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Abstract

Modern industrial applications of dc-ac inverters have increasing demands for
high quality output voltages and currents. Such demands are met through oper-
ating inverters so that output harmonic components are either reduced or elimi-
nated. Developing and testing switching strategies capable of achieving such out-
puts have been topics for intensive research for the last 4 decades. Several switch-
ing strategies realized by modulation techniques have been proposed and tested.
As a result, significant contributions on the performance of inverters have been
achieved. However, the problem of output harmonic components is still a chal-
lenge. One of the most critical limitations of existing modulation techniques is the
lack of correlation between these techniques and any inverter models.

An inverter can be modeled as a non-uniform recurrent sampling-
reconstruction process, in which instantaneous switching actions are considered
as the reconstruction inverter outputs. This modeling approach can also be em-
ployed to verify the effects on inverter outputs due to any changes in the switching
strategy. Using the concepts of the sampling theorem, a sampling-reconstruction
process is represented as a multiresolution analysis (MRA). Effective and accurate
MRAs can be constructed using basis functions generated by scaling and wavelet
functions. A modulation technique that incorporates the proposed sampling-based
inverter model and a wavelet-based MRA can enable the operation of inverters
for high quality outputs. The development, implementation and testing of such a
modulation technique is the primary objective of this research.

A novel approach to construct a non-dyadic type MRA that is capable of sup-
porting non-uniform recurrent sampling has been developed. The non-dyadic

type MRA is developed based on new scale-based linearly-combined scaling and



wavelet functions. The reference-modulating signal is sampled using the new scal-
ing function such that a number of sample groups are formed over each cycle of
the reference-modulating signal. Each group has two samples that are created by a
dilated and translated version of the scaling function. Reconstructing the reference-
modulating signal is carried out by stages of interpolating functions, where each
stage is defined over one sample group. This structure of interpolating functions
creates one ON switching pulse over each sample group. The approach of operat-
ing the inverter aims to concentrate the energy of the output signal in the frequency
of the reference-modulating signal. As a result, negligible energy is distributed in
the rest of frequency components.

The proposed wavelet modulation technique is implemented using an algo-
rithm for both simulation and experimental testing. The results of both simulations
and on-line tests show high quality output voltages and currents indicated by the
low values of total harmonic distortion factors. These tests are conducted for differ-
ent load types under several output frequencies. Also, a new control strategy is de-
veloped for adjusting magnitudes and frequencies of wavelet-modulated inverter
outputs. This control strategy is called resolution-level control, and is based on
changing the scale of the successive reconstruction functions. Simulation and ex-
perimental test results of a dc-ac inverter under this control approach demonstrate
stable, robust and fast responses for different load changes. The developed non-
dyadic type MRA is extended to operate three-phase inverters. An algorithm is
developed for simulation and experimental tests of the three-phase wavelet mod-
ulated inverter to supply a R — L load. Results obtained from these tests have

demonstrated high quality outputs with negligible harmonic contents.
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Chapter 1

Introduction

1.1 General

Dc-ac inverters have become key components in a wide range of industrial
applications. Such applications include ac motor drives, control systems, uninter-
ruptible power supply (UPS) systems, power quality, power systems, renewable
energy utilization, etc. Most of these applications have critical conditions for high
quality power supplies. Such conditions on the quality of power supplies are be-
ing translated into standards for allowable harmonic content in supply voltages
and currents. These standards have pushed toward operating dc-ac inverters to
produce very low harmonic contents in their outputs [1].

A dc-ac inverter is an electronic device composed of groups of switching ele-
ments that are operated in a certain sequential manner to produce outputs with
predefined specifications. The operation of these groups of switching elements is
established so that they are switched ON and OFF in a sequential periodic man-
ner. The dc-ac inverter is usually called, simply, an inverter. Hence, the term dc-ac

will be dropped in the text of this thesis. There are two popular types of invert-
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ers, single-phase inverters and three-phase inverters. It is to be noted that the
term “power inverter” is related to inverters with high power ratings. Figure 1.1
shows the schematic diagrams of conventional 1¢ and 3¢ inverters along with ob-
tained output voltages using the square-wave operation and the multi-switching

one (1, 2].
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Figure 1.1: Schematic diagrams of single-phase and three-phase inverters along with out-
put voltages (So (%)) obtained using the square-wave operation and the multi-switching
one.

The problem of harmonic content in inverter outputs has been a challenging
consideration as early as the first application of inverters as power conditioners.
Since then, operating inverters employing switching strategies to reduce the out-

put harmonic content has been a topic for intensive research. Various switching



strategies have been developed and tested to operate inverters so that the output
harmonic content is reduced or eliminated. Among these strategies are the square-
wave and multi-switching strategies. The multi-switching strategy has been found
effective in reducing the output harmonic content, and as a result is capable of im-
proving the quality of inverter outputs. The multi-switching strategy is based on
activating a group of switching elements ON and OFF with a rate higher than the
desired output frequency. The process of changing the status of a switching ele-
ment from ON to OFF or OFF to ON is known as a modulation process [1, 2]. Mod-
ern inverters employ different modulation techniques to generate outputs with
harmonic contents as low as possible. Pulse-width modulation (PWM) and delta
modulation (DM) are the most popular modulation techniques employed to switch
inverters. However, PWM inverters are more popular, and are extensively used in
various industrial applications {1, 2].

The continuous advancements in both solid-state technology and digital sys-
tems have provided inverters with new modulation techniques. The main im-
provement has been the ability to switch inverters with higher frequencies in a sta-
ble and reliable manner. Also, with these advancements and the developments in
micro-processor technology, modulation techniques that require complex compu-
tations have become implementable [1, 2]. As a result, new modulation techniques
have been developed and tested to improve the performance of power inverter
outputs. These new modulation techniques include: the specific harmonic elimina-
tion (SHE), space-vector modulation, hysteresis-band current control and random
PWM. On the other hand, the application of inverters in high power applications
have made switching losses, switching capabilities and inverter efficiency critical

issues that have to be taken into account [3].



In modern inverter operation and control, there are several modulation tech-
niques with different improvements to meet practical requirements. However,
these techniques produce very similar harmonic distribution patterns in the out-
puts of modulated inverters. One of the main reasons for such behavior is the lack
of rigorously valid models for inverter functions that can provide the basis for any
modulation technique. Furthermore, the lack of such models has limited the inte-
gration of inverter functions with developing modulation techniques [4]. There are
few available models of inverter functions that are mainly based on circuit theory,
where time-averaged quantities are considered only. Other models are based on
numerical approximations of the relations between currents and voltages on both
input and output sides of a power inverter. In all these models, switching actions
are not explicitly represented in the model of inverter functions, and the inverter
is lumped into a supply-to-load entity. These approaches have limited capabilities
of providing effective mathematical description of inverter functions [4]. The per-
formance limitations due to the lack of correlation between modulation techniques
and any inverter models and their effects on inverter performance are the main

motivation of this work.

1.2 Thesis Motivations and Objectives

With extensive research conducted on modulation techniques [1, 4], there ex-
ists a need for a rigorous model for justifying any modification or improvement
of inverter operation. Existing representations of modulating techniques can not
provide a very accurate verification for several aspects of modulated inverters per-
formance. These aspects include: selecting the carrier signal, using non-sinusoidal

reference-modulating signals, existence of harmonics in sidebands around the car-
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rier frequency and its multiples, appearance of the jitter when using rectangular
pulses as a carrier signal, etc. [4]. On the other hand, the application of signal
processing concepts was helpful in developing the Fourier double integral criteria
to evaluate the performance of modulation techniques. Other concepts of signal
processing can be helpful both in modeling and modulating inverters.

The spectra of modulated inverter outputs have almost identical harmonic dis-
tributions as those of reconstructed continuous band limited signals from their
samples. Such a similarity can lead to viewing the modulating process as a process
of reconstructing a sinusoidal signal from its samples. A modulated inverter oper-
ation can be modeled as a non-uniform recurrent sampling-reconstruction process.
Modeling an inverter using this approach considers instantaneous switching ac-
tions as a main part of the model. This modeling approach can also provide an op-
portunity for developing and testing new modulation techniques. In general, any
sampling-reconstruction process can be represented as a multi-resolution analysis-
synthesis (MRA) process. One of the most accurate approaches to construct MRAs
is using wavelet functions. Using wavelet-based MRAs makes it possible to sample
the reference-modulating signal and reconstruct it through switching actions.

There is a need for a modulation technique that meets the increasing demands
for power inverters with negligible output harmonic contents. If a modulation
technique can operate power inverters to meet such demands, then this modula-
tion technique will be useful in wide range of industrial applications. The motiva-
tion for this research arises from the need to develop and test a modulation tech-
nique that is capable of eliminating harmonics regardless of load characteristics,
output frequency requirements and switching elements properties. The desired

modulation technique will be very advantageous for a wide range of industrial



applications including speed control in AC motor drives, UPS, power quality ap-
plications and renewable energy utilization. The development and testing of a
new modulation technique that can be correlated with a valid inverter model are
the main focus of this thesis whose objectives are described in the following sub-

section.

1.2.1 Thesis Objectives

There are several modulation techniques with different approaches to implement
for different inverter topologies. However, none of these techniques has been de-
veloped in correlation with any modeling approach of inverters. On the other
hand, there are a few models of inverter based on averaging inverter switched out-
puts over time. This averaged modeling cannot properly consider instantaneous
switching actions as a key part of the desired inverter model. This discontinuity
between modeling and modulating inverters has limited the performance of ex-
isting inverter modulation techniques. As a consequence, harmonic components
present in the outputs of inverters is still a critical issue when considering inverter
applications in high performance drives and systems. As electrical loads become
more sensitive to the quality of power supplies, optimal inverter modulation be-
comes more demanding. On the other hand, utilizing renewable energy sources
and integrating such sources with existing power grids require additional care for
harmonic levels.

The first objective of this work is to develop an inverter model that ensures
instantaneous switching actions as a main part of the model. This desired model
must be able to account for the effects on inverter outputs due to any change in

the switching strategy. Also, this model must be capable of correlating with differ-



ent existing modulation techniques. It will be shown that the desired model is a
dedicated non-uniform recurrent sampling-reconstruction process, where switch-
ing actions are modeled as interpolating functions for reconstructing a sinusoidal
signal.

The second objective of this work is to design sets of basis functions that are ca-
pable of constructing a multiresolution analysis (MRA) to support a non-uniform
recurrent sampling structure. The required basis functions are generated by a sin-
gle scaling function that has a dual synthesis scaling function. These two functions
will carry out a non-uniform recurrent sampling-reconstruction process that can be
correlated with the sampling-based inverter model.

The third objective of this work is to realize the MRA and to generate switching
signals with which to operate inverters. This objective includes building proce-
dures to realize the proposed MRA for both simulating and experimental testing
of single-phase and three-phase inverters. These simulation and experimental tests
will be conducted for different load types under different operating conditions.
Furthermore, part of this objective is to compare the performance of the proposed
wavelet modulation technique with other techniques under the same operating
conditions.

The final objective of this work is to develop and test a control strategy that
can be used to adjust the outputs of wavelet modulated (WM) inverters. Also, this
objective includes conducting simulation and experimental tests to investigate the
performance of WM inverters under this control strategy. Such tests will include
changing the WM inverter output magnitudes as well as frequencies.

It is to noted that different types of loads will be used to test the performance of

the proposed wavelet modulation technique including static loads (R — L) as well



as dynamic ones (induction motors). The following section provides a review of

different modulation techniques that have been used in switching inverters.

1.3 Literature Review of Inverter Modulation Tech-
niques

In mid 1950’s, Royer and Uchrin [5] and Taylor [6] have presented the earliest
two-transistor saturable-core parallel-inverter configurations. Their introduction
of the square wave magnetically-coupled multi-vibrators has paved the way for
developing a large family of power processing devices. Lee and Willson [7] devel-
oped mathematical models that verified the inverter function presented by Royer,
Uchrin and Taylor. These models were the first reported square wave switched
inverters. However, in these inverters the problems of harmonics and switching
losses were not discussed. McMurray has presented a new silicon-controlled rec-
tifier (SCR)-based inverter topology with resonant switching to improve the ON-
OFF switching times. This approach has provided the first practical consideration
of multi-switching techniques [8]. Later, McMurray extended this switching ap-
proach for power electronic converters including the dc-dc switched converters

(8, 9].

1.3.1 Traditional Pulse-Width Modulation (PWM)

The early developed square wave inverters have several inherent disadvantages
including harmonic distortion, switching losses, low efficiency, complex models
and complicated circuitry for implementation. The increasing demands for high

power quality by sensitive loads have led to the development of other switching
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strategies based on modulation techniques. The earliest modulation schemes us-
ing single and multiple pulse modulations were introduced by Kirnnick and Hein-
rick [10]. These schemes were capable of producing inverter output voltages and
currents with lower harmonic contents. Mokrytzki [11] modified single and multi-
ple pulse width modulations through defining a reference-modulating sinusoidal
waveform. This modification on generating switching pulses with variable width
was achieved by comparing the reference-modulating sinusoidal waveform to a
high frequency sawtooth signal and was later defined as the pulse-width modula-
tion (PWM) technique. The introduction of the general sine-triangle voltage PWM
and the definition of the fundamental concepts of sinusoidal pulse-width modula-
tion (SPWM) were carried out by Schonubg and Stemmler [12].

The application of both analog and digital electronic technologies made switch-
ing with higher frequencies more feasible. Moreover, it became possible to use tri-
angular carrier signals instead of sawtooth ones that improved the inverter perfor-
mance in terms of harmonic contents as well as switching losses. At the beginning,
two different switching strategies, namely the asynchronous and the synchronous
SPWM, were used for generating switching pulses to operate power inverters.
However, rapid developments in digital electronics and microprocessor technol-
ogy created modulation techniques that are based on predefined parameters. Such

techniques were divided into three major schemes of PWM as [13]:
¢ Naturally Sampled PWM
e Regularly Sampled PWM
e Direct PWM

Earlier research in developing and testing modulation techniques aimed to [14]:



e Minimize output harmonic contents

e Maximize dc-bus utilization

¢ Increase inverter efficiency through minimizing switching losses

e Produce inverter outputs with controllable magnitudes and frequencies

The first reported research to consider the phenomenon of harmonics and develop
an optimal switching strategy to minimize them was done by Bowes in 1975 [15].
Bowes derived a double Fourier integral formula that is the most well known an-
alytical method to identify harmonic existence resulting from inverter switching
actions. This analytical approach was originally developed for communication ap-
plications. The double Fourier integral formula approach assumes the existence of

two independent linear time variables defined as [16]:

2(t) = wet + b, (1.1)

y(t) = wmt + O, (1.2)

where w, is the carrier signal frequency, 6. is an arbitrary phase shift of the car-
rier signal, w,, is the reference-modulating signal frequency and 6,, is an arbitrary
phase shift of the reference-modulating signal. A multi-variable function f(t) can

be defined as:
f(t) = f(2(t),yt) (1.3)

Using Fourier analysis theory, complex coefficients of Fourier series for the func-

tion f(t) can be determined as [1, 16]:

o = = / " ), y0) T dedy (1.49)

~ 52
27-( -7 —T
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The complex coefficients C,,, can determine the magnitude and the phase of each
harmonic component present in the function f(¢) [1]. This analysis was used as a
performance criterion for testing effective switching strategies that resulted in im-
plementing the naturally sampled PWM scheme. In the beginning of 1980’s, Bowes
and Mount [17] used the same approach to successfully implement the regularly
sampled PWM using a microprocessor technology.

The direct pulse-width modulation technique (DPWM) has capabilities of pro-
ducing inverter outputs with very small amount of harmonics. The basic idea of
DPWM is to create ON pulses that exactly produce the same volt-second average as
the reference-modulating signal over each cycle of the carrier signal. There are two
methods to determine the widths of ON switching pulses created by the DPWM

technique. These methods are [1]:

e Symmetrical pulse duration, where the widths of ON pulses are determined

using the following relation:

ti+Tc
DON = tQ - tl =2W = 2/ M sin (wmt) dt (15)
i

e Asymmetrical pulse duration, where the widths of ON pulses are deter-
mined using the following relation:
ti+Tc/ 2

Don=t1 =W = M sin (wy,t) dt (1.6)

t;

where M is the normalized output voltage magnitude, 7, is the period of the car-
rier signal and w,, is the fundamental frequency (the frequency of the reference-

modulating signal). The two methods of DPWM are shown in Figure 1.2.
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(@) Symmettical DPWM (b) Asymmetrical DPWM
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Figure 1.2: The DPWM technique for generating ON switching pulses: (a) the symmetrical
DPWM and (b) the asymmetrical DPWM.

The major disadvantage of DPWM is that it requires pre-knowledge of the
reference-modulating signal. Moreover, the determination of each ON pulse width
and position may involve complex mathematical operations. Such disadvantage
has made carrier-based modulation techniques more popular for industrial appli-
cations [1, 15].

The employment of advanced digital technology has made implementing new
switching strategies realistic and practical. Regularly sampled pulse-width mod-
ulation (RSPWM) and naturally sampled pulse-width modulation (NSPWM) are
new carrier-based strategies that were developed as a result of employing digi-

tal computer systems. The NSPWM strategy generates switching pulses that have
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edges determined by the intersection points of the carrier signal and the reference-
modulating signal. The carrier signal used in this strategy (mostly a triangular
signal) has a higher frequency than a reference-modulating signal (mostly a sinu-
soid). This PWM strategy was developed to replace the square wave switching
used in early inverters. NSPWM has only two implementation types, one uses a
sawtooth carrier signal and the other uses a triangular carrier signal [1, 2, 6, 7]. Fig-

ure 1.3 shows NSPWM implemented using a sawtooth carrier signal. Figure 1.4

3
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Figure 1.3: The NSPWM technique using a sawtooth carrier signal Sgc(t) with a fre-
quency of 1.8 kHz: (a) a rectified version of a sinusoidal reference-modulating signal Sa(t)
along with the sawtooth carrier signal Sgc(t), (b) switching pulses for 1 and Q4 switching
elements of a 1¢ four-pulse inverter and {c) switching pulses for Q3 and Q4 of the same 1¢
four-pulse inverter shown in Figure 1.

shows NSPWM implemented using a triangular carrier signal.

In the RSPWM strategy, a sinusoidal reference-modulating signal is regularly
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Figure 1.4: The NSPWM technique using a triangular carrier signal Sgc(t) with a fre-
quency of 1.8 kHz: (a) a sinusoidal reference-modulating signal Sy(t) along with the tri-
angular carrier signal Sgc(t), (b) switching pulses for Q; and Q2 switching elements of a
1¢ four-pulse inverter and (c) switching pulses for Q3 and Q4 of the same 1¢ four-pulse
inverter shown in Figure 1.

sampled and held constant at the beginning of each switch cycle before being com-

pared with a triangular carrier signal. Two forms of the RSPWM strategy became

popular such that [14-16]:

1. The symmetrical RSPWM that is based on sampling the reference-
modulating signal at either positive or negative peaks of the carrier signal

and holding that value over a complete cycle of the carrier signal.

2. The asymmetrical RSPWM that is based on sampling the reference-
modulating signal at both positive and negative peaks of the carrier signal

and holding that value over a half cycle of the carrier signal.
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These new strategies were developed to achieve optimal switch-mode inverter op-
eration to meet the increasing demand for accurate and high quality output volt-

ages and/or currents. Figure 1.5 shows both forms of the RSPWM technique.

Symmetric RSPW M
V

Asymmetric RSPW M

. 0 0.003 0.006 0.009 0.012 0.014 0.017

Figure 1.5: The regularly sampled pulse-width modulation (RSPWM) technique: (a) the
symmetrical RSPWM and (b) the asymmetrical RSPWM

1.3.2 Pulse-Width Modulation (PWM) Schemes

The advances of power electronics and computer technologies have made operat-
ing inverters on high power levels with acceptable quality input/output perfor-
mance realistic and feasible. However, such requirements are self-contradictory
due to the conflicting relation between power handling capacity and switching ca-

pabilities of semiconductor switching elements. These additional constraints on
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operating inverters have made it necessary to develop new modulation schemes.
Among many developed modulation schemes, few have been successfully imple-

mented for industrial applications. These include [1-3]:
1. Specific Harmonic Elimination
2. Non-Sinusoidal Reference-Modulation Signals
3. Hysteresis-Band Current Control
4. Space-Vector Modulation

5. Random PWM

Specific Harmonic Elimination (SHE)

Specific Harmonic Elimination (SHE) is an on-line (pre-calculated) non-carrier
based PWM scheme. This scheme is based on the fact that conditions of quar-
ter and half wave symmetry are capable of eliminating even-indexed harmonics.
Extending this fact has led to considering angles of switching pulses in the first
quarter cycle as variables for optimization in order to eliminate more harmonics
from the inverter output. Each angle of switching pulses is considered as one de-
gree of freedom. For each degree of freedom, one harmonic may be set to zero or
any other reasonable desired value. Using Fourier transforms, simultaneous equa-
tions in these angles are solved given desired values for the fundamental and the
targeted harmonics. Examples of switching angles are shown in Figure 1.6.

The output of an inverter can be expressed in the Fourier series form as [1]:

Vo(t) = % + i (@, cos(nwmt) + by, sin(nw,,t)) (1.7)

n=1
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Figure 1.6: An examples of defined switching angles a1, a2, a3 and a4 for eliminating
certain harmonic components.

where a,,/2 is the dc component present in V,(¢) and w,, is the frequency of the fun-
damental component. The coefficient sets {a,} and {b,} are coefficients of Fourier
series [1-3]. The Fourier series form of an inverter output voltage has non-zero odd

harmonic coefficients. As a result, equation (1.7) can be reduced to:

Vo(t) = i by, sin(nwy,t) (L.8)

n=1,3,5,..

The coefficient of the n* harmonic can be evaluated for switching angles

{1, @2, a3, a4} as in the following equation [1, 2]:

2VDC o oy wf2
b, = / sin(nwpt)dwp,t —l—/ sin(nwmt)dwy,t + / sin(nwpt)dwmnt (1.9
™ o ag w/2—aq
b, = — [— cos(nay) + cos(naz) — cos(nag) + cos(nau) — cos(nm/2 — noy)| (1.10)

where Vpc is the input dc voltage to the inverter. Substituting equation (1.10) into
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equation (1.8) produces the inverter output voltage V,(t) as:

Vo(t) = Z Vo [— cos(nay) + cos(nag) — cos(naz)] sin(nwp,t)

n=1,3,5,.. mn
4Vbc .
+ Z [cos(nay) — cos(nm/2 — nay)] sin(nw,,t) (1.11)
n=1,3,5,.. T

For the case of selecting four switching angles {a;, as, a3, a4}, four harmonic
components (the k%, I, m* and w'™") can be eliminated. Using Fourier series coef-

ficients, four different nonlinear equations are created as [1-6]:

b = [— cos(kan) + cos(ka) — cos(kas) + cos(kas) — sin(kag)] =0 (1.12)

b = [~ cos(la) + cos(la) — cos(los) + cos(lay) — sin(lag)] = 0 (1.13)
b = [— cos(may ) + cos(mag) — cos(mas) + cos(may) — sin(mayg)] =0 (1.14)
by = [— cos(way) + cos(was) — cos(was) + cos(way) — sin(wag)] =0 (1.15)

where k,l,m,w € (1,00). Solving these equations provides the required values of
oy, Gp, agand ay.

The first research to consider SHE as switching scheme was conducted by Pa-
tel and Hoft in 1973-74 [19,20]. This switching scheme can provide significant
improvement of inverter outputs in terms of harmonics presence. However, cal-
culating switching angles needs solving systems of non-linear equations that can
complicate its implementation [3, 4].

Early trails to minimize the required computations were made by Enjeti and
Lindsay [21]. They proposed a mathematical solution that was based on solving
a set of nonlinear transcendental equations to eliminate the undesired harmonics

of the inverter output voltage. The proposed solution achieved limited success
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due to the slow speed in solving systems of non-linear equations. In 1990, Enjeti,
Ziogas and Lindsay developed a PWM technique programmed to eliminate har-
monics based on optimizing several predefined quality factors [22]. This approach
has reduced the computational burden. However, these predefined quality factors
were non-linear functions of load currents and/or inverter output voltages. Mas-
wood, Shen and Rahman [18] have developed a genetic algorithm-based method
for determining the optimal switching angles so as to eliminate specific harmonics.
The simplicity of on-line implementation of this method has made it advantageous
over other previous methods. Liang, OConnell and Hoft [23] developed a Walsh
transform-based method for determining the switching angles for selected har-
monics elimination. Their method was easy to implement and had smaller compu-
tational complexities. Nevertheless, the Walsh transform-based method lacked sig-
nificant accuracy due to approximating and linearizing transcendental non-linear

equations to obtain the required switching angles.

Non-Sinusoidal Reference-Modulation Signals

In general, the fundamental concept of PWM is to compare a sinusoidal reference-
modulating signal with a triangular high frequency carrier signal. This process
suffers from a major limitation that is the reduced magnitude of the fundamental
component of the inverter output voltage [1, 24]. Trzynadlowski [25] classified the

PWM switching methods into two basic types, which are:

e The optimal harmonic spectrum, which is oriented to optimizing the harmon-

ics on the output of the inverter

e The application of a certain reference-modulating signal that is a pivotal el-

ement of the switching schemes, which is known also as the carrier-based
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PWM schemes

In carrier-based PWM, the main function of comparing a carrier signal (either
a sawtooth or a triangular ) with a reference-modulating signal is to determine the
duration and location of each ON switching pulse within one cycle of the carrier
signal. The duration of each ON switching pulse contributes to the fundamental
component (V,), volt-second average as the reference-modulating signal over that
cycle of the carrier signal. On the other hand, the location of each ON switching
pulse does not affect the fundamental component volt-second average over any
cycle of the carrier signal. This can be interpreted as the effect of the switching
scheme on output harmonic components. An index relating the magnitude of the
carrier signal to the magnitude of the reference-modulating signal can be defined

as a magnitude modulation index m, as [2-4]:

e Peak of Sy (1)
“ " Peak of Sse(t)

(1.16)

The magnitude modulation index m, can be considered as a gain of the inverter
so that the relation between Sy (t) and V,(t) is linear for m, < 1. However, increas-
ing the modulation index m, (m, > 1) can cause an over-modulation mode of
operation, which is known to generate low-frequency base-band distortion [1, 10].
Holmes [26] proposed adding a proper amount of the third harmonic component
to the original sinusoidal reference-modulating signal Sy, (¢) such that any change
in widths of the switching pulses will not affect their symmetry around the center
of the carrier signal interval. Figure 1.7 shows two reference-modulating signals
with and without the addition of the third harmonic component. This switching

scheme can improve the output voltage and/or current in terms of harmonic con-
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Figure 1.7: The triangular carrier signal (Ss¢) and two reference-modulating signals (Sps1
and Sjs2), Suyo has a third harmonic component.
tents. However, there is no defined procedure for determining the proper amount

of the added third harmonic component.

Hysteresis-Band Current Control

A hysteresis band switching scheme is based on calculating the error between a ref-
erence output and the measured output. States of switching elements are changed
when the instantaneous calculated error falls outside a pre-defined hysteresis band
so as to drive the error back within that band. Plunckett [27] proposed this switch-
ing scheme, where the targeted output was the inverter output current. The early
implementations of hysteresis-band current control switching scheme were based
on a fixed hysteresis band. Bose [28] developed an adaptive current controller that
used a variable hysteresis band. This controller suffered from the stability prob-

lems as the load changes.
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Rahman et al. [29] developed a sinusoidal hysteresis band for current control
switching scheme. The sinusoidal hysteresis band was able to limit the maximum
switching frequency and improved both output current and voltage of the oper-
ated inverter. However, this method requires that the controlled output quantity
of the inverter be integrated either by the load or as a part of the controller. Fur-
thermore, the switching instants are not necessarily synchronous or cyclic. Thus,
sub-harmonics may be present in inverter outputs. These reasons made the hys-
teresis band current control switching scheme not very accurate for industrial ap-
plications with low switching frequencies. Figure 1.8 shows the two popular types

of hysteresis bands.
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Figure 1.8: Hysteresis bands for current controlled PWM: (a) the fixed hysteresis band
and (b) the sinusoidal hysteresis band.
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Space-Vector Modulation (SVM)

The previous PWM switching schemes were based on either considering a
reference-modulating signal or optimizing switching instants. Another successful
approach is to center switching pulses for each leg of three-phase power invert-
ers within each half carrier signal cycle. This approach not only ensures that
the maximum possible modulation of an inverter can be achieved, but also it
results in significant elimination of harmonics from the output of a three-phase
inverter [1, 2]. In mid 1980’s Holtz and Stadtfeld [30] introduced a new scheme of
PWM, which is based on considering all possible combinations of a three-phase
inverter switching elements states known as the space vector modulation (SVM).
SVM-PWM scheme has been a subject of extensive research, where all possible
switching combinations are converted to stationary vectors in the d — ¢ complex
plane. Eight different switching combinations were introduced; only two of
them represented short circuit on the output, hence they were dropped from
effective switching combinations. Figure 1.9 shows the switching combinations of

a three-phase SVM-PWM inverter.

These SVM switching schemes have shown significant advantages over other
PWM switching schemes in terms of implementation, harmonic contents and out-
put voltage fundamental component [1, 2]. Figure 1.10 shows a sample pulse pat-
tern of SVM-PWM in the first sextant [1].

There are some researchers who claim that the SVM-PWM scheme is an inde-
pendent switching scheme. However, Lipo and Holmes [1} as well as Bowes and

Lai [2] have proved that the SVM is simply a variation of regular sampled PWM
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Figure 1.9: The eight different possible switching combinations of a three-phase six-pulse
inverter.

with switching pulses placed in a different way over each carrier interval.

Random PWM (RPWM)

The random PWM is a new PWM switching scheme introduced by Trzynadlowski
et al. [31] to spread the energy concentrated in output harmonic components over a
wide range of frequencies to minimize their effects. The RPWM switching scheme
is based on adding a random noise to the carrier signal such that the energy con-
centrated in the switching noise is spread over a wide frequency band. It is carried
out in such a way that the impact of output harmonic components is decreased.
Hui et al. categorized the RPWM switching scheme as one of the following forms

[32]:

24



Vbz

+

| i :
i Tsvo, Tsvi|Tsvai Tsvr

Te/2 Tc/2

Figure 1.10: Pulse pattern of space-vector modulation (SVM) in the first sextant, 0 <
fm < /3 with centered active space vectors [1]. Tsyy is the time interval of the switching
combination SV 0, Tsy; is the time interval of the switching combination SV'1, Tgy2 is
the time interval of the switching combination SV2 and Tgy~ is the time interval of the
switching combination SV7,

1. Randomized switching frequency

2. Randomized pulse position

3. Random switching

4. Combinations of previous three methods

RPWM switching scheme is capable of limiting effects of some of the output
harmonics. Nevertheless, the nature of the required random signals can cause re-
duction of the energy concentrated in the desired output frequency. Furthermore,
there is no systematic description of the required random signal magnitude, fre-

quency or phase.
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Different modulation techniques have been developed and tested to operate
power inverters. Moreover, several improvements and modifications have been
applied on such techniques to further enhance their performance. In general, these

techniques aimed to operate power inverters to achieve the following:
e AC voltages and currents obtained on the output side;

o The produced voltage and current to be as close to sinusoidal waveforms as

possible;
e Minimum energy transfered to the load through harmonic components;
e Minimum energy losses through switching elements;

o Stable operation regardless of operating power, nominal voltage, load type,

desired output frequency variation or switching frequency.

Theoretical analysis and numerical simulations along with close experimental
results can provide the basis for evaluating the performance of modulation tech-
niques reviewed in this section. Although, some of the reviewed techniques have
made significant contributions, others are still under investigation to improve and
optimize their performances. Moreover, achieved contributions by various switch-
ing schemes have been validated under assumptions of load types and/ or specific

inverter topology.

1.3.3 Delta Modulation

The delta modulation (DM) technique is based on approximating the reference-
modulating signal by sinusoid piece-wise linear segments. Each one of such seg-

ments is compared to the reference-modulating signal to determine the increase
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or decrease in its relative amplitude. Only the change in amplitude is considered
for changing the state of the modulated signal [12]. In DM modulation technique,
pulse widths are not modulated rather they have constant widths. The correct
terminology for such a modulation technique is pulse density modulation (PDM)
or pulse frequency modulation (PFM). The DM technique is known as the sim-
plest method for quantizing analog signals into digital sequences of data with sig-
nificant accuracy. This accuracy can be achieved by using switching frequencies
much higher than the frequency of the reference-modulating signal [33]. Figure
1.11 shows simple DM multi-switching signals generated through quantizing a si-
nusoidal reference-modulating with a sampling interval of 0.00001 second, while

the quantizer period is around 0.0375 second.
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Figure 1.11: The quantization of the reference-modulating signal and the generated pulses
as segment heights change.

The harmonic spectra of outputs obtained using different implementations of
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both pulse-width and delta modulated inverters show that certain harmonics form
side-bands around multiples of the carrier signal frequency f.. An almost identical
pattern of such frequency sidebands is formed when a band limited signal is sam-
pled with a sampling frequency f.. Such close spectra of the inverter output and
the sampled band limited signals can help in developing a new model for inverters.

The earlier research being conducted about power inverters has been mainly
elaborating a basic modeling approach that considers a power inverter as a supply-
to-load entity. This approach has led to the common assumption of load dominant
models where instantaneous switching actions are averaged over pre-defined time
intervals. Another approach to model inverters is based on logic-type switching
actions, which expresses states of switching elements as ON — 1 and OFF — 0
[1]. These modeling approaches can not help in anticipating impacts on the in-
verter outputs under changing switching process. Also, these models are based
on considering only the fundamental frequency components of the inverter out-
puts, while ignoring other harmonic components. The aforementioned modeling
approaches have been found very difficult to correlate with any modulation tech-
nique that caused extra limitations on the inverter performance. Thus, there exists
a need to develop a new inverter model that can provide a new and better modu-
lation technique.

This section has provided a review of the different techniques used in oper-
ating inverters. Furthermore, it highlighted the performance limitations of these
techniques, in particular, the harmonic contents of the inverter outputs. There is a
need for a modulation technique capable of operating inverters to meet increasing
demands for high quality outputs. The key for developing such a modulation tech-

nique lies in the successful correlation with an accurate and a valid inverter model,
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which considers the inverter instantaneous switching actions as a main part. A
modulating technique incorporating this unique correlation is unreported in liter-
ature and developing and testing such a modulation technique would be a major

contribution to the fields of power electronics and signal processing.

1.4 Thesis Outline

Chapter 2 provides a review of the sampling theorem, different sampling
forms and mathematical relations between discrete and continuous domains. The
classical sampling theorem and the latter extensions along with relation between
sampling-reconstruction concept and the approximation theory are presented. In
addition, the sampling theorem in the context of multiresolution analysis and
wavelet theory is reviewed.

The non-uniform recurrent sampling-based model of 1¢ inverters is developed
in chapter 3. This model will be tested for the conventional SPWM inverter to
investigate its validity and accuracy for different operating conditions. Also, the
inverter sampling-based model will be extended to model three-phase inverters.
Some simulation results will be presented for demonstration and comparison pur-
poses.

Chapter 4 introduces a non-dyadic MRAs for supporting a recurrent non-
uniform sampling-reconstruction process. Also, this chapter presents a novel
method of designing wavelet basis function for constructing non-dyadic MRAs.
This method is used to define a scale-based linearly-combined wavelet basis func-
tion for inverter modulation. In addition, chapter 4 describes the proposed wavelet
modulation technique and develops an algorithm for implementing it.

Simulating the proposed wavelet modulation techniques using MATLAB is
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presented in chapter 5. These simulations include both static and dynamic loads
for different output frequencies. Also, chapter 5 presents comparison results for the
WM inverters with a conventional SPWM ones under same loading conditions.

Chapter 6 develops a real-time implementation of the wavelet modulation tech-
nique for experimental testing. The wavelet modulation technique algorithm is
realized using a Turbo — C code for the dSPACFE ds1102 controller board. Ex-
perimental tests are carried out on a single-phase voltage-source four-pulse /GBT
inverter for different loads and output frequencies.

A new control strategy for adjusting the outputs of WM inverters is introduced
in chapter 7. This control strategy is called the resolution-level control, and is
based on changing the scale of the generated switching pulses. Moreover, chap-
ter 7 develops an algorithm for implementing the resolution-level control strategy
for simulation and experimental tests. Results for several simulation and experi-
mental tests representing different load types with different operating conditions
are provided.

Chapter 8 introduces an extension of the wavelet modulation technique to oper-
ate three-phase inverters. A procedure for implementing the three-phase wavelet
modulation is developed for both simulation and experimental tests. Furthermore,
chapter 8 provides simulation and experimental test results for a 3¢ R — L load.

The last chapter, chapter 9, summarizes and concludes the research work. Also,
it provides a description of the main contributions and future scopes of this work

in various avenues.
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Chapter 2

Sampling Theorem, Multiresolution

Analysis and Wavelet Sampling

2.1 General

There has been extensive research devoted to the sampling theorem, with
the most important piece of work being the classical sampling theorem. The
classical sampling theorem, also known as Whittaker-Kotelrikov-Shannon (WKS)
theorem [34], states that a low pass signal continuous-time (CT) band-limited to a
frequency band of (— fy, fy) can be reconstructed perfectly from its samples taken
uniformly at no less than the Nyquist rate of 2 f, samples/sec. Another alternative
condition for successful sampling and reconstruction of CT band-limited signals
was introduced in terms of constraining the lower bound on the sampling density
for perfect reconstruction [35]. According to the classical WKS sampling theo-
rem, a CT signal z.(¢) band-limited to (—, %), such that X .(2) = 0,|Q] > Qo
(Q = 27 fy), can be perfectly recovered from samples spaced by T, (Ts < 7/Q)
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[34,35]. It is to be noted that X.(f2) is the continuous time Fourier transform

(CTFT) of z.(t) as:

X,(Q) = [ T e (De @.1)

The ideal sampled version of z.(t) is a sequence of discrete points located at

multiples of the sampling period T, and can be defined as:

zln] = Y z(t)d(t — nT,) 2.2)

Ideal Reconstruction of the CT signal from its samples (z[n]) can be done as:

z(t) = Z x[n] sinc (t — nTj) (2.3)

n

where sinc(t) = sin(nt)/wt. This form of sampling is known as the uniform (pe-
riodic) sampling. It should be noted that there are other forms of sampling that
employ a non-uniform sampling approach. Such sampling forms have been em-

ployed in many areas of signal and image processing applications [36].

2.2 Sampling Theorem- A Brief History

There have been several interpretations of the classical sampling theorem.
One of these interpretations was developed by Whittaker, which was based on
the idea that a sequence of points does not uniquely define a signal or a function.
Whittaker called all functions that might be defined by the same sequence of points
a co-tabular set of functions. Among these co-tabular functions, the function of

the lowest harmonic constituents was called a cardinal function. This cardinal
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function can be defined as follows [37]:
Let f: R — R be a function, and 7; > 0, then a cardinal series of f with respect

to T, can be defined as:

Sm 7ran_Ts)

C(f.t,T,) Z f(n —t:;ﬁ (2.4)
n=-—oc Ts

If this series converges, it is known as the cardinal function of f(¢). Also, when
C(f,t,T,) converges to f(t) it is named the Whittaker cardinal function of f(t).
The cardinal series interpolates between equidistant values of f(t) that can be in-
terpreted as one form of approximating the continuous version of f(t), provided
that f(¢) is band limited to 7/7;. Hence, sampling-reconstruction process can be
seen as an approximation case: given a sequence of data (samples of a CT band-
limited signal z.(t)), approximate this signal using these data points as accurately
as possible.

In 1977, Papoulis proposed an extension of WKS classical sampling theorem,
showing that a band-limited signal z.(t) could be reconstructed accurately from
samples taken from responses of m ideal linear shift-invariant systems at a rate
of 1/m of the Nyquist rate. This generalization was the first introduction to non-
uniform sampling and reconstruction. Also, this generalization indicated that there
are many possible ways of extracting data from a signal for a complete characteri-
zation other than the conventional uniform sampling [37].

If the Fourier transform is applied to equation (2.2), and using the fact that the
Fourier transform of sinc(t) is the characteristics function xj_1/5,1/9 (a rectangular

box function extending from -1/2 to 1/2), then for any A € [—1/2,1/2] [35]
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X()\) _ Z x[n}e—ﬂnn)\ — Z <X, e-j27m)\>L2(_1/271/2) e—j27rn)\ (25)

n

where (X, e772™) is the inner product operation and is defined by:

(pa[n], palnl) = ) pi[nlp(] (2.6)

If the frequency variable w is related to the variable A by A = =, then equation (2.5)
becomes the discrete-time Fourier transform (DTFT) of z[n]. The DTFT of a band

limited discrete signal d[n] can be defined as:
D(w) = Z d[n)e=™ 2.7

where D(w) is the DTFT of d[n]. It is to be noted that the frequency variable w repre-
sents radian frequencies present in a discrete signal, while the frequency variable
represents radian frequencies present in continuous signals. These two frequency

variables are related to each other through the sampling time 7 as:

Qe [——” 1] 2.8)

Reconstructing the signal z.(t) using equation (2.3) is equivalent to the fact that
the set {2 k € Z} forms an orthonormal basis of L*(—1/2,1/2), where L? here
is the space of absolutely summable DT functions. This set of orthonormal basis
functions is called harmonic Fourier basis functions. This equivalence between
reconstructing signals from their uniform samples and the harmonic Fourier basis

has been extended by Paley and Wiener to process certain cases of non-uniform
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sampling-reconstruction of band-limited signals [38, 39]. The next section presents
some common forms of sampling that include uniform as well as non-uniform

-sampling forms.

2.3 Sampling Forms

Discrete-time signals can arise in different ways, but the most common way is the
representation of continuous-time signals. It is remarkable that under reasonable
conditions and constraints, a continuous-time signal is accurately represented by
its values at discrete points in time. These points in time are selected so that the
sampled continuous-time signal can be recovered perfectly without any distortion
or loss of information. Two forms for selecting time instants are commonly used in
signal processing applications, uniform sampling and non-uniform sampling. In
the uniform sampling, time instants are selected with equidistant spacings. On the
other hand, non-uniform sampling involves selecting time instants with variable
spacings [37]. Figure 2.1 shows a signal z.(t) sampled both uniformly and non-
uniformly.

The following subsections provide more insight about these sampling forms.

2.3.1 Uniform Sampling

Uniform sampling, also known as periodic sampling, is the most common form of
sampling that is used in a wide range of signal and image processing applications.
Moreover, all mathematical approaches of the sampling theorem were initially de-
veloped considering the uniform sampling. In this sampling form, samples are

taken at a constant rate resulting in a constant spacing between successive samples
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Figure 2.1: Sampling a continuous signal z.(t): (a) in a uniform sampling manner z,{n]
and (b) in a non-uniform sampling manner z,[n].

[34-37, 39].

Let z4[n] be the sampled form of a band limited signal z.(t), where z.(t)
€ B3, (R). The space B3, (R) is the space of all signals band limited to €,, and is
defined as:

Bio,(R) = {z.(t) € L*(R) : sup(X.(2)) C [0, Q) } (2.9)

A discrete signal z4([n] is defined by samples taken with an equidistant spacing of

T, such that.
Vn,n € Z,zq[n] = z. (nTs) (2.10)

The equidistant samples can be created by using a train of impulses located at
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integer multiples of 7. Such a train of impulses can be defined as:

pt)= > §(t—nT,) (2.11)

where 6(t) is the Dirac delta function, defined by the following properties:

o Unit area:

/ Tt =1 (2.12)

e Sifting property: for a function f(t) continuous at¢ = 7
/ F@)o6(t — m)dt = f(7) (2.13)
Let z4(t) be defined as: for z.(t) continuous at all t = nT,

zo(t) = 3(t).p(t) = ze(t) Y 6(t—nT) (2.14)

n—=——o

using the sifting property of 4(¢), z;(t) becomes:
z.(t) = Y @ (nT.)d(t —nT.) (2.15)

n=—oo

The discrete signal z,[n] can be defined as:

nTs+e
zg[n] = / zs(t)dt, €€ [0,T] (2.16)

Ts—e

Figure 2.2 shows z.(t), p(t), and z4[n], while Figure 2.3 shows | X.(Q)| and | X4(w)].

From Figure 2.2 and Figure 2.3, it can be shown that if the spacing between
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Figure 2.2: Sampling a continuous-time signal z.(t): (a) the continuous time signal z(t),
(b) the train of impulses p(t) and (c) the discrete signal z4[n].

cent samples is large (so that the sampling rate is low), then replicas of the sampled
signal spectrum (as shown in Figure 2.4) will overlap. Such an overlap is known as
the aliasing, and it prevents recovering the continuous-time signal z,(t) perfectly
from its samples. The aliasing can be avoided if the spacing between the adjacent
samples is less than a value known as the Nyquist rate 7. In general, the Nyquist
rate is related to the highest frequency component present in the continuous-time
signal such that:

T, <

1
= fq 2 2/nst (2.17)
2fhst

where f; is the highest frequency component present in z.(t) in cycles/sec. and

fo is the Nyquist frequency. If the Nyquist condition is met, then the continuous-
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Figure 2.3: Sampling a continuous-time signal z.(t): (a) the magnitude of the CTFT of the
signal z.(t): X.(2) and (b) the magnitude of the DTFT of the sampled signal z4[n]: X (w).
time signal z.(t) can be recovered perfectly from its samples. This perfect recovery
is represented using a low-pass filter with a cut-off frequency of Qcr = % Figure

2.4 shows a typical low pass filter (H,..(Q2)) to recover z.(t) and an aliasing case.

2.3.2 Non-uniform Sampling

A uniform sampling case turns into a non-uniform sampling one if T; fails to re-
main constant. This condition implies that the spacing between adjacent samples
will no longer be constant. This non-uniform sampling form can be found in some
engineering and geophysics data acquisition applications [40, 41]. Although, non-
uniform sampling is the norm rather than the exception, it has not received the

same attention as the uniform sampling in signal and image processing applica-
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tions. One of the main reasons for the lack of attention to the non-uniform sam-
pling is the difficulty encountered when performing the Fourier analysis. For ex-
ample, sequences with non-equidistant samples affect the convergence of the infi-
nite series required for applying Fourier analysis [40, 42]. From a theoretical point
of view, the non-uniform sampling problem has inspired many deep but mostly
not constructive theorems. However, there exist some algorithms for approximat-
ing or reconstructing one-dimensional and two-dimensional band limited signals

from their non-uniform samples. These algorithms include polynomial and spline
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methods [39-41].

The first theoretical approach to processing signals with non-uniform samples
based on the theory of non-harmonic Fourier series was developed by Paley and
Wiener [38] and Levinson [43]. Later in 1952, Duffin and Schaeffer presented the
frame theory, which gave rise to further theoretical statements and some powerful
algorithms for non-uniform sampling [44]. The most popular work in this aspect
was the theory developed by Levinson that is based on Lagrange interpolation func-
tions such that [39, 43]:

Let h(t) be an entire function with zeros only at {t, : n € Z} defined as [40]:

ht)=(t—t) [] (1 - %) <1 - é) (2.18)

n

where ¢, is an arbitrary reference point. Using the defined Lagrange interpolation
function h(t), a band limited signal can be expanded using these functions. In other
words, a band limited signal can be recovered from its non-uniform samples using

this type of interpolation functions such that [40, 43]:

Te(t) =D me (tn) b (t) (2.19)

nez

There are two main disadvantages of this interpolation type [40, 44]:

1. The numerical computations required by this method are sometimes complex

and cannot be easily implemented.
2. If one sample is lost, the whole recovered signal may be affected.

The focus in this thesis will be on band limited signals, where more efficient

algorithms are developed. One of the popular approaches is the lower uniform
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Beurling density condition [37,40,41,43,44]. In this approach, if a set of non-

uniform samples {z,},., generates a frame {T}, sincq, },, for B3 (R), then [40,

nez
41]:
A ({za}) > 29, (2.20)
where {7, sincg, } is given by:
{T,, sincq,} = 6 (x — x,) * sinc(z), with sinc(z) Rhkiy X[~20,0%] (2.21)
Also, A ({z,}) is defined as [40]:
A ({z,}) = lim @ (2.22)

where r is an interval and 3(r) is given by:
B(r) = inf 3, (2.23)

where (3, is the minimal number of samples in the interval r.

The above approach simply describes non-uniform samples with spacings be-
tween them such that the minimum spacing between them satisfies the Nyquist
condition [43]. As a result, if a set of non-uniform samples satisfies the above con-
dition, then recovering a signal from that set of samples is possible [39, 41, 43]. One
of the most pertinent cases of non-uniform sampling is the case when a set of non-
uniform samples can be divided into subsets with a condition that the number of

these subsets is finite such that [36, 40]:
ltn —tm|, >0k, m#n, m neZ k<oo (2.24)
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where {ax },.., > 0. This condition is known as the relative separation principle [39,
49], which defines the condition over the spacing between samples in each subset
k. If there are sets of separable non-uniform samples, then there exists a lower
uniform Beurling density condition [37, 40, 41, 43, 44]. Moreover, if such sets have
a repetitive nature (periodicity), then this type of non-uniform sampling becomes
the non-uniform recurrent sampling. The next section presents this type of non-

uniform sampling.

2.4 Non-uniform Recurrent Sampling

In some practical applications, aliasing can cause problems in recovering pe-
riodic signals from their uniform samples. One of the possible methods to avoid
such problems is using the non-uniform sampling, in particular, the non-uniform
recurrent sampling. In this form of sampling, non-uniform samples are divided
into groups (subsets) of N samples each. These sample groups have a recurrent

period of T', which can be related to N by [36]:
T = NTg (2.25)

where T, satisfies:

To< iz (2.26)

The case when non-uniform samples have a minimum spacing that satisfies the
Nyquist condition, the recovery of the signal from such samples is possible. This
case has been described by the lower uniform Beurling density approach that has

been mentioned in section 2.3. Also, the case when non-uniform samples can be
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divided into a finite number of subsets as in equation (2.24) can be employed for
recovering signals from their non-uniform recurrent samples. The locations of
non-uniform recurrent samples in the sample group (subset) d can be stated as
{tp},—0,12.. ny_1 relative to a start time for that group [36].

If the non-uniform recurrent samples of the signal z.(t) satisfy the lower uni-
form Beurling density condition, then it can be recovered from these samples pro-
vided the average sampling period is smaller than the Nyquist rate. The average
sampling period for the case of non-uniform recurrent sampling can be defined as
[36]:

Ty = lim 2 tn=t (2.27)

TN-— 00 n

Figure 2.5 shows a band limited signal sampled in a non-uniform recurrent man-
ner.
Recovering the signal z.(t) from its non-uniform samples located at {¢,} can be

done using Lagrange interpolation functions as [36, 40]:

_\ G(t)
z.(t) = n;oo Zeltn) Gy — 1 =) (2.28)
where
G =t—t)]] (1 - %) (2.29)
and
G'(tn) def) =t (2.30)

The recovery of a signal from its samples (uniform or non-uniform) can be car-
ried out using interpolation processes implemented using filter banks. One of the

most efficient structures of filter banks is the quadrature-mirror filter banks, which
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Figure 2.5: Sampling a continuous-time signal f(¢) in a non uniform recurrent manner
using two sample groups at each period.

can define a multiresolution analysis-synthesis structure. The next section intro-
duces the relation between sampling a band-limited signal and a multiresolution

analysis carried out on the same signal.

2.5 Sampling Process as a Multiresolution Analysis

(MRA)

The classical WSK sampling theorem and its application have been the subject
of extensive research by mathematicians and signal processing engineers during
the last 5 decades. This section reviews the research that led to the multiresolution

analysis representation of the sampling-reconstruction process.

45



An important extension to the basic sampling theorem was contributed by
Kramer who proposed the use of generalized integral transforms rather than using
the Fourier transform only. This proposed integral transform takes the following

mathematical form [40-42]:
X(Q) = / () K™ (9, E)ze(t)dt (2.31)
I

where X (Q2) is a square-integrable function and K (f,¢) is a complete orthogonal
set on the integration interval I, p(¢) is a function such that p(t) € L*(I) and the
(*) denotes a complex conjugate. It can be shown that the Fourier transform is a
special case by setting p(t) = 1 and K(Q,t) = e or K*(Q,t) = e~/ [40-44]. This
extension generalized the sampling theorem so that the sampling expansion of a

band limited signal z.(t) can be expressed as [45]:

ze(t) = lim Y @(t)Sa(t) (2.32)

[n|SN
where S,,(¢) is an interpolating function given by [39]:

_ [ p()K(Q, 1) K (9, 1)dS)
Sell) = 501a) = [ p(QK(Q, 1,242

(2.33)

Kramer’s extension provided a general representation of a CT signal by its samples
att = t, regardless of these time instants being equidistant or not.

Kramer’s extension has led to an important interpretation of the sampling pro-
cess that can be stated as: sampling a CT signal z.(t) (z.(t) € Cp[0,T)) is equiv-
alent to extracting a set of IV real-valued parameters from that signal z.(t). The

space C,[0, T§] is a space of continuous and bounded functions on [0, T;]. The span
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of a collection of N linearly independent basis vectors {v, va...,un} (v € [0, T5])
will create an N-dimensional subspace of C[0, T;] [40-43]. Furthermore, if the real-
valued parameters are considered weights to these basis vectors, any vector in this

subspace can be expressed as: [38-44].
N

=Y, ck€ER (2.34)
k=1

where the set {c;} represents the projection of & on individual subspaces spanned
by the basis vectors.

The vector Z can be considered a reconstruction of the signal z.(t). Such an in-
terpretation is basically an approximation of z.(¢) in the N-dimensional subspace
V of (4]0, Ts). Moreover, highly accurate reconstruction can be achieved if the sig-
nal z.(t) lies in the subspace V [38-41]. Walter [47] generalized the idea of recon-
structing a signal as a form of an approximation problem and developed this type
of N-dimensional approximation problem in a multiresolution approximation lay-
out.

The classical sampling theorem can be interpreted in terms of an orthogonal
projection of the sampled signal onto a function subspace V. A set of band limited

continuous-time signals {C7 (¢)} can be expressed as [44-46]:
{CT(®)} S B, Q>0 (235)

If the spacing between samples is a such that 0 < a < &, then any CT signal

z.(t) € {CT (t)} can be perfectly recovered using [47; 52]:

o

z.(t) = Z zc(ka)Sasq(t — ka) (2.36)

k=—00
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where Sa,.,(t) is the Shannon sampling function given by

Sasalt) = 22 () (2.37)

i
Equation (2.36) has two implications:

1. The spacing between successive samples a has to be a > 0.

2. The signal z.(t) has constant values at ka, k € Z.

These implications indicate that the summation of equation (2.36) is finite and it

converges to z.(t). Also, the function subspace V is an L?-closure that is [46, 47]:
VSa,{CT(t)} = clos;:2 <Sa(t - ka) kel (2.38)

This can help in defining a mapping for the function space L? into the subspace

Vsa{cT(#)}- Such mapping can be defined using a sampling operator (O,z.) (t) as:

oo

(Oue) () = > To(ka)Sasa(t — ka) (2.39)

k=—o00

This mapping provides a fairly accurate signal representation for z.(t) € {CT(t)}
due to the conditions imposed on the spacing a between samples. In order to ob-
tain a more accurate representation of the signal z.(¢), an orthogonal projection

mapping (Lsz.) (t) can be used. This mapping is defined as[41, 43]:

(Lox.) (t) = i cr(ka)Sasq(t — ka) (2.40)
such that:
/_ " (2e(t) = (Laze) (8)) Sasalt — ka)dt = 0 (2.41)
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the coefficients {c;} are defined as:

Cp = / Te(t)Sas(t — ka)dt, k € Z (2.42)

—00

The relation between the two mappings can be investigated under the following

conditions [43]:
e The signal z.(t) € {CT (¢)}.

e The sampling function Sa(t) is capable of generating an orthonormal family

on the samples set {ka}, k € Z.
e The spacing between samples a has to satisfy 0 < a < §-.

e The Fourier transform of the sampling function Sa(t) is such that:

Sa(Q) = /OO Sa(t)e ™ ¥dt =1 for | < Q, (2.43)

—00

The orthogonal projection mapping becomes:

(Lyx.) (t) = Z (/ z(t)Sas,(t — ka)dt) Sas(t — ka) (2.44)
k=—00 —oe
Using the Parseval’s identity, equation (2.40) can be written as [44]:
= 1 [ o ikal)
(Lazx,) (t) = kzz_oo (5; o X.A(V)Sa ()€ dQ) Sas.q(t — ka) (2.45)
00 1 Qo ‘
(Lyz,) (t) = Z <§— XAQ)e”“““dQ) Sasq(t — ka) (2.46)
k=—o00 TJ-q,
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The term 5- _Qg‘;o X.(Q)e?*dQ) is an inverse CTFT that is equal to x.(ka) such as:

Qo
L7 xQ)e™ 0 = g, (ka) (2.47)
27T -

The equation of the orthogonal mapping becomes:

0

(Laze) (t) = Y we(ka)Saya(t — ka) = (Opz.) () (2.48)

k=—o00

Equation (2.44) shows that the two mappings perform the same decomposition
under certain conditions. Among these conditions is the capability of the sampling
function to generate an orthonormal family over the sampling set. This condition
indicates that the sampling function has to satisfy specific conditions required by a
scaling function for generating a set of orthonormal basis functions [43-45, 47, 48].

The sampling mapping and the orthogonal projection mapping are identical
if the sampling function Sa(t) can generate orthonormal basis functions over the
samples set {ka}, k € Z. This condition can be verified using the concept of multi-
dimensional approximation [42, 45-48]. Starting with the classical WSK sampling
theorem, a signal z.(t) band-limited to (-, ) (z.(t) € CT(t)) can be recon-

structed or approximated from its samples as [45-47]:

= sin Q,(t — nTy)
z(t) = Z x(nTs)m (2.49)

n=—oo

where T; = 7/Q, = aand ¢ € R. If ), is allowed to vary as 2, = 27, m € Z, then
this can be viewed as a setting of a multiresolution analysis (MRA) [5,43]. The
sinc function can be defined then as a scaling function of the MRA such that it can

generate a collection of linear independent basis vectors {vy, ..., vy }. The scaling
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function satisfies the following dilation equation [43, 44, 47]:

o16) = Y 22 g2t - 1 (2.50)

This setting encompasses the classical WSK sampling theorem in an MRA con-
text. Also, it creates a connection between the WSK classical sampling theorem and
the wavelet theory [47, 48]. The relation between wavelet theory and MRA has led
to an important conclusion that there exists a sampling function ¢(t), which can
provide a sampling expansion of any CT signal z.(t) € V;. The conditions required
for a function to generate orthonormal bases for an MRA are described as follows

[46-49]:

e The function has to be a real and a continuous function with a decaying prop-

erty such that:
lim ¢(t) =0, teR (2.51)

[t|— o0

e The integer translations of ¢(t) of the form {¢(t — )}, ! € Z form an or-

thonormal basis for a subspace V; of L%(R).

e The MRA generated by ¢(t) of closed subsets {V,2}, ., of L?(R) has to satisfy:

0..C V.1 CVoCWVi C Vo CV,p C LAR) (2.52)
ze(t) € Vi © ©(2t) € Vi (2.53)
(N Ve=0, |JVim=IL*R) (2.54)

meEZ meZ
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e Since ¢(t) € V, there exists a sequence {a;} of length N such that:
N-1
$(t) = axp(2t — k) (2.55)
k=0

When the aforementioned conditions are met by a function ¢(¢) the wavelet
theory defines this function as a scaling function, and ensures the existence of an
associated wavelet function (). The wavelet function can generate a set of or-
thonormal basis functions for a subspace W, that is an orthogonal complement of
the subspace V}. Such a set of orthonormal basis functions is generated by integer
translations of the wavelet function ¢ (t) as {¥(t — 1)}, | € Z. As an example, the
WSK function ¢(t) can be defined as [47-51]:

__sinnt

o(t) = (2.56)

Tt

Also, the wavelet function can be defined in terms of the scaling function as [42]:

_sin7(t — 3) —sin 27 (t — 3)

v(t) = e

(2.57)

The previous discussion of the relation between the sampling process and the
MRA provided an interesting relation between sampling a function and analyz-
ing the same function. Moreover, the sampling process can be realized accurately
using an MRA structure. Also, the discussion indicated that there exists a strong
connection between sampling a function and processing the same function using
the wavelet analysis. The next section provides additional interpretation of sam-

pling a signal using wavelet basis functions.
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2.6 Wavelet Sampling Theory

A continuous-time (CT) signal z.(t) can be perfectly recovered from its samples
created by a scaling function. A scaling function ¢(¢) has to be capable of gener-
ating basis functions that span a set of closed spaces {V;,}, m € Z. Moreover, the
density and completeness conditions require an orthogonal complement space W,,
for each space V. Each orthogonal complement space W,, is spanned by another
set of basis functions generated by ¢,,(t). Such a set of basis functions define a

wavelet function v (t) associated with ¢(t) as [49-52]:
N
Y(t) =D (=1 ay_sp(2t — k) (2.58)

k=1

Basis functions required to span each W; can be generated at each scale j by integer
translations of the wavelet function ¢(¢), and are known as wavelet basis functions
as [47-51]:

{jx} = 29(2t — k) (2.59)

Each orthogonal complement space W,, can be defined as a linear span of

wavelet basis functions as [41, 48-50, 53-56]:
W; = spkan {Wjr} (2.60)
The same applies for the space V,, that is a linear span of scaling basis functions as:
V; = span {¢;4} | (2.61)

A collection of scaling spaces V,,(¢) and wavelet spaces Wy,(1)) constitutes a mul-
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tiresolution analysis (MRA). It is to be noted that wavelet and scaling spaces have

to be dense and complete in L?(R) that is:

m=0

J—1
MRA = {Vm b Wm} (2.62)

Density and completeness conditions of both spaces can be used to relate them
with MRA as the scale j changes. This can be translated in constructing scaling
space V,(¢) as [53, 54]:

Va(#) = Veer(6) © Wyma () (2.63)

One of the interpretations of sampling a signal is an NV dimensional approxima-
tion case. If a CT signal z.(¢) is contained in a space V,, then it can be expanded

using basis functions generated at scale q as:

)= (o)t —k)+ Y D (cy)y,; it — k) (2.64)

k€Z j=0 keZ

where coefficient sets {(c,), } and {(Cw) } represent projecting the signal on scal-
ing and wavelet spaces, respectively. These coefficient sets can be determined us-

ing inner product operations as:

{(c)e} = (zlt). 0t - k) ) (2.65)
{0y} = (20), 5,6 - 1)) (2.66)

where ¢(t) is the dual scaling function and 1;(t) is the dual wavelet function.
The previous discussion indicates that the projection of a CT signal z.(¢) can

represent a sampling-reconstruction process. This can be generalized to an ap-
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proximation case in terms of a wavelet-based MRA as [41, 48, 49]:

Z(t) :ZZ@@ it — )>¢j(t—k) (2.67)

7=0 k€Z

The term <xc(t), b, (t — k)> represents a generalized sampling of the CT signal z.(t),
where the set of basis functions {¢;(t — k)} ., span an approximation space at each
scale j [40, 42-44, 46, 54].

For the last 50 years, the sampling theorem has been a subject for extensive re-
search due to its wide applications. There have been detailed mathematical deriva-
tions for the sampling process using the functional space analysis and the approxi-
mation theory. Due to new applications, different forms of sampling emerged and
derivations had to be generalized to accommodate the new sampling forms. One
of these sampling forms is the non-uniform recurrent sampling form that is ap-
plied in periodic signal sampling and reconstruction. Furthermore, the interest of
applying wavelet MRA in signal processing areas has led to the wavelet sampling
theory. Several important contributions have been achieved in this aspect, in par-
ticular the representation of sampling-reconstruction process as a wavelet-based
multiresolution analysis-synthesis [42-46].

The wavelet-based MRA representation of a CT signal z.(¢) is carried out such
that the signal energy will be small for high frequencies, hence the wavelet coeffi-
cients will vanish after a certain scale j. This fact leads to an important conclusion
that scaling function coefficients are the sampling expansion of a CT band limited
signal z.(t) at each scale j [45, 46]. As aresult, the reconstruction of that signal from
its samples is carried out by sets of scaling and wavelet basis functions.

The concepts developed for the sampling theorem can be employed to build
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mathematical models for various system functions. Among such functions are the
switching functions, in particular, power electronic dc-ac inverters. Power elec-
tronic switch-mode inverters carry out switching actions for different time inter-
vals. The main objective of such switching actions is to synthesize a sinusoidal
signal on a high power level. Different aspects of operating these systems are still
not validated using the conventional interpretation of the inverter operation. The
next chapter presents a mathematical modeling of power electronic switch-mode

inverter functions based on concepts of the sampling theorem.
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Chapter 3

Modeling DC-AC Inverters

3.1 General

Dc-ac inverters are mostly operated using multi-switching techniques to elimi-
nate or reduce as much energy distributed in the output harmonic components as
possible. Multi-switching techniques can be realized through a modulation process
that determines time instants at which switching element(s) change their status
(ON to OFF or OFF to ON). Various approaches with different schemes of imple-
mentation have been developed and tested to carry out multi-switching techniques
for improving inverter performance. Although extensive research has focused on
operating and controlling inverters, little effort has been made to model the in-
verter. Moreover, existing modulation techniques are optimized to meet load re-
quirements without correlation with any existing inverter model. This approach
of operating inverters has caused several limitations of modulated inverters per-
formance. These limitations include the spectral distribution of inverter output
harmonic components, the jitter phenomenon when using rectangular pulse car-

rier signals and impacts on the output due to changing the switching strategy [1-
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4,55, 56]. There exists a need for a rigorous model for justifying and verifying the
fundamental function of inverters. Such model is to consider the instantaneous
switching element actions as a main part of the inverter function.

This chapter aims to develop a new inverter modeling approach, and test this
approach for modeling single-phase (1¢) and three-phase (3¢) inverters. The de-

sired inverter modeling approach has to have the capability of:

e Providing a mathematical tool for verifying the impact on inverter outputs

due to applying a switching strategy.

¢ Providing a basis for novel modulation techniques that can be correlated with

the inverter model.

¢ Providing new approaches for realizing new control techniques for inverter

outputs.

The basis of the desired model will incorporate several concepts of the sampling
theorem, in particular, the concept of non-uniform sampling and reconstruction
of continuous-time (CT) signals. The next section provides a brief review of the

available inverter models.

3.2 Review of Available DC-AC Inverter Models

The common assumption in modeling power electronic converters has been
based on time-averaging the switching actions over one cycle of a reference-
modulating signal (usually a sinusoidal signal). This assumption has been realized
in three main models, which include steady-state models derived using circuit the-

ory, operational models derived from numerical data and models derived from
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a unified converter theory [1,2,57]. These models are reviewed in the following

subsections.

3.2.1 Steady-State Circuit Models

The earliest steady-state circuit modeling approach of switching converters was
introduced by Tymerski based on the small-signal analysis concept. In this model,
any switching circuit is assumed to be piece-wise linear and its response is deter-
mined for any small perturbation of steady-state operating conditions. Also, each
switching element is considered as a three-terminal device that is reminiscent of a
typical transistor. This basic model of each switching element became known as a
switch-cell. The switch-cell terminal voltages and currents are averaged over each
switching cycle [59]. This averaging step is performed to validate the assumption
of piece-wise linear outputs. However, the assumption of piece-wise input/out-
put relations can reduce the bandwidth of the switch-cell and make it valid over a
narrow range of switching frequencies.

The incremental small-signal model of the switch-cell can be constructed using
the basic transistor linear model. The instantaneous ON time of the switch-cell is
defined as D;(t), which is composed of a steady-state value and an increment as in
the following equation [59]:

Dy(t)y=Ds+¢ 3.1

where D is the steady-state ON time and ¢ is the increment. Moreover, the steady-
state OFF time is defined as D, = 1 — D,. The output current of the switch-cell
during the ON time is I4(¢), and during OFF time is Ip(t). Also, the switch-cell

output voltage during ON time is V4 (t), and during OFF is Vpc(t). These voltages
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and currents are defined as [60]:

Ia(t) = f(Ds 4 6) = La + Las (3.2)
Ip(t) = f(Ds +96) = Ic + Ics (3.3)
Vac(t) = f(Ds 4 6) = Vac + Vacs (3.4)
Vec(t) = f(Ds +6) = Ve + Vpcs (3.5)

The description of a typical switch-cell can be stated as [58]:

IA(t) = Ia + Dydlc + Dilcs (3.6)
Ip(t) = Ip + D615 — Dylos 3.7)
Vec(t) = Vee + Ds6Vap + DsVaps 3.8)
Vac(t) = Vac + D,0Vap + DsVaps (3.9)

The model of the switch-cell can be constructed using the above equations, and can
be built in a circuit as shown in Figure 3.1.

It is to be noted that the transformer used in the switch-cell circuit model with
turns ratio of 1 : D, converts both voltages and currents by the ratio of D;.

The incremental method sets the operating point depending on steady-state
values of the switch-cell parameters: I, Vip and D;. This method of defining the
operating point makes this model valid for a nominal value of D, that is related
to a limited range of switching frequencies. Furthermore, conditions on switch-
ing frequencies are required to validate modeling the overall converter using the
switch-cell basic model.

This circuit model can now be substituted for the switch in a converter topol-
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Figure 3.1: The small signal circuit model of the switch-cell [60].

ogy, and the dynamic behavior of the circuit can be derived using the usual linear
methods of circuit analysis. It is very critical to connect a series inductor to limit the
variations in the current I4. This condition is necessary since the switch-cell model
is validated under the assumption of flux-balance per cycle [57]. These conditions
are imposed to ensure the linearization of the switch-cell model around a fixed
value of D; with a small variation ¢. This results in a linear circuit under assump-
tions of passive components, which can be analyzed using linear time-invariant
system methods [54, 60].

The switch-cell modeling approach has been used to construct general linear
models of switching power electronic converters. The most popular application
of the switch-cell model in inverters is a model based on the decoupling principle
developed by Milosevic [54]. This model aimed to define a transfer function of

a 3¢ voltage source inverter considering only fundamental components of output
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voltage and current. The equivalent circuit is shown in Figure 3.2.

R [i(®)] Ru jXu

— - AAAA T

Vee [o(®)]

+
T ()]

Figure 3.2: The equivalent circuit model of a three-phase inverter based on the switch-cell
linearized model approach [54].

where [v(¢)], [i(¢)] and [v(¢)] are given by:

[U(t)]T = [Uab(t) 'ch(t) Uca(t)] (310)
[i(6)]" = [ia(t) i6(t) ic(2)] (3.11)
e @] = [(van(t)) (Wse(®)), (vea(t))] (3.12)

Using a developed approximate equivalent steady-state circuit-model and the d —
q rotating frame, a transfer function can be derived to describe the steady-state

inverter operation mathematically as [54]:

I 1

G = =
)= % = SITR T il

(3.13)

where I = I, + Jlg, AV = AV, + jAV, and w; is the fundamental frequency. The
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developed transfer function of a 3¢ VS inverter has several limitations that include:
e The assumption of small variations of the ON-time D; (only by 4).

e The assumption of passive components needed to build the switch-cell

model.
o The averaged values of currents and voltages over each switching cycle

e Complicated mathematical formulation when modeling a switching con-

verter with several switching elements

3.2.2 Operational Data Models

The integration of inverters in different industrial applications has made it possible
to consider them as parts of such applications. One of the famous examples of
such applications is the utilization of renewable energy. In such applications, an
inverter is considered as one component of a complete system model. Moreover,
the requirements imposed by renewable energy systems define the operating point
of the employed inverter. As aresult, the inverter is considered as a single element,
where input and output powers, voltages and currents are taken as parameters of
such an element. A transfer function relating input power with output power is
developed based on the modeled system voltage-current relations. Furthermore,
a curve-fit approximation is applied on collected inverter powers, voltages and
currents data to define a set of mathematical equations describing the final model.
One of the popular curves used to obtain good fitting is the empirical efficiency
curve [61].

The data based models have several limitations that include:
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¢ High dependence on data that can be affected by the whole system and mea-

suring equipments.

e The model is valid only for pre-defined inverter voltages, currents, power

losses and output frequency ratings.

e The model transfer function is derived through curve fitting, which is based

on assumptions of pre-defined linear voltage-current relations.

3.2.3 Unified Converter Theory

The unified converter theory was developed by Wood [60], who considered that
switching converters are related by their functions and behaviors. Also, the basic
characteristics of switching converters depend neither on their applications, nor on
their topologies [62]. According to this theory, a typical switching converter is sim-
ply a matrix of switching elements that connects its input nodes to its output nodes.
These input and output nodes can be ac or dc, capacitive or inductive. Moreover,
the direction of the power flow can be from output nodes to input nodes or vice
versa. This model is valid under constraints imposed by fundamental concepts of

circuit theory, which include [1, 62]:

1. If one set of nodes (input or output) is inductive, the other set must be capaci-
tive to avoid creating any cut-set of voltage or current sources when converter

switches are activated.

2. Any combination of open and closed switches should never open circuit an

inductor, or short circuit a capacitor.

Conventional inverter models are based on major assumptions of linearity and

time averaged switching actions. These assumptions have resulted in approxi-
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mated and inaccurate models that can not be generalized for modern modulated
inverters. Also, if these models are valid for certain operating conditions, they are
not capable of justifying changes in switching technique or switching frequency.
The assumption of time-averaged switching actions can be avoided if instanta-
neous switching actions are considered as part of the inverter model. One of the
possible ways to validate this approach is using sampling-reconstruction concepts.

The previous section has provided a brief review of the available inverter mod-
els along with their structures, drawbacks and relation with modulation tech-
niques. The next section presents a new approach for modeling single-phase
(1¢) voltage-source (VS) inverters based on a non-uniform recurrent sampling-
reconstruction of continuous-time (CT) signals. Also, section 3.5 extends this ap-

proach for modeling 3¢ inverters.

3.3 Sampling-Based Modeling

Multi-switching techniques are very common in operating and controlling mod-
ulated inverters. Such techniques are able to improve the performance of invert-
ers in terms of output quality, efficiency and dc-bus utilization. The fundamental
idea of most modulation techniques is to compare a high frequency signal known
as the carrier (e.g. a triangular signal with frequency f.) to a low frequency sig-
nal known as the reference-modulating signal (usually a sinusoidal signal with
frequency f). Also, some modulation techniques pre-define switching instants
like SHE and SVM. The reference-modulating signal has the same frequency as
the desired output of any modulated dc-ac inverter [1-3]. Pulse-width modulated
(PWM) and delta modulated (DM) inverters are very popular in different indus-

trial applications [31]. The harmonic spectra of outputs of PWM and DM inverters

65



are shown in Figures 3.3 and Figure 3.4, respectively. It is to be noted that the
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Figure 3.3: The pulse-width modulation (PWM) technique: (a) the per-unit output voltage
of a single-phase PWM inverter and (b) the harmonic spectrum of the output voltage.
per-unit (p.u) in both figures represents the ratio of the magnitude to a pre-defined
value, which in these figures is taken as the maximum value of each quantity.
Figure 3.3 and Figure 3.4 show harmonic components forming frequency side-
bands centered at even multiples of the carrier frequency f.. Similar frequency

formations are found in spectra of reconstructed continuous-time (CT) signals from

their samples [4].

3.3.1 Non-uniform Sampling-Based Representation

The change in the status of the switching elements occurs at intersection points

between the carrier signal and the reference-modulating signal. Unit impulses
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Figure 3.4: The delta modulation (DM) technique: (a) the per-unit output voltage of a
single-phase DM inverter and (b) the harmonic spectrum of the output voltage.

created at each intersection point can be viewed as non-uniform samples of the
reference-modulating signal. Furthermore, each cycle of the carrier signal pro-
duces two samples; the rising portion of the carrier signal produces one sample,
while the falling portion produces the other [4]. As a result, these samples appear
to be taken at a sampling frequency of 2f..

Samples created at intersection points have a non-uniform repetitive nature due
to the periodicity and the symmetry of the carrier and the reference-modulating
signals. This type of non-uniform sampling is known as the non-uniform recur-
rent sampling [36]. The non-uniform recurrent sampling structure is based on
arranging non-uniform samples into limited number of repetitive groups, where

each group has a finite number of samples. For the case of sampling a sinu-
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soidal reference-modulating signal using a triangular carrier signal, each sample
group will have two samples. The number of sample groups in one cycle of
the sinusoidal reference-modulating signal will depend on the frequency of the
reference-modulating signal and the frequency of the carrier signal. If the sinu-
soidal reference-modulating signal has a frequency of f,,, and the carrier signal has

a frequency of f., the number of sample groups can be defined as:

_ofe
D=2 (3.14)

The formed groups of non-uniform recurrent samples over one cycle of the
reference-modulating signal can be viewed as aset D = {dy, ds, ..., dp}. The created
non-uniform recurrent sample groups can take a discrete form of the reference-

modulating signal Sy,(¢) that can be expressed as:
00 D 2
Saur(t) =" DD S ()8 (t — tpa — KTon) (3.15)
k=—00 d=0 p=1

where the variable ¢,, represents d groups of p samples, which form one of the
recurrent periods. The sampled form of the reference-modulating signal can be

expressed as a discrete signal as:

Sam[n] = Sans ()] e=tpg+kTm (3.16)

This discrete form provides a basis for viewing the instantaneous switching actions
of an inverter as stages of interpolating functions. Such interpolating functions are

used to recover Sy (t) from its samples Saur[n].
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The popular sinusoidal pulse-width modulation (SPWM) technique uses a tri-
angular carrier signal for creating trains of switching pulses. These pulses are char-
acterized by their widths and locations relative to the beginning of each cycle of
Su(t). In SPWM, non-uniform recurrent samples are created by the carrier signal

that can be expressed mathematically as [19]:

Afct 0<t<%
Ssc(t) =1 2—4ft Z<t<ik (3.17)

Two signals of different functional forms representing the rising and the falling
portions of Ss¢(t) that are responsible for creating two samples for each sample

group, can be defined as trains of non-uniform recurrent impulses as:

D
Sscr(t) = Y 6 (t —tpay — dT. — kT,y) (3.18)
k d=1
Sscr(t) =Y Y 8t —trar — dT. — kT, (3.19)
k d=1

The discrete form of these two signals can be defined as:

Sscr[n] = Sscr(t)|t=tpyy—dTo—kT0m (3.20)

Sscr[n] = Sscr(t)|t=tpy—dTo—kTrm (3.21)

where the set {¢gq, } represents the intersection points of the rising portion of Ssc(t)
with Sy, (t), while the set {tr4 } represents the intersection points of the falling

portion of Ssc(t) with Sas(t). These sets of time instants can be determined over a
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cycle of Ssc(t) as:

SM (th) - 4fcth =0 (322)

Su (tF'r) - (2 - 4fctFr) =0 (323)

Figure 3.5 shows the intersection points of both discrete signals Sscr[n] and

Sscor[n] with a sinusoidal reference-modulating signal.

Sscorln]
o o o o
s 828
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P
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s o =
= N
1
R

Sscrn]

Figure 3.5: Sampling the reference-modulating signal Sy(t) in a non-uniform recurrent
manner: () Sscr[n]; the samples created by the rising portion of Sgc(t) and (b) Sscr(n);
the samples created by the falling portion of Ssc(t).

The period of sample groups T, is related to the Nyquist interval Ty and the

number of sample groups D by the following relation [36]:

T,, > NDT, (3.24)
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where N is the number of samples in each sample group, which is N = 2 for
the SPWM technique case. Figure 3.6 shows the discrete form of the reference-

modulating signal Sy (t).

Sam[n
au ]\(ﬁ,,a S Spr(t) = sin(wpmt)
NG e
Group d K \/
= . fj\
3 of
S N .
E g 1
[~
=
[%5]

P
s
5
B N
h N
¢ 1 A
. ' .
g 1
’ ! s

, i N

2. i}

Figure 3.6: Groups of non-uniform recurrent samples of the reference-modulating signal
S (t) using both discrete signals Sgor(t) and Sgor(t) to form Sgar[n].

The discrete signal Sscgr[n] is the result of sampling the reference-modulating
signal Sy(t) with the rising portion of the carrier signal, while the discrete signal
Sscor[n] is the result of sampling Sy, (¢) with the falling portion. This interpretation
of creating samples of the reference-modulating signal Sy, (t) can be constructed in

a block diagram as shown in Figure 3.7.
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Figure 3.7: A block diagram of non-uniform sampling the reference-modulating signal
using the rising portion Sgcr[r] and the falling portion Sscp|[n] of the triangular carrier
signal Ssc(t) [4].

3.3.2 Reconstructing the Reference-Modulating Signal from Non-

uniform Samples

The reconstruction of a continuous-time (CT) signal from its samples is carried out
through a filtering process. The classical sampling theorem states that if a CT signal
s(t) has a Fourier transform F {s(t)} = S(2) = 0 for |2] > €, (i.e. the signal s(t) is
band limited to €,), then s(¢) can be recovered perfectly from its samples sy[n] by

the following formula [40]:

o0

_ sin (7(t — n))
st)=> sd[n]w (3.25)

n=—0oQ

The reconstruction formula of equation (3.22) represents an interpolating func-
tion, which is valid under a strict condition of equi-spaced samples [13]. However,
for the case of non-uniform recurrent sampling, reconstructing the CT signal is

carried out through stages of interpolating functions. This can be realized using
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different stages of filters or a filter bank, where the number of the required filters
depends on the number of sample groups D. In general, a CT signal z.(¢) can
be reconstructed from its non-uniform recurrent samples z4[n] using the Lagrange

general interpolating formula as [36]:

- Ga(t)

z(t) = ) Hid[n]m (3.26)
where
Ga(t) =t]] (1 - %) (3.27)
and
Gl = 20, 328)

Golt) = (1 - %) <1 - %) (3.29)

The case of N = 2 can be employed to express the Lagrange interpolating function
for the SPWM technique so that ¢; = tgs and t; = tpg. Hence, the Lagrange

interpolation formula can be expressed for the case of SPWM technique (N = 2) as:

Sus(t) =" Sam [pd]—GT(—% (3.30)

r d=1 p=1 d tp)(t - tp)

One group of non-uniform recurrent samples is created each cycle of the trian-

gular carrier signal Sgc(t). Also, one stage of Lagrange interpolating functions is
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defined over that group of samples. This representation can be stated as:

{Snm (tar) , Sur (taz)}, t € [tar, tao) (3.31)

where {Sys (ta1), S (ta2)} is the sample group d. The interpolating function for

non-uniform recurrent sample group d can be defined as:

S (tar) Ga(t) Su (taz) Ga(t)

Aa(t) = 3.32
= G ) ta) | Cilan) (- ta) 39
where the function G4(t) is defined for the sample group d as:
t t
Ga(t) =t (1 - —) <1 - —) , t € [tar,tao) (3.33)
ta1 taz

The time interval [t41, t42] is known as the interval of support of the interpolat-
ing function A4(t) over the sample group d. Due to the periodicity of the sample

groups, the function A4(t) is periodic with a period of T,,, so that [4]:

A (t—1Ty) ta <t<t
Mlt) = a( ) fa “ (3.34)

0 otherwise

where r = 0, 1,2, ... Figure 3.8 shows two successive interpolating functions and
their associated inverter output switching actions.

Successive interpolating functions {A\(t)},_,, p are defined through simpli-
fying the Lagrange general interpolating formula as given in equation (3.26) for
the case of the inverter that is characterized by N = 2. Moreover, the interval of
support for each interpolating function A\s(t) is stated as {[ta1, 42|} 41 o p- These

interpolation functions can produce a reconstructed CT signal to model the output
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Figure 3.8: Two successive interpolating functions A4(t) and A4 () and their normalized
associated ON-switching inverter output.

of a SPWM inverter V,(t) as [4]:

o D
Vo(t) = Ve D) Aa(t—rTm) (3.35)

r=0 d=1

Figure 3.9 shows two cycles of the reconstructed V,(t) along with its associated
inverter output voltage. The two reconstructed signals are analyzed using Fourier
analysis, the harmonic distributions for both of them are shown in Figure 3.10.
Instantaneous switching actions are considered a main part of the developed
inverter sampling-based model. Such consideration makes this model capable of
simulating the performance of modulated inverters. As Figure 3.9 shows, the out-
puts of the developed model are almost identical to the actual inverter outputs.
The non-uniform recurrent sampling-based model is tested for different operating
conditions that include changing the switching frequency. The next section pro-

vides the simulation test results for these cases.
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Figure 3.9: Reconstructing sinusoidal signals for the SPWM case: (a) reconstructing a si-
nusoidal signal using the interpolating functions generated by the sampling-based model
({Xa(?)}4=1 2. p) and (b) the reconstructed sinusoidal signal using switching pulses gener-
ated by the SPWM technique.

3.4 Testing the Non-uniform Recurrent Sampling-
Based Model of Inverters

The proposed non-uniform recurrent sampling-based model represents the in-
verter output as a reconstructed CT signal using sets of interpolating functions.
The proposed model is tested for producing the output voltage of a SPWM inverter

for two carrier frequencies.

3.4.1 SPWM Inverter Output Voltage for Two Carrier Frequencies

In general, the carrier frequency of a SPWM technique determines the rate at
which inverter switching elements change their status. If the carrier frequency f, is

changed, locations as well as the number of intersection points of Ssc(t) with Sy (%)
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Figure 3.10: Spectra of reconstructed sinusoidal signals for f, = 1.08 kHz: (a) the re-
constructed sinusoidal signal using {Aa(?)},; 5 p. (b) the reconstructed sinusoidal signal
using switching pulses generated by the SPWM technique, (c) the spectrum of the recon-
structed sinusoidal signal using {A4(t)},_; , p and (d) the spectrum of the reconstructed
sinusoidal signal using switching pulses generated by the SPWM technique. n id the har-
monic order
will change. Moreover, changing f, has a direct impact on the spectral distribution
of the SPWM inverter output harmonic components. From the perspective of the
proposed model, changing f. affects locations of samples as well as the number of
sample groups created over each cycle of Sy/(t). As a result, intervals of support
and locations of the proposed model interpolating functions are affected. Figures
3.11(a) and 3.11(b) show successive non-uniform recurrent sample groups of Sy (%)
with f,, = 60 Hz for two common values of switching frequency f. = 1.08 kHz
and 1.8 kH z, respectively.

Figure 3.12 shows the normalized output of a SPWM inverter for a carrier fre-

quency of f, = 1.8 kHz and sets of interpolating functions produced by the pro-

posed sampling model for this value of f. along with their spectra. The recon-
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Figure 3.11: Non-uniform recurrent sample groups for different values of f.: (a) succes-
sive sample groups of Sy(t) for f. = 1.08 kHz and (b) successive sample groups of Sy (t)
for f,=18 kH=.

structed CT signal using model sets of interpolating functions has a spectrum that
is very close to the output voltage of a SPWM inverter, which again confirms its
accuracy.

The proposed model is entirely based on considering instantaneous switching
actions rather than averaging them over time. This main feature of the proposed
model has made it possible to verify the effects on the inverter output due to dif-
ferent modifications of switching strategy, which is clear from results of Figure
3.12. It is worth mentioning that existing inverter models lack the adequate capa-
bility to interpret impacts on inverter outputs due to any change in the switching
strategies involving non-sinusoidal reference modulating signals and multiple car-
rier frequencies. The proposed non-uniform recurrent sampling model can easily
create the outputs and their harmonic spectra of an inverter. If spacings between

samples are selected so that optimal interpolating functions can be used, then a per-
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Figure 3.12: Spectra of reconstructed sinusoidal signals for a carrier frequency of f, =
1.8 kHz: (a) the reconstructed sinusoidal signal using {A4(¢)},_; 5. p, (b) the reconstructed
sinusoidal signal using switching pulses generated by the SPWM technique, (c) the spec-
trum of the reconstructed sinusoidal signal using {A\a(t)},-, , p and (d) the spectrum of
the reconstructed sinusoidal signal using switching pulses génerated by the SPWM tech-
nique. n id the harmonic order

fect reconstruction of the sinusoidal reference-modulating signal becomes possible.
Such optimization can be achieved using signal processing and wavelets concepts
as will be discussed in chapter 4. It is worth mentioning that the proposed non-
uniform recurrent sampling-based model has been used to develop new carrier
signals and modulation technique that aim to improve the performance of dc-ac
inverters and other power electronic converters. The next section presents a de-
tailed extension of the developed sampling-based approach to model three-phase

(3¢) inverters.
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3.9 Sampling-Based Modeling of Three-Phase Invert-
ers

The non-uniform recurrent sampling-based mathematical model of single-phase
inverters has shown an encouraging accuracy and significant capabilities of model-
ing modulated inverters. This approach of modeling single-phase inverters can be
extended for three-phase (3¢) inverters. In a typical three-phase (3¢) inverter, three
reference-modulating signals are used to generate the required switching pulses.
These three signals are shifted by 2* from each other so that each one of them is
associated with one phase on the output side of the 3¢ inverter. It is to be noted
that 3¢ inverters can have different configurations. However, 3 legs six-pulse con-

figuration is the most common one in industrial applications [1]. Figure 3.13 shows

a schematic diagram of the common 3-leg six-pulse topology of 3¢ inverters.
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Figure 3.13: A schematic diagram of a typical 3¢ 3 legs six-pulse inverter.
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The required reference-modulating signals for a 3¢ inverter are given by [1]:

Snma(t) = sin (wpt) (3.36)
Swap(t) = sin (wmt - 2%) (3.37)
Sare(t) = sin (wmt + 2%) (3.38)

The carrier-based techniques are the most common techniques used to generate
switching pulses for 1¢ as well as 3¢ inverters. In theses techniques, switching
pulses widths and locations are determined by the locations of intersection points
of reference-modulating signals and a carrier signal [1,4]. Triangular signals are
widely used in carrier-based techniques to generate trains of periodic switching
pulses. This process can be viewed as multiplying each reference-modulating sig-
nal with a train of impulses located at the intersection points. For the case of 3¢
inverters, three trains of impulses are required to generate switching pulses for

each leg of the 3¢ inverter. These trains of impulses can be expressed as:

D 2
Pat) =Y 3" 6 (t—tye — dT. —1T) (3.39)
r d:Dl pa2:1
Po) =3 3 3" 6(t —ty — dT. — 1T) (3.40)
T d:Dl pbzl
P(t) =33 "5t —tye — dT. — rTp) (3.41)
r  d=1 pc=1

L L
fe fm

reference-modulating signal and §(¢) is the Dirac delta function. Using these trains

where T, = =+ is the period of the carrier signal, 7,, = is the period of each

of impulses, the three reference-modulating signals can be sampled in a non-

uniform recurrent manner. The sampled versions of these reference-modulating
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signals can be stated as:

Sam[n)a = . Sua(t)Pa(t)dt (3.42)
SdM[n]b = . SMb(t)Pb(t)dt (343)
Sanlnle = /_Q Suel)Pa(t)at (3.4)

Figure 3.14 shows the three reference-modulating signals, the triangular carrier
signal and the resultant non-uniform recurrent sampled versions of the three

reference-modulating signals.

Srre(t) and Ssc(t)

Sap(t) and Ssc(t)

Sume(t) and Ssc(t)

t [sec]

Figure 3.14: Non-uniform sample groups of the three reference-modulating signals
Sua(t), Sap(t) and Sys.(t) created using the same triangular carrier signal Sg(t).

Each cycle of the carrier signal produces two samples for each sinusoidal
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reference-modulating signal. The time intervals [t,q1, tad2] , [tod1, toa2] @and [tear, teas)
are intervals of the group d of non-uniform recurrent samples of Sy, (t), Su(t) and
Sue(t), respectively. This representation is considered a line-to-line one due to the
operation of a typical 3¢ 3-leg six-pulse inverter [1, 2, 6]. In 3¢ voltage-source (VS)
six-pulse inverters, the voltage across each leg is switched from +Vpe to —Vpe
alternately. Such an alternate switching causes each leg to change its connection
with the other inverter legs. A leg appears in series with a parallel connection of
the other two legs; when switched, it becomes in parallel with one leg and both are
in series with third leg. The changes in the connections over a time interval of T,

are illustrated in Figure 3.15 [1].

Q1Q:2Qs a P a Q:1QsQs6 b a Q1Q2Q3

p Q3Q4Qs b
+
2Voe s
Neo ? :
n

Figure 3.15: Inverter legs connection changes due to alternate switching of the DC supply

(1].

A similar alternate switching takes place in 3¢ current-source (CS) six-pulse in-

verters. The dc current flowing through each leg is switched alternately causing
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inverter legs to undergo similar alternate connections [1].
The alternate switching of a 3¢ inverter produces outputs that can be measured
either as line-to-line or as line-to-neutral quantities. Figure 3.16 shows line-to-line

and line-to-neutral quantities for a square wave switching operation [1].
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Figure 3.16: 3¢ six-pulse inverter output voltages: (a) the line-to-neutral voltage (Vop_n)
for one phase leg and (b) the output line-to-line voltage (Voy_r) for the same phase leg.
The base value is Vo, .

When a 3¢ six-pulse inverter is switched through a modulation process, both line-
to-line and line-to-neutral quantities appear as trains of ON switching pulses. Such
outputs are shown in Figure 3.17 [1, 2, 4].

The previous description of a 3¢ inverter operation indicates that switching
signals are generated based on a line-to-line quantity for each leg. This result can
be utilized in developing a sampling-based model of a 3¢ inverter. As the three
reference-modulating signals are sampled in a non-uniform recurrent manner, the

reconstruction can be carried out as three independent reconstruction processes.
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Figure 3.17: 3¢ PWM six-pulse inverter output voltages: (a) per unit line-to-neutral volt-
age (Vop_y) and (b) per unit line-to-line voltage (Vor_r). The base value is Vor_p.

As a consequence, three switches located in different legs of the inverter are acti-
vated at any given time. One of these switches is replaced by another switch each
o, where «, is expressed as [1, 2]:

L,
= M= ]-a 2)

12
12 ’

(3.45)

Oy = [

where wy, = 27 f,. Each switching element is activated for a period of L= sec.. This
is necessary to avoid creating any short circuits in parallel with any inverter leg
[1, 3]. The reconstruction of the three reference-modulating signals from their non-

uniform recurrent samples is carried out using Lagrange interpolation functions,
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which can be defined for sample group d as:

Sita (tad) Gaa(t) SMa (fag2) Gaalt)

Aaalt) = Gy (taar) (t —tad1)  Glg (tazz) (t — taa2) (3.40)
_ SMb (tear) Geal(t) SMb (toaz) Gra(t)

hualt) = Gl (toar) (t — toa1)  Gig (teaz) (¢ — toaz) 347

Aealt) = Sme (tear) Gea(t) Smec (teaz) Gea(t) (3.48)

Gy (tear) (B —tear)  Gly(teae) (t — teaz)

where Gu4(t), Gpa(t) and G.4(t) are Lagrangian interpolating functions over the

group d of non-uniform recurrent samples, and are given by:

t) = tH (
Ghoa(t) = tH <1 - —) (3.50)
Gaat) =t]] ( wp) (3.51)

Also, Gl ,(t), Gi,4(t) and G.,(t) are the first derivatives of the Lagrangian interpo-

td ) (3.49)

lating functions over the sample group d that can be defined as:

dGaa(t
Ghaltadp) = dz( )’t=tad,, (3.52)
dG
bd(tbdp) _—;(ti—(—) |t:tbdp (3.53)
dGoq(t
caltedp) = ”‘#()h:tcdp (3.54)

where p = 1, 2. Time intervals [taq1, tagz] » [tod1, tsaz] @and [t , teaz] are time intervals
for the three interpolating functions A\.4(t), Apa(t) and A.4(¢) for the samples groups
ad, bd and cd, respectively. Due to the periodicity of sample groups, these three

interpolating functions are periodic with a period of T,,, and can be defined for
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sample groups ad, bd and cd as follows:

Aag (= 7T) togn <t <tugo, TEZL
Naa(t) = ( ) tan “ (3.55)

0 otherwise

Md (E—=1Tn) tegy <t <tpge, r €Z
Apa(t) = (3.56)

0 otherwise

Aag (8 =110 tenn St <toge, 1 €L
oy 4 Nl Tn) e S0t o

0 otherwise

where d = 1,2,...,D. It is to be noted that D is the number of sample groups over
one cycle of each reference-modulating signal. Figure 3.18 shows \,(¢), Ay(t) and
A(t) evaluated for two adjacent sample groups d and d + 1 for each reference-
modulating signal.

The definition of the three interpolating functions leads to stating the sampling-

based model of a 3¢ six-pulse inverter as:

D
Vab(t) = VDC Z Z )\ad (t - TTm) (358)
r d=1
D
Vie(t) = Ve D ) Mea (t — 7T) (3.59)
r  d=1
D
Veal®) = Ve 3 Y Aea (t = 7T) (3.60)
r d=l1
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Figure 3.18: The three interpolation function for two adjacent groups of samples: (a) the
interpolation function for phase a leg: A\,(t), (b) the interpolation function for phase b leg:
Ap(t) and (c) the interpolation function for phase c leg: A.(t).

Line-to-neutral output voltages can be derived from line-to-line ones as:

Vonlt) = Y22 Jg 12
Vinlt) = 22 (i/;-
Ven(t) Ver (i/ﬁ

(3.61)
(3.62)

(3.63)

Figure 3.19 shows the three sets of interpolating functions used to reconstruct 3¢

line-to-line output voltages for a 3¢ VS PWM six-pulse inverter. Figure 3.20 shows

the three sets of interpolating functions used to reconstruct 3¢ line-to-neutral out-

put voltages for a 3¢ VS PWM six-pulse inverter.
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Figure 3.19: Reconstructing 3¢ line-to-line output voltages for a 3¢ VS PWM six-pulse
inverter: (a) output of phase a leg: V;(¢), (b) output of phase b leg: V4.(t) and (c) output of
phase cleg: V;4(1).

The developed non-uniform recurrent sampling-based approach is used to
model a 3¢ six-pulse inverter. Furthermore, the input data to this model in-
cludes f,,, f. and the set of intersection points over one cycle of each reference-
modulating signal {(ts),}, {(tw),} and {(te),}, wherep = 1,2, d = 1,2,...,D
[3]:

d=q+1 (3.64)

Phase A normalized line-to-line V4p(t) and line-to-neutral Vyx(t) voltages ob-
tained using the proposed sampling-based model are compared with phase A volt-
ages obtained on the output of a 3¢ six-pulse VS PWM inverter. Figure 3.21 shows
inverter actual phase A voltages along with their spectra and phase A voltages
obtained using the sampling-based model along with their spectra.

As shown in Figure 3.21, phase A voltages obtained using the sampling-based
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Figure 3.20: Reconstructing 3¢ line-to-neutral output voltages for a 3¢ VS PWM six-pulse
inverter: (a) output of phase a: V,,(t), (b) output of phase b: Vj,,(t) and (c) output of phase
e Ven(t).

model are almost identical to the actual voltages. Also, the spectra of both types
of voltages are very close, which demonstrates the accuracy of the proposed non-
uniform recurrent sampling-based model of 3¢ inverters.

This chapter has provided a brief review of available inverter models along
with their structures, conditions for validation, limitations and relations with
switching techniques. Also, this chapter presented a new approach based on con-
cepts from the sampling theorem to construct models for 1¢ and 3¢ inverters.
The main concept from the sampling theorem has been the non-uniform recur-
rent sampling-reconstruction of CT signals. The connection between the sampling
theorem and the wavelet theory can be utilized to develop an ideal sampling-
reconstruction process for operating any inverter to achieve an optimal perfor-
mance. The next chapter provides a method for optimizing the non-uniform re-

current sampling-reconstruction of CT signals using new wavelet basis functions
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Figure 3.21: The output voltage of 3¢ VS six-pulse inverter: (a) the output voltage of
phase a leg: V,;(t) (actual inverter output) along with its spectrum, (b) the output volt-
age of phase a leg: V,,,(t) (actual inverter output) along with its spectrum, (c) the output
voltage of phase a leg: V() using interpolating functions {Aq(?)},-, » _p along with its
spectrum and (d) the output voltage of phase a leg: V,,,(¢) using interpolating functions
{Aa(t)}4=1 2, p along with its spectrum.

that can be employed for switching 1¢ and 3¢ inverters.
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Chapter 4

Scale-Based Linearly-Combined

Wavelet Bases

4.1 General

The previous chapter has presented a new model for both single-phase (1¢)
and three-phase (3¢) inverters based on the non-uniform sampling-reconstruction
of continuous-time (CT) signals. As chapter 2 has shown, sampling a CT sig-
nal can be represented as an N-dimensional approximation case. Such a repre-
sentation has been used to interpret the sarﬁpling theorem in the context of the
wavelet-based multiresolution analyses (MRA) [35, 41, 42, 44-46]. There are differ-
ent types of wavelet basis functions that are capable of constructing MRAs, which
can support sampling structures. However, such constructed MRAs are capable of
supporting uniform sampling structures [41, 42, 45]. The different types of avail-
able wavelet basis functions along with the main characteristics of their associated

MRAs are reviewed in this chapter. Furthermore, this chapter presents a new type
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of wavelet basis functions that are capable of supporting a non-uniform recurrent
sampling-reconstruction structure.

One of the most effective methods for decomposing CT signals is through a
MRA that is constructed by orthogonal basis functions. In this type of signal pro-
cessing, a CT signal is broken into orthogonal time-localized frequency channels
(scales). The required orthogonal basis functions are generated by integer-indexed
translations and dyadic (powers of 2) dilations of a single function that is known as
the scaling function (¢(¢)) [47-51]. This scaling function ¢(t) when dilated to scale
J as ¢;(t) is orthogonal to its translations at that dilation (scale) j. The generated
basis functions at scale j span a space V; that provides an approximation to the

signal in that space, which can be defined as [47-52]:
Vi(p) = closgz ({¢;x(t)}), 7=0,1,2,3,., k€ Z (4.1)
where the set {¢, (¢)} is given as:
{o;u(t)} = {61 (2t —k)}j=0,1,2. ke Z 4.2)

The notation closy: is the closure of all linear combinations of all inner products of
the set {¢; «(t)} over L?. The clos operation can be defined as:
Definition: Let {g,(x)} be a collection of functions that can form a linear space P as
[52]:

P = span {g(2)} )

The closure of the linear space P denoted by clos;2 {P} can be stated as:

a function f(z) € clos.z {P} if for every € > 0, there is a function g(x) € P such
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that:
1 f(z) = g(z)ll, <e (4.4)

The collection of the spanned spaces {V;} allows the construction of a dyadic
type multiresolution analysis (MRA). Since scaling basis functions {¢, s} are gen-
erated through shifting and dilating the scaling function ¢(t), the spanned scaling

spaces are nested such that [47, 48, 51]:
LV CV C Vi C Vg (4.5)

Although the generated basis functions at a certain dilation (scale) j ({¢;+})
are orthogonal, they are not complete with respect to L*(R). A more complete
set {¢;_1} is also orthogonal but is twice as dense. The difference between the
successive spaces V; and V;_; yields a difference space spanned by another set of
basis functions that are known as the wavelet basis functions. That is, for each
space V}, there exists an orthogonal complement space W}, which is spanned by

the set {1; 4}, and can be defined as [47-52]:
Wi(e) = clospz ({¢jx(t)}), 1=1,2,3,.., k€Z (4.6)
where {1;4(t)} is defined as:
()} ={¥1 (27t —k)}j=0,1,2. ke Z 4.7

In general, a spanned space V; in a MRA can be constructed using both spaces
V41 and W, as [47-51]:

V; =Vin P Win (4.8)
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There are four major types of wavelet basis functions used in different signal

and image processing applications. These types are:
1. Orthogonal wavelet basis function.
2. Semi-orthogonal wavelet basis functions.
3. Bi-orthogonal wavelet basis functions.
4. Shift-orthogonal wavelet basis functions.

These types of wavelet basis functions are capable of spanning spaces such as V;
and W; above; a collection of these spaces allows the construction of dyadic-type
MRAs. Furthermore, these constructed dyadic-type MRAs can support uniform
ideal sampling processes [47-52].

This chapter introduces a new type of wavelet basis functions capable of span-
ning spaces that allow the construction of non-dyadic-type MRAs. The next section
provides a review of conventional wavelet basis functions along with the charac-

teristics of their spanned spaces and associated MRAs.

4.2 Wavelet Basis Functions

Wavelet Basis functions provide a system of coordinates in which several classes
of linear operators are sparse. This system of coordinates is capable of expand-
ing signals at different levels of resolution using coefficients in linear combinations
of sets of basis functions. Temporal expansion is performed with contracted and
high-frequency bases, while frequency analysis is performed with dilated and low-
frequency ones. In general, wavelet basis functions can expand (decompose) sig-

nals and provide a time location for each frequency component present in such
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decomposed signals. These basis functions are usually related to a single function
that is known as the scaling function ¢(t). A scaling function is a non-zero solution

to a dilation equation of the form [47-49]:

N
pt)=> cxdp(2t—k) cr€R, keZ (4.9)
k=0

As has been discussed in chapter 2, any function has to meet certain conditions to
be categorized as a scaling function. If a function satisfies such conditions, then it

is capable of generating a stable basis or Riesz basis of the form [47-51]:
{p(t —k): ke Z} (4.10)
A set of Riesz basis functions is capable of spanning a space V' (¢) such that;
V(¢) :=closp: {¢p(t —k)} : k € Z) (4.11)

This property is valid if there exist two positive constants A and B called Riesz

bounds for all functions s(t) € C, such that [51, 52]:

Alls@I2 <3 [s(t), 6t — )P < Blls@)I? with0< A<B<oo  (4.12)

where C,, is the space of complex functions and the term ||s(t)||> is given by [52]:

Is(0)]2 = / s di @.13)

Scaling functions satisfying the Riesz basis condition can generate convenient
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sets of basis functions through integer dilations and translations. Moreover, these
generated basis functions are localized in time and frequency, which makes them
capable of spanning complete linear spaces. In general, a set of functions is a basis

if it can meet the following conditions [47-50, 56, 63].
e Completeness:
A set {vi(t) },z is complete if its span is dense in a normed space V' such that:

V = clos (span ({v(t)})) (4.14)

where span ({v(t)}) is given by:
span ({vk(t)}) = {Z ayUk(t) |ox € Ror C} (4.15)

where C is the set of complex numbers.

e Linear independence:
A set {vi(t)} ¢z is linearly independent, if and only if none of the basis func-
tions v (t) is contained in the linear span of the other basis functions, which

can be expressed as:

Z apvr(t) = 0 if and only if oy, = 0, for all & (4.16)
kEZ

e Being a basis for the Hilbert space H:

A set {vi(t)} .z is a basis for a Hilbert space H if every function f(t) € H can
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be uniquely expressed as [47, 51]:

&)= aw(t) aeC (4.17)

keZ

If a set of functions is complete and linearly independent, then it is a basis for
Hilbert space H. However, the converse is not valid. Wavelet bases are special
cases of Hilbert space basis functions with capabilities of constructing stable MRAs.
This section provides brief descriptions of conventional classes of wavelet basis

functions along with main characteristics of their spanned spaces.

4.2.1 Orthogonal Wavelet Basis Functions

Orthogonal basis functions are the first forms of well defined sets of basis func-
tions used for processing signals. Fourier and Haar bases are among the earliest
well defined and popular basis functions that have been used in different signal
and image processing applications. The latest advancements in the theory of sig-
nal processing have made wavelets very popular tools in other engineering areas
such power systems, where orthogonal wavelets have been used in developing
protection systems and in improving power quality [41].

In general, orthogonal wavelets are characterized by the ability to generate sets

of orthogonal basis functions. A set of functions {xx(t)}, .z is orthogonal if:

(xa(t),xs(t))y =0 d+#s d,s€l (4.18)
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where (x4(t), xs(t)) is the inner product of x,(¢) and x,(¢) that is given by [51]:

o0

(xalt) xe(8)) = / xalt)x:(t)dt (4.19)

—0o0

If a set of functions satisfies the conditions to be a basis for a Hilbert space H and
satisfies the orthogonality condition, then it is an orthogonal basis for the Hilbert
space H [48,49,51,52,62].

A scaling function ¢(t) that satisfies the Riesz basis condition is capable of gen-
erating sets of basis functions in A. According to the Mallat theory, any set of basis

functions in H can be characterized by a pair of the form (T, Ay/) (48, 52], where:
e A) is an expanding matrix with its all eigenvalues |);| < 1.
e ['is an invariant lattice of Ays such that Ay (I') C T

The matrix Ay, is called dilation matrix for I, and it has |det (A/)| € R. The dilation
equation for any scaling function ¢(t) can be written in terms of the pair (I', Ay)
as:

(1) =3 a,[det (An)|2 ¢ (t — ) (4.20)

~er
The set {¢(t — ) : v € I'} is an orthogonal basis and the set of coefficients {a,} € R
or C. The set {¢(t — v)} can span a space V(¢). Also, high order spaces V; can be
spanned by related orthogonal sets of the form {¢ (4%t —v) : v €T}, j=0,1,2...
These sets of orthogonal functions are bases in H, which imply that {V;},_,, €
H. Among all orthogonal basis functions in 4, orthonormal basis functions play a
very important role in constructing wavelet-based MRAs [48, 49, 52, 57, 63].
A set of orthogonal basis functions can be changed into a set of orthonormal

basis functions using the Gram-Schmidt orthogonalization procedure [51]. Using
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this procedure, a set of orthonormal basis functions can be constructed from an-
other set of orthogonal basis functions. Let {u, 9, ..., g} be a set of orthogonal
basis functions that span a linear space A. A set of orthonormal basis functions

{A1, Ag, ..., Ay} can be constructed with the same span as {y;} as:

A = HL (4.21)
[l

Then, recursively evaluate:

A= T (4.22)
[l = il
where v; is given by:
g—1

v = {(Aps i) Ap (4.23)

Il
=)

P
The set of orthonormal basis functions {A;, A, ..., A\;} obtained using the Gram-
Schmidt procedure is capable of spanning the same linear space A that is spanned
by the orthogonal set of basis functions [47-49, 52].
It is to be noted that if a set of orthonormal basis functions is generated from
a Riesz basis, then the Riesz bounds become A = B = 1 [45]. These values of Riesz
bounds satisfy the stability conditions, which have the following frequency-domain
form [51].
i ‘és(w + 27m)l2 —1 (4.24)

where ¢(w) is the Fourier transform (FT) of (t).
A set of spaces {V;},_g, ,  can be spanned by a set of orthonormal basis func-

tions generated by a scaling function ¢(¢) such that:
Ay A} = {@ (A4t —7) 17 €T}, j=0,1,2. (4.25)
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Such a set of spaces has an important characteristic that is:

| Vi={0} and |J V;=LR) (4.26)

j=0,1,2... 7=0,1,2...

This characteristic ensures the existence of |det (A7) — 1 sets of basis functions that

span a set of spaces {W;},_, , asan orthogonal complement of {V;} . This set

=1,2,..
of spaces ({W;}) is spanned by sets of basis functions that are known as wavelet
basis functions. These sets of basis functions are generated as an orthogonal com-

plement to the set {¢¥} of basis functions as [48, 49]:

Yi(8) = b, |det (Ax)|? ¢ (Al — ) (4.27)

~yel

The function v;(t) is known as the wavelet function associated with ¢;(t) and the
set of coefficients {b,} € R or C. The two sets of coefficients {a,} and {b,} are
related as:

bf = (—1)far‘_f 0< f <r (428)

The basis functions {t(t)*} span a linear space W that is orthogonal to V as [51, 52]:

W = clos (span ({¢*(t)})) (4.29)

where span ({¢«(t)}) is given by:

span ({¥x(4)}) = {Zﬂlﬂ/}k(t) |8x € Ror C} (4.30)

keZ

The collection of these spanned spaces constructs a multiresolution analysis

(MRA). There are several common scaling functions that are capable of gener-
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ating such sets of orthogonal and orthonormal basis functions, among them are

Daubechies and Haar scaling functions [48, 49, 52].

4.2.2 Semi-Orthogonal Wavelet Basis Functions

The semi-orthogonal wavelet basis functions are very close to orthogonal ones in
spanning multiresolution spaces ({W;}and {V;}) [56]. These basis functions are
characterized using B-splines that are related to fractional differential operators
{65]. The semi-orthogonality condition forces wavelet spaces {W} to be orthogo-
nal to one another, which ensures that scaling spaces {V;} have the same orthogo-
nal structure. However, scaling functions are selected to be generalized fractional
B-splines, which are intimately related to a broad class of differential operators
with the v*" order derivative having a shift 7 [65, 66].

The generalized fractional B-spline of degree o > 0 (o € R) and a shift of 7 can

be best defined as [65, 66]:

. a+1_T s ai1+7_
R 1 —eiw\ 2 1 — e—iw\ 2
$<w>=( ¢ ) ( e ) @31)
—jw Jw

A set of scaling spaces {(V;)g,, } can be defined using these basis functions as:

(Vj)SO = clos {Z Ekﬁ?(?_jt — k) lflc S IZ(Z)} (432)

k

The fractional B-spline basis functions have Riesz bounds such that [65, 66]:

~ 2
32w + 2rk)| < Bgo < 00 (4.33)

0 < Aso < i
k=—00

where 3%(w) is the FT of 3%(t). Complementary basis functions can be defined
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using the fractional B-spline scaling function 52(¢) as:

YA(t) = > weBX(2t — k) wy € I*(Z) (4.34)

keZ

In the frequency domain, this relation takes the following form:

J2 () = W) Z (4.35
A wavelet spanned space W can be defined as:
(W;)so = span {92(277t) } (4.36)

The two spaces (V;)so and (W;)so are spanned by non-orthonormalized B-
splines basis functions. These features make semi-orthogonal sets of basis func-
tions always behave asymptotically as a fractional differential operator. Con-
sequently, analyzing a signal f(¢) with wavelet semi-orthogonal basis functions

yields samples of the operator J7 applied to a smoothed version of f(t) [65,66]:
(F(8),9(t —k)) = 07 {€* f} K] (4.37)
where £[k] is a smoothing function defined in the frequency domain as:

flw) = LW (4.38)

7 (~o)

where 87 (w) is the FT of 87 operator, and is given by [65, 66]:
O (w) = (—jw) ¥ T (jw) 3T (4.39)
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It is to be noted that spaces spanned by sets of semi-orthogonal basis functions
are orthogonal ((W;)g, L (V;)g,) for some values of v that satisfy the following
condition [43, 52, 65, 66]:

ya+1 (4.40)

4.2.3 Bi-Orthogonal Wavelet Basis Functions

Orthogonal and semi-orthogonal basis functions provide series expansions of sig-

nals that have finite energy with a general form as.
F&) = dixthii(t)  f(t) € L, djx €RorC (4.41)
ik

The set of expansion coefficients {d;;} has information about the time-frequency
structure of the expanded signal f(¢). These coefficients can be determined as [44,
52]:
o k1
= [ semantiar = Eof) (55.5) 1.42)

where (Ey f) (a, b) is the integral wavelet transform (/WT) given as [45]:
1 [ t—b , (k1
En)@h) == [~ s (0w @y = (5.5) 6

In such expansion the function 1, x(¢) is used to analyze the signal f(t) as well as to
provide time-locations of different frequencies present in it. Moreover, the spanned
spaces (W;),, and (V;) , have to satisfy the orthogonality condition for every scale j

such that [43, 47, 48, 52, 55, 65, 66]:

(4.44)



The fundamental concept of bi-orthogonal wavelet basis functions is based on
selecting two scaling functions (¢(¢) and ¢(¢)) that are dual to each other such that
[52-54, 65]:

(o(t k), 8t —m)) = 6 KymEZ (4.45)

If wavelet functions (y(t) and 1(t)) are associated with ¢(t) and ¢(t) respectively,

then these wavelet functions are dual such that [52-54, 65]:

(vt -0, -q)) =8, LgcZ (4.46)

These dual functions can span four different spaces at each scale, which are (V;),,,
(VJ) . (W), and (Wj> " Some of these spaces satisfy the orthogonality conditions
9

such that.

V;nW; ={0} Non-orthogonal (4.47)
V; N W, = {0} Non-orthogonal (4.48)
f/jJ_Wj Orthogonal (4.49)
WjJ_Vj Orthogonal (4.50)

Bi-orthogonal scaling and wavelet functions can generate different sets of ba-
sis functions for analyzing and synthesizing signals. These different sets of basis
functions can offer better representation than orthogonal and semi-orthogonal ba-

sis functions for certain types of signals [45, 52, 63].
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4.2.4 Shift-Orthogonal Wavelet Basis Functions

Shift-orthogonal wavelet basis functions are sets of basis functions that span
spaces, which are orthogonal with respect to translations in each scale. However,
these spaces are not orthogonal with respect to dilations across scales. These basis
functions are generated by scaling and wavelet functions that satisfy the duality
principle (bi-orthogonality). The construction of shift-orthogonal scaling functions
is based on selecting any two analysis and synthesis scaling functions ¢,(¢) and

¢s(t) and defining an autocorrelation sequence aclk] as [57]:
acsalk] = (Cat = £), G:(8)) = (Ca % Ca) (K] (4.51)

A synthesis scaling function ¢,(t) can be constructed as an orthogonalized version
of {,(t) as:
$at) =D (acss)"* [KICa(t — k) (4.52)

kEZ

where (ac, ,)"/? [k] is given by:

(acs,)2 (1) 22T 1 (4.53)

acs s(w)

The analysis scaling function ¢,(t) can be constructed as the dual of ¢,(t) as:

Ba(t) = 8:(t) = 3 ((acon) " k] * (acL) ™" [k]) Calt = K) (4.54)

kEZ

where (aCaT,s)_l [k] is given by:

(act )" (r) 22 L (4.55)

a3 acy s (w)
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The definition of the analysis scaling function ¢,(t) indicates that it is not or-

thogonal to its own shifts. This feature can be expressed as [57]:

(0a(t), Pa(t — k)) = acy[k] # O (4.56)

The sequence acy[k] is an auto correlation sequence that can be determined as:

¥ aca,a) [] (4.57)

acylk] = (acs’s % (acq,s * acl )

Two wavelet functions can be constructed using both ¢, () and (,(t) as :

pa(t) = plk]C(2t — k) (4.58)
Ya(t) = > plk]Ca(2t — k) (4.59)

where the two sequences plk] and p[k] are extended dual filter sequences. The
derivation of both p[k] and p[k] is detailed in reference [57]. The two wavelet func-
tions ¥, (t) and v,(t) satisfy the duality condition. Also, ¥,(t) wavelet function is
not orthogonal to its own shifts, where a similar auto correlation sequence acy k]
can be derived as a non-zero sequence. The spanned spaces by shift-orthogonal

basis functions are not orthogonal to each other such that:

V;NW; = {0} Non-orthogonal (4.60)
V; N W, = {0} Non-orthogonal (4.61)
V;NW; = {0} Non-orthogonal (4.62)
W,;nV; = {0} Non-orthogonal (4.63)
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Different types of wavelet basis functions have been constructed for various
applications in signal and image processing areas. The diversity of approaches
employed in constructing such basis functions has been motivated to meet the re-
quirements of various applications. In general, wavelet basis functions are capable
of spanning spaces through integer dilations and translations. Furthermore, the
collection of the spaces spanned by one set of basis functions defines its associated
MRA. Each defined MRA can support only a uniform sampling-reconstruction
process due to the dyadic (2" dilations) nature of these spanned spaces. The review
provided in the previous section has briefly described different types of available
wavelet basis functions and the main characteristics of their associated MRAs.

In some applications of signal and image processing as well as switched power
electronic converters, uniform sampling has been found redundant and may suffer
from implementation problems. In such applications, non-uniform sampling has
been found more practical for implementation [36,63,67]. As a result, new MRA
structures are required to support non-uniform sampling-reconstruction processes
that include the non-uniform recurrent sampling. The next section presents a new
type of wavelet basis functions that are capable of spanning spaces to construct a
non-dyadic type MRA to support non-uniform recurrent sampling-reconstruction

processes.

4.3 Scale-Based Linearly-Combined Wavelet Basis
Functions

The fundamental idea of constructing an MRA is to define a scale j such that sets

of basis functions can span a collection of complete and dense spaces. Such sets of
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basis functions are expressed as:

{5 @Y At ®}} = {{s (Pt = k) } {0 (Pt —k)}}, j kel (4.64)

where ¢(t) is a scaling function and v (t) is a wavelet function. At each scale j,
two spaces are spanned by one set of scaling basis functions V;(¢), and one set of

wavelet basis functions W;(v). These spaces can be related to the desired MRA as:
MRA(j) = V;(¢) & W;(¥) (4.65)

where & is the orthogonal sum operation. This structure of an MRA can be used to

expand a signal f(t) using sets of basis functions up to scale j as:

F8) =" (), di()) Giae(t) + > D (F(E), (1)) (8 (4.66)

kEZ JEZ keZ

where ¢, = ¢(2/t — k) is a synthesis scaling function and ¢, = ¥ (2t — k) is a
synthesis wavelet function.

In general, any MRA characteristic depends on the nature of its nested spaces
(V;(¢) and W;(v))) that are spanned by sets of basis functions. The scaling function
is considered as the key element for defining the nature of an MRA [46, 52, 56, 63,
64]. Moreover, the convergence of the iterated filter banks and the denseness of the
wavelet representation in L? are two major considerations that have to be taken
into account when defining any scaling function [55, 61].

Definition 4.1: let ¢(t) = 1 (t) be a scaling function defined as:

0;(t) = du (PH) + o (P (t—1+270FD)) | j=1,2,.. (4.67)
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where ¢y (t) is the Haar scaling function. The selection of the Haar scaling func-
tion ¢ (t) as a building block to design the scale-based linearly-combined scaling

function ¢(t) is based on the following features of ¢x(t) [35]:

e The Haar scaling function ¢y(t) is the only orthogonal scaling function of

compact support.

e The Haar scaling function ¢g(t) is the basic building block for constructing

scaling and wavelet functions.

The new designed scale-based linearly-combined scaling function ¢(t) is an
Lth-order scaling function, if and only if it satisfies the following three conditions

[56].

e Condition 1:

0< A<, w) < B<+00 (4.68)

where A and B are the Riesz bounds of . The term a,(w) is DTFT of alk],

which is an autocorrelation sequence, and is defined as [52, 56]:

dp(w) = Z |p(w + 27k)|? (4.69)
k€Z
where
P(w) < (t) (4.70)
dp(w) <5 alk] (4.71)

e (Condition 2:
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p(t) = V2 hylklp(2t — k) (4.72)

keZ

where h, k] is the refinement filter associated with (t).

e Condition 3: $(0) = 1 and

) =0 @4.73)
dw™

where k #0,m = 0,1, ..., L — 1 and L is the number of vanishing moments of

p(t).

For condition 1, ¢(w) can be determined using Fourier transform properties and
du(w) as:

ow) = bu (£) + (%) dur (2) @.74)

The auto correlation sequence é,(w) can be expressed as:

2
ap@) =3 |du (“’ o ) + (i) g, (w L ) (@.75)
k
2
dw(w) _ Z qASH (w +427Tk/'> <1 + e—i%(w-{-Zﬂ'k)) (476)
k

The auto correlation sequence é,(w) is bounded, since ¢ (w) is also bounded. Fur-
thermore, the term ¢y (2£27%) js a decaying function as w — co. The refinement
filter h,[k] can be determined by solving the refinement equation from condition 2
that depends on ¢(t) [56, 67]:

L-1

0 (1) =VEY_ hlHip(2t — ) @7)

k=0
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The refinement equation can be rewritten as:
L-1
¢ (4t) + ¢ (4t — \/_Zhy,[k]gb 8t —k)+ V2 hylklp(8t —6—k) (4.78)
k=0
Haar scaling function has (L=2), which makes scaling filter coefficients as:
h, = [0.7071 0.7071] 4.79)

The scaling filter h[k] is identical to the Haar scaling filter (hy),, [k]. This result
comes due to the linear combination approach in designing ¢(t).

For condition 3, the derivative of @(w) will be (for j = 1):

% _ % [dqs(d":/él) (1 4 e—i%w) _ i3e—i%w$(w/4)] (480)

The value of the derivatives of ¢(w) at w = 27k are zeros, since ¢g(t) satisfies the

conditions of a scaling function, which include [52, 56]:

dm¢H

\wgﬁk—O m=20,1,k=0,1,2,. (4.81)

As aresult:
dm

lw k=0, m=0,1, k=0,1,2,... (4.82)
d m

The scale-based linearly-combined scaling function ¢(¢) is shown in Figure 4.1
along with the magnitude of its FT (¢(w)) and |Z%‘§| (the magnitude of the deriva-

tive of its FT).
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Figure 4.1: The scale-based linearly-combined scaling function ¢(t) for j = 1: (a) the
scaling function 1 (¢), (b) the magnitude of its FT |¢1(w)| and (c¢) the magnitude of the

derivative of @(w) (1@5‘5—“’2 )

4.3.1 Balancing the Order of ((¢)

The refinement filter associated with the scaling function ¢(¢) is identical to the
refinement filter associated with the Haar scaling functions ¢g(t). This feature is
ensured by the linear-combination approach to construct ¢(¢) using ¢z (t). Also,
this feature ensures that both scaling functions ¢(t) and ¢ (t) have the same num-
ber of vanishing moments. Furthermore, the refinement filter and the number of
vanishing moments are consistent due to the scale-based shift of (¢x(¢));,,. This
shift in ¢5(t) when constructing ;(t) provides a balance of the order of ¢;(t) with

respect to the used ¢ (t) [67]. As a consequence, ¢(t) will have similar properties

as ¢y (t), in particular, the ability to span closed spaces {V;(¢)}.
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The scale-based linearly-combined scaling function ¢(t) features of the scaling
filter and the number of vanishing moments make it capable of generating basis

functions at each scale. These basis functions can be defined as:

{ois®} ={p (1 -k)}j=1,2.keZ (4.83)

The generated basis functions {¢; x(t)} span spaces {V;}, from a collection of which
a MRA can be constructed. However, this constructed MRA will not be dyadic
due to the scale-based shift inherent in ¢(t), as well as due to the fact that as j —
00, @(t) = 4(t).

If a CT periodic signal z.(t) # 0, t € [ti ,t2;] then the inner product
(z.(t), p1,£(t)) will have a non-zero value. Limits of the interval of support [t1, to]

are defined as:

tlj - d + 2_(j+1)

tyy=d+1-2"U d=12..D, j=1,2. (4.84)

where D, is the number of sample groups created by ¢(t) over one period of Sy(t).
It is to be noted that ¢;(¢) creates one group of non-uniform samples at each trans-
lation k. However, for the dc-ac inverter successive ON switching pulses have to
be of different widths. These pulses aim to reconstruct the CT signal from its non-
uniform sample groups. As a consequence, a sample group d is created by ¢4 (¢)
scaled to a different scale j that aims to generate different switching pulses over
each period of the sampled CT signal z.(t). The constructed MRA can be general-
ized as [67]:

Vi = {wo(t) #0,t € [tuj,t5]; 7=1,2,3,..} (4.85)
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provided that z.(t) is continuous and differentiable over the interval [t1;, ta;]. The

generalized MRAs spaces can be formulated as:

Vi(p) = closz ({w;(®)}), 7=1,2,3,., k€ Z (4.86)

The scaling function ¢(t) is composed of two Haar scaling functions. This in-
dicates that if ¢(t) is used as a sampling function, two samples will be created at
each translation. Each translation depends on both % and the scale-based quantity
(1 — 2-U+Y), These translations cause the spacings between samples to be non-
uniform. As a consequence, the constructed non-dyadic-type MRA can support a

non-uniform sampling case.

4.3.2 Scale-Based Linearly-Combined Wavelet Function

The refinement filter associated with the designed scaling function ¢(t) is deter-
mined, which makes it possible to define a wavelet function associated with ¢;(t).

Using the refinement equation, a wavelet function can be defined as [55, 65]:

L-1

Yo(t) = V2 golklp(2t — k) (4.87)
k=0
where ¢(2t) is given by:
©(2t) = ¢ (8t) + pr (8t — 6) (4.88)

The vector g,[k] is related to the refinement filter h,[k] by the following relation
[51, 56,67]:
9ol = (~1)*ho[L— k] k=0,1,...,L—1 (4.89)
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Evaluating equation (4.89) yields that g,[k] = g,[k]. As a consequence, the wavelet

function 1,(t) can be expressed as:

Ye(t) = V2 i 9o [K]pn (8t — k) + V2 Z_: 9olKlpn (8t — 6 — k) (4.90)
k=0 k=0

Recalling the relation between Haar scaling and wavelet functions as:

L-1

Yu(t) = V2 _ gulklpn (2t — k) (4.91)

k=0

Using the fact that g [k] = gu[k], the scale-based linearly-combined wavelet func-

tion can be expressed in terms of Haar wavelet function (¢) as:
(%), (t) = tu (2118) + by (271 (¢t — 14 270HD)) (4.92)

Figure 4.2 shows scale-based linearly-combined wavelet function ¢,(¢) and the
magnitude of its Fourier transform v, (w).

A signal can be expanded using the generated basis functions by both ¢(¢) and
P,(t) as [65]:

=3 (2 (£ a0 Bisl®) + D0 (10, W), ) () (t)) (4.93

g k k

where @; ,(t) is a synthesis scaling function and (1@) (t) is the synthesis wavelet
4k
function at scale j. The inner product term can be written as:

F@0sa) = [ £O @ @0 i+ [ 10 @) @7 (6= 1+2707)) dt
J (4.94)
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Figure 4.2: Scale-Based Linearly-Combined wavelet functions: (a) 1, (t) and (b) the mag-
nitude of its FT ’&p(w)l.

where t,; = d+2~0*) and ty; = d+ 1 —270U+Y, In general, expanding any function
as a linear combination of weighted basis functions is a form of series expansion.
For the case of the scale-based linearly-combined basis functions, each coefficient
of such a series is composed of two terms that offer a better and more accurate

representation of signals.

4.3.3 Construction of Scale-Based Linearly-Combined Synthesis

Scaling Functions

The linearly combined scaling function ¢(t) is defined along with its associated

refinement filter h,[k] and wavelet function 9, (t). The remaining step toward the
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complete characterization of the proposed basis functions is to define a linearly-
combined synthesis scaling and wavelet functions.
The series expansion approach can be used to define a synthesis scaling ¢(¢) and

wavelet 9J,,(t) functions. The series expansion of a CT signal f(t) can be written as:

= 2 D (0. (9m) (7)) Bial®)

j=12.. k€Z

+ 3 D), (Ba)y (20 (- 14+ 270H0))) @ ()

j=1,2.. k€Z

P IDIONTARCAPN AT

7=1,2.. keZ

+ 30 S, ) (@ (=14 270)) () (1)

k
§=1,2.. kEZ. b

(4.95)

The previous two summations can be expressed in terms of their inner products

over the interval [0, ¢1;] as:

> (5@ o (20 2100 = 3 ( " )om (274t~ B) )5 (2e-1)

keZ keZ
Yo (0, ), (2710) (30) O =3 ( [ 10vm @ -1 dt) Jo (2t — )
keZ ’ kez V0

(4.96)

These two inner products have non-zero values over the interval [0, ¢;;] that can be
interpreted as taking one sample from the signal f(¢) over that interval. The other
two summations can be expressed in terms of their inner products over the interval

[t2;, 1] as:
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Let Uj; = 1 + 2j+1

kEZ to;

D (@), (Br) (2771 — uy)) @iu(t) = </ f)¢u (27t —u; — k) dt) Gik (t)

D (0, (o) @t~ ) (8) ()= </ fEyu (2t =u; — k) d )W)M“)

keZ ’ keZ

These inner products have non-zero values over the interval [ty;, 1], which again
can be interpreted as taking another sample of the signal f(¢) over the interval
[t2j, 1]. The summations represent interpolation process to synthesize f(t) from the
samples taken by ¢(¢) using ¢, x(t) and (;Z;¢)j’k (t) basis functions over the interval
[t15, t25]-

Three possibilities can be considered for ¢,(t — k), which are:

e ¢,(t — k) has an interval of support as [0, 1], which indicates that ¢;(¢t — k) =

¢,(t — k). This possibility can not be true due to the structure of ¢;(t — k).

e p;(t — k) = p;(t — k), which indicates that there will be cross inner products
such as:
(65t = B)G; (L =k = (1=27G+V))) 20,
This possibility also can not be true due to the orthogonality of the used scal-

ing functions ¢g(t).

e A combination of the previous possibilities, where ¢, x(¢t) has an interval
of support related to ;x(t) can meet orthogonality conditions, the dilation
equation and the structure of ¢(t). Moreover, ¢, (¢) has to have a continuity
over its interval of support. This possibility can meet the conditions required

for ¢; (¢) to be a scaling function.

119



Using the third possibility, the synthesis scaling function can be defined as:
0;(t) = ou (2't) — (¢ (P7F1) + ¢ (2771t — uy)) (4.98)
The above equation can be expressed in terms of ¢, (t) as:
G;(t) = ém (27t) — 9;(t), 1 =1,2, ... (4.99)

The scale-based linearly-combined scaling and wavelet functions are capable of

spanning orthogonal spaces at each scale j such that:
Wi (¥e) LV;(p) (4.100)

Although the spanned spaces are orthogonal, the constructed MRA is not a dyadic
one. This nature of such spaces can construct MRAs for supporting non-uniform
sampling forms. The next section presents a non-dyadic MRA structure using

scale-based linearly-combined basis functions.

4.4 Non-Dyadic MRA Structure

The defined linearly-combined scaling function ¢(t) can generate sets of basis
functions that span successive spaces {V;(¢)}. Also, the wavelet function (¢,,); (¢),
associated with ¢(t), can generate sets of basis functions that span successive
spaces {W; (¢,)}. These spaces satisfy orthogonality and completeness conditions

that is:

V() = Via () @D Wiy () (@.101)
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The set of spaces {V;(¢)}, composed of orthogonal spaces spanned by scaling and

wavelet basis functions, has a nested structure such that:
LcVacVycViCVy. CV, C LAR) (4.102)

The collection of such spanned spaces constructs a stable MRA. It is to be noted
that both ¢(t) and 1, (t) have dilations as the the level j changes. Also, both of
¢(t) and 9, (t) have translations that are created by the change in k£ as well as (1 —
2-U+1), These types of dilations and translations create a unique non-dyadic MRA.
Such a MRA can be employed to support non-uniform sampling forms. The next
subsection provides the non-uniform recurrent sampling form that is supported by

the developed non-dyadic MRA.

4.4.1 MRA for Non-Uniform Recurrent Sampling

The scale-based linearly-combined scaling function ¢(t) creates two samples over
its interval of support. Moreover, the spacing between these samples depends on
the scale j. A CT signal z.(¢) can be reconstructed from its non-uniform recurrent

samples z.(t,) using the Lagrange general interpolation formula as [36}:

Z Z _ﬁ (4.103)

n=—oo p—

An interpolation function A(t) can be defined as:

: G(t)
A;(t) = ;x vi) ) (4.104)

The two samples created by ¢(t) at each scale j can be considered as one group
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of non-uniform samples that can be described by:
{ty} ={ty=d+270 ty, =d+1-2"0"} 'p=1,2 d=1,2..,D, (4.105)

The set of sampling instants {¢,;} for the sample group d that is related to the

scale j, can be used to evaluate the function G(t) at the scale j, (j = 1,2, 3, ..., 00) as:

G, () :t<1 - 2_’;_1> (1— 1—_-2?_—3_—1> (4.106)

It should be noted that the value of ¢, is considered zero to indicate the beginning

of each cycle of the sampled CT signal z.(¢). The function G(¢) can be simplified

to:

22j+2t2 22j+2t3
G;(t)y=t— e v (4.107)
Evaluating the derivative of G(t) at ¢; and ¢, gives the following values:
1
G; (tgj) = 2j+1 -2 (4109)

The quantities G;(t), G (t1) and Gj (t2) can be employed to evaluate the interpola-

tion function (A;(¢)) for j = 1

3t — 16t2 + 16t3 3t — 16t + 16¢3
T + x(tlz) 3
2(t—3) 6(t—3)

Aj=1(t) = —=z(t11) (4.110)

For j = 2, the interpolation function \;(¢) is:
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t — 64t2 + 643 t — 64¢t? + 64¢3
Mieo(t) = —z(ty)) ———o— + 2(tyg ) —————— 4.111
U (- R () 1

Figure 4.3 shows the two interpolation functions A;-; (t) and A;—a(%).

/ - \

The Interpolation Functions

Figure 4.3: The interpolation function ;1 (¢) and X\, _a(¢).

The two examples of the interpolation function \;(t) provided in equations
(4.110) and (4.111) suggest that at each scale j and translation & there is one group of
samples created. Also, it indicates that a set of interpolation functions {);(¢)},_; ,
will have a set of intervals of support such that t € [t1;, t;], where ¢; indicates that
the interpolation is done over the sample group d that is created by ¢(t) at scale
j. Moreover, each interpolation function is continuous and differentiable over its
interval of support.

This work focuses on developing a new modulation technique for dc-ac invert-
ers. These inverters are composed of switching elements that are operated either

fully ON or fully OFF. As a result, inverter outputs are trains of rectangular pulses
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with variable widths and locations, which represent a synthesized version of the
sinusoidal reference-modulating signal Sy, (¢). The sampling-based inverter model
developed in chapter 3 defines these rectangular pulses as stages in an interpola-
tion process, which is consistent with the developed non-dyadic MRA. Each in-
terpolation function \;(t) defines an ON switching pulse. This ON pulse will be
translated to a rectangular pulse by an activated switching element(s) appearing on
inverter output terminals. Such output due to A;(¢) comes consistent with defined
scale-based linearly-combined synthesis scaling function ¢(t).

Figure 4.4 shows the interpolating function \;(t) for j = 2 and the correspond-

ing synthesis scale-based linearly-combined scaling function ().

A2 (2)

Aa(t) and a(t)
T T
\\
o
o
$
I !

0.2}~ -1

Figure 4.4: The interpolation function A;(¢) for j = 2 and the corresponding synthesis
scaling function @, (t).

Two samples are created over each interval of support for ¢(t). Furthermore,
the spacing between the samples in each sample group increases as the scale j

increases. It is to be noted that the change in the scale j affects the translation

124



of ¢;(t), but does not allow successive groups of samples to overlap. The MRA
associated with this form of sampling can be created by the defined scale-based
linearly-combined scaling function (p;(¢)). The reconstruction of a CT signal z.(t)
from its non-uniform recurrent samples the scale-based linearly-combined synthe-

sis scaling function using $(t) can be expressed as [47, 48, 52]:
ze(t) = > Y {@elt), it — k) @5(t — k) (4.112)

The defined scale-based linearly-combined scaling functions ¢(t) and ¢(¢) as
well as their corresponding wavelet function ,,(t) are capable of spanning spaces
that defines a stable non-dyadic MRA to support a non-uniform recurrent sam-
pling. It is to be noted that the structure of ¢(t) using ¢ (t) guarantees creating two
samples over its interval of support at each scale ;. This consideration is important
for meeting the requirements of the sampling-based inverter model developed in
chapter 3. However, in other applications, such scaling and wavelet functions may
be constructed to create more than two samples using other scaling functions than
the Haar one.

There are different types of wavelet basis functions that are capable of span-
ning spaces to construct MRAs. In general, these MRAs are based on dyadic
structure that can only support uniform sampling. Wavelet basis functions can
be designed using the dilation matrix-based method, convolution of dual basis
functions, fractional B — spline basis functions and autocorrelation sequence-based
method. These methods of designing wavelet basis functions guarantee different
combinations of scaling and wavelet spaces within dyadic MRA structures. The
need for non-dyadic MRAs in applications that include modeling inverters has

motivated the development of a new type of scaling and wavelet basis functions to
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construct such types of MRA.

The new scale-based linearly-combined basis functions are constructed using
a new design method, which is based on a linear combination of dilated scaling
and wavelet functions. This design method has produced a new type wavelet ba-
sis functions that has been verified to support a non-uniform recurrent sampling-
reconstruction process. The newly designed scale-based linearly-combined basis
functions will be used to develop a modulation technique to operate dc-ac invert-
ers. The next chapter describes a procedure to implement the wavelet modulation
technique to generate switching pulses for operating a single-phase (1¢) voltage-

source (VS) four-pulse inverter.
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Chapter 5

Developing and Simulating the

Wavelet Modulation Technique

5.1 General

The fundamental function of a dc-ac inverter is to convert dc voltages into
ac ones [1]. This function is achieved through activating inverter switching ele-
ments in a sequential manner that guarantees periodic changes of the output volt-
age polarity. Many techniques have been developed and tested to activate inverter
switching elements to produce output voltages as close to sinusoidal waveforms
as possible. Such techniques have limited capabilities to produce sinusoidal out-
put waveforms due to the presence of harmonic components in their outputs. In
general, achieving inverter outputs with reduced harmonics has been considered
as a trade off between the complexity of the switching scheme and the efficiency of
the inverter itself [1]. The lack of accurate modeling of dc-ac inverters has limited

the development of new modulation techniques that are capable of producing high
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quality output.

In this chapter, a new technique for generating switching pulses to activate in-
verter switching elements is to be developed. The proposed technique is based
on the non-dyadic wavelet-based multiresolution analysis (MRA) that can be
constructed using the scale-based linearly-combined basis functions presented in
chapter 4. The sampling-based inverter model developed in chapter 3 will be the
basic building component for the desired wavelet modulation technique. The next
section provides inverter constraints that have to be considered before implement-

ing the wavelet modulation technique.

5.2 Inverter Constraints

Inverter outputs can be improved by reducing and/or canceling output har-
monic components through generating sequences of switching pulses to activate
their switching elements. Switching element functions are part of the proposed
technique in that their functions constitute the synthesis part of the non-uniform
recurrent sampling-reconstruction process. From a practical point of view, switch-
ing elements need time (ON time and OFF time) to change their status (ON to OFF
or OFF to ON). Recall that the scale-based linearly-combined synthesis functions
are defined over time intervals of sample groups, which are separated by small
time intervals due to locations of samples. These time intervals can provide the
switching elements with the needed switching times. The other constraint for op-
erating an inverter is the energy in the reconstructed signal (inverter outputs). In
general, any modulation technique has to be capable of concentrating the energy
of the reconstructed signal in the fundamental frequency component. This con-

straint ensures that minimum energy be distributed in undesired frequency bands.
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If these constraints are taken into account when operating an inverter, output volt-

age and current will have very low harmonic components [1, 59-61].

5.3 Implementing the Wavelet Modulation Technique

The main idea of the proposed wavelet modulation technique is the realization
of a non-dyadic multiresolution analysis process (MRA), in particular, sampling
the reference-modulating signal in a non-uniform recurrent manner, and then re-
constructing it through the dc-ac inverter switching actions. The implementation

of the wavelet modulation technique can be divided into 2 parts, which are:

e Implementing a non-uniform recurrent sampling with a period of T, that
is the period of the reference-modulating signal Sy (t). These samples are
created by dilated and shifted versions of the scale-based linearly-combined

scaling function ¢ (t), and arranged in groups of two samples each.

¢ Generating switching pulses that are dilated and shifted versions of the syn-

thesis scaling function ¢, (¢).

The developed scale-based linearly-combined scaling function ¢;(t) creates a
group of samples at each dilation (change in scale j) and shift (change in k). For
each cycle of Sy(t), a finite number of sample groups D,, is created. The time

interval of each group can be defined as:
t e [tlja tgj] (51)

where t1; and t,; are the time locations of the first and second samples of the sample

group d created by ;(t), respectively. Also, the time interval of each sample group
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represents the interval of support for the scaling function ¢, (¢) at scale j and shift &.
The length of the time interval of the sample group changes as the scale j changes.
This relation between the scale j and the time interval of each sample group can be

stated as:

tlj = d + 2—(j+1)

tyy=d+1—-2"U d=12..D, j=12.. (5.2)

It is to be noted that the scale j has to start with j, = 1 in order to avoid uniform
sampling that takes place for j = 0.

The reconstruction of the reference-modulating signal Sy,(¢) from its non-
uniform recurrent samples is carried out using dilated and shifted versions of the
synthesis scaling function ¢, (t). Each dilated and shifted version of the synthesis

scaling function ¢ (27t — k) has an interval of support that is given by:
t e [tlj,tgj] (53)

Both scaling function functions ¢ (t) and ¢;(¢) at scale j and shift £ have identical
intervals of support. This property is consistent with properties of the Haar scaling
function ¢(t) that is used to construct ¢(t).

The synthesis scaling function ¢, (t) at scale j and shift k creates an ON switch-

ing pulse with a duration ON;; that can be defined as:

ON¢ = tgj - tlj (54)
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It is to be noted that the location d is taken with respect to an arbitrary reference. In
general, inverter switching elements are activated by successive sets of synthesis
scaling functions {@; »(t)} that have their adjacent intervals of support placed such
that:

tar = tsp + La-1)2 (5.5)

where t;, is a time interval separating time intervals of sample groups d and d —
1. The set of these time intervals {t,,}, can provide switching elements with the
needed ON and OFF switching times. Figure 5.1 shows two sample groups and

their time intervals and the location of the time interval (t,,), that separates them.

06+ Group d +1 R
0.5 \ . -
Group d

0.3

o (ONJJ)]' (tsp)d (ON“_’)]'H (tsp)d+1

Figure 5.1: Two groups (d and d + 1) of non-uniform recurrent samples and the location
of the time interval (t,,), that separates them. Also, the durations on the associated ON

switching pulses (ONg); and (ONg), ;.

The wavelet modulation technique can be realized through a procedure with

the following steps:

1. Set the scale j to j, = 1 and the index of sample groups d to dy = 1.
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2. Create one sample at t;; = d + 2-U*Y, and another sample at

ty; = d + 1 — 27U+D (the sampling part (Sy(2), ¢,(2))).

3. Evaluate the derivative S} (t)|s,,:

o If S}, (t3;) > 0, the scale j is increased by 1 for the next sample group.

o If S}, (t2;) < O, the scale j is decreased by 1 for the next sample group.

4. Generate an ON switching pulse over the time interval for the sample group

d (the reconstruction part (Sy(t), ¢;(t)) @;(t)).
5. Ift > T, set j to jo and d to dy. Otherwise, increase the index d by 1.

6. Goto step 2.

It is to be noted that the evaluation of Sj(t)ls,, is performed to ensure that the
scale j has finite maximum value. Also, the evaluation of of S}, (t)|,, is performed
to ensure that the number of sample groups D,, over one cycle of Sy(t) is finite.
The aforementioned procedure to implement the wavelet modulation tech-
nique has to consider the inverter constraints mentioned in section 5.2. Also, phys-
ical and operational specifications of switching elements used in such inverters
have to be considered when testing the wavelet modulation technique experimen-
tally. Figure 5.2 shows a flowchart to implement the proposed wavelet modulation

technique for an inverter.

5.4 Simulating the Wavelet Modulation Technique

The previous section has presented a procedure for implementing the proposed
wavelet modulation technique for operating a single-phase inverter through pro-

cessing (sampling and reconstructing) the CT signal Sy (t). This procedure can be
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START

Setd=0
Setj=1
Sett=0
setyd=1

Q1=1
Q=0
QB=1
Q4=0
= Q3=1 Ql=1
G & &
Ql=0 Q3=0
‘ Q=0 Q4=0
Calculate yd
Calculate S'M(taz)

Figure 5.2: A flowchart for an algorithm to implement the wavelet modulation technique.
Time instants t4; and t4; are defined in equation (5.2). The reference-modulating signal
Sp(t) is given by Spr(t) = sin(wpt).

converted into an executable program using a MATLAB code. Such a code car-

ries out sampling S (t) using dilated and shifted versions of the scaling function

©1(t). Also, it can generate switching pulses using dilated and shifted versions of
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the scaling function ¢, (¢). These generated switching pulses are used to operate a
SIMULINK model of a single-phase (1¢) voltage-source (VS) four-pulse dc-ac in-

verter. Figure 5.3 shows a schematic diagram of a single-phase four-pulse inverter.

Fourier Analyzer
I
Q} \ . Q? \ . Vo
T Ip1t [ D3 =
VDC_ o Haaw)
T T % Ru
sl Q2 ¥
D4 D2 VT g ,
iXu
[

CT: Current Transducer
VT: Voltage Transducer

Figure 5.3: A schematic diagram of a single-phase four-pulse voltage source inverter.

Two SIMULINK load models are used to test the performance of the 1¢ inverter.

These load models are as the following:
e A static R — L load with an impedance of Z;, = 10 + j7.45 Q.
¢ A single-phase universal motor.

The SIMULINK model of the 1¢ four-pulse VS inverter and one of the loads
are shown in Figure 5.4. The ON switching pulses generated by the developed

MATLARB code to operate the 1¢ VS four-pulse inverter model are shown in Figure
5.5.
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Switching Puses Gererated By The
16 Wavelet Modulation Techrique Code

1¢ Four-Puise VS
IGBT do-ac hverter

||!-

Figure 5.4: A SIMULINK model for a single-phase voltage-source dc-ac inverter supply-
ing a R — L load to simulate the performance of the wavelet modulation technique.

5.4.1 The Static R - L Load

The SIMULINK model of the wavelet-modulated 1¢ VS four-pulses inverter sup-
plies a R — L load with an impedance of Z;, = 10 + j7.45 Q). The inverter model has
a dc voltage supply of 50 V. The quality of inverter output voltage and load current
are usually expressed in terms of the total harmonic distortion factor. This factor is
defined as [1]:

THDj = — (5.6)

where A, is the RM S value of the fundamental component of the inverter output

voltage or load current. Also, A is the summation of all other harmonic compo-
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Qs(t) & Qu(t)

I
05 0.06
t [sec|

nents RM S values, which is defined as [1]:

An= /(A3 AR+t A2) (5.7)

where Ay; h = 2,3,...,nis the RM S value of the h harmonic component. The THD
factors can be evaluated using built-in MATLAB functions.

The inverter output voltage and its spectrum are shown in Figure 5.6. The load
current along with its spectrum are shown in Figure 5.7. The fundamental com-
ponent of the output voltage is 49.2714 V, and the fundamental component of the

output current is 3.075 A.

5.4.2 The Universal Motor Load

The simulated 1¢ VS four-pulse wavelet-modulated inverter is used to supply a

SIMULINK model of a 1¢, 110V, 60 Hz, 0.75 hp, 2400 RPM universal motor. This
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Figure 5.6: The inverter output voltage for an inductive load: (a) the wavelet modulated
dc-ac inverter output voltage V,(t) and (b) its magnitude spectrum |V,(f)|. The total har-
monic distortion factor THDy = 17.64%.
load is selected to investigate the performance of the inverter for supplying a dy-
namic load. The same MTALB code generates ON-switching pulses to activate the
simulated 1¢ inverter. The dc input voltage is set to 110 V to meet the 1¢ motor
model rating values. The inverter output voltage and its spectrum are shown in
Figure 5.8. The motor current along with its spectrum are shown in Figure 5.9.
The simulation results have demonstrated quite encouraging results in terms of
harmonic contents of inverter output voltage and current. Furthermore, total har-
monic distortion factors (THDy and THD;) evaluated for several tests show signif-
icant reduction of the energy distributed in the harmonic frequencies that provides
an indication of high quality outputs. Also, different tests for different loads have
shown significant magnitudes of output fundamental components of both inverter

output voltages and load currents. The next section presents a performance com-
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Figure 5.7: The load current I(t) and its spectrum: (a) the load current I1(¢) and (b) its
magnitude spectrum |I1,(f)|. The total harmonic distortion factor THD; = 2.15%.
parison of the proposed wavelet modulation technique and the SPWM one under

the same loading conditions.

5.4.3 Comparison with a Typical SPWM Inverter

The simulated wavelet-modulated inverter has shown significant performance im-
provement when supplying different loads. To further demonstrate the significant
capabilities of the proposed wavelet modulation technique, a performance com-
parison between the WM inverter and the SPWM one is conducted. Furthermore,
simulation results of both inverters are compared under the same loading condi-
tions. The 1¢ VS four-pulse inverter model is used to supply both load models
using ON switching pulses generated by both modulation techniques. SPWM ON

switching pulses are generated with a carrier frequency f; = 1080 Hz and a modu-
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Figure 5.8: The output voltage of the inverter and its spectrum: (a) the inverter output
voltage supplied to the motor V,(t) and (b) its spectrum |V,(f)]|.

lation index m, = 0.8. These generated SPWM ON switching pulses are shown in
Figure 5.10.

The static R — L load voltages obtained by both inverters along with their spec-
tra are shown in Figure 5.11. Currents supplied to the R — L load by WM and
SPWM inverters and their spectra are shown in Figure 5.12. The dynamic load (the
1¢ universal motor) currents supplied by the WM inverter as well as the SPWM
inverter along with their spectra are shown in Figure 5.13.

Simulation results obtained from the SPWM inverter are mainly used here
for comparison purposes with their analog results obtained from the proposed
wavelet-modulated one. Table 5.1 summarizes these results.

Table 5.1 clearly demonstrates that the WM inverter yields a higher fundamen-

tal component and lower total harmonic distortion factors than the SPWM for the
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Figure 5.9: The motor current I5s(¢) and its spectrum: (a) the motor current and (b) the
spectrum of the motor current |Ix/(f)|.

Table 5.1: Performance comparison between simulated WM and SPWM inverters for the
R — L load and the universal motor.

Load | Parameter WM SPWM
L—R \A 49.27V | 4166V
|| 308A | 287TA
THDy 17.64% | 24.7%
THD; 2.15% 3.77%
Motor Vi 108.78 V | 92.86 V
|11 1762 A | 1444 A
THDy 16.92% | 25.2%
THD;, 1.26% 1.84%

same R — L and motor loads. Such performance comparisons confirm that the
wavelet-modulated inverter has capabilities to transfer higher power with reduced
harmonic components than the SPWM inverter. The data of Table 5.1 along with

the previous discussion illustrate the efficacy of the developed wavelet modulation
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Figure 5.10: SPWM generated switching pulses for inverter switching elements: (a)
switching pulses for @1 and @2 and (b) switching pulses for Q3 and Q4.
technique.

Simulating the performance of the proposed wavelet modulation technique has
shown very good results for both static and dynamic loads. However, all the sim-
ulation results presented here have been carried out at one output frequency of 60

Hz. The next section extends simulations to include other output frequencies.

5.5 Performance of a WM Inverter for Different Out-
put Frequencies

The previous section has presented quite encouraging results of the proposed
wavelet modulation techniques. These results have included different load types
for an output frequency of 60 Hz. Other output frequencies are tested to investigate
the capabilities of the proposed wavelet modulation technique to operate inverters

for different output frequencies. This section provides simulation results for output
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Figure 5.11: The output voltages of WM and SPWM inverters and their spectra for the
static R — L load: (a) the output voltage of the WM inverter, (b) the spectrum of the WM
inverter output voltage, (c) the output voltage of the SPWM inverter and (d) the spectrum
of the SPWM inverter output voltage.

frequencies of 50, 90 and 400 Hz.

The inverter model described in the previous section supplies the same R — L
load (Z1, = 10 + 57.45 Q) with an input dc voltage of 50 V for an output frequency
of 50 Hz. It should be noted that the output frequency can be varied by setting the
frequency of the reference-modulating signal (Sy,(t)) to the desired value. Figure
5.14 shows the inverter output voltage and the load current along with their spectra
at 50 Hz.

The frequency of the reference-modulating signal is set to 90 Hz. Figure 5.15
shows the inverter output voltage and the R — L load current along with their
spectra at 90 Hz.

The simulated 1¢ inverter supplies the same R — L load and the frequency of
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Figure 5.12: The static R— L load currents supplied by WM and SPWM inverters and their
spectra: (a) the load current supplied by the WM inverter I5;(t)w s, (b) the spectrum of the
load current |Ip(f)wasl, (¢) the load current supplied by the SPWM inverter I (t)spw m
and (d) the spectrum of the load current |75/ (f)spw |-
S (t) is set to 400 Hz. The inverter output voltage and the load current along with
their spectra at 400 Hz are shown in Figure 5.16. The 1¢ universal motor model
is supplied by the same inverter with an output frequency of 90 Hz. Figure 5.17
shows the inverter output voltage and the motor current along with their spectra.
The simulation results of operating the 1¢ VS four-pulse wavelet modulated
inverter for different output frequencies show that the spectral location of the fun-
damental components of output voltage and load current are shifted, while their
magnitudes are almost unchanged. Moreover, the voltage as well the current THD
factors are slightly changed. The operation of the inverter for various output fre-
quencies is achieved by changing the frequency of Sy (¢), which is the sampled CT

signal. These results indicate that the reconstruction of Sy(t) using the developed
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Figure 5.13: The 1¢ universal motor currents supplied by WM and SPWM inverters and
their spectra: (a) the motor current supplied by the WM inverter I, (¢t)war, (b) the spec-
trum of the motor current |17 (f)w |, (c) the motor current supplied by the SPWM inverter
I (t)spwar and (d) the spectrum of the motor current |1y (f)spw |-

non-dyadic type MRA is independent of the frequency of the sampled CT signal.
Also, the accuracy of the reconstructed signals is almost unaffected by the change
in the frequency of Sy (t) as indicated by the THD factor values.

Simulation results for different loads supplied by the proposed wavelet mod-
ulated inverter output voltages with different frequencies have been presented.
Also, some of these simulation results have been compared with their counterparts
obtained using a typical SPWM inverter under the same loading conditions. In all
simulated results, the performance of the proposed WM inverter has shown signif-
icant capabilities to produce high quality outputs regardless of load type or output
frequency over the SPWM inverter one. Also, the wavelet modulated inverter has

a better ability to transfer power than the SPWM inverter, (as the higher output
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Figure 5.14: The inverter output voltage and the load current for an output frequency of
f = 50 Hz: (a) the inverter output voltage V,(t), (b) the spectrum of the inverter output
voltage |V, (f)| with |V;| = 47.14 V and THDy = 18.73 %, (c) the load current I;,(¢) and (d)
the spectrum of the load current |I1(f)| with |I;]| = 3.31 A and THD; = 2.78 %.

voltage fundamental frequency component magnitudes indicate). This ability for
high power transfer can be linked to the effective switching that improves both
magnitudes of output fundamental components and the inverter efficiency. The
next section introduces a new factor that can monitor the scale j changes during
the creation of non-uniform recurrent samples of Sy (t) as well as during its recon-

struction by the synthesis scaling function.
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Figure 5.15: The inverter output voltage and the load current for an output frequency of
f = 90 Hz: (a) the inverter output voltage V,(¢), (b) the spectrum of the inverter output
voltage |V, (f)| with |V;| = 49.56 V and THDy = 15.21 %, (c) the load current I (¢) and (d)
the spectrum of the load current |I1(f)| with |I;| = 2.73 Aand THD; = 1.92 %.

5.6 The Scale-Time Interval Factor

Switching pulses generated to operate the inverter represent a set of synthesis
scaling functions ({®;(t)}) created to reconstruct the reference-modulating signal
Sy (t) from its non-uniform recurrent samples. As the scale j changes, the dura-
tion and the location of each dilated and translated version of the synthesis scaling
function (@, «(t)) change over each half cycle of Sy (t). However, the scale is con-
stant over the interval of support of @;(t). On the other hand, the changes of
the scale j with time show the location of sample groups along with their density.

This indication can help to improve the quality of the inverter outputs. Also, the
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Figure 5.16: The inverter output voltage and the load current for an output frequency of
f = 400 Hz: (a) the inverter output voltage V,(¢), (b) the spectrum of the inverter output
voltage |V, (f)| with |V;| = 49.87 V and THDy = 12.95 %, (c) the load current I (t) and (d)
the spectrum of the load current |1 (f)| with |V;| = 1.10 A and THD; = 0.73 %.
value of the scale j that is associated with the switching pulses of the maximum
width can be located. Furthermore, as the scale is increasing, the derivative of the
sampled reference-modulating signal is positive, which imply that the sampled
signal is changing toward its maximum value. The previous discussion is impor-
tant when considering adjusting the inverter output during its operation as will be
discussed in chapter 7.

A factor v can be defined as a scale — time interval factor to provide a time-scale
relation that can produce time localized values of the scale over a half-cycle of the
reference-modulating signal Sy (t). Recall that the maximum value of the scale j is

reached before the derivative of the sampled reference-modulating signal changes
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Figure 5.17: The inverter output voltage and the motor current for an output frequency
of f =90 Hz: (a) the inverter output voltage V,(¢), (b) the spectrum of the inverter output
voltage |V, (f)| with THDy = 15.21 %, (c) the load current I5;(t) and (d) the spectrum of
the load current |[I5,(f)| with THD; = 1.07 %.

it sign. This factor can be defined as:

Definition 5.1: let -y be a scale — time interval factor for sample group d defined

as:
' J

_ SM(tdz) m

m=1
where 7, is the scale-time interval factor for the sample group d and j is the scale.
The factor v changes its increasing pattern into a decreasing one following a

change in the sign of the first derivative of the reference modulating signal S),(t).

Shy (taz)
| Shs (a2)]

quence to a decreasing one follows any change in the sign of Sj,(¢). This can be

As a consequence, the term ensures changing k from an increasing se-
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very important when relating the change in the scale to the change in a sampled
signal. Figure 5.18 shows the scale-time interval factor ~ for one of the simulated

cases for the static R — L load at an output frequency of 60 Hz. Figure 5.19 shows

o B ] i

I ! 1 ! 1 | ! |
0.002 0.004 0,006 0.008 0.01 ootz 0014 0,016
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Figure 5.18: The scale-time interval factor « for the inverter output voltage with a fre-
quency of f = 60 Hz.

the factor - for the case of supplying the 1¢ universal motor at an output frequency
of f =90 Hz.

The scale-time interval factor « can provide instantaneous values of time du-
rations for each interval of support for any synthesis function over one cycle of
Sa(t). Such values can be used to change locations of sample groups that can be
employed to adjust magnitudes as well as frequencies of inverter outputs. As a re-
sult, changing intervals of support for dilated and shifted versions of the synthesis
scaling function (; x(¢))can change durations as well as locations of ON switching
pulses.

The results of simulating the performance of a 1¢ wavelet-modulated inverter

demonstrates significantly high quality output voltages and load currents. This
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Figure 5.19: The scale-time interval factor v for the inverter output voltage with a fre-
quency of f = 90 Hz.

high quality has been demonstrated through low harmonic contents as well as high
fundamental components of output voltages and currents. Moreover, simulation
results have shown that the proposed wavelet modulated (WM) inverters have
the ability to transfer more power to the load side. Simulation results of the WM
inverter have included cases with different output frequencies, where harmonic
contents as well as fundamental component of outputs have not been significantly
affected. Also, a typical SPWM inverter has been simulated for the same loading
conditions. These simulations have been compared with their counterpart results
obtained from simulating the wavelet modulated inverter.

Simulation results obtained from the proposed wavelet modulated inverters
have demonstrated quite encouraging performance. These simulation results need
to be confirmed by the performance of an experimental inverter. The next chap-
ter presents real-time implementation and experimental testing of a 1¢ wavelet-

modulated inverter for different loads at different output frequencies. Also, the
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next chapter presents a performance comparison between the proposed wavelet
modulation technique and the conventional SPWM one under same loading con-

ditions.
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Chapter 6

Experimental Testing of a

Wavelet-Modulated Inverter

6.1 General

The previous chapter presented the development and an implementation of
the wavelet modulation technique using MATLAB software and SIMULINK tools.
Also, chapter 5 has provided results of simulating the performance of a single-
phase voltage-source four-pulse dc-ac wavelet-modulated inverter for different
loads under several output frequencies. The presented simulation results have
demonstrated the method’s high ability to substantially eliminate harmonics from
output voltages and currents. Furthermore, simulation results have shown signifi-
cant capabilities of the wavelet modulation technique to concentrate output energy
in the fundamental frequency component, which resulted in improved inverter
outputs. It should be noted that the test results of chapter 5 are obtained using

models of inverters, loads and supplies that are used for simulation purposes.
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In this chapter, the wavelet modulation technique (WM) is implemented for
operating a single-phase (1¢) voltage-source (VS) four-pulse IGBT dc-ac inverter.
Moreover, experimental test results of the WM technique are compared to results
obtained from the same inverter activated using sinusoidal pulse-width modula-
tion (SPWM) switching pulses. At the beginning, an experimental setup for a 1¢

VS four-pulse IGBT inverter is developed for conducting experimental tests.

6.2 The Experimental Setup

The wavelet modulation (WM) technique is tested on a 1¢ VS four-pulse IGBT

inverter that supplies two types of loads that are:
1. A static R — L load with an impedance Z = 12 + 55.31 2.
2. A 3 hp, 110V, 60 Hz, 1750 RPM single-phase capacitor-run induction motor.

The experimental setup needed for testing the 1¢ VS four-pulse IGBT inverter

for the aforementioned loads is composed of the following elements:

e A 1¢ VS four-pulse inverter composed of four insulated gate bipolar transis-

tor (IGBTs) switching elements with a free-wheeling diode across each IGBT.

e Hall-effect current and voltages sensors to collect currents and voltages for

performing spectral analysis using /'LU K I/ 41 power harmonic analyzer.

e A digital signal processing board dSPACE ds1102 DSP board for executing

the wavelet modulation technique Turbo — C code.

e An isolation and amplification circuit to supply generated switching pulses

on dSPACE ds1102 DSP board output ports to gates of IGBT switches.
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[t is worth mentioning that the used 1¢ VS four-pulse IGBT inverter is equipped

with snubber circuits in parallel with each IGBT switch. These circuits are meant to

limit the change of voltage across each IGBT switch during the ON-OFF switching.

The design of these circuits along with their schematic diagrams are detailed in

Appendix C.

The aforementioned elements are connected to build the experimental setup

that is shown in Figure 6.1. Figure 6.2 shows a picture for the experimental setup
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Figure 6.1: The experimental setup schematic for testing a wavelet modulated single-
phase voltage-source four-pulse IGBT dc-ac inverter and the tested loads.

taken in the Energy Laboratory.
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Figure 6.2: A picture for the laboratory setup of the inverter along with the measuring
instruments taken at the Energy Laboratory.

An algorithm for implementing the proposed wavelet modulation technique
has been developed in chapter 5. The proposed WM technique algorithm is real-
ized using a Turbo — C code, compiled using the Texas Instrument compiler and
loaded to the dSPACE ds1102 DSP board to generate switching pulses. These
switching pulses are taken from digital-output port (DO/P) of the dSPACE ds1102
DSP board and applied to activate inverter IGBT switches. It should be noted that
these switching pulses are applied to IGBT switches through an opto-coupler pulse
amplifier for isolating and protecting the DSP board. A dc voltage (Vpc) of 50 V is
used to supply the inverter on the input side.

The tested inverter output voltages and load currents are measured using the

hall-effect sensors, displayed and downloaded to a computer using a 2-channel
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Tektronics 2212 storage digital oscilloscope that has a sampling frequency of 10
kHz. The software package Grab 2212 is used to download the collected wave-
forms from the storage oscilloscope to a computer. Also, inverter output voltages
and load currents are fed into the FLUKE 41 harmonic analyzer to obtain their

spectra and total harmonic distortion (THD) factors.

6.3 Experimental Test Results

An experimental setup prepared to test the performance of the wavelet modu-
lation technique consists of the 1¢ VS four-pulse IGBT inverter with a dc voltage
supply, loads and measuring instruments. When the developed Turbo — C' code
is executed using the dSPACE ds1102 DSP board, switching pulses are generated
and sent to the digital output port (DO/P) of the DSP board. These switching
pulses are collected using the Tektronics 2212 storage digital oscilloscope. The
software package Grab 2212 is used to download the collected waveforms from the
storage oscilloscope to a computer. Figure 6.3 shows switching pulses generated

by the proposed WM technique.

6.3.1 The Static R — L Load

A static load that has an impedance of Z; = 12 + j5.31 {2 is connected across the
inverter output terminals (terminals P and N shown in Figure 6.1). This load is

tested for several frequencies including the standard 60 Hz frequency.
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Figure 6.3: Switching pulses generated by the proposed WM technique and collected from
the DO/P of the ds1102 DSP board using the T'ektronics 2212 storage digital oscilloscope.

Results for an Output Frequency of 60 Hz

Switching pulses generated by the wavelet modulation technique aim to activate
the inverter IGBT switching elements to reconstruct the reference-modulating sig-
nal Sy (t) from its non-uniform recurrent samples. As a consequence, the frequency
of a wavelet-modulated inverter output voltage is identical to the frequency of
Su(t). The first set of tests is conducted for an inverter output voltage with a fre-
quency of 60 Hz. As switching pulses are applied to the gates of the IGBT switches
with the dc voltage supply turned on, an output voltage appears across the R — L
load. Figure 6.4 shows the inverter output voltage V,(¢) and its harmonic spec-
trum. This voltage is collected using a hall-effect voltage sensor that is connected
in parallel with inverter output terminals (P, N as in Figure 6.1). Also, the col-
lected inverter output voltage is fed into the FLU K E 41 power harmonic analyzer

to provide the spectrum of V,(¢). It is to be noted that the collected results using
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the FLU K E 41 power harmonic analyzer are always RM S values.
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Figure 6.4: The experimental inverter output voltage and its spectrum obtained using the
FLUKE 41 power harmonic analyzer. The THDy is 16.10%.

The R — L load connected across the inverter output terminals (P, N), draws
a current Iy (t) that flows through Zj, and is collected using a series-connected
hall-effect current sensor. Moreover, the load current is passed through a clamp
meter connected to the F LUK E 41 power harmonic analyzer to provide the spec-

trum of I;(¢). Figure 6.5 shows the load current along with its spectrum. The
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Figure 6.5: The experimental load current Iz (¢) and its spectrum obtained using the
FLUKE 41 power harmonic analyzer. The THD; is 1.86%.

inverter output voltage and load current waveforms have been collected using the

Tektronics 2212 storage digital oscilloscope. Figure 6.6 shows waveforms of the
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inverter output voltage and load current. It is to be noted that the inverter output
voltage and load current have been measured using different hall-effect sensors,

which caused their scales to be different.
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Figure 6.6: The experimental inverter output voltage and the load current collected using
the Tektronics 2212 storage digital oscilloscope. The voltage scale is 25 V/Div and the
current scale is 1.5 A/Div.

Experimental Test Results for Different Output Frequencies

The previous results have demonstrated the experimental performance of a 1¢ VS
four-pulse wavelet-modulated inverter supplying a static load (R — L) for an out-
put frequency of 60 Hz. To extend the experimental testing of the wavelet modula-
tion technique, other output frequencies were also considered. These frequencies

include:
e 50 Hz

¢ 90Hz
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e 120Hz
e 150Hz

Test results for an output frequency of f = 50 Hz are presented in this chapter,
while results for the rest of tested frequencies are presented in Appendix A. The
same experimental setup as described for testing f,, = 60 Hz with the same R — L
load is used to test the performance of the 1¢ VS wavelet-modulated inverter for
an output frequency of 50 Hz. Moreover, the same procedures for collecting and
analyzing output voltages and load currents are applied. Figure 6.7 shows the
inverter output voltage and its harmonic spectrum. The spectrum of the output

voltage has been determined using the F LUK E 41 power harmonic analyzer.
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Figure 6.7: The experimental inverter output voltage for an output frequency of f = 50 Hz
and its spectrum obtained using the FLU K E41 power harmonic analyzer. The THDy is
17.8%.

The R — L load connected across the output terminals of the tested 1¢ VS
wavelet-modulated inverter draws a current I;,(¢). This current is collected using a
hall-effect current sensor, and fed into the F'LUK E 41 power harmonic analyzer to
obtain its spectrum. Figure 6.8 shows the load current along with its spectrum. It
is to be noted that the load impedance value is lower than the value for f = 60 Hz

due to the existence of the inductive element.
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Figure 6.8: The experimental load current for an output frequency of f = 50 Hz and its
spectrum using the FLU K E 41 power harmonic analyzer. The THD; is 2.2%.
Experimental test results show the significant capabilities for harmonic elimi-
nation of the tested 1¢ VS wavelet-modulated inverter based on the output voltage
and load current. This is clearly indicated by the low values of THD factors of the
collected inverter output voltages and load currents. Moreover, the fundamental
components of the collected voltages as well as currents have peak values that are
very close to the input dc values, indicating effective output energy concentration
in the desired output frequency component. The next subsection presents results

from testing a single-phase induction motor load.

6.3.2 The Single-Phase Capacitor-Run Induction Motor

This motor is tested to examine the behavior of the 1¢ VS wavelet-modulated in-
verter when supplying a dynamic load. The 1¢ capacitor-run induction motor is

rated at 60 Hz, but it will be tested for other frequencies as well.
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Results for an Output Frequency of 60 Hz

The experimental setup for the tested 1¢ VS inverter and measuring instruments
is kept the same as in the case of the R — L load as described before. The 1¢ in-
duction motor terminals (P, N shown in Figure 6.1) are connected to the output
terminals of the tested inverter. Switching pulses are applied to the gates of IGBT
switches, and the dc voltage supply is set to 110 V. It is to be noted that the inverter
output voltage is an amplified version of the one shown in Figure 6.3 because the
same switching pulses are used. Figure 6.9 shows the inverter output voltage and
its harmonic spectrum. The spectrum of the output voltage has been determined

using the FLU K E 41 power harmonic analyzer.
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Figure 6.9: The experimental inverter output voltage for an output frequency of f = 60 Hz
and its spectrum obtained using the F LU K E41 power harmonic analyzer. The THDy is
17.4%.

As the tested 1¢ capacitor-run induction motor draws current from the inverter,
its speed begins to build up until it reaches its rated value. The motor current is col-
lected using the hall-effect current sensor and fed into the F LUK E 41 power har-
monic analyzer to obtain its spectrum. Figure 6.10 shows the motor current along
with its spectrum. It is to be noted that this output current is obtained for an output

frequency of 60 Hz. Figure 6.11 shows the inverter output voltage and the motor
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Figure 6.10: The experimental 1¢ capacitor-run induction motor current and its spectrum
using the FLU K E 41 power harmonic analyzer. The THD; is 2.72%.

current waveforms. These waveforms are collected using the Tektronics 2212 stor-
age digital oscilloscope.

Trig : DC VERTICAL

E:

CH1

CH2

1.0V 5.0U 10ns

Figure 6.11: The experimental inverter output voltage and the 1¢ capacitor-run induction
motor current waveforms collected using the Tektronics 2212 storage digital oscilloscope.
The voltage scale is 150 V/Div and the current scale is 1 A/Div.
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Experimental Test Results for Different Output Frequencies

The tested 1¢ capacitor-run induction motor is rated at 60 Hz. However, it is tested
for several other output frequencies. These frequencies provide additional perfor-
mance testing for different operating conditions. Such tests include the following

frequencies:

¢ 50 Hz
e 90 Hz
o 120Hz

e 150 Hz

Test results for the output frequency of f = 90 Hz are presented in this chapter,
while results for the rest of tested frequencies are presented in Appendix A. The
same experimental setup for supplying the 1¢ capacitor-run induction motor as
described for testing f,,, = 60 Hz is used for testing the performance of the wavelet
modulated inverter for an output frequency of 90 Hz. Also, the inverter output
voltage and motor current are collected and analyzed using the same procedures
and instruments. Figure 6.12 shows the inverter output voltage and its harmonic
spectrum along with its spectrum that is determined using the FLUK E 41 power
harmonic analyzer.

The 1¢ capacitor-run induction motor draws a current that is collected using the
hall-effect current sensor and fed to the F'LU K F 41 power harmonic analyzer de-
vice to obtain its spectrum. The 1¢ induction motor current along with its spectrum
are shown in Figure 6.13.

The previous experimental results for the 1¢ VS four-pulse wavelet modulated

inverter supplying a dynamic load have demonstrated the significant capabilities
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Figure 6.12: The experimental inverter output voltage for an output frequency of f =
90 Hz and its spectrum using the FLUKE 41 power harmonic analyzer. The THDy is
12.7%. The voltage scale is 1:4.
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Figure 6.13: The experimental 1¢ capacitor-run induction motor current for an output
frequency of f = 90 Hz and its spectrum obtained using the F LU K E 41 power harmonic
analyzer. The THD; is 6.2%.

for harmonic elimination from output voltages and currents. This is clearly indi-
cated by the low values of THD factors of output voltages and load currents. More-
over, output waveforms have shapes very close to sinusoidal with fundamental
components very close to the dc supply voltages and currents.

Experimental test results presented for both static and dynamic loads clearly

show the high quality performance of the tested 1¢ VS four-pulse wavelet mod-

ulated inverter. Also, they show significant capabilities to concentrate the output

165



energy in the desired frequency bands. These features of the tested inverter perfor-
mance confirm the efficacy of the wavelet modulation technique.

Sinusoidal pulse-width modulated (SPWM) inverters are very popular in wide
ranges of industrial applications. In order to demonstrate the advantages of the de-
veloped wavelet-modulated inverter, it is convenient to compare both modulated
inverters for the same loading conditions. The next section presents experimen-
tal test results of a 1¢ VS four-pulse SPWM inverter tested for the same loading

conditions presented in the previous section for testing the WM inverter.

6.4 Experimental Tests of an SPWM Inverter

The previous section has presented experimental test results for a 1¢ wavelet-
modulated inverter for different loads and output frequencies . This sections aims
to provide a performance comparison between a wavelet-modulated and a sinu-
soidal pulse-width modulated (SPWM) inverters for the same loading conditions.
In order to carry out such performance comparison, a typical SPWM technique is
implemented to generate switching pulses for the same 1¢ VS four-pulse inverter
for same loads. The implemented SPWM has a triangular carrier signal with a
switching frequency of f, = 2 kHz and an amplitude modulation index m, = 0.8
for an output frequency of 60 Hz.

SPWM switching pulses are applied to inverter IGBT gates and the dc voltage
supply is turned on. This causes an output voltage to appear on inverter output
terminals (P and N as in Figure 6.1). The inverter output voltage is collected using
a hall-effect voltage sensor and is fed into the FFLU K E 41 power harmonic analyzer
to obtain its spectrum. Figure 6.14 shows the inverter output voltage along with its

spectrum.
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Figure 6.14: The experimental SPWM inverter output voltage with f; = 2 kHz and m, =
0.8 and its spectrum using the F LUK E 41 power harmonic analyzer device. The THDy is
32.7%.

A static R— L load is connected between inverter output terminals, which draws
a current I(t). This current is collected using the hall-effect current sensors and

fed into the FLUKE 41 power harmonic analyzer to obtain its spectrum. Figure

6.15 shows the load current along with its spectrum. The same 1¢ VS four-pulse
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Figure 6.15: The experimental R— L load current supplied by a 1¢ VS SPWM inverter with
fs = 2 kHz and m, = 0.8 along with its spectrum using the ¥ LU K E 41 power harmonic
analyzer. The THDy is 11.5%.

SPWM inverter is used to supply the 1¢ capacitor-run induction motor. The in-
verter output voltage is collected using a hall-effect voltage sensor and fed into the

FLUKE 41 power harmonic analyzer to obtain its spectrum. Figure 6.16 shows
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the inverter output voltage along with its spectrum. The motor current is collected
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Figure 6.16: The experimental SPWM inverter output voltage with f; = 2 kHz and m, =
0.8 and its spectrum using the F'LU K E 41 power harmonic analyzer device. The THDy is
25.7%.

using a hall-effect current sensor and fed into the F'LU K E 41 power harmonic an-

alyzer to obtain its spectrum. Figure 6.17 shows the motor current along with its

spectrum. Figure 6.18 shows the SPWM inverter output voltage and the motor cur-
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Figure 6.17: The experimental 1¢ induction motor current supplied by a 1¢ VS SPWM
inverter with f; = 2 kHz and m, = 0.8 along with its spectrum using the FLUKE 41
power harmonic analyzer. The THD; is 12.96%.

rent waveforms. These waveforms are collected using the Tektronics 2212 storage
digital oscilloscope.

Experimental test results obtained from the SPWM inverter for comparison pur-
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Figure 6.18: The experimental SPWM inverter output voltage and the 1¢ capacitor-run
induction motor current collected using the Tektronics 2212 storage digital oscilloscope.
The voltage scale is 50 V/Div and the current scale is 0.2 A/Div.

poses with their analog results obtained from the wavelet-modulated one. Table 6.1
summarizes these results. THDy is the total harmonic distortion factor of the in-

Table 6.1: Performance comparison between experimental WM and SPWM inverters for
the R — L load and the 1¢ capacitor-run induction motor.

Load | Parameter WM SPWM
R—-L Vil 4927V | 3971V
|11 366A | 295A
THDy 16.1% 32.7%
THD, 1.86% 11.5%
Motor Vil 108.26 V | 824V
|11 1.02A | 1.68A
THDy 17.40% | 25.42%
THD; 2.72% | 12.96%

verter output voltage and THD; is the total harmonic distortion factor of the load

current. The THD factor is defined in equation (5.6).
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Table 6.1 demonstrates clearly that the WM inverter has higher fundamental
components and lower output harmonic contents than the SPWM one. Such per-
formance comparisons confirm the results obtained from simulating both inverters
in chapter 5, in particular, that the wavelet-modulated inverter has capabilities to
transfer higher power than does the SPWM inverter. The data of Table 6.1 along
with the previous discussion provide an experimental confirmation of the efficacy
of the developed wavelet modulation technique. The next section provides exper-

imental evaluations and test results of the scale — time interval factor ~.

6.5 The Scale-Time Interval Factor

The scale—time interval factor -y (defined in chapter 5 by equation (5.8)) provides
an insight about the change in time interval of each group of non-uniform recur-
rent samples with the change in the scale j. Also, this factor provides a time-scale
relation that can provide time localized values of the scale over a half-cycle of the
reference-modulating signal Sy,(t). Such a time-scale relation is important when
considering adjusting the inverter output during its operation as will be discussed
in chapter 7. The factor y can be evaluated as one step of the wavelet modulation
technique implementation algorithm developed in section 5.2.

The scale-time interval factor ~ is defined as:

Ya =Ya-1t 75 7 |S' Z m2™ (tma — tm1) (6.1)

where 7, is the scale-time interval factor for non-uniform recurrent samples group
d and j is the scale. The factor v changes its increasing pattern into a decreasing one

following a change in the sign of the derivative of the reference modulating signal
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sequence to a decreasing one following any change in the sign of Sj,(¢). This can be

Su(t). As a consequence, the term ensures changing v from an increasing

very important when relating the change in the scale to the change in the sampled

signal. Figure 6.19 shows the +y factor for an output frequency of 60 H z.

CHz

5.0V 2ns

Figure 6.19: The scale-time interval factor «y for an output frequency of f = 60 H z collected
using Tektronics 2212 storage digital oscilloscope.

The factor « has also been collected for an output frequency of f = 90 Hz, and
is shown in Figure 6.20. The experimental results for evaluating the factor v for the
rest of the tested inverter output frequencies are provided in Appendix A.

Experimental results for evaluating the scale-time interval factor v are almost
identical to the simulation results presented in chapter 5; Figures 5.18 and 5.19.
Such close results demonstrate that the proposed wavelet modulation technique

functions the same regardless of the computational hardware.
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Figure 6.20: The scale-time interval factor + for an output frequency of f = 90 Hz collected
using Tektronics 2212 storage digital oscilloscope.

6.6 Comments on Experimental Test Results

Several experimental tests are conducted to demonstrate the performance of
the 1¢ WM inverter for different loads at different output frequencies. In all these
tests, the proposed wavelet modulation technique has been implemented through
a Turbo — C code, which is complied using the Texas Instrument Complier and ex-
ecuted by the dSPACE ds1102 board. Also, all the produced voltage and current
waveforms are collected using hall-effect sensors, and are converted to images us-
ing the 2-channel T'ektronics digital oscilloscopes. Finally, the spectral analysis to
determine the THD factors as well as the magnitude of V; is carried out using the
FLUKFE41 Power Harmonic Analyzer.

The instrumentation devices and components used for collecting and analyzing
the waveforms of the experimental tests have some functional limitations that are

summarized as follows:
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e The sampling rate: This factor affects the ds1102 board, the Tektronics digi-
tal oscilloscopes and the F'LU K E41 Power Harmonic Analyzer. The limited
sampling rate of these instrumentations can cause some deformations in the
collected waveforms (voltages and currents), can lower the resolution of the
obtained images for the collected waveforms, and spectra and may limit the

performances of the ds1102 board

¢ Anti-aliasing filters: These filters are used to smooth out any spikes when
carrying out the analog-to-digital conversion of both data and images. Per-
sonal computers, Tektronics digital oscilloscopes and F LU K E41 Power Har-
monic Analyzer have anti-aliasing filters at their input/output ports. These
filters can cause deformation in the waveforms when displayed as images as
well as filtered version of other images as in the waveforms produced by the

FLUKFEAL.

o Limited operating frequency bandwidth: The used hall-effect sensors have
operating frequency bandwidth that may not be wide enough to accommo-
date all the frequencies present in the collected voltage and current wave-
forms. This limitation can be responsible for additional distortion in the ex-

perimental test results.

The aforementioned features of the employed instrumentations can deform
some images showing experimental test results. However, these minor deforma-
tions in the presented experimental results do not change the fact that these results
provide strong evidence for the significant performance of the proposed WM in-
verters.

This chapter presented experimental results for testing a 1¢ VS four-pulse

wavelet modulated inverter. This developed wavelet-modulated inverter has been
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tested with two types of loads for different output frequencies. Experimental re-
sults for both loads have demonstrated a powerful capability to eliminate harmon-
ics from inverter output voltages and currents. Some results obtained using a typ-
ical 1¢ SPWM inverter are presented for comparison purposes. The comparison
of these two techniques has shown the high quality performance of the proposed
WM technique. In all tests, the load nature (static or dynamic) has little effect on
switching the inverter as well as the quality of inverter outputs. The scale-time in-
terval factor is determined for all the tested loads, and is used to demonstrate the
change of the resolution level of the synthesis scaling function {@;(¢)}.

In all the experimental tests, the laboratory 1¢ four-pulse IGBT inverter is sup-
plied with a dc voltage that is produced using an ac-dc rectifier. This dc voltage
supply delivers its current with some harmonic contents. The waveforms of the
input dc voltage and current along with their spectra for all the tested loads are
provided in Appendix A.

The next chapter, chapter 7, presents a control strategy for adjusting the magni-
tudes and the frequencies of al¢ WM inverter when supplying different load types
under different operating conditions. Simulation and experimental test results for

the performance of the controlled WM inverter are provided and discussed.
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Chapter 7

Analysis and Testing of
Resolution-Level Controlled 1¢ WM

Inverters

7.1 General

The last two chapters, chapter 5 and chapter 6, have presented various perfor-
mance test results for single-phase (1¢) wavelet-modulated (WM) inverters. The
presented results have included different load types supplied at different frequen-
cies. In all these tests, the proposed WM inverter has shown remarkable capabil-
ities to produce high quality outputs. Also, the presented test results have been
conducted to investigate the performance of the WM inverter for constant output
mode of operation (i.e. inverter output voltages are not varied during the opera-
tion).

In several industrial applications, inverters are operated within control loops
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to adjust the magnitudes as well as frequencies of their outputs. Such modes of
operation are usually required to meet the continuous changes in the supplied
load demands. These industrial applications include adjusting the speed in ac
motor drives, voltage compensation in power quality applications, varying the en-
ergy distributed in harmonic frequencies for power conditioning applications, etc.
[11,15,27,68-72]. The key approach for achieving adjustable inverter output mag-
nitudes and frequencies is through changing the widths and the Iocations of the
generated switching pulses. Several control strategies have been developed and

tested to carry out this approach including the following [68-79]:
1. Proportional-integral (PI) controllers;
2. Dead-beat current controllers;
3. Sliding mode controllers;
4. State-space controllers;
5. Fuzzy logic controllers;
6. Hysteresis-band current controllers;

7. Intelligent controllers;

The aforementioned control strategies are developed to adjust magnitudes
and/or frequencies of the inverter outputs, while maintaining predefined levels
of the output quality (pre-defined maximum values of THD factors). It is worth
mentioning that the aforementioned strategies are mostly developed to control the
outputs of PWM inverters [70-77]. This chapter aims to provide a control approach
to vary magnitudes and frequencies of the wavelet modulated (WM) inverter out-

put. The proposed approach is based on changing the scale j (dilation) of the
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synthesis scaling functions {@;(t)} . This control strategy will be called the

§=1,2,..

resolution-level control strategy.

7.2 Resolution-Level Control Strategy

The fundamental idea of the wavelet modulation technique is the construction
of a non-dyadic-type multiresolution analysis (MRA). The synthesis part of such
a MRA is carried out by inverter switching elements. The synthesized inverter
output is composed of a train of variable-width pulses that represent dilated and
translated versions of the scale-based linearly-combined synthesis scaling function
©1(t). Moreover, the interval of support of @;(¢) at each dilation and translation
depends on the value of the scale j. These dilated and translated versions of ¢ (¢)
have a repetitive nature due to the periodicity and the quarter-cycle symmetry of
the sampled sinusoidal reference-modulating signal Sy (t). As a result, the output
voltage of the 1¢ voltage-source (VS) WM inverter over one cycle of the reference-

modulating signal (Sx(t)) can be expressed as:

%’2 - i (Sua(8), 0a(t)) alt) - i <sM<t>, Pa (t - %m) > By (t _ %) .1

It is to be noted that the term (Sy(t), wa(t)) represents the values of the samples
created by ¢(t). However, the inverter switching elements are operated either fully
ON or OFF, which causes their outputs to be either the input dc voltage or 0. This
mode of operating the inverter switching elements in addition to the quarter cycle

symmetry can simplify the expression of the WM inverter output voltage over one
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cycle of Sy (t) to the following:
Volt) _ S~ 5 i Ay Tn . T,,
Voo Z Pi(t) + 2 Pu-n(t) — ij (t - 7) = 2_Pu-i) (t - 7) (7.2)

where J is the maximum value of the scale j. The sample groups index d is replaced
by the scale j due to the fact that one group of samples is created by ¢(t) at each

scale j. Figure 7.1 shows one cycle of the output voltage of 1¢ WM inverter with

the ¢, (t) labeled.
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Figure 7.1: One cycle of V,(t) and shifted and dilated versions of the scale-based linearly-
combined synthesis scaling function ¢ (t).

Equation (7.2) indicates that changing the value of J will change the durations
and the locations of the dilated and shifted versions of ¢;(¢). Hence, the output
voltage of the WM inverter can be changed through adjusting the value of J. Figure
7.2 shows the effects of changing J on the magnitude of the fundamental frequency

component of the WM inverter output voltage |V;| along with the total harmonic
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distortion (THDy) factor for several values of the output frequency (f,,). On the
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Figure 7.2: The effects of changing J on |V;| and THDy for several values of f,: (a) the
magnitude of the fundamental frequency component of the WM inverter output voltage
and (b) the total harmonic distortion (THDy/) factor. The base value of the voltage is in-
verter input dc voltage.

other hand, the scale-time interval factor -y defined in chapter 5, provides a relation
between the interval of support (duration) of $;(¢) and the scale j. The factor v
is a piece-wise continuous function in time with its increasing and decreasing be-
haviors directly related to the first derivative (S),(¢)) of the reference-modulation
signal Sy (t). Also, the factor v changes from an increasing to a decreasing function
when the scale j = J.

The scale j of successive synthesis scaling functions {@;(t)} j=1.2,. Changes either
up or down by 1. Further, the change in the scale j depends on the sign of the
derivative S},(t) evaluated at the ¢ = ¢, of each group of non-uniform recurrent

samples. This relation between the scale j and the sign on Sj,(t) suggests that
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both the durations and the locations of successive synthesis scaling functions can
be adjusted depending of the sign of Sj,(¢). The relation between the scale j and

the sign of S},(t) is characterized using the definition of the factor ~ as:

Sh(t
Yd = Yd—1 + ISfVI tzz)l Z m2™ (tma — tm1) (7.3

where 7, is the scale-time interval factor for the group d of non-uniform recurrent
samples.

The previous discussion suggests that the width and the location of each ¢;(t)
can be changed by changing the value of J. This suggested change in the value
of J can be achieved , as the factor v shows, by varying the time instants at which
the derivative S},(t) changes its sign from positive to negative or vice versa. The
reference-modulating signal Sy,(t) is a sine function, which indicates that S},(t)

is a cosine function. The time instants a cosine function changes its sign can be

(t} = {Tm G + g) ce z} (7.4)

where T, is the period of Sy, (t). The set {t.} represents the set of time instants,

expressed as [74, 79]:

where S, (t) changes its sign from positive to negative or vice versa. Figure 7.3
shows the first derivative S),(t), the factor v and the inverter output voltage along
with its spectrum for a normal mode of operation.

In general, the time instants of sign changes for a cosine function can be

changed using one of the following methods:

1. Shifting S,(t) such that:

Si(t,w,8) = Apcos (wnt + 6) (7.5)
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Figure 7.3: The normal mode of operation for the WM inverter: (a) the scale-time interval
factor y and the first derivative of the reference-modulating signal S,(¢), (b) the inverter
output voltage for f,, = 60 Hz at Vpc = 50 V and (c) the spectrum of the output voltage.
|[Vi| = 49.27 V and THDy = 17.64%.
where Ay, is the peak value of S),(t), wn, is the angular frequency of Sy, (t) and
6 is a phase shift. The phase shift 6 causes the scale j either to exceed J or to
begin decreasing before reaching the value of J. As a result, the widths and

the locations of successive synthesis scaling functions will be changed that

will affect the magnitude of the output fundamental frequency component.

2. Changing the frequency of Sy (¢) such that:

Sy (t,w,0) = Ap cos (wat) (7.6)

where wy,, is a new angular frequency of Sy (¢). This change in the frequency

of Sy (t) results in generating synthesis scaling functions that will reconstruct
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Sn(t) at the new frequency f,. This can be interpreted as shifting the spectral

location of the fundamental frequency component of the inverter output from

fml to fm?-

3. A combination of changing the frequency of Sy/(t) and introducing a phase

shift in S),(t) such that:
Siy(t,w,8) = A cos (wst + 6) (7.7)

This combination of shifting S},(¢) and changing the frequency of Sy,(t) re-
sults in changing the widths and the locations of the synthesis scaling func-
tions to reconstruct Sy (t) at the new frequency f,.3. Also, the phase shift ¢
vary the magnitude of the fundamental frequency component of the inverter

output at the new frequency.

Figure 7.4 shows the effects of changing the phase shift § on the value of J for
several values of f,,.

The aforementioned methods of changing the time instants where the first
derivative S},(t) changes its sign can adjust the frequency and the magnitude
of the WM inverter output that can provide the basis for realizing the proposed
resolution-level control strategy. As Figure 7.4 shows, the relation between the 6
and J is linear for § € [—0.5,0.5] rad. The next section presents simulation test

results for the performance of 1¢ VS WM inverter with the resolution level control.
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Figure 7.4: The effects of changing the phase shift # on the maximum value of the scale J
for several values of f,,.

7.3 Testing A Resolution-Level Controlled WM In-
verter

The previous section presented the resolution-level control approach for adjust-
ing magnitudes as well as frequencies of the WM inverter outputs. This approach
is based on changing the time instants where S, (¢) changes its sign. Furthermore,
three methods to realize the resolution-level control approach have been suggested
[73,74]. The resolution-level control strategy can be implemented as a part of the
wavelet modulation technique by adding both the frequency of Sy, (t) and phase
shift # as variables to be updated while generating the inverter switching pulses.
Figure 7.5 shows a flowchart diagram for implementing the resolution-level con-
trol strategy.

This section presents simulation test results for a resolution-level controlled

WM VS inverter. It should be noted that simulation tests are conducted for a 1¢
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Figure 7.5: A flowchart for implementing the resolution-level control strategy to operate
a 1¢ WM inverter.

VS four-pulse WM inverter when supplying a R — L load. Moreover, the exper-
imental test results for a 1¢ VS four-pulse IGBT WM inverter when supplying a

R — L load are presented in Appendix B.

184



7.3.1 Simulating the Performance of a Resolution-Level Con-

trolled WM Inverter

The performance of a 1¢ VS four-pulse WM inverter is simulated using MAT-
LAB/SIMULINK software under resolution-level control. The simulated inverter
supplies an R — L load of Z;, = 10 + 57.45 Q with an input dc voltage of 50 V.
The resolution-level control is added as a part of the developed MATLAB code
for implementing the wavelet modulation technique. This code generates switch-
ing pulses to activate a SIMULINK model of a 1¢ VS inverter and the R — L load.
Three cases are simulated to investigate the performance of the resolution-level

controlled WM inverter including the following:

™

e Introducing a phase shift of § = — 7%

o Changing the output frequency to f,, = 75 Hz.

¢ Changing the output frequency to f,, = 50 Hz with § = .

Simulation Results for 8 = -5

The case represents introducing a negative phase shift in the first derivative
(S34(t)). The phase shift is set to § = —7;, which makes (5},(t)) have the following
expression:

Sy (t,0) = cos (1207rt — _17r_2) (7.8)

Figure 7.6 shows S},(t), the factor v along with the inverter output voltage and
its spectrum for this case. The load current for § = —£ along with its spectrum
are shown in Figure 7.7. It should be noted that all the spectra in the following

simulation tests are determined after changing 6 and/or f,,.
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Figure 7.6: Introducing a phase shift of § = — 75 in §},(¢): (a) the derivative S, (t) and the
factor v, (b) the inverter output voltage and (c) the spectrum of the inverter output voltage.
V1| = 54.12 V and THDy = 18.97%.

The simulation result shows an increase in the magnitude of the fundamental
frequency component of the inverter output voltage (|Vi| = 4927V — 54.12V)
with a small change in the THDy, factor (THDy = 17.64% — 18.97%). Also,
the fundamental frequency component of the load current has increased (|I;| =
3.08 A — 3.48 A) with a small change in the THD; factor (THD; = 2.15% —
2.77%).

Simulation Results for f,,, = 75 Hz

The performance of the WM inverter with the output frequency set at f,,,0 = 75 Hz

is simulated for the R — L load. For this case, the frequency of the reference-
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Figure 7.7: The load current I (t) and its spectrum: (a) the load current I (t) and (b) its
magnitude spectrum |1 (f)|. 11| = 3.48 ATHD; = 2.77%.

modulating signal Sy(¢) is set at f,,2 = 75 H 2, which makes 5, (t) expressed as:

S (t, fm) = cos (150xt) (7.9)

Figure 7.8 shows S),(t), factor ~, the inverter output voltage and its spectrum for
this case. The load current for f,,o = 75 Hz along with its spectrum are shown in
Figure 7.9.

The simulation result shows almost no change in the magnitude of the funda-
mental frequency component of the inverter output voltage (|V3| = 49.27V —
48.46 V) with a small change in the THDy factor (THDy = 17.64% — 16.94%.
Also, the fundamental frequency component of the load current has decreased
(] = 308 A — 256 A) with a small change in the THD; factor (THD; =
2.15% — 2.93%). It is to be noted that the decrease in the current is due to the

increase in the load impedance when f,, is increased to 75 Hz.
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Figure 7.8: Changing the frequency of Sy (t) fm = 60 — 75 Hz: (a) the derivative S},(¢)
and the factor v, (b) the inverter output voltage and (c) the spectrum of the inverter output
voltage. |V;| = 48.46 V and THDy = 16.94%.

Simulation Results for f,,; = 50 Hz with § = J;

The performance of the WM inverter with the output frequency set at f,,» = 50 Hz
and the phase shift § = 15 18 simulated for the R — L load. For this case, the first

derivative S},(t) has the following expression:

Sh(¢,8) = cos (1007rt—|— 10) (7.10)

Figure 7.10 shows S},(t), factor ~, the inverter output voltage and its spectrum for
this case. The load current for f,,3 = 50 Hz with § = {5 along with its spectrum are

shown in Figure 7.11.

The simulation result shows a decrease in the magnitude of the fundamental
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Figure 7.9: The load current (t) and its spectrum: (a) the load current I7(¢) and (b) its
magnitude spectrum |I1,(f)|. |[;| = 2.56 A THD; = 2.93%.

frequency component of the inverter output voltage (|Vj| = 4927V — 43.17V)
with a small change in the THDy factor (THDy = 17.64% — 19.22%). Also,
the fundamental frequency component of the load current has increased (|I;] =
3.08 4 — 3.19 A) with a small change in the THD; factor (THD; = 2.15% —
3.76%). It is to be noted that the increase in the current is due to the decrease in the
load impedance when f,,, is decreased to 50 Hz.

Simulation test results of the 1¢ resolution-level controlled WM inverter has
shown stable and fast responses for increasing and decreasing the magnitude of the
output voltage. Moreover, the same features have been observed for the controlled
WM inverter when the output frequency is changed. The stable and fast responses
for changing the magnitudes and frequencies have negligible effects on the har-
monic contents of the inverter outputs. The simulation results have demonstrated
encouraging performances of the 1¢ resolution-level controlled WM inverter for

responding to different adjustments on the WM inverter output. The next section

189



(t) and y

1
0.065

Vo(t) V]

HWHI mn

—>50and8 0—>1r/10

00 o oa 008 0.1
t [sec|

(e) |

Figure 7.10: Changing the frequency of Sy(t) fm = 60 — 50 Hz with § = J;: (a) the
derivative S},(t) and the factor ~, (b) the inverter output voltage and (c) the spectrum of
the inverter output voltage. |Vi| = 43.17 V and THDv = 19.22%.

provides experimental test results for a 1¢ VS four-pulse resolution-level controlled

WM inverter for supplying a single-phase capacitor-run induction motor.

7.4 Experimental Testing of a Resolution-level Con-

trolled WM Inverter

The previous section has presented simulation results for 1¢ resolution-level
controlled WM inverter when supplying a R — L load. The presented simulation
results have clearly shown that changing the magnitude and/or the frequency of
the controlled WM inverter has little effects on the quality of its outputs. This sec-

tion presents experimental tests of a 1¢ VS four-pulse IGBT resolution-level con-

190



| | / ] v/ \ 3 / 3 A
;A R A U A U A ¥ A U A U A U
NSNS S ANy 4 \/ )

() [4]

f,?:60-—>75and0|:0—>7r/10

o 0.02 004 0.06 008 X) 012

35y T T T

®

[Ze(A)

[ [kHz]

Figure 7.11: The load current I, (t) and its spectrum: (a) the load current I,(¢) and (b) its
magnitude spectrum |I,(f)]. |I;| = 3.19 A THD; = 3.76%.

trolled WM inverter when supplying a 1¢ capacitor-run induction motor. It is to be
noted that the speed response of the tested 1¢ capacitor-run induction motor are
presented in Appendix B.

An experimental setup identical to the one used in chapter 6 (Figure 6.1), is
used to test the 1¢ resolution-level controlled WM inverter when supplying the 1¢
capacitor-run induction motor. Also, the voltage and current waveforms are col-
lected using the same procedure reported in chapter 6. The resolution-level control
strategy is realized as a part of the developed Turbo — C code for implementing
the wavelet modulation technique by adding f,, and § as variables to be updated

while generating the switching pulses. Experimental tests include:
1. Introducing a phase-shift in S}, (t) of ¢ = — 5.
2. Changing the output frequency f,,, from 60 Hz to 75 Hz

3. Changing the output frequency f,, from 60 Hz to 50 Hz with a phase-shift
0= 3%
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Figure 7.12 shows the factor -, the motor current and the inverter output volt-
age for the normal operation (f,, = 60 Hz and § = 0) with an input dc voltage of
110 V. For normal operation, |V;| = 108.26 V and THDy = 17.40% and |I;| = 1.02 A
and THD; = 2.72% (see Table 6.1).

A O>MAG Trig : DC UERTICAL

CcH2

CH1

Lyl rpered

CH2

i.0uU 5.0V 10ms

Figure 7.12: The experimental inverter normal operation for f,, = 60 Hz and 6 = 0: the
factor v, the motor current and the inverter output voltage. The voltage scale is 150 V/Div.
and current scale is 2 A/Div.

Experimental Test Results for 0 = — 7

This test aims to increase fundamental component of the inverter output voltage.
As indicated by the simulation results, the negative phase shift 6 in S},(¢) changes
the durations as well as the locations of synthesis scaling functions that results in

increasing the magnitude of the output fundamental frequency component. It is
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to be noted that the phase shift § is changed while the inverter is supplying the

-7

motor such that § = 0 — 3. Figure 7.13 shows the factor v, the motor current and

the inverter output voltage for this case. Figure 7.14 shows spectra of the motor

10xMAG

Trig :

DC UVER

TICAL

T 1
T

[
yrrr1read

| cH1

CH2

Figure 7.13: Test results for shifting S},(t) by § = —{5: the scale-time interval factor v, the
motor current and the inverter output voltage. The voltage scale is 80 V/Div. and current

scale is 1 A/Div.

current and the inverter output voltage for § = —5 obtained using the FLUKE 41

harmonic analyzer. It is to be noted that the spectra in Figure 7.11 are determined

after changing 6 to =%

us
12

Experimental test results show an increase in the magnitude of the fundamental

frequency component of the inverter output voltage (|Vi| = 108.26 V — 117.34V)
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Figure 7.14: Experimental test results for shifting 5, (t) by = —<5: (a) the spectrum of
the motor current and (b) the spectrum of the inverter output voltage. |/;| = 1.32 A and
THD; = 3.62% |V1| = 117.34 V and THDy = 19.46%. Scale 1:2.

with a small change in the THDy factor (THDy = 17.40% — 19.46%). Also,
the fundamental frequency component of the load current has increased (|[;]| =

1.02 A — 1.32 A) with a small change in the THD; factor (THD; = 2.72% —
3.62%).

Experimental Test Results for Changing f,,,

This test aims to investigate the performance of the WM inverter when the out-
put frequency is changed. This test is conducted by changing the frequency of the
reference-modulating signal Sy,(t) from 60 to 75 Hz while the inverter is supply-

ing the motor. Figure 7.15 shows the factor +, the motor current and the inverter
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output voltage for this case. Figure 7.16 shows spectra of the motor current and the

10xMAG Trig : DC UVERTICAL

CH1

CH1

CH2

Figure 7.15: Experimental test results for changing the output frequency f, from 60 to 75
Hz: the scale-time interval factor v, the motor current and the inverter output voltage. The
voltage scale is 80 V/Div. and current scale is 0.5 A/Div.

inverter output voltage for f,, = 75 Hz obtained by using the F'LU K E 41 harmonic
analyzer.

Experimental test results show a decrease in the magnitude of the fundamental
frequency component of the inverter output voltage (|V;| = 108.26 V. — 98.56 V)
with a small change in the THDy factor (THDy = 17.40% — 20.26%). Also,
the fundamental frequency component of the load current has decreased (|I;| =

1.02 A — 0.78 A) with a small change in the THD; factor (THD; = 2.72% —
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Figure 7.16: Experimental test results for changing the output frequency f,, from 60 to
75 Hz: (a) the spectrum of the motor current and (b) the spectrum of the inverter output
voltage. |I;| = 0.78 A and THD; = 1.87% |V1| = 107.68 V and THDy = 20.26%. Scale 1:1.

1.87%). It is to be noted that the motor current has decreased due to the increase in

the speed for the same motor output mechanical power.

Experimental Test Results for Changing f,,, with a Phase-shift ¢

This test aims to examine the performance of the WM inverter when the output fre-
quency is changed with the introduction of a phase-shift 6 in S}, (t). This test is con-
ducted by changing the frequency of the reference-modulating signal Sy (t) from
60 to 50 Hz and setting § = {; while the inverter is supplying the motor. The fre-
quency change and the introduction of a phase shift cause durations of switching

pulses to narrow, which shifts the spectral location of the fundamental frequency
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component. Figure 7.17 shows the factor v and the inverter output voltage for
this case. Figure 7.18 shows spectra of the motor current and the inverter output

10xMAG Trig : DC VERTICAL
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NI

CH2

S.0uUL 10ns

Figure 7.17: Experimental test results for changing the output frequency f, from 60 to 50
Hz with a phase-shift § = {;: the scale-time interval factor -, the motor current and the
inverter output voltage. The voltage scale is 80 V/Div. and current scale is 0.5 A/Div.

voltage for f,, = 50 Hz with § = ; obtained by using the FLUKE' 41 harmonic
analyzer.

Experimental test results show a decrease in the magnitude of the fundamental
frequency component of the inverter output voltage (|V;| = 10826 V — 96.12V)
with a small change in the THDy, factor (THDy, = 17.40% — 18.74%). Also,

the fundamental frequency component of the load current has increased (|I;] =
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Figure 7.18: The test results for changing the output frequency f,, from 60 to 50 Hz with
6 = {5 (a) the spectrum of the motor current and (b) the spectrum of the inverter output
voltage. |I;| = 1.28 A and THD; = 3.44% |V;1| = 96.12 V and THDy = 18.74%. Scale 1:2.
1.02 A — 1.28 A) with a small change in the THD; factor (THD; = 2.72% —
3.44%). It is to be noted that the decrease in the motor speed (f,, = 60 — 50 Hz)
causes an increase in the motor current for the same motor output mechanical
power.

This chapter has presented a new control strategy that aims to a adjust magni-
tudes and frequencies of the 1¢ WM inverter outputs. This strategy is called the
resolution-level control that is based on changing the scale j of the successive di-
lated and shifted versions of the synthesis scaling functions. This change in the
scale j has varied the durations and locations of ¢;(t) by introducing a phase-shift

(9) in the derivative S),(t). Furthermore, the phase shift § has been able to allow the
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scale j to exceed the value of J (for § < 0) and begin decreasing before reaching the
value of J (for § > 0). Simulation and experimental test results of a 1¢ resolution-
level controlled WM inverter have demonstrated stable and fast responses to meet
any change in the inverter output. Moreover, the quality of the inverter outputs
has been maintained high in all the tested cases. Table 7.1 summarizes all the re-

sults obtained from testing the 1¢ resolution-level controlled WM inverter. The

Table 7.1: Performance test results of the 1¢ resolution-level controlled WM inverter for
different load types.

Load |0 Fm V1] ] | THD, | THD,
R—L|0=0 |fn=060Hz| 4027V |366A | 17.64% | 2.15%
§==% | [, =60 Hz | 5412V | 348 A | 1897% | 2.71%
=0 | fm=T7bHz| 4846V | 2.56 A | 16.94% | 2.93%
=2 | f.=50Hz | 4317V | 3.19A | 19.22% | 3.76%
Motor | =0 | f, =60 Hz | 10826V | 1.02 A | 17.40% | 2.72%
§= | [, =60 Hz | 117.34V | 1.32A | 19.46% | 3.62%
=0 | fn=75Hz|107.68V |0.78A | 20.26% | 1.87%
0= | fm =50Hz | 96.12V | 1.28 A | 18.74% | 3.44%

presented performance test results prove the functionality and the validity of the
proposed 1¢ VS resolution-level controlled WM inverters for supplying different
load types under different operating conditions.

All the developments and performance tests have been focused on 1¢ VS four-
pulse inverters. The next chapter extends the development and the tests of the
proposed wavelet modulation technique to operate three-phase (3¢) VS six-pulse

inverters.
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Chapter 8

Developing and Testing the
Three-phase Wavelet Modulation

Technique

8.1 General

The last three chapters of this work have presented different test results of single-
phase (1¢) WM inverters for supplying different types of loads under different op-
erating conditions. These test results have demonstrated significant capabilities to
produce high quality outputs and transfer high power to the load side. Also, test
comparisons have shown that the proposed wavelet modulate inverters can out-
perform the conventional SPWM inverters under the same loading conditions. In
general, dc-ac inverters can be designed as single-phase (1¢) or three-phase (3¢)
configurations. 3¢ inverters are very popular in a wide range of industrial applica-

tions such as power systems, ac motor drives, renewable energy utilization, power
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supplies, etc. [80-83].

This chapter presents the development of extended non-dyadic type multires-
olution analyses (MRAs) that can be employed to generate switching pulses for
operating a 3¢ six-pulse inverter. The basis for the desired MRAs will depend on
the non-uniform recurrent sampling model of 3¢ inverters developed in chapter 3,

in particular, sampling shifted continuous-time (CT) signals.

8.2 Scale-based Linearly-Combined Scaling Functions
for Three-Phase Inverters

In chapter 3, the non-uniform recurrent sampling-based model of a single-phase
inverter was extended to develop a model for a three-phase inverter. Such an ex-
tension was based on considering a 3¢ inverter as three independent 1¢ invert-
ers. This consideration was justified by the principle of operating 3¢ inverters,
where the switching pulses are generated using reference-modulating signals rep-
resenting 3¢ line quantities. The developed 3¢ inverter sampling-based model was
composed of three shifted single-phase ones. This extension of the non-uniform re-
current sampling-based model can be employed for developing non-dyadic-type
MRAs to generate switching pulses for operating a 3¢ inverter.

The basis of the wavelet modulation technique lies in the definition of the
scale-based linearly-combined scaling function ¢;(¢), which is used to sample
the reference-modulating signal in a non-uniform recurrent manner. In a 3¢ six-
pulse inverter, three reference-modulating signals are used to generate the required
switching pulses. As a consequence, three scaling functions are needed to sample

these three signals. It is to be noted that these three reference-modulating signals
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have the same frequency and magnitude with a phase shift of 2* from each other.
The three reference-modulating signals, each one of them is related to one phase of

the desired 3¢ output, can be defined as [1, 29, 80-83]:

Shra(t) = sin (wit) 8.1)
SMb(t) = sin (wmt - 2—;—) (82)
Sae(t) = sin (wmt + -2371> (8.3)

The non-uniform recurrent sampling of these three CT reference-modulating
signals can be achieved using one sampling function for each CT signal. As a
consequence, three scaling functions with a phase shift of 2* from each other are
required to sample the three reference-modulating signals in a non-uniform recur-

rent manner. These three scale-based linearly-combined scaling functions can be

defined as:
(0a(t)); = du (27418) + du (274 (t — w)) (8.4)
(o(t); = bur (277t — 2) + du (277 (t — ) — 2) (8.5)
(e(t)); = bm (277t — ze) + om (2771 (t — ) — 2.) (8.6)

where u = 1 — 270D, j = 1,2, ... and the shifts z, and z. are given by:

923
Zp = T (87)
3~7
- . 8.9)

202



Figure 8.1 shows the three scaling functions (¢,(t));, (#s(t)); and (¢.(t)),

05— —

(‘pa(t))l

(es(t))y

(‘/’c(t))l

0 0.25 05 0.75 1 1.25 15 175 2 2.25 25

Figure 8.1: The three scale-based linearly-combined scaling functions: (a) (@a(t));. (b)
((t)); and (c) (we(t));.-

The three scale-based linearly-combined scaling functions (y.(t)), (vs(t)) and
(p.(t)) are capable of creating sets of non-uniform recurrent sample groups for the
three reference-modulation signals Sya(t), Sams(t) and Sy(t). It is to be noted
that the three scale-based linearly-combined scaling functions are required to meet
the conditions for constructing a MRA using dilated and translated versions of
each scaling functions. This condition is necessary to ensure the reconstruction of
the CT signals using dilated and translated versions of the dual synthesis scaling
functions [47-53].

Reconstructing the three CT reference-modulation signals Siza(t), Swms(t) and
Su.(t) is carried out by the synthesis scaling functions, where each one of them is

the dual of one scale-based linearly-combined scaling function. These scale-based
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linearly-combined synthesis scaling functions can be defined as:

(‘ﬁa(t))j = (¢H)J () = (pa (t))j (8.9)
(@5(8)); = (¢m); (¢ — 2) — (00 (1)), (8.10)
(@e(t)); = (br); (8 — 2e) — (e (1)), (8.11)
where 7 = 1,2,... Figure 8.2 shows the three synthesis scaling functions

(Pa(t))y, (Ps(t)); and (@.(t)),. These synthesis scaling functions are used to ac-

t (a)

(OR

(o)

0
0 025 0.5 0.75 1 1.25 1.5 175 2 226 25

Figure 8.2: The three scale-based linearly-combined synthesis scaling functions: (a)
(@a(?))1, (b) (#5(2)); and (c) (@e(t));-

tivate the switching elements of the 3¢ inverter. Each of the three scaling functions
(©a(1));, (05(?)); and (pc(t)), is composed of two Haar scaling functions. This fea-
ture indicates that each scaling function creates two samples at each dilation j and
translation k. On the other hand, changing in the scale j will cause both dilations

and translations of each scaling function. Further, each translation is dependent on
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both the translation integer k and the scale-dependent quantity (1 — 2=U+1). These
translations cause the spacings between samples to be non-uniform. This feature
guarantees that synthesis scaling functions will have different locations with dif-
ferent intervals of support [67].

Using the three developed scale-based linearly-combined scaling functions
(pa(t));, (pu(t)); and (pc(t)); and their dual synthesis ones (P4(t));, (@u(t)); and
(@c(t));, the three CT reference-modulating signals S.(t), Sus(t) and Sy.(t) can

be expanded as [67]:

Sua(t) = D D (Suralt), (alt = K)),) (Bult = K), .12)
Swnl®) = DD (Sauslt), (pult = ) ) (@u(t = ), 813)
Se®) = 33 (Smelt), (et = ));) (elt = ), 814

The inner products in the above equations can be written as:

1

(Saa(t), (al0);) = / Sutalt) ($m),41 Ot + [ Sma(ou®dt  @.15)

tad2

o1 1
<SMb(t)a (%(t))j> = /0 Sup(t) ()41 E—z)dt+ [ Swmp(t)du (I — 2)dt (8.16)

tbaz

tedr 1
<SMc(t)’ (‘pc(t))j> = /0 Spet) (¢H)j+1 (t — zc) dt + /t Spe(t)pm (I - Zc) dt (8.17)

where ¢5(l) = ¢ (297! (£ — 1 + 27UFD)). The aforementioned inner products en-
sure the creation of two samples over the interval of support of each scaling func-

tion at each scale j and translation £. It should be noted that the scale j has to
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start from j; = 1 in order to avoid uniform sampling that takes place for j = 0

[45-47,67].

8.3 Implementing the Wavelet Modulation Technique
for a Three-Phase Inverter

The structure of the scale-based linearly-combined scaling functions and their
dual synthesis scaling functions indicates the creation of three non-dyadic type
MRAs. Each one of these MRAs is associated with one reference-modulating sig-
nal. These MRAs are realized through sampling the reference-modulating signals
in a non-uniform recurrent manner, then reconstructing them through switching
actions. The implementation of the wavelet modulation technique for a 3¢ six-

pulse inverter can be divided into 2 parts as [67]:

¢ Implementing a non-uniform recurrent sampling with period T,, = 1/fn,
where f,, is the frequency of reference-modulating signals Shs,(t), S (t) and
Smc(t). The required sampling times are determined by dilated and trans-

lated versions of the three scale-based linearly-combined scaling functions

(Pa(®))1s (#6(1)); and (pe(t)); -

¢ Generating switching pulses using the three developed synthesis scale-based

linearly-combined scaling functions (,(t)),, (¥s(t)), and (c(t)),-

The resulting samples (for the three reference-modulating signals) are arranged
in groups, where each group of each reference-modulating signal contains two
samples. Also, each group of each reference-modulating signal defines a time

interval for one dilated and translated version of its associated synthesis scaling
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function. It is to be noted that the time interval of each sample group of each
reference-modulating signal changes due to the change of the scale j.

The developed procedure for implementing the wavelet modulation technique
for operating a 1¢ inverter can be extended for a 3¢ six-pulse one by creating
switching pulses for each leg to reconstruct one reference-modulating signal. In
other words, treating each leg of the 3¢ inverter as one non-dyadic type MRA.
Figure 8.3 shows a flowchart for implementing the wavelet modulation for a 3¢
six-pulse inverter.

The flowchart of Figure 8.3 shows a simple procedure for implementing the
proposed wavelet modulation for a 3¢ six-pulse inverter. This procedure can be
realized using a MATLAB code. A SIMULINK model of a 3¢ six-pulse inverter can
be used for simulating the performance of a 3¢ six-pulse wavelet-modulated (WM)
inverter. The next section presents simulation results for a 3¢ VS six-pulse inverter

supplying an R — L load.

8.4 Simulating the Performance of a 3¢ VS Six-Pulse

Wavelet-Modulated Inverter

The procedure for implementing the three-phase wavelet modulation technique
developed in the previous section can be realized using a MATLAB code. This
code generates the required switching pulses to activate a 3¢ VS six-pulse inverter.
A SIMULINK model is constructed for simulating the performance of the inverter
when supplying a 3¢ Y-connected R — L load. Figure 8.4 shows a schematic dia-
gram of a three-phase six-pulse inverter with the 3¢ Y-connected R— L load. Figure

8.5 shows the constructed SIMULINK model for a 3¢ VS six-pulse IGBT inverter
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Figure 8.3: The flowchart for an algorithm to implement the 3¢ WM that generates switch-
ing pulses for a 3¢ six-pulse inverter.
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Figure 8.4: The schematic diagram of a 3¢ six-pulse voltage source inverter supplying a
3¢ Y-connected R — L load.
with the 3¢ Y-connected R — L load.

The three-phase wavelet modulation technique code generates switching
pulses for the three legs of the 3¢ VS six-pulse inverter. Figure 8.6 shows the switch-
ing pulses generated by the developed MATLAB code.

The quality of inverter output voltage and load current are usually expressed in
terms of the total harmonic distortion factor (THD) that has been defined in section
5.4.1. The constructed SIMULINK model is composed of a six-pulse IGBT inverter
with a dc voltage supply of 50 V. This model supplies a 3¢ Y'-connected R — L load
of Z;, = 10 + j3.77 Q/phase. Figure 8.7 shows the 3¢ line-to-line inverter output
voltages. Figure 8.8 shows the 3¢ line-to-neutral inverter output voltages.

Line-to-line as well as line-to-neutral inverter output voltages are analyzed us-
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Figure 8.5: The SIMULINK model of a 3¢ VS six-pulse inverter with the 3¢ Y -connected
R — L load to simulate the performance of the 3¢ wavelet modulation technique.

ing Fourier analysis to obtain their harmonic spectra as well as the values of their
THD factors. Figure 8.9 shows the voltages V4g(t) and Vay(t) along with their
spectra. The 3¢ Y-connected R — L load draws three-phase currents that are shown
in Figure 8.10. Line currents are analyzed using Fourier analysis to obtain their
spectra as well as the values of their THD factors. Figure 8.11 shows phase A cur-
rent along with its spectrum.

The scale-time interval factor v defined in chapter 5 for the 1¢ case, can be de-
fined for the 3¢ one. For the three phase wavelet modulation, three non-dyadic
type MRAs are required to operate the 3¢ inverter so that each MRA is responsible
for operating one of the three legs of the inverter. As a consequence, three factors

~a, Y and v, can be defined for the case of the 3¢ WM inverter. These factors are
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Figure 8.6: The switching pulses generated by the 3¢ wavelet modulation technique MAT-
LAB code for activating three legs of the 3¢ VS six-pulse inverter.

defined as:
(Ya)aa = (Va)ag—1 + | (EZ z }:mz (tam2 — tam1) (8.18)
(Ve)pa = (V)ba—1 + IngZ%L Z m2™ (toma — tom1) (8.19)
() = 0t + S me (tom2 ~ tom) .20

The scale-time interval factors +,, 7, and ~. are evaluated for the three non-

dyadic MRAs. Figure 8.12 shows the factors 7,, v and 7, for the simulated three-
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Figure 8.7: The 3¢ six-pulse VS WM inverter line-to-line output voltages: (a) phase A-
to-phase B voltage Vap, (b) phase B-to-phase C voltage Vgc and (c) phase C-to-phase A
voltage Vca.

phase six-pulse WM inverter.

To further investigate the performance of the proposed 3¢ WM inverter,
the same load is supplied from the conventional three-phase sinusoidal pulse-
width modulated (3¢ SPWM) inverter. For simulating the 3¢ SPWM inverter, a
SIMULINK built-in block is used with a switching frequency of f. = 1.8kHz and a
modulation index of m, = 0.85. Figure 8.13 shows the spectra of V45(t) and Vay ()
output voltages. Also, the spectrum of the phase A line current for the SPWM case
is determined, and is shown in Figure 8.14.

Simulation results of the 3¢ six-pulse VS WM inverter have demonstrated an

encouraging performance in terms of the magnitude and the quality of inverter
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Figure 8.8: The 3¢ six-pulse VS WM inverter line-to-neutral output voltages: (a) phase
A-to-neutral voltage V4, (b) phase B-to-neutral voltage Vpy and (c) phase C-to-neutral
voltage Vo p.

outputs. The output voltages have low THDy factor values with the line-to-line

fundamental component magnitudes close to the input dc voltage. Moreover, line

currents have negligible THD; factor values with almost sinusoidal waveforms.

The comparison of the proposed 3¢ WM inverter with the 3¢9 SPWM one shows

that:

e Fundamental component magnitudes of output voltages and currents for the

proposed 3¢ WM inverter are higher than their counterparts obtained from

the 3¢ SPWM one: [Vap(1)|w = 49.8V and [Vap(1)|gpw s = 42.53V.

e The quality of the proposed 3¢ WM inverter outputs is much higher than the

3¢ SPWM inverter outputs. This is clearly indicated by the values of THDy
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Figure 8.9: The harmonic spectra of the 3¢ six-pulse VS WM inverter output voltages: (a)
phase A line-to-line voltage (V4p(t)), (b) phase A line-to-neutral voltage (V4 (t)), (c) the
spectrum of V4p(t); THDy = 12.3% and (d) the spectrum of V4x(t); THDy = 12.3%.

and THD; factors for both inverters: (TH Dy )y, = 12.3%, (THDv)gpy iy =

39.1%, (THD1)y 4 = 2-6% and (TH Dy) gpyyas = 7-6%.

The presented simulation results of a 3¢ VS six-pulse wavelet-modulated in-
verter have shown an encouraging performance with output voltage fundamental
components having magnitudes close to the input dc voltage. Also, inverter out-
put voltages have negligible harmonic components. Moreover, simple static 3¢
R — Lload currents are very close to sinusoidal waveforms. It is worth mentioning
that line-to-neutral output voltages of the simulated 3¢ VS six-pulse inverter are
composed of multi-level waveform due to the shift in the developed three scaling
functions. This capability can be very significant when comparing 3¢ WM invert-
ers to other modulated 3¢ ones. The extended non-dyadic MRA for generating 3¢
switching pulses is implemented for operating a laboratory 3¢ VS six-pulse IGBT

inverter. The next section provides preliminary experimental test results for a 3¢
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Figure 8.10: The 3¢ load currents: (a) phase A current I, (b) phase B current I, and (c)
phase C current /..

Y -connected static R — L load.

8.5 Experimental Test Results of a 3¢ Wavelet Modu-
lated Inverter

The three-phase WM technique is realized using a Turbo — C code, compiled
using the Texas Instrument compiler and loaded to a dSPACE ds1102 DSP board
to generate switching pulses. These switching pulses are taken from digital-output
port (DO/P) of the dSPACE ds1102 DSP board and applied to activate inverter
IGBT switches. It should be noted that the generated switching pulses are applied
to IGBT switches through an opto-coupler pulse amplifier for isolating and protect-

ing the DSP board. An input dc voltage (Vi) of 50 is used to supply the inverter
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Figure 8.11: The harmonic spectrum of phase A current: (a) the phase A current I,(t) and
(b) the magnitude of its spectrum |I,(n)|; THD; = 1.16%.

on the input side. The tested inverter output line-to-line as well as line-to-neutral
voltages and load currents are measured using the hall-effect sensors. The inverter
output voltage and load current waveforms are displayed and downloaded to a
computer using a 2-channel Tektronics 2212 storage digital oscilloscope that has a
sampling frequency of 10 kHz. The software package Grab 2212 is used to down-
load the collected waveforms from the storage oscilloscope to computer. Also, the
inverter output voltages and the load currents are fed into the FLUKE 41 har-

monic analyzer to obtain their spectra and total harmonic distortion (THD) factors.

8.5.1 Experimental Setup for a 3¢ VS Six-Pulse IGBT Inverter

The elements used to build the experimental setup for the single-phase four-pulse

inverter presented in chapter 6 are used for preparing a setup for the 3¢ VS six-
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Figure 8.12: The scale-time interval factor ~ for three non-dyadic type MRAs: (a) the phase
A factor v, (b) the phase B factor v, and (c) the phase C factor ~,.

pulse IGBT inverter. However, this inverter has three legs, each of which supplies
one phase of the Y-connected R — L load. The experimental setup for the 3¢ VS

six-pulse IGBT inverter is shown in Figure 8.15.

8.5.2 Experimental Test Results

The experimental setup of the 3¢ VS six-pulse IGBT inverter is prepared to test
the performance of the proposed three-phase wavelet modulation technique. The
setup of the 3¢ IGBT inverter has an input dc voltage of 50 V and supplies a Y-
connected R — L load of Z = 23.33 + j10 Q/phase. When the developed Turbo — C
code is executed by the dSPACE ds1102 DSP board, switching pulses are gener-

ated and sent to the digital output port (DO/P). These switching pulses are col-
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Figure 8.13: The harmonic spectra of the 3¢ six-pulse VS SPWM inverter output voltages:
(@) phase A line-to-line voltage (V4p(t)), (b) phase A line-to-neutral voltage (Van(t)), ©
the spectrum of V4p(t); THDy = 39.1% and (d) the spectrum of Van(t); THDy = 39.1%.
lected using the T'ektronics 2212 storage digital oscilloscope, and downloaded to a
computer using the software package Girab 2212. Figure 8.16 shows the generated
switching pulses that activate the inverter IGBT switches.

As the switching pulses are applied to the gates of IGBT switches and the dc
voltage supply is turned on, an output voltage appears across the R — [ load. This
voltage is collected using a hall-effect sensor and fed into the FLUKFE 41 power
harmonic analyzer to determine its spectrum |Vpc(f)| and the value of its THD
factor. Figure 8.17 shows the inverter output line-to-line voltage Vz<(t) and its
harmonic spectrum. The inverter output line-to-neutral voltage is also collected
and its spectrum is determined along with the value of its THD factor using the
FLUKE 41 power harmonic analyzer. Figure 8.18 shows the output line-to-neutral
voltage Vpy(t) along with its spectrum.

The Y-connected R — L load draws three phase currents 14(t), Ig(t) and I (¢).
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Figure 8.14: The harmonic spectrum of phase A current for the SPWM case: (a) the phase
A current I,(t) and (b) the magnitude of its spectrum |I,(n)|; THD; = 7.6%.
Phase A current is collected using a hall-effect sensor and fed into the FLUKE 41
power harmonic analyzer to determine its spectrum as well as the value of its THD
factor. Figure 8.19 shows the phase A load current along with its spectrum. The
waveforms of the inverter output line-to-line and line-to-neutral voltages as well
as the 3¢ load currents are collected using the Tekironics 2212 storage digital os-
cilloscope. Figure 8.20 shows the waveforms of the inverter output 3¢ line-to-line
voltages. Also, the inverter output 3¢ line-to-neutral voltages collected using the
Tektronics 2212 storage digital oscilloscope are shown in Figure 8.21. Moreover,
Figure 8.22 shows the waveforms of 14(¢), /5(t) and I(t), which are collected us-
ing the Tektronics 2212 storage digital oscilloscope.

The scale-time interval factors ~,, v, and -y, defined in section 8.4 are evaluated

for the experimental 3¢ six-pulse WM inverter. Figure 8.23 shows the three factors
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Figure 8.15: The experimental setup schematic for testing a 3¢ VS six-pulse wavelet mod-
ulated IGBT dc-ac inverter and the 3¢ Y -connected R — L load.

Yas Ypand Y.

Preliminary experimental test results of the 3¢ wavelet modulated inverter have
shown significant capabilities to eliminate harmonic components from the output
voltages. Also, these results have demonstrated clear improvements on the 3¢
VS output voltage quality that is indicated by the low values of THDy and THD;
factors. Moreover, the fundamental components of the inverter output voltages
have peak values close to the input dc voltage indicating effective concentration of

output energies in the desired frequency components. Experimental test results are

very consistent with simulation ones in both waveform shapes and inverter high
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Figure 8.16: The switching pulses generated by the extended wavelet modulation tech-
nique Turbo — C code collected from the digital output port of the ds1102 board using the
Tektronics 2212 storage digital oscilloscope.
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Figure 8.17: The experimental inverter output line-to-line voltage Vi (t) and its spectrum
obtained using the FLU K E 41 power harmonic analyzer. The THDv is 3.2%.
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Figure 8.18: The experimental inverter output line-to-neutral voltage Vpx(t) and its spec-
trum obtained using the F LU K E 41 power harmonic analyzer. The THDy is 3.2%.
quality outputs.

This chapter has presented the development and both simulation and experi-
mental testing of the 3¢ six-pulse WM inverter. The developed 3¢ wavelet modu-
lation technique has been based on constructing three non-dyadic type MRAs that
are responsible for sampling and reconstructing three CT reference-modulating
signals. Furthermore, each non-dyadic type MRA is responsible for generating
switching pulses for one of the three inverter legs to reconstruct one reference-
modulating signal. This approach for operating the 3¢ inverter has been entirely

based on the developed sampling-based model of 3¢ inverters. The 3¢ wavelet
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Figure 8.19: The experimental phase A load current /4(t) and its spectrum obtained using
the F LU K E 41 power harmonic analyzer. The THDy is 0.68%.

modulation technique has been successfully implemented for simulation and ex-
perimental testing of a 3¢ six-pulse inverter to supply a 3¢ Y -connected R — L load.
The results obtained from the simulation and the experimental tests have shown
robust and stable performance by the WM inverters along with high quality out-
puts. Furthermore, these test results have shown significant improvements in the
magnitudes of the fundamental components of the inverter outputs over the con-
ventional SPWM inverter. The test results along with simple implementation can
provide evidence of the applicability of the proposed 3¢ WM inverters in various
industrial applications.

This chapter has been the last chapter to present developments and perfor-
mance test results of the proposed wavelet modulation technique. The next chapter
provides summary, concluding remarks and suggestions for future work in the line

this research.
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Figure 8.20: The 3¢ six-pulse VS WM inverter experimental output line-to-line voltages
Vag(t), Vee(t) and Vi a(t) collected using the Tektronics 2212 storage digital oscilloscope.
The voltage scale is 25 V/Div.
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Figure 8.21: The 3¢ six-pulse VS WM inverter experimental output line-to-neutral volt-
ages Van(t), Van(t) and Von(t) collected using the Tektronics 2212 storage digital oscil-

loscope. The voltage scale is 25 V/Div.
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Figure 8.22: The 3¢ load currents I4(t), Ip(t) and Ic(t) collected using the
Tektronics 2212 storage digital oscilloscope. The current scale is 0.5 A/Div.
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Chapter 9

Conclusions and Future Work

9.1 Summary

The objectives established to investigate operating dc-ac inverters using wavelet
basis functions were met through this research. A new technique was named
the wavelet modulation technique, which was correlated with a non-uniform
sampling-based model of inverters. The wavelet modulation technique required
constructing a novel non-dyadic type multiresolution analysis (MRA) to sup-
port the non-uniform recurrent sampling. Constructing this MRA was achieved
through defining a new set of basis functions that was called the scale-based
linearly-combined basis functions. Furthermore, scale-based linearly-combined
basis functions were proved to carry out non-uniform recurrent sampling on the
analysis side of the non-dyadic MRA, while their dual basis functions recon-
structed the reference-modulating signal on the synthesis side.

The first objective of this thesis was to develop an inverter model capable of
considering instantaneous switching actions as a main part. This objective was

met through the development and testing of the non-uniform recurrent sampling-
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based model of inverters. In particular, the model interpreted the operation of
an inverter as sampling the reference-modulating signal and reconstructing using
the switching actions. The developed model showed accurate representation of
inverter outputs for different switching frequencies. Moreover, the non-uniform
recurrent sampling-based method was successfully extended to model three-phase
inverters.

The second objective of this thesis was to design sets of basis functions that
could construct a MRA to support a non-uniform recurrent sampling structure.
This objective was met through the introduction of the scale-based linearly-
combined scaling function along with its dual synthesis scaling function. These
functions were found capable of generating basis functions to span spaces. More- |
over, the collection of such spaces was found to construct a unique non-dyadic
MRA capable of supporting a non-uniform recurrent sampling-reconstruction case.

The third objective of this thesis was to realize the non-dyadic MRA that gen-
erated switching signals for operating both 1¢ and 3¢ inverters. The realization of
the required non-dyadic MRA and the generation of the switching signals were the
two main components for implementing the proposed wavelet modulation tech-
nique. The implementation of the wavelet modulation technique was carried out
using a MATLAB code for simulation purpose. Also, it was carried out using a
Turbo — C code for experimental testing purposes. Furthermore, this objective
aimed at comparing the performance of wavelet modulated (WM) inverters with
conventional sinusoidal pulse-width modulated (SPWM) ones. These comparisons
were conducted for both simulation and experimental tests.

The final objective of this thesis was to develop and test a control strategy ca-

pable of adjusting the output magnitudes as well as frequencies of WM invert-
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ers. This objective was achieved through the development of the resolution-level
control strategy. This control strategy was based on the adjusting the level of the
scale-based linearly-combined synthesis scaling function to vary the positions as
well as widths of switching pulses. Such variation provided means of changing
magnitudes and frequencies of inverter outputs. Furthermore, the resolution-level
control strategy was implemented for both simulation and experimental tests.
Different simulation and experimental test results for different load types un-
der different operating conditions demonstrated significant inverter output qual-
ity. Tested inverter output voltages as well as various load currents were analyzed
using the the fast Fourier transform (FFT) to determine their harmonic spectra.
Substantial improvements in magnitudes of output fundamental components were
achieved indicating higher power transferred to the load side with high quality.
Also, output voltages and load currents spectra showed remarkable capabilities of
the wavelet modulation technique to eliminate undesired harmonic components,
which resulted in low values of the total harmonic distortion factor. The next sec-

tion summarizes the main contribution of this thesis.

9.2 Contributions

Major contributions and achievements of this work toward developing and test-

ing wavelet modulated inverters are summarized as follows.:

¢ A novel non-uniform sampling-based model of inverters that considers in-
stantaneous switching actions as interpolating functions to recover a CT sig-
nal has been developed. This model of inverters has been simulated for

different inverter operating conditions. Furthermore, an extension of the
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sampling-based model has been successfully constructed for three-phase 3¢

six-pulse inverters.

A new family of analysis and synthesis basis functions has been designed.
This new family of basis functions is named scale-based linearly-combined
basis functions that are able to span spaces. A collection of such spaces
constructs a non-dyadic type MRA that supports a non-uniform recurrent
sampling structure. Furthermore, all conditions required for the scale-based
linearly-combined scaling function to be a scaling function have been veri-

fied.

An innovative modulation technique that combines concepts of the sampling
theorem, wavelet theory and power electronics has been successfully devel-
oped and tested. Also, a new algorithm has been introduced to implement
the wavelet modulation technique for simulation and experimental tests. The
performance of the developed technique has been compared to that of the

conventional SPWM for the same loading conditions.

A novel parameter that relates the scale with the interval of support in a non-
dyadic MRA has been defined. This parameter has been named as the scale-
time interval factor -, and has been evaluated in all simulation and experi-
mental tests. The scale-time interval factor v has been utilized in monitoring
the change in the scale of the synthesis scaling functions responsible for re-

constructing the inverter output.

A significant improvement of the inverter outputs has been obtained using
the innovative wavelet modulation technique that has been demonstrated

through low values of total harmonic distortion (THD) factors. Moreover,
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high quality WM inverter outputs have been consistent in all simulation and

experimental tests.

A new control strategy has been developed, implemented and tested to ad-
just WM inverter output magnitude and frequency. This control strategy has
been named as resolution-level control, and has been based on adjusting the
scale of synthesis scaling functions to vary the widths as well the locations of

switching pulses.

An approach for extending the developed non-dyadic MRA to operate three-
phase inverters has been developed and successfully tested. This approach
has been based on the non-uniform sampling and reconstruction of three
reference-modulating signals, each corresponding to one phase on the in-
verter output side. This extended non-dyadic MRA has been realized for
simulation as well as for experimental testing. Both simulation and experi-
mental test results have indicated significant quality improvement of inverter

outputs.

9.3 Conclusions

This thesis presented a new analysis, successful development and testing of the

wavelet modulation technique for single and three phase inverters. Test results of

the new technique demonstrated significant performance regardless of load type

or output frequency. Conclusions drawn from this work can be summarized as

follows:

e The wavelet theory and its connection with the sampling theorem are fairly

new concepts in power electronics applications, in particular, for modeling
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and operating power electronic converters. In this work, an innovative mod-
ulation technique based on the non-uniform sampling and the wavelet the-
ory was successfully developed and tested for operating inverters for the first

time,

Unlike other modulation techniques, the wavelet modulation technique was
correlated with a non-uniform sampling-based model of inverters. Also,
the new technique was developed through constructing a non-dyadic type
MRA that supported a non-uniform recurrent sampling structure. The gen-
eration of switching pulses required to activate inverter switching elements
was achieved without using carrier signals and aimed to reconstruct a CT sig-
nal from its samples. This approach showed remarkable concentration of the
inverter output energy in a single frequency component. As a result, mag-
nitudes of desired output frequency components were found high, while the

energy distributed in undesired frequencies was almost negligible.

The performance of the wavelet modulation technique was compared to that
of the conventional SPWM one under same operating conditions. Results of
such comparisons indicated that the WM inverter had better output quality
than the SPWM one. Moreover, magnitudes of the WM inverter output fun-
damental frequency components were found much higher that their counter
parts obtained using the SPWM inverter. As a consequence, the WM inverter
showed better capabilities to transfer power to the load side than the SPWM

one.

The approach to design a new family of basis functions to span spaces that

construct a non-dyadic type MRA was carried out successfully for the first
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time. This new MRA was constructed to support non-uniform recurrent
sampling structures. Also, the definition of a factor that related the scale to
change in the interval of support of each synthesis scaling function showed
ability to control a wavelet-modulated inverter output under varying load

requirements.

The consistent results obtained from simulations and experimental tests
demonstrated practical aspects of the wavelet modulation technique to be
employed for industrial applications. Furthermore, the simplicity of its im-
plementation represented another advantage over existing modulation tech-

niques.

Test results for the inverter supplying different loads under different output
requirements showed high quality output along with stable responses under

changing load conditions.

The developed non-dyadic type MRA was successfully extended and imple-
mented to generate switching pulses for three-phase inverters. Simulation
as well as experimental test results indicated significant performance with

almost no output harmonic components.

Simulation and experimental test results showed that high amounts of power
could be transfered from the supply side to the load side using the innovative
WM inverters. This feature of the WM inverters was consistent in all tested

loads under different output frequencies.
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9.4 Future Works

The developed wavelet modulation technique can be used for operating in-
verters for different applications. Additional research can be conducted on apply-
ing wavelet modulated inverters in ac motor drives, UPS, different applications
in power systems and renewable energy utilization. Also, research can be carried
out on designing and implementing resolution-level controlled wavelet modulated
inverters for different industrial applications.

The wavelet modulation technique may be applied for other power electronic
converters. Moreover, the developed technique along with the proposed wavelet
basis functions design approach can open several areas of research that may in-

clude:

o Extending tests of the new wavelet modulation technique for three-phase
voltage-source and current-source inverters. This can be applied in different

areas, in particular, ac motor drives and renewable energy utilization.

¢ Designing new wavelet basis functions using different scaling functions for
other potential applications in signal processing as well as power electronic
converters operation and control. As a potential area, ac-dc converters may

be operated by a modified version of the developed non-dyadic type MRA.

e Applying other signal processing concepts in modeling other power elec-

tronic switching circuits for different industrial applications.

¢ Implementing and testing the developed resolution-level control for other
types of inverters. This can provide new approaches for controlling and op-

erating existing modulated inverters.

235



Bibliography

[1]

2]

(3]

[4]

[5]

(6]

Holmes, D. G. and Lipo, T. A., Pulse Width Modulation for Power Converters. IEEE

Press Series on Power Engineering, Wiley Inter-Science, NJ, 2003.

Bowes, R. S. and Lai, Y. S., “The Relationship Between Space-Vector Modula-
tion and Regular-Sampled PWM?", IEEE Trans. on Industrial Electronics, Vol. 44,
No. 5, 1997, pp. 670-679.

Mohan, N., Undeland, T. M. and Robbins, W. P, Power Electronics: Converters,
Applications and Design, John Willey & Sons, Inc., 1989.

Saleh, S. A. and Rahman, M. A., “Discrete Time-Based Model of the Sinusoidal
Pulse Width Modulation Technique”, IEEE IECON'05 Conference Proceeding,
Raleigh, NC., Nov. 2005, pp. 1082-1087.

Royer, G. H., “A Switching Transistor D-C to A-C Converter Having an Output
Frequency Proportional to the D-C Input Voltage”, AIEE Trans. on Communica-
tions and Electronics, Vol. 74, Part. I, 1955, pp. 322-324.

Uchrin, G. C. and Taylor, W. 0., “A New Self-Excited Square-Wave Transistor
Power Oscillator”, Proc. of the IRE, Vol. 43, pp. 99, 1955.

236



[7] Lee, Y. F. and Willson, T. G., “Analysis and Modeling of a Family of Two-
Transistor Parallel Inverters”, IEEE Trans. on Magnetics, Vol.Mag-9, No. 3, 1973,
pp. 414-418.

[8] McMurry, W., “Multipurpose Power Converter Circuits”, U.S. Patent No.
3,487,289, December, 1969.

[9] McMurry, W., “Analysis of Thyristor DC Chopper Power Converters Includ-
ing Nonlinear Commutating Reactors”, IEEE Trans. on Magnetics, Vol. MAG-1,
1970, pp. 16-21. ‘

[10] Kirnick, A. and Heinrick, “Static Inverters with Neutralization of Harmonics”,

AIEE Transactions, Vol. 81, 1962, pp. 374-378.

[11] Mokrytzki, B., “Pulse Width Modulated Inverters for AC Motor Drives”, IEEE
Trans. on IA, Vol.-IGA-3, 1967, pp. 493-503.

[12] Schonubg, A. and Stemmler, H., “Static Frequency Changers with Subhar-
monic Control in Conjunction with Reversible Variable Speed AC Drives ",

Brown Boveri Rev., 1964, pp. 555-557.

[13] Grant, D. A. and Seinder, R., “Ratio Changing in Pulse Width Modulated In-
verters”, Proc. IEE, Vol. 128, Part B, No. 5, 1981, pp. 243-248.

[14] Bowes, S. R. and Clark, P. R., “Simple Microprocessor Implementation of New
Regular-Sampled Harmonic Elimination PWM Techniques”, IEEE Trans. on In-
dustry Applications, Vol. 28, No. 1, 1992, pp. 89-95.

[15] Bowes, S. R., “New Sinusoidal Pulsewidth-Modulated Inverter”, Proc. IEE.,
Vol. 122, No. 11, 1975, pp. 1279-1285.

237



[16] Bowes, R. S. and Bird, B. M, “Novel Approach to the Analysis and Synthesis
of Modulation Processes in Power Converters”, Proc. IEE,, Vol. 122, No. 5, 1975,
pp- 507-513.

[17] Bowes, S. R. and Mount, M. ]., “Microprocessor Control of PWM Inverters”,
IEE Proc.,B, Elect. Power Appl, Vol. 128, No. 6, 1981, pp. 293-305.

[18] Maswood, A.IL, Shen W. and Rahman, M. A., “A flexible Way to Generate
PWM-SHE Switching Patterns Using Genetic Algorithm”, IEEE APEC 2001,
Vol. 2, 2001, pp. 1130-1134.

[19] Patel, H.S. and Hoft, R. G., “Generalised Techniques of Harmonic Elimination
and Voltage Control in Thyristor Inverters: Part I Harmonic Elimination”, IEEE

Trans. on Industry Applications, IA-9(3), 1973, pp. 310-317.

[20] Patel, H. S. and Hoft, R. G., “Generalised Techniques of Harmonic Elimina-
tion and Voltage Control in Thyristor Inverters: Part II - Voltage Control Tech-
niques”, IEEE Trans. on Industry Applications, IA-10(5), 1974, pp. 666-673.

[21] Enjeti, P. and Lindsay, J. F., “Solving Nonlinear Equations of Harmonic Elim-
ination PWM in Power Control”, IEE Electronics Letters, 1987, Vol. 23, pp. 656-
657.

[22] Enjeti, N., Ziogas, P. D. and Lindsay, J. F., “Programmed PWM Techniques to
Eeliminate Harmonics: a Critical Evaluation”, IEEE Trans. on Industry Applica-

tions, Vol. 26, No. 2, 1990, pp. 302-316.

[23] Liang, T. J., OConnell, R. M. and Hoft, R.G., “Inverter Harmonic Reduction
Using Walsh Function Harmonic Elimination Method", IEEE Trans. on Power

Electronics, Vol. 12, No. 6, 1997, pp. 971-982.

238



[24] Boost, M. A. and Ziogas, P. D., “State-of-the-art Carrier PWM Techniques: a
Critical Evaluation”, IEEE Trans. on Industry Applications, Vol. 24, No. 2, 1988,
pp. 271-280.

[25] Trzynadlowski, A. M., “Nonsinusoidal Modulating Functions for Three-Phase
Inverters”, IEEE Trans. on Power Electronics, Vol. 4, No. 3, 1989, pp. 331-338.

[26] Holmes, D. G., “The Significance of Zero Space Vector Placement for Carrier-
Based PWM Schemes”, IEEE Trans. on Industry Applications, Vol. 32, No. 5, 1996,
pp. 1122-1129.

[27] Plunckett, A. B., “A Current Controlled PWM Transistor Inverter Drive”,

IEEE/IAS 1979 Annual Meeting Proc., 1979, pp. 785-792.

[28] Bose, B. K., “An Adaptive Hysteresis-Band Current Control Technique of a
Voltage-Fed PWM Inverter for Machine Drive System”, IEEE Trans. on Indus-
trial Electronics, Vol. 37, No. 5, 1990, pp. 402-408.

[29] Rahman, K. M., Rezwan, M. K., Choudhury, M. A. and Rahman, M. A,
“Variable-Band Hysteresis Current Controllers for PWM Voltage-Source In-
verters”, IEEE Trans. on Power Electronics, Vol. 12, No. 6, 1997, pp. 964-970.

[30] Holtz, J. and Stadtfeld, S., “A Predictive Controller for the Stator current Vec-
tor of AC Machines Fed from a Switched Voltage Source”, IPEC'83 Conference
Record, Tokyo, 1983, pp. 1165-1675.

[31] Trzynadlowski, A. M., Legowaki, S. and Kirlin, R. L., “Random Pulse Width
Modulation Technique for Voltage-Controlled Power Inverters”, IEEE/IAS 1987
Annual Meeting Proc., 1987, pp. 863-868.

239



[32] Hui, S. R., Sathiakumar, S. and Sung, K. K., “Novel Random PWM Scheme
with Weighted Switching Decision”, IEEE Trans. on Power Electronics, Vol. 12,
No. 6, 1997, pp. 945-952.

[33] Rahman, M. A., Quaicoe, ]. E. and Choudhury, M. A., “Performance Analysis
of Delta Modulated Inverters”, IEEE Trans. on Power Electronics, Vol. 2, No. 3,
1987, pp. 227-233.

[34] Raman, V. and Yoram, B, “Optimal Sub-Nyquist Nonuniform Sampling and
Reconstruction for Multiband Signals”, IEEE Trans. on Signal Processing, Vol. 49,
No. 10, 2001, pp. 2301-2313.

[35] Selesnick, I. W., “Interpolating multiwavelet bases and the sampling theo-

rem.”, IEEE Trans. on Signal Processing, Vol. 47, No. 6, 1999, pp. 1615-1621.

[36] Eldar C.Y. and Oppenheim, A. V., “Filterbank Reconstruction of Bandlimited
Signals from Nonuniform and Generalized Samples”, IEEE Trans. on Signal Pro-

cessing, Vol. 18, No. 10, 2000, pp. 2864-2875.

[37] Papoulis, A., “Generalized sampling expansion”, IEEE Trans. on Circuits and

Systems, Vol. 24, No. 11, 1977, pp. 652-654.

[38] Paley, R. and Wiener, N., “Fourier Transform in the Complex Domain”, Amer.

Math. Soc. Collog. Publications, Vol. 19, 1934.

[39] Unser, M. and Zerubia, J., “A Generalized Sampling Theory without bandlim-
iting constraints”, IEEE Trans. on Circuits and Systems II, Vol. 45, No. 8, 1998,
pp. 959-969.

240



[40] Zayed, A. I, “On Kramer's Sampling Theorem Associated with General
Sturm-Liouville Problems and Lagrange Interpolation”, SIAM Journal Applied
Math., Vol. 51, 1991, pp. 575-604.

[41] Kotsakis, C., Multiresolution Aspects of Linear Approximation Methods in
Hilbert Spaces Using Gridded Data. Ph.D. thesis, University of Calgary, Cal-
gary, AL, Canada, 2000.

[42] Aldroubi, A. and Grochenig, K., “Non-uniform Sampling and Reconstruction

in Shift-Invariant Spaces”, SIAM Rev., Vol. 43, No. 4, 2001, pp. 585-620.

[43] Levinson, N., “Gap and Density Theorems”, Amer. Math. Soc. Colloq. Publica-
tions, Vol. 26, 1940.

[44] Duffin, R. and Schaeffer, A., “A Class of Nonharmonic Fourier Series”, Trans.

Amer. Math. Soc., Vol. 72, 1952, pp. 341-366.

[45] Gopinath, R. A., Odegard, ]. E. and Burrus, C. S., “Optimal Wavelet Represen-
tation of Signals and the Wavelet Sampling Theorem”, IEEE Trans. on Circuits
and Systems-1I: Analog and Digital Signal Processing, Vol. 41, No. 4, 1994, pp. 262~
2717.

[46] Walter, G.G., “A Sampling Theorem for Wavelet Subspaces”, IEEE Trans. on
Information Theory, Vol. 38, No. 2, 1992, pp. 881-884.

[47] Nashed, M. Z. and Walter, G.G., “General Sampling Theorems for Functions
in Reproducing Kernel Hilbert Spaces”, Math. Control Signals Sys., Vol. 4, 1991,
pp. 373-412.

241



[48] Mallat, S. G., “A Theory for Multiresolution Signal Decomposition: the
Wavelet Representation”, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, Vol. 11, No. 7, 1989, pp. 674-693.

[49] Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets”,
Comm. Pure & Appl. Math., Vol. 41, 1988, pp. 909-996.

[50] Gilbert, S., “Wavelet Transforms Versus Fourier Transforms”, Bull. Amer. Math.

Soc., Vol. 28, 1993, pp. 288-305.

[51] Odegard, J.E., Gopinath, R.A. and Burrus, C.S., “Optimal Wavelets for Sig-
nal Decomposition and the Existence of Scale-Limited Signals”, IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, ICASSP-92 Record,
Philadelphia, PA, Vol. 4, 1992, pp. 597-600.

[52] Chui, C. K., Wavelets: A Mathematical Tool for Signal Processing. SIAM: Society
of Industrial and Applied Mathematics Series, Philadelphia, PA, 1997.

[53] Xia, X. G. and Zhang, Z., “On Sampling Theorem, Wavelets, and Wavelet
Transforms”, IEEE Trans. on Signal Processing, Vol. 41, No. 12, 1993, pp. 3524-
3535.

[54] Strang, G., “Wavelets and Dilation Equations: A Brief Introduction”, SIAM
Rev., Vol. 31, 1989, pp. 614-627.

[55] Berry, F., “Steady State Mathematical Model for the DC-AC Inverters on the
Space Shuttle”, IEEE Conference on 'Energy and Information Technologies in the
Southeast, Southeast Con’89 Proceedings, Vol. 2, 1989, pp. 4565-458.

242



[56] Milosevic, M., “Decoupling Control of d and ¢ Current Components in Three-
Phase Voltage Source Inverter”, EEH Power Systems Laboratory, Technical Report,

Zuerich, Switzerland, 2004.

[57] Unser, M., Thevenaz, P. and Aldroubi, A., “Shift-Orthogonal Wavelet Bases”,
IEEE Trans. on Signal Processing, Vol. 46, No. 7, 1998, pp. 1827-1836.

[58] Jia, R. Q., Jiang, Q. and Shen, Z., “Distributional Solutions of Non-
Homogenous Discrete and Continuous Refinement Equations”, SIAM Journal

on Applied Math., Vol. 32, No. 2, 2000, pp. 420-434.

[59] Walker, G. and Ledwich, G., “Bandwidth Considerations for Multilevel Con-
verters”, IEEE Trans. on Power Electronics, Vol. 14, No. 1, 1999, pp. 74-81.

[60] Tymerski, R. E., “Frequency Analysis of Time-Interval-Modulated Switched
Networks”, IEEE Trans. on Power Electronics, Vol. 6, No. 2, 1991, pp. 287-295.

(61] Koutroulis, E., Chatzakis, J., Kalaitzakis, K. and Voulgaris, N. C., “A Bidi-
rectional, Sinusoidal, High-Frequency Inverter Design”, IEE Proc.-Electr. Power

Appl., Vol. 148, No. 4, 2001, pp. 315-321.

[62] Wood, P., Switching Power Converters.. Van Nostrand Reinhold, New York,
1981.

[63] T. Dogaru and L. Carin, “Multiresolution Time-Domain Using CDF Biorthog-
onal Wavelets”, IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 5,
2001, pp. 902-912.

[64] Zhang, ]. K., Davidson, T. N. and Wong, K. M., “Efficient Design of Orthonor-
mal Wavelet Bases for Signal Representation.”, IEEE Trans. on Signal Processing,

Vol. 52, No. 7, 2004, pp. 1983-1996.

243



[65] Unser, M., Aldroubi, A. and Eden, M., “On the Asymptotic Convergence of
B-spline Wavelets to Gabor Functions”, IEEE Trans. on Information Theory, Vol.

38, March 1992, pp. 864-872.

[66] Van De Ville, D., Blu, T., Forster, B. and Unser, M., “Semi-Orthogonal Wavelets
that Behave Like Fractional Differentiators”, Proceedings of the SPIE: Optical En-

gineering and Instrumentation (Wavelet XI), San Diego, CA, August, 2005.

[67] Saleh, S. A., Moloney, C., R. and Rahman, M. A., “Developing a Non-dyadic
MRAS for Switching DC-AC Inverters”, The IEEE 12" Digital Signal Processing
Workshop DSP06 Conference, Jackson Lake Lodge, Wyoming, USA, September,
2006, pp. 544-549.

[68] Abdel-Rahim, N. and Quaicoe, J. E., “Analysis and design of a multiple feed-
back loop control strategy for single-phase voltage-source UPS inverters”, IEEE

Trans. on Power Electronics, Vol. 11, No. 4, 1996, pp. 532-541.

[69] Zhang, K., Kang, Y., Xiong, J. and Chen, ]., “Direct repetitive control of SPWM
inverter for ups purpose”, IEEE Trans. on Power Electronics, Vol. 18, No. 3, 2003,
pp- 784-792.

[70] Abdel-Rahim, N. and Quaicoe, J. E., “A Single-Phase Delta-Modulated In-
verter for UPS Applications”, IEEE Trans. on Industrial Electronics, Vol. 40, No. 3,
1993, pp. 347-354.

[71] Rech, C., Pinheiro, H., Grundling, H. A., Hey, H. L. and Pinheiro, J. R., “A
Modified Discrete Control Law for UPS Applications”, IEEE Trans. on Power
Electronics, Vol. 18, No. 5, 2003, pp. 1138-1145.

244



[72] Stankovic, A. M., Verghese, G. C. and Perreault, D. J., “Randomized Modu-
lation of Power Converters Via Markov Chains”, IEEE Trans. on Control System

Technology, Vol. 5, No. 1, 1997, pp. 61-73.

[73] Saleh, S. A. and Rahman, M. A., “Development and Experimental Testing of
a Single-Phase B-Spline-Based SPWM Inverter”, IEEE ISIE'06 Conference Pro-
ceedings, Montreal, Quebec, July, 2006, pp. 815-819.

[74] Saleh, S. A. and Rahman, M. A., “Experimental Testing of a Novel Control for
Inverter-Fed Three-Phase Induction Motor”, IEEE PES'06 CD-ROM Conference

Proceedings, Montreal, Quebec, June, 2006.

[75] Bowes, S. R., “Novel Real-Time Harmonic Minimized PWM Control for
Drives and Static Power Converters”, IEEE Trans. on Power Electronics, Vol. 9,

No. 3, 1994, pp. 256-262.

[76] Bowes, S. R. and Clark, P. R., “Transputer-Based Optimal PWM Control of
Inverter Drives”, IEEE Trans. on Industry Applications, Vol. 28, No. 1 Part 1, 1992,
pp- 81-88.

[77] Bowes, S. R., “Advanced Regular-Sampled PWM Control Techniques for
Drives and Static Power Converters”, IEEE Trans. on Industrial Electronics,

Vol. 42, No. 4, 1995, pp. 367-373.

[78] Bowes, S. R. and Jian L., “New Robust Adaptive Control Algorithm for High-
Performance AC Drives”, IEEE Trans. on Industrial Electronics, Vol. 47, No. 2,
2000, pp. 325-336.

[79] Czarkowski, D., Chudnovsky, D. V., Chudnovsky, G. V. and Selesnick, I. W,,
“Solving the Optimal PWM Problem for Single-Phase Inverters”, IEEE Trans.

245



on Circuits and Systems -I: Fundamental Theory and Applications, Vol. 49, No. 4,
2002, pp. 465-475.

[80] Buja, G. and Indri, G., “Optimal PWM for feeding AC motors”, IEEE Trans. on
Industry Applications, Vol. 13, No. 1, 1977, pp. 34-42.

[81] Bowes, S. R. and Holliday, D., “Comparison of Pulse-Width-Modulation Con-
trol Strategies for Three-Phase Inverter Systems”, IEE Proceedings: Electric

Power Applications, Vol. 153, No. 4, 2006, pp. 575-584.

[82] Houndsworth, ]J. A. and Grant, D. A., “The Use of Harmonic Distortion to
Increase Voltage of a Three Phase PWM Inverter”, IEEE Trans. on Industry Ap-
plications, Vol. 1A-20, 1984, pp. 1224-1228.

[83] Rowan, T. R. and Kerkman, R. L., “A New Synchronous Current Regulator
and an Analysis of Current-Regulated PWM Inverters”, IEEE Trans. on Industry
Applications, Vol. 22, No. 4, 1986, pp. 678-690.

246



Appendix A

Extended Experimental Test Results:

1¢ WM Inverters

A.1 Static R — L Load

A.1.1 An Output Frequency of f =90 Hz
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IR ERRN

2. ouU 2. 0oU Seam

Figure A.1: Experimental inverter output voltage and R — L load current for an output
frequency of f = 90 Hz collected using the Tektronics 2212 storage digital oscilloscope.
The voltage scale is 50 V/Div and the current scale is 0.2 A/Div.

247



Current

Amps 10
rms 169

an

vt
DC1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Harmonic

Voltage

Volts rms
1 0 20

o S o O
DC1 2 3 4 5 6 7 8 % 10 11 12 13 14 15 16 17 18 19 20 21 23 23 24 25 26 27 28 2% 30 31

g Harmonic

Figure A.2: The experimental R — L load current and the inverter output voltage spectra
for an output frequency of f = 90 Hz obtained using the FLUK E41 power harmonic
analyzer. The THDy is 15.1% and the THDy is 1.4%.

A.1.2 An Output Frequency of f = 120 Hz
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Figure A.3: Experimental results for an output frequency of f = 120 Hz, the inverter
output voltage and the R — L load current collected using the Tektronics 2212 storage
digital oscilloscope. The voltage scale is 50 V/Div and the current scale is 0.2 A/Div.
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Figure A.4: The experimental R — L load current and the inverter output voltage spectra
for an output frequency of f = 120 Hz obtained using the FLU K E41 power harmonic
analyzer. The THDy is 14.3% and the THDy is 0.8%.

A.1.3 An Output Frequency of f = 150 Hz
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Figure A.5: Experimental inverter output voltage and R — L load current for an output
frequency of f = 150 Hz collected using the T'ektronics 2212 storage digital oscilloscope.
The voltage scale is 50 V/Div and the current scale is 0.2 A/Div.
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Figure A.6: The experimental R — L load current and the inverter output voltage spectra
for an output frequency of f = 150 Hz obtained using the FLUKE 41 power harmonic
analyzer. The THDy is 12.2% and the THDy is 0.4%.

A.2 Single-Phase Capacitor-Run Motor

A.2.1 An Output Frequency of f =50 Hz
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Figure A.7: Experimental results for an output frequency of f = 50 Hz, the inverter
output voltage and the 1¢ induction motor current collected using the Tektronics 2212
storage digital oscilloscope. The voltage scale is 150 V/Div and the current scale is 0.2
A/Div.
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Figure A.8: The experimental 1¢ IM current and the inverter output voltage spectra for an
output frequency of f = 50 Hz obtained using the FLUK E 41 power harmonic analyzer.
The THDy is 15.2% and the THDy is 6.3%. The voltage scale is 1:2.

A.2.2 An Output Frequency of f =120 Hz
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Figure A.9: Experimental results for an output frequency of f = 120 Hz, the inverter
output voltage and the 1¢ induction motor current. The voltage scale is 75 V/Div and the
current scale is 0.2 A/Div.
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Figure A.10: The experimental 1¢ IM current and the inverter output voltage spectra
for an output frequency of f = 120 Hz obtained using the FLUKFE 41 power harmonic
analyzer. The THDy is 15.5% and the THD; is 1.7%. The voltage scale is 1:4.
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Figure A.11: Experimental results for an output frequency of f = 150 Hz, the inverter
output voltage and the 1¢ induction motor current. The voltage scale is 75 V/Div and the

current scale is 0.2 A/Div.
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Figure A.12: The experimental 1¢ IM current and the inverter output voltage spectra
for an output frequency of f = 150 Hz obtained using the F LU K E 41 power harmonic
analyzer. The THDy is 12.2% and the THD; is 0.8%. The voltage scale is 1:1.

A.3 The Scale-Time Interval Factor
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Figure A.13: The scale-time interval factor v for an output frequency of f = 50 Hz col-
lected using Tektronics 2212 storage digital oscilloscope.
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Figure A.14: The scale-time interval factor v for an output frequency of f = 120 Hz
collected using Tektronics 2212 storage digital oscilloscope.
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Figure A.15: The scale-time interval factor « for an output frequency of f = 150 Hz
collected using T'ektronics 2212 storage digital oscilloscope.
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A.4 The Inverter Input dc Voltage and Current
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Figure A.16: Experimental waveforms of the tested 1¢ WM inverter input dc current and
voltage for the R — L load. The voltage scale is 50 V/Div and the current scale is 2 A/Div.
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Figure A.17: Experimental spectra of the tested 1¢ WM inverter input dc current and volt-
age for the R — L load: (a) the spectrum of the inverter input current and (b) the spectrum

of the inverter input voltage.
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Figure A.18: Experimental waveforms of the tested 1¢ WM inverter input dc current and
voltage for the 1¢ induction motor. The voltage scale is 50 V/Div and the current scale is 1

A/Div.
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Figure A.19: Experimental spectra of the tested 1¢ WM inverter input dc current and
voltage for the 1¢ induction motor: (a) the spectrum of the inverter input current and (b)
the spectrum of the inverter input voltage. Current scale is 1:2.
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Appendix B

1¢ Resolution-Level Controlled WM

Inverters

B.1 Static R — L Load

B.1.1 S),(t,0) = cos(120mt)

Figure B.1: The experimental inverter normal operation for f,, = 60 Hz and § = 0: the
load current and the inverter output voltage. The voltage scale is 25 V/Div. and current
scale is 1.5 A/Div.
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B.1.2  S}(t,0) = cos (1207t — %)
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Figure B.2: Test results for shifting S, (t) by § = —J: the scale-time interval factor , the
load current and the inverter output voltage. The voltage scale is 25 V/Div. and current
scale is 1.5 A/Div.

Current (&)
a0
Amps =
s 19 12
a5
oo Dc 1 2 '3_4 5 6 7 8 8 10712 13 10?16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31
Harmonic
Voltage (B)
60
30
Voltsrms  *
1@ 30
20
10
UDCI 2 3 4 5 6 7 8 90 10 11 12 13 34 15 16 17 18 19 20 21 22 23 24 2% 26 27 28 29 30 31
Harmonic
(Foady e B URE 48
Figure B.3: Experimental test results for shifting S},(t) by § = —£: (a) the spectrum of
the load current and (b) the spectrum of the inverter output voltage. |I;| = 1.78 A and

THD; = 3.62% |V4| = 58.34 V and THDy = 18.46%.
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B.1.3 S},(t,0) = cos (1507t)
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Figure B.4: Experimental test results for changing the output frequency f,, from 60 to 75
Hz: the scale-time interval factor v, the load current and the inverter output voltage. The
voltage scale is 25 V/Div. and current scale is 1.5 A/Div.
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Figure B.5: Experimental test results for changing the output frequency f,, from 60 to
75 Hz: {(a) the spectrum of the load current and (b) the spectrum of the inverter output
voltage. |I;| = 1.48 A and THD; = 2.87% |Vi| = 49.68 V and THDy = 18.26%.
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B.1.4 S},(t,6) = cos (1007t + Z)
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Figure B.6: Experimental test results for changing the output frequency f,,, from 60 to 50
Hz with a phase-shift § = J5: the scale-time interval factor +, the load current and the
inverter output voltage. The voltage scale is 60 V/Div. and current scale is 2 A/Div.

Current (=)
08
Amps o
rms 16 04
02
.13 s, o, a0,
DC1 32 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31
Harmonic
Voltage (bl
50
40
Volts rms 30
10 20
10
01.>Cl 2 3 ¢4 5 6 7 3 9 10 11 12 13 14 15 16 17 13 19 30 31 22 23 24 235 26 27 28 29 30 31
Harmonic

; urE 41 v1 7
Figure B.7: The test results for changing the output frequency f,, from 60 to 50 Hz with

6 = {5: (a) the spectrum of the load current and (b) the spectrum of the inverter output
voltage. |I;| = 0.78 A and THD; = 2.14% |V;| = 44.12 V and THDy = 19.74%.
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B.2 Speed Responses of the 1¢ Capacitor-Run Induc-

tion Motor
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Figure B.8: Experimental testing of the resolution-level controlled WM inverter for § =
0 — —{5: the capacitor-run 1¢ induction motor speed response.

Tria : DC VERTICAL

T T T

(NN

WNTTT T TTT

Figure B.9: Experimental testing of the resolution-level controlled WM inverter for f,, =
60 — 50 Hz and 6 = 0 — {;: the capacitor-run 1¢ induction motor speed response.
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Appendix C

Snubber Circuits

Snubber circuits are R — C circuits connected in parallel with power electronic
switching elements to limit or reduce the rate of voltage change across them dur-
ing ON-OFF operation. The rate of change of the voltage across a typical switching
element becomes a critical issue when inductive loads are supplied. The fact that
the current flowing through an inductor can not change instantly creates a longer
OFF-switching time for a typical switching element. The function of a R — C snub-
ber circuit is simply to provide a path for the load current to decay and prevent
high changes of the voltage across switching elements when supplying inductive
loads. This can be stated as:

dvgs (1)
—E < oo (C.1)

Typical resistances and capacitors that are used in snubber circuits are with the

following values:
1. R, =15Q

2. C; =0.1uF
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These values of R, and C can limit the rate of change in the voltage across an IGBT
switch to:

@l%‘(—t) < 300 V/ psec. (C.2)

Figure C.1 shows the schematic diagrams of the snubber circuits used for the

experimental testing of both the 1¢ and the 3¢ WM inverters.
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Figure C.1: The schematic diagram of the 1¢ and the 3¢ WM IGBT inverters with snubber
circuits.
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