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Abstract 

This thesis defends a holistic approach to fish dynamics, supports size as a factor 

determining functional groups in a community, and presents a model that can serve as a 

framework for the integration of biological knowledge of fish communities with decision­

making about resource exploitation. 

We discuss the aspects that should be considered to approach the study of fish 

species dynamics. In their natural environment fish species dynamics are influenced by 

the presence of other species. Interacting species form a community that lies at the core of 

this thesis. Fishery and survey data show drastic changes in the Newfoundland demersal 

fish community during the period from the late 70s to the early 90s. 

We use these changes to analyse size as an indicator of species response to 

fisheries. We find that size at the community level can substitute for species to determine 

functional groups that direct community dynamics. 

This size-based approach shows properties of the community that cannot be 

explained by looking at each single species one at a time. Thus, a size-based simulation 

model is built to analyse long-term community dynamics and its response to fisheries. 

The model has only three simple assumptions: (1) fish pass through a series of age­

determined size classes through their life history, (2) big fish eat little fish, and (3) 

predation cannot drive species to extinction. The model is stable over runs of centuries, 

and from a stabilized state can be used to explore several scenarios involving 

environmental and fishery disturbances. 
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Chapter 1 

On the Matter of Fish-fisheries Interactions 

1.1. INTRODUCTION 

This work emerges from an interest in fish interactions and dynamics. 

Understanding how fish communities operate is crucial for fisheries management. In this 

introductory chapter we present the fish-fisheries system, addressing the uncertainties and 

boundaries of fish dynamics. All considered, size is identified as a possible tracer to 

follow the fish community dynamics and its interaction with fisheries. Convenient 

temporal and spatial scales are defined for the study. 

No ecosystem in the world escapes human action (Vitousek et al., 1997). Humans, 

to some extent, influence all earth's ecosystems directly or indirectly. In many cases, this 

action means direct exploitation of the ecosystem to obtain some natural resource. Such is 

the case of fishing, which represents an important source of protein for developed and 

developing countries (FAO, 1995; Idyll, 1978). When the ecosystem has the capacity to 

regenerate resources cyclically, these resources are known as renewable resources. 

Fisheries resources belong to this group. 

However, the status of renewability is not always maintained. It can change in 

ecosystems under intense or prolonged stress (Odum, 1985; Rapport et al., 1985; Rapport 

and Whitford, 1999). Depletion of resources can occur when the rate at which a resource 

is taken exceeds the rate at which that resource is naturally produced, or when the activity 

of taking has a negative indirect effect in the natural production of the resource. 
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Normally, the rate at which resources are exploited increases in response to social 

development (Deimling and Liss, 1994; Ommer, 2002). The process of resource 

exploitation involves the creation of jobs and the attainment of economic profits. If the 

activity can support many social and economic activities, the exploitation also becomes 

important for the governments involved as a political and economic tool. The goal moves 

from obtaining resources to making profits and the measurement unit is no longer the 

resources themselves but the money obtained from their exploitation. With the short-term 

view to maximize benefits and profits, more effort and more people enter the business of 

exploitation not considering or unaware of the risk of overexploiting the resource. This 

risk is even greater when there is a competition for the resources and everyone wants to 

make the most of them, i.e. the tragedy of the commons (Hardin, 1968), as is the case in 

many fisheries. Regulations for exploitation cannot be imposed when several countries 

are involved and agreement on these regulations is difficult to reach. What usually 

happens is that sooner or later exploitation exhausts the ecosystem's productive capacity, 

at which point the system cannot respond to human demand any longer. This triggers 

chaos at natural, social, economic and political levels (Harris, 1998; Haedrich and 

Hamilton, 2000; Sherman, 1994). On the one hand, economic profits stop or become 

losses that cause social turmoil. The immediate consequence is that· people working in 

activities related to the resource lose their jobs; they need an immediate solution because 

they need to make a living in the near future. On the other hand, resources may have 

disappeared for good or may need a long time to recover. From the moment the depletion 

becomes serious the only choice humans have is to either permit the resources to recover 

(if it is still possible) or to keep exploiting whatever is still left. The conclusion is that 
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humans have power over resources, but the resources ultimately set the limits for their 

own exploitation (Daily, 1997; Folke et al., 1993), and hence the importance of 

understanding the natural dynamics of the resources in order to avoid the serious social 

consequences of their depletion. 

The future of fisheries resources is no longer the exclusive concern of fish 

biologists. Sustainability is now the focus of ecosystem management (Olver et al., 1995; 

Sherman, 1994; Garcia, 1997; ICES, 1999; Zabel et al., 2003). There is need for a clear 

definition of this term (Phillis, 2001; Ayres, 2001; Hueting and Reijndiers, 1998; Pendry, 

1998; Svirezhev, 1998) and for consensus among all social sectors about sustainability of 

what, for whom and for how long. Sustainability at economic levels may be incompatible 

with sustainability at ecological levels (i.e., for the resources and their habitat) unless an 

objective measure to weight resources versus profits is used. Constanza et al. (1997) 

estimated the economic value of the resources provided free by nature to be something 

like US $33 trillion per year, contrasting with the global gross national product of US $18 

trillion per year. The inclusion of humans as part of the ecosystem (Coward et al., 2000, 

Newell and Ommer, 1999; Stephenson and Lane, 1995; Barrett, 1985) is another step 

towards the unification of the term sustainability, and probably the most convincing 

argument for ecosystem conservation. Nonetheless, it seems as though the resources 

instead of the humans have been neglected in ecosystem management over a long period, 

judging the perilious situation of many ecosystems as a result of human decision-making. 

It is now clear that future fisheries management will require putting sustainability, 

ecosystem health and human welfare in the same context, as the US National Research 

Council recently stated (NRC, 1999). 
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1.2. HISTORY REPEATS ITSELF IN FISHERIES 

The general pattern of the interaction between fish and fisheries can be described 

as an action-reaction feedback loop (Fig. 1.1 ), with a unidirectional flux of biomass 

towards the fishery (Regier and Loftus, 1972; Jackson et al., 2001, Pauly and Palomares, 

2001). Within this framework, humans, acting as a selective predator, target one or a few 

demersal species. They proceed intensely and persistently until the community balance 

breaks down and the system's structure changes. This change becomes evident when the 

target species becomes scarce. This response of the fish community reflects back to the 

fishery, which diversifies and chooses new target species mainly as a function of species 

availability, abundance and economic value. This causes a new perturbation and the 

process repeats itself. 

!Fishery I ----1.,._ !Fishery II I ----1.,._ !Fishery III 1-----4.,. 

!community I 1-----I.,._ICommunity II !---•!Community III I -----1., .. 

Fig. 1.1. Fisheries - fish community dynamics over time. 

It is important to note in Fig. 1.1, that the starting point is the fish community in 

an unexploited state (Community I). Any fishery has to act on some existing resources. 

Identification of this community can indicate the kind of fishery it may support and the 

probable resultant trend of that fishery over time. 
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The long-term direction of this interaction loop is alarming (F AO, 1994; F AO, 

2000; Buckworth, 1998; Smith, 1994; Weber, 1994; Ludwig et al., 1993; Safina, 1995). 

Fisheries all over the world are characterised by an initially prosperous and fast 

development followed by fishery collapse (Hilborn and Walters, 1992). The main long­

term changes in the fish community are: (1) the age composition of target species changes 

towards younger, smaller-sized, individuals (North Sea Task Force, 1993; Large et al., 

1998; Bianchi et al., 2000) and (2) catch composition shifts from larger, long-lived, top 

predators down to smaller, short-lived, lower trophic level species (Pauly et al., 2001; 

Caddy and Rodhouse, 1998; Merrett and Haedrich, 1997). 

Figure 1.2 shows the world marine production smce 1950 (F AO database 

"FISHSTAT+"). Over 40 years, production by developed countries has exceeded by far 

that of developing countries. The difference in production is especially remarkable during 

the 1950s, a time in which fisheries production in developing countries was very low and 

suggesting that large-scale fisheries in developed countries started sooner than in 

developing countries. The peak and then decline in the 1990s corresponds to the collapse 

of resources followed by the application of more strict rules concerning resource 

exploitation. Meanwhile, production in developing countries increased rapidly, probably 

due to economic needs, but which resulted in more relaxed management rules towards 

sustainability. The curve of fish production in developing countries since 1990 shows a 

steeper increase than ever followed previously either by developing or developed 

countries. It is thus likely that developing countries will reach their peak production in a 

shorter time than was experienced by the developed countries. It is also worth noting that 
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the exploitation of marine resources other than fish is accelerating in developing 

countries, suggesting that full ecosystem effects are almost certainly taking place. 

f/) 
c:: 
0 -c:: 
0 ·­-

World marine fisheries production 

80 ..-------------· 

70 
60 
50 
40 
30 
20 

1~~~~~~~~~~:::::::::j 
50 54 58 62 66 70 74 78 82 86 90 94 98 

Year 

_._Fish, developed countries -illt-- Fish, developing countries 

-Other, developed countries --- Other, developing countries 

Fig 1.2. World production of marine fish, invertebrates and plants. Marine 
invertebrates and plants are grouped in the category "others". 

Other features related to fishing activity can also show the trend of the world 

fishery. According to F AO the number of fisheries has doubled since 1970. In 1990, 28.5 

million people were involved in fisheries. The increase is uneven, taking place mainly in 

Asian countries while the number of fishers decreases in industrialized countries. The 

same tendency shows up in the number of vessels. The fishing fleet is decreasing in 
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developed countries and increasing in developing countries. It seems that the same 

scenario leading to a fish collapse and fishery overcapacity in developed countries is now 

being replayed in the developing counties. 

The history of fisheries for the Northwest Atlantic dates back to before the official 

discovery of North America by the Europeans, and has been reported recently (Hutchings 

and Myers, 1994; Lear, 1998; Kurlansky, 1997). The following summary draws on these 

publications. 

Right after 1497 the Portuguese, French and Spanish started fisheries in 

Newfoundland waters for their abundant resources, most especially cod. They were 

followed by the English in the mid 16th century. All these countries supplied mainly 

salted dry cod to European markets. The initially seasonal fishery with boats sailing from 

Europe in the spring-summer time expanded with the settlement of the territories by the 

end of the 161h century. There were signs of overexploitation of the inshore fishery as 

early as 1713, when declining catch rates prompted the expansion of the offshore banks 

fishery. At that time a small fish could weigh 60 pounds and a large one 100 pounds, 

much larger than any seen today. During the 18th century fish processing became the 

industry and way of life for the settlers of the Northwest Atlantic coast. With fluctuations 

in the cod fishery other species became important during the 19th century, including 

Atlantic halibut, haddock, flounder and redfish. Drastic changes in the fishing methods 

appeared in the 20th century. Inshore fishery boats started to use gasoline engines, 

draggers and otter trawlers were introduced in the offshore fishery, and refrigeration 

became available. Fish could be captured more rapidly and vessels could spend longer 

periods at sea. Catches of groundfish rapidly increased and fish products were used both 

7 



for food and industrial purposes. Groundfish catches peaked in the 1960s and have 

decreased significantly since then. In 1992 a moratorium on cod fishing was established 

and to date it is effectively still in place with no sign of recovery. 

The second half of the 20th century has seen the collapse of the centuries old 

groundfish fishery off Newfoundland. Crucial for this situation has been the fisheries 

intensification of the 1960s and the lack of strong recovery afterwards (Murawski et al., 

1997; Hutchings and Myers, 1994). The total groundfish landings went from 1 million 

tons in the 1950s to 2 million tons in 1965. Cod catches more than doubled, reaching a 

maximum of 810,000 tons in 1968. In 1977 Canada and the United States extended their 

fisheries jurisdiction to 200 miles. This stopped the foreign fishing, but expansion of the 

domestic fishery quickly filled the gap left by the foreign fleets and resources were driven 

to collapse by 1990. · 

Studies on fisheries resources, which started more than a century ago (Megrey and 

Wespestad, 1988; Smith, 1994), have not succeeded in preventing the collapse of 

fisheries (Longhurst, 1999; Sutton, 1998; Botsford et al., 1997). The faster development 

of fisheries in comparison to scientific understanding of their basis (Haedrich et al., 

2001), contributes to this failure. In addition, the constant adaptation of research to 

fisheries development demand favours a short-term view for the consideration of the 

problem and its solution, which is a major handicap in regard to the sustainability of 

resources. Furthermore, our control of the dynamics of fish resources is limited. 

Interacting forces and time lags influence marine fish community dynamics to the point 

that the word that best reflects fisheries in the long-term is "uncertainty". Does it make 

management or sustainability a utopia (Ludwig et al., 1993)? As a part of ecosystems, 
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humans are at most times a dominant player and the one capable of more flexible and 

purpose-oriented actions (Kormondy, 1976; Gislason et al., 2000). If fisheries are no 

exception, it should be possible to regulate the state of natural fish communities to a great 

extent by regulating human activities. There are uncertainties concerning fish community 

dynamics that humans cannot control. Therefore, it seems sensible to talk about 

management and sustainability in terms of the way humans interact with the ecosystem. 

1.3. UNCERTAINTY IN THE DYNAMICS OF FISH COMMUNITIES 

There are three sources of uncertainty in the study of fish dynamics. 

Environmental, social and biological forces act and interact in the dynamics of fish 

communities. Within the model represented in Fig. 1.1 social forces would be at the top 

part driving changes in the fishery, at the bottom would be the environmental forces 

directing changes in the fish community, and biological forces would act within the 

community to determine relations among individuals. 

The environment sets the conditions for the wax and wane of natural populations. 

The range of these environments is almost infinite due to the large number of 

environmental factors and their possible combinations. Environmentally driven fish 

population fluctuations have been described previous to fisheries development (MacCall, 

1985). Today, there is also strong evidence that fisheries may cause the collapse of fish 

populations (Myers et al., 1996; Hutchings and Myers, 1994; Walters and Maguire, 

1996). Government policies and the economic market are a second source of uncertainty 

because they change the way fish resources are exploited thereby adding variability to the 
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dynamics of fish communities. Finally, incomplete knowledge of the structure and 

interactions within the fish community also creates indeterminacy (Gomes, 1993). 

While environmental uncertainty is uncontrollable, human activities can be 

regulated, making them a source of variability rather than uncertainty. The situation of 

biological uncertainty would be intermediate. It can be set within certain limits since it is 

constrained by the life history parameters of the species. Biological uncertainty is reduced 

if we consider the structure and interactions in the community (Ulltang, 1996). In 

addition, the relative importance of environmental, human and biological factors is not 

always equal. In stressed ecosystems the importance of biological processes is 

heightened. While fish have adapted to environmental variability by mechanisms such as 

having a long larval stage duration, fisheries development has been so fast that fish have 

not been able to adapt and their abundance has decreased drastically. At this point, 

density-dependent biological processes become predominant forces in the dynamics of 

the fish community. 

Most commercially important fish species spawn as r-strategists and survival of 

the eggs and larvae is highly dependent upon the environment in which they develop. 

Environmental stochasticity makes recruitment a hazardous process. However, since all 

larval stages are highly dependent on the environment an evolutionary adaptation to 

accommodate natural environmental changes has certainly occurred in all species. 

Recruitment is also a density dependent process (Bjorkstedt, 2000; Myers, 2001), 

influenced by spawning stock size and predation. At high fish abundance the effect of 

density dependent processes is less noticeable than environmental effects. However, at 

low levels of abundance these density dependent processes may have a greater effect than 
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does recruitment. Hence, community structure and interactions, involved in density­

dependent processes, are important factors to consider in the study of demersal fish 

community dynamics. 

Predation, human activities and environmental factors are the mam cause of 

mortality in fish species. As a biological factor, predation is intrinsic to the community 

and acts regardless of the presence of the other external environmental or human factors, 

which henceforth and throughout this thesis we will call externalities. Moreover, 

predation is the link among individuals in the community determining the indirect effects 

of externalities on the whole community. Defining the structure and interactions in a fish 

community will assist in the study of the effects of externalities on the dynamics of the 

fish community. As we discuss next, body size appears to be a good tracer of the structure 

and interactions of fish communities. Limitation of human control due to environmental 

uncertainty is the bottom line to consider in the study of the dynamics of fish 

communities. 

1.4. THE IMPORTANCE OF SIZE 

Fisheries research and management would profit from the refreshing view of 

biology expressed by J. T. Bonner (1965). In the two first chapters of his book" Size & 

Cycle" he challenges the reader to think of organisms as life cycles and to use size, as a 

characteristic of this life cycle, to make comparisons among organisms. In the marine 

environment, juveniles of different fish species are more similar to each other than are 

juveniles and adults of the same species. Habitat and diet, for example, are usually shared 

by individuals of different species when in the same ontogenetic stage, but not by 
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individuals of the same species in different ontogenetic stages. If we consider 

characteristics such as food requirements and behaviour, which are shared by individuals, 

it would be possible to group fish individuals according to their life cycle stage regardless 

of the species to which they belong. Hastings (1988) presents some cases regarding the 

necessary use of age or size structure when studying population dynamics. These include 

competition in juvenile and/or mature stages, cannibalism, dispersion and predation, all of 

which are matters of concern for fish populations. 

The importance of size at the different levels of organization, from individual to 

ecosystem, was recognized early in the history of modem ecology (Elton, 1927). 

Treatises on size and allometric rules concentrate in the mid 1980's (Schmidt-Nielsen, 

1984; Peters, 1983; Calder, 1984; McMahon and Bonner, 1983). In biology exceptions 

are the rule, which make it difficult to find general laws valid for all ecosystems and 

organisms. However, constraints that the marine environment imposes on marine 

organisms make it likely that allometric rules apply for most organisms and levels of 

organization. Therefore studies on the implication of size in marine environments can 

help to further illustrate and develop allometric theory. 

Many biological and ecological characteristics of species are related to size 

(Peters, 1983; Calder, 1984). Allometric rules generally govern physiological processes at 

the individual level. At the species and population level, allometric rules applied to life­

history strategies allocate species along the r-K spectrum. At the community and 

ecosystem level, allometric rules explain the way the species utilize their environment, for 

example in regard to geographical distribution, prey selectivity and trophic relationships. 
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The size factor that underlies allometric rules is of special relevance among fish 

species. Most fish start their lives as very small organisms and grow over their entire 

lifespan (Woodhead, 1979) which makes for a strong correspondence between size and 

age. The energetic requirements of an individual are in accordance with this ontogenic 

change in size (Peters, 1983). Maximum size of individuals in a population is related to 

lifespan (Calder, 1984), and lifespan determines the time a population needs to adjust to 

local disturbances. Fecundity is also related to size (Wootton, 1979). At the community 

level, interaction takes place among individuals rather than among species. Community 

trophic interaction is also based on size. "Big eats small" (Hahm and Langton, 1984; 

Lundvall et al., 1999) is the norm, with fish being mostly opportunistic feeders (Lilly, 

1987, 1991, 1994). From this perspective, allometry plays a significant role from the 

individual through to the ecosystem level. Even the spatial distribution of individual fish 

changes over their lifespan in relation to their size. 

Most allometric characteristics relate to size in a curvilinear form: 

V=aSb 

where V is the allometric characteristic, a and b are specific coefficients and S is the size 

of the individual. The same equation can be converted to a linear form using logarithms: 

Log V =Log a+ b LogS. 

The general rule that big eats small, the reality of trophic interactions as the main 

links among species, the fact that predation constitutes the main cause of fish natural 

mortality, and the dominance of opportunism within the feeding habits of fish species 

support the idea that size is a key factor in determining the structure of the community. 

13 



The hypothesis of size structuring the fish community is central in this thesis and 

the basis upon which we propose to study fish community dynamics. Due to fish 

characteristics, allometry in fish transcends the individual level to the population and 

community levels. Size is related to species life cycle and species interactions, which 

determine the structure of a fish community and drive its dynamics. In addition, fisheries 

usually act on size by targeting the larger individuals. Therefore, size structure is very 

likely to reflect fish-fisheries interactions (Dickie et al., 1987; Pauly et al., 2001). 

Hereafter, unless explicitly indicated, the weight of individual fish will be used as our 

metric of size. 

1.5. TEMPORAL AND SPATIAL SCALE 

A glance at any historical data set of landings or survey data on fish species shows 

that the answer to the question "how is the fishery doing?" depends on the point at which 

we ask the question and how wide a scope we want to examine (Post et al., 2002; Haury, 

1978). A continuous increase in abundance over a decade may be of little importance to 

temporal pattern on the scale of a century. Similarly, an increase at a certain location may 

be insignificant when a bigger area is considered. Scale must be in accordance with the 

problem we want to address. It will not be possible to evaluate the state of salmon in 

North America if the study is limited to one river. Neither will research conducted for a 

period much shorter than the generation time, or covering only a spawning hot spot, 

inform much about the state of a fish population. 

The immediate effect of a fishery on a fish community is the reduction of 

abundance of one or several species. This impact is effectively instantaneous, however it 
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is only after a longer time that the full impact of the fishery shows up; there is a time lag 

until inter- and intra-specific interactions take place. The community reaction depends on 

species generation times and on individual interactions. Thus, the immediate fishery 

impact can be amplified or buffered by relationships within the community. 

Amplification can occur, for example, when fisheries removal of one species favours a 

competitor. In contrast, a buffer effect can lead to a reduction in predation on young 

individuals when cannibalistic species are fished. Many of the long-term effects of 

fisheries spread through the community as a result of trophic interactions (Parsons, 1992; 

Vanni et al., 1990). 

A good criterion to use when choosing an appropriate scale is to make it big 

enough so as to allow the observation of the full range of variation in what is being 

studied (Powell, 1989). Nonetheless, the longer the time period we consider, the better we 

can interpret changes in a fish community (Jackson et al., 2001). Due to the long lifespan 

of many demersal species, a long-term period is required to assess the trend of how a 

species reacts to a fishery (Connell and Sousa, 1983), particularly when fisheries target a 

certain stage (size) of the species, most usually the large individuals. Removal of large 

mature individuals will reduce the number of offspring in future generations. However, 

the already existing younger cohorts of the species may not be affected or may even be 

increased by reduction of cannibalism. These already existing cohorts will replace the 

removed individuals and cover the effect of their removal for a certain time, until 

newborn generations reach adulthood. A longer time than a generation may be required 

considering inter-specific interactions. 
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Focusing on single species populations, traditional fisheries research has 

considered the spatial scale of the stock with the implicit difficulty of defining the stock. 

There are changes in the horizontal and vertical distribution of a species during its 

lifespan. The appropriate spatial scale to look at the dynamics of fish communities should 

account for these changes in distribution as well as for the geographic range in which 

species co-occur. In many cases the spatial distribution of species is related to the 

presence of other species, as in the case of a predator having a similar distribution than its 

prey. Therefore, consideration of species occurring together helps to find an optimum 

spatial scale to study species interactions, and thus community structure and dynamics. 

The spatial scale of fish assemblages or communities is of the magnitude of hundreds of 

kilometres (Gomes, 1993). In the last decades, fishery research tends towards an 

ecosystem scale approach. This scale is likely to include representatives of most species 

and most life stages. At this scale of community consideration general patterns, which 

would not be observed when considering single populations, can emerge (Maurer, 1999). 

In addition, environmental and fishery processes operate on this scale and therefore allow 

an ecosystem perspective (Sherman, 1994; Mann and Lazier, 1996; Haedrich, 1997). 

1.6. THESIS OBJECTIVES AND OUTLINE 

For a long time demersal fish species were considered inexhaustible (Smith 1994) 

or treated as though they were by newly developing or expanding fisheries (Merrett and 

Haedrich, 1997). However, demersal fish communities are suffering drastic changes. 

"Why are they changing?" or "How are they changing?" are questions still in debate, and 

now another one has been added: "Will they recover?" The answer to these questions 
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starts with the consideration of the fish community. Using the demersal community off 

Newfoundland, we study the implication of size at the different levels of organization and 

analyse how the size structured community changes under fishery disturbance. In this 

thesis we study the size factor as a key in the structure of the community and its 

dynamics, and attempt a size based approach to simulate the natural dynamics of a fish 

community and how they might respond to stress from externalities. 

In the current chapter we located the fish community in the global picture of 

fisheries. Chapter 2 introduces the demersal community used in this thesis and analyses 

the possible methods to approach the study of fish dynamics. 

The next three chapters (3,4,5) will describe the changes in the Newfoundland 

demersal fish community in the last decades with special attention to the influence of size 

at the different levels of organization as a means to understand these changes. Then, in 

Chapter 6, a simulation model based on size will be applied to the community to study its 

structure and interactions. Next, Chapter 7 will address the long-term effects of 

externalities and the limits to fish community exploitation. A concluding chapter will 

summarize the results obtained during the course of the thesis. 
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Chapter 2 

Approaching fish community dynamics 

2.1. INTRODUCTION 

Chapter 1 has considered the context in which fish-fisheries interactions take 

place. Within that context, attention has been directed towards the fish community for 

two reasons: (1) the resource must be able to sustain exploitation, (2) environmental and 

human disturbances can be considered externalities whose final effect depends on 

resource dynamics. Let us now explicitly define the fish community under consideration 

in this thesis. Once this is done, we proceed to address the methodology to approach its 

dynamics and the results that can be expected from them. 

The continental shelf off the coast of Newfoundland and Labrador has attracted 

attention due to its important cod fishery. Using Tansley's ecosystem concept (Smith and 

Smith, 1998; p.315) we refer to the organisms and their habitat in this area as the 

continental shelf fishing ecosystem. The largest source of data available to us from this 

ecosystem corresponds to the demersal fish. Hence, we will focus on this component of 

the ecosystem. Demersal fish can be considered as an assemblage, a contemporary term 

used to indicate a group of species found in the same place at the same time. However, 

we define them as a community to emphasize the existence of interactions among this 

group of species (Paine, 1994; Gomes, 1993). Based on these interactions we will treat 

them as a unit. Doing so has a twofold implication that must be supported. 
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On the one hand, treating the demersal fish as a unit means adopting a 

synecological approach. It is not strange that fisheries research neglected biological 

interactions for a long time and focused on single species populations. The primary 

reason was to eliminate the effect of movement in order to estimate recruitment and loss 

(Hjort, 1914 in Kenneth and Leggett, 1994 ). Other uncertainties affecting the estimation 

of species abundance were presented in Chapter 1. Furthermore, the conduct of fisheries 

research itself presents additional difficulties (Smith 1994; Mitchell, 1982; Paine, 1984; 

Steele, 1984): the habitat does not allow direct observation, surveys are expensive, and 

reliability of data obtained from fisheries is questionable (by-catch, discards, unreported 

catches, etc) Nonetheless, even now, most approaches consider only single populations 

despite the fact that biological knowledge of species is currently broad, that fisheries have 

diversified extensively, and that the decrease of stock abundance has emphasized the 

importance of species interactions (Pauly, 1988; Dugan and Davis, 1993; Orensanz et al., 

1998). An autecological approach has proven to be limited (Beddington, 1984; Beverton 

et al., 1984; Larkin, 1996; Botsford, et al., 1997), especially for looking at the long-term 

effect of externalities. As early as the end of the 191h century, Lankester (in Smith, 1994) 

pointed out the importance of species interactions in fish stock changes. The strong 

suggestion was that other species should at least be considered. 

An individual's life is constrained into a certain time period, the time between 

birth and death. Life span is determined genetically and can be modified by the 

environment, but it is time limited. Only at the next level of organization, the population 

level, is there the possibility of continuity over time. Whether a population persists over 

time or not depends on the relation among birth and death rates. A population will have 
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continuity over time as long as birth rate is equal to or exceeds death rate. Fecundity 

becomes important. But also important are the interactions between species. Therefore the 

permanency of a species has to be considered at the community level. If the afore­

mentioned interactions are trophic interactions that take place between organisms of 

different size rather than between specific species, then we can talk about continuity of 

the community regardless of the permanency of a certain species. Thus all species form a 

unit, the community. 

On the other hand, if we only consider a certain number of species as components 

of the community, this group of species should present some features which differentiate 

them from the rest of the components of the ecosystem, apart from the practical reason of 

data availability. In the marine environment, plankton, invertebrates, fish, marine 

mammals, birds and humans are linked by trophic interactions. However, there are some 

facts that allow us to both differentiate demersal fish species from other taxa and to treat 

them as a unit. The temporal and spatial scales at which demersal fish live their lives 

(Steele, 1978), as well their physiological and behavioural characteristics distinguish 

them from other taxa; e.g. generally in temperate waters, fish have a more extended 

migratory pattern than invertebrates or a reproductive strategy distinct from that of 

mammals or birds. Size implications inherent in these characteristics create a common 

ground for their study as a community. Using size, individuals can be classified 

regardless of the species they belong to, allowing treatment of the community as a whole 

instead of as a cluster of separate species. Strong interactions among demersal species in 

comparison to trophic links with other species of the ecosystem serve to justify our focus 

only on this group. Bax (1991) showed that predation of fish by fish is a far more 
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important cause of mortality than is predation by mammals, birds or humans, and 

Jennings et al. (2002) observed that competition for food with invertebrates is low. In 

addition, since predation is the most important link among fish individuals, to deal only 

with fish reduces the importance of other non-trophic interactions which can therefore, 

for the purpose of this thesis, be neglected. 

2.2. DATA 

Lack of long-term scientific data is one of the main difficulties in studying fish 

community structure over time and space. This work focuses on the continental self 

within the 200-mile limit and the latitudes corresponding to NAFO subdivisions 2J3K, a 

deep shelf area of around 233,000 Km2 (Fig. 2.1 ). We consider two kinds of data to study 

the demersal fish community in this area: fisheries landing data from 1960 to 1994, and 

scientific survey data from 1978 to 1993. Defining the information that can be extracted 

from each data source, fisheries and scientific survey data complement each other in the 

study of the demersal fish community. 
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Fig. 2.1: Study area. It corresponds to NAFO areas 2J3K inside the 200-mile limit 
in the centre of the chart. 

2.2.1. FISHERY DATA 

Fishery data do not pretend to reflect the state of an entire fish community. If 

anything, fishery data reflect trends rather than accurate estimations of fish abundance in 

fishing area. Next we address their limitations for this purpose and select the fishery data 

corresponding to the demersal community offNewfoundland. 
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The use of fishery data in the study of demersal ecosystems has, to some extent, 

been achieved in freshwater environments of the Great Lakes (Keleher, 1972; Regier and 

Loftus, 1972; Regier, 1973) and in some marine environments (Deimling and Liss, 1994; 

Pauly, et al., 1998). Landings are usually the only available data that go far enough back 

in time to cover the generation time of large species. Landings may indicate the intensity 

of direct human disturbance on the community, although discards and bycatch are usually 

not reported. Fisheries catches usually indicate which are the most abundant species, 

since often these species are the most commercially valuable, and therefore are the ones 

that are targeted. They can also show shifts in the relative abundance of species. Despite 

the fact that politicians, fishermen, economists and scientists agree on the unreliability of 

fisheries statistics, all of them at least agree that qualitative changes in target species are 

usually the consequence of the collapse in abundance of some fish stock. 

Fisheries information is a reflection not only of the state of the stocks, but also of 

human decision-making. Fisheries effort intensifies when the abundance of species 

decreases in order to maintain the same level of catches over time, and fisheries 

technology enables the effective targeting of areas in which there are high levels of fish 

abundance remaining. As a result, fisheries data do not represent the real abundance of 

fish species. The index CPUE (catch per unit effort) homogenizes fishery data in order to 

compare the state of the fish species over time. However, the difficulty in calculating 

effort effectively produces a high error probability for the index value, which has 

discouraged its use in quantitative analysis of stock abundance (Hall, 1999). In addition, 

fishery data sometimes may not permit resolution to the species level in the classification 

of captured individuals. This is the case of the 2J3K fishery data, in which some landing 
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groups refer to a single species while some others can be very broad, for example simply 

as finfish or flatfish. However, the classification used here has been consistent through 

time, thus allowing comparison between years. 

For the analysis carried out in this thesis we have defined our fish community as 

those demersal species commonly occurring in the Newfoundland continental shelf 

ecosystem, plus those species that might not be demersal but are of primary importance as 

prey species. The classification groups are presented in Table 2.1. This table does not 

contain as separate classification groups 8 demersal species that are present in the NAFO 

classification of landings. These species are silver hake, red hake, blue ling (rare but 

reported), lumpfish, eelpouts, sculpins, argentines and spiny dogfish. Since individuals of 

these 8 species appear in less than 3 non-consecutive years in the catches, each of those 

species was included in their correspondent indeterminate group: Groundfish or Finfishes. 

The pelagic species capelin and Arctic cod were also included in Table 2.1 because of 

their trophic importance in the fish community. 
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Table 2.1: List of demersal groups (plus pelagic species capelin and Arctic cod) 
that make up the commercial catches off Newfoundland (NAFO areas 2J 3K) 
during the years from 1960 to 1994. NS in the table means that the groups they 
refer to are not resolved to the species level. 

Species name Species NAFO code 

Atlantic cod 101 
Haddock 102 
Atlantic redfishes 103 
Pollock (saithe) 106 
American plaice 112 
Witch flounder 114 
Yellowtail flounder 116 
Greenland halibut 118 
Atlantic halibut 120 
Winter flounder 122 
Flatfishes (NS) 129 
Amer, angler (goosefish) 132 
Cusk (tusk) 144 
Greenland cod 148 
Roundnose grenadier 168 
Roughhead grenadier 169 
White hake 186 
Wolffishes (catfishes) 188 
Groundfish (NS) 199 
American eel (reported) 308 
Bairds slickhead 326 
Capel in 340 
Dogfishes (NS) 459 
Large sharks (NS) 469 
Skates 479 
Finfishes (NS) 499 
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2.2.2. SCIENTIFIC SURVEY DATA 

Autumn surveys (mainly from October to December), conducted by Canada's 

Department of Fisheries and Oceans (DFO), collected the data used in this thesis (as 

reported by Villagarcia, 1995). Sampling of groundfish was performed using a stratified 

random method with stratification by latitude, longitude and depth in a range of 100 to 

1300 metres. Each stratum contained at least 2 sampling stations in each year. For each 

station sampling usually corresponded to a 30-minute tow at 2.5 knots with a codend 

mesh of29-mm. Details of the survey procedure can be found in Atkinson (1993). Survey 

data are intended to provide information on species abundance. Samples are distributed 

orderly in time and randomly in space to allow statistical analysis to determine the state 

of the fish community. 

Unless explicitly indicated in further chapters, the way species are selected for 

inclusion in the analysis is explained here and the resulting fish community is shown in 

Table 2.2. From the data ofthe annual surveys, the number of individuals and total weight 

of each species were recorded. Data were standardised for duration of the tow and for 

number of stations surveyed each year. Thus, row data correspond to abundance as 

number or biomass per 30-minute tow and per year. 

In order to eliminate sporadic or uncommon species whose presence will not 

significantly affect the analysis of interactions in the demersal community, species were 

excluded from the analysis if: (1) individuals were not identified to the species level, (2) 

they were pelagic (with the exception of capelin and Arctic cod), (3) they were present in 

only one year, or if ( 4) in half of the years in which the species occurred their abundance 
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was less than 5 individuals, and their abundance in those years never comprised more 

than 0.05% of the total catch in that year. 

As indicated before, despite the fact that capelin and Arctic cod are not demersal 

species, they were included in the study due to their importance in the demersal trophic 

web. In scientific surveys, the total number of fish by tow is recorded and individuals are 

identified to the level of species whenever possible. Nonetheless, having different 

lifestyles, each species shows a different response to the sampling method. Capelin and 

Arctic cod are two species underrepresented in the data because they are pelagic species 

taken in a groundfish survey. That results in a certain bias in the representation of species 

in the sample that should be taken into account for future discussion of results. 
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Table 2.2: List of the 33 species selected as components of the demersal 
community from scientific survey data off Newfoundland (NAFO areas 2J 3K) 
during the 1978 to 1993 period. Scientific code corresponds to that used by 
Northwest Atlantic Fisheries Centre (Akenhead and LeGrow, 1981) 

Species scientific name Canadian (English) name Abbrev. Scientific code 
Agonus decagonus Northern Alligatorfish Ago-dec 836 
Anarhichas denticulatus Broadhead Wolffish Ana-den 699 
Anarhichas lupus Sriped W olffish Ana-lup 700 
Anarhichas minor Spotted Wolffish Ana-min 701 
Antimora rostrata Blue Hake Ant-ros 432 
Aspidophoroides monopterygius Common Alligatorfish Asi-mon 838 
Bathyraja spinicauda Spinytail Skate Bat-spi 102 
Boreogadus saida Arctic Cod Bor-sai 451 
Centroscyllium fabricii Black Dogfish Cen-fab 27 
Coryphaenoides rupestris Roundnose Grenadier Cor-rup 481 
Cottunculus microps Arctic Deepsea Sculpin Cot-mic 829 
Cyclopterus lumpus Common Lumpfish Cyc-lum 849 
Eumicrotremus spinosus Spiny Lumpfish Eum-spi 843 
Gadus morhua Atlantic Cod Gad-mor 438 
Gadus ogac Greenland Cod Gad-oga 439 
Glyptocephalus cynoglossus Witch Flounder Gly-cyn 890 
Hippoglossoides platessoides American Plaice Hip-pla 889 
Hippoglossus hippoglossus Atlantic Halibut Hip-hip 893 
Lycodes esmarki Esmark's Eelpout Lyc-esm 727 
Lycodes reticulatus Arctic Eelpout Lye-ret 729 
Lycodes vahlii Vahl 's Eel pout Lyc-vah 730 
Macrourus berg/ax Roughhead Grenadier Mac-ber 474 
Mallotus villosus Cape lin Mall-vill 187 
Myoxocephalus scorpius Shorthorn Sculpin Myo-sco 819 
Nezumia bairdii Common Marlin Spike Nez-bar 478 
Notacanthus nasus Large Scale Tapirfish Not-nas 386 
Raja radiata Thorny Skate Raj-rad 90 
Raja senta Smooth Skate Raj-sen 91 
Reinhardtius hippoglossoides Greenland Halibut Rei-hip 892 
Sebastes marinus Golden Redfish Seb-mar 793 
Sebastes mentella Deep Water Redfish Seb-men 794 
Synaphobranchuskaupi Longnose Eel Syn-Kau 372 
Trachyrhynchus murrayi Roughnose Grenadier Tra-mur 483 
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2.3. METHODOLOGY 

There are many approaches to the study of fish community dynamics. As Rice 

(2000) points out, single indices, multivariate analysis, descriptive curves and models can 

complement each other in obtaining a global picture when applied together to fish­

fisheries interaction studies. In order to choose the study methods and get them working 

synergistically, it has to be understood that the aim here is to show the changes in 

community structure over time and how these changes are affected by externalities. From 

that perspective we can discuss next the applicability of each approach. 

A combination of abundance and biomass indices to yield the average size of 

individuals in a population gives more information about its real state, and this 

information is especially relevant to fisheries. Abundance and biomass are traditional 

measures that summarise the state of fish populations for fishery purposes. They are 

complemented with length at age, length frequency, fecundity at age or sex ratio data. 

Despite their use to show changes over time in marine populations, these indices do not 

explain whether the observed changes came along with changes in age structure or even if 

age structure changes are taking place regardless of a constant value for these indices over 

time. Thus, abundance and biomass indices by themselves do not show the real state of 

populations. For example, a population can keep a constant abundance, despite the fact 

that it may be losing its oldest and largest individuals and decreasing in average size of 

individuals, as long as recruitment is enough to balance the loss of large individuals. 

Changes of average weight over time for a population and its relation to changes in 

abundance can indicate whether the adult individuals of the population are decreasing or 
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increasing in number. This is important information when considering the capacity of the 

population to produce new individuals or to recover from a disturbance. 

When applied to individuals instead of populations, size allows as well a 

synecological approach to the fish community because size groups can be considered 

regardless of the species that individuals belong to. In addition, as will be explained later, 

size can be used to build biomass and abundance spectra of the community as a whole. 

At the community level, there are other indices used to represent the state of the 

community. The most popular of those indices is diversity. However, the use of these 

indices as indicators of the community state is debatable, and controversy concerning 

theory and practice is extensive (see Pimm and Hyman, 1987). In an open environment, 

changes in diversity can be due to the migration of species. That means that a change in 

abundance can be compensated for by migration of new individuals into the community 

yielding no change in diversity despite a serious change in the community structure. 

Spatial density-dependent aggregation of individuals, which may mislead in the 

interpretation of diversity values, is also likely to occur in demersal environments. An 

additional drawback in the use of community diversity indices is that they can be 

misleading in the same way as happens with abundance and biomass indices. The same 

value of any of these indices can correspond to very different structural states of the fish 

community. 

The search for an holistic approach to the fish community has popularised the 

application of multivariate analyses, which operate by considering all the species of the 

community simultaneously. Three different multivariate analysis are applied herein to the 

demersal fish community data from 2J3K: cluster analysis, multidimensional scaling 
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(MDS) and principal components analysis (PCA) Cluster analysis groups years or species 

that are more similar in some respect. MDS not only groups, but also orders the variables. 

PCA allows us to find important factors that underlie the behaviour of species over time. 

All these analyses reveal changes in the community structure. However, they are 

exploratory analyses, which means that they identify patterns but cannot confirm the 

reasons for them. Therefore, the outcomes from these methods should be complemented 

by confirmatory analysis (regression, rank correlation .... ) to determine whether they 

might help to explain the changes observed in the community. 

Size spectra analysis goes beyond the population to the community as a unit, by 

considering individual characteristics ofthe organisms. A size spectrum is the distribution 

of an attribute of a community as a function of size. Hence, individuals are grouped 

together according to the size stage they are in and regardless of the species to which they 

belong. The shape of the size spectrum and its change over time can give information 

about the ecological state ofthe community. 

The more complex a system is, the more difficult it is to apply experimental tests 

to it. Indirect effects and time lag effects among variables are difficult to find using 

statistical models (Akenhead et al., 1982; Henderson, 1987). Experimental tests assume 

an understanding of the system in order to be able to set the experiment and to give cause­

and-effect results. Many ecological phenomena are complex, include many variables, and 

are not completely understood. In these cases a model is useful to put the pieces together 

and show the possible expected outcomes. Simulation models are appropriate for dynamic 

studies in which the processes themselves are equally as important as the final outcomes. 

Furthermore, a model can cover temporal scales that other methods do not and can be 
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very valuable when studying a large spatial scale, where experimental replications are not 

possible (Carpenter et al., 1995). In particular the dynamics of species with a long 

lifespan and a wide habitat range are difficult to deal with experimentally. In those cases, 

models are very helpful to complement experimental studies and to identify possible 

important processes or factors that should be looked at more closely. In addition, a model 

allows the incorporation of new information about the system that may not have been 

considered or not have been available in the first instance. Although these reasons support 

a simulation exercise, it is worth discussing to what extent a model will give us useful 

information. 

2.4. EXPECTATIONS FROM A MODEL 

Most methods mentioned in the last section gtve a representation of the 

community; thus they can be considered as models. Nonetheless, they are static and none 

of them can test the long-term dynamics of the fish community under different scenarios. 

A simulation model will not only attain these objectives, but also will permit integration 

of all levels of organization, from individual to community and, without losing resolution 

at these levels, observe the emergent properties that come from their integration. The 

model used in this thesis is based on the interactions ofthe individuals of the community. 

Because the abundance of offspring will influence the future abundance of large adult 

individuals, and at the same time the abundance of large adult individuals will influence 

that of offspring, a continuous cycle is established with no specific bottom-up or top­

down structure which could influence the results. 
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A simulation model for the Newfoundland demersal fish community is intended to 

serve as a tool to: (1) study the importance of size in the structure of a fish community 

and (2) quantify sensitivity to externalities in the fish community. 

The difficulty of obtaining accurate quantitative results already mentioned in the 

introduction stems from: (1) background noise, as for example environmental uncertainty, 

which creates constant uncertainty (Beddington et al., 1984; Larkin 1996), (2) the absence 

of universal laws in ecology and the uniqueness of each ecological situation 

(Roughgarden, 1998), (3) past scenarios may be completely different from future ones, 

i.e. it will not work to model the asymptotic part of a sigmoidal curve using the equation 

created to model the exponential growth of that same curve, and (4) data may be 

insufficient to give exact outcomes, e.g., many survey data do not cover the lifetime of 

species. Nonetheless, a model may still be useful even when it is not completely accurate. 

As Roughgarden (1998: ix) points out: 

"Think of cooking. In most dishes the ingredients don't have to be measured to a 

milligram, nor the baking timed to the millisecond. A model too doesn't have to 

get everything exactly right, because it may still account for what is going on 

pretty well. " 

Trends, magnitude and relative abundance are more robust measures for a model 

result than absolute abundance of the variables for a model result. Therefore, it may be 

better to look for significant changes in these measures rather than at exact abundance 

values when interpreting the results from a demersal fish community simulation model. 
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The analysis of these measures can reveal: (1) emergent properties at the community level 

induced by the size factor, (2) indirect effects, i.e., the links between elements are as 

important as the elements themselves, (3) possible drastic change in the dynamics of the 

system, and ( 4) a framework for fisheries management, i.e., a general approach to 

consider fisheries resources and the effect of fisheries. 

General modelling problems of balancing complexity with prediction error as well 

as generality with accuracy (Clark, 1984; Puccia and Levins, 1985; Sugihara, 1984) are 

easier to deal with when the modelling process is viewed as an approach to ecological 

phenomena. Again Roughgarden (1998: xi): 

'Think of building a bridge at the mouth of a river. There's no universal bridge -

one size doesn't fit all, but civil engineering offers a general approach to building 

bridges. Similarly, no two lakes are the same... .. .. Through modelling one can 

present the information about different systems in a common format, and see 

general features emerge. " 

The most important factors for the outcome of a model are the variables selected 

and assumptions considered in the construction of the model (McAllister and Kirkwood, 

1998; Lai and Gallucci, 1988). The underlying assumptions in the simulation of the fish 

community under study here are that predation is the main interaction within the 

individuals and that it is both density and size-dependent. These assumptions are well 

recognized in the literature (Bax, 1991; 1998; Yodzis and Innes, 1992; Dunn, 1972). In its 
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basic form the model is deterministic, but it can incorporate internal or external 

stochasticity. 

2.5.CONCLUSION 

The fish community defined by its populations of interacting species sets the 

biological limits within which any disturbance must take place. The practical importance 

for fisheries demands more than a description of the fish community; it requires an ability 

to quantitatively measure the standing stock and, furthermore, quantification of changes 

over time. Uncertainties discussed in Chapter 1 limit the accuracy of quantitative 

measures. The reality of uncertainty is a compelling reason to look for overall trends 

instead of quantitative accuracy in fish-fisheries interactions. For this reason, many 

international organizations are adopting a precautionary approach to fisheries 

management (NAFO working paper 97/15, MS 1997). This precautionary approach looks 

for limits and target reference points. Multivariate methods and size spectra analysis, 

reflecting changes occurring at the whole community, may indicate whether these 

reference points need to be defined at the community level. Based on the structure and 

links among individuals within the community, a simulation model can serve as a 

framework to observe the trends followed by the community under different management 

scenarios. We will build the case for a new size-based simulation model (introduced 

explicitly in Chapter 6) in the next few descriptive and ami.lytical chapters. 
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Chapter 3 

From landings to fish community 

3.1. INTRODUCTION 

Species characteristics are expected to influence the long-term changes of a fish 

community structure when it suffers a continuous fishery pressure. We describe and 

analyse the changes undergone by the demersal fish community off Newfoundland using 

the two sources of data introduced in the previous chapter: fisheries landings and survey 

data. Despite the fact that landings data are easier to obtain, more common and cover a 

longer time period, they do not directly reflect the state of the fish community. 

Comparison of the two kinds of data help to determine the extent to which fishery data 

can provide information about the state and change of the fish community. 

The collapse of the Newfoundland groundfish fishery has followed a familiar 

pattern observed in other fisheries around the globe (Sinclair and Murawski, 1997; 

Johnson et al., 2001; Deimling and Liss, 1994): increasing catches, diversification of 

target species and then collapse. The timing of this overall process is related to the 

structure of the fish community. Each species' life history parameters have implications 

for the response of fish to fisheries (Regier and Loftus, 1972). 

As an economy of scale, the fishery usually targets a species because of its 

abundance in terms of biomass. For the biomass of a population to be high, there must be 

many individuals or/and the individuals must be of big size. 
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The basic equation for population dynamics is of the form: 

N t = N oe(b-m)t 

where No and Nt represent the number of individuals in the population at the initial time, 

0, and after a certain time, t, respectively, b is the reproductive rate of the population and 

m is the death rate (mortality). When b and m cancel each other, the population is in 

equilibrium, i.e. it remains constant over time. Regardless of equilibrium conditions, the 

actual values of b and m are important (Margalef, 1978). The magnitude of b and m 

reflects the fluctuation range for a population. The greater the fecundity the larger the 

fluctuations a population can cope with, because the range within which b and m can 

adjust to each other is larger. In many animals, greater fecundity is observed in small, 

short lifespan species (Pimm, 1991, Margalef, 1978). However, most fish species, despite 

different size and lifespan, behave as r-strategists with respect to offspring production. 

Small fish species are reported to undergo more frequent fluctuations than larger ones 

(May, 1984). Since b and mare both average measures for all cohorts in the population, 

their value is smaller in large, long lifespan species. For each individual cohort, b (as 

recruitment to the next age) and m decrease with age. Therefore, the age (size) structure 

of the community influences the values of b and m, especially in species with a long 

generation time. Furthermore, the age (size) structure of the population will greatly 

influence its biomass, a fact that is not explicit in the basic equation given above. 

Life history parameters have implications with respect to population stability, i.e. 

the time for a species to recover after a disturbance (resilience) and the time it remains 

unchanged under a perturbation (resistance). According to life history parameters, small 
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short-lived species should have low resistance but high resilience due to their short 

generation time. On the contrary, large long-lived species will have greater resistance 

because they have more biomass accumulated in older individuals. At the same time, 

because longer time is needed to replace lost older individuals, large species will have 

lower resilience. 

3.2. DATA AND METHODS 

Fishery data that are used here correspond to landing catches, measured by 

weight, from the NAFO areas 2J and 3K in the years 1960 to 1994. The way the species 

are classified by NAFO is shown in Chapter 2 (Table 2.1). As was already explained, in 

some cases several species are lumped together. For clarity, hereafter we will refer to 

these classification groups as species, even though some of them include several species 

in the reported landings data. Scientific survey data available for the same area only cover 

the period 1978 to 1993. The selection procedure and list of demersal species from survey 

data have also been explained in Chapter 2 (Table 2.2). 

Several analytical methods are applied to the data in order to obtain a complete 

picture of the fish community change in species composition and to evaluate the fishery 

data. First, descriptive analyses show the trend of the fishery over time and help to 

identify the structure of the exploited community regarding species abundance, 

dominance and life history. Second, community indices are calculated and discussed. 

Finally, cluster analysis is performed with the purposes of: (1) observing changes in the 

species composition of catches over time, (2) showing which species follow the same 

trend over time, and (3) describing any possible relationship between each group of 
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species that might follow a similar trend and the overall trend of the community over 

time. 

Description of total landings as well as landings of the most abundant species are 

presented. Descriptive analyses are also performed using survey data. Comparisons of the 

results obtained from landings and survey data help to determine whether fishery landings 

really reflect the state of the fish community. In comparing graphics, attention should be 

paid to the fact that the time period covered is different for survey than for landings data. 

The Shannon diversity index (Stiling, 1996) and richness (as number of species in 

landings data) are calculated, and the relative importance of each species in the total 

yearly catches is discussed. 

Time series of landings data are further analysed using a cluster technique, the so­

called Sequential Agglomerative, Hierarchic Non-overlapping Cluster methods (Sneath 

and Sokal, 1973; see also Legendre and Legendre, 1983) performed using the software 

package NTSYS (Rohlf, 1995). Analyses are carried out in two ways, first to group years 

and then to group species. Both cluster analyses stem from the same data matrix. The 

input matrix is that of the weight of each species in each year. In a first step the input data 

matrix values are transformed to log10 (x+ 1) in order to minimize the importance of the 

most abundant species and stress the relative change rather than the absolute value of 

change. The addition of 1 to the variable value previous to the log transformation is to 

deal with 0 values, for which the logarithm cannot be taken. 

From the resulting matrix, the Bray-Curtis distance metric 1s chosen as a 

dissimilarity index for the temporal analysis, because it reduces the weight of the most 

abundant species in the results and better accounts for the change in magnitude of species 
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groups over the time series. Thus, in the resulting cluster plot, years with the same or 

similar species composition of catches will be close together, and the existence of 

continuity over time in catches can be determined. When a second cluster analysis is 

performed on the species (as opposed to years), Pearson correlation is used as the 

similarity index. The reason is to centre attention on species with similar fluctuations (as 

directions of change in abundance rather than the abundance value itself) over time. Thus, 

species that increase or decrease in the same years are going to be more similar than 

species with opposite changes in abundance, and therefore they are grouped together. 

The equation to calculate Bray-Curtis distance is: 

dij = Lklxki -xkji!I)xki +xkJ 

where dij is the distance between two observations, and Xki and Xkj are the values of the 

variable kin observation i and j respectively. 

The equation to calculate Pearson correlation is: 

where rki is the Pearson correlation coefficient (varies from -1 to + 1 ), Ski is the covariance 

of variables k and i, and sk and si are the standard deviations of variable k and variable i 

respectively. 
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3.3. RESULTS AND DISCUSSION 

3.3.1 DESCRIPTIVE ANALYSES AND COMMUNITY INDICES 

Fishery landings (Fig. 3.1) indicate an overall decrease over time. This trend 

matches most of the time the trend of cod, because cod accounts for most of the weight of 

total landings. Capelin is the other species that in the 70s and a little bit in the late 80s has 

a significant weight in total fishery landings. Survey data (Fig. 3.2) cover only the period 

from 1978 to 1993. They indicate a decline in overall community biomass, but cod does 

not account for most of the community weight. A significant weight in the community is 

accounted for by other species, and their proportion is reduced over time. Capelin does 

not seem to have a significant weight in the community. However, it should be 

remembered that this species is under-represented in bottom trawl surveys. The picture of 

the fish community as reflected by survey data (Fig. 3.2) is different from that seen in the 

catches. Survey data show that even though cod is the most abundant species in the 

community, it does not account for most of the community biomass. 
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Cod has historically been the principal commercial species in the Newfoundland 

area, accounting for most of the yearly catch in the fishery. Only the catches of capelin 

are comparable during the 1970s. The only time when total catches do not follow cod 

trend is when capelin captures increase. Nonetheless, decline of cod catches is only 

temporarily buffered by catches of capelin and no other species can replace the loss of 

cod, which remains the principal fishery species even when its catch declines. Capelin, a 

short-lived small species, can only cope with fishery stress for a short time, less than a 

decade. It is in the early 80s, when the decrease in cod catches is no longer compensated 

for by capelin catches, that total catches begin to reflect the overall lack of resources and 

this situation is not compensated for by any other additional species in the following 

years. 

Figure 3.3 describes the biomass change over time of some species (other than cod 

or cape lin) relevant to the fishery at one time or another. None of these groups ever reach 

an abundance comparable to that of cod or capelin. These species cannot support the 

fishery over either as long a time or as high in abundance as cod did, even though their 

relative abundance in the catches may increase over time. An increase of relative 

abundance of some species in total catch can mislead fisheries managers to believe that 

there are prospects for a new fishery. To avoid that, changes in relative abundance of 

species should be considered in relation to the relative abundance of the rest of the 

species and to the total amount of catches. The percentage comprised by each group in 

each year's catch is not by itself an adequate index to compare landings in different years. 

The abundance of a certain group, for example, may decrease over time yet its percentage 

may increase due to a reduction in the overall abundance. 
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The catches for many of the non-dominant species peak at a similar moment in 

time (around 1970). Several causes might explain this observation. It may be due to an 

intensification of fishing. That would explain why for many groups the increase starts 

around 1968, the year corresponding to the maximum capture of cod. That might be the 

case for some flatfishes and grenadiers (Fig. 3.3). The time match for the peak of catches 

could also correspond with an especially favourable time for the fish community. Non­

dominant species might also increase in abundance as a result of indirect effects caused 

by the decrease of competitors or predators. That would be the case of substituting one 

species for another related one, e.g. catching Winter flounder when other flatfishes 

decline or in the shift from Roundnose grenadier to Roughhead grenadier. Yet, the 

increase in catches of these newly fished species does not correspond to any real increase 

in nature. Often, the catches decline observed in these species is faster and even 

anticipates the decline of cod. 

Changes of diversity and richness for fishery and survey data are shown in Figures 

3.4 and 3.5 respectively. Fishery landings data show a trend of increasing species richness 

from 1960 to 1988. Diversity also increases from 1960 to peak in 1978. Survey data, 

covering from 1978 to 1993, do not show any change over that period either for the 

diversity or for species richness. The dominance of cod in total landings weight until 

1971 suggest that during this time the increasing diversity is likely due to the variation in 

the number of species entering the fishery. From 1971 to 1978 (the year of maximum 

diversity) change in relative abundance of species may as well contribute to diversity 

increase, since capelin catches increase and cod catches decrease. Species richness 

increases during all this time and until1988 does not indicate that new species appear in 
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the area, but rather that more species are targeted. Supporting this idea is the fact that 

survey trawl data show always a higher species richness than does fishery landing data. 

Increasing number of target species is probably due to intensification of the fishery, as 

supported by the correspondence in time between catch peaks of other species and the 

decline of cod. Diversity obtained from fishery data do not reflect the real state of the 

community. Diversity or richness from survey data do not show any clear trend over time 

(3.5) despite the drastic changes in community abundance (Fig. 3.2). Thus, neither gives 

much information about the changes of the fish community. 

Despite the fact that fisheries abundance does not necessarily correspond to 

natural abundance of species, life history parameters of individual species seem to 

influence the behaviour of the fishery. Cod, a long-lived top predator, dominated the 

fishery even during its decline. Capelin, although it seems to have been favoured by the 

removal of its most important predator, cod, has neither approached the maximum catches 

of cod nor has sustained large catches for as long a time as cod. Capelin, with a short 

generation time and fewer cohorts, is able to sustain overfishing but not for very long, 

because its biomass does not become accumulated in large old individuals as is the case 

for cod. Redfish species, also important in fisheries, do not reach the level of capture of 

cod but remain in the fishery for a long time. Redfishes are also long-lived species but are 

smaller than cod and are ovoviviparous. 
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3.3.2 CLUSTER ANALYSES 

Further insight into changes followed by the fishery comes from the application of 

cluster analysis to landing data. Grouping of years according to their fishery landing 

composition is shown in Figure 3.6. A constant tendency towards more dissimilar catches 

over time results. Four periods are clearly distinguished, limited by approximately 22% of 

Bray-Curtis dissimilarity. A first period corresponds to the years 1960 to 1966; catches 

are high and diversity is more or less constant. A second period of diversification begins 

with a peak in catches in 1967, and the end of this period corresponds to the dramatic 

reduction of cod in 1978. The period of the 1980s corresponds to the maintenance of 

moderate levels of catches, but the number of target species continues growing. Finally, 

1992 to 1994 is the period of fisheries collapse. 

When cluster analysis is based on the species (Figure 3.7), species that follow a 

similar trend over the study period are gathered together. Three main groups are 

differentiated: species that are present at the beginning but disappear in the last years, 

species that appear only in the last years, and species that are present in the intermediate 

period. The results of this analysis help to explain that the structure observed in Fig. 3.6, 

where the fishery follows a continuous orderly change over time, is the result of a 

progressive decrease in abundance of target species and the addition of new ones. 

48 



Landings years cluster 

60 60s 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 60s to 70s 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
83 
82 
84 

. 85 
86 
87 80s to 90s 
88 
89 
90 
91 

Collapse 92 
93 
94 

0.06 0.16 0.25 0.35 0.45 

Bray-Curtis dissimilarity 

Fig. 3.6: Change over time of catch composition. NAFO ladings data 
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The first species group identified in the cluster analysis, for which the overall 

trend is a decrease over time, corresponds mostly to the abundant large top predators 

(Atlantic cod, Atlantic halibut, redfish). This group is related most closely in the 

dendrogram (Fig. 3.7) to the group where the abundance peak occurs in the mid-years, 

suggesting an intensification of captures that aims to maintain total landings. This second 

group is dominated by flat, deeper-living or smaller species (plaice, Witch flounder, 

Roundnose grenadier, capelin). Both groups differ strongly from the final group 

comprised of species that appear only in the last years. These species are smaller in size 

with respect to the other groups and less abundant (Winter flounder, Greenland cod, 

Roughhead grenadier, etc). This shift in effective target species (perhaps landed as 

bycatch) suggests an overall restructuring of the community. Since most of the species of 

the last cluster are not present at all in earlier years, their appearance is likely in response 

to the suppression of other species and an attempt to diversify in the market. 

Those species that only appear in landings in the last years are covered completely 

in all years by survey data. Thus, we can examine whether the real trend of these species 

is reflected by fishery landing data. Species such as Greenland cod or Roughhead 

grenadier that are present in landings only in the last years (later than 1978), can be 

observed in all years as recorded in survey data (Fig. 3.8). Survey data show that these 

species are not exclusively present in only the last years of the fishery and even that their 

abundance has been decreasing over time. Furthermore, the time of their appearance in 

the fishery does not correspond to their period of greatest abundance in the survey data. 
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Socio-economic factors influence fishery data, which cannot be treated as 

scientific data. Fishery development has been the joint result of economic impositions and 

ecosystem restrictions. If fishery landings reflect in any way the state of the fish 

community, they will pertain mostly to the past. Nonetheless, the long-term trend 

observed in fishery data for each fish species, once it becomes targeted, is useful to bring 

a focus on the life history and ecology of the species as a factor to consider in the 

sustainability of future fisheries. Life history parameters of each species group seem to 

play a major role in determining how long each species group can sustain the fishery and 

the abundance of the catches that can be expected. Species life span, size and 

reproductive capacity determine the potential of any species to accumulate biomass and to 

renew itself. 

Commercial species usually have a long life cycle. This makes it more difficult to 

stop their collapse once a downward trend becomes obvious, and more difficult for the 

stock to recover if it indeed is possible at all. In addition, the fact that commercial species 

occur over wide areas enlarges the impact of their removal. As they are normally top 

predators, the top-down effect through the food web of their removal is more dramatic. 

Finally, the high level of adaptation shown by these species to their habitat is also an 

important factor determining the possibility of recovery of the functional capacity of the 

ecosystem, since ecologically equivalent substitute species may not exist. The 

characteristics of commercial species influence the amplitude of the action-reaction 

cycles represented by the conceptual model of Fig. 1.1 (Chapter 1: page 4). 
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3.4. SUMMARY AND CONCLUSIONS 

The Newfoundland demersal fish community 1s characterized by a marked 

dominance by cod. This large top predator has dominated both the groundfish community 

and the fishery. The high abundance of biomass accumulated in the older, large-sized 

individuals has sustained fishery catches over a long time. But the natural process of 

producing biomass is slow, especially in a long-lived species like this one, and a long 

time is also expected to be required to recover lost biomass. The decline of cod has 

unveiled important changes taking place in the fish community. Other species that are less 

productive or have shorter generation times have been unable to compensate for the 

reduction in cod catches and have themselves suffered a rapid decline once they become 

exploited. Even non-target species have suffered changes in abundance, indicating that 

disturbance of one species can spread throughout the whole community (directly as 

bycatch and indirectly through fish interactions), which can have implications for the 

future composition and structure, and ultimately the overall productivity of the fish 

community. 

The data on total landings and diversification of captures contribute to cover up 

signs of perturbations in the fish community. When a perturbation occurs in a long-lived 

species, the time lag between the perturbation and its effect is still longer, although more 

dramatic. High diversity of many natural communities is usually interpreted as an 

indication of mature unstressed ecosystems (MUller, 1996). Landings diversity does not 

reflect the natural community diversity. For the Newfoundland demersal fish community 

diversification of fisheries more likely indicates instability of the system. For a fishery 

directed towards a dominant species like cod, the fishery diversifies when capture of 
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individuals of this target species decreases, and what becomes apparent is that the fish 

community is being disturbed. The next chapter will consider this idea in more detail 

using multivariate techniques and introducing size as a relevant indicator. 
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Chapter 4: 

Species size in relation to changes in the community 

4.1. INTRODUCTION 

The life cycle of a species has implications for the dynamics of that species 

(Chapter 3). In a first section of this chapter attention is paid to trends in the community 

as a whole and identification of the species that contribute mostly to these trends. 

Nonetheless, the dynamics of single species are influenced by their inter-specific 

interactions, and the community structure and dynamics represent the sum of all these 

interacting species. Size is a possible quantitative measure of the characteristic life cycle 

of each species (Bonner, 1965). Size-dependent predation is the major link among 

species. The hypothesis follows that size is an underlying factor accounting for the 

abundance of species in a community. A second section of this chapter studies the 

relevance of size as an indicator of the change in the relative abundance of species within 

the community. If the size individuals attain is an underlying factor determining the 

trends of species abundance, a step further will be the consideration of size groups instead 

of species as functional groups within the community. Chapter 5 will continue this line of 

inquiry with a consideration of the community size spectrum. 
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4.2. DATA AND METHODS 

In this chapter we use scientific survey trawl data for the demersal fish community 

off Newfoundland as presented in Chapter 2 (Table 2.2). These data are analysed using 

two multivariate techniques, Multidimensional Scaling (MDS) and Principal Components 

Analysis (PCA). These multivariate analyses are performed using the computer package 

Numerical Taxonomy and Systematics (NTSYS) version 2.0. The initial row data matrix 

contains the standardized biomass (by tow duration) of each species at each station and 

for each year of the study. To track the dynamics of populations, biomass and abundance 

alone give little idea of changes in age structure over time. However, biomass is a better 

indicator when the data used come from consecutive years, because biomass is less 

affected than abundance by recruitment variability. Another concern would be that the 

use of biomass data could induce a spurious importance of size in the results of the 

analyses. This is not the case because at the community level it is the pattern of change 

instead of the biomass that is considered in the analyses. Prior to MDS analysis, data on 

species biomass were log-transformed to reduce the effects ofwide variation in the values 

of the variables. The log-transformation applied was log10 (weight+ 1). For the PCA the 

row matrix is standardized with respect to both the total biomass of each species and the 

total biomass of each year. The first standardisation, by species, is done to focus attention 

on the relative change of species biomass rather than on absolute change, which is 

influenced by the difference in magnitude of the species biomass. The second 

standardization, by years, eliminates the influence of a possible overall continuous 

tendency of the community over time. 
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To observe the changes in the community, we applied MDS to order the survey 

years in a two-dimensional space based on the distances (similarity) among survey years. 

A distance obtained expresses the differences in species composition of the community in 

each year with respect to each of the rest of the survey years. The index used to estimate 

the distance (similarity) between any two survey years was the Bray-Curtis dissimilarity 

index. The reason this index was chosen is because it takes the relative change in 

abundance (as measured by biomass) of species into account, and those have more 

ecological significance than does a change simply in absolute biomass. If variation in 

absolute biomass is considered, changes in very abundant (as biomass) species will have 

more weight in the analysis than changes in less abundant (as biomass) species, even for 

small percentage variations of the very abundant species. As an example, a change of an 

abundant species from 100 to 90 in biomass is a less drastic change than a change of 

another species from 10 to 5 in biomass, even though in absolute terms the decrease of 

the latter species is half the decrease of the former one. 

To analyse the contribution of each species to the changes in the community we 

complete the MDS analysis with a biplot in the same scale of the species that form the 

community following the method indicated by Legendre and Gallagher (2001). As they 

indicate: "To obtain biplots of species and sites [years in our analysis] from PcoA or 

NMDS, one can (1) compute correlations between the original species vectors .... and the 

site [year] scores along the PcoA or NMDS ordination axes and scale these correlations as 

described in Eq. 14 ..... "The Eq. 14 they refer to is: 
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Species Score jk = r jk s j /sk 

where r jk is the correlation between species j and year k, s j is the standard deviation of 

species j, and sk is the standard deviation of the year score vector k. 

In a second section of this chapter PCA is used to explore the possibility of a link 

among species in the community. This exploratory analysis is intended to reveal any 

underlying patterns in the change of the species as a group. This analysis was followed by 

a correlation analysis in a confirmatory mode to identify whether the observed underlying 

pattern had anything to do with size. If size is an indicator of the relative abundance of 

species within the community, it should correlate well with the score of the species along 

one of the principal axes and thereby explaining much of the variance of the species 

dispersion in the PCA result. 

The mathematical objective ofPCA is to find linear combinations of the variables 

that best fit the data. These linear combinations (i.e. Principal Components) are selected 

in order according to a maximisation of the variance explained by the component. When a 

few Principal Components (PCs) account for most of the variance, they not only indicate 

interrelationship among the variables, but also continue to represent the original variables, 

facilitating their representation and manipulation. The matrix from which PCs are 

obtained is the correlation matrix of the double standardized biomass matrix of the 

species. 

For the correlation analysis to identify size with the first Principal Component, the 

species size used corresponds to the usual maximum size (as length) attained by each 

species according to Scott and Scott (1988). Weight would be the most desirable measure 
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of size, but available information is complete only for length. Therefore, length is the 

measure of size used here. This measure is allometrically related to weight (especially at 

maximum size), and has the advantage of not suffering variation due to food intake; i.e., 

once a length is attained it is assumed that the fish is not likely to shrink in length when 

food intake is reduced. 

The correlation analysis is performed using Spearman rank correlation. For the 

Spearman rank correlation coefficient (rs) we use the formula: 

where N is the number of pairs of ranks and d is the difference in the ranks between the 

two variables. 

This method measures the association among variables considering their rank in 

the data list. Thus, we are concerned with whether or not a larger size in a species 

corresponds to a higher coordinate score for the species in the PC obtained from PCA. 

The two reasons for the use of correlation instead of regression analysis are: (1) the 

regression looks for a specific function to relate two variables, but the changes in the 

variables, although related, may not fit a specific equation, and (2) the possibility to rotate 

the PCs in a PCA implies a change in the value of the variable coordinates, but the order 

(rank) of the variable coordinates remains unchanged. Other reasons for choosing the 

Spearman rank correlation method are that it requires neither normality in the variables 

nor that any of the variables be known without error. Finally, imperfect knowledge of the 
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maximum adult size a species can attain does not interfere with the analysis as long as the 

ranking of species according to size remains constant. 

4.3. RESULTS AND DISCUSSION 

4.3.1 MULTIDIMENSIONAL SCALING ANALYSIS 

Figure 4.1 shows the two-dimensional plot from the MDS analysis. Arrows have 

been used to join consecutive years in order to better appreciate the trend in community 

change. In addition, a vector is drawn in the graph indicating the overall trend of the 

community during the study period. The location of each year in Fig. 4.1 corresponds to 

the community structure of that year, according to species composition and abundance (as 

biomass), in relation to the structure in the rest of the years. The community follows a 

continuous departure from its initial situation, entering a period of substantial yearly 

changes in the 90s. Superimposed on this overall diverging trend are two cyclic changes, 

one from 1979 to 1983 and the other from 1987 to 1990. The years of the survey data 

coincide with the time leading up to the fishery collapse in 1992, when drastic changes in 

the community structure could be expected and appear to be reflected in the MDS plot. 

The community seems to be changing at a rate that increases over time. The random 

stratified survey was initiated in 1978, and thus most probably the earlier survey data 

reflect learning and adjustment to methodology. If the point corresponding to 1978 in the 

MDS plot is considered an outlier, the community can be considered in a more-or-less 

stable state in the initial years of the analysis. From those initial conditions the 

community appears to change and move away at an ever-increasing rate. 
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Fig. 4.1: Two-dimensional MDS plot representing demersal fish community 
dynamics from 1978 to 1993. Small arrows show the annual trend and the heavier 
arrow show the overall trend. 

The causes of the pattern observed in Figure 4.1 can possibly be explained by the 

plot axes. The first MDS plot axis can be considered a "size factor", i.e. it reflects a 

continuous decline over time of community biomass, especially tracking the cod decline. 

The second axis appears to discern between target species, with the highest negative 

loading for target species and a positive loading for non-target species (Table 4.1 ). The 

two axes are highly correlated as shown by the similar loading values for each species on 
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both axes. This high correlation responds to the fact that target species are also the ones 

that dlive the community biomass decline. To confirm this interpretation the contlibution 

of each species to the community change is graphically represented in another MDS plot 

(Fig. 4.2). 
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Table 4.1 Species coordinates (equivalent to loadings) in the MDS plot. 

Species common name Axis 1 loading_ Axis 2 loading 

Deep Water Redfish -0.72478 -0.69363 

Atlantic Cod -0.54037 -0.49016 

Broadhead Wolffish -0.49527 -0.48600 

Atlantic Halibut -0.45446 -0.43256 

Golden Redfish -0.39395 -0.38184 

Witch Flounder -0.38837 -0.38373 

Spotted Wolffish -0.29796 -0.24012 

Greenland Halibut -0.28142 -0.28308 

Arctic Deepsea Sculpin -0.25552 -0.28292 

Striped Wolffish -0.24581 -0.23207 

Rouqhhead Grenadier -0.24296 -0.23120 

Thorny Skate -0.18244 -0.16682 

Spinvtail Skate -0.16791 -0.17265 

Vahl's Eelpout -0.16339 -0.11772 

Smooth Skate -0.12487 -0.10747 

Black Doqfish -0.08534 -0.12277 

Arctic Eel pout -0.07966 -0.02790 

American Plaice -0.05023 -0.05781 

Common Lumpfish -0.04756 -0.04362 

Blue Hake -0.03626 -0.04565 

Capelin -0.03523 -0.04925 

Larqe Scale Tapirfish -0.02026 -0.03318 

Greenland Cod -0.01785 -0.01211 

Esmark's Eelpout -0.01356 -0.01123 

Shorthorn Sculpin -0.00646 -0.00179 

Common Marlin Spike -0.00438 -0.00700 

Longnose Eel -0.00088 -0.00192 
Common Alliqatorfish -0.00061 -0.00017 

Roughnose Grenadier -0.00055 -0.00083 

Northern Alligatorfish 0.00044 0.00226 

Roundnose Grenadier 0.0191 0.0799 

Spiny Lumpfish 0.0359 0.0400 

Arctic Cod 0.5864 0.4857 
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Fig. 4.2. Species representation in the MDS space. Upper: MDS plot with open 
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of the section containing the species. Only species, not the years, are represented 
and the common name for some is indicated. 
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The plot of species along the same axes obtained for the years by MDS gives an 

idea of the species that contribute most to the community in one year or another. Fishery­

targeted (Atlantic cod), large (Broadhead wolffish) or long lived (Deep water redfish) 

species were characteristic of the community in the first years of the analysis. Biomass 

reduction of these species directs the trend of the community over time. The fact that 

most species cluster in the mid years of the analysis and no species appear related to the 

last years indicates that no species compensates for the decline of large species. In an 

exploited fish community where the fishery is size selective, as is the case for the 

demersal fish community off Newfoundland, it is not surprising to find large fishery 

species implicated in the community changes. However, abundance and size changes are 

observed in both fishery target and non-target species (Haedrich and Barnes, 1997). 

4.3.2 PRINCIPAL COMPONENTS ANALYSIS 

In order to detect whether there is a structure underlying the species changes over 

time, PCA was applied. The results of this analysis gave two main factors that explain 

35.9% and 15.9% of the variation in the species over time. The plot of the coordinates 

(factor scores) of the species on the axes defined by these two factors is shown in Figure 

4.3. 
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Fig. 4.3. Two-dimensional plot of the results of PCA and a table of the variation 
explained by each PC. For the clarity in the graph, scientific code (Table 2.2, Ch 
2: pg 28) has been used to identify the species location instead of species name. 

NTSYS performs a significance test for the equality of all roots or the equality of 

all but the first root, which will indicate absence or homogeneous correlation among 

variables. However, this significance test produced results not applicable in our study 
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due to the sample size. Since the analysis begins with only 16 observations (years), this 

limits the maximum number of dimensions, i.e., principal components, to 16. This implies 

that 17 of the 33 variables (species) we have are indeed linear combinations of the others. 

Therefore the total variance of the data must be contained in no more than 16 dimensions. 

Nonetheless, it is still remarkable in our demersal community that the two first PCs alone 

explain 51.9% of the total variance in the data, and both explain greater variance than 

would be expected by chance alone, according to the broken-stick method (Fig. 4.3). The 

idea of this test (Legendre and Legendre, 1983) is to consider a stick formed from all the 

PCs and to randomly break this stick into as many PCs as were considered in the PCA 

and to compare whether their variance is greater than that of the observed PCs. In 

addition, the small sample size only limits the generality of the analysis (Jolliffe, 1986), 

but not the description (visualisation) of the samples. Nonetheless, generalizations from 

these results should be stated with caution because of the sample size involved. 

Why are the species distributed the way they are in the PCA (Fig. 4.3)? The first 

PC accounts for 35.9% of the variance. This indicates the presence of a factor that may 

relate all species (variables) and therefore may underlie the trend of changes over time. 

The loading of some species on this first PC suggests that the underlying factor may be 

the size that the species can attain during their full life span. Small species (Northern 

alligatorfish, Spiny lumpfish, Arctic cod) tend to have high negative loadings and large 

species (Broadhead wolfish, Spinytail skate) have some of the highest positive loadings 

(Table 4.2). 

68 



Table 4.2: Coordinate and loading of each species on the first two PCs obtained by 
PCA. Species ordered by their loading on the first PC. 

Species common name PC axis 1 PC axis 2 Load PC1 Load PC2 
Northern Alligatorfish -0.253 -0.074 -0.873 -0.169 
Spiny Lumpfish -0.247 0.023 -0.852 0.052 
Roundnose Grenadier -0.245 -0.014 -0.842 -0.031 
Arctic cod -0.233 0.018 -0.802 0.042 
Common Marlin Spike -0.198 0.238 -0.681 0.545 
Longnose Eel -0.125 0.209 -0.431 0.480 
Shorthorn Sculpin -0.109 -0.171 -0.377 -0.393 
Common Alligatorfish -0.088 -0.280 -0.303 -0.642 
Common Lumpfish -0.031 -0.058 -0.106 -0.133 
Capel in -0.019 0.148 -0.065 0.340 
Arctic Eelpout -0.007 -0.329 -0.024 -0.753 
Roughnose Grenadier 0.006 0.166 0.021 0.382 
American Plaice 0.023 0.057 0.078 0.130 
Thorny Skate 0.073 0.034 0.253 0.078 
Atlantic Cod 0.077 0.002 0.264 0.004 
Vahl's Eelpout 0.108 -0.345 0.372 -0.791 
Spotted Wolffish 0.125 0.209 0.432 0.479 
Arctic Deepsea Sculpin 0.127 0.126 0.437 0.288 
Large Scale Tapirfish 0.133 0.200 0.457 0.459 
Black Dogfish 0.133 0.283 0.459 0.650 
Blue Hake 0.142 0.277 0.490 0.635 
Esmark's Eelpout 0.145 -0.135 0.501 -0.311 
Deep Water Redfish 0.146 0.080 0.503 0.184 
Greenland Cod 0.168 -0.209 0.578 -0.479 
Greenland Halibut 0.177 -0.291 0.610 -0.666 
Golden Redfish 0.216 0.014 0.744 0.031 
Spinytail Skate 0.221 0.124 0.760 0.284 
Roughhead Grenadier 0.231 0.153 0.796 0.350 
Striped Wolffish 0.240 -0.127 0.828 -0.291 
Atlantic Halibut 0.244 -0.050 0.841 -0.116 
Smooth Skate 0.246 -0.171 0.849 -0.392 
Witch Flounder 0.256 0.072 0.881 0.164 
Broadhead Wolffish 0.283 -0.006 0.976 -0.014 
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At this stage, two points should be clarified to be sure that the relation among PC 

results and species size is not an artefact: (1) the use of biomass data, and (2) the 

possibility of the PC being a "size factor" (following the terminology of Principal 

Components Analysis). 

In respect to point 1.- We have performed PCA starting with a row matrix of 

biomass data. Therefore, it could be thought that these data force the results to be related 

somehow to species size. However, the result of PCA and the position of each species 

along the PCs is not the result of species biomass, but the result of how that biomass 

changes over time. That change is independent of the actual amount of the biomass. Two 

species of very different absolute biomass can follow the same trend over time and so will 

appear together in the PCA. 

In respect to point 2.- When the overall (summed values of all) value of variables 

changes in a continuous way (increasing or decreasing) across the observations, the first 

PC collects this overall trend and do not differentiate between variables (species in our 

case). An overall decrease in biomass over the observed period has occurred in the 

demersal fish community of Newfoundland (see Fig. 3.2) . One of the standardizations 

mentioned in Section 4.2 is performed to eliminate this trend which could influence PCA 

results. By standardizing the original matrix of species biomass by the total biomass of 

the community each year, the sum of species biomass adds up to 1 for all years. Thus, the 

overall trend over time is eliminated. However, the relationship among species regarding 

their tendency of change over time is maintained. 

In order to test the hypothesis that species size is the underlying factor for the 

observed species trend, we apply the Spearman rank correlation analysis between species 
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size and the first PC scores. The maximum length each species can attain enters the 

variable 'species size', and the coordinates of each species from PCA enter the variable 

'1 51 PC'. The result of the correlation is rs = 0.58. This result is contrasted with the 

significance test that assumes as a null hypothesis that the correlation between species 

size (length in this case) and 1st PC is zero. To do this it is considered that the random 

variable rs ~ (N- 2)/(1- r5
2 ) follows a t distribution with N-2 degrees of freedom. In this 

study the value of rs~(N -2)/(l-r5
2 ) is 4.01, greater than t31,o.os (=2.03). Therefore, the 

null hypothesis can be rejected with 95% confidence, and the premise that the first PC 

reflects species size is accepted. Ranks and distances of species size and the first PC are 

shown in Table 4.3. 

The Spearman rank correlation coefficient (rs) for these data indicates a significant 

correlation of size with the first PC. This result supports the implication of size as an 

underlying factor in the species interrelations and community change over time. The 

structure of the community is based on species interrelations, which are known to be 

based on size trough the food web. Therefore, a constant perturbation limiting the 

maximum size a species can reach will induce changes in species links and relationships. 

Functional groups based on size rather than taxonomic species might then usefully 

represent and reconstruct the structure and dynamics of the community. 
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Table 4.3: Species size, species rank according to size and to 1st PC co-ordiante, 
and the distance (d) and squared distances ( d2) used in the Rank correlation 
analysis. Size data from Scott and Scott (1988). 

Species Sp size Rank Rank of species d d:l 

common name (em) of size on first PC 

American Plaice 155 33 13 20 400 
Arctic Cod 25 4 4 0 0 
Arctic Deepsea Sculpin 100 26 18 8 64 
Arctic Eelpout 75 20 11 9 81 
Atlantic Cod 120 30 15 15 225 
Atlantic Halibut 81 22 30 -8 64 
Black Dogfish 84 23 20 3 9 
Blue Hake 65 17 21 -4 16 
Broadhead Wolffish 143 31 33 -2 4 
Capelin 25 5 10 -5 25 
Common Alligatorfish 18 2 8 -6 36 
Common Lumpfish 50 12 9 3 9 
Common Marlin Spike 40 9 5 4 16 
Deep Water Redfish 46 11 23 -12 144 
Esmark's Eelpout 63 16 22 -6 36 
Golden Redfish 46 10 26 -16 256 
Greenland Cod 70 18 24 -6 36 
Greenland Halibut 90 25 25 0 0 
Large Scale Tapirfish 25 6 19 -13 169 
Longnose Eel 74 19 6 13 169 
Northern Alligatorfish 23 3 1 2 4 
Roughhead Grenadier 100 27 28 -1 1 
Roughnose Grenadier 38 8 12 -4 16 
Roundnose Grenadier 30 7 3 4 16 
Shorthorn Sculpin 50 13 7 6 36 
Smooth Skate 61 15 31 -16 256 
Spiny Lumpfish 12 1 2 -1 1 
Spinytail Skate 152 32 27 5 25 
Spotted Wolffish 90 24 17 7 49 
Striped Wolffish 107 29 29 0 0 
Thorny Skate 102 28 14 14 196 
Vahl's Eelpout 51 14 16 -2 4 
Witch Flounder 78 21 32 -11 121 

2484 
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The tendency for species to be distributed along the first PC according to their 

body size (length) can be visualised by a scatter plot of the species using the rank of 

species by size vs. the rank of species by loading (score) on the first PC (Fig. 4.4). 

Despite the tendency observed, the correlation is not perfect, and that is in addition to the 

the only partial explanation (35.9%) of the changes observed by the first PC. However, 

the difficulty of obtaining unambiguously clear results in ecological studies must also be 

borne in mind (Chapter 1). When dealing with ecosystems many interacting factors are 

involved, resulting in a great deal of noise when trying to isolate any one of them. 

Furthermore, when species are under fishery and large individuals are continuously 

removed the maximum size of the individuals present is being changed. This supports the 

idea of looking at the community as integrated by size-based functional groups instead of 

as species-based functional groups, an idea that will be developed in the next chapter. 
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Fig. 4.4: Scatter plot of species considering their size (length) and their location 
along the first PC. There is a rough tendency of the species to fall along the first 
PC according to their size (larger species- larger loadings). Data in Table 4.3. 
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4.4. CONCLUSION 

The demersal fish community off Newfoundland has changed from 1978 to 1993. 

Targeted, large-sized species seem to drive the dynamics of a disturbed community by 

changes in their biomass abundance over time. Other more conventional studies of the 

same community showed that both target and non-target species have undergone change. 

The present study reveals the importance of a common factor that is related to the 

changes of species over time. This factor is identified with species size, supporting the 

idea that size is involved in species interrelationships as well as in their changes in 

response to disturbance. Thus, the size attained by individual component species is related 

to structure at the community level. If sizes of individuals are changed the whole structure 

and interactions of the community will be changed. With this in mind, we can now move 

to consider size as a simplifying factor to analyse community dynamics. 
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Chapter 5: 

Fish community size spectrum change over time 

5.1. INTRODUCTION 

Allometric processes at the individual and population levels make body size a 

good indicator of species dynamics (previous chapters). Due to the ontogenetic change in 

size and diet in fish, when species form a community the trophic interactions might be 

better regarded as interactions between different size groups of individuals rather than as 

interactions between different species (Dickie et al., 1987; Jennings et al., 2002). When 

thought of in this way, the classical representation of a food web as linkages between 

many species becomes a simpler diagram of linkages between size classes. When 

individuals are associated according to size instead of by species to form functional 

groups, then the size structure can be considered an emergent property of the fish 

community (Salt, 1979; Thiebaux and Dickie, 1993). 

The first observation of a biomass size-spectrum in the marine environment is 

attributed to Sheldon et al. (1972). They observed the distribution of particle sizes ranging 

from 1 to 100 !land found that biomass presented roughly the same concentration across 

logarithmically equal size intervals. They then extrapolated this idea to include all sizes, 

including fish and whales. Their observation implies a decrease in the number of 

particles with increasing size. Since this observation, many authors have tried to explain 

the reason for that pattern (Platt, 1985; Marquet et al., 1990, 1995; Lawton, 1990; 
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Blackburn and Gaston, 1994). Sheldon et al. (1972) had already mentioned the 

implication of the size distribution for the food chain and many authors have looked into 

energetic requirements and trophic processes within the community to explain the cause 

of the size-spectrum general pattern (Kerr, 197 4; Boudreau et al., 1991; Thiebaux and 

Dickie, 1993; Cohen et al., 1993). However, the causes suggested have been debated 

(Marquet et al., 1990, 1995; Blackburn et al., 1993). Theoretically grounded or just 

empirical, the negative relation between density and size have proven useful to compare 

different communities (Leaper and Raffaelli, 1999; Haedrich, 1997, MacPherson and 

Duarte, 1994), the same community over time (Pope et al., 1994) or the effects of 

disturbance on a community (Gislason and Lassen, 1997; Rice and Gislason, 1996; 

Bianchi et al., 2000). Later in this thesis, in Chapter 7, size spectra will be proposed as a 

means to verify and validate the size-based modeling of the dynamics of a fish 

community that will be presented in Chapter 6. 

Size dependency is the main characteristic governing predator/prey relationships 

in a demersal fish community. Thus, continuous growth that begins from a generally 

similar larval size but reaches very different adult sizes changes the trophic interactions 

between species over time, and makes it a process that takes place among size groups 

within the community rather than strictly among species of the community. The 

importance of size-dependent predation in fish communities is twofold. Predation is the 

main cause of mortality in fish and, at the same time, the main link among fish 

individuals. As a result of this size-dependent interaction the community is size-structured 

and this size structure reflects the organization of individuals in successive trophic levels. 
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If the trophic chain of the community is represented by its size spectrum, the 

different density of individuals between two consecutive size groups indicates the transfer 

of biomass (and therefore energy) between trophic levels. At the same time, the 

magnitude of abundance of the smallest size groups indicates the potential productive 

capacity of the community (Rice and Gislasson, 1996; Bianchi et al., 2000). 

Next we use survey data to describe the size spectrum change over time of the 

demersal fish community off Newfoundland and discuss the future implication of these 

changes for the fish community and the fisheries. The terms size group and size class 

have the same meaning and are used interchangeably here. 

5.2. DATA AND METHODS 

A size spectrum is the distribution of a community attribute as a function of body 

size. The attribute we focus on is the density in number of individuals. As for size, it is 

measured as weight. It is important to make it clear that the community is considered as a 

whole unit in which individuals are not further subdivided into species. Thus, individuals 

will be grouped together when they share the same size (weight) at the moment of data 

collection and regardless of the species they belong to. 

However, in doing this we face a problem: the data available to us do not allow 

that fine a resolution. Species data used for the analysis are those first introduced and 

explained in Chapter 2 (Fig. 2.2). The row data matrix for each survey year presents the 

number of individuals and their added biomass for each species in each station sampled. 

The biomass of each single individual (i.e. size frequencies) within a certain species is not 

at our disposal. 
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We approximate using mean size. A rough estimation of size as weight for the 

individuals of each species in each station is obtained by dividing the biomass of the 

species by the number of individuals in each station. This average size is biased towards 

the smallest sizes due to the inverse relation between density and size of individuals. A 

sample is more likely to have a larger number of individuals of small sizes than of large 

ones. Despite this bias, the results comparing the fish community size spectra from 

several years is not going to be affected because the same bias applies to the way we 

obtain the size spectrum in all years. 

For each one of the 16 survey years (from 1978 to 1993) the number of stations 

sampled was between 125 and 353. The steps towards obtaining the size spectrum of a 

certain year start with the estimation of average size of the individuals of each species in 

each station as mentioned above. This measure is then used to distribute the individuals of 

all stations into size classes. At this step no consideration of species is taken. Therefore, 

the number of individuals in each final size class is the sum of all individuals of all 

stations for which the calculated average size (as weight) falls within the corresponding 

size class. The total biomass in that size class will be the addition of the biomass of all 

individuals of all species in that size class. Once individuals are distributed among size 

classes, individuals of the same species may appear in several size classes and individuals 

of different species are present in the same size class. 

The graphical representation of a size spectrum varies depending on the scale in 

which the axes are expressed and the scale at which size classes are defined. In this 

chapter equal width size classes of 500 g each over a range from 0 to 12000 g are 

considered, i.e. there are 24 size classes. The results are plotted on a logarithmic scale for 
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both abundance (y-axis) and size class (x-axis). The width of size classes has been 

choosen to avoid as much as possible the presence of densities equal to zero (explained 

below). Nonetheless, this value is present on several occasions and presents a problem for 

logarithmic transformation. To deal with this problem the logarithm is referred to the 

density + 1. Another problem then appears when the density has values between 0 and 1 

(very frequent in our data), since the addition of 1 would change the distance among them 

in the logarithmic scale. To solve this problem we determine the density as the number of 

individuals per 1000 tows. Thus, all densities are either 0 or greater than 1 before the unit 

is added and the log10 calculated. 

A regression line can be associated with each size spectrum. This linear size 

spectrum regression has the advantage of providing two parameters, the slope and the 

intercept, that can be used to compare the changes over time of the community size 

spectrum. In addition, these parameters have a biological meaning as indicators of the 

mortality (slope) and production (intercept) of the community (Rice and Gislasson, 1996). 

If the community were at equilibrium, the slope that indicates mortality in passing from 

one size group to the next would be as well an indicator of the energy transfer efficiency, 

since the biomass lost in a level can be thought of as maintaining the biomass in the next 

higher level. Many ecology texts refer to this value as "ecological efficiency". 

Furthermore, linear size spectra allow statistical tests to resolve whether changes 

observed in the size spectrum of the community over time are significant or might be 

produced simply by sample variability. 

The intercept is taken because it represents the abundance for the smallest possible 

size, i.e. when the size is the unit. The smallest size class for us is that of individuals 
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between 0 and 500 g, which has a mean of 250g. Therefore, the value of our regression 

line for the size spectrum at 250g will be considered as the intercept. Otherwise the value 

will be well outside our data range. 

Data manipulation may influence the results of the size spectrum analysis (Blanco 

et al., 1994; Vidondo et al., 1997). One of the factors that has an effect on the resultant 

linear regression of the size spectrum is the presence of size classes with 0 density. Sizes 

larger than 12000g are rare in the demersal community off Newfoundland during the time 

frame in which the community data were recorded. This is the reason why individuals 

with an estimated weight greater than 12000 g were not included in the analysis. This 

avoided possible distortion in the shape of the spectrum and in the values of the 

regression parameters. 

To describe the changes in the community we first construct the size spectrum for 

each survey year and then analyze the changes observed over time. Changes in each size 

group alone and the relative importance of each size group in each year considered are 

also developed, and are used to explain the trend of the community and its implications. 

5.3. RESULTS AND DISCUSSION 

Figure 5.1 shows the size spectrum ofthe community for each ofthe 16 years of 

the survey. The magnitude of the left-hand side of the spectrum (smallest size classes) 

tends to decrease somewhat over time. Even more dramatic is the decrease suffered by 

the largest size classes at the right-hand side of the spectrum. Linear regression of log10 

density+ I vs. log10 weigth+l facilitates the comparison between years as shown for 4 of 

the 16 size spectra presented again in Figure 5.2. These four years separated by a 5-year 
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time lag from one another are representative of the community changes over the entire 

study period. Table 5.1 shows the parameters and regression coefficient for the regression 

line of the community size spectrum in each one of the 16 years of the survey. A 

statistical test (ANOVA test for differences among slopes) to determine whether the slope 

of the size spectrum is significantly different over time shows a significant difference 

among slopes of the community size spectrum during the study period (Table 5.2). 

81 



~ 
~ 

t ...... 
00 
~ 
~ 

"'C) 
"-" 

0 ...... 
bJ) 
0 
~ 

0 ...... 
00 

5 
Q 

~ j 
1978 

~ j 
1986 

~ 1 

1979 

~ 1 

1987 

6 1980 6 1988 
4 4 

2 2 
~ 

0 ~ 0 + 
6 1981 0 6 1989 . ..... 

00 
4 5 4 

"'C) 
2 "-" 2 

0 ...... 
0 bJ) 

0 
0 

~ j 
1982 ~ 

~ j 
1990 

0 ...... 
00 

5 
Q 

6 1983 6 1991 
4 4 

2 2 

0 0 

: j 
1984 6 1992 

4 

2 

0 0 

6 1 1985 

:_~-··· ~~~3 
2.2 3.2 4.2 2.2 3.2 4.2 

Size (log10 w) Size (log10 w) 

Fig. 5.1. Size spectrum of the demersal fish community during the 16 years of 
survey. Density= No of individuals/! 000 tows, w = average weight of size group. 
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Table 5.1. Size spectrum regression fit parameters for each survey year. 

Year Slope Intercept R2 
y(x=250) 

78 -2.82 6.23 0.84 
79 -2.56 6.07 0.9 
80 -2.5 6.06 0.93 
81 -2.59 6.12 0.93 
82 -2.5 5.98 0.91 
83 -2.86 6.38 0.88 
84 -2.52 5.89 0.9 
85 -2.54 5.72 0.92 
86 -2.64 5.83 0.82 
87 -2.82 5.81 0.85 
88 -2.93 5.89 0.82 
89 -3.05 6.00 0.87 
90 -2.86 5.44 0.71 
91 -2.97 5.37 0.86 
92 -2.69 4.68 0.89 
93 -2.87 4.67 0.89 

Table 5 .2. Statistical test for difference among slopes. The size spectrum slope 
varies significantly over time. 

source of variation df ss MS Fs p 
among b's 15 463.0476 30.86984 100.2517 0.0000 
weighted avg deviations 352 108.389 0.307923 

As mentioned above, the intercept of the size spectrum regression line is an 

indicator of the production of the system. This is so because the intercept value 

corresponds to the abundance of individuals in their first life stages. For the purposes of 

this chapter the intercept is taken to be the y-axis value for the smallest size group, i.e., 
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intercept= y value when x = 250g. Loss in abundance from one size to another forms the 

slope of the spectrum and corresponds to fish mortality (=slope of the regression) that in 

an equilibrium community reflects the energy transfer efficiency through the food chain 

and in a community under fishery is an index of fishing exploitation rate. Considering 
I 

these two parameters 1 of the size spectrum, the community overall trend over time is 
I 

towards a lower produ~tivity and greater fishing stress over time (Fig. 5.3). 
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Fig. 5.3. Plot of the distribution of years according to intercept (y-axis) and slope 
(x-axis) of their corresponding linear size spectrum. The arrow indicates the 
overall trend of the community over time with respect to those two parameters. 
The ecological meaning is that the community is becoming less productive and 
less efficient or more exploited over time. 
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Rice and Gislasson (1996) argued that the removal ofthe largest individuals by a 

fishery is expected to result in a more negative slope of the size spectrum regression line, 

which becomes steeper and consequently raises the intersection intercept point. Similar 

changes could be hypothesized for the Newfoundland demersal community, since the 

period in which survey data for that community are recorded correspond to a time during 

which the fish community has been under strong fishery pressure and eventually leading 

to a collapse. Instead, the empirical data from the Newfoundland fish community shows a 

slight increase over time in the steepness of the size spectrum slope (i.e. the slope 

becomes more negative in value), and also shows a high variability for the intercept but 

with an overall decreasing trend (Figure 5.4). It is only during the period from 1985 to 

1989 that the trend for the slope and intercept match the expected pattern under fishing 

pressure as suggested by Rice and Gislasson (1996). For the whole study period, the 

observations are not conclusive regarding the effect of fishing pressure. A reason for the 

fluctuations of the intercept can be that recruitment is not constant over time because 

reduction in the number of the largest-sized individuals will reduce the number of 

recruits. In any case, the test determining whether the slope of the community size 

spectrum varies over time (Table 5.2) indicates that the community is in fact changing in 

respect to size-spectrum parameters. 
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Fig. 5.4 Trend followed by the size spectrum parameters of the fish community. 
The intercept represents the productivity of the community. The slope may reflect 
fishing pressure. Despite the fact that there is no clear trend, the intercept follows 
an overall decline as the slope steepness over time. 

It can be argued that these results indicate the independence between fisheries and 

the drastic changes affecting the fish community or that the complexity of fish-fisheries 

interactions prevents fishing pressure from being clearly reflected by size spectra 

analysis. Nonetheless, before rushing to these conclusions it is worth taking a closer look 

at the size spectra obtained from survey data. 

The hypothesis that under fishery pressure the size spectrum parameters (slope 

and intercept) increase in absolute value over time as stated by Rice and Gislason (1996) 
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may well correspond to the changes over time of the community from 1985 to 1989, 

when removal of large individuals becomes noticeable. Continuation of the fishing 

pressure affects offspring production and a decrease in the intercept of the size spectrum 

may therefore be expected, as is the case observed in our Newfoundland demersal fish 

community since 1989. Thus, our observations can be interpreted as being in accord with 

the hypothesized effects of fishing pressure. 

If attention is paid to the changes of each single size class (Figure 5.5), we see that 

the density of individuals in every size group is decreasing over time. The larger size 

groups are the ones that disappear first from the community since the fishery targets 

them. The sporadic peaks in density that appear in a size group during the course of an 

overall density decrease may be explained by the high recruitment of individuals from 

smaller size groups in the years corresponding to the peak. As an example, in Figure 5.5 

this argument can be used to relate the peak in density observed in 1983 for size class 1 

(250g) with that observed in 1986 in size groups 3 and 4 (1250g and 1750g respectively). 

The strong cohorts that produced the high density of size class 1 in 1983 would have 

grown to give the 1986 peaks for size classes 3 and 4. The reason why the peak does not 

appear in size class 2, might be interpreted as a consequence of the variation in the 

residence time of individuals in each size group, which depends on the growth rate of 

each species involved. 
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As larger individuals disappear from the community and the fishery continues to 

target the largest remaining sizes, the community becomes re-structured into fewer size 

groups. To see this effect we plot the number of size groups, starting from the smallest 

one, which accounts for most of the abundance of the community (i.e. 99% of the density) 

against time (Figure 5.6). Over time, the individuals are concentrated towards the smallest 

sizes. In 1979, 99% of the individuals of the community were distributed through 8 size 

groups, whereas in 1992 the three first size groups comprised 99% of the individuals in 

the community. Therefore, the size range of the community as calculated here has 

decreased by a factor of approximately 2.5 in only 14 years. 
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Fig. 5.6 Number of size groups representing 99% of the community abundance 
over time. 
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5.4. CONCLUSIONS 

After describing the size spectrum of the community over time and undertaking a 

detailed analysis of its changes some facts about the fish community situation can be 

stated: (1) density of individuals is decreasing over time in all size groups, (2) density of 

individuals in the largest size groups become so low over time that these size groups 

disappear from the community, (3) as a result of (1) and (2) individuals become 

concentrated in the smallest size groups, and ( 4) size spectra intercept and slope change 

over time with a long term trend of decrease in absolute value for both. 

The density decrease over time observed in all size groups and the associated 

compression of the number of trophic levels help to explain the changes and ecological 

significance of the size spectrum parameters. The continuous selective fishery in 

Newfoundland is decreasing the productivity of the demersal fish community and fish 

biomass is lost to the fishery instead of passing to the next size group (trophic level), 

especially in the largest sizes. Thus, the fish community retains less energy with an 

overall higher turnover rate, and which over time is likely to make the community more 

unstable in respect to perturbations (Chapter 3). 

A consequence of these changes in the community is that the biomass available to 

the fishery decreases. The result will be negative social consequences for the fishery. 

Therefore, our empirical analysis of size spectra in the Newfoundland demersal fish 

community tells us that the whole fish-fishery system is deteriorating. 
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Chapter 6: 

Size-based simulation of community dynamics 

6.1. INTRODUCTION 

From a holistic point of view a fish community can be depicted as a food web 

based on sizes (Chapter 5). From this perspective, individuals of equal size occupy the 

same trophic level regardless of the species they belong to, and individuals different in 

size of the same species occupy different levels. In most predator-prey models, each 

species is considered as the simplest unit within the trophic web (Link, 2002). However, 

when trophic levels are determined by size, and this size varies through the species' 

lifespan, the predator-prey-relationship between two species can be reversed within that 

lifetime. The same species passes from being potential prey to predator over time. 

Cannibalistic species such as cod, are both predator and prey at the same time. Sizes, not 

species, constitute functional groups in the community food web. Yet, the time spent in a 

trophic (size) level as well as the reproductive capacity varies among species. Thus, both 

species and body size of the individuals should be considered in order to describe the 

community as a food web. 

Individual sizes and species life history parameters are assumed to determine the 

community structure (Chapters 3 and 4). In the present chapter a simulation model is built 

to test the dynamics of the fish community under these assumptions. This model will 

show the consequences of size-dependent predation and life history parameters on the 

relative abundance of species in the Newfoundland demersal fish community. It is a 
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discrete time model showing the yearly changes of a demersal fish community with focus 

on the abundance in number of individuals. The model replaces the classical 

autoecological and species-based view of the ecosystem with a synecological and size­

based view. The abundance of a group of individuals (of similar size) depends on the 

abundance of their predators (individuals big enough to prey on them) rather than on the 

overall abundance of any particular predator species. Models considering size groups 

rather than species have been developed for plankton communities (Koslow, 1983), but 

not completely for fish communities. The static size structure model of ecosystems has 

proven acceptable and useful (Chapter 5). The closest dynamic approaches include 

especially MSVP A (Sparre, 1991) that takes into account shifts in diet of each individual 

species during their life. Also some applications of the ECOSIM model (Walters et al., 

1997) separate individuals of certain species into different size units according to their 

size-related diet. There are also the works of Silvert and Platt (1981), and Duplisea and 

Bravington (1999) that present dynamic models of fish communities considering trophic 

interactions strictly between size groups instead of between species. 

The abundance of the model populations will result only from a combination of 

species life history characteristics (growth, maturity, fecundity, lifespan) and species 

interactions through predation. The production and structure of the community is first 

considered in the absence of externalities (i.e. environment and fishing influences, 

Chapter 1 ). Under these conditions, presumably, the community will reach its maximum 

production capacity. This maximum places a limit on the conditions within which any 

external disturbance can operate, and also provides a reference point against which to 
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determine the impact of external disturbances. The influence of externalities on the fish 

community will be considered in Chapter 7. 

6.2. TROPHIC INTERACTIONS 

Trophic relations are described using a variation of the Lotka-Volterra equations 

in order to more accurately reflect natural communities (Berryman, 1992; Ginzburg and 

Akc;:akaya, 1992) and systems with a spatially heterogeneous distribution of prey and 

predator (Ardity and SaYah, 1992), which is the case in respect to demersal fish 

communities. 

The number of mature individuals will determine the number of offspring in each 

species population. Mortality in fishes, which determines the number of individuals that 

reach maturity, is mainly dependent on predation. Rates and linkages of this predation are 

reflected in the community food web. 

Usually, trophic web models are based on classic predator-prey equations: 

dN/dt = aN- bNP 

dP/dt = cNP- eP 

(la) 

(lb) 

where a is the per capita rate of increase of the predator (time-1 =#/(#*time)), e is the per 

capita mortality rate of the predator (time-1), b is the predation efficiency as the per capita 

rate of prey consumed per predator (predator-1 * time-1), cis the conversion efficiency as 

the per capita rate of predator produced per prey consumed (prei1 * time-1), and Nand P 

are the number of prey and predators respectively(# for both). 
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Berryman (1992) follows the evolution of predator-prey theory and shows how 

the representation of predator-prey dynamics has been improved by considerations of: 

1. The logistic equation in the population rate of birth. The application of the logistic 

equation to equation (1) will change the per capita rate of increase of the prey 

(represented by a in equation (1)) from being a constant to being a function of the 

number of prey individuals (=a (N)). 

The logistic equation represents the change in numbers of prey per unit time in the 

absence of the predator: 

dN/dt = aN(l- (N/K)) (2) 

where a is the per capita rate of increase of the prey (time-1) as in equation 1a. N is the 

number of prey individuals (#) and K is the carrying capacity of the ecosystem, the 

maximum number of individuals the ecosystem can support (#). 

The function a(N) in equation 3a is equal to a(1- (N/K)) in equation 2, and its 

dimensions are time-1• 

2. The functional response in the predator's feeding behaviour. The consideration of 

predator satiation prompts the change of the representation of prey decrease and 

predator increase due to species interactions (bNP and cNP, respectively, in equations 
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1a and 1b). In equation 1a, the prey decrease due to interaction among species is 

based on the mass action law. Thus, the parameter b is a constant representing the per 

capita rate of prey consumed per predator. Consideration of predator satiety implies 

that b becomes a function of the number of prey (=b(N)), which represents the rate of 

prey consumed per predator as a function of prey abundance. In equation 1 a the 

parameter b had to be multiplied by N and P to obtain the total number of prey 

consumed per unit time. However, the new parameter, b(N), is not a per capita rate 

but a rate (number of prey individuals eaten per predator); therefore, it only needs to 

be multiplied by P to obtain the total number of prey consumed per unit time. 

Similarly, predator increase, cNP, in equation 1 b becomes c(N)P. 

3. The density-dependent mortality of prey and production of predators. Density of prey 

will influence predator interaction; it will make the rate of prey consumed by a 

predator not just dependent on prey density, but also on the relative density of 

predator with respect to prey. Therefore, the rates of change due to interaction (i.e. 

b(N) for the prey and c(N) for the predator) will now be represented as b(N,P) and 

c(N,P) respectively. 

Once points 1, 2 and 3 are considered, the predator prey equations become: 

dN/dt = a(N)N- b(N,P)P (3a) 
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dP/dt = c(N,P)P- eP (3b) 

N and P are numbers of prey and predator. a(N) is the per capita rate of change of the 

prey in the absence of interaction, and is dependent on the number of prey individuals 

according to the logistic equation. b(N,P) and c(N,P) are the predation and conversion 

efficiencies respectively, as a function of the relative abundance of prey to predator and 

predator satiation (which includes functional response and density dependence). e is the 

per capita mortality rate ofthe predator as in the equation system (1). The parameter and 

variable dimensions are as in equation 1 except for b(N,P) and c(N,P) which have the 

dimension time-1• 

6.3. YET ANOTHER FISHERY MODEL 

In Chapter 2 we discussed why to use a model and what to expect from it. It 

would have been possible to choose some already existing model that best matched our 

purpose, yet we decided to create a new one. The main reason was to escape from the 

idea of a species-based community in favour of the idea of a size-based community. 

Another important reason was to follow the idea of reversing the usual treatment of 

species as dependent variables and processes as independent variables (Lawton, 2000). 

We focus on interactions as much as on individuals in the community, and both variables 

depend on one another. Not only do biological interactions influence the number of 

individuals in the community, the number of individuals influences as well the 

interactions. 
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Megrey and Wespestad (1988) give an excellent review and explanation of the 

models applied by fishery scientists since the early days of fishery studies up to recent 

times, and Megrey (1989) completed this review focusing on age-structured models. 

Fisheries models range from the simplest one-species models to the most complicated 

ecosystem or bio-economic models. MSVPA (Pope and Knight, 1992; Magnusson, 1995; 

Helgason and Gislason, 1979; Pope, 1979) and Ecopath with its dynamic form Ecosym 

(Walters et al., 1997) are the most widespread and accepted multispecies models. We 

disagree with the former because of its most common assumption, when used for 

forecasting (MSFOR), of a constant production over time in the community, and because 

it relies on fishery data to solve the model equations despite a recognized unreliability 

concerning the value that should be used for fishery mortality. Our disagreement with the 

latter stems from its assumption of equilibrium between production and loss of fish 

biomass for each trophic level or the constant and arbitrary accumulation of biomass in 

each trophic level. We propose a model in which production and equilibrium are not a 

prerequisite characteristic of the system. But the main difference from other models is the 

use of functional groups based on size and the interactions that occur among these size 

groups. In its basic form, our model is not a fishery prediction model; it is an ecological 

model of the fish community. 

The model presented here uses biological features known about the fish 

community to simulate the community dynamics and abundance. We have done our best 

to follow the parsimony principle and maintain the maximum simplicity possible while 

admitting the complexity of the community, and furthermore to keep the model as 

transparent as possible. In doing so, we have ignored interactions other than predation 

98 



among individuals, mortality other than that caused by predation or end of lifespan, and 

the influence of morphological (mouth gape) or behavioural constraints, in addition to 

size, in prey selection. It can be argued that the model is an oversimplification, and we 

agree that it is. However, the factors accounted for in the model are important enough so 

as to generate some emergent patterns in the community. As Bonner (1965: 15) states: 

"It is, after all, quite accepted that in a quantitative experiment, a statistical significance 

is sufficient to show a correlation. The fact that there are a few points that are off the 

curve, even though the majority are on it, does not impel one to disregard the whole 

experiment. Yet when we make generalizations about trends among animals and plants, 

such as changes in size, it is almost automatic to point out the exceptions and throw out 

the baby with the bath. " 

Therefore, we argue that our decision to create a new model is the best 

compromise between complexity and generality (Lawton, 2000). In addition this new 

model can accommodate exceptions to the assumed characteristics, e.g. the presence of 

non-piscivorous species. 

6.4. BUILDING THE MODEL 

Matlab® computer software (Kernan, 1997) allows construction of the model, the 

ability to run scenarios, and the presentation of results as graphics. It is worth pointing out 

some technicalities about the model. It runs on a personal computer (PC). The computer 

memory required for the model file is around 10 KB and its performance takes no more 

than a couple of minutes to generate around 500 annual iterations. The input data required 

to run the model are an initial number of individuals by species and size group, the time 
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period (number of iterations) for the simulation and a factor that identifies whether the 

simulation starts afresh or follows from the output of a previous run. The model in its 

computational form is presented in Appendix A (p. 185) and is available on disk upon 

request. In this appendix the reader will find a full explanation of equations and notations 

as they have been programmed in Matlab, the procedure to run the model and the changes 

that need to be made in order to consider new starting points or scenarios. Special 

attention should be paid to make sure the appropriate changes are made in all the model 

sections where the changed terms occur in order to ensure the running and proper 

performance of the model. Finally, Table 6.5 at the end of this chapter contains the list of 

variables and parameters used in the model and mentioned in this chapter. 

6.4.1. MODEL ASSUMPTIONS 

1. All individuals die after the end of the assumed life span for the species. 

2. Mortality is caused by predation and is density dependent (on both prey and predator 

abundance) except for that at the end of life span. 

3. Predation depends on size and is independent of the individual species. 

4. Offspring production is density dependent. There is a limit for each species in the 

number of offspring. This limit (K=1010) is applied to the number of mature 

individuals that are going to reproduce; therefore the maximum offspring production 

varies among species. 

5. Egg production capacity increases with size of mature individuals and varies among 

species. 

6. Food intake is a function of individual size according to the allometric equation: 
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z=3.504 w0.82 (Peters, 1984) 

where z = Kg of prey eaten by a single fish in a year and w = mass in Kilograms of 

the predator fish. 

7. Individual classification into size groups is Size 1 =[Og-9g] ( avg. 5 g), Size 2= [ 1 Og-

99g] (avg. 50g), Size 3 = [100g-999g] (avg. 500g), Size 4 = [1000g-9999g] (avg. 

5000g) and Size 5= more than lOOOOg (avg. 15000g). Based on the predator/prey 

weight ratio observed by Hahm and Langton (1984), it is assumed that Size 1 is 

prey of Sizes 2 and 3, Size 2 is prey of Size 4 and Size 3 is prey of Size 5. Sizes 4 

and 5 do not have predators within the community. Size 2 is assumed to feed on 

larval stages of Size 1. 

8. The time an individual remains in a size group will depend on the species to 

which it belongs. This time has been determined based mainly on growth rate 

information about the species given by Scott and Scott (1988) 

9. The model is dynamic (i.e. variables change through time). The number of 

individuals of a certain size group at time (t+ 1) is going to be the number of 

survivors of the preceding size group in the time (t). In the 0-1 age class, the 

number of individuals at time (t+ 1) is going to be the number produced by the 

individuals in the mature sizes at time (t) which have survived predation. 

10. Since annual periodicity tends to be dominant in the marine environment 

(Bakun, 1985), a year will be the time unit in the model (i.e. this is a discrete time 

model) and all rate parameters will be related to this unit time. 

11. Extinction of species is not possible. Since predation is dependent on the 

predator/prey ratio, a proportion of the prey will always survive. However, this 
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fractional quantity may get to very close to zero, which makes no sense, as the 

minimum number of individuals can only be an integer, 1 or 0. To avoid as much 

as possible the complications that arise with these small values (<1), offspring 

production is always rounded to the next upper whole number. Therefore, at 

least one individual is always present for each species in the model. Also in order 

to avoid indeterminacy in the equations, whenever a fraction is present a unity is 

added to the denominator. This does not have a significant effect for the 

computations and its effect decreases when the values of the variables increase. 

We find this convention helps to avoid the crashes that characterized the early 

stages of model development. 

6.4.2. THE SIZE STRUCTURE OF THE FISH COMMUNITY 

Predator-prey relations and food intake in fish are a function of body size 

(Yodzis and Innes, 1992; Peters, 1983; Bax, 1998). Trophic relations among 

individuals in demersal fish communities are based on individual size, so size-based 

models of the community dynamics have been encouraged (Boudreau et al., 1991). 

The fundamental role is that big eats small, but size varies during a life span and 

hence trophic relations will change as well. As a result, we propose a novel 

representation of the community dynamics based on size (Fig. 6.1). 
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Pelagic, coastal Demersal, wide -ranging 

Fig. 6.1: Graphic representation of trophic relations and habitat location 
changes during a fish's lifespan. 

Individuals are positioned in a trophic level according to their size. Trophic 

interactions will take place between sizes, regardless of the age or species of the 

individuals in each size group. Predator-prey interactions will be considered at the 

size level. The selection of size groups forming the community and their trophic 

interaction (see model assumptions pp. 96-97) is based on published information. 

Hahm and Langton (1984) find that fish prey on food that is between two to three 

orders of magnitude smaller (by weight) than their own size. Paradis et al. (1996) 
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indicate that the maximum vulnerability of prey to predator is when prey is 10% of 

predator weight regardless of prey item. 

In contrast with other food web models in which amount of prey is key to 

determining predator abundance, in our size-based model food is taken for granted 

(i. e. predators are never considered to be food-limited). However, this fact does not 

imply an exclusive predator-to-prey control, i.e. "top-down". There are three main 

reasons to neglect food dependency: (1) the ability of fish to fast during long periods 

of time, which will diminish the effect of a temporary lack of prey; (2) that 

invertebrate species, not a part of the model, are nonetheless considered to be a non­

decreasing constant in the ecosystem and therefore fish can shift to them if 

necessary; and (3) in most piscivorous species cannibalism is the norm, inducing an 

indirect "bottom-up" control of predator abundance. For example, a decrease of 

individuals in prey stages (i.e. small size) of a species due to cannibalism will result 

in a decrease of individuals in the predator stages (i.e. larger sizes) over time. 

Usually the predator stages of a species correspond to mature stages, and therefore a 

high abundance of predator stages will induce a high abundance of larvae and 

juveniles through reproduction. However, since the intensity of the trophic 

interactions is density dependent, predation on those abundant young stages is also 

going to be more dramatic. Thus, species composition and density dependent 

interactions within the community induce multiple indirect effects that can result in 

both depensation and compensation. 

Size and density dependent predation, combined with recruitment, define the 

links among individuals in the food web model. Although survival rate during the 
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first life stages is known to be highly influenced by environmental factors, there is a 

positive relationship between spawner abundance and subsequent recruitment 

(Myers and Barrowman, 1996) and density dependent mortality due to predation on 

juvenile stages attenuates density independent variability in abundance (Myers and 

Cadigan, 1993). In addition, drastic changes in fish abundance (as is happening in 

the area under study) make it likely that density dependent processes overcome 

other factors in respect to the influence they have on the community (Levin, 1988). 

From the demersal fish community off Newfoundland (see Table 2.2 in 

Chapter 2), the most abundant species have been selected to enter the model, i.e. 

those with a number of individuals comprising more than 1% of the total number of 

individuals in the community. The scientific and common names of these species are 

presented in Table 6.1. Within each species, age determines size, and within the 

community model, size will also determine trophic level. A double entry matrix can 

then represent the community, with columns being the species and rows being the 

sizes. Each cell of the matrix is filled with the average number of years individuals of 

any species remain in that particular size group. Life-history parameters of the 

species have been used to determine the structure of the community on a realistic 

basis (Table 6.2); an estimation of the fecundity (number of eggs released from each 

mature female) is presented in Table 6.3. 
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Table 6.1. Scientific and common name of the ten most abundant demersal fish 
species (abundance > 1% of individuals in the community) off northeast 
Newfoundland (NAFO areas 2J 3K). The third column contains the species 
abbreviation used in the model. 

SCIENTIFIC NAME COMMON NAME Abbr. 

Boreogadus saida Arctic Cod Bs 
Coryphaenoides rupestris Roundnose Grenadier Cr 
Gadus morhua Atlantic Cod Gm 
Glyptocephalus cynoglossus Witch Flounder Gc 
Hippoglossoides platessoides American Plaice Hp 

Mallotus villosus Cape lin Mv 
Raja radiata Thorny Skate Rr 
Reinhardtius hippoglossoides Greenland Halibut Rh 
Sebastes marinus Golden Redfish Sma 
Sebastes mentella Deep Water Redfish Sme 

Table 6.2. Age distribution of species in the different community size groups. 
There are five size groups: Size 1 corresponds to individual weights between 0 
and 10 g, Size 2 weights between 11-100 g, Size 3 101-1000 g, Size 4 1001-10000 
g and Size 5 more than 10001 g. Ages with mature individuals are indicated in 
bold characters. Data mainly from Scott and Scott (1988). 

Species 

Bs Cr Gm Gc Hp Mv Rh Rr Sma Sme 

1 1~2 1~2 1 1~2 1~2 1~2 1~2 1 1 1 

2 3-5 3~9 2 3~4 3~4 3-5 3~4 2 2~4 2~4 

Size 3 6-8 10-25 3-5 5~6-10 5~6-10 5-10 3~4 5~8-10 5-8-10 

4 26-40 6-15 11-30 11-25 11-15 5-20 11-40 11-40 

5 16-20 16-20 
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Size 

1 

2 

3 

4 

5 

Table 6.3. Offspring production from mature-sized individuals of each species. 
The matrix shows the average number of eggs released per year by a mature 
female of the species and size indicated. Data mainly from Scott and Scott (1988). 

Species 

Bs Cr Gm Gc Hp Mv Rh Rr Sma Sme 

10 4 4*10 4 

2*10 4 2*10 4 2*10 5 3*10 5 3*10 5 3*10 4 1.5*10 4 1.5*10 4 

6*10 4 3*10 6 6*10 5 1.5*10 6 2*10 5 20 2.5*10 4 2.5*10 4 

1.2*10 7 4*10 s 

6.4.3. INTERACTIONS WITHIN THE COMMUNITY 

Growth, predation and reproduction parameters translate into numbers of 

individuals that pass to the next age-class, that are preyed upon and that are born. Growth 

reduces the number of individuals in a size group and increases the number of individuals 

in the next size group. Predation reduces the number of individuals in a size group and, 

therefore, the number of individuals that can pass to the next superior size group. Finally, 

through reproduction the number of individuals of size group 1 increases in accordance to 

the abundance of mature individuals in the larger mature size classes of each species in 

the community. 

Growth rate and maximum size are characteristic of each individual species. How 

long an individual remains in a certain size group varies from one species to another; 
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therefore an age-division of individuals within species is also necessary. In spite of the 

allometric relation of offspring production with size, offspring production should be 

considered at the species level because maturation age and fecundity vary greatly among 

species. Similarly, growth rates also vary among species and therefore also should be 

considered at the species level. 

No matter how complex the system becomes it can be well-represented by the 

aforementioned interactions which we now go on to address in detail, explaining how 

they are mathematically expressed in the model. 

6.4.3.1. Predator-prey interactions 

Predation is determined by prey size, therefore trophic interactions are considered 

according to size regardless of the individual species or age within each size group. Prey 

death due to predation will depend on predator-prey density, satiation of the predator, and 

the concentration of prey in different species. To define the percent of survivors from 

predation we will consider each factor affecting predation one at a time. 

Let us first consider relative abundance of predator and prey alone. If there are 

two size groups (e.g. Si and Sj, where Si is the prey group and Sj is the predator group), the 

ratio of predator to total number of predator and prey will be: 

(4) 
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where Psi= ratio of individuals of the group size i (prey, in this case) in relation to the 

total number of individuals in group size i and group size j (predator) (dimensionless = 

#/#), Si =number of individuals in group size i in a certain year (#), Sj = number of 

individuals in group size j in a certain year(#). 

Under the basic assumptions that all encounters result in successful predation and 

that encounter probability depends on relative abundance of predator and prey in such a 

way that the ratio Psi = 0.5 when the number of prey equals the number of predators and 

Psi increases with increasing number of predators relative to prey, Psi represents the per 

capita rate of prey (individuals of size group i) survival from predation in a year. In other 

words, when the number of prey equals the number of predators, half of the prey will 

survive. In the absence of predators, all prey survive, and when the number of predators 

tends to oo, the number of prey that survive tends to 0. These relationships are shown 

graphically in Figure 6.2. 
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Fig. 6.2. Percent of prey surviving predation (psi) under different pressure (as 
abundance) from a predator ( Sj) when the prey number remains constant. 

Let us now consider satiation of the predator. Capture and intake as a consequence 

of a predator-prey encounter will be influenced by the satiation of the predator. The 

amount of food intake for a single predator when there is no shortage of food is an 

allometric characteristic of the predatory fish (i.e. it will depend on the size (mass) of the 

individual). Following the previous example, we will call gsj the food intake in grams of a 

single predator of size j per year when there is no shortage of food (i.e. individuals of size 

1 ). Therefore the number of prey individuals eaten by a predator when it reaches satiation 

will be gs2 divided by the average weight of its prey (individuals of size i). Taking into 

account predator satiation, equation 4 will become: 

(5) 
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where Psi= ratio of individuals of the group size i (prey, in this case) that survive 

predation in a certain year (dimensionless), Si =number of individuals in group size i in a 

certain year (#), Sj =number of individuals in group size j in a certain year (#), gsj= food 

intake of a predator (of size group j) individual at satiation ( g/#*year), Wsi = average 

weight of a prey (of size group i) individual (g/#), y = time period considered (years). We 

said above that this model would consider that change occurs on a yearly basis; thus, y is 

unity and does not affect the computations (it will not be included in nest equations). 

Ifwe define (6) 

then equation (5) can be expressed more easily as: 

(7) 

Graphic representation of equation (7) will have the same shape as the 

representation of psi in Figure 6.2. 

Finally, whether the prey individuals are concentrated in only one species or 

dispersed among many prey species is likely to influence predation. For example shifting 

and searching for different preys is time and energy consuming for the predator or bigger 

patches of prey may be easier to find. At the same time, large schools may present a 

better defence against a predator or less abundant species may find refuge in more 

inaccessible habitats or simply in their rarity. To determine how prey mortality is 
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distributed among prey species we define the term "exposure to predation" (Ep) as the 

proportion of the predator intake corresponding to a certain prey species considering the 

number of individuals of other potential prey species in the same size group. To quantify 

Ep we consider first the relative abundance of each prey species with respect to the rest of 

the potential prey that belongs to other species. Then we define Ep as the ratio of that 

relative abundance in relation to the relative abundance of prey. Therefore, the equation 

of Ep for the individuals in size 1 of a certain species, A, is: 

z 
EpAi = (xA)(ti- xAJ)I ~)xhi I ti - xhJ (8) 

h=A 

EpAi = proportion of predation directed to prey Ai (dimensionless), XA,i = number of 

individuals of size i in species A (#), ti = total number of individuals in size group i, ti -

xA,i = Number of individuals of size group i which do not belong to species A (#), and 

z 
L (xh,i I ti - xh,i) = sum of the relative abundance of each prey species with respect to the 
h=A 

rest of prey species. h being from the first, A, to the last, Z, potential prey species. 

(dimensionless) 

The final equation that determines the proportion of each prey species that 

survives predation is a variant of equation 7 of the form: 

(9) 
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PAi = proportion of individuals of species A and size group i surviving predation 

(dimensionless), Si =number of prey individuals from all species(#), EpAi =Proportion of 

predation directed to prey Ai (dimensionless), and Sj * lsj,Si , as in equation 7, = the 

number of prey that would be eaten by size group j if they reached satiation(#) 

6.4.3.2. Offspring production 

In determining offspring production three main factors are considered: 

1. Offspring production is characteristic of each individual species. 

2. There is an allometric relation between the number of offspring an individual 

produces, and the size of that individual (for all fish species, the number of eggs 

released increases the increasing in size of the mature female). 

3. Offspring production is density dependent, but the form of this dependency does not 

follow a straight line (the number of eggs will increase with the number of mature 

individuals until a limit is reached when the spawning individuals interfere with each 

other and production does not increase any more). 

An expression similar to the Beverton-Holt stock recruitment curve (Beverton and 

Holt, 1993) determines the offspring production for each species. The difference here lies 

in the regulation of maximum offspring production. In order to account for the differences 

in reproductive capacity between species, we set a limit, Nmax. to the number of mature 

individuals that will produce offspring. Thus, maximum number of offspring will vary 

among species as will the carrying capacity (K). Equation 10, below, indicates how the 

offspring production for a certain size of a certain species is calculated. The total number 
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of offspring produced by the species will be the sum of the offspring produced by all the 

individuals of each mature size. The graphic representation of offspring production vs. 

number of mature individuals is shown in Figure 6.3. The actual number of offspring will 

depend on the size of the mature individuals; if larger sizes are more abundant then the 

overall number of offspring will be larger. There is also an overall limit corresponding to 

the offspring production that will be achieved if there were Nmax individuals all belonging 

to the largest size group in the population. 

h 

Os =Nmax/MS +Nmax • IIFsj ·Msjl 
j=i 

(10) 

where Os = Offspring production of mature individuals of species s (#), Ms = Number of 

mature individuals of species s (#), Fsj =Fecundity, as average number of eggs released, 

of a mature individual of species s and size j. j evaluated from size at maturity, i, to the 

largest size, h, that the species attains (#), Msj =Number of mature individuals of species 

s size j (#), IFsj • Msj I indicates that the value assumed is the rounded up absolute value of 

the multiplication result, and Nmax = maximum number of mature individuals that will 

spawn in the absence of interference (i.e. no limit to the production of offspring). In the 

model Nmax is arbitrarily set at 1010 individuals (#). 
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Fig. 6.3. Form of the relationship of number of offspring produced as a function of 
the number of mature individuals in the population. This is the sort of curve that 
will be obtained from equation (10). 

At the offspring production level, taking the absolute value of Os (rounded up) 

imposes a minimum (limit) to the number of individuals in a population. In this way the 

number of individuals in a species is at least 1 and does not fall between 1 and 0 for the 

species as a whole despite the fact that computationally this can be the case for a size 

group within the community. 
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6.4.3.3. Passing from one size group to the next 

Within a species, it is assumed that all individuals of the same size group will 

have the same probability of surviving predation or of being eaten. That probability will 

be the same regardless of the age of the individuals within the size group. As indicated in 

Table 6.2, the time a species remains in a size group ranges from 1 to 30 years. Therefore, 

the individuals from a size group that pass to the next size group will be the number of 

individuals in the oldest age of the size group times the survival probability of the 

individuals of that species and size group. 

6.4.4. SOME COMMENTS ON VERIFICATION, CALIBRATION AND 

VALIDATION 

Verification and validation of the model are processes that continue during the 

whole life of any model (Haddon, 2001; Banks, 1998). Verification deals with the 

rationale for the processes simulated, i.e. whether they qualitatively reflect nature (or 

more exactly the way we think nature works), while validation examines how accurately 

reality is simulated. A major pitfall to verification and validation is that even in cases 

where there are enough data from the real system to be able to carry out these 

assessments, i.e. the data are sufficiently accurate and representative of the real 

community so that one can confidently contrast the outputs of the model against them, 

validation is always challenged by new data. The reality of a changing community creates 

the necessity to adjust this process over time. Fitting the model to past situations does not 

guarantee it will fit future situations. In changing ecosystems, the calibration of 

parameters to verify and then validate the model does not necessarily mean that we are 
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improving the model. It may rather mean that the model is changed into a new version 

that matches very well the actual present situation but meanwhile looses track of past 

situations. In addition, comparison of a model with reality must, in principle, be inexact, 

since we know that no model is perfect and that most commonly the simulation is of 

systems where not all variables and interactions are included in the model. 

Because we are interested in dynamics at the community level, we pay more 

attention to global trends and relations among variables than to quantitative accuracy. 

Setting the right time frame for looking at the model outputs may be a key to making the 

model valid. Life history and trophic parameters determined the accuracy of the outcome. 

In the case of low parametric error, quantitative results for short-term predictions may be 

valid, but the error in the results is likely to increase when the time frame is extended. In 

the medium/long-term, the trends of the variables give insight into the system and 

adjustment of parameters is not so essential. In the very long-term, genetics and 

adaptation induce evolutionary changes and probably the model needs to be 

accommodated with new sorts of information. 

Because the model parameters are taken from the literature, calibration is not 

used. Sensitivity analysis gives an idea of how important some parameters are for the 

output of the model. It is clear in our model that life history parameters of the species are 

the important factors that can change the abundance and production of each species and, 

therefore, the relationships among functional groups. The model is most sensitive to the 

time each species remains in each size group. The longer the time spent in prey size 

groups the greater the probability of being preyed upon, and the longer the time spent in 

larger sizes the more offspring production there will be. The model is also sensitive to the 
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values of fecundity for each species, since the maximum number of individuals for each 

species depends on how many can be produced. Validation of the overall structure of the 

community can be approached using size spectra analysis from real data. The size 

spectrum shows a general pattern at the level of community. By integrating all individuals 

of the community, the size spectrum is more robust to errors in life history parameters of 

species than is the index of abundance of each species separately. A size spectrum 

analysis for the model introduced here appears in Chapter 7, section 7.4. 

6.5. DYNAMICS OF THE NEWFOUNDLAND DEMERSAL FISH COMMUNITY 

6.5.1. MODEL OUTCOMES 

Figure 6.4 shows the dynamics of the Newfoundland demersal fish community 

over a long enough period of time (500 years) for the community to stabilize. The model 

was initiated starting in year 1 from an arbitrary point of 1 individual in each age for each 

species. The number of individuals is presented on a logarithmic scale. This scale is 

preferred because it emphasizes the magnitude of change of abundance in species or size 

groups, and furthermore facilitates the representation of all species or sizes in one or a 

few graphics without distorting the information. In addition, the arbitrarily chosen Nmax 

and the lack of calibration do make the values of the model outcomes inaccurate, and 

therefore probably umeal. In fact, though, it is the relative abundances of species and size 

groups that we want to consider rather than absolute values. The time required for the 

model to "crank up" to a more-or-less stable situation depends on the generation time of 

the most long-lived members of the community. That is at least 40 years for 

Coryphaenoides rupestris, Sebastes marinus, and Sebastes mentella (Table 6.2) 
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Once the community stabilizes, after about 200 years in the species plot, we 

observe repeated periodic cycles over time of the order of 4-5 per century (Fig. 6.4). The 

cycles are not all exactly equal, but their amplitude (or structure) is similar with certain 

regular periods of ups and downs. That periodicity resembles the curious cycles observed 

by Russell in the English Channel ("Russell Cycle": Cushing, 1982). Despite the fact that 

the Russell cycle refers mainly to zooplankton, changes in stock densities in demersal 

fishes were also observed during the cycle (Southward, 1963 in Cushing, 1982). 

Environmental changes appear to be the driving forces for this cycle, and might also 

explain other fish stock fluctuations, e.g. Steele and Henderson (1984) were able to 

simulate the medium-to-large time scale fluctuations of pelagic species in the marine 

environment when environmental variability was considered. 

Environmental variability, however, has nothing to do with the cycles that appear 

in our model's output. Life history and predation are the only factors that enter in our 

simulation thus suggesting a biological alternative to the environmental one as the cause 

of the fluctuations (see Chitty, 1967; Krebs, 1979). In our model cycles occur in response 

to trophic interactions that result in more offspring production during some years than in 

others, and their amplitude is related to the life spans of individual species, which produce 

a time lag between consecutive years of abundant offspring production. The presence of 

various peaks reflects survival of offspring production as the fish pass through the 

consecutive size groups. That survival depends on the dynamics of trophic interactions 

among size groups. 

An example of how trophic interactions induce cycles follows. At some particular 

time, t, size group 5 can be very abundant, producing many offspring and preying on 
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many individuals from size group 3 (their prey). By time t+x the fish of size group 3 from 

timet (with low abundance due to predation) enter size group 5, which will therefore then 

become relatively low in abundance. Meanwhile, offspring from timet may have reached 

size group 3, and, since they will not then suffer high predation (because of the low 

abundance of size group 5 at time t+x), they will reach size group 5 at time t+x+y in 

abundance, and the cycle will start all over again. The timing of these steps is different for 

each species depending on how long individuals remain in a size group (Table 6.2) and 

the abundance of the other species in the same and in the other size groups. When the 

species are considered all together (i.e. as a community), the drastic changes observed at 

each size level become reduced and the maximum abundance variation may be around an 

order of magnitude (10 times), which reflects to some degree the kind of instability 

observed in nature. 

To summarise and analyse the dynamics of species and size groups, we calculate 

the mean, maximum and minimum abundance of species and size groups once the 

community has reached a certain stability (which occurs in the time period of years 500 to 

1 000). Table 6.4 shows the mean relative abundance and biomass of species within the 

community at that time. Figure 6.5 shows the mean relative abundance and biomass of the 

community by size groups. The mean value and range of variation for the abundance of 

both size groups and species in the community is presented in Figure. 6.6. Finally, Figure 

6. 7 presents, for two important representative species, a bar chart showing the magnitude 

and variability of abundance for each size group within each species (cod and cape lin). 
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Table 6.4. Percentage comprised within the model community of the mean 
abundance and biomass of species during the years 501 to 1000 of the simulation. 
The + sign indicates that the value is greater than zero. 

Abbrev. Species o/o mean abundance o/o mean biomass 
Hp American Plaice 20,02 5,85 
Bs Arctic Cod 0,21 0,01 
Mv Capel in 0,77 0,04 
Gm Cod 65,01 87,17 
Sme Deep Water Redfish 0,49 0,69 
Sma Golden Redfish 0,49 0,69 
Rh Greenland Halibut 2,95 1 '12 
Cr Roundnose Grenadier +0,00 +0,00 
Rr Thorny Skate +0,00 +0,00 
Gc Witch Flounder 10,06 4,43 

o/o of abundance o/o of biomass 

87,9 0,55 

0 Size 1 t:J Size 2 8 Size 3 ~ Size 4 • Size 5 0 Size 1 EJ Size 2 8 Size 3 ~ Size 4 • Size 5 

(a) (b) 

Fig. 6.5: Relative percentage of each size group in the community. (a) Abundance 
(b) Biomass. 
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Cod is the dominant species in the Newfoundland demersal fish community. This 

is due to the synergy of high fecundity, long life span and relatively quick growth, with a 

dominance of fish in the older ages (larger sizes). These characteristics make it difficult 

for other species to overtake the dominant position of cod unless cod abundance is 

constantly and strongly suppressed; even then, how dominant any other species can be 

depends on its individual productive capacity. The model result, with cod in a dominant 

position within the community, is in accordance with the real data. In NAFO areas 2J3K 

(northeast Newfoundland), cod was by far the most abundant species before its collapse, 

and since then no other species has taken the dominant lead in the demersal fish 

community there. 
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A result of the model that may look suspicious is the relative abundance of the 

predator, cod, and its commonly associated prey, capelin. We would expect the prey to 

outnumber the predators that it supports and in fact that is the case if we consider that the 

turnover and P/B ratio of each species is very much influenced by the accumulation of 

biomass of cod in large size classes during their long lifespan. In addition, we must 

remember that in this model interactions take place among sizes, and therefore cod, while 

in size group 1, is prey of bigger sizes among which cape lin is included. It will be more 

appropriate to construct and analyse the biomass pyramid based on sizes rather than on 

species. 

There are, however, other species whose model abundance differs from that found 

in nature, as is the case of the two species of Sebastes. Since in the model it is assumed 

that both species have the same life history parameters, life span and growth, the final 

abundance for both species is the same according to the model, whereas in nature S. 

mentella is far more abundant than S. marinus. Lack of knowledge concerning the 

biological differences between these species or a tendency to capture one in greater 

proportion due to survey procedures could account for the disagreement between the 

model results and real data. 

When sizes in the entire community are considered (Fig. 6.5a), there is a logical 

decrease in abundance from that in small size groups (i.e. the lower trophic levels which 

support the food web) to that in large size groups (i.e. higher trophic levels). Bax (1991) 

observed that fish predation by fish was more important than predation by birds, 

mammals or a fishery, especially at larval and early juvenile stages. The larval to juvenile 

stage corresponds to the model size group 1. Loss to predation is reflected in the model 
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by the difference in abundance between size groups 1 and 2; the result indicates that 79% 

of the individuals are lost before they reach size group 2. The small proportion of 

individuals in the larger size groups indicates the high level of resources necessary to 

sustain those size groups. However the biomass pyramid shows an increase along with 

size (Fig. 6.5b ). Biomass is accumulated in large individuals and the time period 

individuals remain in large size groups is longer than that spent in small size groups 

(Table 6.2). 

The considerable time needed to replenish populations in the larger sizes as well 

as the indirect effect of these size groups on abundance in smaller size groups must also 

be taken into account. The magnitude of variation in abundance is more pronounced in 

the larger size groups of each species (Fig. 6.7). Species in the large size groups are 

commonly the target of fisheries, and fisheries can often reduce the variability in 

abundance of these size groups through intensifying their catches. This, in tum, can 

significantly influence the impact that these size groups have on the abundance in smaller 

size groups. This matter will be taken up in Chapter 7. 

6.5.2. COMMENTS ON MODEL PERFORMANCE 

The time required by the model community to reach stability depends on the 

initial conditions (i.e. on the starting abundance of each species and its distribution among 

the different size groups). However, in the absence of externalities, the final state does not 

change significantly (i.e. it is stable). The maximum abundance of individuals in the 

community depends on the carrying capacity of the system for each species. A limiting 

number (in the model K=l010) is applied to the number of mature individuals that produce 
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offspring. However, since fecundity varies among species, the maximum number of 

individuals varies for each species. The relative abundance of species remains constant 

when K is changed; slight variations are due to model constraints. Thus, in the graphic 

representation of the community dynamics, the shape and relative positions of variables 

assume a greater importance than do the exact values in the two dimensions time (x-axis) 

and abundance (y-axis). The reader is cautioned not to take the abundance results too 

literally. 

The final range of abundances within which the species oscillate over time is 

constrained by species life history characteristics, as well as by the presence of other 

species in the community. In the long-term these characteristics guide the community 

composition and abundance in the absence of external perturbations (externalities). 

Each age in the life span of a species is treated separately. Inter- and intra-specific 

interactions control the abundance of the individuals of a species within a certain age. In 

the same species, there can be both the long-term effect of offspring production and the 

short-term effect of survival from the previous year. As for the effects that result from the 

presence of all the other species, these are modulated by the abundance of the different 

predator sizes (which can include as well individuals from the same species, i.e. 

cannibalism is allowed), and the abundance of individuals from the other species in the 

same prey size group. If size groups instead of age are considered, the number of ages 

that are lumped together can be another factor controlling abundance. 

To achieve equilibrium, all age groups of a species would have to contain a 

constant number of individuals. Furthermore, this simple statement would require further 

conditions in the model that are: 

127 



1. The number of individuals passing from the immediately inferior age group has to be 

constant over time. 

2. If a constant number of individuals passes from one size group of a species to the 

next, mortality and offspring production of that species have to be constant over time. 

3. Constant mortality requires equilibrium in all the species (i.e. each age group in the 

rest of the species should also contain a constant number of individuals over time). 

4. In order to remain constant over time, the constant values required in all the ages of 

all the species should be understood as interrelated; they cannot be arbitrarily chosen. 

Taken together, these conditions help to explain why a constant equilibrium is rarely 

found in nature and it does not apply in the model either (i.e. the line is not flat). 

Reproductive capacity, density-dependent predation, and growth influence the 

dynamics of each size group. Certain factors are more influential in some size groups than 

in others. Thus, in size group 1 there is an important species differentiation in abundance 

dynamics due to the different reproductive capacity of each species. In size groups 2 and 

3 predation affects the abundance trend of species and, because predation does not 

discriminate among species, all species follow a similar trend although at different 

abundance levels. Growth, related to the time individuals remain in each size group, 

influences mainly size groups 4 and 5. This is due not only to an accumulation of 

differences in residence time from sizes 1 to 4 for different species, but also because size 

groups 4 and 5 are those where individuals of most species remain the longest. Therefore, 

the differences observed at these higher levels are the most obvious. 

According to model computations, species abundance can be expressed as a 

fractional amount. This representation of abundance has no biological sense; individuals 
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can only be present in whole numbers. Often, fractions may simply be ignored but, for 

some species (e.g. Roundnose grenadier, Thorny skate), there are times when the 

abundance falls between 0 and 1. In order to calculate offspring production this amount is 

rounded up to 1, placing a limit on how small the fraction can be in the next size groups 

(i.e. ages). This rounding up is not performed for the remaining size groups because doing 

so would mask differences in relative abundance among species, and the number of 

species with longer life spans would be artificially increased. Treating abundances 

between 0 and 1 in this way allows all species to survive in the model (assumption 11, 

section 6.4.1). 

Since life history characteristics determine the ultimate abundance of a species in 

relation to all the other species, the model is sensitive to variations in the life history 

characteristics of single species. However, errors due to inaccuracy of parameter values 

are unlikely to change the overall structure of the community. In order to do this, the 

errors should be big enough to overcome the basic differences between species, which are 

usually greater than the possible differences between real and estimated parameters 

within the same species. The model is, nonetheless, flexible enough to allow 

incorporation of new knowledge about parameter values. "Top-down" and "Bottom-up" 

disturbances can also be incorporated in the model and, as the next step in model 

development, will be treated in the next chapter. 

The complexity of the model is a consequence of its ambitious goal, which is to 

consider the naturally occurring shifts in trophic levels and relationships that a species 

undergoes due to changes in its size over time, and the influence that each species has on 

all the other species present, i.e. a synecological view. Doing this, however, does seem to 

129 



offer a realistic insight into the structure of the community and its dynamics. The 

distribution of the total biomass of a species among its various size groups gives a 

realistic view of the state of the species, and from this perspective its response to 

perturbation by externalities can be better studied. The idea of a static community gives 

way to one of a community in constant dynamic change. Questions of interest in the 

biological arena, for example the consequences of invasion by a new alien species or the 

study of human and environmental disturbances, can be studied from this new and 

informative perspective. Externalities like this are the subject of the next chapter. 

Modem fisheries research and management require a sound understanding of 

community dynamics. Species interactions, life-history parameters, and time influence the 

dynamics. When the various factors are considered in the way presented here, a 

community appears in which size groups are the functional groups that determine the 

community structure and dynamics. This view lends itself to the development of a 

dynamic model. 

Our model of a fish community based on size-groups shows a community in 

constant change, though there is a certain stability attained around which the abundances 

of individual species fluctuate in a regular way. Species interactions over time and life­

history characteristics determine those abundances. 

We built the model for the demersal fish community on the continental shelf off 

Newfoundland in the northwest Atlantic. Nonetheless, the approach can be generalized 

and should be applicable to other real fish communities. It is especially suitable for fish 

communities where biological information is less comprehensive, for example the 

recently developed deep-sea fisheries. 
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Table 6.5: Variables and parameters mentioned in this chapter. 

Symbol Name Units Defined in 
Eq 

N Preys' number # 1 

p Predators' number # 1 

a,b,c,e Per capita rates of change f 1 or W1 f 1 1 

K Carrying capacity of the system. Maximum number of individuals that can coexist # 2 

Psi Per capita rate of prey (size group i) survival to predation in a certain year ratio 4 

Sj, Sj ... Number of individuals in size group i, j ..... # 4 

gsj Food intake of an individual of size group j g/(# year) 5 

Wsi Average weight of an individuals of size groupi (prey) g/#r 5 

y Time considered year 5 

lsjsi Number of prey of size j eaten by a predator of size j in a year if satiated ratio 6 

EPAi Percent of predation directed to prey Ai ratio 8 

XAi Number of individuals of size group i in species A # 8 

ti- XAi Number of individuals in size group i except for those of species A # 8 

PAi Percentage of Ai surviving predation ratio 9 

Os Offsring production of species s # 10 

Nrnax Cte=Maximum number of individuals that can spanw without interfering each other # 10 

Ms Number ofmature individuals of species s # 10 

Fsj Average number of eggs released by individuals of species s and size j # 10 

Msj Number of individuals of species s in size j # 10 
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Chapter 7: 

Dynamics of the community under the effect of external 
influences 

7.1. INTRODUCTION 

In the last chapter we developed and applied our size-based model to simulate the 

Newfoundland demersal fish community considering only biological factors to show the 

structure and dynamics of the community in the absence of externalities (environmental 

factors and fisheries) that might possibly alter the community. That situation can be 

identified with what we called "Community I" in Chapter 1 (Fig. 1.1 ). In doing so, it is 

possible to go back to that global picture and study the dynamics of the community 

considering the broader system in which it functions. 

Both environmental factors and fisheries act on the real demersal fish community 

(Fig. 1.1, Chapter 1). These externalities present differences in the way they impact the 

fish community (Table 7.1). Environmental disturbances are ever present in the 

ecosystem and fish species have adapted to them in an evolutionary sense over time. 

Contrary to the environment, intensive fisheries act over a much shorter period of time, 

years and decades as opposed to millennia (Apollonio, 1994). Environmental conditions 

are considered to have a bottom-up effect on the community because their immediate 

effect is on the first stages of the fish's life - eggs, larvae and juveniles. Conversely, 

fisheries have a top-down effect because they selectively target large adults. Furthermore, 

fisheries target only a few select species out of many, whereas the exposure to 
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environmental disturbances is in principle equal for all species. As Begon (1986) points 

out: "A condition may be modified by the presence or absence of other organisms, but 

unlike resources, is not consumed by an organism or made invariable or less available to 

others." Finally, fisheries usually act as an incremental and continuous disturbance, 

whereas environmental disturbances are more commonly punctual and intermittent, 

lasting for a relatively short time and affecting mainly one or a few generations. 

Table 7.1: Contrast between fisheries and environmental disturbances. 

Fisheries Environmental disturbances 

Predictable Stochastic 
Directed to specific target No target 
Continuous Intermittent 
Top-down Bottom-up 
Intensifying over time Variable over time 

In their evolution, fisheries have passed from acting as a casual, uncommon, 

selective predator (with little effect on the entire fish community) to play the role of 

dominant, omnivorous, top predator. However, as elements of the community humans 

display three main differences in respect to the rest of the fish species: (1) they only 

"take" from the system, (2) their adaptation is very quick and occurs by giant steps 

compared with the evolutionary adaptation of other species in the community (Apollonio, 

1994), and (3) economic and social factors promote change in fisheries, whereas physical 

and biological factors lead to fish species adaptation and evolution. 
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In this chapter we introduce externalities to our simulation model of the 

Newfoundland demersal fish community (Chapter 6). We first consider the action of 

stochastic environmental variability and after that consider the action of a size-oriented 

fishery. The purpose is to observe and compare the response of the community and its 

long-term resultant dynamics and structure under these two different kinds of 

disturbances. 

7.2 SCENARIOS 

Simulation of the community dynamics under environmental and/or fisheries 

perturbation is carried out by including these externalities in the basic model presented in 

Chapter 6. Three different scenarios are considered: 

1. In the first scenario, environmental variability is introduced into the community at the 

level of offspring production, and acts only to reduce the number. Each year offspring 

production is reduced by a stochastically varying annual percentage. This random 

variability is applied to all species, and therefore, production of each species varies 

independently from all the others. 

2. In a second scenario fishery pressure through its action on a single species is applied 

to the community. This fishery acts on cod and is constant over time (1 014 

individuals/year are removed), and progresses from the largest to smaller individuals 

depending on availability. 

3. A third, more realistic, scenano simulates fish-fisheries interactions (Fig. 1.1) 

considering both environmental variability (as in scenario 1) and fisheries acting 
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together on the community. Initially, the fishery targets cod at a rate of 1014 

individuals/year, progressing from the largest to the smaller individuals. Later a new 

fishery starts and capelin is exploited at a rate of 1012 individuals/year. Finally, the 

fishery for cod stops but the fishery for capelin continues. 

It should be clarified that the fishery in all cases is only applied to the adult size 

individuals of each species, and a minimum of 1 individual in the smaller mature size 

group is always kept to avoid extinction. Nonetheless, we have chosen an extreme 

situation in which the fishery is intense enough so as to provoke drastic changes in the 

target species. 

In order to be able to compare the different scenarios, we must apply the influence 

of externalities to a community in the same initial state. To begin, the model is run 

considering only biological interactions until the community has stabilized (arbitrarily a 

period of 500 years). This provides the starting point (initial conditions) from which the 

study of the different situations begins, and it is from that point that we run the model 

under the different scenarios. To begin with, we again assess the community considering 

only biological interactions so as to stabilize the model. In this way we obtain the 

reference scenario that will serve as the basis to compare the effects of externalities to 

that of the community dynamics in isolation, i.e. considering only internal biological 

factors (Chapter 6). For the scenarios including externalities, an adaptation period of the 

same number of years as run the reference scenario is allowed before running the model. 

We can then follow the model run by removing the externality or we can start again with 
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another simulation applying a new externality. Various indices (explained below) of the 

community situation under different scenarios are obtained over the same time period 

(500 years) to allow comparison. That time is recorded after an adaptation period to the 

externalities that is common for all simulations (100 years). Figure 7.1 shows how the 

model runs for the different scenarios. 
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Starting point 
for scenarios 

Fishery stops 
(when applicable) 

With 
externalities 

Time 500 to 600 

Adjustment of 
community to 
externalities 

Time 600 to 1100 

Indices recorded 

Time 0 to 500 

Stabilization 
of community 

~- ---------- __ , 

Time 1100 to 1200 

Adjustment of 
community 

Time 1200 to 1700 

Indices recorded 

Without 
externalities 

Time 500 to 1000 

Reference scenario 

Indices recorded 

Figure 7.1: Steps to simulate community dynamics under different situations. The 
initial points for each situation and the periods for which indices are recorded are 
indicated. 
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The indices that are used to facilitate comparison of the structure of the 

community under different scenarios are the maximum, minimum, mean, range of 

variation (as maximum - minimum) and magnitude of variation (as the ratio range I 

minimum) of the abundance and biomass of the whole community, of each species, and 

of each size group within the community. When size groups or single species are 

considered, the maximum, minimum and mean values for each group usually correspond 

to a different moment in time, whereas for the community values all size groups and 

species are considered at the same time. For example, the value of the maximum 

abundance of size group 2 can correspond to the year x and value of the maximum 

abundance of size group 5 can correspond to the year y, however when considering the 

value for the maximum abundance of size group 2 + size group 5 together, both size 

groups must be from the same year. That is why the abundance or biomass for the whole 

community does not correspond to the sum of the abundance or biomass of each size 

group or of each species. That is also why the biomass value is proportional to that of the 

abundance for those measures that specify size groups, but they are not necessarily 

proportional for measures of each species as a unity or of the whole community. 

Comparison of each scenario to the reference scenario (biological interactions 

alone) is performed by describing each index of each scenario as a percentage of the 

corresponding index in the reference scenario. Within the scenarios two situations are 

considered: (1) under the disturbance, i.e. externality applies, and (2) when the 

disturbance ceases. In this way, it is possible to analyse the recovery time of the 

community from the disturbance resulting from environmental variability, and from a 

fishery with and without the presence of environmental variability. Because the model 
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does not allow extinction, the community recovers from all scenarios but it can reach 

alternative final stable states. These recovery processes are not deeply analyzed because 

for their interest they would require further work beyond the scope of this thesis. The 

primary goal here has been to develop and prove the value of the size-based model, but 

our plan is to focus on alternative stable states as a next step. 

7.3. COMMUNITY RESPONSE 

Table 7.2 presents the features of the community under the different scenarios. 

Comparison of the changes in the community induced by the different scenarios is 

summarized graphically by plotting the abundance and biomass of the community for 

each scenario (Fig. 7 .2). The change in the community structure is observed by plotting 

the mean abundance and biomass for each single size group (Fig. 7.3). The abundance 

and biomass of the community and its species and size groups under the different 

scenarios appears in a series of tables (Tables from 7.3a to 7.8b). The tables record 

whether the index is equal (0), less than 10% (-/+ 1), between 10% and 50% (-/+ 2) or 

more than 50% (-/+ 3) above or below the same index value for the community in the 

reference scenario. All externalities decrease the mean abundance of individuals in the 

community, but their effect on community mean biomass and the range of variation for 

both abundance and biomass varies. Another way of representing the data on Tables 7 .3a 

to 7.8b would be to use the logarithmic values of abundance and biomass instead of the 

absolute values, an approach that would reduce the percentage range of the indices. This 

representation, however, is left for future work. 
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Scenario 

Scenario! Scenario!! 
Scenario III: Environment and fishery 

Environment Fishery Step 1 Step2 Step3 

(stochastic) (focussed) Cod fishery Cod+capelin Cape/in fishery 
Feature alone fishery alone 

Main effect of Smallest stages Largest stages Smallest stages of all species 
disturbance on All species One species Largest stages of one/few species 

Community mean 306% 8.1% 7.6% 12.1% 364% 

biomass Fluctuations 1660% 3.9% 78.1% 115% 1110% 

Community mean 60.5% 37.9% 18.7% 18.6% 65.7% 

abundance fluctuations 288% 17.4% ·176% 235% 1.91% 

S1 52.4% 40.2% 19.5% 19.1% 55.9% 

S2 68.5% 27% 14.5% 14.8% 74.3% 

Size groups 
S3 162% 6.8% 6.59% 10.6% 192% 

change 

S4 292% 11.4% 12.7% 21.5% 348% 

S5 357% 2.75% 62.42% 3.5% 424% 

Diversity 1.3 1.65 1.67 1.54 1.25 
Ref Scenario= 1.5 

Time to recover !'::! 5 years !'::! 20 years !'::! 20 years !'::! 10 years 

Recovery state To initial stable state To alternative stable state 
. . .. * Fluctuations are as the ratio (maximum- m1mmum) I m1mmum. 

Table 7.2: Community outcomes under different scenarios, relative to the reference scenario (no externalities, Chapter 6). 
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Environmental variability (Scenario I) has a direct bottom-up effect on the 

community due to: the reduction of offspring production. Interactions within the 

community lead to indirect effects as well. The result is an increase in the mean biomass 

of the community due to an increase in abundance of large individuals. Environmental 

variability slightly decreases the range of variation of abundance and greatly increases the 

range of variation in biomass. When environmental variability is removed, the 

community recovers to the initial state in a short time (around 5 years for most species). 

On the other hand, the direct effect of the cod fishery (Scenario ID on the 

community is top-down. The cod fishery drastically decreases both community biomass 

and abundance. In addition, the fishery results in a decrease in the range of variation for 

these indices. When the fishery stops the community never recovers to the reference 

scenario, but instead reaches an alternative stable state in which the largest size groups 

are less abundant. 

The combined effect of environmental variability and fisheries (Scenario III) 

reveals that the target species determine the effect on size structure of the community as 

well as the time to revert back to the reference scenario. When the fishery acts on the 

large top predators (Scenario Ill, Steps 1 and 2), the community structure shifts towards 

the smallest sizes and the effect is similar to that of Scenario II. However, when the 

fishery only targets small species (Scenario III, Step 3) the effect is more similar to 

Scenario I when only environmental variability acts on the community. Contrary to the 

top-down effect of the cod fishery, the cape lin fishery acts on size group 2 and the overall 

result is therefore a bottom-up effect similar to that of Scenario I (Fig. 7 .3). In any case, 

the fishery always reduces the final abundance and biomass of the community (Fig. 7 .2), 
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and the recovery time to a stable state is at least equal to the generation time of the target 

species. Each one of these scenarios will be treated in greater detail in the following 

sections (7.3.1 to 7.3.3). 

7.3.1. SCENARIO I: THE EFFECT OF ENVIRONMENTAL VARIABILITY 

Figure 7.4 shows how the community first reacts to the introduction of 

environmental variability in the model. The initial conditions are those established from a 

run of the reference scenario over 500 years (the starting point indicated in Fig. 7.1 ). A 

slight initial decrease in abundance is observed, and then the community starts to 

fluctuate in a more chaotic way than that observed in the absence of externalities (Chapter 

6, Fig. 6.4 reference scenario). 
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Fig. 7.4. Scenario I: Changes due to environmental variability. (a) change in 
species abundance, (b) change in size groups abundance. See Chapter 6, Table 6 
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After that initial100-year period of transition, the model is run over 500 years to 

obtain the final community indices (Tables 7.3a and 7.3b). The action of environmental 

variability in reducing the number of offspring lowers the community minimum 

abundance and, to a lesser extent, the maximum also. The result is a reduction of the 

mean community abundance and a slight (less than 10%) reduction of the community 

abundance range of variation. Regarding the biomass, there is a reduction of the 

community minimum and a great increase of the maximum to yield a larger community 

mean biomass than in the reference scenario and a higher range of variation for 

community biomass. 

The different direction of change for the community mean abundance and biomass 

is an indication of the higher contribution of small size groups to the overall community 

abundance. Model results for the size groups (Fig. 7 .4b) indicate that the abundance and 

biomass is reduced in the smaller sizes and increased in the large ones. The resulting 

community has a lower number of individuals but they are of larger size. Thus, the 

biomass tends to be higher under the externality of environmental variability. 

If environmental variability is eliminated, the community reverts back to a state 

similar to the reference scenario (Tables 7 .4a and 7 .4b ). The mean community biomass 

and abundance vary less than 10% of the standard set in the reference scenario. Mean 

abundance and biomass for each size group separately also remain around the 10% of the 

reference scenario, despite the fact that greater changes may occur for the minimum and 

maximum limits of each size group. 
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Table 7.3a: Abundance comparison of Scenario I (environmental variability). For 
explanation see text page number 139. 

Scenario I 
Trend of variation with respect to reference scenario 

Environmental variability 

group 
%range % magnitude range 

%min %max %mean (max-min) !(range/min) 
Abundance Size1 -3 -1 -2 -1 3 

of size Size2 -3 3 -2 3 3 
groups Size3 -3 3 3 3 3 

within the Size4 -3 3 3 3 3 
community SizeS -3 3 3 3 3 

Bs -3 -1 -3 3 3 
Gm -3 1 -2 1 3 
Mv -3 -1 -3 3 3 
Cr -3 -2 -3 -2 3 

Abundance Gc -3 -1 -3 2 3 
of species Hp -3 -1 -3 2 3 

Rh -3 -2 -3 -2 3 
Rr -3 -1 -2 2 3 
Sma -3 -1 -2 3 3 
Sme -3 1 -2 3 3 

Community 
Abundance Community -3 -2 -2 -1 3 

Table 7.3b: Biomass comparison of Scenario I (environmental variability). For 
explanation see text page number 139. 

Sceanrio I 
Trend of variation with respect to reference scenario 

Environmental variability 

group 
%range % magnitude range 

%min %max %mean (max-min) (range/min) 
Biomass Size1 -3 -1 -2 -1 3 
of size Size2 -3 3 -2 3 3 
groups Size3 -3 3 3 3 3 

within the Size4 -3 3 3 3 3 
community SizeS -3 3 3 3 3 

Bs -3 -1 -2 1 3 
Gm -2 3 3 3 3 
Mv -3 2 -2 3 3 
Cr -3 1 -3 1 3 

Biomass Gc -3 2 -2 2 3 
of species Hp -3 3 -2 3 3 

Rh -3 3 2 3 3 
Rr -3 2 -2 3 3 
Sma -3 3 2 3 3 
Sme -3 2 2 2 3 

Community 
Biomass Community -2 3 3 3 3 
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Table 7 .4a: Abundance comparison of the recovery from Scenario I (environmental 
variability). For explanation see text page number 139. 

Recovery from 
Trend of variation with respect to reference scenario 

environmental variability 

group 
%range % magnitude range 

%min %max %mean ICmax-min) ICrange/min) 
Abundance Size1 -1 1 1 1 1 

of size Size2 -3 1 1 1 3 
groups Size3 -2 -2 -1 -2 2 

within the Size4 3 2 -1 2 -2 
community Size5 -3 2 -1 2 3 

Bs 1 -1 -1 -1 -1 
Gm 1 1 1 1 -1 
Mv -1 1 -1 1 2 
Cr -1 -3 -2 -3 -3 

Abundance Gc -1 1 1 1 1 
of species Hp -1 1 1 1 1 

Rh 1 1 1 -1 -1 
Rr 1 -1 1 -1 -2 
Sma 1 -1 -1 -2 -2 
Sme 1 -1 -1 -2 -2 

Community 
Abundance Community -1 1 1 1 1 

Table 7.4b: Biomass comparison of the recovery from Scenario I (environmental 
variability). For explanation see text page number 139. 

Recovery from 
Trend of variation with respect to reference scenario 

environmental variability 

group 
%range % magnitude range 

%min %max %mean l<max-min} l<range/min} 
Biomass Size1 -1 1 1 1 1 
of size Size2 -3 1 1 1 3 
groups Size3 -2 -2 -1 -2 2 

within the Size4 3 2 -1 2 -2 
community SizeS -3 2 -1 2 3 

Bs 1 -2 -1 -2 -2 
Gm 3 2 -1 2 -2 
Mv -1 -1 -1 -1 -1 
Cr -1 -3 -2 -3 -3 

Biomass Gc 3 -2 -1 -2 -3 
of species Hp -2 -2 -1 -2 1 

Rh 2 1 -1 1 -2 
Rr -2 -1 -1 -1 2 
Sma 2 -2 -2 -2 -2 
Sme 2 -2 -2 -2 -2 

Community 
Biomass Community -1 2 -1 2 2 
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7.3.2. SCENARIO II: THE EFFECT OF A COD FISHERY 

The adaptation period and the dynamics of the community under a fishery are 

shown in Figure 7.5. The cod fishery decreases the abundance of all size groups and 

smoothes the fluctuations of all size groups but size 5, which correspond only to 

Greenland halibut because cod size 5 is removed by exploitation in the fishery. The 

continuous removal of a constant number of individuals (1014 individuals/year) in the 

large sizes eventually eliminates these size groups from the cod population and finally 

results in the drastic decline (i.e. a "collapse") observed for cod around year 43 after the 

fishery starts, when all cod individuals in size group 3 are also eliminated. Figure 7.6 

shows that the change in abundance of cod individuals is not in all size groups. Since 

there is no fishery on immature individuals, cod size groups 1 and 2 are the only ones that 

remain in the long term. 
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Fig. 7.5. Scenario II: Changes due to cod fishery. (a) change in species abundance, 
(b) change in size groups abundance. 
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Index values companng this fishery scenano to the reference scenanos are 

presented in (Tables 7.5a and 7.5b).The community range ofvariation under a cod fishery 

highly decreases with respect to the reference scenario for both abundance and biomass of 

the community as a whole. The mean abundance and biomass of the community are much 

reduced. The same trend is observed for each size group separately. However, when 

species are considered separately, the mean abundance of some of them is increased 

under a cod fishery. The mean abundance of all species, except that of cod and 

Roundnose grenadier, increases slightly (less than 10%) or moderately (between 10 and 

50%). This mean value is due to a higher minimum abundance limit for these species, 

because their maximum abundance limit decreases therefore not contributing to the mean 

increase. Yet, the mean biomass is only increased for short-lived species (capelin and 

Arctic cod) and the only other species that reaches size 5 (Greenland halibut). 
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Table 7 .5a: Abundance comparison of Scenario II ( cod fishery). For explanation 
see text page number 139. 

Scenario II 
Trend of variation with respect to reference scenario 

Cod fishery 

group 
%range % magnitude range 

%min %max %mean (max-min) I (range/min) 
Abundance Size1 -2 -3 -3 -3 -3 

of size Size2 3 -3 -3 -3 -3 
groups Size3 -3 -3 -3 -3 -3 

within the Size4 3 -3 -3 -3 -3 
community Size5 -3 -3 -3 -3 3 

Bs 2 -2 1 -3 -3 
Gm -3 -3 -3 -3 -3 
Mv 2 -1 2 -3 -3 
Cr -3 -3 -3 -3 -3 

Abundance Gc 3 -2 1 -2 -3 
of species Hp 2 -2 1 -2 -3 

Rh 2 -2 2 -2 -2 
Rr 3 -2 1 -3 -3 
Sma 2 -2 1 -3 -3 
Sme 2 -2 1 -3 -3 

Community 
Abundance Community -2 -3 -3 -3 -3 

Table 7.5b: Biomass comparison of Scenario II (cod fishery). For explanation see 
text page number 139. 

Scenario II 
Trend of variation with respect to reference scenario 

Cod fishery 

group 
%range % magnitude range 

%min %max %mean (max-minl lirange/min} 
Biomass Size1 -2 -3 -3 -3 -3 
of size Size2 3 -3 -3 -3 -3 
groups Size3 -3 -3 -3 -3 -3 

within the Size4 3 -3 -3 -3 -3 
community Size5 -3 -3 -3 -3 3 

Bs 3 -3 2 -3 -3 
Gm -3 -3 -3 -3 -3 
Mv 3 -2 2 -2 -3 
Cr -3 -3 -3 -3 -3 

Biomass Gc 3 -3 -2 -3 -3 
of species Hp 3 -3 -3 -3 -3 

Rh 3 -1 3 -1 -3 
Rr 3 -2 -1 -3 -3 
Sma 3 -3 -3 -3 -3 
Sme 3 -3 -3 -3 -3 

Community 
Biomass Community -3 -3 -3 -3 -3 
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Contrary to the first scenario (under environmental variability), the community 

does not return to the reference scenario situation when the cod fishery stops, but seems 

to reach an alternative stable state (Tables 7 .6a and 7 .6b ). The mean abundance is reduced 

to less than 10% of that of the reference scenario, but both its minimum and maximum 

decrease to between 10 and 50%. The differences are more noticeable when community 

biomass is considered, with a mean reduced more than 50% with respect to the reference 

scenario. There is an important change in the community size structure, with greatest 

variations in the largest sizes. The maximum abundance limit for the two species that 

reach size 5 (cod and Greenland halibut) is reduced to between 10 and 50% from that 

from the reference scenario. 
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Table 7.6a: Abundance comparison ofthe recovery from Scenario II (cod fishery). 
For explanation see text page number 139. 

Recovery from 
Trend of variation with respect to reference scenario 

cod fishery 

group 
%range % magnitude range 

%min %max %mean l(max-min) !(range/min) 
Abundance Size1 -1 -1 -1 -1 -1 

of size Size2 3 -2 -2 -2 -3 
groups Size3 3 -3 -2 -3 -3 

within the Size4 3 -3 -3 -3 -3 
community Size5 3 -3 -3 -3 -3 

Bs 1 -1 -1 -2 -2 
Gm 1 -2 -2 -2 -2 
Mv 1 -1 -1 -2 -2 
Cr 2 -3 -2 -3 -3 

Abundance Gc 1 -1 -1 -1 -2 
of species Hp 1 -1 -1 -1 -2 

Rh 1 -2 -2 -2 -2 
Rr 3 -1 -1 -2 -3 
Sma 2 -1 -1 -2 -2 
Sme 2 -1 -1 -2 -2 

Community 
Abundance Community -2 -2 -1 -2 -1 

Table 7.6b: Biomass comparison ofthe recovery from Scenario II (cod fishery). 
For explanation see text page number 139. 

Recovery from 
Trend of variation with respect to reference scenario 

cod fishery 

group 
%range % magnitude range 

%min %max %mean l(max-min) (range/min} 
Biomass Size1 -1 -1 -1 -1 -1 
of size Size2 3 -2 -2 -2 -3 
groups Size3 3 -3 -2 -3 -3 

within the Size4 3 -3 -3 -3 -3 
community Size5 3 -3 -3 -3 -3 

Bs 1 -2 -1 -3 -3 
Gm 2 -3 -3 -3 -3 
Mv 1 -2 -1 -2 -2 
Cr 2 -3 -2 -3 -3 

Biomass Gc 2 -2 -2 -2 -2 
of species Hj>_ 2 -2 -2 -2 -2 

Rh 1 -3 -2 -3 -3 
Rr 3 -2 -1 -2 -3 
Sma 3 -2 -2 -2 -3 
Sme 3 -2 -2 -2 -3 

Community 
Biomass Community -2 -3 -3 -3 -3 
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7.3.3. SCENARIO III: FISHERIES AND THE ENVIRONMENT ACTING 

TOGETHER 

This scenario represents a progressive fishery and can be divided into three steps: 

(1) fishery for cod, (2) fishery for cod and capelin and (3) the fishery for cod stops but the 

fishery for capelin continues. The community adaptation to these three steps is shown in 

Figure 7. 7. Combination of cod fishery and environmental variability (Step 1 in Fig. 7. 7) 

is observed in the more frequent but less dramatic fluctuations of the size groups (except 

for size group 5). Environmental variability induces the cod (species) to collapse in a 

shorter time than was observed in Scenario II. Because the species is less abundant and 

heavily fished, cape lin removal is drastic from the moment its fishery begins (Fig. 7. 7, 

Step 2). When (Fig. 7.7) the cod fishery stops in step 3, this species recovers to reach a 

high abundance. At the same time fluctuations of size group 5 are reduced in range. But 

the real recovery of size groups, hence biomass, of cod appears in Figure 7.8, which 

shows the size groups recovery of cod when its fishery stops (Step 2 to 3) and the 

recovery of capelin at the end of Step 3 (assuming the fishery stops for all species). 

Because of its longer life span the recovery of cod takes longer, e.g. no individuals of size 

group 5 appear before around 16 years after the fishery stops because that is the time for 

an individual cod to grow to that size. 
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The three steps of this scenario can be analysed considering the index values 

recorded in Tables 7.7a to 7.10b. In Step 1, the community suffers a similar effect to that 

seen under a cod fishery (Scenario II), only that in this case, because environmental 

variability also affects the community, the minimum limit for abundance changes more 

than under a cod fishery alone. This minimum limit is less than 50% of the reference 

scenario. A drastic decrease of minimum limit is also observed when size groups and 

species are considered separately. Fishery expansion to capture capelin in addition to cod 

does not seem to have a significant effect on the community with respect to the situation 

in Step 1. However, at the level of species, even more species amplify their variation 

range as a result of an increase in their maximum limit. When the fishery for cod stops 

(Step 3) the mean abundance remains low because the fishery for capelin continues, but 

the mean biomass increases. The range of variation of community biomass, which had 

decreased drastically in Steps 1 and 2, now displays a significant increase because the 

upper and lower limits are extended. 
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Table 7.7a: Abundance comparison of Scenario III step 1 (fishery of cod and 
environmental variability). For explanation see text page number 139. 

Scenario Ill 
Trend of variation with respect to reference scenario 

(step 1) 

group 
%range % magnitude range 

%min %max %mean !(max-min) !(range/min) 
Abundance Size1 -3 -3 -3 -3 

of size Size2 -3 -3 -3 -3 
groups Size3 -3 -3 -3 -3 

within the Size4 -2 -3 -3 -3 
community Size5 -3 -3 -3 -3 

Bs -3 -2 -2 2 
Gm -3 -3 -3 -3 
Mv -3 1 -2 3 
Cr -3 -3 -3 -3 

Abundance Gc -3 -1 -2 2 
of species Hp -3 -2 -2 -1 

Rh -3 -2 -2 -2 
Rr -3 -2 -3 -2 
Sma -3 -2 -2 2 
Sme -3 -2 -2 2 

Community 
Abundance Community_ -3 -3 -3 -3 

Table 7. 7b: Biomass comparison of Scenario III step 1 (fishery of cod and 
environmental variability). For explanation see text page number 139. 

Sceanrio Ill 
Trend of variation with respect to reference scenario (step 1) 

3 
3 
3 

-3 
3 
3 
2 
3 
3 
3 
3 
3 
3 
3 
3 

3 

group 
%range % magnitude range 

%min %max %mean (max-min) (range/min) 
Biomass Size1 -3 -3 -3 -3 3 
of size Size2 -3 -3 -3 -3 3 
groups Size3 -3 -3 -3 -3 3 

within the Size4 -2 -3 -3 -3 -3 
community_ SizeS -3 -3 -3 -3 3 

Bs -3 -3 -2 -3 3 
Gm -3 -3 -3 -3 -3 
Mv -3 2 -2 3 3 
Cr -3 -3 -3 -3 2 

Biomass Gc -2 3 -2 3 3 
of species Hp -3 2 -3 2 3 

Rh -3 3 3 3 3 
Rr -3 -3 -3 -3 3 
Sma -3 -2 -3 -2 3 
Sme -3 -3 -3 -3 3 

Community 
Biomass Community -3 -3 -3 -3 -2 
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Table 7.8a: Abundance comparison of Scenario III step 2 (fishery of cod and 
capelin and environmental variability). For explanation see text page number 139. 

Sceanrio Ill 
Trend of variation with respect to reference scenario (step 2) 

group 
%range %magnitude range 

%min %max %mean l<max-min) I (range/min) 
Abundance Size1 -3 -3 -3 -3 3 

of size Size2 -3 -3 -3 -3 3 
groups Size3 -3 -3 -3 -3 3 

within the Size4 -3 -3 -3 -3 -1 
community SizeS -3 -3 -3 -3 3 

Bs -3 -2 -2 2 3 
Gm -3 -3 -3 -3 3 
Mv -3 -3 -3 -3 3 
Cr -3 -3 -3 -3 3 

Abundance Gc -3 -1 -2 2 3 
of species Hp -3 -1 -2 1 3 

Rh -3 -2 -2 -2 3 
Rr -3 -2 -3 -2 3 
Sma -3 -2 -2 2 3 
Sme -3 -2 -2 2 3 

Community 
Abundance Community -3 -3 -3 -3 3 

Table 7 .8b: Biomass comparison of Scenario III step 2 (fishery of cod and cape lin 
and environmental variability). For explanation see text page number 139. 

Scenario Ill 
Trend of variation with respect to reference scenario 

(step 2) 

group 
%range % magnitude range 

%min %max %mean _(_max-min) (range/min) 
Biomass Size1 -3 -3 -3 -3 3 
of size Size2 -3 -3 -3 -3 3 
groups Size3 -3 -3 -3 -3 3 

within the Size4 -3 -3 -3 -3 -1 
community SizeS -3 -3 -3 -3 3 

Bs -3 -2 -2 -1 3 
Gm -3 -3 -3 -3 -2 
Mv -3 -3 -3 -3 3 
Cr -3 -3 -3 -3 3 

Biomass Gc -3 3 1 3 3 
of species Hp -3 3 -2 3 3 

Rh -3 3 3 3 3 
Rr -3 -3 -3 -3 3 
Sma -3 -2 -2 -2 3 
Sme -3 -1 -2 1 3 

Community 
Biomass Community -3 -3 -3 -3 2 
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Table 7 .9a: Abundance comparison of Scenario III step 3 (fishery of capelin 
and environmental variability). For explanation see text page number 139. 

Sceanrio Ill 
Trend of variation with respect to reference scenario 

(step 3) 

group 
%range % magnitude range 

%min %max %mean (max-min) ! (range/min) 
Abundance Size1 -3 -2 -2 -2 

of size Size2 -3 3 -2 3 
groups Size3 -3 3 3 3 

within the Size4 -3 3 3 3 
community Size5 -3 3 3 3 

Bs -3 1 -2 3 
Gm -3 1 -2 1 
Mv -3 -3 -3 -3 
Cr -3 -2 -3 -2 

Abundance Gc -3 -2 -2 2 
of species Hp -3 1 -2 2 

Rh -3 -2 -2 -1 
Rr -3 1 -2 2 
Sma -3 2 -2 3 
Sme -3 1 -2 3 

Community 
Abundance Community -3 -2 -2 -1 

Table 7.9b: Biomass comparison of Scenario III step 3 (fishery ofcapelin 
and environmental variability). For explanation see text page number 139. 

Sceanrio Ill Trend of variation with respect to reference scenario 
(step 3) 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

3 

group 
%range % magnitude range 

%min %max %mean (max-min) I (range/min) 
Biomass Size1 -3 -2 -2 -2 3 

of size Size2 -3 3 -2 3 3 
groups Size3 -3 3 3 3 3 

within the Size4 -3 3 3 3 3 
community Size5 -3 3 3 3 3 

Bs -3 3 -2 3 3 
Gm -2 3 3 3 3 
Mv -3 -3 -3 -3 3 
Cr -3 -2 -3 -2 3 

Biomass Gc -3 3 -1 3 3 
of species Hp -3 3 -1 3 3 

Rh -3 3 -2 3 3 
Rr -3 3 -2 3 3 
Sma -3 3 2 3 3 
Sme -3 3 2 3 3 

Community 
Biomass Community -2 3 3 3 3 
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Table 7.10a: Abundance comparison ofthe recovery from Scenario III (fishery 
and environmental variability). For explanation see text page number 139. 

Recovery from Fishery 
Trend of variation with respect to reference scenario 

and environmental variability 

group %range % magnitude range 
%min %max %mean ICmax-minl l(range/min) 

Abundance Size1 -3 -2 -2 -1 3 
of size Size2 -3 3 -2 3 3 
groups Size3 -3 3 3 3 3 

within the Size4 -3 3 3 3 3 
community Size5 -3 3 3 3 3 

Bs -3 -2 -2 3 3 
Gm -3 2 -2 2 3 
Mv -3 -1 -3 3 3 
Cr -3 3 3 3 3 

Abundance Gc -3 2 -2 3 3 
of species Hp -3 -1 -2 1 3 

Rh -3 -2 -2 -2 3 
Rr -3 2 -2 3 3 
Sma -3 -1 -2 3 3 
Sme -3 2 -2 3 3 

Community 
Abundance Community -3 1 -2 2 3 

Table 7.10b: Biomass comparison ofthe recovery from Scenario III (fishery and 
environmental variability). For explanation see text page number 139. 

Recovery of Fishery and 
Trend of variation with respect to reference scenario 

environmental variability 

group 
%range % magnitude range 

%min %max %mean !(max-min) I (range/min) 
Biomass Size1 -3 -2 -2 -1 3 
of size Size2 -3 3 -2 3 3 
groups Size3 -3 3 3 3 3 

within the Size4 -3 3 3 3 3 
community Size5 -3 3 3 3 3 

Bs -3 3 -2 3 3 
Gm -3 3 3 3 3 
Mv -3 3 -2 3 3 
Cr -3 3 2 3 3 

Biomass Gc -3 3 3 3 3 
of species Hp -3 3 3 3 3 

Rh -3 3 2 3 3 
Rr -3 2 -1 3 3 
Sma -3 3 3 3 3 
Sme -3 3 3 3 3 

Community 
Biomass Community -2 3 3 3 3 
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7.4. COMPARISON OF SCENARIOS AND EXPERIMENTAL DATA 

Only a rough comparison can be made between the simulation results and 

empirical data. There are several results. First, in the empirical data, size group 1 (and 

probably 2) is certainly underrepresented. This stage corresponds to individuals living in 

pelagic and nearshore habitats, and therefore they are generally not recorded in the 

bottom trawl surveys. Another problem concerns the simulation assumptions. The model 

considers that only one or two species are removed by a fishery and at a constant rate 

over time. In addition, in the model no species is allowed to go extinct because the fishery 

is applied to mature sizes and stops when only one mature individual remains. The fishery 

in the real community is of course much more diverse and complex. In a real fishery 

many species are captured and the fishery usually intensifies over time. Most size classes 

are captured, and are effectively removed from the community either as bycatch or dead 

discards. Not all species present in the community are considered in the model, though 

the 10 species considered in the model do account for more than 99% of the community 

abundance. Finally, the empirical data cover a period of 16 years and the comparison 

must be of this short-time trend with the long-term trend (100+ years) that results from the 

simulation. Recognizing these pitfalls, we go on to compare the changes in the 

community observed in nature with the response of the community in the simulation 

exercise. 

The changes in the Newfoundland demersal community are the result of heavy 

fishery exploitation (Myers et al., 1996; Walters and Maguire, 1996). Therefore, the 

community should have passed from a situation similar to the environmental variability 

scenario (Scenario I) to a situation similar to the fishery and environmental variability 
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combined scenario (Scenario III, step 1 ). The fact that our empirical data concerning the 

community corresponds to a period of drastic changes in the demersal fish community 

allows us to compare the change of the size spectrum of the community during the survey 

period (see Chapter 5) with the changes in size spectrum of the community when 

simulated under Scenarios I and III, Step 1. 

Nonetheless, comparison cannot be done directly between apparently similar 

scenarios in the real and in the simulated community. The reason is that we cannot 

determine equal size group intervals for the empirical data directly equivalent to the size 

groups present in the simulation model. As mentioned before, the two smallest size 

groups considered in the model (from 0 to 10 g and from 10 to 100 g) are 

underrepresented in the survey data of the Newfoundland fish community. Their use will 

change the shape of the size spectrum, which will appear to have a dome shape. 

Therefore, what is compared here is whether the real and simulated community follow a 

similar trend when passing from one scenario to another. The size spectrum is used to 

study these changes. 

In order to build the size spectrum for a simulated community we consider size 

intervals of width equal to that of the first size group, i.e. of 1 Og. But size groups in the 

model are on a logarithmic scale. Thus, to obtain a representative 1 Og interval for each 

size we divide the abundance in the size intervals of the model to make groups of 1 Og. 

We then select the central group of each size group to construct the size spectrum of the 

community, i.e. for size group 1 there is only one group so all individuals of this size 

group are considered, for size group 2 there are 9 intervals of 1 Og, so we select the central 

interval, 50-60g, and consider that the number of individuals in this interval is equal to 

161 



the number of individuals in size group 2 divided by 9, and for the rest of the size groups 

we proceed similarly depending on the number of 1 Og intervals each contains. 

The change of the simulated community size spectrum is represented in Fig. 7.9 

(a) by curves at the beginning and at the end of the period of perturbation and can be 

compared with the changes observed in the real community (Chapter 5, Fig 5.2) included 

here in Fig. 7.9 (b). The changes in both cases follow a similar trend. The simulation of a 

fishery targeting large top predators induces an overall reduction of the community 

abundance, and a decrease in all size groups that is also seen in the real Newfoundland 

community size spectrum. In both the real and the simulated community, this reduction 

increases across size classes. Thus, there is only a slight reduction (in logarithmic scale) 

in the smallest sizes compared to a drastic reduction in the largest sizes of the community. 

The changes predicted by the model resemble the changes observed in the real 

community under heavy size selective exploitation of cod. 
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Fig. 7.9: Comparison of community size spectrum change over time between the 
simulated community (a) and the real community (b). 

7.5. CONCLUSIONS 

At first sight the model simulating the dynamics of Newfoundland demersal fish 

community might seem to give contrived and/or self-evident results. We set the premises 

and we observe the consequent results under those premises. As with any model, the 

results respond to and depend a great deal on the construction and assumptions made 

during the process of building the model. However, the model also shows community 

characteristics that are not easily observed without simulation. Outcomes indicate the 

relative abundance and biomass of species and size group structure in the community, as 

well as indicators concerning the long-term indirect effect of different kinds of 

disturbances on the community. The simulation exercise allows testing whether the 
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community is going to become more or less variable under different scenarios, and which 

size groups and species are prone to change more under a specific disturbance. Of course, 

how well we simulate the disturbing process will influence how well we can simulate its 

effect. That constitutes a future task; here the purpose was to formulate a dynamic model 

reflecting the size structure of the fish community and see it at work. 

As can be concluded from the simulation of the three scenarios presented in this 

chapter, the fish community fluctuates strongly due to environmental variability. When 

size selective fishing pressure is added, the community as a whole is reduced more than 

50% in both abundance and biomass. All size groups in the community suffer this 

reduction, but not all species do so when considered separately. However, the punctuated 

increases in abundance and/or biomass of some species do not compensate for the total 

net loss in the community. Thus, evaluation of single stocks may be misleading in regard 

to conclusions about the whole community. In the fishery simulation a constant fishery 

was assumed and the output of that model can be identified with Community II in 

Chapter 1 (Fig. 1.1 ), with the figure redrawn here as Fig. 7.10 to show the scenarios. 

I cod fishery 

~ 
Scenario I 
Community 

t •I cod and reim fishery! 1-t--~ ... ~INei fishery? f--

Scenario II 
Community 

New scenario? 
1-------1~ 

Community 

Fig. 7.10 Simulation of fish-fisheries dynamics with the model scenanos 
indicated.6 
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If the fishery intensifies or shifts its target to those species where mean abundance 

or biomass has increased, then the fishery will change the ·community again from an 

already decimated one (more than 50% decrease in biomass and abundance) to a new 

state (Community III in Chapter 1, Fig. 1.1) which is likely to be even poorer. At this 

stage the community should be compared to the first reference point of the community 

stage (Community I) instead of to Community II. This is important in order to conclude 

the true state of the community, i.e. Community III may appear in a better condition (as 

more abundant and with a greater presence of large size groups) than Community II, but 

may still be very far from the standard of Community I. Short-term management of 

fisheries tends to focus alone on the period in which initial conditions from the previous 

few years influence community dynamics, neglecting the importance of life history 

characteristics in the long run. In the model, which does not contemplate extinction of 

species, the community may recover to the initial or an alternative stable state, but only if 

given enough time. A conclusion from the model is that knowing about the fluctuations of 

the community is at least as important as knowledge of abundance or biomass. For the 

fish community, large fluctuations represent a wider range in which the community may 

exist, whereas for the fishery greater fluctuations in the fish community means more 

variability of captures, which reduces the ability to manage the fishery. 
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Chapter 8: 

Epilogue 

St. John's, 2 July 2002, the 1 01h anniversary of the cod moratorium in 

Newfoundland: Just as in those days 10 years ago, scientists still struggle to predict the 

abundance trend of the fish stock, governments struggle to manage the fishery, fishermen 

struggle to make a living, fishing villages struggle to keep their culture, and the fish 

struggle to survive. After 10 years, I think it can be said that this is not a short-term 

problem, and thus a long-term approach to addressing fish community dynamics must be 

adopted. 

This thesis started by defining the fish-fishery interaction system and considering 

its unfortunate history. Through the first chapter we argued that the fishery is the only 

variable that can be manipulated but that the fish community must be the ultimate focus 

of study and that its dynamics set the limits of the system. Despite the fact that our main 

interest is in the ecology of a demersal fish community, the drastic changes that fishing 

communities are suffering led us to pursue the study within a framework that hopefully 

can be useful for the long-term management of the resources. 

The composition of the demersal fish community off Newfoundland has changed 

over time in what seems to be a trend towards a different structure. The life history 

characteristics of each component species influence the species dynamics. The length of 

life stages for a certain species will influence the species survival rate in respect to 

environmental variability and predation, the therefore percentage of individuals that reach 
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maturity and contribute to the production of new generations. The combination of these 

processes results in the different species reactions, in time and abundance, to 

perturbations. Allometry of life history parameters makes size a good indicator of species 

response to perturbations. Size consideration improves the usual species-by-species 

approach to study the response of fish to perturbation. Predation not only occurs within 

the same species, it links species together making the dynamics of a species dependent on 

what happens with the rest of the species in the community. Furthermore, trophic 

interactions structure the community as a whole and determine its dynamics. Based on the 

importance of size dependent predation as a link among individuals in the community, we 

study size as an indicator of structure and dynamics at the community level. We propose 

the idea of size groups as functional groups of the community as others has also 

suggested. 

A size-based approach seems most adequate considering that under the size 

selective pressure a fishery exerts, the structure of populations of many fish is shifted 

towards smaller sizes and these changes must affect trophic interactions. Therefore, the 

whole community structure will change. Size spectra analysis, in which size groups are 

considered the functional groups within the community, reflects the trophic structure of 

the community. 

The construction of a size-based model permits simulation of the fish community 

dynamics, and achieves a three-fold objective: (1) explain how interactions among 

species result in the structure and dynamics of the fish community overall, (2) test how 

external disturbances influence the community structure and dynamics, and (3) provide a 
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tool for management decisions by allowing the consideration of possible long-term 

effects of different fishing strategies. 

Biological interactions maintain the abundance of species and size functional 

groups in a stable state within which species and size groups fluctuate within certain 

limits. Environmental variability decreases the mean abundance of the community but 

greatly increases the mean biomass. The biomass fluctuations are amplified and only the 

high number of small individuals reverts this tendency in the abundance fluctuations. 

Thus, abundance fluctuations of the whole community are reduced, despite they are 

amplified in most size groups. A continuous cod fishery has a drastic effect on the relative 

abundance of size groups decreasing the abundance and biomass of the community and 

reducing the limits between which the community may vary. Despite changes in the 

relative abundance of species, in no case is there any indication of replacement in 

absolute abundance of one species by another. If environmental variability ceases the 

community recovers to a stable state similar to the original situation without disturbances. 

The recovery process from a fishery, however, may take the community to an alternative 

stable state and the time to reach that state will take longer than the life span of the 

species of the community. For long-lived species this time is longer than 30 years. 

The results here are only some of the many scenarios that can be considered. 

Better knowledge about species biology and the better data on size will significantly 

improve the performance of the model. However, conservative estimation of species 

parameters may be used as a precautionary approach to test the behaviour of species, size 

groups and the whole community under possible management scenarios. 
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We find that a size-based approach to the study of fish communities is necessary 

to deal with properties of the community that cannot be explained by looking at each 

single species one at a time, especially over the long term. In the future, size-based 

functional group dynamics in time and space can help to define the spatial and temporal 

frameworks within which to consider the community. Future challenges for the model are 

its adaptation to deal with the spatial variability of interactions and to include new taxa in 

order to observe whole ecosystem dynamics. Reference to recent work with stable 

isotopes (e.g. 515 N) to determine trophic levels can be especially important to improve 

the model, as well as a collaboration among single-species fishery experts to determine 

the community matrix with the highest possible quality. 
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Appendix A 

Computer form of size-based community model 

Matlab is the software program in which the model is built as an M-file and run in 

the Matlab workspace. The symbol % preceding a sentence indicates that the sentence is 

only an explanation or notation for the author or users and do not form part of the model. 

In those sentences the reader will find the explanation to understand and run the model. 

% S, is the arbitrary name given to the model of the community considering only 

biological interactions (the one presented in this appendix). Under this name (S) is 

saved the file that contains the model. This name also identifies the model (in the 

command "function" below), and indicates to the workspace the model that should 

be run. 

% Section 1: Input data 

% To initialize the model it is necessary to state in the Matlab workspace: 

% 1.- The initial value of the variables: 

% The model variables are the individuals of each size group and species. Thus the 

variables are named by the letter n followed by 2 or 3 letters identifying the 

species plus a number identifying the corresponding size group. 

% The letters Gme for the species identification is: Bs for Arctic Gm, Cr for 

Roundnose grenadier, Gm for Atlantic Gm, Gc for Witch flounder, Hp for 

American plaice, Mv for capelin, Rr for Thorny skate, Rh for Greenland halibut, 

Sma for Golden redfish, and Sme for Deep water redfish. The size group number 

can go from 1 to 5. 

% To refer to the initial value of the variables, a 0 is added after the size group 

number. Thus for the variable nGm1 (Gm individuals in size group 1), the initial 
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value is named nGm1 0. To initialize the model we gave the value of 1 to each size 

group of each species as follows: 

% nGm10=1; nGm20=1; nGm30=1; nGm40=1; nGm50=1; nMv10=1; nMv20=1; 

nBs10=1; nBs20=1; nBs30=1; nSme10=1; nSme20=1; nSme30=1; nSme40=1; 

nHp10=1; nHp20=1; nHp30=1; nHp40=1; nRh10=1; nRh20=1; nRh30=1; 

nRh40=1; nRh50=1; nCr10=1; nCr20=1; nCr30=1; nCr40=1; nGc10=1; 

nGc20=1; nGc30=1; nGc40=1; nSma10=1; nSma20=1; nSma30=1; nSma40=1; 

nRr10=1;nRr20=1;nRr30=1;nRr40=1; 

% 2.- The number of iterations, i.e. the time period for which we run the model: For 

the first time we selected a 500 years time period as follows: 

% runlen =500; 

% 3.- The order to start to run the model that correspond to the order "function" in 

the model but removing the word "function". Thus it will be the expression: 

%[nGm1,nGm2,nGm3,nGm4,nGm5,nMv1,nMv2,nBs1,nBs2,nBs3,nHp1,nHp2,n 

Hp3,nHp4,nRh1 ,nRh2,nRh3,nRh4,nRh5,nSme 1 ,nSme2,nSme3,nSme4,nCr1 ,nCr2 

,nCr3,nCr4,nGc 1 ,nGc2,nGc3 ,nGc4,nSma1 ,nSma2,nSma3,nSma4,nRr1 ,nRr2,nRr3 

,nRr4 ]=S(nGm 1 O,nGm20,nGm30,nGm40,nGm50,nMv1 O,nMv20,nBs 1 O,nBs20,n 

Bs30,nHp 1 O,nHp20,nHp30,nHp40,nRh1 O,nRh20,nRh30,nRh40,nRh50,nSme1 O,n 

Sme20,nSme30,nSme40,nCr1 O,nCr20,nCr30,nCr40,nGc 1 O,nGc20,nGc30,nGc40, 

nSma1 O,nSma20,nSma30,nSma40,nRr1 O,nRr20,nRr30,nRr40,runlen) 

% The key "enter" is pressed after each input data. The model will star to run when 

this key is pressed after writing the order to start the model run and will end when 

all iterations requested have been done. Once all iterations finish it will appear in 

186 



the screen the initial model output corresponding to the value of the variables in 

each iteration performed. 

% Section 2: Model set up 

% The function statement below indicates to the computer the model we are going to 

run. This function indicates that the model variables (in the first term) are going to 

be obtained by the model (indicated by its name) using the initial variables values 

(in the second term) and considering the number of iterations (runlen command). 

function[nGm1 ,nGm2,nGm3,nGm4,nGm5,nMv1 ,nMv2,nBs1 ,nBs2,nBs3,nHp1 ,nH 

p2,nHp3,nHp4,nRh1 ,nRh2,nRh3,nRh4,nRh5,nSme1 ,nSme2,nSme3,nSme 

4,nCr1 ,nCr2,nCr3,nCr4,nGc1 ,nGc2,nGc3,nGc4,nSma1 ,nSma2,nSma3,nS 

ma4,nRr1 ,nRr2,nRr3,nRr4]=S(nGm1 O,nGm20,nGm30,nGm40,nGm50,nM 

v1 O,nMv20,nBs1 O,nBs20,nBs30,nHp1 O,nHp20,nHp30,nHp40,nRh1 O,nRh2 

O,nRh30,nRh40,nRh50,nSme1 O,nSme20,nSme30,nSme40,nCr1 O,nCr20,n 

Cr30,nCr40,nGc10,nGc20,nGc30,nGc40,nSma10,nSma20,nSma30,nSma 

40,nRr10,nRr20,nRr30,nRr40,runlen) 

% The next line means that the variables initial values are going to be named by 

means of adding a 0 at the end ofthe model variables' name. 

nGm 1 =[nGm 1 0]; nGm2=[nGm20] ;nGm3=[ nGm30] ;nGm4=[nGm40] ;nGm5=[nGm5 

O];nMv1 =[nMv1 O];nMv2=[nMv20];nBs1 =[nBs1 O];nBs2=[nBs20];nBs3=[nBs 

30];nHp1 =[nHp1 O];nHp2=[nHp20];nHp3=[nHp30];nHp4=[nHp40];nRh1 =[n 

Rh1 O];nRh2=[nRh20];nRh3=[nRh30];nRh4=[nRh40];nRh5=[nRh50];nSme1 

=[nSme1 O];nSme2=[nSme20];nSme3=[nSme30];nSme4=[nSme40];nCr1 =[ 

nCr1 O];nCr2=[nCr20];nCr3=[nCr30];nCr4=[nCr40];nGc1 =[nGc1 O];nGc2=[n 

Gc20];nGc3=[nGc30];nGc4=[nGc40];nSma1 =[nSma1 O];nSma2=[nSma20]; 
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nSma3=[nSma30];nSma4=[nSma40];nRr1 =[nRr1 O];nRr2=[nRr20];nRr3=[n 

Rr30] ;n Rr4=[ n Rr40]; 

% Section 3: The model 

% The next line indicates that the model should run the same number of iterations 

indicated in the input data. 

for t=l:runlen 

% Subsection 1: Distribution among ages 

% The following subsection is only used in the first iteration in the first running of 

the model, i.e. only for time =1. This section indicates the initial age distribution 

of species. It is necessary because although the model variables are species size 

groups, it considers the age distribution of individuals. 

% The input values are for each species in each size group, but a size group can 

account for several ages of the species. In this section the number of individuals of 

each species size group is equally distributed in the corresponding ages of that 

species size. The equal distribution could be changed if there were a case where 

the real age distribution of individuals of a species was known. 

% New variables corresponding to the individuals of a species in a size group and in 

a certain age are Created and named using the same notation as for the variables of 

species size groups adding a number at the end corresponding to the age of the 

individuals, e.g. a new variable will be nGml1, which refers to the individuals of 

species Gm in size group 1 and age 1. 

% Further in the model other variables are created and in all of them the reference to 

the species, size group and age will be done as indicated in the previous line for 

the new variable. 
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% The letter tin brackets identifies the iteration for which the value is considered: (t) 

for the actual iteration or (t-1) for the previous iteration. 

% It can be considered that the model really starts in the year 2, since the output for 

year 1 will be the same as the input. 

if t<=1 

nGm11 (t)=nGm1 (t); 

nGm22(t)=nGm2(t); 

nGm33(t)=nGm3(t)/3; 

nGm34(t)=nGm3(t)/3; 

nGm35(t)=nGm3(t)/3; 

nGm46(t)=nGm4(t)/1 0; 

nGm4 7 (t)=nGm4(t)/1 0; 

nGm48(t)=nGm4(t)/1 0; 

nGm49(t)=nGm4(t)/1 0; 

nGm41 O(t)=nGm4(t)/1 0; 

nGm411 (t)=nGm4(t)/1 0; 

nGm412(t)=nGm4(t)/1 0; 

nGm413(t)=nGm4(t)/1 0; 

nGm414(t)=nGm4(t)/1 0; 

. nGm415(t)=nGm4(t)/1 0; 

nGm516(t)=nGm5(t)/5; 

nGm517(t)=nGm5(t)/5; 

nGm518(t)=nGm5(t)/5; 

nGm519(t)=nGm5(t)/5; 

nGm520(t)=nGm5(t)/5; 

nMv11 (t)=nMv1 (t)/2; 

nMv12(t)=nMv1 (t)/2; 

nMv23(t)=nMv2(t)/3; 
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nMv24(t)=nMv2(t)/3; 

nMv25(t)=nMv2(t)/3; 

nBs11 (t)=nBs1 (t)/2; 

nBs12(t)=nBs1 (t)/2; 

nBs23(t)=nBs2(t)/3; 

nBs24(t)=nBs2(t)/3; 

nBs25(t)=nBs2(t)/3; 

nBs36(t)=nBs3(t)/3; 

nBs37(t)=nBs3(t)/3; 

nBs38(t)=nBs3(t)/3; 

nSme11 (t)=nSme1 (t); 

nSme22(t)=nSme2(t)/3; 

nSme23(t)=nSme2(t)/3; 

nSme24(t)=nSme2(t)/3; 

nSme35(t)=nSme3(t)/6; 

nSme36(t)=nSme3(t)/6; 

nSme37(t)=nSme3(t)/6; 

nSme38(t)=nSme3(t)/6; 

nSme39(t)=nSme3(t)/6; 

nSme31 O(t)=nSme3(t)/6; 

nSme411 (t)=nSme4(t)/30; 

nSme412(t)=nSme4(t)/30; 

nSme413(t)=nSme4(t)/30; 

nSme414(t)=nSme4(t)/30; 

nSme415(t)=nSme4(t)/30; 

nSme416(t)=nSme4(t)/30; 

nSme417(t)=nSme4(t)/30; 

nSme418(t)=nSme4(t)/30; 

nSme419(t)=nSme4(t)/30; 

nSme420(t)=nSme4(t)/30; 
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nSme421 (t)=nSme4(t)/30; 

nSme422(t)=nSme4(t)/30; 

nSme423(t)=nSme4(t)/30; 

nSme424(t)=nSme4(t)/30; 

nSme425(t)=nSme4(t)/30; 

nSme426(t)=nSme4(t)/30; 

nSme427(t)=nSme4(t)/30; 

nSme428(t)=nSme4(t)/30; 

nSme429(t)=nSme4(t)/30; 

nSme430(t)=nSme4(t)/30; 

nSme431 (t)=nSme4(t)/30; 

nSme432(t)=nSme4(t)/30; 

nSme433(t)=nSme4(t)/30; 

nSme434(t)=nSme4(t)/30; 

nSme435(t)=nSme4(t)/30; 

nSme436(t)=nSme4(t)/30; 

nSme437(t)=nSme4(t)/30; 

nSme438(t)=nSme4(t)/30; 

nSme439(t)=nSme4(t)/30; 

nSme440(t)=nSme4(t)/30; 

nHp11 (t)=nHp1 (t)/2; 

nHp12(t)=nHp1 (t)/2; 

nHp23(t)=nHp2(t)/2; 

nHp24(t)=nHp2(t)/2; 

nHp35(t)=nHp3(t)/6; 

nHp36(t)=nHp3(t)/6; 

nHp37(t)=nHp3(t)/6; 

nHp38(t)=nHp3(t)/6; 

nHp39(t)=nHp3(t)/6; 

nHp31 O(t)=nHp3(t)/6; 
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nHp411 (t)=nHp4(t)/15; 

nHp412(t)=nHp4(t)/15; 

nHp413(t)=nHp4(t)/15; 

nHp414(t)=nHp4(t)/15; 

nHp415(t)=nHp4(t)/15; 

nHp416(t)=nHp4(t)/15; 

nHp417(t)=nHp4(t)/15; 

nHp418(t)=nHp4(t)/15; 

nHp419(t)=nHp4(t)/15; 

nHp420(t)=nHp4(t)/15; 

nHp421 (t)=nHp4(t)/15; 

nHp422(t)=nHp4(t)/15; 

nHp423(t)=nHp4(t)/15; 

nHp424(t)=nHp4(t)/15; 

nHp425(t)=nHp4(t)/15; 

nRh11 (t)=nRh1 (t)/2; 

nRh12(t)=nRh1 (t)/2; 

nRh23(t)=nRh2(t)/2; 

nRh24(t)=nRh2(t)/2; 

nRh35(t)=nRh3(t)/6; 

nRh36(t)=nRh3(t)/6; 

nRh37(t)=nRh3(t)/6; 

nRh38(t)=nRh3(t)/6; 

nRh39(t)=nRh3(t)/6; 

nRh31 O(t)=nRh3(t)/6; 

nRh411 (t)=nRh4(t)/5; 

nRh412(t)=nRh4(t)/5; 

nRh413(t)=nRh4(t)/5; 

nRh414(t)=nRh4(t)/5; 

nRh415(t)=nRh4(t)/5; 
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nRh516(t)=nRh5(t)/5; 

nRh517(t)=nRh5(t)/5; 

nRh518(t)=nRh5(t)/5; 

nRh519(t)=nRh5(t)/5; 

nRh520(t)=nRh5(t)/5; 

nCr11 (t)=nCr1 (t)/2; 

nCr12(t)=nCr1 (t)/2; 

nCr23(t)=nCr2(t)/7; 

nCr24(t)=nCr2(t)/7; 

nCr25(t)=nCr2(t)/7; 

nCr26(t)=nCr2(t)/7; 

nCr27(t)=nCr2(t)/7; 

nCr28(t)=nCr2(t)/7; 

nCr29(t)=nCr2(t)/7; 

nCr31 O(t)=nCr3(t)/16; 

nCr311 (t)=nCr3(t)/16; 

nCr312(t)=nCr3(t)/16; 

nCr313(t)=nCr3(t)/16; 

nCr314(t)=nCr3(t)/16; 

nCr315(t)=nCr3(t)/16; 

nCr316(t)=nCr3(t)/16; 

nCr317(t)=nCr3(t)/16; 

nCr318(t)=nCr3(t)/16; 

nCr319(t)=nCr3(t)/16; 

nCr320(t)=nCr3(t)/16; 

nCr321 (t)=nCr3(t)/16; 

nCr322(t)=nCr3(t)/16; 

nCr323(t)=nCr3(t)/16; 

nCr324(t)=nCr3(t)/16; 

nCr325(t)=nCr3(t)/16; 

193 



nCr426(t)=nCr4(t)/15; 

nCr427(t)=nCr4(t)/15; 

nCr428(t)=nCr4(t)/15; 

nCr429(t)=nCr4(t)/15; 

nCr430(t)=nCr4(t)/15; 

nCr431 (t)=nCr4(t)/15; 

nCr432(t)=nCr4(t)/15; 

nCr433(t)=nCr4(t)/15; 

nCr434(t)=nCr4(t)/15; 

nCr435(t)=nCr4(t)/15; 

nCr436(t)=nCr4(t)/15; 

nCr437(t)=nCr4(t)/15; 

nCr438(t)=nCr4(t)/15; 

nCr439(t)=nCr4(t)/15; 

nCr440(t)=nCr4(t)/15; 

nGc11 (t)=nGc1 (t)/2; 

nGc12(t)=nGc1 (t)/2; 

nGc23(t)=nGc2(t)/2; 

nGc24(t)=nGc2(t)/2; 

nGc35(t)=nGc3(t)/6; 

nGc36(t)=nGc3(t)/6; 

nGc37 (t)=nGc3(t)/6; 

nGc38(t)=nGc3(t)/6; 

nGc39(t)=nGc3(t)/6; 

nGc31 O(t)=nGc3(t)/6; 

nGc411 (t)=nGc4(t)/20; 

nGc412(t)=nGc4(t)/20; 

nGc413(t)=nGc4(t)/20; 

nGc414(t)=nGc4(t)/20; 

nGc415(t)=nGc4(t)/20; 
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nGc416(t)=nGc4(t)/20; 

nGc417(t)=nGc4(t)/20; 

nGc418(t)=nGc4(t)/20; 

nGc419(t)=nGc4(t)/20; 

nGc420(t)=nGc4(t)/20; 

nGc421 (t)=nGc4(t)/20; 

nGc422(t)=nGc4(t)/20; 

nGc423(t)=nGc4(t)/20; 

nGc424(t)=nGc4(t)/20; 

nGc425(t)=nGc4(t)/20; 

nGc426(t)=nGc4(t)/20; 

nGc427 (t )=nGc4(t )/20; 

nGc428(t)=nGc4(t)/20; 

nGc429(t)=nGc4(t)/20; 

nGc430(t)=nGc4(t)/20; 

nSma11 (t)=nSma1 (t); 

nSma22(t)=nSma2(t)/3; 

nSma23(t)=nSma2(t)/3; 

nSma24(t)=nSma2(t)/3; 

nSma35(t)=nSma3(t)/6; 

nSma36(t)=nSma3(t)/6; 

nSma37(t)=nSma3(t)/6; 

nSma38(t)=nSma3(t)/6; 

nSma39(t)=nSma3(t)/6; 

nSma31 O(t)=nSma3(t)/6; 

nSma411 (t)=nSma4(t)/30; 

nSma412(t)=nSma4(t)/30; 

nSma413(t)=nSma4(t)/30; 

nSma414(t)=nSma4(t)/30; 

nSma415(t)=nSma4(t)/30; 
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nSma416(t)=nSma4(t)/30; 

nSma417(t)=nSma4(t)/30; 

nSma418(t)=nSma4(t)/30; 

nSma419(t)=nSma4(t)/30; 

nSma420(t)=nSma4(t)/30; 

nSma421 (t)=nSma4(t)/30; 

nSma422(t)=nSma4(t)/30; 

nSma423(t)=nSma4(t)/30; 

nSma424(t)=nSma4(t)/30; 

nSma425(t)=nSma4(t)/30; 

nSma426(t)=nSma4(t)/30; 

nSma427(t)=nSma4(t)/30; 

nSma428(t)=nSma4(t)/30; 

nSma429(t)=nSma4(t)/30; 

nSma430(t)=nSma4(t)/30; 

nSma431 (t)=nSma4(t)/30; 

nSma432(t)=nSma4(t)/30; 

nSma433(t)=nSma4(t)/30; 

nSma434(t)=nSma4(t)/30; 

nSma435(t)=nSma4(t)/30; 

nSma436(t)=nSma4(t)/30; 

nSma437(t)=nSma4(t)/30; 

nSma438(t)=nSma4(t)/30; 

nSma439(t)=nSma4(t)/30; 

nSma440(t)=nSma4(t)/30; 

nRr11 (t)=nRr1 (t); 

nRr22(t)=nRr2(t); 

n Rr33(t)=n Rr3(t)/2; 

nRr34(t)=nRr3(t)/2; 

nRr45(t)=nRr4(t)/16; 

196 



nRr46(t)=nRr4(t)/16; 

nRr4 7(t)=nRr4(t)/16; 

nRr48(t)=nRr4(t)/16; 

nRr49(t)=nRr4(t)/16; 

nRr41 O(t)=nRr4(t)/16; 

nRr411 (t)=nRr4(t)/16; 

nRr412(t)=nRr4(t)/16; 

nRr413(t)=nRr4(t)/16; 

nRr414(t)=nRr4(t)/16; 

nRr415(t)=nRr4(t)/16; 

nRr416(t)=nRr4(t)/16; 

nRr417(t)=nRr4(t)/16; 

nRr418(t)=nRr4(t)/16; 

nRr419(t)=nRr4(t)/16; 

nRr420(t)=nRr4(t)/16; 

% The model will start at this point in the second iteration. Further runs of the model 

when starting with the final output of previous runs will also start at this point. 

else 

% Subsection 2:Calculation of predation mortality 

% First the number of individuals in each size group is calculated. All individuals of 

the community are considered regardless of the species they belong to. 

% s1, s2, s3, s4, s5 = number of individuals in size group 1, 2, 3, 4 and 5 

respectively. The only reason why s4 is calculated by partial sums of individuals 
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(s41, s42, s43) is for a limitation in the string longitude in the student edition of 

Matlab. 

s1 =nGm11 (t-1 )+nMv11 (t-1 )+nMv12(t-1 )+nBs11 (t-1 )+nBs12(t-1 )+nRr11 (t-

1 )+nSme11 (t-1 )+nHp11 (t-1 )+nHp12(t-1 )+nGc11 (t-1 )+nGc12(t-1 )+nRh11 (t-

1 )+nRh 12(t-1 )+nCr11 (t-1 )+nCr12(t-1 )+nSma 11 (t-1 ); 

s2=nGm22(t-1 )+nMv23(t-1 )+nMv24(t-1 )+nMv25(t-1 )+nBs23(t-1 )+nBs24(t-

1 )+nBs25(t-1 )+nRr22(t-1 )+nSme22(t-1 )+nSme23(t-1 )+nSme24(t-

1 )+nHp23(t-1 )+nHp24(t-1 )+nGc23(t-1 )+nGc24(t-1 )+nRh23(t-1 )+nRh24(t-

1 )+nCr23(t-1 )+nCr24(t-1 )+nCr25(t-1 )+nCr26(t-1 )+nCr27(t-1 )+nCr28(t-

1 )+nCr29(t-1 )+nSma22(t-1 )+nSma23(t-1 )+nSma24(t-1 ); 

s3=nGm33(t-1 )+nGm34(t-1 )+nGm35(t-1 )+nBs36(t-1 )+nBs37(t-1 )+nBs38(t-

1 )+nRr33(t-1 )+nRr34(t-1 )+nSme35(t-1 )+nSme36(t-1 )+nSme37(t-

1 )+nSme38(t-1 )+nSme39(t-1 )+nSme31 O(t-1 )+nHp35(t-1 )+nHp36(t-

1 )+nHp37(t-1 )+nHp38(t-1 )+nHp39(t-1 )+nHp31 O(t-1 )+nGc35(t-1 )+nGc36(t-

1 )+nGc37(t-1 )+nGc38(t-1 )+nGc39(t-1 )+nGc31 O(t-1 )+nRh35(t-1 )+nRh36(t-

1 )+nRh37(t-1 )+nRh38(t-1 )+nRh39(t-1 )+nRh31 O(t-1 )+nCr31 O(t-

1 )+nCr311 (t-1 )+nCr312(t-1 )+nCr313(t-1 )+nCr314(t-1 )+nCr315(t-

1 )+nCr316(t-1 )+nCr317(t-1 )+nCr318(t-1 )+nCr319(t-1 )+nCr320(t-

1 )+nCr321 (t-1 )+nCr322(t-1 )+nCr323(t-1 )+nCr324(t-1 )+nCr325(t-

1 )+nSma35(t-1 )+nSma36(t-1 )+nSma37(t-1 )+nSma38(t-1 )+nSma39(t-

1 )+nSma31 O(t-1 ); 

s41 =nGm46(t-1 )+nGm4 7(t-1 )+nGm48(t-1 )+nGm49(t-1 )+nGm41 O(t-1 )+nGm411 (t-

1 )+nGm412(t-1 )+nGm413(t-1 )+nGm414(t-1 )+nGm415(t-1 )+nRr45(t-

1 )+nRr46(t-1 )+nRr47(t-1 )+nRr48(t-1 )+nRr49(t-1 )+nRr41 O(t-1 )+nRr411 (t-

1 )+nRr412(t-1 )+nRr413(t-1 )+nRr414(t-1 )+nRr415(t-1 )+nRr416(t-

1 )+nRr417(t-1 )+nRr418(t-1 )+nRr419(t-1 )+nRr420(t-1 )+nSme411 (t-

1 )+nSme412(t-1 )+nSme413(t-1 )+nSme414(t-1 )+nSme415(t-

1 )+nSme416(t-1 )+nSme417(t-1 )+nSme418(t-1 )+nSme419(t-

1 )+nSme420(t-1 )+nSme421 (t-1 )+nSme422(t-1 )+nSme423(t-
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1 )+nSme424(t-1 )+nSme425(t-1 )+nSme426(t-1 )+nSme427(t-

1 )+nSme428(t-1 )+nSme429(t-1 )+nSme430(t-1 )+nHp411 (t-1 )+nHp412(t-

1 )+nHp413(t-1 )+nHp414(t-1 )+nHp415(t-1 )+nHp416(t-1 )+nHp417(t-

1 )+nHp418(t-1 )+nHp419(t-1 )+nHp420(t-1 )+nHp421 (t-1 )+nHp422(t-

1 )+nHp423(t-1 )+nHp424(t-1 )+nHp425(t-1 )+nGc411 (t-1 )+nGc412(t-

1 )+nGc413(t-1 )+nGc414(t-1 )+nGc415(t-1 )+nGc416(t-1 )+nGc417(t-

1 )+nGc418(t-1 )+nGc419(t-1 )+nGc420(t-1 )+nGc421 (t-1 )+nGc422(t-

1 )+nGc423(t-1 )+nGc424(t-1 )+nGc425(t-1 )+nGc426(t-1 ); 

s42=nCr426(t-1 )+nCr427(t-1 )+nCr428(t-1 )+nCr429(t-1 )+nCr430(t-1 )+nCr431 (t-

1 )+nCr432(t-1 )+nCr433(t-1 )+nCr434(t-1 )+nCr435(t-1 )+nCr436(t-

1 )+nCr437(t-1 )+nCr438(t-1 )+nCr439(t-1 )+nCr440(t-1 )+nGc427(t-

1 )+nGc428(t-1 )+nGc429(t-1 )+nGc430(t-1 )+nRh411 (t-1 )+nRh412(t-

1 )+nRh413(t-1 )+nRh414(t-1 )+nRh415(t-1 )+nSma411 (t-1 )+nSma412(t-

1 )+nSma413(t-1 )+nSma414(t-1 )+nSma415(t-1 )+nSma416(t-

1 )+nSma417(t-1 )+nSma418(t-1 )+nSma419(t-1 )+nSma420(t-

1 )+nSma421 (t-1 )+nSma422(t-1 )+nSma423(t-1 )+nSma424(t-

1 )+nSma425(t-1 )+nSma426(t-1 )+nSma427(t-1 )+nSma428(t-

1 )+nSma429(t-1 )+nSma430(t-1 ); 

s43=nSme431 (t-1 )+nSme432(t-1 )+nSme433(t-1 )+nSme434(t-1 )+nSme435(t-

1 )+nSme436(t-1 )+nSme437(t-1 )+nSme438(t-1 )+nSme439(t-

1 )+nSme440(t-1 )+nSma431 (t-1 )+nSma432(t-1 )+nSma433(t-

1 )+nSma434(t-1 )+nSma435(t-1 )+nSma436(t-1 )+nSma437(t-

1 )+nSma438(t-1 )+nSma439(t-1 )+nSma440(t-1 ); 

s4=s41 +s42+s43; 

s5=nGm516(t-1 )+nGm517(t-1 )+nGm518(t-1 )+nGm519(t-1 )+nGm520(t-

1 )+nRh516(t-1 )+nRh517(t-1 )+nRh518(t-1 )+nRh519(t-1 )+nRh520(t-1 ); 
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% Predation by size groups: These equations calculate the number of prey 

individuals that would be eaten by each size group if all predators could get 

satiation. 

% Is21 and Is31 are optimum predation of size group 2 and 3 respectively on size 

group 1. Is42 is the optimum predation of size group 4 on size group 2, and Is53 is 

the optimum predation of size group 5 on size group 3. 

% Similarly: Is3, Is2 and Is1 are the number of individuals in size group 3, 2 or 1 

respectively that would be eaten in optimum conditions for the predator. 

ls21 =60.08*s2; 

ls31 =396.96*s3; 

ls42=262.27*s4; 

ls53=64.56*s5; 

ls3=1s53; 

ls2=1s42; 

ls1 =ls21 +ls31; 

% But predation is density dependent, therefore this is not the final real predation of 

each size group. It depends on the relative density of the prey size group to the 

predator size group and within each species prey the relative density of each prey 

species with respect to the rest of prey species. 

% First we calculate the relative abundance of each prey species size group with 

respect to the rest of individuals in the same prey size group. 

% For example, Gml is the relative abundance of size group 1 of Gm divided by the 

rest of the individuals present in size group 1 in the community. 

% For prey size group 1 the calculation is: 

Gm1 =nGm1 (t)/(s1-nGm1 (t)+1 ); 
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Mv1 =nMv1 (t)/(s1-nMv1 (t)+1 ); 

Bs1 =nBs1 (t)/(s1-nBs1 (t)+1 ); 

Rr1 =nRr1 (t)/(s1-nRr1 (t)+1 ); 

Sme1 =nSme1 (t)/(s1-nSme1 (t)+1 ); 

Hp1 =nHp1 (t)/(s1-nHp1 (t)+1 ); 

Gc1 =nGc1 (t)/(s1-nGc1 (t)+1 ); 

Rh 1 =nRh1 (t)/(s1-nRh1 (t)+1 ); 

Cr1 =nCr1 (t)/(s1-nCr1 (t)+1 ); 

Sma1 =nSma1 (t)/(s1-nSma1 (t)+1 ); 

% Then we calculate the addition of the values just calculated. 

ss1 =Gm1 +Mv1 +Bs1 +Rr1 +Sme1 +Hp1 +Gc1 +Rh1 +Cr1 +Sma1; 

% Finally we estimate the predation mortality for each prey species size group by 

considering that the proportion of the optimum predation corresponding to each 

species is determined by multiplying this optimum by the relative value of that 

prey species with respect to all prey species. Then the final predation of each prey 

species of a size group is calculated means of the multiplication divided by the 

addition of that percentage of the optimum value and the number of individuals in 

the prey species size group. 

% For example pGm1 is the number of individuals of species Gm and size 1 that die 

due to predation that year. 

pGm1 =((Gm1/(ss1 +1 ))*ls1 *nGm1 (t))/((Gm1/(ss1 +1 ))*ls1 +nGm1 (t)+1 ); 

pMv1 =((Mv1/(ss1 +1 ))*ls1 *nMv1 (t))/((Mv1/(ss1 +1 ))*ls1 +nMv1 (t)+1 ); 

pBs1 =((Bs1/(ss1 +1 ))*ls1 *nBs1 (t))/((Bs1/(ss1 +1 ))*ls1 +nBs1 (t)+1 ); 

pRr1 =((Rr1/(ss1 +1 ))*ls1 *nRr1 (t))/((Rr1/(ss1 +1 ))*ls1 +nRr1 (t)+1 ); 

pSme1 =((Sme1/(ss1 +1 ))*ls1 *nSme1 (t))/((Sme1/(ss1 +1 ))*ls1 +nSme1 (t)+1 ); 

pHp1 =((Hp1/(ss1 +1 ))*ls1 *nHp1 (t))/((Hp1/(ss1 +1 ))*ls1 +nHp1 (t)+1 ); 
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pGc1 =((Gc1/(ss1 +1 ))*ls1 *nGc1 (t))/((Gc1/(ss1 +1 ))*ls1 +nGc1 (t)+1 ); 

pRh1 =((Rh1/(ss1 +1 ))*ls1 *nRh1 (t))/((Rh1/(ss1 +1 ))*ls1 +nRh1 (t)+1 ); 

pCr1 =((Cr1/(ss1 +1 ))*ls1 *nCr1 (t))/((Cr1/(ss1 +1 ))*ls1 +nCr1 (t)+1 ); 

pSma1 =((Sma1/(ss1 +1 ))*ls1 *nSma1 (t))/((Sma1/(ss1 +1 ))*ls1 +nSma1 (t)+1 ); 

% The same is done for the species of prey size group 2 

Gm2=nGm2(t)/(s2-nGm2(t)+1 ); 

Mv2=nMv2(t)/(s2-nMv2(t)+1 ); 

Bs2=nBs2(t)/(s2-nBs2(t)+1 ); 

Rr2=nRr2(t)/(s2-nRr2(t)+1 ); 

Sme2=nSme2(t)/(s2-nSme2(t)+1 ); 

Hp2=nHp2(t)/(s2-nHp2(t)+1 ); 

Gc2=nGc2(t)/(s2-nGc2(t)+1 ); 

Rh2=nRh2(t)/(s2-nRh2(t)+1 ); 

Cr2=nCr2(t)/(s2-nCr2(t)+1 ); 

Sma2=nSma2(t)/(s2-nSma2(t)+1 ); 

ss2=Gm2+Mv2+Bs2+Rr2+Sme2+Hp2+Gc2+Rh2+Cr2+Sma2; 

pGm2=((Gm2/(ss2+2))*1s2*nGm2(t))/((Gm2/(ss2+2))*1s2+nGm2(t)+1 ); 

pMv2=((Mv2/(ss2+2))*1s2*nMv2(t))/((Mv2/(ss2+2))*1s2+nMv2(t)+1 ); 

pBs2=( (Bs2/( ss2+2) )*ls2*nBs2(t) )/( (Bs2/( ss2+2) )*ls2+nBs2(t)+ 1 ); 

pRr2=((Rr2/(ss2+2))*1s2*nRr2(t))/((Rr2/(ss2+2))*1s2+nRr2(t)+1 ); 

pSme2=((Sme2/(ss2+2))*1s2*nSme2(t))/((Sme2/(ss2+2))*1s2+nSme2(t)+1 ); 

pHp2=((Hp2/(ss2+2))*1s2*nHp2(t))/((Hp2/(ss2+2))*1s2+nHp2(t)+1 ); 

pGc2=( ( Gc2/( ss2+2) )*ls2*nGc2(t) )/( ( Gc2/( ss2+2) )*ls2+nGc2(t)+ 1 ); 

pRh2=((Rh2/(ss2+2))*1s2*nRh2(t))/((Rh2/(ss2+2))*1s2+nRh2(t)+1 ); 

pCr2=((Cr2/(ss2+2))*1s2*nCr2(t))/((Cr2/(ss2+2))*1s2+nCr2(t)+1 ); 

pSma2=((Sma2/(ss2+2))*1s2*nSma2(t))/((Sma2/(ss2+2))*1s2+nSma2(t)+1 ); 

% and for species of prey size group 3 
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Gm3=nGm3(t)/(s3-nGm3(t)+1 ); 

Bs3=nBs3(t)/(s3-nBs3(t)+1 ); 

Rr3=nRr3(t)/(s3-nRr3(t)+1 ); 

Sme3=nSme3(t)/(s3-nSme3(t)+1 ); 

Hp3=nHp3(t)/(s3-nHp3(t)+1 ); 

Gc3=nGc3(t)/(s3-nGc3(t)+1 ); 

Rh3=nRh3(t)/(s3-nRh3(t)+1 ); 

Cr3=nCr3(t)/(s3-nCr3(t)+1 ); 

Sma3=nSma3(t)/(s3-nSma3(t)+1 ); 

ss3=Gm3+Bs3+Rr3+Sme3+Hp3+Gc3+Rh3+Cr3+Sma3; 

pGm3=((Gm3/(ss3+3))*1s3*nGm3(t))/((Gm3/(ss3+3))*1s3+nGm3(t)+1 ); 

pBs3=((Bs3/(ss3+3))*1s3*nBs3(t))/((Bs3/(ss3+3))*1s3+nBs3(t)+1 ); 

pRr3=((Rr3/(ss3+3))*1s3*nRr3(t))/((Rr3/(ss3+3))*1s3+nRr3(t)+1 ); 

pSme3=( (Sme3/( ss3+3) )*I s3*nSme3(t) )/( (Sme3/( ss3+3) )*I s3+nSme3(t)+ 1 ); 

pHp3=((Hp3/(ss3+3))*1s3*nHp3(t))/((Hp3/(ss3+3))*1s3+nHp3(t)+1 ); 

pGc3=((Gc3/(ss3+3))*1s3*nGc3(t))/((Gc3/(ss3+3))*1s3+nGc3(t)+1 ); 

pRh3=((Rh3/(ss3+3))*1s3*nRh3(t))/((Rh3/(ss3+3))*1s3+nRh3(t)+1 ); 

pCr3=((Cr3/(ss3+3))*1s3*nCr3(t))/((Cr3/(ss3+3))*1s3+nCr3(t)+1 ); 

pSma3=((Sma3/(ss3+3))*1s3*nSma3(t))/((Sma3/(ss3+3))*1s3+nSma3(t)+1 ); 

% Subsection 3: Calculation of offspring production 

% First, the number of offspring that each species would produce if there were no 

limitations is determined according to the individuals size groups and the species 

fecundity. 

% For example, MGm is the potential offspring production of Gm species. 

% It is assumed that 50% of mature individuals are females. 

MGm=2*1 0"5*nGm3(t)/4+3*1 0"6*nGm4(t)/2+1.2*1 0"7*nGm5(t)/2; 
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MMv=4 *1. 0"4 *nMv2(t)/2; 

MBs=1 0"4*nBs2(t)/2+2*1 0"4*nBs3(t)/2; 

MSme=1.5*1 0"4*(nSme38(t-1 )+nSme39(t-1 )+nSme31 O(t-

1 ))/2+2.5*1 0"4*nSme4(t)/2; 

MHp=3.5*1 0"5*(nHp36(t-1 )+nHp37(t-1 )+nHp38(t-1 )+nHp39(t-1 )+nHp31 O(t-

1 ))/2+1.5*1 0"6*nHp4(t)/2; 

MRh=3*1 0"4*(nRh35(t-1 )+nRh36(t-1 )+nRh37(t-1 )+nRh38(t-1 )+nRh39(t-

1 )+nRh31 O(t-1 ))/2+2*1 0"5*nRh4(t) /2+4*1 0"5*nRh5(t)/2; 

M Rr=20*n Rr4(t)/2; 

MGc=3*1 0"5*(nGc36(t-1 )+nGc37(t-1 )+nGc38(t-1 )+nGc39(t-1 )+nGc31 O(t-

1 ))/2+6*1 0"5*nGc4(t)/2; 

MCr=2*1 0"4*(nCr3(t)/2)+6*1 0"4*(nCr4(t)/2); 

MSma=1.5*1 0"4*(nSma38(t-1 )+nSma39(t-1 )+nSma31 O(t-

1 ))/2+2.5*1 0"4*nSma4(t)/2; 

% The real offspring production is calculated considering a limitation (Nmax= 1010) 

for the number of mature individuals that can reproduce and a minimum of 1 

individual that is produced (ceil()). 

% For example, MmGm is the offspring production ofGm species that year. 

MmGm=cei1((1 0"1 O/((nGm3(t)/2)+nGm4(t)+nGm5(t)+1 0"1 O))*MGm); 

MmMv=cei1(1 0"1 O*MMv/(nMv2(t)+1 0"1 0)); 

MmBs=cei1((1 0"1 O/(nBs2(t)+nBs3(t)+1 0"1 O))*MBs ); 

MmSme=cei1((1 0"1 O/(nSme38(t-1 )+nSme39(t-1 )+nSme31 O(t-

1 )+nSme4(t)+1 0"1 O))*MSme); 

MmHp=ceil((1 0"1 O/(nHp36(t-1 )+nHp37(t-1 )+nHp38(t-1 )+nHp39(t-1 )+nHp31 O(t-

1 )+nHp4(t)+1 0"1 O))*MHp); 

MmRh=ceil((1 0"1 O/(nRh35(t-1 )+nRh36(t-1 )+nRh37(t-1 )+nRh38(t-1 )+nRh39(t-

1 )+nRh31 O(t-1 )+nRh4(t)+nRh5(t)+1 0"1 O))*MRh); 

MmRr=cei1((1 0"1 O/(nRr4(t)+1 0"1 O))*MRr); 
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MmGc=ceil((1 QA1 O/(nGc36(t-1 )+nGc37(t-1 )+nGc38(t-1 )+nGc39(t-1 )+nGc31 O(t-

1 )+nGc4(t)+1 QA1 O))*MGc); 

M mCr=ceil( ( 1 0"1 0/( nCr3(t)+nCr4(t)+ 1 0"1 0) )*MCr); 

MmSma=ceil((1 0"1 O/(nSma38(t-1 )+nSma39(t-1 )+nSma31 O(t-

1 )+nSma4(t)+1 0"1 O))*MSma); 

% Subsection 4: Calculation of next year abundance 

% This calculation is done at the level of each age of each species, assuming that 

predation mortality is distributed within each size group of each species 

proportionally to the relative abundance of individuals in each age of that species 

and size group. 

% The offspring production of the previous year will pass to the age 1 of each 

species in the following. 

% All individuals in a certain age pass to the next age or die by predation or end of 

lifespan in the following year. However, it should be noticed that this does not 

mean that all individuals in a certain size group pass to the next size group or die 

in the following year. 

% For example, nGm22(t) is the number of individuals for the next year of species 

Gm in size group 2 and age 2. 

nGm22(t)=nGm11 (t-1 )-pGm1; 

nMv12(t)=nMv11 (t-1 )-(pMv1 *nMv11 (t-1 )/(nMv1 (t)+1 )); 

nMv23(t)=nMv12(t-1 )-(pMv1 *nMv12(t-1 )/(nMv1 (t)+1 )); 

nBs12(t)=nBs11 (t-1 )-(pBs1 *nBs11 (t-1 )/(nBs1 (t)+1 )); 

nBs23(t)=nBs12(t-1 )-(pBs1 *nBs12(t-1 )/(nBs1 (t)+1 )); 

nRr22(t)=nRr11 (t-1 )- pRr1; 

nSme22(t)=nSme11 (t-1 )-pSme1; 

nHp12(t)=nHp11 (t-1 )-(pHp1 *nHp11 (t-1 )/(nHp1 (t)+1 )); 

nHp23(t)=nHp12(t-1 )-(pHp1 *nHp12(t-1 )/(nHp1 (t)+1 )); 
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nGc12(t)=nGc11 (t-1 )-(pGc1 *nGc11 (t-1 )/(nGc1 (t)+1 )); 

nGc23(t)=nGc12(t-1 )-(pGc1 *nGc12(t-1 )/(nGc1 (t)+1 )); 

nRh12(t)=nRh11 (t-1 )-(pRh1 *nRh11 (t-1 )/(nRh1 (t)+1 )); 

nRh23(t)=nRh12(t-1 )-(pRh1 *nRh12(t-1 )/(nRh1 (t)+1 )); 

nCr12(t)=nCr11 (t-1 )-(pCr1 *nCr11 (t-1 )/(nCr1 (t)+1 )); 

nCr23(t)=nCr12(t-1 )-(pCr1 *nCr12(t-1 )/(nCr1 (t)+1 )); 

nSma22(t)=nSma11 (t-1 )-pSma1; 

nGm33(t)=nGm22(t-1 )-pGm2; 

nMv24(t)=nMv23(t-1 )-(pMv2*nMv23(t-1 )/(nMv2(t)+1 )); 

nMv25(t)=nMv24(t-1 )-(pMv2*nMv24(t-1 )/(nMv2(t)+1 )); 

nBs24(t)=nBs23(t-1 )-(pBs2*nBs23(t-1 )/(nBs2(t)+1 )); 

nBs25(t)=nBs24(t-1 )-(pBs2*nBs24(t-1 )/(nBs2(t)+1 )); 

nBs36(t)=nBs25(t-1 )-(pBs2*nBs25(t-1 )/(nBs2(t)+1 )); 

nRr33(t)=nRr22(t-1 )-pRr2; 

nSme23(t)=nSme22(t-1 )-(pSme2*nSme22(t-1 )/(nSme2(t)+1 )); 

nSme24(t)=nSme23(t-1 )-(pSme2*nSme23(t-1 )/(nSme2(t)+1 )); 

nSme35(t)=nSme24(t-1 )-(pSme2*nSme24(t-1 )/(nSme2(t)+1 )); 

nHp24(t)=nHp23(t-1 )-(pHp2*nHp23(t-1 )/(nHp2(t)+1 )); 

nHp35(t)=nHp24(t-1 )-(pHp2*nHp24(t-1 )/(nHp2(t)+1 )); 

nGc24(t)=nGc23(t-1 )-(pGc2*nGc23(t-1 )/(nGc2(t)+1 )); 

nGc35(t)=nGc24(t-1 )-(pGc2*nGc24(t-1 )/(nGc2(t)+1 )); 

nRh24(t)=nRh23(t-1 )-(pRh2*nRh23(t-1 )/(nRh2(t)+1 )); 

nRh35(t)=nRh24(t-1 )-(pRh2*nRh24(t-1 )/(nRh2(t)+1 )); 

nCr24(t)=nCr23(t-1 )-(pCr2*nCr23(t-1 )/(nCr2(t)+1 )); 

nCr25(t)=nCr24(t-1 )-(pCr2*nCr24(t-1 )/(nCr2(t)+1 )); 

nCr26(t)=nCr25(t-1 )-(pCr2*nCr25(t-1 )/(nCr2(t)+ 1 )); 

nCr27(t)=nCr26(t-1 )-(pCr2*nCr26(t-1 )/(nCr2(t)+1 )); 

nCr28(t)=nCr27(t-1 )-(pCr2*nCr27(t-1 )/(nCr2(t)+1 )); 

nCr29(t)=nCr28(t-1 )-(pCr2*nCr28(t-1 )/(nCr2(t)+1 )); 

nCr31 O(t)=nCr29(t-1 )-(pCr2*nCr29(t-1 )/(nCr2(t)+1 )); 
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nSma23(t)=nSma22(t-1 )-(pSma2*nSma22(t-1 )/(nSma2(t)+1 )); 

nSma24(t)=nSma23(t-1 )-(pSma2*nSma23(t-1 )/(nSma2(t)+1 )); 

nSma35(t)=nSma24(t-1 )-(pSma2*nSma24(t-1 )/(nSma2(t)+1 )); 

nGm34(t)=nGm33(t-1 )-(pGm3*nGm33(t-1 )/(nGm3(t)+1 )); 

nGm35(t)=nGm34(t-1 )-(pGm3*nGm34(t-1 )/(nGm3(t)+1 )); 

nGm46(t)=nGm35(t-1 )-(pGm3*nGm35(t-1 )/(nGm3(t)+1 )); 

nBs37(t)=nBs36(t-1 )-(pBs3*nBs36(t-1 )/(nBs3(t)+1 )); 

nBs38(t)=nBs37(t-1 )-(pBs3*nBs37(t-1 )/(nBs3(t)+1 )); 

nRr34(t)=nRr33(t-1 )-(pRr3*nRr33(t-1 )/(nRr3(t)+1 )); 

nRr45(t)=nRr34(t-1 )-(pRr3*nRr34(t-1 )/(nRr3(t)+1 )); 

nSme36(t)=nSme35(t-1 )-(pSme3*nSme35(t-1 )/(nSme3(t)+1 )); 

nSme37 (t)=nSme36(t-1 )-(pSme3*nSme36(t-1 )/(nSme3(t)+1 )); 

nSme38(t)=nSme37(t-1 )-(pSme3*nSme37(t-1 )/(nSme3(t)+1 )); 

nSme39(t)=nSme38(t-1 )-(pSme3*nSme38(t-1 )/(nSme3(t)+1 )); 

nSme31 O(t)=nSme39(t-1 )-(pSme3*nSme39(t-1 )/(nSme3(t)+1 )); 

nSme411 (t)=nSme31 O(t-1 )-(pSme3*nSme31 O(t-1 )/(nSme3(t)+1 )); 

nHp36(t)=nHp35(t-1 )-(pHp3*nHp35(t-1 )/(nHp3(t)+1 )); 

nHp37(t)=nHp36(t-1 )-(pHp3*nHp36(t-1 )/(nHp3(t)+1 )); 

nHp38(t)=nHp37(t-1 )-(pHp3*nHp37(t-1 )/(nHp3(t)+1 )); 

nHp39(t)=nHp38(t-1 )-(pHp3*nHp38(t-1 )/(nHp3(t)+1 )); 

nHp31 O(t)=nHp39(t-1 )-(pHp3*nHp39(t-1 )/(nHp3(t)+1 )); 

nHp411 (t)=nHp31 O(t-1 )-(pHp3*nHp31 O(t-1 )/(nHp3(t)+1 )); 

nGc36(t)=nGc35(t-1 )-(pGc3*nGc35(t-1 )/(nGc3(t)+1 )); 

nGc37(t)=nGc36(t-1 )-(pGc3*nGc36(t-1 )/(nGc3(t)+1 )); 

nGc38(t)=nGc37(t-1 )-(pGc3*nGc37(t-1 )/(nGc3(t)+1 )); 

nGc39(t)=nGc38(t-1 )-(pGc3*nGc38(t-1 )/(nGc3(t)+1 )); 

nGc31 O(t)=nGc39(t-1 )-(pGc3*nGc39(t-1 )/(nGc3(t)+1 )); 

nGc411 (t)=nGc31 O(t-1 )-(pGc3*nGc31 O(t-1 )/(nGc3(t)+1 )); 

nRh36(t)=nRh35(t-1 )-(pRh3*nRh35(t-1 )/(nRh3(t)+1 )); 

nRh37(t)=nRh36(t-1 )-(pRh3*nRh36(t-1 )/(nRh3(t)+1 )); 
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nRh38(t)=nRh37(t-1 )-(pRh3*nRh37(t-1 )/(nRh3(t)+1 )); 

nRh39(t)=nRh38(t-1 )-(pRh3*nRh38(t-1 )/(nRh3(t)+1 )); 

nRh31 O(t)=nRh39(t-1 )-(pRh3*nRh39(t-1 )/(nRh3(t)+1 )); 

nRh411 (t)=nRh31 O(t-1 )-(pRh3*nRh31 O(t-1 )/(nRh3(t)+1 )); 

nCr311 (t)=nCr31 O(t-1 )-(pCr3*nCr31 O(t-1 )/(nCr3(t)+1 )); 

nCr312(t)=nCr311 (t-1 )-(pCr3*nCr311 (t-1 )/(nCr3(t)+1 )); 

nCr313(t)=nCr312(t-1 )-(pCr3*nCr312(t-1 )/(nCr3(t)+1) ); 

nCr314(t)=nCr313(t-1 )-(pCr3*nCr313(t-1 )/(nCr3(t)+1 )); 

nCr315(t)=nCr314(t-1 )-(pCr3*nCr314(t-1 )/(nCr3(t)+1 )); 

nCr316(t)=nCr315(t-1 )-(pCr3*nCr315(t-1 )/(nCr3(t)+1 )); 

nCr317(t)=nCr316(t-1 )-(pCr3*nCr316(t-1 )/(nCr3(t)+1 )); 

nCr318(t)=nCr317(t-1 )-(pCr3*nCr317(t-1 )/(nCr3(t)+1) ); 

nCr319(t)=nCr318(t-1 )-(pCr3*nCr318(t-1 )/(nCr3(t)+1 )); 

nCr320(t)=nCr319(t-1 )-(pCr3*nCr319(t-1 )/(nCr3(t)+1 )); 

nCr321 (t)=nCr320(t-1 )-(pCr3*nCr320(t-1 )/(nCr3(t)+1 )); 

nCr322(t)=nCr321 (t-1 )-(pCr3*nCr321 (t-1 )/(nCr3(t)+1 )); 

nCr323(t)=nCr322(t-1 )-(pCr3*nCr322(t-1 )/(nCr3(t)+1 )); 

nCr324(t)=nCr323(t-1 )-(pCr3*nCr323(t-1 )/(nCr3(t)+1 )); 

nCr325(t)=nCr324(t-1 )-(pCr3*nCr324(t-1 )/(nCr3(t)+1 )); 

nCr426(t)=nCr325(t-1 )-(pCr3*nCr325(t-1 )/(nCr3(t)+1 )); 

nSma36(t)=nSma35(t-1 )-(pSma3*nSma35(t-1 )/(nSma3(t)+1 )); 

nSma37(t)=nSma36(t-1 )-(pSma3*nSma36(t-1 )/(nSma3(t)+1 )); 

nSma38(t)=nSma37(t-1 )-(pSma3*nSma37(t-1 )/(nSma3(t)+1 )); 

nSma39(t)=nSma38(t-1 )-(pSma3*nSma38(t-1 )/(nSma3(t)+1 )); 

nSma31 O(t)=nSma39(t-1 )-(pSma3*nSma39(t-1 )/(nSma3(t)+1 )); 

nSma411 (t)=nSma31 O(t-1 )-(pSma3*nSma31 O(t-1 )/(nSma3(t)+1 )); 

nGm11 (t)=MmGm; 

nGm47(t)=nGm46(t-1 ); 

nGm48(t)=nGm47(t-1 ); 

nGm49(t)=nGm48(t-1 ); 
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nGm41 O(t)=nGm49(t-1 ); 

nGm411 (t)=nGm41 O(t-1 ); 

nGm412(t)=nGm411 (t-1 ); 

nGm413(t)=nGm412(t-1 ); 

nGm414(t)=nGm413(t-1 ); 

nGm415(t)=nGm414(t-1 ); 

nGm516(t)=nGm415(t-1 ); 

nGm517(t)=nGm516(t-1 ); 

nGm518(t)=nGm517(t-1 ); 

nGm519(t)=nGm518(t-1 ); 

nGm520(t)=nGm519(t-1 ); 

nMv11 (t)=MmMv; 

nBs11 (t)=MmBs; 

nRr11 (t)=MmRr; 

nRr46(t)=nRr45(t-1 ); 

nRr47(t)=nRr46(t-1 ); 

nRr48(t)=nRr47(t-1 ); 

nRr49(t)=nRr48(t-1 ); 

nRr41 O(t)=nRr49(t-1 ); 

nRr411 (t)=nRr41 O(t-1 ); 

nRr412(t)=nRr411 (t-1 ); 

nRr413(t)=nRr412(t-1 ); 

nRr414(t)=nRr413(t-1 ); 

nRr415(t)=nRr414(t-1 ); 

nRr416(t)=nRr415(t-1 ); 

nRr417(t)=nRr416(t-1 ); 

nRr418(t)=nRr417 (t-1 ); 

nRr419(t)=nRr418(t-1 ); 

nRr420(t)=nRr419(t-1 ); 

nSme11 (t)=MmSme; 
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nSme412(t)=nSme411 (t-1 ); 

nSme413(t)=nSme412(t-1 ); 

nSme414(t)=nSme413(t-1 ); 

nSme415(t)=nSme414(t-1 ); 

nSme416(t)=nSme415(t-1 ); 

nSme417(t)=nSme416(t-1 ); 

nSme418(t)=nSme417(t-1 ); 

nSme419(t)=nSme418(t-1 ); 

nSme420(t)=nSme419(t-1 ); 

nSme421 (t)=nSme420(t-1 ); 

nSme422(t)=nSme421 (t-1 ); 

nSme423(t)=nSme422(t-1 ); 

nSme424(t)=nSme423(t-1 ); 

nSme425(t)=nSme424(t-1 ); 

nSme426(t)=nSme425(t-1 ); 

nSme427(t)=nSme426(t-1 ); 

nSme428(t)=nSme427(t-1 ); 

nSme429(t)=nSme428(t-1 ); 

nSme430(t)=nSme429(t-1 ); 

nSme431 (t)=nSme430(t-1 ); 

nSme432(t)=nSme431 (t-1 ); 

nSme433(t)=nSme432(t-1 ); 

nSme434(t)=nSme433(t-1 ); 

nSme435(t)=nSme434(t-1 ); 

nSme436(t)=nSme435(t-1 ); 

nSme437(t)=nSme436(t-1 ); 

nSme438(t)=nSme437(t-1 ); 

nSme439(t)=nSme438(t-1 ); 

nSme440(t)=nSme439(t-1 ); 

nHp11 (t)=MmHp; 
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nHp412(t)=nHp411 (t-1 ); 

nHp413(t)=nHp412(t-1 ); 

nHp414(t)=nHp413(t-1 ); 

nHp415(t)=nHp414(t-1 ); 

nHp416(t)=nHp415(t-1 ); 

nHp417(t)=nHp416(t-1 ); 

nHp418(t)=nHp417(t-1 ); 

nHp419(t)=nHp418(t-1 ); 

nHp420(t)=nHp419(t-1 ); 

nHp421 (t)=nHp420(t-1 ); 

nHp422(t)=nHp421 (t-1 ); 

nHp423(t)=nHp422(t-1 ); 

nHp424(t)=nHp423(t-1 ); 

nHp425(t)=nHp424(t-1 ); 

nGc11 (t)=MmGc; 

nGc412(t)=nGc411 (t-1 ); 

nGc413(t)=nGc412(t-1 ); 

nGc414(t)=nGc413(t-1 ); 

nGc415(t)=nGc414(t-1 ); 

nGc416(t)=nGc415(t-1 ); 

nGc417(t)=nGc416(t-1 ); 

nGc418(t)=nGc417(t-1 ); 

nGc419(t)=nGc418(t-1 ); 

nGc420(t)=nGc419(t-1 ); 

nGc421 (t)=nGc420(t-1 ); 

nGc422(t)=nGc421 (t-1 ); 

nGc423(t)=nGc422(t-1 ); 

nGc424(t)=nGc423(t-1 ); 

nGc425(t)=nGc424(t-1 ); 

nGc426(t)=nGc425(t-1 ); 

211 



nGc427(t)=nGc426(t-1 ); 

nGc428(t)=nGc427(t-1 ); 

nGc429(t)=nGc428(t-1 ); 

nGc430(t)=nGc429(t-1 ); 

nRh11 (t)=MmRh; 

nRh412(t)=nRh411 (t-1 ); 

nRh413(t)=nRh412(t-1 ); 

nRh414(t)=nRh413(t-1 ); 

nRh415(t)=nRh414(t-1 ); 

nRh516(t)=nRh415(t-1 ); 

nRh517(t)=nRh516(t-1 ); 

nRh518(t)=nRh517(t-1 ); 

nRh519(t)=nRh518(t-1 ); 

nRh520(t)=nRh519(t-1 ); 

nCr11 (t)=MmCr; 

nCr427(t)=nCr426(t-1 ); 

nCr428(t)=nCr427(t-1 ); 

nCr429(t)=nCr428(t-1 ); 

nCr430(t)=nCr429(t-1 ); 

nCr431 (t)=nCr430(t-1 ); 

nCr432(t)=nCr431 (t-1 ); 

nCr433(t)=nCr432(t-1 ); 

nCr434(t)=nCr433(t-1 ); 

nCr435(t)=nCr434(t-1 ); 

nCr436(t)=nCr435(t-1 ); 

nCr437(t)=nCr436(t-1 ); 

nCr438(t)=nCr437(t-1 ); 

nCr439(t)=nCr438(t-1 ); 

nCr440(t)=nCr439(t-1 ); 

nSma11 (t)=MmSma; 
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nSma412(t)=nSma411 (t-1 ); 

nSma413(t)=nSma412(t-1 ); 

nSma414(t)=nSma413(t-1 ); 

nSma415(t)=nSma414(t-1 ); 

nSma416(t)=nSma415(t-1 ); 

nSma417(t)=nSma416(t-1 ); 

nSma418(t)=nSma417(t-1 ); 

nSma419(t)=nSma418(t-1 ); 

nSma420(t)=nSma419(t-1 ); 

nSma421 (t)=nSma420(t-1 ); 

nSma422(t)=nSma421 (t-1 ); 

nSma423(t)=nSma422(t-1 ); 

nSma424(t)=nSma423(t-1 ); 

nSma425(t)=nSma424(t-1 ); 

nSma426(t)=nSma425(t-1 ); 

nSma427(t)=nSma426(t-1 ); 

Sma428(t)=nSma427 (t-1 ); 

nSma429(t)=nSma428(t-1 ); 

nSma430(t)=nSma429(t-1 ); 

nSma431 (t)=nSma430(t-1 ); 

nSma432(t)=nSma431 (t-1 ); 

nSma433(t)=nSma432(t-1 ); 

nSma434(t)=nSma433(t-1 ); 

nSma435(t)=nSma434(t-1 ); 

nSma436(t)=nSma435(t-1 ); 

nSma437(t)=nSma436(t-1 ); 

nSma438(t)=nSma437(t-1 ); 

nSma439(t)=nSma438(t-1 ); 

nSma440(t)=nSma439(t-1 ); 

end 
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% Subsection 5: Model outputs 

% The following lines contain the model outputs, i.e. the values of the variables 

(species size groups) in the successive iterations. 

% For example nGml is the value ofnGml in the corresponding year or iteration. 

nGm1 =[nGm1 (nGm11 (t))]; 

nGm2=[nGm2(nGm22(t) )] ; 

nGm3=[nGm3(nGm33(t)+nGm34(t)+nGm35(t))]; 

nGm4=[nGm4(nGm46(t)+nGm4 7(t)+nGm48(t)+nGm49(t)+nGm41 O(t)+nGm411 (t) 

+nGm412(t)+nGm413(t)+nGm414(t)+nGm415(t))]; 

nGm5=[nGm5(nGm516(t)+nGm517(t)+nGm518(t)+nGm519(t)+nGm520(t))]; 

nMv1 =[nMv1 (nMv11 (t)+nMv12(t))]; 

nMv2=[nMv2(nMv23(t)+nMv24(t)+nMv25(t))]; 

nBs1 =[nBs1 (nBs11 (t)+nBs12(t))]; 

nBs2=[nBs2(nBs23(t)+nBs24(t)+nBs25(t) )] ; 

nBs3=[nBs3(nBs36(t)+nBs37(t)+nBs38(t))]; 

nRr1 =[nRr1 (nRr11 (t))]; 

nRr2=[nRr2(nRr22(t))]; 

nRr3=[nRr3(nRr33(t)+nRr34(t))]; 

nRr4=[nRr4(nRr45(t)+nRr46(t)+nRr4 7(t)+nRr48(t)+nRr49(t)+nRr41 O(t)+nRr411 (t) 

+nRr412(t)+nRr413(t)+nRr414(t)+nRr415(t)+nRr416(t)+nRr417(t)+nRr418( 

t)+nRr419(t)+nRr420(t))]; 

nSme1 =[nSme1 (nSme11 (t))]; 

nSme2=[nSme2(nSme22(t)+nSme23(t)+nSme24(t))]; 

nSme3=[nSme3(nSme35(t)+nSme36(t)+nSme37(t)+nSme38(t)+nSme39(t)+nSm 

e310(t))]; 

nSme4=[nSme4(nSme411 (t)+nSme412(t)+nSme413(t)+nSme414(t)+nSme415(t) 

+nSme416(t)+nSme417(t)+nSme418(t)+nSme419(t)+nSme420(t)+nSme4 
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21 (t)+nSme422(t)+nSme423(t)+nSme424(t)+nSme425(t)+nSme426(t)+nS 

me427 (t)+nSme428(t)+nSme429(t)+nSme430(t)+nSme431 (t)+nSme432(t) 

+nSme433(t)+nSme434(t)+nSme435(t)+nSme436(t)+nSme437(t)+nSme4 

38(t)+nSme439(t)+nSme440(t) )] ; 

nHp1 =[nHp1 (nHp11 (t)+nHp12(t))]; 

nHp2=[nHp2(nHp23(t)+nHp24(t))]; 

nHp3=[nHp3(nHp35(t)+nHp36(t)+nHp37(t)+nHp38(t)+nHp39(t)+nHp31 O(t))]; 

nHp4=[nHp4(nHp411 (t)+nHp412(t)+nHp413(t)+nHp414(t)+nHp415(t)+nHp416(t) 

+nHp417(t)+nHp418(t)+nHp419(t)+nHp420(t)+nHp421 (t)+nHp422(t)+nHp 

423(t)+nHp424(t)+nHp425(t))]; 

nGc1 =[nGc1 (nGc11 (t)+nGc12(t))]; 

nGc2=[nGc2(nGc23(t)+nGc24(t))]; 

nGc3=[nGc3(nGc35(t)+nGc36(t)+nGc37(t)+nGc38(t)+nGc39(t)+nGc31 O(t))]; 

nGc4=[nGc4(nGc411 (t)+nGc412(t)+nGc413(t)+nGc414(t)+nGc415(t)+nGc416(t) 

+nGc417(t)+nGc418(t)+nGc419(t)+nGc420(t)+nGc421 (t)+nGc422(t)+nGc4 

23(t)+nGc424(t)+nGc425(t)+nGc426(t)+nGc427(t)+nGc428(t)+nGc429(t)+ 

nGc430(t))]; 

nRh1 =[nRh1 (nRh11 (t)+nRh12(t))]; 

nRh2=[nRh2 (nRh23(t)+nRh24(t))]; 

nRh3=[nRh3 (nRh35(t)+nRh36(t)+nRh37(t)+nRh38(t)+nRh39(t)+nRh31 O(t))]; 

nRh4=[nRh4 (nRh411 (t)+nRh412(t)+nRh413(t)+nRh414(t)+nRh415(t))]; 

nRh5=[nRh5 (nRh516(t)+nRh517(t)+nRh518(t)+nRh519(t)+nRh520(t))]; 

nCr1 =[nCr1 (nCr11 (t)+nCr12(t))]; 

nCr2=[nCr2(nCr23(t)+nCr24(t)+nCr25(t)+nCr26(t)+nCr27(t)+nCr28(t)+nCr29(t))]; 

nCr3=[nCr3(nCr31 O(t)+nCr311 (t)+nCr312(t)+nCr313(t)+nCr314(t)+nCr315(t)+nCr 

316(t)+nCr317(t)+nCr318(t)+nCr319(t)+nCr320(t)+nCr321 (t)+nCr322(t)+n 

Cr323(t)+nCr324(t)+nCr325(t) )] ; 

nCr4=[nCr4(nCr426(t)+nCr427(t)+nCr428(t)+nCr429(t)+nCr430(t)+nCr431 (t)+nCr 

432(t)+nCr433(t)+nCr434(t)+nCr435(t)+nCr436(t)+nCr437(t)+nCr438(t)+n 

Cr439(t)+nCr440(t))]; 
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nSma1 =[nSma1 (nSma11 (t))]; 

nSma2=[nSma2 (nSma22(t)+nSma23(t)+nSma24(t))]; 

nSma3=[nSma3(nSma35(t)+nSma36(t)+nSma37(t)+nSma38(t)+nSma39(t)+nSm 

a310(t))]; 

nSma4=[nSma4(nSma411 (t)+nSma412(t)+nSma413(t)+nSma414(t)+nSma415(t) 

+nSma416(t)+nSma417(t)+nSma418(t)+nSma419(t)+nSma420(t)+nSma4 

21 (t)+nSma422(t)+nSma423(t)+nSma424(t)+nSma425(t)+nSma426(t)+nS 

ma427 (t)+nSma428(t)+nSma429(t)+nSma430(t)+nSma431 (t)+nSma432(t) 

+nSma433(t)+nSma434(t)+nSma435(t)+nSma436(t)+nSma437(t)+nSma4 

38(t)+nSma439(t)+nSma440(t) )] ; 

end; 
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