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Abstract 

Due to economic reasons arising out of deregulation and open market of electricity, 

modem day power systems are being operated closer to their stability limits. When a fault 

occurs, there is a great possibility of occurrence of cascading outages, as observed in the 

August 2003 Blackout in the North-East USA and Canada. Power system voltage 

stability is one of the challenging problems faced by the utilities. Innovative methods and 

solutions are required to evaluate the voltage stability of a power system and implement 

suitable strategies to enhance the robustness of the power system against voltage stability 

problems. This is the motivation behind the research carried out as a part of the PhD 

program and presented in this dissertation. 

Artificial neural networks (ANNs) have gained widespread attention from 

researchers in recent years as a tool for online voltage stability assessment. Two major 

areas requiring investigation are identified after doing a thorough survey of the existing 

literature on online voltage stability monitoring using ANN. The first one is the effective 

method of selecting important features among numerous possible measurable parameters 

as potential inputs to the ANN. The second one is the feasibility of using a single ANN 

for monitoring voltage stability for multiple contingencies. In the first phase of the 

research, a regression-based method of computing sensitivities of the voltage stability 

margin with respect to different parameters is proposed. Using the sensitivity 

information, important features are chosen selectively to train separate Multilayer 

Perceptron Networks (MLP) to monitor voltage stability for different contingencies. 



In the second phase of the research, an enhanced Radial Basis Function Network 

(RBFN) is proposed for online voltage stability monitoring. Important features of the 

proposed RBFN are: (1) the same network is trained for multiple contingencies, thus 

eliminating the need for training different ANNs for different contingencies, (2) the 

number of neurons in the hidden layers is decided automatically using a sequential 

learning strategy, (3) the RBFN can be adapted online, with changing operating scenario, 

(4) a network pruning strategy is used to limit the growth of the network size as a result 

of the adaptation process. 

In the next phase of the research, a sensitivity-based voltage stability 

enhancement method is proposed, considering multiple contingencies. Considering the 

limitations of the existing analytical methods, the sensitivities of the voltage stability 

margin with respect to parameters are found by using the RBFN proposed in the second 

phase of the research. Using the sensitivity information, correct amounts of generation 

rescheduling are found by using linear optimization. Case studies are presented 

throughout different sections of the thesis to illustrate the application of the proposed 

methods. 
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Chapter 1 

Power System Voltage Stability 

1.1 Introduction 

At any point of time, a power system operating condition should be stable, meeting 

various operational criteria, and it should also be secure in the event of any credible 

contingency. Present day power systems are being operated closer to their stability limits 

due to economic and environmental constraints. Maintaining a stable and secure 

operation of a power system is therefore a very important and challenging issue. Voltage 

instability has been given much attention by power system researchers and planners in 

recent years, and is being regarded as one of the major sources of power system 

insecurity. Voltage instability phenomena are the ones in which the receiving end voltage 

decreases well below its normal value and does not come back even after setting restoring 

mechanisms such as V AR compensators, or continues to oscillate for lack of damping 

against the disturbances. Voltage collapse is the process by which the voltage falls to a 

low, unacceptable value as a result of an avalanche of events accompanying voltage 

instability [1]. Once associated with weak systems and long lines, voltage problems are 

now also a source of concern in highly developed networks as a result of heavier loading. 

The main factors causing voltage instability in a power system are now well 

explored and understood [1-13]. A brief introduction to the basic concepts of voltage 

stability and some of the conventional methods of voltage stability analysis are presented 

in this chapter. Simulation results on test power systems are presented to illustrate the 
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problem of voltage stability and the conventional methods to analyze the problem. 

Limitations of conventional methods of voltage stability analysis are pointed out and the 

scope of the use of Artificial Neural Networks as a better alternative is discussed. 

1.2 Classification of voltage stability 

The time span of a disturbance in a power system, causing a potential voltage instability 

problem, can be classified into short-term and long-term. The corresponding voltage 

stability dynamics is called short- term and long-term dynamics respectively [2-5]. 

Automatic voltage regulators, excitation systems, turbine and governor dynamics fall in 

this short-term or 'transient' time scale, which is typically a few seconds. Induction 

motors, electronically operated loads and HVDC interconnections also fall in this 

category. If the system is stable, short-term disturbance dies out and the system enters a 

slow long-term dynamics. Components operating in the long-term time frame are 

transformer tap changers, limiters, boilers etc. Typically, this time frame is for a few 

minutes to tens of minutes. A voltage stability problem in the long-term time frame is 

mainly due to the large electrical distance between the generator and the load, and thus 

depends on the detailed topology of the power system. 

Figure 1.1 shows the components and controls that may affect the voltage stability 

of a power system, along with their time frame of operation [1]. Examples of short-term 

or transient voltage instability can be found in the instability caused by rotor angle 

imbalance or loss of synchronism. Recent studies have shown that the integration of 

highly stressed HVDC links degrades the transient voltage stability of the system [1]. 
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Figure 1.1: Time responses of different controls and components to voltage stability [ 1] 

There is not much scope for operator intervention in transient voltage instability. The 

transmission system operator (TSO) mainly relies on automatic emergency actions to 

avoid incumbent voltage instability. The automatic corrective actions are taken through 
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protective devices to preserve operation of largest possible part of the power system by 

isolating the unstable part [6]. 

Long-term voltage instability (or mid-term or post-transient, as it is sometimes 

called) problems can occur in heavily loaded systems where the electrical distance is 

large between the generator and the load. The instability may be triggered by high power 

imports from remote generating stations, a sudden large disturbance, or a large load 

buildup (such as morning or afternoon pickup). Operator intervention may be possible if 

the time scale is long enough. Timely application of reactive power compensation or load 

shedding may prevent this type of voltage instability. 

From the point of view of techniques used to analyze the voltage stability, it is 

often useful to categorize the problem into small-disturbance and large-disturbance 

voltage stability [2]. Small disturbance or steady state voltage stability deals with the 

situation when the system is subjected to a small perturbation, such that the system can be 

analyzed by linearizing around the pre-disturbance operating point. Steady state stability 

analysis is helpful in getting a qualitative picture of the system, i.e., how stressed the 

system is, or how close the system is, to the point of instability. Examples of steady state 

stability can be found in power systems experiencing gradual change in load. 

Large-disturbance stability deals with larger disturbances such as loss of 

generation, loss of line etc. To analyze the large-disturbance stability, one has to capture 

the system dynamics for the whole time frame of the disturbance. A suitable model of the 

system has to be assumed and a detailed dynamic analysis has to be carried out in order 

to get a clear picture of the stability. 
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1.3 Voltage stability of a simple 2-bus system 

The basic concept of voltage stability can be explained with a simple 2-bus system shown 

in Figure 1.2. The load is of constant power type. Real power transfer from bus 1 to 2 is 

given by [4], 

P 
EV. ~ 

=-smu 
X 

Reactive power transfer from bus 1 to 2 is given by, 

V 2 EV 
Q=--+-cos8 

X X 

where, E = EL8 is the voltage at bus 1, 

V = V LOis the voltage at bus 2, 

X= impedance of the line (neglecting resistance), 

8 = power angle. 

generator I E I Lo lviLO 

G-+------f--'-'1 ro~ru:t ~ 
2 

Figure 1.2: 2-bus test system 
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Normalizing the terms in (1.1) and (1.2) with 

v =VIE, p = PJ(/E2 and q = QJ(/E2
, one obtains, 

p = v sin~ (1.3) 

q = - v2 + v cos ~ (1.4) 

Squaring the two equations above and rearranging, 

v2 (sin 2 ~+cos 2 ~) = p2 +(q + v2 
)
2 

or, v4 + v2 (2q - 1) + (p2 +q2
) = 0 (1.5) 

Positive real solutions of v from (1.5) are given by, 

V=~~ -q±~>p'-q (1.6) 

A plot of v on the p-q-v plane is shown in Figure 1.3 [4]. Corresponding to each point 

(p,q), there are two solutions for voltage, one is the high voltage or stable solution, which 

is the actual voltage at the bus, and the other one is the low voltage or unstable solution. 

The equator, along which the two solutions of v are equal, represents maximum power 

points. Starting from any operating point on the upper part of the surface, an increase in p 

or q or both brings the system closer to the maximum power point. An increase in p or q 

beyond the maximum power point makes the voltage unstable. 

The preceding discussion illustrates voltage instability caused by an increase in 

system loading. In a real power system, voltage instability is caused by a combination of 

many additional factors which includes the transmission capability of the network, 

generator reactive power and voltage control limits, voltage sensitivity of the load, 
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characteristics of reactive compensation devices, action of voltage control devices such as 

transformer under load tap changers (ULTCs) etc. 
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Figure 1.3: Variation of bus voltage with active and reactive loading for the 2-bus test system 

1.4 Tools for voltage stability analysis 

Different methods exist in the literature for carrying out a steady state voltage stability 

analysis. The conventional methods can be broadly classified into the following types. 

1. P-V curve method. 

2. V -Q curve method and reactive power reserve. 
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3. Methods based on singularity of power flow Jacobian matrix at the point 

of voltage collapse. 

4. Continuation power flow method. 

1.4.1 P-V curve method 

This is one of the widely used methods of voltage stability analysis. This gives the 

available amount of active power margin before the point of voltage instability. For radial 

systems, the voltage of the critical bus is monitored against the changes in real power 

consumption. For large meshed networks, P can be the total active load in the load area 

and V can be the voltage of the critical or representative bus. Real power transfer through 

a transmission interface or interconnection also can be studied by this method. 

For a simple two-bus system as shown in Figure 1.2, equation (1.6) gives real 

solutions of v2
, provided (1 - 4q- 4p2

);::: 0. 

Assuming a constant power factor load such that q/p = k (constant), the inequality can be 

expressed as, 

(1.7) 

For values of 'p' satisfying (1.7), there are two solutions of vas follows: 

VJ = (1/2- pk + (1/4- pk- p2
)

112
)

112 (1.8) 

and v2 = (1/2- pk- (1/4- pk- p2
)

112
)

112 (1.9) 

For real values of v1 and v2, the terms under the square roots should be positive. 
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Hence, (1/2- pk- (1/4- pk- p2
)

112
);::: 0 

or, p2(k2 + 1) 2:: 0 

which is always true. 

Hence (1.7) is the inequality that determines the maximum value of p. 

(1.10) 

Thus, representing the load as a constant power factor type, with a suitably chosen 

power factor, the active power margin can be computed from (1.7). For different values 

of load power factors, i.e., for different corresponding values of 'k', the normalized 

values of load active power are shown in Figure 1.4. 

In practice, it is possible to find the Thevenin equivalent of any system with 

respect to the bus under consideration. It is to be noted that the generations are 

rescheduled at each step of change of the load. Some of the generators may hit the 

reactive power limit. The network topology may keep changing with respect to the 

critical bus, with change in the loading, thereby reducing the accuracy of the method. 

This method works well in the case of an infinite bus and isolated load scenario. 
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Figure 1.4: Normalized P-V curves for the 2-bus test system 

1.4.2 V -Q curve method and reactive power reserve 

The V -Q curve method is one of the most popular ways to investigate voltage instability 

problems in power systems during the post transient period [1, 4, 5]. Unlike the P-V 

curve method, it doesn't require the system to be represented as two-bus equivalent. 

Voltage at a test bus or critical bus is plotted against reactive power at that bus. A 

fictitious synchronous generator with zero active power and no reactive power limit is 

connected to the test bus. The powerflow program is run for a range of specified voltages 

with the test bus treated as the generator bus. Reactive power at the bus is noted from the 
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power flow solutions and plotted against the specified voltage. The operating point 

corresponding to zero reactive power represents the condition when the fictitious reactive 

power source is removed from the test bus. 

Voltage security of a bus is closely related to the available reactive power reserve, 

which can be easily found from the V -Q curve of the bus under consideration. The 

reactive power margin is the MV AR distance between the operating point and either the 

nose point of the V -Q curve or the point where capacitor characteristics at the bus are 

tangent to the V-Q curve [1]. Stiffness of the bus can be qualitatively evaluated from the 

slope of the right portion of the V -Q curve. The greater the slope is, the less stiff is the 

bus, and therefore the more vulnerable to voltage collapse it is. Weak busses in the 

system can be determined from the slope of V -Q curve. 

For the simple two-bus system shown in Figure 1.2, equations of V -Q curves for 

constant power loads can be derived as follows. From (1.3) the power angle 8 is 

computed for specified active power and used in (1.4). For a range of values of voltage 

and different active power levels, normalized V -Q curves are shown in Figure 1.5. The 

critical point or nose point of the characteristics corresponds to the voltage where dQ/dV 

becomes zero. If the minimum point of the V -Q curve is above the horizontal axis, then 

the system is reactive power deficient. Additional reactive power sources are needed to 

prevent a voltage collapse. In Figure 1.5, curves for p=l.OO and p=0.75 signify reactive 

power deficient busses. Busses having V -Q curves below the horizontal axis have a 

positive reactive power margin. The system may still be called reactive power deficient, 

depending on the desired margin. 
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Figure 1.5: Normalized V-Q curves for the 2-bus test system 

1.4.3 Method based on singularity of powerflow Jacobian matrix at the point of 
voltage collapse 

A number of methods have been proposed in the literature that uses the fact that the 

power flow Jacobian matrix becomes singular at the point of voltage collapse. Modal 

analysis [2, 5, 14] of the Jacobian matrix is one of the most popular methods. 
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1.4.3.1 Modal analysis 

For a (n x n) square matrix A, left and right eigenvectors are defined as follows: 

Ax="Ax (1.11) 

yA="Ay (1.12) 

where A. = eigenvalue of the matrix A, x (n x 1) = right eigenvector, y (1 x n) = left 

eigenvector. 

The characteristic equation of both (1.11) and (1.12) is, 

det (A-1..1) = 0 (1.13) 

The solution of (1.13), i.e., "Ar,A2, •.... ,An are the eigenvalues of A. For different 

eigenvalues Aj, i = 1, ... ,n, the right and left eigenvectors are defined as, Xi, i = 1, ... ,n and 

Yi, i = 1, ... ,n. In matrix form, the right eigenvector matrix, X= [x1, x2, .•... , Xn] and the 

I f · · y [ T T T]T e t eigenvector matnx, = Yr ,yz , ....... , Yn . 

It can be shown that, Xj and Yi are orthogonal, such that, 

'v' i :;t j 

:;t 0, vi =j 

In practice, eigenvectors are normalized so that Yi·Xi = 1, 'v' i = 1, ... ,n. 

Hence, Y.X =I, or, Y= x-1 (1.14) 

Now, A.X = [ArXr AzXz ...... AnXn ] = X.A (1.15) 

where 

AI 0 ..... 0 

0 A-2 •••• 0 
A= 
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or, A = X A x-I = X A Y (1.16) 

Powerflow equations can be written in matrix form as follows. 

(1.17) 

where ~p and ~Q are the changes in the real and reactive powers respectively,~() and 

~ V are the deviations in bus voltage angles and bus voltage magnitudes respectively. 

For calculating V -Q sensitivities, one can assume ~p = 0 

Hence, Jp8· ~() + Jpv -~ V = 0 

(1.18) 

(1.19) 

Now, assuming JR =A and using (1.16) one gets, JR =X AY 

Using (1.19), ~V =X A"1Y ~Q 

where, Vm = vector of modal voltage variation 

qm =vector of modal reactive power variation 

[

.A;
1 

••••• 0 ] 
Now, A-1 = 0 .A~1 

••• 0 

0 O .... .A~1 
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, Vi= 1, ... ,n 

For any i, if Ai > 0, then the variation of Vmi and qmi are in the same direction and the 

system is voltage stable. When Ai < 0 for any i, the system is voltage unstable. 

To illustrate the use of the singularity-based voltage stability analysis method, 

modal analysis is applied on the 10-bus test system [2, 14] shown in Figure 1.6. Data for 

the 10-bus test system are given in Tables 1.1 to 1.5. Table 1.6 shows the eigenvalues of 

the reduced Jacobian matrix against load multiplication factor, K. Load multiplication 

factor is the ratio by which load is increased at 1 pu voltage. Real parts of the eigenvalues 

are designated as E1, E2, ... , E7. Normalized values of the two smallest eigenvalues are 

plotted against load multiplication factor in Figure 1.7. Computationally obtainable 

minimum values of eigenvalues correspond to a load multiplication factor of 1.146. An 

increase in load beyond this load level makes the receiving end voltage unstable. The 

magnitude of the minimum eigenvalue is therefore used as an indicator of the proximity 

of an operating point to the point of voltage collapse. 
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Table 1.1: Transmission lines data (R, X and Bin pu on 100MVA base) for the 10-bus test system 

End buses R X B 
5-6 0.0000 0.0040 0.0000 
6-7 0.0015 0.0288 1.1730 
9-10 0.0010 0.0030 0.0000 

Table 1.2: Transformer data (R, X in pu on 100 MVA base) for the 10-bus test system 

End buses R X Ratio 
1-5 0.0000 0.0020 0.8857 
2-6 0.0000 0.0045 0.8857 
3-7 0.0000 0.0125 0.9024 
7-8 0.0000 0.0030 1.0664 
7-9 0.0000 0.0026 1.0800 
10-4 0.0000 0.0010 0.9750 

Table 1.3: Shunt capacitor data for the 10-bus test system 

Bus MVAR 
7 763 
8 600 
9 1710 
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Table 1.4: Base case Load data for the 10-bus test system 

Bus P(MW) Q(MVAR) 
8 3271 1015 
4 3384 971 

Table 1.5: Base case Generator data for the 10-bus test system 

Bus P(MW) V (pu) 
1 3981 0.9800 
2 1736 0.9646 
3 1154 1.0400 

Table 1.6: Eigenvalues of the reduced Jacobian matrix ofthe lO-bus test system for different load levels 

Load Et E2 E3 E4 Es E6 
multiplication 

factor, K 
0.9 
1.0 
l.l 
l.l2 
1.14 
l.l45 
l.l46 

2364 1407.1 951.37 26.9 161.27 634.92 
2203.6 1330.8 425.01 25.062 148.21 598.07 
2039.5 1253.1 903.38 22.724 134.36 560.11 
1982.8 1224.6 896.14 21.718 129.64 546.49 
1885.6 1173.8 881.53 19.795 121.52 522.62 
1803.7 1129.5 867.34 17.983 114.62 502.09 
1768.2 1110.4 861.03 17.143 111.59 493.21 

0.9 
--+-E4 Load multiplication factor, K 
--ffi 

Figure 1.7: Variation ofthe real parts ofthe smallest two eigenvalues ofthe reduced 
Jacobian matrix against load multiplication factor for the 10-bus test system 
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1.4.4 Continuation powerflow 

It is numerically difficult to obtain a powerflow solution near the voltage collapse point, 

since the Jacobian matrix becomes singular. Continuation powerflow is a technique by 

which the powerflow solutions can be obtained near or at the voltage collapse point [2, 4, 

15]. 

Powerflow equations can be represented as, 

Ps = P(?>,V) and Qs = Q(?>,V) (1.20) 

where P5, Qs are specified active and reactive powers of busses, 8 and V are bus voltage 

angles and magnitudes respectively. 

Equation (1.20) can be expressed as, 

f(b,V) = PQspc (1.21) 

Considering variation of load as one of the parameters of the power flow equations, 

(1.21) can be rewritten as, 

f(?>,V) = KPQspc (1.22) 

where K is the loading parameter. For base case loading, K = 1. 

Equation (1.22) can be written as, 

F(?>,V,K) = 0 (1.23) 

aF aF aF 
Hence, ilF =- ilo +- .Ll V +-.ilK ao av aK (1.24) 

(1.25) 

where (?>0,V0,K0
) is the solution of (1.23). 
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Using the above in equation (1.24) and writing in matrix form, 

[~! ~~ ~~Jl~l=[-F(O,V,K)] 
This can be written as, 

or, 

J. [88 8V 8K]T = [- F(8,V,K)] 

[88 8 V 8K]T = J-1
• [- F(8,V,K)] 

where J is the Jacobian matrix. 

(1.26) 

(1.27) 

Near the point of voltage collapse, the Jacobian matrix, J approaches singularity; hence it 

is difficult to calculate Y1 near the collapse point. To overcome the problem one more 

equation is added assuming one of the variables as fixed. This variable is called the 

continuation variable. 

Assuming that the i1
h variable is the continuation variable, one can write, 

[ei] [88 8V 8K]T = 0 

where [ed is the vector having i1h element as 1 and all other elements as zero. 

Augmenting equation (1.28) to (1.27), 

[~][M f!.V !!.Kf =[ -F(O~V,K)] 

(1.28) 

(1.29) 

The difference vector [88 8 V 8K]T is found from (1.29) and added with the initial 

assumption of vector [8,V,K] to get the predictor. 

The predictor may not be exactly on the desired solution curve. To get the exact solution, 

the following corrector equations are added with the set of equations (1.23). 
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Xi=J..l or Xi- J..l=O 

where J..l is the assumed fixed value of the continuation variable. 

Thus the system of equations becomes, 

F(o,V,K) = 0, and, xi - J..l = 0 

In the above set of equations, the number of variables is equal to the number of equations. 

Thus it can be solved by the Newton-Raphson method, having the predictor as the initial 

guess. 

Continuation power flow allows the load voltage to be computed even when the 

power flow Jacobian matrix is singular. The complete PV curve, including the nose point 

and the lower part of the curve, can be drawn using continuation power flow. Figure 1.8 

shows the complete PV curve of bus-4 for the 10-bus test system, using PSAT [16] that 

uses continuation power flow. 
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Figure 1.8: PV curve ofbus-4 for the 10-bus test system, obtained by using continuation power flow 

1.5 Detailed voltage stability analysis of the 10-bus test system for 
different loading conditions 

Voltage stability analysis is carried out for the 10-bus test system described earlier in this 

chapter. Different transformer tap settings for different load levels and corresponding 

generations for the 10-bus test system are given in Tables 1.7 to 1.9 [2, 17]. Simulations 

are carried out with and without load tap changers (LTCs) between bus 4 and bus 10. The 

effect of line outage on voltage stability is also studied. 

Simulations are done in PowerWorld Simulator [18]. Base case conditions for 

three load levels are as follows. 

21 



• All the transformers are at fixed tap [Table 1.7]. 

• The load at bus 8 [Table 1.8] is of constant power type, while that of bus 4 is 50% 

constant power and 50% constant current. 

Simulation results are recorded at four different operating conditions (or 'snapshots') at 

three different load levels and are presented in Tables 1.10 to 1.12. The effect of LTC 

between bus 10 and 4 on voltages at different busses, as well as the reactive power 

generation and consumption in nearby busses are studied. 

At 'snapshot 1', i.e., when there is no line outage in the system and the LTC is 

kept at fixed tap position, bus 4 voltage reduces with increased loading. At load level 3, 

the voltage level is very low and it needs LTC operation to restore the voltage. 

When the LTC is turned on, there is a considerable increase in load bus (bus 4) 

voltage. With higher voltage, load power consumption increases (because of 50% 

constant current load), which leads to the reduction of voltages in the adjacent busses. At 

reduced voltage, output of the shunt capacitor reduces, thereby stressing the generators to 

produce more reactive power. 

With outage of one line between bus 6 and bus 7, less power is available to the 

load from the two generators at the other end of the system, thus the voltages reduce at 

the load end busses. Output of the shunt capacitor falls because of reduced voltage and as 

a result load voltage deceases further. Generators are more stressed and produce more 

reactive power to compensate for the loss. 

Even with operation of LTC after line outage, load voltage is not restored 

significantly. A reason for this is the shortage of available reactive power at the load end 
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because of the line outage and reduced efficiency of capacitors due to reduced voltage. In 

an attempt to raise the voltage, LTC increases load power consumption. If the load is 

slightly increased, it can be seen that this reduces the voltage further and eventually the 

system faces a voltage collapse. 

Modal analysis was carried out on the reduced Jacobian matrix of the system for 

different operating conditions and the results are shown in Table 1.13. It can be seen that 

the minimum eigenvalue of the reduced Jacobian matrix reduces with load. It can be used 

as an indicator of the closeness of the operating point to the point of voltage collapse. 

Table 1.7: Transformer data for different load levels for the 10-bus test system 
(R, X in pu on 100 MVA base) 

End busses R X Tap setting 

10-4 0.0000 0.0010 0.9750 (load level: 1) 
0.9938 (load level: 2) 
1.0000 (load level: 3) 

Table 1.8: Load data for different load levels for the 10-bus test system 

Bus P(MW) Q(MVAR) Load level 
8 3271 1015 1 

3320 1030 2 
3335 1035 3 

4 3384 971 1 
3435 985 2 
3460 993 3 
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Table 1.9: Generator data for different load levels for the 10-bus test system 

Bus P(MW) V (pu) Load level 
1 3981 0.9800 1 

4094 0.9800 2 
4252 0.9800 3 

2 1736 0.9646 1 
1736 0.9646 2 
1736 0.9646 3 

3 1154 1.0400 1 
1154 1.0400 2 
1154 1.0400 3 

Table 1.10: Load voltages and reactive power outputs of generator 2 and 3 at load level 1 

Contingency V4 V8 V7 QG3 (MVAR) QG2(MVAR) 
Without outage, fixed tap 0.98 1.03 1.11 390 -94 
Without outage, LTC active 1.00 1.01 1.10 505 31 
Line outage, fixed tap 0.95 0.96 1.05 700 440 
Line outage, LTC active 0.93 0.92 1.00 700 723 

Table 1.11: Load voltages and reactive power outputs of generator 2 and 3 at load level 2 

Contingency V4 V8 V7 QG3 QG2 
(MVAR) (MVAR) 

Without outage, fixed tap 0.96 1.03 1.11 390 -93 
Without outage, LTC active 0.99 0.99 1.08 627 164 
Line outage, fixed tap 0.91 0.91 1.00 700 724 
Line outage, LTC active 0.92 1.01 1.09 543 146 

Table 1.12: Load voltages and reactive power outputs of generator 2 and 3 at load level3 

Contingency V4 V8 V7 QG3 QG2 
(MVAR) (MVAR) 

Without outage, fixed tap 0.95 1.02 1.11 401 -81 
Without outage, LTC active 0.99 0.98 1.07 700 249 
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Load Ievell 

Load level2 

Load level3 

Table 1.13: Eigenvalues of the reduced Jacobian matrix for different contingencies 
and load levels for the 10-bus test system 

Without outage, Without outage, Line outage, fixed Line outage, LTC 
fixed tap LTC active tap active 
2203.6 2272.3 2190.9 2249.1 
1330.8 1313.1 1230.3 1206.2 
925.01 919.68 899.14 893.12 
25.062 24.737 21.788 21.376 
148.21 143.97 135.57 130.19 
598.07 588.45 560.6 547.69 
374.9 371.46 347.46 343.47 

2151.1 2284.1 2191.8 2219.2 
1329.8 1293.5 1206.4 1193.5 
924.85 913.89 893.15 889.96 
24.979 24.308 21.228 21.002 
148.54 139.86 130.69 127.86 
598.04 578.28 548.21 541.37 
374.75 367.68 343.41 341.31 

2130.8 2294.4 2194.9 2203.7 
1327.8 1281.2 1191.4 1187 
924.32 910.3 889.43 888.33 
24.903 24.043 20.877 20.797 
148.34 137.29 127.63 126.66 
597.18 571.89 540.44 538.08 
374.38 365.35 340.92 340.2 
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1.6 Limitations of the conventional voltage stability analysis methods 

Most of the conventional voltage stability analysis methods suffer from the following 

drawbacks [19, 20, 21]. 

• Most of the above-mentioned techniques are computationally demanding. In a 

real-time environment where the system state may change every hour, or even 

every few minutes, computation of these indices may considerably burden the 

Energy Management System (EMS). 

• All of the conventional methods mentioned above need detailed mathematical 

models of the power system components, which is not always feasible to obtain in 

a complex power system. For example, detailed functional dependence of the 

power system loads on the voltage is rarely available in practice and the 

commonly used constant power model is far from accurate. 

• Available information relevant to the state of the power system is often available 

in input/output form, rather than in the form of any relationship that can be 

expressed by simple mathematical functions. Interpolation of any unforeseen case 

is not always possible only by using these input/output patterns. 

• Online implementation of the conventional voltage stability indices would be 

based on real-time measurements of power system parameters. These 

measurements can be of three types, (1) analog measurements of real and reactive 

power flows in lines, real and reactive power injection at busses, bus voltage 

magnitudes etc, (2) logic measurements, such as status of switches and breakers, 

tap positions of LTCs etc, and (3) pseudo-measurements such as forecasted loads 
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and generation etc. Analog and logic measurements are telemetered to the control 

center, which may be far away, and thus may contain errors. Decisions based on 

the conventional voltage stability assessment tools are therefore subjected to a 

lack of reliability. A method that is somewhat insensitive to errors in input data is 

more reliable for assessing voltage stability of the system. 

1.7 Voltage stability monitoring using Artificial Neural Networks 

Artificial neural networks (ANN) have gained widespread attention from researchers in 

recent years as a tool for online voltage stability and voltage security assessment. Due to 

the non-linear nature of the voltage stability assessment problem, neural networks are 

superior to conventional analytical methods of voltage stability analysis, as described 

below: 

• ANNs can learn complex non-linear relationships through a set of input/output 

examples. Functional relationships between system parameters are not always 

easy to determine, and ANNs do not require those while learning the 

relationships. By a series of weight adjustments during training of a parallel­

distributed architecture, ANNs can virtually approximate any kind of non-linear 

complex relationship. 

• ANNs have in-built noise rejection capability, which makes them robust in a 

distributed power network where data collection or transmission error is a 

possibility. As mentioned earlier, there may be errors in the data telemetered to 

the control center. Due to the relative insensitivity of the neural network output to 
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the errors in the input data, ANNs are more reliable compared to conventional 

voltage stability analysis tools. 

• It takes a considerable time to train an ANN with a large number of training 

examples. Once trained, execution time of the ANNs subjected to any input is 

much less, which makes it an attractive alternative compared to conventional 

voltage stability analysis methods. 

• The most important and useful property of ANNs is perhaps the ability to 

interpolate unforeseen patterns. Once trained with a sufficient number of example 

patterns that covers the entire range of input variables, ANNs can interpolate any 

new pattern that falls in the domain of its input features. 

• Parallel processing units of the trained ANNs can be implemented using general 

purpose or application-specific hardware, and thus can relieve some 

computational burden of the EMS computers. 

1.8 Motivation for the research 

Due to the ever-changing operating conditions and various unforeseen factors associated 

with a huge power-network, off-line stability studies can no longer ensure a secure 

operation of the power system. Security of a power system is defined as its ability to 

perform normally, meeting all the criteria of a healthy power system, even after 

occurrence of any credible contingencies such as line outage, loss of generation etc. 

Earlier, system robustness and reliability was of principal concern in power system 

security studies. Nowadays, 'risk aversion' of the system subjected to different 
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contingencies has become more important, and consequently, security is being treated as 

a real-time function of power system state variables [22]. Offline studies normally tend to 

be conservative, since highly stressed systems are considered while carrying out security 

analysis, and they are incomplete also in the sense that not all equipment outages can be 

taken into consideration. Online security assessment is based on real-time direct 

measurements, and therefore, gives better estimates of power system states and existing 

topology. 

Voltage instability has been identified as the major factor behind a number of 

recent power system collapses, and is being regarded as a very important factor in power 

system security studies. Online voltage stability monitoring is therefore becoming an 

integral part of a modem day Energy Management System (EMS). 

Online voltage stability monitoring using the Artificial Neural Network is the 

focus of a major part of the present research. Considering the limitations of the existing 

works, the research aims at developing an improved, efficient and robust scheme for 

online voltage stability monitoring using ANN. For secure operation of the power system, 

the voltage stability should be maintained in the event of potential contingencies. The 

proposed scheme is therefore designed to monitor voltage stability for multiple 

contingencies. Certain desired qualities of the ANN, such as automatic selection of the 

network size, online adaptation of the ANN etc. are incorporated in the proposed scheme 

for online voltage stability monitoring in the advanced phase of the research. 

For a secure and reliable operation of the power system, it is not sufficient only to 

monitor the voltage stability. If the power system is deemed to be insecure in the event of 
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any credible contingency, preventive actions should be taken to steer the system away 

from instability. A sensitivity-based generation rescheduling scheme for multiple 

contingencies is proposed in the later part of the research. The ANN architecture 

developed in the earlier part of the research finds use in computing parameter sensitivities 

of the voltage stability margin. The ANN-based method of computing sensitivities 

overcomes many limitations of the existing analytical methods for finding sensitivities. 

The thesis is organized as follows. Chapter 2 gives a brief review of the existing 

work on online voltage stability monitoring using ANN, and existing methods of 

generation rescheduling for voltage stability enhancement. Chapter 3 proposes an ANN­

based scheme for online voltage stability monitoring of a power system. A new 

regression-based method of selection of features is also proposed. Chapter 4 describes a 

scheme for online voltage stability monitoring for multiple contingencies using ANN, 

which has the advantages of automatic selection of network size, online training or 

adaptation, and network pruning strategy. Chapter 5 proposes a sensitivity-based 

generation rescheduling scheme for voltage stability enhancement. Chapter 6 summarizes 

and highlights the contributions of the dissertation, followed by future directions of 

research. The analytical concepts are validated throughout the thesis with simulation 

results on test power system. 
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Chapter 2 

Overview of Literature 

2.1 Introduction 

Artificial Neural Networks (ANN) have gained increased attention from power system 

operators, planners and researchers in recent years for various power system applications 

such as security assessment, load forecasting, fault diagnosis, and unit commitment [19, 

23, 24, 25]. Online voltage stability monitoring is an integral part of the power system 

security assessment, and is the topic of interest for a major part of the present thesis. The 

secure operation of a power system requires detection of potentially dangerous operating 

conditions and contingencies, along with preventative and/or corrective actions to steer 

the system away from any such situations. Enhancement of voltage stability of a power 

system is the topic of research for the later part of the thesis. Among different existing 

methods, generation rescheduling is taken in this research as a means to enhance voltage 

stability of a power system. This chapter presents an overview of the existing literature 

on online voltage stability monitoring using ANN, followed by a brief review of the 

existing methods for voltage stability enhancement. 
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2.2 Online voltage stability monitoring using the ANN 

There are a number of works on online voltage stability monitoring using ANN reported 

in the literature [26-33]. The problem of online voltage stability monitoring using ANN 

consists of three aspects, namely, selection of suitable voltage collapse proximity 

indicator, selection of the input features that affect the voltage stability of the power 

system, and a suitable neural network to establish mapping between these two. The 

standard Multilayer Perceptron (MLP) network trained by a back-propagation algorithm 

has been mostly used by the researchers. Works reported in the literature differ from each 

other in different combinations of methods of selecting input features and the voltage 

stability indicator. A review of some of the previous works related to the present research 

is presented in this chapter. 

In [26], Artificial Neural Networks (ANN) are used to assess the maximum MW 

loadability of a power system. Multilayer feed-forward network trained with error back­

propagation algorithm is used in the work. Modal analysis is carried out to identify most 

voltage-sensitive areas, and the parameters which affect the voltage stability most, are 

selected for training the ANN. The proposed scheme is applied on the 39-bus New 

England test system. The following are the parameters used as input features: 

1. Ratio of total reactive power generation and total reactive power generation 

capability installed (ignoring slack bus reactive power generation). 
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2. Ratio of reactive power generation at the most critical generator and maximum 

reactive power limit of that generator. Most critical generator is assumed to be 

the one with the lowest voltage. 

3. Lowest reactive power reserve among all the generators. 

4. Number of generators operating at maximum reactive power limit. 

5. Lowest voltage at the base case loading. 

6. Number of busses with voltage below 1 pu. 

7. Total active power demand in MW. 

8. Total reactive power demand in MV AR. 

9. Total active power loss in MW. 

10. Total reactive power loss in MVAR. 

11. Ratio of the most critical branch MV A flows to the total MV A demand 

(calculated by the powerflow program). 

12. Ratio of most critical branch MV A flows to the maximum total MV A demand 

before voltage collapse. 

The neural network configuration is determined by considering convergence rate, error 

criteria etc. One hidden layer with 5 neurons is found to be optimum for the study. The 

output layer represents the maximum possible MW loading for the system. Critical 

branch loading and reactive power reserve in critical generators are found to be very 

important features affecting voltage stability of the system. Training data are generated 

for different contingencies involving different line and generator outages and different 

loading levels. For all the cases, the above-mentioned twelve inputs are noted along with 
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the maximum MW loadability limit found by using commercial software. An accuracy of 

better than 90% is achieved with the help of ANN for prediction of MW loadability limit. 

Popovic et. al in [27, 28] describe a methodology for online monitoring and 

assessment of voltage stability margin of a power system with the help of ANNs. The 

complete vector of input variables, y, consists of bus voltage magnitudes (V), angles (8), 

active powers (P) and reactive powers (Q). Outputs of the ANN are voltage stability 

margin, M and real part of minimum eigenvalue, Sc, of linearized dynamic model of the 

system. The voltage stability margin, M is useful in assessing the steady state voltage 

stability of the power system, and is defined by, 

M = pm- ptotal 

p ' 
m 

where Ptotal is the total active power demand at the current operating point, 

p m is the maximum possible loading. 

(2.1) 

Four different ANN configurations are used m the training stage and two different 

combinations of these four ANNs are used to assess the voltage stability margin. A self-

organized ANN is used to reduce the dimension of input variables. The four basic blocks 

of ANNs are schematically shown below and described briefly. 

UR: A self-organized ANN, UR takes the complete vector of input features, y, as input 

and produces reduced vector of input variables, YR. for the current topology. 

NT: NT is a three-layer feed-forward ANN that takes the complete vector of system 

variables, y, as input and produces binary identification code, Kt. for the system topology. 
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NY: NY is a three-layer feed-forward ANN that takes the complete vector of input 

features, y and topology code, K1 as inputs and produces voltage stability margin, M and 

real part of minimum eigenvalue, Sc, of linearized dynamic model of the system. 

NR: NR is a three-layer feed-forward ANN that produces voltage stability margin, M 

and real part of the critical eigenvalue, Sc, when subjected to reduced vector of input 

features, YR as input. 

The four basic ANNs are shown schematically below. 

~M,S. 

Two combinations of these four basic blocks are used for voltage stability assessment as 

described below. 

AY: In this combination, the same ANN is trained and used for all the contingencies. 

ANN blocks NT and NY are combined as illustrated in the schematic diagram below. 

M,Sc 

AR: In this configuration, different ANNs are trained and used separately for different 

system topologies. The ANN block NT is used to identify existing system topology, and 

for each topology, a separate combination of UR and NR block is used to assess voltage 
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stability based on the reduced set of input features as illustrated in the schematic diagram 

below. 

y ,....---, YRI 
---.~~ r--------_,~ 

YR2 M,Sc 

YRn M,Sc 

Chosen input features are classified into different groups as a first step. Data that are 

close to the mean or center of the group are eliminated. Average reduction of the input 

dimension is 95%. Static and dynamic stability margins are calculated from linearized 

static and dynamic models of the power system respectively. For ANNs detecting system 

topology, a sigmoid activation function is used for hidden layers and a pure linear 

activation function for the output layer. For ANNs used for voltage stability assessment, 

activation functions for hidden layer and output layer are a tangent hyperbolic function 

and a pure linear function respectively. The error back-propagation algorithm with a 

variable learning rate is used for training the supervised ANNs. 

Stability assessment is carried out by using two methods: indirect and direct. In 

the indirect method, input features are determined by fast decoupled power flow and then 

the stability margin is evaluated. In the direct method, power injections in all the busses 

are used as input features, without carrying out any power flow calculations. While 

carrying out the training of ANNs, contingencies considered are base configuration, all 
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single outages of lines and generators, and most probable combinations of double 

outages. Loads are varied from night time minimum to day time maximum for the 

relevant contingency. 

The proposed method is applied to the high voltage power system on the eastern 

part of the former Yugoslavia. The system has 92 busses, 12 equivalenced generator 

busses and 174 lines. Stability analysis is carried out by using both A Y and AR 

algorithms described earlier. The AR algorithm is found to be more efficient than the A Y 

algorithm in terms of accuracy and speed of calculation. The only problem associated 

with the AR algorithm is the large number of separate ANNs that has to be used if a large 

number of system topologies is considered. Simulation results show that voltage stability 

margins predicted by ANNs comply fairly with actual values. Moreover, efficiency and 

accuracy of the proposed method with a reduced data set are better, compared to the 

method with a complete data set. 

In [29], a feedforward MLP network is used to estimate the Energy measure, 

which is used as an indicator to the proximity of the operating point of the power system 

to the point of voltage collapse. A heavily loaded power system tends to have at least two 

power flow solutions: the 'operable' solution corresponds to the stable equilibrium point 

(SEP), and the other solution, generally referred to as the low voltage solution 

corresponds to the unstable equilibrium point (UEP). A typical voltage collapse scenario 

is characterized by a saddle node bifurcation between the two solutions. Conceptually, 

Energy measure shows the height of the potential barrier between operable solution and 
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the low voltage solution. The height of the potential barrier decreases as the power 

system gets closer to the point of instability. Voltage instability occurs when the 

disturbance energy is sufficient to escape the barrier. 

The MLP network consisted of 13 input nodes, 13 hidden nodes, and one output 

node. Bus voltages and real and reactive powers at busses are used as input features to the 

ANN. The output is the Energy margin corresponding to the operating point 

characterized by the inputs. A variety of loading conditions are considered while 

generating the training data. The proposed scheme is applied on a sample 5 bus system. 

An ANN is used in [30] for estimating the power system loading margin. A three 

layer ANN is used and trained with a back-propagation algorithm. The input features 

used for training the ANN are the generator terminal voltages, real and reactive power of 

generators and loads, and the reactive power reserve of generators. Principal Component 

Analysis (PCA) is used to reduce the dimension of the input features. PCA projects the 

set of input features into a new set of coordinates in such a way that the variance of 

projections is stationary, i.e., either maximum or minimum. Projections of features on 

coordinates, for which variances are higher, are chosen as inputs. 

The input features are segregated into three classes, viz., generator voltage, 

generator P/Q/Qreserve and load P/Q, before applying PCA separately to each class. 

Considerable reduction of input dimension is achieved in this work by applying PCA. 

The Levenberg-Marquardt algorithm is used during the training process to ensure fast 

convergence. The possibility of including system topology in the input features is tried, 
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but the ANN is not found to be able to learn binary topology information. Separate ANNs 

are therefore used for different system topologies. Four different topologies, including the 

base case, are studied with the help of four ANNs trained separately. Powerflow solutions 

for different contingencies and loading margins for different operating conditions are 

calculated by a commercial software, which uses continuation power flow. 

The proposed ANN is applied to the IEEE 118-bus system. The major part of the 

available simulation data are used for training the ANN and the remaining part is used for 

testing. The simulation results show that the output of the proposed scheme matches well 

with the actual load margins. Average errors for all the four ANNs are less than 3%. 

In [31], a multi-layer feed-forward network trained with the back-propagation 

algorithm is used to establish direct mapping between system loading condition and the 

Voltage Stability Margin (VSM), based on the Energy method. The selection of input 

features is based on the sensitivity of the Energy function with respect to the features. 

Critical parameters, i.e., parameters with respect to which VSM has higher sensitivities, 

are chosen as input features. A three-layer feed-forward network trained with error back­

propagation algorithm is used in this paper. A direct mapping is established during the 

training procedure between input features and Energy margin for the power system. The 

three-layer ANN architecture contains one hidden layer with five neurons having a 

unipolar sigmoid activation function. The output layer consists of a single neuron with a 

unipolar sigmoid activation function, giving the Energy function as the output. 
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Sensitivity analysis is carried out for VSM with respect to the input parameters 

before selecting the features. Real and reactive power of busses for which VSM has 

greater sensitivity, are chosen as input features. The proposed ANN architecture is used 

for IEEE 5-, 14-, 30-, 57- and 118-bus systems. The simulation results match closely with 

the expected values of Energy margins under normal operating conditions. Under a 

heavily loaded condition however, the ANN does not give satisfactory results. The reason 

for this is found to be the sensitivity of the ANN itself with respect to loading levels in 

the system. A proposed remedial measure for this problem is the classification of load 

into low, medium and high levels and using three ANNs trained separately for these three 

load levels. Considerable improvement in performance is observed after using separate 

ANNs for corresponding different load levels. 

In [32], reactive power margin of a chosen load area is estimated by using active 

power flows in selected lines as inputs to the ANN. Reactive power margin for a selected 

load area of the New England 39-bus system is estimated using three different methods 

and the results are compared. The three methods are linear regression, Kohonen network 

and feed-forward ANN. The ANN is found to give the best result in terms of accuracy. 

The steps followed in the proposed method of online estimation of reactive power margin 

using ANN are as follows. 

• A load centre consisting of three busses, i.e., busses 17, 18 and 27 is chosen for 

which reactive power margin is monitored. 
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• The reactive power margins in the load centre and all the other busses for the 

base case, all N-1 contingencies and a few selected N-2 contingencies are 

computed by using V -Q curve method. 

• The Busses having very low reactive power margin are identified as weak busses 

and the flows in the lines connected to the weak busses for each contingency are 

taken as input features. 

• A feed-forward ANN is trained with the selected line power flows to give 

corresponding reactive power margin at the load centre as the output. 

It was found that very similar line flows for different contingencies had radically 

different reactive power margins. Selection of flows in lines connecting to the weakest 

busses or in the lines, outage of which cause very low reactive power margins provide a 

basis for selecting important input features. Implementation of the proposed method on 

the 39-bus New England test system shows satisfactory results in terms of estimating 

voltage stability margin. 

2.3 Voltage stability enhancement using optimization techniques 

For secure operation of a power system it is not only necessary to detect potentially 

dangerous situations, but also to steer the system away from a possible instability. There 

are different measures against voltage instability in a power system, both in real time, and 

in the planning and design stage [4]. Real time measures can be preventive or corrective 

in nature. Corrective actions are needed to prevent immediate loss of voltage stability. 

Preventive actions are then taken to enhance the voltage stability margin. The preventive 
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and corrective control of voltage stability mainly constitute one or more of the following 

options: rescheduling real power generation, changing load tap changer (LTC) settings, 

adjusting phase shifter angles, reactive compensation and load shedding. In the present 

research, generator real power rescheduling is taken as the means for enhancing voltage 

stability of a power system. Many of the reported works on the use of optimization for 

voltage stability enhancement use the sensitivity of the voltage stability margin with 

respect to different control parameters as a means to enforce voltage stability constraint 

into the optimization method. An introduction to the most commonly used method of 

finding the sensitivity is therefore given below, followed by a brief review of some of the 

relevant works reported on the use of generation rescheduling for voltage stability 

enhancement. 

2.3.1 Sensitivity of the voltage stability margin with respect to parameters 

The sensitivities with respect to control parameters are found for the system 'stress'. 

Conceptually, the system is more 'stressed' with the increase of the real and reactive 

power injections at busses. Voltage stability margin is taken as the additional stress the 

system can withstand before experiencing instability. 

The power flow equations can be expressed as 

f(u,p)=O, (2.2) 

where u is the vector of power system states such as voltages (V) and angles (8), p is the 

vector of parameters such as real and reactive power injections at busses. 
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It has been well accepted that at the point of voltage instability, the power system 

undergoes bifurcation or the dynamical behavior of the power system undergoes a 

qualitative change [4,15]. Let (u0
, p0

) be the base case operating condition and (u*, p*) be 

the point of bifurcation such that, 

* 0 * p =p +S d. (2.3) 

Here d is the direction of change of parameters and s* is the loading margin or the 

voltage stability margin of the operating condition (u0
, p0

) along the direction d. 

At the point of bifurcation, 

* * * 0 * f(u ,p )=f(u ,p +S d)=O (2.4) 

Differentiating above, 

(2.5) 

where f and f are Jacobian matrices off with respect to u and p respectively. 
u p 

Noting that at the point of bifurcation, the minimum eigenvalue of f becomes zero, and 
u 

premultiplying (2.5) by the left eigenvector ro corresponding to zero eigenvalue, 

(2.6) 

Rearranging the terms in (2.6) and noting that roT f =0, at the point of bifurcation, the 
u 

sensitivities of the voltage stability margin, s*, with respect to the parameters at the base 

case operating condition, p0
, can be stated in the form of the following equation [4, 34]. 
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(2.7) 

2.3.2 Voltage stability enhancement methods utilizing generation rescheduling 

There are a number of works reported on the use of optimization to coordinate control 

actions for preventive and corrective measures against voltage instability [35-41]. Current 

research concentrates on the use of ANN to find voltage stability margin sensitivities to 

be used for generation rescheduling in order to enhance voltage stability of a system. The 

following discussion therefore mainly considers those methods of voltage stability 

enhancement, which use generation rescheduling as part of the overall preventive and 

corrective control scheme. 

Optimization is used in [35] to design a preventive and corrective control scheme 

for voltage stability. The objective of the optimization method is to minimize the control 

cost, while satisfying the system and equipment constraints along with maintaining the 

voltage stability margin. The costs of different control actions are not the same. For 

example, the cost of shedding a load may be higher than the other control actions such as 

changing the transformer tap. Hence different cost factors are chosen for different 

control variables. The objective function to minimize is as follows: 

n 

L,cwj(~pj)2 ) (2.8) 
j=l 
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where ~pj is the change in the /h control action, and Wj is the cost curve weighting factor 

for the t control variable. 

The different control actions considered for the preventive and corrective scheme for 

voltage stability are: active power generations, reactive power generations, LTC 

transformer taps, phase shifter angles, shunt compensation, and load shedding. 

Constraints on the following parameters are enforced into the optimization program: 

• Active power generations of the units . 

• Phase shifter angles . 

• Line power flows . 

• Reactive power generation of the units . 

• LTC transformer taps . 

• Transformer power flow . 

• Bus voltage magnitudes . 

• Voltage stability margins . 

• Shed loads . 

The proposed method is applied on 100-bus, 901-bus, 1635-bus, 2097-bus and 4112-bus 

systems. Simulation results show that desired improvements in the voltage stability 

margins are achieved. 

A scheme for preventive and corrective control of voltage instability is proposed 

in [36]. Sensitivities of the voltage stability margin to control parameters are computed 

first to determine the best control actions. Computation of the sensitivities is in the same 
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line as described in section 2.3.1. A linear optimization method minimizing total control 

cost is then used to coordinate the control actions. Given a system operating condition, 

referred to as the base case, different credible contingencies are first examined. For an 

unsolvable contingency, corrective actions are taken to restore system solvability. 

Preventive actions are then taken to increase the voltage stability margin to a desired 

level. Fast-acting load shedding and reactive power compensation are used as means for 

corrective control of voltage stability. Relatively slower actions such as generation 

rescheduling and generator secondary voltage controls are taken as preventive measures 

against voltage instability. The proposed method is applied on the New England 39-bus 

system and the simulation results demonstrate the effectiveness of the method in 

mitigating voltage collapse. 

In [37], generation rescheduling and load curtailment are used as means to 

enhance voltage stability margin of the system. The best control actions to restore 

security margin with respect to credible contingencies are found by using linear 

optimization. Sensitivities of the voltage stability margin with respect to the control 

parameters are used to implement voltage stability constraints in the optimization 

procedure. The rescheduled generations make the system secure for multiple 

contingencies. The objective function to be minimized is the total cost of control actions 

as follows, assuming unity costs for simplicity. 

Minimize (2.9) 
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where ~pj is the lh control action. 

The voltage security constraints for multiple contingencies are incorporated in the 

following equality constraint: 

n 

L,sij~Pj;;::: ~Mi, Vi= l, ... ,c 
j=l 

(2.10) 

where Sij is the sensitivity of the voltage stability margin with respect to the control 

parameter pj , for the ith contingency. Computation of the sensitivities is similar to the 

method described in section 2.3.1. ~i is the minimum required enhancement in the 

MW margin for the ith contingency, 'c' being the number of contingencies considered. 

The proposed method of generation rescheduling and load curtailment is applied 

on 80-bus 'Nordic 32' system and Hydro-Quebec system. The test results show that the 

voltage stability margin is improved significantly for multiple contingencies. 

A number of other works related to the voltage stability enhancement, and the use 

of optimization techniques in powers systems were also reviewed as part of the current 

research. T. V. Cutsem in [38] proposes an approach to corrective control of voltage 

stability through simulations and sensitivity information. The sensitivities of the reactive 

power generations with respect to demand are calculated, in order to determine the 

generators to be rescheduled. The potentially dangerous contingencies are identified 

using the eigenvalues of the linearized Jacobian matrix that includes the effect of LTCs 

on voltage stability of the system, and then control actions are taken to improve the 

voltage stability margin. In [39], a reactive reserve-based contingency constrained 
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optimal power flow is proposed for voltage stability enhancement. The concept is based 

on the fact that increase in reactive reserves is effective for enhancement of voltage 

stability margins. In the same line, an optimized reactive reserve management scheme is 

proposed in [40] to improve voltage stability of a power system. Significant improvement 

in voltage stability is observed by applying the method on test system. An optimal power 

flow incorporating voltage collapse constraints is proposed in [41]. Both saddle node 

bifurcation and limit-induced bifurcation leading to voltage instability are considered in 

the optimization procedure. 

2.4 Summary and discussions 

A review of the existing literature on voltage stability monitoring of a power system 

using ANN is presented in section 2.2. A number of limitations in the existing methods 

are identified, which needs further research. A systematic way of selection of input 

features for the ANN needs to be developed. A small number of features are used in some 

of the works, which may not be able to map the complex nonlinear relationship to the 

desired voltage stability indicator. The proposed method in [26] uses only 12 inputs to the 

ANN, which may not be sufficient for estimating the voltage stability margin for a larger 

system. Although diverse classes of features are addressed, only one numerical value 

representing the feature may not serve the purpose. For example, a number of generators 

may be operating close to their reactive power limits, a number of busses may experience 

lower-than-normal voltage, and a number of lines may be heavily loaded and could be 

very critical to the voltage stability of the system. The method proposed in [27, 28] is 
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applied to a real power system with 92 busses. The use of separate ANNs for different 

system topologies could be a challenging task if the number of possible topologies is very 

large. Loads are varied from night time minimum to day time maximum while training 

the ANNs for a specified contingency. A better accuracy in the output could be achieved 

by training the ANNs separately for different load levels. The proposed method in [30] is 

applied on IEEE 118-bus system. The use of Principal Component Analysis is proved to 

be a useful method of reduction of input data dimension. The use of separate ANNs for 

each topology could be a demanding task when a large number of system topologies is to 

be considered. The proposed method in [31] gives satisfactory results for the prediction 

of the voltage stability margin. Sensitivity analysis of the features is a useful tool for 

feature selection, especially for large systems. Use of separate ANNs for different loading 

levels increases accuracy of the output of the ANNs. The effect of different system 

topologies on the performance of the ANN is not addressed in this paper. The calculation 

of the voltage stability margin based on the Energy method is an involved task. A more 

straightforward method could be the use of the loading margin for the system. The 

method proposed in [32] attempts to find a systematic way of selecting input features. 

The worst N-1 contingencies in terms of available reactive power margin, along with 

lines connecting to weakest busses are chosen as important features. 

The loading margin for the power system has been the most commonly used 

indicator of the proximity to voltage collapse in the literature. A three-layer feed-forward 

network trained with a back-propagation algorithm is mostly used in literature for 

predicting voltage collapse proximity. Performing sensitivity analysis of the voltage 
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stability indicator with respect to the input parameters is a reasonable method for feature 

selection [31]. A very important issue is, whether the system topology information can be 

included in the input features or not. Most of the studies show negative results. The use of 

separate ANNs for each topology has been suggested as remedial measure. When the 

number of relevant topologies is very large, this method is not feasible. 

The review of the existing literature indicated the need for research in a number of 

aspects of online voltage stability monitoring using ANN. The number of parameters that 

may be used as inputs to the ANN may be very high in a large power system. Suitable 

data reduction techniques are therefore needed to reduce the dimension of the input data. 

Sensitivity analysis of the voltage stability margin with respect to the inputs is an 

effective way of reducing feature dimension. Use of the conventional MLP network for 

voltage stability monitoring for multiple contingencies has not been very successful and 

convincing. Different classes of ANN architectures therefore need to be explored to 

investigate the scope of using a single ANN for multiple contingencies. 

A brief review of the literature on methods of enhancing voltage stability of a 

power system is presented in the section 2.3, with emphasis on the works reported on the 

use of generation rescheduling for voltage stability enhancement. Most of the 

optimization-based works reported for enhancement of voltage stability use sensitivity of 

the voltage stability margins with respect to control parameters to incorporate voltage 

stability constraints into the optimization program. The conventional method of 

computing parameter sensitivities of the voltage stability margin, as described in section 

2.3.1, suffers from a number of drawbacks as follows: 
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1. It is numerically difficult to find the Jacobian matrix at the exact point of voltage 

instability. One has to resort to the continuation power flow to obtain the exact 

nose point, which is sensitive to the predictor or corrector step size. 

2. A particular direction of increase in system 'stress' is considered to reach the 

bifurcation point and in most cases a linear direction is assumed. For a real power 

system with loads having different voltage to power sensitivities, this is an 

unrealistic assumption. It has been shown by researchers that inclusion of the 

voltage sensitive load models significantly affect the computation of the voltage 

stability margin of a power system [ 42-50]. A method of computing sensitivities, 

which can incorporate voltage sensitive load models, would be more accurate and 

realistic. 

3. Obtaining the sensitivities for multiple contingencies and different operating 

conditions is a demanding task. Dynamic simulations may be needed in some 

cases to obtain the exact point of voltage instability, which is a time consuming 

task for a large power system having numerous potentially dangerous 

contingencies. 

An efficient and accurate method to compute the sensitivities would be useful in better 

representation of the voltage stability constraint in the optimization program for voltage 

stability enhancement. Chapter 5 of this thesis describes a scheme to efficiently compute 

the sensitivities using ANN. Using the computed sensitivities, a voltage stability 

enhancement scheme is also proposed by rescheduling the real power outputs of the 

generators. 
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Chapter 3 

Online Voltage Stability Monitoring Using Artificial 
Neural Network 

3.1 Introduction 

Online voltage stability monitoring using Artificial Neural Network (ANN) is the focus 

of a major part of the present research. A scheme for implementation of ANNs for real-

time assessment of the voltage stability of a power system is proposed in this chapter. 

The standard Multilayer Perceptron (MLP) neural network is used for estimating the 

voltage stability margin of a power system. The load active and reactive powers are used 

as the input features to the ANN and the available MW margin is used as an indicator to 

the voltage stability of the system. A regression-based method is used to compute the 

sensitivities of the voltage stability margin with respect to different inputs. The load 

active and reactive powers, for which the corresponding sensitivities are higher, are 

chosen as the important features for the ANN. Considerable data reduction is obtained by 

the proposed feature selection method. The systematic way of selection of highly 

important features results in a compact and efficient ANN architecture. A number of 

critical contingencies are considered for voltage stability monitoring, and separate ANNs 

are used for each of the contingencies. The online voltage stability monitoring scheme is 

applied to the New England 39-bus power system and the simulation results are 

presented. 
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3.2 Proposed method for online voltage stability monitoring using the 
Artificial Neural Network 

Selection of the suitable voltage stability assessment method is the first step towards 

developing an online voltage stability monitoring scheme. In this research, the loading 

margin is used as an indicator of the proximity of the system to the voltage collapse 

point. The active power (MW) margin to the voltage instability point is a straightforward 

and widely used method to assess the voltage stability of the system. At any operating 

point, the MW margin is defined as the additional MW load the system can withstand, 

before going unstable. Figure 3.1 shows the MW margin to the point of voltage instability 

for the indicated operating point. 

Selected active and reactive load powers are taken as the input data set for the 

ANN. It is to be noted here that many other combinations of different measurable power 

system parameters such as generator reactive power reserves, line flows, bus voltages can 

be taken as input features to the ANN [26-33]. In fact, the choice of inputs to the ANN 

may be specific to the system. The proposed ANN should work as a tool for online 

voltage stability monitoring for various possible combinations of suitable inputs. The 

selected active and reactive load demands, used as inputs to the ANN give satisfactory 

results and hence are used in the current research. A sensitivity-based data reduction 

technique is applied to reduce dimension of the input data set. A three layer feed-forward 

ANN trained with the back-propagation algorithm is used to establish mapping between 

the input data set and the loading margin. Contingency analysis is carried out at the 

beginning to identify the most critical contingencies to be monitored, and separate ANNs 
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are used for the corresponding system topologies. The basic scheme of the online voltage 

stability monitoring is shown in the Figure 3.2, followed by detailed description of 

individual steps. 
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Figure 3.1: MW margin to the point of voltage instability 
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Figure 3.2: Feature selection and training the MLP neural network for 
online voltage stability monitoring 
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3.2.1 Contingency analysis 

The analysis of credible contingencies is an integral part of the stability assessment of a 

power system. The analysis of 'N -1' contingencies, meaning, normal system minus one 

element, has been the standard procedure for the contingency analysis in many utilities 

[51]. For the present study, all single line outages are analyzed and are ranked in the 

decreasing order of severity in terms of the available MW margin to the point of voltage 

instability. For a large system, it is not possible to consider all the contingencies while 

carrying out security analysis. A selected number of worst-case contingencies are 

considered in this study. Numerous attempts have been made in the literature to train and 

use a single ANN for all the contingencies, with little success. Separate ANNs are 

therefore used for the selected number of critical contingencies. 

3.2.2 Generation of training data 

The training data sets for the ANN are generated for the base case and the selected 

contingencies separately. The load active and reactive power demands are varied 

randomly within specific limits to simulate different operating conditions in the system. 

The change in load is distributed among participating generators in proportion to their 

participation factors in the base case. The participation factor of a generator is defined as 

the ratio of its generation to the total generation in the system. Corresponding to each 

operating point, MW distance to the point of voltage instability is found by using 

PowerWorld simulator [18] and recorded as the desired output of the ANN. The load 

active and reactive powers, along with the MW margin to the point of voltage instability 
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constitute a training sample corresponding to a particular system topology. 

3.2.3 Reduction of dimension of input data 

The objective of input data reduction is to discard the data that are repetitive in nature and 

to choose only those data which contain maximum information regarding different 

patterns or variations of the whole set of input data. In other words, features that highly 

affect the voltage stability of the system are chosen as inputs to the ANN. In this 

research, the input variables are chosen using a regression-based sensitivity analysis of 

the input features, which overcomes many limitations of the conventional methods of 

computing sensitivities. A second order regression model is first developed for each 

system topology, and then the sensitivities of the voltage stability margin with respect to 

the regressor variables are found by differentiating the regression model. 

3.2.3.1 Sensitivity analysis 

Sensitivity of the voltage stability margin is found with respect to the parameters 

included in the input data set. Those inputs, for which the sensitivities are higher, are 

chosen as the important features. A commonly used method to compute sensitivities of 

the voltage stability margin with respect to different parameters has been the use of the 

singularity of the powerflow Jacobian matrix at the point of voltage instability [4, 34]. 

Section 2.3.1 describes this method of computing sensitivities. The main drawbacks of 

the method are discussed in section 2.4. In this work, a second order regression model is 

first designed to estimate voltage stability margin in terms of load active and reactive 
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powers. A higher order regression model can also be used for this purpose to increase the 

accuracy in estimation of the voltage stability margin, and consequently of the 

sensitivities. However, the computational burden increases with higher order regression 

models. The performance of a second order regression model was found satisfactory and 

hence used in the present work. 

3.2.3.2 Formulation of the regression model for estimating voltage stability margin 

A second order regression model is taken as follows: 

(3.1) 

where y is the MW margin to the point of voltage instability, p is the vector of real and 

reactive load powers, i.e., 

(3.2) 

with Pi and qi being the active and reactive power demand respectively of the i1h load. ~0 

is a constant, fJ 1 is a vector and P2 is a diagonal matrix containing regression coefficients. 

Equation (3.1) can be viewed as a first order regression model as shown below: 

Assuming, x=[1,p1, ••• ,p1d,q1 , ••• ,q1d ,p~ , ... ,p~d ,q~ , ... ,q~ctl, (3.1) can be expressed as, 

y=xfJ, (3.3) 

where p is the vector of regression coefficients. 

The load active and reactive powers are taken as independent or regressor variables in the 

regression model and the MW margin is taken as the output. The vector p containing the 

coefficients of regression is the solution of the following equation. 
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y=XP, (3.4) 

where y=[ypy2 , ••• ,y"f is the vector containing MW margins to voltage instability for 'n' 

different operating conditions. Defined below is the matrix X, each row of which 

represents a sample of regressor variables. Each column of X, starting with the second 

one, contains sample values of each regressor variable. 

1 Xu X21 ••· xki 

1 XI2 Xzz ··· xk2 X= (3.5) 
... 

1 X In Xzn ·•• Xkn 

and (3.6) 

The least square estimate of pis given by [52], 

(3.7) 

In case of complete or partial linear dependency between columns of the matrix X, (3.7) 

has poor numerical properties and the coefficients of regression found from (3.7) do not 

represent the true relationship between the dependent and the independent variables. This 

phenomenon is a commonly encountered problem in regression, known as 

'multicollinearity' [52]. For the present work, precautions are taken to avoid 

multicollinearity while generating the training data for the regression model. 

The regressor variables, i.e., each column of X, are centered and scaled. If Xij is 

n 

the jth value of the regressor variable, xi= L, (x/n) is subtracted from Xij and (xij-xJ is 
j=l 
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n 

divided by Si, where Si = L, (xij -x)2 
• This centering and scaling result in XTX being a 

j=l 

correlation matrix. Multicollinearity, if present in the training samples, is detected by the 

condition number of the correlation matrix as shown below: 

Z= Amax' 
A min 

(3.8) 

where Z is the condition number, A.max and A.rnin respectively are the maximum and 

minimum eigenvalues of the correlation matrix XTX . 

After generation of each sample pattern, (3.8) is evaluated and the sample is discarded if 

the condition number Z is very high. The value of the condition number above 1000 is 

considered very high for the current research. This is a commonly used value of condition 

number for detecting multicollinearity. The prediction-error of the regression model is 

also minimized by avoiding multicollinearity. 

Following the above procedure, the regression model is designed for sufficient 

variety of operating conditions for the power system. Separate regression models are 

designed for different potential contingencies as well as for the base case. For the present 

work, only N-1 contingencies are considered. It is possible to include other types of 

contingencies also in the proposed method. Training data for the regression models are 

generated separately for the base case and for different contingencies. In the next step, the 

regression models are used to find sensitivities of the voltage stability margin with 

respect to regressor variables, as described in the next section. 
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3.2.3.3 Computation of sensitivities 

Once the regression model is designed for all possible operating conditions, sensitivities 

of voltage stability margin with respect to the load active and reactive powers are found 

by differentiation of (3.1). The sensitivity of the voltage stability margin 'y' with respect 

to the ith regressor variable Pi is given by, 

(3.9) 

The sensitivities above are found for the base case and all other contingencies considered. 

It is to be noted that the expression for sensitivity given in (3.9) does not depend on any 

particular choice of direction of increase in system stress. Although a certain direction is 

assumed for increasing system stress while generating the training data, different 

directions can be assumed for different operating conditions and the directions do not 

have to be linear, as is commonly used in the case of the sensitivity expression given in 

(2.7). One more advantage is that one does not have to find the Jacobian matrix exactly at 

the point of bifurcation. Once designed for a sufficient variety of operating conditions, 

the regression model can be used for any new operating condition to determine the 

required sensitivities. 

3.2.3.4 Sensitivity-based selection of input features 

Equation (3.9) gives the sensitivities of the voltage stability margin with respect to the 

regressor variables. The load real and reactive power demands, for which sensitivities of 

the voltage stability margin are higher, are selected as inputs to the ANN. Let Smin be the 
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minimum sensitivity criterion for selection of an input. The i1h feature qualifies as an 

input to the ANN, only if the following criterion is satisfied: 

(3.10) 

where !lSi II is the absolute value of the sensitivity Si of the voltage stability margin with 

respect to the i1
h feature. 

For the present work, the sensitivity-based feature selection method above is applied 

separately to the real and reactive power demands. Different minimum cutoff values of 

sensitivity, viz., S!min and S!min are used to select the real and reactive power demands 

respectively, for the lh contingency. The set Tj of active power demands included in the 

input feature set for the jth system topology is defined as: 

(3.11) 

where 'ld' is the number of load busses m the system, and 'c' is the number of 

contingencies considered for voltage stability monitoring, including the base case. 

Similarly, the set of reactive power demands chosen as input features for the RBFN is 

defined as: 

(3.12) 

3.2.4 Training the ANN 

An MLP network consisting of one input layer, one output layer and a hidden layer has 

been found suitable for the power system voltage stability monitoring problems [26-33]. 

Denoting the neurons in the input, hidden and output layers for a three-layer MLP 
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network by i, j and k respectively, the output of neuron k in the output layer can be 

written as, 

mj mi m1 
yk = cpk( I wk.cp .( I w .. cp. (I w .lyl))) 

j=O J J i=O J1 1 1=0 1 
(3.13) 

where 'mj' is the number of neurons in the hidden layer, 'mi' is the number of neurons in 

the input layer and 'ml' is the dimension of input to the input layer. <pi, q>j and q>k are the 

activation functions for input, hidden and output layers respectively. 

During the learning phase, the ANN is trained with the reduced vector of input 

features and the corresponding MW margins as target outputs. The error back-

propagation algorithm is used to train the MLP network [53-55]. The generalization 

property of the ANN is improved by using an 'early stopping' criterion during the 

training [56]. The selected samples of input features are divided into three sets. l/41
h of 

the data are used as the validation set, 1/41
h as the testing set, and the remaining half as 

training set. The validation error is monitored during the training phase and the training is 

stopped when the validation error starts increasing after a specified number of iterations. 

Overfitting in the ANN is avoided by using this technique. 

3.2.5 Voltage stability assessment using output of the ANN 

The objective of the proposed scheme is to monitor the power system voltage stability in 

real time. The output of the ANN is the available MW margin to the point of voltage 

instability. An operating point, which has a sufficient MW margin, is taken as voltage 

stable. The amount of the MW margin for which the power system can be classified as 
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voltage stable is based on past experience and engineering considerations. In some cases, 

the system might be operated closer to their stability limit due to economic reasons; 

hence the required MW margin may be small. A system may also have a larger MW 

margin requirement due to regulatory requirements. 

3.3 Simulation results 

The proposed scheme for online voltage stability monitoring has been applied to the New 

England 39-bus test system [57]. The single-line diagram of this test power system is 

shown in Figure A.l in Appendix A. The system consists of 19load busses, 10 generators 

and 46 lines. Base case load is 5036.9 MW and base case generation is 5620 MW. For 

generating training data for the ANNs, active and reactive powers at the load busses are 

varied randomly within ± 20% of the base case values. Any change in total load demand 

in the system is distributed among the participating generators in proportion to their 

participation factors in the base case. For each operating condition, active and reactive 

powers at the busses are recorded as input features. The loads are assumed to be of 

constant power factor type. The available MW margin to the point of voltage instability is 

found for each operating condition using PowerWorld simulator [18] and recorded as the 

desired output of the ANN corresponding to that operating condition. Test results are 

reported in this section for the base case operating condition and for four different 

contingencies as described in Table A.l in Appendix A. The contingencies are selected in 

such a way that they reflect significant changes in the system topology. For example, all 

the contingencies considered in this study involve outage of a radial line, which 
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disconnects the corresponding generator also from the system. The lost generation is 

supplied by the available generators in proportion to their participation factors. 

For the base case and each contingency, separate regression models are designed. 

The random variations imparted on load active and reactive power demands, while 

generating the sample data, ensure that the samples are not linearly correlated. Any 

possible occurrence of multicollinearity is detected by the condition number of the 

correlation matrix, and the corresponding sample is discarded. The sensitivities of the 

voltage stability margin with respect to the active and reactive load power demands are 

computed by differentiating the regression models at the operating point of interest. Table 

A.2 in Appendix A shows the computed sensitivities of the voltage stability margin with 

respect to different parameters for the contingencies considered. Pi and Qi in Table A.2 

represent real and reactive power demands of the i1
h load respectively. Table A.3 shows 

the number of inputs selected for different cut-offs for the absolute values of the 

sensitivities, for different contingencies. The subsequent results given in this section are 

based on the cut-off values of Sp min and Sq min given in Table A.4 for different 

contingencies. Different set of cut-off values were tried while designing the ANN. The 

best results in terms of maximum and average output error are obtained by using the 

values shown in Table A.4. 

The ANN for each network topology is trained with the help of the reduced data 

set by error back-propagation algorithm. The numbers of neurons in the input, hidden and 

output nodes are 7, 10 and 1 respectively, which were found by trial and error method to 

give the best results. Figure 3.3 shows the change in the sum of squared errors with each 
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epoch of training for the ANN used for the base case. Figure 3.4 shows the simulation 

results for the base case topology, where estimated values by the ANN are graphically 

compared with the actual MW margins for the system. Figures 3.5 to 3.8 show the 

simulation results for contingencies Cl to C4. Table 3.1 shows the numerical values of 

the actual and the predicted MW margins plotted in Figures 3.4 to 3.8. Table 3.2 gives the 

summary of simulation results for the base case and different contingencies. It is 

observed that the output errors of the ANNs are within reasonable limits. 
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Figure 3.3: Sum of squared errors during training of the ANN used for 
the Base case of New England 39-bus test system 
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Figure 3.4: Estimated and actual values of the MW margins for the base case of 
New England 39-bus test system using the MLP neural network 
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Figure 3.5: Estimated and actual values of the MW margins for the contingency Cl of 
the New England 39-bus test system using the MLP neural network 
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Figure 3.6: Estimated and actual values of the MW margins for the contingency C2 of 
the New England 39-bus test system using the MLP neural network 
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Figure 3.7: Estimated and actual values of the MW margins for the contingency C3 ofthe 
New England 39-bus test system using the MLP neural network 
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Figure 3.8: Estimated and actual values of the MW margins for the contingency C4 of the 
New England 39-bus test system using the MLP neural network 

Table 3.1: Sample values ofthe actual and the estimated MW margins using the MLP neural networks, for 
different topologies for the New England 39-bus test system 

Base case Contin ency C 1 Contin ency C2 Contingency C3 Contin ency C4 
Actual 

2112 
2912 
3047 
2962 
2987 
2547 
3685 
2797 
2925 
2800 

Estimated Actual Estimated Actual Estimated Actual Estimated Actual 
2114.1 1700 1700 1799 1838.4 1810 1816.8 2178 
2907.4 2500 2497 2587 2577.2 2600 2600 2104 
3035.3 2612 2612 2712 2733 2725 2730.2 1972 
2969.2 2535 2535 2635 2596.9 2637 2633.8 2067 
3003.2 2562 2562 2662 2658.7 2675 2669.1 2098 
2542.7 3512 3511.4 3760 3727.7 3762 3761.4 2203 
3680.6 3250 3249.7 3350 3399.1 3360 3356.9 2112 
2776.8 2100 2024.6 2472 2499.7 2475 2478.4 2077 

3067 1775 1625.2 2600 2582.6 2612 2384.7 2187 
2787.3 2375 2374.9 2475 2412.9 2485 2487.6 2108 

Table 3.2: Summary of the test results for base case and different contingencies 
by using the MLP neural network 

ANN for different topologies Maximum % error Average % error 

Base case 4.85 0.77 
Contingency C 1 8.43 1.21 
Contingency C2 2.50 1.15 
Contingency C3 8.70 0.99 
Contingency C4 7.35 3.58 
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Estimated 
2182.4 
2160.5 
2057.3 
2163.1 
2171.6 
2146.7 
2046.9 
2155.2 
2026.2 
2186.3 



3.4 Conclusions 

A scheme for online voltage stability monitoring of a power system using the ANN is 

proposed in this chapter. Separate ANNs are used for voltage stability monitoring for 

different contingencies. For each contingency, an MLP neural network consisting of one 

input layer, one hidden layer, and one output layer is used for estimating the voltage 

stability margin. The reduced vectors of the active and reactive load demands are used as 

the inputs to the ANN, and the available MW margin to the point of voltage instability is 

taken as the output. A sensitivity-based method of selection of important features for the 

ANN is proposed. The conventional method of computing parameter sensitivities of the 

voltage stability margin has many limitations, as discussed in section 2.4 in the previous 

chapter. A regression-based method is proposed to compute the sensitivities, which 

overcomes many limitations of the conventional method, such as fixed direction of 

increase in system stress, and numerical difficulty in finding the exact point of voltage 

instability. The sensitivity-based selection of the important inputs provides a systematic 

way of reducing the number of features. The ANN architectures designed by this method 

have smaller size with sufficient accuracy and high execution speed. The test results 

indicate the effectiveness of the proposed method for online voltage stability monitoring. 

For the secure operation of the power system, it is very important that the utilities 

monitor the voltage stability of the system on a continuous basis [51]. The proposed 

regression-based sensitivity analysis method can give realistic and accurate information 

regarding the dependency of the voltage stability margin on the parameters considered. 

Based on the sensitivity information, the important parameters are chosen as input 
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features for the ANN. The utility can acquire the values of these parameters from the 

measurement units or the state estimator at regular intervals of time, and obtain the 

estimates of the available voltage stability margin for the critical contingencies using the 

proposed scheme. 
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Chapter4 

Multicontingency Voltage Stability Monitoring Using 
an Enhanced Radial Basis Function Network 

4.1 Introduction 

There are many works reported on online voltage stability monitoring in the literature, 

exploring the capability of the ANN to approximate the functional relationship between a 

voltage stability indicator and the measurable power system parameters that affect the 

chosen voltage stability indicator [26-33]. Chapter 3 describes a scheme for online 

voltage stability monitoring using the Multilayer Perceptron (MLP) neural network. A 

major limitation of the use of ANNs for online voltage stability monitoring arises due to 

the fact that the functional relationship itself gets changed from one topology to the 

other. This results in the requirement of an additional ANN for each new topology. When 

a contingency occurs, the system topology may change. For a large power system with 

numerous potentially dangerous credible contingencies, it poses the practical problem of 

implementing large number of ANNs for voltage stability monitoring. 

A scheme for real-time assessment of voltage stability of a power system for 

multiple contingencies using a single ANN is presented in this chapter. A Radial Basis 

Function Network (RBFN) is used to provide an estimate of the voltage stability margin 

for different contingencies. The active and reactive power demands of the loads are used 

as input features to the RBFN and the available MW margin to the point of voltage 

instability is used as an indicator of the voltage stability of the system. The proposed 
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scheme has the ability to get adaptive training when subjected to any new training 

pattern. Risk of network size growing bigger with time as a result of network adaptation 

is eliminated by using a network pruning strategy. The online voltage stability monitoring 

scheme is applied to the New England 39-bus power system and the test results are 

presented. 

4.2 Radial Basis Function Network 

Radial Basis Function Networks (RBFN) are a special class of feed-forward neural 

networks. An RBFN consists of three layers: an input layer, a hidden layer and an output 

layer. The network is capable of performing nonlinear mapping of the input features into 

the output. The hidden layer contains neurons with nonlinear functions called basis 

functions, whose arguments involve the Euclidian distance between the applied input 

pattern and the centre of the basis function. The Gaussian function is the most commonly 

used basis function for the RBFNs. It has been established by researchers that an RBFN 

with sufficient number of Gaussian basis functions in the hidden layer can be used as a 

universal approximator [53-55]. 

Let there be 'q' Gaussian basis functions in the hidden layer of an RBFN and 

let{ti }:
1 
be the centres of the basis functions. The Gaussian Radial Basis Function at the 

centre ~ for an input X is defined as, 

- - IIX-tJ ·-g(X,tJ-g<IIX-till)-exp(- 2 ), Vt-l, ... ,q, 
2cr 

(4.1) 

where IIX-till is the Euclidian distance between the input vector X and the centre ti, and 
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a is the spread parameter of the Radial Basis Function. 

For a single neuron at the output layer, the output of the RBFN is given by, 

f(X) = :f wig(IIX-till) (4.2) 
i=l 

where wi is the weight connecting the ith neuron in the hidden layer to the output. 

For the commonly used artificial neural networks such as the Multi Layer Perceptrons 

(MLP}, described in Chapter 3, the design of the network involves all the layers of the 

network simultaneously. The design of the hidden and output layer of an RBFN can be 

carried out separately, at different points of time [53]. The hidden layer applies a non-

linear transformation from the input space to the hidden space. The output layer is a 

linear combination of the activations in the hidden layer. The weights connecting the 

hidden layer to the output layer are found by using linear optimization techniques. The 

fact that the output layer can be designed separately and that the output is a linear 

combination of hidden activations, makes possible the use of a single RBFN for voltage 

stability monitoring for different contingencies [58]. As described in the next section, the 

centres of the RBFN for selected contingencies are chosen by using a sequential learning 

strategy. The optimal output weights are found for different contingencies, which linearly 

combine the activations of the same hidden layer to give the desired output for different 

contingencies. 
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4.3 Multicontingency online voltage stability monitoring 

Loading margin is used in this research as an indicator to the proximity to the voltage 

collapse point, similar to the online voltage stability monitoring scheme proposed in 

Chapter 3. Real and reactive load power demands at the busses are taken as the input data 

set. It is to be noted here that other measurable power system parameters also can be used 

as inputs to the ANN [26-33]. In fact, parameters that highly affect the voltage stability 

may vary from one system to another. A purpose of the present research is to design an 

efficient ANN that should work as a mapping tool to estimate voltage stability margin for 

any suitable combination of inputs. A Radial Basis Function Network (RBFN) is used to 

predict the available MW margin to the point of voltage instability. The same RBFN is 

trained for different topologies; the number of outputs of the RBFN being equal to the 

number of topologies considered. Once trained, the RBFN can be used to predict the 

voltage stability margin for different contingencies. The basic architecture of the RBFN 

has much similarity with the Resource Allocating Network (RAN) described in [59] and 

the Minimum Resource Allocation Network (MRAN) proposed in [60]. Use of RAN or 

MRAN for the present problem was not found suitable since the ANN required a large 

number of hidden units due to the highly nonlinear nature of the mapping and inadequate 

capability of the ANN to interpolate unforeseen patterns. The possible reason for these 

drawbacks is the absence of any regularization technique in these networks. The 

architecture of RBFN proposed in this research uses the basic methodology of RAN and 

MRAN for selecting hidden neurons, and then uses a regularization technique before 

finding the optimal weights connecting hidden neurons and the outputs, by using a Least 
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Means Square (LMS) algorithm. The ANN can be upgraded or adapted when subjected to 

new patterns. The risk of network size growing bigger as a result of the adaptation 

process is eliminated by implementing a network pruning strategy as proposed in [60]. 

The basic online voltage stability monitoring scheme using RBFN is shown in Figure 4.1, 

followed by detailed description of the individual steps. 

[ Contingency analysis and generation of training 

J data for selected contingencies 

+ 
[ Formulation of the regression models to compute 

J parameter sensitivities of the voltage stability margin 

• [ Sensitivity-based selection of input features 

~ 
Offline design of the RBFN: 

Choice of data centers for the hidden layer 
and training for different contingencies 

1 
Online implementation of the proposed scheme, 

implementation of the network adaptation strategy 
and network pruning strategy 

J, 
[ Online estimation of the voltage stability margin ] 

Figure 4.1: Online voltage stability monitoring for multiple contingencies 
using a single Radial Basis Function Network. 

4.3.1 Identification of critical contingencies and generation of training data 

Analysis of credible contingencies has been the standard practice in a power system [51]. 

A selected number of worst-case contingencies are considered in this study. Without loss 

of generality, any number of contingencies can be accommodated in the proposed 
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scheme. Training data sets for the RBFN are generated for the base case and the selected 

contingencies. The real and reactive power at all the load busses and the generator real 

power outputs are varied randomly within specific limits and the change in total load in 

the system is distributed among the available generators in proportion to their 

participation factors in the base case. The participation factor for a generator in the base 

case is taken as the ratio of the generator real power output to the total real power 

generation in the system. Real and reactive load powers are taken as the input vector to 

the RBFN. Corresponding to each loading pattern, the MW margin to the point of voltage 

instability is recorded for each network topology. The set of MW margins are taken as the 

outputs of the RBFN. 

4.3.2 Selection of input features 

The dimension of input features is reduced by the sensitivity-based feature selection 

method described in section 3.2.3 of Chapter 3. Separate regression models are first 

developed for each of the system topologies considered. Sensitivities of the voltage 

stability margin with respect to the load active and reactive power demands are found by 

differentiation of the regression models. An input qualifies as a feature for the RBFN 

when the sensitivity of the voltage stability margin with respect to that input exceeds the 

predefined cut-off value. Separate minimum cutoff values of sensitivity, viz., S~min and 

S!min are used to select the real and reactive power demands respectively, for the lh 

contingency. The final set of input features are found by the union of the features selected 

for different topologies. The set Tj of active power demands included in the input feature 
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set for the /h system topology is defined as: 

(4.3) 

where 'ld' is the number of load busses in the system, and 'c' is the number of 

contingencies considered for voltage stability monitoring, including the base case. 

Similarly, the set of reactive power demands chosen as input features for the RBFN is 

defined as: 

(4.4) 

The final set of real power demands selected as input features to the RBFN is given as: 

c 
TP = u TP' . 1 J J= 

and the final set of reactive power demands chosen as input features is given as: 

4.3.3 Offline design of the RBFN 

(4.5) 

(4.6) 

Let {Xi'dJ;'=t be the training patterns, where Xi E Rs is the vector of real and reactive 

load powers at busses, 's' being the dimension of the input vector; diE Rc is the 

corresponding MW margins for different system topologies, 'c' is the total number of 

contingencies considered, including the base case. The design of the RBFN begins with a 

single hidden unit. New units are added according to the sequential learning strategy 

described below. The first sample pattern from the training data set is chosen as the data 
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centre of the first neuron in the hidden layer, i.e., 

tl =XI 

The spread parameter 0' of the radial basis function shown in (4.1) is taken as, 

where 0' min is the minimum specified value of the spread parameter. 

The initial weight matrix is defined as, 

W1 =d{, 

(4.7) 

(4.8) 

(4.9) 

where d1= (d1pd2P ... ,dc1)T is the vector of target MW margins for the input X1 for 'c' 

different contingencies. 

The outputs of the RBFN are given by, 

(4.10) 

The qth hidden unit for q;::: 2 is added for the ith pattern when one or both of the 

following criteria are satisfied. 

and 

min{lldki -fk (Xi)ll, Vk = 1, ... ,c} ~ emin 

II Xi - tnr II ~ Eq 

(4.11) 

(4.12) 

where tnr is the data centre nearest to the input sample pattern Xi in terms of Euclidian 

distance, emin is the minimum tolerable error for the output of the RBFN, and Eq is 

defined as follows. 

(4.13) 

where Emax is the initial value of the distance parameter for adding a new hidden unit, y is 
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the decay constant with 0 < y < 1 , and ernin is the minimum allowable value of the 

distance parameter. 

The exponential decay criterion (4.13) of the distance parameter allows fewer basis 

functions with larger widths initially. As the number of hidden units grows, more basis 

functions with smaller widths are added to fine-tune the mapping. 

The spread parameter a for the newly added hidden unit is defined as follows [59, 60]. 

(4.14) 

where K is a constant. 

The process of adding a new unit to the hidden layer of the RBFN is described above. In 

the next step, an optimal set of weights is found, which connects the hidden units to the 

output layer. To improve the interpolating capability and to ensure a smooth mapping, the 

RBFN is regularized by penalizing large weights as shown in Appendix A.4. This 

regularization technique is similar to what is used in Ridge regression [61, 62] and is used 

here for its simplicity and effectiveness. 

The optimal weight vector between the hidden layer and the output of the RBFN 

is determined by linear optimization. For the ith training pattem,{Xi'dJ, the optimum 

weight vectors connecting 'q' hidden units to the outputs are given by, 

(4.15) 

Each column of Wq is defined as [Appendix A.4], 

(4.16) 

where w( = [ w~t' w1t' ... , w~1 f is the output weight vector connecting 'q' hidden units to 
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the output for the t1
h contingency; t = 1, ... , c ; c being the number of contingencies 

considered, 

D, = [d,pd,2 , ... ,d,JT is the vector containing desired t1
h outputs for all the patterns 

Gq is the matrix of basis functions and is given by, 

g(Xl ,tl) g(XI ,tz) 

g(Xz ,tl) g(Xz ,tz) 
Gq= 

A
1 
=regularization parameter, 

g(Xl'tq) 

g(Xz,tq) 

Iq is an identity matrix of dimension [qxq]. 

(4.17) 

The regularization parameter A., ensures smoothness in the mapping and enhances the 

capability of the ANN to map unforeseen patterns. The desired value of the regularization 

parameter is found by iteration using (4.18), which is obtained by using Generalized 

Cross Validation of the prediction error of the RBFN [61-63]. Starting with an initial 

guess forA.,, the weight vector w1 and other required quantities are computed. Using these 

quantities A, is computed again using the right hand side of (4.18). The iterations are 

continued untill no appreciable change is observed in A., . 

DTP2D trace(A-1-A A-2
) A= I t t 

1 w; A-1w
1 
trace(P) 

(4.18) 

(4.19) 
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and (4.20) 

To find the output weight vectors w~, t = 1, ... ,c, one needs to find the inverse of the 

matrix A in (4.20) as required in (4.16). Appendix A.4 shows that, after addition of a 

new training pattern or new basis function along with a training pattern, A -I can be 

computed by simple matrix manipulations using its value from the previous step. This 

saves the effort of matrix inversion which is a demanding task for a large system and for 

multiple contingencies. 

Once trained off-line with the example patterns{Xi'dJ;=I, outputs of the RBFN having 

'Q' basis functions for any input X are given by, 

f(X) = [fpf2 , ••• ,fc] 

= [ g(jjX-t1jj),g(jjx -t2 jj), ... ,g<llx -tQII) ]w (4.21) 

where W = [ w I' w 2 , ••• , w c] is the output weight matrix containing weight vectors 

connecting hidden units to different outputs. 

4.3.4 Adaptive training of the RBFN 

The proposed RBFN for voltage stability monitoring can be updated by training the 

network with new patterns that represent the new operating conditions or new loading 

scenario in the system. When subjected to a new training pattern{X,d}, criteria (4.11) 

and (4.12) are evaluated to determine whether a new hidden unit needs to be added or 

not. In the next step, the output weight matrix is found by using (4.15) and (4.16). The 

MW margin is then estimated by (4.21). The risk of the number of hidden units growing 
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without bound as a result of network adaptation is eliminated by using a network pruning 

strategy described in the next section. 

4.3.5 Network pruning strategy 

The basic idea of the pruning strategy is that, a neuron from the hidden layer is removed 

if it does not make sufficient contribution to the output over a specified number of 

operations of the RBFN. 

Let oi =[o1i,o2i, ... ,ocifbe the output vector of the jth hidden unit contributing to the 

outputs of the RBFN for an input X, where the kth element of Oj is given by, 

(4.22) 

The hidden unit 'j' is removed if and only if the value of every element in the output 

vector Oj provides an insignificant contribution to the output for a number 'P' of 

consecutive operations. The number 'P' is specified based on the past experience 

regarding the variation in the power system loading patterns and availability of 

computational resources. To avoid inconsistencies in comparing the contributions of 

different hidden units with a specified threshold, the elements of the output vector Oj are 

normalized as follows. 

oki 
rki = 11---'----n 

max(abs(o)) 
(4.23) 

The /h hidden unit is eliminated if it satisfies the following criterion 'P' successive times. 

rki::::; rmin; \fk = l, ... ,c (4.24) 
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where rmin is the threshold contribution to the output for pruning a hidden unit. Numerical 

value of rmin is decided in the present research by trial and error method to give the best 

result. 

4.4 Simulation results 

The proposed scheme for online voltage stability monitoring for multiple contingencies 

has been applied to the New England 39-bus test system [57]. The single-line diagram of 

this test power system is shown in Figure A.l in Appendix A. For generating training 

data for the RBFN, active and reactive powers at the load busses are varied randomly 

within ± 20% of the base case values. The change in load is distributed among the 

available generators in proportion to their participation factors. For each operating 

condition, active and reactive load powers are recorded as input features. For each 

loading pattern, the MW margins corresponding to different contingencies are obtained 

by using PowerWorld Simulator [18] and are recorded as the outputs of the RBFN. The 

loads are assumed to be of constant power factor type. The training data set for the ANN 

and the sensitivity-based method of selecting important features are the same as in 

Chapter 3. Test results are reported in this section for the base case operating condition 

and four different contingencies as shown in Table A.l. The contingencies are selected in 

such a way that they reflect significant changes in system topology. For example, all the 

contingencies considered in this study involve outage of a radial line, which disconnects 

the corresponding generator also from the system. The lost generation is supplied by the 

available generators in proportion to their participation factors. Table A.3 shows the 
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number of features selected for different minimum cut-off values of the sensitivities. The 

subsequent results given in this section are based on the cut-off values of Sp min and Sq min 

given in Table A.4 for different contingencies. Following the method selection of features 

described in section 4.3.2, the final number of features is 21, which consists of 13 active 

load powers and 8 reactive load powers, as shown in the following sets TP and Tq of 

features: 

TP ={P1,P6,P7,P8,P9,Pl0,P11,P12,P13,P14,P15,P16,P17} 

Tq = {Q2,Q3,Q4,Q5,Q14,Q15,Q16,Q17} 

These 21 features are used as inputs to the RBFN that is used for voltage stability 

monitoring for the base case and all the contingencies considered. 

The design of the RBFN starts with a single neuron at its hidden layer. Initial 

values of the design parameters described in section 4.3.3 are given in Table 4.1. These 

values are found to give best results for the present case in terms of output errors. The 

initial high value of the distance parameter Emax ensures that not too many units are 

added to the hidden layer and also has the effect of smoothing the mapping since spread 

parameter a takes higher values initially. The distance parameter decays exponentially 

as new units are added, thus improving the mapping capability of the RBFN locally 

around the data centres in the hidden layer. After addition of each neuron to the hidden 

layer, the regularization parameter 'A and the output weight matrix are updated. The size 

of the RBFN at the end of the off-line training is 21-27-5, with 21 input nodes that 

represent selected active and reactive powers as important features, 27 hidden nodes and 

5 output nodes that give the MW margins for 5 different system topologies. The 
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estimated values of the MW margins based on the test patterns and the actual margins for 

the base case, Contingency Cl, C2, C3 and C4 are shown graphically in figures 4.2 to 

4.6. Table 4.2 shows the actual and estimated values of the MW margins plotted in 

figures 4.2 to 4.6. Table 4.3 gives the summary of simulation results for the base case, 

Contingency Cl, C2, C3 and C4. 

Table 4.1: Values of different design parameters for the RBFN 

Parameters (Tmin emin Emax y 
Emin K rmin 

Values 300 20 2000 0.97 500 0.8 0.1 

The adaptation process of the RBFN to changing loading scenarios was simulated 

by subjecting the network to a series of different loading patterns as inputs and 

corresponding MW margins for different contingencies as the outputs. The network 

pruning strategy described in section 4.3.5 was implemented with P = 5, i.e., a hidden 

node was eliminated if it did not make significant contribution to the output for 5 

successive times. Fig. 4.7 shows the number of hidden units after subjecting the RBFN to 

every 5 new patterns. After performing adaptive training with 30 new patterns, 13 new 

units were added to the hidden layer and 5 old units were eliminated due to the pruning 

strategy, thus increasing the size of the hidden layer by 8 new units. 
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Figure 4.2: Estimated and actual values of the MW margins for the Base case of the 
New England 39-bus test system using single RBFN 
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Figure 4.3: Estimated and actual values of the MW margins for the contingency Cl of the 
New England 39-bus test system using single RBFN 
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Figure 4.4: Estimated and actual values of the MW margins for the contingency C2 of the 
New England 39-bus test system using single RBFN 
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Figure 4.5: Estimated and actual values of the MW margins for the contingency C3 of the 
New England 39-bus test system using single RBFN 
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Figure 4.6: Estimated and actual values of the MW margins for the contingency C4 of the 
New England 39-bus test system using single RBFN 

Table 4.2: Sample values of the actual and the estimated MW margins by the RBFN for different 
topologies for the New England 39-bus test system 

Base case Contingency C 1 Contin ency C2 Contingency C3 Contin ency C4 
Actual Estimated Actual Estimated Actual Estimated Actual Estimated Actual Estimated 

2112 2122.3 1700 1698.9 1799 1807.1 1810 1818.2 2178 2131.9 
2912 2886.9 2500 2502.4 2587 2564.6 2600 2577.6 2104 1983.5 
3047 3048.8 2612 2610.6 2712 2714.8 2725 2727.7 1972 1995.5 
2962 2968.1 2535 2536.1 2635 2637.9 2637 2640.2 2067 2040.5 
4099 4084.5 3512 3515.9 3760 3746.8 3762 3748.8 2098 2111.7 
2547 2546.1 2122 2122.9 2224 2221.6 2235 2233.6 2203 2153.4 
3685 3695.4 3250 3258.4 3350 3358.3 3360 3370.2 2112 2081.7 
2797 2770.8 2100 2103.5 2472 2446.3 2475 2449.5 2077 2028.8 
2212 2168.4 1800 1833.4 1900 1887.8 1910 1894.7 2187 2143.3 
2800 2895.9 2375 2345.9 2475 2566.8 2485 2576.3 2108 2075.7 

Table 4.3: Summary of test results for the base case and the selected contingencies by using single RBFN 

Maximum% Average% 
RBFN for different error inMW errorinMW 

topologies margin margin 
Base case 3.42 0.86 

Contingency C 1 1.85 0.39 
Contingency C2 3.70 0.76 
Contingency C3 3.67 0.77 
Contingency C4 5.72 2.05 
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Figure 4.7: Variation in the total number of hidden neurons for the RBFN subjected to new test patterns 
representing the changing loading scenarios 

4.5 Online implementation of the proposed scheme 

A complete power system security analysis framework comprises of stability monitoring, 

security assessment, security enhancement, emergency control and restorative control. 

Online voltage stability monitoring, which is the focus of the present chapter, is 

considered as an integral part of the power system stability monitoring problem. 

Contingency analysis of a power system is done as a part of the security assessment. 

Evaluating N-1 contingencies with respect to the available MW margin is a standard 

procedure followed in many utilities. N-1 contingency means outage of one element in 

the system. MW margins for the base case and different selected line outages for specific 

loading patterns are computed in the control centre by using standard analytical tools. It 

is not feasible to have MW margins for all possible loading scenarios and corresponding 
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generation schedules. The ANN can interpolate the unforeseen or unstudied cases by 

capturing the functional relationships between the MW margin and the loading scenario 

of the power system. An important issue with the use of analytical methods for power 

system security assessment is the computational time [64], even with the state-of-the-art 

processor. Once trained offline with a wide range of loading scenarios, the proposed 

RBFN can be used for online voltage stability monitoring for different contingencies. The 

loading scenario in a power system may change with time. Designing a new ANN every 

time the loading scenario changes significantly is a demanding task. The proposed RBFN 

can be adapted to changing loading scenarios, as described in section 4.3.4, thus 

eliminating the need for a fresh ANN for voltage stability monitoring. The network 

pruning strategy described in section 4.3.5 keeps the size of the hidden layer of the RBFN 

within limit. 

4.6 Comparison of the MLP and the RBFN for online voltage stability 
monitoring 

Radial Basis Function Networks (RBFN) and Multilayer Perceptrons (MLP) are 

nonlinear layered feedforward networks. They are both universal approximators [53-55]. 

However, these two ANNs differ from each other in some important aspects regarding 

their architectures, and consequently in their applications for online voltage stability 

monitoring. 

• The MLPs construct global approximations to nonlinear input-output mappings 

with the help of one or more hidden layers of neurons and synaptic weights. 
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RBFNs construct local approximations to nonlinear input-output mappings using 

nonlinear basis functions in the hidden layer and the connecting weights to the 

output. As a result of local learning, the RBFNs usually needs a greater number of 

parameters or hidden nodes to approximate a nonlinear mapping, compared to 

MLPs. 

• The design of different layers of an MLP has to be done simultaneously. On the 

other hand, the design of different layers of RBFN can be done separately, at 

different points of time. This facilitates the use of a single RBFN for 

multicontingency voltage stability monitoring, as described in this chapter. The 

hidden layer is designed for multiple contingencies using a sequential learning 

strategy. The activations of the hidden layer are then combined by using linear 

optimization to give the output. 

• One possible advantage of the MLP over the RBFN is the smaller number of 

hidden nodes needed for the nonlinear mapping. As shown in Chapter 3, the 

MLPs for different contingencies consist of 10 hidden neurons. The RBFN used 

in this chapter consists of 27 hidden nodes. Use of different MLPs for different 

contingencies however may be a disadvantage when a large number of potential 

contingencies need to be considered. 

• Design of the MLP described in Chapter 3 is simple. The ANN can be used 

almost as a black-box for input-output mapping. Comparatively, the design of the 

RBFN proposed in this chapter is mathematically involved. It may therefore be 
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easier to use different MLPs for different contingencies for a smaller system with 

small number of potentially dangerous contingencies. 

• An important advantage of the proposed RBFN is that, it can be adapted online, 

depending on the changing operating scenario of the power system. The MLP 

however, may need a fresh training if the operating conditions change 

considerably. For a large power system having numerous potentially dangerous 

contingencies, use of the proposed RBFN architecture is advisable for online 

voltage stability monitoring. 

4. 7 Conclusions 

This chapter presents a scheme for online voltage stability monitoring for multiple 

contingencies using a single RBFN. In an RBFN, the output layer and the hidden layer 

can be designed separately, unlike other ANNs such as the MLPs. This allows 

optimization of the output weights for different contingencies with the same hidden layer. 

Active and reactive load powers are chosen as input features to the ANN and the 

corresponding MW margins for the base case and different contingencies are taken as the 

outputs of the network. The proposed scheme should work for any other possible 

combinations of measurable power system parameters as inputs. For large power 

systems, training separate ANNs for all credible contingencies is a demanding task. The 

proposed method allows the use of a single ANN for different contingencies. The 

additional resource needed for monitoring voltage stability for a new contingency is the 

storage of an additional optimal weight vector in the output weight matrix in the off-line 

92 



training phase. Use of the same hidden layer for all contingencies saves much of the 

computational resources. The number of outputs of the RBFN can be limited by 

performing contingency analysis and selecting the required number of contingencies to 

be monitored. The sequential learning strategy used for designing the hidden layer 

minimizes the number of units in the hidden layer, resulting in a compact architecture for 

the ANN. Addition of a new training pattern or a new basis function along with a training 

pattern requires simple algebraic operation, without requiring extensive matrix inversion 

computations. The design procedure for the proposed RBFN is therefore computationally 

efficient. The proposed ANN can be adapted as the loading scenario changes in the 

power system. Growth of network size due to the adaptation process is limited by 

network pruning strategy. The test results indicate the effectiveness of the proposed 

method for online voltage stability monitoring for multiple contingencies. 

A state-of-the art Dynamic Security Assessment (DSA) scheme of a power 

system works on real-time information or snapshots of the system. It comprises of 

measurement, modelling and state estimation, computation, and control actions. 

Intelligent systems technology is now being implemented in the computation module, in 

addition with conventional analytical solution tools. The proposed method can find its 

use in such modules as a tool for monitoring voltage stability of the system in real time. 
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Chapter 5 

Sensitivity-based Generation Rescheduling for 
Multicontingency Voltage Stability Enhancement 

5.1 Introduction 

Chapters 3 and 4 describe proposed schemes for online voltage stability monitoring using 

ANN. At any point of time, the power system operating condition should be stable, 

meeting various operation criteria, and it should also be secure in the event of any 

possible contingency. There are different measures against voltage instability in real-time 

and in the planning and the design stage of a power system. The real-time measures can 

be of preventive or corrective in nature. To prevent immediate loss of voltage stability, 

corrective actions are needed. Preventive measures are then implemented to improve 

voltage stability margin of the system. The preventive and corrective control of voltage 

stability mainly constitute one or more of the following options: rescheduling real power 

generation, changing load tap changer (LTC) settings, adjusting phase shifter angles, 

reactive compensation and load shedding. In the present chapter, generator real power 

rescheduling is considered as the means for enhancing voltage stability of a power 

system. A sensitivity-based optimization method satisfying voltage stability constraints is 

implemented to reschedule the generations. The sensitivities of the voltage stability 

margin with respect to the generator real power outputs are found by using the ANN. The 

proposed method can be taken as a part of the preventive and corrective control of 
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voltage instability, along with other means of improving the voltage stability of a power 

system. 

Most of the available methods of generation rescheduling for voltage stability 

enhancement use optimization to determine the correct amount of rescheduling needed to 

drive the operating point away from the potentially dangerous situation. The effect of 

change in control variables on the voltage stability of the system is usually included in 

the optimization process in the form of linearized sensitivities of the voltage stability 

margin with respect to the parameters of interest. Derivation of an accurate analytical 

expression for the sensitivities for multiple contingencies is a challenging task [37]. In the 

present research, the sensitivities for different network topologies are computed by using 

the enhanced Radial basis Function Network (RBFN) described in Chapter 4. 

Computation of sensitivities in this manner overcomes some of the limitations of the 

analytical method, as described in Chapter 3. The computed sensitivities are used in 

formulating the voltage stability constraints to be used in the optimization routine to find 

the optimal outputs of the generators to minimize the cost of total generation and improve 

the voltage stability margin of the system. The optimum generations for one topology 

may not ensure sufficient voltage stability margin for another. Hence, multiple 

contingencies are considered. Sensitivities for different contingencies are used to find 

optimum generations that ensure minimum voltage stability margin for multiple 

contingencies. 
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5.2 Sensitivity-based generation rescheduling 

A voltage stability-constrained optimum generation rescheduling scheme aims at 

maintaining the voltage stability margin of the power system above some specified value, 

along with satisfying other operating criteria [65, 66]. The normal practice is to use the 

linearized sensitivities of the voltage stability margin with respect to generator outputs to 

formulate the voltage stability constraint in the optimization method [35-37, 67, 68]. The 

basic idea is that, a change in generator output results in a change in the voltage stability 

margin, which is estimated by the product of the change in generation with the 

corresponding sensitivity as shown below: 

(5.1) 

where Si is the sensitivity of the voltage stability margin with respect to the output of the 

i1
h generator, ~Pi is the change in MW output of the ith generator, and ~Mi is the change 

in voltage stability margin due to the change in generation of the i1h generator. 

The objective of the generation rescheduling is to find the optimum amounts and 

combination of changes ~Pi , such that the effective change in voltage stability margin is 

above or equal to what is required for a secure operation of the power system. If ~Mmin is 

the minimum MW margin enhancement required for the secure operation of the system, 

then the generation rescheduling should satisfy the following constraint: 

!si~Pi ~ ~Mmin 
i=l 

where g is the number of generators participating in the generation rescheduling. 
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5.2.1 Multicontingency generation rescheduling 

It is important to ensure secure operation of a power system in the event of potential 

contingencies. Generations rescheduled to enhance voltage stability margin for a 

particular operating condition may not serve to maintain the margin for some other 

contingency. Therefore it is necessary to make sure that the minimum voltage stability 

margin is maintained for all the critical contingencies, after rescheduling generations for 

a particular operating state. To this end, sensitivities of the voltage stability margin with 

respect to the generator outputs are computed for the base case, as well as for all the 

critical contingencies. The following inequality constraints are incorporated in the 

optimization program used for generation rescheduling, to maintain minimum voltage 

stability margins for the base case and all the contingencies considered: 

gk 

L~PiS~ ~ ~Mkmin Vk = l, ... ,c (5.3) 
i=l 

where gk is the number of generators participating in the generation rescheduling for the 

k1
h contingency, 

S~ is the sensitivity of the voltage stability margin with respect to the i1
h generator 

output for the kth contingency, 

~Mkmin is the minimum required enhancement m the MW margin for the k1
h 

contingency to ensure the secure operation of the system, 

'c' is the number of contingencies considered, including the base case. 
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5.3 Computation of sensitivities 

The sensitivity information is needed to include in the optimization program the effect of 

change in generations on the voltage stability of the system. A commonly used method to 

compute the sensitivities of the voltage stability margin with respect to different 

parameters has been the use of the singularity of the powerflow Jacobian matrix at the 

point of voltage instability [4, 34]. The main drawbacks of the method are discussed in 

Chapter 2. A regression-based method of computing the sensitivities is proposed in 

Chapter 3. It is well-known that the ANNs have superior capability of mapping nonlinear 

relationships, compared to simple regression models [53-55]. To have a more accurate 

representation of the parameter sensitivities of the voltage stability margin, the ANN is 

used instead of the regression model to compute the sensitivities. The basic architecture 

of the ANN is the same as the RBFN proposed in Chapter 4. The only difference is that 

separate single-output RBFNs are used for finding sensitivities for different network 

topologies. The inputs to the RBFN are the generator MW outputs and the load real 

power demands, and the output is the MW margin to the point of voltage instability. 

Let y=F(x) be the mapping approximated by the RBFN, where y is the voltage 

stability margin and xis the vector of input parameters to the ANN. The sensitivities are 

computed by perturbing each input at a time by a finite amount and recording the 

corresponding change in output of the RBFN. The ratio of the two finite differences 

approximates the sensitivity Sx of the voltage stability margin with respect to the 

parameter x, i.e., 
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s = ay:::: ~Y 
X ax Ax 

where 8x is the change in input x, and 8yis the change in output of the RBFN. 

(5.4) 

A strategy is needed to maintain uniformity in the required perturbations 8x for inputs of 

different magnitudes. A fixed percentage 'p' of each input is taken as the corresponding 

perturbation. For the input x, the value of ~x is computed as: 

~x= xp 
100 

(5.5) 

Special care has to be taken to decide the size of 8x, and consequently, of 'p'. A large 

value of 'p' may fail to account for the nonlinear mapping due to over-linearization 

around the point of interest. Starting with an initial value, the size of 'p' is reduced until 

no appreciable change is observed in the calculated values of the sensitivities. The 

following steps are taken to determine the appropriate value of 'p', and consequently, of 

the step size for 8x : 

1. Choose an initial value of p: p = p0 .Compute the sensitivities Sx IP of the output of 

RBFN at p, using (5.4) and (5.5) 

2. Reduce p by a small amount: p = p- ~p ; compute the sensitivities, Sx lp-~p. 

4. If min {~Sx }:2': ~Smin, where 8Smin is the minimum specified tolerance for the 
X 

changes in sensitivities, go to step 2, otherwise, go to step 5. Numerical value of 
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L\Smin is chosen by trial and error process to ensure convergence of 'p' within a 

value of +1- 10. 

5. Stop the iterations. 

In the sensitivity-based generation rescheduling scheme presented in this chapter, the 

sensitivities of the voltage stability margin with respect to the generator MW outputs are 

found by the above method. An RBFN is trained for each network topology with the 

generator MW outputs and the load real power demands as the inputs, and the MW 

margins to voltage instability as the corresponding outputs. The training data are 

generated by randomly varying the load active power demands and the generator MW 

outputs within specific limits. Corresponding to each operating condition, the available 

MW margin to the point of voltage instability is recorded as the output of the RBFN. 

Once the RBFN is trained with sufficient varieties of sample training patterns 

representing different possible operating conditions, the sensitivities of the voltage 

stability margin with respect to the generator outputs can be found using (5.4). 

The sensitivities are found for the base case and all other contingencies 

considered. It is to be noted that the above-described procedure for finding the 

sensitivities does not depend on any particular choice of direction of increase in system 

stress. Although a certain direction is assumed for increasing system stress while 

generating the training data, different directions can be assumed for different operating 

conditions and the directions do not have to be linear as commonly used in the case of 

sensitivity expression given in (2.7). One more advantage is that one does not have to 
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find the Jacobian matrix exactly at the point of voltage instability, which is numerically a 

difficult task. 

5.4 Formulation of the generation rescheduling problem 

The most economic amount of generation rescheduling to enhance the voltage stability 

margin by at least a specified amount is found by using optimization [69, 70]. The 

sensitivities of the voltage stability margin with respect to the generator real power 

outputs are found by using trained RBFNs as described above. The voltage stability 

constraints for multiple contingencies are incorporated in the form of inequalities stated 

in (5.3). Other operating constraints of a power system, such as the real and reactive 

power balance, voltage constraints at the busses, generator output limits are included in 

the optimization routine. The total cost of generation is taken as the objective function to 

be minimized. The optimization problem is stated as follows: 

g 

Minimize :L,F(pi) (5.6) 
i=l 

subject to 

N 

Pi= IVii:L,IviiiYijicos(8i -8i -Si), Vi= 1, ... ,g (5.7) 
j=l 

N 

P1di = lv;I:L,Ivilly;ilcos(8i -8i -Si), Vi= 1, ... ,ld (5.8) 
j=l 

N 

qi = 1Vii:L,Ivji1Yijlsin(8i -8j -eij), Vi= 1, ... , N (5.9) 
j=l 
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(5.10) 

(5.11) 

Vi min :::; v; :::; Vi max' Vi= 1, ... , N (5.12) 

f~piS~ ~ ~Mkmin''dk = 1, ... ,c (5.13) 
i=I 

where F(pi) is the operating fuel cost of the ith generator and is given by the quadratic 

Plcti is the real power demand of the ith load, 

qi is the reactive power injection at the ith bus, 

Yii = IYiiiLeii is the i/h element of the bus admittance matrix, 

P1oss is the total real power loss in the system, 

Pi min and Pi max are the minimum and maximum MW limits of the i1h generator, 

vi min and vi max are the minimum and maximum voltage limits of the i1h bus, 

~Pi is the change in MW output of the i1
h generator in the base case, 

~kmin is the required minimum MW enhancement in voltage stability margin for 

the kth contingency, 

gk is the number of participating generators for the k1h contingency, 

S~ is the sensitivity of the voltage stability margin with respect to the i1h generator 

for the k1h contingency, 
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cis the total number of contingencies considered, including the base case. 

Inequality constraints (5.13) ensure that the rescheduling of generations in the base case 

results in a safe voltage stability margin for the base case as well as for different potential 

contingencies. 

5.5 Simulation results 

The proposed scheme of generation rescheduling for voltage stability enhancement for 

multiple contingencies has been applied to the New England 39-bus test system [57]. The 

single-line diagram of this test power system is shown in Figure A.l in Appendix A. The 

sensitivities of the voltage stability margin with respect to the generator real power 

outputs are found by using separate RBFNs for the base case and different contingencies. 

For generating training samples for the RBFN, the active and reactive powers at the load 

busses and the generator MW outputs are varied randomly within± 20% of the base case 

values. The MW outputs of the generators and the active load powers are taken as the 

inputs to the RBFN. For each operating condition, the MW margin is obtained by using 

PowerWorld Simulator [18] and is recorded as the outputs of the RBFN. Separate RBFNs 

are designed for different contingencies. For a contingency involving the outage of a 

generator, remaining generators are allowed to increase the generation in proportion to 

their participation factors in the base case, to compensate for the lost generation. The 

participation factors are taken as the ratio of a generator output to the total generation. 

Test results are reported in this section for the base case operating condition and 

four different contingencies as shown in Table A.l. The contingencies are selected in 

such a way that they reflect significant changes in system topology. For example, all the 
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contingencies considered in this study involve outage of a radial line, which disconnects 

the corresponding generator also from the system. 

The sensitivities are found with the help of the RBFNs trained with sufficient 

variety of training samples consisting of the generator real power outputs and the load 

real power demands. Separate RBFNs are used for each network topology. Table 5.1 

gives the values of the designed parameters of the RBFN. The values are determined by 

trial and error method to give best results. Table 5.2 gives the number of hidden units for 

the RBFNs for the base case and different contingencies. 

Table 5.1: Values of different design parameters for the RBFN used for computing the parameter 
sensitivities of the voltage stability margin for the New England 39-bus test system 

Parameters O'min emin Emax y Emin K 

Values 200 50 1000 0.97 100 0.8 

Table 5.2: Number of hidden units for the RBFNs used for different topologies for finding the parameter 
sensitivities of the voltage stability margin for the New England 39-bus test system 

Topologies Number of 
hidden units 

Base case 57 
Contingency C 1 59 
Contingency C2 54 
Contingency C3 52 
Contingency C4 51 

The sensitivities of the voltage stability margin with respect to the generator 

outputs are found by using the RBFNs for corresponding network topology, as described 

in section 5.3. Step size of the perturbations given to the generator outputs to compute the 

sensitivities are found using the iterative scheme described at the end of section 5.3. The 
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ratio of the change in output of the RBFN to the change in generator output is taken as 

the sensitivity corresponding to that particular generator. Table 5.3 shows the sensitivities 

of the voltage stability margin with respect to different generator outputs, for the base 

case and different contingencies. 

Table 5.3: Sensitivities of the voltage stability margin with respect to outputs of participating generators, 
found by using separate RBFNs for different topologies 

Topologies Sensitivities of the voltage stability margin with respect to the output of generators 
G30 G32 G33 G34 G35 G36 G37 G38 G39 

Base case -0.3118 -0.8011 -0.8173 -0.5225 -0.8997 -0.8348 -0.6691 -0.7931 -0.8544 
Contingency C1 -0.3294 -0.8653 -0.9565 -0.8268 -0.9649 -0.7904 -0.8720 --- -0.9916 
Contingency C2 -0.2239 --- -0.7261 -0.7721 -0.8173 -0.8588 -0.7178 -0.9054 -0.9658 
Contingency C3 -0.4335 -1.2609 --- -1.2855 -0.7553 -1.2181 -0.8042 -1.4264 -1.4664 
Contingency C4 -0.3828 -0.9901 -0.8238 -1.2742 -0.9879 -0.7179 --- -1.3667 -1.3809 

The sensitivities are used in the optimization routine for generation rescheduling 

to enhance the voltage stability margin for multiple contingencies. The MATLAB based 

power system simulation package MATPOWER [71] is used to find the optimum values 

of the generator outputs for voltage stability enhancement. It uses linear programming as 

optimization method. Voltage stability constraints are included in the MA TPOWER 

programs to implement the proposed algorithm. Table 5.4 shows the voltage stability 

margins in MW before and after generation rescheduling for three different base case 

configurations. Base case 1 represents the original configuration of the New England 39-

bus test system. Base case 2 and 3 are generated by increasing and curtailing the load 

respectively in the load area formed by the busses 18, 17 and 27. In both the cases, the 

change in the load active power demand is distributed among the participating generators 

in proportion to their participation factors. Table 5.5 shows the base case 1 and the 
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rescheduled generations. It is assumed that the generator outputs can be easily adjusted, 

as dictated by the proposed generation rescheduling scheme. 

Table 5.4: MW margins to the point of voltage instability, for different base cases and after generation 
rescheduling for the New England 39-bus test system 

MWmargin % increase in 
Base case After MWmargin 

rescheduling 
Base case 1 2809 2956 5.23% 
Base case 2 2543 2687 5.66% 
Base case 3 3187 3375 5.90% 

Table 5.5: Base case 1 and the rescheduled generations for the New England 39-bus test system 

Generators MW generation 
Base case After rescheduling 

30 250 350 
32 650 662 
33 632 548 
34 508 559 
35 650 536 
36 560 531 
37 540 548 
38 830 843 
39 1000 892 

The hourly costs of the generators are determined by the following cost model: 

C(Pgi )= 10*Pgi +0.1 *P~ $/hr (5.14) 

where P gi is the generation of the ith generator and C(P gi) is the cost in $/hr. 

The total hourly cost of generation in the base case 1 operating condition is $103801 /hr, 

while that after rescheduling as shown in Table 5.5 is $102636 /hr. Column 3 of Table 

5.5 shows the generations that results in minimum total cost per hour, satisfying the 

minimum voltage stability margin requirement, along with other constraints. Table 5.6 
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shows the voltage stability margins in MW for different contingencies, before and after 

generation rescheduling. Column 2 in Table 5.6 shows the MW margins to the point of 

voltage instability when a contingency occurs with the base case generation settings as 

given in column 2 of Table 5.5. Column 3 of Table 5.6 shows the MW margins when a 

contingency occurs with the optimal generation settings as shown in column 3 of Table 

5.5. As observed from Table 5.4 and 5.6, significant increase in MW margin is obtained 

by the proposed method of generation rescheduling, for different operating conditions in 

the base case topology and also for different contingencies. 

Table 5.6: MW margins to the point of voltage instability before and after generation rescheduling for 
different contingencies for the New England 39-bus test system 

Contingencies MWmargin % increase in 
Base case After MWmargin 

rescheduling 
Contingency C 1 2393 2556 6.81% 
Contingency C2 2481 2643 6.53% 
Contingency C3 2493 2556 2.53% 
Contingency C4 2537 2698 6.35% 

5.6 Conclusions 

A sensitivity-based generation rescheduling method for voltage stability enhancement 

considering multiple contingencies is presented in this chapter. The sensitivities of the 

voltage stability margin with respect to the outputs of the participating generators are 

computed by using separate RBFNs for each topology. A simple algorithm is also 

proposed to determine the appropriate perturbations to the inputs to the RBFNs to 

compute the sensitivities. The ANN-based method of computing sensitivities overcomes 
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the limitations of the analytical method of finding the sensitivity, as mentioned in Chapter 

3, and provides an efficient way to compute the sensitivities. The proposed scheme 

considers multiple contingencies while rescheduling the generations. It ensures that the 

generation rescheduling for a particular contingency or base case does not violate the 

minimum MW margin requirement for other potential contingencies considered. 

In the context of preventive and corrective control against voltage instability, the 

proposed method can be taken as a preventive measure against voltage instability by 

driving the present operating condition of a power system away from the point of voltage 

instability. The test results show that effectiveness of the proposed method of generation 

rescheduling for multiple contingencies. There are different control actions against the 

voltage instability in a power system such as generation rescheduling, changing the load 

tap changer (LTC) settings, adjusting the phase shifter angles, reactive compensation, and 

the load shedding. The proposed method of finding sensitivities using ANN can be 

extended to all of these control actions. It has been discussed earlier that the ANN-based 

computation of the sensitivities gives more accurate and realistic representation of the 

dependency of the voltage stability margin on the control actions, compared to the 

conventional analytical method. The proposed method therefore helps in developing a 

more accurate and effective voltage stability enhancement scheme for the utilities. 
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Chapter 6 

Contributions of this Thesis and Directions for Future 
Research 

6.1 Contributions of this Research 

The significant contributions of this thesis are in the area of online voltage stability 

monitoring using the ANN, and also in the area of voltage stability enhancement of the 

electric power systems. Online voltage stability monitoring using the ANN is the area of 

focus for a major part of the research. In the later part of the research, a sensitivity-based 

multicontingency voltage stability enhancement scheme is proposed. The sensitivities are 

computed efficiently by using the ANN architecture proposed in the earlier part of the 

research. The main contributions of the research are summarized as follows: 

• Numerous measurable power system parameters can be used as input features to 

the ANN for online voltage stability monitoring. A method of selection of 

important features is therefore essential for a large power system. Sensitivities of 

the voltage stability margin with respect to different power system parameters are 

used widely to select features that highly affect the voltage stability margin. There 

are, however, limitations of the conventional methods of finding the sensitivities, 

as discussed in Chapter 2. A new regression-based method of finding sensitivities 

is proposed in Chapter 3. A second-order regression model is developed for each 

topology to estimate the voltage stability margins. The regression model offers the 

advantages of differentiability. Sensitivities of the voltage stability margin with 
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respect to different parameters can be found by differentiating the regression 

model. It also eliminates the need for obtaining the powerflow Jacobian matrix at 

the point of bifurcation, which is numerically difficult. Once trained for sufficient 

varieties of operating conditions, the regression model can serve as a means to 

find the sensitivities needed to select important features. 

• Using the sensitivity-based selection of input features, a scheme for online voltage 

stability monitoring using a Multilayer Perceptron (MLP) network is proposed in 

Chapter 3. The efficient method for the selection of features results in a compact 

and efficient ANN architecture. Separate ANNs are used for voltage stability 

monitoring for different system topologies. Contingency analysis is performed at 

the beginning to choose a limited number of critical contingencies to be 

monitored. The test results indicate the effectiveness of the proposed scheme for 

online voltage stability monitoring. 

• Chapter 4 proposes a scheme for online voltage stability monitoring for multiple 

contingencies using an enhanced Radial Basis Function Network (RBFN). For a 

large power system with numerous potentially dangerous contingencies, it may be 

a demanding task to design separate ANNs for different contingencies. The 

proposed RBFN can be trained and used to estimate voltage stability margins for 

multiple contingencies. The only additional resource needed for monitoring a new 

contingency is an additional weight vector at the output layer of the RBFN. 

Designs of the architectures of the ANNs used in the existing literature are mostly 

based on trial and error methods to find the optimum network size. The number of 
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neurons in the hidden layer of the proposed RBFN is decided automatically using 

a sequential learning strategy. As the operating conditions and loading scenario 

keep changing in a power system, the ANN should have the facility to adapt 

online. The proposed RBFN can be adapted online, without requiring fresh 

training of the network. A network pruning strategy is used to limit the growth of 

the network size as a result of the adaptation process. Application of the proposed 

method on test systems gives satisfactory results. 

• It is well-known that the ANN works as a more accurate mapping tool than a 

simple second-order regression model, as used in Chapter 3. When a more 

accurate and robust method of finding sensitivities is required, use of the ANN is 

advisable in place of the simple regression-based method described earlier. A 

sensitivity-based generation rescheduling scheme for enhancement of voltage 

stability of a power system is proposed in Chapter 5. The sensitivities of the 

voltage stability margin with respect to the participating generators are computed 

by using the RBFN proposed in Chapter 4. A simple and effective algorithm is 

also proposed to determine the step size of the perturbations that one needs to 

impart on the generator outputs to compute the sensitivities. 

• The sensitivity-based generation rescheduling scheme proposed in Chapter 5 aims 

at enhancement of the voltage stability margin for multiple contingencies. Voltage 

stability constraints are incorporated into the optimization routine for generation 

rescheduling by utilizing the sensitivity information obtained by using the RBFN. 

The generations rescheduled to enhance voltage stability margin for one 
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contingency may not be applicable for other contingencies. Hence multiple 

contingencies are considered while formulating the optimization problem, which 

aims at minimizing the total cost of generation in the system, while meeting 

various operational constraints. Application of the proposed method on test 

system proves its effectiveness in improving the voltage stability margins for 

multiple contingencies. 

The operating conditions in a modern-day power system change continuously, depending 

on the demand scenario and economic considerations. The assessment of the voltage 

stability of the power system for any operating condition is essential for the secure 

operation of the system. The ANN-based online voltage stability monitoring scheme 

proposed in Chapter 3 can serve as a tool for estimating the available voltage stability 

margin for different contingencies for a relatively smaller power system. The voltage 

stability monitoring scheme proposed in Chapter 4 estimates the available voltage 

stability margins for multiple critical contingencies using a single ANN. The ANN has 

the features of automatically determining the network size and getting adapted online 

with changing operating conditions. Once trained with a sufficient variety of operating 

conditions, it can be used as a black box to estimate the voltage stability margin of a 

power system. The proposed method may therefore prove to be an attractive alternative to 

the utilities for online voltage stability assessment, compared to the time-consuming and 

complicated analytical methods. 
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Chapter 5 proposes a sensitivity-based method of enhancement of the voltage 

stability margin using the optimization technique. The sensitivities of the voltage stability 

margin with respect to the generator real power outputs are found using the ANN, which 

overcomes many limitations of the conventional method of finding the sensitivities. A 

complete preventive and corrective control scheme against the voltage instability in a 

utility incorporates different control actions such as generation rescheduling, changing 

load tap changer (LTC) settings, adjusting phase shifter angles, reactive compensation, 

and load shedding. The proposed method of finding sensitivities using an ANN can be 

extended to the control actions other than generation rescheduling as well, and therefore 

can assist in a more accurate and realistic representation of the control actions in the 

overall voltage stability enhancement scheme for the utility. 

6.2 Directions for Future Research 

The research presented in this thesis is an effort to contribute to the ongoing investigation 

by the scientific community in the interesting and very important area of monitoring and 

enhancement of voltage stability in a power system. Following are some of the 

suggestions regarding the future directions of research, based on or related to the current 

research: 

• The proposed research on online voltage stability monitoring and enhancement 

has been tested successfully on the widely used New England 39-bus test system. 

Future research will apply the proposed methods on power systems of larger 

dimensions. 
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• Analytical methods in power system security assessment have their limitations 

due to modelling inaccuracies, computational burdens, and complex natures. In 

many cases human expertise is the last resort in taking vital decisions regarding 

secure operation of the power system. An expert system can provide a solution to 

this type of problems on its own, or at least, it can enhance the reliability of the 

human intervention in the security assessment problem by acting as a decision 

support system. There have been some discrete efforts to develop an expert 

system for power system security assessment problems [26, 72]. An integrated 

approach reaping the benefits of both conventional analytical methods and 

intelligent systems technology still needs to be worked out. 

• The sensitivity-based multicontingency generation rescheduling scheme described 

in Chapter 5 considers only the generator real power rescheduling as the means to 

enhance voltage stability of a system. Future research will incorporate other 

methods of voltage stability enhancement, such as changing load tap changer 

(LTC) settings, adjusting phase shifter angles, reactive compensation, and load 

shedding, into the optimization process. 

• Optimum operation of a power system meeting various economical and 

operational constraints is a basic requirement in the modern-day highly stressed 

power system. Conventional optimization methods, although being accurate, pose 

significant computational burdens as the system becomes larger. Another problem 

associated with the conventional methods of optimization is the convergence to 

local minima. A number of evolutionary programming techniques such as Genetic 
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Algorithm, Particle Swarm Optimization, and Ant Colony System Optimization 

have proved to be efficient in finding global solutions to the complex optimization 

problems of large dimensions [73]. While there is always an amount of 

uncertainty or error associated with the evolutionary algorithms, a hybrid 

approach including the conventional methods may prove to be a more efficient 

and accurate tool for power system optimization problems. 
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Appendix A 

A.l Single line diagram of the 39-bus test power system 

Figure A.l: New England 39-bus test power system 

A.2 Table of contingencies 

Table A.l: Selected contingencies for the case studies on the New England 39-bus test power system 

Contingency Description 
Cl Outage of line between busses 29 and 38 and generator 38 
C2 Outage of line between busses 10 and 32 and generator 32 
C3 Outage ofline between busses 19 and 33 and generator 33 
C4 Outage of line between busses 25 and 37 and generator 37 
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A.3 Results of sensitivity analysis of the voltage stability margin 

Table A.2: Sensitivities of the voltage stability margin with respect to the active and reactive power 
demands of the loads for different contingencies 

Load P, Q 
Base case Contingency C 1 Contingency C2 Contingency C3 Contingency 

C4 

P3 -0.2441 -0.2297 -0.2284 -0.2311 -0.2302 
P4 -0.2069 -0.1947 -0.1980 -0.1971 -0.1956 
P7 -0.1758 -0.1654 -0.1711 -0.1677 -0.1668 
P8 -0.1806 -0.1699 -0.1751 -0.1718 -0.1709 

P12 -0.1818 -0.1710 -0.1837 -0.1767 -0.1761 
P15 -0.2459 -0.2314 -0.2322 -0.2381 -0.2338 
P16 -0.2570 -0.2418 -0.2415 -0.2498 -0.2452 
P18 -0.2567 -0.2415 -0.2374 -0.2427 -0.2410 
P20 -0.2621 -0.2466 -0.2510 -0.2664 -0.2555 
P21 -0.2583 -0.2430 -0.2451 -0.2528 -0.2491 
P23 -0.2565 -0.2414 -0.2459 -0.2530 -0.2502 
P24 -0.2589 -0.2435 -0.2437 -0.2519 -0.2475 
P25 -0.2575 -0.2423 -0.2267 -0.2309 -0.2459 
P26 -0.2905 -0.2733 -0.2425 -0.2481 -0.2556 
P27 -0.2812 -0.2646 -0.2445 -0.2509 -0.2538 
P28 -0.3300 -0.3105 -0.2481 -0.2533 -0.2621 
P29 -0.3327 -0.3131 -0.2458 -0.2508 -0.2598 
Q3 -0.0238 -0.0223 -0.0089 -0.0123 -0.0093 
Q4 -0.0390 -0.0367 -0.0251 -0.0263 -0.0217 
Q7 -0.0452 -0.0425 -0.0355 -0.0329 -0.0288 
Q8 -0.0436 -0.0410 -0.0339 -0.0316 -0.0277 

Q12 -0.0376 -0.0354 -0.0336 -0.0272 -0.0223 
Q15 -0.0241 -0.0227 -0.0099 -0.0153 -0.0090 
Q16 -0.0171 -0.0161 -0.0043 -0.0089 -0.0040 
Q18 -0.0234 -0.0220 -0.0062 -0.0104 -0.0063 
Q20 -0.0037 -0.0035 -0.0010 -0.0037 -0.0009 
Q21 -0.0117 -0.0110 -0.0024 -0.0057 -0.0022 
Q23 -0.0058 -0.0055 -0.0006 -0.0025 -0.0005 
Q24 -0.0152 -0.0143 -0.0035 -0.0077 -0.0032 
Q25 -0.0133 -0.0125 -0.0012 -0.0027 -0.0016 
Q26 -0.0339 -0.0319 -0.0014 -0.0039 -0.0010 
Q27 -0.0309 -0.0290 -0.0031 -0.0065 -0.0030 
Q28 -0.0437 -0.0412 -0.0003 -0.0016 0.0001 
Q29 -0.0439 -0.0413 -0.0003 -0.0012 -0.0000 
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Table A.3: Reduction of the input data dimension using the sensitivity of the MW margin with respect to 
the load real and reactive power demands 

Topologies Initial number Number of inputs Number of inputs Number of inputs 
of inputs selected for selected for selected for 

spmin = 0.15 and spmin = 0.2 and spmin = 0.25 and 

sqmin =0.01 sqmin =0.02 sqmin =0.03 

Base case 38 32 25 19 
ContinEency C 1 38 32 24 11 
Contingency C2 38 21 17 4 
Contin_g_ency C3 38 24 17 9 
Contingency C4 38 21 17 6 

Table A.4: Selected cut-off values of the sensitivities for different contingencies 

Topologies spmin Sqmin 

Base case 0.25 0.03 
Contingency C 1 0.25 0.03 
Contingency C2 0.20 0.02 
Contingency C3 0.20 0.02 
Contingency C4 0.20 0.02 

A.4 Important computational steps for the RBFN 

The important matrix operations and computational steps for the Radial Basis Function 

Networks (RBFN) used in Chapter 4 and 5 are given below: 

A.4.1 Computation of optimal output weight vectors 

Let {Xi ,di Kl be the training patterns, where xi is the input to the RBFN and 

di= (d1i,dzp···•dc)T are the corresponding outputs. To improve the interpolating 

capability of the RBFN and smoothness in mapping, larger weights are penalized and the 

cost function to be minimized for the weight vector connecting hidden units to the eh 
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output is given by, 

C, = t(dti -f,(X))2 +A.,f, w~1 ;'v't =l, ... ,c (Al) 
i=l j=l 

where Wjt is the weight connecting jth hidden neuron to the eh output; q is the number of 

neurons in the hidden layer, A1 is the regularization parameter. 

The eh output of the RBFN for the input Xi is given by, 

(A2) 

where gij is defined as follows: 

(A3) 

where tj is the data centre of the /h hidden unit. 

To find the optimal weight vector Wt for the tth output of the RBFN, the cost function in 

(Al) is differentiated against each element of Wt and made equal to zero. Differentiating 

(Al) with respect to Wjt. 

(A4) 

Now, from (A2), of, (X) = gij. Using this in (A4) and equating to zero for optimality 
awjt 

condition, 

n 

-2L(dti -f,(XJ)gij +2A1Wj1 =0 
i=l 

Rearranging above and using (A2), 
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(A5) 

There are 'q' equations as (A5), for 'q' hidden units and all such equations can be 

expressed in the form of following matrix equation. 

Or, (A6) 

where G is the matrix of basis functions and is given by, 

(A7) 

D
1 

= [d
1
pd12 , ••• ,dtn]T is the vector containing desired tth outputs for all the patterns 

Iq is an identity matrix of dimension[qxq]. 

The weight vectors Wt as in (A6) are assembled for 'c' outputs in the output weight vector 

matrix Was in (4.15). 

A.4.2 Addition of a new training pattern 

Addition of a new training pattern to the existing design matrix G q having 'q' basis 

functions based on 'n' training patterns has the effect of adding a new row as follows. 

(AS) 
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where Gq+I is the new design matrix based on 'n+ 1' training patterns, 

G 21 = [ gn+l,l' gn+l,2' ···• gn+l,q] 

The variance matrix A q+I after addition of the new training pattern can be constructed as 

follows. 

(A9) 

Or, (AlO) 

Using small rank adjustment formula for inverse of a matrix [74], 

(All) 

Equation (All) shows, with a prior knowledge of A q~' , one can compute A q+r' without 

inverting A q+l . 

A.4.3 Addition of a new basis function 

Addition of a new basis function and the corresponding training pattern to the existing 

design matrix Gq having 'q' basis functions based on 'n' training patterns has the effect 

of adding a new row and column as follows. 

(Al2) 

where Gq+l is the new design matrix consisting of 'q+l' basis functions, 
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The variance matrix A q+I after addition of the new basis function and training pattern can 

be constructed as follows. 

(Al3) 

The above can be expressed as a partitioned matrix as follows. 

(Al4) 

Inverse of A q+I can be found by using the formula for finding inverse of a partitioned 

matrix [74] as follows. 

[A
-I A-lA A-lA A-1 

+1-1 II + II 12L.l. 21 II Aq = 
-/1-IA A-1 21 II 

(Al5) 
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A~f in (Al5) can be computed using small rank adjustment formula for finding inverse of 

a matrix. 

(A16) 
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