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Abstract 

This project addresses the development of low band gap organic materials with 

high intrinsic conductivity which remains a big challenge for many conducting polymer 

based applications. New bridged bithiophene and fluorene systems were investigated. 

Results proved that the linkage of two bridged bithiophene moieties by a double bond, 

and bridging fluorene moieties by sulphur atoms can produce low band gap materials 

with low-lying LUMO energy levels. This new approach to the design of low band gap 

materials compliments the strategy of introducing electron withdrawing groups at an sp2 

carbon bridging a bithienyl precursor for producing n-type conjugated low band gap 

systems. 

Advanced polymerization techniques such as copolymerization (polymerization 

from solution of two monomers), homopolymerization of a comonomer (a molecule 

containing both monomer units) and working electrode rotation during polymer growth 

were developed to tune band gaps and enhance intrinsic conductivities. Investigations of 

copolymers with conjugated bridged bithiophene and fluorene systems support the donor 

acceptor strategy for band gap reduction. Hence, by advanced synthetic strategies, the 

band gap of a polythiophene derivative was tuned from 1.0 e V to 0.1 e V and its intrinsic 

conductivity was improved by an order of magnitude. Further, a variety of polyfluorene 

derivatives with band gaps ranging from 1.2 eV to 0.8 eV were synthesized and structure­

conductivity relationships were studied. These materials may have potential uses in 

electrochromic displays and related applications. 
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Chapter 1 

Introduction 

Like inorganic semiconductors, organic materials with extended n-electron 

conjugation possess interesting electrical, optical, and magnetic properties. Such features 

of organic materials have been translated into a variety of useful devices [ 1-20]. 

However, organic n-electron materials, unlike elemental semiconductors, are not atomic 

solids but rather are typically amorphous polymeric materials. Properties such as charge 

transport in organic materials are quite different from those encountered in inorganic 

semiconductors. There are numerous polymer structures and processing protocols 

reported to date [21-30] and the possibilities for molecular engineering of conducting 

polymers are very large indeed. 

The intrinsic conductivity of conducting polymers (CP; also termed conjugated 

polymers or organic polymeric conductors), which generally consist of C, H and 

heteroatoms such as Nand S, arise uniquely from n-conjugation, an extended and 

delocalized framework originating from overlap of n-orbitals. Such conjugation is 

illustrated below for poly(acetylene). 

Schematic representation of n-conjugation in poly( acetylene) 

1 



1.2 Conjugated Polymers as Organic Semiconductors 

The band structure of a conducting polymer originates from interaction of the n-

orbitals of the repeating units throughout the chain as illustrated in Fig. 1.1. The 

calculated energy levels of oligothiophenes with n = 1- 4 and of polythiophene are shown 

as a function of oligomer length [31]. Addition of every new thiophene ring causes 

mixing of the energy levels yielding more and more levels until a point is reached at 

which there are bands rather than discrete levels. Interactions between the n-electrons of 

neighboring molecules lead to a three-dimensional band structure. The highest occupied 

band (which originates from the HOMO of a single thiophene unit) is called the valence 

band, whereas the lowest unoccupied band (originating from the LUMO of a single 

thiophene unit) is called the conduction band. The difference in energy (Eg) between 

these levels is called the band gap. 

Highly conducting polymers are obtained through simple chemical or 

electrochemical oxidation (p-doping), and in some cases reduction (n-doping). The 

resulting materials are salts doped with anionic or cationic species and belong to the class 

of extrinsically conducting polymers. 

Removal of one electron from the CP chain produces a polaron, as shown in 

Scheme l.lb. Further oxidation can either convert the polaron into a bipolaron (Scheme 

l.lc) or introduce another polaron as shown in Scheme l.ld. When a great many 

bipolarons are formed (highly p-doped), their energy states overlap at the edges, which 

creates narrow bipolaron bands in the gap. 
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Scheme 1.1. Structural changes in polythiophene upon doping with a suitable oxidant. 
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Similar states are formed when the polymer is reduced (n-doped), but the energy 

levels are below the conduction band. Both polarons and bipolarons are mobile and can 

move along the polymer chain in an electric field, and thus conduct electric current. 

1.3 Strategies for Band Gap Engineering 

The band gap of a polymer is a measure of its ability to show intrinsic 

conductivity [1]. The synthesis oflow band gap polymers is a research issue in recent 

investigations for the reason that these materials would conduct without the need for 

doping [32-35]. A wide range oflow band gap polymers has already been reported [32-

35] and the structures of some of the low band gap polymers are shown in Fig. 1.2. 

Selected examples will be presented to illustrate the variety of strategies that have been 

employed. 

For polythiophenes the most effective approach for decreasing Eg involves the 

tailoring of the monomer structure in order to increase the quinoid character of the n­

conjugated system at the expense of its aromaticity [36-45]. Recently, a new low band 

gap polymer (Eg =1.2 eV), poly(5,6-dithiooctyl isothianaphthene) has been synthesized 

[46]. 

Another design strategy involves the introduction of electron-withdrawing groups 

at an sp2 carbon bridging the 4, 4- positions of a bithienyl precursor [32-35]. This strategy 

was applied by Ferraris and Lambert [47-50] to produce from cyclopenta[2,1-b:3,4-

b']bithiophen-4-one the electroactive polymer poly-4-dicyanomethylene-4H-cyclopenta 

[2,1-b:3,4-b ']dithiophene, poly(1-1) for which Eg was reported to be below 1.0 eV. 
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Name 

Trans-polyacetylene 

Polythiophene 

Polyisothianaphthene 

Poly( dithieno(3,4-b: 
3 ',4' -d)-thiophene 

Poly cyclopenta[2, 1-
b:3,4-b']bithiophen-4-
one 

Poly(thieno[3,4-b ]­
thiophene 

Structure Band gap ( e V) 

1.5 

2.1 

1.0 

1.0 

0 

1.2 

0.85 

Fig. 1.2 Selected examples of low band gap polymers 
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1-1 1-2 

1-3 1-4 

Fig. 1.3 Examples ofbithienyl precursors for low band gap polymers 

Introduction of an electron donating group, such as a 1 ,3-dithiole moiety, at the 

sp2 bridging carbon provides the precursor 1-2 (Fig.1.3) and the band gap ofpoly(l-2) 

was reported to be< 1.4 eV [51]. Poly(l-3) with a band gap of 1.4 eV [52] and poly(l-4) 

[53] with a band gap of0.9 eV have also been categorized as low band gap systems. 

Other successful routes in designing low band gap conducting polymers are 

provided by donor acceptor polymers and copolymers [32-35]. Copolymers can have 
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tailor made properties depending upon the choice of two semiconducting components, 

their relative amounts and their arrangement in the polymer chain. The electrochemical 

copolymerization of electron deficient 1-1 with electron rich EDOT (1-5) has resulted in 

copolymers with very small band gaps [54]. By varying the polymerization potential, the 

copolymer composition was controlled and the intrinsic conductivities (both p- and n­

type) were determined from in situ conductivity measurements as a function of potential. 

Conductivity measurements were carried out by a dual electrode sandwich voltammetric 

method. Intrinsic conductivities of the copolymers were significantly higher than for 

their homopolymers [54]. Estimated band gaps from intrinsic conductivities ranged from 

0.33 to< 0.16 V. Also the band gaps for the EDOT rich copolymers were found to be ca. 

zero eV [54]. 

Recently, a variety of new thiophene based low band gap polymers were 

synthesized by electrochemical polymerizations of comonomers (1-6; 1-7; 1-8) [55]. 

Band gaps ofpoly-(1-6), poly-(1-7) and poly-(1-8) were found to be 1.3 eV, 0.8 eV and 

1.2 eV, respectively. 

Substitution or fusion and ladder polymerization have also been successful in the 

design of low band gap polymers [ 56-60]. 
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Fig. 1.4. 3,4-Ethylenedioxythiophene and donor acceptor comonomers 

1.4 Electrochemistry of Conducting Polymers 

The electrochemistry of conducting polymers is carried out in both aqueous and 

non-aqueous electrolytes. The working electrode is typically a conducting polymer film 

on a conductive electrode substrate such as platinum, glassy carbon or a transparent 

indium-tin oxide (ITO)/ glass electrode. These conducting polymer films are directly 

prepared on (electrochemically) or cast onto the electrode. Conducting polymer film 

thicknesses can vary from a few nm to mm. When a potential is applied to the conducting 

polymer, it can undergo oxidation or reduction. Counter ions flow from the electrolyte to 
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compensate the resulting charge. Thus the resulting doped polymer is a salt, containing 

charge balancing counter ions. 

1.4.1 Electrochemical Synthesis of Conducting Polymers 

Electrochemical polymerization presents several advantages such as speed, 

absence of catalyst, control of film thickness by the deposition charge, and direct 

production ofthe polymer in the oxidized conducting form [32, 61-63]. Electrochemical 

polymerizations can be performed by potentiostatic (constant potential), galvanostatic 

(constant current) or potential cycling methods [64-66]. A potentiostatic deposition mode 

generally yields polymer with the most consistent morphology. Galvanostatic deposition 

can be used when control of charge (e.g. for thickness) is desired but in some cases it has 

produced polymers of poorer morphology and conductivity. Repeated potential cycling, 

typically to a few hundred m V beyond the monomer oxidation potential, is one of the 

widely used methods. This mode of polymerization yields (stable) polymer ftlms almost 

comparable to potentiostatic deposition. Another attractive feature of this method is that 

polymerizations can be monitored by using cyclic voltammetry. In this way, some useful 

mechanistic information can be obtained instantly, which can be applied to the 

interpretation of the electrochemical behavior of new conducting polymers [ 64-66]. 

Typical monomer concentrations for electrochemical polymerization range from 

1 mM to 1 M. Electrolyte concentrations may range from 2 to 1 000 times more than the 

monomer concentration. Further, the optimization of the electrosynthesis conditions 

(concentration of reagents, working electrode rotation) has been carried out [67-76]. Such 
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investigations have led to significant progress in the control of the structural definition 

and electrical properties of some conducting polymers [67-76]. 

The mechanism of oxidative polymerization [77] is illustrated in Scheme 1.2. 

Initiation 

Cx -e· [cxr 
Propagation 

[cxr [cxr- + 

_____... X 

X 
+ 

+ 2W 

[cxr .+ 

X 
.+ 

+ X 
X 

_____... 
X 

n 
n+ l 

+ 2H+ 

+ e· 

Scheme 1.2. Mechanism of the electrochemical polymerization 

The reaction pathway involves: 

1. The initial step, radical generation, via electrochemical oxidation. 

2. Propagation via a) radical-radical recombination; b) loss of two protons from the 

dication intermediate species, generates the dimer; c) electrochemical oxidation of the 
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dimer, generates another oligomer radical; d) combination of this or other similar 

oligomer radicals with monomer radicals and repeatition of steps 2b and 2c, builds up the 

polymer. 

3. Termination via exhaustion of reactive radical species in the vicinity of the electrode or 

by predetermined processes (manual settings to stop the polymerization process). 

Nearly all electrochemical polymerizations of conducting polymers (e.g. 

polythiophene, polypyrrole, polyaniline) appear to follow the pathway illustrated in 

Scheme 1.2 [78-80]. Once the initiating electrochemical potential is applied for an 

electrochemical polymerization, the population of radical cations is likely to far exceed 

that of neutral monomer in the vicinity of the electrode surface. That is, a generated 

radical cation is more likely to be surrounded by other radical cations than by neutral 

monomers or oligomers. The cause for this is the rapid electron transfer kinetics for 

electrooxidation of monomer, in comparison with the slower diffusion of monomer from 

the bulk of the reaction medium to the electrode [71-73]. Thus, due to a rapid depletion of 

monomer concentration at the electrode, a radical-radical recombination was evidenced 

to dominate the polymerization process over the grafting process (or radical monomer 

combination) [71, 73, 81-82]. 

1.4.2 Cyclic Voltammetry of Conducting Polymers 

The basic electrochemical properties of a conducting polymer film can be 

obtained from cyclic voltammetry (CV) which involves measurement of the current (I) 

resulting from application of a cyclic potential (E) scan to the conducting polymer, with a 

fixed scan rate. In the example shown in Fig. 1.5, the initial potential (0.0 V) applied at 
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point a was chosen to avoid any electrolysis of the conducting polymer film before the 

scan was initiated. The potential was initially scanned in the positive direction. When the 

potential became sufficiently positive (+0.8 V) to cause oxidation of the conducting 

polymer (p-doping), an anodic current (indicated at b) began to flow. On scanning to high 

potentials, the anodic current increased rapidly and peaked at point c (1.2 V). In the 

reverse scan, a dedoping peak current was observed at point d (1.3 V) and the current 

approached zero after the dedoping process. Similarly, when the potential was scanned in 

the negative direction, a cathodic current (n-doping) began to flow at b' (-1.2 V) and 

peaked at point c' (-1.3 V). In the reverse scan the subsequent dedoping process took 

place with a peak potential at d' ( -1.2 V). 

Another element to note in the CV of a conducting polymer is that every 

conducting polymer has an electrochemical 'window' within which the doping/dedoping 

(redox) process is reproducible to a large extent, and beyond which oxidative or reductive 

decomposition of the conducting polymer occurs [77]. To avoid such decompositions, the 

potential scans were reversed at + 1.5 V and -1.5 V during the p-doping and n-doping 

processes, respectively, in Fig. 1.5. The potentials at point's band b' are termed p-doping 

and n-doping onset potentials, respectively, which indicate the injection of charges to the 

neutral polymer in its ground state. The potentials at c and d are called p-doping and 

undoping peak potentials. Whereas, potentials at c' and d' are n-doping and undoping 

peak potentials. Formal potentials (E0
) can be defined as the midpoint between c and d, 

c' and d'. 
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Fig. 1.5 Cyclic voltammogram at 100 mV/s in CH3CN/0.1M Bu4NPF6 of 

poly(ThFI) (Structure 8-5, Chapter 8) on a platinum electrode; * denotes the 
graphical estimate of onset potential 
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1.4.3 Impedance Spectroscopy 

In this method, a constant amplitude voltage of a given frequency is applied 

across the conducting polymer in an electrochemical cell. The current that results is 

monitored via a lock-in amplifier which detects the in-phase and 90° out-of-phase 

impedance components, which correspond respectively to the resistance and capacitance 

of the polymer sample [83]. 

The impedances of polymers such as polypyrrole, polythiophene, polyaniline, 

polyacetylene and many copolymers have been studied. The aspects of investigations 

include modeling of the ac impedance response of these materials [83-88], the separation 

of ionic and electronic contributions to the total conductivity [83, 89-90], overdoping 

[91], the relative contribution ofFaradaic and capacitive components to the total 

measured charge [92-93], the computation of the diffusion coefficients associated with 

the oxidation of these polymers and the transport of dopant ions [94, 95], and in situ 

conductance changes during polymer film growth [96]. 

The impedance response of a conducting polymer deposited on an electrode can 

be modeled using the equivalent circuit shown in Fig. 1.6 [86, 83, 97], where RE and R1 

are the distributed polymer electronic and ionic resistances respectively Rs is the 

uncompensated solution resistance, and CF represents the polymer film's Faradaic 

capacitance. A typical Nyquist plot (complex plane impedance) is characterized by a 45° 

Warburg-type line followed by a straight line response vertical to the real impedance 

axis, from which RE and R1 (Fig 1. 7) can be calculated by using the following two 

equations. 
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Fig. 1.7 Representation of an ideal complex plane impedance plot 
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1/Rx (1.1) 

(1.2) 

Where Rx is given by the subtraction of Rs from the intercept at high frequency in the 

Nyquist plot (Rx = Rhigh- Rs), and RE is obtained by extrapolation of the linear portion at 

low frequency of the Nyquist plot to the real axis (RE = 3(Rtow- Rs)). 

1.4.4 UV-VIS-NIR Spectroelectrochemical Measurements 

Information on electrochromic properties of conducting polymers can be obtained 

from spectroelectrochemistry, an in situ or sometimes ex situ measurement of the 

transmission mode (widely used) UV-Vis-NIR spectrum of the conducting polymer at 

various applied potentials [1 , 110]. Spectroelectrochemistry ofpyrrole and thiophene 

derivatives [109-110] and many other conducting polymers (1] has been investigated. For 

most cases, at zero or low doping levels, absorption bands occur in the near UV region, 

and at high doping levels, a broad band (due to mid gap transitions) stretching from the 

far visible (ca 0.6 J..l) to the near IR (up to 2.5 J..l) has been identified. High absorption in 

the near IR region is a sign of charge carrier mobility and also can be associated with 

high conductivity of a polymer [ 109-11 0]. 

1.5 Evaluation ofBand Gaps 
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The experimental determination of band gaps can be performed by 

electrochemistry (cyclic voltammetry (CV)), electronic absorption (UV-Vis-NIR) 

spectroscopy and conductivity measurements. 

1.5.1 Cyclic Voltammetry 

The basic theories of cyclic voltammetry of dissolved redox species cannot easily 

be transferred to a conducting polymer film formed on an electrode. The frequently used 

method of evaluating the formal potential of a redox reaction by taking the average of its 

anodic and cathodic peaks does not necessarily apply to conducting polymers. Normally, 

broad, distorted and asymmetric voltammograms are seen for conducting polymers [77, 

98]. Dopant ion diffusion and the variable chain lengths of conjugated segments of 

polymers are some of the factors which influence the shape of the voltammogram. Since 

conjugated segments of polymers with different lengths (or different chain length 

oligomers) have different redox potentials, the cyclic voltammogram is normally 

comprised of a distribution of redox potentials. Therefore a single redox wave would not 

be expected. 

The relationship between onset potentials and the density of states is illustrated in 

Fig 1.8. A density of states distribution (a more precise energy level distribution) of a 

polymer film [99] as a function of doping level is shown on the right hand side of Fig 1.8. 

Here, the energy levels are plotted as a function of their relative population. The band gap 

is clearly visible as a region of no orbital population. In approximately the center of this 

gap is the Fermi level, reflecting an equilibrium potential that represents the chemical 
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potential of the system, and which changes with oxidation state (doping) of the 

conducting polymer . 

. 
w 

. 
ov 

' o -" 

D miry 

Fig 1.8 Relationship between electrochemically measured band gap (Eg) (experimental 

result, chapter 8) and density of states (adapted from Ref. [99]) 

On the left hand side of Fig 1.8, p- and n-doping of a CP film (poly(ThFl); 

experimental data from this project, see chapter 8) with circled onset potentials band b' 

are shown. p-Doping onset (circled point b) and n-doping onset potentials (circled point 

b ' ), as defined earlier, indicate the injection of charges into the neutral polymer in the 

ground state, and should directly correspond to the highest energy states of redox sites as 
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indicated in Fig 1.8. Point b should correspond to the top of the valence band, whereas 

point b' to the bottom of the conduction band. So the band gap can be equated to the 

difference between the onset of oxidation (Eonset
0
x) and the onset of reduction (Eonse/ed). 

Onset potentials have commonly been evaluated as the crossing point of lines 

through the background current and steepest part of the peak, as illustrated by the arrow 

for Eonsetox in Fig 1.5 [1 00]. This method is not entirely accurate because it defmes a point 

that is clearly beyond the onset point. However, it is difficult to objectively define an 

onset point any other way. A sound methodology for using CV to determine onset or 

band edge potentials has not been adequately established. 

1.5.2 Electronic Spectroscopy 

In a UV-Vis-NIR spectrum, the onset on the low energy side ofthe absorption 

spectrum gives a value for the band-gap. Absorption ofUV-Vis-NIR light is typically 

recorded as broad absorption peaks and not as single, sharp lines representing absorption 

over an extremely narrow energy range. The absorption curves are broadened because the 

electronic levels have vibrational levels superimposed on them [101]. Most molecules 

exist mainly in their ground vibrational state at room temperature. However, excitation 

can occur to any of the excited state's vibrational levels, so that the absorption due to the 

electronic transition consists of a large number of lines. In practice, the lines overlap so 

that a continuous band is observed. Hence the shape of an absorption band is determined 

by the spacing of the vibrational levels and by the distribution of the total band intensity 

over the vibrational subbands. For simplicity the potential energy diagram 
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Fig. 1.9a Potential energy diagram for a diatomic molecule illustrating Franck-Condon 
excitation 

Fig. 1.9b Intensity distribution among vibronic bands as determined by the Franck­
Condon principle. 
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for a diatomic molecule illustrating Franck-Condon excitation and intensity distribution 

among vibronic bands is shown in Fig 1.9a and b respectively [101]. 

Figure 1.9b shows the vibrational-electronic spectrum corresponding to Fig 1.9a, 

with the 0-3 band (from v=O in the ground state to v=3 in the excited state) the most 

intense peak. The other transitions, including the 0-0 band, have significant probabilities. 

This is because even in the ground electronic state (zeroth vibrational level), the 

internuclear distance is described by a probability distribution (Fig. 1.9a). Therefore, 

transitions may originate over a range of r values so that more than one band originating 

from v=O may be observed. 

The commencement of the absorption on the low energy end which corresponds 

to the 0-0 transition is the accurate method to calculate the optical band gap. To make the 

conversion of nanometers to electron volts, one can use the Plank' s equation (equation 

1.3) 

E=hv=hc/A. (1.3) 

In this equation, E is the energy (in J), his the Planck constant (6.626 10-34 Js), c 

is the speed oflight (3 x 10 8 m/s), vis the frequency in Hz and A. is the wavelength in 

nm. Knowing that 1 eV equals 1.602 x 10-19 J, calculations can be made for the 

conversion leading to the simple conversion equation (1.4) 

E (eV) = 1240.8 /A. (nm) (1.4) 
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1.5.3 Conductivity 

A third method derives the band gap from the evolution of the conductivity. The 

conductivity is related to the band gap by an Arrhenius-like equation, Cp, intrinsic~ 

4.2x10-5exp (-Eg/2kT), where k is the Boltzmann constant (1.381x 10-23 JK-1
). The band 

gap calculated by this method for a conducting polymer agrees well with the optical band 

gap [54]. 

1.6 Techniques for Electronic Conductivity Measurement 

The basic techniques for measurement of conductivity derive from Ohms law (E = 

IR; where E is the potential difference, I the current, and R the resistance). Between two 

planes spaced at a distance d and with an area A, the resistivity is expressed as 

p = {Ell} X {Aid} (1.5) 

Thus knowing the electrode area, the separation distance, the current flowing and the 

potential difference between two planes, the resistivity can be computed. The 

conductivity (denoted cr), in units ofn-1-cm-1 or Siemens (S) cm-1 is then its reciprocal. 

Ex-situ techniques such as two probe and four probe methods can be used to 

measure the conductivities of conducting polymers [102-1 04]. However, these techniques 

cannot easily be used to probe the variation of conductivity with doping level. In-situ 

techniques such as two parallel band electrode voltammetry [1 05], dual electrode 
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sandwich voltammetry [106,107], rotating disk voltammetry [106] and AC impedance 

spectroscopy [1 08] have been used to study the variation of conductivity with potential. 

Of these methods, dual electrode sandwich voltammetry and AC impedance spectroscopy 

(discussed in section 1.4.3) are advantageous because they can cover a large conductivity 

range (1 o-9 to 1 s cm-1
). 

1.6.1 Dual Electrode Sandwich Voltammetry 

The technique of dual electrode voltammetry uses a sandwich configuration 

[106,107] where vapor deposition of a thin porous metal (Au) film is used over a 

polymer-coated Pt disk electrode. The porous electrode is contacted by the solvent. The 

gold film also covers an adjacent Pt disk that affords potential control at the 

polymer/solution interface. With the electrode immersed in an electrolyte solution, a 

bipotentiostat (potentiostat with two working electrodes) is used to maintain a small 

constant potential difference (1 0 m V) across the polymer film and the applied potential at 

the two electrodes is simultaneously scanned, slowly (10 mV/s) to maintain steady state 

conditions. The voltammogram thus obtained can be converted to a conductivity vs. 

potential plot using equation 1.5. 

1. 7 Goals of this Work 

The core objective of the project was to design and synthesize new thiophene and 

fluorene based low band gap conducting materials and investigate their structure property 

relationships. The following strategies were applied: 
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• Electropolymerization of a bridged bithiophene and copolymerization of 

EDOT with a bridged bithiophene. Characterization of their properties by 

cyclic voltammetry, UV-Vis- NIR, FTIR, mass spectrophotometry, 

spectroelectrochemistry, and in situ conductivity measurements 

• Electropolymerization of a bridged hi thiophene under hydrodynamic 

conditions and characterization of polymers and copolymers by scanning 

electron microscopy, cyclic voltarnmetry and electrochemical impedance 

spectroscopy 

• Synthesis of a variety of fluorene derivatives and homopolymerization of 

fluorene derivatives and characterization of copolymers by voltammetric, 

spectroscopic and in situ conductivity measurements 
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Chapter 2 

Experimental Section 

2.1 Chemicals and Reagents 

Unless otherwise stated, all commercial chemicals and solvents were used as 

received without further purification. 

2.2 Electrochemical Synthesis and Studies 

A Pine Instruments RDE-4 Potentiostat and a conventional three-electrode cell 

were used for electrochemical experiments, which included electropolymerization and 

electrochemical characterization of polymers. Working electrodes were either platinum 

discs (5.2 x 1 o-3 cm2 or 1.2 x 10-4 cm2
) sealed in glass or indium tin oxide coated glass 

(10 Q/square, Donnelly Corp.) A copper wire was used as the counter electrode and 

Agl AgCl as the reference electrode. In all cases, the electrolyte concentration was either 

0.01 M or 0.1 M. 

Unless otherwise stated, for all the electrochemical studies normally 100 m V /s 

was employed as the potential scan rate. Before each experiment, the solution was purged 

with argon and the electrochemical studies were performed under argon. All 

33 



polymerizations were carried out at ambient temperature (22 ± 2 °C). Polymer films were 

rinsed with acetone and dried in air before further experiments. 

2.3 Rotating Disc Voltammetry 

The electrodes used in these experiments consisted of a platinum disc of diameter 

1.0 mm (A= 0.0078 cm2
) sealed in a Teflon case. Electrode rotation was performed with 

a Pine Instruments ASR Analytical Rotator. A Pine RDE-4 Potentiostat controlled the 

potential in a three-compartment cell. The hydrodyanamic flow pattern resulting from 

rapid rotation of the disk moves liquid horizontally out and away from the center of the 

disk with a consequent upward axial flow to replenish liquid at the surface as shown by 

the arrows in Fig 2.1 [1]. 

Rotation 

Platinum disk 

Flow 

Fig. 2.1 Rotating disk electrode with hydrodynamic flow pattern 
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2.4 Dual Electrode Sandwich Voltammetry 

Fig. 2.2 shows the schematic structure of a dual electrode assembly for in situ 

conductivity measurement. One of the platinum disc (area 5.2 x 10-3cm2
) was 

electrochemically coated with a polymer film, then rinsed with acetone and later dried in 

air before gold vacuum deposition. 

Polymer 

Au 

Pt wire 

Fig. 2.2 Schematic dual-electrode used in the measurement of 

conductivity against potential 
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Gold films were vapour deposited on dual electrode assemblies with an Edward's 

model 4 coating unit, in a vacuum below 1 o-3 torr. Electrical contact to the gold film was 

made by an adjacent platinum disk. By this way, the active conducting polymer film is 

sandwiched between two working electrodes. A bipotentiostat (a potentiostat with two 

working electrodes) was employed for monitoring conductivity of the polymer films as a 

function of applied potential. The applied potential at the two electrodes is 

simultaneously scanned; slowly (lOmV/s) to maintain steady state conditions, and a small 

constant potential difference, 1 0 m V, is maintained between the two electrodes. The 

current flowing between them is monitored to yield the in situ resistivity and hence 

conductivity from equation 2.1 [2-3]. 

Ixd 
... (2.1) 

..1EPt-Au X A 

Where I is the measured current, d is the thickness of the polymer film and A is the 

electrode area. 

2.5 Electrochemical Impedance Spectroscopy 

Electropolymerized films, on platinum disc electrodes (0.0078 cm2), were allowed 

to soak in the appropriate electrolyte solution, which had been degassed with argon for 10 

minutes prior to the electrochemical experiments. A blanket of argon was used to exclude 

oxygen and atmospheric water. A single cyclic voltammetric sweep was performed 

before and after impedance investigation in order to determine the E112 value and later to 
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check the stability of the active polymeric film. Impedance data was collected at room 

temperature using a Solatron 1250 frequency response analyzer and a Solatron 1286 

potentiostat/galvanostat under the control of ZPlot software. The perturbation amplitude 

was5 mV. 

2.6 UV-VIS-NIR Spectroscopy 

UV-vis-NIR spectra were recorded with a Cary 5E spectrometer. The polymer 

film was deposited onto a narrow slide of ITO coated glass. The slide was then positioned 

inside a standard 1 em quartz cuvette together with a Pt wire counter electrode and a 

reference electrode consisting of a Pt wire in a thin glass tube packed with polypyrrole 

[4] and Nafion for spectroelectrochemistry experiments. The potential of this reference 

electrode was stable during experiments at 0.36 V vs Ag/AgCl. A spectrum of the same 

cell with a bare ITO electrode was subtracted from all spectra to correct for the 

absorbance of the cell, ITO electrode and electrolyte solution. 

2.7 FT-m Spectroscopy 

Electrochemically undoped polymer films (ca. 1 mg) were scraped from ITO 

electrodes, and pressed into pellets with KBr (150 mg). Chemically polymerized samples 

were drop casted onto an optical grade silicon disc (25 x 2 mm, Nicodom Ltd.). For both 

the cases spectra were recorded using a Mattson Polaris spectrometer extending into the 

near and far infrared regions. 
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2.8 Scanning Electron Microscopy 

Measurements were performed with a Hitachi S-570 scanning electron 

microscope. Calibration relationships were obtained from scanning electron microscopy 

of polymer films either on a Pt wire or Pt disc, which will be discussed under appropriate 

sections in the following chapters. 

2.9 Elemental Analysis 

Elemental analyses were performed by Canadian Microanalytical Services, 207-

8116 Alexander Road, RR #7, Delta, BC, V4G 1G7 

2.10 NMR Spectroscopy 

Nuclear magnetic resonance (NMR) spectra were acquired on a Bruker instrument 

at 500 MHz eH NMR). Samples were dissolved in deuterated chloroform and filtered 

before further investigations. 
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' -Dicyclopenta[2,1-b:3,4-b']dithiophene. A Conjugated Bridging Unit for Low 
Band Gap Conducting Polymers 

Kavithaa Loganathan\ Eduardo G. Cammisa2
, Brent D. Myron3

, and 

Peter G. Pickup4 

Abstract: 

A4
•
4'-Dicyclopenta[2,1-b:3,4-b']dithiophene has been prepared from cyclopenta[2,1-b:3,4-

b']bithiophen-4-one and its electrochemical and spectroscopic properties have been 

characterized. Its low HOMO-LUMO gap and facile electrochemical polymerization 

make it an attractive building block for low band gap conducting polymers. Films of 

poly-(A4
•
4'-dicyclopenta[2,1-b:3,4-b']dithiophene) on electrodes have been characterized 

by cyclic voltammetry, electronic absorption spectroscopy, IR spectroscopy, and in situ 

conductivity measurements. The spectroscopic and electrochemical results confirm the 

formation of a polymeric material with long conjugation length and low band gap (ca. 0.5 

e V). The intrinsic conductivity is consistent with this band gap. 

1This author contributed the experimental part for Figures 3.1 to 3.7 and data interpretation, 
and wrote the first draft of the manuscript. 

2This author contributed the synthesis of compound 3-3. 

3This author contributed the experimental part for Figures 3.8. 

4Th is author contributed data interpretation and preparation of the final form of the 
manuscript. 

39 



3.1 Introduction 

Among conducting polymers, polythiophene is particularly attractive because of 

its high conductivity and good environmental stability in both its p-doped and undoped 

states [1-3]. Furthermore, its structural versatility has made possible the development of 

numerous thiophene-based polymers with various desired properties, such as high 

stability [4], superior conductivity [3], processability [5], solubility [6-8], and low band 

gap [9, 10]. To achieve polythiophene of high quality, in addition to the careful 

optimization of electrosynthesis conditions from the thiophene monomer [11-14], 

oligomers, particularly 2,2'-bithiophene and 2,2':5',2' '-terthiophene, have been employed 

as precursors [15-18]. Owing to the lower oxidation potentials and exclusive ~-tt' linkages 

in these precursors, polybithiophene and polyterthiophene are expected to be closer to the 

ideal polythiophene structure than materials prepared from thiophene itself [15]. 

Substantial work on comparative studies of the electrochemical and spectroscopic 

properties of polymers synthesized from thiophene, bithiophene, and terthiophene has 

been reported [1,15]. 

Conducting polymers prepared from bithiophene precursors with electron­

withdrawing groups at an sp2 -carbon bridging the p and p' positions form an interesting 

branch of conducting polymers with reduced band gaps (Eg < 1.5 e V) [1 0-19]. For 

example, cyclopenta[2,1-b:3,4-b']bithiophen-4-one (3-1) produces a polymer with a band 

gap of ca. 1.2 e V [20] and poly( 4-dicyanomethylene-cyclopenta[2, 1-b:3,4,b']bithiophene) 
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(3-2) has one of the lowest band gaps (ca. 0.8 e V) [21] reported to date for a thiophene­

based system. 

0 

3-1 3-2 

The linking of two bridged bithiophene moieties by a double bond, as in A 4'
4
'­

dicyclopenta[2,1-b:3,4-b']-dithiophene (structure 3-3) [22-23], represents an intriguing 

extension of this group ofpolythiophenes. We report here that 3-3 can be 

electrochemically polymerized to produce low band gap materials with substantial 

conductivity. Films of poly-3-3 on electrodes have been characterized by cyclic 

voltamrnetry, infrared spectroscopy, electronic absorption spectroscopy, and in situ 

conductivity measurements. 

3-3 
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The attraction of 3-3 over other cyclopentadithiophenes that have been reported is 

that its four thiophene rings allow it to cross-link conjugated systems in a well-defined 

way, with conjugation in two dimensions. It may therefore be an attractive building block 

for molecular electronic systems in which it can act as a four-way electronic junction. 

3.2 Experimental Section 

3.2.1 Chemicals and Electrodes 

Nitrobenzene (Aldrich, 99.93+ AnalaR grade), acetonitrile (Aldrich, 99.93+% 

Biotech grade), B14NPF6 (Fluka, electrochemical grade), and other chemicals were used 

as received. Working electrodes were either Pt disks (5.2 x 10-3 cm2 or 1.2 x 104 cm2
) 

sealed in glass or indium/tin oxide coated glass (10 a/square, Donnelly Corp.). 

3.2.2 Synthesis of 3-3 

A solution of cyclopenta[2,1-b:3,4-b']dithiophene-4-one [24] (202 mg, 1.04 

mmol) and Lawesson's reagent (1.30 g, 3.12 mmol) in dry benzene was refluxed for 12 h 

under a nitrogen atmosphere. The reaction mixture was cooled and the solvent was then 

removed by rotary evaporation affording a solid, which was purified by column 

chromatography (silica gel, hexane:dichloromethane 9:1) to give a dark brown solid (40 

mg, 0.11 mmol, 22%). mp 237-240 ° C (dec). 1H NMR (300 MHz, CDCh ): 67.52 (d, J= 

5.0 Hz, 4H), 7.10 (d, J= 5.0 Hz, 4H). 13C NMR (75 MHz, CDCh ): 6144.7, 140.9, 125.2, 

124.4, 121.4. MS m/z (%) 352 (~, 100), 320 (7), 307 (13), 176 (14). HRMS: calculated 

for CtsHsS4, 351.95089; found, 351.94977. 
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3.2.3 Polymerization of 3-3 

Films of poly-3-3 were formed on electrodes by the anodic electrochemical 

polymerization of3-3 (ca. 2-5 mM) in nitrobenzene containing 0.01 M Bll4NPF6. 

Typically, films were formed by cycling the potential between 0 and+ 1.5 V at 100 

m V s-1
• All polymerizations and electrochemical experiments were carried out at ambient 

temperature (22 ± 2 o C). Polymer films were rinsed with acetone and dried in air before 

further experiments. 

Electrospray mass spectroscopy of one sample that had been dissolved in a 1 :3 

mixture of N-methylpyrrolidone and DMF at 70 o C and then diluted with acetonitrile 

showed peaks at mlz = 2466 (n = 7), 2114, and 1516, as well as peaks at 1058 and 706, 

corresponding to the trimer and dimer, respectively. This indicates that a polymeric 

material is formed during the anodic deposition of films of3-3. 

3.2.4 Polymer Film Thickness 

The thickness of a film ofpoly-3-3 deposited on a 0.0127-cm diameter Pt wire 

was estimated by scanning electron microscopy from the increase in diameter. This 

provided a relationship of 1.6 J...Lm cm2 c-1 between film thickness and voltammetric 

charge that was used to estimate the thicknesses of all other films. 

3.2.5 Conductivity Measurements 
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A thin film of poly-3-3 deposited on a Pt disk electrode was coated with gold by 

vacuum deposition, and dual working electrode experiments were performed with a Pine 

Instruments RDE4 bi-potentiostat in a four-electrode cell containing acetonitrile+ 0.01 M 

Bl4NPF 6 [25]. In one type of experiment, the potentials of both the underlying Pt 

electrode and the gold film were slowly scanned (10 mV s-1
) relative to the reference 

electrode, with a 10-m V potential difference maintained between them. The resistance of 

the polymer film at each potential during the scan was calculated from the current by 

applying Ohm's law. In a second type of experiment, the potential of the gold film was 

held at 0 V vs SSCE while the potential of the underlying Pt disk was scanned. The 

resistance at each potential was calculated from the current (i) using R = sli, where sis 

the slope of a plot of log(i) vs E [26]. Conductivity vs potential plots obtained by these 

two methods agreed well at high doping levels (-0.7 V < E < 0.4 V) but diverged in the 

intermediate potential range where the current in the first type of experiment (fixed l!!.E = 

10 m V) became too small to measure accurately. The higher potential differences across 

the film in the second type of experiment (and thus higher currents) allowed us to extend 

the measurements to lower conductivities. 

3.3 Results and Discussion 

3.3.1 Monomer Synthesis 

Compound 3-3 was obtained in 22% yield by treating cyclopenta[2,1-b:3,4-b']­

dithiophene-4-one (1-1) with 3 equiv ofLawesson's reagent under a nitrogen atmosphere 

(12 h reflux in benzene) (Scheme 3.1). Our original intention here was to prepare 
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cyclopenta[2,1-b:3,4-b']dithiophene-4-thioketone, which has been predicted to form a 

low band gap polymer with good n-type conductivity [27]. However, this compound was 

not detected in the reaction mixture. The formation of 3-3 was expected since a similar 

dimer is obtained from fluorenone, in addition to the thioketone [28]. 

0 

3-1 

Scheme 3.1 

Lawesson•s 
eagentlbenzene 

12 h1 a{ reflux • 

3-3 

3.3.2 Electrochemistry of the Monomer and Electrochemical Polymerization 

Fig. 3.1 shows cyclic voltammograms for the reduction and oxidation (first two 

cycles) of 3-3 at a Pt electrode. The cathodic cycle was performed first to avoid 

contamination of the electrode surface by the polymer formed during anodic cycling. 

Reduction of 3-3 occurs at a peak potential of ca. -1.1 V and is preceded by a 

small pre-peak at ca. -0.9 V. During the first anodic cycle, oxidation waves are observed 

at peak potentials of+ 1.12 and + 1.3 7 V. In the reverse scan, there is a reduction wave at 

ca. +0.80 V that can be attributed to the undoping (reduction) of polymeric material 
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I cycle 

-1.5 -1 -0.5 0 0.5 1 1.5 

Potential/ V Ag/AgCI 

Fig. 3.1 Cyclic voltammograms (100 mV s-1
) of 3-3 (<1 rnM) in acetonitrile containing 

0.01M Bu4NPF6 • 
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deposited on the electrode during the forward scan (see below). In the second cycle, both 

the oxidation and reduction currents are increased compared to the frrst cycle, and a new 

anodic wave appears at a lower potential (ca. +0.9 V). These observations are typical of 

conducting polymer formation on the electrode surface [29]. 

Compared to bithiophene, which exhibits a formal potential for oxidation of ca. 

+ 1.3 V vs SCE [15], 3-3 is significantly more easily oxidized (Eo ' - 1.16 V vs SCE). 

Thus, the bridging group at the 3-3' positions of the bithiophene unit in 3-3 is seen to 

increase the energy level of the HOMO. This is in contrast to the effects of the ketone and 

dicyanoethene bridging groups of 3-1 and 3-2, which have little influence on the HOMO 

energy of bithiophene [21]. The electron-withdrawing effects of these groups may offset 

any increase in the HOMO energy that would be caused by the bridging group, although 

it is more likely that the increase in HOMO energy in 3-3 is due to its delocalization over 

the two linked bithiophene units. Indeed, the two oxidation waves observed for 3-3 in 

Fig. 3 .1 indicate that the two bithiophene units are oxidized sequentially and that there 

are strong electronic interactions between them. 

The formal potential for reduction of 3-3 (ca. -1.1 V) is much less negative than 

for bithiophene (-2.2 V vs SCE) and between the values of -1.2 and -0.8 V for 3-1 and 3-

2, respectively [21]. Thus, the substantial lowering of the LUMO energy produced by the 

sp2 -bridging group is observed even in the absence of an electron-withdrawing 

substituent. 

47 



0 0.5 

Potentiai(V) 

Fig. 3.2 Cyclic voltammograms (100 mY s·1
) recorded during the formation of a 

poly(3-3) film on aPt electrode under potential cycling conditions from 5 mM 
3-3 in nitrobenzene containing 0.01 M Bu4NPF6• Currents increased during 

cycling. 
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From the difference in the peak potentials for oxidation and reduction of3-3, its 

electrochemical HOMO-LUMO gap can be estimated to be ca. 2.2 eV. Both the HOMO 

and LUMO shifts of 3-3 relative to bithiophene lead to a reduction in the HOMO-LUMO 

gap and make 3-3 one of the lowest HOMO-LUMO gap precursors for conducting 

polymers reported to date. 

Poly-3-3 films were prepared for further characterization by the potential cycling 

method, as illustrated in Fig. 3.2 (see Experimental Section for details). Since 3-3 is not 

very soluble in acetonitrile (solubility <1 mM), its electrochemical polymerization was 

performed in nitrobenzene. Continuous potential cycling between 0 and + 1.5 V results in 

a steady increase in the polymer waves at ca. +0.55 and +0.9 V. Following such 

experiments, a brown film is observed coating the electrode. 

Constant potential and constant current polymerization were also tried, but both 

failed to produce sustained growth of good quality films. At constant potential, the 

polymer growth rate decayed rapidly with time, while at constant current the potential 

rapidly rose to values that caused oxidative degradation of the film. 

3.3.3 Electronic Absorption Spectroscopy 

UV-vis absorption spectroscopy of3-3 (Fig. 3.3, curve A) was carried out in 

acetonitrile. 3-3 exhibits a strong n-n* absorption with a maximum at 380 nm (3.26 eV) 

and an onset of ca. 440 nm (2.8 eV). These values indicate that the HOMO-LUMO gap 

for 3-3 is ca. 0.8 eV lower than that ofbithiopbene (A.max = 302 run (4.1 eV) [30]). This is 
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somewhat lower than the difference of 1.3 eV (2.2 eV for 3-3 and 3.5 eV for bithiophene) 

estimated by cyclic voltammetry. 

Also shown in Fig. 3.3 (curve B) is an electronic absorption spectrum of a poly-3-

3 film that had been electrochemically deposited on an indium/tin oxide coated glass 

slide and then held at 0 V for 2 min to ensure that it was in the undoped state. From the 

onset of absorption of>1600 nm, a band gap of<0.8 eV is obtained. This band gap is 

much lower than that of polythiophene (2.2 e V) [1 0] and comparable to that of poly-3-2, 

making poly-3-3 one of the lowest band gap conducting polymers reported to date. 

The very low onset of absorption of poly-3-3 indicates that it is a highly 

conjugated material. On the basis of both experimental and theoretical studies of 

polythiophenes and other conjugated polymers, it is known that there is a linear 

correlation between the position of the electronic absorption band and the inverse of the 

conjugation length ofthe polymer [31]. The slope ofn-n* energy gaps vs lin (where n is 

the number of rings in the conjugated chain) is similar for thiophene (3.9 eV) and pyrrole 

(3. 7 e V). We can reasonably use these values (in this case the thiophene value) to 

estimate conjugation lengths in new materials. From the onset of the absorbance ofpoly-

3-3 (<0.8 eV from Fig. 3.3, curve B) and the onset of absorption of3-3 (2.8 eV from 

Figure 3.3, curve A, n3-3 = 2), the conjugation length (npol = 3.9/(3.9/n3-3 + Mpol- AE3-3)) 

is found to be infinite. In other words, the decrease in band gap in going from 3-3 to poly-

3-3 is within experimental error of the decrease observed on going from bithiophene to 

polythiophene of effectively infinite conjugation length. In practical terms, this means 
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A: 3-3 

B: poly(3-3) 

300 800 1300 

Wavelength I om 

Fig. 3.3 Electronic absorption spectra of3-3 in acetonitrile and a 
poly(3-3) film on an indium/tin oxide electrode. 
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that it can reasonably be concluded that npot for poly-3-3 is >20. 

If, on the other hand, the peak absorbances from Fig. 3.3 are used in this 

calculation (3.26 eV for 3-3 and 3.02 eV for poly-3-3), the conjugation length appears to 

be only 2.3 ( 1.1 repeat units of 3-3). This indicates that a wide range of conjugation 

lengths are present in the film, and this is consistent with the way in which 3-3 would be 

expected to polymerize (Fig. 3.4). Thus, extended polymerization at the 5-positions of 

rings A and B ( defmed as the more extensively coupled bithiophene segment of each 

monomer unit) would be expected to produce highly conjugated chains, while growth of 

side chains at rings C and/or D would be expected to be sterically restricted, producing 

shorter conjugated chains. The prominence of the peak at 410 nm in the spectrum of 

poly-3-3 (Fig. 3.4) suggests that the polymer is primarily linear and that most of the 

pendent segments (rings C and D) are monomeric (i.e., Rc = R0 =H). 

Rx = H or 3-3m 

Fig. 3.4 Expected structure of poly(3-3) 
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The electronic absorption spectrum of poly(3-3) provides very strong evidence that 

electrochemical oxidation of 3-3 does indeed produce a highly conjugated polymer on the 

electrode surface. It can be inferred from the spectrum that the monomer unit remains 

intact in the polymer, that the linkages are predominantly at the 5-positions, and that the 

polymer is not highly defective. If any of these conclusions were not true, it would be 

impossible to reasonably explain the strong absorbance of poly(3-3) extending to 

wavelengths above 1500 nm. 

3.3.4 IR Spectroscopy 

Fig. 3.5 shows IR spectra of 3-3 and poly(3-3). The spectra are broadly 

similar, indicating that the polymer has similar structural features to the monomer. 

However, there are significant differences that are consistent with the expected mode 

(cx.-cx.') of polymerization [32]. The new band at 1195 cm·1 can be assigned to inter-ring C­

C bonds between monomer units and is consistent with coupling at the ex.-positions. The 

common band at 667 cm·1 is probably the "out-of-plane" mode of the Ccx.-H bonds [32]. 

Its decrease in relative intensity with polymerization is again consistent with ex.-«' 

coupling. The new intense band at 840 cm·1 in the polymer is due to the dopant ion, PF6--

The absence of any strong bands in the1700-1800-cm·1 region for the polymer 

indicates that there has not been significant overoxidation during its synthesis. 

Overoxidation would lead to nucleophilic attack of water at the f3-positions of the 

thiophene rings and the creation of carbonyl defects [33]. 
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Fig. 3.5 IR Spectra (KBr disks) of3-3 and poly(3-3) 
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3.3.5 Electrochemistry of Poly (3-3) Films 

Cyclic voltammograms of a poly(3-3) coated Pt electrode at various sweep rates 

in monomer-free acetonitrile containing 0.01 M Bl4NPF6 are shown in Fig. 3.6. p­

Doping of the polymer film is observed as a reversible wave in the 0 to + 1.10 V region, 

while n-doping appears as a broader and less reversible wave in the 0 to -1.1 V region. 

Peak currents for both waves increase approximately linearly with increasing potential 

sweep rate (see insets in Fig. 3.6), indicating that they correspond to rapid surface 

processes. 

The formal potentials for the main p-doping and n-doping processes, from Fig. 

3.6, are ca. +0.9 and -0.9 V, respectively. The difference of AEpol ~ 1.8 eV corresponds to 

a conjugation length (npol = 3.9/(3.9/nJ-3 + AEpol- AE3-3) with A.£3-3 ~ 2.2 eV) of ca. 2.5, 

which is consistent with the value obtained from the peak in the electronic absorption 

spectrum. The onsets ofp-doing and n-doping are ca. +0.2 and -0.3 V, respectively, 

corresponding to a band gap of ca. 0.5 eV and a conjugation length of ca. 16, which is 

consistent with the result from the onset of electronic absorption. Given the difficulty of 

accurately determining onset potentials and wavelengths, the agreement with the optical 

band gap (<0.8 eV) is good. Thus, both the optical and electrochemical results indicate 

that poly(3-3) consists of reasonably long conjugated chains, with shorter side chains. 

There are also likely to be some cross-links, but their existence (or not) cannot be 

established from the optical and electrochemical data. 
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Fig. 3.6 Cyclic voltammograms (10-100 mV s-1
) of a poly(3-3) coated Pt 

electrode in acetonitrile containing 0.01 mol dm-3 Bu4NPF6 
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3.3.6 In Situ Conductivity Measurements 

In situ conductivity measurements were made by a dual-electrode sandwich 

technique in which a porous gold film evaporated over a polymer film on a Pt electrode 

acts as a second electronic contact [25]. Fig. 3. 7 shows cyclic voltammetry of a film used 

in one such experiment, together with a plot of conductivity vs potential obtained from 

dual-electrode voltammetry. The range of the initial voltammogram was restricted to 

avoid possible degradation of the film before the conductivity measurements. 

In Fig. 3. 7, the p-type conductivity of the polymer rises to a maximum of ca. 1.4 

x 10-5 S cm-1 at +0.98 V. On the reverse scan, the conductivity peak occurs at 

approximately the same potential, but is 25% lower, indicating some instability of the 

film at high potential. The n-type conductivity, observed in the negative scan, is ca. 10 

times smaller than the p-type conductivity, peaking at 1.2 x 10-6 S cm-1 at ca. -1.1 V. This 

is consistent with the high p-type/n-type conductivity ratios observed for poly(3-

methylthiophene) [34] and poly (3-2) [35]. 

The conductivity of poly(3-3) is much lower than those observed for 

polylthiophene and poly(3-2), which have reported maximum p-type conductivities of 0.1 

and 0.6 S cm-1 [35,36], respectively. Since the doping levels of all three polymers are 

similar, the mobility of charge carriers must be very low in poly(3-3). This may be due to 

a greater rigidity in the polymer, due to cross-linking, which would inhibit interchain 
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Fig. 3.7 Cyclic voltammograms (100 mV s- 1
) and in situ conductivity as a function of 

potential (in acetonitrile containing 0.01 mol dm-3 Bu4NPF6) for a poly(3-3) film 

sandwiched between Pt disk electrode and a porous gold film. Conductivity data were 
obtained with a fixed I 0 m V potential difference between the Pt and Au contacts to the 
film. 
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electron hopping. It may also be due to a larger average interchain distance caused by the 

larger size of the monomer unit and inefficient packing of the branched polymer chains. 

Log plots of conductivity vs potential, obtained from an experiment in which the 

potential of the gold contact was maintained at 0 V (vs SSCE) while the potential ofthe 

Pt disk was scanned (from 0 to +0.9 V and then from 0 to -1.0 V), are shown in Fig. 3.8 

(the somewhat higher conductivities observed in this experiment relative to those in Fig. 

3. 7 are within the normal range of variation seen for electrochemically prepared films). 

The approximately exponential increases in conductivity as the polymer is p-doped (i.e., 

as the potential is increased from ca. -0.05 V) or n-doped (decreasing potential) are 

typical of conjugated polymers [35,37,38]. The intercepts of lines through these two 

regions of the log plot in Fig. 3.8 give an approximate measure of the polymer's intrinsic 

conductivity [35]. The value of2 x 10-10 S cm-1 is similar to the intercept (1.0 x 10-9 S 

cm-1
) obtained for poly(3-2) [35], a similar polymer with a similar band gap (0.8 eV). In 

that case the intercept method used here (because we could not obtain accurate 

conductivity values in the potential range of ca ± 0.1 V) underestimates the intrinsic 

conductivity by about an order of magnitude, and so the intrinsic conductivity of poly(3-

3) is probably closer to 1 o-9 s em-). 

The band gap (Eg) of poly(3-3) was estimated from the conductivity data using 

the equation for thermal excitation of a semiconductor, Cp,intrinsic ~ 4.2 x 1 o-s exp( -Egl2k1) 

[39]. This method has been shown to be accurate for poly(3-2) [35] and copolymers of3-

2 with 3,4-ethylenedioxythiophene [40]. The concentration of thermally excited p-type 
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Fig. 3.8 Log plot of in situ conductivity as a function of potential (in acetonitrile containing 

0.01 mol dm-3 Bu4NPF6) for a poly-(3-3) film sandwiched between aPt disk electrode and a 

porous gold film. The gold film was maintained at 0 V vs SSCE in this experiment. 
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charge carriers, Cp,intrinsic, was estimated to be ca. 10-
8 mol cm-3 from the ratio ofthe 

intrinsic conductivity (crintrinsic ~ 2 x 10-
10 

s-I cm-1
) to the maximum p-type conductivity (cr 

p,max = 1.8 x 10-
5 S cm-1

) and an estimated maximum p-doping level (Cp,max) of ca. 10-
3 

mol cm-3 (i.e., Cp,intrinsic ~ O"intrinsicCp,maxlcrp,max) [35]. This analysis yields a band gap of ca. 

0.4 eV, which is consistent (within experimental error) with the electrochemical (0.5 eV) 

and optical (<0.8 eV) band gaps. 

3.4 Conclusions 

The conjugated bridge between the bithiophene units in structure 3-3 causes a 

substantial lowing of the HOMO-LUMO gap relative to bithiophene and significant 

decreases relative to other bridged bithiophenes, such as 3-1 and 3-2. This in turn leads to 

a lowering of the band gap of the conjugated polymer formed by electrochemical 

polymerization. The band gap of poly(3-3) is ca. 0.5 e V, while the band gaps of 

polybithiophene, poly(3-1), and poly(3-2) are ca. 2.2, 1.2, and 0.8 eV, respectively. 

Unfortunately, the lower band gap of poly(3-3) does not translate into a higher intrinsic 

conductivity, relative to poly(3-2), because the mobility of charge carriers is lower. 

Nevertheless, the very low HOMO-LUMO gap of3-3 together with its four linkable 

thiophene terminals may make it a useful component for cross-linking low band gap 

systems and of value as a building block for molecular electronic systems. 
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Chapter 4 (Electrochim. Acta, 51, 41-46, 2005) 

Poly (L\ 4•
4

' -Dicyclopenta [2,1-b:3,4-b']dithiophene-co-3, 4-
ethylenedioxythiophene): Electrochemically Generated Low Band Gap 

Conducting copolymers 

Kavithaa Loganathan 1 and Peter G. Pickup2 

Abstract 

A low HOMO-LUMO gap, alkene bridged bis-bithiophene (~4•4'-dicyclopenta [2,1-b:3 , 

4-b']dithiophene) has been copolymerized with electron rich 3,4-ethylenedioxythiophene, 

to produce copolymers with reduced band gaps and enhanced conductivities. 

Electrochemical band gaps as low as 0.1 e V have been observed, but maximum 

conductivities were only ca. 0.3 mS cm-1
• Poor matching of the HOMO energies ofthe 

two components, together with cross-conjugation at the alkene bridge appear to limit 

charge carrier mobilities. These results provide further evidence that the use of donor and 

acceptor moieties to decrease band gaps leads to materials with decreased charge carrier 

mobilities due to charge localization. 

1This author contributed the experimental part for this manuscript and data analysis and wrote 
the first draft. 

2This author contributed data analysis and preparation of the final manuscript. 
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4.1 Introduction 

After more than twenty years of development, the design of electronically 

conducting polymers has become a mature and sophisticated science [1-5]. Poly-(3,4-

ethylenedioxythiophene) (PEDOT), which has a very low oxidation potential, a stable p­

doping process, and high p-type conductivity (up to 600 S em-\ has emerged as one of 

the most important conducting polymers [6,7]. When electron rich EDOT is co 

polymerized with strong electronic acceptors such as 4-dicyanomethylene-4H-cyclopenta 

[2,1-b; 3,4-b'] dithiophene (4-1) [8], dicyanomethylenefluorenene [9, 10], and thieno[3,4-

b]pyrazine [11], very low band-gap materials are produced. 

Band gap engineering [12] has become an important part of the science of 

conjugated polymers and has been the subject of several reviews [12-14]. The use of 

alternating donor-acceptor moieties has been a popular and successful approach [12], 

although it has been argued that decreasing the bands gap in this way comes at the 

expense of decreased conjugation and charge carrier mobilities [15, 16]. There is 

experimental evidenced of this in a number of systems [8, 17]. 

We report here on the electrochemical synthesis, characterization and 

conductivities of a series of copolymers of~ 4•
4

' -dicyclopenta[2, 1-b:3,4-b']dithiophene 

[18,19] (4-2) and electron rich EDOT. Thin films of these copolymers have been 

prepared by oxidative electrochemical polymerization and characterized by cyclic 

voltammetry, IR spectroscopy, electronic spectroelectrochemistry and dual electrode 

sandwich voltammetry. 
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Poly( 4-2) has a band gap of ca. 0.5 e V [19], which is one of the lowest values that 

has been reported for an organic polymer. However, the charge carrier mobility in 

poly( 4-2) was found to be disappointingly low [19], and its intrinsic conductivity of ca. 

10-9 S cm-1 is no higher than that ofpoly(4-l) [20], which has a band gap of ca. 0.8 eV. 

Monomer 4-2 has therefore been copolymerized with EDOT in order to both lower the 

band gap of the resulting copolymers, and to increase their p-type charge mobilities and 

intrinsic conductivities. 

4-1 4-2 

4.2 Experimental 

4.2.1 Chemicals and Electrodes 

Nitrobenzene (Aldrich, 99.93+ AnalaR grade), acetonitrile (Aldrich, 99.93+% 

Biotech grade), B14NPF 6 (Fluk:a, electrochemical grade) and other chemicals were used 

as received. Working electrodes were either Pt discs (5.2x10-3 cm2
) sealed in glass or 

indium/tin oxide coated glass (ITO, 10 Q/square, Donnelly Corp.). 
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4.2.2 IR Spectroscopy 

Electrochemically undoped polymer films were scraped from ITO electrodes, and 

pressed into pellets with KBr. 

4.2.3 Spectroelectrochemistry 

UV -vis-NIR spectra were recorded with a Cary 5E spectrometer. A film of 

copolymer was deposited onto a narrow slide of ITO coated glass. The slide was then 

positioned inside a standard 1 em quartz cuvette togther with a Pt wire counter electrode 

and a reference electrode consisting of a Pt wire in a thin glass tube packed with 

polypyrrole and Nafion. The potential of this reference electrode was stable during 

experiments at 0.36 V vs Ag/AgCl. A spectrum of the same cell with a bare ITO 

electrode was subtracted from all spectra to correct for the absorbance of the cell, ITO 

electrode and electrolyte solution. 

4.2.4 Conductivity measurements 

A thin film of poly( 4-2) deposited on aPt disc electrode was coated with gold by 

vaccum deposition. Dual working electrode experiments were performed with a Pine 

Instruments RDE4 bi-potentiostat in a four electrode cell containing acetonitrile +0.1 M 

Bli4NPF6 [21]. The potentials ofboth the underlying Pt electrode and the gold film were 

slowly scanned (10 mV s·1
) relative to the reference electrode, with a 10 mV potential 

difference maintained between them. The resistance of the polymer film at each potential 

during the scan was calculated from the current by applying Ohm's law. Film thicknesses 

were estimated from the charge (integrated to + 1.00 V) under the final voltametric scan 

during film synthesis, by using the relationship of37 mC cm-2 per J..lm established by 
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scanning electron microscopy for films the homo- and co- polymers. This relationship 

was not significantly dependent on composition (from pure poly( 4-2) to pure PEnon, 

and so an average value was used for all compositions. 

4.3 Results and Discussion 

4.3.1 Synthesis of Poly-(2-co-EDOT) Copolymers 

Three copolymers with different compositions were synthesized from EDOT : 4-2 

molar ratios of0.5 (CP1), 1 (CP2), and 2.5 (CP3). Films of copolymers were deposited 

on platinum disk electrodes by cycling the potential between -0.5 and 1.4 V at a scan rate 

of 100 mV s-1 in nitrobenzene containing 0.1 M Bt14NFP6. The solution was degassed 

with Ar for 5 min before polymer synthesis. Peak currents increased on successive cycles 

reflecting the formation of a conducting polymer. Copolymer films were rinsed with 

acetone and dried in air before further experiments. 

Fig. 4.1a shows typical multisweep cyclic voltammograms of a mixture of 4-2 (2 

mM) and EDOT (1 mM). During the first anodic cycle, oxidation waves were observed at 

peak potentials of 1.01 and 1.26 V. In the reverse scan, there was a reduction wave at ca. 

0.65 V with a shoulder at -0.16 V that can be attributed to the undo ping of polymeric 

material deposited on the electrode during the forward scan. Continuous potential cycling 

between -0.5 and 1.4 V resulted in a steady increase in the polymeric waves and 

formation of a brown film on the Pt electrode. Multisweep voltammograms of CP2 

formation are illustrated in Figure 4.1 b. During the first cycle, as the potential was 

scanned forward, oxidation waves were observed at 1.03 and 1.29 V. 
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A: CPl 

B:CP2 

C:·CP3 

-0.5 0 0.5 1 1.5 

Potential IV vs Ag/AgCI 

Fig. 4.1 Multisweep cyclic voltarnmograms (100 mV/s) at aPt electrode (0.0052 cm2) of 
mixtures of 4-2 (2 rnM) and EDOT(A 1 mM; B 2 mM; C 5 mM) in nitrobenzene containing 0.1 
M Bu4NPF6• The current has been multiplied by a factor of five in A to facilitate comparison. 

Peak anodic currents on the last cycle shown were 3.0 (A), 20 (B), and 27 ~(C). 
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In the reverse scan, there was a reduction wave with a main current peak at 0.60 V 

and a small shoulder at 0.0 V, both of which are due to the undoping of the polymer 

deposited on the electrode during the forward scan. The reduction current at 0.0 V was 

higher than observed for CP1, which indicates that more EDOT was incorporated into the 

copolymer. 

Figure 4.1c shows a typical sequence ofvoltammograms for the electrochemical 

generation of a CP3 film on the Pt electrode. The broad cathodic and anodic waves, 

which extend to lower potentials than those for CP1 and CP2, indicate that a large 

amount of EDOT was incorporated into CP3. 

4.3.2 m Spectra 

IR spectra of samples of the three copolymers and two homopolymers are shown 

in Fig. 4.2. The most notable differences between the spectra of poly( 4-2) and PEDOT 

are the absorbances at 1265 (C13-C13) and 1400 cm-1 (Ca=C13) for poly(4-2), the 

absorbances at 505 and 1060 cm-1 (C-0) [22] for PEDOT, and the lower intensity and 

broadness of the PF6- band at ca. 840 cm- 1 in the PEDOT spectrum. Monomer 4-2, also 

exhibits a Ca=C13 band at 1400 cm-1 [19], while the corresponding band for PEDOT is at 

ca. 1500 cm-1 [8,22], making the 1400 cm-1 band a clear marker for 4-2 moieties in the 

copolymers. Similarly the 1060 cm-1 C-0 stretch is a marker for EDOT. The ratio of 

the absorbance at 1060 cm-1 to that at 1400 cm-1 should'J'rovide an approximate measure 

of the EDOT content of the copolymer. Values of0.48, 0.41, 0.86, 1.6, and 6.4 
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a) Poly( 4-2) 

b) CPI 

c)CP2 

500 1000 1500 2000 

wavenumber (cm-1
) 

Fig. 4.2 IR spectra (KBr discs) of a) poly(4-2), b) CPI, c) CP2, d), CP3, e) poly-EDOT 
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were obtained for poly(4-2), CP1 , CP2, CP3, and PEDOT, respectively. These values 

indicate that the EDOT content of the copolymers increased in the order CP 1 < CP2 < 

CP3, which is consistent with the 4-2: EDOT ratios used for their synthesis and the 

electrochemical results. However, use of these ratios as quantitative measures of 

the copolymer compositions is unwise because copolymerization causes changes in 

vibrational frequencies that are not taken in to account here. The Ato6o/A,4oo ratio for CP1 

indicates that the low EDOT content of this copolymer is not detectable by IR 

spectroscopy. Indeed the spectrum of this copolymer is not significantly different from 

that of poly( 4-2). 

That the copolymers are not simply mixtures of the two homopolymers can be 

demonstrated by comparing the spectra of the copolymers with weighted sums of the 

spectra of the homopolymers as illustrated for CP3 in Fig. 4.3. The weighting was chosen 

to match the absorbances at 1060 and 1400 cm-1 in both spectra. There are many notable 

differences between the spectrum of the copolymer, and the composite spectrum, 

indicating that 4-2 and EDOT form a true copolymer during electrochemical 

polymerization of mixed monomer solutions. A similar comparison for CP2 (not shown) 

revealed similar differences. Most notably there was a shift of a strong band at ca. 1300 

cm-1 in the composite spectrum to ca. 1350 cm-1 in the copolymer spectrum, as also seen 

in Fig. 4.3 . 

4.3.3 Electrochemistry of Copolymers 

Fig. 4.4 shows cyclic voltammograms of a CP 1 film together with a 

voltammogram for a poly( 4-2) film. The main oxidation and reduction peaks in the 
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voltammogram of CPI are at similar positions to those of poly( 4-2), indicating 

dominance of the electrochemistry by 4-2, which is the main component of this 

copolymer. However, the presence ofEDOT sites is clearly shown by the prepeaks at 

0.00 and 0.50 V, and the enhanced p-doping and undoping charges in the -0.2 to +0.8 V 

potential region. Because of their high HOMO energies, EDOT rich segments of the 

copolymer are more easily oxidized than segments rich in 4-2. It is interesting that cyclic 

voltammetry reveals the presence ofEDOT very clearly, while IR spectroscopy was 

insensitive to the presence ofEDOT in CPl . 

The main p-doping/undoping peaks for CP 1 were at similar potentials to those for 

poly(4-2), indicating that CPl had a high 4-2 to EDOT ratio. The slight negative potential 

shift in the copolymer indicates a small influence ofEDOT on the doping of 4-2-rich 

segments of the copolymer. A further notable difference between the p-doping/undoping 

ofCPl and that ofpoly-4-2 is the significantly smaller anodic vs. cathodic peak 

separation, which indicates faster redox kinetics in CP 1. 

n-Doping/undoping ofCPl occurred at similar potentials as for poly(4-2) (Fig. 

4.4). The formal potentials (average of the cathodic and anodic peak potentials) were ca.-

0.89 V and -0.87 V, respectively. As with p-doping/undoping, the peak separation for n­

doping/undoping was smaller for the copolymer film than for poly( 4-2), indicating faster 

kinetics. Curiously, then-doping waves for CPl were much larger than for poly(4-2), 

even though the main p-doping peaks were approximately the same height, reflecting 

similar amounts of 4-2 in each film. Since EDOT units are not expected to contribute to 

n-doping in this potential range [8,16], the smaller currents for poly(4-2) would appear to 
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be due to kinetic effects. Thus, a small amount of EDOT is seen to dramatically enhance 

to n-dopability of poly( 4-2). 

Fig. 4.5 shows a comparison of the cyclic voltammograms of three different 

copolymers. The voltammogram of CP2 shows an earlier prepeak than CP I, at ca. -0.1 V, 

an enhanced prepeak at 0.45 V and enhanced currents in the -0.5 to 0.5 V region, which 

are all consistent with a higher proportion of electron-rich EDOT. Furthermore, the p­

doping/undoping to n-doping/undoping charge ratio is larger for CP2 than for CPI, again 

indicating a higher EDOT content, since EDOT does not contribute a significant n­

doping charge in the potential region investigated [8]. These trends continue from CP2 to 

CP3, reflecting the even higher EDOT content in CP3. In addition, the anodic prepeaks 

merge into a broad p-doping envelope, indicating better connectivity of EDOT -rich 

segments of the copolymer. The positions and shapes of the n-doping/undoping peaks are 

similar for all three copolymers and poly( 4-2), indicating that n-doping sites are localized 

on the 4-2 moieties. The slight negative shift of the n-doping peak with increasing EDOT 

content may be kinetic in origin, or may reflect a slight influence due to electron donation 

from the EDOT moieties. 

The electrochemical processes of the copolymers were reversible and very stable 

over many scans. Both the p-doping and n-doping currents increased linearly with scan 

rate, indicating fast kinetics and the absence of diffusion controlled processes. 

The lowering of the onset ofp-doping of the copolymers with increasing EDOT 

content implies that the presence of EDOT increases the energy of the top of the valance 

band (HOMO energy). The changes in the onset ofn-doping are smaller (except for 
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CP3), indicating that the bottom of the conduction band (LUMO) is less sensitive to the 

presence ofEDOT. As a consequence, the electrochemical band-gaps of the copolymers 

are less than that of poly( 4-2). The electrochemical band gaps (differences between the 

onsets ofp- and n-doping) are difficult to accurately quantify, but can be estimated to be 

ca. 0.5 eV for poly(4-2) and ca. 0.3, 0.1 , and 0.2 eV, for CP1, CP2, and CP3, 

respectively. 

It has recently been advocated [17] that electrochemical band gaps should be 

estimated from standard potentials (E0
) rather than onset potentials, and this would 

significantly increase the estimated band gaps for both poly( 4-2), and the copolymers 

(and most of the other polymers reported in the literature). It would also indicate that 

poly( 4-2) and the copolymers have similar band gaps. This would be at odds with the 

very different voltammetJ:ies observed in Fig. 4.5, which clearly indicate that substantial 

p-doping occurs at lower potentials in the copolymers. The problem here is that 

voltammetric wave shapes are not Nemstian, and that the voltammetric peaks do not 

provide accurate estimates ofE0
• This is a general problem in the area of conducting 

polymers, and in our opinion the use of peak potentials is more misleading that the use of 

current onsets. We also favour the use of onset potentials because they reflect more 

accurately the formal potentials of the most easily oxidized or reduced chain segments, 

which are most representative of the ideal polymer. 

4.3.4 Spectroelectrochemical Studies of Copolymers 

Fig. 4.6 shows UV-vis-NIR absorption spectra ofundoped CPl, CP2 and CP3 

films. These spectra were obtained at controlled potential in a spectroelectrochemical 
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cell. The potential in each case was set at the current minimum in the voltammogram of 

the copolymer. 

All three spectra exhibit a peak or shoulder at ca. 440 run and a peak or shoulder 

at 512 run (CP1) to 572 (CP3) run. These have been designated as A and Bin the figure. 

From their relative intensities in the three spectra, and from comparison with spectra of 

the homopolymers [19,23], peak A appears to arise from units of 4-2 in the copolymer, 

while peak B appears to arise from EDOT units. The in variance of the wavelength of 

peak A suggests that this is a localized transition, while the variation of the position of B 

indicates delocalization. This transition shifts to lower energy as the EDOT content of the 

copolymer is increased, consistent with an increase in the average oligo-EDOT segment 

length. 

CP1 and CP2 also exhibit a significant absorption band (C) at long wavelengths 

(ca. 1550 nm and 1400 run, respectively). There may be a corresponding absorption for 

CP3 at ca. 1600 run, but it is too weak to be certain. These bands may be due to HOMO­

LUMO transitions or trapped p-type charge carriers. To investigate this, spectra were 

recorded at more positive potentials, corresponding to p-doping of the copolymers. 

Results for CP3 are shown in Fig. 4. 7. As the potential was increased, peak B decreased 

and a new absorption grew at ca. 1400 run. The decrease in peak B is consistent with p­

doping ofEDOT rich segments of the copolymer, while the 1400 nm absorption can be 

assigned to transitions to interband polaron or bipolaron levels. Similar changes were 

observed for CP1 and CP2. In all three copolymers, the 440 nm absorbance (peak A) did 
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Fig. 4.7 Electronic absorption spectra of a CP3 film on an ITO electrode at 
potentials of -0.5, -0.1 , +0.3 and +0.7 V in acetonitrile containing 0.1 M 
Bu4NFP6. 
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not vary significantly in intensity or position with p-doping, indicating that it is due to a 

transition localized on the bridging double bond of 4-2. 

The spectra in Figs. 4.6 and 4.7 are consistent with the low band gaps indicated by 

the electrochemistry of the copolymers, since the expected HOMO-LUMO transitions 

would be below the solvent cut-off of ca. 1600 nm (0.8 e V). Based on the estimated 

electrochemical band gaps, absorption onsets should be at ca. 4300 run for CP1, and 

higher for CP2 and CP3. The absence of clear HOMO-LUMO transitions in the 

accessible wavelength range provides evidence that these are indeed very low band gap 

materials. 

4.3.5 In Situ Conductivity Measurements 

Electronic conductivities of copolymer films were measured as a function of 

potential in acetonitrile containing 0.1 M B14NFP6 by using the dual electrode sandwich 

technique [21]. Maximum p-type conductivities were 0.034±0.011 mS cm-1 for CP1, 

0.044±0.017 mS cm-1 for CP2, and 0.30±0.14 mS cm-1 for CP3. These values are 

averages and standard deviations for two films of each copolymer, and include an 

estimate of the uncertainty in the film thicknesses. The order of these maximum 

conductivities, which increase with increasing EDOT content, is consistent with the 

expectation that p-type conductivity is dominated by the EDOT moieties. This conclusion 

is further supported by the potential dependencies of the conductivities shown in Fig. 4.8. 

For clarity, and to stress the potential dependence, the data in Fig. 4.8 have been 

normalized with respect to each film's maximum conductivity. It can be seen that the 
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Fig.4.8 Normalized conductivities of copolymer films as a function of potential in 
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onset of p-type conductivity moves to lower potentials as the EDOT content of the 

copolymer is increased, again indicating dominance by these moieties. 

The p-type conductivities of the copolymers are higher than the maximum value 

of 14 J-LS cm-1 reported for the poly(4-2) homopolymer [19], but much lower than the p­

type conductivity of 0.6 S cm-1 measured for PEDOT by the same method [8]. Since the 

doping levels of all three copolymers and two homopolymers are similar, the mobility of 

charge carriers must depend strongly on the EDOT content of the (co)polymer. Clearly, 

interruption ofEDOT conjugation by 4-2 severely restricts charge carrier mobility. This 

is not surprising in light of the poor matching of the HOMO energies of the two monomer 

units. However, the effect is more pronounced than was observed in copolymers of 

EDOT with 4-1. The difference may be that 4-2 also causes branching of the copolymer 

and gives cross-conjugated linkages with poor conjugation though its central double 

bond. 

Only one of the copolymer films tested exhibited measurable n-type conductivity 

and this data is included in Fig. 4.8. It has been normalized with respect to the maximum 

value of2.0 J-LS cm-1
• This is close to the maximum n-type conductivity of 1.2 J-LS cm-1 

reported for the poly( 4-2) homopolymer, indicating dominance of n-type conductivity by 

4-2 [19]. Localization of then-type charge carriers on the 4-2 moieties is responsible for 

the low n-type conductivity relative to the p-type conductivity [19], which was 34 J-LS 

cm-1 for this particular copolymer film. n-Type conductivities for the other copolymers 

may have been as high as 1 J-LS cm-1
, but could not be measured due to large background 

currents. 
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4.4 Conclusions 

Copolymerization of 4-2 with EDOT produces materials with reduced 

electrochemical band gaps, enhanced conductivities and faster electrochemical kinetics. 

However, poor conjugation of the resulting materials leads to low charge carrier 

mobilities and conductivities relative to the poly-EDOT homopolymer. The donor­

acceptor method for band gap reduction is again shown to be effective, but at the expense 

of charge carrier mobility. Thus, the expected gains in intrinsic conductivity with band 

gap reduction have not been realized. This is consistent with theoretical analysis which 

indicates that the use of donor and acceptor units to decrease the band gap of 

polythiophenes will lead to decreased delocalization of orbitals and lower charge carrier 

mobilities [15,16]. It is not clear how, or whether, this limitation can be resolved. 
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Chapter 5 

The Influence of Electrode Rotation on Morphologies and 

Conductivities of Poly-(~ 4'
4'-Dicyclopenta[2,1-b:3,4-b']dithiophene) 

Electrochemical polymerization has become a widely used procedure for quick 

generation of conducting polymers [1]. Many investigations have been performed on the 

mechanism of the electrochemical polymerization and deposition of thiophene based 

conducting polymers [2-6]. Techniques such as voltammetry [7-18], chronoamperometry 

[19-21], impedance [8, 10], microscopy [22-24], and spectroscopy [25-27] have been 

applied for such investigations. Studies on interfacial reactions [7-8, 28-29] have shown 

that polymer deposition usually takes place through two simultaneous processes. They 

are propagation at the ends of polymer chains in the polymer matrix and the precipitation 

of oligomeric/polymeric species from solution onto the electrode surface. 

The nature of conducting polymer films plays a major role in materials selection 

for many conducting polymer based applications. For example porous materials are most 

suitable for applications in batteries and electrocatalysis, while compact films would 

generally be preferable in analytical applications (e.g. ion selective sensors) [1, 8]. 

Tuning electrical properties such as conductivity via the morphology of electrodeposited 

conducting polymers is an emerging research area and such investigations have been 

successful for poly(3-methylthiophene) [8]. 
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The rotating disk voltammetric method has been employed to control the 

morphologies of polythiophene and poly(3-methylthiophene ). Otero and coworkers [7] 

have proposed a model of interfacial reactions by studying electrodeposition of 

polythiophene under stationary and stirred conditions. Zhao and Pickup [8] have 

performed such investigations with poly(3-methylthiophene) and found that precipitation 

causes uneven film deposition under stationary conditions. Their study has also proved 

that at higher electrode rotation rates, propagation at the ends of polymer chains in the 

polymer matrix leads to a more compact film. Electrochemical impedance spectroscopy 

was used to probe the effect of electrode rotation on the morphology and conductivity of 

poly(3-methylthiophene) [8]. However, investigations on thiophene derivatives have also 

shown that the deposition mechanism can depend on the nature of the monomer [8]. This 

prompted us to investigate the interfacial reactions during polymerization of bridged 

bithiophene (5-1) which can cross link conjugated systems in a well defined way with 

conjugation in two dimensions. 

5-1 
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Similar investigations were performed on copolymers of 5-1 with EDOT, and the 

effect of working electrode rotation, during the polymer growth, on the conductivities of 

poly( 5-1) and its copolymers are reported in this chapter. 

5.1 Effect of Electrode Rotation on Polymer Growth 

5.1.1 Electrochemical Polymerization of Dicyclopenta[2,1-b:3,4-b')dithiophene 

Figure 5.1 shows a comparison of multisweep cyclic voltammograms for the 

electrochemical polymerizations of dicyclopenta[2,1-b:3,4-b']dithiophene (5-1) in 

nitrobenzene containing 0.1 M Bl4NPF6 at electrode rotation rates ofO rpm, 400 rpm, 

800 rpm and 1200 rpm. Experiments were carried out at a scan rate of 100 mV s·1 and a 

constant polymerization time was maintained to see the effect of electrode rotation rate 

on polymer growth. Continuous potential scanning between 0 and 1.5 V resulted in a 

steady increase in the anodic peak current at ca. 0.8 V in all four experiments. 

5.1.2 Morphology of Polymer Films 

Figure 5.2 shows scanning electron microscopy images ofpoly-(5-1) films 

prepared at stationary (a) and rotating [(b) 400, (c) 800 and (d) 1400 rpm] platinum 

electrodes in nitrobenzene. Polymerization conditions such as oxidation potential, 
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Fig. 5.1 Repetitive sweep polymerizations of2 mM 5-1 at rotation rates of(a) 0 rpm, (b) 400 
rpm, (c) 800 rpm, (d) 1200 rpm 
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Fig. 5.2 Scanning electron micrographs ofpoly-(5-1) films deposited on stationary 
(a) or rotating [(b) 400 rpm (c) 800 rpm (d) 1200 rpm] Pt electrodes 
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electrolyte concentration and polymerization time were kept constant for all the films to 

see dominance of the effect of electrode rotation on structural variations. 

Image (a) shows a web-like fibrillar structure with some fme globular regions. 

Image (b) shows less abundant, but denser fibrillar structures and globular structures 

with larger particle sizes. The transition from fibrillar to globular structure is more 

obvious when comparing images (b) and (c). Image (d) shows the largest globular 

structures with no fibrils. The diameter of the globular particles ofpoly-(5-1), 

synthesized by electrode rotation at 1200 rpm range from 1.5 J.Uil to 3.5 !J.m. Each particle 

appears to be an aggregation of smaller spheres. Based on these morphologies (shown in 

Fig 5.2 a-d), poly-(5-1) will be named as poly-(0); poly-(400); poly-(800) and poly-

( 1200) in the following sections. 

5.2 Characterization of the Films 

5.2.1 Cyclic Voltammetry 

Fig. 5.3 shows cyclic voltammograms in monomer free B14NPF6-CH3CN for the 

poly(5-1) films prepared in the experiments in Fig. 5.1. p-Doping of the polymer films 

was observed as reversible waves in the 0 to + 1.0 V region, while n-doping appeared as 

broader and less reversible waves in the 0 to -1.0 V region. Peak currents for both waves 

increased approximately linearly with increasing electrode rotation rate (insets in Fig. 

5.3). The formal potentials for the main p-doping and n-doping processes were ca.+ 0.8 

V and- 0.85 V, respectively. The doped polymer films were preserved under a nitrogen 

atmosphere for impedance analyses. 
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Fig. 5.3 Cyclic voltammograms in acetonitrile containing 0.1 M Bu4NPF6 ofthe poly-(5-

1) films prepared in the polymerizations depicted in Fig. 5.1. Insets show variations of 
cathodic and anodic peak currents with electrode rotation rates. 
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Scheme 5.1 Circuit for a finite transmission line in series with an uncompensated 
solution resistance 

5.2.2 Electrochemical Impedance Spectroscopy 

Fig. 5.4 illustrates impedance plots (at 0.8 V) for platinum electrodes coated with 

poly-(5-1), and corresponding to the p-doped films shown in Fig 5.3, in 0.1 M Bti4NPF6-

acetonitrile solution under a nitrogen atmosphere. The poly-(0), poly-( 400), poly-(800) 

and poly-(1200) films all exhibited the same constant high frequency resistance (Rh) but 

their low frequency resistances (R1) were different. From the differences between the low 

frequency intercepts and high frequency intercepts (illustrated as R, and Rh in Fig. 5.4), 

resistances (3(R1- Rh)) for poly-(0), poly-(400), poly-(800) and poly-(1200) were 

calculated to be 756, 726, 351, and 210 n, respectively. 
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Fig. 5.4. Impedance plots for Pt electrodes coated with poly( 5-1) in 0.1 M 
Bu4NPF6-CH3CN. Film thicknessess: (a) poly-(0), 0.3 f..UU; (b) poly-(400), 0.8 
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Fig. 5.5 Impedances ofp-doped poly-(1200) in 0.1 M Bu4NPF6 acetonitrile 
solution 
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Fig. 5.5 shows impedance plots at various p-doping potentials for poly-(1200), a 

polymer film synthesized under hydrodynamic conditions (at a working electrode rotation 

rate of 1200 rpm). At 0.4 V, the impedance plot shows a partial semicircle in the 

Warburg type (45) region which extends to ca. 30,000 Q followed by a steeper low 

frequency region. When heavily doped (from +0.6 V to + 1.0 V), the response exhibits a 

ca. 45° Warburg type region in addition to a nearly vertical low frequency capacitive 

impedance. This response is generally observed for a film behaving as a finite 

transmission line which is illustrated in Scheme 5.1 [9]. From the differences between 

the low frequency intercepts and high frequency intercepts of the plots in Fig. 5.5, 

resistances for the poly-(1200) film at +0.6 V, +0.8 V, + 1.0 V were calculated to be 666, 

246 and 189 Q, respectively. 

The circuit in Scheme 5.1 should give a 45° Warburg type response and a low 

frequency (vertical) limiting capacitance. Deviations from the 45° and vertical slopes in 

the experimental data are due to inhomogeneity of the films [10]. 

Fig. 5.6 shows capacitance vs. real impedance plots that correspond to the data in 

Fig 5.4. The real impedance for poly-(0) was slightly higher than those obtained for poly­

( 400), poly-(800) and poly-(1200). In addition the low frequency (limiting) capacitance 

increased as we see from films poly-(0) to poly-(1200). Fig. 5.7 shows capacitances vs. 

real impedances for n-doped poly-( 400) and poly-(1200) films. Poly-(1200) exhibited a 

higher low frequency (limiting) capacitance than poly-( 400). 

Fig. 5.8 shows estimated conductivities (in situ) as a function of potential for the 

poly-(1200) film. The p-type conductivity was high at +1.0 V and it decreased as the 
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Fig. 5.6 Capacitance vs real impedance plots for p-doped (+0.8 V) poly-(5-1) films. 
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doping level was decreased. The film acted an electronic insulator in the region between 

+0.2 V and -0.2 V, and had a negligible capacitance (see inset of Fig 5.8). However, Rh 

was still low (Fig. 5.5), indicating that the film maintained a high ionic conductivity. This 

justifies the assumption in the following analysis that R1 is negligible. The n-type 

conductivities increased with doping level and reached a maximum at -1.2 V. The n-type 

conductivity was ca. 10 times smaller than the p-type conductivity. Maximum p-type and 

n-type conductivities for poly-(1200) were estimated to be 102 and 6.7 J..1S cm-1
, 

respectively. The inset in Fig. 5.8 shows capacitance vs. frequency plots of a bare 

platinum electrode and the electrode with poly-(1200) at doping potentials of+ 1.0 , +0.2, 

0, -0.2, -1.2 v. 

5.3 Discussion 

Polymerization by rotated disk voltammetry is similar to polymerization by cyclic 

voltammetry in that the working electrode potential is swept back and forth across the 

formal potential of a monomer solution. It differs significantly in that the working 

electrode itself is rotated, typically at speeds of 100-5000 rpm. This rotational motion sets 

up a well defined flow of solution towards the surface of the rotating disk electrode. The 

flow pattern is akin to a vortex that literally sucks the solution (and the monomer) 

towards the electrode. This increases the rate of radical cation formation and increases the 

rate at which products are transported away from the electrode. Therefore, the application 

of rotating disk voltammetry during polymer synthesis produces significant changes in 

the morphological and electrochemical properties ofpoly-(5-1). 
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Table 5.1 Polymerization peak currents and thicknesses of the polymer films prepared at 

various rotation rates shown in Fig 5.1. 

Curve Rotation rate Peak current Thickness 

(rpm) Anodic cathodic 

(mA/cm2
) f...LID 

a 0 0.709 -0.702 0.32 

b 400 1.873 -1.847 0.84 

c 800 2.802 -2.789 1.26 

d 1400 3.095 -3.287 1.39 

Table 5.2 Electrochemical data for poly-(5-1) films shown in Fig 5.3 

p-doping n-doping 

ro/ rpm Qpol Ep(ox) lp(ox) Ep(red) lp(red) En( red) in( red) En( ox) ln(ox) 

/mC N /f...LA N /f...LA N /f...LA N /f...LA 

0 159 0.85 10.0 0.75 -4.71 -0.91 -13.7 -0.73 3.08 

400 357 0.85 21.9 0.75 -14.6 -0.95 -18.8 -0.80 8.42 

800 595 0.86 33.6 0.73 -22.8 -0.91 -32.6 -0.80 6.67 

1200 664 0.87 35.4 0.72 -27.4 -0.90 -35.0 -0.80 16.8 
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Scheme 5.2 A schematic representation of the electro generation 
of a polymer at a rotating disc electrode (adapted from Ref. [7]). 

Polymerization (a) on grafted species (b) by oligomerization in the 
reaction layer 

Table 5.1 shows the variation of the polymerization peak currents and thicknesses 

of the polymer films prepared at various rotation rates. Polymerization charges of 5-1 at 

various electrode rotation rates were calculated from the final anodic wave by integration 

from 0 to + 1.0 V (Table 5.2). Higher polymerization charges and thicknesses were 

observed at increasing rotation rates. 

Polymerizations usually take place via two simultaneous processes: on grafted 

species (Scheme 5.2a) and oligomerization in the reaction layer (Scheme 5.2b) [7]. As 

the electrode rotation rate during the polymer synthesis was increased from 0 to 1200 

rpm, both the anodic and cathodic peak currents increased (Fig. 5.1 ), indicating the 

105 



generation of thicker (or denser) films. When the electrode is rotated, the reaction layer is 

replenished with fresh monomer solution and the monomer moves across the reaction 

layer via simple molecular diffusion. The diffusion layer is thinner than at 0 rpm and 

decreases with increasing rpm. Therefore, the flux of monomer increases. 

For polythiophene and poly(3-methylthiophene), current densities decreased with 

increasing rotation rate [7 -8]. Moreover the precipitation process dominated for 

polymerizations [7-8] at stationary electrodes and resulted in uneven films. Changes in 

grafting processes would have occurred for polythiophene and poly(3-methylthiophene) 

when the electrode was rotated but would have appeared minor due to the dominance of 

the precipitation process. The progressive increase in current densities in the present case 

points to an enhancement of the grafting process under hydrodynamic conditions and it is 

also clear that the grafting process dominates over the precipitation process under 

stationary conditions. Further, increasing the rotation rate promotes progressive 

destruction of the reaction layer with the elimination of oligomers and soluble polymers 

into the bulk solution. The increase in current density with increasing rotation rate is 

contrary to the previously proposed model [7]. It should be noted that for polythiophene 

and poly(3-methylthiophene), 0.1 M solutions were used to probe interfacial reactions [7-

8]. Therefore variations of interfacial reaction processes in the present study (with 2mM 

monomer solution) can be attributed to the concentration effect. It is clear from the 

SEM images in Fig. 5.2 that polymer synthesized under stationary condition possess 

crosslinked fibrillar-glo,bular structures. Fibrillar formation can occur through 

precipitation and coalescing of the growing polymer once a critical 
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Table 5.3 Capacitances and conductivities from the impedance data for poly-( 5-1) coated 

Pt electrodes shown in Fig.5.3 

p-doped with PF6- (E= +0.8 V) n-doped with B14W (E= -0.8 V) 

ro/ Capacitance Rhigh R1ow Conductivity Capacitance Rhigh R1ow cr 

rpm /mF /Q /0. f..lScm-1 /mF /Q /0. J..lSCm-1 

0 0.01 479 731 5.86 - - - -

400 0.08 488 730 15.6 67 1531 6951 0.72 

800 0.15 466 583 49.9 - - - -

1200 0.21 471 553 79.0 94 1532 2831 4.96 

Table 5.4 Capacitances and conductivities from the impedance data for poly-(1200) 

coated Pt electrodes illustrated in Fig.5.3d. 

p-Doping potential N n-Doping potential N 

+1.0 +0.8 +0.6 +0.4 -0.6 -0.8 -1.0 -1.2 

C/mF 0.12 0.21 0.11 0.02 0.03 0.09 0.06 0.05 

Rhigh/Q 464 471 472 440 1179 1174 1173 1184 

Rlow/0. 527 553 863 17095 6779 3268 2298 2188 

cr /f..lScm-1 102 79 16 0.4 1.1 3.1 5.7 6.4 
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chain length is reached. Electrode rotation during polymer synthesis suppresses the 

precipitation process and therefore, a clear globular structure is seen for poly-(1200). 

Thus expansion of polymer nuclei on the electrode surface, supported by observation of a 

globular morphology occurs more rapidly at higher rotation rates than under stationary 

conditions. 

Electrochemical data for poly-( 5-1) films from Fig 5.3 are listed in Table 5.2. 

Since peak currents are proportional to the amount of polymer on the electrode, it is clear 

that more polymer was formed on the rotated electrodes, and that the amount of polymer 

deposited on the electrode surface increases with increasing rotation rate during 

preparation. 

Capacitances and conductivities at +0.8 V and at -0.8 V for poly-(0), poly-(400), 

poly-(800) and poly-(1200) films are listed in Table 5.3. High frequency resistances at 

+0.8 V were constant for all poly-(5-1) films. This behavior indicates that the ionic 

resistance was small for all films. Low frequency resistances decreased with increasing 

electrode rotation rate during polymerization. Capacitances, which are proportional to the 

quantity of polymer, increased with increasing rotation rate. Therefore the thicker 

polymer films, consisting of more polymer, exhibit the lowest resistance. This behavior 

indicates that the resistance to the motion of electrons across the polymer film was higher 

for the thinner films. Further, the slopes of capacitance vs. real impedance plots increased 

with rotation rate (see Fig. 5.6 and Fig. 5.7). Since capacitance is directly proportional to 

the thickness of the polymer film, the slope of the capacitance vs. real impedance plot is 
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proportional to the film ' s conductivity. The increase in conductivities, as we see from 

poly-(0) to poly-(1200), can be attributed to an enhancement of the grafting process. 

Capacitances and conductivities from the impedance data for poly-(1200) at 

various p- and n-doping potentials are listed in Table 5.4. The low frequency 

capacitance increased with increasing doping potential. The maximum p-type and n-type 

conductivities for the poly-(1200) film were ca.102 and ca. 6.6 ~-tScm- 1 • 

The maximum conductivities estimated, for poly-(0) film, by this method agreed 

well with those obtained from dual electrode sandwich voltammetry (Chapter 3, section 

3.3.6). Maximum p-type and n-type conductivities for poly-( 5-1) were 14 ~-tS cm-1 and 1.2 

1-1. S cm-1
, respectively (section 3.3.6) an order of magnitude lower than observed for poly­

(1200) film by impedance. Increase in conductivity ofpoly(1200) film can be attributed 

to the highly ordered and more denser globular structure. Thus, electrode rotation during 

polymerization sweeps away the precipitated oligomers near the electrode surface and 

enhances the grafting process which has a significant positive impact on the film's 

conductivity. 

5.4 Characterization of Copolymers of (5-1) and EDOT (CPl, CP2 and CP3) 

5.4.1 Cyclic Voltammetry 

Copolymer films CP1, CP2 and CP3 were electrochemically synthesized as 

described in Section 4.3 (Chapter 4). Fig. 5.9 compares doping processes of CP films 

polymerized under stationary (a) to hydrodynamic conditions of 400- 1200 rpm (b-d). 

The p and n-doping peak currents increased with increasing electrode rotation rate. The 
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formal potentials for the main p-doping and n-doping processes of CP 1, CP2 and CP3 

were ca. +0.89 and -0.87 V; +0.80 and -0.87 V; +0.65 and -1.05 V, respectively. The 
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doped copolymer films were preserved under a nitrogen atmosphere for impedance 

analyses. 

5.4.2 Electrochemical Impedance Spectroscopy 

Fig. 5.10 illustrates impedance plots (at +0.8 V) for platinum electrodes coated 

with CP1, and corresponding to the p-doped films shown in Fig. 5.9A, in 0.1M BU4NPF6-

acetonitrile solution under a nitrogen atmosphere. Like poly-(5-1), the CP1-(0), CP1-

(400), CP1-(800) and CP1-(1200) films all exhibited the same constant high frequency 

resistance (Rh) but their low frequency CRt) resistances were different. From the 

differences between the low frequency intercepts and high frequency intercepts 

resistances for CP1-(0), CP1-(400), CP1-(800) and CP1-(1200) were calculated to be 

282, 206, 150, 143 Q, respectively. Resistances of CP2-(0), CP2-( 400), CP2-(800) and 

CP2-(1200) (Fig. 5.11) were 126, 122, 111, and 36 Q, respectively. CP3-(0), CP3-(400), 

CP3-(800) and CP3-(1200) (Fig. 5.11) films exhibited resistances at 193, 30, 26, and 4 Q, 

respectively. 

Fig.5.12 shows capacitance versus real impedance plots for copolymer films CP 1, 

CP2 and CP3 at various rotation rates. Its is clear from the experimental data (Table 5.6) 

that films grown at 1200 rpm possess the highest low frequency (limiting capacitance) for 

both p-type and n- type processes. The p-type limiting capacitance ofCP3-(1200) was 

higher than those observed for CP2-(1200) and CP1-(1200). Then-type limiting 

capacitance ofCP1 film was higher than that ofCP2 film. Fig 5.13 shows capacitance 

versus potential plots for copolymer films CP1, CP2 and CP3. For CP1 and CP2, the 
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capacitance reaches maximum at ca. +0.8 V for p-doping and ca. -0.9 V for n-doping, 

and for CP3, the capacitance reaches a maximum at ca. +0.6 V for p-doping process. 

Fig. 5.14 shows estimated conductivities (in situ) as a function of potential for 

CP1-(1200) films. The p-type conductivity ofCP1-(1200) was high at +0.8 V and 

decreased as the doping level was decreased. The n-type conductivities increased with 

doping level and reached a maximum at -0.8 V. The n-type conductivity was slightly 

lower than the p-type conductivity. Maximum p-type and n-type conductivities for CP1-

(1200) were estimated to be 39 and 24 J..1.Scm·1, respectively. 

Also shown in Fig. 5.14 are conductivities ofCP2-(1200) and CP3-(1200) as a 

function of potential. Maximum p-type and n-type conductivities for CP2-(1200) were 

estimated to be 182 and 32 J..l.Scm-1
• CP3-(1200) exhibited the maximum p-type 

conductivity of3.3 mScm-1
• 

5.5 Discussion 

Polymerization charges of CP films at various electrode rotation rates are listed in 

Table 5.5. Charges (Qcopol) were calculated from the final anodic wave. Higher 

copolymerization charges and thicknesses were observed at increasing rotation rates. As 

the electrode rotation rate during copolymer synthesis was increased from 0 to 1200 rpm, 

both anodic and cathodic peak currents increased (Table 5.5), indicating the generation of 

thicker (or denser) films. This behavior was similar to that observed for poly-(5-1) films 

and therefore indicates a greater flux of monomer under hydrodynamic conditions. 
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Table 5.5 Electrochemical data for copolymer films shown in Fig 5.9 

p-doping n-doping 

ro/ Qcopol* Ep(ox) ip(ox) "Ep(red) ip(red) En(red) ln(red) En( ox) in( ox) 

rpm /mC /V IJ..LA N IJ..LA N IJ..LA N IJ..LA 

0 525 0.80 8.25 0.71 -7.43 -0.87 -8.87 -0.89 5.88 

400 626 0.88 23.1 0.64 -20.0 -1.05 -19.1 -0.77 10.1 

CP1 800 815 0.80 28.5 0.69 -25.5 -0.99 -25.5 -0.83 14.9 

1200 898 0.79 28.9 0.68 -26.6 -0.95 -30.1 -0.83 19.6 

0 728 0.83 8.54 0.72 -7.05 -0.98 -7.29 -0.83 3.73 

400 841 0.80 27.9 0.69 -22.7 -0.99 -9.41 -0.82 3.26 

CP2 800 960 0.80 35.0 0.69 -28.2 -0.99 -13.0 -0.82 4.70 

1200 998 0.79 31.6 0.65 -27.6 -0.99 -16.8 -0.84 10.4 

0 751 0.79 14.8 0.69 -11.0 -1.10 -5.39 -0.86 0.80 

400 868 0.74 23.4 0.62 -23.2 -1.20 -8.56 -0.90 3.08 

CP3 800 1020 0.73 28.8 0.62 -28.6 -1.27 -8.76 -0.87 4.21 

1200 1024 0.70 32.5 0.64 -32.2 -1.18 -12.6 -0.89 4.23 

* mtegrated to + 1.25 V 

119 



Table 5.6 Capacitances and resistances from the impedance data for copolymer film 

coated Pt electrodes shown in Fig.5.9 

p-doped (at +0.8 V) with PF6-
n-doped (at -0.8 V )with Bl4W 

ro/ c Rhigh R1ow (J' c Rhigh Rlow (J' 

rpm /mF /Q /Q J..tScm-1 /mF /Q /Q J..tScm-1 

0 0.04 240 522 5.8 0.02 559 1220 2.4 

400 0.11 235 441 22.0 0.04 543 906 12.5 

CP1 800 0.15 238 388 35.4 0.06 - - -

1200 0.15 238 381 38.8 0.07 565 798 23.8 

0 0.04 386 512 13.8 0.02 1483 3104 1.3 

400 0.16 387 509 43.3 0.03 1466 2553 4.8 

CP2 800 0.20 389 500 59.0 0.04 1403 2412 6.4 

1200 0.20 382 418 182 0.03 1402 1990 12.9 

0 0.05 587 780 14.4 - - - -

400 0.16 429 459 1500 - - - -

CP3 800 0.18 375 402 2126 - - - -

1200 0.23 321 325 1609 - - - -
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Capacitances and conductivities at +0.8 V and -0.8 V for CP1, CP2 and CP3 films 

are listed in Table 5.6. Like poly-(5-1), copolymer films exhibited a constant high 

frequency resistance at +0.8 V which indicated that the ionic resistance was negligible. 

Low frequency resistances decreased with increasing electrode rotation rate during 

polymerization. Capacitances increased with increasing rotation rate and capacitances 

which are proportional to the quantity of polymer, increased with increasing rotation rate. 

When we compare the capacitance values of CP 1, CP2 and CP3 films, the maximum (p­

type) capacitance of 4 mF was observed for CP3-(1200). On the other hand, CP1-(1200) 

exhibited the maximum n-type capacitance of ca. 0.1 mF. Further, the capacitance vs. 

potential plot (Fig. 5.13) showed an excellent coincidence with their respective cyclic 

voltammograms (Fig. 5.9). These results clearly substantiate the assignment of the 

capacitance seen in impedance as a Faradaic capacitance. It was also clear that 

conductivities of copolymer films (Table 5.6) increased with increasing electrode rotation 

rate during copolymerization and the maximum p-type conductivity for poly-(1200) was 

ca. 1.6 mScm-1
• This behavior can be attributed to the enhancement of grafting processes 

which was also observed for the poly-(5-1). 

Thus estimated conductivity by impedance increases with the increase in EDOT 

units in the copolymer chain which was also observed in dual electrode sandwich 

voltammetric investigation of copolymers (chapter 4). 

5.6 Conclusions 
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Electrode rotation enhances the grafting process during polymerization, resulting 

in faster polymer deposition. Also, the conductivity of the resulting polymer films 

increases with electrode rotation during polymerization, i.e. when the grafting process is 

enhanced. The influence of electrode rotation on conductivities of 5-1 was also reflected 

in its copolymers. The observation of faster polymerization with increasing rotation rate 

here is contrary to results previously reported for polythiophene and its derivates [7-8]. 

The difference appears to be due to the lower monomer concentration used in this work. 
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Chapter 6 

Studies on Fluorenone Based Copolymers 

Polyfluorene derivatives are a particularly suitable class of materials for OLEDs 

because they contain a rigid biphenyl unit which leads to a large band gap with efficient 

blue emission [1, 2]. Most emitting polymers of fluorene are hole transporting (p-type) 

and the problem with such materials in OLEDs was that the positive charges (holes) 

created near the anode reach the cathode without recombination with opposite charges 

(electrons) [3]. There are only a few reports of electron-deficient (n-type) fluorene 

polymers which can enhance the probability of charge carrier recombination processes. 

Substitution of a ~arbonyl group at the C-9 position of the fluorene ring produces 

a molecule that can be regarded as the phenyl analogue of cyclopenta[2,1-b:3,4-b']­

bithiophen-4-one, which produces a polymer with a very low band gap [ 4]. Like bridged 

bithiophene systems, fluorenone produces a low band gap homopolymer with a low 

LUMO energy level [3]. Since polyfluorenone is an insoluble material, a polyketal 

precursor route was employed for its preparation. The LUMO energy of polyfluorenone 

is close to the work function of magnesium and therefore forms a contact with facile 

injection of electrons [3]. 
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(a) PFKB 
(d) PFB 

(b) PFKT 
(e) PFT 

(c) PFKF 
(f) PFF 

Scheme 6.1. Polyketal precursors and their respective polyfluorenone structures 
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Copolymerization of electron deficient and electron rich components (a donor­

acceptor strategy) was found to be a successful approach to decrease band gaps in 

bridged bithiophenes [5], and the same approach can be extended to synthesize low band 

gap fluorenone derivatives [1]. In order to further study the use of the fluorenone building 

block in the construction of well defined polymeric systems, polyketal precursors of 

fluorene with thiophene (PFKT: poly2,7-spiro[4,4'-dioctyl-2',6'-dioxyocyclohexane]-

1 ',9-fluorene-co-1,4-thiophene), furan (PFKF: poly2,7-spiro[4,4'-dioctyl-2' ,6'­

dioxyocyclohexane]-1 ',9-fluorene-co-1,4-furan), and benzene (PFKB: poly2,7-

spiro[4,4'-dioctyl-2' ,6'-dioxyocyclohexane]-1 ',9-fluorene-co-1,4-benzene) (Scheme 6.1) 

were chemically prepared [ 6]. Electrochemical studies on these materials and fluorenone 

copolymers produced from them are reported in this chapter. The goal of this work was to 

explore the applicability of the donor-acceptor strategy to fluorene based copolymers. 

6.1 Experimental 

6.1.1 PFKB, PFKT, and PFKF Coated Electrodes 

The precursor copolymers were synthesized using a Stille coupling method by 

Fang Huang [6]. The reported molar masses ofPFKB, PFKT and PFKF were 5000, 

40400 and 4400 g mor1
, respectively. The precursor copolymers were dissolved in THF 

(5 mg/mL) and drop-coated onto the electrodes (or substrates) by a microsyringe. 

6.1.2 Conversion of Ketals to Fluorenone Copolymers 

The ketal group was converted to the ketone (Scheme 6.2) by exposing the 

copolymer to trifluoroacetic acid vapour for ca. 30 minutes at ambient temperature [3]. 
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The conversion proceeded spontaneously and was accompanied by a color change from 

yellow to red. After washing with acetone, insoluble, homogeneous copolymer films 

(PFB, PFT and PFF) were obtained. 

" 

(a) PFKB 
(d) PFB 

Scheme 6.2 

6.2 Characterization of PFB, PFT and PFF Films 

6.2.1 IR Spectroscopy 

IR spectra of PFB, PFT and PFF films are compared with the spectra of their 

respective ketal copolymers in Fig 6.1. Strong C-H bands at 2855, 2922, and 2955 cm-1 

are observed for the alkyl chains of the ketals (AI, Bl and Cl). Bands due to the ketones 

are observed at 1720 and 1600 cm-1 (A2, B2 and C2). Bands at ca. 1030 and 1070 cm-1 in 

the ketal copolymer were shifted to 1130 and 1170 cm-1 for the fluorenone copolymers. 

Most other bands are unchanged in the spectra of fluorenone copolymers when compared 

to the respective ketal copolymers. 
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Wavenumbers I cm-1 

Fig. 6.1. IR spectra ofPFB, PFT and PFF films on Si discs compared with their respective 
ketyl copolymers. 
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6.2.2 UV-Vis Spectroscopy 

In Fig 6.2, curves AI and A2 illustrate the UV-Visible spectra ofPFKB and PFB, 

respectively on quartz discs. The optical absorption maximum of PFKB occurs at 430 

nm, which is the result of a 7t-7t* absorption transition. Absorption bands at 400 and 500 

run are observed for PFB. As shown in Fig 6.2, onset wavelengths for PFKB and PFB 

can be estimated to be ca. 510 and 650 nm, corresponding to optical band gaps of2.4 and 

1.9 eV, respectively. 

Similarly, the absorption spectra ofPFKT and PFT (Fig 6.3), and PFKF and PFF 

(Fig 6.4) differ significantly. Onset wavelengths for PFKT and PFT were estimated to be 

536 and 647 run, corresponding to optical band gaps of2.3 and 1.9, respectively. Onset 

wavelengths of PFKF and PFF were 54 7 and 648 nm corresponding to optical bands gaps 

of2.3 and 1.9 eV, respectively. 
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PFKB 

300 500 700 900 1100 1300 

Wavelength I nm 

Fig 6.2. Electronic absorption spectra of a PFKB film on a quartz disc before and 
following exposure to trifluoroacetic acid vapour (PFB) 

The graphical method for estimating the absorption onset (*) is illustrated. 
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PFKT 

300 500 700 900 1100 1300 

Wavelength I nm 

Fig 6.3. Electronic absorption spectra of a PFKT film on a quartz disc before and 
following exposure to trifluoroacetic acid vapour (PFT) 
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PFKF 

300 500 700 900 1100 1300 

Wavelength I nm 

Fig 6.4. Electronic absorption spectra of a PFKF film on a quartz disc before and 
following exposure to trifluoroacetic acid vapour (PFF) 
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6.2.3 Cyclic Voltammetry 

The precursor copolymers were dissolved in THF and drop coated onto glassy 

carbon electrodes for electrochemical characterization. The p-doping/undoping ofPFKB 

(Fig 6.5a) exhibits an asymmetric voltammogram with an onset of ca. + 1.2 V and a 

formal potential (E0
) of ca.+ 1.4 V. n-Doping of the polymer film was not observed in 

the potential range(> -2.0 V) of the experiment. Similar voltammograms were observed 

for PFKT and PFKF films with p-doping formal potentials at ca. + 1.2 and+ 1.0 V, 

respectively. 

Fig 6.5b shows a cyclic voltammogram of a PFKB coated electrode following 

exposure to trifluoroacetic acid vapour to convert it to the ketone derivative. The p­

doping behavior of the PFB film is similar to that of the PFKB film, having a narrow p­

doping peak (at+ 1.6 V) and a broad de-doping range ( + 1.6 V to+ 1.1 V). Then-doping 

ofPFB exhibits reversible reduction doping and undoping peaks at ca.- 1.4 V and -1.2 V, 

respectively. The formal potentials for p- and n-doping/undoping are ca. + 1.4 V and -1.3 

V, respectively, with a (band) gap of ca. 1.9 V between the onsets ofp- and n-doping. 

Fig 6.3c shows p- and n-doping/undoping peaks for PFT. The formal potentials 

are ca.+ 1.0 V and -1.1 V, respectively, with a (band) gap of ca. 1.6 V between the onsets 

of p and n-doping. PFF has p and n-doping/dedoping formal potentials at ca. + 1.1 V and 

-1.3 V, respectively (Fig 6.5d), with a (band) gap of ca. 1. 7 V between the onsets of p­

and n-doping. 
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Fig 6.5. Cyclic voltammograms (100 mV/s) of films of(a) PFKB, (b) PFB, (c) PFT, and (d) 
PFF films on glassy carbon electrodes in acetonitrile containing 0.01 M Bu4NPF6 
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Table 6.1 Electrochemical data for the copolymers 

Polymer E0 (p-dopingt/ E0 (n-dopingt/ V gap0/V 

v 

PFKB 1.4 -

PFB 1.4 -1.3 1.9 

PFKT 1.2 -

PFT 1.0 -1.2 1.6 

PFKF 1.0 -

PFF 1.1 -1.3 1.7 

a. average peak potential (vs Ag/AgCl) for doping and undoping 

b. gap between onsets of n- and p- doping 

not observed 

Table 6.2 Optical properties of copolymers as films on quartz 

Polymer A.max/nm Band- gapa I eV 

PFKB 430 2.4 

PFB 400,500 1.9 

PFKT 440 2.3 

PFT 414, 516 1.9 

PFKF 440 2.3 

PFF 416,512 1.9 

a. from onset of absorption 
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6.3 Discussion 

The ketal groups of the PFKB, PFKT and PFKF copolymers protect a very reactive 

site at the C-9 position of fluorene rings and the alkyl chains add to the solubility of the 

polymers in organic solvents. Cleavage of the ketal group and formation of a carbonyl 

group at the C-9 position in the precursor copolymers was easily carried out by exposing 

films to an acidic atmosphere. This conversion was accompanied by a color change from 

yellow to red, reflecting the lower band gaps of the fluorenone copolymers. IR spectra 

(Fig 6.1) clearly show that acid treatment results in a high degree of conversion of the 

ketal groups to the ketone. The strong C-H bands at 2855, 2922, and 2955 cm-1 observed 

for the alkyl chains of the ketals (AI, Bl and Cl) are greatly diminished in the acid 

treated copolymers (A2, B2 and C2), and strong new bands due to the ketones are 

observed at 1720 and 1600 cm-1
• The shift of the bands at ca. 1030 and 1070 cm-1 to 1130 

and 1170 cm-1 has also been reported for the homopolymer [3] and it is clearly associated 

with the formation of a ketone conjugated to the fluorene unit. 

Formal potentials for all the copolymer films in acetonitrile are summarized in 

Table 6.1 and optical properties of the copolymer films are listed in Table 6.2. The ketal 

copolymer with benzene has a slightly higher optical band gap (2.4 e V) than the 

thiophene and furan polymers which have the same band gap (2.3 e V). 

The p-doping/undoping ofPFKB films (Fig 6.5a) exhibits an asymmetric 

voltammogram, which is characteristic behavior for most conducting polymers (due to 

conformational changes )[7], with an onset of ca. + 1.2 V. An n-doping process was not 

observed for this or any of the other ketal precursor copolymers. From the optical 
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spectrum (onset), the band gap ofPFKB can be estimated to be ca. 2.4 eV. n-Doping of 

PFKB would therefore be expected to begin at ca. -1.2 e V. It is therefore not clear why n­

doping is not observed for the ketal copolymers. 

The p-doping formal potential for PFKT is ca. + 1.2 V and the optical band gap is 

ca. 2.3 eV. Thus the electron rich thiophene unit increases the HOMO energy of the 

polymer significantly relative to benzene. Based on the differences between the band 

gaps and HOMO energies, thiophene also increases the LUMO energy relative to 

benzene, but only by ca. 0.1 eV. The net effect is therefore in a slight lowering of the 

band gap, by ca. 0.1 eV. 

PFKF has a significantly lower formal potential for p-doping ( + 1.0 V) than 

PFKT, but the same optical band gap (ca. 2.3 eV). PFKB, PFKT and PFKF copolymers 

possess lower optical band gaps, by ca. 0.5 eV, when compared to that of the ketal 

homopolymer, which has an absorption maximum of ca. 385 nm and the onset 

wavelength of ca. 430 nm corresponding to a band gap of ca. 2.9 eV [3]. 

Conversion to the ketone decreases the band gap of all three copolymers. All three 

ketone copolymers have an optical band gap of ca. 1.9 eV. PFB shows an electrochemical 

(band) gap of ca. 1.9 V between the onsets of p- and n-doping which agrees well with the 

optical band gap (Table 6.2). The p-doping formal potential ofPFB is unchanged relative 

to that ofPFKB, while the band gap is 0.5 eV lower. This indicates that the carbonyl 

group at the C9 position has little effect on the HOMO of the copolymer, but a large 

stabilizing effect on the LUMO energy level. This is consistent with experimental results 

for polyfluorenone itself [3]. 
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The electrochemical (band) gap of PFT is ca. 1.6 V between the onsets of p and n­

doping. The effects of replacing the benzene ring of PFB with thiophene are similar to 

those observed for the precursor polymers. The HOMO energy is increased by ca. 0.4 eV, 

while the LUMO energy is almost unchanged, and a decrease in band gap of ca. 0.4 eV is 

observed. But this decrease in band gap shown by the electrochemical results is not 

reflected in the optical band gap (Table 6.2). The reason can be attributed to the 

uncertainty in the measurement of the onset of absorption, since 'A max values in Table 6.2 

also show a slight red shift between PFB and PFT. A similar disagreement between 

electrochemical band gap and the optical band gap is also observed for PFF (Table 6.1 

and Table 6.2). Fluorenone copolymers PFB, PFT and PFF possess low optical band gaps 

(1.9 eV) when compared that ofthe polyfluorenone homopolymer (ca. 2.5 eV, from the 

absorption onset) [3] which indicates the soundness of the donor-acceptor strategy. All 

three fluorenone containing copolymers possess the same n-doping potential (LUMO 

energy) which indicates that the LUMO is localized on the ketone group, and is not 

significantly influenced by changes in the conjugated n-system. 

6.4 Conclusions 

Copolymers of fluorenone with benzene, thiophene, and furan have band gaps of 

ca. 1.6-1.9 eV and can be easily p-doped and n-doped. Copolymerization of the electron 

deficient fluorenone moiety with the electron rich thiophene and furan units produces the 

lowest band gaps and the lowest p-doping potentials. The n-doping potential is 

insensitive to the nature of the spacer (donors) units between fluorenone units, indicating 
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localization of the LUMO on the ketone substituent. The band gaps of the copolymers are 

significantly lower than that of the fluorenone homopolymer. Thus PFB, PFT and PFF 

are promising candidates for use as an electron transport layer in multilayer LEDs. 
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Chapter 7 

Synthesis of Fluorene Based Donor Acceptor Conjugated Molecules 

7.1 Introduction 

A color or spectral signature change with applied voltage, termed 

electrochromism (EC), is one of the most prominent and fundamental properties of 

conducting polymers. Normally, EC properties are tailored via modification of the 

polymer's structure. Through band gap control, one can vary the accessible color states in 

both the doped and neutral forms of the polymer [1]. Numerous synthetic strategies exist 

for tuning the band gaps of conjugated polymers [1]. Copolymerization of donor-acceptor 

monomers is one of the strategies that gives rise to a modification of main chain polymer 

structure and allows for an interesting combination of the properties supplied by each 

monomer unit. 

For many copolymers synthesized by electrochemical methods from a solution of 

two or more monomers, exact structures have not been elucidated. Some of the possible 

structures for copolymers [2] synthesized by electrochemical oxidation of two monomers 

are shown in Scheme 7.1. Scheme 1(a) shows an irregular random copolymer, (b) and 

(c) show a mixture of homopolymer chains and block copolymer, respectively and (d) 

depicts a perfect alternating copolymer. In many cases of electrochemical polymerization, 
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random copolymer formation has been observed [3-5]. Band gap tuning for these systems 

has been carried out by changing the feed ratio of the monomer solutions. 

(a) (b) (c) 
(d) 

Scheme 7.1. Possible structures of copolymers synthesized by electrochemical oxidation 

of two monomers 

Homopolymerization of a molecule containing both monomer units ( comonomer) 

is a straightforward method to synthesize regular alternating copolymers and by changing 

the composition and structure of the comonomer one can tune the band gap [1]. Some of 

the examples of regular alternating thiophene based copolymers, prepared by 

electrochemical polymerization of donor-acceptor comonomers, are poly(EDOT -co­

dicyanomethylenefluorene ), poly(EDOT -co-4-dicyanomethylene-cyclopenta[2, l­

b:3,4,b']bithiophene) [2, 6]. Copolymers consisting of alternating EDOT and DiCNFl 

units showed a decrease in electrochemical and optical band gaps when compared to their 

respective homopolymers. In order to explore this type of structure-property relationship, 

we have followed a similar comonomer strategy to design some new precursor materials 

for thiophene-fluorene based low band gap polymers. 
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Our original interest was to study the effect of donor-acceptor units on cyclopenta[2, 1-

b:3 ,4-b 1bithiophen-4-one. We found difficulty in synthesizing that material in large 

amounts. Therefore we intended to study a similar structural analog, fluoren-9-one. 

Structure 7-4 shows a comonomer offluoren-9-one with thiophene. The thiophene unit 

acts as a donor to the fluoren-9-one acceptor and was expected to lead to facile 

electrochemical polymerization. Moreover, it is the parent of thiophene system. 

Thiophene is attached to the 2 and 2,7 positions offluoren-9-one in structures 7-4 and 7-

3, respectively to study the effect offluore-9-one to thiophene ratio. 7-5 and 7-6 were 

targeted to study the effect of changing the acceptor unit at the C-9 position of the 

fluoren-9-one. 7-7 was targeted as an analogue of the dimer in chapter 3. Synthetic routes 

to co-monomers 7-3, 7-4, 7-5 and results ofthe attempted synthesis of7-6 and 7-7 are 

presented in this chapter. 

7.2 Syntheses 

7.2.1 Synthesis of 2,7-Di-2-thienyl-9H-fluoren-9-one, 7-3 

0 

Br 

7-2 

Scheme 7.2 

Br 

Pd(PPh3) 4, aq.CsF 
THF, N2 atm 
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There are two common methods to synthesize 7-2, one involving dihalogenation 

offluoren-9-one [9] and the other by oxidation of2,7-dibromofluorene[10]. In this work, 

2,7-dibromo-fluoren-9-one (7-2) was synthesized by the dibromination offluoren-9-one 

under Wohl-Ziegler conditions [9]. The reaction time was ca. 0.5 hand the product was 

obtained in 65% yield. The Wohl-Ziegler reaction is much faster than the oxidation of 

2,7-dibromofluorene which requires at least five days [10]. 

As shown in Scheme 7.2, 2,7-di-2-thienyl-9H-fluoren-9-one (7-3) was 

synthesized via a Suzuki-Miyaura coupling reaction using 2-thiopheneboronic acid 

(commercial sample, 3 equiv) and the dibromo compound 7-2 (1 equiv). The Suzuki­

Miyaura coupling of boronic acid derivatives with aryl halides has become one of the 

most widely used methods for aryl-aryl bond formation due to its tolerance to a wide 

range of functional groups and the straight-forward separation of products [11]. The other 

advantages associated with this reaction include the low toxicity of the reagents and 

byproducts especially compared to tin containing compounds, mild reaction conditions, 

fewer side reactions, and higher conversions. 

The catalyst tetrakis(triphenylphosphine)palladium is most common, but use of 

other homogeneous as well as immobilized heterogeneous palladium compounds has 

been reported [12]. Addition of base plays an important role in catalyst regeneration and 

speeds up the coupling reaction. Miyaura and co-workers found that bases such as NaOH, 

K2C03, and K3P04 performed well in THF/H20 solvent systems [11]. In the present 

work, 2-thiopheneboronic acid was activated by aqueous K2C03 and the reaction time 

was 38 h. After re-crystallization from ethanol, the product 7-3 was obtained in 42% 
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yield. Later, the Suzuki-Miyaura coupling between 7-2 and 2-thiopheneboronic acid was 

carried out using cesium fluoride as the base under Wright-modified conditions [11] to 

accelerate the reaction rate. According to a previously proposed mechanism [11], fluoride 

ion displacement ofthe hydroxyl groups of the boronic acid to form an organotrifluoro­

borate ion in situ could occur, which would then undergo transmetallation. After 2 h of 

reaction, a red product was procured in 60-62% yield. A higher yield of compound 7-3 

was obtained with CsF than in the reactions activated with K2C03 base. With this 

optimization, the starting material (7-3) for molecules 7-5, 7-6 and poly-7-3 was readily 

synthesized. 

A C=O stretch at 1713 cm-1 was observed in the FTIR spectrum of7-3 and the 1H 

NMR spectrum showed two doublets at 7.75 ppm and 7.41 ppm, characterizing the 

aromatic fluorene protons, H-3, H-6 and H-4, H-5, respectively. A singlet at 7.96 ppm 

identifies the H-1and H-8 protons. Two doublets at 7.54 ppm and 7.34 ppm, and a triplet 

at 7.12 ppm characterize the thiophene protons, H-3, H-5, H-4, respectively. Also the 

elemental analysis data agreed well with the calculated values for 7-3. 

7.2.2 Synthesis of 2-(2-Thienyi)-9H-fluoren-9-one, 7-4 
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A Wohl-Ziegler reaction between n-bromosuccinimide (1 equiv) and fluoren-9-

one (1 equiv), under controlled conditions, resulted in 2-bromo-fluoren-9-one, 7-1 

together with trace amounts of7-2. The separation of7-1 from 7-2 was difficult, since 

both materials re-crystallized from ethanol. However, repeated re-crystallizations 

afforded yellow needles of pure 2-bromo-fluoren-9-one in 55% yield. 

The synthesis of7-4 was carried out as shown in Scheme 7.3. A Suzuki-Miyaura 

coupling reaction between 2-bromo-fluoren-9-one (1 equiv) and 2-thiopheneboronic acid 

(1.5 equiv) resulted in 2-(2-thienyl)-9H-fluoren-9-one (7-4) in 58% yield. The 1H NMR 

spectrum of7-4 showed one singlet at 7.87 ppm and two doublets at 7.69 ppm, 7.65 ppm 

characterizing H-1 , H-3 and H-4, respectively. Two multiplets were observed at 7.28 ppm 

and 7.46 ppm characterizing the aromatic fluorene protons, H-5, H-6, H-7, H-8. Two 

doublets at 7.37 ppm, 7.32 ppm, and a triplet 7.10 ppm characterize the thiophene protons 

H-3, H-5, H-4, respectively. Also the MS and elemental analysis data agreed well with 

the calculated values for 7-4. 

7.2.3 Synthesis of (2,7-Di-2-thienyi-9H-fluoren-9-ylidene)malononitrile, 7-5 
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Scheme 7.4 
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7-5 

The carbonyl group in 7-3 is expected to be susceptible to nucleophilic attack. 

When heated with malononitrile in the presence of piperidine, a Knoevenagel 

condensation of7-3 takes place and results in 7-5 (scheme 7.4). During a three hour 

reaction, a color change of the mixture from red to dark blue suggested the presence of a 

strong electron withdrawing (C=C (CN)2) group at the C-9 position of the fluorene unit 

and its existence was later confirmed by IR, NMR and mass spectra. The FTIR spectrum 

of compound 7-5 is shown in Fig 7.1. For comparison, the spectrum of the starting 

material (7-3) is also shown in Fig 7.1. 

In the FTIR spectrum of2,7-di-thiophen-2-yl-fluoren-9-one, the C=O group 

absorbs at 1713 cm-1. After condensation, the FTIR spectrum of 7-5 shows the absence of 

the C=O stretching vibration at 1713 cm-1
, while there is a band at 2225 cm-1 typical of a 

CN stretching vibration of a dicyanometbylene group. The 1 H NMR spectrum showed 

two main groups of peaks associated with chemical shifts of7.44-8.71 ppm and 7.13-7.57 

that can be attributed to the fluorene and the thiophene protons, respectively. 
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Fig 7.1 IR spectra (KBr) of(a) 7-3 and (b) 7-5 
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The resonance of the H-1 proton of the fluorene unit in 7-5 appears at a lower field of 

8.71 ppm than the resonance, at 7.94 ppm, ofthe H-1 proton of7-3. This shift in 

resonance can be attributed to the presence of the strong electron withdrawing 

dicyanomethylene group of7-5. Furthermore, MS data provides further confmnation of 

the successful formation of7-5. 

7.2.4 Attempted Synthesis of2,7-Di-2-thienyi-9H-fluorene-9-thione, 7-6 and/or 

2, 7,2', 7'-Tetra-2-thienyl-[9,9']bifluorenylidene, 7-7 

Thionation, the conversion of a carbonyl group to a thiocarbonyl, is a widely used 

synthetic transformation for the preparation of organosulfur compounds. Typically this 

transformation is accomplished using either phosphorus pentasulfide (P4S1 0) or 

Lawesson' s reagent [13]. 2,4-Bis( 4-methoxyphenyl)-1 ,3,2,4-dithiadiphosphetane 2,4-

disulfide, commonly known as Lawesson's reagent (LR), is one of the best known 

thionation reagents, and its advantage has been demonstrated for the thionation of a great 

variety of carbonyl compounds [14]. It tends to give good yields with fewer side 

reactions. However, because of the presence ofhighly electrophilic phosphorus species, 

reactions with LR require very dry conditions. To avoid unnecessary byproducts, 

benzene was dried with sodium prior to the reaction shown in Scheme 7.5. 

Generally, thioketones are very reactive groups that have a tendency to undergo 

cycloadditions across a C=C bond or dimerization to form dithietanes. The formation of 

dithietanes has been mostly observed for aliphatic ketones[13]. In the case of aromatic 
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ketones other reactions occur. 9H-fluorene-9-thione, for example, dimerizes to form 9, 

9'-bifluorenylidene [14]. Thus, thioketones, dithietanes and C=C bonded dimers are the 

possible products of reactions involving aromatic ketones. 

0 

7-3 

Scheme 7.5 

Lawesson's reagent s 

>< .. 
dry benzene, N2 atm 

7-6 

~ 

\ 7-7 

2, 7 ,2', 7'-Tetra-thiophen-2-yl-[9,9']bifluorenyl­
dithietane 

7-8 
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With this knowledge of possible products during thionation, we carried out the 

reaction between 7-3 and LR in a attempt to synthesize 2,7-di-2-thienyl-9H-fluorene-9-

thione (7-6) and/ or 2,7,2',7'-tetra-2-thienyl-[9,9']bifluorenylidene (7-7) Scheme 7.5. 

During a 5 h reaction, a color change from red to purple appeared but upon cooling, the 

product was unstable. Moreover, with longer reaction times, the color of the reaction 

mixture changed from red to purple and then to dark blue. Notably, the dark blue color 

remained stable upon cooling the reaction mixture, which tentatively indicated the 

stability of the product. Finally, blue needles were obtained after a straightforward 

separation by column chromatography and on subsequent re-crystallization from ethanol. 

FT-IR, 1H NMR, 13C NMR, elemental analysis, and MS characterizations were 

performed. Elemental analysis data together with MS indicated that a dimer with six 

sulphur atoms had been obtained, suggesting the formation of the dithietane 7-8. Figure 

7.2 shows a comparison ofthe FTIR spectra of7-3 and the product of its thionation 

reaction (7-8). The C=O stretch at 1713 cm-1 of 7-3 was noticeably absent in the spectrum 

of 7-8. It is known that single bonds involving sulfur, such as the dithietane group give 

very weak infrared absorptions [15]. Nevertheless, the FTIR spectrum highlights the 

similarity ofthe carbon skeletons of7-8 and 7-3. 

The 1H NMR spectrum of7-8 (shown in Fig 7.3) is very similar to that of7-3, 

supporting the assignment of structure 7-8, and ruling out the possibility of structure 7-9. 

Two doublets at 7.73 ppm and 7.40 ppm, characterize the aromatic fluorene protons H-3, 

H-3 ', H-6, H-6' and H-4, H-4', H-5, H-5', respectively. A singlet at 7.98 ppm identifies 

the H-1/H-1' and H-8/H-8' protons. 
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Fig 7.2 IR spectra (KBr discs) of a) 7-3, b) 7-8 
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Two doublets at 7.54 ppm and 7.34 ppm, and one triplet at 7.12 ppm characterize the 

thiophene protons H-3'/H-3", H-5'/ H-5", H-4"/ H-5", respectively. 

MS analysis (Chemical ionization-CIMS) gave the molecular formula C42H24S6 

with a molecular ion peak at m/z 723. Also, daughter ion peaks at 689 (M-32), 657 (M-

64), 361 were seen in the mass spectrum. The peak at m/z 689 represents the loss of one 

sulphur atom from the molecular ion peak. The peak at mlz 657 correspond to the dimer 

7-7. The daughter ion peak at m/z 361 can be assigned to thioketone 7-6. 

Compound 7-8 was stable as a solid but slowly decomposed in solution(> 12 h) 

at room temperature. This was indicated by a color change from dark blue to brown and 

the changes in the proton NMR spectrum shown in fig 7.3. The spectrum of the product 

was almost indistinguishable from that of7-3. However, MS showed a molecular ion 

peak at 657 corresponding to the dimer 7-7. Purification and further characterization of 

this compound were unsuccessful due to the difficulties in scaling-up the decomposition 

reaction. 

7.3 Conclusions 

Donor-acceptor conjugated co-monomers with different D-A ratios, consisting of 

thiophene as the electron rich subunit (D) and fluoren-9-one as the electron deficient 

subunit (A), were synthesized in moderate yields by means of Suzuki cross-coupling 

reactions. (2, 7 -di -thiophen-2-yl-fluoren-9-ylidene )-isocyano-acetonitrile was synthesized 

by a Knoevenagel condensation of2,7-di-thiophen-2-yl-fluoren-9-one. The reaction 

between 2,7-di-2-thienyl-9H-fluoren-9-one and Lawesson's reagent has yielded a new 
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precursor material 2, 7 ,2', 7'-tetra-thiophen-2-yl-[9,9']bifluorenyl-dithietane. The electrical 

and optical properties of these materials are discussed in the following chapter. 

7.4 Experimental 

2-Bromo-fluoren-9-one, 7-1 

0 

Br 

N-bromosuccinimide (1. 78 g, 10 mmol) was slowly added in 1 00 mg portions to a 

solution offluoren-9-one (1.80 g, 10 mmol) in 70% v/v sulphuric acid (150 mL); the 

mixture was kept at 40 °C for 1 h. Repeated re-crystallization of the product from ethanol 

gave yellow needles of2-bromo-fluoren-9-one (1.42 g, 5.49 mmol, 55%): mp 145-147 °C 

(Lit [13]:148 °C): 1H NMR (500 MHz, CDCh) 8(ppm) 7.77 (s, 1H), 7.67 (d, J= 6.5 Hz, 

1H), 7.62 (m, J= 9.5 Hz, 2H), 7.51 (d, J= 13.5 Hz, 1H), 7.39 (d, J= 13.0 Hz, 1H), 7.33 

(d, J= 10.5 Hz, 1H); MS m/z: 260 (Ml. 
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2, 7 -Dibromo-fluoren-9-one, 7-2 

0 

Br 
Br 

N-bromosuccinimide (1.78 g, 10 mmol) was added to a solution offluoren-9-one (0.91 g, 

5 mmol) in 85% v/v sulphuric acid (100 mL) and the mixture was vigorously stirred for 

25 minutes at room temperature. Re-crystallization of the product from ethanol and then 

ethyl acetate gave a bright yellow compound (1.101 g, 3.25 mmol, 65%). Mp 197-198 °C 

(Lit [13]:199-200 °C); 1H NMR (500 MHz, CDCh) 8(ppm) 7.78 (s, 2H), 7.64 (d, J= 10.0 

Hz, 2H), 7.40 (d, J= 8.5 Hz, 2H); MS m/z: 339 (M}. 

2,7-Di-2-thienyl-9H-fluoren-9-one, 7-3 

0 

A mixture of2,7-dibromo-fluoren-9-one (0.676 g, 2 mmol), 

tetrakis(triphenylphosphine )palladium(O) (0.043 g, 0.03 mmol), and 2-thiopheneboronic 

acid (0.768 g, 6 mmol) in THF (10 mL) with potassium carbonate (1.0 mL of 2M 

solution in deoxygenated water) was heated to reflux (65-75 °C) for 38 h. The reaction 

mixture was poured into ice and the red precipitate was collected by filtration. The 

precipitate was then washed with hexane/CHCh (1: 1) and re-crystallized from ethanol to 
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afford, after drying in air, the title compound (0.28 g, 0.84 mmol, 42%).The above 

procedure was revised with cesium fluoride as the base (1.0 mL of2 M solution in 

deoxygenated water) and the reaction mixture was heated to reflux for 2 h. After 

purification 0.42 g (1.22 mmol, 61 %) of the title compound was obtained: mp 265 °C; 

FTIR (K.Br) vc=0 1713 cm-1
; 

1H NMR (500 MHz, CDCh) 8(ppm) 7.94 (s, 2H), 7.75 (d, J 

= 6.5 Hz, 2H), 7.54 (d, J= 7.5 Hz, 2H), 7.41 (d, J= 4.0 Hz, 2H), 7.34 (d, J= 5.5 Hz, 2H), 

7.12 (t, J = 9.5 Hz, 2H). Anal. Calc'd for C21HnOS2: C, 73.23%; H, 3.51 %; S, 18.62%. 

Found: C, 72.76%; H, 3.91 %; S, 18.02%. MS m/z: 345 (M}. 

2-(2-Thienyi)-9H-fluoren-9-one, 7-4 

0 

A mixture of2-bromo-fluoren-9-one (0.518 g, 2 mmol), tetrakis(triphenylphosphine)­

palladium(O) (0.027 g, 0.023 mmol), and 2-thiopheneboronic acid (0.384 g, 3 mmol) in 

THF (10 mL) with cesium fluoride (1.0 mL of 2M solution in deoxygenated water) was 

heated at 65-75 °C for 2 h. The reaction mixture was poured into ice and the precipitate 

was collected by filtration, dissolved in THF, dried over magnesium sulphate and the 

solvent was removed by rotatory evaporation. The dried product was then washed with 

hexane/CHCh (1 :1), air-dried and re-crystallized with ethanol to afford 0.304 g (1.16 

mmol, 58%) of the titled compound as fine yellow needles: mp 150 °C; FTIR (K.Br) vc=O 

1713 cm-1
; 

1H NMR (500 MHz, CDCh) 8(ppm) 7.87 (s, 1H), 7.69 (d, J= 8.0 Hz, lH), 
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7.65 (d, J= 7.0 Hz, 1H), 7.48 (m, J= 13.0 Hz, 3H), 7.37 (d, J= 4.0 Hz, 1H), 7.32 (d, J= 

5.0 Hz, 1H), 7.29 (m, J = 13.5 Hz, 1H), 7.10 (t, J = 8.5 Hz, 1H). Anal. Calc'd for 

C 17H 100S: C, 77.84%; H, 3.84%; S, 12.22%. Found: C, 77.22%; H, 3.93%; S, 11.12%. 

MS m/z: 263 ~). 

(2, 7 -Di-2-thienyl-9H-fluoren-9-ylidene )malononitrile, 7-5 

A solution of2,7-di-thiophen-2-yl-fluoren-9-one (1.032 g, 3 mmol) in THF (30 mL), 

malononitrile (0.396 g, 6 mmol), glacial acetic acid (0.01 mL, 0.19 mmol) and a catalytic 

amount of piperidine (0.1 mL, 0.6 mmol) was stirred for 0.5 h at room temperature and 

then refluxed at 65-75 °C for 3 h. The reaction mixture was poured into ice water and the 

dark blue precipitate was collected by filtration. Then the precipitate was washed with 

copious amounts of water, dissolved in THF, dried over magnesium sulphate and the 

solvent was removed by rotatory evaporation. The obtained solid was re-crystallized from 

ethanol to yield 0.78 g (2 mmol, 67%) ofthe title compound as fine blue needles: mp 282 

°C; FTIR (KBr) VCN 2223 cm-1
; 

1H NMR (500 MHz, CDCb) 8(ppm) 8.71 (s, 2H), 7.74 

(d, J= 6.5 Hz, 2H), 7.56 (d, J= 7.5 Hz, 2H), 7.43 (d, J= 4.0 Hz, 2H), 7.36 (d, J= 5.5 Hz, 

2H), 7.14 (t, J= 9.5 Hz, 2H); CIMS m/z: 393 ~). 
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2, 7 ,2', 7'-Tetra-2-thienyl-[9,9']bifluorenyl-dithietane, 7-8 

To a solution of2,7-di-thiophen-2-yl-fluoren-9-one (1.032 g, 3 mmol) in dried benzene 

(50 mL) was added Lawesson's reagent (2.42 g, 6 mmol). The mixture was heated to 

reflux (80-90 °C) under a nitrogen atmosphere. The reaction was followed every hour by 

TLC and the color changes during the course of the reaction were monitored. After 5 

hours the color of the reaction mixture had changed from red to purple and on overnight 

reflux a further change from purple to dark blue had occurred. After cooling the reaction 

to room temperature, the solvent was removed by rotatory evaporation and the product 

was then purified by column chromatography (silica gel, hexane/dichloromethane 9:1) 

and re-crystallized from ethanol to give a dark blue compound (0.108 g, 0.15 mmol, 5%): 

mp 135 °C; 1H NMR (500 MHz, CDCh) 8(ppm) 7.98 (s, 4H), 7.73 (d, J= 6.5 Hz, 4H), 

7.45 (d, J= 8.0 Hz, 4H), 7.40 (d, J= 3.5 Hz, 4H), 7.32 (d, J= 4.5 Hz, 4H), 7.11 (t, J= 

9.5 Hz, 4H); 13C NMR (500 MHz, CDCh) 8(ppm) 143.5, 142.5, 141.8, 135.4, 131.4, 

128.3, 125.4, 123.9, 121.4, 120.4, 96.3. Anal. Calc'd for C42H24S6: C, 69.96%; H, 3.36%; 

S, 26.68%. Found: C, 70.58%; H, 3.56%; S, 25.25%. MS m/z: 722 (M+1), 657,361,331. 
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ChapterS 

The Influence of Donor Acceptor Units on the Band gaps of Fluorene 

Based Copolymers 

8.1 Introduction 

Since n-conjugated polymers allow virtually endless manipulation of their 

chemical structure, control of the band-gaps of these semiconductors is a research issue 

of ongoing interest. This band-gap engineering can give the polymer its desired electrical 

and optical properties; reduction of the band-gap to approximately zero is expected to 

give an intrinsically conducting polymer [1]. One ofthe most successful approaches to 

low band-gap polymers is the application of an alternating sequence of donor-acceptor 

(D-A) units in the n-conjugated polymer chain [2-5]. Many fluorene based conducting 

polymers have been investigated to explore the applicability of the donor-acceptor 

strategy [3 , 6-7]. 

Fluorenone is an attractive precursor material to produce low band gap polymers 

with a low LUMO energy level [8]. The presence of an electron withdrawing group at the 

C-9 position of a fluorenone unit reduces the reduction potential to -1.3 V but at the 

expense of an increased oxidation potential when compared to that of fluorene [9]. The 

co-polymerization of n-rich units such as EDT, with electron deficient fluorene 
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derivatives was found to facilitate the p-doping process, lower the band-gap and improve 

the stability ofthe resulting copolymers [10-11]. Furthermore, the band-gap of the 

0 

ThFl 

8-1 

0 

Fig 8.1. Structures of fluorene based comonomers 
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Fig 8.2. Structures of fluorene based copolymers 
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copolymers can be easily controlled by changing/altering the number of donor units and 

by increasing the electronegativity difference between donor and acceptor units [10-12]. 

We have studied both of these issues with the monomeric and polymeric fluorene­

thiophene systems shown in structures 8-1 to 8-8 (Fig 8.1 and Fig 8.2), and report here 

on the effect ofD-A units on band-gaps and conductivities ofpolyfluorene derivatives. 

8.2 Redox Potentials and Band Gaps of ThFI, Th2FI and CNTh2FI 

8.2.1 Redox Potentials of ThFI, Th~l and CNTh2FI 

Fig 8.3 represents cyclic voltammograms, from two different experiments, for the 

reduction and oxidation of ThFl at a Pt electrode. During the cathodic cycle, reduction of 

ThFl occurs with a peak potential of ca. -1.3 5 V and in the reverse scan, a peak indicating 

a reversible solution process was seen at -1.2 V. During the anodic cycle, an oxidation 

wave was observed with a peak potential of+ 1.55 V. In the reverse scan, a broad 

reduction wave between+ 1.35 and +0.80 V was seen, which can be attributed to the 

undoping of a polymer formed on the electrode during the forward scan. 

The oxidation and reduction behavior of Th2Fl (Fig 8.4) at a Pt electrode was 

similar to that of ThFl. In this case, the cathodic cycle was performed first to avoid 

contamination of the electrode surface by the polymer formed during anodic cycling. The 

formal potential for reduction was ca. -1.30 V. During the positive scan, the anodic peak 

potential at+ 1.33 V and, a broad de-doping range(+ 1.22 to +0.55 V) were observed. 

Reduction ofCNTh2Fl (Fig 8.5) occurs with a formal potential of -0.75 V. During the 
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 

Potential/ V vs Agl AgCI 

Fig 8.3. Cyclic voltammograms (100 mV s·1
) ofThFl (2 mM) in dichloromethane 

containing 0.1 M Bu4NPF 6 
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-2 -1.5 -1 -0.5 0 0.5 1 

Potential/ V vs Ag/ AgCI 

Fig 8.4. Cyclic voltammograms (100 mV s-1) ofTh2Fl (2 mM) in 

dichloromethane containing 0.1 M Bu4NPF6 
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-2 -1.5 -1 -0.5 0 0.5 1 

Potential/ V vs Ag/ AgCI 

Fig 8.5. Cyclic voltammograms (100 mV s-1
) ofCNTh2Fl (2 mM) in 

dichloromethane containing 0.1 MBu4NPF6 
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positive scan, an oxidation wave was observed with a peak potential of ca. + 1.40 V. In 

the reverse scan, there was a reduction (undo ping) wave at ca. + 1. 00 V. 

8.2.2 UV-Visible Spectroscopic Results of ThFl, Th2Fl and CNTh2Fl 

UV-vis absorption spectroscopy ofThFl, Th2Fl and CNTh2Fl was carried out in 

chloroform. ThFl (Fig 8.6, curve a) exhibits an-n* absorption with a maximum at ca. 

433 nm (2.9 eV) and an onset of ca. 525 nm (2.4 eV). Onset wavelengths and the optical 

absorption maximum ofTh2Fl (Fig 8.6, curve b) were estimated to be 580 nm (2.1 eV) 

and 563 run (2.2 eV), respectively. Also shown in Fig 8.6 (curve c) is an absorption 

spectrum of CNTh2Fl, with an onset wavelength at ca. 770 run (1.6 e V) and a maximum 

at ca. 580 run (2.1 eV). 

8.3 Electropolymerizations of ThFI, Th2Fl and CNTh2Fl 

A film ofpoly-ThFl was formed (Fig 8.7, CV a) on aPt electrode by the anodic 

polymerization ofThFl (ca. 2mM) in dichloromethane containing 0.1 M Bt4NPF6• On 

continuous potential scanning between 0.4 and + 1.8 V, a current increase in a region 

between ca. 0.9 and ca. 1.4 V was observed. Following this experiment, a yellow film 

was seen coating the electrode. 

Similarly, polymerization and film deposition were characterized by increasing 

peak currents for oxidation ofTh2Fl on successive cycles while potential scanning 

between 0.4 and +1.4 V. A red poly-Th2Fl film was visible on the electrode after multiple 

cycles as illustrated in Fig 8.7, CV b. Electrochemical generation of a poly-CNTh2Fl film 
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Fig 8.6. Comparison ofUV-Visible spectra of(a) ThFI, (b) Th2Fl and (c) 

CNTh2Fl recorded in CHCI3 solution. 
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Fig 8.7. Multisweep cyclic voltammograms (100 mV/s) at aPt electrode of2 mM 
precursors (A- ThFI; B- Th2Fl; C- CNTh2FI) in dichJoromethane containing 0.1 

MBu4NPF6 
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on aPt electrode by potential scanning between 0.4 and 1.5 Vis shown in Fig 8.7 (CV c). 

On continuous potential scanning, a broad wave extending from +0.8 V to + 1.3 V 

became progressively higher indicating the growth of the polymer. A dark blue film was 

observed on the electrode after the fmal electrochemical oxidation. Copolymer films were 

rinsed with acetone and dried in air before further experiments. Film thicknesses of 

polymer films were estimated from the charge (integrated to the formal potential) under 

the fmal voltametric scan during film synthesis by using the relationship of 31 mC em -2 

per J...Lm established by scanning electron microscopy. 

8.4 Electrochemical Studies of Poly-ThFI, Poly-Th2Fl and Poly-CNTh2Fl 

A cyclic voltammogram of a poly-ThFl coated Pt electrode in monomer-free 

acetonitrile containing 0.1 M BU4NPF6 is shown in Fig 8.8 (a). p-Doping of the 

copolymer film was observed as a reversible wave in the +0.6 to + 1.5 V region, while n­

doping appeared as a less reversible wave in the -0.6 to -1.4 V region. The formal 

potentials ofp- and n-doping/undoping are ca. +1.25 and -1.25 V, respectively, with a 

(band) gap of ca. 2.0 V between the onsets of p- and n-doping. 

Fig 8.8 (b) shows a cyclic voltammogram for a poly-Th2Fl film in acetonitrile 

containing 0.1 M BU4NPF6• p-Doping was carried out between 0 and +1.1 V while n­

doping between 0 and -1.5 V. The formal potentials for p- and n-doping/undoping from 

the voltammograms are ca. +0.9 and -1.3 V, respectively. From the onsets ofp- and n­

doping, the (band) gap was estimated to be ca. 1.8 V. 

173 



-2 

20~ 

a: poly-ThFI 

c: poly-CNTh2Fl 
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Potential/ V vs Ag/AgCI 

Fig. 8.8. Comparision of cyclic voltammogarms of (A) poly-ThFI, (B) poly-Th2Fl 
and (C) poly-CNTh2Fl in acetonitrile containing 0.1 M Bu4NFP6 

Scan rate: 100 mV/s 
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Also shown in Fig 8.8 (c) is a cyclic voltammogram illustrating p- doping (from 0 

to + 1.3 V) and n-doping processes (from 0 to -0.8 V) of poly-CNTh2Fl in acetonitrile 

containing 0.1 M BU4NPF6. Both the p- and n-doping ofthe copolymer film appeared as 

reversible waves in the region between +0.5and + 1.3 V and -0.1 and -0.8 V, respectively. 

Poly-CNTh2Fl has p- and n-doping/dedoping formal potentials at ca. + 1.1 and -

0.6 V, respectively; with a (band) gap of ca. 1.2 V between the onsets ofp- and n-doping. 

8.5 In Situ Conductivity Measurements 

8.5.1 Dual Electrode Sandwich Method 

The in situ electronic conductivities of poly-ThFl, poly-Th2Fl and poly-CNTh2Fl 

films against potential were measured in acetonitrile containing 0.1 M B14NPF6 by using 

dual electrode sandwich voltammetry. Fig 8.9 displays a conductivity vs. potential plot 

for a poly-ThFl film. In the positive scan, the p-type conductivity was investigated in the 

region between 0.0 V and + 1.30 V. The p-type conductivity of the copolymer rises to a 

maximum of ca. 3.1x10-5 S cm-1 at ca. +1.25 V. During the negative scan, in the region 

between 0.0 and -1.3 V , then-type conductivity reached at 5.6x10-7 S cm-1 at -1.3 V and 

was ca. 50 times smaller than the p-type conductivity. This conductivity was reproducible 

over multiple scans. The conductivity was slightly higher at lower potentials, but was 

unstable. 

Fig 8.10 shows a plot of conductivity vs. potential obtained for a poly-Th2Fl film. 

The p-type conductivity of the copolymer rose to a maximum of ca. 4 x104 S cm-1 at ca. 
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Fig 8.9. In situ conductivity as a function of potential (in acetonitrile containing 
0.01 MBu4NPF6) for a 0.1 J.Uil poly-ThFl film sandwiched between aPt disk 

electrode and a porous gold film 
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Fig 8.10. In situ conductivity as a function of potential (in acetonitrile containing 
0.01 MBu4NPF6) for a 0.1 Jlffi poly-Th2Fl film sandwiched between aPt disk 
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Fig 8.11. In situ conductivity as a function of potential (in acetonitrile containing 
0.01 MBu4NPF6) for a 0.1 J..liD poly-CNTh2Fl film sandwiched between aPt disk 

electrode and a porous gold film 
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+ 1.3 V. Then-type conductivity, observed in the negative scan, was much smaller than 

the p-type conductivity, peaking at 4.22x10-7 S cm-1 at ca. -1.25 V. 

The in situ conductivity profile for a poly-CNTh2Fl film is shown in Fig 8.11. 

Maximum p-type and n-type conductivities observed for the copolymer film were 

1.10x104 S cm-1 (at ca.l.2 V) and 4.71x10-6 S cm-1 (at ca. -0.7 V), respectively, with the 

n-type conductivity being ca. 20 times smaller than the p-type conductivity. 

8.6 Band Gap of Poly-(Sz Th4F}z) (8-4) 

8.6.1 Electrochemical and Optical Band Gap 

Figure 8.12 shows cyclic voltammograms for the reduction and oxidation of 

S2 'fl4Fh at a Pt electrode. Reduction of S2 'fhtFh occurred at a formal potential of ca. -

0.75 V and on further scanning, it exhibited a second reduction formal potential at -1.46 

V (not shown in Fig 8.7). During the first anodic cycle, an oxidation wave was observed 

at a formal potential of+ 1.3 8 V. In the reverse scan, there was a reduction wave at ca. 

+ 1.08 V that can be attributed to the undoping (reduction) of polymeric material 

deposited on the electrode during the forward scan. In the second cycle, both the 

oxidation and reduction currents increased compared to the first cycle, and a new anodic 

wave appeared at a lower potential of ca. + 1.1 7 V. From the onsets of oxidation and 

reduction, the electrochemical (band) gap of S2 Th.tFh was estimated to be 1. 7 V. The 

inset of Fig 8.12 shows the UV-Vis spectrum of S2 'fl4Fh in chloroform. S2 Th.tFh has an 

optical absorption maximum of 570 nm (2.2 e V), associated with the n-n* electronic 
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transition. The onset wavelength at 710 run corresponds to an optical band gap of ca. 1. 7 

eV. 

8.6.2 Theoretical Estimation of Bandgap 

Semi-empirical calculations for S2Tl4Fh were performed using the AMI method 

using Hyperchem pro7.1 (Hypercube Inc.). Fig 8.13 shows the structure ofS2T14Fh with 

the LUMO population. After geometry optimization, HOMO and LUMO energies were 

calculated to be -8.306 and -1.623 eV, respectively. Similarly, HOMO and LUMO 

energies ofterthiophene (Th3) were calculated to be -8.29 and -0.82 eV respectively. By 

using the HOMO and LUMO energy values, and the oxidation formal potential of ca.l.05 

V and the reduction formal potential of ca. -2.2 V ofterthiophene [13], the formal 

potentials of S2 T14Fh were estimated as shown below. 

Fig 8.13. Structure of S2 T14Fh representing LUMO population 
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Fig 8.12 Electrochemistry ofS2Th4Fl2 in acetonitrile containing 0.01 M 
Bu4NPF6.Inset: UV-Visible absorption spectrum ofS2Th4F12 in chloroform 
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0' 0 ' 
ForE ox, S2Th4Ft2 = E ox, Th3 + HOMOTh3- HOMO S2Th4Ft2 

= + 1.05-8.29 + 8.31 = +1.07 v 
0' 0' 

ForE red, S2Th4FI2 = E red, Th3 + LUMOTh3- LUMO S2Th4FI2 

= - 2.2 - 0.82 + 1.62 = - 1.40 v 

This estimation gave aHOMO-LUMO gap of2.5 eV for S2Tl4Fh. 

8. 7 Discussion 

The electrochemical and optical properties of the fluorene based molecules 

studied here are summarized in Tables 8.1 and 8.2. ThFl and Th2Fl have electrochemical 

band gaps of ca. 2.9 and 2.6 eV. Optical HOMO-LUMO gaps (Table 8.2) ofThFl and 

Th2Fl agree well with the respective electrochemical gaps. The reduction formal 

potentials of ThFl and Th2Fl are almost the same, whereas the oxidation peak potential of 

ThFl is higher (ca. 0.3 V) than that ofTh2Fl. Moreover the HOMO-LUMO gaps ofThFl 

and Th2Fl are ca.0.7 and 1.0 eV, respectively, lower than the HOMO-LUMO gap of 

fluorenone. The n-doping formal potentials of ThFl and Th2Fl were unchanged relative to 

that offluorenone, while the HOMO-LUMO gap is lower. This indicates that the 

thiophene units at the 2, 7 positions have little effect on the LUMO of the comonomer, 

but have a significant effect on the HOMO energy level. This result indicates that the 

HOMO energy level can be increased by varying the chain length of donor units in the 

fluorenone backbone ofthe comonomers. The HOMO-LUMO gap offluorenone (2.8 eV) 

was estimated from ref. [9] for this comparison. 
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Table 8.1 Summary of electrochemical properties of fluorene based molecules 

Ep, OX 

N 

ThFl 1.55 

Th2Fl 1.33 

CNTh2Fl 1.40 

Fluorenone 2.40a 

a estimated from reference [9] 

Ep taken as approximation of E0
' 

Eu· red Eg(electrochem)= Ep, ox- Eu· red 

N N 

-1.35 2.9 

-1.30 2.6 

-0.75 2.1 

-1.30a 3.6a 

Table 8.2 Summary of spectroscopic properties of fluorene based molecules 

ThFl 

Th2Fl 

CNTh2Fl 

Fluorenone 

a estimated from reference [9] 

b based on A max 

A max 

/nm 

433 

563 

580 

400a 
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A onset HOMO-LUMO gap 

b 

/nm (optical) 

/eV 

525 2.9 

580 2.3 

770 2.1 

460a 3.4a 



Table 8.3 Summary of electrochemical properties of fluorene based polymers 

Eo Ep( ox onset) 

(p-doping)/ N 

v 

Poly-ThFl 1.25 0.90 

Poly-Th2Fl 0.95 0.70 

Poly-CNTh2Fl 1.10 0.80 

PFTC 1.00 0.70 

Poly-Fluorenone 1.55a 1.40a 

a estrmated from reference [9] 

b gap between onsets of n- and p-doping 

c 6.1 e from chapter 6 

Eo 

(n-doping)/ 

v 

-1.25 

-1.30 

-0.60 

-1.20 

-1.20a 

Table 8.4 Conductivities of fluorene based copolymers 

O"max, p O"max, n 

/S cm-1 /S cm-1 

Poly-ThFl 3.15xl o-) 5.60x1o-' 

Poly-Th2Fl 4.00xl04 4.22xlo-' 

Poly-CNTh2Fl 1.10x104 4.71x1o-o 
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0 

( electrochem) 

N N 

-1.10 2.00 

-1.10 1.80 

-0.40 1.20 

-0.90 1.60 

-1.1 oa 2.50a 

O"intrinsic 

/S cm-1 
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Substitution of a dicyanomethylene group at the C-9 position ofTh2Fl decreases 

the HOMO-LUMO gap further. CNTh2Fl has an absorption maximum of ca. 580 run and 

the onset wavelength of ca. 770 run corresponds to a HOMO-LUMO gap of ca. 1.6 eV. 

The absorption maximum and onset wavelength of CNTh2Fl are red shifted when 

compared to those of fluorenone, ThFl, and Th2Fl (Table 8.2). Moreover, CNTh2Fl has an 

electrochemical band gap of ca. 1.7 eV with a reduction formal potential of -0.7 V. The 

oxidation formal potential of CNTh2Fl is slightly higher (by ca. 0.1 V) than Th2Fl but 

lower (by ca. 0.1 V) than observed for ThFL The reduction onset and formal potentials of 

CNTh2Fl are ca. 0.5 V lower than those of Th2FL This indicates that the 

dicyanomethylene group at the C9 position of CNTh2Fl has little effect on the HOMO of 

the comonomer, but a large effect on the LUMO energy leveL 

Copolymer films poly-ThFl, poly-Th2Fl and poly-CNTh2Fl were prepared by the 

potential cycling method. This mode of polymerization is advantageous because the film 

growth can be monitored and some useful mechanistic information can be obtained, 

which can be applied to interpretation of the electrochemical behavior of the new 

conducting polymers [13]. Since the potential cycling method worked well for 

homopolymerizations of comonomers, constant potential or constant current 

polymerizations were not performed. 

The electrochemical properties of poly-ThFl, poly-Th2Fl and poly-CNTh2Fl 

together with the properties of polyfluorenone [9] are summarized in Table 8.3. Poly­

ThFl has a (band) gap of ca. 2.0 V between the p- and n-doping onset potentials of ca. 
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+0.9 V and ca. -1.1 V, respectively. The electrochemical (band) gap ofpoly-Th2Fl is ca. 

1.8 V between the onsets ofp and n-doping at ca. +0.7 and -1.1 V, respectively. By 

increasing the thiophene units in the copolymer chain, the p-doping onset potential is 

decreased by 0.2 V whereas then-doping potential remains almost unchanged, and the 

band gap, therefore, is 0.2 eV lower for poly-Th2Fl. Moreover, the band gaps ofpoly­

ThFl and poly-Th2Fl are ca.0.5 and 0.7 eV lower when compared to that ofpoly­

fluorenone (Table 8.3). Then-doping onset potentials ofpoly-ThFl, poly-Th2Fl and 

polyfluorenone are the same. This indicates that the copolymerization of thiophene with 

fluorenone increases the HOMO energy level of the resulting copolymer. 

It is of interest to compare the electrochemical band gap of poly-ThFl, the 

copolymer obtained by homopolymerization of comonomer 8-1, and PFT 6.1e (a 

copolymer drop coated on to the electrode which was synthezised by a Stille coupling 

method; chapter 6). The p and n-doping onsets ofPFT at ca. +0.7 V and ca. -0.9 V 

corresponds to a (band) gap of ca.1.6 e V, which is ca. 0.4 e V less than that obtained for 

poly-ThFl. But the electrochemical band gap of poly-ThFl agrees well with the optical 

band gap ofPFT (ca. 1.9 eV; Table 6.2, chapter 6). Inhomogeneities and deposition 

conditions of PFT film should be the reason for a slight disagreement between the 

electrochemical band gaps of PFT and poly-ThFl. 

Poly-CNTh2Fl has a (band) gap of 1.2 V between the onsets of p- and n-doping 

(Table 8.3). Then-doping onset potential ofpoly-CNTh2Fl is ca. 0.7 V more positive 

than those obtained for poly-ThFl and poly-Th2Fl. This shift can be attributed to the large 

electron withdrawing effect of acceptor units [12] in the copolymer chain of poly-
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CNTh2Fl. The p-doping onset potential of poly-CNTh2Fl is slightly more positive, (by 

ca. 0.1 V) than that ofpoly-Th2Fl. This slight lowering of the HOMO energy level of 

poly-CNTh2Fl is also due to the strong electron withdrawing effect of dicyanomethylene 

groups in the copolymer chain [12]. These results indicate that the presence of a strong 

electron acceptor in the copolymer chain lowers the LUMO energy. Thus poly-CNTh2Fl 

is a lowest band gap donor-acceptor (alternating) copolymer of those studied here. 

Maximum p-type, n-type and intrinsic conductivities of poly-ThFl, poly-Th2Fl 

and poly-CNTh2Fl, calculated from the dual electrode voltammetric experiments, are 

listed in Table 8.4. The maximum p-type conductivity of poly-Th2Fl is ca. 10 times 

higher than observed for a poly-ThFl film. The maximum n-type conductivity observed 

for poly-Th2Fl is very small when compared to the maximum p-type conductivity of the 

same film and the n-type conductivity of poly-ThFl. The reason for a low n-type 

conductivity of poly-Th2Fl can be attributed to the resistance caused by additional 

(regularly spaced) thiophene units to the mobility of the n-type charge carriers. 

Maximum p- and n-type conductivities of poly-CNTh2Fl are ca. 5 times higher 

than those observed for poly-ThFl. The p-type conductivity of poly-CNTh2Fl was slightly 

lower when compared to that of poly-Th2Fl. 

The intrinsic conductivities of the copolymers were obtained from (dual electrode 

sandwich voltammetry) log conductivity vs potential plots using the intercept method 

(Table 8.4). Poly-CNTh2Fl exhibited a higher intrinsic conductivity of0.01 J..LS cm-1 than 

those of poly-ThFl and poly-Th2Fl. Therefore, substitution of a strong electron 

withdrawing groups (such as dicyanomethylene) at the C-9 position of the comonomer 
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has a significant effect on then-type and the intrinsic conductivities of the copolymers. 

On the other hand, the donor chain length of the copolymer strongly influences its p-type 

conductivity and enhances the intrinsic conductivity. 

The oligomer S2 Tl4Fh has an oxidation formal potential of ca. + 1.4 V and a 

reduction formal potential of ca. -1.4 V. A (HOMO-LUMO) gap of ca. 2.5 V was 

observed between the formal potentials for oxidation and reduction. There is good 

agreement between the experimental (electrochemical and optical) and theoretically 

estimated HOMO-LUMO gaps. Theoretical formal potentials for S2 T~Fh were 

estimated based on HOMO and LUMO energies from AMI calculations and 

experimental formal potentials of terthiophene (a molecule with 3 thiophenes ). The 

theoretically estimated reduction formal potential of s2 Tl4Fh agrees well with the 

experimental value. The oxidation formal potential of S2 T14Fh was slightly (ca. 0.3 V) 

higher than the theoretically estimated value. Moreover, the LUMO of S2 T~h is 

conjugated between the fluorene moieties via the bridging sulphur units as shown in Fig 

8.13. Thus, S2 T~h is a new conjugated precursor for low band gap polymers. 

8.8 Conclusion 

Homopolymerization of comonomers leads to the formation of alternating 

copolymers. By increasing the D-A ratio of the comonomers, the band gaps of 

fluorenone and polyfluorenone can be decreased. Substitution of a strong electron 

acceptor in the comonomer chain lowers the LUMO energy, decreases the band gap and 

enhances the intrinsic conductivity of the copolymer. S2T~Fh is a new conjugated 
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precursor for low band gap polymers. These results for monomeric and polymeric 

materials support the applicability of the donor acceptor strategy in the design of low 

band gap conducting materials. 
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Chapter 9 

Summary 

Polymerization of bridged bithiophene (structure, 3-3) has produced a very low 

band gap (Eg= ca. 0.5 e V) polymer. The very low HOMO-LUMO gap of 3-3 together 

with its four linkable thiophene terminals may make it a useful component for cross­

linking low band gap systems and of value as a building block for molecular electronic 

systems. Copolymerization of bridged bithiophene with EDOT produces materials with 

reduced electrochemical band gaps, enhanced conductivities and faster electrochemical 

kinetics. However, poor conjugation of the resulting materials leads to low charge carrier 

mobilities and conductivities relative to the poly-EDOT homopolymer. The donor­

acceptor method for band gap reduction is again shown to be effective, but at the expense 

of charge carrier mobility. Thus, the expected gains in intrinsic conductivity with band 

gap reduction have not been realized. Electrode rotation enhances the grafting process 

during polymerization, resulting in faster polymer deposition. Also, the conductivity of 

the resulting polymer films increases with electrode rotation during polymerization, i.e. 

when the grafting process is enhanced. The influence of electrode rotation on 

conductivities of bridged bithiophene was also reflected in its copolymers. The 

observation of faster polymerization with increasing rotation rate here is contrary to 

results previously reported for polythiophene and its derivates. The difference appears to 

be due to the lower monomer concentration used in this work. 
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Copolymers of fluorenone with benzene, thiophene, and furan have band gaps of 

ca. 1.6-1.9 eV and can be easily p-doped and n-doped. Copolymerization of the electron 

deficient fluorenone moiety with the electron rich thiophene and furan units produces the 

lowest band gaps and the lowest p-doping potentials. The n-doping potential is 

insensitive to the nature of the spacer (donors) units between fluorenone units, indicating 

localization of the LUMO on the ketone substituent. The band gaps of the copolymers are 

significantly lower than that of the fluorenone homopolymer. PFB, PFT and PFF are 

promising candidates for use as an electron transport layer in multilayer LEDs. 

Donor-acceptor conjugated co-monomers with different D-A ratios, consisting of 

thiophene as the electron rich subunit (D) and fluoren-9-one as the electron deficient 

subunit (A), were synthesized in moderate yields by means of Suzuki cross-coupling 

reactions. (2, 7 -di-thiophen-2-yl-fluoren-9-ylidene )-isocyano-acetonitrile was synthesized 

by a Knoevenagel condensation of2,7-di-thiophen-2-yl-fluoren-9-one. The reaction 

between 2,7-di-2-thienyl-9H-fluoren-9-one and Lawesson's reagent has yielded a new 

precursor material 2, 7 ,2', 7' -tetra-thiophen-2-yl-[9 ,9']bifluorenyl-dithietane. 

Homopolymerization of comonomers leads to the formation of alternating copolymers. 

By increasing the D-A ratio of the comonomers, the band gaps offluorenone and 

polyfluorenone can be decreased. Substitution of a strong electron acceptor in the 

comonomer chain lowers the LUMO energy, decreases the band gap and enhances the 

intrinsic conductivity of the copolymer. S2 T14Fh is a new conjugated precursor for low 

band gap polymers. 
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9.2 Future Work 

The linkage of two bridged bithiophene moieties by a double bond can be 

performed by McMurry reaction. The concentration of monomer solution used for 

electropolymerizations under hydrodynamic conditions can be further optimized to 

enhance grafting processes. It's understood that the bridged fluorene moieties by sulphur 

atoms can produce low band gap materials with low LUMO energy levels. Therefore, a 

very low band gap and highly conducting materials can be designed by copolymerization 

of electron deficient bridged fluorenes with electron rich EDOT. 
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Appendix A 

1H NMR Spectra 
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