
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

Composite Objects
Dynamic Representation and Encapsulation

by Static Classification of Object References

St. John's

by
© Ulf Schunemann

A thesis submitted to the
School of Graduate Studies
in partial fulfilment of the

requirements for the degree of
Doctor of Philosophy

Department of Computer Science
Memorial University of Newfoundland

June 2005

Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-15662-9
Our file Notre reference
ISBN: 978-0-494-15662-9

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

The composition of several objects to one higher-level, composite object is a central
technique in the construction of object-oriented software systems and for the manage
ment of their structural and dynamic complexity. Standard object-oriented program
ming languages, however, focus their support on the elementary objects and on class
inheritance (the other central technique). They do not provide for the expression of
objects' composition, and do not ensure any kind of encapsulation of composite ob
jects. In particular, there is no guarantee that composite objects control the changes
of their own state (state encapsulation).

We propose to advance software quality by new program annotations that docu
ment the design with respect to object composition and, based on them, new static
checks that exclude designs violating the encapsulation of composite objects' state.
No significant restrictions are imposed on the composite objects' internal structure
and dynamic construction. Common design patterns like Iterators and Abstract Fac
tories are supported.

We extend a subset ofthe Java language by mode annotations at all types of object
references, and a user-specified classification of all methods into potentially state
changing mutators and read-only observers. The modes superimpose composition
relationships between objects connected by paths of references at run-time. The
proposed mode system limits, orthogonally to the type system, the invocation of
mutator methods (depending on the mode of the reference to the receiver object),
the permissibility of reference passing (as parameter or result), and the compatibility
between references of different modes. These restrictions statically guarantee state
encapsulation relative to the mode-expressed object composition structure.

11

Dedicated in gratitude to my parents.

In memory of my father.

lll

Contents

Abstract

Contents

List of Figures

List of Symbols

1 Introduction
1.1 Summary
1.2 Contributions
1.3 Outline

~ Abstraction in Object-Oriented Programming
2.1 The Importance of Abstraction
2. 2 Abstraction Hierarchies
2.3 Object-Oriented View of the Runtime System
2.4 Complexity in the Large in Object Systems . .
2.5 Composite Objects and Structured Systems
2.6 Managing Dynamic Complexity: The Map Example
2.7 Origin of the Notion of Composite Object

3 Encapsulation in Object-Oriented Programming
3.1 The Importance of Modularity
3.2 Information Hiding and Encapsulation
3.3 The Need to Encapsulate Composite Objects .
3.4 Directions of Research in Encapsulation Units
3.5 External Access despite Encapsulation? ..
3.6 Review of Proposed Encapsulation Policies

4 Related Work
4.1 Encapsulation Approaches
4.2 Discussion

iv

ii

IV

vii

ix

1
1

12
14

15
15
18
20
23
25
30
33

36
36
40
43
47
52
54

59
59
68

5 The Base-JaM Fragment 69
501 Base-JaM Programs 0 0 0 0 0 0 0 0 0 0 69
502 Formalization of Program Meaning 0 0 0 72

50201 Computational States and Values 74
50202 Computational Steps 0 0 0 0 0 0 0 79

503 JaM's Higher-Level View 0 0 0 0 0 0 0 0 0 84
50301 The Object Graph in the Computation 84
50302 Moded Paths, Owners and Sanctuaries 88
50303 The Composite Object View 0 91

5.4 Typed Base-JaM 0 0 0 0 0 93
5.401 The Type System 0 0 0 0 0 0 0 93
50402 The Mode System 0 0 0 0 0 0 0 98
50403 Type Correctness and Consistency 102

505 Integrity of the Higher-Level View 0 0 0 0 0 107
50501 Structural Integrity of Object Ownership 107
50502 Structural Integrity of Mutator Access 113
50503 Composite State Encapsulation 115

6 JaM with the Full Mode System 119
601 Introducing the New Modes 0 0 120
602 Adapted Definitions 0 0 0 0 0 0 0 124

60201 Syntax, Semantics, Typing 124
60202 The Higher-Level View 0 0 127
60203 The Full Mode System 0 0 130

603 Structural Integrity of Object Ownership 137
60301 Change at the Level of Potential Access Paths 137
60302 Technical Lemmas for the Potential Access Path Level 154
60303 Change Modulo Region-Couplings 0 0 0 0 0 0 0 0 0 156
603.4 Technical Lemmas for the Region-Coupling Level 165
60305 The Structure of Reserved Ownership 0 167
60306 Conclusion 0 0 0 0 0 0 0 0 0 0 0 0 171

604 Structural Integrity of Mutator Access 172
605 Composite State Encapsulation 172

7 Discussion 195
701 JaM: Some Observations 0 0 0 0 0 195

701.1 Programming with Modes 195
701.2 Submode Polymorphism? 0 199
701.3 Limits of Inter-Object Data and Control Flow 200
701.4 Consistency of Reference Value Flow 203
701.5 Precursors of JaM's Base-Modes 0 206

702 Shortcomings and Extensions 0 0 0 0 0 0 0 0 207

v

7.2.1 Syntactic Sugar 207
7.2.2 Subclass Polymorphism and Class Inheritance 208
7.2.3 Unlimited Calling? 212
7.2.4 More Mutable Modes: Shared, Inside-Out, Borrowed 215

7.3 Some Applications and More Examples 218
7.3.1 Behavioral Type Checking 218
7.3.2 Mode/Effects System and the Observer Pattern 220
7.3.3 Domain Modeling: The Car Example 222
7.3.4 Transfer Across Abstraction Boundaries: The Lexer/Reader

Example . 224
7.3.5 Transfer of Multiple Objects at Once 226
7.3.6 The Builder Pattern: Bottom-Up Creation with Free Fields. 227

8 Conclusion

A The Definition of JaM
A.1 Syntactic Structures
A.2 Type System
A.3 Semantic Structures.
A.4 Small Step Semantics .

B JaM Code of the Map Example
B.1 In Basic Desugared JaM .
B.2 Refactored with Self-Calls
B.3 In Sugared Generic JaM

Bibliography

Vl

229

231
231
232
234
235

237
237
241
242

246

List of Figures

1.1 Set-of-objects and node-based realization in JaM 0 11

201 Space of programming paradigms 0 0 0 0 0 0 0 0 0 16
202 Flat, and structured class model of an ATM-banking system 19
203 Managing the complexity of the object system through packages 24
2.4 Managing runtime complexity through composite objects 0 0 0 0 25
205 Class model of composite object-structured system (adapted from [Kri94]) 27
206 Class packaging orthogonal to object composition, with dependencies 28
207 Composite object and expansion to elementary objects 28
208 Unstructured lookup collaboration 0 0 0 0 0 0 0 0 0 0 0 0 30
209 lookup collaboration structured with composite objects 31
2010 lookup collaboration at intermediate level of detail 0 0 0 33

301 Encapsulation models in object-oriented programming 0 42
302 Encapsulated composite objects 0 0 0 0 0 0 0 0 0 0 0 0 0 45
303 Nested principal-with-proxies aggregate, nested collective aggregate 52

501 Syntax of base-JaM programs 0 0 0 0 0 0 0 0 71
502 Program's meaning as defining object classes 73
503 Runtime model 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75
5.4 Handle source consistency 0 0 0 0 0 0 0 0 0 0 76
505 Semantic values, types, and type-consistency 77
506 Top-level reduction rules 0 0 0 0 79
50 7 Reduction of expression redices 0 0 0 0 0 0 0 81
508 Reduction of statement redices 0 0 0 0 0 0 0 0 83
509 Potential access paths in object graphs labeled with base-modes 88
5010 Base-JaM integrity invariants 0 0 0 0 0 0 0 90
5011 Composition of composite objects in JaM 0 91
5012 Legal base-JaM programs 0 0 0 0 0 0 0 0 0 94
5013 Typing rules for program terms 0 0 0 0 0 0 96
5014 Typing rules for runtime terms and consistency with extended context 97
5015 Mode-specific definitions for base-JaM 100
5016 Dependency of proven properties 0 107

Vll

6.1 Moded object graph during lookup 121
6.2 Structural interpretation of the moded object graph 122
6.3 Mode declarations in the map example 123
6.4 Changed syntax, reduction, and typing rules 125
6.5 Potential access paths in object graphs labeled with full modes . 128
6.6 JaM integrity invariants 130
6.7 Mode-specific definitions for JaM (part 1) 131
6.8 Mode-specific definitions for JaM (part 2) 132
6.9 Mode-specific definitions for JaM (part 3) 134
6.10 Signature of Mapimp object's entryset handle 135
6.11 Region-coupling, and association paths modulo it 146
6.12 Auxiliary definitions for Lemma 26 178
6.13 Change of relationships in creation steps 181
6.14 Change of relationships in conversion steps 184
6.15 Change of relationships in return steps 186
6.16 Change of relationships in supply steps 188

7.1 The signature of handles (repeated) . . 201
7.2 Dangerous width- and depth-conversion . 205
7.3 Adapted rules for receiver-side conversion . 213
7.4 Additional rules for unlimited self-calls . . 215
7.5 Map classes with mutates and depends clauses 219
7.6 Classes Car and Engine . . 223
7. 7 Repairing a car's engine . . 224
7.8 Acid-bathing a car's engine 225
7.9 The lexer/reader example 226
7.10 AddAll with transfer of linked nodes 227
7.11 Sketch of a WindowBuilder 228

Vlll

List of Symbols

m()-.

----7

--I>

----!>

x·y
X[yjx]
-t-+
l±J, ~
E

X*
X, T X

7rl 0 7r2, a.;:;
/Lr 0 P,

:::=;m
~(c), ~(p, c)
a,(3,1EA
c,d E C
e

r],f}
r
g
h

"" p, EM
o,w,q,u,v,w E 0
7r

Sanc(o), StRep(o)
5

t, T

class named c
object named o, object o of class c, unnamed object of class c
variable x with value v
object reference
message m() sent via object reference
dependency between classes
generalization, or Java's extends relationship between classes
realization, or Java's implements relationship between classes
formulc:e X and Y are defined and X = Y
substitution of y for x in term, sequence, or set X
partial map
multiset-union and multiset-subtraction
empty path, empty sequence of association roles
set of sequences of X's (Kleene closure)
sequences X1, ... , Xn and T1 X1, ... , Tn Xn

concatentation of paths, and of association role sequences
adaption of mode p, imported through /Lr
mode compatibility relation
signature of c-objects, and of p, c-references
association roles, and the set of association roles
class names, and the set of class names
expression, runtime term
method-local and object-local binding environment
type assignment, typing environment
object graph
object reference value (handle)
kind of method
mode, and the set of valid modes
object identifiers, and the set of object identifiers
path of object references
o's sanctuary and state representation
store
type

lX

Chapter 1

Introduction

1.1 Summary

This section gives a gentle introduction to the thesis, without formalism, UML dia
grams, and program code (mostly).

1. THE OBJECT ABSTRACTION is the central concept of object-oriented program
ming. It neatly integrates data and behavior, the two foundations of computation,
into one unit. Not only is the program partitioned into class modules that define
types of objects by combining definitions of data fields (also called "instance vari
ables," "attributes," "data members" or "slots") on one side, and methods (also called
"operations" or "member functions") on the other side. Also the runtime system is
partitioned into objects that collaboratively, on one side, represent the program's
data in their fields and, on the other side, carry out the program's computation by
executing their methods. The architecture of an object-oriented system is made of
objects as the active components, and references between them as the collaboration
enabling connectors: Object references transport the requests for method executions
(operation invocations) from caller to callee, and return the results back to the caller.
This architecture can change dynamically by the creation and destruction of objects
and object references.

Three related notions of "object" can occur in the description of software systems,
as the following paragraphs shall illustrate: At the base-level, the system is a fiat
"sea" of elementary implementation objects, i.e., instances of concrete classes
that have only the fields and methods defined by their class. This is the perspective
of object-oriented programming languages. Above that, structures of collaborating
objects rooted in a "representative" object can be seen as one composite object with
the fields and methods of the representative, and additionally component objects
(possibly composite). The view of the system as a hierarchy of nested composite
objects corresponds to the structure of canonical recursive top-down refinement or
bottom-up composition of the system in object-oriented design. Finally, each object,

1

if seen from the outside, is an abstract object defined solely by its operations'
externally visible behavior. Abstract objects are classified by abstract classes (also
called "interfaces" or "types"), which are specifications of their instances' public
operations, but leave it to concrete subclasses to define the fields and methods to
implement them by the field-manipulation and cooperation with component objects.

2. DATA REPRESENTATION. With objects, data can be represented at runtime in
several forms: First, the object abstraction supports data abstraction at a basic
level by allowing one to use the values of objects' fields as the concrete representation
of some data to which the outside has access in an abstract fashion through their
methods. Objects (if they have methods to manipulate and return field values) are
data abstractions in the external view. Since the types of abstract data are defined
by the behavior of the operations on them, the classification of data abstractions is
supported in form of the classification of objects by abstract classes. For example,
calendar dates can be reified in software by objects with operations year, month,

dayOfMonth and, maybe, dayOfYear (abstract class Date). Implementation classes
then subclassify Date according to the used representation scheme for dates. The
realization of the representation schemes year + month + day-of-month, and year +
day-of-year, and days since 1 January 1970 (in unix) by the objects fl, fl', and f2 is
depicted below:

!1 !1' !2 !1 !1' !2

inside view (fields only, no methods) outside view

Second, the object abstraction supports linked data structures like double
linked lists, rings, trees, etc., by allowing objects to capture references to one another
in their fields (whether or not they use them for message exchange). For example,
instances of a class Node can be used as the nodes of a single-linked list by using one
field for the link to the next node and another field for the value at that node. E.g.
we can store the above objects fl, fl', and f2 in a list of linked Node objects (once or
repeatedly):

n1 n2 n3

I nit!'! .n.:;~ I ~ ~ ' ,_,~
1

inside view (fields only, no methods)

n4

!1 !1'

object graph view
!2

linked
list

The graph which captures the structure of objects' interconnection by all object
references in a particular state (i.e., which object currently has a reference to which
object?) is called the object graph. In general the graph includes more than the
object references representing data structure links and stored data values-and thus
models not only the data structures in the system. It also includes all references
through which operation request messages may be sent between objects-and thus

2

models the system's architecture.
Third, the object abstraction supports abstract data structures (sets, stacks,

dictionaries/maps, etc.) as the instances of abstract classes represented by not just a
single implementation object but an entire structure of objects, a composite object.
Its "representative" is the instance of the concrete class implementing the abstract
class. The representative implements the abstract object's behavior, i.e., the abstract
data structure's behavior in this case, by going beyond being a data abstraction, and
interacting (directly and indirectly) with the other objects in the structure, the sub
objects, to make use of their behavior too. For example, a set can be represented by
adding a representative s with a reference to the above list's initial node nl, and with
suitably implemented set-operations contains, size, Add, Remove, etc.:

11 11' 12

1 Febmary
1971

2 February
1971

object graph view (alb) outside view (a) outside view (b)

Depends on the methods' external behavior, this structure can represent two dif
ferent types of set abstractions. (In Gt+, these types could be written set<Date>
and set<Date*>.) A set-of-dates data structure S1 , that reifies the set {1 February
1971, 2 February 1971} of two dates, would be implemented if size() returns two
and contains (o) returns true for all Date objects o representing 1 February 1971
or 2 February 1971. A set-of-Date-objects data structure S2 , that reifies the set { f1,
fl', f2} of three software objects, would be implemented if size() returns three and
contains Co) returns true exactly foro E {fl, fl', f2}. Note that in the former case,
the data in the Date objects' fields is part of the concrete representation C1 of the set
abstraction S1 , and swill have to send messages to the Date objects to find out what
dates they represent. In the latter case, what the Date objects represent is irrelevant
for the set, and there is no interaction between s and them. That is, only s and the
Node objects constitute the composite object C2 representing the set abstraction S2 .

The Date objects are separate data abstractions in this case.
One can use a set-of-Date-objects composite C2 to construct an alternative rep

resentation C~ of the set-of-dates abstraction S1: Simply place a representative s' in
front of s to adapt the methods' behavior: s"s Remove method removes from C2 any
Date object representing the given date; and instead of adapting size and contains,
it is easier to adapt the Add method to filter out Date objects representing dates
already represented by C2 's Date objects. (It would not be a good idea to obtain
C~ not by object composition but by subclassing the implementation class of C2 's
representative s: Set-of-dates is not a specialization, not a (behavioral) subtype, of
set-of-Date-objects.) We will come back to C~ in paragraph 8.

3. NOTIONS OF STATE. In the course of the computation, the values of objects'

3

fields can change and, through this, the object graph and the set of a composite's sub
objects. In programming languages, the notion of an (implementation) object's state
is defined as the combination of its fields' current values [Bi+so, GR83, GJSOO, IS098].
This is also called the object's shallow state and contrasted to its deep state, which
is the name for the combination of shallow states of all objects reachable from the
object via paths of object references captured in fields. The state of a composite ob
ject, the composite state, is something in-between these two extremes: In general,
only a certain portion of the objects reachable from the composite's representative
along field-captured references belong to the composite object as sub-objects that
contribute their shallow states to the composite's state. (Objects reachable only via
references local to some method invocations cannot contribute to the composite's
state since the references are inaccessible to new invocations of the composite's meth
ods wanting to access the objects' states.) Which of the reachable objects are the
"state-representing" sub-objects can be specified by the programmer using the mode
annotations introduced further below. The set of the composite's state-representing
sub-objects is called its state representation. It will be formalized as the set
StRep(o) <;;;; ([]) of their object identifiers. The abstract state, i.e., externally visible
state, of the composite as an abstract data structure (paragraph 2) is the composite's
methods' projection of the composite state to external behavior.

Note that the composite object's state (composite state) can change without any
change in the corresponding representative's state (shallow state): Example 1. Up
dating the d field of Date object fl' to 33 or 34 makes it represent, respectively, 2
February 1971 or 3 February 1971. Since fl' is a sub-object of composite object C1 ,

this is also a change of C1 's state. The first change is not visible in the outside
view; the represented data structure 81 is not affected. The second change has a
side-effect: S1 is now reifying a different, extended set { 1 February 1971, 2 February
1971, 3 February 1971}. Example 2. Updating the data field of Node object n4 to a
new Date object f3 representing the date 3 February 1971 is a change to composite
objects cl and c2, and thus a change to the representation of set abstractions sl and
S2 . As a side-effect, it changes the set reified by S1 to { 1 February 1971, 2 February
1971, 3 February 1971}, and the set reified by S2 to {fl, fl', f2, f3}.

This dissertation will ensure that such side-effects of the change of fl' or n4 can
occur only as the part of s's implementation of a state-changing mutator operation of
the abstract set. That is, in the context of the abstract data structure's implementa
tion, these are not unintended side-effects, but desired effects.

4. ENCAPSULATION. The notion of private fields means fields of an object that
are hidden from outside and accessible only to that object's methods. (In modular
object-oriented languages like C+-+, Eiffel, and Java, the meaning of a private field is
that it is hidden from other class modules and accessible only by methods in the class
defining that field, irrespective of the field's and the method's object.) Consequently,
private fields' values can vary over the object's lifetime only in ways the object's own
methods permit. This localization of the access to mutable state is a defining feature

4

of object-oriented languages. By enforcing the hiding of private fields, they improve
the modularity of the runtime system and help to predict and control its behavior.
For the programmer, hiding fields is not really a severe restriction since whenever
needed the object can provide, with minimal overhead, access to the field's value by
operations get-value-of-x and set-value-of-x.

At the composite object level, one would expect a corresponding hiding of (state
representing) component objects. Note that this is not entailed by hiding the fields:
If a field is private, this does not mean that the value in it is not shared. Other
objects may possess the same value and, if the value is an object reference, use it
to access the target object (through its operation interface). It is not uncommon
that object references in private fields are shared: For example, in order to provide
their clients access to their elements, Set objects like S2 typically return an abstract
iterator object which yields one element after another to the client. 1 The typical
implementation of iterators would be for Set representative s to create a concrete
iterator which uses a reference into the linked list to extract the data value from each
node and return it. While this way the set object avoids making node components
accessible to the client, it does make them accessible to the iterator object.

This means that a new mechanism is needed to restrict access to component ob
jects, a mechanism that it less strong than hiding. It should enforce a new property
called composite state encapsulation: A composite object's state can change only
through its own operations, and not by the side-effects described above). Conse
quently, between executions of the composite's methods the composite state cannot
change, so that all invariants over it must remain intact. Hence state encapsula
tion is a global system property which is strong enough to extend modular reasoning
about the representative to modular reasoning about the entire composite object. On
the other hand, state encapsulation is weak enough not to exclude structure-sharing
iterators and similar common patterns of object-oriented design.

For the component objects, composite state encapsulation means that if they
are state-representing then they cannot change state but on the initiative of the
corresponding representative. For external objects, composite state encapsulation
means that they may obtain references to the state-representing components, but
they are read-only.

5. MUTATORS AND SANCTUARIES. The enforcement of state encapsulation by a
static type system will be based on the declaration of all operations and methods as
either 'mutator' or 'observer', and on metaphorically associating each object o with
a protection domain, the sanctuary Sanc(o): An object's fields may only be updated
in its own mutator methods (shallow state encapsulation). And these mutators may
be invoked on objects in o's sanctuary only from mutators of o and of objects in o's

1 Iterators are an example that objects can not only be data abstractions but also behavioral or
process abstractions: Rather than holding data, iterators reify the client's iteration process over the
data stored in another object, much like a coroutine.

5

sanctuary (mutator control or "the sanctuary invariant"). Representative a is the
only object outside of Sanc(a) that is permitted to send mutators into the sanctuary.
This means that all mutator executions in a's sanctuary have to be initiated by a
mutator of a. Mutator control plus the shallow state encapsulation property means
that field changes in representative a and in its sanctuary are possible only through
a mutator of a. If a were included in its own sanctuary, a E Sanc(a), there would be
no object to send the first mutator into the sanctuary.

Ct , T···· ~
references ~ n1-n2-n3-n4 ~
~I I \/:
X~~ ~' ~

not call of ; 11 11 12 ,:
.. , 111111llllltlllllllllllllllll\ 11 11' 12

mutators

The assignment of objects to a sanctuary will be based on certain paths of object
references labeled by the programmer with modes, as explained further below. The
mode-labeling and thus the assignment is independent from the references' storage in
fields. Hence there may be objects in the sanctuary whose membership lasts just for
one method invocation. To get the composite state encapsulated, the programmer has
to assign all state-representing sub-objects (save a) to a's sanctuary Sane(a). That is,
StRep(a) \ {a} ~ Sane(o) ("representation completeness"). (Since state-representing
sub-objects' assignment must hold during and between method invocations, it must
be established by paths of references that are captured in fields. However, since
assignment will be based on the references' mode classification, not their storage
place, sanctuaries may temporarily contain some non-state-representing sub-objects.)

By shallow state encapsulation, representation completeness means that any change
in a state-representing sub-object requires the execution of a mutator by representa
tive a or by an object in a's sanctuary (and thus also by representative a by mutator
control). If then also no object can be added to, or removed from, the state represen
tation StRep(a) without a's mutators (coherence), any kind of change to the composite
state can be affected only through a's mutators. Since these are, in the composite
object view, the mutators of composite 0, we have composite state encapsulation.

If one sanctuary includes another one, Sanc(w) ~ Sanc(a), then the enclosing
sanctuary's owner o can send mutators to objects in the nested sanctuary Sanc(w)
only indirectly via a mutator on w. Membership in sanctuaries will be defined below
so that it is transitive: w E Sanc(a) =? Sanc(w) ~ Sanc(a). (This is consistent with
the assumption that state-representing sub-objects of state-representing sub-objects
of a also contribute to a's composite state, wE StRep(a) =? StRep(w) ~ StRep(a).)

6. PATHS OF OBJECT REFERENCES. Membership of w in a's sanctuary as well as
the initiation of mutator executions in w by mutators of a will be based on certain
types of paths a-----t w of object references from o tow in the current object graph.
This dissertation proposes a classification of paths into types called modes f.1 E M.
The basic classification is five-fold:

6

• A rep path is a path o -----t w which means that w is in o's sanctuary and in
all sanctuaries containing o, but in no other. The programmer adds o's state
representing components w too's sanctuary by classifying paths o -----t w from o
to w as rep. (Of course, only paths made entirely of references captured in fields
can persist between method invocations and thus effectively represent a piece of
the composite state.) The proposed type system will ensure that no other object
has a rep or free path tow, so that o is w's unique owner.

• A free paths is a path o -----t w meaning that w is in no object's sanctuary
(excluding rep paths to w), and that all free paths to w must start with the
first reference of o -----t w (so that o is w's unique owner). This meaning will be
enforced by the proposed type system. Mode free is used for the temporary path
to recently created objects that can still be moved to other objects, and that are
currently used only locally within a method, like iterators. (Such objects can be
understood as non-state-representing, temporary or "behavioral" components.)

• A co-path is a path o -----t w which means that w is in the same (nested)
sanctuaries as o, and that the extension q -----t o -----t w of any path q -----t o
of mode p, by o -----t w is another path of mode p,. Mode co is used for paths
with high cohesion, like the references linking a data structure or connecting two
tightly collaborating objects.

• An association path also extends other paths, but offers more flexibility in the
extension's mode than a co-path. This category is needed for paths represent
ing semantic relationships or data values like Set composite C2 's elements or the
iterator's current element. The details will be explained in paragraph 8.

• A read path is a path o -----t w that has no meaning for w's status and does not
extend other paths to a moded path tow. All paths which are none of the above
are classified as read.

Rep and free paths o -----t w are both "ownership paths," guaranteeing that o
is the unique owner of w. We can superimpose an object composition meaning on
all of them (state-representing or otherwise), and get a standard object composition
hierarchy without shared components. 2 The type system moreover specializes and
broadens the above mutator control property for sanctuaries to the mutator control
path property: All mutator requests arriving at w have (indirectly) been sent from o
tow along one of its rep or free paths 1r. That is, if 1r is o = o0 -+ o1 __, ... __, On = w
then o invoked an operation on o1, during whose execution o1 invoked an operation
on o2 , and so on, up to On_ 1 's invocation of the mutator on w.

Co- and association paths do not fix their target's place in sanctuaries or in the
object composition hierarchy. They obtain their relevance from third objects' paths
to the path's initial object, which determine the combined paths' modes. Thus they

2Moded paths can be seen as representations of UML links: Ownership paths represent composi
tion links o+----w, association paths of role a represent links o-"'-w of public ordinary association
a, read paths represent links of private or implicit associations, and co-paths represent links mod
eling integrative relationships, like between lintel and uprights in an arc [Ar+96].

7

are the basis for reducing the classification of larger paths to that of shorter ones,
down to the single object references, whose modes one can actually declare in the
program: In the example of date-set 5 1 represented by composite object C1, the first
node is assigned to s's sanctuary by classifying the anchor reference s ---+ n 1 as a rep
reference. The remaining Node and Date objects in C1 can then be placed into the
same sanctuary by classifying all the links between them as co-paths. Then they
extend the rep anchor reference to rep paths to each of C1 's components.

moded
object
graph

!1 11' !2

rep

!1' !2

moded
reference
paths

7. EXCHANGE OF MODED REFERENCES. Since some modes' meaning is relative
to the path's source, if references of such modes are exchanged between objects as
parameter or result, their mode may have to be adapted to the new source. This is
necessary to preserve the consistency of the moding of paths in the object graph and
of the objects' assignment to sanctuaries.

For example, if DateSetimp representative s invokes next() on Node nl which
returns the co reference nl ---+ n2, then the reference s ---+ n2 which s obtains must
not be a co reference, since s cannot be in its own sanctuary Sanc(s). The return
of the co reference can be better understood as the mode-preserving shortening of
two-references path s ~ nl£2.... n2 to a one-reference path s ---+ n2: The reference
which s obtains is a rep references ~ n2. Should, on the other hand, one node nl
call next() on its co-object n2, then the returned reference's mode is not adapted,
since the return simply shortens co path nl£2.... n2£2.... n3 to nl£2.... n3.

calls of
next()

1111111 I lllllllllllltiUIIIUIIIr.,

: co v co ~
: n1--e-=-- n.22~ n3.-n4 :
: \~ -"'' /= : co,,, ,\, / ./ : - ~: ----~--~ ~ .
:_.,1111f14.1111 II I I I I •• 11:~: I 11111111111111 I!~. U I I I 11..,.:

n~:* ~~A"'"~' ~~~""""""'"""'• ., .
: ' :
: nO--- _.n1-n2- ... :
: I co : I : \} ::t ,1, t
:.. i,:: II ff E

,,llllJlllllllllllllllllllllllllllllllllllllltr."

call of
SetNext(n}

Analogously, the mode of references passed as parameters has to be adapted:
If s has created a new Node object nO in its sanctuary, then it should supply to
nO's SetNext operation (expecting a co reference) one of its rep references, namely
s rep nl, and not a reference s ~ n' to a node that is a co-object in the same
sanctuary as s (actually, in all the nested sanctuaries in which s resides).

In general, the mode of a result or formal parameter on the sender's side of a
call-link is an adaption f-trOf-t calculated relative to the call-link's mode f-tr from the
mode f1 of the corresponding result or formal parameter of the receiver's operation.
Consequently, two notions of interface have to be distinguished:

• Exported interfaces. The interfaces which all instances of a class c export have

8

a (minimum) signature ~(c) defined by the class. Its entries f : f..Li di ---+ f-L d
specify the types of the parameter values which implementations of operation f
(can) expect to receive, and the type of the result values which they (must) ensure
to produce. Against this signature, the operations' implementations in class c and
its subclasses are type-checked.

• Imported interfaces. The interfaces which senders import through f..Lr-references
to c-objects have the signature ~(f..Lr c) with modes from c-objects' signature ~(c)
adapted relative to call-link mode f..Lr· Its entries f : f..LrOf..Li di ---+ f..LrOf..L d specify
the types of the parameter values which the sender must ensure to supply, and
the type of the result values which the sender can expect to obtain. Against this
signature, the clients of c-objects, who send invocation requests through call-links
of type f..Lr c, are type-checked.
This adaption is comparable in C++ to the signature ~(const c) of read-only access

to records of type c, which is obtained from the general signature ~(c) of c-records
by adapting the type T of each field to const T.

8. FLEXIBLE EXTENSION BY ASSOCIATION PATHS. A classification with just the
modes rep, free, co, and read is insufficient for constructing the alternative date-set
composite C~ explained in paragraph 2 from a given set-of-Date-objects composite
C2 : Classifying the references ni _, fj stored in the nodes of C2 as rep/free or co
would modify C2 directly into a date-set composite C1 by making the Date objects
components of the respective Node object or of s. Mode read, on the other hand,
would leave the Date objects outside the set composite C2 , but then provide no basis
for their inclusion in the composite C~ with C2 as a component. VIe need a more
flexible extension of paths: The Nodes' data-references ni _, fj must be classified
as association references extending s's paths to the nodes to paths which can extend
reference s' _, s to paths s' -----t fl, fl', f2 of mode rep.

c; s' c;

f1 11' f2
: M M' ~
#fiJIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIIJIIIIIIIIIIIIIIIIIII"'

This requires us to refine the mode-classification of paths:
On one hand, association paths are subdivided according to an unbounded num

ber of association roles o: E A in order to distinguish different kinds of (object
reference) data in an object, like references in a Pair object to its first element vs.
its second element. This subclassification enables us to define different modes for the
extension of a path by association paths of different roles. Syntactically, roles are
plain identifiers, similar to labels. For instance, the role of the Node's data-references
could be called data, and the role of the element references stored in the abstract
set-of-Date-objects 8 2 could be called elem.

9

On the other hand, the classification of all paths by the base-modes m E B =

{free, rep, co, read} U A encountered so far is refined according to the modes of
extensions by association paths: A full mode 11 E M is a base-mode m parameterized
by correlations ai=/-li that specify that the extensions of !J-paths by ai-paths have
mode /-li· Syntactically, a full mode thus has the general form m<a1 =111, ... , etn=!Jn>.

In the example, the nodes' data-references could be given association mode data<>
and s's anchor reference to the first node the mode rep<data=elem<>>, so that s's
reference paths s -----t fl, fl', f2 to the objects in the nodes have association mode
elem<>. These paths represent the elem references stored in the abstract data struc
ture 5 2 and held by 5 2 in the external view ("virtual references," similar to virtual
attributes). By giving s' 's reference to s the mode rep<elem=rep<», its extensions
s' -----t fl, fl', f2 by s's elem paths are given the desired mode rep.

Association paths and correlations are crucial for the structural flexibility of the
mode technique. They allow an object class to fix the modes of references in its in
stances without fixing the reference targets' assignment to a sanctuary. This decision
is postponed to each instance's clients. (The type system ensures the consistency of
the clients' decisions.) Hence the same class can be reused, in particular as a type
of component objects, in many different structural contexts. For example, instances
of the same Node class with data references of mode data<> could also be used in
the date-set composite C1 instead of those with co<> data (cf. paragraph 6): Only
change the mode of s's anchor reference to rep<data=rep<>>.

9. JAVA WITH MODE- & MUTATOR-ANNOTATIONS AND -CHECKS. The proposed
language JaM is an orthogonal extension of a subset of the Java language by the
keywords mut and obs written in front of the return type of all operations and meth
ods, by modes 11 E M qualifying all class names used as types of object references,
and by static typing rules that check these annotations w.r.t. composite state en
capsulation. 3 Figure 1.1 shows how the set-of-objects data abstraction 5 2 and its
C2-realization would be declared in JaM. JaM's mode & mutator checks are orthogo
nal to Java's type checks since any legal Java program from the Java subset becomes
a legal JaM program by annotating, respectively, mut and co<> everywhere: This
places all objects into the same sanctuary, so that all mutator calls are legal.

The mode annotations specify a unique mode for all object references at any
time during the execution: First, all object references stored in a variable (field,
local variable, parameter) have their modes fixed to the mode 11 which qualifies the
class name c in the reference type 11 c declared as the variable's range. Second, the
temporary reference o _, w which the sender o obtains when the receiver q returned
reference q .1!:... w has the mode !JrO!J that is an adaption of 11 relative to the mode
!Jr of the reference o _, q through o made a call to q. Third, the mode of the

3In the formal treatment, a few additional annotations will be used for simplification: They will
make explicit the destructive or non-destructive read access to a variable, and allow to assign modes
with unique correlations to object creation expressions (new) and to null.

10

I I type of set-of-objects data abstraction 82
interface Set {

}

obs boolean contains(read<> Object o);
mut void Add(elem<> Object o);
mut void Remove(elem<> Object o);

I I class of node-based realization's representative
class Setlmp implements Set {

rep<data=elem<>> Node anchor;

}

class Node {
obs co<> Node next();
obs data<> Object data();

}

Figure 1.1: Set-of-objects and node-based realization in JaM

initial reference to a newly created object is free (with correlations as specified by
an additional annotation). From this classification of all paths of length one in the
object graph, the classification of longer paths is derived inductively: Paths that are
the extension of a p,-path o --~ q by a co- or a-path q --~ w have, respectively, the
mode p, or the mode p,' if J.L = m< ... , a=p,', .. . >.

In analogy to this, JaM's typing rules infer, besides the target class c, the modes p,
of all object reference-valued expressions based on the modes of variables and results.
In particular, the type of an operation call expression with receiver expression of type
J.Lr cis the result type J.LrOJ.L d of the corresponding operation in the signature L,(J.Lr c)
of call-links of type J.Lr c. Restrictions are imposed by the typing rules on the use of
object references as values in order to preserve the properties of rep and free paths
which entailed the safety of permitting mutator calls (as described further below):
Object references assigned to p,-variables must have a compatible mode p,' :::;m p,.
Object references supplied as actual parameter to operations with formal parameter
mode p, in the signature L,(p,r c) of call-links of type J.Lr c must have a compatible
mode p,' :::;m p,. (Simplified, free mode free<8> is compatible to any mode m<8>,
any mode m<8> is compatible to the read mode read <8> with the same correlations,
and read modes are compatible to read modes with fewer correlations or correlations
to compatible modes.)

In order to enforce composite state encapsulation, additional restrictions are im
posed by the typing rules on access to fields and operations through object references:
In mut-methods, assignments to the fields of this and mutator invocations through
references of base-modes rep, free, and co are permitted since they either cross into

11

no sanctuary or just into the caller's sanctuary. In cbs-methods, field assignments and
mutator invocations through references of base-modes other than free are forbidden
since only free references guarantee that the target is not in any sanctuary. Assign
ments to other objects' fields and mutator invocations through read and association
references are never permitted.

1.2 Contributions

This dissertation is situated at the design-implementation boundary of object-oriented
software development, where detailed object-oriented designs get implemented in
object-oriented programming languages. The ultimate aim is to improve the mod
ularity of object-oriented runtime system models that are structured by the design
abstraction of composite objects. The means is the type-system of object-oriented
programming languages extended by a system of type qualifiers called modes. Mod
ularity is improved in form of the encapsulation of each composite object's state.

The main result is that the presented type system extension for Java guarantees
composite state encapsulation as a global system property: Composite objects can
change state only through the execution of their own (mutator) methods.

Most other proposals to encapsulate units of the runtime system are works in alias
control [Hog91, DD95b, Utt96, KM95, Min96, Alm97, GTZ98, NVP98, CPN98, ClaOl,
ACN02] or access control [BC87, Hog91, AW+92, Bos96, Kni96, KT99, GB99, CROO] with
the general aim of simplifying controlling, and reasoning about, system behavior. This
dissertation focuses, like [DLN98] and [MP99a], on modularity that enables the modular
verification of object-oriented programs, employing alias and access control only in as
far as it works to this end. To the research in modularity, the first description of the
property of state encapsulation is contributed. It can be seen as capturing exactly
that global system property needed for modular reasoning about composite objects
based only on the code of the representative's class and superclasses, and on ordinary,
postcondition specifications of called operations (of external and component objects).

The dissertation provides a flexible system for guaranteeing the encapsulation of
every composite object at runtime by pure compile-time type checking. It enables
the definition of nested composite objects with a complex internal structure, their
observation through external iterator objects, their incremental construction (top
down and bottom-up), and their transfer across abstraction boundaries (one by one,
linked to lists, or stored in containers). It supports design patterns like Iterator,
Abstract Factory, and Builder [Ga+95]. It is the first purely static system in which
container objects and their iterator objects can each be encapsulated individually, i.e.,
state-protected from one another. (Others need runtime checks [MP99a, ACN02] or
encapsulation barriers that are not aligned with object composition [ClaOl, ACN02].)
Composite objects can link their component objects to data structures or store them
in a container object component. Nested container objects o can be built with a
given, possibly also composite, container object o' (from an unknown implementation

12

class) as their component. Their iterators i can be structured in parallel as composite
objects with the container components' possibly composite iterators i' (from unknown
implementation classes) as their components. All this will be demonstrated in the
running example of set and map objects with iterators.

To the research on composite object encapsulation by type systems, this disser
tation contributes a new technique which is based on a classification of paths of
object references (with single references as a special case). Previous techniques
based their type system extensions on aliasing properties or access rights of object
references [Hog91, Min96, Kni96, Alm97, DLN98, KT99, GB99, ACN02], or on owner
ship parameters to objects [KM95, CPN98, MP99a, ClaOl, ACN02]. (Only the informal
description of flexible alias protection [NVP98] might be understood as using paths,
although its official formalization in [CPN98] is based on ownership types.) In the pro
posed new technique, some types of paths entail aliasing or access restrictions, some
have a superimposed object composition meaning (which, with state encapsulation,
implies a form of ownership), and some let the path extend other paths.

The system of type qualifiers called modes is similar to that of flexible alias pro
tection [NVP98]. But we provide a formal treatment using standard techniques of
formal type systems and formal semantics (small-step with store and environment).
The flexibility achieved by parameterizing the types of objects in flexible alias protec
tion and other work [KM95, NVP98, CPN98, ACN02] is achieved in the mode system by
the first proposal of type qualifiers [FFA99], namely modes, that are parameterized,
namely by correlations. This move preserves the complete orthogonality of a refer
ence's mode 11 and the class c of its target in the types 11 c of object references. Hence
the addition of modes does not affect the soundness of Java's subtype polymorphism
between object reference types based on subclass relationships between the objects'
classes, of class inheritance, of class-parameterized generic classes (and methods), and
of dynamic casts w.r.t. a reference's target class.

To alias control a novel weak uniqueness property is contributed, which is based
on entire paths of object references: Free paths between two objects have unique
head references and are not aliased by rep paths. This property generalizes Hogg's
notion of 'free' references [Hog91, NVP98], and of the similar 'unique' [Min96, ACN02]
and 'virgin' references [DLN98], which are not aliased by any (captured) reference at
all. It allows us to rely not exclusively on destructive read for accessing the free
reference in a variable, but to read the value as a read reference without resetting
the variable. Due to free paths, the proposed mode system is the most flexible one
w.r.t. dynamic object creation and composition proposed so far, decoupling object
creation from object use (in particular, use as a composite's component).

Finally, to object-oriented software development and programming language de
sign, this dissertation contributes a system of program annotations to document in
the code the system's design w.r.t. object composition, and a system of static type
checks to exclude designs of poor modularity w.r.t. composite objects. This is impor
tant since object composition, i.e., the hierarchical combination of smaller objects to

13

larger composite objects, is a central technique for the construction of object-oriented
software systems, and for the management of the system's structural and dynamic
complexity. The proposed system keeps the structure of the system (into composite
objects) decoupled from the structure of the program (into packages), which are two
orthogonal notions [OMGOO]. The path-based approach is compatible with object
oriented design's step-wise derivation of high-level object (composition) links from
paths of lower-level "manifest" links (i.e., object references).

As a by-product of concretizing the notion of state encapsulation for composite
objects, a clarification of the relation between state and object composition is ob
tained: to object-oriented programming Composite objects have component objects
that represent aspects of the composite's state. But they can also have temporary
components merely for the implementation of its behavior. For example, an iterator
object is a component of the client object that represents (the state of) the client's
iteration process-for as long as it lasts. If iterators were considered components
of the container object which created them (as in [Cla01]), operations to create and
return an iterator would change in the container's composition and thus be mutators.

1.3 Outline

The remainder of the dissertation is structured as follows:
The next three chapters introduce the context of this work regarding object

oriented systems, encapsulation, and other research. Chapter two introduces the
reader to the abstraction concepts on which object-oriented programming is based,
focusing in particular on the object-oriented view of a running software system, on
the dual data- & behavior-nature of objects, references, and object composition, and
on the notion of composite objects. Chapter three exlains the importance of the
modularity of programs and runtime systems, and its relationship with encapsulation
and alias and access control. And it discusses different proposals w.r.t. how encapsu
lation barriers should be drawn and what encapsulation property should be enforced.
Chapter four reviews previous work on systems for composite object encapsulation.

Chapters five and six contain the definition and formal treatment of JaM. As a
first step, chapter five considers the addition of a reduced mode system to a Java
subset (base-JaM). Its definitions and results are extended in chapter six to a JaM
with the full system of modes.

In chapter seven, the relation between modes and types, and the consequences
of the mode system for reference and message flow are considered. Some obvious
extensions of the formalized JaM language and mode system are discussed, and more
examples are provided.

Chapter eight concludes the dissertation with a look back on what was achieved.
The two appendices sum up the formal definition of JaM, and provide the full

JaM code of the running example of composite map objects and their iterators.

14

Chapter 2

Abstraction in Object-Oriented
Programming

Does it not require some pains and skill to form the general idea of a triangle, ...
for it must be neither Oblique, nor Rectangle, neither Equilateral, Equicural, nor Scalenon;
but all and none of these at once. In effect it is something imperfect, that cannot exist;
an Idea wherein some parts of several different and inconsistent Ideas are put together.

John Locke (1632-1704)

This chapter sets the background for this dissertation: the composite object ab
straction in object-oriented programming. It may be skipped by readers already fa
miliar with the object abstraction in general, with the object-oriented runtime system
model, and with dynamic composite objects.

We will review the central abstraction concepts of object-oriented programming
(object, class, subclassing), and the object-oriented view of the runtime system as a
network of interacting objects. The generalization from elementary objects to com
posite objects with objects as components will be used for structuring the system
into a hierarchy of nested objects. The foundational data/behavior dualism of (com
posite) objects, object references, and object composition will explain why objects
have more object references than those in their fields (namely temporary references
in their methods), and how iterators can be components of their clients (temporary
behavioral components) although they do not represent their state.

2.1 The Importance of Abstraction

The stuff from which software systems are made is not physical, but abstract (or
conceptual). An abstraction (or concept) is "created" by the process of abstraction,
i.e., by focusing on certain aspects, the essentials, while ignoring others, the details
[LM88]. The ability to abstract enables us to work with complex domains of interest,
like software systems and their application domains. Note that ignoring details does
not remove them from the domain but only from our view (or "model") of it.

15

none single-level multi-level

classification (user-defined)

Figure 2.1: Space of programming paradigms

Complexity is intrinsic to software systems and cannot be made to disappear;
it can only be managed by structure and abstraction: Industrial-strength software is
inherently complex [Boo94]. Software systems like, e.g., SABRE and NORAD are among
the most complex artefacts of humankind [Som95]. As Brooks so famously observed
[Bro87], this complexity inheres in the problem to be solved (essential complexity), so
that it cannot be avoided. We have to cope with it, manage it. And abstraction is our
best hope for this. (Only the accidental complexity of software projects, which results
from the technical platform, the development environment, or the organization of the
development process, can ever really be removed.)

It should be mentioned that while abstraction is frequently used in programming,
the overall process of software development resembles more abstraction's inverse,
concretization: An initial, unspecific model is refined upon by filling-in what precisely
is required (analysis), how to solve the requirements in the abstract (design), and how
to make a computer actually carry out that solution for us (implementation).

In programmingm, different so-called "paradigms" can be distinguished by the
abstraction concepts which are central to them. The most common kind of abstraction
before the identification of the data abstraction in the 1970s was the functional or
procedural abstraction [LZ75]. It characterizes traditional, "procedural" programming.
The object-oriented paradigm of programming distinguishes itself by the three new
abstraction concepts of object, class, and subclassing1 [Weg90, Sny93, Qui95]. These
go one step into each of the three directions of abstraction (cf. fig. 2.1):

1. AGGREGATION. One function of abstraction is to allow us to treat several entities
('parts', 'components', 'constituents') as one by ignoring the distinction between them

1 Some put the emphasis on subclass polymorphism, others on inheritance (cf. paragraph 3c).

16

and subsuming them under one entity ('whole', 'composite'). For example, we can
say "the triumvirate ruled Rome from 60 to 49 B.C.," and ignore the distinction
between Julius Caesar, Crassus, and Pompeius. In procedural programming, several,
more primitive computational steps are combined into one by procedural abstraction,
and several pieces of data are combined into one compound by structured datatypes.

In "object-based" programming, the object abstraction overcomes the traditional
operation/ operand dichotomy of procedures and data in procedural programming
by integrating mutable data in form of fields (also called "instance variables," "at
tributes," "data members" or "slots"), and behavior in form of methods (also called
"operations") into one runtime unit, the object, by object abstraction. Objects are
the elementary subsystems of the object-oriented runtime system model described
in the next section. They are a universal modeling concept which can reify in the
runtime system not only data (with operations on it) but also active agents [Bi+so],
control structures [GR83], iteration processes [Ga+95], functions [IS098], etc.

2. CLASSIFICATION. Another function is to subsume all entities sharing certain
selected properties under one 'class' (or 'type', 'kind'), so that they can be treated
uniformly: "Types arise informally in any domain to categorize objects according to
their usage and behavior" [CW85]. For example, we can investigate the properties
of all systems with a finite number of states (finite automata) and make laws for all
people. In programming, the classification of values into types enables us to write
algorithms that work with any value of a certain type.

"Class-based" programming extends object-based programming by class ab
straction, through which all objects with the same kinds of fields and methods
can be collected in an object class [Boo94]. Class abstraction reduces the multitude
of objects in the system to a fixed number of classes, the system's class model. A
class definition defines a class of objects by aggregating definitions of their instances'
fields and methods; class definitions are the modules of object-oriented programs.

3. GENERALIZATION. Abstraction allows one to subsume all special classes ('sub
classes') defined by a common subset of properties under one common, more general
class ('superclass'). For example, we can generalize people and corporations to legal
entities (and have the same laws for all of them). We can treat as irrelevant the differ
ence. The classical way of defining a new subclass, 'species', is to name its superclass,
'genus', and the difference from it [RCOO].

Object-oriented programming is only complete with superclass abstraction, better
known as subclassing. It allows one to structures the class model as a class hierarchy
(see paragraph la below), to write reusable client code that works with objects from
all subclasses of a class by ignoring objects' precise classes (subclass polymorphism,
a form of subtyping), and to reuse the definition of one class for the definition of a
subclass of it by naming it and then specifying the difference (class inheritance).

(Also based on the object abstraction is "delegation-based programming:" It adds
inheritance between child and parent objects by the mechanism of delegation [US87].

17

It becomes nearly equivalent to object-oriented programming by the addition of dis
tinguished, class-like 'trait parent objects' shared among all clones of an object in
"prototype-based programming" [Ast96].)

2.2 Abstraction Hierarchies

The recursive application of the abstraction process can lead to higher and higher
abstractions in all three directions: Hierarchical aggregation (part-whole hierarchies,
partonomies, or has-a-relationships) and hierarchical generalization (inclusion hierar
chies, taxonomies, or is-a relationships) are the classical tools for our understanding
and description of the world, in use for at least since Aristotle over two thousand
years ago [RCOO]. (The idea that classes can also be classified, however, is just over
a hundred years old, starting with Peano et al.'s observation that class-membership
'E' and class-inclusion 'c' are two distinct relations [LL97], and Frege's insight that
classes are abstract objects in their own right and can be classified [Par94]. The
unconstrained classification of classes was soon thereafter discovered to lead to Rus
sell's Paradox, a fundamental logical paradox tamed by Russell's theory of types, the
predecessor of type systems in programming languages.)

In object-oriented programming languages, the characteristic abstractions class
and object are just single-level, while subclassing applies recursively. The object com
position hierarchy is one of several proposed hierarchies promissing still better com
plexity management. However, different hierarchies seem to co-exist well only if they
bring order to orthogonal architectural perspectives (cf. [SNH95]). While the class
model is structured through subclassing and the program is structured into packages,
object composition brings order to the object-oriented runtime system model. A sec
ond hierarchy in any of these perspectives seems to increase the overall complexity
more than it helps managing it:

1. THE CLASS MODEL: CONCEPTUAL ARCHITECTURE. Object-oriented program
ming is often praised for organizing the system's set of object classes by subclassing
into a conceptually clear generalization hierarchy called the class hierarchy. (Pro
cedural programming did not support this for its datatypes.)

Research however showed, first, that over-enthusiastic use of subclassing with
class hierarchies deeper than three levels is detrimental for program maintainabil
ity [DB+96]. Second, an inheritance-based subclass relationship does not necessarily
mean a real specialization because method overriding is not guaranteed to specialize
the object's behavior [Ame87, LW94, Tai96]. Third, inheritance-based subclassing is
best formalized not by the type-theoretical concept of subtyping [Sny86, Lis88, CHC90],
but by "F-bounded polymorphism" [Ca+sg, CHC90] since at runtime a class is relevant
only as a generator of objects [SM95].

Most typed object-oriented programming languages restrict inheritance to con
form to subtyping. Proposals to work with two separate hierarchies [Bru96, BPF97,

18

communicates-with communicates-with

owns

CustomerStuff I

Customer

I Account CashCard I_
ConsortiumStuff I / \_...._

BankStuff I / \ ..__...._...._
ATMStu

L l:ashierStationStuff
:--.....

I Remote I
I Bank Cashier f----~ Cashier

1
1 Transaction

Transaction

~~ I
I, Bank I I Cashier I ..1 ATM I Computer l I Station v

....... /

I ATM- I
Consortiumj

I Central .1
lcomouter

Figure 2.2: Flat, and structured class model of an ATM-banking system

GM97] were not widely accepted. Also the higher-order classification of object classes
into meta-classes has not found wide use as a programming technique since classes
are already sort-of classified by their superclasses [Weg90]. (So-called "meta-classes"
in Smalltalk, CLOS, Java, etc. [GR83, Kol99, GJSOO] are normal classes of objects
that reify a class at runtime for administrative purposes like constructors, static
members, reflection, ...)

2. THE PROGRAM: MODULE ARCHITECTURE. More helpful is a hierarchy for
the definitions of the classes in the orthogonal module architecture of the program:
The aggregation of field and method definitions in class modules is extended to a
hierarchical aggregation of smaller class modules into enclosing class modules and of
class modules in packages. The introduction of hierachical packaging in Java [GJSOO]
was so successful because it was already practiced informally by sorting program files
into different file system directories and because the notion of a non-class module was
known from procedural languages like Euclid, Modula, and Ada [La+77, Wir83, 18095].
Packages can be used to group classes, e.g., by application domain for retrieval from

19

a library, by vendor for controlling name clashes, as the unit of purchase and revision,
and simply to manage the complexity of large programs with hundreds of classes.

For example, the first UML model of a banking system in figure 2.2, with an
ATM-consortium, banks, accounts, cashiers, cash-cards, ATM's, and so on (adapted
from [Ru+91]), appears "confusing and disorganized" [Kri94]: "The problem is that
this kind of description does not reflect the way that we think about and understand
such complex systems." The second UML model in figure 2.2 cleans up the class
model by dividing classes between those modeling the customers and their property
(Customer, CashCards and Accounts) in the CustomerStuff package, and the rest
in the ConsortiumStuff package with sub-packages for, respectively, bank-related and
ATM-related classes. Complexity management is improved through the possibility of
zooming into and out of packages to view the system at different levels of detail.

3. THE RUNTIME MODEL: SYSTEM ARCHITECTURE. Finally, the higher-order
extension of the aggregation of fields and methods in objects pervades object-oriented
programming-although this is often ignored since it is a matter of object-oriented
design of the system at runtime, and not explicit in the program text [Ga+95]: The
objects in the object-oriented view of the runtime system are aggregated to linked
object structures, to groups of collaborating objects (collaborations), to composite
objects, etc. In particular, the recursive composition of objects to composite objects
produces the system's object hierarchy (object composition hierarchy).

It is important to get order into the object-oriented runtime system model: Class
models of large systems, with hundreds of classes connected by hundreds of relation
ships, may be complex. More complex still are the corresponding runtime models
with an even larger and dynamically changing number of objects and connections.
To cope with the structural and dynamic complexity of the runtime model, object
aggregations are naturally used. Providing for their expression in the program would
complete the support of object-oriented programming languages for the main com
plexity management techniques of object-oriented programming.

All this will be elaborated in this chapter. But first we have to develop an under
standing for the object-oriented view of the runtime system.

2.3 Object-Oriented View of the Runtime System

A feature of object-oriented programming (OOP) more fundamental than the static
classes (OOP is class-based) are the data and behavior combining units of the run
time system called objects (OOP is object-based). The view of the runtime system as
a system of message-exchanging objects distinguishes object-oriented programming
from procedural programming more than anything else, and is the common basis of
all object-based programming paradigms (class-based object-oriented programming
as well as delegation- and prototype-based programming). (The programs in object
oriented and procedural programming have the same basic linguistic structure,with

20

modules containing the definitions of related variables and subroutines.) This view
possesses a higher degree of uniformity achieved by the dual nature of objects and of
object references as providing data as well as behavior. The object-oriented view is
considerably more different from how real computers are organized than the proce
dural view. (A straight-forward execution of object-oriented programs on computers
requires one to follow certain constraints on the language design, which have devel
oped into "myths" about object-oriented programming [Rum97].)

1. PROCEDURAL SYSTEMS: DICHOTOMIC ARCHITECTURE. In procedural program
ming, the runtime system is divided like a virtual computer into active operators in a
program compartment (the processing unit), and passive operands in a storage com
partment (the memory unit) [Qui95]. Consequently, program and data are classified
and composed separately to procedure types and "procedural abstractions" on one
side, and to concrete data types and data structures on the other.

Computation is understood to take place in the procedures (subroutines) within
the program's different modules. While some data is in the module's variables, more
data can be represented in linked data structures constructed dynamically in the
storage compartment.

2. OBJECT SYSTEMS: HOMOGENEOUS ARCHITECTURE. Object-oriented program
ming overcomes the procedural operator/ operand dichotomy by grouping and classi
fying related data and operations together as objects and object classes [Qui95]. In
the small, each object is a tiny procedural system of its own, with its own internal
program compartment and storage compartment [Bud95] (which is conceptually con
current [Rum94c]), while in the large the runtime system is "structured uniformly as a
collection of interacting objects" [FM90] connected by object references to a uniform
"network architecture" [SG96].

Computation takes place in and between objects, not modules: It is understood to
be carried out by the objects internally as the manipulation of their variables and ob
ject references (computation in the small), and externally by message exchange along
object references and the creation of new objects (computation in the large). In the
software architecture, the objects are the architectural components (active computa
tional agents) and the architectural connectors (interaction channels) between them
are the object references. This architecture is completely independent from the static
structure of the program, but built up incrementally and reconstructed dynamically
like a linked data structure by the exchange of object reference values. Since be
sides this there is no global, static program compartment, in the object-oriented view
there is no connection at all any more between the structure of the program in form
of modules and packages, and the structure of the runtime system in form of object
references. Procedural programming's program/ data dichotomy within the runtime
system is traded in object-oriented programming for a program/system dichotomy.

3. THE DUAL NATURE OF OBJECTS. The object in the sense of object-oriented
programming is an abstraction that combines data and behavior in one identifiable

21

unit. Since the runtime system in the object-oriented view consists of objects, the
system's state as well as its processes must be partitioned among these objects.

In object-oriented programming, each object owns a chunk of the system's global
state (interprocedurally persisting state), "the" state of the object, to which its
methods have shared access and which persists between method executions [Weg90].
Hence objects may be regarded as "functions with memory" [Mez98] that can remem
ber something from previous times they executed a method. Objects support data
abstraction, not by data type abstraction as in ADT-based programming, but by
representing the abstract data (a calendar date, a tree, a set, ...) in one or more ob
jects' state and providing an operation interface through which the outside accesses
it in an abstract faction: They are "procedural data structures" [Rey94]. Data
representing objects are "active data" [Mez98] or "intelligent data objects" [ASS96]
to which operations are not applied but that offer to perform these operations on
themselves, i.e., on the data: "Ask not what you can do to your data structures, but
ask what your data structures can do for you" [Bud95].

But this is not the complete picture. The behavioral side of objects entails that
they have a share in the local state of the system's processes (transient intraproce
dural state), in particular, the values of local variables and already evaluated subex
pressions in the methods which the object is currently executing. It may be safe to
ignore this as long as an object operates only on its own variables (computation in
the small). But not all objects can be data, there must also be the objects com
municating with them and each other (computation in the large). There is more to
objects than intelligent data; they are also communicating processes. As such they can
reify behavioral abstractions like Iterators, Commands, Strategies, and Mediators
[Ga+95]. For example, an Iterator object represents-with its state and its method
executions-the state and the steps of an iteration process (that runs in parallel to
the client's method like a coroutine).

Even where it concerns data, communication may have to be used to implement
abstract data structures if they contain an unbounded amount of information, or to
construct linked data structures with an unbounded degree of branching: The global
state which the programming language's implementation objects have at their disposal
is limited to a fixed number of variables called fields. Hence the mentioned data
abstractions can be implemented only by a collaboration of several implementation
objects (in a composite object), i.e., if objects communicate.

4. THE DUAL NATURE OF OBJECT REFERENCES. Each object in the system is
identified by a unique object identifier o E 0 (assigned to it when it is created). If
an object (identified by) o has among the values in its fields or methods the identifier
w E 0 of another object, then o is said to have, at that moment, an object reference
(link, handle, pointer) tow, in symbols, o __, w. In this reference, o is called the source
and w the target.

The object references in an object system have a dual function: On the behavioral
side, they are the architectural connectors that enable computation in the large

22

by transporting messages between objects: requests for method executions (operation
invocations), and replies of the result. The references an object has at a moment
determine to which other objects it can send requests at that moment.

On the data side, object references are values that can be exchanged between
objects as parameters and results, and stored in variables. (These exchanges and
the loss of references by variable update are what changes the system architecture
dynamically.) The references an object possesses at a moment define the set of object
reference values it can avail for passing as parameter and result values (since an object
reference cannot be calculated from another value2

).

Object references can be used as connectors and values irrespective of whether
they are stored in any variable: Consider the calls n. prev () . SetN ext (n. next ()) and
n. next() . SetPrev (n. prev 0) to unchain the node (identified by) n from a double
linked list. Here, temporary object references returned from calls n.prev() and
n. next() serve as parameter values and as connectors to the nodes, respectively,
in front of n, and behind of n. But to represent linked data structures and the stor
age of objects therein, the object references between the objects must be captured in
fields. References in fields represent data structure links, like those between two node
objects, and stored data values, like a pair object's first and second value.

The notion of object graph in object-oriented programming is a generalization
of the classical notion of data structure graph in procedural programming. It is the
directed graph made of all the objects currently in the system as the nodes, and all the
object references between them as the edges, whether they are used as connectors or
as data, whether they are in fields or in methods. It uniformly captures the structure
of all the objects' interconnections at a particular moment, thus integrating both the
system's architecture and all the data structures in it. All objects are connected in
the object graph (of a sequential program), since objects to which there is no path
of object references from the initial object are unreachable for the computation and
thus can be "garbage collected."

2.4 Complexity in the Large in Object Systems

Object-oriented programming supports well the management of runtime complexity
in-the-small by grouping operations and their common data into one object. But its
uniform, unstructured network architecture does not help with the complexity in-the
large that results from the many objects around and all the interactions and semantic
relationships between them. In analogy to unstructured "spaghetti code," this was
dubbed "object spaghetti" [PNC98]. For an impression, look at the banking system
in figure 2.3 with a mere two bank objects, two customer objects and three account
objects (more on this below). "The traditional 'sea of objects' approach where all
objects in the system are visible to each other and exist at the same level is infeasible"

2The reference arithmetics of C++ is a much criticized exception.

23

Figure 2.3: Managing the complexity of the object system through packages

[Bos96]. Vve need a view of the runtime system that is structured, that groups objects
to larger units so that we can view the system at intermediate levels of detail.

Some degree of structuring is achieved by projecting the packaging of classes (cf.
fig. 2.2) onto their current instances, as figure 2.3 shows. But while it reduces the
number of constituents in the higher-level view, it is inadequate for managing the
dynamic complexity of the system. Since objects are grouped together independently
from their interaction, the resulting structural units have poor cohesion w.r.t. the
system's working. For example, instances from BankStuff classes have to do with
o~her BankStuff objects only if they belong to the same bank, and have more to
do with that bank's customers and the central consortium objects than with any
BankStufF object of a different bank.

A viable method for coping with large object systems must not squeeze a dynamic
number of objects into a static structure, but provide for the genuine aggregation of
objects to a dynamic number of larger units. A variety of different kinds of such aggre
gations have been described: 'Iraditional linked data structures as object structures;
collaborations for the modeling of system dynamics [HHG90, KM96, St+96, OMGOO];
runtime components made of interface objects and internal objects [MP99a]; Clarke's
aggregates of all objects with the same "representation context" and the objects allo
cated in that context [ClaOl]; sets of all objects reachable from a particular object by
paths of object references in fields (islands [Hog91], balloons [Alm97]); sets of objects
reachable from the object graph's root only by paths of references passing through a
given object (umbra) [PNC98]; and so on.

But the most important object aggregation of all is the composite object.

24

·cuslamerA ·cu~lgm~:ua

~ :CashCardA 111 ·Accoun1A2 :AccountB1 ·ca~bQa[C6l

\

\ / \ I

\ / \
.:.aani!A. \ _;.Elan.llll. ;.AIM.l

~ :Casl)ierStation I\
I :Cashier I l.r~=~:~fonJ I ·Cashjer I l~~l :Cashier I I. :Bank Transaction ~
~ I :Cashier I

I
~

I
~

I :ATM2

I :TheCentral I
~

Figure 2.4: Managing runtime complexity through composite objects

2.5 Composite Objects and Structured Systems

1. THE COMPOSITE OBJECT ABSTRACTION generalizes the (elementary) object
abstraction, the aggregation of n fields (data primitives) and m methods (behavior
primitives) to a data/behavior unit, to the aggregation of n fields, m methods and
k objects (themselves units of data and behavior) to a more complex data/behavior
unit called composite object. The limit case of a composite object is one with zero
components (elementary object).

In the banking example, composite objects provide not just one structural unit
for all the bank (or ATM or customer) stuff, like packages did. As shown in figure
2.4, there is one unit for each bank's (and ATM's and customer's) stuff, namely the
composite bank object (ATM object, customer object). The composite objects are
not additional structural units, like the packages were, but extensions of existing
elementary bank (ATM, customer) objects. The additional structure is achieved
without additional "boxes" in the diagram. (Also some links between objects do not
show up any more because they are now implicit in the nesting of objects [Kri94].)

In a composite object-oriented view of the runtime system, composite objects take
the place of elementary objects in objects structures, in collaborations, in object
references, etc. Object references may connect any top-level or (nested) component
object with any other one. Even without an explicit object reference, the composite
object from within its methods can directly send invocation messages to its direct
component objects. A new type of event possible in object systems structured into a
hierarchy of composite objects is the change of this structure: An object can become a
particular object's component or cease to be its component [OMGOO]; in other words,
it can "migrate" from one composite object to another.

2. THE IMPORTANCE OF COMPOSITE OBJECTS. The composite object abstrac
tion is scalable from the elementary object up to the entire object system as one all-

25

encompassing composite object [Rum94c, Bos96]; it structures the entire object system
into one object composition hierarchy without conflict-bearing overlaps. A structur
ing into composite objects acknowledges that certain groups of objects are tightly
coupled and have themselves object-like properties, which is necessary for "a viable
method for the characterization of large systems" [Cha91]. Composite objects are the
units as which the specification of the object system is "structured naturally," and
which guide the reasoning process "in a natural fashion" so that it is local to the com
posite in many cases [GM93]. Object composition is an important semantic relation
that provides a back-bone for message forwarding [Cha91, MZ92, GM93, MC94, HG97],
property inheritance [GL95, OMOl] and refactoring [J093].

Structuring an elementary object system into composite objects does not intro
duce additional structural units, but extends existing ones. The composite object
abstraction is not a completely new concept to learn for the programmer, but just
a generalization of the elementary object abstraction. Moreover, the notion of com
posite object is already known from object-oriented design, and implicit in top-down
refinement of higher-level objects to lower-level objects and in the object composition
technique of object-oriented software construction (cf. §2.7). The kind of generaliza
tion by object composition, from a shallow notion of object to a nested one, is known
from subclassing, which generalizes a shallow notion of class to a transitive one that
includes subclass instances. The same way we can resort, where necessary, to the
original, shallow notion of class by talking just of its direct instances, we can resort to
the original, shallow notion of object by talking about the composite's representative
in paragraph 4 below.

The quality of object aggregation techniques can be judged like the grouping of
definitions to program modules: It should produce units of high internal cohesion
and with low external coupling to be really useful for the management of complexity.
Composite objects have higher cohesion than other object aggregation techniques.
First, the constituents collectively represent one higher level abstraction (abstract
data structure, behavioral abstraction, etc.), and thus are held together by conceptual
cohesion. Second, the constituents coordinate their behavior to this end, and thus
are held together by dynamic cohesion, like in a collaboration. ("A composite object
is similar to . . . a collaboration, but it is defined completely . . . in a static model"
[OMGOO], namely the class model.) Additionally, a core of state-representing sub
objects must be permanently connected in order to implement the representation
of the abstraction's state and thus are held together by structural cohesion like in
an object structure. The external coupling of composite objects can be reduced by
techniques of encapsulation discussed in the next chapter.

3. CoMPOSITE CLASSES. Composite objects are instances of an object class, which
in this case is called a composite class. The definition of a composite class fixes its
composite instances' fields and methods, their possible component objects and the
possible processes of their dynamic (re)construction. In the example, the structuring
of the banking system into composite objects from further above can be distilled by

26

L Customer J
11 Account

accesses CashCard I

holds concerns\ ~ncerns authorized-by

ATMConsortiu m \
"""' \ " Bank \

"""' Casl\ierStation ~
ATM

I Cashier k entered-by

\

H Cashier ,I I Remote ,I I Bank I comm.-with Transaction Transaction
Computer I

communicates~ Central communicates-with
Computer

Figure 2.5: Class model of composite object-structured system (adapted from [Kri94])

class abstraction to the class model shown in figure 2.5.
Composite classes have nothing to do with packages [OMGOO]: The nesting of

(composite) classes in the UML diagram captures the nesting of their instances at
runtime, not the nesting of their definition modules in the program (for which package
combinator E&--- is used in UML). In object-oriented programming, runtime structure is
orthogonal to program structure (§2.3). It is natural to let any composite class use any
class, no matter the package, as the type of its instances' components. Independently
from object composition, we can achieve a cleaner organization of the program into
packages in which all classes can be reused.

For example, figure 2.6 shows how the classes of the map example could be sorted
into four general packages: At the bottom is the package DSComponents of standard
data structure components, like Node and Pair, that have many different uses. Pack
age DSlterators contains the corresponding iterator implementations. The collection
implementations that build on these two packages are collected in package DSCollec
tionlmps. At the top is the package of the high-level collection and iterator types, for
which the other packages constitute one possible implementation.

4. EXPANSION TO IMPLEMENTATION OBJECTS. Current object-oriented program
ming languages support only the elementary object view (§2.3). But object com
position can be "simulated" [HJS92] by expanding each composite object to an ag
gregation of elementary implementation objects. The example of a composite Car
object car with Engine and Wheel components e and w is shown in figure 2. 7. First,
the composite's component objects are expanded recursively. Second, the rest of
the composite, namely its identity, fields and methods, is combined by elementary
object abstraction to a separate implementation object called the representative.
Third, the composition relationships between composite and components can be rep
resented by "composition references" between representative and component objects'
representatives to explain the messages exchange between them.

27

Standard collection types,
context-independent,
useful in many contexts

Collections I

r-Setl - - - - ~"!.a!::_ :l4 «call»
~ >I lterator f ----------------------

1 I Map ~-;;;-r.;;,t;.- _,. 77 ~~~ ::
:s=JI "' \ \ \ II

I ,. .,... :c'3-\V' \ ~', II

\ \ \ II
1 \ \ \ II

DSCollectionlmps !1 1 _,." , ' DSiterators I 11
1 ,. \ \ \ II

1 I ...- \ \ ' II

,----,1-- : - - ~~ ~ ~ ---- -- ::_in!t:n~t:_»- ·-::a~»---- -\· rv J Nodelt I II
I Se~mp t --:; '- -.,.-.,..:'- ---______ _ "i!!s~fl!!a!_e:_ _ _ _ _ _ _ ') I J:

1 •instantiate» 1 ; <.. " " ~., 1\1 Data It .
...-.... / A I

Maplmp ~~- ,------------·i_!!s~'?!_ia~e~----;;-"_:-r" -~ Firstlt \-1
..... ', / ,..... ,......._ __ __,
' ' .. 7/;~ cl:'.... / :~\11,. / /

'----------' ''''o "-''}.;,.,, DSComponents I "" ; " '-------'

Collection implementations
using DSComponents and
corresponding DSiterators

.._q~ .. & ... _..... / ~\~l/

' / 11-~'6-,... t.,." -' "4 Node j

'4 Pair f" Standard data structure classes,
context-independent,
useful in many contexts

lterators for iteration
over objects found in
linked data structures
(of DSComponents)
or in iterations
(over DSComponents)

Figure 2.6: Class packaging orthogonal to object composition, with dependencies

{

. Z1o() car representative car

goO com osite . . ~~I obfoct compo"''""''''
components .e. l!'!!.

Figure 2. 7: Composite object and expansion to elementary objects

In the implementation object view, composite objects are aggregations of imple
mentation objects that function together like one large, complex object. Whereas
a composite's components may come and go, its representative remains the same
through the composite's existence. Since the representative is unique, the composite
can be uniquely identified by identifying the representative. The representative "rep
resents" the composite "as a whole," i.e., modulo the component objects, takes its
role as source and target of references and of communication.

The representative is also called the "dominant object" of the composite's expan
sion [Rum95] or of a corresponding "high-level object (class)" [EKW92], and called
the "root instance" of the expansion as a subsystem of the runtime system [BLM97].

5. THE DUAL NATURE OF OBJECT COMPOSITION. In object composition, more
complex, composite objects are constructed from simpler component objects, by
giving their union a separate identity with fields and methods independent from
the components, in other words, by unifying them under the representative. The
data/behavior-dualism of objects in general, and composite objects in particular, en
tails that a component object (with data and behavior aspects) can serve the purpose
of implementing the composite's data aspects (static properties) as well as implement-

28

ing the composite's behavior aspects (dynamic properties): "Objects obtain their
static and dynamic properties by composing, delegating, inheriting, and coordinating
those of other objects" [CLF92]. Consequently, among a composite object's compo
nent objects one can distinguish the data- or state-representing components from the
behavioral components:

Since objects have state and composite objects o are objects, they must have a
state, written CState (o). In this state, o can represent abstract data to implement
a data abstraction. To CState (o) belong the states state (£) of the composite's fields
£ E fids (o) as well as the states CState (w) of certain components w of the composite
which are accordingly called its state-representing components w E StCmp(o).
In short, the composite object o's current state CState(o) is some kind of union of its
fields' and current state-representing components' states:

CState(o) = U state(£) U U CState(w)
PEfids(o) wEStCmp(o)

It is crucial for the power of composite objects (over elementary objects) and of
the object composition technique (over inheritance) that in CState(o) not only each
field and component's state state(£) and CState(w) can change, but that also the set
StCmp(o) of state-representing components is able to change dynamically as needed
(unlike the set fids (o) of fields). While the former is a "quantitative change" within the
state space spanned by the sub-objects' fields, the latter is a "qualitative change" that
changes the spanned state space [Bun79]. For example, an implementation Mapimp
of an abstract Map data structure, i.e., a variable mapping from key objects to value
objects, may represent Map states by storing each key:value pair of the map in a
variable number of component objects of class Pair.

But there is more to object composition. A composite object can also have com
ponent objects not for representing its state but just for the implementation of a
behavioral aspect. The composite state of such behavioral components does not
contribute to the composite's state, so that behavioral components' mutations do not
count as changes of the composite. Often a behavioral component exists only while
the composite is executing a method.

For example, consider the implementation of the lookup operation on the abstract
Map data structure that will be elaborated in detail in the next section. For lookup, a
Mapimp composite d has to iterate over its entry components of class Pair in search for
a given (potential) key object. It can chose to represent this iteration by a behavioral
Iterator component i, a behavioral abstraction which provides for iteration operations
and represents the iteration's state. Iterator i must be viewed as a component of d
since the meaning of the lookup operation does not allow for sending (state changing)
messages to external objects. And i cannot be a state-representing component of d
since the meaning of the lookup operation allows no change of d's state CState(d),
whereas Iterator i must change to progress the iteration during lookup. Hence i can
only be a behavioral component of d.

29

2.1: current()
4.1: Step()
5.1: current()

~
1.1:new

- 1.2:Start(n1,3)

2.2:data() -
4.1.1:next()-

5.2· data() -

~ lookup(k2)

..11

Figure 2.8: Unstructured lookup collaboration

2.6 Managing Dynamic Complexity: The Map Ex
ample

The bank example is too large for getting to the bottom of it. A standard example
in the field of composite object encapsulation are container objects which represent
application-independent abstract data structures also called collections. Kent and
Maung started the tradition with stacks represented by a linked list of nodes [KM95].
Noble, Vitek, and Potter continued with a hash-table associative containers repre
sented by entries stored in an array object [NVP98]. Both groups pointed out the
difference between the objects constituting the container (the stack's or hash-table's
representation) and the objects contituting the container's content (the stack's ele
ments or hash-table's arguments).

The example that will accompany us throughout this dissertation is a particular
implementation of maps, where the entry pairs are stored in a set represented by
linked nodes. A map is an associative container object in which "key objects" and
"item" or "value objects" are stored so that each key object is uniquely related with
a value object. Even such a relatively simple thing like a map provides us with an
example of dynamic complexity if we view it at the lowest object level.

Consider how a request for looking up a key is served: The UML collaboration
diagram in figure 2.8 shows the particular interaction betweens eight elementary ob
jects (plus six passive objects) through which a particular lookup in a map with a
particular content is implemented. In this unstructured form, it is rather difficult to
see how it works. It is natural to parse it first, to start the understanding (or the
description) by identifying which objects belong together, and which type of object
they are as a unit, i.e., as one composite object, as figure 2.9 shows it.

1. THE PARTICIPANTS. On the state side, the Node objects nl, n2, and n3 form a

30

ring structure in which the objects el, e2, and el are stored. The nodes belong to s,
an object of implementation class Setlmp, i.e., are its components. s, in conjunction
with its components, i.e., as one composite object, is the software realization of a Set,
namely the set S = { el, e2, e3}. Objects el through e3 are Pair objects representing
three map-entries "kl: vl," "k2: v2," and "k3: v3" (vl and v3 are not shown in fig. 2.9).
Composite object s (the entry-set) and objects el, e2, and e3 (the entry-objects)
represent what the map's current content is. Hence they are the state-representing
components of the composite Maplmp object d (not shown as composite in fig. 2.9)
which is a software realization of a Map with the aforementioned three entries.

lterator<;> - 2: current() 4: Step() 5: current()
{transient}

i:Datalt
•local•

1.3: new
- 1.4:1nit(nn)

«local»

2.1: current()
4.1: Step()
5J: current()

lterator Q ~ 1.1: new

I nn:Nodelt ~·l_oc_al•-+--'---1._2: =Sta=rt("'-n1=,3,_) ---1

1: elements()~

Set<;> 7
s:Setlmp

Map c:;> ~ lookup(k2)

I d:Maplmp

I

'
II ----+===:j2:!;.2:tda~ta(~) L:-:t~·loc~a~l·~~gtJ-+~·Iocjal• ~• IL 4.1.1:next()- .I n1_

5.2: data() - •local•
«local»

n2 e2

-j n3

~
\ k1 .a

•para~~~ ~
k~l ll
-~ '

k3

Figure 2.9: lookup collaboration structured with composite objects

On the behavior side, nn is an object of implementation class Nodelt that realizes
an lterator object reifying the iteration nl, n2, n3 over the nodes. It is a component
of the Data It object i. Together, i.e., as one composite object, both realize an lterator
object, i.e., the reification of an iteration el, e2, e3 over sets's elements. It represents
the map's search kl: vl, k2: v2, k3: v3 through the entries for the given key. Composite
iterator i is also a component of d, a behavioral component. Maplmp object d, together
with its behavioral component i and state-representing components s, el, e2, and e3,
i.e., as one composite object, realizes a Map that has three entries and is in the process
of looking up a given key.

2. THE AcTIVITY. Note that all interaction takes place
within this composite object. Hence if one takes the map
composite as one and abstracts from its parts, i.e., if viewed
from outside as black box, then a lookup in the map has
minimal complexity: There is only the request message
lookup(k2) arriving at object d, and the reply message returning the result v2 (not
shown). Nothing else happens. There are no observable intermediate interactions nor
states during the lookup.

31

The complexity of what is going on internally during lookup can be split into two
smaller portions along the boundaries of the composite components 5 and i: At the
intermediate level of aggregation, 5 and i are viewed as black boxes of type Set and
lterator, respectively (see figure 2.10). This view works out the essence of Maplmp's
implementation of Map's lookup, which is independent from the realization of entry
set 5 and entry-iterator i. At the level below, we focus on the interactions inside of s
and i, and between them, and ignore the context of a Maplmp composite performing
a map-lookup. This shows us the essence of how the iteration over the map's entries
is implemented in the Maplmp composite. That is, we see independently from the
particulars of a map-lookup how iteration over a set's elements is implemented if that
set is realized by a composite of implementation class Setlmp.

3. INTERMEDIATE LEVEL: LOOKUP IN A Maplmp MAP. When request lookup(k2)
arrives at a map realized by Maplmp composite d, this leads to the following sequence
of events shown in figure 2.10:

1. d sends elements() to abstract Set object s to ask it for an iterator over its elements.
s creates the new lterator i (shown as pseudo-message new sent to i), initializes it
in an unspecified way, and returns it to d.

2. d sends current() to its new, behavioral component ito ask it for the initial element
in the iteration sequence. i communicates in an unspecified way with s to retrieve
a first element el and return it to d.

3. s sends first() to entry object el to ask it for the key stored in it. el returns kl.
4. Since kl is not the given key k2, s sends Step() to lterator i to make it move on in

the iteration sequence. i implements this by unspecified communication with s.
5. d sends again current() to i to ask it for the new current element in the iteration

sequence. i communicates with s and returns e2.
6. s sends first() to entry object e2, which replies by returning k2.
7. Since this is the given key, s now sends second() to the same entry object e2 to

ask it for the corresponding map-value stored in it. el returns v2, which d returns
as the result of the lookup for k2.

4. LOWEST LEVEL: ITERATION OVER Setlmp SET. Now consider how composite
objects s and i implement steps 1, 2, 4, and 5 of the lookup collaboration by internal
communication and communication with each other (see figure 2.9 again). Observe
in particular how the references and communication between abstract objects s and
i, that was not specified in detail in the intermediate-level view, is now implemented
by low-level references and communication between different sub-objects of composite
objects s and i.

When asked for an iterator over its elements (step 1), set s first creates the Nodelt
iterator nn (1.1), and sets it up for iteration over its three storage nodes by initializing
it with the call Start(n1,3) (1.2). s then wraps nn in a newly created the Data It iterator
i (1.3) by the call Wrap(nn) (1.4).

32

2.2.':'''
4.1::•••
5.2.":'" -

Figure 2.10: lookup collaboration at intermediate level of detail

A composite iterator i that was set up this way will, when asked for the current
element, return the data in nn's current node (i.e., an element of abstract Sets), and
will, when asked to make an iteration step, advance nn to the next node in the ring
(internal to Setlmp composite s). When asked the first time for the set-iteration's
current element (2), i asks nn for its current element (2.1), which is the node nl with
which it was initialized. The returned nl is then asked by i for its data (2.2), which
is el. The answer, el, is returned by i as the first element of the iteration over s. A
request to make an iteration step (4) is forwarded by ito nn (4.1). nn asks its current
node nl for the next node (4.1.1). The answer, node n2, becomes nn's new current
node. When i is now asked again for the current element of the set-iteration (5), it
forwards this request to nn (5.1), which answers with n2. This object is then asked
by i for its data (5.2). The answer, e2, is returned by i.

2.7 Origin of the Notion of Composite Object

The notion of a recursive aggregation of (elementary, low-level, concrete) objects to
(composite, high-level, abstract) objects, called object composition (or object contain
ment [Lif93, Kri94, DD95a]), has four sources:

1. MODELING PARTHOOD RELATIONSHIPS IN THE DOMAIN. All general techniques
for modeling real-world domains support parthood relationships as a distinguished
kind of semantic relationship between two domain objects, the part and the whole
(object-oriented models [Ru+91, Boo94, Ja+94, Hen97, OMGOO], information models
[KR94, Kol99], data models [8877, Ki+87], semantic networks [JHC84], description log
ics [Ar+96]). If software object w reifies the part and a the whole, then the object
oriented programming systems LOOPS [8B85] and ThingLab [BC87] in the knowledge
representation field, and the object-oriented database ORION [Ki+87] represented the

33

parthood relationship by a reference to w in a special "part" field of o. Subsequent
research in databases focused on clarifying the issues of shared versus exclusive parts,
attribute propagation, existential dependency, constraint propagation, and local refer
ential integrity (e.g., [MSI90, Liu92, HGP92, KS92]). A cognitive science paper [WH87]
influenced a string of publications on the characterization of subkinds of the parthood
relationship (e.g., integral whole/component, collection/member, mass/portion) in
knowledge representation [ILE88, CH88, GP95], information modeling [KR94, Kol99],
description logics [Sat95], and object-oriented modeling [Ode94, Hen97, SFL98, HB99b].

2. SOFTWARE CONSTRUCTION TECHNIQUE. Object composition has long been rec
ognized as a central technique of object-oriented programming on a par with class
inheritance [CLF92, Lif93, Ga+95, MD95, Pre97]: Each design step can be regarded "as
the implementation of some abstract object in terms of a collection of concrete ones
that are "assembled" into a configuration that provides the functionality required by
the abstract object" [FM90]. Particular cases are the component architecture COM
with inner objects as components of outer objects [MD95], and "delegation-based sys
tems" where a special form of composition between child and parent objects replaces
class inheritance [US87]. Favoring object composition over inheritance [Ga+95, Pre97]
allows one to avoid excessive class hierarchies (§2.1) and instable base-classes (§3.1).

The external view of the composite object as a communicating process composed
from component objects' behavior was formalized as object embeddings by Hartmann
et al. [HJS92]. Gangopadhyay and Mitra defined objects at an abstract level first
and then recursively refined them into composites with a compositional semantics
abstracting from internal objects and communication [GM93]. Belkhouche and Wu
modeled object composition in CSP by the parallel composition of the components'
behaviors and the abstraction of internal communication [BW99].

The abstract state of objects as described in class specifications was formalized by
Breu [Bre91] through a mapping from the collection of interconnected objects (object
environment) representing it. The refinement of an abstract object, with an unbounded
set of data components, to multiple concrete objects of the executable program, with
a bounded number of fields was considered by Utting [Utt92]. How one object's state
is represented in, or dependent upon, the fields of other objects (components) was
formalized by Wills [Wi192] and, independently, by Leino [Lei95, DLN98, LNOO].

3. STRUCTURING THE SYSTEM ARCHITECTURE. De Champeaux's "ensembles"
were the first proposal for sub-systems (in object-oriented system analysis) that
had object-like features like attributes, message handling, and encapsulation of con
stituents [Cha91]. Embley et al. 's high-level object classes without representative (see
below) can be understood as large, complex subsystems [EKW92]. Gangopadhyay
and Mitra [GM93], Rumbaugh [Rum94c, Rum95], and Harel and Gery [HG97] used
composite objects to structure the system model/specification and as context for lo
cal definitions. Moreira and Clark used "aggregation" with hidden components as "a
mechanism for structuring large systems" [MC94]. Bosch [Bos96] organized the entire

34

system into a hierarchy of nested objects.

4. HIGHER-LEVEL ABSTRACT VIEWS. Embley et al. collapsed, among others, low
level objects with their links and interactions, to one high-level object in object-oriented
system analysis [EKW92]. And, conversely, they established the meaning of high-level
objects in terms of low-level objects. They distinguished high-level views where the
high-level object has or has not the same identity as one of the low-level objects, i.e.,
where there is, or is not a representative (called dominant object) in the expansion.
Moreira and Clark's "aggregations" with hidden components [MC94] and Rumbaugh's
"composite objects" [Rum94c] could be viewed as a single object at a higher level of
abstractions. Kristensen [Kri94], and Bock and Odell [B098] demonstrated complexity
management by higher-level views of composite objects and their connections.

SYNTHESIS. Already in 1987, Blake and Cook [BC87] distinguished "additive wholes"
(or "collections") from "structured wholes" (like wired-up circuits). They related the
latter to classical decompositional analysis, and identified the dilemma between mak
ing the part objects accessible to other objects for "a knowledge representation style of
programming" [SB85], and protecting the whole's integrity against violations through
state changes in part objects. Six years later, Civello [Civ93] distinguished functional
parthood relationships as making the part "conceptually included" in the whole and
deserving encapsulation. He was first to point out the dual use of part hierarchies
for modeling part relationships between entities in the domain, and "to control de
sign complexity by encapsulating the parts of composite objects." Moreira and Clark
[MC94] similarly distinguished shared components from the hidden components that
permit "the aggregate to be seen as a single object at one level of abstraction, so it
can be used as a structuring mechanism."

Rumbaugh established the terminology adopted by the UML modeling standard:
Whereas ordinary aggregation relates objects at the same semantic level [Rum94a],
composition produces an aggregation tree that can be abstracted at various levels
[Rum94c]. A composite object can be viewed "either in detail or as a single abstract
object subsuming relationships to its parts" thus providing "a vehicle for suppressing
detail" [Rum94c]. Composite objects can be used to structure the system and as the
context for the definition of component objects, their connections, and constraints
[Rum95]. Distinguishing components in object-oriented modeling into private and
public (external vs. internal composition) was proposed in [VM099].

35

Chapter 3

Encapsulation in Object-Oriented
Programming

The big lie of object-oriented programming is that objects provide encapsulation.
Hogg (1991)

A single object may be encapsulated, but single objects are not interesting.
An object must be part of a system to be useful,
and a system of objects is not necessarily encapsulated.

Hogg et al. (1992)

This chapter zooms in on the purpose of this dissertation: encapsulation for com
posite objects. It develops the purpose not out of examples of what we want or don't
want to happen at runtime, but out of the general software quality of modularity
that enables divide & conquer development, modular verification, and substitutivity.
Encapsulation and information hiding are two complementary aspects of modular
ity generally agreed to be essential features of object-oriented programming. Their
different, competing concretizations will be reviewed.

Encapsulation and hiding limit external (respectively, read or write) access to
internal "information" to support, respectively, verification or substitutivity. This
may include more than just limiting external references and access to internal parts
(fields and component objects), since also the information which parts there are has
to be protected. Hence modularity for composite objects requires more than to apply
alias control or access control to inbound references.

3.1 The Importance of Modularity

1. MODULARITY IN GENERAL. A structuring of the program or system that manages
its complexity-which was the subject of the previous chapter-is not automatically a
good one. The structuring is of good quality if it is modular. Modularity means the
minimalization of couplings, or dependencies, between the structural units [Qui95].

36

('Coupling' is a dependency in one direction or another, or both.) Effective decou
pling is "indispensable for the development of large programs" [Wir83]. Structuring
guides the focusing of attention to the limited amounts of complexity within one
structural component and one nesting level, and ignoring rest. Modularity is neces
sary so that complexity ignored in the focused view is, for the most part, irrelevant
for the structural component in our focus.

There are three well-known applications of modularity in programming (also found
in Wirth's and Wills's analysis of 'hiding' and 'encapsulation' [Wir83, Wil92]):

• Divide & conquer. The classical divide & conquer problem solving technique
presupposes a degree of modularity: Dividing a software development problem
produce several smaller subproblems (without reducing overall complexity). Mod
ularity is necessary so that each subproblem can be solved "nearly" independently
from the others. The subproblems' solutions (portions of the program code or of
the runtime system) combine to a solution for the original problem.

• Integrity and reuse. Modularity limits the dependencies of a component on
the others, its context. The context makes "nearly" no difference to the compo
nent (context independence, implementation integrity). This makes a component
more easy to comprehend, and more easy to "unplug" and reuse in a new context
[WB+95]. Assuming these limited dependencies (e.g., imported interfaces) are sat
isfied, it is even possible in principle to verify the component's correct functioning
without further regard for its context (modular verification). By thus guaranteeing
the correct funtioning of some components, we are "able to limit the area of error
search in the case of a malfunctioning program" [Wir83]. A component that works
correctly in one context can be "unplugged" and reused in any context satisfying
the dependencies (e.g., providing the imported interfaces), and one can rely on
it to continue working correctly. No re-verification relative to the new context is
necessary.

• Transparency and substitution. Modularity limits the context's dependencies
on the component. Most aspects of the component are irrelevant for the context
(implementation transparency or independence); we can safely ignore them in rea
soning about the context. Consequently, the potential for a ripple effect by an
error in the component is reduced [WB+95], and changing a component internally
or substituting it by a new one is less likely to have an impact on the context
[WB+95], should not require any adaptive changes in the context [Wir83].

2. FoR ExAMPLE, modularity was applied with great success in computer systems
to separate abstract solution from technical realization at higher and higher levels:

First, a defining feature of computers is
programmability: Computer systems C are
abstractly divided into a general purpose
machine M (hardware) and a program PM
(software) specifying a particular compu-

37

modularize

(2)

tation. Computer engineers can focus on constructing computers that execute ma
chine language programs P~ without malfunctioning. Programmers can focus on
expressing computation in machine language; programs PM can be reused on other
machines M' with different hardware but without adaption of PM if the machine
model is the same. (Before this innovation in the 1830's by Babbage and in the
1930's independently by Aiken, Stibitz, and Zuse, the automatization of each com
putation required to build a different computer, or rewire an old one.)

Second, "high-level programming lan- moctularize

guages" coming up in the late 1950's sepa
rated the high-level program PL specifying
the actual, machine independent computa
tion, from the language's implementation ~
LM defining the program's translation to

VM

the machine. Language implementation LM (compiler or interpreter, and execution
environment) in conjunction with a machine M that can execute it, is a virtual ma
chine that can execute PL. Typed programming languages are designed so that the
language implementation's correct functioning cannot be influenced by any program
Pi, and so that the language implementation can be updated or replaced by L'M'
under the unchanged program PL (enabling the portation to other machines M').

Third, while the original program mod- modularize

ule was the procedure, the class construct
of the first object-oriented language Simula
of 1967 [Bi+so] brought the insight of the
1970's that good larger-scale modules re
sult from collecting all the procedures cou
pled by access to the representation of the

~~
: L~:
~ ,_.

(2)

~

same abstract data [Hoa72, Par72, LZ75, GH75, Lis92]: Program PL is divided into
the core program Pu with the high-level program logic, and the implementation of
user-defined data types contained in multiprocedure modules U£. These modules
extend the programming language by "a vocabulary of data types" [SG96] (general
purpose as well as application-specific). A modular programming language ensures
the independence of each module UL 's functioning from any context P&, and ensures
that revisions or reimplementations u;_ of the module have no impact on Pu. (It may
even be possible to combine modules and core programs that were translated with
different compilers or written in different languages, as in the . NET architecture.)

3. A STEP BACK? In object-oriented programs, the class definition is the nat
ural multiprocedure program module. However, the central object-oriented soft
ware construction technique of class inheritance, i.e., the definition of one class by
derivation from another, compromizes the program's modularity [Sny86, MD95]. The
main thing possible with inheritance but not with object composition is the over
riding inherited methods, allowing one to redirect other inherited methods' call of

38

this method (self-calls) to a new implementation [Hau93, SM95]. But it is also the
source of a new kind of tight coupling between class modules known as the insta
ble or fragile base-class problem [Pre97]. The solution through some form of
explicit specialization interface between base-class and derived class is still an open
issue of research [Lam93, St+96, Sta97, RLOO]. The usual advice given to program
mers [Ga+95, MD95, Pre97] is to avoid creating new classes by class inheritance with
its dependency on the internal method call structure of the base-class ("white-box
reuse" [Pre97]), and to prefer object composition, where component objects are used
through normal exported object interfaces, a clearly defined, well-understood concept
("black- box reuse" [Pre97]).

4. MODULARITY IN OBJECT SYSTEMS. In object-oriented programming, the struc
ture of the runtime system model (the object system) does not coincide with the
structure of the program (§2.3). Besides the modularity of the program's partition
ing into class modules-whose interfaces extend the language in which the program
is written,-we can also talk about the modularity of the system's partitioning into
objects-whose interfaces specify the language in which objects communicate.

What does modularity mean for a runtime system? It is relevant not for what
the programmer can do with program modules, but for what the computation can do
with components of the runtime system, in particular, with composite objects:

• A runtime component O's implementation
can be verified independently from the run
time context So in which it is used. It can be
transfered between different parts Sb of the
system, even migrated to other systems Sb,
without starting to malfunction.

s modularize S6Nu (1)

~ ~-:J ••••

• What implementation the runtime component has is transparent to the context.
Hence it can be substituted without impact by a component 0' with a different im
plementation.

It is wrong to think that these properties are only interesting for systems with an
infrastructure for the dynamic migration of runtime components and for the dynamic
switching between implementations. They are crucial for all object-oriented programs
since (composite) objects, the runtime components of object systems, are transfered
and substituted all the time: Any passing of an object reference to 0 as parameter
into an object's method is like the transfer of 0 into the context of this object and is
like the substitution for a formal parameter object (or for previous parameter objects).
Any redirection of an object reference variable from 0 to 0' is like a substitution of
target object 0' for object 0 and thus a move of 0' into the context So around
the reference's source. Finally, there are special design patterns which separate the
decision about from which implementation to instantiate an object 0 on one hand,
from the object's use in a context So on the other hand, so that it can easily be revised

39

or decided dynamically: Factory Methods, which "pervade toolkits and frameworks,"
Abstract Factories, which are the basis for component systems, and Prototypes, which
are the foundation of prototype-based programming [Ga+95].

Observe the distinct advantage of the transparency-aspect of object modularity:
Transparency of class modules decouples clients of a class module from the definitions
in the module. It makes it safe to revise field and method definitions, corresponding
to a simultaneous change of these fields and methods in all instances of the class and
its subclasses. Transparency of objects, on the other hand, decouples the clients 80 of
objects 0 from the decision what class c of objects 0 to supply as parameter, assign to
the variable, or create. It makes it safe to revise this decision statically or dynamically
on a case by case basis, and thus revise from which class module the method comes
that implements the client's invocations on 0. That is, object transparency is the
condition under which a foundation of object-oriented programming is safe: mixing
objects from different classes (polymorphism) and executing method code depending
on the receiver object's class (dynamic binding). (The programmer must not forget
that the methods' externally visible behavior is not an implementation detail, and
must be preserved, cf. behavioral subtyping [Ame87, LW94, DL97].)

3.2 Information Hiding and Encapsulation

1. MODULAR ESTABLISHMENT OF MODULARITY. A division into components is not
automatically a modular one. Transparency and integrity of a component X depends
not just on X itself, but requires also that no other component, respectively, depends
on, or interfers with, X's internal working in any way-something very difficult to
check in general. Hiding and encapsulation are two prominent programming principles
that make the context check superfluous or at least independent from X's interior
(i.e., a modular check), and for which techniques for their automatic enforcement
exist. They allow a component to establish its own transparency and integrity.

Different concretizations of the notions of hiding and encapsulation exist in the
literature, as we will encounter in §3.6. Often the two are used interchangeably for a
principle addressing both integrity and transparency, with encapsulation being rather
the technique and hiding rather the abstract property it achieves. In the following,
the term 'encapsulation' will be used in a very particular sense that opposes it to
'hiding' w.r.t. the direction of the tackled dependency (cf. [KM95]):

a) Hiding removes the component's internal properties and working from external
view, wraps the component in black (black box). It reduces the context's poten
tial dependency on the component (furthering implementation transparency and
substitutivity), namely dependency on the component's design, by making it im
possible to develop a dependency on its internals. According to Parnas's famous
information hiding principle, "A module is characterized by its knowledge of a
design decision which it hides from all others" [Par72].

40

b) Encapsulation protects the component's internal properties and workings from
external manipulation, wraps the component in a capsule (protective box). It
reduces the component's dependency on the context (furthering implementation
integrity and verifyability), namely dependency on how the context uses the com
ponent, by making it impossible to develop a dependency on (the benignity of)
its manipulations. "If a language enforces encapsulation, [context-]independent
reasoning about modules is on a sound foundation. Otherwise, it isn't and a
complete proof requires a global analysis" [Lis92].

Observe that hiding as well as encapsulation remove neither the context's de
pendency on the component's external behavior, nor the component's dependency
on how it is used by the context, nor the component's dependency on the context's
implementation of imported services. Also, there is a gray area regarding imported
services requested by the component: Can they be allowed to view and manipulate
the component's internals? This will be considered in §3.5.

2. INTERIOR AND INTERFACE. The common view of hiding and encapsulation
reduces component-internal "information" to mean the internal parts of a component
that is an aggregation of subcomponents. This view presupposes a division of the
subcomponents into two groups: Some are designated as exported parts or interface
parts; the others are called internal parts or private parts. For hiding it then suffices
to prohibit the outside's access to the component other than through its interface
parts. This limits the context's dependencies on the component to that which is
visible through its interface. And for encapsulation it suffices to prohibit the outside's
modification of the component other than through its interface parts. This limits the
component's dependencies on the context's manipulations to those possible through
the interface. That is, a protection domain is established by, metaphorically speaking,
the drawing of a barrier around the component-called encapsulation barrier in both
cases-which has the private parts protected inside of it and the unprotected interface
parts crossing it.

But not all internal information is an internal part, there are also internal struc
ture and state, which are not parts. The reduction to internal parts works only if the
number of subcomponents is fixed, as in a program module or in an implementation
object. If their number can change-as in the case of composite objects-this is an
aspect of the encapsulation unit's state and it is not necessarily represented in the
state of its private parts. This issue will be picked up again in the discussion of
composite object encapsulation in §3.3, paragraph 3.

3. CURRENT OBJECT-ORIENTED ENCAPSULATION. The two main mechanisms by
which parts of any software system may interact are the access to shared variables
and the exchange of messages. Interaction through a shared variable creates a cou
pling that is considered worse (tighter) than that through the exchange of messages.
Procedural programming has been scolded for its tight coupling of distant program
parts through global variables and global data structures [Mez98].

41

classes instances of class B instance of A instance of X

classes instances of class B

Figure 3.1: Encapsulation models in object-oriented programming

In object-oriented programming, encapsulation (in a sense that includes hiding)
is an essential feature. While general introductions to object-oriented programming
[Weg90, Qui95, Bru96, AC96, Cas97] present the implementation object as the encapsu
lated unit, most object-oriented programming languages support the encapsulation
of the class module. The addition of either kind of encapsulation is an improvement
since it contains all the "bad," variable-based coupling within the units, while be
tween them there is only the weaker coupling by message exchange. (On a larger
scale, the problem with shared variability reoccurs-see paragraph 2 in §3.3).

3a. THE ELEMENTARY OBJECT CAPSULE. The first object-oriented language, Sim
ula, developed 1967 for concurrent system simulations [Bi+so], had objects and a
class definition construct but no encapsulation. The second object-oriented language,
Smalltalk [GR83], designed between 1972 and 1980, defined the canonical understand
ing of encapsulation object-orientation (see the left hand side of figure 3.1):

The implementation object is the encapsulated unit, with the fields as private
parts and the methods as interface parts. Only an object's methods can access its
fields (irrespective the class modules in which both were defined). Objects with a
reference to another object can use it to send operation requests but not to access the
target's fields. For the modularity of the system it is irrelevant in which modules the
fields and methods were defined. The object's implementation code as a whole, in its
class and superclasses, can be verified, and the object can be substituted by another
one with different fields and/ or different implementation of the methods.

The technique by which Smalltalk enforced this is that it simply provides no
syntax E.x for accessing a particular object's fields. One can only write the identifier
x to refer to the field x of the current object.

3b. MODULE-BASED ENCAPSULATION as introduced by C+-+ 1983/86 [Str94] and
Eiffel 1986/88 [Mey88] made the object-oriented paradigm more acceptable to the
software engineering community and consequently became the dominant form of en
capsulation supported by object-oriented programming languages. It is based on
scope-rules: The names of private fields are simply not available outside of the class
module defining them. (Different visibility ranges can be specified, but this is not the

42

issue here.) Hiding field names makes it impossible for other modules to express an
access E.x to a field x. It prevents dependency on the definition ofthe field (linguistic
coupling). (However, if fields can not only be accessed by name but also by pointer,
as in C++, then there may be a dynamic coupling, cf. §3.5.)

Consider what this means for the access to the fields at runtime (see the right
hand side of figure 3.1): An encapsulation barrier is erected that contains as private
parts from all objects the fields that were defined in the same class module. The
fields can be accessed only by methods defined in the same class module; they are the
interface parts. For the modularity of the program it is irrelevant that these methods
are the methods of all instances of that class and its subclasses: The class module
can be verified and revised since it simultaneously defines the accessed fields and the
accessing methods of all these instances.

(This model can be extended, as in Java, by another encapsulation barrier as
sociated with multi-class packages. It can enclose the encapsulation barriers of the
class modules in them, and contains package-private fields and methods demanded
by Szyperski's "no paranoia rule" [Szy92], as well as package-private classes.)

3.3 The Need to Encapsulate Composite Objects

1. UNSUFFICIENCY: REFERENCE-INDUCED COUPLING. The above two standard
models of object-oriented encapsulation contain bad, shared variable-based coupling
within implementation objects or class modules. They clearly separate computation
in-the-small with tight coupling from computation in-the-large with weaker coupling
at the objects' or modules' boundaries.

However, because the complexity of each implementation object is limited, groups
of objects have to collaborate for larger tasks, which leads to problematic coupling
also by message exchange. The Demeter system tried to reduce coupling by the design
rule "Law of Demeter'' [LH89] that deprecated calls through temporary references, so
that the direct effects of a method invocation were limited to the objects referenced
by the receiver's fields and the method's parameters.

In particular, an object can act as an abstract variable whose sharing between
several objects or modules leads to a coupling similar to that through global vari
ables. The combination of sharing and mutable state has repeatedly been identified
as causing serious problems [NVP98, ClaOl], and making object systems so notoriously
hard to reason about [Wil92, Ho+92, Alm97]. This was already observed very early by
Jones and Liskov [JL76], who saw this leading to "the need to exercise some control
over exactly how the object should be shared."

The praxis of object-oriented programming has shown that problems by aliasing
"do not manifest themselves in the vast majority of programs" [NVP98]. But this
depends solely on a self-disciplined manner of using references. One documented
example were this discipline failed is a bug in the Java Development Kit (JDK)
version 1.1.1 that caused a security hole in Sun's HotJava web browser [SIP97]: The

43

JDK Class object Oc that reified Java (downloaded) classes c returned, instead of a
copy, the actual array object a holding the "digital signatures" for c. By overwriting
its signatures with signatures from trusted classes, class c can rid itselffrom HotJava's
security restrictions. This can be understood as a problem of aliasing or write access,
of encapsulation with a as private component of composite object Oc or as private to
JDK's class Class.

Any limitation of how objects are accessed through references (access control)
or of the existence of sharing-enabling reference aliases (alias control) reduces the
coupling in the object system and simplifies reasoning about its dynamics. Alias con
trol, in particular, has a long tradition in reasoning about procedural programs with
multiple names for the same variable (e.g., through parameter passing by reference)
[Rey78], or with pointers (subclassified by Euclid's collections [La+77], or effects sys
tems' regions [LG88]). It was also employed for safe parallelization of programs with
pointer data structures [HHN92, KS93, HHN94] and for optimized memory dealloca
tion (linear types [Wad90, Bak95], regions [TT94], escape analysis [Bla99], calculus of
capabilities [CWM99], alias types [WMOO]).

However, the aimless reduction of coupling cannot ensure verifyability and sub
stitutivity. For the question of modularity, alias/access control and a reduction of
coupling is of interest only in so far as it concerns references and couplings that cross
the boundaries of some runtime system components.

(A radical solution for the problems with object references would be to replace
them by a more abstract mechanism of referring to objects [Kri94], e.g., by commu
nicating through out-ports which are connected to in-ports by the enclosing compos
ite object [GM93, MC94, AKCOl], by acquaintance categories [Bos96], or by paths of
composite-local names for its component objects [RBF98]. But how much this would
actually reduce the effective coupling in the system remains unclear.)

2. UNSUFFICIENCY: GRANULARITY TOO SMALL. Elementary object encapsulation
allows one to verify the implementation of an implementation object's external behav
ior and the substitution of an implementation object by another one that implements
the same external behavior. Similarly, class module encapsulation allows one to verify
the implementation of its instance's module-external behavior and the substitution
of the module by another one that implements the same module-external behavior.
This suffices for simple data abstractions like calendar dates that are realized by a
single implementation object.

But for an implementation Mapimp of abstract map data structures this is unsat
isfactory since also the communication of a Mapimp instance with its entry-set com
ponent and entry-pair components is external behavior for s as an implementation
object, the representative. It is unsatisfactory to merely verify that representatives
correctly communicate with their components and correctly produce results depend
ing on the replies (cf. §2.6). It is unsatisfactory to merely replace representatives or
their definition module Mapimp by another one with the same communication with
components. The structural unit in the design of the object system is the composite

44

Car
instances of TaxiCab

Car with public engine component
t:Type

le: Engind

lw:Wheeil

opA()

I
TaxiCab
lm: Meted

opB()

Figure 3.2: Encapsulated composite objects

object. We should to be able to verify the entire implementation of, e.g., an abstract
map data structure by the composite object's external behavior, and to replace the
entire composite map by another one with a different implementation, e.g., with two
array objects (one for the keys and the other for the corresponding values).

3. COMPOSITE OBJECT ENCAPSULATION. Soon after object-oriented programming
started to be taken seriously, demand rose for encapsulating entire groups of the ob
jects. In particular those which were seen as one unit with object-like properties,
and were later called composite objects, should also have the characteristic object
property of encapsulation. Forms of composite object encapsulation were suggested
in part-whole modeling in programs [BC87] and databases [KS92], in object-oriented
system analysis [Cha91] and architectural modeling [AW+92, GM93, Bos96], and in
formal methods in object-oriented programming [Hog91, Wil92, Utt92, Lei95]. This
concern for larger-scale modularity in the runtime system was ignored by the devel
opment of object-oriented programming languages. (But it motivated in the 1990s, via
document-centered architectures like OLE and OpenDoc, the development of compo
nent system architectures like COM, CORBA, and JavaBeans [MD95, OMGOO, Ham97].)

Encapsulation or information hiding for composite object concerns (information
about) their fields and their component objects. In the canonical case, these are the
composite's interior, and its operations (implemented by its representative) are the
only interface parts. For example, see the composite TaxiCab object with Engine,
Wheel and Meter components in figure 3.2. In analogy to the notion of public fields in
modular encapsulation, one could also have public component objects, whose interface
parts are exported as additional interface parts of the composite. For example, a Car
object might make its engine component public (fig. 3.2). And if the engine has a
public oil-measure-shaft component, the Car object could export that too.

An encapsulation of composite objects is always understood to be added on top
of an encapsulation of implementation objects. That is, the elementary object en
capsulation barrier encloses the object's fields (cf. previous section, paragraph 3). It
and the (encapsulated) component objects are enclosed in the composite object en
capsulation barrier (see figure 3.2). The composite's methods are the interface parts
for both the elementary and the composite object encapsulation barrier.

45

Consequently, we can focus on hiding or encapsulating the information about
the composite's components. It has two aspects, and these are both mutable (cf.
composite state in §2.5), so that dependency on either of them is possible:

• First, what are the composite's components?
• Second, what are their current states?

The first aspect is often overlooked, and it is assumed that coupling between two
composite objects can only be established by the existence of object references to
the composite (good) or to its component objects (bad). Hiding and encapsulation
would then be equivalent to controlling, respectively, the existence or use of inbound
references from the outside to the component objects, i.e., to alias control or access
control across composites' boundaries.

For an information hiding policy it is insufficient to prevent the external access to
internal components that could observe (or change) their states, i.e., access control
on inbound references. Even unused inbound references can represent the outside's
knowledge of who the components are. Hence information hiding for composite ob
jects is a form of alias control at composites' boundaries that prevents the outside's
(non-contained) possession of references to components.

And for an encapsulation policy it is unsufficient to limit the use of inbound refer
ences to read-only access that does not modify any component object, i.e., a form of
access control at composites' boundaries: It also has to exclude the external manipula
tion of the composite's set of components. The concretization of encapsulation w.r.t.
this aspect depends on how it is determined in the implementation object system
what a composite's components are at a particular point in time-there are different
approaches, which will be considered in §3.4. If it is determined by paths of certain
references (d. §3.4), the existence of such references must be controlled by controlling
the state of objects holding them. And if the paths can go through (fields of) external
objects, write access to these external objects will have to be controlled as well so
that the composite cannot be manipulated w.r.t. its component set by the update of
fields. Paradoxically as it may sound, to encapsulate composite objects determined
this way, we need access control beyond the composite's boundaries-because it is
not self-contained. This is a case where the reduction of encapsultion to a protection
of internal parts (cf. §3.2, paragraph 2) does not suffice for the protection of a piece
of internal information.

Observe that preventing inbound references for information hiding entails encap
sulation if reference paths determine object composition: It removes the basis for
observing access to components and excludes the use of paths to components through
external objects. But in case that membership in the composite object is determined,
e.g., by containment in a local store (cf. §3.4), there might be a special operation
for adding a new object to that store, and thus change the composite's composition,
without requiring a reference to any of its old components. This is a case where the
hiding of all internal information (who are the components and what is their state)
does not entail encapsulation w.r.t. them (d. §3.2, paragraph 1).

46

3.4 Directions of Research in Encapsulation Units

Research in the encapsulation of composite objects has produced many concretiza
tions of the notions of hiding and encapsulation in particular contexts. They differ
widely in how the encapsulation barriers are drawn, what precisely is allowed to cross
them outside-in (discussed in the next section), and how this is called. (One may
interpret this as a sign for lack of maturity of the field.)

1. CLASSES OF MODULE-PRIVATE INSTANCES. If a class module c is private to
a package or class module M, we might expect the c-instances to be in some way
private toM. That is, in the runtime system model there is a protection domain DM
associated with M that contains, besides all object fields that were declared in M,
also all the c-instances. This is not the case. A scope restriction of the class name c to
the package or module M cannot guarantee that c-instances are accessible only from
code in 1\1: In Java, all classes have a non-private superclass, namely the special class
Object. But if class c has a superclass c' that is not private in M, then references to
c-instances can be leaked as references of static type c' to code outside of M. It can
then invoke c'-operations on the c- instance.

To solve this problem, the notion of confined types was developed by Vitek
and Bakowski [VB99], and later refined by Grotthoff, Palsberg and Vitek [GPVOl]: A
class declared confined is not just a private module in the enclosing Java package
but also its instances are private, i.e., can never be referenced at runtime from fields
and methods defined outside the package. All the code accessing the instances is
located in the enclosing package.

Instead of defining a new confined class each time one wants package-private
objects, one could also take classes c from any package M' and assume a generic,
ad-hoc subclass eM of it for every class module or package M in the program such
that eM is confined toM. That is, only methods defined in M have full access to the
instances of M-qualified class eM· This idea is realized in the type universes system
of Muller and Poetzsch-Heffter's Universes system [MP99a]: c<T> is the class of c
objects private to the package Min which class Tis defined. The "type universe" of
T is the collection Ur of all instances ofT's classes c<T>, c' <T>, etc. The union of all
universes Ur of classes T in package M is the protection domain D M associated with
M. The encapsulation policy of universes, representation encapsulation (§3.6), allows
external read access to the instances of confined class c<T>. But all write access is
limited to code in T's package M. The c<T> instances in each universe Ur s;;: DM
"can only be manipulated by methods implemented in [M]. Therefore, type universes
provide sufficient sharing control for modular reasoning, since all "dangerous" code
is located in one [package]."

One can use confined types and type universes for the encapsulation of composite
objects of class T by using as the types of component objects only, respectively,
confined classes or qualified class c<T>.

47

Observation 1. Consider that a c-object w used as components ofT-composite
o is a composite object with component q of class d, and assume that T, c, and
d are defined in different packages (only then are type universes a real advantage
over confined types). Since a's component w is of qualified class c<T>, only code
in T's package has full access to it. For components q (of qualified class d<c>), this
means that it cannot have full access to its own composite w (unless through methods
inherited from classes in T's package). Since all classes should be qualifyable (to
obtain component objects) it would be unsafe to program composite classes whose
instances give their components a writable back-link. This is a restriction of composite
objects' internal working that is not necessary for composite object integrity and
substitutivity, but an idiosyncrasy of encapsulating objects in modules.

Observation 2. Type universes work well only for composite objects which create
their components themselves. With patterns of flexible object creation and compo
sition, problems arise since the class of the component's composite must be fixed at
creation time. Consider first Setimp objects, which create iterators over their ele
ments (the Abstract Factory design pattern). The iterators from the Setimp object
s used as the entry-set in a Mapimp composite needs to be wrapped in a Firstit
object to produce iterators over keys. In order to create iterators as components of
composites of different classes T, one would need to make set objects' factory method
elements polymorphic with class parameter T. But since T = Firstit is in a differ
ent package than Setimp (see fig. 2.6), type universes would prohibits from accessing
the newly created iterator (e.g., for initializing it to the right position). Second, con
sider an abstract parser class AParser which provides an operation for configuring
the parser with a scanner component (a generalization of Leino's example [DLN98]):
The parameter's type can only be Scanner<AParser>. But then no parser implemen
tation is possible where the scanner object is a component of one of the AParser's
subcomponents. Also parser implementations in a different package than AParser
cannot make any use of the scanner object.

2. FIELDS WITH OBJECT-PRIVATE TARGETS. A fundamentally different-though
superficially similar-idea is not based on generalizing the privacy of classes to their
instances but on generalizing the privacy of reference fields to their targets.

The simplest version is to let all objects reachable from a given object o along
object references captured in (private) fields be private to o. The applicability for
the encapsulation of composite object is limited, though. It makes sense only for
composite object without captured references to objects in its context. If all objects
were encapsulated this way, no cyclic linked data structures could be constructed and
an object could not be stored in two set container objects at the same time. It is
telling that the two techniques supporting this form of encapsulation apply it only to
selected objects, called islands [Hog91] or balloons [Alm97].

A variation is to distinguish those reference fields whose target we want to be
private, component fields, from normal fields. Historically, this idea was imple
mented first without encapsulation, e.g., in the object-based KI system LOOPS of

48

1983 with the keyword part [SB85], and the object-oriented database ORION with
special fields of "composite references" proposed 1987 by Kim et al. [Ki+87, Ki+ss].
Different forms of encapsulation of the component fields' targets were added in the
language Sina with keyword internals [AW+92], in an extension of Modula-2 with
the keyword private [Lei95], of Eiffel with the keyword unique [Min96], or of Java
with the keyword unshared [GB99], and in the specification language Object-Z with
proposed declaration annotations ([) @, and ® with different sharing constraints
[DD95a, DD95b]. In two formal reasoning techniques [Wil92, DLN98], the component
status of field x of object o is implicit in the specification that o's abstract state is
represented in, or depends on, some field of x's target. 1

As a general solution for the encapsulation of composite objects this is too inflex
ible: Since the number of fields is fixed, the number of private component objects
would be bound. An implementation of Set with an internal, dynamically-growing,
cyclically-linked storage structure would be impossible to encapsulate.

3. REAL COMPOSITE OBJECT ENCAPSULATION establishes an encapsulation bar
rier around all the fields and component objects of a composite object, independently
from packages and fields. Since composite objects can be nested recursively to a com
position hierarchy, the encapsulation of all of them produces a hierarchy of nested
encapsulation barriers. (They combine without intersection with the smaller elemen
tary object encapsulation barriers around just the private fields.) Various, sometimes
overlapping, ways have been used for defining a composite object's private objects
without the above described problems:

a) On one hand, object reference-based determination of privacy can be extended
to using entire paths of references in the object graph. Not only composition
references must be distinguished, also other kinds of object references must be
distinguished according to how they combine to composition paths whose final
object is private to the initial object. This seems to be the unspoken idea behind
flexible alias protection [NVP98].

b) Also the class qualification approach can be developed further by assuming for
every object o, a generic, ad-hoc subclass c0 of any class c all of whose instances
are private to o. Such classes have been described as o's local classes [KS92],
classes or object types with (main) ownership parameter o (ownership types)
[CPN98, ClaOl], oro's "copy" of class c [MPOl].

c) Effectively similar is to associate every object o with a protection domain Do
so that all objects that are in it become private to o. Do is either a variation
of Euclid's collection [Utt92]later called o's local store [Utt96], a so-called rep
context (providing "a nested partitioning of the object store") [CPN98, ClaOl],

1 Dong and Duke [DD95a] and Almeida [Alm97] observed that expanded classes in Eiffel protect
against aliasing: Reading the value from expanded fields means to copy the object w in it, means
to create a clone of w. It is however not clear if also the reading of the this variable in methods of
w inherited from non-expanded superclasses creates a clone.

49

"a partition of the object store" called object universe [MP99a], or a protection
domain called object space [CROO]. Either D0 is a real runtime construct and
an object is made a member by creating w "in" domain Do [Utt92, CROO]. Or Do
is a metaphor for being private to o by reference path or qualified class [CPN98,
MP99a, ClaOl].

d) A more direct expression of object composition is Kent and Maung's notion of
object ownership [KM95]: All objects w have an implicit attribute, called their
owner, to which they are private if it is non-null. For example, the component
objects of COM ("inner objects") have an implicit owner attribute ("outer ob
ject"), which they return when asked for their !Unknown interface [MD95]. An
object's owner is either fixed implicitly at the time of its creation relative to the
creator [KM95], is set implicitly by converting a unique reference targeting it
to an owned reference [ACN02], is set by a special operation on the component
[MD95] (before the first !Unknown query [SM97]), or derived from membership in
class C0 or domain Do [CPN98, ClaOl, MP99a, MPOl].

All these approaches can in principle encapsulate all interesting composite objects.
Since the three non-path-based approaches are independent from the existence of
references between objects, they are slightly more flexible in drawing encapsulation
barriers around composite objects, whatever their internal structure: They support
objects that are private too (members of c0 or Do) but which o cannot reach. In path
based flexible alias protection [NVP98], if all composition paths from composite o to
component w are destroyed, w cannot but lose its official status as private component
of o.

The qualified class approaches [KS92, CPN98, MP99a, MPOl, ClaOl] have a principle
problem with flexible object creation and composition: The owner must be fixed
before the class can be instantiated, and changing it later would amount to changing
the object's class ("metamorphism"). Even Clarke, whose work is the most advanced,
admits that "this is unlikely to be sound" [ClaOl]. Clarke's owner-polymorphic method
can solve many simple cases. But, as Clarke shows, heavy restructuring of the control
flow is necessary for a more elaborated example like the configuration of a parser
object with unknown internal structure by an externally created scanner object from
[DLN98] (cf. paragraph 1 above).

For two real domain-based and ownership-based approaches, that are not derived
from qualified classes, the authors consider the explicit switch of an object's owner
by operations transfer [Utt96] or acquire [KM95]. This would seem to support
in principle all patterns of flexible object creation and composition: although some
conditions might be needed to make transferring ownership a clean and safe affair.

Flexible alias protection has one type of object reference particularly for flexible
object creation and composition [NVP98]: The initial reference to a new object is
free, and free references can be passed between objects, and converted to any other
type of reference by assignment to a corresponding variable.

50

4- VARIATION: PRINCIPAL-WITH-PROXIES COMPLEXES. In Clarke's Unique Repre
sentation Calculus Dk, aggregates are runtime components made of one (principal)
composite object together with (proxy) objects for accessing it [ClaOl]. Effectively the
same happens in AliasJava, where one (principal) composite object can create other
objects which have full access to its interior but are not its components [ACN02]. For
instance, the encapsulation barrier of a set object 5 may be extended to include also
the iterators (proxies) over it. This is shown in the left side of figure 3.3.

Formally, this is the same as composite object encapsulation with public compo
nents; there is only the semantic distinction whether the additional interface object
(the proxy) is a component of the composite or not. Public components are supported
in Microsoft's component standard COM by the notion of "aggregation," in which
the composite object ("outer object") can return (interfaces of) aggregated compo
nents ("inner objects") for direct use by clients. Note that COM does not come with
a mechanism that would help to enforce any encapsulation policy: The working of
COM aggregation relies on the unverified assumption that references to components,
or more precisely to their COM interfaces, are only ever exported to clients via the
special Querylnterface operation [SM97]. Since standard COM containers return their
iterators through operations like Enum0bject5 or EnumView5 [Mic02], this appears
to mean that COM does not make iterators additional interface objects that would
extend the composite container object to a principal-with-proxies aggregate.

General aggregates of a principal with proxies are not a standard design abstrac
tion of object-oriented programming. There is a structural problem too: Principal
with-proxies aggregates do not scale well with the parallel composition of composite
principals and composite proxies. A map object d (also called dictionary object) im
plemented with a set component 5 has its iterators composed from 5's iterators. If d's
iterators want to have their 5-iterator components within their own (principal-with
proxies) encapsulation barriers then they will have to be included into 5's principal
with-proxies barrier. This results in an unbalanced structure where a (multi-level)
composite proxy has to be located in the smallest principal-with-proxies aggregate
from whose proxies it is (indirectly) composed. This gives the proxy (d's iter a tors)
unjustified privileges on the intermittent components' (i.e., 5's) private parts.

5. VARIATION: COLLECTIVE RUNTIME COMPONENTS. An aggregation of objects,
like a husband and a wife, does not need to be reified in a separate object, the
family object (which represents the family as a whole, carries the family attributes,
and provides the family operations). Clarke models it as one encapsulated collective
aggregate F consisting of husband object o1 and wife object o2 as interface parts, and
optional private car object w [ClaOl].

If we understand a map and its iterators as one collective aggregate without a
distinguished principal object, the structural difference between principal and proxy
disappears (see the right hand side of figure 3.3): Not only do set and map objects
give up protection vis-a-vis their iterators, also the iterators give up protection vis-a
vis their principals (and other proxies). This would avoid the unbalanced structure

51

entry pairs entry pairs

Figure 3.3: Nested principal-with-proxies aggregate, nested collective aggregate

and unnecessary privileges of the treatment as a principal-with-proxies aggregate.
Collective components are supported by the aggregates of Clarke's Owners-as

Cutsets Calculus Dk [ClaOl]. They allow to draw the encapsulation barriers in the
map example as shown in figure 3.3. (Moreover, collective aggregates can overlap,
so that one object is interface part in multiple collective aggregates: Husband o1

and other person objects may be the interface parts (club-members) to a collective
aggregate book club with books as private parts, while wife o2 and other person objects
are the interface parts to a collective aggregate music club with CDs as private parts.)

A kind of collective aggregates is also supported by the Object Spaces model
[CROO]: The objects in one object space S collectively own the objects in all child
spaces of S. S's objects are the interface parts and the child spaces' objects are
private to them. For example, map object d and its key-iterator ware created in the
same object space D 1 . In one child space D 2 , all their components with access to s's
Node components are created, namely, Set object s, and set-iterators i and i'. The
nodes are created in a child space D3 of D2 . The remaining components of d and w
without access to the nodes, namely entry Pair objects el through e3, could also be
created in D2 , or in an extra child space D~ of S.

3.5 External Access despite Encapsulation?

Is hiding or encapsulation violated if the context views or manipulates a component's
internals (only) as part of a service requested by that component? The answer to
this question distinguishes many pro
posed concretizations of hiding and en
capsulation policies for composite ob
jects (§3.6). One may say 'No' because

relaxed hiding ::::} relaxed encapsulation

11 11
absolute hiding ::::} absolute encapsulation

the resulting dependency of the context on the component affects only the service
user, i.e., the component itself. Consequently, one may distinguish strict, absolute

52

notions of hiding and encapsulation, which exclude any external view or manipula
tion of internals, from relaxed notions, which allow it iff it is confined to services
requested by the component.

The relaxed/ absolute question poses itself not only for composite objects but
already for class-module and elementary objects encapsulation (§3.2) in languages,
like Ct-t, with pointers to fields or parameter passing (of fields) by reference. For
example, a class Point of 2D-points may implement the transpose operation by
calling the swap operation of a Util object to exchange the coordinate values. swap
has by-reference passed parameters, through which the Util object can access the
Point object's x and y fields.

class Point {
private: int x, y;
public: void transpose() { (new Util)->swap(x,y); } //(attn: space leak)

};

class Util {
public: void swap(int &a, int &b) { int aO a; a= b; b aO; }

};

This example clearly shows that the technique of prohibiting field access expressions
E.x (generally or outside of the module defining x, respectively) cannot by itself
guarantee that there is never any access to an x-field from outside the object or
module. The access is excluded only in the context of programming languages where
naming a field is the only way to access it, as in Smalltalk and Java.

The external access violates hiding and encapsulation in their absolute form. But
modularity is not lost since the external access is initiated by code in the Point module
and is formulated without knowledge of Point objects' fields: The Point module can
be verified based on the standard meaning of the imported swap operation. The
Point module can be changed to a polar coordinate implementation (which has no
use for the swap operation) without impact on the Util module.

Relaxed hiding and encapsulation holds since Util objects retain no access after
they finished the swap-service, establish no covert channel to Point objects' fields. It
would be different if method swap, in violating of the meaning of swapping, captured
a parameter's address in global pointer variable intptr by intptr = &a. Through
this pointer, other modules could observe the fields and become dependent on how
module Point uses them, or modify them and thus interfere with how Point uses
them. On the other hand, capturing the pointer would be safe if intptr is a variable
accessible only directly or indirectly from module Point. Also in this case, all access
through the captured reference would be contained to operations of module Point.

The question of what happens with a pointer or reference passed as parameter

53

to an operation is known in the access control literature as the confinement problem
[Lam73], the conservation problem [CJ75], or as server containment [CROO].

3.6 Review of Proposed Encapsulation Policies

The success and acceptance of an enforced programming discipline depends on the
extent to which it supports or constrains the programs that programmers actually
want to write or reuse [NVP98, LeiOl]. Hence let us analyze in how far the proposed
variants of encapsulation support or constrain common types of objects. (The exam
ple that was considered the most frequently in the literature is the encapsulation of
standard container objects like sets, stacks, and maps [Hog91, KM95, GTZ98, NVP98],
in particular, including support for iterator objects to access their content [NVP98,
CPN98, MPOl, ClaOl, ACN02].)

1 a. STRICT HIDING is the policy most easy to define, to achieve, and to reason about.
It means that there are simply never any inbound references. In different contexts,
this policy was called type isolation [Wil92], local referential integrity [KS92],
or principle of no representation exposure [NVP98]. Also COM's containment
[MD95] describes the components ("inner objects") of a composite ("outer object") as
"completely hidden" for external objects and never receiving requests from the outside
(as opposed to the case of COM's 'aggregation', which means a public component, see
§3.4, paragraph 4).

But absolute hiding is unnecessarily restrictive for the programmer, excluding
more common practices of object-oriented programming than the other policies: It
makes it impossible to use the design patterns Iterator and Visitor [Ga+95] for working
with internal structures. It makes it impossible to implement the functional union
operation between sets or the mutating unifyWi th operation more efficiently by one
set object exposing its internal structure to the other set object (in the case that they
are both of the same implementation class Setimp).

1 b. RELAXED HIDING allows inbound references iff they are contained. This is
concretized by Minski's concept of hiding (of component objects), which allows
access to component objects only while control is in the representative [Min96].
• An obvious specialization of this policy is to constrain the existence of inbound ref

erences to methods (indirectly) called by the representative. Minsky enforced this
by limiting inbound references to parameters which the representative passed by
reference [Min96]. The Object-Oriented Effects System enforced it by prohibiting
to capture inbound reference parameter values in fields [GB99].

• Representation containment is a specialization enforced by the Ownership
Types system [CPN98] limiting which objects may possess inbound references:
External object q may posses references to a's components iff o hides q in its
shadow [PNC98], i.e., iff all paths from the initial object to q pass through o. In
graph-theoretical terms, o is q's dominator or articulation point.

54

Relaxed hiding enables Visitor objects and Iterator methods (internal iterators),
but not Iterator objects (external iter a tors). It also enables union and unifyWi th.
It thus provides some of the flexibility which a modular version of private objects
introduced in class Set Imp would provide (cf. §3.4).

2. No CONSTRAINT EXPORT. The advantage of a hiding policy is that it imposes
restrictions only on the composite object itself [NVP98]: It, i.e., the representative
and the internal sub-objects, must never hand out references to internal sub-objects
objects (in case of absolute hiding), or can pass them out only to methods known
not to conserve them (in case of relaxed hiding). All encapsulation techniques ex
port constraints into the context that govern the use of inbound references returned
through the composite object's interface.

3. EXCESSIVE CLONING AND FORWARDING is the fundamental weakness of all
hiding notions [BC87, Bos96, KT99, HLSOO, MPOl]:

Cloning. It is, for example, impossible to implement a map's getEntrySet oper
ation by returning the internal Set component in which the entry Pairs are stored
(in cases where such a component exists). Instead, a clone of the Set component has
to be created and returned. The cloning solution has several disadvantages: First,
there is the obvious inefficiency of cloning large internal objects. Second, it is no
general solution since cloning cannot be sensibly defined for all objects: Can there
be a clone of a Singleton object [Ga+95], or a BankAccount object? Third, cloning
means to duplicate mutable data even in cases where sharing is desired because it
is a conceptual part of the application. For example, if clients of a Company object
want to know its address, returning a reference to the Address component can provide
for address information that never becomes "out-of-date" [HLSOO] "without the need
to propagate the changes to the clients" [MPOl] and without having to "cope with
duplicate data and keep track of conceptual object identity" [KT99]. Finally, it is
an inconvenience to the programmer to check if an automatic replication of memory
structures suffices or a special cloning procedure has to be written for object like
GUI-Windows, Threads, Files, reference-counting smart pointers, Semaphores, etc.
And the manual implementation of cloning (and a change propagation strategy) is a
potential source of new programming errors.

Forwarding. Alternatively, maps could themselves provide all set-operations on
the entry-set which the client might need: entryset_contains, entryset_elernents,
and perhaps also entryset_Add and entryset_Rernove. Mapirnp maps can straight
forwardly implement these operations by forwarding the requests to their entry-set
component. Also the forwarding solution has its disadvantages [BC87, Bos96]: First,
its recursive application produces more and more operations that would unneces
sarily inflate the interface of the composite [HLSOO]: Instead of being able to ex
pose one entry component through an operation entryset_getFirstEntry, the map
would need operations with the intimidating names entryset_getFirstEntry_first

and entryset_getFirstEntry _second, and maybe entryset_getFirstEntry _Set (cf.

55

the stick-figure object in [BC87]). Second, the deeper nested the composite object
is, the longer is the chain of forwarding down the composition hierarchy, letting the
inefficiency increases linearly with the depth of the accessed component. Third, the
inlining of interfaces introduces a coupling between the definitions of interfaces Map

and Set: When Set operation Add is renamed to Insert, consistency demands to
rename entryset_Add to entryset_Insert. Fourth, the recursive inlining "com
pletely flattens the part hierarchy and so removes the conceptual advantage of factor
ing knowledge in an intuitive manner" [BC87]. Even if the programmer still recognizes
behind names starting with entryset_ the notion of a map with a set of entries, he
cannot make use of standard operations with Set parameters for further analyzing
the map's entry-set, handing it to a print procedure, subtract it from another set,
creating a multiset from it, etc.

Note that the hiding of fields did not pose all these problems: Where needed, it is
possible to offer operations get-x and set-x for accessing their values with mimimal
performance penalty, with little chance for programming errors, and with negligible
cluttering of the interface. When the representation of the abstract data in the fields
is changed, e.g., from calendar dates with three integers to dates with two integers,
operations get-x and set-x can be reimplemented accordingly. No remaning affects
the client. The client does not notice a thing (module transparencyjsubstitutivity).

4a. STRICT ENCAPSULATION means that the outside neither changes the set of
components nor their state. The latter aspect was concretized as the policy of rep
resentation encapsulation, and enforced in the Universes system [MPOl]: All
inbound references must read-only, i.e., cannot be used to modify the target.

Giving up on the aim of hiding makes it possible to let clients of a Company
object directly observe its Address object for up-to-date address information without
change propagation. It enables the programming of Iterator and Visitor objects, as
long as they are not used for modifying the structure they are traversing/visiting,
and enables the efficient implementation of getEntrySet and union.

4b. RELAXED ENCAPSULATION allows the outside to change the set of components
and their state iff this is done in a contained way. This policy has not been described
in the literature yet. In analogy to Minsky's concept of hiding, it may be concretized
as allowing a change only while control is in the representative, i.e., only through
its methods. W.r.t. change of the composite's state-representing components (§2.5),
this is covered by our policy of state encapsulation: The composite object's state
changes only through its own methods. Since other, behavioral components are parts
of the representative's methods, they exist only while it is control; relaxed encapsula
tion follows. A restricted form of relaxed encapsulation, where the writable inbound
references are contained in calls (not in dominated objects), is enforced by the No
Abstract Aliasing methodology [DLN98].

Relaxed encapsulation additionally supports efficient unifyWi th and Visitor which
modify the visited structure.

56

5. VARIATION: SANDWICHES. Several authors allow inbound references that are
neither read-only nor contained, if they cannot be captured in fields. This property
has been generally called Sandwiches [GTZ98], or containment invariant [ClaOl].
Islands [Hog91] and Balloons [Alm97] are a special form of Sandwiches without
outbound captured references. The possibility of the context changing the interior
without the representative's control leaves no doubt that here the composite object
is not encapsulated any more (for the question of encapsulation it does not matter
whether the reference used for the mutation is captured or not).

Nevertheless, one may argue that there is no real problem on the implementation
integrity side here: Inbound references not contained by the representative can be
created without storage in fields only if the representative returns them (a simple
upward leak [DLN98]). Hence, under the worst case assumption of arbitrary modi
fications by the context, the composite object's implementation can be verified and
reused in any context. And on the transparency side, the restriction not to capture
the inbound reference in a field makes it easier to reason about whether the context
develops a dependency on what it sees through this reference. (Even if then there is
no modularity between the composite object and its context, the restriction makes it
easier to show that the system as a whole works correctly, since inbound reference not
captured in fields cannot cause "unpleasant surprises at an arbitrarily distant point
in an execution" of an object's method [Hog91].)

6. ENCAPSULATION PROBLEM: MUTATING ITERATORS. If a Set object creates and
returns a structure-sharing iterator object, then this is described as "encapsulating"
from the Set's client, and within the iterator object, the reference (or the access) to
the internal structure [Ga+95]. In many cases, iterators may even be used-in excess of
the design pattern-to modify the internal structure: For instance, the iterators over
Java's standard collections have a remove operation. Intuitively there is no problem
here, despite the undoubted breach of the composite Set object's encapsulation by
the possibility of the iterator modifying the Set's interior in a non-contained way.
The crucial point is that the inbound reference is stored in an object which the Set
object created itself, so that the iterator's implementation class is known (and can be
inspected for verification). A worst case analysis of what the iterator could possibly
do with the given reference can show that the Set's inner working is never in danger.
The Set object is reusable is any context (with an iterator implementation), no matter
what the context does to the Set's interior through the iterator (as long as it uses
the iterator's operation interface).

AliasJava's "capability-based encapsulation model" supports relaxed hiding with
mutable iterators and similar objects [ACN02]: Object classes can be parameterized
with "ownership parameters" that specify the composites to whose components (in
addition to its own components) the instances may have writable references. When
an object instantiates a class, it can make accessible its own components and any
composite's components to which it has access itself.

57

7. ENCAPSULATION PROBLEM: NOTIFICATION MESSAGES. Event-based systems
[SG96] and systems with the Observer patterns [Ga+95] are an important class of
object-oriented systems: Objects w register with an event-dispatcher or Subject q for
notification about the occurrence of certain events (G UI inputs, state changes, etc.).
There is little use for w having a notification message sent by q if this would not give
w the opportunity of changing its state. But then there is a problem with registering
a nested component object w with an external event-dispatcher or Subject: q's send
ing of the notifying mutator messages along an inbound reference would circumvent
w's representative. It is unclear how one could not see a violation of encapsulation
in this, even though normally there seem to be no adverse effect on the system's
modularity-on the contrary, event-dispatching and the Observer pattern are specif
ically used for decoupling different system parts and improving modularity. Observe
that Sandwiches, too, cannot handle this case.

Imposing the policy of encapsulation on such systems without restructuring them,
i.e., without changing the object references, can be possible only by adding a fil
tering mechanism to the semantics of message passing: In the composition filter
model [AW+92] and the layered object model [Bos96], the representative defines filters
for the messages to its components and their subcomponents. Filters are like meth
ods that are implicitly invoked on the representative to decide whether to accept,
reject, or reimplement sent messages. This guarantees the representative's control
over all changes, and thus appears to be a clear case of relaxed encapsulation. But
the problems is that it is questionable on what behavior the clients of a potentially
nested component object can still rely on (including invariants and history properties),
and how the representative could judge whether messages to abstract components'
implementation-specific subcomponents (e.g., an entry-set's nodes) are benign w.r.t.
the way how it is using the component (e.g., as a set of key/value pairs).

Similarly, but more coarsely, the Object Space model [CROO] subjects the delivery
of all messages to a security policy: The interface object(s) of a runtime component
can select dynamically whether messages sent to private objects from objects in a
particular other runtime component should be delivered or raise an exception.

8. VARYING THE UNIT OF ENCAPSULATION lets the same encapsulation policy
mean a different effective property of encapsulation for the composite object. In
the extreme, iterators are possible despite absolute hiding if one does not hide the
internal storage nodes but places them outside the encapsulation barrier [NVP98].
Mutating iterators are possible despite encapsulation if the nodes are not behind the
composite object's encapsulation barrier but behind the encapsulation barrier of the
package that contains the set class as well as the iterator class [MP99a]. And mutating
iterators are possible despite the Sandwich policy if the iterator is not outside the
encapsulation barrier that contains the storage nodes, but is made another interface
part of it in a Clarke-style aggregate (§3.4, paragraphs 4/ 5) [ClaOl]. (Obviously, a
mutating iterator can be simulated in any proper encapsulation discipline by letting
the iterator forward the remove message to the Set object [MPOl].)

58

Chapter 4

Related Work

Don't you see that the whole aim of Newspeak is to narrow the range of thought?
In the end we shall make thoughtcrime literally impossible,
because there will be no words in which to express it.

George Orwell, "1984" (1949)

Related work was already mentioned in the previous chapters where it applied to
different issues (the notion of composite object, units of encapsulation in the runtime
system, encapsulation policies). This chapter focuses on the related works themselves,
taking now in particular their technical and linguistic aspects into consideration.

4.1 Encapsulation Approaches

1. PROBLEM IDENTIFICATION. Blake and Cook were the first to characterize the
problem of composite object encapsulation [BC87]: "When an object is assembled
from its parts these parts are no longer independent. A part belongs to the local
state of the whole ... " They warned that the common handing out of references to
part objects enables clients to modify them in a way violating the integrity of the
whole, which "subverts the idea that objects can hide and control their local state."

Looking at objects modeling a parthood hierarchy, like a stickfigure (cf. §2. 7),
the authors recognized that a hiding policy would be inappropriate and blow up the
whole's interface (cf. §3.6). They proposed an encapsulation policy where the whole
"mediates" or "censors" the access to the parts it made visible, but give no precise
definition. They offered compound messages as an alternative for returning part
references, but no enforcement of a mediated access policy.

Mediation in a sense was built into some higher-level runtime system models by au
thors approaching composite objects from the system architecture perspective (§2.7).
For example, all boundary crossing messages are routed through a special forward
ing or filtering mechanism of the composite object (cf. §3.6) in de Champeaux's
top-down system analysis method [Cha91J, in Aksit's language Sina with "composi
tion filters" [AW+92], and in Bosch's layered object model [Bos96]. Or all boundary

59

crossing messages are routed through communication ports whose connection is
fixed by the enclosing composite object, as in Gangopadhyay and Mitra's executable
visual ObjChart models [GM93], and in Aldrich, Chambers, and Norkin's ArchJava
embedding of an architecture definition language into Java [AKCOl].

Such architecture-level concepts are too far away from the practice of object
oriented implementation-level programming, are too general if used to encapsulate
composite objects, and incur too much runtime overhead if used for all objects.

Let us focus on encapsulation by constraints on object references.

2. HOGG'S ISLANDS [Hog91], were not about composite objects, but a combination of
three techniques for "making object interaction more predictable" that are also use
ful for composite object encapsulation: First, Hogg brought the function/procedure
distinction (observer /mutator) and statically checked read-only references to object
oriented programming (access control). Second, with the help of static checks and a
destructive read operation, the uniqueness of certain references (alias control) was
ensured, while still allowing to store them in container objects, to retrieve them, and
to borrow them to called methods. Third, Hogg was the first to impose a structural
constraint on the object graph that isolated a region in the object graph called an
Island: For the transitive closures of so-called bridge objects, he ensured a Sandwich
policy (§3.6), i.e., there could be no field-captured inbound references to any object
reachable from a bridge along field-captured references (also called "full alias encap
sulation" [NVP98, Cla01]). More precisely, into and out of an Island, there could be
only uncaptured references that were read-only or aliases of a unique reference.

On the linguistic side, Hogg contributed a system of access mode annotations
to distinguish read-only references (read), unique references with temporary aliases
(unique), and references without any aliases (free) from ordinary references. He
gave a complete set of rules for the inference and static checking of modes based on
the modes with which variables, parameters, results, and methods were annotated. 1

Unfortunately, Hogg did not define his system formally so that his claims about
guaranteed properties cannot be verified. Also the encapsulation of transitive closures,
as explained in §3.4, cannot be a general solution for all objects.

3. THE FIRST SYSTEM realizing the vision of encapsulating all composite objects
without distinction by constraints on references (after filter-based Sina and commu
nication port-based ObjChart, see 1) was presented by Kent and Maung [KM95],
who introduced several crucial concepts. The authors applied the general notions
of information hiding and encapsulation to container objects with internal arrays or

1To demonstrate the orthogonality of modes to traditional typing (w.r.t. objects' classes) he
presented his system in the language Smalltalk without static typing. In order to check method
calls without infering the receiver's type, he assumed the modes of parameters, result, and this to
be encoded in the method's name. In Smalltalk, this reduces a mode mismatch to a message-not
understood runtime error. A statically typed language would exclude this kind of error, and make
mode checking a completely static affair.

60

linked nodes as components. In place of Hogg's distiction between objects with and
without encapsulation, they distinguished a container object's parts from its content.
They imposed a structural constraint on the object graph that isolated not transitive
closures but only what belongs to the composite object's implementation object ex
pansion, i.e., "flexible alias encapsulation" [ClaOl]. (While they seem to aim at
absolute hiding, they actually achieved only a Sandwich policy, as explained below.)

The major innovation was the notion of object ownership: While previous work
required component references from composite to component (as in LOOPS [SB85],
ORION [Ki+87, Ki+ss], Sina [AW+92], etc.), Kent and Maung's object composition
was represented by a hidden owner attribute in each object set at creation time.
References were classified uniformely in terms of their target's (relative) owner (not
heterogeneously in terms of aliasing and access properties): References to top-level
objects are references whose target has no owner (the default). Component references
are references whose target has the source as owner (annotated with 'private'). Kent
and Maung defined the new class of horizontal internal references between two com
ponents, which we call co-references, as references whose target has the same owner
as the source (annotated with 'protected'). Observe that no inbound references can
be classified in this scheme. But since it was used only for the references in variables,
parameters and results, unstored temporary references could well be inbound.

However, the authors did not believe in the possibility of statically checking their
annotations since "object ownership is a run-time notion." Hence they checked the
ownership annotations on variables, parameters and results at runtime against the
owner of contained references' targets. As observed by Clarke [CPN98], these checks
do not prevent the breach of encapsulation through unstored references, as in x.
getPri vate () . modify(). Consequential work will show that completely static owner
ship systems are possible and can cover unstored references.

The authors also consider generic classes whose formal type parameter T is a place
holder for a class with ownership annotation. For example, private Set<protected
Figure> types a reference from o to a set component w whose elements are figures that
are co-objects of w, and thus components of o. However, this semantics make generic
classes rather unintuitive to use: A T-result or parameter in the interface of class
Set is for o not a result or parameter of type protected Figure but of type public
Figure. And private Set<private Figure> would be a useless set object with its
own elements as components. Consequential work rectified this.

4. FLEXIBLE ALIAS PROTECTION (FAP), by Noble, Vitek, and Potter [NVP98],
was the first convincing proposal of a system for the encapsulation of composite
objects and for working with such encapsulated composite objects. It combined a
static mode system like Hogg's with the distinction of representation from transitive
closure, like Kent and Maung did. FAP addressed the coupling caused through the
sharing of mutable state by a two-pronged strategy: On one side, FAP enforced
absolute hiding, i.e., the absence of all inbound references into composite objects'
representation-called the principle of no representation exposure. On the other

61

side, FAP supported immutable objects, and the independence of container objects
from their contents' state-the principle of no argument dependence.

FAP qualified reference types (in declarations and type inference) with aliasing
modes for a five-fold classification of object references w.r.t. ownership, aliasing and
access: Mode rep marks component references. Mode var is apparently useable for
any outbound reference (in particular, a reference to a top-level object). Mode arg
is used for the (outbound) references stored in a container object. Through them,
only state-independent, "clean" methods may be accessed, i.e., methods accessing
only immutable fields, immutable objects, or clean methods. Mode free of alias-free
references is "taken directly ... from Islands" to support flexible object creation and
composition. Mode val marks references to immutable objects like, e.g., a String.
Variables, parameters, results and type parameters were annotated with these modes
(also this's mode was supposedly specifyable, but no syntax is given).

A crucial innovation for the scaleable, flexible internal structuring of composite
objects was the subclassification of arg and var references by roles in conjunction
with an improved semantics for mode parameters: The authors observed that the
objects in a container object may play different roles, like a hash-table's keys vs. its
items (which in object-oriented modeling would be modeled by two different associa
tions). Containers are expected not to mix up objects stored in them under different
roles-the principle of no role confusion. To distinguish different roles of arg
and var references, these can be annotated with a role. In FAP, generic (container)
classes's type parameters are annotated with modes arg or var, which are usually
qualified with a role: class Hashtable<arg k Hashable, arg i Item> { ... } is a class
of hastables with k arguments (keys) and i arguments (items, aka. values). FAP's
"aliasing mode parameter binding' makes rep Array<rep Object> the type of
references to array components whose elements are the components of the composite
(and not of the array, as in Kent and Maung's substitution semantics).

The encapsulation policy of absolute hiding is simple and, as the authors explain,
avoids exporting into the context any usage constraints on inbound references (like
in Islands) since the context can never obtain any. But it also suffers the general
shortcomings of hiding elaborated in §3.6, in particular, it excludes the iterator objects
so important for using container objects. Also, the entire presentation was only
informal, leaving some issues open, in particular concerning mode parameters, that
are necessary to verify the mode system's correctness. The piggybacking of FAP's
mode parameter binding semantics on the substitution semantics of class parameters
is somewhat awkward. These shortcomings will be solved by the next system.

5. OWNERSHIP TYPES (OT) [CPN98] was the first system of composite object en
capsulation presented with complete formal definitions (typing rules, interpretation of
annotations, encapsulation property) and a proof sketch. The authors Clarke, Potter,
and Noble devised it as a formalization of Flexible Alias Protection's encapsulation
aspects, at whose heart is "the intuition underlying Kent and Maung." Crucial was
the insight that static checking is possible and owner attributes require no runtime

62

representation since the meaning of ownership annotations in each object is fixed for
the object's lifetime and ownership is orthogonal to computation.

FAP's rep references were reinterpreted as targeting objects owned by the source. 2

norep references replace FAP's role-less var references as targeting owner-less, top
level objects. A (re)invention is the distinction of references between objects with
the same owner (co-references), called owner references. It solves FAP's problems
with moding this and data structure links. OT gave the roles a in FAP's formal
mode parameters var a a clear meaning as ownership parameters, called "con
text parameters," and divorced them from type parameters: These can be used in
ownership-polymorphic classes as the modes of outbound references to objects whose
owner is the object bound to the context parameter before instantiation.

For example, class Pair<fst, snd> { ... } defines a class of pairs storing a fst and
a snd reference. The static types of references to pair objects are ownership types like
t = no rep Pair<rep, owner>. The context-parameter bound class from which a pair
object w is instantiated is an ownership structure T = Pair<olo1 , o2>, which encodes a
as w's owner and a1 and a2 as the owners of a's fst and snd objects. That is, for w the
modes in class Pair are mapped to owners as follows: owner~---> o, fst ~---> o1 , snd ~---> o2 .

With this substitution CYw, all ownership types t' in class Pair are interpreted relative
tow as ownership structures T1 = CYw(t'). An object w may be targeted from different
objects q1 , ... , Qn by references typed with different static ownership types t1 , ... , tn
But all their source-relative interpretations CYqi(ti) must yield w's dynamic type T.

The authors introduced the graph-theoretical notion of dominator or articulation
point they had elaborated in [PNC98], to define the novel, relaxed hiding policy of
representation containment (aka. owners-as-dominators [ClaOl]): An object q
may possess references to a's components iff all paths from the initial object to q pass
through o, even if q's ownership status unequivocally classifies it as external to o, e.g.,
if q is the target of a's norep Pair<rep, owner> reference.

Like any hiding policy, OT excludes iterators and other common patterns, as we
elaborated in §3.6. An OT-specific technical problem is the loss of ownership
information that prevents support for subclassing:3 Subclasses must be free to
change, like type parameters, also the context parameters of their base class, in
particular. But the subsumption of norep Pair<rep, owner> under supertype norep
Object<> would hide the ownership information necessary to guarantee the target's
domination by the source. These shortcomings were solved or alleviated in the three
subsequent systems.

6. CLARKE'S CALCULUS. Clarke's dissertation [ClaOl] is the most thorough work so
far, a foundational work on the isolation of regions in the object graph with several
technical innovations. Clarke generalized the Ownership Types system to cover the

2 Actually, each object o was said to own a protection domain D 0 -called its rep context,-that
holds or-in the authors' terminology-is the owner of o's components.

3In retrospect, already FAP seems to suffer from this problem. OT merely brought it to light.

63

missing language features and make it more flexible, and he reformalized it as an
object calculus based on Abadi and Cardelli's sigma calculus [AC96].

The decisive step towards more flexibility was to loosen the connection between
the structure of object composition and the nesting of protection domains, the own
ership contexts: As in OT (cf. footnote 2), each object o stores its components in
a unique ownership context D0 , called a's rep context, but now several objects can
use the same context for their components. As in OT, a's rep context Do is nested to
the context D in which o is stored, but now it can be several nesting levels deeper.
Each object is consequently characterized and typed by two ownership properties:
the context D which contains, or "owns," o, and the rep context Do which contains,
or "owns," a's components. This allowed Clarke to put encapsulation barriers around
composites with private and public components, even around aggregates of several
composites with all their representatives and public components as interface objects.
(Their internal context nesting structure distinguishes them into the principal-with
proxies aggregates and collective aggregates of §3.4.)

Also Clarke introduced context polymorphic methods, with context parameters
bounded above or below by a context. They allowed to shift from the problematic
context-parameterization of OT's classes to a parameterization of the corresponding
constructors, so that subclassing became easy to integrate. And the lack of a free
mode could be (partially) compensated for by parameterizing methods creating, e.g.,
iterators, with the context to hold the new object.

Additional flexibility was obtained by switching to the Sandwich policy: Citing
Almeida [Alm97], Clarke deemed dynamic aliases acceptable "since they are essential
for implementing real programs." (Clarke's "containment invariant" is defined over
the store like OT's "representation containment," but in his substitution-style calculus
method-local references do not appear in the store.) Methods returning a reference
to a component (rep results in FAP or OT) can be called by other objects using the
expose construct to create the needed (temporary) name for the result's context.

Apart from formal matters, Clarke's work is harder to evaluate since it is a calcu
lus, not a programming language, and since the most complex examples he elaborates
in his calculus are cars and linked list. Switching between different variants of his
calculus, Clarke shows how wanted behavior can be programmed and unwanted be
havior be excluded. This approach makes it hard to judge which variant could be the
best compromise. The calculus with unique interface objects ("flexible alias encapsu
lation") is too restrictive to be generally useful: It suffers from the principal problems
of a Sandwich policy explained in §3.6, like the exclusion of iterator objects. But all
variants with multiple interface objects ("fractal alias encapsulation") suffer from the
lack of limitiation on the creation of additional interface objects, both conceptually
and technically: Clarke does not manage to give a general intuition what abstraction
his multiple interface aggregates represent; there is no guideline for how much should
(not) be included in an aggregate; it seems, whenever access to a rep context is de
sired, a new interface object can be included. The calculus allows this, but this is

64

dangerous since any unsafe or malicious code could get unconstrained access to the
representation stored in a context through a corresponding interface object it created
to this end-Clarke calls this a "vampiric" interface object. There is no protection
by a read-only limitation for all the additional interface objects.

7. UNIVERSES, by Muller and Poetzsch-Heffter [MP99a, MPOl], is the first system
that enforces a policy of encapsulation without hiding which others had only offered to
support by transitive readonly references [KT99, HLSOO], or enforced by specification
[DLN98]. It is based on Ownership Types but technically less ambitious since the
authors use it in the context of modular verification. The authors reevaluated (in
more detail in [MP99b]) what the real problem is with sharing mutable objects, not
limiting their attention to objects reifying wholes in parthood hierarchies [BC87] nor
to container objects [KM95, NVP98]. Similar to FAP, but with more precision, they
identified the problem with outbound references to lie in the possible dependency of
the composite's abstract values and invariants on external objects' (mutable) state,
and the problem with inbound references to lie in possibility of invariant-breaking
modification through them.

On the technical side, Universes simplify OT by replacing OT's problematic con
text parameters by runtime ownership checks (which their verification technique
can make superfluous in most cases). Only three classes of references are distin
guished: references to objects owned by the source (mode rep), references to objects
with the same owner (the default), and references making no statement about own
ership that can connect any two objects (mode readonly). Through the third class
of references, dependency of the composite's abstract values on the target's state is
prohibited and modification of the target's state is prohibited. In conjunction, these
two restrictions mean that the abstraction, e.g. abstract data structure, represented
by the composite object can change state only through the composite's operations.
References are stored in container objects as readonly references; the target's owner
can retrieve the readonly reference and convert it back to a rep reference-which is
where ownership is checked dynamically-and then modify the target.

The authors presented the type system aspect of Universes not in the standard
type-theoretic formalism. The obvious shortcoming as a stand-alone type system
without a verification technique to fall back on, is the reliance on runtime ownership
checks and thus the need to represent ownership at runtime. Also, Universes prevent
flexible object creation and composition by fixing new objects' owner always to their
creator. These are not unsolvable problems, and they will be solved in JaM.

8. ALIASJAVA. Aldrich, Kostadinov, and Chambers [ACN02] treat object owner
ship and ownership parameters to classes in a manner that seems much closer to
a concretization of Flexible Alias Protection than its official formalization by Own
ership Types. They characterize their AliasJava system as capability-based (not
ownership-based). It combines aliasing annotations with ownership annotations to
make aliasing patterns explicit, support reasoning about ownership, and enforce a

65

relaxed hiding policy. The authors were the first to develop a constraint-based algo
rithm for inferring the new annotations, and the first to report on the usability of
their system for real-world software like Java's standard library, and the circuit layout
application Aphyds (12,500 lines of code).

AliasJava classifies references five-fold by aliasing properties: shared references
are ordinary references not aliased by unique and owned references, i.e., targeting
top-level objects. lent references are "time bounded aliases" (e.g., of unique and
owned references) that can neither be captured in fields nor returned, i.e., borrowed
references (cf. 9 below). unique references have only lent aliases. owned references
make the source the unique "owner" which "controls who may access" the target
object: They can be aliased only by other owned references of the owner, by lent
references, and by references classified by an ownership parameter that is bound
to the owner. A class can have ownership parameters that, for instantiation,
must be bound to the creator or it ownership parameters (ownership parameters flow
along creator relationships). An ownership parameter a bound to object o grants the
class's instance the right to possess an a-reference to an object targeted by o's owned
references and other objects' ,8-references with ,8 bound to o. Like FAP, AliasJava
does not distinguish co-references; the mode of this is lent by default, but can be
specified explicitly to shared, unique, or an ownership parameter.

AliasJava solved OT's iterator problem: A container object can grant its iterator
full access to the representation by instantiating it from a class with ownership pa
rameter bound to owned. This effectively extends the encapsulation barrier to include
the iterator as another interface object in a principal-with-proxies aggregate (§3.4).
It is the one case of adding an interface object that was identified as "safe" by Clarke
[ClaOl]. And AliasJava solved OT's problem with lost ownership information by re
covering it dynamically when references are cast to subtypes with more ownership
parameters: Since objects are instantiated from classes with ownership parameters
bound to owners, Java's runtime check against the target's class must in AliasJava
also runtime check the ownership parameters.

The obvious shortcoming of AliasJava is the reliance on runtime checks of own
ership parameters and thus the need to represent ownership parameters at runtime.
This is not just an overhead for "heavyweight" objects, as the authors write: Also
small data structure components like Pairs and Nodes have ownership parameters.
As presented, ownership parameters must be bound to an owner, so that ownership
polymorphic container classes cannot be used for containers of shared objects.

9. UNIQUENESS AND BORROWING. Minsky [Min96] introduced a simple but effective
form of hiding component objects that is independent from the previous ones (3-8
above): The composite possesses the only reference(s) to its components (which it may
"lend" to other objects for the duration of its methods). This ensures a relaxed hiding
policy. In Minsky's case, references in unique fields have no alias, but are effectively
lent to others by passing fields as by-reference parameters. (By reading the value
out of them, the receiver is able to take over the component object.) Islands had

66

unique references with uncapturable aliases earlier, but not for use as component
references. Greenhouse and Boyland's Object-Oriented Effects System [GB99] keep
unique component references in unshared fields. borrowed aliases can be created in
the composite's methods, but cannot survive since they can neither be captured in
fields nor returned (a companion paper [BoyOl] describes the details). Detlefs, Leino
and Nelson's specification-based no abstract aliasing method [DLN98] keeps component
references in "pivo£' fields. They can have aliases in other fields of the composite and
borrowed aliases, as well as uncaptured, "read-only by specification" aliases from the
time before the component's capture in the pivot field.

Uniqueness-based encapsulation disqualifies itself as a general solution by its lim
itatation of composite objects' internal structure to a tree (with a bounded degree of
branching since composites have only a fixed number of fields to hold their compo
nent references). This excludes (double) linked lists and rings, and requires preventing
composites from giving their components capturable back-links to themselves.

Borrowing is independent from uniqueness and makes sense also in combination
with ownership to grant method-contained external access to the interior. AliasJava
supports this through lent inbound references. (Clarke's context-polymorphism for
methods is not them same; it does not prevent the capture of inbound parameter
references in new "vampiric" interface objects.)

Uniqueness has a better use in cleanly moving new objects from their creators
to their final owners. Islands and Flexible Alias Protection [Hog91, NVP98] support
this through the mode free of alias-free references, and AliasJava through the mode
unique of references with only lent aliases. In the context of their specification
system, Leino et al. are able to relax uniqueness to "virgin" references [1897, DLN98]
which can have any number of dynamic aliases, but never had an alias captured in
a field. The above described drawbacks of uniqueness (no linked lists, no back-link
in their components) now apply to new objects before fixing their owner. But even
this is not necessary, and JaM will show that new objects can be moved safely even
with captured aliases. (The necessary weak uniqueness property is more difficult to
describe but no more difficult to enforce than Island's freedom.)

10. MECHANISM, NOT POLICY is supported by Kniesel [Kni96] and by Boyland,
Nobles and Retert [BNROl]. Kniesel reanalyzes the notion of encapsulation in object
systems and offered for the protection of the reachable state a system of access rights.
He distinguished the right to read, to write, to call functional methods, to capture the
reference in fields, and to transfer the reference to other objects. Boyland, Nobles,
and Retert designed their "capability system for pointers" [BNROl] to bring order into
the many reference annotations that have been proposed in the field. It encoded them
as combinations of the right to read, to write, and to test identity of the target, the
guarantee for exclusivity of each of these rights, and finally an "ownership" capability
which permits one to revoke rights on other references to the same object and protects
from the revocation of rights by others. These systems enforce no encapsulation policy
since the extent of composite objects cannot be specified.

67

4.2 Discussion

The reviewed systems for composite object encapsulation by restricting references
cover all encapsulation policies (§3.6). The three most recent systems support external
iterators over encapsulated container objects: Universes through readonly references,
Clarke's calculus through multiple interface objects, and AliasJava through access
granting ownership parameters. However, Clarke cannot prevent "vampiric" interface
objects, and the other two need runtime ownership checks.

In all systems, the notion of ownership is, or could be, applied to intuitively
describe the special relation which any encapsulating composite (or its representative)
has towards its encapsulated components. Despite superficial, linguistic similarities
between the systems, two fundamentally different directions can be distinguished:

In the ownership-based systems of Kent and Maung, OT, Clarke's calculus, and
Universes, objects have an owner attribute (with runtime representation or not). The
information based on which the permissibility of access or references is judged lies in
the respective object (in form of the owner attribute). Modes like rep in the static
types of references are descriptive statements about runtime ownership that can be
correct or not (with the owner attribute as the primitive basis).

In the capability-based systems of AliasJava, of the uniqueness-based approaches,
and presumably also of FAP, the object references are labeled with a mode (with run
time representation or not). The permissibility of access or references is judged based
on information in the access-establishing references (in form of the mode label). A
reference is what the access control literature calls a capability [CJ75, BNROl]. Object
ownership is just a notion derived from (appropriately labeled) references: without
references, no ownership. Modes like rep in the static types of references are declar
ative definitions of ownership relations that are not correct or incorrect but can only
be consistent or inconsistent with the other declarations in the system.

Technically, JaM will extend the capability-based approach to a reference path
based approach by moving ownership parameterization from objects' classes to ref
erences' modes. All ownership information is removed from the objects, thus solving
the loss of ownership information problem of subclassing. Roles fst and snd are
not placeholders for reference targets' owners, but uninterpreted type tags on object
references. Similar to class tags on objects distinguishing instances from equally de
fined classes, role tags distinguish references of different roles or-as one would say
in object-oriented modeling-of different associations [OMGOO]. The available roles
are not limited by a parameter list, nor by the references targeting it. The owner
ship parameterization of the references by correlations only configures the source's
mode-interpretation of the association roles on the target's side. It is used for the
translation of exchanged references and the derivation of ownership from paths of
object references. Consequently, in JaM, the targets of a-references need not have
a particular owner; clients can store in container objects also their free and read
references (and lent references, had we included this class of references).

68

Chapter 5

The Base-JaM Fragment

Writing can be either readable or precise,
but not at the same time.

Bertrand Russell (1872-1970)

The formally precise description and analysis of a full-featured real-life program
ming language like Java is a complex undertaking. In the investigation of new features
for programming languages, it is customary to reduce complexity from the side of the
base language by the omission of non-fundamental features and the explicit syntactic
representation of implicit operations ("desugaring"). In order to make the precise def
inition of Java with Modes (JaM) and the demonstration of its properties more easy
to digest, we will look at a further simplified version first: Base-JaM is a simplified
and desugared Java subset with a simplified mode system that omits association roles
and correlations. The extension to the full mode system, with the complex treatment
of association roles and correlations, is postponed to the next chapter.

After a first overview (§5.1), the introduction of base-JaM starts with the untyped
language in order to focus on semantic aspects: First, a standard operational seman
tics (§5.2), then JaM's higher-level view with object graphs, paths, and composite
objects (§5.3). Type- and mode-system are then added to match the semantics and
define the legal base-JaM programs (§5.4). Proofs for important properties of JaM ex
ecution states and steps will be developed: the standard property of type correctness,
and, based on it in §5.5, JaM's new higher-level properties (state encapsulation, con
trol of mutator executions, uniqueness of ownership). Basic familiarity with Java-like
object-oriented languages and their formal treatment is assumed.

5.1 Base-JaM Programs

1. SUMMARY OF SIMPLIFICATIONS. The notable simplifications from Java to JaM
and base-JaM are the following:
- (Base-)JaM omits all non-basic object-oriented features like packages, static mem

bers, user-defined constructors, overloading, nested classes, exceptions, and arith-

69

metics. The entire program is considered one package, there is no visibility other
than implicit package-privacy. Object references are the only first-class values,
and their types the only types in the program. The number of statement and
expression types is reduced to a minimum.

- (Base-)JaM does not go beyond class-based object-orientation: There is no inher
itance and no subclass-polymorphism, and consequently, there are neither Java
interfaces nor abstract classes. (There is, however, mode-conversion in assignment
and parameter passing-a kind of "ad-hoc polymorphism" like the conversion be
tween different number formats [CW85].)

- (Base-)JaM makes the read access to a variable explicit. Like in the AliasJava for
malization [ACN02], a destructive read access is provided and distinguished from
the normal, non-destructive one in order not to complicate the formal type system
by the integration of a live variable analysis ala Boyland [BoyOl]. In a full imple
mentation of JaM, such an analysis would ensure that a free variable from which
a free reference was read is overwritten before it can be read again.

- Base-JaM simplifies JaM's full system of modes: Association modes a E A are
omitted together with the correlations that configure (in other modes) the exten
sion by association paths. Hence modes in base-JaM are just the base-modes free,
rep, co, and read.

2. SYNTACTIC DoMAINS. The simplifications reduce the syntactic variability of
(base-)JaM programs to a manageable size so that the grammar of base-JaM can be
shown succinctly in figure 5.1. There are three JaM-specific additions to the Java
subset, which are underlined and will be explained further below.

A program p is a sequence of class definition modules.
A class module D starts with the keyword class followed by the class name c and,

enclosed in curly braces, a sequence of field declarations and methods (operation
implementations) .1 (Base-)JaM adds o bs or mut in front of each method.

A type term t in declarations of fields, results, parameters, and local variables can in
JaM's Java subset only be an object reference type. All the class names used
as object reference types (but not the classes named for instantiation in new)
are qualified in (base-)JaM with a (base-)mode f1·

A statements in a method's body can be an assignment, return with return expres
sion, else-less if, while, or a sequence of these. Due to the lacking support for
Boolean expressions, the guards in if and while are just direct comparisons
between two object reference-valued expressions for equality or inequality.

An expression e in a statement can be the null reference, a read access to a variable
v (field, local variable, or method parameter), an object creation expression

1 For simplification of the syntax specification, the commas separating parameter declarations in
methods and parameter expressions in operation calls are omitted, although they will occur later in
discussed program terms. To be formally correct, the commas should be specified in the syntax.

70

program p E P ::= D*
class defn. DE D ::= class C { (T Id;)* Mth* }
method Mth ::= JC T IdC(T !d)*) { (T Id;)* S}
method kind "' E JC ::= mut I obs
type term t E T ::= M C
base-mode J.L E M ::= free I rep I co I read
statements s E S ::= S S I N = E; I return E; I if CE WE) {S} I while CE WE) {S}
relational op. 7jJ E w ::= == I ! =
expression e E E ::= val(N) I destval(N) I null I new CO I E~Id(E*)
variable v E N ::= Id I this. Id

Given identifier sets:
- classes c, d E C
- variables, fields, methods x, y, z, f E Id (includes this, excludes null)

Figure 5.1: Syntax of base-JaM programs

(new), or an operation call. 2 Keywords val and destval are added to make the
read access (non-destructive and destructive, respectively) explicit.

Observe that, as in Smalltalk, it is ensured through the syntax of field access that
objects can only access their own fields.

3. MEANING OF CoNSTRUCTS. The meaning of all original Java constructs is
unchanged and should require no explanation.

Added 'val' and 'destval' make explicit the, respectively, non-destructive and
destructive read access to a variable v. Destructive access resets the variable to null
after having read the value out of it. Non-destructive access copies the value out of
it. In case of a free reference value, the mode of the copy is weakened to read.

Added 'obs' or 'mut' declare a method as, respectively, an observer or mutator,
i.e., a method which guarantees not to change, or offers to change, the composite
state. The type system will ensure that obs-methods cannot change non-free objects'
states. It does not ensure that mut-methods indeed make some change.

The added modes J1 EM in the types t = J1 c declared for object reference-valued
variables, parameters and results fix the modes of these reference. Through the mode
controlled combination of references to moded paths (defined formally in §5.3.2), the
programmer can indirectly define the structure of object ownership (or composition)
and place the state representation into the representative's sanctuary:
• By giving a variable, parameter or result of object o the mode rep, the correspond

ing reference to an object w is defined to mean that o is w's owner and includes w
in its sanctuary. In the execution of legal base-JaM programs, it is ensured that
w has no other owner (the Unique Owner property).

2The dot in operation call expressions has been replaced by '<==' for distinction from field access.

71

• By mode free, the reference is defined to mean that o is w's owner and that w
is in no sanctuary. In legal base-JaM programs, it is ensured that w has no other
owner and indeed belongs to no sanctuary, and that no second free reference can
target w or start free reference paths tow (the Unique Head property).

• By mode co, the reference is defined to mean that w and o have the same owner
(which is unique in legal base-JaM programs) and belong to the same sanctuaries
(the owner's sanctuary and enclosing sanctuaries).

• By mode read, the reference is defined to have no meaning for the target's owner
ship and sanctuary membership. A secondary meaning entailed by the enforcement
of composite state encapsulation is the restriction of access to calling observers
(cbs-qualified operations) on the target-hence the mode's name 'read'.

All this will be defined more precisely in §5.3.2 based on a formalization of the
notion of object graph.

4. PROGRAM MEANING. Like all object-oriented programs, (base-)JaM programs
mean, on one hand, a set of definitions of named classes of objects (static meaning)
and, on the other hand, a computational process in an object system constituted by
these classes's instances (computational meaning):

Each module D in a program p defines a name c E C for a new class of objects.
It defines the names Xi and range types Ti of their fields (the instance record type of
c-instances), and defines what their methods are (the method suite of c-instances). In
legal programs, there are no two modules defining the same class name, and no two
definitions of the same field or method name within a class module (no overloading).

Since JaM has no static method main as Java, program execution-the computer's
realization of the program's computation meaning-is defined to begin with the call of
the main method on a new instance of the last class in the program. That is, the mean
ing of p as a computational process is the evaluation of the term new Cn () . main () in
the context of p's definitions (static meaning), where Cn is the name defined by the
last class module Dn in p.

5.2 Formalization of Program Meaning

A precise, formal definition of the execution of JaM programs is needed as a basis for
proving that the proposed mode system guarantees composite state encapsulation,
i.e., that during program execution the representative controls each and every state
change in its current state representation. Various formalizations for more or less
large subsets of Java have been provided by different authors in order to reason about
type safety [IPW99, Sym97, DE97, OheOl]. While adequate for reasoning about the
outcomes of computations, these formalizations are not so well suited for reasoning
about the change steps and invariants during a computation.

This section develops a formalization of the execution of base-JaM programs in
the style of a so-called structured operational semantics, small-step semantics, or

72

Figure 5.2: Program's meaning as defining object classes

reduction semantics. Such a semantics defines the stepwise transformation (reduction,
evaluation) of program terms in the context of a stack fi of environments for the
ongoing method invocations, a store .s for the variables' values, and an object-map
om to describe the objects in the system (their fields and their methods).

Specifically for accommodating reasoning about mode and composite objects, this
formalization contains three non-standard features: First, an object reference o L w
from the object (identified by) o to the object (identified by) w is formalized not
simply by the object identifier w (in a's fields or methods) but by the triple (a, f-l, w),
called a handle. Second, the call-links, i.e., the references through which on-going
method invocations were made and which will return the result back to the caller,
are recorded in the computational state. Third, in order to make explicit what the
current object graph is and how the computation steps change it, object graphs will
be included as an explicit fourth context g of the term's reduction, and manipulated
explicitly (in parallel to the handles) in the term reduction rules.

1. STATIC MEANING. The meaning of program p as a set of definitions is formalized
by the tuples FldsMths(ci) = (ri, Fi) of the instance record type ri and the method
suite Fi of the instances of each class ci defined by some class module Di in p. In
JaM without class inheritance, this meaning is easy to extract from the program as
figure 5.2 shows. The instance record type ri is the collection of the names xi and
range types Ti of the fields defined in Di to the type assignment {Xi: ref Ti}· (ref is
added to the fields' types since the fields are not Ti-values but Ti-variables, i.e., xi
denotes a location in the store that contains a Ti-value.) The method suite Fi is a
mapping from operation names f to the corresponding method definitions in Di. (By
not expanding the (computational) meaning of the methods, matters are simplified
compared to a denotational-style semantics.)

2. CoMPUTATIONAL MEANING. The meaning of program p as a computational
process is formalized as a sequence of reduction steps e, fi, .s, om, g ~ e', if', .s', om', g'
transforming the term e in the implicit, static context of the program p, and in the
dynamic contexts fi,.s, om,9 (environment stack, store, object-map, object graph). It
starts with the start-up expression e0 =dr new Cn () • main 0 in the initial contexts

T}o, .So, omo, 9o =df 0(~{l,read,nil)' 0, 0, 0:

new Cn ().main(), 0(~il,read,nil)' 0, 0, 0 ~ e1, fi1, S1, om1, 91
~ e2, fi2, .S2, om2, 92
~ ...

73

The following two sections explain first the contexts and then the reduction steps.

5.2.1 Computational States and Values

3. STORE-BASED RUNTIME MODEL. The standard basis for the definition of the
computational meaning of a term in languages with mutable variables (i.e., computa
tions in the imperative paradigm) is made of an "environment" and a "store" (since
Strachey and Burstall's work on pointers in the late 1960s [GorOO]): The stores is an
abstract model of the current memory state which maps locations .€ E /Jx (abstract
memory addresses) to the values v E V currently at these locations. Each location
in the store can represent a program variable (local variables in method invocations,
fields in instance records, etc.). The identifiers x E I d of local variables valid in term
e are mapped by the environment rJ to the store locations .€ holding their current
values. In this model, the current environment changes during execution when blocks
with local variable declarations are entered or exited. And the store changes when
variables are initialized or updated by assignment.

For object-oriented programs, also the identifiers x E Id of the objects' fields
(instance variables, slots) must somehow be bound to the store locations of their
current values; there must be a "field-environment" (20 for each object o. Since in Java,
unlike in C++'s memory object model, objects are not variables, they are described
in a separate component of the computational state: The object-map maps object
identifiers to the field environment and method suite of each implementation object.

In the context of environments, store and object-map, each reduction step replaces
in the term e one subterm, the red ex, by another term. In particular, locations .€ E .COc
are substituted for identifiers x (using rJ) and for field names this.x (using {}this) as
"1-values", variables' values v E V are substituted for read access expressions (using
s) as corresponding "r-values", and method bodies are substituted for operation call
expressions (using om). Through these substitutions, the transformed terms are not
just the statements and expressions of the program syntax, but belong to the larger
category R of runtime terms. Their syntax (figure 5.3) adapts that of program
statements and expressions by replacing occurences of S and E to R, except in the
non-initial statement of a sequence, the then-branch of an if statement, and the
body and condition of a while statement, since evaluation never takes place there
(cf. paragraph 1). Each nesting level i of method bodies expanded in the runtime
term needs its own environment rJi for associating the identifiers of local variables in
it with the corresponding location.

The reduction of terms will consequently be defined w.r.t. the following three
contexts (see figure 5.3):

1. A dynamic stack if of environments rJi E Env handles the identifiers at each
method invocation nesting level. Formally, this stack is a sequence r]1 , ... , rJn with
fJl as the bottom and rJn as the top element. The extension of if by a new top
(or, in the context rules, by a to-be-discarded bottom) rJ1 will be written if• rJ1

74

environment TJ'h E Env =dr (I d + £oc) x K x V
store 5 E 6tote =dr £oc + V
object-map om E Omap =dr ((J) + ((Id + £oc) x (Id + Mth))
object graph g E ®tap() =dr NOxMxO

runtime term e E R ::= R 8 I R=R; I return R;
I if (R W R) {8} I while CE WE) {8}
I N I val(R) I destval(R) I null I new CO I R<¢=/d(R*)
I £oc location of a variable (1- value)
I V expression value (r-value)
I «R» inlined executing method

with £oc, V from fig. 5.5; 8, E, N, W, C, Id from program syntax

Figure 5.3: Runtime model

(or TJ 1
o if), using standard sequence concatenation 'o '. In order to formalize the

integrity property Mutator Control (Path) (§5.3.2), actual environments T/ are
extended to TJ'h by annotating them with the corresponding method's kind "" and
the call-link h E V through which the method was called. The call-link is saved
in the environment since it is still needed to explain the result's return to the
caller and must not completely disappear from the system before that.

2. A changing store 5 E 6tote maps locations I! E £oc to the values v E V cur
rently at these locations. In base-JaM, these values are always "handles," the
formalization of object references introduced below.

3. A growing object-map om E Omap that maps identifiers o E ((J) of created
objects to object "values": a field environment (20 (mapping field names to loca
tions), and a method suite Fa (mapping operation names to methods). 3

Additionally, the reduction rules update in parallel an object graph g E ®tap() as
a high-level model of the objects' interconnections by object references. This side of
the semantics will be ignored in this section and explained in §5.3.1.

The term and the four dynamic contexts together are the formalization of the
computation's state traditionally called configuration.

For uniformity, the special identifier 'this' and the identifiers of parameters are
treated within a method like the identifiers of local variables. Explicit read access
is necessary to get at their values. As in Java, parameters can be updated and the
update of 'this' is only prevented by a special check in the typing rules (§5.4.1).

4. JAM's FORMALIZATION OF REFERENCE VALUES. Values-more precisely, first
class values-are those things to which expressions can evaluate and which can be
stored in variables and passed as parameters and results (and which are classified

3 om's graph can be understood as a set of implementation objects formalized as triples (a, [!0 , Fa)·

75

p5 om <=?df Vo, x, a, {L, w. om(o) ~ (12, F) !\ .s(12(x)) · (a, {L, w) ==>a= o

Fs il <=?df 'VTJ(s,p,,r)' x, a, {L, w. TJ(s,p,,r) E il !\ .S(TJ(x)) ~(a, {L, w) ==>a= r
L \-/K ='!--- K ="
js,ij" e {:}df VTJ(s,p,,r)l TJ, 0, f-L, Wo TJ = TJ(s,p,,r) 0 TJ

==> e=(a,jj,w)V(eE£oc/\.s(e) · (a,jj,w)) =>a=r
!\ Ve. e E {val(e),destval(e),return e;}=> Fs,ij"e
!\ Ve, e, s, 'lj;. e E { e e, if (e'lj;e){s}, e=e;} ==> F=s,rr e !\ F=s,rr e
!\ \:fj, eo, ... , ek• e = eo~JCe1, ... , ek) ==>ViE {0, ... , k}. Fs,i/ ei
!\ Ve. e = <<e» ==> if -I E !\ Fs,i)' e

Figure 5.4: Handle source consistency

by the types t in the program). Java has primitive values of boolean and numeric
types, and reference values, i.e., references to dynamically created objects [GJSOO].
Base-JaM restricts itself to just reference values.

Normally, a reference value is formalized as an object identifier: Each time a
new object is created, a fresh identifier w is drawn for it from a given set 0, and used
henceforth to refer to that object.4 And the notion of a null reference (denoted by
null) is formalized by the special value nil rf_ (())that does not identify any object.

The base-JaM semantics uses an extended formalization of object references as so
called handles: A handle is not just the object-identifier w of the referred-to object
(the reference's target), but a triple h = (o, JL, w) which includes also the identifier o
of the referring object (the reference's source) and the mode JL of o's reference to w.
This extension will simplify to specify which object graph edges o L w are added
and removed during an execution step.

It is expected, and will be shown to be the case in paragraph 8, that the sources
in all handles in the store and the runtime term coincide with the object to which the
corresponding store location or method nesting level belongs (source consistency).
Put the other way around, at locations f = f20 (x) of fields x of object o, we expect
to find only handles .s(f) = h whose source is o. Then the object-map is source
consistent, in symbols, p5 om. This is defined formally in figure 5.4. Analogously,
at locations f = TJi (x) of local variables and parameters x in environments TJi of
invocations with receiver r, we expect to find only handles .s(f) = h whose source is
r. Then the object-map is source consistent, Fs rr. And at all method nesting levels
in the runtime term e with corresponding receiver r, we expect to find only handles
h with source r, and locations f containing handles .s(f) = h with source r. If this is
the case then the runtime term is source consistent, in symbols, Fs,i/ e. In figure 5.4,
this is defined inductively from the outermost method nesting (corresponding to the

4 An object value ((!w, Fw) cannot be a formal model of reference values, since then the reference
to all instances of all empty classes c, c' (no fields, no methods) would be the same: (0, 0). But
then new c () ==new c' (), contrary to the semantics of Java.

76

g E .We =df ~TEMxiC weT
h E V = dr (((]) U { n i I}) x M x (((]) U { n i I })

location (1-value)
handle (value)
object-identifier
object value

o E ((])

(Q, F) E
=df ~cEIC ((])c

(I d -t-+ we) X (I d -t-+ Mth)

infinite countable sets Oc given for all c E C and weT for all 7 E M x C

7 E T : := ref M C
IMC
I obj C
I Cmd

[ref fL c] =dr .WcJ.t c

[J.L c] =dr (((]) U {nil}) X {J.L} X (Oc U {nil})
[obj c] =df {(Q,F) I f-- FldsMths(c) = (r,F) and(} F r}
[Cmd] =ctr { E}

rt F r {:}df dom(rt) = dom(r) 1\ 'Vx E dom(r). rt(x) E [r(x)]
F s {:}df 'V7 E M XC, g E dom(s). g E weT ::::;:. s(£) E [7]

F om 9dr Vc E C,o E dom(om). o E Oc =? om(o) E [obj c]

Figure 5.5: Semantic values, types, and type-consistency

bottom of the environment stack), to deeper nesting levels (corresponding to higher
levels in the environment stack). Note that while statements and the then-branch
of if statements can be ignored since as program terms they can neither contain
handles nor locations.

The complete set of reference values, and thus the set V of values in base-JaM, is
(((]) U {nil}) x M x (((]) U {nil}): Handles with nil fj ((]) instead of the target identifier,
"nil-handles," formalize the notion of a null reference. (This formalization of null
references by multiple semantic values ensures that all handles have a uniform triple
structure.) Handles with nil instead of the source identifier can be understood as
"global references" not belonging to any object. Since in base-JaM there are no static
variables nor methods, a handle with source nil occurs only as the call-link for the
environment rto in which the start-up expression e0 is interpreted, and as the handle
to which the object creation expression in e0 evaluates.

5. MORE SEMANTIC VALUES AND TYPES. For uniformity in the formal treatment,
the notion of value is sometimes generalized beyond first-class values to include also
store locations (the value to which names x and this.x of variables "evaluate", l
value), the empty sequence E (as the "value" to which non-returning statements re
duce), and object values (to which object-identifiers are mapped by om). For the
typing of these "second-class" values, and for typing runtime terms by the type of
value they reduce to, the type terms t from the program syntax are generalized to
type terms 7 E T shown in figure 5.5. The extensional interpretation (or denotation)
[7] of a type term 7 is the set of all conceivable values of type 7.

It is straight-forward to define what it means for an environment rt as a mathe-

77

matical structure to be a model for, or consistent with, a set f = { X1 : T1, ... , Xn : Tn}

of type assumptions (a type assignment), in standard logical symbols, e I= r: Both
must be defined for the same identifiers Xi, and the environment must assign them
semantic values 77(xi) from the set [Ti] denoted by the corresponding type assumption
Xi : Ti in f. Treating f as partial mapping, We can write

77 I= f ¢?dr dom(77) = dom(r) 1\ Vx E dom(f). 77(x) E [f(x)]

The set [obj c] of possible object values for instances of class c consists of those
tuples (e, F) where the field environment e is consistent with class c's instance record
type r (assignment of types to field names), and where the method-suite F is precisely
the one which c defines for its instances:

[obj c] =df { (e, F) I 1-- FldsMths(c) = (r, F) and (} I= r}
The set ((]) of object-identifiers is assumed to be partitioned according to class
names c E C into disjoint subsets Oc reserved as identifiers for instances of class c.
The object-map is type-consistent, written I= om, if it maps object-identifiers in class
c's partition Oc only to object values of c-instances:

I= om ¢?dr Vc E C,o E dom(om). o E Oc::::;. om(o) E [obj c]

Handles hE V are classified into handle types 11 c E M x C according to their mode
11 and their target's object class c: The extensional interpretation [f-1 c] of handle
type 11 c is the set of handles with any object-identifier or nil as source, 11 as mode,
and any object-identifier in partition 0 0 or nil, as target. 5

[!1 c] =df (0 U {nil}) X {!1} X (Oc U {nil})

The set of store locations £ E £oc is assumed to be partitioned into disjoint subsets
£ocT according to the type T of values which the location is supposed to hold. Since
the only first-class values in base-JaM are handles, the partitioning is by handle types
T = 11 c E M x C Store .s is type-consistent, written I= .s, if it maps locations in each
type T's partition £ocT only to values in type (term) T's extension [T]:

f= .s ¢?dr VT EM x C, £ E dom(.s). £ E £ocT ::::;. .s(£) E [T]

Given this organization of the store, variables ranging over T-values are represented
in the store at locations £ E £ocT: Hence the interpretation [ref T] of the type of
T-variables found in type assumptions (x: ref T) E r, is the set £ocT.

[ref f.1 c] =dr £ocJ.L c

I= .s, om can be written as short-hand for I= .5 and I= om.

5For the inclusion of subclass-polymorphism in JaM (see §7.2.2), it is necessary to clarify that
obj c is the monomorphic type of the object values of the direct instances of class c (and not its
subclasses), and that Oc is the set of identifiers only for direct c-instances. Subclass-polymorphism
for handle types 1-L c would require on the semantic side to generalize Oc in the definition of [M c]
to the subclass-closure Uc':Scc Oc'· And true mode-polymorphism (inclusion polymorphism instead
of mere ad-hoc polymorphism through mode-conversions) would require us to generalize {M} in the
definition of [M c] to the set Ull':Smll {M'} of all modes fL1 mode-compatible to 1-L (see §5.4.2).

78

RD ··= D 1 ..

(' RD /='II II c- E 1 e, TJ, .s, om, g----+ e , TJ , .s , om , g
c[e], if,.s, om,g===? c[e'], ij',.s', om',g'

(' RD /='II II c- E 1 e, TJ,.S, om,g===? e, TJ ,.s, om ,g
c[«e»], TJ'h" if,.s, om,g===? c[«e'»], TJ'h" ij',.s', om',g'

I val(RP) I destval(RP) I RP-¢=Id(E*) I V-¢=Id((V,)* RP (,E)*)
I RP S I RP= E; I £oc =RP; I return RP; I if CRPw R) {S} I if CV W RP) {S}

Figure 5.6: Top-level reduction rules

5.2.2 Computational Steps

6. SELECTION OF THE REDEX. The definition of reduction steps e, if, .5, om, g ===?
e', if', .s', om', g' can be split into two complementary aspects: On one side are twelve
cases of subterms that can be completely substituted in one step to a new term, with
out any unchanged term-context around it. This substitution, in conjunction with
corresponding changes in the dynamic contexts, will be captured in redex replace
ment rules e, if,.s, om,g----+ e', ij',.s', om',g'. On the other side is the selection of the
substitutable subterm in e to substitute in this step, the redex. This selection can
be conveniently specified with the help of Wright and Felleisen's notion of a reduc
tion context [WF94]: These are explicit, syntactic contexts for the substitution that
can be defined with the standard grammar formalism. A reduction context c* is a
runtime term "with a hole" symbolized by '0'. A complete runtime term e = C*[e]
is obtained by filling a runtime term e into the hole, i.e., by substituting e for 'D'.
Reduction steps then are written c*[e], if,.s, om,g===? c*[e'], if',.s', om',g'. The ad
vantage is that, instead a contextual reduction rule for each syntactical alternative,
with reduction contexts one rule can unite all cases in which the dynamic contexts
if, .s, om, g change the same way.

In base-JaM, one rule handles substitution of a redex e at the same method
nesting level as e = C*[e], while another rule handles substitution across one level of
method nesting (see figure 5.6). For these rules we do not need the general, multi
level reduction contexts c*, but single-level reduction contexts c E RP that do not
increase the inserted term's method nesting level. (A general reduction context C*
with the hole at method nesting level n corresponds to the nesting of n single-level
reduction contexts Ci E RP: C* = cd«cz[« ... [«cn-d«cn»]»] ... »]»].)

1. If e is a redex reducing e, if, .s, om, g-----+ e', if', .s', om', g', then the same reduction
is possible in any single-level reduction context c E RP, i.e., from c[e] to c[e'].

2. If e is reducible e, if, .s, om, g ===? e', if', .s', om', g', then e's nesting in a method
inlining e = «e» can be reduced to e' = «e'» if the environment stack is

79

extended at the bottom by some environment 'TI'h for the new outer-most nesting
level. Additionally, e and e' can be wrapped in a single-level context e E R~.

The role of the reduction contexts e E R~ defined in figure 5.6 is to determine
the place of substitution within a method nesting level:

• If e is a substitutable subterm or an inlined method body then the two rules replace
e without any context, i.e., "context" e is nothing but the holeD, so that e = e[e].

• If otherwise e has the form val(e), destval(e) or return e then the next reduction
step must change the only proper subterm e" in the unchanged context of e =

val(e0), destval(e0), or return e0 (where the hole is, or is contained in, e0).

• Before replacing operation call expression e = e0<r f (e1, ... , en) itself, its subterms
e0 to en must be evaluated left to right: The subterm ei in which the substitution
is to take place has only subterms already reduced to values to its left and only
proper expressions to its right: Context e = e0 <r f (e1, ... , en) where the subterms
ei are expressions in E directs the substitution first to the receiver expression.
Then context e = vo«= f Cv1, ... , vi-1, e0 , ei+l• ... , en) with values vi E V and
expressions ei E E directs it to the left-most unevaluated argument expression.

• If e is a sequence 81 82 of two statements, substitution takes place only in the first
statement. 82 is context until 81 has reduced to E and only 82 is left: e = e0 82 .

• Before the reduction step that can execute assignment e = e1 = e2 ; itself, context
e = e0 = e2 ; directs the substitution to the left-hand side until e1 is an irreducible
location£. Then context e = f!= e0 ; makes the substitution continue in the right
hand side until e2 has evaluated to an irreducible value.

• Before an if statement can be executed, the expressions it compares must be
evaluated. To this end, contexts e = if(e0 \lle){8} and e' = if(h'lle0){8} direct
substitution first to the left hand expression and then to the right hand expression.

7. SUBSTITUTION OF THE REDEX. Now consider the possible replacements of a
subterm, and how environment, store, and object-map change with it (figures 5. 7 and
5.8). The object graph component will be ignored in this section; the changes there
will be discussed in §5.3. All steps work on the top-level environment 'TI'h only, except
for return steps that works with the finished top-level environment 'r/*(:,J.Lr,r) and the
environment 'TI'h to which the execution will return.

{ var1} The identifier x E I d of a local variable or parameter reduces to that location
which the environment defines for x, i.e., the location 'T!(x) to which the actual
environment 'r/ in annotated 'TI'h maps x. Nothing else changes.

{ varJ} A field name this.x reduces to that location£' which is specified for x in the
field environment e of the current object, i.e., of the target w of the handle .s(£)
at the location f! = 'TI(this) denoted by this in the top-level environment 'TI'h·

{ rdcp} Non-destructive read access val(£) to a location f! copies the value from the
store (at location£) to the runtime term (at the redex position). In base-JaM,
this value is always a handle (o, f.L, w). In case of a free handle, an exact copy

80

ry(x) ~ £
{ var1} -----,::-----'-'-'-----;;-----:-:,------

X, ryf;, s, om, g -----t £, TJ'h, s, om, g

ry(this) ~ £ s(£) ~ (o, J-L, o) om(o) ~ (Q, F) Q(x) ~ £'
{va~}~~-~~,----~~~~~--~~~=-~~~~---

this.x, TJ'h, s, om, g -----t £', TJ'h, s, om, g

s(£) ~ (o,J-L,w) J-L1 = J-L[read/free]
{ rdcp} () (1) val£ , ryf;,s, om, g -----t o, J-L, w , ryf;,s, om, g EB o L w

s(£) ~ (o, J-L, w)
{ rddst} -------,-=---::-----:......:......,----'--...:....,--'--:-:----;--:-----,----:-:-;-;-----

destval(£), ryf;, s, om, g -----t (o, J-L, w), ryf;, s[£ f-t (o, J-L, nil)], om, g

h...:_ (s 11. r)
{null} , - (',..-r, "I) ,

null, Tlh, s, om, g -----t r, free, n1 , Tlh, s, om, g

h ~ (s, J-Lr, r) f- FldsMths(c) ~({xi: ref J-Li ci}, F)
fresh o E ([]lc fresh £i E [ref J-Li ciD [!={xi f-t £i} hi= (o, J-Li, nil)

{new}---~-~--~-----,-~-=-~~~~--~~~~-~~~~--~--
new cO, TJ'h, s, om, g -----t (r, free, o), TJ'h, s[£i f-t hi], om[o f-t (Q, F)], g EB r free o

r E ([]lc, om(r) ~ (... ,F), F(f) ~ ,.,* T f (J-Li Ci YiHJ-Lj cj Zj; s}

fresh £ E [ref co c D , fresh £f E [ref J-Li Ci D , fresh lj E [ref J-Lj cj D
ry* = {this f-t £, Yi f-t £f, Zj f-t £j}

s' = s[£ f-t (r, co, r), £f f-t (r, J-Li, oi), £j f-t (r, J-Lj, nil)]
II

g' = g 8 s __!!:j__, Oi EB r ~ r EB r ~ Oi
{call} ~....:....._-~~--:=;:==;::::=:---:----------:-~-:;-----;---------:-

(s, J-Lr, r)¢= f ((s, J-L~, oi)), TJ'h, s, om, g -----t «s», TJ'h • ry*(:,J.Lr,r), 51
, om, g'

Figure 5. 7: Reduction of expression redices

would immediately violate the uniqueness offree paths' heads (the Unique Head
property). Prohibiting through the type system that free variables are read
non-destructively would be too restrictive, as explained in §5.4.2, since then no
(observer) call to a free object can be made without losing the free handle to
it. The copy is safe if its mode is weakened to read, since the aliasing by read
references is irrelevant for the integrity invariants (cf. paragraph 5). We use the
standard notation J-L[read/free] for the substitution of read for free in mode
11· In base-JaM, substitution merely means to replace 11 = free to read and
leave other 11's unchanged. In full JaM, it will mean to replace any occurence
of base-mode free in the full mode 11 = J-L<O> to read, and besides this leave 11
unchanged. The object graph transformation will be discussed in §5.3.

{ rdc~st} Destructive read access destval (£) evaluates to the value at location £, but
resets the store at£ to a nil-handle (with the same source and mode as before).

{null} The expression null evaluates to a nil-handle whose source is the current
object, i.e., the target r of the top-level environment's call-link, and whose mode

81

is free. Note that this mode is compatible to all other modes (see §5.4.2).
{new} The evaluation of an object creation expression instantiates a class c to a new

object with fresh object-identifier o, and evaluates to an initial, free handle
from the current object r (the creator) to the new object o. Being fresh implies
in particular that o is neither source nor target of any edge in the object graph.
Let {xi: ref /-Li ci} be the instance record type r and F the method suite which
class c defines for its instances. Then instantiating c means to take fresh loca
tions £i of respective types ref /-Li ci, initialize them to nil-handles with source o
and modes /-Li, and map o to an object value ({xi t--t £i}, F) with the field names
mapped to these locations, and with the method suite F.

{call} An operation call is executed when all its subexpressions, receiver and argu
ments, have evaluated (to handles). The execution will then continue with the
body s of the method F(f) by which the call's receiver r implements the called
operation f. To prepare this continuation and the return into the context of
the call, the call expression is replaced by the body s put into double angle
brackets. The environment for s's subsequent evaluation contains this, and
the parameters and local variables of method F(f) bound to fresh locations of
corresponding ref-types initialized with, respectively, a handle to the receiver
(of mode co), argument expression values adapted to the parameters' modes,
and nil-handles of the local variables' modes. In order to talk and reason about
the kinds of executing methods and the modes of the call-links used to make the
call and to return the result, the new environment is annotated with the kind of
method F(f), and with the handle to which the receiver expression evaluated.

{ret} A return statement is executed when its return expression has evaluated to
a result handle, provided it is the remains of an inlined method body in dou
ble angle brackets, and there is an environment fJ'h below the current top-level
environment. Then evaluation will continue in environment fJ'h with the result
handle adapted to the calling context, i.e., with the sender as the new source
and with a mode adapted to the sender's perspective. How modes of returned
handles are adapted will be elaborated in §5.4.2. The current top-level environ
ment is removed from the stack and the locations of the names in it (parameters,
locals, and this) are removed from the store.

{ upd} An assignment statement is executed when the left-hand side has reduced to a
location £ and the right-hand side to a value (o, J.L1

, w'). It updates the store at £
to the handle with the mode adapted according to the location's store partition.
As opposed to Java, assignments in base-JaM have no value, but are statements
reducing to the empty term, so that the statement following it in the full term
c[e] will be next in the order of execution.

{ift}, {i~} A conditional statement is executed when the compared expressions have
evaluated to handles (o, J.L, w) and (o, J.L1

, w'), respectively. Then the if statement
reduces either to the guarded statement s, the "then-branch," or it reduces to
the empty term E to let execution continue with the statement following the if

82

s' = s[.e f---7 l_ I .e E im(ry*)] g' = g EB s ~ 0 e s ...l!:L., r e r L 0 8 s(im(ry*))
{ret} ------'------:------,--'-''--'-''---~---:7,__ ______ :--__ --,----:--'---------'--':----'--'----

«return (r, J-l, o) ; », 7J'h • ry*~,J.Lr,r), s, om, g ----+ (s, J-lrOJ-l, o), 7J'h, s', om, g'

{upd}
.€=(o,P,,w);, ry'h,,s,om,g----+ E, ry'h,,s[.ef---7 (o,JL,w)],om,geo Lw8s(.€)EBo Lw

['lf';](w,w')
{ift} ------,,----,-...,.......,---,---;:--,----:,-::------"'--'---"'--'----'--'--------------:c:-------:-:r---;-

if C(o, J-l, w) 'lj; (o, J-l1, w')) {s}, ryh,, s, om, g----+ s, ryf;,s, om, g 8 o L w 8 o L w'

•['lf';D(w,w')
{i0----::-----:-~--,---;:-----~~~'------~---------:---~-~

if C(o, J-l, w) 'lj; (o, JL1, w')) {s}, ry'h,,s, om, g----+ E, ry'h,,s, om, g 8 o L w 8 o L w'

{wh} while Ce1 'lj; e2){s}, ryf;, s, om, g----+ if Ce1 'lj; e2Hs while Ce1 'lj; e2){s}}, 7J'h, s, om, g

where [==] (w, w') Bdf w = w' and [! =] (w, w') Bdf w =f. w'

Figure 5.8: Reduction of statement redices

statement in the full term c[e]. The choice depends on whether the two handles'
targets w and w' are equal and whether the comparison operator 'ljJ is== or ! =.
The first choice (rule {ift}) is taken iff 'ljJ is '==' and w is w', or if 'ljJ is '! =' and
w is not w'. Otherwise, the second choice is taken (rule {i~}).

{ wh} A while loop is reduced the standard way by unfolding it to an if statement
guarding the first repetition of the loop's body followed by a copy of the loop.

8. SOURCE CoNSISTENCY. Before turning to higher-level views, let us verify that
JaM's semantics adds the right source objects to its "handle" formalization of object
reference values:

Proposition 1 If e0 , T/o, s 0 , om0 , g0 ===?* e, if, s, om, g then

Proof by induction on the number N of reduction steps from e0 to e: In the base
case N = 0, source consistency is trivial since store s 0 = 0 contains no handles,
and term e0 = new c () . main () contains no handles and no locations. In the induc
tion step N---+ N + 1, reduction e0 , T/o, s0 , om0 , g0 ===?* eN, ifN, SN, omN, 9N is contin
ued eN, ifN,SN, omN,9N ===? e, if,s, om, g. By induction hypothesis, FsN omN and
FsN ifN and FsN,iJN eN.

Consider f= 5 om and p5 if. Reductions with { varz}, { varJ}, { rdcp}, {null}, { ift} / { i~}
and { wh} change neither s nor om nor if; {ret} neither adds to s nor if; and { upd}
and { rddst} do not change the source of the handle at the updated location. Hence
still p 5 om and p5 if in all these cases. In case of {new} and {call}, om does not
change for old objects, and if does not change in old environments . .s changes only at

83

locations that are fresh. These locations are added only to, respectively, the new ob
ject's value or the new environment. All the handles with which these fresh locations
are initialized have the right object as their source: the new object o, or the receiver
r, respectively. Hence l=s om and l=s if again.

Consider l=s,if e. In case of a reduction with { var1}, the redex x in the maximal
method nesting depth is replaced to location rJ(x) from the top-level environment
TJ'h· Hence l=sN ifN ensures that .s(£)'s source is the target r of call-link h in top-level
environment TJ'h, and thus the right one for a location at maximal nesting depth:
l=s,i) e. And in case of { var1}, we have a handle h = .s(£) = (o, p, o) at the location
£ = TJ(this) of this in top-level environment TJ'h· On one hand, l=sN ifN ensures that
h's source o is the target r of call-link h in TJ'h· On the other hand, l=sN omN ensures
that the handle .s(£') at location £' of o's field x has o as source. Hence the location £'
inlined in the runtime term at maximal nesting depth refers to a handle .s(£') in the
store with the necessary top-level environment's receiver o = r as source.

In case of { rdcp} and { rdc~st}, the redices val (£) and destval (£) at nesting level n
imply by induction hypothesis that .s(£) is a handle with the right source for nesting
level n. Hence this handle can be copied into the runtime term at nesting level n with
no problem. Although { rdc~st} does update the store, it does not change the source of
the handle at location £. l=s,i) e is preserved.

In case of {null} and {new}, a handle is added to the term that has as source
specifically the receiver of the top-level environment's call-link, and thus the right one
for a handle at maximal nesting depth. At the same time the environments remain
unchanged and the store changes at most at fresh locations (but not at locations that
might be contained in the term). Hence l=s,i) e.

Reductions with {call}, {upd}, {ift}/{i:§} and {wh} add neither handles nor lo
cations to the term, At the same time the environments at old nesting levels remain
unchanged and the store changes at most either at fresh locations ({call}) or without
changing the source of the handle at the updated location. Hence still l=s,if e. •

5.3 JaM's Higher-Level View

The runtime model consisting of terms, environments, stores and object-maps is a
formal model of the computation's state well suited for defining program execution.
It is less convenient for reasoning about relationships between objects and group
ings of objects. More appropriate is the object graph model as a higher-level view
of computational state that captures (only) the objects' interconnection by object
references.

5.3.1 The Object Graph in the Computation

1. OBJECT GRAPH VIEW OF STATE. The notion of an object graph in a computa
tional state formalized as configuration (e, if, .s, om) is a graph g whose nodes are the

84

(identifiers of) objects in om, and which has an edge o L w for every non-nil-handle
(o, f-t, w) contained as value in .s (stored reference), call-link in if (reference in use as
connector), or subterm in e (intermediate reference). The current object graph can
always be calculated from the current configuration with the help of an abstraction
function, and is then transformed indirectly in the reduction steps by the configura
tion's modification. But in order to make these transformations more obvious, the
reduction rules given in figures 5. 7 and 5. 7 showed explicitly the manipulation of the
current object graph as a separate component of the configuration. It is of course
necessary to demonstrate consistency of this parallel object graph with the calculated
object graph, which will be done further below.

In the reduction rules it is easy to add edge o L w to the graph whenever a handle
(o, f-t, w) appears new in .s, if, or e. Harder is the removal of edge o L w exactly when
handle (o, f-t, w) exists nowhere in e, if, and .s any more. This can elegantly be handled
if the object graph is not formalized as a set g E 2°xMxO of edges representing the
existing of corresponding handles, but as a multiset g E NOxMxO of edges whose
multiplicity represents the number of the corresponding handles' occurrences in .s,
if, or e: Multiplicities of edges are increased and decreased in accordance with the
addition and removal of handles to/from e, if and .s, so that the multiplicity of edge
o L w in g, written mult(o L w, g), reaches zero (meaning it disappears from the
graph) exactly when the last occurrence of (o, f-t, w) is removed from .s, if and e.

Definition 1 An object graph is a multiset g E ®tap[) =dr N°xMxo of directed,
mode-labeled edges o L w E ([]) x M x ([]) between two object-identifiers o, w E ([J) called
source and target, respectively.

W.r.t. this definition, we can now give precise meaning to the often cited notion
of "the" object graph in a particular computational state: It is the abstract view of
a configuration (e, if, .s, om) as an object graph which contains every edge as often as
e, if, and .s contain the corresponding handle. It can be constructed from the current
configuration by an abstract function ogr:

Definition 2 Let nh = num(h,e) + num(h,if) + num(h,.s) be the combined number
of occurrences of a handle h E ([J) x M x ([J) as intermediate value, as call-link, and as
stored value. Then the object graph ogr(e,if,.s) E ®tap[) in configuration (e,if,.s, om) is
calculated by adding nh-times every possible handle h E ([J) x M x ([J) as an edge:

ogr(e, if, s) =dr

hEOxMxOi=l

where l±l is the multiset union that adds up elements' multiplicities.

The number num(h, .s) of locations at which h occurs in .s E 6tote is
num(h,.s) =dr I {e E dom(.s) l.s(e) = h} I

85

The number num(h, if) of environments with call-link h in stack if (of size n) is

num(h, if) =df I {i E {1, ... , n} l77i = 77h} I
The number num(h, e) of occurrences of h in runtime term e E R can be determined
inductively as follows:
num(h, x) =df 0 num(h, val(e)) =df num(h, e)
num(h, this.x) =df 0 num(h, destval(e)) =df num(h, e)
num(h, £) =df 0 num(h, «8») =df num(h, 8)

{
1 if h' = h num(h,return e;) =df num(h,e)

num(h, h') =df 0 1.f h' -1- h (h) (h)
1 num , 81 82 =df num , 81

num(h, null) =df 0 num(h, e1 = e2;) =df num(h, el) + num(h, e2)
num(h, new cO) =df 0 num(h, if Ce11/Je2) {8}) =df num(h, e1) + num(h, e2)
num(h, while (e){8}) =df 0 num(h, eo~ f Ce1, ... , en)) =df ~~=O num(h, ei)

The definition of num(h, e) can ignore the body and condition of while state
ments, the then-branch of if statements, and the second statement in sequences
since these are never partially evaluated, and thus always free of handles (cf. the
syntax of runtime terms in §5.2.1).

2. OBJECT GRAPH VIEW OF STEPS. Transformations of the object graph can be
decomposed into what looks like additions g EB h and removals g 8 h of edges, but
which are actually increases and decreases of edges' multiplicities. Such an "addition"
and "removal" does not change the graph at all if the target or source in handle h is
nil since object graphs model only the connections between objects. The "addition"
EB and "removal" 8 used in the semantics are reduced as follows to multiset-union
'l±l' and multiset-subtraction '~' (which add two multisets' element multiplicities, or
subtract the second one's element multiplicities from those of the first one).

J1 {g if nil E { o, w} J1 {g if nil E { o, w}
9 EB 0

___. w =df gl±J {o!!., w} otherwise 9 8 0
___. w =df g ~ {o.!!., w} otherwise

Now, let us follow the transformations which the object graph undergoes by the
different reduction steps defined in figures 5. 7 and 5. 7:

{var1}, {var1}, {null}, and {wh} steps have no effect on the object graph since they
do not change the number of non-nil handles in the configuration. Observe that
while statements are pure program terms so that the subterms duplicated by
the reduction to an if statement cannot contain any handles.

{ rdc~st} leaves the object graph unchanged: The new occurence of handle h = (o, f-L, w)
in the term is balanced by removing one occurence from the store:
num(h, e') + num(h, s') = num(h, e)+ num(h, s).

{ rdcp} increases in the graph the multiplicity of the handle h = (o, f-L1
, w) = o L w

read from the store with substitution of read for free (unless o or w is nil):
mult(h, g') = mult(h, g)+ 1. This models the redex's substitution to h, which
increases the number of h's occurences in the term: num(h, e') = num(h, e)+ 1.

{new} adds creator object r's initial reference to the new object w to the object graph
(except if r is nil, as in the first step of evaluating e0 = new cnO .main()):

86

g' = g EB r free w. This models the redex's substitution to (r, free, w).
{call} steps equip the receiver with a this reference r ~ r and with a parameter

handle r ...f:!j__, wi for every argument handle s _!!'l__. wi supplied by the sender.
That is, the multiplicity of r ~ r and edges r ...f:!j__, wi increases, while that of
edges s _!!'l__. wi decreases. This matches the arguments' disappearance from the
term and the parameters' and the this-reference's appearance at fresh locations
in the store. The call-link o L w is not changed: Its disappearance from the
term is balanced by its occurence in the new top-level environment.

{ret} steps combine call-link (s, f.Lr, r) and the edger L w returned by the receiver to
the edges ~win the sender, i.e., the former two edge's multiplicity decreases
while the latter one's multiplicity increases. This matches the appearence of
(s, f.LrOf.L, w) in the runtime term and the disappearence of handler L w from the
term and of call-link (s, f.Lr, r) (together with the finished invocation) from the
environment stack. Additionally, since the locations of the finished invocation's
variables in the store are reset, the multiplicities of all (non-nil) handles lost by
this are decreased to keep the object graph in sync.

{ upd} steps convert a handle o L w' to o L w', i.e., decrease the multiplicity of the
first handle and increase that of the second one. This matches, respectively, the
disappearence of the right-hand side handle (o, J.L1

, w') from the term and the
appearance the handle (o, J.L, w') = o L w' at location£ in the store. Addition
ally, the multiplicity of the old handle (o, J.L, w) = o L w at location£ decreases
since the update at location £ overwrites it.

{ift} and {if1} steps' discarding of the two compared handles means for the object
graph a decrease of the corresponding edges' multiplicity.

All of this shows that the reduction rules accurately make explicit, as parallel
transformations of the object graph, how the objects' interconnections change in
each reduction step through the modification of term, environments, and store:

Proposition 2 If e0, T/o, so, om0 , g0 ==?* e, if, s, om, g then

g = ogr(e,fj,s)

Proof by induction on the number N of reduction steps from e0 to e': In the base case
N = 0, ogr(e0, T/o, s0) = 0 = g0 since term e0 = new c () . main() and store s 0 = 0
contain no handles, and environment stack T/o = 0(~i~,read,nil) contains only a nil-handle.
In the induction step, execution e0, T/o,so, omo,go ==?* eN, ifN,SN, omN,gN is con
tinued eN, fiN, SN, omN, gN ==? e, if, s, om, g. As the above considerations showed,
the last step's redex replacement changed the multiplicities in the graph the same way
as the non-nil-handle occurences in the substituted subterm, the top-most environ
ment(s), and the store. The context rules add the same term contexts and lower-level
environments on both sides. Hence g = ogr(e, if,s) follows from the induction hy
pothesis's gN = ogr(eN, ifN,sN)· •

87

g f- o L wE PAP(o,p,,w)
g f- 1r1 E PAP(a, p,, q) g f- 1r2 E PAP(q, co, w)

g f-1r1" 1r2 E PAP(o,p,,w)

Figure 5.9: Potential access paths in object graphs labeled with base-modes

5.3.2 Moded Paths, Owners and Sanctuaries

3. PATHS IN THE GRAPH are non-empty sequences 1r = h1 , ... , hn E v+ of contiguous
edges, i.e., of object references hi = oi ...l!:i__, wi with oi+l = wi, thus also written
7r = o1 _l!:1__, o2 ... On ~ On+l· The mode-based classification of object references
o ___. w according to their ownership- and sanctuary-meaning (cf. §5.1) generalizes to
paths from o tow (subsuming the case of object references as paths of length one):

• If the path's mode is rep, this means that o is w's owner, which is expected to be
unique, and w belongs to a's sanctuary Sanc(o). In legal base-JaM programs, w
has no other owner (the Unique Owner property).

• If the path's mode is free, this means that o is w's owner, which is expected to
be unique, and w is expected not to belong to any sanctuary. In legal base-JaM
programs, w has no other owner, and all ownership paths tow, i.e., free and rep
paths, have the same first reference of multiplicity one (the Unique Head property).

• If the path's mode is co, this means that wando have the same owner (or none),
and they belong to the same sanctuaries Sanc(q). o and w are called co-objects.

• If the path's mode is read, this means that it say nothing about w's owner and
membership in sanctuaries.

Paths 1r of mode p, between o and w can be written o Y--+ w in abstraction from
the intermediate objects and the intermediate references' modes. ·while they have
the same meaning for ownership and sanctuaries like object references o L w, paths
can of course be used neither as data values nor as connectors to call operations on
the target object w. But a path 1r = o _l!:1__, o2 ... On ~ w can in principle anytime be
"collapsed" to a single reference o L w by a sequence of calls from o to w along the
path which returns w's this-handle (w, co, w) to o. If a path is classified as a p,-path
then this collapsed reference must be of mode p,. That is, the combined adaption
p,1o(p,2o ... (p,n_1o(p,noco)) ...) of the returned handle's mode should be p,. That is,
while a p,-reference is a means for the source o to directly access target w (with some
limitations imposed by the type system according to p,), a p,-path indicates a's (p,
bounded) right, in principal, to directly access w. Hence these paths will be called
potential access paths.

Let PAP (o, p,, w) be the set of all those paths 1r from o to w in graph g which
are potential access paths of mode p,. Which paths in g are potential access paths,
and what their mode is, is controlled by the modes of the edges in g. Through
mode annotations specifying the references' modes, the program therefore indirectly

88

also specifies the potential access paths. In base-JaM, the potential access paths
1r E PAP(o, J.L, w) are the graph's edges o L w E g (that is, edges with mult(o L

w, g)> 0), and the concatenation 1r1 • 1r2 of a J.L-path 1r1 E PAP(o, J.L, q) and a co-path
1r2 E PAP(q, co, w) (see figure 5.9). This is easy to verify: A rep-path 1r1 and co-path
1r2 together imply that o is not only q's but also w's owner and that not only q but
also w is in o's sanctuary. This is exactly what the classification of 1r1 • 1r2 as rep says
about w. If 1r1 is free then the co-path 1r2 between q and w implies that o is not
only q's but also w's owner and that not only q but also w is in no object's sanctuary.
Hence 1r1 • 1r2 should be classified as free. Co paths 1r1 and 1r2 together mean that o

and w have the same owners and belong to the same sanctuaries, i.e., 1r1 • 1r2 is co.
Read path 1r1 leaves q's owners and sanctuary memberships unspecified, and co-path
1r2 equates them with w's owners and sanctuary-memberships. They are thus left
unspecified by 1r1 • 1r2 , so that read is the right mode.

4. OWNERSHIP AND SANCTUARIES. The potential access paths of modes rep and
free define the ownership (or object composition) hierarchy between objects in the
object graph; they are the ownership paths. For convenience, we can define the
set Osh(o,w) of ownership paths between o and w. Osh(o,w) =dr PAP(o,rep,w) U
PAP(o, free, w). And the transitive closure of potential access paths of mode rep
defines the sanctuary Sanc(o) of composite objects' representatives o.

However, potential access paths are only forward concatenations of handles, so
that in the situation o rep w ~ w', object o would own w but not w'. But
when w' calls an operation on w, like SetPrev, to which it passes this as parameter
of mode co, then the co-handle is inverted and o now also owns w' through path
o ~ w£2... w'. In order to show for this step the preservation of the invariants over
ownership and representations introduced below, the forward notion of ownership and
representations is generalized to a co-symmetric one, in which both ends of co-handles
and co-paths have the same owner and belong to the same representations.

This is achieved by the following technical trick: The sets PAP9 (o, J.L, q) of poten
tial access paths, in particular, ownership paths Osh9 (o, w), used in the properties'
definition are not the ones determined in the real object graph g, but those in an
object graph g* to which inverses w£2... w' for each co-handle w' ~ w have been
added. This addition explicitly represents the semantic symmetry of co-handles.

Definition 3 Let g* =dr g l±J {w ~ o I o£2... wE g}. Then
PAP9 (o,J.L,q) =dr {1r I g* f-1r E PAP(o,J.L,q)}
Osh9 (o, w) =dr PAP9 (o, rep, w) U PAP9 (o, free, w)

-dr U ({w}USanc9 (w))
w su. th. PAPg (o,rep,w)o;i0

Object graph index gin PAP9 , Osh9 and Sanc9 can be dropped where g is obvious.
The construction of PAP9 based on g* means that any two objects o and w that

are in g connected by an undirected path o ~ * o1 * ~£2... * On* ~w of co-edges
will be connected by a potential access paths of mode co (PAP9 (o, co, w) =1- 0). Since

89

9 F= uo
g F UH

{:::} dr 'i/o, o, w. Osh9 (o,w)=/=0 1\ Osh9 (o,w)=/=0 =? o=o
{::}dr 'i/o, o, w, h, n, h, ii". h • 1r E PAP9 (o, free, w) 1\ h • 1T E Osh9 (o, w)

=? h = h 1\ mult(h, g) = 1
g,i]f=MCP{::}dr ViE {1, ... ,n}. K,i = mut =? 3j::::; i. hi• . .. • hiE Osh9 (ri_1 ,ri)
g, i] f= MC {::}dr ViE {1, ... , n}, o. K,i = mut 1\ ri E Sanc9 (o)

=? 3k ::::; i. rk = o 1\ K,k = mut

where i] = 771 ~~ • ... • 7Jn~: with call-links hi = (ri-1, /Ji, ri)

Figure 5.10: Base-JaM integrity invariants

free and rep paths are closed under co-paths, o and w have the same owners and
belong to the same sanctuaries. Hence the existence of a potential access path of
mode co between two objects formalizes the informal notion of co-objects.

5. INTEGRITY INVARIANTS OF BASE-JAM SYSTEMS. Base-JaM defines not only
through mode annotations where owners and representations are in the object graph.
Through the mode system introduced in §5.4.2 it will also guarantee the integrity
properties introduced informally in chapter 1. Based on the formal semantics, these
properties can now be formalized (and then be proved in §5.5). Composite state
encapsulation will be formalized in the next subsection. The invariant properties of
base-JaM executions are formalized in figure 5.10 w.r.t. the object graph g and the
call-links and method kinds of invocations on the environment stack i].

• The Unique Owner property UO is the property characteristic of object owner
ship in JaM: It holds in graph g if all objects have at most one owner, i.e., are at
most target of a unique object's ownership paths.

• The Unique Head property UH is the property characteristic of free paths in
JaM: It holds in graph g if the initial edge in all ownership paths to a free object
(i.e., target of a free path) is the same and has multiplicity one. Since this
excludes rep paths, the free object cannot belong to any sanctuary.

• The Mutator Control Path property MCP is the property characteristic of
ownership paths in JaM: It holds in graph g and stack i] if mutators were invoked
on receiver objects ri only through a sequence of calls along the edges hj, ... , hi
of an an ownership path tori.

• The Mutator Control property MC is the property characteristic of sanctuaries
in JaM: It holds in graph g and stack i] if members of a's sanctuary are executing
mutators only nested to mutator executions of o, and thus (indirectly) initiated by
a's mutators through a sequence of calls.

g, i] f= UO, UH, MCP, MC is short for "g f= UO and g f= UH and g, i] f= MCP and
g, i] FMC."

The move from g to g* strengthens the notion of uniqueness of owners and free
path's initial edges. For mutator control paths, this is irrelevant because the call-links

90

composite
object

sanctuary
(mutator controlled)

forward
reachable

representative
(mutator controlled)

• . ~ ..
·· ImplementatiOn

state representation
(membership controlled)

objects

Figure 5.11: Composition of composite objects in JaM

in if are always real edges in g (Proposition 2). But by inversion, all the additionally
owned objects and representation members, i.e., objects not reachable by any real
ownership path in g, are guaranteed not to execute mutators. They are immutable
until a forward ownership path is established.

5.3.3 The Composite Object View

6. COMPOSITION OF COMPOSITE OBJECTS. A composite object 0 in JaM is
constituted by its representative o and all the implementation objects reachable from
there via sequences of rep and free paths. That is, the set of O's constituent objects is
composite(o) =dr {o}UUosh(o,w)#0 composite(w). Interaction between the constitutent
objects is internal to 0 and abstracted away in the outside view of 0. Interaction with
any other object is external behavior of 0 (and should be included in its behavioral
specification).

The sanctuary Sanc(o) (see above) is the subset of the expansion composite(o)
which is reachable via rep path sequences only (cf. figure 5.11). o (indirectly) con
trols the execution of mutators in the sanctuary (mutator control), but it does not
necessarily control the membership in the sanctuary: Through temporary rep or co
references in the execution of observers (of o or members of Sane(o)), new rep paths
can be established that add an object to Sanc(o). Even though this addition is only
temporary, it is a change of the sanctuary not necessarily controlled by o.

The desired state encapsulation property does not require us to impose control on
temporary additions since temporary members of the sanctuary can anyway not be
used to represent the composite's state: To represent state, only a core of sanctuary
members can effectively be used which remain in the sanctuary between method in
vocations and can be accessed via ownership paths from different method invocations
of the representative. That is, the composite state representation StRep (o) can only
consist, besides representative o itself, of objects that are held in sanctuary Sane(o)
through rep paths consisting entirely of references captured in fields.

However, the object graph, as it was defined above, is too abstract for the correct

91

formalization of state representation StRep(o) since it ignores the handles' storage
status: stored vs. unstored, stored in fields vs. stored in locals. We have to look at
the subgraph fgr0 m(5) <;;;; ogr(e, if, 5) containing just the edges for handles h = 5(£')
found in the store 5 and at locations .€ E fids 0m(o) that model an object's fields.

Definition 4 The set fids0 m(o) of object o' s field locations is extracted from o' s field
environment e in object-map om. The field-subgraph fgr0 m(5) is the set (or multiset)
of all non-nil handles at such field locations in the store. The state representation
StRePs,om(o) of o is o together with the state representations of its rep path targets in
the field-subgraph.

fidsom(o) =df im(e) for om(o) = (e, F)

im(5ifids
0
m(a)) n OxM xO fgrom(5) u

oEdom(om)

StReps,om(o) =df {o} U U StRePs,om(w)
W su. th. PAPfgrom(s)(o,rep,w)#0

Proposition 3 The field "sub" -graph is in fact a subgraph of the object graph (as a set):

fgrom (5) <;;;; ogr(e, if, 5)

Proof: hE fgr0 m(5) =? hE im(5) =? num(h,5) > 0 =? hE ogr(e,if,5). •

Mutator Control (MC) means in particular that the representative controls all mu
tator executions in state representation StRep (o), since the latter is a subset of the
sanctuary Sane(a) modulo the representative (which trivially mutator controls itself):

Proposition 4 StReps,om(o) <;;;; {o} U SanCogr(e,if,s)(o)

Proof: Membership w E StRep5 om(o) presupposes a (possibly empty) sequence of
rep paths from o tow in fgr0 m(5)'. This sequence exists also in ogr(e, if, 5) 2 fgr0 m(5)
(Proposition 3). If it is empty then w = o, otherwise wE Sancagr(e,if,s)(o). •

7. COMPOSITE STATE. The notion of state representation StRep(o) used here should
not be mistaken as a kind of (concrete) state. It is the set of (identifiers for) the imple
mentation objects which collectively represent the composite object's state CState(o)
by virtue of their shallow states state (w). That is, estate (0) = UwEStRep(o) state (w).
Since objects' shallow states are in turn represented in their fields at store locations
.€ E fids (o), the composite state is ultimately represented in the store at all the loca
tions .€ E fids(w) for all wE StRep(o). (This set of locations is the instance region of
[GB99] and the demesne of [Wil92].)

Definition 5 Shallow and composite state are then the restrictions of the system
state, formalized as store 5, to the corresponding location sets:

states, om (0) =df 51fidsom(o)
CStates,am(o) =df 51U fids (w) = U states,am(w)

wEStRePs,om(o) om wEStReps,om(o)

92

8. THE HIERARCHICAL VIEW. The above description of a composite object 0 as
a fiat set of constituent objects differs from the description of the composite object
oriented view of the runtime system as a nesting hierarchy of composite objects and
their possibly composite component objects in §2.5. However, we can see all im
plementation objects o', also those in composite(o), as representatives of a (possibly
primitive) composite object 0'. The components of composite 0 are those composite
objects ni to whose representatives wi the representative o of 0 has an ownership
path. And the state-representing components are those components to whose repre
sentatives O's representative o has a rep path in the .field-subgraph. Correspondingly,
one could also give inductive definitions of composite(o), StRep(o), and CState(o)
based on representative o the (state-representing) components.

9. COMPOSITE STATE ENCAPSULATION. The notion of composite state encap
sulation, which was introduced in chapter 1, can now be given a precise definition
w.r.t. the JaM formalization: If an execution step e, if,s, om,g==} e', ij",s', om',g'
changes a composite's state, i.e., CStates,am(o) =J CState5',om'(o), then it is executing
a mutator, i.e., there is an environment 11(;,~,o) E if of kind mut with receiver o:

\:fa E dom(om). CState 5 ,am(o) =J CStates',om'(o) =? ~S,J1,1J• 11(;,~,o) E if

This property will be proved for legal base-JaM programs in §5.5.3.

5.4 Typed Base-JaM

Not all syntactically correct programs p are also legal programs. Type declarations
are written in the program not just for fun but to have the actual use of values
checked against a declared intention. This should ensure the orderly execution of
programs, including in case of JaM the state encapsulation of composite objects. The
component of a programming language which defines the checking of the program is
called the type system.

5.4.1 The Type System

1. THE WELL-FORMEDNESS of Base-JaM programs is judged by the rules in figure
5.12:

[prog] A program p E Pis a legal program (of typed base-JaM) whose execution
starts with the evaluation of e0 _ new Cn 0 . main(), written f--- p start e0 , if
it is well-formed: Each of the class modules in it is well-formed; no two class
modules define the same class name; and the last module Dn defines the class Cn

with a parameter-less operation main. For formal reason, this operation must
be an observer: In the initial environment 0(~ii,read,nil), the only handle to the
initially created en-instance o will be (nil, free, o). Since its source is nil tf_ (()),in

93

f--- DI defs ci · · · f--- Dn defs Cn Vi,j = 1, ... ,n. Ci = Cj
f--- FldsMths(cn) = (R, F), F(main) · obs T main(){ ... }

[prog] -------'-----'-------,--'-:~-'-------==-'----'---------,-,------:-:---------
f--- DI . . . Dn start new Cn () . main()

f--- MI defs XI f--- Mn defs Xn Vi, j = 1, ... , n. Xi = Xj ::::?- z = J
[class] ------------;--:::------;:-:;--::------'-~-::--;----;;--'-----------"--------=---

f--- class c {MI ... Mn} defs c

f--- t ok f--- ti ok f--- tj ok
f =this: ref CO C, Xi: refti, Zj: reftj f--- f ok f, K, f--- S: t

[meth] -----------,--'---'--:-=~----=-'7---'-::----::-----::------c::------'------

f--- t ok
[field] f--- t x; defs x

1-L EM f--- c ok
[rtype] -'---,------;--

f--- 1-L c ok

f--- "' t f (ti xJ {tj Zj; s} defs f

Vi, j = 1, ... , n. Xi = Xj ::::?- i = j
[ta.ssg] ---'---=--,------c--'----'------""-----:--____:_ __

f--- XI : TI, ... , Xn : Tn ok

p DI . . . class c { ... } ... Dn
[enamel -=--------;-f----c-o--::k:-------'-'-

Figure 5.12: Legal base-JaM programs

the object graph no ownership path to o exists, so that a mutator call to o would
violate Mutator Control Path. o's main, however, can then send mutators to
free objects it created.6

[class] A class module D is a well-formed definition of class name c, written f--
D defs c, if each of the member definitions in it is well-formed and if no two
member definitions define a member of the same name.

[meth] A method definition M = "'t f (ti xi) {tj Zj; s} is a well-formed definition of
member x, written f--- M defs x, under the following conditions: Its declared
result and parameter types are valid types. The type assignment r made of the
type assumptions for this, the parameter names and the local variable names is
valid. And the method's body sis a well-formed term in the context of a 11,-kind
method and type assignment r whose (return) types is the method's result type.
(The identifiers' assumed types all have the form ref t, not the declared range
type t, since the identifiers do not denote t-values but variables over them.)

[field] A field definition M - t x is a well-formed definition of member x, written
f--- j\1[defs x, if its declared range type t is a valid type.

[tassg] A list of type assumptions xi : Ti is a valid type assignment r, written f--- r ok,
if it contains only one type assumption for each identifier xi.

[rtype] Type term tis a valid range type for variables, parameters and results, written
f--- t ok, if it is a valid class name c qualified by a mode 1-L E M.

6 Mutator main could be supported by reformulating the Mutator Control Path property or by
assuming a given object o0 E I(]) as the receiver in the initial environment: ifo = 0m(ut1 d)

n1 ,rea ,oo

94

[cname] Identifier c E C is a valid class name, written f- c ok, if one of the program's
class modules defines it.

2. TYPING RULES FOR PROGRAM TERMS (expressions and statements) have two
functions: First, they infer the terms' types (static types) as a prediction of the types
of the values to which these terms will evaluate in any possible computation (dynamic
types). On top of that, conditions are incorporated in the typing rules which make
the existence of a term typing a judgment on the term's well-formedness.

The typing judgment r, K, f- e : T expresses that term e is legal in a method of
kind K, and has static type T in the context of type assumptions r for local variables.
(The assumptions are met if they are type consistent with top-level environment rJ'h,
i.e., rJ f= rJ!;f.) The rules for deriving typings in base-JaM are given in figure 5.13.
The discussion of the aspects that belong to the mode system, namely the mode and
method-kind checks, mode compatibility T 1 ~m T, the signature L,(p, c) of 11 c-handles,
and the set Wr(K,) of handle modes with write permission, will be defered to §5.4.2.
[varz] Since identifiers x evaluate to rJ(x), they are assigned the type r(x) assumed

for them in the given type assignment r (with rJ F= r).
[var1] Field expressions this.x evaluate to the location of field x of the object refer

enced by this. Hence they are assigned the type T which instance record type
r c specifies for x, where c is the target class in the range type co c of this 's
assumed type r(this).

[rdcp], [rddst] Expressions of read access to a variable named v are normally assigned
the type T of the value range in the variables' type ref T determined for v. In case
of mode-preserving non-destructive read, this is always legal. Destructive read
expressions destval(v) are legal only if the variable v is not this, and legal if
v is a field expression only in methods of mutator kind. As an extra explained
in paragraph 6, we can permit in observers the non-destructive read of free
local variables, which weakens the handle's mode to read (cf. reduction rule
{ rdcp} in paragraph 1). Correspondingly, the type infered for non-destructive
read expressions is the substitution T[read/free] of read for free in the read
variable's range type.

[null] Since null evaluates to a free nil-handle, it can be assigned free handle types
with any valid class name c.

[new] Since object creation expression new cO evaluates to free handles targeting
new c-objects, it gets type free c. It is legal if cis a valid class name. 7

[call] Operation call expressions e0<¢=-f(e1 , ... , en) are assigned the result type of the
operation fin the signature L,(p, c) of the type f1 c inferred for receiver expres
sion e0 . To be legal, the argument expressions' types must be mode-compatible
to the corresponding parameter types of f in L,(p, c). And if the signature
marks f as a mutator, then the operation call expression is only legal in a
method whose kind K, permits mutator invocations (see §5.4.2).

7In the presence of Java interfaces or abstract classes, it would be necessary to check that
the instantiated class is a concrete classes, i.e., fully implemented.

95

(x:T)Er
[varzl r L

(this: ref p c) E r f- FldsMths(c) = ({ ... ,x:T, .. . }, F)
[varf J --'-----'----"----=------c:------=----:-----'---_:__-----'--"----------'-----'----"-'--....:....._

,l't, I X: T r, /'\, f- this. X: T

r, /'\, f- v : ref T T
1 = T[read/free] T =free< ... > c::::} /'\, = obs 1\ v E Id

[rdd r, /'\, f- val(v) : T 1

r, /'\, f- V : ref T V =/= this V = this.y ::::} /'\, = IDUt
[rd<tst] r, /'\, f- destval(v) : T

f- c ok
[null] -=--.,-------

r, /'\, f- null : free c

[call]

f- c ok
[new] -=--.,-----:-:----

r, /'\, f- new cO : free c

r, K, f- V : ref T r, /'\, f- e : T 1 f- T
1 ::;m T V =/= this V = this.y ::::} /'\, = mut

[upd] --"-------~---~-~---~~------~-----r, /'\, f- v = e; : Cmd

r,l't,f-e:T
[ret] -=--.,-------

r, /'\, f- return e ; : T

r, /'\, f- s1 : Cmd r, /'\, f- s2 : T
[seq] ------=---,-------r, /'\, f- S1 S2 : T

r,l't, f- e1 : p 1 c1 r,l't, f- e2: P2 c2 r,l't, f- s: Cmd
[ifJ r, /'\, f- if (e1 'ljJ e2) {s} : Cmd

r, K, f- e1: P1 c1 r, /'\, f- e2: P2 c2 r, /'\, f- s: Cmd
[whJ r, /'\, f- while Ce1 'ljJ e2) {s} : Cmd

Figure 5.13: Typing rules for program terms

[upd] Assignment statements reduce to E and are therefore given the special type
Cmd. They are legal under the following conditions: The left-hand side is an
1-value expression. The right-hand side is an expression whose type is mode
compatible to the range T of the left-hand side. The left-hand side must not be
this, and a field expression only inside a method of mutator kind.

[ret] The (return) type of a return statement is the type of its return expression. The
typing rules for sequences and if and while will imply that return statements
can only occur as the last statement of a method body s.

[seq] The (return) type of a sequence of statements is the second statement's (return)
type T. To be legal, the first statement must be of the type Cmd of continuing
statements, i.e., a statement not returning from the current method.

[if] If statements reduce to E or to their then-branch. They are given the type Cmd
and it is checked that the then-branch is continuing. Moreover, to be legal,
the compared expressions need to be object reference-valued expressions, i.e.,

96

V E [T]
[val] -=--.,--::::._:=--

f, Ko f---x V : T
[nest] f' I L -!

,Ko 'ii',r,~<,x <<s>>: pop c
r' Ko f---x s : p c

Figure 5.14: Typing rules for runtime terms and consistency with extended context

typeable with handle types p c,
[wh] While loops reduce to if statements and therefore have type Cmd. They are

legal if the loop body is continuing (so that is can be prefixed to a repetition
of the while loop) and if the compared expressions are object reference-valued
expressions (to ensure validity of the produced if statement).

3. TYPING RUNTIME TERMS. For reasoning about the evaluation of well-formed
program terms in a small-step semantics, it is standard to assign types also to all
intermediate runtime terms. (This is unrelated to judging the validity of program p.)
To this end, the typing rules are extended in a natural way to cover runtime terms.
Figure 5.14 shows the two rules for the runtime-specific terms:

[val] Irreducible terms v that are values in a type's extension [T] must obviously be
assigned the type T. These are the locations £oc E [ref T], handles V E [p c],
and E E [Cmd] as the "value" to which continuing statements reduce.8

[nest] The type of value to which an inlined, currently executing method «s» will
reduce on return is predicted by determining the (return) type p c of the state
ment s to which its body has reduced so far, and by mode-adapting this type
like an eventually calculated result handle's mode p will be adapted on return.
In order to define this, we need not only the type assignment f' and method
kind Ko

1 of the calling method, but also of the called method, and we need the
mode Pr of the call-link through which the call was made and relative to which
the returned handle will be adapted.

For the typing of terms containing arbitrary nesting levels of inlined method bodies
more contextual information is required than for the type checking of the terms in
the program: The general scheme of typing rules has to be extended to include the
type assignments ri, method kinds Koi, and call-link modes fii for all method nesting
levels i > 1 in the term. This is done by annotating the turnstile symbol of typing
judgments with a sequence X = p2, f 2, Ko2, ... , Pn, r n, Kon. It will usually be written
X = p2, f2, Ko2, X2 (with X2 = p3, f 3, Ko3, ... , Pn, r n, Kon)· All typing judgments in
the program typing rule in figure 5.13 have to be annotated this way to obtain the
corresponding runtime term typing rules. It shall suffice here to show this on the
example of return terms:

8Note however that irreducible "term" f is not an element of R.

97

f, K, f-x e : T

[ret] f,K, f-x return e;: T

The original rules with 'f-' can then be seen as the special case 'f-E' with empty X
because there are no inlined method bodies in the terms of the program.

Naturally one expects a correspondence between this annotation and the environ
ment stack in the execution (see figure 5.13 again). An environment stack if= 'rli~: is
type consistent with a sequence X= jji, ri, K,i of type assignments, method kinds, and
call-link modes, written if f= X, under the following conditions: Each environment
is type consistent with its corresponding type assignment. The sequences of method
kinds in if and X are the same. And the modes of the call-links in if are the same as
the corresponding modes in X.

5.4.2 The Mode System

The mode system comprises the mode-specific checks and definitions on top of
the type system which ensure that program execution is orderly in the higher-level
view and respects the structural integrity and state encapsulation of composite ob
jects (§5.3). Two mode-operations from the mode system also show up in reduction
semantics-substitution ~-t[read/free] in non-destructive read and mode import f-trOf-t
in return-but they are, like all mode annotations in the runtime model, only included
for reasoning about the success of enforcing structural integrity and state encapsula
tion, and would not normally be included in an implementation of JaM.

4. STATE ENCAPSULATION: CONTROLLING THE MUTATION OF OBJECTS. Enforc
ing that objects change state only through their declared mutators requires JaM to
control field updates and mutator method invocations. An object's fields can change
through assignments and destructive reads. The syntax of base-JaM allows only ac
cess to the fields of this. Consequently, for shallow state encapsulation, typing rules
[upd] and [rddst] (fig. 5.13) permit assignment to fields and destructive read of fields
only within methods declared mutator (/'1, = mut). The invocation of methods de
clared mutator is limited in rule [call] through Wr defined in figure 5.15 to enforce
shallow and composite state encapsulation:

• Calling mutators through free handles is always permitted (free E Wr(K,)) since
they are expected never to belong to any sanctuary. This follows from the Unique
Head invariant, that excludes rep ownership paths to them.

• A mutator sent through a rep handle, if it indeed changes the target's state,
is a change in the caller's sanctuary, and thus a mutation of the composite ob
ject with the caller as representative. Hence, in order to ensure that compos
ite objects change state only through their declared mutators, a rep handle can
permit its source to call mutators only from within mutators. It is permitted
(rep E Wr(mut)) since the Unique Owner invariant guarantees that the target
does not belong also to any other object's sanctuary.

98

• Since co-objects have the same owner, if it was safe for the caller to be executing a
mutator (K, = mut) then it is for its co-objects to do the same. Hence a co-handle
permits its source to call mutators from within mutators (co E Wr(mut)). How
ever, the same permission in observers would enable objects to modify themselves
in observers by calls through the co-handle this.

• read handles provide no information about the sanctuaries to which the target
might or might not belong. Hence invoking mutators through them cannot in
general be guaranteed to be safe.

5. MODE COMPATIBILITY. In typing rules [upd] and [call], the type T
1 of the right

hand side expression or argument expression, respectively, does not need to match
exactly the, respectively, left-hand side's range type T, or operation's parameter type
T. Normally, subclassing polymorphism would allow to weaken handles' target class to
a superclass. In JaM, also the handles' modes can be adapted if a certain compatibility
between modes is respected: Type T1

- 1-l c' is mode-compatible toT= J.L c, written
T

1 :::;m T, if c' = c and J.L1 is mode-compatible to J.L, written J.L1 :::;m J.L, as defined in
figure 5.15:

• Every mode J.L is trivially compatible with itself (reflexivity).
• Any mode is compatible to read since read handles give their source no mutation

right on the target and make no statement about ownership and sanctuaries.
• Mode free is compatible with any other mode since a free handle is the unique ini

tial segment of ownership paths to all co-objects reachable through it (the Unique
Head property). Converting it to a non-free handle may create new ownership
paths, but at the same time destroys all the old ownership paths with which they
could be in Unique Head- or Unique Owner-conflict.

It is easy to convince oneself that treating other combinations of modes as com
patible in assignments and calls would not generally be safe: 9

6. NoN-DESTRUCTIVE READ AccESS to a variable containing a free handle must
not create an exact copy of it since that would immediately violate the uniqueness of
free paths' heads (the Unique Head property). Simply prohibiting the non-destructive
read access to free variables would be too restrictive: The client of a free iterator
object needs a way to call observers like current() on the iterator, and obtain a
result, without losing the free reference to the iterator required to advance the
iterator to the next element. For observer calls, a read call-link suffices, so that they

9rep, co or read :Sm free would allow an object o to convert a non-free handle h to free ht
and then convert a copy of h also to ht, thus violating Unique Head. read :Sm rep or co would allow
o to convert a read handle h to rep or co, thus making, respectively, itself or its own owner q to the
owner of h's target w. However, w may already have an owner, and this owner is not guaranteed to
be o or q, respectively, so that Unique Owner could be violated. rep :Sm co and co :Sm rep would
allow o to convert a co handle h to a rep handle h' or vice versa. h' and and old copy of h make o
an owner as well as a co-object of h's target w. Owning w, o owns w's co-object o. However, o may
already have an owner that is not o, so that Unique Owner could be violated.

99

M ::S:m M
M ::S:m read
free ::S:m M

Mroread =dr read
Mrofree =dr free
Mrorep =dr read
MrOCO =dr Mr

Wr(obs) =dr {free}
Wr(mut) =dr {free, rep, co}

f- FldsMths(c) = (r,F) F(f) ="" M df(Mi di Yi){ ... }
Mi =/= rep Mi = co ::::} Mr =/= read

Figure 5.15: Mode-specific definitions for base-JaM

can be supported by allowing to create read copies of free handles in free variables
through non-destructive read access. Calling mutators like Step() is possible only if
the free handle is taken out of the variable and used as call-link. Mutators whose
purpose is only the side-effect and not the calculation of a value (void mutators) can
return this to the sender. By this convention, the sender gets back the free handle
to the receiver and can use it for further calls. Hence there is a solution for both
observer and mutators calls to free objects.

Observe that, while free is compatible to read, mode compatibility alone is not a
sufficient reason: A copy weakened only to rep or co would, respectively, still violate
Unique Head or risk violating Unique Owner if the converting object has an owner.
While free and read handles between the same objects can coexist (true inclusion
polymorphism, "submoding"), a conversion of a free handle to rep and co is only
safe because no free handle remains with the same target.

7. IMPORT OF RETURNED HANDLES. When the receiver returns a handle to the
sender in reduction rule {ret} (fig. 5.8), then its mode M may have to be adapted
from the perspective of the receiver to the perspective of the sender. For defining
a deterministic adaption, there should be a unique, "best" adaption MrOM that is
calculated from M relative to the call-link's mode Mr and is mode-compatible to all
other adaptions that might be desirable. This adaption, called the import of M
through Mr and written MroM, is defined in figure 5.15:

• A returned read handle can only remain read since it provides no information
that would make another mode a safe choice.

• The sender can safely import a free handle from the receiver as free, since it was
the unique initial segment of ownership paths to all co-objects reachable through
it, and all these old ownership paths are destroyed by the removal of the receiver's
free handle from the graph.

• If the receiver returns a rep handle, however, the receiver may still possess further
rep handles with the same target, and thus remain the target's owner. Hence
the sender cannot import the handle as free or rep without risking a violation

100

of unique ownership (unless sender and receiver are the same). Importing it as
co would make the sender a co-object of the target, and thus also owned by the
receiver (if the receiver still owns the target). This might raise a uniqueness conflict
with any old owner of the sender (unless the receiver is the old owner of the sender).
Only read is always safe as the mode of the returned handle in the sender.

• If the returned handle is co, i.e., points to the receiver's co-object, the sender best
imports it with the mode J.Lr of the call-link: If J.Lr is rep or free, then the sender
already had an ownership path to the target by concatenation of the call-link and
the receiver's co handle. Hence it is reasonable to shorten it to a direct J.Lr handle.
In case of free, the imported handle will replace the unstored free call-link as the
unique initial edge of free ownership paths to the receiver and all its co-objects.
If J.Lr is co then sender and target were already co-objects through the call-link and
the handle of the receiver, so that a direct co-handle is safe. And if J.Lr is read then
the imported handle can only be read, since in a read call-link gives the sender
no information about the receiver's owner and sanctuary memberships, and thus
about a target with the same owner and sanctuary memberships as the receiver.

8. SIGNATURE OF HANDLES. Typing rule [call] checks operation call expressions
e~f(e1 , ... , en) against the type Ti ..!:4 T off in the signature ~(J.Lr c) of handles of the
receiver expression's type J.Lr c. The operations which can be called through a handle
of type !Jr c are those of objects of class c. But class c expresses the parameters' and
results' modes from the perspective of the c-object, i.e., the receiver, and not from the
perspective of the object using the handle for a call, i.e., the sender. If class c defines
method f with result type J.L d then the result type for operation f on J.Lr c handles
must have the mode J.LrOIJ to which the mode of returned j.L-handles is adapted in a
return step (see above). The parameters' modes are imported the same way from the
receiver's to the sender's perspective (see figure 5.15). However, we have to reconsider
the validity of this import for the modes of formal parameters since parameter values
flow in the opposite direction as compared to results:

• A parameter of mode p = read means that the receiver makes no assumptions
about the target's place in the object graph. Hence the sender can supply handles
of any mode, and any mode is mode-compatible to J.Lroread = read.

• If the c-object expects J.L = free parameter values then only !Jrofree = free
handles of the sender (which are destroyed in the call step) can guarantee the
necessary uniqueness of the initial ownership path segments.

• If the parameter has mode J.L =rep then the receiver expects a handle to an object
in its sanctuary. However, no mode on a handle of the sender can guarantee that
the target is in the sanctuary of the receiver. Hence methods with rep parameters
are not included in the signature of handles. (It would be safe to permit to call
them with null as argument, or to call them on this with a rep argument.)

• A parameter of mode p = co means that the receiver expects a handle to an object
with the same owner and in the same sanctuaries as itself. If the call-link is of

101

mode f.-Lr = read then the sender has no information about the receiver's owner
and sanctuary status, and thus cannot know which handle's target would have the
same status. If the call-link is of mode f.-Lr = co, a f.-Lroco = co handle of the sender
is just right, since the f.-Lr = co means that sender and receiver have the same owner
and are in the same sanctuaries, and f.-Lroco = co means that sender and target
have the same owner and are in the same sanctuaries. And if the call-link is of
mode f.-Lr = rep or free then only a, respectively, rep or free handle of the sender
guarantees that receiver and target have the same owner, namely the sender, and
are in the same sanctuaries, namely the sender's sanctuary and those enclosing it.

5.4.3 Type Correctness and Consistency

A type system's main purpose is to accept only those programs as legal whose ex
ecution never causes certain, forbidden kinds of execution errors to occur, in other
words, to make the programming language "safe" [Car97]. The main error to pre
vent in object-oriented programming is the message-not-understood error, i.e., the
attempt to invoke an operation on a receiver object that does not implement it.
(Not normally forbidden is the null-pointer error, i.e., the attempt to make a call
although the receiver expression evaluated to a nil-handle.) It has been shown re
peatedly in the literature that smaller and larger subsets of Java are safe in this sense
[IPW99, Sym97, DE97, OheOl], including the subset on which (base-)JaM is based. It
would not be difficult to extend these results to base-JaM since the addition of modes
introduces no new cases where execution runs into an error. (The only operation
used on modes, o, is a total operation.) But to do so would be very tedious and a
distraction from our new safety property of composite state encapsulation.

In a formal setting, the mentioned execution errors mean that there is no continu
ation for the reduction process. Hence safety properties at the composite object level
can be treated independently from the traditional, lower-level safety. What is needed
as basis for composite state encapsulation is not type safety but type consistency:
The execution of legal base-JaM programs p produces only stores and object-maps
that are type consistent (f= .s, om), and runtime terms typeable in a context type
consistent with the corresponding environment stack. The latter implies in particular
that the next reduction step's redex is a well-formed term.

Observe that type consistency is independent from the details of the mode sys
tem defined in §5.4.2, so that the proofs will be nearly identical for full JaM. The
only necessary assumption is that the signature L,(f.-L c) of handles is calculated from
FldsMths(c) by adapting the modes f.-Li in it to f.-LOf.-Li·

9. TYPE PRESERVATION. The standard basis for proofs about the type system is the
property of type preservation (or its generalization to the subject reduction property
in the presence of subtype-polymorphism): Each legal reduction step preserves type
consistency and the term's type (relative to a perhaps changed annotation X' for the
higher call-levels).

102

lemma 1 (Type preservation) If e, if, s, om, g ===} e', if', s', om', g' is a reduction step
defined relative to a program p that is legal, i.e., f--- p start e0 , then

r,"' f---x e : 7 1\ ifF jl, r, r;,, X 1\ F s, om
::::} 3X'. r,"' f---x' e' : 7 1\ if' F jl, r, "''X' 1\ F s'' om'

The proof of this lemma and other theorems uses a small technical lemma to relate
mode fl' and method suite F' of receivers r in the type system with their actual mode
fl and method suite F:

lemma 2 r,"' f---x (s, jl, r) : fl' c 1\ om(r) . (Qr, F) 1\ F om
::::} fl = fl' 1\ r E Oc 1\ 3fco FldsMths(c) = (rc,F) 1\ f2r F rc

Proof: First, f,r;, f---x (s,jl,r): fl' c =? (s, jl, r) E [fl' c] =? fl = fl' 1\ r E Oc U {nil}.

Second, if om(r) is defined, r cannot be nil. This leaves r E

[obj c] om(r)=~er,F) FldsMths(c) = (rc, F) 1\ f2r F rc.

I= om
Oc ===} om(r) E

•
Proof of the main lemma: e, if, s, om, g ===} e', if', s', om', g' means there is a multi
level context c*, a redex e and a term e' such that e = G*[e] and e' = c*[e'], and

..... -+ -+1

postfixes f7 and f7' of if and if' such that e, fl, s, om, g----+ e', f7 , s', om', g'. Proceed by
induction on the height N of the derivation tree for the reduction step, which is the
same as the method nesting level of the hole in G*. In the base case, c* contains no
inlined method, i.e.' c* = G E R~' if = if and f? = if'' and X = E. In the simplest
case, c = D and e = e. Proceed by case analysis of the rule by which redex e is
reduced. It determines what kind of term e and e' are, and thus how they are typed.

Let us start with the easy cases, where the environment stack is unchanged and
consists only of the top-level environment: if= if' = ryf;. Then iff= jl, r, r;,, X means
rJ f= r. First, we derive that the new term e' that it can be typed as 7 or, if it is
an irreducible value, that it belongs to 7's extension [7], from which r, r;, f---€ e' : 7
follows immediately for annotation X' = E = X.

{ } e·T () rJI=r () var1 : e =X ~ f X = 7 :::::::::::::} rJ X = e' E [7]

f(this) =ref co c rJI=r ry(this) = £ E LoCcoc
{var1}: e = this.x 1= () () ()

5 (0) [] 5 £ = o,fl,O tn~ { "I} om o defd. tn~
e:T ::0::::::? s {_ E co c ====;> 0 E IUJc u nl ~ 0 E IUlc

l=om om(o) = (Q', F') E [obj c] } , '
FldsMths(c) = (fc, F) 1\ rc(x) = 7 ::::} (} F rc 1\ (} (x) E [7]

{rdc~st}: e = destval(t') e:T r,"' f---x g: ref 7::::} £ E £ocT 1=
5

s(t') = e' E [7]
{rdcp}: e =val(£') e:T 37'. r,"' f---x g: ref T 1\ 7 = T-[read/free] ::::} g E LoC:r

1=
5

s(t') E [T-] =? s(t')[read/free] = e' E [7]
{null}: e =null ~ 7 =free c =? e' = (r, free, nil) E [7]
{new}: e =new cO =? o E Oc 1\ 7 =free c =? e' = (r, free, o) E [7]

103

{ }
e·r

upd : e = £ = (r, J.L, w); :=::'::? T = Cmd =? e' = E E [r]
{iff}: e = if(h1 'l/Jh2){s} e:r T = Cmd =? e' = E E [r]
{ift}: e = if(hl'l/Jh2){s} e:r T = Cmd 1\ r, /'\, f-x s: Cmd e'=s r, /'\, f-x e': T

{wh}: e = while(hl'l/Jh2){s} e:r T = Cmd 1\ r, /'\, f-x s: Cmd 1\ r, /'\, f-x hl: /-Ll cl

1\ r, /'\, f-x h2 : /12 c2 ::::} r, /'\, f-x if(hl 'l/Jh2){s e} : Cmd e'= ... ,T= ... r, /'\, f-x e' : T

Since if is the unchanged top-level environment, trivially if F jj, r, K,, E. And F
.s', om' is trivial by assumption in cases where store and object-map are unchanged.

In case of {new}, nil-handles (o, f.Li, nil) are filled into the store at locations in
[ref f.Li ci] = .COcJl.i ci reserved for handles of these modes. Hence f= .s'. And the new
o E Oc is mapped to an object value with the right field locations and the right
method suite for a c-object. Hence f= om'.

And in case of {rdc~st} and {upd}, om' = om, so that f= om'. By f= .s, .s(£) =

(o, J.L, w) means that for some class c, £ E .COcJl. c and (o, J.L, w) E [J.L c]. But then
the new store value .s'(£) = (o, J.L, nil) of the {rdc~st}-case is in [J.L c], so that f= .s'. In
the { upd}-case, we have to consider what class the target w' #- nil of the new store
value .s'(£) is. £ E .COcJl. c (see above) means that r, /'\, f-x £ : ref f1 c. And having a
typing for e = £ = (r, J.L1, w') means r, /'\, f-x (r, J.L1, w') : J.L1 c' with J.L1 c' :S:m f.L c. Hence
(r, J.L1, w') E [f.L' c'] with f.L1 :S:m f1 and c' = c, and thus w' E Oc U {nil}. But then also
.s'(£) = (o, f.L, w') E [J.L c] = .COcJl. c, so that f= .s'.

I {ret} I Return is the case where the environment shrinks from if= TJ'h • TJ*(:,Jl.* ,r) to TJ'h.

• e = «return (r, J.L, w); » } e-r ()
- L X * f* * :=::'::? f*, K,* f-E return r, J.L, w ; : f.L1 c 1\ T = f.L*Of11 c

•TJi···::::} =j.L, ,K,,E f L () I ::::} *, K,* IE r, j.L, W : j1 C

=? f.L = j1
1 1\ W E Oc U {nil}

=? (s, J.L*of.L, w) E [J.L*o/1' c]
e'= ... ,T= ... e' E [r] ::::} r, /'\, f-x' e' : T

f= .s', om' follows trivially from the assumption since nothing is added to .s nor
om. The new stack if is TJ'h, and X' is E. Since if= TJ'h. TJ*(:,Jl.r,r) F jj, r, K,, X, also
TJ'h. E F jj, r, K,, E. That is, if F jj, r, K,, X'.

I {call} I Calls are the case where the environment stack grows.

•e=(s,jl,r)~j(...) =? (f:ril54r)E~(flc))
e·r (A) A Lemma 2 Fld M h ()

:=:::'::} r, /'\, f-x s, j.L, r : f.L c } ~om s t s c ::::} ~ =

• om(r) ~ (Qr, F) = (r C) F) /1°/1 d ::::} r, /'\, f-Jt,r*,~<*,<
• F(f) = K,* f1 d f (...){ ... s} «s» : T

~om, f-p f* * L . d
=::::} 1 /'\, iS.f.L

Since the new term e' is «s», this gives us the desired r, /'\, f-x' e' : T with X' =

jl, f*, K,*, E. The new stack if is TJ'h • rJ*(;,p,,r)' where the new top-level environment
rJ* maps identifiers xi to locations in [ref Ti]. The types Ti are determined from the

104

declarations in method F(f) or Ti is, in case of xi = this, the type co c since r E Oc.
The type assignment r* maps the same identifiers to corresponding type terms ref Ti.

Hence rt* F r*. Combined with if= rt'h F P,, r, r;,, X, therefore if' = rt'h. rt*(:,{l,r) F
p,, r, r;,, p,, r*, r;,*, E = p,, r, r;,, X'.

Since om is unchanged, f= om' by assumption. Consider the extensions of the
store: this's location f E [ref co c] is mapped to a corresponding handle (r, co, r) E

[co c]. The local variables' locations fj E [ref pj cj] are mapped to correspond
ing nil-handles (r, pj, nil) E [pj cj]. The parameters' locations RY E [ref f.-li ci] are
mapped to handles (r, /-lj, wi)· The target classes match because of the typing of
e = (s,{.L,r)¢f((s,pi,wi)): Derived from the types /-li ci declared in F(f), the
handle signature is (f: popi ci ~ T) E L:({.L c). Hence the argument expressions
(s, f.-li, wi) must be typed with a subtype of {.Lopi ci, i.e., some p~ ci· This means
(s, f.-li, wi) E [p~ ci], and thus Wi E ci· Hence (r, f.-li, wi) E [Pi ci]. This shows that
F s'.

If the case that the single-level context e* = e is not empty (e -=I D), consider
that typing e = e [e] required to have a typing for all of its subterms, in particu
lar redex e. Since e contains no inlined method, the typing of e must have been
in the same context. That is, r, r;, f-x e : f for some f. In conjunction with
e, if, s, om, g ----t e', if', s', om', g', the case of e = D above allows one to conclude
that there is an X' such that r, r;, f-x' e' : T and if' F P,, r, r;,, X' and F !5

1
, om'. Since

e and e' have the same type in the same context, if a type is inferred for e[e'] it must
be the type T of e [e]. The only way how the typing might fail, since it depends not
only on subterms' type, is the condition on the 1-value expression in an assignment
or destructive read. But the result e' of a redex substitution can neither be, nor be
contained in, 'this' nor 'this.x'. Therefore r, r;, f-x, e': T.

In the induction step, e[«e"»], rt'h • if, s, om, g ===? e[«e"'»], rt'h • if', s', om', g'
is derived with hypothesis e", if, !5, om, g ===? e"', fj', s', om', g'. The typing of e =

C[«e"»] required to have a typing for all of its subterms, in particular «e"».
Since e contains no inlined method, the typing of this subterm must have been in
the same context, i.e., r, r;, f-x «e"» : f for some f. This typing requires that
r*, r;,* f-x* e" : f.-1 c with f = p*op c and X = p*, r*, r;,*, X*. And rt'h. ifF P,, r, r;,, X
means iff= X. With the induction hypothesis it follows that r*, r;,* f-x*' e"' : f.-1 c and
if' f= p*, r*, r;,*, X*' and f= s', om'. Since e" and e'" have the same type in the same
context, r, r;, f-x e[«e"»l : T with X = p*, r*, r;,*, X* implies the desired r, r;, f-.x
e[«e"'»l : T with X = p*, r*, r;,*, X*'. Finally, rt'h. if' F P,, r, r;,, p*, r*, r;,*, X*' since
:::'1 L * r* * X*' d K, _, L - r x • T7 1 f.-1 , , r;, , an Tlh • T7 1 f.-1, ' r;,, ·
10. TYPE SYSTEM CORRECTNESS. As corollary from Lemma 1 we get a standard
property of typed programming languages: The type system, by assigning types T to
the program's terms e (static types), correctly predicts the types of the values v to
which these terms will evaluate (dynamic types) in environments if consistent with
the assumptions r made in the typing rules:

105

Corollary 1 Iff- p start e0 and I= .s, om and ij I= jj,, r, "''X then

r,K, f-x e: T 1\ (e, ij,.s, om,g==?* v, if',.s', om',g') 1\ v E £oc uvu {E} :=:? v E [T]

Proof: By induction on the number of reduction steps from e to v, we get r,"' f-x' v: T

with Lemma 1. Since v E £oc U V U { E}, this typing is only possible by v E [T]. •

Type system correctness is a partial notion of correctness, correctness under the con
dition of successful reduction to a value. A typing for a term neither says that the
reduction process will ever reach an end, i.e., a configuration where no further reduc
tion is defined, nor that, if an end is reached, it is because the term was reduced to
a value v E £oc U V U { E} and not because of an execution error.

11. TYPE CONSISTENCY. With the powerful type preservation lemma, type consis
tency requires only to establish type consistency and typeability in the initial config
uration eo, T7o, .So, omo, 9o·

Theorem 1 If e0 , ry0 , .s0 , om0 , g0 ==?* e, ij, .s, om, g is a reduction defined relative to a
program p with f- p start e0 then there is a T and an X such that

I= .s, om 1\ 0, obs f-x e : T 1\ ij I= read, 0, obs, X

Proof by induction on the number N of reduction steps from e0 to e: In the base case
N = 0, we have e, ij, .s, om, g = e0 , ry0 , .s0 , om0 , g0 . Empty store .s0 = 0 and object
map om0 = 0 are trivially type-consistent. The type assignment matching the empty
environment Tlo = 0(~itread,nil) is the empty set 0 of type assumptions. And the empty
annotation X = E at the turnstile symbol matches the lack of further environments
in the environment stack. Hence Tlo I= read, 0, obs, X.

Now consider the typing of the initial term e0 - new c () . main () : It is an operation
call expression, which is typed by [call]: Receiver expression new cO is typed by [new]
as free c under condition f- c ok, which is satisfied since p's legality, i.e., f- p start e0 ,

guarantees f- Dn defs c for p = D 1 ... Dn- Since f- p start e0 ensures that class c
defines a method suite F containing some F(main) ~ mut T

1 main(){ ... } without
parameters, ~(free c) contains main : E ~ T with defined adaption T = freeoT'.
main's kind "' is irrelevant since the receiver expression's mode is free. The lack
of argument expressions in e0 matches the lack of parameters in F(main). Hence
E, obs f-x e0 : T.

In the induction step N -t N + 1, reduction e0 , ry0 , .s0 , om0 , g0 ==?* e', if', .s', om', g'
is continued e', if', .s', om', g' ==? e, ij, .s, om, g. From the induction hypothesis's I=
.s', om' and E, obs' f-x, e' : T 1 with if' I= read', E, obs, X', the theorem follows by type
preservation (Lemma 1). •

106

coherence
(L3)

composite state encapsulation (T5) I
l

shallow
state encaps.

(L4)

l
I MC (T4) I

uo (T2) I MCP (T3) I
UH (T2) . .

~

StRep(o) ~
{o} U Sanc(o)

(P4)

~ l / ~/ ~
I r, /'i, 1-x e: T and f= s, om (Tl) I .-1 g-=-og-r-(e-, if-,-s)_(_P-2)---,1 1

l ~ l
type and mode system operational semantics

Figure 5.16: Dependency of proven properties

5.5 Integrity of the Higher-Level View

This section constructs bottom-up proofs for more and more complex properties, with
composite state encapsulation in base-JaM as the ultimate goal. Figure 5.16 shows
on which more basic properties which more complex properties depend. 10

1. The ownership paths in all object graphs reachable in the execution of legal base
JaM programs, share targets so that they satisfy the Unique Owner and Unique
Head integrity invariants (Theorem 2).

2. The structure of mutator access as recorded in the environment stack during
the execution of legal base-JaM programs is always consistent with ownership
paths and sanctuaries as captured in the integrity invariants Mutator Control
and Mutator Control Path (Theorems 3 and 4).

3. Each change of objects' state during a step in the execution of legal base-JaM
programs respects the state encapsulation of composite objects (Theorem 5).

5.5.1 Structural Integrity of Object Ownership

Theorem 2 If e0 , TJo,so, om0 ,g0 ==}* e', fj',s', om',g' is a reduction defined relative to
a program p with 1- p start e0 then

g' F UH, uo

Proof by induction on the number N of reduction steps from e0 to e': In the base
case N = 0, g' is the empty graph g0 = 0, which trivially satisfies UO and UH.
In the induction step N -+ N + 1, reduction e0 , TJo, s0 , om0 , g0 ==}* e, if, s, om, g is
continued e, if, s, om, g ==} e', if', s', om', g'. By induction hypothesis, g f= UO, UH.
The question is whether the step tog' preserves UO and UH.

10Note that dependency arrows are opposite to the order in the bottom-up proof.

107

Properties UH and UO are stated over potential access paths of mode free and rep
(§5.3.2). From the definition of potential access paths it is obvious that such paths
are made of free, rep, and co-edges in the extended graph g*. A violation of UH or
UO could at most be introduced in reduction steps that increase the multiplicity of
such edges in g, i.e., if g' = g EB o L w ... with J.L E {free, rep, co} and o, w E 0.
The addition of read edges and nil-handles, and the removal of edges can be ignored.

A look at the context rules shows that the changes to the object graph are ab
solutely independent of the term context e* surrounding the redex e in e = £*[e].
Hence we can move directly to a case analysis of the rule by which redex e is reduced.
In case of {var1}, {var1}, {rddst}, {null}, {ift}/{if{}, and {wh}, the object graph is
unchanged or edges are removed, so that the preservation of UH and UO is trivial. In
the other cases, we may need the existence of some typing f', k f--£ e : f for the redex.
It follows from the typing r, /'\, f-x e : T guaranteed for the whole term (Theorem 1).

I {new} I In case of object creation, the added edge r free o targets a fresh object o.
By definition, o therefore neither is targeted by old handles, nor is the source of old
(co) handles in the object graph. r free o is the only new potential access path in
g', and there is no old free or rep path with which it could be in UH- or UO-conflict.

I {rdcp} I In case of non-destructive read with e = val(£) and .s(R) = (o, J.L, w), the

multiplicity of edge o J-t[read/free] , w is increased. If J.L = free or read, the edge has
the harmless mode read. If J.L = rep or co, the edge is the same as the handle .s(R)
and thus existed already in g = ogr(e, if, .s) (Proposition 2), so that further increasing
its multiplicity cannot introduce violations of UH nor UO.

I { upd} I In case of assignment with e = .e = (o, [l, w) and .e E .COcJ-1 Cl the multiplicity

of o L w is increased while that of o L w is decreased (if w =1- nil). If J.L = [l,
this means the only change from g tog' is the decrease of R's old value's multiplicity.
Handle (o, [l, w) in term e means that the multiplicity-decreased edge indeed existed
in g = ogr(e, if, .s) (Proposition 2). Typing f', k f--£ e : f of the red ex presupposes
f', k f--£ R : ref J.L c and f', k f-E (o, [l, w) : fl c with fl :Sm f.L· By the definition of :Sm
(§5.4.2) then J.L = free implies fl = free, J.L = rep implies fl = rep or free, and
J.L = co implies fl = co or free. That is, in all cases of where an edge's multiplicity
is increased because of J.L =1- [l, fl = free. But then the outer induction hypothesis
g f= UH guarantees that edge o L w E g is the head of all ownership paths to w
and its co-objects, and its multiplicity is 1. Consequently, in the intermediate graph
g" = g 8 o L w there is no ownership path tow and its co-objects. Now consider the
addition in g' = g" EB o L w:
• In case of J.L = rep, where there are no new co edges, all new ownership paths

start with o rep w and go tow and its co-objects. This cannot cause any UH- or
UO-conflicts in g' since w and co-objects are unowned in g".

• In case of J.L = co, the addition of o ~ w entails the appearence also of its inverse
o ,......f.2.... w in g'*. These two may give raise to new free or rep paths if they extend

108

old ones. o ~ w cannot extend old ownership paths since there were no ownership
paths to w in g". Old ownership paths to o might be extended by o ~ w and
further co-paths to new ownership paths of the same mode that target w, its old
co-objects or, if further extended by inverse w ~ o, o and its co-objects.
g f= UO guarantees that o has a unique owner q. That is, the source of all old
ownership paths to o is q. Since extensions does not change the path's source,
besides the old also all the new ownership paths tow, to o, and to their co-objects
have the source q. There is no UO-conflict.
g f= UH guarantees that if there is a free path among the old ownership paths to
o, then they all have the same head and its multiplicity is one. Since all extensions
of such paths have the same head h, and since there are no other ownership paths
to w, to o, and to their co-objects, all ownership paths to them have head h of
multiplicity one. There is no UH-conflict.

I {ret} I In case of a return redex with e = «return (r, J.L, o); » and top-environment

TJ'h with h = (s, J.Ln r), the multiplicity of s ~ o is increased, while those of r L o
and s _i!:r__. r are decreased (if o -=J- nil). Note that the decreased edges indeed exist
in g = ogr(e,fi,s) (Proposition 2) because of handles (r,J.L,o) in term e and (s,J.Lr,r)
in the top-environment. Consider the mode J.L: In case of J.L = rep or read, the new
edge has the harmless mode read. In case of J.L = free, the new edge has mode
free and thus establishes free paths in g' from s to o and its co-objects. On the
other hand, the receiver's old free handle r L o was by g f= UH the initial edge
in all ownership paths to o and its co-objects. All these are destroyed in g'. Hence
there can be no new UH- nor UO-conflict between new and unchanged potential
access paths in g'. Most complicated is the case of J.L = co. Here, the new edge has
mode J.Lroco = J.Lr and may, depending on this mode, be used to build new potential
access paths n E PAP9, (o', J.L1

, w'). However, for each of them there is a precursor
n' E PAP9 (o', J.L1

, w'):

• If J.Lr =free, new J.L'-paths can only be extensions n = s _i!:r__. o ~* w' of the new
edge by co-edges in g' (actually, in g'*). The co-edges must be old, since the only
new edge in g' has mode J.Lr -=J- co. Hence a free path n' = s _i!:r__. r ~ o ~* w'
existed already in g. By g f= UH it ensured that the free call-link s _i!:r__. r is the
initial edge of all ownership paths to w' and has multiplicity one. Consequently,
decreasing the call-link's multiplicity in g' destroys all old ownership paths to o
and w'. Hence the multiplicity of the new free edge s J!rofree, o must be 1, and
must be the start of all new ownership paths to w'. There is neither a UH- nor
U 0-conflict.

• If J.Lr =rep then, analogously, the new J.L'-paths can only be extensions n = s _i!:r__.

o ~ * w' of the new edge by old co-edges in g', and there was an old rep path
n' = s _i!:r__. r ~ o ~* w' in g. This path by g f= UH excludes any old free path
n" to w'. Since the only new potential access paths in g' have mode J.Lr -=J- free,
there is no new UH-conflict. And by g f= UO, rep path n' ensured that all old

109

ownership paths to w' have source s. Since also all new ownership paths 1r have
source have source s, there is no UO-confiict.

• If /Jr = co then, besides the h = s ~ o, also the multiplicity of its implicit inverse
h-1 = s ~ o in g'* is increased. These edges have precursors 7rh = s ~ r ~ o
and nh1 = s ~ r ~ o in g*. All new ownership paths 1r in g'* must contain h
or h- 1 as non-head edge. But they all have a precursor in g* with 7rh and nh1 in
place of hand h- 1. There can be no new UH- nor UO-confiict.

I {call} I Operation calls are the most tedious case. If e = (s, [l, r)-¢= f ((s, fli, oi)) and

om(r) = (f2n F) and F(f) = K,* 11 df(xi /Ji di){ ... }, then the multiplicity of self
link r ~ r and received handles r _l!:i_, oi is increased while that of sent handles
s .lb.__. oi is decreased (unless oi = nil). Note that handles (r, fli, oi) in term e mean
that the removed edges indeed existed in g = ogr(e, if, s) (Proposition 2). If there are
n parameters, the new graph g' is the final graph 9n in the sequence g, g0 , ... , 9n of
graphs with go = g EB r ...£Q__. r and gi = 9i-1 8 s .lb.__. oi EB r _l!:i_, oi for i > 0. Show
gi F UH, UO fori= 1, ... , n by induction on the number k of non-null arguments.
Let i be the index of the last, the kth non-null argument, so that all graphs following
gi are not actually changed: gi = gi+1 = ... = 9n = g'. In the base case, the self
link is the only added edge. It cannot introduce a UH- or UO-confiict since for every
new free or rep path 1r E PAPg' (o', 11', w') containing it, there was already a potential
access path n' E PAPg' (o', 11', w') with the self-link cut out and the same head in g'. In
the induction step k -1 --+ k, the graph 9i-1 with k -1 transfered handles still satisfies
UH and UO by induction hypothesis. The question is, if gi = 9i-18s l!:i_, oi EBr _i!:i_, oi
preserves them.

Let us derive h~w the received handle's mode /Ji must relate to the sent handle's
modes fli 0 Typing r' k f--E e : f of the red ex means three things:
• r, k f--E (s, fl, r) : fl' c 1\ om(r)

0 (f2n F)

f=om-~*= fl' 1\ Fl~~Mths(c) = (fc, F) ==? Ti = fl'ol1i di
Lemma 2 }

• (j:Ti '"""-* T) E ~(JJ c) 1\ /Ji-::/:- rep

e r, PI, f--E (s, /li, Oi) : /li di (\ fli di :::;m Ti

==? (s, fli, oi) E [/li di]
1\ fli :::;m fl' OIJi

Observe above that /Ji -::/:- rep. This leaves /Ji = free and co as relevant cases.
If /Ji = free then fl' OJJi = free, so that /li :::;m fl' OIJi must be free. But if

sent handle s .lb.__. oi in 9i-1 is free, then by induction hypothesis 9i-1 F UH all
ownership paths to oi and its co-objects started with this handle. All these paths
will be destroyed in gi by the argument links' removal. And the only new ownership
paths in gi are those through free handle r _l!:i_, oi. Hence there can be no new UH
nor UO-confiict in 9i·

Similar to return steps, the case of /Ji = co is the most complicated, but this time
even more so since the subcases are less uniform to deal with. Beside parameter link
h = r ...£Q__. oi, we also find its inverse h-1 = r ~ oi as the new edges in gf. All new
potential access paths 1r E PAPg;(o',JJ',w') in gi must contain h or h-1

. Hence new

110

potential access paths 1r of mode co can only exist between r and oi and their old
co-objects. And all potential access paths 1r of mode free or rep must be extensions
1r = o' L q' • n' • h • n" or o' L q' • n' • h-1

• n" of an unchanged rep or free edge
o' L q' and some unchanged co-edges n' by parameter link h or its inverse h-1 and
by further co-edges n" (which constitute a co-path). For UO, this means that old
owners of r (and its old co-objects) become also owners of oi and its old co-objects,
and old owners of oi (and its old co-objects) become also owners of r and its old
co-objects.

First, consider what the sent handle tells us about ownership paths to oi. On one
side, the rule for handle-signature L-(P' c) with parameter mode /-Li = co ensures that
neither the call-link's mode p = P' nor the sent handle's mode Pi :::;m fl'oi-Li = p'oco =
P' are read. On the other side, argument link s l!:i__. oi in 9i-1 allows the following
conclusions:

• If Pi = free, then s l!:i__. oi was by induction hypothesis 9i-1 I= UH the initial edge
in all ownership paths to oi and its co-objects. All these disappear in gi by the
decrease of its multiplicity from one to zero. Hence there can be no old ownership
path o' L q' • n' to oi which h • n" could extend.

• If Pi = rep, then through s l!:i__. oi there were rep paths s l!:i__. oi __fQ_, * w' to oi and
all its old co-objects w' in gi_1 . They ensure by induction hypothesis 9i-1 I= UO,
that the source of all old ownership paths o' L q' • n' to these objects is s. And
they exclude by induction hypothesis 9i- 1 I= UH that any of them is a free path.
But then all extensions of unchanged ownership paths o' L q' • n' to oi by h • n"
must have mode JL1 = rep (hence no UH-confiict here), and their source o' is s
(hence no UO-confiict here).

• If Pi = co, then argument link s£.Q__, oi has an inverse s ,_..£2... oi in g7_ 1 .

Second, consider the receiver expression (s, p, r) in e. tells us about ownership
paths to r: By g = ogr(e, if, s) (Proposition 2), there must be a corresponding edge
s L r in g, the call-link. Since it is not removed, it still exists in gi_1:

• If p = P' = free then the free call-link s L r in 9i-1 means by induction
hypothesis 9i-1 I= UH that it was the head of all old ownership paths to r and
its co-objects. Hence all extensions n = n' • r£.Q__, oi • n" of unchanged ownership
paths n' with target r must start with call-link s L r. On the other side, Pi :::;m
P' OJ-Li = free means that Pi is free. Hence, as shown above, there are no other
new ownership paths, and the old ownership paths to oi and its old co-objects
have disappeared in 9i· The only new ownership paths are free with initial edge
s L r, and the only unchanged ownership paths with the same targets (oi and r
and their co-objects) are free paths with initial edge s L r (targeting r and its
co-objects). There is no new UH- nor UO-confiict.

• If p = P' =rep then the rep call-links L r in 9i-1 means by induction hypothesis
9i- 1 I= UH that all unchanged ownership paths to r and its co-objects are rep
paths. And by induction hypothesis 9i- 1 I= UO, all these ownership paths must

111

have source s. Consequently, all extensions 1r = 1r' • r£.Q...., oi • Jr
11 of unchanged

r-targeting ownership paths 1r
1 are rep paths (a), and sis their source (b). On the

other side, fli :s;m fl' opi = rep means that fli is rep or free. In case of rep, as
shown above, all unchanged ownership paths to oi and its co-objects are rep paths
(a), with source s (b), and also all new ownership paths by extending them are
rep (a), and have sources (b). In case of free, as shown above, there are no other
new ownership paths, and the old ownership paths to oi and its old co-objects
have disappeared. That is, in both cases, all new ownership paths are rep (a) with
source s (b), and the unchanged ownership paths to their targets (oi and r and
their co-objects) are also rep (a) with source s (b). There is no new UH-confiict
and no new UO-confiict.

• If jl = co then fli :s;m fl' opi = co means that fli is co or free. If free then, as
shown above, the old ownership paths to oi and its old co-objects have disappeared
in gi and cannot give raise to new ownership paths: All new ownership paths 1r

are extensions of unchanged ownership paths 7r
1 E P =dr Ua' PAP9i (o', free, r) U

PAP9i(o', rep, r) to r, and thus have the same initial edges h E H =dr first(F)
(there are no new free or rep edges in g:). And all unchanged ownership paths
1r" with the same targets, namely r and its old co-objects, also have initial edges
h E H since they are themselves r-targeting paths in P, or since they can be
extended by the old co-links between rand this co-object to an r-targeting path in
P with the same initial edge. But if all new ownership paths-and the unchanged
ownership paths sharing targets with them-have an initial edge in H then the new
ownership paths cannot introduce new UH- nor UO-confiicts: Induction hypothesis
9i-l I= UH ensures that if one hE His a free handle, then there is no other handle
in H, and h's multiplicity is one. And induction hypothesis 9i-l I= UO ensures
that paths 1r' E P have a unique source o'. Hence so have all initial handles hE H,
and thus all new and old ownership paths with the same target. There is no UH
and no UO-confiict.

If fli = co, then consider that the co-call-link s£.Q...., r has an inverse r£.Q...., s
in gi_1 . Hence every new potential access path 1r E P AP9i (o', p', w') in Qi has a
precursor irE PAP9i_ 1 (o', p', w') in 9i-l where for the new parameter link r£.Q...., oi
one substitutes the pair r£.Q...., s£.Q...., oi of the inverse call-link and the argument
link, and for the new inverse parameter link oi£.Q...., r one substitutes the pair
oi ~ s ~ r of the inverse argument link and the call-link. The precursor ir of a
new free or rep path 1r moreover must have the same initial edge since the only
new edges in gi have mode co. Hence 9i I= UH and 9i I= UO follow directly from
induction hypothesis 9i-l I= UH and Qi-1 I= UO. •

112

5.5.2 Structural Integrity of Mutator Access

Theorem 3 If e0 , TJo, Eo, om0 , g0 ==?* e, if, E, om, g is a reduction defined relative to a
program p with f--- p start e0 then

g, ifF MCP

Proof by induction on the number N of reduction steps from e0 to e: In the base
case N = 0, g is the empty graph g0 = 0 which trivially satisfies MCP with any
environment stack. In the induction step N --+ N + 1, execution e0 , TJo, Eo, om0 , g0

==?* eN, ifN, EN, omN, 9N is continued eN, ifN, EN, omN, 9N ==? e, if, E, om, g. Let
iJ- 'n 1\;lo 0 'n 1\;n With h·- (w· II· W·)
'I - •t1hl · · · 'tnhn ~ - ~-11 t-"~l ~ •

The situation is simple for all those call-levels in if which existed already in ifN·
Let k be the depth of stack ifN. For mutators at any level i ::; k (K,i = mut), the
induction hypothesis's gN, ifN f= MCP guarantees for some j a path 1r = hj, ... , hi of
call-links in ifN that form an ownership path Wji- 1 ~ Wji' ... ,wi_1 ..l!:i.... wi· Since if
still contains the call-links hj, ... , hi of levels i ::; k and below, these call-links still
exist in g = ogr(e, if, E) (Proposition 2) and still form the ownership path 1r.

Consequently, in all reduction steps where n = k or n = k - 1, the induction
hypothesis guarantees g, iff= MCP. And case of { call}-steps with n = k + 1, levels 1
to n-1 = k are covered by the induction hypothesis. The new level n is a mutator, i.e.,
K,n = mut, if K,* in the called method F(f) = K,* t f (...){ ... } for om(r) ~ (Qr, F) is
mut. The term's typing r, /'\, f---x e : T (Theorem 1) with fi, r, K,, X= f-Li, ri, 1'\,i· implies
a typing r n 1 1'\,n f---E e : T for the red eX e in the COnteXt Of the type assignment and
method kind for the most deeply nested inlined method. The last element is r n, K,n, E

since ifN F fi, r, K,, X (Theorem 1). Typing the call expression e required a typing
r n, K,n f---E (s, f-Lr, r) : fir c for the receiver expression. Hence om(r) . (Qr, F) with
f= om (Theorem 1) means by Lemma 2 that FldsMths(c) = (fc, F) and fir= f-Lr· But
then (f: (...) ~ T 1

) E L-(fir c) with the same kind K,* as F(f). Therefore typing e
ensured in case of K,* = mut that f-Lr =fir E Wr(K,n)· This leaves two cases:

• If f-Lr is free or rep, then the call-link h = s J!:L... r in g is the necessary ownership
path for r: h E PAP9 (s, f..lr, r). (h E g follows with g = ogr(e, if, E) from h as
call-link in the new top-level environment in if.)

• f..lr can be co only if K,n is mut. But then induction hypothesis gN, ifN f= MCP
ensures an ownership path 1r = hj • ... • hn E PAP9N(wj, f-L1

, s). As explained
above, 1r still exists in g since it consists of call-links in ifN· The co call-link in g
extends 1r to the necessary ownership path for r: 1r • h E PAP9 (Wj, f..l1 , r). •

Theorem 4 If e0 , 'TJo, Eo, om0 , g0 ==?* e, if, E, om, g is a reduction defined relative to a
program p with f--- p start e0 then

g,iff= MC

113

Proof by induction on the number N of reduction steps from e0 to e: In the base
case N = 0, g is the empty graph g0 = 0, which trivially satisfies MC with any
environment stack. In the induction step N ---+ N + 1, execution e0 , TJo, s0 , om0 , g0

====>* eN, ifN,.sN, omN,9N is continued eN, ifN,.SN, omN,9N ====> e, if,.s, om, g. Let
if= T/1~~ • ... • TJn~: with hi= (wi-1, f-ti, wi)·

Proceed by reductio ad absurdum. Assume a violation of MC by g and if. Then
there must be a call-level i in if at which the receiver wi is executing a mutator (K,i =
mut), and there is a "non-controlling" representative o1 which has wi in its sanctuary
Sanc9 (o1) but does not execute a mutator at a lower call-level (o1 tj_ { w1, ... , wi}).
The inductive definition of Wi E Sanc9 (o1) based on rep paths obviously requires a
non-empty sequence 1r1 • ... • 1fk of rep paths 1r1 E PAP9 (o1, rep, oJ+1) connecting o1

"th · b" t ren ren ren Wl Wi = Ok+l VIa 0 JeC S 0 2 , ... , Ok: 0 1 --=--t 0 2 --=--t ... --=--t Ok+l = W.
Show by induction on the length k of the shortest connecting rep path sequence

that the representative is executing a mutator at a level j :::; i. In the base case
k = 0, j = i and wi = o1. But wi cannot be the non-controlling representative o1
since K,i = mut.

In the induction step k-1---+ k, sequence o 1 _.!"f:P_-t o 2 ... ok-l _.!"f:P_-t ok is extended
by 7rk = ok _.!"Ep_-t ok+l E PAP9 (ok, rep, wi)

1. gN, fiN f= MCP (Theorem 3) guarantees for K,i = mut some j such that 1r =

h1 • ... o hi is an ownership path from w1_1 to wi.
2. 7rk E PAP9 (ok,rep,wi) means by g f= UO (Theorem 3) that all ownership paths

to wi start with ok. Hence Wj-1 = ok.
3. By g f= UH (Theorem 3), rep path 7rk to wi guarantees that there is no free path

to wi. Consequently, 1r E PAP9 (ok, rep, wi) and wi E Sanc9 (ok)·
4. If, on one hand, call-level i existed already in ifN, i.e., i :::; n, then rep path 1r =

h1 o .•• o hi already existed in ifN, and thus in 9N by virtue of 9N = ogr(eN, ifN, 5N)
(Proposition 2). But then wi E Sanc9N (ok), so that the outer induction hypothesis
9N, fiN f= MC guarantees a mutator-execution by ok at a call-level j :::; i in ifN,
and thus in if.

5. If, on the other hand, call-level i is new in if, then it must be the new top-level
i = n = nN + 1 in a { call}-step: if is fiN ° TJ*~,J.Lr,r) for redex e = (s, f-tr, r)~ f (...),
with K,i = K,n = K,* and wi = Wn = r and wi-1 = Wn = s. As elaborated in the
proof for Theorem 3, the typing r, /'1, f-x e : T of term e with redex e required
that f-tr E Wr(K,n) if K,i = K,n = K,* is mut. f-tr cannot be free, since call
link (s,f-tnr) in if' would by g = ogr(e,if,.s) (Proposition 2) mean a free path
s ~ r E PAP9 (s, free, wi) to wi, in contradiction to step 3. If K,n = mut and
f-tr = rep, then the call-link s ~ r in g is the path 7rk, i.e., ok = s ~ r = wi.
This means that ok = s = Wn is executing a mutator at level j = n :::; n. And if
K,n = mut and f-tr = co, then 7rk is extended by the call-link's inverse r£.Q__. s to
a rep path from ok to sing*, so that s E Sanc9 (ok)· But then, as shown in the
previous step, s = Wn with K,n = mut means a mutator-execution by ok at a level
j:::; n.

114

6. Either way, ok is executing a mutator at some call-level j :::; i :::; n in if. Since ok E

Sanc9(oi) through rep paths n 1 • ... • 7fk_1, the induction hypothesis therefore
guarantees that o1 is executing a mutator at some call-level j 1

:::; j :::; n. This
violates the assumption of o1 as a "non-controlling" representative. •

5.5.3 Composite State Encapsulation

Th 5 If * _. I -::'/ I I I · d · eorem e0 , rJo, .s0 , om0 , g0 ===> e, 7], .s, om, g ===> e , 77 , .s , om , g IS a re uct1on

defined relative to a program p with f-- p start e0 then for all o E dom(om),

CStates,om(o) =/= CStates',om'(o) =? :::li:::; n. ri = o 1\ K,i = mut

Proof: The proof goes straight-forward with the lemmas on coherence and shallow
state encapsulation developed below (Lemmas 3 and 4).
CStates,om(o) =/= CStates',om'(o)

Lemm~ 3
:::Jw E StReps,om(o) • .sifids

0
m(w) =/=.51

ifldsom(w)

Lemm~4 ::J SR () ::JW E t eps,om o • rn = W 1\ K,n = mut

Proposition 4 =::=;,
Proposition 2 =::=;,

rn E StRePs,om(o) 1\ K,n = mut

rn E {o} U Sancogr(e,if,s)(o) 1\ K,n = mut

rnE{o}USanc9 (o) 1\ K,n=mut
(rn = o 1\ K,n = mut) V (rn E Sancg(o) 1\ K,n = mut)

Theor~m 4 () (::J ·) rn = o 1\ K,n = mut V ::J't :::; n. ri = o 1\ K,i = mut
:::Ji :::; n. ri = o 1\ K,i = mut •

One naturally expects that all changes of a composite object's state CState(o) are
represented by updates of fields of some implementation objects in its state repre
sentation StRep(o). We call this property "coherence" (of composite objects, of
composite state, or of state representations, as you please).

Lemma 3 If e0 , rJo,.s0 , om0,g0 ===>* e, f(,.s, om,g ===> e1
, if,.s

1
, om1,g1 is a reduction

defined relative to a program p with f-- p start e0 then

Proof: A change of the composite state CStates,om(o) means, if we expand it by
Definition 5, a change of a restriction of the store, namely

=/=
51

I U fids 1(w) wEStRep 1 1 (o) om s ,om

115

In the simple case, the domain of the restriction is unchanged: L = UwEStRePs,orrJo)
fidsom(w) = UwEStRep, ,(o) fidsom'(w) = L 1

. Then the composite state changes IL i-
s ,om

5
1 IL' means that the store changed at some location£ E L = L 1

: s(£) -::/:- s 1 (£'). It must
be the field location£' E fidsom(w) of some object wE StRep5 om(o). Since s(£)-::/:- 5

1(£'),
s ifldsom(w) =1- 5

1 ifldsom(w) for this w. ,
Next consider a change in the set of store locations representing the composite

state: L = UwEStReps,om(o) fidsom(w) -::/:- UwEStReps',om'(o) fidsom'(w) = L1
• It is obvious

from the reduction rules that object-map om changes only by extension, and for fresh
object identifiers. For the "old" objects w E StRep5 om(o), the set of field locations
is unchanged: fidsom(w) = fidsom'(w). Hence the ch~nge from L to L 1 presupposes
a change of the set of state-representing implementation objects: StRep5 om(o) -/:-
StRep5,,om'(o). Expanded with Definition 4, this means '

{o} U u StRep 5 om (W) -::/:- { 0} U , u StRep s' om' (W) ,
PAPfgrom(s)(o,rep,w)~0 PAPfgrom' (•') (o,rep,w)~0

That is, there must be an object q that is reachable from o by a non-empty
sequence o = o0 _E<:P_+ o1 _.!'~-+ ... _E~-+ On = q of rep paths in field subgraph
fgr0m(s) but no such sequence in fgrom'(s 1

), or vice versa. Each of the rep paths
oi -E~-+ oi+l is in base-JaM a rep edge followed by co edges: oi = oi,o ~ oi, 1£2....

oi,2 ... oi,k; _1£2.... oi,k; = oi+ 1· In order for the path sequence to exist in fgr0 m (s) but
not in fgrom' (s'), or vice versa, there must be a left-most rep or co edge oi,j ~ oi,j+1

or oi,j ~ oi+1,0 that appears in, or disappears from, the field subgraph. That is, a
handle (oi,j, f.L, oi,j+l) or (oi,j, f.L, oi+1,0) is captured in, or removed from, a field location
£'. By source consistency l=s om (Proposition 1), this field must belong to the handle's
source oi,{ £ E fids0 m(oi,j). Since non-empty prefixes of rep paths are also rep paths,
there is an unchanged rep path sequence from o up to oi,j· This means that oi,j is in o's
state representation before and after the change: oi,j E StRePs,om(o) n StReps',om'(o).
Since oi,j has a changed field, s iflds

0
m(o;,j) -::/:-51 iflds

0
m(o;,j)' it is the desired object w. •

Shallow state encapsulation means that o's fields change only by assignments and
destructive reads executed by o itself. This may seem obvious from the typing rules,
but proving it is surprisingly tedious since two obvious invariants about variables have
to be verified.

L 4 If * ~ I ~ I I I · d t' emma e0 , r]o, s 0 , om0 , g0 ===:;:.. e, r], s, om, g ===:;:.. e , T] , s , om , g IS a re uc 1on
defined relative to a program p with f-- p start e0 then for if = 7]1 ~:, ... , rJn~~ with
hn = (sn, f.Ln, rn). and for all wE dom(om),

rn = w 1\ K,n = mut

Proof: The proof is based on two invariants holding in configuration e, if, s, om, g.
Let if= 1]1~~, ... , 1Jn~~ with hi = (si, f.Li, ri)·

116

11 Fields are not aliased by local identifiers: locals (if) n fids (om) = 0
where locals(if) iS the set U1)hEi]im(7J) of locations of all local Variables.

12 Field locations of object o occur at ((mutable positions" only in mutators of o:

mutlocs(ci) nfidsom(o) =1- 0 ::::} ri = o 1\ "'i = mut
where mutlocs(ci) are is the set of locations that are left-hand sides of assign
ments and the 1-values in destructive read accesses in the term context ci at
nesting level i. A precise definition will be given below.

If the environment stack if has height n, a runtime term e for which e, if, .s, om, g
=::::} e', i]', .s', om', g' is defined must contain n nesting levels of inlined methods.
Hence it can be decomposed by a series of reduction context c1 , ... , Cn-l E R~
and an innermost runtime term en containing no inlined method body such that
e = c1[«c2[« ... [«cn_1[«en»]»] ... »]»]. For uniformity, let us write en for en.

The set mutlocs (e) of locations identifying the updated variables in assignments
or the destructively read variables in read accesses in a runtime term or reduction
context e is determined inductively as follows.

mutlocs(x) =dr 0
mutlocs(this.x) =dr 0
mutlocs(£) =dr 0
mutlocs(h) =dr 0
mutlocs(null) =dr 0
mutlocs(new cO) =dr 0
mutlocs(D) =dr 0
mutlocs(while (e){s}) =dr 0

mutlocs(e=e;) =dr {e E £oc} U mutlocs(e)
mutlocs(destval(e)) =dr { e E £oc}
mutlocs(val(e)) =dr 0
mutlocs («s») =dr mutlocs (s)

mutlocs(return e;) =dr mutlocs(e)
mutlocs(s1 s2) =dr mutlocs(s1)
mutlocs(ifCenbe2){s}) =dr mutlocs(e1) U mutlocs(e2)
mutlocs(eo<;=f(el, ... ,en)) =dr U~0 mutlocs(ei)

We are able to ignore the subterms of while statements, the then-branch of if
statements, and the second statement in a sequence since these are never partially
evaluated, and thus always free of locations. The cases ofruntime terms e=e, val(e),
and destval (e) are simplified based on the assumption that their subterm e can never
contain destructive reads nor assignments.

Next, show by induction on the number N of reduction steps from e0 to e that the
auxiliary invariants I1 and I2 hold in e, if, .s, om, g. In the base case N = 0, there can
be no £ E fids (om) and no o E dom(om) since om = om0 = 0. Hence invariants
I1 and I2 are trivial. In the induction step N ---+ N + 1, execution e0 , 1Jo, .s0 , om0 , g0

=::::}* eN, ifN,.SN, omN,9N is continued eN, ifN,.SN, omN,9N =::::} e, if,.s, om, g.
Ad Il. Since locals(ifN) n fids(omN) = 0 by induction hypothesis, condition

locals (if) n fids (om) = 0 could only be violated by the addition of locations to ifN,
i.e., in a {call}-step, or to omN, i.e., in a {new}-step. In both cases, the added
locations are fresh-so that they do not overlap with old locations-and they are
added to only one of ifN or om N. Hence locals (if) n fids (om) = 0.

Ad I2. The induction hypothesis means that
eN= cl[«c2[«. · · [«cnN-d«CnN»]»]. · .»]»]

with mutlocs(ci) nfidsomN(o) =1- 0 ::::} ri = o 1\ "'i = mut foro E dom(omN)· The

117

invariant is unaffected by all steps in which there are no new locations in the term
e, and in which om and if are unchanged. In case of {new}, there is a new object
in dom(om), but the locations of its fields are fresh, and thus cannot occur in e. In
case of {call}, nothing is removed from ifN· It is only extended to height n = nN + 1.
The term at the new nesting level in e is the method body s. Since it originated from
the program p, it cannot contain any locations. In case of {ret}, top-level receiver rn
and method kind ""n are removed from the stack. But they are not needed any more
since the method nesting depth of e is n = nN- 1, i.e., one less than that of eN. In
case of { var1}, the only change is that e contains the additional location TJn (x). By
induction hypothesis 11, locals (ifN) n fids (om N) = 0, so that this location cannot be
the location of any object's field.

The really interesting case is { var1}. Here the redex e = this.x in eN reduces
to the location £ E fidsomN(o) of o's x-field, where o is the target of the top-level
this-handle: .s(TJn(this)) = (o,J.L,o). By source consistency f=.sif (Proposition 1),
the source o of a handle at a location in top-level environment TJn~~ implies that o is
the top-level receiver rn. If the redex e in eN is a right-hand side or destructively read
expression, i.e., en = e[destval(e)] or en = e[e=e2], then e~ = e[destval(£)] or
e~ = e[£=e2], respectively means there is a new field location£ in mutlocs(e~). The
typeability of eN guaranteed by Theorem 1 required the typeability, in particular, of
redex destval(e) ore= e2, respectively in the context of r n, ""n· But then e = this.x
implied r;,n = mut. Since rn = w and r;,n = mut, and since the other levels of term and
environment stack are unchanged, invariant I2 is preserved.

With invariants 11 and I2 holding in e, if, .s, om, g, it is now easy to show shallow
state encapsulation: Consider the cases of step e, if, .s, om, g =::::;, e', if', .s', om', g'
which reduces redex e in e = e[e] to e' in e' = e[e']. Shallow state encapsulation is
trivial for all reductions which change neither .s nor om. In case of {call} and {new},
om is unchanged or changes only for a fresh object identifier, and .s changes only at
locations that are fresh. Thus neither do old objects get new fields, nor does the
value of their old fields change, so that shallow state encapsulation is trivial. In case
of {ret}, the store is reset at the locations in top-level environment TJn E if. This
changes no object's fields since locals(ij) n fids(om) = 0 by 11. Hence shallow state
encapsulation is trivial.

The two steps where .s lflds
0
m(w) =J .s' lfldsom'(w) are { rdctst}-steps with e = destval (£)

and { upd }-steps with e = £ = e2 such that £ E fids0 m(w) = fidsom'(w) for some w.
....,

In this case, the redex's reduction is e, fl,.s, om,g -----t e', f7 ,.s', om',g' withe at
nesting level n in e and with ~ = TJn and f? = TJ~. The I2 guarantees the desired
rn = w 1\ ""n = mut. •

118

Chapter 6

JaM with the Full Mode System

There is a theory which states that if ever anybody discovers
exactly what the Universe is for and why it is here,
it will instantly disappear and be replaced
by something even more bizarre and inexplicable.

Douglas Adams (1952-2001)

This section extends base-JaM's reduced system of modes to the full system pre
sented in chapter 1: Association modes o: E A are added to the set of modes, and
these base-modes are parameterized by correlations 5 to specify the mode of p,-paths'
extensions by association paths. A full mode now has the form m<5>.

While the formal treatment of many JaM properties is a simple forward adaption
from the previous chapter, the proofs of the unique owner and unique head invariants,
and of coherence will have to be redone completely: Potential access paths in JaM
have a much more complicated structure than in base-JaM through the possibility of
extending p,-paths to non-p, paths. This lets the complexity of reasoning explode. In
order to make the formal treatment feasible within the space of a dissertation, some
simplifications are made:
• We will consider neither the extensions o _c~-t q _q_-t w and o ..9'~-t q _q_-t w of co

and association paths by association paths, nor the extension o Y:..-t q _q_-t w of
potential access paths by association paths to co- and free paths o _c~-t w and
o _:~ . .r.~~-t w. This simplification is reflected in constraints on the nesting structure
of mode-terms: Only modes free, rep and read are parameterized by correlations
(free<5>, rep<5> and read<5>, but co<> and {3<>), and only by correlations to
rep, read and association modes (m< ... , o:=rep<5'>, ... >, m< ... , o:=read<5'>, ... >
and m< ... , o:=1<>, ... >).

• Implicit mode-conversions from free<> to co<> or o:<> caused by assignment or
parameter supply will not be considered. (Tedious invariants about all sequences
w --~--t q of association paths starting from targets of free<> paths o !~e~?-t w
would be needed in order to show that such conversions preserve the uniqueness
of ownership.) This simplification will be reflected in the definition of the mode
compatibility relation ::;m.

119

• null and new expressions are annotated with a correlation-set 6 to make explicit
which correlations should parameterize their value.

• Base-JaM's simplifications of the Java subset for the formal treatment remain:
Explicit read access, no values other than object references, no subclassing, etc.

After the definition of JaM as an extension of base-JaM in the first half of this
chapter, the second half will prove the higher-level properties of the execution states
and steps possible in JaM, namely the structural integrity of ownership and mutator
access, and state encapsulation.

6.1 Introducing the New Modes

1. FULL MoDES. In JaM as in base-JaM, class names care annotated with modes
p, in Java's declaration of object reference variables in order to classify the con
tained object references and their concatenations to potential access paths. JaM
extends and refines base-JaM's set of modes, the base-modes: The set of modes
is extended by a set A of identifiers a called association roles to the set B =
{free, rep, co, read} U A of base-modes. Each base-modem E Bin then parameter
ized by the annotation of a (possible) empty set c5 of correlations ai=f.-ti to a full
mode f.-t = m<a1=f.-t1, ... , an=~-tn>.

A correlation a=p,' on a reference or path 1r = q rn_<.:..·..:.,_q_=Jl~.:..·..:.~ o correlates o's
a-paths with q's p,'-paths, so that consequently 1r is extended by o's association ref
erences and paths o _g-:_>_-t w to paths q y,~-t w. By itself, i.e., from the perspective of
source object o, classifying a reference or path o ---t w by an association role a E A
says nothing about target object w. It does not fix w's owners or sanctuary member
ships. It only allows third objects q with a path q rn_<.:..-..:.Lq_=Jl~:..·..:.~ o too to fix w's owner
and sanctuary membership by correlating a with an appropriate mode.

The meaning of old base-modes mE {free, rep, co, read} for the classification of
references h = o ...I!l... w and paths 1r = o _172:-t w remains unchanged:

• Base-mode m = rep means that o is w's owner, which is expected to be unique,
and w belongs to o's sanctuary Sane(o). If 1r is represented in fields, then w is a
state-representing component of o in StRep(o).

• Base-modem= free means that o is w's owner, which is expected to be unique,
and w is expected not to belong to any sanctuary (and to no composite state
representation except StRep (w)).

• Base-modem= co means that wando have the same owners, and belong to the
same sanctuaries Sanc(q). o and w are called co-objects.

• Base-modem= read means that nothing is said about w's owners and sanctuary
memberships.

2. EXAMPLE: MAPS. Let d be an instance of the Mapimp class with three entries
represented as Pair components el, e2 and e3, and a entry-set component s of class

120

~entry?
j.l entries

~nodes

read<>

fst<>
snd<>

A
data<>

fst<>
v II 0 snd<>)m ()

data<> ~~
fst<>)Ill
snd<>)m

where
f-Lanchor = rep<data=elem<>>
f-Lentryset = rep<elem=rep<fst=key<>, snd=value<>>>
f-Lnodes = rep<dest=read<data=dest<>>>
f-Lentries = free<dest=rep<fst=key<>, snd=value<>>>

Figure 6.1: Moded object graph during lookup

PSetimp. Composite object s is a composite object like C2 in chapter 1 that reifies
not a set 8 1 of pairs but a set 8 2 of Pair objects. Consider the situation while d is in
the middle of an iteration over its entries during a lookup for k2. Figure 6.1 shows
this situation as an object graph. The edges are labeled with modes in a way that
expresses the object composition and state representation relationships:

Rep and free modes suffice to express object composition relationships repre
sented by directed object references (see the right hand side of fig. 6.1): Node nl is
a state-representing component of set s, which is a state-representing component of
map d; and iterator nn is a state-representing component of iterator i, which is a
behavioral component of map d. That is, the abstract state of the map object is,
in part, represented in the objects d, s, and nl. And the state of the map's itera
tion over the set is represented in i and nn. However, rep and free are unable to
properly capture that the other two nodes also belong to s's state representation, and
that the Pair objects el, e2, and e3 belong to d's state representation. Declaring
the next-links of PNode objects to be rep would turn single-linked node nl into a
composite object, that subsumes the next object n2 as a part of its state, contrary
to the meaning of "node." Since the nodes are linked to a ring structure, next-links
of mode rep would mean cyclic composition, something which is non-sensical for any
aggregation or part-whole relation [OMGOO, Sim87, Var96].

The next-links between PNode objects link the node objects to an object structure,
and an object structure is not expected to be shared among composite objects. Either
it completely belongs to a composite object, or not. It cannot be that one composite
uses the first half of a PNode-list (or the odd PNodes), while another composite uses the
second half (or the even PNodes), for their respective state representation. Therefore

121

Figure 6.2: Structural interpretation of the moded object graph

the correct classification for the next-links is co: This tells us that n2 and n3 are,
like nl, state-representing components of sin the state representation of the set (and
thus of the map). The result of this interpretation of base-JaM's rep, free and co
labels on the edges is depicted in the right hand side of figure 6.2. However, what
worked for the nodes' next-links does not work for their data references: First, the
value stored in a node, if it is an object reference, does not mean that the target is a
constituent of the object structure formed by the linked nodes. Second, the element
objects of the set S = { el, e2, e3} of Pair objects reified by s are not parts of the
set's PSetimp implementation (but of the map's implementation).

The correct classification of the data references in the Nodes, and more gener
ally, of object references stored in data structures or container objects, requires the
additional flexibility provided in JaM only by the new association modes and corre
lations. Giving the references stored in the Nodes the mode data<> lifts from a field
name to the type level the information that the targets are the Nodes' data. The
set representative's anchor reference s rep<data=elem<» 1 nl specifies that the data of nl
and its co-objects are s's elements. And the map representative's entryset reference
d rep<elem=rep<fst=key<>, snd=value<»>: s specifies that s's elements are state-representing

components of d and that the first and second elements in these elements are, respec
tively, d's keys and values.

3. EXAMPLE PATH DERIVATION. More systematically we can determine the objects'
relationships by deriving, step by step, the modes of the paths in the object graph
(see the left hand side of fig. 6.2): Anchor reference s rep<data=elem<» 1 nl combines
with nl data<> el to a paths--~ el of mode elem<>. With this path, the entryset
reference d rep<elem=rep<fst=key<>, snd=value<»> I 5 combines to a path d -- ~ el of mode

rep<fst=key<>,snd=value<». This means that el is an component of d whose
fst and snd paths extend d --~ el to key and value paths of d, i.e., that el is
an entry object. The same works for paths through the other nodes n2 and n3:
Anchor reference 5 rep<data=elem<» nl is extended by the next-links nl co<> n2 and

122

The class of el, e2, e3:

class Pair {

The class of nl, n2, n3:

class PNode {

The class of nn:

class PNodeit {

}

fst<> Object fst;
snd<> Object snd;

}

co<> PNode next;
data<> Pair data;

}

dest<> PNode curdest;

The class of s:

class PSetlmp {

The class of i:

class PDatalt {
rep<dest=read<data=dest<>>>

PNodelt nodes;
}

rep<data=elem<>> PNode anchor;

}

The class of d:

class Mapimp {
rep<elem=rep<fst=key<>, snd=value<>>> PSetimp entryset;

obs value<> Object lookup(read<> Object wanted)
{ free<dest=rep<fst=key<>, snd=value<>>> PDatalt entries;

}

}

Figure 6.3: Mode declarations in the map example

n2 co<> n3 to paths s ---t n2 and s ---t n3 of the same mode. They combine with
n2 data<> e2 and n3 data<> e3 to elem paths s ---t e2 and s ---t e3. With these
paths, the entryset reference combines to paths d ---t e2 and d ---t e3 of mode
rep<fst=key<>,snd=value<», which specify also for e2 and e3 that they are entry
components of d.

On the iterator's side, nn's dest<> edge to n2 entails dest-paths to all nodes in
the ring (not shown). Intuitively these paths mean that the nodes are the destina
tion objects in the iteration which nn reifies. And i's rep<dest=read<data=dest<»>
link to nn specifies that the data objects of nn's destination objects are the destina
tion objects in the iterative navigation along s's elem-links which i reifies: i's link
to nn is extended to dest-paths i ---t el, e2, and e3 by concatenation with nn's
dest-paths and with the data-edges in their targets. Map d has a free<dest=rep<
fst=key<>,snd=value<>» reference to i (in its lookup method), whose extensions by
i's dest paths are alternative paths to el, e2 and e3 of the same mode rep<fst=key<>,
snd=value<>>.

4. EXAMPLE DECLARATIONS. The mode-classification of the references in the object

123

graph, from which the mode-classification of paths is derived, is specified in the
program by the mode qualification of object reference types in declarations. The
code fragments in figure 6.3 show the declarations of the fields and local variables
which hold the object graph's handles in the map example. The complete program
code can be found in appendix B.

6.2 Adapted Definitions

6.2.1 Syntax, Semantics, Typing

1. THE SYNTAX OF JAM PROGRAMS adapts the base-JaM syntax by association
roles "A" as additional alternative for base-JaM's mode-terms ("base-modes") and by
the annotation of correlations to base-modes, to null and to new. The syntax rules
which changed compared to the base-JaM-grammar (fig. 5.1 on page 71) are shown
in figure 6.4. The complete JaM-grammar can be found in appendix A.

2. SEMANTICS AND TYPE SYSTEM. Most definitions remain literally the same as in
base-JaM, changing only implicitly through the change of the definition of the set M
of valid modes (which is a restriction of the mode-terms derived from nonterminal M
that will be defined in paragraph 6): Object graph edges (o, f.L, w), handles (o, f.L, w) in
store, runtime-term and environments; source consistencies Fs om, Fs if, and Fs,i/ e;
term reduction contexts; handle types f.L c, location-partitions £oc~" c, type extensions
[T]' and type consistencies T7 F r' F .s' F om' and if F r' K,, f.Ln X 0 Their definitions
will not be repeated here.

Explicit adaptions are required only for definitions in which modes occur verbatim.
In particular, the mode system definitions will have to be reconsidered carefully.
This is the subject of §6.2.3 further below. The other adaptions are straight-forward
additions of empty or explicitly annotated correlation-sets:

Initial configuration. The mode of the call-link in the initial configuration is adapted
from read to read<>. That is, the execution of a JaM program is the sequence of
reduction steps starting

new<> CnO.mainO, 0(~il,read<>,nil)l0,0,0 ===? el, ifi,.sl,oml,gl ===? 000

The changed reduction and typing rules are shown in figure 6.4 (for the complete set
of definitions, see appendix A):

• Value and type of expression this are adapted by adding an empty correlation-set:
Reduction rule {call} reduces an operation call expression to an inlined method
body executed in an environment mapping this to a fresh location £ E £occo<> c
(instead of a base-JaM-location£ E £occo c), and a store with a handle (r, co<>, r)
(instead of (r, co, r)) at location e, and edge r co<> r added to the object graph
(instead of r ~ r). Correspondingly, the typing rule [meth] types a method body
in the context of type assumption this: ref co<> c (instead of ref co c).

124

mode-term f.1 EM::= (free I rep I co I A I read)<~>
correlations o E ~ ::= (A=M)*
expression e E E ::= val(N) I destval(N) I null<~> I new<~> reo I E¢Id(E*)

r E Oc, om(r) · (... ,F), F(f) · K,*T f(f.1i ci Yi){f.-lj cj ZJ; s}
fresh fl_ E [ref co<> c], fresh fl_y E [ref f.1i ci], fresh fl_j E [ref 11j cj]

TJ* = {this r-+ e, Yi r-+ er' Zj r-+ en
s' = s[e r-+ (r, co<>, r), err-+ (r, f.1i, oi), fl_j r-+ (r, f.-lj, nil)]

g' = g 8 s L Oi EB r co<> r EB r .l!:i__, oi
{call}

(s,f.1r,r)¢j((s,f.1~1 ,oi)), 7Jh,s, om,g---+ «s», 7Jh• TJ*(;,J-tr,r)'s', om,g'

{null}
h · (s, f.1r, r)

null<O>, 7Jh, s, om, g----+ (r, free<O>, nil), 7Jh, s, om, g

h ~ (s, f.1r, r) f- FldsMths (c) _:_ ({xi : ref f.1i ci}, F) h' = (r, free<O>, o)

{new}
fresh o E Oc fresh fl_i E [ref f.1i ci] (2 ={xi r-+ ei} hi = (o, f.1i, nil)

new<O> cO, 7Jh, s, om, g----+ h', 7Jh, s[ei r-+ hi], om[o r-+ (Q, F)], g EB h'

f- t ok f- ti ok f- tj ok
f- r ok r = this: ref co<> c, xi: ref ti, ZJ: ref tj r,K,f-s:t

[meth]
f- K, t f (ti Xi){tj ZJ; s} defs f

f- c ok f- c ok
[null]

r' K, f- null <O> : free<O> c
[new]

r, K, f- new<o> cO : free<o> c

Figure 6.4: Changed syntax, reduction, and typing rules

• The syntax of the null-expression is extended so that it specifies the correlation-set
0 to be added to the free mode of its value, the nil-handle. Reduction rule {null}
reduces e = null<O> to (r, free<O>, nil) (instead of (r, free, nil)), and typing rule
[null] assigns toe= null<O> the JaM-type free<O> c (instead of free c).

• The syntax of the creation expressions is extended to specify the correlation-set 0
to be added to the free mode of its value, the handle to the new object. Reduction
rule {new} reduces e = new<O> cO to (r, free<O>, w) (instead of (r, free, w)), and
adds to the object-graph the edge r tree<o> w (instead r free w). Correspond
ingly, typing rule [new] assigns toe the type free<O> c (instead of free c).

The annotation of correlations to new and null is the easiest way to make ini
tial handles and nil-handles available that are compatible to any mode desired while
ensuring that the mode in the computation and in the type inference are the same.
Alternatively, one could introduce a new mode free<*> that is mode-compatible to

125

any mode free and use it as the mode of initial and nil-handles. This solution
would require us to extend the set of modes and the mode compatibility relation ::;m.

In the rule [rtype] for valid range types T = f-L c of variables, parameters and results
the condition "f-l E M" refers to the set of valid modes. That is, f-L is required to be
a valid mode, 1- f-l ok. This restriction of the mode-terms derived from nonterminal
M will be defined in paragraph 6. For emphasis, the rule could be rewritten

1- f-l ok 1- c ok
[rtype] 1- k

f-LCO

With the extension to full modes it should be clarified that substitutions 1i
J-l[read/free] in reduction rule {rdcp} and T

1 = T[read/free] in typing rule [rdcp]
should mean to change not just f.-L's and T's base-modes but all occurrences of 'free' in
f-l and T. However, since nested free modes are excluded from valid modes (paragraph
6), it is actually sufficient to consider just the base-mode for replacement:

(m<5> c)[readjfree] =df m[read/free]<5> c
(m<5>)[read/free] =df m[read/free]<5> {

read if m = free
m[read/free] =df h . m ot erw1se

3. CoNSISTENCY PROPERTIES below the level of potential access paths are inde
pendent from the mode system, as long as the signature ~(f.-l c) of handles is still
calculated from FldsMths(c) by adapting the modes f.-li in it to f-LOJ-li·

Proposition 5 If e0 , TJo,so, om0 ,g0 ==?* e', i]',s', om',g' is a reduction defined relative
to a program p with 1- p start e0 then

g' = ogr(e', if', s')

Proof: The proof is nearly identical to the base-JaM-version of the theorem (Propo
sition 2). Deviations are only necessary where the reduction rules changed (see para
graph 2). It is easy to see that the changes to the modes of handles (o, f-l, w) added
and removed in runtime model e', i]', s' are the same as the changes to the modes of
edges (o, f-l, w) added and removed edges in the object graph. Hence execution in JaM
still preserves compatibility. •

lemma 5 (Type preservation) If e, if, s, om, g ===? e', i]', s', om', g' is a reduction de
fined relative to a program p with 1- p start e0 then

r,r;;l-x e:T 1\ iff=p,,r,r;;,X 1\ f=s,om
=? 3X'. r,r;;l-x' e' :T 1\ i]' f=p,,r,r;;,X' 1\ f=s',om'

Proof: The proof from the base-JaM-version of this theorem (Lemma 1) can be
copied here, except that the mode of this, null, and new has to be adapted. But
in all cases (reduction rules {null}, {new}, and {call}), this change is the same in
reduction as it is in typing. Hence the proof still goes through. •

126

Theorem 6 (Type consistency) If e0 , TJo, s0 , om0 , g0 ==?* e, if, s, om, g is a reduction
defined relative to a program p with f- p start e0 then 3X, T.

f= s, om 1\ 0, obs f-x e : T 1\ iff= read<>, 0, obs, X

Proof: The proof goes the same as that for its base-JaM version (Lemma 4). The
difference is that the mode is read<> instead of just read, that the receiver expression
new<O> c() in operation call expression e0 has mode free<O> instead of just free,
and that one has to use JaM's Lemma 5 instead of base-JaM's Lemma 1. •

6.2.2 The Higher-Level View

4. POTENTIAL ACCESS PATHS, SANCTUARIES, STATE. The meaning of the modes
is captured formally in the rules for the derivation of potential access paths 1r E

PAP(o,J.L,w) and in the definition of objects' sanctuaries Sanc(o). There are three
rules for potential access paths in an object graph g labeled with full modes which
are listed in figure 6.5: The base-case is an edge o L w E g. As in base-JaM (cf.
fig. 5.9 on page 88), the extension 1r1 • 1r2 of a J.L-path 1r1 E PAP(a, J.L, q) by a co-path
1r2 E PAP(q, co<>, w) is another potential access path in PAP(a, J.L, w). 1 New is the
rule for the extension by association paths. An association path 1r2 E PAP(q, a<>, w)
extend a path 1r1 E PAP(o, m< ... , a=J.L, .. . >, q) with the necessary correlation to a
potential access path 1r1 • 1r2 E PAP(o,J.L,w).

Definition 6 Potential access paths PAP(o, J.L, w) are defined based on the derivation
rules in figure 6.5 and based on extended graph g*. Extended graph g*, ownership paths
Osh(o, w), sanctuaries Sanc(o), and state representation StRep(o) are defined as in base
JaM modulo correlations.

g* =drgl±l{w co<> 0 I o co<> wEg}

PAP9 (o, J.L, q) =dr {1r I g* f- 1r E PAP(a, J.L, q)}
Osh9 (o, w) =dr PAP9 (o, rep< ... >, w) U PAP9 (o, free< ... >, w)

Sanc
9
(o) -dr U ({w}USanc9(w))

w su. th. PAP9 (o,rep< ... >,w)#0

StRep (o) = { o} U U StRep5 om (w)
sam ill ,

' W su. th. PAPfgrom(s)(o,rep< ... >,w)#0

Other definitions do not change at all, like composite state CState5 ,om (o), field
locations fids(o) and field subgraph fgr0m(s).

Remark 1. The concatenation of correlation-carrying paths with association paths
allows for much more complicated potential access paths than base-JaM's J.L-reference

1 Note that in valid modes, which paragraph 6 will define, base-modes co and a E A never come
with any correlations.

127

o Lw Eg
g f- o L wE PAP(o, f.-l, w)

g f- 1r1 E PAP(o, f.-l, q) g f- 1r2 E PAP(q, co<>, w)
g f-1r1• 1r2 E PAP(o,f.1,w)

g f- 1r1 E PAP(o, m< ... , et=f.1, ... >, q) g f- 1r2 E PAP(q, a<>,w)
g f- 1r1 • 1r2 E PAP(o, /1, w)

Figure 6.5: Potential access paths in object graphs labeled with full modes

followed by co-references. In order to reduce the complexity of reasoning about these
paths to a size manageable within the space of a dissertation, a restriction at a very
basic level will be imposed: The nesting structure of valid modes f.1 E M, that replace
base-JaM's modes M = {free, rep, co, read}, will be constrained. The effect is that
certain, hard-to-handle combinations of two paths to a potential access paths (which,
at least in the map example, are not needed) can simply not occur in a JaM object
graph (labeled with valid modes).

Remark 2. In base-JaM, j.1-paths were the extensions o L q __f_Q___.• w of a j.1-edge by an
optional sequence of co-edges. In full JaM, potential access paths are the (potentially
trivial) further extensions o L q __f_Q___.• q1 • 1r1 • ... • ITn of a base-JaM path by optional
sequences of association paths ITi E PAP(qi, ai<>, qi+l) ending in qn+l = w. The mode
of this path depends solely on the initial edge's mode f.1 and the sequence a 1 ... Ctn
of the paths' association roles. The initial edge and the association role-sequence is
captured in the notion of a path's shape:

Definition 7 A path 1r E PAP(o,f.1,w) has shape "o L q __f_Q___.• • _a_l...::_·2'n-t •" if
1r = o L q __f_Q___.• q1 • 1r1 • ... • ITn, i.e., if 1r starts with the edge o L q followed by
an optional sequence q __f_Q___.• q1 of co-edges, and then a sequence of association paths
ITi E PAP(qi, ai<>, qi+l) with some end-point qi+l = w. Two paths 1r1 and 1r2 are
shape-equivalent if they have the same shape, i.e., they start with the same edge, are
extended by possibly different co-edges and association paths, however, the sequence of
the association paths' association roles is the same.

Remark 3. The base-modem E {free, rep, co, read}UA clearly is still the main clas
sification of potential access paths. The annotated correlations 6 mean an orthogonal,
second order classification w.r.t. the modes of the potential access path's potential
extensions by association paths of certain association roles. Since the latter modes
recursively specify the modes of further extensions by association paths, the classifi
cation of a path 1r as a j.1-path is a classification according to the base-modes ma 1 ... an
of 1r's extensions by et1 ... an-sequences of association paths to potential access paths.
Therefore, full mode f.1 can also be understood as a mapping from sequences et1 ... Ctn

128

of association roles to base-modes ma1 ... an written p(a1 ... an). 2 In particular, exten
sions of edges o L q by association path-sequences q _aJ..:=-·E'n-t w, i.e., paths of shape
o L q ...f.2....* • __ q_l~.: .. :.9'.rt_-t •, are paths with base-mode p(a1 an)-

Definition 8 The use of a mode-term p as a mapping p : A* --+ B 1.. is defined as follows:
p(E) =df m if p = m< >

(_) {p'(a) if p = m< , a=p', >
11 a.a =df ...l otherwise

In particular, formulm will use p(E) to refer to "p's base-mode," i.e .. , the base
mode m which mode p gives to the p-paths themselves. Take for example map d's
entry-set reference of mode f.1entryset = rep<elem=rep<fst=key<>, snd=value<>>>:

f.Lentryset (E) = rep
f.Lentryset(elem) =rep
f.Lentryset(elem.fst) =key
f.Lentryset(elem.snd) =value

Remark 4- Obviously the order of the correlations in the mode-term p and possible
repeated occurrence of the same correlation a=p' are irrelevant both for the main
classification of the path, and for the classification of its extensions by association
paths. More specifically, they are irrelevant for the mode's understanding as a map
ping p : A* --+ B 1... This consideration is captured in the notion of mode-equivalence:

Definition 9 Two mode-terms p, p' E M are mode-equivalent, p _ p', if they
have the same base-mode and their correlation-sets configure the same association role to
mode-equivalent modes, in other words, if they are the same as mappings from association
role-sequences to roles:

When we write a mode-term p E M, it is normally meant as a representative for
the equivalence class [P]= of modes equivalent to p.

5. INTEGRITY INVARIANTS OF JAM SYSTEMS are adaptions of base-JaM's integrity
invariants w.r.t. the new correlations (see figure 6.6).

• The Unique Owner property UO holds in graph g if all objects have at most one
owner, i.e., are at most target of a unique object's ownership paths.

• The Unique Head property U H holds in graph g if the initial edge in all ownership
paths to a free object is the same and has multiplicity one.

• The Mutator Control Path property MCP holds in graph g and stack if if
mutators were invoked on receivers ri only through a sequence of calls along the
edges hj, ... , hi of an ownership path tori.

2 Actually, this can only be a mapping if p, does not have multiple, incompatible correlations for
the same association roles. This is one of the conditions mode-terms have to satisfy to be valid
modes p, EM (see paragraph 6).

129

g F= uo
g F UH

{:}df Vo, o, w.
{:}df Vo, o, w, h, n, h, if.

Osh9 (o,w)=/=0 1\ Osh9 (o,w)=/=0 * o=o
h• 1r E PAP9 (o,free< ... >,w) 1\ h• if E Osh9 (o,w)
=* h = h 1\ mult(h,g) = 1

g,i]f=MCP¢::>df ViE {1, ... ,n}. r;;i = mut =* 3j:::; i. hj• .. . • hiE Osh9 (rj_1,ri)
g, i] f= MC {:}df ViE {1, ... , n}, o. r;;i = mut 1\ ri E Sanc9 (o)

=* 3k :::; i. rk = o 1\ r;;k = mut

Figure 6.6: JaM integrity invariants

• The Mutator Control property MC holds in graph g and stack i] if members of
o's sanctuary are executing mutators only nested to mutator executions of o, and
thus (indirectly) initiated by o through a sequence of calls.

6.2.3 The Full Mode System

6. VALID MODES. As mentioned above, there are conditions on the nesting structure
of those mode-terms derived from nonterminal M which are to take the place of base
JaM's modes in full JaM. These conditions help to keep the increase of complexity of
the formal treatment in the step to JaM within a manageable size.

Definition 10 A mode-term m<cx1=J-L1 , ... , cxn=J-Ln> derived from axiom M with the rules
in figure 6.4 is a valid mode, or mode for short, in symbols, f- J-L ok, if it satisfies the
following conditions (see figure 6.7):

1. For each association role there is at most one correlation: ai = aj * i = j.
2. co-modes and association modes have no correlations: m E {co} U A * n = 0.
3. There are no correlations to a co or free mode: J-Li(c) tj. {co, free}
4. The correlations' modes must be valid modes: f- J-Li ok.

Let M be only the set of valid modes: M = {J-L I f- J-L ok}.

Condition 1 generally simplifies the formal treatment through uniqueness: Valid
modes J-L specify a unique mode for the extension 1r • n' of J-L-paths 1r by association
paths n' (cf. paragraph 1). Valid modes can rightfully be considered mappings to
unique base-modes J-L(ii). Consequently, the call-link's mode can uniquely determine
the mode as which the sender imports handles of association modes returned by the
receiver (see paragraph 9 below).

Condition 2 simplifies the recursive construction of longer and longer potential
access paths: Paths that can extend others, i.e., co- and association paths, can never
be extended by JaM's new association paths, but only by base-JaM's simpler co
paths. Reasoning about co- and association paths 1r E PAP (o, J-L, w) with correlations

130

Vi, j E {1, ... , n }. o:i = CYj ==? J-li = /-Lj

m E {co} U A ==? n = 0
Vi E { 1, ... , n }. J-li #- free< ... > 1\ J-li #- co<> 1\ f- J-li ok

[mode] -------'--'---'-7--....:........:--'---------'-_:.___:-~---.:.__:_--
f- m<o;1=J-L1, ... , CYn=J-Ln> ok

Figure 6.7: Mode-specific definitions for JaM (part 1)

would require some invariant about the consistency between these correlations and
the correlations of paths 7r

1 E PAP (q, J-L1
, o) extensible to 1r

1
• 1r. This generalization is

left for future work; it is not needed for the example of maps and iterators.
Condition 3(a). In base-JaM, the possibility of new potential access paths by

the supply of a co parameter through a co-call-link was handled by reasoning in
the extended graph g*, with inverted co-edges. This ensured that each new path
extending co-path 1r with the new, received parameter handle had a precursor 7r

1

with the inverted call-link and handle argument instead. This technical trick does
not work for co-paths which do not entirely consist of co-edges, like the co-paths
o m<elem=co<» 5 elem<> ei which o derives from set object 5's association paths to
the set elements. This co-path would mean that o and ei should have the same
owners. But if d owns the element ei through the ownership path d rep<.·.> ei, it is
not guaranteed that there is also an ownership path from d to o, since the co-path
o m<elem=co<» 5 elem<> ei has no inverse for extending d rep<.·.> , ei to o. Instead
of introducing complicated constraints on the creation and exchange of handles with
co-correlations to enforce the necessary invariants on co-paths and ownership paths,
we avoid this problem at a more basic level by simply prohibiting all correlations to
a co-mode.

Condition 3(b). The exchange of free handles and handles extensible to free
paths moves the corresponding targets between composite sender and receiver objects.
Excluding correlations to free and co modes ensures that free paths in JaM have the
same structure as in base-JaM: A free edge followed by co-edges. This will help to
reduce the complexity of reasoning about the preservation of unique object ownership
(Lemma 23) and of a property on intermediate objects in free paths necessary for
coherence (Lemma 26).

7. STATE ENCAPSULATION: CONTROLLING THE MUTATION OF OBJECTS. For the
question whether a mutator may be invoked through a call-link s L r, it is only
relevant from what kind ,., of method the call is made, and what the base-mode of J-L
are (correlations in J-L say nothing about the target's status but about the targets of
the call-link's extensions by association paths). 3 Hence the considerations for modes
rep< ... >, free< ... >, co<>, and read< ... > are the same as those for base-JaM's

3The mode p,(a) of the correlation for association role a can become relevant in an effects system
extension of JaM that uses effects region this.a for handing mutator calls through a-paths (§7.3.2).

131

Wr(obs) =dr {free< ... >}
Wr(mut) =dr {free< ... >,rep< ... >, co<>}

m<5> :::;~ read <5>
free<5> :::;~ rep<5>
read<5, a=f-1, 5'> :::;~ read<5, 5'>
read <5, a=f-1, 5'> :::;~ read <5, a=11', 5'> if f.1 :::;~ f-11

Figure 6.8: Mode-specific definitions for JaM (part 2)

modes rep, free, co, and read in §5.4.2: (cf. figure 6.8): Through free call-links,
mutators may always be called, no matter their correlations: free< ... > E Wr(K:) for
K: = mut and obs. Through rep and co call-links, the source may call mutators on the
target from within mutators: rep< ... >, co<> E Wr(mut). Through read call-links,
mutators may never be called: read< ... > tj_ Wr(K:) for K: = mut and obs.

Handles of the new base-mode a E A, like read handles, do not fix its target's
membership in sanctuaries (relative to the source). Hence from the perspective ofthe
sender's code, invocations of mutators through association handles are in general not
guaranteed to be safe: a< ... > tj_ Wr(K:) for K: = mut and obs.

8. MODE COMPATIBILITY. If two base-modes m and m' were treated as compatible
in base-JaM (m ::;m m'), it should be possible to extend this to full modes that have
the same correlations (!1 = m<5> ::;m m'<5> = 11'). Moreover, there are new possibility
for full modes similar to width and depth subtyping for record types: Removing a
correlation from the mode's correlation-set should be safe since it means merely that
some extensions of the converted handles are now no potential access paths any more.
And the variation of the mode in a correlation to a compatible mode (covariance)
should be safe since it means that the mode specified to the extensions of the converted
handles varies in a compatible way. However, it is not really that simple:

First, the conversion of (free) handles o free<> w1 to co-handles o co<> w1

and association handles o a<> w1 is problematic: It means not only the potential
extension of a-targeting paths 1r = q J£-t o to w1 and its co-object, as in base-JaM.
In JaM, these paths may be furthermore extended, depending on p,, by association
path sequences w1 .9'l-t w2 .9'.2-t w 3 ... to more distant objects wk or, what is even
harder to deal with, back to q or o. For reasoning about such paths when it comes to
the preservation of the unique owner property, the four integrity invariants adapted
base-JaM (§6.2.2) would not suffice. We would need to show an additional invariant
about all sequences w1 _ _q_-t Wn+l of association paths starting from targets w1 of
free<> handles.

In order to keep for the formal treatment of conversion as simple as in base-JaM,
let us ignore conversions (from free<>) to co<> and a<> (which are not needed for the
map example with iterators), and focus on the conversion of received free handles

132

to rep and their subsequent storage in sub-objects as a-handles. Even if objects
can then not create co- and association handles for themselves any more, they can
still obtain them as parameters from other objects: For example, node object nl can
obtain co-handles nl co<> n2 and data-handles nl data<> el from set representative
5 through 5 rep<data=elem<» 1 nl if 5 calls nl's methods SetNext and SetData and
supplies handles 5 rep<data=elem<» I n2 or 5 elem<> e2, respectively.

Second, depth-compatibility is problematic since a change from mode f.-lr =

m<a=J-L> to f.-l~ = m<a=J-L'> on a handle h means not only in the higher-level view
a harmless mode change of h's extensions by a-paths from J-L-paths to J-l1 ;:::m J-L-paths,
but also means in the type system a change in the handle's signature from the target's
a-moded result and parameter types from f.-lroa<> = J-l to J-l~oa<> = J-l1 ;:::m f.-l· Now, it
is a well-established result in type-theory that parameter types do not change covari
antly (but contravariantly), i.e., that changing the parameter type Tin a function type
T--+ (}"to a supertype T

1
;::: (}", i.e., a compatible type, does not produce a compatible

function type T
1 --+ (}" ;::: T --+ (}" (on the contrary, T

1 --+ (}" :::; T --+ (}"). This result
applies, mutatis mutandis, also to the conversion of correlations in JaM, since it may
change an operation's parameter mode in the handle's signature: It could lead to an
unsafe state in which, for example, a read-handle can be converted to a rep-handle.
This example, and further manifestations of the same, general phenomenon in other
type systems (e.g., const pointer types) will be discussed in §7.1.4.

The conversion of correlation a=J-L on h can not cause any problems if through
the converted handle no operations with a-parameters can be invoked. Hence we
can obtain a minimum of depth-conversion by treating handles of mode read<a=J-L>
as compatible to handles of mode read<a=J-L'> if J-l ::;m J-l 1 if we disallow the supply
of a-parameters through read-handles. (For rep and free handles, on the other
hand, it is more important to allow the composite source to store its J-L-handles as a
handles in the target component.) This means that read-handles not only disallow the
invocation of mutators but also the invocation of operations with association moded
parameters: The iterator can use its read-handle to the set's nodes to read their
data-handles as its dest-handles, but cannot pass them its dest-handles as their
data-parameters. (The invocation of operations with co-parameters is prohibited
since base-JaM.)

Third, the same problem exists with width-compatibility since a change from
mode f.-l = m<bi> to J-l1 = m<> on a handle h implies in the handle's signature a
mode change of the target's co-moded result and parameter types from f.-Loco<> =

J-l to J-l1 oco<> = J-l1 ;:::m f.-l· Also the removal of correlations on PNode handles, in
conjunction with the use of co-parameterized operation SetNext, would allow to reach
an unsafe state in which a read-handle can be converted to a rep-handle. This will be
discussed in §7.1.4. Note that through read handles, co-parameters can anyway not
be supplied (to avoid violating the Unique Owner invariant) because read handles do
not reveal any information about their target's owner. Hence read handles can have
their correlations converted away safely.

133

f-troread<o:i=f-ti>=dr read<o:i f-trOf-ti>
f-trofree<o:i=f-ti>=dr free<o:i f-trOf-ti>
1-"rorep<o:i=f-ti> =dr read<o:i f-trOf-ti>

=dr f-tr
=df f-t1 if f-tr = mr< ... 'a=~-t', .. . >

f--- FldsMths(c) = (r, F) F(f) = K, 1-l d f (f-Li di Yi){ ... }
Vi, a. ((JLrOf-li)(a) = read=? 1-li(a) = read) A (!-li(a) E {co} u A =? 1-lr(E) rt {read} u A)
Va, a. JL(a) =free A f.l(&a) E A A 1-lrof-l(a.o:) =I read=? f-lr(E) =I read

Figure 6.9: Mode-specific definitions for JaM (part 3)

To sum up, besides being compatible to themselves,

• all modes are compatible to read-modes with the same correlations,
• all free modes are compatible the rep mode with the same correlations,
• all read modes are compatible to read modes with fewer correlations, and
• all read modes with a correlation are compatible to the read mode in which the

correlation's mode f-t is replaced by a mode f-t1 to which f-t is compatible.

Definition 11 The mode compatibility relation (::;m) ~ M x M in JaM is the transitive
reflexive closure of the relation ::::;~ defined in figure 6.8.

9. IMPORT OF RETURNED HANDLES. When a handle is returned in a step with
{ret} then, as in base-JaM, some adaption of the mode is necessary (see figure 6.9).
W.r.t. the old base-modes, this adaption is the same as in base-JaM: read- and
rep-handles are imported as read-handles, free-handles as free-handles, and co
handles are imported as handles of the call-link's mode f-tr· A handle of association
mode o:<> should be imported as a handle of the mode ~-t' which the call-link's mode
f-tr = mr< ... , a=~-t', .. . > specifies for o:. This is the same mode as the mode of the
combination s ~ r o:<> w of the call-link and the returned handle in the receiver.
The return of the handler o:<> w shortens this ~-t'-path to a direct ~-t'-handle s L w,
just like the return of a co-handle r co<> w shortens the f-tr-path s ~ r co<> w to
the direct f-tr-handle s ~ w.

A correlation o:i=/-ti in the mode of a handler L w of the receiver specifies that its
extensions 7r

1 = r o:<> w • 7ri by o:i-paths are potential access paths 7r
1 E PAP(r, f-ti, w)

of mode /-ti· When the receiver returns handles with such correlations, the sender will
now have a potential access path 7r = s /!roo:<>, w • 7ri· It is as if the receiver "returned"
its potential access path 7r

1 to the sender as a "virtual result." (Analogously, "virtual
parameters" are supplied when a parameter handle with correlations is supplied.)
Hence in generalization of returned handles (paths of length one), when the receiver

134

I:(PSetimp) =

{ contains : (read<> Pair) ~boolean,

}

Add : (elem<> Pair) ~ void,
Remove : (read<> Pair) ~ elem<> Pair,

elements : () ~ free<dest=elem<» Plter

I:(rep<elem=rep<fst=key<>, snd=value<»> PSetimp) =
{ contains : (read<> Pair) ~boolean,

}

Add : (rep<fst=key<>, snd=value<» Pair) ~void,
Remove : (read<> Pair) ~ rep<fst=key<>, snd=value<» Pair,

elements : () ~ free<dest=rep<fst=key<>, snd=value<»> Plter

(For accordance with the limited JaM syntax, expand boolean to read<> Boolean and void to
read<> Void, and define dummy classes Boolean and Void.)

Figure 6.10: Signature of Maplmp object's entryset handle

"returns" a potential access path 7r
1 of mode /1i, then the mode of the corresponding

imported path in the sender should be f1rOf1i· Since this mode is derived from the
correlation in the mode f1rOJ1 of the returned handle s ~ w, this means that the
ai-correlation in the handle's mode must have the mode f1rOJ.l+ That is, the import
operator o should be associative: f1ro(J1oai<>) = f1rOJ1i = (J1rOJ1)oai<>. In other
words, mode import o is defined by recursively importing the modes of correlations
in the imported mode f1·

10. SIGNATURE OF HANDLES. As in base-JaM, the definition of handles' signa
tures L. (J1r c) is based on the adaption of FldsMths (c), which implicitly contains the
signature :E(c) of c-objects, by the use of mode import "o" (see figure 6.9). As
an example, figure 6.10 shows how the signature 'L-(PSetimp) of PSetlmp objects is
adapted to the signature 'L.(J1r PSetimp) of Map Imp objects' entryset handles with
mode /1r = rep<elem=rep<fst=key<>, snd=value<>>>.

More detailed considerations are necessary for the conditions under which a method
f of c-objects can be used through handles of type f1r c and with signature 'L.(J1r c):

Regarding the new case of association moded parameters in JaM, observe that a
parameter of mode a<> means that the receiver r does not know about the target's
owner. But it does not mean there are no expectations toward the owner of the
supplied parameter object at all (that would be a read parameter). The receiver
expects a parameter object owned by that object a, should it exist, which is "destined"
to own all its a-objects since there is a path of edges from o to r that is extended by
any a-path to an ownership path.

1. f1rOJ1i =read< ... > =? J1i =read< ... >. All cases where a non-read parameter in
:E(c) (J1i =1- read< ... >) becomes a read parameter in 'L.(J1r c) (J1rOJ1i =read< ... >)

135

are problematic and have to be excluded: In JaM, as in base-JaM, methods with
rep parameter cannot be called at all, and methods with co parameters cannot be
called through read call-links since the caller cannot guarantee that its handles
of corresponding mode f.-lrorep =read or readoco =read point to objects with
the owner desired by the receiver. In JaM, the same problem additionally arises
with the supply of a-parameters through call-links correlating a to a read-mode,
i.e., where f.-lroa<> =read< ... >.

2. f.-li = co<> ~ f.-lr i= a<>. Like the targets of two read-handles, the targets of two
a-handles do not necessarily have the same owner: There is no guarantee that
there is any object "destined" to own all a-objects of the caller. But without this
one, each of the a-objects could have a different owner. Hence, the same way it
is not safe to link two read-targets by supplying a read-handle as co-parameter
through a read-call-link, it is not safe to link two a-targets by the supply of an
a-handle as co-parameter through an a-call-link.

3. f.-li =a<> ~ f.-lr i= read<>. The supply of association moded parameters through
read-call-links was prohibited in paragraph 8 in order to make the conversion of
correlations (depth-compatibility) safe.

4. f.1 = free<a=,B<>, ... > 1\ f.1rof.1(a) -1= read ~ f.-lr -1= read< ... >. New in JaM is a
condition on the result of operations in handle signatures, but indirectly it also
has to do with parameter passing: Correlations a=~-1 in a handle's mode specify
the mode 11 by which the source can access the target's a-objects. The recursive,
associative definition of o ensured that the mode (f.-lrof.-l)oa<> by which the sender
scan access returned object o's a-results through returned handles ~ o is the
same as the mode f.1rO(f.1oa<>) of a (theoretical) indirect access via the receiver r
through call-links~ rand its result handler L o (cf. paragraph 9). But also
the access to the returned object's a-parameters should not exceed the access via
the receiver. The new condition on result modes in JaM ensures this:
There is access to the result's a-parameters if the returned handle's mode f.-lrOf-1
is a modem< ... , a=f-1', .. . >where 1-1' is a non-read mode (condition 1), and m is
not read (condition 3), i.e., where m is free or rep (proper co- and association
modes cannot have correlations). If the result's mode J1 is a co- or association
mode then s ~ r L o was for s the wanted potential access path of mode f.-lrOf-1
to o and its a-parameters. Otherwise, f.1 was a mode free< ... , a=~-1", .. . > with
f.-lrOf-1 11 = f-11 i= read< ... >, so that f-111 can neither be read nor rep. In the case
that 1-1" is a free mode, the sender was theoretically able to pass its (also free)
f.-lrOf-111 handles to the receiver as free 1-1"-parameters, which could pass them too
as a-parameters. But in the case that f-111 is an association mode ,8<>, the sender
could pass its f.-lrOf-111 handles as the receiver's 1-1"-parameters only if the call-link
is not read (condition 3).

The return of handles of modes with correlations means the virtual return of the
potential access paths starting with that handle (see paragraph 9). The same way, the
supply of parameter handles with correlations means the virtual supply of potential

136

access paths starting with that handle. To these potential access paths the same
considerations apply as the exchanged handle itself (which is just the base-case of
a potential access path). That is, the discussed conditions on parameter and result
modes w.r.t. their and their imports' base-modes must be generalized to conditions
on all potential extensions of the exchanged handle. Consequently, the definition
of handle signatures (fig. 6.9) rephrases the above conditions over modes ji (with
correlations 1=fi') as conditions over mappings fi(1) (and fi(1.!)).

The overall consequences of these restrictions on the flow of handles in the object
system will be considered in §7.1.3.

6.3 Structural Integrity of Object Ownership

This section develops the proof for the Unique Owner and Unique Head invariants
in JaM. In subsection 6.3.1, we will first consider proving the ownership theorem for
JaM, like its base-JaM-counterpart (Theorem 2), by simple induction on the number
N of reduction steps: g0 I= UH, UO, and in each possible reduction step from object
graph g tog', g I= UH, UO implies g' I= UH, UO. However, when the case ofreductions
with {call} is reached, it will turn out that the new potential access paths after supply
of a handle parameter may connect previously only very indirectly related objects,
objects between which no single forward paths of edges existed in the (extended)
graph before. To prove the UO- and UH-consistency of two ownership paths with the
same target in g', a much stronger property will be needed in g, an UO- and UH-like
consistency between ownership paths to very indirectly related objects. This indirect
relation can be seen as a "reservation" for ownership. Subsection 6.3.3 will investigate
the change of ownership reservations during execution, and subsection 6.3.5 will prove
the consistency. Unique Head and Unique Owner are then followed from it as the
conclusion of this section (§6.3.6).

6.3.1 Change at the Level of Potential Access Paths

This subsection collects results on the changes to potential access paths effected by
the addition of new edges to the object graph through reductions with {new}, with
{ upd} (because of potential implicit mode conversions), with {ret}, and with {call}.

1. TALKING ABOUT POTENTIAL EXTENSION. In JaM, reasoning about the structure
of object ownership, or even describing the new ownership paths after a change to the
object graph, is much more complex than in base-JaM since potential access paths of
mode JL are not just a JL-edge followed by co-edges any more: In base-JaM, whenever
a new co-edge o£2.... o' appeared in the extended object graph g* (by whatever
operation), the only new ownership paths this entailed were from a's old owner to
o' and all its co-objects w. In full JaM, a new co-edge o co<> o' may entail new
ownership paths 1r = 1r1 • o co<> o'•1r2 E PAP(u,JL,w) to all objects w that can be

137

reached from o' via association path sequences o" A? w from o' and its co-objects
o" (i.e., 1r2 = o' co<> * o" _q_? w). This is possible whenever any potential direct
extensions of the first segment 1r1 to o by a-association path sequences were already
potential access paths of mode JJ.

Stating this in a more formal way is not as straight forward as it might seem:
First, we are talking not about actual extensions but about potential extensions-the
new ownership path 7T is possible no matter whether any association path sequence
o A? w' actually exists in the object graph. Second, the first segment 1r1 , whose
extension we are considering, is not necessarily a potential access path. For example,
in the map example, we have the path 7Tl = d rep<elem=rep< ... »' s rep<data=elem<»' n

from Mapimp object d to PNode object nl. It is not a potential access path; but any
data-path which n had, would extend it to a rep path. Even if n actually has no
data-path, when it obtains a co-edge n co<> n' to another node with a data-handle
1r2 = n' data<> e', then 7T1 • n co<> n' • 7T2 will be an ownership path from d to e'.

A formal trick to handle a potential for extension is to guarantee that there is
always at least one a-association path sequence by adding dummy association handles
o L o.a to new dummy objects o.a to the object graph g. In such an extended
graph g0 , the potential extensions become one actual extension, so that we can then
simply say: There are new ownership paths 7T = 1r1 • o co<> o' co<> * o" _q? w E

PAP9 (u, JL, w) iff 1r' = 1r1 • o L o.a is a potential access path 1r' = PAP9® (u, JJ, o.a).
A similar problem is the description of the consequences of a new association

handle o {3<> o' in the object graph. Also here, dummy association handles will help:
There are new ownership paths 7T = 1r1 • o fJ<> o' co<> * o" A? wE PAP9 (u, JJ, w) iff
7T

1 = 1r1 • o JJ:li... o.f3.a is a potential access path 7T
1 = PAP9® (u, JJ, o.f3.a).

Definition 12 The notion of "objects reachable from o via possible a-sequence of associ
ation paths" shall be called o 's a-region. For each object o E 0 and possible association
paths with the sequence a E A* of association roles, i.e., for each region, let the corre
sponding dummy object be o.a E Or =dr 0 x A*= OUO x AUO x Ax AU ... , and call
it the region object. Since 0 x A*= 0 x (A* x A*) = (0 x A*) x A*, formally also
region objects o = q."/ have their region objects o.a but these are simply the region objects
of q's "/• a-region: o.a = (q."/).a = q.("/• a). The extension g0 of graph g E ®tap()
by dummy edges is g0 =dr g U { o a<> o.o: I o E Or, o: E A}. Extended graphs g0 are
multisets of mode-labeled edges between region object: g® E QJrap(Jr =dr N°rxMxOr

We will write simply q."/.a for indirect region objects (q."/).a = q.("/• a). Region
objects include the special case of o.E = o E 0 s:;; Or. The dummy objects are the
proper region objects o E 0 x A+ =Or\ 0, i.e., region objects o = o'.a with a#- E.
In the following, the term "object" will normally apply both for dummy objects
and proper objects (in other words, for region objects), unless noted otherwise. In
particular, meta variables o, w, q, etc. for objects normally range over all of Or·

Since the edges added in g0 lead only to region objects and do not connect proper
objects, there is a potential access path between proper objects in g0 if and only if

138

there is a potential access path in g. 4 The move from g to g0 in reasoning will not
affect ownership and representations between proper objects.

2. {NEW}. The creation of a new object o by the evaluation of object creation
expression new<8> c() in the execution of a method called on (creator) object r adds
an edge r free<8> o to a fresh object o. "Fresh" implies that o is not the currently
active object r, and neither target nor source of any edge in g.

lemma 6 Consider the addition of a free edge h0 = r ..&.__, o to fresh object o such
that g' = g EB r ..&.__, o. In g'0 , there are two kinds of new potential access paths
n E PAP

9
,®(o, /-L,w):

1. Initially new paths go from o = r to w = o.a. They are extensions na. = r ..&.__, o L
o.a of h0 by dummy edges for every a E A* with !-Lo(a) -::/:- _l If it is an association
path, i.e., /-Lo(a) = {3 E A then it has an unchanged witness u(na.) = r L r.{3.

2. Internally new paths are concatenations n 1 • na..a' = n1 • na. • n3 of a non-trivial un
changed path n1 of edges from o to r, an initially new path na. of some association
mode {3<>, i.e., /-Lo(a) = {3, and a possibly empty sequence n3 = o.a L o.&a'
of further dummy edges. n has an unchanged witness u(n) = n1 • u(na.) • r.{3 L
r.{3.a' = n1 • r li__. r.(3.a' E PAP

9
,® (o, /-L, r.{J.a') of the same shape.

Since all new potential access paths in g'0 target the fresh object o and its region
objects, and since these cannot be the target of ownership paths in g0 , an UO- or UH
confiict could exist in g'0 only among two new ownership paths: There can be none
among two initially new ownership paths na. and n5 , with the same target o.a = o.a',
since this implies that they are identical. There can be none among two internally
new ownership paths n1 • na..a.' and n~ • na..a.' with the same target o.&a', since then
their witnesses have the same, uniquely determined target u(o.&a') = r.!-L0 (a).a',
and thus would have been in conflict in g0 . And there can be none between initially
new ownership paths na. and internally new ownership paths n 1 • na.".ii' since target
o.a cannot be the same as target o.a".a': The initially new path implies !-Lo(a) E

{free, rep} while the internally new path implies !-Lo(a") E A, so that the nesting
constraints on association modes prevents /-Lo(a".a') E {free, rep}.

Proof of the lemma: The only added edge h0 in g'0 targets a fresh object o. This
means that in g0 , o was only connected with other objects by dummy edges o a<> o.a
to its own region objects. In g'0 , o still has no other edges, since it is not r. And the
only edge targeting o in g'0 is h0 • Hence the only way to extend new handle ho to a
new potential access path is along dummy edges too's region objects. Since dummy
edges are not co-edges, this extension depends on the correlations Po in h0 's mode:
Iff /-Lo(a) -::/:- l_, then na. = ho • o L o.a is a potential access path of corresponding

4To be precise, this presupposes that the given set 0 of object-identifiers contains no dummy
objects: ((]) n 0 X A_+= 0.

139

mode, an initially new path. In particular, 7ra's mode is {3<> iff l1o(a) = {3. This
includes handle h0 itself as an initially new path with a= E.

Nesting-constraints on modes prevent extensions of free h0 to initially new paths
from being co. An initially new path 7l'a that is an association path of mode {3<>
can extend any path 1r1 to r with a correlation {3=11 to an internally new path 1r =
1r1 • 7l'a = 1r1 • 7r&E of mode 11· Its witness o-(1r) is 1r1 • r !3<> r.{J. If an internally
new path 1r = 1r1 • 1l'&a' has a mode with a correlation {3=11, it is extended further to
potential access path 1r • o.&a' ~ o.&a'.{J = 1r1 • 1l'&a'.f3· Since it has a witness
a-(1r) • r.110 (a).a' !3<> r.l10 (a).a'.f3 = 1r1 • r Mo(a).a'.f3 r.l10 (a).a'.{3, it is an internally
new path again. If there is an unchanged potential access path 7r1 that has a correlation
{3=11 and targets the source of an internally new path 1r of association mode {3<> then
it is extended to the potential access path 7r1

• 1r = (7r1
• 1r 1) • 1r a. Since it has a

witness 1r1
• o-(1r) = (1r'• 1r1)• r Mo(a) r.110 (a), it is an internally new path again.

Other combinations are not possible, since all initially new and internally new paths
target o and region objects of it, and thus cannot target the source r of initially new
potential access paths, nor the source of any non-dummy unchanged edges, and thus
not the source of any unchanged or internally new potential access paths. •

3. { UPD}. The update of a variable (formally, of the store at a location £) by
assignment of handle (c, [t0 , o) adds a new edge c L o iff it involves a real conversion
of the assigned handle from mode Jto to another mode jJ, #- [t0 . We can ignore
the destruction g0 = g e c L o' of (the edge corresponding to) the variable's old
value and focus on replacing in the resulting graph g0 the right-hand handle c L
o by the variable's new value c J!sL.. o. Note that the typeability of the redex e
following from Theorem 6 and f= s following from Theorem 6 guarantees 11' :Sm
11· Hence the step from g0 to g' can be handled by induction on the number k of
elementary conversions from Jto to P,, i.e., Jto ::;~ Ml ::;~ M2 ... Mk-l ::;~ Mk = [t, with
corresponding intermediate graphs 9i+l = 9i e c 1!:i___, o E9 c fii+l o up to gk = g'.

Lemma 7 Consider elementary mode conversion 9i+l = gi e c l!:i___, o E9 c fii+l o,

i.e., the substitution of an edge hi+l = c fii+l, o for an edge hi = c l!:i___, o with
Mi ::;~ Mi+l· All potential access paths 1r E PAPg~+1 (o,11,w) in g~1 have a precursor

1r1 = 1r[hdhi+l] E PAPg®(o,11',w) in g[> with the old edge instead of the new one. Two
kinds of new potential access paths can be distinguished:

1. Initially new paths 1r E PAPg~+ 1 (c, 11, w) start with the converted edge c fii+l o and

have a shape c fii+l o ~· • _ _q_-t •. Their precursor 1r[hdhi+1] has the same
mode 11 or a directly compatible mode 11' ::;~ 11. and has, save for the initial edge,
the same shape c l!:i___, o ~· • __ q_-t •.

2. lnternallynewpaths7r E PAPg~+ 1 (o,11,w) have a precursor1r[hdhi+I] E PAPg~(o,11,w)

of the same mode and shape.

140

Note that the constraints on mode compatibility and on the nesting of modes en
sure that Mi+l 2m Mi cannot be free. Hence, first, the nesting constraints on modes
exclude that the extensions 1r = c ili+l o • ... of the converted edge, i.e., the initially
new paths, have a free mode. Second, the only (initial) edge whose multiplicity is
increased in g~1 is non-free. There can be no multiplicity problem for UH. Conse
quently, neither the internally new paths, with their shape-equivalent precursors, nor
those non-free initially new paths that have a mode-equivalent precursor, can intro
duce any new UO- or UH-confiicts. An initially new path 1r E PAP9~+ 1 (c, f.J,, w) with

directly compatible precursor n' E PAP9~ (c, f.J,1 , w) with f.J,1 ~~ f.J, can be an ownership

path only in case of f.J,1 = free ~~ rep = f.J,. But then the precursor is already
an ownership path, so that 1r does not change ownerships and does not affect UO.
And since the precursor is free, it guarantees that all old ownership paths fr' to w
had the initial edge c __fu___, o, whose multiplicity was one. Since this multiplicity is
reduced by one in g~1 , no ownership path with unchanged initial edge (unchanged
or internally new path) can have the target w. rep = f.J, Since all initially new
ownership paths fr' had an ownership path fr as precursor (of the same or compatible
mode), 71-'s shape c __fu___, o ...f2....• • __ q_-t • means for fr that it starts with c ili+l o,
i.e., n's initial edge. Hence there is no UH-confiict.

Proof of the lemma: In the base case of potential access paths 1r in g~1 , 1r is a single
edge. It is new only if it is the converted edge hi+1 = c ili+l o. This is an initially
new path 1r E PAP

9
® (c, fli+ 1, o) with shape c ili+l o ...f2....• • --"---t • and directly
i+l

compatible precursor hi= c __fu___, o = n[hi+l/hi]·
Larger potential access paths 1r in g~1 are the extensions n 1 • n2 of paths n1 E

PAP9~+ 1 (o, f.J, 1 , q) by a co- or a-path n2 E PAP9~+ 1 (q, f.J,2 , w). Since there is no mode

f.J,; ~~ f.J, 2 compatible to co<> nor a<>, n 2 can only be one of these potential access
paths that, by induction hypothesis, have a precursor n; E PAP

9
®(q,f.J,2 ,w).
'

• If n 1 has a precursor of the same mode then the precursors' combination ni[hi+I/hi]
• n2 [hi+I/hi] is a precursor n[hi+I/hi] for 1r. 1r is unchanged if n1 and n2 are
unchanged, it is initially new if n1 if initially new, and otherwise internally new
since the parallel extension of n 1 and precursor n1[hi+I/hi] by a co- or a-path
preserves the relation between their shapes (Lemma 10).

• If n 1 is initially new with a precursor of compatible mode f.J,~ ~~ f.J, 1 and n1 's shape,
then in case of f.J, 2 = co<>, the precursor's extension n 1 [hi+I/hi] • n 2[hi+I/hi] is
always possible and also has mode f.J,~ and n1 's shape. Since 1r has mode f.J, = f.J, 1

and n1 's shape, this makes 1r a initially new path.
• And in case of f.J,2 = a<>, f.-Ll must be a mode m'< ... , a=f.J,, ... >, so that f.J,~ is

m< ... , a=f.J,', ... >. Hence the combination n 1 [hi+I/hi]• n2 [hi+I/hi] of precursors
has the mode f.J,1 and a compatible shape. If f.J,~ ~~ f.J,~ was by depth-compatibility
in the a-correlation, then f.J,1 ~~ f.J,; otherwise f.J,1 = f.J,: 1r is initially new again. •

141

4. {RET}. The return of a handle (r, J.-L0 , o) at the end of the execution of a method
called through call-links~ r adds the sender's edges~ o to the object graph
(imported edge) and subtracts the receiver's edge r ___&___, o (exported edge) and the
call-link: g" = g 8 r ___&___, o 8 s _i!:x_, r E9 s ~ o. We can ignore the second substep,
the removal g' = g" 8 s(im(17*)) of the handles from the environment's locations.

Observe that there are no free edges with multiplicity larger than one: The only
edges whose multiplicity is increased in g" are s ~ o and, if J.-LrOJ.-L0 = co<>, its
inverse o co<> s. There are two cases how J.-LrOJ.-L0 can be free: If J.-Lo is a free mode
then assumption g0 I= U H ensures for the exported handle r ___&___, o that in g0 there
can already be an edge s ~ o equal to the to-be imported handle only if it is
the exported handle and has multiplicity one. But then the decrease of the exported
handle's multiplicity is undone by the increase of the imported handle's multiplicity.
The multiplicity remains one. If J.-Lo = co<> then J.-Lr is free, so that s _l!:x_, r ___&___, o was
a free path in g0 . Hence g0 I= UH ensures that there can be s ~ o already in g®
only if it equals s _l!:x_, r and that the multiplicity of s _l!:x_, r is one. But since the call
link's multiplicity is decreased while that of s ~ o is increased, the multiplicity
remains one. The case with J.-Lo = a<> and a correlation a=free< ... > is excluded by
the nesting constraint on modes.

Lemma 8 Consider result return g" = g 8 r ___&___, o 8 s ~ r E9 s ~ o, i.e., the
substitution of the imported edge h~ = s ~ o. for the exported edge h0 = r ___&___, o
and the call-link hr = s _i!:x_, r. In g"0 , there are three kinds of new potential access paths
1r E PAP9,0 (o, J.-L, w):

1. Co-closure paths 1r E PAP
9
,® (o, co<>, w) are co-paths that exist if J.-LrOJ.-L0 is co<>.

They have a precursor 1r1 E PAP9®(o,J.-L,w) with the imported handles co<> o
replaced by the call-link/exported handle combination s co<> r co<> o, and its
inverses~ o replaced by the combinations~ r ~ o of inverse exported
handle and inverse call-link: 7r

1 = 1r[hr • h0/h~, h-;;1
• h-; 1 jh~- 1].

2. Internally new paths 1r E PAP9,® (o, J.-L, w) have a precursor 7r
1 E PAP90 (o, J.-L, w) with

the same shape and 7r
1 = 1r[hr • h0/h~, h-;; 1

• h-;1 /h~- 1] in case of J.-LrOJ.-L0 =co<>, and
7r

1 = 1r[hr • h0/h~] otherwise.

3. Initially new paths are non-co paths 1r = h~·ir E PAP9,®(S,J.-L,w) that exist if

J.-LrOJ.-L0 -1- co<>. They start with h~, have a shape s ~ o£2....,• • _ _q_-t •,
and a counterpart et:!J0(7r) = h0 • ir' E PAP9®(r,J.-L',w) with a mode J.-L1 such that
1-L = J.-lrOJ.-L1

. The counterpart starts with h0 instead of h~ and has shape r ___&___,

o£2....,• • __ <!_-t •. The two paths' postfixes are related like internally new paths:
ir' = ir[hr • h0 /h~], and similarly related are 1r and the combination hr • et:IJ0(7r) of
the call-link and the counterpart: hr • et:!J0(7r) = 1r[hr • h0/h~]. It is a potential access
path in PAP9®(s,J.-L,w) if J.-Lo(ii) E {co} UA, and its shape iss _l!:x_, r ...£Q...• • _ _q_-t •

if J.-Lo = co<> or s ~ r ...£Q...• • _§§_-t • if J.-Lo = (3<>.

142

Co-closure paths and internally new paths are harmless since they are not owner
ship paths, or have a precursor with the same shape (note that there is no multiplicity
problem). Consider an initially new ownership path 1r of the kind with a precursor 1f

1

and another ownership path ir' with the same target w that is unchanged, internally
new or initially new with a precursor ir'. Then g0 f= UO guarantees that 1f

1 and ir'
have the same source, and thus so have 1f and ir. There is no UO-confiict. And if
1r or ir were free, then g0 f= UH would guarantee that precursor ir' has precursor
1r"s shape s _&___. r£.Q__.• • _ _q_-t • and the initial edge, the call-link, has multiplicity
one. But since the call-link's multiplicity is decreased by one in g" 0 , it cannot be the
unchanged initial edge of unchanged or internally new ir. And if ir is initially new
like 1r then they both start with the imported handle. There is no UH-confiict.

Consider an initially new 1f without precursor, i.e., of shape s ~ o£2....•

• -A--t • with f-Lo (ii) ~ {co} U A. It can only be an ownership path if it is free and if
it has a free counterpart e~po(1r), i.e., f-L 0 (ii) =free. But then g0 f= UH guarantees
for all ownership paths ir' in g0 sharing 1r's target that they have e~po(1r)'s initial edge,
i.e., the exported handle h0 , and that h0 's multiplicity is one. Since its multiplicity
is reduced by one in g" 0 , no unchanged or internally new path ir can have 1r's target.
If an initially new ownership path ir with precursor ir' has 1r's target, then ownership
path ir"s initial edge s _&___. r must be the same as e~po (1r) 's initial edge r _l!:Q___, o. But
then ir and 1r start with the same edge. If an initially new path ir without precursor
has 1r's target, then its counterpart e~po(ir) is an ownership path. Hence it must have
e~po(1r)'s initial edger _l!:Q___, o, so that ir and 1r start with the same edge. There is no
UO- and no UH-confiict with initially new 1r.

Proof of the lemma: For uniformity, let CJ be the substitution [hr • ho/h~, h-;; 1
• h-; 1 /h~- 1]

in case of f-LrOf-10 = co<> and [hr • h0/h~] otherwise. In the base case of potential ac
cess paths 1r in g" 0 , 1r is a single edge. It is new only if it is the imported handle
7r0 = s ~ o, or its inverse 1r;;1 = o co<> s should it be f-LrOf-10 = co<>. If
f-LrOf-10 = co<> then f-Lr = f-Lo = co<>. Hence in g0 , call-link and exported han
dle combine to the co-path s co<> r co<> o, and they have inverses that combine
to the co-path o co<> s co<> s. These are the necessary precursors CJ(7ro) and
CJ(1r;; 1) that make 7r0 and 1r;;1 co-closure paths. If f-LrOf-1 0 =/:. co<>, 1f0 is a initially
new path 1f0 E PAP9,®(S,f-LrOf-L0 ,o) and with exported handler _l!:Q___, o as coun
terpart e~po(7ro) E PAP90 (r, f-10 , o) such that hr • e~po(1r0) = CJ(7r). If f-Lo = co<>
then f-LrOf-1 0 = f-Lr, and call-link and exported handle combined to 7r0 's precursor
s _&___. r _l!:Q___, o. If f-Lo = a<>, then f-LrOf-10 presupposes a correlation a=f-L in f-Lr· But
then call-link and exported handle already combined in g0 to the potential access
path s _&___. r _l!:Q___, o of mode f-Lroa<> = f-LrOf-1 0 = f-L.

Larger potential access paths 1r in g"0 are the result of extending paths 1r1 E

PAP
9
,0 (o, f-1 1 , q) by a co- or a-path 1r2 E PAP9,0 (q, f-12, w), which always has a pre

cursor CJ(1r2).
• If 1r1 is unchanged of internally new then its shape-equivalent precursor CJ(1r1) is

extended by precursor CJ(1r2) to a precursor CJ(1r) = CJ(1rl) • CJ(1r2) of 1f = 1r1 • 1r2 with

143

the same mode and shape. If 1r1 and 1r2 are unchanged, 1r is unchanged. Otherwise,
1r is internally new.

• If n 1 is a co-closure-path then its mode co<> has no correlations and thus allows
only for extension by a co-path n 2 . Hence n's mode is n 1 's mode, and the precur
sor's combination O"(n 1) • O"(n2) is possible and a precursor 0"(1r) for 1r. 1r is again
a co-closure path.

• If 1r1 is initially new then its counterpart et:po(n1) is extended by O"(n2) to a
counterpart et:po(n) = et:po(nl) • O"(n2) with hr • et:po(n) = hr • et:po(nl) • O"(n2) =

O"(n) • O"(n2) = O"(n). If n 1 's shape is s ~ o ~· • __ q_-t • and et:po(n1)'s
shape is r ~ o ~· • _ _q_-t • then their extensions by n 2 and O"(n2) to 1r and
et:po(n) have the following shapes by Lemma 10: s ~ o ~· • _ _q_-t • and
r ~ o ~· • _ _q_-t • in case of 112 = co<>, and s ~ o ~· • _§.jJ_-t •

and r ~ o ~· • _§.fl_-t • in case of 112 = {3<>. Moreover, if f1 0 (ii.{3) = [, then
et:po(n) has mode[<> and f1rOf1 0 implies f-lrO[<>. This means that 1-lr must have
an a-correlation a=11 ton's mode f-l· Hence the concatenations ..l!:.L... r • et:po(n) is
a potential access path that is a precursor for 1r. 1r is an initially new path. •

5. {CALL}, THE PROBLEM. The invocation of a method through call-links ..l!:.L... r
adds the receiver's self-edge r co<> r, and adds one edge r J!j___, o1 in the receiver for
each non-nil-handle argument (s, f-lj, o1) in the sender. The self-edge is harmless since
it allows merely for the construction of new ownership paths containing superfluous
reflexive co-edges. The typeability of reachable redices e implied by type consistency
(Theorem 6) ensures that, if the modes of the called method's k parameters are
/-ll, ... , f-lk, then the modes 11~, ... , 11~ of the k handle arguments are compatible to
f1rOf11, ... , f-lrOf-lk, i.e., /-lj ::;m f-lrOf-lj· From the case of { upd}, we know that the edges

s ~ o1 in g can be replaced, in an intermediate step, to compatible edges s t-LrOfh 1 o1
without danger for the structure of object ownership. But does the replacement of
each converted handle argument, the sent handles t-LrOt-Li, o1, by the corresponding
received handler J!j___, o1 preserve the structure of object ownership?

Normally, for each received handle, one expects first the initially new paths na. =
r J!j___, o1 _q-t w that extend the handle to objects w reachable via o1 and that have
a counterpart sent(na.) = s 1-Lro/-Li 1 o1 A-t w in the graph before the supply. Further
more, based on initially new co- or association path na. there should be internally
new paths 1r = n' • na. • q _i-t w that target objects reachable before the supply from
s by a paths t-LrOt-Li 1 o1 _q-t q _i-t w, and that have a witness tuit(n) = n'• s ..5.__. s:1
(if na. is a co-path) or tuit(n) = n'• s t-Li(a).'YI S.f11(ii.).1 (if na. is an association path)
in the graph before the supply.

However, with received handles that are, or can be extended to, (initially new)
co- or association paths, things are different to everything we have seen before: As
opposed to the { upd }- and {ret }-cases, these co- and association paths neither nec
essarily have a precursor-so that the extension of potential access paths by them
may produce an unpredictable number of completely new potential access paths to

144

objects reachable from Oj· Nor do they have targets from which no other objects can
be reached, as in the {new }-case-"higher-order new" potential access paths may
result from the extension of one new path by another one (if r is reachable from oj).

At the lowest level of the object graph, every new potential access path 7r E

PAP(o, J-L, w) from o tow of course has a "precursor" n' = n[r ._1!:L s J.LrOJ.Li 1 oj/r J!:j___,

oj] where the received handle r J!:j___, Oj is expanded to the call-link s- -J-Lr- - > r
in reverse and the sent handle s J.LrOJ.Li 1 Oj. (We ignore the inverse received handle in
case of /1j =co<>.)

s s
J.Lr ./ '\. J.LrOJ.Lj J.Lr ./ '\. J.LrOJ.Lj

o ___,. r ~ Oj ___,. r ~ Oj ___,•

,._...,
new

,._...,
new

s
J.Lr ./ '\. J.LrOJ.Lj } old

J.L * _____1_,__ ___, r ____,- Oj ___, • w
,._...,
new

But n' is not a directed path of references, is no potential access path. There are
also not one or two simple subsequences of it that characterize as potential access
paths with modes related to n's mode f1 how n's source and target were connected
before the parameter supply. Several times the forward path of old edges may be
interrupted by a gap between r and Oj that can only be bridged by following the call
link r ._1!:L s against its referencing direction before continuing in forward direction
with the sent handle s J!:j___, Oj. For reasoning about new ownership paths n based
on such a lose kind of connection between o and w before supply, the properties UO
and UH are too weak. A stronger property is needed which allows one to extend the
uniqueness of ownership and free paths through such connections. This property
is like a reservation for J-L-ownership on w, a reservation which the supply realizes
by collapsing the connection to the potential access path 7r. The assumption about
reserved ownership has to be formulated strongly enough to ensure its own preser
vation when s's reservation for a J-LrOJ-LrPath to oj or for a J-Lr-edge to r is realized.
Reserved ownership, it must be pointed out, is not a concept of JaM programming,
but the name given to a proof-technical concept that is molded to the needs of the
proof about the structure of object ownership.

6. REGION-COUPLING. When shall we say that an object o has a reservation for
ownership on object w, or more generally, for a J-L-path to w?: When there is a
potential access path 7r E PAP(o, J-L, q.ry) to a region object q.ry and from q tow there
is a corresponding f-sequence of association paths modulo region-coupling, written,
cp = q __ 1__+/~ w! That is, the pair (n, cp) formalizes the J-L-reservation. The "modulo
region-coupling" -qualification is the crucial part that takes the gaps u ,___}:£_ v ~ w
into account that could be closed to u L w by the supply of handle v ~ w to u
through call-link u ,___}:£_ v.

The region-coupling relation ~, defined formally in figure 6.11, is the transitive
reflexive symmetric closure of four cases of region-coupling: 5

5No separate rule for reflexivity is necessary: Empty o _E_.,.;~ o entails o::Y = o.E.i ;==; o.;y.

145

7r E PAP9®(o,f.L,W) f.L(E) E {free, rep} f.L(f3) E Aj_ a . II 0 -----+/~ W VIa

O.f.L(f3) r= w.{3 via { 1r} o.a.'J r= w.'J via II

o.a r= w.;y via II
w.;y r= o.a via II

o.a r= q./J via II q./J r= w.;y via II'
o.a r= w.;y via II u II' o.l_ r= w.l_ via 0

1r E PAP90 (o, {3<>, w)
o __ f}__-+1.=- w via {1r}

o.a r= q.;y via II q 5 ... -+L w via II'
a ,

o -----+1.=- w via II U II

a1 • II a2 • II' 0 -----+/~ q VIa q -----+/~ W VIa

a1 • a2 • II II' 0 ---------+1.=- W VIa U

Figure 6.11: Region-coupling, and association paths modulo it

• Through ownership paths 1f E PAP(o, JL, w) with correlations f3=a<>, o's a-handles
(o, a<>, q) and w's {3-handles (w, {3<>, q) can be exchanged in both directions. That
is, members q of o's a-region (cf. Definition 12) can become members of w's {3-
region, and vice versa. Hence we will say that through 1r, o's a-region and w's
{3-regions are coupled, in symbols o.a :r= w.f3 .

• If objects q enter or leave the 1-region of an object w in o's a-region (o __ q_-t
w) then they also, respectively, enter or leave o's &,:Y-region. Hence we will say
that the two regions are coupled: o.&,:Y :r= w.,:Y. To facilitate later proofs, this
is generalized from objects w currently in o's a-region to objects w that might
become a member through handle exchange since it is reachable from o via an
a-sequence of association paths modulo region-coupling (o --c!- -+1.=- w).

• For formal reason, if an ownership path 1f E PAP(o, JL, w) does not correlate an
association role f3 (JL(f3) = _i), then we say that the target's {3-region is coupled
with the source's "undefined region," in symbols o._l :r= w./3.

• One "undefined region" is as good as another; they are all mutually coupled:
o.l_ ~ w.l_. 6

It is also defined formally in figure 6.11 what it means to be an a-sequence of asso
ciation paths modulo region-coupling from o tow, or a :r=-path o __ q_-+1.=- w for
short: If there is an association path 1f E PAP9®(o,{3<>,w) then there is a :r=-path
o __ /i_-+1.=- w. If there is a ~-path q __ 1__-+1.=- w then, modulo the region-coupling
o.a ~ q.,:Y, there is also the ~-path o _ _q_-+1.=- w. And intrinsic to any notion of
path, two consecutive ~-paths can be concatenated to another ~-path, and there
are empty ~-paths (which are neutral elements in path-concatenation).

For reasoning about coherence in §6.5, judgments about :r=-relationships and ~
paths are derived with an annotation "via II" that records the set of potential access

6 Alternatively, we could work with "the" undefined region J.... But each object having its own
undefined region will provide for a more uniform treatment in the proof.

146

paths on which they are based, the path-base. Equivalence II_ II' and inequivalence
II cs II' between two path-bases means that the set H of the edges in IT's paths is,
respectively, the same, or a subset of, the set H of edges in II"s paths.

Note that all above association role sequences ii, /3, and 1 may also be empty, and
that all above objects o, w, and q can be region objects in the extended graph g®. No
distinction between objects' regions and region objects (or region objects' regions)
needs to be made: A region-coupling o.ii ~ w.1 with the 1-region of a region object
w = q.f] is equivalent to the region-coupling o.ii ~ q./3.1. This follows formally from

dummy edges q L q.f] = w, via q _ _!f._-+/o= wand q./3.1 ~ w.1.

Definition 13 The reserved ownership assumption means for any two ownership
reservations (ir, cp) and (ir', cp') on the same object v, i.e., for ownership paths 7r E

PAP(w, [L, u./3) and ir' E PAP(w', P,', u'./3'), and ~-paths rp = u __ /j__-+/o= v and cp' =
u' _}t__-+/o= v, that

a) w' = w and P,' = [L,and
b) if [Lor P,' is free then 7r and ir' have the same initial edge, and its multiplicity is one.

Obviously, this assumption is a strengthening of Unique Owner and Unique Head
(they follow with /3' = /3 = E, so that u./3 = u = v = u' = u'./3').

7. {CALL}, THE SOLUTION. Return now to the /h supply substep gj = 9]-l EEl
r ~ o 8 s ~ o, i.e., the substitution of a received handle h~ = r ~ o for
a sent handle h0 = s ~ o in the presence of a call-link hr = s ~ r. We
can now better describe how source and target of the aforementioned initially new
paths 7ra = r ~ o _cg_-+ w and internally new paths 1r = 1r1

• 1ra • q _i-+ w were
connected before the supply of handle parameters extensible to association paths,
i.e., with f.Lo(iii) E A for some iii: First, there was, respectively, a witness tuit(7ra) =

s ~ o L o.ii or tuit(1r) = 1r'• r J.Lo(a).1 r.f.L0 (ii).1. Second, there was an initial
~-path o __ cg__-+/o= r.f.L0 (iil).11 orr __ gq_(§11__-+/o= r.f.L0 (a1).11 , respectively, followed by
a series o _r'iJ5.l-+/o= r.f.L0 (a2).12, ... , o fi.h5.h-+/o= w of ~-paths with f.L0 (ai) EA. Third,
these paths were linked by extensions s ~ r J.Lo(r'i;-ll-1i-l r.f.L0 (ai_1).1i-l of the
call-link, and s ~ o 1i-l o.iii.1i of the sent handle to pairs of ownership paths

r.f.L0 (iii_1).1i-l t-g;_ s Jl.i-+ o.iii.1i of the same mode. For example, the structure of
the connection between source and target of an internally new path 1r E PAP (o, f.L, w)
could be depicted as follows:

Each forward ownership paths A-+ o.iii.1i and following ~-path together consti
tute a /\-ownership reservation of son, respectively, r.f.L0 (ai+l)·1i+l (fori <h) or w

147

(for i = h). The connection can be described more generally as one initial potential
access path to an object q0's region object q0 .ii0 .1o followed by a "ii0 .10 -bridge" from
q0 to w defined as follows:

Definition 14 An ii-bridge from o to w in a supply substep is an initial ;:::=:-path
o __ cg_~lc= w0 via II0 followed by a series of triples (1rL 1ri, 'Pi) of two ownership paths
1r~ = wi +-g;_ s and 1ri = s .Pi~ qi.iii.;yi, and a ;:::=:-path 'Pi = qi _Cii5.i~lc= wi+l via IIi from
i = 1 to some n 2: 0, such that Wn+l = w. In case of parameter mode JLo = co<>, each
iii is E, and ownership paths 1r~ = h~ • ir~ and 1ri =hi • iri each start with h~, hiE {hr, ho}
and have matching shape s ..1:!:sL. o ~· • __ ii_-t • or s ...i:.!:L, r ~· • __ ii_-t •. In
case of parameter mode JL0 with JLo (ii) E A for some ii, each 1ri = hi • iri starts with
hi = h0 and has shapes ~ o ~· • _Ci;5.i-t • with JL 0 (iii) E A while 1r~ = h~ • iri
starts with h~ = hr and has shape s ...i:.!:L, r ~· • P!!(a_ilc1.i~ •. The bridge's path-base is
ITo U U~=t { 1ri, 1ri} U IIi.

Lemma 9 In g~, there are three kinds of new potential access paths 1r E PAPg® (o, JL, w):
J

1. Co-closure paths 1r E PAPg® (o, co<>, w) are co-paths that exist if JLo is co<>. They
J

connect old co-objects of r and o. That is, there is a (possibly empty) path of co-
edges o ~· r or o ~· o, and w ~· r or w ~· o. If JLo = JLr = co<> then 1r has
a precursor 7r

1 E PAPg® (o, JL, w) where 7r
1 = 1r[h;1

• h0/h~, h;; 1
• hr/h~- 1].

J-1

2. Internally new paths 1r E PAPg® (o, JL, w) are non-co potentia I access paths that exist
J

if JLo(ii) E {co} U A for some ii. They start with an unchanged edge h and have

a shape o L q ~· • _il..§Q.jQ.~ •. In case of JLo = JLr = co<>, 1r has a precursor
7r

1 E PAPgT_
1
(o, JL, w) with the same shape and 1r' = 1r[h;1

• h0/h~, h;;t• hr/h~- 1]

(1r is an "internally-only new" path). Otherwise there was a witness tuit(1r) E
PAPg® (o, JL, q0 .ii0 .10) and a non-trivial ii0 .10-bridge from q0 to w (1r is an "in-

J-1

ternally really new" path). 1r and tuit(1r) have the same shape and have a common,
non-trivial prefix 7rt: 1r = 1ft • 1r2, tuit(1r) = 1ft • qo ao.]o • qo.iio.1o· If JLo #- co<>
then q0 = r and ii0 .1o #- E; if JLo = co<> then qo E { r, o} ii0 .10 may be empty. The
bridge's path-base is a set II of paths which together with IT0 = { h~} or, in case of
JLo =co<>, with non-empty IT0 s;;; {h~, h~-t} contains all edges of 1r's second half
ir2, edges ITA= {hr, h0 } and some dummy edges II0 : {1r2} U ITA U II0 =II U II0

3. Initially new paths 1r E PAPg® (r, JL, w) are non-co potential access paths 1r =
J

h~ • ?rt • 1r2 that exist if JLo #- co<>. They start with the received handle and have
some shape r ..1:!:sL. o ~· • _a...P.:..'Y..9-t •. In g~-t· they have a witness tuit(1r) =
ho • 7rt • 7r~ E PAPgT_

1
(s, JLrOJL, qo.iio.1o) which starts with sent handle h0 followed

by edges 7rt shared with 1r to q0 and then dummy edges 1r~ to q0 .ii0 .'7o, and which has
shape s ~ o ~· • _a...95..9-t •. It is followed by a ii0 .10-bridge from q0 = r tow

148

via II. In the simple case, the bridge is trivial, q0 .ii0 .1o = q0 = w, and 1r2 = 1r~ = E.

Otherwise, n1 goes to q0 = r, n2 starts with h~ followed by edges from II and more
h~-edges, while II contains all edges of n2 other than hr and additionally the edges
IIi\= {hr, h0 } and some dummy edges II0 : {n2} U IIi\ U II0 - II U {h~}.

Unique Owner and Unique Head are preserved since the reserved ownership as
sumption guarantees UO- and UH-consistency for each subsegment of the connection
realized by new ownership paths 1r and n' with the same target, namely between

• tuit(n) = o Y:..-+- q0 .ii0 .1o or tuit(n) = s YJ!::I:!:.-+- q0 .ii0 .'7o, respectively, 7 and w0 t-!±1
- s

connected by q0 _a_i)5SJ-+-/-;=' w0 (and trivial w0 - "'- -+-/-;=! w0);

• every two ownership paths s Jl.i-+- qi.iii.ryi and wi t-f!,H_l_ s connected by qi _fii5.i-+-/-;=' wi;
•I

• the ownership path s .Pi-+- q;.iij.ryj on n's side and qj,.iij,.ryj, j"..J'- s on n''s side

connected by qj _a..J::..:=Yi-+-1-;=' w on n's side and w t---a~~t:.. __ /-;=' wj, on n"s side;

• every two ownership paths s -~;.±-1-+- w~ and q~.ii~.ry~ t-K s connected by w~ t-~~L-;-;=' q~;
• and between s _p~--+- w~ and tuit(n') = qb.iib.% t-1:!:.'_ o' or tuit(n') = qb.iib.% t-l!:.r~i!:'_ s

connected by wb t-<2~./iiL;-;=' qb.

Consequently, n's and n"s source must coincide, and if one of them is free, they
have the same shape and initial edge of multiplicity one. That is, Unique Owner and
Unique Head are preserved by new ownership paths.

Proof of the lemma: The proof uses a few technical lemmas supplemented in the
next subsection. Let us cut short the special case that the parameter edge is the
same as the argument edge, i.e., r =sand P,j = J-trOJ-tj· Then nothing changed at all:
g'® = g~.

And in case of p,0 = J-tr = co<>, the only new edges are the lh received handle
h~ = r co<> o and its inverse h~- 1 = o co<> r. Call-link hr = r co<> s, sent handle
h~ = s co<> o of mode J-trOJ-t0 = co<>oco<> = co<>, and their inverses combine to the
necessary precursors: r co<> s co<> 0 = h-; 1 • ho = a(h~) and 0 co<> s co<> r =
h-;_; 1

• hra(h~), respectively, where a= [h-; 1
• h0/h~, h-;_; 1

• hr/h~- 1]. Then whenever a
judgment g'0 f-- 1r E PAP(o,p,,w) can be derived in g'0 , is was possible to derive
g~ f-- a(n) E PAP(a, p,, w) based on replacing derivations of g'0 f-- h~ E PAP(o, p,, w)
from h~ E g'0 and of g'0 f-- h~ E PAP(o, p,, w) from h~- 1 E g'0 to derivations of
g~ f-- a(h~) E PAP(o,p,,w) and of g~ f-- a(h~- 1) E PAP(o,p,,w). Consequently, all
paths 1r E PAP

9
,® (o, p,, w) have a precursor a(n) E PAP9~ (o, p,, w). If 1r is new and its

7For uniformity, unchanged and internally-only new potential access paths can be treated
like a special case of internally really new paths, with their precursor 1r1 as witness mit(1r) E

PAP9,® (o, J1, w.E), and a corresponding trivial connection w _E_+/""' w. Note that the witness roit(1r)
of an initially new ownership path 1r is an ownership path, namely a free one, since rep-modes in
parameter mode J1J have been excluded, so that 1r's mode J1 can only be free, and consequently
roit(1r)'s mode J1rOJ1 is free too.

149

mode J-L is co<>, it must be a sequence of co-paths containing h~ or h~- 1 . But then
precursor a(1r) ensures that o and ware old co-objects of rand o (and of each other).
1r is a co-closure path. If 1r is not co, it is an internally-only new path.

For the remaining cases, proceed by induction on the derivation of judgments
g'0 f- 1r E PAP (o, J-L, w). In the base case, 1r is only one edge. It is new in g'0 compared
to g~ only if it is the /h received handle h~ = r ..l:!:.!L. o or its inverse h~-l = o co<> r
in case of f-Lo = co<>. If f-Lo = co<> then h~ and h';;1 are obviously co-closure paths.
If f-Lo -=J- co<> then h~ is initially new with shape • ___, • ~· • --~-7 •, with the sent
handle as witness tuit(h~) = h0 = s ~ o.E of the same shape, and with the trivial
o.E _€_7/oc= o as corresponding E-bridge.

In the induction step, 1r is the extension 1r1 • 1r2 of a potential access path 1r1 E

PAP
9
,®(o,J-L1 ,q) by a co- or a-path 1r2 E PAP9,®(q,J-L2 ,w).

I First, I consider the case where 1r1 is unchanged:

(a) If 1r2 is also unchanged then 1r is unchanged again.

(b) If 1r2 is a co-closure path then J-L2 = co<>, so that J-L = I-Ll· If I-Ll = J-L = co<> then
1r is a co-closure path: Unchanged 1r1 means that o is an old co-object of q, which by
co-closure path 1r2 is an old co-object of r or o.
If /-Ll -=J- co<> then 1r is an internally really new path (because the case of J-Lr =
f-Lo = co<> was already covered before the induction). Since 1r2's source q is an old
co-object of q' = r or o, there must be a possibly empty prefix 1fq = q ~· q' of
unchanged co-edges in 1r2 = 1fq • 7T2. Then extension 1r1 • 1fq is the necessary witness
tuit(1r) E PAP9~(o,J-L,q'.E) with q' E {r,o} containing all of 1r's edges from 1r1 . A
corresponding E-bridge tow that contains all edges of 1r2 's postfix 7T2 other than h~ and
h~-l consists of the trivial q'.E _E_7 q' and three triples (hq', hr • 7rr, cpr), (hn h0 • 7r0 , cp0),

(h0 , hw • 1fw, cpw): hq' is hr if q' = r and h0 if q' = o; hw is hr or h0 which a path 1fw
of unchanged co-edges can extend to w (since w was r's or o's co-object); the cpx
are trivial ~-paths x.E _E_7 x; and 7rr and 7r0 are paths r ~· r and o ~· o of
co-edges that include all of if2 's co-edges on, respectively, r's and o's side and then
lead back to their starting point. All the ownership paths in this bridge obviously
have the same shape shape s __~!:_!:__, o ~· • --~-7 •. The bridge's path-base is
II= {hq',hr•Kr,hnho•1f0 ,h0 ,hw•1fw} = {hr,h0 ,1rr,1ro,1rw} such that it contains,
besides hr and h0 , all edges of 1r's postfix 7T2 not common with tuit(1r), save h~ and/or
h~- 1 : {if2} U {hr, h0 }- II U II0 with non-empty II0 S: {h~, h~- 1 }.

(c) If 1r2 is initially new then 1r2 = h~ • 1r3 • 1r 4 , q = r, J-L2 = {3<>, and 1r2 has a witness
tuit(1r2) = h0 • 1r3 • 1r~ and a Cii0 .1o-bridge from q0 tow. 1r is an internally really new
path whose witness tuit(1r) is the extension 1r1 • r /3<> r./3 of 1r1 . For the corresponding
{3-bridge from r tow, consider the two alternatives guaranteed by Lemma 13:

• There may be a ~-path r __ {}__7/oc= w0 via II2,0 U {hr, tuit(1r2)}. Substituting it for
the first ~-path q0 _a_IJ5S!7/oc= w0 via II2,0 in 1r2's Cii0 .'70-bridge via II2 produces a
/3-bridge tow via II= II2 U {hr, tuit(1r2)} II2 U {hr, ho, 1r3, 1ra.

150

• Otherwise there is an ownership path-pair (hr • hf3, tuit(n2)) = r.(3 +f!,- s _A_-+
q0 .a0 .'7a where hf3 = r L r.(3. The ownership paths have the right initial edges
to connect the dummy edge hf3 with n2's 5 0 .%-bridge from q0 tow via II2 to a
(3-bridge tow with path-base II- II2 U {hn hf3, ho, n3 • n4}.

By definition of initially new n2 = h~ • n3 • n4, either n4 = E and II2 = 0, or
{ 1f4} u ITA u II® = rr2 u { h~}. Hence in the ~-path case, we have { 7r2} u {hr, ho} u
(II0 U { n~}) _ IIU {h~}. And in the ownership path-pair case, { n2} U {hn ho} U (II0 U
{ n~, hf3}) =II u { h~}.
(d) If n2 internally really new then n is an internally really new path again: n2's
old witness tuit(n2) E PAP9~(q,J.12 ,q0 .a0 .ry0) is extended by precursor n1 to a witness

tuit(n) = n1 • tuit(n2) E PAP9~(o,J.-l,qo.ao.1o) for n. The corresponding ao.%-bridge
from q0 tow via II = II2 is guaranteed by n2. If n2 = n3 • n4 and tuit(n2) = n3 • n~
with maximal common prefix n3, then { n 4} U ITA U II0 = II2 U II0 is guaranteed.
Since n4 is also the postfix of n = n1 • n2 = (n1 • n3) • n4 not common with tuit(n) =
1l"l. tuit(n2) = (nl. 7r3). 7f~, and since II= rr2, we have { 1f4} u ITA u II®- II u IIo.

I Second, I co-closure paths n1 extend always to another co-closure path: Since their
mode 111 is co<>, they can only be extended by co-paths, so that no new witness is
necessary and initially new and internally new paths n2 are excluded. n's source o is
an old co-object of r or o since it is the source of co-closure path n 1 . n's target w is
by definition also an old co-object of r or o if n2 is a co-closure path. And if n2 is
unchanged then n2 's precursor n; of mode co<> means that w is an old co-object of
q, which is an old co-object of r oro since it is target of co-closure path n1 .

I Third, \ if n 1 is initially new or internally really new, and n2 is a co-path, then n2
can neither be initially new nor internally really new, and n is the same kind of new
potential access path: Its witness is the same as that of n1: tuit(n) = tuit(n1), except
in one case where the bridge is empty (see below). The corresponding 5 0 .%-bridge
from q0 tow follows from n1 's 5 0 .%-bridge from q0 to q:

(a) If n2 is unchanged, consider the last ~-path qj -~5i-+/~ Wj = q via II1,j in n 1 's
5o.1o-bridge to q:

• If it is not empty, i.e., iij.1j-::/:- E or qj-::/:- Wj, then n2 can extend it to qj -~5i-+/~ w
via II' = II1,j U { 7T • n2} for some 7T E II1,j (Lemma 11). By substituting it for

% -~5i7/~ Wj = q 7rl's Go.1o-bridge to q is redirected tow via II= rrl u {n2}·

• If Gj.;yj = E and % = wj, and j > 0, then the last ~-path is the trivial % -"=--+!~
q via 0 and the last ownership path is 7T = s Pi-+ qj.aj.ryj = qj.E = q. Extension
7T • n2 is the ownership path s Pi-+ w. Substituting it for the original ownership
path, and substituting w -"=--+;~ w via 0 for qj -"=--+;~ q redirects n1 's 5 0 .10-bridge
tow via II- II1 U {n2} .

• If Gj.;yj = E and qj = Wj, and j = 0, then the bridge is trivial and via rrl =
II1,j = 0. This applies only to the case of initially new n1 . Its witness tuit(nl)

151

is s _/!:L-)o qj.cYJ·1J = w1 = q. Then ttJit(n) = ttJit(n1) • n2 = o _/!:L-)o w = w.t.
The corresponding E-bridge is the trivial initial r:=-path via II = 0 w --'=---)-;~ w
followed by the empty triple series.

(b) If n2 is a co-closure path then !J-0 = co<>, so that the case of initially new n1 does
not apply. Co-closure path n2 means that q as well as w are old co-objects of r or o,
i.e., there are co-paths 1fq = r ~· q oro~· q, and 1fw = r ~· w oro~· w. Since
!J-0 = co<>, IJ-rOIJ-0 = /J-r· Hence hr or h0 combined with 1fq or 1fw to potential access
paths ir' E PAP9~ (s, IJ-n q) and ir E PAP9~ (s, IJ-n w) of shapes ...l!:L... r ~· • --'=---)- •.
Since the case of IJ-r = !J-0 = co<> was already handled before the induction, /J-r must
be a free or rep mode: !J-0 = co<> means that r n, ~n f-E e : f excludes read and
association modes for P-r· Hence (ir', ir) is an ownership path-pair q +l!:.r_ s P.r.-)- w = w.E
with call-link or sent handle as initial edge and with the same shape. It, and the
trivial r:=-path W -'=---)-/~ W via 0 extend 1r1's cYo.1o-bridge from Wo to q via IJ1 ton's
50 .10-bridge from w0 tow via II= II1 U {nq, nw} U 0. In order to ensure coverage by
II for all edges from n2 (see below), simply chose 1fq so that it includes n2's co-edges
on q"s side and chose 1fw so that it includes n2's co-edges on w's side.

Initially new n1 = h~ • n3 • n4 means either n4 = E and II1 = 0, or {n4} U ITA U II0 -

II1 u {h~}. And internally really new 1f1 = 1f3. 1f4 means {n4} u ITA u II®= II1 u II~.
In internally really new 1r, n3 is still the maximal common prefix, and 1r 4 • n2 is the
rest: 1r = 1r1 • 1r2 = 1f3 • (n4 • n2).

In (a), the case of II = II1 = 0 means for initially new n1 that n4 = n~ = E
and II1 = 0. Hence the postfix of 1r and ttJit(n) are the same: 1r = h~ • if and
ttJit(1r) = h0 • if with II = 0. The case of II _ II1 U { n2} means for initially new
n1 that {n4•n2}UIIAUII0 _ IIU{h~}. For internally really new n, it means
{ 1f4. 7r2} u ITA u II® II u II~.

In (b), a co-closure path n2 's edges are h~ or h~- 1 or both, as well as old co-edges
on r's and on o's side, which are contained in 1fq and 1fw, or vice versa. Hence II =
II1 u{ 1fq, 1fw} means for internally really new 1f1 that { 1f4. 7r2} UITA urr® - rrurr~ urr~
where II~ is that non-empty subset of { h~, h~- 1 } contained in n2. The case of initially
new n1 does not apply.

I Fourth, I if n1 is initially new or internally really new, and n2 is an association path,
then n2 cannot be a co-closure path, and 1r is the same kind of path as n1. The

't 't() u~ co I ao.-'Yo _, _, u c I ao.-'Yo _, -> w1 ness ltJt n1 = s -=.Q...., o ____.• o ---'--)- q0 .(1:0 .')'o or o ---=--+ o ___2__,• o ---'--)- q0 .o:0 .')'0 ,

respectively, is extended by dummy edge 1r~ = q0 .a0 .10 f3<> q0 .a0 .10 .(3 to n's witness
ttJit(1r) = ttJit(1r 1) • h~, except in one case where the bridge is trivial (see below). The
extension preserves the relationship between the shapes of the path and its witness.
The corresponding 50 .10 .(3-bridge from q0 tow follows from n1's 5 0 .10-bridge from q0

to q.

(a) If n 2 is unchanged then n1's 5 0 .10-bridge via II1 can be extended along n2 =
q _{}~>--)- w to a 5 0 .%.(3-bridge tow via II = II1 U {n2} U IIf3 (Lemma 14). In case

152

of initially new 1r1 = h~ • 1r3 • 1r4 while 1r4 = 1r~ = c: and II1 = 0, witness tuit(1r1) =

h0 • 1r3 • 7r~ targets q and can be extend along 1r2 to a witness tuit(1r) = tuit(1r1) • 1r2
targeting w.

(b) If 1r2 is a initially new path 1r2 = h~ • 1r5 • 1r6 then q = r. For 1r2, Lemma 13
guarantees two cases:

• There may be a ~-path r __ {}__~I.= wb via II2,oU{ hr, tuit(1r2)} = II2,oU{ hr, h0 , 1f5 • 1r5}.
Then 1r1 's a0 .,:Y0-bridge from q0 to q = r via II1 can be extended along this ~
path to a a0 .,:Y0 .;3-bridge to wb via II~ = II1 U II2,0 U { hr, tuit(1r2)} U II,a (Lemma
14). It is extended by the rest of 1r2 's bridge to a a0 .,:Y0 .;3-bridge to w via II -
II1 U II2{ hn h0 , 1f5 • 1r5} U II,a = II1 U II2 U { 1f5 • 7r6} U ITA U II® where ITA = { hn h0 }

and II0 = II,13.

• Otherwise there is an ownership path-pair (hr • h,13, tuit(1r2)) = r.;3 t-iL s _A_-+

qb.ab.1b where h,13 = r L r.;3. On the other hand, 1r1 's a0 .,:Y0-bridge from q0 to q = r
via II1 can be extended along dummy edge h,a = r ,8<> r.;3 to a 0:0 .%.;3-bridge via
II~_ II1 U{h,a}UII,B (Lemma 14). The ownership paths have the right initial edges
to connect this bridge with 1r2 's 0:0 .%-bridge from q0 tow via II2 to a 0:0 .%.;3-bridge
tow with path-base II= II~ UII2U{hr • h,13, tuit(1r2)}- II~ UII2U{hr, h,13, h0 , 1r5 • 1ra
= II1 U II2 U {1r5} U ITA U II0 where ITA= {hr, ho} and II0 = II,a U {h,a,7r~}.

(c) If 1r2 is internally really new then 1r2's witness tuit(1r2) = q JliJ-+ qb.ab.1b and

the first ~-path qb _a..iJ.:."i.b-+1.=- wb via II2,0 in 1r2's 0:~.%-bridge via II2 mean q __ fi_-+1.=

w~ via II2,0 U {tuit(1r2)} (Lemma 12). Along this ~-path, 1r1's a0 .,:Y0-bridge from q0

to q via II1 can be extended to a 0:0 .%.;3-bridge via II~ II1 U II2,0 U {tuit(1r2)} U II,a
(Lemma 14). It is extended by the rest of 1r2 's bridge to a a0 .,:Y0 .;3-bridge to w via
II- II1 U II2 U {tuit(1r2)} U II,13.

Initially new 1r1 = h~ • 1r3 • 1f4 means either 1f4 = c: and II1 = 0, or {1r4} U ITA U II~=
II1 U {h~}. And internally really new 1r1 = 1r3 • 1f4 means {1r4} U ITA U II~= II1 U II~.
In internally really new 1r, 1r3 is still the maximal common prefix, and 1r4 • 1r2 is the
rest: 1r = 1r1 • 1r2 = 1f3 • (1r4 • 1r2).

In (a), II - II1 U { 1r2} U II,13. For initially new 1r, we get { 7r 4 • 1r2} U ITA U (II~ U II,13 U
{h~})- II U {h~}. For internally really new 1r, we get {1r4 • 1r2} U ITA U (II~ U II,13) =
II U II~.

In (b), initially new 1r2 = 1r5 • 1r6 means {1r6} U ITA U II~ {h~} U II2; and we
have II = II1 U II2 U { 1r5} U ITA U II0 . This means for initially new 1r1 that { 1r4 • 1r2} U
ITA U (II0 U II~ U II~) = II U { h~}. And for internally really new 7r 1, it means
{ 1f4 • 1r2} U ITA U (II0 U II~ U II~) = II U II~.

In (c), internally really new 1r2 = 1r5 • 1r6 with witness tuit(1r2) = 1r5 • 1r~ means
{1r6} U ITA U II~- II2 U II~. Hence II- II1 U II2 U {tuit(1r2)} U II,13 means for initially
new 1r1 that {1r4 • 1r2} U ITA U (II~ U II~ U II,a U {1ra) =II U {h~}, and means for
internally really new 1r1 that { 1r4 • 1r2} u ITA u (II~ u II~ U II,a U { 1ra) _ II u II~ u II~ .

•
153

6.3.2 Technical Lemmas for the Potential Access Path Level

This subsection supplements the technical lemmas for the proof of Lemma 9 on the
new potential access paths after supply of a handle parameter. The first three lemmas
are about the shapes of co- or association path-extended paths, the closure of :;::=:-paths
under co-paths, and the closure of :;::=:-paths under the :;::=:-regions corresponding to
region objects.

Lemma 10 (Shape extension) If potential access path n1 E PAP(o, J.L1, q) has shape
o L u ~· • _ _q_-t • and n2 E PAP(q, J.L2, w) is a potential access path of mode
J.L2 = co<> or a<> then n1 • n2 has shape o L u ~· • --~--t • or shape o L u ~·
• _§,sx_-t •, respectively.

Proof: Shape o L u ~· • _ _q_-t •, with a = a 1 ... an means that n1 is a path
o L u ~· u1 _9'L-t u2 ... Un _9'1.!..-t q. Hence if J.L2 = a<>, then its extension by
n2 = q -~-t w obviously has the shape o L u ~· • _§fl_-t •. In case of J.L2 = co<>
and a = E, 7fl is 0 __!!:_, u ~· q. It is extended by 7f2 = q _c~-t w = q ...f..Q....• w to a
path o L u ~· w with shape o L u ~· • --~--t •. In case of J.L2 = co<> and
a=!=- E, there is a last association path Un _9'1.!..-t q in 7fl. It is extended by 7f2 = q _c~-t w
to Un _9'1.!..-t w. Hence n1 • n2 is o L u ~· u1 _§_-t w, with the obvious shape
0 __!!:_, u ~· • _ _q_-t •. •

Lemma 11 If o --~--t/~ q via II with a=/=- E oro=/=- q, and n E PAP(q, co<>,w) then
o _ _q_-t/~ w via II' = II U { n' • n} for some n' E II.

Proof by induction on the definition of o --~--t/~ q: Note that the condition excludes
trivial :;::=:-paths o -"'--t;~ o = w. Hence the only base case is a :;::=:-path via { n'}
with a= (3 based on potential access path n' E PAP(o, (3<>, q). Then also n' • n E

PAP(o, (3<>, q), and thus o --~--t/~ w via { n' • n }. In the induction step, if o --~--t/~ q
because o.a :;::::::: q'.,:Y via II1 and q' __ i_-t/~ q via Ih, then q' __ 1__-t!~ w via II; by
induction hypothesis, and thus 0 _ _q_-tj~ w via IIl u II; by o.a:;::::::: q'.,:Y. If 0 --~--tj~ q
because 0 --5-L-tj~ q' Via II1 and q1 _§..:J_-tj~ W Via II2 with a1 • a2 = a then in
case of a 2 =/=- E or q' =/=- q, q' _§..:J_-t/~ w via II; by induction hypothesis, and thus
0 _ _q_-tj~ w via IIl u II;. And in case of a2 = E and q' = q, II2 = 0 and the condition
"a =!=- E or 0 =!=- q" implies that al =!=- E or 0 =!=- q' = q. Hence 0 _§..L-tj~ q' = q and 7f
guarantee o _§..L-t/~ w via II~ by induction hypothesis. That is o _ _q_-t/~ w via II~
since £i1 = a1 • E = £i1 • a2 = 5_ •

Lemma 12 If o _i-tL q.a via II and q _cg_-tL w via II' then o _i-tL w via II U II'.
~ ~ ~

Proof: Axiom q.a -"'--t!~ q.a via 0 implies (q.a).E.jj:;::::::: (q.a).iJ via 0. With iJ = E,
this makes q _ _q_-t/~ w mean q.a -"'--t!~ w via II' U 0. It extends o __ i_-t/~ q.5 to
o _1_~~-t/~ w, i.e., o __ 1__-t!~ w, via II U II'. •

154

The next three lemmas are in the context of parameter supply substeps during a
legal { Call}-reductiOn Step, i.e., With a typing r n, /'),n f--E e : T for the OperatiOn Call
expression redex e. They concern the graph g' after addition of a new received handle
h0 = r ~ o and removal of old sent handle h~ = s ~ o from the previous graph
g, i.e., g' = gEBr ~ o8s ~ o.

lemma 13 Consider an initially new association path n E PAP9,(r, (3<>, w) whose a0 .10 -

bridge from q0 to w in g starts with ~-path q0 _a..P5SJ-+/oc= w0 via II0 . In g, there was

• there was a ~-path r __ fi_-t/oc= w0 via { hr, roit(n)} U II0 , or
• hr • r ~ r.(3 and tuit(n) constitute an ownership path-pair r.(3 +-!!- s ...A.-t q0 .a0 .10

of shape s .1!:L.. r ~· • _pg(_aj)Ho_-t • and s ~ o ~· • _a..P5SJ-t •, respectively.

Proof: First, an initially new n has some shape r ~ o ~· • _a..P5SJ-t • with
J.L0 (a0 .10) = (3 since n's mode is (3<>. But if J.Lo contains (3, then the existence
h~ = s ~ o presupposes for some fl a corresponding correlation (3=fl in the call
link's mode J.Lr· It specifies that J.Lro/3<> = jl, meaning that n's witness roit(7r) has
mode J.LrOJ.L = J.Lrof3<> = fl.

Second, as a mode with a correlation (3=jl, J.Lr cannot be a co- or association mode;
and r n, /'),n f--E e : T excludeS that J.Lr iS read-J.Lr Can Only be free< ... , (3=jl, .. . > Or
rep< ... ,(3=jl, .. . >.

Third, since fl occurs in correlation (3=jl, it cannot be co; and J.Lro/3<> = fl cannot
be a read mode Since J.Lo(ao.1o) = (3 is not read, SO that r nl /'),n f--Ee : T ensureS that
J.LrOJ.L0 (a0 .1o) is not read either-fl must be free, rep, or an association mode:

• In case of an association mode fl = a<>, the call-link hr = s ..1!:!...., r estab
lished region-coupling r.(3 ~ s.a via {hr} because J.Lr = free< ... ,(3=a<>, ... >or
rep< ... , (3=a<>, .. . >. But then witness roit(n) E PAP9 (s, a<>, q0 .a0 .10) means the
~-path r __ fi_-t/oc= q0 .a0 .1o via { hr, roit(n)}. It and the first ~-path q0 _a..P5SJ-+/oc= w0

of n's ao.1o-bridge entail r __ fi_-t/oc= Wo via {hr, roit(n)} u ITo (Lemma 12).
• In case of a free or rep mode jl, consider on one side the extension of the call-link

with correlation (3=fl to the fl-path ir = s .1!:L.. r f3<> r.(3 with shape s .1!:L.. r ~·
• __ fi_-t •. On the other side is n's witness roit(n) E PAP9 (s, jl, q0 .a0 .10) with

shape s ~ o ~· • _clo5SJ-+ • and J.L0 (a0) E A Both fl-paths constitute the
ownership path-pair r.(3 +-!!- s ...A.-t q0 .a0 .10 . Observe that ir has the right shape:
Since association modes have no correlations, J.Lo (a 0 .10) = (3 from above means
for J.L0 (a0) E A that 'Yo must be E. Hence J.L0 (a0) = J.L0 (ao.1o) = {3, so that shape
s .1!:L.. r ~· • __ fi_-t • is shape s .J!:L.. r ~· • _pgi§J)Uo_-t •. •

lemma 14 (Bridge extension) Consider an initially new or internally really new path's
a 0-bridge from q0 to q via II. For any ~-path q __ fi_-+L w via II', there is a a 0 .(3-bridge
from q0 to w. Its path-base II" _ II U II' U IIfJ contains besides II and II' a certain set
IIf3 of dummy edges u ~ u.f3.

155

Proof: Each :;:::::-path qi __ a..i_-+1""" wi+1 via IIi in the bridge can be extended to
ai .(3 f3 . { (3<> /3} fi iin • qi -----+!.=. wi+1· via IIi U wi+1 ""------' wi+l· , and the nal qn -----+!""" Wn+1 = q VIa

IIn can be extended to qn _i!:_n..Jl.-+1.=. w via IIn U II'. But a corresponding extension
of the bridge's ownership path-pairs (n~, ni) = wi +-f!:i_ s A-+ qi.ai depends on the
correlations in Pi:
• There can never be correlations {3=co<> to co<>.
• There can be no correlation to read in the mode Pi of extensions 1r~ and 1ri of hr

Or h~: r n, 1'\,n f-E e : T enSUreS that the baSe-mode f.Lr0f.L0(j}) Of extenSiOnS Of the
sent handle are read only if corresponding extension of the received handle have
base-mode f.Lo(iJ) = read too. This excludes the case of mode f.Lo = co<> from
which no read mode can be extracted. In case of f.Lo(iJ) E A for some iJ, 1ri has
shape s ~ o _f,Q__,• • __ a..i_-+ • with f.L0 (a) = f3 E A for some decomposition
iii = a.;y. This means that the received handle's extension along a a-sequence of
association paths is a path of mode {3<>, which cannot be extended further to a
read path.

• If Pi has a correlation f3=P~ to a free or rep mode, then 1r~ and 1ri are extended
by dummy edges hi = wi ~ wi./3 and h~ = qi.ai ~ qi.ai./3 to the ownership

path-pair (iri, iri) = wi./3 +-f.!:.';_ s .Pl-+ qi.ai./3 for the a 0 .{3-bridge from q0 tow.
• If Pi contains a correlation {3=ai <> to an association mode or no {3-correlation at

all, i.e., if Pi(/3) E A..L, then ownership path-pair (nL ni) establishes the region
couplings wi./3 :;::::::: s.o:i :;::::::: (qi.ai)./3 or wi./3 :;::::::: s._L :;::::::: (qi.ai)./3, respectively. That
is, wi.,6:;::::::: qi.ai./3 via { 1r~, ni}· Additionally, :;:::::-path qi __ a..i_-+1.=. wi+l via IIi implies
qi.ai./3 :;::::::: wi+1./3 via IIi. Hence we have wi./3 :;::::::: wi+1 .{3 via II~ = IIi U { n~, ni}·
Observe that the bridge's path-base II contained n~, ni and IIi.

If there are consecutive modes Pi, ... , Pj with Pk(f3) E A..L they together imply wi./3 :;:::::::
Wj+l·f3 via IIi u {n~, 1ri} u ... u IIj u {nj, 7rj}· It, and dummy edge hj+l = Wj+l ~
Wj+ 1.{3 (if j < n) or extension :;:::::-path Wj+1 = q __ !}__-+!.=. w (if j = n) imply wi __ !}__-+!.=.

Wj+1·f3 Or W. It extends the :;:::=:-path qi-1 _qi=l.-+f.=. Wi via IIi-1 to qi-1 __ §.i_-_l.fl__-+f.=.

Wj+ 1.{3 or w, respectively. It closes the gap between q0 (if i = 0) or the preceding
extended ownership path-pair (if i > 0) to the left, and w (if j = n) or the following
extended ownership path-pair (if j < n) to the right in the a 0 .{3-bridge from q0 tow.
Its path-base is IIi-1 u IIi u {nL ni} u ... u IIj u {nj, nj} u IIj+1 with IIj+1 = {hj+1}
or II', respectively.

All in all, we have a a 0 .{3-bridge from q0 tow whose path-base II" contains besides
II' some dummy edges hi and h~, all paths from II either directly or in extended
form: the IIi of the ii0-bridge's :;:::::-paths, the ownership paths 1r~ and 1ri with Pi·o: rf.
{free, rep} as well as those with Pi·o: E {free, rep}. •

6.3.3 Change Modulo Region-Couplings

Reasoning with the reserved ownership assumption makes the proof of Unique Owner
and Unique Head possible. But reasoning about it requires additional work: Not only

156

the new ownership paths have to be considered, but also new ;:::::':-paths established by
new association paths and new region-couplings. Hence the next logical step, before
proving the reserved ownership assumption, is to determine what changes at the level
of ;:::::':-paths in the relevant (substeps of) reductions with {new}, {upd}, {ret}, and
{call}. We will find that in case of { upd} and {ret}, there are no new region-couplings
and no new association paths modulo region-coupling.

lemma 15 Consider object creation, i.e., the addition of a free edge h0 = r ~ o to
a fresh object: g' = g EB r ~ o.

D f. h b . · () {r·JJo(ii).ii' if q = o.ii.ii' with JJ0 (ii) E Aj_ e me t e su st1tut1on a q =dr h ·
q ot erw1se

a) In g'0 , there are three kinds of non-trivial ;:::::':-paths rp = o __ i_+/c= w via II:

• rp has a counterpart a(o) __ i_+/c= a(w) via II' in g0 and neither o nor w are
region objects o./31 ... !3k of o such that for all i :s; k, JJo(/31 ... /3i) tj_ Aj_.

~ ,
• rp is a ;:::::':-path o = o./3 __ 'L_+/c= o./3.1' = w via dummy edges from one region

object of o to another one such that for all prefixes iJ' of iJ we have Mo(iJ') tj_ Aj_.
That is, II~ II0 , which is defined below.

• rp is the combination o.iJ _5.L+/c= o.iJ.11 __ ;'b-+/c= w, with 11.12 = 1. of an
(unchangeable) ;:::::':-path of the second kind and a ;:::::':-path of the first kind, with

Mo(iJ.11) E Aj_.

b) In g'0 , all new region-couplings w.1 ;::::::': o.ii via II have a counterpart a(w.1) ;::::::':
a(o.ii) via II' in g0. If w.1 = o./31 ... !3n or o.ii = o./31 ... !3n then there is ani :s; n
such that !Jo(/31 ... /3i) E Aj_.

The path-base II of first-kind ;:::::':-paths and of new region-couplings contains, apart from
initially new ownership paths 1r E liN and apart from dummy edges h' E II0 of o and
of its region objects o.ii on the way to JJo(ii.a.ii') E Aj_ only edges with counterparts in
their counterpart's path-base II', and contains them all: a(II \liN\ II0) =II',
where liN =dr { r ~ o L o.ii I !Jo(ii) E {free, rep} 1\ ::Iii'. !Jo(ii.ii') E Aj_}

II® =dr { o.ii ~ o.ii.a I JJ 0 (ii) tf_ Aj_ 1\ ::Iii'. fJ0 (ii.a.ii') E Aj_}

Proof by simultaneous induction on the definition of ;:::::':-paths and region-couplings:
Lemma 6 guarantees that all potential access paths in g'0 are unchanged, initially
new, or internally new. Notice that the witnesses a(1r) of initially new paths from o
tow go from a(o) to a(w). The base case, a non-trivial ;:::::':-path o __ fi_+/c= w via {1r}
is based on a path 1r E PAP

9
,® (o, /3<>, w), and a new region-coupling w./3 ;::::::': O.JJ(/3)

via { 1r} is established by an ownership path 1r E PAP
9
,0 (o, JJ, w) with JJ(/3) E Aj_.

• If 1r is initially new or internally new, then o =/= o.iJ and w = o.ii.ii' with JJ0 (ii) E A
Hence a(o) = o and a(w) = a(o.ii.ii') = r.JJ0 (ii).ii'. If 1r has a witness a(1r), it
connects a(o) and a(w). Hence in case of ;::::::':-paths, a(1r) is the necessary counter
part a (o) - _fi- +fcc= a (w) via {a (1r)} for a first-kind ;::::::':-path. And in case of new

157

region-coupling and internally new n, a-(n) is an ownership path that established
r.JL0 (5).5'.f3 = o-(w)./3 = o-(w./3) ~ O.JL(/3) = o-(o).JL(/3) = o-(o.JL(/3)) via {o-(n)}. If
1r is an initially new ownership path 1fjJ then o = r, w = o.iJ, and JL(/3) = JLo(/J./3).

Hence trivial o-(o./J./3) = r.JL0 (/J.f3) = r.JL(/3) ~ r.JL(/3) via II'= 0 is the witness
for o.iJ./3 ~ r.JL(/3) via II= {njJ}· Since 1fjJ E IIN, o-(II \ IIN) = 0 =II'= 0.

• If n is unchanged with source o =f. o./J then it cannot target any object o.iJ'. Hence
o-(o) = o, a-(w) = w) and o-(o.ci) = o.ci and o-(w.1) = w.1. In case of ~-paths,
o-(n) = n is the necessary counterpart o-(o) __ !}__-+/~ o-(w) via II' = {o-(n)} for a
first-kind ~-path via II = { 1r}. And in case of new region-coupling, a- (1r) = 1r
established the counterpart o-(w./3) = w./3 ~ o.JL(/3) = o-(o.JL(/3)) via II'= {o-(n)}.

• If n is unchanged with source o = o./J, then it can only be a dummy edge o./J L
o./J./3. Hence the region-coupling case does not apply. In case of iJ = 5.5' with
JL0 (5) E A1., the dummy edge o-(n) = r.JL0 (5).ii' L r.JL0 (ii).ci'.f3 is the necessary
counterpart a- (o) - _!}_- -+/~ a- (w) via II' = {a-(1r)} for a first-kind ~-path via II =
{n}. If there is no JL0 (5) E A1. then r.p is a second-kind, unchanged ~-path.

In the induction step for part (a), consider first the case of o __ 1..._-+/~ w via II =

II1 U II2 because of 1 = 11 ·12 and two ~-paths o _5.1_-+/~ q _ _1:;,_-+/~ w via II1
and II2 , respectively. If the second ~-path is of the second or third kind, then
q = o./31 ... f3k and the first ~-path can only be of the second kind. Consequently,
o - _1...- -+/~ w is of, respectively, second or third kind. If q - 5:;,- -+/~ w is of the first
kind and o _5.L-+;~ q too, then the combination o-(o) _5.L-+/~ o-(q) _ _1:;,_-+/~ o-(w) of
their counterparts via II~ and II~, respectively, is a counterpart o __ 1__-+1~ w via
II' = II~ U II~. Since o-(II1 \ IIN \ II0) = II~ and o-(II2 \ IIN \ II0) = II~, also
a- (II\ IIN \ II0) = a- (II 1 U II2 \ IIN \ II0) = II~ U II~ = II'. If o - 5.L -+/~ q is of the second
kind, then the combination o _5.L-+/~ q _ _1:;,_-+/~ w to o __ 1..._-+/~ w is obviously of the

third kind. If o _5.L-+/~ q is of the third kind, then it decomposes into a second-kind

o _5L-+;~ q' and a first-kind q' _5~--+1~ q. Hence o __ 1..._-+/~ w can be decomposed

into a second-kind kind o _5L-+;~ q' and a first-kind q' _5~--+/~ q _5:;,_-+/~ w: it is a
third-kind ~-path again.

If o __ 1__-+1~ w via II = II1 U II2 because o.1 ~ q.1' via II1 and r.p2 = q __ .y__-+1~
w via II2 then the induction hypothesis guarantees a counterpart o-(o.1) ~ a-(q.1')
via II~ and that q __ .y__-+1~ w belongs to one of three cases:

• If r.p2 has a counterpart o-(q) __ .y__-+1~ o-(w) via II~ then either o-(q) = q, and
thus o-(q.1') = q.1', or q = o.&ii', and thus o-(q) = r.JL0 (5).ii' and o-(q.1') =
r.JL0 (ii).ii'.1'. In both cases, counterparts o-(q) __ .y__-+1~ o-(w) and o-(o.1) ~ o-(q.1')
combine to a first-kind ~-path's counterpart o-(o) __ 1__-+1~ o-(w) via II'= II~ U II~
with o-(II \ IIN \ II0) =II'.

~ _, ""'+

• r.p2 can be a ~-path q = o./3 __ "[__-+/~ o./3.1' = w via II2 ~ II0 . On one hand,

JLo(/J') tj_ A1. for all proper prefixes /J' of /J. On the other hand, for some prefix

158

f]' the region-coupling guarantees f.Lo(iJ') E Aj_. Hence it must be f.Lo(iJ) E Aj_.
Therefore O"(q."/') = O"(w) = r.J.L0 (iJ). Hence the region-coupling's counterpart

O"(o."/) :;::::: O"(q."/') = r.J.L0 (iJ) and trivial r.J.L0 (iJ) --~--+/"" r.J.L0 (iJ) via 0 combine
to a first-kind :;=:-path's counterpart O"(o) __ 1..._-+/"" O"(w) via IT' = IT~ U 0. Since
II2 ~ IT0 , II\IIN\II0 = II1, so that O"(Il1 \IIN\II0) _IT~ means O"(Il\IIN\II0) =IT'.

~ , ~

• tp2 can be the combination of a second-kind :;=:-path tp3 = o.f3 __ T..._-+1"" o.f3."/' via - - -IT3 ~ IT0 and a first-kind :;=:-path tp4 = o.f3."/' --1---+/"" w with q = o.f3 such that
"/ = "/'."/" and J.Lo(iJ."/') E A, and with IT2 = IT3 U IT4. Hence the region-coupling's
counterpart O"(o."/) :;::::: O"(q."/') = r.J.L0 (iJ) and tp3 's counterpart O"(q."/) _5!!._-+/"" O"(w)
via IT~ combine to a first-kind :;=:-path's counterpart O"(o) __ 1..._-+/"" O"(w) via II~ UTI~.
Since IT3 ~ IT0 , II \ TIN\ IT0 = IT1 U Il4, so that O"(Il1 \ liN\ IT0) = IT~ and
O"(II4 \TIN\ IT0) -IT~ means O"(Il \TIN\ IT0) = IT'.

In the induction step of part (b), the symmetry case of new region-couplings is trivial.
In another case, o.ii :;::::: w."/ via II = II1 U II2 because o.ii :;::::: q."/' via II1 and

q."/' :;::::: w."/ via II2. If both are new, then the induction hypothesis guarantees
counterparts O"(o.ii) :;::::: O"(q."/') via IT~, and O"(q."/') :;::::: O"(w."/) via rr;, which com
bine to counterpart O"(o.ii) :;::::: O"(w."/) via IT' = IT~ u rr; with O"(II \TIN\ II®) -
IT'. The same works with an unchanged first region-coupling if O"(o.a) = o.ii and
O"(q."/') = q."/', and works with an unchanged second region-coupling if O"(q."/') = q."/'
and O"(w."/) = w."/. Consider the case that the first region-coupling is new and the
second is old with q."/' = o.iJ or w."/ = o.iJ (the reverse case follows by symme
try). Since there are no old ownership paths to fresh o and its region objects, an
old region-coupling connecting their regions can only be a trivial region-coupling
q."/' = (o.o:l ... o:i)·o:i+l ... O:n:;::::: (o.o:l ... O:j)·o:j+l ... O:n = w."/ via rr2 obtained from
dummy association paths o.a __ 1..._-+/"" o.&;y via II2 = { o.ii _n__, o.ii.')'1, o.ii.')'1 .:n.....
o.ii.')'1.')'2, ... }. But then O"(q."/') = O"(w."/), so that the new region-coupling's counter
part guaranteed by the induction hypothesis is the desired O"(o.a) :;::::: O"(q."/') = O"(w."/)
via IT'= IT~. Since IT2 ~ IT0 , O"(IT \liN\ II0) = O"(Il1 \TIN\ IT0)- II~ =II'.

If o.ii."/ :;::::: w."/ via II, follows from 'P = o _ _q_-+/"" w via II then the induction
hypothesis guarantees that 'P belongs to one of three cases:

• If 'P has a counterpart O"(o) _ _q_-+/"" O"(w) via IT'. It entails the necessary counter
part O"(o).ii."/ = O"(o.ii."/):;::::: O"(w)."/ = O"(w."/) via II'.

~ _, ~

• 'P can be a :;=:-path o = o.f3 __ '"'[_-+/"" o.f3."/' = w based on dummy edges in II0 .

Then it, and consequently o.ii."/:;::::: w."/ is not new.
• o __ cg_-+1"" w can be combined from a second-kind :;=:-path w 1 = o _§..1_-+/"" o.ii1 via

rrl and a first-kind :;=:-path 'P2 = o.al _§..J_-+1;= w via rr2 with a= 51.52, and 0 =
o.iJ such that f.Lo(iJ.a1) E A. In this case, tp2's counterpart O"(o.a1) __ a.J_-+1"" O"(w)
established the right region-coupling O"(o.a1).a2."/ = O"(o.a1.a2."/) = O"(o.ii."/) :;:::::
O"(w)."/ = O"(w."/) via II' = rr; for new o.a."/ :;::::: w."/ via IT. Since II1 ~ II0 ,

O"(II \TIN\ II0) = O"(Il2 \liN\ II0) :::::: rr; =IT'. •

159

lemma 16 Consider elementary mode conversion g' = g EB c L o 8 c L o, i.e., the
substitution of an edge h~ = c L o for an edge h0 = c L o with 1-L ..:::;:n fL1

. In g'0 ,

a) all :;:::::::0-paths o __ 1_ _ _,/oc= w via II have a precursor o __ 1_ _ _,/oc= w via II[ho/h~], and
b) all region-couplings wJy :;:::::::0 o.a via II have a precursor w.ry :;:::::::0 o.a via II[ho/h~].

Proof: Lemma 7 guarantees that all potential access paths 7f E PAPg'® (o, fL, w)

in g'0 are unchanged, internally new, or initially new. They all have a precursor
n' = n[ho/h~] E PAPg® (o, fL1

, w) of the same mode fL1 = fL or of a directly compatible
mode fL1 ..:::;:n 1-L· By the definition of ..:::;:n, a mode fL 2:n fL1 cannot be an association
mode. Hence all association paths 7f have a precursor n' of the same mode. The base
case of new :;:::::::0-paths cp differs at most in the path-base: cp is now via { n} instead of
via { n'}. Also by the definition of ..:::;:n, a mode fL 2:n fL1 can be a free or rep mode
only in case of fL1 = free ..:::;:n rep = fL. Hence all ownership paths 7f have
a precursor n' that was already an ownership path and had the same correlations
6. Hence the base case of new region-couplings differs at most in the path-base:
o.t :;:::::::0 w.ry is via 7f now instead of via n'. By induction therefore all :;:::::::0-paths and
region-coupling via 7f have a precursor via II[h0 /h~]. •

lemma 17 Consider result return g' = g 8 r .1!:.2.___. o 8 s J:!:L.. rEB s ~ o, i.e., the
substitution of the imported edge h~ = s ~ o for the exported edge h0 = r .1!:.2.___. o
and the call-link hr = s J:!:L.. r. In g'0 ,

a) all :;:::::::0-paths o __ 1_ _ _,/oc= w via II have a precursor o __ f _ _,/oc= w via a(II), and
b) all region-couplings w.ry :;:::::::0 o.a via II have a precursor w.ry :;:::::::0 o.a via a(II),

where substitution a is [hr • h0/h~, h-;; 1
• h-; 1 /h~- 1] in case of fLrOfL0 = co<>, and

[hr • h0/h~] otherwise.

Proof: Lemma 8 guarantees that all potential access paths in g'0 are unchanged,
internally new or initially new. If these are association paths 7f E PAPg'® (o, /3<>, w),
they have a precursor n' = a(7f) E PAPg® (o, /3<>, w). Hence the base case of new
:;:::::::0-paths cp differs at most in the path-base: cp is now via { 7f} instead of via {a(n)}.
Similarly most ownership paths 7f that establish a region-coupling via { n} have a
precursor a(n) that established it already in g0 via {a(n)}. The base case of a
really new region-coupling could only come from an initially new ownership path
7f E PAPg,®(O,fL,w) without precursor a(n), i.e., whose counterpart e2=po(n)'s mode
fL1 with fL = fLrOfL1 is not a co- or association mode, but a free mode. Then 7f is a
free path which establishes the region-coupling W."'(:;:::::::0 S.fL("Y) in g'0 in two cases:

• Mb) = a, i.e., fL has a correlation 1=a<>. Since n's mode 1-L is the adaption
fLrOfL1 of its counterpart's non-co and non-association mode fL1

, it can contain the
correlation 1=a<> only because e2=po(n)'s mode fL1 contains "'(=/3<> and /Lr contains
(3=a<>. Correlations in fL1 mean that it cannot be a co- or association mode, and
thus fLrOfL1 can be a free or rep mode only if fL1 is a free or rep mode. That

160

is, J-11 = free< ... , r=/3<>, .. . > or rep< ... , r=/3<>, .. . >. Hence, on one hand, free
counterpart e~po('rr) established w.1 :;:::=::': r./3 via {e~po(n)} in g0 . On the other
hand, a legal return step means that in this case J-tr is a free or rep mode.
That is, J-tr =free< ... , f3=a<>, .. . >or rep< ... , j3=a<>, .. . >. Hence hr established
r./3 :;:::=::': s.a via {hr} in g0 . In combination, we have w.1 :;:::=::': S.J-t(l) = s.a via
II'= {hr, e~po(n)}.

• J-t(/) = ..l, i.e., J-t has no correlation r=J-t". Since n's mode J-t is the adaption J.-trOJ-11 of
its counterpart's non-co and non-association mode J-11, it can contain no correlation
r=J-t" only if e~po (n) 's mode J-11 contains no correlation r=J-1111 . Consequently, free
counterpart e~p o (n) established w. 1 :;:::=::': r . ..l via { e~p o (n)} in g0 . But since also
r . ..l :;:::=::': s . ..l via 0, this means by transitivity w.1 :;:::=::': s . ..l = S.J-t(l) via II' =
{ e~p o (n)}.

Hence there is a precursor for w.1 :;:::=::': s . ..l = S.J-t(l) via II = {n} such that
II'~ D"(II) since hr • e~po(n) = O"(n). •

Again, the case of {call} is the most complex. Several technical lemmas will be used
for the proof; they are supplemented in the next subsection. In §6.3.1, a-bridges
were used for the description of the new potential access paths. They consisted of an
initial :;:::=':-path o __ f!:. _ _,.l.= w0 followed by a series of triples (ni, n~, r.pD made of a pair
of ownership paths ni and n~ and another :;:::=':-path r.p~. The description of the new

:;:::=':-paths will require a generalization to bridges where an initial :;:::=':-path o _ _cg _ _,.l.= w0

is followed by a series of quadruples (r.p~, nL ni, cpi), which will be called a "a-qbridge."
And the description of the new region-couplings will require bridges made just of a
series of quadruples (r.p~, n~, ni, cpi), which will be called a "reservation qbridge."

Definition 15 A reservation qbridge from o to w in supply substeps is a series of
quadruples (cp~, n~, ni, cpi) from i = 1 to n ~ 1. each combining a backward ownership
reservation (nL r.pD and a forward ownership reservations (ni, cpi) where n~ = s _f!:t__,. q~.a~

, , a' n. ___, a· h h and rn. = q. __ ...__,., w· and where 7f· = s _coL+ q· a· and rn· = q· --'L+' w·+ 1 sue t at r 2 t l;r::!. 2, 2 2 • t' r 2 2 I-.e=. 2

wl = 0 and Wn+l = w. The qbridge is via ur=l IIi u II~ u { 7fi, na if the r.pi is via IIi and
h I • • II' t e rpi IS VIa i·

An a-qbridge from o tow is an initial :;:::=':-path o __ f!:. _ _,.l""" w1 via II0 with w1 = w or a
reservation bridge from w1 tow via II'. from i = 1 to some n ~ 0, such that Wn+l = w.
The qbridge is, respectively, via II0 or via II0 U II'.

In case of J-to = co<>, for each quadruple in both kinds of qbridges there is a a such
that each of the two ownership paths ni and n~ in it has shapes ~ o£.2....* • _ _cg _ _,. •
or s .1!:.!:.... r£.2....* • _ _cg _ _,. •. If J-to =J. co<>, one of the two ownership paths ni and n~ in

each quadruple in the qbridges has shape s ~ 0£.2....* • _§.5 _ _,. • for some a and a'
with J-t0 (a) E A, while the other has shapes .1!:.!:.... r£.2....• • _/!coJCS11._,. •.

Lemma 18 Assume the reserved ownership assumption in g0 and g = ogr(e, if,s). Con
sider parameter supply g' = g E9 r ~ o 8 s ~ o, i.e., the substitution of a received

161

handle h0 = r _li:Q__, o for a sent handle h~ = s ~ o in the presence of a call-link
hr = s ..1!:!.__, r.

a) For each non-trivial ~-path o __ 1__+/oc= w via IT in g'0 , there was a 1-qbridge from o
tow in g0 .

b) For each new region-coupling o.a ~ w.1 via IT in g'0 , there was a reservation
qbridge from o.a to w.1 in g0 .

Both qbridges are via IT' such that IT' U IT0 = IT U ITA U IT0 where IT0 is some set
of dummy edges, where IT0 ~ {h0 , h;:;- 1

}, and where ITA = {hr, h~} if J-l 0 (a) E A for
some a, and ITA= {hnh~} or {h;:- 1 ,h~- 1 } or {hr,h;:-l,h~,h~- 1 } if f-lo= flor =co<>, and
ITA = 0 otherwise.

Proof by simultaneous induction on the definition of ~-paths and region-couplings:
Lemma 9 guarantees that all potential access paths in g'0 are unchanged, internally
new, initially new, or co-closure paths. In the base case of part (a), an association

path 1r E PAP
9
,®(o,(3<>,w) established the ~-path o __ 1__"*/oc= w via IT= {n} with

1 = (3. And in the base case of part (b), an ownership path 1r E PAP
9

,® (o, flo, w) with
M(f3) E Aj_ established the new region-coupling O.J-l(f3) ~ w.(3 via IT= {n}.

(1) If 1r is an unchanged or internally-only new path then it has a precursor n' = 1r

or n' = n[h;:-1 • h~/h0 , h~- 1 • hr/h;:;-1
]. In part (a), n' is a ~-path o __ 1__+/oc= w, i.e., a

(3 = 1-q bridge without reservation q bridge, but path-base IT' = { n'}. In part (b), n'
established region-coupling w.(3 ~ O.J-l(f3) via IT'= { n'}. Obviously, IT'UITo - ITUITA
for a subset ITA of { hr, h;:-1, h~, h~- 1 } and a subset IT0 of { h0 , h;:;- 1

}.

(2) If 1r is internally really new then 1r = n1 • n2 , there is a witness tuit(n) = n1 • n~ E
PAP9®(a,J1o,q0 .a0) and a 5 0-bridge tow via IT'. In part (a), tuit(n) = q .fl._<?.+ q0 .a0

and the initial ~-path q0 _ _a.IJ_"*/oc= w0 via IT~ of the 5 0-bridge implied the ~-path
o __ !}__"*/oc= w0 via IT~ U {tuit(n)} (Lemma 12). And the triples (n~, ni, 'Pi) of the 5 0-

bridge can be transformed into the quadruples (cp~, n~, ni, 'Pi) of a reservation qbridge
by adding cp~ = wi_1 +-L-;oc= wi_1 .E via 0 for each n~ = s Jli+ wi_1 . Both together are
the desired 1 = (3-qbridge from a tow via IT"= IT' U {tuit(n)} IT' U {n1 , n~}. Since
internally really new 1r guarantees IT' U IT0 = { n2 } U ITA U IT0 and since 1r = 1r1 • 1r2,

we have IT"UIT0 _ {n}UITAUIT0 U{n~}. That is, IT"UIT0 - ITUITAU(IT0 U{n~}).

In part (b), M(f3) = 1 E A. The 5 0-bridge is extended along dummy edge hf3 =
w L w.(3 to a 5 0 .(3-bridge from q0 to w.(3 via IT"= IT' U {hfJ} U ITfJ (Lemma 14). Its
initial ~-path q~ _if:.o..:.fl_+/oc= wb via IT~ implies (qb.a0 .(3).E ~ wb.E via IT~. The ownership
path tuit(n) = q _p_+ q0 .a0 implies the matching a.1 ~ (q0 .a0).(3 via {tuit(n)}. In
the case that the 5 0 .(3-bridge contains no triple series, i.e., wb = w.(3, these couplings
mean a.1 ~ (w.(3).E via IT~ U {tuit(n)} = IT" U {tuit(n)}. Otherwise, dummy edge
h0 = o .:1..... a.1 modulo these couplings is cp' = 0.1 +-L-;oc= wb via IT~ U { tuit(n), h0 }. It
extends the first triple (n~, n 1 , cp1) in the 5 0 .(3-bridge to a quadruple. In conjunction
with the remaining triples transformed to quadruples, we get the desired reservation
qbridge from a.1 to w.(3 via IT"' = IT" U { tuit(n), ha} _ IT' U { hf3} U ITfJ U { tuit(n), ho}.

162

Since internally really new 1r guarantees II' U II0 _ { n2} U ITA U II0 and since tuit(1r) =
1r1 • n; and 1r = 1r1 • 1r2, we have II111 UII0 - {n2}UIIAUII0 U{h,6}UII,13U{tuit(n), ho} =
{n2} U ITA U (II® U {h,13, ho} U II,13) U {n1• 1r~}- {n} U ITA U (II® U {h,13,1r~, ho} U II,13).

(3) If 1r is initially new, then o = r and there is a witness tuit(n) = h~ o n1 o 1r~ =
s J!:r;_o§~>,. q0 .ii0 and a 5 0-bridge tow via II'. In part (a), Lemma 13 allows two cases
for initially new association path n:

• There is a ~-path r __ ft_-+/o=. w0 via II~ U {hr, tuit(n)} to the object w0 from which
the series of triples in n's 5 0-bridge leads tow. This ~-path, and the triple series
transformed to quadruples as above, constitute a ,8-qbridge from o = r tow via
II111 = II' U { hr, tuit(1r)} - II' U { hn h~ • 1r1 • n;} = II' U { n1} U ITA U II~ with
ITA= {hn h~} and II~= {n~}.

• There is an ownership path-pair (hr • h,13, tuit(n)) = r.,8 *"[!,_ s _f!:..-+ q0 .50 with
h,13 = r L r.,8 in front of n's 5 0-bridge from q0 to w. Add the initial ~-path

<p0 = q0 _§.SJ_-+/o=. w0 via II~ of the 5 0-bridge to these two in order to get another
triple (hr • h,13, tuit(1r), <po), and transform this triple and the 5 0-bridge's triples
to quadruples as above. This gives us a reservation qbridge from r.,8 to w via
II" = II' U {hn h,13, tuit(n)}. Add h,13 as initial ~-path, and we get the desired
,8-qbridge from o = r tow via IT111 = II" U {h,13} = II' U {hr, h13, h~ • 1r1 on~}
II' U { nl} U ITA U II~ with ITA = { hn h~} and II~ = { h13, n~}.

Since initially new 1r guarantees II' U { h0 } _ { n2} U ITA U II0 , we have II'" U { h0 } _

II' U { nl} U ITA U II~ U { ho} { h0 , 1r1, 1r2} U ITA U (II® U II~) = { 1r} U ITA U (II® U II~).
In part (b), on one hand, n's 5 0-bridge can be extended along dummy edge h,13 =

w L w.,8 to a 5 0.,8-bridge from q0 to w.,8 via II" II' U {h13 } U II13 (Lemma 14).
Lemma 21 allows two cases for initially new ownership path 1r with 11(,8) E Aj_:

• Region-coupling O.J-1(,8) ~ w.,8 already existed in g0 via IT111 = II" U {tuit(n)} U
IT111 = II' U {h ""''t(n)} U II U II"' = II' U {h' ir'} U II111 U II" = II' U {ir'} U II" U II" A - f3, ''-'• f3 A o' A ® A ®
with II~= 0 or {hr}, with II~= II,13 U {h,13} and with II~= {h~} U II~.

• 11(,8) E A and there was an ownership path-pair (hr • h~, tuit(1r) • h~) = o.J-1(,8) *"[!,_

s _A-+ q0 .50 .,8. These two are completed to a quadruple by trivial <p1 = O.J-1(,8) t--L-;o=.
O.J-1(,8) via 0 to the left, and the 5o.,8-bridge's initial ~-path <p~ = qo ___ Cf.o.JL_-+/o=.
w~ via II~ to the right. It and the 5 0 .,8-bridge's triples transformed to quadruples
as above, constitute the desired reservation qbridge from o.J-1(,8) to w.,8 via II"' =
II" U {h • h' tuit(n) o h"} = II' U {h h h' h' ir' h"} U II = II' U {ir'} U II" U II" r f3' ,6 - ,13, r, ,6' o' ' ,6 ,6 A ®
where II~= II,13 U { h,13, h~, h~} and II~ = { hr, h~}.

Since initially new 1r guarantees Il'U{ h0 , ir'} = { 1r }UIIA UII0 , we have II"'U{ h0 } =
II' U {ir'} U II~ U II~ U {ho} = {n} U ITA U (II® U II~).

In the induction step, we can ignore trivial ~-paths o -"'--+!o=. o, since they produce
nothing new.

For part (a), consider first the case of o __ 1__-+/o=. w via II because of 1 = 11 •12
and two ~-paths o _5L-+/o=. q _5:J_-+/o=. w via II1 and II2 , respectively. The induction

163

hypothesis guarantees a 1 1-q bridge from o to q via II~, and a 12-q bridge from q to w
via II~. These two q bridges combine to a 11.12-q bridge from o to w via II' = II~ U II~ U
H'Y2 (Lemma 22). This is the desired 1-qbridge with II' U llo _II~ U II~ U II-y2 U llo
(II1 U ITA U II~) U (II2 U ITA U rr;~J U ll-y2 =II U (ITA) U (II~ U II~ U Hy2).

If o __ if:._+/""" w because o.5 ~ q.1 via II1 and q __ 1__+/""" w via II2 then the
induction hypothesis guarantees a 1-q bridge from q to w via II~, and two cases for
the region-coupling:

• Either o.5 ~ q.1 is unchanged. Then it and the 1-qbridge's initial ~-path
q __ 1__+/""" w1 via II~,o imply the ~-path o __ if:._+/""" w1 via II1 U II~,o (Lemma
12). It, together with the 1-qbridge's reservation qbridge from w1 tow constitutes
the desired 5-qbridge from o tow via II'= II1 U II~.

• Or there is a reservation qbridge from o.5 to q.1 via II~. Its final ~-path On _§:!}_+/"""

q.1 via II~,n and the 1-qbridge's initial ~-path q __ 1._+/""" w1 via II~,o imply

the ~-path On _§:!}_+/""" wl via II~,n u rr~,o (Lemma 12). Substituting it for the
reservation qbridge's final ~-path links it with the 1-qbridge's reservation qbridge
to a reservation qbridge from o.5 to w via II~ U II~. Prefixing it with 7ra =
o L o.5 as a basic ~-path produces the desired 5-qbridge from o to w via
II'= II~ U II~ U { 7ra}·

Since II~ U II~ II2 U ITA U II~, in the former case II' U II~ II1 U (II~ U II~) _
II1 U(II2UIIA UII~) = IIUIIA UTI~. In the latter case also II~ Ull~ = II1 UIIA UII~, so that
Il'U(Il~UII~) = Il~Ull~U{7ra}U(Il~Ull~) = (II1UIIAUII~)U(Il2UIIAUII~)U{1ra} =
II U ITA U (II~ U II~ U { 7ra}).

In one case of the induction step of part (b), o.5 ~ w.1 via II is new because
the inverse w.1 ~ o.5 via II is new. Then the induction hypothesis guarantees
a reservation qbridge from w.1 to o.5 via II'. Note that reservation qbridges are
symmetric in structure: If read in reverse, this reservation qbridge is a reservation
qbridge from o.5 to w.1.

In another case, o.5 ~ w.1 because o.5 ~ q.iJ via II1 and q.iJ ~ w.1 via II2. If
none of the two region-couplings is new, they combined to o.5 ~ w.1 via II1 Ull2 =II
already in g0 . If both are new, then the induction hypothesis's reservation qbridges
from o.5 to q.iJ and from q.iJ to w.1 concatenate to one reservation qbridge from
o.5 to w.1 via II' = II~ U II~. If the first region-coupling is new and the second old,
then the induction hypothesis's reservation qbridges from o.5 to q.iJ via II~ in g0 has
a last ~-path On _§:!}_+/""" q.iJ via II~,n· In conjunction with old q.iJ ~ w.1 in g0 ,

this entails On _§:!}_+/""" w.1 via II~,n U II2 (Lemma 22). It, together with the rest of

the reservation qbridge from o.5 to q.iJ is a reservation qbridge from o.5 to w.1 via
II' = II~ U II2. The case of unchanged first and new second region-coupling follows by
symmetry.

If new o.&1 ~ w.1 is implied by new o _ _q_+/""" w via II, then the induction
hypothesis guarantees an 5-qbridge from o to w via II' in g0 . It can be extended

164

by w L w.ry (as a ~-path via IIw = {w __:u__, W.{1, ... , W.{1 ... rn-1 ~ w.ry}) to
a <i.ry-qbridge from o to w.ry via II" _ II' U IIw U II1 (Lemma 22). That qbridge's
initial ~-path o _!f.c...;'L~/~ w~ via II~ means o.<i.ry.E ~ w~ .E. Hence dummy edge
path o a.], o.<i.ry (as a ~-path via IIa.1 = { o _£1_, o.a1 , ... , o.a1 ... an_1 ~
o.a}) implies the ~-path w~ _f:..-+1~ o.a.ry via II~ U IIa_1. It can extend the ~-path

tp~ = o~ _§!.J__-+1~ w~ via II~ of the <i.ry-qbridge's first quadruple (rp~, 1r~, n 1 , rp1) to

cFi = o~ -~'t.:~-+1~ o.5.ry via II~ U IIa.1 U II~. By substituting cFi for tp~, the <i.ry-qbridge's
reservation q bridge from w~ to w. 1 is transformed to the desired reservation q bridge
f _, _, t _, . II"' II" u II rom o.a.{ ow.{ vm = a.-?·

By induction hypothesis, II' U II0 = II U Ih U II0 . Hence II"' U IT0 (IT' U ITw U
IT1) U ITa.1 U ITo= II U ITA U (IT® U ITw U II1 U ITa.-?)· •

6.3.4 Technical Lemmas for the Region-Coupling Level

The following technical lemmas are all in the context of parameter supply substeps
during a legal { Call}-reduction Step, i.e., With a typing r nl /'i,n f-E e : T for the Operation
call expression redex e. They concern the graph g' after addition of a new received
handle h0 = r ..1!:sL. o and removal of old sent handle h~ = s ~ o from the previous
graph g, i.e., g' = g EB r ..1!:sL. o 8 s ~ o.

The first three lemmas are about initially new ownership paths. The final lemma
is about q bridges.

Lemma 19 Assume g f= UH and g
cannot coincide with the call-link.

ogr(e,if,s). Then a sent handle that is free

Proof: On one hand, if sent handle and call-link were one and the same edge h, then
the operation call expression e would contain the handle h twice: As value (s, f1r, r) of
the receiver expression and as value (s, f1rOJ1 0 , o) of an argument expression. Hence
its multiplicity in g should be more than one by g = ogr(e, if, s). On the other
hand, if the sent handle is free, g f= UH ensures that its multiplicity is one in g. A
contradiction. •

Lemma 20 Assume the reserved ownership assumption in g0 and g = ogr(e, if,s). Con
sider an initially new ownership path 1r E PAP

9
,®(o,f1,w). Its witness tuit(n) = s _y,_y~l!:-+

q0 .a0 is related with w through a single ~-path q0 _§.S)_-+1~ w0 = w; this path is the
5 0-bridge from q0 to w; there is no series of triples.

Proof: Initially new 7r is an extension of ho. Hence by r n, ""n f-E e : f, it can be
an ownership path only if it is free, i.e., 11 = free< ... >. But then tuit(1r) is free
too: f1rOf1 = /1rofree< ... > = free< ... >. Since it is h~'s extension and the nesting
constraint excludes correlations to free modes, h~ must be free, so that it cannot
coincide with the call-link hr = s ~ r: This follows from Lemma 19 since the
reserved ownership assumption obviously implies g f= UH.

165

If there is a triple in n's the 5 0-bridge there would be a first ownership path-pair
w0 +1!:.1- s .PJ.~ q1.51 . The left one starts with hr by the definition of initially new
paths (since 1-lo =1- co<>). The triple of witness tuit(n) = s ~ q0 .50 , initial ~-path
q0 _.fiSJ_~I.= w0 , and w0 +1!:.1- s would by the reserved ownership assumption imply that
tuit(n) also starts with hr. tuit(n), however, by definition starts with h~. But free
h~ cannot coincide with hr. •

Lemma 21 Assume the reserved ownership assumption in g0 and g = ogr(e, if, s). Con
sider an initially new ownership path n E PAPg'® (r, J-l, w) whose 5 0-bridge from q0 tow
via II in g0 starts with ~-path q0 _.fiSJ_~I~ w0 via II0 . For any f3 with !L(f3) E A1_, there
was in g0 ,

• a region-coupling r.J-l(f3) ~ w.f3 via II U {tuit(n)} or II U {tuit(n), hr}. or
• an ownership path-pair (hr • h{J, tuit(n) • hf3) = r.J-l(f3) +.Y- s JJ..~ (q0 .50).f3 extending

hr and tuit(n), respectively, by dummy edges h{J and hf3 while !L(f3) E A

Proof: Let w' = q0 .50 be short for the target of n's witness tuit(n) E PAPg® (s, J-l, q0 .50).

Notice that there are no triples in initially new ownership path n's 5 0-bridge, i.e.,
w0 = w and II0 = II (Lemma 20). Initially new 1r is an extension of h0 . Hence by
r n, ""n f--E e : f' it can be an ownership path only if it is free. But then witness tuit(7f)
of mode f.LrOJ-l is free too and correlates the same association roles which n correlates.

If f.L(f3) = ..l, this means that f.L lacks a correlation for {3. Then also f.LrOJ-l lacks
it, so that free tuit(n) E PAPg®(S,J-l,w') established s . ..l ~ w'.f3 via {tuit(n)}. But
since r._.L ~ s . ..l, this entails r . ..l = r.J-l(f3) ~ w'.f3 = q0 .50 .{3 via {tuit(n)}. And
since q0 _.fiSJ_~/~ w0 = w means q0 .50 .{3 ~ w.f3 via II0 = II we have r.J-l(f3) ~ w.f3 via
II U {tuit(n)}.

If J-l(f3) = a E A, this means that 1-l contains the correlation {J=o:<>. But then
J-l0 , which contains J-i, contains o:<>. Therefore the existence of h~ = s ~ o
presupposes a corresponding correlation o:=fl to some fl in the call-link's mode 1-lr· It
implies that J-lrOJ-l contains the correlation {3=fl.
• fl cannot be co<> since there are no correlations to co; neither can it be a read

mode Since J-l(f3) = !-lo(5o.f3) =a, rn,""n f--Ee: f ensures that J-lrOJ-lo(5o.f3) =
J-lrOJ-l(f3) = fl(E) is not read.

• If fl is a free or rep mode then, on one side, call-link hr = s m<. · · • a=[l, · · .> , r is
extended by dummy edge h{J = r a<> r.o: to the ownership path ir' = s JJ..~ r.o: =
r.J-l(f3). On the other side, tuit(n) of mode J-lrOJ-l =free< ... , {3=fl, .. . >is extended
by dummy edge hf3 = q0 .50 f3<> q0 .50 .{3 to the ownership path ir = s _fi:..~ q0 .50 .{3

• If fl is an association mode r<> then, first, call-link hr = s m<. · · • a=1<>, · · .>, r
established s.1 ~ r.o: via { hr} since it is free or rep: As a mode with a correlation
o:=fl, J-lr cannot be a co- or association mode; and a read mode is excluded by
rn,""n f--Ee: f since !-l(f3) = !-lo(5o.f3) EA. Second, tuit(n) of mode J-lrOJ-l =
free< ... , f3=r<>, .. . >established s.1 ~ (q0 .50).f3 via {tuit(n)}. Third, first and
only ~-path q0 _.fiSJ_~I.= w0 = w established q0 .50 .{3 ~ w.f3 via II0 = II. All three
region-couplings together mean r.J-l(f3) ~ w.f3 via II U {hn tuit(n)}. •

166

lemma 22 (Qbridges)
a) If there is a a-qbridge from o to w via II and o.a :;::::::::: o'.a' via II' then there is a

a'-qbridge from o' tow via II U II'.
b) A a-qbridge from o to w via II can be extended along w __ fl._+/~ w' via II' to a

&,6-qbridge from o to w' via II' = II U II' U II,13.
c) A a-qbridge from o to q via III and a ,:Y-qbridge from q tow via II2 concatenate to

a a.,:Y-qbridge from o to w via II' III U II2 U Il11 .

Proof: Part (a). The a-qbridge starts with a :;:::::::-path 0 _ _if:._+/~ WI via ITo. It,
and o.a :;::::::::: o'.a' imply the :;:::::::-path o' __ a:__+L WI via II0 U II'. It, together with the
a-qbridge's reservation qbridge from WI to W, constitutes a a'-qbridge from o' to W
via II U II'.

Part (b). The proof is a generalization of that for the extension of bridges with triple
series (Lemma 14): The :;:::::::-paths o = q0 _§_f)_+/~ WI via II0, and each intermediate

Wi +--if:.';__!~ q~ via II~ and qi __ a..L+I~ wi+I via IIi in the quadruples, can obviously

be extended to q0 Jio.:.!l.+;~ WI.,6 via II0 U {wi L wi.,6}, to wi.,6 +-!KfL;~ q~ via II~ U

{wi L wi.,6}, and to qi _if:;.:.fl.+;~ wi+I via IIiU{wi+I L wi+I·,6}, respectively. The final
:;:::::::::-path qn - _a..I}_ +/~ w via IIi extends to qn An..Jl. +/~ w' via IIi U II,13. The corresponding

ownership path-pair q~.a~.,6 +-&:.';_ s .Pl+ qi.ai.,6 can be obtained by extension of those
quadruple's ownership path-pairs q~.a~ +-f!:.;_ s A+ qi.ai if Pi has an ,6-correlation to a
free or rep mode.

As explained in the proof of Lemma 14, ownership path pairs (n~, ni) that cannot
be extended instead establish (q~.a~).,6 :;::::::::: s.fli(,6) :;::::::::: (qi.ai).,6 via {n~, ni}. This is

extended to the left by wi +-_if:.';__/~ q~+l via II~ implying wi.,6 :;::::::::: q~+1.a~.,6, and to the

right by qi __ a..L+/~ wi+I via IIi implying qi.,6 :;::::::::: wi+I·ai.,6, to the region-coupling
wi.,6:;::::::::: wi+I·,6 via II~ U IIi U {n~, ni}· Hence, for any number of consecutive modes
fli, . .. , flJ with flk(,6) E A1_, the gap between q0 (if i = 0) or the preceding extended
ownership path-pair (if i > 0), and w (if j = n) or the following extended ownership
path-pair (if j < n) in the ,8.,6-qbridge from o tow is closed, as shown in Lemma 14,
by a :;:::::::-path qi-I __ !f.i-_lfl___+/~ Wj+1·,6 or qi-I __ §i.--:J.R-+;~ w, respectively.

Part (c). By part (b), the first q bridge can be incrementally extended along the
Second qbridge's initial :;:::::::-path q __ ri.:;._+/~ WI via ll2,0 to a CYI.CY2-qbridge from 0 to WI
via II~ = III U II2,0 U II~. It is extended by the second qbridge's reservation qbridge
from WI to w to a Iii· 52-q bridge from 0 to w via II' = II I u II2 u rr/'1 u 0 0 0 u II'Yn 0 •

6.3.5 The Structure of Reserved Ownership

The reasoning about the reserved ownership assumption is a generalization of the
reasoning about the structure of object ownership in §6.3.1.

167

lemma 23 If e0 , 'T]0 ,.s0 , om0 ,90 ==?* e', if',.s', om',9' is a reduction defined relative to
a program p with f- p start e0 then 9'0 satisfies the reserved ownership assumption
(Definition 13).

Proof by induction on the number N of reduction steps from e0 to e': In the base
case N = 0, 9' is the empty graph 9o = 0. Its extension 9'0 by dummy edges of
non-composition modes trivially satisfies the assumption. In the induction step N ---+

N + 1, reduction e0 , 'T]o, .s0 , om0 , 9o ==?* e, fi, .s, om, 9 is continued e, fi, .s, om, 9 ==?

e', if', .s', om', 9'. By induction hypothesis, the assumption holds in 9°. A look at the
context rules shows that the changes to the object graph are absolutely independent
of the term context around the redex e. Hence we can move directly to a case analysis
of the rule by which redex e is reduced.

In case of {varz}, {varJ}, {rddst}, and {null}, the object graph is unchanged, so
that the assumption is trivially preserved. As explained in the proof for Theorem 2,
the case of { rdcp} is harmless since the type-system prevents the replicated handle
from having a free mode. In the remaining cases, we will have to exclude after
each substep to a graph 9", a violation of the reserved ownership assumption by any
combination (n,!.p,!.p1,n') made of two ownership paths 1r E PAP

9
,®(o,p,,q.a) and

, P' 11p (, , , ,) d t ____. th & d , , a' 1r E n 9,® o, p,, q .a , an wo .,--pa s !.fJ = q -----+/"""" w an !.fJ = q -----+;"""" w.

I {new} I The reduction of new<6> c() adds an edge h0 = r ..1!:2._. o to a fresh object o,

where Mo = free<6>. The kinds of ownership paths 1r in 9'0 guaranteed by Lemma
6 and the kinds of ~-paths !.pin 9'0 guaranteed by Lemma 15 combine as follows:

• If 1r is an initially new ownership path then its target q.a is some (o.'7).a with
Mo('?.a) E {free, rep}. Since no modes can be nested to an association mode, this
implies p,0 (/J) tj. A for all prefixes jJ of '7.& Hence the only ~-path q _ _cg_-+/""" w is
the dummy edge path o.'7 L w = o.'7.a = q.a (Lemma 15).

• If ownership path 1r is unchanged then q.a cannot be o or one of its region objects.
Hence CJ(q) = q and q _ _cg_-+/""" w must be a ~-path with a counterpart rp =
CJ(q) _ _cg_-+1""" CJ(w) in 9° (Lemma 15). 1r and rp are half a quadruple (n, rp, .. .)
since q = CJ(q).

• If 1r is internally new then its target q.a is some o.'7.'7' with Mo('?) EA. That is,
q = o.a' for the a' with a'.a = '7-'7'. If a' is a proper prefix of '7 with '7 = a'.a"
then q _ _cg_-+1""" w can be decomposed into a dummy edge path o.a' a" q = o.a'.a"
and a ~-path rp = q __ 1__-+/""" w with counterpart CJ(q) __ 1.._-+/""" CJ(w) (Lemma 15).
Hence this case of 1r E PAP

9
,® (o, p,, q.a) and !.fJ = q __ if:._-+/""" w can be reduced

to the case of ii" E PAP
9
,®(o,p,,q.'?) and rp = q __ 1.._-+/""" w. In the case that a'

is '7 or an extension of it, q __ if:._-+/""" w must be a ~-path with a counterpart
rp = CJ(q) _ _cg_-+/""" CJ(w) in 9° (Lemma 15). n's witness CY(n) and rp are half a
quadruple (CY(n), rp, .. .) since CY(n)'s target is r.p,0 ('7).'7' = CJ(q).
This shows that if w is some o.'7 with Mo('?) tj. A for all prefixes '7' of '7 then, first,

1r and n' must both be initially new, and, second, q.a = w = q'.a'. Hence, 1r and

168

n 1 are one and the same potential access path 7r = n.y = n 1
, and thus automatically

have the same source, mode, and shape: The quadruple (n, r.p, r.p1
, n 1

) in g10 satisfies
the assumption.

In other cases of w, 1r and 7r
1 are unchanged or internally new, and thus have

counterparts ir = 7r or ir = O"(7r), and ii"1 = 7r
1 or n1 = O"(n 1

), respectively, which
combine with the ~-paths' counterparts tjJ and tp1 to a quadruple (ir, (/J, tp1

, n1
) in g0 .

Since 1r and 7r
1 have the same source, mode, and shape as ir and ir', respectively,

quadruple (n, r.p, r.p1
, n 1

) in g10 cannot violate the assumption if (ir, cp, rp1
, n1

) did not
violate it in g0 .

I { upd} I Consider the reduction of a destructive assignment e = f = (c, J.L, o) to a

location f containing the old handle (c, J.L1
, w): In this case, g1 = g 8 c L w 8 c L

o E9 c L o. The typeability of the redex e following from Theorem 6 ensures that
J.L :::;m J.L1

• Proceed by induction on the number k of elementary conversions from
I • <1 - <1 - - <1 - - I I th b - I J.L to J.L, 1.e., J.L -m J.L1 -m J.L2 ... /-Lk-1 -m /-Lk - J.L. n e ase case, J.L - J.L, so

that the addition of c L o is canceled out by the removal of c L o. The removal
g1 = g 8 c L w creates no new ownership paths, and thus no new region-couplings,
and also no new association paths, and thus no new ~-paths. Hence it trivially
preserves the assumption.

In the induction step k --+ k + 1, the induction hypothesis guarantees that the
assumption holds in 9k = 9k- 1 8 c L w 8 c LoEB c ..f1:k_, o. After the final step from
9k to g1 = 9k 8 c ..f1:k_, o EB c ~ o, consider the quadruple (n, r.p, r.p1

, n1
). Lemma 16

guarantees that there are no new ~-paths r.p and r.p1 in g10
. Hence the argument for

the assumption's preservation by each quadruple (n, r.p, r.p1
, n 1

) goes exactly the same
way like the argument given for the preservation of UO and UH by two ownership
paths 7r and 7r

1 in §6.3.1 (see there).

I {ret} I For the reduction of «return (r, J.L0 , o); » in the context of top-level envi

ronment with call-link hr = (s, J.Lr, r), consider first the replacement g" = g 8 r __&___.

o 8 s Jl:L.. rEB s ~ o of the exported handle and the call-link by the imported
handle. Lemma 17 guarantees that there are no new ~-paths r.p and r.p1 in g10

. Hence
the argument for the assumption's preservation by each quadruple (n, r.p, r.p1

, n1
) goes

exactly the same way like the argument given for the preservation of UO and UH by
two ownership paths 1r and n 1 in §6.3.1 (see there). The final step to g1

, which only
removes handles, namely those from the environment's locations, obviously preserves
the assumption.

I {call} I For an operation call expression e = (s, J.Ln r)<;= f ((s, J.L~, o1), ... , (s, J.L~, ok))

we need the typeability of the redex e and the type-consistency of the object-map
following from Theorem 6. The former ensures via the latter that if the modes of
the parameters in the receiver's method f are J.L 1 , ... , J.Lk, then each mode J.L~ of a
sent handle is compatible to the adaption J.LrOf-Li of the mode of the corresponding
method's parameter relative to the call-link hr: f-L~ :::;m J.LrOf-Li·

169

Proceed by induction on the number k of (non-nil) sent handles h~ = (s, J-L~, oi)·
In the base case k = 0, g' = g EB r co<> r. The only potentially new edge in the new
extended graph g'*, is r co<> r. (Note that it is identical to its own inverse r ~ r.)
All new ownership paths and association paths 1r in g' must contain r co<> r (at least
once). They all have the obvious precursor 7r1 in which all occurrences of the new
edge have been cut out. These precursors have the same shape as 1r, so that these
new ownership paths cannot cause a violation of the assumption.

In the induction step k - 1 ----+ k, g' = 9k-1 8 s ~ ok EB r ~ ok, where
the assumption holds for g" 0 by induction hypothesis. The intermediate step g" =

9k-1 8 s _&___. ok EB s ~ ok of converting the kth sent handle's mode J-L~ exactly to
the adaption J-LrOJ-Lk of the parameter's mode is like the conversion before assignment.
The preservation of the assumption under this change was already shown in the
{ upd}-case above. Note the preserved assumption entails in particular g"0 f= UH.

For the final substep, the actual supply g' = g" 8 s ~ ok EB r ~ OkJ observe
first that the multiplicity of all free edges remains below two: The only edges whose
multiplicity is increased in the extension g'* of g' are h0 = r ~ ok and, if /-Lk = co<>,
its inverse h-;;1 = ok co<> r. If /-Lk is a free mode, then J-LrOJ-Lk is free. Hence sent
handle h~ = s ~ ok ensures by the assumption that it is the only old free
edge targeting ok and that its multiplicity is one. But then, after decreasing its
multiplicity, no old free edge remains in g'. The multiplicity of new free received
handle h0 = r ~ ok is one. Since the constraint on valid modes allows only free
edges to be extended to free paths, this means that the reason for a violation of the
assumption cannot lie in the multiplicity of the initial edge in free paths.

Now, consider the quadruple (1r, rp, rp', 1r1
) in g'0 . The ownership paths 1r and 7r1

and ~-paths rp and rp' possible in g' 0 are described in Lemmas 9 and 18. In g" 0

the source of 1r's and 1r"s precursor, witness, or witness, respectively was bridged by
a series of n such quadruples. On the way from o to w, there were h quadruples
(1r1, !.p1, rp~, 1rD, ... , (7rh-1, lfJh-1, rp~_ 1 , 7r~_ 1) and the half-quadruple "(7rh, lfJh"; they
are complemented by another half-quadruple "1r~, rp~)" and n - h- 1 quadruples
(7rh+1, lfJh+1, lp~+ll7r~+ 1), ... , (7rn, lfJn, rp~, 1r~) on the way from w too':

• For rp there was a a-qbridge: initial rpi, and quadruples (rpj, 1rj, 1ri+1, rpi+1), ... ,

(lfJ~-11 7r~-1' 1rh, lfJh).
• If 1r is unchanged or internally-only new, j = 1. 1r1 = 7rj is 1r's equivalent precursor

and !.{Jj = rp1 is cpj from rp.
• If 1r is internally really new, there was a witness 1r1 =dr tuit(1r), an initial ~-path

rp1, and a triple series transformable to a series of quadruples (rp~, 1r~, 1r2 , rp2), ... ,

(rpj_1, 1rj_11 1rj, rpj)· In this case, the missing lpj is the ~-path% _a_j5i+/""' w0 implied

by 1r's Ciij·'Yrbridge's last ~-path rpj = qj _C05i+l.= q.Oi and by rp's initial ~-path
rfJj = q _ _cg_+l.= wo (Lemma 12).

• If 1r is initially new, there was a witness 1r1 -dr tuit(1r), an initial ~-path rp1,
and a triple series transformable to a series of quadruples (rp~, 1r~, 1r2 , rp2), ... ,

170

(r.pj_ 1, 1rj_1 , Kj, riJJ). In this case, the missing <{Jj is qj -~'-'li.+;~ w0 as in the internally
really new case.

If this reservation qbridge has the length one, i.e., (1r0 , r.p0, r.p~, 1rb) = (7rn, <{Jn, r.p~, 1r~),
then the assumption for g" 0 guarantees that 1r0 's source o0 and mode fLo equals 1r~'s
source On+l and mode fLn+l· And if fLo or fLn+I is free, then 7ro and 1r~ have the same
shape. Hence, first, if neither 1r nor 1r' are initially new, this means that they have
the same source and, if one is free, the same initial edge: There no conflict with
the assumption. Second, if ownership path 1r (or 1r') is initially new then its mode J.L

(or f.J') iS free by rn,K,n f--Ee: f, and thUS the mode f.LrOJ.L =fLo (or f.LrOJ.L1 = fLn+l)
of its witness 1r0 = tuit(1r) (or 1r~ = tuit(1r')) is free too. But then both Jro and
1r~ by assumption start with the initial edge of initially new paths: h~. If, while
1r is initially new, 7r

1 were unchanged, internally-only new, or internally really new
(or vice versa), then 1r"s unchanged initial edge would by assumption coincide with
the initial handle h~ of 1r's witness tuit(1r). But as initial edge of free path 1r, h~'s
multiplicity of one (guaranteed by the assumption) decreases to zero in g'0 ; it cannot
be unchanged. Hence 1r and 7r

1 must be both initially new. Since their witnesss Jro
and 1r~ by assumption have the same shapes~ ok£2....• • _A_-t •, 1r and 1r' have
the same shape r ...l:!:k..., ok£2....• • __ q_-t •, and thus the same source and mode.

If there is a longer series of quadruples (Ki, r.pi, r.p~, 1r:), the assumption for g"0

guarantees for each that 1r/s source oi equal 1r~'s source oi+1 and mode P,i+l· That
is, oo = s = On+l and fLo = P,i = ... = fLn+I· And if P,i or fLi+I is free, then 1ri
and 1r~ have the same initial edge u 1!:..... v by assumption, and thus the same shape
u 1!:..... v£2....• • --~--t • by the nesting constraint on modes which does not allow for
extending paths by association paths to free paths. The way how 1r~'s and 1ri+1 's
shape are related by Lemma 18, this means that only the case of f.Lk = co<> is
possible every ownership path 1ri and 1r~ has shape s ~ ok£2....· • --~--t • or
s -'!:L. r£2....• • --~--t •.

Hence, if neither 1r nor 1r' are initially new, all of this means that they have the
same source. Additionally, if one of them is free, they both can only have the shape
s -'!:L. r£2....• • --~--t •, i.e., start with hr = s -'!:L. r since the alternative, free
h~ = s ~ ok would not be unchanged but reduced to zero multiplicity in g'0 .

There is no conflict with the assumption. And if ownership path 1r (or 1r') were
initially new, then f.Lk =/:- co<> and 1r0 = tuit(1r) (or 1r~ = tuit(1r')) would be free and
start with h~. But this would contradict the f.Lk = co<> necessary for free ownership
paths 1r~'s and 1ri+1 in an internal quadruple of the series (see above). •

6.3.6 Conclusion

To conclude this section, we now after much work return to the ownership theorem
that started this section, and obtain it as corollary from Lemma 23:

171

Th 7 If * I -=" I I I . d t" d f" d I t" t eorem e0 , 'T]o,5o, om0 ,g0 ~ e, rJ ,5, om ,g IS are uc 10n e me rea 1ve o
a program p with f- p start e0 then

91 F UH, uo

Proof: Lemma 23 guarantees the reserved ownership assumption about quadruples
(ir,(p,(p1

, ir1
) in g10 (cf. Definition 13). UO and UH are included as the special case

where ir E PAP9, (w, ji, v) and ir1 E PAP9, (w1
, ji1

, v), and where rp and rp1 are the trivial
~-path v -~-+/~ v. •

6.4 Structural Integrity of Mutator Access

Since the ownership paths through which mutators can be called are essentially the
same as in base-JaM-a free or rep handle followed by co-handles-no new proof
needs to be developed for properties Mutator Control Path and Mutator Control.

Theorem 8 If e0, 'T]o,5o, om0 ,g0 ~* e1
, fj",51

, om1,g1 is a reduction defined relative to
a program p with f- p start e0 then

91
, if F MCP, MC

Proof: The same potential access paths are-modulo correlations-ownership paths
as in base-JaM, and mutator calls are subject to the-modulo correlations-same
condition P,r E Wr(11;) as in base-JaM. Hence it easy to convince oneself that the
proof for MCP in base-JaM (Theorem 3) literally is a proof for MCP in JaM. The
obvious exception is that one has to use, instead of base-JaM's Proposition 2 and
Theorem 1, the respective Proposition 5 and Theorem 6 of JaM. Then one only has
to read "if P,r is free or rep" as "if P,r has base-mode free or rep," and "p,r can be
co" as "p,r can be co<>."

The sanctuary and Wr(11;) are-modulo correlations-defined the same as in
base-JaM. The proof for MC in base-JaM (Theorem 4) nearly is a proof for MC
in JaM: Instead of base-JaM's Theorem 3 and Proposition 2, one uses JaM's Theo
rem 8 and Proposition 5. And one expands "PAP(o, rep, w)" and "PAP(o, free, w)"
to "PAP(o,rep< ... >,w)" and "PAP(o,free< ... >,w)," and expands "p,r cannot be
free," "p,r = rep," and "p,r = co" to "P,r cannot be free< ... >," "p,r = rep< ... >,"
and "p,r = co<>," respectively. •

6.5 Composite State Encapsulation

This section shows that the representative's control over mutator executions (mutator
control) does indeed entail the desired control over any change of the composite
state (composite state encapsulation). The main structure of the proof of composite

172

state encapsulation in JaM is the same as in base-JaM. Lemmas on shallow state
encapsulation and coherence are used, which are developed further below (Lemmas
24 and 25). The coherence aspect is a much more complicated affair in JaM than it
was in base-JaM: The rep paths in the field subgraph, which define the membership
in the state representation, may pass, via captured read handles, through objects
that do not belong to the state representation. A large technical lemma (Lemma 26)
is necessary to prove that all these intermediate objects are at least members of the
sanctuary or they are immutable. This means that a change of the composite state
can be affected not only by objects in the state representation but by any object in
the sanctuary. Still, this weaker form of coherence in JaM is sufficient for composite
state encapsulation since all members of the sanctuary are mutator controlled. The
technical lemma's proof will make use of one constraint that has been specifically
introduced to this end and has played no role up to now: Non-destructive read of
free handles out of variables is permitted only if the variable is local in an observer.
In conjunction with it, the proof will for the first time exploit the fact that return
steps decrease the multiplicity of the handles in the terminated environment.

Theorem 9 (Composite state encapsulation) If e0 , T/o, s0 , om0 , g0 ===?-* e, ij, s, om, g
===?- e1

, fj',s1
, om1,g1 is a reduction defined relative to a program p with f- p start e0

then for all o E dom(om),

CStates,om(o)-::/:- CStates',om'(o) =? ::li::::; n. ri = o 1\ ""i = mut

where ij = T/1~~, ... , Tin~: with hi = (si, /-fi, ri).

Proof: CStates,om(o)-::/:- CStates',om'(o)

Lemm~ 25
::lw E { 0} u Sancg(0). slfidsom(w) -::/:-!51

lfldsom(w)

Lemm~ 24 ::lw E {o} U Sanc9 (o). rn = w 1\ ""n = mut
===?- rnE{o}USanc9 (o) 1\ ""n=mut
===?- (rn = o 1\ ""n = mut) V (rn E Sanc9 (o) 1\ ""n = mut)

Theor~:n 8 () (:::J) rn = o 1\ ""n = mut V :::Ji ::::; n. ri = o 1\ ""i = mut
===?- ::li ::::; n. ri = o 1\ ""i = mut •

L 24 If * -> I ='I I I I · d t" emma e0 , T/o, so, om0 , g0 ===?- e, T/, s, om, g ===?- e , T7, s , om , g IS a re uc 10n
defined relative to a program p with f- p start e0 then for ij = T71 ~~, ... , Tin~: with
hn = (sn, !Jn, r n), and for all w E dom(om),

rn = w 1\ ""n = mut

Proof: The proof is literally the same as the proof of its base-JaM version (Lemma
4), with the obvious exception that JaM's Theorem 6 has to be used instead of base
JaM's Theorem 1. •

173

lemma 25 (Coherence) lfe0 , 7]0 ,.s0 ,om0,g0 ===}* e, if,.s,om,g ===} e', if',.s',om',g'
is a reduction defined relative to a program p with f- p start e0 then

So far only the source, mode and target of a potential access path or ;:::::::-path have
been of interest. For the proof of the coherence lemma, one has to look at all the
intermediate handles' objects since each of them can destroy or create the potential
access path or ;:::::::-path by capturing or overwriting a handle in a field. The difficult
case are the new class of rep paths in JaM that are extensions like d read<dest=rep<. · .» ,

i 3~s.E~\ el of paths by association paths since these may have prefixes that are not
rep paths. There is not even a guarantee that in the field subgraph any path from o
to intermediate object i constitutes a sequence of ownership paths. For such objects
it has to be shown that their handles that are, or can be extended to, association
paths are used by third objects for their rep paths only in ways safe for coherence.

An object a has its sub-objects, i.e., objects reachable from a by sequences of own
ership paths, for storing rep handles or handles extensible to rep handles. (Actually
passing them down requires appropriate correlations on the ownership paths, so that
only certain sub-objects can really be used for this-this refinement will become rel
evant on page 176.) The storage is safe w.r.t. coherence if it is through a rep path
since their rep sub-objects are protected in a's sanctuary. The safety of storage in a
free sub-object depends on the initial free handle: It should be captured in a field.
Then, in order to call the mutator on the free sub-object, the initial handle has to
be taken out of the field by destructive read, which requires a mutator in the source.
We can filter out these safe sub-objects if we index the sub-object set Sub(a) with
the set H of the initial handles of the used free paths. The subset of a's sub-objects
safe for the storage of rep paths then is Sub H (a) for some H ~ fgr0 m (.s).

SubH(o) =dr UPAP
9

(o,rep<8>,q)#0 {q} U SubH(q)
U UnEH Un,. nEPAP9 (o,free<8>,q) {q} U SubH(q)

Moreover, one can easily see that it is safe if rep paths pass through objects that
are effectively immutable (in a shallow sense), meaning that they never change their
fields. There are different kinds of reasons for an object to be (im)mutable: It can
be a consequence of the methods offered, or of the program executions possible. We
are concerned here only with immutability due to the lack of permission for calling
mutators (as captured in the mutator access properties), and for accessing the field
containing the handle for making the call: To be legally mutable in JaM, lmut(w),
requires to have a legally mutable owner a, or to be reachable by a free path with
an initial handle h not captured in a field (then it does not matter whether owner a
is legally mutable or not):

174

lmut(w) {:}df 3o. Osh9 (o, w) =1- 0 1\ lmut(o)
V 3o, 8, h, ir. n • ir E PAP9 (o, free<8>, w) 1\ n tj. fgrom (s)

Proof of the lemma: The beginning of the proof are like in base-JaM (Lemma 3): A
composite state change means a change of a restriction of the store:

If the domain of the restriction is unchanged then the composite state change
means that the store changed somewhere in UwEStReps,om(o) fidsom(w) = UwEStReps',om'(o)
fidsom'(w). It changed at some .e E fids0 m(w) of some w E StRep5 om(o): s(.€) =1- s'(.€).
Hence sJfids

0
m(w) =1- s' l.flds

0
m(w) for this w. ,

Next consider a change UwEStRePs,om(o) fidsom(w) =/- UwEStReps',om'(o) fidsom'(w). Since
the set of field locations of each "old" object w E StRep5 om(o) remains unchanged
in any reduction step (fidsom(w) = fidsom'(w)), such a cha~ge presupposes a change
in the set of state-representing implementation objects. That is, StRep5 om(o) =I-
StRep5, om'(o). This expands to ' ,

{o} U U StReps,om(q) =/- {o} U U StRep5',om'(q)
PAPfgrom (s) (o,rep,q)f0 PAPfgrom' (s') (o,rep,q)c;i0

There must be an object q that is reachable from o by a non-empty sequence
o = Oo -E~--t 01 -E~--t ... _.!'~--t On = w of rep paths in field subgraph fgr0 m(s)
but no such sequence in fgrom' (s'), or vice versa. Paths 1r = o1 _E~--t o1+1 in the
field sub graph are created by assigning one of 1r 's handles into a field (capture), and
are destroyed by updating a field containing one of its handles by assignment or
destructive read (overwrite). Each of these objects must belong to the composite
object o (as state representation or otherwise), or be effectively immutable. In terms
of lmut and Sub developed above,

qo J:!:Q.... ql ... qk ...f:!:k__. qk+l E PAPjgrom(s)(oj, rep<8>, Oj+l)
==> ViE {1, ... , k}. -.lmut(qi) V 3H ~ fgrom(s). qi E SubH(oJ)

This property will be shown below in Corollary 2 to be an invariant of legal JaM
program executions and thus hold in particular in s, om, g. An object qi that is not
legally mutable, -.lmut(qi), has no owner or is in the sanctuary of an object without
owner. Hence it cannot execute any mutators (Mutator Control Path, Theorem 8)
and thus its fields cannot change (Shallow State Encapsulation, Lemma 24). An
object qi that is reachable through a free path fr with initial handle n stored in a
field cannot occur as call-link in the environment stack since n is unique (Theorem
7). But then qi cannot be executing any mutators (Mutator Control Path) and thus
its fields cannot change (Shallow State Encapsulation). This leaves only objects qi in
oj's sanctuary, or o1 itself, to capture or overwrite a handle qi ..l:!:i..., qi+l in assignment

175

and destructive read steps. Only they can create or destroy rep paths 1r = q0 ...J!:Q__,

ql ... qk ~ qk+l E PAPfgrom(s)(Oj, rep< ... >, Oj+l) in the field subgraph. Consequently,
the object qi whose field change (,slfids

0
m(q;) =1- .s' ifidsom(q;)) creates or destroys a path

ren · ren ren ren f th · 1r = Oj --=·,.._-t Oj+l In sequence o = o0 --=--t o1 --=--t ... --=--tOn= w o rep pa sIn
the field subgraph is in o's sanctuary (qi E Sanc(oj) 1\ Oj E Sanc(o) ==> qi E Sanc(o)) .

•
The invariant used above needs to be refined to strengthen it for a preservation proof.

Step 1. Provision has to be taken for showing the preservation of the invariant's
"qi E SubH(o)" case when one of the captured free handles n E H ~ fgram(.s) is
read destructively out of its field: Since this makes qi mutable without o's control,
this is safe only if the destructive read simultaneously interrupts the rep path 1r E

PAPfgrom(s) (o, rep, w) that passed through qi in the field subgraph view. To this
end, field-captured rep paths 1r through sub-objects qi in field-captured free sub
objects {j are required to contain the corresponding free path's initial handle. They
have to pass through all the free handles n E H on which qi E SubH(o) was based:
The condition H <S { 7r} has to be added. Actually, since all handles in 7r are in the
field subgraph, it can replace the condition H ~ fgr0 m(.s).

Step 2. In order to prepare for step 3 with rep paths not only in the field subgraph
and uncaptured free handles (that can be exchanged as parameter and result), we
have to be more precise about the free sub-objects in which rep handles and handles
extensible to rep paths can actually be stored: o can store them through a free path
in its direct free sub-objects only if the free path's mode fl contains a (nested)
correlation of rep mode, i.e., fl(1) =rep for some 1. And o's sub-objects q can store
such handles in their free sub-objects only if the handles are association handles
or can be extended to association paths and if the free path's mode fl contains a
correlation to the corresponding association mode, i.e., fl(1) = (3 E A

That is, as non-immutable intermediate objects in rep paths in the field subgraph
only those objects u E SubH(o) should be accepted where all free handles n E H on
the way from o to u have a mode fl with fl (1) E {rep} U A Using a corresponding
predicate repdn(u .!!:... v) ? dr ::Ja. fl(1) E {rep} U A, the invariant for all objects qi in
o's rep paths 7r in fgram (.s) now reads

-,lmut(qi) V ::JH <s: {1r}. qi E SubH(o) 1\ 'linE H.repdn(n)

Step 3. Showing preservation of the invariant about rep paths in the field sub
graph under the capturing of handles in fields requires us to know already something
similar about all rep paths 7r E PAP9 (o, J-L, w) in g. Also these are safe if they pass
through only objects u safe for rep paths in the field subgraph. But we have to deal
with an additional possibility specific to uncaptured rep paths 1r: Naturally, an un
captured rep path 7r should be able to pass through sub-objects qi of o reachable not
only through captured but also uncaptured free paths, and through sub-objects qi of

176

immutable (j reachable not only through captured free paths (which would make qi
immutable too) but also through uncaptured free paths (which means qi is a mutable
non-sub-object of o). All this can be safely allowed if the uncaptured initial edges li
of the free paths are edges of 1r: Then 7T can only only show up in the field subgraph
if all the free initial edges were captured~so that we are back to the condition on
rep paths in the field subgraph.

That is, the condition on the objects qi in any rep path 7T should be

•lmut(qi)
V 3H E {1r}. qi E SubH(o) 1\ VIi E H.repdn(li)
V 3(j. •lmut(q) 1\ 3H E {1r}. qi E SubH(fi) 1\ VIi E H.repdn(li)

But this is not all.
Step 4- We also have to deal with the possibility that 1r contains not the uncap

tured initial handle li leading to qi, but its read copy h created by non-destructive
read or handles h to objects to which the copy was passed. Such a rep path 7r is safe
if h is an uncaptured edge local to an observer invocation, because then h blocks 1r's
showing up in the field subgraph. In order to handle return steps that return h from
an observer back into a mutator, it has to be clarified that h and li are "observer
bounded," obsbd(h, li), in the following sense: h and li are uncaptured handles; h is
local to call-levels l in which an observer is executing; and (the unique free handle)
li is local to a call-level l' and either l' is above l, or all call-levels from l' up to l
are executing observers. Then when h is returned into a mutator, li must be in the
terminated invocation, so that its destruction by return leaves qi as an immutable
object. The uncaptured free handle li may be passed through another free handle
li' to an object and captured there. But then we will have obsbd(h, li') instead.

That is, the condition 3H E {1r }. qi E SubH(o) 1\ VIi E H. repdn(li) needs to be
expanded to 3H. qi E SubH(o) 1\ VIi E H.repdn(li) 1\ ({li} E {1r} V 3h.{h} E {1r} 1\

obsbd(h, li)), and the same for the qi E SubH(fi) case. To make the extended invariant
easier to handle, its formulation will be restructured: For each object u in any rep
path 7r of o there is an H such that

•lmut(u) V u E SubH(o) V 3(j. •lmut(q) 1\ u E SubH(fi)

1\ '1/liEH. repdn(li) 1\ ({li}E{7r} V 3h. {h}E{7r}UIT/\obsbd(h,n))

where obsbd(h, li) is formalized as follows using the kinds 11,i of the methods executing
at the various call-levels in the environment stack if = 7]1 ~~ ... r:ln~:, and using the
receivers ri and modes fli of the call-links hi = (si, fli, ri) in it:

obsbd(o!!:.. w, li) {:}df o!!:.. w, li tj. fgrom(s) 1\ M #-co<>
1\ 'Ill, l'. atlevel(o!!:.. w, l) =* 11,1 = obs

1\ atlevel (li, l') =* Vi.l' :::; i < l =* 11,i = o bs

atlevel(h, l) {:}df hE im(slim(r11)) V e1 = ... h ... V (l < n 1\ h = hz+l)

177

RSubH(o) -df Ures(o,rep<o>,q) {q} U RSubH(q)

RFree(h)
rmut(w)

U UnEH Ures(li,free<o>,q) {q} U RSubH(q)
-df Ures(h,free<O>,q) { q}
¢::?df :Jo, 5. rmut(o) 1\ (res(o, rep<b">, w) V res(o, free<b">, w))

V :Jh,b". htf_fgram(s) 1\ res(h,free<b">,w)
res(o,J-l,w) ¢::?df :Jq,,:Y. PAPg®(o,J-l,q.,:Y) =/= 0 1\ q __ 1__-+/oc= w
res(h,J-l,w) ¢::?df :Jo,ir,q,,:Y. h• irE PAPg®(O,J-l,q.,:Y) 1\ q __ 1__-+/oc= w

Figure 6.12: Auxiliary definitions for Lemma 26

The auxiliary predicate atlevel(h, l) symbolizes that handle h occurs at call-level l,
either as the value of a local variable in environment 'T/i, or as a temporary value
in the runtime term at method nesting level l, written h E e1, or as the call-link
hz+1 from call-level l to the next. The e1 are determined by the decomposition
of current runtime term e using a series of reduction context e1, ... , en-l E R~
and an innermost runtime term en containing no inlined method body, so that
e = e1[« ... [«en-I[«en»]»]. · .»].

Step 5. The final step is to move to the graphs g0 and fgr0 m(s) 0 extended
by region objects, and to generalize ownership paths paths 1r to ownership paths
reservations (1r, <p). This is necessary for showing the invariant's preservation under
the supply of parameters. The generalization to reservations applies, on one hand,
the considered rep path 1r-all objects in 1r and in <p's path-base II are subjected to
a condition-and, on the other hand, to the ownership paths 1r defining sub-object
relationships and (im)mutability in the condition. To this end, figure 6.12 defines
the "reservation closure"-induced generalizations rmut(w) of lmut(w), RSubH(o) of
SubH(o), res(o, J-l, w) of PAP(o, J-l, w) =/= 0, and res(h, J-l, w) of h • ir E PAP(o, J-l, w).
RFree (h) is also defined, which is needed below for the expression of the auxiliary
invariant on free reservations.

Lemma 26 If e0 , TJo, s0 , om0 , g0 ~* e, if, s, om, g is a reduction defined relative to a
program p with f-- p start e0 then

h1 • irE PAPg®(o, rep< ... >, q.,:Y) 1\ q __ 1__-+/oc= w via II
:::::;.\f{vLw}cs{ir}UII. \fuE{v,w}. :JH.

-,rmut(u) V u E RSubH(o) V :lq. -,rmut(ij) 1\ u E RSubH(ii)
1\ \i!i E H. repdn(!i) 1\ ({!i} <S {1r} V :Jh. {h} <S {1r} U II 1\ obsbd(h, !i))

The invariant as it was used in Lemma 25 is implied by this:

178

Corollary 2

qo _l!:Q___. ql .. . qk .../!±_, qk+l E PAPfgrom(s)(o,rep,w)
=* ViE {1, ... , k}. -.lmut(qi) V :JH S:;; fgram(s). qi E SubH(o)

Proof: Any rep path 7f E PAPfgrom(s) (o, rep< ... >, w) in the field subgraph is extended
to a reservation (7f, cp) by trivial ~-path cp = w - f:... -+/~ w via 0. Since { 1r} U II <S

fgram(s), the alternative with obsbd(h, !i) never applies. All !i E H are in 7f, hence
H <S fgram(s). Obviously, the lemma's -.rmut(u) implies -.lmut(u). u E RSubH(o) or
u E RSubH(q) implies u E SubH(o) or SubH(q), respectively, if there is a connection
by ownership paths. Otherwise the bridge of ownership reservations on the way from
o or q to u contains a right-most reservation that is not an ownership path. Its target
q' is -.lmut(q'). If q' is u, then -.lmut(u). And if u E RSubH(q) or RSubH(q') with
not legally mutable q or q', then also u is not legally mutable since H <S fgram(s). •

The preservation of the lemma's invariant under conversion of handles from free to
rep requires a similar invariant about free reservations (1r, cp). These are harder to
reason about than rep reservations because free handles can be exchanged between
objects. Here it is crucial that the nesting constraint on modes excludes correlations
to free modes on top of that to co<>. This lets free paths be like in base-JaM: a free
edge followed by co-edges. Hence the intermediate objects u in free paths starting
with h1 are all targeted by free paths starting with h1 . For free reservations, this
has to be generalized to the objects u E RFree(h1) to which free reservations exist
with initial handle h1 (cf. figure 6.12), and to objects that are immutable:8

h1 • 7r E PAPg®(o, free< ... >, q.;y) 1\ q __ 1__-+/~ w via II
::::;, V{ v L w} <S { 7r} U II. Vu E { v, w }.

-.rmut(u) V u E RFree(h1)

Proof of the lemma: The lemma's invariant on rep paths and the auxiliary invariant
on free paths are handled simultaneously by induction on the number N of reduction
steps from e0 to e. In the base case N = 0, g = g0 = 0 is empty. Hence there
can be no ownership paths, so that the invariant holds trivially. In the induction
step N---+ N + 1, reduction e0 , rJo,50 , om0 ,g0 ==** eN, ifN,sN, omN,9N is continued
eN, ifN,5N, omN,9N ==* e, if,s, om, g. In most steps the two invariants holding by
induction hypothesis are obviously preserved. For the other steps we will make use of
the typeability of redex e that follows from Theorem 6, and of the reserved ownership
assumption that Lemma 23 guarantees (without mention of the theorem/lemma).

8 Since no proper region object can be targeted by free paths made only of free edges and co
edges, cp must is an E-path. One would expect it to be trivial and have an empty path-base II= 0.
However, this can be shown not to be the case. But it suffices, and is more uniform to the treatment
of rep reservations, to say that all objects in 1r and II are in RFree(hi) or immutable.

179

I {ift}, {i~} I The only relevant change is the potential removal of the compared handles
by a multiplicity decrease from one to zero. This cannot create new ownership paths
nor ~-paths, thus preserving all old case of -.rmut(u). The removal may however
interrupt an old ownership path 1r or ~-path <p, and destroy an ownership reservation
(1r, ~.p). If this was the last ownership reservation on the target object w, then w is now
immutable. Together with w, all objects u become immutable that are reachable from
w via sequences of reservations (1ri, <pi) with rep path 1ri or with free path 1ri with
field-captured initial handle. Consequently, whenever a relationship u E RFree(h)
ceases to hold by the loss of ownership reservations, u is now immutable instead.
And if a relationship u E RSubH(o) ceases to hold, there must be an intermediate
object v in the ownership reservation connection from o to u i.e., with v E RSub H" (o)
and u = v or u E RSub H' (v) for some for H', H" ~ H, that is not reserved any more.
This makes v immutable, and perhaps also u. The invariants are preserved.

I { rdc~st} I Where a handle is stored is only relevant in the definition of rmut. Hence
destructive read access might have an effect if a field location is read that contains
a free handle h. But shallow state encapsulation (Lemma 24) guarantees that the
destructive access to fields happens only within current object r's mutators. Hence
the mutator access properties (Theorem 8) imply that r is mutable. Thus so are
all its sub-objects, in particular, the targets of r's free paths based on h, and their
sub-objects. The invariants are preserved.

I { rdcp} I The only thing that might change in the object graph by non-destructive read

access is the addition of a read handle ho = no[read/free] for a free handle no in the
variable. All new paths 1r' have a precursor 1r = 7r

1[n0 /ho] with the same base-mode
or base-mode read instead of free. Hence all region-couplings and ~-paths <p1 via
IT' have precursors with path-base IT = IT'[n0 /h0]. There is no change in RFree(h),
RSubH(o), nor rmut(w). Hence for all objects u in the new reservation (1r', ~.p'), the
old reservation (1r, <p) guarantees by induction hypothesis that u is immutable, or in
RFree(h1), or in RSubH(q) of an object q that is o or immutable. From all n E H
we know that there is an h in (1r, ~.p) with h = n V obsbd(h, n). In (1r', ~.p'), this h
still exists if it is not n0 . And if h was n0 , then in (1r', ~.p') we have ho instead. The
typeability of redex e ensures that read-alias h0 is created only in an observer and
only from handle no in the location of a local variable: obsbd(h0 , n0). Hence the
invariants are preserved.

I {new} I In an object creation step, a free edge h0 = r ~ o to a fresh object is

added: g = 9N E9 r ~ o.
First. Before looking at the intermediate objects in ownership reservations, con

sider which reservations and which relevant relationships are new, and which are lost.
The results are summarized in figure 6.13:

Since no edges are removed, all old reservations are preserved and thus all old
relationships u E RFree(h) and u E RSubH(o). The only really new ownership paths

180

u E RFree(h), u E RSubH(o)
•rmut(u) 1\ u =1- o.O:
•rmut(r.J-L0 (0:) .&')
r.J-L0 (&).0:' E RFree(h), RSubH(o)
J-L0 (&) =read

=:;, u E RFree(h), u E RSubH(o)
=:;, •rmut(u)
=:;, •rmut(o.O:.O:')
=:;, o.O:.O:' E RFree(h), RSubH(o)
=:;, •rmut(o.&)

Figure 6.13: Change of relationships in creation steps

target some o.5 (Lemma 6), and the only really new ~-paths have some o.5 as
source or as target, but not both (Lemma 15). Since there can be no old ownership
paths to fresh o and its region objects, unchanged 1r can combine with new cp only if
it differs from its counterpart a(cp) by having target o.5. New 1r can combine with
an unchanged cp on o's side, but cp's target will always be the same one as n's, i.e.,
some o.& Internally new 1r can combine with a really new cp if it differs from its
counterpart a(cp) in its source; but their counterparts can combine to a reservation
(a(n), a(cp)) that precedes (n, cp). Hence objects u other than o and its region objects
do not become reachable by really new ownership reservations. For these objects,
-.rmut(u) is preserved.

All ownership reservations on a region object o.&5' are witnessed by ownership
reservations on r.!J0 (5).5' = a(o.&5'). Hence if sequences of old ownership reserva
tions on r.!J0 (5).5' left it immutable or placed it in RFree(h) or RSubH(o) in gN°,
then the corresponding new sequences of ownership reservations on o.&5' respectively
leave it immutable or place it in RFree(h) or RSubH(o) .

Consider the objects o.5 where !J0 (5) = read: The nesting constraint on valid
modes like Mo ensures that no extraction Mo (5') for a prefix of 5 can be an association
mode. Hence the only non-dummy path targeting o.5 is the initially new path 7ra
of a read mode. o.5 has no owner. Moreover, there is no chance to construct any
ownership reservation on o.5 (see above). o.5 is immutable.

Second, consider the objects in reservations (n, cp) with unchanged ownership path
1r or unchanged ~-path cp: An unchanged 1r cannot pass through fresh o and its region
objects, and thus can combine only with unchanged ~-paths, which also do not pass
through fresh o and its region objects. Since nothing changed for these objects,
reservations with unchanged 1r still satisfy the invariants.

The only unchanged ~-paths that can combine with a new ownership path 1r are
those based on dummy edge sequences o.a1 ... ak ak+l ···an o.5, since all new 1r end
in some o.5 = (o.a1 ... ak).ak+I ... an- These have the same target as 1r and contain
only edges already contained in 1r = h0 • o L o.a, or 1r = n 1 • h0 • o L o.& Hence
these reservations are safe iff the new ownership path 1r is safe. We can ignore the
objects in old ownership paths and old ~-paths, and concentrate on the (objects
in) in new ownership paths (in combination with new or old ~-paths) and in (the
path-bases of) new ~-paths (in combination with new or old ownership paths).

Third. Consider the objects u in new ownership paths 1r in reservations (n, cp):

181

(a) 1r can be a initially new ownership path 7ra = ho o o L o.a with initial edge
h1 = h0 : In the case free 7ra, the nesting constraint on valid modes like f-Lo ensures
that a = E. Hence there is only 0 = O.E in 1fa, which is obviously in RFree(ho)·
In the case of rep path 1r a, f-Lo (a) = rep the nesting constraint ensures that all its
non-trivial prefixes are initially new free, rep, or read paths 7ra' of modes /-La' with
/-La'(a") =rep. In the first two cases, we have o.a' E RSub0 (r) for 7ra's intermediate
object o.a', and for the latter case it was shown above that o.a' is immutable.

(b) If 1r is a internally new ownership path n1 o 1fa o n3 with JL0 (a) = /3, it has a
witness O"(n) = n 1 on; of the same mode with n; = r f3.a' r.f3.a'. Since 1r contains
non-initially the non-co handle h0 , the nesting constraint on modes means that it
cannot be free. 1r and O"(n) must be a rep paths. Since in 9N®, there was the old
reservation (O"(n), r.f3.a' _E_~I""" r.fJ.a'), the induction hypothesis covers all objects in
O"(1r). Since the reservation is old, the objects in O"(1r) still satisfy the invariant in g®,
as shown above. Observe that in the third and fourth case, the handle h guaranteed to
be in O"(n) must be in the n 1-segment common with 1r since the n;-segment consists of
dummy edges that are neither free nor absent from the extended graph fgr0mN (.sN)®.

1. Hence the objects u in the n1-segment of 1r satisfy the invariant in g®.
2. The objects u = o.a' in the 7ra segment of 1r are immutable if JL0 (a') =read (see

above). The case of JL0 (a') E {free, rep} is covered by looking at the possibilities
which the induction hypothesis guarantees for r in rep path O"(n). There are no
other cases of JL0 (a'): f-Lo must contain a (nested) correlation to f3 by JL0 (a) = /3,
so that the nesting constraint on valid mode f-Lo ensures that all extractions f-Lo (a')
by a prefix a' of a are free, rep, or read.
First, r may be immutable. Then in the rep-case also the target u = o.a' of
its initially new rep path 7ra' is immutable. In the free case, we have u E

RSub{ho}(r) with immutable rand with h0 in 1r and repdn(ho) since f.La'(a") = /3.
Second, r E RSubH(q). Hence initially new ownership path 7ra' from r to u of
mode /-La' means that also u E RSubH'(q) with H' = H in the rep case and, in
the free case, H' = H U {ho} with h0 in 1r and repdn(ho) since f.La'(a") = /3.

3. The objects u = o.&a" in the n3 segment of 1r are immutable, in RFree(hl), in
RSubH(o) or in RSubH(q) since the objects O"(u) = r.f3.a" in the n;-segment of
O"(n) are by induction hypothesis guaranteed to be immutable, in RFree(hl), in
RSubH(o) or in RSubH(q) (see above). Whether free n E His in O"(n) or there is
an uncaptured handle h in O"(n) with obsbd(h, n), this handle still exists inn, as
shown above.

Fourth. Consider the objects u in the path-base IT of new ;:::=-path rp = q __ 1__~1""" w
via IT. Observe that h0 must be in IT since otherwise rp could not be new: { h0 } cs IT.
It has a precursor O"(rp) = O"(q) __ 1__~1""" O"(w) via IT' = O"(IT \ ITN \IT®)· This precursor
exists also with a path-base that includes the dummy edges from r to O"(q) or O"(w) =
r.JL0 (a).a', respectively: The dummy edge sequencer J.Lo(a).a' r.JL0 (a).a' as a ;:::=-path
means the region-coupling r.(JLo(a).a').E ;:::::= (r.JL0 (a).a').E via IT"= {r J.Lo(a) r.JL0 (a),
r.JL0 (a) a~ r.JL0 (a).a~, ... , r.JL0 (a).a~ ... a~_ 1 ~ r.JL0 (a).a'}. This redundant

182

region-coupling extends the path-base of trivial r.p,0 (5}5.' __ (j__-+1~ r.p,0 (5.).5.' via
0 to the ~-path <pE = r.(p,0 (5.).5.').t: __ (j__-+1~ r.p,0(a).5.' via II". Its redundant
concatenation with O"(<p) to <p1 = <pE o O"(<p) or O"(<p) o <pE, respectively, extends the
path-base to II' U II".

(a) In the case of unchanged n, new <p must be new at its target, i.e., O"(q) = q
and w = o.&ii' with O"(w) = r.p,0 (5.).5.'. Then 1r combined with counterpart <p1 =

q __ i_-+1~ r.p,0 (5.).5.' via II'UII" to a reservation (n, <p') in gN® to which the induction
hypothesis applies.

(b) In the case of new 1r, 1r cannot be initially new since initially new ownership
paths do not reach region objects o.O. with p,0 (5.) E A or beyond and thus cannot com
bine with new ~-paths. Internally new 1r can combine with new <p = o.&ii' __ 1__-+/~ w
via II. If <p is of the third kind in Lemma 15, it is the combination of an old ~
path <p1 = o.iJ _5.1_-+/~ o.ii and a ~-path <p2 = o.a _5.L-+;~ w with counterpart
<p~ = r.p,0 (5.).5.' __ 1__-+/~ O"(w) via II' U II", where 1 = 11 o12 . All edges of <p1 must
also be contained in 1r with target o.&ii' = o.iJ.11.12 . Hence their sources and targets
are already covered. The reservation (n, <p2) with just <p2 is equivalent to the original
reservation (1r, <p), and it contains no new edges: { 1r} U II2 { 1r} U II. It thus suffices
to look just at ~-paths of the first kind: Its counterpart r.p~ combined with internally
new n's witness O"(n) = O"(o) _l!c-+ r.p,0 (a).5.'.1 to a reservation (O"(n), O"(cp)) in 9N® to
which the induction hypothesis applies.

In both cases, the ~-path in the respective reservation (n, cp') or (O"(n), cp') has the
same source o and initial edge h1 like n. Consider what all this means for the objects
u in new cp's path-base II:

1. If u is the source or target of a handle h tf. TIN U II0 then its precursor O"(u) is
the source or target, respectively, of O"(h) in II' and thus covered by the induction
hypothesis. In the case of u =/= o.ii, O"(u) = u, so that the induction hypothesis
covers u directly: u is immutable, in RFree(h1) or in RSubH(fi.). Otherwise,
u = o.&ii' such that O"(u) = r.p,0 (5.).5.'. But what the induction hypothesis
guarantees for O" (u) in 9N ®, also holds for u in g0 , as explained at the beginning
of the {new }-case.

2. If u is the source r of the initial handle h0 in an initially new ownership path
ir E TIN, then it is covered as the source of r f..lo(a) r.p,0 (5.) in cp''s path-base
II' U II".

3. The other objects in initially new ownership paths ir E TIN and dummy edges
irE II0 are region objects u = o.ii' with Mo(a'.O.") = {3. As in the case of objects
in internally new ownership paths, If p,0 (5.') = read then u is immutable. And
if p,0 (a') E {free,rep}, the possibilities which the induction hypothesis allows
for r in II" (see above) imply that u is immutable like r or, in the rep case, in
RSubH(fi.) like r, or, in the free case, in RSubHu{ho}(fi.) with repdn(ho) if r is in
RSubH(o).

Observe that in all cases of u E RSubH(fi.) or RSubHu{ho}(fi.), the handle h guar
anteed to be in the old reservation for every li E H exists also in (1r, r.p): If h is in

183

in g'<:!Y
•rmut(u)
u E RFree(h)
u E RSubH(o)

=? •rmut(u)
=? u E RFree(h) V u E RSub0(c) V •rmut(u)
=? u E RSubH\{ho}(o) V •rmut(u)

V ::Jv, H' s;;; H \ {ho}• •rmut(v) 1\ u E RSubH'(v)

Figure 6.14: Change of relationships in conversion steps

{ 1r} U II' U II" or {a(1r)} U II' U II", respectively, it may first be in 1r or a(1r), and thus
inn, as shown above for a(n). Neither free h = h nor uncaptured h with obsbd(h, h)
can be a dummy edge, so that it cannot be in II". Hence h can otherwise only be in
II' - a(II \ IIN \II®), and thus in a(II) ;2 a(II \ IIN \II®)· Source v and target w of
non-dummy edge h cannot be an object r.J-L0 (a).a'. But then a(v) = v and a(w) = w,
so that h and h are not only in a(II) but also in II, as the invariants demand it.

I { upd} I Assignment steps are divided, as usually, into several substeps for the purpose
of the proof. The substep that decreases of the multiplicity of the old handle at the
left-hand side location .£ in the store preserves the invariants. The argument is the
same as in the case of {ift} / {ifJ}-steps.

The main aspect of assignment lies in the right-hand handle's conversion from a
mode j1 to a mode P,'. The typeability of redex e ensures that j1 ::;m P,'. We need to
look here only at one elementary conversion substeps g" = g' EB c L o 8 c L o, i.e.,
the substitution of an edge h~ = c L o for an edge h0 = c L o with J-L :::;~ J-L1

•

First, all ownership paths 1r E PAPg'® (o, J-L, q.1) have a precursor n' = a(n) E

PAPg,® (o, J-L1
, q .1) of the same mode J-L1 = J-L or directly compatible mode J-L1 :::;~ J-L

(Lemma 7), where a= [h0 /h~] substitutes h0 handles in in c.p's path-base to h~ in its
precursor's path-base. By the definition of ::;~, the mode J-L ~~ J-L1 cannot be free
and can be rep only if J-L1 was free. Hence neither h~ nor-by the nesting constraint
on valid modes-any of its extensions can be free. All free paths 1r in g"® are
unchanged (n' = 1r), and all rep paths 1r are unchanged or have a rep precursor a(1r)
of the same mode or have a free precursor a(1r) with the same correlations. Also all
:;::=:-paths cp = q __ 1__-+/-c= w via II have a precursor c.p' = q __ 1__-+/-c= w via a(II) (Lemma
16). Hence for all reservations (n, c.p) in g"®, there was already a reservation (n', c.p')
of the same or directly compatible mode in g'®.

This has the implications summarized in figure 6.14: Without really new reser
vations, immutability is preserved. Old reservations are preserved, they change from
free to rep, or they are lost. In particular, old cases of u E RFree(h) remain so,
change to u E RSub (c) (if h = h0 was free and h~ is rep), or u becomes immutable.
Old cases of u E RSubH(o) may be preserved, or the ownership reservation connection
from o to u was severed, or a free reservation with initial h0 E H in the connection
was converted to a rep reservation. In the latter case, u E RSubH\{ho}(o) now. In the
second case, an object v is not reserved any more that was on the way from o to u,
i.e., with v E RSubH"(o) and u = v or u E RSubH'(v) in g'® for some for H', H" ~H.

184

The loss of reservation makes v immutable, perhaps also u.
Second. For all objects u in each precursor (a(n), r.p) with r.p via a(IT) of a g"0

-

reservation (n, r.p) with r.p via II, the induction hypothesis allows three possibilities.
Note that these are the same objects as in (n, r.p) since the substitution of h0 for h~
does not change which objects are in the paths.
• If u was immutable, then it remains so in g" 0 .

• If u was in RFree(hi) then it remains so, or becomes immutable, or switches to
u E RSub(o) if h1 = h0 , so that n's source o is c.

• There was a fj that was o or immutable and u E RSub H (fj) in g'0 with a h in fr or
fr for every n E H such that h = n V obsbd(h, n). In g"0

, u is immutable or u E

RSubH\{ho}(fi) or there is an immutable fj' with u E RSubH'(fj') and H' S:: H\ {h0 }.

In other words, u is immutable or there is an object fj' that is o or immutable and
u E RSub H' (fj') with H' S:: H \ { h0 }. Since H' contains only edges of H and does
not contain the changed edge ho, for every n E H' there is a a(h) in fr or fr such
that a(h) = h = n v obsbd(a(h), n).
Third. At the end of all elementary conversion substeps, the fully converted handle

h~ is stored at location £. Storage is relevant for the invariants' preservation in two
cases: (1) £ is a field location and h~ is the uncaptured handle in a reservation
(n, r.p) in a case with obsbd(h~, n). But a handle in this case is guaranteed to exist
only local to observers, so that shallow state encapsulation (Lemma 24) excludes
assignment to a field. (2) £ is a field location and h~ is the uncaptured free handle
with u E hRSancH(h~) and obsbd(h, h~). Assignment to a field requires the top
level execution of a mutator by h~'s source r (shallow state encapsulation). The
observer invocations to which h is local must be below that. Mutator execution in r
presupposes a sequence of mutator calls to r along ownership paths starting with a
free path n0 and followed by a sequence of rep paths tor (Theorem 8). The observer
invocations with h must be below all these mutator invocations. In particular, the
initial free edge n0 of n0 that initiated the mutator calls is local to an invocation not
below h. That is, obsbd(h, n0). The corresponding membership u E hRSancH'(no)
with H' = {h~} U H S:: fgrom"(s") 0 holds since the capturing of h~ in r connects
u E hRSancH(h~) with the ownership paths leading to r This shows that also the
final storage substep preserves the invariants.

I {ret} I One aspect of return steps is to decreases the multiplicity of all handles at the

locations of the finished invocation's environment. As shown for the case of {ift} / {i~}
steps, the intermediate removal step g' = 9N 8 s(im(r7*)) preserve the invariants. The
interesting aspect of return steps is the transfer g = g' er ~ oes J!:L.. rEBs ~ o,
of the result value, i.e., the substitution of the imported edge h~ = s ~ o. for
the exported edge h0 = r ~ o and the call-link hr = s J!:L.. r.

First. There are no really new ~-paths (Lemma 17). And the only really new
ownership paths nares's initially new paths 1r of a free mode f-Lrofl with a counterpart
e~po(n) of free mode fl (Lemma 8). The new ownership paths 1r that are not really
new are initially new and have a precursor hr • e~po(n).

185

in g'l:!l

-,rmut(u)
u E RFree(h)
u E RSubH(o)

::::} -,rmut(u)
::::} u E RFree(G-(h)) V -,rmut(u)
::::} u E RSubu(H)(o) V -,rmut(u)

V 3v, H' ~ 8-(H). -,rmut(v) 1\ u E RSubH'(v)

Figure 6.15: Change of relationships in return steps

This has the following implications summarized in figure 6.15: Old cases of im
mutability are preserved. 0 ld cases of u E RFree (h) with h tj_ { h0 , hr} are preserved
unless the ownership reservation connection through h to u is severed by the removal
of hr and h0 . And old cases of u E RFree(h) with h = h0 or hr are succeeded by
u E RFree(h~) unless the free ownership reservation on u through the handle is
lost. Since there are no new ownership reservations except for h~-based ones, this
loss would mean that u is immutable now. In short, u E RFree(h) in g'0 entails
-.rmut(u) or u E RFree(D-(h)) in g0 . Old cases of u E RSubH(o) may be preserved
(if it contains no h0 E H), or the ownership reservation connection from o to u was
severed, or a free reservation in the connection with free path 1r = h0 • if = e~po(n')
or hr • h0 • if = hr • e~po(n') was shortened to a free reservation with initially new
n' = h~ • if. In the latter case, u E RSubu(H)(o) now. In the second case, an object v
is not reserved any more that was on the way from o to u, i.e., with v E RSub H" (o)
and u = v or u E RSub H' (v) in g'0 for some for H', H" ~ H. The loss of reservation
makes v immutable, perhaps also u.

Second. Let rJ be the substitution [hr • h0/h~, h;/ • h-;1 /h~- 1] in case of J.LrOJ.L0 =

co<>, and [hr • h0/h~] otherwise. By Lemmas 17 and 8, any reservation (n, e.p) in g0

with 1r = h1 • if E PAP(a, J.L, q.'7) and cp = q __ 1__-+!""' w via II implies a reservation
(fr, cj;) in g'0 with fr = h~ • if' E PAP(a', J.L1

, q.;y) and (j; = q __ 1__-+/""' w via CJ(II)
where normally fr = CJ(n) with source o' = o and initial edge h~ = h1 [hr/h~], except
in case of free initially new 1r without precursor, where fr = e~po(n) with source
o' = r and initial edge h~ = h0 . To the objects u in this reservation, the induction
hypothesis applies. It covers all objects in (n, e.p) in g0 since substitution rJ never
removes any objects from a path (but at most adds object r): path-base II contains
no more objects than CJ(II), 1r with fr = CJ(n) contains no more objects than fr,
and initially new paths 7r = h~ • if contain non-initially no more objects than their
precursor fr = e~po(n) = h0 • CJ(if) contained non-initially. The induction hypothesis
allows three possibilities for u:

• u was immutable. As shown above, this is preserved.

• fr is free and u E RFree(h~) in g'0 . Then in g0 , as shown above, u is immutable or
u E RFree(h~) with h~ = D-(h~)). If 1r is not initially new, then h~ = h1 tj_ {hn h0 },

so that in g0 we have u E RFree(hn = RFree(h~) = RFree(hl), as desired. And if
1r = h~ • if is initially new-with equivalent precursor fr = hr • e~po(n) or with free
counterpart fr = e~po(n) = h0 • if'-in g0 we have u E RFree(h~) = RFree(h~) =
RFree(h1), as desired.

186

• ir is rep and there was a q that was o' or immutable and u E RSubH(q) in g'0

with a h in ir or a(II) for every liE H such that h = li V obsbd(h, li). In g0 , u is
immutable or u E RSub(t(H)(q) or there is an immutable q' with u E RSubH'(q') and
H' ~ 8-(H). Since there are no really new coreceived rep paths 1r, ir is equivalent
to 1r, i.e., o' = o. That is, either u is immutable or there is an object q' that is
o or immutable and u E RSubH'(q') with H' ~ 8-(H). We check all the li' E H'
by looking at all the li E H. All of these are either in H' and thus exist in g0 ,

or they are h0 or hr. They all have a corresponding h in ir or a(II), i.e., in some
path ir' E { ir} U a(II). (In { 1r} U II, there must be a corresponding path ir" with
ir' = a (ir") or et:P o (ir").)
(i) If h occurs in ir' not as part of a a-replaced subsequence, this means it exists also
in the g0 -path ir. In the case of h = li, this means that free li cannot be ho or hr,
since these would be reduced to zero multiplicity (Theorem 7). Hence 8-(li) = li = h
is in ir as necessary for 8-(li) = li' E H'. In the case of obsbd(h, li), obsbd(h, 8-(li))
trivially follows if li tj. {hn h0 }. This is what we need for 8-(li) = li' E H'. Otherwise
8-(li) = li' = h~ E H' is at the new top-most call-level in g0 and unchanged h cannot
be above it, so that necessarily obsbd(h, h~), i.e., obsbd(h, li').
(ii) h can neither be h-;1 nor h-;; 1 , since h is the free li or a non-co-handle with
obsbd(h, li). If h = hr or h0 in a a-replaced subsequence hr • h0 in ir' then ir"
contains h~ instead. In the case with h = li, this means it contains li' = 8-(li) = h~,
as desired.
(iii) In the obsbd(h, li) case, if h = hr, then the invocation containing h = hr,
i.e., the invocation to which the computation returns, is an observer. Since h~ is
contained in the same invocation as h, and since 8-(li) is li or is h~, we have the
necessary obsbd(h~, 8-(li)).
(iv) In the obsbd(h, li) case, if h = h0 , then obsbd(h, li) for h = h0 at the terminated
call-level n + 1 means two things: If the execution step returns to an observer at
call-level n, it means the necessary obsbd(h~, 8-(li)) since either unchanged 8-(li) = li
is still at the same call-level or 8-(li) = h~ is at h~'s call-level n. And if a mutator is
executing at call-level n, it means that li cannot be at a level below h = ho's level
n + 1. But if it is local to the terminated call-level n + 1, the intermediate step
g" = g e s(im(17*)) destroys free li since its multiplicity was one by the reserved
ownership assumption. This violates the assumption that li E H exists still in g0

with the exception only of li = h0 and hr.

I {call} I As always, we decompose a { call}-step into substeps that convert the handle
arguments' mode to the import f.-LrOJ.10 of the receiver's parameter modes J-L0 -which is
safe as was shown for the case of { upd} above,-that insert the this handle-which
obviously preserves the invariants-and that supply one parameter after another to
the receiver. W.l.o.g. we focus on the substep g" = g' e s ~ o EB r _l!:Q__, o of
supplying one mode-adapted argument. This is trivial if the received handle h0 =
r _l!:Q__, o is a nil-handle or if it is not new but existed already in g'*. We are concerned

187

•rmut(u)
u E RFree(h) A h =/= h~
u E RFree(h~)
u E RSubH(o)

in g11 (!9

==> •rmut(u)
==> u E RFree(h)
==? u E RFree(hr) VuE RFree(ho)
==? u E RSubH'(o)

where H' E {H, H[hr/h~], H[h0 /h~], H[hr, h0/h~]}

Figure 6.16: Change of relationships in supply steps

only with new handles h0 and their inverses h-;; 1 (if they are co), if they are edges in
g"* but not in g'*.

First, all t-L-reservations (n, cp) of o on w in g" 0 have a precursor (n', cp') of the
same mode in g'0 -with the exception that o's reservations with free initially new
path 1r have a counterpart (.sent(1r), cp') that reserved the free ownership of r on w
in g'0 : If cp is new with a qbridge as precursor that contains quadruples, then n' is
its last ownership path and cp' its last :;:=!-path. If there are no quadruples but 1r has
a counterpart with a bridge with a triple series then n' is its last ownership path and
cp' is the closure of its last :;:=!-path under cp's precursor :;:=!-path. Otherwise, n' = 1r

and cp' = cp.
Consequently, all cases of •rmut (u) are preserved.
On the other hand, no old :;:::::!-path cp gets really lost-only its path-base might

change-and no ownership path 1r gets really lost -but always has an equivalent
successor- with the sole exception that the free paths starting with h~ are the
witness .sent(1r) of a free initially new path 1r that succeeds them: If the removed
handle h~ or its inverse occurred in an ownership path ir = n' or in an ownership
path or association path ir E II' of old reservation (n', cp') then it can be expanded
with substitution rJ = [hr • h0/h~, h-;; 1

• h-;1 /h~- 1]. The corresponding path rJ(ir) is
equivalent to ir except if it is a free path starting with h~. First, h~ or h~-l may
be in ownership or association path ir since they are co-handles, i.e., MrD!J0 = co<>.
Then the typeability of redex e ensures that hr and h0 are co as well. In this case,
the expansion always works. Second, h~ can be in ownership or association path
ir since it is an association handle of mode (3<> or since it is extended to a (3-path
ir' = h~ • ir" that is a subsequence of ir: 1-lrot-Lo(ii) = (3. Then typeability ensures a
decomposition ii = ii1 .ii2 such that 1-lo (ii1) = 1 and /Lr is a rep or free mode with
r=fl such that jj(ii2) = Mrb·ii2) = (3. In this case, hr • ho • rJ(ir") = rJ(ir') is a (3-path
that can substitute ir' in ir. Third, h~ can be the initial edge of ownership path
ir = h~· ir' of a shapes~ o ~· • _ _c!_~ •, i.e., MrDIJ0 (a) =mE {free, rep}.
Either t-Lo(ii) =free = m (there is no rep in parameter mode Mo), i.e., 1-lo = E and
1-lo =free< ... >. Then iris the free witness .sent(n) of a free initially new path 1r

(and rJ(ir) is no potential access path). Or 1-lo =co<>. Then hr • h0 = s .1!:.!:..__, r ~ o
is equivalent to h~ = s ~ o. ir's substitute rJ(ir) is hr• ho• rJ(ir'). Or there is a
decomposition ii = ii1 .ii2 such that Mo(iii) = 1 and /Lr is a rep or free mode with
r=fl such that jj(ii2) = Mr('Y.ii2) = m. Then hr • h0 • rJ(ir') is a substitute rJ(ir) for ir.

188

Consequently, all old rep reservations (1r, cp) with cp via II have an equivalent
successor (0"(1r), cp) with cp via O"(II), so that old cases of u E RSub0 (o) are preserved
(cf. fig. 6.16). And all free reservations (1r, cp) with cp via II either have an equivalent
successor (0"(1r), cp) with cp via O"(II) if /Jo =co<>, or 7f = sent(1r') and the reservation
of s switches to a free reservation (1r', cp) with cp via O"(II) of ron the same object if
!Jo =free< ... >. Hence all cases of u E RPree(h) with h-=/:- h~ and of u E RSubH(o)
with h~ ~ H are preserved. If /Jo = co<>, all case of u E RFree(h~) and of u E

RSub H (o) with h~ E H become cases of u E RFree (hr) and of u E RSub H' (o) with
hr E H' = H\ { h~} U { hr} because they were based on a free path ir = h~ • ir' that has
the equivalent successor O"(ir) = hr• h0 • O"(ir'). If/Jo i=- co<>, allcaseofu E RFree(h~)
become cases of u E RFree(ho) because they are based on a free path ir = sent(1r')
with free successor 1f

1
• In order to say what becomes of u E RSubH(o) with h~ E H

if /Jo -=/:- co<>, we have to consider what happens with the correlations to rep and
association roles on free paths 1r = sent(1r') where 1f

1 is free and of mode f.10 : If 1r's
mode f.1rOf.1 0 contained such correlations, i.e., if f.1rOf.10 (11 :;;(2) E {rep} U A for some
11.12, then /Jo contained a correlation to some association role /, i.e., f.1o(f3.a1) = /,

and /Jr contains a correlation r=ft from r to a mode ft that is a or from which a
can be extracted, i.e., with ft(12) = /Jrh·12) =a. That is, also hr and 1r's successor
1f

1 have correlations to a rep or association role. Since /Jo contains the association
mode 1<>, i.e., f.1o(f3.a1) = /, and the corresponding f.1rOf.1 0 (/3.a1) is not read, the
typeability ensures that /Jr is rep or free. Hence any free reservation starting with
h~ E H can be expanded to a rep hr or a free hr and a free reservation starting
with h0 . Consequently, u E RSub H (o) with h~ E H is succeeded by u E RSub H' (o)
with H' = H \ {h~} U {ho} if hr is rep and H' = H \ {h~} U {hr, ho} if hr is free.

Second. Consider reservations (1r, cp) in g"0 where 1r is unchanged or internally
only new and cp via II is unchanged. In the former case, 1r is its own precursor
1f

1
• In the latter case, /Jo = /Jr = co<> and there is a precursor 1r

1 = 1r[h-;1
• h~/ h0 ,

h~- 1 ·hr/h~ 1] with which 1r shares the initial edge h1 . Observe that the initial edge of
1r and 1r' are the same. The only difference in the set of intermediate objects is that
1f

1 contains s which 1r might not contain. Hence the induction hypothesis covers all
objects u in (1r, cp) as objects in the reservation (1r', cp) in g'0 :

The cases of •rmut(u) and of RFree(h1) are preserved, as shown above. Notice
that free h1 and n cannot be h~: If 1r is internally-only new, h~ is co. And an
unchanged path 1f

1 = 1r or ir E II cannot contain a h~ that is free since the multiplicity
of a free h~ is by Unique Head (Theorem 7) reduced to zero in g"0 . Finally, there
could be a q that is o or is immutable and u E RSubH(q) in g'0 with a h in ir or fr for
every n E H such that h =nor obsbd(h, n). As shown above, we have u E RSubH'(q)
in g"0 for some q that is still o or still immutable. H' is H with any h~ in it expanded
to hr and/ or h0 (depending on which of them is free). It remains to check all the
n E H': If h~ was in H then n = h0 and hr in H' are covered: The case with h = h~
in 1r or II cannot apply since a free h~ is reduced to zero multiplicity in g"0 by
Unique Head (Theorem 7). And the case of obsbd(h, h~) means that also obsbd(h, hr)

189

(for n = hr E H') since h~ and hr are at the same call-level, and obsbd(h, h0) (for
n = h~ E H') since h0 is one call-level above h~. Other cases of n E H' if h~ E H,
and all cases of n E H' if h~ E H presuppose n E H. For every n E H the necessary
h in 1r or II is guaranteed with h = nor obsbd(h, n).

Third. Consider reservations (1r, cp) in g"0 where 1r is initially new and cp via
II is unchanged. Then 1r = h0 • 1r1 • 1r2 , and in g'0 there was a witness tt1it(1r) =
h~ • 1r1 • 1r; E PAP

9
,® (s, Mrop,, q0 .ii0) and a 5 0-bridge via II from q0 to 1r's target q.ry.

The typeability of redex e ensures that 1r is not rep but free. Because of the nesting
constraints on valid modes, this means that Mo is a free mode, i.e., h0 is free, and
that h0 can only be extended by co-edges. Hence 1r1 must a sequence of co-edges, and
1r2 must be empty and the bridge be trivial since otherwise 1r2 would start with (free)
ho. Consequently, ttJit(1r) has the same target as 1r and the same edges except for
the initial edge h~ in place of h0 . Since ttl it(1r) must be free like 1r is, all non-initial
objects u in (1r, cp) are covered as non-initial objects in (tt1it(1r), cp). For this free
reservation, the induction hypothesis allows the following possibilities:

• u was immutable in g'0 . Hence it still is so in g" 0 .

• u E RFree(h~) in g' 0 since h~ is ttJit(1r)'s initial edge. In g" 0 , as shown above, we
then have u E RFree(ho) since h0 is free, not co. This is just right since h0 is 1r's
initial edge.

Fourth. Consider reservations (1r, cp) in g"0 where 1r is internally really new and
cp via II is unchanged. Then 1r = h1 • ir = 1r1 • 1r2 , and in g'0 there was a witness
ttl it(1r) = h1 • ir' = 1r1 • 1r; E PAP9,® (o, free< ... >, q0 .5o) with 1r; = qo __&__. qo.5o and
a 5 0-bridge from q0 to w via II' such that { 1r2} U ITA U II0 II U II0 . From these,
the following reservations ('71-, r.j;) can be constructed in g'0 : If there are triples in
the bridge, then witness tt1it(1r) and the bridge's initial ~-path cp0 = q0 _.§SJ_-+1.=- w1

via II0 constituted a reservation (tt1it(1r), cp0), and each triple in the bridge means
two reservations (1r~, wi _f;..-+1.=- wi) and (1ri, cpi)· The last ~-path cpn = qn __ aJL-+f.=

Wn = q.ry via IIn combined with cp to 'Pn = qn _.§.I}_-+1.=- w via IIn U II (Lemma
12). It combined to a reservation (irn, 'Pn) with the bridge's last ownership path
irn = 7rn = s .Pn-+ qn-5n- If there are no triples in the bridge, then II'= II0 . cp0 and cp
combined to 'Pn = q0 _.§SJ_-+1.=- w via II0 U II = IIn U II = II' U II. Hence in g'0 there
was the {L-reservation (tt1it(1r), 'Pn) of o on w.

If there are any triples in the bridge, the reserved ownership assumption in g' 0

ensures that ttl it(1r) 's source o is their source s and that all ownership paths have the
mode of ttl it(1r). Hence if (1r, cp) in g"0 is a free reservation then all corresponding
reservations (-fi-, r.j;) were also free reservations. In each reservation (-fi-, r.j;) with -fi- =
h~ • -fi-', the sources and targets u of all edges h in -fi-' or fr are covered by the induction
hypothesis. In case of (-fi-, r.j;) = (tt1it(1r), cp0) or (tt1it(1r), 'Pn), the missing edge h~ is the
initial edge h 1 of 1r, and thus needs no coverage. Otherwise it is the initial edge hr
or h~ of an ownership path in the bridge, which is skipped in the construction of the
new path 1r and thus irrelevant for (1r, cp). (Of course hr and h~ will be contained in

190

1r if they are contained elsewhere in the bridge: in one of the ~-paths or non-initially
in one of the ownership paths-but then it is covered by the induction hypothesis.)
For the sources and targets u of all non-initial edges in each of the above reservations
(ir, <{;), i.e., for all objects in 7r which need to be covered, the induction hypothesis
allows the following possibilities:

• u was immutable in g'®. Hence it still is so in g"®.

• (ir, <{;) is a free reservation with initial edge h~ and u E RFree(h~). In the case of
(ir, <{;) = (ttJit(n), <po) or (ttJit(n), rfJn), h~ is n's unchanged initial edge h1 . If free
h~ were h~, then its multiplicity of one (the reserved ownership assumption) would
be reduced to zero in g"®, so that it could not be unchanged-a contradiction.
But if h~ =!= h~, then u E RFree(h~) is preserved, i.e., u E RFree(h1).

Other cases of (ir, <{;) presuppose triples in the bridge contains. The nesting con
straint on modes ensures that the free internally really new 1r is made of an ini
tial free h 1 followed by co-edges. Hence the h0 in it must be co: J.10 = co<>.
But then there is one jJ such that every ownership path ir = 7r~ in (ir, <{;) =

(7r1 W· -~~~ w·) or fr = 7f· in (fr rn) = (7r· rn-) has shape S ~ 0 ~· e _ _/1._~ e 2l 2 I~ 2 l 2 lY 2lY2

or s ~ r -..£2....• • _ _il._~ •. For the quadruple (tuit(n), <p0 , nL wi -~~~~ wi) of the
first and second reservation, this means by the reserved ownership assumption
that tuit(n)'s unchanged initial edge h1 must be hr (since it cannot be h~, as just
shown before). Hence if (ir, <{;) is a reservation with ir of the case with shape

s ~ r -..£2....• • __ iL~ •, then u E RFree(h~) means u E RFree(hr) = RFree(hi),
and this is preserved since h1 =/= h~. And if (ir, <{;) is a reservation with ir of the case

with shapes ~ o -..£2....• • __ /1._~ •, then u E RFree(h~) means u E RFree(h~).
As shown above, this is succeeded in g"® by u E RFree(hr) = RFree(hi), since the
alternative u E RFree(h~) is impossible with an ho of mode J.10 = co<>.

The other case applies to rep reservations. If, in this case, hr is a free handle then
there is an h' in 7r such that h1 = hr or obsbd (h1

, hr): tuit(7r) = n 1 • n~ passes through
r since the prefix n 1 common with 7r = n 1 • n2 ends in r (from where it continues with
h0 initially in n 2). Hence for object r in rep reservation (tuit(n), r.a0 -~~~~ r.a0),

the induction hypothesis allows the following possibilities: The case of immutable
r cannot apply since it is target of uncaptured free hr. There must be an object
rr that is 0 or is immutable such that r E RSubH(il). All ownership reservation
sequences to r targeted by free hr have to include a free reservation with initial hr
(the reserved ownership assumption). Hence hr must be included in H. But then
we are guaranteed an h' in the rep reservation, i.e., in tuit(1r), such that h1 = hr or
obsbd(h', hr)· However, whether h' is free hr or uncaptured (obsbd(h, n)), it cannot
be in the dummy edge-path 7r~. But then h' is in n 1 and thus in 7r = n 1 • n2 .

• There was a q that was o or immutable and u E RSubH(q) in g'® with a h in ir
or fr for every n E H such that h = n V obsbd(h, n). As shown above, we have
u E RSub H' (q) in g"® for some q that is still o or still immutable. H 1 is H with

191

any h~ in it expanded to hr and/ or ho (depending on which of them is free). It
remains to check all the li E H': (1) li = h0 E H' is always in (n, rp) since any
internally really new 7r = n 1 • n2 contains h0 as the first element of its n2-segment.
(2) For li = hr E H', it was shown just before, there is an h' in 7r with h' = hr or
obsbd(h', hr)· (3) The remaining liE H' were also in H: For every liE H, there was
the necessary h in ir or ft. This means that h was in witness tuit(n) = n 1 • n~, or in
an ownership path n~ or ni, or in a :;:::::':-path <pi via IIi or (/Jn via IIn U II. In short, h
was in { n 1 • n~} U II' U II, or formally, { h} E { n 1 , n~} U II. Since we know about n's
bridge that { n2} U ITA U II0 - II' U II0 , this means { h} E II U { n1 , n2, n~} U ITA U II0 .

Whether his free li or non-co and uncaptured (obsbd(h, li)), it cannot be in the
dummy edge-path 7r~ nor in dummy edge set II0 , nor can it be an inverse co-edge
h- 1 h'-1 E II

r ' o A·
(i) If h was in n 1 or n2 or II, then it is in (n, rp). Hence we have for liE H' the
desired handle h with still h = li or obsbd(h, li), respectively.
(ii) If, in the h = li case, h E ITA then it cannot be h = li = h~ E ITA since h~ is
not in H'. And if h = li = hr E ITA then, it was shown above, there is an h' in 7r

with h' = hr or obsbd(h', hr)·
(iii) If, in the obsbd(h, li) case, h = h~ or hr E ITA and the invoked method is an
observer, we switch from h to h0 , which is always in 7r = n1 • n2 as first edge of
n2. Notice that h0 was assumed to be new at the beginning of the { call}-case.
Hence in g"0 , h0 is local to the called method and neither local at other call-levels
nor captured in a field. That is, h0 is just one observer higher than h. Hence
obsbd(h, li) implies the necessary obsbd(h0 , li) for liE H'.
(iv) If, in the obsbd(h, li) case, h = h~ or hr E Ih and the invoked method is a
mutator, then the typeability of redex e requires that call-link hr is free since
the calling invocation containing h is an observer. It was shown above that then
there is an h' in 7r with h' = hr or obsbd(h', hr)· In the former case, h' = hr and
h E ITA are identical or at least at the same call-level. Hence obsbd(h, li) implies
the obsbd(h', li) necessary for liE H' with h' inn. In the latter case, obsbd(h', hr)
means that hr was above h' or only some observer calls below it. On the other
hand, we had obsbd(h, li) for h E ITA, i.e., obsbd(hr, li) or obsbd(h~, li). That is, li
was above hr or h~ (which is the same) or only some observer calls below it. In
combination, li was above h' or only some observer calls below it. Hence we have
obsbd(h', li) necessary for liE H' with h' in 7r.

Fifth. Consider reservations (n, rp) with a new :;:::::':-path rp = q __ 1._-+/""' w via II. The
existence of reservation (n, rp') with the unchanged trivial :;:::::':-path rp' = (q.ry).E -"=--+;""'
q.ry via 0 ensures, as shown above, that all objects in 7r satisfy the invariants for
ownership reservations. We still need to check the objects u in the path-base II. For
new rp, there was in g'0 a ry-qbridge from q tow via II' such that II'UII0 = ITUIIA UII0
(Lemma 18). The objects in II E II' U IT0 are the source or target of edges occurring
also in II', or of h0 and h;; 1 E Il0 . Source and target of h0 and h;; 1 are covered as
the targets of hr and of h~ or sources of h-;1 and of h~-1, which are guaranteed to be

192

contained in II'. All handles in II', and thus all objects in II are contained in one of
the following reservations:

Each quadruple in the qbridge means two reservations (1rL tpD and (1ri, tpi)· The
qbridge's initial :;:::::=-path tp0 = q __ f_+/""' w1 via II0 is covered by the reservation
(1rb, tp0) if 1r is unchanged or internally-only new and 1rb is its precursor 7r

1
. And if

1r is internally really new or initially new, then tp0 combines with the last :;:::::=-path
lpn via II~ of 1r's bridge to a :;:::::=-path tp~ = q __ a.I}_+/""' w via II~ U II0 . It combined
to the reservation (1rb, tp~) with witness 1rb = tuit(1r) or with the last ownership path
1rb = s .f/},+ q~.ii~ in 1r's bridge. Either directly or through 1r's bridge, the reserved
ownership assumption guarantees that 1rb has the same mode 11' and source o' as,
respectively, 1r1 or tuit(1r) (cf. the internally really new case above). Observe that the
initial edges of each ownership path in the qbridge and in the bridge is hr or h~.

If 11' is free and the qbridge contains a quadruple or the bridge contains a triple,
then this means for the unchanged initial edge h1 of other 1r's by the reserved owner
ship assumption that it is hr or h~. Actually, it must be h1 = hr since unchanged h1

cannot be the free h~ that is decreased to zero multiplicity (cf. the internally really
new 1r case further above). If 11' is free and f-1 0 #- co<> then there are no triples and
no quadruples: In the non-co case, one ownership path ir of the ownership path-pair
in each triple or quadruple has shape s ~ o ~· • _§5_+ • with f.1o(ii) = {3.
The nesting constraint on modes, on one hand, allows a free ir only if it has shape
s ~ o ~· • --~-+ •: ii is E and h~ has mode f-1 0 = /3<>. On the other hand, it
disallows correlations /3=free< ... >, f.1rOf.10 = f.1rof3<> cannot be free.

In each reservation (ir, rj;), the sources and targets of all edges except for ir's initial
h~ are covered by the induction hypothesis. h~ is either the initial edge of 1r~, which
has nothing to do with tp and was already covered above. Or it is the initial edge hr
or h~ of an ownership path in the qbridge, which is skipped in the construction of
the new :;:::::::=-path tp and thus irrelevant for (1r, tp). For the sources and targets u of all
non-initial edges in each of the above reservations (ir, rj;), i.e., for all objects in tp we
need to cover, the induction hypothesis allows the following possibilities:

• u was immutable in g'0 . Hence it still is so in g" 0 .

• u E RFree(hD in case of a free reservation. If there are no quadruples in tp's
qbridge and no triples in 1r's bridge then ir = 1rb is 1r1 or tuit(1r). In the initially
new 1r case then f-1 0 is free and tuit(1r)'s initial edge h~ ish~. Hence u E RFree(h~)
is succeeded by u E RFree(h0), which is just right since h0 is 1r's initial edge h1

(cf. the initially new 1r case further above). If 1r is not initially new then 1r"s
initial edge h~ coincides with 1r's initial edge h1 . Since h~ = h1 is unchanged,
it cannot be free h~ (cf. the internally really new 1r case further above). Hence
u E RFree(h~) = RFree(h1) is preserved. If there are quadruples or triples then,
as shown above, f-10 = co<>, so that there are no initially new paths, and ir's
initial edge is h~ E {hn h~}, and h1 = hr for non-initially new Jr. If h~ = hr,
u E RFree(hD = RFree(hr) = RFree(h1) is preserved, and if h~ = h~, we have
new u E RFree(hr) = RFree(hi) in g"0 .

193

• u E RSubH(fi) in case of a rep reservation for some (j that was o' or immutable and
for every n E H there was a h in ir or fr such that h = n V obsbd(h, n). In the rep
case, 1r cannot be initially new since there are only free initially new ownership
paths, and these have a free precursor .sent(7r), so that also the mode of ir is free.
For the other 7r, o' = o. As shown above, we have u E RSub H' (q) in g"0 for some
(j that is still o' = o or still immutable. H' is H with any h~ in it expanded to
hr and/ or h0 (depending on which of them is free). It remains to check all the
n E H': If free n is hr or h0 , then 1r cannot be internally-only new since this
would presuppose f.Lr = f.Lo = co<>. And a internally really new 7r = 1r1 • 1r2 always
contains h0 as the first element of its 7rTsegment for n = h0 , and always contains
an h' with h' = hr or obsbd(h', hr) for free n =hr. For details see the internally
really new reservation case further above. The remaining n E H' were also in H:
For every n E H, there was the necessary h in ir or fr. This means, h is in some
path in II'. Since II' <S II U ITA U II0 , this means that h must be in II or must be
hr or h~ E ITA. Whether his free nor non-co and uncaptured (obsbd(h, n)), it
cannot be in the dummy edge-path 1r~ nor in dummy edge set II0 .

If h was in II, then it is in (1r, rp). Hence we have for n E H' the desired handle h
with still h = nor obsbd(h, n), respectively. If h = hr or h~ E ITA, then 7r cannot
be internally-only new since this would presuppose f.Lr = f.Lo = f.LrOf.L 0 = co<>.
Otherwise the reasoning is like in the internally really new reservation case: In
case of h = n, h cannot be h~, and if it is free hr then there is an h' in 1r with
h' = hr or obsbd(h', hr)· In case of obsbd(h, n), if a mutator is called, hr must be
free, which ensures an h' in 1r with obsbd(h', n). And if an observer is called then
ho is just one observer higher than h, so that we have obsbd(h0 , n) for n E H' . •

194

Chapter 7

Discussion

7.1 JaM: Some Observations

7 .1.1 Programming with Modes

If you have built castles in the air,
your work need not be lost;
that is where they should be.
Now put the foundations under them.

Henry David Thoreau (1817-1862)

1. A PURELY STATIC TYPE SYSTEM EXTENSION. JaM is essentially a purely static
type system extension of a Java-subset that imposes a new dimension of classification
on old entities, namely the classification of Java's object reference values by modes
and the classification of Java's methods into observers and mutators:

No new code composition constructs are introduced (like inheritance, class nesting,
packages). No new values are introduced. The annotation of modes to handles
in the formal runtime model of the previous chapters was only a formal trick for
proving the desired properties; they have no impact on the computation and are
invisible from outside of the program (handles cannot be exchanged with the execution
environment). For the implementations of the JaM language, no representation of
modes at runtime is needed. No new computational mechanism is introduced, like
the delegation semantics associated with special references in other proposals (e.g.,
parent references for object inheritance [US87], inner references for dynamic mixins
[Nic99], and context references for context dependent behavior [SPL98]). There is
only the new destructive read operation. But this is no substantial addition, since
a destructive read can clearly always be rewritten to a combination of a normal,
non-destructive read and an assignment of null with the same net effect.

Actually, even the destructive read operation is not crucial for JaM. It could be
replaced by a purely static deadness-analysis as part of type checking: Destructive
read only serves as an easily enforceable way of ensuring that free handles are used

195

as "linear values" [Wad90, Bak95]. This means that after assignment of a value to a
free variable, this value-a free handle-is used at most once as a free handle.
In other words, free variables are "dead after use" as the source of a free handle
[BoyOl]: Once a free variable's value was used as a free expression value (read access
to the variable), the next use of that variable can only be as the left hand side of
an assignment (write access). For example, the same free variable cannot be used
both as free receiver and free argument, or as first and as second free argument,
in the same operation call expression. A compile-time deadness check for read free
variables would be as effective for reasoning about object ownership as enforcing that
free variables are read only destructively. (Notice that the variable's deadness is
exactly the property which allows the compiler to optimize away destructive read's
resetting of the variable.) Indeed, intergrated deadness checking would be preferable
since it avoids null pointer errors by calls through an object reference variable v after
it was read destructively (to transfer the target object as a parameter or to call a
mutator).

2. INTERPRETATION -lE-- COMPUTATION. As a whole, the mode annotations in
a program superimpose a higher-level view, a structural interpretation in terms of
composite objects, on the state and the computation. And the purpose of mode
checking is to enforce the consistency of this view in the dynamic, evolving system.
In particular, it prevents (the expression of) an interpretation where an object might
have two owners, i.e., is component of two different composites. And it excludes the
interpretation of a (dynamic) set 0 of elementary objects as one composite object 0
with representative o E 0 if O's state might change without going through a method
of o (state encapsulation at the composite object level).

That is, from the perspective of a given Java program p, the mode system rejects
mode-annotated programs p' expressing the wrong higher-level interpretation. But it
is equally right to say from the perspective of a given higher-level interpretation, that
the mode system rejects (Java or JaM) programs expressing certain computations.
This should be the normal perspective of a software developer programming compu
tations in the context of his higher-level view of the system. The former perspective
corresponds more to a reverse engineering situation, where one tries to reconstruct a
(possible) higher-level view by analyzing a Java program.

3. JAM ~ JAVA. JaM and the Java subset on which it is based allow one to
program the same set of computations, they are computationally equivalent: On one
hand, modulo modes, all JaM computations are Java computations since JaM is a
pure type system extension. Without new mechanisms nor values, it is simply not
possible to express any new computations in JaM. All legal JaM programs p' can
be translated to equivalent legal Java programs p that perform, modulo modes, the
same computation: Remove all modes and correlations, all 'mut', 'obs', and 'val',
and expand all destructive reads to a read and an assignment of null.

On the other hand, JaM's type system extension does not make any old compu-

196

tations impossible to express since one structural interpretation always works: The
system is viewed as a "sea of objects" [Bos96], in which all objects are co-objects at
the same object composition level; in which there is no composition hierarchy. All
legal programs p of JaM's Java subset can be translated to legal JaM programs p'
(with "sea of objects" structure) by annotating the declarations of all fields, variables,
parameters, and results of class types, with co<>, by annotating new and null with
the empty correlation-set <>, by annotating all methods and operations with mut,
and by annotating any r-value occurrence of a variable name with val. To be precise,
we need a JaM in which the free<> references originating from new can be converted
to co<> references (cf. base-JaM, where this was possible).

4. MORE JAVA FEATURES. The language JaM (Java with modes) defined formally in
the previous chapter was a very reduced language comprising only the most essential
features necessary to demonstrate composite object encapsulation by a static mode
system. In order to write programs in the normal Java way, one would surely want
to have a more complete Java-with-modes including also implicit destructive/non
destructive read access to variables, primitive values (arithmetics, boolean logic and
characters), strings and arrays, for and switch, interfaces and subclassing and
dynamic casts, access specifiers (public, protected, private), user-defined con
structors, etc.

Java-subsets with all of the named features have, on one hand, repeatedly been
proved to be type safe [Sym97, DE97, OheOl]. Hence one can be optimistic that JaM's
type consistency theorem (Theorem 6) can be generalized to an extended JaM with
all these features included. On the other hand, all the features that were listed
above allow no new object graph changes: References of the same modes as before are
required for any reduction step that adds a reference of a particular mode. Therefore
all results on object ownership and state encapsulation can easily be generalized
based on the extended type consistency theorem-to the more complete JaM.

There are also other interesting Java features whose use would allow new kinds of
changes to the object graph. For example, access to other objects' fields (particularly
of object reference types); static variables of object reference types and the access
to them; static methods operating on object references; and inner classes and their
instances' implicit access to the outer class instance's fields and methods. For this
kind of features, special mode-based checks would be necessary, and extending the
results on object ownership and state encapsulation would require real extra work.

The addition of subclass polymorphism and inheritance, and of static members
will be considered in more detail in § 7. 2.

5. MODES _L JAVA TYPES. Java has two categories of types: primitive types and
reference types, and correspondingly two categories of first-class values: primitive
values and reference values [GJSOO]. "The values of a reference type are references
to objects," where an object is "a dynamically created instance of a class type or
a dynamically created array." The quotation makes clear that in Java, writing the

197

name c of an object class as the range type t of a variable is just syntactic sugar for a
type of references to objects of class cor a subclass. Other programming languages,
which do not have Java's implicit reference semantics, explicitly construct the type
of the references from the type of the references' targets: pointer of c in Pascal,
access c in Ada, ref c in ML, and *C in C+-+.

In JaM, Java's class names are annotated with modes where and only where
they are used as types of object references. They are not annotated to class names
occurring in object creation expressions, nor in implements and extends clauses, nor
in qualified names. Modes p, E M may appear like (a family of) type constructors
p, : C -----+ T to construct reference types from class names (object types). But the
different modes in different reference types mean neither that their values, the moded
object references, nor the objects they target, are constructed in any way different.

Modes are better understood as type qualifiers for Java's reference types (that are
still implicitly constructed from class names). They classify reference values w.r.t.
their role in object composition (cf. paragraph 2). As in other systems with type qual
ifiers, the JaM type system "guarantees that in every program execution the semantic
properties captured by the qualifier annotations are maintained" [FFA99]. A mode
classification is not simply right or wrong w.r.t. a property of the classified value. It
can only be consistent, or not, with the classification of the other values in the sys
tem. Modes let programmers thinking in terms composite objects indirectly express
powerful global invariants about the object graph and call stack, which the JaM type
system enforces statically (uniqueness of ownership, control of mutator executions,
etc.). Hence modes fit into Foster, Fahndrich, and Aiken's vision of programmers
expressing the interesting, strong invariants they know about their programs through
easy to understand type qualification.

6. COMPARISON: DIMENSION QUALIFICATION. Modes are similar to the qualifi
cation of numeric types and numerals with physical dimensions (length, time, mass,
voltage, ...) in physical formulm and in some proposed extensions to programming
and specification languages [Ken94, HM95, Ken97]. Through qualifications 4m, 4s, 4g,
4A, etc., different physical meanings can be superimposed on the number four. (We
ignore here the differentiation between different units of measurement for the same
dimension.) Since this meaning transcends the values' computational meaning, the
set of possible computations is unchanged. The distinction into different physical
dimensions places "a useful typing structure on the otherwise homogeneous field of
real numbers" [HM95]. And dimensional analysis ensures that values of one dimen
sion are never used as, compared with, or added to, values of another dimension, and
that multiplications and divisions are assigned the correspondingly multiplied and
divided dimensions. Since all dimensions are treated uniformly in dimension analysis
and since they have no impact on the computation, there is no real need to introduce
a dimension by a declaration before it can be used. A declaration could not define
what, e.g., "volt" is, except in the form of a comment or relative to other dimensions.
It would only help to catch mistyped dimension names in the program.

198

Like dimensions, modes also superimpose a meaning (on reference values) that
transcends the computation (with reference values): The combination 12D · 4A of
two dimensioned values by an operation called multiplication produces a value 48DA
= 48V with multiplied dimension. Similarly, the combination s ~ r o r ~ o of
two references to one by an operation called return (of result r ~ o through call-link
s ~ r) yields a value s __, o whose mode is the "multiplication" J.-lrOJ.-l0 = J.-l 1 of the
combined references' modes.

Mode checking imposes more complex constraints on the use and combination of
moded reference values than dimension analysis. free, rep, co, and read modes are
treated specially in accordance with a predefined meaning w.r.t. object composition.
Only the different association roles are treated uniformly since their meaning is un
declared and application-specific. A declaration of association roles elem, dest, key,
etc. could not define what it means to be an element in a set, a destination of an
iterative traversal, or a key in a map.

7.1.2 Submode Polymorphism?

7. No 8UBMODE-POLYMORPHIC REFERENCE VALUES. The classification of object
reference values by modes is a monomorphic classification, it is not polymorphic like
the classification by the target's class (subclass polymorphism). The same reference
value cannot normally be assigned two modes. In particular, a compatibility 1-l c :Sm
J.-l

1 c does not mean that a J.-l c value is also a J.-l1 c value. It merely says that it is safe
to change a value of mode J.-l into another value of mode J.-l1 • The mode compatibility
relation ::;m is no is-a or generalization relation like the subclass relation ::;c in Java
(cf. §7.2.2).

For instance, a reference value h = (s, free<>, w) is not a special case of a rep<>
reference since free<> references do not mean inclusion in the source's sanctuary.
(On the other hand, it seems right to say that any m<> reference is at the same
time also a read<> reference.) If h is assigned to a variable x of mode rep<> then x
should not mode-polymorphically contain the free<> value h. It is the intention of
the assignment that h be converted to mode rep<> in order to add w to the source's
sanctuary Sanc(s). In type inference, it would be unsafe to "approximate" an object
reference's type J.-l c by a type J.-l

1 c 2m J.-l c to which it is mode-compatible (at least
in the case that I:(c) contains operations with co-parameters): If an expression e
evaluating to reference s free<> r was typed with mode rep<> instead of free<>,
then the typing rule for operation call expressions with e as receiver expression would
allows to supply a reference s ~ o to r as a co parameter value r co<> o. But
then an old alias of the rep reference and the new free path s free<> r co<> o would
violate the Unique Head property.

8. COVARIANT PARAMETER MODES. If an object reference is mode-converted
from compatible J.-l ::;m J.-l

1 to J.-l
1 then the import of the the target's co results and

199

parameters in the handle's signature changes covariantly from p, to p,'. In case of
a depth-conversion, also the import of an association role in result and parameter
modes in the handle's signature changes covariantly from p, to p,'. For example,
the method SetNext of Node objects has the type (co<> Node) mut) co<> Node in
signature ~(Node). Its type in the signature ~(p, Node) of p,-references to Node objects
is (p, Node) mut) p, Node. Hence if p, changes to rep<elem=rep<>> from compatible
mode free<elem=rep<>>, then result and parameter mode both change covariantly:

mode p, type of SetNext in L,(p, Node)
free<elem=rep<>> (free<elem=rep<>> Node) mut) free<elem=rep<>> Node

:Sm rep<elem=rep<>> (rep<elem=rep<>> Node) mut) rep<elem=rep<>> Node

Covariance in parameter type position is known to be incorrect in polymorphic
typing systems that assign a function expression a more or less specific function type
[Gun92]. But modes in handle signatures ~(p, c) are not approximations of modes in
the target object's interface. If a (potential) sender mode-converts its call-link, noth
ing changes for the receiver object, its method will still receive actual parameters of
the formal parameter type. It changes how the call-link mode-translates the receiver's
reference values and formal parameters for the sender. The problem is not correct
approximation of modes in the receiver but the consistency of mode-translation with
other references to the same object.

7.1.3 Limits of Inter-Object Data and Control Flow

In object systems, data and control is passed between the system components (the
objects) through the object references connecting them by method invocation and
result messages. The flow of messages invoking mutator methods is restricted by
the JaM type system to ensure composite state encapsulation. The flow of object
reference values as data values in the messages is restricted to preserve the mode
specified higher-level interpretation's integrity (§6.2.3). The latter restrictions are
encoded in the rule for the signature ~(p, c) of p,-handles to c-objects, repeated here
in figure 7 .1.

9. UNCONSTRAINED TRANSITIVE FREE/READ VALUES. The reference value flow
is not constrained generally: Some reference values may be passed from any object
to any other object, namely, references whose modes p, contain only the base-modes
free and read (Vii E A*.p,(ii) is defined::::} p,(ii) E {free, read}). Such modes never
change by mode import 'o' (p,rop, = p,), irrespective of the call-link's mode Mr· And
only parameters and results whose mode contains rep, co or an association roles are
subject to some flow constraint or the other.

"Transitive read references" are reference values whose mode contains only read,
so that following references through them always produces another transitive read
reference, except only for "following" a returned free reference. For such references
it makes perfect sense that they can flow through the entire object system: Between

200

f- FldsMths(c) = (f,F) F(f) ="" 11 df(l-li di Yi){ ... }
\fi, a. ((1-lrO/-li)(a) =read=? /-li(a) =read) 1\ (1-li(a) E {co} u A=? /-Lr(E) <1- {read} u A)
\fa, a. JL(a) =free 1\ 11(&a) E A 1\ J-Lrol-l(&a) =I= read=? 1-lr(E) =I= read

Figure 7.1: The signature of handles (repeated)

any two objects there may be read references, and extensions of read references to
read paths without having any impact on object ownership or state encapsulation.

The unconstrained flow of free references means that objects created in one part
of the object system can migrate to any other part of the system, provided their flow
is not constrained by non-read correlations. There is no problem here too, except
for one suspicious situation: If the free reference that is, or can be extended to, a
free path o -----t w is passed to the free object w itself or a sub-object of it, then
this creates a cycle of ownership paths through w. While this is safe w.r.t. object
ownership and state encapsulation, it leads to a breakdown of the ownership path
based structural interpretation of the object system in terms of composite objects:
There is no such thing like "cyclic object composition." No notion of parthood permits
an object to be its own proper part [OMGOO, Sim87, Var96]. However, the corruption
of the composition hierarchy would only be temporary: The mutator control path
property (Theorem 8) guarantees that if w possesses its own free reference, it cannot
be on the stack, so that w cannot be executing a mutator. And sub-objects of w could
obtain it as parameters of a mutator only from w or other sub-objects of w.

Along read and association references, transitive read/free references are the only
reference values that can flow. This makes sense since a read or association refer
ence does not tell the source where its target is in the object composition hierarchy
(absolutely or relative to its own position). It could be anywhere. For every other
reference value there is a good reason, explained in §6.2.3, why forward flow along
read and association references is not generally safe.

10. HIERARCHICAL AssociATION FLOW. Free and rep references as call-links
give their sources not only privileges w.r.t. calling mutators, but also transport more
references than any other call-link. In particular, parameters with an association
role a in their mode may be supplied only through references o tree<a=g> , w and
o rep<a=tt> w which correlate this association role.

This means, on one hand, that the representatives controls the flow of associ
ation references from outside into the composite's interior: Association references
w ...Q... q can arrive in w by parameter only if representative o supplies a reference
o L q. And only the representative o can give w a reference w read<{3=o:<», q' or
w tree<f3=a<» q' through which w can obtain association references w ...Q... q as results
(and through which further references w m<{3=a<» , q" can be obtained by following q"s
co-references). This way, the representative limits the (groups of) external objects

201

with which its sub-objects can enter into association.
On the other hand, representatives should be able to store through a free or

rep reference any of their reference values as association references in a generic con
tainer object like a Set and Map. The mode system defined in the previous chapter
supports only the storage of rep and association references in generic containers.
Storage of free and co-references fails since it would make a correlation on the com
ponent reference necessary that makes its mode invalid. And despite valid correlations
cx=read(...), the representative was not allowed to pass a read reference as an associa
tion moded parameter of its component. (While this prevents to store read references
in generic containers, read references can of course always be stored in other objects
as read references.) Extending the support for container objects to containers of
read, co and free references, and relaxing the restrictions on correlations are left as
subjects of future work.

11. THE STRUCTURE OF MESSAGE FLOW IN JAM. The integrity of the higher
level view demands only one limitation of the flow of mutator messages through the
object system, namely the one captured in the mutator control invariant. Like all
static type systems, the JaM type system excludes many message flows that would
be safe. In particular, JaM allows invocations, even of observers, only if all reference
parameters and results may be exchanged, and allows mutator messages to flow only
along base-JaM-like ownership paths. These restrictions could safely be relaxed at
the cost of making the mode system more complex.

In JaM, mutators messages may flow only along free, rep and co references,
and along the latter two only if they are sent from a mutator method. Hence, all
mutator flow starts with a mutator message sent along a free references, followed by
mutator messages sent along rep and co references. In particular, control can reach
the mutators of a state-representing component w from its owner's mutators only by
flowing downward along a rep reference either directly to w or first to a co-object
of w and then sideways along co references. Once this hierarchical mutator flow is
interrupted by the call of an observer (downward or across the hierarchy), one can
come back to mutator messages only by a call through a free reference. Hence,
since program execution starts with the call of observer main, the path of calls from
program start to the current method always has a form captured in the following
regular expression:

((Lobs)* free mut(~ mut)* (~ mut(~ mut)*)*)*
"-,..-'

any direction downward

where L K, stands for the call of a K,-method through a J.L-reference.
Permitting more cases of safe mutator calls would require refining the rules for

signature import, or refining the classification of references or of methods. A re
finement of the import rule could decouple the question of permitted parameter and
result exchange from the question of permitted invocation. This will be considered

202

in §7.2.3. A finer classification of references by additional modes can single out more
references through which mutators may always safely be sent. Some such new modes
will be considered in §7.2.4. A finer classification of observer and mutator methods
according to the objects they might mutate can identify those methods which may
only be executed while these objects' owner is executing a mutator. Such an exten
sion would make the mode system look more like a (simple) effects system. It will be
explored in §7.3.2.

7.1.4 Consistency of Reference Value Flow

When a reference value is passed from one object to another, its mode may change
(from 1-li = 11 to /1i+l = J.1rOJ.1, or vice versa). A consistency property of reference
value flow is that an object, by enlisting the service of other objects, should not be
able to change the modes of its reference values other than it could do itself by mode
conversion. Let us look at just two scenarios:

12. NEARLY MONOTONE. An object o might supply a reference h = s L o to
an object r through a reference hr = s ~ r as a parameter reference h' = r L o
if {l = J.1rOJ.1. s could convert hr to h~ of mode 11~ 2:m J.1r, and r could convert
h' to h" of mode J-11 2:m 11· If then h" is returned back to s, we get a reference
h111 = s L o of mode P,' = J.1~0J.11 • Consistency in this case demands that the original
h was compatible to h111

• In other words, we should have the algebraic property of
monotonicity: {l = J.1rOJ.1 ::;m J.1~0J.11 = P,'. (The monotonicity is a partial one since o is
a partial mapping.)

To see that mode import o is monotone in the right argument, consider elemen
tary conversions 11 ::;~ 11': If 11 was co<> or a<> then J-11 = read<>, so that J.1rOJ.1 =
m<5> ::;m read<5> ::;m read<> = J.1roread<> = J.1rOJ.11

• If J-1 was m< ... , ai=J.1i, .. . >
with m = free or rep then J.1rOJ.1 is m< ... , ai=J.1rOJ.1i, ... > with m = free or read,
and J-11 is m' < ... , ai=J.1i, ... > with m = rep or read, so that we have J.1rOJ.11 =

read< ... , ai=J.1rOJ.1i, ... >. Hence J.1rOJ.1 ::;m J.1rOJ.11
• If J-1 was read< ... , ai=J.1i, .. . > and

J-11 has less or weaker correlations, then J.1rOJ.1 = read< ... , ai=J.1rOJ.1i, ... >, and J.1rOJ.11

has fewer correlations or a correlation ai=J.1rOJ.1~ with 1-li ::;~ J-1~. In the first case,
J.1rOJ.1 ::;m J.1rOJ.11 by width compatibility. In the second case, J.1rOJ.1i ::;~ J.1rOJ.1~ can be
shown by induction, so that J.1rOJ.1 ::;m J.1rOJ.11 by depth compatibility.

Mode import o is not monotone in the left argument, but J.1rOJ.1 ::;m J.1~0J.1 holds
where it matters: If 11 = co<> then J.1rOJ.1 = J.1r ::;m J-1~ = J.1~0J.1. If J-1 = a<> then J.1r =
m< ... , a=J.1a, .. . >and J-1~ = m'< ... , a=J-1~, .. . >with 1-la ::;m J-1~ (depth compatibility),
so that J.1rOJ.1 = 1-la ::;m 11~ = J.1~0J.1. If 11 = m<> with m = free, read or rep
then J.1rOJ.1 = J.1~0J.1. The same obviously holds for if we add correlations ai=J.1i with
J.1rOJ.1i = J.1~0J.1i· If 11 contains a correlation ai=l-li with J.1rOJ.1i =/= J.1~0J.1i, this presupposes
that 1-li is an association mode, or contains one. The latter case can be followed by
structural induction. If 1-li is (3() with J.1rof3<> =/= 11~o{3<>, 1-lr must have been depth
converted (see above), so that J.1rof3<> ::;m 11~o{3<>. If 11 = m< ... , ai=J.1i, .. . >is read or

203

rep then f.LrOf.L = read< ... , ai=f.Li, .. . > ~m read< ... , ai=f.L~, .. . > = f.L~Of.L. If f.L is free
then f.LrOJL = free< ... , ai=f.Li, .. . > im free< ... , ai=f.L~, .. . > = f.L~Of.L since only read
modes are depth-compatible in ~m· This particular case of violated monotonicity,
however, is irrelevant for the consistency of reference value flow: To convert the call
link hr = s ..l:!:.L.. r to h~ = s __&__. r, the call through hr must store h' in r and return,
and a second call h~ must retrieve it from r. But retrieving a free f.L-handle from a
field requires destructive read and thus a mutator call, while depth-conversion of hr
implied that /L~ is read, so that a mutator cannot be called.

13. PARTIAL AssociATIVITY. Given a path n = o ..iL p L q of two references,
there are two ways of passing a reference value h from o to q or vice versa. Let
hq = q L o be the reference value when q has it and h0 = o L o when o has it.
That is, JL-reference hq returned from q is imported by o as the f.L'-reference h0 , and
f.L-reference h0 supplied by o is received by q as f.L-reference hq. If h is passed via p,
then the intermediate reference is p ~ o, and f.L1 = Ao(Bof.L). Alternatively, 1r can
first be shortened ton' = o AoB q by returning n's second through its first reference.
If h is passed through this shortcut, f.L1 = (AoB)of.L). For consistency, the transport
of h through the original path and through the shortcut should be equivalent. If o
passes its reference value h0 to q on one way, and retrieves it back the other way,
the mode should be unchanged. In other words, we need the algebraic property of
associativity: Ao(Bof.L) = f.L 1 = (AoB)of.L. (The associativity is a partial one since o
is a partial mapping.)

If f.L =free<> then Ao(Bof.L) =free<>= (AoB)of.L. If f.L =read<> or rep<> then
Ao(Bof.L) =read<> = (AoB)of.L. If f.L = co<> then Ao(Bof.L) = AoB = (AoB)of.L. If
f.L = a<> then B must have a correlation a=f.La· Consequently, AoB has the correla-
tion a=Aof.La· Hence Ao(Bof.L) = Ao!La = (AoB)of.L. If f.L = m< ... , ai=f.Li, .. . > then
Ao(BoJL) = m'< ... , ai=Ao(Bof.Li), .. . >and (AoB)of.L = m'< ... , ai=(AoB)of.Li, .. . >,so
that Ao(BoJL) = (AoB)of.L follows by induction.

A stronger form of consistency of mode import than JaM's associativity can be
formulated in ownership-based systems that give moded type terms t an absolute
interpretation [t]

0
relative to each object o in terms of ownership: In Ownership

Types [CPN98] and Universes [MPOl, MP99a], consistency is expressed as the equiv
alence [tA * tB]o = [tB]p of how p interpets type term tB and how objects o with a
t A-reference to p interpret the combined type term t A * t B. 1

14. PITFALLS OF DEPTH/WIDTH-COMPATIBILITY. When defining the mode com
patibility relation ~m in §6.2.3, the compatibility between modes with changed corre
lation sets, width-compatibility (more or fewer correlations) and depth-compatibility
(correlations with compatible modes), was limited to read modes. Without this re
striction, it would be possible for an object to set up object references through which

1This equivalence is stated as the combination lemma in [MPOl, MP99a], and as part of the
visibility lemma in [CPN98]. tA * tB would in [CPN98] be written 'lj;(tA)(t8) or "u(t8) with u =
'lj;(tA)" and [tB]p would in [MPOl, MP99a] be written T(tB,p).

204

mut void gotcha1(read<> T dont_mut)
{ rep<data=rep<>> Node<T> repnode

rep<data=read<>> Node<T> readnode =
new Node<T>();
repnode; II depth-compatible?- no!

}

rep<> T can_mut;

readnode.SetData(dont_mut); II store one way
can_mut = repnode.data(); II retrieve other way
can_mut.Mutate(); II oops!

mut void gotcha2(read<> T dont_mut)
{ rep<data=rep<>> Node<T> repnode =new Node<T>();

rep<data=read<>> Node<T> readnode =new Node<T>();

}

rep<> T can_mut;
rep<> Node<T> hiddenrep = repnode; II width-compatible?- no!
rep<> Node<T> hiddenread = readnode; II width-compatible?- no!

hiddenrep.SetNext(hiddenread); II links repnode --next--> readnode
repnode = repnode.next(); II now repnode==readnode
readnode.SetData(dont_mut); II store one way
can_mut = repnode.data(); II retrieve other way
can_mut.Mutate(); II oops!

Figure 7.2: Dangerous width- and depth-conversion

it can exchange references in such a way that can effectively convert read reference
to rep:

Depth-compatibility, for instance, would allow an object to weaken the rep<
data=rep<>> reference to a Node object to a rep<data=read<>> reference. Through
this reference the source could store a read reference in the Node as a data reference
and read it back through (a copy of) the original reference as a rep reference. The
code in figure 7.2 shows how an object can use this trick to obtain surreptitious write
access to an object to which it was given a read reference by converting it to rep.

The same scenario can be set up using width-compatibility: A rep<data=rep<»
reference and a rep<data=read<>> reference to two Node objects could be converted
to the same mode rep<>, and then linked by a co-reference. By reading it back
through the original references, the source can obtain, as with depth-compatibility, a
rep<data=rep<>> reference and a rep<data=read<>> reference to the same node as
demonstrated in figure 7.2.

This property of type systems regarding qualified reference types is not new. It is
known from the type system of C++ [IS098], where it concerns the const qualification
of pointer types. Pointers are compatible to const pointers, i.e., read-only pointers,
of the same type: T* ::; const T*. But pointers to variables of these pointers are not
compatible, T** i_ const T**: Converting aT** pointer to const T** would allow
one to store, through the new pointer, a const pointer into a variable and retrieve it

205

as a non-const pointer through a copy of the old pointer. Pointers to pointers are,
however, compatible to const pointers to const pointers: T** ::::; const T*const*.
Converting aT** pointer to const T*const* is safe since the new poitner can never
be used to store a const pointer into the variable.

In the same fashion, depth- and width-compatibility in JaM's type system ex
ists only between read modes: rep<data=rep<» im rep<data=read<» and rep<
data=rep<>> im rep<>, but read<data=rep<>> :::;m read<data=read<>> and read<
data=rep<» :::;m read<>. The read modes are compatible because through corre
spondingly convert read references nothing can be stored in the target (since only
observers can be called on the target).

7.1.5 Precursors of JaM's Base-Modes

The base-modes of JaM's mode system have precursors in other work.

1. 'rep' for the class of object references from an object to its state-representing
components appeared first in Flexible Alias Protection as an alias mode [NVP98],
and then in its successor Ownership Types as an ownership context [CPN98] and
in Universes [MPOl]. The user-specified distinction of rep references by some kind
of annotation is fundamental to nearly all typing disciplines for composite object
encapsulation. The same function as 'rep' serves the 'part' section in LOOPS classes
[SB85], the 'internals' section in Sina classes [AW+92], the reference type attribute
'private' in [KM95], the 'pivot' predicate of [DLN98], the 'unshared' annotation in
[GB99], and the alias annotation 'owned' in [ACN02].

2. 'free' appeared first as an access mode in Islands [Hog91], from where it was
assumed by Flexible Alias Protection [NVP98]. Hogg [Hog91] defined free as indicat
ing references to whose target no other reference exist anywhere in the system. The
initial reference to a new object was always free, could be exchanged between ob
jects, and converted to other modes. Hogg's free variables could be accessed only by
destructive read. A similar function serves the 'virgin' references of [LS97, DLN98],
which point to objects which have never been targets of field-captured references, and
the 'unique' references in [GB99] and [ACN02]. New in JaM is the interpretation of
the targets of free references as behavioral, not state-representing components of the
source. In JaM, free references can have aliases, namely, co and read aliases, and
the free reference as well as its aliases can be captured.

3. 'co' is JaM's name for the class of references guaranteed to connect two ob
jects with the same owner, i.e., two "co-objects." It appeared first under the name
'protected' in [KM95] and 'owner' in Ownership Types [CPN98]. In Universes, it is
the unmarked default [MPOl]. Co references are important for the proper typing of
the this reference. This was first observed by Clarke, et al. [CPN98].

206

4. 'read', and its long form 'readonly', are common type qualifiers to classify refer
ences through which no mutator operations may be called. In typing disciplines for
composite object encapsulation, they occurred already in Islands [Hog91], in [KT99],
and in Universes [MPOl]. Read references in Islands cannot be assigned to vari
ables but they can be bound to parameters (and returned, used as call-link, ...) .
Readonly in [KT99] means transitive read-only: All references returned through them
are imported as readonly. JaM's read references are simple read-only reference, like
Universes' readonly references.

5. Association roles a E A, for a user-defined classification of object references ac
cording to different semantic roles (associations [OMGOO], relationship types) appeared
first in Flexible Alias Protection [NVP98] as "argument roles" in alias modes arg a
and var a (with/without limitation to the target's "clean" interface). Ownership
Types [CPN98] had only plain identifiers a with the same function as var a, but now
understood as (ownership) context parameters to the class.

7.2 Shortcomings and Extensions

7.2.1 Syntactic Sugar

Ubiquitous explicit read access to variables and bulky mode annotations make JaM
programs difficult to read and tedious write. But programming language research is
not a beauty contest. To sweeten some bitter aspects of the JaM syntax, "syntactic
sugar" can be offered that give JaM programs a look and feel much closer to traditional
Java programs. Appendix B.3 demonstrates this for the code of the map example.

1. In sugared JaM, read access to variables is implicit as in Java. Every occurrence
of a field or local variable name v at an r-value position can be desugared by the
following rules:

• v stands for val(v) if v is a non-free variable or if v is a free variable and a
typing with a read mode suffices to type the statement in which v occurs.

• v stands for destval(v) if v is a free variable otherwise.

2. Empty correlations <> on base-modes m (in reference types and in correlations),
and on new and null can be omitted. This reduces the bulkiness of all modes, making
declarations and new expressions much easier to read. In particular, association modes
a<>, mode co<>, and null<> can always be abbreviated to just a, co, and null.

3. Also Java's void methods can be supported as syntactic sugar: The result type
void in the header of a method in a class c stands for the type co<> c. The body
of void methods is extended by the return statement return val(this);. Calls
e.f(...); of void methods on c objects (operation call statements) are expanded to
assignment statements of desugared JaM as follows:

207

• Normally, they are expanded to dummy c = e.f (...) , where dummy c is an implicit
local variable of type read<> c.

• The case of a destructive read receiver expression e - destval(v) is treated spe
cially to support the incremental modification of free objects by the call of void
mutators through free references: Such calls are expanded to v = e.f (...) (equiv
alent to desugared v = v. f (...)) . That is, variable v is reset for use as a call-link
in a mutator call, but when the call is finished, v gets back its old value back since
the mutator returns this. This temporary reset can only be observed during the
made mutator call if v is a field. Hence if v is a local variable, the reset can safely
be optimized away. 2

4. JaM's typing rules required an exact match between a method's declared result
mode and its return expression's mode (whereas a compatible mode suffices in as
signment and for parameters). The motivation was merely to simplify the formal
treatment by not avoiding to record an executing method's declared result mode in
order to automatically convert the return expression's value at the point of return.
Nothing is lost by this computationally: If the return expression e has the wrong
mode, simply treat the return statement "return e;" as syntactic sugar for "re
sult= e; return result;" where result is an implicit variable whose range type is the
method's (exact) result type.

5. JaM's formal runtime model made it necessary for the main method initially
called on an instance of the program's last class Cn to be an observer: The start
up expression new<> Cn () . main 0 is evaluated in an environment 0(~ii,read<>,nil) with
receiver nil. Hence the initial free handle to the created en-object o has source nil,
so that it does not show up in the object graph. But then there is no ownership path
that would allow o to be executing a mutator (without violating the mutator control
path property). This is no real restriction. A program p with last class Cn can always
be extended to the program p Dn+l with a new, implicit last class definition Dn+l
=class Main2{obs void main() {new en() .main();}}. Then an object of class
Main2 is created first. It may of course safely call a main mutator through its free
initial reference to a new en-instance.

7.2.2 Subclass Polymorphism and Class Inheritance

Object-oriented programming would not be complete without subclass polymorphism
and class inheritance. Java programming additionally relies heavily on interfaces
(and partially abstract classes), and on dynamic casts of objects references (which are
checked at runtime against the class of the target object). And the Java-extension
generic Java allows generic classes that are parameterized by classes (reducing the

2 This optimization is similar to that possible through Boyland's borrowed aliases of unique ref
erences [BoyOl] (cf. §7.2.4). However, the this reference in the receiver is not borrowed: Aliases of
it can be captured in fields and survive the return from the call; they only cannot be free or rep.

208

need for dynamic casts). All these features concern only the classes of the objects in
the system. Since modes are orthogonal to classes, no problems are to be expected by
extending JaM with any of these features: For the invariants about object ownership
and the property of state encapsulation, which is based on them, the classes of the
objects in the object graph is irrelevant. And in the proofs, the class of an object
is only of interest in so far as it determines its methods' kind, result mode, and
parameter modes.

Appendix B.3 shows the reformulation of the map example using interfaces, generic
classes, and syntactic sugar. Types like rep<data=elem> Node<T> for the anchor ref
erence in class Setimp<T> demonstrate that the orthogonality of reference mode and
object class extends to the independent parameterization of (full) modes by correla
tions and of (generic) classes by classes.

Let us look more closely here at the issue of polymorphism and inheritance with
concrete implementation classes (no abstract class, no interfaces):

1. SUBTYPE POLYMORPHISM. In a subtype-polymorphic programming language,
a subtype relation :Sc is defined over types, and dynamic types can be subtypes of
static types: The types of values in variables can be subtypes of the variables' nominal
types; and the types of the values to which expression evaluate can be subtypes of
the type inferred for that expression. For JaM's runtime model, this means that, on
one hand, the notion of a type-consistent store is relaxed to allow for subtype values
("subtype-consistency"):

I= .5 <=?dr 't:IT EM XC, .C E dom(.s)o .C E LaCy =} 3T
1 <c To .s(.C) E [T']

On the other hand, instead of reduction steps preserving the term's type exactly
(Lemma 5), they may change it to a subtype (the subject reduction property):

(e, if, .5, om, g ==? e'' fj', .s', om', g') !\ r, ;d-x e : T !\ if I= ji,, r, ~,X !\ I= .s, om
=} 3 X', T

1 :Sc T 0 r, ~ f---x' e' : T 1 !\ fj' I= ji,, r, ~,X' !\ I= .s', om'

Since dynamic types are allowed to be subtypes of static types, it is always safe in
type inference to widen an expression's inferred type T

1 to a supertype T. That is, we
can add a so-called subsumption rule to the typing rules:

r 1 ~ f--- e : T 1 f--- T
1 :Sc T

[sub] ----'----'-=---,-----==.::.._
r,~ f--- e: T

(Through subsumption for runtime terms, the type preservation property can be
recovered from the subject reduction property since then 3X', T 1 :Sc Tor,~ f---x' e': T

1

entails 3X'or, ~ f---x' e': T.)

2. SUBCLASS-BASED SUBTYPING. In Java, the polymorphic types, i.e., the types
with non-trivial subtypes, are the so-called reference types [GJSOO], i.e., the types of
object reference values. (The types ref T ofT-variables, on the other hand, have no
subtypes, even if T is a reference type.) The subtypes T

1 :Sc T of a type T of reference

209

values with target class c are the types of reference values whose target class c' is a
subclass of c. If we ignore interfaces, the subclass relation ~c between classes is
derived from the extends clauses of the program's class definitions, with Object as
the implicit superclass above all others:

1- c ok
1- C ~c C

p = D1 . . . class ci extends d { ... } ... Dn
1- Ci ~c d

1- c ok 1-c< c' 1-c'< c" _c _c

1- c ~c Object

This is easily lifted to JaM's mode-qualified reference types: If c' is a subclass of c
then the type T

1 = J.-L c' of J.-L-references to c'-instances is a subtype of the type T = J.-L c
of J.-L-references to c-instances:

1- c ~c c'
[subty] --,--------,--

1- J.-l c ~c J.-l c'

3. INHERITANCE. A subclass inherits member definitions from its base-class (direct
superclass). This is achieved by the following special rule for the instance record type
and method suite FldsMths(ci) of subclasses ci:

p- D1 ... class ci extends d {ti Xi; K,i ti fi (ni) {bi}} ... Dn
1- FldsMths(d) = (r, F)

1- FldsMths(ci) =({xi: refti} u r, {fi f-t 1'\,i ti fi (ni){bi}} u F IId\{h})

In Java, a field x cannot be declared again in a subclass, and the (re)implementation
of an operation f in a subclass cannot change its parameters' and result's types,
or changes only the result's type to a subtype. The following well-formedness rules
for subclass definitions ensures that, additionally to well-formed and unique member
definitions, the named base-class exists, if inherited fields are not overridden and it
inherited methods are overridden only without changing method kind, result type,
and parameter types:

1- M1 defs X1 · · · 1- Mn defs Xn
Vi, j = 1, ... , n. Xi = Xj ::::} i = j
FldsMths(d) = (r, F) dom(r) n {xl, ... 'Xn} = 0
Xi E dom(F) ::::} Mi = K, t Xi (ti Yi) { ... }

1\ F(xi) = K, t Xi (ti zJ { ... }
[subclass] -----;----------'-___::_:__-:---:;--:::-::-:;-'--'-~-::-:::--;,.--;;;,------

1- class c extends d {M1 ... Mn} defs c

4. TYPE PRESERVATION. For Java, it has been shown repeatedly that static type
checking with the subsumption rule entails the subject reduction property [Sym97,
DE97, OheOl]. To convince oneself that the same holds for JaM, one can reread the
proof for type preservation given on page 103 for the base-JaM version of the type
preservation theorem: First, the relaxation to subtype-consistency of stores weakens

210

old implications of the form £ E £ocT f=.s s(£) E [T] to implications £ E £ocT f=.s
3T' :::;c T.s(£) E [T']. For read access redices e reduced to s(£), this entails r, K, f---x
s(£) : T 1

, which by subsumption can be widened to the original r, K, f---x s(£) : T.

For field access this.x, it means that the instance record rl of the this object is
consistent with the instance record type r c' of a subclass c' :::;c c of the class c
in this's static type: rl ~ rc'. The conclusion remains the same since the type
of field X in f c' must be the Same as in the SUperclass's instance record type f e':
fe(x) = T = re'(x). Second, the possibility of subsumption weakens old implications
of the form f, K, f---x (o, J-L, w) : J-L c =? (o, J-L, w) E [J-L c'] to implications f, K, f---x
(o, 1-L, w) : 1-L c =? 3c' :::;c c. (o, J-L, w) E [J-L c'] . For ret urn steps reduced to h, the
correspondingly adapted conclusion is r, K, f---x' h : J-L*OJ-L 11 c', which by subsumption
can be widened to the original r, K, f---x' h : J-L*OJ-L11 c. For operation call expressions
(s, jl, r). f (...), it means a weakening of Lemma 2 so that the target's method suite
Fr and the method suite Fe of the receiver expression's target class c do not coincide
any more. But since receiver r must be instance of a subclass of c, Fr and Fe can differ
at f only in the irrelevant declarations 1r and >. of parameters and local variables:
Fr(f) = K,* J-L dj(Jr){A s} while Fr(f) = K,* J-L dj(Jr'){A' s'}. This suffices for drawing
the same old conclusion.

5. INTEGRITY OF THE HIGHER-LEVEL VIEW. It is easy to verify that the extension
by polymorphism and inheritance preserves properties Unique Owner and Unique
Head: The typing of terms is relevant for the proof of Unique Owner and Unique
Head (see Lemma 23) only in two cases. (Note that all lemmas used in the proof
are independent from the runtime term.) Assignment steps need just a compatibility
of modes~which does not change through subclass polymorphism. And reasoning
about the reduction of operation call expressions requires only that the sent handles'
mode f-Lo~ is compatible to the import f-LrOJ-L0i of the modes /-Loi of the parameters in
the receiver's method relative to the call-link's mode /-Lr· This still holds even if the
receiver expression (s, J-Lr, r) was typed via the subsumption rule with a supertype
J-Lr c, so that receiver object r is an instance of a subclass c' :::;c c: The receiver's
method Fr(f) has the same parameter modes /-Loi as the superclass's method Fe(!)
used to calculate the parameter modes J-LrOJ-Loi in the receiver expression's signature
~(J-Lr c) against which the sent handle's modes are checked.

Similarly it can be shown that properties Mutator Control Path and Mutator
Control still hold since subclasses cannot change inherited methods' kinds. Finally,
reasoning about coherence and shallow state encapsulation is completely independent
of objects' classes. Hence composite state encapsulation follows as before.

To sum up, the extension of JaM by subclass polymorphism and class inheritance
preserves JaM's ownership and state encapsulation properties.

211

7.2.3 Unlimited Calling?

The JaM type system, since it is purely static, excludes more message flows than
necessary for mutator control (§ 7 .1. 3). This section considers some rather straight
forward relaxations that will enable more invocations and reference exchanges.

1. INVOCATION RIGHT _l EXCHANGE RIGHT. JaM's type system permits the invo
cation of any operation, including observers, only if it is able to determine the import
of the exported operation's signature. Since there are constraints on the exchange of
references, operations with certain parameters or result may not be invocable through
certain references. This coupling can be eliminated since the question of legal invo
cation actually has nothing to do with the question of legal parameter and result
exchange:

• Even if a parameter has a mode that cannot be imported, the invocation can be
allowed under the condition that no actual object reference is supplied, but only a
null reference. This is safe because null references do not show up in the object
graph. This relaxation could be integrated into the mode system by importing
parameter types with unimportable mode as Null, a special type assigned only to
expressions 'null <b'>'.

• If the result has a mode that cannot be imported, the invocation can be allowed if
the result reference is discarded. This is safe because then no reference value needs
not be exchanged in the first place. This relaxation could be integrated into the
mode system by importing result types with unimportable mode as void, so that
the call expression can be used only as a statement. (More precisely, it should be
imported as the formal type Cmd, and void should be imported the same instead
of treating it as syntactic sugar.)

2. RECEIVER-SIDE CONVERSION. Instead of enabeling the invocation by not ex
changing problematic reference values, it would be more intelligent to convert the
reference values from and to modes that are known to be safely exchangeable: One
could assume implicit conversions of received parameter values to formal parameter
modes, and of calculated result values to a mode that the call-link can return. This
makes reference exchange possible in situations where it had to be prohibited before:

a) If through a 11r-reference, 11-results may not be accessed, they could be automat
ically converted before return to a compatible mode 11' 2::m 11 that allows the
return. For example, an o:<> result not returnable through a reference without
a-correlation could be converted to a read<> reference and then returned to the
sender as a read<> reference. And a result of mode free<(J=m<>> not returnable
through a read reference could be converted to read <f3=m<» to arrive at the
sender as read<f3=11rom<>>.

b) If through a 11r-reference, 11'-parameters may not be accessed, one might make
a supply to a parameter of mode 11 2::m 11' compatible to it, and then convert it

212

I- FldsMths(c) = (r,F) F(f) = "'1/ df(J.< di Yi){ ... }
1-- p,' :::; J-L I- J-L :::; J-L~ J-L = rescnv (p,', J-Lr)
Vi, a. ((J-LrOJ-Li)(a) =read=> J-Li(a) =read) 1\ (J-Li(a) E {co} u A=> J-Lr(E) t/. {read} u A)
Vii, a. J-L(a) =free 1\ J-L(&a) E A 1\ J-LrOJ-L(&a) =j:. read=> J-Lr(E) =j:. read

J-L = rescnv (J-L', J-Lr)
{ret} 5

1 = s[£ ~---> _L I £ E im(ry*)] g' = fJ EB s ...1!:.!.5:..1! o 8 s ~ r 8 r L o 8 s(im(ry*))
<<return (r, J-L1, o); >>, if • ry*(s,/-Lr,r), !5, om, fJ ----7 (s, J-LrOJ-L, o), i], s', om, g'

Figure 7.3: Adapted rules for receiver-side conversion

to Ji. For example, if a method has an inaccessible parameter of mode rep<>,
the caller could supply a free<> reference as in a call with a free<> parameter,
which is then converted in the receiver from free<> to rep<>.

With receiver-side conversion, the caller can always make a mutator control
conforming call by supplying free parameter values and importing the result as
read.

In order to extend JaM by the receiver-side conversion of parameters, only the rule
for handle signatures needs to be adapted. No change is needed in the semantic rule
for operation calls, since actual parameter values are still converted to the method's
declared parameter mode. The extension by receiver-side conversion of results would
require a parallel adaption of the semantic rule for return steps and of the handle
signature rule. In the return step, the return expression's value of mode p,' could
be converted to any mode 1-L 2:m p,' for which import 1-Lroi-L is defined. But in order
to avoid non-determinism in the runtime conversion and ensure coincidence with the
conversion assumed in type checking (a prerequisite for type preservation), we better
use a mapping rescnv that determines for the method's real result mode 1l a unique
mode 1-L = rescnv(p,', 1-Lr) to which p,' is compatible (p,' ::;m p,) and that is always
importable as the result of operations in 1-Lr-handle signatures.

Figure 7.3 shows the adapted rules for handle signatures and for return steps.
rescnv (p,', 1-Lr) should adapt p,' no more than necessary. In the examples above,

this was the adaption a<> ::;~ read<> and free<(3=m<>> ::;~ rep<(3=m<>> ::;~
read <(3=m<». A look at the handle signature rule and at the definition of ::;m
and proper modes M, shows that circumventing the restrictions on importable result
mode f-L always involves the substitution of read or rep for other base-modes at certain
positions in p,'. It is not difficult to convince oneself that such an adaption can be
defined in a way that p,' is always compatible to rescnv (p,', 1-Lr) and that rescnv (p,', 1-Lr)
passes the conditions on the result of operations imported into the signatures of 1-Lr
references. Limiting receiver-side conversion of results to conversion to rescnv (p,', 1-Lr)

213

and no further is no limitation for the sender: It is possible to show that the imported
rescnv(p/, /-Lr) reference can be converted on the server-side to any mode !JrO!J11 as
which the server would have imported a reference that was further converted on the
receiver-side to a mode !J11 ~m rescnv(J-L', J-Lr): !JrO!J11 ~m !Jrorescnv(J-L', J-Lr)· This is
consequence of the algebraic property of monotonicity of mode-import o in the right
hand side argument w.r.t. mode-compatibility :::;m.

This is not a substantial change to the mode system since the references which
are actually transported between sender and receiver are the same as could be trans
ported before. Hence the extension of JaM by implicit mode receiver-side conversion
preserves JaM's ownership and state encapsulation properties.

3. UNLIMITED SELF-CALLS. The proposed typing rules for simplicity treat self-calls
like operation calls on a normal co-object. Consequently, self-calls are subjected to
unnecessary restrictions: An object is not permitted to "exchange" rep references
and association references with itself (since the this reference, like all co references,
has no correlations). These restrictions are superfluous for self-calls, where sender
and receiver coincide, since here the object graph does not change at all if modes are
left unadapted. All references can be "exchanged" without limitations in self-calls.
(Of course, a mutator invocation by self-call is still subject to the same constraint:
not from within an observer.) Allowing calls through this without restrictions and
without adaption is crucial for factoring out operations (even on references with rep
and association modes) into separate methods, as one is used to. An example will be
given further below.

Figure 7.4 shows additional rules that extend JaM by self-calls with implicit re
ceiver this that are limited only through mutator control. The reduction step for
these special operation call expressions is like that for a normal one with the receiver
expression val(this). The only difference is that it tags the inlined method body
with an "s" in order to signify for the return step that the result value is not to
be imported. (Controlling through a tag that result adaption happens only at the
end of self-calls-and not more intelligently for all calls where receiver and sender
coincide-is necessary to preserve the parallelism with type checking, and thus the
type preservation property.) In correspondence to this special return, inlined method
body of self-calls have their own typing rule that works without mode import.

4. REFACTORING EXAMPLE. For example, in the Mapimp class in appendix B, the
iteration over the entryset component in search for a given (potential) key object
k is defined three times (in methods Add, Remove, and lookup). This search can be
factored out into one separate (private) method find_entry that returns the reference
to the desired entry pair with the mode rep<fst=key, snd=value> (or, in desugared
JaM, rep<fst=key<>, snd=value<»). This leads to a considerable simplification of
the class. Special support for self-calls permits method Add to import the result as
a rep reference, and not just a read reference, thus enabling it to update old entries
with the given key to the new value. The restructured Mapimp class is shown below

214

(this: ref co<> c) E r f- FldsMths(c) = (R, F) F(f) = K, T j(Ti Yi){ 0 0 0}

K,* = mut =} co<> E Wr(K,) r, K, f- ei : T[f- T[::=:m Ti
[calls] -----------'--''------,;:::;-----;------;;-;-:::":7----"-------------

f, K, f- f (ei) : T

val(this)<¢=f((s,p,~1 ,oi)), fj,s, om,9==}* «s», if• Tl*(:,co<>,s)'S1
, om,91

{calls}

f ((II)) --> --> *K* I I s, 1-Li 'oi ' T/, s, om, 9 ----t <<s>>s, T/. T/ (s,co<>,s)' 5 ' om, 9

5 1 = s[.€ 1---t _l I .e E im(T!*)] 91 = 9 EB s .1!:__, 0 e s co<> s e s .1!:__, 0 e s(im(T!*))

{rets} <<return (s, p,, o); >>s, if. T/*(s,co<>,s)' s, om, 9 ----t (s, p,, o)' fj, 5
1

' om, 91

r, K, f---x s : 1-L c

rl, K,l f---ji1,I',K,X <<s>>s : 1-L C

Figure 7.4: Additional rules for unlimited self-calls

with syntactic sugar that hides the different variants of read access to variables. The
complete, desugared version can be found in appendix B.

class Mapimp {

}

obs rep<fst=key, snd=value> Pair find_entry(read Object k) ...

mut co<> Mapimp Add(key Object k, value Object v)
{ rep<fst=key, snd=value> Pair p;

}

II check for old entry with key k
p = find_entry(k); //<-self call
II if there is none, create new entry and insert it
if(p ==null) { p = new<fst=key,snd=value> Pair();

this.entryset.Add(p); }
II set key and value of old/new entry
p.Set(k,v); //<-here we need the found reference to be rep
return this;

7.2.4 More Mutable Modes: Shared, Inside-Out, Borrowed

Several more cases of safe mutator calls not permitted by JaM can be identified, and
have been identified in the related literature. Each of them can be supported through
the addition of a corresponding mode. Let us briefly present them and sketch their
integration into the mode system.

215

1. GLOBALLY SHARED TOP-LEVEL OBJECTS. In some object systems, there are
particular "global" objects that are shared system-wide and do not belong to any
composite object. For example, the static fields and methods of a class module c
can be understood as making up a special "static" object Oc that is globally shared,
and accessed through implicit references. Objects that are to be shared globally are
often stored in static fields so that they are easy to access from every object. As
top-level objects in the object composition hierarchy, state encapsulation allows them
to receive mutator calls from any object and from any method.

It may sound surprising, but as far as state encapsulation is concerned, even meth
ods labeled obs may invoke mutators on global objects because no owner's control of
state representation changes can be violated. That is, the real meaning of observer
methods is not "no side-effects" (anywhere in the system) but rather "no effects on
the composite receiver" (and its co-objects).

The mode system can safely permit mutator calls to globally shared top-level ob
ject if the call-link's mode guarantees its target's top-level status. Such references go
under the name "unprotected" [Hog91], public [KM95], var [NVP98], norep [CPN98],
plenary [DLN98], or shared [ACN02]. Shared references can be exchanged freely
between objects (if their mode contains only base-modes shared and read). They
can also be stored as association references in generic container objects through refer
ences of modes rep<elem=shared>, free<elem=shared>, or shared<elem=shared>.
The implicit reference to "static" objects Oc, through which static methods are
called, would be treated as shared<> for checking the invocation of mutators and the
exchange of references.

2. INSIDE-OUT AND UPWARD REFERENCES. While an object w is executing a
mutator, any object o to whose state representation it belongs is guaranteed to be
executing a mutator (mutator control). Hence while w is executing a mutator, mutator
calls from it too and any of o's component objects are safe w.r.t. state encapsulation
and mutator control: The call crosses sanctuary boundaries only inside-out, never
outside-in.

The mode system is able to safely permit inside-out mutator calls if they are made
from within a mutator and through a reference of a special mode guaranteeing that
it is an inside-out reference: Targets of references of this mode are not enclosed in
any sanctuary not also enclosing the source. A simple case of inside-out references
are upward references, which a component object has to its owner; they are the
inverses of rep paths. Shared references are another special case. Inside-out may
include the limit case that source and target are in the same sanctuaries; then also
co references are inside-out references. Inside-out references can be safely exchanged
with co-objects, can flow forward as parameters along rep references and flow back as
results along inside-out references. They can also be stored as association references
in generic container objects through references of mode rep<elem=insideout>.

Inside-out references separated into different roles are supported by modes var a
and arg a in [NVP98], and by context parameters a in [CPN98].

216

3. BORROWED WRITE AccESS. In some object systems, there are particular, more
or less widely shared objects providing a service of making changes to given objects.
For example, Mechanic objects may provide a service to "repair" Engine objects
(see §7.3.3 for the Car example with code): To get its Engine component repaired,
a Car object may make use of a Mechanic's repair service. This is safe w.r.t. state
encapsulation if the Car calls repair from within a mutator and if the Mechanic does
not preserve the reference to the Engine component when it is finished.

No object, not even an external one, and no method, not even an observer, can
violate state encapsulation by calling a mutator through references that exist only
while target w's owner o is executing a mutator: Mutator control ensures that any
object o to whose state representation w belongs is currently executing a mutator.

The mode system is able to safely permit such mutator calls if a special mode
temp guarantees the reference's life-time limitation. A temp reference to w with
such a property can safely be created from longer lasting references by the following
conversions: In a mutator, a rep reference to w is converted to temp (by w's owner
o), a co reference to w is converted to temp (by w or one of its co-objects), or an
insideout reference tow is converted to temp. A temp reference can safely be passed
forwardly, as parameter, but neither be returned nor captured in fields in order to
make sure the reference cannot last longer than the mutator. There is no problem
w.r.t. state encapsulation if temp references are converted to read references, and
these are returned and captureed. Temp references may also be stored as association
references in generic container objects through references of mode free<elem=temp>,
rep<elem=temp>, or temp<elem=temp>. It must only be ensured that such references
are, like temp references, never returned nor captured. An example of containers
of temp references in combination with refined method classification can be seen in
§7.3.3.

Temp references are similar to the notion of borrowing in alias control: A borrowed
reference is a temporary alias of a unique reference used in methods called by the
method with the unique reference. The mode classifying references that are borrowed
was called unique [Hog91], uncaptured [Ho+92], borrowed [BoyOl], or lent [ACN02].
The difference from temp references is that borrowed references can be created from
a unique reference in observers and in mutators, and the intention of borrowing does
not normally allow one to convert borrowed to non-borrowed references (e.g., read
references) which are not prevented from being returned or captured in fields (thus
causing a non-temporary violation of uniqueness).

NoT OwNERSHIP PATHS. A shared reference is obviously no ownership path, and it
cannot be that it extends any path to an ownership path to its target, since the target
is not owned. Also insideout and temp references cannot be ownership paths and
cannot extend paths to ownership paths to their targets since different insideout
references in the same object and different temp references in the same method ex
ecution can point to objects with different owners. (Given appropriate correlations,
however, also shared, insideout and temp references might be extensible by associ-

217

ation paths to ownership path.) This means that, when mutators are sent through
shared, insideout or temp reference, they are not sent through an ownership path.
Hence, in the extended mode system, the mutator control path property used in the
formal treatment does not hold any more. But, as in the explanation of each new
mode above, the property of mutator control is preserved, and this is the property
which counts for the achievement of composite state encapsulation.

7.3 Some Applications and More Examples

7.3.1 Behavioral Type Checking

1. THE SPECIFICATION ORIGIN OF THE THESIS. The starting point for this dis
sertation were considerations about a programming language with behavioral object
types, incorporating the notion that object types and the subtype relation on them
ought to be defined in terms of the instances' external behavior ("behavioral sub
typing') [Sny86, Ame87, LW94, DL97]. While detailed behavior specification would
require something like Eiffel's runtime checked pre-/postconditions and invariants
[Mey88] (augmented by history constraints [LW94]), two things should be possible to
check (conservatively) already at compile time: Objects' representation invariants
should not change between calls, so that their runtime check at the end of method
calls makes a check at the beginning superfluous. Methods (operation implemen
tations) should change nothing other than the part of the system state specified in
their frame conditions coarsely in terms of composite objects (not in terms of single
variables, which is the norm in specification techniques [Wil92, Lei95, Lea99, LNOO]).

This static part of "behavioral type checking" is not an easy task if one realizes
that object refinement is not data record refinement: The object specified by its ex
ternal behavior, the abstract object, may be implemented by a composition of several
implementation objects [Bre91, Wil92, Utt92, Lei95, MP99a]. Hence, first, the abstract
map object's state is characterized by the simple invariant of uniquely associating
each key in it with a unique value. One perfectly normal way of implementing maps
is to represent their state in the fields of pair objects stored in an entry-set compo
nent. Consequently, the invariant about one abstract map object's state translates to
an invariant about the states of several objects in its implementation (representation
invariant). But how could a behavioral type checker exclude that the objects over
which the representation invariant is expressed change between invocations of the
maps' operations? Second, an abstract map object's Add operation has the simple
frame condition of changing only the map itself. It is perfectly normal to implement
Add by making changes to the object which is the entry-set component in the map's
composite implementation. But how could a behavioral type checker know which
objects-besides those from the abstract object's frame condition-the implementa
tion is allowed to change?

Providing an answer for these questions with the help of a static type system was

218

interface Map {
void Add(key Object k, value Object v) mutates this;

Remove(read Object k) mutates this;
lookup(read Object k) depends this;

void
value Object

}

class Mapimp implements Map {
rep<elem=rep<fst=key, snd=value>> PSet entryset;
II=> mutation of entryset and its elements subsumed under 'mutates this'

}

Figure 7.5: Map classes with mutates and depends clauses

the original motivation for the development of the mode system.

2. CHECKING FRAME CoNDITIONS. The frame conditions for the operations of
abstract object type Map could be specified by mutates clauses as shown in figure 7.5.
(Note that writing mutates clauses makes annotations mut and obs superfluous.)
For any object o implementing the Map type, the meaning of "mutates this" at
operations Add and Remove is that these operations may change the state of o as a
composite object. That is, the mutates clause expresses the frame condition that the
caused changes are limited to the objects in StRep(o) (at the beginning of the call).
For the behavioral type checking of Map's implementation classes is means that the
implementions of Add and Remove are allowed to update this's fields, and to send
mutators to the targets of rep paths (and to this). Additionally, a method can
always be allowed to mutate the free objects in it, since free objects are considered
an implementation detail of the method similar to local variables.

3. CHECKING INVARIANTS FOR INDEPENDENCE FROM EXTERNAL STATE. The
mode system guarantees the global property of composite state encapsulation, mean
ing that a composite object's state representation cannot change between invocations
of o's operations. Hence to guarantee that an object's invariants should never be
come violated between invocations of its methods (independent of what the invariant
says), one only has to ensure the obvious: Objects' representation invariants can
be expressed only over their respective state representation. Based on the mode
classification of object references this can be ensured by a simple rule: A represen
tation invariant is safe if it is expressed only by access to the fields of this and the
states of the abstract objects reachable from it via rep paths. This rule is similar
to Muller and Poetzsch-Heffter's rule that "[a]bstract values of [runtime] components
must not depend on states of objects referenced read-only" [MP99a]. (Wills [Wil92]
and Leino et al. [Lei95, DLN98, LNOO] work the other way: They specify on which other
objects an object's (composite) state depends, and derive from this which objects are
state-representing components that require protection.)

219

For example, the lookup operation of an abstract Map object is a virtual attribute
operation: Its result depends only on the map and on no other object. One could
specify this, in analogy to a mutates clause, by a depends clause as shown in figure
7.5. For the behavioral type checking of Map's implementation classes this means that
lookup's result should depend only the fields of this and on the results of virtual
attribute operations of its rep path targets (and of this). However, enforcing this
by permitting no other calls at all would be much too strict:

It must be possible to call external objects' clean operations [NVP98], i.e., observers
whose result does not depend on any changeable state ("depends nothing"): For
instance, the representation invariants of hash-tables and sorted lists depends on the
hash-code or sorting criterion provide by its element objects. This attribute of the
element objects should be constant; the virtual attribute operation calculating it
should be clean.

Moreover, the implementation of lookup must be able to use a free iterator to
get at the pair objects in its entryset, and an iterator's current operation depends
not only on the iterator's state (the state of the iteration) but also on the state of the
set. Declaring this dependency in the specification of the Iterator interface would
require one to refer to the set over which it iterates, and in the specification of the Set
interface the elements operation must be specified to return an Iterator iterating
over this. It is not clear how the use and the checking of this information should
best be integrated into a behavioral type checker using only the standard type system
machinery. This could be a subject for further research.

7.3.2 Mode/Effects System and the Observer Pattern

The set of all (composite) objects reachable from an object o via association paths of
mode a<> can be called o's a-association region (cf. §6.3). These sets of objects can be
used as the regions of a coarse effects system that refines JaM's mut/ cbs-classification
of methods by specifying the association regions whose objects the method may mu
tate. The syntax could be a variation of the previous section's mutates clauses, e.g.,
mutates a. Based on this refined classification, a combined mode/effects system can
now additionally permit mutator calls through a-references in methods with mutates
a. This makes it possible for the programmer to exploit all ownership paths, and not
just base-JaM-style ones (cf. §7.1.3), for sending a mutator from the owner to the
component object. In particular, container objects can now provide methods through
which clients (with appropriate rights on the element objects) can make the container
mutate its elements.

Let us demonstrate this in the context the Observer pattern [Ga+95], where Ob
server objects register with a Subject object o to be notified when it changes, so that
they can synchronize their own state with the Subject's new state. An Observer is
an object with a Notify operation to be called when the Subject, i.e., the observed
object, changed state. It must be a mutator in order to allow the notified Observer

220

to update its own state.

interface Observer {
mut void Notify();

}

Registries are specialized set objects useful for implementation of Subjects: In a
Registry component, a Subject can not only keep the references to all its Observers; it
can also notify them all at once through the Registry by calling operation notifyAll.
This operation calls Notify on all elements through temporary elem references that it
retrieved by reading the nodes' data references through a rep<data=elem> reference.
The mutator call to an elem object is permitted in the mode/ effects system since it
is advertised as part of the method's effects-type by the clause "mutates elem."

class Registry extends Setlmp<Observer> {

}

obs void notifyAll() mutates elem II <- extension
{ rep<data=elem> Node<Observer> n;

n = this.anchor;
while(n != null)
{ n.data().Notify();

n = n.next();
}

}

II Permit this mutator call
II through returned elem reference
II because of 'mutates elem'

A Document is an example of a Subject whose state changes some Observers
may want to follow. Documents are equipped with a Registry component to which
Observers are added through operation Register. Documents call notifyAll on it
whenever they changed (in a way relevant for Observers).

class Document {

}

rep<elem=observer> Registry reg;
mut void Register(observer Observer o)
mut void SomeChange() mutates observer

{ this.reg.Add(o); }
II <- extension

{

}

II some change
this.reg.notifyAll(); II Permit call of 'mutates elem' method

II through a rep<elem=observer> reference
II since this is a 'mutates observer' method

The called operation notifyAll may be an observer, but it also has "mutates
elem" in its effects type. Hence the mode system has to check the call the same as
checking a mutator call through a (temporary) reference returned from a Registry
operation with result mode elem. Since elem references are imported as observer

221

references through the rep<elem=observer> reference to the Registry, this means a
check like a mutator call through an observer reference. As above, this is permitted
ifmethod SomeChange() advertises this by "mutates observer."

A View is an Observer for a Document. When notified of a change in the observed
Document, the View will update its presentation of the Document.

class View implements Observer {

}

read Document doc; II the document shown by the view
rout void Show(read Document d) { this.doc = d; }
rout void Notify() { ... } II update the presentation of doc

Finally, an Application object can link a Document and a View, so that the View
shows the Document and the Document notifies the View of its changes.

class Application {
rep<observer=rep> Document doc;

}

rep View view;
rout void main 0
{ II initialization

}

this.view.Show(this.doc);
this.doc.Register(this.view);

this.doc.SomeChange(); II Permit call of 'mutates observer' method
II since, through reference 'doc', observer=rep
II and 'main' is a mutator

The Application's call of SomeChange on the Document in a method main with
out mutates clause is subject to two conditions: First, SomeChange is a mutator.
Hence the used reference doc must have mode free, rep, or co, which it has. Sec
ond, SomeChange is a "mutates observer" method. Hence the import of a returned
observer reference must have mode free, rep, or co, which it has.

7 .3.3 Domain Modeling: The Car Example

Object compositions is not only used in object-oriented design to implement higher
level software objects by lower-level ones, is it also used in object-oriented analysis to
model the structure of real-world objects from the application domain. The example
of a Car object was first introduced into the literature of composite object encapsu
lation by Clarke, Potter, and Nobel [CPN98], and varied in subsequent publications.

1. CAR OBJECTS have an Engine object as component [CPN98]. Figure 7.6 shows
the JaM code for classes Car and Engine. By declaring Car objects' engine field
as rep, the Engine component is protected in JaM as in Ownership Types [CPN98]

222

class Engine {

}

rep Spark spark;
mut void Start() { ... }
mut void Stop() { ... }
mut void ReplaceSpark(free Sparks) { this.spark = s; }
obs int exhaust() { ... }

class Car {
rep Engine engine;
mut void !nit() { this.engine =new Engine(); }
obs rep Engine getEngine() {return this.engine; }
mut void SetEngine(free Engine e) { this.engine = e; }
mut void Go() { ... this.engine.Start(); ... }

}

Figure 7.6: Classes Car and Engine

from being started or stopped other than through the Car. Unlike Ownership Types,
JaM makes it possible for Cars to let outside objects read the Engine's exhaust level.
Hence the exhausts of two cars can be compared without the need for an expose
construct, "friendly functions", or parametric "ownership polymorphism" of methods
proposed by Clarke [ClaOl].

rep Car car= new Car();
car.go();
car.getEngine() .Stop(); II error in Jam and OT

rep Car car2 =new Car();
compare(car.getEngine() .exhaust(), II ok in Jam, error in OT

car2.getEngine() .exhaust());

Also it is possible to let outside objects supply a new engine component for the
car, provided it is newly created: As in Ownership Types, it is not possible to put
the Engine from one Car into another Car or give the same Engine to two Cars.

free Engine e =new Engine();
car.setEngine(e);
car2.setEngine(e);
car.setEngine(car2.getEngine()

II ok in Jam, cannot do in OT
II e is null (violates use once convention)

) ; II error in Jam and OT

2. ENGINE REPAIR. An external object, like a Mechanic, that needs write access
to the Engine component (e.g., for replacing the spark) cannot be handled by the
presented mode system. It requires an extension like the mode temp described in
§7.2.4. The resulting code can be seen in figure 7.7.

The Car needs no special access to the Mechanic (assuming the Mechanic does
not change by repairing an Engine). Hence the Mechanic object given to the Car for
repairing the Engine can be anywhere in the object system, e.g., a rep component

223

class Mechanic { ...
obs void repair(temp Engine e) { ... e.ReplaceSpark(s); ... }

}

class Car {
mut void GetEngineRepairedBy(read Mechanic m) { m.repair(this.engine); }

}

class Garage {
rep Mechanic bill, bob;
obs void repair(temp Car c) { ... c.GetEngineRepairedBy(this.bob); ... }

}

Figure 7. 7: Repairing a car's engine

of a Garage object. The Garage object needs temp access to the Car first, so that it
can tell it to give one of its Mechanics access to its Engine. The Car and the Garage
can be brought together by any method that has write access to the Car and some
reference the Garage.

rep Car car;
rep Garage garage;

II initialization
garage.repair(car); II 'rep' converted to 'temp'

3. THE AciDBATH. Figure 7.8 shows an extension of the engine repair example
by an acid-bath. It varies Clarke's example of storing a temporary car reference
in a temporary Acidbath object during the execution of an ownership polymorphic
method [ClaOl]: While the Mechanic is not permitted to capture its temp reference
to the Engine in its own field, it could store them as an association reference in a
temporary Acidbath component. If we additionally have the mutates extension from
§7.3.2, then the Mechanic is able to change the Engine through the Acidbath object.

7.3.4 Transfer Across Abstraction Boundaries: The Lexer /
Reader Example

In [DLN98], Detlef, Leino and Nelson presented the example of a lexer abstraction
built on top of a reader abstraction: The reader produces a stream of characters (e.g.,
from a file). The lexer produces a stream of token from the characters from a reader
component. The reader to be used by the lexer should not be fixed. The client should
be able to configure the lexer with the reader whose output it wants to be tokenized.
For example, a lexer for the password file could be constructed using a FileReader
object (see figure 7.9).

The reader is a state-representing component of the lexer using it: The validity
of the lexer's current state is dependent on the validity of the reader in the lexer's
rdr field ("dynamic dependency') [DLN98]. Detlef, Leino and Nelson ensured the

224

class Acidbath {
tobathe Engine e;

}

mut void PrepareFor(tobathe Engine e) { this.e = e; ... }
obs void bathe() mutates tobathe { }
obs void clean() mutates tobathe { ... }

class Mechanic { ...

}

obs void repair(temp Engine e)
{ free<tobathe=temp> Acidbath b;

}

b = new<tobathe=temp> Acidbath();
b.PrepareFor(e);
b. bathe();
b.clean();

Figure 7.8: Acid-bathing a car's engine

soundness of passing the reader across the lexer's abstraction boundary by declaring
the dependency on the reader in the lexer's interface. In JaM, we declare field rdr to
have mode rep. Then the mode system ensures that only rep and free values can
be assigned to it. The references which the client (here, method main) passes to the
lexer for initialization can only be free. By supplying the free reader reference, the
client gives up its only writable reference to the reader. Hence the client is unable in
the following to invalidate the lexer by manipulating the reader, e.g., by closing the
reader from under the lexer.

Since the lexer did not initialize the reader, it might not know how to shut it down
at the end. Only the client should know. However, once the reader has become part
of the lexer's state representation, the lexer cannot detach it again and return it to
the client for mutation (the methodology in [DLN98] has the same limitation): There
is no way back from a rep reference to a free reference since the lexer may have
stored aliases of it in itself or as co- or association references in other objects.

But the lexer's rdr field can be declared free. Then the lexer cannot create
non-read aliases of the given reader reference, but can return it via a method

mut free Reader GiveBack() {return destval(this.rdr);}

Observe that effectively also a free reader represents an aspect of the lexer's
state. Although the mode system does not explicitly take this into account, state
encapsulation also holds here (cf. §6.5): Still only the lexer can send mutators to
the reader, and it can send them only from its own mutators since that requires a
destructive read of the field (which may be hidden behind syntactic sugar, §7.2.1).

225

class Lexer {

}

rep Reader rdr;

mut co Lexer Init(free Reader r) { this.rdr = r; return this; }
mut free Token GetToken() { ... } //using rdr

class Main {

}

mut read Object main()
{ free Reader rd;

}

rep Lexer lx;

rd = new FileReaderO .Open("/etc/passwd");
lx =new Lexer() .Init(rd);

Figure 7.9: The lexer/reader example

7.3.5 Transfer of Multiple Objects at Once

The transfers across abstraction boundaries considered in the literature transfer only
one composite object at a time [DLN98, GB99, ACN02]. JaM supports the natural
generalization of this idea: Entire linked lists of free composite objects can be trans
fered by one reference exchange, and~by allowing correlations to free modes~free
objects can be stored in an ordinary (free) container object and transfered all to
gether by passing that container. The limitation is only that such aggregated free
objects will all be added at the same time to the same state representation by a
corresponding mode conversion.

Consider the AddAll generalization of the Add operation on Sets. It adds an arbi
trary number of new elements, i.e., logically, it has a variable number of parameters.
In JaM, this can be implemented by storing the new element objects e1 , ... , ek in a
linked list passed to AddAll:

class Set<T> {

mut void AddAll(read<data=elem> Node<T> list);
}

A simple implementation of this operation could traverse the list to extract each
new element ek and add it by a self-call Add(ek). (Here one needs the real self-calls
of §7.2.3 in order to be able to pass the elem reference obtained from the node and
to pass the read<data=elem> to the rest of the list.) Observe that class Setimp
represents the abstract set's state in an internal list with the same type of nodes as
those passed to AddAll. But it would not generally be safe to simply concatenate the
passed list to the internal list since the passed list might still be "in use", e.g., as the

226

class Set<T> { ...
mut void AddAll(free<data=elem> Node<T> list);

}

class Setlmp<T> implements Set<T> { ...

}

mut void AddAll(free<data=elem> Node<T> list)
{ if(this.anchor !=null) { this.anchor.ListAppend(list);}

if(this.anchor == null) { this.anchor = list; }
}

class Node<T> { ...

}

mut void ListAppend(co Node<T> list)
{ if(this.next !=null) { this.next.ListAppend(list);}

if(this.next ==null) { this.next = list; }
}

Figure 7.10: AddAll with transfer of linked nodes

internal list of another Setimp set. JaM catches this since a passed read list (more
precisely, a list of read nodes) cannot be concatenated with an internal rep list.

The mode system allows concatenation only if the passed list is free, or rep. By
changing the parameter's mode to free, the set object can oblige its clients to supply
lists that are guaranteed not belong to any object's state representation, so that it can
safely append them to its own internal list. This way, all new elements in the list are
added in one step, without creating new node objects and copying the new elements
into them. The sugared JaM code of AddAll and the used ListAppend method of
Nodes is shown in figure 7.10. (For simplicity, no check is made here whether the
elements in the given list already exist in the set.)

7.3.6 The Builder Pattern: Bottom-Up Creation with Free
Fields

Up to this point, only uncaptured free references were considered , i.e., free ref
erences as parameters, in local variables, or as temporary values. Free fields enable
JaM to support the Director, or Builder, design pattern [Ga+95]: Through a Builder
object, a client can control the incremental construction of a complex object, the
Product, without knowing the Product's implementation. For example, an applica
tion window object (with text area, menu bar, scroll bars, etc.) should be constructed
through a Builder, so that by switching the Builder object, windows in different CUI
frameworks (AWT, Swing, Windows, Motif, Athena, ...) can be constructed.

The JaM code in figure 7.11 sketches the definition of a WindowBuilder interface,
and one implementation (for Motif windows, based on a library of classes with names
Xm ...) . Scroll bars, tabs, status bars, and tool bars can be added repeatedly to
the left, right, top, or bottom of what was constructed so far (e.g., vertical and

227

interface WindowBuilder { // integer codes for addwhere and colors

}

mut void CreateTextArea (int bgcol, int fgcol);
mut void CreateDrawingArea(int bgcol, int fgcol);

mut void AddMenus (int bgcol, int fgcol, read<data=read> List<String> titles);
mut void AddTools (int bgcol, read<data=read> List<Bitmap> buttons);
mut void AddScroll(int addwhere, int bgcol, int fgcol);

mut free Window GetWindow();

class MotifBuilder implements WindowBuilder {
free Widget top;

}

mut void CreateTextArea(int bgcol, int bgcol)
{ this.top =new XmTextArea(bgcol,fgcol); }

mut void AddMenus(int bgcol, int fgcol, read<data=read> List<String> titles)
{ free XmMenuBar m =new XmMenuBar(bgcol,fgcol);

}

free XmForm f =new XmForm();
while(titles!=null) { m.AddEntry(new XmString(titles.data()));

titles= title.next();}
f.arrange(m, XmForm.ABOVE, this.top); // N.B. destructive reads
this.top = f; //new top

mut free Window GetWindow() {return new XmAppWindow(this.top);}

Figure 7.11: Sketch of a WindowBuilder

horizontal scroll bars). The Motif builder keeps a free reference to the largest widget
composed so far in field top. In each addition step, the current top widget and the
new widget are transfered into an XmForm widget that combines them and fixes their
relative geometrical placement (horizontally left/right, or vertically one above the
other). This XmForm widget is the new top widget. When construction is complete,
the Builder wraps the latest top widget in an XmAppWindow and returns that.

This is a good example of an object construction process in which a complex com
posite object (the window) is created bottom-up, i.e., in which sub-objects are created
before their owners. Bottom-up construction cannot be handled by the ownership
type systems of [CPN98, MP99a, MPOl, ClaOl]: There an object's owner has to be
fixed when it is created. That is, composite objects can only be constructed top
down. To handle the lexer/reader example (§7.3.4), Clarke describes how a Factory
object readerClass with an ownership polymorphic creation method allows one to
delay a prospective component's construction until its prospective owner requests it.
It may be possible to extend this workaround to a reversal of the entire construction
process of the window. The Builder would then not produce a window but a factory
constructing the window in top-down fashion, a solution which is far less elegant.

228

Chapter 8

Conclusion

The encapsulation of composite objects is an important criterion for the quality of
object-oriented designs: Composite objects are the nested mid-scale components of
the runtime system. The recursive combination of smaller objects to one composite
object (object composition), is a central technique in the construction of object
oriented software. Structuring the runtime system into hierarchies of composite ob
jects demonstrably helps managing the structural and dynamic complexity of the
object system. A lack of encapsulation makes the composite object's correct func
tioning depend on its context, so that its implementation cannot be verified in a
modular way and cannot safely be reused in new contexts (without rechecking it).

This dissertation provided (a) a formal definition of the desired property of state
encapsulation, (b) mode qualifiers on all object reference types to express object com
position and identify composites' state-representing components, and (c) static mode
checks to ensure that composite objects change state only through operations declared
'mutator' (state encapsulation). The mode checks are a purely static, orthogonal ex
tension of standard typing rules. They imply no changes in the program execution
and do not limit the range of possible computations. But they make sure that the
new mode and 'mutator' annotations are only added in ways that are consistent with
the structure of object composition and with state encapsulation.

The composition of objects was defined based on a mode-classification of paths
of object references in the evolving object graph. The classification is inductively
derived from the object references' modes, which is imposed on them through the
mode annotations qualifying the types of object reference-valued fields, variables,
parameters and results. The path-based approach supports better than others the
flexible, dynamic creation and incremental construction of complex composite objects:
It enables one to decouple object creation and object use (in particular, use as a
composite's component) with no significant restriction on composite objects' internal
structure. Composite objects can be constructed bottom-up, and can be transfered
across abstraction boundaries (one by one, linked to lists, or stored in containers).

As a proof of concept, a subset of the Java language was extended by mode and

229

mutator annotations, and by mode checks to the language JaM. To ensure the consis
tency of the object graph's mode-labeling, the mode checks restrict the compatibility
between different modes when object references are assigned, supplied as parameter,
or returned as result. On this basis, the actual enforcement of state encapsulation con
sists of limiting, depending on the kind of method, whether fields may be assigned to,
and whether mutators may be invoked through references of certain modes. Support
for the decoupling of object creation and object use is based on a weak uniqueness
property for reference path classified as free. Its preservation is enforced by allowing
only destructive read access to variables holding free references or a non-destructive
access that creates a read-moded alias. (Destructive read could be replaced by the
check that the variable is "dead" after the read access.)

It was shown-first for a simplified mode and then for the full mode system
that the extended typing rules guarantee state encapsulation (relative to the mode
specified object composition structure) in a purely static way; no runtime checks are
necessary. The addition of association modes and correlations in the full mode system
was crucial to enable the path-based handling of recursively composed composite
objects. But while the addition was easy to define, the complexity of the formal
treatment increased more than expected, despite several simplifying constraints.

The usability of the proposed mode system was demonstrated with the non-trivial
map example. It covers recursively composed composite (container) objects, the con
struction of a composite (iterator) object with an externally created (iterator) com
ponent object, and the Iterator and Abstract Factory design patterns. Furthermore,
it was shown how JaM handles examples from the composite object encapsulation
literature (modeling the car domain, transfer across abstraction boundaries), and how
it supports the Builder design pattern.

The global system properties guaranteed by the mode system can serve as a ba
sis for other work, like behavioral type systems, the modular verification of object
behavior against specifications, reasoning about aliasing and interference, and object
oriented effects systems. While the presented mode system is more restrictive than
desirable, it provides a sound stable basis that can be developed further. In par
ticular, the constraints made for the formal treatment could be relaxed. A nicer
syntax for specifying the references' modes could be found (including the possibility
of mode inference). Variations and extensions of the mode system could be investi
gated. Specialized modes could express subclassifications of object references w.r.t.
different levels of component encapsulation (public, read-only private, inaccessible
private), or w.r.t. more detailed aliasing properties and access rights than required
for state encapsulation. Or they could make finer distinctions that enable us to safely
permit more cases of mutator calls (modes shared, insideout, borrowed, etc.), or
the migration also of state-representing components from one composite object to
another.

230

Appendix A

The Definition of JaM

A.l Syntactic Structures

1. JAM PROGRAMS~ extension of Java subset (changes underlined)

p E P ::= D*
DE D ::= class C { (T Id;)* Mth* }

Mth ::= K T Id((T I d)*) {(T Id;)* S}
K, E K ::= mut I obs

t E T ::= M <C
JL E M ::= B<..0.>

m E B ::= free I rep I co I A I read
<5 E ..0. ::= (A=M)*
s E S ::= S S I N=E; I return E; I if(E'l!E){S} I while(E'l!E){S}

1/J E 'l! ::= == I ! =
e E E ::= val(N) I destval(N) I null<..0.> I new<..0.> CO I E<:=IdCE*)
v E N ::= Id I this.Id

Given identifier sets:
- classes c, d E C
- association roles a, (3, 1 E A
-variables, fields, methods x, y, z, f E Id

(excludes free, rep, co, read)
(includes this, excludes null)

2. RUNTIME TERMS ~ extension of program's statements and expressions

R ::= R S I R=R; I return R;
I if (R 'l! R) {S} I while CE 'l! E) {S}
I N I val(R) I destval(R) I null<..0.> I new<..0.> CO I R<:=Id(R*)
I £oc location of a variable (1-value)
I V expression value (r-value)
I «R» inlined executing method

231

3. FORMAL TYPE TERMS -extension of program's type terms for type checking
and semantic consistency

T E T ::= ref M C 1-values (locations)
I M C values (handles)
I obj C object values
I Cmd continueing statements

A.2 Type System

All definitions are relative to a given program p E P.

4. VALID MODE, RANGE TYPE, CLASS NAME If- J-L ok II f- t ok II f- c ok I
Vi, j E {1, ... , n }. ai = aj =? J-Li - /-Lj
m E {co} U A =? n = 0
Vi E {1, .. . , n }. J-Li #- free< ... > 1\ J-Li #- co<> 1\ f- J-Li ok

[mode] -----'----":--'-------.:__-'-------=---------'--

f- J-L ok f- c ok
[rtype] L k

oJ-LCO

f- m<a1 =J-L1, ... , CYn=J-Ln> ok

p = D1 . . . class c { ... } ... Dn
[enamel f- c ok

where J-L::::: J-L1
¢:;>df Vii E A*. J-L(a) = J-L'(a)

where J-L(E) =df m if J-L = m< ... >
(_.) = {J-L'(a) if J-L = m< ... , a=J-L', .. . >

J-L a.a df .l otherwise

5. MODE-COMPATIBILITY JUDGEMENT If- T :::;m T
1 I

m<O> < 1 read<o> -m

free<O> ::::;~ rep<O>
read<o, a=J-L, o'> ::::;~ read<o, o'>
read <o, a=J-L, o'> ::::;~ read <o, a=J-L', o'> if J-L ::::;~ J-L'

6. WHAT CLASS MoDULES DEFINE If- FldsMths(c) = (r, F) I

p = D1 . . . class ci {~; "'i ti fi C 1rJ {bi}} ... Dn

f- FldsMths(ci) =({xi: refti},{fi r-+ "'i tifi(1ri){bi}})

7. HANDLE SIGNATURE JuDGEMENTS If- (f: 'fi ~ T) E L,(J-L c) I

232

f--- FldsMths(c) = (r,F) F(f) = K, 1-L df(f-Li di YiH ... }
Vi, a. ((f-LrOf-Li)(a) =read=} /-Li(a) =read) 1\ (!Li(a) E {co} u A=} f-Lr(E) tf. {read} u A)
\fa, a. !L(a) =free 1\ f-L(&o:) E A 1\ 1-Lrof-L(a.o:) #read=? f-Lr(E) #read

if f-L = m< ... >
if f-L = m< ... , o:=f-L', . .. >
otherwise

and f-Lroread<o:i=f-Li>=df read<o:i-f-LrOf-Li>
f-Lrofree<o:i= f-Li >=df free<o:i-f-Lr o f-Li>

f-Lrorep<o:i=f-Li> =df read<o:i-f-LrOf-Li>

=df f-Lr
=df {L

1 if f-Lr = mr<. · . , O:=f-L', · .. >

8. WELLFORMED PROGRAM, DEFINITION, TYPE AssiGNMENT I f--- p start eo I, If--- D defs x I,

lf---r okl

f--- DI defs CI · · · f--- Dn defs Cn Vi, j = 1, ... , n. Ci = Cj =? ~ = J
f--- FldsMths(cn) = (R, F), F(main) ~ obs T main(){ ... }

[prog] --------'----'----,----'=,-:-__:_:_-----=,----:-_---"---------,,.,.----=-------
f--- DI ... Dn start new<> Cn 0 .main()

f--- MI defs XI f--- Mn defs Xn Vi, j = 1, ... , n. Xi = Xj =? ~ = J
[class] _ __,:..__ __ .::._ __ --,----------:'-''-----=:-~-----'-;~::---.;--;;--'------'----"------=----

f--- class c {MI . . . Mn} defs c

f--- t ok f--- ti ok f--- tj ok
r = this: ref co<> c, Xi: ref ti, Zj :ref tl f--- r ok

[meth] -----------,---:-:===:-~;...__-:-L---::--::---:--------
r,K,f---s:t

f--- K, t f (ti xi){tj Zj; s} defs f

f--- t ok Vi, j = 1, ... , n. Xi = Xj =? i = j [tassg] --'-"---,..-'---.:.__ _ _::_ _ _,__-;--__::__
f--- XI : TI, ... , Xn : Tn ok [field] f--- t x; defs x

9. TERM TYPING JUDGEMENTS I r, K, f--- e: T I

(x:T) E r
[varz] --:::::--------:--'------

r,K,f---X:T

(this: ref f-L c) E r f--- FldsMths(c) = ({ ... ,x:T, .. . },F)
[varj] -'------'--------'-----------::::-----,------'---'------'--'-----~'-------'----

r,K, f--- this.X: T

r, K, f--- v : ref T T1 = T[read/free] T =free< ... > c =} K, = obs 1\ v E Id
[rdcp] --'----------''-----'~r,-------;-L-'--------=-(~)-,'----------

' K, ,-val v : T

r, K, f--- V : ref T 1J #this 1J = this.y =} K, = mut
[rddst] r, K, f--- destval(v) : T

f--- c ok f--- c ok
[null] -=------c,----------::--::----;o-----,:--.,-----

r, K, f--- null<o> : free<o> c
[new] -=--,------------;;::--:----,-,--,--------;;--

r, K, f--- new<o> cO : free<o> c

233

f, K, f- e : f-1, C f- (j : Ti t4 T) E L; (f-1, C)
K,* = mut ==:} f-1, E Wr(/'1,) r,"' f- ei : T: f- T: ::::::m Ti

[call] --------''------=-----:-''---'--7:--:---'----'"----"--==--"-
f,"' f- e-¢:=j(ei): T

f, K, f- V: ref T f, K, f- e: T1 f- T1 ::::::m T V 1- this V = this.y ==:} K, = mut
[upd] ----------~::-----,-------:::::-'----,-------------'-----

f,"' f- v=e; : Cmd

f,K,f--e:T
[ret]--=------c-----'------r, K, f- return e; : T

r' "' f- 81 : Cmd r' "' f- 82 : T [seq] ---=----:-----'--------

f,K,f--81 82 :T

"f r,"' f- e1 : f-1,1 C1 r,"' f- e2 : f-1,2 C2 r,"' f- 8 : Cmd
[! l r,"' f- if Ce1 'ljJ e2) {8} : Cmd

r,"' f- e1 : f-1,1 C1 r,"' f- e2 : f-1,2 C2 r,"' f- 8 : Cmd
[wh] . r, "' f- wh1le Ce1 'ljJ e2) {8} : Cmd

where Wr(obs) =dr {free< ... >}
Wr(mut) =dr {free< ... >, rep< ... >, co<>}

A.3 Semantic Structures

10. SEMANTIC DOMAINS

environment
store
object-map
object graph
location (1-value)
handle (value)
object-identifier
object value
valid modes

'Tl'h E Env =dr (Id +-+ £oc) x K x V
s E 6tote =dr £oc +-+ V

om E Omap =dr ({]) +-+ ((Id +-+ £oc) x (Id +-+ Mth))
g E <5tap~ =dr 1\ll[])xMxl[])

£ E £oc =dr l:!:JTEMxiC £ocT
hE V =dr (({]) U {nil}) X M X (({]) U {nil})
0 E ({]) =dr l:!:JcEIC ({])c

(Q, F) E (Id -t-T £oc) x (Id -t-T Mth)
f-1, EM =dr {f-1, I f- f-1, ok}

with infinite countable sets ({])c given for all c E C and £ocT for all T E M x C

11. INTERPRETATION OF FORMAL TYPE TERMS AND TYPE CONSISTENCY

[ref f-1, c] =dr £ocJ.L c

[f-1, c] =dr (({]) U {nil}) x {f-1,} x (Oc U {nil})
[obj c] =dr { (Q, F) I f- FldsMths(c) = (r, F) and (}I= r}
[Cmd] =dr { E}

ry F f Bdr dom(ry) = dom(f) 1\ \:fx E dom(f). ry(x) E [f(x)]
I= s Bdr VT E M x C, £ E dom(s). £ E £ocT =:;. s(£) E [T]
I= om Bdr Vc E C, o E dom(om). o E Oc =:;. om(o) E [obj c]

234

A.4 Small Step Semantics

All definitions are relative to a program p.

12. INITIAL CONFIGURATION for p ==: D1, ... , Dn with f- Dn ok Cn

eo, TJo,so, omo, go where eo =df new<> 0 .main()
~ C)obs
•tO =df (nil,read<>,nil)

so =df CJ
omo =df CJ
9o =df CJ

13. REDUCTION STEP CONTROLLED BY REDUCTION CONTEXT

RD "= 0 1 ..

(' RD - I "" I I I c.- E 1 e, ry, s, om, g----+ e, TJ, s, om, g
E[e], if,s, om,g===? E[e'], if,s', om',g'

(' RD - I "" I I I c.- E 1 e, ry,s, om,g===? e, ry ,s, om ,g
G[«e»], ry'J; • if,s, om, g ===? E[«e'»], ry'J; • if,s', om', g'

I val(Rr) I destval(Rr) I R[~Id(E*) I V~Id((V')* Rr (,E)*)
I RrS IRr=E; I.COc=Rr; I returnRr; I ifCR[wR){S} I if(VwRr){S}

14. REDUCTION AT THE REDEX, where TJ'/; is the top element in if

ry(x) ~I!
{ var1} ----,.,.---~'------:;---:::----

X, ry'J;,s, om,g----+ £, ry'J;,s, om,g

{ rdcp} () (1) val£ ,ry'J;,s,om,g----+ o,J-L,W ,ry'J;,s,om,gEBoLw
s(£) ~ (o, J-L, w) J-L1 = J-L[read/free]

s(£) ~ (o, J-L, w)
{rddst} ---------,---,-------'-'--~--'------'--'---c'____!__~_~_-~--

destval(£), ry'J;, s, om, g----+ (o, J-L, w), ry'J;, s[£ .__. (o, J-L, nil)], om, g

h...:... (s 11. r) { ll} - ',..,r,
nu null<£5>, ry'J;, s, om, g----+ (r, free<6>, nil), ry'J;, s, om, g

h ~ (s, J-Lr, r) f- FldsMths(c) ~({xi: ref J-Li ci}, F) h' = (r, free<£5>, o)
fresh o E ([])c fresh f!i E [ref J-Li ci] {!={xi.__. f!i} hi= (o,J-Li, nil)

{new}----~~~~-~~~~~~~~~~~~-~~~~____!._~--
new<£5> c 0, TJ'h, s, om, g ---+ h', TJ'h, s[/!i .__. hi], om [o .__. (Q, F)], g EB h'

235

r E ((]Jc, om(r) =::::::(••• ,F), F(f) =:::::: K,*T f(J-ti Ci YiHJLj cj Zj; s}

fresh£ E [ref co<> c], fresh £f E [ref /Li ci], fresh £j E [ref J.Lj cj]

ry* = {this f-----7 £, Yi f-----7 £f, Zj f-----7 £j}

5
1 = 5[£ f-----7 (r, co<>, r), £f f-----7 (r, J.Li, oi), £j f-----7 (r, J-tj, nil)]

g' = g 8 s £ Oi EB r co<> r EB r __!!:i_. Oi
{call} ---:-_:::_-~-:--:=;===;;::::=:=---------___:.-----:-:-:;;-------:-----:-

(s, f-tr, r)<¢= f ((s, J-tr, oi)), TJ'h, 5, om, g ---+ «s», TJ'h • ry*(;,J.Lr,r), 5 1
, om, g'

5
1 = 5[£ f-----7 ..l I £ E im(ry*)] g' = g EB s ~ o 8 s ..l:!:L.. r 8 r L o 8 5(im(ry*))

{ret} -----'-------;--~-'-'c......:....,'---::--=---...,.-;;:'r-------,---------,------,::---;--'---'-';--'-'--
«return (r, J-t, o); », ryf; • ry*~,J.Lr,r), 5, om, g---+ (s, f-trOJ-t, o), TJ'h, 51

, om, g'

{upd} £= (o, P,,w);, ryf;,5, om, g---+ E, ry'(;,5[£ f-----7 (o, JL,w)], om, g 8 o L w 8 5(£) EB o L w
[1/'] (w, w')

{ift} -----:-;----;-...,...-;----;-----;:--:--:::-::---:-:----"'-'--"-'----'--'----.,----------,-:------,--r--;-

if ((o, J-t, w) 1/' (a, JL1
, w')) {s}, ryf;, 5, om, g---+ s, TJ'h, 5, om, g 8 o L w 8 o ..1£... w'

•[1/'] (w, w')
{i0-----:-:----;-...,...-;----;-----;:--:--:::-::--~~~~~~------~---~-~

if C(o, JL, w) 1/' (a, JL1
, w')) {s}, TJ'h, 5, om, g---+ E, ryf;, 5, om, g 8 o L w 8 o ..1£... w'

where [==] (w, w') {:}dr w = w' and [! =] (w, w') {:}dr w =/= w'

15. HELPER FUNCTIONS

JL {g if nil E { o, w}
g EB o--+ w =dr

g l±J { o !!'.. w} otherwise
JL {g ifniiE{o,w}

g 8 0--+ W =dr
g ~ { o !!'.. w} otherwise

where l±J is multiset-union and ~ is multiset-subtraction.

236

Appendix B

JaM Code of the Map Example

B.l In Basic Desugared JaM

Below, the map example with iterators is implemented in raw JaM, without syntactic
sugar. This means, every read access to a variable vis explicitly specified by val(v)
or destval(v).

The limited Java base naturally entails some awkwardnesses in the expression.
Methods without real return value, i.e., mutator methods that would be void in
Java, are written to return this. Returning this is necessary for calling these mutator
methods through a (destructively read) free reference without losing it forever. Since
there is no boolean, Setimp's contains operation returns null if the given object
o was not found in the set, and returns an elem reference to o if it turned out to be
an element in the set. Without the possibility of returning directly from the middle
of a method, res variables are sometimes needed to transport the result to the end
of the method (current, contains, lookup). Since additionally the loop guards are
so restricted, we always continue going through the entire list even when the desired
element was already found (and thus is not expected to occur again).

I********************* DSComponents package **********************************I
II standard pair class
class Pair {

fst<> Object fst;
snd<> Object snd;

mut co<> Pair Set(fst<> Object a, snd<> Object b)

}

obs fst<> Object first()
obs snd<> Object second()

II single linked nodes with Pair data
class PNode {

237

{ this.fst = val(a); this.snd = val(b);
return val(this); }

{return val(this.fst); }
{return val(this.snd); }

}

co<> PNode
data<> Pair

mut co<> PNode
mut co<> PNode
obs co<> PNode
obs data<> Pair

next;
data;

SetNext(co<> PNode n)
SetData(data<> Pair p)
next()
data()

{ this.next = val(n); return val(this);
{ this.data = val(p); return val(this);
{ return val(this.next);}
{ return val(this.data);}

I********************* DSiterators package ***********************************I
II iterator over single-linked list of PNodes
class PNodelt {

dest<> PNode curnode;

mut co<> PNodelt StartAt(dest<> PNode n)
{ this.curnode = val(n); return val(this); }

mut co<> PNodelt Step() { this.curnode = val(this.curnode)<=next();
return val(this); }

obs dest<> PNode current() { return val(this.curnode); }
}

II iterator over Pairs in a PNodelt's PNodes
class PDatalt {

}

rep<dest=read<data=dest<>>> PNodelt nodes;

mut co<> PDatalt

mut co<> PDatalt
obs dest<> Pair

Wrap(free<dest=read<data=dest<>>> PNodelt nn)
{ this.nodes = destval(nn); return val(this); }

Step() { val(this.nodes)<=Step(); return val(this); }
current() { dest<> Pair res;

}

if(val(this.nodes)<=current() !=null<>)
{ res= val(this.nodes)<=current()<=data(); }
return res;

I********************* DSCollectionlmp package *******************************I
II set of Pairs implemented with single-linked list
class PSetlmp {

rep<data=elem<>> PNode anchor;

mut co<> PSetlmp Add(elem<> Pair e)
{

}

if(val(this)<=contains(e) == null<>)
{ this.anchor = new<data=elem<>> PNode();

this.anchor<=SetData(val(e));
this.anchor<=SetNext(val(this.anchor));

}

return val(this);

mut co<> PSetlmp Remove(read<> Pair e)

238

}

}

}

{ rep<data=elem<>> PNode prenode;

}

if(val(this.anchor) != null<>)
{ if(val(this.anchor)<=data() != val(e))

{ prenode = val(this.anchor);

}

}

while(val(prenode)<=next() != null<>
{ if(val(prenode)<=next()<=data() == val(e)

}

{ val(prenode)<=SetNext(val(prenode)<=next()<=next()); }
prenode = val(prenode)<=next();

if(val(prenode) == null<>) II equivalent to 'else'
{ this.anchor val(this.anchor)<=next(); }

return val(this);

obs elem<> Pair contains(read<> Pair e)
{ elem<> Pair res;

rep<data=elem<>> PNode node;

node= val(this.anchor);
while(val(node) != null<>
{ if(val(node)<=data() == val(e)) { res

node= val(node)<=next();
}
return val(res);

}

obs free<dest=elem<>> PDatait elements()
{ free<dest=rep<data=elem<>>> PNodeit nn;

val(node)<=data();}

nn = new<dest=rep<data=elem<>>> PNodeit()<=StartAt(val(this.anchor));
return new<dest=elem<>> PDatait()<=Wrap(destval(nn));

}

II standard map Object to Object implementation with an entry-set object
class Mapimp {

rep<elem=rep<fst=key<>, snd=value<>>> PSetimp entryset;

mut co<> Mapimp Init()
{ this.entryset = new<elem=rep<fst=key<>, snd=value<>>> PSetimp();

return val(this);
}

mut co<> Mapimp Add(key<> Object k, value<> Object v)
{ rep<fst=key<>, snd=value<>> Pair p;

free<dest=rep<fst=key<>, snd=value<>>> PDatait entries;

II check for old entry with key k

239

}

}

entries= val(this.entryset)<=elements();
while(val(entries)<=current() !=null<>)
{ if(val(entries)<=current()<=first() val(k))

{ p = val(entries)<=current(); }
entries= destval(entries)<=Step();

}

II if there is none, create new entry and insert it
if(val(p) == null<>)
{ p = new<fst=key<>,snd=value<>> Pair();

val(this.entryset)<=Add(val(p));
}

II set key and value of old/new entry
val(p)<=Set(val(k), val(v));
return val(this);

mut co<> Mapimp Remove(read<> Object k)
{ free<dest=rep<fst=key<>, snd=value<>>> PDatait entries;

}

entries= val(this.entryset)<=elements();
while(val(entries)<=current() != null<>)
{ if(val(entries)<=current()<=first() == val(k))

}

{ val(this.entryset)<=Remove(val(entries)<=current()); }
entries= destval(entries)<=Step();

return val(this);

obs value<> Object lookup(read<> Object k)
{ value<> Object res;

free<dest=rep<fst=key<>, snd=value<>>> PDatait entries;

}

entries = val(this.entryset)<=elements();
while(val(entries)<=current() !=null<>)
{ if(val(entries)<=current()<=first() == val(k)

{ res= val(entries)<=current()<=second(); }
entries= destval(entries)<=Step();

}
return val(res);

obs free<dest=rep<fst=key<>, snd=value<>>> PDatait
{

return val(this.entryset)<=elements();
}

240

entries()

B.2 Refactored with Self-Calls

Class Mapimp defines three time-in methods Add, Remove, and lookup-the same
iteration over the entryset component in search for a given (potential) key object k.
With the extension of JaM for unrestricted self-calls in §7.2.3, class Mapimp can be
restructured by factoring this search into a separate method find_entry:

class Maplmp {
rep<elem=rep<fst=key<>, snd=value<>>> PSetlmp entryset;

mut co<> Maplmp !nit()
{ this.entryset = new<elem=rep<fst=key<>, snd=value<>>> PSetlmp();

return val(this);
}

obs rep<fst=key<>, snd=value<>> Pair find_entry(read<> Object k)
{ rep<fst=key<>, snd=value<>> Pair p;

}

free<dest=rep<fst=key<>, snd=value<>>> PDatalt entries;

entries= val(this.entryset)<=elements();
while(val(entries)<=current() != null<>)
{ if(val(entries)<=current()<=first() val(k))

{ p = val(entries)<=current(); }
entries= destval(entries)<=Step();

}

return val(p);

mut co<> Maplmp Add(key<> Object k, value<> Object v)
{ rep<fst=key<>, snd=value<>> Pair p;

}

II check for old entry with key k
p = find_entry(val(k)); II<- self call

II if there is none, create new entry and insert it
if(val(p) == null<>)
{ p = new<fst=key<>,snd=value<>> Pair();

val(this.entryset)<=Add(val(p)) ;
}

II set key and value of old/new entry
val(p)<=Set(val(k), val(v));
return val(this);

mut co<> Maplmp Remove(read<> Object k)
{ rep<fst=key<>, snd=value<>> Pair p;

p = find_entry(val(k)); II<- self call
if(val(p) !=null<>) { val(this.entryset)<=Remove(val(p)); }

241

return val(this);
}

obs value<> Object lookup(read<> Object k)
{ value<> Object res;

}

rep<fst=key<>, snd=value<>> Pair p;

p = find_entry(val(k)) ; II <- self call
if(val(p) !=null<>) {res= val(p)<=second();}
return val(res);

obs free<dest=rep<fst=key<>, snd=value<>>> PDatalt entries()
{

return val(this.entryset)<=elements();
}

}

B.3 In Sugared Generic JaM

Below, the map example with iterators is implemented in sugared JaM (§7.2.1) with
interfaces and class parameters (§7.2.2).

I********************** Interfaces package ***********************************I
interface Iterator<T> {

mut void Step();
obs dest T current();

}

interface Set<T> {

}

mut void Add(elem T e);
mut void
obs elem T

Remove(read T e);
contains(read T e);

obs free<dest=elem> Iterator<T> elements();

interface Map<K,V> {
mut void Add(key K k, value V v);
mut void Remove(read K k);
obs value V lookup(read K k);
obs free<dest=rep<fst=key, snd=value>> Iterator<Pair<K,V>> entries();

}

I********************* DSComponents package **********************************I
II standard pair class
class Pair<A,B> {

fst A fst;
snd B snd;

mut void
obs fst A
obs snd B

Set(fst A a, snd B b)
first()
second()

{ this.fst = a; this.snd
{ return this.fst; }
{ return this.snd; }

242

b; }

}

II single linked nodes
class Node<T> {

co Node<T>
data T

next;
data;

mut void SetNext(co Node<T>
mut void SetData(data T p)
obs co Node<T> next()
obs data T data()

}

n) { this.next = n; }

{ this.data = p; }

{ return this.next; }

{ return this.data; }

I********************* DSiterators package ***********************************I
II iterator over single-linked list of Nodes
class Nodelt<T> implements Iterator<Node<T>> {

dest Node<T> curnode;

mut void StartAt(dest Node<T> n)
{ this.curnode = n; }

mut void Step() { this.curnode = this.curnode.next();}
obs dest Node<T> current() {return this.curnode; }

}

II iterator over data in the Nodes from an interator
class Datalt<T> implements Iterator<T> {

rep<dest=read<data=dest>> Iterator<Node<T>> nodes;

}

mut void

mut void
obs dest T

Wrap(free<dest=read<data=dest>> Iterator<Node<T>> nn)
{ this.nodes = nn; }

Step() { this.nodes.Step();}
current() { dest T res;

}

if(this.nodes.current() != null)
{ res= this.nodes.current() .data(); }
return res;

I********************* DSCollectionlmp package *******************************I
II set implemented with single-linked list
class Setlmp<T> implements Set<T> {

rep<data=elem> Node<T> anchor;

mut void Add(elem T e)
{

if(this.contains(e) == null)
{ this.anchor = new<data=elem> Node<T>();

this.anchor.SetData(e);
this.anchor.SetNext(this.anchor);

}

}

243

}

mut void Remove(read T e)
{ rep<data=elem> Node<T> prenode;

}

if(this.anchor !=null
{ if(this.anchor.data() != e

{ prenode = this.anchor;

}

}

while(prenode.next() != null)
{ if(prenode.next() .data() == e)

}

{ prenode.SetNext(prenode.next().next()); }
prenode = prenode.next();

if(prenode null) II equivalent to 'else'
{ this.anchor = this.anchor.next(); }

obs elem T contains(read T e)
{ elem T res;

}

rep<data=elem> Node<T> node;

node= this.anchor;
while(node !=null
{ if(node.data() == e) { res

node= node.next();
}
return res;

node.data(); }

obs free<dest=elem> Iterator<T> elements()
{ free<dest=rep<data=elem>> Nodelt<T> nn;

}

nn = new<dest=rep<data=elem>> Nodelt<T>() .StartAt(this.anchor);
return new<dest=elem> Datalt<T>() .Wrap(nn) ;

II standard map implementation with an entry-set object
class Maplmp<K,V> implements Map<K,V> {

rep<elem=rep<fst=key, snd=value>> Set<Pair<K,V>> entryset;

mut void !nit()
{ this.entryset = new<elem=rep<fst=key, snd=value>> Setlmp<Pair<K,V>>();
}

obs rep<fst=key, snd=value> Pair<K,V> find_entry(read K k)
{ rep<fst=key, snd=value> Pair<K,V> p;

free<dest=rep<fst=key, snd=value>> Datalt<Pair<K,V>> entries;

entries= this.entryset.elements();

244

}

}

while(entries.current() != null
{ if(entries.current() .first() k)

}

{ p = entries.current(); }
entries.Step();

return p;

mut void Add(key K k, value V v)
{ rep<fst=key, snd=value> Pair<K,V> p;

}

II check for old entry with key k
p = find_entry(k); //<-self call

II if there is none, create new entry and insert it
if(p ==null)
{ p = new<fst=key,snd=value> Pair<K,V>();

this.entryset.Add(p);
}

II set key and value of old/new entry
p.Set(k, v);

mut void Remove(read K k)
{ rep<fst=key, snd=value> Pair<K,V> p;

p = find_entry(k); //<-self call
if(p !=null) { this.entryset.Remove(p);}

}

obs value V lookup(read K k)
{ value Object res;

}

rep<fst=key, snd=value> Pair<K,V> p;

p = find_entry(k); //<-self call
if(p !=null) {res= p.second();}
return res;

obs free<dest=rep<fst=key, snd=value>> Iterator<Pair<K,V>> entries();
{

return this.entryset.elements();
}

245

Bibliography

[AC96] M Abadi, L Cardelli: A Theory of Objects; Springer 1996.
[ASS96] Harold Abelson, Gerald Jay Sussman, Julie Sussman: Structure and Interpretation of Computer Programs

(2nd. ed.); MIT Press 1996.
[AW+92J M Aksit, K Wakita, eta!.: Abstracting object interactions using composition filters; Project Report of

TRESE group; Univ. of Twente, the Netherlands 1992.
[AKCOl] Jonathan Aldrich, Craig Chambers, David Notkin: ArchJava: Connecting Software Architecture to Imple

mentation; Submitted for publication, 2001. http:/ /citeseer.nj.nec.com/aldrichOlarchjava.html
[ACN02] J Aldrich, V Kostadinov, C Chambers: Alias annotations for program understanding; OOPSLA '02; ACM

2002.
[Alm97] Paulo Sergio Almeida: Balloon Types: Controlling Sharing of State in Data Types; ECOOP'97; LNCS

1241; Springer 1997.
[Ar+96] Alessandro Artale, Enrico Franconi, Nicola Guarino, Luca Pazzi: Part-whole relations in object-centered

systems: An overview; Data & Knowledge Engineering 20; Elsevier 1996.
[Ame87] Pierre America: Inheritance and subtyping in a parallel object-oriented language; ECOOP'87; LNCS 276;

Springer 1987.
[Ast96] Hernan Astudillo R: Reorganizing Split Objects; 138-149 in OOPSLA'96; ACM 1996.
[Bak95] Henry GBaker: 'Use-Once' Variables and Linear Objects- Storage Management, Reflection and Multi

Threading; 45-52 in SIGPLAN Notices 30(1); ACM 1995.
[BN02] Anindya Banerjee, David A Nauman: Representation Independence, Confinement and Access Control; 166-

177 in POPL'02; ACM 2002.
[BW99] Boumedine Belkhouche, Joel Wu: Behavioral Specification and Analysis of Object-Oriented Designs; JOOP

11(8); SIGS 1999.
[BLM97] J C Bicarregui, K C Lano, T S E Maibaum: Objects, Associations and Subsystems: A Hierarchical Approach

to Encapsulation; 324-343 in ECOOP'97; LNCS 1241; Springer 1997.
[Bi+8o] G M Birtwistle, 0-J Dahl, B Myhrhaug, K Nygaard: Simula begin (2nd. ed.); Studentlitteratur, Bratt-Institut

fiir Neues Lemen, and Cartwell-Brat 1980.
[BC87] Edwin Blake, Steve Cook: On Including Part Hierarchies in Object-Oriented Languages, with an Implemen

tation in Smalltalk; 41-50 in ECOOP'87; LNCS 276; Springer 1987.
[Bla99] Bruno Blanchet: Escape analysis for object-oriented languages: Applications to Java; OOPSLA '99; ACM

1999.
[B098] Conrad Bock, James Odell: A more complete model of relations and their implementations: aggregation;

JOOP 11(5); SIGS 1998.
[Boo94] Grady Booch: Object-Oriented Analysis and Design with Applications (2nd. ed.); Addison-Wesley 1994.

(first published 1991).
[Bos96] J Bosch: Object Acquaintance Selection and Binding; Research Report 13/96 ISRN HKR-RES-96/13-SE;

University of Karlskrona/Ronneby, Department of Computer Science and Business Administration 1996. Ap
peared in Theory and Practice of Object Systems 4(3); 1998.

[ENROl] John Boyland, James Noble, William Retert: Capabilities for Sharing: A Generalisation of Uniqueness
and Read-Only; 2-27 in ECOOP'Ol; LNCS 2072; Springer 2001.

[BoyOl] John Boyland: Alias Burying: Unique Variables Without Destructive Reads; 533-553 in Software- Practice
and Experience 31(6); Wiley 2001.

[Bre91 J R Breu: Algebraic Specification Techniques in Object Oriented Programming Environments; LNCS = 562
; Springer 1991.

[Bro87] F P Brooks: No Silver Bullet: Essence and Accidents of Software Engineering; Computer April 1987; IEEE
1987. First published in Information Processing '86; Elsevier 1986.

[Bru96] Kim B Bruce: Typing in object-oriented languages: Achieving expressiveness and safety; Technical Report;
Williams College 1996.

[BPV98] Kim B Bruce, Leaf Petersen, Joseph Vanderwaart: Modules in LOOM: Classes are not enough; 1998.
ftp:/ /ftp.cs.williams.edu/pub/kim/modules.dvi.gz

[BPF97] Kim B Bruce, Leaf Petersen, Adrian Fiech: Subtyping is not a good "Match" for object-oriented languages;
104-127 in ECOOP'97; LNCS 1241; Springer 1997.

246

[CROO] Cianin Bryce, Chrislain Razafimahefa: An Approach to Safe Object Sharing; 367-381 in OOPSLA'OO; ACM
2000.

[Bud95] Tim Budd: Multiparadigm Programming in Leda; Addison-Wesley 1995.
[Bun79] Mario Bunge: Ontology I: The Furniture of the World (Treatise on Basic Philosophy 3); DReidel Publishing

1979.
[Ca+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, John C Mitchell: F-bounded polymorphism for

object-oriented programming; 273-280 in Functional programming languages and computer architecture); 1989.
[CW85] Luca Cardelli, Peter Wegner: On Understanding Types, Data Abstraction, and Polymorphism; Computing

Surveys 17(4); ACM 1985.
[Car97] Luca Cardelli: Type Systems; Handbook of Computer Science and Engineering Chapter 103; CRC Press

1997.
[Cas97] Guiseppe Castagna: Object-Oriented Programming: A Unified Foundation; Birkhauser 1997.
[CH88] Roger Chaffin, Douglas J Herrmann: The nature of semantic relations: a comparison of two approaches;

289-334 in Martha Walton Evens (ed.): Relational models of the lexicon: representing knowledge in semantic
networks; Cambridge 1988.

[Cha91] Dennis de Champeaux: Object-Oriented Analysis and Top-Down Software Development; 360-376 in
ECOOP'91; LNCS 512; Springer 1991.

[CLF93] Dennis deChampeaux, Doug Lea, Penelope Faure: Object-Oriented Software Development; Addison-Wesley
1993.

[CLF92] Dennis deChampeaux, Doug Lea, Penelope Faure: The Process of Object-Oriented Design; 45-62 in OOP
SLA'92; ACM 1992.

[Civ93] Franco Civello: Roles for composite objects in object-oriented analysis and design; 376-393 in OOPSLA'93;
ACM 1993.

[ClaOl] David Clarke: Object Ownership & Containment; PhD thesis; Univ. of New South Wales 2001.
[CPN98] David G Clarke, John M Potter, James Nobel: Ownership Types for Flexible Alias Protection; 48-64 in

OOPSLA '98; ACM 1998.
[CJ75] Ellis Cohen, David Jefferson: Protection in the Hydra Operating System; 141-160 in SIGOPS 9(5); ACM

1975.
[Coo90] William R Cook: Object-Oriented Programming Versus Abstract Data Types; Foundations of Object

Oriented Languages; LNCS 489; Springer 1991.
[CHC90] William R Cook, Walter Hill, Peter SCanning: Inheritance is not sub typing; POPL'90; ACM 1990.
[CWM99] Karl Crary, David Walker, Greg Morrisett: Typed memory management in a calculus of capabilities;

POPL'99; ACM 1999.
[DB+96] John Daly, Andrew Brooks, James Miller, Marc Roper, Murray Wood: Evaluating Inheritance Depth on

the Maintainability of Object-Oriented Software; 109-132 in Empirical Software Engineering 1(2); 1996.
[DLN98] David L Detlefs, K Rustan M Leino, Greg Nelson: Wrestling with rep exposure; SRC Research Report 156;

DEC 1998.
[DL97] Krishna Kishore Dhara, Gary T Leavens: Forcing behavioral sub typing through specification inheritance;

ICSE'96; IEEE 1996. Also in a revised version as Technical Report TR#95-20c at Iowa State Univ., 1997.
[DD95a] Jin Song Dong, Roger Duke: The Geometry of Object Containment; 41-63 in Object Oriented Systems 2;

CHampman & Hall 1995.
[DD95b] Jin Song Dong, Roger Duke: Exclusive Control within Object Oriented Systems; 123-132 in TOOLS Pa

cific'95; Prentice Hall 1995.
[DE97] Sophia Drossopoulou, Susan Eisenbach: Java is Type Safe -Probably; 387-418 in ECOOP'97; LNCS 1241;

Springer 1997.
[EKW92] David W Emley, Barry D Kurtz, Scott N Woodfield: Object-Oriented Systems Analysis: A Model-Driven

Approach; Yourdon Press 1992.
[WF94] A K Wright, M Felleisen: A syntactic approach to type soundness; 38-94 in Information and Computation

115; 1994.
[FM90] J Fiadeiro, T Maibaum: Describing, Structuring and Implementing Objects; Foundations of Object-Oriented

Languages; LNCS 489; Springer 1991.
[FFA99] Jeffrey S Foster, Manuel Fahndrich, Alexander Aiken: A Theory of Type Qualifiers; PLDI'98;SIGPLAN

Notices 34(5); ACM 1999.
[Ga+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of Resuable

Object-Oriented Software; Addison-Wesley 1995.
[GM93] Dipayan Gangopadhyay, S Mitra: ObjChart: Tangible Specification of Reactive Object Behavior; ECOOP'93;

LNCS 707; Springer 1993.
[GH75] John D Gannon, J J Horning: Language Design for Programming Reliability; Trans. SE 1(2); IEEE 1975.
[GM97] Andreas Gawecki, Florian Matthes: Integrating Subtyping, Matching and Type Quantification: A Practical

Perspective; 26-47 in ECOOP'97; LNCS 1241; Springer 1997.
[GTZ98] Daniela Genius, Martin Trapp, Wolf Zimmermann: An Approach to Improve Locality Using Sandwich

Types; Types In Compilation'98; LNCS 1473; Springer 1998.
[GP95] Peter Gerst!, Simone Pribbenow: Midwinters, end games, and body parts: a classification of part-whole

relations; 865-889 in Int. J. Human-Computer Studies 43; Academic 1995.

247

[GL95] Joseph Gil, David H Lorenz: Environmental Acquisition ~ A New Inheritance-Like Abstraction Mechanism;
TR LPCR-9507; Technion, Israel Institute of Technology, Haifa 1995. A shorter version appeared in OOPSLA '96;
ACM 1996.

[GR83] Adele Goldberg, David Robson: Smalltalk-80: The Language and its Implementation; Addison-Wesley 1983.
[GorDO] Mike Gordon: Christopher Strachey: Recollections of His Influence; 65~67 in Higher-Order and Symbolic

Computation 13; Kluwer 2000.
[GJSOO] James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The Java Language Specification (2nd. ed.); Sun Mi

crosystems 2000.
[GB99] Aaron Greenhouse, John Boyland: An Object-Oriented Effects System; 205~229 in ECOOP'99; LNCS 1628;

Springer 1999.
[GPV01] Christian Grot hoff, Jens Pals berg, Jan Vitek: Encapsulating Objects with Confined Types; OOPSLA '01;

ACM 2001.
[Gun92] Carl A Gunter: Semantics of programming languages: structures and techniques; MIT 1992.
[HLSOO] Harri Hakonen, Ville Leppanen, Tapio Salakoski: Object Integrity while Allowing Aliasing; 91~96 in

ICS'2000.
[HGP92] M Halper, J Geller, Y Perl: An OODB "Part" Relationship Model; 602~611 in CIKM'92; 1992.
[Ham97] Graham Hamilton (ed.): JavaBeans (1.01); Sun Microsystems 1997.
[HG97] David Hare!, Eran Gery: Executable Object Modeling with Statecharts; 31~42 in Computer 30(7); IEEE

1997. Early version in ICSE'96); IEEE 1996.
[HJS92] T Hartmann, RJunghand, G Saake: Aggregation in a Behavior Oriented Object Model; ECOOP'92; LNCS

615; Springer 1992.
[Hau93] Franz J Hauck: Inheritance Modeled with Explicit Bindings: An Approach to Typed Inheritance; OOP

SLA'93; ACM 1993.
[HM95] Ian J Hayes, Brendan P Mahony: Using Units of Measurement in Formal Specifications; 329~347 in Formal

Aspects of Computing 7(3); 1995.
[HHG90] RHelm, I M Holland, D Gangopaghyay: Contracts: specifying behavioral compositions in object-oriented

systems; 169~180 in OOPSLA/ECOOP'90;SIGPLAN Notices 25(10); ACM 1990.
[HB99b] B Henderson-Sellers, F Barbier: What is this thing called aggregation?; 236~250 in TOOLS 29 ; IEEE 1999.
[Hen97] B Henderson-Sellers: OPEN Relationships: Composition and Containment; JOOP 10(7); SIGS 1997.
[HHN92] Laurie Hendren, Joseph Hummel, Alexandru Nicolau: Abstractions for Recursive Pointer Data Structures:

Improving the Analysis and Transformation of Imperative Programs; 249~260 in PLDI'92;SIGPLAN Notices
27(7); ACM 1992.

[Hoa72] C A RHoare: Proof of correctness of data representations; 271~281 in Acta Informatica 1(4); Springer;1972.
[Hog91] John Hogg: Islands: Aliasing Protection In Object-Oriented Languages; OOPSLA '91; ACM 1991.
[Ho+92] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, Richard Holt: The Geneva Convertion On The

Treatment of Object Aliasing; Follow-up report on ECOOP'91 workshop "Object-Oriented Formal Methods";
11~15 in OOPS Messenger 3(2); ACM 1992.

[HHN94] Joseph Hummel, Laurie Hendren, Alexandru Nicolau: A Language for Conveying the Aliasing Properties
of Dynamic, Pointer-Based Data Structures; 208~216 in 8th. International Parallel Processing Symposium 1994.

[IPW99] Atsushi lgarishi, Benjamin Pierce, Philip Wadler: Featherweight Java: A minimal core calculus for Java
and GJ; OOPSLA'99; ACM 1999.

[ILE88] Madelyn Anne Iris, Bonnie E Litowitz, Martha Evens: Problems of the part-whole relation; 261 ~288 in
Martha Walton Evens (ed.): Relational models of the lexicon: representing knowledge in semantic networks;
Cambridge 1988.

[IS098] Programming Languages ~ C++; ISO /IEC 1998.
[IS095] Programming Languages~ Ada; ISO/IEC 1995.
[Ja+94] lvar Jacobson, Magnus Christerson, Patril Jonsson, Gunnar Overgaard: Object-Oriented Software Engineer

ing; Addison-Wesley 1994. (first published 1992).
[J093] Ralph EJohnson, William FOpdyke: Refactoring and aggregation; 264~278 in International Symposium on

Object Technologies for Advanced Software; LNCS 742 ; Springer 1993.
[JHC84] P N Johnson-Laird, D J Herrmann, R Chaffin: Only Connections: A Critique of Semantic Networks; 292~315

in Psychological Bulletin 96(2); APA 1984.
[JL76] AKJones, BHLiskov: A Language Extension for Controlling Access to Shared Data; 277~285 in Software

Engineering 2(4); IEEE 1976.
[KS92] Gerti Kappel, Michael Schrefi: Local referential integrity; 41~61 in Entity-Relationship Approach'92; LNCS

645 ; Springer 1992.
[Ken94] Andrew Kennedy: Dimension types; 348~362 in in Programming Languages and Systems ESOP'94; LNCS

788 ; Springer 1994.
[Ken97] Andrew Kennedy: Relational parametricity and units of measure; 442~455 in in POPL'97; ACM 1997.
[KM95] S Kent, I Maung: Encapsulation and Aggregation; TOOLS Pacif.ic'95; Prentice Hall 1995.
[KR94] H Kilov, J Ross: Information Modeling: An Object-Oriented Approach; Prentice Hall 1994.
[Ki+87] Won Kim, Jay Banerjee, Hong-Tai Chou, Jorge F Garza, Darrell Woelk: Composite Object Support in an

Object-Oriented Database System; OOPSLA'87; ACM 1987.
[Ki+ss] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F Garza, Darrell Woelk, Jay Banerjee: Integrating An Object

Oriented Programming System With a Database System; OOPSLA'SS; ACM 1988.

248

[KS93] NilsKlarlund, Michael I Schwartzbach: Graph Types; 196-205 in POPL'93; ACM 1993.
[Kni96] Gunter Kniesel: Encapsulation = Visibility+ Accessibility; Technical Report IAI-TR-96-12; CS Dept III,

Univ. Bonn 1996.
[KT99] Gunter Kniesel, Dirk Theisen: JAG - Java with Transitive Readonly Access Control; should be in: Object

Oriented Technology: ECOOP'99 Workshop Reader, LNCS 1743, 1999.
[Kni99] G Kniesel: Type-safe delegation for run-time component adaption; ECOOP'99; LNCS 1628; Springer 1999.
[Kol99] M Kolp: A Metaobject Protocol for Integrating Full-Fledged Relationships into Reflective Systems; PhD

thesis; INFODOC, Universite Libre de Bruxelles, Belgium 1999.
[Kri94] B B Kristensen: Complex Associations: Abstractions in Object-Oriented Modeling; OOPSLA'94; ACM 1994.
[KM96] B B Kristensen, Daniel C M May: Activities: Abstractions for Collective Behavior; ECOOP'96; LNCS 1098;

Springer 1996.
[Lam93] John Lamping: Typing the Specialization Interface; OOPSLA'93; ACM 1993.
[Lam73] B W Lampson: A Note on the Confinement Problem; Comm of the ACM 16(10); ACM 1973.
[La+77] B W Lampson, eta!.: Report on the programming language Euclid; SIGPLAN Notices 12(2); ACM 1977.
[Lea99] Gary T Leavens: Larch/ C++ Reference Manual (Revision 5.41); Iowa State Univ. 1999.
[LM88] Ole Lehrmann Madsen, Birger Moller-Pedersen: What Object-Oriented Programming May Be - and What

It Does Not Have To Be; 1-20 in ECOOP'88; LNCS 322; Springer 1988.
[Lei95] K Rustan M Leino: Toward Reliable Modular Programs; PhD thesis, Technical Report TR-95-03; California

Institute of Technology 1995.
[Lei01] K Rustan M Leino: Extended Static Checking: A Ten- Year Perspective; 157-175 in Informatics: 10 Years

Back, 10 Years Ahead; LNCS 2000 ; Springer 2001.
[LNOO] K Rustan M Leino, Greg Nelson: Data abstraction and information hiding; Research Report 160; Compaq

SRC 2000.
[LS97] K Rustan M Leino, Raymie Stata: Virginity: A contribution to the specification of object-oriented software;

Technical Note 1997-001; DEC SRC 1997.
[LL97] Clarence I Lewis, Cooper H Langford: Symbolic Logic; Dover Publications 1932. Reprinted in Irving M Copi,

James A Gould: Contemporary Readings in Logical Theory; Macmillan 1967.
[LH89] Karl J Lieberherr, Ian Holland: Assuring good style for object-oriented programs; 38-48: IEEE Software

6(5); IEEE 1989.
[Lif93] Rainer HLiffers: Inheritance versus Containment; SIGPLAN Notices 28(9); ACM 1993.
[LZ75] Barbara H Liskov, Stephen N Zilles: Specification Techniques for Data Abstractions; SE 1(1); IEEE 1975.
[Lis92] Barbara H Liskov: A History of CLU; Technical Report; MIT 1992.
[LW94] Barbara HLiskov, Jeanette MWing: A Behavioral Notion of Subtyping; 1811-1841 in TOPLAS 16(1);

ACM 1994.
[Lis88] Barbara H Liskov: Data Abstractions and Hierarchy; 17-34 in SIGPLAN Notices 25(5); ACM 1988.
[Liu92] Ling Liu: Exploring semantics in aggregation hierarchies for object-oriented databases; 116-125 in ICDE'92

; IEEE 1992.
[Lou94] Kenneth C Louden: Programmiersprachen - Grundlagen, Konzepte, Entwurf; Thomson 1994. Original title:

jProgramming Languages - Principles and Practice~ 1993.
[LG88] John M Lucassen, David K Gifford: Polymorphic effect systems; POPL'88; ACM 1988.
[LV95] David C Luckham, James Vera: An Event Based Architecture Definition Language; Trans. Software Engi

neering 21(9); IEEE 1995.
[Mar96] Robert C Martin: The Liskov Substitution Principle; C++ Report; SICS March 1996.
[MA79] JRMcGraw, GRAndrews: Access Control in Parallel Programs; 1-9 in Software Engineering 5(1); IEEE

1979.
[Mey88] Bertrand Meyer: Object Oriented Software Construction; Prentice Hall 1988.
[Mez98] Mira Mezini: Variational Object-Oriented Programming Beyond Classes And Inheritance; Kluwer 1998.
[Mic02] MSDN Library; web-pages; Microsoft 2002. http:/ /msdn.microsoft.com/library /default.asp?url=/library /en-

us/com/
[MD95] The Component Object Model Specification (0.9); Microsoft, DEC 1995.
[MSI90] Hafdeh Mili, John Sibert, Yoav Intrator: An Object-Oriented Model Based on Relations; 139-155 in The J.

of Systems and Software 12(2); Elsevier 1990.
[Mi+97] Robin Milner, Mads Tofte, Robert Harper, David MacQueen: The Definition of Standard ML (revised);

MIT Press 1997.
[Min96] Naftaly H Minsky: Towards Alias-F'ree Pointers; 189-209 in ECOOP'96; LNCS 1098; Springer 1996.
[MZ92] Guido Moerkotte, Andreas Zachmann: Multiple Substitutability Without Affecting the Taxonomy; 120-135

in Advances in Database Technology EDBT'92; LNCS 580; Springer 1992.
[MC94] Ana MD Moreira, Robert G Clark: Complex Objects: Aggregates; TR-CSM-123; Univ. Stirling, Scotland

1994.
[MP01] Peter Muller, Arnd Poetzsch-Heffter: Universes: A Type System for Alias and Dependency Control; Infor

matik Berichte 279; Fernuniversitiit Hagen 2001.
[MP99a] Peter Muller, Arnd Poetzsch-Heffter: Universes: A Type System for Controlling Representation Expo

sure; Programmiersprachen und Grundlagen der Programmierung, 10. Kolloquium;Informatik Berichte 263;
FernUniversitiit Hagen 1999/2000.

249

[MP99b] Peter Muller, Arnd Poetzsch-Heffter: Modular Specification and Verification Techniques for Object-Oriented
Software Components; G T Leavens, M Sitaraman (ed.): Foundations of Component-Based Systems; Cambridge
Univ. Press 1999.

[Nic99] Sheldon Nicholi: Wixins: a new object model; JOOP 12(7); SICS 1999.
[Nob99] James Noble: The Objects of Aliasing; presented at Intercontinental Workshop on Aliasing in Object Ori

ented Systems at ECOOP'99.
[NVP98] James Noble, Jan Vitek, John Potter: Flexible Alias Protection; 158-185: ECOOP'98; LNCS 1445; Springer

1998.
[Ode94] JJ Odell: Six Different Kinds of Composition; JOOP 5(8); SICS 1994.
[Ohe01] David von Oheimb: Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic; disser-

tation; Technische Universitii.t Miinchen 2001.
[OMGOO] The Common Object Request Broker: Architecture and Specification (2.4); OMG 2000.
[OMGOO] OMG Unified Modeling Language Specification (1.3); OMG 2000.
[OMOl] Klaus Ostermann, Mira Mezini: Object-Oriented Composition Untangled; OOPSLA'Ol; ACM 2001.
[Par72] D L Parnas: On the Critera To Be Used in Decomposing Systems into Modules; Communications of the

ACM 15(12); ACM 1972.
[Par94] Chris Partridge: Modelling the real world: Are classes abstractions or objects?; JOOP 7(7); SICS 1994.
[PNC98] John Potter, James Noble, David Clarke: The Ins and Outs of Objects; presented at ;ASWEC'98L (Ade

laide); 1998.
[Pre97] Wolfgang Pree: Komponentenbasierte Softwareentwicklung mit Frameworks; dpunkt 1997.
[Pun97] Franz Puntigam: Coordination Requirements Expressed in Types for Active Objects; ECOOP'97; LNCS

1241; Springer 1997.
[Qui95] Klaus Quibeldey-Cirkel: Das Objekt, Paradigm a in der Informatik; B G Teubner 1994.
[RBF98] D Ramazani, G v Bachmann, P Flocchini: Object Naming and Object Composition; Publication #1135;

Departement d'informatique et de recherche operationnelle, Universite de Montreal Novembre 1998.
[RCOO] Derek Rayside, Gerard T Campbell: An Aristotelian Understanding of Object-Oriented Programming; OOP

SLA '00; ACM 2000.
[Rey94] John C Reynolds: User-Defined Types and Procedural Data Structures as Complementary Approaches to

Data Abstraction; Carl A Gunter, John C Mitchell (ed.): Theoretical Aspects of Object-oriented Programming:
types, semantics, and language design; MIT Press 1994. First published 1975.

[Rey78] John C Reynolds: Syntactic control of interference; POPL'78; ACM 1978.
[RLOO] Clyde Ruby, Gary T Leavens: Safely Creating Correct Subclasses without Seeing Superclass Code; 208-228 in

OOPSLA'OO; ACM 2000.
[Rum94a] James Rumbaugh: Virtual worlds: Modeling at different levels of abstraction; JOOP 6(8); SICS 1994.
[Rum94c] James Rumbaugh: Building boxes: Composite objects; JOOP 7(7); SICS 1994.
[Rum95] James Rumbaugh: Taking things in context: Using composites to build models; JOOP 8(7); SICS 1995.
[Rum97] James Rumbaugh: 00 Myths: Assumptions from a language view; JOOP 9(9); SICS 1997.
[Ru+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William Lorensen: Object-Oriented

Modeling and Design; Prentice-Hall 1991.
[SFL98] Monika Saksena, Robert B France, Maria]\;[Larrondo-Petrie: A Characterization of Aggregation; Interna

tional Journal of Computer Systems Science and Engineering; 1998.
[Sat95] Ulrike Sattler: A concept language for an engieering application with part-whole relations; 119-123 in DL-95

International Workshop on Description Logics; Universita di Roma 1995.
[SIP97] Secure Internet Programming Group: HotJava 1.0 Signature Bug; web-page; Princeton Univ. 1997. http:

/ /www.cs.princeton.edu/sip/news/april29.html
[SPL98] Linda M Seiter, Jens Pals berg, Karl J Lieberherr: Evolution of Object Behavior using Context Relations;

79-92 in Transactions on Software Engineering 24(1); IEEE 1998.
[Set97] Ravi Sethi: Programming Languages: Concepts & Constructs (2nd.ed.); Addison-Wesley 1997.
[SG96] Mary Shaw, David Carlan: Software Architecture: perspectives on an emerging discipline; Prentice-Hall 1996.
[Sim95] AJHSimons: Rationalising Eiffel's Type System; CMingins, RDuke, BMeyer (ed.): TOOLS'95; Prentice-

Hall 1995.
[Sim87] Peter Simons: Parts: a study in ontology; Oxford 1987.
[SS77] J M Smith, DC Smith: Database abstaction: Aggregation and generalization; 105-133: Transactions on

database systems 2(2); ACM 1977.
[Sny86] Alan Snyder: Encapsulation and Inheritance in Object-Oriented Programming Languages; 38-45 in OOP-

SLA '86; ACM 1986.
[Sny93] Alan Snyder: The Essence of Objects: Concepts and Terms; 31-42 in IEEE Software 10(1); IEEE 1993.
[Som95] Ian Sommerville: Software Engineering (5th.ed.); Addison-Wesley 1995.
[SNH95] Dilip Soni, Robert L. Nord, Christine Hofmeister: Software Architecture in Industrial Applications; 196-207

in ICSE'95, IEEE 1995.
[Sta97] Raymie Stata: Modularity in the Presence of Subclassing; Research Report 145; DEC/SRC 1997.
[SB85] M Stefik, D G Bobrow: Object-oriented programming: themes and variations; 4Q-62 in The AI Magazine

6(4); 1985.
[SM95] Patrick Steyaert, Wolfgang De Menter: A Marriage of Class- and Object-Based Inheritance Without Un

wanted Children; 127-144 in ECOOP'95; LNCS 952; Springer 1995.

250

[St+96J Patrick Steyaert, Carine Lucas, Kim Mens, Theo D'Hondt: Reuse Contracts: Managing the Evolution of
Resuable Assets; 268~285 in OOPSLA'96; ACM 1996.

[Str94J Bjarne Stroustrup: The Design And Evolution of C++; Addison-Wesley 1994.
[SM97] Kevin J Sullivan, Mark Marchukov: Interface Negotiation and Efficient Reuse: A Relaxed Theory of the

Component Object Model; CS-97-11; Univ. of Virginia 1997.
[SunOOJ Java 2 Platform API Specification (Standard Edition, v 1.3); Sun Microsystems 2000.
[Sym97] D Syme: Proving JavaS Type Soundness; Tech. Report; Comp. Lab., University of Cambridge 1997.
[Szy92] Clemens A Szyperski: Import is not inheritance; why we need both: Modules and classes; 19~32 in ECOOP'92;

LNCS 615; Springer 1992.
[Tai96J A Taivalsaari: On the Notion of Inheritance; 439~479 in Computing Surveys 28(3); ACM 1996.
[TT94] Mads Tofte, Jean-Pierre Talpin: Implementing the call-by-calue lambda-calculus using a stack of regions;

188-201 in POPL'94; ACM 1994.
[US87J David Ungar, Randall B Smith: Self: The Power of Simplicity; 227~241 in OOPSLA '87; ACM 1987.
[Utt96] Mark Utting: Reasoning about aliasing; TR 96-37; Software Verification Research Center, Univ. of Queens

land 1996.
[Utt92] lvi Utting: An Object-Oriented Refinement Calculus with Modular Reasoning; PhD thesis; University of New

South Wales 1992.
[Var96] Achille C Varzi: Parts, Wholes, and Part- Whole Relations: The Prospects of Mereotopology; 259~86 in

Data and Knowledge Engineering 20; 1996.
[Vl\!099] S Vauttier, M Magan, C Oussalah: Extended Specification of Composite Objects in UML; JOOP 12(2);

SIGS 1999.
[VB99J Jan Vitek, Boris Bakowski: Confined Types; 82~96 in OOPSLA'99; ACM 1999.
[VCCH99] T VonEicken, C-C Chang, G Czajkowski, C Hawblitzel: J-Kernel: A Capability-Based Operating System

for Java; 369~394 in LNCS 1603; Springer 1999.
[Wad90J Philip Wadler: Linear Types can change the world!; Programming Concepts and Methods; Elsevier, North

Holland 1990.
[WMOOJ David Walker, Greg Morrisett: Alias Types for Recursive Data Structures; Int'l Workshop on Types in

Compilation, Montreal, Canada, Sep. 2000.
[vVeg90J Peter Wegner: Concepts and Paradigms of Object-Oriented Programming; 7-87 in OOPS Messenger 1(1);

ACM 1990.
[Wil92J Alan Cameron Wills: Formal Methods applied to Object-Oriented Programming; PhD thesis; Univ. Manch

ester 1992.
[WH87] Morton E V\Tinston, Douglas Herrmann: A Taxonomy of Part- Whole Relations; 417-444 in Cognitive Science

11; Ablex 1987.
[Wir83] Niklaus Wirth: Programming in Modula-2 (2nd. ed.); Springer 1983.
[WB+95] Murray Wood, Andrew Brooks, James Miller, Marc Roper: Empirical Emluation of Software Quality

Attributes; EFoCS-9-95; Univ. of Strathclyde, Glasgow 1995. www.cs.strath.ac.uk/CS/Research/EFOCS/Research
Reports/EFoCS-9-95.ps.Z

251

