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ABSTRACT 

The Transforming Growth Factor-Beta (TGF-~) family is a collection of structurally 

related peptides. These growth factors are involved in a variety of cellular processes 

such as apoptosis, differentiation, and proliferation. TGF -~ binding to a 

Serine/Threonine kinase receptor complex causes the recruitment and subsequent 

activation of transcription factors known as Smad2 and Smad3. These proteins then 

translocate into the nucleus and either negatively or positively regulate gene 

expression. TGF -~ acts in a cell type specific manner; cellular proliferation is induced 

in mesenchymal cells and inhibited in epithelial cells. In this study, we define a novel 

Smad-independent pathway leading to the phosphorylation of extracellular signal 

regulated kinase (Erk) in a cell type dependent fashion. Erk activation is seen in 

mesenchymal cells, but not in cells of epithelial origin. Phosphotidylinositol3-Kinase 

(PI3K) appears to function upstream ofErk by activating cdc42/Racl and 

subsequently p21-Activated Kinase2 (PAK2). P AK2 activity was shown to be 

integral to Erk activation through the phosphorylation of c-Raf at Ser338, a site 

important for c-Raf activity. The MEK kinases were found to act directly upstream of 

Erk as the presence ofU0126 abolishes TGF-~ induced Erk phosphorylation. 

Furthermore, Erk activity is critical in TGF -~ induced fibroblast proliferation, likely 

through its interactions with transcription factors such as Smads and c-myc. 

Moreover, we have shown a direct interaction between Erk and Smads during TGF-~ 

stimulation. Phosphorylation of Serine residues 245, 250, and 255 within the linker 

region of Smad2 was observed after induction of Erk. Interestingly, this 
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phosphorylation event was localized within the nucleus. Together, this data shows a 

new signaling pathway utilized by TGF-P receptors that interacts with and regulates 

the classical Smad signaling pathway and TGF-P induced proliferation in fibroblasts. 
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CHAPTER 1 - Literature Review 

TGF-fl/Smad Signaling 

1.1.1 TGF-P Family 

The Transforming Growth Factor-~ family consists of a large number of 

structurally related proteins mediating a wide variety of biological effects including 

proliferation, differentiation, and cell death (lgnotz and Massague, 1985;Roberts et al., 

1985;Jetten et al., 1986;Rotello et al., 1991;0berhammer et al., 1992;Yanagihara and 

Tsumuraya, 1992). Two subfamilies are defined within this group of cytokines; the first 

being the TGF-~/Activin/Nodal subfamily, the other being the BMP (Bone Morphogenic 

Protein)/GDF (Growth and Differentiation Factor)/MIS (Muellerian inhibiting substance) 

subfamily (Massague et al., 2000). The BMPs together form the largest group within the 

TGF -~ family and are known for their role in osteogenesis (Wozney et al., 1988). TGF -~ 

and Activin are involved in the later stages of embryogenesis and in the mature organism 

controlling immune regulation and tissue repair (Smith et al., 1988;van den Eijnden-Van 

Raaij AJ et al., 1990;Massague et al., 2000). 

The TGF-~ subset includes three isoforms in mammals, TGF-~1, ~2, and ~3. 

TGF -~ 1 is the most abundant form and controls and regulates a wide array of 

developmental and immune processes (Letterio and Roberts, 1998). TGF -~ 1 has an 

important role during development and for regulation of immune cell proliferation. TGF

~1 null mice develop normally for the first 2 weeks post-partum, after which massive 

infiltration of macrophages and lymphocytes into the heart and lungs occurs. Death 

occurs within 3-4 weeks of age (Kulkarni et al., 1993 ). TGF -~2 is important in a number 
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of developmental pathways. As such, ~2 knockout mice exhibit a number of tissue 

abnormalities including heart, skeletal, and craniofacial defects (Sanford et al., 1997), 

while TGF-~3 deficient mice show defects in lung and palate morphogenesis, as well as 

early age mortality (Barton et al., 1988;Ten Dijke et al., 1988). 

All three isoforms are secreted as latent complexes (Pircher et al., 1984;Lawrence 

et al., 1984;Lawrence et al., 1985;Pircher et al., 1986;Brown et al., 1990). Since the half

life of mature TGF-~ is only a few minutes in situ, the latency of the molecule provides 

stability and a ready source of the growth factor for the organism (Wakefield et al., 

1990). TGF-~ is produced as a high molecular weight precursor molecule. The TGF-~1 

precursor is cleaved by furin convertase to produce pro-TGF-~ consisting of a mature 

TGF-~ dimer non-covalently bound to their N-terminal ends (Dubois et al., 1995). Latent 

TGF-~ binding proteins are covalently linked to the propeptide portion of the molecule. 

These binding proteins are believed to be important for efficient extracellular secretion of 

the TGF -~ complex (Miyazono et al., 1991 ;Saharinen eta!., 1996). Activation of TGF -~ 

can occur through a number of mechanisms. It has been shown that acidic and alkaline 

pH, heat, and urea treatment have the ability to activate latent TGF -~. Overall, it would 

appear that breaking of Hydrogen bonds is an important step in activation. At pH 3.0, 

latent TGF -~ becomes fully activated (Brown eta!., 1990). The presence of acidic 

microenvironments in osteoclasts, activated macrophages and in the vicinity of solid 

tumours may be a causative factor in vivo in the activation of latent TGF -~ (Silver et al., 

1988;Jullien eta!., 1989;Blair, 1998). Furthermore, TGF -~ can be activated by 

proteolytic enzymes such as plasmin, cathepsin D, matrix metalloprotease-9 and calpain. 
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The glycoprotein Thrombospondin-1 and the integrin av~6 have also been shown to be 

involved in TGF-~ activation (Lyons et al., 1988;Schultz-Cherry and Murphy-Ullrich, 

1993;Abe et al., 1998;Munger et al., 1999). Ultimately, TGF-~ is only able to exert its 

potent effects when in its activated 25 kDa form. 

1.1.2 TGF-P Receptors 

The TGF -~ ligands signal through a complex of two transmembrane 

serine/threonine kinases (Wrana et al., 1992). Members ofthe TGF-~ superfamily utilize 

different forms of Type I and Type II receptors (Fig 1) (Shi and Massague, 2003). Both 

TGF-~ receptor I (TGF-~RI) and receptor II (TGF-~RII) contain anN-terminal 

extracellular ligand binding domain, a transmembrane domain, as well as a C-terminal 

kinase domain. TGF -~RI contains a SGSGSG motif preceding its kinase domain, termed 

the GS domain (Shi and Massague, 2003). The dimeric TGF -~ ligand initially binds to 

the N-terminalligand binding domain of the type II receptor before binding to the type I 

receptor. The type I receptor alone has no affinity for the ligand. The constitutively active 

TGF -~RII phosphorylates the type I GS domain, thereby activating the TGF -~RI kinase, 

producing an active receptor complex (Franzen et al., 1995). Receptor complexes are 

continually internalized and recycled back to the plasma membrane in the absence of 

ligand while activated receptor complexes are sequestered by the cell and initiate 

downstream signaling (Dore, Jr. et al., 2001). Receptor complexes are removed from the 

plasma membrane mainly via clathrin-mediated endocytosis (Anders et al., 1997). It is 

believed that this endocytic pathway aids in the co localization of active receptor 
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Ligand Receptor II Receptor I R-Smad 

TGF-ps ---+ TpR-11 ---+ TPR-1 

' Act ivins / ActR-18 
Smad2 

---+ 

' AciR-11 ~ Smad3 

/ AciR-118 ...._.... / 
Nadals ALK7 

8MP2's ---+ 8MPR-IA' 

' Smad1 8MPR-II 
8MP7's ---+ AciR-11 ---+ 8MPR-18 ___.. Smad5 

AciR-118 / SmadB 
/ 

GDF5's ---+ ALK2 

Fig 1. A schematic depiction of the Ligand-Receptor-R-Smad interactions for the 
members of the TGF-~ superfamily of growth factors (Shi and Massague, 2003). 
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complexes with downstream components ofthe signaling pathway. TGF-~Rs may also be 

internalized through the caveolar/lipid-raft-mediated pathway. Whereas clathrin-mediated 

endocytosis is thought to play a role in signal propagation, caveolar/lipid-raft-mediated 

endocytosis is integral for receptor degradation in a Smad7-Smurf2 dependant manner 

(Di Guglielmo et al., 2003). 

Within the TGF-~ superfamily, the regulation of receptor activation is tightly 

controlled with both activators and inhibitors. Noggin and Chordin are secreted proteins 

that interact specifically with BMPs (Piccolo et al., 1996;Zimmerman et al., 1996). These 

proteins antagonize BMP signaling by interfering with the surfaces necessary for ligand 

interaction with type I and type II BMP receptors. Noggin regulates BMP function during 

vertebrate dorsal-ventral patterning, osteogenesis, and joint formation (Brunet et al., 

1998;Gong et al., 1999). Chordin loss of function mutations in zebrafish produce a 

greatly reduced neural plate and an enlarged region of the ventral mesoderm 

(Hammerschmidt et al., 1996). Follistatin is a glycoprotein that functions to suppress the 

release of follicle-stimulating hormone by binding to Activin and inhibiting receptor 

interaction (de Winter et al., 1996). It has also been shown to interact with BMPs and 

effect signaling (Fainsod et al., 1997). 

TGF -~ receptor activation can be controlled by a number of intracellular proteins 

including FKBP12 (Yao et al., 2000). Through binding ofTGF-BRI, FKBP12 prevents 

its phosphorylation via the type II receptor in a basal state, thereby preventing ligand

independent phosphorylation and activation of the receptor complex. It has also been 

shown to negatively regulate receptor internalization (Yao et al., 2000). When TGF -~ 
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ligand interacts with the type II receptor, FKBP12 is released from the receptor and its 

effect on regulation cease (Chen et al., 1997). 

1.1.3 Smads 

Smad proteins are transcription factors specific to the TGF-~ family of growth 

factors. In all, 8 Smad proteins are encoded in the human genome. Smads 1 ,2,3,5, and 8 

act as downstream effectors for TGF-~ family receptor complexes and are known as 

receptor-regulated Smads (R-Smads) (Macias-Silva et al., 1996;Zhang et al., 

1996;Yamamoto et al., 1997;Kretzschmar et al., 1997b;Nishimura et al., 1998;Nakayama 

et al., 1998) (Fig 1). Smad4, also known as Co-Smad, is a common mediator for all R

Smads (Zhang et al., 1997). Smads 6 and 7 function as inhibitory molecules, interfering 

with Smad-receptor and Smad-Smad interactions (Imamura et al., 1997;Nakao et al., 

1997;Hayashi et al., 1997;Hata et al., 1998). 

Smads are approximately 500 amino acids in length, made up of 3 distinct 

regions. TheN-terminal, or "Mad Homology 1" (MH1) domain, is highly conserved in 

all Smad proteins, excluding Smads 6 and 7 (Massague, 1998). In an active state, both R

Smad and Co-Smad MHl domains are involved in DNA-binding (Kim et al., 1997;Liu et 

al., 1997). In the basal state, the MH1 domain acts in an inhibitory fashion through its 

interaction with the C-terminal "Mad Homology 2" (MH2) domain (Hata et al., 1997). 

The MH2 domain is also a highly conserved region of the protein. Contained within this 

region ofR-Smads is a canonical Ser-X-Ser at the C-terminal end which is 

phosphorylated by the active receptor complex, leading to the activation ofR-Smads 
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(Macias-Silva et al., 1996;Kretzschmar et al., 1997b ). In addition, the MH2 domain 

mediates the interaction between R-Smads and the Type I receptor, Smad4, and DNA 

binding factors(Macias-Silva et al., 1996;Hata et al., 1997;Liu et al., 1997). Separating 

these two conserved domains is a highly variable linker region. Among the R-Smads, this 

region contains several potential Mitogen Activated Protein Kinase (MAPK) sites and the 

phosphorylation of some of these sites is thought to contribute to the regulatory control of 

the molecule (Kretzschmar et al., 1999). 

Upon phosphorylation and internalization of the receptor complex, the type I 

receptor recruits R-smads for subsequent activation. This sequence of events requires the 

presence of an accessory protein called SARA (Smad Anchor for Receptor Activation). 

SARA contains a phospholipid binding FYVE domain which interacts with the 

membrane lipid Ptdins(3)P of early endosomes, thus allowing for more efficient 

recruitment ofR-Smads to the active receptor complexes (Itoh et al., 2002). 

TGF-P stimulation results in the nuclear accumulation ofR-Smads (Hoodless et 

al., 1996;Souchelnytskyi et al., 1997). Interestingly, it was shown recently that Smads are 

not confined to the cytoplasm in uninduced cells. R-Smad molecules are constantly 

shuttling between the cytoplasm and the nucleus. In the absence ofTGF-P stimulation, 

the nuclear export rate is greater than the import rate, producing a greater cytoplasmic 

concentration ofSmad proteins. When TGF-P is present, rate constants are shifted so that 

the nuclear export rate for the phosphorylated R-Smads is markedly decreased, increasing 

the phospho-smad concentration within the nucleus (Nicolas et al., 2004;Schmierer and 

Hill, 2005). 
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Following activation, R-Smad-Smad4 oligomers are formed (Kawabata et al., 

1998). The makeup of these oligomers are still a matter of debate with recent evidence 

suggesting the formation of hetero/homo-dimers and hetero/homo-trimers of Smads 2 

and/or 3 with the complex containing a single smad4 (Inman and Hill, 2002;Chacko et 

al., 2004). Once in the nucleus, these Smad complexes are able to confer their regulatory 

properties on target genes. The promoter regions of these Smad-responsive genes contain 

sites called Smad Binding Elements (SBE) (Zawel et al., 1998). These sites are 

recognized by a ~-hairpin in the Smad MH 1 domain (Shi et al., 1998). The affinity of 

Smad proteins for a single SBE is too low for efficient binding of the Smad complex to 

the promoter region of the target gene. However, even promoters containing multiple 

SBEs rely on co-factors to aid in the binding ability of Smad complexes (Seoane et al., 

2004 ). These co-factors function to increase transcription and are known as coactivators. 

Some coactivators include CBP/p300, ARC105, and Swift (Janknecht et al., 

1998;Pouponnot et al., 1998;Shimizu et al., 2001 ;Kato et al., 2002). These molecules 

increase transcription by interacting with the Smad complexes and recruiting them to the 

RNA polymerase II complex. Additionally, some coactivators like CBP and p300 have 

histone acetyltransferase activity to modify chromatin structure, allowing for Smad 

regulation of transcription (Ross et al., 2006). Alternatively, certain co-factors aid in 

repressing transcription via Smads. These corepressors include c-Ski/SnoN and TGIF 

(Akiyoshi et al., 1999;Stroschein et al., 1999;Wotton et al., 1999;Xu et al., 2000). These 

molecules interact with the MH2 domain of Smad2 and Smad3. TGIF has the ability to 

directly interact with histone deacetylases (HDACs) whereas c-Ski and SnoN interact 
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with the nuclear transcriptional corepressor (NCoR) that recruits HDACs (Wotton et al., 

1999;Luo et al., 1999). 

Termination signaling appears to occur in a number ways. Lin et al, (Lin et al., 

2006) demonstrated that within epithelial cells, the phosphatase PPM1A 

dephosphorylates R-Smads terminating TGF-~ signaling. Additionally, Smad2 is 

ubiquitinated in the nucleus and undergoes degradation via the 26S Proteasome (Lo and 

Massague, 1999). Termination of signaling also occurs at the receptor level where the 

ubiquitin ligases Smurfl and Smurf2 (Smad ubiquitin regulatory factor) mediate 

ubiquitination of activated TGF -~ receptors. Both Smurfl and Smurf2 form a complex 

with Smad7. This complex is then localized to the plasma membrane where Smad7 binds 

to the type I receptor, inhibiting R-Smad phosphorylation and promoting receptor 

turnover (Kavsak et al., 2000;Ebisawa et al., 2001). Smad6 antagonizes BMP signaling 

by competing with Smadl in binding to Smad4 (Hata et al., 1998). Through the 

regulation of receptor activation and internalization, R-Smad dephosphorylation and 

degradation, complex formation of Smads and their co-activators/repressors, this subset 

ofSmads represents another method by which TGF-~ signaling is controlled. 

1.1.4 TGF-P!Smad Mutations in Cancer 

TGF -~ is a potent regulator of a number of cellular processes such as 

proliferation, migration, cell survival and angiogenesis. The manner in which TGF-~ 

regulates growth is cell type specific; TGF-~ promotes growth in mesenchymal cells and 

inhibits growth in epithelial, endothelial and hematopoietic cells. Mutation or deletion of 
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aspects within the TGF -~ signaling pathway are frequently seen in human cancers. 

Approximately 85% of all tumours are epithelial in origin, some of which lose their 

sensitivity to the growth inhibitory effects ofTGF-~ (Elliott and Blobe, 2005). In some 

types of cancer, the inherent resistance can be associated with defects in the Smad 

proteins. In pancreatic cancer for example, Smad4 was originally referred to as deleted in 

pancreatic cancer 4 [DPC4], is inactivated in approximately 50% of all pancreatic 

adenocarcinomas (Hahn et al., 1996) and mutated in one third of metastatic colon cancers 

(Miyaki et al., 1999). Mutations leading to the inactivation of Smad2 are primarily found 

in colon and lung cancers (Eppert et al., 1996;Uchida et al., 1996), while no mutations of 

the Smad3 gene have been reported in studied carcinomas (Derynck et al., 2001). 

However, in the Smad3 knockout mouse model, adult mice have a high occurence of 

colon cancer, suggesting Smad3 may be a risk factor (Zhu et al., 1998). 

TGF-~ receptors are also subject to defects and play a role in the proliferation of 

human cancers. Nucleotide additions or deletions ofthe gene encoding TGF~RII are 

often found in patients with hereditary non-polyposis colorectal cancer (HNPCC) 

(Derynck et al., 2001). Mutations which lead to the inactivation ofTGF~II have been 

found in approximately 20-25% of colon cancer patients (Derynck et al., 2001 ). 

Furthermore, mutated forms of TGF~R2 have also been found in gastric, prostate, and 

breast cancers, as well as gliomas (Elliott and Blobe, 2005). TGF~R1 inactivating 

mutations have also been seen in ovarian cancers, metastatic breast cancers, pancreatic 

carcinomas and T -cell lymphomas (Chen et al., 1998;Goggins et al., 1998;Schiemann et 

al., 1999;Chen et al., 2001) 
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Smad Independent Signaling 

1.2.1 Ras Signaling 

Ras proteins are members of a large superfamily of small G-proteins with GTPase 

activity (Paduch et al., 2001). Other members in this superfamily include the Rho family, 

that play a role in actin cytoskeleton regulation, as well as the Rab family, that regulate 

intracellular vesicular trafficking (Tapon and Hall, 1997;Novick and Zerial, 1997). 

GTPases function as molecular switches by binding GTP or GDP. In their inactive form, 

GDP is bound. To activate the GTPase, the bound GDP is replaced by GTP. This 

exchange is moderated by Guanine Nucleotide Exchange Factors (GEFs). GEFs work by 

promoting the dissociation of bound GDP and the uptake of GTP from cytosol stores 

(Bos et al., 2007). Conversely, GTPase-Activating Proteins (GAPs) promote the 

hydrolysis of bound GTP, subsequently inactivating the G-protein (Bos et al., 2007). 

The upstream signals that result in the activation of Ras have been linked to the 

tyrosine kinase receptors (Kamata and Feramisco, 1984). This signaling often leads to 

cellular proliferation or differentiation. Thus, the presence of a mutation constitutively 

activating Ras can lead to uncontrolled cellular growth. Approximately 30% of human 

tumours contain activated Ras mutations (Bos, 1989;Campbell and Der, 2004). One of 

the ways in which Ras propagates proliferative signals is through the MAPK signaling 

cascade (Robbins et al., 1992). Acting directly downstream ofRas is a family of 

serine/threonine MAP3Ks, composed ofRaf-A, -B, and -C. Ras phosphorylates Raf 

which in turn, phosphorylates the MAPK2K MEKl/2. This subsequently activates the 

MAPK Erk (Roberts and Der, 2007). 
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1.2.2 PI3K/AKT Pathway 

Upstream ofRas is the PI3K/Akt signaling pathway, a major component of growth 

factor receptor signaling, regulating cellular functions such as proliferation and cell 

survival (Brazil et al., 2004). There are 3 classes ofPI3Ks with the Class I being 

primarily associated with Receptor Tyrosine Kinase (RTK) signaling although activation 

ofPI3K can be initiated by tyrosine kinase and serine/threonine receptors (Hadari et al., 

1992;Bakin et al., 2000;Brazil et al., 2004). PI3K Class I functions by adding a 

phosphate group to the membrane phosphatidylinositol PI( 4,5)P2, converting it to 

phosphatidylinositol (3,4,5)-triphosphate (PIP3) (Stephens et al., 1993 ;Hawkins et al., 

2006). The PI3K phospholipids products PIP2 and PIP3 attracts proteins containing 

Pleckstrin homology (PH) domains which have a strong affinity for the 3' phosphorylated 

inositol head group. One such protein is a serine/threonine kinase, protein kinase B 

(PKB), also known as Akt. Akt recruitment to the plasma membrane by 

phosphoinositides is necessary for its activation (Franke et al., 1997 ;Frech et al., 1997). 

Akt imparts a multitude of effects on the cell through its phosphorylation of many 

proteins. Akt promotes proliferation through its inhibition of GSK-3 p (Cross et a!., 1995) 

and FOX04 (Kops et al., 2002). It prevents apoptosis by inhibiting Bad, caspase-9, and 

FOX01, and by activating anti-apoptotic proteins such as Mdm2 (Cross et al., 

1995;Datta et al., 1997;Cardone et al., 1998;Brunet et al., 1999;Mayo and Donner, 2001). 

As important nodes of cellular controls, both PI3K and Akt activation must be tightly 

regulated. This is done through lack of growth stimulation in quiescent cells, or through 

phosphatases, such as PTEN, that antagonize the actions ofPI3K (Gao et al., 2000). 
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Mutations leading to constitutive activition ofPI3K or inactivation ofPTEN result in 

deregulation of the signaling pathway. A number of these types of mutations have been 

characterized in a number of cancer types including Glioblastoma, breast and ovarian 

carcinoma, as well as prostate and colon carcinoma (Vivanco and Sawyers, 2002). 

1.2.3 Ubiquitin Dependent Protein Degradation 

Regulation of many cellular proteins is maintained through the ubiquitin-proteasome 

system. This system selectively regulates certain protein concentrations depending on 

physiologic signals and cellular conditions. In addition to being specific, this form of 

protein regulation also has the advantage of being unidirectional, rapid, and localized to 

specific cellular compartments. In many cases, proteins are marked for degradation 

through phosphorylation by kinases. This phosphorylation allows for the covalent 

attachment of multiple ubiquitin molecules, a process known as polyubiquitylation. 

Ubiquitin ligase, a complex made up of three proteins (El, E2, and E3), initially 

recognize a protein for degradation and then flags the protein with ubiquitin chains 

(Ciechanover, 1998). Once ubiquitinated, the tagged protein is localized to a proteasome. 

The proteasome is large, hollow and comprised of multiple protein subunits. Hydrolysis 

of ATP catalyzes the unfolding of the protein, which is then de-ubiquitinated and 

digested into short peptide fragments (Ciechanover, 1998). 
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1.2.4 Smad Independent Pathways 

Recently, a number of other proteins have shown to be affected upon TGF-~ receptor 

activation such as PI3K. Studies have shown that PBK is activated in a cell type specific 

manner. The initiation of PI3K activity in mesenchymal cells, but not epithelial cells 

leads to the activation of p21-activated kinase 2 (P AK2) (Wilkes et al., 2005). PBK 

activation can be directly initiated RhoA or indirectly through TGF-~ induced TGF-a 

expression. PAK2 has normally been shown to be involved in cytoskeletal reorganization 

while its budding yeast homologue, Ste20, has the ability to act as a MAP4K in cellular 

signaling (Dan et al., 2001 ). Rho A and its effector kinase p 160ROCK, in addition to the 

p38 pathway, are believed to be important in Smad-dependent growth inhibition of breast 

carcinoma cells (Kamaraju and Roberts, 2005). Furthermore, the protein phosphatase PP 1 

interacts with the Drosophilia SARA. This interaction disrupts type I receptor 

phosphorylation, negatively regulating TGF-~ signaling (Bennett and Alphey, 2002). In 

all cases however, the mechanisms by which activation occurs, or their biological 

relevance in terms ofTGF-~ signaling are poorly understood. 

1.2.5 TGF-fJIMAPK pathway 

In addition to mediating Smad induced transcription, TGF-~ family members 

have also been shown to initiate a number of independent signaling cascades including 

members of the MAPK family. MAPKs are categorized into three subfamilies; the 

extracellular signal regulated proteins (Erkl/2), stress activated proteins c-Jun N-terminal 

kinase (JNK1, JNK2, JNK3) and p38/MAPKs (Chang et al., 2001). One study 
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demonstrated that a member of the MAPKKK family, TGF-~ Activated Kinase I (TAKI), 

was stimulated in response to TGF -~ and BMP signals (Yamaguchi et al., 1995). In over

expression studies, TAKI has been demonstrated to act upstream ofthe MAPKs JNK, 

and p38. TAKI activates p38 and JNK via MKK3/6 and MKK4/7 respectively 

(Moriguchi et al., 1996;Wang et al., 1997;Bakin et al., 2002). Furthermore, extracellular 

signal regulated kinasel/2 (Erkl/2) can also be activated through TGF-~ signaling 

(Hayashida et al., 2003). TGF-~ activation ofMAPKs can be cell-type specific. As an 

example, in rat articular chondrocytes, TGF-~ activates ERKI/2 but neither JNK or p38 

(Yonekura et al., 1999). The activation ofMAPKs via TGF-~ has been shown to be 

smad-independent through experiments utilizing mutant Type I receptors which are 

unable to phosphorylate R-smads, that are still able to activate p38 after TGF-~ 

stimulation (Yu et al., 2002). The mechanisms by which any of the MAPK members are 

activated through TGF-~ remain poorly understood. 

1.2.6 Crosstalk Mechanisms 

A central caveat in TGF-~ signaling is the ability of the Smad-independent 

pathways to interact and regulate Smad proteins. Up until recently, there has been no 

definitive evidence showing which kinases are involved or how they act on Smads. Much 

focus has been placed on the highly variable Smad linker regions. R-Smad linker regions 

contain potential phosphorylation sites for a number ofkinases including Erk, p38, 

Rho/ROCK, cyclin-dependent kinases (CDKs), c-Jun N-terminal kinase and 

Ca2+/calmodulin-dependent kinase II (Yue et al., 1999;Wicks et al., 2000;Matsuura et al., 
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2004;Mori et al., 2004;Kamaraju and Roberts, 2005). Phosphorylation of 4 sites within 

the linker region ofSmadl was shown to occur by Epidermal Growth Factor (EGF) 

induced Ras/MAPK activation and appeared to inhibit both nuclear localization and BMP 

signaling (Kretzschmar et al., 1997a). Furthermore, mutation of three potential MAPK 

sites within the linker region of Xenopus Smad2 also resulted in inhibition of nuclear 

translocation (Grimm and Gurdon, 2002). Alternatively, other studies have noted that Erk 

phosphorylation positively regulates Smad transcriptional activity and does not inhibit 

nuclear translocation (Engel et al., 1999;Funaba et al., 2002). The interaction between 

TGF-P induced pathways may have a negative effect. Smad6 can downregulate TAKI 

activity (Kimura et al., 2000). Through JNK signaling, c-Jun inhibits Smad2 signaling 

through association with Smad co-repressors (Pessah et al., 2002). Furthermore, 

interaction between TGF -P induced Smad and MAPK signaling is important in epithelial

to-mesenchymal (EMT) transition, as both Erk and p38 play a role in EMT (Bakin et al., 

2002;Davies et al., 2005). It is clear that much remains to be learned regarding the 

interactions between Smad-dependent and Smad-independent pathways before a clear 

and concise answer can be found. 

1.3.1 Thesis Rationale and Hypothesis 

TGF -P serves as a potent regulator of a variety of biological effects. TGF -P has 

been shown to regulate the actions of a number of downstream molecules. The Smad 

signaling cascade has been studied extensively. Smad-independent pathways however, 

are poorly understood. The objective of this study was to define the role ofTGF-P in Erk 
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activation by characterizing the mechanisms of the pathway by which Erk 

phosphorylation is initiated. We also sought to determine the ability ofErk to interact 

with the Smad signaling pathway, as well as to define a functional role for Erk in TGF-~ 

signaling. We believe that TGF -~ initiates Erk activation by mechanisms distinct from 

the classical MAPK pathway, possibly through PI3K and PAK2. As Erk is involved in 

cellular proliferation and differentiation, its subsequent activation would result in a 

growth stimulatory affect through its positive regulation of certain transcription factors 

and negative regulation of the canonical TGF-~ induced smad pathway. 
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Fig 2. Canonical Smad signaling pathway and the classical MAPK pathway. A 
depiction of the mechanisms involved in smad and MAPK signaling. 
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CHAPTER 2 - Introduction 

Transforming Growth Factor p (TGF-P) is a constituent of a family of structurally 

related cytokines that control a myriad of cellular functions. TGF-P elicits its cellular 

responses by signaling through a receptor complex of serine/threonine kinase type I 

(TPRI) and type II (TPRII) receptors at the cell surface (Lin et al., 1992;Franzen et al., 

1993). Ligand binding to the receptor complex requires clathrin mediated endocytosis 

prior to signaling through recruitment of receptor mediated (R-) Smad2 and/or Smad3. 

Phosphorylation at the putative C-terminal SSXS motif on Smad2/3 allows them to 

complex with the common mediator (Co-) Smad4 (Zhang et al., 1996;Zhang et al., 1997). 

The Smad complex then translocates into the nucleus, resulting in the regulation of target 

gene expression (Macias-Silva et al., 1996;Baker and Harland, 1996). Interestingly, 

although both mesenchymal and epithelial cells contain the canonical TGF -P/Smad 

signaling cascade, epithelial cell types are growth inhibited, whereas mesenchymal cells 

are growth stimulated by TGF -p. This would suggest a fundamental mechanistic 

difference in TGF-P signaling between cell types, independent of the Smad signaling 

cascade. 

In addition to Smad signaling, TGF-P has also been implicated in the initiation of 

a number of Smad-independent pathways including Erk, Jnk, ROCK, and more recently, 

PI3K/PAK2. The p21-activated kinases (PAK1-6) are the mammalian homologues of the 

Ste20 group ofkinases, originally defined in yeast as part ofthe Ras signaling pathway 

(Dan et al., 2001). In mammals PAKs have been found to be regulated by PBK through 

cdc42/Rac1 (Wilkes et al., 2003). Recently, PAK2 has been shown to be activated 
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specifically in mesenchymal cells, downstream ofTGF-P receptor and PI3K activation 

and may be associated with TGF -P activation of mammalian Ras signaling (Wilkes et al., 

2003;Suzuki et al., 2007). Functionally, PAKs are Serine/Threonine kinases that 

participate in apoptosis, cell motility and cytoskeletal rearrangement (Hofmann et al., 

2004). Of note are recent findings suggesting Ste20 kinases upstream of mitogen 

activated protein kinase (MAPK) signaling cascades, implicating them as potential MAP 

kinase kinase kinase kinases (MAP4 K) (Dan et al., 2001 ). This raises an interesting 

possibility that the Ste20 mammalian homologue, P AK, has the potential to act in a 

similar fashion. 

The coupling of the MAPK signaling cascade with the Smad pathway has long 

been suggested in TGF-P signaling (Kretzschmar et al., 1997a;Kretzschmar et al., 1999), 

but the relationship and mechanism this occurs by is still unknown. Within the linker 

region, and to a lesser extent the MHl and MH2 domains of Smad2 and Smad3, are 

potential MAPK phosphorylation sites. Extracellular Signal Regulated Kinasel/2 (Erk) 

phosphorylation of sites within the linker region have been shown to both inhibit Smad 

nuclear translocation and enhance Smad mediated transcriptional activity, two mutually 

exclusive functions (Yue et al., 1999;Kretzschmar et al., 1999;Hayashida et al., 2003). 

The classic Erk cascade, typically starts with receptor tyrosine kinases such as Epidermal 

Growth Factor (EGF), that activate the small G protein Rasor as in some cancers by 

mutations rendering Ras constitutively active (Kretzschmar et al., 1999;Lo et al., 2001). 

Active Ras then recruits and activates one of the MAP kinase kinase kinases (MAP3K) in 

the Raffamily, that subsequently phosphorylate the MAP2K, Mekl/2, that in tum 
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activate Erkl/2 through phosphorylation. Once activated in the cytoplasm, Erks 

translocates into the nucleus and effects factors responsible for cell cycle progression 

such as cyclin D1 and transcription factors such as Elk-1 and c-Myc (Gille et al., 

1995;Weber et al., 1997;Sears et al., 1999;Sears et al., 2000). 

In addition to their roles in cytoskeletal regulation, P AKs may play a role in 

regulating the activity of both c-Rafand Mek1 (Coles and Shaw, 2002;Park et al., 2007). 

A recent study reported a mechanistic difference between EGF and platelet-derived 

growth factor (PDGF) within their respective pathways leading to the activation of Erk 

(Beeser et al., 2005). Inhibition of all three Group A PAKs (PAK1 ,2,3) led to a decrease 

in Erk activation in response to PDGF, but not EGF. To date, there have been no specific 

studies aimed at delineating the mechanisms of, or the conditions for TGF-~ induced Erk 

activation. 

Erk is an effector ofRas signaling. As such, constitutively active forms ofRas drive 

persistent Erk activation. Approximately 30% of all human cancers contain mutant forms 

ofRas (Malumbres and Barbacid, 2003). In addition to Erk, Ras has been known to use 

other mediators to affect tumourigenesis. The class I PI3K molecules are known 

interactors with Ras (Roberts and Der, 2007). TGF-~ initiates class I PI3K activation 

(Bakin et al., 2000). In addition to activating Akt, PI3K activates the small GTPases Rac1 

and cdc42, which then activate P AK2 (Wilkes et al., 2003). The PI3K/ Akt pathway is 

integral to the TGF-~ induced epithelial-to-mesenchymal transition (Bakin et al., 

2000;Bhowmick et al., 2001). PI3K has also been shown to be an integral part of receptor 

tyrosine kinase signaling through the Ras family of GTPases (Shaw and Cantley, 2006). 
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The Ras family of small GTPases have been shown to play an integral role TGF-~ 

induced signaling. Activation of both Rae and cdc42 have been shown to regulate JNK 

and p38 affecting cytoskeletal organization (Bishop and Hall, 2000). The activation of 

Rac1, cdc42 and PAK2 by TGF-~ has been identified as a cell type specific affect. Rac1 

and RhoA activation has also been shown to be necessary for TGF-~ induced membrane 

ruffling and lamellipodia formation (Edlund et al., 2002). The data presented in this 

thesis suggests an interaction between smads and PI3K-PAK2-Erk in the regulation of 

fibroblast growth. This may be a mechanism that TGF -~ signaling utilizes to control 

smad signaling. 

In order to maintain balance and prevent signaling systems from overexerting 

their affects, controls must be in place within the system. One level of control ofTGF-~ 

induced signaling is via Ubiquitin-proteasome-mediated degradation. Smurfl and Smurf2 

are members of the HECT family of E3 ubiquitin ligases, with Smurfl affecting BMP 

signaling through interaction with Smad1 and Smad5 (Zhu et al., 1999), and Smurf2 

affecting both TGF-~ and BMP related R-Smads (Zhu et al., 1999;Arora and Warrior, 

2001 ;Bonni et al., 2001 ). Smad2 is thought to be regulated by the proteasome since 

inhibition of Smad2 degradation increases its nuclear accumulation (Lo and Massague, 

1999). C-terminally phosphorylated Smad3 interacts with the protein Roc1, promoting an 

interaction with an SCF ubiquitin ligase complex and subsequent nuclear exclusion and 

cytoplasmic proteasomal degradation (Fukuchi et al., 2001). Unlike the R-Smads, Smad4 

does not appear to be under the control of the ubiquitin-proteasome system. 
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Within this study, we define a novel mechanism for cell type specific TGF -~ 

activation ofErk. We show only in mesenchymal cell lines was TGF-~ able to induce Erk 

activation through activation of P AK2 via PBK. Additionally, Ras does not appear to be 

involved in TGF-~ induced phosphorylation ofErk, but may in fact negatively impact 

Erk activation. Furthermore, the expression of an unknown protein is necessary for TGF

~ induced Erk activation, as inhibition of either RNA or protein synthesis abolished Erk 

phosphorylation. Moreover, the regulation of nuclear Smad2 in fibroblasts appears to be 

under the control of the ubiquitin-proteasome system. In the presence ofTGF-~ 

stimulation, nuclear Smad2 increases upon inhibition of the proteasome (Lo and 

Massague, 1999). As such, the lag ofErk activation relative to the quick activation ofthe 

Smad signaling system may be a cellular method to constrain the long-term growth 

inhibitory affects of Smads and allow for the promotion of TGF -~ induced growth 

normally seen in fibroblasts. We also show that activated Erk is integral to the growth 

stimulatory effect ofTGF-~ within fibroblasts potentially through its interactions with the 

transcription factor c-myc, in addition to Smad2. Erk appears to phosphorylate Smad2 

within the linker region only after both translocate to the nucleus. Taken together, this 

study defines a PI3K/PAK2/Erk pathway utilized by TGF-~, demonstrating the 

requirement of this pathway in mesenchymal growth regulation, a direct link between 

TGF -~ signaling and the regulation of the proto-oncogene myc and an interaction 

between this pathway and the classical Smad pathway. 
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CHAPTER 3 - Materials and Methods 

3.1 Cell Culture 

All cell lines used were maintained in high glucose Dulbecco' s Modified Eagle 

Medium (DMEM; GIBCO). Fibroblast cell lines (AKR-2B) were grown in DMEM 

supplemented with 5 % (v/v) Fetal Calf Serum (FCS), while NIH-3T3 cells were grown 

in DMEM supplemented with 10% (v/v) Newborn Calf Serum (NBCS). Epithelial cell 

lines (Mv1Lu, HEK293) were grown in DMEM supplemented with 10% (v/v) FCS, 

while NMuMG cell growth media also contained 1 011g/ml bovine Insulin (Sigma) and 

5ng/ml EGF. Cells were grown to approximately 80% confluency prior to each passage. 

Cells were maintained for approximately 18-20 serial passages before being discarded 

and new stocks thawed from liquid nitrogen. All cells were maintained at 3 7°C in an 

atmosphere of 5% C02/air. 

3.2 Western Blotting 

Fibroblast cell lines were removed from T175 flasks by trypsinization and 

resuspended in normal growth media. Into each well of a 6 well plate, 3x 105 cells were 

plated at a concentration of 1.5x1 05 cells/mi. After allowing cells to attach for 24 hours, 

media was changed to 0.1% NBCS to serum deprive cells for 18 hours prior to 

experimentation. Epithelial cell lines were plated at a concentration of 1.0x 105 for 

NMuMG cells and 3.0x105 cells/ml for Mv1Lu cells. After being allowed to attach for 24 

hours, NMuMG cells were growth factor deprived by replacing the growth medium with 
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IO% FCS/DMEM for I8 hours before treatment. MviLu cells were treated approximately 

I8 hours after plating. Cultures were then stimulated with TGF -~ at a concentration of 

2ng/ml for indicated time points. To inhibit PBK and MEKl/2 activity, L Y294002 

(Upstate) and UOI26 (Cell Signal Technologies) respectively were used at concentrations 

of IOJlM dissolved in DMSO. To obtain total cellular protein samples, cells were lysed in 

RIPA (IX PBS, IX complete protease inhibitor [Roche], I% Triton X-I 00, 50mM Tris

HCl [pH 7.4; EM Science], 50 mM ~-Glycerophosphate [Sigma], 50mM Sodium 

Fluoride [EM Science], 0.1% SDS, O.I 11M Sodium Orthovanadate, 5mM EDTA [EM 

Science], 75ng/Jll PMSF [Roche]). Cellular lysate samples were quantified for total 

protein using a BCA assay with a standard curve generated with a BSA standard (Pierce 

Biotechnologies). Aliquots containing equivalent total protein from each sample were 

then separated in an 8.5% polyacrylamide gel, transferred to PVDF (Millipore) or 

Nitrocellulose (Bio Rad) membrane prior to antibody detection of each specific protein. 

Membranes were blocked in Blotto Buffer (5% w/v Nonfat Dry Milk in TBST [IOmM 

Tris-HCl pH 7.4, I50mM NaCl, 0.1% v/v Tween-20]) for PVDF or 5% BSA/TBST for 

Nitrocellulose for I hour and then incubated overnight at 4°C in primary antibody. All 

antibodies used were from Cell Signal Technologies and included p44/22 MAP Kinase 

(#9I02), Phospho-p44/22 (Thr202/Tyr204; #9IOI), Phospho-AKT (Ser473; #9427), and 

AKT (#9272), Phospho-Smad2 (Ser245/250/255; #3I04), Phospho-Smad2 (Ser465/467; 

#3I 0 I), Smad2 (3I 02), Phospho-c-Raf (Ser338; #9427), PAK2 (#2608), and Phospho-c

myc (Thr58/Ser62; #940I). Membranes were washed 5 times for 5 minutes each in TBST 

and incubated for I hour at room temperature in Goat anti-Rabbit IgG-HRP secondary 
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antibody (Santa Cruz) in either Blotto Buffer (PVDF) of 5% BSA/TBS (Nitrocellulose) at 

a 1:15 000 dilution. Membranes were then washed 5 times at 10 minutes per wash in 

TBST before addition of Supersignal West Pi co Chemiluminscent Substrate (Pierce) for 

5 minutes and then exposed to film (Hyperfilm, GE Health). 

3.3 Immunocytochemistry 

NIH 3T3 cells were plated at a concentration of20 000 cells/well on a 4 chamber 

slide (Labtech) and allowed to attach for 24 hours. Cells were then serum deprived for 18 

hours prior to being treated with TGF-~ (2ng/ml) for 3 hours. To terminate signaling, the 

cells were washed with ice cold PBS and fixed with 4% Paraformaldehyde/PBS for 30 

minutes at 4 °C. Cells were washed for 5 minutes with TBS and permeabilized using 

0.2% Triton X-100 for 2 minutes at room temperature. Cells were then washed with 3 

changes ofTBST prior to blocking. Blocking solution (PBS, 5% BSA [Sigma], 10% 

normal goat serum [Sigma]) was added to each chamber and cells were incubated at 4°C 

for 60 minutes. Phospho-Smad2 (Ser 245/250/255) antibody was diluted 1:100 in 

blocking solution and filtered through a 0.20f.lm filter before addition to each chamber 

and incubated overnight at 4 oc in a humidified chamber. The cells were then washed 3 

times in TBST for 5 minutes and incubated in Rhodamine X conjugated secondary 

antibody (1 :300 dilution in blocking solution; Jackson labs) at room temperature for 30 

minutes in the dark. Cells were then washed 3 times for 5 minutes in TBST under low 

light conditions before being coverslipped using Vectashield mounting media 

(V ectorlabs ). 
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3.4 Cellular Fractionation 

Nuclear and cytoplasmic protein fractions from TGF-~ treated AKR-2B cells 

were prepared using the NE-PER Nuclear and Cytoplasmic Fractionation kit as described 

by the manufacturer (Pierce Biotechnologies). Cells were plated in 6 well tissue culture 

plates at 3x105 cells/well and allowed to attach for 24 hours. Growth medium was 

exchanged for 0.1% NBCS/DMEM, to serum deprive cells for 18 hours prior to being 

treated with TGF-~ (2ng/ml) for the indicated time points. Cells were washed with ice 

cold PBS and scraped from the wells using a cell scraper into 200f..ll PBS. Cells from 3 

wells were combined and pelleted at 500 x g for 5 minutes and the supernatant removed. 

CERI reagent was added to each cell pellet and cells were resuspended by vortexing for 

15 seconds followed by incubation on ice for 1 0 minutes. CERII reagent was added to 

each sample before vortexing, incubated on ice for 1 minute, vortexed briefly and 

centrifuged for 5 minutes at 15 000 x g. The supernatant (cytoplasmic extract) was then 

transferred to a new microcentrifuge tube. The pellet was treated with NER reagent and 

vortexed for 15 seconds every 10 minutes for a period of 40 minutes. The samples were 

centrifuged for 10 minutes at 15 000 x g and the supernatant (nuclear extract) transferred 

to a new tube and both fractions were placed at -80°C for storage. 

3.5 Thymidine Incorporation 

The assay carried out was based on previously described methods (Wharton et al., 

1982). NIH 3T3 cells were plated at 40 000 cells/well in a 24 well plate and allowed to 

attach for 24 hours. Cells were then serum deprived in 0.1% NBCS for 24 hours and then 
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treated with TGF-P (5 ng/ml), EGF (20ng/ml), and/or U0126 (lO!JM) for 18 hours. 11JCi 

Tritiated Thymidine (Amersham) was added to each well and incubated for 2 hours. 

Media was then aspirated and incorporated radioactivity was precipitated with 2 washes 

of 10 minutes with 1ml ice cold 10% Trichloroacetic Acid (TCA). The TCA was then 

aspirated and 3001Jl solublization buffer (0.2N NaOH, 200 !Jg/ml ssDNA) was added to 

each well and shaken at room temperature for 30 minutes. Incorporated radioactivity was 

quantified by adding 1 OO!Jl from each sample to 5ml scintillation fluid and counted using 

a Beckman Coulter Ls6500 Liquid Scintillation Counter. 

3.6 Adenovirus Infection 

Dominant negative PAK2-EGFP fusion protein and EGFP-expressing 

adenoviruses was generously provided by Dr. Ed Leoffrom the Mayo Clinic, Rochester, 

Minnesota. AKR-2B cells were plated at a concentration of 1.5x105 cells/ml in DMEM 

containing 10% FCS, and incubated for 8 hours before addition ofthe virus. For 

adenoviral infection, an MOl of 125:1 was used. Approximately 18 hours after addition 

of virus, medium was replaced with DMEM containing 0.1% Newborn Calf Serum 

(NBCS). After another 18 hours, cells were treated with TGF-P (2ng/ml) for 3 hours and 

then total cellular lysate was prepared as previously described. 
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CHAPTER 4 - Results 

4.1 TGF -JJ Activates Erk in a Cell Type Specific Manner 

As a starting point, we decided to test multiple mesenchymal and epithelial cell 

lines to determine if there was any variation in Erk activation. Levels of Erk 

phosphorylation were determined in AKR-2B fibroblasts treated with 2 ng/ml TGF-~2 

over the course of 3 hours. As shown in Fig. 3A, Erk phosphorylation begins to appear 

approximately 60-90 min. after TGF-~ addition. Similar results were obtained in NIH 

3T3 fibroblasts (Fig. 3A), indicating Erk activation is not cell line specific, but a general 

property of fibroblasts. Other investigators have shown Erk activation at earlier time 

points. We likewise saw an increase at 30 minutes, but only when cells were allowed to 

cool down during addition ofTGF-~. If cells were maintained at near 37°C, no activation 

ofErk was seen prior to the 60-90 minute window. To further this concept, the 

experiment was repeated using MvlLu and NMuMG epithelial cells where no increase in 

Erk phosphorylation was seen at any point (Fig. 3B). As a control, NMuMG cells were 

also treated with 50 ng/ml EGF to demonstrate that Erk and the MAPK signaling cascade 

functions in these epithelial cell lines. Together these results suggest that the activation of 

Erk upon TGF -~ treatment occurs in cells of mesenchymal origin, but not in epithelial 

cells. 

4.2 PI3KIP AK2 Function is Necessary for Activation of Erk 

Having established Erk activation as a cell type specific event, the next step was 

to determine the upstream components through which this signal is propagated. 
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Fig. 3. Cell type specific activation ofErk. (A) AKR-2B and NIH 3T3 fibroblast, as 
well as (B) MvlLu and NMuMG epithelial cell lines were treated with TGF-~ (2ng/ml) 
for times ranging from 0 to 3 hours. EGF (50ng/ml) was used as a positive control in 
epithelial cells. Celllysates were probed with antibodies specific to phospho-Erk (P-Erk). 
Blots were then stripped and reprobed for total Erk as a loading control. Assays were 
performed in triplicate. 
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Previous studies have shown that TGF-~ induced activation ofPI3K/PAK2 is specific to 

fibroblasts (Wilkes et al., 2003;Wilkes et al., 2005). As our results are indicative of the 

same trend, we sought to discover whether or not Erk is in fact downstream of this 

pathway. We first determined the relationship between PI3K and Erk using L Y294002, a 

specific inhibitor ofPI3K function. Inhibiting PI3K produced a substantial decrease in 

Erk phosphorylation following treatment with TGF-~ (Fig. 4A), indicating that PI3K is 

involved in TGF -~ activation of Erk. 

In the classic MAPK signaling pathway as described for tyrosine kinase receptors, 

Erk phosphorylation follows the activation ofMEK, which is activated by c-Raf. Since it 

is unknown how TGF-~ may be activating Erk, we wanted to determine ifTGF-~ utilizes 

similar signaling intermediaries or a novel pathway. To do this, AKR-2B fibroblasts were 

treated with a MEKl/2 inhibitor, U0126, 30 minutes prior to the application ofTGF-~. 

Measurement of Erk phosphorylation status showed complete attenuation, indicating that 

MEK does appear to act upstream ofErk and plays an intregral role in TGF-~ mediated 

Erk activation (Fig. 4D). 

Since P AK2 has been previously shown to be specifically activated in fibroblasts 

and can activate the MAPK pathway (Wilkes et al., 2003), the next step was to determine 

what role if any, PAK2 has upstream of Erk. We first looked at phosphorylation of c-Raf 

at Serine 338, a site known to be phosphorylated by PAKs and believed to be critical for 

c-Rafactivation (Diaz et al., 1997;King et al., 1998). In AKR-2B fibroblasts, our results 

show a time dependant increase in c-Raf 
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Fig. 4. Erk is activated in fibroblasts via the PI3KIPAK2/c-Raf/MEK pathway. (A) 
AKR-2B fibroblasts were treated with the PBK inhibitor LY294002 {lO!JM) 30 minutes 
prior to addition ofTGF-P (2 ng/ml) for 2 hours. Celllysates were probed with an 
antibody specific to phospho-Erk, then blots were stripped and reprobed for total Erk as a 
loading control. (B) AKR-2B fibroblasts were treated with TGF-P for the indicated times. 
Cells were also treated with LY294002 (lO!JM) 30 minutes before TGF-P (2ng/ml) was 
added for 2 hours. Celllysates were probed using an antibody specific to phospho-c-Raf 
(Ser338), and an antibody to total Erk as a loading control. This loading control was 
measured using a lower Mr part of the same gel. (C) AKR-2B fibroblasts were infected at 
an MOl of 1:125 with adenovirus containing either dominant-negative PAK2 (Ad
dnPAK2-EGFP) or Ad-EGFP as a negative control. Cells were treated with TGF-P 
(2ng/ml) for 2 hours prior to lysis. Celllysates were then probed for phospho-Erk, total 
Erk, and phospho-c-Raf(Ser338) levels. The loading control was measured using a lower 
Mr part of the same gel. Lysate was also probed for PAK2 to confirm expression. (D) 
AKR-2B fibroblasts were treated with the MEKl/2 inhibitor U0126 (lO!JM) 30 minutes 
prior to addition of TGF -P (2ng/ml) for 2 hours. Cell lysate was probed with an antibody 
specific to phospho-Erk. 
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phosphorylation in response to TGF -~. Furthermore, when treated with L Y294002, this 

phosphorylation was negated (Fig. 4B). Additionally, AKR-2B cells were infected with 

Adenovirus containing enhanced green fluorescent protein (Ad-EGFP) or dominant 

negative PAK2-EGFP fusion protein (Ad-dnPAK2-EGFP). Phosphorylation levels of c

Raf and Erk were subsequently measured. Expression of EGFP had no effect on the 

levels of either c-Raf or Erk phosphorylation. Expression of dominant negative PAK2 

however, did abrogate both c-Raf and Erk phosphorylation (Fig. 4C). Taken together, 

these results support the hypothesis that TGF -~ induced phosphorylation of Erk is 

incumbent upon the actions of PI3K and PAK2, through the classic MAPK signaling 

intermediates. 

4.3 Inhibition of Ras propagates Erk activity 

The small G-protein Ras has been implicated in the activation of a number of 

downstream effectors including Erk. In certain cancers, Ras is constitutively active and 

drives cellular proliferation through the classical MAPK pathway and has been 

implicated in TGF-~ signaling (Leevers and Marshall, 1992;Suzuki et al., 2007). As such, 

we decided to determine ifRas played a role in TGF-~ induced Erk activation. To do this, 

we treated AKR cells with FPT, a farnesyl transferase inhibitor for 2 hours in the 

presence or absence ofTGF-~. FPT inhibits the ability ofRas to anchor to the membrane, 

thereby attenuating its function. When Ras activity is inhibited, TGF -~ induced Erk 

phosphorylation was uneffected. In fact, Erk phosphorylation appeared to increase in the 
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presence of FPT (Fig. 5). Under these conditions, it appears that Ras function negatively 

regulates Erk activation. 

4.4 PI3K/ Akt and PI3K/Erk pathways are independent 

Akt has been established as a main effector ofPBK signaling. In order to 

determine the level of interaction between the PBK/Akt and the newly established 

PBK/Erk pathway, AKR cells were treated with L Y294002 and U0126 and probed for 

phospho-AKT. Akt activation was abolished in the presence of the PBK inhibitor, but no 

effect was seen in the presence of the MEK inhibitor, indicating that the pathways are 

independent of one another with respect to direct activation ofErk (Fig 5). 

4.5 RNA and protein synthesis are necessary for Erk activation 

Since the observed activation of Erk appears around 90 minutes after TGF -~ 

addition, we wanted to examine if there was a required protein that needed to be 

synthesized first to allow signaling to procede. We therefore treated AKR fibroblasts with 

Actinomycin D and cyclohexamide, an RNA and protein synthesis inhibitor respectively. 

When cells were treated with these inhibitors, there was little difference in Erk 

phosphorylation in the presence or absence ofTGF-~, indicating that an essential protein 

must be produced in order for Erk activation to occur (Fig. 6). Addition of both inhibitors 

caused an increase in background levels of Erk phosphorylation. This was probably due 

to an increase in cellular stress upon addition 
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P-Erk 

P-Akt (Ser473) 

Akt 

+ + + + TGF-P 
+ + U0116 

+ + LY294002 
+ + FPT 

Fig. 5. Activation of Two Distinct Pathways by TGF-p. Celllysates were obtained 
from AKR-2B fibroblasts treated with TGF-~ (2ng/ml) for 2 hours. Separate wells were 
treated with either U0126 (lOJ.tM), LY294002 (lOJ.tM), and FPT (lOJ.tM) for 30 minutes 
prior TGF -~ treatment. Experiment was performed in triplicate. Cell lysate was probed 
with antibodies specific to phospho-Erk and phospho-Akt (Ser473). Total Erk and Akt 
levels are shown as loading controls. Samples treated with or without TGF -~ and/or 
U0126 were also shown in figure 2D 
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of each inhibitor as Erk as been shown to be activated under conditions of stress 

(Schliess et al., 1995;Guyton et al., 1996;Pearce et al., 1996). 

4.6 Smad2 Linker Region is Phosphorylated by Erk 

With the establishment of a direct TGF-~/Erk signaling pathway, our next goal was to 

determine if an association existed between Erk and the Smad pathway, both under the 

direct contol ofTGF-~. A variety of studies have been undertaken to determine the extent 

of Erk influence on Smad function. These studies have been unable to clearly define the 

relationship between Erk and Smad, with Erk phosphorylation of Smad Linker Region 

sites having been shown to increase Smad activity (Yue et al., 1999) or decrease Smad 

activity and alter the intracellular trafficking (Kretzschmar et al., 1999). AKR-2B 

fibroblasts were treated with TGF-~ for various times and then probed for Smad2 

phosphorylation at the linker region Serine residues 245, 250, and 255. Addition ofTGF

~ yielded an increase in Smad2 linker region phosphorylation over time. Furthermore, 

when MEK activity is inhibited prior to TGF-~ treatment, a complete abolition of linker 

region phosphorylation occurs (Fig. 7 A). Receptor mediated Smad2 phosphorylation was 

also measured, showing prominent Serine 465/467 phosphorylation over 3 hours, 

independent ofMEK activity (Fig. 7B). Together this indicates that TGF-~ signaling is 

responsible for phosphorylation at these particular sites within the Smad2 linker region, 

through activation of Erk. 
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P-Erk 
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·til;. 
Erk 

+ + + TGF-p 
+ + ActD 

+ + Cyclo 

Fig. 6. RNA/Protein Synthesis is Necessary for Erk Activation. AKR-2B fibroblasts 
were treated with TGF-~ (2ng/ml) for 2 hours. Actinomycin D (Act D; 2J.tM) and 
Cyclohexamide (Cyclo; 1 OJ.tM) were added 30 minutes prior to TGF -~ addition. Cell 
lysate was probed for phospho-Erk and total Erk as a loading control. Each experiment 
was performed in triplicate. 
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Fig. 7. TGF-fJ directs Erk phosphorylation ofSmad2linker region. (A) AKR-2B 
fibroblasts were treated with TGF-J3 (2ng/ml) for the indicated time periods with or 
without U0126 {lOj.!M) for 30 minutes prior to a 2 hour treatment with TGF-J3 (2ng/ml). 
Celllysates were probed with an antibody specific to Smad2 phosphorylated linker 
region serine sites 245,250, and 255. (B) Receptor mediated phosphorylation ofSmad2 
was also determined under identical conditions. Cell lysate was probed with antibodies 
specific to phospho-Smad2 (Ser 465/467). The blots were stripped and reprobed for total 
Smad2 to demonstrate similar loading of all samples. The experiment were performed in 
triplicate with consistent results. 
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These results indicate a direct connection between Smad2 and Erk, but not the 

functional relationship between the two. Since Smad2 is a transcription factor that 

translocates to the nucleus following receptor mediated phosphorylation, we fractionated 

AKR-2B fibroblasts into cytoplasmic and nuclear extracts after addition ofTGF-p. We 

then measured Smad2linker region phosphorylation. Surprisingly, linker phosphorylation 

was seen only in the nuclear fraction, not the cytoplasmic fraction (Fig. 8A). Total Smad2 

and GAPDH levels were used as controls. As expected, receptor phosphorylated Smad2 

was identified predominantly in the nucleus after addition ofTGF-~ (data not shown). 

Small amounts were seen in the cytoplasmic fraction, but only in the presence ofTGF-~. 

Total Smad2 was present in both the cytoplasm and the nucleus. In the absence ofTGF-p, 

levels ofSmad2 are greater within the cytoplasm. When TGF-~ is present, the majority 

of Smad2 measured was found within the nucleus. Both cytoplasmic and nuclear 

fractions were probed for GAPDH to show minimal level of cytoplasmic protein 

contamination of the nuclear fractions (Fig. 8A). 

In order to substantiate our findings, immunofluorescent localization of Smad2 

linker region phosphorylation was determined. Linker region phosphorylation and 

localization were similar to the results observed with the cellular fractionations, 

indicating that Erk phosphorylation of Smad2 linker region occurs in the nucleus of 

fibroblasts (Fig. 8B). Taken together, these data demonstrate a localization relationship 

between Erk phosphorylation of the Smad2 linker region which is limited to a specific 

subcellular location and that this interaction stems from TGF-~ induced activation of the 

PI3K/PAK2/Erk pathway. 

39 



4.7 Nuclear Smad2 is Controlled by the 26S Proteasome in fibroblasts 

26S proteasomal activity is an integral part to many signaling systems 

(Ciechanover, 1998). It provides a mechanism by which signaling pathways can be 

controlled. When AKR fibroblasts were treated with the proteasome inhibitor MG132, in 

addition to TGF -~, we found that nuclear levels of Smad2 increase, indicating that the 

proteasome is involved in the downregulation of Smad2 levels in mammalian fibroblasts 

(Fig. 8A). This finding was further verified using NIH/3T3 fibroblasts stained for linker 

region Smad2 phosphorylation (Fig. 8B). When proteasome activity was inhibited prior 

to TGF -~ stimulation, there is a large increase in Smad2 linker region phosphorylation, 

suggesting that the proteasome has a role in the control of TGF -~ signaling through 

degradation of Smad2. This data is similar with previous work showing Smad2 to be 

under the control of the 26S proteasome (Lo and Massague, 1999). 

4.8 Erk Function is Critical for Proliferation in Fibroblasts 

Erk functions to phosphorylate a variety of cytoplasmic and nuclear targets, many 

of which are critical in cell cycle progression (Gille et al., 1995;Weber et al., 1997;Sears 

et al., 1999;Sears et al., 2000). Having established a connection between Erk and the 

Smad signaling pathway, we sought to determine ifErk also plays a role in the 

proliferative effects of TGF-~ in fibroblasts. As such, we focused on the proto-oncogene 

c-myc, known to be mutated in a variety of cancers and an important promoter of cell 

growth. Figure 9A shows that when AKR-2B fibroblasts were treated with TGF-~, c-myc 

phosphorylation increases over a similar time course to that seen with Erk activation (Fig. 
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Fig. 8. Nuclear Smad2 Levels are Controlled by the Proteasome. (A)AKR-2B 
fibroblasts were treated for 3 hours with TGF-J3 (2ng/ml). MG132 (10 J..LM) was added 30 
minutes prior to TGF-J3 addition. Nuclear and cytoplasmic fractions were probed for 
linker region phosphorylation (phospho-Smad2 (Ser245/250/255)), total Smad2 as a 
loading control, and GAPDH to monitor the presence of cytoplasmic protein in the 
nuclear fraction. (B) Photomicrographs ofNIH 3T3 fibroblasts treated with TGF-J3 
(2ng/ml) for 3 hours. MG 132 (1 OJ..LM) was added 30 minutes prior to TGF-J3 treatment. 
Cells were incubated with phospho-Smad2 (Ser245/250/255) antibody and specific 
immune complexes detected using Rhodamine X conjugated secondary antibody. 
Experiments provided consistent results and were performed in triplicate. 
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3A). When TGF -~ induced Erk activition is inhibited, c-myc phosphorylation is 

abolished. 

In addition to c-myc activation, Erk has been shown to coordinate activation of 

several proteins to stimulate cell replication. The biological consequences of TGF -~ 

induced Erk activation were addressed using a Thymidine Incorporation assay (Fig. 9B). 

Treatment with TGF-~ yielded a 6 fold increase in DNA synthesis as compared to 

untreated NIH3T3 fibroblasts. When cells were treated with U0126 to inhibit Erk 

activation prior to TGF -~ addition, growth was attenuated 6 fold when compared to cells 

treated with TGF-~ alone. This is significant in that the abolishment ofErk activation 

with U0126 completely diminished TGF-~ induced growth proliferation in the NIH 3T3 

fibroblast cell line. Consistent with our previous data showing PAK2's role in Erk 

activation, the presence of dnP AK2 dramatically decreased TGF -~ stimulation to only 2 

fold above control levels (Fig. 9B). Thus, the ability ofTGF-~ to induce growth in 

fibroblasts appears to depend on the function of Erk and PAK2. 
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Fig. 9. Erk Activity is Integral for TGF-P Induced Growth in Fibroblasts. (A) 
Cellular lysates of AKR-2B fibroblasts were obtained from cells treated with TGF-~ 
(2ng/ml) for the indicated times, with or withoutU0126 (lOJ.LM) for 30 minutes prior to 
treatment ofTGF-~ for 2 hours. Celllysates were probed for phospho-c-Myc 
(Thr58/Ser62) and total Erk as a loading control. (B) To test the effects on cell growth, a 
thymidine incorporation assay was performed. Serum deprived NIH 3 T3 cells were 
treated with TGF-~ (5ng/ml), EGF (50ng/ml) or infected with Ad-dnPAK2 or Ad-EGFP 
(MOl= 125:1) prior to treatment with or without TGF-~. The effect of treatment is 
expressed as a fold change relative to untreated cells (control=l). Each sample was 
performed in triplicate. The values represent the average of all replicates for each sample. 
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CHAPTER 5 - Discussion 

5.1 Cell-type specific Erk activation 

TGF -~ has been shown to mediate the activation of a number of downstream 

targets including Akt, ROCK, and MAPKs, such as Jnk and Erk (Mucsi et al., 1996;Atfi 

et al., 1997;Bakin et al., 2000;Bhowmick et al., 2001). However, a major limitation in 

our understanding of TGF -13 biology is the lack of knowledge regarding a direct link 

between TGF-~ signaling and the mechanisms and actions ofSmad-independent 

pathways. Considering the functional diversity TGF -~ displays, the non-smad pathways 

of TGF -~ signaling have the potential to play a major role either as direct alternative 

signaling pathways or in crosstalk with smads, to generate the multitude of observed 

TGF-13 effects. It is for these reasons we chose to address the mechanisms involved in 

direct TGF-~ activation ofErk, as well as its functional role in TGF-~ signaling in non 

cancerous cells. 

Four phenotypically normal cell lines (2 fibroblast and 2 epithelial) were treated 

with TGF-~ over a period of time. TGF-13 was only able to induce Erk phosphorylation in 

fibroblasts, not epithelial cells (Fig.3). It is important to note that this activation occurs 

with endogenous levels of all members of the signal transduction pathway demonstrating 

this is a normal response and not related to over-expression artifacts. This data is 

consistent with an earlier study indicating that TGF-~ induced activation of this non

smad pathway does not take place in epithelial cells and appears to be a cell-type specific 

phenomenon (Hayashida et al., 2003). As a known effector of cell replication, it is 
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interesting to note that Erk is activated in a cell type known to proliferate in response to 

TGF-~, but not in a cell type growth inhibited by TGF-~. 

5.2 Erk phosphorylation occurs via PI3K/PAK2/Raf-1 but not Ras 

PBK has been implicated in TGF-~ signaling as an activator ofPAK2 signaling 

(Wilkes et al., 2005). Here we show that PBK also acts downstream ofthe TGF-~ 

receptor complex to induce the activation ofErk. Abrogation ofPBK function using 

specific chemical inhibitors greatly reduces Erk phosphorylation (Fig. 4A). Additionally, 

loss of PBK function also led to an abolishment of c-Raf phosphorylation at Serine 338, 

a known site of P AK activation (Diaz et al., 1997). Consistent with the description of the 

pathway is that dnPAK2 is able to block both c-Raf and Erk phosphorylation induced by 

TGF-~ (Fig. 4B-D). These findings are consistent with previous reports showing other 

group A P AKs interacting with and phosphorylating c-Raf at Serine 3 3 8 (King et al., 

1998;Chaudhary et al., 2000). Furthermore, this pathway follows the same trend as the 

classic MAPK signaling pathway. However, instead ofRas as the primary activator, c

Raf activation appears to occur through PI3K/PAK2, similar to that described for PDGF 

(Beeser et al., 2005). It appears as though these results follow a similar trend to that 

found in a previous study whereby P AK2 mimics its budding yeast homologue Ste20 by 

acting as a MAP4K in a mammalian system (Dan et al., 2001). 

The interplay between Ras and the various forms of Raf in forming the initial 

steps of the MAPK signaling pathways, as well as the interactions between the various 

Raf isoforms themselves is complex and not completely understood. Ras has been shown 
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to activate both b-Raf and c-Raf (Troppmair et al., 1992). Oncogenic Ras has been shown 

to strongly regulate b-Raf, whereas Raf-1 (c-Rat) requires the actions ofRas, in addition 

to other signals, to activate its tyrosine kinase (Marais et al., 1997). As has been 

previously indicated for PDGF signaling (Beeser et al., 2005), it is possible that within 

mammalian fibroblasts, TGF-~ induces Erk activation through PI3K separately from Ras. 

Furthermore, B-Raf appears to contribute to the majority ofMEK activation, via Ras 

(Jaiswal et al., 1994). It is possible that by inhibiting the Ras pathway, the ability ofthe 

PI3K/PAK2/c-Rafpathway to initiate Erk phosphorylation is increased. 

The role that Ras plays in Erk activation through TGF-~ signaling is unclear. Here 

we show inhibiting Ras appears to increase Erk activation while previous studies have 

suggested a positive role for Ras in TGF-~/MAPK signaling (Suzuki et al., 2007). One 

possible explanation may be RLP (Ras-like-protein), a Smad3-dependent immediate

early TGF-~ target gene. It shares 30% sequence homology with members of the Ras 

superfamily and has been shown to interact with type I and type II receptors (Piek et al., 

2004). In addition to its similarity with Ras family members, another interesting finding 

was RLP activation time. Expression was induced within 45 minutes ofTGF-~ 

introduction, similar to the observed activation time ofErk, occurring between 60-90 

minutes after TGF-~ addition. If RLP imitates Ras in terms of acting as a docking site 

for MAP4Ks and allows for their activation, then RLP may act upstream of Erk and play 

a role in its activation. The data presented in this report is based on chemical inhibition of 

Ras. It would be interesting to see if introducing a dominant negative form of Ras would 

have the same effect. Such an experiment would rule out any secondary effects from 
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chemical inhibition which may contribute to this phenotype. This approach would also 

allow us to define in more detail, the mechanisms involved in Erk activation. By mutating 

the domain which interacts with Raf-1, we could determine if direct Ras-Raf-1 

interaction is necessary for Erk activation or if Ras predominantly works through another 

intermediate such as PBK. 

Furthermore, figure 6 showed that RNA and protein synthesis were necessary to 

induce Erk activation in the presence of TGF -~. RLP, and possibly other immediate-early 

genes upregulated by TGF-~, may play a role in Erk activation. This however, is not 

direct evidence that an unknown protein is involved upstream of Erk activation. It is 

possible that this a secondary effect whereby Erk is stimulated after activation of other 

factors which then propagate a signal for Erk activation. This would provide a possible 

explanation for the time lag seen in Erk phosphorylation. 

5.3 Smad2 is phosphorylated by Erk in the nucleus 

The treatment of fibroblasts with TGF-~ induced phosphorylation of the Smad2 

linker region, a site believed to be important in regulating Smad function (Yue et al., 

1999;Kretzschmar et al., 1999). In addition, inhibition of Erk activity subsequently 

abolished this phosphorylation. Previous studies have addressed the potential link 

between MAPKs and Smad signaling, however an unambiguous definition of the role it 

plays still remains elusive. Kretzschmar et. al, (1999) showed the ability of oncogenic 

Ras and EGF to stimulate Erk/Smad interaction resulting in nuclear exclusion of 

Smad2/3. Our results appear to be contradictory to this report. With both cellular 
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fractionation and immunocytochemistry displaying linker phosphorylation occuring 

primarily within the nucleus. The incongruity between our data and previous reports 

could lie with the fact that previous studies looked in epithelial cells and the interactions 

of other growth factors with TGF-~, while our study defined fibroblast signaling with 

TGF-~ alone. It is possible that differential affects are due in part to mechanistic 

differences between cell types, or it may simply be an issue of timing and influence of 

EGF on smads. Kretzschmar et. al, (1999) observed nuclear exclusion in a system when 

EGF and Ras activate greater than normal levels of Erk before Smad activation. With a 

constitutively active Ras, active Erk is present before and after TGF-~ activation of 

Smads. Our study is focused on cells functioning in a context of TGF -~ alone whereby 

Smads are activated immediately and begin to translocate into the nucleus. Once 

activated approximately 60-90 minutes later, Erk has to move into the nucleus, where 

most of the Smad2 is already, to phosphorylate and affect its function. 

The apparent localization of linker region phosphorylation within the nucleus 

raises a number of interesting questions regarding the role of Erk/Smad signaling kinetics 

under TGF-~ signaling. Phosphorylation of Smads by TGF~R-1 occurs approximately 5-

15 minutes after TGF-~ introduction (data not shown). Interestingly, Erk phosphorylation 

was not seen until approximately 60-90 min. after TGF-~ induction. This would mean 

that Smads would be functioning for approximately 45-60 min. before any substantial 

activation ofErk is seen. Taking this into account, it is possible that a function ofErk 

may be as an inhibitor of Smad function. The time difference before Erk activation would 

allow for Smads to function uninhibited before being constrained by direct or indirect Erk 
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interactions. A recent report introduced the idea that complexed Smad2/4 molecules are 

retained in the nucleus and uncomplexed smads are shuttled back into the cytoplasm to be 

phosphorylated by TGF~RI, oligomerize, then shuttle back into the nucleus to be retained 

(Nicolas et al., 2004;Schmierer and Hill, 2005). It is possible that Erk may only 

phosphorylate the linker region of Smad2 and affect its function when it is complexed 

and active within the nucleus. Lo et al. (2002) showed that Smad2 signaling appeared to 

be controlled by ubiquitin dependent degradation via the proteasome within the nucleus 

in a number of different cell types. We corroborated these findings by showing that the 

proteasome does regulate nuclear Smad2 levels in both AKR-2B and NIH/3T3 

fibroblasts. It would be interesting to determine if there is a correlation between Smad2 

linker region phosphorylation by Erk and Smad2 degradation. Smad2 signaling may be 

attenuated upon Erk activation. The down regulation of the Smad pathway coupled with 

the increase of proliferative signals such as c-Myc, could explain the dependence ofErk 

activity for proliferation in fibroblasts as demonstrated in figure 9. 

5.4 Erk controls fibroblast proliferation 

In addition to its interaction with the Smad signaling pathway, Erk also acts to 

directly affect growth in fibroblasts. Figure 5B illustrates the importance ofErk in the 

TGF-~ growth proliferative effects seen in fibroblasts as U0126 clearly inhibits TGF-~ 

cell growth. This data is in line with previous reports illustrating the ability of Erk to 

upregulate cyclin Dl transcription and downregulate Cdk inhibitor p27KIPI expression, 

leading to cell cycle progression (Weber et al., 1997). In addition to its effects on cyclin 
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D 1 and p27KIPI, Erk also activates a number of transcription factors, including the proto

oncogene c-myc (Davis, 1995) and increases its stability via phosphorylation (Sears et 

al., 2000). Overexpression of the Myc protein has been cited in many different types of 

cancer, including breast and ovarian cancers (van Dam et al., 1994). As expected, our 

results indicate that Erk activity induces c-Myc phosphorylation at Ser58/Thr62(Fig 9A). 

This is significant in that we are able to show a direct link between the activated TGFPR 

complex and a non-smad transcription factor and proto-oncogene involved in the cell 

proliferation process. Furthermore, Erk may also indirectly effect c-myc activity through 

the control of Smad signaling. An earlier study reported a link between the Smad 

pathway and the c-myc promoter (Yagi et al., 2002). Conversely, TGF-P has been 

implicated in the down-regulation of c-myc in epithelial cell types (Pietenpol et al., 

1990). Taking this data into consideration, it is possible that in addition to 

phosphorylating c-myc, Erk inhibition of Smad signaling may help to increase c-myc 

expression. As such, the data presented may offer a possible explanation for the 

differential effects TGF-P displays between cell types. 

Although Smad-dependant signaling has been well defined, Smad-independent 

signaling is not well understood. The purpose of this study was to define the mechanisms 

involved in the TGF-P induced activation ofErk. Our results indicate that with TGF-P 

stimulation the MAPK, Erk, is activated in a cell type specific manner. TGF-P induces 

the phosphorylation ofErk through the PI3K/PAK2 dependant pathway. Abolishment of 

PAK2 activity inhibits c-Raf and Erk phosphorylation under TGF-P stimulation, 

indicating that TGF -P functions through P AK2 to activate c-Raf and subsequently Erk. 
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Furthermore, the MAPK phosphorylation sites found within the linker region of Smad2 

are phosphorylated by Erk and this phosphorylation appears to only occur within the 

nucleus. The action ofErk is integral to the growth effects ofTGF-P in fibroblasts. 

Abrogation of Erk activity leads to a blockade of TGF -P induced stimulation of growth 

(Fig. 9). 

The data presented here, in addition to published reports, allows us to hypothesize 

a possible mechanism of action for TGF-P in fibroblasts. First, Smads are immediately 

activated upon TGF-P induction and proceed to regulate target gene transcription until 

Erk is activated approximately 60 min later. Erk then abolishes the overall negative 

effects on growth conferred by Smads either through direct or indirect regulation of Smad 

signaling and by upregulating transcription factors such as c-myc to induce cell cycle 

progression. Taken together, these results indicate an important and multi-faceted role for 

Erk in TGF-P signaling. Elucidation of this pathway has shed light on key questions 

pertaining to TGF-P pathway interactions, as well as mechanistic differences between cell 

types. By doing so, we are able to gain insight into the role it plays in cancer and other 

diseases. 

5.5 Future Directions 

The data presented here provide a basis for study of the interplay between various 

facets ofTGF-P signaling. A major hurdle in understanding TGF-P and its role in cancer 

is first understanding how it functions in a normal environment. Delineating the 
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mechanisms involved in Erk activation through TGF-~ contributes to our overall 

understanding of the system, but there are still many questions to be answered. 

The role ofRas in the process ofErk activation remains elusive. It appears as 

though Ras has a negative effect on the degree of Erk activation, but this has only been 

studied briefly using chemical inhibitors during this study. Recent published data has 

suggested a positive role for Ras in the activation of downstream effectors ofTGF-~ 

(Suzuki et al., 2007). It would be interesting to use dominant negative or constitutively 

active forms ofRas and measure the effect has on downstream signaling after TGF-~ 

stimulation. Moreover, the mutation of certain sites within Rasor its effectors such as 

Raf-1 or PBK that effect interaction would be interesting to see what role each played in 

Ras signaling. This would provide a clue as to the mechanism at play further upstream of 

Erk. 

We have shown a direct link between Erk and Smad2. Erk phosphorylates the 

linker region of Smad2, but the functional purpose of this phosphorylation has yet to be 

determined. Previous studies have shown either a negative effect on smad signaling 

through inhibition of smad nuclear translocation or a positive effect through gene 

regulation. This incongruency between studies may be cell-type specific or the 

phosphorylation may be multifunctional. Our data does not specifically disagree with the 

theory of smad nuclear inhibition. We show that Erk activation by TGF-~ does not block 

nuclear export. Other studies have shown what other growth factors, such as EGF, which 

activate Erk, do to R-smad translocation. We have however not studied the difference in 

gene regulation between smads phosphorylated or not phosphorylated at the linker 
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region. It would be interesting to study a subset of genes and their activity when Erk is 

active or inactive to determine ifthere is a difference. Furthermore, the role of the 

proteasome has yet to be fully defined in smad signaling. Smad levels have been shown 

to be regulated by the proteasome. However, the signals which target smad for 

degradation are not known. When the proteasome is inhibited via MG 132, the levels of 

Smad2 are greatly increased in the nucleus. We also showed that linker region 

phosphorylation seems to only occur within the nucleus. We hypothesize that Erk 

phosphorylation of the Smad2 linker region could be the signal which directs Smad2 for 

degradation by the proteasome. With Smad signaling having an overall negative effect on 

cell proliferation, it seems plausible that Erk, a major effector of proliferation, could 

dampen the negative effects of smads while stimulating factors involved in pushing the 

cell through the cell cycle such as c-myc. Mutating serines 245, 250 and 255 and 

measuring Smad2 levels in the nucleus after Erk activation would allow us to see if 

phosphorylation of these sites by Erk was necessary for degradation. Furthermore, 

measuring the amount of ubiquitination of Smad2 when Erk is active and when it is 

inhibited would also give a good indication of the role ofErk in Smad2 regulation. 

The data we present in this study provides insight into TGF -~ signaling in 

fibroblasts. Our study helps to explain why there is a cell-type specific difference in 

TGF-~ signaling as well as explaining the role smad-independant signaling plays. 

However, our knowledge in this field is still very limited. The results generated here will 

help to explain various facets of TGF -~ signaling and will allow further progression in 

the study of its role in cancer. 
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5.6 Summary 

The main purpose of this study was to assess the factors involved in smad

independent signaling under TGF-P control within phenotypically normal cells. Here we 

show a cell-type specific TGF-P controlled activation ofErk. Cells of mesenchymal 

origin appear to initiate this activation through the PI3K/PAK2/c-Raf/MEK pathway. 

There appears to be a temporal delay in Erk phosphorylation that occurs approximately 

60-90 minutes after TGF -P addition. Furthermore, Erk activation appears to affect cell 

proliferation, potentially through the control of transcription factors such as c-myc, as 

well as through cessation of the Smad signaling pathway. 

The MAPK, Erk, has been shown to potentiate cellular growth and proliferation 

by activating or deactivating a number of substrates (Davis, 1995;Weber et al., 1997). As 

such, Erk activation in fibroblasts and their ability to proliferate in the presence of TGF -P 

appear to coincide. When Erk activation was inhibited growth appeared to be attenuated 

as measured by thymidine incorporation. Furthermore, we showed a direct interaction 

between Erk activation and linker region phosphorylation of Smad2 in the nucleus. The 

exact purpose of this interaction has not been fully elucidated. However, Smads do 

appear to have an overall negative effect on growth. It would be reasonable to assume 

that in addition to stimulating proliferation through activation of various effectors, Erk 

may also be promoting proliferation by controlling the anti-proliferative signals of 

Smads. 

These potential roles for Erk would help explain the effects ofTGF-P seen in 

various cancers and other disease states. In normal epithelial cells, long term (days) 
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treatment with TGF -~ induces a change in phenotype more characteristic of 

mesenchymal cells. This is known as epithelial-mesenchymal transition (EMT) 

(Miettinen et al., 1994). This transition includes the ability of epithelial cells to 

proliferate under TGF -~ control. It is possible that the subsequent ability to proliferate 

may stem from the activation of Erk. In order for cells to proliferate in the presence of 

TGF-~, the actions of Smads must be abrogated. Our results have shown a direct 

interaction between Erk and Smads. It is possible that in some way, Erk does directly 

control Smad activity. Furthermore, the activation ofPI3K and its subsequent activation 

of both Erk and Akt drive cellular proliferation. The data presented here could help 

explain how cells make the transition from growth inhibition to proliferation in the 

presence of TGF -~. 

The pathways initiated by TGF-~ independent of the Smad pathway, are poorly 

understood. There is little definitive data for these Smad-independent pathways and how 

they contribute to TGF -~ phenotypes in varying cell types. With the multitude of effects 

TGF-~ portrays, it would be surprising to learn that all stem from Smad signaling. As 

such, it is important to characterize the mechanisms and function of these Smad

independent pathways. By defining these pathways and learning how they function in a 

normal system, we are better able to understand what may be going on under aberrant 

conditions. 
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Fig. 10. Mechanisms of TGF -P Induced Erk Activation. A schematic diagram 
depicting a proposed mechanism by which TGF-P causes Erk phosphorylation through 
the PBK ~ PAK2 ~c-Raf~ MEK pathway. Erk shows potential regulation of Smad2 
signaling by phosphorylating its linker region within the nucleus and may initiate potent 
growth stimulatory signals via transcription factors such as c-Myc. Arrows do not 
necessarily depict a direct link between each protein. 
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