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ABSTRACT 

We initially assessed the characteristics of stroke development in Dahl salt

sensitive rats (Dahi-SS). Dahi-SS developed high blood pressure (BP) when fed 

a high salt diet (8.7% NaCI) from weaning and a 50% mortality after being fed the 

diet for 4 to 5 weeks. Prior to death, Dahi-SS exhibited behavioural symptoms 

(convulsions, seizures, paralysis and stupor) consistent with the possible 

development of stroke. However, unlike true stroke, the behavioural 

dysfunctions observed were not associated with cerebral ischemia and occurred 

in the virtual absence of cerebral hemorrhage. An investigation of the 

cerebrovascular pathology indicated a breakdown in the integrity of the blood 

brain barrier and fluid movement into the extravascular space (edema). It was 

concluded that Dahi-SS best represents a model of hypertensive encephalopathy 

(HE). In humans HE is produced by brain edema as a result of hypertension in 

the absence of cerebral ischemia or hemorrhage. It produces convulsions, 

confusion, and stupor and can result in death. The latter symptoms are 

consistent with those observed in Dahi-SS fed high salt. 

Antihypertensive intervention (captopril) was ineffective in lowering blood 

pressun3 or reducing the incidence of mortality. Non-cerebral organ failure was 

also evident prior to death as demonstrated by kidney dysfunction associated 

with increased plasma creatinine, urea, urinary protein excretion and decreased 

plasma albumin levels. 
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In subsequent experiments we tested the hypothesis that a breakdown in 

the ability to autoregulate cerebral blood flow (CBF) may contribute to the 

development of HE in Dahi-SS fed high salt. Such a defect could promote 

cerebrovascular overperfusion and elevate microvascular blood pressure, 

alterations that would facilitate blood brain barrier disruption and HE 

development. Laser Doppler techniques were used to assess the changes in 

relative CBF with varying BP in the perfusion domain of the middle cerebral 

arteries (MCA's). Dahi-SS fed 8.7% NaCI for 1 week exhibited an ability to 

autoregulate near constant CBF up to an upper mean BP of 168 mmHg. Two 

thirds of the rats lost the ability to autoregulate CBF after they were fed a high 

salt diet: for 3 weeks at a time prior to the development of HE. These rats 

exhibited a linear increase in CBF with elevations in arterial pressure. The 

characteristics of the CBF autoregulatory curves suggested that CBF 

autoregulation was lost under conditions of cerebrovascular constriction. 

In other experiments we assessed the hypothesis that the loss of CBF 

autoregulation in the MCA perfusion domain of Dahi-SS was associated with an 

inability of the MCA's to elicit pressure dependent constriction (PDC). PDC is an 

important mechanism involved in promoting CBF autoregulation. Elevations in 

BP promote cerebrovascular constriction, which raises vascular resistance to 

blood flow. This counteracts the potential elevation in CBF enabling CBF to 

remain constant under conditions of elevated BP. Isolated MCA's from 

asymptomatic Dahi-SS exhibited constriction in response to elevated pressure 
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and protein kinase (PKC) activation (a signaling intermediate for PDC in MCA's). 

In addition the MCA's vasodilated in an endothelium dependent manner in 

response to bradykinin. These functions were lost in the MCA's of Dahi-SS with 

HE. MCA's from post-HE Dahi-SS that were unable to constrict to pressure 

lacked the ability to constrict in response to PKC activation via phorbol esters. 

They exhibited high levels of basal tone and no response to the endothelial 

specific vasodilator, bradykinin. The loss of PDC in MCA's of Dahi-SS preceded 

the deve~lopment of HE and occurred in asymptomatic rats fed high salt for 3 

weeks at a time when CBF autoregulation was lost. 

It was concluded that defects in the ability of the cerebrovasculature to 

autoregulate CBF in conjunction with the development of renal dysfunction could 

contribute to the development of HE in Dahi-SS fed high salt. Cerebrovascular 

PDC is thought to play an important role in facilitating CBF autoregulation. The 

loss of this function could contribute to a loss of CBF autoregulation under 

hypertensive conditions. This could increase cerebrovascular pressures and 

promote overperfusion in the brain, leading to the development of cerebral 

edema and HE. The development of HE could be further augmented by a 

decreas~~ in plasma oncotic pressure promoted by the loss of plasma proteins 

due to the occurrence of proteinuria. The presence of a dysfunctional PKC 

system in the vascular smooth muscle of MCA's sampled from Dahi-SS with HE 

could contribute to the loss of PDC in the arteries. 

IV 



Acknowledgements 

It is hard to sum up how important people have been to me in helping me 
completE~ my training and without them this task would not have come to fruition. 
However, I would like to thank my thesis advisory committee, Dr. Bruce Van 
Vliet, Dr. Reza Tabrizchi and Dr. Sudesh Vasdev who were always there to 
answer questions and help with experimental protocols. I would also like to thank 
Dr. Penny Moody-Corbett, who has always helped me throughout my graduate 
training and was always there to listen. I would also like to thank Jeff Biernaskie 
who helped with the photography of cerebral sections. 

I would like to thank my mentor, supervisor and friend, Dr. John Smeda who 
despite pushing his patience to the nth degree was always there for me. John is 
an amaz:ing source of knowledge and a person who could answer every scientific 
question I ever posed to him. John is also one of the nicest people you could 
ever want to meet. I will miss our chats about science that would somehow end 
up into hockey and boxing stories. I was always at ease working in John's lab. I 
want to ithank you John for helping me so much and hope I can repay you some 
day. 

I would like to thank my family that stood by me the entire time whose support 
was fantastic. 

Finally, I would like to thank my wife Andrea. There is no question that without 
you I never would have finished. You always put your life on hold to allow me the 
freedom to get the things I needed to do get done. On days I was so close to 
cracking you always provided the glue to keep me together and the insight to see 
the light at the end of the tunnel. THANK YOU!! 

v 



TABLE OF CONTENTS 

ABSTRJ~CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 

ACKNO'WLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 

LIST OF FIGURES ........................................................................ XIII 

LIST OF TABLES ........................................................................ XVI 

ABBRE1VIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII 

CHAPTER 1 

LITERATURE REVIEW 

1.1 ETIOLOLOGY OF STROKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 R:OLE OF HYPERTENSION IN STROKE DEVELOPMENT . . . . . . . . . 3 

1.2.1 Hemorrhagic Stroke and Hypertension ............................ 3 

1.3 A.NIMAL MODELS OF STROKE ............................................ 4 

1.4 DEVELOPMENT OF THE KYOTO WISTAR STROKE 

PRONE SPONTANEOUSLY HYPERTENSIVE RAT............... 5 

1.4.1 Role of Diet in the Stroke Development of SHRsp .............. 5 

1.4.2 Behavioural Symptoms of Stroke Development in SHRsp ... 6 

1.4.3 Cerebral Pathology and Hemorrhagic Stroke in SHRsp ....... 7 

1.4.4 Alterations in the Renin Angiotensin System and Stroke 

Development in SHRsp ................................................. 8 

1.4.4.1 Overview of the Renin Angiotensin System ....................... 8 

VI 



1 .. 4.4.2The Renin Angiotensin System, Angiotensin II and 

Hypertension Development... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

1 .. 4.4.3Aiterations in Renin and Angiotensin II in Relation to Stroke 

Development in SHRsp ................................................ 11 

1.5 DEVELOPMENT OF THE DAHL SALT SENSITIVE (Dahl-55) 

NIODEL OF HYPERTENSION ................................................ 13 

1 .. 5.1 The Role of Altered Renal Function in the Development of 

Hypertension in Dahi-SS ............................................... 14 

1.5.2 Renal Pathology Associated with Hypertension Development 

in Dahi-SS .................................................................. 14 

1.5.3 Status of the Renin Angiotensin System in Dahi-SS ............ 15 

1.6 STROKE DEVELOPMENT IN DAHL-55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

1. 7 A SUMMARY OF THE RATIONALE AND THE INITIAL 

OBJECTIVES OF THE CURRENT STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 

EXPERIIMENTAL STUDIES 

CHAPTER 2 

THE CHARACTERIZATION OF "STROKE" DEVELOPMENT IN DAHL-55 

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.2 OBJECTIVES AND HYPOTHESES OF THIE STUDY . . . . . . . . . . . . . . . . . 27 

2.3 MATERIAL AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

2:.3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

VII 



2 .. 3.2 Diet .......................................................................... 28 

2 .. 3.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

2 .. 3.4 Blood Pressure Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

2 .. 3.5 Monitoring Stroke Development ..................................... 30 

2 .. 3.6 Assessment of Brain Ischemia, Hemorrhage 

and Blood Brain Barrier Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

2 .. 3.7 Renal Function Analysis ............................................... 34 

2.3.8 lmmunoassays for Aldosterone ...................................... 35 

2.3.9 Statistical Analysis ....................................................... 35 

2.4 R:ESUL TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

2.4.1 Blood Pressure, "Stroke" Development and Mortality . . . . . 36 

2.4.2 An Assessment of Cerebrovasculature Lesions in Dahi-SS 

Exhibiting Behavioural Signs of Stroke .. . .. .. . .. . .. .. .. .. .. . .. . .. 40 

2.4.3 An Analysis of Renal Function in Dahi-SS and Dahi-SR 

Fed High Salt .. .. .. . .. . .. .. . .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. . .. . .. .. .. . 47 

2.4.4 Plasma Aldosterone Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

2.5 CIISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

2.5.1 Development of Hypertensive Encephalopathy . . . . . . . . . . . . . . . . 52 

2.5.2 Renal Function During Hypertensive Encephalopathy........ 55 

2 .. 5.3 The Effects of AGEl's on the Development of 

Hypertensive Encephalopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

VIII 



2.6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

CHAPTER 3 

ALTERATIONS IN CEREBROVASCULAR AUTOREGULATION 

AND MYOGENIC FUNCTION IN DAHL-SS 

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

3.2 OBJECTIVES OF STUDY AND HYPOTHESES . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.3 I\IIA TERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

3.3.1 Experimental Animals, Diet and Systolic Blood Pressure . . . . 63 

3.3.2 The Measurement of CBF Autoregulation ......................... 64 

3.3.3 Pressure Myograph Studies .......................................... 66 

3.3.4 Statistical Analysis ....................................................... 68 

3.4 R~ESUL TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

3.4.1 Blood Pressure and the Behavioural Symptoms of 

HE in Dahi-SS ............................................................ 68 

3.4.2 Alterations in CBF Autoregulation in Dahi-SS . . . . . . . . . . . . . . . . . . 71 

3.4.3 Alterations in Cerebrovascular Pressure Dependent 

Constriction in Dahi-SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

3.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

3.5.1 Characteristics of Cerebral Blood Flow Autoregulation . . . . . . . 84 

3.5.2 Pressure Dependent Constriction and CBF Autoregulation . . 87 

3.5.3 Autoregulation: Dahi-SS vs SHRsp ................................. 88 

IX 



3,5.4 The Loss of Renal Blood Flow Autoregulation in 

Kidneys of Dahi-SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

3 .. 6 CONCLUSIONS ......................................................... 90 

CHAPTER 4 

CEREBIROVASCULAR ALTERATIONS IN PRESSURE AND PROTEIN 

KINASE: C MEDIATED CONSTRICTION IN DAHL-55 

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

4.2 OJECTIVES AND HYPOTHESES ........................................... 94 

4.3 MATERIALS AND METHODS ................................................ 94 

4.3.1 Experimental Animals and Monitoring of HE 

Development... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

4.3.2 Pressure Myograph Experiments .................................... 95 

4.3.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

4.4 RtESUL TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

4.4.1 Pressure Dependent Constriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

4.4.2 Pressure Dependent Constriction and PKC Activation . . . . . . . . 98 

4.4.3 Alterations in the PKC System in Relation to the 

Development of Hypertensive Encephalopathy . . . . . . . . . . . . . . . . . 98 

4.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

4.5.1 PKC Signaling Pathway and Pressure Dependent 

Constriction ................................................................ 1 03 

X 



4 .. 5.2 PKC Activation and Downstream Signaling Promoting 

PDC ........................................................................ 104 

4.6 CONCLUSIONS .................................................................. 106 

CHAPTER 5 

ALTERATIONS IN CERBROVASCULAR ENDOTHELIAL FUNCTION IN 

DAHL-SS 

5.1 INTRODUCTION .................................................................. 108 

5.2 OBJECTIVES AND HYPOTHESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

5.3 NIA TERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

5.3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

5.3.2 Pressure Myograph Studies .......................................... 111 

5.3.3 Assessment of the Effects of the Endothelium on Pressure 

Dependent Constriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

5.3.4 Role of Nitric Oxide Synthase (NOS) in 

Modulating PDC .......................................................... 112 

5.3.5 Statistical Analysis ....................................................... 112 

5.4 RlESUL TS ........................................................................... 113 

5.4.1 Pressure Dependent Constriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

5.4.2 Endothelium-Dependent Vasodilation and Arteriolar 

Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

XI 



5 .. 4.3 Modulation of PDC by the Endothelium and 

Nitric Oxide Synthase.............................................. 116 

DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

5 .. 5.1 Nitric Oxide and Hypertension 

Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 

5 .. 5.2 Endothelium Dependent Vasodilation in MCA's of Dahi-SS.. 125 

5.6 CONCLUSIONS .................................................................. 126 

5. 7 OVERALL SUMMARY .......................................................... 127 

5.8 FUTURE EXPERIMENTAL DIRECTIONS ................................ 132 

REFERI~NCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

XII 



LIST OF FIGURES 

Figure 11. 

Figure 2. 

Figure :s. 

Figure 4. 

Figure !i. 

Figure t). 

Figure ~r. 

Figure 13. 

Figure!~. 

Alterations in systolic blood pressure in Dahl rats in 

response to changes in dietary salt ................................. . 37 

Mortality in Dahi-SS rats associated with variations 

in dietary salt............................................................. 39 

Representative picture of a brain from a Dahi-SS 

with stroke... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

Evans blue extravastion in a brain from a Dahi-SS with 

hypertensive encephalopathy (HE) .................................. 45 

Alterations in brain edema levels in asymptomatic and 

post-HE Dahi-SS .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. 46 

Alterations in plasma levels of creatinine, albumin and 

BUN in asymptomatic and post-HE Dahi-SS .................... 48 

Alterations in renal function in Dahi-SS in response to 

increased dietary salt concentration................................ 49 

Plasma aldosterone levels in asymptomatic Dahi-SS and 

post-HE Dahi-SS rats in the presence or absence of captopril 

treatment...................................................... . . . . . . . . . . . 51 

An example of pressure dependent constriction 

in a middle cerebral artery (MCA) from a asymptomatic 

Dahi-SS rat................................................... . . . . . . . . . . . . 69 

XIII 



Figure 110. Blood pressure profile of Dahi-SS fed a normal 

(0.7%) or high (8.7%) salt diet...................................... 70 

Figure 111. Characteristics of Cerebral Blood Flow (CBF) 

autoregulation in Dahi-SS ... ... . .. ... ... ... ... ... ... ... ... ... ... ... .. 75 

Figure '12. Alterations in CBF autoregulation in Dahi-SS fed high salt. ... 76 

Figure '13. Profile of CBF autoregulation in asymptomatic Dahi-SS 

rats fed a high salt versus a normal salt diet..................... 77 

Figure '14. Alterations in pressure dependent constriction within the 

MCA's of Dahi-SS fed high salt for vary durations............ 80 

Figure '15. Alterations in lumen diameter of MCA's sampled from 

Dahi-SS fed high salt for varying durations....................... 81 

Figure '16. Alterations in basal tone in MCA's sampled from Dahi-SS 

Fed high salt for varying durations.................................. 83 

Figure '17. Schematic of the mechanisms promoting CBF 

autoregulation and its subsequent loss in Dahi-SS 

following HE development ............................................. 85 

Figure '18. Alterations in pressure dependent constriction in MCA's 

from Dahi-SS and Dahi-SR ............................................ 97 

Figure '19. Effect of protein kinase C (PKC) inhibition on pressure 

dependent constriction in MCA's from Dahi-SS .................. 100 

Figure :20. Differences in constriction in asymptomatic and post-HE 

Dahi-SS and Dahi-SR in response to PKC activation and 

vasopressin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

XIV 



Figure ~!1. Representative example of pressure dependent constriction 

In MCA's sampled from asymptomatic and post-HE Dahi-SS.114 

Figure ~!2. The vasoactive effects of the endothelium on pressure 

dependent constriction in MCA's sampled from Dahi-SS ...... 115 

Figure ~!3. Effect of HE development in Dahi-SS on endothelium 

-dependent vasodilation ................................................ 117 

Figure ~M. Alterations in nitric oxide activity following HE 

development in Dahi-SS ................................................ 118 

Figure ~!5. Schematic of the possible mechanisms potentially promoting 

HE development in Dahi-SS .......................................... 131 

XV 



LIST OF TABLES 

Table 1. Blood gas characteristics of asymptomatic Dahi-SS ............ 72 

Table 2. CBF autoregulation in Dahi-SS ....................................... 73 

Table 3 .. The effects of PKC activation and inhibition on 

constriction in MCA's from Dahi-SS ................................. 99 

Table 4 .. Effect of nitric oxide synthase inhibition (L-NAME) on 

the lumen diameter of MCA's sampled from Dahi-SS with 

intact and denuded endothelium..................................... 120 

Table 5 .. The effects of arginine (LID) isomers on pressure dependent 

constriction in MCA's sampled from Dahi-SS ..................... . 122 

XVI 



ABBREVIATIONS 

20-HETE 

ACE I 

ANG II 

ANOVA 

BBB 

BP 

BUN 

CBF 

cGMP 

CT 

DAG 

Dahi-SR 

Dahi-SS 

GFAP 

GLM 

HE 

IP3 

MANOVA 

MCA 

20-hydroxyeicosatetraenoic acid 

angiotensin converting enzyme inhibitor 

angiotensin II 

one-way analysis of variance 

blood brain barrier 

blood pressure 

blood urea nitrogen 

calcium 

cerebral blood flow 

3' ,5' -guanosine monophosphate 

computerized tomography 

diacylglycerol 

Dahl salt resistant 

Dahl salt sensitive 

glial fibrillary acidic protein 

general liner model 

hypertensive encephalopathy 

inositol triphosphate 

multiple analysis of variance 

middle cerebral artery 

XVII 



N (n) 

NaCI 

NO 

NOS 

PdB 

PDC 

PKC 

PLC 

RAS 

SHRsp 

TALH 

TRPc 

TTC 

VGCC 

WKY 

number 

sodium chloride 

nitric oxide 

nitric oxide synthase 

phorbol dibutyrate 

pressure dependent constriction 

protein kinase C 

phospholipase C 

renin angiotensin system 

stroke prone spontaneously hypertensive rat 

thick ascending loop of henle 

transient receptor potential channel 

2,3,5-triphenaltetrazolium chloride 

voltage gated calcium channels 

Kyoto wistar 

XVIII 



CHAPTER 1 

LITERATURE REVIEW 

1.1 ETIC>LOGY OF STROKE 

Stroke is defined as a neurological dysfunction (behavioural, motor and 

cognitive) produced by ischemia and/or hemorrhage within the brain. It is one of 

the most prevalent diseases promoting mortality and morbidity in western 

society. 

Ischemic stroke is promoted by an interruption of blood flow through the 

cerebrovasculature. Blood flow interruption can be precipitated by blockages 

(sclerotic plaques or emboli) within the cerebral vessels or carotid arteries or as a 

result of an interruption in blood flow to the brain promoted by decreases in 

cardiac output (Caplan, 2000). The extent of brain damage that occurs is 

dependemt on the length of time that blood flow is compromised. Neurological 

deficits will vary depending on location of ischemia. 

Hemorrhagic stroke can be subdivided into intracerebral (bleeding directly 

into the brain) or subarachnoid (bleeding along the surface of the brain within the 

subarachnoid space). The time course is different for each subtype of 

hemorrhage. Subarachnoid hemorrhage develops quickly. Blood released from 

aneurysms of surface arteries fills the subarachnoid space around the brain. This 

raises intracranial pressure and promotes regional ischemia due to vascular 

compression and cerebrovascular constriction (Davis and Robertson, 1991). The 

compression of cranial nerves can also result in a disruption of normal neural 



2 

pathway activity (Caplan, 2000). Typically, intracerebral hemorrhage develops 

more gradually in comparison to subarachnoid hemorrhage. Extravasation of 

blood from intracerebral arterioles and capillaries creates a situation where blood 

accumullates within the extravascular space of the brain (Caplan, 2000). In 

addition to blood, other substances (i.e. glutamate, serotonin, fatty acids, 

lysosomal enzymes and free radicals) that leak into the parenchyma from the 

lesion alter vascular integrity and reactivity (Davis and Robertson, 1991 ). The 

resultant effects may include changes in endothelial integrity, cell morphology 

and cell energy metabolism (Baethmann eta/., 1980) as well as the production of 

cerebral vasospasm (Sobey & Faraci, 1998; Sobey, 2001). There are certain 

situations, such as during cocaine use, where intracerebral hemorrhage can 

occur rapidly (Conway & Tamargo, 2001 ). 

In addition to the occurrence of ischemic and hemorrhagic stroke, 

hypertension is associated with other forms of cerebral pathology such as 

hypertensive encephalopathy (HE). HE is often produced by a sudden rise in 

blood pressure that promotes widespread edema formation and the loss of 

cerebral blood flow autoregulation (CBF) (Dinsdale, 1982). The loss of CBF 

autoregulation promotes overperfusion of the vasculature straining the integrity of 

the blood brain barrier and resulting in increased movement of fluid (edema) and 

possibly blood into the extravascular space (Skinhoj & Strandgaard, 1973; 

Strandgaard eta/., 1974). Brain edema produces a rise in intracranial pressure 

causing neurological abnormalities to develop (Byrom, 1969). 
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1.2 ROLE OF HYPERTENSION IN STROKE DEVELOPMENT 

There is a strong correlation between the rise in blood pressure and the 

incidence of ischemic and hemorrhagic stroke. Hypertension has been 

suggest~ed to be the single most prevalent modifiable risk factor associated with 

stroke development (Strandgaard, 1996). Consistent with this, antihypertensive 

treatments significantly attenuate the onset of stroke development (Collins et a/., 

1990; MacMahon, 1990). 

1.2.1 HE!morrhagic Stroke and Hypertension 

Hemorrhagic stroke represents 10-15% of all stroke cases (Thrift et a/., 

1995). !Intracerebral hemorrhage is the most common form of hemorrhagic 

stroke. The occurrence of hypertension is more closely related to hemorrhagic 

than ischemic stroke and antihypertensive treatments reduce the risk of this type 

of strokE~ development. (Gebel & Broderick, 2000). The likelihood of intracerebral 

hemorrhagic stroke development is 2 to 6 times greater in hypertensive 

individuals versus normotensive individuals (Okada eta/., 1976; Lin eta/., 1984; 

Kagan eta/., 1985; Brott eta/., 1986). 

Although human epidemiological studies have confirmed that hypertension 

is a key risk factor promoting the development of hemorrhagic stroke, eight 

percent of stroke due to intracerebral hemorrhage occurs without elevated blood 

pressure. Eight percent of intracerebral hemorrhage occurs in individuals with 

normal pressure (del Zoppo & Mori, 1992). Patients show an increase in the 
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vulnerability to develop hemorrhagic stroke during anticoagulant treatment. There 

are also congenital and acquired factor deficiencies (thrombocytopenia and 

thrombocytopathic) that increase the likelihood of developing cerebral 

hemorrhage (Hart eta/., 1995). Arteriovenous malformations (enlarged vessels), 

cavernous angiomas (fibrous deposits in vessel walls) and cerebral tumors 

increase~ the risk cerebral hemorrhage (Gebel & Broderick, 2000). 

1.3 ANIMAL MODELS OF STROKE 

A.lthough the link between hypertension and stroke development is 

apparent in humans there are few animal models that develop stroke 

spontaneously during hypertension. Early studies evaluating stroke development 

tried to mimic stroke, either by occluding blood vessels projecting into the brain 

(Bederson et a/., 1986; Grabowski et a/., 1988) or by injecting blood into the brain 

ventricles (Batton & Nardis, 1987). The emphasis of these studies was on the 

observation of the secondary changes in cerebral pathology associated with 

these interventions rather than the underlying mechanisms promoting stroke 

development. Stroke has been inconsistently noted in Goldblatt renal forms of 

hypertension (Byrom, 1969). Predictable and consistent stroke development has 

been de~scribed in Kyoto Wistar stroke prone spontaneously hypertensive rats 

(SHRsp) (Smeda, 1989, 1992) and Dahl salt sensitive rats (Dahi-SS) (von 

Lutterott:i eta/., 1992; Lin eta/., 1999; Zhang eta/., 1999). 
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1.4 DE:VELOPMENT OF THE KYOTO WISTAR STROKE PRONE 

SPONTANEOUSLY HYPERTENSIVE RAT 

Predicable, spontaneous stroke development occurs in SHRsp (Yamori et 

a/., 1984). Okamoto and Aoki (1963) selectively inbred Kyoto Wistar 

normotensive (WKY) rats that exhibited above average (> 150 mmHg) blood 

pressure~s. The selective inbreeding of these rats produced offspring in which 

high systolic BP (>180 mmHg) was observed by 13 weeks of age (normal 

systolic BP in a rat is <150 mmHg). This strain of rat was named the Kyoto 

Wistar spontaneously hypertensive rat (SHR). SHR developed a low incidence of 

stroke however by selective inbreeding of the offspring of the few SHR that 

exhibited stroke another substrain of SHR defined as the SHRsp was developed 

(Okamoto, 1974). Unlike SHR, which had systolic blood pressures of about 180 

mmHg, SHRsp developed more robust hypertension (240 mmHg) and when they 

were fed an appropriate diet, a 100% incidence of stroke occurred prior to death 

(Yamori eta/., 1984). 

1.4.1 Role of Diet in the Stroke Development of SHRsp 

Diet was shown to play a crucial role in promoting stroke development in 

SHRsp. SHRsp fed the regular rat chow (Nihon Clea or Purina rat chow), lived 

between 31 and 41 weeks and developed a low incidence of stroke 

(30%)(0kamoto eta/., 1974; Yamori eta/., 1984). However, when the regular diet 

was substituted with a Japanese, Funahashi-sp diet, the incidence of stroke 
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increase~d to 80% (Yamori eta/., 1984). The only observable difference between 

the two diets was a lower protein content (18% compared to 22% in Purina Rat 

Chow). Wexler (1983) suggested that the origin of the protein within the diet 

(fish-Funahasi versus plant-Purina) had an important impact on stroke 

development in SHRsp. Subsequently, a North American-Japanese style diet (a 

reproduction of the Funahasi-sp diet; produced by Ziegler Brothers) was 

develop1ed and supplemented with 4% NaCI (Smeda, 1989). The latter diet 

produced a 100% incidence of hemorrhagic stroke in SHRsp by 16 weeks of age 

(Smeda, 1989). 

1.4.2 BE~havioural Symptoms of Stroke Development in SHRsp 

The characteristics of stroke development in SHRsp fed a Japanese style 

diet containing 4% NaCI have been previously outlined in detail (Smeda, 1989, 

1992). The onset of stroke development consisted of repetitive convulsive 

movements of the upper extremities (noticeably forelimbs and head). 

Subsequently, the animals underwent periods of immobility and marked lethargy 

coupled with cessation of grooming. The animals adopted a posture, described 

as "kan!~aroo like", in which they remained motionless with their legs extended 

under their bodies and died on average 1.5 weeks after the first behavioural 

signs of stroke. 
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1.4.3 ce,rebral Pathology and Hemorrhagic Stroke in SHRsp 

Okamoto eta/. (1974) demonstrated the presence of fibrinoid necrosis and 

hyaline deposits in the cerebral vessel walls in SHRsp with stroke and observed 

brain hemorrhages and edema. An analysis of the pathological changes in the 

brains of SHRsp with stroke was conducted by Ogata eta/. (1981). In this study 

the brains of 5 SHRsp were serially sectioned for histological analysis. The 

affected vessels in the parenchyma were thickened due to fibrinoid deposits and 

most vessels showed stenosis or thrombotic occlusion. Vessels of the 

subarachnoid layer displayed proliferation of the arterial layer. Tissue injury 

included cyst formation in the white matter and rarefaction of the neuropil (Ogata 

et a/., 11980). In a more complete microscopic examination 38 brains of old 

SHRsp (>30 weeks of age displaying neurological symptoms consistent with 

stroke development) showed that 31 exhibited cerebral lesions. Rarefaction of 

the neuropil and preservation of the neocortical neurons and adjacent white 

matter were observed in 29 brains. There was massive intracerebral 

hemorrhage of 3 brains and observations of old hemorrhages filled with 

macrophages in 13 brains (Ogata et a/., 1982). In more recent studies, 

intracerE~bral hemorrhages have been detected on one or both of the 

hemispheres of the cerebrum in SHRsp fed a Japanese-style diet supplemented 

with 4% NaCI in which behavioural symptoms of stroke were observed (Smeda, 

1989). Hemorrhages did not develop in the cerebellum, or the pons and medulla 
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regions of the brain. In addition, microhemorrhages were observed around the 

eyes of 1rats (Smeda, 1989). 

1.4.4 Alterations in the Renin-Angiotensin System and Stroke Development 

in SHR!:ip 

Recent studies evaluating stroke development in SHRsp have speculated 

that hyperactivity of the renin angiotensin system (RAS) may play a role in 

promoting the onset of stroke (Stier et a/., 1989; Stier et a/., 1991; Stier et a/., 

1993; Macleod eta/., 1997; Smeda eta/., 1999b). 

1.4.4.1 Overview of the Renin Angiotensin System 

The renin angiotensin system (RAS) regulates sodium and water balance, 

blood volume and arterial pressure within the body (Guyton, 1992). The main 

promoter in this cascade is renin, which is released into the circulation by the 

kidney and catalyzes the conversion of the poly-peptide angiotensinogen to 

angiotensin I (ANG 1). AI is then converted to angiotensin II (ANG II) via the 

angiotensin converting enzyme (ACE) (Guyton, 1992). 

R:enin is released from preglomerular arterioles, in response to changes in 

NaCI concentration and urine flow through the distal renal tubules and is 

controlled by the juxtaglomerular apparatus (comprised of the section of distal 

tubule that passes between the efferent and afferent arterioles of the 

glomerulus). Reductions in the urine concentration of NaCI and/or low urine flow 
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are detected by the macula densa, which stimulates the release of renin from the 

afferent arterioles. In addition, the stimulation of p-adrenergic receptors located 

on renal arterioles can also increase the release of renin (Reid et a/., 1978). 

There are also non-juxtaglomerular mechanisms stimulating the release of renin. 

In hydronephrotic kidneys (lack functional macula densa), lowering renal 

perfusion pressure still produces renin secretion (Scholz et a/., 1993) suggesting 

that barostatic control independent of the macula den sa exists. 

1.4.4.2 The Renin Angiotensin System, Angiotensin II and Hypertension 

Development 

There are two main ANG II receptor subtypes (AT1 and AT2), which are 

stimulatt3d by ANG II (Stroth & Unger, 1999). Most of the classic effects of blood 

pressurH and hypertension are mediated through the AT1 receptor and can be 

blocked by AT1 receptor antagonists such as losartan (Timmermans, 1999). The 

function of AT2 receptor activation is less clear but studies have indicated that 

AT2 recE3ptors may be involved in modifying proliferation in rat carotid arteries 

(Nakajima eta/., 1995) and apoptosis in cultured cells (Yamada eta/., 1996). 

ANG II has a profound impact on blood pressure. The stimulation of AT1 

receptors located on presynaptic sympathetic nerve terminals promotes the 

release of norepinephrine (NE) (Hughes & Roth, 1971 ). The release of NE acts 

on smooth muscle a1 and a2 receptors to produce vasoconstriction, thus 

Increasing vascular resistance to blood flow and blood pressure. Stimulation of 
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AT1 receptors in the adrenal gland by ANG II stimulates the release of 

aldosterone (Reid eta/., 1978; Weir & Dzau, 1999). Aldosterone is an antidiuretic 

hormone that facilitates the uptake of sodium and water from the urine into the 

blood. Sodium and water retention could lead to an increase in blood volume and 

cardiac output, which has the potential to raise blood pressure (Weir & Dzau, 

1999). 

A.NG II can also promote the maintenance of hypertension development 

by inducing structural alterations in the arteriolar vasculature (Hajdu eta/., 1991 b; 

Chillon c~ Baumbach, 1999). ANG II has been shown to increase smooth muscle 

cell division (Baumbach & Heistad, 1989). This could lead to the development of 

vascular hypertrophy (through increased vascular smooth cell multiplication and 

individual cell growth). An increase in wall thickness facilitates the maintenance 

of hypertension by increasing vascular contractile reactivity and vascular 

resistance to flow. Evidence supporting this was demonstrated in SHR. 

Treatment with angiotensin converting enzyme inhibitors or the AT1 receptor 

antagonist losartan normalized blood pressure and promoted a thinning of the 

cerebral vascular wall (Hajdu eta/., 1991b; Chillon & Baumbach, 1999). Other 

antihype~rtensive agents such as hydralazine can also normalize blood pressure 

in SHR but such treatment has no effect on vascular wall thickness (Hajdu et a/., 

1991a). 
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1.4.4.3 .Alterations in Renin Angiotensin System in SHRsp in Relation to 

Stroke !Development in SHRsp 

Plasma renin levels are increased with age in SHRsp (Volpe eta/., 1990; 

Camargo eta/., 1991; Gahnem eta/., 1994) and are higher in comparison to 

Kyoto VVistar normotensive control rats (Stier et a/., 1991; Kim et a/., 1992; 

Hubner et a/., 1995). Normally an increase in dietary salt would reduce the 

secretion of renin (Stier et a/., 1993). However, in SHRsp this produces a 

paradoxical situation where plasma renin levels are increased (Stier eta/., 1991 ). 

Substantial research has been conducted on SHRsp demonstrating that 

angiotensin converting enzyme inhibitors (ACEis which inhibit the conversion of 

ANG I to ANG II) retard the onset of stroke development. This often occurs in the 

absence of an antihypertensive effect (Stier et a/., 1989; Stier et a/., 1991 ; Stier 

et a/.,.1993; Macleod eta/., 1997). 

Steir et a/. (1989) studied SHRsp fed a stroke-prone diet supplemented 

with 1% NaCI in the drinking water. Enalapril treatment (15 mg/kg/day, in the 

drinking water) at 8 to 9 weeks of age produced a small hypotensive effect and 

retarded the onset of stroke-associated mortality from about 14 to 36 weeks of 

age. Captopril treatment (50mg/kg/day) produced a similar effect (Stier et a/., 

1991 ). A small reduction in blood pressure was observed between 9 and 11 

weeks of age and no stroke-associated mortality was observed up to 26 weeks of 

age. In other studies, the AT1 receptor antagonist losartan (1 0 mg/kg/day) 

produced similar effects to those observed with ACE I treatment (Stier et a/., 
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1993). No observable signs of stroke were observed up to 28 weeks of age 

whereas a 100% mortality was observed in untreated SHRsp by 14 weeks of 

age. 

The effects of ACEis or losartan can not be explained by the modest 

antihype!rtensive effects of the drugs. Stier eta/. (1989) found that the blockade 

of thrornboxane A2 synthesis by dazmegrel in SHRsp fed high salt produced 

similar antihypertensive effects to those observed during enalapril and captopril 

treatment. However, the onset of stroke was not altered. This suggested that 

blockade of RAS with ACEis or losartan in SHRsp retarded the onset of stroke 

development in a manner independent of any antihypertensive effect. In this 

regard, it was suggested that ANG II increased vascular damage in the 

cerebrovasculature by increasing neutrophil chemoattraction to the vascular 

endothelium and enhancing cerebrovascular fibrinoid necrosis, thus altering 

vasc~lar permeability (Stier eta/., 1989; Stier eta/., 1991). These alterations 

were su!ggested to facilitate the development of stroke in SHRsp fed high salt. 

R:ecent studies evaluated the anti-stroke effects of aldosterone 

suppression on stroke development in SHRsp fed a high salt diet (Japanese-

style diet supplemented with 4% NaCI). ACE inhibition with captopril 

(50mg/kg/day) reduced plasma aldosterone levels and delayed the onset of 

stroke (Macleod et a/., 1997). It was observed that the administration of 
' 

aldosterone (via osmotic mini pumps) into captopril treated rats negated the anti-

stroke effects of captopril allowing stroke development to occur (Macleod eta/., 
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1997). Administration of the mineralocorticoid deoxycorticosterone (instead of 

aldosterone) in captopril treated rat's mimiced the effects of aldosterone whereas 

treatment with the glucocorticoid dexamethasone did not. This suggested the 

anti-stroke effects produced by captopril may have occurred in the absence of 

any direct effect of ANG II and that the suppression of plasma aldosterone during 

captopril treatment was important in delaying the onset of stroke development in 

these rats. 

1.5 DEVELOPMENT OF THE DAHL SALT SENSITIVE RAT (Dahl-55) MODEL 

OF HYPERTENSION 

Dahi-SS were developed by Lewis Dahl through the selective inbreeding 

of Sprague-Dawley rats (Dahl et a/., 1962). Two substrains of rats were 

generated, a salt sensitive strain (Dahi-SS) that developed hypertension in 

response to a high salt-diet (8% NaCI) and a salt resistant strain (Dahi-SR) that 

remained normotensive when fed high salt. Blood pressure rapidly rises in the 

Dahi-SS fed high salt (8% NaCI from weaning) and hypertension (systolic BP of 

170mmHg) was observed within 2 weeks (Simchon eta/., 1991). After 4 weeks 

Dahi-SS fed 8% NaCI initially develop hypertension due to an expanded blood 

volume, which increased cardiac output with no change in peripheral resistance 

(Simchon et a/., 1989). However, by 8 weeks cardiac output normalized and 

peripheral resistance increased (Simchon et a/., 1991 ). The renal vasculature of 

high salt fed Dahi-SS also exhibited impaired vasodilation in response to atrial 
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natriuretic peptide and sodium nitroprusside (Simchon et a/., 1996). It was 

suggested that hypertension development in Dahi-SS (fed high salt) initially 

involved an elevation in cardiac output secondary to an increase in blood volume 

associated with an increase in renal vascular resistance to blood flow (perhaps 

as a result of an inability of the renal vasculature to vasodilate). This was 

followed by an increase in total peripheral resistance to flow leading to the 

maintenance of hypertension. (Simchon eta/., 1989; Simchon eta/., 1991 ). 

1.5.1 The Role of Altered Renal Function in the Development of 

Hyperte1nsion in Dahl-55 

The kidney plays a key role in hypertension development within Dahi-SS. 

Renal transplant studies have demonstrated that transplanting kidneys from 

Dahi-SS into Dahi-SR allows the latter rats to develop hypertension when they 

are fed high salt whereas a reverse renal transplant attenuates hypertension 

development in Dahi-SS (Dahl & Heine, 1975). 

1.5.2 Renal Pathology Associated with Hypertension Development in Dahl-55 

Hypertension development in Dahi-SS is associated with profound 

morphological alterations in the kidney. Characteristically, the kidneys of Dahi-SS 

exhibit a progressive thickening of the intrarenal vessels and arteriolar fibrinoid 

necrosis (Karlsen et a/., 1997). Although some glomeruli appear normal, focal 

changes in glomerular morphology (crescent shape) produced by glomerular 
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sclerosis and necrosis and widespread renal degeneration were observed. There 

was marked tubular atrophy and interstitial inflammation (Karlsen et a/., 1997) as 

well as a thickening of the glomerular basement membrane, and a broadening of 

the podocyte pedicles (Sterzel eta/., 1988). Dahi-SS fed high salt also exhibited 

an accumulation of fibrinoid material in the intima of renal arteries, proteinaceous 

tubular casts and atrophy of the cortical tubules and glomeruli (Rapp & Dene, 

1985). The above alterations were first observed in Dahi-SS 2 weeks after high 

salt feeding (Rapp & Dene, 1985). 

1.5.3 Status of the Renin Angiotensin System in Dahl-55 

Dahi-SS fed 8% NaCI for 4 weeks exhibited suppressed plasma renin levels. 

Subsequently, renin levels increased to above baseline levels after 8 weeks of high 

salt feeding (von Lutterotti eta/., 1992). The rise in renin activity was correlated with 

the appearance of renovascular lesions. Renin secretion increased as renal 

function decreased. 

Other studies have shown that the infusion of ANG II (10 or 50 ng/kg/min) 

into Dahi-SS fed high salt (4% NaCI) promotes proteinuria, glomerular lesions 

and a reduction in the glomerular filtration rate (Hirawa et a/., 1995). These 

.. effects were attenuated by ANG II receptor blockade (Hirawa eta/., 1995). It was 

suggested that the renal vasculature of Dahi-SS was more sensitive to ANG II 

than that of Dahi-SR and this difference in sensitivity predisposed the renal 

vasculature to develop lesions in response to a high salt diet (Hirawa et a/., 
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1997). Losartan (an AT1 receptor antagonist), has been shown to reduce the 

incidence of stroke development in Dahi-SS fed high salt (von Lutterotti et a/., 

1992). 

1.6 STROKE DEVELOMENT in DAHL-55 RATS 

Studies have described "stroke" associated mortality in Dahi-SS fed high 

salt (Tobian eta/., 1984; Tobian eta/., 1985; Werber eta/., 1985; von Lutterotti et 

a/., 1992; Lin eta/., 1999; Zhang eta/., 1999). 

Tobian et a/ (1985) studied Dahi-SS fed a Japanese-style diet 

supplemented with 4% NaCI between the ages of 3 to 5 weeks and 8% NaCI 

thereaftter. After 9 weeks of salt feeding Dahi-SS exhibited a 55% mortality 

associated with presence of cerebral hemorrhage or infarcts. 

Vl/erber et al. (1985) observed the presence of both hemorrhagic and 

ischemic lesions in Dahi-SS fed a high salt Japanese or American (Purina) style 

diet. Hemorrhagic lesions were described as consisting of blood filled 

intracerebral spaces. Ischemic lesions were classified on the basis on neuronal 

degeneration, the presence of neutrophils, macrophages, and tissue loss is the 

.absence~ of hemorrhage (Werber eta/., 1985). Kidney damage (nephrosclerosis), 

lung ed1ema and cardiac hypertrophy were also present (Werber et a/., 1985). 

The incidence of stroke development was higher in Dahi-SS fed a Japanese 

(83%) versus an American (57%) style diet despite the fact that the latter diet 
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contained a slightly higher Na+ content (1.23 vs 1.18 mEq/g) (Werber et a/., 

1985). 

Von Lutterotti et a/ (1992) found that when Dahi-SS were fed 8% NaCI 

from 5 to 6 weeks of age they developed behavioural abnormalities consistent 

with 'stroke development. Ischemic and hemorrhagic cerebrovascular lesions 

were dE~tected 6 weeks after the initiation of a high salt diet and an 82% 

incidence of lesions was observed in rats fed high salt for 10 weeks. 

Hemorrhages occurred in 21% of the brains and ischemic infarcts occurred in all 

brains (von Lutterotti et a/., 1992). Animals often exhibited multiple cerebral 

lesions. Ninety four % of the rats had lesions in the occipital cortex, 68% had 

lesions in the corpus callosum, 18% in the hippocampus and 25% developed 

lesions in the brainstem (von Lutterotti eta/., 1992). 

Other studies observed that Dahi-SS fed 4% NaCI from 4 weeks of age 

develop behavioral abnormalities consistent with stroke (such as, convulsive 

repetitive forearm movements, marked lethargy and semiplegia) after 5.5 weeks 

of high salt feeding (Lin eta/., 1999; Zhang eta/., 1999). There was no fixed time 

frame of death after the onset of stroke (Lin eta/., 1999; Zhang eta/., 1999). Both 

hemorrhagic (confirmed by the gross evaluation of thick coronal sections) and 

~ischemic (confirmed by the histological use of 2,3,5 triphenyltetrazolium chloride) 

stroke was verified in these rats (Lin eta/., 1999; Zhang eta/., 1999). 

The age at which a high salt diet is initiated strongly influences the onset 

of mortality in Dahi-SS (Pfeffer et a/., 1984). In this regard, it is not unusual to 
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observe no mortality in animals until after 16 weeks of age when the rats are fed 

an 8% NaCI diet from six weeks (Qu et a/., 2000) and a 55% mortality associated 

with stroke by 12 weeks of age when the rats are fed high salt from 3 to 5 weeks 

of age (Tobian eta/., 1985). 

1.7 A SUMMARY OF THE RATIONALE AND THE INITIAL OBJECTIVES OF 

THE CURRENT STUDY 

The focus of research within our laboratory is to gain an understanding of 

the mechanisms involved in producing stroke during hypertension and to develop 

treatment interventions that can either delay the onset of stroke or prevent death 

and disability after stroke has developed. The limited availability of animal 

models that develop stroke without chemical or surgical intervention has been a 

key challlenge in achieving the above goals. 

As noted in the preceding review of the literature, very few animal models 

develop stroke in a spontaneous manner during hypertension. Stroke 

development has been noted in Goldblatt (one and two kidney) forms of renal 

hypertension in rats (Byrom, 1 969). However, in these models the occurrence of 

stroke is not predictable. It does not occur in all renal hypertensive rats and when 

it does occur, the onset of stroke does not follow a consistent chronological 

pattern after hypertension development (Byrom, 1 969). It is therefore difficult to 

assess the physiological alterations preceding and potentially promoting stroke 

development using Goldblatt renal hypertensive rats. 
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SHRsp were the first animal model of hypertension that developed stroke 

in a predictable manner (Yamori eta/., 1984). When SHRsp were fed a Japanese 

style die~t containing 4% NaCI, hemorrhagic stroke developed at about 12 weeks 

of age and a 1 00% mortality associated with stroke occurred by 16 weeks of age 

(Smeda, 1989). Studies of these animals produced unique insights as to the 

mechanisms that might be involved in promoting hemorrhagic stroke. Initially, 

researchers believed that hemorrhagic stroke development in SHRsp was a 

simple consequence resulting from the presence of a very high blood pressure. 

This view was challenged by studies that indicated that the treatment of SHRsp 

with : ACEis at doses that did not alter blood pressure delayed stroke 

development in SHRsp to an extent where the rats survived to a near normal life 

span (Stier et a/., 1989; Stier et a/., 1991; Macleod et a/., 1997). It was 

·demonstrated that ACEis such as captopril suppressed the elevated plasma 

aldosterone levels observed in these animals and that the beneficial effects of 

captoprill could be negated if during treatment, aldosterone levels were allowed to 

increase. These studies indicated that hemorrhagic stroke development in 

SHRsp Gould be retarded and re-established by modifying the aldosterone arm of 

the renin-angiotensin-aldosterone system under conditions where the level of 

hypertension remained unaltered in SHRsp (Stier eta/., 1989; Stier et a/., 1991; 

Macleod et a/., 1997). Other studies observed that CBF autoregulation became 

defective in SHRsp prior to stroke development and that this alteration was 

associated with defects in the ability of cerebral arteries to constrict in response 
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to pressure (a mechanism thought to promote CBF autoregulation) (Smeda, 

1992). It was hypothesized that hemorrhagic stroke may be produced in SHRsp 

by a bn3akdown in the ability of cerebral blood vessels to regulate CBF under 

hypertensive conditions (Smeda et a/., 1999b). Under the latter conditions an 

elevation in blood pressure could lead to cerebral overperfusion which might 

promote vessel rupture and cerebral hemorrhage. It was further suggested that 

the development of renal dysfunction in SHRsp during hypertension (producing a 

reduction in glomerular filtration) could potentiate stroke development by causing 

the activation of the renin-angiotensin-aldosterone system and by the induction of 

bleedin~l tendencies secondary to uremia (Smeda, 1992, 1997). The observation 

that hemorrhagic stroke and defects in cerebrovascular pressure dependent 

constriction could be induced to occur in stroke resistant SHR by renal 

-manipulations that produced uremia (Smeda, 1992) and the further observation 

that ACEI treatment promoted a protective effect against renal dysfunction led to 

the speculation that alterations in renal function may be responsible for the loss 

of CBF autoregulation in SHRsp (Macleod eta/., 1997). 

A key question raised in relation to the studies involving SHRsp was 

whether the mechanisms hypothesized to be involved in promoting hemorrhagic 

stroke development in SHRsp were widely applicable to hemorrhagic stroke 

development in humans and other animal models. In this regard, an argument 

could be presented that SHRsp represent a highly inbred, genetically distinct 

model of hypertension and that the hormonal and cerebrovascular changes 
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associated with hemorrhagic stroke are unique to this model and not applicable 

to hemorrhagic stroke in other animals or in humans. Therefore the initial 

incentive in carrying out the current study was to assess the mechanisms 

involved! in promoting spontaneous hemorrhagic stroke in another animal with the 

general objective to assess whether some of these mechanisms were common 

to those observed in SHRsp. 

Aside from SHRsp only Dahi-SS have been noted to develop a high 

incidence of spontaneous stroke during hypertension (Tobian eta/., 1984; Tobian 

eta/., 1985; Werber et a/., 1985; von Lutterotti eta/., 1992; Lin et a/., 1999; 

Zhang e~t a/., 1999). 

The majority of studies involving Dahi-SS have assessed the mechanisms 

involved in promoting hypertension development in this model. The latter studies 

provide little insight on the specific mechanisms leading to stroke development. 

The incidence and onset of stroke development reported in Dahi-SS also varies .. 
between studies (Tobian eta/., 1984; Tobian eta/., 1985; Werber eta/., 1985; 

von Lutterotti eta/., 1992; Lin eta/., 1999; Zhang eta/., 1999). 

In our view, such variations could be due to the type of diet being fed to 

the rats (a Japanese style diet versus Purina rat chow), the level of salt in the diet 

(i.e. 4% versus 8% NaCI) and the time after weaning when a high salt diet is fed 

' 
to the rats (i.e. 3, 4, 5 or 6+ weeks of age). In addition, the type of stroke that 

develops (ischemic versus hemorrhagic) and the brain areas where stroke 

develops are poorly defined. Studies have reported evidence of stroke based on 
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the presence of neurological dysfunction thought to be consistent with stroke (i.e. 

seizures and convulsions) without a demonstration of the presence and types of 

cerebrovascular lesions present (Zhang et a!., 1999). In other studies the 

presence of cerebral infarcts and hemorrhages has been noted without a clear 

description of the location of these lesions (Lin et a/., 1999; Zhang et a/., 1999). 

Based on the current literature it is unclear as to whether Dahi-SS develop 

ischemic brain lesions in the absence of cerebral hemorrhage. Although cerebral 

hemorrhage is the predominant lesion observed in Dahi-SS with stroke, cerebral 

infarcts lacking the presence of hemorrhage have been noted (Tobian et a/., 

1984; Tobian et a/., 1985). Such observations have lead to the speculation that 

occlusive forms of cerebrovascular disease that produce ischemia might also be 

present in Dahi-SS. 

A. clear description of the type of stroke development (ischemic versus 

hemorrhagic) in the brain is important in assessing the mechanisms of stroke 

development in Dahi-SS. Distinctly different mechanisms are involved in 

promoting brain ischemia (occlusive arterial disease/thromboembolism) versus 

cerebral hemorrhage (over perfusion and vascular rupture). Hence the design of 

the subsequent experiments would be dictated by the type of stroke development 

and the cerebral location of stroke would focus the area of study to specific 

cerebrovascular arterial beds. 

Initial objectives of the experiments in the current study were to determine 

if Dahi-SS fed a high salt diet developed stroke spontaneously in a predictable 
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manner when fed high salt and to characterize the type of stroke development 

and the location of cerebrovascular lesions. In an attempt to attain the highest 

degree of consistency and predictability in stroke development we bred our own 

Dahi-SS rats and used only male animals in the study. In addition we created our 

own . die~t by reconstituting a readily available Purina rat chow formula with 

accuratE~ concentrations of NaCI. By breeding our own Dahi-SS we could assure 

genetic uniformity in our rats as well as accurate aging and high salt delivery at 

exactly 5 weeks of age. We believed that by using this experimental design we 

could overcome the variations in the incidence and perhaps even the nature of 

stroke observed in previous studies involving Dahi-SS rats. The working 

hypothesis at the initiation of the study was that when Dahl- SS rats were fed an 

appropri1ate level of salt they would develop hemorrhagic stroke in a predictable 

. man~er. We further believed that hemorrhagic stroke would occur at a time when 

renal damage secondary to hypertension would create a high renin-high 

aldosterone milieu in the rats and that onset stroke development in the rats would 

be retarded by ACEI treatment in a manner not dependent on the suppression of 

blood pressure. At the initiation of the study we felt that the probability of ACEI 

treatment achieving the latter goals was high due to previous observations that 

indicated that hemorrhagic stroke development was retarded in Dahi-SS by 

losar:tan (AT -1 receptor antagonist) treatment (von Lutterotti eta/., 1992). 

Subsequent experiments were planned to assess the alterations in CBF 

autoregulation in the regions where stroke developed and to further assess 
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cerebrovascular pressure dependent constriction in the vascular beds perfusing 

these regions. Studies were designed to test the hypothesis that a loss of CBF 

autoregulation and cerebrovascular pressure dependent constriction preceded 

blood brain barrier disruptions in cerebral regions involved in stroke 

development. 

The activation of protein kinase C has been shown to be involved in the 

signal transduction mechanisms promoting cerebrovascular PDC (Osol et a/., 

1991; Karibe et a/., 1997; Kirton & Loutzenhiser, 1998; Smeda et a/., 1999a). If 

defects in cerebrovascular pressure dependent constriction were observed in 

Dahi-SS, further experiments were planned to assess the hypothesis that a loss 

in cerebrovascular PDC was associated with defects in the ability of PKC to elicit 

cerebrovascular constriction. 

Many studies involving Dahi-SS have shown that both the basal and 

antgonist induced vasodilation mediated by nitric oxide released from the 

endothelium is altered in vascular beds (Chen & Sanders, 1993). Currently there 

are no studies assessing this function in the cerebrovasculature of Dahi-SS. 

Studies have shown that the basal release of nitric oxide from the endothelium 

and non endothelial sources of nitric oxide synthase modulates cerebrovascular 

PDC. Specifically, the basal release of NO within cerebral vessels governs basal 

:tone and modifies the operating range of cerebrovascular PDC. Endothelial 

removal or the inhibition of NO synthase causes PDC to occur at more 

constricted lumen diameters (Smeda, 1993). In view of this, studies were 
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undertalken to assess endothelial and NO vasodilatory function in the 

cerebrovasculature of Dahi-SS. The initial aim of these studies was to test the 

hypothesis that altered NO function in relation to stroke development in Dahi-SS 

potentially altered basal tone and cerebrovascular PDC in a manner that might 

be expected to modify CBF autoregulation. 

The results and conclusions of the above studies have been organized in 

sequential chapters titled "The characterization of stroke development in Dahi

SS", "Alterations in cerebrovascular autoregulation and myogenic function in 

Dahi-SS", "Cerebrovascular alterations in pressure and protein kinase C 

mediated constriction in Dahi-SS" and "Alterations in cerebrovascular endothelial 

function in Dahi-SS. 



CHAPTER 2 

THE CHACTERIZATION OF "STROKE" DEVELOPMENT IN DAHL-55 

2.1 INTRODUCTION 
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There is a strong correlation between hypertension and stroke 

development in humans (Collins et a/., 1990; MacMahon, 1990; Strandgaard, 

1996). No studies have evaluated the cerebrovascular alterations in Dahi-SS 

that precede the onset of stroke development. Previous studies involving SHRsp 

have demonstrated the first observations of behavioural signs of stroke at 12 

weeks of age (Smeda, 1989, 1992). The type of stroke in this model was 

hemorrhagic in origin. Although the mechanisms underlying stroke development 

in SHRsp remain unclear, alterations in renal function and the RAS likely play a 

role in initiating cerebral hemorrhage. Extensive research has demonstrated that 

followin~J the administration of a high salt diet, both ACEis and the ANG II 

receptor antagonist losartan, delay or prevent the onset of stroke development in 

SHRsp (Stier eta/., 1989; Camargo eta/., 1991; Kim eta/., 1992; Camargo eta/., 

1993; Le~e & Severson, 1994; Macleod eta/., 1997). This occurs in the absence 

of an antihypertensive effect during treatments (Stier eta/., 1989; Camargo eta!., 

1991; Camargo eta/., 1993; Lee eta/., 1994; Macleod eta/., 1997). Plasma 

.. renin activity is elevated in SHRsp fed high salt (Volpe et a/., 1990; Camargo et 

a/., 199'1; Gahnem eta/., 1994; Macleod eta/., 1997). This is unique since a 

high salt: diet typically lowers plasma renin activity in SHR (Shibata eta/., 1979). 

The mechanisms underlying the anti-stroke effect produced by ACEis or losartan 
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remain unclear but experiments by Macleod et a/. (1997) have suggested a 

potential role for aldosterone in the cascade of events leading to stroke. 

Elevations in plasma renin activity promote an increase in plasma ANG II levels, 

which stimulates the release of aldosterone from the adrenal gland (Gupta et a/., 

1995). Plasma aldosterone levels are elevated in SHRsp after the establishment 

of hypertension and are further increased in poststroke versus prestroke SHRsp 

(Kim eta/., 1992; Macleod eta/., 1997). ACEI inhibitor treatment with captopril 

suppresses plasma aldosterone levels and re-elevation of plasma aldosterone 

(via osmotic pumps) during treatment negates the antistroke effects produced by 

captopril (Macleod eta/., 1997). 

Some studies have shown that Dahi-SS also exhibit a delay in the onset of 

stroke and protection against the vascular degeneration when they are treated 

with losartan (von lutterotti et a/., 1992). The beneficial effect of losartan also 

occu_rs under conditions where only a modest reduction in blood pressure is 

observed (von lutterotti eta/., 1992). 

2.2 OBJECTIVES AND HYPOTHESES OF THE STUDY 

The focus of these experiments was to characterize stroke development in 

Dahi-SS, comparing its etiology to stroke development in SHRsp. Our hypothesis 

was that Dahi-SS rats will develop hemorrhagic stroke following the initiation of a 

high salt diet and that stroke development will be prevented by ACEI treatment 
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with captopril, through a mechanism involving the reduction of plasma 

aldosterone. 

2.3 METHODS AND MATERIALS 

2.3.1 Animals 

The Dahl Salt-Sensitive (Dahi-SS) and Salt-Resistant (Dahi-SR) animals 

were obtained from a maintained colony housed within the Animal Care Facilities 

(Memonial University of Newfoundland, Health Sciences Center, St. John's). The 

experiments were performed in accordance with guidelines outlined by the 

Canadian Council on Animal Care and the Memorial University of Newfoundland 

Animal Care Committee. Animals were housed in rooms on a 12-hour light/dark 

cycle. All experiments were conducted on male animals only. The colony was 

maintained by breeding brother-sister siblings at 8 weeks of age. The litters were 

weaned at 5 weeks and the separated males were placed on the appropriate diet 

(see Die~t section for more detail). 

2.3.2. Di1et 

Dahi-SS and Dahi-SR rats were separated into groups and fed diets 

containing differing percentages of NaCI. The diet was made from a standard rat 

chow (Prolab RMH 3000 formula, PMI Feeds Inc., St Louis MO, USA) containing 

a basallievel of 0.7% NaCI. This diet was then supplemented with NaCI. The diet 

was ground to a coarse grain using an electric grinder (Dayton gear motor, 
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Dayton Electric Co., Chicago, IL, USA). NaCI (Sigma-Aldrich Canada Ltd. 

Oakville, Ontario, Canada) was added supplementing the NaCI levels to 6. 7% or 

8.7% (by weight). The required level of NaCI was dissolved in a volume of water 

equalin~} 70% of the weight of the powder (that was to be reconstituted). The 

water containing the NaCI was mixed with the powdered chow to form a thick 

paste that was dried with fans at 23°C for 12 hours. The dried diet was broken 

into small biscuits and fed to the rats. Fresh diet was made every few days. 

2.3.3 Protocols 

Dahl rats were separated into 6 groups at 5 weeks of age. These 

included: Dahi-SS fed normal salt (0.7% NaCI), Dahi-SS fed 8.7% NaCI, Dahi-SS 

fed moderate salt (6.7% NaCI) as well as Dahi-SS fed 8.7% NaCI that were 

treated with captopril (50 mg/kg/day). Control groups consisted of Dahi-SR fed 

normal salt (0.7% NaCI) and Dahi-SR fed 8.7% NaCI were also included in the 

study. Captopril was administered via the drinking water (the concentration was 

achieved by modifying drug dosage and drinking rates of animals in order to 

achieve a 50mg/Kg/day dosage). Each experimental group consisted of 5 

animals. 

2.3.4 Blood Pressure Measurement 

The systolic blood pressure was measured weekly via a tail cuff 

compression method (IITC Model 29, Pulse Pressure Amplifier, Woodlands Hills, 
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CA). The rats were placed in a room at a controlled temperature of 35°C for 15 

minutes prior to BP measurement. The averages from three recordings were 

taken once the animal had become acclimated to the environment. Blood 

pressurHs were measured on a weekly basis. 

2.3.5 Mc>nitoring of Stroke Development 

The rats were monitored daily for any signs of stroke development. 

Previous studies with SHRsp have characterized the symptoms associated with 

stroke development (Smeda, 1989, 1992). These symptoms include convulsive 

repetitiv1e forearm movements, which are followed by an altered posture in which 

the rat iis hunched over with its legs hyper-extended (kangaroo-type posture). 

The animals exhibit poor grooming and lethargy. Dahi-SS rats were monitored 

closely for the development of any of these symptoms and others that are not 

congruent with normal behavior. When rats exhibited signs of stroke 

development, or when death was likely to occur, the rats were anesthetized and 

a blood sample was taken via cardiac puncture. Subsequently, the brains and 

kidneys were removed and fixed in 10% formalin for histological examination. All 

brain~ were examined closely prior to fixing in order to observe any surface 

morphological abnormalities consistent with hemorrhagic stroke or other 

patholog1ical changes. 
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2.3.6 A!;sessment of Brain Ischemia, Hemmorhage and Blood Brain Barrier 

Integrity 

Ischemic brain damage was assessed in the following groups: Dahi-SS 

fed normal (0.7% NaCI) salt, asymptomatic Dahi-SS fed high salt (8.7% NaCI), 

Dahi-SS fed high salt (post-stroke) and Dahi-SR fed high salt. A 2,3,5 

triphenoltetrazolium chloride assay (TTC, Sigma-Aldrich, Oakville, Ontario, 

Canada) was used to assess the presence of brain ischemia. Six animals were 

examined from each group. (Lundy et a/., 1986) describes the method used. 

Brains (including brain stem) were removed and placed in oxygenated ice-cooled 

(4°C) Krebs physiological salt solution (95% 02, 5% C02, pH 7.4). Unfixed 

brains were then sliced using a jig (FBM-1000c, ASI instruments, USA). Serial, 

coronal sections of brain were immersed in normal (0.9%) saline containing 4% 

TTC for 30 minutes at 37°C. Tetrazolium was taken up by the brain and 

dehydrogenases converted this compound to an impermeable red dye that 

'remained within the cells. Ischemic damage inactivated cellular dehydrogenase 

·leading a failure of TTC to be converted to a red dye. Areas of the brain that had 

been subjected to ischemic damage failed to react and remained unstained. 

The brains of 7 rats from each of the above groups were fixed in buffered 

10% formalin, imbedded in paraffin and sectioned (15 IJm thick slices). The 

sections were subsequently stained either with cressyl violet blue or hematoxylin 

and eosin. Other sections were stained for the presence of glial fibrillary acidic 

protein (GFAP) which accumulates in astrocytes after Ischemic damage (Burtrum 
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& Silverstein, 1994). The slides were examined for changes consistent with the 

occurrence of brain ischemia and hemorrhage. The brains of 26 additional Dahi

SS rats exhibiting signs of stroke were fixed in 10% buffered formalin and 

sectioned in 1 mm thick coronal sections in an anterior to rostral direction from 

the olfactory bulbs to the brainstem just behind the cerebellum using a jig (ASI 

instrumEmts). These sections were studied through a back-light dissecting 

microscope for the presence of intracerebral hemorrhage. This technique has 

been previously used to study brains of SHRsp that have developed stroke 

(Smeda, 1989) and is capable of detecting even the smallest intracerebral 

hemorrhages. 

The integrity of the blood brain barrier was evaluated in 6 Dahi-SS 

exhibiting behavioural signs of stroke. Rats were anaesthetized with sodium 

pentobarbital (65mg/Kg, ip) and placed on a heating pad. The right femoral vein 

was catheterized with PE-10 tubing and Evan's blue dye (30 mg into 1 ml of 

sterile 0.9% saline) was infused (over a 15 second period) into the animal at a 

level of 30 mg Evan's blue dye per kg body weight. The dye was allowed to 

circulate for 12 minutes. After 12 minutes, the abdominal cavity was opened and 

two hemostats (5 em tips) were inserted through the diaphragm in a manner 

where the intercostal arteries and veins located in the thoracic cavity to the right 

and left of the sternum were clamped. The chest cavity was opened to expose 

lhe hea1i and a PE-50 catheter was inserted into the aorta and tied at the base of 

the heart. The right and left ventricles were cut allowing free outflow. Clean 
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0.9% saline was perfused in to the aorta at constant pressure of 200 mmHg for 

one minute. This latter infusion cleared the Evan's blue containing intravascular 

blood from the cerebral vasculature leaving only the dye that leaked into the 

extravascular space. The skull was subsequently opened and the brain (from the 

olfactory bulbs to the point at the start of the spinal cord where the vertebral 

arteries join to from the basilar artery) was removed and frozen in liquid nitrogen. 

To prevent the brain from cracking, the brain was placed on a plastic lid that was 

floated on the liquid nitrogen. The brains were then stored at -80°C for 

subsequent analysis. 

VI/hen this procedure was used, sites of Evan's blue were clearly visible 

against the opaque matrix of the brain (Evan's blue works by conjugating to 

plasma albumin). The extravasation of Evan's blue indicated the existence of 

breaks in the BBB of a size sufficiently large enough to permit the movement of 

albumin plus conjugated dye (Udaka eta/., 1970). 

Measurements of the brain wet to dry weight ratio were used to assess 

brain eclema. Animals (n=15) were anesthetized and the brains were removed 

and weighed to determine the wet weight. Brains were then placed in pre

weighed vials and dried in an oven at 70°C for 24 hours. Subsequently, the dry 

weight of the brain was determined. Brain water content was determined using 

the following formula ((wet weight minus dry weight/wet weight) X 1 00)). 
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2.3.7 REmal Function Analysis 

Dahi-SS fed normal salt (0.7% NaCI) and Dahi-SS and Dahi-SR fed high 

salt (8.7'% NaCI) diets were housed individually in metabolic cages for 24 hours 

to collect urine samples. Five animals from each group were examined. Food 

and water was provided. Kidney function was evaluated on the basis of 

creatinine clearance and total protein excretion in the urine over a 24-hour period 

calculated from the collected urine samples. Following 24 hours the animals 

were weighed, total urine volume was determined and blood pressure was 

measured. The rats were anesthetized and a blood sample was taken via 

cardiac puncture. The sample of blood (3 ml) was centrifuged (14000 

revolutions/sec) and the plasma was retained for analysis. The urine was then 

analyzed for total protein and creatinine levels and the plasma was assessed for 

creatinine, albumin and urea content by the hospital (Biochemistry/Hematology 

Laboratory, Memorial University, Health Science Center Hospital, St. John's, 

Newfoundland, Canada). Qualified individuals who conduct these tests on a 

routine basis performed the analyses. The personnel were blind as to the 

identity of the samples. Creatinine clearance (CC) was determined using the 

followin~J formula: CC (mllhr) = [(urine creatinine, 1JM)(24-hr urine volume, ml) 

serum creatinine, !JM)]/24. The urinary protein excretion (PE) rate was 

calculated using the following formula: PE (mg/hr) = (urinary protein, mg/L)(24-hr 

urine volume, L)/24. The urinary excretion of protein was expressed in relation to 
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creatinine clearance (PE/CC x1 03/Kg), which estimates the amount of protein lost 

in relation to glomerular filtration. 

Due to the rapid expiration of the Dahi-SS (fed 8.7% NaCI) after the 

observation of behavioural symptoms suggesting stroke (1 day, discussed later), 

post-stroke Dahi-SS could not be evaluated. Therefore, Dahi-SS fed a high salt 

diet for :2 weeks (and exhibiting no behavioural signs of stroke), Dahi-SR fed the 

same diet for 5 weeks and Dahi-SS fed a normal salt were compared and 

assesse~d for proteinuria. 

2.3.8 lmmunoassays for Aldosterone 

Dahi-SS (n=24) and Dahi-SR (n=15) were anesthetized and blood 

samples were taken via cardiac puncture. The sample of blood (3 ml) was 

centrifu~~ed (14000 revolutions/sec) and the plasma was frozen (-80 °C) for a 

later analysis of aldosterone. Serum aldosterone was measured by 

radioimmunoassay techniques by the Memorial University, Health Science 

Center Renal Diagnostic Laboratory (St John's, Newfoundland, Canada). The 

assays were performed using a Coat-A-Count radioimmunoassay kit (Diagnostic 

Products Corp). 

2.3.9 Statistical Analysis 

Comparisons involving 2 groups of data were assessed with student's t 

test. A one-way analysis of variance (ANOVA) followed by Fisher's post hoc test 

was used to assess comparisons involving one parameter in multiple groups. 
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Data expressed in the forms of curves, which represented groups of animals, 

were assessed using a general linear model (GLM) of multivariant analysis of 

variance (MANOVA). The curves representing rat groups were assessed to 

determine if they significantly differed from each other and were further assessed 

to determine if a differential interactive effect existed between the response (y

axis, i.e. BP, CBF, vascular constriction) and a given variable (x-axis, i.e. time, 

dose, a~~e). A significant interactive effect is usually associated with a situation in 

which curve crossover occurs. Results were considered significant at P<0.05 and 

were expressed as the mean±SEM. In all cases N values represent the number 

of rats used in each experiment. 

2.4 RESULTS 

2.4.1 Blood Pressure, "Stroke" Development and Mortality 

Dahi-SS and Dahi-SR were fed diets containing varying levels of NaCI 

from' 5 weeks of age. The blood pressure profile for each group is outlined in 

Figure ·1. All Dahi-SS groups fed a high salt (8. 7% NaCI) or a moderate salt 

.(6. 7% NaCI) diet developed a rapid onset of hypertension (systolic BP >150 

mmHg) one week after being fed high salt. Conversely, Dahi-SR fed a normal 

(0.7% NlaCI) or high salt (8.7% NaCI) did not develop hypertension. Dahi-SS fed 

normal salt (0.7% NaCI) developed moderate levels of hypertension (about 170 

mmHg) over the first 5 weeks of feeding. Captopril (50 mg/kg/day) treatment did 
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Figure '1: Alterations in systolic blood pressure in relation to feeding duration in 
Dahl salt-sensitive (Dahi-SS) and Dahl salt-resistant (Dahi-SR) rats fed varying 
levels of NaCI. Dahi-SS fed a 8. 7% NaCI diet and treated with captopril (50 
mg/kg/day) exhibited no significant reduction in blood pressure when compared 
to Dahi-·SS fed either 8.7% or an 6.7% NaCI diet without captopril treatment. 
Blood pressure recording was terminated at six weeks in Dahi-SS following 
initiation of an 6.7% or 8.7% NaCI diet due to the fact that the rats were either too 
sick to have their blood pressure recorded or had died prior to six weeks of 
feeding. All Dahi-SS rats on high salt diets exhibited behavioral symptoms of 
stroke while Dahi-SR fed the same diet remained asymptomatic. Dahi-SS fed 
0.7% NaCI and Dahi-SR fed 0.7% or 8.7% NaCI continued to live up to 17 weeks 
of age (12 weeks of salt feeding) to the termination of the experiment. These 
groups exhibited no signs of stroke. Statistics: General Linear Model MANOVA
All high salt groups (except F) were significantly different from normal salt groups 
(Band E). All Dahi-SS groups (A,B,C,D) were significantly different from Dahi-SR 
groups (E and F), P<0.05. Values equal the mean± SEM (5 animals per group). 



38 

not effect the onset of hypertension or the maximum level of hypertension 

(systolic BP >200 mmHg) attained in Dahi-SS fed 8.7% NaCI (Figure 1). 

All Dahi-SS fed 8.7%, 6.7% NaCI or an 8.7% NaCI diet combined with 

captopril treatment exhibited behavioural abnormalities consistent with the 

development of stroke. This included repetitive head movements, flexion of the 

forelimbs, which was usually confined to the right side. Postural abnormalities 

previously defined as a "kangaroo stance" (whereby the animal was seated 

upright with hindlimbs underneath the body) were observed. The animals often 

entered a phase of marked lethargy and immobility, confirmed by patches of 

urine soaked bedding. All the animals died or were sacrificed (when it was 

evident that death was imminent) within 24-48hrs after the symptoms were 

detected. The animals were carefully examined prior to death. Common 

terminal! features observed included immobility, dramatic weight loss and cool 

body temperature possibly due to poor circulation. There was often a sustained 

erection, possibly indicative of brain pathology that may have led to abnormalities 

in the autonomic nervous system. Post-mortem analysis revealed marked 

accumulation of fluid in the extravascular space of the abdominal cavity 

(ascities). Figure 2 outlines the mortality profiles of the rats in relation to duration 

of high salt feeding (initiated a 5 weeks of age). Fifty-percent mortality occurred 

in the Dahi-SS fed 8.7% or 6.7% NaCI after 3 to 4 weeks feeding. Dahi-SR fed 

the 8. 7cvo salt diet did not develop stroke associated behavioural symptoms and 

exhibited a 100% survival rate for the duration of the experiment (12 weeks of 
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Figure :2: Mortality profile of Dahi-SS and Dahi-SR fed a diet containing various 
concentrations of NaCI (+/- captopril treatment). All Dahi-SS fed high salt diets 
(8. 7%, E>. 7% and 8. 7% NaCI+captopril) exhibited comparable mortality profiles in 
relation to duration to feeding. Death was preceded by the presence of stroke
like behavioural symptoms. A 50% level of mortality was reached around 4.5 
weeks. No significant difference in mortality with respect to feeding duration was 
observed between Dahi-SS fed 6.7%, 8.7% NaCI or NaCI with captopril 
treatment. No mortality was observed in the Dahi-SR groups fed 0.7% and 8.7% 
NaCI and in Dahi-SS fed 0.7% NaCI. These latter groups represented by the star 
like overlay extending from 100% survival over the duration of the experiment. 
(n=5 animals per group). Statistics: General Linear Model MANOVA- Groups A, 
B, and F were significantly different from C, D and E, P<0.05. Symbol across 
from 1 00% on the y-axis represents groups C, D and E. 
salt feeding). Captopril had no effect on the onset of mortality in Dahi-SS fed 
8.7% NaCI. 
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2.4.2 An Assessment of Cerebrovascular Lesions in Dahl-55 Exhibiting 

Behavic>ural Symptoms of Stroke 

Brains were removed from asymptomatic Dahi-SS, Dahi-SS with 

behavioural symptoms of stroke and Dahi-SR fed 8.7% NaCI for 2, 3.5 and 5 

weeks respectively. The brains were serially sectioned in 1 mm thick coronal 

sections from the olfactory bulb area to the brain stem at a point where vertebral 

arteries join to form the basilar artery. The sections were examined using TTC 

assay outlined in the methods. Bright brick red staining occurred within all brains 

across all sections (n=6 rats/group). The red reaction indicated the robust 

cellular dehydrogenase conversion of TTC to a red dye, a feature that is 

inconsistent with the presence of cerebral ischemia. 

The brains of 7 Dahi-SS fed 8.7% NaCI were histologically examined. 

These brains were fixed in formalin and imbedded in paraffin. Each brain was 

coronally serially sectioned in 151Jm thick sections. The sections were stained 

with one of the following stains: Cressyl violet, hematoxylin and eosin or for the 

presence of glial fibrillary acidic protein (which accumulates in the astrocytes 

after ischemic damage). These histological analyses failed to detect any 

evidence of ischemic damage. 

Other brains (n=26 rats) from Dahi-SS exhibiting behavioural symptoms of 

stroke were sectioned in 1 mm thick coronal sections and studied under a 

dissecting microscope for the presence of intracerebral hemorrhage. All the 

analyses indicated the presence of intracerebral hemorrhage in 7 out of 39 Dahl-
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SS that exhibited symptoms consistent with stroke. Hemorrhagic lesions were 

present in the cerebrum in all 7 out of 39 rats. One rat had hemorrhagic lesions 

in both the cerebrum plus the cerebellum and brainstem. Brain sections from the 

latter rat that were stained with cressyl violet are shown in Figure 3. 

Five of 6 rats demonstrated focal areas of extravasation of Evans blue dye 

in the c1erebrum and the remaining rat exhibited a general extravasation of the 

dye. Figure 4 demonstrates focal areas of Evans blue extravasation surrounded 

by lighte~r areas of edema surrounding the extravasated dye. 

To further confirm the presence of edema the wet to dry weight ratio of 

brains was measured in Dahi-SS that exhibited stroke-like behaviour (n=5) and 

compan~d to the ratio found in asymptomatic Dahi-SS fed 8.7% NaCI for 2 weeks 

and Dahi-SR fed 8.7% NaCI for 5 weeks. The results of these experiments are 

shown in Figure 5. Dahi-SS exhibiting stroke-like behaviour had brains 

containing a higher percentage of water than either asymptomatic Dahi-SS or 

Dahi-SR. This latter finding is consistent with the occurrence of brain edema in 

the Dahii-SS exhibiting stroke-like abnormal behaviour. 

A.t this point we concluded that the results suggest that the stroke

like behavioural symptoms observed best represent the development of 

hypertensive encephalopathy rather than true stroke. By definition, stroke is 

produced by cerebral lesions secondary to the presence of brain ischemia or 
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Figure :~. A representative picture of brain (coronal section) from a Dahi-SS fed 
8.7% NaCI for 3.5 weeks that exhibited behavioural symptoms consistent with 
stroke. Brain stained with cressyl violet blue. The sites of hemorrhage within the 
cerebrum and brainstem are visible as red stained material. 
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Figure 4: Evans blue extravasation in the brain of a Dahi-SS exhibiting seizures 
with behavioural abnormalities exhibited blood brain barrier disruption and the 
extravascular movement of Evans blue dye (arrows). The light colored areas 
surrounding the extravasated dye correspond to areas of edema. Cerebral 
ischemia was absent and hemorrhage rarely occurred (7 /39) rats. Based on the 
brain pathology the behavioural dsyfunctions observed best represent the 
occurrence of hypertensive encephalopathy. 
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Figure 5: Levels of brain edema assessed by the water content of brains 
sampled from asymptomatic, post-HE Dahi-SS and Dahi-SR fed high salt (8.7% 
NaCI). The level of water content in the brains of Dahi-SS exhibiting "stroke-like" 
behaviour was significantly elevated when compared to asymptomatic Dahi-SS 
and Dahi-SR. Stroke is defined as the occurrence of neurological based 
abnormalities that result from a cerebrovascular accident which produces brain 
ischemia and or hemorrhage. Based on the absence of any evidence of brain 
ischemia and low incidence of cerebral hemorrhage combined with clear 
evidencE3 of brain edema and blood brain barrier disruption we concluded that 
"stroke-like" symptoms observed in our colony of Dahi-SS best represents a 
condition of hypertensive encephalopathy as apposed to true stroke. Therefore, 
from this point on in the thesis Dahi-SS exhibiting "stroke-like" behaviour will be 
referred to as having hypertensive encephalopathy (HE) as apposed to stroke. 
Statistics: ANOVA with Fisher post-hoc test. Significance was determined at (*) 
P<0.05. Values represent the mean± SEM (all groups had 5 animals per group). 
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hemorrhage. In view of the near absence of the latter forms of lesions it is 

incorrect to define the current colony of Dahi-SS as having stroke based only on 

the presence of behavioural symptoms. 

Based on the above conclusion from this point to the end of the 

thesis, Dahi-SS exhibiting hypertensive encephalopathy (HE) will be 

referred to as post-HE as apposed to rats with stroke or stroke-like 

behavi(>Ur. 

2.4.3 An Analysis of Renal Function in Dahi-SS and Dahi-SR Fed High Salt 

Alterations in the plasma levels of urea (blood urea nitrogen-BUN), 

creatinine and albumin are outlined in Figure 6. Plasma BUN and creatinine 

were si~~nificantly elevated in post-HE Dahi-SS fed 8.7% NaCI (for 3.5 weeks) 

and their plasma compared to the asymptomatic Dahi-SS fed the same diet (for 2 

weeks). In Dahi-SR fed 8.7% NaCI (for 5 weeks), which do not develop HE, 

similar plasma levels of BUN and creatinine are observed in comparison to 

asymptomatic Dahi-SS fed high salt. Plasma albumin was significantly lower in 

the post-HE Dahi-SS compared to asymptomatic Dahi-SS rats. Proteinuria was 

assesse!d by determining urinary protein loss in relation to the creatinine 

clearance over a 24-hour period. This parameter represents an estimate of the 

level of protein loss into urine in relation to glomerular filtration. As shown in 

Figure 7, the urinary 
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Figure 6: Blood plasma profile of urea (BUN), creatinine and albumin in 
asymptomatic Dahi-SS, post-HE Dahi-SS and Dahi-SR fed 8.7%NaCI. Post-HE 
Dahi-SS were fed a 8.7% NaCI diet for 3.5 weeks. Dahi-SR were fed a high salt 
diet for 5 weeks whereas asymptomatic Dahi-SS received the diet for 2 weeks. 
Statistics: ANOVA with Fisher post hoc. BUN and creatinine and albumin values 
were sig1nificantly different between post-HE Dahi-SS and asymptomatic Dahi-SS 
and SR groups, (*) P<0.05. Values represent the mean ± SEM (asymptomatic 
Dahi-SS=11, post-HE Dahi-SS=16 and Dahi-SR=5. 
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Figure "l: An analysis of proteinuria in asymptomatic Dahi-SS fed 0.7% or 8.7% 
NaCI diE~ts and Dahi-SR fed an 8.7% NaCI diet. The results show that urinary 
protein excretion per creatinine clearance was significantly elevated in Dahi-SS 
fed 8.7°A'o NaCI for 2 weeks when compared to Dahi-SR fed a 8.7% NaCI diet and 
Dahi-SS fed a 0.7% NaCI diet. Statistics: ANOVA with Fisher post-hoc. (*) 
P<0.05. Values represent the mean± SEM (all groups had 5 animals per group). 
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protein ~~xcretion per creatinine clearance was 9-fold higher in the asymptomatic 

Dahi-SS fed 8.7% NaCI (for 2 weeks) when compared to the Dahi-SS fed 0.7% 

NaCI (for 12 weeks) or Dahi-SR fed 8.7% NaCI for 5 weeks. 

2.4.4 Plasma Aldosterone Levels 

Figure 8 outlines the changes in plasma aldosterone levels in relation to 

diet (8 .. ?% versus 0.7% NaCI), strain (Dahi-SS versus Dahi-SR rats) and HE 

development in the Dahi-SS. Our results indicate that plasma aldosterone levels 

were si~1nificantly lower in asymptomatic Dahi-SS fed 8.7% NaCI (for 2 weeks) in 

comparison to Dahi-SS fed 0.7% NaCI for 12 weeks. 

Post-HE Dahi-SS fed 8.7% NaCI (for 3.5 weeks), had high plasma 

aldosterone levels. The level of plasma aldosterone in these rats was 4 times 

higher than that presented in asymptomatic Dahi-SS and double of that observed 

in Dahi-SS rats fed a normal diet (Figure 8). Dahi-SS fed 8.7% NaCI (for 3.5 

weeks) and subjected to captopril (50 mg/kg/day) treatment that developed HE 

had half the levels of plasma aldosterone observed in untreated age matched 

Dahi-SS with HE. The level of plasma aldosterone observed in captopril treated 

Dahi-SS with HE was equal to that present in asymptomatic Dahi-SS fed normal 

NaCI. 
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Figure 8: Effect of an 8.7% NaCI and 0.7% NaCI diet on plasma aldosterone 
levels in asymptomatic and post-HE Dahi-SS rats in comparison to Dahi-SR fed 
high (8.7%) and normal (0.7%) NaCI and post-HE Dahi-SS fed high salt along 
with captopril (50mg/kg/day) treatment. Plasma aldosterone levels in post-HE 
Dahi-SS were significantly elevated when compared to all other groups (*) and 
the levels in Dahi-SS (normal salt) were significantly higher than both 
asymptomatic and post-HE Dahi-SS rats (+). Statistics: ANOVA with Fisher post
hoc test. Significance was determined at P<0.05. Values represent the mean ± 
SEM (asymptomatic Dahi-SS=6, post-HE Dahi-SS=8, Dahi-SS normal salt=? 
Dahi-SS +captopril=3, Dahi-SR high salt=5 and Dahi-SR normal salt=1 0). 
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2.5 DISCUSSION 

Dahi-SS fed 8. 7% NaCI rapidly developed high blood pressure levels (> 

200 mmHg) that were eventually associated with neurological abnormalities 

(such as seizures, convulsive repetitive forearm movements and altered posture) 

and behavioural abnormalities consisting of poor grooming and lethargy. All 

Dahi-SS that were not sampled at the time when these abnormalities were first 

observed died within 1 day. The brains of the rats showed no evidence of 

ischemia and the observation of intracerebral hemorrhage was rare. Both brain 

edema and BBB disruption was observed in Dahi-SS that developed neurological 

and behavioural abnormalities. Evidence of these alterations was demonstrated 

by the extravasation of Evans blue dye and by an increase in brain water 

content. Alterations in renal function occurred in Dahi-SS fed high salt. Dahi-SS 

exhibiting neurological and behavioural abnormalities had higher levels of plasma 

aldosterone compared to Dahi-SR fed high salt. These animals also developed 

uremia and significant elevations in plasma creatinine. Plasma albumin levels 

were decreased and proteinuria was observed in the rats. 

2.5.1 DEwelopment of Hypertensive Encephalopathy 

Our working hypothesis was that the neurological and behavioural 

abnormalities observed in Dahi-SS fed 8. 7% NaCI were due to stroke. However, 

in the present study, Dahi-SS exhibiting stroke-like behaviour were completely 

devoid of ischemic areas (indicated by bright red staining of the brain slices in 
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response to TTC). In addition, histological evaluation using GFAP staining 

revealed a complete absence of GFAP reaction (which accumulates in astrocytes 

after ischemic damage). These assessments indicate that the stroke-like 

behaviour was not a result of ischemic brain damage. Intracerebral hemorrhage 

formation in Dahi-SS exhibiting stroke-like behaviour was rare and occurred in 

less than 20% of the brains examined. Since by definition stroke is produced by 

brain ischemia and or hemorrhage (Sacco and Mayer, 1994) behavioural 

abnormalities observed in Dahi-SS fed 8.7% NaCI were not the result of stroke. 

Vve believe that the stroke-like behavior observed in Dahi-SS was a result 

of the development of HE. HE is neurological dysfunction brought about by a 

sudden rise in BP that has been primarily described in humans (Vaughan & 

Delanty, 2000). It occurs in the absence of cerebral ischemia or hemorrhage and 

produces stroke-like symptoms such as lethargy, confusion, headache, visual 

impairments and generalized seizures (Healton eta/., 1982; Vaughan & Delanty, 

2000). HE is associated with a loss in CBF autoregulation in response to the 

rapid rise in BP (Dinsdale, 1982; Vaughan & Delanty, 2000). This promotes a 

breakdown in the BBB (Oztas & Turkel, 2001) that is coupled with fluid 

movement into the extravascular space and cerebral edema formation (Vaughan 

& Delanty, 2000). The occurrence of BBB breakdown and HE development is 

dependEmt on the level and duration of hypertension present and is potentiated 

by a sudden abrupt elevation in blood pressure (Sokrab eta/., 1988; Johansson, 

1999). 
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All the above alterations (motor dsyfunctions, seizures, BBB breakdown, 

brain edema in the absence of cerebral ischemia or hemorrhage) associated with 

HE deVE3Iopment in humans are consistent with the changes observed in Dahi

SS from the present study. The development of such alterations at the first point 

where maximal hypertension was established in our colony of Dahi-SS (4 to 5 

weeks salt feeding) just after the phase of rapid hypertension development is 

consistent with the characteristics of HE development in humans. In view of the 

similarities in characteristics of HE development in humans and our observations 

in Dahi-SS we believe that our rats best represent a model of hypertensive 

encephalopathy. This in itself is important since no animal model that develops 

HE in a reliable fashion is currently available for study. BBB breakdown in Dahi

SS rats with HE was exclusively observed in the cerebrum. This may give insight 

into the particular behavioural abnormalities (seizures and involuntary limb 

moveme1nt) that these rats exhibited since the cerebrum is primarily involved in 

regulating motor control. 

Cerebral edema may by virtue of applying intracranial pressure, disrupt 

the medullary control and/or cortical of heart function creating the potential for 

cardiac arrhythmias to occur (Hachinski, 1993; Oppenheimer, 1994). This type 

of pathway connecting hypertensive BBB disruption to heart dysfunction may 

have caused our Dahi-SS rats to die abruptly after HE development. 

In other studies Dahi-SS fed high salt tended to develop both cerebral 

hemorrhage and ischemia (Tobian eta/., 1985; Werber eta/., 1985; von Lutterotti 
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eta/., 1 B92; Lin eta/., 1999; Zhang eta/., 1999). However in our colony of Dahi

SS observations of hemorrhages were rare and there was an absence of 

ischemia following high salt feeding. This low propensity for stroke development 

in our model compared to others may have been due to genetic differences 

between Dahi-SS colonies. The observation of predictable HE development 

within our colony of Dahi-SS in response to high salt feeding may be of greater 

value than a situation where the rats uniformly developed stroke since at the 

present time no animal model of HE exists. 

2.5.2 RE~nal Function During Hypertensive Encephalopathy 

The kidneys of Dahi-SS with hypertension undergo changes in 

morphology that modify kidney function (Rapp & Dene, 1985; Sterzel eta/., 1988; 

Karlsen et a/., 1997). A morphological assessment of renal structural alterations 

was not the objective of this study. However, we did histologically section and 

_stain (H & E) four kidneys from Dahi-SS with HE. These sections exhibited 

vascular and glomerular degeneration as well as the appearance of fibrinoid 

deposits in renal arterioles and capillaries. The presence of these lesions would 

decrease blood flow resulting in reduced glomerular filtration (Hirawa et a/., 

1997). A reduction in glomerular filtration would facilitate the production of 

uremia and exacerbate the development of hypertension due to volume 

expansion via salt and water retention. 
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Certain characteristics of renal dysfunction could potentiate HE 

development in Dahi-SS. The excess loss of protein into the urine (proteinuria) 

and the associated decreased plasma albumin could decrease colloidal osmotic 

pressure and promote edema formation throughout the vasculature. Post-HE 

Dahi-SS from the current study also exhibited massive fluid accumulation within 

.·the abdominal cavity (ascities) suggesting that global non-cerebral movement of 

fluid into extravascular space occurred. The development of proteinuria could be 

important in promoting HE development since asymptomatic Dahi-SR fed high 

salt fail to develop proteinuria and maintain plasma albumin levels that are 

equivalent to those observed in Dahi-SS fed normal salt. 

Humans exhibiting end-stage renal disease (i.e. uremia, proteinuria, blood 

in the urine and abnormal electrolyte levels) also commonly show signs of HE 

(Agildere eta/., 2001). It has been suggested that an inability of the kidney to 

control fluid homeostasis results in a rapid elevation of blood pressure as 

glomerular filtration is significantly reduced (Agildere et a/., 2001). Such 

individuals also commonly develop proteinuria, hence it is possible that a drop in 

plasma oncotic pressure may also aggravate brain edema formation and HE 

development. 



2.5.3 The Effects of ACEis on the Development of Hypertensive 

Encephalopathy 
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The beneficial effect of captopril in both protecting and treating the onset 

·of strok~e has been demonstrated in the SHRsp (Stier et a/., 1991; Macleod et 

a/., 199~r). The mechanisms by which captopril exerted its anti-stroke effect was 

postulated to be through the reduction in plasma aldosterone levels (Macleod et 

a/., 1 99~r) possibly by decreasing the development of kidney and cerebral lesions 

(Stier et a/., 1991 ). 

Evaluation of plasma aldosterone in the present study revealed that 

plasma aldosterone was significantly elevated in post-HE Dahi-SS compared to 

.asymptomatic Dahi-SS fed 8.7% NaCI for 2 weeks. However, the aldosterone 

levels observed in post-HE Dahi-SS were significantly lower than the levels 

observed in the post-stroke SHRsp (700 pmol/l versus 4000 pmolll respectively) 

(Macleod eta/., 1 997). 

As discussed within the literature review, renin release and consequently 

ANG II formation and plasma aldosterone levels are controlled by tubular urine 

flow and urine NaCI concentration at the macula densa. In high salt fed SHRsp 

and Dahi-SS, two opposing factors will govern renin release. Renal pathology 

develops causing a restriction in renal blood flow and glomerular filtration. This 

reduces primary urine production and flow past the macula densa and facilitates 

renin release. The latter effect is opposed by high salt ingestion which should 

increase the urinary Na levels passing the macula densa and in doing so reduce 



58 

the release of renin into the blood. It is the balance of these two opposing forces 

that will ultimately govern the level of renin release into the blood. It is possible 

since Dahi-SS were fed an 8.7% NaCI diet that the balance favored a lower renin 

release than that observed in SHRsp fed 4% NaCI diet. Therefore, although 

plasma levels of aldosterone elevated, the levels observed in SHRsp were not 

achieved in Dahi-SS fed high salt. 

Other factors may also govern the above balance. Dahi-SS exhibit far 

greater renal dysfunction and kidney ischemia than SHRsp when they are fed a 

high salt diet. In order for renin to enter the circulatory system it must flow 

through the glomerular capillaries into the venous circulation. If total renovascular 

occlusion occurred blocking this circulation, any potential renin released into the 

preglomerular arteriolar lumen will not make its way into the circulation. This 

would lead to the production of lower blood ANG II levels and consequently a 

smaller release of aldosterone from the adrenal gland. Finally, it is possible that 

the levels of renin release in response to Na+ concentration and urine flow may 

be set in a manner where the level of renin released per equal level of stimulation 

is less in the kidneys of Dahi-SS versus SHRsp. At the present time sufficient 

experimental evidence supporting or contradicting the above theories is not 

availabl13. 

High plasma aldosterone levels play an important role in the specific 

development of intracerebral hemorrhage. In this regard the absolute plasma 

aldosterone levels observed in post-HE Dahi-SS are comparable to levels found 
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in SHRsp treated with captopril that are protected from hemorrhagic stroke 

development and are below the levels observed in prestroke SHRsp not treated 

with captopril (Macleod et a/., 1997). Hence, if one accepts the premise that 

aldosterone plays a specific role in cerebral hemorrhage formation, the low 

aldosterone levels observed in asymptomatic and post-HE Dahi-SS may account 

for the low incidence of this lesion in this strain. 

In this study, captopril (50mg/kg/day) treatment produced no 

antihypertensive effects and did not delay the onset of mortality in Dahi-SS fed 

high salt. Dahi-SS fed high salt plus captopril treatment exhibited significant 

levels of hypertension and no change in HE-associated mortality. If elevated 

levels of plasma aldosterone play an important role in hemorrhagic stroke 

development and the subsequent death in SHRsp, it is reasonable to assume 

that since the levels of plasma aldosterone were not elevated to the same degree 

in post-HE Dahi-SS, captopril treatment and aldosterone suppression would not 

alter HE development. The ineffectiveness of captopril treatment in altering HE 

development and mortality in Dahi-SS would also indicate the mechanisms 

promoting death in this model do not involve the activation of the renin 

angiotensin system. However, one could speculate that if mortality after HE could 

be delayed in Dahi-SS the level of aldosterone might continue to rise and the 

incidence of hemorrhage formation in Dahi-SS would increase. 
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2.6 CONCLUSIONS 

Dahi-SS develop significant rapid renal insufficiency in response to a high 

salt diet: (8.7% NaCI). Established hypertension (> 200 mmHg) occurs by two 

weeks. This promotes the development of cerebral edema and HE, subsequently 

leading to death 1 day after initial observations of behavioural abnormalities 

associated with HE. The cellular mechanisms underlying the development of HE 

need to be addressed further to better understand the development in the Dahi

SS model. It has been shown previously that HE is associated with the loss of 

cerebral blood autoregulation (Dinsdale, 1983) promoted by the rapid elevation in 

blood pressure. This could lead to an overperfusion of the brain and facilitate 

edema formation. In the next chapter we will evaluate cerebral blood flow 

autoregulation in Dahi-SS in response to feeding high salt. 



CHAPTER 3 

ALTERATIONS IN CEREBROVASCULAR AUTOREGULATION AND 

MYOGENIC FUNCTION IN DAHL-SS 

3.1 lntrc>duction 
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CBF autoregulation is defined as the maintenance of constant CBF under 

conditions of varying blood pressures. (Paulson et a/., 1990). This mechanism 

ensures that the brain obtains adequate supplies of oxygen (Oz) and nutrients 

even when blood pressure falls below normal levels (Harder et a/., 2002). In 

situations where blood pressure is elevated (i.e. hypertension), the 

autoregulatory control of CBF acts as a protective mechanism. In hypertensive 

individuals the CBF versus BP autoregulatory curve is shifted to the right 

(Strand~Jaard & Paulson, 1995). This ensures that during periods of increased 

blood pressure, CBF remains constant and overperfusion is prevented 

(Strand~Jaard & Paulson, 1995). 

The shifting of the upper BP limit of CBF autoregulation to higher limits 

during periods of increased blood pressure is likely the result of vascular 

remodeling (i.e. decreased lumen and increased wall thickness) which causes 

increase!d vascular contractility (Heagerty et a/., 1993; As mar et a/., 1997). A 

displacement of CBF autoregulation to higher BP limits can also occur due to 

increases in sympathetic nerve activity, which commonly occur during 

hypertension (Edvinsson et a/., 1978; Paulson et a/., 1990). These rightward 
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displacements in the autoregulatory curve in response to increased BP may 

protect against overperfusion and subsequent hemorrhage occurrence (Smeda 

eta/., 1B99b). 

In humans exhibiting hypertension, CBF autoregulation is maintained 

during therapeutic treatments with Ca2
+ channel antagonists (Gaab et a/., 1990). 

However, in animals, the administration of high doses of nimodipine (Ca2
+ 

antagonist) abolishes CBF autoregulation (Gaab et a/., 1990) and promotes the 

extravasation of fluid and blood into the extravascular space when BP is raised. 

This su~1gests that loss of CBF autoregulation under hypertensive conditions has 

the potential to facilitate the development of edema and hemorrhages. 

It has been suggested that the development of hypertensive 

encephalopathy (HE) in humans, is promoted by the loss of CBF autoregulation, 

which could facilitate the formation of cerebral edema and increase the risk of 

~emorrhage formation (Dinsdale, 1983). 

3.2 OBJECTIVES AND HYPOTHESES OF STUDY 

The observations outlined in Chapter 2 demonstrated that Dahi-SS fed a 

high salt diet develop marked elevations in BP and behavioural signs consistent 

with HE. The development of HE occurred in a predictable manner. The purpose 

of the following study was to test the hypothesis that HE development in our 

colony of Dahi-SS was preceded by an inability of the cerebrovasculature to 

autoregulate constant CBF. An important mechanism thought to produce CBF 
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autoregiUiation is pressure dependent constriction (PDC) (Johnson, 1986). 

Elevations in blood pressure which potentially increase flow are counteracted by 

cerebrovascular constriction, which increases vascular resistance to flow and 

helps maintain CBF constant (Johnson, 1986). In view of the above, we tested if 

potential loss of CBF autoregulation in the middle cerebral artery (MCA) 

perfusion domain was associated with an inability of the MCAs to constrict in 

response to elevations in pressure. 

To test the above hypotheses we evaluated Dahi-SS fed 8.7% NaCI. 

Laser Doppler techniques were used to measure CBF autoregulation in the 

perfusion domain of the MCA prior to HE development. In separate experiments, 

distal segments of the MCAs were isolated from the brain and the ability of these 

arteries to constrict to elevations in transmural pressure was tested and related 

to both HE development and CBF autoregulatory function. 

3.3 MATERIALS AND METHODS 

3.3.1 Experimental Animals, Diet and Systolic Blood Pressure 

These experimental protocols are outlined in detail in chapter 2. 

Specifically a description of the Dahl Salt-Sensitive Colony and the breeding 

protocol is outlined in section 2.3.1. The development of the appropriate high salt 

diet used is outlined in section 2.3.2. The techniques used to measure blood 

pressure in the particular experimental groups are outlined in detail in section 
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2.3.4. The behavioural changes associated with the development of 

hypertensive encephalopathy are outlined in section 2.3.5. 

3.3.2 The Measurement of CBF Autoregulation 

Laser Doppler techniques were used to measure CBF. The rats were 

anesthetized with sodium pentobarbital (65mg/kg, i.p.) and a tracheal tube (PE-

250) was inserted into the airway and connected to a ventilator. Pure 02 was 

mixed with inspired air to produce a Pa02 of about 250 mmHg (>98% 

hemoglobin saturation). The left femoral artery and vein were catheterized with 

PE-50 ad PE-10 tubing respectively that were filled with lactate Ringer's solution. 

The animal's head was then immobilized in a stereotaxic device. The animal's 

temperature was measured with a digital rectal thermometer and maintained at 

37°C thmugh the use of a heating pad. The skull cap was exposed and a 2 mm 

hole was drilled into the cranium without breaking the dura. The hole was 

positioned in the MCA perfusion domain of the right cerebral hemisphere, 1 mm 

right of lateral bregma in the oculus sinister parietale bone at a point where the 

outside edge of the 2 mm hole was just medial to a bony ridge. The latter ridge 

(unnamed) runs from the orbital socket in a posterior direction and separates the 

oculus sinister temporale and pars squamosa bones that form the lateral skull 

surface. A laser probe (PF 403, Perimed, Jarfalla, Sweden) was lowered into the 

hole by a micromanipulator until it touched the dura without penetrating this layer. 

The CBF flux was monitored using a Perimed 4001 laser Doppler flow meter 
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(Perimed, Jarfalla, Sweden). Prior to the start of the experiments the laser probe 

was calibrated between fluxes of 0 to 250 using a PF1 00 Perimed external 

calibration standards. 

CBF was measured based on the fact that when laser light hits a moving 

object the wavelength of the light is (Doppler) shifted. In the brain, the laser 

beam penetrates the tissue. In vivo, only plasma is moving within the 

vasculature of the brain. The proportion of Doppler shifted light (reflected from 

the moving blood cells in the blood) in relation to the light hitting immobile matter 

was me~asured. A flux value was calculated which was proportional to the 

amount of blood flowing (velocity x blood cell concentration) below the probe. 

The BP of the animal was measured through a femoral arterial catheter, in 

which the catheter was connected to a Statham P23 ID pressure transducer 

(Gould Electronique, Ballainvillers, France) and amplified through a Gould Model 

81888 recorder containing a Universal amplifier. The BP and CBF flux were 

synchronized by an input into a computer and the analogue signals were 

converted to digital data (C10-AD 16 JR-AT, Acquire Program, Computer Boards 

Inc., Mansfield, MA, USA). The raw CBF flux and corresponding mean arterial 

blood pressure (MAP) data was stored in the computer as ASCII files. 

Following a equilibration period, blood PaC02 pH, HC03 and hemoglobin 

Oz saturation (Ciba Corning 278 Blood Gas System Analyzer, Medfield, MA, 

USA) were analyzed from an arterial blood sample collected from the femoral 

catheter (normal ranges; PaC02 >38 mmHg; pH 7.35-7.45; HC03 24-27mM and 
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hemoglobin 0 2 saturation >99%). The animal was then given an injection of 

hexamethonium (5 mg/kg, ip) to inhibit the sympathetic nervous system and 

prevent baroreflex action. This also typically lowered the animal's BP. The BP 

was then raised by infusing 4.6 x 1 o-2 mg norepinephrine/ml lactate ringers 

solution into the femoral vein via a syringe pump (Model 355, Sage Instruments, 

Cambridge, MA, USA) to produce a slow rise in BP. Norepinephrine was used to 

increase~ the BP since it can contract virtually all systemic blood vessels but has 

no effect on the vessels of the cerebrovasculature (Paulson et a/., 1990). Hence 

systemic BP can be raised without producing cerebrovascular constriction. 

In each experiment, BP was raised to the highest possible level. The CBF 

present at a given blood pressure was normalized to the CBF present at a MAP 

of 100 rnmHg to give a relative CBF value (i.e. relative CBF at a given MAP = 

"(Flux at the MAP/Flux at a MAP of 100 mmHg)). The relative CBF was then 

plotted against MAP. 

3.3.3 Pressure Myograph Studies 

The PDC was determined in MCAs of Dahi-SS fed 8. 7% NaCI prior to and 

followin~~ the development of behavioural symptoms consistent with the 

development of HE. In addition, we also sampled MCAs from Dahi-SR fed both 

a high (B.?%) and normal (0.7%) NaCI diet. There were 5 animals in each group. 

Isolated MCAs segments were examined for the presence of a functional PDC 

response using a pressure myograph apparatus described by Osol and Halpren 
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(1985). Briefly, rats were anaesthetized with sodium pentobarbital 

(65mg/Kg/i.p.). The thoracic cavity was opened to allow access to the heart. 

The left ventricle was cut to exsanguinate the animal. Following this, the skull 

cavity was opened and the brain was removed and placed in ice cooled Krebs 

saline solution bubbled with 95%02/5%C02. An isolated arteriolar segment of 

the MCA was removed and canulated on a hollow glass micropipette (-20 11m 

tip) of the pressure myograph apparatus. The distal end was tied with 10-0 

suture creating a closed sac. Pressure was increased within the lumen of the 

artery through the connection of the proximal end of the micropipette connected 

to a Krebs saline filled reservoir. The reservoir was then connected to a gas 

cylinder (95%02/5%C02). The preparation bath, containing Krebs saline solution 

was oxygenated (95%02/5%C02). All drugs used in the study were applied to 

the exterior of the artery within the Krebs saline suffusing the artery. The outer 

diameter of the artery was viewed through a microscope system (Wild Leitz M3 

microscope, Wild Heerbrugg, Switzerland) and the dimensional changes were 

·recorded on videotape and measured at 322x magnification. 

Following an initial equilibration period of 30 minutes at 100 mmHg, the 

pressure was reduced to 0 mmHg for an additional six minutes. Solution within 

the vessel chamber was held constant at 37°C. The PDC response was 

recorded as the amplitude of vessel contraction following a rapid pressure 

increase to 1 OOmmHg over a four minute increment. Following an initial dilation 

(1sec after pressure was applied) the vessel contracted over the four minutes at 
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100 mrnHg. Figure 9 is a representative example of PDC in a MCA from an 

asymptomatic Dahi-SS rat. Maximal diameter of the vessel is recorded as the 

amplitude of vessel vasodilation following nifedipine (3 J.!M) application. 

3.3.4 Statistical Analysis 

\Ne used either a one-way analysis of variance (ANOVA) followed by 

Fisher post-hoc test or GLM multivariant analysis of variance (MANOVA) to 

determine if significant differences existed between groups of data. Results were 

considered significant at P<0.05. The mean ±the standard error measurement is 

shown in the data. N values in the PDC experiments always equal one MCA from 

one rat used. A more detailed description of the statistical analysis is outlined in 

section 2.3.9. 

3.4 RESULTS 

3.4.1 Blc>od Pressure and the Behavioural Symptoms of HE in Dahl-55 

Dahi-SS fed 8. 7% NaCI for > 3 weeks exhibited behaviour consistent with 

HE (described in chapter 2). Dahi-SS fed a normal 0.7% NaCI diet for up to ten 

weeks were asymptomatic and appeared healthy throughout the duration of the 

experimEmts. 

The blood pressure profiles of Dahi-SS fed either 8.7% NaCI or 0.7% NaCI 

are outlined in Figure 10. Dahi-SS fed high salt exhibited a rapid onset of 

hypertension (defined as systolic >150 mmHg) whereas Dahi-SS fed normal salt 
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Figure ~~- An example of the lumen diameter alterations occurring in a middle 
cerebral artery in response to a 100 mmHg pressure step. The artery was 
sampled from a asymptomatic Dahl salt-sensitive rat and equilibrated to 0 mmHg 
pressure~ for six minutes. This eliminates pressure dependent tone from the 
artery. Then the pressure was increased abruptly to 100 mmHg. Initially, one 
second after pressurization, prior to a significant engagement of pressure 
dependemt constriction (PDC), the arterial lumen expands. Subsequently PDC 
reduces the lumen size to a smaller diameter (which is dependent on the applied 
pressure). PDC was measured as the decrease in lumen diameter between 1 
and 240 seconds after the application of a 100 mmHg pressure step. The 
application of nifedipine to the artery produced maximal vasodilation. 
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Figure 110. The systolic blood pressure profile of Dahi-SS rats fed 8. 7% NaCI 
(n=6) and 0.7% NaCI (n=7). Dahi-SS fed high salt after weaning (5 weeks of age) 
exhibited a rapidly developing onset of hypertension after only one week. Dahi
SS fed 0.7% NaCI diet for 9 weeks exhibited normotensive blood pressures. 
Values represent mean± SEM. 
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diet remained normotensive. Maximal systolic BP's were >200 mmHg after a 

three week period. Subsequently, some of the Dahi-SS fed a high salt diet 

began to exhibit behavioural signs of HE. Dahi-SS fed a normal diet for nine 

weeks typically exhibited normal to borderline hypertensive (150-165 mmHg) 

levels up to a maximal systolic blood pressure of 160 mmHg. This level of 

hypertension was not associated with any of the behavioural symptoms of HE 

observed in Dahi-SS rats fed a high salt diet. 

3.4.2 Alterations in CBF Autoregulation in Dahl-55 

Table 1 outlines the blood gas parameters for the groups of rats used in 

these autoregulatory studies. Through the control of respiratory rates and the 

administration of oxygen, arterial pC02 was maintained at normal levels and 

blood hemoglobin oxygen saturation was always greater than 99.6%. Blood pH 

and HC03 levels were normal and none of the parameters differed significantly 

between the groups studied. 

Table 2 summarizes the characteristics of CBF autoregulation observed in 

the rats.. All of the Dahi-SS rats fed 8. 7% NaCI for one week or 0. 7% NaCI for 

nine weeks exhibited an ability to autoregulate blood flow up to an upper mean 

arterial pressure limit of respectively 168±6 mmHg and 204±12 mmHg. One of 

the six rats fed 8.7% NaCI for two weeks and four of the six rats fed 8.7% for 

three weeks lacked the ability to autoregulate blood flow with varying blood 
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Table 1: The arterial blood gas characteristics of anesthetized 

asymptomatic Dahi-SS used in cerebral blood flow experiments. 

Dietary Weeks 

NaCI (%) On Diet 

8.7 1 6 

8.7 2 6 

8.7 3 6 

8.7 9 7 

Values= mean± S.E.M. 

PaC02 = arterial C02 tension 

PaC02 

n Blood pH (mmHg) 

7.42 ± 0.01 40 ±2 

7.38 ± 0.01 40 ±2 

7.40 ± 0.01 39 ±2 

7.42 ± 0.01 40 ±2 

Hb02 saturation = saturation of arterial blood hemoglobin with oxygen. 

Blood Hb02 

HC03 Saturation 

(mM) (%) 

26.5 ± 0.8 99.9 ±0.02 

23.9 ± 0.9 99.7 ± 0.05 

24.7 ± 1.0 99.7 ± 0.05 

26.1 ± 0.5 99.7 ± 0.05 

Statistics (AN OVA) -arterial blood pH, PaC02, HC03 and Hb02 saturation did not significantly 

differ betvveen groups. 
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Table 2: Characteristics of cerebral blood flow (CBF) autoregulation 

(mmHg) in anesthetized Dahi-SS. 

Dietary Weeks on Proportion of rats Upper BP MCBF/ 

NaCI {':Yo) Diet n exhibiting Limit of ~mmHg 

autoregulation Autoregulation 

8.7 1 6 6/6 168 ± 63 4.73 ± 1.17 

8.7 2 6 5/6 181 ± 9 9.2±1.13° 

8.7 3 6 2/6 206 ** 7.12 ± 0.94 

0.7 9 7 717 204 ± 12 5.41 ± 0.85 

Values= Mean± S.E.M. 

BP = mean arterial pressure 

MCBF/~mmHg =change in relative cerebral blood flow between BP's of 90 to 120 mmHg (x10-3
). 

**the 2 of the 6 rats exhibiting CBF autoregulation had a upper BP limits of 227 and 185 mmHg 

Statistics·- ANOVA (Fisher post hoc) 

a- significantly different from rats on a 0.7% NaCI diet. 

b- significantly different from rats on a 8.7% NaCI diet for 1 week and rats on a 0.7% NaCI diet. 
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pressures. These defects in CBF autoregulation occurred in the rats prior to the 

development of any behavioural abnormalities suggesting HE. 

Representative examples of the CBF autoregulation (presence and 

absence) are outlined in Figure 11. This data was obtained from two Dahi-SS 

fed 8.7% NaCI. The rat demonstrating an ability to autoregulate CBF maintained 

a relatively constant CBF as mean BP was increased from about 63 mmHg to an 

upper BP limit of CBF autoregulation (188 mmHg). The elevation of the mean 

arterial pressure above this point resulted in an abrupt increase in CBF. The 

second animal exhibited a linear increase in CBF with mean arterial pressure and 

an absence of an upper pressure limit to autoregulation, suggestive of an inability 

to autoregulate CBF in response to increases in BP (Figure 11 ). 

The changes in relative CBF with varying arterial pressure in Dahi-SS fed 

a 8.7% NaCI diet for one, two and three weeks are outlined in Figure 12. The 

rats in these groups were healthy and demonstrated no observable behavioural 

signs of HE. The changes in CBF demonstrate that a majority of asymptomatic 

~ahi-SS fed a 8.7% NaCI diet for three weeks lose their ability to autoregulate 

CBF. Dahi-SS fed a 0.7% NaCI diet for nine weeks all maintained the ability to 

·_;:wtoregulate CBF (Figure 13). The CBF alterations in rats fed a normal salt diet 

were comparable to those observed in Dahi-SS fed 8.7% NaCI diet for two 

weeks. 

Although a majority (4 of 6) of Dahi-SS fed a 8. 7% NaCI diet for three 

weeks lacked the ability to autoregulate CBF, the relative changes in CBF 
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Figure '11: An example of the changes in relative cerebral blood flow (CBF) with 
mean blood pressure in anesthetized asymptomatic Dahi-SS exhibiting the 
presence and absence of CBF autoregulation. The curves represent experiments 
on two rats fed 8.7% NaCI for 3 weeks. Rats exhibiting CBF autoregulation 
exhibit very moderate changes in CBF up to the upper blood pressure limit 
termed breakthrough. In the absence of CBF regulation there is a linear increase 
in CBF with a blood pressure with no apparent breakthrough. In the absence of 
CBF autoregulation, the slope of the changes in relative CBF with respect to 
blood pressure will depend on the degree of vasoconstriction present in the 
cerebrovasculature. 
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Figure 112: Alterations in cerebral blood flow (CBF) autoregulation in 
anaesthetized asymptomatic Dahi-SS fed 8.7% NaCI for varying duration. Dahi
SS fed 8.7% NaCI for 1 week from weaning (5 weeks of age) exhibited ability to 
autoregulate CBF. The majority of these rats (5/6) fed this diet for 2 weeks also 
exhibited an ability to autoregulate CBF and the upper limit of CBF autoregulation 
was shifted to higher blood pressure limits (see Table 2). The majority of 
asymptomatic rats (4/6) fed 8.7% NaCI for 3 weeks lacked an ability to 
autoregulate CBF and exhibited a linear relationship between CBF and blood 
pressure. Statistics: General Linear Model MANOVA on curves. Each curve is 
significantly (p<0.05) different from all other curves in absolute levels over 
common blood pressures and in terms of an interactive effect of relative CBF 
with blood pressure (p<0.05 in all cases). (n=6 rats in each group). 
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Figure '13. CBF autoregulation in anaesthetized Dahi-SS fed 0.7% NaCI. Rats 
(n=7) fed 0.7% NaCI from weaning (5 weeks of age) for 9 weeks maintained an 
ability to autoregulate CBF in a manner virtually identical to rats fed 8. 7% NaCI 
diet for :2 weeks (n=6). Statistics: General Linear Model MANOVA on curves: no 
significant differences were observed between groups. 
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between BP of 90 to 120 mmHg were comparable between the groups (Table 2). 

The Dahi-SS fed a 8. 7% NaCI diet that exhibited autoregulation had upper limits 

of CBF regulation which tended to be displaced to higher pressures in relation to 

duration of time that the rats on high salt diet. The upper limit of CBF regulation 

was high (204±12 mmHg) in Dahi-SS fed a normal salt diet despite the fact that 

these rats had near normal BP's. This observation suggests that factors other 

than elevations in BP also can lead to an elevation in the upper limit of CBF 

autoregulation in Dahi-SS. 

CBF autoregulation experiments were attempted on Dahi-SS with HE. 

Unfortunately after developing HE the rats became quite sick and were extremely 

vulnerable to death once they were anesthetized with sodium pentobarbital. All 

the animals studied in this condition died within the first 30 minutes of 

anesthesia. This time period was insufficient to conduct the autoregulatory 

protocol outlined. However, the observation that a majority of asymptomatic 

Dahi-SS lost the ability to autoregulate blood flow after being fed a high salt diet 

would suggest that defects in CBF autoregulation precede HE development and 

it is reasonable to believe that this dysfunction is maintained after HE 

development. 
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3.4.3 Alterations in Cerebrovascular Pressure Dependent Constriction In 

Dahl-55 

The percent decrease in MCA lumen diameter in response to a 1 00 

mmHg pressure step in the lumen diameter of MCAs sampled from Dahi-SS fed 

a 8.7% or 0.7% NaCI diet is shown in Figure 14. The ability to constrict in 

response to an increase in pressure declined in relation to the duration of high 

salt (8. 7'% NaCI) feeding in MCAs of Dahi-SS. This response was severely 

attenuated in rats subjected to the diet for three weeks. Post-HE Dahi-SS (which 

were fed a 8.7% NaCI diet for three or four weeks) had MCAs that did not 

constric1t to pressure. The pressure dependent constrictor response observed in 

the MCAs of Dahi-SS fed a 0.7% NaCI diet for nine weeks was comparable to 

that observed in rats fed a 8.7% NaCI diet for two weeks. 

The nature of the loss of PDC in the MCAs of post-HE Dahi-SS is further 

characterized in Figure 15. This figure demonstrates that asymptomatic Dahi-SS 

fed a 8.ir% NaCI diet for three weeks and post-HE Dahi-SS (fed the same diet for 

three or four weeks) have MCAs with reduced lumen diameters under maximally 

dilated conditions (3 1-1M nifedipine) when compared to Dahi-SS maintained on 

the diet for one or two weeks. The absence or attenuation of PDC in the MCAs 

of post-HE Dahi-SS fed 8.7% NaCI for three weeks was associated with the 

maintenance of a very large degree of basal tone (calculated as % constriction in 

relation to the maximal dilated lumen diameter in response to nifedipine 3 !JM) 

and a reduced diameter at the start of pressurization (which would limit the 
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Figure '14: Pressure dependent constriction in the MCAs of Dahi-SS prior to 
and afte~r HE development. The percent decrease in the lumen diameter with 
respect to the time after the application of a 100 mmHg pressure step is shown. 
The MCAs of the Dahi-SS fed 8.7% NaCI for a period of 1, 2 or 3 weeks after 
weaning! (5 weeks of age) progressively developed a decreased ability to 
constrict in response to pressure. The ability to constrict to pressure was absent 
in MCAs sampled from post-HE Dahi-SS and was quite robust in Dahi-SS fed 
0.7% NaCI for 9 weeks. Statistics: General Linear Model MANOVA on curves: All 
curves were significantly different (p<0.05) from each other in terms of amplitude 
of the response with the exception of curve B vs E. All curves also significantly 
(p<0.05) differ from each other in terms of a differential interactive effect of 
response with respect to time, except for the following comparisons A vs B, A vs 
E, B vs E, C vs D. (n=5 rats within each group). Values represent mean± S.E.M. 
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Figure 115: The absolute changes in lumen diameter in response to pressure and 
nifedipine in MCA are sampled from Dahi-SS. The figure shows the lumen 
diameters present in MCAs 1 second after the application of 100 mmHg pressure 
prior to significant constriction in response to pressure and the lumen diameter 
present after 240 seconds at a time when pressure dependent constriction is 
complete. Subsequently nifedipine was added to the bath producing maximal 
dilation of the arteries. Under maximally vasodilated conditions (in the presence 
of nifedipine) there is a reduction in lumen diameter of MCAs from asymptomatic 
Dahi-SS fed 8.7% NaCI for 3 weeks and post-HE Dahi-SS (3 or 4 weeks on the 
diet) wh13n compared to Dahi-SS fed 8.7% NaCI for 1 or 2 weeks post weaning. 
Statistics: ANOVA plus Fisher post hoc test. Significant (p<0.05) differences: At 1 
second at 100 mmHg- A vs C, B vs C and D. At 240 seconds at 100 mmHg- B vs 
C and D. At 100 mmHg with nifedipine- A vs B, C and D, B vs C and D. (n=5 rats 
within each group). Values represent mean± S.E.M. 
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further ability of the MCAs to constrict to pressure). As shown in Figure 16, the 

degree of basal tone present in the MCAs increased with the duration of time the 

rats were maintained on high salt (8. 7% NaCI). We also evaluated Dahi-SS fed 

0.7% NaCI for 9 weeks. Data for these rats is not included in Figure 14 to 

increase~ the clarity of the figure. The MCA lumen diameters 1 second and 4 

minutes after pressurization to 100 mmHg and after maximal vasodilation to 3 f.!M 

nifedipine were respectively 190±14, 127±9 and 213±91Jm, mean± SEM (n=5 per 

group). These values were not significantly different from the same parameters 

in Dahi-SS fed a 8.7% NaCI diet for one week. The degree of basal tone present 

in Dahi-SS fed a 0.7% NaCI diet for 9 weeks was less than that observed in 

Dahi-SS fed a 8.7% NaCI diet for 3 weeks and not significantly different from rats 

fed high salt for 1 or 2 weeks (Figure 16). 

3.5 DISCUSSION 

The studies of this chapter were carried out to test the hypothesis that HE 

development was preceded by a defect in the ability of the cerebrovasculature to 

autoregulate CBF and to further assess the possibility that the latter defects 

coincided with the inability of the vascular segments to elicit constriction to 

pressure. Dahi-SS fed 8.7% NaCI developed behavioural symptoms consistent 

with HE. The origin of the symptoms likely resulted from the breakdown or loss 

in integrity of the BBB as evidenced by significant edema formation and 

extravasation of Evans blue dye, previously outlined in chapter 2 (Figure 7). A 
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Figure 116: The basal tone in MCAs of Dahi-SS at 100 mmHg prior to the 
initiation of pressure dependent constriction. The basal tone present in the MCAs 
prior to pressure dependent constriction was calculated as the percent 
constriction present from the maximally dilated state (i.e.[(lumen diameter 1 sec 
after pressurization to 100 mmHgllumen diameter in presence of nifedipine at 
100 mmHg)-1] x 100. Statistics: ANOVA plus Fisher post hoc test. Significant 
(p<0.05) difference A vs C and D, B vs C and D, D vs E (n=5 rats within each 
group). Values represent the mean± S.E.M. 
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key finding in the present study was that the ability of the MCAs to constrict to 

increases in pressure (i.e. the PDC response) decreased in relation to the 

duration that the rats were fed high salt. This response was absent in MCAs 

sampled from rats exhibiting HE. Conversely, the MCAs of Dahi-SS fed a 0.7% 

NaCI diet for 9 weeks continually exhibited robust constriction to pressure. 

Chronologically, the virtual loss of PDC in the MCAs of asymptomatic Dahi-SS 

fed a 8.7% NaCI diet coincided with the loss of CBF autoregulation in matched 

rats. This raises the possibility that a loss of cerebrovascular PDC may be an 

important mechanism contributing to the loss of CBF autoregulation. 

3.5.1 Characteristics of Cerebral Blood Flow Autoregulation 

The hypothesis that CBF autoregulation was lost prior to HE development 

was supported by the observation that asymptomatic Dahi-SS fed a 8.7% NaCI 

diet for 3 weeks showed an inability to regulate CBF (the relationship between 

blood pressure and CBF was linear). Interestingly, the change in relative CBF in 

respons1s to BP (Table 2) was similar between all groups despite the absence or 

the presence of autoregulation. The latter phenomenon could be explained by a 

situation where the loss of CBF autoregulation occurred in the presence of either 

a reduction in lumen diameter and/or vasoconstriction of the vessels. This 

potential mechanism is explained in detail in Figure 17. 

In addition, after 3 weeks of high salt feeding the lumen diameters were 

reduced in the MCAs of asymptomatic Dahi-SS fed high salt (see figure 15, C., 3 
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Figure 17: A hypothesis of the type of change occurring in the 
cerebrovasculature of asymptomatic Dahi-SS fed 8.7% NaCI for 3 weeks. The 
solid line curve labeled AUTOREGULATION represents the approximation of the 
average change in relative cerebral blood flow (CBF) with blood pressure in 
asymptomatic Dahi-SS fed 8. 7% an NaCI diet for one week. Evidence of CBF 
autoregulation with the presence of a distinct upper limit is present. The loss of 
CBF autoregulation under conditions of cerebrovascular vasodilation would 
produce hyper-perfusion at higher blood pressures, a straight line relationship 
without the presence of a distinct upper limit to autoregulation such as that 
shown in the figure (see LOSS OF AUTOREGULATION + VASCULAR 
DILATION). The occurrence of a loss of autoregulation and the presence of 
cerebrovascular vasoconstriction would decrease the slope of the relationship of 
relative CBF to blood pressure from that present under dilated conditions as 
shown iin the diagram (see LOSS OF AUTOREGULATION + VASCULAR 
CONSTRICTION). This is representative of the type of regulation present in the 
asymptomatic Dahi-SS fed 8.7% an NaCI diet for 3 weeks (see Figure 12). If the 
types of alterations observed in the isolated MCAs of Dahi-SS an fed 8. 7% diet 
are representative of the typical types of alterations in the cerebrovasculature. 
The loss of CBF autoregulation in rats fed the diet for 3 weeks could be due an 
ability to constrict to pressure, (see Figure 14) coupled with the development of a 
structurally reduced lumen diameter (see Figure 15) plus the presence of a large 
degree of basal tone (see Figure 16). This could exert a protective effect, 
preventing maximal cerebrovascular over perfusion under conditions where 
cerebral blood flow is lost. 
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1-1M nifedipine). This suggests that in addition to the presence of increased basal 

tone a structural reduction in the lumen diameter existed in asymptomatic Dahi

SS fed high salt for 3 weeks. We believe that as hypertension continued to 

develop in Dahi-SS at approximately 3 weeks of high salt feeding, 

cerebrovascular PDC was attenuated causing the loss of CBF autoregulation. 

Autoregulation could have been lost under conditions of massive vasodilation. If 

this was the case it would result in a situation of overperfusion at higher blood 

pressun3s and a straight line relationship with no distinct upper limit as described 

by the curve (LOSS OF AUTOREGULATION+ VASCULAR DILATION) in Figure 

17. In this instance the change in CBF in relation to the change in BP would 

increase. In contrast, the loss of autoregulation in the presence of extreme 

vasoconstriction and/or a structural reduction in lumen diameter would create a 

linear rE3Iationship with a decreased slope in the relationship of relative CBF 

versus BP. This is best described by the relationship labeled "LOSS OF 

AUTOREGULATION+ VASCULAR CONSTRICTION" in Figure 17. 

Overall, the latter situation best represents autoregulatory characteristics 

observed in Dahi-SS fed 8.7% NaCI for 3 weeks (see Figure 12). This feature is 

also consistent with the presence of large degrees of basal tone (Figure 16), a 

structurally reduced lumen diameter (Figure 15) and an attenuation of PDC 

(Figure 14) in the MCAs of asymptomatic HE Dahi-SS fed high salt for 3 weeks 

and for post-HE rats. 
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3.5.2 Pr·essure Dependent Constriction and CBF Autoregulation 

In the microvasculature of the brain, pressure dependent constriction 

(PDC) is thought to play an important role in the autoregulation of blood flow 

(Johnson, 1986). Previous studies have shown that elevations in blood or 

transmural pressure under both in vivo conditions and in isolated cerebral 

vessels promote constriction in small cerebral arteries (Harder, 1984; Tamaki et 

a/., 1984; Faraci eta/., 1989). The constriction of cerebral vessels in response to 

elevations in blood pressure elevates vascular resistance to flow. This 

counteracts the subsequent potential increase in blood flow that might be 

expected to occur. Thus CBF remains constant despite the change in blood 

pressure. 

In the present study, MCAs from Dahi-SS fed high salt lost their ability to 

respond to increases in pressure (i.e. PDC) prior to the development of 

hypertensive encephalopathy. This loss in PDC was dependent on the duration 

that that animal was fed high salt. In Dahi-SS, there was a significant decrease(> 

80%) in the ability of the MCAs to constrict in response to a 100 mmHg pressure 

step when Dahi-SS were fed high salt from 1 week to 3 weeks. This suggests 

that changes are occurring within the vasculature that are altering the PDC 

response. The significance of this is that an inability to decrease lumen diameter 

in response to elevated pressure during hypertension could promote 

cerebrovascular overperfusion. The increased downstream pressure and 

elevated endothelial shear resulting from the loss of PDC could compromise the 
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blood-brain barrier and contribute to the initiation of HE. The 80% attenuation of 

the PDC in the MCAs of asymptomatic HE Dahi-SS fed high salt (Figure 14) is 

consistent with the observation that CBF autoregulation is lost in vivo in the MCA 

perfusion domain of comparable Dahi-SS fed high salt for the same duration 

(Figure 12). 

A potential limitation in studies evaluating PDC and CBF autoregulation in 

the MCAs perfusion domain is that it only provides a snapshot as to how the 

entire cerebrovasculature is responding to increases in pressure. In addition 

since the MCA is a relatively large vessel we do not know if the types of 

alterations that occur in the MCA mimic those present at the level of the 

microcirculation. That said, there is some consistency between the types of 

changes observed in the MCA and the nature of CBF autoregulatory loss 

observed, which suggests that a similar alteration exists in the microvessels fed 

by the MCA. 

3.5.3 Autoregulation: Dahl-55 versus 5HRsp 

The development of HE in Dahi-SS fed a high salt diet shows changes 

within the cerebrovasculature that exhibit similarities and contrasts to the types of 

changes present in the SHRsp following stroke development (Smeda, 1992; 

Smeda eta/., 1999b). Both Dahi-SS and SHRsp lost their ability to autoregulate 

CBF and developed defects in PDC within the MCAs prior to the development of 

stroke and HE. However, unlike Dahi-SS, the loss of autoregulation observed in 
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SHRsp was associated with an increase in c, CBF/ c,mmHg BP (Smeda et a/., 

1999b). The resultant effect of this relationship of CBF to BP was that 

overperfusion was enhanced to a greater degree than if regulation were lost 

under conditions of cerebrovascular vasoconstriction, (as is predicted in Dahi

SS). This could explain the higher incidence of hemorrhage formation in SHRsp 

versus Dahi-SS. 

3.5.4 The Loss of Renal Blood Flow Autoregulation in the Kidneys of Dahl-

55 

Besides the present study, no other cerebral circulatory studies have been 

performed on Dahi-SS rats. However, it is of interest to note that similar 

alterations in autoregulatory dysfunction and defects in PDC have been noted in 

the renal vasculature of Dahi-SS (Karlsen eta/., 1997). As previously described, 

the kidney vasculature has the ability to regulate constant blood flow over a 

range of varying pressure under in vivo conditions. Studies involving isolated 

kidneys sampled from Dahi-SS have shown that elevations in renal perfusion 

produce constriction in the renal interlobular arteries and afferent arterioles 

(Takenatka et a/., 1992; Hayashi et a/., 1996). The response time to pressure 

elevations are faster in the renal versus the cerebral vasculatures but Ca2
+ 

channel antagonists inhibit PDC in both vascular beds (Takenaka et a/., 1992; 

Hayashi eta/., 1996). Studies involving Dahi-SS rats fed an 8% NaCI diet for five 

weeks post weaning have indicated a complete loss in the ability of the renal 
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vasculature to autoregulate blood flow (Karlsen eta/., 1997). Likewise the loss of 

autoregulation was associated with the presence of a large increase in the renal 

vascular resistance to flow (Karlsen et a/., 1997), suggesting that the loss in renal 

blood flow autoregulation was associated with vasoconstriction and/or a 

structural reduction in the lumen diameter. Studies involving perfused kidneys 

have also indicated that Dahi-SS rats fed an 8% NaCI diet have interlobular 

arteries and afferent arterioles that lose their ability to constrict to pressure 

(Taken aka et a/., 1992; Hayashi et a/., 1996). It is possible that defects in the 

ability to autoregulate blood flow may occur in multiple vascular beds in Dahi-SS 

fed high salt diet. 

3.5.5 CONCLUSIONS 

Overall, we can conclude that the ability to constrict to pressure and 

regulate CBF is lost prior to the development of hypertensive encephalopathy in 

MCAs from post-HE Dahi-SS. The increase in basal tone observed in MCAs from 

post-HE Dahi-SS fed a 8.7% NaCI diet suggests that they lose their ability to 

autoregulate CBF under conditions of vasoconstriction. The loss of CBF 

autoregulation under conditions of cerebrovascular constriction would still result 

in a situation where in vivo alterations in BP would evoke changes in CBF, 

however, the presence of cerebrovascular constriction would provide some 

protection despite the loss of autoregulation by dampening the level of 

hyperperfusion during hypertension. This could account for the lower incidence of 



91 

cerebral! hemorrhage in this model in comparison to SHRsp, which lose CBF 

autoregulation under conditions of cerebrovascular vasodilation. The 

chronological, quantitative and qualitative changes in CBF autoregulation in the 

MCA pe1rfusion domain coincide with the loss of PDC in isolated MCAs perfusing 

this an3a suggesting that PDC is an important mechanism supporting 

autoregulation in these rats. 



CHAPTER4 

CEREBROVASCULAR ALTERATIONS IN PRESSURE AND PROTEIN 

KINASE C MEDIATED CONSTRICTION IN DAHL-55 

4.1 INTRODUCTION 
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The intrinsic ability of arterioles to rapidly constrict or dilate in response to 

an incre!ase or decrease in intraluminal pressure is defined as the myogenic 

respons~e or pressure dependent constriction (Meininger & Davis, 1992; Davis & 

Hill, 1999; Hill eta/., 2001). This mechanism provides the fundamental basis for 

regulation of blood flow within the cerebrovasculature that insures that the 

necessary nutrient and oxygen demand required for normal function is achieved 

(Harder et a/., 2002). In addition, it provides a protective mechanism whereby 

cerebrovascular overperfusion is prevented during hypertension (Strandgaard & 

Paulson, 1995). 

The signal transduction mechanisms linking elevations in pressure to 

arterial constriction have not been fully characterized. It is unlikely that one 

signalin~l pathway is responsible for mediating the PDC response. Both 

pharmac:omechanical (constriction without a change in smooth muscle 

membrane potential) and electromechanical (constriction associated with smooth 

muscle depolarization) coupled pathways are involved in producing PDC (Hill et 

a/., 2001) 
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Protein kinase C (PKC), modulates PDC during low levels of intracellular 

Ca2
+ (Gokina et a/., 1999). PKC has also been shown to open voltage gated 

calcium channels (VGCC's) independent of membrane depolarization (Fish eta/., 

1988). In more recent studies, PKC activation in response to a cascade initiated 

by elevations in pressure have been hypothesized to open the transient receptor 

potential cation channels (TRPc). It was hypothesized that an influx of cations 

through TRPc's promoted vascular smooth muscle depolarization in the 

cerebrovasculature leading to the opening of VGCC's that lead to the initiation of 

constriction (Welsh et a/., 2002). All of the above evidence suggests that PKC is 

an important signal transduction agent and mediator of PDC in many arterial 

systems. 

The studies outlined in chapter 3 have demonstrated that PDC in the 

MCAs of Dahi-SS fed a high salt diet becomes attenuated prior to HE 

development and is lost in the MCAs of rats with HE. The loss of the PDC 

response in the MCAs of SHRsp with stroke was coupled to alterations in PKC 

function (Smeda et a/., 1999a). This suggested that the PKC system in the 

cerebrovascular smooth muscle plays an important role in governing PDC and 

that this system can become defective. In view of this, studies were carried out to 

determine if the loss of PDC observed in the MCAs of Dahi-SS exhibiting HE was 

. associa1ted with the presence of altered PKC function in the smooth muscle of the . 
arteries. 
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4.2 OBJIECTIVES AND HYPOTHESES 

It is our belief that PKC is an important signaling agent involved in 

promoting or permitting the development of PDC in the MCAs of Dahi-SS. We 

tested the hypothesis that the loss of PDC in the MCAs of Dahi-SS with HE was 

associated with the occurrence of defects in the ability of PKC to mediate MCA 

constriction. To test for this possibility, MCAs from Dahi-SS were sampled prior 

to and following the observation of behavioural signs associated with HE. The 

ability of MCAs from these rats to constrict to a 100 mmHg pressure step or to 

the PKC activator, phorbol dibutyrate was assessed. The ability of the artery to 

contract in response to pressure was related to the constriction produced by PKC 

activation. 

4.3 MATERIALS AND METHODS 

4.3.1 E)(perimental Animals and the Monitoring of HE Development 

These aspects of the experimental protocol are outlined in detail in 

chapter 2. Specifically, a description of the Dahl Salt-Sensitive Colony and the 

breed in!~ protocol is outlined in section (2.3.1 ). The rats were examined for signs 

of HE which are defined in section 2.3.5. 
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4.3.2 Pressure Myograph Experiments 

The evaluation of PDC was tested in the MCAs of Dahi-SS fed an 8.7% 

NaCI diet prior to (n=17) and following (n=1 0) the observations of symptoms 

consistent with the development HE. In addition, we also sampled MCAs from 

Dahi-SR fed 8.7% (n=10) and 0.7% (n=8) NaCI. Dahi-SR remained healthy and 

asymptomatic for the duration of the experiments when fed high or normal salt 

diet. PDC was measured in the MCAs using the techniques previously outlined in 

Chapter 3 (section 3.3.3) 

Following the evaluation of PDC to a 100 mmHg pressure step (methods 

describe~d earlier in detail in section 3.3.3), the MCAs were maintained at 100 

mmHg pressure and then maximally vasodilated with nifedipine (3 IJM). The 

PKC activator, phorbol dibutyrate (0.11-Jm) was applied to the bath (n=6) and the 

degree of constriction was measured. Validation experiments (outlined in the 

results section) were carried out which demonstrated that under the latter 

conditions constriction in response to phorbol dibutyrate was mediated by PKC 

activation, which was inhibited by the PKC inhibitors chelerythrine (12 IJM) or 

bisindoylmaleimide (5 IJM). MCAs were further evaluated in their ability to 

constrict to a 100 mmHg pressure step in the presence of the PKC inhibitors 

outlined above (n=4 per inhibitor). Control experiments evaluated the 

reproducibility of PDC in the presence of vehicle (50% dimethyl sulfoxide; n=4). 

In additional experiments (n=5), the ability of vasopressin (0.17 IJM) to constrict 

MCAs in the presence of 3 1-1M nifedipine was tested. Vasopressin can constrict 
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MCAs by the release of an intracellular source of Ca2
+ in a manner independent 

of PKC activation. The presence of constriction in response to vasopressin 

indicated that the contractile apparatus remained functional. 

4.3.3 Statistical Analysis 

VVe used either a one-way analysis of variance (ANOVA) followed by a 

Fisher post-hoc test or GLM multivariant analysis of variance (MANOVA) was 

used to determine if significant differences existed between groups of data. 

Results were considered significant at P<0.05. The mean ±the standard error is 

shown in the data. N values always equal the number of rats used in the 

experiment. A more detailed description of the statistical analysis used is outlined 

in section 2.3.9. 

4.4 RESULTS 

4.4.1 Pressure Dependent Constriction 

MCAs sampled from Dahi-SS with HE were unable to constrict in 

response to a 100 mmHg pressure step (Figure 18). Asymptomatic Dahi-SS fed 

0.7% NaCI or 8.7% NaCI for 2 weeks as well as Dahi-SR fed 0.7% NaCI or 8.7% 

NaCI had MCAs that exhibited comparable and robust constriction in response to 

increase~s in pressure. 
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Figure 118: Pressure dependent constriction response in isolated middle cerebral 
arteries (MCAs) in response to a 100 mmHg pressure step. Rats were fed 8.7% 
or 0.7% NaCI from weaning (five weeks of age). Dahi-SS exhibiting behavioral 
signs of HE (n=1 0), had MCAs that did not constrict to pressure. Dahi-SR fed 
8.7% NaCI for 5 weeks (n=11) and asymptomatic Dahi-SS fed 8.7% NaCI for 2.0 
weeks (n=17) had MCAs that constricted robustly to the applied pressure. Dahi
SS (n=11 0) and Dahi-SR (n=8) fed 0. 7% NaCI also constricted to pressure. 
Statistics: General Linear Model MANOVA: A vs B, C, D orE response over time 
p<0.05. Values represent the mean± S.E.M. 
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4.4.2 Pressure Dependent Constriction and PKC Activation 

The effects of the PKC inhibitors chelerythrine and bisindoylmaleimide on 

PDC and phorbol dibutyrate induced constriction in MCAs are outlined in Table 3. 

MCAs used in these experiments were sampled from asymptomatic Dahi-SS 

rats. As shown in Table 3 (1 51 PDC) arteries from these rats exhibited constriction 

in response to a 100 mmHg pressure step. Pre-incubation with 

bisindoylmaleimide or chelerythrine prevented the development of PDC in the 

MCAs (2nd PDC, Table 3) in response to a subsequent equal pressure step, and 

(in the presence of nifedipine (3 1JM) prevented constriction in response to 

phorbol dibutyrate (0.1 IJM). The effect of bisindoylmaleimide on the time course 

of PDC 1is shown in Figure 19. These data demonstrated that in MCAs, PDC can 

not occur under conditions where PKC activity is inhibited and that in the 

presence of nifedipine, phorbol dibutyrate mediates constriction by the activation 

of PKC. 

4.4.3 Alterations in the PKC System in Relation to the Development of 

Hypertensive Encephalopathy 

In separate MCAs, we assessed the function of the PKC system in 

asymptomatic Dahi-SS and Dahi-SR fed an 8.7% or a 0.7% NaCI diet as well as 

in Dahi-SS exhibiting HE (fed 8. 7% NaCI). MCAs of Dahi-SS with HE which were 

unable to constrict to a 100 mmHg pressure step (see Figure 18) also did not 

constrict to phorbol dibutyrate in the presence of nifedipine (i.e. via PKC 
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TABLE 3. Effect of PKC Inhibition on the PDC Response in MCAs of 

Asymptomatic Dahi-SS. 

PKC Inhibitor or 1st PDC (no 2nu PDC (+ PDB-mediated 
inhibitor or inhibitor or vehicle) Constriction 

V1ehicle vehicle) 
Control (n=5) -28.5 ± 2.4 -26.2 ± 1.7 -37.3 ± 6.4 

Vehicle (n=4) -24.8 ± 6.2 -31.0 ± 4.7 -25.0 ± 8.7 

Chelerythrine (n=4) -21.9 ± 2.9 +13.0 ± 5.5a 0 ± 0° 

Bisindollylmalemide -31.2 ± 4.2 -7.9 ± 5.6a -2.3 ± 1.3° 
(n=4) 

Values represent the mean± S.E.M. 

F~,b P<0.05 compared with all 1st PDC responses and all control and vehicle 

respons1es (ANOVA with Fisher's post hoc test). 
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Figure 19: The effect of PKC inhibition on PDC in isolated middle cerebral 
arteries MCA(s). PKC inhibitor bisindolylmaleimide (5 ~M) and chelerythrine (12 
~M) (see Table 1) significantly inhibited the ability of the MCAs to constrict to a 
100 mmHg pressure step. (n=4 asymptomatic Dahi-SS). Values represent the 
mean± S.E.M. 
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activation). On the other hand, the MCAs of asymptomatic Dahi-SS and Dahi-SR 

fed a hi~gh or normal salt diet exhibited constriction both to pressure (Figure 18) 

and to phorbol dibutyrate (Figure 20). 

Comparisons of the left versus the right MCA of the same rats indicated 

that Dalhi-SS with HE (which had MCAs that lacked the ability to constrict to 

phorbol dibutyrate) exhibited phasic constriction to vasopressin in the presence 

of nifedipine (see C versus F in Figure 20). Asymptomatic Dahi-SS and Dahi-SR 

had MCAs that constricted to both phorbol dibutyrate and vasopressin in the 

presence of nifedipine (Figure 20). 

4.5 DISCUSSION 

Dahi-SS fed an 8. 7% NaCI diet exhibited behavioural symptoms 

consistent with HE after three weeks of high salt feeding. Isolated MCA 

segments from these rats lacked a functional PDC response and could not 

contract to the PKC activator, phorbol dibutyrate in the presence of nifedipine. 

Pre-treatment with PKC inhibitors (chelerythrine and bisindoylmaleimide) 

abolishe!d the PDC response. The contractile apparatus of MCAs from post-HE 

Dahi-SS was functional since MCAs that were unable to elicit PDC could still 

constrict to vasopressin in the presence of nifedipine. 
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Figure :20. Constriction of isolated MCAs in response to phorbol dibutyrate or 
vasopressin in the presence of nifedipine. The experiment demonstrates that the 
MCAs of post-HE Dahi-SS that have an inability to constrict to pressure (See 
Figure "18) have a defective PKC system (see C). The inability to constrict in 
response to pressure or PKC activation is not due to a dysfunctional contractile 
apparatus since the isolated MCAs of post-HE Dahi-SS constrict in response to 
vasopressin (see F). (n-values, A-6 rats, B to F- 5 rats per group; different 
arteries were used for the phorbol dibutyrate and vasopressin constriction 
experiments. Statistics: ANOVA + Fisher post hoc- A vs C, B vs C, significant, 
p<0.01, A VS B -NS, D E and F are not significantly different (p<0.05) from each 
other. Values represent the mean± S.E.M. 
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4.5.1 Pt(C Signaling Pathway and Pressure Dependent Constriction 

The importance of PKC in the promoting vascular PDC has been 

demonstrated in a number of vascular beds (Osol et a/., 1991; Karibe et at., 

1997; Kirton & Loutzenhiser, 1998; Smeda et at., 1999a). Previous studies have 

evaluated the role of PKC in the signaling cascade that promotes PDC. In 

pressurized human coronary arterioles the maintenance of tone was dose 

depend~3ntly reduced when the PKC inhibitor, calphostin C, was administered 

(Miller e~t at., 1997). Furthermore, in vascular arterioles that lack the ability to 

constrict to pressure, the addition of the PKC activator phorbol 12-myristate 13-

acetate resulted in the establishment of a PDC response. (Miller eta/., 1997). 

Other experiments demonstrated that the PKC activator, indolactam 

enhanced the level of tone in rat posterior cerebral arteries when arteries were 

pressuri1zed to 125 mmHg whereas the PKC inhibitor, staurosporin, also 

produced a dose dependent vasodilation of (Osol eta/., 1991 ). 

Upstream signaling promoters of PKC may also be involved in initiation of 

PDC. Phospholipase C (PLC) activity within the smooth muscle membrane can 

lead to the formation of inositol triphosphate (IP3) and diacylglycerol (DAG) or 

DAG in the absence of IP3 (Narayanan et at., 1994). In pressurized rat posterior 

cerebral arteries the inhibition of PLC with U-73122 produced vasodilation (Osol 

eta/., 1 !393). In the latter study, the selectivity of U-73122 as a PLC inhibitor was 

validated by the attenuation of PLC mediated constriction in response to 5-HT. 

This suggested that vascular pressure induced constriction was mediated 
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through the activation of PLC. The latter hypothesis is consistent with the 

observation that the smooth muscle levels of DAG are elevated in dog canine 

renal arteries in response to elevations in pressure (Narayanan et a/., 1994). 

More recently, in human subcutaneous vessels, the inhibition of DAG kinase by 

the inhibitor, RHC-80267 abolished PDC (Coats et a/., 2001 ). These studies all 

suggest that the inhibition of PLC or the inhibition of downstream cellular 

components generated by PLC activation (i.e. DAG), inhibits the PDC response. 

These findings suggest that PLC activation may be involved in promoting PDC. 

4.5.2 P~CC Activation and the Downstream Signaling Promoting PDC 

The potential signal transduction pathway promoting PDC in response to 

PKC activation may involve the opening of the transient receptor potential 

channel (TRPc). These channels have been characterized in the smooth muscle 

of various vascular beds (Clapham eta/., 2001; Inoue et a/., 2001; Welsh et a/., 

2002). Hecently, mRNA coding for the TRPc6 channel was identified in smooth 

muscle cells of cerebral arteries. The inhibition of the TRPc6 channel with 

oligodeoxynucleotide antisense treatment inhibited pressure dependent but not 

high [K+]o depolarization induced constriction in posterior cerebral arteries (Welsh 

et a/., 2:002). It was hypothesized that elevations in pressure activated PLC, 

which (through a cascade of reactions) led to the formation of DAG. Increases in 

DAG activated PKC, which opened the TRP6 channels. The opening of these 

nonspecific cation channels produced vascular smooth muscle membrane 
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depolarization, which promoted the opening of VGCC leading to an influx of Ca2
+ 

and myogenic contraction (Welsh et a/., 2002). The loss of PDC in the MCAs of 

post-HE Dahi-SS may be attributable to the fact that TRP6 channels are unable 

to open due to the presence of a defective PKC system. Since the MCAs of post

HE Dahi-SS were capable of constricting to vasopressin (a response that is 

mediated by PLC activation), it is likely that the PLC component of the PDC 

signalin!~ pathway that precedes PKC activation (i.e. is involved in generating 

DAG) re1mained functional. Although the present study has demonstrated that the 

MCAs of post-HE Dahi-SS exhibit a defect in the ability to constrict to PKC 

activation, this does not preclude the possibility that other components in the 

pathway are also defective. Recent studies (Smeda, unpublished results) 

indicate that the MCAs of post-HE Dahi-SS exhibit an attenuated ability to 

constrict in response to high [K+]o induced depolarization, indicating that the 

mechanisms promoting the voltage dependent opening of VGCC's may also be 

defective in these arteries. 

Alternative signaling pathways have also been proposed to explain PDC in 

the cerebrovasculature of rats. An increase in pressure in rat cerebral arteries 

has been shown to increase the production of 20-hydroxyeicosatetraenoic acid 

(20-HETE), a cytochrome p450 metabolite of arachidonic acid (Gebremedhin et 

a/., 2000). The inhibition of 20-HETE formation or its vasoconstrictor action 

inhibits PDC in isolated rat cerebral arteries (Gebremedhin et a/., 2000). 

Constriction in response to 20-HETE is also thought to be promoted by PKC 
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activation and smooth muscle depolarization (via a decrease in K+ conductance, 

that promotes Ca2
+ influx through VGCC) (Lange et a/., 1997; Gebremedhin et 

a/., 2000). If this unique signaling pathway is involved in promoting PDC in the 

cerebrovasculature, the presence of a defective PKC system would still lead to 

the inhibition of PDC. 

4.6 CONCLUSIONS 

There is overwhelming evidence that a functional vascular smooth muscle 

PKC system is necessary to allow PDC to occur in the cerebrovasculature. Our 

studies demonstrated that the inhibition of the PKC system in the vascular 

smooth muscle of MCAs inhibits PDC in the arteries. In addition we 

demonstrated that in the MCAs of Dahi-SS with HE, the loss of PDC coincides 

with the presence of a PKC system that is dysfunctional in terms of its ability to 

elicit constriction. Recent studies (Smeda & Payne, 2003) have indicated that 

there is a progressive decline in the ability of the isolated MCAs to elicit PDC in 

asymptomatic Dahi-SS fed an 8.7% NaCI diet for progressively longer durations. 

The ability of the MCAs of these rats to elicit PDC was directly related in a 

quantitative manner to the ability of the same arteries to constrict to PKC 

activation by phorbol dibutyrate (Smeda, unpublished results). Finally, virtually 

every pathway proposed to explain the signal transduction mechanisms 

promoting constriction in response to elevations in pressure have included PKC 

activation as an important, if not a critical, component. In view of the above 
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evidence there is a strong possibility that the presence of a defective PKC 

system may contribute to the loss of PDC in MCAs of Dahi-SS with HE. In view 

of the importance of cerebrovascular PDC in the maintenance of CBF 

autoregulation (discussed in Chapter 3), a defect in the vascular smooth muscle 

PKC system may contribute to the loss of CBF autoregulation observed in Dahi

SS fed a high salt. 



CHAPTER 5 

ALTERATIONS IN CEREBROVASCULAR ENDOTHELIAL 

FUNCTION IN DAHL-55 

5.1 INTRODUCTION 
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Nlitric oxide (NO) is a potent vasodilator that is intrinsically produced in the 

vasculature. The basal release can occur from adventitial and endothelial 

sources in many vascular beds (Moncada et a/., 1991). The levels of NO 

released from the endothelium can be elevated by the actions of agonists that act 

on the endothelium to increase the activity of endothelial nitric oxide synthase 

(NOS). In addition, the endothelium very likely can release a non-NO dilatory 

factor such as endothelial-derived hyperpolarizing factor (EDHF) (Busse et a!., 

2002). Vasodilation can be evoked via the endothelial-mediated release of both 

NO and EDHF in response to stimulation by prostacyclins (Armstead, 1995), 

bradykinin and acetylcholine (ACh) (Faraci & Heistad, 1998). 

Endothelial functional impairment contributes to the development of 

hypertension (Boulanger, 1999). Endothelium dependent vasodilation is impaired 

in many models of both experimental and human hypertension (Luscher & 

Vanhoutte, 1986; Panza et a/., 1990). A reduction in vasodilation to ACh, 

methacholine, bradykinin and ADP has been observed in the 

cerebrovasculatures of SHRsp and SHR (Faraci & Heistad, 1998), whereas non-
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endothe,lial mediated vasodilation in response to nitroprusside (Baumbach et a/., 

1994) and adenosine (Mayhan eta/., 1987) remain un-impaired. 

t\litric oxide synthase (NOS) activity is altered in hypertensive Dahi-SS fed 

high salt (Chen & Sanders, 1993). The administration of L-arginine (a substrate 

that is broken down to produce NO by NOS) to Dahi-SS fed high salt reverses 

hypertension and improves renal hemodynamics (Mattson et a/., 1997), whereas 

NOS inhibition increases blood pressure (Chen & Sanders, 1993). In view of this 

it has been suggested that hypertension development in Dahi-SS may be 

partially maintained by the reduced production or decreased availability of NO 

(Hayakawa & Raij, 1998). 

5.2 OBJIECTIVES AND HYPOTHESIS 

There is a paucity of information regarding the development of 

hypertension and associated changes in endothelial function within the 

cerebrovasculature of Dahi-SS. Currently, it is unclear whether the basal release 

of endothelial and non-endothelial sources is altered in the cerebrovasculature of 

Dahi-SS with hypertension and the potential alterations in these functions in 

relation to HE or stroke development remain unexplored. In addition, no 

information is available as to whether NO released from the endothelium or the 

adventitia can modulate PDC in the cerebrovasculature of Dahi-SS. If such 

modulat1ion exists, it could have an impact on CBF autoregulation. 
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It is clear that NOS related-function is attenuated within the renal 

vasculature of hypertensive Dahi-SS (Chen & Sanders, 1993; Hayakawa & Raij, 

1998). Therefore, it is plausible that hypertension and or HE related alterations in 

endothelial function may impact the ability of cerebral arteries to elicit PDC. Dahi

SS developed large degrees of basal tone in the MCAs following the 

development of HE (Chapter 3). This was not due to the presence of a circulating 

factor since these arteries were studies under in vitro conditions where they were 

suffused with a physiological saline solution. The lack of a circulating factor 

would suggest that the development of basal tone was intrinsic in origin. It is 

possible that elevations in basal tone could have occurred due to the attenuation 

of the basal release of NO from an adventitial and/or endothelial source or via the 

attenuation of the release of a non-NO endothelial derived vasodilator. 

The first objective of this study was to determine if the occurrence of HE in 

Dahi-SS was associated with changes in NOS-related function. The second 

objective was to assess if such changes altered the modulation of PDC in the 

cerebrovasculature? 

5.3 MATERIALS AND METHODS 

5.3.1 Animals 

A description of the Dahl Salt-Sensitive Colony and the breeding protocol 

is outlined in section (2.3.1 ). The techniques used to measure blood pressure in 

the particular experimental groups are outlined in detail in section (2.3.4). 
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5.3.2 Pressure Myograph Studies 

The evaluation PDC was tested in Dahi-SS (n=10 per group) fed an 8.7% 

NaCI diet prior to and following the development of behavioural symptoms 

consistent with the development of HE. The methodology for the evaluation of 

PDC was described in detail in chapter 3 (see section 3.3.3). All drugs used in 

the study were added to the external surface of the bath. 

5.3.3 A1:ssessment of the Effects of the Endothelium on Pressure Dependent 

Constriction 

MCAs were removed from the brains of Dahi-SS fed 0.7% NaCI (n=5) and 

mounted on to a pipette of the pressure myograph used to measure PDC within 

arteries. Prior to tying the arteries the arterial lumen of the proximal half of the 

artery was rubbed (15X) against the pipette tip to remove the endothelium. An 

intact endothelium was maintained on the distal end of the artery. Subsequently, 

the artery was tied on to the pipette and pressurized to 100 mmHg. Bradykinin 

(1.6 11MI) was used to evaluate completeness of endothelial removal in the 

proximal segments of the vessel. Using this technique the distal endothelial intact 

segment of the artery acted as a control for the proximal endothelial denuded 

segment. Vasodilation to bradykinin was also evaluated in MCAs from Dahi-SS 

fed 8.7% NaCI for 1 week (n=4) and Dahi-SS with HE (n=5) feed 8.7% NaCI for> 

3 weeks. The effects of NOS inhibition (1 00 11M L-NAME) on bradykinin 

.. 
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vasodilation was tested in MCAs sampled from asymptomatic Dahi-SS fed 8.7% 

NaCI for 1 week (n=4). 

5.3.4 Role of Nitric Oxide Synthase (NOS) in Modulating PDC 

PDC response to a 100 mmHg pressure step was measured in the areas 

of the MCA containing an intact and absent endothelium in the presence or 

absence of 100 1-1M L-NAME (i.e. NOS inhibition). The latter experiments were 

performed in MCAs sampled from Dahi-SS 0.7% NaCI for 9 weeks (n=5). The 

effects of L-NAME were also assessed in MCAs from Dahi-SS with HE (n=5) that 

were fed 8.7% NaCI. The MCAs were incubated with L-NAME for 10 minutes 

prior to the evaluation of its effects on PDC or vessel diameter. The specificity of 

NOS inhibition by L-NAME was evaluated in MCAs from Dahi-SS fed 0. 7% NaCI 

(n=4) by determining if the competitive inhibition produced by the NOS inhibitor 

could bta reversed by L-arginine (8 mM, the normal substrate for NOS). The 

specificity of the reversal of L-NAME inhibition by L-arginine was further tested by 

the inability of D-arginine (an incompatible substrate for NOS) to duplicate the 

effects of L-arginine. 

5.3.5 Statistical Analysis 

VVe used either a one-way analysis of variance (ANOVA) followed by 

Fisher post-hoc test, GLM multivariant form of analysis of variance (MANOVA) or 

student's t-test to determine if significant differences existed between groups of 
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data. Results were considered significant at P<0.05. The mean ±the standard 

error measurement is shown in the data. N values always equal the number of 

rats usE3d in the experiments. A more detailed description of the statistical 

analysis is outlined in section 2.3.9. 

5.4 RESULTS 

5.4.1 Pressure Dependent Constriction 

MCAs sampled from of Dahi-SS with HE (fed 8.7% NaCI) exhibited an 

attenuation of the PDC response to a 100 mmHg pressure step (Figure 21 ). 

Asymptomatic Dahi-SS fed 8.7% NaCI for 1 week displayed robust (>25%) 

constriction in response to pressure. 

Equal levels of PDC were observed in response to a 100 mmHg pressure 

step in the endothelial intact versus the denuded segments of MCAs that were 

sampled from Dahi-SS fed a 0.7% NaCI for 9 weeks (Figure 22). The denuded 

areas exhibited a greater vasodilation in response to nifedipine (3 ~-tM) when 

compared to the endothelial intact segments of the MCAs. Endothelial removal 

abolished the ability of bradykinin (1.6 ~m) to elicit vasodilation (Insert: Figure 

22). 
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Figure :21: MCA pressure dependent constriction in response to a 100 mmHg 
pressure step. MCAs were sampled from asymptomatic Dahi-SS fed 8.7% NaCI 
for 1 week and post-HE Dahi-SS fed 8.7% NaCI. Statistics: General Linear Model 
MANOVA post-HE Dahi-SS group significantly different from the asymptomatic 
group, p<0.01, n=1 0 per group. Values represent the mean± S.E.M. 
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Figure 2~2: Pressure dependent constriction in response to a 100 mmHg 
pressure step in MCAs from Dahi-SS (low salt diet) in which one area of the 
vessel was subjected to de-endothelialization. Insert: Endothelial removal was 
confirmed by the absence of vasodilation in response to bradykinin (1.6 1-1M). 
Statistics: General Linear Model MANOVA: Endothelium intact group not 
significantly different from endothelial denuded group, p>0.05, n=5 per group. (*) 
Student t-test -paired. Bradykinin relaxation was significantly different (p <0.05) 
between the endothelial intact and denuded segments, n=5 per group. Values 
represent the mean± S.E.M. 
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5.4.2 Endothelium-Dependent Vasodilation and Arteriolar Diameter 

Bradykinin mediated vasodilation was attenuated in (endothelial intact) 

MCAs sampled from Dahi-SS with HE (fed 8. 7% NaCI). The response was 

approximately 25% of that observed in the MCAs of asymptomatic Dahi-SS fed 

8. 7% NaCI for 1 week (Figure 23). Vasodilation to bradykinin was still observed 

after NOS inhibition (100 1JM L-NAME) in MCAs sampled from Dahi-SS fed 8.7% 

NaCI for 1 week indicating that significant a degree of endothelial dependent 

bradykinin vasodilation must be produced by a non-NO vasodilator (Figure 23). 

5.4.3 Modulation of PDC by the Endothelium and Nitric Oxide Synthase 

The endothelium intact MCAs of asymptomatic Dahi-SS fed 8.7% NaCI for 

1 week constricted to L-NAME (1 00 j..tM) indicating the presence of the release of 

basal NO. MCAs sampled from post-HE Dahi-SS exhibited an attenuated ability 

to const1rict in response to L-NAME (Figure 24) suggesting the possibility that the 

basal n3lease or action of NO may have been reduced. The level of 

vasoconstriction to L-NAME observed in asymptomatic Dahi-SS fed 8. 7% NaCI 

for 1 week was significantly lower than that observed in intact endothelial 

.segment's of MCAs from Dahi-SS fed a normal diet (Figure 24). In MCAs 

sampled from Dahi-SS fed 0. 7% NaCI, endothelial removal attenuated but did not 

abolish the ability of L-NAME to elicit vasoconstriction (Figure 24). This indicated 

that a non-endothelial source of basal NO release must be involved in promoting 

vasodilation in the MCAs (Figure 24). 
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Figure 23: Endothelial mediated bradykinin vasodilation of MCAs sampled from 
Dahi-SS. The MCAs of asymptomatic Dahi-SS fed 8.7% NaCI for 1 week (n=4) 
and post-HE Dahi-SS fed 8.7% NaCI (n=9) were compared. The ability of NOS 
inhibition to inhibit bradykinin mediated vasodilation was assessed in the same 
MCAs that were sampled from Dahi-SS fed 8.7% NaCI for 1 week (n=4). 
Responses to 1.6 IJM bradykinin are shown. Statistics: ANOVA with post hoc 
Fisher t1est. Significant*, post-HE group vs asymptomatic and asymptomatic+ L
NAME, p<0.05. Values represent the mean± S.E.M. 
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Figure :24: Effect of nitric oxide synthase (NOS) inhibition (1 00 !JM L-NAME) on 
the MCA diameter in arteries sampled from asymptomatic (n=4), post-HE Dahi
SS (n=!i) fed 8.7% NaCI and Dahi-SS fed 0.7% NaCI. The effect of endothelial 
removal on L-NAME induced vasoconstriction was assessed in MCAs sampled 
from Dathi-SS fed 0.7% NaCI (n=4). Statistics: ANOVA with fisher post-hoc test. 
Significant *, post-HE group vs asymptomatic Dahi-SS group vs Dahi-SS 
endothelial intact group, +, asymptomatic Dahi-SS group vs Dahi-SS endothelial 
intact group p<0.05. Values represent the mean± S.E.M. 
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Table 4 outlines the effects of endothelium removal and NOS inhibition 

with L-I\IAME on PDC. MCAs used in the experiments were sampled from Dahi

SS fed 0.7% NaCI (n=4). Endothelial removal did not alter the amplitude of the 

PDC response to 1 00 mmHg pressure step. However, the dimensional range 

over which constriction to pressure occurred was shifted to more constricted 

lumen diameters in the absence of endothelium (i.e. + endothelium from 195 ± 7 

1-1m at the start of PDC to 154 ± 7 1-1m at the end of PDC versus - endothelium 

140 ± 115 IJm at the start of PDC to 108 ± 13 IJm at the end of PDC). This 

indicated that although the endothelium is not involved in promoting PDC, the 

presence of an intact endothelium exerts a dilatory influence on the MCAs 

shifting the operating range of PDC to larger lumen diameters. If the dilatory 

influence of the endothelium was only mediated by the basal release of NO from 

the endothelium then it would be expected that after endothelium removal the 

subsequent addition of the NOS inhibitor, L-NAME would not alter arterial lumen 

dimensions. As shown in Table 4, this proved not be the case. After endothelial 

removal, L-NAME produced greater degrees of constriction. This indicated that a 

non-endothelial source of NO must have also been influencing basal tone in the 

MCAs. Finally, we assessed the possibility that the endothelium released a non 

NO vasodilator that was capable of influencing PDC and basal tone. IF 

endothelial and non-endothelial NO were the only source of vasodilatory 

influence in the MCAs and the endothelium produced no other vasodilator 

.capable of influencing basal tone then under conditions where NOS was inhibited 
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TABLE 4: Effect of L-NAME (100~M) on PDC in Intact and Denuded segments 
of MCAs of Dahi-SS 

Group 1s1 PDC 1s1 PDC 1sr PDC 2na PDC 2na PDC 2na PDC 
Start Finish (%) Start Finish (%) 
(~m) (~m) (~m) (~m) 

+ L-NAME +L-NAME +L-NAME 
Intact 

Endothelium 195 ± 7a 154 ± 7 -21.0b 146 ± 30 130 ± 22 
(n=4) 

Denuded 
Endothelium 140 ± 15 108 ± 13 -22.8b 106 ± 17 103 ± 16 

(n=4) 

Values represent the mean± S.E.M. 

a P<0.0!5 Lumen size at start of 1st PDC between intact and denuded segments. 

b P<0.0!5 Amplitude of 1st PDC versus 2nd PDC 

-10.9 

-2.8 
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, the subsequent removal of the endothelium would be inconsequential. As 

shown in Table 4 this was not the case. In the presence of L-NAME, endothelial 

removal further constricted the MCAs indicating that basal tone was influenced 

by a non-NO vasodilator that originated from the endothelium. 

A. shown in Table 4, the amplitude of the PDC in the MCAs was 

attenuated in the presence of L-NAME and further reduced when endothelium 

was removed during NOS inhibition. In out view, this observation could be 

misinterpreted to indicate that basal NO release (± endothelial non-NO 

vasodilatory influence) may be involved in promoting PDC. A more likely 

explanation of this phenomena is that the sequential abolishment of all basal NO 

influenc•e (via L-NAME) plus endothelial dependent non-NO effects (via 

endothe~lial removal in the presence of L-NAME) increases basal tone in the 

MCAs to a point where further constriction by other influences is limited. Hence 

the ability of pressure to induce further constriction is attenuated and the 

amplitude of PDC to a 100 mmHg pressure step is reduced (Table 4). 

Table 5 demonstrates that in MCAs sampled from Dahi-SS fed 0.7% NaCI 

(for 9 weeks), excess levels of L-arginine (SmM) or D-arginine (SmM) did not 

effect the ability of the MCAs to elicit PDC in response to a 100 mmHg pressure 

step. Pre-treatment with L-arginine but not D-arginine inhibited the ability of L

NAME to induce vasoconstriction. Since L-NAME is a competitive inhibitor of 

NOS, the ability of high levels of L-arginine (the proper substrate for NOS) to 
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TABLE 5: Role of Arginine Isomers (LID) on PDC and L-NAME (100 IJM) 

Induced Constriction in MCAs of Dahi-SS 

Group PDC (%) Lumen (~J.m) Lumen (~J.m) ~Lumen %lumen 
Pre-arginine Post-arginine Diameter constriction in 
Application Application (IJm) response to 

L-NAME 
(I 00 !J.m) in the 
presence of L 
or D-arginine 

L-Arginine 
(81JM) 27.7±3.2 129.7±11.1 131.1 ±3a 1.4±10.5 ob 
(n=4) 

· D-Arginine 
(81JM) 33.1±4.5 127.7±10.4 113.7±5.4 -14.1±9.4 -22.6±3.8 
(n=4) 

Values represent the mean± S.E.M 

a P<0.05 vs Lumen Diameter after Arginine Incubation 

b P<0.05 vs L-Name Response in D-Arginine Group 
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prevent L-NAME action would suggest that the vasoconstriction produced by L

NAME was in fact being mediated by the inhibition of NOS. 

5.5 DISCUSSION 

MCAs of post-HE Dahi-SS fed 8. 7% NaCI displayed an inability to respond 

to a 100 mmHg pressure step whereas the MCAs from asymptomatic Dahi-SS 

fed 8.7% NaCI for 1 week exhibited robust PDC. The influence of NO and the 

endothelium on basal tone and PDC were assessed in MCAs sampled from 

healthy Dahi-SS fed a normal salt (0.7% NaCI). We observed that endothelial 

removal did not alter the amplitude of PDC in the MCAs but shifted the operating 

range of the lumen diameter changes in response to pressure to a more 

constricted state. This indicated that the endothelium exerted a basal 

vasodilatory influence that modulated PDC. The observation that endothelial 

removal under conditions of NOS inhibition further enhanced vasoconstriction 

suggest1ed that a proportion of the vasodilation produced by the endothelium was 

mediated by a non-NO vasodilator. The ability of the endothelium to release a 

non-NO vasodilator was further supported by the finding that a substantial 

proportion of vasodilation produced by bradykinin in the MCAs was endothelial 

dependemt but not NO mediated. In the absence of endothelium, NOS inhibition 

enhanced MCA constriction indicating that a non-endothelial source of NO 

influencE~d basal tone in the MCAs the sequential removal of the endothelium and 

the total inhibition of NOS and presumably all NO production progressively 
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increase~d basal MCA constriction. In doing so, it limited the further ability of the 

MCAs to constrict in response to pressure and thus reduced the amplitude of 

PDC observed in response to a 100 mmHg pressure step. 

MCAs sampled from Dahi-SS with HE that were fed 8.7% NaCI exhibited 

an attenuated ability to constrict in response to NOS inhibition and to dilate in 

response to bradykinin when compared to arteries sampled from asymptomatic 

Dahi-SS fed 8.7% NaCI or Dahi-SS fed normal salt. This suggested that the 

basal rellease of NO (from endothelial and non-endothelial sources) is reduced 

and that endothelial dependent vasodilation initiated by bradykinin and mediated 

by NO and non-NO vasodilators are compromised in the MCAs of Dahi-SS with 

HE. 

5.5.1 Nitric Oxide and Hypertension Development 

The endothelium plays an important role in regulating cerebrovasculature 

tone through the release of constrictor and vasodilatory factors (Faraci, 1993; 

Faraci ~~ Heistad, 1998) and the impairment of endothelial function plays role in 

hypertension development (Boulanger, 1999). In the present study, the 

cerebrovascular tone in MCAs from Dahi-SS is likely regulated by the release of 

vasodilatory factors from the endothelium. The observation that endothelial 

removal produced a significant decrease in lumen diameter in comparison to 

intact endothelial segments suggests that the endothelium decreases basal tone. 

Despite this increase in basal tone after endothelial removal, the dynamics of the 
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PDC response were not significantly different in endothelial intact segments 

versus denuded segments (see Table 4). This is consistent with previous studies 

in which the removal of the endothelium in a number of different vascular beds 

did not attenuate the PDC response (McCarron et a/., 1989; Kuo et a/., 1990; 

Falcone eta/., 1991). 

Prior to this study, altered NO activity has not been shown in the 

cerebrovascular of Dahi-SS. However, the kidney has shown impaired NO/NOS 

activity (Chen & Sanders, 1993; Chen et a/., 1993). Oral administration of L

arginine (the biological substrate for NO) reverses salt induced hypertension in 

Dahi-SS rats and NO production is reduced when Dahi-SS (but not Dahi-SR) are 

fed high salt (8% NaCI) (Chen et a/., 1993). Furthermore, Dahi-SS fed high salt 

(8% NaCI) also have lower levels of NOS activity (Hayakawa & Raij, 1998). 

Therefore, it is plausible to suggest that defects in NO generation may play a role 

in hypertension development in Dahi-SS and that such alterations extend to 

multiple vascular beds, which include the cerebrovasculature. 

5.5.2 Endothelium Dependent Vasodilation in MCAs of Dahl-55 

Endothelium-dependent vasodilation is impaired in many models of both 

experimental and human hypertension (Luscher & Vanhoutte, 1986; Panza et a/., 

'1990). This is consistent with the present study in which MCAs of post-HE Dahi

SS fed high salt exhibited a significant attenuation of vasodilation to bradykinin 

(endothelial-dependent vasodilator) in comparison to MCAs of asymptomatic 
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Dahi-SS fed a high salt diet. In the presence of L-NAME, vasodilation evoked by 

bradykinin was still substantial in MCAs from Dahi-SS fed a high salt diet for 1 

week. Vasodilation to bradykinin observed in MCAs from asymptomatic Dahi-SS 

·in the presence of NOS inhibition with L-NAME suggests that another factor other 

than NO is responsible for vasodilation. 

Vasodilation in response to a number of vasodilators such as 

acetylcholine, have been suggested to be evoked by EDHF (Feletou & 

Vanhoutte, 1988; Dong eta/., 2000; Golding et a/., 2002). There has been much 

debate over the past decade as to the mechanisms underlying EDHF evoked 

vasodilation but a general consensus is that it is mediated by the opening of K+ 

channels (Triggle et a/., 1999; Dong et a/., 2000; Busse et a/., 2002). The 

mechanisms underlying EDHF mediated vasodilation is complex because it is 

dependent on the particular vascular bed of interest (Edwards et a/., 1998; Dong 

eta/., 2000). The additional non-NO vasodilatory factor observed in the present 

study may be EDHF however at the present time sufficient experimental 

evidenc~3 supporting or contradicting the above theories is not available. 

5.6 CONCLUSIONS 

As Dahi-SS develop hypertension in response to high salt feeding there is 

a significant increase in basal tone in the cerebrovasculature of these animals. 

The increased level of basal tone observed in the MCAs of Dahi-SS fed high salt 

could be precipitated by the decreased influence or release of endothelial 
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sources of NO and or non-endothelial vasodilators. The loss of PDC and CBF 

autoregulation observed in Dahi-SS with HE was not produced by an endothelial 

defect since PDC was robust in MCAs of Dahi-SS lacking a functional 

endothelium. The importance of the increased basal tone observed in Dahi-SS 

with HE may be that it acts as a protective mechanism to counteract increases in 

CBF, due to increased BP. This is consistent with the observation that 

hemorrhage formation is rare in these animals following development of HE and 

the characteristics of CBF autoregulation observed in Dahi-SS fed high salt 

. (discussed in Figure 17). 

5. 7 OVERALL SUMMARY OF STUDY 

The overall focus of the present study was to evaluate the Dahi-SS as a 

model for stroke development. Dahi-SS rapidly developed high blood pressure 

when fed a high salt diet (8. 7% NaCI). This was subsequently followed by death 

2.5 wee!ks after the initiation of the diet. Prior to death, Dahi-SS exhibited 

behavioural symptoms, which were thought to be consistent with the 

development of stroke. 

VVe characterized the cerebrovascular pathology of rats exhibiting 

behavioural signs thought to be consistent with stroke. These rats displayed 

significant levels of edema and fluid extravasation indicative of the breakdown in 

the inte~}rity of the blood brain barrier and fluid movement into the extravascular 

space. Brain ischemia was absent and intracerebral hemorrhage was rare. We 
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concludE~d that the behavioural abnormalities observed in Dahi-SS prior to death 

were indicative of hypertensive encephalopathy. This condition occurs during 

hypertension and is associated with the development of seizures, coma, stupor 

and can produce death in humans. It is differentiated from true stroke by the fact 

that it can occur in the absence of cerebral ischemia and hemorrhage. 

Plasma aldosterone was elevated in Dahi-SS with stroke but the levels of 

this hormone were far less than those observed in a high renin-angiotensin 

model of stroke development such as SHRsp. The antihypertensive agent 

(captopril) was ineffective in lowering blood pressure or preventing death. 

Multiple end organ failure was evident prior to death as demonstrated by kidney 

dysfunction characterized by an increase in plasma creatinine, urinary protein 

excretion, and plasma urea nitrogen as well as decreased plasma albumin. 

The ability of Dahi-SS to autoregulate CBF was altered in relation to the 

duration that the rats were fed 8.7% NaCI. After 3 weeks of high salt feeding, 

even asymptomatic Dahi-SS lost the ability to autoregulate CBF. This indicated 

that CBF autoregulation was lost prior to HE development. We subsequently 

assessed PDC in isolated MCAs. Pressure dependent constriction of the 

~erebrovasculature is thought to be an important mechanism involved in 

maintaining CBF autoregulation. Elevations in blood pressure promote 

cerebrovascular vasoconstriction. The latter response increases cerebrovascular 

resistance to flow and counteracts the potential increase in CBF that might be 
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produced by the elevated BP. The net result is that CBF remains constant 

despite the elevation in BP. 

PDC in the MCAs was attenuated in asymptomatic Dahi-SS fed high salt 

for 3 weeks and was totally abolished in rats exhibiting HE. Chronologically, the 

defects iin PDC coincided with the loss of CBF in the MCAs. The characteristics 

of CBF regulation with varying BP and the nature of the changes observed in 

isolated MCAs suggested that CBF autoregulation was lost under conditions 

·consistent with the presence of cerebrovasculature vasoconstriction. This 

alteration could have blunted the potential overperfusion of the 

cerebrovasculature that might have been expected under conditions where CBF 

autoregulation was lost in the presence of hypertension. This may have exerted a 

protective effect, which prevented the progression of HE to the development of 

intracerebral hemorrhage thus accounting for the low incidence of cerebral 

hemorrhage observed in our model. 

The loss of PDC appeared to be coupled with a dysfunctional PKC 

system. Dahi-SS with HE were unable to constrict to PKC activation via phorbol 

esters. Since PKC antagonist's inhibit PDC, it is possible that the absence of 

PDC in the MCAs of Dahi-SS with HE may have been produced by a 

dysfunctional PKC system. There was also an abnormal response to endothelial

derived vasodilators. MCAs from post-HE Dahi-SS exhibited significantly higher 

levels of basal tone and no response to the endothelial dependent vasodilator, 

bradykinin. The basal production of NO and non-NO endothelial dependent 
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vasodilators and or the actions of these dilators were diminished in Dahi-SS with 

HE. All the latter alterations could contribute to the production of increased basal 

tone in MCAs of Dahi-SS. This abnormal function may have been beneficial. The 

decreased vasodilatory capacity of the cerebral vasculature could have 

increase1d cerebrovasculature under in vivo conditions. In doing so, it might have 

reduced the degree of overperfusion that might have occurred under 

hypertensive conditions, thus retarding the progression of HE to cerebral 

hemorrhage in Dahi-SS. 

A schematic diagram outlining the possible mechanisms promoting the 

development of hypertensive encephalopathy in Dahi-SS is outlined in Figure 25. 

Hypertension development in Dahi-SS is promoted by volume loading (i.e. Na+ 

and water retention) in response to a high salt diet. As the kidney becomes 

damaged, proteinuria and uremia develop. The development of proteinuria 

decreases plasma protein and oncotic pressure. The latter alterations, in 

combination with high hydrostatic pressure, facilitate the movement of fluid into 

the extravascular space, causing HE development (i.e. edema formation). As BP 

increases, PDC (via alterations in PKC activity) and CBF autoregulation becomes 

dysfunctional. This ultimately leads to an overperfusion of the cerebrovasculature 

further enhancing edema formation causing hypertensive encephalopathy 

development. 
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5.8 Future Experimental Directions 

Future studies using the Dahi-SS model of HE should focus on a number 

of key areas that have immerged from the present study. These include further 

analyses of the PKC signal transduction pathway evaluating specific isoform(s) of 

PKC as well as its downstream targets involved in promoting PDC. In addition, 

addressing these questions in light of the development of HE to determine the 

specific nature of PKC dysfunction that is involved in HE development. Changes 

in NO activity, including the contribution of other forms of endothelium dependent 

vasodilators (i.e. EDHF) that may play a role in modulating activity prior to and 

followin~J HE development also need investigation. Further, do alternative pools 

of NO (i.e. smooth muscle) exert any effects on modulating myogenic activity? 

Finally, with the present study being the first to develop a animal model for HE, a 

further investigation how the animal model correlates with the onset of HE in 

humans in terms of pathology and possible treatment of the symptoms observed 

in the animal model. 

The present study clearly demonstrates that PKC activation is involved in 

the pressure dependent constriction response and further; PKC signaling is 

altered following the development of HE. These observations lead us to postulate 

how PKC activation is altered. Using specific antibodies against the various 

isoform(s) of PKC we will be able to determine what isoform is present prior to 

development of HE and further if there is a down regulation of a particular isoform 

followin~1 the development of HE. Secondly, with the recent advancement in 
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selective antagonists of the specific isoforms of PKC we can determine if 

inhibition of particular isoforms of PKC mimic the effects observed with global 

PKC inhibition effects outlined in chapter 4. Of the current 11 isoforms of PKC, 

two candidates have recently been suggested to be involved in promoting 

myogenic activity, PKC-a and PKC-E. Both PKC-a and PKC-E have been 

implicatHd in myogenic contractions of the coronary microcirculation (Dessy et 

a/., 1998; Dessy eta/., 2000). 

In addition to the possible specific isoforms of PKC involved in promoting 

the PDC response in this model evaluation of downstream targets like the TRPc6 

channel described in chapter 4 are worth further investigation. Using 

oligodeoxynucleotide antisense treatment we can determine if inhibition of this 

channel disrupts PDC in MCA's from Dahi-SS to mimic the loss of PDC observed 

in post-HE Dahi-SS. Also, if this is an important target of PKC in generating PDC, 

does the mRNA for the TRPc6 decrease as PDC becomes attenuated during the 

development of HE. 

Although the mechanisms involved in generating PDC are mediated in the 

smooth muscle the endothelium also plays an important role in modulating 

myogenic activity. In the present study two interesting observations were noted. 

These were that there was an endothelium dependent vasodilation present in the 

presenCie of NOS inhibition and also that constriction to NOS was present in 

vessels in which the endothelium was removed. 
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The first observation suggests the presence of a non-NO dilatory 

substance. As outlined in Chapter 5 the likely candidate is EDHF. EDHF is 

interesting as the specific mechanism underlying its activation remains to be 

elucidated. According to a recent review article evidence exists for three possible 

mechanisms, (i) the activation of the cytochrome p450 pathway, (ii) endothelial 

cell hyperpolarization that is transmitted to the smooth muscle via gap junctions 

and (iii) endothelial released K+ that acts on smooth muscle potassium channels 

or activates Na+-K+-ATPase inducing smooth muscle hyperpolarization (Busse et 

a/., 2002). The initiation of these mechanisms all requires endothelial K+ channels 

activation prior to EDHF release. Located on endothelial cells are three main K+ 

channel:s that are classified on their conductance states. These include small 

conductance channels (sK), intermediate conductance channels (iK) or large 

conductance channels (BK) Busse eta/., 2002). 

To determine if the observed dilation to bradykinin in the presence of NOS 

inhibition was mediated via EDHF the classical experiment is the selective 

inhibition of both the iK (apamin) and sK (charybdotoxin) channels. If EDHF is the 

residual dilatory component released in the MCAs of Dahi-SS, the selective 

inhibition of these K+ channels will inhibit the remainder of the dilatory component 

to bradykinin that is insensitive to NOS inhibition. If there is an EDHF component, 

the seleetive inhibition of cyotochrome p450 with 17 -ODYA or gap junction 

inhibitors (GAP 27) will further our knowledge as to the specific mechanisms that 
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SS. 
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The observation that NOS inhibition with L-NAME still evoked a 

vasoconstriction in MCAs in which the endothelial had been removed suggests 

the involvement of a non-endothelial source of NO. In order to evaluate this in 

our model, cross sections of MCA's could be stained nitric oxide. This will 

determine where pools of NO are located within these vessels. Also, if this 

particular pool of NO is important, does this pool become reduced in response to 

HE development. 

Finally, this is the first animal model of HE and further investigation into 

what pre!cipitates its onset it needed. Based on the observations in present study 

Dahi-SS undergo a rapid elevation in BP following the feeding of a high salt diet 

whereas Dahi-SR does not. In humans, patients who exhibit signs of HE treated 

by reducing the hypertension which restores normal cerebral blood 

autoregulation and stops on the developing edema formation. In order to 

substantiate this model and a viable model for HE we have to demonstrate that a 

reduction in BP abrogates the onset of HE in these animals. However 

conventional antihypertensive treatments using ACEis and AT1 receptor 

antagonists (losartan) failed to reduce the BP or the onset of HE in this model. 

Therefore, in future experiments, new anthypertensive treatments are required to 

try and reduce the BP in Dahi-SS fed high salt and retard the onset of HE. One 

such treatment might be through the use of diuretics like hydralazine. Since, the 
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hypertension observed in this model is via volume overload maybe the use of 

diuretics could lower BP reverse the effects of HE development. A corollary 

experiment would be to induce high BP in Dahi-SR to determine if the raising of 

BP in these animals mimics the HE symptoms observed in Dahi-SS or if the 

raising of BP not the precipitating factor but is through a yet unknown mechanism 

that is unique to Dahi-SS that predisposes them for the development of HE. 

Overall, by further investigating the underlying mechanisms at the level of 

the smooth muscle and endothelium that become dysfunctional in response to 

HE devE~Iopment along with the global precipitating mechanisms (i.e. increases in 

BP) our understanding of the first animal model of HE will be furthered. Untimely 

will help understand the onset of HE in humans leading to better prevention and 

treatment paradigms. 
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