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Abstract 

Determining the extent of influence of marine salmonid farms on surrounding habitats is 

mandatory as an environmental monitoring procedure. In Newfoundland, environmental 

monitoring of salmonid farms relies on measuring geochemical properties of underlying 

sediment to assess the environmental impact of fish feces, mortalities, uneaten food 

and/or detached fouling organisms that deposit on the seafloor. This approach is 

problematic in coastal Newfoundland because it is difficult or impossible to obtain the 

intact sediment samples required for these analyses, given that the region has mostly hard 

bottom substrate. In this thesis, a new approach to habitat assessment, relying on 

indicator benthic species and habitat determinations based on benthic video drop

transects, is used to determine the environmental impact of salmonid farms. All 

identifiable species were counted from a series of underwater video drop-transects from 

sample stations running through aquaculture lease boundaries, as well as control sites 

where depth did not exceed 1 00 meters. Abundances, proportions, and percent coverage 

of species were then used in a cluster analysis to determine spatial differences in sample 

stations. Sites characterized by high Beggiatoa, Opportunistic Polychaete Complexes, 

and deposit-feeding sea stars were identified as being influenced by aquaculture, the area 

of influence being larger under active cages with mid production. Non-production 

(control) sites and fallowed sites displayed no such assemblage but were dominated by 

suspension-feeding taxa (anemones and sponges). A decrease in the latter taxa along with 
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the increase in deposition-tolerant species could be used for assessing the environmental 

influence of aquaculture on hard substrates. 
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Chapter 1 - Introduction 

Finfish aquaculture is a fast growing industry in Newfoundland and is considered 

to be one of the major economic drivers in the province. The industry has experienced a 

12.4% production increase from 2010 to 2011, reaching a value of 120 million dollars in 

2011 (DFA 2011). Rural communities along the coast benefit from increased 

employment opportunities related to aquaculture. The fast growth in aquaculture 

production presents challenges in ensuring that effects on the environment are minimal. 

Assessing the impact of aquaculture on the environment is important for both ensuring 

sustainability and for making sound regulatory decisions in managing the industry. The 

impacts of finfish aquaculture on the environment can stem from deposition of uneaten 

feed, feces, mortalities, and/or detached fouling organisms on cage sites (AMEC 2004). 

This deposition could have both beneficial and negative effects, depending to a large 

extent on depth of sites, as well as environmental conditions, habitat, bottom type, and 

benthic fauna (Rensel and Forster 2007, Strain 2005). Deposition under cages could 

result in nutrient loading, eutrophication, habitat smothering/defaunation, and changes in 

benthic sediment and water biogeochemistry (Miller et al.. 2002). 

The major sources of deposits around finfish aquaculture cage sites are uneaten 

feed and, to a lesser extent, feces (Ackefors and Enell 1990). The amount of each 

depends on site conditions and stocking density, along with the type and amount of feed 

being used, feed monitoring techniques, and the consumption rate of the species being 

cultured. The amount of food being supplied to cages is regulated based on the appetite 
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of cultured fish, which is influenced by various factors having long and short-term effects 

such as temperature patterns, diseases, and stress events (Black 2008). Since feed is the 

most expensive input in intensive aquaculture operations, it is in the best interest of 

growers to minimize the amount lost as waste. As a result, the industry has developed 

automatic feeding systems that supply food pellets to cages according to fish-growth 

models, where the frequency and timing of pellet addition can be changed to optimize 

growth under different temperature and day length regimes (Black 2008). In conjunction 

with feed systems, growers commonly use underwater camera systems within cages to 

monitor feeding and adjust meal amounts and the time between feedings. Without 

systems such as these, the scope for financial loss and environmental change is high 

(Black 2008). With a typical supply of0.7% biomass as feed per day in the summer, a 

farm with 1000 tonnes of biomass will require 7 tonnes of feed per day. With 5% 

overfeeding, this can potentially result in 350 kg of feed being lost per day (Black 2008). 

The effects of deposition on the environment are dependent on the duration of 

farm life cycle, physical and oceanographic conditions, natural biota, and the assimilative 

capacity of the surrounding environment. Not all deposits will settle directly underneath 

the cage; deposits have been shown to settle up to 1.2 kilometers from a farm site (Homer 

1991). Where current velocities are relatively high, flocculants tend not to accumulate 

directly under the cages (Hargrave eta!.. 1997), whereas in areas of low flow, natural 

flocculants and deposits accumulate under the cages. 

The hydrography at aquaculture sites can have large implications on the amount 

of deposition in coastal waters. Anderson et a!.. (2005) have evaluated and described 
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typical oceanographic conditions for a large portion of the south coast. Hydrography 

could strongly influence the seasonality and spatial variability of rates of waste 

sedimentation and resuspension. Steep fjords with water depths above 500 m are 

common; in some areas, these depths can be attained in less than 50 m from shore. As a 

result of such bathymetry, typical temperatures of 1 to SOC are observed on the bottom. In 

most bays and coves on the southern shore, the shoreline is exposed to inclement weather 

resulting at times in fetch of greater than 700 km. With such exposure, storm events and 

surges can be quite common, resulting in deep water exchange, resuspension events and 

sediment focusing. Because it can affect depositional focusing, dispersion, and 

resuspension, the hydrography of aquaculture sites is important, and sites having similar 

husbandry practices can potentially experience different levels of deposition. 

Hydrographic patterns can have different effects: they can either cause all deposits to 

disperse, with very little influence on the benthos, or they could lead to increases in local 

deposition, with potentially greater impacts on the benthos. 

Impacts of nutrient loading on the benthos 

With increased nutrient loading under aquaculture sites, there can be an associated 

change in the structure of the benthic community. Changes in diversity (a measure of 

habitat complexity with respect to the number of species), evenness (a measure of how 

evenly represented species are within the community), richness (the total number of 

species), and abundance (a count of each species or group) can be expected. Organic 

wastes produced by aquaculture activities add to the suspended particle load and can 

3 



either enrich benthic habitats or smother organisms (Strain and Hargrave 2005). Nutrient 

loading can lead to an increase in biomass that may alter the community by supporting 

higher rates of predation and a greater number of individuals (Karlson et al.. 2002). 

Alternately, nutrient loading may lead to a mass depletion of oceanic resources (oxygen, 

phosphorus, nitrogen, etc.) and result in a decrease in biodiversity. Drastic changes in 

communities have been observed: in soft substrate environments, the response to high 

levels of organic enrichment is a local extinction of the natural community followed by 

an establishment of opportunists (Wildish et al.. 2004). In areas close to intensive 

aquaculture operations, abundances of most polychaetes, bivalves, amphipods, and 

cumaceans were found to decrease dramatically, while the nut clam Nucula thrived 

(Pohle et al.. 2001) These changes are correlated with organic matter content in 

sediments (Pohle et al.. 2001 ). 

The water column may also be enriched through the addition of organic wastes, 

sometimes causing blooms of phytoplankton and/or macroalgae (Strain and Hargrave 

2005). The increased biomass of primary producers depositing on the benthos 

contributes to increased levels of organic and inorganic carbon, nitrogen, and phosphorus, 

and increases in microbial biomass and the enzymatic decomposition potential of 

substrates (Meyer-Reil and Koster 2000). This benthic-pelagic coupled effect can add to 

the direct effect of deposition on the benthos, for a greater total impact. 
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Impacts of oxygen depletion on the benthos 

In areas where deposition is high, the demand for oxygen will be high as a result 

of the breakdown of organic matter brought into the system (Miller et al.. 2002). This is 

partly due to decomposition of organic matter by aerobic bacteria (Strain and Hargrave 

2005). If oxygen consumption is not associated with a high influx of oxygen, aerobic 

metabolism can become limited (Miller et al.. 2002). In the absence of oxygen, other 

electron acceptors are sequentially utilized by benthic microbes: anaerobic respiration 

uses, in order, nitrate, manganese, iron oxides, and sulphates (Middelburg and Levin 

2009). The order is determined by energy yield but is also influenced by the physiology 

of the involved organisms. Anaerobic respiration can result in the fermentation of 

organic matter and the production of methane or sulphides. In soft sediments, the 

deposition of high organic matter can lead to the redox potential discontinuity moving 

closer and closer to the sediment surface (Hargrave 2000). With enough deposition the 

redox potential discontinuity will even move into the water column with depletion of 

oxygen levels. 

Changes in dissolved oxygen concentrations near the substrate can impact the 

local species composition (Miller et al.. 2002). Motile organisms may move if they can't 

tolerate changes in oxygen concentrations, but sessile organisms either have to adapt, or 

die. Changes in species composition are dependant on each species' degree of resistance 

to hypoxia (Wildish et al.. 2004). In areas normally exposed to low oxygen levels, the 

community structure will show an increased tolerance to low oxygen (Wildish et al.. 

2004). In other areas, a shift to low oxygen conditions can contribute to the destruction 
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of habitats; in some cases, dead zones (where all fauna are smothered or forced to 

relocate) can be produced (Miller et al.. 2002). For more tolerant species such as the 

marine bacterium Beggiatoa sp. and capitellid polychaetes (e.g., Capitella spp.), 

aquaculture sites can be viable habitats (Hargrave 2000). 

Opportunistic species following organic enrichment events 

More tolerant organisms like Beggiatoa sp. and species forming Opportunistic 

Polychaete Complexes (OPC) may colonize vacated areas and help break down/digest 

deposited organic matter (Holmer et al.. 2008, Jorgensen et al.. 201 0). Beggiatoa sp. is a 

widespread marine bacterium that colonizes surface sediments and possesses the ability 

to produce sulfur from the oxidation of hydrogen sulfide (Jorgensen et al.. 201 0). They 

are typically found in eutrophic coastal zones, highly productive upwelling regions, 

aquaculture sites, and areas experiencing low oxygen concentrations (Jorgensen et al.. 

201 0). Beggiatoa sp. can also be found in areas where sulfides are introduced 

geochemically: cold seeps and hydrothermal vents (Jorgensen and Boetius 2007). Within 

these areas, Beggiatoa sp. generally occur in the zone between the oxic layer, that can be 

only millimeters thick, and the diffusion front that can be located several centimeters 

below the surface (Jorgensen et al.. 201 0). Thus, Beggiatoa sp. are preferentially located 

in zones characterized by optimal concentrations of both oxygen and sulfides (Priesler et 

al.. 2007). In contrast, OPC ( epibenthic aggregates of polychaetes surrounded by 

mucus), have been observed underneath aquaculture cages in Newfoundland, but have 

not been fully characterized. OPCs from aquaculture sites in Newfoundland are 
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dominated by a new species of polychaete, Ophryotrocha n. sp. ofthe family 

Dorvilleidae (Murray et al.. 2012). This family ofpolychaetes forms an opportunistic 

group commonly associated with nutrient rich and polluted habitats (Thornhill et al.. 

2009). Most dorvilleids occur in low densities but some stress tolerant species can reach 

high densities (Thornhill et al.. 2009). Habitats supporting high dorvilleid densities 

include whale-falls and organically enriched environments such as those underneath 

marine aquaculture cages (Wiklund et al.. 2009). 

Biological indicators of aquaculture impact 

As a response to changing sediment geochemistry and water chemistry the 

benthic community under aquaculture cages may change. The species richness and total 

abundance of macrofauna at an aquaculture site can be used to indicate potential areas of 

impact (Henderson and Ross 1995), as disturbed or polluted conditions can be associated 

with the loss of sensitive species (Dean 2008, Henderson and Ross 1995) and an increase 

in tolerant species. Also, faunal densities can be indicative of impact: relatively high 

faunal densities were observed on moderately impacted salmon aquaculture sites 

(Henderson and Ross 1995). Densities in their reference stations varied dramatically, 

illustrating the natural spatial variability and patchiness of biological populations. 

The shift in community structure from suspension feeding to surface and 

subsurface deposit feeding taxa in organically enriched sites may be a tool for observing 

the degree of organic enrichment impact on aquaculture sites. Such a shift is evident in 
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organically enriched sites (Birkeland 1987, Weigelt 1991 , Lapointe et al.. 1992, 

Henderson and Ross 1995). 

Environmental monitoring of aquaculture sites in Newfoundland 

In most regions, environmental monitoring is required to detect any potential 

impacts that aquaculture could have on the surrounding environment. Monitoring can 

also be used to assess the recovery of impacted sites. Typically, environmental 

monitoring on aquaculture sites is based on the measurement of habitat variables to 

assess the degree of influence on the benthos. Presence and absence of particular species 

along with measureable sulfide and redox values in sediments provide indications ofthe 

degree of influence of aquaculture, useful for subsequent evaluation during the farm life 

cycle. 

Environmental monitoring of aquaculture sites is mandatory in Newfoundland, 

and begins when a license is sought for a proposed aquaculture site. At this stage, an 

application must be completed, requiring initial monitoring of the environment. 

Measured parameters undergo a review process to assess their compliance with the 

Canadian Environmental Assessment Act. Once sites have been approved through this 

process, the Department of Fisheries and Oceans assumes all responsibility in the 

evaluation of environmental influence and habitat alteration (DFO 2011). The initial 

documentation process requires that underwater video and bottom grabs (for sulphide and 

redox measurements) be collected through a 1 00 m grid and the cardinal comers of a 

cage with a drop camera and Ekman grab. Protocols presently in place for habitat 
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monitoring in Newfoundland were developed in Nova Scotia and New Brunswick, where 

soft substrates and shallow sites are common (Bob Sweeney, pers. comm.). At shallow 

sites, sediment core samples can be collected along transects by divers while in deeper 

sites, bottom grabs can be used to collect sediment samples. The redox potential and 

sulphide levels are then determined from each sediment sample using handheld probes 

and few reagents. These procedures are also currently used at sites with hard substrates. 

In Newfoundland, sampling is done primarily by grabs because most sites are in deep 

water (DFO 2011 ). When grab samples from soft sediments are collected, processing of 

the samples can be completed as usual; however, due to great water depths and hard 

bottoms, grab sampling is rarely effective. In deep water, grabs often have scope (angled 

deployment line), leading to failure in sample retrieval because the angle can affect how 

the grab hits or rests on the bottom. This is especially problematic for grabs that employ 

a messenger for triggering closure of the instrument. Substrate type also affects the 

efficiency of grab sampling: even on soft substrates, patches of bedrock and boulders can 

prohibit sample collection using grabs (Sutherland et al.. 2006). As a result, it is often 

impossible to get sediment samples for sulphide and redox measurements from 

Newfoundland aquaculture sites. To effectively monitor the impacts of aquaculture on 

hard bottoms, a more appropriate tool is needed. 

Older sampling procedures included taking video recordings as supplementary 

material. From these recordings (taken at an angle), species can be subjectively 

quantified. Because it is easier to obtain videos than grab samples in Newfoundland, 

protocols based on the monitoring of benthic epifaunal communities could be a better 
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approach for this province. The benthic communities associated with hard substrates can 

be characterized using faunal counts and percent coverage determinations. Hard bottom 

environments are typically colonized by sessile invertebrates such as sponges, cnidarians, 

ascidians, and bryozoans, responsible for both relatively high diversity and biomass in 

hard bottom areas (Wenner et al.. 1983). It is suggested that this high diversity and 

biomass is associated with habitat complexity (hard bottom environments can be 

composed of various types of substrates such as sand, gravel, cobble, boulders, and 

bedrock in various formations ranging from flat expanses to rocky outcrops forming cliff 

like structures), and does not exhibit a pattern with depth (Wenner et al.. 1983). Other 

hard bottom communities ofthe Atlantic are dominated by Enchinodermata, followed by 

Mollusca, Annelida, Chordata (as fish), and Cnidaria (Schneider et al.. 1987). Grouped 

by locomotory categories, crawling organisms are most abundant, with discretely motile, 

sessile, and swimming animals sequentially decreasing in abundance (Schneider et al.. 

1987). Whether the grouping is taxonomic or locomotory, there is an inherent patchiness 

that is evident on hard bottom communities. 

The purpose of this study was to investigate the influence that finfish aquaculture 

has on the marine sub-arctic hard benthic substrate on the south coast ofNewfoundland, 

Canada using video monitoring procedures. The study was designed to address multiple 

Issues: 

1) A lack of knowledge of the typical hard-bottom benthic habitat, 

environment, and community of the south coast ofNewfoundland, 
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2) An understanding ofthe influences of finfish aquaculture on typical 

Newfoundland benthic habitats within 100 m of depth, 

3) The identification of potential candidate properties to distinguish 

influence of aquaculture, and 

4) An assessment of the usefulness of remote video monitoring for 

classifying typical environmental conditions. 

The approach used here was to collect benthic habitat and community data from 

videos collected at aquaculture sites on the south coast ofNewfoundland at different 

stages of salmonid production. Statistical approaches (discriminant analysis based on 

stage of production, and cluster analysis) were then used to evaluate whether specific 

assemblages could characterize stages of salmonid production. The ultimate goal is to 

develop a benthic index that could be used to effectively assess the environmental impact 

of aquaculture in Newfoundland. 

Supplemental data on local bathymetry, currents, and depositional models could 

be useful in the assessment of the benthic impacts of aquaculture. In this thesis the 

bathymetry and predominant current speed and strength were obtained to help interpret 

the area of influence (i.e. , the benthic surface where deposits arising from aquaculture 

activities will accumulate and influence benthic community structure). 
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Chapter 2 - Materials and Methods 

Video Collection and Analysis 

The design of this study purposefully incorporates aspects of existing 

environmental monitoring protocols (as of 201 0) concerning video recordings in 

Newfoundland (similar protocols and regulations exist in other Atlantic provinces of 

Canada and, but it is important to note that they are not standardized despite similarities 

in conditions and cultured species)(DFO 2011). Guidance documents (site applications 

and accompanying documents) include constraints related to depth (recordings are done 

only in depths < 100 m), the type of camera used, and the approach used for 

quantifying/qualifying habitat and benthic communities (DFO 2011). In this study, we 

adhered to many ofthose guidelines (recording only in depths < 100m, and using a video 

camera of similar quality), but made improvements relative to the imaging angle. 

Previous video recordings were taken at angles to give oblique views of the bottom and 

species were subjectively quantified based solely on novel identification. Species that 

could be measured by percent coverage could be over- or underestimated because of the 

angle used and were judged by eye. To better quantify abundance and coverage of 

species, the camera was oriented so that it was perpendicular to the bottom, and included 

a measureable size reference. 

Equipment used for video collection consisted of a digital underwater video 

camera (Shark Marine, 520 TV lines), two 150 watt lamps (Shark Marine), a Datavideo 

digital video recorder, GEOstamp, glare resistant monitor, GPS (Garmin GPS map CSX), 
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and a Shark Marine deck box with light control (Figure 1 ). This system was 

accompanied by 120 meters of Shark Marine analog camera cable, 1000 watt EU1000i 

Honda generator (1.8 HP), and a Raymarine A50D sounder. Camera system was raised 

and lowered by hand. Previous experience and consultation with both industry and 

Fisheries and Oceans Canada (DFO) technical staff confirmed that this equipment 

provides video that is on par or of greater quality than that currently obtained for 

environmental monitoring in Newfoundland and Labrador. 

Power Bar 

DVR 
Deck Box 

GPS 

GeoStamp 
••••••••...............•.••••..........•............... 

Key 

- - Serial (9 pin} - - RCA cable 
- - Po-r cable - - $-VIdeo (4 pin} 
- - Camera cable - - lllllni-DIN (9 pin} 

Figure 1. Underwater video collection equipment and setup. 
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The camera and lights were fixed to a stainless steel frame fabricated for 

underwater video collection using a direct drop-camera method. Dimensions and 

structure of the frame are shown in Figure 2. Both the lights and camera were attached in 

the pyramid-like upper portion of the frame, facing downward. The lights were 

positioned on either side of the camera to reduce the amount of shadows generated. For 

size referencing, a 25 em square was suspended inside the larger frame. 

Figure 2. Underwater video camera frame. (a) shows the total camera frame, (b) shows 
the upper portion of the frame with; (i) umbilical cable attached, (ii) camera, and (iii) 
lights. 

Collection of benthic video took place during July and August 2010, when water 

temperatures were warmer and thus larger amounts of feed were given to the salmon at 

each production site, which theoretically should lead to the largest degree of influences 
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for each of the impact classes which are defined by the stage of production (none, 

minimum, mid, maximum, and fallow). Video collection protocols closely mimicked 

those in provincial and federal guidelines for industry (DFO 2011 ). However, the grid 

system, 100 m positional grid throughout a lease, that is conventionally used was 

replaced with higher density transects to increase spatial coverage. Video sampling was 

completed by transposing six transect lines through each of the aquaculture sites. Three 

transect lines ran parallel and three ran perpendicular to the coastline, creating a grid of 

measurements within the lease boundaries of a site, as shown in Figure 3. Each transect 

line ran the entire length or width of a given site, with sampling stations spaced 50 m 

apart. The distance between transect lines depended on the size of the lease, such that 

larger sites had transect lines spaced farther apart and smaller sites had transect lines 

closer together. The number of sampling stations at each site also varied, with smaller 

sites having fewer sampling stations than larger sites. 

The eight study sites were located on the south coast of Newfoundland in the 

Fortune Bay, Bay D'Espoir, and Connaigre Bay areas, and coded as N1 , N2, Mn1 , Mn2, 

Md1 , Md2, Mx1 , and Mx2 (Figure 4). 
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Figure 3. Example of sample sites within a lease. Red outline shows lease boundaries, 
blue flags are sample stations as shown by GPS plotting software. 

These sites were chosen based on information (species being grown, bottom type, 

bathymetry and production stage) gathered from industry partners participating in this 

study. Because most sites varied in bathymetry and bottom type, sites were selected 

primarily based on production stage and species cultured (all were Atlantic salmon sites). 

Sites were grouped into 5 stages; No production (N), minimal production (Mn), medium 

production (Md), maximum production (Mx), and fallowed (F). N sites were identified 

by industry as potential sites for future use, but have had no previous production. Table 1 

summarizes site information including depth range, production stage and the number of 
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stations. Mn, Md, and Mx production sites were at different points in the production life 

cycle. Mn sites had fish that were introduced in the spring of 2010, while Md sites had 

summer or fall 2009 introduced fish. Mx production sites were at the pre-harvest stage, 

with large fish that were about to be harvested. Fallowed sites were at least one year post 

production, which is the mandatory fallowing period in Newfoundland for salmonid 

aquaculture sites (DFO 2011). 

Table 1: Site Summary Information 

Site Bay Production Cultured Depth Num. of Num. of 
Stage Species Range* Stations Altered 

Stations ** 
N, Fortune Bay No Production Atlantic 15-98 m 37 0 

Salmon 
N2 Hr. Breton Bay No Production Atlantic 13-100 m 43 0 

Salmon 
Mn1 Fortune Bay Fish Introduced Atlantic 15-88 m 32 3 

Salmon 
Mn2 Fortune Bay Fish Introduced Atlantic 17-54 m 32 6 

Salmon 
Md1 Bay D'Espoir One year at sea Atlantic 10-80 m 41 4 

Salmon 
Md2 Bay D 'Espoir One year at sea Atlantic 7-67 m 47 3 

Salmon 
Mx1 Hr. Breton Bay Fish Recently Atlantic 6-93 m 26 0 

Harvested Salmon 
F, Fortune Bay Two years Atlantic 6- 100 m 51 0 

fallowed Salmon 

*Values are for recorded video stations, stations without video recorded that were too 
deep still had a depth recorded sometimes exceeding 1OOm 

**Altered stations were locations where physical obsticals obstructed collection of video 
and therefore station was moved 
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48 

~ 

-56 ow 

Fortune Bay 

Figure 4. Aquaculture sites sampled during the summer of2010. Coded to protect 
anonymity. N: no production, Mn: minimum production, Md: mid production, Mx: 
maximal production, F: fallowed. 

Videos were collected in the following manner: for each video clip, recording 

started when the sea bottom comes into view; the camera is then slowly lowered until it is 

approximately 12 inches off the bottom (based on pulling cable in to lift the frame off the 

benthos) , providing a clear view of the benthos while allowing the camera to move. 

Recordings lasted at least 1 minute, and this footage was used to identify and perform 

counts of all species encountered. It should be noted that the benthic area covered during 

each video recording varied between stations due to movement of both the camera and 
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boat but on average the area of coverage was 3.16 m2 (+/- 0.31). Although boat operators 

tried to keep the vessel on station within the error of GPS units (± 10m), the amount of 

drift of the camera above the bottom can vary. Therefore, the exact area covered by the 

camera is unknown and variable; however, drift was observed to be relatively slow. At 

the end of each video recording, a test was performed to determine substrate type: the 

camera frame was lifted off the seafloor and then dropped onto the substrate, 

resuspending loose material. Due to physical obstacles on site (barges, boats, cage, etc), 

some of the sample stations had to be moved to the nearest possible sampling location 

(this happened 12 times). In four cases, the sampling station was blocked by a large 

marine cage and was replaced by two sample stations on either side of the obstacle. 

Video collection was also limited by depth. In Newfoundland, video collection for 

aquaculture environmental monitoring is only performed to a depth of 100 m. 

Consequently, no video collection took place in depth in excess of 100m, and these 

stations were removed from any statistical analysis. Due to scope of cable extended to the 

bottom this method would prove difficult in excess of 100 m. 

Video analysis software supplied with the digital video recorder (DV Video 

Converter) and freeware (ImageJ and ImageGrab) were used to reduce the cost of visual 

analysis. The first minute of each video clip was viewed to determine the abundance of 

benthic species on the surface observed. All identifiable species (listed in Appendix 1) 

seen within or through the outer grid of the camera frame (50 x 50 em) were quantified. 

Species were identified based on a key including a series of images and identifying visual 

characteristics for particular species, to the lowest taxonomic level attainable, usually the 
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family level (Buzeta 2011 ). Figures 5 and 6 depict typical images obtained. For each 

station, substrate type and the percent cover of each mat forming species (coralline algae, 

seaweeds, kelps, bacterial mats, and OPC) were also recorded. Percent coverage of each 

mat forming species was determined from a representative image taken at each station 

when the camera frame was resting on the bottom before resuspension of sediments 

reduced image quality. The percent coverage of each mat forming species is obtained by 

defining regions of interest by hand using ImageJ. 
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Figure 5. Sample image extracted from benthic video showing a crinoid (Heliometra sp.) 
and coralline algae. 

Figure 6. Sample image extracted from benthic video showing common anemones 
(Stomphia sp.), coralline algae and sponges. 
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Data Analysis and Statistics 

A general approach for the development of a benthic index was first formulated 

by Weisberg et al.. (1997). This process consisted of3 steps: choosing a test data set, 

normalizing data, and running both stepwise discriminant analysis and canonical 

discriminant analysis as adopted by Engle et al.. ( 1994 ). This approach provides 

important measures of variability in the test dataset al.lowing the classification of test 

sites (and eventually future sites) within one of the five influence classes (N, Mn, Md, 

Mx, F). 

The test dataset used here consisted of species-composition data from 315 stations 

within the 8 study sites, representing the 5 classes of influence or response. Table 1 lists 

the candidate measures used to develop the benthic index, chosen to represent ecological 

conditions of assemblages on the benthos. The second step in the creation of this index 

was to normalize candidate measures for the effects of aquaculture. Benthic abundance 

for particular species, evenness, and diversity were expected to be affected by changes in 

depth throughout a site. To test for this, correlations with depth were made, and r values 

< 0.25 were interpreted as not being influenced by depth (Engle et al.. 1994, Weisberg et 

al.. 1997). There are no variables with significant relationships with depth included in 

the analysis; any variables that were found to be correlated with depth were corrected 

using expected values, calculated from cubic functions fitted to depth versus abundance 

scatterplots (Weisberg et al.. 1997). These expected values were then substituted to 

measured values to remove the effect of depth (Engle et al.. 1994, Weisberg et al.. 1997). 
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All candidate metrics listed in Table 2 were included in a stepwise discriminant analysis 

using Systat 13©. 

Table 2. List of candidate benthic measures. 

Measures of biodiversity/species richness/abundance 

Shannon-Weiner diversity index 
Pielou's evenness index 
Mean number of species 
Total Abundance 
% coverage Beggiatoa 
%coverage OPC 
% coverage coralline algae 

Measures of taxonomic composition 

Mean abundance of sea stars 
Proportion of total abundance of sea stars 
Mean abundance of sponges 
Proportion of total abundance of sponges 
Mean abundance of anemones 
Proportion of total abundance of anemones 
Mean abundance of soft corals 
Proportion of total abundance of soft corals 
Mean abundance of tube worms 
Proportion of total abundance of tube worms 
Mean abundance of urchins 
Proportion of total abundance of urchins 
Mean abundance of chaetognaths 
Proportion of total abundance of chaetognaths 
Mean abundance of euphausiids* 
Proportion of total abundance of euphausiids* 

*Identification not certain, resembles euphausiids but could potentially be mysid or decapodid shrimp 
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To validate a priori influence groupings, cluster analysis was used to generate 

five assemblages, so that the structure and similarity of groups with respect to candidate 

parameters could be determined. Using this approach, an assemblage could be assigned 

to each of the sample stations based on the similarity of measured values of each 

candidate metric (unlike the discriminant analysis procedures that require a pre-assigned 

group for classification). The cluster analysis was run with all candidate measures to 

determine overall groups. To assess the similarity between groups, the distances between 

centroids of groups was recorded. This measure of similarity is the Euclidean distance in 

3D space between centroids; the lower the value, the more similar the groups. 

The geostatistical software Surfer 9©, which plots, groups, and interpolates values 

of parameters over larger areas, was then used to plot the spatial distribution of 

assemblages, substrate type, and depth within each aquaculture lease. Using nearest 

neighbour techniques and the data available for each station, assemblages and dominant 

substrate type were plotted by grouping like points together and creating an outline 

between dissimilar groups, the latter being generated evenly between groups. Plotting 

depth within a lease required a different technique, kriging. A commonly used method 

for generating full coverage depth maps using point samples, kriging takes the depth 

values of sample stations and generates a grid of values by interpolating from the 

measured values. It is important to note that interpolated values, but not the measured 

values are represented in the generated image. 
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Current Data 

Water column speed and direction have been collected and analyzed around 

aquaculture sites in most parts of the south coast of Newfoundland, as part of projects 

aimed at modeling deposition in these areas. These data were collected using moored 

ADCP (Acoustic Doppler Current Profilers) in model A2 SUBS system (Figure 7). With 

ADCPs mounted on the bottom in an upward facing direction, current speed and direction 

in the entire water column are measured in lm bins. Bin depth, frequency and period of 

measurement are variable and were adjusted based on the type of ADCP, operating depth, 

and battery charge. 

Figure 7. ADCP deployment setup. Approximately 1 meter above sea bed, beam area 
extending past surface to ensure total water column measurement. 
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Chapter 3 - Results 

Statistics 

Pearson Correlations 
Pearson correlations between depth and all potential candidate metrics revealed 

some statistically significant correlations with depth (Table 3). These correlations were 

significant at p < 0.01 but none of these significant relationships exceed an r value of 

0.25. The percent coverage of coralline algae, abundance of anemones, proportion of 

anemones, abundance of euphausiids, proportion of euphausiids, total abundance, 

diversity, and evenness had significant relationships with depth. Therefore, these values 

were then corrected for depth using the method of Weisberg (1997). 

Stepwise Analysis 

With all potential candidate metrics included (and depth corrections made), the 

stepwise discriminant analysis calculated f-scores for each candidate metric, with little 

change in results for fvalues of0.100 and 0.200. These values were then chosen in a 

stepwise order to maximize the amount of explained variation in the data set. Forward 

stepwise analysis returned the percent coverage of OPC, abundance of corals, proportion 

of euphausiids, abundance of sea stars, proportion of sea stars, proportion of urchins, 

abundance of anemones, proportion of anemones, richness, and total abundance as being 

major discriminating variables. These variables were then carried over into canonical 

analysis. 
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Table 3. Pearson correlations between each candidate metric and depth. 

Coralline algae % Coverage 

Beggiatoa% Coverage 

OPC% Coverage 

Sea Star Abundance 

Sea Star Proportion 

Urchin Abundance 

Urchin Proportion 

Coral Abundance 

Coral Proportion 

Anemone Abundance 

Anemone Proportion 

Euphausiids Abundance 

Euphausiid Proportion 

Chaetognath Abundance 

Chaetognath Proportion 

Tube Worm Abundance 

Tube Worm Proportion 

Sponge Abundance 

Sponge Proportion 

Richness 

Total Abundance 

H 

E 

*: significant at the 0.05 level (2-tailed) 

* *: significant at the 0. 01 level (2-tailed) 

r 

-.319** 

.024 

.113* 

.192** 

-.161* 

-.137* 

-.25o** 

.057 

-.027 

.282** 

.385** 

.352** 

.371** 

.122* 

.070 

.166** 

.097 

.248** 

.110 

.025 

.384** 

.445** 

.445** 
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Canonical Analysis 

With the variables identified from the stepwise discriminant analysis, the 

canonical analysis developed a series of models to then classify each sample point. This 

new classification would then be compared to the pre-determined classification from the 

same point (based on stage of aquaculture production). Classification efficiency was 

calculated to compare the number of correctly classified sites based on the stage of 

production versus the model's prediction. This classification was relatively poor: using 4 

models the total classification efficiency was only 56%. Classification efficiency was 

somewhat higher (77% and 92 %) for the Mn and F sites, respectively. 

Cluster Analysis 
The structure of each cluster is mainly characterized by primary variables with 

high f-ratio scores; the percent coverage of coralline algae, abundance of anemones, and 

the total abundance are three variables expressing extremely high f-ratios, with percent 

coverage of Beggiatoa, percent coverage ofOPC, Shannon-Weiner diversity and 

evenness also expressing relatively high f-ratios. Each cluster is distinct in structure with 

multiple candidate metrics standing out as identifying characteristics; profile plots 

(Figures 8-12) depict the average of each measured parameter for all sample stations 

grouped within a cluster. 

Cluster 1 has low average percent coverage of coralline algae, Beggiatoa spp. and 

OPC (under 0.05%), low total abundance and among groups a higher overall richness. 

Anemones, euphausiids, sea star abundances and subsequent proportions are very low 

with zero counts of other candidate metrics (Figure 8). Cluster 2 has a high abundance of 
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anemones and sea stars and a very high total abundance and richness, resulting in high 

proportions of the candidate metric species and a high diversity with low evenness 

(Figure 9). Other groups that were represented include corals, euphausiids, and sponges 

in low numbers. Coral, chaetognath, and sponge abundances were elevated but are not 

substantially large. Cluster 3 has a very high percent coverage of coralline algae with 

very low amounts of other candidate metrics (Figure 1 0). Anemone, sea star, urchin, 

coral, and sponge abundances are very low. Sea stars make up a large proportion of the 

poor evenness group. On average this group has very low numbers despite a spike in total 

abundance, this spike only reaches 5 counts, which compared to other groups is very 

poor. Cluster 4 has low abundances of most species (near zero) with a slightly elevated 

count (and higher proportions) of anemones and euphausiids and a high percent coverage 

of Beggiatoa and OPC (Figure 11 ). Counts and related proportions for other species are 

zero. Evenness and diversity are essentially zero. Cluster 5 is represented by very large 

numbers and a high proportion of anemones, low richness, and a high total abundance 

(Figure 12). Lower amounts of euphausiids, sea stars and sponges also contribute to the 

community. These clusters are ordered in level of frequency, with cluster 1 being the 

most common and cluster 5 the least common (6 cases). Figures 13 through 17 show a 

typical still image of each cluster. 

There is a similar Euclidean distance between most groups, suggesting that groups 

are equally distinct from one another (Table 4). However, groups 1 and 2 are more 

similar to each other than any other pair among the five groups. 
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Figure 8. Cluster 1 Profile Structure. Lines connect averages of candidate metrics, with 
the red line corresponding to the left Y axis and the blue line corresponding to the right Y 
axis. Depending on the metric, values on the Y axis refer to abundance, % area of 
coverage, proportion of the observed community, diversity or evenness. 

30 



30.000 1.4 

1.2 
25.000 

20.000 

0.8 

15.000 

0.6 

10.000 
0.4 

5.000 
0.2 

0.000 0 
CD CD CD CD CD CD CD CD V) CD c (l) () c c c c c c c c I w u u u u u u u u V) u 0 0 0.. 0 0 0 0 0 0 0 0 c c c c c c c c CD c c n; 0 t t t t t t t t (l) (l) (l) (l) (l) (l) (l) (l) c (l) 
u u u u u u u u .<:: u E ·a, 

CD 
0 0 0 0 0 0 0 0 

c c c c c c c c u c (l) Cl c. c. c. c. c. c. c. c. 
::J ::J ::J ::J ::J ::J ::J ::J ii: ::J .<:: CD Cl e e e e e e e e .c .c .c .c .c .c .c .c .c 0 co ~ 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. <( <( <( <( <( <( <( <( <( :5 CD CD 

> tii c ~ CD ;g .<:: E CD ro c ~ CD :g .<:: E CD (ij :.J Cl 0 E c n; Cl E c n; Cl !!! () iii 0 0 V) 0 c iii ~ 
0 0 V) 

c 0 c 0 CD CD ~ ~ () E ::J c :!: 0 () E ::J :!: 0 t- Cl > 0 (l) :J (l) Cl CD c. (l) :J (l) Cl c. ~ CD .<:: 0 CD 0 CD 0 CD c .c (f) CD c .<:: 
Qi .c (f) CD () (f) c. Qi ::J (f) <( 

c. ::J > <( ::J (l) t-::J (l) t- 0 ~ w .<:: w .<:: () 
0 () () 

~ 0 

Figure 9. Cluster 2 Profile Structure. Lines connect averages of candidate metrics, with 
the red line corresponding to the left Y axis and the blue line corresponding to the right Y 
axis. Depending on the metric, values on the Y axis refer to abundance, % area of 
coverage, proportion of the observed community, diversity or evenness. 
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Figure 10. Cluster 3 Profile Structure. Lines connect averages of candidate metrics, with 
the red line corresponding to the leftY axis and the blue line corresponding to the right Y 
axis. Depending on the metric, values on the Y axis refer to abundance, % area of 
coverage, proportion ofthe observed community, diversity or evenness. 
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Figure 11. Cluster 4 Profile Structure. Lines connect averages of candidate metrics, with 
the red line corresponding to the left Y axis and the blue line corresponding to the right Y 
axis. Depending on the metric, values on the Y axis refer to abundance, % area of 
coverage, proportion of the observed community, diversity or evenness. 
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Figure 12. Cluster 5 Profile Structure. Lines connect averages of candidate metrics, with 
the red line corresponding to the leftY axis and the blue line corresponding to the right Y 
axis. Depending on the metric, values on the Y axis refer to abundance, % area of 
coverage, proportion of the observed community, diversity or evenness. 
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Figure 13. Typical cluster 1 still image. Individual sea stars and solitary anemone shown 
with a depth around 60 meters. 

Figure 14. Typical cluster 2 still image. As shown anemones very abundant, other species 
less common. Depth at around 60 meters. 
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Figure 15. Typical cluster 3 still image. As shown coralline algae coverage very high, 
very low abundances of other groups. Depth is about 60 meters. 

Figure 16. Typical cluster 4 still image. OPC coverage very high. When present 
Beggiatoa coverage is similar to this degree. 
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Figure 17. Typical cluster 5 still image. Very high abundance of anemones, crinoids and 
coralline algae also depicted. Depth is about 60 meters. 

Table 4. Euclidean distances to centroids of each cluster 

Cluster 1 2 3 4 5 

1 0.0000 - - - -

2 5.5501 0.0000 - - -

3 10.5692 11.8021 0.0000 - -

4 14.7747 9.3912 17.7399 0.0000 -

5 17.4455 18.4637 20.7148 23.0124 0.0000 
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Sample Station Positioning 

Within all aquaculture sites, obstacles were encountered when trying to obtain 

video data in pre-determined locations. With polar circle cages of variable size, and the 

presence of feed barges, pipelines, floating docks, buoys, and mooring lines, some 

sample stations had to be moved. Twelve sample stations were moved as close as 

possible to obstacles, but were not directly located on the predetermined point. On four 

occasions, single sample stations were replaced with two sample stations, one on each 

side of the obstructing object. 

There were some errors in GPS positioning, which became evident when 

coordinates recorded on site were later plotted on a map (Figs. 18-25). Such errors can 

have a variety of sources, many of which are uncontrollable and depend greatly on the 

location of the positioning device. Ionosphere and troposphere delays, multi path signals, 

orbital errors, clock error, satellite geometry and the number of satellites detectable by 

the device are major sources of error (Garmin 2008). For some of the sites, error in the 

number of satellites detected, caused by surrounding islands and cliffs, led to some of the 

points being off. Such errors can easily be seen in sites Mn1, Mn2, Md1, and Md2, where 

some sample stations appeared on land. The exact distance of error varies depending on 

the source of error, but standard operating error of the GPS used is ± 10m. 
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Bathymetry 

Using depths that were recorded at each sample station, bathymetry charts could 

be generated to a finer scale than that available on conventional charts (Figs. 18-25). 

Conventional nautical charts for the area were Canadian Hydrographic Service CC4644, 

CC4830, and CC4831 . These new charts provide a depiction of the highly variable 

environment that exists in coastal Newfoundland. Sites varied in depth from 15 to 150 

m. 

The sites Mn1, Md2, Md2, N 1, N2, and Mx1 were similar in their bathymetry. 

These sites contained shallow in-shore areas with both steep and shallow declines into 

deeper water. Further from the shore (generally), there were deeper areas with very little 

slope, indicated by large spacing in the contour lines. Some deeper basins were 

observed, as inN 1, N2, and F 1• It is important to note that these deeper features may not 

be representative of actual conditions, but could be due to interpolation using the krigging 

software. Mn2 and F 1 were exceptional: these sites had low slopes with no coastline close 

to the lease. 

N 1 and N2 have features that are unique among the collection sites. These two 

sites contain a rock wall, typified by the sharp increase in depth that can be seen in video 

clips and photos along with bathymetry maps. 
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Habitat Mapping 

The dominant type of bottom that was observed in the video analysis was used, 

along with corresponding geographical coordinates, in nearest neighbor plotting; 

generating areas of similar dominant substrate type (Figs. 18-25 (b)). Because there were 

multiple substrates observed at each station (in most cases, three or four out of eight 

possible bottom types were observed), only the dominant type of substrate was used in 

this analysis for simplification. 

Each site varies greatly in bottom type as can be seen from the Figures 18-25 b. 

All sites are patchy, but one bottom type tends to be more common, filling the gap 

between patches of other substrates. Most sites are dominated by a combination of 

silt/sand, sand, and coarse gravel. Mx1 and N 1 are less variable, being dominated 

throughout the lease boundaries by silt/sand and coarse gravel, respectively. Large scale 

patches of substrate appear to be the common trend in the studied region. 

Spatial Distribution of Assemblages 

No Production 

N2 has a very distinct benthic assemblage map with inshore and offshore stations 

dominated by two different assemblages. The inshore area is dominated by the type 1 

assemblage (cluster 1) which spreads along the shore throughout the lease, while the 

larger offshore area is dominated by the type 2 assemblage (cluster 2), except for a 

relatively small patch of assemblage 1 offshore (Figure 19c ). At boundaries between the 
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type 1 and 2 assemblage there are small patches of the type 3 assemblage (cluster 3) that 

are relatively small compared to the expanse occupied by types 1 or 2. Towards the east 

end of the lease there is a small patch ofthe type 5 assemblage (cluster 5). The other no 

production site, N 1, has a much different spread of assemblages. There appears to be no 

inshore or offshore pattern but there is a similar patchiness as seen on other sites (Figure 

18c ). However, like N2, N 1 has patches of assemblage type 5 located towards the western 

edge of the lease and just outside the lease in the same direction. 

Min Production 

Mn1 is dominated by assemblage type 1 (Figure 20c) except for a number of small 

patches spread throughout the site. These patches contain both type 2 and 3 assemblages 

with no type 4 (cluster 4) or 5 assemblage. Mn2 is similar to Mn1 in dominance of type 1 

assemblage and the patchiness of type 2 and 3 assemblages (Figure 21c); however 

patches of the type 3 assemblage are more common with fewer type 2 assemblages. 

There is also a small patch of the type 4 assemblage found in proximity to the cages 

contained within the lease boundaries. This patch is under cages and spreads northwest 

of the cages. 

Mid Production 

Both Md1 and Md2 have a similar distribution of assemblages throughout the area 

of the lease. There is a patchiness of assemblages 1 and 2 for the majority of the site with 

relatively few small patches of assemblage 3 closer to shore and in shallower areas of the 

lease (Figure 22c, Md1, and Figure 23c, Md2). Both sites also have areas in which 
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assemblage 4 has been identified. In Md2 assemblage 4 appears to be centered 

underneath the cages on site while in Md 1 this assemblage is pushed slightly southward 

and occupies a much greater area. 

Max Production 

The assemblage map ofMx 1, a maximum production site, is dominated by the 

type 1 assemblage spread throughout the site with some patchy type 2 and 3 assemblages 

(Figure 24 (c)). This somewhat patchy and semi-dominant distribution is similar to that 

of the difference in habitat. However there is a patch of the type 4 assemblage on the 

western side of the cages contained within the lease. This patch of high Beggiatoa and 

OPC is on the windward side of the cages with respect to currents, with predominant 

current coming from the southwest (Figure 27). 

Fallowed 

From Figure 15, F 1 can be seen as being dominated by the type 1 assemblage. 

The lease is almost entirely type 1 with four patches of type 3 and 1 patch of type 2 

assemblages. The type 2 assemblage that is observed is to the southeast of the lease 

boundary. 

Hydrographic Data 

The hydrographic data, taken from moorings whose exact locations are shown on 

Figure 26, are presented in Figures 27- 29. These figures show average speed and 

direction for approximately 90 day deployments of ADCP moorings on the south coast of 
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Newfoundland. Figure 27 shows the currents experienced in the greater Fortune Bay 

area. Throughout the summer, this area had surface currents that were relatively strong. 

However, the strength of currents rapidly decreases and switches to a predominant 

southeast direction with increasing depth. A similar pattern is seen in Gaultois Passage, 

where very strong currents are observed at the surface and current speed and direction 

change with depth (Fig. 28). Predominant currents within the first several meters are 

strong in the southwest direction, and change to a northwest direction, and approximately 

half the strength measured at the surface, for the majority of the water column. The 

deepest current measures increase in speed, but do not reach the speed of the surface. 

This pattern of high surface currents with slightly elevated bottom currents is repeated 

again in Harbour Breton Bay (Fig. 29). Currents in this bay are extremely strong, nearly 4 

times the strength measured at other moorings. As the depth increases, currents drop to 

nearly zero for the majority of the water column. In the deepest measurements the 

current speed remains relatively high and is directed towards the northeast. 
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Figure 18. Site N 1 map with projected depth, substrate 
and benthic assemblage contours. Blue outline is 
lease boundary. (a) Bathymetry, interpolated from on
board sounding depths. Points are video sample 
stations_ (b) Dominant substrate type, interpolated 
from nearest ne ighbor groupings. F-Flocculant, M
Mud, SIS-Silt/Sand, S-Sand, CG-Coarse Gravel, C
Cobble, B-Boulder, Br-Bedrock. (c) Benthic 
assemblage cluster map, interpolated from cluster 
analysis_ Clusters: 1-Normal low diversity, 2- Normal 
high diversity, 3- Barren substrate 4- Beggiatoa and 
OPC dominated, 5-Enriched area, high diversity. 
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Figure 19. Site N2 map with projected depth, substrate 
and benthic assemblage contours. Blue outline is lease 
boundary. (a) Bathymetry, interpolated from on-board 
sounding depths. Points are video sample stations. (b) 
Dominant substrate type, interpolated from nearest 
neighbor groupings. F-Fiocculant, M-Mud, SIS
Silt/Sand, S-Sand, CG-Coarse Gravel, C-Cobble, B
Boulder, Br-Bedrock. (c) Benthic assemblage cluster 
map, interpolated from cluster analysis. Clusters: 1-
Normallow diversity, 2- Normal high diversity, 3-
Barren substrate 4- Beggiatoa and OPC dominated, 5-
Enriched area, high diversity. 
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Figure 20. Site Mn I map with projected depth, substrate 
and benthic assemblage contours. Blue outline is lease 
boundary, and red outline is cage location. (a) 
Bathymetry, interpolated from on-board sounding depths. 
Points are video sample stations. (b) Dominant substrate 
type, interpolated from nearest neighbor groupings. F
Flocculant, M-Mud, SIS-Silt/Sand, S-Sand, CG-Coarse 
Gravel, C-Cobble, B-Boulder, Br-Bedrock. (c) Benthic 
assemblage cluster map, interpolated from cluster 
analysis. Clusters: 1-Normallow diversity, 2- Normal 
high diversity, 3- Barren substrate 4- Beggiatoa and OPC 
dominated, 5-Enriched area, high diversity. 
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Figure 21. Site Mn2 map with projected depth, 
substrate and benthic assemblage contours. Blue 
outline is lease boundary, and red outline is cage 
location. (a) Bathymetry, interpolated from on-board 
sounding depths. Points are video sample stations. 
(b) Dominant substrate type, interpolated from 
nearest neighbor groupings. F-Flocculant, M-Mud, 
SIS-Silt/Sand, S-Sand, CG-Coarse Gravel, C-Cobble, 
B-Boulder, Br-Bedrock. (c) Benthic assemblage 
cluster map, interpolated from cluster analysis. 
Clusters: 1-Normallow diversity, 2- Normal high 
diversity, 3- Barren substrate 4- Beggiatoa and OPC 
dominated, 5-Enriched area, high diversity. 



(a) (b) 

(c) 
$ 

F 

M 

SIS 

s 

Cg 

c 

I 

Br 

Figure 22. Site Mdl map with projected depth, 
substrate and benthic assemblage contours. Blue 
outline is lease boundary, and red outline is cage 
location. (a) Bathymetry, interpolated from on-board 
sounding depths. Points are video sample stations. 
(b) Dominant substrate type, interpolated from 
nearest neighbor groupings. F-Fiocculant, M-Mud, 
SIS-Silt/Sand, S-Sand, CG-Coarse Gravel, C-Cobble, 
B-Boulder, Br-Bedrock. (c) Benthic assemblage 
cluster map, interpolated from cluster analysis. 
Clusters: 1-Normallow diversity, 2- Normal high 
diversity, 3- Barren substrate 4- Beggiatoa and OPC 
dominated, 5-Enriched area, high diversity. 
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Figure 23. Site Md2 map with projected depth, 
substrate and benthic assemblage contours. Blue 
outline is lease boundary, and red outline is cage 
location. (a) Bathymetry, interpolated from on-board 
sounding depths. Points are video sample stations. (b) 
Dominant substrate type, interpolated from nearest 
neighbor groupings. F-Flocculant, M-Mud, SIS
Silt/Sand, S-Sand, CG-Coarse Gravel, C-Cobble, B
Boulder, Br-Bedrock. (c) Benthic assemblage cluster 
map, interpolated from cluster analysis. Clusters: 1-
Normallow diversity, 2- Normal high diversity, 3-
Barren substrate 4- Beggiatoa and OPC dominated, 5-
Enriched area, high diversity. 
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Figure 24. Site Mxl map with projected depth, 
substrate and benthic assemblage contours. Blue 
outline is lease boundary, and red outline is cage 
location. (a) Bathymetry, interpolated from on-board 
sounding depths. Points are video sample stations. (b) 
Dominant substrate type, interpolated from nearest 
neighbor groupings. F-Fiocculant, M-Mud, SIS
Silt/Sand, S-Sand, CG-Coarse Gravel, C-Cobble, B
Boulder, Br-Bedrock. (c) Benthic assemblage cluster 
map, interpolated from cluster analysis. Clusters: 1-
Normallow diversity, 2- Normal high diversity, 3-
Barren substrate 4- Beggiatoa and OPC dominated, 
5-Enriched area, high diversity. 
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Figure 25. Site Fl map with projected depth, 
$ substrate and benthic assemblage contours. Blue 

outline is lease boundary, and red outline is cage 
Vl .. location. (a) Bathymetry, interpolated from on-board ........ 

sounding depths. Points are video sample stations. (b) 
47 Dominant substrate type, interpolated from nearest 

neighbor groupings. F-Flocculant, M-Mud, S/S-
Silt/Sand, S-Sand, CG-Coarse Gravel, C-Cobble, B-

l Boulder, Br-Bedrock. (c) Benthic assemblage cluster 
map, interpolated from cluster analysis. Clusters: 1-

1 Normal low diversity, 2- Normal high diversity, 3-
Barren substrate 4- Beggiatoa and OPC dominated, 

-55.467 -55.466 -55.465 -55.464 -55.463 -55.462 5-Enriched area, high diversity. 
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Figure 26. ADCP mooring locations. Numbers denote database classification number. 
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Figure 27. ADCP mooring #414, Fortune Bay, south coast ofNewfoundland. 
Length of line denotes strength of current with direction indicated by the 
direction of line as leading away from the central axis. 
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Figure 28. ADCP mooring #419, Gaultois Passage, south coast of 
Newfoundland. Length of line denotes strength of current with direction 
indicated by the direction of line as leading away from the central axis. 
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Figure 29. ADCP mooring #443, Hr. Breton Bay, south coast ofNewfoundland. 
Length of line denotes strength of current with direction indicated by the 
direction of line as leading away from the central axis. 
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Chapter 4 - Discussion 

Discriminant Analysis 

The model generated from the data collected at all sample stations and sites 

identified the percent coverage of OPC, the abundance of corals, sea stars and anemones, 

the proportion of euphausiids, sea stars, urchins and anemones, richness and the total 

abundance as variables allowing the discrimination between production stage. Dramatic 

changes in these metrics were observed between control sites and sites under the 

influence of salmon aquaculture that are primarily differentiated by the time of 

production cycle and the approximate size and feed consumption of the fish. In 

particular, OPC were identified as being indicators of environmental impact for 

aquaculture sites, as was previously observed on soft sediment (Hargrave et al.. 1997, 

Hargrave 2005); the present study further validates their potential use as indicators of 

organic enrichment on hard bottom. 

The classification efficiency of the models was very low (56%) with only two 

groups, fallowed and non-production sites, having an acceptable classification efficiency 

of greater than 70 %. Multiple factors might have led to the difficulty in classifying sites 

according to degree of aquaculture influence. First, there may have been too few sample 

stations to correctly develop groups in the stepwise analysis. Second, the correct metrics 

may not have been measured: environmental parameters such as oxygen, sulphide levels, 

and redox potential might have improved classification efficiency of these sites. These 

measures could be estimated by a proxy, like sediment colour, or distance from cages. 

However, it is often difficult to obtain such measurements in the deeper waters and hard 
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bottoms typical of Newfoundland aquaculture sites. Third, the spatial scale of this study 

is likely to have played a role in confounding classification. This study was designed to 

assess the influence of aquaculture throughout the entire lease, and therefore all sample 

stations at a given site were classified based on the production level at that site. It is 

unlikely that all stations within a lease are influenced by the same level of organic matter 

deposition: DEPOMOD (a predictive model of deposition at salmonid aquaculture sites 

based upon inputs of production data, typical depositional rates, and local current data) 

results on most aquaculture sites indicate that there is a predicted footprint of deposition 

that doesn' t extend throughout the entire lease area, and for the most part barely exceeds 

the footprint of the cages (Ratsimandresy, pers. comm.). Therefore, the classification of 

all sample stations within aquaculture lease sites by the stepwise analysis (to compile a 

typical profile of that particular classification) generates error in the predictive model and 

leads to a biased classification efficiency in the canonical discriminant analysis. 

Correction for this type of error would be difficult given that personal judgment would 

have to be used to refine the classification of sample stations within a site, and adding 

subjectivity to the analysis is not desirable. 

Newfoundland Habitat 

When trying to evaluate the influence of aquaculture on hard bottom substrates 

with video monitoring, problems arise because of the depth of aquaculture sites in 

Newfoundland. To properly assess changes in the abundance and distribution ofbenthic 

species resulting from aquaculture, control sites are required; potential aquaculture sites 
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with no previous production can serve as control sites. However, control sites (and 

aquaculture sites on the south coast ofNewfoundland) exhibit a wide range of 

environmental conditions with respect to both depth and substrate type, and this 

variability complicates comparisons between such disparate sites. 

With a wide range of depths, differences in community structure or habitat can be 

expected. The sites used in this study had a wide range of depths, some ranging from 15 

m to 150 m within the lease. Not only does this have a great influence on the type of 

community that will be observed, but it also affects the settling of depositional material, 

the type of dominant substrate, and the accessibility of the video collection equipment. 

Basins, steep rock walls, and large expanses of low sloped areas have been observed 

within the eight sites of this study, revealing a mosaic of bathymetric conditions. 

Substrate type also follows this mosaic. In preparation for this study, baseline 

monitoring reports provided by aquaculture companies, listing the dominant substrate 

found at each site, were examined. In analyzing the underwater video collected, it 

became clear that there is no clear dominant substrate type, but that multiple substrates 

are present in various locations, with no clear pattern. The habitat maps generated for 

each site illustrate the very patchy nature of the benthic habitat in coastal Newfoundland 

waters, with different types of substrates dominating at each study site. For the purpose 

of this study, sites were chosen to cover the entire active salmonid culture area in an 

attempt to typify the environment. From the habitat maps, the sites chosen appear to 

typify the natural habitat around Newfoundland (Anderson 2001 , Gregory, R.S. , pers. 

comm.). 
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Aquaculture Impact 

It is likely that there is some form of influence of aquaculture on the cold deep 

waters of coastal Newfoundland. However, what exactly defines this influence on hard 

substrates is unclear. Accumulation of organic matter and the colonization of Beggiatoa 

and OPCs have been characterized as indicators of environmental change on soft 

substrates (Beveridge 1996, Hargrave 1997, 2005, Jorgensen et al.. 2010). 

Increases/decreases in numbers of suspension feeding anemones and deposit feeding sea 

stars can also indicate an impact of aquaculture activities (Birkeland 1987, Weigelt 1991 , 

Lapointe et al.. 1992, Henderson and Ross 1995). The total abundance and richness of 

species can also be indicators (Henderson and Ross 1995). The area of influence can first 

be defined based on those metrics. The discriminant analysis results suggested that 

similar factors could distinguish between impacted and non-impacted sites. However, 

since the classification efficiency based on the discriminant analysis was low, we focused 

on the distinguishing characteristics of the cluster analysis in an attempt to better define 

areas under the influence of increased deposition. The metrics selected were the percent 

coverage of coralline algae, Beggiatoa, and OPC, the abundance of anemones and sea 

stars, and the total abundance, diversity, and evenness, all of which have previously been 

defined as indicators of community change in depositional, polluted, and eutrophic 

environments (Birkeland 1987, Weigelt 1991 , Lapointe et al.. 1992, Henderson and Ross 

1995, Beveridge 1996, Hargrave 1997, 2000, Kennedy and Jacoby 1997, Karakassis et 

al.. 1999, Jorgensen et al. 2010). 
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Min Production 

Minimum production sites such as Mn2 and Mn1 are expected to have the lowest 

degree of influence from salmonid aquaculture. The fish harvested at these sites are 

small, likely producing lesser amounts of waste over a shorter period oftime. Compared 

to control sites (N 1, N2) there appears to be some benthic influence of aquaculture at the 

minimum production sites studied. Of the two minimum production sites, only Mn2 

deviated from the control sites, as evidenced by a small area of influence (assemblage 

type 4) under the western edge of the cages, extending outward. The benthic assemblage 

map of Mn1 shows no type 4 assemblage. The bathymetry map of Mn2 reveals a 50 m 

deep basin under the cages. This bathymetric structure may collect deposits that are 

carried by higher velocity currents at the surface. As in most areas of the south coast, 

current speed tends to be greatest at the surface; in the bay containing sites Mn2 and Mn1 

current speeds are highest at the surface (approximately 4.0 cm/s directly at the surface) 

but quickly decline to 1.0 cm/s within 2m from the surface. Even after it reaches such 

slow speeds the currents in the deeper portions of the water column become nearly zero. 

Within the rest of the water column the net water movement is south and southeast with 

very low velocity. With such low water speeds there is little dispersion of waste 

materials, and because of the basin, material has a high possibility of collecting in the 

center of the site as it settles in the basin. However, in the minimum production sites 

studied here, the influence did not seem to be excessive for the production level, as the 

type 4 assemblage appeared limited to a fairly small area, about 0.01 km2
• 
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Mid Production 

Sites that had contained fish for 1 year were classified as mid-level production 

sites and were expected to show a degree of benthic impact between that of minimum and 

maximum production sites. The fish are growing, eating more, and therefore defecating 

more than that at min production sites, but there are fewer fish that are about to be 

harvested than at max production sites. Md2 and Md1 were located in same bay, Bay 

D'Espoir, had very similar bathymetric profiles, varied substrates and predominant 

surface currents coming from the north-northwest. Unlike most other sites, these mid

production sites had large patches of type 4 assemblages (Figs. 17c, 18c ). These areas 

were highly dominated by the polychaete and Beggiatoa mats that are typically found on 

anoxic soft substrates (Hargrave et al.. 2005). The area occupied by these mats was 

larger in comparison to min production sites, likely because of greater amounts of 

deposits settling down or a reduced ability of the benthic community to assimilate 

deposits. Without a detailed model of the flow of water through the lease it is difficult to 

predict the movement of particles settling on the benthos. Based on the currents that 

were observed there is a typical surface current that is higher than that observed in the 

rest of the water column. It is these surface currents that have potential to push 

particulate matter, feces, and uneaten feed away from a site. With little to no speed at 

greater depths the particles then sink directly downward with no lateral movement and no 

more dispersion. The areas showing the greatest benthic impact (i.e. the area of 

influence), are at the southwest edge of the lease and cages. Mid production sites in this 

study seem to have a localized impact, possibly contained within the lease but somewhat 
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outside the cage area. Deposition may not be limited to this area but without 

measurements or complex modeling we can only speculate that this is the only area 

where amounts of deposition are high enough to cause environmental change. 

Max Production 

Based on the observed site, the impact of maximum production is similar to that 

of mid production. Whereas most studied sites were dominated by type 1 and type 2 

assemblages with some patches ofthe type 3 assemblage, Mx1 also has a patch of the 

type 4 assemblage, as did the mid production sites, Md1 and Md2. The position of this 

patch would not have been predicted. The current in this area comes from the southwest 

suggesting that deposition would be centered towards the north-east edge of the cages 

(Figure 19). The dominating currents are only present in the upper four meters of the 

water column with relatively little or no current in deeper water. With only surface 

currents in the area no spread of deposition was to be expected. Salmon in marine cages 

around Newfoundland tend to reside at varying depths dependant on various biological 

and behavioral factors but have a tendency to be at the surface only during feeding. With 

the salmon under the depth of major surface currents the major source of deposition as 

feces would be sinking directly to the bottom, uninfluenced by currents. 

Fallow 

The fallowing of aquaculture sites is meant to return the habitat to natural 

conditions before another production cycle begins, to help mitigate environmental 

changes on the benthos. These fallow periods are mandatory and are experienced on sites 
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between production cycles, duration being dependant on whether or not a site returns to 

previous natural conditions. All fallow periods are supposed to be at least one year in 

length (DFO 2011 ). Observations at site F 1 suggest that a fallowing period of two years 

is effective. F 1 was likely to have previously had a patch of the type 4 assemblage, 

similar to that observed at Md1, Md2, or Mx1, because it went through a full production 

cycle. One would expect an increased coverage of both the OPC and Beggiatoa mats 

during production. However, F 1 shows no evidence of long lasting influence on the 

benthos in terms of short lived species, following a two year fallow period, at least in the 

form of a type 4 assemblage. It can be noted, however, that the benthic diversity at site 

F 1 may have been lower than at N 1 and N2 sites but this may be due to the natural 

patchiness of the substrates and to previous, unknown conditions. In terms of long lived 

species a two year fallow period may not be adequate. It may take decades or centuries 

for longer lived species to recolonize an area with recruitment of some other species 

being dependant on their recovery, coralline algae is one such case (Martinet al.. 2009). 

Community Response 

Changes in community structure have been observed at sample stations around 

the cages of active aquaculture sites, as reflected by the benthic assemblage maps. 

However, it is important to note assemblages that are associated with aquaculture impact 

are underrepresented in the cluster analysis. Measuring species abundances, proportions, 

percent coverage, richness, diversity, and evenness can reveal how a normal habitat may 

transition into an influenced habitat, with some patches of increased diversity and 
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abundance in what may be high productivity areas. In areas around cages, the 

community can become unable to cope with the amount of deposition resulting from 

salmonid culture. Increases in the percent coverage of the OPC and Beggiatoa mats 

indicate an area of hypoxia/anoxia under cages (Hargrave 2005). Other species appear to 

be responding as well. Based on the structure of assemblage 4, the abundance and 

proportion ofthe brittle star Ophiura increases in the patches of high OPC and Beggiatoa 

mats. These brittle stars may be attracted to the layer of deposits that is settling on the 

bottom (Reese 1966, Buzeta 2011 ). They are thought to respond in aggregations to 

favorable environmental conditions: sufficient oxygen levels and food sources (Reese 

1966). As generalists, brittle stars utilize varying feeding strategies ranging from 

macrophagous predation to non-selective or selective deposit feeding as observed in most 

arctic brittle star species, with smaller species tending to exploit sediment bound nutrients 

and detritus (Warner 1982, Gibson and Barnes 2000). Other, non-motile species that are 

generally abundant or dominant in Newfoundland coastal waters can be smothered by the 

deposits if the deposits are long lived. Lithothamnion spp., laminarians, soft corals, and 

Halichondria spp. are all intolerant to smothering, deoxygenation, and high depositional 

rates (Miller et al.. 2002, Buzeta 2011 ). Smothering is a result of high organic or 

inorganic deposition. The depositional rate is so high that it blankets the entire benthos, 

decreasing oxygen and exposure to light (Pearson 1975, Miller et al.. 2002). Resulting in 

a lower diversity and abundance in the community (Miller et al.. 2002, Trannum et al.. 

201 0). These sensitive species could act as indicator species; in particular, coralline 

algaes and anemones were both identified in discriminant and cluster analysis as 
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determining metrics. However, more work would be needed to develop thresholds and 

recovery timeframes. Nearshore, predominantly sessile benthic macroinvertebrate 

communities can act as good indicators for organic enrichment (Kennedy et al.. 1997, 

Karakassis et al. 1999, Buzeta 2011), and could also possibly be indicators of recovery. 

Very few populations are able to recover quickly after degradation occurs, with recovery 

rates varying greatly depending on individual species in community structure, 

recruitment, and secondary stress factors such as additional deposition (Karakassis et al. 

1999). Time frames for recovery in some areas of Scotland were in excess of 10 years 

(Karakassis et al. 1999). Reoccurrence of these sensitive species may indicate the return 

of the habitat to pre-influence conditions (Pickett and White 1985, Valiela 1995, Barnes 

et al. 1999). 

Localization of Impact 

All aquaculture sites that have sample stations with type 4 assemblages show 

similarities in the positioning ofthose patches. In all of these sites, the type 4 assemblage 

patch is localized and constrained within the lease boundary, with the possible exception 

of site Md1 in which such patches may extend past the lease boundary but since no 

sampling outside the lease was done the full extent of the patch cannot be seen. In most 

cases, these influenced patches are located close to the cages holding fish. With 

presumably little deposition spreading outside the lease boundaries, the benthic impact of 

aquaculture in observed sites was relatively limited. Previous reports stated that benthic 

disturbance due to aquaculture deposition was limited to 50 - 60 meters away from cages 
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(Carroll et al. 2003, Nash et al. 2005). In other historical cases, a clearly defined area of 

influence is only observed within 15 meters from cages, although there is some evidence 

for influence up to 120 m away (Brown et al. 1987). The results here reveal impact on 

the benthos at a greater distance from the cages. In the Md1 site, the influenced area of 

type 4 assemblages is observed up to approximately 200 meters from cages, and may 

extend farther but again there was no sampling outside the lease and therefore no patches 

could be accurately represented outside data points plotted. In the other sites that exhibit 

areas of type 4 assemblages the distance of influence is consistent with previous work 

(Mente et al. 201 0). 

Video Sampling Problems 

This study uncovers certain problems inherent to video sampling on the south 

coast ofNewfoundland. Image and video quality is one of the largest and most difficult 

problems to deal with. Quality issues are not related with image resolution or hi/low-def 

images, but rather to suspended material, densities of species, individual overlap, 

washing out due to lights, motion, and the slope of the bottom. These issues interfere 

with species and substrate identification, particularly for smaller species; as a result, 

counts at some of the stations could be underestimated and therefore misrepresented in 

later analyses. This misrepresentation could have had a small effect on the benthic 

assemblage maps in this study. Rock faces could also impact image analysis, leading to 

underestimations of the abundance and the number of species at particular sampling 

stations where clear views of the substrate could not be obtained. 
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Defining substrate types and percent coverage can also be difficult when using 

video analysis. In the absence of samples to determine grain size, porosity, and other 

geophysical characteristics, it is difficult to define substrates. Due to the nature of the 

hard bottom environments, these samples would be hard to collect. The natural 

patchiness of the benthos also brings forth problems in the ways of the substrate being 

heterogeneous. Trying to typify assemblages of species and then associating these 

assemblages with a type of substrate has proven difficult. 

Suggestions for Future Work 

To address the problems identified by this study, some additional work could be 

done both in the field and at the analytical stage. With more habitat or environmental 

parameters measured (such as oxygen levels at the seafloor and deposition rates), links 

could be made between these parameters and the structure of the benthic community 

which could lead to establishing a list of indicator species. For example, anemones could 

be linked to levels of deposition or anoxia, or coralline algae to smothering. These 

indicator species could then act as a measure of such parameters in the future. This type 

of study would need extensive collection of water samples or real time measurements of 

the environmental parameters along with a high density collection around the cages of 

aquaculture sites to determine both the effects on species in greater detail and the spatial 

extent of the impact on hard substrates. 

With this type of exploratory analysis the results should be treated as preliminary 

and not confirmatory. A in depth look at the intensity of sampling throughout a lease 
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would greatly help in understanding the influence of aquaculture on hard substrates. This 

would include looking at the spacing of transects and stations, the number of transects, 

surveying depth, and drift speed. 
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Chapter 5 - Conclusion 

The goal in assessing the environmental influence of aquaculture in sub-arctic 

hard bottom communities is to help develop proper environmental monitoring criteria, 

and to help understand how aquaculture wastes influence the benthic community. In 

southern Newfoundland, this goal can be reached through the identification of indicator 

species, and a better understanding ofthe spatial distribution of bottom types and of 

aquaculture footprints in the area. 

With little previous research done on influences of aquaculture on hard bottom 

substrates, evaluating the impact that salmonid farms have in sub-arctic rocky bottom 

habitats is very important. To assess the influences of aquaculture in this habitat, it is 

important to recognize what is abnormal in a boreal-subarctic marine environment. 

Through this study this has proven to be a conundrum. Newfoundland has such a 

variable benthic habitat that there are no apparent patterns in substrate structure. As a 

result, a "normal" benthic habitat in this environment is extremely spatially patchy 

according to substrate and depth. The community structure follows a similar pattern. In 

areas away from the influence of aquaculture, three different assemblages can be 

observed as defined by the first three identified clusters. In shallow depths, typical 

Newfoundland benthic communities are dominated by encrusting species, with a high 

abundance and low diversity of macro benthic species (assemblage 3). At greater depths 

suspension feeding taxa become more dominant and community structure shifts to a high 

abundance and relatively high diversity of these taxa (assemblage 2), or another 

assemblage (assemblage 1) where the abundance and diversity are low. These three 
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assemblages are consistent with other hard bottom communities in similar locations in the 

Atlantic Ocean (Barrie 1979, South 1983, Martinez et al. 1994 ). A low diversity is shared 

by all apparently normal assemblages, some lower than others. Other communities (less 

common) include those influenced by aquaculture, which are dominated by deposit 

feeding brittle stars (making up a large portion of the sea star category), the OPC, and 

Beggiatoa mats (assemblage type 4), and a community associated with a high natural 

productivity in areas ofrock ledges (assemblage type 5). These assemblages appear 

relatively tolerant of eutrophication. They may only tolerate these conditions for short 

periods of time. 

On Newfoundland hard bottom communities, the influence of aquaculture is very 

localized, affected by bathymetry, currents, benthic community, and stage of production 

based on results presented. The areal extent of this influence is important in the 

assessment of the impact of aquaculture on hard bottoms. Deposition on farm sites is 

generally limited to the area within lease boundaries, providing a defined area of study. 

As farm production progresses, the area of influence grows in association with the 

amount of feed being used and of feces being produced. The south coast of 

Newfoundland, in particular the Bay D'Espoir, and Fortune Bay areas appear to support 

very little natural Beggiatoa and OPC growth, but those organisms can become dominant 

in patches on production leases. Other species, primarily suspension feeding taxa, are 

probably smothered by excess deposition and either relocate or die off. Deposit feeding 

brittle stars appear to respond to the new layers of deposition accumulating on farm sites 

in a positive manner, increasing in abundance. Beggiatoa, OPC, and brittle stars 
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(characteristic of the type 4 assemblage described here) are identified as possible 

indicator species on hard bottoms underneath aquaculture cages in Newfoundland. These 

indicator species were not observed in the later fallowing stage of an aquaculture farm; 

this site was instead dominated by a type 1 assemblage. 

Aside from allowing an influenced site to return to within a certain percentage of 

baseline conditions, specific measures of recovery are lacking for aquaculture sites in 

many areas. This can lead to confusion in the interpretation of farm-fallow monitoring 

reports. With subjective monitoring techniques where exact measures of species 

(abundances, presence/absence, community structure) are not used, returning to a desired 

conditions is logically impossible. However based on present protocols it will have to 

suffice. With current dependence on sediment sampling this would then make assessing 

the recovery of sites in tum impossible. However, if one were to look at some of factors 

that influence the recovery of benthic environments possible procedures could be 

developed to assist in evaluation of the influence of aquaculture. Factors like the 

surrogate measure of sediment condition (sulphide and redox), as well as infaunal or 

epifaunal counts could replace current (inadequate) monitoring techniques. 

The observation of typical substrate conditions, community structure, and 

indicator species throughout the south coast ofNewfoundland can help improve the 

efficiency of environmental monitoring protocols for salmonid production farms in the 

southern Newfoundland region. Further, understanding community structure and the 

recovery of sites is very important for the environmental sustainability of aquaculture. 
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PorU.n ~ ~type) Poecilosderid3 MyDllidz MIIOftllftchora• Wirly :5JICIIIlP 
PorU.n ~ ~type) ~ fu];..!,GIIdziicbe IUzlicltDrtt/riaw CJU111b of bread, whiR 

maustinc spoace 
ParU.n ~ ~type) ~ Hilicl!GIIdriicbe 1Uzlicltort4ri4 yellow (Go51111") 

F.DaustiDc :spcilllp 

Porifln ~ (ln=Jaid type) ~ Polymmiid3e P~· Globeslupew 
IIWIII!IOUS psotrusiom 

Cbool.t!i Ostechthyes Peci!lxmes ubridlle Tstopldbnu aJJp.mr c_. 
Cbool.t!i Ostechthyes Sc:OipM!Iiiormes Sebastilbt s.btutfS Radfish SfiuciaiW" OJ 

s. ..... IUz 
Cbool.t!i Osttichthyes p~ CottUUe Myaroupltalw oct~ &ulpin 

PIO.WS 

Cbool.t!i Ostechthyes ~ Gaclidu Gtilla RCJrU Allmticcod 
~ Osttichthyes 1 Pleuraaectii!rme~ e IPs•~onmu ~PI.IIf I Wmter flouDder 
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Pbylam Clan" .!lubCian"' Ordero Family • Gau Specie• co-au.W 
dt.KriptioD 

1lboclophytt Flaridtophycue ~ Hild&bnadiuue Hiltlmbnmtlia n~bra Smooth elm red 
I maustiD& a~pe 

:Rhodaphyt1 Flori~- CaruliiWes Conllimceae LitltotltarrJrn• F.a.crustiDc eonlliDe 
lalpe 

1lboclophytt Flarideophyme RhadymeaWes Rhadymaixse RilrNIJ.•II'Iill Daise 
.RhaclaphyQ Flaricleophyt:ue ~ Giptmcez Cllarrtln.s ' Irish IDII3S, may abo 

be ~ mix of se\0 red 
ISlllcies - CtnmWes ~e• ~ cribos- Saeolmder 

~ ~- f!acaJes Fw:xme WIICII.S RDckwwd 
~ ~- ~ ~ Lt.mtuill Kelp 

UZ~idezdified UniJmtifi«/ s!Dlk llydroid or :abellid 
UZ~idezdified Mix sporr:w alfll Urp Jllllllben, mWl all- wbde 
UZ~idezdified lhUD Ol 'Dvvafim;4a or !Nt7 
UZ~idezdified lhUD 01 Crinoid, lmbt sQr? 
UZ~idezdified Un!D OJ Colaai.allwliate, 

spcqe? 
UZ~idezdified UnJD04 Tunit~eep? 

*Table was obtained through: 

Buzeta, M-1. 201 1. Methodology for analyzing remote video imagery of hard-bottom 
habitats, from reference and aquaculture sites, for assessment of benthic substrate type 
and species in southwest Newfoundland. Department of Fisheries and Oceans Contract 
#F6090-10002. Can be retrieved through DFO St. John' s, NL. 
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