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Abstract 

Robust estimators are developed for the segmented regression model, a model 

consisting of two linear segments separated by a change-point. Julious (2001) 

introduced a method to estimate parameters in the case of unknown change­

point. The focus of this practicum is on robustifying the Julious algorithm 

via iteratively re-weighting, extending the work of Julious (2001). Simulation 

studies are conducted to assess the performance of the iterative re-weighting. 

The methods are applied to a physiological data set studied by J ulious, and 

to two stock-recruit data sets from fisheries science . 

. . 
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Chapter 1 

Introduction 

1.1 The Change-Point Problem 

In the world of parametric modelling, smooth 1 functions are predominantly 

selected when postulating functional forms for statistical models. Further, 

most non-parametric frameworks focus upon smooth functions. However, in 

practice, it is possible that an abrupt transition may exist at some critical 

point and that the true dynamics of the underlying process are not smooth at 

this critical point. In statistics, a large field of research on such change-point 

models exists. Weighted regression in change-point models is the focus of 

this practicum. 

Generally speaking, change-point regression is a regression problem in which 

the expected value of the dependent variable or response is assumed to have 

a different functional form in several neighbourhoods of the explanatory vari-

1 At least once differentiable. 
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able space. This model can be expressed as: 

E(Y) == (1.1) 

fN(X1, . . . ,xn), 

where f 1 , ... , f N are distinct functions of the explanatory variables x1 , ... , Xn. 

There are several considerations within the change-point problem: there may 

be multiple change-points, the location of the change-point(s) may be un­

known, and the model may or may not be constrained to meet at all change­

points. A schematic of a hypothetical change-point model (with N-1 change­

points) is presented in Figure 1.1. 

Figure 1.1: General Change-Point Model. 

The following two examples are situations in which change-point models may 
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be applicable: 

• A psychologist may expect that given a drug, patient attentiveness may 

increase with the drug dosage. However, one would expect a saturation 

point, as there are finite limits to both patient attentiveness and also 

to safe drug dosage levels. At this saturation point, there may be a 

dis-continuity in the model. 

• Often, buying bulk quantities of merchandise results in savings. Con­

sider an scenario in which purchasing large quantities of some item 

gives a discount per item, up to some maximum discount, after which 

the price is constant. 

In each of these simple examples, there is reason to postulate that an abrupt 

transition will occur in the underlying process. For the first case, once a 

critical dosage of drug is administered, the patient would cease to show im­

provement, and would likely recess abruptly as dosage increased further. In 

the latter example, merchandise cost must eventually reach a minimum and 

become constant. 

In the literature, the change-point model is also referred to as two- or multi­

phase regression, segmented regression, two-stage least squares (Shaban, 

1980), and broken-line regression (Feder, 1975a). 
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1.2 Practiculll Scope 

This practicum will focus on simple linear regression within the change-point 

problem. The models consist of two linear segments with an intercept and a 

single regressor and a single, unknown change-point. Hereafter, this model 

shall be simply referred to as the segmented regression model. 

E(Ylx) == 
a1 + /31x for x < 8 

a2 + f32x for x > 8 
(1.2) 

The equality constraint on each segment of model (1.2) ensures that the ex­

pected mean E(YIX) is continuous at the change-point (8). It follows that 

at x == 8, a 1 + /318 == a 2 + /328. Two illustrative depictions of the segmented 

regression model are presented in Figure 1. 2. 

Figure 1.2: Example Segmented Regression Models. 

In the event of known change-points, it is straightforward to analyse a seg-
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mented linear model (1.2) and obtain estimates. One could, for example, 

construct a model matrix and use ordinary least squares (OLS) to estimate 

parameters and obtain inferences. However, if the change-point is also an 

unknown parameter to estimate, the model is no longer linear in the param­

eters and estimation becomes more involved. Recent research conducted by 

Julious (2001) provides an efficient algorithm for estimating the change-point 

in the segmented regression model, and the approach of Julious is followed 

in this research. 

Consideration is also given to robustification of parameter estimates. In ap­

plying his algorithm, Julious' research implements OLS on a physiological 

dataset which has low variability. The sensitivity of OLS to deviations from 

model assumptions is well-documented (see Barnett and Lewis, 1995). We · 

focus on methods which limit the influence of large outliers in the response 

variable (i.e. large residuals). 

In situations with extreme outliers, one may consider eliminating these prior 

to analysis, i.e. case deletion. Robust estimation has greatest utility when 

there are one or more outliers present which are difficult (if not impossible) 

to detect visually. 

Outliers in the covariates are not considered in this research. Ryan (1997) 

defines an x-outlier in regression simply as "a point that is outlying only in 

regard to the x co-ordinate". A class of bounded influence estimators (GM­

estimators) can be applied to overcome the sensitivities of other methods to 
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outliers in the covariates (Ryan, 1997). 

If the algorithm of Julious is applied to data which includes one or more 

outliers, the estimates determined by the algorithm may be poor. Outlying 

points may cause the least-squares estimates to differ from the trends in the 

remainder of the dataset (see Rousseeuw and Leroy (1987), Figure 2(b) for 

an illustration). The application considered in this research (see §1.3) exam­

ines data with variability considerably larger than that in Julious' dataset, 

so influential points and their effects on estimation are an issue of concern. 

The robustification is accomplished using weighted least squares, within an 

iteratively re-weighted framework. 

A simulation study compares the performance of Julious' algorithm to that 

used in conjuction with iterative re-weighting. 

1.3 Motivation 

Change-point models are currently being used in the field of fisheries science 

as an approach to model the numbers of recruits2 from the size of the spawn­

ing stock. This research has been motivated by the fact that traditional re­

cruitment models often fit observed stock-recruit data poorly. Needle (2002) 

provides a review of recruitment research, including discussion on difficulties 

encountered in estimating parameters of traditional stock-recruit models. 

2 Typically, the number of "new" fish entering the fishable population in a given year. 
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An important concept in current fisheries management is the precautionary 

approach (PA), which, as the name suggests, involves managing fisheries in 

a risk-averse manner. Under past management approaches, there have been 

substantial ·stock collapses, perhaps none as dramatic as that of the Northern 

Cod Stock. This stock, historically ranging over the Grand Banks of New­

foundland and Labrador, is estimated to have declined from 3000 Kt in 1962 

to 210 Kt in 1992 (age 3+ stock biomass, Bishop et al. 1993). In an attempt 

at avoiding such stock collapes in the future, Canada is currently developing 

the PA as an approach to managing fisheries (Shelton and Rivard, 2003). 

Within the PA framework, there are thresholds for various critical quanti­

ties, each of which specify a particular management response. One such set of 

"critical quantities" are so-called biological limit reference points. Of interest 

in this work is Blim, defined as some threshold biomass, below which stock 

size should not be reduced. A review of precautionary approach reference 

points in Canadian fisheries management is given in Shelton and Rice (2002). 

The interest in the change-point method in stock-recruit modelling is that 

if a change-point model can suitably describe the underlying stock-recruit 

dynamics, then the estimated change-point ( c5) provides a clear candidate 

for Btim· Stock sizes below the change-point correspond to those which may 

produce impaired recruitment. If the change-point model becomes an estab­

lished method to predict recruitment, then the spawning stock size at which 

the change-point occurs becomes quite important in terms of both fisheries 

management and the precautionary approach. Thus, it is important that 

accurate estimates of this quantity are obtained. 
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This fisheries research and potential applications are the motivation for this 

practicum. 

1.4 Practicum Outline 

Chapter 2 of this practicum report provides a review of the literature on 

segmented regression, robust methods for the linear model, and recent ap­

plications of the change-point method in fisheries science. Chapter 3 details 

the model considered in this project, and parameter estimation methods. 

Chapter 3 also contains work on robust methods, with relevant details for 

obtaining robust estimates in the change-point model. Chapter 4 reports 

on simulation studies performed to assess the performance of the estimators. 

Chapter 5 provides an application of the method, and Chapter 6 contains 

conclusions and some directions for future research. 

1.5 Computational Details 

Practicum computing was conducted using R software (Ihaka and Gentleman, 

1996), a statistical computing package freely available on the internet3 . The 

routines used in this analysis are available from the author upon request. 

3http://www.r-project.org 
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Chapter 2 

Literature Review 

To begin this research project, an in-depth review of literature was conducted. 

A synopsis of relevant literature on the change-point model and on robust 

statistics are given in this chapter. 

2.1 Change-Point Models and Estimation 

The literature on change-point modelling is extensive. Originating with the 

work of Page (1954, 1955) on mean-shift models and Quandt (1958, 1960) 

in linear models, considerable effort and research has been devoted to this 

topic. Applications range from physiology (Bennett 1988, Julious 2001), to 

fisheries science (Butterworth and Bergh, 1993, Barrowman and Myers 2000, 

ICES 2002a), and a wide range of methodologies have been applied to esti­

mate model parameters and derive inferences. A review paper by Krishnaiah 

and Miao (1988) and a bibliography compiled by Shaban (1980) provide 

excellent sources of information on change-point models. Research from a 
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conference studying change-point problems (Carlstein et al., 1994) details 

recent progress in this field. 

Numerous methodological approaches have been implemented in examining 

change-point models. Maximum-likelihood estimation (Robison, 1964, Hud­

son 1966), Bayesian estimation (Chernoff and Zacks, 1964, Bacon and Watts, 

1971, Ogden and Lynch, 1999), isotonic regression (Wu et al. 2001), piece­

wise regression (McGee and Carelton, 1970), quasi-likelihood (Braun et al., 

2000) and non-parametric regression (Loader, 1996) are among the methods 

which have been applied to change-point models. Grid searching approaches 

have also been used to examine the change-point problem (Lerman, 1980). 

Change-point methods appear in many statistics research fields, including 

generalized linear models (Stansinopoulos and Rigby, 1992), hazard function 

models (Muller and Wang, 1994), time-series (Ray and Tsay, 2002), non­

parametrics (Carlstein et al., 1994, Csorgo and Horvath, 1988) and longitu­

dinal studies (Piepho and Ogutu, 2003). The following paragraph considers 

some results relevant to change-point research in linear models. 

Sprent (1961) provides extensive detail on the segmented regression prob­

lem, using least-squares methods to estimate coefficients. However, Sprent's 

methods include the restrictive assumption that it is known between which 

2 covariate values the true change-point occurs. Robison (1964) considered 

the problem of estimating the intersection of two polynomial regressions. 

Assuming that there are Ni observations associated with the first segment 

and N2 with the second (and N == Ni + N2 is known), Robison examined 
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two possibilites: Ni (i) known, and (ii) unknown. For Ni known, maxi­

mum likelihood estimates are developed for model parameters. In the case 

of N1 unknown, Robison maximizes the likelihood conditional on "plausible 

pairs" of (N1 , N2). The choice of (N1 , N2) which maximizes the conditional 

likelihood are taken as the solution, and the theory of the N1 known case 

is applied to estimate the change-point. Robison's methods consider data 

which come from given ordered times. Hudson (1966) provides thorough 

work on finding the "overall" least-squares solution in fitting two or more 

constrained models. Hudson's work considers three "model join" possibilites 

at the change-point: (i) the models intersect at one of the covariate values, 

(ii) not intersecting at a data point, and model segments meet with unequal 

slopes, and (iii) not intersecting at a data point, and model segments meet 

with equal slopes. Hudson develops estimators for each type, and if the model 

join is of unknown type, the overall solution is the best fitting of the three 

possible join types. Grid-search estimation is also discussed by Hudson for 

determining the change-point estimate. Change-point inference is developed 

by Hinkley (1969), in which an asymptotic distribution for the maximum 

likelihood estimate of the change-point is derived. Bacon and Watts (1971) 

extended segmented regression and change-point modeling by introducing a 

"transition function" to provide a smooth transition between two intersecting 

straight lines. A transition parameter controls the length of the transition 

region, which includes abrupt transitions as a limiting case. Asymptotic 

distribution work on likelihood ratio statistics for testing hypotheses on pa­

rameters can be found in the work of Feder (1975a, 1975b). Feder (1975b) 

also discusses the relationship between change-point models and spline ap-

11 



proximation, but identifies a key difference in interpretation. In spline theory, 

the knots are "chosen merely for analytical convenience", but in segmented 

regression, change-points "have intrinsic physical meaning". An F-test for 

comparing a two-line segmented regression against a single regression is given 

by Worsley (1983). However, as noted by Julious (2001), there are difficulties 

with this test if the change-point is being estimated. 

2.1.1 The Julious Algorithm 

For this research project, the most important article on changepoint mod­

elling in the literature is recent work by Julious (2001). Julious has proposed 

a simple, but effective algorithm for estimating changepoints in the con­

strained segmented regression model (1.2). This algorithm is based upon 

three insightful notes attributed to Hudson (1966) dealing with the residual 

sum of squares in the model (1.2). Mathematical details of estimation in the 

algorithm are deferred to Chapter 3. Without loss of generality, we can 

consider the residual sum of squares of two change-point models: one con­

strained to meet at a given (fixed) changepoint, and the other unconstrained. 

Following the notation of Julious, suppose we estimate the parameters of 

an unconstrained segemented regression model (1.2) from the ordered data 

(x1, Y1), . . . , (xt, Yt) and (xt+1, Yt+1), ... , (xr, Yr). Specifically, suppose there 

are T points, t of which are assumed to belong to the first model segment, 

and the remainder are associated with the second model segment. 

The three considerations of Hudson which form the basis for Julious' algo-

12 



rithm (from Julious 2001) are: 

1. If two fitted lines meet between the adjacent extreme points of each 

model (xt, Xt+i), then this model has residual sum of squares (RSS) 

that is no larger than that for any other constrained model for these 

two sets of points constrained to meet between (xt, Xt+1). 

2. If the two lines do not meet between Xt and Xt+ 1 , then the constrained 

model with the smallest RSS will have a changepoint at either Xt or 

3. Constraining a model to meet at a required point will not decrease the 

RSS. 

Julious takes advantage of these considerations to produce the algorithm in 

Figure 2.1.1, hereafter referred to as the Julious algorithm. 

Julious' algorithm is used in this project to estimate model parameters us­

ing least-squares. However, this research extends the Julious algorithm by 

incorporating weights and using a weighted Julious algorithm as a method to 

offer outlier robustness. 

2.1.2 Relevant Applications of Change-Point Methods 

As noted in §1.3, recent research on change-point models in fisheries science 

motivated this practicum. The change-point model has been explored by 

several researchers to examine its utility in modeling stock-recruit dynam­

ics. Recent work within the International Council for the Exploration of the 
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·-· 

Fit au possible unconstrained two-line models 

................... 

•ii 

If two If nes meet such that xt ~ o ~ Xr+ 1 then calculate total 
restricted RSS; otherwise calculate total unrestricted ASS 

, 
~-.. ~ .. - --···--

Is the smallest restricted RSS ~the smallest unrestricted RSS? 

-Yes 
No 

Constrain the unrestricted rnodel with the smallest unrestricted RSS 
to meet first at x1 and then at X;-+- 1; select the model which has the 
smallest restricted RSS, and add to the restricted RSS models 

Take the smaJJest restricted RSS as the best model and its parameters 
'----..:;i..f as the least squares estimates for the slopes and changepoint 

.. .... 

Figure 2.1: The Julious algorithm. Reproduced from Julious (2001). 

Seas (ICES, 2002a) focused on application of Julious' algorithm to several 

fish stocks. Barrowman and Myers (2000) compare a sub-model of (1.2), the 

hockey-stick model (see 3.6), to the Beverton-Holt stock-recruitment model 

(Beverton and Holt, 1957), a cornerstone of fisheries population modelling. 

Barrowman and Myers also consider "generalized hockey-stick" models, an 

extension of the hockey-stick model. The generalized hockey-stick models 

involve additional parameter(s), which provide the ability to have a smooth 

transition (cf. Bacon and Watts, 1971) between the linear segments of the 

hockey-stick model. Meta-analysis methods are used to compare the esti-
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mated parameters for the hockey-stick models and the Beverton-Holt model. 

Independent research on segmented models and smooth transitions arise in 

the recent doctoral thesis of Chiu ( 2002). 

2.1.3 Robust Change-point Methods 

No literature seems to exist on change-point methods using robust tech­

niques. However, the estimators discussed by Hudson (1966), Lerman (1980), 

and Krishnaiah and Miao (1988) include consideration of weights assigned 

to each observation, which could be applied in a robust context. Application 

of these methods has been confined to situations with equal weights. 

2.2 Robustification - Theory and Methods 

2.2.1 Terminology and Preliminaries 

In Chapter 1, it was noted that one of the primary goals of this research 

was to obtain robust parameter estimates in a change-point model. In statis­

tics, the term 'robust' is a vague term - it has different interpretations in 

different applications. Hampel et al. (1986) capture this vagueness by not­

ing: "Robust statistics, in a loose, nontechnical sense, is concerned with the 

fact that many assumptions commonly made in statistics (such as normality, 

linearity, independence) are at most approximations to reality". Developing 

robust statistics is necessary since slight departures from these assumptions 

may lead to severe problems in estimation. 
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An important concept in robustness and particularly robustification within 

linear models is that of outliers. Like "robustness", the term outlier does not 

have any formal or universal definition. Outliers can be described as data 

points which deviate from the trend or pattern evident in the entire dataset. 

The Encyclopedia of Statistical Sciences (Kotz and Johnson, 1988) gives the 

following description of outliers: "The intuitive definition of an outlier ... is 

some observation whose discordancy from the majority of the sample is exces­

sive in relation to the assumed distributional model for the sample, thereby 

leading to the suspicison that it is not generated by this model". 

The breakdown point of an estimator provides a measure of its sensitivity 

to outlying points. Informally, this is the proportion of the dataset which 

can be contaminated (replacing sample values with arbitrary values) without 

affecting the estimator. More formally, following the notation of Rousseeuw 

and Leroy (1987), suppose that given a random sample X == (x1 , . . . , xn) of 
A 

size n, the estimator T(X) == 0 can be computed. We are concerned with 
A 

changes in 0 for all possible contaminated samples X'. Define bias( m; T, X) 

as the maximum bias which can be introduced by contamination of m (m < 

n) of then points in X: 

bias(m; T, X) ==sup llT(X') - T(X) II, (2.1) 
X' 

over all possible contaminated samples X'. If this quantity is infinite, the 
A 

estimator 0 has "broken down" for the value of m considered. Since (2.1) in-

cludes the possibility of an infinite bias, Rousseeuw and Leroy (1987) propose 
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the finite-sample breakdown point ( E~ for a sample of size n) to be: 

E~ (T, X) == min { m; bias( m; T, X) is infinite}. 
n 

(2.2) 

As an example, the breakdown point of the sample mean is 1/n, which tends 

to 0 for large n; so we say the breakdown point of the mean is 0. That is, a 

single member of the original sample X could be contaminated so that the 

bias in (2.1) becomes arbitrarily large. However, the same cannot be said for 

the median of a sample; up to 50% of the sample could be changed without 

affecting the median. These examples represent the extreme cases for the 

breakdown point - the best we can hope for is a breakdown point of 0.5, 

whereas a breakdown point of 0 implies a potentially precarious situation -

any change of the sample will change the value of the estimator. 

Robust methods are typically developed to reduce the influence outlying 

points have on estimators. Most often, the driving reason for consideration 

and development of robust methods in regression is to provide the best fit 

to most, but not all, of the data. Robust methods are used to accurately 

describe the underlying trend in the data, even in the presence of outliers. 

2.2.2 Classical Developments in Robustness 

Sensitivity to outliers in least-squares regression is a well-recognized problem 

in statistics. Developments in least-squares date back to Gauss and Legen­

dre (see Plackett, 1972 for a historical account of least-squares). Edgeworth 

(1887, as cited in Rouseeuuw and Leroy, 1987) noted that in least-squares 
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regression, minimizing the £ 2 norm llY - X/311 could lead to an unrealis­

tic fit if one or more of the points differed substantially from the trends of 

other points. Since this time, several suggestions have been made to produce 

regression estimates which are less susceptible to outliers. Many robust re­

gression procedures now exist, and very brief synopses of some of these are 

given below. A more thorough treatment and description of such procedures 

can be found in Hampel et al. (1986) and Huber (1977). 

One of the earliest suggestions to remedy the sensitivity of least-squares re­

gression was £ 1 regression, which is generally attributed to Edgeworth (1887, 

as cited in Rouseeuuw and Leroy, 1987). In least-squares, the estimated pa­

rameters are determined by minimizing the sum of squared regression resid­

uals, e == y - y, where y is the predicted value of y: 

(2.3) 

Since the residuals are squared, it is evident that outlying points will con­

tribute significantly to this objective function. In £ 1 regression, the absolute 

value of the residuals are considered when computing estimates - thus outly­

ing points have reduced impact on the objective: 

n 

0 = mjn L le;!. (2.4) 
i=l 

In many situations with an outlier or an influential point, L 1 regression can 

provide improved parameter estimates. Although it provides an improve­

ment over least-squares (in the sense of robustness), £ 1 regression is not 
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without problems. In the case of simple regression with a single outlier in 

the x-direction, L1 regression estimators offer no relief - it fails , as will least­

squares in this situation. Observe that in least-squares, the sum of squared 

residuals (2.3) is minimized. Dividing by n, notice that (2.3) is equivalent 

to minimizing the mean squared residual. As noted in §2.1, the mean has a 

breakdown point of 0, and thus is extremely sensitive to outliers. By using 

the median in the objective function, we obtain an estimator which is more 

robust to outliers. This is the least median of squares (LMS) estimator of 

Rousseeuw (1984). 

In LMS, Rousseeuw suggested estimating regression parameters by not con­

sidering the sum, but the median, of the squared residuals because the median 

is a robust estimator of location. Thus the objective is: 

(2.5) 

In trimmed regression, instead of examining all residuals to estimate param­

eters, only ·a subset of the residuals considered in (2.3) are used. The ordered 

residuals cS(i) are used to compute: 

(2.6) 

for some l, similar to a trimmed mean (Casella and Berger, 1990). That 

is, the (n - l) largest of the ordered squared residuals are trimmed from 

the total residual sum of squares, and thus the fit is less susceptible to the 
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most extreme outliers. More generally, one may consider LP-norm regression, 

and minimize the sum of the residuals raised to the pth power (Birkes and 

Dodge, 1993). The LMS and trimmed methods perform well under most 

circumstances, but the potential to obtain an "exact-fit" exists (Rousseeuw 

and Leroy, 1987). An exact-fit can be obtained if a subset of the data exactly 

satisfy y == X f3. If this subset is sufficiently large, the remaining data will 

be excluded from (2.5) or (2.6). Further, LMS estimates have low efficiency, 

and are not robust against "small changes in centrally located points" (Birkes 

and Dodge, 1993). 

2.2.3 Other Classes of Robust Estimators 

In addition to the ad-hoc estimators of the previous section, several classes 

of robust estimators have been developed and applied to regression prob­

lems. Extensive theory can be found in Huber (1977), Hampel et al. (1986), 

Roussseeuw and Leroy (1987), Jureckova and Sen (1995), and references 

therein. 

M-estimators (Huber, 1977) are estimators of the form: 

n 

(2.7) 

for some function p. Huber (1977) proposed 

(2.8) 
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to yield robustness. (This choice for p leads to the Huber weights described 

in §3.3.2.) 

Alternatively, we may write: 

n 

L X(t/;(si) == 0, (2.9) 
i==l 

where 'l/; is defined as: 

(2.10) 

For example, if p(ci) == ci2 /2, the M-estimate becomes the least-squares es­

timate, and if p(ci) == lei!, the M-estimate is equivalent to £ 1 regression. 

Iterative re-weighting (see §2.2.4) is often used to compute M-estimates, via 

weights wi == 'l/;(si)/si· Venables and Ripley (1999) describe additional tech­

nical estimation details. 

R-estimates (Huber, 1977) are a class of methods which use the ranks of the 

residuals to obtain robust estimates. Work by Jaeckel (see §3.6 of Rousseeuw 

and Leroy, 1987) leads to the objective function: 

(2.11) 

where Ri is the rank of ci , and an(.) is a score function. Typical score func­

tions are listed in Rouseeuuew and Leroy (1987). 

L-estimates (Huber, 1977, Jureckova and Sen, 1995) are constructed from 

linear combinations of the ordered residuals to estimate parameters. One 
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obvious example of an L-estimate is to use a binary step function an (.) to 

obtain the LTS estimator (2.6) of Rousseeuw. 

S-estimators minimize dispersion in the residuals (Yohai, 1987). S-estimates 

are computed from: 

min 5({3), 
(3 

(2.12) 

where 5({3), the dispersion, is an M-estimate of the scale of the residuals. 

MM-estimates, developed by Yohai (1987), are computed in three stages. 

MM-estimates have improved efficiency in high breakdown estimators. First, 

a robust regression estimate {3* is computed. Next, an M-estimate of scale 

of the residuals Ei == ci(f3*) is computed. An M-estimate is then obtained 

using the results of the two initial steps (see Rousseeuw and Leroy, 1987 for 

additional details) . 

Several classes of estimators discussed above require a robust estimate of 

scale. Huber (1981) provides detailed discussion of methods for robustifying 

scale estimates. In this research, we use the robust est imator MAD (Hampel 

et al., 1986) to robustify the scale estimate (see §3.3.2). 
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2.2.4 Iterative Re-Weighting 

Weighted regression was introduced by Cotes in unpublished work during 

the eighteenth century (Plackett, 1972). Weighted (or generalized) regres­

sion (Draper and Smith, 1981) can be used to offer outlier protection. Itera­

tively re-weighting regressions is a recent approach, attributed to Beaton and 

Tukey (1974). It is conceptually simple in that regressions are continually re­

weighted until some convergence criteria is attained. The weighting method 

and convergence criteria of iteratively re-weighted least-squares (IRLS) are 

subjective choices in application. Computational details for IRLS are given 

in Holland and Welsch (1977). Additional properties of IRLS, including con­

vergence properties, are discussed in Birch (1980a, 1980b ). 

The IRLS algorithm (following Neter et al. 1996) is: 

1. Choose a weight function for weighting the cases. 

2. Obtain starting weights for all cases. 

3. Use the weights in weighted least squares and obtain the residuals from 

the fitted regression function. 

4. Use the residuals in step 3 to obtain revised weights. 

5. Continue steps 3 and 4 the until convergence is obtained. 

Some of the robust estimation methods discussed in the previous section 

can be solved iteratively (e.g. Huber M-estimators); hence they may be 

formulated as IRLS problems (see Carroll and Ruppert, 1988). 
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Chapter 3 

The Model and Estimation 

This chapter contains the methodologies used to obtain parameter estimates 

for the segmented regression model, and other related models. 

3 .1 Segillented Regression Model - Notation 

and Preliillinaries 

Recall from Chapter 1 the segmented regression model: 

Yi == 
0:1 + /31Xi + Ci for Xi < c5 

0:2 + /32Xi + Ci for Xi > c5 

(3.1) 

Suppose there are T data points (xi, Yi) such that X1 < x2 < ... < xr. 

Further, suppose that the true change-point is known. Define t such that the 

change-point belongs to the set [xt, Xt+ 1). Thus t observations satisfy Xi < c5, 

and there are (T - t) points such that xi > c5. Following Julious (2001) , we 
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may write (3.1) in the conventional form of a linear model, y == X (3 + e. At 

the change-point, we must have a 1 + (318 == a 2 + /328, or re-arranging, 

(3.2) 

Letting: 

Y == (y1,Y2, ... ,yr)r, f3 == (a2,f31,f32)r, and 

1 X1 - b b 

X== 
1 Xt - b b 

1 0 

1 0 

we expand y == X (3 + e, to obtain: 
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If we replace 6 as in (3.2), it follows that for i == 1, ... , t, 

Yi 0'.2 + /31Xi + (/32 - /31)6 +Ci 

0'.2 + /31Xi + (/32 - /Ji) ( ;: = ;; ) + C; 

0'.2 + /31Xi + 0'.1 - 0'.2 +Ci 

If we obtain estimates of fl = ( 62, f31, fl2 ) T, then we can estimate a 1 using: 

6 1 == 6 2 + (/32 - ;31) c5. Estimates of (3 can be obtained using any of the 

estimation methods described in Chapter 2. 

As an alternative to the model construction outlined above, Julious (2001) 

showed how the least-squares estimate of parameters constrained to meet at 

6 could be obtained from the unconstrained estimates, i.e. those obtained 

from simple regression for each model segment. We follow this approach in 

the next section. Consideration is given to weighted estimation assuming 

(i) normal and (ii) lognormal error distributions. Iterative re-weighting is 

applied to offer robustness against outliers. 
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3.2 Estimation of Parameters - Equal Weight-

3.2.1 Least-Squares Estimates for known Change-point 

(8) 

If the model is not constrained to meet at the change-point and the location 

of the change-point is known exactly, least-squares (LS) estimates are trivial 

to obtain. Let X 1 , X 2 be the design matrices for each model segment (such 

that X 1 corresponds to xi < 8, X 2 to xi > 8). Each model segment is a 

simple linear model with an intercept and one covariate, x: 

for i == 1,2, 

where j is a vector of 1 's, and Xi is the covariate vector for each segment. 

The LS estimates, which are also the maximum likelihood estimates if y ~ 

N(O, a 2
) , follow directly from the normal equations (Julious 2001): 

for i == 1, 2. (3.3) 

To constrain the model segments to intersect at the change-point , 8, es­

timates can be obtained via the method of Lagrange multipliers (Rencher 

2000, Julious 2001). Generally, for the linear model y == X/3 + e, suppose it 
A 

is required to constrain the estimate /3 to satisfy the p constraints specified 

by H /3 == 0, where /3 E W, H E JRk xp. The constrained estimate, /3c , is: 
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A 

f3c (3.4) 
A 

(Ip - A)f3Ls 

A 

where f3Ls == are the LS estimates from (3.3), Ip is the p x p identity 

matrix, and A == (XT x)-1 HT[H(XT x)-1 HT]- 1 H. In this case, with a 

single constraint, H == ht is a vector, so that: 

(xrx)-1hhr 
A = hT(XT X)-lh. 

We may write the constraint as: a 1 - a 2 + (/31 - /32)6 == 0. Since (3 

(a1, /31, a2, f32)r, it follows h == (1, b, -1, -b)r. 

The least squares estimates S minimize the residual sum of squares (RSS): 

(3.5) 

Two sub-models of the segmented regression model (3.1) are of interest in 

this research. If a 1 == /32 == 0, then we have the "hockey-stick" model (3.6) 

of Barrowman and Myers (2000), 

Yi == (3.6) 
for x > b 

(also see Butterworth and Bergh, 1993). Retaining both slope parameters, 
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( a 1 == 0), then the "doorhinge" model (3. 7) is 

0 
N 

0 /" 

0 

/ 

Yi == 

/ 

/ 

/ .. 
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/ . . 
/ . 

/ .. 
/ . . 
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"" -...... ·;,. · ~ · .. ....... .. ........ . . ...... . 
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x 

"" 

60 80 100 

(3.7) 

Figure 3.1: Segmented (3.1, solid line), doorhinge (3.7, dashed line) and 

hockey-stick (3.6, dotted line) regression models. 

an intermediate case between the segmented regression, and the hockey-stick 

model. Note that the constraint in (3.6) implies /318 == a 2 . For (3.7), the 

constraint is /318 == a2 + /328. 
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3.2.2 Estimation if Change-point ( 8) unknown 

If the change-point is unknown, the segmented regression model (3.1) is non­

linear. Parameter estimation could be conducted using numerical analysis 

techniques, but these may have problems with local minima or false conver­

gence (Julious 2001). Further, the lack of smoothness in the model limits the 

utility of such techniques. The simple framework described in the previous 

section is dependent on knowing the value of the change-point. For unknown 

change-point, one could conduct a grid-search over 8 (Lerman, 1980). The 

value of 6 which results in the best fit could be used as the estimated change-
A A 

point, 8. The estimated regression parameters {3 are those corresponding to 
"' 

the model fit using 8 (as a fixed parameter). Another approach is the Julious 

algorithm (see §2.1). We show two examples to illustrate the algorithm in 

the next section. 

3.2.3 Illustrative Examples using Julious Algorithm 

The Julious algorithm successively divides the ordered covariates xi into two 

groups: x1 , ... , Xt and Xt+i, ... , xr. For each such grouping (i.e. for all possi­

ble t), the fit of the regression model is assessed to determine the plausibility 

that 8 belongs to the interval [xt, Xt+1]. 
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Example (i) Julious' Data 

Julious (2001) used the algorithm to estimate the parameters of the seg­

mented regression model assuming normally distributed errors (3.1) to model 

the relationship between the volume of carbon dioxide exhaled and oxygen 

inhalation during exercise. Section 5.3 summarizes this and additional anal­

ysis of this data set. Table 3.1 shows the algorithm computations for this 

data set. The rows of Tables 3.1 and 3.2 represent the results for each of the 

possible data groupings. 

The columns of the table are: Xt, Xt+ 1, the endpoints of the two data subsets 

(x1 , ... , Xt and Xt+ 1 , ... , xr) considered; RSS is the residual sum of squares 
"' 

for an unconstrained model for any fixed 6 within (xt, Xt+ 1), and 6 is the 

intersection point of the model segments from the unconstrained fit. "Con.", 
"' 

i.e. constrained is true if Xt < 8 < Xt+l · The Julious algorithm requires fit-

ting constrained models for both 8 == Xt and 8 == Xt+l· The column "xt Best" 

is true if RSS(<5=xt) < RSS(<5=xt+i), and RSS2 is the residual sum of squares of 

the best fitting of these two constrained models. Finally, ri gives the rank 

of RSS, the unconstrained residual sum of squares. Since we are considering 

the segmented regression model, we consider t == 2 to (T- 2), with repeated 

covariate values omitted. 

Having computed the required model fits from the data (Table 3.1), we can 

step through the Julious algorithm (Figure 2.1.1) to determine the estimate 

of the change-point and the regression parameters. Step 2 of the Julious 

algorithm requires testing if Xt < 8 < Xt+l · If this test is true (column 
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A 

Xt Xt+l RSS c5 Con. Xt Best RSS2 r· i 

21.5 24.8 1.160 26.952 F F 1.194 20 
24.8 26.2 1.104 26.930 F F 1.116 18 
26.2 27.4 1.090 28.402 F F 1.102 16 
27.4 27.9 1.104 28.971 F F 1.127 17 
27.9 29.2 0.816 31.458 F F 0.892 15 
29.2 31.1 0.727 33.316 F F 0.717 12 
31.1 32.6 0.750 33.465 F F 0.742 14 
32.6 34.6 0.740 34.608 F F 0.720 13 
34.6 34.9 0.468 34.604 T F 0.466 10 
34.9 35.2 0.452 36.293 F F 0.457 9 
35.2 36.3 0.416 37.219 F F 0.420 6 
36.3 37.6 0.403 38.414 F F 0.409 4 
37.6 40.1 0.389 39.463 T F 0.391 1 
40.1 42.7 0.391 40.469 T F 0.391 2 
42.7 43.4 0.399 40.951 F F 0.411 3 
43.4 44.2 0.409 41.422 F F 0.423 5 
44.2 47.9 0.418 41.644 F F 0.438 7 
47.9 48.1 0.418 41.059 F F 0.563 8 
48.1 48.4 0.476 41.489 F F 0.580 11 
48.4 49.9 1.157 49.894 T F 1.069 19 
49.9 51.7 1.192 49.902 T F 1.192 21 
51.7 51.8 1.241 50.488 F F 1.321 22 
51.8 54.9 1.443 52.031 T F 1.431 23 
54.9 55.5 1.499 53.072 F F 1.648 24 
55.5 57.0 1.697 52.511 F F 1.882 25 
57.0 57.9 1.849 52.357 F F 2.148 26 
57.9 58.2 1.975 51.319 F F 2.321 27 
58.2 58.3 2.122 53.273 F F 2.395 28 
58.3 59.5 2.342 51.722 F F 2.543 29 
59.5 59.7 2.434 52.270 F F 2.579 30 

Table 3.1: Intermediate calculations for Julious algorithm applied to data 
from Julious (2001 ). 

"Con." in Table 3.1), the RSS is considered to be a restricted RSS, otherwise 

RSS is considered an unrestricted RSS. This test is satisfied in six ( Xt, Xt+ 1) 
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intervals. At Step 3 of the Julious algorithm, we test if the minimum re­

stricted RSS < the minimum unrestricted RSS. Since Con.==T for the row 

corresponding to Ti == 1, we have that the minimum RSS is in fact restricted, 

and this test is satisfied, thus we proceed to the terminal step of the Julious 

algorithm. The "best model" is the one corresponding to the smallest re­

stricted RSS (RSS==0.389), and the parameters from this model, 8 == 39.463, 

S == (0.0765, 0.0423, -1.6594, 0.0863)r, are the least-squares parameter esti­

mates. The row in Table 3.1 in boldface indicates the best model. 

Example (ii) Simulated Data 

We now consider a second example, fitting the hockey-stick model to a sim­

ulated data set. Twenty-five data points were computed assuming the true 

model parameters are /3 == (/31 , a2)T == (2, lOO)r, with 8 == 50. Normally 

distributed errors Ei rv N(O, 9) were used to generate random observations. 

Table 3.2 lists the results from fitting the various constrained and uncon­

strained models. The data and the fitted hockey-stick model using Julious' 

algorithm are presented in Figure 3.2. Having completed Step 1 of the Julious 

algorithm, observe Con.==T in only one (xt, Xt+i) interval. At this point, 

the minimum restricted residual sum of squares (RSS==238.l; see row with 

Con.==T) is larger than the minimum unrestricted RSS (RSS==167.5, see the 

row with Ti == 1). Thus the iterative part of the algorithm is required (Step 

4). In the row with Ti == 1, we see from Xt Best and RSS2 that the best 

fitting restricted model between the constrained models with 8 == Xt and 

8 == Xt+i is the model assuming 8 == Xt+i, with associated RSS==372.8. Thus 

the minimum restricted RSS remains as RSS==238.1. We eliminate the row 
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"' 
Xt Xt+l RSS 8 Con. Xt Best RSS2 r · i 

3.85 7.69 19343.3 26.12 F F 20098.1 24 
7.69 11.54 15185.8 37.40 F F 16889.1 23 

11.54 15.38 11944.3 38.22 F F 14042.3 22 
15.38 19.23 8830.1 42.57 F F 11363.6 21 
19.23 23.08 6401.9 44.20 F F 8944.7 18 
23.08 26.92 4098.0 47.28 F F 6698.2 15 
26.92 30.77 2900.7 46.60 F F 4845.3 13 
30.77 34.62 1603.3 48.52 F F 3229.0 10 
34.62 38.46 984.6 48.69 F F 1978.7 8 
38.46 42.31 395.8 50.06 F F 1001.9 5 
42.31 46.15 167.5 50.51 F F 372.8 1 
46.15 50.00 238.1 49.31 T F 243.9 3 
50.00 53.85 236.6 49.28 F T 243.9 2 
53.85 57.69 261.1 49.72 F T 497.3 4 
57.69 61.54 407.4 50.70 F T 1062.2 6 
61.54 65.38 602.2 51.63 F T 1852.8 7 
65.38 69.23 1156.1 53.40 F T 2837.9 9 
69.23 73.08 2001.7 55.76 F T 3903.1 11 
73.08 76.92 2833.4 57.88 F T 4968.5 12 
76.92 80.77 3793.5 60.14 F T 6024.7 14 
80.77 84.62 4785.3 62.26 F T 7028.5 16 
84.62 88.46 6107.2 65.50 F T 7950.3 17 
88.46 92.31 6978.5 66.36 F T 8700.0 19 
92.31 96.15 8354.2 69.46 F T 9310.5 20 

Table 3.2: Intermediate calculations for Julious algorithm applied to simu-
lated data. 

corresponding to ri == 1 from consideration. Now the minimum unrestricted 

RSS==236.6 (row with ri == 2). Since the minimum restricted RSS==238.1, we 

again require Step 4 of the algorithm. The best fitting constrained model 

between 8 == Xt and 6 == Xt+l is that of 6 == Xt, having RSS==243.9 (see Xt Best 

and RSS2 in the ri == 2 row). The minimum restricted RSS is unchanged 

from 238.1. Returning to Step 3 of the Julious algorithm, the test is still 
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Figure 3.2: Data and fitted model of Example (ii). 

false, since the minimum unrestricted RSS (236.6) is less than the minimum 

restricted RSS (238.1). Thus we continue and the ri == 2 row is eliminated 

from consideration. This leaves minimum unrestricted RSS of 261.1 (see 

ri == 4; we skip ri == 3 because Con.==T, and this is a restricted model) . 

At this point, we have minimum restricted RSS==238.1 and minimum un­

restricted RSS==261.l. Hence our test at Step 3 of the Julious algorithm 

is satisfied. Thus, we proceed to Step 5 of the Julious algorithm, with the 
A 

"best model" being that corresponding to RSS==238. l, with 8 == 49.31, with 

{3 == (2.009, 99.049)r. The row in Table 3.2 in boldface indicates the best 
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model. 

3.3 Estimation of Paraineters - Weighting and 

Robustification 

3.3.1 Constrained, Weighted Least Squares Estimates 
A 

We now discuss estimators (3 which attempt to prevent outlying points from 

exerting undue influence during estimation. In order to prevent unrealistic 

parameter estimates arising as a result of outliers, we weight each observa­

tion and perform weighted (or generalized) least-squares (WLS, Draper and 

Smith, 1981). If wi == 1 Vi, then these estimators become the LS estimators 

of the previous section. In WLS, the model is: 

a2 
y == X{3 + e with ci ('V N(O, -). 

Wi 
(3.8) 

We consider only the case of unequal variances with uncorrelated errors -

so that cov(ci,Ej) == 0 for i =/= j. From (3.8) , observe that the weight for 

each residual is inversely proportional to its variance. The matrix W == 

diag( ~1 , ..• , w~) is the weight matrix, where wi is the weight corresponding 

to (xi, Yi)· An equivalent formulation to (3.8) is: 

y* == X*{3 + e* (3.9) 
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with y* == W 112y X* == w 1
/
2 X and g* I"'-' N(O a 2 I) as· ' ' ' ' . 

var( g*) var(y*) 

var(W1l 2y) 

w112var(y) wl/2 

w112a2w-1 w1/2 

(Note W 112
T == W 112 since W is diagonal.) Thus, WLS is a LS problem 

using the transformed data y* and X*. Therefore, the WLS estimate of the 

parameter vector /3 , SwLs, is the LS estimate of (3.9): 

"' 

f3wLs (X*T X*)- 1 X*T y* 

(XTW1/2T Wl/2 X) - 1 XTW1/2T Wlf2y 

(xrwx) - 1xrwy 

The weighted RSS for the WLS model follows from (3.5) : 

(3.10) 

Constrained, weighted least-squares estimates are also required to ensure the 

model segments meet at the change-point. Following directly from (3.4) , 

replacing X by w 1
/

2 X, the WLS estimates constrained to satisfy the con­

straint H /3 == 0 are: 
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"' 
and f3wLs is the unconstrained WLS estimate. 

3.3.2 Weighting the Observations 

Use of appropriate weights can introduce robustness to parameter estima­

tion in the linear model. In this research, we focus on weighting the regres­

sion residuals, an approach commonly followed in robust regression (Neter 

et al., 1996, Huber, 1977) and iteratively re-weighted least-squares (Beaton 

and Tukey, 1974). Estimates are computed by minimizing the weighted 

RSS (3.10). Numerous weighting functions have been proposed in practice; 

some examples are the Cauchy, bi-square, and Huber weighting functions 

(Heiberger and Becker, 1992, Figure 3.3). 

For this research, Huber's weighting function is preferred. Huber's weighting 

function is computed as: 

w(z) == 
1 if lzl < c 

(3.12) 

l ~ I if lzl > c, 

where c is a fixed constant. In this practicum, weights are computed using 

scale-standardized residuals, zi == c:i/MAD(e) , where MAD is the median 
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Figure 3.3: Comparison of three weighting functions. 

absolute deviation function, a robust estimate of scale (Hampel et al., 1986). 

Notice that Huber weights are constant provided lzl < c. Only if lzl > c 

are the weights reduced. Huber's weighting function was selected over alter­

native functions which downweight every residual. With Huber's weighting 

function, only residuals large in magnitude are down-weighted. A weight­

ing function proposed by Hampel (Heiberger and Becker, 1992) has similar 

properties to Huber's, but is dependent on three constants. 
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Although decreasing values of c lead to increased protection against outliers 

and thus a more robust estimate, a robustness/ efficiency trade-off exists. As 

robustness is increased, the cost is loss of efficiency in the estimators. Observe 

that as c -t oo, observations are equally weighted, and LS estimators are 

obtained. As c -t 0, all weight is assigned to a single point, and the weighted 

estimate reduces to LMS. 

3.3.3 Weighting the Julious Algorithm and IRLS 

To offer protection against outliers during estimation, iteratively re-weighted 

least squares (IRLS, Beaton and Tukey, 1974) is employed. We combine IRLS 

with the Julious algorithm, to produce an iteratively re-weighted Julious al­

gorithm. During each step of the iterative process, the Julious algorithm 

is applied using WLS. Each call to the Julious algorithm uses fixed weights. 

Weights are updated independent of the Julious algorithm, once the estimates 
"' /3 (and hence residuals e) from the Julious algorithm have been determined. 

This process continues, continually updating the weights. 

It is crucial that the weights remain fixed within the Julious algorithm. One 

could use IRLS to fit "all possible unconstrained two-line models" in the 

first step of the Julious algorithm, iterating to convergence for each of these 

fits. However, the RSS for each model fit (with IRLS) would no longer be 

comparable, and the Julious algorithm is not applicable. Fixing the weights 

within each call to the Julious algorithm allows comparison of model fits 

and estimates of the change-point for each iteration step. At each step, the 
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weights were scaled so that the sum of the weights equals the sample size. 

The convergence criteria is a subjective choice in IRLS. Some options are to 

iterate until convergence (to some fixed tolerance) in the RSS, or to iterate 

until convergence in parameters is attained. Figure 3.4 details the iterative 

algorithm used. 

Estim,ate chm1ge..;poiut frorn Jt1nous i\ lgorithrn using Least-Sq1rares .. 

No 

t fse \VeiS?:hti.no:.···. function on rc!sidual.s to co1np··,ute \1lei~hts. ·~:w-' .p y 

., ,, 

Estitnaie chau2;e .. 1)oi.nt fro111 Jnlious "'AJ rroritruu u~in~ 
·•,;.;t r. .v ·4,,,j 

\Veighted Least-Sqnare~s , 

No 
111 , . 

:1¥faxim11m number of 
iterations exceeded? 

Convergence fiulure after JV 
steps. 

Take final ',lt'eighted Least­
S·quares as be~t 1nodet 

······························· ........... ............ ... ..... . ·· · ······ ····· ···· . ......... . ....... .. ....... ............. ... · 

Figure 3.4: Algorithm to iterat ively re-weight Julious' Algorithm. 
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3.4 Estimation of parameters assuming log­

norrnal error 

3.4.1 Hockey-Stick Model 

We now consider least-squares estimation for the hockey-stick model assum­

ing errors are lognormally distributed. To begin, assume the change-point is 

known. The model is: 

(3.13) 

for xi > 8, 

or, on the log-scale, we may write: 

(3.14) 

for xi > 8, 

where ci f'V N(O,a2
). Note that log(x) has slope fixed at 1. As a result, each 

segment of the model is constant: 

::::} log(yi) - log(xi) 

log(yi) 

log(,81) + ci for xi < 8 

log( a2) + ci for xi > 8. 

Following §3.1, suppose there are T observations, t of which are modeled by 

the first linear segment, i.e. define t such that Xt < 8 and Xt+i > 8. To 

formulate a linear model, we write: 
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Since xrx == 

log(;:) 

log(~:) 

log(Yt+1) 

log(yr) 

t 0 

0 T-t 

' 
X== 

1 0 

1 0 

0 1 

0 1 

, and f3 == 

, the least-squares estimate of /3 is: 

!. ~t._ log('Yi.) 
t UJ-1 Xj 

r 
1 

t EI t+1 log(yj) 
(3.15) 

which is simply the mean of the elements of y* associated with each model 

segment. 

To constrain the model segments to meet at the change-point, we require: 

/318 

{:} log(/31) + log( 8) 

{:} log(/31) - log( a2) 

log(a2) 

-log(8). 

If the model is constrained to meet at the change-point, and if 8 is known, 

we can reparameterize (3.14) replacing a 2 by /318. Write: 

log(/31) + log(xi) + E for Xi < 8 
(3.16) 

log(/31) + log( 8) + E for Xi > 8, 
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~ log(yi/xi) 

log(yi/ c5) 

Then clearly, the MLE is: 

log(fi1) + E for Xi < c5 

log(fi1) + E for xi > c5. 

--- 1 """' y· """' y· log(,81) = T L.... log( x'·) + L.... log( ; ) . 
i<t i i>t 

(3.17) 

Below, we verify this result using the theory of linear models as in §3.2 and 

3.3. 

In terms of the parameter vector /3 == (log(fi1), log( o:2)) T, we may write the 

constraint as hr {3 == k with h == (1, -l)r, and k == - log(c5). 

The least-squares estimate of /3 subject to H /3 == k (Rencher, 2000) is given 

bv: ., 

where /3Ls is the unconstrained LS estimate. For a single constraint, H ==hr, 

and thus: 

Since 

1 
t 0 

0 1 
T-t 
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-1 

1 
t 

-1 
T-t 

(3.19) 



----
T" h f3Ls - k 

log(/31) ----log( a2) 

it follows after some algebra that : 

1 
t 

-1 
T-t 

, and 

- (- log(c5)) 

i E~==l log(~:)+ i ET t+1 log(yi) - TTt log(c5) 

~ E~==l log(~:) + ~ E'f t+i log(yi) + ~ log( 6) 

----note the first element matches the result for log(/31) in (3.17). As log(xi) is an 

offset in the first model segment, it is obvious that the constraint is satisfied. 

Estimates of /31 and a2 are obtained by exponentiating the elements of {3. 
A 

Note that the first two terms in each element of f3c equate toy*. 

If the observations are to be weighted, then the WLS estimates follow readily 

as in the normal-errors case. Referring to the LS estimates given by (3.15) 

and (3.18), we have for the unconstrained case: 

A T - l T 
f3wLs == (X WX) X Wy* == (3.20) 

45 



where c1 = I:}~i W j , and c2 = I:f =t
1
+i wi . For the constrained, WLS estimates, 

we have: 

f3c == SwLs - (xrwx)-1Hr[H(xrwx)- 1Hr] - 1(HbwLs - k) .(3.21) 

Again, with the single constraint, H ==hr, and (3.21) simplifies to: 

(3.22) 

Noting that 

1 0 
. . . 

1 1 0 0 1 0 
diag( w1, ... , wr) 

0 0 1 1 0 1 

0 1 

E~=l Wj 0 

0 ET t+l Wj 

expression (3.20), 

t T 
T ~ 

h f3wLS - k c1 L Wj log( ~i) - c2 L Wj log(yj) +log( 8). 
j=l J j = t+l 

46 



Substituting these expressions into (3.21), the constrained, weighted estima­

tor is: 

If the change-point is unknown and to be estimated, the Julious algorithm (or 

iteratively re-weighted Julious algorithm) is applied. See §3.2.2 and §3.3.3. 

3.4.2 Estimation of parameters in other models 

In the previous section, estimators are developed for the hockey-stick model 

assuming lognormal errors. However, if we wish to estimate the parame­

ters of the doorhinge (3.7) or segmented regression (3.1) models assuming 

lognormally-distributed errors, we cannot ordinary use least-squares, since 

on the log-scale (see 3.14), these models are not linear in the parameters. 

As this practicum is focused on using LS and the Julious algorithm, alter­

nate estimation methods would be required. Some options which may offer 

outlier protection are weighted maximum likelihood estimators (Field and 

Smith, 1994), or even robustified maximum likelihood estimators (Carroll 

and Ruppert, 1988). 
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Chapter 4 

Simulation Studies 

4.1 Introduction 

Simulation studies were conducted to evaluate the estimation procedure, 

and to compare results obtained using least-squares (LS) and iteratively re­

weighted least squares (IRLS). In order to assess the impact outliers have on 

each procedure, simulated data with and without outliers were used as input 

data for parameter estimation. 

Details on the simulations and a summary of the results are presented in 

this chapter. The focus of the simulation work is on the estimation of the 

change-point, 8. The models examined were the normal and lognormal forms 

of the hockey-stick model (3.6) and (3.13). 
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4.2 Siillulation Design 

For each model, thirty-six simulations were conducted. There are four sim­

ulation parameters: sample size (N), the change-point (8), the amount of 

noise used to generate the sample (a2
), and the proportion of outliers in the 

data set (p). Sample size and change-point location each have three levels, 

whereas a 2 and the proportion of outliers each have two levels. 

Sample-size was varied in simulations to determine how the number of ob­

servations used in fitting the model affects the algorithm with respect to 

estimating the change-point. Contrasting results across three values of N 

also allows conjecture about the asymptotic behaviour of the estimators. Al­

tering the change-point permits comparison of how estimation behaves when 

the change-point is in the center of the data (which we may expect to be the 

least difficult case) to that of off-center change-points. Different values of 8 

also permit study of how the constraint of passing through the origin using 

the hockey-stick model affects the LS and IRLS estimators. Two values of 

a 2 were used to consider the effect of changing the amount of noise in the 

data. In the application for which the IRLS using Julious' algorithm was 

developed, stock-recruit modeling in fisheries science, there are often several 

outlying points. By including outliers in the simulation data sets (p > 0 

cases), we can compare the LS and IRLS results, and also compare estimates 

to the analogous situation with no outliers (p == 0). 

Each simulation has 3000 iterations, and the design points are equally spaced 
"' "' 

within [O, 100]. Each simulation iteration stores (3 , 6, and the residual sum of 
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squares (3.5) from both LS and IRLS. The IRLS estimates are computed us­

ing Huber's weighting function (3.12), with iterative re-weighting continuing 

until successive estimates of 6 agree to three decimal places. The constant 

in Huber's weighting function was held constant in all simulations at c == 2. 

Increasing the value of the constant will lead to IRLS which is more "toler­

ant" of outlying points, and thus the difference between the LS and IRLS 

parameter estimates would decrease. Conversely, decreasing the value of c 

may increase the discrepancy between the LS and IRLS estimates. For this 

reason, and also to moderate the total number of simulations, Huber's c was 

held fixed. Using c == 2, the asymptotic relative efficiency of the sample mean 

to the robust estimate of the mean as estimated from normal data is 1.01 

(see Table 5.2, Barnett and Lewis, 1995). 

For each simulation, the mean squared error (MSE) and average bias of the 

estimated parameters were computed from (considering 6 as an example): 

L A 

Bias( J) = L ( 81 ~ J) ( 4.1) 
l==l 

MSE(J) = t (81 ~ c5)2 
l==l 

(4.2) 

To compute the variance of the simulation estimates of parameters, we use 

the fact that: 
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MSE(J) 
A 

==?- Var(8) 

Var(J) + Bias(J)2
. 

MSE(J) - Bias(J)2
. (4.3) 

Outliers are included in half of the simulation runs. Outliers are generated 

according to the mixture model: 

H == ( 1 - p) F + pG. (4.4) 

This mixture distribution (Barnett and Lewis, 1995) is a simple combination 

of two distributions, F and G, with P(c E G) == p representing the probabil­

ity that c is generated by G, the distribution used to generate outliers. In 

this research, G will be a distribution that is identical to F except with an 

inflated scale parameter. 

4.3 Non-converging IRLS 

IRLS estimation using the Julious algorithm did not converge for all simu­

lated data sets. The number of non-convergent cases was infrequent (approx­

imately 0.3% of all simulation runs), and as such these cases were excluded 

from further analyses and simulation summaries. 

In the unconverging cases, problems arose with "cycling" of the regres­

sion weights. Formally, suppose at step i of IRLS, the estimated parame-
A A 

ters are f3i, 8i, with associated weights wi == { wi1 , ... , wir }, and residuals 
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Ei == { Ei1, ... , Eir }. The weights wi are used to obtain estimates in the 

( i + 1 )st step, from which €i+l and subsequently Wi+l are computed. For the 

non-converging cases, the weights from step ( i + 1) reproduce the estimated 

parameters from step i. As a result, €i+2 == ii, and wi+2 == wi, etc. The 

estimated parameters and weights will cycle indefinitely. 

In practice, if cycling of weights were to occur, one possible solution would be 

to alter the IRLS termination criteria. One could also select another weight­

ing function to use, or, alter the IRLS estimates at each step, computing a 
-

partial-step estimate, f3i+1: 

- - A 

f3i+l == !f3i + (1 - 1)/3i+l 

where / 3 (0 < / < 1) controls step-size, /3i is the estimate of step i, and Si 
is the WLS estimate from the (i + l)st step. 

4.4 Simulation Models and Results 

4.4.1 Hockey Stick Model, Normal Errors 

A simulation exercise was conducted for the hockey-stick model with normal 

errors. In this simulation, the parameter values used were: N == {25, 50, 100}, 

p == {O, 0.15}, a2 == {1, 9}, and 6 == {25, 50, 75}. Quantities held fixed 

over simulation trials were: (Huber's) c == 2, T == 5, F == N(O, a2
), and 

G == N(0,T2a 2
). Using T == 5, 31% of the data generated from G will lie 

within two standard errors of the mean, when a2 == 1. 
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The true model from which random data were generated is: 

X· < b i -

Yi== 
X · > b i -

with /31 == 1, and a 2 == c5. 

The random error ci comes from the mixture distribution H (4.4). Observe 

that T is the contamination parameter. In the simulations with p > 0, T 

controls the degree to which the variance of F is inflated. 

A A 

Tables of bias and MSE for b, /31 , and 6 2 are given in Appendix A for 

each simulation conducted. A run identification number (sequential from 

1-36) is associated with each simulation to aide in discussion and identifying 

simulations in the summary graphs. Since assessing the estimation of the 
A 

change-point ( c5) is of primary interest, graphical summaries of Bias( c5) and 
A 

MSE(c5) for the simulations are presented, along with discussion and conclu-
. 

SI On. 

Figure 4.1 displays two simulation datasets and the estimated regression lines 

using both the LS and IRLS methods. The data are from the run 4 simula­

tion scheme, and the filled points demarcate those coming from distribution 

G in ( 4.4), which has inflated variance. 
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Figure 4.1: Two simulation datasets. Data come from run4, and numbers 

reference the iteration number. Filled points are realizations from the inflated 

variance distribution in 4.4. 

A 

Bias of 8 

An examination of Bias(J) (Figure 4.2, Table Al) indicates all simulation re-
"' 

suits have values of Bias(8) which are small in magnitude. This suggests that 

the estimate of 8 from both LS and IRLS within the Julious algorithm are 
"' unbiased. In the plot of Bias( 8), it is obvious that three of the bias values are 

"' 
much larger in magnitude than in other simulations. These are Bias1nLs(8) 

in run # 4 (with simulation parameters N == 25, 8 == 25, p == 0.15, and 
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Figure 4.2: Comparison of Bias( J) for simulation runs. 

a 2 == 9), and both BiasLs(b) and BiasIRLs(b) in run # 12 (simulation pa­

rameters N == 25, {J == 75, p == 0.15 and a2 == 9). In each of these cases, two 

new simulation data sets were generated, and identical simulations were con­

ducted. The results of the additional work corroborated the initial results. 

These two simulation scenarios are among the most difficult situations for 

estimation in the simulations: sample size is small, the true change-point is 

off-center, outliers are present, and a 2 is large. 

The results of run # 4 were examined in depth to gain insight into the large 

negative bias when using IRLS in contrast to the small positive bias ob-
A 

served when using the LS estimators. In Figure 4.3, we consider Bias1RLs(6) 

and BiasLs(b). Note that if BiasLs(b) > 0, iterative re-weighting reduces 
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Figure 4.3: Bias(b) for simulation run # 4. (Numbers indicate simulation 
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A 

the bias in 8 in most cases (e.g. simulation iteration 5). However, in the 

BiasLs(b) < 0 cases, we find that reduction in bias by re-weighting is minimal 

or zero. This yields a mean simulation bias (IRLS) of -0.558 (see Figure 4.2). 

Thus BiasLs(J) < 0 cases in which IRLS reduced the bias were compared 

to selected cases in which there was no improvement. For the cases exhibit­

ing improvement, in general, the simulation datasets had extreme positive 

outliers to the left of the true change-point, or had large negative outliers 

towards the upper range of the data. Robust estimation via re-weighting 

56 



0 
....... LS,N=25 
0 

0 
0 -+-'----'--_.__..........__--r--___ ~.__...._..___._-'-'-i 
0 

0 ...- N ..... ..... ..... LO ...- N M ~ lt'l <O ,..._ CO O> ,.... 
c:) 
I 

0 ,.... LS,N=50 
.-o 

<C-0 
--o (J') C? __.,____.____._..........__ _________ ....__ __ --.&...-4 

ro o 

co 
LO ~~~~~~~~N~~~ ,.... 
0 
I 

0 ..-
0 

0 
C? 
0 

LS, N=100 

LO ~ ~ ~ re ~ g M ~ ~ ..-
0 
I Run Number 

0 ,.... 
0 

IRLS, N=25 

0 0 __.,____.____._ __ ~ _____ _......,.___,.____._--.&...-4 

0 

I() <O ,.... co O> 0 ...- N ..... ..... ..... LO ..- N M 
..-
0 
I 

0 ..-
0 

IRLS, N=50 

0 0 __.,__....___..........__ ___ ........_ __ ....______...._--.&...-4 
c:) 

LO ~ ~ ~ ~ ~ ~ ~ ~ N ~ ~ ~ ..-
0 
I 

0 ,.... 
0 

0 
0 
c:) 

A 

IRLS, N=100 

COO>O..-NM 
N N M M M M 

Run Number 

Figure 4.4: Comparison of Bias( 8) for each value of N. 

reduces the influence of these points, yielding reduced Bias(&). For the cases 

with little or no reduction in Bias(&), outliers were positioned such that re­

weighting did not substantially alter the estimate of 8 from the LS estimate. 

"' 
If we compare Bias(8) at each level of N (Figure 4.4), as N increases, the 

size of Bias(J) decreases. Further, note that the magnitude of Bias1nLs(6) 
A 

is usually either similar to or smaller than Bias LS ( 8), and are particularly 

smaller if N == 25. (Observe that the three large bias values discussed earlier 

exceed the scale of this and the subsequent bias plots.) 

Examining Bias(&) for each value of 8 (Figure 4.5) , the true location of the 

change-point, the bias for the off-center change-points 8 == {25, 75}, is larger 
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" Figure 4.5: Comparison of Bias(8) across each value of 8. 

" 
than that for 8 == 50. Separating Bias( 8) by p (Figure 4.6), it is obvious that 

" 
Bias( 8) is usually larger when outliers are present. In these cases, the use 

of IRLS generally reduces Bias(J) (with run #4 being a notable exception). 

Finally, inspection of Bias( J) at each level of a 2 (Figure 4. 7), we see that 

Bias( b) for a 2 == 1 is typically smaller than that for a 2 == 9. All values of 

Bias(b) using IRLS under a 2 == 1 are quite small. 

"' In summary, the magnitude of Bias( 8) is quite small in all cases, and for 
" most simulations, we find Bias(8) to be negligible. Given the simulation 

design, the "bias" referred to here is a direct reflection of the random error 

used in generating the simulation data sets. That is, given that a symmetric 

error distribution is used to generate noise in the data, and that outliers are 
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Figure 4.6: Comparison of Bias( b') across each value of p. 

inserted at randomly selected design points, it appears that Bias( 8) is simply 

tracking the noise in the data. 

A 

MSE of~ 
A 

Studying MSE(b') from the simulations (Table Al) , clear patterns are evi-

dent. Note that MSE(8) is approximating Var(8) since the values of Bias(J ) 

are small, making (Bias(8))2 negligible in (4.3). In the figures which compare 

MSE, we examine MSELs(8) and the ratio MSELs(8)/MSE1nLs(8) (e.g. Fig­

ure 4.8). Comparing the ratio of MSE(J) from each method provides a sim-
"' 

pie metric to gauge the performance of IRLS relative to LS. If MSELs(8) > 
A 

MSE1nLs(8), then the ratio is greater than 1, and measured by MSE, the 

IRLS would be considered an improvement over LS. 
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Figure 4. 7: Comparison of Bias( 6') across each value of a 2 • 

A 

Considering MSE(6') with respect to sample size N (Figure 4.8), observe 
A 

that all other simulation parameters being equal, we have MSE(6')N=25 > 

MSE(J)N=50 > MSE(J)N=lOO· In fact, the rate of decrease in MSE(J) with N 

is inversely proportional to the factor by which sample size is increased. That 
A 

is, (again, all other simulation parameters equivalent), 1/2(MSE(6')N=25) ~ 

MSE(J)N=so, 1/2(MSE(J)N=so) ~ MSE(J)N=100, and thus 1/4(MSE(J)N=2s) ~ 

MSE(J)N=lOO· Displaying MSE(J) over each value of 6' (Figure 4.9), we see 

that for similarly structured runs, MSE( J)0=25 > MSE( 8)6=75 > MSE( J)o=SO· 

That is, MSE( J) is smallest in the situation for which 6' is centered in the 

data set, and the off-center values of 6' lead to larger MSE( J). In particu­

lar, MSE(J) is smaller for 6' == 75 than 6' == 25. Recalling (3.6), note that 
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Figure 4.8: Comparison of MSE( 8) across each value of N. 

the model is constrained not only to meet at the change-point, but it is 

also constrained to pass through the origin. This fact likely explains why 

MSE(c5)8=2s > MSE(b)d=75· 

An examination of MSE(J) considering the presence of outliers (Figure 4.10) 

reveals a critical result from this simulation exercise. In the upper panel, 
A A 

which includes only runs without outliers, observe that MSELs(c5) ~ MSE1RLs(c5). 

In fact, with p == 0, MSELs(b) < MSEIRLs(b) but the actual difference in 

the two quantities is negligible. Conversely, in the cases which include out­

liers, examining the MSE ratio plot (Figure 4.10, lower panel), indicates the 

advantage of IRLS over LS is evident. Finally, if we consider MSE(b) across 
A 

the two levels of a 2 (Figure 4.11), observe as a 2 is increased, MSE(c5) also 
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Figure 4.9: Comparison of MSE(J) across each value of 8. 

increases; not an unexpected result. 

" 
For this simulation, summaries of MSE(8) are more informative than those 

,... 

of Bias(8) in determining the effect of each simulation parameter on the es-

timation and in enabling comparison between the two estimation methods. 
,... 

In particular, examination of MSE(8) points to a clear benefit of using IRLS 

with the Julious algorithm. If outliers are not present, the LS and IRLS esti­

mation using Julious' algorithm are practically equivalent. However, should 

the data be contaminated with outliers, IRLS, as we might suspect a priori, 

performs substantially better than LS. Thus, in practice, to guard against 

problems arising from the presence of outliers when using the Julious al­

gorithm to estimate the change-point, simulation results indicate that with 
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Figure 4.10: Comparison of MSE(J) across each value of p. 

respect to bias and MSE of the change-point <5, iterative re-weighting is prefer­

able under the assumption of normally distributed errors. 
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Figure 4.11: Comparison of MSE(J) across each value of a 2
. 

4.4.2 Hockey Stick Model, Lognormal Errors 

A second simulation exercise was conducted, studying the hockey-stick model 

under the assumption of lognormal errors. In this simulation, the parameter 

values used were: N == {25, 50, 100}, p == {O, 0.15}, a 2 == {0.025, 0.1 }, and 

8 == {25, 50, 75}. Quantities held fixed over simulation trials were: (Huber's) 

c == 2, T == 3, F == N(O, a 2
), and G == N(O, r 2a 2

). With T == 3, 50% of the 

realizations from G lie within two standard errors of the mean when a 2 == 1. 

The 'true' model from which random data were generated was: 

log(B1) + log(xi) + c 

log( 0'.2) + c 
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with /31 == 1, and a 2 == <5. In the normal-error simulation, by setting 

<5 == {25, 50, 75}, we could assess the effect of change-points in the center 

of the data against off-center points. This is still true in this simulation ex­

ercise yet estimation takes place on the log-scale (3.14). On the log-scale, 

the values {25, 50, 75} no longer represent center and off-center cases for 

the covariate log(x), i.e. log(50) is not the midpoint between log(25) and 

log(75). In fact, the midpoint of the data is now a function of sample size, 

because the simulation design selects N equally-spaced points within [O, 100). 

In particular, note x1 and XN are functions of sample size. Thus, on a log­

arithmic scale, the mid-point of log(x1) and log(xN) re-transformed to the 

linear scale is computed as exp([log(x1) + log(xN )]/2) == Jx1XN. Setting 

N == {25, 50, 100}, this mid-point evaluates to {19.2, 13.9, 9.9}, respectively. 

We discuss this further when examining simulation results across the true 

change-point values. 

The random error c again comes from the mixture distribution H ( 4.4), with 

T as the contamination parameter. 

"' "' Tables of bias and MSE for <5, /31 , and 6 2 are given in Appendix A for 

each simulation conducted. Although estimation takes place on the log­

scale, the bias and MSE are evaluated on the linear scale, since interest is 
"' "' on estimates of <5 as opposed to log( <5). As in the normal model simulations, 

a run identification number is associated with each simulation, and focus is 

restricted to estimation of the change-point, <5. 
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Figure 4.12: Comparison of Bias(b) for simulation runs. 

The least-squares and iteratively re-weighted estimators of 8 exhibited sub­

stantial simulation bias (Figure 4.12). In contrast to the normal-error sim­

ulations, in which most cases had negligible bias, there are now just a few 
"' cases which have low bias. Most cases have positive bias - the bias of 8 de-

pends on the location of the true value of 8. The largest biases correspond 

to the cases in which the true change-point is greater than the center of the 

covariates (i.e. to the right of center). 

Plotting Bias(J) for each value of N (Figure 4.13), we see that Bias(J) is 

generally decreasing as N increases. However, the reduction in bias seems to 
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Figure 4.13: Comparison of Bias(8) across each value of N. 

occur at a slower rate than in the normal model (Figure 4.4). 

Examining Bias( J) at each level of c5 (Figure 4.14), we see that the relation 

Bias( 8)8=2S < Bias( 8)8=5o < Bias( 8)8=75 holds for the majority of cases (all 

other simulation parameters being equal). 

A 

The effect of outliers on Bias(8) (Figure 4.15) is obvious. Although the no-
A 

outlier cases (top row of Figure 4.15) show little difference between BiasLs(8) 

and Bias1RLs(8), we see that if outliers are present, then generally, Bias1RLs(8) < 

BiasLs(J). For some cases (e.g. run #4), iterative re-weighting leads to con­

siderable reduction in bias. 
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Figure 4.14: Comparison of Bias(J) across each value of 8. 

A A 

Studying the results of Bias( 8) at each level of a, we observe that Bias( 8)a-=o.025 < 
A 

Bias( b)a-=o.1 (Figure 4.16) for most situations. 

The results for Bias(J) are generally consistent with those in the normal 

model. One important finding in the simulations using the lognormal errors 
A 

is that the values of Bias( b) are not negligible; thus the estimation method 

appears to be biased. 
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Figure 4.15: Comparison of Bias(c5) across each value of p. 

A 

MSE of J 

"' Next, we assess MSE(c5) in the lognormal simulations. Although "large" 

values of Bias( J) were noted in this simulation study, it is still true that 

Var(J) ~ MSE(J) in (4.3) since MSE(J) ~ (Bias(J))2 . 

A plot of MSE( J) for each value of N (Figure 4.17) reveals that MSE( J) de-
"' 

creases as N increases. In most situations, the rate of decrease in MSE( 8) is 

again inversely proportional to the change in sample size, as in the normal­

error simulations. 

Examination of MSE( J) at each value of 8 (Figure 4.18) indicates that MSE( J) 
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Figure 4.16: Comparison of Bias(J) across each value of a 2
. 

increases as the true-value of the change-point increases. This is not sur­

prising considering the earlier discussion on how the change-points 6 == 

{25, 50, 75} translate to the log-scale. The true change-point values are 

greater than the mid-point of log(x), which we may expect to increase MSE. 

Evaluating MSE( J) at each value of p (Figure 4.19), we note that MSEiRLs( 8) < 

MSELs(J) for p > 0 (bottom row of figure). Considerable reduction in 
"' 

MSE( 8) can occur by robustifying the estimation (compare ratio plots in 

right-hand column of Figure 4.19). However, in the cases without outliers, 

we find MSEiRLs(J) > MSELs(8), with little difference in the magnitude of 
"' 

MSE(6) from either method. This is consistent with the result of §4.4.1. 
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Figure 4.17: Comparison of MSE(J) across each value of N. 

Values of MSE(b) examined at each level of a (Figure 4.20) reveal similar 

patterns. At each of the low and high levels of a, we observe a scale change 

in values of MSE(b). 

Based upon simulation results under the lognormal model, Bias( J) and MSE( b) 

verify that the use of weighted Julious algorithm is preferred over the LS al­

ternative. Findings indicate that the LS and IRLS methods perform equally 

well if outliers are not present, but if outliers exist in the data, then IRLS 

performs better than LS. It has been demonstrated that the estimates of 

change-point using IRLS have improved bias and MSE. Thus, IRLS results 

should be evaluated against the results obtained from LS in practice. 
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Chapter 5 

Application 

5.1 Preliminaries 

In this chapter, we apply the estimators developed in Chapter 3 to three 

data sets. Of primary concern is the location of the change-point under 

the Julious algorithm (JA) and the iteratively re-weighted Julious algorithm 

(IRJA). Model estimates are produced for the following data: (i) the physi­

ological data set from Julious (2001), used to demonstrate the JA in Julious 

(2001), and two fisheries science examples: stock and recruitment data for 

the (ii) 3LNO American Plaice (NAFO, 2003) and (iii) North Sea Plaice fish 

stocks (ICES 2002b). Each of these data sets are tabled in Appendix B. 

In the following section, we consider inference about the change-point, 8. 
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5.2 Inferences via Bootstrap 

Given the indirect manner in which 8Ls and JIRLS are obtained (see Figures 

2.1 and 3.4), inference for the change-point is not straightforward. A simple 

empircal approach to provide a measure of uncertainty for the estimated 

change-point is to use the bootstrap (Efron and Tibshirani, 1993). For each 
"' "' 

of 6Ls and 61RLs, we may apply the following bootstrap algorithm: 

1. Given then observations (xi, Yi), compute the estimate of change-point 

from the JA (IRJA if estimating JIRLs). 

2. From the model fit in step 1, compute the residual vector: 

"' ,... 
e==y-y. 

3. Randomly sample n values from the elements of i, with replacement. 

From then re-sampled values, form the vector ej. 

4. Construct a bootstrap sample yj as: 

5. Use the data x, Yj to compute the jth bootstrap estimate of 8Ls or 

81RLS as appropriate (denote as {J~ ). 

6. Repeat steps 3-5 B times. 

7. Compute: 
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In the applications in this chapter, we consider B == 1000 bootstrap repli-

cates. 

A A 

It may be of interest to evaluate whether 8JA and 81RJA are statistically 

different. Such comparisons are not straightforward in that the estimators 

are derived using 0 LS and WLS (e.g. a nested hypothesis test cannot be 

constructed). One formal method to evaluate the significance of the differ­

ence between the two estimators is to conduct a bootstrap exercise (Efron 

and Tibshirani, 1993). A bootstrap distribution of the difference estima-
A A 

tor 8JA - 81nJA can be used to determine empirically if the least-squares 

and robust estimate of the change-point are statistically different. However, 

application of the bootstrap would require the assumption that errors are 

identically and independently distributed. This is not the case in the sim­

ulation work of Chapter 4, and significance tests evaluating the difference 
A A 

between 8JA - 81RJA are not considered in this practicum. 

5.3 Julious' Data Set 

Recall (§3.2.3) the physiological data set from Julious (2001) , from illustra­

tion of the JA in Chapter 3. We now study this data set using iterative 

re-weighting and compare the estimates and model fit. We apply the full 

segmented regression model (3.1). Computing estimates using the JA, we 

found: 

A A "' ....... "' T T /3 == ( 0'.1 ' /31, 0'.2, /32) == (0.0765, 0.0423, -1.6595, 0.0863) ' 
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" 
with 8Ls == 39.463, and RSS == 0.3895. 
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Figure 5.1: LS and IRLS estimates (normal model) for Julious' data set. 

Filled points are down-weighted in IRLS. 

" If we apply the IRJA using Huber's c == 2, and iterating until 8 is constant 

to three decimal places, we obtain the following estimates after 8 iterations: 

A " A """ "" T T /3 == (0:1, f31, 0:2, !32) == (0.0296, 0.0440, -1.8725, 0.0899) ' 

"' 
81RLS == 41.442, and RSSw == 0.2467. 

A plot of the data and the estimated regression line under LS and IRLS is 

presented as Figure 5.1. Vertical lines are used to demarcate the estimated 
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Figure 5.2: Standardized Residuals for LS and IRLS estimates (upper panel); 

Weights from IRLS (lower panel). 

change-point for each method. The solid points in the figure are those which 
A 

have been down-weighted in the final IRLS iteration. Observe that <SIRLS is 
,,... 

approximately 5% larger than <5Ls· This is potentially important in interpre-

tation, since here the "change-point represents the point at which a subject 

switches metabolic pathways, from aerobic to anaerobic" (from Julious 2001). 

Figure 5.2 displays the standardized residuals from the LS and IRLS es­

timates (top panel) and the weightings in the final IRLS iteration (lower 
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panel). The residuals are standardized by MAD(e) as described in §3.3.2. 

As the fitted regression lines are quite similar, there are no large-scale changes 

in the residuals. However, for the oxygen volume values inside the interval 

[40, 55], we see that the IRLS residuals are generally smaller due to the down­

weighting of the y-outlier at x == 48.4. The first point (at x == 12.5) is also 

downweighted, but only marginally so. 

Bootstrapping the IRLS residuals, we obtain the following estimate of un­

certainty for the change-point: 

" 
se1000 ( 8) == 1.698. 

5.4 Stock-Recruit Data 

We now consider two fisheries data sets which are estimated using the hockey­

stick model assuming lognormal errors (3.13). This model is assessed in the 

simulation studies of Chapter 4. 

5.4.1 American Plaice in 3LNO 

American Plaice (a flounder species) in divisions 3LNO of the Northwest At­

lantic Fisheries Organization (NAFO) regulatory area are distributed across 

the Grand Banks of Newfoundland. The data used in this analysis are age 0 

recruits. (See NAFO, 2003 for additional details). 

The results obtained using the LS JA are: 
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A A A T T /3 == (!31, a2) == (19.0739, 589.1886) , 

"" 
6Ls == 30.8898, and RSS == 2. 7 438. 

Estimates obtained using the IRJA (after 6 iterations, using Huber's c==2 

and iterating J until convergence to three decimal places) are: 

A A A T T /3 == (!31, a2) == (17.9318, 587.0866) , 

A 

61RLS == 32.7399, and RSSw == 2.4798. 

3LNO American Plaice 
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0 
T""" 

0 

- 0 en 0 0 0 0 c co 0 0 00 

-
E 0 0 

0 - 0 0 0 
en 0 0 
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s.... 0 00 0 0 0 0 (.) 

0 0 0 0 (]) 

0::: 0 0 0 

0 0 0 ~ 
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O> 
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0 
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Figure 5.3: LS and IRLS estimates for 3LNO American Plaice stock-recruit 

data (lognormal model) . Filled points are down-weighted in IRLS. 
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Figure 5.4: Standardized Residuals for LS and IRLS estimates (upper panel); 

Weights from IRLS (lower panel). 

Figure 5.3 illustrates the fitted lines (median recruitment) from LS and IRLS, 

and we see there is little difference in the two estimates. From a practical 

perspective (see §1.3 for precautionary approach discussion), the difference 

in the estimates of change-point is inconseqential. We see that two points 

(filled circles in Figure 5.3) are down-weighted, however, these points are 

not close to the estimated change-points or are not extreme enough to sub-
"' " 

stantially change the estimates of /3 or c5, keeping in mind estimation takes 

place on the log-scale. In the figure of standardized residuals, we see the 
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residuals (log-scale) are near-identical, and the weight reduction of the two 

down-weighted points is slight. 

A 

A bootstrap exercise yields se1000 ( c5) == 4.3295 as a variability measure of 

5.4.2 North Sea Plaice 

The North Sea Plaice stock is a flounder stock, habituated off \Vestern Eu­

rope and managed by the International Council for the Exploration of the 

Seas (ICES). This data set (see Appendix B, Figure 5.5) comes from the 

2001 assessment of North Sea Plaice (ICES, 2002b). Inspection of the stock­

recruit scatter (Figure 5.5) indicates that some of the recruitment values are 

considerably larger than the bulk of the data, points which may adversely 

affect the LS estimates. Two iteratively re-weighted runs were conducted 

using two values of Huber's c to assess the sensitivity of the results of the 

value of c. The LS JA results are: 

A A A T T 
(3 == CB1, a2) == (1. 7833, 421.2836) , 

..... 

8Ls == 236.2327, and RSS == 6.8376. 

Using the IRJA, with c == 2 (after 7 iterations) we have the estimates: 

A A A T T 
(3 == (fi1, a2) == (1.5440, 420.6233) , 

A 

81RLS == 272.4235, and RSSw == 5.9647. 

And for the IRJA with c == 1.5 (requires 8 iterations): 

A ..... A T T 
(3 == (fi1, a2) == (1.4148, 418.0098) , 
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Figure 5.5: North Sea Plaice stock-recruit data. 
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Figure 5.6 displays the the JA estimate of change-point, together with two 

IRJA estimates. The model fits indicate the estimated median recruitment. 

In this example, there are substantial differences across the three sets of esti­

mates, particularly in the estimated change-point. In this case, it is apparent 

that the estimates are highly sensitive to the value of Huber's c. The filled 

points in Figure 5.6 indicate those which are downweighted in the iteratively 

re-weighted estimates using c == 1.5. For c == 2, just four of these points are 

down-weighted - the (373, 234) point is added to the down-weighted cases 
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Figure 5.6: LS and IRLS estimates for North Sea Plaice stock-recruit data 

(lognormal model). Filled points are down-weighted in IRLS using c == 1.5. 

The filled point (372, 234) is not down-weighted when c == 2. 

when c is reduced to 1.5. 

The implication in application of the IRJA to this stock is that depending on 

the estimate selected as the most appropriate fit, we have different estimates 

for the point below which impaired recruiment is observed. Comparing LS 
A 

and IRLSc=l.S, there is a 25% difference is the estimate of 6, which would 

correspond to a 25% difference in the reference point Bzim (see discussion 

in §1.3). Figure 5.7 gives the standardized residuals (log-scale) for each fit , 
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Figure 5.7: Standardized Residuals for LS and IRLS estimates (upper panel); 

Weights from IRLS (lower panel) . 

and the weights for the c == 1.5 case. In the estimated parameters for each 

of these runs, there is little change in 6 2 . However, robustifying the esti­

mation, the estimated change-point is increased, and accordingly, the slope 

of the first most segment decreases. (Recall that the constraint to meet is 

/316 == a 2 .) Thus, the LS and IRLS residuals are considerably different for 

those SSB values which are less than the estimated change-point. In the 

lower panel, observe that the four large recruitment values discussed earlier 

are considerably down-weighted. 
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A 

Bootstrapping the residuals of the c == 1.5 IRLS fit, we estimate s"'e1000 ( o) == 

64.8217. 

For several other stock-recruit data sets, the LS JA and IRJA were applied, 
A A 

and it was found that the estimates of b"Ls and OJRLS were quite similar, as 

with the 3LNO American Plaice. It is also possible that the estimates of 
"' ..... 

OLs and OJRLS are equal. However, for the North Sea Plaice, the data seem 

consistent with a hockey-stick formulation, and given that several recruitment 

values appear to be outlying, the IRJA offers robustification over the LS JA. 
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Chapter 6 

Conclusion 

6.1 Concluding Re01arks 

In this practicum, robust estimators are developed for the segmented regres­

sion model. The focus is on robustifying the Julious algorithm via iteratively 

re-weighting, extending the work of Julious (2001). Simulation studies were 

conducted to assess the performance of the iterative re-weighting for the 

hockey stick model. The methods are applied to estimate parameters of a 

segmented regression model from a physiological data set and the parame­

ters of the hockey-stick model for two stock-recruit data sets from fisheries 

science. Key results are given below, and directions for future research with 

discussion focussed on fisheries science are found in the following section. 

In developing robust estimators for the segmented regression problem, we 

apply an iterative re-weighting scheme, following the iteratively re-weighted 

least squares work of Holland and Welsch (1977). In practice, these methods 
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involve subjective choices: the type of weighting function, the parameter(s) 

of the weighting function, and the test for convergence are all choices which 

affect the results of the robust estimation, and should be selected by the re­

searcher carefully. The development of the robust estimators for segmented 

regression models under normal and lognormal errors is the primary result 

of this practicum. 

Simulation studies conclusively demonstrate that in the presence of outliers, 

the robust estimators are preferable in terms of bias and MSE. If no outliers 

are present, then the least squares and iteratively re-weighted least squares 

perform equally well. In practice, when the presence of outliers may be im­

possible to quantify, the robust estimation is advocated in addition to LS 

analysis. Simulation studies conducted for the hockey-stick model under log­

normal errors indicate that the estimates of the change-point are biased, for 

both least squares and iteratively re-weighted least squares. 

Application results demonstrate the potential of the method. For the phys­

iological data set considered by J ulious ( 2001), we find that the ro bustified 

estimate is approximately 5% larger than the least squares estimate, which 

could have important implications in practice. The robust estimators were 

applied to two fisheries science data sets, and we find that for one of the 

cases, there is little difference in the least squares and the robust estimates. 

However, in the second case considered, we find that the estimated regres­

sion lines from the least squares and the iteratively re-weighted methods are 

not at all similar, and further, that the robust estimate is sensitive to the 
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parameter used in the weighting function. 

6.2 Future Research and Limitations 

Despite several decades of research and methodological advances, stock­

recruitment relationships and related estimation are still a topic of current 

fisheries research. On a broad scale, no one parametric model is universally 

applicable to all fish stocks, including the hockey-stick model studied in this 

practicum. Research continues on existing parametric and non-parametric 

methods, such as accounting for additional covariates which may affect re­

cruitment. For several fish stocks, there is no evident stock and recruitment 

relationship. In such cases, blind application of existing methods is inappro­

priate. Sprent (1961) stated: "A biologist will often postulate a two-phase 

linear regression rather than some alternative such as a parabolic one on 

largely intuitive grounds, and his decision on this point must be to some 

extent a matter of experience and common sense, as is generally the case in 

selecting appropriate hypotheses and models for statistical examination. In 

many cases a two-phase regression can only be a reasonable approximation, 

adequate for many purposes, but by no means a complete description of what 

is taking place." This quote befits the application of the hockey-stick model 

to stock and recruitment data. 

For the hockey-stick model, future work should include an appropriate method 

for determining the value of the weighting function parameter(s). In this 
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work, the choice of c in Huber's weight function was selected based upon 

efficiency of an estimator of the mean from normal samples. An examination 

of the efficiency of the estimators (JA versus IRJA) for several values of c 

would be a useful contribution. 

In certain applications, it may be useful to adapt the method to provide 

robust estimates allowing for outliers in the independent variable (see §1.2). 

Such analysis was not considered in this practicum. 

Additional research could determine the conditions under which cyclical non­

convergence of the IRJA occurs. This problem (as described in §4.3) occurred 

infrequently and was not considered a focal point of this research. 

In addition, future research for stock and recruitment application should ex­

plore alternate estimation methods, moving away from least squares, which 

could avoid weighting on the log-scale. Alternate estimation methods may 

allow further exploration of the doorhinge model (3. 7) as a potential model 

for stock and recruitment processes. 
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Appendix A: Simulation 
Summary Tables 

Refer to Chapter 4 for details. 
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Table Al: Hockey-Stick Model, Normal Er-
A 

rors. Summaries of 8. 

Run# N 
A. A ;... A 

p a 2 BiasLs(8) Bias1RLs(8) MSELs(8) MSE1RLs(8) 

1 

2 

3 

4 

5 

6 

7 

8 

25 25 0 1 

25 25 0 9 

25 25 0.15 1 

25 25 0.15 9 

25 50 0 1 

25 50 0 9 

25 50 0.15 1 

25 50 0.15 9 

9 25 75 0 1 

10 25 75 0 9 

11 

12 

25 75 0.15 1 

25 75 0.15 9 

0.017 

0.059 

0.057 

0.126 

-0.030 

0.004 

-0.043 

0.042 

0.008 

0.040 

0.017 

0.451 

102 

0.017 

0.059 

0.017 

-0.558 

-0.029 

0.007 

-0.039 

-0.016 

0.008 

0.043 

0.015 

0.358 

0.533 

6.075 

2.959 

41.776 

0.320 

2.959 

1.492 

16.205 

0.343 

3.529 

1.802 

24.301 

0.541 

6.148 

1.596 

28.005 

0.323 

3.001 

0.689 

6.999 

0.349 

3.599 

0.792 

14.244 



Table Al, continued. 

Run# N 
A A A A 

p a 2 BiasLs(8) Bias1nLs(8) MSELs(8) MSE1nLs(8) 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

50 25 0 1 

50 25 0 9 

50 25 0.15 1 

50 25 0.15 9 

50 50 0 1 

50 50 0 9 

50 50 0.15 1 

50 50 0.15 9 

50 75 0 1 

50 75 0 9 

50 75 0.15 1 

50 75 0.15 9 

0.019 

0.029 

0.019 

0.016 

0.007 

0.008 

0.003 

0.082 

-0.008 

-0.022 

-0.011 

0.122 

103 

0.020 

0.031 

0.009 

0.018 

0.006 

0.010 

-0.009 

0.041 

-0.009 

-0.019 

-0.003 

0.058 

0.290 

2.684 

1.412 

19.800 

0.165 

1.599 

0.832 

7.760 

0.163 

1.538 

0.798 

9.430 

0.291 

2.717 

0.638 

8.486 

0.167 

1.621 

0.344 

3.050 

0.164 

1.572 

0.324 

3.573 



Table Al, continued. 

Run# 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

N p a2 

100 25 0 1 

100 25 0 9 

100 25 0.15 1 

100 25 0.15 9 

100 50 0 1 

100 50 0 9 

100 50 0.15 1 

100 50 0.15 9 

100 75 0 1 

100 75 0 9 

100 75 0.15 1 

100 75 0.15 9 

A 

BiasLs(8) 

0.008 

-0.009 

0.011 

0.015 

-0.005 

0.008 

-0.009 

0.022 

-0.004 

0.012 

0.019 

0.023 

104 

,... 

Bias I RLS ( 8) 

0.008 

-0.007 

-0.003 

-0.027 

-0.005 

0.007 

-0.007 

0.003 

-0.004 

0.012 

0.009 

-0.004 

,... 

MSELs(8) 

0.135 

1.309 

0.673 

7.432 

0.082 

0.750 

0.390 

3.715 

0.081 

0.761 

0.395 

3.855 

,... 

MSE1nLs(8) 

0.136 

1.326 

0.271 

2.737 

0.084 

0.758 

0.161 

1.425 

0.081 

0.771 

0.159 

1.468 



Table A2: Hockey-Stick Model, Normal Er-
A 

rors. Summaries of /31 • 

Run# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

N p a2 

25 25 0 1 

25 25 0 3 

25 25 0.15 1 

25 25 0.15 3 

25 50 0 1 

25 50 0 3 

25 50 0.15 1 

25 50 0.15 3 

25 75 0 1 

25 75 0 3 

25 75 0.15 1 

25 75 0.15 3 

A 

BiasLs(/31) 

0.0000 

0.0073 

0.0020 

0.1180 

0.0008 

0.0016 

0.0013 

0.0054 

0.0000 

0.0004 

0.0000 

0.0006 

105 

A 

Bias 1 RLS (/31) 

0.0000 

0.0074 

0.0016 

0.1321 

0.0008 

0.0016 

0.0011 

0.0033 

0.0000 

0.0004 

-0.0001 

-0.0001 

A 

MSELs(/31) 

0.0008 

0.0090 

0.0043 

0.4498 

0.0001 

0.0009 

0.0005 

0.0050 

0.0000 

0.0003 

0.0001 

0.0014 

A 

M SE1RLs(/31) 

0.0008 

0.0090 

0.0024 

0.4558 

0.0001 

0.0009 

0.0002 

0.0021 

0.0000 

0.0003 

0.0001 

0.0006 



Table A2, continued. 

Run# N p a2 

13 50 25 0 1 

14 50 25 0 3 

15 50 25 0.15 1 

16 50 25 0.15 3 

17 50 50 0 1 

18 50 50 0 3 

19 

20 

21 

22 

23 

24 

50 50 0.15 1 

50 50 0.15 3 

50 75 0 1 

50 75 0 3 

50 75 0.15 1 

50 75 0.15 3 

A 

Bias LS (f31) 

-0.0002 

0.0026 

0.0017 

0.0566 

-0.0001 

0.0009 

0.0001 

0.0026 

0.0000 

0.0005 

0.0003 

0.0008 

106 

A 

B ias I RLS (f31) 

-0.0002 

0.0026 

0.0007 

0.0216 

-0.0001 

0.0009 

0.0000 

0.0009 

0.0001 

0.0005 

0.0001 

0.0004 

A 

MSELs( f31 ) 

0.0004 

0.0039 

0.0021 

0.2664 

0.0000 

0.0005 

0.0002 

0.0023 

0.0000 

0.0001 

0.0001 

0.0007 

A 

M SE1nLs(f31) 

0.0004 

0.0040 

0.0010 

0.0959 

0.0000 

0.0005 

0.0001 

0.0009 

0.0000 

0.0001 

0.0000 

0.0003 



Table A2, continued. 

Run# 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

N p a2 

100 25 0 1 

100 25 0 3 

100 25 0.15 1 

100 25 0.15 3 

100 50 0 1 

100 50 0 3 

100 50 0.15 1 

100 50 0.15 3 

100 75 0 1 

100 75 0 3 

100 75 0.15 1 

100 75 0.15 3 

A 

BiasLs(f31) 

-0.0001 

0.0024 

0.0006 

0.0114 

0.0002 

0.0002 

0.0003 

0.0011 

0.0001 

0.0001 

0.0000 

0.0004 

107 

A 

Bias1RLS (/31) 

-0.0001 

0.0023 

0.0005 

0.0050 

0.0002 

0.0003 

0.0002 

0.0003 

0.0001 

0.0001 

0.0000 

0.0003 

A 

MSELs(/31) 

0.0002 

0.0019 

0.0010 

0.0123 

0.0000 

0.0002 

0.0001 

0.0011 

0.0000 

0.0001 

0.0000 

0.0003 

A 

MSE1RLs(/31) 

0.0002 

0.0019 

0.0004 

0.0041 

0.0000 

0.0002 

0.0000 

0.0004 

0.0000 

0.0001 

0.0000 

0.0001 



Table A3: Hockey-Stick Model, Normal Er­

rors. Summaries of ci2 • 

Run# N p a2 BiasLs(d2) Bias1RLs( 6.2) MSELs(d2) MSE1RLs(6.2) 

1 

2 

3 

4 

5 

6 

7 

8 

25 25 0 1 

25 25 0 3 

25 25 0.15 1 

25 25 0.15 3 

25 50 0 1 

25 50 0 3 

25 50 0.15 1 

25 50 0.15 3 

9 25 75 0 1 

10 25 75 0 3 

11 25 75 0.15 1 

12 25 75 0.15 3 

-0.0031 

0.0216 

0.0010 

0.0581 

0.0040 

0.0428 

0.0014 

0.0656 

0.0043 

0.0497 

0.0089 

0.3744 

108 

-0.0035 

0.0218 

-0.0036 

-0.0072 

0.0054 

0.0411 

0.0050 

0.0440 

0.0052 

0.0515 

0.0055 

0.2860 

0.0527 

0.4884 

0.2597 

2.4352 

0.0803 

0. 7511 

0.3942 

3.6326 

0.1697 

1.6162 

0.8804 

12.8314 

0.0540 

0.4964 

0.1008 

1.0149 

0.0821 

0.7644 

0.1630 

1.5498 

0.1721 

1.6427 

0.3977 

7.9082 



Table A3, continued. 

Run# 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

N p 0'2 

50 25 0 1 

50 25 0 3 

50 25 0.15 1 

50 25 0.15 3 

50 50 0 1 

50 50 0 3 

50 50 0.15 1 

50 50 0.15 3 

50 75 0 1 

50 75 0 3 

50 75 0.15 1 

50 75 0.15 3 

BiasLs(6.2) 

0.0039 

-0.0024 

0.0096 

0.0130 

0.0010 

0.0288 

-0.0041 

0.0939 

-0.0054 

0.0079 

0.0051 

0.1282 

109 

Bias1nLs(6.2) 

0.0043 

-0.0027 

0.0033 

-0.0031 

0.0005 

0.0294 

-0.0124 

0.0399 

-0.0062 

0.0092 

0.0015 

0.0691 

MSELs(6.2) 

0.0269 

0.2279 

0.1324 

1.1911 

0.0414 

0.3847 

0.2028 

1.7196 

0.0818 

0.7625 

0.4006 

4.6121 

MSE1nLs(6.2) 

0.0270 

0.2315 

0.0516 

0.4804 

0.0420 

0.3872 

0.0793 

0.7129 

0.0822 

0.7790 

0.1611 

1.9029 



Table A3, continued. 

Run# 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

N p a2 

100 25 0 1 

100 25 0 3 

100 25 0.15 1 

100 25 0.15 3 

100 50 0 1 

100 50 0 3 

100 50 0.15 1 

100 50 0.15 3 

100 75 0 1 

100 75 0 3 

100 75 0.15 1 

100 75 0.15 3 

BiasLs(62) 

0.0007 

0.0042 

0.0020 

0.0186 

0.0014 

0.0070 

0.0000 

0.0219 

-0.0005 

0.0117 

0.0173 

0.0236 

110 

Bias1RLs(62) 

0.0006 

0.0040 

-0.0007 

-0.0017 

0.0017 

0.0080 

-0.0005 

-0.0023 

-0.0004 

0.0110 

0.0081 

0.0106 

MSELs(62) 

0.0133 

0.1252 

0.0612 

0.5757 

0.0206 

0.1847 

0.0965 

0.8303 

0.0394 

0.3827 

0.1869 

1.7726 

MSE1RLs(62) 

0.0134 

0.1264 

0.0245 

0.2243 

0.0211 

0.1871 

0.0385 

0.3206 

0.0396 

0.3859 

0.0760 

0.7041 



Table A4: Hockey-Stick Model, Lognorrnal Er-
A 

rors. Summaries of c5. 

Run# 

1 

2 

3 

4 

5 

6 

7 

8 

N p a2 

25 25 0 0.025 

25 25 0 0.1 

25 25 0.15 0.025 

25 25 0.15 0.1 

25 50 0 0.025 

25 50 0 0.1 

25 50 0.15 0.025 

25 50 0.15 0.1 

9 25 75 0 0.025 

10 25 75 0 0.1 

11 

12 

25 75 0.15 0.025 

25 75 0.15 0.1 

" 
BiasLs(8) 

0.033 

0.235 

0.095 

0.471 

0.141 

0.811 

0.327 

2.323 

0.874 

1.603 

0.964 

0.240 

111 

" 
Bias1RLs(8) 

0.024 

0.226 

0.052 

0.219 

0.151 

0.815 

0.218 

1.867 

0.858 

1.624 

1.369 

1.069 

" 
MSELs(6) 

3.925 

15.577 

8.942 

46.606 

10.550 

62.050 

29.860 

177.087 

50.848 

145.861 

89.247 

221. 764 

"' 
MSE1RLs(6) 

3.974 

15. 716 

6.675 

36.656 

10. 720 

62.804 

20.143 

134.993 

51.379 

146.595 

80.032 

196.202 



Table A4, continued. 

Run# 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

N p (J2 

50 25 0 0.025 

50 25 0 0.1 

50 25 0.15 0.025 

50 25 0.15 0.1 

50 50 0 0.025 

50 50 0 0.1 

50 50 0.15 0.025 

50 50 0.15 0.1 

50 75 0 0.025 

50 75 0 0.1 

50 75 0.15 0.025 

50 75 0.15 0.1 

"' 
BiasLs(8) 

-0.006 

0.176 

0.008 

0.242 

0.124 

0.322 

0.211 

1.052 

0.291 

1.075 

1.135 

1.275 

112 

"' 
Bias 1 RLS ( 8) 

-0.005 

0.176 

-0.011 

0.179 

0.126 

0.328 

0.154 

0.722 

0.286 

1.067 

0.976 

1.538 

"' 
MSELs(8) 

1.839 

7.595 

4.211 

20.448 

5.307 

24.876 

12.856 

77.206 

22.472 

92.641 

56.641 

154.684 

"' 
MSE1RLs(8) 

1.856 

7.659 

2.981 

14.493 

5.370 

25.095 

8.934 

50.903 

22.863 

93.843 

43.378 

132.225 



Table A4, continued. 

Run# N p 

25 100 25 0 0.025 0.006 0.008 0.916 0.922 

26 100 25 0 0.1 0.084 0.076 3.691 3.715 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

100 25 0.15 0.025 

100 25 0.15 0.1 

100 50 0 0.025 

100 50 0 0.1 

100 50 0.15 0.025 

100 50 0.15 0.1 

100 75 0 0.025 

100 75 0 0.1 

100 75 0.15 0.025 

100 75 0.15 0.1 

0.041 

0.115 

0.020 

0.160 

0.072 

0.327 

0.229 

0.952 

0.496 

1.616 

113 

0.013 

0.069 

0.023 

0.161 

0.046 

0.261 

0.235 

0.991 

0.316 

1.509 

2.065 

8.770 

2.680 

11.086 

6.070 

27.452 

8.715 

49.311 

27.954 

94.447 

1.449 

6.080 

2.724 

11.177 

4.277 

18.744 

8.989 

50.086 

18.201 

74.361 



Table A5: Hockey-Stick Model, Lognorrnal Er-
A 

rors. Summaries of /31• 

Run# 

1 

2 

3 

4 

5 

6 

7 

8 

N p a2 

25 25 0 0.025 

25 25 0 0.1 

25 25 0.15 0.025 

25 25 0.15 0.1 

25 50 0 0.025 

25 50 0 0.1 

25 50 0.15 0.025 

25 50 0.15 0.1 

9 25 75 0 0.025 

10 25 75 0 0.1 

11 25 75 0.15 0.025 

12 25 75 0.15 0.1 

A 

BiasLs(/31) 

0.004 

0.015 

0.010 

0.081 

0.001 

0.009 

0.004 

0.020 

0.002 

0.010 

0.008 

0.032 

114 

A 

Bias1RLs(f31) 

0.004 

0.015 

0.008 

0.078 

0.001 

0.010 

0.003 

0.013 

0.002 

0.010 

0.005 

0.023 

"' 
MSELs(/31) 

0.005 

0.021 

0.012 

0.246 

0.002 

0.010 

0.005 

0.030 

0.001 

0.006 

0.003 

0.046 

A 

MSE1RLs(f31) 

0.005 

0.022 

0.009 

0.234 

0.002 

0.010 

0.003 

0.019 

0.001 

0.006 

0.002 

0.041 



Table A5, continued. 

Run# N p a2 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

50 25 0 0.025 

50 25 0 0.1 

50 25 0.15 0.025 

50 25 0.15 0.1 

50 50 0 0.025 

50 50 0 0.1 

50 50 0.15 0.025 

50 50 0.15 0.1 

50 75 0 0.025 

50 75 0 0.1 

50 75 0.15 0.025 

50 75 0.15 0.1 

A A A A 

BiasLs(/31) BiasrRLs(f31) MSELs(f31) MSErRLs(/31) 

0.002 

0.005 

0.006 

0.024 

0.000 

0.004 

0.002 

0.009 

0.002 

0.007 

0.002 

0.012 

115 

0.002 

0.005 

0.005 

0.019 

0.000 

0.004 

0.002 

0.005 

0.002 

0.007 

0.001 

0.009 

0.002 

0.009 

0.005 

0.055 

0.001 

0.004 

0.002 

0.011 

0.001 

0.003 

0.002 

0.007 

0.002 

0.010 

0.004 

0.054 

0.001 

0.004 

0.002 

0.008 

0.001 

0.003 

0.001 

0.005 



Table A5, continued. 

Run# 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

N p a2 

100 25 0 0.025 

100 25 0 0.1 

100 25 0.15 0.025 

100 25 0.15 0.1 

100 50 0 0.025 

100 50 0 0.1 

100 50 0.15 0.025 

100 50 0.15 0.1 

100 75 0 0.025 

100 75 0 0.1 

100 75 0.15 0.025 

100 75 0.15 0.1 

A 

BiasLs(/31) 

0.001 

0.003 

0.002 

0.009 

0.001 

0.001 

0.001 

0.004 

0.000 

0.002 

0.001 

0.003 

116 

"' 
Bias 1 RLS (/31) 

0.001 

0.004 

0.002 

0.007 

0.001 

0.001 

0.001 

0.002 

0.000 

0.002 

0.001 

0.001 

"' 
MSELs (/31) 

0.001 

0.004 

0.002 

0.011 

0.001 

0.002 

0.001 

0.005 

0.000 

0.001 

0.001 

0.003 

A 

Ms EIRLS (/31) 

0.001 

0.004 

0.002 

0.008 

0.001 

0.002 

0.001 

0.003 

0.000 

0.001 

0.001 

0.002 



Table A6: Hockey-Stick Model, Lognormal Er-

rors. 

Run# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Summaries of ci2. 

N p a2 

25 25 0 0.025 

25 25 0 0.1 

25 25 0.15 0.025 

25 25 0.15 0.1 

25 50 0 0.025 

25 50 0 0.1 

25 50 0.15 0.025 

25 50 0.15 0.1 

25 75 0 0.025 

25 75 0 0.1 

25 75 0.15 0.025 

25 75 0.15 0.1 

BiasLs(<22) 

0.011 

0.114 

0.054 

0.390 

0.099 

0.744 

0.263 

1.875 

0.864 

1.928 

1.324 

1.409 
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Bias1RLs(a2) 

0.006 

0.110 

0.031 

0.282 

0.108 

0.749 

0.192 

1.519 

0.856 

1.954 

1.555 

1.853 

MSELs(<22) 

0.828 

3.533 

1.965 

9.409 

5.250 

28.895 

14.405 

87.814 

38.466 

115.466 

69.951 

179.871 

MSE1RLs(<22) 

0.845 

3.552 

1.388 

6.442 

5.308 

29.310 

9.563 

66.202 

38.789 

116.439 

63.107 

159.518 



Table A6, continued. 

Run# 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

N p a2 

50 25 0 0.025 

50 25 0 0.1 

50 25 0.15 0.025 

50 25 0.15 0.1 

50 50 0 0.025 

50 50 0 0.1 

50 50 0.15 0.025 

50 50 0.15 0.1 

50 75 0 0.025 

50 75 0 0.1 

50 75 0.15 0.025 

50 75 0.15 0.1 

Bias Ls ( 62) 

-0.004 

0.068 

0.028 

0.133 

0.062 

0.310 

0.186 

0.876 

0.339 

1.352 

1.140 

1.684 
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Bias1nLs(<i2) 

-0.005 

0.067 

0.016 

0.105 

0.063 

0.309 

0.150 

0.573 

0.342 

1.348 

0.962 

1.806 

MSELs(62) 

0.411 

1.635 

0.907 

4.208 

2.579 

11.994 

6.185 

38.128 

16.395 

70.705 

42.741 

120.547 

Ms E1 RLS ( 62) 

0.415 

1.656 

0.635 

2.882 

2.600 

12.168 

4.353 

25.071 

16. 758 

71.762 

32.876 

104.192 



Table A6, continued. 

Run# 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

N p a 2 

100 25 0 0.025 

100 25 0 0.1 

100 25 0.15 0.025 

100 25 0.15 0.1 

100 50 0 0.025 

100 50 0 0.1 

100 50 0.15 0.025 

100 50 0.15 0.1 

100 75 0 0.025 

100 75 0 0.1 

100 75 0.15 0.025 

100 75 0.15 0.1 

-0.002 -0.001 0.211 0.213 

0.057 0.053 0.870 0.879 

0.026 

0.079 

0.024 

0.116 

0.055 

0.275 

0.200 

0.967 

0.483 

1.561 
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0.014 

0.054 

0.026 

0.120 

0.043 

0.207 

0.204 

1.005 

0.321 

1.421 

0.458 

1.930 

1.299 

5.413 

2.824 

13.213 

6.633 

36.882 

20.518 

71.873 

0.316 

1.318 

1.319 

5.472 

1.972 

9.206 

6.807 

37.614 

13.288 

56.141 



Appendix B: Application Data 
Sets 

Refer to Chapter 5 for details. 
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Table Bl: Physiological data (n == 35) from Julious (2001). 

Oxygen== Volume of Oxygen (L/min), and Carbon Dioxide== Volume of Car-

bon Dioxide (L/min) 

Oxygen Carbon Dioxide Oxygen Carbon Dioxide 

12.5 0.75 44.2 2.12 

26.2 1.12 47.9 2.35 

24.8 0.98 49.9 2.50 

27.4 1.13 48.1 2.48 

31.1 1.31 48.4 2.49 

34.6 1.47 51.7 2.71 

21.5 0.93 51.8 2.74 

27.9 1.34 55.5 3.00 

29.2 1.36 54.9 3.02 

35.2 1.60 57.0 3.21 

32.6 1.47 57.9 3.30 

34.9 1.57 58.3 3.37 

34.9 1.59 58.2 3.42 

37.6 1.73 59.5 3.53 

36.3 1.68 59.7 3.55 

40.1 1.88 61.8 3.76 

42.7 2.01 48.4 2.96 

43.4 2.07 

121 



Table B2: Stock-recruit data (n == 37) for 3LNO American Plaice. 

Spawner biomass (SSB) units are thousands of tons, and the re-

cruitment values are in millions of fish. The corresponding year is 

also tabled. Data rounded to three decimal places. 

Year SSB (000 t) Rec (millions) Year SSB (000 t) Rec (millions) 

1960 125.530 783.463 1979 100.982 520.249 

1961 135.984 679.684 1980 112.252 508.438 

1962 147.358 607.180 1981 102.201 433.575 

1963 157.850 479.781 1982 91.542 384.962 

1964 170.034 475.168 1983 102.010 438.498 

1965 191.805 446.019 1984 128.157 506.875 

1966 217.279 556.770 1985 138.567 734.456 

1967 236.082 659.795 1986 145.634 493.425 

1968 213.499 795.917 1987 130.813 478.201 

1969 203.359 761.297 1988 124.431 661.824 

1970 176.259 799.137 1989 115.509 1088.944 

1971 144.235 752.060 1990 73.466 901.637 

1972 113.622 631.194 1991 47.983 619.074 

1973 88.815 594.013 1992 26.949 349.556 

1974 71.766 545.643 1993 16.390 327.817 

1975 68.760 526.005 1994 7.108 287.121 

1976 64.712 512.253 1995 8.192 167.977 

1977 72.509 519.830 1996 12.374 145.381 

1978 92.532 515.880 
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Table B3: Stock-recruit data (n == 43) for North Sea Plaice. Spawner 

biomass (SSB) units are tons, and the recruitment values are in 

thousands of fish. The corresponding year is also tabled. Note that 

the estimation in Chapter 5 scales SSB and recruits by a factor of 1000. 
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Year SSB (t) Rec (thousands) Year SSB (t) Rec (thousands) 

1957 354624 429984 1979 309364 659903 

1958 340636 433436 1980 295050 424238 

1959 345187 405323 1981 305205 1025826 

1960 368311 359381 1982 297576 590479 

1961 352877 318800 1983 320905 608707 

1962 446570 315181 1984 321505 529685 

1963 439975 1021880 1985 353680 1247920 

1964 422933 309565 1986 354173 540636 

1965 414353 305370 1987 382881 564989 

1966 416386 277225 1988 364401 411573 

1967 493006 245503 1989 404435 397584 

1968 456101 327474 1990 377262 402941 

1969 418277 370438 1991 319786 405305 

1970 399572 275478 1992 284117 285978 

1971 372352 234584 1993 251706 239231 

1972 375802 541889 1994 212554 330003 

1973 334724 451919 1995 190933 258095 

1974 308823 335732 1996 170895 814830 

1975 320041 324585 1997 149718 241100 

1976 314520 471354 1998 199344 223262 

1977 329233 430024 1999 191916 342057 

1978 322622 443809 
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