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Abstract 

In this thesis we explore the gradings by finite groups on Lie algebras of type 

D4 over the field of complex numbers. For gradings on simple Lie algebras 

several approaches have been studied. In (9], Onishchik and Vinberg give an 

exposition of the results of V. Kac who had classified all automorphisms of 

finite order in all simple Lie algebras, hence classified the gradings of such 

algebras by finite cyclic groups. 

J. Patera and co-authors (5], (6], (7] have focused on "fine" gradings and 

approach this with the help of maximal Abelian subgroups (MAD-subgroups) 

of diagonizable automorphisms in Aut(gl(n, C)). More recently Y. Bahturin, 

I. Shestakov, M. Zaicev (1] have approached gradings on simple Lie algebras 

by finite groups by looking at the dual group action which will be the main 

approach used in this paper. 

The gradings on simple Lie algebras of type D1, l > 4, have been described 

by Y. Bahturin and M. Zaicev in (4]. This was done by looking at gradings 

on the full matrix algebras and noting that for a realisation of a Lie algebra 

of type Dz, l > 4, as K ( M 21 , *), the skew-symmetric matrices with respect 

to a transpose involution *, the automorphisms of K(M21 , *) can be lifted to 
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automorphisms of the full matrix algebra. The gradings on Lie algebras of 

type D4 were not described in [1] or [6] because some of the automorphisms 

of these Lie algebras cannot be lifted to the full matrix algebra. 

In this thesis we apply the same approach as [1], [2], [3], [4] to describe 

all gradings that can be lifted to the full matrix algebra and all gradings that 

are isomorphic to these gradings. We also develop an approach inspired by [9] 

which may be fruitful for describing the remaining gradings. We give examples 

of some of these gradings. 
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Introduction 

The gradings on Lie algebras of type D1, l > 4, have been described in [4] 

and [6] and we apply similar techniques as in [4] to describe gradings for the 

D4 case. The motivation behind this thesis is that for the D4 case, not all 

gradings were described in [4] or [6]. The D4 case is different because not all 

gradings are matri~ gradings. 

We approach the D4 case by looking at the actions of the dual group G 
associated to a grading by a finite abelian group G and use a group homorphism 

f from the dual group actions to automorphisms of Lie algebras. We prove 

that f (G) ::::= G when G is generated by its support. 

It is well known that the support of a grading of a simple Lie algebra 

generates an abelian group and we use this to impose restrictions on f (G). 

We show that we can always express f(G) as the direct product of a cyclic 

group and a subgroup of inner automorphisms. Since when G is generated by 

its support f (G) ::::= G, we can use the restriction on f (G) on G to express 

G as the direct product of a cyclic group (z) and a subgroup A of G. Since 

all the gradings by cyclic groups were described by V. Kac we know all the 

natural grading by G/A ::::= (z), which will allow us to view the grading by G 
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as a refinement of the natural grading. 

We also classify gradings on a Lie algebra of type D4 into two classes: 

matrix gradings and non-matrix gradings. 

We describe all matrix gradings as well as a technique which looks at 

gradings on subalgebras that are point-wise fixed by an automorphism of L, 

which allows the gradings to extend to the whole Lie algebra. 

The technique could be fruitful for finding certain non-matrix gradings if 

we knew the gradings on Lie algebras of type G2 . We also give an example of a 

non-matrix grading by a group G, for which there is a natural matrix grading 

by G / K for some normal subgroup K of G. 



Chapter 1 

Definitions of gradings on a Lie 

algebra and actions by 

automorphisms 

1.1 Definitions and various types of gradings. 

Through this work the base field of coefficients is always the field of complex 

numbers C. Let us start with some definitions. 

Definition 1.1.1 A vector space L over a field C, with an operation L x L ~ 

L, denoted (x,y) ~---+ [x,y] and called the bracket or commutator ofx andy, is 

called a Lie algebra over C if the following axioms are satisfied: 

1. The bracket operation is bilinear. 

2. [x, x] = 0, 'r/x E L. 
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3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 Vx, y, z E L. 

We denote the endomorphism of L which sends y 1-+ [x, y] by adx. 

Definition 1.1.2 An: element x of a Lie algebra L is called ad-nilpotent if 

there exists a positive n such that (ad x )n = 0. 

Definition 1.1.3 An isomorphism of Lie algebras <p is a linear bijective map­

ping sending a Lie algebra L into a Lie algebra L', <p: L ~ L' and <p[x, y] = 

[<p(x), <p(y)], Vx, y E L. 

An isomorphism sending L into itself is called an automorphism. Denote 

the group of all automorphism of L as Aut L. 

Definition 1.1.4 An ideal I of a Lie algebra L is a subalgebra of L such that 

[x, z] E I for all x E L and z E I. A Lie algebra L is called simple if [L, L] =f. 0 

and L has no ideals other than L and {0}. 

Definition 1.1.5 For a Lie algebra L we define the derived series of L by 

setting L(o) = L and L(i) = [L(i-l), £(i-l)] fori ;:::: 1. A Lie algebra L is called 

solvable if L(n) = {0} for some n ;:::: 0. L is called semisimple if it has no 

solvable ideals other than { 0}. 

Definition 1.1.6 A grading by a group G, also called a G-grading, R = 

E9
9

EG R9 , on an algebra R is the decomposition of R as the direct sum of 

subspaces R9 such that R9,R9" C Rg'g" for all g', g" E G. Any element x E R9 

is called homogeneous of degree g and a subspace V of R is called a graded 

subspace if v = E9 gEc(V n Rg). 
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Definition 1.1. 7 The set Supp R = {g E G I R 9 =I= {0}} is called the support 

of the grading R = E9
9
EaR9 • By S(G) we denote the subgroup ofG generated 

by Supp R. 

Definition 1.1.8 An· isomorphism ¢, ¢ : L ----+ L' for graded Lie algebras 

L = EBgEG L 9 and L' = EBgEG L~ is called an isomorphism of gradings if 

¢(L9 ) = L~ for all g E G. Gradings on Lie algebras L, L' are called isomorphic 

if there exists an isomorphism of gradings ¢, ¢ : L ----+ L'. 

It is well known [3], for a grading by a group G on a finite-dimensional sim­

ple Lie algebra, that S( G) is an abelian group. We now state some useful 

observations. 

Observation 1.1.9 Any grading by a group G on Lie algebra L, L = EBgEG L9 , 

can be viewed as a grading by S( G). 

Observation 1.1.10 Let L and L' be Lie algebras and cp an isomorphism of 

Lie algebras cp : L ----+ L'. For any grading by a group G on L, L = EBgEG L9 , 

there is a grading by G on L', L' = E9
9

EG L~ where L~ = cp(L9 ). 

Observation 1.1.11 Let L = EBgEG L9 be a grading by a group G on Lie 

algebra L and K a normal subgroup of G. The natural G / K grading of L can 

be defined if one sets L = EBgEG/K Lg, where g = gK, with Lg = EBkEK Lgk· 

Observation 1.1.12 For any grading by a group G on Lie algebra L, L = 

EBgEG L9 , Le is a subalgebra of L, where e is the identity of G. 

Gradings on simple Lie algebras are closely connected to the gradings on (as­

sociative) matrix algebras. Let us define two types of gradings on the matrix 
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algebras, fine gradings in the sense of [2] and elementary gradings. The notion 

of fine gradings in the sense of [5], [6], [7] differs from that in [2]. These types 

of gradings on matrix algebras have been used in [4] to describe all gradings 

on Lie algebras of type Dz for l > 4 and are also useful to describe the gradings 

of Lie algebras of type D4 . 

Definition 1.1.13 A grading by a group G on R = Mn, the full n x n matrix 

algebra, 

R= E9R9 
gEG 

is called an elementary grading if there exist an n-tuple T = (gl, ... , gn) E 

en such that any matrix unit eij, 1 :::; i,j :::; n, is homogeneous and eij E 

R 9 ¢:::> g = gi1gj. We can always set one gi = e, 1 :::; i :::; n since the tuple 

(g; 1g1, ... , g; 1gi-1; e, g; 1gi+l, ... , gi- 1gn) defines the same grading. 

Definition 1.1.14 A grading by a group G on R = Mn, the full n x n matrix 

algebra, 

R= E9R9 
gEG 

is called a fine grading if dim R 9 = 1 for all g E Supp G. A particular case of 

a fine grading by G is a so-called £-grading, where £ is an nth primitive root 
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Set X9 = X~Xt for g = aif>i. If we define R9 = Span{X9 } for g = aif>i, 

then we obtain a fine grading on R by G, called an c-grading. 

Definition 1.1.15 A map * is called an involution on an associative algebra 

A if 

1. (a*)*= a, Va E A, 

2. (ab)* = b*a*, Va, bE A, 

3. (a+ b)* =a*+ b*, Va, bE A. 

For an involution * on an algebra A we define 

K(A,*) = {x E Ajx* = -x}. 

The elements of K(A, *) are called skew-symmetric with respect to *· We set 

K(Mn) = K(Mn, *) where * is the matrix transpose. 

Observation 1.1.16 For an involution * on Mn, L = K(Mn, *) is a Lie 

algebra under the commutator [x, y] = xy- yx for all x, y E L since 

(xy- yx)* = y*x* - x*y* = -(xy- yx) and the axioms of Definition 1.1.1 

hold. 

Definition 1.1.17 A grading by a group G on a Lie algebra L, L = EBgeG L9 , 

is called a matrix grading if L is graded isomorphic to K(Mn, *) = L' = 

EBgeG L~, n a positive integer and * an involution, such that there exists a 

G-grading on Mn, Mn = R = EBgeG R9 , such that L' is a graded subspace. 

1.2 Gradings and actions by automorphisms. 
~ 

In this section we introduce the action by the dual group G on a Lie alge-

bra L graded by an abelian group G so that the study of gradings by finite 
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abelian groups is equivalent to the study of actions of finite abelian groups 

by automorphims. Unless otherwise specified, a grading by a group G on a 

Lie algebra L will mean a grading by the finite abelian group G on a finite 

dimensional Lie algebra L where G = S(G). The restriction of G = S(G) may 

reduce the number of subspaces L9 = {0}, g E G. 

J?efinition 1.2.1 The dual group G of an abelian group G is the group of 

homomorphisms taking G into C*, i.e., G ={xI x: G-+ C*, x is a homor­

phism}. 

The following result is well known. 

Theorem 1.2.2 Let G be a finite abelian group. We can express G and G as 

G = {gl)k1 X · · · X {gn)knl 

G = {xl)k1 x · · · x {xn)kn' 

(1.1) 

(1.2) 

This gives us that for a finite abelian group G, G ~G. Now let L be a simple 

Lie algebra and L = ffi
9
ec L9 a grading by a group G. Since Lis simple G, 

is abelian. Any element x E L can be uniquely decomposed as the sum of 
~ 

homogeneous components, x = ~gEG x9 , x9 E L9 . Given x E G we can define 

the action of x as 

x * x = Lx(g)x9 . 

gEG 

(1.3) 

Theorem 1.2.3 Let L = EE)
9

EG L9 be a grading by a group G. A subspace 

V C L is a graded subspace if and only if V is invariant under the action of 

G. 
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Proof 

Let V be a graded subspace of L, i.e. V = ffi
9

EG V n L9 . Let x = LgEG x9 , 

Xg E v n Lg and X E G. Then X* X= LgeG x(g)xg which implies X* X E v 
since x(g)xg E v n Lg. Hence X* v = v for X E G. 

Now we assume for contradiction that 8 * V = V and V =I ffi
9
e0 (L9 n V) for 

the other claim. We can choose a non-zero x E V such that x = LgeK x9 , 

K = {gb ... , 9n} is a subset of G, x9 E L9 and x9 ~ V for all g E K. Using 

Theorem 1.2.2 we can choose axE G such that x(g1) =I x(gn)· We set 

x' = X* X- X(9n)x = (LgeK x(g)x9 )- X(9n)x 

LgeK(x(g)- x(gn))xg 

- L9eKx~ 
where x~ = (x(g) ·_ x(gn) )x9 E L9 for all g E K. We now express x' as 

x' = LgeK' x~ where K' C K such that x~, =I 0 for all g' E K'. K' 

is a non-zero proper subset of K since x~1 = (x(g1) - x(gn))x9 =I 0 and 

x~n = (x(gn) - x(gn))xg = 0. Since 8 * v = v and X E V, x' E v. It is 

clear that if we keep on repeating this process, we end up with a multiple of 

x91 as an element of V which is a contradiction. • 
It is easy to observe that Equation (1.3) defines a 8-action on L by auto­

morphisms of L. We define f to be the group homomorphism f : G ~ Aut L 

by setting for each X E 8 

f(x)(x) = x * x. 

We can express the subspaces L 9 as 

L9 = {x ELI x * x = x(g)x, Vx E 8} = {x ELI J(x)(x) = x(g)x, Vx E 8}. 
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Theorem 1.2.4 Let L = ffigEG L9 be a grading by a group G. If G = S(G) 

then f(G)-:::::. G. 

Proof 

We prove this by showing that if G = S(G) then the kernel off, kerf= {x E 

G I f(x) = idAut £}, only contains the identity of G. Let G = S(G) and we 

e;x:press G and Gas in (1.1), (1.2) respectively. Let x E kerf, g E Supp G 

and x9 E L9 be non-zero. We have x9 = f(x)(x9) = idAut LXg = x9. Hence 

x(g) = 1 for all g E Supp G. Since Supp G generates G, it follows that 

x(G) = 1, which implies that X is the identity of G. • 
By the above, G defines a finite abelian subgroup f(G) of Aut L. In most 

cases we can view G itself as a subgroup of Aut L, that is, we can identify 

G with f(G) by means of f. It is also useful to work the other way, in other 

words to start with an abelian subgroup of Aut L and get a corresponding 

grading. 

Theorem 1.2.5 Let K = (x;1}k1 x · · · x (x;n)kn' be an abelian subgroup of 

Aut L. There is a unique grading by a group G = (g1)k1 X • • • X (gn)kn' 

L = EBgeG L9 such that 

L m1 mn = {x E L I x;Pll .•. x;Pn(x) = cml lPl •.• c;ffinPnx cJ· = e2rri/kj 1 < J. < n}. 
91 .. ·gn n n ' ' - -

Proof 

Let K = (h;I)k1 x · · · x (h;n)kn be an abelian group contained in Aut L. Let 

G and G, as defined previously (1.1), (1.2), be isomorphic to f(G). Define 

f : G -t Aut L by !(Xi) = x;i· L = EBgeG L9 is a grading by G if we set 
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L m mn = {x E L I "' . (x) = e2mpri/kj X 1 < ). < n}. 91 l ... gn J , _ _ • 



Chapter 2 

Lie algebras of type D4 

2.1 Lie algebras of type D4 and their Cartan decompo­

sitions. · 

As was mentioned in Observation 1.1.16, given an associative algebra A 

we can define the commutator [ , ] by [a, b] = ab-ba for all a, b E A which 

makes A a Lie algebra. Any finite dimensional Lie algebra can be realised as a 

subalgebra of Mn by Ado's Theorem. The Lie subalgebra L of M8 consisting 

skew symmetric matrices with respect to the matrix transpose is a simple Lie 

algebra of type D4 • This realisation can be instrumental for finding gradings 

of L by a finite abelian group, via the correspondence between gradings and 

actions by automorphisms. 

In order to describe the group Aut L of automorphisms of a simple Lie 

algebra L we will define maximal toral subalgebras, root systems, bases and 

Dynkin diagrams. 
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The following definitions and basic facts are classical and can be found e.g. 

in (8]. 

Definition 2.1.1 A subset <P of the Euclidean space E, i.e., a finite dimen­

sional vector space over IR endowed with a positive definite form (, }, is called 

a root system in E if the following axioms are satisfied: 

· 1. <P is finite, spans E, and does not contain 0. 

2. If a E <P, the only multiples of a in <P are ±a. 

3. If a E <P, then the reflection a0 leaves <P invariant where 

O'a(f3) = f3- (/3, a)a, 'V/3 E <P. 

4· If a, f3 E <P, then ({3, a) := 2(/3, a)j(a, a) E Z. 

A root system <P is called irreducible if it cannot be partitioned into the 

union of two proper subsets such that each root in one set is orthogonal to 

each root in the other. 

The rank of a root system <P is the dimension of its corresponding Euclidean 

space E. The elements of a root system are called roots. The length of a root 

a is J(a, a). It is shown in [8] that in each irreducible root system there are 

at most two root lengths. When two root lengths occur, the roots of smaller 

length are called short roots and all others long roots. Useful subsets of <P are 

bases. 

Definition 2.1.2 A subset~ of a root system <P with corresponding Euclidean 

space E is called a base and its elements are called simple roots if the following 
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axioms are satisfied: 

1. ~ is a basis of E. 

2. each root {3 can be written as 

(2.1) 

with integral coefficients ka all non-negative or all non-positive. 

The roots with non-negative coefficients in the decomposition (2.1) are 

called positive roots and all others are called negative roots. It is known that 

if a, {3 E <I> and (a, [3) < 0, then a+ {3 is a root. It is also known (see [8]) that 

any root {3 E <I> can be written as 

k 

{3 = ± L:aii 
j=l 

where every partial sum is a root, ai; E ~' and k is some integer depending 

on [3. 

We can recover the structure of a root system if we know all (ai, aj)· The 

idea is to start with a simple root and to keep adding as many simple roots as 

we can until we exhaust all the possibilities. Repeat the process for all other 

simple roots to obtain all the positive roots. 

Definition 2.1.3 For a root system <I> of rank l, the lxl matrixC = ( (ai, ai) )ij 

is called the Cartan matrix of <I> and its entries are called the Cartan integers; 

This information can be displayed graphically by so called Dynkin diagrams. 
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Definition 2 .1.4 Fix a base ~ = { a:1, ... , a:1} of ~. Define the Dynkin di­

agram of ~ to be a graph having l vertices and the ith vertex is joined to the 

lh vertex (i =I= j) by (a:i, a:j)(a:j, a:i) edges. We denote the kth vertex by Vak 

where a:k is a simple root of the corresponding base ~ of ~. When a double 

or triple edge occurs, we add an arrow in between the vertices pointing to the 

vertex that corresponds to the shorter of the two roots. 

We can recover the Cartan matrix of~ from the Dynkin diagram (see [8]). 

First we take any two distinct simple roots a:i and O:j with (a:i, a:i) ::; (a:j, a:j), 

i.e., a:i is the shorter of the two roots if two root lengths occur. Then (a:j, a:i) = 

-e(i,j) where e(i,j) is the number of edges between the ith and lh vertices. 

Also (a:i, a:j) = -1 if (a:j, a:i) =I= 0 and (a:i, a:j) = 0 if (a:j, a:i) = 0. 

Now we relate r9ot systems to semisimple Lie algebras. These are the alge­

bras with non-singular Killing form K(x, y) = Tr(adx, ady). For any semisim­

ple Lie algebra L, L possesses Lie subalgebras consisting of ad-diagonalizable 

elements. These subalgebras are called toral subalgebras. The toral subalge­

bras are abelian, i.e. the commutator of any two elements is 0. If we fix 

a maximal toral subalgebra H for a semisimple Lie algebra L then ad H is 

a set of endomorphisms of L that can be simultaneously diagonalised. The 

restriction of K to H and its natural dual to H* is non-singular. 

The Carlan decomposition of L with respect to H is defined by 

where La = {x E L I [h, x] = a:(h)x \/hE H} and~ C H*. It turns out that 

each La are one-dimensional, the real linear span E of ~ in H* is a Euclidean 
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space, with respect to "' and <I> is a root system. For any two roots a, a' 

with a+ a' E <I>, [La, La'] C La+a' and any two roots /3, /3' with /3 + /3' ~ <I>, 

[L~J, L~J'] = {0}. 

Having H, <I> and!).. fixed for a semisimple Lie algebra L, one can choose 

a basis 

{ hai, X a, Ya I ai E ~' a is a positive root of <I>} 

of L such that 

Xa E La, 

Ya E L_a, 

hai E H, 

[xa, Ya] = ha, 

for all a, E <I>, 

for all a, E <I>, 

for all a E <I> 

We call the above basis a canonical basis of L. 

(2.2) 

At this point we should mention that bases are not to their corresponding 

root system and maximal toral subalgebras are not unique to their correspond­

ing semisimple Lie algebras. We do know however, that the maximal toral sub­

algebras of a simple Lie algebra L are all conjugate, i.e., for any two maximal 

toral subalgebras Hand H' of L there exists a .A E Int L C Aut L (see Section 

2.2) such that .A(H) = H'. Also for any two maximal toral subalgebra H, H' 

of a semisimple Lie algebra L with root systems <I>, <I>' respectively, the corre­

sponding Euclidean spaces E, E' are isomorphic and there is an isomorphism 

that sends <I> to <I>'. 

Definition 2.1.5 Lie algebras isomorphic to the Lie algebra L = K(M21) 

with commutator f , j defined by [a, b] = ab- ba for all a, b E L are called Lie 
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algebras of type Dt, l ~ 4. 

Lie algebras of type Dt have the following Dynkin diagram: 

0:1 (Figure 1) 

For a Lie algebra L of type D4 , we can define a maximal toral subalgebra 

H = Span { ha:1 , ha:2 , ha:3 , ha:4 }, a root system ci> corresponding to H and a base 

.6. = { a 1 , a 2 , a 3 , a 4 } of cl>, where the following are the positive roots: 

The Cartan integers are: 

1 ~ i ~ 4, 

(a2, ai) = -1, j E {1, 3, 4}, 

(ai, a2) = -1, j E {1, 3, 4}, 

(aj,ak) = 0, for distinct j,k E {1,3,4}. 
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Here are the definitions for the other simple Lie algebras. 

Definition 2.1.6 Let Tr(x) be the trace of x. Lie algebras isomorphic to 

L = {x E M1+1iTr(x) = 0} 

with commutator [ , J defined by [a, b] =ab-ba for all a, bE L are called Lie 

algebras of type A1, l 2: 1. 

Definition 2.1. 7 Lie algebras isomorphic to the Lie algebra 

with commutator [ , } defined by [a, b] =ab-ba for all a, bE L are called Lie 

algebras of type B1, l 2:: 2. 

Definition 2.1.8 .Let '1/J be an involution on M21 , l 2: 2, defined by '1/J(x) = 

Sx* s-1 where * is the matrix transpose and 

( 
0 !1) S= 
-Il 0 

Lie algebras isomorphic to the Lie algebra 

L = K(M2t, 7/;), 

with commutator [ , J defined by [a, b] = ab-ba for all a, b E L are called Lie 

algebras of type cl, l ~ 3. 

Definition 2.1.9 A simple Lie algebra, whose Carlan matrix is 

( 2 -1)' 
-3 2 

is callded a Lie algebra of type G2 • 
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2.2 Realisation of a Lie algebra of type D4 as K(Ms,*)· 

Let L denote the following realisation of the Lie algebra of type D4 over 

c, 
L--:- K(Ms) = {x E Ms(C) I x = -x*}, 

where x* is the transpose of x. A basis for Lis the set {Eii = eii - eii I 1 ::; 

i. < j ::; 8, } , where eij is the 8 x 8 matrix with 1 in the ith, lh position and 

zero everywhere else. 

The commutator of Eii and Ekz for i =f:. j and k =f:. l is 

Let H = Span{E2s, E35, E47, E 18}. Then His a 4-dimensional toral sub­

algebra, hence a maximal toral subalgebra of L. Let L = H E9a:e~ La: be 

the Cartan decomposition with respect to H, root system 4> of H and base 

b. = { ai I 1 ::; i ::; 4} of 4>. A canonical basis of L corresponding to this 

decomposition takes the following form. 

ha:1 = i(E2s - E36), 

ho.2 = i(E36 - E47 ), 

ho.3 = i(E41 - E1s), 

ha:4 = i(E41 + E1s), 

Xo.1 = { E23 + iE26 + iE3s + Es6} /2, 
Xo.2 = { E34 + iE37 + iE46 + E67} /2, 
Xa3 = { -E14 + iE11 + iE4s + E7s}/2, 

Xa:4 = { -E14 + iE11- iE4s- E7s}/2, 
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Xa2+a1 = {-E24 - iE21 - iE45 - Es7} /2, 

Xa2+a1+a3 = {E12- iE1s- iE2s- Ess}/2, 

Xa2+a1 +a3+a4 = { E24 - i£27 + i£45 - Es7} /2, 

Xa2+a1+~3+a4+a2 = { -£23 + iE26- iE35 + Es6}/2, 

Xa2+a1+a4 = {E12- iE1s + iE2s + Ess}/2, 

Xa2+a3 = { -E13 + iE16 + iE3s + E6s}/2, 

Xa2+aa+a4 = {-£34 + iE37 - iE46 + E67} /2, 

Xa2+a4 = { -E13 + iE16- iE3s- E6s}/2, 

Ya = -x~, where xis the conjugate of x. 

Page 20 

A convenient way to use this information is to notice that if the indices 

which equal each other are not both in the first or second position (Efirst second) 
' 

then [Eij, Ekt] = Eab where a, bare the other two indices in the order that they 

appear. If the indices that equal each other are both in the first or second po­

sition then [Eij, Ekt] = -Eab where a, bare the other two indices in the order 

that they appear. If all indices are distinct or { i, j} = {k, l} then [Eij, Ekz] = 0. 

Examples 

[E21, E13] = E23, [E12, E32] = -E13, [E2s, E1sJ = 0, [E2s, Es2J = 0. 

2.3 Automorphisms of Lie algebras of type D4. 

As mentioned, the automorphisms of a Lie algebra L are important in 

finding gradings by a group G on L. Some automorphisms are defined by 

the automorphisms of root systems. Let us fix a semisimple Lie algebra L, a 

Cartan subalgebra H of L, a root system ci> of H, a base~ of ci> and a canonical 

basis as described in Section 2.1. Let P be the set of permutations on the 
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simple roots of the base D. = { a1, ... , al} such that (rj(ai), rj(aj)) = (ai, aj), 

1 :::; i, j :::; l, for all fj E P. The group Pis in one-to-one correspondence with 

the group of graph automorphisms of the Dynkin diagram since for fi( ai) = ap 

and rj(aj) = aq, 

e(i,j) = (ai, ai)(ai, ai) = (rj(ai), rj(aj))(rj(aj), rj(ai)) 

- (ap, aq) (aq, ap) = e(p, q) 

and conversely if e(i,j) = e(p,q) then (ai,aj) = (rj(ai),rj(aj)). We define 

Aut D. to be the set of automorphism of L satisfying the following property: 

For all r; E Aut D. there exists an fj E P such that 

r;( XI; aJ = XI; 'ij(ai), 

f!(YI;a;) = YI;'i)(ai)' 

r;(hi;aJ = hi;'i)(ai)' 

It follows that Aut D. is a subgroup of Aut L. 

In [10] it is shown that Aut Lis the semidirect product of Int L by Aut D. 

where Int L = {exp(ad x) I xis ad-nilpotent, x E L} is a normal subgroup of 

Aut L called the inner automorphism of L. 

For a Lie algebra of type D4, with base D. = { a1, a2, a3, a4}, the Dynkin 
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diagram is the following. 

a4 (Figure 2) 

From the diagram we see that Aut 6. ~ S3 = {id, (13), (14), (34), (134), (143)}. 

We define the group operation in S3 by applying the permutation to the 

right, i.e., (134)(34)=(13). Aut 6. is generated by riij and Piik, for distinct 

i, j, k E {1, 3, 4}, where riij permutes the simple roots ai and ai while Piik 

permutes the simple roots ai, ai and ak in that order. 

Since Aut L is the semidirect product of Aut 6. and Int L, we can express 

any automorphism 7/J E Aut L uniquely as 7/J = A1T where >. E Int L and 

1T E Aut 6.. The group operation is defined as 

In this paper the semidirect property of Aut L will be used extensively and we 

use the fact that for 1T, 1T1 E Aut 6. and >., >.' E Int L there exist a >." E Int L 

such that ( A1T) ( A
1
1T

1
) = >.'' ( 1T1T

1
). 
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2.4 Finite abelian subgroups of the group of automor­

phisms of a Lie algebra of type D4. 

We showed in the previous chapter that a grading by a finite abelian group 

G on a Lie algebra L -with G = S( G) has a corresponding abelian subgroup 

f(G) c Aut L. We are going to use this information to impose some restric­

tions on f(G) for gradings by a finite abelian group G on a Lie algebra L 

of type D4 by looking at properties of finite abelian groups of Aut L. This 

section uses an approach similar to that in (3]. 

Theorem 2.4.1 For any finite abelian subgroup K of Aut L, we can express 

K as 

K = (<p) x A 

where A C Int L and <p is of order pn, p is 2 or 3, for some non-negative 

integer n. 

Proof 

Since K is a finite abelian group we can express K as 

K = r2 x r3 x r', 

where f 2 , f 3 are the 2-Sylow subgroup and 3-Sylow subgroup of K, respec­

tively, and r' is the direct product of all other p-Sylow subgroups of K. Also 

r 2 can be expressed as 

where the order of 'Pik is 2i" and 'il :S 'il+l, 1 :S l :S n - 1. Similarly we express 

r3 as 
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where the order of 'Pik is 3ik and }l :::::; jl+1, 1 :::::; l :::::; m- 1. Hence we can 

express K as a direct product of cyclic subgroups and f' 

and set 'Pr = Ar7rr for some unique pair .Ar E Int L, 7rr E Aut .6.. For any¢= 

A7r, ..\ E Int L and 7r E Aut .6., of order o( ¢) = t, it follows that idAut L = <Pt = 

..\'1ft for some X E Int L which implies X = 1ft = idAut L· Hence r' c Int L. 

Also 

( 'Pr) cj;_ lnt L ¢:} 'Pr rj. lnt L. 

For K C Int L, the theorem follows. If K cj;_ Int L, then either there exists 

only one index a with 7ra =f. idAut L, and then our claim follows, or there are 

indices a and b with 7ra, 7rb =f. idAut L and a :::::; b. Since K is abelian, 

for some >.', >.'' E Int L which implies 7ra 7rb = 7rb 1fa· The only abelian sub­

groups of Aut .6. :::::: S3 are 

(idAut L), (uij) and (p134) for distinct i, j E {1, 3, 4}. 

It follows that all 1r r are in one of the 4 latter subgroups above. 

If 1fa = 1fb = Uij, then 'Pa, 'Pb E r2 since the order of 'Pa, 'Pb is divisible by 

2 and r 3 C Int L by the abelian subgroups of Aut .6. argument. Also 

-1 '-1 
'Pa = UijAa ' 

We can now write K as 

K = (¢i1 ) X · · · X (¢in) X f3 X f' 
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where ¢i, = 'Pi, for 1 ::::; l ::::; n, it =f. b and ¢b = 'Pb cp-;; 1 since for any p-Sylow 

subgroup P = (g) x (h) where the order of g is less or equal than order of h, 

p = (g) X (h) = (g) X (h g-1
). 

Repeating this process for other 'Pr fj. Int L we can express K as 

K =(cpa) X A 

where A C Int L. 

Similarly, for 1ra = p134 , 1rb = pf34 , 1 ::::; c, d ::::; 2, we have that 'Pa, 'Pb E r3 
since the order of 'Pa, 'Pb is divisible by 3, and r 2 c Int L by the abelian 

subgroups of Aut ~ argument. We have either c + d = 3 or c = d. 

For the first case of c + d = 3, we have 

For the second case of c = d, we have 

We can express K as 

where ¢ir = 'Pir for 1 ::::; r ::::; m, Jr =f. b and ¢b = 'Pb cp-;; 1 if c = d, ¢b = 'Pb 'Pa if 

c + d = 3. Repeating this process for other 'Pr fj. Int L we can express K as 

K =(cpa) X A 

where A C lnt L. 
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Hence our claim holds for any situation. • 

Now we obtain important corollaries about the gradings on Lie algebras 

of type D4. The first is a consequence of the previous theorem and Theorem 

1.2.4. 

Corollary 2.4.2 For any grading by a finite group G on a Lie algebra L of 

type D4, L = ffi
9
ea L9 , with G = S(G), we can express !(8) as 

!(8) = (cp) X B (2.3) 

where B C lnt L, cp = 1l"A, 1r E Aut !::J., A E lnt L, the order ofcp, o(cp) is 

o(1r)u where o(1r) i$ the order of 1r and u is some non-negative integer. We 

can also express 8 as 

8 = (x) X A (2.4) 

where f(x) = cp and f(A) =B. 

Corollary 2.4.3 For any grading by a finite group G of Lie algebra L of type 

D4, L = EBgeG L9 , with G = S(G) we can express 8 and G as 

8 =(X) x A, 

G = (z) x A (2.5) 

where f(A) C lnt L, the order of x and the order of z both equal n = pu where 

p is 2 or 3 and u is some non-negative integer u. Also x(z) = c, c a nth 

primitive root of one, x(g) = 1 for all g E A, ¢(z) = 1 for all¢ EA. 
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-It is useful to distinguish between the cases where f(S(G)) C Int L and -f(S(G)) cJ. Int L. The following definition comes from [1] 

Definition 2.4.4 We call a grading by a finite group G of a Lie algebra L an -inner grading if f(S(G)) C Int L. All other gradings are called outer gradings. 



Chapter 3 

Matrix Gradings 

3.1 Automorphisms of K(M8, *)that can be lifted to Ms. 

Lie algebras of type D4 have realisations as the skew-symmetric matrices 

in M8 with respect to certain involutions. It is well known that all involutions 

* on Mn such that (ax)* = ax*, for all a E C and for all x E Mn can be 

expressed as x* = TxtT- 1 where xt is the transpose of x E Mn and T is 

symmetric or skew-symmetric. When T is symmetric, * is called a transpose 

involution, otherwise it is called a sympletic involution. L = K(M8 , *) is a Lie 

algebra of type D4 if and only if * is a transpose involution. We now fix a 

transpose involution *, a maximal toral subalgebra H of L, a corresponding 

root system <P and a base D. of <P. Denote by n the subgroup of Aut L 

consisting of all automorphisms ,.\ for which there exists an invertible matrix 

T>. such that .A(x) = T>.xT;:1 for all x E L. It is known (10] that Int L C 0~ 

that the matrices T>. are are orthogonal with respect to * and that for ,.\ E Int L 

the associated matrices T>. have determinant 1. Let n+ be the subgroup of 
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n that consist of all A E n such that det T>.. = 1. We refer to Section 2.3 

for the structure of Aut L. The index of Int L in Aut L is 6 and the index 

of n+ in n is 2 which implies that the index of Int L in n is a multiple of 

2. The index of n in Aut L is [Aut L : Int L]/[0 : Int L] = 6/(2n) for some 

positive integer n. Hence the index is either 3 or 1. It can be shown that 

p134 E Aut ..6. does not have an associated matrix Tp134 • Thus the index of n in 

Aut Lis 3 and Aut L = n u Pl34n u P~34n. The subgroup Aut ..6. n n is a non 

identity group since Int L is a proper subgroup of n and any automorphism 

of L can be written as A7r where A E Int L, 1r E Aut ..6.. This gives us that 

Aut ..6. n n = ( aij) for some distinct i, j E { 1, 3, 4}. From now on we choose a 

base ..6. such that a 34 E Aut ..6.nn for every canonical basis. For the realisation 

given in Section 2.2, the associated matrix Tcr34 is ('l:J=l eii) -egg. 

In [4] the gradiilgs on Lie algebras L of type D1, l > 4, were found using 

the fact that n =Aut L. To see this, we look at the Dynkin diagram for a Lie 

algebra L of type D1 and note that [Aut L : Int L] = 2, so either n = Int L 

or n = Aut L. Recall that the inner automorphisms of L have associated 

matrices which are orthogonal with determinant 1 so 0 =f Int L. This gives 

us that n = Aut L. We can lift the actions of n to a subgroup of Aut M21 by 

setting A* X= T>..XT; 1 for all X E M 21 , A E n. Thus we can view nasa 

subset of Aut M2z. For any grading by a group G on L, f( G) C n and hence 

we can write for R = M 21: 

R= EBRg 
gEG 

where Rg ={X E R I Tf(x)XTi(~) = x(g)X, Vx E G}. By finding all gradings 

on M 21 such that K ( M 21 , *), * a transpose involution, is a graded subspace, 
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we also find all gradings on K(M2z, * ). 
For the case of l = 4, we do not recover all gradings but we can find all 

matrix gradings (recall), all gradings such that f(G) c (0"34) Int L = n. 

3.2 Matrix gradings of K(M8, *) 

This section is a quotation from [1] and [4]. We consider a construction of 

gradings on the tensor product A® B of two algebras A and B. 

The following definition works even in the case where G is not abelian. 

Definition 3.2.1 Let A = ffi
9
ea A9 be any G-graded algebra over an alge­

braically closed field F. Mn(F) = B = ffigeG B 9 be a matrix algebra over 

F with an elementary grading given by an n-tuple (g1, ... , gn) E Gn, that is 

eij E B
9
i1

9
i. Then direct computations show that R = A® B will be given a 

G-grading if one sets 

The grading just defined will be called induced. 

If the support of A and the support of B commute, the induced grading above 

has the decomposition R = ffi
9
ea R9 where R9 = (A® B)9 = EBg=stedAs ® 

Bt)· We can now quote Theorem 3.1 from [4]. 

Theorem 3.2.2 Let F be an algebraically closed field of characteristic zero; 

Then as G-graded algebra R = Mn(F) is isomorphic to the tensor product 
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where R(o) = Mn0 (F) has an elementary G-grading, Supp R(o) = S is a finite 

subset of G, R(i) = Mn; has the ci-grading {recall Definition 1.1.14), ci being 

a primitive n~h root of 1, Supp R(i) = Hi ~ Zn; 0 Znu i = 1, ... , k. Also 

H = H1 · · · Hk ~ H- 1 x · · · x Hk and S n H = { e} in G. 

We quote Lemma 4.3 and Theorem 5.1 of [4] for which we are interested 

in the case where G is an abelian group, the grading is over C and <p is a 

transpose involution on Ms (C). 

Lemma 3.2.3 Let R = C 0 D = ffi
9
ec R 9 be aG-graded matrix algebra with 

an elementary grading on C and a fine grading on D. Let <p : R -t R be an 

antiautomorphism on R preserving G-grading, i.e., <p(R9 ) = R9 . Let also <p 

act as an involution on the identity component Re i.e. <p2 IR. = id. Then 

1) Re = Ce 0 I is <p-stable where I is the unit element of D and hence <p 

induces an involution * on Ce; 

2) there are subalgebras B1, ... , Bk ~ Ce such that Ce = B1 E9 · · · E9 Bk, 

B 1 0l, ... ,Bk01 (3.1) 

are <p-stable and all B 1, ... , Bk are *-simple algebras, i.e. Bi does not contain 

non-trivial ideals invariant under *. 

3) <p acts on Re = Ce 0 I as <p *X = s-l xt s where s = sl 0 I+ ... + s k 0 I I 

Si E BiCBi and Si = Ip, if Bi is Pi x Pi-matrix algebra with transpose invo-

lution, si = ( 0 
!Pi ) if Bi is 2pi X 2pi -matrix algebra with symplectic 

-/Pi 0 
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involution or si = ( 
0 

JPi 

Page 32 

4) The centralizer of Re = Ce®l in R can be decomposed as Z1D1EB· · ·EBZkDk 

where D1, ... , Dk are ·<p-stable graded subalgebras of R isomorphic to D and 

Zi = ZI ®I where ZI is the center of Bi; 

5) D as a graded algebra is isomorphic to M 2 @ · · • @ M 2 where any factor 

M 2 has the fine ( -1)-grading. 

Theorem 3.2.4 Let <p : X ~ u-1 XtU be an involution compatible with a 

grading of a matrix algebra R, R = EBuEG R9 by a finite abelian group G, i.e. 

<p(R9 ) = R9 . Then R = C@ D where C has an elementary grading and D a 

fine grading. Then,· after a G-graded conjugation, we can reduce U to the form 

(3.2) 

where Si is one of the matrices I, ( 
0 1 

) or ( 
0 1 

) and each Xt; is 
I 0 -I 0 

a matrix spanning Dt;, ti E T where T is the support of D . The defining 

tuple of the elementary grading on C should satisfy the following condition. 

We assume that the first l of summands in (3.2) corresponds to those Bi in 

(3.1} which are simple and the remaining k- l to Bi which are not simple. 

Let the dimension of a simple Bi be equal pr and that of a non-simple Bi to 

(2pj )2. Then the defining tuple has the form 

(g (p;) g(pz) (g' )(pl+t) (g" )(pl+t) (g' )(pk) (g")(pk)) 
1 ' ... ' l ' !+1 ' !+1 ' ... ' k ' k (3.3) 

2t 2t I II t I "t 
g1 1 = · · · gl z = gl+lgl+l l+l = · · · = gkgk k· (3.4) 
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Additionally, if cp is a transpose involution then each Si is symmetric (skew­

symmetric} at the same time as Xtil for any i = 1, ... , k. If cp is a symplectic 

involution, then each si is symmetric (skew-symmetric} if and only if the re­

spective Xti is skew symmetric (symmetric}, i = 1, ... k. 

Conversely, if we have a grading by a group G on a matrix algebra R de­

fined by a tuple as in (3.3), for the component C with elementary grading, and 

by an elementary abelian 2-subgroup T as the support of the component D with 

fine grading and all of the above conditions are satisfied then (3.2) defines a 

graded involution on R. 

Remark 3.2.5 Suppose we have an algebra R with identity 1 and with invo­

lution * such that R is the product of two of its subalgebras A and B, with 1: 

R = AB = Span{ab I a E A, bE B}. For any involution we set 

H(S, *) = Span{s + s* Is E S}, K(S, *) = Span{s- s* Is E S}, 

where K ( S, *) is equivalent to our earlier definition. We also set a o b = ab + ba 

and [a, b] = ab - ba. Then 

K(R, *) = [K(A, *), K(B, *)] + K(A, *) o H(B, *) 

+H(A, *) o K(B, *) + [H(A, *), H(B, *)]. 

It is shown in (4] that for an involution compatible grading of a matrix algebra 

R, R = E9
9

EG R9 by a finite abelian group Gas in Lemma 3.2.3, 

K(R, *) = Span{eiUej®Xu-ejSjUSiei®Xt;X; 1Xti I U = eiUej E C ,u E T} 

(3.5) 

where ek is the unit of Bk. 
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For the case of R = M8 (C) = C ® D there are four choices for the dimen­

sions of C and D since dimM8(C) = 64 = 43, dimD = 41 for some positive 

l since D ~ M 2 ® · · · ® M2• Hence there are four choices for the full matrix 

algebras of C and D. The choices are 

C ~ M8 (C), n~c, 

C"' M4(C), D ~ M2(C), 

C ~ M2(C), D"' M4(C), 

c~c, D ~ Ms(C). 

Using Theorem 3.2.4, one can describe all transpose involutions on M8 with 

the above gradings and then restrict the grading to K(M8 , *)using (3.5). This 

gives a description, up to isomorphism, of all matrix gradings on a Lie algebra 

of type D4. 

An example of an involution compatible grading on R = M8 is the fol­

lowing. Let * be the regular transpose. Define a grading R = E9gEG R9 by 

G = (92)2 x (93)2 x (94) 2 x (a) 2 x (b)2 as follows. R is graded isomorphic to 

C®D where® is the Kronecker product of C = M4 and D = M2• We set C = 

M4 = E9kEK ck, an elementary grading by the group K = (92)2 X (93)2 X (94)2 

with tuple 'T = ( e, g2, 93, 94) and set D = M2 = EBtET Dt the fine ( -1 )-grading 

by the group T = (a) 2 x (b)2. 

For X = ( Xij) E C and Y E D we have 

xuY X12Y X13Y X14Y 

X®Y= 
X21Y X22Y X23Y X24Y 

X31Y X32Y X33Y X34Y 

X41Y X42Y X43Y X44Y 
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We note that 

x 11 Y* X21Y* X31Y* X41Y* 

(X 0 Y)* = 
X12Y* X22Y* X32Y* X42Y* 

=X* 0Y*. 

X13Y* X23Y* X33Y* X43Y* 

XI4Y* X24Y* X34Y* X44Y* 

It follows that if we set R kz k 3 k4 k bkb = C kz k 3 k4 0 Dakabkb we obtain a 
9z 9a 94 a a 9z 9a 94 

grading on M 8 which is compatible with the regular transpose. 
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An example of a graded subspace of R is 

-

0 m 0 0 

n 0 0 0 

0' -0 0 0 

0 0 0 0 

0 0 -m 

0 0 0 

-n 0 0 

0 n 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 0 

m 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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We obtain a grading on the Lie algebra L, L = K(R, *) = EB9e0 L 9 by 

setting L9 = L n R9 . This is a matrix grading on a Lie algebra of type D4 . An 

example of a graded subspace of L is 
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0 0 -m 0 0 0 0 0 

0 0 0 m 0 0 0 0 

m 0 0 0 0 0 0 0 

0 -m 0 0 0 0 0 0 
Lg2a = mEC 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 



Chapter 4 

Outer gradings 

4.1 General overview. 

If we find all gradings on a realisation of a simple Lie algebra L of a 

certain type then by Observation 1.1.10 we will have found all gradings for 

any realisation of a Lie algebra of the same type. Let us fix a Lie algebra L of 

type D4, a maximal toral subalgebra H, a corresponding root system <l> and a 

base b. of <l>. All gradings by a group G, L = EBgeG Lg, such that /(G) c n 
have been described in the previous chapter and we also get more gradings 

with the help of Chapter 3. 

Let /(G)= (cp) x B where B c IntL and cp = a1i)..,).. E IntL, j E 

{3, 4}, i.e., a1i fj. 0. We note that a14 = P134a34P!3~, a13 = P!3~a34P134 since 

(134)(34)(134)-1 = (134)(34)(143) = (14) and (134)-1(34)(134) = (143)(34)(134) 

= (13). For any 1r E Aut L we can use Observation 1.1.10 to obtain a grading 

L = ffi
9
ea L~ where L~ = 1r(L9 ). This new grading has its own homomorphism 
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f' taking G -t Aut L. We define /' explicitly as 

f'(x)(x) =LX* x~ = L:x(g)x~ 
gEG gEG 

where x = LgeG x~, x~ E L~ = 1r(L9 ). We note that 

1r f(X)7r- 1(x) = 1r f(x)7r- 1(L
9
ea x~) 

= 1r !(x)1r-1 LgeG 1r(x9 ), for some x9 E L9 

= 7r f(x) Lgea(xg) = 7r LgeG x(g)(xg) 

= LgeG x(g)7r(xg) = LgeG x(g)(x~) 

= !' (x) L9ea x~ 

= f'(x)(x). 

Hence f'(G) = 1r/(G)1r-1. 

If we set 1r = PI34 then 

for some A' E Int L by the semidirect property of Aut L, and B' = PI34BP!:f4 C 

IntL. 

Similarly if we set 1r = p!3~, then 

for some >.." E lnt L and B" = P13~BPI34 C lnt L. 
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Observation 4.1.1 The above shows that a grading on a Lie algebra L of 

type D4 by a finite abelian group G, L = E9
9
ea L9 , with G = S(G), such 

that f(G) = (a1j>.) x B, >. E Int L, B c Int L has a grading automorphism 

p~34 , for n E {1, 2} such that the matrix grading L = E9
9
ea L~, where L~ = 

p~34 (L9 ), !'(G) = (a34>.') x B', A' E Int L, B' C Int L and the corresponding 

homomorphism f' sending G to Aut L as in Section 1.2 with respect to the 

grading L = E9
9
ea L~, are isomorphic. 

The subgroup (p134) is of index 2 in Aut D. and hence normal in Aut L. 

This gives us that (p134) Int L is a normal subgroup of Aut L, 1r(p~34>.)1r- 1 =J. 

aij>.' for i,j E {1,3,4}, i =J. j, a,n E {1,2} and any>., >.' E IntL. Hence 

gradings by a group G such that /(G) = (p~34 >.) x B where B C Int L, 

n E {1, 2} are not isomorphic to a matrix grading. It follows that if we 

have a grading by a group G such that S( G) has no elements of order 3 

then the grading is isomorphic to a matrix grading. In the following sections 

we use a different technique to find all possible gradings by G = (z) x A, 

with corresponding G and /(G) as (2.5), (2.4), (2.3) in Corollaries 2.4.2, 2.4.3 

with c.p = a34 , hence describing all gradings such that G = (a) 2 x A. Even 

though these gradings have now been described in Chapter 3, the technique 

involves looking at the natural grading by G I A and looking at the grading of 

Le = E9aeA La, e is the identity of G I A, which is a subalgebra of L as noted in 

Observation 1.1.12. For any x E Le we can express x as x = LaeA Xa, Xa E La 

and 

0"34(x) = c.p(x) =X* X= L x(a)xa = L Xa =X. 
aEA aEA 

Hence Le = Lu34 where £7r is the Lie subalgebra of L that is pointwise-fixed 
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by the map 7r. Similarly Lz = ffiaEA Lza = L-u34 which gives us that L = 

Lu34 E9 L -u34 is the natural grading by G I A. It turns out that Le is a Lie 

algebra of type B3, for which all gradings have been found in [1] and we show 

how we can lift an automorphism of Le to an automorphism of L. It might 

be fruitful to generalize this technique by replacing f (G) = ( CJij) x B with 

J(CJi) = (p~34 >..) x B' where B' C Int L and trying to lift the automorphisms 

of identity component of the natural G I A' grading on L to automorphism of 

L where J(A') = B', G' = (z) x A' and the dual of A', A'. If n = 1 and 

>.. = idAut L, then it can be shown that the identity component of the G' I A' 

grading is a Lie algebra of type G2 • In this work we do not explore this 

technique for this case because the gradings on Lie algebras of type G2 are not 

well-known at the time. 

4.2 Description of fixed subalgebras by certain outer 

automorphisms. 

In this section Lis a Lie algebra of type D4 • We do not specify a realisation 

but we do fix H, 4>, ~. Let £Uij be a subalgebra of L which is fixed by CJij, for 

distinct i,j E {1,3,4}. 

It is known [9] that Lu;; is of type B 3 • Let Hu•; be the subalgebra of 

H fixed by CJij. It is well known [8] that a maximal toral subalgebra of a 

Lie algebra of type B 3 is of dimension 3. Hu;; = Span { hak, ha2 , hai + ha;}, 

k E {1,3,4} '- {i,j}, hence is a maximal toral subalgebra of Luii. Let 

Lu;; = Hu;; E9 L~ij 

/3E4.Juij 

be a Cart an decomposition for a root system cl>u;; of Hu;; and ~ u,; a base of 
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q,u;; described below (see Appendix A for justification). 

The base t::,.u;; = {,81, ,82, ,83} where 

!31 = akiH"'ii, 

!32 = a2IH"'ii, 

,83 = (ai +ai)/2IH"ii· 

The positive roots of q,u;; are: 

!32 + {3~, !32 + {33, !32 + !31 + {33, 

!32 + 2{33' !31 + !32 + 2,83' ,81 + 2,82 + 2{33. 

We can obtain a canonical basis of Lu;; 

{ h~;, x~, y~ I f3i E 6. u;;, ,B is a positive root of q,u;;} such that 

for all ,B E q,u;;, 

for all {3 E q,u;; , 

[x~, y~] = h~, for all {3 E q,u;j 

[ h~, z~,] = (,8, ,8') z~,, for all ,B, {3' E q,u;;, z~, E L ~;;. 

Page 42 

We express the above basis of Lu;; in terms of the basis of L in the following 

way: 
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h~l = hak' 

h~2 = haz' 

h~3 = hai + ha1 , 

' -X/31 - Xak' 

' - + X/33 - Xai Xai' 

X~z+/3a = Xaz+ai + Xa2+ai, 

X~2 +2/3a = Xaz+ai+ai' 

X~1 +2/32+2{33 = Xa2+a~c+ai+ai+a2' 

'-Y/31 - Ya~c' 

Y~3 = Yai + Yai' 

Y~2 +/33 = Yaz+ai + Yaz+aj' 

Y~2+2{33 = Yaz+ai+ai' 

Y~1 +2.62+2,63 = Ya2+a~c+ai+a1+a2 · 

' X/3z = Xa2' 

' -X/31+/3z- Xa2+ak' 

' - + X 13t +fh+.Ba - Xa2+a1c+ai Xa2+a1c+ai' 

' Y/31+{32 = Yaz+ak' 

' - + Y {31 +f32+f3a - Yaz+a~c+ai Ya2+a~c+ai' 

(4.1) 

Similarly let £Pum be a subalgebra of L fixed by Pum, {l, m} = {3, 4}. 

It is known [9] £Pum is a simple Lie algebra of type G2. Let HPllm be the 

subalgebra of H fixed by Pllm· It is well known [8] that the dimension of 

a maximal toral subalgebra of a Lie algebra of type G2 is two. HPllm = 
Span { ha2 , ha1 + ha3 + hCX4} is of dimension two and hence is a maximal toral 

subalgebra of £Phn. Let <PP11m be a Cartan subalgebra of £Pllm and ~Pllm a 

base of <PPllm described below. 
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The positive roots of <I>Pum are 

We can obtain a basis.{h" x" y"i "'· E flPum "'is a positive root of <l>P11m} of 'Yi' 'Y' 'Y I~ l I 

£Pllm such that 

x" E LP;p, 
'Y 'Y , 

Y" E LPijk 
'Y --y , 

h" E HPtlm 
'Yi ' 

[x" y"] = h" 'Y' 'Y 'Y' 

[hlf II ] ( ') If 'Y'z'Y, = "/,"/ z'Y'' 

for all 'Y, E <I>Pum , 

for all 'Y, E <I>Pum , 

for all 'Y E <l>Pllm 

for all "(, "(1 E <I>P11m, z~, E L~!ik. 

We can express the above basis of £Pllm in terms of the basis of L in the 

following way: 

h~2 = ha2' h~l =hat + haa + ha4' 

X~2 = Xa2' X~l = Xat + Xaa + Xa4' 

X~2+'Y1 = Xa2+a1 + Xa2+aa + Xa2+a4' X~2+3'Yt = Xa2+a1 +aa+a4' 

X~2+2'Yt = Xa2+a1+aa + Xa2+a1+a4 + Xa2+aa+a4' X~'Y2+3'Yt = X2a2+a1+aa+a4 

Y~2 = Ya2' Y~1 = Yat + Yaa + Ya4' 

Y~2 +-y1 = Ya2+a1 + Ya2+aa + Ya2+a4' Y~2+3-y1 = Ya2+a1 +aa+a4' 

Y;+2-y1 = Ya2+a1 +aa + Ya2+a1 +a4 + Ya2+aa+a4' Y~-y2 +3-y1 = Y2a2+a1 +aa+a4 · 

4.3 Realisation of La34. 

We continue on from the end of the last section. To get a better under­

standing of this subalgebra let us look at the realisation of Section 2.2 and note 
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aij = a34, which sends Ems to -Ems and leaves all other Eab, 1 :5 a < b :5 7, 

invariant. A basis for Lu34 is the following: 

h~1 = ha1 = i(E2s- E36) 

h~2 = ha2 = i(E36- E47) 

h~3 = ha3 + ha4 = 2iE47 

X~1 = Xa1 = { E23 + iE26 + iE35 + Es6} /2 

X~2 = Xa2 = { E34 + iE37 + iE46 + E67} /2 

X~3 = Xa3 + Xa4 = -E14 + iE17 

X~1 +,B2 = Xa2+a1 = { -E24- iE21- iE4s + E7s}/2 

x~l+.Ba = Xa2+aa + Xa2+a4/2 = -E13 + iE16 

x~l +.B2+.Ba = Xa2+al +aa + Xa2+al +a4 = E12 - iEls 

x~2+2.Ba = Xa2+aa+a4 = (-E34 + iE37 - iE46 + E67) /2 

x~l+.B2+2.Ba = Xa2+al+aa+a4 = (E24- iE27 + iE4s- Es7)/2 

x~l+2.B2+2.Ba = Xa2+al+aa+a4+a2 = ( -E23 + iE26- iE35 + Es6)/2 

y~ = -(x~)* where xis the conjugate of x 

Notice that 

Lu34 = {x E Msl X = L CabEab, Cab E C } 
l~a<b~7 

is the embedding of the 7 x 7 skew-symmetric matrices over C in the upper 

left hand corner. 

4.4 Certain outer gradings. 

This section continues from the end of Section 4.2. Let L = H EBae4> La 

be a Cartan decomposition described in Section 2.1 with <P a root system and 
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.6. a base of ci>. We choose a canonical basis of Las (2.2) of Section 2.1 and a 

canonical basis of £C7ii as (4.1) of Section 4.2. A basis of L-u34 is formed by 

the following elements: 

Theorem 4.4.1 H is the unique maximal toral subalgebra of L containing 

Proof 

LetT be a maximal toral subalgebra of L such that Hu;; cT. We can express 

T as T = H 17ii EB Span{h} for some h E L such that h = h' + h", h' E L17ii 

and h" E L-ui;. Si~ce maximal toral subalgebras are abelian, [z, h] = 0 for all 

z E H 17•i. We also have 

0 = [z, h] = [z, h'] + [z, h"] ::} [z, h'] = [z, h"] = 0 

since [z,h'] E L17ii, [z,h"] E L-ui; and L =Lui; EBL-uii. Since £Uij is a 

simple Lie algebra and H17ii is a maximal toral subalgebra of L17ii we have that 

h' E Hu;;. Hence we can set h = h" E L -u•i and express h as 

h = ao(h~i- h~.) + al(Xa;- Xa;) + a2(Xa2+ai- Xa2+a;) 

+a3(Xa2+a;+ak - Xa2+ai+ak) + a4(Yai - Ya;) 

+as(Ya2+a;- Ya2+ai) + a6(Ya2+a;+a1c- Ya2+ai+a"), 
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an E C. Now we take the commutator of h with some elements of H 17'i to 

determine h. 

[hale' ao(h~,- h~.) + al(Xa,- Xa;) + a2(Xa2+ai- Xa2+a;) 

+a3(Xa2+a.+ak- Xa2+a;+a~c) + a4(Ya;- Ya;) 

+as (ya2+a• - Ya2+a;) + a6 (Ya2+a;+a~c - Ya2+a;+a~c)] 

- -a2(Xa2+a; - Xa2+a;) + a3(Xa2+a;+a~c - Xa2+a;+a1c) 

+as (ya2+a• - Ya2+a;) - a6 (Ya2+a;+a~c - Ya2+a; +a~c) 

0 = [h~2' h] 

- [ha2, ao(h~i- h~.) + ai(Xa;- Xa;) + a4(Yai- Ya;)] 

- -al(Xai- Xa;) + a4(Yai- Ya;) 

==? a1 = a4 = 0. 

==? h = ao(ha,- ha;) E H 

=?T=H. 

We can express L as L = EBweP L~ for some set of weights P c Hu34*, 

L~ = {x ELl [h,x] = w(h)xVh E Hu;;} 

• 

since Hu•; is a toral subalgebra of L. It can be easily verified that the sub-

spaces mentioned above are: 
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L'0 = H, L' L m L ±/32±/3a = ±a2+±a; w ±a2±a;' 

£±/3a = L±a; EB L±a;' L±/32±/3a±/3t = L±a2±ai±ak EB L±a2±a;±ak' 

L~ = L~ii, for all other (3. 

Lemma 4.4.2 If two inner automorphisms >. and >.' of L restrictions to Lu;; 

are equal and >., >.' leave Lui; invariant, then >. = >.'. 

Proof 

Let >., >.' E Int L be such that >.iLa-ii = XILo-i; and >.(Luii) = Lui;. Since 

lntL = {exp(adx) lx is ad-nilpotent, x E L} is a group there exists a z E L 

such that >. -l >.' = exp( adz) and (adz )n = 0 for some positive integer n and 

(adz)a # 0 for any positive integer a< n. It follows that exp(adz)(y) = y for 

ally E V7ii. This implies that if n 2:: 2 

(adz)n-2 (y) = (adz)n-2 C~::::~:01 (adz)i(y)/(i!)) 
- L::-ol(adz)i+n-2(y)f(i!) 

- (adz)n-2(y) + (adz)n-l(y) 

and hence (adz)n- 1(y) = 0 for ally E Lu;;, We can now use induction on this 

process for (adz)n-m, n 2:: m, to show that (adz)n-m+l(y) = 0 for ally E Luii. 

This implies that the smallest integer t such that (adz)t(y) = 0 for ally E Lu;; 

is t = 1. 

Let z = z' + z" where z' E Lu;; and z" E L-u;;_ Now 0 = (adz)(y) -

[z' + z", y] = y' + y" where y' = [z', y] E Lu;; and y" = [z", y] E L -u;; for all 

y E Lcr;; which implies y' = y" = 0 since L = Lcr;; EB L -cr;;. Also z' = 0 since 

V,.ii is simple which implies that its center Z(Lu•;) = {x E Lu•; I (adx)(y) = 

0, Vy E Lcr;;} is zero. By the proof of Theorem 4.4.1, the only element of L -u;; 
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that commutes with Huii C Luii is in Span{h03 - h04 }. Hence z = 0 since 

z E Span{h03 - h04 } and ha3 - h04 is not ad-nilpotent. Now A-1>.' = idAutL 

and we are done. • 

Theorem 4.4.3 Let L be the realisation of a Lie algebra of type D4 as de­

scribed in Section 4.3 and G a finite abelian group. For any grading of Lu34 

by G, Lrr34 = E9 gEG L;34
, with G = S (G), there exists a unique inner grading 

on L by G, L = ffi
9
e0 L9 , such that L9 nLu34 = L;34 • Moreover L-ua4 is a 

graded subspace. 

Proof 

There is a natural isomorphism 'ljJ of Lu34 into K(M7) where 

for all B = K(M7 ). It is known [10] that any automorphism A of K(M7 ) is 

conjugation by an orthogonal matrix T>. E M 7 . It is easy to see that for any 

automorphism K of Lu34, K, = 'ljJK'IjJ-1 is an automorphism of K(M7) such that 

'ljJK(x) = K-('ljJ(x)) for all x E Lu34 • It follows for the matrix 

u. = ( :· de: T, ) 
we have x:(x) = U,.xU;;1. 

Since det T>. = ±1, UK. is an orthogonal matrix of determinant one and it 

is known by [10] that conjugation by UK. is an inner automorphism R of L. 
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By Lemma 4.4.2, R is the unique inner automorphism of L that leaves Lu34 

invariant. By looking at >., >.' E Aut Lu34 as conjugation by matrix we note 

that if >., >.' commute, then X, N commute as well. 

Let f : G -+ Aut.l/'"34 be as in Section 1.2 with respect to the grading on 

Lu34 • The above shows that there is an isomorphism¢: f(G) -+](G) where 

](G) = {X I>. E f(G)} is an abelian subgroup of Aut L. As before we obtain 

a grading on L by G by setting 

L9 = {x E L il(x)(x) = x(g)x, Vx E G}. 

Then Lg n £U34 = L~34 as desired. By the 1-1 correspondence between G­

gradings and /(G) C Aut L, we see that such inner grading L = ffi
9
ea L9 is 

unique. 

Conjugation by the matrix uk leaves L -ua4 invariant since 

L -•,. = { ( _:. ~ ) where • is the matrix transpose y E M,,1 } . 

It follows that L -ua4 is left invariant by 7 (G). 

Since L -ua4 is left invariant by 7 (G) it follows that L -ua4 is a graded sub-

space. • 

- ( 17 0 ) ' Observation 4.4.4 Since Tq34 0"34 commutes with f(G) 
0 -1 

from Theorem 4.4.3. 
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Lemma 4.4.5 If an inner automorphism A of L and an outer automorphism 

<p of L restrictions to Lui; are equal and A, <p leave Lui; and L-ui; invariant, 

then <p = CJijA· 

Proof 

Let '1/J = <pA-1. Since <pA-1(h) = h for all h E Hui; c Lui; '1/J(Hui;) = Hui; 

hence <p( H) = H since automorphisms of L send maximal toral subalgebras 

to maximal toral subalgebras and by Theorem 4.4.1 His the unique maximal 

toral subalgebra of L containing Hui;. Since Span { ha
3 

- ha4 } = H n L-ui;, 

'I/J(ha3 - haJ = a(ha3 - haJ for some non-zero a E C. We now try to find 

where '1/J sends Xai - Xa; by looking at '1/J([H, Xai - Xa;D· 

'1/J([hak' Xai- Xa1]) = '1/J(O) = 0 

'1/J([ha·k, Xai - Xa;]) = ['1/J(hak), '1/J(Xai - Xa1 )]) 

- [hak' '1/J(xai- Xa;)] 

'I/J([ha2 ,Xai- Xa;]) = '1/J(-(xai- Xa)) = -'1/J(xai- Xa;) 

'I/J([ha2 , Xai- Xa;]) = ['I/J(ha2 ), '1/J(xai- Xa;)] 

- [ha2 , '1/J(Xai- Xa;)] 

'1/J([hai + ha1 ,Xai- Xa;]) = 'I/J(2(xai- Xa1 )) = 2'1/J(Xai- Xa1 ) 

'1/J([hai + ha1 , Xai- Xa1]) = ['1/J(hai + ha1 ), '1/J(xai- Xa1 )] 

- [hai + ha1 , '1/J(xai- Xa1 )] 

The above calculations show that ,P(xa, - Xaj) E L'p
3 

= La, ffi Lar We also 

know that '1/J(xOI.i- Xa;) E L-Uij and L/J3 n L-Uij = Span{xOI.i- XaJ· Hence 

'1/J(xai -Xa;) = b(xai -xa;) for some non-zero bE C. Now we want find where 
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Xo:; and ho:; are sent. 

'1/J(xo:J = '1/J((Xo:; - Xo:;) + (Xo:; + Xo:J)/2 

- (b(Xo:; - Xo:i) + Xo:i + Xo:;)/2 

- ((l:t b)xo:; + (1- b)xo:J/2 

'1/J(ho:J = '1/J( (ho:; - ho:;) + (ho:i + ho:;)) /2 

- ( a(ho:, - ho:;) + ho:, + ho:;) /2 
- ((1 + a)ho:; + (1- a)ho:;)/2 

'1/J([ho:;,Xo:;]) = 'I/J(2xo:;) = (1 + b)xo:; + (1- b)xo:; 

'1/J([ho:n Xo:J) = ['1/J(ho:J, '1/J(xo:J] 

= [((1 + a)ho:; + (1- a)ho:;)/2, ((1 + b)xo:; + (1- b)xo:;)/2] 

= t1 + a)(1 + b)xo:j2 + (1- a)(1- b)xo:;/2 

Hence (1 + a)(1 +b) = 2(1 +b) and (1- a)(1 -b) = 2(1- b). If b =I -1 

then a = 1 and if b =I 1 then a = -1. This implies b = ±1 and a = b. This 

means that either '1/J ( xo:J = Xo:;, '1/J ( Xo:;) = o'i, '1/J ( ho:;) = ho:; or '1/J ( xo:J = Xo:; , , 

'1/J(xo:;) = Xa;, '1/J(haJ = ho:; (since '1/J(xo:; +xa;) = Xo:; +xo:;)· 

Also forb= 1, ho:; = '1/J(ho:.) = '1/J([xo:;, Yo:J) = [7/J(xo:J, 7/J(Yo:J] which implies 

that 7/J(yo:.) = Yo:; and similarly 7/J(Yo:;) = Yar The same arguments for b = -1 

imply that 1/J(Ya.) = Ya; and 1/J(Ya;) = Yai· Therefore forb= 1, '1/J(z) = z and 

forb= -1, 1/J(z) = O"ij(z) for all z E B = {xo:;,Ya; 11::; i::; 4}. Since B is a 

generating set of L, '1/J = idiAutL forb= 1 and '1/J = O"ij forb= -1. 

Since cp ¢. Int L, 1/J ¢. Int L which implies that 1/J =/= idAutL, so 1/J = O"ij and 

• 
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In the next theorem we use the inner gradings on L, L = ffi
9
ec L9 , from 

Theorem 4.4.3 to get outer gradings on L by refining the grading using u34 , 

i.e., decomposing the graded subspaces L9 further as L9 = (L9 )u34 EEl (L9 )-u34 . 

Theorem 4.4.6 Let L be the realisation of a Lie algebra of type D4 as de­

scribed in Section 4.3 and G a finite abelian group. For any grading Lu34 = 

ffi
9
ec L~34 by a finite abelian group G, with G = S(G), there exists a unique 

grading by J = (z)n X G, on L, L = EBseJ L8 , such that L8 = L~34 for s E G 

and L8 ~ L -u34 for s ¢ G and the natural grading by J / (z) on L is inner. 

Moreover, this grading is an outer matrix grading and n = 2. 

Proof 

The existence follows from Theorem 4.4.3 and Observation 4.4.4. We construct 

the inner grading by G, L = EBgeG Lg with Lg n L0'34 = L~34 ' and observe 

that the spaces are u34 invariant for all g E G. We can decompose L9 = 

(L9Y34 E9 (L9 )-u34 and set L = (L9 )u34 and Lzg = (L9 )-u34 . This defines a 

grading on L by J = (z)2 x G. 

Suppose we have a grading on L by J, L = EBseJ L8 , that satisfies the 

conditions of the theorem. The dual group of J is J = (TJ)n x G where TJ(g) = 1, 

TJ(z) = e2rri/n, x(z) = 1, for all g E G, X E G. Let F: J -4 Aut L be the group 

homomorphism defined by F(x)(xs) = x(s)xs for all X E J, s E J, Xs E Ls. 

Then Lu34 = ffi
9
ec L9 which implies F(TJ)ILo-a4 = idAutL"34. Also Ls = L~34 

for s E G and Ls ~ L -u34 for s ¢ G imply that L -u34 is a graded subspace. 

By Lemma 4.4.2 and Lemma 4.4.5 either F(TJ) is the identity of Aut Lor a 34·. 

Thus F(TJ)(x) = -x for all x E L-u34 . We conclude that F(TJ) = u34 • 
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Since the natural grading by Jj(z) is inner, F(G) is inner. By Theorem 

4.4.3 the grading by J / (z) is unique which gives the uniqueness of the grading 

of L by J and thus n = 2. • 
With Observation 1.1.10, Observation 4.4.4 and the description of all grad­

ings on Lie algebras of type B3 in [1], it follows that for a of a Lie algebra 

L of type D 4 , all matrix gradings L = ffi
9
ea L9 by finite abelian groups G, 

G = S(G) and f(G) = (aij) 2 x B, B C Int L are described in this section. 

4.5 Example of a non-matrix grading 

We construct an example of a grading by a group G = (z)3 x A on the 

realisation L from Section 2.2 such that f(G) = (PI34)3 x B, A~ B, B C Int L 

and the grading by G/ (z)3 ~ A induced by an elementary grading on Ms, 

Ms = R = EBueA Rg, i.e., L = EBueA Lg where Lg = Rg n L. It then follows [1] 

that the tuple (g1, ... , g8 ) associated with the elementary grading on Ms has 

the property that gr = · · · = g~. The idea is to find an elementary grading 

on M8 that is transpose invariant and that p134(L9 ) = L9 . The requirement 

that PI34(L ) - L further decomposes L as L - £P134 EB £eP134 EB £e
2
P134 g- g g g- g g g ' 

c = e21ri/3 so that we have a grading on L, L = ffi
9
,ea L9, where Lzng = L~nP134 , 

n E {0, 1, 2}. 

From the calculations in Appendix B it follows that P134 leaves invariant 
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the following subspaces. 

Vi = Span{ E12, E34, Ess, E61 }, 

V2 = Span{E13, E24, Es1, E6s}, 

. V3 = Span{E14, E23, Es6, E7s}, 

V4 = Span{E1s, E2s, E37, E46}, 

Vs = Span{E15, E21, E3s, E4s}, 

V6 = Span{E11, E25, E35, E4s}, 

V1 = Span{E1s, E25, E36, E41 }. 
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We notice that these subspaces are also maximal toral subalgebras. We can 
2 

decompose Vi as Vi = ~P134 EB ~ep134 EB ~e P134 which is also a grading by (z)3 

on Vi for 1 ~ i ~ 7. For example 

Vft34 ='Span{E36- E41, E2s + E47}, 

vr134 = Span{E25- E36 + c2(E47- E1s) + c(E41 + E1s)}, 

vtP134 = Span{E2s- E36 + c(E41- E1s) + c2(E47 + Els)}. 

Our next step is to choose (91, ... , 9s) in such that a way that 9i9i = 9k9t 

for all Eij, Ekt E Vm for distinct i, j, k, l, 1 ~ i, j, k, l ~ 8 and 1 ~ m ~ 7. This 

step ensures that P134 commutes with j(A). Now let A= (92)2 x (93)2 x (95)2. 

The tuple T = (e, 92, 93,9293, 9s, 9, 939s, 9395, 929s), 9 = 929395 satisfies the 

above requirements. The elementary grading on M 8 with associated tuple T 
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can be visualized with the help of the following matrix. 

e 92 93 9293 95 9 9395 9295 

92 e 9293 93 9295 9395 9 95 

93 9293 . e 92 9395 9295 95 9 

9293 93 92 e 9 95 9295 9395 

95 9295 9395 9 e 9293 93 92 

9 9395 9295 9s 9293 e 92 93 

9395 9 95 9295 93 92 e 9293 

9295 95 9 9395 92 93 9293 e 

We set G = (()3 x (x2h x (x3)2 x (X5)2 where Xi(9i) = -1, Xi(9i) = Xi(z) = 1, 

((z) = e27ri/3 and ((9i) = 1 for distinct i, j such that i, j E {2, 3, 5}. It then 

follows that f(G)-:- (P134) 3 x B where B C Int £. 
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Appendix A 

Justification for the claim that 

Laij is a Lie algebra of type B3 

We show Lui; is a Lie algebra of type B3 for distinct i,j E {1, 3, 4}. A Cartan 

subalgebra of Lui; is Hui; = Span{ hak, ha2 , hai + ha
1
}. 

We need to define elements h131, h133 and h133 that span H"ii and a correspond­

ing root system cpui; with base D.."ii = {,811 ,82, ,83}. We are going to construct 

a basis L"ii by defining 

,81 = O'.k IH"ii, ,82 = a:21H"ii, ,83 = (a:i +a:i)/2IH"i;, 

h/31 = hak' h/32 = hCX2! h133 = (hai + ha1 ), 

Xf31 = Xak' Xf32 = Xa2' Xf33 = (xai +xa1 ), 

Yrh =Yo.,., YfJ2 = Ya2, Yf3a = (Yai + Yai) 
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and verifying that ( (f3k, f3t) )kl is the Cartan matrix of a Lie algebra of type B3 

and the relations 

hold. We will need the Cartan matrix of a Lie algebra of type D4 in order to 

find (f3k, f3t)· The Cartan matrices of Lie algebras of type D4 and B3 are 

2 -1 0 0 
2 -1 0 

-1 2 -1 -1 
and -1 2 -2 

0 -1 2 0 
0 -1 2 

0 -1 0 2 

respectively. The root system cpui; has positive roots 

We now verify that the matrix ( (f3k, !3£) )kl corresponds to the Cartan matrix 

of B3. 
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({31, !32) = -1 

(!31, fJ2) = (ak, a2) = -1 

({31, f3a) = 0 

({31, f3a) = (ab (ai + aj)/2) = 2 ((a;~:;~~~~~;~~;)/2) 
- 4 (ak,ai)+(ak,aj) - 4 (ak,ai)+(ak.aj) - (a a·) + (a a·) - 0 
- (ai,ai)+(ai,a;)+(aj,O:i)+(a;,a;) - 2(ai,ai) - k, l k, J -

({32, (31) = -1 

({32, fJ1) = (a2, ak) = -1 

({32, f3a) = -2 

((32,f3a) = (a2, (ai + aj)/2) = 2((ai~~;~~~~~1~~;)/2) 
= 4 (a:2,ai)+(a2,ai) . (a a·) + (a a·) = -2 2(a:i,O:i) 2, l 2, J 
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(/33, !31) = 0 

(/33, !31) = ((ai + ai)/2, ak) = ( (ai, ak) + (ai, ak) )/2 = (0 + 0)/2 = 0 

(/33, !32) = -1 

(/33, /32) = ((ai + ai)/2, a2) = !( (ai, a2) + (aj, a2)) = -1 

This justifies our initial choice for /31, /32 and /33. Now to verify equations 

/3m(hf31) = (/3m,/3z), [Xf3m,Yf3m] = hf3ml [hf3m,Xf3m] = 2Xf3m' [hf3m,Yf3m] = -2yf3m· 

!31 ( hf31) = (/31' !31) = 2 

f31(hf31) = ak(ha.1J = 2 

f32(hf32) = (/32, !32) = 2 

f32(hf32 ) = a2(ha.2 ) = 2 

f33(h{33 ) = (/33, /33) = 2 

f33(hf33 ) = (ai + aj)((ha., + ha.i))/2 

= (ai(ha.J + ai(ha.i) + ai(ha.,) + ai(ha.i))/2 = 2±0~2±0 = 2 
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[xth, Yth] = h131 

[x131' Y131] = [xak' Ya~c] = hak = h131 

[x132' Y132] = h132 

[x/32' Y132] = [xa2' Ya2J = ha2 = h132 

[x/33' Y/33] = h/33 

[xf33,y133] = [(xai +xa;), (Yai +Ya;)] 

= ([xai, Yai] + [xai, Ya;] + [xa;, Ya;] + [xa;, Ya;]) 

= (hai +O+O+ha;) = h133 

[h131 ; x131 ] = 2x131 

[h131, Xf31] = [hale, Xa~c] = 2Xak = 2Xf31 

[h.a2 , x132 ] = 2x132 

[h132 , Xf32 ] = [h02 , X02 ] = 2x02 = 2Xf32 

[h/3a' Xf3al = 2Xf3a 

[hf33 , Xf33 ] =[(hoi+ ha;), (xai + Xa;)] 

= ([hai 1 XaJ + [hai 1 Xa;] + [ha; 1 Xa;] + [ha;,Xa;]) 

= (2x0 i + 0 + 0 + 2Xa;) = 2Xf33 
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[h,al' Y.th] = -2y,al 

[h,al' Y.B1] = [hak' Yak] = -2yak = -2y,al 

[h,a_2, Y.B-2] = -2y,a_2 

[h,a_2, Y.B-2] = [ha_2, Ya_2] = -2Ya-2 = -2y,a_2 

[h.aa' Y.Ba] = - 2Y.Ba 

[h,aa,Y.Ba] = [(hai + ha;), (Yai +Ya;)] 

= ([hai,Yai] + [hai,Ya;] + [ha;,Ya;] + [ha;,Ya;]) 

= ( -2yai + 0 + 0 + -2Ya;) = -2y,a3 

Our claim that Lui; is a simple Lie algebra of type B3 , with a canonical basis, 

is now justified. 
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Action of P134 on the realisation 

of Section 2.2 

Here verify that V1, ... , V7 defined in Section 4.5 are invariant under p134. 

P134(E12) = Pl34((xa2+at+aa + Xa2+a1+a4 - Ya2+a1+aa - Ya2+a1+a4)j4) 

- (xa2+aa+a4 + Xa2+aa+a1 - Ya2+aa+a4 - Ya2+aa+aJ/4 

P134(£34) = Pl34((xa2 - Xa2+aa+a4 - Ya2 + Ya2+aa+a4)/4) 

- (xa2 - Xa2+a4+a1 - Ya2 + Ya2+a4+aJ/4 

- (-E12 + E34- Ess + £67)/2 
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P134(Ess) = P134( -(xa2+a1+aa - Xa2+a1+a4 - Ya2+a1+aa + Ya2+a1+a4)/4) 

- -(xa2+aa+a4 - Xa2+aa+a1 - Ya2+aa+a4 + Ya2+aa+aJ/4 

- (E12 + Ea4- Ess- Es7)/2 

- (E13 + Ess + E24 + Es1 )/2 

P134(E24) = P134( -(xa2+a1 - Xa2+a1+aa+a4 - Ya2+a1 + Ya2+a1+aa+a4)/4) 

- -(xa2+aa - Xa2+aa+a1+a4- Ya2+aa + Ya2+aa+a4+a1)/4 

- (E13 + E24- Es1- Ess)/2 

- (E13- E24 + Es1- Ess)/2 
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P134(E14) = P134( -(Xaa + Xa4- Yaa - Ya4)/4) 

- -(Xa4 + Xal - Ya4- Yat)/4) 

- (E14- E23- Es6 + E7s)/2 

P134(E23) = P134((xal - Xa2+a1+aa+a4+a2 - Ya1 + Ya2+a1+aa+a4+a2)/4) 

- (Xaa - Xa2+a1+aa+a4+a2- Yaa + Ya2+a1+aa+a4+a2)/4 

P134(E7s) = P134((Xa3 - Xa4 - Ya3 + Ya4)/4) 

- (xa4- Xa1 - Ya4 + Yat)/4 

- ( -E14- E23- Es6- E7s)/2 
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P134(E27) = P134(i(xa2+a1 + Xa2+a1+a3+a4 + Ya2+a1 + Ya2+a1+a3+aJ/4) 

- i(xa2+a3 + Xa2+a1+a3+a4 + Ya2+a3 + Ya2+a1+a3+a4)j4) 
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P134(E11) = P134( -i(Xo:3 + Xo:4 + Yo:a + Yo:J/4) 

- -i(xo:4 + Xo:1 + Yo:4 + Yo:t)/4 

- (E11 + E26 + E3s- E4s)/2 

P134(E26) = P134( -i(xo:t + Xo:2+o:t+o:a+o:4+o:2 + Yo:t + Yo:2+o:t+o:a+o:4+o:2)/4) 

- -i(Xo:a + Xo:2+o:t+o:a+o:4+o:2 + Yo:a + Yo:2+o:t+o:a+o:4+o:2)/4 

P134(E3s) = P134( -i(xo:t - Xo:2+o:t+o:a+o:4+o:2 + Yo:t - Yo:2+o:t+o:a+o:4+o:2)/4) 

- -i(Xo:a - Xo:2+o:t+o:a+o:4+o:2 + Yo:a - Yo:2+o:t+o:a+o:4+o:2)/4 

P134(E4s) = P134( -i(Xo:a - Xo:4 + Yo:3 - Yo:4)/4) 

- -i( Xo:4 - Xo:t + Yo:4 - Yo:t) I 4 

- (E11- E26- E3s- E4s)/2 

P134(Els) = P134(i(ho:3 - ho:4)/2) = i(ho:4 - iho:1 )/2 

- (-E1s + E2s- E36- E47)/2 

P134(E2s) = P134( -i(2ho:1 + 2ho:2 + ho:a + ho:J/2) 

- -i ( 2ha3 + 2ho:2 + ha4 + ha1 ) /2 

- ( -E1s + E2s + E36 + E47)/2 
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Pl34(E36) = Pl34( -i(2ha2 + ha3 + ha4 )/2) 

- -i(2ha2 + ha4 + ha1 )/2 

- (E1s + E25 + E36- E41)/2 

P134(E47) = P134( -i(ha3 + haJ/2) = -i(ha4 + haJ/2 

- (E1s + E25- E36 + E41 )/2 










