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ABSTRACT 

A new strain of yeast was isolated tram yogurt and tentatively identified as 

Rhodoturula ruhra TP L It was reported that the yeast produced structures 

resembling ascospores and, hence, was the first report of a sexual stage in 

Rhodotorula ruhra. Preliminary studies in fish feeding trials indicate that the yeast 

may be an attractive candidate for use in the aquaculture industry for coloring fish 

muscle. To exploit the potentials of the new yeast isolate, a comprehensive study 

was undertaken to: I) confirm the phylogenetic affinity of the new isolate using 

molecular, biochemical and physiological techniques; 2) identify and quantify the 

pigments produced by the yeast; 3) isolate mutants with increased pigment 

production; 4) examine the cell wall for industrially useful polysaccharides; 5) 

isolate and characterize the carotenogenic enzymes. 

Studies on the sexuality of the new isolate could not confirm the production 

of ascospores or any structures resembling spores. To determine the exact 

phylogenetic relationship of the new isolate, various biochemical and physiological 

tests were carried out. These tests included assimilation of various carbon and 

nitrogen sources, isozyme electrophoresis and analysis of cellular long-chain fatty 

acids. 

Based on the comparison of the electrophoretic mobilities (IJ) of 8 isozymes 

in the new isolate and 8 other yeast isolates (Rhodotontla nthra ATCC 9449, 

Saccharomyces cerevisiae, Phaffia rhodozyma, Rhodotontla glutinis, Rhodotontla 

graminis. Rhodotorula minuta, Rhodosporidium toruloides and Cryptoccocus 
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macerans), it was concluded that the new isolate could not be distinguished from R. 

ruhra and should therefore be considered a variant strain. The study also suggested 

that cellulose acetate electrophoresis could be an invaluable taxonomic tool for the 

identification of isolates of yeast. 

Similarly, on the basis of the numerical analysis of the cellular long-chain 

fatty acid composition 9 isolates, assimilation patterns of various carbon sources, 

Diazonium blue (DBB), urease and nitrate tests, the new isolate should be confirmed 

as a variant strain of R. ruhra. 

To determine whether the phylogeny of the new isolate could be determined 

on the basis of other identification protocols aside from the biochemical and 

physiological tests, a ponion of the ribosomal DNA (rONA) and internal transcribed 

spacer was amplified by the polymerase chain reaction and then sequenced. 

Comparison ofthe DNA sequences ofthe small subunit ribosomal RNA (ISS rRNA) 

coding regions and the internal transcribed spacer (ITS) of the new isolate with those 

of other yeast isolates revealed that the new yeast isolate may be a variant strain of R. 

ruhra. The new isolate had 93 and lOO% sequence similarity with R. rubra ATCC 

9449 tbr the ISS rRNA and ITS sequences, respectively. Furthermore, the 

evolutionary distances estimated from the 18S rRNA genes and the ITS sequences of 

the two organisms were 0.015 and 0.000, respectively. 

Using gas liquid chromatography-mass spectrometry (GC-MS) and nuclear 

magnetic resonance spectroscopy, it was determined that the cell wall 

polysaccharides of the new isolate consisted of mainly mannans with 13-( 1 ~3) and 
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~-(I ~4) mannopyranosyl units. The major monosaccharides of the cell wall were 

determined to be mannose (50.53%), glucose (25.53%), galactose (12.27%), fucose 

(8.6%) and rhamnose (3.2%). 

Characterization of pigments produced by the new isolate involved the use of 

column and thin layer chromatography, high performance liquid chromatography 

and light spectroscopy. The new isolate was found to produce P-carotene, torulene, 

torularhodin, phytoene and phytotluene with percentage compositions of 39.85, 

30.65, 24.5, 2.2 and 3.1%, respectively. 

Studies on the genetics of the new isolate included mutagenesis with 

nitrosoguanadine. Several mutants with increased production of pigments were 

isolated. Some of these mutants produced the same types of pigments produced by 

the parental strain while others were found to be blocked at the hydrogenation step 

and, therefore, produced only ~- carotene. 

The preliminary studies on the isolation and characterization of the 

carotenogenic enzymes involved the solubilization and polyethylene glycol 

precipitation of a cell-free 40,000 x: g supernatant fraction that converted [14C]MVA 

to phytoene, P-carotene, torulene and torularhodin. The effects of three non-ionic 

detergents, Tweens 40, 60 and 80 over a 0.5 to 3 % (w/v) concentration range on 

enzyme activity and protein release were investigated. Enzymatic activity was 

retained with all three detergents, however, I% Tween 60 was found to be the least 

inhibitory. 
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The efficacy of the new isolate to color the flesh of rainbow trout was 

demonstrated in a 16 week feeding triaL Even though a commercial canthaxanthin 

containing diet induced better pigmentation than the test yeast supplemented diet, the 

level of pigmentation obtained with the test yeast was comparable to the level 

reported tor rainbow trout as sufficient for adequate visual color impression. The 

highest growth rate was obtained with fish fed a diet containing no pigment (negative 

control group) and the lowest growth rate was observed in fish fed a diet 

supplemented with test yeast. While the proximate analysis of the flesh showed 

significant increases in the total protein content of fish in all groups at the end of the 

feeding trial, the levels were found to be lower than those reported for rainbow trout 

by other workers and were found to be associated with increased moisture content. 

Finally, it was observed that the test yeast ted tish had increased polyunsaturated 

fatty acids content whereas the fatty acid protile remaining relatively unchanged in 

all other groups. 
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CHAPTER l 

GENERAL INTRODUCTION 

Salmonid farming increased substantially in the 1980s creating a large market 

for carotenoids, pigments found in salmonids and crustaceans. As fish are unable to 

synthesise carotenoids de novo, these have to be added to their diets when reared in 

aquaculture farms to impart the attractive pigmentation to the animals and also to 

contribute to consumer appeal in the market place. This is usually done at 

considerable expense to the farmer (Johnson and An, 1991 ). 

Different sources of carotenoids have been used to pigment the flesh of 

farmed-salmonid fish, for example crustacean and crustacean processing waste 

(Storbakken et a/., 1985), plant and plant products, e.g. marigold and squash flowers 

(Lee et a/.. 1978), the green algae Spimlina (Choubert, 1979), the yeast Phciffia 

rhodo:yma (Johnson et a/., 1980, gentles and Haard, 1990; 1991) and synthetic 

sources ofasta.xanthin and canthaxanthin (Torrissen, 1986). 

The high cost of the synthetic carotenoids, coupled with consumers and 

regulatory agencies' concern about the safety of synthetics as food additives, and the 

general instability of the artificially added carotenoids in the food mixture (Johnson et 

a/., 1980), has resulted in a renewed interest in biological sources of pigments. 

A new strain of yeast tentatively identified, as Rhodotontla rubra TP l was 

isolated from yo~JUrt (Hari et a/., 1992). ln comparison with Phaffia rhodozyma, this 

new strain is unique in that it has a faster growth rate and grows very well on cheap 



industrial by-products. In a preliminary study, R. ruhra TPI was fed to rainbow trout 

as source of carotenoids and the preliminary results indicated that yeast promises to 

be a good source of pigment and nutrients for the salmonid industry (Sangha, 1994). 

lt was however reported that the total color difference between the flesh of fish fed 

commercial canthaxanthin and those ted the test yeast was greater in the first six 

weeks and then decreased to one third at the end of the feeding trial (Sangha, 1994). 

This has led to the speculation that uptake of pigments from whole cells is slower. To 

contirm this. a feeding trial longer than that conducted by Sangha ( 1994) and 

employing whole yeast cells as well as pigment extracts from the yeast as sources of 

carotenoid is needed. 

Studies done to determine the taxonomic relationship of the new yeast isolate 

were inconclusive and need to be completed if the yeast is to have any industrial 

application in the future. For example, the new isolate was found to produce 

ascospores which is very uncharacteristic of the Cryptococacceae (imperfect yeast) to 

which most of the pigment producing yeast belong. The determination of the 

taxonomy of the new isolate was therefore necessary. Furthermore, there was a lack 

of information on the chemistry, quantity and nature of the pigment produced by the 

new isolate. Determination of the exact nature and concentration of the pigment 

produced by the yeast was also essential if any commercialization of the yeast is to be 

carried out in the future. 

Yeast cell walls are known to contain large quantities of glucans (Gorin and 

Spencer. 1970). Glucans have become important commercially as therapeutic agents 
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for protecting fish stocks against bacterial infections (Azuma, 1987). The presence of 

glucans in the cell wall of this isolate may increase the commercialisation potential. 

Last but not the least, the problem with Phaffia rhodozyma, a pigment containing 

yeast that is on the threshold of being commercialised, is the relatively low 

concentration of the pigment asta"Canthin (An et a/, 1989). Research to produce 

mutants with high yields of astaxanthin is well underway (An el a/., 1989; 1991; 

Lewis et a/., 1990). If R. ruhra TP I is to compete with P. rhodozyma, then mutants 

that produce pigment concentrations comparable to that produced in P. rhodozyma 

mutants will be required. Furthermore, isolation and characterization of the 

carotenogenic enzymes in this yeast will aid in the cloning of the carotenogenic genes 

which may eventually boost the commercialization of this new isolate. 

The objectives of the present study were, therefore, to: 

1. Identify the unknown yeast strain using biochemical and molecular 

biology techniques. 

2. Conduct genetic studies involving mutagenesis to isolate pigment 

hyper-producing mutants. 

3. Identify and characterize the pigments produced by the new isolate. 

4. Examine the cell wall of the new isolate for the presence of glucans 

and other immunologically important polysaccharides. 

5. Isolate and characterize the carotenogenic enzymes of the new isolate. 

6_ Determine the efficacy of the new isolate to color the flesh offish. 
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2.1 Carolenoids 

CHAPTER2 

LITERATURE REVIEW 

Carotenoids represent one of the most important and widespread groups of 

naturally occurring pigments. They are found in animals, algae, plants, fungi and 

bacteria and impart the yellow, orange and red colors to leaves, fruits, vegetables, 

tlowers, dairy products, shrimp, lobster and the plumage of exotic birds (Bramley, 

198 5 ). They have also been implicated in other functions, tbr instance, 

photoprotection, membrane stabilization, phototroprism and phototaxis, vitamin 

A/retinoid metabolism, reproduction and electron transport (Goodwin 1972; Mathis 

and Scheck. 1982). 

2. t.l Chemistry of carotenoids 

Carotenoids belong to the class of polyenes. Their structure is based on a 5-

carbon isoprene unit (CH2=C(CH3)CH-CH2) and eight of such units are usually 

linked to form a C.m compound. Almost all carotenoids either are, or are derived 

from this C-tu compound, e.g. xanthophylls, carotenes, retro-carotenoids, seco- and 

apo-carotenoids (Britton, 1983). The polyene chain is the most prominent feature of 

the carotenoids and may be made up of three to fifteen conjugated double bonds. The 
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conjugated double bonds form a chromophore that is responsible for the characteristic 

absorption spectrum and color of the given carotenoid molecule. 

2.1.2 Biosynthesis of carotenoid. 

The pathway for the production of carotenoid is given in Figs. 2.0 to 2.2. 

Mevalonic acid, the tirst important compound formed in this pathway, is formed from 

the condensation of three molecules of acetyi-CoA to tbrm P-hydroxy-P­

methylglutaryl-CoA (HGM-CoA). HGM-CoA then undergoes reduction to tbrm 

mevalonic acid which, in the presence of adenosine triphosphate (ATP), is converted 

to mevalonic pyrophosphate (MY APP). In the presence of ATP, MY APP is 

converted to the tirst 5-carbon isoprene unit, isopentenyl pyrophosphate (IPP) which 

in turn undergoes a series of isomerization. condensation and dimerization reactions 

to form phytoene, the basic C-1o acyclic structure (Fig. 2.0). The phytoene undergoes a 

series of sequential desaturation reactions (Fig. 2.1 and 2.2) to form phytofluene, 

neurosporene and tinally to either acyclic lycopene or cyclic 1}-zeacarotene both 

yielding y-carotene which is eventually converted to more unsaturated carotenoids. 

Both pathways may operate simultaneously in many fungi (Bramley and Mackenzie, 

1988 ). At each stage, two hydrogen atoms are removed by trans-elimination from 

adjacent positions (McDermott et a/., 1973) to introduce a new double bond and 

extend the conjugated polyene chromophore by two double bonds. In certain fungi, 

cyclization at one end of the molecule takes place after desaturation of the 7,8-double 

bond although the second cyclization at the opposite end of the carotene molecule 
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must await corresponding desaturation. Even though most naturally occurring 

carotenoids are reported to be xanthophylls rather than carotenes (Bramley and 

Mackenzie, 1988), little is known about the biosynthesis of oxygenated carotenoids. 

Hydroxylation at the C-3 and C-3 ' has been reported to occur late in the pathway and 

involved mixed function oxidase reactions (Britton, L 982). In higher plants and 

algae, phytoene is desaturated to lycopene ( 111,11/·Carotene) by a series of four 

didehydrogenations. the intermediates being phytoene and phytofluene 

(7.8.11.12. 7',8'-hexahydro-\j/, 11/·Carotene) (Bramley and Mackenzie, L 988). In some 

fungi the desaturation proceeds a step runher to yield, 3,4 dehydrolycopene (3,4 

didehydro-111,111-carotene) (Liaaen-Jensen. 1985). Variations in this desaturation 

sequence has been reported in some microorganisms, e.g. Rhodo.\poridium nthrum 

(Davies, 1970). 

The direct enzymatic conversion of phytoene into colored carotenoids in the 

laboratory has proven to be difficult to achieve even though some reactions have 

been demonstrated in cell free extracts of some organisms (Beyer et a/., 1985; 

Kushwaha et a/., 1970; Camara and Moneger, 1982). Simpson et a/. ( 1971) and 

Johnson and An ( 199 L) have proposed that torularhodin and torulene, which are 

produced by R. ruhra are derived directly from ~-zeacarotene and y-carotene (Fig. 

2.1 ). 
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2.1.3 Enzymes involved in carotenoid biosynthesis. 

Numerous enzymes are involved in the production of carotenoids including 3-

hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and reductase, mevalonate 

(MV A) kinase, mevalonate 5-phosphate (MV AP) kinase, pyrophosphomevalonate 

decarboxylase, isopentenyl pyrophosphate isomerase, farenesyl pyrophosphate 

synthetase. geranylgeranyl pyrophosphate synthetase, phytoene synthetase and 

phytoene desaturase. Only phytoene synthetase and phytoene desaturase, the 

enzymes involved in the formation of colored carotenoids will be discussed in detail. 

2.1.3.1 Phytoene synthetase. 

Phytoene synthetase is the enzyme that catalyses the tail to tail condensation 

of GGPP to tbrm the tirst c.~o carotenoid, phytoene (7,8,11,12,7',8',11',12'­

octadehydro-I~J, 111-carotene) via the intermediate prephytoene pyrophosphate. Oogbo 

el al. ( 1988) isolated and characterized the enzyme from Capsicum chromoplasts, 

and reported that a monomeric protein with molecular weight 47,500 forms 

prephytoene and phytoene. The specific activity of the enzyme was 4000 nmol. of 

GGPP incorporated into phytoene per mg protein per hour. The enzyme was strictly 

dependent on Mn2
- and no other divalent cation stimulated activity. Oogbo et a/. 

( 1988) concluded that this selectivity may be one of the factors regulating the 

competition with potentially rival enzymes converting GGPP into other plastid 

terpenoids. 

7 



Studies on the partially purified phytoene synthetase from tomato fruits 

plastids, on the other hand, gave an unstable complex enzyme with a molecular 

weight of200,000 which also has an absolute requirement for Mn2
'" (Maudinas eta/., 

1975. 1977). 

2.l.J.2 Phytoene desaturase (PDS). 

Phytoene desaturase (PDS) or phytoene dehydrogenase is the enzyme that 

catalyses the sequence of four didehydrogenations which convert phytoene into the 

first C"'" carotene of the pathway. The number of enzymes required for this sequence 

is unknown and probably varies among organisms (Fraser and Bramley, 1993) and 

little is known of its structural and regulatory properties (Johnson and An, 1991 ). 

Isolation and genetic characterization of mutants in fungi and bacteria have indicated 

that one enzyme is responsible for the dehydrogenation in some organisms, whereas 

two are needed in others (Dogbo and Camara, 1987; Schmidhauser et a/., 1990). 

Molecular biology techniques have been employed to isolate and purify the 

Synechoccus PDS from an overexpressing strain of Escherichia coli (Fraser et a/., 

1993 ). The recombinant phytoene desaturase has an apparent molecular weight of 53 

Kda on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

(Fraser et a/., 1993). Similarly, Schmidt et a/. (1989) used molecular biology 

techniques to isolate and characterize PDS from photosynthetic organisms and higher 

plant chloroplasts. The molecular weights of the immunoreactive proteins from 
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Rhodohacter, Aphanocapsa, rape and spinach were estimated to be around 64Kda, 

whereas that of Bumilleriopsis was around 5 5Kda. Linden et a/. ( 1993) also reported 

the molecular weights of the immunoreactive proteins from tobacco and spinach to be 

around 62 and 64 Kda, respectively. 
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2.1 Commercial applications of carotenoids. 

Carotenoids play crucial roles in photosynthesis and photooxidative 

protection, nutrition, vision and cellular differentiation. The ability to perform these 

functions coupled with the wide range of applications and uses of carotenoids are a 

consequence of the light absorbing properties of the polyene chromophore. ln 

humans and animals, however, the importance of carotenoids is not based on the light 

absorbing properties of the pigments. 

I. Aquaculture and the food industry. 

Because consumer acceptance of salmonid depends on the pink coloration of 

the tish tlesh, it is important that these animals. whether they originate in the wild or 

are farmed, are pigmented. Carotenoids are used in the aquaculture industry to 

pigment the flesh of fish. and as a result, there has been a dramatic increase is the use 

of carotenoids in the past few years. Carotenoids are also used in the food industry to 

pigment products such as chicken egg yolk and bakery products (Anderson et a/., 

1991 ). Similarly, carotenoids are used in the pharmaceutical and cosmetic industries 

to color tablets coatings, suppositories, lipsticks, vitamin emulsions, fat-based 

ointments and a host of other products. (Johnson and Schroeder, 1995). 
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l. Nutrition and health. 

A. Vitamin A and retinoids: Carotenoids have been implicated in important 

metabolic functions in humans and animals. Vitamin A, acting as the chromophore 

of the visual pigments in the eye is central to the process of vision, and vitamin A 

deficiency, therefore, results in various eye diseases such axerophthalmia, blindness 

and premature death, particularly in children (Britton et a/., 1995). Vitamin A also 

plays a role in the maintenance and growth of the reproductive efficiency of the 

systemic functions. maintenance of t:pithelial tissues and prevention of their 

keratinization (Britton et a/., 1995). p~carotene and structurally related compounds 

serve as precursors for vitamin A. retinal and retinoic acid in animals and thus play 

essential roles in nutrition, vision and cellular differentiation. 

B. Antioxidant potentials and prevention of diseases: Carotenoids play a role in 

enhancing the immune response system, and in protecting against such diseases as 

cancer by quenching oxygen radicals (Goodwin 1986, Bendich and Olson, \ 989). 

Recent studies utilizing both statistical correlation and model experiments with 

animal systems have suggested that carotenoid can provide protection against cancer, 

heart diseases and AIDS (Britton et a!., 1995). Epidemiological studies have also 

shown that vitamin A, carotenoids and provitamin A carotenoids can be effective 

antioxidants for inhibiting the development of heart disease (Manson et at.. 1991; 

Gaziano eta/., 1992~ Street el aJ .. 1994; Greenberg et at., 1996; Riuiz Rejon eta/., 

1997; Evans el a!., 1998). Similarly, extensive in vitro and limited in vivo studies 
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have shown that individual antioxidants such as vitamins A, E, C and carotenoids 

induce cell ditTerentiation and growth inhibition to various degrees in rodents and 

human cancer cells (Prasad eta/., 1999). Retinoids have also been demonstrated to 

act against the development of cancer of the mammary glands, urinary bladder, lungs, 

skin. pancreas, colon and esophagus (Moon, 1989). However, humans and animals 

are incapable of de novo synthesis of carotenoids, and therefore the pigments should 

be provided in the diet as a source of vitamin A. 

2.3 V~•lue of the carotenoid and implications of future business. 

Farm rearing of salmonids has grown dramatica11y in recent years. In 1989 

alone over 200.000 tons of salmon were produced worldwide (Bj~rndahl, 1990). It is 

expected that farmed salmon will dominate the salmonid market by the year 2000 

with the output expected to exceed 460,000 tons annually, and that Norway, Canada, 

Chile and Japan will emerge as the world leading producers of cultured salmonids 

(Johnson and Schroeder, 1995). These developments, in conjunction with the 

dramatic increase in the amount of trout being farmed around the world, have resulted 

in a dramatic increase in the amount of carotenoids being used in the fish farming 

industry (Johnson and Schroeder, 1995) and this trend is expected to continue. 

Furthermore, the interest that has been generated in the role carotenoids play in the 

prevention of various human ailments is bound to ensure a steady increase in the 

demand and market for carotenoids. 
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2.4 Sources of carotenoid. 

Carotenoids can be obtained from various sources among, which are 

crustacean and crustacean processing waste, chemical synthesis, plants, algae and 

microorganisms such as fungi and yeast. 

2.4.1 Crustacean and crustacean processing waste. 

The major pigment that occurs in crustaceans is astaxanthin and several 

studies have been conducted on the use of crustacean and crustacean processing waste 

as a pigment source tor aquaculture of tish (Torrissen et ctl., 1989). Since the level of 

carotenoid reported in most crustaceans is very low (Torrissen et a/., 1989; 

Lambersten and Braekkan, 1971 ), large quantities of the chitinous products must be 

incorporated into the diets of the fish to achieve the desired level of coloration. Since 

the crustacean wastes have low protein levels and high levels of ash, moisture and 

chitin (Torrissen eta/., 1989), incorporating large quantities of these materials in fish 

feed results in a moist diet that is nutritionally imbalanced and may induce mineral 

imbalances in the fish (Spinelli and Mahnken, 1978). Crustacean waste therefore has 

limited potential as a source of carotenoid tor cultured fish (Torrissen eta/., 1989). 
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2.4.2 Synthetic carotenoids. 

The principal sources of carotenoid used in the aquaculture industry are 

synthetic canthaxanthin and astaxanthin called "Carophyll Pink" which is produced 

and marketed by HotTman-LaRoche (Basel, Switzerland). This pigment is reported to 

be absorbed and deposited better than its predecessor "Roxanthin" or "Carophyll 

Red" produced and marketed by the same company in the 60s (Foss et a/., 1984, 

1987; Storebakken et a/., 1987; Torrissen, 1986). Megadoses of canthaxanthin 

gained by eating the so·called artiticial 'suntan' pills are reported occasionally to be 

toxic, causing reduced vision and anemia (Herbert, 1991; Mathews-Roth, 1991 ). 

However. the toxicity of megadoses of canthaxanthin is not well-documented 

(Herbert, 1991, Mathews-Roth, 1991) and the U.S. Food and Drug Administration 

(FDA) has classitied canthaxanthin as a 'generally recognized as safe' (GRAS) 

substance. However, astaxanthin does not have a GRAS classification in the U.S. 

(Tangenis and Slinde, 1994). For these reasons, the difficulties encountered in the 

synthesis of these compounds, and the increasing wariness by farmers and consumers 

of the incorporation of synthetic chemicals in tish diets, have contributed to the 

search for natural sources of carotenoids (Aneta/., 1991 ). 
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2.4.3 Plants and algae. 

Some green algae belonging to the subphylum Chlorophycaea possess the 

ability to synthesize ketonic xanthophylls, echinenone, canthaxanthin and astaxanthin 

(Wettern and Weber, 1979; Nakayama, 1962). The best-known astaxanthin­

producing alga is CMam.vdomcmas nivalis (Torrissen el a/., 1989). The green alga 

Duane/iella salina produces high quantities of P-carotene when placed under stressful 

conditions. Haematococcus pluviali.o; also produces high levels of astaxanthin 

depending on the culture conditions and method of cultivation (Droop, 1955; 

Goodwin and Jamikron, 1954). However about 87% of the astaxanthin found in these 

organisms are esteritied, which may affect deposition and metabolism in some 

animals (Johnson and An, 1991 ). It has also been reported that salmon fed algae­

based diet deposited only a minimal amount of astaxanthin. 

There are numerous reports documenting the use of various plants as possible 

pigment sources for tish and lobster. For example, Peterson et a/. ( 1966) and Isler 

( 1971 ) reported the pigmentation of salmonid tlesh with capsxanthin-containing 

paprika. Lee et a/. ( 1978) observed an increased deposition of lutein and 

canthaxanthin in the tlesh of rainbow trout fed diets containing marigold (Tctgetes 

erecta) and squash tlower (Cucurhita maxima Marcus) extracts. Based on the overall 

results of these studies, however, Torrissen eta/. {1989) concluded that products from 

higher plants have little potential for use as pigment sources in practical fish diets. 
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2.4.4 Fungi 

Most carotenogenic fungi produce carotenes such as ~-carotene and y­

carotene. The yeasts which produce carotenoids belong to the taxa Deuteromycetes 

and Basidiomycetes {Britton, 1983 ). Phaff et '''· (1978) classified carotenogenic 

yeasts into six genera, Sporidioholu.'i, Rhodosporidium, Sporoho/omyce.'i, 

Rhodolorula, Cryptococcus, and Phaffia and in 1987, Komagata added a seventh, 

Saitoefla. Of the seven genera, Phaffia is different in that it produces astaxanthin 

( Andrewes et ctl., 1976a) while yeasts belonging to the genera Cryptoc{)(.:cus, 

-~iJOroho!fJmycc.'i and Uhodotorula produce mainly y-carotene, ~-carotene, torulene 

and torularhodin (Simpson et a/., 1971; Goodwin, 1972). Other pigments such as l;­

carotene, phytotluene ~-zeacarotene and phytoene may also be found in Rh(){./otorula 

and Rhodmporidium (Haymen et a/.. 1971 ). Some Rhodotorula and Cryptococcus 

species have also been reported to produce plectaniaxanthin (Ratledge and Evans, 

1987) whereas 2-hydroxy plectaniaxanthin has been reported in Rhodotorula 

auramiaca (Liu eta/., 1973 ). 

Although asta.'<anthin is rarely found in fungi, it has occasionally been isolated 

from the Basidiomycete Peniophora and Perquercina of the Aphyllophorales 

{Goodwin, 1972). In yeast, Phaffia rhodo:yma produces astaxanthin and has been 

tested as the coloring component of the diets of farmed salmonids with very 

promising results (Johnson eta/., 1 980). 
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Currently there is economic interest in P. rhodozyma as a biological source of 

astaxanthin. However, because the absolute contiguration of the yeast's astaxanthin 

differs significantly from that normally occurring in salmonids, the commercial use of 

P. rbodo:yma could possibly be slowed down (or even stopped) by regulatory 

agencies. Other obstacles such as the rigid cell wall which limits pigment 

extractability, a slow growth rate and poor digestibility of whole cells by the fish have 

prevented the commercial use of P. rhodo=.vma (Johnson et aJ., 1980). 

2.5 Yeast taxonomy. 

Yeasts are classified among Eumycota and are found in the Ascomycetes, 

Basidiomycetes and Deuteromycetes (Imperfect fungi). (Table 2.0) (Kreger-van Rij, 

1984). 
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Table 2.0. Taxonomy of yeast 
Subdivision Class Order Family 

Ascomycotina Hemiascomycetes Endomycetales Spermophthoraceae 
Saccharomycetaceae 

Basidiomycotina Ustilaginales Fi lobasidiaceae 
Teliospres forming yeast 

Sirobasidiaceae 
Tremellales Tremellaceae 

Cryptococcaceae 
Deutermycotina Blastomycetes Sporobolomycetaceae 

(Form sub-division) 

Adapted from Kreger-van Rij, ( 1984). 

21 



2.5.1 Methods used in yeast taxonomy. 

Traditionally, morphological and physiological characteristics and, to a lesser 

extent, genetic characteristics have been used for the classification of yeasts. The 

main characteristics that are presently used to classify yeasts are morphological 

characteristics, sexual reproduction, biochemical features and physiological 

characteristics which primarily serve to describe, differentiate and identify yeast 

strains. They also serve to describe, characterize, and differentiate species and to a 

lesser extent, genera (Kreger-van Rij, 1984; Barnett et a/., 1983). Although these 

characteristics may provide valuable information for the identification of the yeast, it 

is often time consuming, inadequate and sometimes not completely reliable. The 

search tbr new methods of identification therefore continues to this day. 

2.5.2 Molecular taxonomy. 

The principles and methods of molecular biology are becoming increasingly 

important in yeast ta.xonomy as it has in clarifying the relationship between various 

organisms ranging from bacteria to man and other forms of life. Molecular ta.xonomy 

based on the determination of G + C content of molecular genomes and re-association 

of RNA and DNA in different yeast species were the first methods used (Martini et 

a/. 1972, Kurtzman eta/., 1983; Nakase and Komagata, 1970 a, b; Meyer and Phaff, 

1970). The DNA-RNA re-association is used by most yeast taxonomists when the 
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equipment ts available to determine the relationships between yeast species 

(Kurtzman and Phaff, 1987; Kurtzman, 1990; Kurtzman eta/.; 1983). The highly 

conserved sequences of the ribosomal RNAs (rRNA) and the ribosomal DNAs 

(rONA) allow the determination of the relationship among different types of yeast. 

Numerous investigators (Kurtzman and Robnett, 1991; Gueho eta/. 1990; Mendon~a-

Hagler et al. 1993; Molina eta/., 1992, Fell eta/., 1999, 1998) have successfully used 

this as a taxonomic criterion in an effort to determine the relationship between 

various yeast isolates. With the advent of PCR (Polymerase chain reaction), sequence 

analysis of rRNAs and rDNAs has become more powerful. 

2.5.3 Polymerase chain reaction (PCR) and DNA sequencing. 

DNA sequencmg provides the most exhaustive approach to recover 

information from macromolecules. With the invention of PCR by Mullis and Faloona 

in 1987. sequencing of nucleic acids has become easy at a reasonable cost (Minelli, 

1993 ). The technique generates hundreds of billions of identical molecules of DNA 

from a single molecule in just a few hours. It has since become the standard bearer of 

the molecular systematists' tools, unrivaled in its power and complexity by any other 

procedure available to the molecular systematist (Palumbi, 1996). 

PCR is a simple cyclic process consisting of three maJor steps: (I) a 

denaturation step during which the DNA strands are separated by heating; (2) an 
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annealing step during which the separated strands are cooled so that oligonucleotide 

primers can bind to appropriate sites in the template DNA; and, (3) an extension 

period during which the enzyme DNA Taq polymerase synthesizes the target DNA 

segment by adding nucleotides to them to replicate the complementary strands of the 

DNA molecule (Mullis, 1990, Palumbi, 1996). 

The products of PCR are usually fragments of DNA of defined length that can 

be sequenced directly by manual sequencing using the dideoxy sequencing method 

(Sanger et a/. 1977) or by automated sequencing using an automated sequencing 

machine (Hills and Moritz, 1990). The DNA sequences obtained this way provide a 

wealth of information that can be used to discriminate between morphologically 

indistinguishable taxa. 

2.5.4 Ribosomal DNA 

Ribosomes are small, complex spherical bodies (about 20 to 30nm in 

diameter) which act as sites for protein synthesis. Because protein synthesis is a 

prerequisite for life as we know it, ribosomes are universally present in all living 

systems. 

The ribosomal DNA (rONA) of an eukaryotic genome is composed of three 

gene coding regions: (I) a large subunit (LSU) rRN A also called the 28S subunit~ (2) 

a 5.8S rRNA; and (3) the small subunit (SSU), also called the ISS subunit. Flanking 
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the 5.8S subunit on either side are two non-coding DNA spacer segments referred to 

as the internal transcribe spacers (ITS). Between each coding region are largely non­

transcribed regions called the intergenic spacer (IGS) (Hillis and Dixon, 1991 ). 

The nuclear rDNA of the eukaryote consists of several hundred tandemly 

repeated copies of the transcription unit and non-transcribed spacer region. The 

number of copies of this transcription unit may be as few as one as in Tetrahymena or 

as many as several thousand in other organisms (Appels and Honeycutt, 1987). As a 

result there can be a high concentration of rONA, which makes amplification easier. 

Another reason why rONA is useful in phylogenetic analysis is that the different 

repeat units of rONA evolve at different times and there is, therefore, a high degree of 

variability within each of the repeat units. The coding regions evolve slowly and are, 

therefore. the most highly conserved regions. The ITS and the IGS of the rRNA 

repeat unit evolve tastest and may vary among species within a genus or among 

populations (White eta/. 1990). 

The l8S rRNA is the most studied nuclear gene in eukaryotes. In addition, 

the presence of highly conserved sequences within this region makes it useful for 

constructing ·universal' primers that are useful for sequencing rRNA or rONA for 

many species and for amplification of the region of interest in PCR reactions (White 

et ctl. t 990, Hillis, 1990). The variation within the large subunit and the internal 

transcribed spacer region have also been used to identify species or strains, to study 

hybridization and markers for population genetic studies (Hillis et a/. 1991; Sites and 

25 



Davis, 1989; Rogers, 1986}. Partial base sequences of ISS and 26S regions have 

been used to reclassify a number of yeast species previously put into different genera 

(Yamada et al. 1994a, 1994b, l994c, 1995). 

2.5.5 Protein Electrophoresis 

Electrophoretic comparison of enzymes has proven to be very useful in 

microbial systematics in that it has not only become one of the cost·effective methods 

of investigating genetic phenomena at the molecular level (Murphy et a/. 1996 ), but 

also in the differentiation of closely related organisms. With the inception of starch 

gel electrophoresis (Smithies, 1955) and the histochemical visualization of enzymes 

on gels (Hunter and Markert, 1955), numerous investigations have been launched 

using both enzymatic and non·enzymatic protein electrophoresis. These 

investigations have looked into enzyme efficiency, estimation and understanding 

genetic variability in natural populations, recognition of species boundaries and 

phylogenetic relationships among various organisms (Murphy el a/., 1996). These 

types of analyses have resulted in the identification of closely related species, groups 

of populations or reproductively isolated species that were hitheno undistinguishable 

by conventional morphological characteristics. 

Protein electrophoresis can be used to gather two fonns of data 

simultaneously. These are isozyme and allozyme analysis. lsozymes or multiple 
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molecular forms of enzymes, are enzymes that share a common substrate but differ in 

electrophoretic mobility (Markert and Muller, 1959). Allozymes, a subunit of 

isozymes, are variants of polypeptides representing different allelic alternatives of the 

same gene locus. Both enzymes can be separated on the basis of their net charge and 

size and are important in molecular systematics (Murphy eta/., 1996). 

Protein electrophoresis can be accomplished in several types of support media 

including starch, polyacrylamide, and agarose gels, and cellulose acetate membranes. 

Among these support media, polyacrylamide gel electrophoresis (PAGE) is the 

method of choice among biochemists (Wendel and Weedon, 1989) and molecular 

systematists (Murphy et al. 1996). 

PAGE has been used to compare the electrophoretic mobility of numerous 

yeast enzymes. For example Yamazaki and Komagata ( 1981) used PAGE to 

compare enzymes in l 08 strains of the genera Rhodotorula and Rhoclmporidium and 

the isozyme patterns obtained allowed them to divide the strains into a number of 

distinct groups. Similarly, Okunishi el a/. ( 1979) and Hamamoto et a/. ( 1986) used 

PAGE to discriminate between various species of Rhodosporidium, Rhodoton~la and 

( ~rstoft lohasidi um genera. 

Even though cellulose acetate has been around for decades, its use has been 

restricted to diagnostic applications in the clinical settings (Herbert and Beaton, 

1993). It is however deemed by some authorities as a simpler, more rapid type of 

electrophoresis, which is more sensitive, and provides a superior resolution to starch 
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or PAGE (Eastel and Boussy, 1987). There are no reports of cellulose acetate 

electrophoresis been used in yeast taxonomy. 

2.5.6 The value of fatty acid analysis in the taxonomy of yeasts. 

According to Ratledge ( 1982), oleaginous (oil containing) microorganisms are 

chietly confined to algae, fungi including yeasts and some cyanobacteria. Some 

bacteria also accumulate high concentrations of complex lipids which are more 

diverse than the polar lipids found in most biological cells (Tornabene, 1985). The 

use of lipid analyses as a tool in bacterial taxonomy is well established. The first 

attempt to associate lipid composition with the identification of bacteria was made by 

Abel et a/. ( !963), who illustrated that the fatty acid protile could be used to 

discriminate between heterogeneous bacteria. Since then, some of the most valuable 

taxonomic studies on coryneform bacteria and actinomycetes genera have utilized 

fatty acid analysis and the occurrence of mycolic acid as major taxonomic tools 

(Collins el a/., 1982; Minnikin et a/., 1978; Bousfield et a/ 1983; Athalaye et al., 

1985) 

Cellular fatty acids have also been found in almost all yeasts and analyses of 

the tatty acid composition of most of the major species of yeast is well documented. 

ln ascomycetous and basidiomycetous yeasts, fatty acids ranging from Ct4 to Czo 

have been detected and used in the classification of these organisms (Cottrell el a/., 

28 



1985; Kock eta/., 1986; Smit eta/., 1987, van der Weisthuzen eta/., 1987; Viljoen et 

a/ .• 1986 ). Ratledge (1994) reviewing fatty acid analyses in various yeasts concluded 

that the major fatty acids found in yeast are palmitic acid ( 16:0), palmitoleic acid 

( 16: l ). oleic acid ( 18:0) and linoleic acid ( 18:2). Oleic acid is the most abundant fatty 

acid and linoleic acid can be the second most abundant fatty acid in most types of 

yeast whereas stearic acid is usually a minor constituent and rarely exceeds I 0% of 

the total fatty acids (Ratledge, 1994). Medium chain fatty acids (12:0 to 14:0) occur 

in trace amounts (less than I%) (Rattray, 1988) whereas long-chain fatty acids (20:0 

to 24:0) occur in few yeasts and are probably present in trace amounts in many 

species (Ratledge, 1994). Polyunsaturated long chain fatty acids are not common, 

however, the presence of di-homo-y-linolenic acid (20:3) and arachidonic acid (20:4) 

has been reported in the yeast, Dipodascopsis tmi11ucleata (Botha eta/., 1992). 

2.5. 7 Cellular carbohydrate composition of yeast cell wall. 

The cellular carbohydrate composition of yeast cell wall has been used in the 

taxonomy of yeast. Sugiyama el at. ( 1985) used this approach together with other 

biochemical analyses to examine I 08 strains of 61 species of the genera 

Rhodo.'iporidium, Leucosporidium and Rhodoloru/a and concluded that cellular 

carbohydrate composition profile is a valuable tool in the chemotaxonomy of yeast. 

Other workers have used the 'intact whole cell approach' to profile the cellular 

carbohydrate composition of yeast and yeast-like organisms and have all concluded 
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that this approach is useful in yeast taxonomy (Von Arx and Weijman, 1979; 

Weijman. 1977, 1979; Weijman eta/. 1982; Weijman and Rodrigues de Miranda, 

1988a). 

2.6. Yeast genetics. 

Yeast genetics as a discipline began in 1935, when Winge and Lausten (1937) 

demonstrated the alternation of haploid and diploid phases in Saccharomyces 

c:erevisiae. They isolated tetrads of spores from asci of S. cerevisiae, observed 

differences in the morphology of giant colonies on won gelatin and demonstrated 

Mendelian segregation in Saccharomycodes ludwigii, a species in which long and 

shon cells segregate according to Mendelian rules. Later, Lindergren ( 1949) 

demonstrated Mendelian segregation of melibiose fermentation by tetrad analysis of 

hybrid of S. cerevisiae x S. c:ar/shergensis (S. pastorianus) while the genes for 

fermentation of rhamnose, maltose, galactose, and sucrose were investigated by 

Lindergren ( 1949) and Winge and Roberts ( 1952). 

These classic works laid the foundation for modem yeast genetics, which has 

progressed rapidly, and have increasingly become molecular in nature. Yeasts have 

been found to present many advantages for genetics studies, e.g. they are easy to 

clone, handle and store, have rapid growth rate, are adaptable to replica plating, 

micro-manipulation and can be subjected to an array of biochemical procedures 

(Motimer and Hawthorne, 1970). 
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1.6.1 Methods for genetics manipulation. 

I. ..\Iteration of DNA by chemicals and radiation (Mutagenesis): The four­

nucleotide bases of DNA molecules are highly reactive groups capable of interacting 

chemically with a variety of compounds. Some of the compounds are natural 

products of biochemical reactions that break down metabolites inside cells while cells 

take the others up from their environment. The energy absorbed from radiation has 

the effect of increasing the reactivity of DNA or of substances occurring naturally in 

cells or taken up from surroundings. This reactivity frequently results in chemical 

modifications ofthe DNA, resulting in the formation of mutants . 

..\. Mut:tgenesis with chemical agents: Although chemical modifications of the 

DNA bases are potentially almost endlessly varied, the most likely possibilities fall 

into three categories. 

I. Base analogs: These are chemicals that mimic normal DNA bases. They are 

incorporated into replicating DNA but, because of structural similarity, they 

have different pairing properties and cause much more frequent mispairing 

than normal. Two widely used examples are 5 -bromouracil (BU) and 2 -

aminopurine (2AP). 

II. Mutagens affecting non·replicating DNA: There are a number of 

chemicals, whicll cause direct damage to non-replicating DNA. Nitrous acid 

(HN01), ethylmethane sulfonate (EMS), N-metllyl-N-nitroso urea, N-methyi­

N-nitro-N-nitrosoguanidine (MNNG or NTG), methyl sulfonate (MMS), 

mustard gas and many others are examples of this category. These 
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compounds, known as akylating agents, add methyl or ethyl groups to DNA 

bases, converting them to modified bases that may pair differently from the 

original A. T,C and G types. Others cause changes that block normal base 

pairing, leading to non-specific, random entry of nucleotides into the copy 

chain at positions opposite an alkylated template base. Addition of cyclic 

groups may be so large that passage of the replicating enzyme is blocked. 

Furthermore, DNA may be prevented trom unwinding for replication or 

transcription resulting in ·'skips" in which the copy chain has an open break of 

greater or shorter length. 

Ill. Frame shift mutagens: These are compounds that intercalate into the DNA 

molecule causing errors and resulting in an alteration of the reading frame 

thus leading to the formation of faulty protein or no protein at all. Examples 

of trame shift mutagens are acridine orange, protlavine and acriflavine. 

Although acridines are useful in research they are not suitable tbr routine 

isolation of mutants in strain development (Crueger and Crueger, 1989). 

B. Mut;agenesis resulting from radiation: Radiation-induced mutagenesis may 

result from direct absorption of energy by parts of the DNA molecule itself or by 

chemical activation of substances absorbing radiation in the vicinity of DNA. Both 

ultraviolet and ionizing radiation are used in mutagenesis studies. 

l. Ultraviolet radiation: Ultraviolet light is one of the radiation sources that 

directly induce alterations in DNA molecules. Short-wavelength radiation 

between 200-300 nm is the most effective for mutagenesis. The most 
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common result of exposure to this torm of radiation is the formation of 

thymine dimers between adjacent pyridines or pyrimidines of complementary 

strands. Long-wavelength ultraviolet radiation between 300 and 400 nm has 

less lethal effects on cells, however, in the presence of various dyes, which 

interact with ON A, greater death rates and increased mutations occur. 

II. Ionizing radiation: Ionizing radiation creates reactive substances that 

interact with atoms of DNA bases in various ways. It is, however, used in 

mutagenesis only if others mutagens cannot be used (Crueger and Crueger, 

1989). Ionization radiation includes X-rays, P-rays, and y-rays. 

2. Protoplast Fusion (spheroplast and nucleus-protoplast fusion): This procedure 

was first used in making "'hybrid" plant and animal cells and has now been applied to 

yeast. In spheroplast fusion, the cell wall of the yeast is enzymatically removed, the 

resulting protoplasts are then mixed in stabilizing solutions of sorbitol or potassium 

chloride with the addition of calcium in a fusogenic agent such as polyethylene glycol 

(PEG). The resulting mixture is incubated at appropriate temperature tor 30 minutes, 

and plated on osmotically stabilized media. Since there are no constraints on the 

recombination process, this technique results in the production of various classes of 

hybrids. Protoplast fusion has been performed in Streptomyces sp. (Hapwood et a/., 

1977). Protoplasts from basidiomycetous yeasts are difficult to obtain, however, 

protoplasts have been obtained tram the genera Rhudruporidium. Oyptococcus and 

Phajfia (Spencer and Spencer, 1997). 
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3. Nucleus-protoplast fusion: This involves the isolation of viable nuclei from a 

donor strain and the fusion of the nuclei with protoplast of the recipient strain in the 

conventional manner. The method has been applied to protoplasts from strains of S. 

c.:erevisiae and nuclei from the filamentous fungi, Fusarium monoliforme and 

li-ichoderma reesii (Spencer and Spencer, 1997); yeast protoplasts and animal cells 

(Ward. 1984 ); protoplasts of petite mutants of S. cerevisiae and human blood platelets 

that contain mitochondria but no nuclei (Spencer and Spencer, 1997). 

-1. Re(ombinant DNA iechniques: This process involves the transformation of 

f::,·cherichia coli by a plasmid from yeast carrying the desired gene to be introduced 

into the recipient strain. DNA from the bacteria strain is amplified, re-isolated and 

used to transform the recipient yeast. Yeast trans formants are subsequently selected 

and then tested for the presence of the desired gene (Spencer eta/. 1988). 

5. Electroporation: This technique uses pulses of an electric field to separate intact 

chromosomes. Yeast cells embedded in agarose gel blocks are enzymatically lysed, 

subjected to pulses of electrical current of unequal duration. The currents are 

reversed at intervals of several seconds producing a homogenous electric field, which 

results in sharper separation of bands. This technique has been used for karyo-typing 

of a number of yeast species (Spencer eta/. 1988). 
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2. 7 Economic importance of yeast. 

2.7.l Fermented foods and beverages. 

Controlled fermentation of food originated in China, and was initially used for 

the preservation of cereals and legumes. The practice has since been extended to 

many other foods. Vegetable products having a meat-like texture and methods of 

leavening batters of cereal·legume mixtures were developed in lndia and Indonesia, 

whereas acid fermented vegetables (pickles) and bread leavened by yeast were 

developed in Korea and Egypt, respectively, (Vijayalakshmi eta/. 1997). Fermented 

foods are widely used today around the world and most are prepared by microbial 

action on one or more components, causing changes in their physical, biochemical 

and nutritional qualities. Yeasts that contribute to many of these fermentation 

processes have also been used in the brewing industries for centuries. They are also 

used in the production of industrial alcohol, glycerol and other polyhydroxyl alcohols. 

They also produce proteins, vitamins, pigments and flavoring compounds and can 

contribute useful mechanical qualities to toad. Yeasts also contribute significantly to 

recommended daily allowances for calories, proteins, calcium, phosphorous and iron, 

and vitamins B, C, and niacin in the human diet (Vijayalakshmi eta/. 1997). 
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2.7.2 Yeast in animal reeding. 

Yeasts are used as microbial biomass protein or single cell protein (SCP) to 

supplement (up to SO%) animal diets (Phaff era/., 1978). The most widely used 

yeast is Candida uti/is (Torula yeast), which serve as a valuable protein source for the 

poultry, livestock and aquaculture industries (Phaff et a/., 1978). Bakers' inactive 

dried yeast is used widely in the health-tbod industry as a source of vitamins. 

Candida lmmic:olcl, Candida tropic:ali.'i and Lipomyces lipojeris have also been used 

as lipid yeast for SCP because of their high concentrations of lipids, most of which 

are made up of unsaturated fatty acids (Raitsina and Eudokimova, 1977). Martin et 

a/. ( 1993), using Candid" mi/i.,· as a source of protein for rainbow trout 

Ondwr_vnchus myki.,·s, reported good growth and high apparent protein digestibility 

{APD) tbr tish fed diet in which the largest of the fish meal component has been 

replaced with yeast biomass. Pigmented yeasts belonging to the genera Phaffia, 

Rhodotorula 'md !:Jporoho/omyces sp. have also been tested as sources of carotenoids 

for the aquaculture, poultry and pharmaceutical industries (Johnson and An. 1991 ). 

2. 7.3 Yeast in therapeutics. 

Yeasts are a potential source of wide variety of therapeutic products, from 

vitamins to heterologous proteins. Glucan, a component of the yeast cell has been 

tested tbr use as "biological response modifier" and immunostimulants for the 
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prevention offish diseases (Anderson, \992; Rao eta/., 1992) and diseases in humans 

such as cancer {Azuma, 1987). Several types of yeasts are today being used as 

vehicles for the production of heterologous proteins such as interferon, hepatitis B 

surtace antigen (used in vaccine production), epidermal growth factor which is used 

in hastening wound healing in corneal transplants, human insulin production and 

many others (Vijaylakshmi et a/. 1997). 

2.8 Occurrence of glucans in yeast. 

The yeast cell wall constitutes 15-25% of the dry weight of the cell. 

Polysaccharides account for 80 - 90% of the wall, followed by smaller amounts of 

protein and lipid. Glucan and mannans are the main polysaccharides, with chitin 

occurring in minute quantities (McWilliam 1970, Phaff, 1971 ). The bulk of studies 

done on the chemistry of cell walls of yeast have been concentrated on 

Saccharomyces cerevisiae and it is only recently that other species have attracted 

attention. Depending on the culture condition, the glucan content of the cell wall of 

S. cerevisiae is in the range of 30-60% (Ramsey and Douglas, 1979; Bacon et a/., 

1969; Jayatissa and Rose, 1976) and is composed of three types of glucan. Bacon et 

a/. ( 1969) first reponed that the predominant glucan was a P-( l--+6)-linked glucan. 

Other authors have reported the presence of an alkali-insoluble acetic acid-insoluble 

P-( I --+3) glucan and an alkali-soluble P-( 1-+3) glucan (Manners eta/. 1973). The 

occurrence of glucan has been reponed in other yeasts such as Ca1ldida albicans, 
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.r.,'t.:hi=o.m,·charomyce.\· species, Rhodotorula g/utinis ( Arai et a/., 1978; Arai and 

Murao, 1978), and Pichia polymorpha (Villa el a/. 1980). However, in R. gllllinis 

and P. po~vmorpha, the detennination was made largely on the basis of the presence 

of glucose in wall hydrolysates and no structural details are available. 

Since glucans are in demand as immunostimulants, it is the objective of the 

present study to isolate and determine the chemical structure of the glucans from the 

cell wall of the new yeast isolate. 

2.9 The tuonomy of the red yeast. 

2.9.1 The Genus Rhmlotorula. 

The genus Rhodotonlla was created to accommodate pigment producing 

asporogenous yeast (Harrison, 1928) which synthesize red or yellow carotenoids. 

This genus belongs to the family Cryptococcaceae (Kreger van-Rij, 1984) and sub­

family Rhodotoruloideae (Ladder and Kreger van-Rij, 1954). Members are 

spheroidal. ovoidal or elongate in shape and reproduce by multilateral budding. 

Strains of some species form pseudo- or true hyphae, some may form arthrospores 

(Kreger van-Rij, 1984). As described by Harrison ( 1928), members do not assimilate 

inositoL do not tbrm starch-like substances and lack fermentative ability. Many 

strains have a mucous appearance due to capsule formation, but others are pasty or 

dry and wrinkled (fell eta/., 1984). 
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2.9.2 Sexuality in Rh01/otorula 

The members of the genus reproduce vegetatively and do not form ascospores 

or ballistopores. Banno ( 1967) discovered the sexual state in strains of R. g/utinis and 

this led to the creation of basidiomycetous genus Rhodosporidium and the teliospore 

forming species, Rhodmporidium toru/oides. Many of the members of Rhodotoru/a 

have been described as being imperfect forms of Rhodosporidillm Banno (Banno, 

1967). Strains have opposite mating types characterized by dikaryotic mycelium with 

clamp connections and chlamydospores. 

2.9.3 The species RltOtlotorulll rubrtt. 

This is a red yeast with cells varying from short ovoidal to elongate in shape 

and size. They may occur singly, in pairs or in clusters and all are able to assimilate 

sucrose, trehalose, ratflnose, D-xylose, ribitol and succinic acid (Fell et a/., 1984), 

while some strains are also able to assimilate galactose, maltose, cellobiose, L­

arabinose. D-ribose, L-rhamnose, D-mannitol and citric acid (Kreger van-Rij, 1984). 

Analysis of the carbohydrate content of the whole cell hydrolysate revealed fucose 

and mannose as the dominant sugars while mannitol and arabinitol may occur in 

minute quantities (Weijman and Rodrigues de Miranda, 1988b). Members of the 

species have a G + C content of 60-63.5 mol. % (Nakase and Komagata, 1971; 

Marmur and Doty, 1962), an ubiquinone Q 10 system and do not require biotin and P 

aminobenzoic acid for growth (Yamada and Kondo, 1973). Several Rhodotorula 
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strains have been isolated from leaves, flowers, atmosphere, soil and marine sources 

(Kreger van-Rij, 1969). 

2.9.4 Pigment formation in RhotlottJru/a rubrtL 

R. ruhra has been successfully cultivated on a wide range of carbohydrate 

sources. Martin et a/. ( 1993a) optimized such parameters as pH, aeration rate, 

nutrient requirements and concentration of carbon sources and pigment production in 

this species in peat extracts. They reported that Rhoclotorula rrthra growth and 

pigment syntheses are both optimal at 2i C, and at a pH of 5. 5. Sangha ( 1994) 

reported production of high concentrations of pigment when the organism was grown 

in molasses and malt extract. Fromegeot and Tchang (1938) studied the effects of 

glycerol on carotenogenesis in R. ruhra and concluded glycerol is effective in 

promoting carotenogenesis in this organism. However, for Rlwclotorula sp. No.IOO, 

Simpson et a/. ( 1971) reported that glycerol was less effective than glucose, while 

phenol. resorcinol and Kojic acid stimulated the production of P-carotene in the 

above-mentioned strain. For another strain of R. ruhra, the best yields of torularhodin 

were obtained on glycerol with asparagine as the nitrogen source while sucrose gave 

the highest yields of torulene, P-carotene and y-carotene (Wittmann. 1957). 

Numerous nitrogen sources have also been shown to affect pigment production in R. 

ruhra. ln the Rh-1 00 strain of Rhoclotorula, valine, leucine and asparagine produced 

the best yields of carotenoids (Simpson et a/., 1971 ), while on organic and inorganic 
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sources of nitrogen, the highest yield was recorded for ammonium nitrate (Wittman, 

1957). 

Unlike P. rhodo:yma, in which carotenoid production occurs in the exponential 

phase of growth (Johnson and Lewis, 1979·, An et a/., 1989), carotenoid production in 

R. mhra mainly occurs in the stationary phase (Goodwin, 1972; 1959). Light is 

important tor the regulation of carotenoid biosynthesis in a wide variety of 

microorganisms and Simpson et al. ( 1971) showed that R nthra is no exception to 

this phenomenon. 

Environmental factors such as light, temperature, oxygen and carbon dioxide 

concentrations have been reported to have an etTect on carotenogenesis (Bramley, 

1985 ). Other controlling factors that have been reported include regulation of 

oxidative metabolism, kinetic control of individual biosynthetic enzymes, 

compartmentalization of enzymes and substrates, repression of regulatory genes by 

light and developmental processes (Tada, 1989; Tada eta/., 1990). 

2.10 Analysis and identifitation of tarotenoids. 

l. Disruption and e~traction: Extraction of carotenoids involves the disruption and 

homogenization of the biological material to release the pigments betbre pigment 

extraction can be carried out. Fresh plants and animal tissue are usually homogenized 

before or preferably during extraction directly in the organic solvent with an electric 

blender. Other means of homogenization may include mechanically grinding the 
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dried material into fine powder or usmg the 'Ultra-Turrax' or 'Polytron 

Homogenizer' for soft materials in small quantities. 

For microbial cells such as yeast, the cells may be either broken by passage 

through a French press at high pressures or by shaking with beads in a Braun MSK 

Homogenizer before extraction of pigments with suitable solvents. Ultrasonic 

disintegration may also be used for some microbes especially if the amount of cells 

being used is comparatively small. 

Chemicals as well as enzymes can also be used to digest the cell walls of yeast 

and other microorganisms. For example, Okagbue and Lewis (1984) used 2N HCI 

followed by mild heat treatment to hydrolyze the cell wall of Phajfia rhodo:yma 

rendering the pigments extractable. Gentles and Haard ( 1991 ), Acheampong (1993) 

and Martinet a/. (1993b) used the enzyme 'Funcelase' (glucanase) to digest the cell 

wall of fJ. rhodo:yma in order to extract and quantify the pigments present in the 

yeast. Similarly, Okagbue and Lewis ( 1985) used a mixed culture of Bacillus 

r.:irc:11lam· WL-12 and P. rhodo:yma to render the yeast pigment extractable by the 

bacteria enzyme complex. 

Extraction of the pigment from the disrupted biological material is usually 

accomplished with water-miscible organic solvents, most commonly acetone. The 

choice of solvent usually depends on the biological material, its pre-treatment, the 

nature of the carotenoid, and whether the objective is partial or complete extraction 

(Schiedt and Liaaen-Jensen ( 1995). 
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2. Isolation and identification of carotenoids. 

Different forms of chromatography are used in the isolation and identification 

of various classes of carotenoids. Other procedures that lend themselves to the 

identification of carotenoids include ultra-violet/visible spectroscopy, infra-red 

spectroscopy (lR), mass spectroscopy (MS), nuclear magnetic resonance (NMR), 

resonance raman (RR) spectroscopy and circular dichromism. Only few of these 

methods will be discussed brietly below. 

I) Column chromatography. 

Column chromatography is the most important and efficient method for the 

separation of carotenoids (Davies, 1976). Most of the procedures are based on the 

principle of adsorption chromatography. Adsorbent are usually packed in columns in 

the form of a slurry in the initial solvent to be used and pigments to be separated are 

loaded onto the column and eluted with the mobile phase. Among the adsorbents 

traditionally used are basic materials such as MgO, Ca(OH)2, and CaC03. which have 

been extensively used in carotenoid analysis. Other materials such as sugar, silica 

and alumina are also used in the separation of various classes of carotenoids. 

II) Thin layer chromatography (TLC). 

Thin layer chromatography is an invaluable technique for the qualitative 

analysis and identification of carotenoids. In carotenoid analysis, it has been used for 

the preliminary examination of carotenoid mixtures as a means of choosing suitable 

column systems, purification of carotenoids on a small scale and partial identification 

of carotenoids by their adsorption affinities (Davies, 1976). The adsorbents 
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commonly used are MgO, silica gel and plates with bonded phases such as surface -

modified silica layers with a chemically bonded hydrocarbon chain (C2 to C18) 

(Schiedt, 1995). Different developing systems are used depending on the polarity of 

the pigment being analyzed. 

Ill) High performance liquid chromatography (HPLC). 

High performance liquid chromatography (HPLC) is another chromatographic 

method used tor the separation of carotenoids. Because it is very efficient, gives an 

excellent separation of pigments in a short time, is highly sensitive and generates a 

great deal of information on the pigments being analyzed (Pfander and Riesen, \995), 

HPLC has become the method of choice tor carotenoid analysis. HPLC analysis can 

be carried out in either a normal-phase or reverse-phase modes but in recent years 

reverse-phase HPLC has become the method of choice. Silica and bonded nitrile 

columns are commonly used tbr normal-phase whereas alumina columns are used in 

reverse-phase HPLC (Taylor eta/. 1990). 

IV) H PLC-MS. 

Mass spectrometry (MS) using different ionization techniques is one of the 

most powerful methods for the identification of organic compounds and has been 

used tor structural identification of carotenoids (Vetter er a/. \97\; Taylor et a/. 

I 990). MS can be used in conjunction with the traditional HPLC separations in a 

single procedure to identify carotenoids. However, the high cost of instrumentation 

and maintenance has made it unavailable to some laboratories (Taylor eta/. 1990). 
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v) Ultra-violet-visible spectroscopy. 

The quantitative determination of carotenoids by spectrophotometry is based 

on the ability of the pigments to absorb visible, and in few cases, UV light. 

Spectrophotometer can be used to determine the concentration of pure carotenoid, or 

to estimate the total carotenoid in a mixture or natural extracts (Scheidt and Liaaen­

Jensen, 1995). The characteristic maximal absorption peaks in the visible spectrum 

also gives valuable information, which will ultimately r.esult in the identification of 

the carotenoid. The characteristic absorption spectrum is defined by the number of 

double bonds occurring in a particular carotenoid, various additional structural 

features and the type of solvent used (Vetter, 1971 ). 
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CHAPTER3 

INVESTIGATIONS INTO THE TAXONOMY OF Rhodotorula 

r11bra TPI USING CELLULOSE ACETATE ELECTROPHORESIS 

OF ENZYl\'IES, BIOCHEMICAL AND PHYSIOLOGICAL 

CHARACTERISTICS 

3. t Introduction. 

A red yeast contaminating homemade yogun was isolated and tentatively 

identified as Rhodotontla ruhra TPl (Hari eta! .. 1992). This new isolate displayed 

certain characteristics of the Basidiomycetes; it showed a lamella cell wall structure 

characteristic of Basiodiomycetes and a positive urease test. ln addition, the isolate 

was reported to produce ascospores, a characteristic not usually associated with 

Cryptococc:acae to which most of the pigment-producing yeasts belong. If the 

structures reported in the new isolate are ascospores, then it will be the tirst time a 

carotenoid producing yeast has been associated with ascospore production. 

Even though some carotenoid producing yeasts such as Saitoella complicala 

(Goto el al., 1987) and some species of Taphrina and Protomyces (van Eijik and 

Roeymans, 1982) have been shown to have Ascomycete affiliation, none of them 

have actually been shown to produce ascospores. In the case of the new isolate, 

previous biochemical tests including assimilation of various carbohydrates indicated 
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that it belongs to the genus Rhodotorula (Hari et al., 1992). Due to the uncertainty 

surrounding the phylogenetic affinity of this isolate, it was the objective of this study 

to confirm both the production of ascospores and the biochemical and nutritional 

characteristics of the isolate, and hence to clarify the phylogenetic affinity of the 

isolate. As part of the identification process, the study also evaluated the usefulness 

of cellulose acetate electrophoresis as a tool in yeast taxonomy and also employed 

numerical analysis of the electrophoretic mobility of enzymes as a tool tbr identifying 

the new yeast isolated tram yogurt. 

Protein electrophoresis is a useful taxonomic tool that has been used to 

discriminate between yeast species, and in some cases, strains. For example, Martini 

and Vaughan-Martini ( 1990) used the electrophoresis of 11 isofunctional enzymes to 

establish 13 species in the genus Kluyveromyces. Similarly, Yamazaki and Komagata 

( 1981) claritied the taxonomic relationship between strains in the genera Rhodotomla 

and Rhodosporidium by comparing the electrophoretic mobility of seven enzymes 

fructose- I ,6-diphosphate aldolase (FA), 6-phosphogluconate (6PGDH), malate 

dehydrogenase (MDH), hexokinase (HK), phosphoglucomutase (PGm), glucose-6-

phosphate dehydrogenase (G6PDH) and glutamate dehydrogenase (GDfO. Similarly, 

Holzschu ( 1981) used the banding patterns of 14 metabolic enzymes to determine the 

evolutionary relationships among 400 strains of cactophilic strains of Pichia and 

separated a number of apparent similar species. 
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3.2 ~hterials and methods. 

Organisms: The organism used for the sexuality studies was R. ruhra TP I. The 

following organisms were used as controls in the enzyme, biochemical and 

physiological characterization: Rhodotoru/a ruhra ATCC 9449, Rhodotoru/a 

gramiuis ATCC 16727, Rhodotorula minuta ATCC 10658, Phajjia rhodozyma 

A TCC 24202, Rhudmporidium toruluides ATCC I 0657, Cryptococcus macerans 

A TCC 2194, Rhodotorula g/utiuis and Saccharomyces cerevisic1e (Culture Collection, 

Dept. of Biology, Memorial University ofNewfoundland, St. John's, NF.) 

Chemicals: Trizma base (Tris[hydoxymethylaminoethane]), glucose and all other 

carbon sources were purchased from Sigma Chemical Company, St. Louis, Missouri. 

YM broth, plain agar, Chritensen urea agar, yeast nitrogen base, yeast carbon base, 

bactopeptone, yeast extract and malt extract were obtained from DlFCO Laboratories, 

Detroit. Michigan. Sodium acetate, potassium nitrate, acetic acid and methanol were 

purchased from Fisher Scientific Ltd., Fair Lawn, New Jersey. 

3.2.1 Induction of sporulation. 

The following media used in the previous study (Hari et a/., 1992) were used 

in an attempt to induce sporulation in the new isolate. 

I. Aqueous agar (van der Walt and Yarrow, 1984) constituting 2% agar. 

2. Yeast extract glucose agar (van der Walt and Yarrow, 1984) constituting 0.5% 

powdered yeast extract, 2% glucose and 2% agar. 
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3. Fowell's acetate agar (Fowell, 1952). This medium was made up of 0.5% 

sodium acetate trihydrate and 2% agar. 

4. Malt extract agar (van der Walt and Yarrow, 1984). The composition for this 

medium was 5% malt extract and 3% agar. 

3.2.1.2 Method for the induction of sporulation. 

A LO-mL aliquot of a pre-sporulation medium containing 5% dextrose, 1% 

yeast extract and 2% bactopeptone was inoculated with the yeast and incubated at 30° 

C for 48 hours with occasional shaking . Cells were centrifuged, washed 3 times with 

deionized water and resuspended in 0.5-mL deionized water. A loopful was used to 

inoculate sporulation medium and incubated at 25" C for 5 days. Cells were observed 

under a microscope tbr sporulating cells. 

3.2.2 Biochemical characterization of Rhotlotorula rubra TPI. 

3.2.2.1 Assimilation of carbon compounds. 

Wickerham's ( L 951) inoculation medium was used for this study. A l 0-fold 

concentrated solution of yeast nitrogen base was prepared by dissolving 6. 7 g of yeast 

nitrogen base and 5 g of the appropriate carbon compound in I 00 mL deionized 

water. The solution was filter-sterilized and aliquots of 0.5 mL were pipetted into 

clear. plugged. sterile 16-mm tubes containing 4.5-mL sterile deionized water. The 

tubes were then inoculated with 0.1 mL of inoculum prepared as described by 
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Wickerham ( 1951 ). Test tubes containing only the yeast nitrogen base solution were 

similarly inoculated and used as controls. After inoculation, the tubes were incubated 

for 3 weeks at 28°C with occasional shaking and examined at weekly intervals. 

3.2.2.2 Assimilation of nitrogen compounds. 

Wickerham's ( 1951) liquid medium was used. The medium was prepared in a 

tO-fold concentration by dissolving 11.7g yeast carbon base together with 0.78 g 

potassium nitrate in I 00 mL of deionized water and then filter-sterilized. The final 

medium was prepared by transferring aseptically 0.5 mL aliquots of the sterile l 0-

fold concentrated into 4.5 mL of sterilized deionized water in 16 mm plugged tubes. 

Blanks tubes were prepared and used as controls. The nitrogen assimilation tubes 

received the same inoculum as was used in the carbon assimilation tests and were 

incubated at the same temperature. After the tubes were incubated for one week, a 

second set of test tubes was inoculated with one loopful from the first and results 

recorded after one week of incubation. 

3.2.2.3 Urease test. 

Production of urease was determined by inoculating the culture in Christensen 

urea agar and the result were recorded after two days. 

3.2.2.4 Diazonium blue B (DBB) test. 

The method of Hagler and Ahearn ( 1981) was used. This was done to 
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determine the ascomycetes or basidiomycetes affiliation of the new isolate. 

3.2.3 Electrophoresis of enzymes. 

3.2.3.1 Cultivation of organisms. 

The culture medium used was YM broth at a concentration of 40 g per L of 

deionized water and a pH of 7.2. The yeasts were grown in 2 L Erlenmeyer flasks 

containing 500 mL medium, incubation was for 5 days at 22°C with shaking. The 

cells were harvested by centrifugation in a Sorvall RC-5C Plus centrifuge (Dupont­

Sorvall Instruments, Newark, Connecticut, U.S.A.) at 10,000 x g for 20 minutes at a 

temperature of 4''C. The harvested cells were washed three times with deionized 

water, freeze-dried and stored at -8S"C until they were used. 

3.2.3.2 Enzyme preparation. 

Cells were suspended into a thick slurry in 0.05 M Tris-HC\ buffer (pH 7.8) 

and then broken in a French Press (SLM Instruments Inc., Urbana, Illinois) at a 

pressure of 40,000 psi. Broken cell debris was removed by centrifugation at 20,000 x 

g at 4''C. The supernatant fluid was collected and stored at -85°C in aliquots of 5 mL 

in glass scintillation vials until required for use. 

3.2.3.3 Cellulose acetate electrophoresis. 

A type Super Z-12 application kit and Titan m cellulose acetate plates 
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(Helena Laboratories) were used for horizontal electrophoresis. Plates were pre­

soaked in Tris-glycine buffer (pH 8.5} prior to application of enzyme extracts. 

Electrophoresis was carried out at 2 mNplate for 20 - 30 minutes in Tris-glycine 

butl'er in at room temperature. 

3.2.3.4 Enzyme staining procedures. 

Because of the important roles they play in the metabolism of glucose by 

yeasts, the following eight enzymes were studied. 6-phosphogluconate 

dehydrogenase (6PGDH; EC 1.1.1.41 ), glucose-6-phosphate dehydrogenase 

(G6PDH: EC 1.1.1.49), phosphoglucomutase (PGM; EC 5.4.2.2), Mannose-6-

phosphate isomerase (MPI; EC 1.1.1.37), isocitrate dehydrogenase (IDH; EC 

1.1.1.42), hexokinase (HK; EC 2. 7.1.1 ), malate dehydrogenase (MDH; EC 1.1.1.37) 

and glucose-6-phosphate isomerase (GPI). Specific stains as described by (Herbert 

and Beaton, 1993) were used to visualize the above mentioned enzymes 

After electrophoresis, the plates were removed from the chamber and placed 

on a levelled glass surtace. Molten agar at 60"C was added to the stain mixture and 

poured immediately over the plates. The plates were then incubated in the dark until 

the isozyme bands could be seen clearly. Plates were then washed 2 - 3 times under 

running tap water and the bands fixed by immersing plates in a mixture of acetic acid: 

methanol: deionized water (1:4:10) tor about 10 minutes. The plates were dried 

overnight, photographed and the distance moved by individual isozyme bands 

measured. Three replicate plates were prepared for each yeast isolate, each replicate 
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representing a separate homogenate of each of the various yeast isolates. The 

migration rates of the isozyme were compared by computing the relative 

electrophoretic mobility (J.l.) (Lehninger, 1979). isozyme bands among isolates were 

considered to be the same if their IJ.S were within 10% of one another. This margin of 

error was chosen because in the analyses the observed variation in the three replicates 

of the same isozyme was always found to be within to% of one another. 

3.2.3.5 Numerical analysis. 

Similarity was calculated tor each isozyme by the following formula (Sneath 

and Sokal, 1973). 

S% = 
2
N'8 :-.:100 

N,+N11 

Where S: Similarity value 

N.18: The number en:yme hands with idelllical p 

N.1: The number of en:yme hand\· of yeast species A. 

N8: The number of en:yme hand\· of yeast species B. 

The overall similarity between species was found by averaging the similarity values 

tor the individual enzyme bands. 
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3.3 Results. 

3.3.1 Sexuality in R. rubra TPl. 

Fig. 3. 0 depicts a photograph of the morphological characteristics of the new 

isolate R. ruhru TP I grown in different sporulation media. This study was repeated 

several times over a period of one year. The cells of R. ruhra TP I vary from short 

ovoidal to elongated, single, in pairs and short chains. Some of the cells can be seen 

budding. Unlike a previous report (Hari et a/., 1992) there was no evidence of the 

production of any structures resembling ascospores or teliospores on any ofthe media 

tested. As a result no further tests were done on the cells as may have been necessary 

should ascospores have been produced. 

3.3.2 Biochemical characteristics. 

3.3.2.1 Assimilation pattern of carbon compounds. 

The nutritional and biochemical characteristics of the new isolate and other 

yeast genera as illustrated by the growth on different carbohydrates are depicted in 

Table 3.0. Both the new isolate and R. ruhra ATCC 9449 were found to utilize a 

wide range of carbohydrates including, galactose, trehalose, melizitose and glycerol 

succinic acid, soluble starch and a.-methyl-D-glycoside. They however lacked the 

ability to assimilate inositol. 
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3.3.2.2 Assimilation of nitrate, urease and DBB tests. 

The new isolate and R. mhra were both found to be nitrate negative, urease 

positive and gave a positive DBB reaction. 

3.3.3 Isozyme analysis 

Figs. 3. I, 3.2 and 3.3 show the electrophoretic patterns of the new isolate R. 

ruhru TP I and the other yeast isolates used as control. Table 3.1 presents the data on 

the electrophoretic mobility (!-') values for eight enzymes of the yeasts tested. The 

overall similarity values determined from the various isozymes are given in Table 3.2. 

From Fig 3.1 to 3.3, it can be seen that the new isolate had zymograms that were 

identical to those of some ofthe controls whereas some ofthe control organisms have 

their own characteristic zymograms. 

3.3.3.1 Mannose-6-phosphate dehydrogenase (MPI). 

These isozyme banding patterns were the same for R. ruhra TP I, R. ruhra 

A TCC CJ449 and R. mimtta. Each of these three isolates possessed double bands of 

MPI activity that migrated cathodally (Fig. 3.lA). According to the electrophoretic 

mobility ( ll) measurements (Table 3. l ), the same cathodal bands l and 7 were 

common to these three isolates. R. graminis on the other hand. possessed two 

cathodal bands one of which (band 1) was identical to that of the new isolate but the 

other band (band 6) was electrophoretically different. Similarly some of the other 
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isolates possessed bands that were electrophoretically distinct from those of the new 

isolate. For example, S. cerevisiae had three bands, one that migrated anodally (band 

-I) and two other cathodal bands (bands 2 and 3) that had different electrophoretic 

mobility from those of the new isolate (Table 3. I); R. g/utinis possessed two cathodal 

bands (3 and 5); P. rhodo=Jtma had two cathodal bands (4 and 6); Cr. macerans had 

one cathodal band (band 4) and Rhodosp. toru/oides had one cathodal band at 

position 6. 

3.3.3.2 Glucose-6-phosphate isomerase (GPI). 

R. ruhra TP I had identical zymograms and electrophoretic mobilities (J.ls) 

with R. ruhra ATCC 9449, R. mimua and R. gmmiflis The zymogram consisted of 

two bands (l and 4) that migrated toward the cathode (Fig 3.lB and Table 3.1 ). R. 

gllllinis had two cathodal bands (bands I and 4) and band 4 was identical to that 

possessed by N. ruhra TP I, R. ruhra ATCC 9449, R. minuta. R. graminis, Cr. 

mac:erans and R. toruloides. Cr. macerans had two extra bands, bands 2 and 5. P. 

rhodo:yma had one band (band 2) with the same electrophoretic mobility as that of 

Cr. mac:erans (fig. 3.1 B and Table 3 .l ). S. c:erevisiae had three discernible bands one 

of which migrated anodally (band -l) and the other two bands, I and 3 migrated 

towards the cathode. Band 3 was similar to that of R. g/utinis (fig. 3 .l B and Table 

3.1 ). 
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3.3.3.3 Malate dehydrogenase (MOD). 

The MDH isozyme banding patterns of R. ruhra TP I, R. ruhra ATCC 9449, 

R. minuta and Rhodo~p. toruloides were identical (Fig. J.IC and Table 3.1). These 

isolates have common cathodal bands at 2 and 3 with the same J.l. R. glutinis had a 

cathodal band at 3 similar to those of the above-named isolates and an additional band 

at position I which was also identical to one of the bands of Cr. maceram·. Cr. 

mac:erans also shared a common band at position 4 with S. c:erevisiae. There was a 

band at position 5 that was unique to S. cerevisiae (Fig. 3.1C and Table 3.1). 

3.3.3.4 Hexokinase (HK) 

The hexokinase isozyme banding patterns for the various yeast isolates are 

depicted in Fig 3.2A. R. ruhra. S. cerevisiae, R. gl11tinis. P. rhodo:yma and Cr. 

macerans all had the same cathodal bands at position l. The respective 

electrophoretic mobilities are also similar (Table 3 .I). In addition, S. cerevisiae had 

two additional bands one of which moved cathodally at position 2 and the other 

anodally at position -I. P. rhodo:yma also had an additional band but no anodal band 

whereas Cr. macerans had an additional band at position 3. Rhodosp. tontloides had 

no band and R. gllllinis had one band that moved cathodally at position 2. Thus, R. 

ruhra TPI, R. ruhra and R. graminis were found to be the same with respect to this 

isozyme in that they all possessed single bands at position I. 
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3.3.3.5 Isomerase dehydrogenase (IDH). 

This enzyme produced identical banding patterns and IJ.S for R. rubra TP I, R. 

ruhra. R. minuta. R. graminis and Cr. macerans. These isolates had cathodal bands at 

position 2 and 5 (Fig. 3.28 and Table 3.1). S. cerevisiae also had a band at position 2 

but it differed from these isolates in that it had two extra cathodal bands at positions 1 

and 6 and no band at position 5. Rhodo.,poridium tontloides shared a common band at 

position 6 with S. cerevisiae and had another band at position 3, which was not 

present inS. cerevisiae. R. glutinis and P. rhodo:Jlma on the other hand had identical 

bands at position 4 and therefore differed from the other isolates in this respect. 

3.3.3.6 6-phosphogluconate dehydrogenase (6PGDH). 

R. ruhra TP l, R. ruhra A TCC 9449, R. minuta, and R. graminis had identical 

zymograms and electrophoretic mobility values for 6PGDH (Fig 3.2 C and Table 3. I, 

respectively). Each of these tour isolates possessed an anodal band (band -1) and two 

cathodal bands (bands 2 and 3 ). P. rhodo=_vma and Cr. macerans on the other hand, 

had one band each (band -I) which were identical, moved anodally and similar to the 

anodal band of R. ruhra TP I. S. cerevisiae and R. glutinis each had a cathodal band 

at position 3, which were also identical to band 3 of R. mhra TPL In addition, S. 

cerevisiae had an additional band at position I. Rhoclosp. tontloides had two bands at 

position 2 and 3 that were identical to the bands possessed by R. mbra TPL 
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3.3.3. 7 Phosphoglucomutase ( PGM). 

With the exception of S. cerevisiae which possessed five bands and Cr. 

macerans which possessed two bands, all the other isolates had only single bands. 

This is the only isozyme for which R. ruhra TP I and R. rubra did not share common 

banding patterns. R. ruhra TP I had a single band of activity that migrated towards 

the cathode (Fig. 3.3A). R. ruhra. R. minllla, R. graminis, R. glutinis, Rhodosp. 

tomloides and P. rhodo:yma all had a single cathodal band of activity but the 

electrophoretic mobility was greater in R. ruhra TPI than in any of these isolates. Cr. 

macercms possessed a band at 7 whose electrophoretic mobility was identical to that 

of R. ruhra TP I, however, it had an additional band at 3 that was not present in R. 

mhra TP I. S. cerevisiae was unique with respect to this isozyme in that it possessed 

as many as 5 isozyme bands which none of the other isolates possessed. 

3.3.3.8 Glucose-6-phosphate dehydrogenase (G6PDH). 

lsozymes of six: isolates, R. ruhra TPl, R. r11hra ATCC 9449, R. minllla, R. 

glmini.'i, P. rhodo:yma and R. graminis all possessed single bands of activity that 

migrated to the cathode (Fig. 3.38). According to the ~ values (Table 3.1 ), these 

bands (band 1) were identical for these isolates. Cr. macerans and Rhodosp. 

roruloide.'i, on the other hand, possessed no bands and S. cerevisiae possessed a band 

at position 3. 
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3.3.4 Similarity of isozymes and their of electrophoretic mobility. 

It is clear from above that the new isolate produced different zymograms for 

each of the enzymes studied, and all zymograms except PGM were identical to those 

produced by R. ruhra. Of the eight yeast isolates used as control, R. ruhra A TCC 

9449, U. mimua and R. gramiuis produced enzyme banding patterns identical to the 

new isolate tbr GPI, 6PGDH, HK, IDH and MDH. In addition, the electrophoretic 

pattern of GPI was identical tor the new isolate, R. nthra and R. minuta. All the 

yeasts tested produced identical patterns tor G6PDH except S. cerevisiae, which 

produced a unique zymogram pattern for this enzyme. Thus, except for PGM, the 

new isolate and R. ruhra A TCC 9449 produced zymograms that were identical. 

The overall similarity values calculated from the electrophoretic mobilities of 

the various enzymes studied shows that the new isolate and R. ruhra A TCC 9449 had 

the highest similarity, 0.88, tbllowed by R. mimua which had a 0.67 similarity with 

the new isolate and the least is P. rhodozyma, which has a 0.13 similarity with the 

new isolate. the rest of the isolates have similarity values in between the highest and 

the lowest values (Table 3.2). The 0.88 similarity value shared by the new isolate and 

R. ruhra suggests that the two may belong to the same species. 
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3.4 Discussion. 

The morphological, biochemical and physiological characteristics of the new 

yeast isolate were re-investigated in this study. Both the organism and R. ruhra 

A TCC 9449 were found to be nitrate negative. They were also found to exhibit 

identical utilization patterns for the various carbon sources that are usually used in the 

identitication of yeast (Fell et ai., 1984). For example, both organisms were found to 

utilize such carbon sources as melizitose, raffinose and maltose but were unable to 

utilize erythritol, melibiose and inositol. According to Fell et a/. ( 1984), key 

characteristics used in the identification of species in the genus Rhodoton1/a are 

utilization patterns of nitrate, melibiose, maltose, melizitose, raffinose and erythritol. 

Rhodotorula ruhra utilizes raffinose, melizitose and maltose but unable to utilize 

nitrate, melibiose and erythritol (Fell et aJ. 1984). The fact that the new isolate had 

utilization patterns identical to those suggested by Fell et at. ( 1984) strongly suggests 

that the organism may be a variant strain of R. ruhra. Furthermore, R. ruhra is 

reported to be urease positive and also gives a positive DBB reaction. In this study 

both the new isolate and R. n1hra ATCC 9449 were found to be urease positive and 

also reacted positively to DBB test. This, therefore, confirms that the organism is a 

variant strain of R. ruhra. 

Attempts were made to induce sporulation in the new yeast isolate by 

employing different types of sporulation media over an extended period of time. lt is 

however, reported here that aJI those attempts to reproduce sporulation in the new 

isolate were not successfuL 
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ln a comprehensive study of this new isolate, Hari et a/. ( 1992) reported that 

the new isolate showed a lamellar structure, a feature characteristic of the 

Basidiomycetes (Kreger-van Rij). These findings, coupled with the biochemical and 

physiological characteristics of the new isolate reported in this study supports its 

basidiomycetous affiliation. lt will therefore be remarkable if this isolate produces 

ascospores as opposed to teliospores that are produced by some basidiomycetous 

yeast. There is no known pigment-producing yeast that produces ascospores even 

though two strains of yeasts belonging to the family Cryptococcaceae tbrmerly 

identitied as Rhodotorula g/utinis are now considered to have ascomycetous affinity. 

These two strains have now been reclassified into a new genus Saitoel/a with a single 

species Saitoe/la c:omplicata (Goto el a/. 1987). lt should be pointed out that 

reclassi tication of these organisms was not based on the production of ascospores 

because they do not produce any, but rather on their negative Diazonium blue B 

(DBB) reaction and a cell wall ultrastructure typical of ascomycetous yeasts. A 

perfect state of a Rhodotoru/a species was first reported by Banno ( 1963) who 

observed the formation of teliospores in strains of R. gllllinis after conjugation of two 

opposite mating type strains. He described the genus Rhodosporidium and the species 

Rhoduspuridium toruloides to accommodate this teleomorph. Since then numerous 

Rhodosporidium species have been described by other workers (Fell, 1970; Newell 

and Fell, 1970; Newell and Hunter, 1970; Fell eta/., 1973; Fell and Tallman, 1980). 

lf the new isolate was a teleomorph of Rhodotorula, then one would expect that it 

would produce teliospores. The argument could then be made that the new isolate is 
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a closely related and undescribed taxon of Rhodosporidium. However, the evidence 

gathered in this and the previous study by Hari et a/. ( 1992) does not support this 

argument. For example, if the isolate is an undescribed taxon of Rhodosporidium 

then one would expect the new isolate to share homology with Rhodosporidium in 

terms of carbohydrate assimilation patterns and other biochemical analysis. 

However, it was observed in this study that the new isolate differed from Rhodo.\p. 

loruloides in a number of biochemical tests including the assimilation of soluble 

starch, succinic acid, galactose and a-methyl-D-glucoside. Furthermore, Hari et a/. 

( 1992) reported that the new isolate had a lamella cell wall structure that is peculiar to 

basidiomycetous yeasts. Finally, attempts to induce sporulation in the new isolate 

using conditions identical to those reported by Hari et al. ( 1992) were not successful. 

Considering all these facts, it would be imprudent to consider the new isolate, R. 

ruhra TP I as a closely related and undescribed taxon of Rhodosporidium as 

suggested by Hari et "'· ( 1992). 

Cellulose acetate electrophoresis proved effective in discriminating between 

the different yeast isolates studied. Overall, the isozyme profile of this isolate 

contains elements of various species of Rhodotorula. Of the eight enzymes studied, 

seven ofthem, MPI, GPI, 6PGDH, MDH, IDH, G6PDH and HK, yielded zymograms 

that were identical for both the new isolate and R. ruhra ATCC 9449. Only one 

enzyme, PGM, yielded zymograms different for these two isolates. R. minllla also 

shared identical zymograms with the new isolate for four of the enzymes, GPI, MDH, 

MPl, 6PGDH and G6PDH while R. gramiuis shared identical zymograms with the 
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new isolate for GPI, MDH, G6PDH, 6PGDH and HKS. R. glutinis and P. rhodo=yma 

had only one zymogram identical to that of the new isolate; Cr. macerans, S. 

c:erevisiae had none and Rhodo.\p. toru/oides had only one enzyme MDH. Overall, 

R. ruhra had the highest similarity with the new isolate, 0.88 for all the enzymes 

studied. 

The fact that one enzyme, PGM, produced a different zymograms for the two 

isolates R. ruhra TP 1 and R. ruhra ATCC 9449, suggests that the use of a single 

enzyme will not be sutlicient for the identification of an organism, but rather a 

combination of enzymes would permit such a task. According to Yamazaki and 

Komagata ( 1981 ), identical enzyme mobility is not always a proof of structural 

similarity. These authors contend that differences in mobility are likely to be 

reflections of primary structural differences. As a result they recommend that in 

differentiating between different strains of yeast electrophoretic mobility of 

combinations of enzymes should be examined in order to be able to accurately 

identify them. In the present study, 8 ditferent enzymes were studied and it was 

observed that the new isolate and R. ruhra A TCC 9449 had identical profiles for 

seven of the eight enzymes studied. It was also observed that the new isolate had 

only one identical enzyme (MDH) with Rhodosporidium. Furthermore, the new 

isolate had only 0.52 similarity with Rhcxlosporiclium for the electrophoretic mobility 

of the enzymes studied. In contrast R. ruhra ATCC 9449 had 0.88 with the new 

isolate. 

These findings, coupled with the fact that no structures resembling ascospores 
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or teliospores were found in this study strongly suggests that the new isolate and R. 

ruhra A TCC 9449 are closely related. The new isolate, may therefore, on the basis of 

the evidence presented so far be confirmed as a strain of R. ruhra. 

Cellulose acetate electrophoresis proved effective in clarifying the taxonomic 

relationship of the new isolate. Other electrophoretic procedures, such as 

polyacrylamide gel electrophoresis (Yamazaki and Komagata, 1981; Sidenberg and 

Lachance. 1983) have been used in the taxonomy of yeast but this is the tirst time that 

cellulose acetate electrophoresis has been used in yeast taxonomy. The data 

presented here indicate the usefulness of cellulose acetate electrophoresis of enzymes 

as an aid to the classification of yeasts. Cellulose acetate is relatively inexpensive 

technique. minimal amount of samples are required, gel run times can be as short as 

20 to 30 minutes, and therefore, large sample sizes can be processed in a relatively 

short period of time. 

65 



Tnble 3,0 Nutritional and biochemical chamcteristics of Rhmlotorula r1thm TPI and other )'Cast isolates. 
Test Growth 
Compound TPJ Rr Rl Pr Cm Rg Rm Rt Sc 

lno.iitol 
Arabinose + + + + + + + + 
Sorbitol + + \\' + \\' \\' + + \\' 

Trehalose + + + + + + + + + 
Ratti nose + + + + + + + + 
Cellobiose \\' \\' + + + \\' + + 
Melizitose + + + + i + + + + 
Sucrose + + + + + + + + + 
Mannitol + + + + + + \\' + 
Melibiose 
Lactose 
Urease + + + + + + + + 
D-Xylose + + + + + w + 
Maltose + + + + + + + + + 
Rhamnose + w 
Galactose + + \\' + + + \\' + 
KN03 \\' + + + 
Galatin liquefaction 
Soluble starch + + + + + + + 
Succinic acid + + + + + + 
Erythritol + + w w 
Ribitol + + + 
Ciuic acid + + + 
Methyi-D-glucose + w + w 

+ + + \\' 

Not.:: w- weak growth, +-growth, --no gro\\111. TPI - R. ruhra TPJ, Rr- R. ruhra ATCC 9449, Pr- P. rhodozyma, Cm- Cr. macerall.\', Rg- R. gramini~~ 
Rl =: R. gllllini.'>, Rt = Rlwdosp. toruloides, Sc = S. cerevisiae. 
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Table 3.1: Mean1 electrophoretic mobility (cm2/sec./v) of isozymes of enzymes in various yeast isolates. 
No of 
band sa TPJ" Rr Sc Rm Rg Rl Pr Cm Rt 

MDH 

5.80xl0"5 5.90xl0'5 

2 6.82xl0"5 6.82xl0'5 6.82xl0'5 7.24xl0'5 6.83xl0'5 6.84xl0'5 

3 1.30xl0""' 1.37xl04 1.30xl0·"' 1.37xl04 1.39xiO""' 1.29x 1 o·"' 
4 1.76xl04 I. 76x to·"' 
5 2.64xl0"4 

IDH 

5.65x10'5 

2 8.53xl0'5 8.53xl0'5 8.50xl0"5 8.58xl0·5 8.54xl0"5 8.56xl0"5 

3 1.47xJ<r"' 
4 2.17xiO·.a 2.18x w·-1 
5 2.80xl0·"' 2.78xl04 2.80xl0""' 2.76xiO'"' 2.83x w·-1 
6 3. 70xl0·"' 3.80xl04 

G6PDH 
2. 19xl04 2.19xl0"4 2.12xl0·"' 2.24xlo·"' 2.24xl04 2.30xl04 

2 3.86xl04 
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Table 3. I contd. Mean electro~horetic mobility (crn2/sec./v) of isozymes of enzymes in various yeast isolates. 
No of 
bands TPI Rr Sc Rm Rg Rgl Pr Cm Rt 

MPI 
-I 5.2lxl0·5 

l 7.44xl0'5 7.44x\0'5 7.44x 10'5 7.44x 10'5 

2 1.49xl0"'1 

3 2.08xl0 .. 1 2.08xto·-t 
4 
s 2.70x 10-" 2.23x 10·4 2.31xlO"" 
6 3.13xl04 2.93xl0'4 2.95x 10"4 2.99xl0-" 
7 J.JSx 1 o·4 3.35xl0'4 

GPI 
-I 4.28xl0'5 

1 6. I lx10'5 6. I 1 X I 0'5 5.89xl0'5 6.llx10'5 S.50xl0'5 

2 1.96xl0'5 1.96x 10'5 

3 I. 53x 104 1.52x 10'" 
4 l.83x10"1 L83xto·4 1.83xl04 1.83xl04 1.83xl0'4 1.73xJO-" 1.73xiO-' 
5 2.38xl0"" 

6PGDH 
-I 5.05xJO's 5.07xl0'5 5.21 X 10'5 5.05xl0-s 5.21 x.IO·S 5.21xl0'5 

I -3.37xl0'5 

2 I .60x.JO'"' 1. 68x.t o·4 1.70x.l04 1.68x.I0'4 1.66xl04 

3 2.27xiO"" 2.36xJO'" 2.10x104 2.34xl04 2.27x104 2.20xl0'4 2.20xl04 
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Tahle J. 1 contd. Mean electrophoretic mobility (cm1/sec./v) of isozymes of enzymes in various yeast isolates. 
No of 
bands TPI Rr Sc Rm Rg Rl Pr Cm Rt 

PGI\1 
8.73x 10·5 

2 1.53x 10 .. 1 

3 1.82xl0 ... 

4 1.97xl0· .. 2.04xl0·"' 2.04xl0 ... 
5 2.18xl04 

6 2.48xJ04 2.55xlo·-' 2.48xl0'4 2.55xl0'4 2.39xl0 ... 
7 2.77xl0'4 2.8JxJo·-' 

HKS 
-1 6.04x 10"5 

I 7.54x 10"5 7.54xl0·5 7.46x 10'5 7.60xl0'5 7.54xl o·5 7.50xl0"5 7.50xl0"5 

2 J.58xl0 ... 1.51x10'~ 1.61xl0' .. 
3 1.96x 10-+ 

1Values are the mean of three replicate plate, each plate representing a separate homogenate of the individual yeast isolate. 
"Bands were numbered cathodal(+) or anodal(-) in increasing numerical order relative to the distance that they migrated away from 
the origin. Bands among isolates were considered the same if their 1J were within I 0% of each other. Dashes indicate absence of 
bands. bTP I = R. ruhra TP I , Sc = S. cere"b>iae, Rm = R. minuta, Rg = R. gramitli.\', Rl = R. gllllini.-.., Cm = Cr. maceram·, Rt = 
RhlxllMp. toru/oide.\'. 
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Table 3.2 Similarity matrix based on the mean electrophoretic mobility (I!) of eight 

isozymes of enzymes used in this study. 

TP1 Rr Sc Rm Rg Rl Pr Cm Rt 

TPI 

Rr 0.875 

Sc 0.050 0.050 

Rm 0.667 0.854 0.232 

Rg 0.488 0.613 0.210 0.696 

Rl 0.413 0.538 0.256 0.471 0.596 

Pr 0.133 0.133 0.103 0.338 0.163 0.175 

Cm 0.258 0.258 0.350 0.192 0.1 t3 0.150 0.271 

Rt 0.517 0.642 0.146 0.454 0.584 0.500 0.083 0.230 
1 TP 1 = New isolate, R. ruhra TP 1; Rr = R. n1hra; Rl = R. glutinis; Rg = R graminis; 
Rm = R .. minuta; Cm =Cr. macerans; Rt = Rhodosp. tontloides 
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Fig. 3.0. Cell morphology of Rhodotontla ruhra TPI grown in various sporulation 

media. A: aqueous agar, B: yeast extract glucose agar, C: Fowell's acetate agar, D: 

malt extract agar. 





Fig. 3. l Electrophoregrams of enzymes in nine yeast isolates studied. Rm = R. 

minllla, Rl = R. gllllinis, Cm = Cr. macerans, Rg = R. graminis, Rr = R ruhra, TP I = 

R. ruhm TP l, Rt = Rhodmp. toruloides, Sc = S. cerevisiae. A = Mannose-6-

phosphate-isomerase (MPl), B = Glucose-6-phosphate isomerase (GPI), C = Malate 

dehydrogenase (MDH). 
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Fig. 3.2 Electrophoregrams of enzymes in nine yeast isolates studied. Rm = R. 

minllla, Rl = R. glutinis, Cm =Cr. macerans, Rg = R. graminis, Rr = R. mhra, TP I = 

R. ruhra TP I, Rt = Rhodmp. toruloides, Sc = S c:erevisiae. A = Hexokinase, B = 

lsocitrate dehydrogenase (lDH), C = 6~phosphogluconate dehydrogenase (6PGDH). 
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Fig. 3 .3 Electrophoregrams of enzymes in nine yeast isolates studied. Rm = R. 

minuta, Rl == R. glutinis. Cm =Cr. macerans, Rg = R. graminis, Rr = R. ruhra, TP I = 

R. ruhm TP I, Rt = Rhodosp. toruloides, Sc = S. cerevisiae, A ;; Phosphoglucomutase 

(PGM), B = Glucose-6-phosphate dehydrogenase (G6PDH). 



~ 
I 

I 

6 

3 
J ., -
I 

.., -
I 

• 

-­• 
Rt Cm Pr Rl Ra Rm Sc . Rr Tp 

8 

----1-• 

Rt Cm Pr Rl K11 Km Sc Kr Tp 



CHAPTER4 

THE USE OF CELLULAR FATTY ACID IN THE TAXONOMY 

OF Rhodotoru/a r11bra TPl. 

4.1 Introduction. 

Fatty acyl lipids such as triacylglycerol and polyisopropenoid ether lipids are 

produced by a wide range of microorganisms that include filamentous fungi, yeast 

and bacteria (Ratledge, 1994). ln bacterial taxonomy, analyses of these lipids by gas­

liquid chromatography (GLC) have already been established and provided 

commendable and convenient characters for classification and identification of many 

coryneform and actinomycetes genera (Goodfellow and Minnikin, 1982; Shaw, 1974; 

Collins eta/., 1982; Bousfield eta/., 1983). Abel eta/. (1963) and Yamakawa and 

Ueta ( 1964) were the first to describe the use of GLC analysis of fatty acids as 

identification tool. Since then cellular fatty acid (CF A) analysis by gas-liquid 

chromatography has emerged as the method of choice in bacterial taxonomy, due to 

its high degree of accuracy and rapidity (Larsson et a/., 1989; Veys et a/., 1989). 

Data from these studies have shown that total cellular fatty acid analysis provides 

useful information for rapidly distinguishing between closely related bacteria. 

The production of long chain fatty acid have been reported in several yeast 

isolates (Ratledge, 1994; Augustyn et al., 1992; Blignaut eta/., 1996) and the use of 
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the fatty acid components as a tool in yeast taxonomy has become a common 

practice. Several workers (Kock eta! .. 1985; Kock, 1988; Blignaut et al., 1996; Moss 

et a/., 1982; Viljoen et a/., 1988; 1989; Augustyn et al., 1991, 1992; Marumo and 

Aoki. 1990, van der Westhuizen et a/., 1991) have reported that cellular fatty acid 

data are useful for distinguishing between various strains, species and genera of yeast. 

GLC method combined with multivariate statistical analysis ensures an objective 

analysis of the ensuing chromatogram and a good linear discrimination between 

species (Marumo and Aoki, 1990; Blignaut et al. 1996; Smit, 1991; O'Donnell, 

1980). 

The fatty acids important in bacterial identification are in the range of C 16 to 

C20. ln yeasts Ratledge (1994) reported that Cl6 to CIS fatty acids predominate, 

namely Cl6:0 (palmitic), Cl8:0 (stearic), CIS: I (oleic), Cl8:2 (linoleic) and Cl8:3 

(linolenic). Total cellular fatty acids ranging from Cl4 to C20 have also been 

detected in ascomycetes, basidiomycetes and other imperfect yeast (Augustyn, 1992; 

van der Westhuizen eta/., 1987, 1991; Cottrell eta/., t 985, Kock and Lategan, 1986; 

Smit eta/., 1987). 

This report describes the application of discriminant analysis to gas-liquid 

chromatography results of methylated fatty acids (FAME) for the identification of a 

new yeast isolate, Rhodotontfa nthra TP l and various species of other yeast. 
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4.2 Materials and Methods. 

Chemicals: Glucose, borontrifluoride, lauric acid and fatty acid standards were 

purchased from Sigma Chemical Company, St. Louis, Missouri; yeast nitrogen base 

(YNB) was from DlFCO Laboratories, Ltd., Detroit, Michigan; potassium hydroxide, 

hexane (OptimaTM grade) and methanol (OptimaTM grade) were obtained from Fisher 

Scientitic Ltd., Fair Lawn, New Jersey 

4.2. 1 Organisms. 

The organism used in this study was Rhodotontla ruhra TP I. In addition, 

Rhoclotoru/a mhra A TCC 9449, Rhodotoru/a gllllinis and Saccharomyces cerevisiae 

(from the Culture Collection of Dept. of Biology, Memorial University of 

Newfoundland, St. John's, Newfoundland, Canada) Rhoclosporidium tontloides 

ATCC I 0657, Rhodotontla min uta ATCC 10658, Rhodotorula graminis ATCC 

16727. Ci}1Jiococcus maceran.'t ATCC 24194 and Phaffia rhodozyma ATCC 24202 

were used as controls. 

4.2.2 Inoculum preparation. 

The method described by Koch et a/. ( 1985) was used with slight 

moditication. A loopful of each yeast isolate was grown in 50 ml of sterile medium 

consisting of 80 giL glucose and 6.7 giL yeast nitrogen base in a 250 Erlenmeyer 

Flask at 22°C for 24 hours. A 20 mL aliquot of this pre-inoculum was used to 

inoculate 500 mL of the same medium in a 2 L Erlenmeyer flask and grown to 
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stationary phase (ca. 4 days) at 22llC in a Psychrotherm Controlled Environment 

Incubator (New Brunswick Scientific Ltd., New Brunswick, New Jersey). Cells were 

harvested by centrifugation at 10,000 x g in a Sorval RC-5C Plus centrifuge (Sorvall 

lnstruments-Dupont Ltd., Newark, DE.), washed several times (ca. 3 times) in a 

sterile physiological saline and then freeze dried. Freeze-dried cells were kept at -

85''( until used. 

4.2.3 Extraction of fatty acid methyl esters. 

Approximately 0.12 g of freeze-dried cells was weighed into clean test tubes 

with teflon-lined screw caps. Tubes had previously been heated at 200°C for 24 

hours in an oven to get rid of any lipid contaminants. A 5 mL aliquot of 15% KOH in 

50% methanol plus 30 IlL of 6% lauric acid internal standard in methanol was then 

added to each tube. The mixture was boiled at 1 00°C for an hour in a water bath, 

allowed to cool and the pH of the mixture adjusted to 2 with concentrated HCl 

solution. The resulting suspension was methylated by the addition of 3 mL of 14% 

borontritlouride in methanol solution, tbllowed by flushing with nitrogen gas and 

heating in a boiling water bath in sealed tubes for 15 minutes with occasional 

shaking. The methyl esters were then extracted 2 times with I 0 mL aliquots of 

hexane. The pooled hexane extracts (20 mL) were blown dry by passing a stream of 

nitrogen gas through them and the resulting residue were taken up in l mL hexane. 
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4.2.4 Gas chromatographic analysis. 

Analysis of the methylated fatty acids was performed on a Perkin-Elmer Gas 

Chromatograph equipped with dual flame ionization detectors. A 2 IlL aliquot of 

extract was injected onto a 30 m x 0. 75 mm i.d. Supelco Wa.x 10 capillary column. 

The instrument was run under the tollowing conditions: injection temperature 170°C; 

detector temperature 250.,C; initial column temperature 145°C, then ramped to 225"C 

at 3''C/min: held at 22S''C tor I 0 min and ramped again to 240uC at a rate of 3u/min. 

(Blignaut et a/., 1996). Nitrogen was used as a carrier gas at a flow rate of 3.9 

mL!min: hydrogen and air were supplied at flow rates of 30 mL/min and 300 

mLimin., respectively. 

The resultant peaks were identified by comparing the retention times of the 

test samples with those obtained from a series of chromatographically pure standards. 

All species were cultivated in triplicate and each replicate analyzed once. The 

individual concentrations of each fatty acid determined from the three chromatograms 

obtained were used as data input tor all statistical analyses. 

4.2.5 GC-MS Conditions. 

To confirm the identity of the fatty acids, the extracts were run on a GC-MS. 

The instrument consisted of a HP 5970 Mass Selective Detector coupled with a model 

5890 Gas Chromatograph (Hewlett-Packard, Palo Alto, California) and a model 300 

Data System trom the same manufacturer. The column was a CP-Sil-5 CB, WCOT 

fused silica with a length of 25 m, inside diameter of 0.25 mm, outside diameter of 
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0.39 mm and a film thickness of 0.12 ..._m (Chrom.Pack, The Netherlands). 

Chromatographic conditions were the same as those used in the GLC analysis. Mass 

spectra of the eluted fatty acids were identified by comparison with the mass spectra 

of standards run in parallel and those from literature. 

4.2.6 Statistical analyses. 

Stepwise discriminant analysis, 'jackknifing' procedure and canonical 

correlation (variate) analysis were used to examine the relationship between the test 

yeasts. These programs are available in the BMDP statistical computing package 

(Biomedical Computer Programs, University of California, Los Angeles, California). 

The BMDP 7M program was run on the Unix System at Memorial University of 

Newtoundland, St. John's, Newfoundland, Canada. The program was run using tour 

ditl'erent datasets that have been titled Applications I to 4 below. 

Application I (6 variables): comprised all the FA data for all the yeast isolates 

employed in this study (Section 5.2.1 ). 

Application 2 (6 variables): included only isolates that have more than l% 

18:3 and less than 30% 18:2, and these isolates were R. rubra TPl, R n1bra, 

R. glutinis, R. minuta, Cr. mac:erans and Rhoclosp. toru/oides. 

Application 3 (6 variables) included only R. rubra TPI, R rubra, R glutinis 

and R. minuta. 

Application 4: only S. cerevisiae was not considered and only 4 variables, 

Cl6:0, 16:1, 18:0and 18:1 wereused. 
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These combinations were done to determine whether or not any one particular fatty 

acid, major or minor, was important in discriminating between the individual groups. 

4.3 Results. 

The fatty acid composition of microorganisms is believed to be influenced by 

cultural conditions and the growth medium (Boulton and Ratledge, 1983; Ratledge, 

1988 ); rigid control should therefore be exercised over these conditions in order to 

obtain reproducible results (Biignaut el a/., 1996). The cellular fatty acids of the 

yeast isolates utilized in this study were therefore determined using rigidly 

standardized methods developed by Koch eta/. ( 1985). The fatty acid profiles (mean 

relative percentage of fatty acid) of all the yeast are presented in Table 4.0. It was 

observed that the yeast isolates contained predominantly saturated and unsaturated 

fatty acids with 16 to 18 carbon atoms. Visual examination of the fatty acid profiles 

of the various isolates indicated that R. ruhra TP I, R. ruhra and R. glutinis have 

similar fatty acid profiles whereas the rest of the isolates have their own unique fatty 

acid pro tiles. Overall, all the yeast studied contained large amounts of 18: I ( 40-70%) 

but ditfer considerably in the composition of the other fatty acids. 

The results presented in Table 4.0 were subjected to stepwise discriminant 

analysis (SDA), 'jackknifing' procedure and canonical variate analysis using different 

dataset (Applications) and groupings in an attempt to classify the new isolate. 

The stepwise discriminant analysis is an iterative technique that allows the 

selection of the valid discriminant variables from the redundant or non-informative 
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ones (Anderson, 1958) using the minimum number of peaks. At each step of the 

analysis, the peak is selected for which the ratio of the variation between the species 

to the average variation within a species is a maximum. This ratio is called the F ratio 

and its multivariate generalization is the Wilks Lambda criterion (Kshirsagar, 1972; 

Rao, 1965). This procedure is repeated until either all the variables are included or 

the addition of any of the remaining variables does not increase the Wilks Lambda 

criterion (Jennrich and Sampson, 1981 ). At each stage, an approximate F value, 

which tests the significance of the improvement in discrimination, is determined. 

Thus an organism would be allocated to the species for which it achieves the highest 

F score. 

The ·jackkniting' or "leaving one out' procedure (lachenbauch and Mickey, 

\968) on the other hand, is used at each step of the discriminant analysis to test the 

stability of the discriminant functions obtained. Each strain is removed in turn for 

analysis and the discriminant functions are recomputed. The strains are then re­

allocated to the species for which its discriminant score is maximized. Comparison of 

the percentage of correct allocations before and after 'jackknifing' gives an estimate 

of the stability of the discriminant functions (Lachenbauch and Mickey, 1968). 

The F-value used for the calculation of the classification functions for the 

SDA in applications 1 to 4 are presented in Table 4. L From Table 4.1, it can be seen 

that the F-values rate the fatty acids in order of decreasing importance in their use in 

the discrimination process. Careful analysis of these values for the various 

applications suggests that all of the fatty acids are important in the identification 
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process. 

The results of the application of stepwise discriminant analysis with 

'jackknifing' to the fatty acid data are depicted in Table 4.2. From the 'jackknife' 

classitication matrix, it is clear that all the isolates except R. ruhra TP1 and R. ruhra 

ATCC 9449 were classified correctly during application 1 and all subsequent 

applications. In application I, only 1 replicate of R. ruhra TP I was correctly 

identitled as R. ruhra TP l whereas the 2 remaining replicates were identified as R. 

rubra. This finding was also true for R. rubra ATCC 9449 (Table 4.2). In 

application 2, none of the R. rubrc.r TP I replicates were identified as such, in fact all 

were identified as R. ruhra whereas I replicate of R. ruhra was identified as R. mbra 

TP I and the rest as R. ruhra. In applications 3 and 4, 2 replicates of R. ruhra TP I 

were identified as R. ruhra and only l as R. ruhra TP I whereas 2 replicates of R. 

ruhra were identified as such and only one as R. ruhra TP I. 

The canonical variates analysis is a descriptive method that gives the best 

separation among all the isolates studied. For each isolate, a set of new coordinates 

expressed as linear combination of the original variables (canonical variate axes) is 

determined. These are given by the principal components of the group means 

calculated with the Mahalanobis 0 2 generalized distance (Anderson, 1958; Jennrich 

and Sampson, 1981 ). Plots of the first and second canonical variables for the various 

applications are depicted in Figs. 4.0 to 4.3. Fig. 4.0 shows that organisms were 

distributed among 8 clusters. The new isolate, R. ntbra TP l and R. rllbra ATCC 

9449 \'lere clustered together whereas the rest of the organisms were distributed into 
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their own unique clusters. It can also be seen that the cluster containing R. ruhra TP I 

and R. ruhra was close toR. glutinis, Cr. macerans and Rhodosp. tontloides. This 

indicates that these organisms may be related. Similarly, the organisms in the other 

plots (Figs. 4. t to 4.3) appeared to be well separated except the cluster of R. ruhra 

TP I and R. ruhra ATCC 9449. These results corroborated those achieved with the 

SDA in which over 66% of R. ruhra TPI chromatographic peaks were allocated toR. 

ruhra whereas I 00% of the chromatographic peaks of all the other isolates were 

allocated to their original groups. These plots therefore strongly suggest that R. ruhra 

TP I and R. ruhra cannot be ditferentiated from each other and should therefore be 

considered as belonging to the same species. 

4.4 Discussion. 

Traditionally, yeast systematists have used morphological and physiological 

characteristics in determining the relationship between various isolates (van Unden 

and Beckley, 1970; Meyer et a/., 1984). However, to accurately assess the 

relatedness of various types of yeast, other criteria such as cellular composition of 

fatty acids (Yiljoen et a/., 1987), the degree of DNA relatedness (Lethbak and 

Stenderup, t 969; Nakase and Komagata, 1971 b), electrophoretic comparison of 

enzymes (Yamazaki and Komagata, 1981) and other tests are desirable. 

Cellular tatty acid composition analysis was used to determine the relationship 

between the new yeast isolated from yogurt. tentatively identified as R. ruhra TP L 

and eight other yeast isolates. The data obtained was subjected to ~ackknifing1 , 
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stepwise discriminant and canonical variate analyses. It was found that the new 

isolate, R. ruhra TP I and R. ruhra A TCC 9449 clustered together when subjected to 

canonical variate analysis. The two also demonstrated the best similarity as evident 

by the similarity matrix of the 'jackknifing' procedure. Out of three replicates of R. 

ruhra TP I fatty acid profile subjected to analysis, 2 were identified as R. ruhra 

(66.7% homology). Although some of the other yeast isolates showed a FA profile 

similar to that ofTPI, none of them were actually identified as belonging toR. ruhra 

TPI when subjected to the 'jackknife' procedure. This is a strong indication that they 

are not as closely related to R. ruhra TP I as R. ruhra ATCC 9449 does. 

Examination of the fatty acid data in Table 4.0 reveals that the new isolate R. 

ruhra TP I. R. ruhra and R. glutinis have high content of 18: I (over 60%), followed 

by medium amount 16:0 (over 13%) and low amounts of 18:0, 18:2, 18:3 and o 16: I 

{2-7%) in each case. The percentage compositions of the various fatty acids 

determined for R. ruhra TP I and R. ruhra A TCC 9449 are in agreement with those 

reported for Rhoclotorula ruhra by other workers. In a review on the occurrence of 

fatty acids in yeast, Ratledge ( 1994) pointed out that yeast generally exhibit 

conservative patterns of fatty acyl distributions with the vast majority producing only 

C 16 and C t 8 fatty acids. The principal saturated fatty acid, according to him, is 

always palmitic acid ( 16:0), whereas the principal unsaturated fatty acid is oleic acid 

(18:0) except for a few species where 16: I is dominant. The concentration of 18:2 

may occasionally equal that of 18: I but 18:3 is usually a minor component. Rattray 

( 1988) on the other hand presented a data on the fatty acid from various yeasts 
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isolates which indicated that C 18:0 acids are the dominant fatty acids in many yeast 

species. The data also suggests that C 18: I is the most common mono-unsaturated 

and predominant fatty acid in most yeasts while 16: I may be entirely absent from the 

cellular fatty acid profiles of some yeast. Rattray (1988) indicated further that Cl6:l 

is the major fatty acid in some members of S"ccharomyces including S. cerevisiae 

which can have a Cl6: I concentration of up to 63% of the total fatty acid present. He 

reiterated further that C 16:0 is generally more abundant than C 18:0 which 

occasionally may be absent altogether. However, in a study to determine the value of 

fatty acid analysis in the identitication of oral yeasts, Blignaut eta/. ( 1996) reported 

that R. mhra has a C 18: I concentratior. of 68.8% which is in agreement with the 

concentrations of the same fatty acid obtained tbr R. ruhra TP I and R. mhrcr in this 

study. Similarly, The fatty acid data published for two strains of R. mhra by 

Ratledge and Evans ( 1989) and Zuyaginsteva and Pitryuk ( 1975) indicated that C 18: 1 

was the dominant fatty acid, 56.9 and 81.2% for the two strains, respectively. 

Furthermore the concentrations for the other fatty acids published by these same 

authors were similar to those obtained for R. ruhra and R. nthra TP1 in this study. 

Based on the results obtained in this study it can be concluded that R. ruhra TP 1 and 

R. ruhra are closely related if not the same species. 

GLC analysis of fatty acids has been employed in the identification of several 

yeast isolates. Augustyn ( 1989) pointed out that it was possible to differentiate 

between a large number of Saccharomyces cerevisiae by means of cellular fatty acid 

analysis. Other workers (Augustyn eta/., 1991, 1992, 1996; van der Westhuizen et 
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a/., 1991, Viljoen eta/., 1989, Smit et al., 1988) have also used cellular fatty acid 

analysis as a tool for the identification of various yeasts isolates. Gangopadhyay et 

a/. ( 1979), studying the cellular long-chain fatty acid composition of the anamorphic 

genera, Candida, Cl'}ptococcus and Torulopsi.'i, reported substantial differences in the 

CF A pro tile which resulted in the grouping of the yeasts into 38 distinct isolates. 

Similarly, Gunaskeran and Hughes (1980) reponed that 85 different strains 

representing 7 Call£/ida species, each generated a distinctive fatty acid profile 

characterized by the presence or absence of certain fatty acids when grown in specific 

medium. Using reterence strains, they classify 70 yeast isolates into 5 species and 

concluded that the sensitivity and speed of long-chain fatty acid analysis by gas 

chromatography provides advantages over conventional physiological and 

morphological analytic methods. 

Cellular lipid content. however. 1s influenced by cultural conditions, 

sponilation, the age of culture, growth factors, pH, temperature and amount of oxygen 

available to organisms during growth (Smit, 1991; Lechevalier and Lechevalier, 

1988; Hunter and Rose, 1972). lt has also been determined that major changes in the 

fatty acid composition occur during the exponential and early stationary phase but no 

significant changes occur during the stationary growth phase (Viljoen et a/., 1986; 

Smit, 1991 ). As a result a standardized and growth condition for fatty acid analysis 

of Kock et a/. ( 1985) was used in this study to ensure stability in the fatty acid 

composition of the organisms. 

Application of stepwise discriminant analysis to GLC data for discrimination 
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between closely related yeast species have been reported (Augustyn et a/., 1991, 

1992 ). The application of discriminant and canonical variate analyses to GLC data in 

this study was able to separate the taxonomically different species. The procedure 

however. suggested that R. ruhra TP 1 and R. mhra are not separable and therefore 

belong to the same species. These results illustrate that discriminant and canonical 

variate analyses of the GLC chromatogram of fatty acids is a valuable tool in the 

identitication of yeasts. The fact that the different applications used were able to 

separate the taxonomically different organisms into separate clusters indicates that all 

the fatty acids should be considered equally important when attempting to 

ditTerentiate between yeast strains, species and genera. 

Comparison of the relative percentages of the various fatty acids of the new 

isolate and R. ruhra A TCC 9449 show some variation in the relative amounts, 

however, these variations are much less than those obtained when the new isolate is 

compared to the other yeast isolates used as controls. According to Augustyn et a/. 

( 1991 ), the cellular fatty acid protile of a type of particular yeast can be considered as 

detining a specitic. uniquely shaped "envelope" in space around a point representing 

0% for all fatty acids involved. The shape and volume of the "envelope" defining a 

species will then vary within limits imposed by the variation in relative percentages 

of all the fatty acids in various strains of that species. Point distortions of this 

envelope. they contended, will sometimes occur as a result of particular strains having 

unusually high or low relative percentage for a specific fatty acid. 
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Table 4.0 Mean1 relative percentages of6 fatty acids in 9 yeast isolates 
YEAST TYPE C16:0 Cl6:1 CIS:O CIS: I Cl8:2 Cl8:3 

R. ruhra TPl 13.22 3.00 6.03 69.69 5.40 3.00 

R. ruhra 13.40 2.69 5.93 70.12 4.97 3.29 

S. c:erevisiae 10.65 54.55 3.69 30.67 0.00 0.00 

P. rhodozyma 2.74 11.94 13.55 40.55 30.29 0.61 

R. gllllinis 13.97 6.54 6.13 62.47 5.96 3.70 

R. graminis 12.66 1.51 6.67 50.53 22.54 5.98 

R. minllla 9.78 11.58 3.32 43.92 28.\0 3.06 

( 'r. macerans 15.79 2.11 11.57 54.26 13.85 1.89 

Rhodosp. toruloides 17.24 3.83 3.18 58.94 11.73 4.64 

1Values are mean of three determinations. 
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Table 4.1. Fatty acids and F-values used for the calculation of classification functions 
in order of decreasing importance. 

Application I Application 2 Application 3 Application 4 

Fatty F-value Fatty F-value Fatty F-value Fatty F-value 
acids acids acids acids 

Cl6: I 2469.60 Cl8:2 413.78 C\8:2 620.04 Cl6:l 297.98 

CJ8:2 504.92 CIS:O 126.22 Cl6: I 40.31 CIS: I I 72.41 

Cl8:0 89.97 C\6:1 67.51 Cl8:0 50.S5 

CJ6:0 25.22 CIS: I 15.55 Cl6:0 20.07 

c 18:3 10.74 
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Table 4.2 'Jackknife' classification matrix for yeast isolates included in this study 

A~~lication 1 
Yeast Percent 

Isolate Correct TP1 Rr Sc Pr Rl Rg Rm Cm Rt 

TP1 1 ....... 12 2 0 0 0 0 0 0 0 .).) ·-' 

Rr ...... 2 0 0 0 0 0 0 0 _,_,. _, 

Sc 100.0 0 0 ... 0 0 0 0 0 0 _, 

Pr 100.0 0 0 0 3 0 0 0 0 0 

Rl 100.0 0 0 0 0 3 0 0 0 0 

Rg 100.0 0 0 0 0 0 3 0 0 0 

Rm 100.0 0 0 0 0 0 0 3 0 0 

Cm 100.0 0 0 0 0 0 0 0 3 0 

Rt 100.0 0 0 0 0 0 0 0 0 3 

Application 2 

Yeast Percent 

Isolate Correct TPI Rr Rl Rm Cm Rt 

TPI I 0.0 02 3 0 0 0 0 

Rr 66.7 2 0 0 0 0 

Rl 100.0 0 0 ... 0 0 0 _, 

Rm 100.0 0 0 0 3 0 0 

Cm 100.0 0 0 0 0 3 0 

Rt 100.0 0 0 0 0 0 3 
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Table 4.2 contd. 

Application 3 

Yeast Percent 

isolate Correct TPl Rr Rl Rm 

TPI 1 ......... 12 2 0 0 .).) .J 

Rr 66.7 2 0 0 

Rl 100.0 0 0 3 0 

Rm 100.0 0 0 0 3 

Application 4 

Yeast Percent 

Isolate Correct TP1 Rr Rl Rg Rm Cm Rt 

TP1 1 ......... 
JJ.J 12 2 0 0 0 0 0 

Rr 66.7 2 0 0 0 0 0 

Rl 100.0 0 0 ... 0 0 0 0 .) 

Rg 100.0 0 0 0 3 0 0 0 

Rm 100.0 0 0 0 0 3 0 0 

Cm 100.0 0 0 0 0 0 ... 0 .) 

Rt 100.0 0 0 0 0 0 0 3 

1TPl == R. ruhra TPI, Rr =R. ruhra ATCC 9449, Sc = S. cerevisiae, Pr = P. rhoclozyma, 
Rl = R. g/utinis, Rg = R. graminis, Rm = R. mimtta, Cm = Cr. macerans, Rt = Rhodosp. 
tomloides. 2Number of individual replicates classified as a particular yeast species. 
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CHAPTERS 

MOLECULAR PHYLOGENY OF Rlrodotorrlia rubra TPl AS 

SUGGESTED BY THE PARTIAL SEQUENCES OF ISS 

RIBOSOl\tiAL DNA AND INTERGENIC TRANSCRIBED SPACER 

5.1 Introduction 

Ribosomal DNAs (rONA) sequence comparison provides information that is 

routinely used in establishing the relationships and phylogenies among different 

organisms. It has also been used to estimate the evolutionary distances among a large 

variety of organisms (Field et al. \988; Woese, \987; Yamada eta/. 1994; James et 

a/. 1998; Fell et ctl. 1998, 1999, Sigita et a/.. 2000). Ribosomal DNA appears 

particularly well suited as a general indicator of evolutionary relationships because of 

its occurrence in all species and largely conservative structure and function (Fox et ctl. 

1980). 

In yeast taxonomy, analyses of partial rONA sequences have been used for the 

phylogenetic evaluation among various genera and among species within the same 

genera (Peterson and Kurtzman, 1991; James et a/. l99S, Barns et a/. 1991; Gueho et 

a/. 1989; Montrocher et ctl. 1998; Fell eta/., 1999}. In most fungal species, the four 

different ribosomal DNA (rONA) genes (5S, 5.8S, ISS and 2SS) occur in tandem 

repeat units that are arranged head-to-tail to form a single cluster. The ISS and 2SS 

are separated from each other by the internal transcribed spacer (ITS) and intergenic 
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spacers (IGS) which are non-coding regions except for the shon 5.8S and 5S genes. 

Both the rDNA genes and the spacer regions are amplified by the polymerase chain 

reaction (PCR) using oligonucleotide primers homologous to specific sites of the 

rONA and sequences present at the end of the rDNA genes (White et a/. 1990). 

Analysis of the sequences obtained through PCR amplification permits the 

determination of the phylogenetic distances between different yeast species and 

groups (Lachance el a/. 1990; Kurtzman, 1992, Kurtzman and Robnett, 1991). 

The present work reports the determination of the phylogenetic affinity of the 

new strain of yeast isolated from yogurt as revealed by the ISS rONA genes and the 

internal transcribe spacer (ITS) sequences. 
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5.2 Materials and Methods 

Chemicals: Trizma base, isopropanol, EDT A, mercapethanol, CT AB, isoamyl 

alcohol, deionized formamide and NazEDT A were purchased from Sigma Chemical 

Company, St. Louis, MO. NaCI, chloroform, borate and HCI were obtained from 

Fisher Scientific Ltd .. Fair Lawn, New Jersey. 

5.2.1 Growth of microorganisms. 

The organisms used were Rhodotorula ruhra TP I, Rhodotomla ruhra ATCC 

9449 and Phaffia rhodo:yma A TCC 24202. They were cultivated in YM broth at a 

temperature of 22.,( in an orbital shaker tor 5 days. Cells were harvested by 

centrifugation at 10,000 x g, washed three times with sterile deionized water and then 

freeze-dried. Freeze-dried cells were stored at -20',( until needed for use. 

5.2.2 Ribosomal DNA extraction. 

Ribosomal DNA (rDNA) was extracted from the organisms using a modified 

CT AB PCR mini prep protocol ofZolan and Pukkila ( 1986). About 0.4g of cells from 

the freeze-dried cultures were mixed with approximately 700 !!L of 1 X CT AB 

extraction buffer (700 mM NaCI, 50 mM Tris-HCl {pH 8.0}, lO mM EDTA. l% 

CTAB, 0.2% mercapoethanol). The mixture was homogenized in a mortar with a 

tube pestle and samples were incubated in a water bath at 60°C for about an hour. 

After incubation, the DNA was extracted with chloroform-isoamyl alcohol (24: l ), 

precipitated with cold isopropanol, washed twice with 500 J.LL of 70% ethanol and 
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dried in a vacuum oven. Pellets were re-suspended in 50 J.d of deionized water and 

heated to 60° C for several minutes to dissolve. Horizontal gel electrophoresis was 

used to determine the quality of DNA. The samples were then diluted I: 10 or I :20 

with sterile distilled deionized water, then I IJL of the diluted samples were used as 

templates tor the PCR reaction. 

5.2.3 DNA amplification. 

The polymerase chain reaction (Mullis and Faloona, 1987) was used to 

amplify a portion of the ribosomal DNA from the DNA extracts using various rONA 

specific primers which amplify conserved regions of the 18S and ITS-I region of the 

ribosomal DNA. The primers used were ITSS-GGAAGTAAAAGTC 

CGTAACAAGG (White et a/. 1990), ITS9mun-TGTACACACCGCCCGTCG, 

ITS I Omun-GGAACCTTTCCCCACTTC, NS 12mun-TGGTTTCT AGGACCGCCGT 

NS7mun-GAGGCAAT AACAGGTCTGTGATGC. NS II mun-GCAAATTACCCAA 

TCCCGAC (All sequences are written 5' to 3'). Letter designations follow the 

convention in White et a/. (I 990). The designation mun stands for Memorial 

University of Newfoundland. Amplification reactions were performed in I 00 (..lL 

volumes containing PCR premix (1.5 mM MgCh. lO mM Tris-HCl {pH 8.3}), 1.5 

mM MgCh, 0.01% gelatin, 0.1% Triton X-100, 2 mM each ofdATP, dCTP, dGTP, 

dTTP, I 0 1-1M each of oligonucleotide primers, 0.5 units of Taq DNA polymerase 

(Promega Corp., Madison, WI), sterile distilled deionized water and approximately I 

IlL of diluted DNA extract. One drop of mineral oil was placed on top of each 
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mixture to prevent evaporation_ Two control tubes were also prepared and included 

with the reaction tubes. Amplification of samples was carried out in a Perkin-Elmer 

Cetus DNA Thermal Cycler using the following parameters: initial denaturation at 

94"C for 2 minutes, all other denaturation steps afterwards were held at 94° C for 1 

minute_ Annealing temperature was at 46°C for l minute, 55 sec ramp to 72° C, 

followed by 35 cycles consisting of 72u C for l min. 30 seconds (extension 

temperature) and a tina[ extension step of 72°C for 5 minutes A 5 fJL of the PCR 

products were subjected to electrophoresis on 2% agarose gel in TBE Buffer (0.4 M 

Tris-borate pH 8. I mM EDT A)_ The gel was stained with ethidium bromide and 

exposed to UV light on Ultraviolet Transilluminator (Ultra-Violet Products lnc., San 

GabrieL C A) to visualize PCR products and to check whether amplification was 

successful. 

5.2.4 Purification or PCR products ror sequencing. 

Amplified DNA was purified using Wizard1
M Magic PCR Preps DNA 

Puritication Kit (Promega Corp, Madison, WI) following the manufacturer's 

instructions. Quantification of purified DNA was carried out by measuring 

absorbance at 260 nm on a Spectronic UV-Visible light Spectrophotometer. DNA 

concentration was determined by assuming that l O.D unit is equivalent to 50 llg/ml 

DNA (Maniatis eta/, 1982). 
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5.2.5 Automated DNA sequencing. 

The optimum concentration of DNA solution was determined from the 

spectrophotometer reading and dried under reduced pressure. Automated sequencing 

required the drying down of 3.2 pmol. of DNA. Primers ITS5, 9, 10 and NS II, 12 

and 13 were used to amplify a portion of the single-stranded rONA for sequencing. 

All primers were used in separate reactions. Sequencing reactions were carried out 

with a Taq DyeDeoxy"f~1 Terminator Cycle Sequencing Kit (Applied Biosystems, 

Foster City, CA) using the conditions recommended by the manufacturer. The 

reactions were carried out in a Perkin-Elmer Cetus DNA Thermal Cycler using the 

following cycle sequencing parameters: 95°C for 2 minutes, 95"C for l minute, 60 "C 

for I minute (35 cycles) and 72"C tor I minute 30 seconds. 

After cycle sequencing the reaction mixture was passed through a Sephadex 

G-50 Spin column to remove any excess primers and unincorporated dye. The eluted 

DNA were then dried under reduced pressure and resuspended in 5 tJL of 5: I mixture 

of deionized tormamide and 50 mM Na2EDT A and then loaded onto a 6% 

polyacrylamide gel attached to an ABI 373A Automated DNA Sequencer (Applied 

Biosystems, Inc., Foster City, CA). Electrophoresis was carried out at 32 watts 

constant power for ll hours and DNA sequence data was collected using ABI 

collection and analysis software version 1.0.2 (Perkin Elmer, lnc.). 

5.2.6 Sequence and phylogenetic analyses. 

DNA sequences were edited using ABI Sequence Navigator DNA Sequence 
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Editor version l.O.l (Perkin Elmer lnc.). Comparison of complimentary strands were 

done using ABI Sequence Navigator (Perkin Elmer Inc.), sequences were then 

aligned with Clustal W (Thompson et a/. 1994) and similarity of sequences was 

calculated. Alignment of sequences in a publishable format was obtained with 

Boxshade {Macbox version 2) (Brown, 1998), the aligned sequences were then used 

to generate a distance matrix by using the Phylogenetic Analysis Using Parsimony 

(PAUP version 3.1) of Swafford (1993). Sequences ofthe ISS genes and ITS region 

of various types of yeast were obtained from the National Center for Biotechnology 

Information (NCBI) GenBank Data Base (National Library of Medicine, Bethesda, 

Maryland) and analyzed. The organisms and their accession numbers are: Saitoel/a 

complicatct (Accession# 012530), Rhodotom/a glutinis (Accession # AB026018), 

Rhodotorula mudlaginosa (Accession # AB0260 17), Rhodotorulct sp. SY -I 00 

(Accession # AB0260 ll ), Rhodotorula sp. SY -l 01 (Accession # AB0260 12), 

Rlwdotorula sp. SY -l 03 (Accession # AB0260 13 ), Rhodotoru/a laryngi.'i (Accession 

# AF 190014), Fi/ohasidiella neoforman.'i var.neoformans (Accession# AB034643), 

Cr).ptoc:occus aerius (Accession # AB032666) and Saccharomyces cerevisiae 

(Accession# 089886). 

Maximum Parsimony [MP] (heuristic search algorithm, tree-bisection-and­

reconnection, with random addition and delayed-character transformation 

optimization) network was obtained by bootstrap majority consensus tree analysis of 

I 00 replicates and a phylogram grouping yeasts with the most similar sequences were 

generated. 
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5.3 Results. 

To determine the phylogenetic affinity of the new isolate, several primers 

were targeted to selected regions of the 18S genes and the ITS region of the 

ribosomal DNA and sequenced by the Taq DyeDeoxy Termination cycle. With the 

exception of ITS 9, we had difficulty aligning sequences in the ITS region among 

closely related taxa in the genus Rhodotorufa and other distantly related groups. The 

sequences of the various portions of the ISS genes and ITS region that are not 

presented here are depicted in Appendix A. 

5.3.1 Partial base sequences in positions I through 360 of 18S and ITS 

subunits. 

The partial base sequences of the new yeast isolate, R. ruhra TP l, P. 

rhodo~·ma and R. mbra A TCC 9449 examined in this study were aligned in position 

I through 360 (360 basepair) with sequences of other yeast isolates obtained from the 

GenBank and the results are depicted in Fig. 5.0. As can be seen from the figure, 

there were several deletions and insertions at various positions which makes the 

alignment somewhat ambiguous. However, when R. nthra TP I was compared to R. 

nthra A TCC 9449, the insenions were minimal and in most cases occur at the same 

positions for both organisms. Rhodotorula ruhra ATCC 9449 had base substitutions 

at position 182 (C to A), 190 (G to C), 226 (C toT), 243 (A to C}, 278 (A ton, 280 

(A toT), 289 (A to G), 302 (A toT), 313 (A toT) and 324 (A toT) when compared 

to the new isolate. Similarly, several of the isolates used as controls exhibited base 
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substitutions (differences) at various positions when compared to the new isolate, R. 

ruhra TP I. R mhra ATCC 9449 had the least number of base substitutions, 10 

(about 2.8%), followed by Rhodotom/a sp. SY-100 and SY·IOI which had ll base 

substitutions (3. l%) each. P. rhodozyma had 24 (7%) which was the highest, 

followed by Rhodotorula sp. SY-103 with 16 (4.4%) and R. glutiuis with 15 (4.2%). 

Percent similarities (= maximum homology, %) were calculated for the 

respective pairs of the isolates using Clustal W (Thompson et a/. 1994) and the results 

are depicted in Table 5.0 together with the pairwise evolutionary distance estimates. 

The highest pp- nt similarity (93) was obtained between the new isolate and R. 

ruhra :\ TCC (h49. The second highest (89) was between the new isolate and 

Rlmdotrwula species SY-100 and SY-lOl. 

Based on the partial base sequence analysis, a majority rule bootstrap 

consensus tree was obtained using the Maximum Parsimony (MP) heuristic search 

algorithm, tree-bisection·and-reconnection with lO random addition and delayed­

character-transformation optimization. Bootstrap analyses (Felsentein, 1985) were 

performed by means of the heuristic search algorithm with 10 random taxon additions 

and the tree-bisection-and-reconnection option in each of I 00 replicates. The 

resulting bootstrap phylogenetic trees are depicted in Figs. 5.1 and 5.2. The 

phylogenetic tree depicted in Fig. 5.1 was generated with only seven isolates whereas 

in Fig. 5.2, Cryptoccoc:us aerius, Rhodo~poridium tontloides, Filobasidiella 

neoformans var. neoformans and Saccharomyces cerevisiae were used as outgroups. 

As shown in both figures, R. rubra TP l and R. ruhra ATCC 9449 constituted a single 
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cluster supported by a bootstrap value of lOO and a pairwise evolutionary distance 

estimate of 0.041. This pairwise evolutionary distance estimate was the lowest 

among all the pairwise evolutionary distance estimated between R. ruhra TP I and 

any of the isolates. The second lowest pairwise evolutionary distance estimate was 

between the new isolate and Rhodotorula species species SY-100 and SY-101. P. 

rhodo~ma was linked to the R. ruhra TP 1 and R. ruhra A TCC 9449 cluster with an 

evolutionary distance of 0.119 and 0.125 tor the new isolate and R. ruhra ATCC 

9449. respectively. In the case of fig. 5.2, R. ruhra TP1 and R. ruhra formed a single 

cluster that was linked to P. rlwclo:yma. The species of R. g/utinis and Rhoclosp. 

toruloides clustered together and this cluster was linked to cluster formed by 

FUohcr.~idiel/a neoformans var. neriformans and Cr. aerius. Similarly, R. 

muc:ilagino.m and R. laryngis clustered together. Rhodotorula species SY -I 00, 101 

and I 03 tormed a single cluster whilst Rhodosp. toruloides and R. glutinis clustered 

together and the cluster was linked to S. cerevisiCie. 

5.3.2 Partial base sequences in position 481 through 802 of ISS subunit. 

The partial rDNA base sequences of R. ruhra TPl, R. ruhra ATCC 9449, and 

P. rhodo:yma were aligned in positions 481 through 802 (3 20 bp) with those of other 

isolates obtained from the GenBank. The alignment is shown in Fig. 5.3. With the 

exception of R. ruhra A TCC 9449 which had exactly the same alignment as the new 

isolate, all the other isolates used as controls had base substitutions and deletions at 

various positions when compared with the new isolate. 
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The percent similarity determined for R. ruhra TP I and R. nthra ATCC 9449 

was 100 {Table 5. 1) and those between R. ruhra TP l and the other isolates were as 

follows: P. rhodo:yma, 80; R. g/utinis. 89; R graminis, 75; S. complicata, 69; and 

Rhodosp. toruloides, 78. The percent similarity between R. ruhra ATCC 9449 and 

the other isolates were identical to those between R. rubra TP 1 and the other isolates. 

Based on the sequence data obtained, a majority rule consensus tree produced 

by bootstrapping using MP analysis was generated and is depicted in Fig. 5.4. The 

pairwise evolutionary distance estimates are also depicted in Table 5.1. It can be seen 

that the new isolate and R. ruhra ATCC 9449 had a pairwise distance of 0.000 

indicating that the two i.;olates are closely related. According to the topology of the 

phylogenetic tree (Fig. 5.4), R. ruhra TP1 is closely related toR ruhra ATCC 9449. 

The two constituted a single cluster supported by a bootstrap value of I 00 and was 

linked to S. complicata, R. gllllinis, Rhodosp. toru/oides and P. rhodo:yma at 0. 159, 

0.104. 0.058 and 0.165 evolutionary distances apart, respectively. 

5.4 Discussion. 

The eukaryotic genome is made up of nuclear RNA genes that are organized 

into a cluster of tandem repeats that includes a small subunit gene, ( 16S to ISS), a 

large subunit gene (26S to 285) and the 5.85 gene. In between these genes are two 

non-coding regions referred to as the internal transcribed spacers (lT5-l and IT5·2). 

It is generally thought that the l8S region are more highly conserved than the ITS 
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region which have higher rates of divergence. Also the length of the ISS and the 26S 

rRNA gene are essentially identical in all species while the length of the ITS region 

are species specific (White et ttl., 1990). For example in Candida g/ohrata (V7049S), 

Candid" kefyr (V70502) and SacchCiromyces cerevisiae (Z75722), the length of the 

ITS-2 region have been reported to be approximately 230 to 240 basepairs long; those 

of Candida guiliermcmdii (V70499) and Candida jamata (V70500) are approximately 

190 basepairs long; those of Candida alhicam· (L07796), Candida tropica/is 

(L 11349), Candida parapilosa (Lil3 52) and Candida vi~wanathii (V7050 I) are 

approximately 130 to 140 basepairs long; and those of Candida /ll.'~itaniae (V70503) 

and Candida rugosa (V70506) are only 70 to 90 base pairs long (Lott eta/. 1998). 

The internal transcribed spacer, the ISS, 26S and 5.8S subunits have been 

sequenced trom various yeast species. Yamada et a/. (1994) examined the partial 

base sequences of ISS and 26S rRN As of several species of the teleomorphic genera 

Dekkera and the anarmophic genus Brettanomyces and concluded that D. bntxel/ensis 

(type species) (and B. hruxe/len.'ii.'i, type species) and D. anomala (and B. anoma/us) 

were related phyogenetically. 

ln this study the partial base sequences of the ISS rDNA and ITS region of the 

new isolate were compared with those of other isolates to determine the phylogenetic 

affiliation of the new isolate. The ITS primers used in this study made use of the 

conserved regions of the ISS rRNA genes to amplify the non-coding ITS-I region 

between them and the 5.SS genes whereas the NS II targeted portions of the ISS 
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rONA genes. lt was observed that the total length of the region amplified by the 

ITS9mun primer was approximately 520-525 basepairs long for R. nthra TP L and R. 

ruhra ATCC 9449. This suggests that the two organisms may be closely related. 

Also the phylogenetic analyses performed indicated that the new yeast isolate, R. 

ruhra TP I is phylogenetically identical to R. ruhra ATCC 9449. Compared to R. 

ruhra TP I. R. ruhra ATCC 9449 had the lowest base substitution (9-0 and 0-0) for 

the partial base sequences I through 360 and 481 through 802, respectively. The 

percent similarities calculated for the DNA sequences were also the highest for these 

two isolates (93 and I 00 for positions I through 360 and position 481 through 802, 

respectively). The new isolate and R. ruhra A TCC 9449 clustered together when MP 

analyses were pertbrmed either on the partial base sequences of the 18S rONA or a 

combined sequences ofthe L8S and ITS. The R. rubra TPI and R. ruhra ATCC 9449 

cluster was closely linked to P. rhodo:yma in all the analysis. This was surprising 

because coming from different genera, the two were expected to be well separated. 

However, the genus Rhodotorula is considered to be phenotypically most similar to 

Phaffia (Goto et a/., 1987). Differential characters among the two genera are: 

fermentation (positive for Phaffia) and formation of starch-like compounds (positive 

tor Phajfia) (Miller eta/ .. 1976; Kreger-van Rij and Veenhuis, 1971). These two 

genera have the same ubiquinone system, Q-l 0, positive DNase and DBB tests, 

basidiomycetous type of cell wall and similar DNA base composition which fall in 

the "grey zone" (Miller eta/., 1976; Goto eta/., 1987; Kreger-van Rij and Veenhuis, 

1971 ). The fact that the two genera share these common characteristics suggests a 
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closer relationship between the two. Also the close evolutionary relationship between 

the two is in keeping with the fact that they shared a number of common features 

observed in this study. From Table 3.0 (Chapter 3), it can be observed that both the 

new isolate, R. ruhra A TCC 9449 and P. rhodo:yma had identical nutritional and 

biochemical characteristics. For example all three were nitrate negative and were 

unable to utilize inositol. Unfortunately, no prior literature reference is available 

concerning rONA sequence analysis of R. ruhra for comparative purposes. 

The teliospore-tbrming basidiomycete, Rhodosp. toruloides and its closet 

relative, R. glutini.ot clustered together and were closely related to the ascomycete, S. 

cerevisiae. This was also surprising since it was expected that the basidiomycetous 

yeasts would be well separated tram the ascomycetous yeasts. The use of a large data 

set comprising a large number of ascomycetous yeasts would probably have resulted 

in a better separation of the ascomycetous and basidiomycetous yeasts. However, as 

indicated earlier, we encountered a number of difficulties trying to align the 

sequences of the basidiomycetous yeast with those of the ascomycetous yeasts, hence 

the small data set used. Aside this, other researchers have shown that the 

ascomycetes and the basidiomycetes share a common ancestor and therefore form a 

monophyletic group. For example, Van de Peer et a/. (1991} applied a matrix 

optimization method developed by De Soete ( 1983) to construct additional 

evolutionary trees and reported that the ascomycetes and the basidiomycetes share a 

common ancestor. Similarly, Van de Peer et a/. (1992) using a complete small 
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subunit rRN A sequences to infer the relationship between several basidiomycetous 

yeasts, and to resolve the evolutionary position of the basidiomycetous among the 

fungi, concluded that the ascomycete and basidiomycete together form a 

monophyletic cluster. These findings are in accordance with the results of this study 

and therefore supports the phylogenetic tree depicted in Fig. 5 .2. 

ln view of the positive DBB reaction and the cell wall ultrastructure typical of 

basidiomycetous yeasts (Hari et a!., 1992), we consider that the new isolate is of a 

basidiomycetous origin. The close relationship between the new isolate and R. ruhra 

ATCC 9449 observed in this molecular study is supported by previous biochemical 

studies based on nutritional requirements, isozyme analysis and the cell wall fatty 

acid composition reported earlier on in this thesis. In conclusion, similarities in ISS 

rONA and ITS-I sequences have demonstrated that the new isolate, R. ruhra TP I is a 

strain of Rhoduturula ruhra and should therefore be considered as such. 
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Table 5.0. Matrices of the overall percent similarity and evolutionary distance 

estimates from ponions of the ISS subunit and ITS-I region for Rhodotontla nthra 

TP I and other yeast isolatesa. 

2 3 4 5 6 7 

I. R nthra TP 1 93 86 84 89 85 

2. R ruhra A TCC 9449 0.041 85 83 88 88 84 

3. P. rhodo:yma 0.119 0.125 74 79 79 75 

4. R. glutinis 0.076 0.096 0.158 - 93 93 93 

5. Rhodotorula sp. SY-100 0.056 0.064 0.126 0.042 100 95 

6. Rhodotorula sp. SY -I 0 I 0.056 0.064 0.126 0.042 0.000 95 

7. Rhodotorula sp. SY-103 0.068 0.088 0.150 0.053 0.031 0.031 

"The lower-left half of the matrix gives evolutionary distance estimates, the upper-right 
half gives the percent similarity based on the comparison of the aligned sequences 

112 



Table 5.1. Matrices of the overall percent similarity and evolutionary distance 

estimates ti·om portions ofthe ISS subunit for Rhodotoru/a n1hra TPl and other yeast 

isolates'1. 

2 .... 4 5 6 7 ..) 

l. R. ruhra TP l 100 80 89 75 69 78 

2. R. ruhra A TCC 9449 0.000 80 89 75 69 78 

3. P. rhodo:yma 0.165 0.165 81 68 61 70 

4. R. gllllinis 0.104 0.104 0.166 81 71 80 

5. R. graminis 0.071 0.071 0.153 0.065 87 96 

6. S. complic:ata 0.159 0.159 0.233 0.129 0.118 86 

7. Rhoclosp. tontloide.'i 0.058 0.058 0.134 0.026 0.022 0.124 

'
1The lower-left half of the matrix gives evolutionary distance estimates, the upper-
right half gives the percent similarity based on the comparison of the aligned 
sequences 
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Fig.S.O. Aligned sequences of a 360 basepair portion of the small subunit (ISS) rONA 

gene and the 5' internal transcribed spacer (ITS). Dashes indicate there are no bases 

present at those positions. TP l = Rhodotorula ruhra TP I; Rr = Rhodotomla ruhra 

ATCC 9449; Pr = Phaffia rhoc.lo::yma; glutinis = Rhodotoru/a glutinis; SY -I 00 = 

Rhoclotorula sp. SY-100; SY-101 = Rhoclotomia sp. SY-101; SY-103 = Rhoclotom/a 

sp. SY-103. 
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10 20 30 40 50 
--------------CCGATT-AATGGCTTAGTGAGGCCTCCGGATTGGCT 35 
--------------CCGATT-AATGGCTTAGTGAGGCCTCCGGATTGGCT 35 
--------------CCGATT-AATGGCTTAGTGAGGCCTCCGGATTGGCT 35 
--------------CCGATT-AATGGCTTAGTGAGGCCTCCGGACCGGCT 35 
---TCCTCCTACTCCCGATTGAATGGCTTAGTGAGGCCTCCGGATTGGCT 47 
---TCTTCCTACTACCGATTGAATGGCTTAGTGAGGCCTCCGGATTGGCT 47 
CCCCTTATCCTATCCCGATT-GATGGCTTAGTGAGGCCTCCGGATTGGCT 49 

60 70 80 90 100 
ATTGGGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTACGAACTTGG 85 
ATTGGGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTACGAACTTGG 85 
ATTGGGAGCTCGCGAGAGCACCTGACTGCTGAGAAGTTGTACGAACTTGG 85 
ATTGGGAGCTCGCGAGAGCACCCGACTGCTGGGAAGTTGTACGAACTTGG 85 
ATTGGGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTACGAACTTGG 97 
ATTGGGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTACGAACTTGG 97 
ATTGGGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTACGAACTTGG 99 

110 120 130 140 150 
TCATT~AGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAAC-TGC 134 
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAAC-TGC 134 
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAAC-TGC 134 
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAAC-TGC 134 
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGC 147 
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGC 147 
TCATTTAGAGGAAGTAAAAGTCGCCACAGGGTTTCCGTGGGTGAACCTGC 149 

160 170 180 190 200 
GGAAGGATCATTAGTGAACATAGGACGTCCAACTTAACTTGGAGTCCGAA 184 
GGAAGGATCATTAGTGAACATAGGACGTCCAACTTAACTTGGAGTCCGAA 184 
GGAAGGATCATTAGTGAATATAGGACGTCCAACTTAACTTGGAGTCCGAA 184 
GGAAGGATCATTAGTGAATATAGGATGTCCAACTTAACTTGGAGTCCGAA 184 
GGAAGGATCATTAGTGAATATAGGACGTCCACCTTAACTCGGAGTCCGAA 197 
GGAAGGATCATTAGTGAATATAGGACGTCCAACTTAACTGGGAGTCCGAA 197 
GGAAGGATCATTAGCGAATATAGGACGTCCAACTTTACTCGGTGTCCGAC 199 

210 220 230 240 250 
CTCTCACTTTCTAACCCTGTGCATTTGTT---TGGGATAGTAACTC-TCG 230 
CTCTCACTTTCTAACCCTGTGCATTTGTT---TGGGATAGTAACTC-TCG 230 
CTCTCACTTTCTAACCCTGTGCATCTGTTAATTGGACTAGTAGCTCTTCG 234 
CTCTCACTTTCTAACCCTGTGCATTTGTT---TGGGATAGTAGCCTCTCG 231 
CTCTCACTTTCTAACCCTGTGCACTCGTT---TGGGATAGTAACTC-TCG 243 
CTCTCACTTTCTAACCCTGTGCACTTGTT---TGGGATAGTACCTC-TCG 243 
CTCTCACTGTCTCACCCTGTGCACTCGTG---TGGGATAGTAACTC-TCG 245 



RSY-101 
SY-100 
glutinis 
SY-103 
TP1 
Rr 
Pr 

RSY-101 
SY-100 
glutinis 
SY-103 
TP1 
Rr 
Pr 

260 270 280 290 300 
CAA-GAGAGCG-AACTCCTATTCACTTATAAACACAA-AGTCTATGAATG 277 
CAA-GAGAGCG-AACTCCTATTCACTTATAAACACAA-AGTCTATGAATG 277 
------GAGTG-AACCGCCATTCACTTATAAACACAA-AGTCTATGAATG 276 
------GGGTG-AACTCCTATTCACTTATAAACACAA-AGTCTATGAATG 273 
CAA-GAGAGCG-AACTCCTATTCACTTATTAACACAA-AGTCTATGAATG 290 
CAA-GAGAGCG-AACTCCTATTCACTTTTAAACACAA-GGTCTATGATTG 290 
CCATGAGAGCGCAACTCCTGTTCACTTATTCGCACAACGGTCTATGATTG 295 

310 320 330 340 350 
TATTTAAT-TTTATAACAAAA-TAAAACTTTCAACAA-CGGATCTCTTGG 324 
TATTTAAT-TTTATAACAAAA-TAAAACTTTCAACAA-CGGATCTCTTGG 324 
TATACAAA-TTTATAACAAAA-CAAAACTTTCAACAA-CGGATCTCTTGG 323 
TATTTAA--TTTATAACAAAA-TAAAACTTTCAACAA-CGGATCTCTTGG 319 
TATTAACT-CTTATAACAAACCTAAAGCTTTCAACAAACGGATCTCTTGG 339 
TTTTACCT-CTTTTAACAAAC--TAAAGGTTCAACAA-CGGATCTCTTGG 336 
TGTTAACCCCATTTGCCAAAC-TGGAGGTTTCAATTAACGGATCTCTTGG 344 

360 370 380 390 
RSY-101 CTCTCGCATCGATGAAGAACGCAGCGAAATGCGATA----- 360 

360 
360 
360 
360 
360 
360 

SY-100 CTCTCGCATCGATGAAGAACGCAGCGAAATGCGATA-----
glutinis CTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAC----
SY-103 CTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAA 
TP1 GTCTCGCATCGG-GAAAAA-------AAA------------
Rr GTCTCGAATGGA--AAAAA-------AAA----AAAA----
Pr GTCTCGGCTGG-----GAA-------AA-------------



Rhodotorula glutinis 

Rhodotorula sp. SY-103 

Rhodotorula sp. SY-100 

94 

100 

Rhtldotorula sp. SY-101 

ISJ 

Phaffia rhodozyma 

53 Rhodotorula rubra TPI 

100 

Rhodotorula rubra 

Fig. 5 .I Boostrap majority-rule consensus tree constructed from a cladistic 

analysis of the partial sequences of position I through 360 of the small subunit 

rONA and the 5' internal transcribed spacer region of Rhodotoru/a rubra TP I and 6 

other yeast isolates usinglOO times resampling bootstrapping in PAUP (Swafford, 

1993). The numerals represent the percentages of sampling of bootstrap supporting 

the interna branches. 
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Rhodotorula sp. SV-100 

ToO 
Rhodotoru/a sp. SV-103 

'JU 

Rhodotorula sp. SV-101 

91 Rhodotorula rubra 

r--
100 

Rhodotorula rubra TP1 

63 
88 p, 'haffia rhodozytn11 

Rhodotorula mucilaginosa 

100 Rhodotoru/a laryngis 

ryptococcus aerius "'' 

100 
Fi/obtlsidie/lala neoformans 

Rhodosporidium toru/oides 

~ 
Rhodotoru/a g/utinis 

Saccharomyces cerevisiae 

Fig. 5.2 Boostrap majority-rule consensus tree constructed from a cladistic 

analysis of the partial sequences of position 1 through 360 of the small subunit 

(ISS) rONA and the 5' internal trancribed spacer (ITS) region of Rhodotorula rubra 

TPI and 12 other yeast isolates using 100 times resampling bootstrapping in PAUP 

(Swafford, 1993). The numerals represent the percentages of samplings of bootstrap 

supporting the internal branches. 
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Fig. 5.3 Aligned sequences of a 320 basepair portion of the small subunit (ISS) rONA 

gene. Dots indicate there are no bases present at those positions. TP I = Rhodolorrlla 

ruhm TP I; Rr = Rhodotomla ruhra A TCC 9449; Pr = Phaffta rhodozyma; glutinis = 

Rh(x/otorula glminis; Saitoella ""' Sailoella complicata; Rhodosp. ::: Rhodosporidium 

toruloides: graminis = Rhodotomla graminis 



graminis 
glutinis 
Saitoella 
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Rr 
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graminis 
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Rr 
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graminis 
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Saitoella 
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graminis 
glutinis 
Saitoella 
Rhodosp 
TPl 
Rr 
Pr 

graminis 
glutinis 
Saitoella 
Rhodosp 
TP1 
Rr 
Pr 

490 500 510 520 530 
AGGATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGC 
.. GATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGC 
AGGAACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGC 
AGGATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGC 
.. GATCANTTGGAGGGCAAGTCTGGNGCCAGCAGCCGAGGGAATTCCAGC 
.. GATCANTTGGAGGGCAAGTCTGGNGCCAGCAGCCGAGGGAATTCCAGC 
.. GATCAATTGGNGGGGAAGTCTGGTGGCAGCAGTCGNGGTAATTCCAGC 

540 550 560 570 580 
TCCAATAGCGTATATTAAAGTTGTTGCCGTTAAAAAGCTCGTAGTCGAAC 
TCCAATAGCGTATATTAAAGTTGTTGCCGTTAAAAAGCTCGTAGTCGAAC 
TCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGAAC 
TCCAATAGCGTATATTAAAGTTGTTGCCGTTAAAAAGCTCGTAGTCGAAC 
TCCAATAGCGTATATTAAATTTGTTGCCGTTAAAAAGCTCGTAGTCGAAC 
TCCAATAGCGTATATTAAATTTGTTGCCGTTAAAAAGCTCGTAGTCGAAC 
TCCAATAGCGTATATTAAAATTGTTGGCGATAAAAAGCTCGTCGTCGAAC 

590 600 610 620 630 
TTCGGG.TCCTG.TCCGCCGGTCCGCCNNCTTGGNGNGNACTTGTTGGAT 
TTCGGG.TCCTG.TCCGCCGGTCCGCCTTCTTGGTGTGTACTTGTTGGAT 
CTTGGG .. CCTGGTCGGCCGGTCCGCCT.CACGGTGTG.ACTGACCCGAC 
TTCGGG.CTCTG .. CAGCCGGTCCGCCTTCTTGGTGTGTACTTGTTTGGT 
TTCGGG.CTCTG.TCAGTCGGACCGCCTTCTTGGTGTGTACTTGTATGAC 
TTCGGG.CTCTG.TCAGTCGGACCGCCTTCTTGGTGTGTACTTGTATGAC 
TTCGGG.CTCTG.TCAACCGGACCGCCTTCTTGGTGTGTACTTGTTTGGC 

640 650 660 670 680 

50 
48 
50 
50 
48 
48 
48 

100 
98 

100 
100 

98 
98 
98 

148 
146 
146 
147 
146 
146 
146 

GGGACCTTACCTCCTGGTGAACA.GCG.ATGTCCTTTACTGGGTGT.CGT 195 
GGGACCTTACCTCCTGGTGAACA.GCG.ATGTCCTTTACTGGGTGT.CGT 193 
CGGGCCTTTCCTTCTGGCTAACC .. CGTATGCCCTTTACTGGGTGTGCGG 194 
GGAGCCTTACCTCCTGGTGAACA.GCG.ATGTCCTTCACTGGGTGT.CGT 194 
GGAGCCTTACCTCCTGGTGAACG.GCG.ATGTCCTTTACTGGGTGT.CGT 193 
GGAGCCTTACCTCCTGGTGAACG.GCG.ATGTCCTTTACTGGGTGT.CGT 193 
GGAGGCTAACCTCCTGGTGAACG.GGG.ATGTACCATACTGGGTGT.CGC 193 

690 700 710 720 730 
TGCAAACCAGGACGTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCC 245 
TGCAAACCAGGACGTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCC 243 
. GAGAACCAGGACTTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCA 24 3 
TGCAAACCAGGACGTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCC 244 
CGCAAACCAGGACTATTACTTTGAAAAAATTAGAGTG'I'TCAAAGCAGGCC 24 3 
CGCAAACCAGGACTATTACTTTGAAAAAATTAGAGTGTI'CAAAGCAGGCC 243 
CGCAAACCAGGACTACAACTTTGAGGAAGTTCGAGTGTTCAAAGCAGACC 243 



graminis 
glutinis 
Saitoella 
Rhodosp 
TPl 
Rr 
l?r 

graminis 
glutinis 
Saitoella 
Rhodosp 
TPl 
Rr 
Pr 

740 750 760 770 780 
TTTGCCCGAATACATTAGCATGGAATAATAGAATAGGACGCGCG.TTCCC 294 
TTTGCCCGAATACATTAGCATGGAATAATAGAATAGGACGCGCG.TTCCC 292 
TTTGCTCGAATACATTAGCATGGAATAATAGAATAGGACGTGTG.GTTCT 292 
TTTGCCCGAATACATTAGCATGGAATAATAGAATAGGACGCGCG.TTCCC 293 
TTTGCCCGAATACATAAGCATGGAATAATAAAATAGGACGCGCG.TTCCC 292 
TTTGCCCGAATACATAAGCATGGAATAATAAAATAGGACGCGCG.TTCCC 292 
TTCGGCCGAGTACATTAGCATGGGATAATAATATAGGTCG.GCTATTCCC 292 

790 800 
AT.TTTGTTGGTTTCTGA .... 311 
AT.TTTGTTGGTTTCTGAGATC 313 
AT.TTTGTTGGTTT ........ 305 
AT.TTTGTTGGTTTCTGA .... 310 
AT.TCCGTTGGTGTCTGAGATC 313 
AT.TCCGTTGGTGTCTGAGATC 313 
ATCTTGGATGGACTCTGATA'IT 314 



Saitoella comp/icata 

Rhodotoru/a graminis 

100 Phafjia rhodozyma 

fj 

Rhodotoru/a rubra TPl 

100 

Rhodotorula rubra 

Rhodotorula glutinis 

99 

Rhodosporidium toruloides 

Fig. 5.4 Boostrap majority-rule consensus tree constructed from a cladistic analysis 

of the partial sequences of position 481 through 802 of the small subunit (18S) 

rONA of R. ntbra TPl and 6 other yeast isolates using 100 times resampling 

bootstrapping in PAUP (Swafford. 1993 ). The numerals represent the percentages 

of sampling of bootstrap supporting the internal branches. 
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CHAPTER6 

ISOLATION OF PIGMENT HYPER-PRODUCING MUTANTS 

AND IDENTIFICATION OF PIGI\IENTS PRODUCED BY THE 

l\tiUTANTS AND PARENTAL STRAIN OF Rl1odotorula rubra TPl. 

6.1 lntroduttion 

Carotenoids are widespread in nature occurring among plants, animals, 

bacteria and fungi. Among the yeast, carotenoids usually encountered include ~­

carotene, lutein, zeaxanthin, cryptoxanthin, torulene, torularhodin (Ciegler, 1965; 

Goodwin, 1992) and astaxanthin (Andrewes eta/., 1976). In the genus Rhodotoru/a, 

it has been established that ~-carotene, y-carotene, torulene and torularhodin occur 

with torulene usually predominating (Ciegler, 1965). The presence of carotenoids in 

this genus makes it commercially attractive for use as feed in the aquaculture and 

food industries. 

Rhodotorulct nthra TP l is a new strain of yeast isolated from contaminated 

home made yogurt (Hari et a/., 1992). Preliminary studies done with this yeast 

indicates that it might be a good source of pigment for salmonids (Sangha, 1994). 

However, the chemical nature of the pigments produced by this isolate could not be 

determined. Considering the potential for further development of this product in the 
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aquaculture industry, it is important that the exact nature of the pigments produced by 

this yeast be determined. Furthermore, like other yeasts that are being tested for use 

as a source of pigment in the aquaculture industry, the pigment concentration in this 

new isolate is low. The market potential of this new isolate will be greatly enhanced 

if mutants that are able to produce the red pigments in quantities far exceeding the 

amount produced by the parental strain could be isolated. 

The present study was theretbre undertaken to characterize and determine the 

concentration of the pigment produced by this new isolate. The report also describes 

the use of various mutagens to screen for pigment hyper-producing mutants. Yellow 

pigments such as ~-carotene are also in demand for use in the poultry and 

pharmaceutical industries (Johnson et a/., 1980). The other focus of the mutation 

studies was, therefore, to produce mutants that are blocked in the production of the 

red pigment torularhodin and torulene but which produce P-carotene and other yellow 

pigments that may be of commercial and industrial value. 
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6.2 Materials and methods. 

Chemicals: Sodium sulfate, acetic acid, acetone (OptimaTM grade), petroleum ether 

(Optimar!'.t grade), FlorisilTh', hexane, magnesium sulfate (anhydrous) magnesium 

oxide, Hytlo Super Cel were purchased from Fisher Scientific, Ltd., Fair Lawn, N.J. 

Toluene, P-carotene standard, P-ionone, citric acid, micanozole, 2-methyl-imidazole, 

antimycin A, ethyl methane sulfonate (EMS), thenoyltrifluoroacetone (TTF A) N­

methyl-N-nitrosoguanadine (NTG) and dimethyl sulfoxide (DMSO) were obtained 

from Sigma Chemical Co., St. Louis, MO. YM broth and YM agar were from DIFCO 

Laboratories, Detroit, Michigan; silica gel 60 F zs4 were purchased from EM Science, 

Darmstadt, Germany. Ketoconazole was obtained from ICN Biomedicals, Aurora, 

OH. Some of the P-carotene standards and torularhodin were gifts from HotTman La 

Rouche, Basel, Switzerland. Phytoene and phytotluene standards were prepared from 

freshly ripened tomatoes by a modified method of Britton ( 1995). 

6.2.1 Quantification and identification of pigments produced by Rhodotorula 

r11hrt1 TPI. 

6.2.1.1 Growth of organisms for pigment analysis. 

The organism was grown in YM broth in a 14 L fermenter with l 0 L working 

volume (New Brunswick Scientific Co., Edison, New Jersey). Aeration rate, pH and 
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agitation speeds were controlled. A turbine-type impeller provided agitation and air 

was delivered by an external source through a sterilized air filter and a hollow agitator 

shaft. An automatic pH controller fitted with a pump module was used to control the 

pH. The growth conditions were agitation rate of I 00 revolutions per minute ( 

r.p.m.), aeration rate of I volume of air per volume of medium per minute (v.v.m), 

temperature of 22°C and incubation period of 5 days. Light was provided by an 

external light source. 

6.2.1.2 Growth of organism in MV A-supplemented medium 

The yeast was grown in a 500 mL YM broth in a 2 L Erlenmeyer flask 

supplemented with [2R]-(2.l"C) MVA (680,000 dpm). The organisms were cultured 

in a Psychrotherm Environment Controlled Incubator (New Brunswick Scientific Ltd, 

New Brunswick, New Jersey) at a temperature of 22°C, agitation speed of 150 rpm 

for 5 days. Cells were harvested by centrifugation at 10,000 x g, washed several 

times with deionized water before being subjected to pigment analysis. Pigments 

were radio assayed by liquid scintillation counting in a Beckman Model LS-3150T 

Liquid Scintillation Spectrophotometer with a Beckman liquid scintillation fluid 

(Beckman Scientific Instruments, Irvine, California, U.S.A.). Quenching corrections 

were made by automatic colour quench compensation (Bramley eta/. 1974). 
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6.2.1.3 Estimation of total pigment concentration. 

For this portion of the work, advice was sought from Dr. K. L. Simpson 

(University of Rhode Island). Freshly harvested cells (ca. 3g dry weight) were 

suspended into a thick slurry in deionized water and ruptured in a French Press (SLM 

Instruments, Inc., Urban!!, Illinois) at a pressure of 40,000 psi. The ruptured cells 

were centrifuged at 10,000 x g in a Sorval RC-58 Plus centrifuge (Sorvall 

Instruments-Dupont Ltd., Newark, DE.) for 20 minutes and the resulting pelleted 

cells were extracted with l 00 mL aliquots of acetone. The acetone extracts were 

pooled and mixed together with petroleum ether. The petroleum ether phase 

containing the pigment was collected and saved. The acetone phase was further 

extracted with petroleum ether until colorless, and the collected petroleum ether phase 

was tittered through a glass wool to remove any suspended particles, and then dried 

over sodium sulfate. The carotenoid concentration in the petroleum ether was 

estimated by measuring the abosrbance at 465 nm in a Shimadzu Ultraviolet 260 

Recording spectrophotometer (Shimadzu Corp., Kyoto, Japan). The total carotenoid 

content was calculated using I % extinction coefficient of 2000 and a formula given 

by An et al. ( 1989). The formula is given as: 

TC = v X A-165 X l 00 
20xW 

Where: TC = Total pigment concentration 
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~' ,_, Total volume of petroleum ether extract collected 

W = dty weight of yeas/used 

A..t65 =absorbance at -165 11m 

6.2.1.4 Separation and identification of individual pigments. 

For the identification of the pigments column chromatography, thin layer 

chromatography, high performance liquid chromatography (HPLC) and light 

spectroscopy were used to separate and identify the pigments. 

6.2.1.4.1 Column chromatography. 

The petroleum ether extract was evaporated to dryness by passing through it a 

stream of nitrogen gas. The slurry of the extracted pigment (about O.Sg wet weight) 

was re-dissolved in petroleum ether and the petroleum ether solution was dried over 

anhydrous sodium sulfate and stored at -85°C overnight. Open column 

chromatography was employed for pigment separation. The column consisted of 

MgO-Hyflo Super Cel® chromatographic media at a ratio of I :2 { w/w} (Fisher 

Scientific Ltd, Fair Lawn, New Jersey) in a glass column (2.6 x 30 em). The column 

was initially developed with l% acetone in petroleum ether (v/v), and then washed 

with 15% acetone in petroleum ether, the eluant was collected and saved. 

Torularhodin (red band) remained on the top of the column and the other less polar 

pigments were eluted. The column was dried and the torularhodin band was cut from 

the column. The torularhodin was eluted from the column with I 0% acetic acid in 
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petroleum ether (v/v). The solution was then washed free of the acetic acid with 

deionized water and dried over anhydrous sodium sulfate and stored at -85 o C. 

The other less polar pigments were combined with petroleum ether in a 

separatory funnel and the two phases were resolved with deionized water. The 

petroleum ether phase was collected, concentrated with a stream of nitrogen and the 

pigments were applied onto a fresh MgO-Hytlo Super Cel® column ( l .6 x 60 em, l :2 

w/w). The chromatogram was developed with I% acetone in petroleum ether until 

the bands separated and eluted from the column. P-carotene was found to co-migrate 

with phytotluene so the fraction containing the two pigments were re­

chromatographed on Florisirr~ chromatographic medium (Fisher Scientific Ltd., Fair 

Lawn, New Jersey) and developed with 5% toluene in PE. Phytofluene was 

monitored with a long wavelength (366 nm) UV lamp; the pigment was seen as a 

blue-green fluorescent band moving just ahead of P-carotene. The collected fractions 

were individually transferred to petroleum ether and the two phases separated with 

deionized water. The petroleum ether phase was collected, dried over sodium sulfate 

and evaporated to dryness with a stream of nitrogen before being stored at -85°C. 

All the separated bands were re-dissolved in petroleum ether and the 

absorbance measured by spectrophotometer. The maximum absorbance was 

determined by scanning from 600 to 300 nm in a Shimadzu Ultra Violet 260 

Recording Spectrophotometer (Shimadzu Corp. Kyoto, Japan). Identification of the 

individual pigments was done by comparison of their absorption maxima with those 

of standard carotenoids reported by other researchers (Davies, l 976; Bauerfeind, 
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1981 ). The concentrations of the individual pigments were calculated usmg the 

method provided by An et a/ ( 1989) and the following l% extinction coefficients 

(Simpson et a/., 1964; Bauerfiend, 1981 ): P-carotene:2600; torulene:2680; 

torularhodin: 1932; phytoene:850, and phytofluene: 1540. 

6.2.1.4.2 Thin layer chromatography (TLC) 

Thin layer chromatography was performed with silica gel 60 F2s-1 thin layer 

plates (EM Science, Darmstadt, Germany). The plates were developed with 10% 

toluene in petroleum ether tor 60 minutes, which separated all the pigments with 

torularhodin remaining at the origin. The separated bands were located by colour and 

by exposure to long wavelength UV light (366 nm), scrapped off and eluted with 

acetone; the eluted pigments were then mixed with petroleum ether and the phases 

resolved with deionized water. ln the case of torularhodin, the pigment was eluted 

with I 0%. acetic acid in acetone and then mixed with petroleum ether. The acetic acid 

was washed out with deionized water and the phase containing the torularhodin was 

dried over sodium sulfate and then concentrated with a stream of nitrogen. The 

identities of the pigments were determined by comparison of their Rf values with 

known pigments and also by scanning from 600 to 300 nm in a spectrophotometer. 

The absorption spectra and maxima were then compared with those from literature. 
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6.2.1.4.3 High performance liquid chromatography (HPLC). 

Samples were dissolved in the mobile phase ( 100% methanol) and filtered 

through 0.25 J.lm membrane. A tO J.lL sample solution was injected onto HPLC 

column for the separation and identitication of pigments. The HPLC system 

consisted of a Hewlett Packard (Palo Alto, California) HP l 050 HPLC Series coupled 

with a Phenomenex Partisil ODS column ( l 00 mm x 2 mm i.d. with 5 J.lffi packing 

size). The sample was eluted at a rate of 0. 75 mLimin with a 15 minute linear 

gradient of 80 to 100% methanol in water over 30 minutes. Separation was carried 

out at ambient temperature. A HP l 050 series variable UV detector was used to 

monitor the chromatographic effluent and detection of carotenoids was made at 475 

nm. Standards of P-carotene, torulene, torularhodin phytoene and phytofluene were 

run in parallel and the carotenoids were identitied by comparison of their retention 

times with those of the standards. 

6.3 Mutagenesis of R. rubra TPt cells 

Mutagenesis of R. ruhra cells were attempted with UV light, ethyl methane 

sulfonate (EMS) and N-methyi-N-nitro-N-nitrosoguanadine (NTG). Methods used in 

this study are modified from those reported by An et a/. ( 1989). 

6.3.1 UV irradiation 

The yeast cells were grown in YM broth to an optical density of 0.3 to 0.4 at 

700 nm. The cells were then aseptically poured into a petri dish in a sterile 
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inoculating chamber which had an UV lamp with a maximum energy range of 220 to 

280 nm. The cells were exposed to UV radiation for a period that resulted in greater 

than 95% kill (about 40 min), grown in the dark for 24 hours and then plated on YM 

agar. UV irradiation resulted in cells that were pale in colour and have the 

appearance of substantial loss of pigment. Attempts at isolating highly pigmented 

colonies were not successful hence this method was discontinued. 

6.3.2 EMS mutagenesis 

Twenty-four-hour culture of R. ruhra TP I diluted to an optical density of 0.4 

at 700 nm were suspended in a sterile phosphate buffer (pH 7.0) and EMS was added 

to give concentrations of 2 %, 4 %, 8 % and 16 %. One mL aliquots of these 

suspensions were pipetted into 1.5 mL eppendorftubes. The cells were then shaken in 

a rotary shaker tor 20 min and then allowed to stand for I 0 min after which the cells 

were centrifuged, washed 4 times with the same buffer and then several times with 

sterile deionized water. Surviving cells were grown overnight in YM broth and then 

several dilutions of the YM broth culture were prepared and plated on YM agar. The 

cells were then visually inspected for pigment hyper-producing mutants. EMS 

mutagenesis did not generate any colonies that were highly pigmented and, therefore, 

this method was not given any further consideration. 

6.3.3 N-methyi-N-nitro-N-nitrosoguanadine (NTG) mutagenesis 

For NTG mutagenesis, freshly grown yeast cells were washed twice in 5 mL 
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of sterile 0.1 M sodium citrate buffer (pH 5.5) and cells were re-suspended to an 

optical density of 1.5 to 2 at 700 nm. Samples of 6. 7 mL of yeast suspension were 

pi petted into culture tubes and NTG solution ( 1 mg/mL in sodium citrate buffer) were 

added to give concentrations of 40, 60 and 100 ~-tg/mL. The mixtures were vortexed 

for 30 seconds, and 1 mL aliquots were transterred to sterile eppendorf tubes and 

incubated for 30 min, I, 2, 4 and 16 hours. After the incubation period, the samples 

were washed several times with sterile phosphate buffer (pH 7) and then transferred 

into 30 mL sterile YM broth which were incubated at 22°C overnight. Several 

dilutions were then prepared and the appropriate dilutions plated on YM agar. The 

concentration that gave greater than 95% kill was determined and was used in all 

subsequent studies. 

Mutants isolated from YM agar plates and freshly grown cells from the 

parental strain were also plated on various selective media in an attempt to induce 

increased pigmentation in the yeast. The selective media were made up of YM agar 

into which the following inhibitors at various concentrations have been incorporated: 

micanozole, ketoconazole, nicotine, thenoyltrifluoroacetone (TTF A) and 2-methyl­

imidazole. 

To determine the effects of P-ionone on the production of pigments in both 

the parental strain and mutants, the organisms were grown on YM agar incorporated 

with P-ionone and in YM broth incorporated with various concentrations of P-ionone. 

Since P-ionone is insoluble in water, it was dissolved in ethanol before being added to 

the medium. The controls were incorporated with equal amounts of ethanol and the 
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cells were visually screened for pigment hyper-producing mutants. 

6.4 Characterization of mutant strains. 

6.4.l Physiological characterization of mutants. 

Mutants were characterised by the quality and quantity of pigmentation, 

assimilation of various carbons, potassium nitrate utilisation, urease test, starch 

formation and gelatin liquefaction. The growth curves for all the mutants were 

determined by growing organisms in YM broth tor 5 days. Samples were withdrawn 

at intervals and growth measured by determining the optical density (OD) at 700 nm. 

6.4.2. Quantitative determination and identification of pigments produced by 

mutants. 

For pigment analysis, mutants were grown in YM broth in 2 L Erlenmeyer 

flasks at 22 o C for five days. The cells were harvested by centrifugation and freeze­

dried before pigment extraction. Lyophilized cells (I g) were ruptured by mixing 

with 6 mL dimethyl sulphoxide (DMSO) which has been warmed up to 40cc in a -.0 

mL centrifuge tube. The suspension was vortexed for l minute and then allowed to 

stand in the dark for 20 minutes at room temperature. The ruptured cells were then 

centrifuged at 14,000 x g for to minutes and the supernatant decanted into a 100 mL 

tube, flushed with nitrogen and kept on ice. The pellet was re-extracted 3 times with 

5 mL aliquots of acetone. The acetone and DMSO extracts were pooled together in a 
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separatory funnel and equal amounts of petroleum ether added as well as deionized 

water to ensure phase separation. The petroleum ether phase was removed and the 

aqueous layer re-extracted with petroleum ether. The petroleum ether extracts were 

pooled together, dried over anhydrous sodium sulfate and finally evaporated to 

dryness under a stream of nitrogen. The residue was re-dissolved in petroleum ether 

and subjected to column chromatography. The chromatographic analysis and 

determination of the concentration of the individual carotenoids have already been 

described in section 6.2.1.3. 1. 

6.5 Results. 

6.5.1 Quantilitation and tharaderisation of pigment present in RhOtlotorula 

ruhra TPl. 

To characterize the pigments produced by the new yeast isolate, three 

chromatographic methods were used, open column chromatography, thin layer 

chromatography and HPLC. A sample HPLC chromatogram is shown in Fig. 6.0 and 

the carotenoid profile is given in Table 6.0. Figs. 6.1 to 6.3 show the spectra of the 

various carotenoids separated by column chromatography. From the HPLC 

chromatokrram, it can be seen that torularhodin, torulene and P-carotene were the 

major pigments found in the new yeast isolate R. ruhra TPI whereas phytoene and 

phytofluene were produced in small quantities. From the carotenoid profile indicated 
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in Table 6.0, it can be observed that P-carotene (l04 )Jig yeast) was the pigment with 

the highest concentration of the total carotenoid and is closely followed by torulene 

(80 ~Lig yeast) and then torularhodin (64 )Jig yeast). The absorption maxima recorded 

for the various carotenoids in petroleum ether are also depicted in Table 6.1. From 

these results, it can be seen that the characteristic absorption maxima for all the 

pigments are in close agreement with published results. Torularhodin had an 

absorption maxima of 535 compared with the reference value of 537, torulene 514, ~­

carotene 478, phytoene 294 and phytofluene 364. The total pigment concentration 

determined for the new isolate was 261 ~Lg/g yeast on dry weight basis (Table 6.0). 

The RF values determined for the individual pigments also coincided with those 

reponed in literature (Table 6.0). Torularhodin had RF value of 0.15, torulene 0.30, 

P-carotene 0.50, phytoene 0.84 and phytofluene 0.62. 

6.5.2 Growth of organism in media supplemented with [2-14CJMVA. 

To confirm the identity and the biosynthetic pathway of the carotenoids 

produced by the new isolate, the organism was grown in a medium supplemented 

with labelled MV A. The pigments were analyzed using column chromatography, 

light spectroscopy and liquid scintillation counting. The results of the pigment 

analysis and scintillation counting are presented in Table 6.2. From the table it can be 

inferred that MV A was incorporated into 13-carotene, phytoene, phytofluene, 

torularhodin and torulene as evidenced by the amount of radioactivity detected in 
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each of these pigments_ lt can also be seen that f)-carotene and torulene had the 

highest percentage of the total radioactivity, 40 and 30%, respectively whereas 

torularhodin has 25% radioactivity and phytoene and phytofluene have 2 and 3%, 

respectively. The quantities of the radioactivity detected in the individual carotenoids 

were consistent with the concentration of the individual pigments produced by the 

organism on a non-supplemented medium. 

6,5,3 Isolation of mutants from R. rubra TPI. 

6.5.3.1 Screening of colonies for pigment hyper-producing mutants 

The effectiveness of UV light, EMS and NTG in generating hyper-pigmented 

mutants was evaluated_ Most of the mutants generated by UV light and EMS were 

either colourless or very pale and therefore did not warrant any further analysis. NTG 

was found to be the best mutagen. lt resulted in considerable variation in 

pigmentation among the colonies (Table 6.3) and repeated mutagenesis with NTG 

resulted in stable clones_ 

Mutants TP l-ntg-3, TP l-ntg-4, TP 1-ntg-5 and TP 1-ntg·6 were isolated afier a 

single mutagenesis of the parent strain R. ruhra TP l with NTG. These mutants were 

found to have total pigment concentration lower than that of the parent strain. Mutant 

TPl-ntg-3 contained approximately 154 !Jg/g yeast (estimated as torularhodin) 

whereas TPI-ntg-4, TPI-ntg-5 and TPI-ntg-6 contained 199, 215 and 121 IJ,g/g yeast, 

respectively. Compared with the parental strain, the total pigments produced by these 
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mutants were very low. Qualitative analysis of the pigments revealed that mutants 

TP 1-ntg-4 and TP 1-ntg-6 accumulated mainly ~-carotene with only small quantities 

of torulene, phytoene and phytofluene (Table 6.3) whereas TPI-ntg-5 produced 

mainly torulene and torularhodin. Mutants TP 1-ntg-4 and TP 1-ntg-6 were yellow in 

colour and this may be due to the accumulation of P-carotene as main pigment. The 

absorption maxima of the various carotenoids isolated from the mutants were similar 

to those reported earlier for the parental strain in Table 6.1. The spectra of the various 

carotenoids isolated from the mutants were also similar to those depicted in Figs. 6.1 

to 6.3 for the parental strain. There was one mutant, TPl-ntg-7, that was colourless 

and appeared to have no pigmentation at all. Since screening of colonies after a 

single mutagenesis was not successful in producing highly pigmented colonies, the 

decision was made to mutagenized the cells several times. Mutants TP 1-ntg-1 and 

TP 1-ntg-2 were isolated after repeated (2x) mutagenesis with NTG. These two 

mutants were found to contain total carotenoid concentration of 537 and 405 !J.g/g 

yeast, respectively (Table 6.3 ). These pigment concentrations were greater than that 

found in the parental strain which had only 261 ~lg/g yeast. The quality of pigments 

produced by these two mutants were, however, the same as those that occur in the 

parental strain. The dominant pigments that occur in these two mutants and the 

parental strain were P-carotene, torulene and torularhodin. 
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6.5.3.2 Physiological and biochemical characterization of mutants. 

The growth rate of the parental strain and the isolated mutants were 

determined by growing them in YM broth for 5 days and the results are depicted in 

Fig. 6.8. The ability of the mutants to utilize various sources of carbon and nitrogen 

sources was also determined. The carbon and nitrogen utllization patterns for the 

parental strain and the mutants are presented in Table 6.5. It can be seen from Fig. 

6.8 that both the parental strain, R. ruhra TPI and the isolated mutants gave 

approximately equal amounts of growth after 5 days of incubation. lt can also be 

seen from Table 6.5 that the utilization patterns tor the various sources of carbon for 

all the mutants ditTer somewhat from that of the parental strain. Mutants TP l·ntg-l, 

TP 1-ntg-2 and TP 1-ant-1, unlike the parental strain were tound to utilize succinic 

acid, cellobiose, inositol and a-ketoglutaric acid as sole carbon sources. 

6,5,3.3 Susceptibility of R. rubra TPl to antimycin and other inhibitors 

Several sterol biosynthesis inhibitors were tested in an attempt to divert all 

energy and resources towards the production of carotenoid (Kappeli, 1986, An et a/., 

1989) and hence isolate resistant strains with increased pigment production. The 

inhibitors tested include micanozole, ketoconazole, nicotine, and 2·methyl·imidazole. 

The survival rate for colonies treated with these inhibitors are depicted in Figs. 6.4 

and 6.5. Even though these inhibitors were able to decrease the survivability of the 

mutants by as much as 50% or more, none of them were able to generate colonies 

with increased pigment production. All of the strains generated by this procedure 
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showed drastic reduction in pigmentation when inspected visually. The mutants were 

left on these plates for three months but no mutant with increased pigment production 

was obtained. 

In a study to determine the formation of astaxanthin in the yeast P. 

rhodo:yma, Johnson and Lewis ( 1 979) reported that high concentration of glucose or 

reduced oxygen availability reduced xanthophyll biosynthesis and can therefore cause 

the accumulation of carotene pigments. An et a/. (1989) concluded from these 

tindings of Johnson and Lewis (1979) that oxygenation of carotenes through the 

activation of molecular oxygen is rate limiting for astaxanthin synthesis in some 

growth environments. By analogy to other related pathways such as sterol 

biosynthesis, An et a/. ( 1989) suggested that the source of active oxygen and 

oxygenating enzymes would likely be the mitochondrial respiratory chain and 

associated heme proteins, e.g. cytochrome P·450. This strongly suggests that 

treatment of organisms with inhibitors of the electron transport system would inhibit 

the organism's ability to oxygenate carotenes and hence would result in the 

accumulation of carotenes. With this in mind, we treated R. ntbra cells with two 

inhibitors of the electron transport chain, thenoyltriflouroacetone (TTF A) and 

antimycin A in an attempt to generate colonies that produce large quantities of 

carotenes. The results of the susceptibility of R. ruhra to these inhibitors are depicted 

in Fig. 6.6. Small concentrations of antimycin A and TTF A killed the yeast, and at 

TTFA concentration of0.6 mM, the survivability of R. nthra was only 10% whereas 

antimycin concentration of 60J.1m reduced the population of R. ntbra to about ll%. 
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Resistant colonies isolated from plates incorporated with various concentrations of 

TTF A were pale in colour and were therefore not given any further consideration. 

Colonies that grew on 20 and 40 ~Lm antimycin A were also pale in colour, however, 

at 60 ~Lm, the colonies appeared dark red. These colonies were isolated for further 

studies and named mutant TP 1-ant-1. The results of both the quantitative and 

qualitative pigment analyses of mutant TP 1-ant-1 are depicted in Table 6.3. This 

mutant was found to contain total pigment concentration of 483 f.lg/g and this 

concentration was greater than that found in the parental strain. This mutant also had 

increased production of torularhodin and torulene when compared to that of the 

parental strain. 

6.5.3.4 Susceptibility of R. rubra TPI and isolated mutants to P-ionone. 

P-ionone, an end ring analogue of P-carotene has been reported to inhibit 

astaxanthin production in P. rhodo:yma and provides little or no stimulation for P­

carotene production in this same organism. However, when cells mutagenized with 

NTG were plated on YM agar incorporated with P-ionone, astaxanthin over­

producing mutants were isolated (Lewis et a/., 1990). These mutants were found to 

produce more oxycarotenoids and smaller amounts of P-carotene than the parental 

strain. In R. glutinis, it has been reported that P-ionone stimulated the formation of 

phytoene, phytofluene, l;-carotene, neurosporene and P-zeacarotene (Simpson et a/., 

1964) whereas torulene, torularhodin and P-carotene production were suppressed. 
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We tested the effects of various concentrations of P-ionone in YM broth on 

carotenoid production in both the parental strain of R. ruhrcr TP l and one of its NTG 

mutants, TPI-ntg·l. We also plated cells trom the parental strain on YM agar plates 

that have been incorporated with P-ionone. When the yeast was plated on P-ionone, 

mutant TP l-P-ion-1 was isolated. In YM broth incorporated with various 

concentrations of P-ionone, it was observed that there was a drastic reduction in 

grov.th as the concentration increased. At P·ionone concentrations of I o·2 and l o·3 

M. the growth was reduced to less than I 0% of that of the parental strain (Fig 6. 7). 

The colour of the colonies also changed from red/pink to yellow and then white as P­

ionone concentration increased. Analysis of the carotenoid content of the cells 

revealed a decrease in the concentration of the total carotenoid, from 261 J,lg/g in the 

parental strain to 194 Jlg/g at a concentration of 10-4M (Table 6.4). Pigment analyses 

in R. ruhra TP I and TP 1-ntg-l grown in media supplemented with various 

concentrations of P-ionone also revealed a decrease in the concentration of individual 

pigments as the concentration of P-ionone increased (Table 6.4). In R. ruhra TPI, 

there was a complete loss of torularhodin and phytoene at all levels of P-ionone 

concentrations, whereas TP 1-ntg-l had gradual reduction in all pigments as the 

concentration of P-ionone increased. At P-ionone concentration of I o·2 and I 0"3 M, 

the organisms seemed to have lost the ability to produce pigments. The cells were 

pale in colour with no indication of the presence of pigments hence no pigment 

analysis was conducted in those cells. P-carotene was found to be the dominant 
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carotenoid at all P-ionone concentrations tested. 

6.6 Discussion. 

6.6.1 Identification of pigments produced by R. rubra TPl. 

Inspection of the carotenoid composition of R. ruhra TP I as well as the 

mutagenized cells allowed the identification of most of the carotenoid previously 

described in other Rhodotorula species (Bonner et a/., 1946; Hayman et ai.. 1974; 

Simpson et a/., 1964). In the present study, torulene, torularhodin and P-carotene 

were determined to be the major pigments produced by the new yeast isolate R. ruhra 

TP I. These findings are consistent with reports on pigments produced by R. ruhra. 

In Rhoclotorula and Rhodosporidium species. the abundant carotenoids usually 

encountered are torulene and torularhodin even though several other carotenoids 

including P-. y-, and ~-carotene, phytoene, phytotluene and ~-zeacarotene may also 

be present (Ciegler, 1965; Hayman et a/. 1974). In a mutational study in R. 

mucilagilloscr, Villoutreix ( 1960) reported that torulene, torularhodin, y-carotene and 

P-carotene were the principal pigments of the parental strain, whereas phytoene and 

phytotluene were absent Nakayama et a/. ( 1954) also examined the pigments from 

several Cryptococcus and Rhodotorula species and concluded that depending on the 

cultural conditions, especially the growth temperature, the quantities of the red and 

yellow pigments can vary. According to these authors the concentration of the red 

pigments decreased at sac and then increased as the temperature is increased. 

In a study to re-examine the pigments produced by R. glutinis strain 48-23T 
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which had been studied earlier by Nakayama eta/. (1954), Simpson eta/., (1964) 

reponed that the total carotenoid concentration, on a dry weight basis, was nearly 

equal at both room temperature and 5°C. The level ofy-carotene was reported to be 

fairly constant but there was an increase in the level of torulene and torularhodin 

coupled with a decrease in the levels of P-carotene when the yeast was cultured at a 

higher temperature (25°C). The gain in the levels of torulene and torularhodin were 

nearly equal to the decrease in the level of P-carotene. According to Simpson eta/. 

( 1964 ). these results suggest that y-carotene lies at the branch point in the carotenoid 

biosynthesis sequence. and that intermediates can be channelled through it either to ~­

carotene or to the red pigments. torulene and torularhodin, depending on the growth 

temperature. Similarly, in R. pal/ida 62-506, it was shown that there was an increase 

in the level of torulene and torularhodin as the level of y-carotene decreased. Based 

on these studies Simpson eta/. (1964) concluded from that y-carotene is converted to 

torulene which is in turn converted to torularhodin. 

Nakayama et a/. ( 1954) determined the content of individual carotenoids 

present in several species of Rhoclotorula and reponed the principal pigments to be 

torulene, torularhodin, ~- and y-carotene. Bonner et a/. ( 1946) on the other hand, 

found four major carotenoids in R. ruhra and several of its mutant strains. These 

carotenoids were identified as torulene (76% ). P-carotene (II%), y-carotene (9%) and 

an unidentified carotenoid (4%). Other workers (Fink and Zenger, 1934; Fromageot 

and Tchang, 1938; Karrer and Ratschmann, 1943) have also reported similar 
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carotenoid production patterns in several Rhodotontla species. Although all these 

workers agree on the presence of these three components (torulene, torularhodin and 

P-carotene ). the data on the respective concentrations reported by them differ 

somewhat. These workers employed different strains of yeast and cultural conditions 

in their studies. Since it has been reported that pigment composition depends on the 

strain of yeast and particular cultural conditions (Nakayama eta/., 1954; Kvanikov et 

a/ .. 1978; Bonner et a/., 1946), the differences in the concentration of the various 

pigment composition should not be surprising. We therefore report here that the 

major pigments produced by this new isolate have been identified as P-carotene, 

torulene and torularhodin. From the results of the studies that have been elaborated 

above, it is reasonable to assume that the pigment identified in the new isolate R. 

ruhra TP I are consistent with the pigments found in other Rhodotontla species. 

Mevalonic acid is known to be an obligatory intermediate in the biosynthesis 

of carotenoids (Bramley and Mackenzie, 1988; Goodwin, 1965). MV A is converted 

into MV A 5-phosphate, MV A 5-pyrophosphate, isopentinyl pyrophosphate and 

dimethylallyl pyrosphophate. Successive condensation reactions of isopentinyl 

pyrophosphate with dimethylallyl pyrophosphate, geranyl pyrophosphate and farnesyl 

pyrophosphate yield geranylgeranyl pyrophosphate which condenses with similar Czo 

units to torm phytoene, which is the precursor of the more unsaturated carotenoids. 

Labelled MV A has been used in tracer experiments to determine the carotenoid 

biosynthetic pathway and also to confirm the identity of the pigments produced by 
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numerous micro-organisms (Tefet eta/. 1970). It has been shown that labelled MVA 

contributes carbon to the end methyl group of P-carotene and to six other positions in 

the molecule (Tefet eta/. 1970). ln the formation of torularhodin, one or either end 

of the methyl group may be utilized in the formation of the carboxyl group. Other 

isotopes have been used to obtain information on the biosynthesis of carotenoids in 

yeast. Yamamoto eta/. (1962) used labelled carotenoid precursors to show that the 

hydroxy- and oxo- groups in carotenoids are derived from gaseous oxygen. Simpson 

eta/. ( 1963) using R. ruhra and 1MO-enriched atmosphere confirmed the hypothesis 

that the formation of hydroxytorulene is through the direct participation of 

atmospheric oxygen, and that oxidation of oxotorulene to torularhodin involves the 

use of another oxygen molecule from the medium. 

To contirm the identity and the biosynthetic pathway of the pigments produce 

by R. ruhra TP I, the organism was grown in a medium supplemented with labelled 

MV A. Radioactivity was detected in ~-carotene, torulene, torularhodin, phytoene and 

phytotluene. Based on the radioactivity in these compounds, the pathway for the 

production of pigments in the new isolate may be considered as being identical to the 

pathway of pigment production in R. gllllinis postulated by Simpson eta/. ( 1971) and 

which has already been depicted in Fig. 6.9. Simpson eta/. (1971) reported the 

presence of P-zeacrotene in R. glutinis and therefore suggested that P-zeacarotene 

may lie at a branch point in the biosynthetic pathway. P-zeacarotene was not detected 

in this study even though it is possible that it may have been produced by the yeast 
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but was quickly convened to other carotenoids. The accumulation of ~·zeacarotene 

in yeasts occurs in adverse environmental conditions, e.g. in the presence of inhibitors 

or in stressful environment indicating possible inefficiencies in the carotenoid 

biosynthetic pathway (Johnson and Lewis, 1979). The formation of P~zeacarotene in 

organisms may be rationalized by a hypothesis of McDermott et a/. ( 1974) who 

postulated that the synthesis of zeaxanthin by Flavobacterium spp. involves an 

enzyme complex with two active sites. Each of these sites acts on a carotenoid 'half 

molecule' in synchrony with equal efficiency i.e. desaturation or cyclization of each 

half molecule proceeds at the same rate. Under abnormal conditions, however, the 

individual sites may not act in synchrony and asymetrical products such as P­

zeacarorene may result. Thus under normal growth conditions, all the P-zeacorotene 

produced by the organism is converted to other carotenoids. It should be noted that 

Simpson et at. ( 1971) detected the presence of P~zeacarotene only after treating the 

yeast with inhibitors, the inhibitors may have therefore caused the accumulation of P-

zeacarotene. 

The total pigment concentration determined for the new isolate was 261 J.lg/g 

(on dry weight basis). This concentration is low and for the yeast to be industrially 

competitive, mutants with increased pigment production may be needed. This report 

theretore describes the isolation of mutants of R. mhra TP I with significantly higher 

concentrations of pigment than the parental strain. 
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6.6.2 Isolation of pigment hyper-producing mutants of R. rubra TPt. 

NTG was used to generate various strains of mutants from the parental strain, 

R. ruhra TP l. The results of the mutagenic studies are depicted in Table 6.3. It can 

be seen that the mutant strains generated fall into several categories: (a) mutants TP l­

ntg-1 and TP l-ntg-2 can be described as mutants producing the same carotenoid 

protile as the parental strain but with significantly higher total pigment concentration; 

(b) colourless mutant. TP 1-ntg-7 which appeared to have lost the basic general 

process to pigment production. These mutants were probably inhibited during the 

early stages of carotenogenesis and were in all likelihood affected in the enzyme 

phytoene synthetase (Girard el ul. l994); (c) mutants TP l-ntg-3 and TP l-ntg-4 and in 

which ~-carotene represented a larger percentage of the total carotenoid content; (d) 

mutant TP 1-ntg-5 which produced high concentrations of torularhodin and toru1ene 

with inhibited phytoene production; and tinally, (e) mutant TPI-ntg-6 which 

accumulated mainly P-carotene. Mutant TP1-ntg-6 was yellow in colour and was 

clearly inhibited in xanthophyll production, probably formation of other carotenoids 

are blocked at the ~-carotene level. 

ln a study using P. rhodo=JJma, Girard el a/. ( 1994) reported that yellow 

mutants accumulating high concentrations of P-carotene and white mutants with no 

carotenoids were obviously affected in distinct steps in the carotenoid biosynthetic 

pathway. Using protoplast fusion of a colourless mutant and P-carotene accumulating 

mutant of P. rhodo:yma, they postulated that the yellow P-carotene accumulating 
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mutants were blocked in the oxidase step therefore unable to convert P-carotene to 

eichinenone. The biosynthetic pathway in all carotenogenic yeasts studied up to date 

follows similar routes (Goodwin, 1965) with minor variations in the final steps 

leading to a characteristic carotenoids. The proposed pathway for the biosynthesis of 

carotenoids in yeast have earlier been depicted in Fig. 2.0 to 2.2 and that for 

Rhodotorula species are depicted in Fig 2.3. In Rhodotorula species, y-carotene 

produced in the biosynthetic pathway usually sutfers two fates. First, it can undergo a 

cyclization reaction to yield P-carotene or the y-carotene can undergo 

dehydrogenation to yield torulene. The torulene can then be oxidized to form 

torularhodin (Simpson eta/. 1964). In this study, it is most likely that the P-carotene 

accumulating mutants isolated were impaired in the dehydrogenation step and were 

unable to convert y-carotene to torulene. The net result was that most of the y­

carotene underwent cyclization to form P-carotene. The P-carotene overproducing 

mutants isolated in this study are therefore reminiscent of the P-carotene 

accumulating mutants of the yeast R. ghllini.'i (Kayser and Volloutreix, 1961). Like 

the P-carotene accumulating mutants of R.ruhra TPl, the mutants of R. glutinis 

accumulated a-carotene at the expense oftorularhodin production. 

The mechanism leading to the overproduction of carotenoids in mutants TP 1-

ntg-1 and TP 1-ntg-2 cannot be explained at this point. However some workers have 

offered explanation tbr the overproduction of carotenoids in some organisms. For 

example, in a study ofthe a-carotenoid overproducing mutants of the alga Dunalei//a 
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hardawil, Shaish et a/. ( 1991) proposed that alterations in the metabolic steps 

preceding GGPP was responsible for the activation of the carotenoid biosynthetic 

pathway. A similar mechanism has been proposed by An et a/. ( 1989) who isolated 

astaxanthin-overproducing mutants from the yeast P. rhodozyma by subjecting them 

to increased antimycin A concentration. They tentatively attributed the carotenoid 

overproduction to alteration in the cytochrome b or cytochrome P-450 components. 

Whatever the mechanism for the overproduction of pigments in mutants isolated in 

this study, it is obvious that the mutation resulting in carotenoid overproduction 

atfected the overall tlow of the biosynthetic pathway. Mutant TP 1-ntg-7 was 

colourless and appeared to have no carotenoid production. This mutant appeared to 

have lost the ability to synthesize carotenoids. 

6.6.3 Nutritional and biochemical characteristics of mutants 

Mutants TP 1-ntg-1, TP 1-ntg-2 and TP 1-ant-1 were found to utilize succinic 

acid. cellobiose, inositol and a-ketoglutaric acid in contrast to the parental strain that 

was unable to utilize these sugars as sole carbon. The ability of these mutants to 

utilize these carbons may have enhanced their ability to produce pigments since these 

compounds have been reported to promote increase pigment production in yeast. For 

example, Meyer et a/. ( 1993) reported an astaxanthin concentration of 1926 J.,Jg/g in 

P. rhodo::_vma 14-3 when grown in media containing succinic acid. They also 

reported significant increase in asta.xanthin content with cellobiose and other carbon 

compounds. Similarly, Johnson and Lewis ( 1979) reported higher astaxanthin 
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content in P. rhodo:yma UCD 67-210 grown on cellobiose, mannitol, succinic acid 

and sucrose. They suggested that the higher astaxanthin content obtained on succinic 

acid was due to direct incorporation into the tri-carboxylic acid cycle, whereas 

cellobiose stimulated carotenoid production because it can be utilized aerobically. 

6.6.4 Susceptibility of R. rubra TPI to antimycin and other inhibitors. 

Antimycin has been reponed to stimulate carotenogenesis in micro-organisms 

at low concentrations. In a study to determine the effects of antimycin on carotenoid 

production in P. rhodo:yma and its mutants, An et a/. ( 1989) reponed significant 

increases in several carotenoids including astaxanthin, P-carotene and 3',4'­

didehydro-P-'If-carotene-4-one in both the parental strain and the mutants. However, 

the antimycin-induced mutants were found to grow slowly on various nitrogen 

sources and also had a reduced yield on numerous carbon sources. An et a/. ( 1989) 

also observed that the mutants have small size and a slower growth rate when grown 

in YM broth. They concluded that the slower growth, reduced yield and the small 

size is an indication that the mutants were impaired in their ability to obtain energy 

from carbon sources and may have been unable to obtain equivalent amount of 

energy from the media as the parental strain. In our study, the antimycin induced 

mutant, TP l-ant-1 was not tested on carbon sources nor potassium nitrate. The 

growth rate was also determined in YM broth. It was observed that the mutant had 

reduced yield and a slow growth rate when compared to the parental strain. It is 

possible that this mutant was impaired in its ability to utilize energy from the 
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medium. However, the quantity of pigments produced by this mutant was about I 85 

% more than that produced by the parental strain. There was also a considerable 

increase in the production of the oxycarotenoids, torulene and torularhodin whereas 

the other mutants treated with the other inhibitors of the electron transport chain -

micanozole, ketoconazole, nicotine, TTF A and 2-methyl imidazole were completely 

inhibited in carotenoid production and restricted in growth. 

Cytochrome P-450s are a diverse class of b-type heme-containing 

monooxygenases that are involved in a wide variety of biotransformations (Martinis 

et a/.. 1991 ). In S. cerevisiae, cytochrome P-450s are involved in demethylation, 

desaturation and oxygenation of sterol intermediates (Jefcoate, 1986; Waterman et 

a/.. I CJ86 ). Similarly, multiple plant cytochrome P-450s are well documented in 

plants where they are involved in hydroxylations of carotenoids (Donaldson and 

Luster. 1991 ). Hydroxylation during carotenogenesis involves mixed function 

oxidase <MFO) reactions involving cytochrome P-450s (Johnson and An, 1991, 

Britton, 1982). Sandman and Bramley ( 1985) reported that in vitro biosynthesis of P­

cryptoxanthin from P-carotene in Aphanocapsa membranes involved a 

monooxygenase reaction and that hydroxylation was dependent on oxygen and 

sensitive to potassium cyanide and other monooxygenase inhibitors. Astaxanthin 

formation in P. rhodozyma was inhibited by metyrapone and piperonyl butoxide, 

compounds that are known to inhibit mixed function oxidase reactions involving 

cytochrome P-450s (Johnson and An, 1991 ). The results of the studies enumerated 

above strongly suggest that cytochrome P-450s are actively involved in 
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carotenogenesis and therefore any compound that inhibit the functioning of 

cytochrome P-450s will adversely affect carotenogenesis. 

Cytochrome P-450s are inhibited by a number of substituted imidazoles, 

pyridines. pyrimidines, miconazole and other lypophilic heterocyclic compounds 

(Vanden Bossche et a/., 1983; 1984). Similarly azote antifungal agents such as 

ketoconazole inhibits sterol demethylation by binding with cytochrome P-450 and 

cytochrome P-450 reductase (Yoshida et a/., 1986; Yoshida and Aoyama, 1987). 

This binding leads to the inhibition of the enzymatic reduction of cytochrome P-450 

by NADPH in the presence of NADPH-cytochrome P-450 reductase (Aoyama et cr/. 

1983, Yoshida and Aoyama, 1987). Since the reduction of cytochrome P-450 

through the activity of NADPH-cytochrome P-450 reductase is critical to the 

hydroxylation and desaturation of carotenoids (Waterman at a/., 1986), inhibition of 

the enzymatic reduction of the cytochrome will lead to the inhibition of carotenoid 

synthesis. This may explain why the mutants treated with micanazole, ketoconazole, 

nicotine and 2-methyl imidazole in this study were unable to produce any pigments. 

Unlike the above-mentioned compounds, antimycin enhances the reduction 

and accumulation of cytochromes b species, panicularly bs66 and bs62 (Chance, 1958; 

Roberts et a/., 1980; Jefcoate, 1986). Accumulation of reduced cytochrome b could 

promote the reduction of P-450 through NADPH-cytochrome P-450 reductase, which 

transters reducing equivalents from NADPH to P-450. As a result, there will be a 

concomitant increase in hydroxylation and desaturation reactions (Donaldson and 

Luster, 1991; Watennan et a/., 1986) which will ultimately lead to increased 
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production of carotenoids particularly xanthophylls. In this study it was found out 

that there was a significant increase in the production of the oxy-carotenoids, torulene 

and torularhodin in the antimycin A induced mutant, TP 1-ant-1. The fact that 

antimycin stimulated growth and pigment production in the mutant TP 1-ant-1, 

whereas the other inhibitors completely suppressed pigment production suggests that 

there was induction of cytochrome P-450 in this mutant. This finding is supported by 

Johnson and Schroeder's ( 1995) report that a yellow mutant of P. rhodozyma, yan-1, 

which produces P-carotene under normal cultural conditions, produced xanthophylls 

when treated with antimycin and light. Although the exact mechanism by which the 

antimycin induced mutants increase carotenoid production is not known, analysis of 

the pigments produced in this study is evidence that the mutant acquired increased 

ability to hydroxylate and desaturase carotenoid intermediates than the parental strain. 

It can therefore be concluded that antimycin induced the production of an alternate 

oxidase system which allowed the mutant to grow and stimulate carotenoid 

biosynthesis. 

The hyper-pigmented strains isolated in this study would be useful as parental 

strains to isolate strains with further increase in pigment production. These mutants 

can also be used for salmon feeding trials to determine whether or not they can 

effectively pigment the flesh of fish. The mutants blocked in particular steps of the 

carotenoid biosynthetic pathway may also be used for cloning and characterization of 

carotenogenic genes. 
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6.6.5 Susceptibility of R. n~bra TPl to f3-ionone. 

P-ionone had been reported to stimulate the production of P-carotene (Lewis 

et. a/., 1990). We therefore tested the effects of various concentrations of P-ionone 

on carotenoid production in both the parental strain and the mutant, TP 1-ntg-1. lt was 

observed that the cells changed in color from red to yellow and white as the 

concentration of ~-ionone increased. lt was observed on further analysis that P­

ionone inhibited the production of torulene, torularhodin and phytoene whilst 

phytofluene and P-carotene production were stimulated. The loss of torularhodin 

production coupled with an increase in the concentration of P-carotene and a decrease 

in torulene production when cells were treated with P-ionone may explain the change 

in the colour of the cells from red to yellowish. Reports on carotenoid produced by 

organisms treated with P-ionone are mixed. For example, Ninet et a/. ( 1969) and 

Mackinney et a/. ( 1954) reported that P-ionone stimulated carotenogenesis in 

8/akes/ea trispora and Phyc:omyc.:e.'l hlakesleecmus, respectively. Reyes (1963) also 

showed that sterol as well as carotenoid biosynthesis was stimulated to a marked 

degree by P-ionone. This effect was explained as being one of a negative feedback 

inhibition that acts at the level of the phosphorylated derivatives of mevalonic acid. 

ln a study to determine the effects of P-ionone on carotenogenesis, Simpson et a/. 

( 1964), reported that P-ionone stimulated the formation of phytoene, phytofluene, ~­

carotene neurosporene, and P-zeacarotene in R. glutinis whereas the formation of P­

carotene, torulene and torularhodin was greatly suppressed. ln R ruhra, Uehleke and 
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Decker ( 1962) found that 250 mg/L of P-ionone inhibited the formation of 

carotenoids. When added to the mature cultures, P-ionone destroyed torularhodin and 

P-carotene. 

In this study P-ionone clearly inhibited the formation of oxy-carotenoids in R. 

ruhra TP I but stimulated P-carotene production at low concentrations. The overall 

pigment concentration was, however, drastically reduced at all ~-ionone 

concentrations tested. The accumulation of P-carotene by the mutants and the 

parental strain grown in P-ionone supplemented media is supported by studies done 

by other workers. For example, Lewis eta/. ( !990) reported that there was little or no 

stimulation of oxy-carotenoid production in P. rhodo:yma and suggested that P­

ionone inhibited xanthophyll formation by blocking the carotenoid biosynthetic 

pathway at the P-carotene level. P-ionone, they contended, being an end ring 

analogue of P-carotene, may compete for oxygenation at the C-3 and or C-4 with P­

carotene and the xanthophylls. As a result, P-carotene would tend to accumulate and 

the xanthophylls would tend to decrease. This may clearly be the case in this study 

where inhibition of torularhodin and torulene production was associated with 

stimulation of P-carotene production. 
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Table 6.0 Carotenoid profile of Rhodotorulcr ruhra TPI 

Concentration 

Carotenoid (IJg/g yeast, dry wtt) % Composition RF value 

T orularhodin 64 24.52 0.15 

Torulene 80 30.65 0.30 

~-carotene 104 39.85 0.50 

Phytot1uene 8 3.10 0.62 

Phytoene 5 2.00 0.84 

Total 261 
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Table 6.1. Comparison of spectral characteristics of pigments isolated from 
Rhodotorulu ruhra TP l with literature values. 

Wavelength max. (A.) 

Carotenoid Expt. value1 Lit. value Reference 

T orularhodin 465. 500, 535 467, 501, 537 Goodwin, 1955 

Torulene 454, 481, 514 454-460,480-484,513-518 Liaaen-Jensen, 1965 

P-Carotene 425,451,478 425, 448-453, 475-482 Goodwin, 1955 

Phytoene 283, 294 276, 286, 297 Britton, 1995 

Phytotluene 331, 347, 367 330-333, 347-348, 366-368 Davies, 1965 

1 All determinations were made in petroleum ether. 
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Table 6.2 Production of carotenoid trom labelled mevalonic acid (MVA) by 

Rhodotorula ruhra TP l. 

Total incorporation 

Carotenoid {dpm)1 % Incorporation 

T orularhodin 27,501 25 

Torulene 33,040 30 

P-carotene 44,001 40 

Phytofluene 2210 2 

Phytoene 3023 " .J 

dpm = doses per minute. 
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Table 6.3. Carotenoid composition (~gig yeast) of Rlwdotorula ruhm TP I and its mutant isolated in this study. 

Mutant 

Carotenoid TPI TPI-ntg-1 TPI-ntg-2 TP 1-ant-1 TPI-ntg-3 TPI-ntg-4 TPI-ntg-5 TPI-ntg-6 TP 1-P-ion-1 TPI-ntg-7 

Torularhodin 64 140 110 160 84 ND 

Torulene 80 103 90 130 20 28 70 34 ND 

P-carotene 104 228 151 120 114 151 34 101 168 ND 

Phytofluene 8 36 28 32 12 36 16 II ND 

Phytoene 5 30 25 41 10 20 10 9 8 ND 

Total cone. 261 537 405 483 154 199 215 121 210 ND 

1ND = Not determined. 
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Table 6. 4. Carotenoid composition of Rhodotorula r~~hm TP I and its mutant TP 1-ntg-1 grown in YM broth 
suQPiemented with various concentrations of (3-ionone. 

Amount of carotenoid (f.!g/g yeast) in R. ruhra TP I and TP I -ntg- I at various concentrations 
Carotenoid (M) off3-ionone 

TPI 

None (control) 10"" to•' 10-f to··~ 10"" 

Torularhodin 64 - - - ND 1 ND 

Torulene 80 63 38 30 ND ND 

P.-carotene 104 165 179 142 ND ND 

Phytotluene 8 15 10 22 ND ND 

Phytoene 5 - - - ND ND 

Total 261 243 227 194 ND ND 

TPI-ntg-1 

Torularhodin 140 80 65 55 ND ND 

Torulene 103 65 52 48 ND ND 

P.-carotene 228 190 187 195 ND ND 

Phytofluene 36 22 10 8 ND ND 

Phytoene 30 10 5 - ND ND 

Total 537 367 319 306 ND ND 
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Table 6.5 Nutritional and biochemical characteristics of R. mhra TPl and isolated mutants. 
Test Gnl\\'lh 
Compound TPI TPI-ntg-1 TP 1-lllg-2 TPJ-mg-l TPI-ntg-4 TPI-nlg-5 TPI-ant-1 

Inositol + + + + 
Arabinose + + + + + + + 
Sorbitol + + + + + + 
Trehalose + + + + + + + 
Raffinose + + + + + 
Cellobiose w + + + + + 
Mcli;dtosc + + + + + + + 
Sucrose + + + + + + + 
Mannitol + + + + + + + 
Melibiose 
Lactose 
Urease + + + + + + + 
D-Xylosc + + + + + + + 
Maltose + + + + + + + 
Rhamnose 
Galactose + + w w + + 
KN01 w w w 
Gelatin liquefaction + + + + + 
Soluble starch + + + + + + + 
Succinic acid + + w w + + 
Erythritol + w w + + w 
Ribitol + + + + w + + 
Citric acid + + + + w 
u-ketoglutaric acid + + w w w + 

w = weak growth, - = no growth, + = growth. TP I = Rhodolorula ruhm TP I. 
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Table 6.5 contd. 
Test Growth 
Compound TPI TPI-ntg-f, TPI-ntg-7 TP 1-1~-ion-l 

lnllsitol \\' 

Alilbinosc + + w + 
Sorbitol + + + 
Tr<!halose + + + + 
Raffinose + + + + 
Cellobiose w + + + 
Ml!lizitose + + + + 
Sucrose + + + + 
Mannitol + + + + 
Melibiose w 
Lactose + 
Ure<~se + + -i· + 
D-Xylose + + + + 
Maltose + + + + 
Rhamnose 
Galactose + w w 
KN03 \\' 

Gelatin liquefilction + + + + 
Soluble starch + + + + 
Succinic acid + + 
El)'thritol + w \\' 

Ribitol + + + + 
Cinic ~tcid + + + 
ex-ketoglutaric acid + + w 

w = weak growth, - = no growth, + = growth. TP 1 = Rhodotorula ruhra TP 1. 

159 



75(] 

700 

650 

600 

550 

soo 

450 
5' 
E 
-400 
~ 
c;; 
&. 350 
<tl 
Ill 
a: 300 

25\l 

200 

15(] 

100 

c 

nme[min) 

Fig. 6.0 HPLC spectrum of the carotenoid composition of R. rubra TPl. A= 
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Fig. 6.1 Spectrophotometric spectra of various carotenoids isolated from Rhodotorula 

ruhraTP I. Top = torularhodin, bottom = torulene. 
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Fig. 6.2 Spectrophotometric spectra of various carotenoids isolated from Rhodotontla 

ruhra TP I. Top == P-carotene, bottom = phytoene. 
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Fig. 6.3 Spectrophotometric spectrum of phytofluene isolated from Rhodotoru/a 

ruhra TPl. 
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CHAPTER7 

EXAMINATION OF R. r11bra TPI CELL WALLS FOR THE 

PRESENCE OF GLUCANS 

7.1 lntrodu.:tion 

Glucans belong to a class of drugs known as Biological Response Modifiers 

(BRMs). Glucans, especially those with P-1,3 linkages are known to have antitumour 

properties and also stimulates non-specific immune systems in animals (Azuma, 

1987). They are reported to boost the immune systems of fish if administered as 

intraperitoneal injections, by bath or included in their diets (Jeney and Anderson, 

1993 ). Fish in the aquaculture industry are prone to bacteria infections due to 

decreased immunity resulting from dense population of the stock. Streptococcosis 

caused by the Streptococcus sp. is the most important disease and can lead to the loss 

of an entire fish stock (Jeney and Anderson, 1993). Antimicrobial drugs have been 

employed for prophylactic and therapeutic purposes, however, recent occurrence of 

drug-resistant strains has made treatment difficult. In addition, a number of attempts 

have been made to produce vaccine for fish, but no vaccine is yet available 

(Matsuyama et a/. 1992). Compounds that are able to boost the immune system of 

fish are therefore in demand in the industry. There is also a growing interest in the 

potential biomedical applications of polymeric P-D-glucan BRMs (Williams et a/. 

1987). 
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The yeast cell wall is known to contain high amounts of the polysaccharide 

glucan and glucans isolated from several strains of yeast are now being evaluated 

around the world tor their ability to protect fish stock against deadly bacterial 

infections. Based on the therapeutic potential of glucan, this study was undertaken to 

examine the cell wall of the yeast Rhodotorula ruhra TP I for the presence of glucans. 
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7.2 Materials and Methods 

Chemicals: Dimethyl sulfoxide (DMSO), deuterated dimethyl sulfoxide (d6-DMSO), 

glucose, laminarin, Sephadex LH-20 and methyl iodide were purchased from Sigma 

Chemical Company, St. Louis, MO. Petroleum ether, chloroform, acetone, methanol, 

n-pentane. acetic anhydride, triflouroacetic acid, acetic acid, pyridine, sulphuric acid, 

sodium hydroxide, sodium borohydride, sodium hydride, methanol, calcium chloride, 

ferric sulfate, potassium chloride, magnesium sulfate, ammonium sulfate, potassium 

dihydrogen sulfate and silica gel plates were obtained from Fisher Scientific Ltd., Fair 

Lawn. New Jersey. Yeast extract was obtained from DIFCO Laboratories, Detroit, 

MI. 

7 .2.1 Growth of organisms. 

Rhodotorula ruhra and Saccharomyces cerevisiae were grown m 2 L 

Erlenmeyer tlasks that contained 500 mL medium consisting (w/v) of 1% glucose, 

0.2% yeast extract, 0.5% ammonium sulfate. 0.5% potassium dihydrogen sulfate and 

0.1% (v/v) aqueous salt solution. The salt solution consisted of 5% MgS04.1HzO, 

1% CaCh.2H20, 1% FeS04.1H20 and 1% KCl.(Manners eta/. 1974). The organisms 

were cultivated at 25°C and a pH of 5.5 in a Psychrotherm Controlled Environment 

Incubator (New Brunswick Scientific Ltd., New Brunswick, N.J.) with shaking at 150 

rpm for 48 hours. The inoculum used consisted of 50 mL of medium of same 

composition in a 250 ml Erlenmeyer flasks which were incubated at 25°C for 48 

hours. After the growth period, the cells were centrifuged at 10,000 x g, washed three 
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times with deionized water and then lyophilized. 

7 .2.2 Isolation of cell wall polysaccharides. 

7 .2.2.1 Isolation of cell wall polysaccharides for nuclear magnetic resonam:e 

spectroscopy (NMR). 

Four ditTerent approaches were employed to isolate the polysaccharides from 

the yeast cell wall: 

I. Polysaccharides were prepared from the cell walls of R. nthra TP l by the 

method of Hassid et a/. { 1941) as reported by William el a/ ( 1991) with a 

minor modification. The method is given in the flow diagram in the Fig 7.0. 

2. About 400 g of freeze-dried yeast was digested with preheated dimethyl 

sulphoxide {DMSO) at approximately 50"C. The pigments in the cells were 

~xtracted several times with acetone until the supernatant became colourless. 

The residue was washed twice with methanol and then several times with 

water. The washed cells were then subjected to the protocol described in Fig 

7.0. 

3. The procedure described by Misaki et a/. ( 1968) was used for glucan 

extraction. About 400 g of dried yeast was dispersed in 6% aqueous NaOH 

and the mixture was stirred overnight at room temperature. The mixture was 

centrifuged and the insoluble residue was heated with 3% NaOH for 3 h at 

75°C, the mixture was then centrifuged and the NaOH supernatant collected 
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and saved. The NaOH digestion was repeated twice after which the cell-wall 

material was collected and washed three times with deionized water, ethanol 

and petroleum ether and dried in vacuo. The dried material was then heated 

with 0.5 M acetic acid for 3 h at 90° C and then repeated 3 times, dispersed in 

water, autoclaved and centrifuged. The resulting material was washed several 

times with water, ethanol and petroleum ether and then evaporated to dryness. 

The residue was saved and analyzed for the presence of glucans. The NaOH 

supernatants were pooled together, pH brought to 4.0 with acetic acid and 4 

volumes of ethanol added to precipitate any dissolved polysaccharides. The 

resulting white tlocculent precipitate was removed by centrifugation, dialysed 

against deionized water and the resulting gel freeze-dried. This and the cell 

wall material collected were dissolved separately in deuterated DMSO with 

the help of sonication and subjected to NMR analysis. 

4. Freeze-dried yeast cells were extracted with 3% NaOH at I 00°C and then 

treated with O.IM acetate buffer (Bacon et a/., 1966). The residue was 

washed twice with and resuspended in deionized water. One gram of sodium 

borohydride was added and the mixture was stirred for 16 hours at room 

temperature. The wet residue was extracted three times at 75°C with 3% 

NaOH containing 0.2 g sodium borohydride. The mixture was centrifuged, 

suspended in water, neutralised with acetic acid, and washed several times 

with water and re-suspended in water. Small portions were freeze-dried and 

then subjected to NMR analysis. 
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For comparative purposes, Brewer's yeast was subjected to the above-mentioned 

treatments and the polysaccharides obtained were subjected to NMR analysis. 

7.2.2.2 Isolation of cell wall polysaccharides for acetylation and methylation. 

The procedure described by Elinov er a/. ( 1988) was used. Two day old yeast 

culture were disintegrated in a French Press at a pressure of 40,000 psi. The ruptured 

cells were then washed several times with hot deionized water and extracted twice 

with acetone, methanol and then ethanol to remove any traces of acetone. The cells 

were then washed three more times with deionized water, heated in 3% NaOH in hot 

water bath 1 00°C for 4 hours and then centrifuged at 5000 rpm, the residues were 

collected and washed several times with deionized water and lyophilized before being 

subjected to acetylation and methylation. 

7.2.2.3 Isolation of cell wall mannans. 

About 20 g of freeze-dried yeast cells were suspended in about 400 mL 0.1 M 

sodium acetate buffer {pH 7.0) and autoclaved for 30 minutes at l2l°C and 20 psi. 

The solution was cooled, neutralized with acetic acid and centrifuged at 7000 x g and 

the supernatant evaporated to about 50 mL in a rotary evaporator. Four volumes of 

methanol were then added and the precipitate centrifuged off at 10,000 x g for 20 

minutes, washed two times with methanol and then lyophilized. The freeze-dried 

material was re-dissolved in deionized water by heating at toooc and the insoluble 

material filtered off. The dissolved portion was divided into two and one half was 
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freeze-dried and then portions dissolved in deuterium oxide (020) for NMR analysis. 

This portion was referred to as the crude mannans. The other half was purified as the 

insoluble copper complex using the method described by Gorin and Spencer (I 970). 

The purified mannan was also dissolved in D20 and subjected to NMR analysis. 

7.2.3 13C- and 18- nuclear magnetic resonance (NMR) spec:troscopy. 

The extracted polysaccharides were subjected to 13C-NMR and 1H-NMR 

spectroscopy to determine the type of inter-chain linkages in the compound. The 

compounds were dissolved in deuterated DMSO (du·DMSO) and analysed on a 

Varian 300 MHz NMR Spectrometer (Varian Associates, Palo Alto, California). The 

equipment was run in the pulsed Fourier-transform mode at 30°C with 

tetramethylsaline as external standard. All samples were prepared at a concentration 

of 50 mglmL dr,·DMSO except the mannans, which were dissolved in 0 20. 

Laminarin, which is known to have P-1 ,3-linked triple-helical glucopyranose 

structure (Saito et al 1977) was dissolved in d6.DMSO and used as a standard. For 

comparative purposes, cell wall preparations from S. cerevisiae were subjected to the 

same treatment and analyzed by NMR. 

7.2.4 Aditol acetate derivatization of cell wall polysaccharides. 

The method used for the hydrolysis, reduction and acetylation of the cell wall 

polysaccharides followed the procedure described by Gunner et a/. ( 1961) and 

Sawardeker et al ( 1965). Samples of cell wall polysaccharides (ca. I 0 mg) were 
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hydrolyzed for 16 hours in I% trifluoroacetic acid in a water bath at I 00°C. The 

hydrolysate was evaporated to dryness in rotary evaporator, washed 3 times with 

deionized water and reduced for I hour with sodium borohydride. After this time the 

reaction was stopped by the addition of glacial acetic acid and the solution was 

evaporated to dryness and washed 3 times with a solution of 5 % acetic acid in 

methanol to facilitate the removal of borate as methyl borate. The hydrolyzed cell 

wall polysaccharides were acetylated by heating at l00°C in a mixture of acetic 

anhydride/pyridine (I: I v/v) for 30 minutes; evaporated to dryness and co-evaporated 

with chloroform until no traces of pyridine could be detected. The acetylated product 

was tiltered through a sintered glass funnel, taken up in chloroform and injected and 

analyzed by GC-MS. 

7 .2.5 Methylation and hydrolysis of cell wall polysaccharides. 

The method used followed the procedure described by Hakomori (1964). In 

this procedure, the methylsulfinyl anion (Corey and Chaykovsky, 1962; Chaykovsky 

and Corey, 1962) was used to generate the polyalkoxide ion of the substrate in 

anhydrous DMSO prior to the addition of the methyl iodide to effect methylation. 

The methylsulfinyl anion was prepared as follows. About 1.5 g of sodium 

hydride (55% suspension in mineral oil) was weighed into tOO mL serum vial and the 

suspension was allowed to settle and the liquid decanted. The sodium hydride was 

then washed three times with 30 mL aliquots of n-pentane then dried by flushing with 

dry nitrogen with the aid of a hypodermic syringe. About 15 mL of DMSO, which 
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had previously been distilled from calcium hydride and dried over molecular sieve 

( 4A) was transferred into the flask which had previously been sealed with rubber 

septum and flushed with nitrogen via two injection needles. The vial was placed in 

an ultra-sonic bath and heated at 50°C until the solution became clear and hydrogen 

gas evolution ceased. The resulting greenish solution was stored at 4°C and used for 

the permethylation reactions. 

For the methylation reactions, samples ( 1-2 mg) of cell wall preparations were 

mixed with 0.4 mL DMSO and a stirrer bar in a 6 mL hypo vial capped with a teflon­

lined rubber septum. The contents of the vial were flushed with nitrogen gas via two 

injection needles tor 20 seconds, stirred at room temperature (ultrasonicated when 

necessary) until a clear solution was obtained. To generate the polysaccharide 

alkoxide, 0.4 mL methylsulfinyl carbanion was added dropwise via an injection 

needle using a hypodermic syringe, stirred at room temperature for an hour with a 

23g needle through the liner at which time a clear solution was obtained. l mL of 

methyl iodide (CH3l) was added in a dropwise manner using a syringe with cooling. 

The mixture was then stirred at room temperature for another 4 hours and the 

resulting solution was passed through a column of Sephadex LH-20 (approx. 5 gin 

chlorotorm) and l mL fractions were collected. Fractions were spotted on silica gel 

plates, sprayed with 5% H2S04 and charred to determine fractions containing 

methylated polysaccharides. Fractions were then combined, evaporated to dryness 

and taken up in I mL chloroform for injection on to GC-MS. 
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7 .2.6 GC-MS Conditions. 

The instrument consisted of a HP 5970 Mass Selective Detector (MSD) 

coupled with a HP 5890 Gas Chromatograph (Hewlett-Packard, Palo Alto, California) 

and a model 300 Data System from the same manufacturer. The column was a CP­

Sil-5 CB, WCOT fused silica with a length of 25 m, an inside diameter of 0.25 mm, 

outside diameter 0.39 mm and a film thickness of 0.12 11m (ChromPack, The 

Netherlands). Chromatographic conditions were as follows: initial temperature of 

165°C held tor 15 minutes, increased to 250°C at a rate of SoC/minute and held for 10 

minutes. The carrier gas was helium with a flow rate of I mUminute and a split ratio 

of 50: I was used. lnjector temperature and transfer lines were both maintained at 

275°C. The generated mass spectra were compared with those of standards reponed 

by Jansson eta/. ( 1976) to identify the products. 
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400 g of dried R. rubrr1 is dispersed in 3 L of0.7!1i (J%) NaOH 

Heat to boilina with direct heat 

let stand overnight: decant and discard dark brown supernatant 

Repeat the NaOH digestion (lll) 

Add J l ofU!Ii M Hd to residue 

Heat to boilinR with direct heat 

let stand overniaht; decant and disrard light brown supernatant 

Repeat the HCI digestion (211, usina 1.75 M and then 0.94 M 

To residue add l L deionized water and heat to boiling 

Derant supernatant :~nd repeat water wash several times 

Add 1.5 l absolute ethanol to residue and heat to boiling with direct heat. 

Repeat the ethanol e1traction until supernatant becomes rolourless. 

Heat residue to boiling with deionized water several times 

Filter washed gluraa through fine silk screen 

Shelled, frozen and lyophilized to dryness 

Fig. 7 .0. Procedure for the extraction of glucans from yeast (Modified from 
Williams eta! .. 1991). 
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7.3 Results. 

7 .3. t NMR analyses. 

To determine the type of interchain linkages present in the cell wall 

polysaccharides from R. mhra TP I, cell wall preparations were dissolved in 

deuterated DMSO and analyzed by both 13C- and 1H-nuclear magnetic resonance 

(NlvlR) spectroscopy. Cell wall mannans were dissolved in DzO. To assess the 

effectiveness of the method used in the preparation of the cell wall polysaccharides, 

cell wall polysaccharides were prepared from S. cerevisiae using the same protocol. 

Laminarin, which is known to have ~-I ,3-linked triple-helical glucopyranose 

structure (Saito et a/. 1977) was similarly dissolved in d6DMSO and used as a 

standard. The NMR spectra ofthe cell wall polysaccharides analyzed by 13C- and 1H­

NNlR are depicted in Figs. 7.1 to 7.4. The 13C-NMR chemical shifts measured in 

ppm for R. ruhra TP 1, laminarin and S. cerevisiae are compared with those reported 

by other workers in Table 7.0. 

As can be seen from Fig 7.1, the cell wall polysaccharide from R. rubra TP1 

showed only two peaks, one of which was a DMSO peak. The peaks were different 

from those of laminarin which is known to contain ~-1 ,3 glycosidic linkages (Saito et 

a/ .. 1977; William et a/., 1991 ). The 13C-NMR spectra furnished by the cell wall 

polysaccharides isolated from S. cerevisiae, on the other hand, showed excellent 

correspondence with those of laminarin (Fig. 7.2). This suggests that S. cerevisiae 

has the same ~-1 ,3-linked triple helical structure possessed by laminarin as has been 

reported previously (Rolf et a/. 1985, William el a/. 1991 ). The 13C-NMR chemical 
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shifts of S. cerevisiae depicted in Table 7.0 were in agreement with those of laminarin 

contirming the P-1 ,3-linkages. Laminarin has several other small peaks, some of 

which can be attributed to the occurrence of glycosyl side-chains after every ll 1
h 

subunit along the polymer (Rolf el al. t 985). It is apparent from these results that the 

linkages in R. mhra TP l could not be identified using 13C-NMR. 

1H-NMR spectral analyses of R. ruhra cell wall polysaccharides and laminarin 

were carried out in attempt to identify the linkages present in the isolated cell wall 

material. Several signals were recorded for R. ruhra TP I but none of them were 

identical to those oflaminarin (Fig. 7.3). The 1H-NMR spectrum of R. rubra TPI did 

not resemble that of laminarin suggesting that the cell wall polysaccharides of R. 

mhra TP I are different from those encountered in laminarin and S. cerevi.,·iae. The 

1 H-NMR spectra of the polysaccharide isolated from the cell wall of S. cerevisiae and 

laminarin are compared in Fig. 7 .4. It can be seen from the figure that the two spectra 

show excellent correspondence. The structure of the cell wall polysaccharides of R. 

ruhra TP I could not therefore be determined by subjecting them to NMR analysis. 

Since hot alkaline extraction failed to shed light on the structure of the cell 

wall polysaccharides of R. ruhra, it was reasonable to assume that the extraction 

procedure might have degraded the cell wall polysaccharides present and hence 

milder extraction techniques were employed. The 1H-NMR spectra of the 

polysaccharides extracted by mild hydrolysis are shown in Fig. 7.5. The top spectrum 

represents the crude mannan and the bottom spectrum represents the other portion 

purified as the copper complex. It can be seen that these spectra had distinctive 
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finger- prints in the region of3.7 to 3.8 ppm indicating that the cell wall is made up of 

mainly mannans (Gorin and Spencer, 1970). 

7.3.2 Methylation analyses. 

The GC-MS spectra of the fully methylated R. ruhra TPI cell wall 

polysaccharides are presented in Figs. 7.6 and 7.7. The cleavage products and 

structural features furnished by the methylated derivatives of the cell wall 

polysaccharides are presented in Table 7.1. 

The fully methylated R. ruhra TP I cell wall polysaccharides obtained by the 

Hamokori ( 1964) procedure, on hydrolysis, furnished I ,5,6-di-0-acetyl-2,3,4-tri-0-

methyl-hexitol (Fig. 7. 6, top); I ,5-di-0-acetyl-2,3, 4,6-tetra-0-methyl hexitol (Fig. 

7. 6, bottom); I ,3 ,5-tri-0-acetyl-2,4,6-tri-0-methyl-hexitol (Fig. 7. 7, top); I ,2,5-tri-0-

acetyl-3,4.6-tri-0-methyl hexitol (Fig. 7. 7, bottom). Unfortunately, the column could 

not separate 1,4,5-tri-0-acetyl 2,3,6-tri-0-methyl hexitol and 1,3,5-tri-0-acetyl-2,4,6-

tri-0-methyl hexitol. Fig. 7. 7 (top) there tore represents either of the two structures. 

Since as indicated earlier, it is difficult to determine the nature of the parent 

monosaccharide from the mass spectra of the methylated aditol acetates, the GC 

analyses of the acetylated derivatives were carried out. Comparison of the retention 

times of these methylated derivatives with those of the standards confirmed that l ,5-

di-0-acetyl-2,3,4,6-tetra-0-methyl hexitol was actually 2,3,4,6-tetra-0-methyl 

glucitol whereas the rest were mannosides. From the GC retention times, it can be 

deduced that the fully methylated cell wall polysaccharide, obtained by the Hamokori 

183 



(1964) method, on hydrolysis yielded 2,3,4,6-tetra-0-methyl glucitol; 2,4,6-tri-0-

methyl- mannitol, 2,3,6-tri-0-methyl mannitol; 3,4,6-tri-0-methyl mannitol; and 

2,3,4-tri-0-methyl mannitol (Table 7.1 ). The isolation of 2,3,4,6-tetra-0-methyl 

glucitol from a polysaccharide that was fully methylated suggests that the yeast cell 

wall may be highly branched. The linkages furnished by the various cleavage 

products are also depicted in Table 7 .1. The sequence and the mole ratio of the 

various linkages shown in Table 7.1 were not determined, however, it can be inferred 

from these results that the cell wall contains mostly 1-3 and l-4 linkages as 

indicated in Table 7.1. The mass spectra of the various monosaccharides (methylated 

aditol acetates) are shown in Figs. 7. 8 to 7 .I 0 and the percentage composition and the 

retention times of the individual monosaccharides are depicted in Table 7.2. From 

these results, it can been seen that the parent monosaccharides are hexitol hexacetate 

(i.e. glucose and mannose) and pentitol pentacetate (galactose, fucose and rhamnose}. 

Comparison of the retention times of standard sugars run in parallel showed that the 

main monosaccharides present were mannose (50.53%), glucose (25.53%), galactose 

( 12.27%), fucose (8.6%) and rhamnose (3.2%). 

7.4 Discussion. 

7 .4.1 NMR analyses of cell wall polysaccharides. 

Most fungi contain a complex mixture of polysaccharides and protein that can 

be found in cell membranes or wall and as exocellular components. These 
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polysaccharides vary widely in their sugar composition, linkage types, molecular 

parameters and physical properties (Bacon et a/. 1969; Gorin, 1970). Numerous 

techniques including NMR have been employed in an attempt to elucidate the 

chemical structure of these polysaccharides (William et a/. 1991; Gorin and Spencer, 

1970; Gorin, 1980). Nuclear magnetic resonance (NMR) analysis allows the 

identification of the polymeric backbone and also the determination of the type of 

interchain linkages present in various polysaccharides (William et a/. 1991; Ohno et 

"'· 1984). 

In the present study, hot alkali was used to extract polysaccharides from the 

cell wall of R. ruhra TPI and the resulting products analyzed by NMR. It was found 

out that NMR could not be employed to determine the chemical structure of the cell 

wall polysaccharides isolated from R. ruhra TP 1 with hot alkali. The failure to 

elucidate the chemical structure of the cell wall polysaccharides by hot alkali 

extraction can be attributed to several reasons. As indicated earlier, the cell wall of 

Rhodotorula species contain mainly mannan with P-(1-3) and P-( 1---..4)-linkages 

(Gorin and Spencer, 1970). These bonds are alkali-labile and suffer extensive 

degradation when subjected to alkali extraction (Fleet, 1987). Similarly, other bonds 

such as glycosyl-serine linkages, phosphodiester linkages and some peptide and 

disulphide bonds undergo extensive degradation when the cell walls are extracted 

with hot alkali (Ballou, 1976). It is therefore possible that the polypeptide and the P­

(1---..3) and ~-(1-4) linkages present in the cell wall polysaccharides of the yeast 

employed in this study may have undergone extensive degradation as indicated by the 
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formation of viscous solutions in DMSO. According to Gorin and Spencer ( 1970) 

and Gorin ( 1972), regenerated polysaccharides obtained from certain types of yeast 

give solutions that are too viscous for NMR spectral analysis. The viscosity of the 

solution obtained in this study indicated that there was extensive degradation and 

gelatinization of the linkages present in the polysaccharide. 

lt can be concluded from this study that, like Rhodotoru/a texensis, R. ruhra 

TP I is not amenable to NMR analysis employing hot alkali extraction of the cell wall 

polysaccharides (Gorin and Spencer, 1970; Gorin, 1972). 

To determine whether or not the protocol used in preparing the glucan 

contributed to the absence of peaks on the spectrum. glucans from S. cerevisiae which 

have been used in most studies were prepared using the same protocols used to 

prepare glucans from R. nthra TP I. Unlike R. ruhra TPl, the S. cerevisiae spectrum 

had peaks similar to those of the standard, laminarin. Comparison of the glucan 

spectral peaks of S. cerevisiae showed excellent correspondence with that of 

laminarin. In addition, the 13C~~fR spectra of laminarin and S. cerevisiae reported 

by Williams et al. ( 1991) were in excellent agreement with the laminarin and S. 

c:erevisiae spectra reported in this study. This indicates that the protocol used in this 

study is applicable to S. cerevisiae but not suitable for R. rubra TPl. 

The failure of the hot alkali extraction to yield any reasonable results for R. 

ruhra TP I suggests that there was either a complete destruction of the 

polysaccharides that occurred in the cell walls of the organism, or those 

polysaccharides were not amenable to hot alkali extraction. It therefore became 
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necessary to look at a milder extraction technique and also at the possibility that the 

yeast contained a different form of polysaccharide which required a different 

extraction protocol. Furthermore, it became necessary to employ other chemical 

methods that are used to elucidate the chemical structure of the cell wall 

polysaccharides as a complement to the NMR analysis. The decision was therefore 

made to use protocols that will result in extraction of mannans instead of glucans. 

The materials that were extracted were subjected to 1 H-NMR and the results indicated 

that the cell wall contained mainly mannans and hence shed further light on the 

phylogenetic affiliation of this new isolate. 

Yeast cell wall mannans constitute a highly diverse series of branched 

homopolymers that have been investigated by tH- and nc-NMR spectroscopy (Gorin 

and Spencer, 1970). These polysaccharides are predominantly a-( t-2) linkages and 

occasionally a-( 1-3) linkages. A few of the branched mannans carry residues of~-

0-mannopyranose in the side chains (Gorin and Barreto-Bergter, 1982, Gorin, 1980). 

Yeast of the genera Sporobo/omyce.'l and Rhodotontla are unique in that their cell 

wall is made up of free P-D-mannan with alternate (l-3) and (1-4)-linked P-0-

mannopyranose units (Gorin and Barreto-Bergter, 1982, Gorin, 1980). 

In Rhodotorula species, the cell wall contains mainly alternate P-(l-3) and 

P-(l-4)-linked -P-0-mannopyranosyl units (Gorin eta/, 1965; Gorin and Spencer, 

1970). The majority of the mannose-containing polysaccharides of the cell walls 

from these yeasts give tH-NMR spectra containing a distinctive fingerprint region in 

the 3.8-4.8 ppm region arising from the H-I signals, and this is what is normally used 
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in yeast identitication (Gorin and Spencer, 1970). In R. glutinis for example, the 13-

( 1-3 )-linked units of the mannan have a chemical shift of 4.58 ppm whereas the 13-

( 1-4)-linked units have a chemical shift of 4.69 ppm (Gorin and Spencer, 1970). The 

1H-NMR obtained for the polysaccharides with hot alkali from R. ruhra TPI had 

chemical shifts in the region 3.7 to 3.8 which clearly falls within the finger print 

region of 3. 8 to 4.8 ppm reponed by Gorin and Spencer ( 1970). It can therefore be 

concluded that the cell wall polysaccharides ofthe new isolate R. ruhra TP1 is made 

up of mainly gluco-mannans. 

7.4.2 Methylation analysis of the cell wall polysaccharides of R. rubra TPI. 

As a complement to the results obtained with the NMR analyses we also 

methylated the isolated cell wall polysaccharides and subjected them to GC-MS 

analyses. Methylation analyses of polysaccharides is one of the most important and 

widely used method in structural determination in polysaccharide chemistry 

(lindberg and lonngren, 1978; Jansson el "'· 1976). The method involves the 

methylation of all the free hydroxyl groups in the polysaccharide into methoxyl 

groups, which are then hydrolysed into a mixture of partially methylated sugars. The 

manomers formed are then analyzed by gas-liquid chromatography (GlC) (Jansson 

et "/. 1976}. The method provides details of the structural units present in the 

polymers, but gives no information on their sequence or the anomeric nature of their 

linkages. The mass spectra of the partially methylated aditol acetates show only 

minor differences making an assignment of the sugar configuration (gluco, manno 
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etc.) difficult. However, the mass spectra evidence together with the relative 

retention times of the parent monosaccharides in GLC usually leads to unequivocal 

identification of each component (Kamerling and Vliegenthart, 1989). 

The results of the monosaccharide analysis depicted in Table 7.2 indicated 

that the monosaccharide content of the cell wall of R. ruhra TP I, consisted mainly of 

mannose with moderate amounts of glucose and galactose and small quantities of 

fucose and rhamnose. Thc.)e results are consistent with those reported by other 

workers. Sugiyama at a/. ( 1985) reported that mannose and glucose were the 

dominant monosaccharides in R. ruhra and other Rhoc/otontla species. They also 

reported the absence of xylose and the presence of rhamnose, galactose, fucose and 

ribose in the cell walls of these organisms. Based upon these results, they concluded 

that cellular carbohydrate composition is a valuable tool for the chemotaxonomy of 

the basidiomycetous yeasts. Similarly, Weijman and Rodrigues de Miranda ( 1988b) 

reported that the dominant monosaccharide found in several Rhodotorula species was 

mannose. The patterns of carbohydrate in the cell wall of the new isolate R. ruhra 

TP I is therefore an imponant evidence of the taxonomic similarity between the new 

isolate and the genus Rhodotoru/a. 

Several cleavage products were obtained from the methylated products of R. 

ruhra TP 1 cell wall in an attempt to determine the cell wall structure of this yeast. 

The sequence of \-t3 and l-t4linkages in the mannan were not elucidated, however, 

based on these results, the structure of this yeast can be constructed as follows: 0-

glucopyranosy(.( l-t6)-0-mannopyranosyl-( t-4 )-0-mannopyranosyl-0-( 1 ~3)-0-
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mannopyranosyl-0-mannose or 0-glucopyranosyl-( l-t6)-0-mannopyranosyl-O­

( I-t 3 )-0-mannopyranosyl-0-( l-t4 )-mannopyranosyl-0-mannose. These results 

imply that the cell wall of the yeast is made up of glucomannan with repeating units 

of 0-D-mannopyranosyl ( l-t4 )-0-mannopyranosyl-( I-t 3)-0-D-mannose or 0-D­

mannopyranosyl-( l-tJ)-0-mannopyranosyl-( l-t4)-0-D-mannose. These findings 

are in agreement with similar structural units found in Rhodolontla species by other 

workers (Eiinov et a/. 1988; Gorin et a/. 1965; Arai and Murao, 1978; Arai et a/. 

1978). Thus, the types of linkages between the mannoses were 1-t4 and l-t3, 

whereas those between the mannose and glucose were (-t6. The optical rotation and 

whether the linkages are of a- or P-type was not determined. In most Rhodo/orula 

species studied up to date, it has been reported that the linkages are mostly of P-J-tJ 

and P-l-t4 type and most of the mannans are of the D form (Gorin et al., 1965; Arai 

and Murao, 1978; Elinov et £1/., 1980; 1988). Since the new isolate have been 

identified as a strain of R. ruhra, the linkage is, in all probability, of the P-l-t3 and P­

l-t4 type. It was also determined in this study that some of the linkages between the 

mannoses were of 1-t2 type. The presence of l-t2 linkage is surprising since this 

linkage has not been reported in mannans isolated from Rhodotontla species. No 

explanation can yet be offered for the presence of this linkage, unless the difference 

depends on the conditions used for culturing the yeast or the occurrence of traces of 

glycerol and erythritol as reported by other workers. Gorin et a/. ( 1964) reported the 

occurrence of l-t2-linkage in the cell wall polysaccharides of R. gllltillis and other 

Rhodotorula species but concluded upon further chemical analysis that the 1-t2 
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linkage arose from the presence of trace amounts of erythritol in the cell walls of the 

yeast. They subsequently determined that the mannans in R. glutinis consisted of ~-

1-+ 3 and P-1-+4 pyranose units. Similarly, Arai and Murao (1978) detected the 

presence of glycerol, erythritol and 0-P-D-mannopyranosyl -( l-+2)-glycerol in the 

degradation products of oligosaccharides isolated from the cell walls of R. g/utinis 

and concluded, based on the degradation products, that the oligosaccharides was 0-P­

D-glucopyranosyl-( l-+6)-0-P-D-mannopyranosy(.( 1-+4)-0-P-D-mannopyranosyl-

( 1-+ 3 )-0-P-D-mannopyranosyl-( 1-+4 )-O-man nose. Further support of the occurrence 

of I ,2 glycosidic linkages has been provided by Elinov e/ a/. ( 1988) who reported the 

presence of 41-61% of 1-+4 and 1-+2 glycosidic bonds in the cell wall 

polysaccharides of R. ruhra VKMY -341 and its mutants. 

The presence of the 1-+2 glycosidic linkages could also have arisen from 

degradation of glycogen that may have been present in the cell wall material. Yeast 

cell wall extracts contain large quantities of glycogen, which can be removed to a 

varying degree by hot acid extraction and completely by treatment with a-amylase 

(Manners eta/. 1974, 1973). Since our extracts were not treated with a-amylase, it is 

possible that the presence of traces of glycogen may have contaminated the samples 

and hence contributed to the presence of l-+2 linkages. From the results presented so 

far, it can be inferred that the cell wall of the new isolate, R. ruhra TP l is made up 

mainly of mannans. A possible structure of the cell wall might therefore be 

constructed as follows: mannan cell wall consisting of linear long chain P-L-+3 and 
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P-1-4-linked mannose chain with glucopyranosyl side chains. The structure would 

therefore be consistent with those determined for other Rhodotontla species (Arai and 

Murao. 1978; Gorin et aJ., 1965) and further supports the determination that the new 

yeast isolate belongs to Rhodotorula. The occurrence of mannans with P­

contiguration has also been reported in Citeromyces matriten.'iis (Gorin eta/., 1969). 

Hmvever unlike those in Rhodotorula, these mannans have ct-1,6-D-mannoside chain 

with a.-1-2 or P-1-t2 rnannopyranosyl side chain. The Rhodotontla mannans are 

also different from the mannans containing 1,2-a- and 1.6-a-pyranosyl links (with 

1,3-a links in some cases) associated with Saccharomyce.'i (Gorin et. a/., 1966), fungi 

(Hough and Perry, 1962}, bacteria (Ball and Adams, 1959; Orlova, 1961) and the 

polysaccharides of the related genus Cryptococcus. ln Cr. neo.formans (Miyazaki, 

1961) and Cr. laurentii (Ambercornbie eta/., 1960) for example, the polysaccharides 

consist of glucuronic acid, mannose and xylose. 

The type of linkage in the fucose, galactose and rhamnose that were detected 

in the cell wall of the new isolate could not be determined in this study. However, 

from a taxonomic point of view, the presence of these monosaccharides is very 

important since they confirm the phylogenetic affinity of the new isolate. 

Rhodotorula and Sporobolomyce.5 are the only yeasts that are known to have 

galactose, fucose and rhamnose in their cell walls (Crook and Johnson, 1962). The 

presence of fucose is significant since it is also a characteristic of Basidiomycetes and 

Rhodotonlla is known to have a basidiomycetous affiliation. 

The function of polysaccharides in the cell wall of yeast and other fungi are 
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either unknown or at best presumed to be structural (Fleet and Phaff, 1974). ln 

A.\pergillus nidulans, the polysaccharide is reported to serve as storage carbohydrate 

(Zonnerveld, 1972), whereas in Saccharomyces, the cell wall is believed to be 

involved in maintaining the shape of the yeast cell (Lampen, 1968}. The P-1,6 

glucans found in certain types of yeast such as ~accharomyces may also play a vital 

role in protecting these organisms against invading pathogens as can be inferred 

indirectly from the ability of these glucans to boost the immune system of fish 

(Azuma, 1987). 

Man nan is a major structural component of the cell envelope of many types of 

fungi and has been found to be directly involved in host-pathogen interactions 

between fungi and man (Phaff, 1971; Gorin and Spencer, 1970). In yeast, 

mannoproteins (mannans covalently linked to proteins) have been determined to play 

several roles. For example, they are known to be the antigenic determinants of yeast 

and may also function as primary receptors of some killer toxins (Schmitt and Radler, 

1988). Mannans from yeasts that are linked with phosphate (phosphomannans) have 

been shown to have immunochemical properties. Injection of the intact cells into 

rabbits resulted in the formation of antibodies directed against the components of the 

cell wall (Raschke and Ballou, 1971; Suzuki et a/., 1968). Similarly, both the 

laboratory and industrial samples of mannans have been shown to have antiviral 

properties that include the inhibition of the infectiousness of the tobacco mosaic virus 

(Erlinov et a/., 1980). Also, surface exo-cellular polysaccharides of industrially 

193 



useful yeast have been studied in great detail to determine their role in various 

specitic applications (Sandford, 1980). The glucomannan isolated from this new 

isolate may play a similar role. However it is not clear if they can also provide 

protection for fish against diseases as has been reported in the case of ~-1,6 glucans 

of Saccharomyces. This function can be made the subject of future investigation. 
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Table 7.0. 13C~~£R chemical shifts of cell wall polysaccharides from Rhodotoru/a 

ruhra TP I. S. c.:erevisiae and laminarin in d6-DMS001
• 

C~atom R. ruhra TP 1 S. c:erevisiae S. cerevisiaeh Laminarin Laminarin~ 

C~l 100.36 \03.0\ 100.34 \03.70 

C-2 70.09 72.83 70.09 74.50 

C~3 83.46 86.22 83.41 85.50 

CA 65.60 68.41 65.64 69.30 

C-5 73.57 76.33 73.54 76.80 

C-6 58.10 60.87 59.\0 61.90 

:'Chemical shifts in ppm. 6Chemical shifts of S. cerevisiae insoluble glucan reported 
by Williams et a/. ( 1994 ). ~Chemical shifts of laminarin expressed in ppm downfield 
from external tetramethylsaline as reported by Saito eta/. ( 1977). 
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Table 7.1. Hydrolytic products and gas chromatography retention times of the 

methylated derivatives of the cell wall polysaccharides of Rhodotorula ruhra TP l. 

Cleavage product Structural teature indicated Retention time (minutes) 

2,3,4,6-tetra-0-methyl glucitol Glcp-( 1--+) 4.38 

2,4,6-tri-0-methyl mannitol Manp-(1--+3) 7.59 

2,3,4-tri-0-methyl mannitol Manp-( 1--+6) 7.96 

2,3,6-tri-0-methyl mannitol Manp-( l--+4) 7.60 

3,4,6-tri-0-methyl mannitol Manp-( l--+2) 7.19 
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Table 7.2. Monosaccharides composition and gas chromatography retention times of 

cell wall polysaccharides of Rhodotorula nthra TP l. 

Monosaccharide % Composition Retention time (minutes) 

Rhamnose ... " -'·- 9.13 

Fucose 8.6 9.80 

Mannose 50.53 21.90 

Glucose 25.53 22.70 

Galactose 12.73 22.90 
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Fig. 7.1. uC-NMR spectra of the cell wall polysaccharides of Rhodotorula n1hra TPl 

(bottom) and laminarin (top). Laminarin served as the P-1,3-triple-helical 

polyglucose control. 
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Fig. 7.2 uC-NMR spectra of the cell wall polysaccharides of Saccharomyces 

cerevisiae (bottom) and laminarin (top). Laminarin served as the ~-1,3-triple-helical 

polyglucose control. 
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Fig. 7.3. 1 H-~IR spectra of the cell wall polysaccharides of Rhodotoru/a mhra TP I 

(bottom) and laminarin (top). Laminarin served as the P-1 ,3-triple-helical 

polyglucose control. 
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Fig. 7.4 1 H-NMR spectra of the cell wall polysaccharides of Saccharomyces 

cerevi.o;iae (bottom) and laminarin (top). Laminarin served as the ~-1,3-triple-helical 

polyglucose control. 
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Fig. 7.5. 1H-NMR spectra of mannans isolated from the cell wall of Rhodotorula 

ruhra. The top spectrum is the crude mannan and the bottom spectrum is the purified 

copper complex. 
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Fig. 7.6 Mass spectra of methylated aditol acetates prepared from cell wall 

polysaccharides of Rhodotorula ruhra TPI. Top): 1,5,6-tri-0-acetyl-2,3,4-tri-0-

methyl hexitol; bottom): I ,5-di-0-acetyl-2,3,4,6-tetra-0-methyl hexitol. 
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Fig. 7.7. Mass spectra of methylated aditol acetates prepared from cell wall 

polysaccharides of Rhodotorukt ruhra TP L Top): I ,4,5-tri-0-acetyl-2,3,6-tri-0-

methyl hexitol and/or 1.3.5-tri-0-acetyl-2.4.6-tri-0-methyl hexitol; bottom): 1,3,5-tri-

0-acetyl-3 .4, 6-tri-0-meth y I hex it ol. 
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Fig. 7.8. Mass spectra of monosaccharides isolated from the cell wall of Rhodoto111la 

ruhrct TP I. Top): glucose, bottom): mannose. 
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Fig. 7.9. Mass spectra of various monosaccharides isolated from the cell wall of 

Rhodotoru/a ruhra TP I. Top): rhamnose; bottom): fucose. 
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Fig. 7.1 0. Mass spectra of galactose isolated from the cell wall of Rhodolorula mbra 

TPI. 
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CHAPTER 8 

BIOSYNTHESIS OF CAROTENOIDS FROM MEVALONIC ACID 

BY A PARTIALLY PURIFIED ENZYME SYSTEM FROM 

Rl10dotorula r11bra TP 1 

8.1 Introduction 

In carotenoid producing organisms. the synthesis of carotenoids involves the 

activity of different enzyme systems that catalyze a sequence of reactions to yield the 

desired end product. The entire biosynthetic pathway has been demonstrated in vitro 

using cell-free extracts from various organisms such as plants (Qureshi et a/., 1974; 

Beeler and Porter, 1962; Camara et a/., 1982~ Dogbo and Camara, 1987)~ fungi 

(Bramley and Davies, 1975; Spurgeon eta/. 1979; Gregonis and Rilling, 1973). In 

yeast, Eberhardt and Rilling ( 1975) purified the enzyme prenyl transferase from 

Saccharomyces cerevisiae that converted dimethylally1, geranyl and farnesyl 

pyrophosphates into farnesyl and geranylgeranyl pyrophosphates. However, there are 

no reports describing the in vitro conversion of labelled carotenoid precursors into 

carotenoids in Rhodotoru/a nthra. 

There are a number of enzymes involved in the synthesis of carotenoids and 

among them is phytoene desaturase {PDS) which is an enzyme or a group of enzymes 

that catalyzes the conversion of phytoene to more saturated carotenoids. The actual 

number of enzymes involved in this conversion is unknown and probably varies 
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among different organisms (Fraser and Bramley, 1993). ln higher plants, it has been 

reported that two enzymes are involved (Kirk and Tilney-Basset, 1978) whereas 

genetic studies in Phycomyces h/askesleeanus suggest only one is involved (Aragon 

eta/. 1976). 

In the present investigation, we report for the first time the isolation of an enzyme 

system from R. ruhra TPl which catalyzes the conversion of mevalonic acid (MVA) 

into torularhodin, torulene, P-carotene and phytoene. This demonstration is 

signiticant in that funher purification and characterization of this enzyme system 

would aid in the isolating and cloning of the carotenogenic genes, which could have a 

huge economic impact on the carotenoid industry. 

8.2 Materials and methods 

Chemicals: ( RS )-[2-14CJ mevalonic acid (N,N'dibenzylethylenediamine { DBED}) 

salt was obtained from Amersham Pharmacia Biotech; Trizma base, nicotinamide 

adenine dinucleotide (NAD), FAD. NADP, polyethylene glycol (PEG) 8000, bovine 

serum albumin (BSA), Falin and Ciocalteu's Phenol reagent, Tween 40, 60, 80, 

toluene and ethylenediamine tetraacetic acid (EDT A) were purchased from Sigma 

Chemical Company, St. Louis, Missouri~ dithriothreitol (DDT), sodium dodecyl 

sulphate (SDS) and DEAE sepharose were tram Pharmacia Biotech AB, Uppsala, 

Sweden; hydrochloric acid, magnesium chloride, manganese chloride, methanol, 

petroleum ether and acetone were purchased from Fisher Scientific Ltd., Fair Lawn, 

New Jersey. Thin layer plates were from EM Science, Darmstadt, Germany. 
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8.l.l Preparation of crude enzyme extract 

Cells were grown in YM broth for 5 days at 22°C. The cells were h~rvested 

by centrifugation at 10,000 x g for 20 minutes, the pelleted cells were washed several 

times with pyrogen free water and then once with ice-cold Tris-HCI buffer (pH 8.2) 

containing I 0 mM dithiothreitol (DDT) (l :6 w/v), 10 mM EDT A ( \:6 w/v). The 

washed cell pellets were then resuspended in the above-mentioned buffer into a slurry 

(25 mL buffer per 12 g wet cells) and passed through a French Press (SLM 

Instruments, Chicago, Illinois) at a pressure of 20,000 psi to disrupt the cells. The 

broken cells were then centrifuged at 40,000 x g in a Sorvall RC-58 Plus centrifuge 

(Oupont-Sorvall Instruments, Newark, DE.) for 3 hours at 4°C and the supernatant 

collected and stored at -85°( before being used as the cell extract. The protein 

concentrations of all cell extracts were determined by the method of Lowry et a/. 

( 1951) using bovine serum albumin (BSA) as standard. 

8.2.2 Assay of carotenogenic enzymes 

Incubations were done with water-soluble (2R)-[2-14C] mevalonic acid (MVA, 

DBED salt). The incubation mixture consisted of500 of!J.L of0.4 M Tris-HCl buffer 

(pH 8.2), 50 !ll of5 mM DDT, 100 !J.L of25 mM NAD, 100 !lL of20 mM ATP, 100 

!lL 20 mM NADP, 50 !lL of5 mM EDTA, 10 !J.L each of0.6 M MnCh and 0.4 M 

MgCI. (2R)-[2-14C} MV A (680, 000 dpm) and cell extract containing 8 mg protein 

(only 4 mg of PEG precipitated protein was used). The mixture was incubated at 

30°C in light for 3 hours after which the reaction was stopped with the addition of 3 
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mL methanol and authentic ~-carotene, phytoene and torularhodin were added to 

minimize the destruction of the pigments by light. 

8.2.3 Extraction, separation and assay of carotenoids for radioactivity 

The pigments were extracted three times with 6 mL aliquots of acetone and 2 

mL of methanol in dim light and at 4aC. The acetone extracts were pooled together 

and transferred into hexane and the two phases were resolved with deionized water. 

The hexane phase was then evaporated to dryness with a stream of nitrogen and the 

residue was redissolved in 2 mL of petroleum ether. About 500 11L of this was 

applied to thin-layer silica gel chromatographic plates that were developed with a 

solvent system containing 10% toluene in petroleum ether for I hour. Bands were 

located by colour and by exposure to long UV light (366 nm) and the separated 

pigments were identified by co-chromatography with authentic pigments. The 

isolated pigmented bands were scrapped off and radio assayed by liquid scintillation 

counting in a Beckman Model LS-3 I SOT Liquid Scintillation Spectrophotometer with 

a Beckman liquid scintillation fluid (Beckman Scientific Instruments, Irvine, 

California, U.S.A.). Quenching corrections were made by automatic colour quench 

compensation (Bramley eta/., 1974). 

8.2.4 Solubilization of enzymes 

Tweens 40, 60 and 80 were tested to determine their ability to solubilize the 

membrane-bound proteins. The broken cells were treated with 0.5. 1.0 and 3.0% 
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(w/v) of Tweens 40, 60 and SO at a detergent:protein ratio of 2: I. The mixture was 

incubated with gentle stirring at 4°C for l hour after which it was centrifuged at 

40,000 x g for 3 hours and at 4°C. The supernatant was collected and the protein 

content determined and assayed tor carotenogenic enzyme activity as previously 

described (section 8.2.3). 

8.2.5 Polyethylene glytol (PEG) precipitation of proteins 

The carotenogenic enzymes were precipitated with 20% PEG 8000. The 

requisite PEG concentration was determined by obtaining an analytical precipitation 

curve using Tween 60 solubilized cell extract with increasing amounts of 50% (w/v) 

PEG solution (Ingram, 1990). The I 0% PEG precipitate was redissolved in 50 mM 

Tris·HCI buffer (pH 7.6) containing 5 mM DDT, 0.5% Tween 60 and 20% ethylene 

glycol which was then stored at -85"C. The PEG precipitated enzyme was later 

assayed for enzyme activity using the protocol previously described (sec 8.2.3) except 

that the concentration of enzyme used was 4 rnglmL. 

8.3 Results. 

8.3.1 Conversion of 12· 1~qMV A into carotenoids by crude enzyme extracts. 

The biosynthesis of phytoene, ~-carotene, torulene and torularhodin from 

mevalonic acid by cell free extracts from Rhodotonlla nthraTPl has been 
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demonstrated. Enzyme activity of the crude cell extract was estimated by the 

incorporation of [2-14C]MV A radioactivity into phytoene, ~-carotene, torulene and 

torularhodin. The amounts of the individual carotenoids synthesized were determined 

by the extraction of the incubation mixture with hexane and the chromatography of 

the hexane extracts on silica gel thin layer plates. The individual peaks were 

identitied by the coincidence of radioactivity with light absorbance due to authentic 

carotenoids added to the hexane extracts. The results of the total radioactivity 

incorporated by the crude cell extract into the various carotenogenic products are 

presented in Table 8.0. The highest radioactivity was recorded in phytoene (7600 

dpm) followed by torularhodin (6975 dpm), ~- carotene (4010 dpm) and torulene 

(2133 dpm). 

8.3.2 Solubilization of enzymes. 

Varying concentrations of three detergents, Tweens 40, 60 and 80 were used to 

study their etfects on the incorporation of [2YC]MV A into various carotenoids and 

their ability to solubilize membrane-bound proteins. The results are presented as 

percentage of the control activity (7600, 4010, 6975, 2133 dpm for phytoene, ~­

carotene, torularhodin and torulene, respectively) in Figs. 8.0 to 8.2. In general, cell 

extracts treated with all three detergents retained significant enzymatic activities. 

There was stimulation in phytoene and torularhodin synthesis from [2-14C]MV A in 

all cases, however, Tween 60 at a concentration of l% (w/v) caused the greatest 

stimulation in phytoene and torularhodin formation compared to the control activity 
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and Tweens, 40 and 60, which caused a decrease in torulene production. Tweens 40 

and 60 at a concentration of l% (w/v) maintained the original concentration level of 

~-carotene production whereas the other concentrations and Tween 80 were less 

effective in this respect. Overall, the maximum enzymatic activity was obtained with 

cells treated with \% Tween 60 and this was subsequently used in the other analysis. 

Protein concentrations were estimated on the S"o fractions before and after 

treatment with the various detergents at varying concentrations. The protein 

concentrations of the control fractions were estimated to be 16 mg/mL. From Figs. 

8.0 to 8.2. it can be seen that all the detergents at varying concentrations solubilized 

some of the membrane proteins. The highest increase was 19.66 mglmL produced by 

1% Tween 80, and the lowest 16.19 rnglmL was furnished by 0.5% Tween 40 (Figs. 

8.2 and 8.0, respectively). 

8.3.3 Polyethylene glycol (PEG) precipitation of enzymes. 

A 6.0 tbld increase in the specific activity of the carotenoid synthesizing 

system was obtained by polyethylene glycol {PEG) precipitation (Table 8.1 ). 

Attempts were made to further purify the enzyme, ph.ytoene synthetase complex by 

applying the PEG precipitated protein to a DEAE sepharose column (2.5 x 30 em) 

previously equilibrated with 50 mM Tris-HCI buffer (pH 7.6) containing 5 mM DDT. 

Proteins were washed with the same buffer and then eluted with a linear gradient of 

0-1 M KCI in a Tris-HCI buffer. Fractions of 4 mL were collected. The elution 

profile of the phytoene synthetase complex is depicted in Fig. 8.3. However, the 
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activity of the enzyme was not determined at this point because specific substrate 

such as HC-isopentenyl pyrophosphate was not available. 

8.4 Discussion. 

Cell preparations capable of converting MVA or isopentinyl pyrophosphate 

(IPP) into colored carotenoids have been studied in numerous organisms. The most 

extensive studies up to date have been in tomato preparations (Camara el cr/. I CJ82; 

Dogbo eta/. 1988; Camara, 1993). Cell free extracts have also been prepared in the 

fungi Ph_vcomyces (Riley and Bramley, 1976; Mitzka-Schnabel and Rau, 1981, Fraser 

and Bramley, 1993 ); pea fruits (Graebe, 1968); bacteria (Bartley et a/. 1990, 

Armstrong et a/. 1989); Neurmpora (Harding el u/. 1978; Mitzka-Schnabel and Rau, 

1976 ). These studies have shown that the synthesis and desaturation of phytoene to 

more unsaturated carotenoids require the co-ordinated activities of membrane-bound 

enzymes. The results from these studies also suggest that the enzyme system for the 

formation of phytoene may exist in different forms in different organisms. For 

example, in Fluvohacterium (Brown et a/. 1975) and HalohacJerium (Kushwaha et a/. 

1976), the phytoene-synthesizing enzyme complex usually occurs in the 10,000 x g 

fraction, indicating that the enzyme in these organisms are soluble. Mitzka·Schnabel 

and Rau ( 1981 ), on the other hand, reported that in Neuro~pora, the enzyme that 

catalyzes the formation of geranylgeranyl pyrophosphate is soluble whereas the 

phytoene- synthesizing enzyme is a particulate one. ln Capsic11m fruits, Camara et a/. 
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( 1982) reported that the phytoene synthetase complex is a soluble enzyme whereas in 

Phyc:omyr.:es, the enzyme has been reported to be peripheral (Sandmann and Bramley, 

\ 985). 

We report here the isolation and partial puritication of the phytoene·synthesizing 

enzyme complex trom the red yeast RhCJdolorula rubra TP l that converts [2-"'C] 

MVA into phytoene. P-carotene, torularhodin and torulene. Phytofluene was not 

detected in this study. The enzyme extract used in this study was the 40,000 x g 

fraction. This suggests that both the phytoene synthetase, which converts MV A into 

phytoene and the phytoene desaturase that converts phytoene to the more unsaturated 

torms of carotenoids occur in this traction. However, whether the two enzymes occur 

separately or as a complex is not clear at this point. The conversion demonstrated in 

this study illustrates a carotenoid biosynthetic pathway identical to the one depicted in 

Fig. 6. 9 in Chapter 6 of this thesis, and the work previously done by Simpson et a/. 

(1964 ). The conversion of phytoene to torularhodin involves four dehydrogenation 

reactions and subsequent introduction of double bonds. The first dehydrogenation 

reaction converts phytoene to phytotluene that undergoes further dehydrogenation to 

yield C:·carotene, neurosporene, ~-zeacarotene, y-carotene which may be converted to 

~-carotene or oxygenated to form torulene and eventually torularhodin (Simpson et 

a/. 1964). 

The number of enzymes involved in the four step dehydrogenation reactions is 

not known. lt is also not known whether the dehydrogenases exists as a complex, as 
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individual enzymes or as a single polyfunctional protein. For some time. the general 

opinion was that more than one enzyme was involved with the 4 dehydrogenation 

reactions. This idea was deduced from studies on the cofactor requirements of these 

enzymes. For example in studies on the cofactor requirements for carotenoid 

biosynthesis in Halohacterium cutiruhrum, Kushwaha et at. (1976) found that 

conversion of phytoene to phytofluene was dependent on NADPH, whereas the 

reactions from phytofluene to lycopene appeared to require FAD and Mn ••. These 

results were interpreted to mean that two enzymes with two different cofactor 

requirements might have been involved. Similarly, Qureshi el al. ( 1974) reported that 

the conversion of cis-(1C] phytofluene to other carotenoids required FAD", NADP" 

and M n- · tor a reasonable incorporation of radioactivity into more unsaturated 

carotenoids. These results, like those reported by Kushwaha and co-workers ( 1976); 

suggest that there are two separate types of dehydrogenation. However, recent 

genetic complementation studies with Phycomyces mutants defective in either 

enzymes responsible for the desaturation of phytoene or lycopene cyclase gene have 

shown that, at least in this fungus, only one enzyme is involved in the 

dehydrogenation reactions (Creda-Olmedo, 1987). Analyses of genes from Envinia 

uredovora (Misawa et al. 1990) and Ent•inia herhicola (Schnurr et a/. 1991) have 

also demonstrated that the crt/ gene encodes tor one desaturase, which is responsible 

tor all dehydrogenation steps from phytoene to lycopene. Whether or not the 

presence of only one desaturase gene in an organism that form lycopene can be 

generalized to the yeast used in this study cannot be determined. 
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In order to sdubilize the carotenogenic enzymes, the cell extracts were treated 

with Tweens 40, 60 and 80 at various concentrations for about an hour at 4°C. The 

Tweens were used because they have been shown to exert minimal inhibition of in 

vitro carotenogenesis in other studies (Bramley and Taylor, 1985). It was found out 

that Tweens 40 and 60 were the most suitable detergents for solubilizing the 

carotenogenic enzymes trom R. ruhra TP I. l% Tween 60 was found to be the most 

suitable detergent overall resulting in a large stimulation in phytoene, torularhodin 

and torulene synthesis. 

Detergents are routinely used in enzyme purification to solubilize membrane 

bound proteins. These detergents act by dislodging the tightly bound membrane 

protein through the dissolution ofthe membrane. The dissolved membranes are then 

replaced with aliphatic or aromatic chains which form the lipophilic part of the 

detergent (Rosenberg, 1996). In Aphanocap.m. Tween 40 is the best detergent for 

solubilizing carotenogenic enzymes (Bramley and Sandmann, 1987, Beyer et a/. 

1985) but sodium chelate is the detergent of choice with Neurospora cra.\·sa (Rau and 

Mitzka-Schnabel, 1985). In the C9 strain of Phycomyces, Bramley and Taylor { 1985) 

reported that maximal phytoene desaturase activity was obtained with 1% (w/v) of 

Tween 60, whereas in daffodil chromoplasts, CHAPS ( {3-[cholamidopropyl] 

dimethylammonio} -1-propane sulfonate) is etTective in solubilizing the membrane­

bound carotenogenic enzymes (Beyer et a/. 1985). Sodium chelate and CHAPS 

require the addition of microsomal lipids to the incubation mixture in order to obtain 
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the maximum enzymatic activity. This is presumably because these detergents 

remove fatty acids from the microenvironment of the enzyme. Addition of the 

microsomal lipids therefore compensate for this removal (Fraser and Bramley, 1993). 

Unlike CHAPS and sodium cholate, the Tweens do not require the addition of 

microsomal lipids in order to effect maximum enzyme activity. This is because the 

fatty acid residues on the Tweens may compensate for the removal, during the 

solubilization process, of fatty acids from the microenvironment of the enzyme 

(Fraser and Bramley, 1993). The Tweens are also non-ionic detergents that in low 

concentrations such as used in this study, cannot dissolve the lamella structure 

(Helenius and Simons, 1975). Since low concentrations of detergents were used in 

this study. it is possible that the phytoene synthetase and desaturase enzymes 

encountered in this study are peripheral rather than integral membrane protein. 

Similar description has been provided for the phytoene desaturase and lycopene 

cyclase of Phycomyces (Fraser and Bramley, 1993; Bramley and Taylor, 1985) and 

Neurospora crassa (Mitzka-Schnabel and Rau, 1981 ). In Neurospora crassa, it has 

been suggested that the phytoene synthetase enzyme is loosely associated with the 

membrane by electrostatic forces (Mitzka-Schnabcl and Rau, 1981, Spurgeon et a/. 

1979). It is theretbre suggested that a more precise fractionation of the cell extracts 

be carried out in order to determine whether the enzymes are peripheral or membrane 

proteins. 

A 6.0 fold increase in the specific activity of the phytoene desaturase system 

219 



was obtained with the PEG precipitation. This increase in the specific activity can be 

attributed to two factors: an increase in the total enzyme activity and the removal of 

an inhibitor of the phytoene synthesizing system or the loss of enzymes catalyzing 

competing reactions (Maudinas et a/. 1977). The use of PEG offers several 

advamages over ammonium sulfate in fractionation of enzymes. The method is 

simple and products obtained are not denatured. Unlike ammonium sulfate, it is not 

necessary to remove PEG prior to enzyme assay since it does not inhibit enzyme 

activity at concentrations used (Fraser and Bramley, 1993). 

This study has shown the presence of the enzymes phytoene synthetase 

complex in the S-tu fraction of the cell extract of R. ruhra TPI. This enzyme complex 

have also been shown to occur in the Tween 60 solubilized fraction and the PEG 

precipitate of the cell extract. These results indicate that all the fractions listed here 

contain all the enzymes of the isoprenoid pathway. It is therefore suggested that 

further p•1ritication be carried out to obtain a pure form of the enzyme for future 

studies. For example the puritied enzyme can be used to raise antibodies which can 

be used to clone carotenogenic genes and the corresponding enzyme overexpressed 

for the production of antisera. The antisera can then be used for the isolation of the 

corresponding enzyme from other yeast. Also further characterization such as the 

determination of the native molecular weight, estimation if the cofactor requirements 

should be carried out 
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Table 8.0 Products of carotenogenic enzymes in crude, Tween 60-solubilized cell extract and polyethylene glycol 

(PEG) precipitate of cell extracts of R. ruhm TP I. 

%Total 

Preparation Total incorporation Phytoene Torularhodin 13-carotene Torulene 

(dpm/mg protein)" 

Crude extract 2598 36.70 33.70 19.40 10.40 

S40 + Tween 60 3490 43.55 25.23 18.72 12.50 

PEG precipitate 15,632 46.32 22.52 17.95 13.21 

"dpm: Disintegrations per minute. 
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Table 8.1 Partial puritication of carotenogenic enzyme complex from 1<. ruhm TP I. 

Purification step Total protein (mg) Total activity Specitic activity" Purification (-fold) 

Crude extract 4000 2589 863 

S.w+ I% Tween 60 1700 3490 1163 1.34 

10% PEG ppt. 450 15,632 5211 6.0 

"Expressed as disintegrations per minute (dpm) (2R)-{2 101C] MVA incorporated into 
per mg protein per hour. Each assay contained 680,000 dpm (2R)-{2 14C] MVA. 

carotenogenic products 
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CHAPTER 9 

Rlrodotor111a r11bra TPl AS A SOURCE OF PIGMENT AND 

NUTRIENTS FOR RAINBOW TROUT (Onchorynchlls mykiss). 

9.1 Introduction 

Carotenoids are among the most widely distributed class of pigments in nature 

and have essential biological functions in animals. In salmon, the pink, orange and 

deep red colors of the flesh are due to the presence of carotenoids. This characteristic 

distinguishes them from other fish species and makes a major contribution to their 

elite image. The degree of flesh pigmentation is one of the most important criteria 

used by consumers in determining the acceptability of the product (Gentles and 

Haard, 1991; Johnson and An, 1991 ). 

Salmonids, like most other animals, cannot synthesize carotenoids and they 

obtain their carotenoids primarily from micro-crustaceans and other invertebrates 

they used as food (Binkowski eta/., 1993). In the aquaculture industry, the pigments 

are supplied in their diet to impart the color to their flesh and inspire consumer 

acceptance and market value. Sources of carotenoids used in aquaculture include 

crustacean and crustacean by-products, plant and plant products and synthetic 

sources. 

The commercial use of synthetic carotenoids is limited by their high cost, 

changes in regulatory climate and consumer concerns of the use of synthetics as food 
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additives. For this reason, lately there has been a trend towards the use of natural or 

biological sources of carotenoids. 

This study reports a feeding trial in which Rhodotontla ruhra TP I was used to 

feed rainbow trout to determine the pigmentation of fish flesh and compared with 

control diets containing either no pigment or commercial pigment ( canthaxanthin). 

The proximate analysis, pigment concentration and composition, growth and specific 

growth rate of fish as well as color measurements on the flesh of fish fed various diets 

are also reported. 
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9.2 Materials and Methods. 

Materials: Brewer's wort was obtained from Labatt's Brewery, Montreal, Quebec; 

Molasses was kindly donated by Lelemand Ltd., Montreal, Quebec; yeast extract, 

bactopepetone and malt extract were purchased from DlFCO Laboratories, Detroit, 

MI. Petroleum ether, chloroform, acetone, sulfuric acid, hydrochloric acid and 

methanol were obtained from Fisher Scientific Ltd., Fair Lawn, NJ; MS-222 and ~­

carotene standard were purchased tram Sigma Chemical Co., St. Louis, MO and 

canthaxanthin and astaxanthin standards were kind gifts tram Hoffman LaRoche, 

Basel. Switzerland. 

9.2.1 Large scale production of yeast cells. 

The yeast was produced at the Agriculture Canada Food Research Center at 

St. Hyacinthe, Quebec using the growth conditions optimized earlier by Sangha 

( 1994). 

9.2.2. Feeding of rainbow trout (Onchorynchus myki.~s). 

The feeding trial was carried out at the Aquaculture Unit of the Fisheries and 

Marine institute of Memorial University of Newfoundland, St. John's, NF. Four 

rectangular tanks, each with 320 L volume were set up as a flow circulatory system 

with a flow rate of approximately 15 L/min. The system was supplied with tap water 

with a regulated temperature of l0.0°C±l.O. Lighting was provided by fluorescent 

bulbs on a lOh light: l4h dark cycle. Rainbow trout (Onchorynchus mykiss) obtained 
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from the S.C.B fisheries Ltd., St. Albans, Newfoundland, were transferred to the 

tanks, each tank containing 20 rainbow trout weighing approximately 175 g per fish. 

Ten fish were taken as the initial sample (baseline) before the fish were distributed 

into the various experimental diet groups. Each group was maintained in duplicate. 

During acclimatization to experimental conditions (2 weeks), the fish were fed with 

I% body weight using 3.0 mm non-pigmented pellets (Corey feed Mills Ltd., 

fredericton. New Brunswick). The pigmented feed was steam pelleted at the 

fisheries and Marine Institute, Memorial University of Newfoundland. The 

composition of the feed is given in Table 9.0. Diets for the five groups were 

formulated as follows: 

Diet I: Diet containing 30% unbroken freeze dried R. ruhra TP l. 

Diet 2: Diet containing 5% unbroken treeze dried R. mhra TP 1. 

Diet 3: Diet containing l 00 ppm pigment extract from R. ruhra TP 1 

Diet 4: Diet containing 100 ppm commercial canthaxanthin (positive control). 

Diet 5: Diet containing no pigment (negative control) 

Fish were fed by hand with 2% body weight twice daily for 16 weeks. Weight and 

length of tish from each tank were measured monthly. Four fish were randomly 

sampled at four, eight, twelve and sixteen weeks. Prior to sampling, fish were starved 

for 48 hours and then euthanized with tricaine methylsulfonate (MS-222) at a 

concentration of 150 mg!L, the jagular vein was then cut and live-bled in ice water. 

The fish were immediately transferred to the laboratory where they were immediately 

gutted, blotted dry, filleted and colorimeter reading taken. The remainder of the fish 
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was stored at -ssac until used for further analysis. All samples were tested for the 

level, concentration and composition of pigments in the flesh and also subjected to 

proximate analyses. 

9.2.3 Analyses of pigment in fish muscle. 

9.2.3.1 Color measurements. 

The Hunter color parameters were measured with a Colormet colorimeter 

(lnstrumar Engineering Ltd., St. John's, NF.). Hunter's L *, a* and b* scale was 

employed (Hunter, 1975), the L * value indicating the lightness of flesh, the a* value 

indicating redness and the b* value indicating yellowness. The instrument was 

standardized with B-143 white calibration tile having Hunter L * value of 95±0.2, a* 

value of -1.0±0.2 and b* value 0.0. Three measurements were made on each sample 

by rotating the sample at 90°. There were six determinations per group. 

9.2.3.2 Total carotenoid content. 

Fish sample (30 g including flesh, skin and bones) were homogenized in a 

Warren blender with 100 mL acetone and 20 g sodium sulfate. The homogenized 

sample was left in the dark at 4°C for l hr after which the sample was centrifuged and 

the acetone extract decanted and saved. The residue was re-extracted two more times 

with 50 mL aliquots of acetone. The acetone extracts were then pooled together and 

then mixed with 50 mL petroleum ether and deionized water in a separatory funneL 

The petroleum ether phase was removed and the aqueous phase re-extracted 2 more 
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times with petroleum ether. The petroleum ether extracts were pooled together and 

partitioned against water (JX) and then dried over anhydrous sodium sulfate and kept 

at -20°C overnight to precipitate all sterols present in the extract which, were then 

removed by centrifugation. The petroleum ether extract was evaporated to dryness 

with a stream of nitrogen and the residue was dissolved in an appropriate volume of 

petroleum ether to give an absorbance range of 0.1-0.Snm. The absorbance was 

recorded at 474nm in a Shimadzu Ultraviolet Visible Recording Spectrophotometer 

(Shimadzu Corporation, Kyoto, Japan). The total content of carotenoids was 

estimated using an extinction coefficient of 2\00 for astaxanthin in petroleum ether 

according to the equation provided by An et a/. ( 1989). The equation has already 

been described in section 6.2.\.2. 

9.2.3.3 H PLC analysis of pigment. 

The composition of the pigment in the flesh was determined by extracting the 

pigment from the tish muscle as indicated in section 9.2.3.2 and then analyzed by 

HPLC. Samples were dissolved in the mobile phase, 100% methanol and tittered 

through 0.25 !lm membrane. A 10 IlL sample solution was injected onto HPLC 

column for separation and identification of pigments. The HPLC system consisted of 

a HP l 050 HPLC Series (Hewlett Packard, Palo Alto, CA) coupled with a 

Phenomenex Partisil ODS column (lOO mm x 2 mm i.d. with 5 !lffi packing size). 

The sample was eluted at a rate of 0. 75 mUm in with a IS-minute linear gradient of 

80 to 100% methanol in water. Separation was carried out at ambient temperature 
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and a HP 1050 Series variable detector was used to monitor the chromatographic 

effiuent. The detection of carotenoids was made at 474 nm. Standards of ~-carotene, 

canthaxanthin and astaxanthin were run in parallel and the carotenoids were identified 

by comparison of their retention time to those of the standards. 

9.2.4 Biothemical analyses. 

9.2.4.1 Total lipid and moisture contents. 

Total lipid content of the fish was determined using a modified method of 

Bligh and Dyer ( 1959). The moisture content of the fish were determined by the 

A.O.A.C. method (Anonymous, 1990). About 3 g of the sample was dried to a 

constant weight at I 00°( under vacuum and the moisture content determined by 

weight difference. 

9.2.4.2 Total nitrogen and ash contents. 

The total nitrogen content of the fish were determined by a modified A.O.A.C 

micro-Kjeldahl Method (Anonymous, 1990). The crude protein content ofthe sample 

was calculated from the percent nitrogen content using the conversion factor (N x 

6.25). The A.O.A.C method (Anonymous, 1990) was used to determine the ash 

content of the tis h. 
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9.2.4.3 Fatty acid analysis. 

The tatty acid composition was determined by purifying the extracted lipid 

described previously. The extracts were stored at -85°C in chloroform to which 0.5% 

hydroquinone has been added. Aliquots of l mL of the lipid extract were placed in 6 

mL conical teflon-lined, screw-capped vials and evaporated to dryness under a stream 

of nitrogen. The residue was transmethylated by the addition of 2 mL 6% sulfuric 

acid in 99.9 mol% methanol to which IS mg hydroquinone has been added as an 

antioxidant. The mixture was incubated at 60°C overnight. Deionized water ( l mL) 

was then added to the mixture in each vial, thoroughly mixed, and then extracted 

three times with 1.5 mL of pesticide grade hexane. The hexane layers were removed, 

combined in a clean tube and washed twice with deionized water. The hexane extracts 

were evaporated to dryness under a stream of nitrogen. The dried samples were 

dissolved in OptimarM grade chloroform and analyzed by GC-MS. The GC-MS 

analysis was performed using a 0.25 mm x 25 m CP-Sil 5CB column (Chrompack, 

The Netherlands) housed in a HP 5890A gas chromatograph coupled to a HP 5970 

mass selective detector (Hewlett Packard, Palo Alto, CA). Spectra were processed 

using Hewlett Packard ChemStation software (HPG l 034C) package. One ~L of 

sample was manually injected into the column and the following temperature 

program was used. An initial oven temperature of l50°C was maintained for 5 

minutes then elevated at a rate of 5°C/min to 250°C and held there for lO minutes, 

resulting in a total run time of35 minutes. 
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9.2.5 Specific growth rate of fish. 

Specific growth rate (SGR) (%) was calculated (Job ling and Wandsvik, 1983) as 

follows: 

9.2.6 Statistical analysis. 

SGR = l 00 x In (final wt) -ln(initiaJ wt) 
daysof feeding 

where In = natural logarithm. 

The data were subjected to analysis of variance (ANOVA) and Turkey's studentized 

Range Test using Statistical Package for Social Sciences version 8.0 (SPSS Inc., 

1998). 

9.3 Results. 

9.3. t Growth of rainbow trout. 

The growth data of rainbow trout during the feeding period are depicted in 

Tables 9.1 and 9.2. Fish in all experimental groups grew very well with a mortality 

of only two fish during the feeding period. At the end of the trial, rainbow trout with 

an initial mean weight of 180- l 83 g has attained a final mean weight of 391-495 g 

(Table 9 .I). The lowest weight was recorded for fish fed diet containing 30% test 

yeast (diet l ) and the highest was recorded for fish fed the control diet (diet 5). The 

highest growth rate of2.79 was recorded for fish in the control group (diet 5) and the 
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lowest 1.94 was recorded for fish ted with diet I (Table 9.2). There was no 

difference in the length of fish recorded for fish in all groups. The specific growth 

rate of rainbow trout was 0.71%/day (diet I) to 0.89'% (diet 5) (Table 9.2). The 

maximum specitic growth rate of0.93 was recorded for fish fed with diet 5 during the 

8111 week of feeding but at the end of the feeding period, this value has dropped down 

to 0.89. Fish fed with diet 1 had the least specific growth rate. After 16 weeks of 

feeding, the maximum percentage weight gain of 171 was observed for the control 

group and 120 for fish fed diet I. The other groups have values higher than that of 

tish ted with diet I but lower than those of fish fed with diet 5 (Table 9.2). 

9.3.2 Pigmentation of fish muscle. 

9.3.2.1 Measurement of different color parameters. 

Tables 9.3-9.6 summarize values obtained tor Hunter a* (indicating redness of 

tlesh), b* (indicating yellowness of tlesh) and L * (indicating lightness of flesh) of 

fish ted various diets over a 16 week period. The a* values of diet I and 4 fed fish 

showed a steady increase with increase in feeding time whereas those of diets 2 and 3 

increased up to 8 weeks and declined slightly thereafter. The Hunter a* value of fish 

fed diet 5, on the other hand decreased steadily with an increase in feeding time. The 

b* values for fish fed with diets I, 2 and 3 showed a significant increases up to week 

8 (P<O.OS} and decrease slightly trom week 12 onwards. There was however, a 

significant decrease (P<0.05) in the b* value for fish fed diet 5 during the whole 

feeding period whereas the b* value of fish fed with diet 4 showed a steady increase 
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from the beginning to the end of the feeding period. The L * value showed an 

increase in value for fish in all groups except diet l which increased up to week 12 

and then decreased thereafter. 

The total color change between weeks 0 and 16 was highest for the fish fed 

diet 4 (canthaxanthin), followed by fish fed with diets I, 2 and 3. Diet 5 fed fish on 

the other hand showed a substantial decrease in pigmentation during the entire period 

of feeding. 

9.3.2.2 Total pigment concentration. 

The total carotenoid content expressed as astaxanthin (IJg/g flesh on dry 

weight basis) of the rainbow trout after 16 weeks on various diets are depicted in 

Tables 9.7-9.10. With the exception offish in the negative control group (diet 5) that 

had a substantial decrease in pigment concentration, the total carotenoid content 

increased for fish fed with all other diets throughout the teeding period. At the end of 

the feeding period, the total carotenoid concentration had increased significantly 

(P<O.OS) from an initial value of 2.02 IJg/g to 4.46-12.09 IJg/g tissue (4.46-12.09 

mg/kg), on a dry weight basis. This exceeds the 1-3 mglkg level reported for rainbow 

trout as sufficient for adequate visual color impression (Torrissen et al., 1989). The 

highest concentration, 12.09 IJg/g tissue (dry weight basis), was recorded for the fish 

fed diet containing canthaxanthin, (diet 4), tbllowed by diet I, (7.28 IJg/g), and then 

diets 2 and 3, (4.35 and 4.46 IJg/g tissue, respectively). Fish fed diets 2 and 3 seemed 

to have had a drop in the total carotenoid content from 5.79 and 5.83 IJg/g, 
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respectively, at the end ofthe tzth week period to 4.35 and 4.46, respectively, at the 

end of the feeding trial 

9.3.2.3 Composition of pigment in fish musde. 

Table 9. II depicts the percentage composition of the various carotenoids 

obtained by HPLC analysis of the pigment extracted from fish within the various 

experimental groups at the end of the feeding trial. The major pigment found in fish 

fed the various diets was canthaxanthin which had a percentage range of 78-80%, 

tollowed by astaxanthin which had a range of 9-13% and then other pigments that 

could not be identitied. 

9.3.3 Chemical composition of fish muscle. 

9.3.3.1 Total lipid, protein, moisture and ash contents of fish muscle. 

The values tor the total lipid content, ash and crude protein of fish in all 

groups are given in Table 9.12-9.15. The moisture content is given in Table 9.16. 

The crude protein of fish in all groups increased significantly (P<0.05) as fish grew 

but the mineral content remained relatively unchanged over the experimental period. 

At the end of 16 weeks of feeding, the crude protein content of fish in all groups has 

increased signiticantly (P<0.05) to about 8-ll% with the highest increase occurring in 

tish in group 2. However, there were no significant (P<O.OS) differences in the values 

recorded for fish from all groups. 
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The lipid composition of fish from ail groups also increased significantly 

(P<O.OS) in a pattern similar to those of the crude protein content. The highest lipid 

content was recorded for fish within groups 2 and S (5.21 and 5.26 %, respectively) 

and the lowest tor tish in group 3 (3.76%). Fish fed with diet l had total lipid content 

of 4.23 at the end of the experiment. 

9.3.3.2 F~•tty acid composition. 

The tatty acid compositions of the fish in all groups are depicted in Tables 

9.17-9.20. It can be inferred from these tables that the level of fatty acid in the flesh 

of fish in all groups remained relatively constant during the first 4 weeks of feeding. 

After 8 weeks, however, the levels of and poly-unsaturated (PUF A) fatty acids 

decreased slightly for fish within groups I, 3, 4 and 5 whereas the level of saturated 

fatty acid (SF A) and mono-unsaturated fatty acid (MUF A) increased slightly. Fish 

within group 2 had the level of SFA and PUFA remained relatively unchanged. At 

the end of week 16 the levels of PUF A and SF A in fish in all groups except group 1 

remained relatively unchanged. Fish fed with diet 1 had a decrease in the levels of 

SF A and MUF A but a 6% increase in the levels of PUF A. 

239 



9.4 Discussion. 

9.4.1 Growth of rainbow trout fed various diets. 

The weight and length development as well as the specific growth rate of 

rainbow trout fed various diets are depicted in Table 9.1 and 9.2, respectively. The 

length development did not reveal much difference, however, the specific growth 

rate, the growth rate and % weight gain revealed distinct differences between groups 

in all these characteristics. In group 1 (fish fed with diet containing 30% R. ruhra 

TP 1 ), these three characteristics were the lowest whereas fish within group five 

(negative control group) have the highest values tor these characteristics, followed by 

tish within groups 4, 3 and then 2. These results were surprising because red yeast is 

reponed to contain more energy than Brewer's yeast due to differences in lipid 

content. 17 and 4.0% (w/w) total lipid tor red and Brewer's yeast, respectively 

(Gentles and Haard, 1990; 1991 ). Furthermore, dietary lipids have been reported to 

have a sparing etTect on proteins (Watanabe, 1977; Takeuchi e/ a/., 1978), allowing 

utilization of proteins for growth rather than tor energy. It was therefore expected 

that tish within group 1 would do better than those within groups 4 and 5 (contained 

30% Brewer's yeast). However, reports concerning which of these two yeasts 

(pigmented yeast and Brewers yeast) promotes better growth in fish are mixed. 

Gentles and Haard ( 1990; 1991) fed sexually matured rainbow trout with a diet 

containing 15% P. rhodo::yma or 15% Baker's yeast and reported growth rates of 6. 9 

and 2.4 glweek, respectively. However, because of the large variation in weight 

within treatments and small number of fish employed in their study, these authors 
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concluded that their results were not significantly different (P< 0.05). Laine and 

Gyllenberg ( 1969), on the other hand, fed rainbow trout with R. sanneii and reported 

that fish fed with diet containing red yeast had the lowest average weight and length 

whereas fish fed diet with no yeast had the highest average weight and length. They 

concluded that feeding fish with diet containing high proportions of yeast is not 

appropriate. Similarly, Haard ( 1992) reported that fish fed diets containing 5% intact 

P. rhodo:yma or 15% milled yeast did not differ significantly in average weight gain 

from fish fed the control diet. However. he observed that fish reared on diets 

containing I 0% or 15% intact yeast, and 5% or lO% milled yeast grew at a slightly 

lower rate than those fed control diet without added yeast. Haard ( 1992) therefore 

concluded that feeding rainbow trout a reference diet containing 5, I 0 or 15% P. 

rhodo:yma at I. 3 % body weight does not consistently result in weight gain when 

compared to the control diet with no yeast. In a fish feeding trial using diets 

supplemented with P. rhodo:yma, Johnson el a/. ( 1980) showed that rainbow trout 

fed diet supplemented with mechanically broken yeast had a greater increase in 

weight than fish fed diets containing intact yeast or the base ration without 

supplements. In this study, the lower growth rate exhibited by fish fed with diet 

containing R. ruhra TP I may be attributed to the poor feeding habits exhibited by fish 

fed diet supplemented with red yeast During the feeding trial, it was observed that 

fish within groups 1 and 2 consumed only a fraction of their daily ration but those 

within group 2 consumed more than tish within group l. The low intake of food may 

have contributed to the lower gro\\'th rate recorded for fish in these two groups. The 
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possible explanation for this observation is that the test yeast was produced in a 

medium containing molasses and Brewer's wort, after harvesting we could not get rid 

of all the media since the centrifuge used in the harvesting produced only a slurry of 

the cells and not pellets. As a result the cells were freeze dried in a suspension of the 

medium which imparted their odor to the dried product and hence to the fish diet. lt 

may be this odor that may have affected the feeding of the fish. Hence, the low 

growth rate observed in fish fed with diets containing the test yeast in this study may 

be related to feed palatability rather than to efficiency of feed assimilation or 

conversions. It is therefore suggested that in any future studies efforts should me 

made to rid the cells otT all traces of media and if possible washed with water before 

freeze-drying. 

lt was noted that in the red yeast-ted groups 1, 2 and 3 not a single fish died 

during the experiment. Mortality in groups 4 and 5 were one specimen each. The 

fish that died within group 5 may have succumbed to the MS-222 because it could not 

recover after it has been anesthetized. 

9.4.2 Pigmentation of fish muscle. 

The pigment extracted from the fish flesh was subjected to HPLC analysis 

and the results indicated the presence of mainly canthaxanthin and astaxanthin in the 

tlesh of fish fed diets l-3. The presence of these carotenoids in the fish muscle may 

seem remarkable since the diet contains neither of these pigments, and the general 

consensus is that rainbow trout cannot synthesize or transform other carotenoids into 
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canthaxanthin and asta.xanthin (T orrissen eta/., 1989). It should be noted that the fish 

were ted on diet containing canthaxanthin at the hatchery before they were acquired 

for this feeding trial. Analysis of the fish at the beginning of the experiment showed 

only traces of astaxanthin and cantha.xanthin. However, it was expected that over the 

period of the experiment these pigments in tish within groups 1-3 may have 

disappeared since their diets contain none of these pigments. Contrary to this 

expectation, it was observed that the level of astaxanthin and canthaxanthin increased 

with increase in the feeding period. This indicates that rainbow trout may have 

converted the pigment present in the yeast into astaxanthin and canthaxanthin. R. 

ruhra TP I contains mainly ~-carotene, torulene and torularhodin and ~-carotene has 

been postulated to be transformed into astaxanthin via canthaxanthin in fish (Johnson 

et a/., 1977; Davies et a/., 1965; Herring, 1968). The experimental proof for the 

conversion of one carotenoid to another in tish has been obtained by tracer 

experiments involving the various carotenoids. Hsu et a/. ( 1972) fed goldfish with 

[
14C]Iutein for 4 days after which the fish were returned to a regular diet. Analysis of 

the pigments from these fish showed that 63% of the label was in astaxanthin, 5% in 

a.-doradexanthin, and 0.8 % P-doradexanthin. In similar experiments, Hata and Hata 

( l972a; l972b) fed [ 14C]zea."<anthin to goldfish and reported significant conversion of 

zeaxanthin to asta.xanthin via 4-keto-zeaxanthin. ln rainbow trou~ Savolainen and 

Gyllenberg ( 1970) reported that when fed diets containing Rhodotontla sanneii, the 

fish flesh contained high levels of canthaxanthin and lutein. These authors proposed 

that lutein, P-carotene and canthaxanthin may be synthesized from other carotenoid 
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precursors. They did not, however, report the presence of R. sanneii pigments in the 

flesh of the rainbow trout. Schiedt et a/. ( 1985) also reported that astaxanthin is 

reduced to zeaxanthin in rainbow trout and Atlantic salmon. They further reported 

the transformation of astaxanthin and zeaxanthin to vitamins A l and A2 in vitamin A 

depleted rainbow trout. These studies clearly show that fish is able to transform one 

term of carotenoid into another. lt should not be surprising therefore that 

canthaxanthin and astaxanthin were tound in fish fed diet containing R. ruhra TP l. 

In all likelihood, the fish may have converted the pigments present in the test yeast 

into astaxanthin and canthaxanthin, hence the high levels of these pigments in the fish 

muscle. 

The concentration range of pigmentation in the muscle of rainbow trout ted 

with 30% test yeast-supplemented and canthaxanthin·supplemented diets in this study 

(7.28 and 12.09 mglkg, respectively) were comparable to those reported by other 

workers. ln rainbow trout, Seurman et a/. ( 1978) reported astaxanthin concentration 

of the raw muscle as between 0.4 and 1.6 mglkg after feeding them with a diet 

containing red crab. Similarly, Chen e1 a/. ( 1984) reported an astaxanthin 

concentration of 5.2 to 9.8 mglkg in rainbow trout that were fed diets containing 

astaxanthin-enriched soy-oil from crawtish. Storebak.ken el a/. ( 1986) reported 

pigment concentration of 8.8·19.0 mg!kg from the flesh of rainbow trout fed diet 

containing synthetic canthaxanthin. The level of carotenoids in the flesh of fish 

which is regarded as sufficient for visual color impression in farmed salmonid is 4 

mg/kg (T orrissen et a/., 1989) and the pigment concentration obtained with the yeast-

244 



supplemented diets exceeded this value. Fish fed with diet supplemented with 

pigment extract from yeast had only about half the concentration observed in fish fed 

with diet supplemented with whole yeast. Even though precautions were taken to 

minimize the destruction of pigment by light and air during the extraction process, it 

is possible that destruction of pigments may have occurred during processing leading 

to low uptake by fish. Overall, the best pigmentation in this study was obtained from 

tish fed diets containing commercial canthaxanthin. 

The fact that the ttsh were able to take up pigments and nutrients from the 

intact yeast may be important economically since milling of yeast can substantially 

increase the cost of feed production. Johnson et a/. ( 1980) reponed that fish ted 

whole and intact P. rhodo:yma cells were unable to take up pigments from the cells. 

They therefore concluded that modification of the cell wall of P. rhodozyma was 

necessary before the yeast can be used as a dietary pigment source for salmonids. ln 

this study it was not necessary to modify the cell wall since the yeast cell wall did not 

serve as a barrier or restricted pigment and possibly nutrient availability to fish. 

9.4.3 Composition of fish muscle. 

lt was observed in this study that changes in the body composition of fish 

were primarily in their moisture, protein and lipid contents and weight gain. Tidwel 

and Robinette ( 1990) reported similar findings for channel catfish and concluded that 

the gain in weight by all fish may be due to the storage of additional energy as fat. 

pigmented and Brewers yeasts contain 17 and 4.0% (w/w) total lipids, respectively 
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(Gentles and Haard, 1990; 1991 ). Inclusion of30% (w/w) of these yeasts in the diets 

of the fish may have resulted in an increase in the overall lipid content of the fish 

diets which might have in tum resulted in an increase in the fat content in the muscle. 

This assumption is supported by studies done by Ogino et a/. ( 1976) and Castledine 

and Buckley ( 1980) who reported that in rainbow trout, lipid composition of the body 

is directly related to dietary lipid levels. Similar observations have also been made in 

studies with turbot (Bromley, 1980), Arctic charr (Tabachek, 1986) and channel 

catfish {Garling and Wilson, 1976). In spite of the increase in the level of lipid over 

the experimental period, the total lipid obtained in this study for fish in all groups was 

lower than that reported by other workers. For example, Iwamoto et a/. ( 1990) 

reported total lipid contents of 7.8 and 8.9 for pen-reared coho salmon strains BY 

1980 and BY 1981. respectively. In wild coho salmon, on the other hand, they 

reported a total lipid level of only 2.2% and attributed this low lipid level to the 

mobilization of lipids prior to maturation. Similarly, Horstgen-Schwark eta/. ( 1986) 

reported low lipid levels in pen-reared rainbow trout and attributed the low level of 

lipid in the fish to the initiation of gonad maturation. ln fish, most of the stored lipids 

in the somatic tissues are mobilized to the gonads during sexual maturation resulting 

in a decrease in the lipid content of the muscle (Dygert, 1990). This decrease in the 

lipid content in the muscle is normally associated with elevated levels of moisture 

(Love. 1988). It was observed in the present study that fish in all groups have high 

moisture content that continued to increase over the duration of the experiment. The 

high moisture levels may have been a consequence of the low lipid levels since 

246 



moisture levels has been reponed to be directly related to lipid levels in the muscle, a 

decrease in the content of one results in an increase in the levels ofthe other (Reinitz, 

1983). 

With the exception of fish fed diet l that had substantial increase in the 

quantity of PUF A and MUF A, the fatty acid composition of the fish in all groups 

remained relatively unchanged over the duration of the experiment. Similar results 

have been reported by Yu et al. ( 1977) who indicated that the unsaturated fatty acid 

composition of tish remained fairly constant regardless of the dietary lipid content. 

Stickney and Andrews ( 1971) in a feeding experiment with catfish, also indicated that 

the tatty acid content of two groups of fish, one group fed diet containing 41% 

saturated tatty acid and the other 25% saturated fatty acid, remained the same after I 0 

weeks of feeding. Thus it seems that fish are able regulate and maintain a proper 

level of saturation in their body lipids (Watanabe, 1982 ). 

In conclusion. the present study has clearly demonstrated that R. mbra TP 1 

was able to impart adequate amounts of pigmentation and coloration to the flesh of 

rainbow trout. However, the best pigmentation and color were obtained with fish fed 

with diet containing commercial canthaxanthin. Fish in all groups grew very well and 

had high levels of crude protein compared to values determined at the beginning of 

the feeding trial. Lipid levels in all fish fed various diets were generally low, 

however there were significant (P<0.05) increases in the lipid content in aU groups 

when compared with values determined at the beginning of the feeding triaL With 

the exception of fish within group I, the fatty acid composition of fish in all other 
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groups remained relatively unchanged. The new strain, R. ruhra promises to be a 

good source of pigment for rainbow trout 
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Table 9.0 Composition of feed used in feeding trial(% dry weight). 

Ingredient Diet I Diet 2 Diet 31 Diet 4 Diet 5 
30% R. mhm TP I 5% R. ruhm TP I Yeast Pigment Canthaxanthin No Pigment 

Fish Meal 33.10 33.17 33.17 33.17 33.17 

Soy Protein Isolate 2.63 2.63 2.63 2.63 2.63 

Corn glutein 2.95 2.95 2.95 2.95 2.95 

Wheat Flour 14.00 14.00 14.00 14.00 14.00 

Vitamin Mix 1.50 1.50 1.50 1.50 1.50 

Mineral Mix 1.00 1.00 1.00 1.00 1.00 

GuarGum 2.00 2.00 2.00 2.00 2.00 

Fish Oil 12.74 12.74 12.74 12.74 12.74 

Brewers Yeast 0.00 24.95 30.00 30.00 30.00 

Canthaxanthin 0.00 0.00 0,00 0.01 0.00 

Rhodolorula ruhrtl 30.10 5.05 0.01 0.00 0.00 

Total 100 100 100 100 100 
1Note: 1. 9 g of pigment extract from the expenmental yeast was added to d1et 3 to giVe a p1gment concentration of 1 00 ppm. 
Diets: 1 = 30% test yeast, 2 = 5% test yeast, 3 = 100 ppm pigment extract from test yeast, 4 = 100 ppm commercial canthaxanthin, 
5 ==negative control (no pigment). 
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Table 9.1 The growth data of rainbow trout ted diets containing pigment trom various sources over 16 week period. 

Feeding Period DiL:t 
(weeks) 

Gro\\1h Data I 1 3 4 5 

0 Body Wt.(g)1 179.95 174.15 17M.OO IM5.00 IM2.50 

Length (em) 25.56±1.71 25.3M±2.01 25.33±2.01 25.04±0.H3 25.44±1.54 

4 Body Wt.(g)1 21l.MO 222.H2 220.43 227.77 22K.(JI 

Length (em) 26.24±0.56 26.51±0.32 26.54±0.35 26.X6±0.30 26.32±0.57 

X Body Wt.(g)1 271.22 2X4. 79 2X5.30 296.74 30H.61 

Length (em) 27.45±1.57 27.60± I.M9 2X.OO±I.60 2X.33±1.34 29.10±0.9 

12 Body Wt.(g)1 331.30 357.57 353.51 3M5.37 397.1M 

Length (em) 29.44± 1.12 30.16±1.59 29.96±1.59 31.33±1.53 30.6±1.75 

16 Body Wt.(g)1 396.77 433.02 454.17 4 71.0M 495.10 

Len&>th (em) 31.13±2.7M 32.06±1.59 32.63±1.26 32.MI±I.92 33.21±1.90 
1The fish m each tank were we1ghted m bulk. 2Results are mean of6 determmat10ns ±standard deviation. 
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Table 9.2 The growth rate, specitic growth rate and% weight gain of rainbow trout fed tive diflerent diets. 

Feeding Diet 
Period Growth 
(Weeks) Data 2 3 4 5 

4 Weight gain(%) 17.70 27.99 23.84 23.12 24.94 
SGR (% GR/day) 0.59 0.88 0.77 0.74 0.78 

Growth rate 1.14 1.74 1.52 1.53 1.63 

8 Weight gain(%) 50.72 63.53 60.28 60.40 69.10 
SGR (% GR/day) 0.74 0.88 0.85 0.84 0.93 

Growth rate 1.63 1.98 1.92 1.99 2.25 

12 Weight gain(%) 84.11 105.32 98.60 108.3 I 117.63 
SGR (% GR/day) 0.73 0.86 0.82 0.87 0.92 

Growth rate 1.80 2.18 2.09 2.38 2.56 

16 Weightgain(%) 120.49 148.65 155.15 154.64 171.29 
SGR (% GRiday) 0.71 0.81 0.84 0.84 0.89 

Growth rate 1.94 2.31 2.47 2.55 2. 79 

Note:% Weight gain- (final weight- initial weight) -:-initial weight x 100. Diets: 1 - 30% test yeast, 2"" 5% test yeast, 3 = 100 ppm 
pigment extract from test yeast, 4 = 100 ppm commercial canthaxanthin, 5 =negative control (no pigment). 
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Table 9.3 Significant levels of differences in the lightness (Hunter L *), redness (Hunter a*) 
and yellowness (Hunter b*) of rainbow trout fed various diets for 4 weeks!. 

Diet Hunter L * Value Hunter a* Value Hunterb* value 

Baseline 38.80±2.703 6.3±2.403 13.30±2.IQ3 

l 37.90±5.I03 8.20±I.703 I4.20±L20:1 

2 42.30±4.50:1 8.10±3.403 14 .40± 1.60:1 

.. 40.80±5.103 7.30±2.303 13.80± 1.50:1 .) 

4 37.50±5.103 l0.20±2.20b 14.90±1.70:1 

5 37.90±6.703 7.00±1.303 l4.6±l.603 

. 1Results are mean values of 18 determmauons ±standard devtatton. Values wtthm the same 
column with different superscripts are significantly different (P<O.OS) from one another. 
Diets: l :::: 3 0% test yeast, 2 = 5% test yeast, 3 = I 00 ppm pigment extract from test yeast, 
4 = 100 ppm commercial canthaxanthin, 5 =negative control (no pigment). 

Table 9.4 Significant levels of differences in the lightness (Hunter L *),redness (Hunter a*) 
and yellowness (Hunter b*) of rainbow trout fed various diets for 8 weekst. 

Diet Hunter L * Value Hunter a* Value Hunter b* value 

Baseline 38.80±2.703 6.3±2.403 13.30±2.103 

I 43.90±6.90b,c l0.54±3.28b l7.72±1.90b 

2 46. 90±4 .I 0" l0.13±2.90b 18.50± l.60b 

.. 46.50±4.5" 9.54±2.92b I7.60±1.5Qb .) 

4 42.60±6. 70a,b 14.63±3.24" I9.00±2.10b 

5 47.60±3JOC 9.27±3.59b 17.6±2.4° 
1Results are mean values of IS determmattons ±standard devtatton. Values Within the same 

column with different superscripts are significantly different (P<0.05) from one another. 
Diets: l = 30% test yeast, 2 = 5% test yeast, 3 = I 00 ppm pigment extract from test yeast, 
4 = 100 ppm commercial canthaxanthin, 5 = negative control (no pigment). 
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Table 9.5 Significant levels of differences in the lightness (Hunter l *),redness (Hunter a*} 
and yellowness (Hunter b*) of rainbow trout fed various diets for 12 weeksL 

Diet Hunter l * Value Hunter a* Value Hunter b* value 

Baseline 38.80±2.70~ 6.3±2.40~ 13.30±2. 10" 

l 43.98±4.67b 10.71±1.69b 14.46±1.29' 

2 44.57±4.8711 8.54±3.48c: 13.41±1.51" 

.. 42.69±4.78b 9.49±J.l9bb,c J4.02±l.79a .} 

4 42.96±3.8411 15.4±2.44d 18.92±1.97b 

5 50.26±4.50c 4.16±0.96c 8.36±1.07c 
. 

'Results are mean values of 18 determmat10ns ±standard dev1at1on. VaJues Wtthm the same 
column with different superscripts are significantly different (P<0.05) from one another. Diets: 
I == 30% test yeast, 2 = 5% test yeast, 3 = 100 ppm pigment extract from test yeast, 4"" 100 
ppm commercial canthaxanthin, S =negative control (no pigment). 

Table 9.6 Significant levels of differences in the lightness (Hunter L *), redness (Hunter a*) 
and yellowness (Hunter b*) of rainbow trout fed various diets for t 6 weeks!. 

Diet Hunter L * Value Hunter a* Value Hunter b* value 

Baseline 38.80±2.70~ 6.3±2.40" 13 J0±2.10a 

t 39. \6±3.9}' \ \.0\±\.24b l4.72±2.08b 

2 45.54±3.72b 7.56±l.52a \4.90±1. 76b 

3 46.76±5.J9b 6.83± 1.96" l4.36±l.68b 

4 41. 89±3. 97" J5.04±J.46c 18. 54±2.26" 

5 52.l7±5.llc 2.77±L03d 8.0l±l.47d 
. . 1Results are mean values of 18 determmattons ±standard dev1atton. Values wtthm the same 

column with different superscripts are significantly different (P<O.OS) from one another. Diets: 
l = 30% test yeast, 2 = 5% test yeast, 3 = 100 ppm pigment extract from test yeast, 4 = 100 
ppm commercial cantha'<anthin, 5 ""negative control (no pigment) 
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Table 9.7 Total carotenoid content (Jlg.g·• tissue) of the flesh of rainbow trout after 4 weeks of 
feeding on experimental diets' 

Diet Dry Weight Wet Weight 

Baseline (At Start) 2.02±l.l4a 0.44±0.25a 

I 6.75±3.11b.d 1.48±0.68b,d 

2 6.58±2.14b.d 1.44±0.47b,d 

3 4.52±2.89"'1> 0.99±0.63a.b 

4 8.78±0.56d 1.68±0.26d 

5 2.74±0.83a 0.57±0.13a 

'Results are mean values of6 determmattons ±standard deVIation. Values wtthm the same 
column with different superscripts are significantly different (P<0.05) from one another. Diets: 
I = 30% test yeast, 2 = 5% test yeast, 3 = 100 ppm pigment extract from test yeast, 4 = 100 
ppm commercial canthaxanthin, 5 =negative control (no pigments). 

Table 9.8 Total carotenoid content (Jlg.g·• tissue) of the flesh of rainbow trout after 8 weeks of 
feeding on experimental diets' 

Diet Dry Weight Wet Weight 

Baseline (At Start) 2.02±1.14a 0.44±0.25a 

I 5.16±2.82h.d I. 79±0. 46b,d 

2 4.42±2.27c.d 1.45±0.38"d 

3 4.51±2.l2c 0.99±0.46e 

4 7.69±1.20" 2.03±0.17h 

5 1.99±0.83;a 0.63±0.29a 
. . 1 Results are mean values of 6 determmattons ± standard devtatton. Values wtthm the same 

column with different superscripts are significantly different (P<O.OS) from one another. Diets: 
I ::::; 30% test yeast, 2 = 5% test yeast, 3 = I 00 ppm pigment extract from test yeast, 4 ::::; I 00 
ppm commercial canthaxanthin, 5::::; negative control (no pigments). 
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Table 9. 9 Total carotenoid content {l.tg.g·1 tissue) of the flesh of rainbow trout after 12 weeks of 
feeding on experimental diets1 

Diet Dry Weight Wet Weight 

Baseline (At Start) 2.02±1.143 0.44±0.253 

I 6.47±0.51b l.75±0.14b 

2 5.79±l.88b 1.56:!:0.51 b 

"I 5.83±1.52b l.57±0.41b .l 

4 10.10±0.61c 2.60±0.19C 

s 0.63±0.293 0.53±0.\33 

1 Results are mean values of 6 determmattons ± standard deVJatton. Values wtthm the same 
column with different superscripts are significantly different (P<O.OS) from one another. Diets: 
l = 30% test yeast, 2 = 5% test yeast, 3 = l 00 ppm pigment extract from test yeast, 4 = 100 
ppm commercial canthaxanthin, 5 =negative control (no pigments). 

Table 9.10 Total carotenoid content (!Jg.g·1 tissue) of the flesh of rainbow trout after 16 weeks 
of feedimz on experimental diets1 -

Diet Dry Weight2 Wet Weight 

Baseline (At Start) 2.03±1.143 0.44±0.253 

I 7.28±1.39h 1.97±0.37h 

2 4.35±0.65c l.l6±0.19c 

3 4.46±0.77c 1.20±0.2lc 

4 12. 09±2.19d 3.27±0.59d 

5 1.73±0.183 0.47±0.053 

1Results are mean values of6 determmattons ±standard devtatton. Values Wlthm the same 
column with different superscripts are significantly different (P<0.05) from one another. Diets: 
l = 30% test yeast, 2 = 5% test yeast, 3 = l 00 ppm pigment extract from test yeast, 4 = l 00 
ppm commercial canthaxanthin, 5 =negative control (no pigments). 
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Table 9. 1 1 Percentage composition of carotenoid of fish muscle determined by HPLC at the 
end of the feeding trial.· 

Diet Carotenoid composition (%) 
Astaxanthin Canthaxanthin Others (unidentified) 

Baseline NO ND ND 
1 \3.36 78.63 8.0 
2 11.90 77.90 10.20 
.., 

11.20 79.10 9.66 .l 

4 9.83 80.10 10.07 

5 NO ND ND 
NO= Not determmed. 

Table 9.12 The chemical composition offish fed with 5 different diets for 4 weeks!. 

Diet Chemical composition (%) 
Protein1 (Nx6.25) Lipid Ash 

Baseline 36.3 l± l .38 3.b 2.62±0.15 b 4.21±0.30" 
I 38.47± 1. 72" 3.64±0.75 3 5.11±0.87" 
2 38.08± 1.82 3 3.73±0.98 3 4.97±1.03" 
.., 38.33± 1.62 a 3.50±0.37" 5.21±0.88" .) 

4 36.84±2.90" 4.50±0.87" 4.89±1.193 

5 35.82±1.69b 2.20±1.00b 4.67±0.90" 
. 1 Results are mean values of 6 determmatton ± standard devtatton. Means wtthm the same 

column with different superscripts are significantly (P<0.05) different from one another. 
Diets: L == 30% test yeast, 2 ""' 5% test yeast, 3 = I 00 ppm pigment extract from test yeast, 
4 = I 00 ppm commercial canthaxanthin, 5 == negative control (no pigments). 
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Table 9.13 The chemical composition offish fed with 5 different diets for 8 weeksl. 

Diet Chemical composition (%) 

Protein1 (Nx6.25} Lipid Ash 

Baseline 36.31 ± l.38b 2.62±0.l5b 4.21±0.30~ 

l 40.26±3.95a 4.01±1.0001 5.10±1.36~ 

2 38.93±1.41c 4.63±1.34" 4.73±1.22it 

3 42.65±4.85it 3.82±0.74 .. 4.76±0.553 

4 42.54±6.49:1 4.02±0.74 .. 4.41±0.583 

5 41. 75±2JOit 4.52±0.75it 4.73±1.34~ 
1 Results are mean values of 6 determmatton ± standard devtataon. Means within the same column with 
different superscripts are significantly (P<O.OS) different from one another. Diets: 1 = 30% test yeast, 
2 = 5% test yeast, 3 = I 00 ppm pigment extract from test yeast, 4 :;:::: I 00 ppm commercial 
canthaxanthin, 5 ==negative control (no pigments). 

Table 9.14 The chemical composition offish fed with 5 different diets for 12 weeks1 

Diet Chemical composition(%) 

Protein(Nx6.25) Lipid Ash 

Baseline 36.31±1.38" 2.62±1.09b 4.21±0.3()'1 

I 46.61±1.79:1 4.23±0.59'1 4.69±1.091 

2 45. (5±1.41a 4.50± 1.09~ 4.45±1.491 

3 46. 77± 1.6l' 4.84±1.05~ 4.42±0.7P 

4 45.68±0.583 4.61±1.00" 4.47±0.49" 

5 42.86±1.95c 4.53±1.07" 4.88±0.98it 
1 Results are mean values of 6 deterrrunatton ± standard devtatton. Means Within the same column 

with different superscripts are significantly (P<O.OS} different from one another. Diets: l = 30% test 
yeast, 2 = 5% test yeast, 3 == 100 ppm pigment extract from test yeast, 4 = l 00 ppm commercial 
canthaxanthin, 5 =negative control (no pigments). 
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Table 9.15 The chemical composition of fish fed with 5 different diets for 16 weeks 1• 

Diet Chemical Composition (%) 

Protein(Nx6 .25) Lipid Ash 

Baseline 36.31± 1.38b 2.62±1.09' 4.21±0.30~ 

1 45.92±2.703 4.23±0.59il.b 4.16±0.17~ 

2 47.70±1.553 5.21±0.70b 4.11±0.303 

., 
45.36±3.333 3.76±0.3P 4.18±0.583 

.) 

4 45.96±3.41 3 4.42±0.74;a,b 4.20±1.033 

5 44.90±0.733 5.26±1.09b 4.40±0.463 

1 Results are mean values of 6 determmatlon ±standard devtatton. Means wtthm the same column wtth 
different superscripts are significantly (P<O.OS) different from one another. Diets: i = 30% test yeast, 
2 = 5% test yeast, 3 = 100 ppm pigment extract from test yeast, 4 = 100 ppm commercial 
canthaxanthin, 5 =negative control (no pigments). 

Table 9. 16 The moisture content of fish fed different diets over a 16 week period 1• 

Moisture content(%) 

Diet Week4 WeekS Week 12 Week 16 

Baseline 7 4. 94±0 .40b 74.94±0.4lb 74.94±0.413 74.1 5± 1 JSil.b 

I 68.11±0.71 3 76.11±0.273 74.55±1.663 74.15±1.08a,b 

2 68.08±2.68 3 75.87±1.3 [3 74. 74± 1.543 74.45±0.63" 

.., 67.66±3.443 73 .83±2.56b 75.32±0.343 74.04±0.22a,b .) 

4 68.25±2.323 75.97±0.173 74.40±0.153 73.08±0.22b 

5 74.48±1.31b 75.61±0.163 7l.OO±l.22b 73.83±0.82b 
. . 1 Results are mean values of 6 determmatton ± standard devtatton. Means wtthin the same column wtth 

different superscripts are significantly (P<0.05) different from one another. Diets: 1 = 30% test yeast, 
2 = 5% test yeast, 3 = 100 ppm pigment extract from test yeast, 4 = l 00 ppm commercial 
cantha.xanthin, 5 =negative control (no pigments). 
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Table 9. 17 The fatty acid profile of tish fed with five different diets tor 4 weeks1
• 

Fatty Acids Baseline Diet I Diet 2 Diet 3 Diet4 Diet 5 

12:0 2.83±0.22 3.19±0.19 3.32±0.38 2.88±0.41 2.89±0.22 2.96±0.21 

14:0 0.31±0.12 0.51±0.07 0.51±0.02 0.36±0.14 0.34±0.10 0.44±0.11 

16: ln9 19.25±0.65 20.04±0.76 20.75±0.98 19.72±0.83 20.12±0.70 20.11±0.35 

18:1 0.83±0.09 0.18±0.01 0.70±0.07 0.60±0.06 0.69±0.03 0.69±0.03 

18:3 22.53±0.29 24.74±0.81 23.89±0.54 24.00±0.35 23.60±0.56 23.35±0.52 

20:2 

20:3w3 7.28±0.56 7.55±0.39 7.11±0.66 6.98±0.47 6.96±0.24 7.43±0.42 

20:3w6 13.55±0.23 13.05±0.62 13.3 1±0.66 13.39±0.73 13.10±0.59 13.45±0.77 

22:0 

22:2 19.89±0.49 17.19±1.28 16.84±1.61 18.09±1.55 18.65±1.06 17.12±0.83 

22:4 12.59±1.06 11.60±0.35 11.93±0.13 12.29±0.97 12.72±0.76 12.94±0.76 

22:5 0.61±0.03 0.88±0.08 0.82±0.08 0.77±0.14 0.59±0.13 0.26±0.10 

22:6 0.87±0.03 0.78±0.07 0.77±0.05 0.75±0.08 0.62±0.06 0.70±0.21 

[SFA 3.14 3.7 3.83 3.24 3.23 3.40 

I,MUFA 20.08 20.22 21.45 20.81 20.81 20.80 

[PUFA 77.32 75.79 74.27 76.24 76.24 75.25 
1Values are expressed as mole percentage and are the means± SO of6 replicates. SF A - saturated fatty acids, MUF A = 
monounsaturated fatty acids, PUF A = polyunsaturated fatty acids. 
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Table 9. I 8 The fatty acid protile of fish fed with five ditl'erent diets for 8 weeks .. 

Fatty Acids Baseline Diet I Diet 1 Diet 3 Diet4 Diet 5 

12:0 2.83±0.73 3.69±0.30 4.10±0.21 3.79±0.35 3.87±0.28 3.97±0.25 

14:0 0.31±0.12 0.73±0.12 0.62±0.13 0.58±0. 10 0.60±0.09 0.58±0.04 

16; ln9 19.25±0.65 19.65±0.84 20.42±0.74 20.81±0.72 20.51±0.70 21.3 1±1.15 

18:1 0.83±0.09 0.75±0.03 0.69±0.12 0.53±0.10 0.79±0.18 0.75±0.18 

18:3 22.53±0.29 23.43±1.06 23.80±0.84 23.39±1.48 23.87±0.87 24.29±1.07 

20:2 0.42±0.11 0.17±0.03 0.29±0.08 

20:3w3 7.28±0.56 7.07±0.36 7.00±0.45 6.94±0.47 7.13±0.43 7.32±0.39 

20:3w6 13.55±0.23 11.74±0.28 11.82±0.74 11.31±0.57 11.32±0.66 10.97±0.48 

22:0 0.67±0.07 0.52±0.07 0.33±0.1 I 0.49±0.15 0.48±0.14 

22:2 19.89±0.49 19.54± 1.67 18.55±2.85 19.37±2.32 18.90±2.12 18.15±1.07 

22:4 12.59±1.06 10.85±0.51 11.33±0.99 11.78±0.58 10.90±0.98 10.92±0.94 

22:5 0.61±0.03 0.94±0.31 0.74±0.09 0.71±0.19 0.49±0. 14 0.30±0.05 

22:6 0.87±0.03 0.77±0.04 0.66±0.09 0.55±0.08 0.40±0.11 0.28±0.05 

[SFA 3.14 5.09 3.12 4.70 4.96 5.03 

LMVFA 20.08 20.40 21.74 21.34 21.30 22.06 

LPUFA 77.32 74.74 74.72 74.22 73.30 72.23 
1Values are expressed as mole percentage and are the means± SD of6 replicates. SF A= Saturated fatty acids, MUF A= monounsaturated 
fatty acids, PUF A = polyunsaturated fatty acids. 
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Table 9. 19 The fatty acid profile of fish fed with five different diets for 12 weeks1
• 

Fatty Acids Baseline Diet I Diet 2 Diet 3 Diet 4 Diet 5 

12:0 2.83±0.73 3.29±0.20 2.95±0.11 2.99±0.35 3.03±0.33 3.54±0.27 

14:0 0.3 1±0.12 0.43±0.15 0.47±0.14 0.49±0.09 0.48±0.10 0.52±0.07 

16: ln9 19.25±0.65 18.94±0.81 19.12±1.05 18.57±0.65 20.19± I. 13 20.79±1.02 

18: I 0.83±0.09 0.35±0.05 0.78±0.08 0.62±0.24 0.71±0.02 0.72±0.03 

18:3 22.53±0.29 22.87±0.81 23.05±1.83 22.57±0.73 22.85±0.58 24.25±1.19 

20:2 0.21±0.04 0.30±0. 10 0.15±0.06 

20:3w3 7.28±0.56 7.20±0.32 6.97±0.48 6.98±0.26 6.96±0.52 7.31±0.47 

20:3w6 13.55±0.23 11.47±0.33 11.39±0.38 11.83±0.92 11.47±0.67 11.77±0.41 

22:0 0.34±0.02 0.32±0.01 0.43±0.09 0.54±0.3 I 0.42±0.11 

22:2 19.89±0.49 22.66±2.58 21.96±1.19 22.43±2.05 20.86±1.66 18. 13±1.84 

22:4 12.59±1.06 11.10±0,83 11.62±0.77 11.59±1.00 10.86±0.79 10.08±0.86 

22:5 0.61±0.03 0.96±0.16 0.86±0.10 0.74±0.11 0.71±0.11 0.73±0.16 

22:6 0.87±0.03 0.87±0.09 0.91±0.09 0.88±0.06 0.79±0.03 0.69±0.13 

[SFA 3.14 4.06 3.74 3.91 4.05 4.48 

[MUFA 20.08 19.29 19.90 19.40 20.90 21.93 

[PUFA 77.32 77.13 76.76 77.02 74.80 72.96 
1Values are expressed as mole percentage and are the means± SO of6 replicates. SF A= saturated fatty acids, MUF A= monounsaturated fatty 
acids, PUF A = polyunsaturated fatty acids. 
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Table 9.20 The fatty acid profile offish fed with five different diets for I 6 weeks1
. 

Fatty Acids Baseline Diet I Diet 2 Diet 3 Diet 4 Diet 5 

12:0 2.83±0.73 1.41±0.30 2.61±0.43 2.19±0.39 2.19±0.20 3.39±0.54 

14:0 0.31±0.12 0.30±0.07 0.39±0.08 0.26±0.07 0.27±0.17 0.24±0.04 

16: lu9 19.25±0.65 13.25±0.49 18.29±1.50 18.20±1.49 18.47± 1.83 19.10±1.58 

18: I 0.83±0.09 0.58±0.13 0.65±0.09 0.45±0.08 0.47±0.06 0.51±0.05 

18:3 22.53±0.29 24.37±0.78 24.27±1.01 24.45±1.25 22.55±0.97 25.75±1.39 

20:2 

20:3w3 7.28±0.56 8.13±0.52 6.61±0.81 6.14±0.45 6.50±0.27 5.93±0.72 

20:3w6 13.55±0.23 13.36±0.86 13.42±0.60 12.89±0.38 13.95±0.88 13.70±0.64 

22:0 0.81±0.22 0.52±0.19 

22:2 19.89±0.49 22.09±1.09 18.80±2.80 20.46±2.22 19.04±1.63 17.72±2.15 

22:4 12.59±1.06 13.47±1.29 13.09±0.98 12.92±1.27 13.79±0.77 13.93±1.02 

22:5 0.61±0.03 1.00±0.14 0.92±0.20 0.69±0.16 0.51±0.16 0.54±0.15 

22:6 0.87±0.03 0.86±0.07 0.62±0.10 0.52±0.13 0.54±0.10 0.44±0.21 

,ESFA 3.14 2.52 3.52 2.45 3.08 3.63 

,EMUFA 20.08 13.83 18.94 18.65 18.94 19.61 

[PUFA 77.32 83.28 77.73 78.67 77.88 78.01 

Values are expressed as mole percentage and are the means± SO of6 replicates. SFA= saturated fatty acid~. MUF A= monounsaturated fatty 
acids, PUF A = polyunsaturated fatty acids. 
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CHAPTER 10 

GENERAL DISCUSSION AND CONCLUSIONS 

A carotenoid producing yeast was isolated from yogun and was subsequently 

identified as Rhodotorula ruhra TPI (Hari eta/., 1992). Studies were conducted on 

its morphology, sexuality, growth kinetics and possible use in the aquaculture 

industry as feed supplement. At the time of its isolation, it was reponed that the yeast 

produced structures that resemble ascospores; however, other biochemical and 

physiological analyses suggested a Rhodotontla affinity (Hari et a/., 1992) making 

the phylogenetic affinity of the new isolate ambiguous. To exploit the economic 

potential of this isolate, it was imperative that its phylogenetic affinity be clarified 

and also the pigments produced by the new isolate be characterized. The present 

study therefore employed biochemical, physiological and molecular methods to 

clarify the identity of the new isolate. 

To confirm the production of ascospores or any structures resembling them, 

the organism was cultivated on various sporulation media used in a previous study by 

Hari et a/. ( 1992). Despite repeated trials over an extended period of time, no 

structures resembling ascospores were observed. Growth on various carbon sources 

revealed that the new isolate and R. ntbra A TCC 9449 had identical utilization 

pattern for most of the carbon sources. The new isolate and R. n1bra ATCC 9449 

were also found to be nitrate negative and had identical utilization patterns for 

raffinose, melibiose, maltose, raffinose and erythritol, carbon sources that are widely 
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used in the identification of Rhodotorula ruhra (Fell et a/., 1984). Thus, in terms of 

the nutritional and biochemical characteristics, the new isolate demonstrated the best 

homology with R. ruhra ATCC 9449 than any of the yeast isolates used as controls. 

Analysis of the cell wall carbohydrates revealed the presence of mainly ~­

( l ~3) and ~-(I ~4) mannans which have been reported to be unique to the genus 

Rhodotoru/a (Spencer and Gorin, 1970). The monosaccharide content of the cell wall 

was also found to consist of mannose, glucose, galactose, fucose and rhamnose which 

is consistent with the cell wall monosaccharides of other R. ruhra strains (Sugiyama 

eta/ .. 1985: Weijman and Rodrigues de Miranda, 1988b). 

Cellulose acetate electrophoresis was used to separate isozymes of 8 enzymes 

in the new isolate and eight other yeast isolates used as controls. Cellulose acetate 

electrophoresis of isozymes was very effective in discriminating between the new 

strain and the eight other yeasts isolates. Based on the comparisons of the relative 

electrophoretic mobilities (~) of the isozymes, seven enzymes (isomerase 

dehydrogenase, 6-phosphogluconate dehydrogenase, hexokinase, malate 

dehydrogenase, mannose-6-phosphate dehydrogenase, glucose-6-phosphate 

isomerase and glucose-6-phosphate dehydrogenase) yielded zymograms that were 

identical for both the new isolate and R. ruhra A TCC 9449. Only one enzyme, 

phosphoglucomutase had banding patterns that were different for the new isolate and 

R. ruhra A TCC 9449. The overall similarities between the individual isolates were 

calculated from the electrophoretic mobilities. It was observed that the new isolate 

and R. ruhra A TCC 9449 had the highest similarity index. Thus, based on the 
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isozyme analysis, the new isolate and R. ruhra ATCC 9449 could not be separated 

from each other. The new isolate may therefore be considered as a variant strain of 

Rhodotorula ruhra. The results also suggest that cellulose acetate electrophoresis 

could be an important taxonomic tool for identification of isolates of yeast. Its 

relatively low cost and speed make it a particularly attractive procedure. 

The cell physiology of the new yeast isolate was also found to be identical to 

that of R. ruhm ATCC 9449. Analysis of the cellular long-chain fatty acid by gas 

chromatography revealed that the major fatty acids found in both isolates were 18:0, 

18: I, 18:2, 18:3, 16: I and 16:0 and both have high quantities ofCI8: I and Cl6: I (70 

and 13%, respectively). The concentrations of these fatty acids obtained in this study 

are consistent with the concentrations of the same fatty acids reported for other strains 

of R. mhra by other workers. For example, Ratledge and Evans ( 1987) and 

Zuyaginsteva et a/. ( 1975) reported that the concentration of C 18: I in two strains of 

R. ruhra were in the range of 57 to 81%. Similarly, Blignaut et a/. ( 1996) reported 

that R. ruhm had a C18:1 concentration of68.8%. Ratledge (1982) has also reported 

similar results for other Rhodotorula species. 

The determination of cellular fatty acid composition of other yeast isolates by 

gas-liquid chromatography as means of identification had been studied by numerous 

workers (van der Westhuizen et a/., 1991; Blignaut et a/., 1996; Augustyn et a/., 

1992; Miller et a/., 1989; Marumo and Aoki, 1990). Multivariate statistical methods 

have also been useful as an objective identification procedure for differentiating 

between cellular fatty acid compositions, aiding in the identification of numerous 
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clinical microorganisms (Marumo and Aoki, 1990). The fatty acid data were also 

subjected to stepwise discriminant analysis, 'jackknifing' and canonical variate 

analyses. The results of the canonical variate and the stepwise discriminant analyses 

together with the 'jackknifing' procedure reported in this study clearly distinguished 

the new isolate and R. ruhra ATCC 9449 from the other isolates, however, the two 

could not be separated from each other. These two isolates clustered together in all 

the applications employed in the canonical variate analysis confirming the value of 

this phenotypic (CF A) characteristic in the identification of yeast. In addition the 

high concentrations of the C 18: 1 fatty acid found in these two isolates were a major 

contributing factor in the distinguishing between them and the other isolates. Fatty 

acid analysis as an identification tool, has been used extensively in yeast taxonomy. 

Moss et a/. ( 1982) used the cellular fatty acid composition of 51 isolates of various 

species of yeast to ditTerentiate them into four distinct groups. Similarly, Augustyn et 

a/. ( 1991; 1992; 1989) and Gangopadhyay et a/. ( 1979) used the cellular fatty acid 

protile in conjunction with statistical analysis to differentiate between genera, species 

and strains of various types of yeast. Data from these studies show that cellular fatty 

acids provide useful information for rapidly distinguishing between both closely and 

distantly related yeast isolates. Cellular fatty acid analysis is rapid, easily applied and 

reliable, and can complement other methods used in yeast identification. 

The strongest evidence for the phylogenetic affinity of the new isolate came 

from analysis ofthe partial base sequences of portions ofthe l8S rONA gene and the 

internal transcribed spacer (lTS). Comparison of sequences of the l8S rONA and 
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the ITS revealed that the new isolate had the highest percent sequence similarity of 

tOO and 93 with R. rubra and evolutionary distance estimates ofO.OOO and 0.041 for 

the ISS rONA and the ITS sequences, respectively. The percent similarities between 

the new isolate and R. ruhra A TCC 9449 were the highest when compared with those 

between the new isolate and all the other isolates used as controls. The sequence data 

were subjected to Maximum Parsimony and bootstrap majority consensus tree 

analysis of I 00 replicates. The resulting phylogenetic tree grouping isolates with 

most similar sequences revealed that the new isolate and R. ruhra belongs to a single 

clade. This is the first genetic evidence that the two belongs to the same species, 

therefore the new isolate should be considered a variant strain of R. ruhra. ISS 

rONA gene and the ITS sequences alone, and in combination with other ribosomal 

genes, are versatile molecular probes that can be used to investigate phylogenetic 

relationships among yeast genera and species. It has been used in the taxonomy of 

several genera and species of yeast including Rhodotorula graminis (Fell et a/., 1999; 

199S ), Taplrriua and Saitoefla (Nishida and Sugiyama, 1993 ), Pichia species 

(Yamada ~tt a/., l994c), Rhodosporidium dacryoidum (Yamada eta/., l994a) and the 

genus Yamada:yma (Yamada et al., 1995 ). The results of the present study show that 

ISS rONA gene and ITS sequences are sufficiently variable for population studies 

and yet sutliciently conservative for phylogenetic analysis. 

The pigment produced by the new isolate was extracted and analyzed by 

column and thin layer chromatography, high performance liquid chromatography and 

light spectroscopy. The total concentration of the pigments produced by the new 
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isolate was tbund to be 261 J,J/g yeast and that was very low when compared with that 

found in some mutants of P. rhodu:yma (An el al., 1989, Aneta/., 1991). The types 

of pigment produced were phytoene, phytofluene, P-carotene, torulene and 

torularhodin. The individual pigments produced by the new isolate are consistent 

with those produced by members of the genus Rhodotontla (Simp son et a/., 1971, 

1964). Considering the fact that economic factors play an important role in any 

commercialization process, and considering the tact that P. rhodozyma is the only 

economically valuable carotenoid producing organism available on the market 

(Johnson and An .. 1991; Villadsen, 1992); ifthe new isolate is to be commercialized, 

then an enhancement of the metabolic flow of carotenogenesis resulting in yields of 

pigment comparable to those produced by mutants of Phaffia rhodo:yma is required. 

The new isolate was subjected to various chemicals and physical processes in 

an attempt to isolate pigment hyper-producing mutants and, NTG was found to be the 

best mutagen. Several mutants with varying pigment-producing capabilities were 

isolated, some of them produced more than twice the amount of pigment produced by 

the parental strain while others were blocked in the production of certain types of 

pigments. 

Plating of the parental strain and NTG generated mutants on media containing 

various concentrations of antimycin gave rise to mutants that produced higher 

pigment concentration than the parental strain. These mutants also produced high 

concentrations of the oxycarotenoids, torulene and torularhodin than the parental 

strain. The physiology of the antimycin isolates and the known specificity of 
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antimycin for cytochrome b in the respiratory chain suggests that there was a possible 

alteration in the cytochrome b or P-450 components involved in oxygenation and 

desaturation of carotenoids. The net result was an increase in the production of 

oxycarotenoids (Aneta/., 1989, Waterman et al., 1986). None ofthe other inhibitors 

tested except P-ionone were able to generate any pigment-overproducing derivative 

strains. 

P-ionone was found to inhibit the production of torulene and torularhodin in 

the new isolate but promoted the production of ~-carotene. P-ionone appeared to 

have blocked tomlene and torularhodin production at the ~-carotene level leading to 

the accumulation of this carotene. P-ionone, being an end ring analog of P-carotene, 

may compete with P-carotene for oxygenation at C-3 and or C-4 position with P­

carotene. This may lead to the accumulation of P-carotene at the expense of the 

oxycarotenoids, torulene and torularhodin (Lewis et a/., 1990). 

The pigment-overproducing mutants isolated in this study can be subjected to 

further mutagenesis to isolate mutants that produced pigments in excess of what is 

produced by the parental strain. Those mutants that are blocked in the production of 

red pigments and therefore produced only P-carotene can also be developed further to 

isolate strains that produce commercial quantities of P-carotene. The collection of 

mutants blocked in a particular step of the carotenoid biosynthetic pathway obtained 

in this study would be useful tool for the cloning and characterization of 

carotenogenic genes. 

Finally, studies on the carotenogenic enzymes in the new isolate were conducted 
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through the solubilization and partial purification of the enzyme system. [2-14C] 

MY A was converted to phytoene, J3-carotene, torulene and torularhodin by a cell-free 

40,000 x g supernatant fraction prepared from the new isolate. Solubilization of the 

enzyme was achieved by subjecting the cell-free extract to varying concentrations of 

Tweens 40, 60 and 80 and determining the effects of these surfactants on 

carotenogenic activity and protein release. It was observed that Tween 60 at 1% 

concentration (w/v) provided the maximum stimulation for the production of 

phytoene, P-carotene, torulene and torularhodin. Tween 60-solubilized preparation 

tram the new isolate is theretbre a potentially suitable carotenogenic enzyme system 

to use in attempts to puritY proteins responsible for the conversion of MV A to 

phytoene, and the desaturation and cyclization reactions that occur in the conversion 

of P-carotene to torulene and torularhodin. 

The partial purification of the enzyme system was achieved through the 

tractionation of the Tween 60-solubilized extract with 10% polyethylene glycol and 

centrifugation to obtain the enzyme precipitate. The purification of the enzyme with 

polyethylene glycol resulted in a six-fold increase in carotenoid production. Unlike 

ammonium sulfate precipitation, it was not necessary to remove the polyethylene 

glycol prior to the enzyme assay, as it does not inhibit enzyme activity at the 

concentration used. 

Another important aspect of this study was the determination of the efficacy 

of the yeast to pigment the flesh of rainbow trout. It was observed that fish within all 

groups grew very well, however, fish fed with diet containing the test yeast had a 
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lower growth rate than fish in the other groups. The low growth rate observed in this 

group, however, is in agreement with studies done by other workers. Laine and 

Gyllenberg ( 1969) fed rainbow trout with R. sanneii preparations and reported a low 

average weight and length gain in fish. Similarly, Haard ( 1992) and Johnson el a/. 

( 1980) fed rainbow trout with intact P. rhoc.lo:yma cells and reported low growth rate 

in the tish. The cause of the lower growth rate observed in fish fed diet supplemented 

with test yeast not known. The test yeast supplemented diet had the smell of 

molasses and Brewer's wort, as a result fish fed with diet containing the test yeast 

consumed only a fraction of their daily ration whereas fish in the other groups 

consumed almost all of their daily ration. The low consumption of the daily ration 

may have resulted in the lower growth rate observed in fish within this group. 

Commercial canthaxanthin induced better pigmentation than the test yeast as 

seen from the Hunter a* and b* values. Similarly, the concentration of pigment in 

muscle of fish fed diet containing canthaxanthin (diet 4) was greater than that of tish 

fed diet containing test yeast {diet l) which was in tum greater than those of fish in 

the other groups (diets 2, 3 and 5). Although the pigment concentration in fish fed 

diets containing intact yeast and pigment extract from yeast were low in comparison 

with commercial canthaxanthin, the values were comparable to those reported by 

other workers (Seurman et a/., 1978; Chan et "'·· 1984). They were also comparable 

to pigmentation level regarded as sufficient for visual color impression (Torrissen et 

a/., 1989). The level of pigmentation present in the flesh of fish fed with diet 

containing pigment extract from yeast (diet 3) was about half the amount produced by 
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fish fed diet containing whole yeast. This decrease in pigment may be attributed to 

decomposition of the carotenoids during processing of samples. 

The major carotenoids detected in the flesh of fish fed diet containing test 

yeast and those in groups 2-4 were mainly astaxanthin and canthaxanthin. Since 

these pigments were not present in the test yeast, their presence in the flesh of fish fed 

diet containing the yeast suggests that the fish were able to convert the pigments into 

canthaxanthin and asta'<anthin (Savolainen and Gyllenberg, 1970; Hsu eta/., 1977; 

Hata and Hata, 1972a, l972b). 

Besides the growth, pigment and color measurements, the chemical 

composition of fish fed with the various diets were also determined. Fish within all 

groups have high protein content and no significant difference (P>O.OS) were tbund 

between the protein content of the groups. The lipid contents of the fish in the 

various groups were generally low even though there were significant increases in the 

lipid levels at the end of the feeding period. The low lipid levels in fish observed in 

this study is in agreement with previous findings (Dygert, 1990; Horstgen-Schwark et 

a/., 1986; Iwamoto el a/., 1990) and may be attributed to the initiation of gonads for 

maturation. According to Dygert ( 1990), most of the stored lipids in the somatic 

tissues of fish are mobilized to the gonads during sexual maturation resulting in a 

decrease in the lipid content ofthe muscle. 

The moisture content of tish within all groups were tbund to be very high and 

this may be attributed to the low lipid content since low lipid levels are normally 

associated with elevated moisture content in fish and vice versa (Love, 1980; Reinitz, 
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1983 ). With the exception of fish fed with diet 1, the fatty acid composition of fish in 

all the other groups remained relatively unchanged indicating that the diets have no 

etTect on the fatty acid composition of fish muscle. Fish fed with diet I were found to 

have a substantial increase in the concentration of polyunsaturated fatty acids (PUF A) 

which was coupled with a decrease in the levels of saturated fatty acids. 

Final conclusions to be drawn from this study are: 

I. Attempts to induce sporulation in the new isolate were not successful as there 

was no production of any structures resembling ascospores that have been 

reported earlier (Hari t:l a/., 1992). 

2. The isolate was tound to resemble the genus Rhodotoru/a in many ways. The 

results of the cellular fatty acid analyses, isozyme analysis, carbohydrate 

assimilation patterns, nitrate, DBB and urease test and the carbohydrate 

composition oftlle cell wall of the new isolate were all identical to those reported 

for R. ruhra by other workers. These results suggest that the new isolate is a 

basidiomycetous yeast and may be a variant strain of Rhodotontla ruhra. 

3. Comparison of the DNA sequences of the new isolate with those of other yeast 

isolates suggests that R. ruhra TP 1 and R. ruhm ATCC 9449 are closely related 

and should be considered as belonging to the same species. The phylogenetic 

analysis further suggests that the new isolate shares a closer relationship with 

other Rhodotoru/a species than the other yeast isolates used in the study. 

4. The cell wall of the organism was found to be composed of mainly mannans 

and the linkages in the carbohydrate moiety were determined to be mainly P-
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( l-43) and~-( l ~4) mannopyranosyl units. 

5. The total carotenoid concentration of the organism was found to be 261 j.Jglg 

yeast and the individual carotenoids were identified to be torulene, torularhodin, 

~-carotene, phytoene and phytofluene. 

6. NTG was found to be the best mutagen for isolating mutants in the new isolate. 

Mutagenesis resulted in the isolation of different mutants, some of which 

produced more than twice the amount of pigment produced by the parental strain. 

Other mutants were blocked in the production of red pigment and produced only 

~-carotene. These mutants can be used tor the cloning and characterization of the 

carotenoid producing genes. Furthermore, mutants with increased pigment 

production can be used as supplement in tish diets to determine their ability to 

pigment the tlesh of fish. 

7. The solubilization and polyethylene glycol fractionation of cell extract of the 

new isolate resulted in the production of an enzyme system that converted MY A 

into phytoene, ~-carotene, torulene and torularhodin. Since new carotenoids can 

be obtained by combination of different genes from different organisms which 

can benetit the aquaculture and toad industries, further purification and 

characterization of the enzyme system and possible cloning of the carotenogenic 

genes could be contemplated. 

8. The new isolate, Rhodotomla rubra TP\ was found to induce adequate levels 

of pigmentation in the flesh of rainbow trout. However, commercial 

canthaxanthin induced better pigmentation in fish than the test yeast. All the test 
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diets used in the study were found to support good growth of fish. 
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A. Aligned sequences of portions of ISS rONA of Rhodotontla ntbra TPI, 
Rhodotorula mhra ATCC 9449 and Phaffia rhodozyma amplified with primer 
NS7mun 



10 20 30 40 50 
TP1 •.•••• CGCCCTTA~TGTTCTGGGCCGCACGCGCGCTACACTGACAGAG 44 
Rr TTCCTCCGCCCTTA~TGTTCTGGGCCGCACGCGCGCTACACTGACAGAG 50 
Phaffia ••••••••••• TTAGATGTTCTGGGCCGCACGCGCGCTACACTGACAGAG 39 

60 70 80 90 100 
TPl CCAGC~GTCTACCACCTTTGCCGGAAGGCATGGGTAATCTTGT~CT 94 
Rr CCAGC~GTCTA=CACCTTTGCCGGAAGGCATGGGTAATCTTGT~CT 100 
Phaffia CCAGCGAGTCTA:CACCTTTGCCGGAAGGCATGGGTAATCTTGT~CT 89 

110 120 130 140 150 
TPl CTGTCGTGATGGGGATAGAACATTGCAATTATTGTTCTTCAACGAGGAAT 144 
Rr CTGTCGTGATGGGGATAGAACATTGCAATTATTGTTCTTCAAC~GGAAT 150 
Phaffia CTGTCGT~TGGGGATAGAACATTGCAATTATTGTTCTTCAACGAGGAAT 139 

160 170 180 190 200 
TPl ACCTAGTAAGCGTGATTCATCAGATCGCGTTGATTACGTCCCTGCCCTTT 194 
Rr ACCTAGTAAGCGTGATTCATCAGATCGCGTTGATTACGTCCCTGCCCTTT 200 
Phaffia ACCTAGTAAGCGTGATTCATCAGATCGCGTTGATTACGTCCCTGCCCTTT 189 

210 220 230 240 250 
TPl GTACACACCGCCCGTCGCTACTACCGATTGAATGGCTTAGT~GGCCTCC 244 
Rr GTACACACCGCCCGTCGCTACTACCGATTGAATGGCTTAGTGAGGGCTCC 250 
Phaffia GTACACACC~CC:GTCGCTACTACCGATTGAATGGCTTAGTGAGGCCTCC 239 

260 270 280 290 300 
:'Pl GGATTGGCTATT~GGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTT 294 
Rr GGATTGGCTATT4GGAGCTCGCGAGAGCACCCGACTGCCGAGAAGTTGTT 300 
Phaffia GGATTGGCTATT~GAGCTCGCGAGAGCACCCGACTGTCGAGAAGTTGTA 289 

310 320 330 340 350 
'::'Pl CGAACTTGGTCATTTAGAGGAAGTJ\AAAGTCGTAACAAGG.TTTCCGT.A 342 
Rr CGAACTTGGTCATTTAGAGGAAGTJ\AAAGTCGTAACAAGG.TTTCCGT.A 348 
Phaffia CGAACTTGGTCATTTAGAG~GTAAAAGTCGTAACAAGGGTTTCCGTTA 339 

360 370 380 390 400 
TPl GGTGAAC •• GGGGAAAACCTT ••. GGGTTACGAATTTT.ACTTCCCCTAA 386 
Rr GGTGAACCTGGGGAAACCCCTCTAGGTTAATGGATTTA.ACTT ••••••• 390 
Phaffia GGTGAACCTGGGGAAAAACCTTT •• GTTTACGAATTTACAATTCCCCTTA 387 

TPl AATT 390 
Rr 
Phaffia AAT. 390 



B. Aligned sequences of ponions of t8S rONA of Rhodaton1la n1bra TPl, 
Rhodotorula ruhra A TCC 9449 and Phaffla rhodozyma amplified with primer 
NSl2mun 



10 20 30 40 50 
TP NNNTNGCGGACGATGGAATACAAATGCCCCCAACTATTCCTATTAATCAT 
Rr GAGAGGATAAATGCCCCCAACTATCCCTATTAATCATTACGGCGATCTCA 
Pr GTGTCTGGANCTGGTGAGTNTCNCCGTGTTGAGTCAAATTAAGTCGCAGG 

60 70 80 90 100 
TP TACGGCGATCTCAGAAACCAACAAAATGGGAACGCGCGTCCTATTTTATT 
Rr GAAACCAACAAAATGGGAACGCGCGTCCTATTTTATNATNCCATGCTAAT 
Pr CTCCACAACTGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCAGTACTT 

110 120 130 140 150 
TP ATNCCATGCTAATGTATTCGGGNAAAGGCCTGCTTNGAACACTCTAATTT 
Rr GTATTCGGGCAAAGGCCTGCTTTGAACACTCTAATTCTTCCAANGTAANA 
Pr GTGACCATACTCCCCCCCGAATCTCATTTAAAGATTTCTCTTCGGGTGCC 

160 170 180 190 200 
TP TTTCAAAGTAAAAGTCCTGGTTNGCGACGACACCCAGTAAAGGACATCGC 
Rr GTCCTGGTTTGGGACGACACCCAGTAAAGGACATCGCCGATCACCAGGAG 
Pr GATACAGGCATTAATAATCCTGTTCCGATCCCCAATTGGTATAGTCTACA 

210 220 230 240 250 
TP CGTTCACCAGGAGGTAAGGCTCCGTCAAACAAGTACACACCAAGAAGGCG 
Rr GTAAGGCTCCGNCAAACAAGTACACACCAAGAAGGCGGACCGGCTGACAG 
Pr GAAGAGACTACAACGGTATCTAATCGTTTTCGATCCCCCTTCCTTCGTCC 

260 270 280 290 300 
TP GACCGGNTGACAGAGCCCGAAGTTCGACTACGAGCTTTTTAACGGNAACA 
Rr AGCCCGAAGTTCGACTACGAGCTTTTTAACGGCAACAATNTTAATATACG 
Pr TTGATCAATGAAAACATCCTTGGCAAATGTTTACGGAGGTGCTTGGTCTT 

310 320 330 340 350 
TP ATTTNAATATACGCTNTTNTTNTTTTTTTTACCGCGGGTTGCTGGCACCA 
Rr CTATTGGAGCTGGAATTACCNCGGATGTTTGGTANCAGACTTGCCCTCCA 
Pr CCCGGCAAATCCAAGGAATTTTCAACCTCTGACGAGGGTTATATAAAATG 

360 370 380 390 
TP GACTTGGCCNCCAATTGGATCCNCGNTAAGGGGNTTTTNC 
Rr ATTGATCCTCGTTAAGGGATTAAATTGNACTCATCAAAAA 
Pr CCCCCCAAATCCTCCCTCTTTTAATCATTAACGGGGGGTC 

50 
50 
50 

100 
100 
100 

150 
150 
150 

200 
200 
200 

250 
250 
250 

300 
300 
300 

350 
350 
350 

390 
390 
390 



C. Aligned sequences of portions of ISS rDNA of Rhvdotorula ruhra TP !, 
Uhodmorula ruhra A TCC 9449 and Phaffia rhodo;yma amplified with primer 
NSIJmun. 



" 8 ~ ~ " 
TP _ ••••••• TAGG'fGAAC •• TGCGGMGGATCA •••••• TTAG'fGAA'fA'fAG 35 
Rr ••.•• , .•. GG'l'GACC •• TGCGCP.AGGATCA •••••• 'l"fAG'fGM'fA'!AtJ 33 
Pr 50 

so '70 80 to too 
TP GACGTCCA ••• AC'ft'A. , ••••••••••• ACftGGAGTCCGAACTCTCAC 6t 
Rr GACGTCCA ••• ACT'l'A •••••• , •••••• AC'l'TGGAG'l'CCCMACTCTCAC 6'7 
Pr TACAT'l'CATAGACTT'l'GTGT'l"l'A'l'AAGTGAA'l'.AGGAG'l"l'CGC'l'CTC'fTGC 100 

110 120 130 ltD 150 
TP ••••• '1"1"l'CTMCCCTG'l'GCAC'l'TG'l"1"1''1'.AG'l'AAC'l'C'ICGCMGM 1 U 
Rr ••••. T'l"l'C'1'AACCCTG'l'GCAC'1'TG'1"l'GGGGT.AG'l'AAC'1'CTCGC.A.AGM 112 
Pr GAGAG'l'T.ACTATCCa..MCMG'l'GGACAGGG'l'TAGAAA ••••• GTGAGAG 145 

160 1'70 180 110 200 
TP .AGCGAAC'l'CC'l'AT'l'CAC'1"1'ATAAACACA.AAG'l'C • TATGAA'fG'l'A'ft'AMT 16 3 
Rr AGCGAAC'l'CC'l'A'l"l'CAC'l"fATAAACACAAAG'l'C. TA!GAATG'l'A'ft'AMT 161 
Pr T'l'CGGAC'l'CCAAGT. • • • • • 'l'AAGT'l'GGACG'l'CCTAT , • AT'l'CAC'l'M'l'G 18 7 

210 220 230 240 250 
TP T'l'CAT'l'ACMAATAAAACT'l"l'CAACAACGGATC'l'C'1"fGGC'1'. CGCATC 212 
Rr T'l'CATAACMAATAAAACT'l"l'CAACAACGGATC'l'C'1"lGGC'. CGCATC 210 
Pr ATCCT'l'CCGCAGG, ••••• 'fGC.ACCT.ACGGAAACC'r'l'G'1'CACGAC'l"l'A'l'C 231 

260 2'70 280 2t0 300 
TP GA'l'GAA~CCCCCTCCCC'l'CCCC'l"l'CCCCCCTCCCACCCC 262 
Rr _ GA'l'GAAGAAGGGAAAAAACCC'l'CCCC'l'CTCCCCCTCC'l'CC, 'l'CC'l'CCCCC 259 
Pr CCCCAA •••••• ACCCHNCCCCC'l"l'C'l'TCCCCCC'l'.AC.CC'l'!CCCC'l'CCC 274 

310 320 330 340 350 
TP CCCCC'l'CCCC'l'C. • •••••• CCCCCCCC'l'CAACCCC'l'C'l'CCC'l'CCC • • • • 30 0 
Rr 305 
Pr CCCC'l"l'CCC'l"l'C •••••• , • C'1'C if fCC'l'T'l'. CCC'l'AC'l'CCct'fCCC'l'ft'l' 315 

360 3'70 380 ltD 400 
TP _ CC'l'C'l'CCCCCCC'l'CC'l"l'. 'l'CCCC'l"l'CC'l'ACACCCCCAft:l'C'l'CCCC'1"1'C'l' 34 9 
Rr _ CCACCCCCCCCCC'l'C'rl'C'l'CCCCC'l'GCCCCGCCCCC'l'TC'fC. CCGCft'C. 353 
Pr _ CC'l'CC'l'CCCCC f fCC'l'CCCCCCCT'l"l'C •••• C'l'CCCC'ICCCCCCCC'l"'CC 311 

uo czo uo teo 450 
TP _ • 'l'CCCA'l"l'CCC'IC. C'l'C'l'CCC'l'.ACATCC'l'ACCCCCC. CC'l'CCCC. CC'I'C'I 395 
Rr _ •• CCC, • TCCC'1'C'l'C'IC'l'CC'l' •• C'l'CC'l'CCACC'l'C. CC H N'l"l'CC'ICC 316 
Pr _ C'l'CCCCC'l'CCC'l'C. C'l'C'l'CCC'l' •• 'l'CCCTAC'l'CCCC'l'CC'l'CCCC. C'1"!C'1' 407 



uo no tao 410 500 
ft _ ftCCC'l'ACCCC'f •.•• C'IC'fCftc'fCC. C'fCCCCCCAC'I'CCC'Ia'CC'fCC CtO 
Rr_ CCC'l'CTCCACC! •••• CGCA!ItctGC.CGCTCCCCCCTr!CCCTCA!!C Ct1 
Pr CCCCC'l'CCCCC'fACftCCCCC'1"'fC'1"1'CC'l'CAC'f'fCC't, , • C CSt 

510 S20 530 540 550 
TP CCGCCCCCC'fCCCTCCCCCCCTTCCCCC'fCCCCCCCCC'fCCC'fCCCC.'fC C89 
Rr_ CC •• CCCCCTCC'l'CCCCCTTC'fC'fCCCC!TCCC'l'CCCC'fCCCCCCCCC'fC CIS 
Pr _ CC •• CTCCC'fCCC. C'fCC'fCC'ITl'CCTCTCCCCftC'fC'fCTC'l'CATAC'fC 501 

560 570 580 
TP CCCC'l"l'CCCCCCCCCCCC'fCCC'l'C, C'fCCCCC 520 
Rr_ CCCCCTCTCGCCf!ACCA'fCCC'fC'fC'fCC'fC, 520 
Pr TAC .• TCAC'fCiii •••• 'fCCCT ••. TC.... 520 



D. Aligned sequences of portions of ISS rONA and internal transcribed spacer (ITS) 
of Rhodoloru/a mhra TPl, Rh()(/otontla nthra ATCC 9449 and Phaffia rhodozyma 
amplified with primer ITS5mun. 

' 



10 20 30 to 50 
TP1 AGAGCC#.AGAGA'fCC~fffiG'HA~ 50 
~ •• WOAGAGA'fCCGftGfiGMW'th i'AtUtGlft'A'l'MAAft'DA'l' U 
Phd.fia •••• G'tAGG'tGaCcmcGG •••• MGca'fCA.'t't ••••• AG'tGM'l'ADGG 3'1 

10 10 10 to 100 
'rPl ACA'l"'CA'rACiACft'fG'fG. A'fAAG'tCIM'tAGGAG'f'tCGC' Jt 
~ ACA'l"'CA'tAGACi fNt i it i IA!'AAG'fGAATACJCWJ't'tCGC'tC'tC'l"''GC J8 
Pha.f.fia ACG!CCA •.• ACf!A •••••••.•••••• AC!'!'CIGAG!'CCGAAC'l'C!'CAC 70 

TP1 
~ 

Pha.f.fia 

TPl 
Rz 
Phaffia 

TPl 
IU' 
Pha.ffia 

TPl 
IU' 
Pha.f.fia 

110 120 130 uo 150 
GACIAG'l"l'ACTA~o ... •.AO ... ~ ••••• MAMG'l'G... • 1t0 
GAGAG'f'tAC'tA~O...a.AO,.\G'l"GCACAGGG' ••••• AGMAG'IG. • • • 131 
•••.• 't't!C'l'. DCCC!' •••• G'1'GCAC't'tGG''IIUJGMC'tC!CGC 110 

110 1'70 110 110 200 
.AGAG'l'!'CGGAC!CcaAG!"l'A ••••••••••••• AG'l' ••• TGGACG'l'CC'l' 
.AGAGT!'CGGAC!CCAAG't'tA ••••••••••••• AG'l' ••• TGGlCG!'CC'l' 
AAGAGUCGAAC'l'CC'l'.M'TCAC'l"A't'l'U.CACMAG'tC'l'ATGM'l'GTA't't 

210 220 230 2t0 250 
A'l'A'l"l'CAC!' ••••• AA'l'GA.!'CC't'l'CCGCAGG!'GCACC'l'ACGGJ ... UC:C't'fG 
ATA'l"fCAC!' ••••• AA'l'GA.'l'CC'l"fCCGCAGG'l"tCACC'l'ACGGA..~~C'n'G 
AAA'l'ft'l'A!"''ACAAMTMAAC't't •••••••• TCMCMCGGI.'l'C!'CftG 

210 270 280 210 300 
•• ~C~!'CAA •••••••• AAAAACCC'l'CCC!'CCC.!'CCCC'l'C 
•• 't'tAC~TCAA •••••••• ~·...a~CHMC!'TCCCC'l'CCCCCC 
GC'l'C'I'CG. CA'tCGA.'fGMCa..I\GCJI'...aA~Il.• ... •.ACCCHRNNHCCCCCCCCCCC 

310 320 330 350 

17S 
1'72 
160 

218 
21'7 
202 

257 
257 
251 

TP1 'l'!'CCCGCCCC'l' ••••••• CCCC!'C!!C~CCCCCC!'CCCC ••• CCC!'fC'l'C 217 
Rz !CCCCACCCCC!"'CC ••• CCCC'J'C'l'ACC't'DCCC'l'CCCC't'DCCC'l"tA. C lOS 
Pha.ffia CCCCC'l'CCCC'l'laCcrt!CCCCGl!"l'CCCC!CCCCCC!CAC.CCC!IC.C 211 

TPl 
Rz 
Pha.ffia 

310 370 310 310 tOO 
•ft'~'~~""l~"~fl"'l'f"'C'l'•~ll""!'""~'!'lftl"'lfCif"CC'l"CC •• CCC!CCC'fCCCCCC'tG'tCC'tCCC. CC'tGA 
!'CC'l'C'tCA. 'tCC'fCCC't'IC •• CCC'l' •• 'l'iCCfK'C!'. 'fCA'tCCCACC!'te 
CCC!C'tCCCCCCCCCCCCC'l'ACCC'l'CCQCCCCCC!' ••• ftCCCCCC'l'iC 

uo t20 uo uo no 
TP1 Cf fi fiC'fCGCCCCCC'ICCG ••• cc:ccACCCCCACA'ICCAC'IC'fCCCC'l'C 311 
IU' C'tC'tC'tCl'CftCCCi!CniCCCCCACCCG't'tCC'fC .-. C'fCAACACft 315 
Pha.ffia CCC'fC ••• C't't •• CCC'tCCUCCCCCC'fCC'l'CC'ICC'fC •••• CCCCCCCC 311 



E. Aligned sequences of portions of ISS rONA and internal transcribed spacer (ITS) 
of Rhodotorula ruhra TP l, Rhodotorula ruhra A TCC 9449 and Phaffia rhodozyma 
amplified with primer ITS l Omun. 



10 20 30 40 so 
TP TGCATTAATAGGGATAGTTGGGGGCATTTGTATTCCGTCGTCAGAGGTGA 50 
Rc . TCATTAATAGGGATAG'rTGGGGGCATTTGTATTCCGTCGTCAGAGGTGA 4 9 
Phaffia ATGATTAATAGGGATAGTTGGGGGCATNTGTATTCCGTCGTCAGAGGTGA SO 

60 70 80 90 100 
TP AATTCTTGG.ATTGCCGGAAGACAAACTACTGCGAAAGCATTTGC~GG 99 
Rc AATTCTTGG.ATTGCCGGAAGACAAACTACTGCGAAAGCATTTGCCAAGG 98 
Phaffia AATTCTCGGCATTCTCGGAGGACAAACTACTGAGAACGCATTTGTCACAG 100 

110 120 130 140 150 
TP ATGTTTTCATTGATCAAGAACGAAGGAAGGGGGATCGAAAACGATTAGAT 14 9 
Rc ATGTTTTCATTGATCAAGAACGAAGGAAGGGGGATCGAAAACGATTAGAT 148 
Phaffia ATGTGTGCACAGATCACGCCCGAAGGAAGAGGGATCGATTTCTCTTCGAT 150 

160 170 180 190 200 
TP ACCGTTGT.AGTCTCTTCTGTAAACT ........ ATGCCAATTGGGGATC 190 
Rr ACCGTTGT.AGTCTCTTCTGTAAACT ........ ATGCCAATTGGGGATC 189 
Phaffia ACCCGAGTCAGTCACTACTGAATCCTGATACCCAATCCCCAGATGGGATC 200 

210 220 230 240 250 
TP GGTACAGGATTTTTAATGACTGTATCGGCACCCGAAGAGAAATCTTTAAA 240 
Rr GGTACAGGATTTTTAATGACTGTATCGGCACCCGAAGAGAAATCTTCACA 239 
Phaffia AGTT .... ATCAGAAGAGACTACATCGGTATCTAATCGGTTACGTTCCCC 246 

260 270 280 290 300 
T P TGAGGTTCGGGGGGGAGTATGGTCGCAA.GGCTG.AAACTT.AAAGGAATTG. 2 8 9 
Rr TGAGGTTCGGGGGGGAGTATGGTCGCAAGGCTGAACCTTAAAGGAATTG. 288 
Phaffia CTACGTTCGGTCTGGAGCATTG .... AAAAC .• ATCCTTG •• GCAATTTC 288 

310 320 330 340 350 
TP •• ACGGA •. AG .•. GGC.ACCACCAGGTGTGGAGCCTGCGGCTTAATTTG 331 
Rr .. ACGGA .• AG ... GGC .ACCACCAGGTCTGGAGCCTGCGGCTCACTTTG 33 0 
Phaffia TTACGTAGTAGTTTGGCTACCCCCAGTCCAAGAGTC .•..•. TCACCT'l'. 331 

360 370 380 390 400 
TP ACTCAACACGG.GGAAACTCACCAGGTCCAGACACAATAAGGATTGACAG 380 
Rr GCTCAACACGGTGGAAACTCACCAGGCCCAGACACAATTAGGATTGTCAG 380 
Phaffia . CTGAATGAGGGGTATACAAATGGGCCCC ..• CCr::fATACCAA.T ••.• AG 373 

410 
TP ATGJlA'4J>._a;._a. •••••••• 
Rr ATT~~~-~-~ •••••••• 
Phaffia ATAAAATTCGGGGGGCC 

390 
390 
390 












