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Abstract 

A fumigation model based on probability density function (PDF) approach is presented 

here to study the dispersion of air pollutants emitted from a stack on the shoreline. This 

work considers dispersion of the pollutants in the stable layer and within thermal internal 

boundary layer (TIBL) proceeds independently. The growth of TIBL is considered 

parabolic with distance inland and turbulence is taken as homogeneous and stationary 

within the TIBL. Dispersion of particles (contaminant) in lateral and vertical directions is 

assumed independent of each other. This assumption allows us to consider the position of 

particles in both directions as independent random variables. The lateral dispersion 

distribution within the TIBL is considered as Gaussian and independent of height. A 

skewed hi-Gaussian vertical velocity PDF is used to account for the physics of dispersion 

due to different characteristics of updrafts and downdrafts within TIBL. Incorporating 

finite Lagrangian time scale for the vertical velocity component, it is observed that it 

reduces the vertical dispersion in the beginning and moves the point of maximum 

concentration further downwind. Due to little dispersion in the beginning, there is more 

plume to be dispersed causing higher concentrations at large distances. The model has 

considered Weil and Brower's (1984) convective limit to analyze dispersion 

characteristics within TIBL. The revised model discussed here is evaluated with the data 

available from the Nanticoke field experiment on fumigation conducted in the summer of 

1978 in Ontario, Canada. The results of the revised model are in better agreement with 

the observed data, as compared to other available models. The study suggests the use of 

ii 



mean absolute error and mean relative error as quantitative measures of model 

performance along with the residual analysis. 

For easy and effective use of the newly developed model, user-friendly computer 

software 'Fumig' is developed in visual basic. Fumig is built upon the developed model 

and enable easy assessment of concentration profiles under fumigation conditions. 

Keywords: Air pollution dispersion, coastal fumigation, thermal internal boundary layer, 

probability density function technique, finite vertical Lagrangian time scale. 
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Chapter 1 

Introduction 

1.1 The Air Pollution Problem of a Coastal Region and the Role of 

Environmental Engineer in Controlling the Problem: 

Air pollution problem in the coastal region is of serious concern because of population 

growth and industrialization within the coastal region. A coastal fumigation phenomenon, 

which occurs due to the entrainment of plume into inland growing thermal internal 

boundary layer (TIBL), is responsible for high ground level concentrations. 

There are many industrial disasters related to air quality in the coastal region. London 

Smog episode, which resulted in around 4,000 deaths in the city in 1952, is one 

illustrative example of such episodes. 

Air is used as a medium for dispersion of pollutants emitting out of stacks, chimneys and 

other sources in an industrial region. These pollutants are found in the form of gases (e.g., 

sulfur dioxide S02) or in the form of particulate matter (e.g., fine dust). Their dispersion 

is greatly influenced by meteorological parameters like the prevailing winds and 

atmospheric stability. Dispersion of pollutants also depends on the stack height and its 

cross-sectional area. If no control is done of these pollutants then at some distance 

downwind they reach a level where they may have adverse effects on human health, 

environment and ecology. It is the duty of an environmental engineer to predict the 

atmospheric capabilities to transport and disperse a pollutant under different 

meteorological conditions, and to design the air quality management strategies 
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accordingly. The ultimate objective is to ensure the pollutant concentration levels remain 

within the permissible regulatory standards at any location downwind. 

1.2 Fumigation: 

The dispersion in the coastal region is effected by the growth of Internal Boundary Layer. 

The boundary layer is the region in which the atmosphere experiences surface effects 

through vertical exchanges of momentum, heat and moisture. 

Airflow across coastline (henceforth referred to as onshore flow), results into a spatially 

growing internal boundary layer due to differences in the physical properties of the land 

and water surfaces such as surface roughness and temperature. A mechanically forced 

internal boundary layer develops as the result of an abrupt change in surface roughness. 

However, when an onshore flow encounters the shoreline during the day with clear skies, 

the mechanical internal boundary layer is generally dominated by the thermal effects of 

the ground that give rise to the development overland of a thermal internal boundary 

layer (TIBL). 

For the Growth of TIBL onshore, the following conditions must be met: 

• onshore wind (Sea breeze) 

• land is warmer than sea 

• air over sea is stably stratified 

Under such conditions, the air above the TIBL, representing the (undisturbed) onshore 

flow, maintains a stable (or neutral) vertical potential temperature gradient, whereas the 

upward heat flux from the ground tends to produce convection, the extent of which 

defines the boundary-layer height (or depth). 



Vertic a! spread of plume 
within stable region 

tz 
Surface of TIBL 

I 

~~----------~: ---------=!:rb~::::l:e -;;;;;-~~ r 
T!BL (Fumigation) 

~ z;(x) 
~ -

~ 

Figure 1.1 Typical dispersion pattern in coastal region 
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Coastal fumigation is a turbulent dispersion process in which a plume, from an elevated 

continuous point source, traveling in a stable onshore flow with relative little diffusion is 

intercepted by the growing TIBL. The plume is then subsequently mixed down to the 

ground by the large scale convective eddies and this may result in high ground level 

concentration of pollutants ( c.f. Figure 1.1 ). 

An environmental engineer should be able to predict the concentrations of the pollutants 

along the affected reach. Experimental methods are very expensive in this regard and 

cannot be employed in every coastal region. Therefore a predictive theory is required 

which can produce realistic concentration profiles with a minimum number of 

measurements. Also it is not possible to make measurements of resulting air quality for a 

facility that has not yet been constructed. So air dispersion modeling is the only way to 

estimate this future impact. 

Mathematical models of fumigation have been developed to compute the concentration 

distribution using analytical techniques appropriate for routine and regulatory 

applications. In these models the Lagrangian time scale for random vertical velocity (w) 

is infinite so that the particle velocity at any downwind distance (x) is uniquely 

determined by its initial velocity. Mason's (1992) dispersion simulations using a 

Lagrangian model and large-eddy simulation fields show that a systematic reduction in 

vertical dispersion occurs with increasing wind speed. In the present work a revised 

analytical fumigation model by incorporating a finite Lagrangian timescale is developed 

for vertical dispersion, under sea breeze and strong convective conditions. 
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1.3 Some Basic Definitions and Concepts: 

• Turbulence: Turbulence is essentially the motions of the wind over the time 

scales smaller than the averaging time used to determine the mean wind. 

Turbulence, the gustiness superimposed on the mean wind, can be visualized as 

consisting of irregular swirls of motion called eddies. Usually it consists of eddies 

of different sizes superimposed on each other. 

• Buoyant Generation of Turbulence: The heating or cooling of air near the 

surface of earth causes buoyant turbulence. During sunny mid-day with light 

winds, solar heating of the ground causes large columns of buoyant air to rise. 

These large columns of rising buoyant air are referred as thermals. At night with 

light winds, the outgoing infrared radiation cools down the ground and the air 

adjacent to it. However, at some considerable height from the ground the 

temperature of the air remains relatively unchanged. This phenomenon results 

into a temperature inversion above the ground and downward heat flux from the 

air. Negative buoyancy stems from the influence of the inversion, which causes 

the atmosphere to stabilize and resist vertical motions. The negative buoyancy 

will even damp out some of the mechanical turbulence. 

• Mechanical Turbulence: Frictional drag on the air flowing over the land causes 

wind shears to develop, resulting into mechanical turbulence. Obstacles like 

buildings deflect the airflow and cause turbulent wakes (adjacent to, and 

downwind of the obstacle). 
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• Mean and Eddy Velocities: If the flow is turbulent, the instantaneous velocity 

component (u) along the streamline will fluctuate with time even if the flow is 

steady. The average value of u over the period of time (T), usually taken as 1 

hour, determines the temporal mean value of velocity (U) at a fixed point. This is 

illustrated in Figure 1.2 and U is evaluated for any finite timeT as: 

u 

u 
I 
I 
I 
I 
I 

f.,.---
1 
I 
I 
I 
I 
I 

I 
I 
I 

T~ 
: 
I 
I 
I 
I 

u'(t) 

Figure 1.2 Definition of mean and eddy velocities 

(1.1) 

The difference between u and U at any instant, which is designated in Figure 1 as 

u', is called the eddy or fluctuating velocity. This fluctuation due to turbulence of 

the flow may be either positive or negative. Thus at any instant 

u' = u- U (1.2) 

If the mean wind (streamline) direction is aligned with the horizontal x-axis and 

there is no significant large vertical motion then the average velocity components 

V and W in lateral (y) and vertical (z) directions respectively are negligible. Thus 

at any instant for eddy velocity components along y and z directions are v' = v 

and w' = w , respectively. 
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The temporal mean values of eddy velocity components are zero 

u' = 0 ; v' = 0 ; w' = 0 (1.3) 

This implies that the time period is long enough within which positive and 

negative fluctuations associated with these components become equal. 

Moreover the average of the square of eddy velocity is the statistical measure of 

the dispersion about the mean velocity, known as variance. 

(1.4) 

The square root of the variance is called standard deviation. 

• Ensemble Average: The average value of the quantity taken over the identical 

experiments. For example, the ensemble average of the concentration c(x,t) is 

measured at point x at time t after many repeated identical trials. For turbulence 

that is both stationary and homogeneous (statistically not changing over time and 

space), the temporal and ensemble averages are equal. This is called the ergodic 

condition. 

• Advection: Transport by an imposed current system, as the transport of pollutants 

in the atmosphere by wind. 

• Conduction: Transfer of heat from molecule to molecule within a substance. 

• Convection: Vertical transport induced by hydrostatic instability, such as the 

flow over a heated plate. 

• Free Convection: If the fluid is initially at rest and no forces are present that 

would subsequently induce large-scale horizontal motion then small perturbations 

can initiate the transformation of the fluid's potential energy into kinetic energy. 
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Such motions are called free convection. Generally speaking, when buoyant 

convective process dominates, the atmosphere IS said to be m a state of free 

convection. 

• Forced Convection: In the situation where the fluid is driven horizontally by 

some external force, the motions are called forced convection. In atmosphere 

when mechanical process dominates, the atmosphere is said to be in a state of 

forced convection. 

• Sensible and Latent Portions of Heat Flux: Transfer of heat per unit area per 

unit time is known as heat flux. Sensible heat flux removes heat from the ground 

surface to air due to the processes of conduction and convection. Conduction 

warms the very thin layer of air closest to the surface and convection transports 

this heat away from the surface to the surrounding atmosphere. In a latent portion 

of heat flux, the moist surface gets cooled (i.e. loses energy) through evaporation 

of liquid water at the surface of the earth. On the other hand, air gets warmed (i.e. 

gains energy) through condensation of water vapor in the atmosphere. Together 

this transport of latent heat acts to take energy away from the surface and transfer 

it to the atmosphere. Both of these fluxes reach a peak during mid-day at roughly 

the same time as the solar forcing peaks, and are small in the morning and 

evening. This supports the concept of partitioning the heat flux. 

• Bowen Ratio: The Bowen Ratio is defined as the ratio of sensible to latent heat 

fluxes at the surface. 
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• Albedo: It is the ratio of the flux of solar radiation diffused by a surface to the 

flux incident upon it. 

• Potential Temperature: It IS the hypothetical temperature that would be 

achieved if air at an actual (ambient) temperature (Ta) and pressure (PJ is 

compressed in an isentropic fashion to the ground level pressure P0=1000 mb. It 

removes the temperature variation caused by changes in pressure altitude of an air 

parcel and is given by: 

( )

R/cp 

B=T Po 
a p 

a 

(1.5) 

Here R represents the specific gas constant for air and thermodynamic coefficient 

cp is the specific heat at constant pressure. 

The change of potential temperature with height ( y) is related to the change of 

temperature with height by: 

(1.6) 

Where r is the dry adiabatic lapse rate and equal to 0.0098 Kim. The parameter 

y is used to characterize the stability of the atmosphere. It will be positive for 

stable atmosphere; near to zero for neutral atmosphere; and negative for unstable 

atmosphere. 

1.4 Characteristics of TIBL: 

The characteristics of TIBL are similar to that of a mixed layer (ML) within a convective 

boundary layer. The mean characteristics of mixed layer are summarized as follows. 
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Figure 1.3 Overshooting of a rising air parcel 
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During the overshoot into the inversion, curtains of warm free atmosphere air are pushed 

into the TIBL and rapidly mixed down because of strong turbulence. This results into the 

entrainment of free atmosphere air into the TIBL. Thus the TIBL erodes into the free 

atmosphere. 

The rate at which the air entrained into the top of TIBL is given by the entrainment 

velocity (we). The expression for entrainment velocity is discussed in chapter 4 and 

derived in Appendix 1. 

1.5 Objectives of the Current Study: 

The objectives of the current study are fourfold: 

1. To develop a model, which can predict concentration distribution more 

reliably and efficiently under coastal fumigation conditions. 

2. To undertake the sensitivity analysis of the model. This analysis will reveal 

sensitive input parameters to the model. 

3. To evaluate and to validate the model performance by comparing the results 

with field data and already existing fumigation models. 

4. To develop a computer code, based on the model, for easy (routine and 

regulatory) applications of the model. 
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1.6 Significance of Study: 

Air quality models improve the effectiveness of air quality management. Through 

models, the contribution that exceeds the limit values from various sources is established. 

Based on the model estimates, air quality monitoring networks are designed. To monitor 

air quality for a facility that has not yet been constructed, air quality dispersion modeling 

is not just attractive but necessary. 

Researchers have been trying to improve existing models to account for the coastal 

fumigation phenomenon, hydrodynamics of breeze effect and the consequent dispersion 

for the last three decades. Regulatory agencies such as US environmental protection 

agency (US EPA), has designed regulatory software packages based on these models by 

taking the advantage of high-speed computers. Two models, CALPUFF and AERMOD 

are among the latest US EPA regulatory models. CALPUFF deals with the coastal 

dispersion but AERMOD does not. However, CALPUFF model requires extensive set of 

meteorological data, which restricts its applicability to limited regions as discussed by 

Fisher et al (2003). 

The significance of the study is to develop a fumigation model, which can account for the 

physics of the TIEL and its spatial growth. This model will be used in air quality 

modeling in coastal region. The model will be able to give more reliable concentration 

predictions and can be used in regulatory and monitoring purposes effectively in coastal 

region using routinely observed meteorological parameters. 
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1.7 Outline Of Thesis: 

The literature review is presented in Chapter 2. This Chapter describes the available 

analytical models for coastal fumigation developed so far. 

Chapter 3 encompasses the development of an analytical model for an elevated point 

source within the convective boundary layer. This model is then extended for the coastal 

fumigation case in Chapter 4. The parameters of this model are also explained in this 

Chapter. 

Performance evaluation of the model with field study and its comparison with other 

fumigation models are done in Chapter 5. A sensitivity analysis of the fumigation model 

is undertaken in Chapter 6. 

Chapter 7 presents the tool, based on the fumigation model, for easy applications. The 

concluding remarks and recommendations are given in Chapter 8. 



2.1 Introduction: 

Chapter 2 

Literature Review 
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A number of studies have been conducted in the past to investigate the complex nature of 

dispersion process of air pollutants in the coastal environment. Various mathematical air 

pollution models have been developed to study the dispersion mechanism by considering 

the unique meteorological conditions present in the coastal region. These models are 

solved either analytically or numerically with the advent of high-speed computers. 

This chapter provides a review of the studies related to air pollutant dispersion within the 

coastal region. 

2.2 Coastal Dispersion: 

Dispersion phenomenon in coastal region is unique because of the hydrodynamics of the 

breeze effect and consequent formation of TIBL with its height variation along the 

distance inland. Within the TIBL air is very unstable and turbulent. Above the TIBL the 

air is stably stratified and having the same characteristics as that of the over water air. 

The plume emitting from a stack located on a shoreline travels in the stable layer aloft 

with little diffusion unless it is intercepted by the TIBL. Within TIBL plume mixes 

rigorously because of turbulence and results into high ground level concentrations. This 

phenomenon is known as fumigation. Already existing fumigation models and their 

shortcomings are discussed in this section. 
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2.2.1 Gaussian Plume Model: 

The Gaussian plume model is the most common air pollution dispersion model. This is 

based on mass balance approach and describes the three-dimensional concentration field 

generated by a point source under stationary meteorological and emission conditions. 

This model can be used in any situation where the distributions of velocities in both the 

horizontal and vertical directions are expected to be well represented by a Gaussian or 

normal distribution over the selected averaging time (usually an hour). 

The model is expressed by: 

(2.1) 

The variables used are: 

C(x,y,z;H) Air pollutant concentration [~] 

Q Pollutant emission rate [~] 

U Wind speed at the point of release [~] 

aY (x) The standard deviation of the concentration distribution m the crosswind 

direction, at the down wind distance [L] 

az (x) The standard deviation of the concentration distribution in the vertical direction, 

at the down wind distance [L] 

H The effective height of the centerline of the pollutant plume [L] 
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Concentrations at the receptor downwind, calculated from the model, are directly 

proportional to the emissions and inversely proportional to wind speed. The greater the 

downwind distance from the source, the greater the horizontal spreading, aY , and the 

lower the concentration. The exponential term including the ratio of y to aY corrects for 

how far the receptor is off the center of the distribution in terms of standard deviations. 

Similarly, the greater the downwind distance from the source, the greater the vertical 

spreading, a,, and the lower the concentration. The sum of the two exponential terms 

account for the receptor height from the plume centerline before and after reflection. The 

term "H-z" represents the direct distance of the receptor from the plume centerline. The 

term "H+z" shows the reflected distance of the receptor from the plume centerline, which 

is the distance from the plume centerline to the ground (H) plus the distance back up to 

the receptor (z) after the reflection. Both crY and cr, depend on downward distance (x) 

and are governed by atmospheric stability. This atmospheric stability depends on 

mechanical and buoyant turbulence. The most popular method for estimating atmospheric 

stability is based on the stability classification system proposed by Pasquill and then 

modified by Gifford. It is commonly known as Pasquill-Gifford (PG) system. To classify 

the atmospheric stability, the mechanical turbulence is considered by the inclusion of the 

surface wind speed (- 10-meter above ground), in the PG system. The source of buoyant 

production of turbulence is the surface heat flux during daytime, which is driven by 

incoming solar radiation. The negative buoyant turbulence generation is considered 
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through the nighttime cloud cover. At night, the cloudiness is an indirect measure of the 

incoming thermal radiation, which counteracts the radiative cooling of the ground. 

The PG system categories, which range from A (strongly unstable) to F (moderately 

stable), are each associated with curves for the dispersion measures aY and a,. 

2.2.2 The Limitation of the Gaussian Plume Model Within CBL: 

CBL consists of downdrafts and updrafts. Updrafts occupy - 40% of the horizontal area 

within CBL, the remaining - 60% area consists of downdrafts. Upward vertical velocities 

are higher in the updrafts than downward vertical velocities in the downdrafts (Lamb, 

1982; Wyngaard,1988; Weil, 1988). This results in a non-Gaussian vertical velocity 

distribution. Samples of vertical velocity (Caughey, et al., 1983; Deardorff and Willis, 

1985) measured both in updrafts and downdrafts typically show a positively skewed 

distribution with negative mode in the bulk of the CBL. 

The plume centerline generally does not stay at the same height under convective 

conditions. For elevated sources the centerline descends until it reaches the ground and in 

contrast for ground level releases the plume lifts off the ground. This was verified by 

laboratory studies (Deardorff and Willis, 1975) and numerical simulations (Lamb, 1982). 

For elevated sources, the centerline descent is explained by the greater areal coverage of 

downdrafts, and hence the higher probability of material being released into them. In 

addition, the downdrafts are long-lived so that material emitted into them tends to reach 

the surface. 
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For a surface source, material emitted into the base of an updraft begins rising almost 

immediately, whereas that released into downdrafts remains near the ground and moves 

horizontally. Since downdrafts occupy most of the horizontal area, more plume remains 

near the ground initially. However, after a significant amount of material is swept out of 

downdrafts and into neighboring updrafts, the plume centerline begins to lift off the 

ground. 

Gaussian plume model predicts that an elevated plume centerline remains elevated until a 

sufficient number of particle reflections occur at the surface; the centerline then moves to 

surface, so do the maximum concentration. 

It is concluded that a simple Gaussian model does not account for the dispersion 

characteristics of thermal internal boundary layer (TIBL), which forms on land during sea 

breeze conditions in coastal region, due to its convective nature. 

2.2.3 The Lyons and Cole (1973) model: 

Lyons and Cole (1973) modified Turner's nocturnal inversion breakup fumigation 

scheme for shoreline fumigation application. They used the model in a study of a fossil 

fuel plant located on the western shore of Lake Michigan. They considered a tall stack 

situated near the coast to describe the pollutant dispersion. The parabolic growth of TIBL 

over land was assumed during sea breeze conditions. 

The Lyons and Cole model divides the downwind dispersion area into three zones and 

three different equations are used to determine the concentrations in those regions. 
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In the first zone the elevated plume is emitted into a homogeneous stable layer. The 

concentration is calculated with a simple Gaussian model within this zone. Plume 

dispersion in lateral and vertical direction is based on the PG criteria. 

The second zone applies to the region where the plume impacts and is being entrained 

into the TIBL. The beginning of fumigation occurs at the point X8 on the TIBL interface 

where TIBL height is: 

(2.2) 

This is the position where the turbulence is just beginning to disturb the lower portion of 

the plume. Consequently, the point XE at which the majority of the plume has been mixed 

into the TIBL is given by: 

(2.3) 

Within this region the lateral dispersion of plume is considered as Guassian while the 

vertical profile of concentrations below the TIBL is considered uniform. So the 

concentrations for z::;zi, within this zone, are found by: 

C(x,y,z:=;zi:H)= J21iQ rJ(2;r)-~exp(-_iJdp]xexp[-![_l_J
2

- (2.4) 
2JZ"(}yf Uzi -~ 2 2 (}yf 

Where 

(2.5) 
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H 
(j -a +-yfg - ys S (2.6) 

ays and a,s are lateral and vertical dispersion coefficients in the stable layer, respectively. 

ayfg is the horizontal spread of the plume in the fumigation zone. A correction factor of 

H/8 is thus added to ays to account for increased dispersion in the TIBL. 

The integral in Equation (2.4) is the area under the standard normal distribution and p is 

the value of a variable having the standard normal distribution. This gives the proportion 

of the normally distributed plume that has entered the TIBL at some distance X. 

Maximum ground level concentrations are predicted at distance XE, where it is assumed 

that the entire plume has been mixed downward. 

In the third zone the plume is assumed to be trapped with a variable lid (TIBL) height. 

Concentrations are assumed to be uniform in the vertical below the TIBL. Concentrations 

are estimated fromaY(x'), a standard deviation based on x', the distance downwind from 

a virtual point source that lies between XB and XE. This way the overestimation of the 

lateral dispersion, which could be resulted by considering the actual distance from the 

source, is averted. The plume trapping formula is given as; 

(2.7) 
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2.2.4 Models of Van Dop et al. (1979) and Misra (1980): 

Van Dop et al. (1979) derived a fumigation model by solving the advection-diffusion 

equation in the TIBL. In their model the fumigation of the plume, unlike the Lyons and 

Cole (1973) model, is not restricted to the fumigation zone but occurs everywhere at the 

interface between the stable and the mixed layer. Although this does not result in large 

changes of maximum surface concentrations but Van Dop et al. (1979) model leads to 

one consistent formulation of surface concentrations. The lateral concentration 

distribution in the mixed layer at a downwind distance x is considered to be originated 

from particles which have traveled in the stable and the mixed layer successively. This is 

reflected in the composite lateral dispersion coefficient, which contains the lateral 

dispersion coefficient of both layers. 

Using a slightly different approach, Misra (1980) ends up with the same model as that of 

Van Dop et al. (1979). But he gives the different recipe for the lateral dispersion 

coefficient within the TIBL. Misra (1980) treats the net flux of material at each point (x, 

y) on the top of the TIBL as the source strength. The expression for ground level 

concentration within the TIBL is: 

C(x,y,O)= f-,xexp -- -, exp -- -, dx' Q [x 1 ( s
2J ds J [ 1 ( y )

2j 
J2iuzi (x) o a 2 dx 2 a 

(2.8) 

Where 

[z
1
(x')-H] s=.;::.....:. __ _ (2.9) 
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12 ( I) 2 ( I) 2 ( I) a X,X = ays X +ayT X,X (2.10) 

The terms ays and azs represent the dispersion coefficients in lateral and vertical 

directions, respectively, in the stable layer. Whereas ayr is the lateral dispersion 

coefficient in TIEL. 

Misra assumes that the dispersion in the stable layer and in the TIEL are independent so 

that 

(2.11) 

Hence 

12 ( I) 2 ( I) 2 ( I) a X, X = a ys X + a yT X -X (2.12) 

On the other hand, Van Dop et al. (1979) assumes: 

(2.13) 

This implies that plume spread in the TIEL corresponds to particle release at the stack 

location assuming unstable conditions in the over water atmosphere. 

Thus, 

12 ( I) 2 ( I) 2 ( ) 2 ( I) a x,x =ays x +ayr x -ayr x (2.14) 

However, the assumption of unstable conditions in the over water atmosphere for 

calculating the plume spread in the TIEL is not justified. 
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2.2.5 The Deardorff and Willis (1982) Semi Empirical Model: 

Deardorff and Wilis (1982) developed a model based on results from their water tank 

data. The model involves non-instantaneous mixing and accounts for the vertical 

variability in the TIBL height. The model variables are parameterized using the tank data. 

Its application is limited to fumigation conditions similar to those in the laboratory tank 

as mentioned by Luhar et al. (1996). DiCristofaro and Hanna (1990) also noted that the 

tank experiments were carried out at smaller entrainment rates than the equivalent TIBL 

slopes, which usually occur in coastal areas. 

2.2.6 The Venkatram (1988) Model: 

Venkatram's (1988) model is an extension of Misra's (1980) model. To account for the 

non instantaneous vertical mixing, he changed the upper limit of the integral in Equation 

(2.8) to x. defined as: 

x. =x-4zi(x)U/w. (2.15) 

Here 4zi (x) I w. is the time taken by the material to mix through the depth of the 

boundary layer. This is double the magnitude of the mixing time measured by Deardorff 

and Willis (1982) during their laboratory experiment. Testing of this modification, which 

assumes uniform vertical concentrations, has not been reported. 
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2.2.7 Lagrangian stochastic dispersion Models: 

All the above stated fumigation models are Gaussian based and assume the instantaneous 

perfect vertical mixing of entraining plume. No provision is made in these models to 

account for the in-homogeneity and skewness of the vertical convective turbulence. This 

can lead to inaccurate predictions of concentration magnitude and location. Particularly 

when the growth rate of a spatially varying mixed layer is high and the vertical plume 

spread at the plume-TIBL interface is small. 

Luhar and Britter (1990) used a one-dimensional stochastic dispersion model to 

overcome the above stated deficiencies in estimating the coastal fumigation 

concentrations. 

Later, Luhar and Sawford (1995) extended the one-dimensional model to a two

dimensional stochastic model by incorporating the diffusion and gradients of flow 

properties in both the vertical and horizontal directions within the TIBL. The outcomes of 

this model show that the omission of diffusion and the gradients of flow properties in the 

stream wise direction do not influence the dispersion significantly. Normalized 

concentrations obtained from their model showed fair to good agreement with the results 

from Nanticoke field experiment and laboratory experiments of Deardorrf and Willis 

(1982). The major problem associated with this approach is that it requires large 

computational time and, therefore, is often not appropriate for operational and routine 

calculation. 
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2.2.8 Probability density function (PDF) Models: 

The non-Gaussian vertical disprersion patterns of passive plumes during convective 

conditions were first discovered in the laboratory experiments by Willis and Deardorff 

(1976, 1978) and in numerical simulations by Lamb (1978, 1979). This non-Gaussian and 

asymmetric vertical diffusion is resulted from the differences between the vertical 

velocity distribution and strength of updrafts and downdrafts present during convective 

atmospheric conditions, as they relate to the ensemble-mean concentration distribution. 

Lamb (1982) calculated the probability density function (PDF) of the vertical velocity 

(pw) from Deardorff's (1974) velocity field, which was computed by large eddy 

simulation. This analysis shows that turbulent energy in updrafts is higher than in down 

drafts and the mean velocity of updrafts is larger than those of down drafts. The PDF's of 

w at different boundary layer heights are positively skewed. The most probable velocity 

for each PDF is negative and approximately equal to the mean downdraft velocity at that 

height. Most of the area (- 60%) under the Pw curve is on the negative side of the w axis, 

indicating the higher probability of occurrence of downdrafts. 

Baerentsen and Berkowicz (1984) expressed a hi-Gaussian Pw by considering the sum of 

two Gaussian distributions with different statistics, one for updrafts and the other for 

downdrafts because of their different natures of distributions as discussed above. 

Luhar et al. (1996) introduced a fumigation model based on probability density function 

(PDF) of the random vertical velocity (w). They followed Misra's (1980) approach in 

developing their model. 
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After considering the superposition of two Gaussian distributions to approximate w PDF, 

first proposed by Baerentsen and Berkowicz (1984), they relaxed uniform and 

instantaneous mixing assumption in Misra's (1980) model. They defined values for some 

parameters of the hi-Gaussian PDF different from Baerentsen and Berkowicz (1984) and 

used simple surface reflection schemes, following Li and Briggs (1988) work. In these 

models key point is that positions of source-emitted particles (contaminant) in the lateral 

(y) and vertical (z) directions are independent and they behave as two independent 

random variables, at a time (t). 

Luhar (2002) extended Luhar et al. (1996) PDF model by incorporating wind direction 

shear effects. In this work particle positions in lateral direction (y) are assumed to be 

varied with height and therefore also depend on (z). They treated dispersion distribution 

in y direction (which was the function of height z) separately and then superimposed it 

with hi-Gaussian PDF for vertical velocity (w) and established the new joint PDF. 

Although results of the model are in better agreement with field observations, however 

more statistical justification and validation are needed for their joint PDF. 



Chapter 3 

Development of a Model for an Elevated Continuous Point Source 

Within Convective Boundary Layer 

3.1 Introduction: 
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A probability density function (PDF) model, to calculate the concentration profiles of 

pollutants from an elevated continuous point source within convective boundary layer 

(CBL), is derived first. Later, the fumigation model to estimate continuous shoreline 

fumigation is developed considering the mean structure of TIBL, analogous to mixed 

layer within CBL. 

3.2 PDF Model For An Elevated Continuous Point Source Within Convective 

Boundary Layer: 

A simple calculation of the ensemble-mean concentration distribution, C(x, y,z), follows 

from mass flux considerations. The mean horizontal flux without considering the stream 

wise dispersion of particles through an elemental area flyflz normal to the mean wind (U) 

is UC(x, y,z)flyflz. This is equal to emission rate Q times the probability of particles 

In the intervals y -fly I 2 < y < y +fly I 2 and 

z -flzl2 < z < z + flzl2. It can be prescribed as: 

UC(x, y,z)flyflz = Qpyz[ y,z; ~ ]flyflz (3.1) 
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(3.2) 

In the above equations it is assumed that transport by bulk motion due to mean wind in 

the x direction (considered as direction of wind) exceeds stream wise effective diffusion. 

It is commonly assumed that this condition is met for CBL when ~ > 1.2 . In Equation 
W• 

(3.2),pyz(y,z;~) is the joint density of particle position in y and z at timet (where t 

is~). Turbulence is idealized as homogeneous and stationary. The mean wind speed (U) 
u 

is assumed to be uniform with height and it does not change direction with height. The 

lateral and vertical velocity fluctuations are assumed to be statistically independent. In 

that way, the displacement of source-emitted particles in the lateral and vertical 

directions, y and z respectively, are independent and they behave as two independent 

random variables, at a time t. 

So, 

(3.3) 

For convenience, the source is considered at origin having the coordinates of (0,0). In the 

above density function it is assumed that the particle is released at the source height (z5) 

at t=O. 

From Equations (3.2) and (3.3) 

(3.4) 
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Py ( y; ~)and Pz ( z; ~) are normalized so that their integrals over ally and z equal one. 

In Equation (3.4) if the density functions for Py(y;~)andpz(z;~)are assumed as 

Gaussian then it will end up with Gaussian plume model. But due to the skewness of 

vertical velocities Gaussian plume model does not work well in describing the dispersion 

features in the CBL. Now the task is to find the appropriate Py ( y; ~)and Pz ( z; ~), 

which can simulate the dispersion characteristics more realistically. Weil (1988) and Weil 

et al. (1997) have considered Py( y; ~) being Gaussian while Pz( z; ~) is derived from 

the skewed PDF, pJw(z)], first proposed by Baerentsen et al. (1984). Weil (1988) and 

Weil et al. (1997) have related Pz( z; ~) of the particle height (z) with pJw(z)] as; 

(3.5) 

Where particle height (z) is a monotonic function of w. The relationship between wand z 

is found from a differential equation governing the particle trajectory: 

dz 
w(z) =-

dt 

dx 
Where dt =-

U 

So from Equation (3.6): 

w(z) = dz 

U dx 

(3.6) 

(3.7) 



If w is independent of height, the differential equation is simply integrated to yield 

wx 
z=zs+-

U 
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(3.8) 

Where Zs is the source height. In the above integration it is assumed that vertical 

Lagrangian integral time scale T1z is infinitely long, so that the particle velocity at any x 

(downwind distance) is uniquely determined by its value at the source. So from Equation 

(3.8): 

u 
W =(Z-z 5)

X 
(3.9) 

This is an approximation that is partially justified by the large time scales ( ~- 10 min) 
W• 

of the CBL convection elements. Weil et al. (1997) assumed that the random vertical 

velocity decays from its initial value w, at source, over distance inland according to ~. 
f lz 

Where f Iz (xI U) is: 

( J
l/2 

f 1z(x/U)= 1+0.5-x
UTiz 

Where 

zi is the boundary layer height. 

After including the decay of w the trajectory Equation (3.8) would be: 

wx 
z=zs+-

fizU 

(3.10) 

(3 .11) 

(3.12) 
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The convenient function f 1z in the trajectory Equation (3.12) satisfies both the short and 

long time limits of finite T1z. It is assumed that vertical Lagrangian integral time scale 

T1z is similar to the lateral Lagrangian integral time scale T1y . So, the function f Iz is 

parameterized in the same way as f Iy. The function f Iy satisfies the short and long time 

limits of Taylor's (1921) theory (c.f. Appendix 2 for the details of Statistical theory and 

the finite T1z behavior). 

After rearranging Equation (3.12), expression for w may be given as: 

( ) Uflz w= z-zs --
x 

dw Ufiz 
dz x 

Now from Equations (3.5) and (3.14), Pz follows the expression: 

[ ] Uf~z Pz=Pw w(z)
X 

(3.13) 

(3.14) 

(3.15) 

Considering the lateral dispersion as Gaussian, the probability density function of the 

particle position in the lateral direction py is: 

(3.16) 

Putting the expressions for Pz and pJrom Equations (3.15) and (3.16) into Equation 

(3.4) the following expression for a continuous elevated point source with in the CBL is 

obtained: 

Q ( y
2 

J :1: C(x,y,z)=(
2 

)112 exp --
2 2 Pwfiz 

7r 0" yt X 0" yt 

(3.17) 
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To include reflections at the boundaries Pw values are summed up over all w values that 

yield significant p~ values (a detail description is presented in chapter 4). 
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Chapter 4 

Development of a Shoreline Fumigation Model 

4.1 Introduction: 

In this chapter the PDF model developed to calculate concentration profiles in CBL is 

extended to coastal fumigation case. Coastal fumigation is a turbulent dispersion process 

in which an elevated point-source plume traveling in a stable or neutral onshore flow with 

relatively little diffusion is intercepted by the growing TIBL, and is subsequently mixed 

down to the ground by the large-scale convective eddies generated within the boundary 

layer. 

The chapter starts by presenting the modeling work associated with spatially growing 

thermal internal boundary layer (TIBL). The thermal effects of the ground give rise to the 

development of a TIBL over land surface, during the day under onshore flow conditions. 

The PDF model and the parameters of the PDF model are discussed subsequently. 

4.2 The Thermal Internal Boundary Layer: 

Modeling of the TIBL height is a vital component of the fumigation phenomenon. The 

interaction between the TIBL and a plume governs the distribution of ground level 

concentrations (GLCs). Garratt (1992) ' zero order jump' model for the growth of the 

TIBL is: 

(4.1) 

Where 
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x is the downwind or inland distance from the land-water interface, U is an average wind 

speed with in the TIBL. Hf is the overland heat flux, cp is the specific heat at constant 

pressure, y is the vertical potential temperature gradient for upwind condition or above 

the boundary layer and f3 is the ratio of the downward heat flux at the TIBL to the 

upward heat flux at the surface; its value is approximately 0.2 for the CBL over land. 

The above model is also used in CALPUFF, a meso-scale US Environmental Protection 

Agency (US EPA) regulatory model. In more General form: 

I 

Z . =A x 2 
I 0 

(4.2) 

A
0 

is the function of above stated parameters (e.g. U, Hf, y, f3 and cp) and is defined as; 

Ao = ( 2(1 + 2,8)Hf ]
112 

/Xptu 

A
0 

is used as an input parameter to determine the plume-TIBL interface location. 

(4.3) 

Analytical parameterizations of the thermal internal boundary-layer (TIBL) height based 

on the slab approach are widely used in coastal dispersion models. However, they tend to 

a singular behavior when the stability of the onshore flow is close to neutral. Luhar 

(1998) has derived a new analytical model, which is valid for neutral onshore flow 

conditions, as well. The present work focuses on stable onshore flow condition, which is 

analogous to that observed during Nanticoke fumigation experimental study. Therefore, 

the use of zero order jump model for the present purpose is justified. However, a minor 

revision is incorporated in the model. For instance, far distance downwind TIBL attains 

its full depth and the above stated Equation ( 4.2) for parabolic growth does not work. In 
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that situation equilibrium height Zeq can be given as the product of convective velocity 

( w.) and convective time scale ( t. ). Considering the expression for w., as given by 

Equation (1. 7), and after some arrangements Zeq can be presented as: 

(4.4) 

Where t. is the convective time scale and its empirical value of 10 minutes is considered 

as suggested by Stull (1988). Subsequently, using the Equation (4.2) horizontal distance 

corresponding to equilibrium height can be measured. 

The non-dimensional entrainment rate at the point of interception of the plume-centerline 

and the TIBL, (similar to Luhar et al., 1996), is expressed as: 

Weo =0.5 VA~ (4.5) 
w. w.zio 

A detailed solution is given in Appendix 1. Convective velocity ( w.) is considered to be 

invariant with downwind distance, as increase in the TIBL height with downwind 

distance is balanced by the decrease in heat flux. Their product, which seems to cause the 

change in w., does not vary strongly with downwind distance (Venkatram, 1977; Misra, 

1980). Subsequently, it is also observed that variation of w * with x makes insignificant 

difference in dispersion calculations when compared to those with a constant w •. 
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4.3 PDF Model for an Elevated Continuous Point Source Located on Shoreline: 

A tall stack situated at the shoreline, emits its pollutants into the stable layer. The plume 

travels with relatively little dispersion in this layer and intersects the TIBL at some 

distance downwind resulting into fumigation. It leads to high ground level 

concentrations. As discussed in Misra ( 1980), the dispersion of the pollutants in the stable 

layer and within the TIBL is considered to be proceeded independently. Now for the 

dispersion characteristics within TIBL the source strength is provided by the 

concentration field within the stable layer and the rate of growth of the TIBL. 

Misra(1980) assumed an elevated area source coincident with the under surface of the 

top of the TIBL, for the dispersion of pollutants within the TIBL. The same approach is 

followed by Venkatram (1988), Luhar et al. (1996) and Luhar (2002). In the present 

model the same source strength of pollutants for the dispersion in the TIBL is assumed. 

The flux F(x
1

, y1
, Z

1
), from the concentration field in the stable layer to the TIBL through 

an infinitesimal arc AB is the sum of downward flux through CB and advective flux 

through AC (as shown in Figure 4.1). The source strength associated with the 

infinitesimal arc AB can be written mathematically as: 

I I I) a Cs A I A I A I A I dQ(x, Y ,z = K,5 --LlX L.ly + UsC 5 LlZ L.ly oz (4.6) 

I I I dz. (X
1

) 1 

Where z = Zi (x ) and ~z = ' ~x 
dx 

Equation ( 4.6) can take the form: 

1 I I-( ac dzj(xl)) I I 

dQ(x, y ,Z)- Kzsaz + UsCs dx ~X ~Y (4.7) 
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Figure 4.1 Schematic of shoreline fumigation and Geometry used to derive the 
expression for the ground-level concentration during fumigation 
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Where Us is the wind speed in the stable layer at the height Zi (x1
) and K,, is the 

diffusivity coefficient in the stable layer and it can be given as: 

K 
= _!_ do-;r 

zs 2 dt 
(4.8) 

In the stable layer, the distributions of velocities in both the horizontal and vertical 

directions are expected to be well represented by a Gaussian distribution, so do the 

concentrations: 

(4.9) 

It is assumed that material entrained into the TIBL cannot affect the concentration in the 

stable layer, so no reflection term is included in Equation (4.9). 

Using Equations (4.8) and (4.9) elemental source strength can be given as (c.f. Appendix 

3): 

dQ=C U [dzi(x
1

) _ dO",r (zi(X1)-H(x1))J~x~~ 1 

s s dl dl y 
X X O"zf 

(4.10) 

If the joint PDF for the particle position in lateral and vertical direction at time t , within 

the TIBL is designated as ( I) I X- X 
Pyz y,y ,z;--u- then the concentration 

dC(x, y,z < zi/x
1

, y
1
,Zi (x)

1
)associated with dQ(x1

, y1,zi (X)1
) (similar to Equation 3.2) can 

be given as: 

( I 1 1 1) dQ ( 1 X - X
1

) dC x, y,z < zi x, y ,zi (x) = U Pyz y, Y ,z;--u- (4.11) 

For the same reasons as discussed earlier, the joint PDF will take the form: 
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( ') ( ') ( ') , x-x , x-x x-x 
Pyz y,y ,z;--u = Py y,y ;--u Pz z;--u (4012) 

Here the shape of PDF Py is assumed as Gaussian, that is: 

( 

, 0 x - x') _ 1 ( (y-yyJ 
Py y, y '--u- - .f2n Gyt exp - 2cr~t (4013) 

The form of Pz ( z; x ~ x') is derived from the w PDF ( Pw ), which is skewed and results 

in a non-Gaussian Pz 0 The relationship between the PDF of vertical position z of a 

particle ( p,) and the PDF of vertical velocity ( Pw) is already explained and can be 

presented as: 

( 

0 
X - x') _ L U f Iz 

Pz z,-U -pw--, 
x-x 

Using Equations (4012), (4013) and (4014), Equation (4011) turns out to be: 

de( < I ' t ( )') dQflz ( (y-y')
2J L x,y,z _ zi x ,y ,zi x = ~ , exp - 2 Pw 

"'2:rr (x- x ) a yt 2 a yt 

' 
Where a yt ( x - x ) is the crosswind spread or standard deviation within the TIBL. u 

(4014) 

(4015) 

Now the total concentration C(x,y,z<zi(x))due to all such sources located anywhere 

between 0 to x along the mean wind direction and - oo to + oo in lateral direction is 

obtained by: 

C(x, y,z ~ z) = f dC(x, y,z ~ zilx', y',zi (x)') (4.16) 
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After relaxing the uniform and instantaneous mixing assumption of Misra (1980) and 

Venkatram (1988), and by considering the variation of the plume height in the region 

above the TIBL prior to fumigation, the final expression is: 

C( ( )) -_g_Jxflz(X,X
1

)G(x
1

) [-P2 _LJ :!:d 1 x,y,z<zi X - I I exp n Pw X 
2tro (x-x )a 2 2a-

( 4.17) 

Where 

( 

1) (zi(x
1

)-H(x
1

)) 

p X = 
0' zf (XI) 

(4.18) 

G( l)=dp(x
1

) 1 dH(x
1

)=_1_[dzi(x
1

)_ dazr(X
1

)] 

X I+ I I pI 
dx 0' zf dx O'zf dx dx 

(4.19) 

12 ( I) 2 ( I) 2 ( I) a x =ayr x +ayt x-x (4.20) 

H(x1
) is the plume effective height in the region above the TIBL and a yf and a zr are the 

dispersion spreads due to plume buoyancy in the lateral and vertical directions in the 

same regwn. 

Zi (x) is the TIBL height at distance where x > X
1

, a yt is the lateral dispersion spread due 

to the TIBL turbulence. Elemental sources are located at Zi (x
1

) at the plume-TIEL 

interface. 

The present model is similar to that presented by Luhar and Sawford in 1996 with 

addition of the term f lz, which accounts the effect of finite Lagrangian time scale for 

vertical velocities. Further, the parameters used in the present model for the calculation of 

Pw are obtained from Weil (1990) work and are discussed in the section 4.4.1. 



41 

4.4 PDF Model Parameters and their Significance: 

4.4.1 The PDF (pw) ofthe Vertical Velocity: 

According to Li and Briggs (1988), the form assumed for Pw is the most important 

parameter for dispersion modeling in CBL. Baerentsen and Berkowicz (1984) were the 

first who superimposed the Gaussian distributions of vertical velocities in updrafts and 

downdrafts to characterize the skewed PDF (Pw) of the vertical velocity component w. 

Many other researchers have used the same PDF for dispersion modeling in CBL (e.g., 

Weil1988, 1990; Luhar et al. 1996; Weil et al. 1997). 

The generalized form of this Pw is given as: 

(4.21) 

Where A1 and Az are weighting coefficients for the updraft and downdraft distributions 

respectively and their sum is 1. The w i and a wj U=1,2) are the mean vertical velocity 

and standard deviation for each distribution and are assumed to be proportional to the 

overall root mean square vertical turbulence velocity (a w ). The six parameters A1 , Az, 

w1 , w2 , awl and a w 2 used in the model are functions of a w, the vertical velocity 

3 

skewness ( S = w
3 

) and a parameter R = awl =-a wz (Weil, 1990). From the laboratory 
aw W1 Wz 

data analysis Weil et al. (1997) reported that R=1 yields fair to good agreement between 

the modeled and measured crosswind-integrated concentration, under strong convection. 

In the upper 90% of the CBL, the vertical velocity variance a~ can be considered to be 
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uniform (as per Weil, 1988), as can the skewness (as per Wyngaard, 1988). The 

expression for O"w can be written as (Weil et al, 1997): 

(4.22) 

Where 1.2 corresponds to Hicks' (1985) neutral limit ( w• = 0) and the 0.31 is consistent 

with Weil and Brower's (1984) convective limit ( u• = 0) or (a w = 0.56 ). In the 
W• 

convective limit S is suggested as 0.6, which is the vertically averaged value from the 

Minnesota experiments (Wyngaard, 1988). 

By using the above values for R, S and a w the values for .,1,1 and .,1, 2 tum out as 0.4 and 
W• 

0.6 respectively. Luhar (2002) also parameterized the same values for .,1,1 andA, 2 • In 

another study of the bi-Gaussian PDF, Duet al. (1994) specified .,1,1 = 0.4 and .,1,2 =0.6 for 

strong convection. 

The other parameters are characterized as; w1 = 0.488w., w2 = -0.32w., aw 1 = w1 and 

O"wz = lwzl (c.f. Appendix 4). From these parameterizations it is evident that mean velocity 

of updrafts is larger then those of downdrafts. 

To include reflections at the boundaries, Pw PDF should be summed over all w values that 

yield significant Pw values. A simple surface reflection scheme is considered here to 

account for the decay of w over time and to include T1z effect for a skewed Pw· The 

revised simple reflection scheme with the inclusion of T1z effect within TIBL will be: 

W =(±z-zs+2NzJ Uf,z, 
(x- x) 

(4.23) 
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In this simple reflection scheme (after Luhar et al., 1996 and Luhar, 2002), zs = Zi (x') and 

Zi = Zi (x) are assumed, thus Equation (4.23) transforms to: 

(4.24) 

Where N is any integer; and INI is the number of times that reflection from Zi occurs. For 

calculating the ground level concentration (GLC) i.e. ±z=O, the term +z=O and -z=O 

should be used to calculate w in the above expression. The direct trajectory is represented 

by N=O. A value of parameteriNI up to 4 is significant for the GLC calculations at 

distance far downwind from the source. 

Finally, the vertical velocity (w) PDF in the summation form is given as: 

Where 

( , ) Uf~z w 1 = (+z-zi(x)+2kzi(x)) , 
(x- x) 

w 2 =((-z-zi(x')+2kzi(x))) Uf 1
', 

(x- x) 

(4.25) 

(4.26) 

(4.27) 

4.4.2 Expressions for Plume Rise and Vertical and Lateral Dispersion Coefficients 

in Stable Layer: 

The plume's internal turbulence buoyancy controls the dispersion in onshore stable flows 

of plumes from tall stacks, prior to fumigation (for e.g. Misra and McMillan, 1980; 

Briggs, 1984; Lahur et al 2002). 



44 

Final rise of a buoyant plume dispersing in a stably stratified environment according to 

Briggs' (1984) expression is: 

1 

z:g = 2.6[F
0 

/(UN:)J3 (4.28) 

Where Ne is layer's natural frequency in stable boundary layer (SBL), known as Brunt-

Vaisala frequency. Buoyancy waves that propagate upward within the SBL eventually 

reach a level where their frequency matches the ambient Brunt-Vaisala frequency, at 

which point they reflect back down toward the ground. Ne is given as; 

(4.29) 

y =Change of potential temperature with height [Kim]. 

Ta = Ambient temperature [K]. 

2 
gvsDs (Tgs- Ta) 4 3 

F =Buoyancy flux = [m /Sec ]. 
o 4T 

a 

Tgs = Gas Temperature at stack exit [K]. 

Ds = Inside diameter of the stack exit [m]. 

As long as the buoyant plume has a temperature excess over the surrounding atmosphere, 

the plume will continue to rise. For buoyant plumes, this transitional plume rise is 

estimated, as presented by Briggs (1972). 

(4.30) 

Comparing Equations (4.28) and (4.30) the distance where final plume rise is achieved 

can be determined as: 
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(4.31) 

So the plume rise ~h can be defined at some downwind distance as z: (if z: < z:q) 

otherwise z:q. 

If the distance where lower portion of the plume intersects the TIBL is less than Xr then 

Misra's (1980) parameterization for the term G(x') is used in the present model equation 

i.e. the term dH(~') becomes zero in Equation (4.19). Otherwise in the case where the 
dx 

buoyant plume in the region above the TIBL changes height prior to fumigation, the 

above formulation given in Equation (4.19) will be considered (c.f. Appendix 3). 

When the plume's internal turbulence generated by buoyancy, dominates plume 

dispersion in a non-turbulent environment then according to Briggs (1984), plume radius 

grows as: 

(4.32) 

Where /31 (0.4-0.6) is an entrainment parameter. 

Luhar et al. (2002) assumed the spread of the plume as: 

r I J2 = 0.35 z' n (4.33) 

Considering the Equation ( 4.33) coupled with the influence of the stable stratification, 

after Luhar et al. (2002), the vertical dispersion parameter a,r can be expressed as: 

(jzf = 0.35~h (4.34) 

The lateral dispersion coefficient, which is not influenced by the stable stratification, is 

given as: 
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ayf = 0.35z~ (4.35) 

4.4.3 Expression for Lateral Dispersion Coefficient within TIBL: 

The lateral dispersion in TIEL is assumed to be dominated by ambient turbulence. This 

lateral spread is parameterized by the general form (e.g. Venkatram 1988, Weil 1988, 

Luhar et al. 2002): 

(4.36) 

Weil et al. (1997) presented the following expression for the lateral velocity variance as: 

(4.37) 

Although Draxler (1976) suggested a value of 500s for T1Y, however here its value is 

adopted as T1y = 0.7zi lw. following Weiland Corio (1985). From the above discussion 

and also considering Weil and Brower's (1984) convective limit ( u. = 0 ), Equation 

(4.36) takes the form in the present model as: 

( 
') _ 0.56w .(x- x') 

(Jyt x,x -
Uf1Y 

(4.38) 

Where 

1 

( ') _ [1 0.5(x- x')]
2 

fly X,X - +----
UT!y 

(4.39) 

This function satisfies the short and long time limits of statistical theory and takes care of 

the finite lateral Lagrangian time scale (c.f. Appendix 2). 
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4.4.4 Vertical Dispersion within TIBL: 

Within the TIBL, dispersion of particles occurs m updrafts and downdrafts. The 

distribution characteristics and strength of updrafts and downdrafts in the CBL are 

different. Lamb (1982) reported that turbulent energy in updrafts is higher than in 

downdrafts. It is also understood that the mean velocity of updrafts is larger than 

downdrafts. So vertical dispersion of plume particles depend on their presence in updrafts 

or downdrafts. If it is considered that vertical Lagrangian time scale is infinite then 

vertical dispersion is given by: 

(4.40) 

Where j=l ,2 is representing updraft and downdraft respectively. After considering the 

decaying factor f 1, (x, x') for vertical velocity and by taking the finite Lagrangian scale 

into account, vertical dispersion term becomes (c.f. Appendix 2): 

(4.41) 

Where 

I 

( ') _ [l 0.5(x- x')]2 fJz X,X - +------'-
UT!z 

(4.42) 

After Weil et al. (1997), T1, is considered as T 1,=T1Y =0.7zi/w •. This shows good 

agreement of results with observed data for the Nanticoke power plant (discussed m 

Chapter 5). 
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In Equation (4.41) the term f 1z(x,x')will push the point of maximum concentration 

further down wind, because the vertical dispersion reduces by incorporating that term. At 

large distances even this effect will be more pronouncing, that is little dispersion. But 

there will be more plume to be dispersed at large distances. The effect of finite 

Lagrangian time scale is presented in Figure 4.2. In finite T1z case, the concentration is 

lower for small distances and higher for large distances than those for infinite T1z . This 

can be attributed with the reduced vertical dispersion initially, causing more plume 

material to get dispersed at long tails, with the inclusion of finite T1z • 
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Figure 4.2 Effect of finite vertical Lagrangian time scale 
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Chapter 5 

Model Testing and Validation 

5.1 Introduction: 

Several field and laboratory experiments have been undertaken to characterize the 

phenomenon of coastal fumigation. One of the most comprehensive coastal dispersion 

experiments, was conducted at Nanticoke during May 29 to June 16, 1978, designated 

hereafter as EXP I. The results of this study would be used to carry out performance 

evaluation of current model. 

This chapter reviews the experimental program (EXP I) in a brief and describes a 

framework to evaluate the performance of air quality model. Statistical analysis of the 

current model and its comparison with the two previous studies based on the models of 

Misra (1980) and Luhar et al. (1995) are also presented. 

5.2 Experimental Program: 

EXP I, carried out by the Atmospheric Environment Service (AES) of Environment 

Canada in cooperation with the Ontario Ministry of the Environment (OME) and Ontario 

Hydro, was commenced to obtain detailed meteorological measurements of the vertical 

structure of onshore flows, boundary layer development and surface and airborne 

pollutant measurements during fumigation conditions. 

Nanticoke is situated on the northern shore of Lake Erie. The electric power generating 

station of Ontario Hydro at Nanticoke has two 198 m stacks separated by 273 meters. 

This coal-fired power plant has a generating capacity of 4000 MW. At design full load 

(4000 MW) and using coal containing 2.3% sulfur, emission of S02 of magnitude of 16 
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kg/s is expected from both stacks (Misra at el. 1982). During the field experiments the 

so2 emission rate remained at about 5 kg/s. 

Many systems, including tethersonde, minisonde, acoustic sounder and sonic 

anemometers, were deployed to measure the height and structure of both the TIBL as a 

function of inland distance during onshore flow and the stable layer aloft. 

A LIDAR unit, operated from a mobile van, was used to measure plume rise, plume 

bearing and its dispersion characteristics as a function of downwind distance. Three 

correlation spectrometers (COSPEC) were mounted in three different vehicles. The two 

COSPEC vehicles also had Sign-X S02 monitors to obtain the ground level distribution 

of S02 simultaneously with the overhead S02 burden while traversing. Fixed ground 

level Philips S02 monitors and mobile chemistry laboratories augmented these data sets. 

A helicopter and an aircraft platform were also used to measure S02. 

During the study period, gradient or lake breeze flows transported the Nanticoke power 

plant plume inland only on 8 days: 29, 30 May; 1, 4, 6, 12, 15 and 16 June (Portelli, 

1982). Two days, June 1 and 6, 1978, were selected for comprehensive presentation as 

data coverage was considered better than on other days and two noticeably different 

fumigations existed. 

On the 1st June light gradient flow allowed for a lake breeze, which veered with time of 

day resulting in a systematic clockwise rotation of the fumigation zone. On the 6th June 

relatively fixed fumigation was reported during steady gradient onshore flow. 
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5.3 Model Testing and Validation Methodology: 

Venkatram (1982) described a framework to evaluate air quality model predictions 

against observations. He proposed the following relationship between observations and 

predictions from a model 

(5.1) 

Where Cp (x 1) represents the predicted values, which are the functions of inputs (x1) used 

in model, x 2 denotes unknown variables, which affect the observed concentration Co and 

c(x2) is designated as residual which is due to unknown variables not included in the 

model. The observation term Co (x1 , x2) is made up of a deterministic component, 

Cp (x 1), as well as stochastic part, c(x 2). In the above equation it is assumed that inputs 

to model and observed values are error free. 

Venkatram (1982) recommended the natural log transformation of the observed and 

predicted concentration values (i.e. C =InC) to get the normally distributed residuals. 

Here it is proposed that before any transformation of observed and predicted data 

residuals should be checked for normality. If residuals are not normally distributed then 

take logarithm of both samples, and use differences of logarithm. This fact is obvious 

from Figure 5.1. Residuals are normally distributed with out any prior transformation of 

observed and measured data. Standard deviation (SD) of residuals determines the 

expected deviation about its mean value. A small standard deviation is desired about the 

mean. This confirms little variability in measurements by the model about the mean 

value. 
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A residual analysis, where magnitude of an arithmetic mean is zero or near to zero and 

magnitude of geometric mean (in case of log transformation) is 1 or near to 1 but having 

large standard deviation does not ensure the good performance of the model. On the other 

hand a residual analysis, where ideal mean value is not achieved but it is having small 

standard deviation, can perform more effectively. So, in the current study mean absolute 

error (MAE) and mean relative error (MRE) for residuals are also used as quantitative 

measures besides mean and standard deviation. Mean absolute error is reported as: 

1 K 

MAE=-2:Icl 
Ni=l 

(5.2) 

Mean relative error is defined as: 

(5.3) 

Where N represents the sample size. 

£ is given as: 

(5.4) 

Co and Cp represent the observed and predicted concentrations respectively. 

So a model having the lower values of standard deviation of residuals, MAE and MSE 

should show good performance. Moreover, the condition that E is independent of input 

variables x1 , should be fulfilled (Venkatram, 1982). From Draper and Smith (1981), if£ 

is not a function of x1 the plot should look like a band distributed around £ =0. 
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5.4 Solution of the Model Equation and Validation of Results: 

The quantity x' in the model is an integration variable that corresponds to the location of 

an elemental source, at the plume-TIBL interface, between 0 and receptor location x. 

Each source will contribute some concentration at location x. The total concentration is 

found at x by summing up all these contributed concentrations through the method of 

integration. All of these elemental sources will lie in the fumigation zone, anywhere 

between 0 and x. 

The fumigation zone starts where the lower end of the plume touches the TIBL and ends 

where its upper layer intercepts the TIBL. The height at which centerline of the plume 

intercepts the TIBL may be given as: 

(5.5) 

Where hs is the physical stack height. 

~h is the plume rise as already discussed in section 4.4.2. 

The corresponding horizontal distance may be given by using the Equation (4.2) as: 

x. =[~]2 
w A 

0 

(5.6) 

The vertical dispersion of the plume is Gaussian within the stable region. Approximately 

95 percent of the plume material will be laying within 2 times the standard deviation 

about the mean. So, the height which corresponds to the start of the fumigation zone 

(zfs ), is given by the following expression: 

(5.7) 
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Where b=0.7 is obtained from a laboratory study of the fumigation phenomenon, carried 

out by Hibberd and Luhar (1996). However, the vertical variability in the local TIBL 

height during the one-hour averaging time is considered negligible. 

crzfo is the vertical dispersion coefficient in the stable layer corresponding to horizontal 

distance ( xio ). 

Similarly, expression for the height corresponding to the ending of the fumigation zone 

IS: 

(5.8) 

The horizontal distance at which the fumigation zone starts is calculated by the following 

expression: 

X =[~]2 
fs A 

0 

(5.9) 

The ending distance of the fumigation zone is expressed as: 

X =[~]2 
fe A 

0 

(5.10) 

The parameters being used as input to the model include: temperature, effective wind 

speed, convective velocity w., a parameter Ao to predict the growth of TIBL, effective 

Brunt-Vaisala frequency (Ne) of onshore flow and emission rate. These parameters are 

obtained from Kerman et al. (1982) and Misra et al. (1982) and are presented in Table 

5.1. 
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The final plume rise is calculated for each stack and mean rise is calculated by taking the 

average of them by assuming the same loading on each stack. The plume achieves the 

final rise before its lower portion starts touching the TIBL. 

Model i.e. Equation (4.17) is solved by coding in MATLAB 6.5 (c.f. Appendix5). Within 

the fumigation zone 51 source points at the Plume-TIBL interface are considered between 

0 to x. The concentrations contributed by these 51 source points (50 panels) at receptor x 

are summed up through integration to get the total concentration at x. In MATLAB this 

integration is done with the trapz function, which implements the trapezoidal rule of 

integration. 

To check the accuracy of the results the number of source points increased to 501 (500 

panels). A comparison of concentration results between 50 and 500 panels shows that the 

maximum relative error at any distance downwind is approximately 0.7% (parts per 

billion) and is considered negligible. Hence, by trial 51 source points give satisfactory 

convergence to the true solution for any distance downwind. 

Under the meteorological conditions, prevalent during the Nanticoke experiment, the 

running time was 4 seconds with 50 panels for simulating the results between 0 to 80000 

meters with the grid spacing of 1000 meters (Pentium Pro III, 550 MHz processor). 

However, under the similar set of conditions with 500 panels the running time increased 

to 20 seconds. 

Results obtained from the current model, Misra's (1980) model, Lagrangian stochastic 

model from Luhar et al. (1995) and field observations from Misra et al. (1982) are 

presented in Table 5.2. 



Day-hr Horizontal Lateral U/w* 
Distance Distance 

(km) (km) 
1-11 16.4 -1 3.67 

10 0 
8 -0.5 

1-12 16 0 3.88 
16 1.5 

1-13 15.9 0 3.41 
15.4 -0.5 
15.4 -1 

1-14 15.9 0 4.38 
16.1 -0.2 
16.1 -0.5 

1-15 15.9 0 4.79 
14.3 0 
14.3 -0.5 

6-12 14.5 -0.5 5.68 
6-14 14.2 0 5.05 

14.2 -0.5 
8 -0.5 

6-15 8 0.25 3.97 
8 -0.25 
8 0.5 
8 -0.5 

14.5 0.5 
14.5 -0.5 
14.5 1 
14.5 -1 

6-16 8 0 4.35 
14.5 -0.4 

6-17 14.5 -0.5 5.93 
14.5 -1 

14 0 
* Buoyancy Flux from Stack 1 
** Buoyancy Flux from Stack 2 
+Average Buoyancy Flux 
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Table 5.1 Model Inputs 

Brunt- Buoyancy Flux ~mission 
w* Ao Vaisalla (m4/s3) Rate 

frequency S1 * S2** Avg+ (Kg/s) 
(rn/sec) (ml/2) (sec-1

) 

1.28 4.95 0.017 564 1053 808.5 6.55 

1.29 4.66 0.0144 448 1059 753.5 6.25 

1.38 4.4 0.0176 448 950 699 6.03 

1.28 3.95 0.0192 448 950 699 5.59 

1.17 3.56 0.0249 528 949 738.5 5.09 

1.32 3.16 0.0188 448 582 515 4.2 
1.21 2.71 0.0246 448 802 625 5.07 

1.47 5.27 0.013 448 972 710 5.76 

1.47 5.6 0.0092 527 875 701 6.03 

1.17 4.5 0.01 271 500 385.5 5.52 
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Table 5.2 Predicted and Observed Concentrations 

Cp (ppb) 

Horizontal Lateral Cp (ppb) Luhar's Cp (ppb) Co (ppb) 

Day--hr Distance Distance Misra's Lagrangian PDF Observed 
(km) (km) Model Model New 

1--11 16.4 -1 124 179.4 187 87 
10 0 590 351.4 476 410 
8 -0.5 276 219.1 234 250 

1--12 16 0 435 307.6 369 243 
16 1.5 23 100.8 61 243 

1--13 15.9 0 437 246.2 389 400 
15.4 -0.5 308 276.03 330 185 
15.4 -1 118 211.42 184 185 

1--14 15.9 0 422 311.1 397 400 
16.1 -0.2 335 335 378 165 
16.1 -0.5 237 245 300 165 

1--15 15.9 c 382 264.4 399 217 
14.3 0 287 322.4 400 363 
14.3 -0.5 177 167.2 285 363 

6--12 14.5 -0.5 189 58.9 134 145 
6--14 14.2 0 160 163.64 191.5 114 

14.2 -0.5 92 115.8 118 114 
8 -0.5 31 36 0 36 

6--15 8 0.25 436 403 268 355 
8 -0.25 436 403 268 355 
8 0.5 180 217.2 161 355 
8 -0.5 180 217.2 161 355 

14.5 0.5 243 213 251 78 
14.5 -0.5 243 213 251 78 
14.5 1 26.4 164.4 121 78 
14.5 -1 26.4 164.4 121 78 

6--16 8 0 696 273.8 221 710 
14.5 -0.4 288 147.8 234 209 

6--17 14.5 -0.5 267 210 216 190 
14.5 -1 60 70 51 190 

14 0 488 303 357 400 
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5.5 Statistical Analysis and Discussion: 

For the performance evaluation of a model the inputs to a model and observed values 

should be free of error. It is evident from Misra et al. (1982) that due to an accuracy of 

±5° in the measurement of wind direction, the crosswind position of monitors was 

determined within an accuracy of 500-1500m. Also, source emission rates were not 

measured during the field experiments rather they were determined from a mass balance 

analysis. However during the current analysis all the observations are considered as free 

of error except the reading observed at 1600 hours on the 6th June. The magnitude of 710 

ppb had not been observed at any other time or day, even though at 1500 and 1600 hours 

on the 6th June, the lateral plume spreads and convective velocity were approximately the 

same and emission rates were also not considerably different. 

Instead of running the model for average input values for some specific hours as done by 

Luhar et al. (1995), here the model is run separately for each hour. The Model is very 

time efficient and running time was less then 5 seconds (Pentium Pro III, 550 MHz 

processor). From Table 5.1 the stability index of _Q_ remains below 6, which shows the 
W• 

strong convection regime during experiments. 

The Probability plot of residuals for PDF model is plotted and checked for normality 

without any transformation. From Figure 5.1 it's evident that Residuals pass the 

normality test. 

The other quantitative measures discussed above are reported in Table 5.3. Here the 

residuals are in the unit of parts per billion (ppb ). 
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In this scenario there are two major sources of uncertainty, which are impediment in 

performance evaluation of the model. The first source is related to the uncertainty of data 

measurement. As mentioned above the error involved in the measurement of wind 

direction causes the uncertainty in cross wind locations of S02 monitors. Also improper 

sampling time causes this kind of uncertainty in the concentration measurements. The 

second source of uncertainty can be categorized as statistical uncertainty. This 

uncertainty evolves due to less number of observations and is resulted due to budget and 

time constraints. 

Standard deviation of residuals (SD) and Mean standard error (MAE) are minimum for 

the results obtained from present model. To check for the constant variance of residuals 

plots are drawn between residuals and predicted values in Figures 5.2 (a to c). 

It is evident from the analysis of residual plots, for the present model the residuals are 

more uniformly distributed about zero line than those of the models presented by Luhar 

and Misra. The dispersion of residuals about zero residual line is minimum for the 

present model. Moreover residual plot is showing nice scatter for present model, without 

any funnel shape, confirming the constant variance. 

Figures 5.3 (a to d) show residual plots against the input parameters for present model. 

The distributions of residuals are in bands showing that residuals are independent of 

model inputs. 
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Table 5.3 Quantitative measures of coastal dispersion model performance 

Model Summary Measures 

Mean SD MAE MRE (%) 

Misra's Model -23 117.8 100.3 55 

Stochastic Model (Luhar et al. 5.6 99.4 84.43 49.5 

1995). 

Present Model -16.2 95.6 76.35 46.4 
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Chapter 6 

Sensitivity Analysis 

6.1 Introduction: 

In this chapter sensitivity analysis of the base model has been carried out. Sensitivity 

analysis is used widely as a tool to examine the impact of the model input data on the 

results. The objective of sensitivity analysis is to identify the critical variables that have 

significant influence on the model results. An evaluation of these critical variables helps 

in quality assurance of input data as well as results. 

6.2 Sensitivity Analysis of Model Input Parameters: 

The input variables to the model are characterized in two groups: i) source parameters 

and ii) meteorological parameters. In evaluation a segmental % increase I %decrease 

(from the mean value) is given in one parameter while maintaining other input variables 

to their mean values. 

The variables considered for sensitivity analysis and associated results are discussed here. 

6.2.1 Sensitivity Analysis of The Ratio _Q_ : 
w. 

The parameter (convective velocity) W• is used as a scaling parameter in the convective 

boundary layer. It is categorized as a meteorological parameter. The ratio of mean wind 

speed to convective velocity i.e. U serves as a stability index and is used to distinguish 
w. 

between strong and weak convective regimes. For the strong convective regime condition 
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this ratio should be less than 6. Moreover to avoid stream wise diffusion the ratio should 

be greater than 1.2 (Weil, 1988). 

To carry out sensitivity analysis, the mean value of the ratio is considered as 3.5. The 

maximum increase in the value by 50% and maximum decrease by 50% give magnitudes 

of 5.25 and 1.75 respectively and are well within the limits of 1.2 < U < 6 for the model 
w. 

use. The other magnitudes of U corresponding to both 25% decrease and increase and 
w. 

maximum concentrations (Cmax) and corresponding horizontal distances from the stack 

(Xmax) are shown in Table 6.1. The % increase or decrease in Cmax and Xmax from the 

mean values is also shown in Table 6.1. 

Table 6.1 Model Sensitivity to the parameter U/w*: maximum concentrations and 
correspon d' d' mg 1stances 

% Difference % Difference of %Difference 
U/w* from the Cmax X max Cmax from the ofXmax from 

mean value (J-tg/m3) (m) concentration the distance 
corresponding corresponding 
to mean value to mean value 

1.750 -50.00 1390.00 5500.00 -14.83 -21.43 
2.625 -25.00 1540.00 6000.00 -5.64 -14.29 
3.500 0.00 1632.00 7000.00 0.00 0.00 
4.375 25.00 1684.00 7500.00 3.19 7.14 
5.250 50.00 1709.00 8000.00 4.72 14.29 

Note: (-) sign shows the decrease from the mean value. 

An increase in W• value implies increased heat flux and plume instability due to 

convection. This means that lower values of U cause more of a cross wind dispersion 
w. 

thus reducing overall ground level concentrations and movmg the maximum 
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concentration location closer to the stack. This fact is mathematically evident from 

Equation ( 4.38), which is used in the model to calculate TIBL crosswind dispersion 

coefficient ( ayt ). Consequently, higher values of U cause little crosswind dispersion 
w. 

resulting higher concentrations. 

It is obvious from Figure 6.1 that the physical reasoning related to the effect of U on 
w. 

distribution holds true. Table 6.1 shows that the largest value U of 5.25 corresponds to 
w. 

both the highest concentration value (1709 J.Lg/m3
) and the farthest downwind peak (8000 

m). This demonstrates that the plume is not as dispersed as for the smaller ratios and is 

advected comparatively farther downwind. 
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Figure 6.1 Model sensitivity to the parameter _..!:!__ 
w. 

6.2.2 Sensitivity Analysis of Parameter A
0 

: 

A sensitivity analysis on the factor A
0 

represents the effect of the TIBL height variations 

on model outputs. It includes the information necessary for computation of the TIBL 
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height and is gtven by expressiOn (4.3). As this parameter depends on other 

meteorological parameters so it is characterized as a meteorological parameter. 

Higher values of Ao in Table 6.2 correspond to steep TIEL. A steep TIBL results in high 

concentrations with peaks close to the source and within a short fumigation zone. This is 

presented in Figure 6.2. A comparison of maximum concentrations and their locations is 

given in Table 6.2. 

Table 6.2 Model Sensitivity to the parameter A0 : maximum concentrations and 
corresponding distances 

Ao (ml/2) % Difference Cmax Xmax (m) % Difference of %Difference 
from the (flg/m3

) Cmax from the ofXmax from 
mean value concentration the distance 

corresponding corresponding 
to mean value to mean value 

2.00 -50.00 807.00 22000.00 -50.55 214.29 
3.00 -25.00 1262.00 10500.00 -22.67 50.00 
4.00 0.00 1632.00 7000.00 0.00 0.00 
5.00 25.00 1850.00 5000.00 13.36 -28.57 
6.00 50.00 1923.00 4000.00 17.83 -42.86 

Note: (-) sign shows the decrease from the mean value. 

Concentration curve resulted from the steepest TIEL ( A
0 
= 6) goes up sharply. Lesser 

values of A
0 

or shallow TIELs decrease the magnitude of maximum concentration and 

push its location further downwind. Also plume travels far downwind in shallow TIEL 

due to TIEL suppression. This fact is shown by the curve for the smallest A
0 

value of 2; 

where concentration levels are higher than other cases at distances far downwind. 



2500-

~ 

"' < 
8 

2000 

~ 1500 

~ 
~ 

~ 
"' § 
w 500 

0 

0 20000 40000 60000 

Distance (m) 

80000 

] Ao(2{) 
-----Ao(3) 

~------- Ao(4) 

---- Ao(5) 

,--Ao(6) 

Figure 6.2 Model sensitivity to the parameter A
0 

(m112
) (TIBL Model parameter) 

6.2.3 Sensitivity Analysis of Parameter N e : 

68 

Brunt-Vaisalla frequency (Ne) is used to quantify the stability of the stable air. Ne is 

layer's natural frequency in stable boundary layer. This parameter depends on the 

properties of marine air. A buoyant effluent that has reached its equilibrium height within 

stable boundary layer will oscillate with this natural frequency and will only dependent 

on the properties of air. Higher value of Ne corresponds to strong thermally stratified 

onshore flow and strong inversion. This results in plume suppression because of 

increased marine air stability and plume will impinge TIBL at small horizontal distance 

moving the highest ground level concentration value towards the stack. Also the plume 

has less dispersion in the stable air and impacts TIBL with higher concentrations. 

Decreasing the value of Ne aids in the plume rise. The plume will travel within the stable 

layer comparatively far distance downwind before entrapping into TIBL, thus moving the 

maximum ground level concentration away from the source. Also the increased 
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dispersion of the plume in the stable air would reduce the maximum ground level 

concentration after plume impaction. A quantitative comparison of maximum 

concentrations and their location at various N e values is given in Table 6.3. 

Figure 6.3 also supports the above stated physics of plume dispersion associated with the 

parameter N e • 

Table 6.3 Model Sensitivity to the parameter Ne: maximum concentrations and 
corresponding distances 

Ne (Sec-1
) % Difference % Difference of 

from the Cmax Xmax (m) Cmax from the 
mean value (Jlg/m3) concentration 

corresponding 
to mean value 

0.010 -50.00 759.00 11000.00 -53.49 
0.015 -25.00 1205.00 8500.00 -26.16 
0.020 0.00 1632.00 7000.00 0.00 
0.025 25.00 2038.00 6000.00 24.88 
0.030 50.00 2406.00 5500.00 47.43 

Note: (-) sign shows the decrease from the mean value. 
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6.2.4 Sensitivity Analysis of Parameter Fo : 

The parameter of buoyancy flux depends on both the meteorological parameters such as 

ambient air density and the source parameters such as cross-sectional area of the stack 

and effluent density and velocity at stack exit. 

The quantitative comparison, given in Table 6.4, shows that the lowest value of the 

buoyancy resulted into the highest ground level concentration and vice versa. A gradual 

shift in the maximum concentration location away from the stack from higher to lower 

buoyancy values is also seen from Table 6.4. 

Table 6.4 Model Sensitivity to the parameter F0 : maximum concentrations and 
corresponding distances 

Fo % Difference Cmax Xmax (m) % Difference of %Difference 
(m4/Sec3) from the (tJg/m3) Cmax from the ofXmax from 

mean value concentration the distance 
corresponding corresponding 
to mean value to mean value 

250.000 -50.00 2431.00 5500.00 48.96 -21.43 
375.000 -25.00 1931.00 6000.00 18.32 -14.29 
500.000 0.00 1632.00 7000.00 0.00 0.00 
625.000 25.00 1422.00 7500.00 -12.87 7.14 
750.000 50.00 1264.00 8000.00 -22.55 14.29 

Note:(-) sign shows the decrease from the mean value. 

Higher concentrations associated with lower buoyancy values may stem from the small 

plume rise and reduced dispersion of a plume in the stable layer. On the other hand, 

higher buoyancy will help in the plume rise and will increase the dispersion of the plume 

within the stable boundary layer resulting into the lower ground level concentrations at 

large distances. 
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6.2.5 Sensitivity Analysis Of Parameter Q: 
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The use of emission rate (Q) allows explicitly drawing conclusion about the 

concentration magnitude since it is directly proportional to the concentration magnitude 

in the model expression. However changes in emission rates do not displace the 

maximum concentration location (c.f. Table 6.5). Model sensitivity to this parameter is 

shown in Figure 6.5. 

Table 6.5 Model Sensitivity to the parameter Q: maximum concentrations and 
corresponding distances 

Q % Difference Cmax Xmax (m) % Difference of %Difference 
(Kg/Sec) from the (ug/m3

) Cmax from the ofXmax from 
mean value concentration the distance 

corresponding corresponding 
to mean value to mean value 

1.750 -50.00 816.00 7000.00 -50.00 0.00 
2.625 -25.00 1224.00 7000.00 -25.00 0.00 
3.500 0.00 1632.00 7000.00 0.00 0.00 
4.375 25.00 2040.00 7000.00 25.00 0.00 
5.250 50.00 2448.00 7000.00 50.00 0.00 

Note: (-) sign shows the decrease from the mean value. 
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6.3 Discussion On Sensitivity Analysis Results: 
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Comparing all the results of sensitivity analysis in Table 6.6 and 6.7, the A
0 

variable 

used in the TIBL calculation appears to be the most sensitive variable based on the spatial 

displacement location of maximum concentration. Table 6.6 shows that by decreasing 

Ao value from 4 to 2 (i.e. 50 % decrease) Cmax decreases by maximum from the Cmax 

corresponding to the mean A
0 

approximately 50.6% (i.e. from 1632 J,tg/m3 to 807 

J,tg/m3
). Moreover, by decreasing A

0 
by 50% (i.e. from 4 to 2) the horizontal distance 

Xmax corresponding to maximum concentration increases from 7000 m to 22000 m (i.e. 

-214% increase). 
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Similarly for the variables U , Ne and F
0

, the 50% decrease in their magnitudes from 
w. 

the mean values result into maximum decrease of concentration (Cmax) by -15%, -53.5% 

and maximum increase of - 49%, respectively, (c.f. Table 6.6). The 50% decrease in 

magnitudes result into maximum decrease of horizontal distances (XmaJ by -21.4% and 

-21.4% for the variables of U and F
0

, respectively, and maximum increase of - 57% 
w. 

for the variable of Ne (c.f. Table 6.7). Magnitude of the maximum concentration is also 

sensitive to the parameter of emission rate (Q). The maximum concentration increases or 

decreases by the same percentage as the Q increases or decreases in the magnitude from 

the mean value. This shows that model results are proportional to Q. However, the 

change in emission rate has no impact on its location. The above stated facts are also 

shown in Figures 6.6 and 6.7. 
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Table 6.6 % Differences of maximum concentrations (Cmax) from the mean values of the 
parameters in sensitivity analysis 

% Difference % Difference of Cmax from the concentration 
from the mean corresponding to mean value 

value of the 
parameter U/w* Ao Ne Fo Q 

-50 -14.83 -50.55 -53.49 48.96 -50 
-25 -5.64 -22.67 -26.16 18.32 -25 

0 0 0 0 0 0 
25 3.19 13.36 24.88 -12.87 25 
50 4.72 17.83 47.43 -22.55 50 

Note: (-) sign shows the decrease from the mean value. 

Table 6.7 %Differences of maximum horizontal distances (Xmax) from the mean values 
of the parameters in sensitivity analysis 

% Difference %Difference of Xrnax from the distance corresponding 
from the mean to mean value 

value of the 
U/w * Ao Ne Fo Q parameter 

-50 -21.43 214.29 57.14 -21.43 0 
-25 -14.29 50 21.43 -14.29 0 

0 0 0 0 0 0 
25 7.14 -28.57 -14.29 7.14 0 
50 14.29 -42.86 -21.43 14.29 0 

Note:(-) sign shows the decrease from the mean value. 
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Chapter 7 

Fumig: A Software Tool for Fumigation Study 

7.1 Introduction: 

This chapter provides a general overview of the features of a computer software tool, 

named as Fumig, to predict the ground level concentration during the fumigation. This 

software is built upon the revised fumigation model discussed in Chapter 4. The code for 

Fumig is written and compiled in visual basic. It can be used for simulation and 

regulatory purposes within the coastal region. 

7.2 The Basic Formulation of the Model: 

The primary step in the fumigation modeling is to characterize the TIBL and this can be 

properly done through an estimate of the surface sensible heat flux (H). Unfortunately 

sensible heat flux cannot be measured directly. It depends on the net radiation ( Rn ). To 

calculate sensible heat flux, the formulation proposed by Oke (1978) and being used in 

AERMOD is adopted here. 

(7.1) 

Where 

Bois Bowen Ratio 

Rn is net radiation (W/m2
) 

Hf is sensible heat flux (W/m2
) 
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The net radiation Rn is calculated by following the method of Holtslag and Van ulden 

(1983). 

R = [1- r{ ¢} ]Rs + C1Tr~r - O"sB Tr:r + C2n 
n (1 + C3) 

(7.2) 

Where 

C3 = 0.12 

O"sB = 5.67xl0-8 Wm-2K-4 (Stefan Boltzman Constant) 

Tref = Ambient Air Temperature at ground surface (K) 

r{ ¢} =Albedo 

Rs = Solar Radiation 

n = (0.0 -1.0) (Cloud Cover) 

Solar radiation (Rs) corrected for cloud cover is taken from Kasten and Czeplak (1980). 

R =R (1-075n 3.4) s 0 • (7.3) 

R
0 

= 990Sin¢- 30 (7.4) 

Where 

¢[t ] + ¢[t] 
¢is solar elevation angle and¢ = --'-P __ _ 

2 
[tP] = previous hour and 

[t] =present hour. 
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Local solar elevation angle is determined from the principles of geometry and is given by 

Zahang and Anthes (1982) as: 

Sin¢~ Sin'I'Sin8- Cos'I'Cos.leo{ ( llll~c)-A] (7.5) 

Where '¥and A are the latitude (positive north) and longitude (positive west) in radians, 

5 is the solar declination angle (angle of the sun above the equator, in radians), and 

tuTc is coordinated universal time in hours. 

The solar declination angle is given as: 

(7.6) 

Where ¢r is the latitude of the Tropic of Cancer (23.45°=0.409 radians), d is the number 

of the day of the year, dr is the day of the summer solstice (173), and dy is the average 

number of days per year (365.25). 

The other characteristics of the model such as TIBL growth with distance inland; plume 

rise and concentration modeling, already discussed in chapter 4, are also incorporated in 

Fumig. 

7.3 Fumig: Input Data Requirement: 

The input data requirement is divided in four categories: 1) Meteorological data, 2) 

Source data, 3) Time information and 4) Grid location. Fumig input data sheet is shown 

in Figure 7.1. 

7.3.1 Meteorological Data: 

The following input parameters are required in meteorological section. 
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Bowen Ratio: The user is allowed to enter the value from 0.1 to 5. Typical values 

range from 5 over semi-arid regions, 0.5 over grasslands and forests, 0.2 over 

irrigated grass, and 0.1 over the sea. 

Albedo: The model accepts a value in the range from 0.05 to 0.5. Its value varies 

from 0.4 over light-colored dry soils, 0.2 over grass and many agriculture crops, 

0.1 over coniferous forests, to 0.05 over dark wet soils. 

Surface Temperature: The lower bound on this parameter is 280 K and the 

upper bound is 323 K. Usually temperature ranges between these values in the 

summer during the daytime in the Northwestern hemisphere. 

Wind Speed: The stability index U (i.e. ratio between wind speed and 
w. 

convective velocity) should be greater than 1.2 to avoid stream-wise diffusion and 

less than 6 to fulfill the condition of strong convection for the applicability of the 

fumigation model. During vigorous heating at the ground, convective velocity 

can be on the order of 1 to 2 m/s. If the average value of convective velocity is 

considered as 1.5 m/s then the lower bound on the input wind speed value is 2 m/s 

and the upper bound is 8 m/s. 

Potential Temperature Gradient: The model deals with the stable stratified over 

water flows so the range considered for this parameter is from 0.003 to 0.04 kim. 

Over Water Temperature: The minimum input value allowed is 273 k and the 

maximum value must be less than the surface temperature. 
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7 .3.2 Source Data: 

The following input parameters are required under this category. 

Emission Rate: The model accepts the source emission rate greater than 0 and 

equal or less than 20 kg/s. 

Stack Diameter: Its value is expected between 1 to 15m. 

Stack Exit Velocity: It should be greater than 1.5 times of wind speed to avoid 

stack downwash. 

Stack Exit Temperature: The gas exiting from the stack must be having 

temperature greater than the ambient over water air. The maximum value, which 

the model accepts is 1000K. 

Physical Stack Height: The model considers elevated gas release from medium 

to tall stacks located on a shoreline. The Physical Stack height is limited to 30 m 

as minimum input value and 300 m as maximum value. 

7 .3.3 Time Information: 

These input parameters are used in calculating the Surface heat flux. 

Number of the Day of the Year: The fumigation model deals with summer 

season (June 22nct to September 21 51
). So the number of the day of the year must 

be greater than 173 (Julian day), which is considered as the day of summer 

solstice. The maximum value is 264, which corresponds to the 21st day of 

September. 

Local Hour: This parameter measures the solar elevation angle. Its value ranges 

from 10 to 17. Sun is considered well above the horizon during this range. 



82 

7.3.4 Grid Location: 

Longitude: The minimum acceptable value is 0 degree and maximum is 180 

degree west. The negative sign is used for meridians on the west of the prime 

meridian as a usual sign convention. But the equation 7.5 considers the value of 

the longitude as a positive west to calculate the solar elevation angle. 

Latitude: The value ranges from 0 to 90 degree north. 

Maximum Horizontal Distance of Interest: This represents the maximum 

distance of interest along the mean wind direction. Its value must be greater than 

the distance of the fumigation zone. If a smaller value is entered then while 

computing the parameters a message of increasing the distance of interest will be 

appeared. The upper bound is 100000 m (-lOOKm). 

Horizontal Grid Spacing: Its value is at least 10 (m). The maximum value 

should be less than the maximum horizontal distance of interest. 

Lateral Distance: Its value is 0 if the user is interested in calculating the ground 

level concentrations along the plume centerline and this is the minimum input 

value for this parameter. The maximum value is 3000 (m). 

7.4 Model Output: 

Once the values are keyed into the program then the user has to click or press on the 

Accept Values button shown in Figure 7 .2. If the input value is missing or a value of the 

parameter is out of the above-specified range, then a message box will be appeared on 

pressing the Accept Values button. The message box will prompt the user to enter the 

correct value for the parameter. 
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On the other hand if all the values are in the specified ranges then on clicking the Accept 

values button a message box will appear prompting the user to click Run button. After 

pressing on the Run button a file with the name of Fumig.doc will be opened and stored 

in the C root directory. The path and the name of the file will appear in the Result File 

box as shown in Figure 7 .2. 

Aq;;ept Values 

I ................................... ,1 
l ............ ~~~ .......... ..J. 

Result File: C: \F umig. doc 

Figure 7.2 Enlarged view of control buttons and result file box of Fumig 

Typical output of a Fumig run is presented in Appendix 6. The output file contains five 

categories of results. 

The first category in the output file gives the values of meteorological parameters such as 

heat flux, Brunt Vaisala Frequency and Convective velocity. 

The second category gives information about the fumigation zone. It includes the 

distance from the stack where fumigation starts and ends, the height at which the plume 

centerline intercepts the TIBL, and plume vertical dispersion coefficient and the 

horizontal distance from the stack corresponding to that height. 

The third kind of the information in the output file is about the magnitude of the 

buoyancy flux. 
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The fourth section displays the magnitude of TIBL parameter (A0 ), the equilibrium height 

of TIBL and the corresponding horizontal distance from the stack, and a table for TIBL 

height with distance inland. 

The fifth and final section of the file gives ground level concentrations in (f.tg/m3
) along 

the horizontal distances from the stack at the specified lateral distance. 
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Chapter 8 

Conclusions and Recommendations for Future Studies 

8.1 Concluding Remarks: 

The newly developed fumigation PDF model in the present study is based on approach 

that includes state-of-the art knowledge of TIBL turbulence and dispersion (analogous to 

CBL) in a simple framework. It is very time efficient and just requires a short time (few 

seconds) for computational purposes. It has been demonstrated that assumption of Weil 

and Brower's convective limit works fair-to-good for TIBL in the case of fumigation. 

The proposed model considers the condition of stable onshore flow and uses the Garratt's 

(1992) model to determine the height of TIBL. The model is best in predicting 

contaminant dispersion in stable onshore flows and strong convective conditions. The 

model also assumes that transport by bulk motion due to mean wind in the x direction, 

which is considered to be along the mean direction of wind, exceeds stream wise 

effective diffusion. 
u 

Characterizing in terms of stability index of 
w. 

applicable in the wide range of stability 1.2< U <6. 
w. 

the model is 

The inclusion of vertical finite time scale T1z, reduces the vertical dispersion and moves 

the point of maximum concentration downwind. A key assumption is T1z =T1y. As 

initially, vertical dispersion is reduced so at the large downwind distances more pollutant 
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is available to disperse. Due to this fact, higher concentrations at the large distances for 

finite Lagrangian time scale are observed than infinite Lagrangian time scale. 

During the performance analysis of the model, normality test of residuals confirmed their 

normal distribution without any transformation. Residuals also showed nice scatter 

without funnel shape when plotted against predicted values of the model. Further, the 

analysis provided the evidence that they were independent of the input variables. 

Both the mean absolute error and mean relative error are used as quantitative measures of 

coastal dispersion model performance, besides mean and standard deviation of Residuals. 

The error analysis proves that model is having minimum error relative to the observed 

values. 

Sensitivity analysis shows that the TIBL height parameter ( A
0

) is the most sensitive 

parameter to the model output in terms of the change in location of maximum 

concentration. It is also highly sensitive to the magnitude of maximum concentration. The 

parameter A
0 

is calculated from wind speed (U), Sensible heat flux (H) and over water 

potential temperature gradient ( y ). So these parameters should be measured or calculated 

with better precision. Both the parameters Brunt Viasala frequency ( N e) and emission 

rate (Q) are also sensitive to model output in terms of the maximum concentration 

magnitude. The variation in the magnitude of concentration is directly proportional to the 

variation in Q, but the location of maximum concentration does not vary. 

For easy and effective use of the newly developed model, user-friendly computer 

software 'Fumig' is also developed. This software is coded in visual basic. 
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8.2 Recommendations: 

1. Model should be extended to account for the fumigation phenomenon under near 

neutral onshore flow conditions. 

2. Further development efforts should focus on incorporating the complex terrain 

treatment in the model, as model is limited to get concentration profiles over flat 

terrain. 

3. The model ability should be extended to deal with plume rise from both the 

multiple sources and the stack with scrubber. 



88 

References 

1. Baerentsen, J. H., and Berkowicz, R. (1984). Monte Carlo Simulation of Plume 

Dispersion in the Convective Boundary Layer. Atmospheric Environment, 18,701-12. 

2. Briggs, G.A. (1984). Plume Rise and Buoyancy Effects, in D. Randerson (ed.), 

Atmospheric Science and Power Production. US Dept. Of Energy, NTIS

DE84005177, 327-66. 

3. Caughey, S. J., Kitchen, M., and Leighton, J., R. (1983). Turbulence Structure in 

Convective Boundary Layers and Implications for Diffusion. Boundary Layer 

Meteorology, 25, 345-52. 

4. Deardorff, J.W. (1974). Three Dimensional Numerical Study of the Height and Mean 

Structure of a heated Planetary Boundary Layer. Boundary Layer Meteorology, 7, 81-

106. 

5. Deardorff, J.W., and Willis, G.E. (1975). A Parameterization of Diffusion into the 

Mixed Layer. Journal of Applied Meteorology, 14, 1451-58. 

6. Deardorff, J.W., and Willis, G.E. (1982). Ground level concentrations due to 

fumigation into an entraining mixing layer. Atmospheric Environment, 16,1159-70. 

7. Deardorff, J. W., and Willis, G.E. (1985). Further results from a laboratory model of 

the convective planetary boundary layer. Boundary Layer Meteorology, 32, 205-36. 

8. DiCristofaro, D.C., and Hanna, S. R. (1990). The Offshore and Coastal Dispersion 

(OCD) Model: Revisions and Evaluations. In Air Pollution and Its Application VIII, 

Van Dop, and D.G. Steyn, Eds., Plenum Press, New York, 759-68. 

9. Draxler, R.R. (1976). Determination of Atmospheric Diffusion Parameters. 

Atmospheric Environment, 10, 99-105. 



89 

10. Draper , R.N., and Smith , H. (1981). Applied regression analysis. 2nd Ed., John 

Wiely, NY. 

11. Du, S., Wilson, J.D., and Yee, E. (1994). Probability Density Functions for Velocity 

in the CBL, and Implied Trajectory Models. Atmospheric Environment, 28,1211-17. 

12. Fisher, A. L., Parsons, M. C., Roberts, S. E., Shea. P. J., Khan. F. I., and Husain, T. 

(2003). 'Long-Term S02 Dispersion Modeling Over a Coastal Region', 

Environmental Technology, 24, 1-11. 

13. Garratt, J.R. (1992). The Atmospheric Boundary Layer. Cambridge university press, 

Cambridge, 186-89. 

14. Hibberd, M.F., and Luhar, A.K. (1996). A Laboratory Study and Improved PDF 

Model of Fumigation into a Growing Convective Boundary Layer. Atmospheric 

Environment, 30,3633-49. 

15. Hicks, B.B. (1985). Behavior of Turbulent Statistics in the CBL. J. Climate & 

Applied Meteorology, 24, 607-14. 

16. Holtslag, A.A.M., and Van ulden, A.P. (1983). A Simple Scheme for Daytime 

Estimates for the Surface Fluxes from Routine Weather Data. Journal of Climate & 

Applied Meteorology, 22, 517-529. 

17. Kerman, B.R. (1982). A Similarity Model of Shoreline Fumigation. Atmospheric 

Environment, 16,467-77. 

18. Lamb, R.G. (1982). Diffusion m the Convective Boundary Layer. Atmospheric 

Turbulence and Air Pollution Modelling ,Nieuwstadat, F.T.M, and Van, D.H. (Eds.), 

D. Reidel Publishing Co, Dordrecht, The Netherlands, 159-29. 



90 

19. Li, K. Z., and Briggs. A. G. (1988). Simple Pdf Models for Convective Driven 

Vertical Diffusion. Atmospheric Environment, 22,55-74. 

20. Luhar, A.K., and Britter, R.E. (1990). An application of Lagrangian Stochastic 

Modeling to Dispersion during Shoreline Fumigation. Atmospheric Environment, 

24A, 871-81. 

21. Luhar, A.K., and Sawford.B.L. (1995). Lagrangian Stochastic Modeling of the 

Coastal Fumigation Phenomenon. J. of Applied Meteorology, 34,2259-2277. 

22. Luhar, A.K., and Sawford, B.L. (1996). An Examination of Existing Shoreline 

Fumigation Models and Formulation of an Improved Model. Atmospheric 

Environment, 30,609-20. 

23. Luhar, A.K. (1998). An Analytical Slab Model For the Growth of the Coastal 

Thermal Internal Boundary Layer Under Near-Neutral Onshore Flow Conditions. 

Boundary-Layer Meteorology, 88, 103-20. 

24. Luhar, A.K. (2002). The Influence of Vertical Wind Direction Shear on Dispersion 

in The Convective Boundary Layer, and Its Incorporation in Coastal Fumigation 

Models. Boundary-Layer Meteorology, 102, 1-38. 

25. Luhar. A.K., and Young, S. A. (2002). Dispersion Moments of Fumigating Plumes

LIDAR Estimates And PDF Model Simulations. Boundary-Layer Meteorology, 104, 

411-44. 

26. Lyons,W.A., and Cole, H. S. (1973). Fumigation and Plume Trapping on the shores 

of Lake Michigan during stable onshore flow. J. of Applied Meteorology, 12,494-10. 

27. Mason, P. J. (1992). Large Eddy Simulation of Dispersion in Convective Boundary 

Layers with Wind Shear. Atmospheric Environment, 26A, 1561-71. 



91 

28. Misra, P.K. (1980). Dispersion from Tall Stacks into a Shoreline Environment. 

Atmospheric Environment, 14, 397-00. 

29. Misra, P.K. and Onlock, S. (1982). Modelling Continuous Fumigation of Nanticoke 

Generating Station Plume. Atmospheric Environment, 16, 479-89. 

30. Oke, T.R. (1978). Boundary Layer Climates, John Wiley and Sons, New York, 372. 

31. Portelli, R. V. (1982). The Nanticoke Shoreline Diffusion Experiment, June, 1978-I: 

Experimental Design and Program Overview. Atmospheric Environment, 16,413-21. 

32. Stull, R.B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer 

Academic Publishers, Dordrecht, The Netherlands, 450. 

33. Taylor, G.I. (1921). Diffusion by Continuous Movements. Proc. London Math 

Society, Ser. 2, 20, 196-12. 

34. Venkatram, A.K. (1982). A Frame Work for Evaluating Air quality Models. 

Boundary-Layer Meteorology, 24, 371-85. 

35. Venkatram, A. (1977). A Model of Internal Boundary Layer Development, Boundary 

Layer Meteorology, 11, 419-37. 

36. Venkatram, A. (1988). Topics in Applied Dispersion Modeling. Lectures on Air 

Pollution Modelling A.Venkatram and J.C. Wyngaard, Eds., American Metrological 

Society, Boston, MA, 267-24. 

37. Van, D. H., Steenkist, R., and Nieustadt E.T.M. (1979). Revised Estimates for 

Continuous Shoreline Fumigation. J. of Applied Meteorology, 18,133-37. 

38. Weil, J.C., and Brower, P.R. (1984). Estimating Convective Boundary Layer 

Parameters for Diffusion Applications. Maryland Power Plant Siting Program Rep. 

PPSP-MP-48, Dept. of Natural Resources, Annapolis, MD, 37. 



92 

39. Weil, J.C., and Corio, A. L. (1985). Dispersion Formulations Based on Convective 

Scaling. Maryland Power Plant Siting Program Rep. PPSP-MP-60, Dept. of Natural 

Resources, Annapolis, MD, 39. 

40. Weil, J.C. (1988). Dispersion in the Convective Boundary Layer. Lectures on Air 

Pollution Modelling, A.Venkatram and J.C. Wyngaard, Eds., American 

Meteorological Society, Boston, MA, 167-27. 

41. Weil, J.C. (1990). A Diagnosis of the Asymmetry in top-down and bottom-up 

diffusion using a Lagrangian Stochastic Model. J. Atmospheric Science, 47,501-15. 

42. Weil, J. C., Corio, L. A., and Brower, P. R. (1997). A PDF Despersion Model for 

Boyant Plumes in the Convective Boundary Layer. J. of Applied Meteorology, 36, 

982-1003. 

43. Wyngaard, J.C. (1988). Structure of the PBL. Lectures on Air Pollution Modelling , 

A.Venkatram and J.C. Wyngaard, Eds., American Meteorological Society, Boston, 

MA, 9-61. 

44. Zhang, D., and Anthes, R., A. (1982). A High-Resolution Model of the Planetary 

Boundary Layer-Sensitivity Tests and Comparisons with SESAME-79 Data. Journal 

of Applied Meteorology, 21, 1594-1609. 



93 

Appendix 1 

Expression for Entrainment Rate 

Air density within the TIBL can be assumed constant analogous to ML within CBL. This 

allows the use of volume conservation in place of mass conservation. In a column of 

TIBL air of height, Zi, over a given horizontal area on the earth, A, the volume is A *zi. If 

17 is considered as the net volumetric flow rate into the volume, then volume conservation 

yields: 

-A dzi 17 - dt 
(A-1.1) 

Inflow occurs in the vertical because of entrainment at the top of the TIBL, and in the 

horizontal because of convergence within the TIBL. So in the absence of cloud cover: 

z, 

17 = W eA- f ffY' xydxdydz (A-1.2) 
z=O A 

Where V' xy is the divergence in horizontal plane and we is the rate at which the air 

entrained into the top of TIBL as discussed in section 1.4.2. 

Continuity equation for the case of incompressible fluid flow states that horizontal 

divergence must be compensated by vertical shrinking or vertical convergence 

(subsidence). Mathematically: 

(A-1.3) 

Or 

au av aw 
-+-=--
ax ay az 

(A-1.4) 



From Equations (A-1.2) & (A-1.4): 

z, dW 
r; = w eA - f ff-- dxdydz 

z;Q A dZ 

Or 

z, dW 
r; = w eA + ff f ~zdxdy 

A z;Q dZ 

Or 

r; = W eA + W z ff dxdy 
A 

Or 
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(A-1.5) 

(A-1.6) 

(A-1.7) 

(A-1.8) 

Where Wz is the mean large vertical motion, acting on the top of TIBL (i.e., subsidence). 

Moreover the magnitude of Wz is negative for subsidence. 

Upon combining Equations (A-1.1) and (A-1.8) and dividing by A, the following 

expression is obtained: 

dz 
-

1 =w +w dt e z 
(A-1.9) 

When there is no subsidence or horizontal divergence is zero then Equation (A-1.9) can 

be written as: 

dz 
-~=W 
dt e 

(A-1.10) 

Equation (A-1.10) shows that the TIBL top rises at a rate equal to we in the absence of 

subsidence. 

Equation (A-1.10) can be written into gradient equation as follows: 



U
dzi 
-=W 
dx e 

Where U is the mean wind within the TIBL. 

Expression forzi (x) from Equation (4.2) is given as: 

Or 

From Equations (A-1.11) and (A-1.12) 

Or 

1 UAO w =--
e 2 _!_ 

xz 

I 
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(A-1.11) 

(A-1.12) 

(A-1.13) 

(A-1.14) 

(A-1.15) 

Putting the expression for x 2 from Equation (A-1.13) into Equation (A-1.15), the 

entrainment rate is given as: 

1 UA 2 

w =---0 
e 2 zi 
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Appendix 2 

Statistical Theory 

A Lateral Dispersion: 

Taylor's theory applies to the displacements of passive particles serially emitted from a 

point source in a turbulent flow. Further more, turbulence is considered homogeneous 

and stationary. As the turbulence is stationary so the autocorrelation coefficient of 

turbulent velocity of a fluid particle is a function of time lag. This defines the correlation 

between the particle velocity at one time v(t) and at some later time v(t+'Z). Here r is a 

time separation. For they direction autocorrelation (Rv) is given by: 

(A-2.1) 

Where the angle brackets denote an ensemble mean. The ensemble 

average ( v( t) + v( t + -r)) means the average over a large number of trials of the product of 

the velocity of a single particle at t multiplied by the velocity of the same particle at time 

t + -r . As the turbulence is considered homogeneous and stationary so both the mean 

ensemble average and time average would be the same. 

As -r -o, Rv-1 since the velocity is perfectly correlated with itself at zero lag, and as 

-r gets large, Rv approaches zero because the velocity becomes independent of its earlier 

value at time t. A measure of the time over which v becomes independent of its value at t 

is the Lagrangian integral time scale and may be given as: 

(A-2.2) 
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Since the particles are passive, they do not affect the flow and thus move with the local 

fluid velocity. Hence, the displacement y of the particle in one realization is: 

t 

y = fv(T)dT 
0 

Mean ensemble average (y) is given by: 

t 

(y) = f(v(T))dT (A-2.3) 
0 

As (v) = 0, so from Equation (A-2.3) the magnitude of (y)will also be 0. 

Of course, at time t not all particles are in the same plane, nor will they be at the same 

distance from the source. Despite the average y coordinate is equal to zero for a large 

number of particles after a travel time t, no single particle arrives precisely at the mean 

position of the ensemble (x,O) and aim is to quantify the lateral spread. The mean square 

displacement, which is the average of the square of a displacement due to turbulent 

velocity component, provides a tool to measure this spread. The mean square 

displacement in the y direction is the variance by definition: 

(A-2.4) 

Even though the turbulence is stationary a: will increase with time and is thus said to be 

evolutionary quantity. 

Differentiating Equation (A-2.4) with respect tot gives: 

a: = 2( ) d(y) 
dt y dt 

(A-2.5) 



Where d(y) = (v(t)) 
dt 

Or 

(J'2 

_Y = 2(v(t)y(t)) 
dt 

Or 

(J'2 t 

_Y = 2f(v(t)v(t+r))ctr 
dt 0 

From Equation (A-2.1) the above expression can be written as: 
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(A-2.6) 

(A-2.7) 

(A-2.8) 

(A-2.9) 

As stationary and homogeneous flow is considered so ( v2
) is constant in the above 

equation. 

Hence another integral yields: 

t t 

CJ'~ = 2(v
2)J fRv(r)drdt 

00 
(A-2.10) 

As the average of the square of the fluctuating component is its variance a;, so Equation 

(A-2.10) can be written as: 

t t 

CJ'~ = 2a;ffRv(r)drdt (A-2.11) 
00 

Two limiting forms of Equation (A-2.11) arise as the result of the Rv('t) behaviour. For 

very small T <<T1y, Rv- 1 and Equation (A-2.11) yields: 

t t 

a~ = 2a; If d nit (A-2.12) 
00 
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Or 

t 

a 2 = 2a2 ftdt y v (A-2.13) 
0 

Or 

(A-2.14) 

The root-mean-square lateral displacement ( aY) due to the root-mean-square lateral 

velocity ( av) is given by: 

(A-2.15) 

Equation (A-2.15) states that the plume growth is linear with time. 

For long (infinite) times, Rv approaches zero, but its integral remains finite and is given 

by Equation (A-2.2). Equation (A-2.11) reduces to: 

t--->~ 

Where T1Y = f R Jr)d r is the lateral Lagrangian Integral time scale. 
0 

Or 

1 

a=r:rfat2 
y 'V""'l.ly v 

(A-2.16) 

(A-2.17) 

(A-2.18) 

So in this time limit, aY grows parabolically with t, which is a diffusive type of behavior. 
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A convenient function f1Y is used (Weil, 1988) to account for both the short and long term 

I 

ranges. So, The root-mean-square lateral displacement (a Y = ( /) 2) due to the root-

I 

mean-square lateral velocity (av = (v2 )2) is given by: 

(A-2.19) 

B Vertical Dispersion: 

The above stated Lagrangin concept for the particle trajectory in the vertical direction is 

applied here for the dispersion in the convective boundary layer. 

The root-mean-square vertical displacement ( az) due to the root-mean-square vertical 

turbulent velocity (a w ), at small time scale (when Rw-d similar to Rv), is given by: 

(A-2.20) 

Where j=1,2 is representing updraft and downdraft respectively. 

In the previous fumigation models the Equation (A-2.20) was assumed to hold true even 

at long times and the key assumption was the infinite vertical Lagrangian time scale. 

Using the earlier explanation, Equation (A-2.18) may be used for the root-mean-square 

displacement in the vertical direction for the finite time scale as: 

I 

(jzj = J2Tlz (j w/2 (A-2.21) 

The function flz similar to the function f1Y, which accounts for both the short and long 

time ranges, is used here. 
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(A-2.22) 

C Solution of a Differential Equation Governing a Particle Trajectory in the 

Vertical Direction Considering Finite T1z : 

Consider the following equation governing the particle trajectory. 

z t 

f dz = f w(t)dt (A-2.23) 
z, 0 

In the case of infinite vertical Lagrangian time scale it is assumed that at any time 

downwind Rw-1. This implies that the vertical velocity at any time downwind is 

perfectly correlated with its value at the source height and independent of time. So, the 

Equation (A-2.23) may be rewritten as: 

z t 

f dz = w f dt (A-2.24) 
z, 0 

Or 

z- zs = wt (A-2.25) 

Conversely, in the vertical finite Lagrangian time scale, Rw-1 only at short times and 

approaches to zero at large times. So, at large times vertical velocity cannot be correlated 

with its value at the source height and obviously becomes time dependent. Even though 

Rw-0 at large times but its integral remains finite and is given as: 

t-7= 

T12 = fRw(T)dT (A-2.26) 
0 

Where T12 is the vertical Lagrangian Integral time scale. 
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To deal with both the short and long times the T1, effect should be included in the 

solution of Equation (A-2.23). A convenient function f1, (which has already been used in 

the statistical theory) is introduced here in the solution of Equation (A-2.23). This simple 

function accounts the statistics of T1, in stationary and homogenous turbulent flows. The 

solution of Equation (A-2.23) may be presented as: 

wt 
z-z =

s f 
lz 

(A-2.27) 

It's important to note that, in stationary and homogeneous turbulence the statistical 

properties depend only on the displacements in time and space and not on the initial time 

or position. 



103 

Appendix 3 

Expression for the Elemental Source Strength ( dQ) 

From Equation (4.7) the elemental source strength at the plume-TIEL interface IS 

mathematically given as: 

1 1 I) _ ( CJ Cs dzi (xl)) I I 

dQ(x,y,z - K,,~+U,C, dx ~x~y 

dQ(x~, y1,z') = c,(K,, a":'lc, + U, dzi (x
1

)J~x~~y~ 
C, uz dx 

The solution of the term(K,, ac,J in Equation (A-3.1) is given as follows; 
C, dZ 

K = _!_ cta?r 
zs 2 dt 

(A-3.1) 

(A-3.2) 

Assuming a constant mean wind speed in the stable layer, Equation (A-3.2) is written as: 

(A-3.3) 

Or 

(A-3.4) 

A Gaussian model gives concentration profile within the stable layer, so expression for 

(A-3.5) 
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In writing the Equation (A-3.5) it is assumed that material entrained into the TIBL cannot 

affect the concentration in the stable layer, so there is no reflection term is included. 

(A-3.6) 

Or 

(A-3.7) 

From Equations (A-3.4) and (A-3.7) the term (K,, ac,Jbecomes: 
C, az 

K,, ac, = U a dazr [- (z- H)] 
C a s zf d 1 2 , z x a,r 

(A-3.8) 

Or 

K,, ac, = U dcr,r [- (z- H)] 
c, az s dx 1 a,[ 

(A-3.9) 

Putting back this expression into Equation (A-3.1); 

dQ = c,[u, do-~r [- (z- H)]+ U, dzi (~~)]~x~~y~ 
dx O",r dx 

(A-3.10) 

As here the interest is in calculating the concentration at plume-TIBL interface so z will 

be replaced by zi(x1
). 

dQ=C U [dzi(X
1

) _ do-,r (zi(x1)-H(x1))]~x~~ 1 

s s dl dl y 
X X O"zf 

(A-3.11) 
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Defining the term [(zi (x
1

)- H(x
1

))] as p(x1
) Equation (A-3.11) takes the form; 

(jzf 

(A-3.12) 

Here dQ is defined as a Flux 'F (x1 ,y1
)' associated with the elemental area~x~~y~. 

~x~~y~ 

(A-3.13) 

Or 

F( 1 1) = C U _1_[dzi(X
1
) _ dazf ( ~)] 

X 'Y s s 1 1 P X O'zf 
O'zf dx dx 

(A-3.14) 

Now let's assume; 

G(xl) = _1_[dzi (~
1

) _ da~f p(xl)] 
azf dx dx 

(A-3.15) 

Adding the term of -
1
- dH(~~) on both sides of Equation (A-3.15), G(x1

) is given as; 
O'zf dx 

(A-3.16) 

Or 

G(xl) = _1_[dzi (~
1

) _ da~f p(xl) _ dH(~
1

)] + _1_ dH(~
1

) 
O'zf dx dx dx O'zf dx 

(A-3.17) 

Putting back the expression for p(x1
) in Equation (A-3.17), G(x1

) is given as; 

G(xl)=-1-[dzi(~1) _ dH(~1) _ (zi(x1)-H(x1))da~f]+ 1 d~~~~) 
a,f dx dx O'zf dx O'zf 

(A-3.18) 
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Or 

[ (jzfrdz~~~,)- d~~~')1-[(zi(x')-H(x'))da~fJ] 
O"zf O"zf dx 

G(x') = + _1_ dH(~') 
O"zf O"zf dx 

(A-3.19) 

Or 

CYzr[dzi(~')- dH(~')]-[(zi(x')-H(x'))dO"~J 
G(x') = dx dx dx 

a;r (x') 

1 dH(x') 
+ I 

O"zf dx 
(A-3.20) 

The first term on the right hand side of Equation (A-3.20) is the derivative of the term 

[ 
(zi (x')- ~(x') )] with respect to dx' 

O"zf (x ) 

G(x') = ~[ (Zi(x')- ~(x') )] + _1_ dH(~') 
dx O"zf (x ) O"zf dx 

Or 

G(x') = dp(x') + _1_ dH(x') 
dx' crzf dx' 

(A-3.21) 

(A-3.22) 

If the plume attains the final rise before touching the lower portion of the TIBL then the 

second term on the right hand side of Equation (A-3.22) will be dropped out and the 

parameterization for term G(x') would be the same as given by Misra (1980). Otherwise 

Misra's (1980) model incorrectly uses G(x') = dp(~'). 
dx 
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Appendix 4 

Parameters Defining thew PDF 

The four out of six unknown parameters in Equation (4.21) (i.e. ~, ~, w 1 and w 2 ) are 

= 

found by equating the zeroth through third moment (i.e. wn = Jwnpw(w)dw; n=0-3) of 

that hi-Gaussian distribution with the followings: 

(A-4.1) 

(A-4.2) 

w 2 = o-~ = 0.31w. (Under convective limit) (A-4.3) 

(A-4.4) 

The other two unknown parameters in Equation (4.21) (i.e. o-w 1 and o-w 2 ) are 

parameterized by Weil (1990) as follows: 

O'"wl =Rwl (A-4.5) 

(A-4.6) 

Weil (1990) solutions for the mean vertical velocities in updrafts w 1 and downdrafts w 2 

are given by the following expressions, respectively: 

- I 

w I - awS 1 ( 2 s2 4 )2 ----+- aw +-
o-w 2 2 fJw 

(A-4.7) 

-- I 

w 2 _ awS 1 ( 2 S2 4 )2 ------- aw +-
o-w 2 2 fJw 

(A-4.8) 
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Where 

a w and S are averaged vertical velocity standard deviation and skewness, respectively. 

The parameter R is defined as: 

(A-4.9) 

Subscripts 1 and 2 are associated with updrafts and downdrafts. 

Weil et al. (1997) laboratory analysis shows good agreement between the modeled and 

measured crosswind integrated concentrations under strong convection at R=l. 

Assuming R=1, the magnitude of aw and f3w turnout to be 0.5 and 2 respectively. The 

magnitude of Sis taken as 0.6 from the Minnesota experiments (Wyngaard, 1988). Under 

Weiland Brower's (1984) convective limit ( u•- 0 ), O'w from Equation (4.22) is: 

O'w=0.56w. (A-4.10) 

Putting back these values of aw, f3w, S and 0' w in Equations (A-4.7) and (A-4.8), the 

following expressions are obtained: 

W1 = 0.488W* (A-4.11) 

w 2 = -0.32w. (A-4.12) 

Weighting coefficients for the updraft and downdraft distributions .,11 and .,12 , 

respectively, are given as follows: 

(A-4.13) 
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~= (A-4.14) 

With R=1 Equations (A-4.5 and A-4.6) result out: 

O"wl = W 1 = 0.488w. (A-4.15) 

O"w 2 = lw 2 1 = 0.32w. (A-4.16) 



Appendix 5 

Matlab Code 

%inputs required by a user 
q=input ('Enter the value of emission rate Kg/s\n'); 
A=input ('Enter the value of A\n'); 
u=input ('Enter the average wind speed (m/s) \n'); 
wasto=input ('Enter the value ofW* (m/s) \n'); 
fo 1=input ('Enter the bouyancy flux for the First stack \n'); 
fo2=input ('Enter the bouyancy flux for the Second stack \n'); 
omga=input ('Enter the Value of Brunt Vaisala Frequency \n'); 
sheight=input ('enter the value of source height(m)\n'); 
y=input ('enter the value of lateral distance(m)\n'); 
distint=input ('Distance of Interset (m)\n'); 
G_spa=input ('Horizontal Grid Spacing\n'); 
nostp=round( distint/G_spa); 
z=O; 
%calculation of TIBL height 
tast=600; %convective scale time in sec. 
zieq=wasto*tast;%equilibrium height of Tibl 
xieq=(zieq/A)I'2; %distance where equilibrium height is achieved 
stpsize=distint/nostp; 

hcalc=zeros( 1 ,nostp+ 1); 
distcalc=zeros( 1 ,nostp+ 1); 
for i=1:length(hcalc); 

hcalc(i)=A *sqrt(stpsize*(i-1 )); 
distcalc( i)=stpsize*(i -1); 

end; 
hcalc; 

%Calculation of final plume rise 
%The Nanticoke power plant plume achieves final rise before intercepting its lower part with TIBL. 
omgasq=omga"2; 
fpr1=2.4*((fo1/(u*omgasq))"0.3333333); %final plume rise scheme from Misra (1982) for Stack 1 
fpr2=2.4*((fo2/(u*omgasq))"0.3333333); %final plume rise from Misra (1982) for Stack 2 
fpr=(fpr 1 +fpr2)/2; 
zio=sheight+fpr; %height where plume center line intersects with TIBL top 
xio=(zio/A)I'2; %distance corresponding to height zio 
fo=(fol+fo2)/2; 
znprime=( 1.3*(fo"( 1/3) )/u)*(xio"(2/3) ); 
sigmazfo=0.5*fpr; %vertical dispersion coefficient for stable layer from Misra (1982) 
ratsigzfo=( sigmazfo/zio); 
sigyfo=0.5*(1.3*(fo"(l/3))*(xio"(2/3))*(u"-1)); from Misra (1982) 
ratsigyfo=( sigyfo/zio); 
zinmin=(zio-1.4*sigmazfo); %TIBL height which corresponds to hz distance where fumigation starts 
zinmax=(zio+l.4*sigmazfo); %TIBL height which corresponds to hz distance where fumigation ends 
xinmin=(zinmin/A)I'2 ;%horizontal distance where fumigation starts 
xinmax=(zinmax/A)I'2; %horizontal distance where fumigation zone ends. 
We=(0.5*u*(A"2))/zio; 
rato=We/wasto; 
xdec=(xinmin>=distcalc); 
if xdec(end)==1; 

disp('\n Plz re-run the program and Increase the Horizontal Distance of Interest'); 
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else; 
cp1=(xinmin<distcalc); 
[mvall ind1]=max(cp1); 
cp2=(xinmax<distcalc); 
[mval2 ind2]=max(cp2); 
if (ind1==ind2); 
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disp('you have not selected any point within the fumigation zone. Plz re-run the program and decrease 
the spacing'); 
else; 
cp3=(zieq<hcalc); 

[mval3 ind3]=max(cp3); 
if (mval3==1); 

hcalc( 1 ,ind3 :end )=zieq; 
end; 
xfumig1 =distcalc(ind1 :(ind2-1) ); 
xfumig=[xfumig 1]; 
zfumig 1=hcalc(ind 1 :(ind2-1 )) ; 
zfumig=[zfumig 1]; 
cp4 =(xinmax<distcalc); 
[mval4 ind4]=max(cp4); 
if (mval4==1); 

end; 

xtrap 1 =distcalc(ind4 :end); 
ztrap1=hcalc(ind4:end); 

xtotal=[xfumig xtrap1]; 
ztotal=[zfumig ztrap1]; 
%writing to output file 
fid = fopen('Fumig.rtf,'wt'); %opening the output file 
fprintf (fid,'Hz distance at TIBL equilibrium height= %10.3f(m)\n',xieq); 
fprintf (fid,'TIBL equilibrium height= % 10.3f(m)\n',zieq); 
fprintf (fid,'\n Plume Rise at the intersection of TIBL= % 10.3f(m)\n',fpr); 
fprintf(fid,'\nValue of A= %10.3f(m)\n',A); 
fprintf (fid,'\nZio= % 10.3f(m)\n',zio); 
fprintf (fid,'\nXio= %10.3f(m)\n',xio); 
fprintf (fid,'\nVertical dispersion coefficient for stable layer @Zio=% 10.3f(m)\n',sigmazfo ); 
fprintf ( fid, '\nLateral dispersion coefficient for stable layer @ Zio=% 1 0.3f( m) \n' ,sigyfo); 
fprintf (fid,'\n Non-dimensional vertical dispersion coefficient for stable layer 
@Zio=%10.3f(m)\n',ratsigzfo); 
fprintf (fid,'\n Non-dimensional lateral dispersion coefficient for stable layer 
@Zio=%10.3f(m)\n',ratsigyfo); 
fprintf (fid,'\nConvective vel @ Zio=%10.3f(m)\n',wasto); 
fprintf (fid,'\nEntrainment vel=%10.3f(m)\n',We); 
fprintf (fid,'\nRatio of entrainment vel to convective vel=%10.3f(m)\n',rato); 
fprintf (fid,'\nDistance from the shoreline where fumigation zone starts=% 10.3f(m)\n',xinmin); 
fprintf (fid,'\nDistance from the shoreline where fumigation zone ends=% 10.3f(m)\n',xinmax); 
fprintf (fid,'\nTIBL height at the starting of fumigation zone= %10.3f(m)\n',zinmin); 
fprintf (fid,'\nTIBL height at the ending of fumigation zone= % 10.3f(m)\n',zinmax); 
fprintf(fid,'\nTABLE OF TIBL HEIGHT WITH IN FUMIGATION ZONE\n\n'); 
cp5=(xinmax<=xtotal); 
[mval5 ind5]=max(cp5); 
cp6=(xinmax==xtotal); 
cp7=[cp6 0]; 
[mval7 ind7]=max(cp7); 
fprintf( fid,'\nDistance( m) Concentration( ugfmA 3) \n'); 
fprintf( fid, '=========== =========================\n'); 
for ii=1 :length(xtotal); 



if (ii<ind5) I (mval5==0); %Concentration calculations within the Fumigation Zone 
xbtzon=xfumig; 
zbtzon=zfumig; 
xtrap=xbtzon( ii); 
ztrap=zbtzon(ii); 
stepfumig=(xtrap-xinmin)/50; 
xprimel=zeros( 1 ,51); 
for kk=1 :length(xprimel); 

zprimel(kk)=A *( (xinmin+stepfumig*(kk-1) )"'0.5); 
xprimel(kk)=xinmin+stepfumig*(kk-1); 

end; 

xpri=xprimel( 1 :end-1); 
zpri=zprimel( 1 :end-1); 

[cone 1] = pdfsf( u,sheight, wasto,y ,z,fo,fpr ,zpri,xpri,ztrap,xtrap ); 
conc1; 
concla=[concl 0]; 

xpri1a=[xpri xprimel(end)]; 
elseif ( cp7(ii)==1);% Concentration calculations out of the Fumigation Zone 

xbtzon=xfumig; 
zbtzon=zfumig; 
xtrap=xbtzon(ii); 
ztrap=zbtzon( ii); 
stepfumig=(xtrap-xinmin)/50; 
xprimel=zeros( 1 ,51); 
for kk=1 :length(xprimel); 

zprimel(kk)=A *( (xinmin+stepfumig*(kk-1 ))"'0.5); 
xprimel(kk)=xinmin+stepfumig*(kk-1 ); 

end; 

xpri=xprimel ( 1 :end -1); 
zpri=zprimel( 1 :end-1); 

[conc1] = pdfsf(u,sheight,wasto,y,z,fo,fpr,zpri,xpri,ztrap,xtrap);% Calling the Function pdfsf 
conc1; 
concla=[conc1 0]; 

xpri1a=[xpri xprimel(end)]; 
else 

xtrap=xtotal(ii); 
ztrap=ztotal(ii); 
stepfumig=(xinmax-xinmin)/50; 
xprimel=zeros( 1 ,51); 
for kk=1 :length(xprimel); 

zprimel(kk)=A *( (xinmin+stepfumig*(kk-1) )"'0.5); 
xprimel(kk)=xinmin+stepfumig*(kk-1); 

end; 

xpri=xprimel( 1 :end); 
zpri =zprimel ( 1 :end); 

[cone 1] = pdfsf( u,sheight, wasto,y ,z,fo,fpr,zpri,xpri,ztrap,xtrap ); 

concl a=[ concl]; 
xpri1a=[xpri]; 

end; 
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anticonc 1=trapz(xpri 1a,conc 1a);%integral of concentration values with respect to xprime. 
conc2=(1/(2*pi))*anticonc1;%Concentration values after incorporating all the source pts 
conc=conc2*q*(10"'9);% concentration in micro gram per cubic meters. 
fprintf (fid,'\n% 1 0.2f% 10.4f\n',xtrap,conc); 

end; 
end; 
end; 
fclose(fid); 

Matlab Code for Function pdfsf 

%Function pdfsf used in Fumig to compare the Nanticoke results. 
function [cone 1] = pdfsf( u,sheight, wasto,y ,z,fo,fpr ,zpri,xpri,ztrap,xtrap); 
repit=[-4:4]; 
znprime=( 1.3*(fo"( 1/3) )/u). *(xpri."(2/3) ); 

znprime( 1,1 :end)=fpr; 
sigzfxp=0.5. *znprime; 

hxp=sheight+znprime; 
%this section calculates the term s(x') in the pdf fumigation model of Luhar 2002. 
for 1=1:length(xpri); 

sxp(l)=(zpri(l)-hxp(l) )/sigzfxp(l); 
sxpsq (1)=( sxp(l)"2); 
sols(l)=exp( -0.5*sxpsq(l) ); 

end 
%this section calculates the term G(x')in the pdf fumigation model. 
n=length( xpri); 
dsxp=diff(sxp)./diff(xpri); %derivative of term s(x') wrt x' 
adsxp= [ dsxp( 1) dsxp]; 
dhxp=diff(hxp)./diff(xpri);%average value of derivative of plume rise H(x') wrt x'. 
adhxp=[ dhxp(l) dhxp] ;%average value of derivati veof H(x') wrt x' 
for l=l:length(xpri); 

gxp(l)=adsxp(l)+( ( 1/sigzfxp(l) )*adhxp(l)); 
end 

for jj= 1 :length(repit); 
for 1=1:length(xpri); 

for m=1:length(xtrap); 

wast(m)=wasto;%convective velocity. 
w1avg(m)=0.488*wast(m);%mean vertical velocity in updrafts 
sigw1(m)=w1avg(m);%std. deviationin of vertical velocity comp. in updrafts 
w2avg(m)=-0.32*wast(m);%mean vertical velocity in downdrafts 
sigw2(m)=abs(w2avg(m));%std. deviationin of vertical velocity comp. in downdrafts 

%calculation of vertical velocity component in updraft(w 1) 
fyfl (l,m)=( wast( m)/ztrap( m)) *( ( xtrap( m)-xpri(l) )/u); 

fy(l,m)=(l +0.71 *fyfl(l,m))"( 1/2); 
w 1 Uj,l,m)=(z-zpri(l)+ 2 *repitUj)*ztrap(m) )*( (u/(xtrap(m)-xpri(l)) )*fy(l,m)); 

%calculation for shear dispersion coeff. 
%calculation for turbulent dispersion coeff. 
sigyt(l,m)=0.5 6*wast(m) *( ( xtrap( m)-xpri(l) )/u) *( 1/fy(l,m)); 
sigytsq (l,m)=( sigyt(l,m) )"2; 
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sigyf(l)=0.5 *( 1.3*(fo"( 1/3))*(xpri(l)"(2/3))*( u"-1) ); 
sigyfsq(l)=sigyf(l)"2; % calculation for lateral spread in the stable region 

sigpsq(l,m)=sigyfsq(l)+sigytsq(l,m);%term sigma '(x,x') 
sigp(l,m)=sigpsq (l,m)"0.5; 
a1=0.4; % fraction of area of updrafts 

fact1=a1/(sqrt(2 *pi)); 
a2=0.6; 
fact2=a2/ ( sqrt( 2 *pi)); 

w2Uj ,l,m)=( -z-zpri(l)+ 2 *repitUj )*ztrap( m) )*( u/( xtrap( m)-xpri(l))) *fy(l,m); 
w1 t1Uj,l,m)=(fact1/sigw1(m))*(exp( -((w 1 Uj,l,m)-

w 1 avg(m))"2)/(2 *(sigw 1 (m)"2)) )+exp( -( ( w2Uj ,l,m)-w 1 avg(m) )"2)/(2 *(sigw 1 (m)"2))) ); 
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w2t1 Uj,l,m)=(fact2/sigw2(m) )*(exp( -( ( w 1 Uj ,l,m)-w2avg(m) )"2)/(2 *(sigw2(m)"2)) )+ exp(-
( ( w2Uj ,l,m)-w2a v g(m) )"2)/(2 *( sigw2( m)"2)))); 

end 
end 
totw=w1t1+w2t1; 
solw=sum (totw); 
forjj=1; 

end 

for 1=1:length(xpri); 
for m=l:length(xtrap); 

pwUj,l,m)=solwUj,l,m);%solution of pdf model for w 

end; 
end; 
end; 

for jj=1; 
for l=l:length(xpri); 

for m=1:length(xtrap); 
cone 1 Uj ,l,m)=(gxp(l)*fy(l,m)/(xtrap(m)-xpri(l)) )*( 1/sigp(l,m) )*sols(l)*exp(-

0.5 *(y"2)/sigpsq (l,m) )*pwUj ,l,m); 
end; 

end; 
end; 



Appendix 6 

Typical Output Result File (Fumig.doc) 

"1. METEOROLOGICAL PARAMETRS" 

"Heat Flux (W/m"2)",188.208 
"Brunt Vaisala Frequency (1/Sec) ",. 015 
"Convective Velocity (m/Sec) ",1.13 

"2. INFORMATION ABOUT FUMIGATION ZONE" 

"Fumigation Starts at a Distance (m) ",2463.497 
"Fumigation Ends at a Distance (m) ",8984.052 
"Plume Centerline intercepts the TIBL at Height (m) Zio",276.272 
"Hz. Distance Xio (m) corresponding to Zio",5214.13 
"Plume Veritcal Dispersion Coefficient at Zio",61.695 

"3. STACK OUTPUT PARAMETER" 

"Buoyancy Flux (m"4/Sec"3)",335.596 

"4. TIBL OUTPUT PARAMETERS" 

"TIBL height parameter A (m"0.5) ",3.826 
"Equilibrium height of TIBL(m) ",677.459 
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"Hz. Distance Corresponding to equilibrium height of TIBL(m) ",31352.601 

"TABLE FOR TIBL HEIGHT" 
Hz Distance(m) 
=============== 

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 
10000 
11000 
12000 
13000 

TIBL Height(m) 

0 
120.989 
171.104 
209.559 
241.978 
270.54 
296.362 
320.107 
342.209 
362.967 
382.601 
401.276 
419 .119 
436.233 
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14000 452.7 
15000 468.589 
16000 483.957 
17000 498.851 
18000 513.313 
19000 527.379 
20000 541.08 
21000 554.442 
22000 567.489 
23000 580.243 
24000 592.723 
25000 604.946 
26000 616.926 
27000 628.678 
28000 640.214 
29000 651.546 
30000 662.685 
31000 673.639 
32000 677.459 
33000 677.459 
34000 677.459 
35000 677.459 
36000 677.459 
37000 677.459 
38000 677.459 
39000 677.459 
40000 677.459 
41000 677.459 
42000 677.459 
43000 677.459 
44000 677.459 
45000 677.459 
46000 677.459 
47000 677.459 
48000 677.459 
49000 677.459 
50000 677.459 
51000 677.459 
52000 677.459 
53000 677.459 
54000 677.459 
55000 677.459 
56000 677.459 
57000 677.459 
58000 677.459 
59000 677.459 
60000 677.459 
61000 677.459 
62000 677.459 
63000 677.459 
64000 677.459 
65000 677.459 
66000 677.459 
67000 677.459 



68000 
69000 
70000 
71000 
72000 
73000 
74000 
75000 
76000 
77000 
78000 
79000 
80000 
81000 
82000 
83000 
84000 
85000 
86000 
87000 
88000 
89000 
90000 
91000 
92000 
93000 
94000 
95000 
96000 
97000 
98000 
99000 
100000 

"5. CONCENTRATION PROFILE" 

Latertal Distance (m) : 0 

Distance (m) 
=============== 

3000 
4000 
5000 
6000 
7000 
8000 
9000 
10000 
11000 
12000 
13000 
14000 

677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 
677.459 

Concentration in Ug/mA3) 

0.1073 
255.2327 
966.8712 
1614.6564 
2063.9605 
2303.2161 
2363.1942 
2295.3719 
2133.293 
1899.5326 
1657.2195 
1444.7473 
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15000 1269.136 
16000 1126.1666 
17000 1009.5195 
18000 913.4819 
19000 833.4859 
20000 766.0292 
21000 708.4623 
22000 658.7833 
23000 615.4715 
24000 577.362 
25000 543.5537 
26000 513.3412 
27000 486.1665 
28000 461.583 
29000 439.2291 
30000 418.8092 
31000 400.0792 
32000 388.4655 
33000 380.6033 
34000 373.2161 
35000 366.2505 
36000 359.663 
37000 353.4169 
38000 347.4813 
39000 341.8297 
40000 336.4392 
41000 331.2896 
42000 326.3632 
43000 321.6441 
44000 317.118 
45000 312.7721 
46000 308.5945 
47000 304.5747 
48000 300.7028 
49000 296.97 
50000 293.3678 
51000 289.8887 
52000 286.5258 
53000 283.2724 
54000 280.1225 
55000 277.0705 
56000 274.1113 
57000 271.2399 
58000 268.452 
59000 265.7433 
60000 263.1098 
61000 260.5481 
62000 258.0545 
63000 255.626 
64000 253.2596 
65000 250.9525 
66000 248.702 
67000 246.5058 
68000 244.3614 
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69000 242.2667 
70000 240.2197 
71000 238.2185 
72000 236.2612 
73000 234.3462 
74000 232.4718 
75000 230.6364 
76000 228.8387 
77000 227.0773 
78000 225.3509 
79000 223.6583 
80000 221.9983 
81000 220.3697 
82000 218.7716 
83000 217.203 
84000 215.6628 
85000 214.1502 
86000 212.6644 
87000 211.2045 
88000 209.7696 
89000 208.3592 
90000 206.9723 
91000 205.6085 
92000 204.2669 
93000 202.947 
94000 201.6481 
95000 200.3698 
96000 199 .1113 
97000 197.8722 
98000 196.6521 
99000 195.4503 
100000 194.2664 










