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Abstract |

In this thesis we explore the gradings by finite groups on Lie algebras of type
D, over the field of complex numbers. For gradings on simple Lie algebras
several approaches have been studied. In [9], Onishchik and Vinberg give an
exposition of the results of V. Kac who had classified all automorphisms of
finite order in all simple Lie algebras, hence classified the gradings of such

algebras by finite cyclic groups.

J. Patera and co-authors [5], [6], [7] have focused on “fine” gradings and
approach this with the help of maximal Abelian subgroups (MAD-subgroups)
of diagonizable automorphisms in Aut(gl(n,C)). More recently Y. Bahturin,
I. Shestakov, M. Zaicev [1] have approached gradings on simple Lie algebras
by finite groups by looking at the dual group action which will be the main

approach used in this paper.

The gradings on simple Lie algebras of type D;, [ > 4, have been described
by Y. Bahturin and M. Zaicev in [4]. This was done by looking at gradings
on the full matrix algebras and noting that for a realisation of a Lie algebra
of type D;, | > 4, as K(My, %), the skew-symmetric matrices with respect

to a transpose involution x, the automorphisms of K (Mg, *) can be lifted to



Page ii

automorphisms of the full matrix algebra. The gradings on Lie algebras of
type D4 were not described in [1] or [6] because some of the automorphisms

of these Lie algebras cannot be lifted to the full matrix algebra.

In this thesis we apply the same approach as [1], [2], [3], [4] to describe
all gradings that can be lifted to the full matrix algebra and all gradings that
are isomorphic to these gradings. We also develop an approach inspired by [9]
which may be fruitful for describing the remaining gradings. We give examples

of some of these gradings.
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Introduct‘ion

The gradings on Lie algebras of type D;, | > 4, have been described in [4]
and [6] and we apply similar techniques as in [4] to describe gradings for the
D, case. The motivation behind this thesis is that for the Dy case, not all
gradings were described in [4] or [6]. The D, case is different because not all

gradings are matrix gradings.

We approach the D4 case by looking at the actions of the dual group G
associated to a grading by a finite abelian group G and use a group homorphism
f from the dual group actions to automorphisms of Lie algebras. We prove

that f (@) ~ GG when G is generated by its support.

It is well known that the support of a grading of a simple Lie algebra
generates an abelian group and we use this to impose restrictions on f (é)
We show that we can always express f (@) as the direct product of a cyclic
group and a subgroup of inner automorphisms. Since when G is generated by
its support f (@) ~ (3, we can use the restriction on f (@) on G to express

G as the direct product of a cyclic group (z) and a subgroup A of G. Since
all the gradings by cyclic groups were described by V. Kac we know all the
natural grading by G/A =~ (z), which will allow us to view the grading by G
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as a refinement of the natural grading.

We also classify gradings on a Lie algebra of type Dy into two classes:

matrix gradings and non-matrix gradings.

We describe all matrix gradings as well as a technique which looks at
gradings on subalgebras that are point-wise fixed by an automorphism of L,
which allows the gradings to extend to the whole Lie algebra.

The technique could be fruitful for finding certain non-matrix gradings if
we knew the gradings on Lie algebras of type Go. We also give an example of a
non-matrix grading by a group G, for which there is a natural matrix grading

by G/K for some normal subgroup K of G.



Chapter 1

Definitions of gradings on a Lie
algebra and actions by

automorphisms

1.1 Definitions and various types of gradings.

Through this work the base field of coefficients is always the field of complex

numbers C. Let us start with some definitions.

Definition 1.1.1 A vector space L over a field C, with an operation L X L —
L, denoted (z,y) — [z,y] and called the bracket or commutator of x and y, is

called a Lie algebra over C if the following azioms are satisfied:

1. The bracket operation is bilinear.

2. [z,z] =0, Vz € L.
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3. [z,[y, 2] + [y, [z 2]l + [2,[2,9]] =0 V=z,y,z € L.

We denote the endomorphism of L which sends y — [z,y] by adz.

Definition 1.1.2 An element x of a Lie algebra L is called ad-nilpotent if

there ezists a positive n such that (ad z)™ = 0.

Definition 1.1.3 An isomorphism of Lie algebras ¢ is a linear bijective map-
ping sending a Lie algebra L into a Lie algebra L', ¢ : L — L' and p[z,y] =
[p(z), ()], Vz,y € L.

An isomorphism sending L into itself is called an automorphism. Denote

the group of all automorphism of L as Aut L.

Definition 1.1.4 ‘Anideal I of a Lie algebra L is a subalgebra of L such that
[z,2] € I forallx € L and z € I. A Lie algebra L is called simple if [L, L) #0
and L has no ideals other than L and {0}.

Definition 1.1.5 For a Lie algebra L we define the derived series of L by
setting L = L and L® = [LG-V, LG for i > 1. A Lie algebra L is called
solvable if L™ = {0} for somen > 0. L is called semisimple if it has no
solvable ideals other than {0}.

Definition 1.1.6 A grading by a group G, also called a G-grading, R =
@D,cc By, on an algebra R is the decomposition of R as the direct sum of
subspaces Ry such that Ry Ry C Rygr for all g/, " € G. Any elementz € Ry
is called homogeneous of degree g and a subspace V of R is called a graded

subspace if V = P o(V N Ry).
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Definition 1.1.7 The set Supp R = {g € G| Ry # {0}} is called the support
of the grading R = @ .o Ry. By S(G) we denote the subgroup of G generated

by Supp R.

Definition 1.1.8 An- isomorphism ¢, ¢ : L — L' for graded Lie algebras
L =,ccly and L' = @ e Ly is called an isomorphism of gradings if
¢(Lg) = L for all g € G. Gradings on Lie algebras L, L' are called isomorphic

if there exists an isomorphism of gradings ¢, ¢ : L — L’.

It is well known (3], for a grading by a group G on a finite-dimensional sim-
ple Lie algebra, that S(G) is an abelian group. We now state some useful

observations.

Observation 1.1.9 Any grading by a group G on Lie algebra L, L = @gec L,
can be viewed as a grading by S(G).

Observation 1.1.10 Let L and L' be Lie algebras and ¢ an isomorphism of
Lie algebras ¢ : L — L'. For any grading by a group G on L, L = @gec Ly,

there is a grading by G on L', L' = @ L, where Ly = w(Ly).

Observation 1.1.11 Let L = @, L, be a grading by a group G on Lie
algebra L and K a normal subgroup of G. The natural G/K grading of L can
be defined if one sets L = @gcq i Ly, where g = gK, with Ly = @yex Lok-

Observation 1.1.12 For any grading by a group G on Lie algebra L, L =
@gGG Ly, L, is a subalgebra of L, where e is the identity of G.

Gradings on simple Lie algebras are closely connected to the gradings on (as-

sociative) matrix algebras. Let us define two types of gradings on the matrix
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algebras, fine gradings in the sense of [2] and elementary gradings. The notion
of fine gradings in the sense of (5], [6], [7] differs from that in [2]. These types
of gradings on matrix algebras have been used in [4] to describe all gradings
on Lie algebras of type D, for [ > 4 and are also useful to describe the gradings

of Lie algebras of type Dj.

Definition 1.1.13 A grading by a group G on R = M,, the full n x n matriz

algebra,
R=R,
9€CG
is called an elementary grading if there exist an n-tuple 7 = (g1,...,9,) €

G™ such that any matriz unit e;;, 1 < 4,57 < n, is homogeneous and e;; €
Ry & g= g{lgj. We can always set one g; = e, 1 < i < n since the tuple

(97915, 9 "Gim1,€, 97 Gix1, - - -, 9] gn) defines the same grading.

Definition 1.1.14 A grading by a group G on R = M, the full n x n matriz

algebra,

R=(PR,

geqG
is called a fine grading if dim Ry = 1 for all g € Supp G. A particular case of

a fine grading by G is a so-called e-grading, where € is an n'' primitive root

of 1. Let G = (a), X (b),, and

(010 0
el 0

001 -0
0 gn2 0

Xaz aXb=

000 1
0 0 1

\100 0
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Set Xy = X:X] for g = a't. If we define R, = Span{X,} for g = a'¥’,

then we obtain a fine grading on R by G, called an e-grading.

Definition 1.1.15 A map * is called an involution on an associative algebra
A if
1. (a*)*=a, YVa € A,
2. (ab)* = b*a*, Va,be€ A,
3. (a+b)* =a* +b* Va,be A
For an involution * on an algebra A we define

KA x)={ze€ Alz* = —z}.

The elements of K (A, x) are called skew-symmetric with respect to x. We set

K(M,) = K(M,,*) where * is the matriz transpose.

Observation 1.1.16 For an involution x on M,, L = K(My,*) is a Lie
algebra under the commutator [x,y] = zy — yz for all x,y € L since

(zy — yz)* = y*z* — 2*y* = —(zy — yz) and the azioms of Definition 1.1.1
hold.

Definition 1.1.17 A grading by a group G on a Lie algebra L, L = @QGG Ly,
is called a matrix grading if L is graded isomorphic to K(Mp,*) = L' =
@gec L’g, n a positive integer and * an involution, such that there exists a
G-grading on M,,, M, = R=p gec Ry, such that L' is a graded subspace.

1.2 Gradings and actions by automorphisms.

In this section we introduce the action by the dual group G on a Lie alge-

bra L graded by an abelian group G so that the study of gradings by finite
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abelian groups is equivalent to the study of actions of finite abelian groups
by automorphims. Unless otherwise specified, a grading by a group G on a
Lie algebra L will mean a grading by the finite abelian group G on a finite
dimensional Lie algebra L where G = S(G). The restriction of G = S(G) may
reduce the number of ‘subspaces Ly={0},9€G.

Definition 1.2.1 The dual group G of an abelian group G is the group of
homomorphisms taking G into C*, i.e., G = {x|x:G — C*, x is a homor-
phism}.

The following result is well known.

Theorem 1.2.2 Let G be a finite abelian group. We can express G and G as

Q

= (g)ky X -+ X {Gn)kn (1.1)

G = (x)k X+ X {Xn)kn» (1.2)

with x; : G — C*, xi(¢1) = e¥™/% = ¢; and x;(g:) =1 for 1 < 4,5 <m, i # 5.

This gives us that for a finite abelian group G, G ~ G. Now let L be a simple

Lie algebra and L = @, L, a grading by a group G. Since L is simple G,

geG
is abelian. Any element z € L can be uniquely decomposed as the sum of

homogeneous components, £ = Y gec Tgr» Tg € L,. Given x € G we can define

the action of x as

X*T = ZX(Q)xg- (1-3)

geG
Theorem 1.2.3 Let L = @geG Ly be a grading by a group G. A subspace
V C L is a graded subspace if and only if V is invariant under the action of

~

G.
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Proof
Let V be a graded subspace of L, i.e. V =@
zg€VNLjand x € G. Then x * z = > _gec X(9)zg which implies x xz € V

gecV N Lg Letz = Y gec oy

since x(g)zy € VN L, Hence x*V =V for x € G.

Now we assume for contradiction that GV =V and V # @ gec(LgNV) for
the other claim. We can choose a non-zero £ € V such that z = >, zg,
K ={g1,...,9.} is a subset of G, z, € Ly and z, ¢ V for all g € K. Using
Theorem 1.2.2 we can choose a x € G such that x(g1) # x(gn). We set

/

= x*x2—X(g:)% = (X ex X(9)Zg) — X(gn)z
2gex(X(9) — Xx(92))zg
= Dgex g
where =, = (x(g) — x(gn))zy € Ly for all g € K. We now express z’ as
&' = ) ek Ty where K’ C K such that zj, # 0 for all ¢ € K'. K’
is a non-zero proper subset of K since z/, = (x(g1) — x(9n))zy # 0 and

g1

2, = (x(9n) = x(gn))xy = 0. Since GxV=VandzeV,zecV. ltis
clear that if we keep on repeating this process, we end up with a multiple of

T4, as an element of V' which is a contradiction. |

It is easy to observe that Equation (1.3) defines a G-action on L by auto-
morphisms of L. We define f to be the group homomorphism f : G— Aut L
by setting for each x € G

fO(z) = x * x.

We can express the subspaces L, as

Ly={z € L|x*z=x(9)z, Vx € G} = {z € L| f(x)(z) = x(9)=, Vx € G}.
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Theorem 1.2.4 Let L = P,.q Ly be a grading by a group G. If G = S(G)
then f(G) ~ G.

Proof

We prove this by showing that if G = S(G) then the kernel of f, ker f = {x €
G| f(x) = iday 1}, only contains the identity of G. Let G = S(G) and we
express G and G as in (1.1), (1.2) respectively. Let x € ker f, g € Supp G
and z, € L, be non-zero. We have z, = f(x)(z,) = idauw 1T, = T4. Hence
x(g) = 1 for all ¢ € Supp G. Since Supp G generates G, it follows that
X(G) = 1, which implies that x is the identity of G. |

By the above, G defines a finite abelian subgroup f (5’) of Aut L. In most
cases we can view @ itself as a subgroup of Aut L, that is, we can identify
G with f (@) by means of f. It is also useful to work the other way, in other
words to start with an abelian subgroup of Aut L and get a corresponding

grading.

Theorem 1.2.5 Let K = (K1)g, X +++ X {Kn)x,, be an abelian subgroup of
Aut L. There is a unique grading by a group G = {(g1)k; X =+ X {Gn)kn>
L=@,cq Ly such that

L .g;""n = {:L' € L I I‘i]lljl e /‘gﬁ"(z) == E';nlpl . .E::annx’ 8] — eQﬂ'i/kj, 1 S J S n}.

mj
g1 "~

Proof

Let K = (k1)g, X -+ X {Kkn)k, be an abelian group contained in Aut L. Let
G and G, as defined previously (1.1), (1.2), be isomorphic to f (@) Define
f: G — Aut L by f(x;) = ki. L = ®g€G’Lg is a grading by G if we set
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Lyym .gpn = {z € L| kj(z) = ™™ /*ig, 1 < j <n}. u




Chapter 2
Lie algebras of type Dy

2.1 Lie algebras of type D, and their Cartan decompo-

sitions.

As was mentioned in Observation 1.1.16, given an associative algebra A
we can define the commutator [ , | by [a,b] = ab — ba for all a, b € A which
makes A a Lie algebra. Any finite dimensional Lie algebra can be realised as a
subalgebra of M,, by Ado’s Theorem. The Lie subalgebra L of Mg consisting
skew symmetric matrices with respect to the matrix transpose is a simple Lie
algebra of type D4. This realisation can be instrumental for finding gradings
of L by a finite abelian group, via the correspondence between gradings and

actions by automorphisms.

In order to describe the group Aut L of automorphisms of a simple Lie
algebra L we will define mazimal toral subalgebras, root systems, bases and

Dynkin diagrams.
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The following definitions and basic facts are classical and can be found e.g.

in [8].

Definition 2.1.1 A subset ® of the Euclidean space E, i.e., a finite dimen-
sional vector space over R endowed with a positive definite form (, ), is called

a root system in E if the following axioms are satisfied:

‘1. ® is finite, spans E, and does not contain 0.
2. If a € ®, the only multiples of a in ® are *a.

3. If o € ®, then the reflection o, leaves ® invariant where

0a(8) = B — (6, a)a, VB € D.
4. Ifa, B€®, then (B,a) :=2(8,a)/(a, @) € Z.

A root system ® is called irreducible if it cannot be partitioned into the
union of two proper subsets such that each Toot in one set is orthogonal to

each root in the other.

The rank of a root system @ is the dimension of its corresponding Euclidean
space E. The elements of a root system are called roots. The length of a root
o is \/m. It is shown in [8] that in each irreducible root system there are
at most two root lengths. When two root lengths occur, the roots of smaller
length are called short roots and all others long roots. Useful subsets of ® are

bases.

Definition 2.1.2 A subset A of a oot system ® with corresponding Euclidean

space E is called a base and its elements are called simple roots if the following
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azioms are satisfied:

1. A is a basis of E.

2. each root B can be written as
:8 = Z kaa (21)
acA

with integral coefficients k, all non-negative or all non-positive.

The roots with non-negative coefficients in the decomposition (2.1) are
called positive roots and all others are called negative roots. It is known that
if o, B € ® and (o, 8) <0, then a+ 3 is a root. It is also known (see [8]) that

any root 8 € ® can be written as

k
B = izaij
=1

where every partial sum is a root, o;; € A, and k is some integer depending
on f.

We can recover the structure of a root system if we know all (o, ;). The
idea is to start with a simple root and to keep adding as many simple roots as
we can until we exhaust all the possibilities. Repeat the process for all other

simple roots to obtain all the positive roots.

Definition 2.1.3 For a root system ® of rank l, the Ixl matriz C = ({04, a;))ij

is called the Cartan matrix of ® and its entries are called the Cartan integers:

This information can be displayed graphically by so called Dynkin diagrams.
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Definition 2.1.4 Fiz a base A = {oy,...,qu} of ®. Define the Dynkin di-
agram of ® to be a graph having | vertices and the i" vertex is joined to the
§** vertez (i # j) by (o, o;){qj, ;) edges. We denote the k™ vertez by ve,
where ay is a simple root of the corresponding base A of . When a double
or triple edge occurs,\ @e add an arrow in between the vertices pointing to the

vertex that corresponds to the shorter of the two roots.

We can recover the Cartan matrix of ® from the Dynkin diagram (see [8]).
First we take any two distinct simple roots ; and o; with (a4, a;) < (04, @5),
i.e., @; is the shorter of the two roots if two root lengths occur. Then (o, ;) =
—e(4,7) where e(i, §) is the number of edges between the i*f and ;™ vertices.
Also (o, ) = =1 if {0y, ) # 0 and (o, o) = 0 if (@, ) = 0.

Now we relate root systems to semisimple Lie algebras. These are the alge-
bras with non-singular Killing form x(z,y) = Tr(adz,ady). For any semisim-
ple Lie algebra L, L possesses Lie subalgebras consisting of ad-diagonalizable
elements. These subalgebras are called toral subalgebras. The toral subalge-
bras are abelian, i.e. the commutator of any two elements is 0. If we fix
a maximal toral subalgebra H for a semisimple Lie algebra L then ad H is
a set of endomorphisms of L that can be simultaneously diagonalised. The

restriction of k¥ to H and its natural dual to H* is non-singular.

The Cartan decomposition of L with respect to H is defined by

L=H@La

acd

where Ly, = {z € L|[h,z] = a(h)z Vh € H} and ® C H*. It turns out that

each L, are one-dimensional, the real linear span £ of ® in H* is a Euclidean



CHAPTER 2. LIE ALGEBRAS OF TYPE D, Page 16

space, with respect to x and ® is a root system. For any two roots «, o
with o + o’ € @, [Ly, Ly| C Lot and any two roots 3, 8’ with 8+ 5 ¢ 9,
[Lg, Lg'] = {0}.

Having H, ® and A fixed for a semisimple Lie algebra L, one can choose
a basis

{haisTasYa | s € A, a is a positive root of &}

of L such that

To € L, for all o, € @,

Ya € L_g, for all o, € @,

hq, € H, (2.2)
[Za Yo] = ha, foralla € ®

[hoy 2] = (@, &) 24, for all a,0/ € ®, 2o € Ly
We call the above basis a canonical basis of L.

At this point we should mention that bases are not to their corresponding
root system and maximal toral subalgebras are not unique to their correspond-
ing semisimple Lie algebras. We do know however, that the maximal toral sub-
algebras of a simple Lie algebra L are all conjugate, i.e., for any two maximal
toral subalgebras H and H' of L there exists a A € Int L C Aut L (see Section
2.2) such that A(H) = H'. Also for any two maximal toral subalgebra H, H’
of a semisimple Lie algebra L with root systems ®, ®’ respectively, the corre-
sponding Euclidean spaces F, E’ are isomorphic and there is an isomorphism

that sends ® to @'.

Definition 2.1.5 Lie algebras isomorphic to the Lie algebra L = K(My)
with commutator [, | defined by [a,b] = ab— ba for all a, b € L are called Lie
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algebras of type D, | > 4.

Lie algebras of type D; have the following Dynkin diagram:

a1

o 0 @-

o1 (Figure 1)

For a Lie algebra L of type Dy, we can define a maximal toral subalgebra
H = Span{ha,, hag, Pags Ry}, & root system @ corresponding to H and a base

A = {ai, g, 03, a4} of ®, where the following are the positive roots:

a9, a0, Qas, Qy,
an + o, Qg + a3, Qg + Oy,
a9 + oy + O3, Qg + O + Oy, Qo + a3 + Oy,

as+oyt+azt+oay, az+o+ a3+ o4+ oo
The Cartan integers are:
(aivai>=2a 15254,
<a27aj> = —1a .7 € {1a3)4},

<aj’a2> = _1’ ] E {1s334}a
(aj,ar) =0, for distinct j,k € {1, 3,4}.
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Here are the definitions for the other simple Lie algebras.

Definition 2.1.6 Let Tr(z) be the trace of . Lie algebras isomorphic to
L={z € My, |Tr(z) =0}

with commutator [ , | defined by [a,b] = ab— ba for all a, b € L are called Lie
algebras of type A;, [ > 1.

Definition 2.1.7 Lie algebras isomorphic to the Lie algebra
L = K(My+1)

with commutator [ , | defined by [a,b] = ab—ba for alla, b € L are called Lie
algebras of type By, [ > 2.

Definition 2.1.8 Let 9 be an involution on My, | > 2, defined by ¥(x) =

Sz*S~ where * is the matriz transpose and

Lie algebras isomorphic to the Lie algebra
L = K(My,v),

with commutator [ , | defined by [a,b] = ab— ba for all a, b € L are called Lie
algebras of type Cj, [ > 3.

Definition 2.1.9 A simple Lie algebra, whose Cartan matriz is

(57)

is callded a Lie algebra of type G.
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2.2 Realisation of a Lie algebra of type D, as K (Mg, *).

Let L denote the following realisation of the Lie algebra of type D4 over
C,
L=K(Ms)={z € Ms(C) | z = —="},

where z* is the transpose of z. A basis for L is the set {E;; = e;; —eji | 1 <
i< j < 8,}, where e;; is the 8 x 8 matrix with 1 in the ith, 4t position and
zero everywhere else.

The commutator of E;; and Ey; for i # j and k # [ is

(Eijy Bl = [eij — ejiy ext — ek
= €€kl — €ij€lk — €jiCkl T €jiClk — €ki€ij T €ki€ji T Cik€ij — €lkEji

= 0By — 0Bk — 0iEj1 + 0y Ej.

Let H = Span{FEss, Fs6, E47, E1s}. Then H is a 4-dimensional toral sub-
algebra, hence a maximal toral subalgebra of L. Let L = H &P .4 Lo be
the Cartan decomposition with respect to H, root system ® of H and base
A= {o; |1 < i< 4} of ®. A canonical basis of L corresponding to this

decomposition takes the following form.

hoy = i(Egs — E36), Toy = {Egs + 1B + L35 + Es6}/2,
hay = 1(E3s — Eur), Toy = {E34 + 1E37 + 1B + Eer}/2,
hog = i(E47r — E1g), Toy = {—F14 +1E17 +iEs;s + Es}/2,
ha, = i(Eygr + Eg), Toy = {—F14 +iE17 — iEg — Ens}/2,
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Togtan = 1—Eo4 — 1By — iBs5 — Esr}/2,
Tagtartas = 1E12 — i1B15 — iFog — Esg}/2,
Tastontastas = 1 Baa — 1By + 1Egs — Es7}/2,
Togtar+astastar = {—Fas + 1Eg — i E3s + Es6}/2,
Toptar+as = 1F12 — 1E1s +1Eas + Ess}/2,

Taz+as = {—FE13 +1E15 + iE3s + Ees}/2,
Togtas+as = 1—E34 +1E37 — iEs + Egr}/2,
Togt+as = {—Ehz +1E1s — B35 — Ees}/2,

Yo = —z%, where T is the conjugate of z.

A convenient way to use this information is to notice that if the indices
which equal each other are not both in the first or second position (Efgt second)
then [Ej;, Ey] = E, where a, b are the other two indices in the order that they
appear. If the indicées that equal each other are both in the first or second po-
sition then [E;;, Ex] = —FEq where a, b are the other two indices in the order

that they appear. If all indices are distinct or {4, 5} = {k, [} then [E;;, Eu] = 0.

Examples

[Ea1, Brs] = Eos,  [Ehg, Esg]) = —En3, [Eas, Fis] =0, [Eas, Esz] =0.

2.3 Autorﬁorphisms of Lie algebras of type D;,.

As mentioned, the automorphisms of a Lie algebra L are important in
finding gradings by a group G on L. Some automorphisms are defined by
the automorphisms of root systems. Let us fix a semisimple Lie algebra L, a
Cartan subalgebra H of L, a root system ® of H, a base A of ® and a canonical

basis as described in Section 2.1. Let P be the set of permutations on the
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simple roots of the base A = {a,..., o} such that (F(a), (e;)) = (4, o),
1<1,7 < forall 7€ P. The group P is in one-to-one correspondence with
the group of graph automorphisms of the Dynkin diagram since for 7j(a;) = a,
and 7(oy) = ay,
e(,5) = (o, ;) {0y, i) = (T(eu), M)} (M(e;), M)
= (ap, ag){ay, op) = e(p, q)

and conversely if e(s,5) = e(p,q) then (o, ;) = (M), T(e;)). We define
Aut A to be the set of automorphism of L satisfying the following property:

For all n € Aut A there exists an 77 € P such that

NTT ) = T ()
NUS a) = YS(a);
N(hsa) = e,
It follows that Aut A is a subgroup of Aut L.
In [10] it is shown that Aut L is the semidirect product of Int L by Aut A

where Int L = {exp(ad z) |z is ad-nilpotent, z € L} is a normal subgroup of

Aut L called the inner automorphism of L.

For a Lie algebra of type Dy, with base A = {1, a2, a3, a4}, the Dynkin



CHAPTER 2. LIE ALGEBRAS OF TYPE D, Page 22

diagram is the following.

Q3

231 Q2

@4 (Figure 2)

From the diagram we see that Aut A ~ S3 = {id, (13), (14), (34), (134), (143)}.
We define the group operation in S3 by applying the permutation to the
right, i.e., (134)(34)=(13). Aut A is generated by o;; and p;ji, for distinct
i, J, k € {1,3,4}, where G;; permutes the simple roots a; and o; while pi;r

permutes the simple roots «;, o;; and o in that order.

Since Aut L is the semidirect product of Aut A and Int L, we can express
any automorphism % € AutL uniquely as ¥ = Am where A € Int L and
m € Aut A. The group operation is defined as

(Am)(N7') = (A(xN 7)) (7r").

In this paper the semidirect property of Aut L will be used extensively and we
use the fact that for m, 7’ € Aut A and A\, X € Int L there exist a A" € Int L
such that (Am)(N#') = N'(nn').
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2.4 Finite abelian subgroups of the group of automor-
phisms of a Lie algebra of type Dj.

We showed in the previous chapter that a grading by a finite abelian group
G on a Lie algebra L -with G = S(G) has a corresponding abelian subgroup
f (@) C Aut L. We are going to use this information to impose some restric-
tions on f (@) for gradings by a finite abelian group G on a Lie algebra L
of type D4 by looking at properties of finite abelian groups of Aut L. This

section uses an approach similar to that in [3].

Theorem 2.4.1 For any finite abelian subgroup K of Aut L, we can express
K as

K=(p)x A
where A C Int L and ¢ is of order p*, p is 2 or 3, for some non-negative

integer n.

Proof

Since K is a finite abelian group we can express K as
K=T5x F3 X F,,

where I's, I'; are the 2-Sylow subgroup and 3-Sylow subgroup of K, respec-
tively, and I" is the direct product of all other p-Sylow subgroups of K. Also

I’y can be expressed as

To = (i) X -+ X (@in)
where the order of ¢;, is 2% and 4 < 4,41, 1 <! < n— 1. Similarly we express
I'; as

T3 = (pj) X+ X (@jm)
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where the order of ;, is 3% and j; < ji;1, 1 <1 < m— 1. Hence we can

express K as a direct product of cyclic subgroups and I'

K = (piy) X o+ X i) X {5,) X +++ X (Pjn) X I

and set ¢, = A7, for some unique pair A\, € Int L, 7, € Aut A. For any ¢ =
Am, A € Int L and 7 € Aut A, of order o) = ¢, it follows that iday 1. = ¢* =
Nt for some N € Int L which implies N = 7t = iday . Hence IV C ‘Int L.
Also

(or) €Int L < ¢, ¢ Int L.
For K C Int L, the theorem follows. If K ¢ Int L, then either there exists
only one index a with 7, # idaw 1, and then our claim follows, or there are

indices a and b with 7, 7, # iday 1 and a < b. Since K is abelian,

Pa 06 = (AaTa) (M) = N (mams) = @p0a = (Mo7p)(Aamp) = A" (my 4)
for some X, X\’ € Int L which implies 7w, m, = mp7,. The only abelian sub-
groups of Aut A ~ S5 are
(idaw ), (0i;) and (pi34) for distinct ¢, j € {1,3,4}.
It follows that all 7, are in one of the 4 latter subgroups above.

If 7y = 7, = 044, then g, pp € Ty since the order of ¢,, ¢y is divisible by
2 and I'; C Int L by the abelian subgroups of Aut A argument. Also

vl = oA
wrpat = (M0i) (03 A51) = MpA; ! € Int L.

We can now write K as

K = (i) X -+ x () x T3 x I’
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where ¢;, = ¢;, for 1 <1< n, 4, # b and ¢ = ;' since for any p-Sylow
subgroup P = (g) x (h) where the order of g is less or equal than order of A,

P =(g) x (h) = (g) x (hg™").
Repeating this process for other ¢, ¢ Int L we can express K as
K = {p;) x A

where A C Int L.

Similarly, for m, = %34, ™ = p%ay, 1 < ¢, d < 2, we have that @,, ¢ € I's
since the order of (,, @, is divisible by 3, and 'y C Int L by the abelian
subgroups of Aut A argument. We have either c+d =3 or c=d.

For the first case of ¢ + d = 3, we have

@o0a = (Moplze) (Aapizn) = Mo(p%a4rapig) € Int L.
For the second case of ¢ = d, we have
Popgt = (Mopfae) (Prasra ) = XA € Int L.
We can express K as
K =Ty X (¢j) X -+ X ($j) x '

where ¢;, = p;, for 1<r<m, jr #band ¢, =y,  if c=d, & = . if
¢ + d = 3. Repeating this process for other ¢, ¢ Int L we can express K as

K = (ps) x A

where A C Int L.



CHAPTER 2. LIE ALGEBRAS OF TYPE D, Page 26

Hence our claim holds for any situation. |

Now we obtain important corollaries about the gradings on Lie algebras
of type Dy. The first is a consequence of the previous theorem and Theorem

1.2.4.

Corollary 2.4.2 For any grading by a finite group G on a Lie algebra L of
type D4, L = @ yeq Ly, with G = S(G), we can express F(G) as

f(G)=(p)x B (2.3)

where B C Int L, ¢ = w\, m € Aut A, \ € Int L, the order of ¢, o(p) is
o(m)* where o(w) is the order of m and u is some non-negative integer. We

can also express G as

G=(x)xA (2.4)

where f(x) = ¢ and f(A) = B.

Corollary 2.4.3 For any grading by a finite group G of Lie algebra L of type
Dy, L= EBgec L,, with G = S(G) we can ezpress G and G as

G = (x) x A,

G=(z)x A (2.5)

where f(A) C Int L, the order of x and the order of z both equal n = p* where

p is 2 or 8 and u is some non-negative integer u. Also x(z) = ¢, € a n*t

primitive Toot of one, x(g) =1 for allg € A, ¢(z) =1 for all € A.
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It is useful to distinguish between the cases where f (57(?)) C Int L and
f (57(5)) ¢ Int L. The following definition comes from [1]

Definition 2.4.4 We call a grading by a finite group G of a Lie algebra L an
inner grading if f (5@) C Int L. All other gradings are called outer gradings.



Chapter 3
Matrix Gradings

3.1 Automorphisms of K (Mg, ) that can be lifted to Ms.

Lie algebras of .type D, have realisations as the skew-symmetric matrices
in Mg with respect to certain involutions. It is well known that all involutions
* on M, such that (az)* = az*, for all a € C and for all z € M, can be
expressed as z* = Tz'T~! where z* is the transpose of z € M, and T is
symmetric or skew-symmetric. When T is symmetric, * is called a transpose
involution, otherwise it is called a sympletic involution. L = K(Ms,*) is a Lie
algebra of type D, if and only if * is a transpose involution. We now fix a
transpose involution *, a maximal toral subalgebra H of L, a corresponding
root system ® and a base A of ®. Denote by Q the subgroup of Aut L
consisting of all automorphisms A for which there exists an invertible matrix
Ty such that A\(z) = T,\:rT)\'1 for all z € L. Tt is known [10] that Int L C Q,
that the matrices T), are are orthogonal with respect to * and that for A € Int L

the associated matrices T have determinant 1. Let Q* be the subgroup of
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2 that consist of all A €  such that detT\, = 1. We refer to Section 2.3
for the structure of Aut L. The index of Int L in Aut L is 6 and the index
of Ot in Q is 2 which implies that the index of Int L in Q is a multiple of
2. The index of  in Aut L is [Aut L : Int L]/[Q2 : Int L] = 6/(2n) for some
positive integer n. Hence the index is either 3 or 1. It can be shown that
p134 € Aut A does not have an associated matrix T},,,,. Thus the index of Q2 in
Aut Lis 3 and Aut L = QU p134Q U p2,,9. The subgroup Aut ANQ is a non
identity group since Int L is a proper subgroup of Q and any automorphism
of L can be written as Aw where A € Int L, # € Aut A. This gives us that
Aut AN = (oy;) for some distinct 4,5 € {1,3,4}. From now on we choose a
base A such that o34 € Aut ANQ for every canonical basis. For the realisation

given in Section 2.2, the associated matrix T,, is (217=1 €i;) — €ss-

In [4] the gradings on Lie algebras L of type D, | > 4, were found using
the fact that & = Aut L. To see this, we look at the Dynkin diagram for a Lie
algebra L of type D; and note that [Aut L : Int L] = 2, so either Q@ = Int L
or = Aut L. Recall that the inner automorphisms of L have associated
matrices which are orthogonal with determinant 1 so 2 # Int L. This gives
us that Q = Aut L. We can lift the actions of €2 to a subgroup of Aut My by
setting A x X = T,\XT,\'1 for all X € My, X € 2. Thus we can view Q as a
subset of Aut My. For any grading by a group G on L, f (@) C  and hence

we can write for R = My;:

R=(PR,

geCG
where Ry = {X € R| Tf(X)XTR;) =x(9)X, Vx € @} By finding all gradings

on My such that K(My, *), * a transpose involution, is a graded subspace,
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we also find all gradings on K(My, *).

For the case of | = 4, we do not recover all gradings but we can find all

matrix gradings (recall), all gradings such that f (@) C (o34) Int L = Q.

3.2 Matrix gradings of K(Ms, %)

This section is a quotation from [1] and [4]. We consider a construction of

gradings on the tensor product A ® B of two algebras A and B.

The following definition works even in the case where G is not abelian.

Definition 3.2.1 Let A = @gec A, be any G-graded algebra over an alge-
braically closed field F. M,(F) = B = @gec By be a matriz algebra over
F with an elementary grading given by an n-tuple (g1,...,9,) € G, that is
eij € Bgi—l o Then direct computations show that R = A ® B will be given a

G-grading if one sets
R, = Span{a ® e;;|a € Ap, g7 "hg; = g}.
The grading just defined will be called induced.

If the support of A and the support of B commute, the induced grading above
has the decomposition R = @ o Ry where By = (A® B)y = B,_scc(As @
B;). We can now quote Theorem 3.1 from [4].

Theorem 3.2.2 Let F be an algebraically closed field of characteristic zero.

Then as G-graded algebra R = M,(F) is isomorphic to the tensor product

RO ® RO R ® R®
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where RO = M, (F) has an elementary G-grading, Supp R© = S is a finite
subset of G, R® = M, has the g;-grading (recall Definition 1.1.14), €; being
a primitive nt® root of 1, SuppRY = H; ~ Z, ® Zp,, i = 1,...,k. Also
H=H,---H~xH—-1x---x Hyand SNH = {e} inG.

We quote Lemma 4.3 and Theorem 5.1 of [4] for which we are interested
in the case where G is an abelian group, the grading is over C and ¢ is a

transpose involution on Mz(C).

Lemma 3.2.3 Let R=C®D =P Ry be a G-graded matriz algebra with
an elementary grading on C and a fine grading on D. Let ¢ : R — R be an
antiautomorphism on R preserving G-grading, i.e., o(Ry) = Ry. Let also ¢

act as an involution on the identity component R, i.e. ©*|r, =id. Then

1) Re = C. ® 1 is p-stable where I is the unit element of D and hence ¢

induces an involution * on C,;

2) there are subalgebras B, ..., By C C, such that Ce = By & - -+ @ By,
Bi®I,...,By QI (3.1)

are p-stable and all By, ..., By are *-simple algebras, i.e. B; does not contain

non-trivial ideals invariant under *.

3)pacts on Re=Ce®I as px X = S7IX'S where S= 5191+ +5,®1,
S; € BiCB; and S; = Ip, if B; is p; X p;-matriz algebra with transpose invo-

0 I,
lution, S; = b if B; is 2p; X 2p;-matriz algebra with symplectic
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0 I,
involution or S; = b if By ~ My, & M,,.
L, 0

T

4) The centralizer of Re = Ce®1I in R can be decomposed as ZyD1®- - -® Z Dy,
where Dy,..., Dy are p-stable graded subalgebras of R isomorphic to D and
Z; = Z; ® I where Z is the center of B;;

5) D as a graded algebra is isomorphic to M, ® --- ® My where any factor
M, has the fine (—1)-grading.

Theorem 3.2.4 Let ¢ : X — U XU be an involution compatible with a
grading of a matriz algebra R, R = EBgeG Ry by a finite abelian group G, ie.
¢(Rg) = Ry. Then R =C ® D where C has an elementary grading and D a

fine grading. Then, after a G-graded conjugation, we can reduce U to the form

U=510 X, +--+ S ® Xy, (3.2)

I 0 I ‘
where S; is one of the matrices I, or and each X, is

I 0 -I 0
a matriz spanning Dy, t; € T where T is the support of D . The defining

tuple of the elementary grading on C should satisfy the following condition.
We assume that the first | of summands in (3.2) corresponds to those B; in
(8.1) which are simple and the remaining k — l to B; which are not simple.
Let the dimension of a simple B; be equal p? and that of a non-simple B; to

(2p;)?. Then the defining tuple has the form
(g?"), o ,gl(Pt)’ (gll+1)(m+1), (gﬁ}_l)(mu)’ e, (g;c)(Pk)’ (g,'c/)(Pk)) (3'3)

9iti = - gfti = G Of it = - = Grite- (3.4)
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Additionally, if ¢ is a transpose involution then each S; is symmetric (skew-
symmetric) at the same time as Xy,, for anyi=1,...,k. If ¢ is a symplectic
involution, then each S; is symmetric (skew-symmetric) if and only if the re-.

spective Xy, ts skew symmetric (symmetric), i = 1,...k.

Conversely, if we have a grading by a group G on a matriz algebra R de-
fined by a tuple as in (3.3), for the component C with elementary grading, and
by an elementary abelian 2-subgroup T as the support of the component D with
fine grading and all of the above conditions are satisfied then (3.2) defines a

graded involution on R.

Remark 3.2.5 Suppose we have an algebra R with identity 1 and with invo-
lution * such that R is the product of two of its subalgebras A and B, with 1:
R = AB = Span{ab|a € A, b€ B}. For any involution we set

H(S,*) = Span{s + s*|s € S}, K(S,*) = Span{s — s*|s € S},
where K (S, x) is equivalent to our earlier definition. We also set aob = ab+ba
and [a,b] = ab — ba. Then

K(R,*) = [K(A,x),K(B,*)]+ K(A,x)o H(B, %)
+H(A, x) o K(B,*) + [H(A, x), H(B, %)].

It is shown in [4] that for an involution compatible grading of a matrix algebra

R, R= @geG R, by a finite abelian group G as in Lemma 3.2.3,

K(R, *) = Span{eiUej ®Xu—6jS;USi€i®thX;1Xti I U= C,;Uej eC,uc T}
(3.5)

where ey is the unit of By.



CHAPTER 3. MATRIX GRADINGS Page 34

For the case of R = Ms(C) = C ® D there are four choices for the dimen-
sions of C' and D since dim M(C) = 64 = 43, dim D = 4' for some positive
[ since D ~ M; ® --- ® M. Hence there are four choices for the full matrix

algebras of C' and D. The choices are

C =~ Mg(C), D=~C,
C ~ My(C), D ~ M,y(C),
C ~ My(C), D ~ M(C),

C~C, D ~ Mg(C).
Using Theorem 3.2.4, one can describe all transpose involutions on Mg with
the above gradings and then restrict the grading to K (Mg, *) using (3.5). This
gives a description, up to isomorphism, of all matrix gradings on a Lie algebra

of type Dy.

An example of an involution compatible grading on R = Mjy is the fol-
lowing. Let * be the regular transpose. Define a grading R = @QGG R, by
G = (g2)2 % (g3)2 X {ga)2 X {a)2 x (b)2 as follows. R is graded isomorphic to
C ® D where ® is the Kronecker product of C = My and D = M,. We set C =
My = @i Ck, an elementary grading by the group K = (gz)2 X (g3)2 X (g4)2
with tuple 7 = (e, 92, 93, 94) and set D = My = @, D; the fine (—1)-grading
by the group T = (a)s X (b)s.

For X = (z;;) € C and Y € D we have

11Y z12Y z13Y x1Y
To1Y TooY TozY xoY
z31Y T3Y x33Y w34Y
1Y TY THY TaY

X®Y =
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We note that

.’1711Y* xle* $31Y* 1541Y*
T12Y* XY* x3Y* xpY*

(X®Y)* — 12 22 32 42 _ X*®Y*
.’1713Y* 1L'23Y* .'1133Y* SE43Y*

IE14Y* $24Y* £L‘34Y* 1744Y*

It follows that if we set R &, 3 &4
92°93°9

Ko ghaths = ngzg’;sgf“ ® Dgkapr, We obtain a

grading on Mg which is compatible with the regular transpose.
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An example of a graded subspace of R is

4 3

0m 0O
n 0 00 -p 0
Ryo = ¢ mneCj)r® peC
0.0 00 0 p
[\o o000 J
([0 0 -m 0000 0) \
0 0 0 mO0OOO
—n 0 0 00000
0O n 0 00000
= 4 m,nGCf.
0 0 0 00000
00 0 00000
00 0 00000
[\ o o 0o 00000 )

We obtain a grading on the Lie algebra L, L = K(R,*) = @yeq Ly by
setting Ly = LN R,. This is a matrix grading on a Lie algebra of type Dy. An

example of a graded subspace of L is
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Lya = {

2

[ o

o O O O o o o

0
m
0
0
0
0
0
0

o O O O O o o o

O O o O O O o o©o

o O O O O O o o

—

o O O O O o o o

N—




Chapter 4
Outer gradings

4.1 General overview.

If we find all éradings on a realisation of a simple Lie algebra L of a
certain type then by Observation 1.1.10 we will have found all gradings for
any realisation of a Lie algebra of the same type. Let us fix a Lie algebra L of
type D4, a maximal toral subalgebra H, a corresponding root system ® and a
base A of ®. All gradings by a group G, L = @,c¢ Ly, such that £(G) C @
have been described in the previous chapter and we also get more gradings

with the help of Chapter 3.

Let f(@) = (p) x B where B C IntL and ¢ = o;A\, A € IntL, j €
{3,4}, i.e., g1; ¢ Q. We note that 014 = p1340340754, 013 = Pray034P134 Since
(134)(34)(134)" = (134)(34)(143) = (14) and (134)~(34)(134) = (143)(34)(134)
= (13). For any m € Aut L we can use Observation 1.1.10 to obtain a grading

L = @, Ly where L = m(L,). This new grading has its own homomorphism
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f’ taking G — Aut L. We define f' explicitly as
FO)@) =D xxzy=> x(9)z
geqG geq

where z =}, zy, 7, € Ly = m(Ly). We note that

)T Hz) =m0 ee %)
' T )T Y e (), for some z, € L,
=7nf(x) dec(xg) =r dec x(9)(zg)
=2 0ec X(@)T(Zg) = 3 e X(9)(z})
= f'(x) dec -'”’g
= f'(x)(z).

Hence f'(G) = nf(G)n1.

If we set m = py34 then
f’(a) = p134((o13)) X B)piay = (p134(013 \)piay) X pr3aBpisy = (0aaX) x B’

for some X € Int L by the semidirect property of Aut L, and B’ = p134Bprsy C
Int L.

Similarly if we set 7 = p3y, then
f'(G) = pisa((0140) X B)praa = (034)") x B"

for some M’ € Int L and B" = p3yBpiss C Int L.
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Observation 4.1.1 The above shows that a grading on a Lie algebra L of
Ly, with G = S(G), such
that f (@) = (01;A) X B, A € Int L, B C Int L has a grading automorphism

type Dy by a finite abelian group G, L = B,ec

. g9eG g
0%i(Ly), FI(G) = (034X) x B', X € Int L, B' C Int L and the corresponding

homomorphism f' sending G to Aut L as in Section 1.2 with respect to the

Plae, for n € {1,2} such that the matriz grading L = @ ¢ L,, where L, =

grading L = @ L, are isomorphic.

The subgroup (p134) is of index 2 in Aut A and hence normal in Aut L.
This gives us that {p;34) Int L is a normal subgroup of Aut L, 7w(pfA)7~! 3#
oiXN for i,5 € {1,3,4}, i # j, a,n € {1,2} and any A, X' € Int L. Hence
gradings by a group G such that f(G) = (p{3,\) x B where B C Int L,
n € {1,2} are not isomorphic to a matrix grading. It follows that if we
have a grading by a group G such that S(G) has no elements of order 3
then the grading is isomorphic to a matrix grading. In the following sections
we use a different technique to find all possible gradings by G = (z) x A,
with corresponding G and £(G) as (2.5), (2.4), (2.3) in Corollaries 2.4.2, 2.4.3
with ¢ = 034, hence describing all gradings such that G = (a)2 x A. Even
though these gradings have now been described in Chapter 3, the technique
involves looking at the natural grading by G/A and looking at the grading of
Ls = @,c4 La, € is the identity of G/A, which is a subalgebra of L as noted in
Observation 1.1.12. For any x € L; we can express T as T = Zae 4Tar Ta € Lg

and
o34(z) = p(z) = x *x = Zx(a)xa = Zza = z.
acA acA
Hence L; = L°* where L™ is the Lie subalgebra of L that is pointwise-fixed
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by the map 7. Similarly L; = @,.4 Lo = L™ which gives us that L =
L7 @ L77% is the natural grading by G/A. It turns out that L; is a Lie
algebra of type Bs, for which all gradings have been found in [1] and we show
how we can lift an automorphism of Lz to an automorphism of L. It might
be fruitful to generaiiée this technique by replacing f (@) = (0j;) X B with
f (&7) = (pPsA) X B’ where B’ C Int L and trying to lift the automorphisms
of identity component of the natural G/A’ grading on L to automorphism of
L where f(Z’) = B, ¢ = (2) x A’ and the dual of 4/, A. Ifn=1and
A = idayt z, then it can be shown that the identity component of the G'/A’
grading is a Lie algebra of type Gs. In this work we do not explore this
technique for this case because the gradings on Lie algebras of type G5 are not

well-known at the time.

4.2 Description of fixed subalgebras by certain outer

automorphisms.

In this section L is a Lie algebra of type D;. We do not specify a realisation
but we do fix H, ®, A. Let L% be a subalgebra of L which is fixed by o;;, for
distinct 4,5 € {1, 3,4}.

It is known [9] that L°% is of type B3. Let H% be the subalgebra of
H fixed by oy;. It is well known [8] that a maximal toral subalgebra of a
Lie algebra of type Bj; is of dimension 3. H% = Span{ha,, Fay, ha; + ha,}
k € {1,3,4} \ {4,7}, hence is a maximal toral subalgebra of L%7. Let

L =H"% @ Ly°
Bed7ii

be a Cartan decomposition for a root system ®%4 of H%i and A% a base of
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94 described below (see Appendix A for justification).
The base A% = {4, 2, 33} where

B = aklgeis,
;82 = a2|H°ﬁa

B3 = (Cli + ij)/le"ij.

The positive roots of &7 are:

ﬁzv 181; /63)
B2+ Br, B2+ B, B2 + B1 + B3,
B2+ 2083, Bi+ B2+20s, B+ 262+ 20s.

We can obtain a canonical basis of L%

{hs, T4, Y3 | B; € A%, (3 is a positive root of ®%} such that

zp € L7, for all B € ®4,
Y5 € Lfg, for all B € @94,
b, € H

Bi ’
[z}, 5] = A, for all g € ®7i

(g, 2] = (B, 8)2ly, for all B, B' € &%, 2 € L.
We express the above basis of L7 in terms of the basis of L in the following

way:
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h’,,31 = hak’
h’lﬁz = haz’
233 = hai + haj’
x’ﬁl = Tq, x’ﬂz = Ty,
. :13;33 =Zq t Lo x,ﬂ1+ﬁ2 = Zag+ay
$lﬁ2+ﬂ3 = Zag 4oy + xa2+aja x/ﬂl+ﬂ2+ﬁ3 = Toptar+oi —+ maz+ak+aja
:c:32+233 = Top+ai+aj m,ﬂl+ﬂ2 +28; = Tag+oxtaita; (4.1)

' —
Tp,+262+203 = Loatartouta;+az

Y, = Yo Y, = Yo

Yy = You + Yoy Yy +p; = Yaztans

y,’sz+;33 = Yagto; T Yazta; y’p1+gz+53 = Yagtapt+as T Yagt+ar+a;:
Yprtass = Yoataitay Ybr+Br+28s = Youtartaitass

/ —
Y8,+28,+28: = Yor+op+aitajtos-

Similarly let LPum be a subalgebra of L fixed by pum, {I,m} = {3,4}.
It is known [9] LPum is a simple Lie algebra of type G,. Let HPum be the
subalgebra of H fixed by pym,. It is well known [8] that the dimension of
a maximal toral subalgebra of a Lie algebra of type G is two. HPUm =
Span{ha,, hay + hag + ha,} is of dimension two and hence is a maximal toral
subalgebra of L=, Let ®"um be a Cartan subalgebra of LPum and APim g

base of $Pum described below.

The base is APum = {7, v,} where v; = (a; + a3 + a4)/3|meum and

Y2 = azIHPum .
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The positive roots of 1~ are

Y1, Y2, T + Y2,
2v1 + 72, 371+ 72, 371+ 27.

We can obtain a basis'{h], z7, yy | v; € APum, v is a positive root of ®*m} of

LPum such that

zy € Ly, for all 7y, € ®Pum,

Yy € L/iif,k, for all v, € PPum,

% € Hfum,

[z5, y5] = A2, for all v € $Pum

[hz’ z',y,’] = (v, ’Y')Z,'y'/, for all v, € rum, z;', € L,’;‘,""‘.

We can express the above basis of LPtm in terms of the basis of L in the

following way:

n o __ n o __
hfyz - haza h’Yl - hal + ha3 + h'a41
! =z Th =g + Loy +7T

Y2 azs 071 a3} a3 o4

1" — " _
x’yz+71 = Taz+ax + Tog+as + Loaz+ay) "1;72+3'71 = Taz+ar1+az+aq)

" _ /" _
Zoo+2y1 = Taz+ar+eas + Tag+ar+as T Lag+az+as Tovo+3y, — L2a2+0n+az+aq

"o L

?J% = Yaas ynn = Yoy + Yas + Yas»
" — " —

Yy = Yoz toy + Yaz+as + Yag+aq y»72+371 = Yaz+or+os+as

" — " —
Yyot2ys = Yaztor+as T Yaster+as T Yoztastass  Yoypt3y = Y2eatar+astag-

4.3 Realisation of [934.

We continue on from the end of the last section. To get a better under-

standing of this subalgebra let us look at the realisation of Section 2.2 and note
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0ij = 034, which sends Epg to —Eng and leaves all other Eg, 1 <a < b <7,

invariant. A basis for L7 is the following:

5 = hay = i(Eas — Esg)
B2 = oy = 1(E36 — Eqr)
hss = has + hay = 2iEyg7
Tp, = Loy = {E2s +iEz + iE35 + Esg}/2
Tps, = Tay = {E34 +iE37 + B4 + Eg7}/2
T, = Tag + Tay = —E14 +1iEy7
Ty 48, = Tagton = {—FEo —iEy — iEy45 + Ers}/2
T, 48 = Tag+as T+ Tag+as/2 = —Ei3 +iFsg
J'Jﬁﬁ-ﬁz+/@a = Zag+ont+as + Tagtont+as = F12 — iF1s
Ty 128, = Tartastas = (— B+ iBsr — iBss + Er)/2
T+ p,420; = Tagtortastas = (Bas — iBar +iEys — Es7)/2
T, +262+28, = Tontor+agtastos = (—E2s + 1By — 1 B35 + Eg6)/2

ys = —(zj)* where 7 is the conjugate of z

Notice that

L"“={$€Ms|$= Z CabEap, CabG‘C}

1<a<b<7

is the embedding of the 7 x 7 skew-symmetric matrices over C in the upper

left hand corner.

4.4 Certain outer gradings.

This section continues from the end of Section 4.2. Let L = H & cq La

be a Cartan decomposition described in Section 2.1 with ® a root system and
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A a base of . We choose a canonical basis of L as (2.2) of Section 2.1 and a
canonical basis of L7 as (4.1) of Section 4.2. A basis of L773 is formed by

the following elements:

hai - ha‘j v
Ta; — Tajy ZTogtas — Toaztajy Taztaitar — Lag+ajtak:
Yo = Yoj7 Yoztai — Yaz+ajs  Yort+ait+ar, — Yaz+taj+ok:
Theorem 4.4.1 H is the unique mazimal toral subalgebra of L containing

Hvi,

Proof
Let T be a maximal toral subalgebra of L such that H% C T. We can express

T as T = H%i @ Span{h} for some h € L such that h = A’ + h", b’ € L%
and A" € L7, Since maximal toral subalgebras are abelian, [z, ] = 0 for all

z € H%i. We also have
0={z,h]=[z,A]+[2,h"] =[2,h]=][2,h"]=0

since [2,h'] € L%, [2,h"] € L™ and L = L% @ L~%. Since L% is a
simple Lie algebra and H%% is a maximal toral subalgebra of L we have that

h' € H% . Hence we can set h = h” € L™% and express h as

h = ao(h’:xi - hixi) + al(xai - zaj) + G’Z(xaz-i-ai - $a2+a,-)
+a3 ($a2+a,~+ak - xa2+aj+ak) + a4(ya,~ - yaj)

+CL5 (yaz+a,- - yaz+aj) + aG(ya2+ai+ak - ya2+aj+ak)7
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a, € C. Now we take the commutator of h with some elements of H% to
determine .
0= [hp, Rl
= [hoy, ao(hy, — hy,,) + a1(Ta; — Ta;) + 02(Taztai — Taz+a;)
+03(ZTagtai+a — $a2+a_,~+ak) + 4(Yo; — '!/a,-)
405 (Yo +a; — Yaztoy) + 06(Yagtaitar — Yartasray)]
= —02(Taztes — Tagtey) + 03(Togtartar — Taztojrar)
+a5(ya2+a,- - yaz+aj) - les(?;/az+oz.~+oz;c - yaz+aj+ak)
= a9 = a3 = as = ag = 0.
0= [hg, Al
= [Ray, ao(hy, = hp,) + 01(Za; — Ta;) + 04 (You — Yo )]

= —01(Ta; — Ta;) + 04(Yo; = Vo)

:a1=a4=0.
= b = ao(he; — hay) € H
=T = H. [

We can express L as L = @, p L, for some set of weights P C H7*,
L,={z€L|[hz]=wh)zVh e H}

since HY%i is a toral subalgebra of L. It can be easily verified that the sub-

spaces mentioned above are:
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L6 = H, L;:,az:tgz' = L:i:a2+:ta.- &) L:i:ag:i:cq:
Lliﬂs = L:hai 7] L:i:a,-7 Llﬁﬁziﬂ:,j:ﬂl = L:i:ag:}:aiiak ® L:tagztaj:‘.:aka
L= L;“ , for all other 8.

Lemma 4.4.2 If two inner automorphisms A and X' of L restrictions to L%

are equal and \, X leave L% invariant, then A = N.

Proof

Let A\, X' € IntL be such that A|ze; = N|po; and A(L%%) = L%. Since
Int L = {exp(ad z) | z is ad-nilpotent, z € L} is a group there exists a z € L
such that A~'X = exp(ad z) and (ad z)" = 0 for some positive integer n and
(adz)® # 0 for any positive integer a < n. It follows that exp(ad z)(y) = y for
all y € L%, This implies that if n > 2

(ad2)*2(y) = (ad 2)"2(35 (ad2) (y)/ (i)
= Yis (ad2)*"2(y)/ (i)
= (ad2)"2(y) + (ad2)""'(y)

and hence (adz)"1(y) = 0 for all y € L. We can now use induction on this
process for (adz)*™™, n > m, to show that (adz)"™*'(y) =0 for all y € L.
This implies that the smallest integer ¢ such that (ad z)!(y) = 0 for all y € L%
ist=1.

Let z = 2/ + 2" where 2/ € L% and 2” € L=%. Now 0 = (ad2)(y) =
2+ 2"yl =y +y" where y = [¢/,y] € L°% and y" = [2",y] € L™ for all
y € L°% which implies ¥’ = y” = 0 since L = L° @ L~°%. Also z’ = 0 since
L4 is simple which implies that its center Z(L°%) = {z € L |(adz)(y) =
0, Vy € L1} is zero. By the proof of Theorem 4.4.1, the only element of L=
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that commutes with H% C L% is in Span{ha, — ha,}. Hence z = 0 since
z € Span{hqg, — ho,} and hg; — hq, is not ad-nilpotent. Now A7V = iday g

and we are done. [ ]

Theorem 4.4.3 Let L be the realisation of a Lie algebra of type Dy as de-
scribed in Section 4.8 and G a finite abelian group. For any grading of L%
by G, L7 = @,cq Lg*, with G = S(G), there exists a unique inner grading
onLbyG, L= @gec Ly, such that Ly (| L7 = Lg*. Moreover L™7% is a

graded subspace.

Proof

There is a natural isomorphism 1 of L% into K(M;) where

B 0
¥ =B
0 0

for all B = K(My). It is known [10] that any automorphism A of K(My) is
conjugation by an orthogonal matrix T\, € M. It is easy to see that for any
automorphism & of L7, k = k1! is an automorphism of K (M) such that

Yr(z) = &(¢(z)) for all z € L734. It follows for the matrix

T O
0 detT;

U, =

we have k(z) = U,zU7!.

Since det T\ = %1, Uy is an orthogonal matrix of determinant one and it

is known by [10] that conjugation by Uy is an inner automorphism % of L.
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By Lemma 4.4.2, % is the unique inner automorphism of L that leaves L%
invariant. By looking at A, A € Aut L as conjugation by matrix we note

that if A, M commute, then X, ¥ commute as well.

Let f: G — Aut L% be as in Section 1.2 with respect to the grading on
Lo, The above shows that there is an isomorphism ¢ : f (@) — ?(@) where
7(@) ={X| e f (@)} is an abelian subgroup of Aut L. As before we obtain
a: grading on L by G by setting

Ly = {z € L| F(x)(z) = x(g)=, ¥x € G}.

Then L, (L = LJ* as desired. By the 1-1 correspondence between G-
gradings and f (@) C Aut L, we see that such inner grading L = ¢ Ly is

unique.

Conjugation by the matrix Uy leaves L™%34 invariant since

L34 = 0y
—* 0

It follows that L=7% is left invariant by f(G).

where * is the matrix transpose y € Mm} .

Since L~7% is left invariant by ?(@) it follows that L~ is a graded sub-

space. |

I; 0

), oss commutes with f(G)
0 -1

Observation 4.4.4 Since T,,, = (

from Theorem 4.4.3.
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Lemma 4.4.5 If an inner automorphism X of L and an outer automorphism
@ of L restrictions to L% are equal and A, ¢ leave L% and L~ invariant,

then ¢ = oi;A.

Proof

Let ¢ = @A~!. Since @A™ (h) = h for all h € H" C L% tp(H%) = H
hence ¢(H) = H since automorphisms of L send maximal toral subalgebras
to maximal toral subalgebras and by Theorem 4.4.1 H is the unique maximal
toral subalgebra of L containing H%%. Since Span{ha, — ha,} = H N L%,
Y(hay — hoy) = a(ha; — ha,) for some non-zero a € C. We now try to find
where 1 sends x4, — To; by looking at ¥([H, 24, — Za,])-

w([h’ak’ La; — xaj]) = "/)(0) =0
V([P Tas — a’aj]) [¥(hay), ¥(Ta; — xaj)])
[h’ak’ w(xai - xaj)]

w([h‘az’ Loy — xaj])
w([ham Loy — xaj])

d](_(a"ai - xaj)) = _¢($ai - xaj)
[w(h’az)’ w(xai - xaj)]
[haz’ w(xai = Loy )]

I

’(/J([hai + haja mai - xa,‘])
"p([hai + ha,-’ T, — xaj])

¢(2($a.- - -Taj)) = 2¢($a,- - xaj)
["p(ha,' + haj)a "/)(xai - xaj)]
[ha,- + haj7¢(xai - xaj)]

The above calculations show that ¥(za, — Za,) € L, = Lo, ® La;. We also
know that ¥(Za, — Za;) € L% and Lj, N L™ = Span{Ta, — To;}. Hence

Y(Ta; — Ta;) = b(To; — Zq,) for some non-zero b € C. Now we want find where
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Ty, and hg, are sent.

Y(Za;) = Y((To; — Tay) + (Tas + Zay))/2
= (b(xai - xaj) + To; + xa]‘)/2
= (L +0)zg + (1 - b)za;)/2

w(hoq) = w((h’ai - h’aj) + (hai + h'aj))/2
= (a(ha; — ha;) + hay + ha;)/2
(1 + @)heg + (1 - )hy)/2

B(lha Ta) = B(20g) = (14 )z, + (1 b)a,
W(lhaa)) = [lhar), $(@a,)]

= [((1+ @)hay + (1= )hey)/2, (1 + D)z, + (1 = b)za)/2]

= (1+a)(14b)z4/2+ (1 — a)(1 — b)Ta,/2
Hence (1 +a)(1+b) =2(1+b) and (1 —a)(1 —5b) =2(1-05). Ifb# -1
then a = 1 and if b # 1 then a = —1. This implies b = +1 and a = b. This
means that either ¥(zs,) = Tay, V(Ta;) = &, Y(ha,) = Ry OF Y(Ta;) = Tays
Y(Ta;) = Tays P(ha;) = ha; (since P(za; + Ta;) = Tay + Tayy)-

Also for b = 1, ha;, = ¥(ha,) = V([Tass You]) = [¥(Zey)> ¥ (Ya,)] which implies
that ¥(Yo;) = Yo, and similarly ¥(ya,;) = ¥Ya,. The same arguments for b = —1
imply that ¥(Ya;) = Ya; 80d ¥(Ya,;) = Ya;- Therefore for b= 1, ¥(2) = 2 and
for b= -1, ¥(z) = 0i;(z) for all z € B = {z4,,ya, |1 < ¢ < 4}. Since Bisa
generating set of L, 1 = id|au for b= 1 and ¢ = oy for b = —1.

Since ¢ ¢ Int L, ¢ ¢ Int L which implies that ¥ # idayr, S0 ¥ = 0y; and
@ = oj5A. |
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In the next theorem we use the inner gradings on L, L = @, Ly, from
Theorem 4.4.3 to get outer gradings on L by refining the grading using o34,
i.e., decomposing the graded subspaces L, further as Ly = (L,)7% @ (Lg) 7.

Theorem 4.4.6 Let L be the realisation of a Lie algebra of type Dy as de-
scribed in Section 4.3 and G a finite abelian group. For any grading L°% =
&P gec L3 by a finite abelian group G, with G = S(G), there ezists a unique
grading by J = (2), X G, on L, L = @, ; Ls, such that Ly = L7 fors € G
and Ly C L= for s ¢ G and the natural grading by J/{(z) on L is inner.

Moreover, this grading is an outer matriz grading and n = 2.

Proof

The existence follows from Theorem 4.4.3 and Observation 4.4.4. We construct
the inner grading by G, L = @ s Ly with Ly L7 = L7*, and observe
that the spaces are o34 invariant for all ¢ € G. We can decompose L, =
(Ly)™ & (Lg)~% and set L = (Lg)°s and L,, = (L,)~°*. This defines a
grading on L by J = (2)s X G.

Suppose we have a grading on L by J, L = ,; Zs, that satisfies the
conditions of the theorem. The dual group of J is J = (n), X G where n(g) = 1,
n(z) = e¥" x(z) =1, forallge G, x € G. Let F : J — Aut L be the group
homomorphism defined by F(x)(zs) = x(s)z, for all x € J, seJz, € L,
Then L% = @, Ly which implies F(n)|zos = idauczess. Also L, = L%
for s € G and Ly C L™ for s ¢ G imply that L~7% is a graded subspace.
By Lemma 4.4.2 and Lemma 4.4.5 either F'(n) is the identity of Aut L or os,.
Thus F(n)(z) = —z for all z € L™, We conclude that F(n) = o34.
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Since the natural grading by J/(z) is inner, F(@) is inner. By Theorem
4.4.3 the grading by J/(z) is unique which gives the uniqueness of the grading
of L by J and thus n = 2. ]

With Observation 1.1:10, Observation 4.4.4 and the description of all grad-
ings on Lie algebras of type B; in [1], it follows that for a of a Lie algebra
L of type Dy, all matrix gradings L = @gec L, by finite abelian groups G,
G = S(G) and f(@) = (03j)2 X B, B C Int L are described in this section.

4.5 Example of a non-matrix grading

We construct an example of a grading by a group G = (z)3 X A on the
realisation L from Section 2.2 such that f(@) = (p134)3xB,A~B,BCInt L
and the grading by G/(z)s ~ A induced by an elementary grading on Msj,
Ms=R= @, Ry, ie., L =@, Ly where Ly = RyN L. Tt then follows [1]
that the tuple (g1,...,9s) associated with the elementary grading on Mg has
the property that g = --- = g2. The idea is to find an elementary grading
on Mj that is transpose invariant and that p134(Ly) = Lg. The requirement
that p134(Ly) = Ly further decomposes L, as Ly = Lf'* @ LI'* @ L§2p134,
g = €™/ 50 that we have a gradingon L, L = @ Ly where L;n, = Lgos,
n € {0,1,2}.

From the calculations in Appendix B it follows that p;34 leaves invariant
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the following subspaces.

Vi = Span{Es, E34, Esg, Eer},
Vo = Span{E\3, E24, E57, Ees},
. V3 = Span{Eyy, Ey3, Ess, Ers},
Vi = Span{Exs, Esg, E37, Ess},
Vs = Span{Eis, Eyr, Ezs, Ess},
Ve = Span{E\7, Es, Ess, Eus},
V7 = Span{ Eyg, Ess, Ess, Eqr}-

We notice that these subspaces are also maximal toral subalgebras. We can
decompose V; as V; = V™ @ V"1 @ V% which is also a grading by (2);

onV; for 1 <1 < 7. For example

V:,P134 ='Span{E36 — Ey7, Eos + E47},
ViP134 = Span{Fys — Ess + €%(Eyr — Eig) + e(Egr + E)},
V:Tezmu = Span{Eqs — F36 + €(F47 — E13) + &'2(E47 + Es)}.

Our next step is to choose (g1,...,gs) in such that a way that gig; = gkgi
for all E;;, Eyy € Vi, for distinet ¢,5,k,1, 1 <4,j,k,l <8and 1 <m < 7. This
step ensures that p;34 commutes with f (/T). Now let A = (ga)2 X (g3)2 X (g5)a-
The tuple 7 = (e, 92, g3, 9293, 95, 9, 9398, 9395, 9205), § = ga2gags satisfies the

above requirements. The elementary grading on Mg with associated tuple 7
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can be visualized with the help of the following matrix.
/ € 92 g3 9293 9s g 9395 9295 \
g2 € 9293 g3 9295 9395 g 95
g3 9293 - € 92 9395 9295 g5 9
9293 g3 g2 € 9 gs 9295 9395
gs 9295 9395 g € G233 g3 92
g 9305 9295 gs 9293 e g2 g3
9395 g gs 9295 g3 92 € 9293
\ 0205 9 9 995 92 g3 G205 e )

We set G = ()3 X (x2)2 X (X3)2 X {Xs)2 where xi(g:) = —1, xi(g;) = xi(2) = 1,
((2z) = e*™/3 and ((g;) = 1 for distinct 4,5 such that 4,5 € {2,3,5}. It then

follows that f(G) = (p134)3 X B where B C Int L.
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Appendix A

Justification for the claim that

L°4 is a Lie algebra of type Bs

We show L7 is a Lie algebra of type Bs for distinct 4,5 € {1, 3,4}. A Cartan
subalgebra of L7 is H?% = Span{ha,, hay, ho; + ha,}-

We need to define elements hg,, hg, and hg, that span H 7 and a correspond-
ing root system ®% with base A™7 = {61, B2, B3}. We are going to construct
a basis L' by defining

Br = olgeii, B2 = aolpgey, B3 = (ou+a;)/2|gws,

hg, = hq,, hg, = Ry, hg, = (ho; + haj),

Lo = Ta,, T8, = Tay, gy = (Ta; + Ta;)s

Yo, = Yoy Yo, = Yaz» Yps = (yai + yaj)
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and verifying that ({8, 3;))x is the Cartan matrix of a Lie algebra of type Bj

and the relations

'Bk(hﬂl) = (Bk, B1), [xﬁk’yﬂk] = hg,, [hﬂk$xﬁk] = 2xg,, [hﬂmyﬁk] = —2yg,

hold. We will need the Cartan matrix of a Lie algebra of type Dy in order to
find (B, ;). The Cartan matrices of Lie algebras of type D, and Bs are

2 -1 0 0
2 -1 0

-1 2 -1 -1
and -1 2 =2

0 -1 2 0
0 -1 2

0 -1 0 2

respectively. The root system ®%i has positive roots

/6'2’ ﬁl, 1637
B2+ B, P2+ Ps, B2 + B + B3,
B2+ 203, b1+ 0B2+203, Bi+ 202+ 20s.

We now verify that the matrix ({8, 5]))r corresponds to the Cartan matrix

of B3.
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(/Hl’ﬂZ) = -1
(B1, B2) = (o, 00) = —1

(ﬁla /63> = 0 .

(oitoy)/2
(81, Bs) = (o, (0 + 05)/2) = 2 RSBy
—_— (C! ,ai)+(a va') — (a 1ai)+(a 1a') _— . N —
- (ai,ai)+(a:,aj)+(a:.aij)+(aj,aj) = 4= 2(04,0::")c £ = (o, ) + {o, 05) = 0
<IB2H@1> = -1

(B2, B1) = (a2, o) = —1

(:82’/63> = -2

[(aita;)/2
(B, o) = (o (0 + 07)2) = 2ientotenn
— 4@")_'*'&22’_0‘22 = <a2,ai> + (CQ,O[j) = -2

2(exi )
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(B3, 1) =0
(B3, Bu) = (o + )/2, o0} = ({oui, k) + (0, %)) /2 = (0+0)/2 =0

(Bs, B2) = —1
(B3, B2) = (0 + )/2, az) = §({cu, az) + (@, a2)) = —1

This justifies our initial choice for £;, B2 and (5. Now to verify equations

:Bm(hﬁz) = (ﬁm,ﬁl), [mﬁm’yﬂm] = hﬁma [hﬂm’ xﬂm] = 2$ﬂm1 [hﬂma yﬂm] = _Qyﬂm'

Bi(hg,) = (B1,51) = 2
Bi(hg,) = ox(ha,) =2

Bs(hss) = (Bs, Bs) = 2
Ba(hgy) = (@i + ) ((he; + hay))/2
= (oi(hay) + ai(ha,-) + aj(hai) + aj(haj))/z = _2_-@%2’_:}& =2
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[xﬂuyﬂl] = hﬂl
[xﬁl’ yﬁl] = [zak’yak] = hak = h’ﬂl

[xﬂz’ yﬁz] = h’ﬂz
[‘Tﬂzv yﬁz] = [xaz?yazl = haz = hﬁz

(255, ygs] = Psy

[265, Yps] = [(Tas + Tay)s (Yai + Yay)]

= ([Tos: You] + [Fass Yoy ] + [Tay» Yoy + [Tay Yas))
= (ho; + 0+ 0+ hy,) = hg,

[hﬂlgxﬂl] = 21:31
[hﬁv zg,] = [hay Tay] = 2Tay, = 225,

[hﬁzi xﬁz] = Qxﬁz
[hﬂwxﬂz] = [haz’ xaz] = 2Tq4, = 22,

[hss, Tas] = 225,

[hss, Z85] = [(Pa; + Bay)s (Ta; + Tay)]

= ([hass Tai] + [hass Tl + [Ray, Tay] + [Py, Tay])
= (2Za, + 0 + 0 + 2z,,;) = 224,
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[hﬁuyﬂl] = "2y,131
[hﬂu yﬁ1] = [hauyak] = =2Ya, = —2Yp,

[hp_2, ys_2] = —2ys_2
[hs_2,Ys_2) = [Pa_2, Ya_2] = —2Ya_2 = —2ys_2

[hss, Yss] = —2yg,

[hg3 Ygs) = [(Pas + hay), (Yas + Yoy)]

= ([has> Yai] + (M Yay] + [Bays Ya,;] + [Pays Yoy))
= (2o, + 0+ 0+ —2y,,) = —2y3,

Our claim that L% is a simple Lie algebra of type Bj, with a canonical basis,

is now justified.
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Action of pj34 on the realisation

of Section 2.2

Here verify that Vi, ..., V7 defined in Section 4.5 are invariant under p;34.

/)134(E12) = P134(($a2+a1+a3 + Taz+ar+os — Yogt+or+as — ya2+a1+a4)/ 4)

(ma2+03+a4 + Tagtoaz+ay — Yortastas — ya2+aa+al)/4
= (Eyx— E34 — Ess + E¢7)/2

P134(E34) = P134((1’a2 — Tas+aztas — Yoo T+ yaz+a3+a4)/ 4)

(-'L'ag = Tag+as+ar ™ Yoo + yaz+a4+a1)/4
= (—Fi2+ E3y — Esg+ Egr)/2
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9134(E58) =

0134(E13) =

P134 (E24) =

P134 (E57) =

P134 (EGB) =

P134(_(xa2+a1+a3 — Zagtaitay — Yag+ar+ag + ya2+a1+a4)/4)

—($a2+a3+a4 — Tag+az+er — Yap+az+os + yaz+a3+al)/4
(Er2 + E34 — Esg — Eg7)/2

P134((xaz + Taz+az+as — Yoz — ya2+a3+a4)/4)

(Tay + Tagtastor — Yoy — yaz+a4+a1)/4
(Erg + E3q + Esg + Fg7)/2

pl34(_(-73a2+a3 + Taz+os — Yaz+as — ya2+a4)/4)

_($a2+a4 + Zog+ar — Yag+as — yaz+a1)/4
(Ers + Egs + Ez4 + Es7)/2

p134("’($a2+a1 — Toap+on+oz+as — Yaz+o + ya2+a1+a3+a4)/4)

“($a2+a3 — Taz+az+ar+as — Yaz+as T ya2+a3+a4+al)/4
(Er3 + Eoy — Es7 — Egg)/2

Pl$4("(zaz+a1 + Tag+ar+astas — Yogtar — yaz+al+a3+a4)/ 4)

—(Taz+as T Tartas+agtar — Yaotas T yaz+a3+a4+al)/ 4
(Ehs — Egs + Es7 — Ees)/2

P134((xa2+a3 — Tag+as — Yogtos + ya2+a4)/ 4)

(xa2+a4 — Zag+ar — Yagt+as T yaz+al)/4
(—E\3 + Epq + Es57 — Eeg)/2
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p134(E14) = p134(—($a3 + Loy = Yaz — ya4)/4)
= "(-’Ea4 + Zoy — Yau — yal)/4)
= (Ew— Eg — Esg + Er3)/2
»0134(E23) = 9134((37&1 — Tagt+on+as+astaz — Yoy T ya2+a1+a3+a4+az)/4)
= (IL'a3 — Tagtag +az+ag+as — Yoz T+ ya2+a1+as+a4+a2)/4
= (—Eu+ Ey — Esg + Eng)/2
p134(Es6) = p134((Tay + Tartar+astastar = You — Yontar+as+auras)/4)
= (xas + Zaztas+aatortor — Yoz — yaz+as+a4+al+a2)/4
= (—Ew — Es3+ Esg+ Frg)/2
p13a(Ers) = p134((Tas — Tay = Yoz + Yau)/4)
= ($a4 =~ Tay — Yau t+ yal)/4
= (—Fw — Ey — Esg — Er3)/2
p134(E15) = p134(((Taztan+as + Togtontas T Yor+ar+as + Yogtar+as)/4)
= i(xaz+a3+a4 *+ Zaztaz+ar T Yazt+astas T yaz+a3+al)/4
= (E15+ B — E37+ Ey)/2
P134 (E28) = P14 (i(x02+a1+a3 — Tag+ar+aq + Yoo+a1+asz — yaz+a1+a4)/4)

i(xa2+a3+a4 — Loz +as+er + Yaz+oz+as — yaz+as+a1)/4
(—FE1s — Eyg — E37 + Ey6)/2
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P134 (E37) =

p134(Eg) =

p13a(Far) =

p134(Ess) =

,0134(E45) =

p134("'i(xaz + Tay+aztas T Yoy + ya2+a3+a4)/4)
_":(xaz + ZTagtag+ar T Yag + Yor+as+an )/4

(—FE15 + Eos + Es7 + Eg6)/2

p134(‘—i(xaz — Tay+az+as T Yoz — yaz+aa+a4)/4)

—i(Tay — Tagtastar + Yoy — yaz+a4+a1)/4
(Ers — Eos + E37 + Eyg)

Pl34(_i(17a2+a3 + Tagtas T Yaz+as + ya2+a4)/ 4)
—i(xaz+a4 + Tog+on + Yoz+oy + ya2+a1)/4
(Erg — E3s — E45 — Ea7)/2

p134(i($a2+01 + Toz+ar+as+aq + Yo+ + ya2+a1+a3+a4)/4)

z.(-77¢:vz2+043 + Zastar+as+as T Yoag+as + yaz+a1+a3+a4)/ 4)
(—E16 + Eor — E3s — Eys) /2

P134(—UTastas — Tag+as T Yog+as — Yaz+as)/4)

_i(xa2+a4 = Tag+ay T Yog+as — yaz+al)/4
(Ei6 + Eg7 — Esg + Ey5)/2

P134 (i(xaz-f-ax — Tag+ay+az+ay + Yaz+ar — yaz+al+aa+a4)/4)

Z'(iL'ozz+az3 = Tay+az+as+a; T Yagtas — ya2+a3+a4+a1)/4
(—E\6 — Eqor — E38 + Eu5)/2
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p134(Err) = p13a(—i(Tas + Tay + Yoz + Yau)/4)
= _i(ma«z +Zay + Yau + yal)/4
= (B + Ex + E35 — Eg)/2
P134(E26) = P134(—i($a1 + Tag+or+aztastas T Yau + yaz+a1+a3+a4+az)/ 4)
= —i(xaa + ZTagtay+az+ast+as T Yoz + ya2+a1+aa+a4+az)/4
= (Ey7+ By — E35 + Eus)/2
P134(E35) = P134(_i(-'17a1 — ZTogtar+aatagtaz + Yo — yaz+a1+a3+a4+az)/4)
= _i(xaa — Tag4ay+az+ag+ag + Yoz — ya2+a1+a3+a4+az)/4
= (Ey — Ey+ E35 + Eus)/2
p134(F1g) = p13a(—4(Taz — Tay + Yoz — Yau)/4)
= ~i(Tay — Tay + Yoy — You)/4
= (Eir — Ess— E35 — Egg)/2
p134(E18) = p134(7;(h’a3 - ha4)/2) = i(ha«a - ihal)/z
= (—E1g+ Eys — E3s — E47)/2
p134(Ess) = p134(—i(2hoy + 2Roy + Bog + Fiay)/2)

—i(2hag + 2hay + ha, + Ray)/2
(—E18 + E9s + E3s + Euaz)/2
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P134(E36) = 9134(_i(2ha2 + oy + ha4)/2)
= —i(2hay + ho, + hal)/2
= (Eg+ Es+ E36 — Eg7)/2
p134(E47) = p134(_i(h03 + ha4)/2) = _i(hm + h'al)/z

(Ers + Eos — Esg + Ey7) /2
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