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Abstract 

This thesis presents some of the methods of studying models of regulatory net-

works using mathematical and computational formalisms. A basic review of the 

biology behind gene regulation is introduced along vvith the formalisms used for mod-

elling networks of such regulatory interactions. Topological measures of large-scale 

complex networks are discussed and then applied to a specific artificial regulatory net­

work model created through a duplication and divergence mechanism. Such networks 

share topological features with natural transcriptional regulatory networks. Thus, it 

may be the case that the topologies inherent in natural networks may be primarily 

due to their method of creation rather than being exclusively shaped by subsequent 

evolution under selection. 

The evolvability of the dynamics of these networks are also examined by evolving 

networks in simulation to obtain three simple types of output dynamics. The networks 

obtained from this process show a wide variety of topologies and numbers of genes 

indicating that it is relatively easy to evolve these classes of dynamics in this model. 

.. 
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Chapter 1 

Introduction 

Regulatory networks have become an important new area of research in the biological 

and biomedical sciences (Bower and Bolouri, 2001, Davidson, 2001, Kitano, 2001). 

With draft sequences of the human genome complete (in addition to other organisms), 

scientists may now search these sequences for both genes and transcription factor 

binding sites in order to better understand which genes and proteins interact. It has 

been recognized that the DNA information controlling gene expression is the key to 

understanding differences between species and thus to evolution (Hood and Galas, 

2003). 

Taking these interactions as a whole, a network of interactions (a so-called regu­
l 
I 

latory network) can be visualized where genes interact by regulating other genes and 

their products to produce and regulate a myriad of cellular processes and functions. 

There are three major genetic mechanisms, all tied to regulation (Davidson, 2001) 

that allow the variety of reactions of living organisms to the pressure for survival: 

interactions between the products of genes, shifts in the timing of gene expression 

(heterochrony) and shifts in the location of gene expression (spatial patterning). 

These mechanisms allow nature to set up and control the mechanisms of evolution, 



development and physiology. Studying models of regulatory networks can help us to 

understand some of these mechanisms providing lessons for biology and possibly in 

the area of artificial evolution. This thesis presents some of the methods of studying 

models of regulatory networks using mathematical and computational formalisms and 

uses them to pose questions regarding the topological organization of such networks 

as has been suggested in work such as Kauffman (2004). 

This thesis is organized as follows: Chapter 2 introduces the reader to the biolog-

ical specifics of gene regulation. This includes a brief review of DNA, the processes 

of transcription and translation as well as the main mechanisms of gene regulation. 

In addition, some other potentially important mechanisms of gene regulation are re-

viewed such as the RNA interference effect and miRNAs. The chapter concludes with 

a description of the role and relevance of studying genetic regulatory networks. This 

chapter may be skipped by the more biologically-versed reader. 

Chapter 3 reviews some of the more common mathematical and computational ab-

stractions for modelling genetic regulatory networks. These include classes of Boolean 

and differential equation models in addition to the artificial regulatory network (ARN) 

model of Banzhaf (2003a,b) which is further investigated in this thesis. 

Chapter 4 reviews work on the characterization of the topology of complex net-

works in general with some emphasis on genetic regulatory networks. Specific topics 
. ( 

' 

introduced include scale-free and small-world network topologies and network motifs. 

Chapter 5 presents work on the topological properties of the ARN model gener­

ated by a whole genome duplication and divergence process (which is also introduced). 

Such networks have scale-free and small-world topologies and have subgraph distri-

butions similar to those of the transcriptional regulatory networks of Escherichia coli 

and Saccharomyces cerevisiae. 

Chapter 6 presents work on investigating whether the dynamics of the ARN model 

2 



can be evolved toward simple dynamics such as that of a sigmoid, sinusoid and expo­

nential decay. 

The Appendices present additional data not presented directly in the thesis. Ad­

ditional work and techniques relevant to the analysis of biological systems are also 

discussed. Topics covered include techniques for measuring gene expression, methods 

for elucidating the relationship between genes, algorithm descriptions, and data not 

presented in the main body of the text. 

3 



Chapter 2 

Gene Regulation 

In this chapter, much of the basic biology required to understand gene regulation 

is introduced. An overview of the process of transcription of DNA to RNA and 

subsequent translation of RNA to proteins is provided. However, this is presented 

in the most general terms in large part without regard to whether it occurs in a 

prokaryote1 or eukaryote2. Of course, there are major differences in how this process 

is carried out in both types of organism. Many of these differences will be discussed 

further in the chapter in relation to how regulation exploits some of these differences. 

The chapter concludes with a discussion of genetic perturbations which have proven 

to be a valuable tool in studying gene regulation as well as a brief summary of some 
I 
l 

of the possible problems that may be encountered with using and measuring mRNA 

levels for studying gene regulation. 

1 An organism that does not possess a distinct membrane-bound nucleus 
2 An organism that possesses a distinct membrane-bound nucleus containing the cell's DNA 
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Figure 2.1: DNA ("A", "C", "G", "T") 
linked together in a polynucleotide chain 
(runs antiparallel with direction (5' end 
has free phosphate group, 3' end a hy­
droxyl group) and double helix comple­
mentary pairing (hydrogen bonds). The 
figure is adapted from (Alberts et al., 
2002). 

2 .1 Basics of Gene Expression 

2.1.1 DNA 

The so-called blue-print of life is contained in each organism's DNA which is made up 

of a long string of nucleotides. A nucleotide forms a molecule of a ring compound with 

a nitrogen containing base linked to a five- carbon sugar (either ribose or deoxyribose) 

carrying one or more phosphate groups (in the case of DNA only one phosphate group 

is attached). These sugars form the backbone of the DNA (in the case of dexoyribose) 

or RNA (in the case of ribose) molecule linking each of the bases together into a lpng 
' 

string. The phosphate group acts to bind together different units of the backbone. 

If we think of each nucleotide as having a phosphate (represented by circles in 

Figure 2.1) and a hole, than the single string of nucleotides can be thought of to have 

a direction. This direction is either referred to as the 5' ---+ 3' or 3' ---+ 5' direction. 

These conventions represent the polarity of the molecule and are based on details 

of the chemical linkage between nucleotide subunits. There are four possible bases 

5 



in DNA, which have been assigned the letters "A", "C", "G" and "T" for adenine, 

cytosine, guanine and thyamine respectively. In DNA, two strings are joined together 

such that their bases are paired in complementary fashion ("A" with "T" and "G" 

with "C"). This leads to the double helix structure commonly associated with the 

DNA molecule. The "G"-"C" bond is the stronger of the two with three hydrogen 

bonds compared with two for the "A"-"T" pair. The structure and components of a 

DNA molecule are shown in Figure 2.1. 

2.1.2 The Central Dogma 

The central dogma of molecular biology explains how the sequence of a strand of DNA 

(DeoxyriboNucleic Acid) relates to the amino acid sequence of a protein. It states 

that the information stored in the DNA of an organism is first transcribed into RNA 

(RiboN ucleic Acid), which is then translated into a chain of amino acids forming a 

protein. Normally, it is thought that transcription and translation only proceed in 

the forward direction (from transcription to translation). This process is shown in 

Figure 2.2. However, it is known that there are exceptions to this rule. For instance, 

some RNA viruses can reverse transcribe themselves from RNA to DNA3 4 (e.g. HIV) 

(Alberts et al., 2002). 

Proteins can be thought of as both the workers and materials present wiUhin 
' 

cells. Examples of the function of proteins include structural elements, enzymes 

and antibodies. Proteins can also act as transcription factors (TFs) which play an 

important role in the regulation of genes. These TFs bind to regulatory regions of 

the DNA often dramatically increasing or decreasing the subsequent transcription 

of nearby genes. This type of gene regulation effectively controls if and when other 

3This reverse transcription process is also exploited by cDNA microarray technologies. 
4 A virus which performs this feat is known as a retrovirus. 
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Figure 2.2: The central 
dogma - the transcription 
of DNA into RNA and the 
translation of RNA into 
proteins. In the figure, 
gene "A" is transcribed 
more efficiently than gene 
"B" (thus the surplus 
of RNA molecules com­
pared to the number of 
RN A molecules generated 
by gene "B"). This 
leads to the number of 
"A" proteins being much 
larger than the number of 
"B" proteins. The figure 
is adapted from (Alberts 
et al., 2002). 

genes are transcribed forming com pl ex networks of interactions. These networks of 

interactions help lead to the sensitivity of cells to stimuli and the myriad of cellular 

processes, as well as to developmental stability and canalization (Siegal and Bergman, 

2002). 

2.1.3 Transcription 

Transcription, the process by which a DNA molecule is used to form a molectule 
I 

of RN A, is different for prokaryotes (single-celled organisms without a nucleus) and 

eukaryotes. As such, the process is only briefly sketched out in this section. In subse-

quent sections, gene regulation in both prokaryotes and eukaryotes will be separately 

discussed where the specifics of transcription for each cell type will be elucidated in 

greater detail. 

As previously mentioned, transcription factors bind to regulatory regions called 

transcription factor binding sites. By binding to these sites, TFs can exert either 

7 



positive or negative control on the subsequent transcription of nearby genes. 

The transcriptional process itself is performed by an enzyme called RN A poly­

merase. This enzyme is responsible for the synthesis of different kinds of RNA. RNA 

polymerase binds to a TF complex (the TF bound to the DNA) and DNA transcrip­

tion proceeds. First, the DNA is split from its double helix form and one of the 

strands is read one nucleotide at a time. This strand is used as a template to produce 

a single stranded RNA molecule made up of four nucleotides: uracil, "U", instead of 

thymine ( "T") in DNA, cytosine, "C", adenine, "A", and guanine, "G". This RNA 

code specifies the amino acid sequence during the subsequent translation step. This 

RN A molecule is ref erred to as a messenger RN A ( mRN A). 

Despite small chemical differences, DNA and RN A are quite different in over­

all structure. Whereas DNA exists in a double helix form, RNA is typically single 

stranded5 and thus takes on different three dimensional conformations. Because of 

the different conformations that RN A may take, it can also carry out many structural 

and catalytic cellular functions in addition to specifying the amino acid sequence of 

a protein. The maximum length of a molecule of RNA is typically a few thousand 

nucleotides, but the majority of RN l\.s are considerably shorter. In addition, RNA .. 

transcription is more tolerant of sequence mutations where a mutation occurs every 

104 nucleotides contrasted to every 107 nucleotides during DNA transcriptio~. 

Why might a cell have an intermediate stage from DNA to the creation of a 

protein? Possible answers for this question are that the intermediate RN A stage 

buffers DNA against the caustic chemistry of the cytoplasm, that gene information 

can be amplified by having multiple copies of RNA from a single copy of DNA and 

that the additional intermediary step allows for more complex regulatory controls. 

Since there are more pathways inherent from the reading of the DNA to the creation 

5Double- stranded RNA is an exception that will be discussed in Section 2.2.3. 
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of a given protein, there are more possibilities and pathways for control in a wider 

variety of environments and circumstances (Alberts et al., 2002). 

2.1.4 Translation 

Translation is the process by which a sequence of amino acids is created (forming 

a protein} from an mRNA molecule. Translation is initiated when an mRNA binds 

to a ribosome - an RNA protein complex. The ribosome then "reads" the mRNA 

sequence made up of the four RNA nucleotides, ( "U", "C", "A", "G") which map to 20 

different amino acids6 . This is achieved by reading the RN A nucleotides as triplets 

called "codons". This mapping of codons to amino acids is shown in Figure 2.3. 

u c A G 
phenylalanine serine tyrosine cysteine u 
phenylalanine serine tyrosine cysteine c 

u leucine serine punctuation punctuation A 
leucine serine punctuation tryptophan G 
leuc1ne prohne histidine arginine u 
leucine proline histidine arginine c 

c leucine proline glutamine arginine A 
leucine proline glutamine arginine G 

isoleucine threonine asparagine serine u 
isoleucine threonine asparagine serine c 

A isoleucine threonine lysine arginine A 
+h· i thHwni-ne ~ys~ne arginine G me,, rlOfhOO 

valine alanine aspartic acid glycine u 
valine alanine aspartic acid glycine c 

G valine alanine aspartic acid glycine A 
valine alanine aspartic acid glycine G 

Figure 2.3: Table of the mapping between the mRNA triplets composed of 
"U", "C", "A" and "G" (forming codons) and the 20 amino acids. 

For instance, the triplet "UGG" codes for tryptophan. In order to ensure that 

the correct three nucleotides are being read as a codon, a start codon is required. 

When the codon "AUG" appears (coding for methionine), this signals the beginning 

6There are actually 22 known amino acids. However, these 20 are sufficient to create the life \Ve 
see around us. 
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of translation for this specific mRNA. The mRNA is translated until a stop codon 

is read ( "U AA", "U AG" or "U GA"). In this way, a chain of amino acids is created 

from an mRNA sequence. In fact, these mappings of codons to amino acids is nearly 

universal in nature with few exceptions. Some exceptions to this mapping include 

mitochondria and Candida albicans (a human fungal pathogen) among others (Alberts 

et al., 2002). 

Newly created chains of amino acids then fold into a three-dimensional structure 

(often with the help of other proteins called "chaperones"). Typically, the products 

of translation are also modified by processes such as glycosylation and phosphoryla­

tion. Such post-translational modifications are thought to add functionality, affecting 

the targeting of proteins to certain genes, regulating activity, increasing mechanical 

strength, and changing the recognition of particular DNA / protein domains. 

2.2 Models and Mechanisms of Gene Regulation 

In the previous section, the process of gene transcription of DNA to an RNA molecule 

and subsequent translation into a protein was briefly introduced. This section de­

scribes in a little more detail how regulation of these transcriptional and translational 

processes can occur along with some of the differences in such processes between 

prokaryotes and eukaryotes. 

Genetic regulation also occurs through both post-transcriptional and post- translational 

modifications to RNA and amino acids respectively. In fact, Day and Tuite (1998) 

claim that such events (at the post- transcriptional level) are the key to the successful 

outcomes from highly ordered developmental processes in complex organisms. Day 

and Tuite (1998) also provide a good overview of post-transcriptional modifications 

in eukaryotes. Some such modifications will be discussed subsequently. A more con1-
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prehensive overview of the subject matter discussed in this section can be found in 

Ptashne and Gann (2001) and Alberts et al. (2002). 

2.2.1 Operon Model of Gene Regulation 

The operon model of gene regulation for prokaryotes was first introduced by Jacob 

et al. ( 1960). An operon can be defined as a unit of genetic material that functions 

by means of an operator, a promoter and one or more structural genes. In this model, 

many genes are clustered together into operons and are transcribed as a single RNA 

transcript 7 . 

Firstly, there are two different kinds of genes. The first type are structural genes 

which code for proteins. The second type are genes which code for specific RNA 

molecules. Specifically, it is the structural genes within an operon that are organized 

such that they are expressed as a single mRNA. Expression of this mRNA depends 

on the presence or absence of a regulatory protein acting as an inhibitor or activator. 

The second type of gene codes for these regulatory proteins which function to regulate 

the expression of other genes. These act on other DNA molecules, and are therefore 

ref erred to as trans-acting8 factors (usually proteins). 

The initiation of transcription is controlled by two DNA sequence elements (called 

promoters) approximately 35 bases9 and 10 bases10 (often referred to as the Pribn0vv-
' 

box) upstream of the transcriptional initiation site. The DNA site to which a regu­

latory protein (usually acting as a repressor in prokaryotes) binds is referred to as an 

operator. The operator site is usually located adjacent to the promoter. 

In the operon model, there are two major modes of transcriptional regulation: 

7These RN As are referred to as polycistronic. 
8 trans refers to a factor which affects DNA molecules other than the one from which it was 

created. The DNA inolecules that the trans-acting factor act upon are referred to as cis- acting. 
9The consensus sequence of this promoter is "TTGACA". 

10The consensus sequence of this promoter is "TAT AAT". 

11 



I 

catabolite- regulated operons (gene products necessary for the utilization of energy) 

and attenuated operons (gene products necessary for the synthesis of small biomolecules 

such as amino acids). The operon model, along with these two modes of transcrip­

tional regulation are best illustrated by the examples of the lac and trp operons. 

The lac operon 

An example of a catabolite-regulated operon is the lac operon. The lac operon is 

responsible for regulating the metabolism of lactose - an energy source. Since the 

use of the sugar glucose is more energy efficient than lactose, lactose is typically only 

used in the absence of glucose. 

There are four genes related to the lac operon, one regulatory gene, lac!, for lactose 

inhibitor, and three structural genes, lacZ, which codes for ,8-galactosidase (which 

cleaves lactose as the first step in metabolism), lac Y, which codes for ,8-galactoside 

permease (which increases the permeability of the cell to ,8-galactosides), and lacA, 

which codes for ,8-galactoside transacetylase as shown in Figure 2.4. 

RNA polymerase (RNAP) binds with the promoter (which is approximately 60 

base pairs in length) on the left of Figure 2.4 transcribing the lac! gene. The protein 

product of the lac! gene forms a tetramer which binds to the operator (which is 

approximately 20 base pairs in length) shown in the figure. When the tetramer is 
t 
' 

bound to the operator, RNA polymerase is prevented from binding to the adjacent 

promoter site. This effectively prevents the transcription of the three structural genes, 

lacZ, lac Y and lacA preventing the use of lactose as an energy source. When these 

genes are inhibited, lactose cannot be used as an energy source even if it is present 

within the cell (assuming that glucose is present). This is called catabolite repression. 

However, if an inducer is present (such as allolactose), the conformation or shape of 

the tetramer produced by the transcription of lac! changes. This change is such that 
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Figure 2.4: The lactose operon. RNA polymerase attaches to the leftmost promoter 
transcribing the lac! gene. However, the protein product of lac! forms a tetramer 
which attaches to the operator site preventing RNA polymerase from binding with 
the rightmost promoter thus preventing transcription of lacZ, lac Y and lacA. 

the tetramer can no longer bind with the operator site. This removes the impediment 

to transcription that was previously described. Therefore, the lacZ, lac Y and lacA 

genes are now transcribed allowing the metabolism of the lactose sugar. This is shown 

in Figure 2.5. 

promoters t 
~ opera or 

·-····· .......... J. ····- ............... -., I 

. 
' 

1-~-~ CAP binding site 
I I I 
' I : 

f ' 

5' I ~ lac! ~ 1 .......... __ lac_z _ ___,~ lacY ~ lacA lt---·___.I 3' 

RNAP -,~ RNA: I 
I I t 

' f ' ' . ·-··· ··· .. ... •• ~ .. •• •• .. 
inducer • _ _J 

Figure 2.5: The lactose operon. RNA polymerase attaches to both promoters tr~n­
scribing the lac!, lacZ, lac Y and lacA genes. The protein product of lac! is prevented 
from binding with the operator by an "inducer" which changes the conformation of 
the tetramer preventing it from binding. Thus, transcription of the last three genes, 
lacZ, lac Y and lacA proceeds. 

The lac operon may also be positively regulated in the absence of glucose through 

binding of the cAMP-receptor protein to sequences near the promoter domain of the 

operon called the CAP site ( vv hi ch is approximately 20 base pairs in length). This 
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results in additional recruitment of RN A polymerase to the promoter. This type of 

activation results in a 40 to 50-fold increase in polymerase activity. This form of 

regulation is what makes the lac operon catabolite-regulated. There are also two 

additional operator sites where the repressor tetramer binds. These sites are located 

90 base pairs upstream and 400 base pairs downstream and bind co-operatively with 

the operator site by looping of the DNA. 

The trp operon 

The trp operon is an example of an attenuated operon. The trp operon controls 

the production of tryptophan. It functions much in the same way as the previously 

presented lac operon. There is a repressor gene ( trpR) whose protein product binds to 

an operator site. One small difference is that instead of forming a tetramer as was the 

case with the protein product of lacR, trpR forms a protein dimer. However, the main 

difference is that the trpR protein dimer cannot by itself bind to the trp operator. 

Therefore, the five structural genes of the trp operon are normally transcribed. So if 

the trpR protein dimer cannot bind to the operator, how does it regulate the operon? 

This is accomplished with the aid of two tryptophan molecules which bind to the 

trpR protein dimer. This binding effectively changes the molecular conformation of 

the molecule allowing it to bind to the operator thereby halting transcription of the 
t 
I 

trpE, trpD, trpC, trpB and trpA structural genes. This process is shown in Figure 

2.6. 

Therefore, this form of repression only occurs when there is sufficient tryptophan 

present. When the concentration of tryptophan is high, there is significant binding 

of tryptophan with the trpR protein dimer which shuts off further production of 

tryptophan. As the concentration of tryptophan falls, there comes a point where 

there is not a sufficient number of tryptophan molecules present to bind vvith the 
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Figure 2.6: The tryptophan operon. RNA polymerase attaches to the leftmost pro­
moter transcribing the trpR gene. The dimer protein product of trpR cannot attach 
to the operator site to prevent binding by RNA polymerase without two molecules 
of tryptophan. The combined dimer / tryptophan complex binds to the operator 
preventing the transcription of trpE, trpD, trpC, trpB and trpA. 

trpR protein dimer. When this occurs, the tryptophan / trpR protein complex is 

unable to bind with the operator and transcription again resumes. In this way, the 

production of tryptophan is regulated such that its production is halted only when 

the concentration is too high. This kind of gene regulation of an operon is referred 

to as an attenuated operon. 

2 .2.2 Control of Gene Expression in Eukaryotes 

The previous section illustrated how gene expression can be regulated in prokaryotes. 

However, the regulation of gene expression in eukaryotes is more complex. In particu-
1 

lar' higher eukaryotes (multi- cellular eukaryotes) need to regulate their genes for cell 

specialization. Each cell type comes into being by differentially activating a different 

subset of genes during development. Therefore, with much more complex regulatory 

interactions required in order to direct the development of a multitude of cell types , 

it is not surprising that the control of eukaryotic gene expression is more complex 

than in prokaryotes. 

However, before describing some of the mechanisms of regulation for eukaryotes, 
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some of the general differences between prokaryotes and eukaryotes are discussed. 

As was previously mentioned, eukaryotic organisms possess a nucleus - a spherical 

membrane within the cell which contains the cell's DNA. Genetic transcription occurs 

within a eukaryotic cell nucleus with mRNAs having to traverse the nucleus membrane 

in order to be translated into proteins. In contrast, in prokaryotes, transcription and 

translation both occur throughout the cell. 

In terms of regulatory regions, in prokaryotes the regulatory region is usually 

directly upstream of the coding region. But in eukaryotes, the regulatory region 

could be a considerable distance up or downstream of the coding region. In fact, 

gene regulatory proteins can act thousands of nucleotides away from the promoter 

they influence. This sort of "action at a distance" makes regulatory relationships 

much more complex. Many eukaryotic genes also have one or more enhancers (quite 

a distance away from the coding region) responsible for regulating cell- or tissue­

specific transcription (the transcription responsible for cell differentiation). 

Eukaryotic promoters contain the so- called "TATA" box (25 nucleotides upstream 

of the initiation site of transcription). In addition, in contrast to the operon model 

where many structural genes are transcribed into a single mRNA, each eukaryotic 

gene typically requires its own promoter (no operons). Another key difference is that 

prokaryotic genes are most often regulated by repressors, while eukaryotic genes are 
l 
I 

primarily regulated by transcriptional activators. 

In addition, eukaryotic transcription requires many additional proteins, some of 

which are called general transcription factors. In fact, there are three different kinds 

of RNA polymerase in eukaryotes as opposed to only one in prokaryotes. Because of 

these differences there are also more opportunities for regulatory relationships. 

For eukaryotes, DNA is also compacted into chromatin, which affects the ability 

of transcription factors and RNA polymerase to find access to genes. Thus, this pack-
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aging of DNA in chromatin allows for additional regulatory opportunities. A number 

of modifications to RN A (some for additional stability) are possible such as capping, 

addition of a poly-A tail, methylation, cleavage of big RNAs and splicing (Alberts 

et al., 2002). Splicing plays an important role in eukaryotic cells. In eukaryotes, not 

all of the pre-mRNA which is transcribed from the DNA becomes translated into a 

chain of amino acids. An intermediate step occurs called splicing. Parts of the pre­

mRNA, called intrans, are removed from the pre-mRNA sequence leaving portions 

referred to as exons. This process is illustrated in Figure 2. 7. 

introns 

exons 

Figure 2. 7: A single strand of DNA is shown above. The resultant mRNA after the 
removal of introns leaving behind the exons is shown below. After additional post­
transcriptional modifications, this mRNA will be translated into a chain of amino 
acids. 

Since splicing can occur at different sites for a given gene, this allows for the 

creation of different mRNA transcripts from the same gene. There are four known 

modes of alternative splicing: 

1. Alternative selection of promoters - A different promoter is spliced with a given 

set of exons. 

2. Alternative selection of cleavage / polyadenylation sites - Different polyadeny-
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lation sites are spliced with other exons 

3. Intron retaining mode - An intron is retained in the mRNA transcript 

4. Exon cassette mode - A given exon is spliced out of the mRNA 

It has been hypothesized that alternative splicing possibly allows for faster evolu-

tion, and a higher coding efficiency since several proteins can be encoded in a sequence 

whose length would only be enough for two proteins if coded in the same ways as for 

prokaryotes. 

Overall, the main regulatory mechanisms or processes where regulation can be 

performed in the eukaryotic cell are (Ptashne and Gann, 2001, Alberts et al., 2002) : 

1. Transcriptional Initiation - There exist differential strengths of promoter el-

ements in addition to the presence / absence of activator sequences (which 

enhance RNA polymerase activity). These can dramatically affect the number 

of transcripts produced for a given gene. 

2. Transcript Processing and Modification - Eukaryotic mRN A needs to be capped, 

polyadenylated, and have its introns removed. Some genes undergo tissue-

specific alternative splicing (generate biologically different proteins). 

! 
l 

3. RNA transport - In eukaryotes, mRNA must leave the nucleus to be translated. 

4. Transcript Stability - Prokaryotic transcripts remain stable for about one to 

five minutes. Eukaryotic transcripts have a much greater variability in their 

lifetimes. 

5. Translational Initiation - Expression of a gene product is affected by the ribo-

somes ability to recognize and initiate translation from the correct methionine 
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("AUG") codon since many genes have multiple methionine codons. The trans­

lation of some eukaryotic proteins can also be initiated at non-"AUG" codons 

(Alberts et al., 2002). 

6. Post-Translational Modification - Common modifications after the translation 

step include glycosylation, acetylation, fatty acetylation, and the formation of 

disulfide bonds. 

7. Protein Transport - In order for proteins to be effective as enzymes or as building 

blocks, they must be transported to the site of action. 

8. Control of Protein Stability - Many proteins quickly become unstable and de­

grade whereas others are highly stable and have significantly longer lifetimes. 

It has been shown that some specific amino acid sequences bring about rapid 

degradation in proteins. 

2.2.3 RNA interference (RNAi) and microRNA (miRNA) 

Although the gene activation and inhibition mechanisms previously presented are 

typically the primary means by which genes regulate the expression of other genes, 

there also exist other mechanisms. Two such mechanisms are through the RNA in­

terference effect and the existence of miRN A which are both discussed in this sectibn. 

These mechanisms may also be used in genetic perturbation experiments which are 

discussed in the subsequent section. 

When an RNA sequence complementary to an mRNA (anti-sense RNA) is injected 

into a cell, the two sequences hybridize forming a double-stranded RNA ( dsRNA) 

duplex thus blocking translation of the mRN A into a protein (since a ribosome only 

binds to a single-stranded RNA). 
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However, through studies on the nematode, Caenorhabditis elegans, it was dis-

covered that injection of the sense and anti-sense strands at the same time led to 

a higher level of gene silencing than when injecting either type of strand on its own 

(Fire et al., 1998) - a somewhat counterintuitive result. In fact, injection of only a few 

molecules of dsRN A served to completely silence the expression of the homologous 

gene. This effect is known as the RN A interference (RNAi) effect. In addition, injec­

tion of dsRN A in the gut of Caenorhabditis elegans also effectively silenced expression 

of the homologous gene even in the organism's first generation of offspring (Fire et al., 

1998). Thus, use of RNAi is one potent method for silencing the expression of a given 

gene. 

The RNAi effect is produced by the presence of dsRNA which triggers the natural 

degradation of the homologous mRN A (called nonsense-mediated decay). This mech-

anism is used to prevent the production of defective protein molecules from mRNA. 

In practice, RNAi is produced by the injection of small interfering RNAs (siRNAs) 

which form 21- 25 nucleotide dsRNAs. It is believed that dsRNA acts as a catalyst 

by forming an RNA- induced Silencing Complex (RISC) where the unwound siRNAs 

base pairs with complementary mRNA. This then guides the RNAi machinery to 

target mRN A resulting in the effective cleavage and subsequent degradation of the 

mRNA. The activated RISC could then potentially target other copies of the mR-. ~ 
l 

N As functioning as a catalyst. NI ore details of the specific molecular mechanisms 

responsible for the RNAi effect can be found in Hammond et al. (2001). Since the 

homologous mRNA is quickly degraded, the translation of mRNA into protein is ef-

fectively halted. However, only dsRN A which targets exon sequences is effective in 

producing an interference effect. dsRNAs which target promoter and intron sequences 

do not appear to produce any RNAi effect (Fire et al., 1998). 

The use of RNAi is currently becoming an important method with which to probe 
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the workings of genetic network interactions and is discussed in Skipper (2003) and 

Section 2.3. It is emphasized that it is the presence of dsRNA, not the single-stranded 

anti-sense RNA which produces the interference effect. In addition, the RNAi effect 

is highly specific and remarkably potent (only a few dsRNA molecules are required to 

produce the interference effect). This effect can cause interference in cells and tissues 

far removed from the original site of injection and even in subsequent offspring (Fire 

et al., 1998). 

A gene silencing (repressive) effect similar to that observed in RNAi has also been 

observed with microRNAs (miRNAs) in eukaryotic gene expression (Carrington and 

Ambros, 2003). miRNAs are translated as parts of longer RNA molecules and are 

processed by dsRNAs in the nucleus resulting in 19-23 mer miRNAs. These miR-

NAs are bound to a complex that participates in RNAi. This complex can bind to 

sequences that are significantly similar but not completely complementary to the cor­

responding mRNA. However, in contrast to RNAi which involves RNA degradation, 

the bound mRNA complex simply remains untranslated reducing the expression of 

the corresponding gene. A full characterization of the molecular underpinnings of this 

process are currently unavailable (Carrington and Ambros, 2003). miRNAs influence 

a variety of processes including early development (Reinhart et al., 2000), cell pro­

liferation and cell death (Brennecke et al., 2003), and apoptosis and fat metabolism 
l 

' 
(Xu et al., 2003). 

2.3 Genetic Perturbation Experiments 

Although gene perturbations such as gene knockout (deletion) and over-expression 

are not a specific technology per-se, they are an important method for probing the 

vvorkings of genetic regulatory netvvorks. Such methods function by introducing a 
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perturbation into the network with subsequent evaluation of the steady-state expres-

sion level of all genes in the network in the presence of this perturbation. At the 

least, it can be determined whether or not a given gene is crucial to the organism's 

survival. In fact, it was through gene perturbation analysis that the knowledge that 

most genes are pleiotropic (expressed in different tissues in different ways at different 

times) was discovered. From this data, it is also possible to infer portions of the 

regulatory interactions among genes. As such, these concepts have been previously 

applied to inferring the structure of regulatory networks (Ideker et al., 2000, Wag­

ner, 2001, 2002, Gardner et al., 2003, Tegner et al., 2003, Bongard and Lipson, 2004, 

Bernardo et al., 2004). 

In perturbing a genetic system, the perturbations can be either genetic or biolog-

ical (i.e. a non-genetic factor is altered such as a change in growth media, tempera-

ture, or addition of an extracellular ligand). In this section, only the former types of 

perturbations (i.e. perturbations at the genetic level) are discussed. 

One such perturbation is gene knockout. The effect of the absence of a given gene 

in the network can both lead to explanations of the gene's role, as well as elucidation 

of the roles of other genes that would normally be co-expressed. Knocking out a gene 

in a given organism may be accomplished in a variety of ways. One typical method 

(used in mice) is to engineer DNA which has a mutant copy (effectively making it 
l 

non-functional) of the gene to be knocked out. This DNA is then introduced into 

special embryonic stem cells. If the foreign introduced DNA is similar in sequence to 

the host DNA, it may undergo "homologous recombination" (it forms a single copy 

of the sequence at the specific site). 

Cells in which the mutant gene has indeed replaced the native copy are then 

introduced into early embryos. After mice with this form of genetic manipulation are 

born, they are mated to each other. Since each individual mouse contains only one 
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mutant copy of the gene in their DNA (mice are diploid organisms), any offspring of 

such a pairing have a one in four chance of possessing two mutant copies of the gene. It 

is these individuals who have effectively had a specific gene knocked out since no good 

copies of the original gene exist in these individuals. Such individuals are referred to 

as being "transgenic". A more complete review of the technology involved in gene-

knockout experiments can be found in Galli-Taliadoros et al. (1995). Gene deletion 

data has been obtained for a wide variety of model organisms such as Saccharomyces 

cerevisiae by a world--vvide academic consortium which generates and collects various 

mutant strains which have a specific gene deleted (Winzeler et al., 1999). 

In addition to perturbation by gene deletion, gene over-expression can also be 

achieved. There are primarily two major methods for creating gene over-expression: 

the introduction of foreign DNA into embryonic stem cells (similar to what was pre-

viously described for gene deletion) and "pronuclear microinjection". The former 

method has already been discussed and is achieved similarly to gene deletion. In the 

case of pronuclear microinjection in mice, the foreign DNA is introduced into the 

mouse egg immediately after fertilization via a fine needle into the male pronucleus 

(derived from the sperm). This DNA tends to integrate as tandemly arranged copies 

randomly into the genome. Once again, only some of the cells produced will be trans-

genie, thus making the specific organism only partly transgenic. Obtaining a fully 
' 

transgenic individual requires the screening and mating of two partially transgenic 

individuals. 

Another tool with which to perturb the functioning of genes in vivo is through 

the use of double-stranded RNA ( dsRNA) and the RNA interference (RNAi) effect. 

An experimenter could use dsRNA to perturb the network such that a given gene is 

silenced. The resultant network can then be analyzed and compared to the dynamics 

of the unperturbed network in order to determine the silenced gene's role in the 
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network's dynamics. However, although small interfering RNAs (siRNA) in a virus­

infected cell did silence their respective genes, the siRN As also activated the cell's 

interferon target genes. These findings are summarized in Skipper (2003). This would 

seem to indicate that the results of RN Ai- type experiments must be interpreted with 

care. 

2.4 Caveat Emptor with rnRNA Measurements 

In order to determine the relationships between the underlying genes . and proteins 

that form a regulatory network, data is required. Typically, this comes in the form 

of the measurement of the expression of mRNA which is often the first step in any 

study of genetic regulatory networks. By measuring the expression of given mRNAs, 

it can be inferred how frequently and in what quantity mRNA is being generated from 

associated genes. From these patterns of expression, a network of interactions between 

genes and their protein products can be inferred through subsequent analysis. Some 

typical high throughput technologies used for this purpose are genetic microarrays, 

serial analysis of gene expression (SAGE), chromatin immunoprecipitation (ChIP), 

and mass spectrometry. A brief description of some of these methods is presented in 

Appendix A. 

Although the measurement of mRNA is a powerful method with which to probe 

the workings of regulatory networks, the caveats of such an approach must be realized 

(Kitano, 2001). Even at equilibrium, different mRNAs are degraded at specific rates 

as a function of the rate of transcription, stability of the mRN A molecule, and changes 

in processing due to other cellular events which can be either internal or external. 

Therefore, this can lead to completely divergent mRNA measurements (e.g. when 

two genes are transcribed simultaneously and at the same rate, but whose mRNAs 
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have different decay rates). 

In addition, because of the different decay rates, even the presence of a molecule 

of mRNA does not mean it was recently transcribed if its decay rate is very slow. 

Also, the time scales at which transcription and translation occur can be of greatly 

different magnitudes. mRNA can be transcribed up to several hundred nucleotides 

per minute, but can also take a significantly longer time (e.g. the gene dystrophin 

which is found in muscle takes 16 hours to transcribe (Tennyson et al., 1995)). Also, 

the implicit assumption when measuring mRNA levels is that they are translated into 

proteins at an equal rate. Even if this were true, the life span of proteins is at least 

as variable as mRNA. Therefore, gene expression activity may not always be a good 

indicator of corresponding concentration or activity of a given protein. Furthermore, 

even if an mRNA is found to be expressed, it does not imply that it will by translated 

into a protein at all (for example by the process of retroregulation). 

Other difficulties also exist for mRN A technologies which are too specific. In 

eukaryotes, mRNAs generated by transcription may differ depending on the incorpo­

ration of different exons and intrans (alternative splicing). If the technology being 

used only measures one of these products, a misleading or incomplete picture of the 

transcription occurring in the organism may be obtained. In fact , the genetic basis 

for organismal diversity is often attributed to polymorphisms of each gene - s.o- called 
I 

single nucleotide polymorphisms (SNPs). However, only some SNPs result in different 

proteins. If expression measurements only look for a single type of SNP, an inaccurate 

picture of the transcription of the organism will again be obtained. 
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2.5 Conclusion 

The description of the biology behind gene expression presented here is merely a 

caricature vvhich outlines some of the main fundamental concepts. It is in no way 

a complete picture of the processes inherent in transcription and translation. For a 

more complete picture, please refer to Davidson (2001), Ptashne and Gann (2001) 

and Alberts et al. (2002). 

The processes and mechanisms described here are all subject to the forces of selec­

tion and evolution. Therefore, an understanding of the possible evolutionary processes 

that have shaped genomes and their related processes can be useful in studying gene 

regulatory interactions such as gene duplication (Ohno, 1970, Zhang, 2004) and lat­

eral gene transfer in prokaryotes (Ochman et al., 2000, Woese, 2002). A brief review 

of gene duplication and its potential role in shaping regulatory interactions will be 

presented in Section 5.1. A more comprehensive view of the evolution of prokaryotes 

and eukaryotes can be found in Maynard Smith (1998). 

Having introduced the basics of how genes regulate each other, it is not hard to 

imagine large netvvorks of interacting genes and proteins which regulate each other. 

Such interactions produce the complex organisms, morphologies, and cell types we see 

in nature. l\!Iodelling these types of interactions in an abstract manner is the subject 

of the next chapter. 
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Chapter 3 

Network Models 

The study of the organization and functionality of gene regulation has important 

consequences for our understanding of the basics of development and evolution. With 

the desire to study regulatory relationships on a larger scale, the need for formalisms 

arises. The choice of formalism is often problem and domain dependent. For instance, 

is the goal to forward model or reverse-engineer a system? Forward modelling is 

accomplished by taking what is currently known about a system and formulating a 

model to see where the model agrees and disagrees with the natural system. In this 

sense, forward modelling is a form of knowledge-driven model construction. Reverse­

modelling or reverse-engineering tries to use the behaviour of the system itself to 

directly infer the interactions of the natural system. These interactions are then 

formulated into a model. Thus, the formulation of a model generated by reverse­

engineering is data-driven. 

This section introduces many of the most common formalisms including those 

based on Boolean networks, differential equations, and stochastic models. :Niany of 

these formalisms have been used for both the forward and reverse- modelling problems. 

In particular, an artificial regulatory network model by Banzhaf (2003a) is introduced 



which is more extensively studied subsequently in this thesis. 

It should be noted that many of the networks modelled using these formalisms of-

ten first use a clustering step in order to reduce the complexity of the problem domain. 

Without such a reduction in complexity, some of the analysis methods presented be­

come intractable for certain problem domains. Some of the more common methods 

for clustering and projection of gene expression data are presented in Appendix B. 

3.1 Boolean Network Models 

The Boolean network model was introduced by Kauffman (1969a,b), Glass and Kauff­

man ( 1973) and Kauffman ( 197 4). In this model, genes are represented by nodes 

whose states are either "O" or "1". This means that a gene is either being tran-

scribed, or it is not. There are no intermediate levels of transcription. Each node is 

connected to others by directed edges as shown in Figure 3.1 (a). The binary values 

from other nodes are received through the incoming edges and taken as inputs. These 

are sent through a Boolean function that determines the current state of the node. 

Typical Boolean network models use a synchronous updating scheme where each node 

in the system is updated at the same time during each time step. This synchronous 

updating schen1e simplifies the simulation and analysis of Boolean networks, while 
( 
I 

purportedly preserving the netvvork's qualitative generic dynamics (Wuensche, 1998). 

Boolean networks are often specified as (N, K)-networks where N specifies the 

total number of nodes in the system and K specifies the maximum number of incoming 

edges for each node. Typically, the value of K is small (often three) meaning that 

only a small subset of all possible genes is responsible for controlling the activity of 

any given single gene. Such an assumption can be problematic since it is known that 

many portions of transcriptional regulatory netvvorks display scale-free connectivity 
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indicating that there are genes which have a large number of transcriptional regulators 

(this is discussed in more detail in Chapter 4). 

An example of a Boolean network is shown in Figure 3.l(a). The connectivity 

and the Boolean update functions for the network are given in Figure 3.1 (b). This 

example has five genes, N == 5, with maximum connectivity, K == 3. 

(a) Boolean logic network 
where nodes represent gene / 
protein pairs and edges repre­
sent regulatory relationships. 

11 12 13 F1 F2 F3 F4 Fs 
0 0 0 1 0 1 0 1 
0 0 1 0 1 0 1 1 
0 1 0 1 1 0 1 0 
0 1 1 0 0 0 1 1 
1 0 0 1 0 1 0 0 
1 0 1 0 1 1 1 1 
1 1 0 1 0 1 0 1 
1 1 1 0 1 0 1 0 

J1 5 3 3 3 5 

J2 2 5 1 4 4 
]3 4 4 5 5 1 

(b) Truth table which defines the function, Fi, 
which implements a Boolean logic network. Ji 
specifies th.e input connectivity for each function 
Fi. Ik specifies the logical values of the inputs to 
each function. 

Figure 3.1: An example of a Boolean network. 

. { 

The dynamics of this network are shown in Figure 3.2. Since there are five genes 

in the network there are 25 == 32 different states. Each state is represented by a 

circle in the figure while the directed edges show the state transitions of the network 

according to the functions in Figure 3 .1 (b). 

Notice in Figure 3.2 that there are two limit cycles1 . The first occurs between 

the 10110 and 01101 states. The second limit cycle involves the following states: 

10101 ~ 10011 ~ 00010 ~ 01110 ~ 01100. There are also several states which 
1 a sequence of repeating states 
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Figure 3.2: The state-transition diagram for the Boolean network defined. There are 
two limit cycles and two stable states. 

move onto these limit cycles. There are also two stable states, 01111 and 00011. 

Liang et al. (1998), Akutsu (1999), Akutsu et al. (2000b), D'Haeseleer et al. (2000), 

Silvescu and Honavar (2001) and Albert (2004) have used the Boolean network frame-

work in both the forward modelling and reverse- engineering of genetic regulatory 

networks. However, many have questioned the "all or nothing" level of gene tran-

scription in the Boolean model (Glass and Kauffman, 1973, Thomas and Kaufman, 

2004a,b). It has been noted that there are many genes which have different regulatory 
I 

effects depending on their level of expression. In addition, it is thought that the tran-

sient period between when a gene switches may also be significant. It has also been 

suggested that there is not a direct correspondence between the dynamic behaviour 

of Boolean systems and their continuous counterparts indicating a qualitative loss of 

behavioural information (Glass and Kauffman, 1973). 

The assumption of synchronous updates of gene states may also be problematic. 

For instance, if gene "a" crosses its threshold instantaneously before gene "b", the 
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resultant state of a Boolean model would be different from the case where "b" crossed 

instantaneously before "a". Attempts to use asynchronous updating behaviours have 

also shown that the updating scheme may interfere with many of the interesting 

phenomena displayed by Boolean networks (Harvey and Bossamaier, 1997). 

More generalized logical models which work on asynchronous updating schemes 

and multiple logical thresholds have also been used primarily in forward modelling 

applications (Thomas and Kaufman, 2004a,b). In addition, lVIestl et al. (1997), Ed­

wards (2000), Edwards and Glass (2000), Edwards (2001), Edwards et al. (2001) 

and Ben-Hur and Siegelman (2004) have introduced a differential equation frame­

work which combines many of the advantages of Boolean networks with differential 

equation models. This work is presented in Section 3.2.3. 

3.2 Differential Equation Models 

Differential equation models offer an alternative to the Boolean models previously de­

scribed. Such models have been used extensively in the sciences to model a variety of 

systen1s (Voit, 2000, Zill, 2000, Bower and Bolouri, 2001). Since such models are based 

on sets of differential equations, there are no problems with the synchronous updating 

of variables since the solutions obtained are inherently asynchronous. In addition, \the 

use of differential equations removes the assumption of the binary expression of genes 

and proteins thereby allowing quantitative as well as qualitative comparison between 

computational models and the systems they are trying to model. 

However, differential equation models often contain many para1neters which must 

be obtained from the literature, by experiment or by guessvvork. In addition, for some 

of the more complex differential equation formalisms, analytical solution and analysis 

of the equations may be impractical even for small network models. 
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3.2.1 Ordinary Differential Equations 

The basis for much of the work in modelling regulatory networks using ordinary dif-

ferential equations comes from the chemical rate equations from which the Michaelis-

Menten equations are derived (Voit, 2000). The rate law for a substrate, S, and a 

product, P, is: 

S = _ VmaxlS 

KM1+S 
(3.1) 

Equation 3.1 explicitly models the concentration of a protein and gene pair and 

are known as the Michaelis-Menten equations. The two parameters, Vmax and KM, 

control the magnitude of the rate of change of the substrate. 

This formalism may also be generalized as follows: 

(3.2) 

where p represents a vector of protein concentrations and r represents a vector of 

mRN A concentrations, and the functions, Ji and gi, represent updating functions. 
( 
l 

Typical functions for Ji and gi are sigmoidal in shape. One of the most commonly 
n 

used functions are Hill functions of the form J (xJ, BiJ, n) = x~:e:i .. 
J t] 

3.2.2 Weight Matrices 

Weight matrices attempt to model regulatory networks with the use of linear coeffi­

cients representing the relationships between genes (Weaver et al., 1999). Thus, an 

individual gene's expression can be determined by the mathematical summation of all 
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its independent regulatory inputs (multiplied by their respective coefficients). Such 

a scheme is often represented in the form of a matrix where an entry in the matrix 

( i,j), represents the effect of gene i on gene j. Therefore, the total regulatory input 

to gene i, ri ( t), is found as follows: 

~ W· ·u·(t) ~ t,J J 

J 

(3.3) 

where wi,j gives the effect of gene i on gene j and Uj ( t) gives the expression state of 

gene j at time t. Positive values of wi,j lead to activation while negative values lead 

to repression. A value of zero indicates no interaction. 

If we take the matrix M ( i, j) to give the expression of gene i at time j, a vector 

"a" corresponds to the transpose of the weight matrix row of the gene of interest, and 

a vector "b" corresponds to the relative expression level of the gene of interest at the 

given state transition. This system of equations, Ma == b, may then be solved. Since 

there are often more genes than data points, this problem is under- determined as 

there are many solutions that satisfy the above equation which may be problematic. 

There are numerous assumptions when modelling regulatory networks using weight 

matrices. One such assumption is that all genetic interactions may be treated as inde-, 

pendent events which is known to be false (Weaver et al., 1999). As well, transcription 

must be assumed to be a discrete time system in order to make the problem com-

putationally tractable. Also, the weights assume a linear relationship between the 

number of copies of a gene's mRNA and the amount of produced gene present in the 

cell. It is also assumed that a gene's "maximal" expression level can be determined 

by empirical observation. When genes are being expressed near the maximum or 

minimum levels it becomes difficult to have useful predictions of the input regulatory 
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state due to the normally sigmoidal nature of the assumed dose-response curve (the 

use of other curves is possible, but this problem is still present regardless of the curve 

used). Small noise perturbations can exacerbate this problem leading to progressively 

larger errors in the regulatory state calculation. 

One of the benefits of modelling regulatory networks in this fashion is that math-

ematical approaches found in linear algebra can be used for analysis of the resultant 

models (vVeaver et al., 1999). However, since the matrix values (the effect of a gerie 

on other genes in the network) are not known in advance, they must be deduced often 

using statistical methods or machine learning techniques such as simulated annealing, 

neural networks or genetic algorithms (Ando and Iba, 2000, 2001). 

3.2.3 Piece-wise Linear Differential Equation Model 

One approach which combines the logical rules of Boolean network models with some 

of the advantages of differential equation methods are "Glass networks". Glass net-

works have been proposed as a simplified model of genetic networks (Edwards and 

Glass, 2000, Ed"Yvards, 2001, Edwards et al., 2001, Ben-Hur and Siegelman, 2004, 

de Jong et al., 2004, l\llason et al., 2004) as well as an underlying model for the 

reverse-engineering of regulatory networks (Perkins et al., 2004) and to model neural 
( 

networks (Edwards, 2001). The equation governing the dynamics of this system i
1

s: 

dx· 
dti == -1ixi + ~ (Xi1(t), Xi2(t), ... , Xik(t)), i == 1, ... , N (3.4) 

where Xi ( t) is a continuous variable representing the concentration of transcription 

factor i at time t, xi is a discrete binary variable (Xi == 1 if Xi > ei and xi == 0 

if Xi < ei \Vhere ei is a threshold variable), Ti is a positive decay constant and 

Fi (Xi1(t), Xi2(t), ... , Xik(t)) is a Boolean function which depends only on k binary 
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input variables. This Boolean relation between the k binary inputs and the outputted 

Boolean value can be summarized as a truth table as shown in Figure 3.3(b). 

By setting {t1 , t2 , ... , tk} to denote the switch times when a value crosses the thresh­

old, ei, a solution to Equation 3.4 can be obtained where tj < t < tj+1 : 

Due to the simplicity of the dynamic equations, Glass networks are quite amenable 

to mathematical analysis. This class of networks can display fixed points, stable limit 

oscillations and chaotic dynamics (Mason et al., 2004). A detailed analysis of the 

dynamics and characteristics of such networks have been presented by Mestl et al. 

(1997), Edwards (2000), Edwards and Glass (2000), Edwards (2001), Edwards et al. 

(2001) and Ben-Hur and Siegelman (2004). 

(a) Genetic circuit schematic of the 
repressilator. Nodes represents a 
gene / protein pair while edges rep­
resent inhibitory relationships. 

Input (Xi) Function 
1 2 3 F1 F2 F3 
0 0 0 1 1 1 
0 0 1 0 1 1 
0 1 0 1 1 0 
0 1 1 0 1 0 
1 0 0 1 0 1 
1 0 1 0 0 1 
1 1 0 1 0 0 
1 1 1 0 0 0 

(b) Truth table which defines the function, Fi, 
which implements the repressilator gene circuit. 

Figure 3. 3: A Boolean network model of the repressilator. 

An example of a network modelled using Glass networks is the repressilator 
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(Elowitz and Leibler, 2000) shown in Figure 3.3(a). This circuit is an example of 

a synthetic gene circuit exhibiting stable oscillatory behaviour when implemented in 

Escherichia coli using plasmids. The truth table implementing the dynamics of the 

repressilator circuit are shown in Figure 3. 3 (b). 

3.2.4 S-System s 

S- systems (synergistic and saturable system) have long been used as models of bio­

chemical pathways, genetic networks and immune networks (Akutsu et al., 2000a). 

S-Systems are a class of non-linear ordinary differential equations and have the form: 

dXi(t) ITn ( ) rrn ( )h· · dt == ai xj t gi ,j - (Ji xj t t ,J 

j=l j = l 

(3.6) 

where a and f3 are rate constants and g and h are exponential parameters referred 

to as kinetic orders. S- Systems have unique mathematical properties allowing large 

realistic phenomena to be investigated and can be derived from general mass balance 

equations by aggregating inputs and outputs approximated by the products of power-

law functions. Each dimension of the S-System model represents the dynamics of a 

single variable represented as the difference of two products of power- law functibns 

- one describing the influxes and the other describing the effiuxes. This can also 

be thought of as a linearization of the logarithmic space (exploited by Akutsu et al. 

(2000a)). Only terms that directly influence a particular influx or efflux are included 

in the model. However, the general structure of the model always remains the same 

which has led to the development of numerous analytical tools for simulating, deriving 

and analyzing such models. 

Although S- Systems purport to more accurately model the biological processes 
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inherent in regulatory networks, they still cannot handle some important concepts 

such as complex enzymatic reactions (but neither do the other methods presented). 

Another vveakness with the S-System formalism is the number of parameters required. 

In general, for an n-dimensional vector, nx (2n+2) parameters are required in order to 

specify the dynamics of the system. In addition, since the system is non-linear, many 

traditional optimization schemes are excluded or must operate on linearized versions 

of the problem at or near equilibrium points to obtain reasonable approximations of 

the solution (such as that presented in the next section). 

3.2.5 Control Theory / State Space Models 

Modern control theory or the state-space method of description for ODEs has been 

in existence for over 100 years. This method can be summarized as follows: 

x(t) == Cx(t) + Bu(t) 

z(t) == Ax(t) + Du(t) (3.7) 

r ································ ............. .......................... @ ························· .. ······ ··· ····················1 

i I 
I ' 

u(t) i _!c\ x (t) Jfl x(t) © i y(t) 
•.................... L .. ............. ~···-i-~-·········-~········ c ....... !... ............. .. 

I 

'···········- © ·················· 

Figure 3.4: The relation between the ma­
trices A, B, C , D , the state vector, x(t) , 
the output vector, y(t) and the input vec­
tor, u ( t) in control theory. 

Equation 3. 7 relates the state vector x( t) with its time derivative and control in­

put u(t). The matrices A and C are the dynamics matrices, while matrices B and 

D are the input matrices. The state vector, along with initial conditions completely 
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characterizes the current state of the system as well as all future states. Therefore, 

the future states of the system are dependent only on the current state and future 

inputs to the system. The state vector can thus be viewed as representing the current 

state of the system vvith the values of the state vector at different time points repre-

senting a trajectory in the n- dimensional vector space (thus the name "state-space" 

method). The first equation defines the internal dynamics of the system while the 

second equation defines the dynamics visible to the observer (which may be different 

from the first equation). This is shown in schematic form in Figure 3.4. 

In using such an approach, the states often correspond to the "concentrations" 

of genes and / or proteins. However, due to the large number of genes in such a 

model, it is common in such approaches to take states to mean either groups of genes 

or to represent certain genetic factors in the system. This is often done in order to 

reduce the complexity and computational requirements of such models and is typically 

accomplished using clustering or projection methods which are briefly reviewed in 

Appendix B. State-space methods have been used in the reverse- engineering of 

regulatory networks by Rangel et al. (2001, 2004a,b) and Wu et al. (2004). 

3.3 Stochastic Models 
( 
I 

Stochastic models of gene regulatory processes purport to remedy many of the short­

comings of deterministic (mainly differential equation) based approaches. One such 

shortcoming is the assumption of a continuous rate of protein production. Typically, 

there are a small number of transcription factors in a system which is not well repre-

sented by continuous models. In fact, proteins are not produced at a continuous rate 

at all but rather in short bursts (McAdams and Arkin, 1997). In addition, the thresh-

olds at which gene activation / inhibition occur can be crossed at different times even 
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in the same populations of genes. Some mechanisms of transcriptional regulation are 

known to amplify noise creating heterogeneity within a population. 

With the addition of noise in gene transcription, individual cells may take differ-

ent regulatory paths despite having the same regulatory input (Elowitz et al., 2002). 

Therefore, it is likely that evolution has selected networks which can produce deter-

ministic behaviours from stochastic inputs in a noisy environment. In fact, certain 

topologies in networks can attenuate the effects of noise (such as the feedback loop) 

(Rao et al., 2002) and also that noise can indeed act as a stabilizer itself in other 

systems (Hasty et al., 2000). 

There are generally two methods for modelling stochastic gene regulation. The 

first are stochastic differential equations: 

(3.8) 

Equation 3.8 gives the form of a stochastic differential equation that explicitly 

models noise in the system through the term v(t). Equation 3.8 is referred to as 

the Langevin equation and is generally not amenable to solution by either analytical 

or numerical means. Typically, solutions to the Langevin equations are obtained 

through the use of Monte-Carlo algorithms. 

The second approach is to characterize the transitions of a molecule using prob-

ability functions. During each individual time step, a molecule is given a certain 

probability of transitioning to a different discrete state. From this, a probability 

density function for the behaviour of the system can be obtained. Such systems are 

referred to as the "Master Equation" and are often solved by techniques such as the 

Gillespie algorithm (IvicAdams and Arkin, 1998). 

Although stochastic models are often more realistic than their deterministic coun-
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terparts, they are expensive to simulate. In fact, for many realistically sized systems, 

stochastic approaches are impractical (Swain, 2005). However, stochastic models of 

gene regulation have been successfully used in Keasling et al. (1995), McAdams and 

Arkin (1998) and Kastner et al. (2002) to show but a few examples. A good review of 

stochastic genetic networks can be found in (McAdams and Arkin, 1997, 1998, Kepler 

and Elston, 2001). 

3.4 Artificial Regulatory Network Model 

In this section, a regulatory network model referred to as the artificial regulatory 

network (ARN) model first presented by Banzhaf (2003a,b) is introduced. The ARN 

consists of a bit string representing a genome with direction (i.e. 5' ---+ 3' in DNA) 

and mobile "proteins" which interact with the genome through their constituent bit 

patterns. In this model, proteins are able to interact with the genome, most notably at 

"regulatory" sites located upstream from genes. Attachment to these sites produces 

either inhibition or activation of the corresponding protein. These interactions may 

be interpreted as a regulatory network with proteins acting as transcription factors. 

A "promoter" bit sequence of 8-bits was arbitrarily selected to be "01010101". 

By randomly choosing "O" s and "1" s to generate a genome, any one- byte pattern 
l 

can be expected to appear with probability 2-8 == 0.393. Since the promoter pattern 

itself is repetitive, overlapping promoters or periodic extensions of the pattern are not 

allowed, i.e. a bit sequence of "0101010101" (10-bits) is detected as a single promoter 

site starting at the first bit . However regions associated with one gene may overlap 

with another should a promoter pattern also exist within a portion of the coding 

region of a gene. 

The promoter signals the beginning of a gene on the bit string analogous to an 
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open reading frame (ORF) on DNA - a long sequence of DNA that contains no "stop" 

codon and therefore encodes all or part of a protein. Each gene is set to a fixed length 

of l9ene == 5 32-bit integers which results in an expressed bit pattern of 160-bits. 

Immediately upstream from the promoter sites exist two additional 32-bit seg­

ments which represent the enhancer and inhibitor sites. As previously mentioned, 

attachment of proteins (transcription factors) to these sites results in changes to pro­

tein production for the corresponding genes (regulation). In this model, it is assumed 

that there exists only one regulatory site for the increase of expression and one site 

for the decrease of expression of a given protein. This is a radical simplification since 

natural genomes may have five to ten regulatory sites per gene that may even be 

occupied by complexes of proteins (Banzhaf, 2003a). 

Processes such as transcription, diffusion, spatial variations and elements such as 

introns, RN A-like mobile elements and translation procedures resulting in a different 

alphabet for proteins are neglected in this model. This last mechanism is replaced as 

follows: Each protein is a 32- bit sequence constructed by a many-to-one mapping of 

its corresponding gene which contains five 32-bit integers. The protein sequence is 

created by performing the majority rule on each bit position of these five integers so 

as to arrive at a 32- bit protein. Ties (not possible with an odd number for l9 ) for a 

given bit position are resolved by chance. 

Proteins may then be examined to see ho\v they may "match" with the genome, 

specifically at the regulatory sites. This comparison is implemented using the XOR 

operation which returns a "1" if bits on both patterns are complementary. The degree 

of match between the genome and the protein bit patterns is specified by the number 

of bits set to "1" during an XOR operation. In general, it can be expected that 

a Gaussian distribution results fron1 measuring the match bet\veen proteins and bit 

sequences in a randomly generated genome (Banzhaf, 2003a). By making the simpli-
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fying assumption that the occupation of both of a gene's regulatory sites modulates 

the expression of its corresponding protein, a gene-protein interaction network may 

be deduced comprising the different genes and proteins which can be parameterized 

by strength of match. The bit-string for one gene is shown in Figure 3.5. 

Inhibition Enhancer Promoter 
Site Site Site 

Gene Information 

i 
32 Bits 

Use XOR to 
determine degree 
of match between 

Protein and 
Inhibition I 

Enhancer Site 

..... 

i i 
0·1010·10-1 

32 Bits 32 Bits ..... 32 Bits 32 Bits 

32Bit tj 
Protein 

By 
Majority 

Figure 3.5: 

The rate at which protein i is produced is given by: 

b ( ei - hi) Ci 

L:j Cj 

1 N 
ei, hi= NL Cj exp (f3(uj - Umax)) 

J 

32 Bits 

-

32 Bits 

(3.9) 

(3.10) 

where ei and hi represent the excitation and inhibition of the production of protein 

i, Uj represents the number of matching bits between protein j and activation or 

inhibition site i, Umax represents the maximum match (in this case, 32), j3 and 6 

are positive scaling factors, and ci is the concentration of protein i at time t. The 

concentrations of the various proteins are required to sum to 1. This ensures that 

there is a competition between binding sites for proteins. 

The ARN model also bears so1ne resemblance to a recurrent neural network 
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(RNN). The ARN genes and the match strength between TF binding sites and TFs 

are analogous to the neurons and connection weights in an RNN. 

3.5 Conclusion 

As previously noted, the choice of a formalism for modelling genetic regulatory net­

works is problem domain dependent. Although Boolean network models have been 

used in modelling gene regulation, there is some debate as to their utility due to many 

of the assumptions inherent in the model. Such assumptions include synchronous up­

dating, all-or-nothing gene transcription, and restrictions on network connectivity. 

Differential equation models eliminate many of the limitations of Boolean models 

but add increasing levels of complexity necessitating the selection of parameter values 

and the use of complex analysis techniques. 

In turn, stochastic models purport to more accurately model genetic regulation 

by removing the deterministic assumptions inherent in differential equation models 

albeit with an additional penalty of computational complexity and analysis. However, 

Kim and Tidor (2003) have shown that behaviours found in some systems cannot be 

reconciled with common models of genetic regulation. Therefore, care must be taken 

when interpreting the results of a study using any formalism. 

Although the most common formalisms were reviewed in this chapter, there exist 

several formalisms in current use for modelling genetic regulatory networks that were 

not discussed. Some examples are the use of petri nets, and neural networks. 
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Chapter 4 

Topological Characterization 

Since genetic regulatory networks are typically characterized by a large number of 

interactions (usually excitatory or inhibitory) between regulatory elements, studying 

the topology of such networks may prove to be informative. Such an approach has 

been pursued by Wuchty et al. ( 2003), G uelzim et al. ( 2002), Milo et al. ( 2002), 

Shen-Or et al. (2002), Babu and Teichmann (2003), Bray (2003), Mangan and Alon 

(2003), Wolf and Arkin (2003), Yu et al. (2003), Berg and Lassig (2004), Dobrin 

et al. (2004), Hahn et al. (2004), Kashtan et al. (2004a), Kuo and Banzhaf (2004), 

Babu et al. (2004), Milo et al. (2004), van Noort et al. (2004), Vazquez et al. (2004), 

Yeger-Lotem et al. (2004) and Yu et al. (2004). 

Since one of the most basic features of any complex network is its structure, it is 

natural to investigate its connectivity. The structure of networks are often constrained 

and shaped by the growth processes that create them (including evolution in the case 

of natural networks). Studying the topology of such networks might shed some light 

on the possible structures and dynamics which have been exploited by nature. 

Of course, in order to study the topology of such networks an abstraction must 

be made such that a GRN can be represented by a series of nodes and edges. Some 



of these abstractions were discussed in Chapter 3. Typically, nodes in such an ab­

straction represent individual genes (and their associated proteins) while the directed 

edges which connect the nodes represent one gene's effect (excitatory or inhibitory) 

on another as shown in Figure 3. 3 (a). 

4.1 Scale-Free Network Topologies 

A high degree of self-organization may characterize the large-scale properties of com-

plex networks (Barabasi and Albert, 1999). Many researchers have shown that the 

probability, P(k) (the number of nodes connected to k other nodes in a network), 

decays as a power-law, following P(k) '""k-' where r-.y is a constant. 

This has been shown in systems as diverse as the internet (Faloutsos et al., 1999), 

protein interaction networks (Wuchty, 2001), the electrical power grid of the west­

ern United States of America (Watts, 2003), the neuronal network of the worm 

Caenorhabditis elegans (Watts, 2003), the network of citations of scientific papers 

(Barabasi et al., 2002), metabolic networks (Jeong et al., 2000), the Saccharomyces 

cerevisiae co- expression network (Guelzim et al., 2002, van Noort et al., 2004) and 

transcriptional regulatory networks (Bray, 2003, Babu et al., 2004). This is in contrast 

to random networks (so-called Erdos-Renyi graphs) which follow a Poisson degree 
' 

distribution, p( k) rv )..k exf, (->-.). 

Figure 4.l(a) shows an example of a degree distribution which follows a power-law 

distribution while Figure 4.1 (b) shows one which follows a Poisson distribution. An 

example of the graph topology of a scale- free network is shown in Figure 4.2. 

It has been suggested that scale- free networks emerge in the context of a dy-

namic network with the addition of new vertices connecting preferentially to vertices 

which are highly connected in the network (Barabasi and Albert, 1999), as vvell as 
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Figure 4.2: An example of a net­
work displaying scale-free characteris­
tics. The graph is of the protein-protein 
and protein-DNA interactions among 332 
yeast genes (Shannon et al., 2003). 



through explicit optimization (Valverde et al., 2002) and duplication and divergence 

(Romualdo et al., 2003, Kuo and Banzhaf, 2004). 

One possible explanation for the apparent ubiquity of scale-free topologies is that 

such networks should be more robust to random failure of individual nodes. Since 

the vast majority of nodes in the network are connected to few other nodes, a failure 

among these nodes vvould be unlikely to dramatically affect the functioning of the 

network at a global scale. However, this also means that the few highly connected 

nodes or hubs are particularly vulnerable to targeted attack since their failure would 

have drastic effects on network behaviour. In fact, the properties of scale-free net­

works and their robustness to individual node failure has been studied in the internet 

by Albert et al. (2000) and in protein networks by Sole et al. (2002) and Jeong et al. 

(2001). 

However, a study by Yu et al. (2004) found that the so-called hubs in genetic 

transcriptional regulatory networks were not essential to organism survival (although 

the opposite was found in this paper for proteins and in Jeong et.al. (2001)). In fact, 

in a study of the genetic regulatory network of Escherichia coli by Hahn et al. (2004), 

no correlation could be found between evolutionary rate and highly connected pro­

teins. In addition, only a weak correlation exists (a correlation could be found only 

for genes involved in the cell cycle and transcription) for the protein interaction !fet­

work of S accharomyces cerevisiae (highly connected proteins could tolerate as many 

amino acid substitutions as any other protein). These results suggest that power-law 

distributions in cellular networks do not reflect selection for mutational robustness. 

Such findings prove a valuable cautionary note for graph theorists since these results 

directly contradict theories on the evolutionary benefits of scale-free topologies which 

were proved analytically and in simulation. 
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4.2 Small-World Network Topologies 

Watts (2003) defines small-world graphs as any graph with n vertices and average ver­

tex degree k that exhibits L ~ Lrandom ( n, k) rv ~~ ~~j and G >> Grandam rv ~ for n >> 

k >> ln (n) >> 1. G is the clustering coefficient which is defined as follows: 

2 ~ (kv(kv - 1)) 
if vertex v has kv neighbours, C = n ~ 

2 
( 4.1) 

Lis the characteristic path-length of the network (average number of links connecting 

two nodes). Lrandom and Grandam refer to the characteristic path-length and clustering 

coefficient for a random graph with the same k and n respectively. 

SmaJl-woi1d Ranoom 

P=O 
Increasing randornrie.ss 

P=1 

Figure 4.3: Networks generated from a regular lattice (left- most graph). As random 
rewiring occurs at a rate of p, a small-world network is obtained for values of p 
intermediate between 0 and 1. Reprinted with permission of Watts (2003). 

Like scale- free network topologies, small- world topologies have also been noted in 

many networks (including those with scale- free topology) such as the electrical power 

grid of the western United States of America (Watts, 2003), the neuronal network of 
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the worm Caenorhabditis elegans (Watts, 2003), the network of film actors who have 

acted in the same films (Watts, 2003), and the Saccharomyces cerevisiae co-expression 

network (van N oort et al., 2004). 

Watts (2003) has also shown that models of dynamical systems which display 

small-world coupling show enhanced signal-propagation speed, computational power, 

and increased synchronizability. In addition, Watts (2003) has shown that infectious 

diseases spread more rapidly and easily in small-world networks than in regular lat-

tices or random topologies and may be reasonable models of such processes. 

Thus, it has been suggested that small-world network topologies are also prevalent 

in natural systems and that the study of such networks might increase our understand-

ing of the ways in which natural systems function (Watts and Strogatz, 1998). 

4.3 Network Motifs 

The previous two topological measures characterize network topology at the global 

level. In contrast, local graph properties have also been proposed for studying net-

works. There has been significant interest in studying static network motifs as a tool 

for understanding regulatory networks (Mangan and Alon, 2003, Milo et al., 2002, 

Shen-Or et al., 2002, Wuchty et al., 2003, Wolf and Arkin, 2003, Yu et al., 2003, 
I 

Banzhaf and Kuo, 2004, Berg and Lassig, 2004, Dobrin et al., 2004, Kashtan et al., 

2004a, Nlilo et al., 2004, Vazquez et al., 2004, Yeger-Lotem et al., 2004). 

Network motifs are usually defined as the structural elements (subgraphs) which 

occur in statistically significant quantities as compared to random networks (l\!Iilo 

et al., 2002). This is in contrast to sequence motifs which identify common sequences 

in genes at the DNA level. The possible implications of having certain subgraphs being 

found in greater abundance than would be expected in similar random networks is 
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that these local network motifs may convey some sort of functional advantage to the 

system. Such subgraphs form the basic elements of more complex networks. 

Whereas one or more edges connect two nodes of a graph (where the nodes rep­

resent gene / protein pairs and the edges interactions between them), network motif 

analysis typically starts with three nodes (or more) and their corresponding con­

nections. It has been proposed that studying "net-vvork motifs" can lead toward a 

better understanding of the potential basic structur~l elements which make up com­

plex networks. In fact, several motifs such as the bi-fan (Kashtan et al., 2004b), the 

feed-forward loop (Niangan and Alon, 2003) and the feedback loop (Kashtan et al., 

2004b) have been the subject of study. 

If we are to believe the contention that network motifs confer some form of func­

tional advantage to an organism, we might expect such connectivity to be preserved 

over evolutionary time. There is some conflicting evidence regarding whether this 

is actually the case. In the protein interaction network of Saccharomyces cerevisiae, 

Wuchty et al. (2003) concluded that motifs could be evolutionary conserved topo­

logical units of cellular networks. However, Babu et al. (2004) found that network 

motifs in transcriptional regulatory networks were not preferentially conserved over 

evolutionary time for a variety of different organisms. 

In addition, it has been implied that the distribution of subgraphs for given net­

work domains (such as transcriptional regulatory networks, social networks) are dis­

tinct enough to allow classification (Banzhaf and Kuo, 2004, Nlilo et al., 2004). This 

implies that certain network motifs are more prevalent in a given type of network 

(presumably since their presence is somehow beneficial at the global level). 

Appendix E lists all three-node connection patterns in directed graphs, including 

auto- regulatory connections, up to isomorphism. Appendix G lists some four-node 

connection patterns in directed graphs, including auto-regulatory connections, up to 
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isomorphism. A presentation of a full table of all four-node connection patterns is 

impractical due to space limitations. 

4.4 Conclusion 

There has been a large body of work regarding the characterization of network topolo-

gies in general as well as specifically relating to regulatory networks. In fact, Vazquez 

et al. (2004) has suggested that both local and global network properties are predic-

tive of each other. Specifically, that network motifs can be predictive of large scale 

topology (scale-free and small-world topology) and vice versa. 

The evidence of Babu et al. (2004) would seem to indicate that transcriptional 

regulatory networks evolve in a step-like manner where the gain or loss of individual 

connections plays a greater role than a similar gain or loss in whole motifs or submod-

ules. However, as is the case for scale-free networks and mutational robustness, it 

may be that the supposed benefits of such topological conformations only have bene­

ficial effects at the protein interaction level as opposed to the level of transcriptional 

regulation. In this regard, more work needs to be done to elucidate the relationship 

between the topology and function of transcriptional regulatory networks. 

In addition, the network measures discussed in this chapter have been on static 
I 

network topologies. However, transcriptional regulation is a dynamic process with 

some genes taking part in some mechanisms and not in others (including during the 

normal cell cycle). Luscombe et al. (2004) found that the vast majority of hubs in 

the transcriptional regulatory network of Saccharomyces cerevisiae acted transiently 

and only for certain cellular conditions (these hubs only acted as hubs for certain 

processes) over a wide range of conditions. This would seem to indicate that more 

work needs to be done on characterizing the topology of dynamical networks. 
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Chapter 5 

Network Topologies in the ARN 

Model 

As was previously stated, the choice of formalism when modelling regulatory networks 

largely depends on the aims of the study. This chapter investigates how duplication 

and divergence affect the topology of a regulatory network. As such, the ARN model 

of Chapter 3 is the most appropriate choice. With this model, duplication and diver-

gence can be more directly implemented on the genetic string as opposed to directly 

on the network (gene duplication happens directly on the genome level in nature). 

In addition, topological relationships can be easily investigated by the parameteri-, 

zation of the threshold. The presence of scale- free, small-world and network motif 

topologies is then investigated in the ARN model. Portions of the work presented in 

this chapter have been previously published in Banzhaf and Kuo (2004) and Kuo and 

Banzhaf (2004). 



5.1 Gene Duplication and the ARN Model 

The mechanism of gene duplication has been recognized as being important in sup-

plying raw material for biological evolution since the 1930' s (Zhang, 2004) or even 

1910 according to Taylor and Raes (2004). However, it was the seminal work of Ohno 

(1970) which popularized this idea among biologists. A comprehensive history of 

research in gene duplication before the work of Ohno (1970) can be found in Taylor 

and Raes (2004). 

In the case of the ARN model, the genome is created through a series of whole 

length duplication and divergence events. First, a random 32-bit string is generated. 

This string is then used in a series of length duplications similar to those found in 

natural systems (Nadeau and Sankoff, 1997, Wolfe and Shields, 1997, Taylor and 

Raes, 2004) followed by mutations in order to generate a genome of length Le. An 

illustration of this process is given in Figure 5.l(a). 

32 bits C:=J 

64 bits I I.• Single point mutation, 
copied and replicated 

(a) Effect of duplication on a single mutation 
in the genome. 

l''i· Original Genome 

Genome 
o.....a..:..:..~..__.....__.___.___.__~~'-'--_.___...__..__~ subjected to 

Pairs of Paralogous Genes 

Whole Genome 
Duplication 

(b) Whole genome duplication creates pairs o~ 
functionally redundant paralogous genes. One 
gene of each paralogous pair is now free to di­
verge either disappearing or acquiring a new func­
tion without affecting the original function of the 
gene. 

Figure 5.1: Whole genome duplication and divergence. 

The duplication and divergence mechanism used in the ARN model is most similar 

to so- called whole genome duplication. Ohno (1970) suggested that whole genome 
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duplication might be an important evolutionary mechanism for generating novelty 

in the genome and additionally might give a reasonable explanation for speciation. 

When whole genome duplication occurs, pairs of functionally redundant paralogous 

genes are created. This is shown in Figure 5.1 (b). 

Since only one pair of paralogous genes is required to retain its original function, 

the second is free to diverge. This might lead to the second gene being lost or ac­

quiring a novel function through subsequent mutations. A review of the role of gene 

duplication in the creation of novel proteins can be found in Hughes (2005). In fact, 

evidence for either whole genome duplications or substantial gene duplication events 

exist in the literature. Specifically, there has been evidence for gene duplications in 

Saccharomyces cerevisiae (Wolfe and Shields, 1997, Friedman and Hughes, 2001, Gu 

et al., 2002, Dujon et al., 2004, Kellis et al., 2004, Teichmann and Babu, 2004) (and 

in simulation by van Noort et al. (2004)), Escherichia coli (Friedman and Hughes, 

2001, Babu and Teichmann, 2003, Babu et al., 2004, Teichmann and Babu, 2004), 

vertebrates (Nadeau and Sankoff, 1997) and other organisms. :Niore generally, three 

quarters of the transcription factors in Escherichia coli have arisen from gene duplica­

tion (Babu and Teichmann, 2003) and at least 503 of prokaryotic genes and over 903 

of eukaryotic genes are created by gene duplication (Teichmann and Babu, 2004). A 

review of the mechanisms that may facilitate gene duplications can be found in Zhang 

(2004) and are beyond the scope of this thesis . 

In addition, some of the properties of gene duplication are investigated in a math­

ematical framework by Wagner (1994). It was found through this analysis that the 

evolution of gene netvvorks should occur preferentially by either the duplication of 

single genes or by duplication of all genes involved in the network. Romualdo et al. 

(2003) and Chung et al. (2003) also both found that duplication models could account 

for scale-free connectivity seen in biological networks. 
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5.2 Scale-Free & Small-World Topologies in the 

ARN Model 

As was noted in Chapter 3, the effect of one gene's products on another can be investi-

gated in the ARN model by looking at the degree of match between one gene's protein 

and another's regulatory sites (one excitatory and one inhibitory site). By examin­

ing the interaction networks of the ARN model (created through the whole genome 

duplication and divergence mechanism) at different matching strengths (thresholds), 

different network topologies are obtained. An example is shown in Figures 5.2(a) and 

5.2(b). Each node in the diagram represents a gene found in the genome along with 

its corresponding protein forming a gene-protein pair. Edges in the diagram repre-

sent a regulatory influence of one gene's protein on another gene. For the diagrams 

presented, a genome was created by the previously mentioned duplication and diver-

gence procedure with the network interaction diagrams being created at thresholds 

of 21 and 22. 

(a) Gene- protein interaction network for a ran­
dom genome at a threshold of 21 bits. 

(b) Gene-protein interaction network for a ran­
dom genome at a threshold of 22 bits. 

Figure 5.2: Gene-protein interaction networks generated by two different thresholds. 

Although the actual genome has not changed, by simply changing the threshold 

parameter, different network topologies are obtained. The reader may notice that the 

diagra1ns in Figures 5.2(a) and 5.2(b) possess different numbers of genes and proteins. 

This is due to the fact that only connected gene-protein pairs are displayed in the 
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Figure 5.3: Diagram 
showing the fraction of 
edges in a graph at a given 
threshold (x-axis) com­
pared to a fully connected 
graph for 200 networks 
generated by duplication 
and divergence. 

diagrams. Should a change in the parameterized threshold lead to the creation of an 

isolated node, it is deleted from the diagram. Only the largest network of interactions 

is displayed. 

It is possible to have multiple clusters of gene-protein interactions that are not in-

terconnected. This is likely to occur as the threshold level is increased. As connections 

between gene-protein pairs are lost due to the threshold, each cluster of gene-protein 

pairs begins to become isolated from the others. This often occurs abruptly indicat-

ing a phase transition between sparse and full network connectivity. The relationship 

between the number of edges in the graph and the threshold are shown in Figµre 

5.3. As the threshold increases from 0 to 32 (the x-axis), the fraction of edges in the 

graph over the number of edges in a fully connected network of the same number of 

nodes (also the number of edges in any ARN graph at threshold 0) goes from 1.0 to 

0.0. We can observe a sharp transition from full connectivity to no connectivity. 

In order to generate such networks, a divergence (or mutation) rate for the du­

plication and divergence mechanism must be chosen. First, mutation rates of 13 

and 53 were examined. 200 genomes were generated by 12 duplication events per 
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genome leading to individual genomes of length Le == 131072. From these genomes, 

the number of genes were then determined based on the number of promoter patterns 

present. The distribution of the number of genes present in the genome of size Le is 

shown in Figures 5.4(a) and 5.4(b) . 
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3000 ~ ~ ~ ~ ~ 500 ~ ~ ~ ~ 
#of Genes 

(a) Histogram of the number of genes in each (b) Histogram of the number of genes in each 
genome (200 genomes) fitted to a power-law: genome (200 geno1nes) fitted to a power-law: 
P(g) rv g-1 for a mutation rate of 1.03. I was P(g) rv g-'Y for a mutation rate of 5.03. 
calculated to be 0.9779. 

16 

14 

4 

35-0 360 370 380 390 ~ 410 420 430 440 
#of genes 

( c) Histogram of the number of genes in 200 
genomes \vhose bits have been chosen at random. 

Figure 5.4: Histogram of the number of genes in the ARN model. 

It can be observed that the distribution of the number of genes in Figure 5.4( a) 
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follows a power-law-like distribution. However, in Figure 5.4(b) the apparent dis­

tribution is disrupted. This is attributed to the higher rate of mutation. At such 

a mutation rate, the rewiring of the network becomes so prevalent that it begins to 

disrupt the duplication of nodes leading to a randomly connected network. 

For an 8-bit promoter, the probability that it remains intact after one duplication 

event is only 66% at a mutation rate of 5%. Therefore, it can be expected that many 

of the genes copied during the duplication process will be subsequently destroyed in 

later duplication steps. However, there will also be other genes which arise from this 

higher mutation rate. But, these new genes will also be easily destroyed via mutation. 

Genomes which start with very large numbers of genes are disrupted early on in the 

duplication process by mutation, while those with few genes obtain additional genes 

through mutation. 

To test this explanation, genomes of length Le were created completely at random 

without the use of duplication and divergence. The distribution of these completely 

randomly generated networks are shown in Figure 5.4( c). As can be seen, this distri­

bution is quite similar to that generated in Figure 5.4(b) lending additional support 

to the hypothesis that at 5% mutation the network topology becomes effectively ran­

domized. 

In the case of no mutations (0% probability of mutation) during the duplication 

process, we would expect to see a large number of networks which either have zero 

genes (where there are no 01010101 patterns in the original 32- bit starting string), or 

have 2# of duplications genes (due to the presence of a 01010101 pattern in the original 

32- bit starting string). We wish to obtain a network which shows a topology primarily 

due to the effects of duplication. Therefore, the distribution of the number of genes 

in networks generated by duplication and divergence may be used as an estimate 

of the effect of mutation rate on the network as compared to randomly generated 
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genomes. Obtaining a network which has a gene distribution approximating a power­

law distribution accomplishes this. It is sufficiently randomized so as not to resemble 

the case of 03 mutation while not being dominated by mutational effects as shown 

by its lack of similarity to the Gaussian-like distributions shown in Figures 5.4(b) 

and 5.4(c). 

With these considerations in mind, the networks may be examined to determine 

if their topologies may be considered scale-free and / or small-world. 

5.2.1 Results 

The network of gene-protein interactions was parameterized by the threshold value 

leading to 32 possible networks for each genome (although the case of zero connectivity 

and full connectivity are neglected). The histograms of the probability of a node 

being connected with k components were fitted to the equation P( k) == ak-1 for each 

threshold value using the sum of least squares method. The threshold value which 

produced a I value closest to 2.5 was kept. A large number of networks which have 

displayed scale-free behaviour exhibit values of 2 < I < 3 (Goh et al., 2002). Values 

for the parameter I characterizing scale- free netvvor ks were also calculated for each 

of the genomes and are shown in Figures 5.5(a) & 5.5(b). 
I 

There exist many genomes created by duplication and divergence which may' be 

considered to satisfy the definition of a scale- free network. Figure 5.6 shows an 

example of one network's connectivity distribution fit to a power- law distribution. 

The vertex distribution does indeed obey a distribution similar to a power- law (scale­

free) distribution. 

In Figure 5.5(a), there is a large number of networks whose coefficient I is close 

to zero. This would seem to be at odds with the previous statement. However, this 
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Figure 5.5: Distribution of values of/. 

can be attributed to the fact that since the mutation rate is low, the probability of 

discovering new promoter patterns through subsequent duplication and divergence 

steps is not high. Therefore, if there were few promoters in the initial starting string, 

there will often be few genes in the overall genome. With a small number of genes, 

the scale-free coefficient I will often be of small magnitude. In addition, it can be 

seen from the distribution of I in Figure 5.5(b) that the majority of the networks 

created by 53 mutation cannot be classified as scale-free. This again, reinforces the 

previous finding that a mutation rate of 53 during the duplication and divergence 

process generates networks that are close to having random connectivity. 

To test vvhether these networks could also be classified as having small- world 

topology, the clustering coefficient, C, and the characteristic path length, L , were cal-

culated and compared to the corresponding metric for a randomly connected network 

of the same size and vertex degree distribution. The threshold value that produced 

a network with the smallest absolute difference, I L - Lrandom I, that also satisfied 

C >> Grandam were taken to be those most characteristic of the small- world network 
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topology. The additional constraint that L > 1.3 was also enforced so as to try to 

exclude graphs that were close to being fully connected. 

The distributions for the clustering coefficient and the characteristic path length 

obtained from the 200 genomes for both rates of mutation are shown in Figures 

5. 7 & 5.8. From these figures, there exists a threshold at vvhich the interaction 

network approaches or satisfies the definition of a small-world netvvork topology in 

the majority of genomes. All graphs which were considered as having scale-free and 

small-world topology were found in the transition areas of Figure 5.3. 

5.2.2 Analysis 

In light of the results presented in the previous section, an obvious question would be 

why whole genome duplication creates scale-free and small-world topologies. Firstly, 

the duplication process, despite being performed directly on the genetic string can be 

considered to be similar to the mechanism of preferential attachment. 

Consider the duplication process on a string which contains multiple genes while 
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neglecting the effects of mutation. For simplicity, it is assumed that no additional 

genes are created from a duplication event by joining the end and beginning of one 

genome string. On the left of Figure 5.9, a network of five gene-protein pairs is shown 

that proceeds through a single duplication event generating the network shown on 

the right side. 

The more highly connected- nodes on the left, nodes 1 and 2 and their copies 6 

and 7 (shown in grey) become even more highly connected after a single duplication 

event. This can again be seen in the third part of the diagram which shows the 

result of another duplication event. As the number of duplication events increases, 

the difference in the number of connections between highly connected nodes and 

less connected nodes increases. This can be thought of as a form of preferential 

attachment since nodes that are already highly connected will become even more 

so after subsequent duplication events. Preferential attachment has been shown to 

be a mechanism which can generate scale-free networks (Barabasi and Albert, 1999, 

Romualdo et al., 2003). 

However, this neglects the mechanism of mutation. Mutation may be thought 
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Figure 5.9: An example of the effect of two duplication events. Highly connected 
(shaded) nodes become even more highly connected (preferential attachment). Each 
node represents a gene / protein pair; each edge represents an interaction between 
gene / protein pairs. 

of as an operator which reorganizes the network. If n1utations should occur on a 

gene, this may either change the gene-protein pair's binding site, or the generated 
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protein thus reorganizing a portion of the network. The other possibilities are that 

mutations may either disrupt the promoter pattern in effect deleting a gene-protein 

pair from the network, create a new gene-protein pair by creating a new promoter 

site, or are neutral. Regardless, it was shown in the previous section that the topology 

of the network as measured by the number of genes in the system is dominated by 

the effects of duplication, not divergence. Thus, -vve can be confident that the scale­

free distribution observed is due to the duplication mechanism, acting similarly to 

preferential attachment. 

How can the small-world topologies found in the ARN model be explained? If we 

examine the definition of a small-world network more closely, it colloquially states 

that a network is highly clustered but that there are many links between these clusters 

which effectively reduce the overall diameter of the network. Frequently, hubs also 

appear in small-world networks (Watts, 2003). It is clear that hubs can appear in the 

ARN model through the duplication process (analogous to preferential attachment to 

more highly connected nodes). However, because of the way the duplication process 

functions (assuming no mutation), the maximum distance1 between any two nodes 

before and after a duplication remains constant. This occurs because the duplication 

step effectively makes a copy of all nodes and all edges simultaneously. It is self­

evident that the maximum distance between any two nodes in only the original graph 

and the copied portion of the net-vvork are the same (if we discount the edges which 

connect the original nodes with the copied nodes). This shows that the path length 

between any two nodes in the original graph is the same as in the copy. 

If we replace any node in the original graph (nodes 1, 2, and 3) with its copy (nodes 

1', 2', and 3') and its associated edges to the original graph, the overall topology 

remains identical. This shows that the path length between any two nodes in the 

1The number of edges traversed to get from node "a" to "b" 
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Figure 5.10: 
Demonstrates that any of 
the nodes in the original 
topology can be replaced 
with its copy without 
changing the topology 
and vice versa. Therefore, 
the maximum path length 
remains constant. 

original graph is the same as the path length between either of the nodes in the 

original graph and a copy of the other node in the copied graph. This shows that 

the maximum path length is invariant to duplication (and thus generally remains 

small). This is shown in Figure 5.10. Therefore, the average path length will always 

be bounded by the maximum path length which we know will never increase. As the 

network grows via the duplication process, its characteristic path length will grow 

much more slowly if at all due to mutations. 

It is also evident that the clustering coefficient of the network is also quite high as a 

result of the duplication process. Because of the regularity of the connection patterns, 

nodes in the network remain highly connected and in fact increase in connectivity 

with each duplication event. Mutation only serves to perturb the topology effectively 

partially randomizing some of the edge connections in the graph. Thus, the formation 

of small-world type topologies can be consistent with the network creation method 

of whole genome duplication and divergence. 
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5.3 Network Motifs in the ARN Model 

Analysis of network motifs has become one method with which to study the topology 

of transcriptional regulatory networks. Niethods are mainly based on searching for 

connection patterns among small numbers of nodes. Here, a network motif finding 

algorithm is applied to the artificial regulatory network model previously introduced 

and compared to results obtained on the natural regulatory networks of Escherichia 

coli and Saccharomyces cerevisiae in addition to being compared to randomly gen-

erated control networks. The high frequency of certain network motifs detected in 

natural systems can be found in artificial systems as well, provided they are gener-

ated by a gene duplication and divergence process. This leads us to suggest that 

the actual frequency distribution of motifs ("motif fingerprint") in natural regulatory 

networks could be at least partially a consequence of the process of network gener-

ation rather than of subsequent evolutionary selection. A discussion of the network 

motif algorithm implementation can be found in Appendix C.2. 

5.3.1 Results 

The subgraph finding algorithm was applied to 800 instances of the artificial regula-

tory model generated by the duplication and divergence process. As a control, it was 
' 

additionally applied to 800 networks whose genomes were generated randomly (by 

choosing the full number of bits at random). Results of applying the subgraph count­

ing algorithm to the two cases are shown in Figures 5.ll(a) and 5.ll(b). For both 

methods of network generation, the genome length was set at 131072 (12 duplication 

events in the case of duplication and divergence). For networks generated by dupli­

cation and divergence, the mutation rate was set at 13 using the same justification 

presented earlier in this chapter. 
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In both cases, the threshold had to be determined. The ratio of the number of 

edges to the number of vertices for the two natural regulatory networks was approxi-

mately 2 to 1. Therefore, in our artificial regulatory network framework, the threshold 

was chosen by iteratively raising the threshold until the network generated had a ratio 

that was equal to or less than 2 to 1. 
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Figure 5.11: Frequency of occurrence for subgraphs of size three. 
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Figure 5.12: Frequency of occurrence for subgraphs of size four. 

This was then compared to the results of applying the algorithm to two natural 

transcriptional networks2
, Escherichia coli (Thieffry et al., 1998, Shen-Or et al., 2002) 

and Saccharomyces cerevisiae (Costanzo et al., 2001). The results of application of 

2The network topologies for these transcriptional regulatory networks was obtained from Uri 
Alon at http://www.weizmann.ac.il/mcb/UriAlon/. 
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the network motif algorithm to these two networks can be seen in Figures 5.11 ( c) and 

5.ll{d). It can be seen in Figures 5.ll(a) - 5.ll(d) that the most frequent natural 

subgraphs (ID 22 and ID 12) are both well represented in duplication and divergence 

type artificial networks whereas only one of them can be detected in fully random 

networks. 

The subgraphs counts for subgraphs of size three and four for all the types of 

regulatory networks investigated in this thesis are presented in Appendices F and 

H. For the artificial networks, average numbers of counts are shown, whereas for the 

natural regulatory systems only one network each is investigated. 

5.3.2 Analysis 

Using the sum of square error (SSE) criterion, the similarity between the distributions 

of subgraphs between the four types of networks was calculated. The similarity is 

shown for both three and four node subgraphs in Tables 5.1 and 5.2. 

D/D Rand EColi Yeast D/D Rand EColi Yeast 
D/D 0 1.5348 1.0844 0.0072 D/D 0 5.3093 1.4227 0.0984 
Rand 1.5348 0 2.2392 1.4886 Rand 5.3093 0 5.6148 5.1497 
EColi 1.0844 2.2392 0 1.1693 EColi 1.4227 5.6148 0 1.2356 
Yeast 0.0072 1.4886 1.1693 0 Yeast 0.0984 5.1497 1.2356 0 

TBble -5.1: Si,_i.m 0f S<Jl.l::lLIP. P.rror (SSE) be- Table 5.2: Sum of square error (SSE) be­
tween the distributions of subgraph counts tween the distributions of subgraph counts 
(for subgraph size three) for the four types (for subgraph size four) for the four types 
of networks examined. Each distribution of networks examined. Each distribution 
has been normalized such that the maxi- has been normalized such that the maxi­
mum count of any individual subgraph is mum count of any individual subgraph is 
1.0. 1.0. 

The network distributions obtained from duplication and divergence are quite 

similar to that of Saccharomyces cerevisiae for subgraph sizes of both three and four 
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according to the SSE criterion. In contrast, it can be seen in the tables that the 

distributions of the randomly generated networks were not similar to any of the three 

other networks investigated. In fact, it can be seen from the tables that networks 

created by duplication and divergence and the regulatory networks of Escherichia 

coli and Saccharomyces cerevisiae are all more similar to each other than to the 

randomly generated networks. 

As gene duplication is considered a more important mechanism of evolution in 

eukaryotes than in prokaryotes, it is interesting that the duplication and divergence 

networks are more similar to the eukaryotic Saccharomyces cerevisiae rather than 

the prokaryotic Escherichia coli. This might suggest that the topology has been 

shaped by duplication events in Saccharomyces cerevisiae's evolutionary history. It 

is in fact been suggested by Teichmann and Babu (2004) that over 903 of eukaryotic 

genes are created by gene duplication. Regardless, it is striking how similar the 

distributions of subgraphs are for these three networks as compared to the randomly 

created topologies. 

In addition, we can investigate the individual subgraphs vvhich are well represented 

in these networks. It can be seen from Figures 5.ll(a), 5.ll(c) and 5.ll(d) that IDs 

22 and 12 are present in quite high numbers. These motifs correspond to the so­

called single input module (Tviilo et al., 2002). This is also the case when examining 

subgraphs of size four in Figures 5.12(a), 5.12(c) and 5.12(d) where network motif IDs 

459 and 563 are well represented. In counts of both three and four node subgraphs, 

the single input modules were not well represented in randomly created graphs. 

vVe have observed that the single-input module is present in the natural networks 

and the network created by duplication and divergence. A valid question would be 

how the single-input module might be created by duplication and divergence? We 

can examine the effect of duplication on the simplest of gene interactions, where one 
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duplication .. duplication .. 
Figure 5.13: The effect 
of whole genome duplica­
tion on the simplest pos­
sible interaction bet\veen 
two genes. 

gene has a regulatory influence on another. If these genes and their connections are 

duplicated we can obtain the so-called single input module netvvork motif. 

Figure 5.13 shows the effects of two duplications on the simplest of regulatory 

influences. This should create two types of subgraphs with equal probability, the 

single-input module and the so-called single-output module as shown in the figure. 

However, this is not the case as can be seen when examining the motif counts for both 

the natural and artificial networks. This is a natural consequence of the duplication 

and divergence process and has been studied by Leier et al. (2005, in preparation). 

5.4 Conclusion 

Investigations on the topological properties of an artificial regulatory network model 

have been presented. The construction of such a network using a simple whole genome 

duplication process directly on a genetic-string representation of the genome produces 

a netvvork construction scheme similar to preferential attachment. The addition of a 

mutation operator introduces a kind of rewiring of the network topology by changing 

activation / inhibition sites, creating / destroying gene-protein pairs and changing 

the configuration of proteins. Examining networks generated in this vvay by varying 

the threshold at \vhich genes and proteins may interact shows that many of these 

regulatory netvvorks display the characteristics of small-world and scale-free netvvork 
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topologies with some regularity. 

This assumes that duplication proceeds by duplicating the whole genome - an 

event which occurs relatively rarely in nature (Nadeau and Sankoff, 1997, Wolfe and 

Shields, 1997). That the networks generated are scale-free is in agreement with Chung 

et al. (2003) and van Noort et al. (2004). It was also found that the Saccharomyces 

cerevisiae co-expression network displays small-world topology (van N oort et al., 

2004). 

The data presented regarding the distribution of network motifs among the ar­

tificial and natural networks might convince us that there might be a relationship 

between them. No evolutionary selection pressure has been applied to the artificial 

systems. Thus, it can be stated that the distribution outcome is a reflection of the 

mechanism of its generation rather than a result of evolutionary pressures as are the 

case in natural networks. Perhaps it may be the case that the motif distributions 

in these natural networks are in part the result of other organizing forces such as 

duplication and divergence (although evolutionary pressures are certainly responsible 

for fine-tuning of distributions). 

As \Vas previously noted, there is conflicting evidence in the literature regarding 

the conservation of net\vork motifs over evolutionary time (Wuchty et al., 2003, Babu 

et al., 2004). In addition, Babu et al. (2004) and Teichmann and Babu (2004) suggest 

that network motifs are not created by duplication events but are built by incremental 

evolution of gene interactions. In support of this conjecture, it was suggested by Co­

nant and Wagner (2003) that network motifs are found through convergent evolution 

- not through any duplication processes. 
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Chapter 6 

Evolving Dynamics in the ARN 

Model 

In the previous chapter, the topology of the ARN model was investigated. However, 

topology is only one of the aspects of a genetic regulatory network. It could be 

argued that topology is what gives rise to dynamics, but regardless, it is the actual 

dynamics of the network that give rise to the myriad of functions observed in natural 

systems. This chapter examines the dynamics of the ARN model from the standpoint 

of attempting to evolve simple time series. 

In addition to the interest from biology, the artificial life community has also b
1
een 
I 

studying genetic regulatory networks (Reil, 1999, Bongard, 2002, Banzhaf, 2003b, 

Bongard and Pfeifer, 2003, Hotz, 2003, Watson et al., 2003, Willadsen and Wiles, 2003, 

Hallinan and Wiles, 2004). As such, features of regulatory networks have also been 

used in the context of function optimization by Bongard ( 2002), Bongard and Pfeifer 

(2003) and Watson et al. (2003). Obtaining arbitrary functions through evolutionary 

means for the purpose of model optimization has been previously performed for flying 

(A ugustsson et al., 2002), locomotion (Dittrich et al., 1998) and the inference of 



differential equations (Cao et al., 2000). 

However, previous models of regulatory networks primarily use Boolean represen­

tations of network dynamics (Reil, 1999, Watson et al., 2003, Willadsen and \tViles, 

2003, Hallinan and Wiles, 2004). Here we show that an ARN model using differ­

ential equations can also display simple dynamic behaviours which may be selected 

by evolution. Other ideas relating to genetic transcription have also previously been 

used in function optimization such as genetic-code transformations (Kargupta and 

Ghosh, 2002), gene expression (Kargupta, 1996, Eggenberger, 1997), gene signalling 

(Goldberg et al., 1989) and diploidity (Yoshida and Adachi, 1994). 

Thus, by attempting to evolve an arbitrary time series in the ARN model, some 

enquiries on the evolvability of the ARN model can be performed with some possible 

relevance to the evolvability of natural systems. The types of analysis and search 

mechanisms relevant to such processes could also be important to the field of synthetic 

biology where synthetic genetic regulatory networks have been evolved in vivo toward 

dynamics such as oscillations (Hasty, 2002, Yokobayashi et al., 2002), in numero 

(Franc;ois and Hakim, 2004) and in silica (l\!Iason et al., 2004). Such an investigation 

also provides a framework where the interplay between network dynamics, evolution 

and topology can begin to be investigated. Portions of the work presented in this 

chapter have been previously published in Kuo et al. (2004). 

6.1 Extracting a Signal from the ARN Model 

Simulation of the ARN model presented in Section 3.4 gives the dynamics of the 

protein concentrations in the system. However, the system has no assigned semantics 

- the protein concentrations have no meaning outside the system (they perform no 

internal or external cellular function other than regulation). Additionally, since the 
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protein concentrations are limited to sum to 1 (i.e. I: ci == 1), generation of functions 

in which the protein concentrations do not sum to 1 are excluded. 

Therefore, in order to use the ARN framework to obtain more arbitrary dynamics, 

a mapping is required. To this end, an additional 64-bit sequence is randomly selected 

along the genome as a binding site for the desired output function. The first 32-bits 

specify a transcription factor binding site representing an inhibition site while the 

second 32- bits specify a transcription factor binding site for activation. Remember, 

that proteins acting as transcription factors can bind to transcription factor binding 

sites in order to influence the creation of a protein from an adjacent gene. The proteins 

generated by the ARN are free to bind to these two additional regulatory sites. The 

levels of activation and inhibition are calculated in the same way as in Equation 3.10. 

However, instead of calculating a "concentration" of this site (which generates no 

protein of its own), the activity at this site is simply summed and used directly as an 

output function, s ( t) == Li ( ei - hi). 

Subsequent normalization of s( t) to between -1 and 1 generates the dynamics 

of the specific genome. Without this normalization step, it is difficult to match the 

scaling of any desired dynamics. However, since this scaling is effectively arbitrary 

depending only on the specific desired dynamics, this is not a problem. 

Thus, the additional binding sites added to the genome may be thought of as a 

method with which to extract dynamics from the changes in concentrations of the 

proteins in the ARN model. This can be visualized as being a network like the 

ones presented in Figures 5. 2 (a) and 5. 2 (b) except where each protein is linked to 

an additional node representing the new inhibition / activation site (but does not 

generate a protein of its own). Additional inhibition / activation sites may also be 

added to the genome for the extraction of additional signals. 
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6.2 Evolutionary Strategies 

The evolutionary strategies approach to artificial evolution was selected in order to 

evolve the simple dynamics in the ARN model. Such an approach is easily imple­

mented and has been used previously for evolving genetic circuits in in numero and 

in silica synthetic biology (Frangois and Hakim, 2004, Mason et al., 2004). 

Specifically, a (µ+;\)-Evolutionary Srategy (ES) was used whereµ and;\ represent 

the number of parents and offspring respectively. The "+" indicates that selection 

occurs over both the parents and their offspring. Therefore, in one generation (or 

step) of the algorithm, ;\ offspring are generated from the µ parents. Then, the 

best µ individuals of the group of this generation's parents, µ, and offspring, ;\, are 

taken to form the parents of the next generation. An alternative to the "+" selection 

strategy is the use of the "," strategy. In this selection strategy, only the best µ of 

the ;\ offspring are selected to survive to become parents in the next generation of the 

algorithm. Regardless of the selection strategy, offspring are created by taking each of 

the parents and applying a mutation operator on them which is problem dependent. 

In general, a recombination operator analogous to crossover in eukaryotic organisms 

may also be used but is omitted here. A good introduction and review of work in the 

field of evolutionary strategies can be found in Beyer and Schwefel (2002). 

6.3 Optimization and Simulation Details 

In order to evolve solutions, s(t), a simple (50 + 100)-Evolutionary Strategy (ES) is 

used (Beyer and Schwefel, 2002). Pseudocode for this process is presented as follows: 

76 



Algorithm 1: Pseudocode for the evolutionary strategies algorithm. 
initialize 50 random individuals; 

evaluate the population's fitness; 

while population has not reached convergence do 

for each member of the population do 

for perform this twice for each population member do 
create a copy of the population member and mutate it; 

evaluate this new mutated member of the population; 

end 

end 

select the best 50 individuals from the group of parents and offspring; 

end 

Genomes were generated by 10 duplication events per genome subject to 13 mu­

tation leading to individual genomes of length Le == 32768. It was previously shown 

in Section 5.2 that a mutation rate of 13 during the duplication and divergence pro-

cess is sufficient to "rewire" parts of the topology of the network without making it 

completely random (Kuo and Banzhaf, 2004). 

The number of genes in each genome is given by the number of promoter patterns 

present as was previously defined in Section 3.4. Each generation, 100 new individuals 
I 
I 

are created from the current population using a 13 single-point (bit-flip) mutation 

(i.e. on average, 328 mutations per genome). The fitness of these solutions was calcu­

lated and the best 50 of 150 (parents + children) proceed to the next generation. ES 

was stopped when the best solution found was not improved upon for 250 generations. 

The objective is to minimize the fitness function calculated as the mean square 

error (MSE) between the desired function and the evolved function. The following 

cases were examined and are shown in Figure 6.1: f (t) == sin(t) (Case #1), f (t) == 
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Figure 6.1: Plot of the 
three fitness cases. Each 
run aims to match the 
dynamics of one of these 
three cases (ten runs were 
performed for each case). 

2 exp (-0.lt) - 1 (Case #2) and f(t) == l+exp(!o.2t+io) - 1 (Case #3). 

All solutions were generated with a time step, dt == O. ls. The initial protein con-

centrations (the initial conditions for the differential equation) are set to be =# 
1

1 
. o genes 

In addition, the first 100 time steps (10s) are ignored. This is done in order to exclude 

the startup dynamics of the model. Thus, for calculation of the fitness function, the 

normalized output generated by the ARN model from time t == 10 ... llOs is compared 

with the fitness case f ( t) from time t == 0 ... lOOs. The differential equation model is 

solved using a simple integrator, in this case Euler's algorithm. Normally, the use of 
I 
' 

such a naive integrator can cause significant numerical error. However, due to the 

simplicity of the differential equations which are simple linear functions and the small 

time step of dt == O. ls, there are no problems with either numerical stability of the 

algorithm or problems with singularities or nonlinear behaviours. 
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6.4 Results 

Tables 6.1, 6.2 and 6.3 summarize the results of 10 evolutionary runs each for the three 

fitness cases. Figures 6.2(a), 6.3(a) and 6.4(a) show the actual function generated by 

the best individual of each run for the three fitness cases. Figures 6.2(b), 6.3(b) and 

6.4(b) show the progress of the best evolutionary run for each fitness case. 

It is clearly shovvn that the ARN model accurately generates dynamics approxi-

mating the sinusoid (Figure 6.2(a)), the exponential (Figure 6.3(a)) and the sigmoid 

(Figure 6.4(a)) functions with good accuracy for all runs. In all fitness cases and 

evolutionary runs, the MSE calculated was less than 0.00588654. Additional support 

for the success of th~se simulations can be seen in the final population fitness aver-

ages shown in Tables 6.1, 6.2 and 6.3. The average population fitness values (l\!ISE) 

are relatively small with low standard deviation. This indicates that the population 

is such that all or virtually all individuals when simulated generate functions that 

closely approximate the respective objective functions. 
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is 0.000151746. #1 (sinusoid). 

Figure 6.2: The best solution of 10 runs on Case #1. 
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Run# Best MSE #Gens. #Genes Avg. MSE(Pop.) Avg. #Genes (Pop.) 
1 0.001445217 731 47 0.00287(7. 7e-4) 45.31(5.72) 
2 0.001165628 381 74 0.00316(7.8e-4) 76.92(3.42) 
3 0.000614281 1214 105 0.00114(1.5e-4) 117.59( 4.57) 
4 0. 0007 4 7053 835 234 0.00291 (8.2e-4) 244.00(13.2) 
5 0.001861556 428 63 0.00326(6.8e-4) 75.08(9.34) 
6 0. 000640149 1077 101 0.00186(3.5e-4) 102.49( 4.08) 
7 0.001561523 315 26 0. 00440 ( 8. 5e-4) 32. 78(5.55) 
8 0.000151746 1040 124 0. 000 5 8 ( 1. 3e-4) 135.63(6.32) 
9 0.000519559 933 71 0.00134(3.4e-4) 92.88(53.2) 

10 0.000846462 858 55 0.00270( 4.5e-4) 48.57(3.22) 

Table 6.1: Results of 10 runs of (50 + 100)-ES on Case #1 (sinusoid). The standard 
deviation is given in brackets. 
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the ideal solution for Case #2 (exponential). The and the average fitness using (50 + 100)- ES for Case 
MSE is 0.00363873. #2 (exponential) . 

Figure 6.3: The best solution of 10 runs on Case #2. 

6.5 Analytical Considerations 

We can see that a wide variety of networks with differing numbers of genes vvere found 

in the ARN framevvork to generate equivalent dynan1ics for the three fitness cases. 
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Run# Best MSE #Gens. #Genes Avg. MSE{Pop.) Avg. #Genes (Pop.) 
1 0.00411971 708 133 0.0044 7(1.3e-4) 142.83(5.88) 
2 0.00478168 642 166 0.00554(2.5e-4) 185.95(13.5) 
3· 0.00363873 354 27 0.00641 (5.5e-4) 52.22(7.00) 
4 0.00441011 359 20 0. 00660( 6. le-4) 31.95(7.38) 
5 0.00381064 747 97 0.00505(3. Oe-4) 106.81(5.71) 
6 0.00402240 877 63 0. 00464 ( 1. 8e-4) 58.83( 4.17) 
7 0.00426413 501 128 0.0057 4(3.5e-4) 116.14(8.75) 
8 0.00537858 287 176 0.00661 ( 4.6e-4) 164.40(11.1) 
9 0.00511630 466 58 0.00688(5.6e-4) 54.26(3. 73) 

10 0.00588654 519 45 0.00643(1. 7e-4) 45.65(3.10) 

Table 6.2: Results of 10 runs of (50 + 100)-ES on Case #2 (exponential). The 
standard deviation is given in brackets. 
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the ideal solution for Case #3 (sigmoid). The MSE and the average fitness using (50 + 100)-ES for Case 
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Figure 6.4: The best solution of 10 runs on Case #3. 
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Run# Best MSE #Gens. #Genes Avg. MSE(Pop.) Avg. #Genes (Pop.) 
1 0.00101533 1235 154 0.00150( l.3e-4) 147.59(20.6) 
2 0.00035992 557 36 0.00068(1.2e-4) 39.22(2.40) 
3 0.00001843 758 100 0. 00004 ( 1. Oe-5) 102.45(2.93) 
4 0.00001732 721 96 0.00004(1.0e-5) 96.55(2.80) 
5 0.00011328 617 97 0.00025(6.0e-5) 102. 78( 4.02) 
6 0.00002073 825 104 0.00013(5.0e-5) 109. 78(5.03) 
7 0.00005429 465 108 0. 00044 ( 1. 8e-4) 112.37(11.4) 
8 0.00016598 879 177 0.00047(2.2e-4) 186.02(9.87) 
9 0.00005034 575 195 0.00031 (1.2e-4) 212.16(9.57) 

10 0.00002219 987 39 0.00006(1.0e-5) 39.49(2.42) 

Table 6.3: Results of 10 runs of (50 + 100)-ES on Case #3 (sigmoid). The standard 
deviation is given in brackets. 

As can be seen from the results of the evolutionary runs, significantly large numbers 

of genes were used to obtain a solution. This is due to the fact that there was no 

penalty on the number of genes and no parsimony criterion during the evolution runs. 

To demonstrate this, the algorithm was run again vvith a penalty on the number of 

genes. The results of this are presented in Appendix I. 

An interesting question to ask is, "What is the minimum number of genes required 

to generate equivalent dynamics for each fitness case?" In the case of the sinusoid, a 

simple oscillator can be written in the form, jj + w2y == 0 ¢:? jj == -w2y which describes 

the acceleration of an oscillating body. The acceleration is proportional but directed 

a simple pendulum. When the pendulum crosses the vertical plane, an acceleration 

(i.e. gravity) pulls the pendulum in the opposite direction. 

Defining, x 1 == iJ and x 2 == wy and substituting this into the pendulum equation, 

\Ve obtain i 1 == jj == -w2y == -wx2 and i 2 == wy == wx1 . \rVritten as a matrix, this is: 

0 w 
x( t) == x(t) (6.1) 

-w 0 
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which leads to x1 == - sin(wt) and x2 == - cos( wt). 

We can take the vector x to be the concentrations of gene /protein pairs. So if 

Equation 6.1 was to be implemented in the ARN model how would it look? There 

would be two gene / protein pairs represented by nodes, "l" and "2". The first equa­

tion (i1 == wx2 ) can be implemented by node "2" having an inhibitory relationship 

with node "l". The second equation, likewise, can be implemented with an excita­

tory relationship between node "l" and node "2". In this way, the simple oscillator 

of Equation 6.1 can be implemented. For the ARN dynamic model to extract this 

oscillatory dynamic, it would simply have to have higher connectivity with one of the 

protein products of either node "l" or "2". Therefore, we can say that the minimum 

possible number of genes required to generate an oscillator in the ARN model is two. 

In fact, this is not surprising since we know that in order to generate an oscillator, 

we require a system which has entirely complex eigenvalues (with no real number 

component). Since the oscillator we desire is restricted to r.~al numbers, we know 

that any complex eigenvalues must occur in complex conjugate pairs (indicating the 

minimum number of genes is 2). Therefore, this agrees with the previous analysis. 

The requirements to generate a decaying exponential in the ARN model are de­

cidedly simpler. In the dynamical equations the effects of excitation and inhibition 

on one gene are exponential in nature. Therefore, we simply need to have one gene in 

the system who's protein product binds with greater strength to the inhibitory rather 

than the excitatory site from which the dynamics are extracted. So, we simply need 

one gene in our system to create the dynamics of a decaying exponential. 

The situation is somewhat more complicated in the case of the sigmoid type func­

tion. A means of deriving the minimum requirements for this function to a canonical 

form as was done for the previous two types of dynamics \Vas not found. Hovvever, it 

can be reasoned that the minimum number of genes required must be greater than 
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one since a network with only one gene leads exclusively to exponential type dynam­

ics. Appendix I demonstrates three different topologies of two-gene networks that 

generate sigmoid type dynamics. Therefore, it is reasonable to conclude that the 

minimum number of genes required in order to generate a sigmoid is two. 

6.6 Conclusion 

It has been demonstrated that the dynamics of a differential equation based ARN 

model created through duplication and divergence can be evolved toward simple func-

tions. This suggests that such an approach may also be appropriate for generating 

arbitrary functions suitable for use in applications such as model optimization. 

Due to the way in which the genes are detected on the genome, there are plentiful 

opportunities for individuals in the population to acquire neutral mutations which 

are beneficial in the context of evolution (Yu and Miller, 2001). Since there exist 

extensive non-coding regions of the genome, neutral mutations are free to be collected 

with new genes appearing suddenly when a new promoter pattern has been created 

through mutation. As well, each of the networks generated for each fitness case 

contains a different topology (number of genes). Therefore, due to the quality of 

solutions, it may be inferred that there are many different networks which can give 
I 

good approximations to each of the fitness cases. 

An open question within this framework is how the number of genes affects the 

ability to generate functions of a given type. However, from the results of this chapter, 

it is evident that it is quite easy to evolve the ARN model toward simple time series. 

In addition, it was seen that each evolved solution for any of the fitness cases differed 

largely from run to run. This would seem to indicate that there exist an extensive 

number of different topologies which can generate equivalent dynamics. 
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Chapter 7 

Conclusion 

This thesis has presented some of the methods for studying models of regulatory 

networks using mathematical and computational formalisms. In particular, an arti-

ficial regulatory network model first proposed by Banzhaf (2003a) was studied from 

the perspective of static network topology and the evolution of dynamics addressing 

questions raised in both artificial evolutionary processes and network biology. 

Specifically, the model was examined from the standpoint of the scale-free, small-

world and network motif topological properties when created using a whole genome 

duplication and divergence process. The whole genome duplication and divergence 

process was chosen since it has been previously implicated as an important factor 
' 

in the evolution of genomes and due to its simplicity. Networks generated from 

this processes can in fact be classified as being scale-free and small- world. This is 

interesting since many researchers have claimed that the presence of scale- free and 

small- world network topologies are hallmarks of self- organization. In addition, these 

networks were also found to have subgraph distributions similar to those found in the 

transcriptional regulatory networks of Escherichia coli and Saccharomyces cerevisiae 

unlike those of random networks. 
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Since for all of these networks no evolution or modifications were made to the 

networks, the topologies obtained are directly related to the method of construction. 

This might indicate that such topologies may be artifacts of the method of creation 

rather than explicitly formed by evolution. Therefore, it may be more constructive 

in investigating transcriptional regulatory network topology to study the methods of 

network creation that nature has used . . Efforts in this direction are just beginning. 

Even if the processes which create these networks have little to do with their sub­

sequent topology, this thesis describes the effect of a whole genome duplication and 

divergence procedure on three different topological measures of networks specifically 

in the model of Banzhaf ( 2003a). 

The evolution of dynamics of this model has also been investigated. The genome 

sequences could easily be evolved such that the dynamics generated matched those 

of simple output functions such as the sinusoid, sigmoid and decaying exponential 

functions. Examining the networks that were generated by the different genomes 

shows that many different networks give good approximations to each of the fitness 

cases. This would seem to indicate that within the ARN framework that there are 

an extensive number of different topologies which can generate equivalent dynamics 

which may be progressively evolved. 
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Appendix A 

Measurement Technologies 

High throughput technologies for obtaining mRNA expression levels such as genetic 

microarrays and the serial analysis of gene expression technique are briefly reviewed. 

A.1 Genetic Microarrays 

In recent years, the number of scientific papers published using microarray technolo-

gies has grown tremendously. By enabling data acquisition on gene expression levels 

to be massively measured in parallel, genetic microarrays have helped to usher in the 

new age of so- called "systems biology". As the pace of advancement in this field is 
I 

staggering, any review of cutting- edge technology becomes quickly outdated. This 

section, presents some of the basic ideas and platforms of microarray technology. 

All microarrays share the following: probes, and a substrate on which to deposit 

the probes. The probes are what is used to determine the expression level of a 

given mRNA. The details of the specific microarray platforms include the type of 

probe used (short oligo or long stretches of DNA), the substrate type (coated glass, 

polyacrilamide, etc ... ), how the probe is synthesized (in situ, or spotted directly) , the 
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nature of the probe (ordinary nucleic acid or "locked nucleic acid") and the labelled 

sample to be hybridized (cDNA or cRNA) (Szallasi, 2002). Two of the most common 

types of microarrays are cDNA arrays and oligonucleotide arrays. An overview of 

microarray technologies can be found in Kohane et al. ( 2002). 

A.2 Serial Analysis of Gene Expression (SAGE) 

Serial analysis of gene expression (SAGE) is a method for quantifying gene expression 

within a given cell. The idea is to capture mRN A molecules within the cell, figure out 

what gene they were transcribed from, and then count the total number of mRN:As for 

each gene (allowing an estimate of how vigorously a given gene is being transcribed). 

The profiles of gene expression for different cell types are vastly different as are those 

of cancerous or infected cells. By studying these patterns of gene activity, researchers 

may be able to pinpoint the gene activity linked to particular diseases and conditions 

allowing for the development of targeted drug delivery. 
.. . 

Typically, mRN As end with a long string of "A" s. In order to capture these 

mRNAs, microscopic magnetic beads are baited with strings of approximately 20 

"T" s. Since "A" s and "T" s form a strong chemical bond, when the mRN As are 

washed past a bath of these beads, the mRNAs become attracted to the beads. A 
I 

magnet is then used to extract the beads and mRNAs out of the bath. These mRNAs 

are then copied back into DNA with the use of reverse-transcriptase. 

These DNA fragments can then be identified using genetic sequencing. However, 

this means that one would have to sequence the DNA of every mRNA transcribed in 

the cell (an undertaking that could take decades using today's technology). Luckily, 

a sequence of approximately 14-bases is required to identify a given gene. In order 

to speed the sequencing step further, each 14-base tag obtained from the reverse-
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transcription of the mRN A is joined end-to-end to form a "concatemer". By subse­

quently amplifying the numbers of this concatemer (by duplication in bacteria), it can 

be later sequenced to obtain the number of times a given gene has been transcribed 

in the cell. 

In summary, SAGE works by capturing RNA molecules, rewriting them as DNA, 

cutting a single 14-letter tag from the DNA, and joining all of these 14-letter tags 

together to form one long string of DNA. This long string is then sequenced allowing 

for the counting of the number of transcripts for each gene. 

One of the primary advantages of SAGE is that it may be used to discover new 

genes. When studying an organism for which the complete genome is not available, 

if a tag is found which is not associated with a known gene, then it likely comes from 

a previously unknown gene. This has been exploited to find novel genes that could 

potentially play a significant role in tumourigenesis (Polyak and Riggins, 2001). 

Although the use of tags of 14-bases is sufficient to uniquely identify genes, Ryo 

et al. (2000) have found that the use of 18-base tags leads to a more accurate DNA 

expression profile. There is also a problem with consistently obtaining the same 

number of bases from a given enzymatic cut. For instance, assuming tags of 14-

bases, in a dibase of 28-bases, there is no way to be sure that this consists of two 

14- base tags as opposed to one 16- and one 12-base tag. Yamamoto et al. (2001) 

have found that keeping the temperature constant greatly reduces such complications. 

In addition, while it is true that most mRN As end with "A" s, it is not true in 

all cases. Therefore, not all transcripts will be captured and will subsequently be left 

out of any analysis. Yamamoto et al. (2001) suggest the use of different combinations 

of anchoring and tagging enzyme be used to create two different profiles which can 

then be correlated and compiled representing the majority of genes expressed in the 

cell. 
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Appendix B 

Determining Interactions Between 

Genes 

Measuring mRNA levels gives us valuable data. However, such technologies do not 

tell us directly how one gene's products might interact with other genes. For this, 

various statistical, data mining, pattern recognition and machine learning methods 

are typically used. Since the vast majority of such analysis has been performed on 

microarray data, the information presented is more relevant to microarray analysis 

but is equally applicable to other mRNA measurement data. A good introduction to 

· computational strategies for analyzing microarray experiments can also be found in 
I 

Szallasi (2002) and Aittokallio et al. (2003) . 

B.1 Correlation Analysis 

Correlation analysis has long been a tool used in biological studies to generate hy-

potheses on possible causal relationships. In terms of the analysis of regulatory net-

works, the assumption behind correlation analysis is that genes which change their 
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expression levels in a correlated manner may possess some form of regulatory rela-

tionship. Obtaining a high correlation (or negative correlation) corresponds to four 

possible relationships - gene "A" regulates gene "B", gene "B" regulates gene "A", 

gene "A" and gene "B" are co-regulated by gene "C", or chance. These relation-

ships may also be effected through one or more intermediaries. However, it must be 

stressed that a high correlation (or negative correlation) is never proof of a causal 

relationship but should only be a means to propose hypotheses that must be tested 

by other methods. An example of a correlation metric used to reconstruct metabolic 

networks can be found in Ar kin et al. ( 1997). 

B.2 Clustering Methods 

In addition to correlation analysis methods, clustering and projection methods are 

also typically used to determine which protein products interact with other genes. 

K -means and hierarchical clustering and their variants form one of the most 

common analysis methods for pattern recognition (Duda et al., 2002). As such, they 

have been used in past microarray studies (Spellman et al., 1998, Dutilh, 1999) . 

B.2. 1 k-means A lgorithm 

The k-means algorithm divides data samples (in this case genes) into k different cl us-

ters. Each cluster would theoretically represent those genes which are co-expressed 

and thus display some form of similarity. The algorithm works by randomly choosing 

k samples from the data set as the "centroid" of each cluster (each gene selected is 

assigned to a different cluster). Then each point in the remaining data set is assigned 

to a cluster based on its distance to the centroid of each cluster. After this assign-

ment, the affected class centroid is updated. This process is often repeated several 
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times in order to gain some confidence in the results of the algorithm due to the in-

herent stochasticity present (in the initial class centroids, and sometimes in the order 

in which the remaining data points are assigned classes). A more complete treatment 

of the k-means algorithm can be found in (Duda et al., 2002). 

B.2.2 Hierarchical Clustering 

In contrast to k-means clustering, hierarchical clustering methods are insensitive 

to initial conditions such as cluster number, prototype choice and sample ordering. 

Such methods function by developing a sequence of partitions where at each time 

step, partitions are combined to form sub-clusters. The criterion for joining together 

partitions are typically measures of minimum distance (nearest neighbour), maximum 

distance (furthest neighbour), or average distance. The merging of partitions can 

be displayed through the use of a dendrogram (a binary tree- like figure). A more 

complete treatment of hierarchical clustering can be found in Duda et al. (2002). 

B.2.3 Support Vector Machines 

In addition to the traditional clustering algorithms, many machine-learning and clas­

sification approaches to clustering have been used with genetic data including random 

forests (a method which can be thought of as a boot-strapped version of hierarchi­

cal clustering) (Shi et al., 2004) and support vector machines (SV1vl) (Brown et al., 

1999, Guyon et al., 2000). In the case of using classifiers on gene expression data, the 

classes would be analogous to clusters of co- expressed genes. SVivls has been shown 

to be successful in a variety of different applications such as text categorization, 

hand- written character recognition, image classification and bio-sequence analysis 

( Christianini and Shawe-Taylor, 2000). 
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SVMs emerged from work on the perceptron algorithm, another machine learning 

/ discriminant algorithm (Hand et al., 2001). Earlier work on the perceptron learning 

rule focused on linearly separable classes. The best generalization performance for 

such systems was obtained when the discriminant hyperplane was as far as possible 

from the different classes of data points. The use of SVMs generalizes this concept 

even further allowing for non- linear decision surfaces which can perfectly separate 

the classes of data in the original measured feature space. 

Another advantage to this method for developing classifiers is the lack of param-

eters required. Other methods such as maximum likelihood classifiers and maximum 

a posteriori methods all require the assumption of a probability distribution for the 

sampled data. Methods such as those related to neural networks require different 

choices of neuron types, learning rates (and methods), and network topologies. The 

sv:rvr method does not require such parameters. 

B.3 Projection Methods 

In contrast to clustering, projection methods attempt to find projections of the data 

which can prove to be more informative. A reduction in dimensionality may often 

be achieved with such methods. In this section, the methods of principal component 
' 

analysis and independent component analysis are introduced. 

B.3.1 Principal Component Analysis (PCA) 

PCA is a method by which a set of orthogonal feature vectors may be constructed 

in feature space where ne\v features have zero correlation. In the case of genetic 

n1icroarray data, the expression of each gene (across different samples) can be viewed 

as a separate feature vector in the original feature space. PCA then combines these 
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features in a linear fashion in order to generate new features which may be more 

informative. 

The original data is then "projected" onto this new feature space where the eigen-

values represent the standard deviation of the data in the direction of the correspond­

ing eigenvector (new feature direction). PCA is a simple data analysis tool. Yeung 

and Ruzzo (2000) have found that the features found via PCA may sometimes be 

uninformative in gene expression clustering. This is unsurprising since PCA restricts 

the feature space to being orthogonal (corresponding to the matrix eigenvectors). 

This restriction is removed in Independent Component Analysis (ICA). 

B.3.2 Independent Component Analysis (ICA) 

ICA is an alternative method for analyzing and exploring large datasets. In a technical 

report by Yeung and Ruzzo (2000), it was found that PCA does not always find 

useful projections of the data. In certain cases, use of PCA on the data had a hugely 

detrimental effect on subsequent classification and machine learning schemes. 

PCA enforces the constraints that the principal components must be orthogonal 

to each other, ICA allows non-orthogonal basis vectors. In PCA, one wishes to find 

rotations which lead to data which is uncorrelated when projected onto these new 
( 

basis vectors. In ICA, one wishes to find rotations of the data which look as "non-

Gaussian" as possible. Justifications, methods and a more detailed formulation of 

the ICA algorithm can be found in Hyvarinen (1999) and Hyvarinen and Oja (2000). 

As was shown by Liebermeister (2002), the independent components of genetic 

microarray data can be directly related to distinct biological functions such as the 

phases of the cell cycle or the mating response and also has been used in microarray 

analysis (Lee and Batzoglou, 2003). 
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Appendix C 

Subgraph Finding Algorithm 

C.1 Algorithm Implementation . 

In order to detect all n-node subgraphs, an algorithm similar to one devised by Milo 

et al. (2002) has been implemented. The algorithm of Milo et al. (2002) scans all rows 

of the adjacency matrix, M, searching for non-zero elements ( i, j) which represent 

a connection from node i to node j. The algorithm then recursively traverses the 

neighbouring vertices connecting vertex i and j until a specific n-node subgraph is 

detected. The search traverses the graph disregarding edge direction (i.e. the algo­

rithm may move from node "A" to node "B" even if the directed edge is from "B" 

to "A"). The constituent vertices and edges of a subgraph are then compared to pre­

viously found subgraphs in order to ensure that none have been over-counted. This 

form of search is analogous to depth first search (DFS) except the search process is 

terminated when a n-node subgraph is obtained. Three different data structure im­

plementations were considered for the storage of the network topologies: an adjacency 

matrix, an edge-list and a node / edge list. 

The adjacency matrix is one of the simplest schemes for storing network topology. 
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Storage Complexity Search Complexity 
Adjacency l\!Iatrix n2 == le2 

4 
2n 

Edge-List e e 
Node / Edge List n + 2e == ~e c 

Table C. l: A comparison of the different data structure implementations considered. 
n is the number of nodes, e is the number of edges and c is a constant. 

The matrix is typically com posed of "O" s or "l" s in each of the ( i, j) locations of the 

adjacency matrix. Every "1" in the adjacency matrix represents a connection from 

node i to node j. This is the approach taken by Milo et al. (2002). However, the 

storage requirements for this scheme are quadratic in the number of nodes (O(n2
)). 

In addition, in order to perform the recursion required in the implementation of the 

search algorithm, the neighbours of each node must be determined. This entails 

examining each element in one row and one column of the adjacency matrix leading 

to the examination of 2n entries anytime a neighbour of a node is to be determined. 

An edge-list is another common method for storing a network topology. A typical 

implementation involves storing a pair of values vvhich indicate a relationship between 

two nodes. For example, the pair ( 4, 3) would indicate that there exists an edge in 

the graph from node 4 to node 3. This leads to a storage requirement of O(e) where 

e represents the number of edges. However, a search for any neighbour of a given 

node requires a search over the entire list of edges. Therefore, the search complexity 

of using an edge list is also 0 ( e). 

An alternative to the previous two implementations is a node / edge list. Each 

element of the data structure stores the node label and the labels of all incoming and 

outgoing edges. For instance, the element {3,(2,5,6,1),(7,4)} shows that node 3 has 

incoming edges from nodes 2, 5, 6 and 1 and edges which leave node 3 and terminate 

at nodes 7 and 4. This leads to a storage requirement of 0( n + 2e). Hovvever, the 

search complexity associated with the data structure is constant ( 0(1)). 
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The storage and search complexity of each of the three data structures considered 

is presented in Table C .1. For the search complexity listed in Table C .1, the actual 

complexity of using a DFS algorithm is excluded since an equivalent DFS is imple­

mented for each of the data structures considered. Therefore, the search complexity 

only gives the complexity directly related to the use of the specific data structure 

implementation with DFS. Since the types of graphs that were analyzed in this the­

sis typically have twice as many edges as nodes, Table C .1 has been rewritten with 

e == 2n to more easily facilitate comparison between the different implementations. 

Therefore, we can see that the node / edge list data structure gives the best search 

performance with only a modest increase in storage requirements over the edge-list 

data structure. For this reason, the node / edge list data structure was used in 

implementing the subgraph enumeration algorithm. 

It must be noted that the total number of subgraphs of a given type is counted 

and possible isomorphisms are considered the same subgraph type. The mappings 

of isomorphic graphs to a single canonical form is first performed in a preprocessing 

step. This step is accomplished by a brute force search through the 2subgraphsize
2 

possible adjacency matrices for isomorphisms. Of course, only connected graphs are 

considered by the algorithm where isomorphisms on an adjacency graph are found 

through the equivalence of row / column permutations. Isomorphisms are stored in 

a hash table for quick access during the actual search process. From this process, 

it \Vas found that there were 86 non-isomorphic subgraphs of size three, 2818 types 

for networks of size four, 13930 types for networks of size five and 43700 types for 

networks of size three with inhibitory and excitatory connections. 

The pseudocode for the particular implementation of the algorithm is given in 

Section C.2. Appendix E lists all three-node connection patterns in directed graphs, 

including auto-regulatory connections, up to iso1norphism. Appendix G lists all four-
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node connection patterns in directed graphs, including auto-regulatory connections, 

up to isomorphism. Particular subgraphs are referred to by their motif IDs (given in 

Appendices E and G). 

C.2 Algorithm Pseudocode 

Algorithm 2: Searchisomorphism: Find the set of all isomorphisms for all 

subgraphs of size n. 
input : Size n of subgraphs 

output: A mathematical set of all isomorphisms of size n 

limit ~ 2nxn. 
' 

Set == {canonical, isomorphism}; 

for i ~ 1 to limit do 
matrix ~ ConvertinttoMatrix (i) 

if isMatrixConnected(matrix) then 
reduced~ ReduceMatrixtoSmallestint (matrix); 

AddToSet ( reduced7 i); 

end 

end 

return Set 
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Algorithm 3: Reduce:NiatrixtoSmallestint: Reduction of a matrix into a canon-

ical form integer. 
input : Matrix - M, subgraph size - n 

output: canonical form integer - smallest 

rowindex ~ colindex ~ {1, 2, ... , n }; 

smallest ~ ConvertMatrixtoint (M); 

permutes~ n!; 

for i ~ 2 to permutes do 
rowindex ~ colindex ~ NextPermutation(rowindex); 

M2 ~ PermuteMatrix(M7rowindex7colindex); 

temp ~ ConvertMatrixtoint (M2); 

if temp < smallest then 
I smallest ~ temp; 

end 

end 

return smallest 

Algorithm 4: ObtainSubgraphCount: Obtain subgraph count for a graph G. 
input : Adjacency matrix, G of a graph 

output: 

for every directed edge i in G do 
path~{}; 

AddEdgetoPath(i 7path); 

DepthFirstSearch ( i ,path); 

end 
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Algorithm 5: DepthFirstSearch: Depth first search algorithm implementation 

for subgraph counting. 
input : next edge - i, repository of previously seen subgraphs - repos 

output: 

AddEdgetoPath (i,path); 

if NumberofNodes (path) =f. n then 
next r- NextEdgeinDFSpath; 

DepthFirstSearch (next ,path); 

end 

if Specif icSubGraphHasBeenPreviouslyCounted (path, repos) then 
I return 

end 

AddPathtoReposi tory (path,repos); 

matrix r- ConvertPathtoMatrix (path); 

canonical r- ReduceMatrixtoSmallestint (matrix); 

IncrementSubGraphCount(canonical); 
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Appendix D 

Parallelizing Motif Search 

The runtime for search algorithms necessary for complete enumeration of the sub­

graphs of a network for a given size grows with network size (Kashtan et al., 2004a). 

Kashtan et al. (2004a) have devised a sampling algorithm which approximates the 

subgraph distributions of a given network. However, any sampling algorithm natu­

rally introduces some errors (which decreases to zero when the sampling size is the 

same as the network size). An exact count of subgraph distributions is always prefer­

able due to the higher degree of accuracy and confidence in the results. Thus, an 

investigation into possible parallelization of the algorithm is presented. 

D.1 Parallelization of the Subgraph Algorithill 

Two methods for parallelizing the complete subgraph enumeration algorithm were 

considered. The first method was to use OpenMP to only slightly modify the serial 

version of the algorithm. Such an algorithm would be run under a shared memory 

paradigm on multiple processors. However, it should be noted that OpenMP does not 

support the parallelization of nested loops or recursions. Therefore, the implementa-
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tion of the subgraph enumeration algorithm cannot be parallelized as given due to the 

recursive nature of the DFS algorithm. However, in order to investigate the effect of 

parallelization on the basic components of the system under a shared memory archi-

tecture, the search procedure was replaced with an inefficient search procedure which 

is easily parallelized. In this way, the effect of parallelization in general on parts of 

the algorithm can be qualitatively assessed. In addition, such an implementation is 

a trivial modification to the previously described recursive algorithm. 

The DFS search procedure is replaced by a complete brute-force enumeration 

approach. The algorithm cycles through all permutations of nodes and checks whether 

a subgraph exists between these nodes (whether they are interconnected). If so, the 

subgraph type is determined and the count for that subgraph type is incremented. 

The pseudocode for such an approach is given in Algorithm 6. 

Algorithm 6: TotalEnumerationSearch: Search the graph, G, using complete 

brute-force enumeration. 
input : Adjacency matrix, G of a graph 

output: 

for every node i in G do 

for every node j == i + 1 in G do 

for every node k == j + 1 in G do 

if IsConnected ( { i, j, k}) then 
canonical +-- ReduceMatrixtoSmallestint (matrix); 

IncrementSubGraphCount(canonical); 

end 

end 

end 

end 
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n 
Such an approach is needlessly computationally expensive requ1r1ng 0 

k 

computations where n is the number of nodes in the network and k is the subgraph 

size. In practice, this approach should always be outperformed by the recursive depth 

first search approach presented previously (an exception might be when networks are 

close to being fully connected). However, this method is easily parallelized since the 

outer-most of the triple-nested "for" loops can be divided amongst n processors. In 

this way, each processor can work on a different portion of the topology. 

The second approach was to redesign the algorithm as a distributed memory 

program based on the message passing paradigm. Specifically, the MPI protocol was 

used with the algorithm being redesigned to run on the master / slave approach to 

load distribution. Each slave node possesses a copy of the complete graph topology. 

After each slave node has finished processing, the master node combines the results 

of each slave node's processes (taking into account whether another slave node has 

previously enumerated a given subgraph). This involves updating a global histogram 

based on the results of each process. Although the maintenance of a separate copy of 

the graph topology in each process might be considered excessive in terms of memory 

requirements, an alternative is not easily implemented. Since it is not known apriori 

which nodes will be accessed by a given process, it is not possible to send only .the 

required nodes to a given process. The only way to know which nodes are required 

is to actually perform the search leaving only the parallelization of the lookup for 

isomorphisms and the storage of the histogram (both of which take negligible time). 

The algorithm is presented in Algorithms 7 and 8. It should be noted that the 

communication overhead has been minimized in the design of this algorithm. Since 

each processor owns its own copy of the topology, the only messages required to 

be sent from the master to the slave are the IDs for the edge from which to start 
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searching. Each slave node only passes back a confirmation that it has completed 

its operation on the given edge. When all edges have been searched, only then do 

the slave nodes send back the information that they have obtained from the search 

procedure. This information is then combined by the master node. In this way, much 

of the communication overhead inherent in the shared memory implementation of the 

algorithm may be avoided. 

Algorithm 7: Master subroutine for the MPI version of the algorithm. 
input : Edges of graph G 

output: 

for each processor p do 
Send Work (p,edgei); 

i f- i + 1; 

end 

for all remaining edges in G do 
ReceiveResult (p,junk); 

SendWork (p,edgei); 

i f- i + 1; 

end 

for each processor p do 
I Recei veResul t (p,junk); 

end 

CombineResul ts (); 
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Algorithm 8: Slave subroutine for the l\IIPI version of the algorithm. 
input : Edges of graph G 

output: 

while do 

Recei veWork ( edgei); 

if IsFinished () then 

WriteOutResults (repository); 

break; 

end 

DepthFirstSearch ( edgei); 

end 

No load balancing was used in the case of the shared memory algorithm, and no 

efforts at optimizing the block size of the work sent to each processor in the distributed 

memory algorithm were made. 

D.2 Comparison of Serial and Parallel Irnplernen-

tations of the Algorithrn 

In order to compare the performance of serial and parallel implementations of the 
' 

subgraph enumeration algorithm, a test case was needed. A network was generated 

using the duplication and divergence process previously described that has been shown 

to have many of the topological properties found in biological networks. Specifically, 

the network generated from this process has 1700 nodes and 8918 edges. Such a 

network is somewhat small considering most networks under investigation such as 

the internet or genetic regulatory networks have at least tens of thousands of nodes 

(if not many more). However, a small enough test network was chosen in order to 
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be able to obtain a sufficient number of runs under both algorithm implementations 

and using different numbers of processors. It was also decided that the subgraph size 

would be limited to three since this is the size of the most common analysis in this 

field (Mangan and Alon, 2003, Iviilo et al., 2002, Shen-Or et al., 2002, Wolf and Arkin, 

2003, Kashtan et al., 2004a, Kuo and Banzhaf, 2004, Milo et al., 2004, Vazquez et al., 

2004) and would also reduce the running time of the algorithm. 

D.2.1 Shared Memory Algorithm 

Figures D .1 (a) and D .1 (b) show the running times of the parallel implementations of 

the total enumeration algorithm using one, two, four, six and eight processors under 

the shared memory paradigm. The running time of the program for two processors 

is much more than that for one processor. In fact, the running time of the algorithm 

does not become consistently competitive with that of the serial version until the 

use of six processors. The efficiency attributed to parallelizing the algorithm can be 

obtained through a modification to Amdahl's Law, (Speedup== ;(~)). Therefore, the 

efficiency is P:J~~), where T(l) is the running time of the algorithm on one processor 

and T ( P) is the running time on P processors. The efficiency associated with the 

use of each number of processors is also given in Figure D.l(a). The efficiency of the 

algorithm implementation diminishes with an increase in the number of processors. 

This indicates that adding more processors to the implementation of the algorithm 

would have fewer and fewer benefits. 

It should be noted that the shared memory program was written in C++ using 

the Intel C++ compiler (v8.0) with the following compiler options: -openmp, -03 on 

an SGI Onyx 3400 (herzberg.physics.mun.ca). The number of processors used was 

restricted to eight since special permission is required from Niemorial University of 
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# Processors 
Run# 1 2 4 6 8 

1 862.29 1093.50 900.04 854.64 704.17 
2 862.69 989.96 1022.90 735.36 750.43 
3 862.17 968.83 1019.00 689.50 752.01 
4 862.73 1087.10 943.65 883.14 879.76 
5 862.08 967.85 820.42 813.97 890.63 
6 863.69 1087.90 1025.30 730.76 742.84 
7 862.36 1088.50 949.99 953.13 694.97 1150 
8 862.13 967.25 1032.60 819.93 717.83 
9 863.08 967.69 776.09 744.15 729.90 
10 863.10 1088.40 912.75 699.01 885.35 
11 863.16 1010.20 973.31 925.64 762.71 
12 863.08 1099.20 1054.30 907.58 741.80 
13 863.91 967.61 1105.70 910.90 802.82 
14 861.61 1122.10 751.38 810.37 696.03 
15 862.32 1100.60 910.39 898.80 826.99 
16 862.75 1125.80 1040.50 864.69 746.39 
17 862.54 1063.00 952.95 817.05 820.72 
18 862.64 989.93 1034.00 828.68 790.99 
19 862.32 1099.10 916.16 692.98 837.52 
20 862.75 1128.10 1083.60 841.24 773.58 

Mean 862.67 1050.63 961.25 821.08 777.37 
Min 861.61 967.25 751.38 689.50 694.97 
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Max 863.91 1128.10 1105.70 953.13 890.63 
Std. Dev. 0.555953 62.7457 97.85277 81.92894 62.1297 700 

0 2 3 4 5 6 7 8 9 
Efficiency NIA 0.41 0.22 0.18 0.14 # of Processors 

(a) Results of 20 runs of the complete brute-force 
enumeration algorithm using different numbers of 
processors under OpenMP on Herzberg. 

(b) Plot of the average running time for n num­
ber of processors of the complete brute-force enu­
meration algorithm under OpenMP. The bars in­
dicate the standard deviation of the running times 
on Herzberg. 

Figure D.1: Performance of the shared memory algorithm. 

Newfoundland Advanced Computation and Visualization Centre in order to use more 

processors for a given computation. 

An obvious question is why we don't seem to see any benefit from parallelizing the 

shared memory algorithm until we use six processors? This is most likely due to the 
I 

communications overhead required by the algorithm. Only one copy of the network 

topology is kept in shared n1emory. In addition, only one copy of the mapping of 

isomorphisms (which is relatively small), one copy of the list of previously searched 

motifs and one histogram are kept in shared memory. Every step of the algorithm 

accesses all of these elements which entails a high communication cost that was not 

present in the case of serial execution. Changing from the nested "for" loop structure 

of brute force enumeration used in the shared memory paradigm to the more efficient 
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recursive DFS routine would make little difference in relation to the communication 

overhead. Both routines require access to all of the aforementioned data structures 

at each step of the algorithm (the brute force method simply accesses these more 

often, but the D FS algorithm must still access these a significant number of times). 

Therefore, we can conclude that the current implementation is most likely not a good 

one for use on a shared memory architecture. 

D.2.2 Distributed Memory Algorithm 

Figures D.2(a) and D.2(b) show the running times of the parallel implementations 

of the total enumeration algorithm using one, two, four, six and eight processors 

under the distributed memory paradigm. The running time of the program for two 

processors is again much more than that for one processor. In fact, the running 

time of the algorithm does not become competitive with that of the serial version 

until the use of eight processors. However, with an increasing number of processors, 

the efficiency of the computations increases. This would seem to indicate that this 

implementation is a better fit for the hardware architecture than that implemented 

for the shared memory architecture in the previous section. It can also be observed 

that this implementation of the algorithm is always faster than the previous shared 

memory implementation as can be seen from Figure D.l(a). This is to be expec'ted 

since the distributed memory algorithm uses the more efficient DFS search while the 

shared memory algorithm uses a brute force enumeration approach. 

It should be noted that the distributed memory program was vvritten in C++ 

using the l\/IPICH compiler (vl.2.6) with the following compiler options: -lstdc+ +, 

-03 on an SGI Onyx 3400 (herzberg.physics.mun.ca). The number of processors used 

was restricted to eight since special permission is required from Niemorial University 
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# Processors 
Run# 1 2 4 6 8 

1 198.11 1447.70 484.38 290.79 208.69 
2 195.99 1447.90 484.41 290.80 208.52 
3 196.12 1447.60 484.40 290.88 208.41 
4 196.67 1447.60 484.22 290.96 208.37 
5 196.18 1447.90 484.08 290.75 208.46 
6 197.22 1447.10 484.09 290.74 208.73 
7 196.37 1448.10 484.19 290.71 208.47 
8 197.72 1447.40 484.12 290.75 208.58 
9 196.31 1464.50 484.33 290.77 208.59 
10 196.35 1447.70 484.23 290.93 208.60 
11 196.30 1447.50 484.23 290.86 208.66 
12 197.00 1448.10 484.28 290.94 208.47 
13 196.43 1447.50 484.22 290.72 208.66 
14 195.86 1447.10 484.04 290.70 209.37 
15 195.69 1447.20 484.29 290.78 208.79 
16 196.16 1447.40 484.28 290.80 208.46 
17 196.14 1447.40 484.66 290.88 208.70 
18 196.71 1447.10 484.05 290.85 208.67 
19 196.13 1447.80 484.23 290.69 208.69 
20 196.12 1447.00 484.20 290.90 208.66 

Mean 196.48 1448.38 484.25 290.81 208.63 
Min 195.69 1447.00 484.04 290.69 208.37 
Max 198.11 1464.50 484.66 290.96 209.37 
Std. Dev. 0.612698 3.808522 0.146405 0.08448 0.21046 
Efficiency NIA 0.07 0.10 0.11 0.12 

(a) Results of 20 runs of the recursive implementa­
tion of the algorithm using different numbers of pro­
cessors under MPI on Herzberg. 
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(b) Plot of the average running time for n number 
of processors of the recursive implementation of the 
algorithm under MPI. The bars indicate the stan­
dard deviation of the running times on Herzberg. 

Figure D.2: Performance of the distributed memory algorithm. 

of Newfoundland Advanced Computation and Visualization Centre in order to use 

more processors for a given computation. 

D.3 Conclusions 

From the results obtained from the two algorithm implementations we can conclude 

that using a parallel implementation of subgraph enumeration is not feasible. This 

may have more to do with the specific implementations of the algorithm than any 

inherent inability to effectively parallelize the search. 

In the case of the shared memory algorithm, no attempt at load balancing was 

made. This might vastly increase the efficiency of the algorithm implementation. 

However, since the approach uses a brute force enumeration, it will always be out per-
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formed by the DFS procedure. In fact, the performance of the serial version of the 

DFS algorithm outperforms the 8-processor version of the shared memory algorithm 

by almost an order of magnitude. Until recursive algorithms are supported under the 

OpenMP framework (or an efficient non-recursive search procedure is implemented), 

parallel implementations of subgraph enumeration on a shared memory architecture 

with OpenMP will remain impractical. The fact that the efficiency of the algorithm 

decreased when the number of processors was increased indicates that adding addi­

tional CPUs to the search process would have decreasing returns in running time. 

In the case of the distributed memory algorithm, there are few ways to improve 

algorithm performance other than the adjustment of block size (amount of work 

sent during each request). This could significantly improve the running time of the 

algorithm. In fact, it is difficult to balance block size vs. load balancing. Sending 

larger block sizes might greatly increase performance possibly to the point that the 

parallel implementation outperforms the serial implementation. Since only a single 

work element is sent (which is often performed quickly), the amount of interprocess 

communication between the master and slave nodes is high with respect to the number 

of work requests (which is equivalent to the number of total edges in the graph). 

Specifically, there were 8918 work requests regardless of the number of processors. 

By increasing the amount of work sent at each communication step, there would be 

less time spent communicating between the master and slave thus potentially leading 

to drastic reductions in running time. 

Neither of the two implementations presented seem to be especially promising as 

a replacement for the serial implementation of the subgraph enumeration algorithm. 

It may be the case that there does not exist a parallel algorithm which can effectively 

tackle this problem as is the case with some algorithms. However, before such a 

statement can be made more study of this problem and its parallelization is required. 
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Appendix E 

Subgraphs of Size Three 

p h d . !>Ta f'\ fo 't° d.e.d v/ 

Figure E.l : 
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Motif ID 0 1 2 3 4 5 6 7 8 9 

t. L v v i { ~ \ ~ v 
Motif ID 10 11 12 13 14 15 16 17 18 19 

f ~ ~ i f A !. 1 t A 
Motif ID 20 21 22 23 24 25 26 27 28 29 

4 v i t i F A A ~ { 
Motif ID 30 31 32 33 34 35 36 37 38 39 

1 ~ t ~ i ~ ~ ~ 1 { 
Motif ID 40 41 42 43 44 45 46 47 48 49 

v 4 1 i ~ I D -\ ~ A 
Iv1otif ID 50 51 52 53 54 55 56 57 58 59 

1 £ ! l ~ ~ I- ,. ~ { 
Motif ID 60 61 62 63 64 65 66 67 68 69 

[ ( f ~ E ~ v i \ t 
Motif ID 70 71 72 73 74 75 76 77 78 79 

& t 4: fi ~ t 
Motif ID 80 81 82 83 84 85 

Table E.l: Network motifs of size three and their ID. 
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Appendix F 

Subgraph Counts for Size Three 
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Network IDs Count in Network IDs Count in 
ID ID* D&D Rand E. Coli S. Cerv ID ID* D&D Rand E. Coli S. Cerv 

0 6 2424 76 35 751 45 A 1 0 0 0 
1 A 4 0 0 1 46 110 0 0 0 0 
2 12 490 271 40 246 47 A 0 0 0 0 
3 A 11 0 26 24 48 A 0 0 3 0 
4 14 6 0 0 0 49 A 0 0 0 0 
5 A 0 0 0 0 50 A 0 0 0 0 
6 A 12 0 124 138 51 A 0 0 0 1 
7 A 0 0 8 0 52 A 0 0 0 0 
8 A 0 0 1 0 53 A 0 0 1 0 
9 A 0 0 2 0 54 A 0 0 0 0 

10 A 0 0 0 0 55 A 0 0 0 0 
11 A 0 0 0 0 56 A 0 0 0 0 
12 36 27659 0 587 8800 57 A 0 0 0 0 
13 A 8 0 76 104 58 A 0 0 0 0 
14 38 15 0 2 44 59 A 0 0 54 4 
15 A 0 0 1 1 60 A 0 0 12 0 
16 A 20 0 11 22 61 A 0 0 0 0 
17 46 0 0 0 1 62 A 0 0 0 0 
18 A 0 0 0 0 63 A 0 0 0 0 
19 A 0 0 2 1 64 A 10 0 0 0 
20 A 0 0 1 0 65 A 0 0 0 0 
21 A 0 0 0 0 66 A 0 0 0 0 
22 A 5016 0 3353 2987 67 A 0 0 0 0 
23 74 36 0 0 18 68 238 0 0 0 0 
24 A 5 0 0 0 69 A 0 0 0 0 
25 78 3 0 0 0 70 A 0 0 0 0 
26 A 0 0 0 0 71 A 0 0 0 0 
27 A 6 0 53 25 72 A 0 0 0 0 
28 A 0 0 32 0 73 A 0 0 6 0 
29 A 0 0 0 0 74 A 0 0 3 0 
30 A 0 0 0 0 75 A 0 0 0 0 
31 A 14 0 713 0 76 A 0 0 46 0 
32 A 0 0 0 0 77 A 0 0 0 0 
33 A 3 0 0 0 78 ,. A 0 0 0 0 
34 A 0 0 0 0 79 A 0 0 0 0 
35 A 0 0 0 0 80 A 0 0 0 0 
36 A 0 0 0 0 81 A 0 0 0 0 
37 A 0 0 0 0 82 A 0 0 0 0 
38 98 0 0 0 0 83 A 0 0 0 0 
39 A 0 0 0 0 84 A 0 0 0 0 
40 102 0 0 0 0 85 A 0 0 0 0 
41 A 0 0 0 0 
42 A 6 0 14 3 
43 A 0 0 0 0 
44 108 0 0 0 0 

Table F.1: Subgraphs of size three and their distribution. D&D: Duplication and 
divergence genomes; Rand: Random genomes. ID* are the subgraph designations 
given by l\!Iilo et al. (2002). IDs shown as A are subgraphs with self- regulatory 
connections which do not have a designation in Milo et al. (2002). 
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Appendix G 

Subgraphs of Size Four 

DATA: BY THE NUMBERS 

Figure G.l: 
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• ! ~ r r f f-.:. J.. k. A. J.. %1 if 
Motif ID 0 2 3 4 6 8 12 13 14 15 16 18 

!'- A h t- M f N A N y •t i. 
Motif ID 19 21 22 23 26 28 35 37 39 45 46 47 

.t. ! y 1 1 v. 1- 1-
Motif ID 49 51 55 56 63 64 65 67 69 71 77 79 

t ti v ~ N ~ r v ~ 
Motif ID 88 95 96 98 99 100 102 106 108 112 113 114 

~ ~ u v {: M i-
Motif ID 120 123 124 125 126 131 137 145 150 154 158 164 

l ' 

~ ~ ! ~ 
lllt' 

~ ! ~ ~ I 

~ ~ ~ ~ 0 

:Niotif ID 199 200 201 202 207 237 273 274 275 279 281 282 

Table G. l: Subgraphs of size four and their ID. Only motifs which were present in at 
least one of the four cases are shown. All other motifs have been omitted. 
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1:- ! N m ~ ~ A N u ~ I. M 
:Nlotif ID 283 289 293 294 295 296 298 301 302 303 306 309 ., 

m v .] ~ ? ~ 7 -<y -1: v 1 ~ 
Motif ID 310 342 343 361 362 364 459 460 461 462 463 465 

Nlotif ID 466 468 469 472 473 474 475 483 484 487 493 494 

Motif ID 498 499 505 525 533 548 563 564 565 566 568 570 

Nlotif ID 571 576 578 587 588 590 594 602 606 617 622 632 

• • 
! • t 

Motif ID 647 654 658 691 692 693 695 722 750 786 787 788 
0 • 

t t· w ~ ~ ! y v t -J v u, v: 0 
4o ., 

:Niotif ID 801 803 804 974 978 979 987 988 989 998 1001 1017 

lt ~T ~~~ii Y 1 'f< 
Nlotif ID 1025 1041 1053 1094 1105 1145 1160 1521 1526 1531 1606 1612 

t~ 

411D 

~ ~ ~ k ¥1 ~ ! .... 

1• M n K ~~ jD 
Motif ID 1618 1846 1847 1855 1897 1898 1957 1958 1968 2094 2339 2486 

:Niotif ID 2579 2619 2623 2634 2643 2677 

Table G.2: Subgraphs of size four and their ID. Only motifs which were present in at 
least one of the four cases are sho\vn. All other motifs have been omitted. 

133 



Appendix H 

Subgraphs Counts for Size Four 
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N et\vor k IDs Count in Net\vork IDs Count in 
D&D Rand E. Coli S. Cerv D&D Rand E. Coli S. Cerv 

0 4137 43 4 843 114 0 0 0 1 
2 56 125 10 116 120 0 0 12 0 
3 0 1 0 5 123 0 3 18 43 
4 1716 2 0 0 12-± 0 0 1 0 
6 3 ? 38 150 125 0 0 0 5 ...., 

8 0 ? 0 0 126 0 0 1 0 _, 

12 61 249 3 329 131 0 0 259 0 
13 0 3 0 0 137 0 0 1 0 
14 1531 247 510 16925 145 1 4 10 27 
15 0 3 0 31 150 2 4 0 10 
16 9 5 0 75 154 1 0 0 0 
18 0 3 5 19 158 10 0 7 14 
19 0 2 0 0 164 0 0 0 1 
21 0 4 1 11 199 0 3 6 28 
22 0 0 0 3 200 0 0 14 0 
23 1 0 0 0 201 0 0 5 3 
26 0 3 36 157 202 0 0 1 0 
28 0 0 2 10 207 0 0 5 0 
35 1337 1 8 110.s 237 39 2 0 6 
37 0 0 0 5 273 0 0 40 2 
39 0 0 0 1 274 0 0 6 0 
45 1451 123 118 1246 275 0 0 1 0 
46 0 1 72 81 279 0 0 9 0 
47 10 4 0 0 281 0 0 508 0 
49 530 0 0 0 282 0 0 30 0 
51 0 4 58 4 283 0 0 1 0 
55 0 3 1 0 289 0 0 1 0 
56 0 0 6 0 293 1 4 704 1261 
63 10 ?4,.. 0 92 294 0 0 16 0 ...., 0 

64 0 3 8 0 295 0 0 0 2 
65 0 -± 0 0 296 0 0 1 0 
67 0 4 0 0 298 0 0 1 0 
69 1 0 0 0 301 0 0 43 14 
71 0 5 0 11 302 0 0 3 0 
77 1 0 0 0 303 0 0 7 0 
79 0 4 0 0 306 0 0 1 0 
88 0 0 1 0 309 6 0 125 737 
95 0 -± 7 0 310 0 0 5 0 
96 1 4 0 0 342 0 4 4 Q i 
98 1293 246 188 3859 343 0 0 11 o· 
99 0 3 167 528 361 0 0 1 0 
100 0 

,.. 
0 51 362 0 0 1 0 .J 

102 1 4 0 0 364 0 0 1 0 
106 291 3 3569 4618 459 301970 41 2052 88321 
108 2 4 0 16 460 8 1 391 1085 
112 1 -± 1 195 461 157 4 25 729 
113 0 0 39 83 462 2 0 8 23 

Table H. l: Subgraphs of size four and their distribution. D&D: Duplication and 
divergence genomes; Rand: Randon1 genomes. Only motifs vvhich \Vere present in at 
least one of the four cases are sho\vn. 
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Net-vvork IDs Count in N et\vork IDs Count in 
D/D Rand E. Coli S. Cerv D/D Rand E.Coli S.Cerv 

463 1 0 0 1 786 0 0 1950 118 
465 1 0 46 346 787 2 0 96 3 
466 0 0 0 9 788 0 0 11 0 
468 0 0 0 1 801 167 0 659 0 
469 0 0 0 1 803 75 0 0 0 
472 0 0 17 6 804 0 0 0 1 
473 0 0 9 0 974 0 0 18 0 
474 0 0 3 2 978 0 0 15 0 
475 0 0 2 0 979 0 0 9 0 
483 4 0 0 120 987 0 0 2 0 
484 0 0 1 1 988 0 0 202 0 
487 0 0 0 1 989 0 0 81 0 
493 5 0 16 33 998 0 0 281 0 
494 0 0 0 17 1001 0 0 1 0 
498 0 0 1 4 1017 0 0 1 0 
499 0 0 0 15 1025 0 0 1 0 
505 0 0 1 0 1041 0 0 15 1 
525 0 0 0 1 1053 0 0 9 1 
533 0 0 0 2 1094 0 0 2710 0 
548 0 0 1 0 1105 0 0 124 0 
563 130570 0 45585 59569 1145 0 0 61 0 
564 521 2 0 121 1160 0 0 13 0 
565 34 0 0 0 1521 44 0 26 3 
566 11 0 0 0 1526 5 0 0 0 
568 54 0 0 0 1531 0 0 9 0 
570 16 2 191 129 1606 0 0 6 0 
571 0 0 103 0 1612 0 0 0 1 
576 161 0 19077 0 1618 0 0 5 0 
578 20 0 0 0 1846 0 0 57 1 
587 410 3 1606 150 1847 43 0 7 0 
588 8 4 0 0 1855 354 0 0 0 
590 24 2 0 32 1897 0 0 14 0 
594 3 4 0 0 1898 0 0 4 0 
602 1028 0 415 24 1957 0 0 208 0 
606 27 0 0 0 1958 0 0 1 0 
617 0 0 90 0 1968 0 0 99 0 
622 0 0 0 16 2094 0 0 14 0 
632 0 0 5 0 2339 0 0 1 0 
647 3 0 0 0 2486 0 0 8 0 
654 2 0 0 0 2579 1 0 0 0 
658 20 0 0 0 2619 0 0 4 0 
691 0 0 624 0 2623 0 0 30 0 
692 0 4 6 0 2634 0 0 1 0 
693 0 0 8 0 2643 0 0 18 0 
695 0 0 7 0 2677 0 0 120 0 
722 0 0 0 1 
750 0 1 0 0 

Table H.2: Subgraphs of size four and their distribution. D&D: Duplication and 
divergence genomes; Rand: Random genomes. Only motifs which vvere present in at 
least one of the four cases are sho-vvn. 
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Appendix I 

Evolving Networks with a 

Restricted Number of Genes 

The algorithm in Section 6.3 \Vas reapplied \Vith the addition of a penalty on the num-

ber of genes. Since penalty functions are typically arbitrary and problem dependent 

(since they directly affect the search space), a simple approach \Vas taken. Instead 

of penalizing the nurnber of genes in the systern, net\vorks \vith more than 10 genes 

\Vere set to have a fitness of 4. 0. In this \.vay, the fitness landscape of each fitness 

case is not as directly impacted as would be the case if a penalty \.Vas in1ple1nented 

commensurate \vith the number of genes. This rnay cause various basins of attraction 
I 

to become isolated on the fitness landscape. 

Results of 10 runs on each fitness case are sho\vn in Tables I. l , I.2, I.3. In addition, 

the evolution algorithm \Vas terminated \.vhen the best fitness obtained \vas belo\v 

5.0 x io-3 rather than after 250 generations of fitness stagnation. This \vas done in 

order to sho\v that reasonable solutions to the problen1 may be obtained vvith this 

modified fitness function. Use of the previous fitness function can lead to algorithm 

termination before a good solution has been obtained. 
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Run# Best 1vISE #Gens. #Genes Avg. 1vf SE( Pop.) J4vg. #Genes (Pop.) 
1 0.00287157 89122 10 0.007341 l. le-3) 9. 731)0.54) 
2 0.00444153 13643 8 0.009121>8 . le-4) 7.291 0.43) 

0.010271:2.3e-4~ 
) 

3 0.00486211 401417 9 9.181, 0.18) 
4 0.00470516 133229 10 0.007071 6. le-4 10.20~0.20~ 
.s 0.00356387 

) 

10.20 0.20 21205 10 0.01493j 4. 7e-3 
6 0.00493755 99553 10 0.008701'1.5e-3l 9.92(0.49) 
7 0.00398828 11342 10 0.02751 l.3e-2 10.00~0.49) 
8 0.00472991 23091 10 0.00989 2.4e-3 10.20 0.20) 
9 0.00480238 395 9 0.30263 7.5e-2~ 9.47(0.56~ 
10 0.00281274 1664 8 0.20032 7.5e-2 9.59j 0.89 

Table I. l: Results of 10 runs of (50 + 100)-ES on Case #1 (sinusoid) vvith a penalty 
function. The standard deviation is given in brackets. 

Run# Best JvfSE #Gens. #Genes Avg. MSE Pop. 
1 0.00484099 639 8 0.00811 5.4e-4 
2 0.00492588 2799 9 0.00714 6.2e-4 
3 0.00418354 820 5 0.00659 5.0e-4 
4 0.00478972 5336 9 0.00636 4.9e-4 
5 0.00497284 1676 9 0.00759 4.2e-4 
6 0.00490717 468 9 0.00810 6.9e-4 
7 0.00430360 642 10 0.00785 6.5e-4l 
8 0.00472030 3529 10 0.00577 2.6e-4 
9 0.00467765 10112 10 0.00601 2.6e-4 
10 0.00413019 241 5 0.00798 9. le-4 

7.02 2.08 
9.02 0.98 
6.32 1.69 

9.33 l.02l 
9.31 0.71 
8.82 1.01 
8.51 1.49) 
9.67 0.73) 

10.18(0.25) 
7.00 1.66 

Table I.2: Results of 10 runs of (50 + 100)-ES on Case #2 (exponential) vvith a 
penalty function. The standard deviation is given in brackets. 

Run# Best lvISE #Gens. #Genes Avg. MSE Pop. Avg. #Genes Pop. 
1 0.00345716 35 6 0.05491 1.8e-2 
2 0.00375144 61 9 0.04274 l.5e-2 
3 0.00425317 8 6 0.13660 7. le-2 
4 0.00149893 15 8 0.10153 4. le-2 
5 0.00373932 21 10 0.07446 3.5e-2 
6 0.00299901 208 8 0.01359 4.0e-3 
7 0.00341115 32 7 0.03841 1. le-2 
8 0.00492678 109 10 0.01886 6. 7e-3 
9 0.00101274 4 6 0.39698 l.8e-l 
10 0.00423338 19 9 0.07139 3. le-2 

Table I.3: Results of 10 runs of (50 + 100)-ES on Case #3 (sigmoid) vvith a penalty 
function. The standard deviation is given in brackets. 
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In order to sho\v that the sigmoid dynamics can be generated vvith tvvo genes, the 

algorithm was rerun such that networks vvith more than two genes had a fitness of 4.0. 

Figure L 1 shows examples of three different netvvork topologies vvhich can generate 

the sigmoid dynamics. 

5 3 

Figure I. l: Three t\vo-gene networks that generate sigmoid dynamics. The "O" node 
denotes the additional site used to extract the network dynamics. 
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