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Abstract

Historical changes in predator composition in the Newfoundland ecosystem as a result of
over-fishing have resulted in a switch from a cod-dominated system to one with abundant
decapod crustaceans. In order to understand the consequences of this switch to benthic
ecosystems, it is critical to evaluate how epifaunal crustaceans regulate sedimentary
communities. An array of exploratory and experimental studies was undertaken in Bonne
Bay, a sub-arctic Newfoundland fjord, in order to document predator and prey spatial

variation and community responses to predator manipulation.

The distribution of snow crab and at least one shrimp species in the main arms of Bonne
Bay fjord were found to be related to planktonic larval supply, particularly, late larval
stages. The distribution of infaunal prey varied in parallel with predator patterns and, as
shown by detailed analysis of the dominant taxon (polychaetes), was related to habitat
quality and distribution. Sandy and muddy habitats supported different infaunal
communities, and species that occupied a variety of substrates were more broadly
distributed inside the fjord and the region. Field exclusion and inclusion experiments
carried out in the two main arms of the fjord were complemented with laboratory
experiments using the main predators of the fjord: snow crab (Chionoecetes opilio), rock
crab (Cancer irroratus) and toad crab (Hyas spp). Results suggest that 1) crustacean
predation regulates benthic composition, density, and sometimes diversity, i1) predator

effects vary spatially, ii1) the same infaunal species were important in describing predator
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exclusion treatments both in the field and in the laboratory experiments, and iv) snow
crab and rock crab are the predators that have the strongest effects on infaunal
communities. Given that both predators are targeted by the fishery, these results also
suggest that the potential impacts of fishing may be even broader than expected through
cascading effects on infauna. Finally, the effects of predation on benthic infauna were
examined using surrogates or taxonomic categories coarser than species. Although results
obtained with data at the family level resemble those with data at the species level, the
lack of generality in surrogate performance suggests a cautious use of surrogates in

experimental and biodiversity studies.
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The temporal scale of interest corresponds to a period of 1-30 years. One year is the
minimal temporal range required to characterize monthly or seasonal variation in adult
distribution and recruitment. Thirty years is a period that encompasses the major changes
in the fishery with respect to cod and subsequently snow crab, shrimp and indirectly
several other Bonne Bay predators (Mallet & Landsburg 1996; Paul et al. 2001). The
spatial and temporal scales delineated here constitute the framework by which the thesis

is organized as outlined below.

1.4 GENERAL OBJECTIVES AND CHAPTERS

The main objective of this thesis is to relate spatial variation in predators with their role
in structuring sedimentary communities at the scale of a sub-arctic fjord. The following
five Chapters use exploratory and experimental approaches (cf. Eberhardt & Thomas

1991) to address the main questions involved in this relationship.

Chapter 2 focuses on the predators, and explores density and distribution of the main
predatory crustaceans (crabs and shrimps) found in the fjord and evaluates the extent to
which that distribution relates to larval supply. Are areas of the fjord that support high
densities of a given predator also areas where larvae are most abundant? Or instead, are

densities set by post- rather than pre-settlement processes?
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between larval abundance and composition and adult distribution suggest that a shallow
sill separating inner and outer portions of the fjord results in differences in larval supply
that correspond to adult abundances for at least two of the five species analyzed here.
Specifically, adult snow crab and toad crab inhabited areas outside the fjord sill whereas
adult pandalid and crangonid shrimp were the dominant epifaunal predator inside the sill.
Although larval abundance was not clearly related to adult distribution when all zoeal
stages were considered, correspondence between larval and adult patterns emerged when
only later stages (zoeae > II) were included in the multivariate analyses. Non-parametric
comparisons that removed seasonal variation supported this result, indicating significant
differences between inner and outer populations for the corresponding species and stages.
These results suggest that larval supply may play a critical role in establishing spatial

patterns for some species of epifaunal crustaceans in this fjord system.

2.3 INTRODUCTION

Predatory crustaceans such as crab and shrimp are well known to play important roles in
structuring soft-sediment communities (Thrush 1999; Lenihan & Micheli 2001). The
study of decapod spatial dynamics is therefore a critical component in models of benthic
regulation (Clark et al. 1999; Davis et al. 2003). Several seminal studies have
demonstrated the importance of pre- and post-settlement factors in regulating predator
populations and related prey communities at a regional scale (Connolly & Roughgarden

1998; Menge 2000). For instance, these studies have shown that the strength and nature






























The highest numbers of toad crab were recorded at Small Cove and Norris Cove (up to
0.34 and 0.30 crab » trap™'day™, respectively) whereas the highest numbers of rock crab
were found in Norris Cove and South East Arm (up to 0.66 and 0.59 crab « trap'day™,
respectively). Highest numbers of juvenile shrimp, as estimated by cylindrical traps, were
detected in South East Arm (2.78-24.67 shrimp trap’lmonth'l), and numbers gradually

decreased from inner to outer sites (Fig. 2.2 bottom panel).

2.5.2 Larvae abundance

Two zoeal stages of snow crab and toad crab, and 3-5 zoeal stages of rock crab, pandalid
shrimp, crangonid shrimp (Crangon septemspinosa Say) and two additional species
(hermit crab Pagurus sp., and a shrimp Sabinea sp.) were collected in net samples.
Megalopae were also collected in net samples, but all were either toad crab or rock crab.
Data on larval abundance and distribution of the five dominant species is summarized in
Figs. 2.3 and 2.4. Larvae were more diverse and generally more abundant in early to mid
July for all years (arrows in Fig. 2.3). Crab larvae were generally more abundant in
surface waters whereas shrimp larvae were either found primarily in near-bottom samples
(pandalid shrimp) or were equally abundant in bottom and surface (crangonid shrimp).
Snow crab larvae were far more abundant and comprised more late stages (zoea II) in
Small Cove (1.23-9.25 larvae « 100 m'3) than at any other site. Toad crab larvae were
more abundant in Mike’s Cove and Small Cove (up to 19.51 and 5.94 larvae 100 m>,

respectively) where late stages (> zoea II) of this species were also found (Fig. 2.4).
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Results from comparisons of the two main groups generated by the cluster and PCA-H
analyses (inner versus outer sites) are summarized in Table 2.2. When all data were used
in the comparison (N=42 and 28 for inner and outer areas, respectively), significant
differences were detected for total number of larvae of four taxa: snow crab, toad crab,
crangonid shrimp, and Sabinea (P=0.000 — 0.036). The same species exhibited significant
“inner-outer” differences when the abundances of their corresponding late stages were
compared (P=0.000 —0.014; Table 2.2). Although significant interactions between site
and date were detected in the comparisons of snow crab, toad crab, and Sabinea sp.,
within-year analyses carried out separately showed that the spatial differences (inner-

outer) were consistently significant (P<0.05; cf. Fig. 2.4).

Comparisons carried out with the seasonal peak data subset (n=15 and 8 for inner and
outer areas, respectively), showed similar results with the exception of crangonid shrimp
(P>0.05 for spatial comparisons). The total abundance of larvae of snow crab, toad crab,
Sabinea sp., and Pagurus sp. varied significantly between the main areas of the bay
(P=0.012 — 0.020). A comparison of the abundance of late larval stages again showed
significant differences between inner and outer portions of the bay for the same taxa (P=

0.004 — 0.036) (Table 2.2; Fig. 2.3).



Table 2.2 Results of the two-way ANOV As comparing the main groups of samples generated by the cluster and PCA-H analyses:
inner and outer groups. Analyses were carried out using all data (N=42 and 28 for samples from Inner and outer areas, respectively;
13, 1, 13, and 42 degrees of freedom), and a subset that included seasonal peak data only (N=15 and 8 samples from the same areas; 2,
1, 2, and 9 degrees of freedom). Factors include Date (14 sampling), Area (inner vs. outer) and their interaction. Response variables
are total number of larvae (All) and late stages only (zoeae > II). P-values estimated by randomization (500 iterations). SV= Source of
variation.

Data Zoeae SV Response variables
Snow crab  Toad crab Rock crab  Pandalus sp. Crangon sp.  Pagurus sp.  Sabinea sp.
F P F p F P F P F P F P F P
Full data All  Date 438 0.000 1032 0.000 1.48 0.166 2.14 0.032 092 0542 249 0.013 3.37 0.001

Area 9.44 0.000 561 0.024 082 0416 049 0574 506 0026 1.08 0340 5.11 0.036
DxA  3.75 0.004 099 0490 0.85 058 034 0972 0.73 0.698 1.I5 0332 1.54 0.136

>II Date 3.50 0.001 4.70 0.000 1.00 0467 1.84 0.068 126 0276 4.04 0.000 533 0.000
Area  5.80 0.010 24.65 0.000 275 0.116 2.18 0.152 6.27 0.014 1.17 0308 7.86 0.010
DxA  3.50 0.008 4.52 0.002 0.68 0.752 0.80 0660 095 0.500 199 0.056 4.76 0.002

Seasonal All  Date 1.78 0.223 334 0.082 1.60 0253 195 0.198 0.70 0520 1.06 0384 3.71 0.067
Peak Area 8.13 0.018 963 0.012 1.06 039 041 0818 2.04 0.122 3.55 0.070 5.60 0.020
DxA 214 0.174 185 0210 0.77 0478 031 069 049 0552 0.85 0380 098 0.352

>1I  Date 1.87 0.210 1.83 0.215 026 0.773 2.61 0.128 087 0452 150 0274 128 0324
Area 5.18 0.036 1498 0.004 203 0.180 1.24 0300 1.84 0.150 1.85 0.154 12.63 0.008
DxA 280 0.112 275 0.114 0.12 0.804 1.10 0388 0.50 0.604 0.87 0426 2.12 0.156

[47%



























51

Lewis AG, Thomas AC (1986) Tidal transport of planktonic copepods across the sill of a
British Columbia fjord J. Plankton Res 8: 1079-1089

Locke A (2002) The icthyoplankton and invertebrate zooplankton of the coastal waters of
Cape Breton Island: a review Gulf Fisheries Cent., Moncton, NB (Canada) Can
Man Rep Fish Aquat Sci No 2606, 28 pp

Locke A, Corey S (1988) Taxonomic composition and distribution of Euphausiacea and
Decapoda (Crustacea) in the neuston of the Bay of Fundy, Canada. Plankton Res
10: 185-198

Melville-Smith R, Baird D, Wooldridge T (1981) The utilization of tidal currents by the
larvae of a estuarine fish. S AfrJ Zool 16: 10-13

Menge BA (2000) Recruitment vs. postrecruitment processes as determinants of barnacle
population abundance. Ecol Monogr 70: 265-288

Meyer-Harms B, Harms J (1993) Detection of phytoplankton pigments by HPLC in Hyas
araneus larvae (Crustacea, Decapoda): Comparison of field and laboratory samples.
Neth J Sea Res 31: 153-161

Mokness P-O, Hedwall O, Reinwald T (2003) Settlement behavior in shore crabs
Carcinus maenas: Why do postlarvae emigrate from nursery habitats? Mar Ecol
Prog Ser 250: 215-230

Mokness P-O, Wennhage H (2001) Methods for estimating decapod larval supply and

settlement: importance of larval behavior and development stage. Mar Ecol Progr
Ser 209: 257-273

Moloney CL, Botsford LW, Largier JL (1994) Development, survival and timing of
metamorphosis of planktonic larvae in a variable environment: the Dungeness crab
as an example. Mar Ecol Progr Ser 113: 61-79

Morgan SG (2001) The larval ecology of marine communities. In Bertness MD, Gaines

SD, Hay ME (eds). Marine community ecology. Sinauer Associates Inc.
Sunderland, pp: 159-181

Olmi EJ III, Lipcius RN (1991) Predation on postlarvae of the blue crab Callinectes
sapidus Rathbun by sand shrimp Crangon septemspinosa Say and grass shrimp
Palaemonetes pugio Holthuis J Exp Mar Biol Ecol 151: 169-183

Ouellet P, Allard J-P, St. Pierre JF (1994) Distribution of larvae of invertebrate decapods
(Pandalidae, Majidae) and of the eggs and larvae of fish species in the northern Gulf












and species richness. Polychaetes were more dense and diverse in sandy sediments, partly
because sandy locales were associated with the outer portion of the bay, and therefore
were closer to the more productive and diverse Gulf of St. Lawrence region. In general,
species that occupied both sediment types were more widely distributed within Bonne
Bay and across the region. The biogeography of most species also suggests that the
Bonne Bay fauna is transitional between the Labrador and Acadian biogeographic

provinces.

3.3 INTRODUCTION

Although marine benthic environments constitute the largest habitat on the plan

(~70%), our knowledge of their biodiversity continues to be limited. Invertebrates
account for most of the known marine species (Norse 1993; Snelgrove 1998) and are
critical in the provision of numerous ecosystem services (Myers 1996; Snelgrove et al.
1997). Unfortunately, undocumented habitat and species loss are ongoing as a result of
increasingly widespread human activities (Irish & Norse 1996, Carlton et al. 1999) and
research on this issue is lagging (NRC 1995; Roberts & Hawkins 1999). Despite the
pressing need for more exploration and research, ecological information as basic as
species composition and habitat association remain far from complete, even in shallow,
coastal areas (NRC 1995). Among the most abundant and species-rich macrobenthic taxa
are the polychaetes (Grassle & Maciolek 1992; Hutchings 1998). The rich diversity of

polychaetes is reflected not only in the large numbers of species, but also in families,
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Bay is transitional and therefore representative, at least in terms of species composition,

of a large portion of the Western North Atlantic.

3.6.3 Polychaete identification

Taxonomy represents a challenge not only because the high proportion of un-described
species, but also because of confusion over the taxonomy of those already described
(Hutchings 1998). Although the specimens analyzed match the available descriptions
(Pettibone 1963; Banse & Hobson 1974; Fauchald 1977; Appy et al. 1980; Hobson and
Banse 1981; Light 1978; Blake et al. 1995), several cases are under scrutiny, and thus,
require a note of caution. Younger stages of Scoloplos armiger have been frequently
confused with S. acutus (Verrill, 1873), and Pholoe tecta synonymized with P. minuta
(Fabricius, 1780) (Pocklington 1989). Although some authors use Pholoe (minuta) tecta
(eg. Rouse & Pleijel 2001), the most frequently used name (P. tecta) should prevail (K.
Fauchald, pers comm). In a few other cases, the debate focuses on the use and change of
names: Some authors use Onuphis instead of Nothria conchilega (e.g. Banse & Hobson
1974), Praxilla instead of Praxillella praetermissa (eg. Fauchald 1977) or Cisterna
instead of Pectinaria granulata (Appy et al. 1980). Further studies are required in order
to clarify the taxonomy of these and several other groups of polychaetes (e.g. Polydora,
Manchenko & Radashevsky 1998; Pholoe, Petersen 1998, Terebellides, Hutchings and
Peart 2000; Euchone, Cochrane 2000; Prionospio, Sigvaldadéttir 2002). Given their
abundance and species richness, polychaetes are essential for future research on benthic

biodiversity. That research would help to alleviate the biases generated by the
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geographical gaps that still exist, particularly at high latitudes of the North Atlantic. This
research should also re- valuate taxonomy as a central discipline for the study of
biodiversity (Maurer 2000; Giangrande 2003), and the ecological processes that affect

and regulate biodiversity.
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assumptions were tested in each analysis, and in those few cases where the data did not

fit the assumptions data were log, transformed (Sokal & Rohlf 1994).

4.5 RESULTS

4.5.1 Predator abundance

Four species of decapods dominated average summer abundances of epibenthic predators
(Fig. 4.1). Snow crab (Chionoecetes opilio, South Arm mean = 0.96 crabs * trap 'day™)
and pandalid shrimp (Pandalus montagui, East Arm mean = 0.85 shrimp « trap 'day™)
dominated the two study sites respectively. Snow crabs were almost 5 times less
abundant in East Arm (0.21 crab  trap” day™), whereas shrimp were absent from South
Arm. Toad crabs (Hyas sp.) were less abundant but similar in density between sites (0.15
and 0.10 crabs e trap"day’l). Rock crab (Cancer irroratus) abundances were 0.08 and
0.30 crab - trap'1 day'l at South and East Arms. Although the traps were efficient in
trapping predatory fishes, they were far less abundant and frequent, in comparison to

crustacean predators.

4.5.2 Ambient communities and predator exclusion experiments

Overall, abundances in ambient sediments from South Arm were significantly higher than
East Arm (P<0.05; Fig. 4.2). The three most abundant species from South Arm (the clam
Astarte sp. and the polychaetes Paradoneis lyra and Prionospio steenstrupii) were all

significantly more abundant than in East Arm (P<0.05) for each time period. The
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surrogates at the spatial scales typical of experiments (m -10’s m). Both problems were
addressed by analyzing the results of three predation experiments in Bonne Bay, Western
Newfoundland. Species data were pooled into coarser taxonomic categories (family to
class) and determined whether effects of predation that were evident at the species level
were also evident with the use of each coarser surrogate. The results indicate that data at
the family level do represent a reasonable surrogate of species when un-transformed data
were used. However, the ability to discriminate between ambient and (predator)
manipulated sediments is gradually lost with data transformation and with the pooling of
species into coarser taxonomic categories. These results also suggest that the varying
reliability of surrogates precludes the identification of a single general level of taxonomic
sufficiency to be used in experimental studies. The use of surrogates is therefore
suggested only after scrutiny and evaluation, and should be limited to preliminary studies

where biodiversity has been well described.

6.3 INTRODUCTION

The last decade has seen renewed interest in marine biodiversity and concern for our
inability to identify large numbers of marine invertebrates (Snelgrove 1999, Gray 2001).
Most of this problem derives from the time, skills, and resources required for
identification, particularly at the species level (Ferraro & Cole 1995). The lack of
taxonomic expertise and the worldwide growth of research and exploration are the two

main components of what Giangrande (2000) calls the “taxonomic impediment”. Several
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surrogates of species have been proposed in order to circumvent this problem. Proposals
include indicator groups such as some highly diversified polychaetes (Olsgard et al.
2003), indicator ratios such as 'nematodes: copepods' for meiobenthos (Amjad & Gray
1983) or 'polychaetes: amphipods' for macrobenthos (Gomez Gesteira & Dauvin 2000),
and sub-sampling of pre-defined numbers of specimens (King & Richardson 2002). Each
of these approaches has proven useful in some applications, but have failed to accurately
predict patterns of biodiversity elsewhere. A fourth approach is the use of coarser
taxonomic categories such as genera, families, orders, etc. (Somerfield et al. 1995). The
feasibility of using coarser taxonomic levels has been studied in freshwater habitats
(Bowman & Bailey 1997), rocky shores (Pagola-Carte & Saiz-Salinas 2001), gravel and
sandy beaches (Schoch & Dethier 2001; Defeo & Lercari 2004), lagoons (Mistri & Rossi
2001), and coastal (e.g. Gray et al. 1988; Somerfield & Clarke 1995; James et al. 1995)

and deep-sea sedimentary communities (Narayanaswamy et al. 2003).

The use of coarser taxonomic resolution relies on the idea of “taxonomic sufficiency”
(hereafter TS) formally introduced by Ellis (1985). This approach justifies the use of
coarser taxonomic categories instead of species, when loss of information has no
significant effect on the comparison of communities in question (e.g. a pollution gradient,
Gray et al. 1988; Warwick et al. 1988; Olsgard et al. 1997). Broader taxonomic
categories appear not only to “suffice” in detecting pollution gradients but also remove
some degree of redundancy attributed to the use of species that arguably may mask

pollution effects (Gray et al. 1988; Warwick 1988; 1993). Moreover, coarser taxonomic






adequate taxonomical resolution is therefore the application of quantitative criteria
(Vanderklift et al. 1996). Three of these criteria are used here to analyze the feasibility of
using species surrogates in experimental predation studies on soft-sediment communities:
1) correlation between similarity matrices resulting from data aggregated at different
taxonomical levels, i1) MDS stress and similarity of control and exclusion treatments in
cluster analyses, and iii) analysis of Similarity (ANOSIM) between controls and
manipulated communities to evaluate discriminating ability at different taxonomic
resolutions. To examine this question we used data from three field experiments (two
predator exclusions, one predator inclusion) carried out in sedimentary habitats in Bonne
Bay, Western Newfoundland. Previous analyses of the three experiments have already
shown the existence of significant predation effects on a number of community response
variables (Quijon & Snelgrove, in press & unpublished data). Thus, the three data sets
can be used to evaluate the TS performance for experimental studies at relatively small

spatial scales.

6.4 MATERIAL AND METHODS

6.4.1 Field experiments

Two exclusion experiments were implemented in each main arm (South and East Arms)
of Bonne Bay, Newfoundland, and described in detail by Quijjén & Snelgrove
(submitted). Briefly, the experiments consisted of full (exclusion) and partial cages

(potential artifact effects) deployed in sedimentary habitats at ~30 m deep. Fauna from
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the cage treatments was compared with ambient sediments by collecting replicated
samples (7- cm diameter cores, 2 cores per sample, 0-10 cm deep) to monitor for changes
after 4 and 8 weeks of predator exclusion. An additional experiment was carried out in
East Arm and involved the inclusion of snow crabs (Chionoecetes opilio; the most
abundant epifaunal predator in the bay) in full cages similar to those used in the exclusion
experiments. Snow crabs were confined in cages for four days, after which time faunal
samples similar to those described above were collected from cages and ambient

sediments.

Original statistical analyses of both exclusion experiments as well as the inclusion
experiment (Quijon & Snelgrove in press) were carried out with univariate (ANOVA)
and multivariate methods (clustering and Principal Component Analysis of Chord
Normalized Expected Species Shared, CNESS). All of the above analyses were carried
out with un-transformed data of organisms identified at the species level. Overall, these
analyses indicated 1) the lack of cage-artifact effects on sedimentary or faunal variables;
and ii) the existence of significant effects of predation on species composition, abundance
and, in some cases, the diversity of the communities. The effects detected in the (snow
crab) inclusion experiments were consistent with the results obtained in the exclusion
experiments and with additional laboratory experiments carried out with two different

densities of snow crab and rock crab (Cancer irroratus; Quijon & Snelgrove, submitted).
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6.4.2 Analysis of taxonomic resolution

In order to test whether the differences between ambient and manipulated (exclusion or
inclusion of predators) detected at the species level are also observed at coarser
taxonomic resolution, the three sets of data were analyzed using PRIMER routines
(Clarke & Warwick 1994). Because no artifacts effects were detected in the exclusion
experiment data, only control and manipulated (exclusion or inclusion) treatments after 4
and 8 weeks of experimentation were used in the procedures described below. This

reduced the pool of species from 78 to 50-51 per site (Table 6.1).

Table 6.1 Number of sampling units (replicates x treatments x sampling periods) and
taxonomic units at each level of taxonomic resolution.

Exclusion Exclusion Inclusion
South Arm East Arm East Arm
# Sampling units 4x2x2=16 4x2x2=16 4x2x1=8
# Taxonomic units

- Spp 50 51 39

- Fam 39 40 33

- Ord 20 18 13

- Cla 6 5 5

First, data at the species level were successively aggregated into family, order, and class
levels (cf. Table 6.1). Data at the genus level were not considered because they were
almost identical to species data; genera with more than one species were restricted to a
few cases with relatively low abundances. Bray-Curtis similarity matrices using raw and
transformed data were then created for each taxonomic resolution. Data transformation

included square root (hereafter V), fourth root (¥V), and presence-absence (+/-). The
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purpose of the transformations was to diminish the contribution of numerically dominant
species (expressed in raw data) to emphasize community-wide attributes and rare species

(¥, V) to the point where every species weighted equally (+/-) (Olsgard et al. 1997).

Next, the sixteen similarity matrices generated for each original data set were compared
pair-wise using the RELATE routine and Spearman Rank Correlation (p). High p values
(close to 1) suggest highly similar matrices and therefore no overall changes between
data analyzed at the different taxonomic levels. Similarity matrices were then used to
generate Multidimensional Scaling (MDS) plots to represent the relatedness of samples
and treatments in a two-dimensional space. Stress values associated with each MDS plot
reflect how well the distance among samples in the plot represent the actual distance
among samples (Clarke & Warwick 1994) and were also used to compare between
taxonomic levels. Group Average cluster analysis was subsequently applied to Bray-
Curtis dissimilarities of the groups visualized in the MDS plots. In particular, we focused
on the level of similarity at which the groups of samples from controls and manipulated

sediments were linked together, and were therefore not distinguished.

Finally, controls and exclusions were compared with Analysis of Similarity (ANOSIM).
This test compares a-priori defined groups of samples in a similar way as an ANOVA
analysis, weighting variation within versus between groups (treatments). The ANOSIM
routine generates an R-statistic (-1 to +1) and a significance test. High R-statistic values

indicate that ANOSIM discriminates between treatments at the particular taxonomic level
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contributed to increased similarity between treatments, but this increase was ~10%

(compare columns of Table 6.3).

Table 6.3 Bray-Curtis similarity values linking controls and manipulated (exclusion or
exclusion of predators) treatments in Group-average cluster analyses. Data from different
taxonomic resolutions and using raw and transformed (¥,VV, + / -) data are compared.

Experiment  Transformation Species Family Order Class
Exclusion Raw 42.54 46.59 57.48 71.69
South Arm vV 51.00 47.60 69.07 84.10
W 50.83 51.04 73.15 82.98
+/ - 54.53 54.07 74.76 80.44
Exclusion Raw 35.82 39.37 51.98 61.49
East Arm v 41.38 46.55 63.47 75.23
W 42.18 49.62 69.00 82.99
+/ - 42.82 52.26 74.58 84.82
Inclusion Raw 30.52 34.05 43.57 62.84
East Arm v 35.81 39.90 54.99 72.60
W 38.20 38.97 60.97 73.51
+/ - 40.37 40.85 66.86 73.33

6.5.3 Analysis of similarity

The ability to discriminate between treatments (indicated by a significant R-statistic
value) was evaluated with ANOSIM (Table 6.4). In general, with the aggregation of data
at coarser taxonomic levels, the R-statistic values decreased and the number of cases with
no significant differences (P>0.05) increased. The ability to discriminate between
controls and predator exclusions (or inclusions) was greatest at the species level (16/20
comparisons) and was almost completely lost at the class level (significant differences in
only 7 of 20 comparisons). Family and order level comparisons provided somewhat

similar findings (14 out of 20 significant differences) to species-level comparisons but the
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R-values were generally higher at the family level. As in the earlier analyses, increased
severity of data transformation was more frequently associated with non-significant

differences between treatments (i.e. reduced discriminating ability; Table 6.4).

70 4 —a—

60 v

50 A

40 - Exclusion
South Arm
30 T T T T

80 -
70
60 -

50 —

Exclusion
40
East Arm
30 T T T [

Bray-Curtis Similarity (%)

80 -
70
60

40 Inclusion
East Arm
30 T T T

species family order class

Figure 6.4 Variation in Bray-Curtis similarity linking controls and manipulated
(exclusion / inclusion) treatments along different taxonomic resolution (species — class)

in the three sets of experimental data. Results from raw and increasingly transformed data
are plotted.



Table 6.4 Values of the R-statistic from one-way ANOSIM comparing between ambient
(control) and manipulated (predator exclusion or inclusion) communities, at different
taxonomic resolutions. For the exclusion experiments, comparisons were done separately
for predation effects after 4 and 8 wks. Asterisks and “NS” indicate significant and non-
significant differences, respectively.

Experiment Time Transformation Species Family Order Class
Exclusion 4 wk Raw 0.95* 0.93* 0.65* 0.39*
South Arm \ 0.85*% 0.92* 0.87* 0.32NS
W 0.65* 0.74* 0.88* 0.22NS
+/ - 0.36NS 0.50NS 0.73* 0.06NS
8 wk Raw 0.83* 0.83* 0.67* 0.67*
\ 0.41* 0.41NS 0.60* 0.55*
W 0.23NS 0.20NS 0.49* 0.29*
+/ - 0.13NS 0.04NS 0.32NS 0.12NS
Exclusion 4 wk Raw 0.77* 0.73* 0.67* 0.64*
East Arm v 0.69* 0.65*% 0.66* 0.73*
W 0.63* 0.50* 0.38NS 0.51*
+/ - 0.54* 0.44% -0.14NS 0.12NS
8wk Raw 0.40* 0.52*% 0.30* 0.2INS
v 0.44* 0.45% 0.38* 0.30NS
W 0.40* 0.29NS 0.23NS 0.18NS
+ - 0.25NS 0.23NS 0.12NS  -0.13NS
Inclusion Raw 0.92%* 0.73* 0.55% 0.06NS
East Arm N 0.88* 0.65* 0.51* 0.32NS
W 0.82* 0.59* 0.41* 0.35NS
+/ - 0.74* 0.60* 0.26NS 0.30NS
6.6 DISCUSSION

Few studies have applied TS in the analysis of factors generating natural rather than of
anthropogenic variation of benthic community structure (Dauvin et al. 2003). This is
likely related to the lower performance that TS is expected to play in less polluted areas,

as recently shown in Norwegian benthos by Olsgard & Somerfield (2000). The results



174

include three lines of evidence to suggest that the use of surrogates may be adequate in
order to detect differences in experimental studies such as those looking at predation
effects (see below). However, these results also suggest that not just any taxonomic

resolution will suffice.

6.6.1 Correlation of similarity Matrices

Species-family correlations were the highest among all possible pair-wise comparisons in
the three sets of data. This result is particularly important given that correlation of
similarity matrices is the most powerful tool to evaluate TS performance (Somerfield et
al. 2002). Although an “acceptable” value of Spearman p is rather arbitrary, values ~0.95
reflect an almost perfect correspondence between similarity matrices (Clarke & Warwick
1994). Species-family correlations of untransformed data (0.94-0.95) were the only ones
to meet this criterion. Species-family correlations after data transformation did not
perform as well (up to 0.91 in V), whereas correlations between species and order or class
levels were clearly lower. These results suggest limitations for the use of surrogates other
than genus or family. as already shown in studies on macrobenthos (James et al. 1995)

and meiobenthos (Gray et al. 1988).

6.6.2 MDS and cluster analyses
MDS plots do not offer an objective criterion for separating good from poor taxonomic
resolution (Vanderklift et al. 1996). However, they help to visualize gradual changes in

sample similarity and the smothering effect of coarser resolution and data transformation
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(Olsgard et al. 1997). This is relevant in studies of natural variation (e.g. Schoch &
Dethier 2001), where community responses are generally weaker than in pollution studies
(Olsgard et al. 1998; Karakassis et al. 2002). In predation studies, for instance, “strong”
effects result in changes > 100% of prey density (Olafsson et al. 1994). This is not the
norm in sedimentary communities, and in fact does not represent the more modest
predation effects detected in Bonne Bay (Quijén & Snelgrove, submitted). In this area,
exclusion of predators significantly increased total densities (up to ~57% on average) but
not the number of species (up to ~30%). Cluster analyses separated controls and
manipulated treatments as individual branches in only a few cases, confined mostly to
raw and weakly transformed data at the species or family levels. Coarser resolution (order
and class) increasingly intermixed different treatments, suggesting limitations for their

use as surrogates of species.

Stress values increased from species to family or order, and then decreased in the class
level. A similar pattern of variation was reported in a pollution study (Vanderklift et al.
1996), although previous studies have also found a simple decrease or no major changes
in stress (e.g. Somerfield & Clarke 1995). Variation of stress along increasing taxonomic
resolution may be related to the reduction in the “# taxa : # samples” ratio, and with the
increase in non-zero values in the data sheets (Vanderklift et al. 1996). Although the
biological significance of both ratios is not straightforward, the lower stress values

detected at the class level simply suggest that these MDS plots are better representations
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of the actual distances among samples (Clarke & Warwick 1994). However, it does not

imply that class is a better surrogate of species than family or order in this study.

6.6.3 Analysis of Similarities

The ability of ANOSIM to discriminate decreased with coarser taxonomic resolution and
with increasingly strong data transformation. When aggregated at coarser taxonomic
levels, species response to stress may undergo compensatory changes that reduce the
sensitivity of some surrogates (Frost et al. 1992). That appears to be the case at the class
level, where ANOSIM frequently failed to discriminate between treatments (P>0.05).
Previous studies have found that in some intertidal habitats class or even phyla are useful
surrogates of species (Krassulya 20016; Defeo & Lercari 2004). However, those
disturbances were strong and persistent enough to be likely reflected at almost any
taxonomic resolution (Olsgard et al. 1998; Warwick 1988). The ANOSIM R-statistic is
also a useful tool to evaluate discriminating ability (Clarke & Warwick 1994). As
expected, R-statistic values decreased with species aggregation (Warwick 1988) and data
transformation (Bowman & Bailey 1997; Somerfield & Gage 2000). Correlation
coefficients were calculated to visualize how close surrogates resemble species in terms
of R-statistic values (see Table 6.4) and they declined from 0.91 (species-family) to 0.41
(species-order) and 0.43 (species-class). Although the rigor of these comparisons may be
argued, this and previous analyses showed that data at the family level approximated

species data considerably better than did order or class.
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6.6.4 Natural variation and the use surrogates

Several studies have suggested that family is a good surrogate of species (Somerfield &
Clarke 19956; Dauvin et al. 2003), and the best compromise between accuracy and cost-
effective processing (Ferraro & Cole 1995). For Bonne Bay, the use of family as an
acceptable surrogate of species relies on two aspects of our data. First, it is the result of
low number of species per family (cf. Table 6.1). This attribute reduced the chances of
comparing families with very different number of species, a problem that constrains the
use of TS in spatial comparisons (May 1990; Prance 1994). Second, the effects of
predation included the aggregation and quick dominance of few species in predator
exclusion treatments (e.g. the polychaete Pholoe tecta; Quijon & Snelgrove, in press).
This change resembles the local effects of a pollution gradient, where few
tolerant/opportunistic species become dominant (e.g. Pearson & Rosenberg 1978). None
of these aspects are peculiar to our experiments, but they restrict the use of surrogates
such as families to systems where predation induces strong changes in dominance among

prey species.

The acceptable level of taxonomic resolution is a function of the (anthropogenic or
natural) gradient to which communities are responding (Rakocinski et al. 1997). Indeed,
some studies have found that family level data do not perform well as species surrogates
(Narayanaswany et al. 2003; Bowman & Bailey 1997). Therefore, this study does not
constitute a call for a generalized use of family (or other surrogate) instead of species.

Identification to the species level must be achieved whenever possible (Terlizzi et al.
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2003), because it constitutes the most traditional entity to define and study biodiversity
(Gray 2001; Hutchings 1998). This is not a reason to ignore a cautious use of surrogates
in studies on natural gradients or experimental ecology, as demonstrated here. But the
fact that TS approaches are of varying reliability in different applications suggests that in
exploratory studies they will be most useful in well-known systems. In experimental
studies, its potential use may be justified given the large proportion of effort invested in

preliminary studies that might be re-allocated by using properly identified surrogates.
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CHAPTER 7

GENERAL CONCLUSIONS

The main goal of this study was to document spatial variation in epifaunal predators and
infaunal prey, and to provide a mechanistic understanding of benthic community
responses by experimental manipulation of predators. The main conclusions of each
chapter and further implications in the temporal and spatial contexts delineated in the

introductory Chapter are detailed below.

The shallow sill that limits exchange with Eastern Arm appears to be an inflexion point in
the distribution of snow crab and at least one species of shrimp (Chapter 2). Although no
sill-related pattern was observed for early larval stages, adult spatial pattern was clearly
related to the distribution of zoea Il and later larval stages, suggesting a role for larval
supply in establishing adult benthic distribution. Because late-stage larval distribution,
and likely settlement and recruitment, are closely related to adult predator distribution at
the scale of the fjord, the subsequent influence of predatory decapods may be more
closely related to predator pre-settlement and early post-settlement processes than
expected (Chapter 2). As discussed in the Overview (Chapter 1), pre-settlement processes
are likely to be even more influential at spatial scales larger than those analyzed here

(10°-100’s km). Data on day-night dynamics and flux of larvae through the sill with high-
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resolution data on the emigration-immigration cycle are needed in order to provide a

more comprehensive description of the plankton-benthos linkage.

Although polychaetes are generally representative of sedimentary biodiversity, their
value as predictors of overall biodiversity is limited by habitat variation, and the variable
degree of correspondence between composition and a given habitat type (Chapter 3). In
general, two contrasting habitats (sandy and muddy sediments) supported infaunal
assemblages that were significantly different in terms of composition, density, and
species richness. The exploration of that variation at the local (fjord) and regional scales
(Nova Scotia to Labrador) suggests that the polychaetes of the fjord are representative of
a broader region of the North Atlantic (Chapter 3). To reach more specific conclusions,
however, a more systematic study of this and other invertebrates from the Gulf of St.
Lawrence is needed, particularly in the subsystem to which Bonne Bay belongs. Such
studies will contribute to a greater understanding of how the diversity of Bonne Bay

relates to the overall diversity of the region.

As shown here (Chapter 4), predation regulates composition, density, and in some
circumstances, species richness and diversity of infaunal sedimentary communities. As
expected, spatial variation in the intensity of these effects was detected from
simultaneous experiments set in communities with different infaunal diversity.
Differences in predator composition, as well as in diversity of prey communities, help to

explain these spatial differences, and emphasize the advantages of experiments that
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encompass more than a single/uniform community or habitat. Moreover, the overall
similarity in the results gathered from three different approaches (field- exclusion and
inclusion, and laboratory experiments) re-enforce the idea that the role of predation and
its spatial variation as inferred from the experiments are realistic and representative of the
interactions occurring in this system (Chapter 4). A further step in the study of the role of
predation is to explore its relative contribution as a top-down process in relation to
bottom-up processes (see Overview; Chapter 1). Although several studies have examined

this question at a local scale, evidence from sedimentary habitats is far from conclusive.

Although predation in general contributes to community structure, the fact that some
predators are targeted by fisheries suggests that the fishery may actually play a greater
role in ecosystem dynamics than that inferred from single species analysis (Chapters 4
and 5). The individual role of the main predators of the bay demonstrate that two species
targeted by fisheries (snow crab and rock crab) were precisely the ones that contributed
the most to community effects detected in the field and laboratory experiments (Chapter
5). The switch in predator composition experienced in coastal Newfoundland with the
depletion of cod and the increase in decapods could imply a broad-scale change in
predation rates (or predation pressure) on infauna, thereby affecting their community
structure. Unfortunately, long-term data on predation rates or population structure are
almost non-existent for most shrimp and crab species in Atlantic Canada. More research
is needed in order to generate those data and verify models to evaluate the magnitude of

the changes in sedimentary communities that have been driven indirectly by over-fishing.
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The use of taxonomic categories coarser than species has been rarely applied to
community studies except in relation to anthropogenic pollution. The detection of
predation effects on infaunal data aggregated up to the family level suggests that the use
of surrogates may be possible without significant losses of information (Chapter 6). This
was the first experimental study to test the applicability of surrogates, and therefore more
studies are required in order to compare their utility. Although the use of surrogates is
recommended only under certain conditions (e.g. only after evaluation of surrogate
performance and only at areas where biodiversity is well described) further studies should
focus on other types of natural disturbance, and test the applicability of surrogacy in
relation to community gradients (e.g. species diversity). For instance, no current studies
have systematically studied the variation in the ratio of species to genus (or any other

taxonomic category) and attempted to relate that variation to surrogate performance.

In summary, exploratory and experimental studies summarized here suggest that
predatory crab and shrimp play a significant role as regulators of benthic community
structure. This conclusion coincides with the general notion that predation is the main
post-settlement factor shaping soft-sediment communities at this and most commonly
studied lower latitudes. It also suggests that external factors such as the fishery, that
affect predator numbers and composition at spatial and temporal scales far larger than
those manipulated here, may have indirect cascading effects on the bottom component of

the North Atlantic ecosystem.
















