBT state by blocking the deceleration of DNA synthesis, 

delaying the initiation of embryonic transcription with activation of transcripts ofMBT, 
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and/or is interfering with increase in cell motility. This hypothesis might also explain the 

profound effect on embryo development when Xrel3 is overexpressed at the two-cell 

stage. 

3.4.1 Expression of Ornithine Decarboxylase, Elongati.on Factor 1-alpha, Brachyury 
and Chordin in embryos injected with different concentrations of Xre/3 in the animal 
poles. 

Next, I attempted to determine the expression levels of some of the transcripts that 

appear after MBT in the Xre/3-injected embryos, such as Ornithine Decarboxylase 

(ODC), Elongation Factor ]-alpha (EF-1 a), the early response gene characterizing 

mesoderm, Xbra, and a marker of dorsal mesoderm, Chordin. Pigmented two-cell-stage 

embryos were injected into the animal pole region with 0 ng; 0.5 ng; 1.0 ng; 2.0 ng; 4.0 

ng Xre/3 mRNA and cultured in 4% Ficoll. Two whole embryos from each stage were 

collected at stages 7, 9 and 11 for RT .. PCR analysis with oligonucleotide primers specific 

to Xenopus: Histone, ODC, EF-1 a,, Xbra and Chordin and Xre/3 to check if 

overexpression of Xre/3 had any effect on activation of these genes. EF-1 a and ODC 

were strongly expressed at the MBT in all embryonic cells. They were also abundant in 

oocytes and transiently expressed in early embryos (Amaldi et al., 1993). The 

transcription of ODC and EF-1 a markers is usually initiated with the onset ofMBT. 

ODC levels normally increase at gastrulation while EF-1 a levels (Krieg et al., 1989) 

increase immediately at the MBT. Xbra transcription starts soon after MBT and reaches 

its maximum levels at stage 11.5. Its expression is frrst apparent at stage 9/10 of early 

gastrula, and this coincides with a slight increase in EF-1 a levels, marking the MBT 

(Smith et al., 1991), making it an excellent pan-mesodermal marker during gastrulation. 
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Brachyury is also required for the morphogenetic movements of gastrulation. Chordin is 

expressed in dorsal mesodenn and its transcription starts soon after MBT. The expression 

of chordin starts in Spemann's Organizer at a stage 9/10 of Xenopus development. This 

molecule is a potent dorsalizing factor that regulates cell-cell interactions in the 

organizing centres of head, trunk, and tail development (Sasai et al., 1994) .. 

The expression levels of molecular markers such as ODC, EF-1 a Xbra and 

chordin at stages 7, 9 and 11 did not seem to be different between controls (0 ng of Xrel3 

injected) and injected with higher concentrations of Xre/3 embryos (0.5-4.0 ng) despite 

differences inXre/3 levels (Figure 3.14). 

There is a definite increase in the histone levels in embryos injected with higher 

concentration of Xre/3 as compared to embryos injected with lower concentrations of 

Xrel3. Also, the levels ofhistone progressively increased as development progressed 

(Figure 3 .14). 

ODC levels were abundantly expressed all throughout the development in all 

embryos. Maternal levels of ODC at stage 7 were higher in control embryos and lower in 

embryos injected with higher concentrations of Xrel3, but at stage 9, it was reversed, the 

levels of ODC were higher in Xre/3 injected with higher concentrations of Xre/3 and 

lower in controls. The levels of ODC did not seem to increase dramatically at stage 9 

soon after the MBT. Higher and equal levels of ODC were observed at stage 11 (Figure 

3.14). 

EF-1 a levels increased soon after MBT reaching high levels at stage 11 in all 

embryos. The same can be said about the levels of Xbra and chordin transcripts, which 
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accumulated during stage 11. At stage 11 chordin levels were higher in control embryos 

and lower in embryos injected with higher concentrations of Xre/3. As expected, 

endogenous Xre/3 levels in controls (0 ng of Xre/3 injected) were highest during early 

stages but decline during stages 9 to 11. Xrel3 levels in injected embryos stayed high 

(Figure 3.14). 

Looking at the levels of Xre/3 at stage 7, the limitations of the RT-PCR assay can 

be demonstrated. Injection of Xrel3 mRNA at a saturating level cannot be quantified 

reliably by simple RT-PCR, which is what I used. The gel did not show different 

concentrations of Xre/3 that were injected into embryos, and by examination of the gel 

I concluded that the concentrations of Xre/3 were the same in all embryos, except for 

controls (Figure 3.14), which, given the extensive range of injected RNA, is not likely 

reflective of the levels of this message in the embryos. RT-PCR analysis is not sensitive 

enough to show us the differences in levels of injected Xrel3 between 0.5 ng or 4.0 ng. 

RT-PCR assay is not a good way to quantitatively show the expression of each marker, 

but it is sensitive enough to show the presence of transcripts, such as Xbra at stage 11 in 

injected with higher concentrations of Xrel3 embryos, which is contradictory to the 

gastrulation defects in phenotypes of embryos injected with high doses of Xre/3 1.0-4.0 

ng (results above, Figure 3 .. 1). It could be due to the fact, that since we used two whole 

injected embryos in this assay, the injected Xre/3 mRNA tends to localize at the site of 

injection and did not reach or influence the cells of the mesodermal region where the 

expression of Xbra is initiated. 
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In conclusion, I did not observe differences in activation patterns of MBT markers 

including EF-1 a, ODC, and Xbra, between control and Xre/3-injected embryos. 

Concentrations of Xrel3 injected (ng) 

0 o.s 1.0 2.0 4.0 0 0.5 1.0 2.0 4.0 0 O.S 1.0 2.0 4.0 -ve 

His tone - -
ODC 

EF-1 alpha 

Xre13 

Xbra 
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""" ...... _____ ,,,_, "--...._ _____ ,.,,,., "--...... _____ .,..,, 
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Figure 3.14. Overexpression of different concentrations of Xrel3 at the animal 
region of embryos does not influence the expression of such marker as ODC, EF-1 a, 
Xbra and Chordin. 
RT-PCR analysis of Xrel3 and control injected embryos (two whole embryos per time 
point) extracted at 7, 9 and 11 stages for the transcripts of Ornithine decarboxylase 
(ODC), Elongation Factor I-alpha (EF-1 a), markers that are strongly expressed at the 
MBT in all embryonic cells, and also markers of mesoderm brachyury (Xbra) and 
chordin. Xre/3, ODC and EF-1 a transcripts visible at stage 7-9 are maternal. Zygotic 
expression of Xbra, chordin, ODC and EF-1 a transcripts are visible at stage 11. 
Levels of these markers were normalized by histone levels. 
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3.4.2 Whole embryo run-on experiment of/ a-35 SJ-labeled UTP incorporation between 
Xrel3 overexpressed and control embryos. 

Zygotic transcription usually initiates at stage 8.5 (at about the same time of the MBT) 

of development. As a test for de novo transcriptional activation, I measured the incorporation 

of radioactively labeled Uridine Triphosphate ([a.-358]-labeled UTP) into total RNA when it 

was coinjected into control and Xre/3 mRNA-injected blastulae and gastrulae. Pigmented two-

cell-stage embryos were co-injected with 1.0 ng of Xrel3 mRNA and 50 nCi [a.-35S]UTP 

( 400 Ci/ mmole, Amersham) and cultured in 4% Ficoll, in parallel with the control siblings 

injected with 50 nCi [a.-35S]UTP and DEPC-treated water. Starting from stage 7, samples of 

fifteen injected withXre/3 or control embryos were collected at each time point (stages 7, 8, 9, 

10, 11) and frozen at -20°C prior to being processed. Total RNA was purified by the use of 

NETs/LiCl RNA extraction method (Hopwood et al., 1989), and 10 µ1 from each sample 

were immobilized on glass fibre filters (GF/A) (Whatman). The filters were washed 

subsequently with ice-cold 20%, I 0%, and 5% trichloracetic acid. Incorporated label was 

detected by a Liquid Scintillation Analyzer (Beckman LS-3801, USA) (Stancheva and 

Meehan, 2000). The control embryos did not incorporate label above background levels until 

stage 8 of development (see Appendix Table 5; Figure 3.15). In contrast I detected up to a 

two-fold decrease in incorporation of [u-35S] UTP much later in theXre/3-injected embryos at 

stage 9, less than 50% of that seen at stage 9 in control embryos. The level of incorporation in 

injected embryos never reached the level of controls. This decline is either due to a decrease 

in transcriptional rate, or more likely due to the depleting injected free label. 
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In conclusion, using the incorporation of radioactively labeled Uridine Triphosphate ([a-35S]­

labeled UTP) in control and Xre/3 mRNA-injected blastulae and gastrulae, as a measure of 

transcriptional activation, I concluded that Xre/3-injected embryos initiate zygotic 

transcription approximately one or two cell cycles after the MBT. 
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Figure 3.15. Xrel3 injected embryos delay the onset of transcription at midblastula 
transition (MBT). 
The incorporation of microinjected (50 nCi) [a.-358]- labeled Uridine Triphosphate 
(UTP) was used to detect the activation of gene expression in Xre/3 and control injected 
embryos. Embryos were injected with [a.-358]-UTP along with 1.0 ng Xre/3 RNA or 
control DEPC-treated water. Total RNA from fifteen embryos was extracted at hourly 
intervals following stage 7 (four hours after fertilization at room temperature) and 10 µL 
of extracted RNA were counted to determine the incorporation of label. Vertical axis 
represents counts per minute of incorporation of a label of 1 µg of total RNA. Horizontal 
axis represents time after stage seven. These data indicate the mean and standard 
deviation (error bars) for three separate experiments (for values for each experiment see 
Appendix Table 5). 
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3.4.3 Analysis of gene expression in Xrel3-overexpressed animal caps. 

To confirm thatXre/3 overexpression inhibited transcription, the expression of 

EF-1 a and ODC was determined in animal caps dissected from embryos injected with 

1.0 ng of Xre/3. Animal caps are relatively homogeneous populations of cells, which lack 

the heavy yolk found in vegetal cells, that can interfere with RNA extraction causing 

undue experimental variability. I asked, if Xre/3-expressing animal caps delay increase in 

EF-1 a and/or ODC expression. 

Embryos were injected into the animal pole at the two-cell stage with 1.0 ng Xre/3 

RNA or injected with control RNA and were allowed to develop until stage 7 at room 

temperature. Animal caps (five caps at each time point) were isolated from control and 

Xre/3-injected embryos starting at stage 7. Samples were collected every thirty minutes 

initially until stage 9, and then collected at such stages as 10 and 11. Total RNA was 

extracted from dissected animal caps according to NETs/LiCl protocol (Hopwood et al., 

1989). Reverse transcription was performed with random primers. PCR was performed 

with 32P-ATP trace labeling and gene-specific primers for EF-1 a, ODC and histone. The 

expression of these transcripts was analyzed on 6% polyacrylamide sequencing gel. 

Levels of EF-1 a and ODC were normalized by histone. Levels of each markers on the 

gel were assessed by spot densitometry analysis and the Integrated Density Values (IDV) 

obtained for each marker are presented in Tables 5-7 (see Appendix). 

RT-PCR analysis demonstrated very inconclusive results. The experiment was 

performed four times (Figure 3. 16a, b) and two of the experiments showed thatXre/3 

delayed the induction of activation of both of these markers. The other two gels (Figure 
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3.13c-d) only demonstrated a slight to no difference in the delay of expression of EF-1 a 

and ODC in control or Xre/3-injected animal caps. RT-PCR analysis has its limitations in 

measuring the levels of markers. A different method should have been used, not RT-PCR 

but ribonuclease (RNase) protection assay or Northern blot to better quantify the levels of 

EF-1 a and ODC. Histone is not a good marker used for normalization the levels of EF-

1 a and ODC, since the levels ofhistone also increase after MBT (Figure 3.16.) 

In conclusion, it can be concluded that analysis of gene expression using RT-PCR 

of EF-1 a and ODC in animal caps dissected from embryos injected with 1.0 ng of Xrel3, 

could not confirm that the activation of these markers ofMBT was delayed. RT-PCR 

analysis had limitations in demonstrating conclusive results, so we cannot say for sure 

that Xre/3 delays the induction of activation of both of these markers. 
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Figure 3.16. Analysis of gene expression in Xrel3 injected animal caps. 
Representative gels of four separate experiments of hot RT-PCR analysis of Xrel3 and 
control injected animal caps (five animal caps per time point) extracted at thirty min 
intervals foil owing stage 7 up to stage 10 for the transcripts of Ornithine decarboxylase 
(ODC) and Elongation Factor I-alpha (EF-1 a), markers that are strongly expressed at 
the MBT in all embryonic cells. 
The levels of these markers were normalized by histone levels. 
a-b) showed the delay in activation of both of these markers. 
c-d) demonstrated a slight to none difference in the delay of expression of EF-1 a and 
ODC in control or Xre/3-injected animal caps. 
Arrow shows the approximate time of the initiation of midblastula transition stage 
(MBT), which starts at stage 8.5 of Xenopus laevis development. 
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3.4.4 Analysis of XDnmtl levels in Xrel3-overexpressed embryos. 

Stancheva and Meehan (2000) proposed that depletion oftheXenopus DNA 

methyltransferase (XDmntl) enzyme, which is involved in DNA methylation, caused 

premature activation of transcription and MBT. I wanted to check, therefore, if Xre/3 is 

involved in maintaining the levels ofXDnrntl enzyme, preventing its depletion and 

contributing to gene silencing at the MBT. 

Wild-type embryos were injected into the animal pole at the two-cell stage with 

1.0 ng Xrel3 RNA or injected with control RNA and allowed to develop until stage 7 at 

room temperature. Animal caps (five caps at each time point) were isolated from control 

andXre/3-injected embryos starting at stage 7. Samples were harvested at stage 7, 8, 9, 

11, 13, 16 and 20. Total RNA was extracted from collected animal caps according to 

NETs/LiCl protocol (Hopwood et al., 1989). Reverse transcription was performed with 

random primers. PCR was performed with gene-specific primers for XDnmtl and histone. 

The expression of these transcripts was analyzed on 2% agarose gel. Levels of XDnmt 1 

normalized by histone levels, were assessed by spot densitometry analysis, and the 

Integrated Density Values (IDV) obtained and compared .. RT-PCR analysis demonstrated 

that there is no difference in expression levels of XDnmtl inXre/3-injected or control 

embryos (Figure 3 .17). Therefore, Xrel3 does not seem to be involved in maintaining the 

levels of DNA methyltransferase enzyme or preventing its depletion, which is what 

would have happened if Xre/3 were involved in the delay of the onset of MBT. 
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Figure 3.17. Xrel3 does not prevent the depletion of DNA methyltransferase, which is 
necessary for the onset of MBT. 
Representative gel of RT-PCR analysis of Xre/3 and control injected animal caps (five 
animal caps per time point) extracted at stages 7, 8, 9, 11, 13, 16 and 20 for the 
transcripts of DNA methyltransferase (XDnmtl), another markers of MBT. The levels 
of XDnmtl drop prior the onset of MBT. There is not difference in levels of XDnmtl in 
control and Xre/3-injected animal caps. Levels of this marker were normalized by 
histone. 
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3.5 Xre/3 does not prevent fibroblast growth-factor mediated mesoderm 
induction and expression of Xbra in animal caps. 

When Xre/3 is injected in the marginal zone of two-cell stage embryos, they develop 

defects in gastrulation. When these embryos are let to develop further, they seem to have 

defects in notochord development, when examined at stage 28 (Figure 3.3). This 

observation suggests that Xre/3-injected embryos have defects in mesoderm specification. 

To test whether Xre/3-expressing cells lose their ability to respond to mesoderm-inducing 

factors, animal caps were treated with the potent mesoderm inducer-fibroblast growth 

factor, and assayed for mesoderm marker expression using RT-PCR. 

Animal caps were dissected from embryos injected with 0.5 ng Xre/3 mRNA or 

control RNA at stage 8, treated with varying concentrations of basic FGF and assayed for 

the expression of the early mesoderm marker Xbra. Control andXre/3-injected animal caps 

treated with bFGF show elongation corresponding to mesoderm induction at stage 13 

(Figure 3.18A) and at stage 28 they form into "embryoid bodies," because they resemble 

miniature embryos (Figure 3. l 8C). Molecular analysis with the mesodermal marker Xbra 

confrrmed the expression at stage 10.5 of Xbra in control animal caps and animal caps from 

embryos injected withXre/3 at concentrations as low as 50 ng/mL (Figure 3.18D). No 

induction or expression of Xbra was observed in control or Xre/3-injected animals caps 

untreated with FGF (Figure 3.18D). These results suggest thatXrel3 does not reduce FGF-

mediated induction of animal caps or the expression of Xbra in FGF-treated embryos 

(Figure 3.19). 
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Animal caps from embryos injected with different concentrations of Xre/3 (0 ng; 

0.25 ng; 0.5 ng; 1.0 ng) and treated with 125 ng/mL ofbFGF undergo dramatic elongation 

when control embryos are gastrulating at stage 11 and form "embryoid bodies" at stage 28 

(Figure 3.20), although they exhibit reduction of elongation relative to the injection dosage. 

High dosages, such as 1.0 ng Xrel3 RNA caused a reduction of about 25% in the average 

length ofFGF-treated animal caps (Figure 3.19, Figure 3.20). No elongations were 

observed in untreated animal caps from embryos injected withXre/3 (Figure 3.20). These 

findings indicate thatXre/3 does not prevent FGF-induced elongation of animal caps. 
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Figure 3.18. Xre/3 does not prevent mesoderm induction by bFGF. 
Animal caps were dissected at stage 8 from embryos injected with 0.5 ng either Xre/3 or 
control, treated with varying concentration of recombinantXenopus basic FGF: 
0 ng/mL; 50 ng/mL; 100 ng/mL; 125 ng/mL; and (A) photographed for elongation 
characteristics of mesoderm induction at stage 13, or (C) at stage 28; (D) harvested at 
stage 10.5 for RT-PCR analysis using primers for brachyury (Xbra), Xrel3 and histone. 
Levels of these markers were normalized by histone levels. Negative control is a control 
PCR reaction of RNA sample without reverse transcription. Injected embryos were left to 
develop and assayed for the formation of tumours (B). Scale bar, I mm. 
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I 

Figure 3.19. Percentages of FGF-indnced animal caps obtained from embryos 
injected with Xre/3 or control into the animal region. 
Horizontal axis represents varying concentration of recombinant Xenopus basic FGF: 
0 ng/mL; 50 ng/mL; 100 ng/mL; 125 ng/mL. Vertical axis represents the percentage of 
embryos relative to a total number of embryos injected and scored in three separate 
experiments (for values see Appendix Table 8). 
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Figure 3.20 Injections of Xrel3 in different concentrations does not prevent FGF­
induced elongation of animal caps. 
Animal caps (stage 28) collected from embryos injected with different concentrations of 
Xre/3 at the two-cell stage in the animal region and treated with 125 ng/mL of 
recombinant Xenopus basic FGF: Animal caps from embryos injected with Xrel3 and 
treated with bFGF undergo reduction of elongation relative to the injection dosage. No 
induction is observed in untreated animal caps. 
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3.9 Effects of Xre/3 on activin-induced elongation of animal caps. 

The origin of phenotypes we have observed by Xre/3 over expression might be 

explained by alterations in gastrulation movements. It is possible to mimic the elongation 

movements associated with dorsal development in vitro by treating animal cells at the 

early blastula stage with factors known to cause differentiation of dorsal tissues. We have 

taken advantage of this technique to examine what effectXre/3 RNA injections have on 

convergent extension, a central process to dorsal differentiation (Kao and Lockwood, 

1996). 

Animal caps were treated with media conditioned from XTC cells, which 

contains activin, a strong dorsoanteriorizing growth factor, and is able to induce 

convergent extension in vitro (Smith et al., 1990; Kao and Lockwood, 1996). As 

expected, animal caps isolated from Xre/3-injected and control embryos that are exposed 

to XTC-conditioned medium (XTC-CM) undergo dramatic elongation when control 

embryos are gastrulating at stage 11 (Figure 3.21). Animal caps from embryos injected 

with Xrel3 and treated with XTC-CM undergo reduction of elongation relative to the 

injection dosage (Figure 3.21). Low dosages, such as 0-0.25 ngXre/3 RNA caused a 

reduction of about 50-75% in the average length of XTC-CM treated animal caps (Figure 

3.21), while higher concentrations of Xre/3 (from 0.5-1.0 ng) caused a complete 

reduction of elongation, and the animal caps appeared indistinguishable from the 

untreated cases. These findings indicate that Xre/3 reduces activin-induced elongation of 

animal caps. 
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Figure 3.21 Xrel3 reduces activin-induced elongation of animal caps. 
Animal caps (stage 11) collected from embryos injected with different concentrations of 
Xre/3 at the two-cell stage in the animal region and treated for one hour with 18 ng/mL 
activin. Animal caps from embryos injected with Xre/3 and treated with XTC-CM 
undergo reduction of elongation relative to the injection dosage. No induction is observed 
in untreated animal caps. 
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CHAPTER4. 

DISCUSSION. 

4.1 Possible mechanisms of tumour formation in Xre/3-injected 
I 

embryos. 

In this project I attempted to determine why Xre/3 overexpression causes tumours 

in embryos. My findings suggested that Xrel3 overexpression causes the formation of 

tumours by limiting cell migration and differentiation before gastrulation. However, my 

experiments to determine if the tumours are formed by increased cell proliferation were 

inconclusive. 

The use of the Xenopus laevis embryo as a model system for tumourigenesis is 

still in its infancy, but it has become an effective approach to the study of formation and 

development of neoplasia (Wallingford, 1999). The key question that must be answered 

is whether or not these masses of cells that are formed as a result of Xre/3 overexpression 

are actually tumours. 

Another possibility to explain tumour formation as a result of Xre/3-

overexpression is that Xrel3, like other Rel/NF-KB proteins (see review by Li and Stark, 

2002) is able to prevent apoptosis (programmend cell death) in cells of the developing 

embryo. Programmed cell death refers to the naturally occurring cell death that is part of 

the developmental program of an organism (Jacobson et al., 1997). Previous studies have 

shown that in Xenopus development the maternal cell death program is set up at 

fertilization and abruptly activated at the onset of gastrulation at stages 10.5 to 11.5, 

when any damaged cells that have accumulated since fertilization are removed. Also, 
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large numbers of apoptotic cells were detected in the developing Xenopus neurula 

(Hensey and Gautier, 1997; 1998). 

During MBT a dramatic change occurs in response of the embryo to DNA 

damage. Before MBT, theXenopus embryo is able to initiate apoptosis in response to 

ionizing radiation, but loses its ability to do this after MBT, becoming resistant to 

apoptosis (Finkielstein et al., 2001 ). It is possible that Xre/3 prevents the activation of 

apoptotic pathways before MBT, which leads to cell accumulation and tumour formation. 

In my study, the analysis of molecular markers demonstrated thatXre/3-induced 

ectodermal tumours aberrantly express Shh and Gli genes (Lake et al., 200 I), which are 

involved in tumourigenesis (Dahmane et al., 1997). Similar tumours are caused by 

overexpression of Glil (Dahmane et al., 1997) and a dominant negative form of the p53 

tumour suppressor and its wild-type antagonist Mdm2, when injected into the early 

embryo (Wallingford et al., 1997). What is confusing is that activation of these genes, 

due to overexpression of Xre/3 occurs in later stages, long after the MBT, when the Xre/3 

message has disintegrated (Lake et al., 2001). Thus, the origin of tumours must not 

depend entirely on Shh expression. 

It is more likely that Xre/3-induced tumours arise from cells not participating in a 

normal process of cell movements and rearrangements that result from growth factor 

dependent processes occurring during gastrulation. In my experiments presented in this 

thesis, animal cells from embryos injected with Xre/3 RNA and then treated with the 

inducing factor activin A did not differentiate into mesoderm, nor did they undergo 

morphological changes characteristic of induction. Xrel3 however, did not prevent animal 
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caps to form mesoderm and express mesoderm specific markers in response to bFGF. It 

is possible, therefore, to propose that Xrel3 interferes with specific cellular properties, 

such as adhesion and cell motility, which are necessary for gastrulation movements. Not 

enough or too much adhesion between cells, for instance has detrimental effects on 

gastrulation movements in Xenopus development (Popsueva et al., 2001 ), and Xre/3 

overexpression, or the subsequent effects of this overexpression may be involved in this 

process. 

4.2. Effects of Xre/3 overexpression on embryo phenotype. 

The results presented in this work confirm and extend the results obtained 

previously by Yang et al. ( 1998), who also reported the effect of Xre/3 overexpression; in 

particular I asked what factors might contribute to the formation of tumours in the earlier 

stages of development, before the onset of embryonic transcription and gastrulation. 

Ectopic expression of Xrel3 seems to have a major effect on pre-gastrula development, 

because there are definite morphological, molecular and cellular differences between 

control and Xre/3-injected embryos before and during gastrulation. 

The site of injection of Xrel3 mRNA seemed to play a major role in the generation of 

embryonic phenotypes. In particular, overexpression of Xre/3 into the dorsal marginal zone 

caused a reduction in dorsoanterior structures in embryos, with the majority of embryos having 

small heads, kinked backs and shortened tail. Most of them failed to form the blastopore lip 

and initiate gastrulation movements, as compared to controls. This indicates that the target of 

Xre/3 overexpression resides in the dorsal region of the embryo. Embryos injected in 

prospective lateral regions had fewer dorsoanterior defects as compared to dorsal injection 
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phenotypes. The large numbers of dorsoanterior defects in lateral injections could be due to 

diffusion of Xre/3 RNA to the dorsal side. It is possible that Xre/3 overexpression in the dorsal 

marginal zone mimics the effect ofventralizing agents such as BMP-4, X-vent. More 

investigation is necessary to determine the various interactions of Xre/3 with factors such as 

these in ventral development. 

4.3 Role of Xre/3 in reeulation ofMBT. 

MBT occurs at stage 8.5 of Xenopus development, after the 12th cleavage 

division (approximately 4096 cells), and is associated with major changes in cell cycle 

checkpoints, slowing down the rate of DNA synthesis, initiation of zygotic transcription, 

loss of cell cycle synchrony and increase in cell motility (Newport and Kirschner, 

1982a,b ). How MBT is controlled is not completely understood. 

My results show that Xre/3 overexpression does not contribute to the 

maintainance of the dividing cells in the pre-MBT state by blocking the slowing down of 

DNA synthesis, delaying the initiation of embryonic transcription or premature activation 

of transcripts of MBT. 

It is possible, however, thatXre/3 might interfere with the increase in cell 

motility, which usually occurs at MBT (Newport and Kirschner, 1982a,b ). This 

hypothesis would explain the delays in gastulation movements that I observed inXre/3-

overexpressed embryos. The mechanism of action is not clear how Xre/3 overexpression 

might affect those molecules that are involved in cell movements. The accumulation of 

non-moving cells due to both inhibition of migration and increased proliferation might be 

factors that contribute to tumour formation in developing embryos. 
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4.4 Effects of Xre/3 overexpression on mesoderm induction in animal 
caps. 

I have described the effects of Xre/3 overexpression in the marginal zone of two-

cell stage embryos on mesoderm differentiation, an event, which also coincides with 

MBT. The period of competence for mesoderm induction is thought to begin before the 

MBT at about stage 6.5 and extend until gastrulation (Domingo and Keller, 2000). The 

transcription of mesoderm specific genes is activated at MBT, so the embryos 

overexpressing Xrel3 develop defects in gastrulation and later in development they show 

defects in notochord development, when examined at stage 28, which corresponds to 

reduction inXbra expression in developing embryos (Figure 3.3). 

WhenXre/3-overexpressed animal caps were assayed for mesoderm induction 

using bFGF and assayed for Xbra, an immediate early gene expressed in response to 

mesoderm induction (Smith et al., 1991 ), Xre/3-expressing cells do not seem to lose their 

ability to respond to mesoderm-inducing factors. The animal caps continue to respond to 

bFGF, showing elongation movements and the expression of Xbra. This suggests that the 

effects ofXrel3 do not interfere with FGF-induced mesoderm induction. It is possible, 

therefore that Xrel3 acts upstream ofFGF-mediated induction. 

The above observations suggest that Xre/3 inhibits mesoderm induction, not by 

interfering with bFGF pathway, but by regulating activin A signaling. The results 

presented here show that when animal caps from embryos injected with Xre/3 were 

treated with activin, Xrel3 reduced their ability to elongate. This suggests a link between 

Xre/3 and activin signalling, which must be investigated further. One possibility is that 
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Xrel3 is not able to inhibit zygotic FGF, but is able to inhibit the ~ specification of 

competence to respond to activin-like signals, which depends ona maternal FGF 

expression. If this were the case, then the immediate early respomse to activin would be 

affected. In this work, I did not assay for Xbra expression in acti~vin-treated animal caps, 

but the reduction in elongation movements is good evidence thattt activin was not able to 

cause the mesoderm induction inXre/3-treated animal caps. The= induction of mesoderm 

in animal caps by bFGF suggests that Xre/3 might repress genes that are required for the 

synthesis or release of eFGF, or that Xre/3 might act as a brake oon eFGF-Xbra 

autocatalytic loop that is required for the stability of mesodermam phenotype in marginal 

zone during gastrulation (Issacs et al., 1994). 

Xre/A has also shown to be involved in mesoderm inducttion. The deletion mutant 

of Xre/A was able to inhibit FGF-induced and activin-induced maesoderm induction (Beck 

et al., 1998; Kao and Lockwood, 1996). In this work we observee the opposite, that 

mesoderm can be rescued by bFGF inXre/3-injected animal cap,s. It indicates thatXrelA 

and Xref 3 might have different functions in Xenopus developmemt, although, 

overexpression of both genes leads to the formation oftumour-liike epidermal protrusions, 

so some similarity must still exist (Kao and Hopwood, 1991; Yamg et al., 1998). 

On the basis of the results presented here, I propose that ;xre/3 overexpression 

does not permit dorsal cell differentiation in animal caps treated with activin. In this 

regard, it is also possible that there might be a link between actiwin signaling and Xre/3 

expression. This link was demonstrated by other workers between TGF-P signalling and 

NF-KB proteins. In particular, NF-KB was found to inhibit activiities of TGF-P in matrix 
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synthesis, inflammation, apoptosis, and hematopoiesis (Oberhammer et al. , 1992; Snoeck 

et al., 1996; Bitzer et al., 2000). The activation ofNF-ld3/RelA by a variety of 

pathogenic and proinflammatory stimuli inhibits TGF-f3 signaling at the level of TGF-P 

type I receptor function through increase of transcription of the Smad7 gene and 

elevation of intracellular levels of Smad7 protein (Bitzer et al., 2000). It is possible that 

Xre/3 might be able to activate Smad7 regulatory protein, which is able to inhibit activin 

signalling. Futher investigation is necessary to confirm that this interaction exists 

between these two signalling pathways in Xenopus development. 

In conclusion, work presented in this thesis is directed towards supporting the 

hypothesis that Xref 3 is involved in Xenopus development and cell differentiation. This 

work will be important for future studies and technological advances in development and 

human cancer research. Further studies are needed to continue analysis and discoveries of 

the novel genes of both development and human cancer using the Xenopus system to 

generate novel information and determine the function of novel genes. 
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APPENDIX A. 

TABLE lA. Components of NAM (10x) 

g/L (in Final Concentrations ( mM 
lOxNAM) 

lxNAM NAM/2 NAM/20 
NaCl 65 110 55 5.5 
KCI 1.5 2 1 0.1 

Ca(N03)2· 4H20 2.4 1 0.5 0.05 
MgS04·7H20 2.4 1 0.5 0.05 

EDTA (0.5 M, pH 8.0) 2 0.1 0.05 0.005 
HEPES (IM, pH 7.5) 100 10 5 0.5 

TABLE lB. Components of NAM Solutions 

For 100 mL of lx solution, add: 

NAM(mL) NAM/2 (mL) NAM/20 ( mL) 

lOxNAM (see Table IA) 10 5 0.5 
Gentamycin (10 mg/mL) 0.25 0.25 0.25 

Sodium Bicarbonate (0.1 M) 1.0 1.0 ----
Sterile H20 88.27 93.75 99.25 
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TABLE 2. RNA production usine Sp6 RiboMAX kit ( Promqa) 

Reagent added Volume added (µL) Final concentrations 
(mM) 

Sn6 Sx transcrigtion buffer 10 Sp6 lx buffer 
400 mM HEPES-KOH, pH 7.5 80 

160 mM gCl2 32 
10 mM spermidine 2 

200mMDTT 40 
rATP (100 mM) 2.5 5 
rCTP (100 mM) 2.5 5 
rUTP (100 mM) 2.5 5 
rGTP (100 mM) 0.3 0.6 

40 mM Ribo m 7 G Cap Analog 15 12 
(m7G(5')vvv(5')G) (Promega). 
linear (pCS2+/-Xrel3) template 9 0.9 µg 

(5 µg) 
SP6 RNA polymerase 5 --

• enzymetmx. 
nuclease-free H20 3.5 ---

Total 50 

TABLE 3. Reverse transcription reaction mixture volumes ner each sample in a 
22 uL total volume. 

Reagents Volumes (µL) Final concentrations ( mM 
5X First Strand Buffer 4 45.5 mM Tris-HCI 

68.2mMKC1 
2.7mMMgC12 

DTT (0.1 M) 2 9.1 mM 
dNTPs (10 mM) 2 0.9mM 

(0.23 mM of each of dATP, 
dCTP, dGTP, dTTP) 

random primers (0.1 µglµL) 2 9.1 ng/µL 
RNA guard (100 U/mL) 1 4.5 U/mL 

Reverse Transcriptase enzyme 1 9.1 U/µL 
(M- MLV) (200 U/µL) 
RNA sample (-l µg) in 10 ----

I 0 µL DEPC· H20 
Total 22 
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TABLE 4. Primers used for RT-PCR analysis. 

Primer Primer sequence Tm Size of Cycles References 
Name product 

(bp) 

Xrel3 
Forward 5'-TCCTTGGAGATA1TIGTGGGG-3 65.0°C 153 25 Yang et al., 1998 

(~rp 18) 
(crp 20) Reverse 5' .. TIT AAACCGGCCATGTIGATG-3' 70.0°C 

His tone 
72.2°C 188 23 Niehrs et al., 1994 (H4-1) Forward 5'- CGGGATAACAITCAGGGTATCACT-3' 

(H4-2) Reverse 5'-ATCCATGGCGGTAACTGTCTTCCT-3' 74.0°C 

Dnmtl 
68.0°C Stancheva and (XDnmtl) Forward S'·TCTTGTGGATGAATGCGAGG-3' Meehan, 2000 (XDnmtl) Reverse 5'-CCACATCATCCTTCCTCT-3' 65.0°C 

EF-la Forward 5'-CAGATTGGTGCTGGATATGC-3' 68.3°C 221 20 Agius et al., 
(XR-1) 2000 
(XR-2) Reverse 5'-ACTGCCTIGATGACTCCTAG-3' 68.3°C 

ODC 
Forward 5'-TCCATICCGCTCTCCTGAGCAC-3' 75.0°C 228 25 Agius et al., 

(OOC-D) 2000 
(ODC-U) Reverse 5'- GTCAA TGATGGATGTATGGATC-3' 70.0°C 

Xbra 
Forward 5'-0GGCCCAACCAGGTGTGGGTG-3' 64.5°C 390 25 Agius et al., (L0-1) 2000 

(L0-2) Reverse 5'-0T AGTCRGT AGCAGCAGTCCC-3' 64.5°C 

Chordin 
Forward 5'-AACTGCCAGGACTGGATGGT-3' 70.3°C 267 25 Sasai et al., 1994 

(VG-1) 
(VG-2) Reverse 5'-0GCAGGA1TIAGAGTTGCTTC-3' 68.9°C 
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TABLE 5. Volumes used and rmal concentrations of each PCR component 
constituting a 50 uL of total reaction. 

PCR components Volumes used Final concentrations 
{µL) (mM) 

1 OxPCR buffer 5 SOmMKCl 
10 mM Tris-HCI (pH 9.0) 

0.1% Triton X-100 
50mMMgC12 1~5 l.5mM 
lOmMdNTP 4 0.8mM 

(0.2 mM of each of dATP, 
dCTP, dGTP, dTTP) 

100 µg/mL Primer # 1 2 4µg/mL 
I 00 µg/mL Primer #2 2 4µwmL 
Platinum Taq DNA 0.2 0.02 U/µL 
polymerase (5 U/µL) 

cDNA 2 ---
Distilled water 33.3 ---
Total volume 50 
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APPENDIXB 
TABLE 1 Assessment of phenotypes observed upon overexpression of different 

concentrations of Xrel3 mRNA in the animal regions of two-cell stage 
embryos (average of three experiments). 

(CJ of 
Numbers of embryos with phenotypes 

Xre13 
injected Delays in Died Axial defect Tumour Died Mkrocepbaly 

Total blastopore during at forming during shortened 
closure at gastrula neurulatio11 (stage 20) neurula trunk 

(ng) gutrulation (stage 11) (stage 20) (stage 20) (stage 25) 
(stage 11) n 

n(%) n (0/o) n (8/o) n(%) n (o/o) n(%) 

Ona 30 2 (6) 2 (6) 1 (3) -- 1 (3) 0 

O.Sn2 30 4 (13) 2 (6) 2 (6) 23 (76) 0 10 (33) 

1.0 n2 30 9 (30) 4 (13) 5 (16) 26 (86) 1 (3) 13 (43) 

2.0 DI 30 22 (73) 21 (70) 29 (96) 27 (90) 8 (26) 0 

4.0 n2 30 26 (86) 23 (76) 30(100) 27 (90) 7 (23) 0 

TABLE 2. Assessment of phenotypes observed upon overexpression of Xrel3 
mRNA in the animal, marginal and vegetal regions of two-cell 
stage embryos (average of three experiments). 

Numbers of embryos with phenottpes 

Site of Delays in Died Axial defect Dark spots Died Microcepbaly 
injection Sample Total blastopore during at at neurula during shortened 

closure at gastrula neurulatio11 forming on neurula trunk 
gastrulatioo (stage 11) (stage 20) the surface (stage (stage 32) 

(stage 11) (stage 20) 20) 

n 
n(%) n(%) D ( 0/o) 0(%) n(%) n(%) 

Animal Control 100 4 (4) 7 (7) 3 (3) 0 5 (5) 4 (4) 
pole XreB 100 26 (26) 20 (20) 11 (11) 57 (57) 6 (6) 26 (26) 

Marginal Control 100 2 (2) 19 (19) 3 (3) 0 3 (3) 3 (3) 
zone XreB 100 51 (51) 28 (28) 12 (12) 0 6 (6) 36 (36) 

Vegetal ~H!!J!I 100 2 (2) 11 (11) 1 (1) 0 3 (3) 5 (5) 
pole XreB 100 38 (38) 27 (27) 6 (6) 0 13(13) 2 (12) 

Normal 
looking 

(stage 25) 

n(%) 

27 (90) 

3 (10) 

0 

0 

0 

Normal 
looking 

(stage 32) 

n(%) 

81 (81) 

12 (12) 
77 (77) 

4 (4) 
85 (85) 
17 (17) 
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lumps 
(stage 

32) 

n(%) 

0 

24 (24) 
0 

7 (7) 
0 

22 (22) 



TABLE 3. Distribution of phenotypes caused by dorsal or lateral marginal zone 
injections of Xre/3. 

Numbers of embryos with phenotypes 

Injection Defects at Axial Tumour Mkrocephaly Kinked, Normal 
Sample Total gastrulation defects at forming shortened 

site (Stage 10.5) neurulation (Stage 20) 
(Stage 32) tnank 

(Stage 32) 
(Stage 20) 

(Stage 32) 
n n n n n n n 

(%) (o/o) (%) (%) (o/o) (%) 
dorsal Control 126 4 (3) 4 (3) 0 0 4 (3) 106(86) 

Xrel3 115 104 (90) 97 (84) 27(23) 36 (31) 91 (79) 0 
ventral Control 119 3 (2) 2 (2) 0 0 4 (4) 104(87) 

Xre/3 105 54 (51) 38 (36) 11(10) 13 (12) 51 (48) 0 

TABLE 4. Measurement of the incorporation of radioactively labeled Uridine 
· Triphosphate ((a-35S]-Iabeled UTP) in control andXre/3 mRNA-injected 

blastulae and gastrulae. 

Sta,!es (hours from stage 7) 
St. 7 St. 8 St. 9 St.10 St.11 St.13 
(0) (1.0) (3.0) (6.0) (8.0) (15) 

Sample Counts per minute ( cpm) of 1 µg of total RNA 

Ex#l Control 0 0.26 12.6 55.3 67.4 -
Xrel3 0 0 3.6 52.0 30.9 --

Ex#2 Control 2.29 5.55 - 115.9 133.0 97.3 
Xrel3 0.83 4.94 -- 56.1 46.0 42.9 

Ex#3 Control 2.59 0.41 47.7 74.4 111.9 91.7 
Xrel3 1.12 4.51 3.07 49.6 47.3 77.5 

Ave Control 1.62 2.07 30.2 81.8 104.1 94.5 
XrelJ 0.65 3.15 3.33 52.5 41.4 60.2 

Stdev Control 1.41 3 .. 01 24.8 30.9 33.4 3.91 
Xrel3 0.58 2.73 0.37 3.29 9.14 24.4 
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TABLE 5. Levels of ODC marker on the gel assessed by Spot Densitometry Analysis. 

Stages 
(hours after sta2e 7) 

St.7 St.7.5 St.8 St.8.2 St.8.5 St.8.7 St.9 9.2 10 11 
Sample (0) (O.S) (1.0) (1.5) (2.0) (2.5) (3.0) (3.5) (6) (8) 

Inte2rated Density Values for ODC 
Ex#l Control 1368 1524 - 12996 20520 17784 684 684 - --

Xre/3 4218 9842 - 19684 21793 21090 14763 12654 -- -
Ex#2 Control 26714 18981 28823 54131 33041 59052 52022 48507 45695 --

XrelJ 5600 32900 37800 31500 53200 56700 23100 7700 11200 --
Ex#3 Control 42180 46398 48507 67488 39368 61161 44992 - 35150 67488 

Xrel3 42180 62567 69597 72409 64676 63270 49210 - 58349 60458 

Ex#4 Control -- -- 79040 31008 38912 37088 27360 68704 - 80256 
Xrel3 - - 32224 27968 31616 10336 22496 45600 -- 71744 

Ave Control 23420 24301 52123 41405 32960 43771 31264 39298 40422 73872 
Xrel3 17332 35103 46540 37890 42821 37849 27392 21986 34774 66101 

Stdev Coatrol 20604 19975 25303 24203 8779 . 20460 22874 34932 7456 9028 
Xre/3 21529 26431 20161 19605 26073 15032 15032 20600 33339 7980 

TABLE 6. Levels of EF-1 a marker on the gel assessed by Spot Densitometry Analysis. 

Stages 
(hours after staae 7) 

St.7 St.7.5 St.8 St.8.2 St.8.5 St.8.7 St.9 9.2 10 11 
Sample (0) (0.5) (1.0) (1.5) (2.0) (2.5) (3.0) (3.S) (6) (8) 

Inte2rated Densit:f Values for EF-la 
Ex#l Control 0 684 - 2052 6156 17100 2052 4788 - -

XrelJ 0 703 .... 3515 9139 10545 47158 7106 - --
Ex#2 Control 12876 19684 27417 26011 21793 74618 59052 70300 104044 --

Xrel3 11900 43400 23100 26600 55300 36400 23800 21700 85400 --
Ex#3 Control 14763 23199 29526 33744 30932 38665 40071 - 71003 85766 

Xrd3 26011 43586 40071 43586 43586 45695 45695 - 78736 73815 

Ex#4 Control -- - 5472 7296 15200 23712 26144 29184 - 72352 
XrelJ - - 14596 17632 5472 5472 17024 7904 - 63232 

Ave Control 9213 14522 20805 17275 18520 38523 31829 34757 87523 79059 
Xre/3 12637 29229 25922 22833 28374 24528 33419 12236 82068 68523 

Stdev Control 8034 12112 13320 15042 25698 24000 24000 29073 23363 9485 
Xrel3 13021 24704 12969 16784 24838 19558 15283 8205 4712 7483 
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TABLE 7. Levels of Histone marker on the gel assessed by Spot Densitometry Analysis. 

Stages 
(hours after sta2e 7) 

St. 7 St.7.5 St. 8 St.8.2 St.8.5 St.8.7 St. 9 St.9.2 St.10 
Sample (0) (0.5) (1.0) (1.5) (2.0) (2.5) (3.0) (3.5) (6) 

Inte2rated Density Values for Histone 
Ex#l Control 6840 7524 - 11628 29412 41724 2052 2052 --

XreB 1292 5168 -- 9690 16796 13566 10982 12274 --
Ex#2 Control 6327 14060 28860 33041 30932 64676 27417 37962 9139 

XreB 26600 44800 41300 32900 33600 37800 32200 17500 12600 

Ex#3 Control 17575 26714 32338 35150 34447 38665 36556 -- 27417 
XrelJ 30229 38665 39368 45695 41477 48507 40774 -- 47101 

Ex#4 Control -- - 34048 27360 60192 56544 64448 45600 --
Xre/3 - -- 35264 29184 20064 16416 30400 29184 -

Ave Control 10247 16099 31748 26794 38745 50402 32618 28538 18278 
Xrel3 19373 29544 38644 29367 27984 29072 28589 19652 29850 

Stdev Control 6351 9756 2643 10632 14452 12309 25755 23253 12924 
XreB 15764 21332 3082 14903 11569 16877 12580 8658 24396 

TABLE 8. Numbers of FGF-induced animal caps from embryos injected with 
O.S ng Xrel3 mRNA or control (a total of three separate experiments). 

Concentrations FGF (ng) 
# embryos that 

Sample o ng I song I 100 ng 125 ng formed tumours 
out of remaining 

Number of elongated animal caps out of 
embryos (stage lS) 

the number treated with bFGF 
Exp. #1 Control 0/10 10/10 8/9 919 0/20 

Xre/3 0/10 8/10 5/10 719 13/21 
Exp. #2 Control 0/10 8/10 10/10 10/10 0/18 

Xrel3 0/10 9/10 9/10 10/10 12/15 
Exp.#3 Control 0/10 8/10 10/10 10/10 0/20 

Xre/3 0/10 7/10 919 10/10 21/31 
Total# Control 0/30 26/30 28/10 29/30 0/58 

Xrel3 0/30 24/30 23/30 27/30 46/67 
•Jo of Control 0 86.6% 93.3% 96.6% 0 

elongated Xrel3 0 80.0o/o 76.6% 90.0% 68.7o/o 
explants 
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St.11 
(8) 

-
.... 
--
-

17575 
25308 
33440 
32832 
25507 
29070 
12924 
5320 
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