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Abstract

The composition of several objects to one higher-level, composite object is a central
technique in the construction of object-oriented software systems and for the manage-
ment of their structural and dynamic complexity. Standard object-oriented program-
ming languages, however, focus their support on the elementary objects and on class
inheritance (the other central technique). They do not provide for the expression of
objects’ composition, and do not ensure any kind of encapsulation of composite ob-
jects. In particular, there is no guarantee that composite objects control the changes
of their own state (state encapsulation).

We propose to advance software quality by new program annotations that docu-
ment the design with respect to object composition and, based on them, new static
checks that exclude designs violating the encapsulation of composite objects’ state.
No significant restrictions are imposed on the composite objects’ internal structure
and dynamic construction. Common design patterns like Iterators and Abstract Fac-
tories are supported.

We extend a subset of the Java language by mode annotations at all types of object
references, and a user-specified classification of all methods into potentially state-
changing mutators and read-only observers. The modes superimpose composition
relationships between objects connected by paths of references at run-time. The
proposed mode system limits, orthogonally to the type system, the invocation of
mutator methods (depending on the mode of the reference to the receiver object),
the permissibility of reference passing (as parameter or result), and the compatibility
between references of different modes. These restrictions statically guarantee state
encapsulation relative to the mode-expressed object composition structure.
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Chapter 1

Introduction

1.1 Summary

This section gives a gentle introduction to the thesis, without formalism, UML dia-
grams, and program code (mostly).

1. THE OBJECT ABSTRACTION is the central concept of object-oriented program-
ming. It neatly integrates data and behavior, the two foundations of computation,
into one unit. Not only is the program partitioned into class modules that define
types of objects by combining definitions of data fields (also called “instance vari-
ables,” “attributes,” “data members” or “slots”) on one side, and methods (also called
“operations” or “member functions”) on the other side. Also the runtime system is
partitioned into objects that collaboratively, on one side, represent the program’s
data in their fields and, on the other side, carry out the program’s computation by
executing their methods. The architecture of an object-oriented system is made of
objects as the active components, and references between them as the collaboration-
enabling connectors: Object references transport the requests for method executions
(operation invocations) from caller to callee, and return the results back to the caller.
This architecture can change dynamically by the creation and destruction of objects
and object references.

Three related notions of “object” can occur in the description of software systems,
as the following paragraphs shall illustrate: At the base-level, the system is a flat
“sea” of elementary implementation objects, i.e., instances of concrete classes
that have only the fields and methods defined by their class. This is the perspective
of object-oriented programming languages. Above that, structures of collaborating
objects rooted in a “representative” object can be seen as one composite object with
the fields and methods of the representative, and additionally component objects
(possibly composite). The view of the system as a hierarchy of nested composite
objects corresponds to the structure of canonical recursive top-down refinement or
bottom-up composition of the system in object-oriented design. Finally, each object,



if seen from the outside, is an abstract object defined solely by its operations’
externally visible behavior. Abstract objects are classified by abstract classes (also
called “interfaces” or “types”), which are specifications of their instances’ public
operations, but leave it to concrete subclasses to define the fields and methods to
implement them by the field-manipulation and cooperation with component objects.

2. DATA REPRESENTATION. With objects, data can be represented at runtime in
several forms: First, the object abstraction supports data abstraction at a basic
level by allowing one to use the values of objects’ fields as the concrete representation
of some data to which the outside has access in an abstract fashion through their
methods. Objects (if they have methods to manipulate and return field values) are
data abstractions in the external view. Since the types of abstract data are defined
by the behavior of the operations on them, the classification of data abstractions is
supported in form of the classification of objects by abstract classes. For example,
calendar dates can be reified in software by objects with operations year, month,
dayOfMonth and, maybe, dayOfYear (abstract class Date). Implementation classes
then subclassify Date according to the used representation scheme for dates. The
realization of the representation schemes year + month + day-of-month, and year +
day-of-year, and days since 1 January 1970 (in unix) by the objects f1, f1’, and f2 is

depicted below:
f1 f1’ f2
1 February 1 February 2 February
1971 1971 1971

inside view (fields only, no methods) outside view

Second, the object abstraction supports linked data structures like double-
linked lists, rings, trees, etc., by allowing objects to capture references to one another
in their fields (whether or not they use them for message exchange). For example,
instances of a class Node can be used as the nodes of a single-linked list by using one
field for the link to the next node and another field for the value at that node. E.g.
we can store the above objects f1, f1’, and 2 in a list of linked Node objects (once or
repeatedly):

inside view (fields only, no methods) object graph view

The graph which captures the structure of objects’ interconnection by all object
references in a particular state (i.e., which object currently has a reference to which
object?) is called the object graph. In general the graph includes more than the
object references representing data structure links and stored data values—and thus
models not only the data structures in the system. It also includes all references
through which operation request messages may be sent between objects—and thus



models the system’s architecture.

Third, the object abstraction supports abstract data structures (sets, stacks,
dictionaries/maps, etc.) as the instances of abstract classes represented by not just a
single implementation object but an entire structure of objects, a composite object.
Its “representative” is the instance of the concrete class implementing the abstract
class. The representative implements the abstract object’s behavior, i.e., the abstract
data structure’s behavior in this case, by going beyond being a data abstraction, and
interacting (directly and indirectly) with the other objects in the structure, the sub-
objects, to make use of their behavior too. For example, a set can be represented by
adding a representative s with a reference to the above list’s initial node nl, and with
suitably implemented set-operations contains, size, Add, Remove, etc.:

f1 1’ 2
object graph view (a/b) outside view (a) outside view (b)

Depends on the methods’ external behavior, this structure can represent two dif-
ferent types of set abstractions. (In C+, these types could be written set<Date>
and set<Date*>.) A set-of-dates data structure Sy, that reifies the set {1 February
1971, 2 February 1971} of two dates, would be implemented if size() returns two
and contains(o) returns true for all Date objects o representing 1 February 1971
or 2 February 1971. A set-of-Date-objects data structure Sy, that reifies the set {f1,
f1', f2} of three software objects, would be implemented if size() returns three and
contains (o) returns true exactly for o € {f1,fl’,f2}. Note that in the former case,
the data in the Date objects’ fields is part of the concrete representation C of the set
abstraction S1, and s will have to send messages to the Date objects to find out what
dates they represent. In the latter case, what the Date objects represent is irrelevant
for the set, and there is no interaction between s and them. That is, only s and the
Node objects constitute the composite object C5 representing the set abstraction Ss.
The Date objects are separate data abstractions in this case.

One can use a set-of-Date-objects composite Cy to construct an alternative rep-
resentation C of the set-of-dates abstraction S;: Simply place a representative s’ in
front of s to adapt the methods’ behavior: s”’s Remove method removes from Cj any
Date object representing the given date; and instead of adapting size and contains,
it is easier to adapt the Add method to filter out Date objects representing dates
already represented by Cy’s Date objects. (It would not be a good idea to obtain
C{ not by object composition but by subclassing the implementation class of Cy’s
representative s: Set-of-dates is not a specialization, not a (behavioral) subtype, of
set-of-Date-objects.) We will come back to Cf in paragraph 8.

S

S

3. NOTIONS OF STATE. In the course of the computation, the values of objects’



fields can change and, through this, the object graph and the set of a composite’s sub-
objects. In programming languages, the notion of an (implementation) object’s state
is defined as the combination of its fields’ current values [Bi*80, GR83, GJS00, ISO98].
This is also called the object’s shallow state and contrasted to its deep state, which
is the name for the combination of shallow states of all objects reachable from the
object via paths of object references captured in fields. The state of a composite ob-
ject, the composite state, is something in-between these two extremes: In general,
only a certain portion of the objects reachable from the composite’s representative
along field-captured references belong to the composite object as sub-objects that
contribute their shallow states to the composite’s state. (Objects reachable only via
references local to some method invocations cannot contribute to the composite’s
state since the references are inaccessible to new invocations of the composite’s meth-
ods wanting to access the objects’ states.) Which of the reachable objects are the
“state-representing” sub-objects can be specified by the programmer using the mode
annotations introduced further below. The set of the composite’s state-representing
sub-objects is called its state representation. It will be formalized as the set
StRep(o) C O of their object identifiers. The abstract state, i.e., externally visible
state, of the composite as an abstract data structure (paragraph 2) is the composite’s
methods’ projection of the composite state to external behavior.

Note that the composite object’s state (composite state) can change without any
change in the corresponding representative’s state (shallow state): Ezample 1. Up-
dating the d field of Date object fl’ to 33 or 34 makes it represent, respectively, 2
February 1971 or 8 February 1971. Since f1’ is a sub-object of composite object Cj,
this is also a change of C7’s state. The first change is not visible in the outside
view; the represented data structure S; is not affected. The second change has a
side-effect: S; is now reifying a different, extended set {1 February 1971, 2 February
1971, 8 February 1971}. Ezample 2. Updating the data field of Node object n4 to a
new Date object f3 representing the date 3 February 1971 is a change to composite
objects C; and Cj, and thus a change to the representation of set abstractions S; and
Sa. As a side-effect, it changes the set reified by Sy to {1 February 1971, 2 February
1971, 3 February 1971}, and the set reified by Sy to {f1, f1’, f2, f3}.

This dissertation will ensure that such side-effects of the change of f1’ or n4 can
occur only as the part of s’s implementation of a state-changing mutator operation of
the abstract set. That is, in the context of the abstract data structure’s implementa-
tion, these are not unintended side-effects, but desired effects.

4. ENCAPSULATION. The notion of private fields means fields of an object that
are hidden from outside and accessible only to that object’s methods. (In modular
object-oriented languages like G+, Eiffel, and Java, the meaning of a private field is
that it is hidden from other class modules and accessible only by methods in the class
defining that field, irrespective of the field’s and the method’s object.) Consequently,
private fields’ values can vary over the object’s lifetime only in ways the object’s own
methods permit. This localization of the access to mutable state is a defining feature

4



of object-oriented languages. By enforcing the hiding of private fields, they improve
the modularity of the runtime system and help to predict and control its behavior.
For the programmer, hiding fields is not really a severe restriction since whenever
needed the object can provide, with minimal overhead, access to the field’s value by
operations get-value-of-x and set-value-of-z.

At the composite object level, one would expect a corresponding hiding of (state-
representing) component objects. Note that this is not entailed by hiding the fields:
If a field is private, this does not mean that the value in it is not shared. Other
objects may possess the same value and, if the value is an object reference, use it
to access the target object (through its operation interface). It is not uncommon
that object references in private fields are shared: For example, in order to provide
their clients access to their elements, Set objects like S, typically return an abstract
iterator object which yields one element after another to the client.! The typical
implementation of iterators would be for Set representative s to create a concrete
iterator which uses a reference into the linked list to extract the data value from each
node and return it. While this way the set object avoids making node components
accessible to the client, it does make them accessible to the iterator object.

This means that a new mechanism is needed to restrict access to component ob-
jects, a mechanism that it less strong than hiding. It should enforce a new property
called composite state encapsulation: A composite object’s state can change only
through its own operations, and not by the side-effects described above). Conse-
quently, between executions of the composite’s methods the composite state cannot
change, so that all invariants over it must remain intact. Hence state encapsula-
tion is a global system property which is strong enough to extend modular reasoning
about the representative to modular reasoning about the entire composite object. On
the other hand, state encapsulation is weak enough not to exclude structure-sharing
iterators and similar common patterns of object-oriented design.

For the component objects, composite state encapsulation means that if they
are state-representing then they cannot change state but on the initiative of the
corresponding representative. For external objects, composite state encapsulation
means that they may obtain references to the state-representing components, but
they are read-only.

5. MUTATORS AND SANCTUARIES. The enforcement of state encapsulation by a
static type system will be based on the declaration of all operations and methods as
either ‘mutator’ or ‘observer’, and on metaphorically associating each object o with
a protection domain, the sanctuary Sanc(o): An object’s fields may only be updated
in its own mutator methods (shallow state encapsulation). And these mutators may
be invoked on objects in 0’s sanctuary only from mutators of o and of objects in o’s

terators are an example that objects can not only be data abstractions but also behavioral or
process abstractions: Rather than holding data, iterators reify the client’s iteration process over the
data stored in another object, much like a coroutine.



sanctuary (mutator control or “the sanctuary invariant”). Representative o is the
only object outside of Sanc(o) that is permitted to send mutators into the sanctuary.
This means that all mutator executions in o’s sanctuary have to be initiated by a
mutator of 0. Mutator control plus the shallow state encapsulation property means
that field changes in representative o and in its sanctuary are possible only through
a mutator of o. If o were included in its own sanctuary, o € Sanc(o), there would be
no object to send the first mutator into the sanctuary.

G s C,
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. references
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The assignment of objects to a sanctuary will be based on certain paths of object
references labeled by the programmer with modes, as explained further below. The
mode-labeling and thus the assignment is independent from the references’ storage in
fields. Hence there may be objects in the sanctuary whose membership lasts just for
one method invocation. To get the composite state encapsulated, the programmer has
to assign all state-representing sub-objects (save o) to o’s sanctuary Sanc(o). That is,
StRep(o) \ {0} C Sanc(o) (“representation completeness”). (Since state-representing
sub-objects’ assignment must hold during and between method invocations, it must
be established by paths of references that are captured in fields. However, since
assignment will be based on the references’ mode classification, not their storage
place, sanctuaries may temporarily contain some non-state-representing sub-objects.)

By shallow state encapsulation, representation completeness means that any change
in a state-representing sub-object requires the execution of a mutator by representa-
tive o or by an object in 0’s sanctuary (and thus also by representative o by mutator
control). If then also no object can be added to, or removed from, the state represen-
tation StRep (o) without o’s mutators (coherence), any kind of change to the composite
state can be affected only through o’s mutators. Since these are, in the composite
object view, the mutators of composite O, we have composite state encapsulation.

If one sanctuary includes another one, Sanc(w) C Sanc(o), then the enclosing
sanctuary’s owner o can send mutators to objects in the nested sanctuary Sanc(w)
only indirectly via a mutator on w. Membership in sanctuaries will be defined below
so that it is transitive: w € Sanc(o) = Sanc(w) C Sanc(o). (This is consistent with
the assumption that state-representing sub-objects of state-representing sub-objects
of 0 also contribute to 0’s composite state, w € StRep(0) = StRep(w) C StRep(0).)

6. PaTHS OF OBJECT REFERENCES. Membership of w in o’s sanctuary as well as
the initiation of mutator executions in w by mutators of o will be based on certain
types of paths o ----+ w of object references from o to w in the current object graph.
This dissertation proposes a classification of paths into types called modes u € M.
The basic classification is five-fold:



A rep path is a path 0o ----+ w which means that w is in 0’s sanctuary and in
all sanctuaries containing o, but in no other. The programmer adds o’s state-
representing components w to o’s sanctuary by classifying paths o ----+ w from o
to w as rep. (Of course, only paths made entirely of references captured in fields
can persist between method invocations and thus effectively represent a piece of
the composite state.) The proposed type system will ensure that no other object
has a rep or free path to w, so that o is w’s unique owner.

e A free paths is a path o ----+ w meaning that w is in no object’s sanctuary
(excluding rep paths to w), and that all free paths to w must start with the
first reference of 0 ----+ w (so that o is w’s unique owner). This meaning will be

enforced by the proposed type system. Mode free is used for the temporary path
to recently created objects that can still be moved to other objects, and that are
currently used only locally within a method, like iterators. (Such objects can be
understood as non-state-representing, temporary or “behavioral” components.)

e A co-path is a path 0 ----» w which means that w is in the same (nested)
sanctuaries as o, and that the extension ¢ ----+ 0 ----» w of any path ¢ ----+ o
of mode u by 0 ----+ w is another path of mode u. Mode co is used for paths
with high cohesion, like the references linking a data structure or connecting two
tightly collaborating objects.

e An association path also extends other paths, but offers more flexibility in the
extension’s mode than a co-path. This category is needed for paths represent-
ing semantic relationships or data values like Set composite Cy’s elements or the
iterator’s current element. The details will be explained in paragraph §.

e A read path is a path o ----» w that has no meaning for w’s status and does not
extend other paths to a moded path to w. All paths which are none of the above
are classified as read.

Rep and free paths o ----» w are both “ownership paths,” guaranteeing that o
is the unique owner of w. We can superimpose an object composition meaning on
all of them (state-representing or otherwise), and get a standard object composition
hierarchy without shared components.? The type system moreover specializes and
broadens the above mutator control property for sanctuaries to the mutator control
path property: All mutator requests arriving at w have (indirectly) been sent from o
to w along one of its rep or free paths m. That is, if riso=09 - 01 - ... - 0p = w
then o invoked an operation on o0;, during whose execution o0; invoked an operation
on 0s, and so on, up to o,_;’s invocation of the mutator on w.

Co- and association paths do not fix their target’s place in sanctuaries or in the
object composition hierarchy. They obtain their relevance from third objects’ paths
to the path’s initial object, which determine the combined paths’ modes. Thus they

2Moded paths can be seen as representations of UML links: Ownership paths represent composi-
tion links o@——w, association paths of role a represent links o—%—w of public ordinary association
«, read paths represent links of private or implicit associations, and co-paths represent links mod-
eling integrative relationships, like between lintel and uprights in an arc [Ar+96).




are the basis for reducing the classification of larger paths to that of shorter ones,
down to the single object references, whose modes one can actually declare in the
program: In the example of date-set Sy represented by composite object C, the first
node is assigned to s’s sanctuary by classifying the anchor reference s — nl as a rep
reference. The remaining Node and Date objects in C; can then be placed into the
same sanctuary by classifying all the links between them as co-paths. Then they
extend the rep anchor reference to rep paths to each of C;’s components.
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7. EXCHANGE OF MODED REFERENCES. Since some modes’ meaning is relative
to the path’s source, if references of such modes are exchanged between objects as
parameter or result, their mode may have to be adapted to the new source. This is
necessary to preserve the consistency of the moding of paths in the object graph and
of the objects’ assignment to sanctuaries.

For example, if DateSetImp representative s invokes next() on Node nl which
returns the co reference nl — n2, then the reference s — n2 which s obtains must
not be a co reference, since s cannot be in its own sanctuary Sanc(s). The return
of the co reference can be better understood as the mode-preserving shortening of
two-references path s ££. nl <2, n2 to a one-reference path s — n2: The reference
which s obtains is a rep reference s £2£. n2. Should, on the other hand, one node nl
call next() on its co-object n2, then the returned reference’s mode is not adapted,
since the return simply shortens co path nl < n2 <2, n3 to nl1 <2, n3.
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Analogously, the mode of references passed as parameters has to be adapted:
If s has created a new Node object n0 in its sanctuary, then it should supply to
n0’s SetNext operation (expecting a co reference) one of its rep references, namely
s X2, nl, and not a reference s <% n’ to a node that is a co-object in the same
sanctuary as s (actually, in all the nested sanctuaries in which s resides).

In general, the mode of a result or formal parameter on the sender’s side of a
call-link is an adaption p.ou calculated relative to the call-link’s mode u, from the
mode p of the corresponding result or formal parameter of the receiver’s operation.
Consequently, two notions of interface have to be distinguished:

e Exported interfaces. The interfaces which all instances of a class ¢ export have
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a (minimum) signature ¥(c) defined by the class. Its entries f : u; d; — pd
specify the types of the parameter values which implementations of operation f
(can) expect to receive, and the type of the result values which they (must) ensure
to produce. Against this signature, the operations’ implementations in class ¢ and
its subclasses are type-checked.

e Imported interfaces. The interfaces which senders import through p.-references
to c-objects have the signature X(u, ¢) with modes from c-objects’ signature ¥(c)
adapted relative to call-link mode u,. Its entries f : prou; di — prop d specify
the types of the parameter values which the sender must ensure to supply, and
the type of the result values which the sender can expect to obtain. Against this
signature, the clients of c-objects, who send invocation requests through call-links
of type u, ¢, are type-checked.

This adaption is comparable in C+ to the signature X(const ¢) of read-only access
to records of type ¢, which is obtained from the general signature X(c) of c-records

by adapting the type 7 of each field to const 7.

8. FLEXIBLE EXTENSION BY ASSOCIATION PATHS. A classification with just the
modes rep, free, co, and read is insufficient for constructing the alternative date-set
composite C7 explained in paragraph 2 from a given set-of-Date-objects composite
Cy: Classifying the references ni — fj stored in the nodes of Cy as rep/free or co
would modify Cs directly into a date-set composite C; by making the Date objects
components of the respective Node object or of s. Mode read, on the other hand,
would leave the Date objects outside the set composite Cs, but then provide no basis
for their inclusion in the composite C] with C3 as a component. We need a more
flexible extension of paths: The Nodes’ data-references ni — fj must be classified
as association references extending s’s paths to the nodes to paths which can extend
reference s — s to paths s’ ----»+ f1,f1’, f2 of mode rep.
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This requires us to refine the mode-classification of paths:

On one hand, association paths are subdivided according to an unbounded num-
ber of association roles oo € A in order to distinguish different kinds of (object
reference) data in an object, like references in a Pair object to its first element wvs.
its second element. This subclassification enables us to define different modes for the
extension of a path by association paths of different roles. Syntactically, roles are
plain identifiers, similar to labels. For instance, the role of the Node’s data-references
could be called data, and the role of the element references stored in the abstract
set-of-Date-objects S could be called elem.
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On the other hand, the classification of all paths by the base-modes m € B =
{free, rep, co, read} U A encountered so far is refined according to the modes of
extensions by association paths: A full mode u € M is a base-mode m parameterized
by correlations o;=u; that specify that the extensions of u-paths by a;-paths have
mode p;. Syntactically, a full mode thus has the general form m<o;=p, ..., a=pn>.

In the example, the nodes’ data-references could be given association mode data<>
and s’s anchor reference to the first node the mode rep<data=elem<>>, so that s’s
reference paths s ----» f1,f1’, f2 to the objects in the nodes have association mode
elem<>. These paths represent the elem references stored in the abstract data struc-
ture Sy and held by Sy in the external view (“virtual references,” similar to virtual
attributes). By giving s'’s reference to s the mode rep<elem=rep<>>, its extensions
s’ -—--» f1,f1’ 2 by s’s elem paths are given the desired mode rep.

Association paths and correlations are crucial for the structural flexibility of the
mode technique. They allow an object class to fix the modes of references in its in-
stances without fixing the reference targets’ assignment to a sanctuary. This decision
is postponed to each instance’s clients. (The type system ensures the consistency of
the clients’ decisions.) Hence the same class can be reused, in particular as a type
of component objects, in many different structural contexts. For example, instances
of the same Node class with data references of mode data<> could also be used in
the date-set composite C; instead of those with co<> data (cf. paragraph 6): Only
change the mode of s’s anchor reference to rep<data=rep<>>.

9. JAVA WITH MODE- & MUTATOR-ANNOTATIONS AND -CHECKS. The proposed
language JaM is an orthogonal extension of a subset of the Java language by the
keywords mut and obs written in front of the return type of all operations and meth-
ods, by modes u € M qualifying all class names used as types of object references,
and by static typing rules that check these annotations w.r.t. composite state en-
capsulation.® Figure 1.1 shows how the set-of-objects data abstraction S5 and its
Ca-realization would be declared in JaM. JaM’s mode & mutator checks are orthogo-
nal to Java’s type checks since any legal Java program from the Java subset becomes
a legal JaM program by annotating, respectively, mut and co<> everywhere: This
places all objects into the same sanctuary, so that all mutator calls are legal.

The mode annotations specify a unique mode for all object references at any
time during the execution: First, all object references stored in a variable (field,
local variable, parameter) have their modes fixed to the mode p which qualifies the
class name c in the reference type p ¢ declared as the variable’s range. Second, the
temporary reference o — w which the sender o obtains when the receiver ¢ returned
reference ¢ £+ w has the mode prop that is an adaption of u relative to the mode
py of the reference o — ¢ through o made a call to q. Third, the mode of the

3In the formal treatment, a few additional annotations will be used for simplification: They will
make explicit the destructive or non-destructive read access to a variable, and allow to assign modes
with unique correlations to object creation expressions (new) and to null.
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// type of set-of-objects data abstraction So
interface Set {
obs boolean contains(read<> Object o);
mut void Add(elem<> Object o);
mut void Remove(elem<> Object o);

¥

// class of node-based realization’s representative

class SetImp implements Set {
rep<data=elem<>> Node anchor;

}

class Node {

obs co<> Node next();
obs data<> Object data();

Figure 1.1: Set-of-objects and node-based realization in JaM

initial reference to a newly created object is free (with correlations as specified by
an additional annotation). From this classification of all paths of length one in the
object graph, the classification of longer paths is derived inductively: Paths that are
the extension of a p-path o --+ g by a co- or a-path ¢ --» w have, respectively, the
mode p or the mode p/ if p = m<... ,a=p/,.. >.

In analogy to this, JaM’s typing rules infer, besides the target class ¢, the modes u
of all object reference-valued expressions based on the modes of variables and results.
In particular, the type of an operation call expression with receiver expression of type
iz ¢ is the result type prop d of the corresponding operation in the signature X(p, ¢)
of call-links of type u, ¢. Restrictions are imposed by the typing rules on the use of
object references as values in order to preserve the properties of rep and free paths
which entailed the safety of permitting mutator calls (as described further below):
Object references assigned to u-variables must have a compatible mode p' <, p.
Object references supplied as actual parameter to operations with formal parameter
mode g in the signature X(u, c) of call-links of type p, ¢ must have a compatible
mode p' <p p. (Simplified, free mode free<d> is compatible to any mode m<d>,
any mode m<é> is compatible to the read mode read<d> with the same correlations,
and read modes are compatible to read modes with fewer correlations or correlations
to compatible modes.)

In order to enforce composite state encapsulation, additional restrictions are im-
posed by the typing rules on access to fields and operations through object references:
In mut-methods, assignments to the fields of this and mutator invocations through
references of base-modes rep, free, and co are permitted since they either cross into
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no sanctuary or just into the caller’s sanctuary. In obs-methods, field assignments and
mutator invocations through references of base-modes other than free are forbidden
since only free references guarantee that the target is not in any sanctuary. Assign-
ments to other objects’ fields and mutator invocations through read and association
references are never permitted.

1.2 Contributions

This dissertation is situated at the design-implementation boundary of object-oriented
software development, where detailed object-oriented designs get implemented in
object-oriented programming languages. The ultimate aim is to improve the mod-
ularity of object-oriented runtime system models that are structured by the design
abstraction of composite objects. The means is the type-system of object-oriented
programming languages extended by a system of type qualifiers called modes. Mod-
ularity is improved in form of the encapsulation of each composite object’s state.

The main result is that the presented type system extension for Java guarantees
composite state encapsulation as a global system property: Composite objects can
change state only through the execution of their own (mutator) methods.

Most other proposals to encapsulate units of the runtime system are works in alias
control [Hogd1, DD95b, Utt96, KM95, Min96, Alm97, GTZ98, NVP98, CPN98, Cla0l,
ACNO2] or access control [BC87, Hogdl, AW+92, Bos96, Kni96, KT99, GB99, CR00] with
the general aim of simplifying controlling, and reasoning about, system behavior. This
dissertation focuses, like [DLN98] and [MP99a], on modularity that enables the modular
verification of object-oriented programs, employing alias and access control only in as
far as it works to this end. To the research in modularity, the first description of the
property of state encapsulation is contributed. It can be seen as capturing exactly
that global system property needed for modular reasoning about composite objects
based only on the code of the representative’s class and superclasses, and on ordinary,
postcondition specifications of called operations (of external and component objects).

The dissertation provides a flexible system for guaranteeing the encapsulation of
every composite object at runtime by pure compile-time type checking. It enables
the definition of nested composite objects with a complex internal structure, their
observation through external iterator objects, their incremental construction (top-
down and bottom-up), and their transfer across abstraction boundaries (one by one,
linked to lists, or stored in containers). It supports design patterns like Iterator,
Abstract Factory, and Builder [Gat95]. It is the first purely static system in which
container objects and their iterator objects can each be encapsulated individually, i.e.,
state-protected from one another. (Others need runtime checks [MP99a, ACN02] or
encapsulation barriers that are not aligned with object composition [Cla01, ACN02].)
Composite objects can link their component objects to data structures or store them
in a container object component. Nested container objects o can be built with a
given, possibly also composite, container object o' (from an unknown implementation
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class) as their component. Their iterators ¢ can be structured in parallel as composite
objects with the container components’ possibly composite iterators i’ (from unknown
implementation classes) as their components. All this will be demonstrated in the
running example of set and map objects with iterators.

To the research on composite object encapsulation by type systems, this disser-
tation contributes a new technique which is based on a classification of paths of
object references (with single references as a special case). Previous techniques
based their type system extensions on aliasing properties or access rights of object
references [Hog91, Min96, Kni96, Alm97, DLN98, KT99, GB99, ACN02|, or on owner-
ship parameters to objects [KM95, CPN98, MP99a, Cla01, ACN02]. (Only the informal
description of flexible alias protection [NVP98] might be understood as using paths,
although its official formalization in [CPN98] is based on ownership types.) In the pro-
posed new technique, some types of paths entail aliasing or access restrictions, some
have a superimposed object composition meaning (which, with state encapsulation,
implies a form of ownership), and some let the path extend other paths.

The system of type qualifiers called modes is similar to that of flexible alias pro-
tection [NVP98]. But we provide a formal treatment using standard techniques of
formal type systems and formal semantics (small-step with store and environment).
The flexibility achieved by parameterizing the types of objects in flexible alias protec-
tion and other work [KM95, NVP98, CPN98, ACNO02] is achieved in the mode system by
the first proposal of type qualifiers [FFA99], namely modes, that are parameterized,
namely by correlations. This move preserves the complete orthogonality of a refer-
ence’s mode p and the class ¢ of its target in the types p c of object references. Hence
the addition of modes does not affect the soundness of Java’s subtype polymorphism
between object reference types based on subclass relationships between the objects’
classes, of class inheritance, of class-parameterized generic classes (and methods), and
of dynamic casts w.r.t. a reference’s target class.

To alias control a novel weak uniqueness property is contributed, which is based
on entire paths of object references: Free paths between two objects have unique
head references and are not aliased by rep paths. This property generalizes Hogg’s
notion of ‘free’ references [Hog91, NVP98|, and of the similar ‘unique’ [Min96, ACN02]
and ‘virgin’ references [DLN98], which are not aliased by any (captured) reference at
all. It allows us to rely not exclusively on destructive read for accessing the free
reference in a variable, but to read the value as a read reference without resetting
the variable. Due to free paths, the proposed mode system is the most flexible one
w.r.t. dynamic object creation and composition proposed so far, decoupling object
creation from object use (in particular, use as a composite’s component).

Finally, to object-oriented software development and programming language de-
sign, this dissertation contributes a system of program annotations to document in
the code the system’s design w.r.t. object composition, and a system of static type
checks to exclude designs of poor modularity w.r.t. composite objects. This is impor-
tant since object composition, i.e., the hierarchical combination of smaller objects to
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larger composite objects, is a central technique for the construction of object-oriented
software systems, and for the management of the system’s structural and dynamic
complexity. The proposed system keeps the structure of the system (into composite
objects) decoupled from the structure of the program (into packages), which are two
orthogonal notions [OMG00]. The path-based approach is compatible with object-
oriented design’s step-wise derivation of high-level object (composition) links from
paths of lower-level “manifest” links (i.e., object references).

As a by-product of concretizing the notion of state encapsulation for composite
objects, a clarification of the relation between state and object composition is ob-
tained: to object-oriented programming Composite objects have component objects
that represent aspects of the composite’s state. But they can also have temporary
components merely for the implementation of its behavior. For example, an iterator
object is a component of the client object that represents (the state of) the client’s
iteration process—for as long as it lasts. If iterators were considered components
of the container object which created them (as in [Cla01]), operations to create and
return an iterator would change in the container’s composition and thus be mutators.

1.3 Outline

The remainder of the dissertation is structured as follows:

The next three chapters introduce the context of this work regarding object-
oriented systems, encapsulation, and other research. Chapter two introduces the
reader to the abstraction concepts on which object-oriented programming is based,
focusing in particular on the object-oriented view of a running software system, on
the dual data- & behavior-nature of objects, references, and object composition, and
on the notion of composite objects. Chapter three exlains the importance of the
modularity of programs and runtime systems, and its relationship with encapsulation
and alias and access control. And it discusses different proposals w.r.t. how encapsu-
lation barriers should be drawn and what encapsulation property should be enforced.
Chapter four reviews previous work on systems for composite object encapsulation.

Chapters five and six contain the definition and formal treatment of JaM. As a
first step, chapter five considers the addition of a reduced mode system to a Java
subset (base-JaM). Its definitions and results are extended in chapter six to a JaM
with the full system of modes.

In chapter seven, the relation between modes and types, and the consequences
of the mode system for reference and message flow are considered. Some obvious
extensions of the formalized JaM language and mode system are discussed, and more
examples are provided.

Chapter eight concludes the dissertation with a look back on what was achieved.

The two appendices sum up the formal definition of JaM, and provide the full
JaM code of the running example of composite map objects and their iterators.
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Chapter 2

Abstraction in Object-Oriented
Programming

Does it not require some pains and skill to form the general idea of a triangle, ...

for it must be neither Oblique, nor Rectangle, neither Equilateral, Equicural, nor Scalenon;

but all and none of these at once. In effect it is something imperfect, that cannot exist;

an Idea wherein some parts of several different and inconsistent Ideas are put together.
John Locke (1632-1704)

This chapter sets the background for this dissertation: the composite object ab-
straction in object-oriented programming. It may be skipped by readers already fa-
miliar with the object abstraction in general, with the object-oriented runtime system
model, and with dynamic composite objects.

We will review the central abstraction concepts of object-oriented programming
(object, class, subclassing), and the object-oriented view of the runtime system as a
network of interacting objects. The generalization from elementary objects to com-
posite objects with objects as components will be used for structuring the system
into a hierarchy of nested objects. The foundational data/behavior dualism of (com-
posite) objects, object references, and object composition will explain why objects
have more object references than those in their fields (namely temporary references
in their methods), and how iterators can be components of their clients (temporary
behavioral components) although they do not represent their state.

2.1 The Importance of Abstraction

The stuff from which software systems are made is not physical, but abstract (or
conceptual). An abstraction (or concept) is “created” by the process of abstraction,
i.e., by focusing on certain aspects, the essentials, while ignoring others, the details
[LM8S8]. The ability to abstract enables us to work with complex domains of interest,
like software systems and their application domains. Note that ignoring details does
not remove them from the domain but only from our view (or “model”) of it.
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Figure 2.1: Space of programming paradigms

Complexity is intrinsic to software systems and cannot be made to disappear;
it can only be managed by structure and abstraction: Industrial-strength software is
inherently complex [Boo94]. Software systems like, e.g., SABRE and NORAD are among
the most complex artefacts of humankind [Som95]. As Brooks so famously observed
[Bro87], this complexity inheres in the problem to be solved (essential complezity), so
that it cannot be avoided. We have to cope with it, manage it. And abstraction is our
best hope for this. (Only the accidental complezity of software projects, which results
from the technical platform, the development environment, or the organization of the
development process, can ever really be removed.)

It should be mentioned that while abstraction is frequently used in programming,
the overall process of software development resembles more abstraction’s inverse,
concretization: An initial, unspecific model is refined upon by filling-in what precisely
is required (analysis), how to solve the requirements in the abstract (design), and how
to make a computer actually carry out that solution for us (implementation).

In programmingm, different so-called “paradigms” can be distinguished by the
abstraction concepts which are central to them. The most common kind of abstraction
before the identification of the data abstraction in the 1970s was the functional or
procedural abstraction [LZ75]. It characterizes traditional, “procedural” programming.
The object-oriented paradigm of programming distinguishes itself by the three new
abstraction concepts of object, class, and subclassing' [Weg90, Sny93, Qui95]. These
go one step into each of the three directions of abstraction (cf. fig. 2.1):

1. AGGREGATION. One function of abstraction is to allow us to treat several entities
(‘parts’, ‘components’, ‘constituents’) as one by ignoring the distinction between them

1Some put the emphasis on subclass polymorphism, others on inheritance (cf. paragraph 3c).
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and subsuming them under one entity (‘whole’, ‘composite’). For example, we can
say “the triumvirate ruled Rome from 60 to 49 B.C.,” and ignore the distinction
between Julius Caesar, Crassus, and Pompeius. In procedural programming, several,
more primitive computational steps are combined into one by procedural abstraction,
and several pieces of data are combined into one compound by structured datatypes.

In “object-based” programming, the object abstraction overcomes the traditional
operation/operand dichotomy of procedures and data in procedural programming
by integrating mutable data in form of fields (also called “instance variables,” “at-
tributes,” “data members” or “slots”), and behavior in form of methods (also called
“operations” ) into one runtime unit, the object, by object abstraction. Objects are
the elementary subsystems of the object-oriented runtime system model described
in the next section. They are a universal modeling concept which can reify in the
runtime system not only data (with operations on it) but also active agents [Bi*80],
control structures [GR83], iteration processes [Ga®95], functions [ISO98], etc.

2. CLASSIFICATION. Another function is to subsume all entities sharing certain
selected properties under one ‘class’ (or ‘type’, ‘kind’), so that they can be treated
uniformly: “Types arise informally in any domain to categorize objects according to
their usage and behavior” [CW85]. For example, we can investigate the properties
of all systems with a finite number of states (finite automata) and make laws for all
people. In programming, the classification of values into types enables us to write
algorithms that work with any value of a certain type.

“Class-based” programming extends object-based programming by class ab-
straction, through which all objects with the same kinds of fields and methods
can be collected in an object class [Boo94]. Class abstraction reduces the multitude
of objects in the system to a fixed number of classes, the system’s class model. A
class definition defines a class of objects by aggregating definitions of their instances’
fields and methods; class definitions are the modules of object-oriented programs.

3. GENERALIZATION. Abstraction allows one to subsume all special classes (‘sub-
classes’) defined by a common subset of properties under one common, more general
class (‘superclass’). For example, we can generalize people and corporations to legal
entities (and have the same laws for all of them). We can treat as irrelevant the differ-
ence. The classical way of defining a new subclass, ‘species’, is to name its superclass,
‘genus’, and the difference from it [RCO00].

Object-oriented programming is only complete with superclass abstraction, better
known as subclassing. It allows one to structures the class model as a class hierarchy
(see paragraph Ia below), to write reusable client code that works with objects from
all subclasses of a class by ignoring objects’ precise classes (subclass polymorphism,
a form of subtyping), and to reuse the definition of one class for the definition of a
subclass of it by naming it and then specifying the difference (class inheritance).

(Also based on the object abstraction is “delegation-based programming:” It adds
inheritance between child and parent objects by the mechanism of delegation [US87].
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It becomes nearly equivalent to object-oriented programming by the addition of dis-
tinguished, class-like ‘¢rait parent objects’ shared among all clones of an object in
“prototype-based programming” [Ast96].)

2.2 Abstraction Hierarchies

The recursive application of the abstraction process can lead to higher and higher
abstractions in all three directions: Hierarchical aggregation (part-whole hierarchies,
partonomies, or has-a-relationships) and hierarchical generalization (inclusion hierar-
chies, taxonomies, or is-a relationships) are the classical tools for our understanding
and description of the world, in use for at least since Aristotle over two thousand
years ago [RC00]. (The idea that classes can also be classified, however, is just over
a hundred years old, starting with Peano et al.’s observation that class-membership
‘€’ and class-inclusion ‘C’ are two distinct relations [LL97], and Frege’s insight that
classes are abstract objects in their own right and can be classified [Par94]. The
unconstrained classification of classes was soon thereafter discovered to lead to Rus-
sell’s Paradox, a fundamental logical paradox tamed by Russell’s theory of types, the
predecessor of type systems in programming languages.)

In object-oriented programming languages, the characteristic abstractions class
and object are just single-level, while subclassing applies recursively. The object com-
position hierarchy is one of several proposed hierarchies promissing still better com-
plexity management. However, different hierarchies seem to co-exist well only if they
bring order to orthogonal architectural perspectives (cf. [SNH95]). While the class
model is structured through subclassing and the program is structured into packages,
object composition brings order to the object-oriented runtime system model. A sec-
ond hierarchy in any of these perspectives seems to increase the overall complexity
more than it helps managing it:

1. THE CrASS MODEL: CONCEPTUAL ARCHITECTURE. Object-oriented program-
ming is often praised for organizing the system’s set of object classes by subclassing
into a conceptually clear generalization hierarchy called the class hierarchy. (Pro-
cedural programming did not support this for its datatypes.)

Research however showed, first, that over-enthusiastic use of subclassing with
class hierarchies deeper than three levels is detrimental for program maintainabil-
ity [DB*96]. Second, an inheritance-based subclass relationship does not necessarily
mean a real specialization because method overriding is not guaranteed to specialize
the object’s behavior [Ame87, LW94, Tai96]. Third, inheritance-based subclassing is
best formalized not by the type-theoretical concept of subtyping [Sny86, Lis88, CHC90],
but by “F-bounded polymorphism” [Ca*™89, CHC90] since at runtime a class is relevant
only as a generator of objects [SM95].

Most typed object-oriented programming languages restrict inheritance to con-
form to subtyping. Proposals to work with two separate hierarchies [Bru96, BPF97,
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Figure 2.2: Flat, and structured class model of an ATM-banking system

GM97] were not widely accepted. Also the higher-order classification of object classes
into meta-classes has not found wide use as a programming technique since classes
are already sort-of classified by their superclasses [Weg90]. (So-called “meta-classes”
in Smalltalk, cLos, Java, etc. [GR83, Kol99, GJS00] are normal classes of objects
that reify a class at runtime for administrative purposes like constructors, static
members, reflection, . ..)

2. THE PROGRAM: MODULE ARCHITECTURE. More helpful is a hierarchy for
the definitions of the classes in the orthogonal module architecture of the program:
The aggregation of field and method definitions in class modules is extended to a
hierarchical aggregation of smaller class modules into enclosing class modules and of
class modules in packages. The introduction of hierachical packaging in Java [GJS00]
was so successful because it was already practiced informally by sorting program files
into different file system directories and because the notion of a non-class module was
known from procedural languages like Euclid, Modula, and Ada [La™77, Wir83, ISO95].
Packages can be used to group classes, e.g., by application domain for retrieval from
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a library, by vendor for controlling name clashes, as the unit of purchase and revision,
and simply to manage the complexity of large programs with hundreds of classes.
For example, the first UML model of a banking system in figure 2.2, with an
ATM-consortium, banks, accounts, cashiers, cash-cards, ATM’s, and so on (adapted
from [Ru*91]), appears “confusing and disorganized” [Kri94]: “The problem is that
this kind of description does not reflect the way that we think about and understand
such complex systems.” The second UML model in figure 2.2 cleans up the class
model by dividing classes between those modeling the customers and their property
(Customer, CashCards and Accounts) in the CustomerStuff package, and the rest
in the ConsortiumStuff package with sub-packages for, respectively, bank-related and
ATM-related classes. Complexity management is improved through the possibility of
zooming into and out of packages to view the system at different levels of detail.

3. THE RUNTIME MODEL: SYSTEM ARCHITECTURE. Finally, the higher-order
extension of the aggregation of fields and methods in objects pervades object-oriented
programming—although this is often ignored since it is a matter of object-oriented
design of the system at runtime, and not explicit in the program text [Gat95]: The
objects in the object-oriented view of the runtime system are aggregated to linked
object structures, to groups of collaborating objects (collaborations), to composite
objects, etc. In particular, the recursive composition of objects to composite objects
produces the system’s object hierarchy (object composition hierarchy).

It is important to get order into the object-oriented runtime system model: Class
models of large systems, with hundreds of classes connected by hundreds of relation-
ships, may be complex. More complex still are the corresponding runtime models
with an even larger and dynamically changing number of objects and connections.
To cope with the structural and dynamic complexity of the runtime model, object
aggregations are naturally used. Providing for their expression in the program would
complete the support of object-oriented programming languages for the main com-
plexity management techniques of object-oriented programming.

All this will be elaborated in this chapter. But first we have to develop an under-
standing for the object-oriented view of the runtime system.

2.3 Object-Oriented View of the Runtime System

A feature of object-oriented programming (OOP) more fundamental than the static
classes (OOP is class-based) are the data and behavior combining units of the run-
time system called objects (OOP is object-based). The view of the runtime system as
a system of message-exchanging objects distinguishes object-oriented programming
from procedural programming more than anything else, and is the common basis of
all object-based programming paradigms (class-based object-oriented programming
as well as delegation- and prototype-based programming). (The programs in object-
oriented and procedural programming have the same basic linguistic structure,with
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modules containing the definitions of related variables and subroutines.) This view
possesses a higher degree of uniformity achieved by the dual nature of objects and of
object references as providing data as well as behavior. The object-oriented view is
considerably more different from how real computers are organized than the proce-
dural view. (A straight-forward execution of object-oriented programs on computers
requires one to follow certain constraints on the language design, which have devel-
oped into “myths” about object-oriented programming [Rum97).)

1. PROCEDURAL SYSTEMS: DICHOTOMIC ARCHITECTURE. In procedural program-
ming, the runtime system is divided like a virtual computer into active operators in a
program compartment (the processing unit), and passive operands in a storage com-
partment (the memory unit) [Qui95]. Consequently, program and data are classified
and composed separately to procedure types and “procedural abstractions” on one
side, and to concrete data types and data structures on the other.

Computation is understood to take place in the procedures (subroutines) within
the program’s different modules. While some data is in the module’s variables, more
data can be represented in linked data structures constructed dynamically in the
storage compartment.

2. OBJECT SYSTEMS: HOMOGENEOUS ARCHITECTURE. Object-oriented program-
ming overcomes the procedural operator/operand dichotomy by grouping and classi-
fying related data and operations together as objects and object classes [Qui95]. In
the small, each object is a tiny procedural system of its own, with its own internal
program compartment and storage compartment [Bud95] (which is conceptually con-
current [Rum94c)), while in the large the runtime system is “structured uniformly as a
collection of interacting objects” [FM90] connected by object references to a uniform
“network architecture” [SG96].

Computation takes place in and between objects, not modules: It is understood to
be carried out by the objects internally as the manipulation of their variables and ob-
ject references (computation in the small), and externally by message exchange along
object references and the creation of new objects (computation in the large). In the
software architecture, the objects are the architectural components (active computa-
tional agents) and the architectural connectors (interaction channels) between them
are the object references. This architecture is completely independent from the static
structure of the program, but built up incrementally and reconstructed dynamically
like a linked data structure by the exchange of object reference values. Since be-
sides this there is no global, static program compartment, in the object-oriented view
there is no connection at all any more between the structure of the program in form
of modules and packages, and the structure of the runtime system in form of object
references. Procedural programming’s program/data dichotomy within the runtime
system is traded in object-oriented programming for a program/system dichotomy.

3. THE DUAL NATURE OF OBJECTS. The object in the sense of object-oriented
programming is an abstraction that combines data and behavior in one identifiable
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unit. Since the runtime system in the object-oriented view consists of objects, the
system’s state as well as its processes must be partitioned among these objects.

In object-oriented programming, each object owns a chunk of the system’s global
state (interprocedurally persisting state), “the” state of the object, to which its
methods have shared access and which persists between method executions [Weg90].
Hence objects may be regarded as “functions with memory” [Mez98] that can remem-
ber something from previous times they executed a method. Objects support data
abstraction, not by data type abstraction as in ADT-based programming, but by
representing the abstract data (a calendar date, a tree, a set, ...) in one or more ob-
jects’ state and providing an operation interface through which the outside accesses
it in an abstract faction: They are “procedural data structures” [Rey94]. Data-
representing objects are “active data” [Mez98] or “intelligent data objects” [ASS96]
to which operations are not applied but that offer to perform these operations on
themselves, i.e., on the data: “Ask not what you can do to your data structures, but
ask what your data structures can do for you” [Bud95].

But this is not the complete picture. The behavioral side of objects entails that
they have a share in the local state of the system’s processes (transient intraproce-
dural state), in particular, the values of local variables and already evaluated subex-
pressions in the methods which the object is currently executing. It may be safe to
ignore this as long as an object operates only on its own variables (computation in
the small). But not all objects can be data, there must also be the objects com-
municating with them and each other (computation in the large). There is more to
objects than intelligent data; they are also communicating processes. As such they can
reify behawvioral abstractions like Iterators, Commands, Strategies, and Mediators
[Ga*95]. For example, an Iterator object represents—with its state and its method
executions—the state and the steps of an iteration process (that runs in parallel to
the client’s method like a coroutine).

Even where it concerns data, communication may have to be used to implement
abstract data structures if they contain an unbounded amount of information, or to
construct linked data structures with an unbounded degree of branching: The global
state which the programming language’s implementation objects have at their disposal
is limited to a fized number of variables called fields. Hence the mentioned data
abstractions can be implemented only by a collaboration of several implementation
objects (in a composite object), i.e., if objects communicate.

4. THE DUAL NATURE OF OBJECT REFERENCES. Each object in the system is
identified by a unique object identifier o € O (assigned to it when it is created). If
an object (identified by) o has among the values in its fields or methods the identifier
w € O of another object, then o is said to have, at that moment, an object reference
(link, handle, pointer) to w, in symbols, 0 — w. In this reference, o is called the source
and w the target.

The object references in an object system have a dual function: On the behavioral
side, they are the architectural connectors that enable computation in the large
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by transporting messages between objects: requests for method executions (operation
invocations), and replies of the result. The references an object has at a moment
determine to which other objects it can send requests at that moment.

On the data side, object references are values that can be exchanged between
objects as parameters and results, and stored in variables. (These exchanges and
the loss of references by variable update are what changes the system architecture
dynamically.) The references an object possesses at a moment define the set of object
reference values it can avail for passing as parameter and result values (since an object
reference cannot be calculated from another value?).

Object references can be used as connectors and values irrespective of whether
they are stored in any variable: Consider the calls n.prev().SetNext(n.next()) and
n.next () .SetPrev(n.prev()) to unchain the node (identified by) n from a double
linked list. Here, temporary object references returned from calls n.prev() and
n.next() serve as parameter values and as connectors to the nodes, respectively,
in front of n, and behind of n. But to represent linked data structures and the stor-
age of objects therein, the object references between the objects must be captured in
fields. References in fields represent data structure links, like those between two node
objects, and stored data values, like a pair object’s first and second value.

The notion of object graph in object-oriented programming is a generalization
of the classical notion of data structure graph in procedural programming. It is the
directed graph made of all the objects currently in the system as the nodes, and allthe
object references between them as the edges, whether they are used as connectors or
as data, whether they are in fields or in methods. It uniformly captures the structure
of all the objects’ interconnections at a particular moment, thus integrating both the
system’s architecture and all the data structures in it. All objects are connected in
the object graph (of a sequential program), since objects to which there is no path
of object references from the initial object are unreachable for the computation and
thus can be “garbage collected.”

2.4 Complexity in the Large in Object Systems

Object-oriented programming supports well the management of runtime complexity
in-the-small by grouping operations and their common data into one object. But its
uniform, unstructured network architecture does not help with the complexity in-the-
large that results from the many objects around and all the interactions and semantic
relationships between them. In analogy to unstructured “spaghetti code,” this was
dubbed “object spaghetti” [PNC98]. For an impression, look at the banking system
in figure 2.3 with a mere two bank objects, two customer objects and three account
objects (more on this below). “The traditional ‘sea of objects’ approach where all
objects in the system are visible to each other and exist at the same level is infeasible”

2The reference arithmetics of C+ is a much criticized exception.
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[Bos96]. We need a view of the runtime system that is structured, that groups objects
to larger units so that we can view the system at intermediate levels of detail.

Some degree of structuring is achieved by projecting the packaging of classes {cf.
fig. 2.2) onto their current instances, as figure 2.3 shows. But while it reduces the
number of constituents in the higher-level view, it is inadequate for managing the
dynamic complexity of the system. Since objects are grouped together independently
from their interaction, the resulting structural units have poor cohesion w.r.t. the
system’s working. For example, instances from BankStuff classes have to do with
other BankStuff objects only if they belong to the same bank, and have more to
do with that bank’s customers and the central consortium objects than with any
BankStuff object of a different bank.

A viable method for coping with large object systems must not squeeze a dynamic
number of objects into a static structure, but provide for the genuine aggregation of
objects to a dynamic number of larger units. A variety of different kinds of such aggre-
gations have been described: Traditional linked data structures as object structures;
collaborations for the modeling of system dynamics [HHG90, KM96, StT96, OMGO00;
runtime components made of interface objects and internal objects [MP99a]; Clarke’s
aggregates of all objects with the same “representation context” and the objects allo-
cated in that context [Cla01]; sets of all objects reachable from a particular object by
paths of object references in fields (islands [Hog91], balloons [Alm97]); sets of objects
reachable from the object graph’s root only by paths of references passing through a
given object (umbra) [PNC98]; and so on.

But the most important object aggregation of all is the composite object.
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2.5 Composite Objects and Structured Systems

1. THE COMPOSITE OBJECT ABSTRACTION generalizes the (elementary) object
abstraction, the aggregation of n fields (data primitives) and m methods (behavior
primitives) to a data/behavior unit, to the aggregation of n fields, m methods and
k objects (themselves units of data and behavior) to a more complex data/behavior
unit called compostte object. The limit case of a composite object is one with zero
components (elementary object).

In the banking example, composite objects provide not just one structural unit
for all the bank (or ATM or customer) stuff, like packages did. As shown in figure
2.4, there is one unit for each bank’s (and ATM’s and customer’s) stuff, namely the
composite bank object (ATM object, customer object). The composite objects are
not additional structural units, like the packages were, but extensions of existing
elementary bank (ATM, customer) objects. The additional structure is achieved
without additional “boxes” in the diagram. (Also some links between objects do not
show up any more because they are now implicit in the nesting of objects [Kri94].)

In a composite object-oriented view of the runtime system, composite objects take
the place of elementary objects in objects structures, in collaborations, in object
references, etc. Object references may connect any top-level or (nested) component
object with any other one. Even without an explicit object reference, the composite
object from within its methods can directly send invocation messages to its direct
component objects. A new type of event possible in object systems structured into a
hierarchy of composite objects is the change of this structure: An object can become a
particular object’s component or cease to be its component [OMGO0]; in other words,
it can “migrate” from one composite object to another.

2. THE IMPORTANCE OF COMPOSITE OBJECTS. The composite object abstrac-
tion is scalable from the elementary object up to the entire object system as one all-
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encompassing composite object [Rum94c, Bos96]; it structures the entire object system
into one object composition hierarchy without conflict-bearing overlaps. A structur-
ing into composite objects acknowledges that certain groups of objects are tightly
coupled and have themselves object-like properties, which is necessary for “a viable
method for the characterization of large systems” [Cha91]. Composite objects are the
units as which the specification of the object system is “structured naturally,” and
which guide the reasoning process “in a natural fashion” so that it is local to the com-
posite in many cases [GM93]. Object composition is an important semantic relation
that provides a back-bone for message forwarding [Chad1, MZ92, GM93, MC94, HG97],
property inheritance (GL95, OMO01] and refactoring [JO93].

Structuring an elementary object system into composite objects does not intro-
duce additional structural units, but extends existing ones. The composite object
abstraction is not a completely new concept to learn for the programmer, but just
a generalization of the elementary object abstraction. Moreover, the notion of com-
posite object is already known from object-oriented design, and implicit in top-down
refinement of higher-level objects to lower-level objects and in the object composition
technique of object-oriented software construction (cf. §2.7). The kind of generaliza-
tion by object composition, from a shallow notion of object to a nested one, is known
from subclassing, which generalizes a shallow notion of class to a transitive one that
includes subclass instances. The same way we can resort, where necessary, to the
original, shallow notion of class by talking just of its direct instances, we can resort to
the original, shallow notion of object by talking about the composite’s representative
in paragraph 4 below.

The quality of object aggregation techniques can be judged like the grouping of
definitions to program modules: It should produce units of high internal cohesion
and with low external coupling to be really useful for the management of complexity.
Composite objects have higher cohesion than other object aggregation techniques.
First, the constituents collectively represent one higher level abstraction (abstract
data structure, behavioral abstraction, etc.), and thus are held together by conceptual
cohesion. Second, the constituents coordinate their behavior to this end, and thus
are held together by dynamic cohesion, like in a collaboration. (“A composite object
is similar to ... a collaboration, but it is defined completely ... in a static model”
[OMG00], namely the class model.) Additionally, a core of state-representing sub-
objects must be permanently connected in order to implement the representation
of the abstraction’s state and thus are held together by structural cohesion like in
an object structure. The external coupling of composite objects can be reduced by
techniques of encapsulation discussed in the next chapter.

3. CoMmPOSITE CLASSES. Composite objects are instances of an object class, which
in this case is called a composite class. The definition of a composite class fixes its
composite instances’ fields and methods, their possible component objects and the
possible processes of their dynamic (re)construction. In the example, the structuring
of the banking system into composite objects from further above can be distilled by
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class abstraction to the class model shown in figure 2.5.

Composite classes have nothing to do with packages [OMGO00]: The nesting of
(composite) classes in the UML diagram captures the nesting of their instances at
runtime, not the nesting of their definition modules in the program (for which package-
combinator &— is used in UML). In object-oriented programming, runtime structure is
orthogonal to program structure (§2.3). It is natural to let any composite class use any
class, no matter the package, as the type of its instances’ components. Independently
from object composition, we can achieve a cleaner organization of the program into
packages in which all classes can be reused.

For example, figure 2.6 shows how the classes of the map example could be sorted
into four general packages: At the bottom is the package DSComponents of standard
data structure components, like Node and Pair, that have many different uses. Pack-
age DSlterators contains the corresponding iterator implementations. The collection
implementations that build on these two packages are collected in package DSCollec-
tionlmps. At the top is the package of the high-level collection and iterator types, for
which the other packages constitute one possible implementation.

4. EXPANSION TO IMPLEMENTATION OBJECTS. Current object-oriented program-
ming languages support only the elementary object view (§2.3). But object com-
position can be “simulated” [HJS92] by expanding each composite object to an ag-
gregation of elementary implementation objects. The example of a composite Car
object car with Engine and Wheel components e and w is shown in figure 2.7. First,
the composite’s component objects are expanded recursively. Second, the rest of
the composite, namely its identity, fields and methods, is combined by elementary
object abstraction to a separate implementation object called the representative.
Third, the composition relationships between composite and components can be rep-
resented by “composition references” between representative and component objects’
representatives to explain the messages exchange between them.
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In the implementation object view, composite objects are aggregations of imple-
mentation objects that function together like one large, complex object. Whereas
a composite’s components may come and go, its representative remains the same
through the composite’s existence. Since the representative is unique, the composite
can be uniquely identified by identifying the representative. The representative “rep-
resents” the composite “as a whole,” i.e., modulo the component objects, takes its
role as source and target of references and of communication.

The representative is also called the “dominant object” of the composite’s expan-
sion [Rum95] or of a corresponding “high-level object (class)” [EKW92], and called
the “root instance” of the expansion as a subsystem of the runtime system [BLM97].

5. THE DUAL NATURE OF OBJECT COMPOSITION. In object composition, more
complex, composite objects are constructed from simpler component objects, by
giving their union a separate identity with fields and methods independent from
the components, in other words, by unifying them under the representative. The
data/behavior-dualism of objects in general, and composite objects in particular, en-
tails that a component object (with data and behavior aspects) can serve the purpose
of implementing the composite’s data aspects (static properties) as well as implement-
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ing the composite’s behavior aspects (dynamic properties): “Objects obtain their
static and dynamic properties by composing, delegating, inheriting, and coordinating
those of other objects” [CLF92]. Consequently, among a composite object’s compo-
nent objects one can distinguish the data- or state-representing components from the
behavioral components:

Since objects have state and composite objects o are objects, they must have a
state, written CState(o). In this state, o can represent abstract data to implement
a data abstraction. To CState(o) belong the states state(£) of the composite’s fields
¢ € flds(o) as well as the states CState(w) of certain components w of the composite
which are accordingly called its state-representing components w € StCmp(o).
In short, the composite object o’s current state CState(o) is some kind of union of its
fields’ and current state-representing components’ states:

CState(o) = |J state(t) U |  CState(w)
£eflds(o) weStCmp (o)

It is crucial for the power of composite objects (over elementary objects) and of
the object composition technique (over inheritance) that in CState(o) not only each
field and component’s state state(£) and CState(w) can change, but that also the set
StCmp(0) of state-representing components is able to change dynamically as needed
(unlike the set flds(o) of fields). While the former is a “quantitative change” within the
state space spanned by the sub-objects’ fields, the latter is a “qualitative change” that
changes the spanned state space [Bun79]. For example, an implementation MapImp
of an abstract Map data structure, i.e., a variable mapping from key objects to value
objects, may represent Map states by storing each key:value pair of the map in a
variable number of component objects of class Pair.

But there is more to object composition. A composite object can also have com-
ponent objects not for representing its state but just for the implementation of a
behavioral aspect. The composite state of such behavioral components does not
contribute to the composite’s state, so that behavioral components’ mutations do not
count as changes of the composite. Often a behavioral component exists only while
the composite is executing a method.

For example, consider the implementation of the lookup operation on the abstract
Map data structure that will be elaborated in detail in the next section. For lookup, a
MapImp composite d has to iterate over its entry components of class Pair in search for
a given (potential) key object. It can chose to represent this iteration by a behavioral
Iterator component ¢, a behavioral abstraction which provides for iteration operations
and represents the iteration’s state. Iterator ¢ must be viewed as a component of d
since the meaning of the lookup operation does not allow for sending (state changing)
messages to external objects. And i cannot be a state-representing component of d
since the meaning of the lookup operation allows no change of d’s state CState(d),
whereas Iterator ¢ must change to progress the iteration during lookup. Hence i can
only be a behavioral component of d.
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Figure 2.8: Unstructured lookup collaboration

2.6 Managing Dynamic Complexity: The Map Ex-
ample

The bank example is too large for getting to the bottom of it. A standard example
in the field of composite object encapsulation are container objects which represent
application-independent abstract data structures also called collections. Kent and
Maung started the tradition with stacks represented by a linked list of nodes [KM95].
Noble, Vitek, and Potter continued with a hash-table associative containers repre-
sented by entries stored in an array object [NVP98]. Both groups pointed out the
difference between the objects constituting the container (the stack’s or hash-table’s
representation) and the objects contituting the container’s content (the stack’s ele-
ments or hash-table’s arguments).

The example that will accompany us throughout this dissertation is a particular
implementation of maps, where the entry pairs are stored in a set represented by
linked nodes. A map is an associative container object in which “key objects” and
“item” or “value objects” are stored so that each key object is uniquely related with
a value object. Even such a relatively simple thing like a map provides us with an
example of dynamic complexity if we view it at the lowest object level.

Consider how a request for looking up a key is served: The UML collaboration
diagram in figure 2.8 shows the particular interaction betweens eight elementary ob-
jects (plus six passive objects) through which a particular lookup in a map with a
particular content is implemented. In this unstructured form, it is rather difficult to
see how it works. It is natural to parse it first, to start the understanding (or the
description) by identifying which objects belong together, and which type of object
they are as a unit, i.e., as one composite object, as figure 2.9 shows it.

1. THE PARTICIPANTS. On the state side, the Node objects nl, n2, and n3 form a
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ring structure in which the objects el, €2, and el are stored. The nodes belong to s,
an object of implementation class Setlmp, i.e., are its components. s, in conjunction
with its components, i.e., as one composite object, is the software realization of a Set,
namely the set S = {el,e2,e3}. Objects el through e3 are Pair objects representing
three map-entries “k1l:v1,” “k2:v2,” and “k3:v3” (v1 and v3 are not shown in fig. 2.9).
Composite object s (the entry-set) and objects el, €2, and e3 (the entry-objects)
represent what the map’s current content is. Hence they are the state-representing
components of the composite Maplmp object d (not shown as composite in fig. 2.9)
which is a software realization of a Map with the aforementioned three entries.

Map ; tookup(k2)
Iterator @ <— 2 current() 4:Step() 5: current() d:Maplmp = 2
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Figure 2.9: lookup collaboration structured with composite objects

On the behavior side, nn is an object of implementation class Nodelt that realizes
an lterator object reifying the iteration nl, n2, n3 over the nodes. It is a component
of the Datalt object i. Together, i.e., as one composite object, both realize an Iterator
object, i.e., the reification of an iteration el, e2, e3 over set s’s elements. It represents
the map’s search kl:vl, k2:v2, k3:v3 through the entries for the given key. Composite
iterator i is also a component of d, a behavioral component. Maplmp object d, together
with its behavioral component i and state-representing components s, el, €2, and €3,
i.e., as one composite object, realizes a Map that has three entries and ¢s in the process
of looking up a given key.

2. THE ActiviTY. Note that all interaction takes place i
within this composite object. Hence if one takes the map
composite as one and abstracts from its parts, i.e., if viewed
from outside as black box, then a lookup in the map has
minimal complexity: There is only the request message
lookup(k2) arriving at object d, and the reply message returning the result v2 (not
shown). Nothing else happens. There are no observable intermediate interactions nor
states during the lookup.
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The complexity of what is going on internally during lookup can be split into two
smaller portions along the boundaries of the composite components s and i: At the
intermediate level of aggregation, s and i are viewed as black boxes of type Set and
lterator, respectively (see figure 2.10). This view works out the essence of Maplmp’s
implementation of Map’s lookup, which is independent from the realization of entry-
set s and entry-iterator i. At the level below, we focus on the interactions inside of s
and i, and between them, and ignore the context of a Maplmp composite performing
a map-lookup. This shows us the essence of how the iteration over the map’s entries
is implemented in the Maplmp composite. That is, we see independently from the
particulars of a map-lookup how iteration over a set’s elements is implemented if that
set is realized by a composite of implementation class Setlmp.

3. INTERMEDIATE LEVEL: LOOKUP IN A Maplmp MAp. When request lookup(k2)
arrives at a map realized by Maplmp composite d, this leads to the following sequence
of events shown in figure 2.10:

1. d sends elements() to abstract Set object s to ask it for an iterator over its elements.
s creates the new lterator i (shown as pseudo-message new sent to i), initializes it
in an unspecified way, and returns it to d.

2. d sends current() to its new, behavioral component i to ask it for the initial element

in the iteration sequence. i communicates in an unspecified way with s to retrieve

a first element el and return it to d.

s sends first() to entry object el to ask it for the key stored in it. el returns k1.

4. Since k1 is not the given key k2, s sends Step() to Iterator i to make it move on in
the iteration sequence. i implements this by unspecified communication with s.

5. d sends again current() to i to ask it for the new current element in the iteration
sequence. i communicates with s and returns e2.

6. s sends first() to entry object €2, which replies by returning k2.

7. Since this is the given key, s now sends second() to the same entry object e2 to
ask it for the corresponding map-value stored in it. el returns v2, which d returns
as the result of the lookup for k2.

w

4. LOWEST LEVEL: ITERATION OVER Setlmp SET. Now consider how composite
objects s and i implement steps 1, 2, 4, and 5 of the lookup collaboration by internal
communication and communication with each other (see figure 2.9 again). Observe
in particular how the references and communication between abstract objects s and
i, that was not specified in detail in the intermediate-level view, is now implemented
by low-level references and communication between different sub-objects of composite
objects s and i.

When asked for an iterator over its elements (step 1), set s first creates the Nodelt
iterator nn (1.1), and sets it up for iteration over its three storage nodes by initializing
it with the call Start(n1,3) (1.2). s then wraps nn in a newly created the Datalt iterator
i (1.3) by the call Wrap(nn) (1.4).
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A composite iterator i that was set up this way will, when asked for the current
element, return the data in nn’s current node (i.e., an element of abstract Set s}, and
will, when asked to make an iteration step, advance nn to the next node in the ring
(internal to Setlmp composite s). When asked the first time for the set-iteration’s
current element (2), i asks nn for its current element (2.1), which is the node nl with
which it was initialized. The returned nl is then asked by i for its data (2.2), which
is el. The answer, el, is returned by i as the first element of the iteration over s. A
request to make an iteration step (4) is forwarded by i to nn (4.1). nn asks its current
node nl for the next node (4.1.1). The answer, node n2, becomes nn’s new current
node. When i is now asked again for the current element of the set-iteration (5), it
forwards this request to nn (5.1), which answers with n2. This object is then asked
by i for its data (5.2). The answer, €2, is returned by i.

2.7 Origin of the Notion of Composite Object

The notion of a recursive aggregation of (elementary, low-level, concrete) objects to
(composite, high-level, abstract) objects, called object composition (or object contain-
ment [Lif93, Kri94, DD95a]), has four sources:

1. MODELING PARTHOOD RELATIONSHIPS IN THE DOMAIN. All general techniques
for modeling real-world domains support parthood relationships as a distinguished
kind of semantic relationship between two domain objects, the part and the whole
(object-oriented models [Ru*91, Boo94, Ja*94, Hen97, OMGO00], information models
[KR94, Kol99], data models [SS77, Ki*87], semantic networks [JHC84], description log-
ics [Ar796]). If software object w reifies the part and o the whole, then the object-
oriented programming systems LOOPS [SB85] and ThingLab [BC87] in the knowledge
representation field, and the object-oriented database ORION [Ki*87] represented the
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parthood relationship by a reference to w in a special “part” field of 0. Subsequent
research in databases focused on clarifying the issues of shared versus exclusive parts,
attribute propagation, existential dependency, constraint propagation, and local refer-
ential integrity (e.g., [MSI90, Liu92, HGP92, KS92]). A cognitive science paper [WH87]
influenced a string of publications on the characterization of subkinds of the parthood
relationship (e.g., integral whole/component, collection/member, mass/portion) in
knowledge representation [ILES88, CH88, GP95], information modeling [KR94, Kol99],
description logics [Sat95], and object-oriented modeling [Ode94, Hen97, SFL98, HB99b].

2. SOFTWARE CONSTRUCTION TECHNIQUE. Object composition has long been rec-
ognized as a central technique of object-oriented programming on a par with class
inheritance [CLF92, Lif93, Gat95, MD95, Pre97]: Each design step can be regarded “as
the implementation of some abstract object in terms of a collection of concrete ones
that are “assembled” into a configuration that provides the functionality required by
the abstract object” [FM90]. Particular cases are the component architecture com
with inner objects as components of outer objects [MD95], and “delegation-based sys-
tems” where a special form of composition between child and parent objects replaces
class inheritance [US87]. Favoring object composition over inheritance [Ga™95, Pre97]
allows one to avoid excessive class hierarchies (§2.1) and instable base-classes (§3.1).

The external view of the composite object as a communicating process composed
from component objects’ behavior was formalized as object embeddings by Hartmann
etal. [HJS92]. Gangopadhyay and Mitra defined objects at an abstract level first
and then recursively refined them into composites with a compositional semantics
abstracting from internal objects and communication [GM93]. Belkhouche and Wu
modeled object composition in CSP by the parallel composition of the components’
behaviors and the abstraction of internal communication [BW99].

The abstract state of objects as described in class specifications was formalized by
Breu [Bre91] through a mapping from the collection of interconnected objects (object
environment) representing it. The refinement of an abstract object, with an unbounded
set of data components, to multiple concrete objects of the executable program, with
a bounded number of fields was considered by Utting [Utt92]. How one object’s state
is represented in, or dependent upon, the fields of other objects (components) was
formalized by Wills [Wil92] and, independently, by Leino [Lei95, DLN98, LN0O].

3. STRUCTURING THE SYSTEM ARCHITECTURE. De Champeaux’s “ensembles”
were the first proposal for sub-systems (in object-oriented system analysis) that
had object-like features like attributes, message handling, and encapsulation of con-
stituents [Cha91]. Embley et al.’s high-level object classes without representative (see
below) can be understood as large, complex subsystems [EKW92]. Gangopadhyay
and Mitra [GM93], Rumbaugh [Rum94c, Rum95], and Harel and Gery [HG97] used
composite objects to structure the system model/specification and as context for lo-
cal definitions. Moreira and Clark used “aggregation” with hidden components as “a
mechanism for structuring large systems” [MC94]. Bosch [Bos96] organized the entire
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system into a hierarchy of nested objects.

4. HIGHER-LEVEL ABSTRACT VIEWS. Embley etal. collapsed, among others, low-
level objects with their links and interactions, to one high-level object in object-oriented
system analysis [EKW92]. And, conversely, they established the meaning of high-level
objects in terms of low-level objects. They distinguished high-level views where the
high-level object has or has not the same identity as one of the low-level objects, i.e.,
where there is, or is not a representative (called dominant object) in the expansion.
Moreira and Clark’s “aggregations” with hidden components [MC94] and Rumbaugh’s
“composite objects” [Rum94c] could be viewed as a single object at a higher level of
abstractions. Kristensen [Kri94], and Bock and Odell [BO98] demonstrated complexity
management, by higher-level views of composite objects and their connections.

SYNTHESIS. Already in 1987, Blake and Cook [BC87] distinguished “additive wholes”
(or “collections”) from “structured wholes” (like wired-up circuits). They related the
latter to classical decompositional analysis, and identified the dilemma between mak-
ing the part objects accessible to other objects for “a knowledge representation style of
programming” [SB85], and protecting the whole’s integrity against violations through
state changes in part objects. Six years later, Civello [Civ93] distinguished functional
parthood relationships as making the part “conceptually included” in the whole and
deserving encapsulation. He was first to point out the dual use of part hierarchies
for modeling part relationships between entities in the domain, and “to control de-
sign complexity by encapsulating the parts of composite objects.” Moreira and Clark
[MC94] similarly distinguished shared components from the hidden components that
permit “the aggregate to be seen as a single object at one level of abstraction, so it
can be used as a structuring mechanism.”

Rumbaugh established the terminology adopted by the UML modeling standard:
Whereas ordinary aggregation relates objects at the same semantic level [Rum94a],
composition produces an aggregation tree that can be abstracted at various levels
[Rum94c]. A composite object can be viewed “either in detail or as a single abstract
object subsuming relationships to its parts” thus providing “a vehicle for suppressing
detail” [Rum94c]. Composite objects can be used to structure the system and as the
context for the definition of component objects, their connections, and constraints
[Rum95]. Distinguishing components in object-oriented modeling into private and
public (external vs. internal composition) was proposed in [VMO99].
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Chapter 3

Encapsulation in Object-Oriented
Programming

The big lie of object-oriented programming is that objects provide encapsulation.
Hogg (1991)

A single object may be encapsulated, but single objects are not interesting.
An object must be part of a system to be useful,
and a system of objects is not necessarily encapsulated.
Hogg et al. (1992)

This chapter zooms in on the purpose of this dissertation: encapsulation for com-
posite objects. It develops the purpose not out of examples of what we want or don’t
want to happen at runtime, but out of the general software quality of modularity
that enables divide & conquer development, modular verification, and substitutivity.
Encapsulation and information hiding are two complementary aspects of modular-
ity generally agreed to be essential features of object-oriented programming. Their
different, competing concretizations will be reviewed.

Encapsulation and hiding limit external (respectively, read or write) access to
internal “information” to support, respectively, verification or substitutivity. This
may include more than just limiting external references and access to internal parts
(fields and component objects), since also the information which parts there are has
to be protected. Hence modularity for composite objects requires more than to apply
alias control or access control to inbound references.

3.1 The Importance of Modularity

1. MODULARITY IN GENERAL. A structuring of the program or system that manages
its complexity—which was the subject of the previous chapter—is not automatically a
good one. The structuring is of good quality if it is modular. Modularity means the
minimalization of couplings, or dependencies, between the structural units [Qui95].
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(‘Coupling’ is a dependency in one direction or another, or both.) Effective decou-
pling is “indispensable for the development of large programs” [Wir83]. Structuring
guides the focusing of attention to the limited amounts of complexity within one
structural component and one nesting level, and ignoring rest. Modularity is neces-
sary so that complexity ignored in the focused view is, for the most part, irrelevant
for the structural component in our focus.

There are three well-known applications of modularity in programming (also found
in Wirth’s and Wills’s analysis of ‘hiding’ and ‘encapsulation’ [Wir83, Wil92]):

o Divide & conquer. The classical divide & conquer problem solving technique
presupposes a degree of modularity: Dividing a software development problem
produce several smaller subproblems (without reducing overall complexity). Mod-
ularity is necessary so that each subproblem can be solved “nearly” independently
from the others. The subproblems’ solutions (portions of the program code or of
the runtime system) combine to a solution for the original problem.

e Integrity and reuse. Modularity limits the dependencies of a component on
the others, its context. The context makes “nearly” no difference to the compo-
nent (context independence, implementation integrity). This makes a component
more easy to comprehend, and more easy to “unplug” and reuse in a new context
[WB*95]. Assuming these limited dependencies (e.g., imported interfaces) are sat-
isfied, it is even possible in principle to verify the component’s correct functioning
without further regard for its context (modular verification). By thus guaranteeing
the correct funtioning of some components, we are “able to limit the area of error
search in the case of a malfunctioning program” [Wir83]. A component that works
correctly in one context can be “unplugged” and reused in any context satisfying
the dependencies (e.g., providing the imported interfaces), and one can rely on
it to continue working correctly. No re-verification relative to the new context is
necessary.

e Transparency and substitution. Modularity limits the context’s dependencies
on the component. Most aspects of the component are irrelevant for the context
(implementation transparency or independence); we can safely ignore them in rea-
soning about the context. Consequently, the potential for a ripple effect by an
error in the component is reduced [WB*95], and changing a component internally
or substituting it by a new one is less likely to have an impact on the context
[WB'95], should not require any adaptive changes in the context [Wir83|.

2. FOrR EXAMPLE, modularity was applied with great success in computer systems
to separate abstract solution from technical realization at higher and higher levels:
First, a defining feature of computers is
programmability: Computer systems C are
abstractly divided into a general purpose
machine M (hardware) and a program Py,
(software) specifying a particular compu-
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tation. Computer engineers can focus on constructing computers that execute ma-
chine language programs Pp, without malfunctioning. Programmers can focus on
expressing computation in machine language; programs Py, can be reused on other
machines M’ with different hardware but without adaption of P, if the machine
model is the same. (Before this innovation in the 1830’s by Babbage and in the
1930’s independently by Aiken, Stibitz, and Zuse, the automatization of each com-
putation required to build a different computer, or rewire an old one.)

Second, “high-level programming lan-
guages” coming up in the late 1950’s sepa-
rated the high-level program P, specifying
the actual, machine independent computa-
tion, from the language’s implementation
Ljs defining the program’s translation to
the machine. Language implementation Lj; (compiler or interpreter, and execution
environment) in conjunction with a machine M that can execute it, is a virtual ma-
chine that can execute Pr. Typed programming languages are designed so that the
language implementation’s correct functioning cannot be influenced by any program
Pp, and so that the language implementation can be updated or replaced by L,
under the unchanged program P, (enabling the portation to other machines M).

Third, while the original program mod-
ule was the procedure, the class construct
of the first object-oriented language Simula,
of 1967 [Bi*80] brought the insight of the
1970’s that good larger-scale modules re-
sult from collecting all the procedures cou-
pled by access to the representation of the
same abstract data [Hoa72, Par72, LZ75, GH75, Lis92]: Program Py is divided into
the core program Py with the high-level program logic, and the implementation of
user-defined data types contained in multiprocedure modules U;. These modules
extend the programming language by “a vocabulary of data types” [SG96] (general
purpose as well as application-specific). A modular programming language ensures
the independence of each module U.’s functioning from any context P/, and ensures
that revisions or reimplementations Uy, of the module have no impact on Py. (It may
even be possible to combine modules and core programs that were translated with
different compilers or written in different languages, as in the .NET architecture.)

modularize

3. A STEP BACK? In object-oriented programs, the class definition is the nat-
ural multiprocedure program module. However, the central object-oriented soft-
ware construction technique of class inheritance, i.e., the definition of one class by
derivation from another, compromizes the program’s modularity [Sny86, MD95]. The
main thing possible with inheritance but not with object composition is the over-
riding inherited methods, allowing one to redirect other inherited methods’ call of
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this method (self-calls) to a new implementation [Hau93, SM95]. But it is also the
source of a new kind of tight coupling between class modules known as the insta-
ble or fragile base-class problem [Pre97]. The solution through some form of
explicit specialization interface between base-class and derived class is still an open
issue of research [Lam93, St*96, Sta97, RL00]. The usual advice given to program-
mers [Gat95, MD95, Pre97] is to avoid creating new classes by class inheritance with
its dependency on the internal method call structure of the base-class (“white-box
reuse” [Pre97]), and to prefer object composition, where component objects are used
through normal exported object interfaces, a clearly defined, well-understood concept
(“black-box reuse” [Pre97]).

4. MODULARITY IN OBJECT SYSTEMS. In object-oriented programming, the struc-
ture of the runtime system model (the object system) does not coincide with the
structure of the program (§2.3). Besides the modularity of the program’s partition-
ing into class modules—whose interfaces extend the language in which the program
is written,—we can also talk about the modularity of the system’s partitioning into
objects—whose interfaces specify the language in which objects communicate.

What does modularity mean for a runtime system? It is relevant not for what
the programmer can do with program modules, but for what the computation can do
with components of the runtime system, in particular, with composite objects:

e A runtime component O’s implementation
can be verified independently from the run-
time context Sp in which it is used. It can be
transfered between different parts Sp, of the
system, even migrated to other systems S,
without starting to malfunction.

e What implementation the runtime component has is transparent to the context.
Hence it can be substituted without impact by a component O’ with a different im-
plementation.

It is wrong to think that these properties are only interesting for systems with an
infrastructure for the dynamic migration of runtime components and for the dynamic
switching between implementations. They are crucial for all object-oriented programs
since (composite) objects, the runtime components of object systems, are transfered
and substituted all the time: Any passing of an object reference to O as parameter
into an object’s method is like the transfer of O into the context of this object and is
like the substitution for a formal parameter object (or for previous parameter objects).
Any redirection of an object reference variable from O to O’ is like a substitution of
target object O’ for object O and thus a move of O’ into the context Sp around
the reference’s source. Finally, there are special design patterns which separate the
decision about from which implementation to instantiate an object O on one hand,
from the object’s use in a context Sp on the other hand, so that it can easily be revised
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or decided dynamically: Factory Methods, which “pervade toolkits and frameworks,”
Abstract Factories, which are the basis for component systems, and Prototypes, which
are the foundation of prototype-based programming [Ga™95].

Observe the distinct advantage of the transparency-aspect of object modularity:
Transparency of class modules decouples clients of a class module from the definitions
in the module. It makes it safe to revise field and method definitions, corresponding
to a simultaneous change of these fields and methods in all instances of the class and
its subclasses. Transparency of objects, on the other hand, decouples the clients Sp of
objects O from the decision what class ¢ of objects O to supply as parameter, assign to
the variable, or create. It makes it safe to revise this decision statically or dynamically
on a case by case basis, and thus revise from which class module the method comes
that implements the client’s invocations on O. That is, object transparency is the
condition under which a foundation of object-oriented programming is safe: mixing
objects from different classes (polymorphism) and executing method code depending
on the receiver object’s class (dynamic binding). (The programmer must not forget
that the methods’ externally visible behavior is not an implementation detail, and
must be preserved, cf. behavioral subtyping [Ame87, LW94, D1.97].)

3.2 Information Hiding and Encapsulation

1. MODULAR ESTABLISHMENT OF MODULARITY. A division into components is not
automatically a modular one. Transparency and integrity of a component X depends
not just on X itself, but requires also that no other component, respectively, depends
on, or interfers with, X’s internal working in any way—something very difficult to
check in general. Hiding and encapsulation are two prominent programming principles
that make the context check superfluous or at least independent from X'’s interior
(i.e., a modular check), and for which techniques for their automatic enforcement
exist. They allow a component to establish its own transparency and integrity.

Different concretizations of the notions of hiding and encapsulation exist in the
literature, as we will encounter in §3.6. Often the two are used interchangeably for a
principle addressing both integrity and transparency, with encapsulation being rather
the technique and hiding rather the abstract property it achieves. In the following,
the term ‘encapsulation’ will be used in a very particular sense that opposes it to
‘hiding’ w.r.t. the direction of the tackled dependency (cf. [KM95]):

a) Hiding removes the component’s internal properties and working from external
view, wraps the component in black (black boz). It reduces the context’s poten-
tial dependency on the component (furthering implementation transparency and
substitutivity), namely dependency on the component’s design, by making it im-
possible to develop a dependency on its internals. According to Parnas’s famous
information hiding principle, “A module is characterized by its knowledge of a
design decision which it hides from all others” [Par72].
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b) Encapsulation protects the component’s internal properties and workings from
external manipulation, wraps the component in a capsule (protective boz). It
reduces the component’s dependency on the context (furthering implementation
integrity and verifyability), namely dependency on how the context uses the com-
ponent, by making it impossible to develop a dependency on (the benignity of)
its manipulations. “If a language enforces encapsulation, [context-|independent
reasoning about modules is on a sound foundation. Otherwise, it isn’t and a
complete proof requires a global analysis” [Lis92].

Observe that hiding as well as encapsulation remove neither the context’s de-
pendency on the component’s ezternal behavior, nor the component’s dependency
on how it is used by the context, nor the component’s dependency on the context’s
implementation of imported services. Also, there is a gray area regarding imported
services requested by the component: Can they be allowed to view and manipulate
the component’s internals? This will be considered in §3.5.

2. INTERIOR AND INTERFACE. The common view of hiding and encapsulation
reduces component-internal “information” to mean the internal parts of a component
that is an aggregation of subcomponents. This view presupposes a division of the
subcomponents into two groups: Some are designated as exported parts or interface
parts; the others are called internal parts or private parts. For hiding it then suffices
to prohibit the outside’s access to the component other than through its interface
parts. This limits the context’s dependencies on the component to that which is
visible through its interface. And for encapsulation it suffices to prohibit the outside’s
modification of the component other than through its interface parts. This limits the
component’s dependencies on the context’s manipulations to those possible through
the interface. That is, a protection domain is established by, metaphorically speaking,
the drawing of a barrier around the component—called encapsulation barrier in both
cases—which has the private parts protected inside of it and the unprotected interface
parts crossing it.

But not all internal information is an internal part, there are also internal struc-
ture and state, which are not parts. The reduction to internal parts works only if the
number of subcomponents is fixed, as in a program module or in an implementation
object. If their number can change—as in the case of composite objects—this is an
aspect of the encapsulation unit’s state and it is not necessarily represented in the
state of its private parts. This issue will be picked up again in the discussion of
composite object encapsulation in §3.3, paragraph 3.

3. CURRENT OBJECT-ORIENTED ENCAPSULATION. The two main mechanisms by
which parts of any software system may interact are the access to shared variables
and the exchange of messages. Interaction through a shared variable creates a cou-
pling that is considered worse (tighter) than that through the exchange of messages.
Procedural programming has been scolded for its tight coupling of distant program
parts through global variables and global data structures [Mez98].
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Figure 3.1: Encapsulation models in object-oriented programming

In object-oriented programming, encapsulation (in a sense that includes hiding)
is an essential feature. While general introductions to object-oriented programming
[Weg90, Qui95, Bru96, AC96, Cas97] present the implementation object as the encapsu-
lated unit, most object-oriented programming languages support the encapsulation
of the class module. The addition of either kind of encapsulation is an improvement
since it contains all the “bad,” variable-based coupling within the units, while be-
tween them there is only the weaker coupling by message exchange. (On a larger
scale, the problem with shared variability reoccurs—see paragraph 2 in §3.3).

3a. THE ELEMENTARY OBJECT CAPSULE. The first object-oriented language, Sim-
ula, developed 1967 for concurrent system simulations [Bi*80], had objects and a
class definition construct but no encapsulation. The second object-oriented language,
Smalltalk [GR83], designed between 1972 and 1980, defined the canonical understand-
ing of encapsulation object-orientation (see the left hand side of figure 3.1):

The implementation object is the encapsulated unit, with the fields as private
parts and the methods as interface parts. Only an object’s methods can access its
fields (irrespective the class modules in which both were defined). Objects with a
reference to another object can use it to send operation requests but not to access the
target’s fields. For the modularity of the system it is irrelevant in which modules the
fields and methods were defined. The object’s implementation code as a whole, in its
class and superclasses, can be verified, and the object can be substituted by another
one with different fields and/or different implementation of the methods.

The technique by which Smalltalk enforced this is that it simply provides no
syntax F.x for accessing a particular object’s fields. One can only write the identifier
x to refer to the field x of the current object.

3b. MODULE-BASED ENCAPSULATION as introduced by C~ 1983/86 [Str94] and
Eiffel 1986/88 [Mey88] made the object-oriented paradigm more acceptable to the
software engineering community and consequently became the dominant form of en-
capsulation supported by object-oriented programming languages. It is based on
scope-rules: The names of private fields are simply not available outside of the class
module defining them. (Different visibility ranges can be specified, but this is not the
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issue here.) Hiding field names makes it impossible for other modules to express an
access E.z to a field . It prevents dependency on the definition of the field (linguistic
coupling). (However, if fields can not only be accessed by name but also by pointer,
as in C+, then there may be a dynamic coupling, cf. §3.5.)

Consider what this means for the access to the fields at runtime (see the right
hand side of figure 3.1): An encapsulation barrier is erected that contains as private
parts from all objects the fields that were defined in the same class module. The
fields can be accessed only by methods defined in the same class module; they are the
interface parts. For the modularity of the program it is irrelevant that these methods
are the methods of all instances of that class and its subclasses: The class module
can be verified and revised since it simultaneously defines the accessed fields and the
accessing methods of all these instances.

(This model can be extended, as in Java, by another encapsulation barrier as-
sociated with multi-class packages. It can enclose the encapsulation barriers of the
class modules in them, and contains package-private fields and methods demanded
by Szyperski’s “no paranoia rule” [Szy92], as well as package-private classes.)

3.3 The Need to Encapsulate Composite Objects

1. UNSUFFICIENCY: REFERENCE-INDUCED COUPLING. The above two standard
models of object-oriented encapsulation contain bad, shared variable-based coupling
within implementation objects or class modules. They clearly separate computation
in-the-small with tight coupling from computation in-the-large with weaker coupling
at the objects’ or modules’ boundaries.

However, because the complexity of each implementation object is limited, groups
of objects have to collaborate for larger tasks, which leads to problematic coupling
also by message exchange. The Demeter system tried to reduce coupling by the design
rule “Law of Demeter” [LH89] that deprecated calls through temporary references, so
that the direct effects of a method invocation were limited to the objects referenced
by the receiver’s fields and the method’s parameters.

In particular, an object can act as an abstract variable whose sharing between
several objects or modules leads to a coupling similar to that through global vari-
ables. The combination of sharing and mutable state has repeatedly been identified
as causing serious problems [NVP98, Cla01], and making object systems so notoriously
hard to reason about [Wil92, Ho*92, Alm97]. This was already observed very early by
Jones and Liskov [JL76], who saw this leading to “the need to exercise some control
over exactly how the object should be shared.”

The praxis of object-oriented programming has shown that problems by aliasing
“do not manifest themselves in the vast majority of programs” [NVP98]. But this
depends solely on a self-disciplined manner of using references. One documented
example were this discipline failed is a bug in the Java Development Kit (JDK)
version 1.1.1 that caused a security hole in Sun’s HotJava web browser [SIP97]: The
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JDK Class object o, that reified Java (downloaded) classes ¢ returned, instead of a
copy, the actual array object a holding the “digital signatures” for c¢. By overwriting
its signatures with signatures from trusted classes, class ¢ can rid itself from HotJava’s
security restrictions. This can be understood as a problem of aliasing or write access,
of encapsulation with a as private component of composite object o, or as private to
JDK’s class Class.

Any limitation of how objects are accessed through references (access control)
or of the existence of sharing-enabling reference aliases (alias control) reduces the
coupling in the object system and simplifies reasoning about its dynamics. Alias con-
trol, in particular, has a long tradition in reasoning about procedural programs with
multiple names for the same variable (e.g., through parameter passing by reference)
[Rey78], or with pointers (subclassified by Euclid’s collections [La™77], or effects sys-
tems’ regions [LG88]). It was also employed for safe parallelization of programs with
pointer data structures [HHN92, KS93, HHN94| and for optimized memory dealloca-
tion (linear types [Wad90, Bak95], regions [TT94], escape analysis [Bla99], calculus of
capabilities [CWM99], alias types [WMO0O]).

However, the aimless reduction of coupling cannot ensure verifyability and sub-
stitutivity. For the question of modularity, alias/access control and a reduction of
coupling is of interest only in so far as it concerns references and couplings that cross
the boundaries of some runtime system components.

(A radical solution for the problems with object references would be to replace
them by a more abstract mechanism of referring to objects [Kri%4], e.g., by commu-
nicating through out-ports which are connected to in-ports by the enclosing compos-
ite object [GM93, MC94, AKCO01], by acquaintance categories [Bos96], or by paths of
composite-local names for its component objects [RBF98]. But how much this would
actually reduce the effective coupling in the system remains unclear.)

2. UNSUFFICIENCY: GRANULARITY TOO SMALL. Elementary object encapsulation
allows one to verify the implementation of an implementation object’s external behav-
ior and the substitution of an implementation object by another one that implements
the same external behavior. Similarly, class module encapsulation allows one to verify
the implementation of its instance’s module-external behavior and the substitution
of the module by another one that implements the same module-external behavior.
This suffices for simple data abstractions like calendar dates that are realized by a
single implementation object.

But for an implementation MapImp of abstract map data structures this is unsat-
isfactory since also the communication of a MapImp instance with its entry-set com-
ponent and entry-pair components is external behavior for s as an implementation
object, the representative. It is unsatisfactory to merely verify that representatives
correctly communicate with their components and correctly produce results depend-
ing on the replies (cf. §2.6). It is unsatisfactory to merely replace representatives or
their definition module MapImp by another one with the same communication with
components. The structural unit in the design of the object system is the composite
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Figure 3.2: Encapsulated composite objects

object. We should to be able to verify the entire implementation of, e.g., an abstract
map data structure by the composite object’s external behavior, and to replace the
entire composite map by another one with a different implementation, e.g., with two
array objects (one for the keys and the other for the corresponding values).

3. CoMPOSITE OBJECT ENCAPSULATION. Soon after object-oriented programming
started to be taken seriously, demand rose for encapsulating entire groups of the ob-
jects. In particular those which were seen as one unit with object-like properties,
and were later called composite objects, should also have the characteristic object
property of encapsulation. Forms of composite object encapsulation were suggested
in part-whole modeling in programs [BC87] and databases [KS92], in object-oriented
system analysis [Cha91] and architectural modeling [AW192, GM93, Bos96], and in
formal methods in object-oriented programming [Hog91, Wil92, Utt92, Lei95]. This
concern for larger-scale modularity in the runtime system was ignored by the devel-
opment of object-oriented programming languages. (But it motivated in the 1990s, via
document-centered architectures like OLE and OpenDoc, the development of compo-
nent system architectures like COM, CORBA, and JavaBeans [MD95, OMG00, Ham97].)

Encapsulation or information hiding for composite object concerns (information
about) their fields and their component objects. In the canonical case, these are the
composite’s interior, and its operations (implemented by its representative) are the
only interface parts. For example, see the composite TaxiCab object with Engine,
Wheel and Meter components in figure 3.2. In analogy to the notion of public fields in
modular encapsulation, one could also have public component objects, whose interface
parts are exported as additional interface parts of the composite. For example, a Car
object might make its engine component public (fig.3.2). And if the engine has a
public oil-measure-shaft component, the Car object could export that too.

An encapsulation of composite objects is always understood to be added on top
of an encapsulation of implementation objects. That is, the elementary object en-
capsulation barrier encloses the object’s fields (cf. previous section, paragraph 3). It
and the (encapsulated) component objects are enclosed in the composite object en-
capsulation barrier (see figure 3.2). The composite’s methods are the interface parts
for both the elementary and the composite object encapsulation barrier.
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Consequently, we can focus on hiding or encapsulating the information about
the composite’s components. It has two aspects, and these are both mutable (cf.
composite state in §2.5), so that dependency on either of them is possible:

e First, what are the composite’s components?
e Second, what are their current states?

The first aspect is often overlooked, and it is assumed that coupling between two
composite objects can only be established by the existence of object references to
the composite (good) or to its component objects (bad). Hiding and encapsulation
would then be equivalent to controlling, respectively, the ezistence or use of inbound
references from the outside to the component objects, i.e., to alias control or access
control across composites’ boundaries.

For an information hiding policy it is insufficient to prevent the external access to
internal components that could observe (or change) their states, i.e., access control
on inbound references. Even unused inbound references can represent the outside’s
knowledge of who the components are. Hence information hiding for composite ob-
jects is a form of alias control at composites’ boundaries that prevents the outside’s
(non-contained) possession of references to components.

And for an encapsulation policy it is unsufficient to limit the use of inbound refer-
ences to read-only access that does not modify any component object, i.e., a form of
access control at composites’ boundaries: It also has to exclude the external manipula-
tion of the composite’s set of components. The concretization of encapsulation w.r.t.
this aspect depends on how it is determined in the implementation object system
what a composite’s components are at a particular point in time—there are different
approaches, which will be considered in §3.4. If it is determined by paths of certain
references (cf. §3.4), the existence of such references must be controlled by controlling
the state of objects holding them. And if the paths can go through (fields of) external
objects, write access to these external objects will have to be controlled as well so
that the composite cannot be manipulated w.r.t. its component set by the update of
fields. Paradoxically as it may sound, to encapsulate composite objects determined
this way, we need access control beyond the composite’s boundaries—because it is
not self-contained. This is a case where the reduction of encapsultion to a protection
of internal parts (cf. §3.2, paragraph 2) does not suffice for the protection of a piece
of internal information.

Observe that preventing inbound references for information hiding entails encap-
sulation if reference paths determine object composition: It removes the basis for
observing access to components and excludes the use of paths to components through
external objects. But in case that membership in the composite object is determined,
e.g., by containment in a local store (cf. §3.4), there might be a special operation
for adding a new object to that store, and thus change the composite’s composition,
without requiring a reference to any of its old components. This is a case where the
hiding of all internal information (who are the components and what is their state)
does not entail encapsulation w.r.t. them (cf. §3.2, paragraph 1).
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3.4 Directions of Research in Encapsulation Units

Research in the encapsulation of composite objects has produced many concretiza-
tions of the notions of hiding and encapsulation in particular contexts. They differ
widely in how the encapsulation barriers are drawn, what precisely is allowed to cross
them outside-in (discussed in the next section), and how this is called. (One may
interpret this as a sign for lack of maturity of the field.)

1. CLASSES OF MODULE-PRIVATE INSTANCES. If a class module ¢ is private to
a package or class module M, we might expect the c-instances to be in some way
private to M. That is, in the runtime system model there is a protection domain Dy,
associated with M that contains, besides all object fields that were declared in M,
also all the c-instances. This is not the case. A scope restriction of the class name ¢ to
the package or module M cannot guarantee that c-instances are accessible only from
code in M: In Java, all classes have a non-private superclass, namely the special class
Object. But if class ¢ has a superclass ¢ that is not private in M, then references to
c-instances can be leaked as references of static type ¢’ to code outside of M. It can
then invoke ¢-operations on the c-instance.

To solve this problem, the notion of confined types was developed by Vitek
and Bokowski [VB99], and later refined by Grotthoff, Palsberg and Vitek [GPVO01]: A
class declared confined is not just a private module in the enclosing Java package
but also its instances are private, i.e., can never be referenced at runtime from fields
and methods defined outside the package. All the code accessing the instances is
located in the enclosing package.

Instead of defining a new confined class each time one wants package-private
objects, one could also take classes ¢ from any package M’ and assume a generic,
ad-hoc subclass ¢y of it for every class module or package M in the program such
that cps is confined to M. That is, only methods defined in M have full access to the
instances of M-qualified class cps. This idea is realized in the type universes system
of Miiller and Poetzsch-Heffter’s Universes system [MP99a]: ¢<T> is the class of c-
objects private to the package M in which class T' is defined. The “type universe” of
T is the collection Ur of all instances of T”s classes ¢<T>, ¢'<T">, etc. The union of all
universes Ur of classes T' in package M is the protection domain D, associated with
M. The encapsulation policy of universes, representation encapsulation (§3.6), allows
external read access to the instances of confined class ¢<7T>. But all write access is
limited to code in T’s package M. The c¢<T> instances in each universe Ur C Dy,
“can only be manipulated by methods implemented in [M]. Therefore, type universes
provide sufficient sharing control for modular reasoning, since all “dangerous” code
is located in one [package].”

One can use confined types and type universes for the encapsulation of composite

objects of class T by using as the types of component objects only, respectively,
confined classes or qualified class ¢<T™>.

47



Observation 1. Consider that a c-object w used as components of T-composite
o is a composite object with component g of class d, and assume that T, ¢, and
d are defined in different packages (only then are type universes a real advantage
over confined types). Since o’s component w is of qualified class ¢<T'>, only code
in T’s package has full access to it. For components ¢ (of qualified class d<c>), this
means that it cannot have full access to its own composite w (unless through methods
inherited from classes in 7’s package). Since all classes should be qualifyable (to
obtain component objects) it would be unsafe to program composite classes whose
instances give their components a writable back-link. This is a restriction of composite
objects’ internal working that is not necessary for composite object integrity and
substitutivity, but an idiosyncrasy of encapsulating objects in modules.

Observation 2. Type universes work well only for composite objects which create
their components themselves. With patterns of flexible object creation and compo-
sition, problems arise since the class of the component’s composite must be fixed at
creation time. Consider first SetImp objects, which create iterators over their ele-
ments (the Abstract Factory design pattern). The iterators from the SetImp object
s used as the entry-set in a MapImp composite needs to be wrapped in a FirstIt
object to produce iterators over keys. In order to create iterators as components of
composites of different classes T, one would need to make set objects’ factory method
elements polymorphic with class parameter 7. But since 7' = FirstIt is in a differ-
ent package than SetImp (see fig. 2.6), type universes would prohibit s from accessing
the newly created iterator (e.g., for initializing it to the right position). Second, con-
sider an abstract parser class AParser which provides an operation for configuring
the parser with a scanner component (a generalization of Leino’s example [DLN98]):
The parameter’s type can only be Scanner<AParser>. But then no parser implemen-
tation is possible where the scanner object is a component of one of the AParser’s
subcomponents. Also parser implementations in a different package than AParser
cannot make any use of the scanner object.

2. FIELDS WITH OBJECT-PRIVATE TARGETS. A fundamentally different—though
superficially similar—idea is not based on generalizing the privacy of classes to their
instances but on generalizing the privacy of reference fields to their targets.

The simplest version is to let all objects reachable from a given object o along
object references captured in (private) fields be private to o. The applicability for
the encapsulation of composite object is limited, though. It makes sense only for
composite object without captured references to objects in its context. If all objects
were encapsulated this way, no cyclic linked data structures could be constructed and
an object could not be stored in two set container objects at the same time. It is
telling that the two techniques supporting this form of encapsulation apply it only to
selected objects, called islands [Hog91] or balloons [Alm97).

A variation is to distinguish those reference fields whose target we want to be
private, component fields, from normal fields. Historically, this idea was imple-
mented first without encapsulation, e.g., in the object-based KI system LOOPS of
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1983 with the keyword part [SB85], and the object-oriented database ORION with
special fields of “composite references” proposed 1987 by Kim et al. [Kit87, Kit8s].
Different forms of encapsulation of the component fields’ targets were added in the
language Sina with keyword internals [AW™92], in an extension of Modula-2 with
the keyword private [Lei95], of Eiffel with the keyword unique [Min96], or of Java
with the keyword unshared [GB99], and in the specification language Object-Z with
proposed declaration annotations §) ©, and & with different sharing constraints
[DD95a, DD95b]. In two formal reasoning techniques [Wil92, DLN98], the component
status of field z of object o is implicit in the specification that o’s abstract state is
represented in, or depends on, some field of z’s target.'

As a general solution for the encapsulation of composite objects this is too inflex-
ible: Since the number of fields is fixed, the number of private component objects
would be bound. An implementation of Set with an internal, dynamically-growing,
cyclically-linked storage structure would be impossible to encapsulate.

3. REAL CoMPOSITE OBJECT ENCAPSULATION establishes an encapsulation bar-
rier around all the fields and component objects of a composite object, independently
from packages and fields. Since composite objects can be nested recursively to a com-
position hierarchy, the encapsulation of all of them produces a hierarchy of nested
encapsulation barriers. (They combine without intersection with the smaller elemen-
tary object encapsulation barriers around just the private fields.) Various, sometimes
overlapping, ways have been used for defining a composite object’s private objects
without the above described problems:

a) On one hand, object reference-based determination of privacy can be extended
to using entire paths of references in the object graph. Not only composition
references must be distinguished, also other kinds of object references must be
distinguished according to how they combine to composition paths whose final
object is private to the initial object. This seems to be the unspoken idea behind
flexible alias protection [NVP9S].

b) Also the class qualification approach can be developed further by assuming for
every object o, a generic, ad-hoc subclass ¢, of any class ¢ all of whose instances
are private to o. Such classes have been described as o’s local classes [KS92],
classes or object types with (main) ownership parameter o (ownership types)
[CPN98, Cla0l], or o’s “copy” of class ¢ [MPO01].

c¢) Effectively similar is to associate every object o with a protection domain D,
so that all objects that are in it become private to o. D, is either a variation
of Euclid’s collection [Utt92] later called o’s local store [Utt96], a so-called rep
context (providing “a nested partitioning of the object store”) [CPN98, Cla01],

'Dong and Duke [DD95a] and Almeida [Alm97] observed that expanded classes in Eiffel protect
against aliasing: Reading the value from expanded fields means to copy the object w in it, means
to create a clone of w. It is however not clear if also the reading of the this variable in methods of
w inherited from non-expanded superclasses creates a clone.
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“a partition of the object store” called object universe [MP99a], or a protection
domain called object space [CR00|. Either D, is a real runtime construct and
an object is made a member by creating w “in” domain D, [Utt92, CR00]. Or D,
is a metaphor for being private to o by reference path or qualified class [CPN98,
MP99a, Cla01].

d) A more direct expression of object composition is Kent and Maung’s notion of
object ownership [KM95]: All objects w have an implicit attribute, called their
owner, to which they are private if it is non-null. For example, the component
objects of com (“inner objects”) have an implicit owner attribute (“outer ob-
ject”), which they return when asked for their IlUnknown interface [MD95]. An
object’s owner is either fixed implicitly at the time of its creation relative to the
creator [KM95], is set implicitly by converting a unique reference targeting it
to an owned reference [ACN02], is set by a special operation on the component
[MD95] (before the first IlUnknown query [SM97]), or derived from membership in
class ¢, or domain D, [CPN98, Cla01, MP99a, MPO01].

All these approaches can in principle encapsulate all interesting composite objects.
Since the three non-path-based approaches are independent from the existence of
references between objects, they are slightly more flexible in drawing encapsulation
barriers around composite objects, whatever their internal structure: They support
objects that are private to o (members of ¢, or D,) but which o cannot reach. In path-
based flexible alias protection [NVP98], if all composition paths from composite o to
component w are destroyed, w cannot but lose its official status as private component
of o.

The qualified class approaches [KS92, CPN98, MP99a, MP01, Cla01] have a principle
problem with flexible object creation and composition: The owner must be fixed
before the class can be instantiated, and changing it later would amount to changing
the object’s class (“metamorphism”). Even Clarke, whose work is the most advanced,
admits that “this is unlikely to be sound” [Cla01]. Clarke’s owner-polymorphic method
can solve many simple cases. But, as Clarke shows, heavy restructuring of the control
flow is necessary for a more elaborated example like the configuration of a parser
object with unknown internal structure by an externally created scanner object from
[DLN98] (cf. paragraph I above).

For two real domain-based and ownership-based approaches, that are not derived
from qualified classes, the authors consider the explicit switch of an object’s owner
by operations transfer [Utt96] or acquire [KM95]. This would seem to support
in principle all patterns of flexible object creation and composition, although some
conditions might be needed to make transferring ownership a clean and safe affair.

Flexible alias protection has one type of object reference particularly for flexible
object creation and composition [NVP98]: The initial reference to a new object is
free, and free references can be passed between objects, and converted to any other
type of reference by assignment to a corresponding variable.
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4. VARIATION: PRINCIPAL-WITH-PROXIES COMPLEXES. In Clarke’s Unique Repre-
sentation Calculus Dlg, aggregates are runtime components made of one (principal)
composite object together with (proxy) objects for accessing it [Cla01]. Effectively the
same happens in AliasJava, where one (principal) composite object can create other
objects which have full access to its interior but are not its components [ACN02]. For
instance, the encapsulation barrier of a set object s may be extended to include also
the iterators (proxies) over it. This is shown in the left side of figure 3.3.

Formally, this is the same as composite object encapsulation with public compo-
nents; there is only the semantic distinction whether the additional interface object
(the proxy) is a component of the composite or not. Public components are supported
in Microsoft’s component standard coM by the notion of “aggregation,” in which
the composite object (“outer object”) can return (interfaces of) aggregated compo-
nents (“inner objects”) for direct use by clients. Note that coM does not come with
a mechanism that would help to enforce any encapsulation policy: The working of
COM aggregation relies on the unverified assumption that references to components,
or more precisely to their cOM interfaces, are only ever exported to clients via the
special Querylnterface operation [SM97]. Since standard COM containers return their
iterators through operations like EnumObjects or EnumViews [Mic02], this appears
to mean that cOM does not make iterators additional interface objects that would
extend the composite container object to a principal-with-proxies aggregate.

General aggregates of a principal with proxies are not a standard design abstrac-
tion of object-oriented programming. There is a structural problem too: Principal-
with-proxies aggregates do not scale well with the parallel composition of composite
principals and composite proxies. A map object d (also called dictionary object) im-
plemented with a set component s has its iterators composed from s’s iterators. If d’s
iterators want to have their s-iterator components within their own (principal-with-
proxies) encapsulation barriers then they will have to be included into s’s principal-
with-proxies barrier. This results in an unbalanced structure where a (multi-level)
composite proxy has to be located in the smallest principal-with-proxies aggregate
from whose proxies it is (indirectly) composed. This gives the proxy (d’s iterators)
unjustified privileges on the intermittent components’ (i.e., s’s) private parts.

5. VARIATION: COLLECTIVE RUNTIME COMPONENTS. An aggregation of objects,
like a husband and a wife, does not need to be reified in a separate object, the
family object (which represents the family as a whole, carries the family attributes,
and provides the family operations). Clarke models it as one encapsulated collective
aggregate F consisting of husband object 0, and wife object o, as interface parts, and
optional private car object w [Cla0l].

If we understand a map and its iterators as one collective aggregate without a
distinguished principal object, the structural difference between principal and proxy
disappears (see the right hand side of figure 3.3): Not only do set and map objects
give up protection vis-a-vis their iterators, also the iterators give up protection vis-a-
vis their principals (and other proxies). This would avoid the unbalanced structure
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Figure 3.3: Nested principal-with-proxies aggregate, nested collective aggregate

and unnecessary privileges of the treatment as a principal-with-proxies aggregate.

Collective components are supported by the aggregates of Clarke’s Owners-as-
Cutsets Calculus Dls [Cla01]. They allow to draw the encapsulation barriers in the
map example as shown in figure 3.3. (Moreover, collective aggregates can overlap,
so that one object is interface part in multiple collective aggregates: Husband o,
and other person objects may be the interface parts (club-members) to a collective
aggregate book club with books as private parts, while wife 0, and other person objects
are the interface parts to a collective aggregate music club with CDs as private parts.)

A kind of collective aggregates is also supported by the Object Spaces model
[CROO]: The objects in one object space S collectively own the objects in all child
spaces of S. S’s objects are the interface parts and the child spaces’ objects are
private to them. For example, map object d and its key-iterator w are created in the
same object space D;. In one child space Ds, all their components with access to s’s
Node components are created, namely, Set object s, and set-iterators i and i. The
nodes are created in a child space D3 of Dy. The remaining components of d and w
without access to the nodes, namely entry Pair objects el through €3, could also be
created in Dy, or in an extra child space D} of S.

3.5 External Access despite Encapsulation?

Is hiding or encapsulation violated if the context views or manipulates a component’s
internals (only) as part of a service requested by that component? The answer to
this question distinguishes many pro-
posed concretizations of hiding and en-
capsulation policies for composite ob-
jects (§3.6). One may say ‘No’ because
the resulting dependency of the context on the component affects only the service
user, i.e., the component itself. Consequently, one may distinguish strict, absolute

relaxed hiding = relaxed encapsulation

T )

absolute hiding = absolute encapsulation
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notions of hiding and encapsulation, which exclude any external view or manipula-
tion of internals, from relaxed notions, which allow it iff it is confined to services
requested by the component.

The relaxed/absolute question poses itself not only for composite objects but
already for class-module and elementary objects encapsulation (§3.2) in languages,
like C+, with pointers to fields or parameter passing (of fields) by reference. For
example, a class Point of 2D-points may implement the transpose operation by
calling the swap operation of a Util object to exchange the coordinate values. swap

has by-reference passed parameters, through which the Util object can access the
Point object’s x and y fields.

class Point {
private: int x, y;

public: wvoid transpose() { (new Util)->swap(x,y); } // (attn: space leak)

};

class Util {
public: void swap(int &a, int &b) { int a0 = a; a = b; b = a0; }

};

This example clearly shows that the technique of prohibiting field access expressions
E.x (generally or outside of the module defining x, respectively) cannot by itself
guarantee that there is never any access to an z-field from outside the object or
module. The access is excluded only in the context of programming languages where
naming a field is the only way to access it, as in Smalltalk and Java.

The external access violates hiding and encapsulation in their absolute form. But
modularity is not lost since the external access is initiated by code in the Point module
and is formulated without knowledge of Point objects’ fields: The Point module can
be verified based on the standard meaning of the imported swap operation. The
Point module can be changed to a polar coordinate implementation (which has no
use for the swap operation) without impact on the Util module.

Relaxed hiding and encapsulation holds since Util objects retain no access after
they finished the swap-service, establish no covert channel to Point objects’ fields. It
would be different if method swap, in violating of the meaning of swapping, captured
a parameter’s address in global pointer variable intptr by intptr = &a. Through
this pointer, other modules could observe the fields and become dependent on how
module Point uses them, or modify them and thus interfere with how Point uses
them. On the other hand, capturing the pointer would be safe if intptr is a variable
accessible only directly or indirectly from module Point. Also in this case, all access
through the captured reference would be contained to operations of module Point.

The question of what happens with a pointer or reference passed as parameter
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to an operation is known in the access control literature as the confinement problem
[Lam73], the conservation problem [CJ75], or as server containment [CRO0].

3.6 Review of Proposed Encapsulation Policies

The success and acceptance of an enforced programming discipline depends on the
extent to which it supports or constrains the programs that programmers actually
want to write or reuse [NVP98, Lei01]. Hence let us analyze in how far the proposed
variants of encapsulation support or constrain common types of objects. (The exam-
ple that was considered the most frequently in the literature is the encapsulation of
standard container objects like sets, stacks, and maps [Hog91, KM95, GTZ98, NVP9§],
in particular, including support for iterator objects to access their content [NVP98,
CPN98, MP01, Cla01, ACN02].)

la. STRICT HIDING is the policy most easy to define, to achieve, and to reason about.
It means that there are simply never any inbound references. In different contexts,
this policy was called type isolation [Wil92], local referential integrity [KS92],
or principle of no representation exposure [NVP98]. Also COM’s containment
[MD95] describes the components ( “inner objects”) of a composite (“outer object”) as
“completely hidden” for external objects and never receiving requests from the outside
(as opposed to the case of cOM’s ‘aggregation’, which means a public component, see
§3.4, paragraph 4).

But absolute hiding is unnecessarily restrictive for the programmer, excluding
more common practices of object-oriented programming than the other policies: It
makes it impossible to use the design patterns Iterator and Visitor [Gat95] for working
with internal structures. It makes it impossible to implement the functional union
operation between sets or the mutating unifyWith operation more efficiently by one
set object exposing its internal structure to the other set object (in the case that they
are both of the same implementation class SetImp).

1b. RELAXED HIDING allows inbound references iff they are contained. This is

concretized by Minski’s concept of hiding (of component objects), which allows

access to component objects only while control is in the representative [Min96].

e An obvious specialization of this policy is to constrain the existence of inbound ref-
erences to methods (indirectly) called by the representative. Minsky enforced this
by limiting inbound references to parameters which the representative passed by-
reference [Min96]. The Object-Oriented Effects System enforced it by prohibiting
to capture inbound reference parameter values in fields [GB99].

e Representation containment is a specialization enforced by the Ownership
Types system [CPN98] limiting which objects may possess inbound references:
External object ¢ may posses references to o’s components iff o hides ¢ in its
shadow [PNC98], i.e., iff all paths from the initial object to ¢ pass through o. In
graph-theoretical terms, o is ¢’s dominator or articulation point.
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Relaxed hiding enables Visitor objects and Iterator methods (internal iterators),
but not Iterator objects (external iterators). It also enables union and unifyWith.
It thus provides some of the flexibility which a modular version of private objects
introduced in class SetImp would provide (cf. §3.4).

2. No CONSTRAINT EXPORT. The advantage of a hiding policy is that it imposes
restrictions only on the composite object itself [NVP98]: It, i.e., the representative
and the internal sub-objects, must never hand out references to internal sub-objects
objects (in case of absolute hiding), or can pass them out only to methods known
not to conserve them (in case of relaxed hiding). All encapsulation techniques ex-
port constraints into the context that govern the use of inbound references returned
through the composite object’s interface.

3. EXcCEssiVE CLONING AND FORWARDING is the fundamental weakness of all
hiding notions [BC87, Bos96, KT99, HL.S00, MPO01]:

Cloning. It is, for example, impossible to implement a map’s getEntrySet oper-
ation by returning the internal Set component in which the entry Pairs are stored
(in cases where such a component exists). Instead, a clone of the Set component has
to be created and returned. The cloning solution has several disadvantages: First,
there is the obvious inefficiency of cloning large internal objects. Second, it is no
general solution since cloning cannot be sensibly defined for all objects: Can there
be a clone of a Singleton object [Ga™95], or a BankAccount object? Third, cloning
means to duplicate mutable data even in cases where sharing is desired because it
is a conceptual part of the application. For example, if clients of a Company object
want to know its address, returning a reference to the Address component can provide
for address information that never becomes “out-of-date” [HLS00] “without the need
to propagate the changes to the clients” [MPO01] and without having to “cope with
duplicate data and keep track of conceptual object identity” [KT99]. Finally, it is
an inconvenience to the programmer to check if an automatic replication of memory
structures suffices or a special cloning procedure has to be written for object like
GUI-Windows, Threads, Files, reference-counting smart pointers, Semaphores, etc.
And the manual implementation of cloning (and a change propagation strategy) is a
potential source of new programming errors.

Forwarding. Alternatively, maps could themselves provide all set-operations on
the entry-set which the client might need: entryset_contains, entryset_elements,
and perhaps also entryset_Add and entryset_Remove. MapImp maps can straight-
forwardly implement these operations by forwarding the requests to their entry-set
component. Also the forwarding solution has its disadvantages [BC87, Bos96]: First,
its recursive application produces more and more operations that would unneces-
sarily inflate the interface of the composite [HLS00]: Instead of being able to ex-
pose one entry component through an operation entryset_getFirstEntry, the map
would need operations with the intimidating names entryset_getFirstEntry_first
and entryset_getFirstEntry_second, and maybe entryset_getFirstEntry_Set (cf.
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the stick-figure object in [BC87]). Second, the deeper nested the composite object
is, the longer is the chain of forwarding down the composition hierarchy, letting the
inefficiency increases linearly with the depth of the accessed component. Third, the
inlining of interfaces introduces a coupling between the definitions of interfaces Map
and Set: When Set operation Add is renamed to Insert, consistency demands to
rename entryset_Add to entryset_Insert. Fourth, the recursive inlining “com-
pletely flattens the part hierarchy and so removes the conceptual advantage of factor-
ing knowledge in an intuitive manner” [BC87]. Even if the programmer still recognizes
behind names starting with entryset_ the notion of a map with a set of entries, he
cannot make use of standard operations with Set parameters for further analyzing
the map’s entry-set, handing it to a print procedure, subtract it from another set,
creating a multiset from it, etc.

Note that the hiding of fields did not pose all these problems: Where needed, it is
possible to offer operations get-z and set-z for accessing their values with mimimal
performance penalty, with little chance for programming errors, and with negligible
cluttering of the interface. When the representation of the abstract data in the fields
is changed, e.g., from calendar dates with three integers to dates with two integers,
operations get-r and set-r can be reimplemented accordingly. No remaning affects
the client. The client does not notice a thing (module transparency/substitutivity).

4a. STRICT ENCAPSULATION means that the outside neither changes the set of
components nor their state. The latter aspect was concretized as the policy of rep-
resentation encapsulation, and enforced in the Universes system [MP01]: All
inbound references must read-only, i.e., cannot be used to modify the target.

Giving up on the aim of hiding makes it possible to let clients of a Company
object directly observe its Address object for up-to-date address information without
change propagation. It enables the programming of Iterator and Visitor objects, as
long as they are not used for modifying the structure they are traversing/visiting,
and enables the efficient implementation of getEntrySet and union.

4b. RELAXED ENCAPSULATION allows the outside to change the set of components
and their state iff this is done in a contained way. This policy has not been described
in the literature yet. In analogy to Minsky’s concept of hiding, it may be concretized
as allowing a change only while control is in the representative, i.e., only through
its methods. W.r.t. change of the composite’s state-representing components (§2.5),
this is covered by our policy of state encapsulation: The composite object’s state
changes only through its own methods. Since other, behavioral components are parts
of the representative’s methods, they exist only while it is control; relaxed encapsula-
tion follows. A restricted form of relaxed encapsulation, where the writable inbound
references are contained in calls (not in dominated objects), is enforced by the No
Abstract Aliasing methodology [DLN98].

Relaxed encapsulation additionally supports efficient unifyWith and Visitor which
modify the visited structure.
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5. VARIATION: SANDWICHES. Several authors allow inbound references that are
neither read-only nor contained, if they cannot be captured in fields. This property
has been generally called Sandwiches [GTZ98], or containment invariant [Cla0l].
Islands [Hog91] and Balloons [Alm97] are a special form of Sandwiches without
outbound captured references. The possibility of the context changing the interior
without the representative’s control leaves no doubt that here the composite object
is not encapsulated any more (for the question of encapsulation it does not matter
whether the reference used for the mutation is captured or not).

Nevertheless, one may argue that there is no real problem on the implementation
integrity side here: Inbound references not contained by the representative can be
created without storage in fields only if the representative returns them (a simple
upward leak [DLN98]). Hence, under the worst case assumption of arbitrary modi-
fications by the context, the composite object’s implementation can be verified and
reused in any context. And on the transparency side, the restriction not to capture
the inbound reference in a field makes it easier to reason about whether the context
develops a dependency on what it sees through this reference. (Even if then there is
no modularity between the composite object and its context, the restriction makes it
easier to show that the system as a whole works correctly, since inbound reference not
captured in fields cannot cause “unpleasant surprises at an arbitrarily distant point
in an execution” of an object’s method [Hog91].)

6. ENCAPSULATION PROBLEM: MUTATING ITERATORS. If a Set object creates and
returns a structure-sharing iterator object, then this is described as “encapsulating”
from the Set’s client, and within the iterator object, the reference (or the access) to
the internal structure [Ga*95]. In many cases, iterators may even be used—in excess of
the design pattern—to modify the internal structure: For instance, the iterators over
Java’s standard collections have a remove operation. Intuitively there is no problem
here, despite the undoubted breach of the composite Set object’s encapsulation by
the possibility of the iterator modifying the Set’s interior in a non-contained way.
The crucial point is that the inbound reference is stored in an object which the Set
object created itself, so that the iterator’s implementation class is known (and can be
inspected for verification). A worst case analysis of what the iterator could possibly
do with the given reference can show that the Set’s inner working is never in danger.
The Set object is reusable is any context (with an iterator implementation), no matter
what the context does to the Set’s interior through the iterator (as long as it uses
the iterator’s operation interface).

AliasJava’s “capability-based encapsulation model” supports relaxed hiding with
mutable iterators and similar objects [ACN02]: Object classes can be parameterized
with “ownership parameters” that specify the composites to whose components (in
addition to its own components) the instances may have writable references. When
an object instantiates a class, it can make accessible its own components and any
composite’s components to which it has access itself.
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7. ENCAPSULATION PROBLEM: NOTIFICATION MESSAGES. Event-based systems
[SG96] and systems with the Observer patterns [Gat95] are an important class of
object-oriented systems: Objects w register with an event-dispatcher or Subject ¢ for
notification about the occurrence of certain events (GUI inputs, state changes, etc.).
There is little use for w having a notification message sent by ¢ if this would not give
w the opportunity of changing its state. But then there is a problem with registering
a nested component object w with an external event-dispatcher or Subject: ¢’s send-
ing of the notifying mutator messages along an inbound reference would circumvent
w’s representative. It is unclear how one could not see a violation of encapsulation
in this, even though normally there seem to be no adverse effect on the system’s
modularity—on the contrary, event-dispatching and the Observer pattern are specif-
ically used for decoupling different system parts and improving modularity. Observe
that Sandwiches, too, cannot handle this case.

Imposing the policy of encapsulation on such systems without restructuring them,
i.e., without changing the object references, can be possible only by adding a fil-
tering mechanism to the semantics of message passing: In the composition filter
model [AW192] and the layered object model [Bos96], the representative defines filters
for the messages to its components and their subcomponents. Filters are like meth-
ods that are implicitly invoked on the representative to decide whether to accept,
reject, or reimplement sent messages. This guarantees the representative’s control
over all changes, and thus appears to be a clear case of relaxed encapsulation. But
the problems is that it is questionable on what behavior the clients of a potentially
nested component object can still rely on (including invariants and history properties),
and how the representative could judge whether messages to abstract components’
implementation-specific subcomponents (e.g., an entry-set’s nodes) are benign w.r.t.
the way how it is using the component (e.g., as a set of key/value pairs).

Similarly, but more coarsely, the Object Space model [CR00] subjects the delivery
of all messages to a security policy: The interface object(s) of a runtime component
can select dynamically whether messages sent to private objects from objects in a
particular other runtime component should be delivered or raise an exception.

8. VARYING THE UNIT OF ENCAPSULATION lets the same encapsulation policy
mean a different effective property of encapsulation for the composite object. In
the extreme, iterators are possible despite absolute hiding if one does not hide the
internal storage nodes but places them outside the encapsulation barrier [NVP9S].
Mutating iterators are possible despite encapsulation if the nodes are not behind the
composite object’s encapsulation barrier but behind the encapsulation barrier of the
package that contains the set class as well as the iterator class [MP99a]. And mutating
iterators are possible despite the Sandwich policy if the iterator is not outside the
encapsulation barrier that contains the storage nodes, but is made another interface
part of it in a Clarke-style aggregate (§3.4, paragraphs 4/5) [Cla01]. (Obviously, a
mutating iterator can be simulated in any proper encapsulation discipline by letting
the iterator forward the remove message to the Set object [MP01].)
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Chapter 4
Related Work

Don’t you see that the whole aim of Newspeak is to narrow the range of thought?
In the end we shall make thoughtcrime literally impossible,
because there will be no words in which to express it.

George Orwell, “1984” (1949)

Related work was already mentioned in the previous chapters where it applied to
different issues (the notion of composite object, units of encapsulation in the runtime
system, encapsulation policies). This chapter focuses on the related works themselves,
taking now in particular their technical and linguistic aspects into consideration.

4.1 Encapsulation Approaches

1. PROBLEM IDENTIFICATION. Blake and Cook were the first to characterize the
problem of composite object encapsulation [BC87): “When an object is assembled
from its parts these parts are no longer independent. A part belongs to the local
state of the whole ...” They warned that the common handing out of references to
part objects enables clients to modify them in a way violating the integrity of the
whole, which “subverts the idea that objects can hide and control their local state.”

Looking at objects modeling a parthood hierarchy, like a stickfigure (cf. §2.7),
the authors recognized that a hiding policy would be inappropriate and blow up the
whole’s interface (cf. §3.6). They proposed an encapsulation policy where the whole
“mediates” or “censors” the access to the parts it made visible, but give no precise
definition. They offered compound messages as an alternative for returning part
references, but no enforcement of a mediated access policy.

Mediation in a sense was built into some higher-level runtime system models by au-
thors approaching composite objects from the system architecture perspective (§2.7).
For example, all boundary crossing messages are routed through a special forward-
ing or filtering mechanism of the composite object (cf. §3.6) in de Champeaux’s
top-down system analysis method [Cha91l], in Aksit’s language Sina with “composi-
tion filters” [AW™92], and in Bosch’s layered object model [Bos96]. Or all boundary
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crossing messages are routed through communication ports whose connection is
fixed by the enclosing composite object, as in Gangopadhyay and Mitra’s executable
visual ObjChart models [GM93], and in Aldrich, Chambers, and Norkin’s ArchJava
embedding of an architecture definition language into Java [AKCO1].

Such architecture-level concepts are too far away from the practice of object-
oriented implementation-level programming, are too general if used to encapsulate
composite objects, and incur too much runtime overhead if used for all objects.

Let us focus on encapsulation by constraints on object references.

2. HoGaG’s ISLANDS [Hog91], were not about composite objects, but a combination of
three techniques for “making object interaction more predictable” that are also use-
ful for composite object encapsulation: First, Hogg brought the function/procedure
distinction (observer /mutator) and statically checked read-only references to object-
oriented programming (access control). Second, with the help of static checks and a
destructive read operation, the uniqueness of certain references (alias control) was
ensured, while still allowing to store them in container objects, to retrieve them, and
to borrow them to called methods. Third, Hogg was the first to impose a structural
constraint on the object graph that isolated a region in the object graph called an
Island: For the transitive closures of so-called bridge objects, he ensured a Sandwich
policy (§3.6), i.e., there could be no field-captured inbound references to any object
reachable from a bridge along field-captured references (also called “full alias encap-
sulation” [NVP98, Cla01]). More precisely, into and out of an Island, there could be
only uncaptured references that were read-only or aliases of a unique reference.

On the linguistic side, Hogg contributed a system of access mode annotations
to distinguish read-only references (read), unique references with temporary aliases
(unique), and references without any aliases (free) from ordinary references. He
gave a complete set of rules for the inference and static checking of modes based on
the modes with which variables, parameters, results, and methods were annotated.’
Unfortunately, Hogg did not define his system formally so that his claims about
guaranteed properties cannot be verified. Also the encapsulation of transitive closures,
as explained in §3.4, cannot be a general solution for all objects.

3. THE FIRST SYSTEM realizing the vision of encapsulating all composite objects
without distinction by constraints on references (after filter-based Sina and commu-
nication port-based ObjChart, see 1) was presented by Kent and Maung [KM95],
who introduced several crucial concepts. The authors applied the general notions
of information hiding and encapsulation to container objects with internal arrays or

!To demonstrate the orthogonality of modes to traditional typing (w.r.t. objects’ classes) he
presented his system in the language Smalltalk without static typing. In order to check method
calls without infering the receiver’s type, he assumed the modes of parameters, result, and this to
be encoded in the method’s name. In Smalltalk, this reduces a mode mismatch to a message-not-
understood runtime error. A statically typed language would exclude this kind of error, and make
mode checking a completely static affair.
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linked nodes as components. In place of Hogg’s distiction between objects with and
without encapsulation, they distinguished a container object’s parts from its content.
They imposed a structural constraint on the object graph that isolated not transitive
closures but only what belongs to the composite object’s implementation object ex-
pansion, i.e., “flexible alias encapsulation’ [Cla01]. (While they seem to aim at
absolute hiding, they actually achieved only a Sandwich policy, as explained below.)

The major innovation was the notion of object ownershtp: While previous work
required component references from composite to component (as in LOOPS [SB85],
ORION [Kit87, Kit88], Sina [AW192], etc.), Kent and Maung’s object composition
was represented by a hidden owner attribute in each object set at creation time.
References were classified uniformely in terms of their target’s (relative) owner (not
heterogeneously in terms of aliasing and access properties): References to top-level
objects are references whose target has no owner (the default). Component references
are references whose target has the source as owner (annotated with ‘private’). Kent
and Maung defined the new class of horizontal internal references between two com-
ponents, which we call co-references, as references whose target has the same owner
as the source (annotated with ‘protected’). Observe that no inbound references can
be classified in this scheme. But since it was used only for the references in variables,
parameters and results, unstored temporary references could well be inbound.

However, the authors did not believe in the possibility of statically checking their
annotations since “object ownership is a run-time notion.” Hence they checked the
ownership annotations on variables, parameters and results at runtime against the
owner of contained references’ targets. As observed by Clarke [CPN98|, these checks
do not prevent the breach of encapsulation through unstored references, as in x.
getPrivate () .modify (). Consequential work will show that completely static owner-
ship systems are possible and can cover unstored references.

The authors also consider generic classes whose formal type parameter T is a place-
holder for a class with ownership annotation. For example, private Set<protected
Figure> types a reference from o to a set component w whose elements are figures that
are co-objects of w, and thus components of 0. However, this semantics make generic
classes rather unintuitive to use: A T-result or parameter in the interface of class
Set is for o not a result or parameter of type protected Figure but of type public
Figure. And private Set<private Figure> would be a useless set object with its
own elements as components. Consequential work rectified this.

4. FLEXIBLE ALIAS PROTECTION (FAP), by Noble, Vitek, and Potter [NVP98],
was the first convincing proposal of a system for the encapsulation of composite
objects and for working with such encapsulated composite objects. It combined a
static mode system like Hogg’s with the distinction of representation from transitive
closure, like Kent and Maung did. FAP addressed the coupling caused through the
sharing of mutable state by a two-pronged strategy: On one side, FAP enforced
absolute hiding, i.e., the absence of all inbound references into composite objects’
representation—called the principle of no representation exposure. On the other
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side, FAP supported immutable objects, and the independence of container objects
from their contents’ state—the principle of no argument dependence.

FAP qualified reference types (in declarations and type inference) with aliasing
modes for a five-fold classification of object references w.r.t. ownership, aliasing and
access: Mode rep marks component references. Mode var is apparently useable for
any outbound reference (in particular, a reference to a top-level object). Mode arg
is used for the (outbound) references stored in a container object. Through them,
only state-independent, “clean” methods may be accessed, i.e., methods accessing
only immutable fields, immutable objects, or clean methods. Mode free of alias-free
references is “taken directly ... from Islands” to support flexible object creation and
composition. Mode val marks references to immutable objects like, e.g., a String.
Variables, parameters, results and type parameters were annotated with these modes
(also this’s mode was supposedly specifyable, but no syntax is given).

A crucial innovation for the scaleable, flexible internal structuring of composite
objects was the subclassification of arg and var references by roles in conjunction
with an improved semantics for mode parameters: The authors observed that the
objects in a container object may play different roles, like a hash-table’s keys vs. its
items (which in object-oriented modeling would be modeled by two different associa-
tions). Containers are expected not to mix up objects stored in them under different
roles—the principle of no role confusion. To distinguish different roles of arg
and var references, these can be annotated with a role. In FAP, generic (container)
classes’s type parameters are annotated with modes arg or var, which are usually
qualified with a role: class Hashtable<arg k Hashable, arg i Item>{...}is a class
of hastables with k arguments (keys) and i arguments (items, aka. values). FAP’s
“aliasing mode parameter binding’ makes rep Array<rep Object> the type of
references to array components whose elements are the components of the composite
(and not of the array, as in Kent and Maung’s substitution semantics).

The encapsulation policy of absolute hiding is simple and, as the authors explain,
avoids exporting into the context any usage constraints on inbound references (like
in Islands) since the context can never obtain any. But it also suffers the general
shortcomings of hiding elaborated in §3.6, in particular, it excludes the iterator objects
so important for using container objects. Also, the entire presentation was only
informal, leaving some issues open, in particular concerning mode parameters, that
are necessary to verify the mode system’s correctness. The piggybacking of FAP’s
mode parameter binding semantics on the substitution semantics of class parameters
is somewhat awkward. These shortcomings will be solved by the next system.

5. OwNERSHIP TYPES (OT) [CPN98] was the first system of composite object en-
capsulation presented with complete formal definitions (typing rules, interpretation of
annotations, encapsulation property) and a proof sketch. The authors Clarke, Potter,
and Noble devised it as a formalization of Flexible Alias Protection’s encapsulation
aspects, at whose heart is “the intuition underlying Kent and Maung.” Crucial was
the insight that static checking is possible and owner attributes require no runtime
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representation since the meaning of ownership annotations in each object is fixed for
the object’s lifetime and ownership is orthogonal to computation.

FAP’s rep references were reinterpreted as targeting objects owned by the source.?
norep references replace FAP’s role-less var references as targeting owner-less, top-
level objects. A (re)invention is the distinction of references between objects with
the same owner (co-references), called owner references. It solves FAP’s problems
with moding this and data structure links. OT gave the roles a in FAP’s formal
mode parameters var « a clear meaning as ownership parameters, called “con-
text parameters,” and divorced them from type parameters: These can be used in
ownership-polymorphic classes as the modes of outbound references to objects whose
owner is the object bound to the context parameter before instantiation.

For example, class Pair<fst, snd>{...} defines a class of pairs storing a fst and
a snd reference. The static types of references to pair objects are ownership types like
t = norep Pair<rep, owner>. The context-parameter bound class from which a pair
object w is instantiated is an ownership structure T = Pair<o|oy, 02>, which encodes o
as w’s owner and o7 and 0, as the owners of 0’s £st and snd objects. That is, for w the
modes in class Pair are mapped to owners as follows: owner — o, fst + 01, snd — o0s.
With this substitution o, all ownership types ¢’ in class Pair are interpreted relative
to w as ownership structures 7/ = 0, (t'). An object w may be targeted from different
objects qi, ..., q, by references typed with different static ownership types ¢i,...,t,.
But all their source-relative interpretations oy, (¢;) must yield w’s dynamic type 7.

The authors introduced the graph-theoretical notion of dominator or articulation
point they had elaborated in [PNC98], to define the novel, relaxed hiding policy of
representation containment (aka. owners-as-dominators [Cla01]): An object ¢
may possess references to o’s components iff all paths from the initial object to g pass
through o, even if ¢’s ownership status unequivocally classifies it as external to o, e.g.,
if ¢ is the target of 0’s norep Pair<rep, owner> reference.

Like any hiding policy, OT excludes iterators and other common patterns, as we
elaborated in §3.6. An OT-specific technical problem is the loss of ownership
information that prevents support for subclassing:® Subclasses must be free to
change, like type parameters, also the context parameters of their base class, in
particular. But the subsumption of norep Pair<rep, owner> under supertype norep
Object<> would hide the ownership information necessary to guarantee the target’s
domination by the source. These shortcomings were solved or alleviated in the three
subsequent systems.

6. CLARKE’S CALcULUS. Clarke’s dissertation [Cla01] is the most thorough work so
far, a foundational work on the isolation of regions in the object graph with several
technical innovations. Clarke generalized the Ownership Types system to cover the

2 Actually, each object o was said to own a protection domain D,—called its rep context,—that
holds or—in the authors’ terminology—is the owner of 0’s components.
3In retrospect, already FAP seems to suffer from this problem. OT merely brought it to light.
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missing language features and make it more flexible, and he reformalized it as an
object calculus based on Abadi and Cardelli’s sigma calculus [AC96].

The decisive step towards more flexibility was to loosen the connection between
the structure of object composition and the nesting of protection domains, the own-
ership contexts: Asin OT (cf. footnote 2), each object o stores its components in
a unique ownership context D,, called o’s rep context, but now several objects can
use the same context for their components. Asin OT, o’s rep context D, is nested to
the context D in which o is stored, but now it can be several nesting levels deeper.
Each object is consequently characterized and typed by two ownership properties:
the context D which contains, or “owns,” o, and the rep context D, which contains,
or “owns,” o’s components. This allowed Clarke to put encapsulation barriers around
composites with private and public components, even around aggregates of several
composites with all their representatives and public components as interface objects.
(Their internal context nesting structure distinguishes them into the principal-with-
proxies aggregates and collective aggregates of §3.4.)

Also Clarke introduced context polymorphic methods, with context parameters
bounded above or below by a context. They allowed to shift from the problematic
context-parameterization of OT’s classes to a parameterization of the corresponding
constructors, so that subclassing became easy to integrate. And the lack of a free
mode could be (partially) compensated for by parameterizing methods creating, e.g.,
iterators, with the context to hold the new object.

Additional flexibility was obtained by switching to the Sandwich policy: Citing
Almeida [Alm97], Clarke deemed dynamic aliases acceptable “since they are essential
for implementing real programs.” (Clarke’s “containment invariant” is defined over
the store like OT’s “representation containment,” but in his substitution-style calculus
method-local references do not appear in the store.) Methods returning a reference
to a component (rep results in FAP or OT) can be called by other objects using the
expose construct to create the needed (temporary) name for the result’s context.

Apart from formal matters, Clarke’s work is harder to evaluate since it is a calcu-
lus, not a programming language, and since the most complex examples he elaborates
in his calculus are cars and linked list. Switching between different variants of his
calculus, Clarke shows how wanted behavior can be programmed and unwanted be-
havior be excluded. This approach makes it hard to judge which variant could be the
best compromise. The calculus with unique interface objects ( “flexible alias encapsu-
lation”) is too restrictive to be generally useful: It suffers from the principal problems
of a Sandwich policy explained in §3.6, like the exclusion of iterator objects. But all
variants with multiple interface objects (“fractal alias encapsulation”) suffer from the
lack of limitiation on the creation of additional interface objects, both conceptually
and technically: Clarke does not manage to give a general intuition what abstraction
his multiple interface aggregates represent; there is no guideline for how much should
(not) be included in an aggregate; it seems, whenever access to a rep context is de-
sired, a new interface object can be included. The calculus allows this, but this is
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dangerous since any unsafe or malicious code could get unconstrained access to the
representation stored in a context through a corresponding interface object it created
to this end—Clarke calls this a “vampiric” interface object. There is no protection
by a read-only limitation for all the additional interface objects.

7. UNIVERSES, by Miiller and Poetzsch-Heffter [MP99a, MP01], is the first system
that enforces a policy of encapsulation without hiding which others had only offered to
support by transitive readonly references [KT99, HLS00], or enforced by specification
[DLN98]. It is based on Ownership Types but technically less ambitious since the
authors use it in the context of modular verification. The authors reevaluated (in
more detail in [MP99b]) what the real problem is with sharing mutable objects, not
limiting their attention to objects reifying wholes in parthood hierarchies [BC87] nor
to container objects [KM95, NVP98]. Similar to FAP, but with more precision, they
identified the problem with outbound references to lie in the possible dependency of
the composite’s abstract values and invariants on external objects’ (mutable) state,
and the problem with inbound references to lie in possibility of invariant-breaking
modification through them.

On the technical side, Universes simplify OT by replacing OT’s problematic con-
text parameters by runtime ownership checks (which their verification technique
can make superfluous in most cases). Only three classes of references are distin-
guished: references to objects owned by the source (mode rep), references to objects
with the same owner (the default), and references making no statement about own-
ership that can connect any two objects (mode readonly). Through the third class
of references, dependency of the composite’s abstract values on the target’s state is
prohibited and modification of the target’s state is prohibited. In conjunction, these
two restrictions mean that the abstraction, e.g. abstract data structure, represented
by the composite object can change state only through the composite’s operations.
References are stored in container objects as readonly references; the target’s owner
can retrieve the readonly reference and convert it back to a rep reference—which is
where ownership is checked dynamically-—and then modify the target.

The authors presented the type system aspect of Universes not in the standard
type-theoretic formalism. The obvious shortcoming as a stand-alone type system
without a verification technique to fall back on, is the reliance on runtime ownership
checks and thus the need to represent ownership at runtime. Also, Universes prevent
flexible object creation and composition by fixing new objects’ owner always to their
creator. These are not unsolvable problems, and they will be solved in JaM.

8. AriasJava. Aldrich, Kostadinov, and Chambers [ACN02| treat object owner-
ship and ownership parameters to classes in a manner that seems much closer to
a concretization of Flexible Alias Protection than its official formalization by Own-
ership Types. They characterize their AliasJava system as capability-based (not
ownership-based). It combines aliasing annotations with ownership annotations to
make aliasing patterns explicit, support reasoning about ownership, and enforce a
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relaxed hiding policy. The authors were the first to develop a constraint-based algo-
rithm for inferring the new annotations, and the first to report on the usability of
their system for real-world software like Java’s standard library, and the circuit layout
application Aphyds (12,500 lines of code).

AliasJava classifies references five-fold by aliasing properties: shared references
are ordinary references not aliased by unique and owned references, i.e., targeting
top-level objects. lent references are “time bounded aliases” (e.g., of unique and
owned references) that can neither be captured in fields nor returned, i.e., borrowed
references (cf. 9 below). unique references have only lent aliases. owned references
make the source the unique “owner” which “controls who may access” the target
object: They can be aliased only by other owned references of the owner, by lent
references, and by references classified by an ownership parameter that is bound
to the owner. A class can have ownership parameters that, for instantiation,
must be bound to the creator or it ownership parameters (ownership parameters flow
along creator relationships). An ownership parameter a bound to object o grants the
class’s instance the right to possess an a-reference to an object targeted by o’s owned
references and other objects’ G-references with § bound to o. Like FAP, AliasJava
does not distinguish co-references; the mode of this is lent by default, but can be
specified explicitly to shared, unique, or an ownership parameter.

AliasJava solved O'T’s iterator problem: A container object can grant its iterator
full access to the representation by instantiating it from a class with ownership pa-
rameter bound to owned. This effectively extends the encapsulation barrier to include
the iterator as another interface object in a principal-with-proxies aggregate (§3.4).
It is the one case of adding an interface object that was identified as “safe” by Clarke
[Cla01]. And AliasJava solved OT’s problem with lost ownership information by re-
covering it dynamically when references are cast to subtypes with more ownership
parameters: Since objects are instantiated from classes with ownership parameters
bound to owners, Java’s runtime check against the target’s class must in AliasJava
also runtime check the ownership parameters.

The obvious shortcoming of AliasJava is the reliance on runtime checks of own-
ership parameters and thus the need to represent ownership parameters at runtime.
This is not just an overhead for “heavyweight” objects, as the authors write: Also
small data structure components like Pairs and Nodes have ownership parameters.
As presented, ownership parameters must be bound to an owner, so that ownership-
polymorphic container classes cannot be used for containers of shared objects.

9. UNIQUENESS AND BORROWING. Minsky [Min96] introduced a simple but effective
form of hiding component objects that is independent from the previous ones (3-8
above): The composite possesses the only reference(s) to its components (which it may
“lend” to other objects for the duration of its methods). This ensures a relaxed hiding
policy. In Minsky’s case, references in unique fields have no alias, but are effectively
lent to others by passing fields as by-reference parameters. (By reading the value
out of them, the receiver is able to take over the component object.) Islands had
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unique references with uncapturable aliases earlier, but not for use as component
references. Greenhouse and Boyland’s Object-Oriented Effects System [GB99] keep
unique component references in unshared fields. borrowed aliases can be created in
the composite’s methods, but cannot survive since they can neither be captured in
fields nor returned (a companion paper [Boy01] describes the details). Detlefs, Leino
and Nelson’s specification-based no abstract aliasing method [DLN98] keeps component
references in “pivot’ fields. They can have aliases in other fields of the composite and
borrowed aliases, as well as uncaptured, “read-only by specification” aliases from the
time before the component’s capture in the pivot field.

Uniqueness-based encapsulation disqualifies itself as a general solution by its lim-
itatation of composite objects’ internal structure to a tree (with a bounded degree of
branching since composites have only a fixed number of fields to hold their compo-
nent references). This excludes (double) linked lists and rings, and requires preventing
composites from giving their components capturable back-links to themselves.

Borrowing is independent from uniqueness and makes sense also in combination
with ownership to grant method-contained external access to the interior. AliasJava
supports this through lent inbound references. (Clarke’s context-polymorphism for
methods is not them same; it does not prevent the capture of inbound parameter
references in new “vampiric” interface objects.)

Uniqueness has a better use in cleanly moving new objects from their creators
to their final owners. Islands and Flexible Alias Protection [Hog91, NVP98| support
this through the mode free of alias-free references, and AliasJava through the mode
unique of references with only lent aliases. In the context of their specification
system, Leino et al. are able to relax uniqueness to “virgin” references [LS97, DLN98]
which can have any number of dynamic aliases, but never had an alias captured in
a field. The above described drawbacks of uniqueness (no linked lists, no back-link
in their components) now apply to new objects before fixing their owner. But even
this is not necessary, and JaM will show that new objects can be moved safely even
with captured aliases. (The necessary weak uniqueness property is more difficult to
describe but no more difficult to enforce than Island’s freedom.)

10. MECHANISM, NOT PoLICY is supported by Kniesel [Kni96] and by Boyland,
Nobles and Retert [BNRO1]. Kniesel reanalyzes the notion of encapsulation in object
systems and offered for the protection of the reachable state a system of access rights.
He distinguished the right to read, to write, to call functional methods, to capture the
reference in fields, and to transfer the reference to other objects. Boyland, Nobles,
and Retert designed their “capability system for pointers” [BNRO1] to bring order into
the many reference annotations that have been proposed in the field. It encoded them
as combinations of the right to read, to write, and to test identity of the target, the
guarantee for exclusivity of each of these rights, and finally an “ownership” capability
which permits one to revoke rights on other references to the same object and protects
from the revocation of rights by others. These systems enforce no encapsulation policy
since the extent of composite objects cannot be specified.
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4.2 Discussion

The reviewed systems for composite object encapsulation by restricting references
cover all encapsulation policies (§3.6). The three most recent systems support external
iterators over encapsulated container objects: Universes through readonly references,
Clarke’s calculus through multiple interface objects, and AliasJava through access
granting ownership parameters. However, Clarke cannot prevent “vampiric” interface
objects, and the other two need runtime ownership checks.

In all systems, the notion of ownership is, or could be, applied to intuitively
describe the special relation which any encapsulating composite (or its representative)
has towards its encapsulated components. Despite superficial, linguistic similarities
between the systems, two fundamentally different directions can be distinguished:

In the ownership-based systems of Kent and Maung, OT, Clarke’s calculus, and
Universes, objects have an owner attribute (with runtime representation or not). The
information based on which the permissibility of access or references is judged lies in
the respective object (in form of the owner attribute). Modes like rep in the static
types of references are descriptive statements about runtime ownership that can be
correct or not (with the owner attribute as the primitive basis).

In the capability-based systems of AliasJava, of the uniqueness-based approaches,
and presumably also of FAP, the object references are labeled with a mode (with run-
time representation or not). The permissibility of access or references is judged based
on information in the access-establishing references (in form of the mode label). A
reference is what the access control literature calls a capability [CJ75, BNRO1]. Object
ownership is just a notion derived from (appropriately labeled) references: without
references, no ownership. Modes like rep in the static types of references are declar-
ative definitions of ownership relations that are not correct or incorrect but can only
be consistent or inconsistent with the other declarations in the system.

Technically, JaM will extend the capability-based approach to a reference path-
based approach by moving ownership parameterization from objects’ classes to ref-
erences’ modes. All ownership information is removed from the objects, thus solving
the loss of ownership information problem of subclassing. Roles fst and snd are
not placeholders for reference targets’ owners, but uninterpreted type tags on object
references. Similar to class tags on objects distinguishing instances from equally de-
fined classes, role tags distinguish references of different roles or—as one would say
in object-oriented modeling—of different assoctiations [OMG00]. The available roles
are not limited by a parameter list, nor by the references targeting it. The owner-
ship parameterization of the references by correlations only configures the source’s
mode-interpretation of the association roles on the target’s side. It is used for the
translation of exchanged references and the derivation of ownership from paths of
object references. Consequently, in JaM, the targets of a-references need not have
a particular owner; clients can store in container objects also their free and read
references (and lent references, had we included this class of references).
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Chapter 5

The Base-JaM Fragment

Writing can be either readable or precise,
but not at the same time.
Bertrand Russell (1872-1970)

The formally precise description and analysis of a full-featured real-life program-
ming language like Java is a complex undertaking. In the investigation of new features
for programming languages, it is customary to reduce complexity from the side of the
base language by the omission of non-fundamental features and the explicit syntactic
representation of implicit operations (“desugaring”). In order to make the precise def-
inition of Java with Modes (JaM) and the demonstration of its properties more easy
to digest, we will look at a further simplified version first: Base-JaM is a simplified
and desugared Java subset with a simplified mode system that omits association roles
and correlations. The extension to the full mode system, with the complex treatment
of association roles and correlations, is postponed to the next chapter.

After a first overview (§5.1), the introduction of base-JaM starts with the untyped
language in order to focus on semantic aspects: First, a standard operational seman-
tics (§5.2), then JaM’s higher-level view with object graphs, paths, and composite
objects (§5.3). Type- and mode-system are then added to match the semantics and
define the legal base-JaM programs (§5.4). Proofs for important properties of JaM ex-
ecution states and steps will be developed: the standard property of type correctness,
and, based on it in §5.5, JaM’s new higher-level properties (state encapsulation, con-
trol of mutator executions, uniqueness of ownership). Basic familiarity with Java-like
object-oriented languages and their formal treatment is assumed.

5.1 Base-JaM Programs

1. SUMMARY OF SIMPLIFICATIONS. The notable simplifications from Java to JaM
and base-JaM are the following:

— (Base-)JaM omits all non-basic object-oriented features like packages, static mem-
bers, user-defined constructors, overloading, nested classes, exceptions, and arith-
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metics. The entire program is considered one package, there is no visibility other
than implicit package-privacy. Object references are the only first-class values,
and their types the only types in the program. The number of statement and
expression types is reduced to a minimum.

— (Base-)JaM does not go beyond class-based object-orientation: There is no inher-
itance and no subclass-polymorphism, and consequently, there are neither Java
interfaces nor abstract classes. (There is, however, mode-conversion in assignment
and parameter passing—a kind of “ad-hoc polymorphism” like the conversion be-
tween different number formats [CW85].)

— (Base-)JaM makes the read access to a variable explicit. Like in the AliasJava for-
malization [ACNO02], a destructive read access is provided and distinguished from
the normal, non-destructive one in order not to complicate the formal type system
by the integration of a live variable analysis ala Boyland [Boy01]. In a full imple-
mentation of JaM, such an analysis would ensure that a free variable from which
a free reference was read is overwritten before it can be read again.

— Base-JaM simplifies JaM’s full system of modes: Association modes o € A are
omitted together with the correlations that configure (in other modes) the exten-
sion by association paths. Hence modes in base-JaM are just the base-modes free,
rep, co, and read.

2. SyNTACTIC DOMAINS. The simplifications reduce the syntactic variability of
(base-)JaM programs to a manageable size so that the grammar of base-JaM can be
shown succinctly in figure 5.1. There are three JaM-specific additions to the Java
subset, which are underlined and will be explained further below.

A program p is a sequence of class definition modules.

A class module D starts with the keyword class followed by the class name ¢ and,
enclosed in curly braces, a sequence of field declarations and methods (operation
implementations).! (Base-)JaM adds obs or mut in front of each method.

A type term t in declarations of fields, results, parameters, and local variables can in
JaM’s Java subset only be an object reference type. All the class names used
as object reference types (but not the classes named for instantiation in new)
are qualified in (base-)JaM with a (base-)mode p.

A statement s in a method’s body can be an assignment, return with return expres-
sion, else-less if, while, or a sequence of these. Due to the lacking support for
Boolean expressions, the guards in if and while are just direct comparisons
between two object reference-valued expressions for equality or inequality.

An expression e in a statement can be the null reference, a read access to a variable
v (field, local variable, or method parameter), an object creation expression

1F¥or simplification of the syntax specification, the commas separating parameter declarations in
methods and parameter expressions in operation calls are omitted, although they will occur later in
discussed program terms. To be formally correct, the commas should be specified in the syntax.
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program p€ Pu=D*
class defn. D€ D:u= class C { (T Id;)* Mth* }
method Mth:= K T Id(T Id)*) {(T Id;)* S}

method kind x € K ::= mut | obs

type term te Tu=MC

base-mode € M:= free | rep | co | read

statements s€ Su=SS|N=E; |returnE; | if (EVE){S} | wvhile(EVE){S}
relational op. ¢y € V=== | 1=

expression e € E:=val(N) | destval(N) | null | new C(O | E<Id(E*)

variable ve Nu=Id| this.Id

Given identifier sets:
- classes c,de C
- variables, fields, methods z,y,z,f € Id (includes this, excludes null)

Figure 5.1: Syntax of base-JaM programs

(new), or an operation call.? Keywords val and destval are added to make the
read access (non-destructive and destructive, respectively) explicit.
Observe that, as in Smalltalk, it is ensured through the syntax of field access that
objects can only access their own fields.

3. MEANING OF CONSTRUCTS. The meaning of all original Java constructs is

unchanged and should require no explanation.

Added ‘val’ and ‘destval’ make explicit the, respectively, non-destructive and
destructive read access to a variable v. Destructive access resets the variable to null
after having read the value out of it. Non-destructive access copies the value out of
it. In case of a free reference value, the mode of the copy is weakened to read.

Added ‘obs’ or ‘mut’ declare a method as, respectively, an observer or mutator,
i.e.;, a method which guarantees not to change, or offers to change, the composite
state. The type system will ensure that obs-methods cannot change non-free objects’
states. It does not ensure that mut-methods indeed make some change.

The added modes p € M in the types t = u ¢ declared for object reference-valued
variables, parameters and results fix the modes of these reference. Through the mode-
controlled combination of references to moded paths (defined formally in §5.3.2), the
programmer can indirectly define the structure of object ownership (or composition)
and place the state representation into the representative’s sanctuary:

e By giving a variable, parameter or result of object o the mode rep, the correspond-
ing reference to an object w is defined to mean that o is w’s owner and includes w
in its sanctuary. In the execution of legal base-JaM programs, it is ensured that
w has no other owner (the Unique Owner property).

2The dot in operation call expressions has been replaced by ‘<=’ for distinction from field access.
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e By mode free, the reference is defined to mean that o is w’s owner and that w
is in no sanctuary. In legal base-JaM programs, it is ensured that w has no other
owner and indeed belongs to no sanctuary, and that no second free reference can
target w or start free reference paths to w (the Unique Head property).

e By mode co, the reference is defined to mean that w and o have the same owner
(which is unique in legal base-JaM programs) and belong to the same sanctuaries
(the owner’s sanctuary and enclosing sanctuaries).

e By mode read, the reference is defined to have no meaning for the target’s owner-
ship and sanctuary membership. A secondary meaning entailed by the enforcement
of composite state encapsulation is the restriction of access to calling observers
(obs-qualified operations) on the target—hence the mode’s name ‘read’.

All this will be defined more precisely in §5.3.2 based on a formalization of the
notion of object graph.

4. PROGRAM MEANING. Like all object-oriented programs, (base-)JaM programs
mean, on one hand, a set of definitions of named classes of objects (static meaning)
and, on the other hand, a computational process in an object system constituted by
these classes’s instances (computational meaning):

Each module D in a program p defines a name ¢ € C for a new class of objects.
It defines the names x; and range types 7; of their fields (the instance record type of
c-instances), and defines what their methods are (the method suite of c-instances). In
legal programs, there are no two modules defining the same class name, and no two
definitions of the same field or method name within a class module (no overloading).

Since JaM has no static method main as Java, program execution—the computer’s
realization of the program’s computation meaning—is defined to begin with the call of
the main method on a new instance of the last class in the program. That is, the mean-
ing of p as a computational process is the evaluation of the term new ¢, () .main() in
the context of p’s definitions (static meaning), where ¢, is the name defined by the
last class module D, in p.

5.2 Formalization of Program Meaning

A precise, formal definition of the execution of JaM programs is needed as a basis for
proving that the proposed mode system guarantees composite state encapsulation,
i.e., that during program execution the representative controls each and every state
change in its current state representation. Various formalizations for more or less
large subsets of Java have been provided by different authors in order to reason about
type safety [IPW99, Sym97, DE97, Ohe01]. While adequate for reasoning about the
outcomes of computations, these formalizations are not so well suited for reasoning
about the change steps and invariants during a computation.

This section develops a formalization of the execution of base-JaM programs in
the style of a so-called structured operational semantics, small-step semantics, or
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p=D... class ¢; {t; z;; K t; [; (m){b;}} ... D,
F FldSMthS(Cl) = <{.’E1 : ref tz}, {fl = K; ti fi (Wl){bz}}>

Figure 5.2: Program’s meaning as defining object classes

reduction semantics. Such a semantics defines the stepwise transformation (reduction,
evaluation) of program terms in the context of a stack 7 of environments for the
ongoing method invocations, a store s for the variables’ values, and an object-map
om to describe the objects in the system (their fields and their methods).

Specifically for accommodating reasoning about mode and composite objects, this
formalization contains three non-standard features: First, an object reference o 4 w
from the object (identified by) o to the object (identified by) w is formalized not
simply by the object identifier w (in o’s fields or methods) but by the triple (o, u, w),
called a handle. Second, the call-links, i.e., the references through which on-going
method invocations were made and which will return the result back to the caller,
are recorded in the computational state. Third, in order to make explicit what the
current object graph is and how the computation steps change it, object graphs will
be included as an explicit fourth context g of the term’s reduction, and manipulated
explicitly (in parallel to the handles) in the term reduction rules.

1. STATIC MEANING. The meaning of program p as a set of definitions is formalized
by the tuples FldsMths(c;) = (I';, F;) of the instance record type I'; and the method
suite F; of the instances of each class ¢; defined by some class module D; in p. In
JaM without class inheritance, this meaning is easy to extract from the program as
figure 5.2 shows. The instance record type I'; is the collection of the names z; and
range types 7; of the fields defined in D; to the type assignment {xz;:ref7;}. (ref is
added to the fields’ types since the fields are not 7;-values but 7;-variables, i.e., x;
denotes a location in the store that contains a 7;-value.) The method suite F; is a
mapping from operation names f to the corresponding method definitions in D;. (By
not expanding the (computational) meaning of the methods, matters are simplified
compared to a denotational-style semantics.)

2. COMPUTATIONAL MEANING. The meaning of program p as a computational
process is formalized as a sequence of reduction steps e, 7,5, om,g=—= €, 7,5, om/, ¢
transforming the term e in the implicit, static context of the program p, and in the
dynamic contexts 7,8, om, g (environment stack, store, object-map, object graph). It
starts with the start-up expression eg =4 new ¢, () .main() in the initial contexts
7o, S0, 0o, o =ar Q?:i?,read,nil)7 ®7 @’ 0:

. b =

new Cn() ~ma1n()a Qc()niirgad,nil)a ®’ ®7 0 = €1, M,51,0mM1, h
== €3, T2, 52, 02, P2
= ..
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The following two sections explain first the contexts and then the reduction steps.

5.2.1 Computational States and Values

3. STORE-BASED RUNTIME MODEL. The standard basis for the definition of the
computational meaning of a term in languages with mutable variables (i.e., computa-
tions in the imperative paradigm) is made of an “environment” and a “store” (since
Strachey and Burstall’s work on pointers in the late 1960s [Gor00]): The store s is an
abstract model of the current memory state which maps locations £ € Loc (abstract
memory addresses) to the values v € V currently at these locations. Each location
in the store can represent a program variable (local variables in method invocations,
fields in instance records, etc.). The identifiers € Id of local variables valid in term
e are mapped by the environment n to the store locations £ holding their current
values. In this model, the current environment changes during execution when blocks
with local variable declarations are entered or exited. And the store changes when
variables are initialized or updated by assignment.

For object-oriented programs, also the identifiers x € Id of the objects’ fields
(instance variables, slots) must somehow be bound to the store locations of their
current values; there must be a “field-environment” g, for each object 0. Since in Java,
unlike in C+’s memory object model, objects are not variables, they are described
in a separate component of the computational state: The object-map maps object
identifiers to the field environment and method suite of each implementation object.

In the context of environments, store and object-map, each reduction step replaces
in the term e one subterm, the redez, by another term. In particular, locations £ € Loc
are substituted for identifiers z (using 1) and for field names this.z (using gunis) as
“l-values”, variables’ values v € V are substituted for read access expressions (using
s) as corresponding “r-values”, and method bodies are substituted for operation call
expressions (using om). Through these substitutions, the transformed terms are not
just the statements and expressions of the program syntax, but belong to the larger
category R of runtime terms. Their syntax (figure 5.3) adapts that of program
statements and expressions by replacing occurences of S and E to R, except in the
non-initial statement of a sequence, the then-branch of an if statement, and the
body and condition of a while statement, since evaluation never takes place there
(cf. paragraph 7). Each nesting level i of method bodies expanded in the runtime
term needs its own environment 7); for associating the identifiers of local variables in
it with the corresponding location.

The reduction of terms will consequently be defined w.r.t. the following three
contexts (see figure 5.3):

1. A dynamic stack 77 of environments n; € Env handles the identifiers at each
method invocation nesting level. Formally, this stack is a sequence 7, . .., n, with
71 as the bottom and 7, as the top element. The extension of 77 by a new top
(or, in the context rules, by a to-be-discarded bottom) 7’ will be written 77+ 7’
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environment 75 € Env =4 (Id + Loc) X KK x V
store s € Gtore =4 Loc + V
object-map om € Omap =4 O + ((Id + Loc) x (Id + Mth))
object graph g € Graph =, NOM*O
runtime term e € R 2= RS | R=R; | return R;
| if(R¥ R){S} | while(E ¥ E){S}
| N |val(R)|destval(R)|null|new CQ) | R&<Id(R*)
| Loc location of a variable (I-value)
| V expression value (r-value)
| <R>  inlined executing method

with Loc, V from fig. 5.5; S, E, N, ¥, C, Id from program syntax

Figure 5.3: Runtime model
(or 7'+ 77), using standard sequence concatenation ‘*’. In order to formalize the
integrity property Mutator Control (Path) (§5.3.2), actual environments 7 are
extended to ny by annotating them with the corresponding method’s kind x and
the call-link A € V through which the method was called. The call-link is saved
in the environment since it is still needed to explain the result’s return to the
caller and must not completely disappear from the system before that.

2. A changing store s € Gtore maps locations ¢ € Loc to the values v € V cur-
rently at these locations. In base-JaM, these values are always “handles,” the
formalization of object references introduced below.

3. A growing object-map om € Omap that maps identifiers 0 € O of created
objects to object “values”: a field environment g, (mapping field names to loca-
tions), and a method suite F, (mapping operation names to methods).?

Additionally, the reduction rules update in parallel an object graph g € &taph as
a high-level model of the objects’ interconnections by object references. This side of
the semantics will be ignored in this section and explained in §5.3.1.

The term and the four dynamic contexts together are the formalization of the
computation’s state traditionally called configuration.

For uniformity, the special identifier ‘this’ and the identifiers of parameters are
treated within a method like the identifiers of local variables. Explicit read access
is necessary to get at their values. As in Java, parameters can be updated and the
update of ‘this’ is only prevented by a special check in the typing rules (§5.4.1).

4. JAM’S FORMALIZATION OF REFERENCE VALUES. Values—more precisely, first-
class values—are those things to which expressions can evaluate and which can be
stored in variables and passed as parameters and results (and which are classified

30m’s graph can be understood as a set of implementation objects formalized as triples (o, 0o, F,).
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s om <y Yo, z,

0, i, @e om(o) = (0, F) A s(o(z)) = (6, h,&0) = o6=0

FsT  ©a VN{s x> & 05 [, Do M 0y € Ul As(n(z)) = (6,,0) = o=r
i:sn € Sy Vns,”) ﬁ/ 5 ﬂ,(:). 77: U@,u,m' ﬁl

= e=(0,[1,0) V (e € Loc Ns(e) = (6,1,0)) = d=r

A ‘v’é. e € {val(é),destval(é),return é;} = f=;7 €

A VE,é, 8,1, ec {éé if(eyeé){s} é=¢é;} = 7€ A fsqé

A Yf,eq,...,exe € =eg<=fler,...,ex) =Vie{0,... .kl =sie

A Vé. e =<KE> =0 #£eNEsy €

Figure 5.4: Handle source consistency

by the types t in the program). Java has primitive values of boolean and numeric
types, and reference values, i.e., references to dynamically created objects [GJS00].
Base-JaM restricts itself to just reference values.

Normally, a reference value is formalized as an object identifier: Each time a
new object is created, a fresh identifier w is drawn for it from a given set O, and used
henceforth to refer to that object.* And the notion of a null reference (denoted by
null) is formalized by the special value nil € O that does not identify any object.

The base-JaM semantics uses an extended formalization of object references as so-
called handles: A handle is not just the object-identifier w of the referred-to object
(the reference’s target), but a triple h = (o0, ,w) which includes also the identifier o
of the referring object (the reference’s source) and the mode u of o’s reference to w.
This extension will simplify to specify which object graph edges o £+ w are added
and removed during an execution step.

It is expected, and will be shown to be the case in paragraph &, that the sources
in all handles in the store and the runtime term coincide with the object to which the
corresponding store location or method nesting level belongs (source consistency).
Put the other way around, at locations ¢ = p,(z) of fields = of object o, we expect
to find only handles s(¢) = h whose source is o. Then the object-map is source
consistent, in symbols, =, om. This is defined formally in figure 5.4. Analogously,
at locations £ = n;(z) of local variables and parameters z in environments 7; of
invocations with receiver r, we expect to find only handles s5(¢) = h whose source is
r. Then the object-map is source consistent, =5 7. And at all method nesting levels
in the runtime term e with corresponding receiver r, we expect to find only handles
h with source r, and locations ¢ containing handles s(¢) = h with source r. If this is
the case then the runtime term is source consistent, in symbols, }= 7 e. In figure 5.4,
this is defined inductively from the outermost method nesting (corresponding to the

4An object value (g, F,) cannot be a formal model of reference values, since then the reference
to all instances of all empty classes ¢,¢’ (no fields, no methods) would be the same: {@,@). But
then new c() ==new ¢’ (), contrary to the semantics of Java.
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location (l-value) ¢ € Loc =4 W cpixc Locr

handle (value) heV =4 (OU{nil}) x Mx (OQuU/{nil})
object-identifier 0€0 =4 WO,
object value (0, F) € (Id + Loc) x (Id + Mth)

infinite countable sets O, given for all ¢ € C and Loc, for all T € M x C

7€ Tu=ref MC [refpc] =4 Loc, .

| MC [ec]  =u (OU{nil}) x {u} x (O U{nil})
| obj C [obj ] =u {{0, F) | F FldsMths(c) = (I, F) and ¢ =T}
| Cmd [Cmd] =g {€}

nETD <4dom(n) =dom(l’) A Vo edom(). n(z) € [T'(2)]
Es <uVreMxCledom(s). £ € Loc, = s(¢) € [7]
= om <4 Ve € C,0 € dom(om). 0 € O, = om(o0) € [obj c]

Figure 5.5: Semantic values, types, and type-consistency

bottom of the environment stack), to deeper nesting levels (corresponding to higher
levels in the environment stack). Note that while statements and the then-branch
of if statements can be ignored since as program terms they can neither contain
handles nor locations.

The complete set of reference values, and thus the set V of values in base-JaM, is
(O U {nil}) x M x (QU {nil}): Handles with nil ¢ O instead of the target identifier,
“nil-handles,” formalize the notion of a null reference. (This formalization of null
references by multiple semantic values ensures that all handles have a uniform triple-
structure.) Handles with nil instead of the source identifier can be understood as
“global references” not belonging to any object. Since in base-JaM there are no static
variables nor methods, a handle with source nil occurs only as the call-link for the
environment 7o in which the start-up expression ey is interpreted, and as the handle
to which the object creation expression in ey evaluates.

5. MORE SEMANTIC VALUES AND TYPES. For uniformity in the formal treatment,
the notion of value is sometimes generalized beyond first-class values to include also
store locations (the value to which names z and this.z of variables “evaluate”, [-
value), the empty sequence e (as the “value” to which non-returning statements re-
duce), and object values (to which object-identifiers are mapped by om). For the
typing of these “second-class” values, and for typing runtime terms by the type of
value they reduce to, the type terms ¢ from the program syntax are generalized to
type terms 7 € 7 shown in figure 5.5. The eztensional interpretation (or denotation)
[7] of a type term 7 is the set of all conceivable values of type 7.

It is straight-forward to define what it means for an environment 7 as a mathe-
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matical structure to be a model for, or consistent with, aset I' = {z1 : 71, ..., Zpn : T}
of type assumptions (a type assignment), in standard logical symbols, ¢ = I': Both
must be defined for the same identifiers x;, and the environment must assign them
semantic values 7(x;) from the set [7;] denoted by the corresponding type assumption
x; . 7; in . Treating I' as partial mapping, we can write

n ET &4 dom(n) =dom(I') A Vz € dom(I'). n(z) € [I'(z)]

The set [obj ] of possible object values for instances of class c consists of those
tuples (p, F') where the field environment p is consistent with class ¢’s instance record
type I' (assignment of types to field names), and where the method-suite F' is precisely
the one which ¢ defines for its instances:

[obj ¢] =« {{0, F) | + FldsMths(c) = ([, F) and o =T}

The set O of object-identifiers is assumed to be partitioned according to class
names ¢ € C into disjoint subsets O, reserved as identifiers for instances of class c.
The object-map is type-consistent, written = om, if it maps object-identifiers in class
¢’s partition Q. only to object values of c-instances:

E om <4 Ve € C,o € dom(om). 0 € O, = om(o) € [obj c]

Handles h € V are classified into handle types y ¢ € M x C according to their mode
i and their target’s object class ¢: The extensional interpretation [ ¢] of handle
type u c is the set of handles with any object-identifier or nil as source, x4 as mode,
and any object-identifier in partition Q, or nil, as target.

[1 el =o (@ U {nil}) x {p} x (@ U {nil})

The set of store locations ¢ € Loc is assumed to be partitioned into disjoint subsets
Loc, according to the type 7 of values which the location is supposed to hold. Since
the only first-class values in base-JaM are handles, the partitioning is by handle types
7 =pu c€ M xC. Store s is type-consistent, written = s, if it maps locations in each
type 7’s partition Loc, only to values in type (term) 7’s extension [7]:

=5 o4 V7 e M xC, /4 € dom(s). £ € Loc, = s({) € [7]

Given this organization of the store, variables ranging over 7-values are represented
in the store at locations ¢ € Loc,: Hence the interpretation [ref 7] of the type of
T-variables found in type assumptions (z:ref 7) € T, is the set Loc,.

[[ref,u C]] =af EOC“ c

= 5, om can be written as short-hand for |= s and = om.

SFor the inclusion of subclass-polymorphism in JaM (see §7.2.2), it is necessary to clarify that
obj ¢ is the monomorphic type of the object values of the direct instances of class ¢ (and not its
subclasses), and that Q. is the set of identifiers only for direct c-instances. Subclass-polymorphism
for handle types p ¢ would require on the semantic side to generalize Q. in the definition of [u c]
to the subclass-closure UC,<C . O . And true mode-polymorphism (inclusion polymorphism instead
of mere ad-hoc polymorphism through mode-conversions) would require us to generalize {u:} in the
definition of [u ] to the set {J, <, {#'} of all modes p’ mode-compatible to p (see §5.4.2).
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€ e R[IH ¢, ﬁaga om, g — el, 77,,5,, om’,g'
8[6]7 77757 om, g== 8[6/]7 77,5’, Omlvgl

E€RY e i, 0mg= ¢, i7,s om, g
E[<e>], 7k 7,5, om, g=> E[<E>], i+ 7,8, o), g

RD =0
| val(RP) | destval(RY) | RP<«<Id(E*) | V<Id(V,)* RY (,E)*)
| RPS |RP=E; | Loc=RD; | return RT; | if (RTV R){S} | if (V¥ RP) {S}

Figure 5.6: Top-level reduction rules

5.2.2 Computational Steps

6. SELECTION OF THE REDEX. The definition of reduction steps é, 7j,s, om,g —
¢, 7,5, om' g can be split into two complementary aspects: On one side are twelve
cases of subterms that can be completely substituted in one step to a new term, with-
out any unchanged term-context around it. This substitution, in conjunction with
corresponding changes in the dynamic contexts, will be captured in redex replace-
ment rules e, 7,5, om,g— €', 77,8, om’, g’. On the other side is the selection of the
substitutable subterm in € to substitute in this step, the redex. This selection can
be conveniently specified with the help of Wright and Felleisen’s notion of a reduc-
tion context [WF94]: These are explicit, syntactic contexts for the substitution that
can be defined with the standard grammar formalism. A reduction context £* is a
runtime term “with a hole” symbolized by ‘C’. A complete runtime term é = E*[e]
is obtained by filling a runtime term e into the hole, i.e., by substituting e for ‘7.
Reduction steps then are written E*[e], 77,5, om, g== E*[¢/], 77,8', om’,g’. The ad-
vantage is that, instead a contextual reduction rule for each syntactical alternative,
with reduction contexts one rule can unite all cases in which the dynamic contexts
7,8, om, g change the same way.

In base-JaM, one rule handles substitution of a redex e at the same method
nesting level as é = £*[e], while another rule handles substitution across one level of
method nesting (see figure 5.6). For these rules we do not need the general, multi-
level reduction contexts €*, but single-level reduction contexts €& € RT that do not
increase the inserted term’s method nesting level. (A general reduction context £
with the hole at method nesting level n corresponds to the nesting of n single-level
reduction contexts & € RT: &* = &1[<&y[<K. .. [KEno1[KEL]>] .. . >]>))

1. If e is a redex reducing e, 7,5, om,g— €', 77,5, om’, g, then the same reduction
is possible in any single-level reduction context & € R, i.e., from &[e] to E[¢’].

2. If e is reducible e, 7,5, om,g== €', 7,5', om’, ¢, then e’s nesting in a method
inlining é = <e>> can be reduced to ¢ = <e>> if the environment stack is
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extended at the bottom by some environment 75 for the new outer-most nesting
level. Additionally, é and &' can be wrapped in a single-level context & € RY.

The role of the reduction contexts & € RT defined in figure 5.6 is to determine
the place of substitution within a method nesting level:

o If éis a substitutable subterm or an inlined method body then the two rules replace
é without any context, i.e., “context” & is nothing but the hole O, so that é = £[€].

o If otherwise é has the form val(é), destval(é) or return € then the next reduction
step must change the only proper subterm €” in the unchanged context of & =
val(eV), destval(e"), or return e (where the hole is, or is contained in, e7).

o Before replacing operation call expression é = eg<=f(e1, ..., ey) itself, its subterms
eo to e, must be evaluated left to right: The subterm e; in which the substitution
is to take place has only subterms already reduced to values to its left and only
proper expressions to its right: Context & = eF<=f(ey, ..., e,) where the subterms
e; are expressions in F directs the substitution first to the receiver expression.
Then context & = vo=f(vy,...,v_1,€" €ir1,...,€e,) with values v; € V and
expressions e; € E directs it to the left-most unevaluated argument expression.

o If é is a sequence s; s9 of two statements, substitution takes place only in the first
statement. s, is context until s; has reduced to € and only ss is left: & = €5 s,.

e Before the reduction step that can execute assignment é = e; =e,; itself, context
& = elP=e,; directs the substitution to the left-hand side until e; is an irreducible
location £. Then context & = ¢=¢"; makes the substitution continue in the right-
hand side until e, has evaluated to an irreducible value.

e Before an if statement can be executed, the expressions it compares must be
evaluated. To this end, contexts € = if(ePWe){s} and & = if(h¥e"){s} direct
substitution first to the left hand expression and then to the right hand expression.

7. SUBSTITUTION OF THE REDEX. Now consider the possible replacements of a
subterm, and how environment, store, and object-map change with it (figures 5.7 and
5.8). The object graph component will be ignored in this section; the changes there
will be discussed in §5.3. All steps work on the top-level environment 7} only, except
for return steps that works with the finished top-level environment n*'{‘s*,urﬂ and the
environment 75 to which the execution will return.

{var;} The identifier z € Id of a local variable or parameter reduces to that location
which the environment defines for z, i.e., the location 7n(x) to which the actual
environment 7 in annotated 7y maps . Nothing else changes.

{vars} A field name this.z reduces to that location ¢’ which is specified for z in the
field environment p of the current object, i.e., of the target w of the handle s(¥)
at the location ¢ = n(this) denoted by this in the top-level environment 7j;.

{rd.,} Non-destructive read access val({) to a location £ copies the value from the
store (at location £) to the runtime term (at the redex position). In base-JaM,
this value is always a handle (o, u,w). In case of a free handle, an exact copy
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n(z) =4¢
Z, 77}7757 om,g— é, 77}’;?757 om, g
(this) =¢ s(4) =(o,p,0) om(o) = (o, F) ofz) =¥
this.x, 7,5, 0m,g— £, 0,8, 0m,g

{var;}

{varg} N

5(€) = (o, p,w) p' = plread/free]
al(?), nf,s, om,g— (o, ', w), N, s, om,g®o £y

5(£) = (o, p,w)
destval({), ny,s, om, g — (o, i, w), nj, s{€ — (o, i, nil)], om, g

{rdcp} v

{rdass}

h’ = <S7 Hr, I')
null, nf,s, om, g — (r,free, nil), ny, s, om, g

{null}

h = (s, ur,r) F FldsMths(c) = ({x;:ref u; ¢;}, F)
fresh o € O, fresh 4; € [ref p; ;] o= {x;— &} h;= (o, p;,nil)
nev cQ), nf,s, om,g— (r,free,0), 0}, s[l; — hi], om[o — (o, F)],g®r fee, o

{new}

reQ, om(r)=(.,F), F(f)=r"7f@eg){yc)z; s}
fresh £ € [ref co c], fresh ¢/ € [ref p; ¢;], fresh £z € [ref p; ¢

n* = {this — £,y; — Zf,zj—»—rf—j}

s =s[l— (r,co,r), £} = (r,p5,04), € — (r, i, nil)]

g —gos .o or < ror & o

{call}

*

<S, Hr, I'><:f (<S7 .U';/a Oi>)a 77}775’ om, g — K8, 77}7 * n*?s,pr,r)751’ om, g,

Figure 5.7: Reduction of expression redices

would immediately violate the uniqueness of free paths’ heads (the Unique Head
property). Prohibiting through the type system that free variables are read
non-destructively would be too restrictive, as explained in §5.4.2, since then no
(observer) call to a free object can be made without losing the free handle to
it. The copy is safe if its mode is weakened to read, since the aliasing by read
references is irrelevant for the integrity invariants (cf. paragraph 5). We use the
standard notation u[read/free] for the substitution of read for free in mode
u. In base-JaM, substitution merely means to replace 4 = free to read and
leave other p’s unchanged. In full JaM, it will mean to replace any occurence
of base-mode free in the full mode pu = p<d> to read, and besides this leave
unchanged. The object graph transformation will be discussed in §5.3.

{rdg;} Destructive read access destval(f) evaluates to the value at location £, but
resets the store at £ to a nil-handle (with the same source and mode as before).

{null} The expression null evaluates to a nil-handle whose source is the current
object, i.e., the target r of the top-level environment’s call-link, and whose mode
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is free. Note that this mode is compatible to all other modes (see §5.4.2).

{new} The evaluation of an object creation expression instantiates a class ¢ to a new
object with fresh object-identifier o, and evaluates to an initial, free handle
from the current object r (the creator) to the new object 0. Being fresh implies
in particular that o is neither source nor target of any edge in the object graph.
Let {z;:ref yi; ¢;} be the instance record type I' and F the method suite which
class c defines for its instances. Then instantiating ¢ means to take fresh loca-
tions ¢; of respective types ref u; ¢;, initialize them to nil-handles with source o
and modes y;, and map o to an object value ({z; — ¢;}, F') with the field names
mapped to these locations, and with the method suite F.

{call} An operation call is executed when all its subexpressions, receiver and argu-
ments, have evaluated (to handles). The execution will then continue with the
body s of the method F(f) by which the call’s receiver r implements the called
operation f. To prepare this continuation and the return into the context of
the call, the call expression is replaced by the body s put into double angle
brackets. The environment for s’s subsequent evaluation contains this, and
the parameters and local variables of method F(f) bound to fresh locations of
corresponding ref-types initialized with, respectively, a handle to the receiver
(of mode co), argument expression values adapted to the parameters’ modes,
and nil-handles of the local variables’ modes. In order to talk and reason about
the kinds of executing methods and the modes of the call-links used to make the
call and to return the result, the new environment is annotated with the kind of
method F(f), and with the handle to which the receiver expression evaluated.

{ret} A return statement is executed when its return expression has evaluated to
a result handle, provided it is the remains of an inlined method body in dou-
ble angle brackets, and there is an environment 7y below the current top-level
environment. Then evaluation will continue in environment 7nj; with the result
handle adapted to the calling context, i.e., with the sender as the new source
and with a mode adapted to the sender’s perspective. How modes of returned
handles are adapted will be elaborated in §5.4.2. The current top-level environ-
ment is removed from the stack and the locations of the names in it (parameters,
locals, and this) are removed from the store.

{upd} An assignment statement is executed when the left-hand side has reduced to a
location £ and the right-hand side to a value (o, i/, w'). It updates the store at ¢
to the handle with the mode adapted according to the location’s store partition.
As opposed to Java, assignments in base-JaM have no value, but are statements
reducing to the empty term, so that the statement following it in the full term
&le] will be next in the order of execution.

{if;}, {if} A conditional statement is executed when the compared expressions have
evaluated to handles (o, 4, w) and (o, 1', '), respectively. Then the if statement
reduces either to the guarded statement s, the “then-branch,” or it reduces to
the empty term € to let execution continue with the statement following the if
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et} §=sl— 1L |leim(n*)] ¢ =9gPs &% 00s L ror £ 00 s(im(n*))
<Lreturn (r, it,0);>, Ny n*'g’unﬁ,s, om, g — (s, urop, 0), 15, s, om, g’
{e Locy ¢
d -
O (0,33, s, oma g — €, 1 slE (0,1, D)], oM, g O 0 £ O 5(6) @ 0 £e
. [¥] () |
‘ if((@u:“) w <07 /"L/7w,>) {S}a n;’fai om,g-—> s, 77}7757 om,goo £ woo W'
o ~[l(w,e) |
§ if(<0a U7w> (4 (07 :u‘/>wl>) {s}, 77}7)57 om, g — ¢, 77;757 om,gS o woo - W'
twh} while(e19 e2) {s}, nf,s, 0om,g — if (e1y ex){s while(eryy ex){s}}, n},5, om,g
where [==](w,w’) ©4 w =w" and [!=}(w,w’) ©4 w # '

Figure 5.8: Reduction of statement redices

statement in the full term E[e]. The choice depends on whether the two handles’
targets w and W' are equal and whether the comparison operator v is == or !=.
The first choice (rule {if;}) is taken iff ¢ is ‘=="and w is ', or if ¢ is ‘!=" and
w is not w'. Otherwise, the second choice is taken (rule {if;}).

{wh} A while loop is reduced the standard way by unfolding it to an if statement
guarding the first repetition of the loop’s body followed by a copy of the loop.

8. SOURCE CONSISTENCY. Before turning to higher-level views, let us verify that
JaM’s semantics adds the right source objects to its “handle” formalization of object
reference values:

Proposition 1 If ey, 79, 50, 09, go =" €, 7, 8, om, g then

Fsom A Fs7 A Izs,ﬁe

Proof by induction on the number N of reduction steps from ey to e: In the base
case N = 0, source consistency is trivial since store s, = @ contains no handles,
and term ey = new ¢() .main() contains no handles and no locations. In the induc-
tion step N — N + 1, reduction eq, 79, So, 0M0, o =" en, 7N, SN, OM N, gN 1S contin-
ued ey, v, 5N, 0MN, Gy = €, 7,8, om, g. By induction hypothesis, f=5, omy and
|=5N 7y and lZSN,ﬁN EN-

Consider =, om and |=, 77. Reductions with {var;}, {vars}, {rde,}, {null}, {if.}/{if}
and {wh} change neither s nor om nor 7; {ret} neither adds to s nor 77; and {upd}
and {rdg;} do not change the source of the handle at the updated location. Hence
still =5 om and f=; 77 in all these cases. In case of {new} and {call}, om does not
change for old objects, and 77 does not change in old environments. s changes only at
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locations that are fresh. These locations are added only to, respectively, the new ob-
ject’s value or the new environment. All the handles with which these fresh locations
are initialized have the right object as their source: the new object o, or the receiver
r, respectively. Hence |=; om and |=, 7 again.

Consider =, e. In case of a reduction with {var;}, the redex z in the maximal
method nesting depth is replaced to location n(z) from the top-level environment
ne. Hence =, 7y ensures that s(¢)’s source is the target r of call-link A in top-level
environment 75, and thus the right one for a location at maximal nesting depth:
=57 e. And in case of {vars}, we have a handle h = 5(¢) = (o, 1, 0) at the location
¢ = n(this) of this in top-level environment n¥. On one hand, k=, 7y ensures that
h’s source o is the target r of call-link A in 1. On the other hand, =5, omy ensures
that the handle s(¢') at location £ of o’s field = has o as source. Hence the location ¢
inlined in the runtime term at maximal nesting depth refers to a handle s(¢') in the
store with the necessary top-level environment’s receiver o = r as source.

In case of {rd.,} and {rda}, the redices val(¢) and destval(¢) at nesting level n
imply by induction hypothesis that s(¢) is a handle with the right source for nesting
level n. Hence this handle can be copied into the runtime term at nesting level n with
no problem. Although {rds;} does update the store, it does not change the source of
the handle at location £. =, e is preserved.

In case of {null} and {new}, a handle is added to the term that has as source
specifically the receiver of the top-level environment’s call-link, and thus the right one
for a handle at maximal nesting depth. At the same time the environments remain
unchanged and the store changes at most at fresh locations (but not at locations that
might be contained in the term). Hence |=, 7 e.

Reductions with {call}, {upd}, {if;}/{if} and {wh} add neither handles nor lo-
cations to the term, At the same time the environments at old nesting levels remain
unchanged and the store changes at most either at fresh locations ({call}) or without
changing the source of the handle at the updated location. Hence still }=; 5 e. [ |

5.3 JaM’s Higher-Level View

The runtime model consisting of terms, environments, stores and object-maps is a
formal model of the computation’s state well suited for defining program execution.
It is less convenient for reasoning about relationships between objects and group-
ings of objects. More appropriate is the object graph model as a higher-level view
of computational state that captures (only) the objects’ interconnection by object
references.

5.3.1 The Object Graph in the Computation

1. OBJECT GRAPH VIEW OF STATE. The notion of an object graph in a computa-
tional state formalized as configuration (e, 7j, s, om) is a graph g whose nodes are the
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(identifiers of) objects in om, and which has an edge 0 £ w for every non-nil-handle
(0, u,w) contained as value in s (stored reference), call-link in 7 (reference in use as
connector), or subterm in e (intermediate reference). The current object graph can
always be calculated from the current configuration with the help of an abstraction
function, and is then transformed indirectly in the reduction steps by the configura-
tion’s modification. But in order to make these transformations more obvious, the
reduction rules given in figures 5.7 and 5.7 showed explicitly the manipulation of the
current object graph as a separate component of the configuration. It is of course
necessary to demonstrate consistency of this parallel object graph with the calculated
object graph, which will be done further below.

In the reduction rules it is easy to add edge o £+ w to the graph whenever a handle
(0, u,w) appears new in s, 7, or e. Harder is the remowval of edge 0 £ w exactly when
handle (o, i, w) exists nowhere in e, 77, and s any more. This can elegantly be handled
if the object graph is not formalized as a set g € 29*M*C of edges representing the
existing of corresponding handles, but as a multiset g € NO*M*C of edges whose
multiplicity represents the number of the corresponding handles’ occurrences in s,
77, or e: Multiplicities of edges are increased and decreased in accordance with the
addition and removal of handles to/from e, 77 and s, so that the multiplicity of edge
o £ w in g, written mult(o £ w,g), reaches zero (meaning it disappears from the
graph) exactly when the last occurrence of (o, i, w) is removed from s, 77 and e.

Definition 1 An object graph is a multiset g € Graph) =, NOM*C of directed,
mode-labeled edges 0 £ w € O x M x O between two object-identifiers o, w € O called
source and target, respectively.

W.r.t. this definition, we can now give precise meaning to the often cited notion
of “the” object graph in a particular computational state: It is the abstract view of
a configuration (e, 7, s, om) as an object graph which contains every edge as often as
e, 7, and s contain the corresponding handle. It can be constructed from the current
configuration by an abstract function ogr:

Definition 2 Let n,, = num(h, e) + num(h,7) + num(h,s) be the combined number
of occurrences of a handle h € @ x M x ©Q as intermediate value, as call-link, and as
stored value. Then the object graph ogr(e, 77,s) € Graph in configuration (e, 7, s, om) is
calculated by adding nj-times every possible handle h € O x M x O as an edge:

ooreis) =a W)

heOx Mx0i=1
where @ is the multiset union that adds up elements’ multiplicities.

The number num(h,s) of locations at which h occurs in s € Gtore is
num(h,s) =4 | {£ € dom(s) |s(¢) = h} i
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The number num(h, 77) of environments with call-link A in stack 77 (of size n) is
num(h, 7) =a | {i € {1,..,n} |m =5} |

The number num(h, €) of occurrences of h in runtime term e € R can be determined

inductively as follows:

num(h, ) =4 0 num/(h,val(e)) =4t num(h,e)
num(h,this.z) =4 0 num(h, destval(e)) =4 num(h,e)
num(h, £) =4 0 num(h, <s>) =4 num(h, s)

, 1if A" =h num(h,returne;) =qr num(h, e
num(h, ) {O ifth' #h Eh 51 89) =4 numEh, 5)1)
num(h,null) =40 num(h e1=ez;) =g4r num(h,er) + num(h, ez)
num(h,new ¢()) =40 num(h, if (ejpea){s}) =4 num(h,e1) +num(h,es)
num(h,while(e){s})=4 0 num(h,eg=fer, ..., en)) =ar 2o numih, e;)

The definition of num(h,e) can ignore the body and condition of while state-
ments, the then-branch of if statements, and the second statement in sequences
since these are never partially evaluated, and thus always free of handles (cf. the
syntax of runtime terms in §5.2.1).

2. OBJECT GRAPH VIEW OF STEPS. Transformations of the object graph can be
decomposed into what looks like additions g @ ~ and removals g & h of edges, but
which are actually increases and decreases of edges’ multiplicities. Such an “addition”
and “removal” does not change the graph at all if the target or source in handle h is
nil since object graphs model only the connections between objects. The “addition”
@ and “removal” © used in the semantics are reduced as follows to multiset-union
‘W and multiset-subtraction ‘\\’ (which add two multisets’ element multiplicities, or
subtract the second one’s element multiplicities from those of the first one).

g@oﬁ»wzdf{g if nil € {o, w}

s |8 if nil € {o, w}
gw{os w} otherwise 8902w = {

g\ {o£ w} otherwise
Now, let us follow the transformations which the object graph undergoes by the
different reduction steps defined in figures 5.7 and 5.7:

{var;}, {vars}, {null}, and {wh} steps have no effect on the object graph since they
do not change the number of non-nil handles in the configuration. Observe that
while statements are pure program terms so that the subterms duplicated by
the reduction to an if statement cannot contain any handles.

{rdg:} leaves the object graph unchanged: The new occurence of handle h = (o, s, w)
in the term is balanced by removing one occurence from the store:
num(h, ') + num(h,s’) = num(h, e) + num(h, s).

{rd,} increases in the graph the multiplicity of the handle h = (o, p/,w) = 0 #% w
read from the store with substitution of read for free (unless o or w is nil):
mult(h,g’) = mult(h,g) + 1. This models the redex’s substitution to h, which
increases the number of A’s occurences in the term: num(h, ¢’) = num(h,e)+1.

{new} adds creator object r’s initial reference to the new object w to the object graph
(except if r is nil, as in the first step of evaluating ey = new ¢, () .main()):
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g = g ®r free, w. This models the redex’s substitution to (r,free,w).

{call} steps equip the receiver with a this reference r <o r and with a parameter
handle r £ w; for every argument handle s H supplied by the sender.
That is, the multiplicity of r <2 r and edges r £ w; increases, while that of
edges s 4, w; decreases. This matches the arguments’ disappearance from the
term and the parameters’ and the this-reference’s appearance at fresh locations
in the store. The call-link o £, w is not changed: Its disappearance from the
term is balanced by its occurence in the new top-level environment.

{ret} steps combine call-link (s, sy, r) and the edge r £ w returned by the receiver to
the edge s £r°£, w in the sender, i.e., the former two edge’s multiplicity decreases
while the latter one’s multiplicity increases. This matches the appearence of
(s, prop, w) in the runtime term and the disappearence of handle r £ w from the
term and of call-link (s, u,, r) (together with the finished invocation) from the
environment stack. Additionally, since the locations of the finished invocation’s
variables in the store are reset, the multiplicities of all (non-nil) handles lost by
this are decreased to keep the object graph in sync.

{upd} steps convert a handle o0 5 w’ to 0 £ w', i.e., decrease the multiplicity of the
first handle and increase that of the second one. This matches, respectively, the
disappearence of the right-hand side handle (o, 1/, w’) from the term and the
appearance the handle (o, 4, w’) = 0 £ W' at location £ in the store. Addition-
ally, the multiplicity of the old handle (o, 4, w) = 0 £+ w at location £ decreases
since the update at location £ overwrites it.

{if;} and {ifs} steps’ discarding of the two compared handles means for the object
graph a decrease of the corresponding edges’ multiplicity.

All of this shows that the reduction rules accurately make explicit, as parallel
transformations of the object graph, how the objects’ interconnections change in
each reduction step through the modification of term, environments, and store:

Proposition 2 If eq, 79, 59, 0mg, o =" e, 7,6, om, g then

Proof by induction on the number N of reduction steps from eq to €': In the base case
N =0, ogr(eg, no,50) = @ = go since term ey = new ¢() .main() and store 5o = @
contain no handles, and environment stack ny = @?:iiread’nm contains only a nil-handle.
In the induction step, execution eg, 1y, 59, 0Mg, go =" en, TN, SN, 0My, gy IS con-
tinued ey, 7in, SN, 0Mpy, §N = €, 7,5, om,g. As the above considerations showed,
the last step’s redex replacement changed the multiplicities in the graph the same way
as the non-nil-handle occurences in the substituted subterm, the top-most environ-
ment(s), and the store. The context rules add the same term contexts and lower-level
environments on both sides. Hence g = ogr(e,,s) follows from the induction hy-

pothesis’'s gy = ogr(en, v, 5n)- [ |
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ot weEg gk m € PAP(o,uu,q) @k 7 € PAP(q,co,w)
gF o+ we PAP(o, p,w) gk meme € PAP(o, p,w)

Figure 5.9: Potential access paths in object graphs labeled with base-modes

5.3.2 Moded Paths, Owners and Sanctuaries

3. PATHS IN THE GRAPH are non-empty sequences ™ = hq, ..., h, € V* of contiguous
edges, i.e., of object references h; = o; £ w; with 0;4; = w;, thus also written
™ =0 ¥ 09...0, £ 0,11. The mode-based classification of object references
0 — w according to their ownership- and sanctuary-meaning (cf. §5.1) generalizes to
paths from o to w (subsuming the case of object references as paths of length one):

e If the path’s mode is rep, this means that o is w’s owner, which is expected to be
unique, and w belongs to o’s sanctuary Sanc(o). In legal base-JaM programs, w
has no other owner (the Unique Owner property).

e If the path’s mode is free, this means that o is w’s owner, which is expected to
be unique, and w is expected not to belong to any sanctuary. In legal base-JaM
programs, w has no other owner, and all ownership paths to w, i.e., free and rep
paths, have the same first reference of multiplicity one (the Unique Head property).

e If the path’s mode is co, this means that w and o have the same owner (or none),
and they belong to the same sanctuaries Sanc(q). o and w are called co-objects.

e If the path’s mode is read, this means that it say nothing about w’s owner and
membership in sanctuaries.

Paths 7 of mode p between o and w can be written o *+ w in abstraction from
the intermediate objects and the intermediate references’ modes. While they have
the same meaning for ownership and sanctuaries like object references o £+ w, paths
can of course be used neither as data values nor as connectors to call operations on
the target object w. But a path m = 0 #% 0. . .0, 42 w can in principle anytime be
“collapsed” to a single reference o £ w by a sequence of calls from o to w along the
path which returns w’s this-handle (w, co,w) to o. If a path is classified as a u-path
then this collapsed reference must be of mode p. That is, the combined adaption
p10(p20 . . . (n_10(py0co0)) . ..) of the returned handle’s mode should be p. That is,
while a p-reference is a means for the source o to directly access target w (with some
limitations imposed by the type system according to u), a u-path indicates o’s (u-
bounded) right, in principal, to directly access w. Hence these paths will be called
potential access paths.

Let PAP(o, i, w) be the set of all those paths 7 from o to w in graph g which
are potential access paths of mode u. Which paths in g are potential access paths,
and what their mode is, is controlled by the modes of the edges in g. Through
mode annotations specifying the references’ modes, the program therefore indirectly
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also specifies the potential access paths. In base-JaM, the potential access paths
m € PAP(o, pu,w) are the graph’s edges o £ w € g (that is, edges with mult(o £
w,g) > 0), and the concatenation 7y * 73 of a u-path m; € PAP(o, i, q) and a co-path
7o € PAP(q, co,w) (see figure 5.9). This is easy to verify: A rep-path 71 and co-path
o together imply that o is not only ¢’s but also w’s owner and that not only ¢ but
also w is in o’s sanctuary. This is exactly what the classification of 71 ¢ my as rep says
about w. If m; is free then the co-path w9 between g and w implies that o is not
only ¢’s but also w’s owner and that not only ¢ but also w is in no object’s sanctuary.
Hence 7 * 9 should be classified as free. Co paths m; and m, together mean that o
and w have the same owners and belong to the same sanctuaries, i.e., 7 ¢ 7y is co.
Read path 7 leaves ¢’s owners and sanctuary memberships unspecified, and co-path
my equates them with w’s owners and sanctuary-memberships. They are thus left
unspecified by 7 * 7, so that read is the right mode.

4. OWNERSHIP AND SANCTUARIES. The potential access paths of modes rep and
free define the ownership (or object composition) hierarchy between objects in the
object graph; they are the ownership paths. For convenience, we can define the
set Osh{o,w) of ownership paths between o and w. Osh(o,w) =, PAP(0,rep,w) U
PAP(o,free,w). And the transitive closure of potential access paths of mode rep
defines the sanctuary Sanc(o) of composite objects’ representatives o.

However, potential access paths are only forward concatenations of handles, so
that in the situation o X%£5 w <> /', object o would own w but not w'. But
when ' calls an operation on w, like SetPrev, to which it passes this as parameter
of mode co, then the co-handle is inverted and o now also owns ' through path
o X2, w <o, /. In order to show for this step the preservation of the invariants over
ownership and representations introduced below, the forward notion of ownership and
representations is generalized to a co-symmetric one, in which both ends of co-handles
and co-paths have the same owner and belong to the same representations.

This is achieved by the following technical trick: The sets PAP,(o, i1, q) of poten-
tial access paths, in particular, ownership paths Oshg(o,w), used in the properties’
definition are not the ones determined in the real object graph g, but those in an
object graph g* to which inverses w <o ' for each co-handle w’ <2, w have been
added. This addition explicitly represents the semantic symmetry of co-handles.

Definition 3 Let g* =4 g {w <% 0 | 0 <% w € g}. Then

PAPE(Oa Ma q) =df {7T l g* l_ e PAP(Oa /'l’a Q)}

Oshg(o,w) =4 PAP(0,rep,w) U PAP(0, free,w)

Sancg(0) =g U ({w} U Sancg(w) )

w su. th. PAP;(o,rep,w)#0

Object graph index g in PAP;, Oshy and Sancy can be dropped where g is obvious.

The construction of PAP,; based on g* means that any two objects o and w that
are in g connected by an undirected path 0 <€&.* o;*<2 ... €2,* g * <2y of co-edges
will be connected by a potential access paths of mode co (PAP,(o, co,w) # @). Since
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gE=UO &4 Vo,5,w. Oshg(o,w) # @D A Oshy(6,w) #0D =
gEUH &4 Vo,0,w,h,m, h,%e hem € PAP,(0, free,w) A heft e Oshyg(
= h=hAmult(h,g)=1
8,TEMCP <, Vie{l,...,n}e k;=mut = 3j <4 hj*...* h; € Oshy(r;_1,1;)
8,7TEMC &, Vie{l,...,n}, 0. k; =mut A r; € Sancy(o)
= dk < 4. rp = 0 A K = mut

=0
,w)

Q1 O

where 177 = 77121 L nn,’jz with call-links h; = (r;_1, p;, r;)

Figure 5.10: Base-JaM integrity invariants

free and rep paths are closed under co-paths, o and w have the same owners and
belong to the same sanctuaries. Hence the existence of a potential access path of
mode co between two objects formalizes the informal notion of co-objects.

5. INTEGRITY INVARIANTS OF BASE-JAM SYSTEMS. Base-JaM defines not only
through mode annotations where owners and representations are in the object graph.
Through the mode system introduced in §5.4.2 it will also guarantee the integrity
properties introduced informally in chapter 1. Based on the formal semantics, these
properties can now be formalized (and then be proved in §5.5). Composite state
encapsulation will be formalized in the next subsection. The invariant properties of
base-JaM executions are formalized in figure 5.10 w.r.t. the object graph g and the
call-links and method kinds of invocations on the environment stack 7.

e The Unique Owner property UO is the property characteristic of object owner-
ship in JaM: It holds in graph g if all objects have at most one owner, i.e., are at
most target of a unique object’s ownership paths.

e The Unique Head property UH is the property characteristic of free paths in
JaM: It holds in graph g if the initial edge in all ownership paths to a free object
(i.e., target of a free path) is the same and has multiplicity one. Since this
excludes rep paths, the free object cannot belong to any sanctuary.

e The Mutator Control Path property MCP is the property characteristic of
ownership paths in JaM: It holds in graph g and stack 7 if mutators were invoked
on receiver objects r; only through a sequence of calls along the edges h;,..., h;
of an an ownership path to r;.

e The Mutator Control property MC is the property characteristic of sanctuaries
in JaM: It holds in graph g and stack 77 if members of 0’s sanctuary are executing
mutators only nested to mutator executions of o, and thus (indirectly) initiated by
o’s mutators through a sequence of calls.

g,7 = UO, UH, MCP, MC is short for “g |= UO and g = UH and g, 7 = MCP and

8,7 = MC”
The move from g to g* strengthens the notion of uniqueness of owners and free
path’s initial edges. For mutator control paths, this is irrelevant because the call-links
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Figure 5.11: Composition of composite objects in JaM

in 7 are always real edges in g (Proposition 2). But by inversion, all the additionally
owned objects and representation members, i.e., objects not reachable by any real
ownership path in g, are guaranteed not to execute mutators. They are immutable
until a forward ownership path is established.

5.3.3 The Composite Object View

6. COMPOSITION OF COMPOSITE OBJECTS. A composite object O in JaM is
constituted by its representative o and all the implementation objects reachable from
there via sequences of rep and free paths. That is, the set of O’s constituent objects is
composite(0) =a {0}UU osh(ow)0 composite(w). Interaction between the constitutent
objects is internal to O and abstracted away in the outside view of O. Interaction with
any other object is external behavior of O (and should be included in its behavioral
specification).

The sanctuary Sanc(o) (see above) is the subset of the expansion composite(o)
which is reachable via rep path sequences only (cf. figure 5.11). o (indirectly) con-
trols the ezecution of mutators in the sanctuary (mutator control), but it does not
necessarily control the membership in the sanctuary: Through temporary rep or co
references in the execution of observers (of o or members of Sanc(o)), new rep paths
can be established that add an object to Sanc(o). Even though this addition is only
temporary, it is a change of the sanctuary not necessarily controlled by o.

The desired state encapsulation property does not require us to impose control on
temporary additions since temporary members of the sanctuary can anyway not be
used to represent the composite’s state: To represent state, only a core of sanctuary
members can effectively be used which remain in the sanctuary between method in-
vocations and can be accessed via ownership paths from different method invocations
of the representative. That is, the composite state representation StRep(o) can only
consist, besides representative o itself, of objects that are held in sanctuary Sanc(o)
through rep paths consisting entirely of references captured in fields.

However, the object graph, as it was defined above, is too abstract for the correct
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formalization of state representation StRep(o) since it ignores the handles’ storage
status: stored wvs. unstored, stored in fields ws. stored in locals. We have to look at
the subgraph fgr,m(s) C ogr(e,,5) containing just the edges for handles h = s(¢)
found in the store s and at locations £ € flds,,,(0) that model an object’s fields.

Definition 4 The set fids,,,(0) of object o's field locations is extracted from o's field
environment g in object-map om. The field-subgraph fgr,,(s) is the set (or multiset)
of all non-nil handles at such field locations in the store. The state representation

StRep, ,m(0) of 0 is o together with the state representations of its rep path targets in
the field-subgraph.

flds,,,(0) =4 im(p) for om (o) = (p, F)

farom(5) - U im(s|fas, o) NOXM<O
o€dom(om)

StReps’om (0) =4t {O} U U StReps,om(w)

w su.th. PAPg, () (0,rep,w)#Q

Proposition 3 The field “sub”-graph is in fact a subgraph of the object graph (as a set):
fgrom(s) C ogr(e,,s)
Proof: h € fgrom(s) = h €im(s) = num(h,s) >0 = h € ogr(e,7,s). [ |

Mutator Control (MC) means in particular that the representative controls all mu-
tator executions in state representation StRep(o), since the latter is a subset of the
sanctuary Sanc(o) modulo the representative (which trivially mutator controls itself):

Proposition 4 StRep, om(0) € {0} U Sancogr(e,,5(0)

Proof: Membership w € StRep, ,,(0) presupposes a (possibly empty) sequence of
rep paths from o to w in fgr,,(s). This sequence exists also in ogr(e,7,5) 2 fgrom(s)
(Proposition 3). If it is empty then w = o, otherwise w € Sancogr(e.i,s (0)- [ ]

7. COoMPOSITE STATE. The notion of state representation StRep(o) used here should
not be mistaken as a kind of (concrete) state. It is the set of (identifiers for) the imple-
mentation objects which collectively represent the composite object’s state CState(o)
by virtue of their shallow states state(w). That is, CState(o) = Uyesirep(o) State(w).
Since objects’ shallow states are in turn represented in their fields at store locations
¢ € flds(o), the composite state is ultimately represented in the store at all the loca-
tions £ € flds(w) for all w € StRep(o). (This set of locations is the instance region of
[GB99] and the demesne of [Wil92].)

Definition 5 Shallow and composite state are then the restrictions of the system
state, formalized as store s, to the corresponding location sets:

Stateg,om(o) —df 5 |.ﬂdsom(o)

- — state w
CStates,om(0) =ar 5 IUuesmepﬁ,om(w fidsom{w) weStREPJ (0 o)
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8. THE HIERARCHICAL VIEW. The above description of a composite object O as
a flat set of constituent objects differs from the description of the composite object-
oriented view of the runtime system as a nesting hierarchy of composite objects and
their possibly composite component objects in §2.5. However, we can see all im-
plementation objects o/, also those in composite(o), as representatives of a (possibly
primitive) composite object O'. The components of composite O are those composite
objects ); to whose representatives w; the representative o of O has an ownership
path. And the state-representing components are those components to whose repre-
sentatives O’s representative o has a rep path in the field-subgraph. Correspondingly,
one could also give inductive definitions of composite(o), StRep(o), and CState(o)
based on representative o the (state-representing) components.

9. COMPOSITE STATE ENCAPSULATION. The notion of composite state encap-
sulation, which was introduced in chapter 1, can now be given a precise definition
w.r.t. the JaM formalization: If an execution step e, 77,5, om,g=— €', 77,5, om’, ¢’
changes a composite’s state, i.e., CStates om(0) # CStatey om(0), then it is executing

a mutator, i.e., there is an environment 77’(“5“2 oy € 77 of kind mut with receiver o:

Yo € dom(om). CStates om(0) # CStates om(0) = 38, 1M Mg yuoy € T

This property will be proved for legal base-JaM programs in §5.5.3.

5.4 Typed Base-JaM

Not all syntactically correct programs p are also legal programs. Type declarations
are written in the program not just for fun but to have the actual use of values
checked against a declared intention. This should ensure the orderly execution of
programs, including in case of JaM the state encapsulation of composite objects. The
component of a programming language which defines the checking of the program is
called the type system.

5.4.1 The Type System

1. THE WELL-FORMEDNESS of Base-JaM programs is judged by the rules in figure
5.12:

[prog] A program p € P is a legal program (of typed base-JaM) whose execution
starts with the evaluation of eg = new ¢, () .main(), written I p start eg, if
it is well-formed. Each of the class modules in it is well-formed; no two class
modules define the same class name; and the last module D,, defines the class ¢,
with a parameter-less operation main. For formal reason, this operation must
be an observer: In the initial environment @z’:ﬁ,read,nm, the only handle to the
initially created c,-instance o will be (nil, free, o). Since its source is nil ¢ O, in
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I—Dldefscl }—Dndefscn Vi,jzl,...,n. C;i = ¢4 iZ:]
b FldsMths(c,) = (R, F), F(main) = obs 7 main(){...}
[prog D, ... D, start new ¢, () .main()

FM defsz, -+ FM,defsz, Vij=1,...nezr,=x; = i=]
Fclass ¢{M; ... M,} defs ¢

[class]

Ft ok Kt ok Kt ok
I'=this:refcoc, z;:reft;, z;:reft; FTlok T',kks:t

[meth] F it et 2;; oY defs [
el Fi¢ ok Vi,j=1,...,n T3 =3, =>1=]
Hfield] Ftax; defs x [basse] Faxy:iT,..., 2, Th Ok
weM Fc ok p=D;... classc{...} ...D,
) fenamel Fc ok

Figure 5.12: Legal base-JaM programs

the object graph no ownership path to o exists, so that a mutator call to o would
violate Mutator Control Path. o’s main, however, can then send mutators to
free objects it created.®

[class] A class module D is a well-formed definition of class name ¢, written F
D defs ¢, if each of the member definitions in it is well-formed and if no two
member definitions define a member of the same name.

[meth] A method definition M = st f(T;z){¥] z;; s} is a well-formed definition of
member x, written - M defs z, under the following conditions: Its declared
result and parameter types are valid types. The type assignment I made of the
type assumptions for this, the parameter names and the local variable names is
valid. And the method’s body s is a well-formed term in the context of a x-kind
method and type assignment I" whose (return) types is the method’s result type.
(The identifiers’ assumed types all have the form ref ¢, not the declared range
type t, since the identifiers do not denote t-values but variables over them.)

[field] A field definition M = ¢ z is a well-formed definition of member z, written
F M defs z, if its declared range type t is a valid type.

[tassg] A list of type assumptions =; : 7; is a valid type assignment I', written - I" ok,
if it contains only one type assumption for each identifier x;.

[rtype] Type term ¢ is a valid range type for variables, parameters and results, written
k¢ ok, if it is a valid class name ¢ qualified by a mode p € M.

6Mutator main could be supported by reformulating the Mutator Control Path property or by

. : . o N . L ot
assuming a given object 0y € O as the receiver in the initial environment: 7jp = @ (nil,read,00)
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[cname] Identifier ¢ € C is a valid class name, written - ¢ ok, if one of the program’s
class modules defines it.

2. TYPING RULES FOR PROGRAM TERMS (expressions and statements) have two
functions: First, they infer the terms’ types (static types) as a prediction of the types
of the values to which these terms will evaluate in any possible computation (dynamic
types). On top of that, conditions are incorporated in the typing rules which make
the existence of a term typing a judgment on the term’s well-formedness.

The typing judgment I',x F e : 7 expresses that term e is legal in a method of
kind k and has static type 7 in the context of type assumptions I[" for local variables.
(The assumptions are met if they are type consistent with top-level environment 7y,
i.e., n = nEl.) The rules for deriving typings in base-JaM are given in figure 5.13.
The discussion of the aspects that belong to the mode system, namely the mode and
method-kind checks, mode compatibility 7" <p, 7, the signature %(u ¢) of p c-handles,
and the set Wr(k) of handle modes with write permission, will be defered to §5.4.2.
[var;] Since identifiers = evaluate to n(x), they are assigned the type I'(x) assumed

for them in the given type assignment I (with n = T).

[vars] Field expressions this.z evaluate to the location of field = of the object refer-
enced by this. Hence they are assigned the type 7 which instance record type
I'. specifies for x, where c is the target class in the range type co ¢ of this’s
assumed type I'(this).

[rdey), [rda:] Expressions of read access to a variable named v are normally assigned
the type 7 of the value range in the variables’ type ref 7 determined for v. In case
of mode-preserving non-destructive read, this is always legal. Destructive read
expressions destval(v) are legal only if the variable v is not this, and legal if
v is a field expression only in methods of mutator kind. As an extra explained
in paragraph 6, we can permit in observers the non-destructive read of free
local variables, which weakens the handle’s mode to read (cf. reduction rule
{rde} in paragraph 7). Correspondingly, the type infered for non-destructive
read expressions is the substitution 7[read/free| of read for free in the read
variable’s range type.

[null] Since null evaluates to a free nil-handle, it can be assigned free handle types
with any valid class name c.

[new] Since object creation expression new c() evaluates to free handles targeting
new c-objects, it gets type free c. It is legal if ¢ is a valid class name.”

[call] Operation call expressions ep<=f(e1,...,e,) are assigned the result type of the
operation f in the signature 3X(u ¢) of the type p ¢ inferred for receiver expres-
sion eg. To be legal, the argument expressions’ types must be mode-compatible
to the corresponding parameter types of f in X(u ¢). And if the signature
marks f as a mutator, then the operation call expression is only legal in a
method whose kind x permits mutator invocations (see §5.4.2).

“In the presence of Java interfaces or abstract classes, it would be necessary to check that
the instantiated class is a concrete classes, i.e., fully implemented.
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Figure 5.13: Typing rules for program terms

[upd] Assignment statements reduce to e and are therefore given the special type
Cmd. They are legal under the following conditions: The left-hand side is an
l-value expression. The right-hand side is an expression whose type is mode-
compatible to the range 7 of the left-hand side. The left-hand side must not be
this, and a field expression only inside a method of mutator kind.

[ret] The (return) type of a return statement is the type of its return expression. The
typing rules for sequences and if and while will imply that return statements
can only occur as the last statement of a method body s.

[seq] The (return) type of a sequence of statements is the second statement’s (return)
type 7. To be legal, the first statement must be of the type Cmd of continuing
statements, i.e., a statement not returning from the current method.

[if] If statements reduce to € or to their then-branch. They are given the type Cmd
and it is checked that the then-branch is continuing. Moreover, to be legal,
the compared expressions need to be object reference-valued expressions, i.e.,
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Figure 5.14: Typing rules for runtime terms and consistency with extended context

typeable with handle types u c,

[wh] While loops reduce to if statements and therefore have type Cmd. They are
legal if the loop body is continuing (so that is can be prefixed to a repetition
of the while loop) and if the compared expressions are object reference-valued
expressions (to ensure validity of the produced if statement).

3. TypING RUNTIME TERMS. For reasoning about the evaluation of well-formed
program terms in a small-step semantics, it is standard to assign types also to all
intermediate runtime terms. (This is unrelated to judging the validity of program p.)
To this end, the typing rules are extended in a natural way to cover runtime terms.
Figure 5.14 shows the two rules for the runtime-specific terms:

[val] Irreducible terms v that are values in a type’s extension [7] must obviously be
assigned the type 7. These are the locations Loc € [[ref 7], handles V € [ ],
and € € [Cmd] as the “value” to which continuing statements reduce.®

[nest] The type of value to which an inlined, currently executing method <s> will
reduce on return is predicted by determining the (return) type p ¢ of the state-
ment s to which its body has reduced so far, and by mode-adapting this type
like an eventually calculated result handle’s mode p will be adapted on return.
In order to define this, we need not only the type assignment I’ and method
kind &’ of the calling method, but also of the called method, and we need the
mode pu, of the call-link through which the call was made and relative to which
the returned handle will be adapted.

For the typing of terms containing arbitrary nesting levels of inlined method bodies
more contextual information is required than for the type checking of the terms in
the program: The general scheme of typing rules has to be extended to include the
type assignments [';, method kinds k;, and call-link modes fi; for all method nesting
levels ¢ > 1 in the term. This is done by annotating the turnstile symbol of typing
judgments with a sequence X = po,I's, Ko, ..., pin, [,y 6r. It will usually be written
X = po, s, ko, Xo (with Xo = s, I's, K3, ., fin, I'n, 6n). All typing judgments in
the program typing rule in figure 5.13 have to be annotated this way to obtain the
corresponding runtime term typing rules. It shall suffice here to show this on the
example of return terms:

8Note however that irreducible “term” € is not an element of R.
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Dby e

[ret] 'k by returne; : 7

The original rules with ‘+’ can then be seen as the special case ‘I’ with empty X
because there are no inlined method bodies in the terms of the program.

Naturally one expects a correspondence between this annotation and the environ-
ment stack in the execution (see figure 5.13 again). An environment stack 7 = 77_”:;; is
type consistent with a sequence X = fi;, [';, k; of type assignments, method kinds, and
call-link modes, written 77 |= X, under the following conditions: Each environment
is type consistent with its corresponding type assignment. The sequences of method
kinds in 77 and X are the same. And the modes of the call-links in 7 are the same as
the corresponding modes in X.

5.4.2 The Mode System

The mode system comprises the mode-specific checks and definitions on top of
the type system which ensure that program execution is orderly in the higher-level
view and respects the structural integrity and state encapsulation of composite ob-
jects (§5.3). Two mode-operations from the mode system also show up in reduction
semantics—substitution u[read/free| in non-destructive read and mode import propu
in return—but they are, like all mode annotations in the runtime model, only included
for reasoning about the success of enforcing structural integrity and state encapsula-
tion, and would not normally be included in an implementation of JaM.

4. STATE ENCAPSULATION: CONTROLLING THE MUTATION OF OBJECTS. Enforc-
ing that objects change state only through their declared mutators requires JaM to
control field updates and mutator method invocations. An object’s fields can change
through assignments and destructive reads. The syntax of base-JaM allows only ac-
cess to the fields of this. Consequently, for shallow state encapsulation, typing rules
[upd] and [rds:) (fig. 5.13) permit assignment to fields and destructive read of fields
only within methods declared mutator (k = mut). The invocation of methods de-
clared mutator is limited in rule [call] through Wr defined in figure 5.15 to enforce
shallow and composite state encapsulation:

e Calling mutators through free handles is always permitted (free € Wr(k)) since
they are expected never to belong to any sanctuary. This follows from the Unique
Head invariant, that excludes rep ownership paths to them.

e A mutator sent through a rep handle, if it indeed changes the target’s state,
is a change in the caller’s sanctuary, and thus a mutation of the composite ob-
ject with the caller as representative. Hence, in order to ensure that compos-
ite objects change state only through their declared mutators, a rep handle can
permit its source to call mutators only from within mutators. It is permitted
(rep € Wr(mut)) since the Unique Owner invariant guarantees that the target
does not belong also to any other object’s sanctuary.
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e Since co-objects have the same owner, if it was safe for the caller to be executing a
mutator (k = mut) then it is for its co-objects to do the same. Hence a co-handle
permits its source to call mutators from within mutators (co € Wr(mut)). How-
ever, the same permission in observers would enable objects to modify themselves
in observers by calls through the co-handle this.

e read handles provide no information about the sanctuaries to which the target
might or might not belong. Hence invoking mutators through them cannot in
general be guaranteed to be safe.

5. MoDE COMPATIBILITY. In typing rules [upd] and [call], the type 7’ of the right-
hand side expression or argument expression, respectively, does not need to match
exactly the, respectively, left-hand side’s range type 7, or operation’s parameter type
7. Normally, subclassing polymorphism would allow to weaken handles’ target class to
a superclass. In JaM, also the handles’ modes can be adapted if a certain compatibility
between modes is respected: Type 7/ = 1’ ¢ is mode-compatible to 7 = p ¢, written
7' <pu 7, if ¢ = ¢ and i is mode-compatible to u, written p' <, u, as defined in
figure 5.15:

e Every mode p is trivially compatible with itself (reflexivity).

e Any mode is compatible to read since read handles give their source no mutation
right on the target and make no statement about ownership and sanctuaries.

e Mode free is compatible with any other mode since a free handle is the unique ini-
tial segment of ownership paths to all co-objects reachable through it (the Unique
Head property). Converting it to a non-free handle may create new ownership
paths, but at the same time destroys all the old ownership paths with which they
could be in Unique Head- or Unique Owner-conflict.

It is easy to convince oneself that treating other combinations of modes as com-
patible in assignments and calls would not generally be safe:®

6. NON-DESTRUCTIVE READ ACCESS to a variable containing a free handle must
not create an exact copy of it since that would immediately violate the uniqueness of
free paths’ heads (the Unique Head property). Simply prohibiting the non-destructive
read access to free variables would be too restrictive: The client of a free iterator
object needs a way to call observers like current() on the iterator, and obtain a
result, without losing the free reference to the iterator required to advance the
iterator to the next element. For observer calls, a read call-link suffices, so that they

9rep, co or read <, free would allow an object o to convert a non-free handle h to free hy
and then convert a copy of h also to hy, thus violating Unique Head. read <, rep or co would allow
0 to convert a read handle h to rep or co, thus making, respectively, itself or its own owner ¢ to the
owner of h’s target w. However, w may already have an owner, and this owner is not guaranteed to
be o or g, respectively, so that Unique Owner could be violated. rep <, co and co <, rep would
allow o to convert a co handle h to a rep handle k' or vice versa. A’ and and old copy of h make o
an owner as well as a co-object of h’s target w. Owning w, 0 owns w’s co-object 0. However, o may
already have an owner that is not o, so that Unique Owner could be violated.
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Figure 5.15: Mode-specific definitions for base-JaM

can be supported by allowing to create read copies of free handles in free variables
through non-destructive read access. Calling mutators like Step () is possible only if
the free handle is taken out of the variable and used as call-link. Mutators whose
purpose is only the side-effect and not the calculation of a value (void mutators) can
return this to the sender. By this convention, the sender gets back the free handle
to the receiver and can use it for further calls. Hence there is a solution for both
observer and mutators calls to free objects.

Observe that, while free is compatible to read, mode compatibility alone is not a
sufficient reason: A copy weakened only to rep or co would, respectively, still violate
Unique Head or risk violating Unique Owner if the converting object has an owner.
While free and read handles between the same objects can coexist (true inclusion
polymorphism, “submoding”), a conversion of a free handle to rep and co is only
safe because no free handle remains with the same target.

7. IMPORT OF RETURNED HANDLES. When the receiver returns a handle to the
sender in reduction rule {ret} (fig.5.8), then its mode p may have to be adapted
from the perspective of the receiver to the perspective of the sender. For defining
a deterministic adaption, there should be a unique, “best” adaption p.op that is
calculated from p relative to the call-link’s mode p, and is mode-compatible to all
other adaptions that might be desirable. This adaption, called the tmport of u
through p, and written prop, is defined in figure 5.15:

e A returned read handle can only remain read since it provides no information
that would make another mode a safe choice.

e The sender can safely import a free handle from the receiver as free, since it was
the unique initial segment of ownership paths to all co-objects reachable through
it, and all these old ownership paths are destroyed by the removal of the receiver’s
free handle from the graph.

e If the receiver returns a rep handle, however, the receiver may still possess further
rep handles with the same target, and thus remain the target’s owner. Hence
the sender cannot import the handle as free or rep without risking a violation
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of unique ownership (unless sender and receiver are the same). Importing it as
co would make the sender a co-object of the target, and thus also owned by the
receiver (if the receiver still owns the target). This might raise a uniqueness conflict
with any old owner of the sender (unless the receiver is the old owner of the sender).
Only read is always safe as the mode of the returned handle in the sender.

e If the returned handle is co, i.e., points to the receiver’s co-object, the sender best
imports it with the mode u, of the call-link: If u, is rep or free, then the sender
already had an ownership path to the target by concatenation of the call-link and
the receiver’s co handle. Hence it is reasonable to shorten it to a direct p, handle.
In case of free, the imported handle will replace the unstored free call-link as the
unique initial edge of free ownership paths to the receiver and all its co-objects.
If uy is co then sender and target were already co-objects through the call-link and
the handle of the receiver, so that a direct co-handle is safe. And if u, is read then
the imported handle can only be read, since in a read call-link gives the sender
no information about the receiver’s owner and sanctuary memberships, and thus
about a target with the same owner and sanctuary memberships as the receiver.

8. SIGNATURE OF HANDLES. Typing rule [call] checks operation call expressions
e<f(ey,...,e,) against the type 7; £ 7 of f in the signature (u, c) of handles of the
receiver expression’s type u, c¢. The operations which can be called through a handle
of type p, ¢ are those of objects of class c¢. But class ¢ expresses the parameters’ and
results’ modes from the perspective of the c-object, i.e., the receiver, and not from the
perspective of the object using the handle for a call, i.e., the sender. If class ¢ defines
method f with result type v d then the result type for operation f on p, ¢ handles
must have the mode prou to which the mode of returned p-handles is adapted in a
return step (see above). The parameters’ modes are imported the same way from the
receiver’s to the sender’s perspective (see figure 5.15). However, we have to reconsider
the validity of this import for the modes of formal parameters since parameter values
flow in the opposite direction as compared to results:

e A parameter of mode u = read means that the receiver makes no assumptions
about the target’s place in the object graph. Hence the sender can supply handles
of any mode, and any mode is mode-compatible to y.oread = read.

o If the c-object expects 4 = free parameter values then only p.ofree = free
handles of the sender (which are destroyed in the call step) can guarantee the
necessary uniqueness of the initial ownership path segments.

o If the parameter has mode ;1 = rep then the receiver expects a handle to an object
in its sanctuary. However, no mode on a handle of the sender can guarantee that
the target is in the sanctuary of the receiver. Hence methods with rep parameters
are not included in the signature of handles. (It would be safe to permit to call
them with null as argument, or to call them on this with a rep argument.)

e A parameter of mode y = co means that the receiver expects a handle to an object
with the same owner and in the same sanctuaries as itself. If the call-link is of
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mode u, = read then the sender has no information about the receiver’s owner
and sanctuary status, and thus cannot know which handle’s target would have the
same status. If the call-link is of mode u, = co, a uroco = co handle of the sender
is just right, since the u, = co means that sender and receiver have the same owner
and are in the same sanctuaries, and p.oco = co means that sender and target
have the same owner and are in the same sanctuaries. And if the call-link is of
mode u, = rep or free then only a, respectively, rep or free handle of the sender
guarantees that receiver and target have the same owner, namely the sender, and
are in the same sanctuaries, namely the sender’s sanctuary and those enclosing it.

5.4.3 Type Correctness and Consistency

A type system’s main purpose is to accept only those programs as legal whose ex-
ecution never causes certain, forbidden kinds of execution errors to occur, in other
words, to make the programming language “safe” [Car97]. The main error to pre-
vent in object-oriented programming is the message-not-understood error, i.e., the
attempt to invoke an operation on a receiver object that does not implement it.
(Not normally forbidden is the null-pointer error, i.e., the attempt to make a call
although the receiver expression evaluated to a nil-handle.) It has been shown re-
peatedly in the literature that smaller and larger subsets of Java are safe in this sense
[[PW99, Sym97, DE97, Ohe01], including the subset on which (base-)JaM is based. It
would not be difficult to extend these results to base-JaM since the addition of modes
introduces no new cases where execution runs into an error. (The only operation
used on modes, o, is a total operation.) But to do so would be very tedious and a
distraction from our new safety property of composite state encapsulation.

In a formal setting, the mentioned execution errors mean that there is no continu-
ation for the reduction process. Hence safety properties at the composite object level
can be treated independently from the traditional, lower-level safety. What is needed
as basis for composite state encapsulation is not type safety but type consistency:
The execution of legal base-JaM programs p produces only stores and object-maps
that are type consistent (= s, om), and runtime terms typeable in a context type
consistent with the corresponding environment stack. The latter implies in particular
that the next reduction step’s redex is a well-formed term.

Observe that type consistency is independent from the details of the mode sys-
tem defined in §5.4.2) so that the proofs will be nearly identical for full JaM. The
only necessary assumption is that the signature %(u ¢) of handles is calculated from
FldsMths(c) by adapting the modes p; in it to poy;.

9. TyPE PRESERVATION. The standard basis for proofs about the type system is the
property of type preservation (or its generalization to the subject reduction property
in the presence of subtype-polymorphism): Each legal reduction step preserves type
consistency and the term’s type (relative to a perhaps changed annotation X’ for the
higher call-levels).
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Lemma 1 (Type preservation) Ife, 77,5, om,g= ¢', 7', s', om’, g’ is a reduction step
defined relative to a program p that is legal, i.e., - p start ey, then

Dokbxe:m AN TELD KX AESsom
= X' Tkt €7 A T ELTEX AES, om

The proof of this lemma and other theorems uses a small technical lemma to relate
mode [i’ and method suite F” of receivers r in the type system with their actual mode
it and method suite F':

Lemma 2 T kbx (s,i,r): i ¢ A om(r)= (g, F) N om
= A=p Are0, A 3, FldsMths(c) = (To, F) A 0 = T,

Proof: First, T,k b (s, i, x): ' ¢ = (s,i,r) €@ ] = =4 Are Q. U/{nil}.
Second, if om(r) is defined, r cannot be nil. This leaves r € Q, =i om(r) €
[obj ] =T FldsMths(c) = (Do, F) A or |= L. n

Proof of the main lemma: e, 17,8, om,g=> €/, 77,5, om’, g’ means there is a multi-
level context £*, a redex é and a term & such that e = £*[¢] and ¢/ = £*[¢], and
postfixes ﬁ and ﬁ” of 77 and 77 such that é, ﬁ, s, om,g— €&, 7:7”, s’ om’,g'. Proceed by
induction on the height N of the derivation tree for the reduction step, which is the
same as the method nesting level of the hole in £*. In the base case, £* contains no
inlined method, i.e., & = & € RY, 77 = 7 and 77_7 =17, and X = e. In the simplest
case, € = [J and é = e. Proceed by case analysis of the rule by which redex e is
reduced. It determines what kind of term e and ¢’ are, and thus how they are typed.

Let us start with the easy cases, where the environment stack is unchanged and
consists only of the top-level environment: 77 = 7' = nf. Then 7 | i, k, X means
n = I'. First, we derive that the new term ¢’ that it can be typed as 7 or, if it is
an irreducible value, that it belongs to 7’s extension [7], from which Ik F, € : 7
follows immediately for annotation X’ =€ = X.

{var;}: e=2 =% T(z) =7 =} n(z) =€ € [7]
[(this) =refco ¢ =} n(this) =4 € Loce, .

varyr: e = this.x _
{ f} Y % 5(@) c [[CO c]] s(é)éu,o) 0c0,U {nil} om(o)idefd. 00,

B om(o) = (¢, F') € [obj ]

FldsMths(c) = (T, F) ATy(z) = 7 } =0 T d(z) €[]

{rda}: e = destval(f) =5 T,k tx £:refT = £ € Loc, =2 s(f) =€ € [7]

{rde}: e=val(d) =% 37, D kbx L:ref 7 A7 = Flread/free] = £ € Locs

£ s(0) e [7] = s(Dlread/tree] = ¢ € [7]

{null}: e =null =% 7 =freec = € = (r,free,nil) € [7]
{new}: e=newc() = 0€0, A 7=freec = ¢ = (r,free,o0) € [7]
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{fupd}: e={=(r,p,w); = 7=Cmd = ¢ =c€ [7]

{if}: e = if(hYha){s} == 7=Cmd = ¢ =€ € [7]

{if,}: e = if(hypho){s} <> 7=Cmd A T,kby s:Cmd &= Tokby e o7
{wh}: e = while(hivhy){s} = 7=Cmd AT,k s :Cmd AT,k Fx hy: ¢

ATl kbx hy:ps e = Ik bx if(h1tphg){s e} : Cmd el:ﬁ@:"' Iebyx €7

Since 77 is the unchanged top-level environment, trivially 7 = i, k,e. And =
s’', om’ is trivial by assumption in cases where store and object-map are unchanged.

In case of {new}, nil-handles (o, u;, nil) are filled into the store at locations in
[ref w; e;] = Locy, ¢, reserved for handles of these modes. Hence = s’. And the new
o € O, is mapped to an object value with the right field locations and the right
method suite for a c-object. Hence = om'.

And in case of {rdg:} and {upd}, om’ = om, so that = om’. By = s, s(¢) =
(0, p,w) means that for some class ¢, £ € Loc, . and (o, u,w) € [u c]. But then
the new store value s'(¢) = (o, y, nil) of the {rds}-case is in [u ], so that = s'. In
the {upd}-case, we have to consider what class the target w’ # nil of the new store
value §'(£) is. £ € Loc, . (see above) means that I',x Fx £ : ref 4 c. And having a
typing for e = £=(r,p/,w’) means ',k b (r,p/,w’) : ¢/ ¢ with ¢/ ¢ <, p c. Hence
(r,p,w'") € [ ] with ¢/ <,, p and ¢’ = ¢, and thus ' € Q. U {nil}. But then also
§'(€) = (o, p, ') € [u c] = Loc,, ¢, so that = 5.

{ret} | Return is the case where the environment shrinks from 77 = 7} 77*'{; e ry LO M
= t 3 T,
: © F«r;u;n_(r,g,;) /<c>*>e } =% I'*, k* k. return (r,p,w); : p ¢ AT = pou ¢
M- Bt i = I kb (r pw) @ e
Su=pu AN we Q. U{nil}
= (s, u*op,w) € [wrop ]

e'=..,1=

= "eer] = Ik e T

E ', om' follows trivially from the assumption since nothing is added to s nor
om. The new stack 7' is 0¥, and X' is e. Since 7 = nf n*?;ur,r) E 4,1,k X, also
nieel= 0, k,e. Thatis, 7 =4, [, k, X'.

{call} | Calls are the case where the environment stack grows.

ee= (s, pr)<f(...) = (fHR57)eX(ic)
Z5Tokby (8, 0,1): fic } Lgﬁg ? FldsMths(c) L T=
e om(r) = (or, F) = (T, F) fiop d 3 = Tk by pr oo,
e F(fy=r*pdfC..0{... s} Ls> T
l:m:’;pF*,/ﬁ*l—s:ud )
Since the new term ¢’ is s>, this gives us the desired I',x by € : 7 with X' =
i, I* k* e. The new stack 77 is 7y 17*’{; 4y, wWhere the new top-level environment

n* maps identifiers x; to locations in [ref 7;]. The types 7; are determined from the
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declarations in method F(f) or 7; is, in case of x; = this, the type co ¢ since r € Q.
The type assignment [ maps the same identifiers to corresponding type terms ref ;.
Hence n* = I'*. Combined with 7 = nf = &, T, s, X, therefore 7 = nje 77*?5*,;1;) =
iUk, 0, T k5 e = 0,1k, X',

Since om is unchanged, = om’ by assumption. Consider the extensions of the
store: this’s location £ € [ref co ] is mapped to a corresponding handle (r, co,r) €
[co c]. The local variables’ locations ¢% € [ref u} ¢;] are mapped to correspond-
ing nil-handles (r, u},nil) € [u} ¢;]. The parameters’ locations £ € [ref u; ¢;] are
mapped to handles (r,u;,w;). The target classes match because of the typing of
e = (s, i, r)<f (s, py,w;)): Derived from the types u; ¢; declared in F(f), the
handle signature is ( f:pou; ¢; 5 7) € (i ¢). Hence the argument expressions
(s, i, w;) must be typed with a subtype of fioy; ¢;, i.e., some g ¢;. This means
(s, pi,w;) € [u; ¢;], and thus w; € ¢;. Hence (r, u;,w;) € [u; ¢;]. This shows that
=5
If the case that the single-level context £ = € is not empty (€ # [), consider
that typing e = E[é] required to have a typing for all of its subterms, in particu-
lar redex é. Since € contains no inlined method, the typing of é must have been
in the same context. That is, ',k Fx €& : 7 for some 7. In conjunction with
é, 1,5, 0om,g— €, 17,8, om', g, the case of € = O above allows one to conclude
that there is an X’ such that I'k -y € : 7 and 77 = i, [, k, X’ and =5', om/. Since
¢ and € have the same type in the same context, if a type is inferred for £[¢/] it must
be the type 7 of €[¢]. The only way how the typing might fail, since it depends not
only on subterms’ type, is the condition on the l-value expression in an assignment
or destructive read. But the result € of a redex substitution can neither be, nor be
contained in, ‘this’ nor ‘this.z’. Therefore I',k -y € : 7.

In the induction step, &[e”>>], nr+ 7,5, om,g= E[e">], nri*7,s om' ¢
is derived with hypothesis ¢”, 7,5, om,g=—= €, 7,8’, om’, ¢’. The typing of e =
E[«e”>] required to have a typing for all of its subterms, in particular <e”>>.
Since & contains no inlined method, the typing of this subterm must have been in
the same context, i.e., I'\x Fy <e”> : 7 for some 7. This typing requires that
I* k* bys €t e with 7 = p*op c and X = p*, T* k*, X*. And i = i, Tk, X
means 7] = X. With the induction hypothesis it follows that I'™*, &* Fx« €” : 1 ¢ and
7 & p*, T* k%, X* and = s/, om’. Since ¢” and €” have the same type in the same
context, ',k by E[ke”>] : 7 with X = p*, T™*, k*, X* implies the desired T', s %
El<e”>] . 7 with X = p*, T* &%, X*. Finally, nf+ 7 &= fi, T, &, u*, T*, 6%, X* since
7B u, T, XY and nfe 7 = 0,1, &, X. [ |

10. TypPE SYSTEM CORRECTNESS. As corollary from Lemma 1 we get a standard
property of typed programming languages: The type system, by assigning types 7 to
the program’s terms e (static types), correctly predicts the types of the values v to
which these terms will evaluate (dynamic types) in environments 77 consistent with
the assumptions I' made in the typing rules:
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Corollary 1 If - p start ¢y and =5, om and 7 = 1, T, k, X then

D,kbx e:7 A (e, 7,5, om,g="*v, 7,8, 0om',g") ANve LocUVU{e} = ve][r]

Proof: By induction on the number of reduction steps frometov, weget ',k -y v : 7
with Lemma 1. Since v € Loc UV U {¢}, this typing is only possible by v € [7]. B

Type system correctness is a partial notion of correctness, correctness under the con-
dition of successful reduction to a value. A typing for a term neither says that the
reduction process will ever reach an end, i.e., a configuration where no further reduc-
tion is defined, nor that, if an end is reached, it is because the term was reduced to
a value v € Loc UV U {e} and not because of an execution error.

11. TypE CoONSISTENCY. With the powerful type preservation lemma, type consis-
tency requires only to establish type consistency and typeability in the initial config-
uration ey, 7o, 59, 0Mo, Po-

Theorem 1 [f eq, 19, 59, 0mo, g0 =" €, 17,5, om, g is a reduction defined relative to a
program p with F p start ey then there is a 7 and an X such that

Es,om A Q,obskx e:7 A 7j}=read, @, obs, X

Proof by induction on the number N of reduction steps from ey to e: In the base case
N = 0, we have e, 77,5, om, g = ey, 1o, 50, 0Mg, §o. Empty store s = @ and object-
map omg = ) are trivially type-consistent. The type assignment matching the empty
environment 79 = @c()r?iiread,nil) is the empty set @ of type assumptions. And the empty
annotation X = € at the turnstile symbol matches the lack of further environments
in the environment stack. Hence 7y |= read, @, obs, X.

Now consider the typing of the initial term ey = new ¢() .main(): It is an operation
call expression, which is typed by [call]: Receiver expression new c() is typed by [new]
as free c under condition - ¢ ok, which is satisfied since p’s legality, i.e., - p start eg,
guarantees - D, defs ¢ for p = D;...D,. Since - p start e; ensures that class ¢
defines a method suite F' containing some F'(main) = mut 7’ main(){...} without
parameters, X(free ¢) contains main : € £ 7 with defined adaption 7 = freeor’.
main’s kind x is irrelevant since the receiver expression’s mode is free. The lack
of argument expressions in ey matches the lack of parameters in F(main). Hence
€,0bs Fx eg:T.

In the induction step N — N +1, reduction ey, 1o, $9, 0mo, go =" €', 77,5, om’, ¢
is continued €', 77,5', om’, g => e, 7,8, om,g. From the induction hypothesis’s =
s',om’ and €, 0bs’ Fxs € : 7' with 77 |= read’, ¢, obs, X', the theorem follows by type
preservation (Lemma 1). |
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Figure 5.16: Dependency of proven properties

5.5 Integrity of the Higher-Level View

This section constructs bottom-up proofs for more and more complex properties, with
composite state encapsulation in base-JaM as the ultimate goal. Figure 5.16 shows
on which more basic properties which more complex properties depend.!®

1. The ownership paths in all object graphs reachable in the execution of legal base-
JaM programs, share targets so that they satisfy the Unique Owner and Unique
Head integrity invariants (Theorem 2).

2. The structure of mutator access as recorded in the environment stack during
the execution of legal base-JaM programs is always consistent with ownership
paths and sanctuaries as captured in the integrity invariants Mutator Control
and Mutator Control Path (Theorems 3 and 4).

3. Each change of objects’ state during a step in the execution of legal base-JaM
programs respects the state encapsulation of composite objects (Theorem 5).

5.5.1 Structural Integrity of Object Ownership

Theorem 2 If ¢y, ng, 5o, 0mg, go =" €', 7,5, om’, g’ is a reduction defined relative to
a program p with - p start ey then

g = UH,UO

Proof by induction on the number N of reduction steps from eg to €: In the base
case N = 0, g’ is the empty graph go = @, which trivially satisfies UO and UH.
In the induction step N — N + 1, reduction eg, 7, So, 0mg, o =" €, 7,5, om, g is
continued e, 7,5, om,g = €', 77,8, om’, g’. By induction hypothesis, g = UO, UH.
The question is whether the step to g’ preserves UO and UH.

10Note that dependency arrows are opposite to the order in the bottom-up proof.
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Properties UH and UQ are stated over potential access paths of mode free and rep
(85.3.2). From the definition of potential access paths it is obvious that such paths
are made of free, rep, and co-edges in the extended graph g*. A violation of UH or
UO could at most be introduced in reduction steps that increase the multiplicity of
such edges in g, ie, if g =g®o £ w... with u € {free,rep,co} and o,w € O.
The addition of read edges and nil-handles, and the removal of edges can be ignored.

A look at the context rules shows that the changes to the object graph are ab-
solutely independent of the term context €* surrounding the redex é in e = E*[€].
Hence we can move directly to a case analysis of the rule by which redex é is reduced.
In case of {var;}, {vars}, {rda:}, {null}, {if;}/{if}, and {wh}, the object graph is
unchanged or edges are removed, so that the preservation of UH and UQO is trivial. In
the other cases, we may need the existence of some typing I', % . é : 7 for the redex.
It follows from the typing I', k Fx e : 7 guaranteed for the whole term (Theorem 1).

{new} | In case of object creation, the added edge r £xee, o targets a fresh object o.
By definition, o therefore neither is targeted by old handles, nor is the source of old
(co) handles in the object graph. r Zfree, o is the only new potential access path in
¢, and there is no old free or rep path with which it could be in UH- or UO-conflict.

{rdep} | In case of non-destructive read with é = val({) and s(¢) = (o, u,w), the

multiplicity of edge o £lzead/Iree] , ig increased. If u = free or read, the edge has
the harmless mode read. If 4 = rep or co, the edge is the same as the handle s(¢)
and thus existed already in g = ogr(e, 7, s) (Proposition 2), so that further increasing
its multiplicity cannot introduce violations of UH nor UO.

{upd}|In case of assignment with é = £ = (o, 1, &) and £ € Loc,, ., the multiplicity
of o £ (& is increased while that of 0 £ & is decreased (if @ # nil). If u = f,
this means the only change from g to g’ is the decrease of £’s old value’s multiplicity.
Handle (o, {1, &) in term é means that the multiplicity-decreased edge indeed existed
in g = ogr(e,7,s) (Proposition 2). Typing [,i k. é: 7 of the redex presupposes
Db €:refpucand IR (0, 1, @) : o c with o <, p. By the definition of <,
(§5.4.2) then u = free implies i = free, u = rep implies (i = rep or free, and
i = co implies [t = co or free. That is, in all cases of where an edge’s multiplicity
is increased because of u # [i, it = free. But then the outer induction hypothesis
g F UH guarantees that edge 0 & & € g is the head of all ownership paths to @
and its co-objects, and its multiplicity is 1. Consequently, in the intermediate graph
g” = gSo £, & there is no ownership path to @ and its co-objects. Now consider the
addition in ¢’ = g’ ® 0o & w:

e In case of 1 = rep, where there are no new co edges, all new ownership paths
start with o £%B. @ and go to & and its co-objects. This cannot cause any UH- or
UO-conflicts in g’ since @ and co-objects are unowned in g”.

e In case of u = co, the addition of 0 <2 & entails the appearence also of its inverse
0 <2 @ in g’*. These two may give raise to new free or rep paths if they extend
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old ones. o <= @ cannot extend old ownership paths since there were no ownership
paths to @ in g”. Old ownership paths to o might be extended by o <. & and
further co-paths to new ownership paths of the same mode that target w, its old
co-objects or, if further extended by inverse &w <2, o, 0 and its co-objects.

g = UO guarantees that o has a unique owner ¢q. That is, the source of all old
ownership paths to o is ¢. Since extensions does not change the path’s source,
besides the old also all the new ownership paths to @, to o, and to their co-objects
have the source q. There is no UO-conflict.

g E UH guarantees that if there is a free path among the old ownership paths to
o, then they all have the same head and its multiplicity is one. Since all extensions
of such paths have the same head h, and since there are no other ownership paths
to @, to o, and to their co-objects, all ownership paths to them have head h of
multiplicity one. There is no UH-conflict.

{ret} | In case of a return redex with é = <return (r, i, 0);>> and top-environment
N with h = (s, pe, ), the multiplicity of s £°£, o is increased, while those of r £ o
and s £, r are decreased (if o # nil). Note that the decreased edges indeed exist
in g = ogr(e, 1, s) (Proposition 2) because of handles (r, u, o) in term e and (s, iy, I)
in the top-environment. Consider the mode u: In case of = rep or read, the new
edge has the harmless mode read. In case of 4 = free, the new edge has mode
free and thus establishes free paths in g’ from s to o and its co-objects. On the
other hand, the receiver’s old free handle r £, o was by g = UH the initial edge
in all ownership paths to o and its co-objects. All these are destroyed in g’. Hence
there can be no new UH- nor UO-conflict between new and unchanged potential
access paths in g’. Most complicated is the case of 4 = co. Here, the new edge has
mode proco = u, and may, depending on this mode, be used to build new potential
access paths m € PAPy(d,y/,w"). However, for each of them there is a precursor
7' € PAP,(d, i/, w'):

e If u, = free, new p/-paths can only be extensions 7 = s £, 0 <0.* &/ of the new
edge by co-edges in g’ (actually, in g’*). The co-edges must be old, since the only
new edge in g’ has mode u, #* co. Hence a free path 7’ = s £=, r <, o <0,* (f
existed already in g. By g = UH it ensured that the free call-link s £=. r is the
initial edge of all ownership paths to w’ and has multiplicity one. Consequently,
decreasing the call-link’s multiplicity in g’ destroys all old ownership paths to o
and «’. Hence the multiplicity of the new free edge s £r°X€, g must be 1, and
must be the start of all new ownership paths to «’. There is neither a UH- nor
UO-conflict.

e If yu. = rep then, analogously, the new p/-paths can only be extensions 7 = s £,
o <2.* o/ of the new edge by old co-edges in g’, and there was an old rep path
' =s £, r <, 0 <% in g. This path by g = UH excludes any old free path
7" to w'. Since the only new potential access paths in g’ have mode p, # free,
there is no new UH-conflict. And by g E UO, rep path 7’ ensured that all old
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ownership paths to w’ have source s. Since also all new ownership paths 7 have
source have source s, there is no UO-conflict.

e If 4, = co then, besides the h = s <2, 0, also the multiplicity of its implicit inverse
h~! =s < oin g is increased. These edges have precursors 7, =s <, r <0, o
and 7,' =s << r —<¢ o in g*. All new ownership paths 7 in g’* must contain h
or h~! as non-head edge. But they all have a precursor in g* with 7, and 7r,:1 in
place of h and h~!. There can be no new UH- nor UO-conflict.

{call} | Operation calls are the most tedious case. If é = (s, i, r)<=f((s, fi;,0;)) and
om(r) = (o, FY and F(f) = k*p d f(z; p; d){...}, then the multiplicity of self-
link r <2, r and received handles r £i. o; is increased while that of sent handles
s i, o; is decreased (unless o; = nil). Note that handles (r, {i;,0;) in term e mean
that the removed edges indeed existed in g = ogr(e, 77, 5) (Proposition 2). If there are
n parameters, the new graph g’ is the final graph g, in the sequence g, go, ..., g, of
graphs with go = g®r <& rand g; = gi_1 ©s & o, ®r £ o; for i > 0. Show
g; E UH,UO for i = 1,...,n by induction on the number k of non-null arguments.
Let i be the index of the last, the k** non-null argument, so that all graphs following
g: are not actually changed: g; = gix1 = ... = g» = ¢’. In the base case, the self-
link is the only added edge. It cannot introduce a UH- or UO-conflict since for every
new free or rep path m € PAPy (o', i/, w’) containing it, there was already a potential
access path 77 € PAPy (0, i/, w") with the self-link cut out and the same head in g’. In
the induction step k—1 — k, the graph g;_; with £—1 transfered handles still satisfies
UH and UO by induction hypothesis. The question is, if g; = gi—1 Os £, 0; Or £ o;
preserves them.

Let us derive how the received handle’s mode p; must relate to the sent handle’s
modes ;. Typing I, k. é: 7 of the redex means three things:
oI kb (s, i,r): i/ ¢ A om(r) = (o, F)

Lemma 2
E N A
= Q= A FldsMths(c) = (Te, F) § = 7, = flop; d; § = (s, fii, 05) € [fi di]
fRsT)eX(l o A Wi # rep Ay <m flop;

o (
’fﬁ;/%h (S, 1, 0i) t i di A [ di < T

Observe above that p; # rep. This leaves p; = free and co as relevant cases.

If u; = free then j'ou; = free, so that f; <, [i'ou; must be free. But if
sent handle s £, o; in g; ; is free, then by induction hypothesis g;—; | UH all
ownership paths to o; and its co-objects started with this handle. All these paths
will be destroyed in g; by the argument links’ removal. And the only new ownership
paths in g; are those through free handle r £i. 0,. Hence there can be no new UH-
nor UO-conflict in g;.

Similar to return steps, the case of pu; = co is the most complicated, but this time
even more so since the subcases are less uniform to deal with. Beside parameter link
h=r <, 0;, we also find its inverse h™! = r —<¢ o, as the new edges in g. All new
potential access paths m € PAP,, (o', /,w') in g; must contain h or h~!. Hence new

110



potential access paths m of mode co can only exist between r and o; and their old
co-objects. And all potential access paths 7 of mode free or rep must be extensions
T=0 L. geqm' s hen" or o £ ¢« n'+ b7l e 1" of an unchanged rep or free edge
o 4., ¢’ and some unchanged co-edges 7’ by parameter link A or its inverse A~ and
by further co-edges 7" (which constitute a co-path). For UO, this means that old
owners of r (and its old co-objects) become also owners of o; and its old co-objects,
and old owners of o; (and its old co-objects) become also owners of r and its old
co-objects.

First, consider what the sent handle tells us about ownership paths to o;. On one
side, the rule for handle-signature (&' ¢) with parameter mode p; = co ensures that
neither the call-link’s mode 1 = /i’ nor the sent handle’s mode [i; <, fi'ou; = ji’oco =
f' are read. On the other side, argument link s i, o; in g;—; allows the following
conclusions:

e If ji; = free, then s . o; was by induction hypothesis g;_; = UH the initial edge
in all ownership paths to o; and its co-objects. All these disappear in g; by the
decrease of its multiplicity from one to zero. Hence there can be no old ownership
path o' £ ¢« 7’ to o; which h+ 7" could extend.

o If /i; = rep, then through s -£i, o; there were rep paths s £, 0; <.* &’ to 0; and
all its old co-objects w’ in g;_;. They ensure by induction hypothesis g; ; = UO,
that the source of all old ownership paths o' £ ¢’+ 7’ to these objects is s. And
they exclude by induction hypothesis g;_; = UH that any of them is a free path.
But then all extensions of unchanged ownership paths o' £ ¢« 7’ to 0; by he 7"
must have mode y' = rep (hence no UH-conflict here), and their source o' is s
(hence no UO-conflict here).

o If i; = co, then argument link s <, o; has an inverse s <2 o; in g} ;.

Second, consider the receiver expression (s, fi,r) in e. tells us about ownership
paths to r: By g = ogr(e,7j,s) (Proposition 2), there must be a corresponding edge
s £, r in g, the call-link. Since it is not removed, it still exists in g; 1:

o If i = [’ = free then the free call-link s £ r in g;_; means by induction
hypothesis g;_1 = UH that it was the head of all old ownership paths to r and
its co-objects. Hence all extensions 7 = 7'+ r <2, 0;* 7 of unchanged ownership
paths 7’ with target r must start with call-link s £ r. On the other side, ji; <m
fi'opu; = free means that [i; is free. Hence, as shown above, there are no other
new ownership paths, and the old ownership paths to o; and its old co-objects
have disappeared in g;. The only new ownership paths are free with initial edge
s £, r, and the only unchanged ownership paths with the same targets (o; and r
and their co-objects) are free paths with initial edge s & r (targeting r and its
co-objects). There is no new UH- nor UO-conflict.

o If i = i/ = rep then the rep call-link s & r in g;_; means by induction hypothesis
gi-1 = UH that all unchanged ownership paths to r and its co-objects are rep
paths. And by induction hypothesis g; 1 = UO, all these ownership paths must
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have source s. Consequently, all extensions 7 = 7'+ r <% 0;¢ 7" of unchanged
r-targeting ownership paths 7’ are rep paths (a), and s is their source (b). On the
other side, fi; <. f'ou; = rep means that [i; is rep or free. In case of rep, as
shown above, all unchanged ownership paths to o; and its co-objects are rep paths
(a), with source s (b), and also all new ownership paths by extending them are
rep (a), and have source s (b). In case of free, as shown above, there are no other
new ownership paths, and the old ownership paths to o; and its old co-objects
have disappeared. That is, in both cases, all new ownership paths are rep (a) with
source s (b), and the unchanged ownership paths to their targets (o; and r and
their co-objects) are also rep (a) with source s (b). There is no new UH-conflict
and no new UO-conflict.

If i = co then fi; <, f'op; = co means that [; is co or free. If free then, as
shown above, the old ownership paths to o, and its old co-objects have disappeared
in g; and cannot give raise to new ownership paths: All new ownership paths 7
are extensions of unchanged ownership paths 7’ € P =, Uy PAP, (¢, free,r) U
PAP,,(d',rep,r) to r, and thus have the same initial edges h € H =4 first(P)
(there are no new free or rep edges in gf). And all unchanged ownership paths
7" with the same targets, namely r and its old co-objects, also have initial edges
h € H since they are themselves r-targeting paths in P, or since they can be
extended by the old co-links between r and this co-object to an r-targeting path in
P with the same initial edge. But if all new ownership paths—and the unchanged
ownership paths sharing targets with them—have an initial edge in H then the new
ownership paths cannot introduce new UH- nor UO-conflicts: Induction hypothesis
g1 = UH ensures that if one h € H is a free handle, then there is no other handle
in H, and h’s multiplicity is one. And induction hypothesis g, ; &= UO ensures
that paths 7’ € P have a unique source o’. Hence so have all initial handles h € H,
and thus all new and old ownership paths with the same target. There is no UH-
and no UO-conflict.

If ii; = co, then consider that the co-call-link s <e. r has an inverse r <% s
in gf_;. Hence every new potential access path m € PAP, (¢, ,w') in g; has a
precursor & € PAP,,_, (0, p/,w') in g;—; where for the new parameter link r <. o,
one substitutes the pair r <. s <9, o; of the inverse call-link and the argument
link, and for the new inverse parameter link o; <2 r one substitutes the pair
0; € s <9, r of the inverse argument link and the call-link. The precursor 7 of a
new free or rep path 7 moreover must have the same initial edge since the only
new edges in g have mode co. Hence g; = UH and g; = UO follow directly from
induction hypothesis g;_1 = UH and g;—; = UO. [ |
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5.5.2 Structural Integrity of Mutator Access

Theorem 3 If ¢y, 19, 50, 0mg, go =>" €, 7,6, om, g is a reduction defined relative to a
program p with - p start eq then

g,7 F MCP

Proof by induction on the number N of reduction steps from ey to e: In the base
case N = 0, g is the empty graph go = @ which trivially satisfies MCP with any
environment stack. In the induction step N — N + 1, execution eq, 1, Sg, 0Mg, go
=" en, 7N, 5N, 0My, gy 1S continued ey, 7y, 5N, oMy, gy => e, 7,5, 0m,g. Let
ﬁ: 7’]121 ... ’)’]nzz with hi = <wi_1, ui,wi>.

The situation is simple for all those call-levels in 7 which existed already in 7.
Let k£ be the depth of stack 7. For mutators at any level i < k (k; = mut), the
induction hypothesis’s g, v = MCP guarantees for some j a path 7 = h;,..., h; of
call-links in 7y that form an ownership path wj,_, i wj,, ..., w;—; £4 w;. Since 77
still contains the call-links h;,..., h; of levels ¢ < k and below, these call-links still
exist in g = ogr(e, 7, s) (Proposition 2) and still form the ownership path .

Consequently, in all reduction steps where n = k or n = k — 1, the induction
hypothesis guarantees g, 77 = MCP. And case of {call}-steps with n = k + 1, levels 1
ton—1 = k are covered by the induction hypothesis. The new level n is a mutator, i.e.,
Ky, = mut, if k* in the called method F(f) =x*t f(...){...} for om(r) = (o, F) is
mut. The term’s typing I', k bx e : 7 (Theorem 1) with i, [, k, X = u;, T, ;. implies
a typing 'y, k, e € : 7 for the redex é in the context of the type assignment and
method kind for the most deeply nested inlined method. The last element is [',,, Ky, €
since 7y = fi, [, k, X (Theorem 1). Typing the call expression é required a typing
Loy kn Fe (8, e, ) ¢ fip ¢ for the receiver expression. Hence om(r) = (g, F) with
= om (Theorem 1) means by Lemma 2 that FldsMths(c) = (T, F) and fip = u,. But
then (f:(...) 5 7') € E(jir ¢) with the same kind x* as F'(f). Therefore typing é
ensured in case of k* = mut that p, = i, € Wr(k,). This leaves two cases:

e If u, is free or rep, then the call-link h = s £, r in g is the necessary ownership
path for r: h € PAP(s, pr,r). (h € g follows with g = ogr(e,7,s) from h as
call-link in the new top-level environment in .)

e 4y can be co only if x, is mut. But then induction hypothesis gy, 7y = MCP
ensures an ownership path # = h;e...*h, € PAPF;, (wj;,i',s). As explained
above, 7 still exists in g since it consists of call-links in 7. The co call-link in g
extends 7 to the necessary ownership path for r: 7+ h € PAP,(w;, i/, 1). |

Theorem 4 If ¢y, ng, 59, 0o, go =>" €, 77,5, 0m, g is a reduction defined relative to a
program p with - p start ¢y then

8,7 EMC
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Proof by induction on the number N of reduction steps from eg to e: In the base
case N = 0, g is the empty graph go = @, which trivially satisfies MC with any
environment stack. In the induction step N — N + 1, execution eg, 79, S9, 0Mg, Go
=" en, TN, 5N, 0My, gy is continued ey, 7y, 5y, ompy, gy = e, 17,5, 0m,g. Let
’17: 771'}2 *...* nn;:: with hi = (wi_bui,wi).

Proceed by reductio ad absurdum. Assume a violation of MC by g and 7. Then
there must be a call-level 7 in 7 at which the receiver w; is executing a mutator (k; =
mut), and there is a “non-controlling” representative o; which has w; in its sanctuary
Sancg(01) but does not execute a mutator at a lower call-level (07 & {wi,...,w;}).
The inductive definition of w; € Sancg(o1) based on rep paths obviously requires a
non-empty sequence 7 ¢ ... 7y of rep paths m; € PAPy(0j,rep, 0;4+1) connecting o;
with w; = ogy1 via objects 0g,...,0k 01 =22 09 -2 . Iy ) = w.

Show by induction on the length k£ of the shortest connecting rep path sequence
that the representative is executing a mutator at a level j < i. In the base case
k=0,75=1and w; = 0;. But w; cannot be the non-controlling representative o;
since x; = mut.

In the induction step k—1 — k, sequence 07 - 0y...0r_1 -F%» 0 is extended
by T = ok -*%» 0p41 € PAPy(0, rep, w;)

1. gn, v | MCP (Theorem 3) guarantees for k; = mut some j such that 7 =
hje...* h; is an ownership path from w;_; to w;.

2. Ty € PAP,(ok, rep,w;) means by g = UO (Theorem 3) that all ownership paths
to w; start with ox. Hence w;_1 = oy.

3. By g | UH (Theorem 3), rep path 74 to w; guarantees that there is no free path
to w;. Consequently, m € PAP,(ox, rep,w;) and w; € Sancy(og).

4. If, on one hand, call-level ¢ existed already in 7jn, i.e., i« < n, then rep path 7 =
hje ...* h; already existed in 7jy, and thus in gy by virtue of gy = ogr(en, 7, 5n)
(Proposition 2). But then w; € Sancg, (0x), so that the outer induction hypothesis
gn, v | MC guarantees a mutator-execution by o at a call-level j < ¢ in 7y,
and thus in 7.

5. If, on the other hand, call-level i is new in 7, then it must be the new top-level
i=n=ny+1ina {call}-step: 7is 7y * n*’{s*’m’r) for redex é = (s, pr, ry=f(...),
with k; = Kk, = k* and w; = w,, = r and w;_; = w, = s. As elaborated in the
proof for Theorem 3, the typing I',x Fx e : 7 of term e with redex é required
that u, € Wr(k,) if kK, = k, = Kk* is mut. g, cannot be free, since call-
link (s, r,r) in 77 would by g = ogr(e,7,s) (Proposition 2) mean a free path
s 4, r € PAP(s,free,w;) to w;, in contradiction to step 3. If k, = mut and
tr = rep, then the call-link s Z°B. r in g s the path 7y, i.e., op = s £ r = w;.
This means that o = s = w,, is executing a mutator at level j = n <n. And if
kn = mut and g, = co, then m; is extended by the call-link’s inverse r <2, s to
a rep path from oy to s in g*, so that s € Sancy(ox). But then, as shown in the
previous step, s = w, with k, = mut means a mutator-execution by o at a level
Jj <n.
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6. Either way, oy is executing a mutator at some call-level j <14 < nin 7. Since oy €
Sancg(o1) through rep paths m e ... m;—1, the induction hypothesis therefore
guarantees that o; is executing a mutator at some call-level 7' < j < m. This
violates the assumption of 0; as a “non-controlling” representative. |

5.5.3 Composite State Encapsulation

Theorem 5 If ¢y, ng, 50, oMo, go =" e, 7,8, om, g = €', 7,8, om', g is a reduction
defined relative to a program p with - p start ey then for all 0 € dom(om),

CStates om(0) # CStateg om(0) = F<ner;=0 A K; =mut

where 77 = 141, ..., Mgy with by = (80, i, ).

Proof: The proof goes straight-forward with the lemmas on coherence and shallow
state encapsulation developed below (Lemmas 3 and 4).
CStates om(0) # CStatey oms(0)
Legl 3 Tw c StRepS,om(O). S Iﬂdsom(UJ) 75 5’ Iﬂdsam(w)
teme 4 35 € StRep, om(0)e Th =w A Ky =mut
= r, € StRep, ,m(0) A Kp, = mut

Proposition 4
>

r, € {0} U Sancegr(eqs(0) A kn=mut

Proposion 2 e {0} U Sancgy(o) A Kp = mut
= (rp=0A Kp =mut) V (r, € Sancg(o) A K, = mut)
Theorem 4 (rp =0AKp=mut) V (i <n.r,=o0 A k; =mut)
= di<ner;=o0 A k; =mut [ |

One naturally expects that all changes of a composite object’s state CState(o) are
represented by updates of fields of some implementation objects in its state repre-
sentation StRep(o). We call this property “coherence” (of composite objects, of
composite state, or of state representations, as you please).

Lemma 3 If eq, 19, 59, 00, g0 =" €, 7,8, om,g = ¢, 17,8, 0m’, g is a reduction
defined relative to a program p with - p start ey then

CStates om(0) # CStatey onm(0) = Tw € StRepswom(o). S |fds, (w) 7 5 | fAds, ()

Proof: A change of the composite state CStates om(0) means, if we expand it by
Definition 5, a change of a restriction of the store, namely

'
5 5
IUwEStReps,om(n) fldsom(w) a |Uw€StREp5/’om/ (0) 1o (W)
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In the simple case, the domain of the restriction is unchanged: L = [, StRep, om (0)
fds,(w) = Uvestrep,s . (o) f1d8,mAw) = L. Then the composite state change s, #
s’ | means that the store changed at some location £ € L = L': s(0) # 5'(£). Tt must
be the field location £ € flds,,,(w) of some object w € StRep, ,,,(0). Since 5(£) # §'(£),
5 lﬂdsom(w) # g lﬂdsom(w) for this w.

Next consider a change in the set of store locations representing the composite
state: L = Uyestrep, ,.(0) 18Som(@) # Uue StRepy i (0) SW8Somw) = L. 1t is obvious
from the reduction rules that object-map om changes only by extension, and for fresh
object identifiers. For the “old” objects w € StRep, ,,(0), the set of field locations
is unchanged: flds,,,(w) = fids,,{w). Hence the change from L to L' presupposes
a change of the set of state-representing implementation objects: StRep, ,,(0) #
StRepy ,ms(0). Expanded with Definition 4, this means

{O} U U StReps,om(w) 7é {0} U U StReps’,om’(w)

PAPngom (s) (O‘rep7w)7é® PAPfgrom/ (s”) (o,rep,w);aé@

That is, there must be an object ¢ that is reachable from o by a non-empty
sequence 0 = og -I%¥-» 0y -*%F» .. -I%¥5 o, = q of rep paths in field subgraph
farom(s) but no such sequence in fgr,,/(s'), or vice versa. Each of the rep paths
0; -*%-» 0,4, is in base-JaM a rep edge followed by co edges: 0; = 0,9 £ 0;; <
0i2... 051 <% 0ir, = 0;41. In order for the path sequence to exist in fgr,m,(s) but
not in fgrym:(s’), or vice versa, there must be a left-most rep or co edge o0; ; L4 0; 511
or o;; #i, 0,11 that appears in, or disappears from, the field subgraph. That is, a
handle (0; j, &, 05 j+1) or (05 ;, 1, 0i41,0) is captured in, or removed from, a field location
¢. By source consistency =5 om (Proposition 1), this field must belong to the handle’s
source o, ;: £ € flds,,(0; ;). Since non-empty prefixes of rep paths are also rep paths,
there is an unchanged rep path sequence from o up to o; ;. This means that o; ; isin 0’s
state representation before and after the change: o;; € StRep, ,,,(0) N StRepy ,m(0)-

Since 0;; has a changed field, s |pas,, (0, ) 7 8" |fids, (0: ;)> it i the desired object w. W

Shallow state encapsulation means that o’s fields change only by assignments and
destructive reads executed by o itself. This may seem obvious from the typing rules,

but proving it is surprisingly tedious since two obvious invariants about variables have
to be verified.

Lemma 4 If ey, ng, 50, 0mg, go =" e, 7,5, om,g = €, 77,5, 0om’, ¢’ is a reduction
defined relative to a program p with = p start ey then for 7 = n3, ..., 7,57 with
hn = (S, tin, n), and for all w € dom(om),

o |ﬂdsom(“’) 76 s lﬂdsam(w) = Iy =w A K, =mut

Proof: The proof is based on two invariants holding in configuration e, 7, s, om, g.
Let 77 = mjt, . oo, Mape with hy = (84, i, 1)
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I1 Fields are not aliased by local identifiers: locals(7) N flds(om) = @
where locals(77) is the set Uyxcim(n) of locations of all local variables.

12 Field locations of object o occur at “mutable positions” only in mutators of o:
mutlocs(€;) N flds,m(0) # @ = 1; =0 A K; = mut
where mutlocs(E;) are is the set of locations that are left-hand sides of assign-
ments and the l-values in destructive read accesses in the term context &; at
nesting level 7. A precise definition will be given below.

If the environment stack 7 has height n, a runtime term e for which e, 77,5, om, g
= ¢, 7,8, om', g is defined must contain n nesting levels of inlined methods.
Hence it can be decomposed by a series of reduction context &i,...,€,_; € RT
and an innermost runtime term e, containing no inlined method body such that
e =& [«& [k, . [« 1[ke > > .. .>]>]. For uniformity, let us write &, for e,.

The set mutlocs(e) of locations identifying the updated variables in assignments
or the destructively read variables in read accesses in a runtime term or reduction
context e is determined inductively as follows.

mutlocs(x) =4 O mutlocs(e=€j;) =4 {€ € Loc} U mutlocs(€)
mutlocs(this.x) =4 O mutlocs(destval(e)) =4 {e € Loc}

mutlocs(£) =4 O mutlocs(val(e)) =4 9

mutloc