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ABSTRACT

The primary objective arthis thesis is to determine whether cy1()(oxic T lymphocytes (CTl) detectable

against CD4" lymphocytes in vitro act in vivo to promote CD4- depletion and thereby contributing to immune

dysfu.nc:tion and disease progression in HIV-I infected individuals. During this study, the relarionship between

the: level ofen activity against CD4 lymphocytes and disease progression was assased by carrying out a

series of in vitro experiments in a HIV-posilive cohon of -70 individuals.

£[ is well established mat eTL use c1onotypic T cell ~eplors (TCR) associated with the invariant

CDJ signalling complex. to recognize antigenic peprides bound to major histocomparibility compl~'l: (MHC)

molecules on the wget cells. Since PSI S cells express an FeR and Fas wligen. IgG ant'-CD3 antibodies can

trigger non-specific killing of PSIS cells by a variety of effector cells. Comparable inhibition of cellular

cytotoxicity against PSIS cells by 1~2 or by cycloheximide, a protein synthesis inbibilorprevenling Fas ligand

indLICtion.. confumed that the differenl levels of killing of10-2 treated and untrealtd. PSISs reflected the

extent that perforin and Fas ligand. rc:spectively. were utilized in larget cell killing.

Abnonnally high numbers of T cells from HIV·infected individuals undergo spontaneous and

aclivalion-induccd cell dead! (AleD), and also arc especially sensitive 10 Fas-mcdiakd apoplOSis. sUgge:sling

that FaslFas ligand (FasL) interactions might contribute to AlCD in HIV infection. We used treatmenl with

PMA and ionomycin to investigate the possible role of FaslFasL interactions in AICD in HIV infection.

PMAlionomycin·induced AICD measured using Cr release, DNA analysis and electron microscopy.

demonstrated that PMA and ionomycin acted synergi:stically to induce up 10 70% ~Icasc of incorporated Cr

from fresh PBMC ofHIV-infected individuals COOlpared with up to 26% rc:ase by healthy volunteers. Cell

delth required ceU-«1I coatllct and extracellular calcium. while it did not involve F~asL interactions or



ii
DNA fiagmenlation. bUI showed plasma membrane disruption with intact nuclear membranes ofdamaged cell.

We describe a novel fonn of AICO in T lymphocytes from HIV-infected individuals.

The presence. number and proportion of activated CDS" T lymphocytes in the peripheral blood of

HIY-inf«ted individuals correlates with disease progression. We examined the associations between

autoreactive CTL in the peripheral blood of HlY-infected individuals and disease progression. A significant

percentage ofHlV-seropositive persons (>50%) in our study cohort, in contrast to healthy individuls showed

cytolysis of PHA-activated uninfected lymphocytes. These autoreactive CTL were found to be C02S· CDS'

T cells which expanded with disease progression. A high proportion ofC028· CD8" T cells was seen in all

HIV-infected individuals with demonstrable levels of circulating CTL.

We have shown direct association between dte autoreaetivity and other markers of disease progression

such as plasma viral load. CD4- T-cell count, CDS' T cell count. and plasma levels OfPl microgloblilin. The

data is in agreement with the proposed hypothesis that dtese CTL actually conDiblite to immunodeficiency and

clinical progression to AIDS. Based on our data. CTL appe:1r to be a major conDibutor to disease progression.

Further studies based on longitudinal follow-up ofthese patients may help uncover the functional significance

ofautoreactiveCTL.
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CHAPTER!.

INTRODUCTION'

1.0 lNTROOUCTION

This chapter broadly outlines current concepts of the immunopathogenesis of human

immunodeficiency virus (HIV) infection. This is followed by a more specific discussion ofcytoto:l:ic

T lymphocytes (CTL) and their possible roles in the progression ofHIV infection to the invariably falal

immunodefICient state or acquired immune deficiency syndrome (AIDS).

1.1 DISCOVERY OF THE VIRUS CAUSING AIDS

HIV is a Ientivirus thaI has only recently been recognised as the causalive agent of AIDS. The

fll5t indication that AIDS could be caused by a retrovirus came in 198]. when Barrc-Sinoussi et aI.

(1983) at the Pasteur Institute recovered a reverse transcripuse containing virus from the lymph node

of a man with persistent lymphadenopathy syndrome (LAS). A concomitant publication by Gallo et

al. (1983) reponed the isolation of human T<ellieukemia virus (HTLY.UI) from individuals with

AIDS and argued that the ca.usaJive virus was this previously rcalgllised human retrovirus. Further

studies by Montagnier and coworkers clarified these issues regarding the LAS agent, indicating thac

AlDs..assoc::iated hwnan retrovirus was distinct from HTLY. Their virus. later called lymphadenopathy

&ocialed virus (LAV)_ gm¥ 10 high liter in CD4' cells and lOlled these cellular targets (Mootagnier

etaLJ934). These observations on LAY supported the potential etiological role ofa mrovirus in AIDS.

Levy C1 aI. (1984) also reported the identification of a retrovirus, they named the AIDS-associated



retrovirus (ARVl. All diese viruses w~~ recovered from AIDS palients from diffeRnl known risk

groups., as w~11 as from other sympcomatic and asymplomatic people. HIV isolales we:R subsequently

recovered from die blood of many patients with AIDS. AIDS related complex (ARC), and neurological

syndromes. as well IS from die peripheral blood mononuclear cells (PBMC) of scveral clinically

healthy individuals (Levyet al.. 1985a; Salahuddin et al.. 1985~ Soon after the discovery ofHJV-1.

a scparale virus. HIV·2. was identified in We:sr:e:m AtTica (Clavel et al. 1986). It is IlOwcstablished that

bolh viruses can lead to AIDS, although the pathogenic course with HIV-2 appears 10 be longer.

I.l HIVVIRJON

By electron microscopy, HJV·I and HlV-2 have cone shaped cores which are: biochemically

conslilUte:d by the viral p25 Gas protein. Inside the capsid, ue two identical RNA stlands with which

!he viral RNA dependent DNA polym~rase (Pol or reverse Il'anscripWC) and the nucleocapsid (NC)

proteins are c1ose[y associated. The inner portion of the viral membrane is surrounded by a

myrisloylated pl7 co~ (Gag) pnKein that provides the matrix (MA) for me vinl SInlCILlte and is vital

for me integrity of the virion (Gclderblom Cl al_ \988: Gc[derblom et al., 1989). Recenl studies have

suggested mat MA is required for incorporation orEnv proteins into mature virions (Yu et al., 1992).

The viral covelopc{cov) is characteristically made up oftrimcrsor tetrame:rsofglycoptoteins

(Earl ClaL. 1990; Gelderblom cut.., \98S; Oztlet aL [988; Pinteretal_ 1989: Wei$setaL. 1990). The

mature Env proteins are derived from a 160,000 D precursor, which is cleaved inside the c~1l into a

glycoprotein (gp) 120 external surface (SU) envelope protein and a gp41 transmembrane (TM) protein

(McCune et aL, 1988). Thescprnteins art; transported 10 Ibcccil surface, where partJoftheccntral and

N tenninal portions ofgp41 are also expre::sscd on me outside oflhc virion. The central region oftbe

TM protein binds to the external viral gp[20 in a noncovaleot manner, most probably in the



hydrophobic regions in the amino and carboxy termini ofgpl20 (Helseth et al., 1991). Generally. die

virion has about 100 limes more p2S Gag protein than envelope gpl20 (Layne etaL 1992; Moore et

al., 1991) and 10 times more p2S dian Ihe polymaase prolein (Layne et al.• 1992).

The gpl20 sinwed on the virus surface emlains the binding site for cellular receptor(s) and

die major neutralizing domains. Nevertheless, die external ponion of gp41 and perhaps pan ofpl7

have also been reported to be sensitive to neUlraJizingantibodies (Chanh et al.• 1986; Dalgleish el al..

1988; Naylorel al., 1987; Sarin et al.. 1986).

lJ TRANSMISSION OF HIV

There are essenlially Ihree modes ofrransmission oflhe virus from an inf~ted individual 10

another person; exposure 10 blood or blood products., sexual transmission and vertical transmission.

IJ.1 TRANSMISSION BY BLOOD AND BLOOD PRODUCTS.

The polenlial risk of infection of transfusion recipients depends on the virus load in the

conlaminated blood used for transfusion. which increases as an infmcd individual (as donor) advances

to disease (Perkins eI at, 1987). In hemophiliacs. infection could only occur through transmission of

free virus and was associated with receipt of many vials of unheated coagulation faclOfS (Evan et aI.,

1984; Eyster et aI., 1987; Goedert et al.. 1989; Koerper el aI., 1989).

IJ.2 SEXUAL TRANSMISSION

AIDS was fltSl identified as a sexually lrans.mitted disease in bomosexual men. However

subsequent studies dernonsttated heterosexua.l spreadofHJV. which accounts for the large majorilyof

infections work:Iwide(Nkowane et al_ 1991; Stonebumeret al, 1990). Transmission ofHIV in genital



fluids most probably occurs through virus-infected cells since they can be presenl in large numbers in

the body fluids. Presence ofocherconcomitant sexually transmitted diseases can~ IevelsofHIV

in genital fluids and lhus make transmission more likely (Cameron et aI.. 1989; Plununeret aL 1991).

Infection through anal inlercourse could occur following inlenlction of virus with cellular receptors.

especially those on the bowel mucosa Cfahi et ai. 1992) or the attachment of virus-antibody complexes

to Fe receptors on the mucosal cells (Hussain et aL 1991). Anolher possible means ofHIV entry eould

be via intestinal M cells present in the bowel epithelium (Amerongen el al.. 1991).

In the case of vaginal intercourse. the columnar and squamous cell epithelium oflhe vagina

can be a barriu to virus infection. so thai ulcerations caused by venereal diseases might be required for

infection at this site.

The insertive partner in sexual contact carries a relalively 'ower risk of infection, although

(Winkelstein elal.. 1987) transmission could occur through infection of macrophages or lymphocytes

in the foreskin or the urethral canal. Finally oral-genital contact could also potenlially lead to infection

of either partner. albeit at a 'ower frequency (Winkelstein et aL 1987). Non tnIumaric oral exposure

to cell-free srv was shown to infect adult macaques {Baba Cl a.l~ 1996). These infected macaques later

developed full blown AIDS indicating the possibility of an onll transmission of the virus and

subsequent systemic disease in humans also (BIba et al, 1996). In all roules of sexual contact. an

increased numberofvirus mfectedcells in the genital fluids andar ksionson the mucosal surfaces(eg....

resulting from venereal disease} would increase the risk oftransmission oflhe virus.

1.J.J TRANSMISSION FROM MOTHER TO CHILD

The tnmsmission of HIV from mother" to child appe:m to occur in II to 60% of

children born to HIV'" mothers (Ades el at, 1991; Blancbeel at., 1989). It appears thai tnnsmission



can occur either in utero during or after delivery (Rossi, (992). Suppan for intrauterine transmission

comes from the detet:tion of HIV in placentas and fetuses by in situ hybridization. polymerase chain

reaction (PCR) and immunobistochemisuy (Coorgnaud el aL, 1991~ HJV has abo been isolated lTom

con:! blood amniotic fluid. and placental and fetal tissues (Chandwani et aI., 1991).

The factors involved in transfer ofHIV from mother to chikl could be studied in relation 10 Ihe

SIV infection. Transmission of this primate virus appears to occur primarily when the animals are

sexually active and not during binh (McClute et al.. 1992). SlY transmission to one of the three

offsprings was demonstrated in pigtailed macaques (Mac:oco nemesrrina) (Oehs et al.. 1991). The

consistency of this result. which resembles lransmission in humans. needs funhersrudy. Ho~erthis

observation could suggest an HIV transmission model. since pigtailed macaques have been found 10

be sensitive to HJV infection (Agy et al.. 1992). If the factors influencing maternal transmission ofHIV

can be well defined. anliviral approaches could be better IargCled.

1.4 CLlNICAL SYNDROME OF ACUTE HIV lNFECTION

A recendy infected indiyidual can present wilhin I 10 3 weeks with signs of acule virus

infection. Symptoms include headaches, reIrOOrbital pain. muscle aches, sore throats. low grn or high

grade fever. and swollen lymph nodes, IS well as a non pnlritic. maculopapular erythematous rash

involving the II'\lnk and laler lhe exttmlities (Cooper et aL (98S). In acutely infected indiyiduals.

pneumonilis, diarrhea, and other gastrointestinal complainES have also been reponed (Tindall and

Cooper.1991). These symptoms usually last for 1 10 3 weeks. although lymphadenopathy, lethargy,

and malaise can persist for many months. In general, primary H1V infection is followed by an

uymplonwic period ofmany months to years..



In a groupof23 persons at riskofHJV infection who wen: followed evff'j sbc: months and who

became infected. 11% I\ad symptomless acute infection and 95% of these patients sought mcd.ical

evaluation (Schacker et al., 1997). But only one in four patienlS in this study received die appropriate

diagnosis of acUie HIV infection at the first clinical visit, even though there should have been a high

level of suspicion. Laboralory studies perfonncd during the initial infection may show lymphopenia

and thrombocylopcnia, but atypical Iymphocylcs are infrequent (Quinn, 1997).

Infected individuals are often lymphopenic and thrombocylopenic during the first week

following HIV infection. In the second Wft:k, lite lola! number of lymphocyteS increases. primarily

because ofe:<pansion ofCOl' cells. CD4' cells are reduced in number. Thus. during ltIis period, the

C04'/C08' cell "llio is invened. Moreover, atypical lymphocyles can appear in Ihe blood (Cooperct

al.. 19&8) but usually in smaller numbers in primary HIV infection Ihan in EBV, CMV or olher

infections IItal elicit • similar response (Coopetet aI., 1988; Gaines er at., 1988). Overthc following

months, number ofltle CD8- cells remains grealerthan that of the CD4' cells, which increases 10 a

smaller extent and so the ratio remains invcned..

During acute HJV infection, the infected individual dcmonstraIcs antigcnemia and viremia with

high levels of infectious virus in the peripheml blood (Clark el aI., 1991; Our et aI., 1991).

Seroconvcrsion can occur days after infection, but antibodies to HlV generally appear after I to 4

weeks. In studies performed by Cooperer aI., (198S) and Gaines etal.. (1988), {gM antibodies were:

fIrSt detected in some paticnlS IS early as 6 days post infection. IgO levels could usually be

demonstrated by an indirect-immunofluorescent assay within two week!.

Some studies have reported HIV specific: helper T cell responses shortly after acute infection

before seroconversioa (Clerici et aI.. 1991). Conceivably other cellular immune responses are evident



before humoral immunity is evident {Clerici et aI.• 1992a). Mackewiczand Levy, (1992) have reported

COS' cell &nri-HIV activity in one individual before sernconvenion.

1.5 KJV INFECTION OF CELLS

HIV infection of human cells involves a series of steps.

1.5.1 CIM MOLECULE: VIRUS RECEPTOR ON CELLS

An early breakthrough in the study ofHIV was the discovery of its major cellular receptor, the

C04 molecule. P~fe~ntial growth of HlV in C04· lymphocytes was then e:<plaincd by its anachment

to IheC04 prn(ein on the cell surface {Dalgleish et at, 1984: Klaamann et al.. 19&4; Klaamann et aL

[984a).

With the cryStal structure ofC04 now known (Ryu el al .• 1990; Wanget al.. 1990) the gpl20

binding site has been located on a protube1'1Ult ridge along one face of the VI domain. Recently using

viral mutanlS and high resolution CD4 a1omic: SttUCture. Moebius er 81.• (1992) have delinea!ed the viral

attaclunentsite further. These studies indicate that Ihe class n MHC binding site appears to include the

same CD4 region as the gp12(l.binding sire. (Moebius ct al.. (992). Thus. this overlap might affect the

use of inhibitof$ of the CD4-gp120 interaction.

Further Si1CS on CD4 could still be involved in HlV binding and (or fusion such as the CoRJ

domain of the VI region (Autiero erat., 1991; Corbeau etal., 1993). It was suggested that this region

playa role because CDRJ·related peptides block the CD4-gp120 interaction (LiMn et al., 1991) and

mutations in this ~gion decrease fusogenic activityofHIV (Camerini and Seed, 1990).

R.eml.t findings by Deng et al (1996) and Dragic et at. {I 996) have indicated that in on:Ier to

infect a cell, not only does HIV have to bind to the CD4 receptor on the cell surface. it mUSt also



Cl\rol the help ofa second rec~orknown as CC-CKR·5. This co-re«ptor isa binding site fortbe

attractant molecules RANTC:S. MIP-Ia, and MIP-Ip,. These studies show that RANTES. MTP-Ia. and

MlP.\P, all inhibit HJV·\ infection by blocking viral fusion and Cl\try, and dwexpressim ofCC-CKR·

S chemokine-receptor gene together with that for CD4 renders the cells susceptible to infectm by

prinwy non-syncytium forming (NSl) strains ofHIV·\. It is not yet clear whether the respective

chemokines competitively block their receptors against HIV entry, or whether the chemokine binding

results in down-regulation ofcell-surface expression of the receptor.

1.5.1.l CORECEPTORS IN HIV INFECfION

The first identified coreceplor. CXCR-4. is a receplor lor the a. (CXC) subclass ofchemokines

and mediates Cl\try/fusion of T-cell tropic strains ofHIV (Fcng et aJ.. 1996). Another receptor forthc

members of the p, (ee) chemokine subclass, eCR·S. medilUes entry/fusion of mac:rophage-tropic

isolatcsofHIV (Alkhatibetal.• 1996). This moleculc SCTVes as a receptor for RANTES. Mlp·1a.and

MIP-\P and thus provides the basis for chemokine-mcdiated supp~ion of HIV. Later. a CXC

chemokinecalkd SDF·I. a ligand forCXCR-4 was shown to suppteU replication of1-«1I tropjc HIV

isolatcs(Bleuletal•• l996).

The selectivity for the specific cOre<:eptor is governed by the HIV envelope glycoprotein

gp120. The third hypervariable region (V3) ofthe molecule appears to be the major determinant (Cochi

et al.• 1996). Paradoxically the V) loop is also the leastconservcd region ofgpl20 and contains highly

strain specific neutralizing epitopes. However, certain highly conserved residues are present, and they

may contribute to a conserved structural motiftbat broadly facilitates chemokine receptor interactions.

Chemokines supp~ HI\' infection by blocking the viral entry process supported by chernokine



meptoTS. Following the binding of oligomeric vil'lll gpl20 10 CD4 on the host cell surface. the

resulting CD4-gp 120 complex binds a coreceptor (Wu et aI.• 1996) which. in tum. exposes the N­

terminal fusogenic sequence ofgp41 (Chan et a1~ 1997). Che:rnokinesdisrupt this process by mueing

cOttCeptor internalization (Chan et al. 1997) into endosomes (Chan et aI~ 1997) which effectively

prevents the fonnation of gpI201CD4/corecptor tricomplex. Most of the evidence indicates !hat this

inhibition does not require coreceptor activation. First. Ireatment of cells with pertussis toxin. which

is a sele1:!ive inhibitor ofG proteins involved mainly in chemokine-induced intracellular signalling,

rails 10 mfuce chemokine-mediated suppression or HIV replication. Doranz et al.. I~ Second,

mutanl chemokine receptors are impaired in their ability to transduce intracellular signal-cxhibited

comeptor activity (Atchison et al.. 1996). Third. the chemokines modified at their N-tennini act as

antagonists ortheir wild-type counterpartS. but do not trigger receptor activation. and are: active as anli­

HIV (Simmons etaL, 1996). Finally, some monoclonal antibodies mat possess anti-HJV activity bind

to bind to CeR-S or CXCR-4 without triggering intracellular signalling (Endres el aI.• 1996).

Another enigmatic reature orchemokine-mediated HJV suppression is that a ligand specific

ror one cote1:eplor can be effective againsl some viral strains even when other usable coreceptor species

are present. Brain derived cell cultures expressing both CCR-] and CCR-S were protected from

intemon by reponed pseudovirions containing NSI envelopes by treaIment with either eotaxin or MlP­

I~ alone (8ron et aI., 1997). This suggests that certain chemoreceptCltS might be downregulaled from

the cell surface in a co-ordinated manner or that there may be cooperative use ofdifferent coreceptors

by at [east some HJV isolates.
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1.5.1.2 ROLE OF CHEMOKINES IN HIV PATHOGENESIS

At the coreccptor level, it has been established that specifIC alleles in coreceptor genes

modulate expression and profoundly influence HIV infection. The most studied is a CCR·S allele (.132)

encoding a 32 base pair deletion. This gene produces. truncated and non-functional receptor form that

is not transported to the cell surface. Homozygosity of rhis gene confers strong resistance to HlV

infection although a few cases of HIV·infected 632 homozygous individuals have been reported

(Michael et aL 1997). Heterozygosity for Ihe mutated allele is associated with a slower cour.;e ofd~

progression (Endres et al. 1996). The effect in hClerozygoles appears to be a transdominant suppression

o(wiJd..typeCCR.S coreceptor function due 10 an intracellular association ofdefective and nonnaI gene

products (de Roda Husman et aI., 1997) leading to retention in the endoplasmic reticulum. The net

ft:Sult is decreased surface CeR·S exp~ion relati~ to wil~type homozygOCcs. However. lhep~

of .632 CCR·) is not associated with any known patliology in either the homozygote Of" the

heterozygote'.

In addition 10 the conuol al the il:nd:M: level, coreccptOr exp~ion is a function of ~eptOf·

ligand inleractions that mediale surface down·regulalion. Givl:n the Significant effeclS of red.uced

co~eplor expression on HIV infeclion, it is entirely plausible to expect that chemokine levels

themselves axrelate with disease. progression. " is also possibll: thaI certain get1d:ic alleles that red~

~ptor expression wort in concert with chemokines 10 modulate infection. Several groups have

attempted to determine whether there is an inverse COI'TCIa!ion with chemokine levels and disease

progression. One approach was to measure plasma or serum levels ofRANffiS, MIP·IQ.and MIP.lp

in several cohorts. Overall, these studies have failed 10 show an inverse comlation between chemok.ine

levels and disease: sIaIUs (ZanlJSSi etaL, 1996). A much moresuccesful approach has been to measure
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chemokine release by primlllY PBMCs activated in vitro. In early studies. two groups failed 10 delect

• com:larion between production ofchemokincs and disease progmsion (Lusteret al.. 1995: Bl.a2rlic

et aL, 1996).. However. adler groups subsequently found a signirtcanc corT'elation between RANTES

prodUC1ion and resistance to infection and ckcreased MIP-Ia. production in symptOmatic HIV' patients

(Mackewicz et at 1996). The dispariti~ between various studies likely arise from subtle differences

in sample acquisition. storage and manipulation.

Taken together. these stUdies present an emerging picrut of HIV pathogenesis in which the

production of suppressive chemokines controls disease progression. The results also suggest that in

response 10 HIV antigcns. CD4- etTCl:tor T cells release antiviral chemokines at the site of viral

production. This will not only protects local target cells. but will also protect the activated effcclOr cells

by inducing autocrinc down-regulal:ion of eCR-S. The induction of this response pmduc:cs an

asymptomatic state for some period oftime in all individuals, but a broader and more robust response

leads [0 non-progression or in~ cases. pltlrection from infection.

1.5.1.3 SUPPRESSrvE CHEMOKINES SECRETED BY CDS'" T CELLS

It is known thai CD8+ T cells fiom HIV seropositive individuals produce a soluble non·

cytolytic activity thai suppresses infection by HIV in "jrro (Walker et a!. \986). The production of

suppressive activity was shown 10 correlate with immune stalUS and to steadily decline in parallel with

disease progression (Walker et a!. 1986), indicating that the responsible factors may control infection.

Because ofthese propenies, the identification offactors responsible for HIV·l suppression has been

a major objective in HIV·\ research.

Although SDF-\ is an obvious possiblity for the balance ofsoluble activity effective with SI

isolates., recent studies have shown thalthiscytokine is noc: involved(Moriuchi etaJ., 1996). Therefore.
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an alternate possibilty is that other c:hemokincs make up lhe balance of soluble suppressive activity.

When HTLV·! immortalized CDS" Tcells ftom HrV~1 infected individuals werescreencd focHIV-SF.

using an acute infectivity assay with activattd. CDS' T cell-depleted PBMes and virus HlV lllll. a cell

line exhibited suppressive activity against HlVWB as well as primary T.tropic and M.tropic isolates

(Lacey et aI.• 1991). The molecule was later identified as a ~ chemokine. macrophage-derived

chemokine (MOC) (Pal et aI. 1997). The ptIrifted chemokine suppressed a variety ofT-tropic and M·

tropic primary isolates and thus demonsQ"llted a broader panern ofsuppression. It has been reponed thal

MDC mRNA and protein are also expressed by activated CD4' and CDS" T cells from healthy

individuals (Pal ct aI.. 1997: Godiskaet aJ.. 1997). The production byCDS' T cells further implicates

MDC as lIle soluble sup~ive faclor.

1.5.1.4 CHEMOKINE·BASED THERAPEUTIC APPROACHES

Given the features of com:epior functions and novel insights into me pathogenesis of HIV

infection. there are at least two different ways one can exploit the knowledge for therapeutic

implications. First, molecules can be ciesiifled that can prevent HIV binding to the coreceptors. without

aiggering intracellular signalling. Second, mokcules can also be designed that down~1ale receptor

c:xpos~ on dte cell surface.

An approach described recently uses a novel concept to induce receptor down-regulation.

Chemokine receptors arc coupled with an endoplasmic reticulum retention signal, thus causing the

chemokine to be retained intracellularly in the endoplasmic reticulum ("intrakine"). Receptor

expression on the membrane is down~gulated in cells producine intrakincs. as the receptor binds 10

its ligand int:raeellularly and therefore its exposure is prevented (Ooranzet al.. 1991; Donzellaet al••
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1998). As a result HN infection is inhibited in cells exp~ing intrakines. This approach could be

useful as a gene: therapy protoeol 10 ptofectcells from infection.

Another recent study showed that viral pseudotypes containing CD4 and appropriate

chemokine recepfors were able 10 urget HfV- and SlY-infected cell lines and primary macrophages.

The targeting was shown 10 be related 10 the spe<:ificity of the viral envelope for a given CD4·

chemokine receptor complex. This novel approach might contribute a new stralegy 10 talXet

specifically HJV·infecled ccl!s.lhus providing an imponanllool for gene therapy approaches (Chen

etal. 1997).

1.5.2 POST BINDING EVENTS IN VIRUS INFECTION

The post binding events ofHIV corry are also made up ofa sel ofsequenlial steps.

1.5.2.1 ENVELOPE SHEDDING

The HIV envelope proteins can ~ involved in steps other than binding to cell surface

receptor. during virus infection ofa cell. Some reports have suggestat that after attaehmenl to the CD4

molecule, the gp120 is displaced. uncovering the domains of gp41. which is needed for virus-ceJl

fusion (Saneotau and Moore. (991). Recent analyses suggest that this displacement ~ults from the

dissociation ofa knob and socket likestruetule involving the carboxy lCmIinai~ ofgpl20 and the

cenrral ponioo ofgp41 (Sc.hullZetal., 1992). Shedding does not appear to occur (Dimitrov et aL. 1992)

Orlo be necessary as long as the fusion domain on gp41 is exposed (Sanentau and Moore. 1991). tn

this regani. the soluble CD4 (sCD4}-induced sheddingofgpl20 from viruses, observed in vitro. has

not correlated well with virus entry or the viral envelope syncytial properties (Berger et al.• 1992).
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1.5.2.2 ENVELOPE CLEAVAGE

Another event involving the HJV envelope that influences HJV entry infO cells is the intracellular

cleavage of gp120. Certain studies of gpl20 have revealed sites within the V] loop that could be

sensitive to selected cellular proleases (Hattori el a!., 1989). The proposed concept was that these

e!ttymes, when present in the cell. cleave gpl20 in the V) region after binding. This m tum facilirates

a conformational change in lhe envelope so that a vn! region like: gp41 can subsequently fuse with the

cell membrane ($anentau andM~ 1991}. Thus, theCD4' cells dtatcannOl be infected by certain

HlV strains mighllack lhe netessary proteolytic enzymes recognizing a cleavage site oflhat particular

viral V3 region.

The hypothesis ofenvelope: cleavage has gained some: support f'rom evidence demonsrntini

gpl20 digestion by proteases (Clements el aI., 1991). Recent studies have shown thate.~~ ofHIV

to sCD4 leads 10 cleavage ofgpl20 by proteolytic enzymes (Moore et at. 199 [). This phenomenon can

be blocked by monoclonal antibodies (rnAbs) to certain regions of the V3 loop (McKuting el al..

199'2). However the importanCe arlhis event has to be funher investigated.

1.5.3 VIRUS CE:LL FUSION

Enveloped viruses such as HIV enter cells following fusion with the cell membrane. The

mechanism for this process in HN invasion is noc yet known. The fusion step could follow a

confonnarional change in !he CD4 molecule as well as. dissociation ofthe envelope gpl20 or~

of its V) loop (0 prolcolytic cleavage.

The Unerics orlhis fusion reaction suggestS continued attaclunentofvirus 10 mcmbraneCD4

while the fusion takes place (Dimitrov et al, 1992). Thus, a»npicte gpl20 shedding docs nOI occur
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although some displacement. might be involved.. The V) loop as well as gp41 could be important in

this membl1lllc fusion C'VCl\t (Berger Cl aI.• 1m). Infectivity presumably results from the virus<ell

fusion (Bergeron et at. 1992).

Some observations suggest that the CD4 molecule. in addition to binding coukl be required

for the fusion afme viral envelope with the celJ surface. Elimination aCIhe proximal region ofCD4

through molecular techniques reduces viral infection. It also eliminates the ability ofcells to fuse to the

infected cells (Poulin et at. 1991). Nevenheless. whether virus-cell fusion and cell-eell fusion involve

the same processes is still unknown. Finally, the nature of putative cellular fusion receptor (s) is

unknown although a glycolipid that mediates HIV infection has been identified on CD4' brain-derived

and bowcl-derived cells (Harouse ec al" 1991).

1..5.4 DOWN MODULAnON OF THE CD4 PROTEIN

Anomerearlyevenlse.=n with HIVinfed:ion in human Tc;cl1s islhe disappc:ar.lnct: of the CD4

pmtein from meccll surface (Hoxie et al. 1986). Thee.xte:nt and timing aCme down.;egulation depend

on lbe level ofvirus production in the infected cells (Stevenson etaL, 1987; Zaguryet aI., 1986).

In viao. lossofC04 e:~prt:SSion gtnerallyoccurs sevem days after HI\' infectionofceUs when

suffkiem progeny virions are produced. Thus. a reduction in chronic HI\' production ofa T-cell line

with a Tal antagonist, restored CD4 expression (Shahabuddin e1aL. 1992). The mechanism for allered

expression of this cell surface receptor is still nOI dear. By using interviral recombinants, this CD4

down-modulation has been linked to the envelope region (York-Higgins et aI., 1990). The CO'

receptor does not internalile with HIV during infection, and CD4-related signal transduction events

are not involved in virus entty (Orloffel at, 1991a& b).
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Some reportS indicalc that down-modulation involves an amst ofCD4 mRNA transcription

(Salmon el aL. 1988), wbile others demonsttatecomplexing ofCD4 with the envelope gpl60 within

(he cell (Crise CI aI., (990). Some studies have also suggested masking ofCD4 by the envelope gp120

attached to the cell surface (McDougal el al.. 1986: Sanentau et al.. 1986). Finally. some researchers

suggest thai the CD4 molecule is removed by budding virions (Meerloo et aL 1992). The relative

effect of each of these processes on CD4 expression again most probably depends on the particular

virus and the cell infected. The rtlevance 10 pathogenesis is unclear since some viruses do not modulale

the expression ofC04. however the removal armis HIV binding site dots prevent superinfection of

the cells with other HIV wains.

1.5.5 POSSIBILITY OF ANOTHER CELLULAR RECEPTOR: lNFECf10N OF CJ).f"

CELLS

HIV can infeel many types of CD4- cells. These include human skin fibroblasts. (Tareoo et

al..1989) muscle and bone derived fibroblastoid «lIlincs (Clapham et al.. 1989), human aophoblast

cells. follicular dendritic cells. brain derived glia.! cells (Cheng Meyer et al.. 1987), brain apillary

endothelial cells fetal adrenal cells (Barboza et al .• 1992) and human liver carcinoma cell lines (Cao

et aI.• 1990). Evidence for another cellular re<:plor in virus entry into these cells comes from studies

with Mabs 10 CD4, incubation of virus with sCD4, and lack of detectable CD4 mRNA in the vina­

wgettedcells.

The rate of viral replication is generally law in the CD4' cells (Tateno et aI., 1989), and the

limited virus production is a consequence ofincfficient viralcnay, since usually fewer than l%ofCD4­

cells become infected (Mellen et at, 1990). To detect HIV production in these CD4- cells, co-­

cultivation ofme cells with other sensitive targets, such as PBMC, has been required (Tateno et aI .•



1989), Recent sNdies su~t that eytOkinc:s product<! by the PBMC can enhance mv production in

CD4'cells. in partK:ular tbose of brain origin (Swingleret al .• 1992).

The nature of theeell surface molecule(s) responsible for viral entry into lheCD4' cells is not

known. but entry conceivably amid involve a fusion reeeplor (Taleno et al.. 1989). This route ofentry.

however. lIS noted above. is quile limited when compared to the CD4-mediared process. One conclusion

could be thai forCD4' cells. !heanachmenl [() CD4 enhances the inlt:raction ofthe viral envelope with

the cell surface fusion recepIOr. Cells lacking the CD4 molecule would use the same mode ofentry but

it would be much less efficienl

Finally. work demonstrating !he lymphocyte funcljon associated antigen' I (LFA.1) adhesion

molecule as a participant in HIV infection offers alternative mechanism for viral entry. although its role

appears primarily to be in cell-eell fusion (Hansen el al.. 1989).

1.5.6 CELL-TO-CELL TRANSFER OF VIRUS

Besides entering a cell as a free infeclioos particle. HIV might be passed during cell to cell

contacl Evidence has been presetlted that HIV can spread rapidly from one cell 10 anolher without

fonning mature virions (Sam et &I.. 1992). Transfer of nudeocapsids is probably involved. with

subseqUeDl de novo reverse transcriplion (Li et aI.• 1992), MOm)ver. HIV can be ttansmined from

monocytes or lymphocytes 10 epi!helial cells during such close contact that neutralizing antibodies do

nOI block !he transfer (Philips el al.. 1992). Thus. HlV spread in Ihe host could result from cell·to cell

transfer (via cores or virions) as well as from circulating free virus. During cell-to-eell contact,

neutralizing antibodies might not prevent this !ype ofinfeclion.

In summary. the leading coocepl on early evenlS in HJV infection is that .attachment of HIV

[Q the CD4 molecule most probably leads to some confonn.ation.al changes in virus gpl20 and perhaps
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CD4 moIKu[e. The initial attachment appears to be at one site on CD4 (the complementarity

determining region (CDR) 2 domain). Subsequent displacement of gp 120 or cleavage afthe envelope

protein by cellular enzymes most likely causes changes in the viral envelope, permitting the interaction

of gp41 with the target cell membrane. This could possibly involve another cell surface receplor and

su~uently. virus-celt fusion occurs (Sanentau and Moore. (991). Without CD4 expression. fusion

of viral gp41 with the cell membrane might take place but the efficiency of this process might be

greatly limited. Finally, the spread aflhe HIV in the host results ftom production of infectious progeny

and also. most probably. by cell·!Q.Cell transfer of immature virions.

1.6 OTHER MECHANISMS OF "IV ENTRY INTO CELLS

HIV can ioret! cells by mechanisms olher than the interaction of its envelope proteins with

surface receptors. Anlibody-dependent enhancemenl (ADE) ofHIV infei::tion involves binding of the

Fab portion ofnon-neulralizing antibodies to the surface oflhe virion and transfer ofthe virus into cells

through complement or Fc receplors (Homsy et aI., 1989: Horvat et aL. 1989). Fc-mediated infection

by HIV highlights a polenlial role of herpes viruses as cofaclors in l-DV infection. Since these viruses

can induce Fc receptors on the surface of infccled cells (Keller et aI., 1976; Bauke and Spear, 1979)

they can then serve as polential target cells for HIV. Further serological slUdies of individuals infected

wilh HIV are needed to answer the question of the clinical relevance of ADE.

Another mechanism for HIV entry inlo cells is phenolypic mixing (Boettiger, (979). By this

process. a viral genome can be enclosed within the envelope ofa different virus and have the hOSlrange

of that virus. Moreover, HIV pseudo-typeS have been produced in vitro willi herpes virus and

rhabdoviruses (e.g., vesicular stomatitis virus) (Weiss et aI., 1986). Viruses lhat can undergo

phenotypic mixing with HIV-I are HIV-2. HTI..V·I. vesicular stomatitis virus, herpes virus and murine
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xenotropic, ampholropic. and polytropic type C retroviruses. Whether fonnation ofpseudo-lYpe virus

particles occurs in nature is unknown.lflhis is the case, HIY·infetted individuals co-infected with

herpes viruses or with HnV-\ would have virus populations representing phenotypic mi.'tlUres with

these two agents (landau e! al, 1991).

The tenn 'superinfeaion' is also IJSCd to deno!t infection of an individual by more than one

HIV strain. In this case. individuals canying both HJV·J and HIV-2 are documenled (Evans et at,

1988; Rayfield et aI., 1988). although this event is most probably uncommon. Moreover. chimpantte:S

can be simultaneously infected by more than one HrV·l strain (Fultz et at, 1989). In none oflhese

cases, has recovery of two dinincl viral strains from lhe same cell been documented.

1.7 HIV CYTOPATHOLOGY

Anot:her important biologic feature ofHJV infection is fonnation of multinucleated cells in

culture (syncytium). resulting from the fusion of infcc led cells with uninfected CD4' cells (Lirson el

al.. 1986; Lifsonetal.. (988). Syncytium formation is often the fimsign of HIV inf~tion in culture

and can appear within 2·] days. Ba[[ooning of the cells accompanies this cytopathic effect most

probably resulting from membrane permeability changes. This ce[k:cll fusion does not require DNA.

RNA or protein synthesis (Hansen et aI.• [989: Tang and Levy.l990). Whether this process is directly

relaled to virus<ell fusion is no( clear. but the cell fusion process certainly involves the CD4 molecule

and both the HlV gp120 and gp41 envelope proteins (Sodroski et ai., 1986).

The role of cellular membrane proteins. such as the adherin LFA·l, in cell-cell fusion has

recently been emphasized (Hildreth and Orenw, 1989). Monoclonal antibodies (Mab) to this cell

surface protein block cell aggregation and syncytiwn fonnation, but not virus infection (Pantaleo et aL,



20

1991). The process oreel! fusion has been linked 10 viral cytolO:ticiry and cell death (Lirson et aL

1986).

Cytopalhology and cell death during acute HIV infection in vitro is often associated with

accumulation ofvlral DNA in the c:y1Oplasm ofthe inf«tedceUs (Levyet aL 1986: Shaw et aL 1984).

However, it is not known whether Ihis process occurs during virus infection i" vivo. Similar

observations have been made with infected T cells arrested in division (Tang et al. 1992). These

Observalions support the conclusion that high levels of intracellular viral DNA can be !Oxie to the cell

and, in the early events of infection. contribute to cell killing (Levy et al.. 1986). Nevertheless, single

cell killing is not associatcd \Nitti accumulation of viral DNA in the cytOplasm (Bergeron and SodI'O$k.i

1992). A variety ofpnxesses can be involved in virus-mediated cell death. reflecting toxicity of vimI

proteins.

U CONTROL OF HIV REPLICATION

Once the virus enters cells as a ribonucleocapsid. several intnu:cllular events lake place that

lead to thc integration ora proviral form into the cellcluomosome. The viral RNA. still assoc:ialerl with

core proteins. undergoes revene transcription, using its RNA dependenl DNA polymerase and Rnase

H activilies and eventually fonns doubled stranded DNA (reviewed in Greene, 1991), These DNA

copies of viral RNA then migrate into the nucleus, where rhey inlegrate randomly to the cell

chmmosome.lnlegmion ofl:he provirus appears to be random and is essential for tbe cells 10 produce

progeny virions. Recent observations on the early evenlS ofviraJ infection have revealed notewonhy

featur~ of HIV replication. In T cells arresttd in division. virus infection is abortive. wheteas in

nondividing macrophages and epithelial cells, progeny production takes place. In pennissive activated

Tcells., HIV undergoes integration and replication within 24 h (Kim et at, 1990). In macrophages., the
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process is similar but progeny production appears to require 48 h (Munis et &I., 1992). The earliest

mRNA species made in the infected cell have low molecular weights, representing the vinllong

terminal repealS (lTR) and the rcgulallxy genes, particularly tQt. rno and lief (Greene, 1991). (I

appears thai Tal is made first and up regulates the production arReY. Presumably, the predominance

ofany one oflhese gene products can determine whether HIV infection will lead to a productive or

latent stale. The pr6ence of Tat at high levels will slimulate substantial virus production (Dayton et

al.., 1986).ln the Ialestage$ ofthe vinas replicative cycle., Rev would down-regulaJe its own production

and cause: decreased progeny formalion and perhaps latency. In cells nOI fully permissive to HIV

replication. the relative e.xpression ofthese regulatory pro(einscan differ. leading to abortive infection.

persistence of virus traces. or a talcOI state (Pomerantz el aI., 1990).

Cellular proteins thaI could innuence virus ll:plication are those reponed 10 increase rat

binding 10 TAR (Alonso et aI., 1992). Recent experimenlS have suggested thai two related cellular Tat­

binding pl'Olt:ins might compete to up regulate (e.g.. MSSI) or down-regulate (e.g.. Tat binding p('O(ein

I) Tat activily and thereby affecl HIV production (Nclbock et aI., 1990: Shibuya et aI., 1992). Their

mechanisms ofldion need furtherclucidation. The potential for using these observations with Tat 10

develop more effective antiviral therapy merits further evaluation.

The processes involved in T cell activalion are IK)( fully defined but are known to affect HIV

replication via the inlmlCtion ofinlnCellular regulatory factOB with regions in the viral LTR(reviewed

in Gaynor, 1992). This activation is part of a signal transduction process by which the binding of

antigens or mitogens to the surface TCR and COO8 molecules affects gene expression within the cell.

The activation is reflected by an incrnsc in the concentration ofintraeellular frtc calcium and depends

on the subsequent activarion ofcakium-dependent protein kinase C (pKC) and odin phospkorylarion

events(Kinteretal., 1990). Following the T cell stimulation. cellular transeriprion factors are released
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fi'om intracellular inhibitors (e.g., NF·dl &om its inhibitor IKB) (Nolan et aI.. 1991). via

phosphorylation by PKC. They enter the nucleus, where binding to other cellular proteins and. in the

case ofHlV. attachment to vir.L.I DNA sequences take place. The interaction of these transcriptional

factors with viral LTR regions can up regulate viral replication. Identification of the cellular

transcription factors involved is still ongoing. bUI many have been rerognised (reviewed in Gaynor.

1992). Certain cytOk.ines.. as well as rransactivaling proreinsencodcd by other viruses. can also increase

HIV production vi. these intracellular events (Kinter cl at. 1990).

CytOkines and other e.'<temal stimuli often effect HIV expr$ion via interae:tion with the viral

lTR. through their influence on intracellular factors. like NFJeB (Matsuyama et at. (991). For

clGlIT1ple. rumor necrosis factor (TNF~) increases HIV production. Some viruses such as CMV and

herpes simplex virus can enhance HlV production through activation oflhe viral LTR by viral proteins.

Finally, a {at gene product. after interacting with cellular factors binds to the TAR of tile viral

lnt in conjunction with cellular RNA bindingpmleins (Wu et aL 1991) that may be pbosphorylal:ed

(Han et a.I., 1992) and up-regulalion ofviral expression occurs. The induction oflNF-a production in

T cells by HIV Tar could also be involved in increased virus production (Buonagouro et II.. 1992).

These observations reflect how bod! viral and cellular factOl'S intenlCt 10 affect HIV replicatiolL

Many viruses also enhance HlV production by induction ofcytokines. Co-infection of cells

with viruses like herpes virus, papovavirus. hepatitis viruses, and retroviruses can enhance the

production ofHIV·1. GenuallY,d!e lran5aetivating factol'S produced by die infecting virus, usually

early aene products, interact dmtly or indirectly via Ultr.lcellular faclol'S with the HIV·LTR, usually

at the responsive d3 region. For example, CMV. human herpes virus 6 (HHV-6) and EBV activate the

HIV·LTR as measured in cell culnm by the chloramphenicol acetyl transferue (CA1) assay (reviewed
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in Nelson et a!.. 1990). Some biological assays involving HTLV.! and other animal viruses have

demonstrated an increased production ofHIV aftercoinfet:tion (Canivc[ et aI., 1990). Similarly. several

B cell lines already tnlnsfonned by EeV appear!O replicate the virus best. perhaps resulting from a

postinfection prncess(DahI etaL. 1987: Monroe:et a1~ 19118: Montagnieret a1.. 19&4). The mechanism

(5) for this enhanced expression of HIV in coinfected cells is unknown, bot again could reflect a cross­

reaction orlhe HIV LTR.

1.9 MECHANISMS OF HIV lNDUC£D KILLING

Some understanding orlbe pathogenesis of HIV infection has come ftom studying the direct

loxic effec:tofthe virus or its prtllcins on individual cells. Cenain strains ofHlV-I. particularly those

recovered from individuals with advanced disease, have a grtater capacity for killing infected cells.

Seven.1 observations associate cell death with directtoxic:ity ofthe ViNS Of viral prol:cins. The

relative quantities of viral envelope protein produced by the cell can determine cytopathicity (Sodmski

etaL. (986). Moreover.lhe cell fusion Ihatoften leads to cell death has been associated with gpl20

(Lifson e1 aL 1981). (n one study. doubling Ihe production ofgpl20 pcoducedcylopaIhic effects and

cell death following ffiV infection (Stevenson ct II.. 1988). Moreover, addition ofgp[20 to fBMe

Of cultured brain cells caused killing in a dose dependent mann« (Dreyer et aJ.. [990). The ,((gene

has been linked to cytopathic effects, probably by increasing infectious virus replication (Sakai et a.I.•

1991).

The mechanism ofthis induction ofcdIdeath by the viral envelope p""ein is not clear at the

moment. Disturbances in the membtanc: permeability could be involved., as reflected by the balklon

degeneration ofcells observed in vitro. HN binding to and entry into these cells produces membnne

discontinuities and pores in association with ballooning (Fermin and Garry, 1992). Hence, cells
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infected by and prnduc:ing cytopalhic HIV demonstrate an inability 10 control the infllL,( o[monovalenl

and divaJentcarions lhat accumulate in the cell along with waIer(C1oyrl and lynn, 1991). The resuhing

loss in intracellular ionic strength noI only leads 10 cell death, but also at relarively non.cytopathic

levels. could change the electric potential afme cell so thai nonnal ccllliJnction is compromised.

1.9.1 HIV INDUCED APOPTOSIS

R«enlly. apoptosis was put forwani as a cause ofCD4' cell loss in HIV infection (Growe: cl

al.. 1992; Laurent-Crawford cl aJ., 1991). This process has also been observed in T cells during other

viral infections like EBV (Uehara cl aI., 1992). This phenomenon involves the reemergence of a

programmed T cell death that is a normal physiological response during thymocyte maturation (Coffin.

1992; Ken' et al.. 1972). The process requires cell activation. protein synlhesis., and the action of a

calcium dependent endogenous endonuclease that produce fragmentation ofcellular DNA. Apparently

C04" cells do not undergo apoplosis in HIV-infecled chimpanzec:s(DeRienzi et aL. 1992). This may

help 10 explain me Ial:k of disease in these animals. Cell proliferation induced by phytOhemagglutinin

(PHA) alone. does no[ lead [0 apoplOSis. However. Slimulation with MHC-restricted class II recall

anligens(e.g..letal1US 10xin) or with !he pokeweed mitogen can cause death of up to 40% in !he CD4­

cells from asymptomalic HJV-infected individuals in two days (Groux et al.• 1992). Although most

studies focus on CD4' cells undergoingapoptosis in HIV-infected individuals, some indicate that many

C08" cells also die by this process (Meyaard et aJ.. 1992). However, the role ofC08
4

T cell apoptosis

in the pathogenesis ofHlV infection requires further investigation.

There is considerable speculation as 10 whether apoptosis results from direct effects ofHIV Q("

its viral proleins, antibodies to CD4, gp!20 antibody complexes., variations in cytokine production. Q("

fmally super.wigens from other infecting parhogens (e.g.. srapbylococci, SIrepIOCOCCi, or myatplasma).
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Some l'CSults suggest that gpl20 or virus-antibody complexes can elicit apoplosis(ferai et al.. 1991).

Recently, cross linking afthe gpl20 bound to human CD4- lymphocytes followed by T celllCtival:ion

by anti COJ antibodies was shown to induce apopl:osis (Banda et at, 1992). Some c:ytOkines like Il4

can also increase apoptosis in macrophages by countering me protective effects of other cytokines

(TNF-a. and interferon-y) on lh6e cells (Mangan et al.. 1992). These rypes of interactions could be

taking place in HIV infection.

Since unstimulated CD4" cells ~moved from the infected individual do nol undergo apoplOSis.,

whether this phenomenon occurs to a substantial extent in vivo is not clear. However, recent reports

suggesting enhanced cell death from Ihis process even in PBMC taken directly from the blood of

infected individuals (Groux et al" 1992) are especially relevant

1.9..1 INFLUENCE OF SUPERANTIGENS

HIV may have a peptide thatac15 like asuperantigen by attaching to CQ4-lymphocytes by one

ponion aCme T cell receptor and rriggering cell death by apopcosis (Coffin. (992). Support for this

concept comes fiom me observation that the individuals with AIDS show a disproportionate Ios:s ofT

cells with a cenain TCR ~ chain V regions (Imberti et al.. 1991). Moreover, superantigens are

responsible for the loss ofT cells in other retrovirus infet:tions, such as the murine mammary nunour

virus and the murine model ofAIDS (Woodlandet at. 1991). If this process occurs in HIV infection

the antigen involved has yet to be characterised. Conceivably, this mechanism for the eliminalion of

CD4· cells may be caused by other organisms or antigens present during HIV infet:tion.
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l.9.3 OTHER CAUSES OF KIV·INDUCED CELL DEATH

A number ofoilier events in the viral cycle have also been believed [0 be involved with cell

death. The accumulation ofuninlcgrated viral DNA appears [0 be toxic, and the viral Tat protein can

kill brain cells (Sabatieret at, [991). Moreover, inleratlions ofcettain cytolcines.like TNF-a. with

HIV-inrected lTagile cells might bring about additional damage (Matsuyama et aI., (991). Finally. anti

cellular responses of immune cells also could be involved.

1.10 HIV lNDUCED [MMlJNE DEFICIENCY

The rnet.hanism by which HIV causes a loss ofimmunc responsiveness is a major mystery in

AIDS research. Numerous studies have confirmed Ihal immune abnormalities can be observed in T

cells., B cells. and macrophages early in the infection well before loss ofCD4" cells begins (Clerid et

.11., 1992b).

1.10.1 DIRECT CYTOPATHICITY OF THE VIRUS

The prominent immunologic disorder ~ognjsed in-patients with AIDS is a loss ofCD4' T

lymphocytes (Mildvan CI al.. [982). Whether tltis cell loss reflects direct cell destruclion by the virus

or its proteins or a secondary effect of immune dysfunction is unclear.

Many features ordi:rC'c1 HIV·I infection may contribute to the reduction inCD4' cells and their

function. First, despite Ihe inability 10 detect HIV-I in a large number orCD4' cells, even in healthy

individuals, HN could be present in a latent or silent state and affect the function, long teno viability,

and pmlifeBtion ofthesc cells (Bagasta et aI., 1992). Second, the virus could Wed or supPf'CSS the

production ortheearty pm:urscxsorIheCD4· cells and reduce !he quantity of fresh lymphocytes added

regularly from the bone marrnw to the peripberal blood (Folkset aI., 1988). A loss ofmemo()' T cells



27

has been reported in asymptomatic HIV individuals (van Noesel el aI., 1990). Third. the HIV tot gene

expressed in infected cells mighl reduce the responses ofCD4" cells to recall antigens (Viscidi etal..

(989) and contribule to immunodeficiency. Finally, even ifHIV does not replicate at high levels, it

might aller the membcane integrityofCD4' ccllssuJfK:icntly roaffect not only norma! function btJ[a!so

increase their overaJl sensilivity to ccllutar factCX$..

l.lOJ: SIGNAL TRANSDUCTION ABNORMALITIES

Besides the direct effects of HIV on CD4' lymphocytes and macrophages. infection

o(these cells by HIV could interfere with the nonnal (venlS in signal transduction. This may involve

activation by an extracellular signal thai subsequently affects the activity of sequence specific

transcription factors. This process oa:urs when natural ligands bind 10 CD4 or inlenact with other

membrane surface proteins activating T cells and elliei1ing immune response: in lIivo (reviewed in

Greene. 1991). The HIV·I gpl20 has been found to (onn an inrraccllularcomplex with CD4 and pS61dl

in the endoplasmic reticulum (Crise and Rose, 1992). The retention of this r:yrosine kinase in the

cytoplasm could be toxic to the cell or affects its function. Funhennore. a possible gp120-receptor

interaction with cellular proreins on CO' negative bnLin cells with subsequent activation of tyrosine

phosphorylation of cenain cellular proteins might be involved in the pathogenesis of r»eurological

manifestations ofHIV infectjon (Schneider.Schaulies et at, 1992).

t.lO.J BYSTANDER [FFECf

Another possible mcchanism ofCD4- cell loss is absorption ofsoluble gpl20 byuninfcctM

cells carrying the CO' molecule. These celis can be then ~izcd as ."irus infected cells by NK

effector cells CH"CTLs (Lanzavechia et at 1988) and destroyed, even though they~ not infected by
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the virus. This hypothesis requires the detection ofcirculating gp120 in Iht: blood of individuals or on

uninfected cells. Although some gpl20 released from cells has been found by in vi\/(} studies (Gilbert

t:1 al.. 1991), this feature has nOI been well documented in vivo.

1.IO.~ IMMUNE COMPLEXES OF VIRAL PROTEINS

Many investigators have showed that viral envelope proteins have immunosuppressive effects

on the mitogenic responses ofT lymphocytes (Chanh et al., 1988) or NK cell activity (Cauda ct al..

1988). In the case of B cell function, gp120 could interfere with normal T cell help via a block in

conlaCt-dependenl interactions (Chirmu!e t:1 a!.. 1992). Finally, the formation of anti-viral antigen

complexes (Morrow et aI., (986) could tie up the rcticulo-endothelial system, affect cytokine

production and influence immune function.

1.10.5 CYTOTOXIC T CELLS AND CDS· SUPPRESSOR CELL DERIVED

FACTORS

Studies llSiflg lymphocytes from infected individuals have suggested that cytOtoxic CDS' cells

may kill nonnal CD4' cells as well as those infected with HlV (Pantaleo et al 1990; Zarling et al.,

1990). Some have found cytotoxic CD4' T cells against infected CD4' cells (Orenw el al.. 1990).

Production of immunosuppressive factoB by CDS' cells has been descnbed (uurence. 1990) and

recently a factor produced by COS· cells was found 10 reduce the response ofCD4' cells 10 cenain

recall antigens (Clmci et al., 1992). Production of Chis faclOfCOOki explain lhe early abnonna1ities seen

in belperT cell function (Shearer and Clerici, (992).
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1.10.6 ANTI·LYMPHOCYTE ANTIBODlES

Autoantibodies fO lymphocytes could also playa role in immunodefICiency. In early studies.

antibodies to both helper and suppressor T lymphocytes were detected, and their presence has since

been conftmled (Ardman d: at, 1990). Some ofthcse antibodies may result from anli·MHC responses

induced by HIV proteins. Moreover. autoantibodies 10 CD4 protein itselfhavc been detected in HIV

infected individuals (Thina! ci a!. 1988) and mighl contribute to CD4-!ymphocytc death.

1.10.7 ROLE OF CYTOKINES

Cylokines are produced by a variety of immune cclls during infection and inflammation. Many

of these can affect HIV replication in vitro (reviewed in Matsuyama ct al .. 1991) lUId in some instances

promote cell d~th. Some studies suggest thai on stimulation. HlV-infeeted mac:rophages release

diminished amounts of cytOkines or sbow no change in produclion of these cellular factors upon

stimulation (Roy and Wainberg, 1988). Thus, the relative extent of c)'tokine expression during HIV

infection is not clear. and whether these cellular products act as cofactors 10 influence the Co-.' cell

destruction or compromise their function needs funher evaluation.

1.11 HUMORAL IMMUNE RESPONSES TO HlV lNFECfION

In this section, lhe bosl humoralimmunc rc:sponscs that could influence HIV.mduced disease

are discussed.

1.11. 1 NEUTRALIZING ANTIBODIES

A cooventional ~poose of the bosl: to a viral infection is the prodLlCtion of antibodies that

attach to the virus and neutralize it. The HIV envelope is the majoc target for !he hwnon.l antibody

responses. The viral proteins believed to be primarily involved in antibody neutralization have been



30

localized 10 the envelope gpl20 and lbe exlemal portion ofgp41 (Brolidenet a1~ 1992). Moreover. as

the disease progresses neutralizing anlibodies can be replaced by enhancing antibodies (Homsy et aI.,

(990). In general, sera from HJV·[ infeelcd individuals can neutralize HJV·\ but not HIV·2 strains.

In contrast. sera from HIV·2 infected individuals have been reported 10 cross react with and neutralize

some HJV·1 stn..ins (Weiss et a1. 1988). This cross tuClivil)' could be: governed by antibodies to the

CD4 binding site. panicularly confonnatiooal epil0pe5 (Slcimer et al.. (991).

The principal Mutralizing domain of gp120. called the V3 loop. is found in the centtal ponion

ofthe third variable region. located in the N -tcnnioal panion ofgpl20 (Sroliden et al. 1992). The V3

loop contains both neutralizing and nonneub'alizing epilopes, since sera with high liler antibody to VJ

peptides do not always Mutnlize lhe homologous HIV strain (Warml el al . 1992).

The neutr.tlizing antibodies detected against gp41 have received linle attention.. Nevertheless.

immunization of animals with die N-tenninal portion ofthis envelope protein (ChaM et aI., 1986) has

elicited antibodies 10 homologous and heterologous strains.

The clinical relevance ofchese neutralizing ancibodies remains uncertain. Whether levels of

neutralizing activity correlale directly with the clinical stale is still controversial (Alesi ct II.. [989).

Palicnts including those with AlDS can have substantial titers of neutralizing antibodies against

laboraCOf)' strains (Roben -Guroffet aI.. [985). [n most cases. however, dleir anti viral response co a

homotypic.strain. which would be of~t importance clinically, was not demonstrated. Momlvcr. die

virus mutates under immunologic pressure to escape neutralization (Nara el al.. [990). Thus, the

induction of neuttalizing antibodies would appear 10 be most beneficial early in the course of HIV

infection and to have less influence at later stages.
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1.11.2 ANTIBODY DEPENDENT CELL CYTOTOXICITY

Antibodies to both gpl20 and gp41 envelope: proteins induce antibody dependent cellular

cytotoxicity (AOCC) (Koup CIII., 1989). H~. the antibody coaled cells m; recognized by effeclor

cells. like NK cells, bearing the Fe receptors or by monocytes and killed by a cytOtoxic mechanism.

most probably cytokine mediated (reviewed in Yagita et aI., (992). Whether ADCC is ~levant

clinically in HlV infection is not known.

1.IIJ ANTIBODY ENHANCEMENT

In HJV infected individuafs. the presence ofantibodies. that can enhance viral infection eilhe:r

via complement or Fe receplors. has been demonstrated (Robinson el al.. 1988). Whether the CD4

molecule playa role in this process is still controversial. IfCD4 is involved in ADE. many investigators

prefer to conclude that Ihe enhancement occurs because the virus-antibody complexes are brought

closer to the CD4 molecule after attachment to the Fe or complemenlreceptors. Alternatively, ifCD4

is not involved, perhaps HIV is broughl to !he cell via Fey-receptor binding and Ihen me virus fuses

directly with the cell membrane.. The clinical signiftcance oCAOE in HlV infection is not known but

its association with disease suggestS lhat il plays a role in the pathogenesis (Homsy eI aI.• 1990).

In summary. it can be concludtd that ncutralizable HIV strains can mulate 10 become resislant

to or enhanced by Ihe same antibody speties. Immunization of individuals. with a particular virus

strain. might induce neulralizing anlibodie5 to die immunizing slrain. but enhancement ofa different

strain. particularly one from anodler plltofdle world. Ocfmingenvelope regions that will induce only

neuttalizing and not enhancing antibody resp::mes could be very difficult. Some studies have suggested

!hat a very smail change at the critical region. perhaps in one amino acid, mighl determine die

sensitivity DCa virus to annbody neunlization or enhancemcnL
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1.12. CELL MEDIATED IMMUNE RESPONSES TO HIV

In the next few pages, the cellular immune responses that are directed againsl HIV through

specifJC recognition oftile virus or virus infected cell are reviewed. In most viral infCClions. the cell­

mediated immune response plays a critical role in arresting Of eliminating the infectious agent (Doherty

([11..1984).

L.l1.l CYTOTOXIC NATURAL KILLER CELLS

A major component of cellular immunity is Ihe NK cell. which recoanizes and kills virus

infected cells in a non·MHC dependent manner. In HIV infection. this cell type has been fOl.:nd 10

decrease function, panicularly as infected individuals progress 10 disease (Cai et at, 1990). This finding

appears 10 reflect 11. reduction in NK cytotoxic: factor production (Bonavida et ai., 1986) and poIari%ation

ofcytolytic machinery upon binding co targel cells does nol occur (Sirianni et _I.. 1988). Recently, the

reduced NK-cell activity OOled in vitro was countered by the addition ofa B cell cytokine IL-12 [0 the

assay (Cbehimi ct al.. 1992). S;ncelL·12a1soresto~the~ in virro. the polentialoflL.12 for

therapy has 10 be considered.

1.12.2 CD4" CELL RESPONSES

CD4· T cell responses can also be decreased early in HJV infection. Rec:enl observations

indicaae that. like in the murine system. hwnan CD4· cells can be separated into two functional subsets.

THI and TH2.. THI cells secrete Ilr2, and IFN-y; while 1l{2 cells produce IL-4. n.~ and n.·IO. From

studicsofHIV infected individuals, a hypothesis was put forward that levels ofTHI and TH2cytOkines

play an immunoregularory role in HIV infection and (hey can affccl progression 10 AIDS (Shearer and
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Clerici. 1991; She!' et a!.. 1992). (t is noteworthy that THI responses 1m found primarily in healthy

asymptomatic individuals and high-risk individuals without evidence onflV infection (Clerid el aI..

1mb: Shearer and Clerici. (991). Sevel'lll investigators have suggested mat this type oreel! mediated

immune response could protect individuals from HIV infection (Shcr"et al., 1991). A subsequent TH2

response would lead to Bcell activation and hypergammaglobulincmia. most probably secondary 10

IL-4 and Il-6 production by the TH2 cells. In this regard. the balance appears to favour TH2 cells, in

AIDS patients. Moreover the secretion of high levels orll·l0 by TH2 cells can suppress the 1M!

response (Shearer and Clerici. 199 [; Sher etal.. 1992).

Since THI cells produce IL-2 and other cytokines that enhance the generation and activity of

CD8" cells. this subset could a150 be very important in the cellular immunologic CO(l[rg1 of HIV

infection and pre~n1ion of AIDS. Some srudie5 with human T cell clones demonstrate thai c(nain

CD4' lymphocytes, although sensitive 10 infection by HlV. can also mow cytotoxicity against HlV·

infected targets (Orenlas et al .• 1990).

Virus-specific CD4 T lymphocytes are particularly undeteclable in human immunodeficiency

S)'tldrome infection. In individuals who control the infection without the anliviral thempy. polydonal

antiviral C04 responses are present and they persist (Rosenberg d a1.• 1997). HIV·t specifIC

proliferative responses were also demonstrable after ~tmml of acute HIV infection (Rosenberg d

a1.,1997).

1.12J CYTOTOXIC CDS" CELLS

Cytotoxic T Iympb.oq1CS (CTL) usc clonotypic T cell receptors (TCR) associated with the

invariant CD3 signaling complex, to m;ognize antigenic peptidcs bound 10 major histocompanbility

complex (MHq molecules on the target cell. It has long been rea.limI that men than one mec:banism
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ofcytolysis is used by eytDt'OXic lymphocyteS (eL). Even when redirecting human peripheral blood T

lymphocyte subsets lO lyse antigen coated red blood cells (Rae) or nucleated farget cells. il was

apparenl thai effector T cells we~ using distinct mechanisms depending upon the target cell. the

presence orCa!', the need ford#! 1'101/0 protein synthesis, and effector granule exocytosis (Smyth and

OrtaJdo. (993). More rttcntly, through the development of gene knockout mice and identification of

membtane-bound mediators oftargct cell apoptosis, it has btcome evident mal two major forms of

cytotoxicity lie used by en.

1.12.3.1 THE GRANULE EXOCYTOSlS MECHANISM

Alrhough the mechanisms of recognition of target cells by CTL and NK cells are very

different, evidence indicates that the lethal hit delivered by both cell types involves components of

their chCll'al;teristic electron dense cy10plasmic granules (Henkart. 1994). In me presence orCa!', CTL

cytotoxic granules are vectorially secreted into the intercellular space fonned during conjugation ofthe

CTl and the target cell (Henkart.. 1985) and lysis is often associated with membrane lesions on the

wgetcell (Podack and Oennart. 198]). The granules ofCTLcootain a number of proteins including

a pore forming pmkin termed perl'orin,. and a familyofsuine protease:s collectivelycalkd granzyme:s.

Perforin causes osmotic damage through its binding ofpbospbotyl choline headgroups.

polymerization and subsequent pore formation in me lipid bilayer-ofthe target cell These pores formed

in the presence ofeal-have been shown to allow effiux oflargc pro!eins and ions. and it was thought

that this damage was lethal to the target cell. These observations along with the purification and

subsequent cloning ofperfurin. led some to believe that the mechanism ofcell mediated cytolysis was

uhirnately solved (Lidttenheld et at.. 1988). However, CTL-mediated target cell death generally

involves changes sucb as chromatin oandensation, extensive: membrane blebbing and Ultimately,
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nuclear DNA fragmentation (apoptosis) (Oukt et al.. 1983). These cvcn15 clearly occur some lime

before appreciable perforin mcdialed cclllysis, and purified perforin alone is incapable ofcausing DNA

fiBgmenralion (Duke ci aI., 1989). The recent development of perforin gene knockout mice has allowed

the c:ytotoll:ic function of perfonn in vivo to be definitively addressed (Kagi et al.. 1994a & b).

Experiments in perforin (-1-) homozygous g~e block Out mice indicated dial perforin is critical for:

(I) effectiveen clearance of lymphocytic choriomeningitis virus (LeM¥) i.e. anti viral activiry; (2)

eTL lysis of allogeneic fibroblasts and rumor cells; (3) clearance of Luter;a monocytogenes infection

(lUgi et aI., 1994a &: b) (i.e. intracellular bacterial infection and (4) 1M cytotoxicity ofpcriloneal

e.'(udale. lympholc.ine activated killer cells (LAK) and NK effector cells.

1.12.3.1 GRANZYME-PERFORIN SYNERGY

Consider.r.ble in vitro and in viw, e,.'(peri"mental evidence suggests a supplemcnwy role for

granzymes in farget cell killing. The enzyme activities of various granzymes have been designated

according to their hydrolysis of synthetic thio benzyl c:ster subsnles.. such as tryplaSC (cleavage after

MJ or- Iys) aspase(cleavage after asp or g1u). chymase (cleavage after aromatic amino acids) and met­

ase (cleavage after met) (Odake el a!., 199\).~e enzyme activities that have been defmitely matched

with certain granzymes are tryptase (granzyme-A and Tryptase-2) (Sayers el aI., 1994), Aspase

(gnnzyme B); (Poe et aI., (991),ancl Met-ase(MeI.-a5e -1);(Smythet a1_ 1mb).. A role forgranzymes

in cellular cytOlOxicity had been postulated for several years, principally on me basis thaI cytOloxicity

could be completely abrogaled in some cases by a variety of protease inhibitors (Shi et al., !992).

Granzymes by tbcmselva do no( lave q10lytic activity, but !he ability to induce DNA fragmentation

has been descn"bed for many granz:ymes (Shi et 21.. 1992). Granzymes are able [0 liagmem the DNA

from many target cells of diverse lineages and the actions ofdifferent granzymes can be synergistic.
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lneve:rsible inhibitors like aspartaIe (Shi ec aI.• 1992) caneffcctively block DNA lTagmentarion induced

by granzymcs.. Transfection stUdies have: demonstrated thai expression of penonn by a granulated

noncylolytic rat basophilleukemil (RBL) enables this cell line to kill non-nucleated target cells, such

as immunoglobulin E coale<! erythrocytes provided the cells m cross linked using Rat Fa: receptor

(Shiver and Henkart. 1991). However, nucleated target cells could noI be killecl in this manner unless

the Rat transfcetants also expressed granzyme A or B. Co-transfected perfonn and granzymes are

perfectly targeted to the granules arRBt. and these trnnsfcelants were $Cveral fold less cytolytically

active than CTL.

Gene knockout mice with a homozygous null mutation of granzyme: A (EOOtt et at. 1995) or

granzyme B (Hcuscl et aI., 1994) genes develop normally and have nonnal hemalopoesis.

lymphopoiesis. and CL granule formation. In vitro. en.. NK, and LAK derived from the granzyme

B knockout mice arc unable to induce rapid DNA fragmentation in allogenic target cells. The defect

is kinetic in nature and can be rescued with longer incubation periods. implying that other granule

proteins may also play an important supplementary role. In addition. llCr release due to [ow

concentrations of perforin can be augmented in a dose dependent manner by the addition ofgranzymc

B. The graJlzyme A (....) mice recover from primary lineria monoc:ytogencs infection and eradicate

syngeneic tumors with kinetics similar to those of the wild type [ittemtatcs. Abo. the absence of

granzyme A or B results in delayed clearance ofLCMV from spleen and liVtt.

To summarise these in vivo obse.....atiCK5, it can be concluded mat while granzymcs may not

playa primary role in CL effector responses to foreign or infected target cells, their peculiar function

may be in bast CL erwtic.atioo. ofvira.l infection.
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1.12.3.3 PERFORIN..(;RANZYME COLLABORATION

Detergents and other pore forming agents (as a 5ubstituiC for perform) cannot synergise with

~ 10 cause DNA fragmentation. Furthermore. microinjec:tion of granzyme B intO the target cell

cytOplasm induced plasma membrane blebbing, but only limited nuclear damage and chromatin

condensation (Greenberg, [996). These data suggest that perlarin does more than merely enable other

cytotoxic granule contents to enter the cell. More rectnlly, immunoclcctron microscopy and other

studies have indicat~ that gnnzymc B can enter the cells in the absence of perl"orin. bul withoul

measurable cytOlo.l:ic: effect (Greenberg, [996; Froelich et al., 19%). Hence penorin'$" major ro~

following pore formation in target cells may be help to trigger an internal disintegration padlway in the

cell.

1.11.3.4 EFFECTS ON CELL CYCLE CONTROL

[t remains 10 be established what downstream events an: triggered immediately after perfonn

binds to the target cell membrane and g.ranzyme B en~rs the c;:ytoplasm. but clearly bodl scts ofevents

coincide in a death signal. Shi et al. (1992) have been able 10 demonstrate that cdc2. lhe mitosis­

regulating c;yclin dependent kinase is required ror perforinlgranzyme induced apoptosis. When added

with pcrforin to Wget ~11s. granzyme B induccs premature activation and ryrosine dephosphorylation

orcdc2 and apopI05is is induced at all stages orcell cycle. This contrasts with the dogma that quiescent

cells ale rerrac:tory to DNA fragmentation and that Go cells appear to be relatively resistant 10 CL·

induced apoptosis (Nishioka and Welsh. (994). Normally, throughout the cell cycle and until the cell

is prepared to enter mitosis., a nuclear kinase, Wee.- I, which maintains mitotic timing negatively

regulates cdc2 kinase activity by phosphorylation or. residue within its ATP binding domain. Wee-I

can rescue a wget cell rrom granzyme B-ioduced apoptosis by preventing cdel dephosphorylation
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(Chen el al .• 1995). CL must activate a mechanism for which all the necessary molecules are already

present in the target cell, u DNA fragmentation induced by granzyme Blperforin does nDC depend on

new protein synthesis in the wget cell. It makes evolutionary sense: for mis type ofdefense system [0

operate independently orlhe host cell protein synthesis, since many viruses shut off host cell protein

synthesis early in infection.

1.12.J.5 SPECIFIC SITE OF GRANZVME ACfION

The fact that granzyme B can enler target cells independently of perforin suggests thac

receptors for granzymes must exist in the plasma membrane. The ftrSt report ofa novel serine protease

proteolytic mechanism of~or activation is dnwn from die isolation and subsequent cloning ofa

thrombin receptor (Vu et at. 1991). A similar subfamily orG prolein coupled receptors have been

suggested to be possible candidare granzyme receptors. given that granzyme A can activate the

thrombin receptor itself: These receptors do not internalize their ligands and therefore this would not

e.'tplain lhe uptake of granzymc B into target cells. Many have drawn parallels between granzyme B

and a family ofimrac:ellular cysteine proteases [such as the interleukin· 113 converting enzyme (ICE)]

based upon their shared Aspase·induced apoptotic activity (Vaux et aI., 1994). These proteases

probably have common or similar intr.acellular target substrales.

1.12J.6 A SECOND MECHANISM· THE FAS I FAS LIGAND SYSTEM

Previous observations that target cell death can also occur in the absence of Cal., granule

a:ocytosis or perl'orin suggested the existence ofan alternative pathway ofCl·mediated cytotoxicity.

Rouvier et at (199]) demonstrated that: this Cal-·independent killing involves C11.-mediated

crosslinkingofthe target cell Fas receptor. This induced death process occurs within a few hoors, in
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the absence of new prolein synthesis or extracellular calcium and can be triggered in target cells by

monoclonal antibodies against Fas (Trauth et al.• 1989). SlnJcturally, Fas belongs to the tumor necrosis

factor (lNF) and nerve growth factor (NOF) receptor families (ltoh et aI., 1991). Mutational analyses

afthe cytoplasmic domains ofthese receptors have identified a conserved region that is necessary for

transducrion of the apoptotic signal (T8lUgliaet aL 1993). Fas ligand (Fast) is aClsurface~r

oflhe TNF family (Sud. and Nagata.. 19(4). FasL e.'(pression appears 10 be conSliMive in NK cells

(Arase l:t aI., 1995) and can be rapidly induced in T cetls by activation with phorbol eslers or by TCR

engagement (Anel et al.. (994).

1.I1J.7THE NATUREOFTH[ FAS DEATH SIGNAL

Signaling via the Fas receptor can trigger apoptosis. widt characteristic cytoplasmic and

nuclear condensation and DNA fTagmenwion (Trauth etal.. 1989; hoh et al. 1991). Triggering of this

pathway generally requires cross-linkingofFas and, like TNF. the soluble form ofFasL has a trimcric

structure. The Fas triggered pathway to death is independent ofextracellular Cal- and macro molecular

synthesis(Rouvieretal.. 1993; ltohetal.. 1991). As for most death pathways. the cellulatenvironment

plays an essential role in the intetpretation of the Fas--originating signal and thus cell sensitivity

involv~ other factlXS than just the level ofFas e:tpression. Conflicting evidence e.~ concerning the

sensitivity ofFas-ttansduc:cd cell death to bcl-2 ell:pression as some groups claim no effect (Chiu et: ai,

1995), while others observed partial inhibition (tloh et al.. 1991) or complete inhibition, by co­

expression ofbcl-2 and its binding protein BAG·1 (Takayama et aI., [995). It is lUlknown whether

molecules tike cdc2 kinase playa role: in Fas-dependent cell death. bowever, cy1osolic molecules have

been identified thar can associate with other members oCthe TNFINGF ~tor family (Rothe et: aL

1994). Furthermore. thymocytc:s from ICE (-I-)dcfic:ient mice were resistant to apoprosis induced by
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anti-Fu mAb. suggesting lhat this cysteine protease nonnally plays. role in the Fas death pathway

(Kuida et at. 1995). In addition. the complex lipid. ccramide. I breakdown produCI of sphingomyelin

(a sphingosine-fatty acid-phosphoryl choline molecule found in the plasma membrane and the

cytoplasm). can specifically activate Pl'Ofcin kinases lhat have been implicated in Fas -mediated cell

death signalling (Cirone et aI., (994).

The death receplOrS thaI have been defined are COOS. TNFRI. TRAMP (TNF-m:eptor-related

&popl:osis-mediating protein). TRAil (lNF-related apopt05is-indUCing ligand) and TRAIL-R2

(~vie:wed in Perertl al., [998). AJlligands form trimcrs and lrimerize their rec:c:plon upon binding.

The pathway that was reported. to be involved in COOS and TNF·RI signaling was the aclivation of

acidic sphingomyelinase (aSMase) and generalion ofc:emmick. a putative mediator ofapoptosis. The

aSMasc was also reported [0 be significant for the production of another mediator of cell death. the

GDJ ganglioside (De Maria d a!.. 1997). The role ofceramide has been challenged recently by many

inYCStipors.. Firstly. C'2<cramide, at low conCtntralions. indlJCCS apopcosis by upregulation ofCOO5L

and not by direct engagement of an intracellular apopt05is inducer (Herr et al. 1991). Secondly.

pcoduclionofceramide has been nored by many people to be independentofaClivation of caspases that

are: essential for apoptosis (Watts et aL, 1997). Thirdly, in aSMase.... mice, lhe role of activation of

aSMase in COOS-mediated apoptosis could be tested. The aSMase·knockout mice have a partial defect

in radiation-induced apopr05is., even lhough no defect in death recepl~ signaling has so far been

reported in these mice (Santana et aI., 1996).

Oligomerization ofCD9S creates a confonnalional change oflhe dealh domain (DO), which.

attracts !be adapter Fas-usociated death domain (FAOD) throogh irs DD. FADD also possesses an

amino terminal death effector domain (OED), through: wbich it attracts, procaspase-3a-b and CAP].

Procaspase-8a1b is then cleaved at the death-inducing signaling complex (DISC) leading to the
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fannation arthe active caspase.& (Medema el al. 1997). The prodomain oflhe caspase-8 remains at the

DISC while active caspase-8 dissociates from the DISC to initiate the cascade ofeaspascs leading 10

the execution of apoPI05is.

Several transgenic mice and knockout mice have recently been generated in eltperiments Illat

underscore me centrallOleofthe DlSC-associated molecules FADO and caspase-8 in signaling via the

the dealh receptors. In FADD"'o chimeric mice, COOS-mediated apoplosis was completely blocked in

the thymoc:ytes.ln addition. fibroblasts from lhesc mice showed no defect in TRAlL-RI-mediated

apoptosis. whereas those signals through TNF·R I and TRAMP were impaired (Yeh et al.. 1998). In

these T- cells. activation-induced prolifcnltion was severely impaired in spite of norma! Il-2 secretion

(Zhang et al.. 1998). These data suggest thl! death receptors that use FADDM
' as a signaling adapter

may mediate IpOplosis and proliferation.

So far, ten caspase:s have been described in humans (Alncmri et al.. 19%). Caspascs are

classified into thru: groups that may have redundant functions. Firstly. Caspase-I, 4 and S, then

Caspasc 3, 7 and 2 and lastly caspase 6. 8 and 9(ThombefTy et al.. 1997).InCD95-mcdimd apoposis.

caspase-8 plays an importanl role. It is the apical caspase and is activated at the DISC (Medema el al ..

1997). Activated caspases fuWly cleave a multitude ofcellular substrates that yield themo~

picture ofapoptosis and otigosomal DNA damage (Martin and Green 1995).

In many fonos of apoptosis. one of the first events that is noti«d is a drop in milichondrial

transmembrane polmtiaI (6.'t'.) which may be in part due 10 the opening ofpc:nneability lranSition (Pl)

pores. multiprotein complexes built up at the contact site between the inner and outer membrane (Susin

et aJ_ 1997). Mitochondria also release cytochrome c into Ihe cytoplasm ~lting in Ihe activation of

caspase.9, which in rum activates caspase·3 (lou et at, (997).
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Recenl work has thrown some: light iolO lhe function ofBeI-2 in blockingapoptosis (Scaffidi

et a1~ 1998). There have been two differmt apDptosis-signaling cell rypes (type I and type [[) dc:scribed

so far. In type I cells, caspase-8 is .clivated at the DISC in large quantities resulling in processing of

caspasc-3. This step is independent ofmilochondrial activation and cannot be blocked by BeI-2. In type

II cells. the amount of active caspase·g generated at the DISC is very small. Apoplosis in type II cells

depends on mitochondrial activation and large quamilies ofcaspase.] are activated. In these cells the

overexpression of &1-2 and Bck< complcll:ly blocks IClivalion of caspascs (Scaffidi et aI. 1998).

Release of cytochrome c is believed to be essential for the activation of caspase:s downstream of

mitochondria (lou et aI., 1997).

1.1l.J.8IMMUNOREGULATION BY FASIFASL

The mouse spontaneous mutants Ip" (Iymphoproliferalion) and gld (generalized

lymphoprolifcrative disease) carty aUlosomai recessive mutations. Lprllpr and gld/gld mice develop

lymphadenopathy and splenomegaly and produce large quantities of immunoglobulin G and M

antibodies. including anti·DNA and rheumatoid factor (Cohen and Eisenberg, 1991). They develop

nephritis and arthritis and usually die around five mlXlths ofage. Many studies indicale that the Ipr

mutation is • loss of function mutation in the Fas gene and the gld represents a point muwion in the

FasL gene, abolishing the ability of FasL to bind Fas. The abnormal accumulation of lymphocytes lhe

Ipr and gld mice suggest that Fas and Fas Lare involved in normal lymphocyte regulation. Positive and

negative selection in the thymus is apparently nonnal in the Ipr mice (Sidman et at. 1992), indicating

that a Fas mediated regulatory mechanism is not critical for the thymic selection processes. However,

peripheraJ.clonal deletion and elimination ofactivatedT cell5 are impaired in Iprandgldmicc(Singer

and Abbas. 1994). suggcsring that Fas and FasL are normally involved both in the clonal deletion of
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autoreacrive T cells in peripheral lymphoid organs and in the elimination ofactivated T cells following

~cognition of foreign antigens. Among the c:lassicaJ CD4' T helper populations. TIfI cells can express

FasL and lyse target cells in a Fasdcpendcnl manner more readily than TH2 cells (Ju cl aI., 1994). In

conuast, COg" T cells and NK cells. the professional en.. can usually utilize both the Fas based and

penorin based mechanisms(Arase et al . 1995: Ju ct al.. 1994).

Fas and FasL may interact on the same cell (Russel et al., 1993) or on different cells or

alternatively. FasL may be secreted and activate Fas in solution (Dhein ct al.. 1995). In each case. the

cytoloxicity is not directed against non-self, or modified self, but against aClivaled self. However. in

the physiological conlext it is unclear whether Fas induced elimination of mature T cells is strictly

suicidal, or FasL is effectively provided by neighbouring activated T cells. or possibly tvtn antigen

presenting cells. Although T cells upregulate Fas expression within 24 hours orTCR scimulation. they

only become sensitive to Fas-mediated cell death several days later. Therefo~. an antiviral CDS' T cell

may nonnally have only a narrow lime-span in which 10 carry out its immune function. prior 10 ilS Fas­

mediated 'suicide' or 'murder'. In addition, it is not yet clear how NK cells lhal constiNlively express

FasL fit into various proposed models of Fas-mediled immunoregulalion (Crsipe. 1994). The~ is

considerable collective data (Kagi et at. 1994a & b) 10 argue that a combinalion ofgranule eXOC)'tOSis

and Fas pathways account for all cytolysis measured in vitro. but it remains to be eslablisbed whether

tfle~ is cross-talk between lhese mechanisms OfCytOloxicity,

1.1103.9 FAS[fASL IN PATHOLOGY

The Fas system may play several different roles in human pa!holoi)', First:,. several patients

have been described with I. phenotype similar to that of/pr mice (Snelleret 1.1... 1992), Furthcnnore,

Cheng et al.• (1994), have suggested that soluble Fas may cause the systemic lupus erythema!osus
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(SLE) phenotype. This second category ofFas--relatcd diseases may be causa:! by e:<cc:ssive aet of me

Fas system. There is cin::umstantial evidence that Fas might be involved in the death ofCD4- T cells

during the course of an HIV infection (Dcbalin et at. 1994; Ameison et aI., 1995). and the death of

hepatocytes during acute fulminant hepatitis B (Ando et al.. 1993). Katsikiset al. (1995) have shown

that peripheral blood CD4' and CDS' T lymphocyteS from HJV·infected individuals undergo apoptosis

in vitro in response to anlibody slimulation ofFas at a much higher frequency Ihan from uninfected

controls. Clcarly. more work is required to establish die possible palhophysiologjcal roles ofFasfFasL

interactions and the results should coombu!c to a better understanding of the basic mechanism of many

human diseases.

1.12.3.10 IMPLICATIONS OF FAS -MEOlATED CELL DEATH IN HIV

Freshly isolated T cells from many HIV individuals spontaneously undergo apopI05is in vitro

(Ameison and Capron. 1991). Thesecdls wen inCff:asinglysusceptiblc 10 apopl:osis when stimulated

wilh mitogens (Groux et at. 1992). This led some researchers 10 propose that depletion ofCD4- T cells

in HIV infected individuals cxx:utmf via apoptosis (Ameison and Capron. 1991). F~hly isolated T

cells fiom healthy volunteerS do not undergo apoptosis to the same extent as the fi'eshly isolated T cells

from HlV· individuals. Hence the hypothesis that inappropriate apoptosis may be responsible for the

CD4" T all loss in these individuals.

Cross-linkingofCD4 on murine T ails primes these cells 10 underxo apoptosis (Newell et ai.

i99O). Oyaizu et al. (1993) observed similar results using human T cells when CD4 was crosslinked

using II'12Ofanti-gp120 immune complexes. CD4· ails from normal mice, but nCll: from lprl1pr mice,

show selective depletion in vivo afttt" treatment with the antKD4 antibody (Wang et aI., 1994). [t was

also shown that T ails from mice expressing a CD4 transgene were susceptible to 3pOPtosis when
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treated with gp1201anti-gp120 immune comple:~es (Wang et al.. 1994a). The crosslinking ofCD4

molecules on the surface ofT cells appears to induce the expression of Fas on the cell causing these

cells 10 become susceptible to Fas-mediated cell death. It has been shown thai CD4 crosslinldng can

upregu!atc the expression ofFas on human T cel1s(Oyaizu et aI .• (994). In addition. e.'l.[i-Fas antibodies

can induce a markedly higher rate ofapoptosis in T lymphocyteS from HlV·infected individuals than

in the controls (Katsikis et al., 1995). Therefore, this hypexhesis of Fas-mediated activation-induced

cell death (AleD) is one oflhe m«hanisms for CD4 depletion in HIV holds a [01 ofpromise and has

to bcClIplored in gn:ater detaiL

Interestingly,1M1 cells can be induced 10 express FasL whereas TH2 cells show linle or no

FasL expression upon stimulation. The circulating immune complexes composed of gp120 and

antibody in HrY" individuals can stimulate both THI and THl cells of which only THI cells e.'tpres5

FasL Thus. the activated THI cells express FasL and might be interacting lethally with other THI

cells. Moreover. the stimulation ofTHI cells would lead to clonal proliferation ofTHI cells that are

susceptible 10 Fas-mediated apoptosis. This situation would be expected to lead to the prefemltialloss

of THI cells resulting in a relative increase in the proportion of TH2 cells. Many people have

associated an increased frequency ofTH2 like cells with progression of disease in HIV·infected

persons. This could be a 5«ond mechanism by which the Fas /FasL regulatory system influences the

cou~ ofHIV infection (Clerici et aI., 1994).

[n summary, en. primarily utilize a potent pore-fanning toxin, perform. in conjunction with.

a series ofserine proteases capable of inducing fragmentation oftarget cell DNA_ Fast.. a cell surface

molecule belonging to the TNF f&mily, binds to its ~lXFas and induces apopmsis ofFas bearing

cells. Description of the exact nature of these mechanisms may lead to a better understanding of all
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forms of cell death and the pathophysiology of many diseases. This may ultirnalely lead to the

introduction of novel therapeutic reagents in the management of a variety of pathological conditions.

1.12.3.11 ROLE OF CTL IN VIRAL INFECTIONS

Another cell type, besides NK. that commonly react with virus infecled cells is the cytotoxic

T lymphocyte (en). Classically, this ~nse is humanleukoc.yte: histocompatibility anli~(Hi.JI.)

dependent and requires <:ell 10 cell contact. These cells are very important in the control of certain viral

infections (Doheny et a11984) and probably in the control ofHIV. Spei:ific cellular cytotoxicity can

be demonstrated with high numbers of unstimulated CDS' cells. typically at a CDS 10 wgel ratio of

25:1.50:1.10 100:1, is measured in a 4h "Ct release assay. Moreover. as expected. the cytotoxicity is

ObselVed only with viral protein e.'l.pressing target cells with the same MHC class I phenotype as the

CDS'cells.

All these studies have shown that CDS' cells from HlV-infected indi... iduals can kill cells

e.,pnssing several different HIV proteins. including reverse trIlISCriptasc (RT). envelope, core, and

some aet:essory proteins (Autran elal, 199I;C1eric:i elal., [99[; Hoffenbach elal., 1989: Kunduand

Merigan, 1992; Langlade-Demoyen et al., 1988; Nixon and McMichael, 1991; Plaia, (989). The

cytoloxic C08' cells can be found in relarively large numbers during the asymptomatic period. but

then. they appear to decline, at It-asI in anti-HIV activity in some individuals, with disease progression

(Autran et at, 1992; Gotch et at, 1992; Hoffenbach et at. 1989). Incubating rile effectOl"cells with anti

C08 or anri..cm anribodies blocks wget cell killing. A surprising observalion is the finding of high

levels ofanti-HIV en. precursors in normal uninfeeted individuals (Hoffenbach et aI., 1989).

Although this kind of antivinJ aCIMty bas prevented virus spread in some animal model

sysIems (Byrne et al.. 1984), the roleofcn.s in HIV infection is not clear. Despite some comlation
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ofCTL activity with a healthy clinical stale (Autran et aI., t 991: Gotch et aI., 1992), progression of

disease with increasing levels of HIV inrecll~d cells occurs in the p~nce of lhesc: CTl.s.. Recenlly.

a cellular factor that blocks the en ~ponsewas identified in symptomatic individuals (Aurran et at.

1991). Finally, several studies suggest dult HIV can escape the en response (Philips el aJ .• 1991)

which could be a means for progression [owards the disease. Recently. Wolinsky ct a!. (1996)

demonstrated amino acid changes within lhe appropriate epitopes ofHLA.restricled CTL during the

natural courseofHlV infection. Thus.evolutiorwy dynamics exhibiled by the HI\' virus under natural

selection might playa role in progression of disease.

In atldilion 10 cytotoxic activity, CDS' cells can suppress HIV replicafion in CD4- cells.

rnitia.lly. this cellular antiviral activity was idenlifled in infected asymptomarK: individuals whose

cultured PBMC did not yield HIV. When meireDS' cells were removed from the blood sample by

panning, high levels of virus wert: released from the CD4' cells remaining in the culture (Walker et

al.. 19S6). The replacement of COS- cells in this culture at levels far below those used to demonstrate

cytotoxicity, led to complctesuppression of virus replication. Subsequent removal ofCOS- cells again

revealcdvirus-releasingcells.

Several other studies have indicated that the CDS' cells could suppress virus production

without affecting activation markers on CD4' cells or by killing the virus infected cells (Mackewicz

and levy, 1992). This was l;Qfl.finncd in a large number of studies in which the number of viNS

infected cells before and after mixing with CDS' cells remained essentially the same or even increased

(Walker et al., 1991; Wiviot et al.. 1990). This noncytotoxic antiviral response can be measured with

lWUraJly infected C04' cells obtained from infected individuals, as well as with nonnal CD4' cells

obtained from seronegative individuals acutely infected in culture with HIV (Mackcwicz and Levy,

1992)
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The e:aeot arCDS" cell suppression varies among subject!> (Walker et aL 1989) and decreases

in paricnts with discase(Lamlay etaL 1993). In many asymptomatic individuals, a mio ofCDS" cells

to CD4' cells as low as I :20 in the cell cullure assay suppresses endogenous virus replicalion; but in

AIDS patients the fluio often changes 10 2: I. Healthy inreeled individuals moniloced over time show

a reduction arthis CDS" cell responseconcomitanl with the onset ofsymptOmS (Landayetal.• 1993).

The significance armis loss ofanlivimllClivity is of special interest as the absolute number ofCDS"

cells does not correlate with Ihis antiviral activity (Landay c[ al .• 1993). The CDS' cell·suppressing

activity has a!.so been demonstrated in the SIV system (Kannagi et al.1988) and in HIV infected

chimpanzees (Castro et aI., 1992). Moreover. human CDS" cells show similar effectiveness against

different isolates of HIV·I. HJV·2. and STY (Walker cl al.. 1991). CDS" cells from several uninfecled

individuals also demonstrate this response. However. their reactivity occurs only with natutally infected

individuals, not acutely infected cells and generally only at a CDS·:CD4" cell nuio of 0.5: I or higher.

It has been shown that a soluble factor produced by C08- cells is involved in part in this C08­

antiviral response (Walker and Levy, 1989) even lhough cell [0 cell contact is the most effcclive

method ofsupprc:s:sing HIV replicMion. The pcesencc ofthe faclorcan be shown by addingsupemaw\I

from C08' cell cultures directly 10 infected CD4' cells (Walker et al., 1991). Virus replication is

substantially reduced without any effect on cell viability or replication. The level ofthe factor produced

is associated with the clinical state (Walker and Levy, 19S9) as the highest levels are derived from

C08' cells from healthy HJV ,infected individuals with high CD4' counts.

The mechanism by which the CDS- cells inhibit HIV replication has been an interesting area

ofSbJdy. Suppression appears to occur at or before RNA transcription (Levy et aL, 1991). Naturally

infected CD4' cells mixed with autologous CDS- cells have a maB.cd reduction in viral RNA and

protein synthesis. However, at the time ofsuppression, almost equal number ofinfected CD4- cells in
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die culture as those presenl in control cultures can be detected. Thus, no infected cells an: IOSI, and a

reduction in virus expression occurs. Recenlly, Cochi et al. (I99S) described three chcmokines.

RANTES, MJP·\ alpha. and MJP·( bclaas HIV suppressive factors. Recombinant RANTES, MIP·'

alpha. and MIP· [beta induced a dose-depcndent inhibition of different strains ofHIV-l. HTV·2, and

SlY (eachi etal., 1995). These ftndinp may have relevance forthe pmoention and treatment ofAIDS.

The literature also relates CDS' cell activiry to clinical outcome through the resistance shown

by PBMCs from asymplOlnatic individuals to superinfection by other stnains of HIV-1. Despite the

known presence ormany uninfected CD4- cells in these cultured PBMC. no acute infection takes place

unless em' cells m; flJ'St removed.. Appamltly, the uninfected CD4' cells are prnttcled from infection.

mostly by the COlI' cells, the factor (s) they secrete or both. The study on protection against disease

progression in HIV infeclion has always foc~ on the suppressive effects of CDS' cells on vinas

~lication by cytOlytic and non-eytotlyti<: mechanisms (Walker et at. 1987). Van Kuyk and his

collcagues(1994) have also showed that anti·HJV en. can proteCt SCIDIHu mice lTom HIV infection.

Hence, it was proposed that. gradual decline in lhese CDS cell responses might allow for~ion

oflhe disease. There have been a lot of discussions regarding the causes for the ulrimale failure ofan

anti-HIV crt response. Selective emergence of viral escape mlJlants (Philips et at. 1991). clonal

exhaustion theory (Moscophidis et at. 1993), anergy of specific crt (Pantaleo et aI., 1990),

inappropriate Teell help (Sheamet al., (991). and T-cell mediated suppression (Jolyetal.• 1989) have

all been put forth to explain the defect in crt activity in AIDS palients. A wide variety of

experimental strategies for enhancing the en. function in HIV patients have been attemp(ed.. However,

ic will take time to determine whether these novel thenpeWc modalities _ aetua.lly beneficial or evm

detrimental for the patienlS(Ho et al., [993). Rapid significant activation ofCD8 cells including those

that ate capable of lysing uninfected lymphocytes occurs during HIV infection (Zarling et at. 1990;



50

GIant eral, 199]; Grant et al. 1994).11 has also been reported that many HIV-infected indivKluals with

very low CD4 counts have high levels of circu[aling anti·HIV CTL (Granl et al.• 1992). Most of the

patierus wiltt AIDS retain their lllu,tnV en. activity. &l1easl in llitTO (Granl et aI.• 1992). In summary

it can be concluded that increased numbers afC08 cells bearing marlcers associated with anr:i·HJV CTL

activity signifteS a poor clinical prognosis (Giorgi et al.• 1993: Ho et al.. [993a). Alternatively, the

relalive dynamics ofthe stimulation and e;tpansion ofanti·HIV en and vir.al replication and spread

determines Ihe rote for theseCTL in terms ofprote<:tion or damage (Odennatt et al .. 1991).

I. IJ CTL IN HIV INFECTION: ARE THEY AUTOREACfIVE?

The initial hematological dala from HIV individuals indicating m:iproc:al changes in COof and

CDS' lymphocyte populations Jed 10 the ida thai die COl' cells could be autoaggressive (Ziegler and

Slites. 1988). This argument looked attractive as progressive histopathological observations of

lymphoid sections lTom HIV puiems showed COS cell hyperplasia followe:f by a lymphocyte depletion

(Ziegler and Stites, 1988). Based on the previous concillSions regarding the immunopathology of

lymphocytic chorio-meningitis virus (LCMV) infection in mice and human hepatitis B, a proposal was

put forward lha1 HIV infection produces a similar CTL-mediated immunopathology (Zinkcmagcl and

Hengartner, 1994). These studies suggested that anli-HIV CTL-mediated lysis ofCD4 cells and other

antigen jnSCt\ling cells (APe) infccled with HIV cause CD4 cell depletion and subsequent

immunodefICiency.

1.13.1 UWEMIOLOGICAL £VIDENCE

Polk eI aI. (1981), in. comprehensive epidemiological study of factors contnbUling 10 disease

progression in HIV infection, fOund that individuals with CD8 counlS above 6OOI1Ji. peripheral blood
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had increased relative risks (from 2.01 103.69) of developing AIDS within the next 10-18 months.

Many recent epidemiological studies also corroborate an association between die elevated CDS cell

counts and proximity of AlDS (Anderson et aI. 1991).11 was shown by Giorgi d al., (1994).lhaI non­

progressors (those with persistent CD4 counts >50011Jl.), e:thibit a slower rate and lesser absolute

increases in CDS' cdl counts following HlV inf'ec:tion lhan rapid progressors.

I.lJ.2 PHENOTYPE OF CDS

The percentage ofpatticular subsets ofCOS' cells may be more relevalllio disease progression

than lhe lotal CDS cell numbt!'o Multipamnetric flow c:ytorndric: stUdies have indicated that an incIQSe

in cosor cells that are Tcell receptor (TCR) 75-. HLA·DR'. CD38", inlerleukin-2 receptor IL-2R",

arCDST, precedes disease progres:sion{Kesansclal.. 1992: Autr.ln eta!., 1989). Class II HlAand

Il-2R are markm e.'(pressed on activaled T cells, while C038 is expressed on immature and ae:tivated

T cells. The expansion ofC03S' CDS' T cells was rectnlly shown to indicale a poor prognosis for

HJV·infec:ted individuals even though die majority ofanti,HIV en. is C03S' and HLA DR· (Ho et

a!.. 1993). CD57 may distinguish T cells with a particular function or specificity and yo T cells

constitute a distinct T lymphocyte lineage wilh an unclear function.

Although a causal relationship between the proliferation ofCDS" T cells and progression to

AIDS cannot be implied at this time. disease progmsion and changes in the CDS" cell repenoire~

closely linked. It ispossiblethat&CtivationofCOS'cells~f1ects increased replieationofHIV «other

opportunistic pathogens. The inevitable course ofHIV infection indicaJ:es that the CDS cell response

is at best lemporarily pI'O(ective. Alternatively. it could be suggeskd that a strorlg anti·viraI CDS" T cell

response could rum pathological. In any case. the presumption that viral replication is the primary
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&crOt'" responsible for the activation o(COS- T cells and that thcst cells m in tum protective in HIV

infection isunsubsti\l\tiated.

However. several experimental (GrEl eta!.. 1993; Grant et aL 1994). epidemiological (Polk

ct al., 1981), and clinical (Devergne et al., 1991) studies suggest that some of the CDSs activated in

HlV infection may contribute to disease progression. CDS cells rise early following HIV infection and

~main elevaled during the stages whm opportunistic infections are rare and HIV levels are low. An

aberrant CDS repenoire is a consistent and early observation in HIV infection during the clinically

asymplOmatic period. COS' T cell infiltration can cause immUllOp3.thology of many organs and tissues

including the skin (Ringler ct al.,. 1992), lungs (Autnn et a!.. 1988), salivary glands (Itesc.u ct a1..

1990). cencral nervous system (Jassoy et al.. 1992). lymph nodes (Dcvcrgnc el al .• 1991). and blood

vessels (Cab.lmsc et al .• 1989) of HIV- infected individuals.

Many cytotoxic drugs block T lymphocyte Ktivation in vivo and are used clinically to prevent

diseases or conditions with an underlying immune pathology. Many HJV·infected individuals

classified according 10 the Center for Diseaw: Control (CDC) stages 2 and J. who received cyclospocin

A (CsA). an immunosuppressive drug. showed a dr.unatic reversal ofthe abnonnal CD4 to CD8 ratio

as well as showed reduced lymphadenopathy (Andrieu et a1.• 1988). Upon discontinuation ofthe: drug,

the previous abnonnalities were restored. These positive results were not reproduced when CsA was

administered to AIDS patients (Philips et a1~ 1989). The response 10 this immunosuppressi~ drug, at

least in die early stageS ofdisease, coukl be the result ofan inhibition ofT cell activation leading to

reduced viral replication rather than a direct effect on the virus. In a recent study, HIV·infected

individuals were irrununiud with their own peripheral blood lymphocytes (POL), or given an

intra~nous injection ofS6FI, an antibody againslan activation-induced confonnational determinant

ofLFA-1 on CTL (Allen eta!... 1993). The levelofCD8s fell and that ofCD4s increased. TheCD4
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increases were sustainable with repeated immunizations with PBLs., but it appeared lbat the pmenlage

of 56Ft" PBl in the vaccine dictated the initial outcome (Allen et al.. 1993). This suggests the

autologous lymphocyte vaccines induced an immul'lC ~nse mar. down-regulated the en. levels

when the proportion orCll. in me vaa:ine prepantion was above a certain threshold level. Individuals

treated with 56Ft aIsoshowtd revcrsionorcutaneous anergy to recall antigens. suggesting an inVtf5e

relationship between the CDS cell count and immune responsiveness (Allen et at. 1995). Since

treatment with an antibody against en. is not e:(peeled to reduce viral replication. the increases in the:

CD4 cell levels appear more directly linked to diminished CDS cell activity.

In the human-PBL·SCID mouse model of HIV infection, CD4 cell depletion ocxuned more

rapidly when scid mice reconstituted with human PBl were infected with non-cytopalhic variants of

HIV (Mosier et al.. 1993). These non-cytopathic viruses also inducecl the greatest proliferation and

aClivation ofCDS' lymphocytes (Mosier et aI., (99). Enhanced CDS cell activation in this system is

no( protective and since anli- IiIV CTL were noI deteclcd among the COS cells aClivaled by HIV, it

does not necessarily reneet an adaplive response 10 grealer replication ofHIV (Mosier et aI., 1993).

Speculalions thaI CD8 cells mighl coombe!!e to CD4 cell depletion and disease pro~ion

are supported by experimental observations like CD8-medialed killing of HIV-inf«ted CD4 cells

(Siliciano et at.. \988). More recently, it was shown thai: CTL from HIV patients directly kill uninfected

CD4- cells (Grant et al .. 1993; Zarling et al.. \990). Zarling et a!. (1990) also detected CTL. which

killed uninfected CD4- cells in II out of 13 HlY" individuals. They also showed that HlV-infected

chimpanzees in contrasl to humans, do not have CTL that kill W1infeCled CD4' cells (Zarling el al.

1990). Even when infec:Ied with 811 HIV variant highlycytopadric to chimplKtzce lymphocyteS in virro,

chimpanzees do nOlluffer CD4 deplelion and hence are not susceptible 10 AIDS (Watanabe et at..

1991). Although they become chronically infected and mount a vigorous anti-HIV response, HJV-
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infected chimpanzees show none of the COl cell subset derangements or immune dysfunctions

characteristic ofhuman HIV inf«tion (Ferrari et aI•• 1993).

Investigators have also found thaf CTl dial can kill uninfecled C[)4s can be isolated from me

cultured PBl ofHIV·infected hemophiliacs and homosexuals (Grant et at., 1993; Lederman et aI.,

1996). en. activity against uninftckd C045 detectable following in vitro stimulation and is seiet;lively

presem in stimulated pal from Hrv·infccted individuals (Grant et al.. 1993). An imponant

consideration is that these crt may act locally jn vivo within the spl~n or lymph nodes and the

activity delectable in the peripheral blood is a weak reflection of in vivo events.

In murine model systems. such as LCMV infection. otherwise innocuous viruses can induce

en. responses lhal kill the host (Zinkem.lgd C1 aI., 1985: Oderman et aI.• 1991). The pathogenesis

of HJV infection could be eucerbated by the unusually vigorous CDS cell response. without being an

all or none system, like LCMV. This has to be investigated funher especially in light of recent repcns

by Pantalco et at (1994) ofoligoclonal expansion ofCD8" T lymphocytes among indivKfuals infected

with HIV. The oligodonal expansions were most notably in a restricted set of variablc-domain beta

chain families. Cells expressing the expanded V betas predominantly expressed the CD8" T-cell

differentiation antigens and mediated KJV-specific cytotoxicity (Pantaleo et al .• 1994).

More effective antiviral regimens and the more accutate picture emefling of the relationship

between HIV and CD4"lymphocyte dynamics suggest that factors ocher than virus replicat:ion can limit

CD4"lymphocyte replenishment (Wei et 11.,1995: Ho et aI., 1995). Theaetual mechanism ofCD4

depiction in HlV infection remains unknown and given the reponed ability to replenish up to 5% of

CD4" cells daily, it remains difficult to explain persistently falling CD4- lymphocyte counts purely as

aconsequcnceofthe bclofHIV replicalioo.Ct1. from HJV-infected indivKfuals kill C04 cells in

vitro and this could indicate a mechanism ofC04 depletion in vivo. Detennining whether these CTI.s
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operate i/'l vivo and if their actions contribute to disease progression is critical for undemanding the

pathogenesis of AIDS and for ineotpOn.ting rational CD8-based approaches into the management of

HfV infection.

l. 14. IS AIDS AN AUTOIMMUNE DlS£ASE?

Since HJV disturlJs the balmce arme immune system. it is not surprising that autoimmune

diseases like Reiter's syndrome. systemic lupus erythematosus. Sjogren's syndrome,vasculitis and

polymyositis accompany this viral disease (Calabrese et a!., 1989). Vasculitis in HIV-infecled patients

has been linked to deposition of immune complexes (Calabrese et aI., 1989) but immune complex

glomerulonephrilisisl'lU'e.

In terms of humoral immune responses, in carly srudies ofAIDS. antibodies.. often associared

wim clinical disorders, were detected against platelets, T cells. and peripheral nerves (Morrow el aI.,

1991). The reasons for these sequelae are not known.

A lack ofT eell regulation in HIV infection can lead to a proliferation orB cctb with ~ltant

polyclonal proliferation and amibody production. These kinds ofreactions have been ~ported in olher

viral infections like EBV infection, in which hypergammagJobulinemia and autoimmune disorders have

been documented (Henle and Henle., 1979). Polyclonal B cell ICtivity has been observed in HIV

infected individuals and is associated with high levels ofannllody production (Shirai d aJ.. 1992).

When a microrganism shares either sequence or amino acid homology with a normal cellular

component, molecular mimicry can exist. In this regard. similaritits between HIV proteins and normal

cellular proteins could elicit antiviral antibodies or cellular immune responses Ibat cros.s react with

normal cells. EvidaK:c in favoucoftbis possibility include the presence ofu....l.lL-2 receptor. MHC
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class I and class n molecules and interferon like 5equenccs in several HIV genes. as well as oth~

potential cros.s-«acting epitopes within the Env proceins of tile virus (Levy, 1989).

One popular mechanism rOt' autoimmunity involves the production ofa network ofantibodies

produced after an antigen is introduced into the host. Besides making antibodies 10 the incoming

antigen.. the antibodies 10 tllese anti-antigen antibodies lll'e induced.. These so-called anli·idiOl)'pe

antibodies CQuld be mirror images oftheepilope against which the initial antibody was produced. Thus.

antibodies to HIV envelope gpl20 might induce autoantibodies to the CD4 protein 10 which the gpl20

attaches. Although the possibility for these antibodies to fonn and be deDirnental for the host is

proposed. evidence for such a phenomenon has nol yel been reported.

Although a role for autoimmunity in HIV-induced disease is as yet unsubstantiated. the

p~nce of autoantibodies in HIV should be considered as a potential co-factor in AIDS pathogenesis.

An autoimmune response has been linked to me loss of neutrophils and platelets and to the induction

ofpcripheraJ neuropathy (Kiprov e\ al.. 1988).

There is potential danger that vaccination with HIV proteins could elicit. via molecular

mimicry. immune responses !hat deplete CD4" cells. compromise the immune system., and further

induce autoimmune pathology in ather tissues. Measuring Ibis pathological response could therefore

form part ofthe evaluation ofany therapeutic approach to HIV infection.

I. 15 COFACTORS IN HIV INFECTION

Following the discovery ofHIV. c:amc appreciation that many ather faetotS, besides itself. the

virus itsdfmight influence tbeoulCOmeoflhediscase. The majorob:servation supporting an important

rok
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for cofactors is the variation in the time from infection 10 development ofsymploms and AIDS among

different individuals. Host genetic: differences and age have been recognized a5 important variables

influencing the progression ofdisease. In addition. the Tcell activation for efficient HIV infection and

spread must be: considered. A co.faclor role for other viruses like berpesvirusc:s and papovaviruses.

antigens. and cytokines that increase immune activation has been proposed. Finally, additional immune

suppression. resuhing from odler infectious agenl:5. drugs., or to:<ins was considered as a possible

contributor.

One potentially important co-factor in HIV pathogenesis is infection by anodicr virus. When

herpcsviruses, adenoviruscs. hepatitis B viRls, or specific genes from these viruses were introduced

into cells transfected with a construct of HIV LTR linked 10 lhe chloramphenicol acetyl transferse

(CAn gene, an increase in production orlhe CAT proc:ein occurred (reviewed in Laurence. 1990). [n

spite of various i" vitro results suggesting the role orother viruscsas co-fac:torS in HJV pathogenesis.

clinical studies of individuals have not yet indicaled a contributory role for specific viruses. Cenain

viNSCS may conuibute to opportunistic infections or turnouts observed in some patients. however an

association wilh enhanced pro~ion [0 disease has nol been well documented.

Certain srudics have suggested Ihat agcnlS odIer!han viruses could playa role in Ihe pathology

observed in HIV inkction. La UJd coworkers in 1991showed dlat a mycoplasma that was found

associated with a Kaposi's san:oma tissue (MycopiaJma incognitas a strain of M.ftrmenrem). induced

immurtC defICiency and death when injCded inlo mKaqucs. T cells from HIV-infected individuals

have been shown to actively respond [0 mycoplasma amigcns (Lemaitre et aI., 1990) and !he potential

role of mycoplasma (in T cell deplctioa) as $Upenntigens has also been proposed.

HJV is the ultimate cause of AIDS, but other infectiOWi agenlS or environmental factors could

influcnce the progRSSion to disease.. How Ihc:sc cofM:lors collaborat:e in Ihe infected individual is not:
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vcry clear. They may induce eytOkines or intracellular factors thai either promote HIV rcplicalion.

compromise immune responses or both. They may also reduce the production ofcellular products such

as cytokines and affect immune funclion in that way. They could stimulate the immunt system

abnonnally and trigger autoimmune responses. Alternatively. they may reduce the cellular antiviral

activity and permit the escapeofHIV from host immunologic control. (I is possible that other factors.

including opponunisric infeclions, can affect the overall health crlhe individuaL Genetic factors can

influence cell susceptibility and host immune response. Either by direct infection of cells or by its

indirect effect on the immune system or the host, HIV appears primarily responsible for Ihe disease

prog:reuion observed.

I. I. 16 FEATURES OF HIV PATHOGENESIS

Given the viral and immunologjcaJ factors in HlV infection, the proposed palhogcnesis is

summarised here. The virus initially enters an individual primarily by infeeling either activated T cells,

resident macrophages. or mucosal cells in me bowel or uterine cavity. [n !he initial days after !he acute

infection, high levels of virus replication will cake place in the lymph nodes and will be reflected by

p24 antigenemia and viremia (Blomberg and Schooley. 19S5). Soon after. me viremia is reduced

substantially. as a result of immune reactions against the virus and the CD4' lymphocyte count falls.

Cellular immune responses could be the rlrSt effective antiviral activity. since in manyc:ases COB' cell

HIV responses have been detected prior to seroconver.oion (Clerici et aI., 1992). Over the ne.xt few

years, the CDS· cell number remains elevated. Virus replication in the body persists particularly in the

lymph nodes and PBMC in very low levels as the vints is effectively suppressed. CD4' cell number

usually returns to near nonnallevelsafteracute infection resolves, but tends to rail steadily during the

persistent period at an average me of25 to4W~ ofpcripheml blood peryear(langetal.. 1939). By
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the lime the individual develops symptoms, CD4- cell counts are usually below 300 per J.l.1 and the

levels of HIV~ highu dian during the asymptonwic period. Al this sage. a reduclion in die antiviral

activity of CDS" cells can be dcmonstnlted (Mackewic:z and Levy. 1992). When the individual

advances lO AIDS. the virus usually has charnctcristics distinct from thai recovered soon after infection.

II takes on properties associated with virulence in the host, including an enhanced cellular bost range.

rapid kinetics and CD4~ cell cytopathicity.

B«a~ ofan ongoing reduction in immunologic control ofHIV infection. the more virulenl

variants replicate to hiiher levels and cause destruction of a large number of CD4" cells. They

eventually eliminate die potential for any kind ofimmune n::sponse rocontrol oppoctunisric infections.

In the very last stages. the COS' cells decrease in number. perhaps in pan because orlhc loss oflL-2

production by CD4· cells.

Whedler emergence ofthcse cytopathic viruses or the suppression of immune responses occurs

tim is not yel clear. Cellular immune responses appear to be similar against all strains of HjV.

5uggesling that the loss of CDS' cell activity may be a major factor in the progression afme disease,

A drop in the cas' cell antiviral responseoccurnd in three 5ubjecfSjust prior to a fall in CD4' cell

nwnbcr(Mackewiczand Levy. 1992). The impc:x1llnCe afCDS" eells in controlling the infeetian over

time must be explored in greater detail.

Oireet virus infection of CD4" celis, a compromise in cytokine production. and abemnt

immune ~actions like AOCC. en.. IUtoI9C:tive T cells. aUtOantibodies. and apoptosis could all play

a role in the immunopathogenesis ofthe disease, The induction ofapoptosis in CD4" cells as well as

CDS" cells particularly requires funher study,

The major co-factor influencing delay in disease progression is the inherited genetic makeup

of the bost that detennines bodt the susceptibility of cells to HIV replication and the extent of
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effectiveness of the antivtral immune response. Moreover, the ~lativc sensitivity of the host immune

system to destructive effects ofviral proteins or cy10kines could be important in determining whether

there is rapid progression 10 disease or long lenn survival.

t.17 FACTORS AFFECTlNG PROGNOSIS

A 14-year study ofHIV infection in a defined cohort ofsubjects in San Francisco has shown

that about 80% afthe individuals develop symp[0m5 and that 55% have AIDS (Lirson et aL (991).

These findings indicate that 20% orlhe infected people remain heallhy aller 10 yean; and 12 % retain

normal C04" cell counts (Urson et al.. 1991).

The major factors responsible for long term survival are summarised here. First. while the

CDS" cell responses decrease with lime as individuals progress 10 disease. they remain strong in long.

lerm survivors and weaker in progressors (Gotch et al., 1992). Second, relatively noncy1opathic HIV

strains are found in the PBMC oflonglenn survivors with strong CDS" cell responses (Mackewiczand

Levy, 1992). Third, these infected individuals have a low viral load as measured by the number of

infected CD4' cells and f'Jft infectious virus in the peripheral blood. Finally. ~tralizing and not

enhancing antibodies to the virus are found in the blood of long lem su..... ivors (Homsy et aL

1990).These findings can be explained by the inability of the HlV nrains to replicate in the presence

ofCOS· cell antiviral activity.

The most importanl question in detennining the prognosis of HIV infection may be what

causes the alleration in the antiviral response ofeoS· cells. A decrease inantivinl activity ofthe CDS·

cells permits incrascd virus replication and progression of disease. A major influence can be the

genetic makeup of the individual; protection can come from strong immune responses and reduced
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inherent sensitivity afme host cells 10 virus replication. Progression does not reflect a reduction in the

tOlal number of CDS· cells since the level arthis subset often remain elevated unlil the late stages of

the disease (lang et al.. 1989). In cell culture, C028' CDS" cells demonstrate high antiviral activity

against all HlV strains whethcrcytopatbic Of not (Mackcwiczand Levy, 1992). Thus. it appears thai

an intrinsic loss o(eOS" cell activity is involved. This is an important area. which has 10 be e.'Cplored

so as 10 shed light on the prognosis of HIV infected individuals.

1.18 GENERAL PURPOSE AND KYPOTHESIS

The objective of this thesis was 10 assess functional CTL activity in HIV-se:ropositive

individuals and 10 monitor en function over the coune of disease progression. The assays were

designed in a way 10 study the nature ofCTL aClivity and 10 find out whether this may contribute to

ltie CD4· T cell loss in HIV·infecled patients. The (lISt step was todcsign an assay to definc !he nawrc

ofcytolox.icity among the CDS" T lymphocytes in HlV·infccted individuals. It has been proposed that

there are two primary mechanisms ofcell-mediated cytotoxicity, one mediated by interactions betw«n

FasL on the effector cell and Fas antigen 00 the target cell and the other mediated by directed release

of perfonn and aranzymes by the effector cell. In the next chapter. I describe the assay, which was

designed to distinguish between FasL-medialed and pcrforin-mediatcd cytOtoxicity. This in "ft7'O assay

uses murine PSIS cells, that express Fas antigen and FcyR receptors as targets.lgG anti-CDJ antibodies

bind FcyR receptor ofP81 5 cells and non-specifically sensitize them to CTL-mediated lysis. Human

FasL interacts with murine and human Fas antigen and, th~fore. P81S cells are sensitive to FasL·

mediated killing by human en.. The cytotoxicity is assessed by. five-hourchromium release assay.
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The ~ull$ as shown in the next chapler will demonstrate that Ibis is an accurale and easy way to

measure the cytoto.'tic:ity ofCTLs in HIV infection.

When cytO(oxiciry assays were performed using die assay system described in chapler II., it was

observed that cytotoxicity was reduced wh~ PMA and ionomycin were used 10 activate T cells. This

phenomenon was srudied funher in chaplet Ill. As previously reponed, ( found that T lymphocytes

from HIV·infmed individuals are more prone 10 undergo activation-induced cell dulh dian T

lymphocytes from uninfected individuals. Ho","eVer. we observe surprisingly. that the PMA and

ionomycin-induced deatll aflhe T lymphocytes from HIV-infetled individuals was predominantly 000­

apoptotic cell death. The results of chromium release assays, now cytOmetry studies. electron

microscopy studies and nuclear fragmentation assays dearly ckmonstrated that this novel form of

activation-indua:d cell death is not mediated by Fas and does not involve nuclear fragmentation.

Cytotoxicity assays were done using PBMC from HJV·infecred individuals as effectors at fIXed

intervals. TOtal cytoloxicity was measured using PSI ~ cells as targets and auto~tive en. activity

was measured using PHA.activatcd uninfecled T Iymphocylcs as largefS. The phenotype of the

autoruc:tive CTLs was detennincd by flow cytornelJy and depletion/selection experiments. Occurrence

ofCTL·mediated killing of un infected lymphocytes was then evaluated in the COnlext ofclinical and

laboralOf)' parameters associated with disease progression in HIV infcelion. In chapter lV.1 describe

the ~ullS ofthc:se (.'(pcr1men1S, which indicate that the development ofautoreactive CDS· CD2lf T

cells is a fundamental component oftbe immunopatbogenesis oOllV infection.
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Most methods for discriminating between Fas ligand and perforin-dependent cytotOxic

mechanisms exploit the sensitivity aCme effector cell to agents that selectively block one or

the other mechanism. We have developed an assay system with PSIS cells as generic targets

that discriminates perforin-based from Fas Iigand.~ killing by blocking the Fas receptor

with an antagonistic monoclonaJ antibody (mAb). Over a five-bour assay period, P8lScd.Is

are completely insensitive to direct induction of apoptosis by anti-Fas mAb Jo2. but are

sensitive to Fas ligand expressed on effector cells. Thus. treatment of PSIS target cells with

Jo2 blocks Fas ligand-mediated killing while allowing effector cell activation by whatever

means necessary to Digger cytotoxicity. PSIS cells express Fas and Fey receptors,lherefore.

IgO anti-CD3 antibodies. lectins such as phytohemagglutinin (PHA) and pharmacologic

agents such as phorbol myristic acetate (PMA) and ionomyc:in can non·specifically trigger

killing of PSIS ceUs by a variety ofeffector cells. Since Fas ligand interacts across species

with hwnanand murine Fas and perforin shows no species selectivity, P815s are sensitive

to both types ofcytotoxicity mediated by effector cells from various species. Comparable

inhibition ofcellular cytotoxicity against PSIS cells by J02 or by cycloheximide. a protein

synthesis inhibitor preventing Fas ligand induction. confumed that the diffmnt levels of

killing ofJ02 treated and untreated PSIS ceUs ~f1ected the extent that perforin and Fas Ligand.,

respectively were utilized in target cell killing. We used murine T cell hybridoJD8.!j;, a human

T cell clone and hwnan and woodchuck peripheral blood mononuclear cells to show that PSIS

cells can be used to determine dependence on Fas ligand and perforin·mediated killing

pathways by virtually any effector cell population, rq;ard.Iess ofcell type or species oforigia

Key words: Fas Ligand. Fas, perforin, cytotoxic T Iympbocytes
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INTRODocnON

Research with perfonn knockout mice and with mutant mice lacking functional

expression of Fas or Fas ligand suggests that Fas ligand-based cytololtcity is important in

immune regulation, whereas perforin-based cytotoxcity is critical for controlling infections

(I-S). This proposed dichotomy has implications in understanding the evolution of protective

and pathological cytotoxic T cell (eTL) responses in chronic infections and in cltronic

inflammation (5. 6). Perforin-mediated killing depends on extracellular calcium but not on

new protein synthesis. while cellular Fas ligand-mediated killing requires new protein

synthesis but not extracellular calcium (1, 8). Although Fas ligand-based killing can be

distinguished from perforin-based killing in calciwn free medium (9), induction ofFas ligand

expression is calcium dependent and under many circumstances, calcium free medium

abrogates both typeS of killing. Cycloheximide selectively blocks Fas ligand-based killing by

preventing de novo protein synthesis, but in ccnain instances it may be cytotoxic to target or

effector cells or may reduce: cytolytic effector function by inlu"biting synthesis ofproteins other

than Fas ligand. Coocanamycin, an inhibitor ofvacuolar type ~-ATPase, selectively inhibits

perforin-mediated cytotoxcity, but this requires pre-treatment of the effector ceils and it is

unclear what effects concanamycin would have when pharmacologic activation ofthc: effector

cells is required to trigger cytotoxicity (10). An in vitro assay system without effector cell

pre-incubation, metabolic inhibitors or calcium lice medium would be more broadly
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applicable to discriminating between perfonn and Fas ligand-based cytolysis mediated by a

wide variety ofeffector cells from different species, triggered in different ways.

Cytolysis by perfonn is receptor independent and Fas ligand and Fas are relatively

conserved across species. Therefore, ifa cytolytic effector cell can be activated to express Fas

ligand or release its perforin containing cytolytic granules. species differences between

effector and target cell would not prevent killing. Mwine PSIS cells express Fey receptors

and can be sensitized to CTL-mediated lysis with IgO amj·T cell receptor (TCR) antibodies

(11). PSl5 cells can also be: rendered sensitive to other ()'pes ofcytolytic effector cells using

lectins to bridge lar&ct aId effector cells or using pharmacologic agents to activate: the effC'C1Or

cells. PSIS cells express Fas constitutively (12) and are sensitive to Fas ligand and

perforin-mediated killing by murine and human effector cells. but resistant 10 direct lysis by

Jo2. an anti-Fas antibody. PSIS cells thus make a suitable generic target cell for

discriminating between Fas Iigand-based and. perforin-bascd killing mediated by diverse types

ofeffector cells from different species, under a variety ofconditions.

We incubated PSI5 cells with 102 mAb prior to their use as targets in various

cell-mediated cytolysis assays to selectively block killing triggered through FaslFas ligand

interactions. Cycloheximide, a protein synthesis inhibitor which blocks Fas-dependent killing

by preventing de novo expression ofFas ligand (9. D, 14). was used in parallel with anti-Fas

antibody to substantiate tbe selective blockingofFas-basecl killing in this assay.~ was

good agreement betwttn inhibition oflcilling by cycloheximide and. inhibition byanti-Fas
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antibody tteatment wilh both NK and T lymphocyte efft:(;{or cells from 3 different species.

triggered by 3 distinct rM'Cbanisms. This assay system can be applied to discrim.inate betwttn

perforin and Fas ligand·based killing by virtually any effector cell population or even the same

effector cell paulation lriggered by different methods.

MATERIALS AND METHODS

Cell lines and antibodies. PSIS. [$102.9. K·562. JurkaL J.RT3-TJ.5 and OKTJ

(rgOt anti-human CD3) cell lines were all obtained from American Type Culture Collection.

RocIrnIl., MD (ATCC # 119-64, HB-97, CCl-243, 119-152, TIB-I53. and CRl-8001

respectively). MT-2 cells and tM HIV gpl2o-specifichuman C04-T cdl clone Een217(IS).

were obtained from the National instifUle for AIDS and Infectious Diseases (MAID) AIDS

Research Reference Reagent Program. 609. 2FS and 2H4 are murine T ceil hybridomas

specific for thyroglobulin peptides that were generated and generously provided by Dr. G.

Carayanniotis. Memorial University. All cell lines were maintained in lymphocyte medium:

RPM! 1640 supplemented with [COlo fetal calf serum (FCS), to mM HEPES. 2 roM

L-g1utamine. 1% penicillin and streplOmycin (all from Gibco, Graod lsIand. NY) and 2 X 10-4

M 2·mercaptoelhanol (Sigma Chemical Co., St. Louis. MO) in a S% CCh bumidity controlled

incubator. Een217 cells were restimulated every 10 days with irradiated (3000 Rad)

alJogeneic peripheral blood lymphocytes and 0.25 ~g1m.1 purified pbytohemagglutinin
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(PHA-P) (WeUrnark Diagnostics, Guelph, ON) in lymphocyte medium supplemented with SO

Wml recombinant human interleukin-2 (lL-2) (Hoffmann-La Roche Inc., Nutley, NJ).

Hamster IgO anti-murine Fas antibody J02 and hamster anti-murine CD) antibody

2Cli were from Phanningen Canada, Mississauga. ON. IgO I anti-human Fas antibodies

BMS \38 and ZB4 were obtained from Biowhinaker USA, Walkersville, MD and Kamiya

Biomedical Comany. Thousand Oaks. CA respectively.

Peripheral blood mononuclear ull (PBMCj lso/alion. Human blood was collected

from a foream vein into heparinized vacutainen and woodchuck blood was collected Wlder

general anesthetic from a femoral vein. Blood samples were diluted I: I with phosphate

buffered saline (PBS) pH 7.2, layered over FicoH-Paque gradient separation medium

(Pharmacia Chemicals, Dorval, Quebec) and centrifuged at 400g for 30 minutes. Interface

cells were collected. washed three times in PBS containing 1% FCS. counted and used

immediately in cytoUlxicity assays.

Activation 01effector cells. Mwine T cell hybridoma cells were activated to kill

P815s by including l ~wml hamster anti-murine COJ antibody 2C II in the assay medium

and were activated to kiU PSIS. LSI02.9 and hwnan Fas-expressingJwtat, l.RD-D.5 and

MT-2 T cells by including 10 nwml PMA and 500 nglml ionomycin (Calbiocbem.

Novabiochem Corporation, LaJolla, CAl in the assay mecl.ium. Killing of human and murine

Fas-expressing target cell lines by the murine hybridomas also occurred following 3 hours

incubation in medium with 10 nglml PMA and. 500 ngfml ionomycin prior Ul carrying out the
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assay in plain Iympbocyte medium. The human T cell clone Een217 was triggemt to kill

PSISs by adding IfJ8lml OKTI anti.c03 antibody to the assay medium... Other IgG anti-e03

antibodies such as VeHTI and HIDa generally work. as well as OKTJ. Killing of K-562

cells by the Een217 clone and killing ofP8lScells by human and woodchuck PBMe was

triggered by adding 3 ",glml PHA to Ute assay medium.

Chromium release assays. Approximately 2:< I06 target cells were incubated for 90

minutes at 3"fC with 100 ",Ci Nl!l5lCrO" (Amersham. Boston. MA) in approximately 500.u

oflympbocyte medium. Labeled cells were then washed 4 times in PBS containing IVa FCS

and counted. For discrimination ofFas ligand-based killing, a sufficient number of labeled

P8 t5cells were incubated for 30 min in a small volume of medium with 5~ 10211 0' cells.

washed once and resuspended at 2xlo'fml in medium. Untreated largel cells were

resuspended at the same concentration and effector cells were then tested against both

untreated and antibody..tmlted PSIS cells at the indicated eff«tor to target (E:n ratios.

Target cells werc:addm. at 1x.10~/well in SO ~ ofmm.ium to round bottom microtitrc: plates

(lCN Pharmaceuticals Canada me. Montreal, Quebec). Effector cells were: added to duplicate

wells in SO, 25 and 12.5: I volumes for 3 different E:T ratios. Cycloheximide (Calbiochc:m­

Novabiochc:m Corporation, La Joila, CAl and colchicine (Sigma Chemical Co. Sl Louis, MO)

were: added to certain test weUs at final concentrations of SO ~ml and I roM respectively to

confirm the nature: ofcytotoxicity mm.iated by different effector cells studied. The: volume

in each test well was made up to 300 ~ with medium and targets were: also added to duplicate
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test wells containing either medium a1o~ (spontaneous release) or I N Hel (maximum

release). Once both effector and target cells were added. the assay plates were incubated for

5 hours at 37"C in a humidified SOlo cen incubator. After 5 bours. 100 ~l of cell-free

supernatant was transferred to tubes and counted in a gamma counter. Percent specific lysis

mediated by the effector cells was calculated using the following fannula:

(Experimental 51er release - Spontaneous release I (Maximum release - Spontaneous

release) X 100. In aU assays reported. spontaneous 'ler release was < 25% of loW 'Ier

release.

RESULTS

P815 cells art! resislant to anti-Fas mAb-mediated killing. To assess the relative

sensitivities of2 Fas-e:<pressing murine cell lines. LSI02.9 and PSIS. we labeled both cells

with sier and incuba1ed than for 5 boors with different amounts ofsoluble Jo2. a hamster (gG

anti-murine Fas annbody. Percent 'ICr release triggered by the antibody was used to indicate

sensitivity to direct killing by J02. Whereas incubation ofLSI02.9cdls with less lhan 5 ng/mi

ofJ02 increased 'ICr release above background levels. 'Ier release by PSI Scells remained

oearbackgrouod at levels ofJ02 up to S~ml (Fig. I). This demonstrates that Fas expressing

cell lines differ markedly in susceptibility to anti-Fas antibody-induced lysis. that PSI SecUs
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are relatively resistant to dim:t killing by J02 over a five-hour incubation period and that

LSI02.9 cells are extraordinarily sensitive to rapid induction ofapoptosis by J02.

Fas ligand-mediated killing 0/ P8J5cef/s is inhibited by 102. The sensitivity of

LS102.9 and PSIS to Fas ligand-mediated lysis was tested using murine T cell hybridomas

that express Fas ligand upon activation by specific antigen or trtaunem with PMA and

ionomycin. These hybridomas efficiently kill LS102.9 cells pulsed with specific peptide and

this killing is completely abrogated by adding cycloheximide [() the assay mediwn (data not

shown). Since P81S cells do nOt exp~ [A'. we could not use specific peptide to activate the

hybridoma. Surprisingly, the LS102.9 cells and P815cells were equally sensitive to Fas

ligand·mediated killing by the murine T cell hybridoma 609 activated by PMA and

ionomycin (Fig. 2). PMA and ionomycin were not toxic to the target cells and the hybridoma

was not cytotoxic without activation by PMA and ionomycin. Since the P8l5cells were

sensitive to Fas ligand-mediated killing and resistant 10 anti·Fas antibody·mediated lysis, J02

was used to selectively block murine Fas Iigand-mediated killing ofP8t5 cells (Fig. 2). Lysis

of P815 cells was reduced by approximately 80% when the wget cells were pre·incubated

with J02 (Fig.2). The same 609 hybridoma activaled with PMA and ionomycin was tested

against 3 hwnan Fas-expressing T cell lines, Jurkat, J.RTI-TI.5 and MT-2. The activated

hybridoma killed the 3 human T cell tines, confirming a productive interaction between

murine Fas ligand and human Fas. This killing was effectively blocked (-80% inhibition)

with the anti·Fas antibodies BMS138 (Fig. 3) or ZB4 (dala not shown). Two additional
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murine T cell hybridomas, 2F5 and 2H4 (designated 9 and 10 respectively in this experiment),

were triggered to kill P815ceUs by anti.-murine CD) mAb. Neitherhybridoma killed P8lS

ceUs without anti-eOJ and killing was effectively blocked. either by including cycloheximide

in the assay medium or by pre-incubating PSIS cells with 102 anti·murine Fas mAb (Fig. 4)

Fas ligand-mediated killing arp81S cells was also studied using PBMe from healthy

woodchucks. Since antibodies against the woodchuck T cell receptor art: not available, PHA

was used to cross-link effectors and targets and activate the effector cells. Effector cells from

woodchucks were lested against untreated PSIS cells and PSIS cells pre-incubated with

anti-Fas antibody in the presence ofPHA and:lgainst untreated P8lS cells in the presence of

PHA and cycloheximide. The reduction in killing of PSIS cells pre-treated with anti-Fas

antibody indicates that the majority of the cytotoxic activity within circulating woodchuck

PBMe is mediated via expression ofFas ligand (Fig. 5).

Killing ofPal5 cells by PBMe from woodchucks 293 and 297 was reduced by 6J-1D

and 80010 respectively when target cells were pre-incubated with Jo2. A similar reduction in

the level ofkilling observed in the presence ofcycloheximide confinns the predominance of

Fas ligand·mediated killing (Fig. 5).

Per/orin-mediated killing ofP81jce/is is wraffecled by J02. The Jnef:hanism ofcytotoxicity

of circulating PBMe from two healthy numans was studied using the same assay system.

Neither pre-treatment of target cells with Jo2 nor inclusion of cycloheximide in lbe assay

medium bad a majoreffect OD. the level ofkilliog (fig. 6). This illustrates that the circulating
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cytotoxic cells in healthy humans are predominantly perforin-dependent. These are

presumably NK cells, which previously have been reported to mediate both perforin and

Fas-dependent killing (16. 17). Results with our assay system suggesting predominantly

perforin-dependeot killing were confirmed by using Fas-negative K-562 cells as targets and

EGTA to chelale extracellular calciwn required. for perforin polmerization and by using

colchicine to inhibit the microtubule dependent degranulation required for NK cell perforin

release. Both colchicine and EGTA reduced the level of PHA-triggered killing of P815cells

by human PBMe practicaJly (0 background levels (Fig. 7).

Cytotoxicity assays carried out with the human Een217 CD4+ T cell clone also sho~

that treating PSIS cells with Jo2 does not affect perforin-mediated killing. This clone

mediated little cytotoxicity against either PSl5 cells or K·562 cells in the absence ofanti-eD3

or PHA (Fig. 8). Anti-em triggered killingofP81S cells by the CD4· clone and surprisingly.

this killing was not inhibited by cycloheximide or anti-Fas antibody. Utiliz.ltion of the Fas­

independent mechanism ofcytotoxicity by this clone was confirmed by its ability to kill Fas­

negative K-562 cells in the presence of PHA. Killing of K-562 cells by Een217 was also

unaffected by cycloheximide (Fig. 8).

DISCUSSION

We have developed a simple, broadly applicable assay system that discriminales

between perforin and Fas ligand-based cell mediated cytotoxicity by selectively blocking
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interaction between Fas ligand and Fas. The keys to this assay system are me promiscuous

cross-species productive interaction between Fas and Fas ligand and resistance of the Fey

receptor·positive P81S cell line 10 direct killing by the anti-Fas antibody )02 coupled with

sensitivity to Fas ligand·medio.ted killing. Preswnably, c:xpression ofFas ligand on the fluid

membrane ofan effector cell allows for localization into the area ofcell 10 cell contaCt and

efficient aggregation and cross-linking ofFas antigen. With PSIS cells. it appears that this

is necessary for apoptosis induction. whereas very low levels of soluble divalent J02 are

sufficient 10 induce apoplOSis ofLSI02.9 cells. Despite this discrepancy. bom cell lines were

equally sensitive to Fas ligand-mediated cytolysis by murine T cell hybridomas. These

observations reiterate the important role of poorty undentood extra- and intracellular factors

in modulating t:he ability aCthe Fas receptor to transduce signals leading [0 apoptosis.

Using anti-receptor antibodies, lectins or pharmacologic agents to lrigger a wide

variety ofeffector ceUs., murine P81S cells can serve as universal targets in this assay system.

We utilized murine PSIS cells to analyze the cytotoxic mechanism employed by various types

ofef'fector cells from) different species. Killing ofP81S cells by murine T cell hybridomas

that express Fas ligand when activated with PMA and ionom)"(:in was almost completely

inhibited when P81S target cells were pretreated with 102. Killing by murine T cell

hybridomas triggered with anti-CD3 was inhibiled to virtually the same extent with J02 as

with cycloheximide. indicating that blocking the Fas receptor with 102 prevents Fas

Iigand-mcdiated killing as effectively as blockin8 Fas ligand expression. Killing ofPSIS cells
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by freshly isolated PBMC from bealthy woodchucks triggered with PHA was markedly

inhibited either by cycloheximide or by pretreating the P81S cells with J02, indicating

predominant use of the Fas ligand-mediatcd pathway ofcytOtoxicity by these effector cells.

In contrast, using the same assay S)'Stem. ....~ showed that PBMC from healthy humans

predominantly lysed PSI5 cells via perfonn release. We also used the assay system to show

that a human CD4·T cell clone mediated Fas·independent killingofP815 cells and K·562

cells. nus is apparently a rare examp{e of perforin-mecliated killing by human CD4·T cells.

The advanlagC oflhis discriminatory assay system over other methods ofselectively

blocking one or the other mechanism ofcdl-mcdiated cytotoxicity is its broad utility and the

lack of any possible interference with different methods employed to trigger killing of PSIS

cells by diverse effector cells. Calcium chelation can only be used in a system where the

effector cells are pre-activated to express Fas ligand. This requires preincubation ofeffector

ceUs and expression ofFas ligand will then decay over the time course of the assay. Inhibition

of perforin-mediated killing by concanamycin also requires prc:-~tment of effa::tor cells

(10). Cycloheximide can be added in some assay systems 10 prevent Fas ligand expression.

but cycloheximide may be toxic 10 cells under cenain cooditions and generalized inhibition

of protein synthesis can affect cytotoxicity in other ways. In this assay system, activation of

effector cells and protein synthesis are allowed to occur nonnally, but the target cells are

rendered insensitive to Fas ligand-mediated killing by blocking the Fas receptor. Therefore.

wba1ever stimulus is necessary to trigger the effector cells can be: freely incorporated into the
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assay and the relative conservation of Fas and Fas ligand across species allows analysis of

clones, hybridomas. cell lines and fresh PBMe from diverse species. We showed that

circulating cytotoxic ceUs in PBMe from healthy woodchucks., preswnably NK cells. killed

primarily via Fas ligand expression. wh~ circulating human NK cells primarily kill ..ia

perforin release. Mwine T cell hybridomas were shown to kill~b(e human and murine

targets via Fas ligand expression and a human CD4~ T cell clone was shown to mediate Fas­

independent cytolysis. The accuracy of this assay system in discriminating perforin from Fas

ligand-mediated killing was confinned by using Fas-negative K·562 cells as targets and by

using cycloheximide and colchicine to inhibit Fas ligand expression and microtubule­

dependent perforin release respectively.

Since FaslFas ligand inleractions occur between species, this assay system with

murine PSIS target cells can readily ~ applied [0 study the role ofCTt subsets both in hwnan

diseases and in various animal models of human disease. For example. infection of

woodchucks with woodchuck hepatitis virus is an accepled model of human hepatitis B

infection and this assay system can be used 10 characterize CTL activity in the woodchuck

hepatitis model during different stages ofdisease or following infection protocols that lead

(0 resolving,. chronic latent or chronic active hepatitis. This assay system can be equally well

applied to monitor the level and Fas ligand-depc:ndence ofCTL activity over the course of

HJV infection using anti-human CD3 antibodies to trigger killing.
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In summary, we used P81S cells as generic target-cells to discriminate between Fas

ligand and perforin-based cytotoxicity mediated by lhree different lypes of cytOtoxic ceUs

fi'om humans, woodchucks and mice using three diffettnl methods to trigger effector cell

function. Therefore. using P815s as targets and comparing levels ofk.illing with or without

pre-treatment with J02 anti-murine Fas mAb. the nature ofcytotoxicity mediated by virtually

any lymphocyte population immediately ex vivo, following different modes ofactivation. or

after various selection. cloning, and uansfonnation procedures can be rapidly and easily

determined.
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SUMMARY

Abnormally high numbers of T ceUs from HIV-infected individuals undergo

spontaneous and activation-induced cell dea1h (AlCD). T cells from HIV-infected individuals

also are especially sensitive to fas-mediated apoptosis. suggesting that FaslFas ligand (Fast)

interactions migbtcontribute to AICD in HIV infection. Treatment orT cell lines. etones and

hybridomas with phorbol myryslic acetate (PMA) and ionomycin induces Fast expression.,

therefore. we used this treatment to investigate the possible role of FaslFasL interactions in

AICD in Hrv infection. PMNionomycin-inducerl AIeO was examined by Chromium (SICr)

release, DNA analysis. propidiwn iodide (PO uptake and electron microscopy. PMA and

ionomycin acted synergistically to induce up to 70% release of incorporated SICr from fresh

PBMe ofHIV-infected individuals, compared with up to 26% 'ler release from fresh PBMe

of healthy uninfected volunteers. Cr release increased in a linear fashion throughout the 5

hour assay period, consistent with the kinetics ofcell-mediated cytotoxicity. Inhibition ofer

release by addition of cold tatg~ts and lhe lack of cytotoxicity of supernatants from

PMAlionomycin treated PBMC also sugg~sted that c~ll-to-cell contact was required to trigger

AlCD. Cbelating exttaeelluIar Ca4 reduced AlCO to background I~vels, but neither

antagonistic anti-Fas antibodies nor cycloheximide inhloited AlCD. Fas+ P81S cells and Fas­

K-562 ceUs were equally ~ffective in cold target inhibition ~xperiments, also suggesting that

FaslFasL interactions wert: not involved in this A1CD. Electron microscopy revealed

disruption ofme plasma membrane while the nuclear membranes ofdamaged cells remained
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inlaCl. Analysis of DNA isolated from PMAJionomycin treated PBMC revealed no

fragmentation. while PI uptake confirmed loss of plasma membrane integrity and identified

the majority of cells undergoing AlCD as T lymphocytes. Treatment with PMA and

ionomycm induces a novel fonn of AICD \l,;tb no associated DNA fragmentation in T

lymphocytes from Hrv-infeeted individuals. and to a lesser extent, in T lymphocytes from

non-HIV·infected volunteers.

INTRODUCTION

In reeent years. AleD has been considered a possible factor in the depletion ofCD4+

T lymphocytes and degeneration of CD8+ T cell-mediated immunity in HIV infection.

Spontaneow and activation-induced apoptosis has been observed for CD4+ and CDS· T cells

in human HIV infection and in non-human primates infected with pathogenic strains ofsimian

immunodeficiency virus (SIV) (1-4]_ In vitro HIV gpl20-induced apoptosis ofuninfected

CD4+ T cells and apoptosis of HlV-infecled T cells. apoptosis of uninfected CD4+ T cells

within lymph nodes, HIV-infected macrophage-mediated T cell apoptosis and modulation of

T cell ap<>ptosis by cytokines with altered expression panems in H£V infection illustrate the

possible relationship between T ceil apoptosis and progressive HlV infection [5·9). AlCD

of mature T cells occurs largely through FaslFas ligand (Fast) interactions [10). Thus,

increased expression ofFas on PBl in HlV infection, increased sensitivityofCD4" and CDS"

T cells from HIV-infected individuals to anti-Fas antibody·medial:ed apoptosis, FasL-
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mediated apoptosis ofT cells by macropbages from HIV..-infec:ted individuals and anti·Fas

antibody production in HIV infection suggests FaslFasL interactions may playa major role

in T cell apoptosis in HIV infection [8.1 t-14].

Since sensitivity to exogenous anti-Fas antibody-mediated apoptosisi~ in

parallel with disease progression in Hrv infection [121, we stimulated PBMC from 60 HIV­

infected individuals wilh PMA and ionomycin to induce FasL e.xpre$sion and investigated

whether increased sensitivity to autocrine or paracrine cellular FasL expression occurs in HJV

infection. While this treatment produced significant AleD. we found no dependence on

FaslFasL interactions and no evidence of ONA fragmentation. Three different techniques

characterized this AlCD as manifest primarily through loss of membrane integrity. These

findings raise the possibility that a novel palbway of AlCO unrelated to FaslFasL interactions

and not associated with DNA fragmentation may contribute to physiological and pathological

T cell regulation.

MATERIALS AND METHODS

Subjecls

HIV-infected individuaJs participating in this project were recruited through the

Infectious Disease Clinic of the SL John's General Hospital, SL Johns. Newfoundland,

Canada.. SubjecLs were assessed clinically concurrent with flow cytometric measurement of
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CD4~ and CDS- T lymphocyte counts at each visit. Non·HN·infected volunt~rs were

recruited from laboratory personnel. All subjects gave infonned consent and the 5lUdy

received local ethics approval from the Memorial University Hwnan Investigation Committee.

Blood was oolletted in vacutainers with EDTA :1Jlticoagulant. Whole blood was diluted 1:1

with phosphate-buffered saline (PBS), underlaid with Ficoll·Paque gradient separation

medium (Pharmacia Chemicals. Dorval Quebec) and centrifuged at 400 g for 30 min.

Interface cells were collected. washed J times in PBS plus 1% fetal calfserum (FCS) (Gibro.

Grand Island. New York), and counted.

Chromium release assay

Approximately 2xIa' freshly-isolated PBMC were incubated for 90 minutes in about

500 :1 total volume: lymphocyte medium (RPMI plus ((W. FCS. 10 mM HEPES. 2 mM l­

glutamine. 1% penicillin/streptomycin. 2xlO" M 2·mercaploethanol. all from Gibeo) with

100 !lei NalslCrO.. (Amersham life Sciences. Arlington Heights. IL). labeled cells were

washed 4 times with PBS plus 1'1. FCS and resuspended in 1 mt medium. Minimum and

ma.-umum release wells were set up in duplicate with 250~ of medium or IN Hel

respectively in 96 well round bottom mkrotitre plates (lCN Canada Inc.• Montreal. Quebec).

SO ~ of the labeled PBMC suspension was added to me control wells and to duplicate test

wells containing 250tJJ of medium with 10 nM phorbol myrystic acetate(pMA) and 500 nM

ionomycin (Calbiochem, La Jolla, CAl. For some samples. duplicate test wells were
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supplemented with 5 f.lg/mi anti-CD3 antibody OKD (ATee CRL-8001) or HITIa

(Pharmingen Canada, Mississauga. ON) or 5 }lglml anti-Fas antibody ZB4 (Kamiya

Biomedical Co.. Thousand Oaks, CAl. 5 J!gf m1 anti-fiLA-A, Band C annbody PAl.6 (ATee

HE-I 18), 50 f.lg/ml cyclohex.imide (Calbiochem, La Jolla. CAl, I mM colchicine (Sigma

Chemical Co~ St Louis.. MO), 50 V/ml recombinant human interleukin-2 (r(L-2) (Hoffinann­

La Roche. Nutley, NJ), I mM EGTA with 1.5 mM MgCli6HlOor2.5xlOJ unlabeled K-562

(ATee CCL-243) or PSIS (ATee TIB-64) cells. always in a final volume of 300 IJ.I

lymphocyte medium. Cells were incubated for 5 hrs at Jf C in a 5% Co,. humidity

controlled incubator and I00 ~ supernatant was removed from each well for counting in a

Wallac 1480 gamma counter. Percent specific 5lCr release wu calculated by the following

fannula:

(exPerimental 'Ief release - spontaneous JI Cr release) )( 100

(maximum "er release -spontaneous 'ler release)

Spontaneous 5'et release was less than 30% of maximum release in all assays.

DNA fragmentation Q1I/1lysis

I xlO' PBMC from HIV-infec:ted individuals were incubated either for 5 or 16 hours

in Iympbocyte medium with 10 aM PMAand 500 nM ionomycin.. DNA wasextraeted from

these cells as previouslydescnbed [ISl. Briefly, pcUetcdceUs~ washed once in PBS with

t% FCS. lysed with 0.2% sodium dodecyl sulfate and incubated with 0.16 mglml proteinase
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K (Gibco. Grand Island. New York) for I he at 37" C. DNA was isolated. from the digest by

phenol extraction (Gibeo. Grand Island. New York), followed by extraction with

chloroform/isoamyl aJcohol 24:1 (Sigma Chemical Co., SL Louis. MOl. DNA was lhen

precipitated with t00% elhanal (Sigma Chemical Co.. St Louis, MO) and washed once in

700". ethanol. As a positive control fOf visualization of DNA fragmentation, DNA was

extracted as above from LSI02.9 (ATee HB-97) cells incubated for S hours with 100 nglml

hamster anti-murine Fas antibody, Jo-2 (Pharmingen Canada. Mississauga. ON). lsolated

DNA was separated by electrophoresis on 1.6% agarose gels for 45 min at 50 mA and

visualized with ethidiwn bromide (Sigma Chemical Co.. St. Louis. MO).

Flow cytomelry

Approximatcly 2x 106PBMC from HIV-infected individuals were incubated for 16 hrs

at 31' C in a S% COl humidity controlled incubator in lymphocyte medium with or without

to nM PMA and 500 nM ionomycin. These ceUs were pelletedand washed in PBS plus 0.1%

BSA and 5 mM EDTA. Cells were incubated for 30 min at 4° C with FITC-<onjugated

murine IgGl isotype control or mC-conjugated anti-CD3, anti-CD4, or anti-CD8 (all from

DAKO Co., Carpinteria. CAl or anti-eD28 (ImlmUlotteh S. A_ Marseille, France). Samples

were washed once and incubated at 4° C for 15 min with 10 IlWml P( (Sigma Chemical Co.,

SL louis, MO) in PBS and ceUs weIe analyzed for PI uptake at 576±26 nm and me·
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conjugated antibody binding at 53O±JO nm with a FACStar"-uS analyzer (Becton Dickinson.

Mississauga, ON) after excitation at 488 nm with an argon laser.

Electron microscopy

5x I0' freshly isolated PBMC~ incubated for 5 hr at rf C in a 5% CCh humidity

controlled incubator in lymphocyte medium with or without [0 nM PMA and 500 nM

ionomycin. These cells were then centrifuged at400g. washed with PBS plus 1% FCS and

resuspended in t ml Kamovsk.rs fixative (4 g paraformaidehyde. 5% glutaraldehyde in 0.2

M sodium cacodylate buffer). After 6 hours in fixative. the cell pellet was treated with t%

osmiwn tetroxide for 20 min and the cells were then washed and dehydrated with ascending

concentrations of alcohol from 7G-IOOOIo. The cells were then washed with acetone and

suspended in epoxide resin overnight at 700 C. Ultra thin (90 n~) sections were cut.

counterstained with uranite acetate and examined wit:h a Jeol 1220 X electron microscope.

RESULTS

Chromium release assays

To assess AJCD in PBMC from HIV·infected individuals, freshly isolated PBMC

were labeled with SICr and incubated in lymphocyte medium with 10 nM PMA and 500 nrn

iooomycin. Percent SlCr release over a 5 hour assay period was measured with PBMC from

60 HIV'-infected individuals and 15 healthy non-infected volunteers. The percent HCr release
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ranged from 5% 10 26% (mean:t SD 'II 16.1% ± S.'r'Io) for the controls and from 5%·70%

(mean± SO = 29.3% ± 13%) forme HIV-infected individuals (fig. I). Mean AICDtriggem:i

by PMA and ionomycin-induced activation as measured by ~ICr release was significantly

higher in the HIV-infec:ted group (Student's l test. p<.OOt). Both the PMA and ionomycin

contributed to AlCD. With PBMC from subjects 10. 12. 13.27,36.50.51 and 81 there was

a strong synergistic effect ofcombining the 2 agents. whereas with subjects 5, 45. 46 and 64.

the effects of the 2 agents were approximately additive (fig. 2). A time course study with

labeled PBMC from 5 HIV-infected individuals showed that Sler release from the PMA and

ionomycin treated PBMC inettased in a roughly linear fashion over the five hour assay period

(fig. 3).

Since the linear increase in SICr release over the 5 bour assay period was consistent

with cell-mediated killing, we investigated the role ofcell-ceU contact in this tonn of AICD

by adding cold target K-562 or P81S cells at a ratio of to:l to lile labeled PBMC. Both the

Fas-expressing P8lSs and Fas-negative K-562s reduced the level of Cr release [0 near

background levels (fig. 4), suggesting that cell-to-cell contact is involved in this form of

AICD and that Fas is not a primary mediator ofsignais leading to AleD. Supernatants from

the PBMC of HJV-infected individuals incubated with PMA and ionomycin were not

cytotoxic even when substantial AICD occurred during the 5 hour incubation (data not

shown). This apparent ~uiremeot forcell-to-ceU contact suggested thai: cell-mediatal killing

might be involved and when the AICD assay was carried out in calcium free medium, Cr
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release fell to background levels (fig 5). IL-2 did not rescue cells from AleD and neither

cycloheximide nor colchicine. which inhibit Fasl expression and granule exocytOsis

respectively, significantly reduced the level of AlCD. Antagonistic anti·Fas or anti-perforin

antibodies also did nol reduce AleD. Monoclonal anti.c03 antibody OKT3 significantly

reduced AlCD in this system. whereas HIT3a, another IgG2a anti-CD3 antibody with similar

reported characteristics, did not inhibit AlCD at the same concenuation of 5 Ilglml (fig 5).

At 5 Ilg! mi. PA2.6, an anti-HLA class I antibody that blocks HLA-A. B and C-restricted

cytotoxic T cell-mediated killing also did not reduce the level ofAICD (data not shown).

DNAfragmentolion analysis

To test for DNA fragmentation associated with this form of AleD. DNA was

extracted from the PBMC of HIV-infected individuals following incubation in lymphocyte

medium with PMA and ionomycin for 5or 16 hours. Agarose gel electrophoresis aCme DNA

isolated from the PBMC offour subjects wilh high levels of AlCD as measured by Crrelease

revealed no breakdown into fragm~nts cbaraeteristically spaced 180 base pairs apart after

either 5 or 16 hours of incubation with PMA and ionomycin (fig. 6). At both time points. the

isola1ed DNA appeamf C<lmpletely intact, indicating that Ibis fonn ofAICD does not involve

DNA fragmenlatioD.
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Flow cytomelry

Cr release data and DNA analysis suggested this form of AfCO was associated

primarily with reduced plasma membrane integrity. Therefore. we analyud PI uptake lbrougb

flow cytometry in order to confirm the loss of membrane integrity and also 10 phenotype the

PBMC subsets undergoing AlCD. lymphocyte gates based on cell forward and side scatter

were expanded to detect and analyze the majority of PI'!' cells (fig 1). Flow cytOmeaic

quantitation of cells failing to exclude PI following overnight incubation in lymphocyte

medium or medium with PMA and ionomycin clearly demonstrated that PMA and iooomycin

treatment substantially increased me number of PI'" cells. The correlation coefficiem: between

% Cr release after 5 hours and the percentage of cells taking up PI following ovemight

incubation with PMA and ionomycin was 0.74, suggesting that these 2 measures were both

representative afthe cell death ioduced by PMA and ionomycin. Counter staining the cells

with FITC·labeled anti·CD3 identified the majority of PI"" cells as T cells (fig. 7 and Table

I). Although PMA and ionomyc:in has been reported to down modulate CD4 and CDS (16).

and we did observe this with several controls, increased numbers ofCD4+ and CDS+ cells

appeared. in the P(+ popu.lation following treatment with PMA and iooomycin. With most

HJV·infected individuals, no CD4+ T cells ~mained in the Iympbocyte population that

excluded PI after treatment, while a significant portion of the CDS" T cell popu.lation was

usually spared (fable I). Both eD2s+" and CD2S·T cells appeared equally susccpt1ble to this

form of AJCD (dala not shown).
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EleClron microscopy

In order to visualize cellular ultrastructural changes related to the loss of plasma

membrane integrity, PBMC treated with PMA :md ionom)'cin for 5 hours were fixed and

analyzed by electron microscopy. Treated cells showed a pale cytoplasm. excess

vacuolization. membrane elongation and marked plasma membrane disruption relative to cells

culwred for 5 hours in unsupplemented medium (figs. 8aand 8b). Very few cells were seen

with the nuclear degeneration and disintegration inlo discreet vesicles characteristic of

c1assica1·apoptosis. The vast majority oClhe cells with plasma membrane damage showed no

loss of integrity [0 the membrane or interior of any intJacellular organelle, including the

mitochondrion and the nucleus. Although rounding of the nucleus and some chromatin

condensation against the nuclear membrane was often observed, the nuclear membranes

themselves appeared Ronnal even at 4O.000x magnification (fig. 8e). Ultrastructural changes

such as vacuolization and plasma membrane damage did not occur 10 any significant extent

when PBMe from uninfected individuals ~e incubated with PMA and ionomycin (not

shown).

DISCUSSION

In this study we showed that T ceUs from mY-infected individuals are SUSCepb"ble to

a novel form of AICD induced by stimulation with PMA and ionomycin. PMA and
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ionomycin-induecd AICD was initially detected by above background Cr ~leasc: from fteshJ.y

isolated PBMC over a 5 hr incubation period. The elevated release o("Cr suggested a loss

of plasma membrane integrity, which was confinned both by flow cytometric assessment of

PI uptake and by visualization through electron microscopy. The failure ofeit.her antibodies

that block Fas signaling or an inhibitor of protein synlhesis to prevent AlCD indicated that the

FaslFasL pathway played no role in this form of AleD. Furthermore, no evidence ofnudear

degeneration or DNA fragmentation was seen by electron microscopy or by agarose gel

electrophoresis of DNA isolated from stimulated cells. Inhibition ofcell lysis with cold target

inhibitor cells indicated that cell-to-cell contact was required for AleD. but an anti-class I

antibody that blocks class I-restricted CTL did not block AleD. Chelating free calcium in the

assay medium prevented AleD. but neither anti-perforin antibodies nor inhibition of

lymphocyte degranulation with the microcubule poison colchicine reduced AlCD.

Countcr staining the cells that failed to exclude PI after incubation with PMA and

ionomycin with mC·labe!ed anti"(03. anti"(D4, anti..(D8 and anti-CD28 demonstrated

that the dead. and damaged pr cells were predominantly T cells. that both CD28~ and C028­

T ceUs were susceptible to AICn aDd that there was relative sparing of CD8~ T cells over

CD4~ T cells. T cells were not rescued by [.·2, but AICD was substantially reduced by me

anti-CD3 antibody OKTI. Electron microscopy revealed cellular vacuolization with plasma

membrane rupture, while the nucleus and intracellular organelles remained intact.
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This AICD observed in these studies is novel in the absence orDNA fragmenlation

and in the effects of different inhibitors of known mechanisms of contact dependent ceJl

death. The requirement for cell·to-eeU coolaCl and inhibition with calcium free medium or

anti-e03 antibodies is consistent with cell-mediated cytotoxicity through perforin rel~. but

the lack of inhibition by adler anti-eOJ antibodies that block CTL·mediated killing. or by

anti-perforin antibodies., or by colchicine: argues against this being the primary mechanism of

cell destruction. We considered the possibility that the PMA and ionomycin might induce

non-targeted degranulation of CTL resulting in the death of neighboring cells in such close

contact that anti-perfonn antibodies could not reduce killing. However. we found in several

perforin-dcpendent en. systems that inclusion of PMA and ionomycin in the assay mediwn

substantially reduces killing. The effect of calcium. free medium could be through antagonism

afthe effects ofionomycin or PMA on activation aCthe PBMC. rather than through inhibition

of perforin polymerization in the cytotoxic effector phase. Absence of nuclenr fragmentation

and lack of inhibition with cycloheximide or anti·Fas antibodies clearly exclude a role for

lNF or FasL.mediated cytotoxicity in this system. Therefore. the role ofcell·to-eell CODtact,

the nature ofthe intercellular interactions leading to Tcell death and the mechanism by which

OKTI reduces cell death in this synem~ unknown.

Non·apoptotic dealh of activated lymphocytes was previously reported following

treatment with a mAb, RE2, that reacts with an MHC class [·associated determinant on

activated lymphocytes (17). Scanning electron micrographs ofceUs treated with RE2 showed
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plasma membrane damage similar to what we observed following incubation of PBMC from

HIV·infected individuals in PMA and ionomycin. Killing by RE2 was independent of

extracellular Ca1
+. which differs from our observations. but the requirement for Cal. in our

system may relate to lymphocyte activation and acquisition of sensitivity rather than to the

actual killing mechanism. Antibodies are unlikely to play any role in our system, but the

absence of DNA fragmentation and uhrastructwal similarities in both inslaIlces raise the

possibility that the target of the RE2 antibody may have a corresponding cellular ligand mat

triggers AleD or that the intracellular pathway leading to AJCD may be common to both

systems. A novel type oflymphotytt cell death involving apoptosis-like nuclear morphology

and mitochondrial swelling without DNA fragmentation was also l'tCently reponed within the

lymph nodes of HIV-infected and uninfected individuals with chronic lymphadenopathy (18).

The relevance of AICD to lymphocyte depletion and disease progression in HIV

infection is presently unknown. It seems likely that susceptibility oCthe T lymphocytes from

the HJV·infected individuals to AICD relates to the history or in vivo activation and current

activation status orthe T cells. In general. AlCD was highest with PBMC isolated from HIV·

infected individuals with high CDS"T cell counts and low CD4" T cells counts and was low

at later stages ordisease once absolute T lymphopenia occurred. Elevated levels or plasma

~-2 microgiobuIin and shortened telomeres in the CDS'" T cells offfiV infected individuals

indicate a high rate orlymphoc.yte turnover (19. 20). Although it remains unclear just bow

such sensitivity is acquired in vivo. sensitivity to both apoptotic and non-apoptotic forms of
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AICD may contribute to T cell runtover and depletion and to the loss of eff«tive

immunological surveillance in progressive HIV infection.
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fiCUre Captious

FiC'_ l. AICD induction by PMA and ionomycin. The level ofcell death induced by PMA

and ionomycin treatment ofPBMC from 60 HIV-infected individuals and 15 uninfected

voluntem; was estimated by Cr ~Iease. Mean Cr release values ± standard deviation for both

groups are indicated by the solid horizontal and vertical lines bisecting the data points.

Fig. 2. Contributions of PMA and ionomycin !o AICD of PBMC from HlV-infecled

individ~s. AlCD triggered by PMA or ionomycin either alone or in combination was

estimated by Cr release from freshly-isolated PBMC of 12 HIV-infected individuals.

Fig. 3. Time course of AICD aiggered by PMA. and ionomycin as estimated by Cr release

from the PBMC of HIV-infttted individuals. Cr release from the PMA and ionomycin­

treated PBMC of5 HJV-infected individuals was measurtd at I nour interva.ls for 5 hours.

Fie- 4. The effect ofcold target cells on AleO lriggered by PMA and ionomycin in PBMC

from 6 mY-infected individuals. Alec was measured by Cr release in the absence ofcold

target cells and with a 10:1 ratio ofeither Fas-negative K-562 cells or Fas-expressing PSIS

cells added as cold targets.
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Fig. S. The effects of Ca free: medium and 2 different anti-CD3 antibodies OD PMA and

ionomycin-triggered AIeD of freshly-isolated PBMC from 6 HIV-infected individuals. AlCD

was induced asdescri~ and measumt byCr~lease in the presence of5 ::gfml OKD. in

the presence of 5 ~glml HITIa and in Ca free medium.

Fie- 6. Agarose gel electrophoretic analysis of DNA isolated from PBMe undergoing PMA

and ionomycin-triggered AICO as indicated by Cr release. Lane I contains positive coottol

DNA isolated from the lS I02.9 cell line triggered to undergo apoptosis by 5 hour incubation

with 100 nglml aClhe anti-Fas antibody J02. Lanes 2lhroughS contain DNA isolated from

PBMe of4 HIV-infected individuals after 5 hours of incubation with 10 nM PMA and 500

nM ionomycin. Cr release values after 5 hours for these subjects were 38%. 39%. 48% and

4QO!e respectively. lane 6 contains DNA isolated from the PBMC of subject four after 16

hours of incubation with PMA and ionomycin.

rJC. 7. Flow cyrometric analysis ofcells undergoing AleD aiggc:red by PMA and ionomycin.

PBMe cultured for 16 hours in lymphocyte medium with or without PMA and ionomycin

were harvested, washed and stained with FlTC-<:onjugated. isotype: control antibodies or

antibodies against CD3, CD4 or CDS befcn incubation with propidium iodide (Pl).

Lymphocyte gates based on cell forward and side light scatter cbataeteristics were expanded
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to include most of the PI+ cells in the analysis (a and b). The proportions arPBMe that failed

to exclude PI ~ compared for SW. an uninfected control (a) and 042. an HN·infecte<!

individual (b), after overnight incubation in lymphocyte medium with or without PMA and

ionomycm. Determination of the proportion of COJ" lymphocytes undergoing AICD in

medium alone. and the proportion ofem', C04+ and C08+ lymphocytes undergoing Men

following stimulation with PMA and ionomycin is also shown for the HIV-infected individual

042 (fig. 1c).

Fig. 8. Visualization of ultrastructural changes in PBMe undergoing AICO uiggemi by

PMA and ionomycin. PBMC were harvested after S hours incubation in medium alone or

medium supplemented with PMA and ionomycin and processed for ttansmission electron

microscopy. PBMe oran HIV-infected individual are shown at 3000x magnification after

incubation in medium with PMA and ionomyc:in (a) or medium alone (b). A single PBMe

undergoing AfCO is shown at higher magnification (40.000x) to reveal the nuclear membrane

(e). These micrograpbs are representative of~ts observed with electron microscopy of

treated PBMC from more than IS HIV·infected individuals.
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Table I. Phenotype ofPBMC failing [0 exclude propidiwn iodide (pn after 16 hr

incubation with PMA and ionomycin·

Subject 5 hrSICr CD4s ~~... ~.Qrf.l" CDl''!~l~ ~+N+ Q21+fl+
Re!ease PBMC PI+ cm+ CD4+ CD8+

004 RPM! .28

004 PMA/l 38% 0 207 .61 .78 .82 .97 .71

005 RPMI .15

005 PMNI 9% 21 383 .43 .64 .82 1.0 .54

014 RPM! .10 .73 .16 .83 .03

014 PMA/l 26% 4 335 .26 .81 .73 1.0 .48

022 RPM! .07

022 PMA/l 38% 3 704 .46 .92 .80 1.0 .63

02J RPM! .08

02J PMA/l 26% 7 3n .28 .66 .75 1.0 .50

029 RPM! .18

029 PMA/l 21% 7 373 .44 .70 .75 1.0 .43

042 RPM! .03 1.0 .05 .14 .04

042 PMA/l 40'/0 384 1225 .51 .92 .69 .95 .65

051 RPM! .11

051 PMA/l 32% 40 802 .21 .76 .53 .88 .28
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055 RPMl .11

055 PMA/1 17%367 3051 .21 .88 .30 .71 .26

067 RPM! .19 .61 JO .61 .19

067 PMA/1 40% 279 8IJ .65 .55 .95 1.0 .78

068 RPMl .19 .84 15 J5 10

068 PMA/1 44% 683 855 .77 .70 .87 1.0 .81

SW RPM! Control .02

SWPMA/1 5% .14

Table 1. Legend

-The percentage of PBMe that did nol exclude PI after incubation in medium alone or after

~tment with PMA and ionomycin was estimated by flow cytometric analysis and the

phenotype of the pr cells detennined by co-staining with FITC-conjugated anti-CD), anli-

CD4 or anti-C08.

Five hour Cr release data is shown for the same time point for comparison with PI exclusion

data and CD4+ and CD8+ T Iympbocyte counts at the time of testing are p~nled for each

individual to illustrate the composition aCthe starting PBMC population.
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Objectin: To investigate the relationship between circulating autoreactive cytotoxic T

lymphocytes (CTL) and disease progression in HIV-l infection.

Design and methods: Peripheral blood mononuclear cells (PBMC) from 75 HIV-infected

individuals at various stages ofdisease Wttt tested directly ex v;vo for T Iympbocytc-mediated

killing ofuninfected activated T lymphocytes. CD4· and CDS" T lymphocyte counts were

measured for each subject when blood was drawn for cytotoxicity testing and in certain

samples. the proponioo of CDS" T cells expressing C028 was determined. Plasma P-2

microglobulin and HIV RNA were also measured in selected samples. Mean levels ofeach

oflhese parameterS were compared in groups of HlV-infected individuals separated on the

basis of whether at any time over the study period their freshly isolated T cells killed

uninfected activated T lymphocytes. The prevalence ofdetectable autoreactive en. activity

was also compared in groups stratified by levels of markers associated with an increased

relative risk of rapid progression to AlDS.

Raults: Circulating autoreactive CTL activity was delected in >50% ofthe individuals lested

over the period of :>tudy. As a group. Hrv-infected individuals with autofClCtive en. activity

bad significantly more CDS· T cells, fewerCD4" T cells. a higher proportion ofC02S'CDS"

T cells. and higher plasma levels ofHIV RNA and p-2 microglobulin. AutoreacOve en.

prevalence was ltigber in groups of HIV-infected individuals with lmmWlOlogical and

virological parameters indicating an increased relative risk of rapid disease progression.
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Ikpletion and enrichment experiments sho~ the autoreactive CTL wen: predominantly, if

not exclusively, C028-.

CoadllllioD!l: Circulating autoreactive en. activity in HN infedion is associated with CD4~

T cell loss, immune activation. C08+ T ceU expansion. selective expansion or accwnulal.ion

ofC02!" CD8"" T cells and inadequate suppression ofHIV replication.

Key words: CTl. C028. HIV. autoimmunity

[Dtrod.clioa

Eventual depletion of virtually a.Il CD4' T lymphocytes in HIV infection., despite the

low percentage of HIV-infecled CD4+ T cells in vivo, implies that HIV indirectly targets

uninfectcd CD4· T cells. Marked activation of CDS'" cytotoxic T lymphocytes (CTL) is a

prominent immunological feature of HlV infection and several mechanisms have been

propo~ through which persistent CDS+ CTL activation and expansion might contribute to

CD4· T cell depletion. The potential for HIV-spedfic en. to kill HJV·inkctcd CD4+ T cells

and antigen presenting cells offers an active mechanism whereby CDS· Crt could mediate

CD4 depletion and immunodeficiency, but this mechanism would target only infected cells

[1,2]. Another possibility is that if total T cell numbers were regulated by a homeostatic

mechanism blind to T cell subset proportions. the extent ofCDS· T cell proliferation and

accumulation commonly triggered by HIV infection could depress new CD4· T cell
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production [3J. Through this passive mechanism. COS· T cells might exacerbate HIV-related

CD4" T ceU loss independent ofany specificity for HIV as a byproduct of persistent expansion

of the CDS" T cell population as a whole.

Although CDS· T ceUs may conaibure to CD4 depletion through one or both ofthc:se

proposed mechanisms, neither can 8CCOWlt for the increased death ofuninfected C04s directly

illustrated by in situ analysis ofapoptotic CD4· T cells within lymph nodes of HIV·infected

humans and SIV·infected macaques {4]. Several investigators have reported CfL that kill

activated uninfected T lymphocytes within the peripheral blood lymphocytes (PBl) ofHIV·

infected individuals and the relationship between expansion ofdistinct CDS· T cell subsets

and disease: progression in HIV infection suggests that some uninfected CD4· T cell death

might reflect CDS" T cell-mediated immunopathology [5-10]. Development of these

autoreactive en is generally associated with SIV or HIV infections progressing to AIDS as

they do develop in srv-infected macaques. but don'l develop in HN-infected chimpanzees

[5, II). In an early study of autoreactive crt in HIV infection. Zarling el al. reported

circulating en. against activated uninfected T Iympbocytes in 1l/13 HIV-infected

individuals, but provided no other infonnation on the individuals tested [5]. Subsequenl

studies addttssing the prevalence, character and role ofthc:se aUlOre:active en. in cobons of

HIV-infected individuals following in vitro activation ofcirculating PBMC. have produced

conflicting interpretations of their role. In one srudy of the prognostic significance of these

CTL, more short tenn CD4" T cell loss was observed in HIV-infected individuals with
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autoreactive CTL (12). In contrnst. a subsequent study following more subjects over a longer

time period found the presence of these CTLs conferred a more favourable prognosis for

CD4+ T cell loss [13]. Since levels of these autoreactive CTLs following in vitro stimulation

may bear little relation to their concomitant eminence in vivo. \lo'e carried out a c~sec:tiona1

study comparing immunological and virological markers of disease in HIV·infected

individuals grouped on the basis ofcirculating autoreactive CTL activity. Direct detection of

the autoreactive en. within circulating PBl shouJd indicate that these CTL are active in vivo

or at least that the conditions underlying their in vivo activation ir. HIV infection cutTendy

exist within the test subject.

We found the presence ofcirculating autoreactive CTL activity in HIV infection was

associated with more severe immunological and virological signs ofdisease: progression. OW'

results establish development ofautoreactive CDS· CTL as a prominent feature ofprogressive

HJV infection and suggest a causal relationship between development ofthis en. activity and

the immunopathogenesis of AIDS. Therefore. we propose that a destructive synergy between

HIV replication and immune activation drives the development orautoreactive CTL, underlies

the relationship between development orautoreactive en. and disease progression, and links

CDS· T cell·mediated immunopathology with the degeneration of effective anti·H£V

immunity.
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Mtthods

Study Subjtd5 aad CliDittil Laboratory Evaluation

HJV·infected individuals were recruited through the Infectious Diseases Clinic of me

St. John's General Hospital. 51. John's. NF. Canada.. Seroconversion was detected by ELISA

testing with commercial kits (Abon Laboratories. Chicago. lL) and conftrTned by western blot.

Depending upon disease stage, subjects visited the dinic every I. 3 or 6 months. At each

visit. clinical evaluation and blood work. including measurement of peripheraJ blood CD4·

and CDS" T lymphocyte nwnbers was carried oul. Over the last part aCme study, plasma HIV

RNA was measured at each visit using Amplicor HJV·I Monitor quantitation kits (Roche

Diagnostic Systems Inc" Mississauga, ON). Ethical approval for this study was obtained from

the Memorial University Faculty ofMaticine Human Investigation Committee and infonned

consent for drawing blood samples and accessing medical records was obtained from all study

participants.

Sample pnparalioD

Whole blood was drawn by venipunct\m; into vacutainers containing heparin or

ethylene diamine tetra acetic acid (EDTA) 10 prevent clotting and all samples were processed

within 4 bours ofwithdIawaL Whole blood samples were centrifuged at 500g for 10 min and

plasma was collected. labelled and immediately stored at -scfl C. The packed blood was
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diluted to twice the original volume with sterile phosphate buffered saline (PBS; pH 72),

transferred to sterile SO ml centrifuge tubes and underlaid wilh an approximately equal

volume ofFicoU·paque lymphocyte separation medium (Pharmacia Chemicals. Dorval. Que).

After centrifuging for 30 min at 400g. peripheral blood mononuclear cells (PBMe) were

collected from the gradient interface, washed 3 times in PBS with 1% fetal calf serum (FCS:

Gibco. Grand lsland. NY). resuspended in lymphocyte medium (RPMI 1640 with l()l'l. FCS.

10 mM hepes. 2 mM L-glutamine. 1% penicillin/streptomycin and 2xlO" M 2·

mercaptoethanol; all from Gibco) and counted. Freshly-isolated cells were tested inunediately

in cytotoxici(y assays or in some cases. cultured for 7 days in lymphocyte medium

supplemented with 10 J.lg/ml Concanavalin A (Con A: DiCea. Toronto. ON) and 5 Vlml

interleukin-2 (u..-2; Holfmann La Roche. Nutley, NJ) before cylotoxici[}' assays.

To measure the proportion 0[eD8" T cells expressing C028. PBMe ~re washed

once in PBS with 5 mM EDTAand O. t% bovine serum albumin (BSA; Sigma Chemical Co..

St. Louis, MO) and incubated for 20 min at 4° C with either fluorescein isothiocyanale

(ATC}i:onjugated anti..cm and phycoerythrin (PE) conjugated anti..cD8, anti..cD8 FITC

and anti..cD28 PE or isotype controls. Anti..cD28 was from Becton Dickinson, Mississauga,

ON and all other antibodies for flow cytomeuy were from Dako Diagnostics, Mississauga.

ON. Samples were washed once after staining, resuspended in 0.5% parafonnaJdebyde in

PBS and analyzed on a FACStar""- analyzer (Becton Diclrinson, Mississauga, ON) after

excitation at 488 om with an argon laser.
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Lymphocyte separatiolll!l

In some cases. specific T ceU subsets were removed before cytotoxicity assays. Cells

~ pelleted. wasl1ed in PBS \\ith 0.1% eSA and 5 mM EDTA and incubated in a small

volwne for 30 min at 40C with 5 Ilgll06 cells ofanti-CD4 (OKT4; ATCC CRL8002), anti­

CDS (OKT8; ATCC CRL8014) or anti-CD28 (Becton Dickinson. Mississauga. ON). After

incubation with primary antibodies. the cells were washed and incubated at 3xl cf/ml in PBS

plus 0.1% BSA and 5 rnM EOTA at 40 C for 45 min on a rotating shaker with goatanti-mouse

!gO magnetic beads (Dynallnc.• Great Neck NY) at a 10: I bead to target cell ratio. Cells

bound to the beads were removed by positioning the tubes against a magnet. removing

supernatant. washing the beads gently in PBS and repeating the process. For some assays. the

unbound cells were centrifuged, res~ded and used directly in cytotoxicity assays while

in others. they were counted and effector:target (E:T) ratios were set with the purified cells.

Analysis by flow cytometry showed that this method removed 98% of the target cell

population (data not shown).

CytolODcity assays

Target cells were PBMC isolated from an HIV-seronegative individual and cultured

for 7 days in Iymphcxyte medium with S ..gIm1 purified phytobemagIuttinin (pHA·p;

Wellmarlc: Diagnostics, Guelph. ON). Previous studies suggest the target of the autoreactive



172

CTL is non-polymorphic and relatively unifonnly expressed on activated CD4· T

lymphocytes from different individuals. however. we always generated target cells from

individuals previously shown in multiple assays to provide sensitive target cells (14). On the

day ofassay, the PHA-activated cells ",,-ere harvested. washed and incubated in a small volwne

of lymphocyte medium for 90 min at 3'f C with 100 J,lCi of Nal'CtO~ (Amersham Life

Sciences. Arlington.IL). The labelled larget cells were washed 4 times with PBS plus 1%

FCS. counted and resuspended in medium at lxlO"/ml for use as targets. In most cases,

effector cells were freshly·isolated PBMC from HIV-infected individuals. but we also used

fi.uther purified fresh ceU populations and culrured cells. Effector cells were washed. counted

and resuspended in fresh medium at 5xt06/ml. For depletion studies, E:T ratios were based

on the starting cell number and effectors were not recounted, while for enrichment srudies.

the £:T ratio was established with purified cells. Killing of uninfected activated T cells was

tested at £:T ratios of 50. 2S and 12.5: I and at SO: I in the p~sence of 5 pgfml OKD to

confirm that killing was T cell-mediated. Assays were carried out in duplicate in microtitre

plates (lCN Canada lnc:., Monttea.l, Que). Fifty pi of target cells~ added to each well for

a total of5000 targets, while SO, 2S or 12.5 iii ofeffectorceUs were added to set the E:T ratio.

Final volume in each well was adjusted to 300 pi with medium. Minimum and maximum

release wells were generated by incubating target cells in medium alone or IN HCI

respectively. Once effector cells and target cdls were added. the assay plates were incubated

for S be in a 5% CCh humidity controlled incubator. One hundred pi ofcell-free supernatant
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was then removed and counted in a Wallac 1480 gamma counter. Pen:ent killing of the

uninfet:ted lymphocytes by the effector cells was calculated by the following formula:

~51Cr release - spontaneous 'lef release> x 100

maximum 5ler release - spontaneous 'ler release

Spontaneous 51er release was less than 25% of maximum release in all assays.

Meuunmtat of plasma i!-2 microclobuUn

For measuR:ment of 13-2 microglobulin. plasma was scparated from freshly drawn

whole blood by 10 min centrifugation at SOOg and immediately stored at _800 C. Immulon-2

ELISA plates (VWR Scientific, Mississauga, ON) were coated overnight at 4° C with 250

nglwell goat anti-mouse 19O (BiolCan Scientific, Mississauga. ON) in 100 Jolt carbonate

buffer. The following morning the plaits were washed once with PBS plus 0.5% Tween

(Sigma Chemical Co.• St louis. MO) and blocked for 60 min with 200 j.l~ll 1% BSA in

PBS. The plates were then washed twice and 100 nglwell monoclonal anti·I3·2 microglobulin

(Mel IS. Serotec Canada, Mississauga, ON) was added [or 60 min in 100 j.ll PBS with 0.1%

BSA. The places wert: lhen washed 6 times and. 100 III of purified J3-2 microglobulin (Sigma

Chemical Co., St Louis., MO). resuspended in PBS with 0.1% BSA at concentrations ranging

from 1·10 nglml or plasma samples diluted between 1:500 and 1:2000 were added for 90 min.

The plates were again washed 6 times and 100 ~ of a 1:1000 dilution of boncradish

peroxidase (HRP)-<:onjugated rabbit anti-human J3-2 microgJobWin (Dako Diagnostics,
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Mississauga., ON) in PBS with 0.1% BSA was added (or 60 min. The plates were washed a

fina16 times and 100 IlVwell HRP substrate was added. After 30-min colour development.

the reaction was slopped with 50 IJ.VwcH 2.5 N H2S04 and the optical density (00) read at

490 nm on an ELISA reader. The level of~-2 microglobu.lin in each sample was calculated

from the sample 00 490 and the standard curve constructed from the 00 490 of the standards

made with purified P-2 microglobulin.

Statilltiulaaatysis

Differences in the mean levels ofcontinuous parameters in groups of HIV-infected

individuals separated on Ute basis of circulating aUloreactive CTl activity were assessed by

Student's t test. Differences in the prevalence of autoreactive CTL activir;y in groups sorted

by levels of various continuous parameters previously associated with risk of rapid

progression to AIDS were assessed by cl analysis ofcontingency. A nannal distribution of

the parameters measured within the cohort was asswned from the percentage of measures

falling within the mean ± 2 standard deviations (SO). Correlations between differt:nt

parameters were assessed by linear regression analysis.

Results

OvenU iIIc:idUlte ofarculariDg autoructive CfL activity

Over the course of this study, 43n5-HIV-infected individuals tested for circulating
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autoreactive CTL activity demonstrated <10% killing of uninfected activated T lymphocytes

on I or more occasions. The level of killing observed at an E:T ratio 0(50:1 ranged fiom (}

to SSo/i. When freshly·isolated PBMC mediated between 10 and 15'10 killing, individuals

were considered indeterminate in terms ofcirculating aUloreactive eTL activity unless <10%

killing was observed on another occasion. Six individuals fell into this indetenninate

category, therefore. we report the overall incidence ofcirculating autoreactive en against

uninfec!ed lymphocytes within our cohort as 37/69 or 54%. Two distinct groups without

circulating autoreactive eTL were revealed from the distribution ofCD4~ and CD8~ T cell

counts in the cohort (fig. 1). One group of20 (solid diamonds). clustered lowards the lower

right region aCthe scatter plot. generally had high CD4~ T cell counts and low CD8~ T cell

counts signifying limited disease progression. The other group of 12 (open circles), tightly

clustered within the e:«reme left hand lower comer aCthe seaner plot. oceupied the opposite

end of the spectrum with very low CD4- and lOcal. T cell COWllS signifying end-stage disease.

The T cell counts of these 12 individuals indicated a tenninal. rather than active stage of

disease progression and they likely had already passed tllrough the progressive stage of

infection wherein autoreac:tive CTL activity might be relevant to disease progression.

Therefore, we excluded HIV·infected individuals with less than 500 total T cellslll peripheral

blood from our analysis ofassociations between circuJating autoreactive cn activity and

markers ofdisease activity or disease progression. The upper left region of the scatter plot,

representing individuals with high CDg+ T cell COWlts and low CD4"" T cell counts and active
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progressive HIV disease. was densely and exclusively populated with individuals

demonstrating circulating autoreactive CTL activity over the course of the study.

MOil In-tis of immuDoloeical lad virological marken of diseue progrwioD in groups

with or without circulating autoreactive CTL

Mean levels of peripheral blood CD4' T lymphocytes, CDS' T lymphocytes. plasma

P-2 microglobulin. plasma HIV RNA and the mean proportion ofCDS" T cells expressing

C02S ~re calculated after separating the cohort into groups with or without circulating

autoreactive en and excluding those individuals with >500 total T cells. Significant

differences betv.ttn the 2 groups were then assessed using Student's t tesL The group of

HlV-infected individuals with circulating autoreactive err. activity had a higher mean CDS·

T cc:1l count (p<.006), a higher mean level of plasma HIV RNA (p<.OI I). and a higher mean

level of plasma ~-2 microglobulin (p<.025). This group also had a lower mean proportion

ofcirculating CDS' T cells expressing COO8 (P<.OO3) and a lower mean CD4~ T cell count

(p<.OO2) (Table I). As a group, HN·infected individuals with circulating CTL activity

against uninfected activated. lymphocytes have significantly higher levels of markers of

immune activation, mv replication and disease progression.
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Frequency ofauloreactive CTL adivity in HIV·infeded individuals stratified by level

of immunological and virologic:al Marken ofdisease procressioD

lndividuals clearly classified as positive or negative in terms of having circulating

CTL against uninfected lymphocytes wc=re stratified by C04+ T lymphocyte count as an

indication of disease progression to compare the ~va1ence of circulating en. activity

against uninfected activated T lymphocytes in different groups. Two of 6 HJV-infected

individuals with C04" T cell counls >500JjJ.1 peripheral blood were positive for circulating

autoreactive en. activity compared to 18138 with CD4· T cell counts between 200 and 499

and 15/17 with CD4· T cell counts <200. Due to the scan:i£Y of Hrv·infected individuals

with >500 CD4" T cells in our cohort. we combined this group and those with between 200

and 499 CD4" T cells into a single group with <200 CD4· T cellsllJ.l peripheral blood. Chi·

square analysis of contingency was then used to determine if CD4" T lymphocyte counts

affected the proportion ofHIV-infected individuals with circulating autoreactive en activity.

We subdivided lhe cohon into 2 groups of <200 (ns 17) and >200 (0-=40) CD4~ T celI.slJJ1

peripheral blood and the number of individuals with circulating CTL activity against

uninfected activated T lymphocytes ineacb group was 15 and 22 ~tively. With Yate's

corTtCtion, the c1 statistic of6.5 indicated that auto~ctiveen occlJJmi more fmluently in

IllY-infected individuals with CD4· T lymphocyte counts <200/1'1 peripheral blood (p<.025).

Similar analyses were done based on COS count, proportion of CDS" T cells expressing

C02S, plasma P-2 microglobulin and viral load. Autoreactive CTL also occurred more
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frequently in HIV-infected individuals with CDS" T lymphocyte counts >600/jJ.1 peripheral

blood (p<.025), with <40% oflheir CDS" T cells e.xpressing C028 (p<.OO5). with plasma 13-2

microglobulin >3 JJglml (P<.OI) or with plasma HIV viral toad >IO~ copies/rot (p<.025).

Cornlarions between immunological and virological marken ofdisease progrnsioD ill

croups with or without circulating aUloructivc en.

The distribution of values of the parameters measwed for this cohort within groups

ofHIV-infected indjviduals with or without autoreactive CTL is sb.o....n in figures 2a. b and

c. [n figure 2a, the level ofHIV RNA in the plasma is plotted versus CDS+ T cell counts to

show the direct correlation (Pearson product-moment correlation coefficient. r) between CDS·

T cell counts and virus load in the group without circulating autoreactivc: CTL activity

(r-.625, p<.05). Note that no HIV infected individuals with circulating autoreactive CTL

within our cohort had a plasma virus load below the assay detection limit ortog10 2.3. The

percentage or circulating CD8· T cells expressing CD28 was plotted against CD4· T cell

counts in fig. 2b to show the direct com:Ialion between CD4· T cell counts and the percentage

0(C08"" T cells expressing C028 in the group with circulating autoreactive CTL activity (r

=.463. p<.OS). In this case, a region defined by <300 CD4- T cells and <4()l11. CD8'" T cells

expressing CD28 completely excludes individuals without autoreaetive CTL in our cobort.

Fig. 2C shows a preponderance or higb plasma P-2 microglobulin levels in HIV-infected

individuals with autoreactive CTL activity, but many HIV-infected individuals with
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autoreactive err activit)' also bad lJ-2 microglobulin levels in the normal range.

PbeDOty~ of autoreactive CfL

The relationship we observed between circulating autoreactive en. activity and the

proportion o(CDS- T ceUs t:(~ing C028 prompted phenotypic analysis aCme autoreactivc

CTL. Depletion experiments with freshly isolated PBMC from HlV-infected individuals

showed the circulating autoreactive crt found in HIV-infected individuals wert

predominantly, ifnot exclusively C028- (fig ). It is also noteworthy that the effector cells

were all T cells as the killing is completely abrogated by addition ofOKTJ to the assay (fig

3). In each of 4 cases shown. removal of C028· cells prior to sening the final E:T ratio

produced at least a modest increase in killing and in no case did removal of C028" cells

reduce killing. This is consistent with the low (<30-'10) level o(CDS· C028· cells present

within the circulating T cell population of these individuals (data not shown). Depletion and

enrichment experiments~ carried out with effector cells cultured for 7 days in Con A and

IL·2, which have a much bigher proportion of C02S+ COS" T cells than freshly isolated

PBMC (generally >SOo/II, data not shown). Depletion experiments without re-establishing the

original E:T ratios show that removal ofC02S· or CD4· cells does not reduce killing, but

removal ofCOS" cells reduces killing to background levels (fig. 4a). Removal ofC02S" cells

from cultured effector cells followed by re-establishment ofE:T ratios enriches aUlOreactive

CTL activity as the CD2S- population mediates bigher killing of uninfected activated
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l)1llphocytes at equivalent E:T ratios (fig 4b).

Discussion

Autoreactive eTL against uninfected CD4+ T lymphocytes were first described in

HJV·infected individuals nearly 10}~ ago. b\n neither the origin. nor the role oflhese CTl

has been clarified [5, 6]. The absence ofautoreactive en. in HIV-infected dumpanzees. then

thought completely resistant to disease following HIV infection, prompted initial speculation

these Crt might contribute to CD4'" T cell depletion and disease progression (5]. Other

investigators did not continn the high prevalence of circulating autoreactive CTL initially

reported. therefore. subsequent studies focussed on in vitro activation ofautoreactive en and

produced conflicting data concerning the association berween autoreactive en. and disease

progression [12, 13]. The discrepancies observed may reflect the diminished relevance of in

vitro stimulated CTL activity compared to circulating CTL activity in tenns of accurately

representing the in vivo situation. Since circulating aUloreactive CTL against uninfecled

lymphocytes were originally detected by routine means in IlIl) HJV·infected individuals,

while subsequent investigators wert unable to detect them at all, it seemed plausible that

circulating autoreactive CTL would be concentrated within a particular subset ofHIV·infected

individuals (5]. In this croSHeCtiooal study. we confirmed this was tbecase and investigated

immuoological and virological characteristics ofmY infection associated with development
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ofautoreactive en..

After excluding individuals with terminal disease «500 total T cellsl~[ peripheral

blood). we found that 15/17 HIV-infeeted individuals with <200 C04~ T cellsllJl peripheral

blood bad circulating autoreacljve CTL activity. This is mucb higher than the overall

frequency ofcirculating autoreactive CTL in ourcohol't (37/69), but similar 10 the frequency

reported by Zarling ~l al. suggesting the participants in thrir study were at a similar stage of

disease [5). A CD4· T ceU count of <20011J1 peripheral blood was clearly enough associated

with an increased risk of rapid progression to clinically-defined AiDS that it now serves as

a Iaboratory-defmed criterion for AIDS in the United States [IS]. We also saw an increased

frequency of circulating autoreactive CTL in groups defined by the level ofother parameters

associalCd with increased risk for rapid progression to AIDS, including a CDS'" T cell count

>6OOI1J.1 peripheral blood. a plasma P-2 microglobulin level>3 }1g1ml and an HIV plasma

virus load >IO~ copieslml [16-18J. Although the proportion of circulating T lymphocytes

expressing C02S is not commonly recognized as a prognostic indicator in HIV infection. this

proportion decreases overall and especially within the CDS" T cell population in parallel with

disease progression [9. 10], We also observed an increased prevalence of circulating

autoreactiveCTL in HJV·infected individuals with <40% of their CDS" TcellsCD2S·, The

observed differences in autoreactive CTL prevalence and the difference in mean levels of

virological and imuumological markers associated with disease progrusion in HIV·infected

individuals with circulating autoreactive en. activity all support a relationship between
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active disease progression and development of autoreactive CTl activity.

The association between different markers ofdisease progression and development

of autoreactive CTL activity in HIV inf~tiond~ not address mechanisms underlying their

activation or prove a role for these crt in disease progression. but the various relationships

observed outline the conditions under which these autoreactive CTL develop in vivo.

Previous studies sho\\"td the autoreactiveCTL express the~ fonn ofT cell receptor and that

killing is T cell receptor·mediated even though it is not classically HLA·restrieted [7]. Th..is

suggests some fonn of antigen-specific activation triggered by HIV, but not necessarily

involving HIV as an antigen. Although loss o(eD28 expression in some cases may reflect

ex.tensive previous proliferation. the predominant CD28" phenotype of the en is also

consistent with autoreactivity and recognition of antigens through non-conventional

pttSCIlting molecules [20-22]. T cells lacking COO8 expression appear rapidly during primary

HlV infection and are present shortly after binh in verticaJly-infet:ted infants. therefon:. ifloss

ofC02S reflects a previous extent of proliferation mitigating replicative senescence. this can

apparently occur in a maner ofweeks {23, 24]. One alternative explanation proposed for the

rapid emergence orC02S- T cells in HIV infet:tion is mobilization or resident C02S' T cells

from mucosal sites of HIV replication {2S]. The constitutive cytotoxicity, autoreactivity,

oligoclonality and limited proliferative potential of the C028' COS'" T cells found in the

peripheral circulation in HIV infection are also features of the resident C02S" intestinal

epithelial lymphocyte (IEL) population [26-28]. Surprisingly, anti·Srv CTL activity is
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detectable in IEL from SIV-infected macaques. despite the marked oligoclonaliry of this

popuJation [29}. Although there is no direct evidence for emigration ofIEl Ie the periphery,

there are intriguing phenotypic. functional and mol«ular genetic similarities between this

population and the cin:ulating CDS+ T cells predominating in progressive HIV infection.

The results of this srudy lead us to speculate that the appearance ofC028- T cells in

HIV infection reflects conditions driving intense CDS· T cell proliferation. Whether they

originate from mucosal Siles, selective expansion of circulating C028' precUISOrs or

proliferation-dependent uansformation of circulating C028· precursors remains to be

determined. The C02S- CDS" T cells of HIV·infected individuals have shorter telomeres than

COOS· cells. consistent with loss ofC02S ex~ion as the nwnber ofcetl divisions reaches

a critical limit [30}. Rapid clonal exhaustion ofT cells stimulated in primary HIV infection

has also been reported, however, the telomen:s 0(C028' T cells in Wlinfected individuals are

longer tllan tllose in HIV-infected individuals, suggesting that inherently C028- cells may ~

selectively proliferating in HIV infection [30, 31}. En either case. the celis that are CD28" in

HN infected individuals are undergoing, or have undergone selective proliferation. We and

others have found that the proportion ofC02S"T celis in the circulation increases with disease:

progression, either because responding cells are approaching senescence or conditions change

to favour the selective accumulation ofC02S" cells [9. to]. The general relationship between

immune activation. development ofautoreaetive en.. HN replication and accumulation of

C02S- T cells is consistent with a destructive synergy between mv replication and immune
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activation that underlies the CD8~ T ceU-mediated immunopathology associated with HIV

infection. We have retcntly shown that autoreactive en are indistinguishable from those

found in the circulation of Hrv-infected individuals can be generated in vitro from

seronegative individuals by stimulation of PSl with autologous activated CD4· T

lymphocytes (unpublished dala). HIV replication is dependent upon T cell activation and

through ils antigenic potency and expression ofuansactivating gene products (tal and possibly

nef), HIV replication could drive T cell activation in a self-amplifying cycle. Over a certain

threshold. the activated T cells themselves could compete with HIV as antigens for CDS" T

cells and shift the balance from a pttdominance of effective C028" anti-HIY en. towards

a predominance 0(C028" autoreactive immunoregulatory crt and inefficient anti-HIV CTL.

This shift could OCCW" from primary infection onwards and may be susceptible to bi­

dirtttional modulation by immune activation or antiretroviral therapy. In the absence of

effective antiviral therapy. the shift would likely be reflei:[ed by increases in plasma virus

load. emergence ofa syncytia-inducing (S[) viruses. and increased rates ofCD4~ T cell loss.

In sununary, the developmen[ ofautoreactive crt activity is a prominent feature of

HIV infection associated with viral replication. immune activation. CD4" T ceU loss and

accumulation ofC028- T cells. We propose that HIV capitalizes on immune activation by

triggering an immunoregulatory pathway that diverts the CDS" T cell response away from

efficient suppression of HIV replication and towards immunopathology. Thus. immune

activation may be an integral component ofHIV disease progression that could be carefully
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targeled in constructive synergy with antiretroviral therapy to develop increasingly efficient

combination therapies.
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Table 1. Different mean levels ofparameters associated with disease progression in

groups ofHIY-infttted individuals with or without circulating autoreactive CTL

CD4' COB' ~TDB·.I ~.2"B1obulin HlVRNA

Tcellslj.1[ TceUs/1l1 CDB'T f.lglmlplasma cqjo;\D

blood:l:sem blood±sem plasma (laglo)

Group I

CTLagainst 264±25 1121±67 0.28±.03 3.98±.65 4.54±.19

uninfected CD4s 0=37 0::.31 0=28 0=30 0-25

Group 2

no CTL against 436:57 803<84 O.4.5±.OS 1.91±.27 3.58±..34

uninfected CD4s 0=20 0=20 0:11 0"'17 0=14

(testlll>)!l p=.D02 IF·OO6 p=.DOl p:-.025 IF·OIl

mY-infected individuals tested for circulating autoreactive CTL activity were grouped

according to presence or absence of these CTL over the observation period and mean

levels ofcertain parameters were compared between groups by Student's t test.
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CHAPTER V

SUMMARY AND FUTURE DIRECTIONS

The purpose of this study was to analyze the functions of CTL in HIV infection. Many

investigators have described the cellular immunological signs of HIV infcction as a decreased

CD4/CDB ratio in the periphenl blood, a progressive quantitative and qualitative reduction ofCD4'

lymphocytes. and also an elevated level ofCD8- lyrnphoc>1e5 (Pantaleo tel at 1990). This expansion

0(C08 • T lymphocytes persists until the very late stages aCme di5e&Se. when their deplecion allows

unconb'Olled replication of HlV as well as overwhelming infections with opponunislic pathogens

(Pantaleo el aI. 1990~ Although attempts were made ID study the functional signifICanCe of CDS" T

lymphocytes in HJV·J infection (Grant et al. (992). many aspects orCTL function like the mechanism

of cytotoxicity, changes in the ovcr.U1 specificity of cytOl:oxicity and relationship with established

prognostic markers like plasma viral load were not clearly demonstrated. Determining the: role ofCD8"

T cells in HIV-I infection and AIDS. with regard 10 control of infection. immunopathology and

immune system dysrcgulalion. is absolutely necessary for understanding the immunopathogenesis of

AIDS.

Many investigators agree that apoplosis plays an imJXH1ant role in the pathogenesis of HIV

infection. HIV-infected chimpanzees and African green monkeys infected with the simian

immunodeficiency virus (SIVagm) do not develop disease and do not snow abnonnallevels ofCD4'

T-cell apoplosis.. However, rhesus macaqucs infected wittI a pathogenic strain ofSrv develop simian

AIDS and show an increase in the numberofCD4" T~lls thai undergo apoptosis (Estaquieret al.

1994). Interestingly, the number ofapoplOtic CQ4' T cells fOWld in the peripheral blood lymphocyteS
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is greater than (he number of infected cells, indicating that uninfeclcd cells are dying by apoptosis

(Carbonari et aI. 1995). One major pathway of lymphocyte apoptosis is mediated through the: tumour

necrosis rtteptor famity, particularly Fas. Ligation of Fas by Fas ligand present on the same or a

neighbouring cell can induce apoptosis (Anderson cl al. 1993) and it has been shown that in HIV­

seropositive individuals. a higher proportion of PBLs exp~ FilS (KalSikis ct al. 1995) and also more

Fas is expressed percell (Gougeonet al. 1996). More significantly. both the COol: and CDS' T-cell

subpopuLations from HIV-infected persons have been shown 10 be more susceptible (0 death induced

by Fas ligation (Silvestris etal. 1996). Since most ofthesc studies did nOt inve5ligatc IIii' a vis FasL and

perforin..mediated cytolytic properties of CDS" T cells. we decided to develop an assay system to

clearly and easily distinguish between Fas-mediated and pcrforin-mediated killing. The assay system

desc:ribed in chapler 2., uses no mmbolic inhibitors., is simple and is less lime consuming than many

other assays, which rely on biochemical and molecular features ofcell death. In this assay, we use an

anti-Fas anlibcxly. 10-2 to block Fas-mediated cytOlysis of pa IS cells rendered sensilive 10 CTt

redirected lysis. The resuhs obcained clearlydemonsll'a1e we can dislinguish between both l)'peSofCTL

cytotoxicity using a five-hour chromium release assay.

During this study we have tried to analyze the funclional significance ofCDS' eTL from HIV­

infected subjects. The major aspect of this study includes the nature of CTt cytotoxicily. Ihe

phenolypic: characteristic: of en.. and the ability of CTL to lyse PHA-aetivated uninfeaed

lymphocytes. When we used PMA and ionomycin to induce expression of Fas ligand on peripheral

blood lymphocytes, we observed Ihat the lysis ofFas-e."pressing target cell line, PSIS, was significantly

reduced.. We followed up on Ihisobservation by incubating flCr_labelled fresh PBL from HIV-infected

individuals in Ihe~ or absence ofPMA and ionomycin for five hows. The resullS described

in chap(er J demonstrate Ihat fresh PBL from HIV-seropositive individuals are highly susceptible to
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activation-induced cell death. The nature of this cell dealh was further inve5tigated and the results

showed that this cell death involved the loss of cell membrane integrity without prior or coincident

nuclear fi'agmenlltion. The cells susceptible for activalion·induced death were mainly Iympnocytes.

The results arc in agreemenl with many olhe~ who also have suggested that lymphocytes from HIV­

infected individuals are highly susceptible 10 activation-induced cell death. Our results clearly ruled

out any involvement ofFas or FasL in me cytOlysis. We ha...e found mat lhe AlCD was more pmninenl

in mY-seroposilive individuals with low CD4 counts and higher than noonal CD8 counts. but the

exaci role played by the CDS"Tcells in this type of cell death is nOI known. Our results showed lhal

CDS" T cells are also susceptible 10 activation-induced cell death and this might be one underlying

mechanism of CDS" T-cell [oss in the late sages of HJV·infection. This possibility is supported by

lite observation that activation-induced lymphocyte de2th is less prominent in HIV-semposilive subjects

with absolute lymphopenia. An interesting observation during these experiments was the capacity of

an anti-CD3 antibody, OKD to rescue the lymphocytes from cell death. This was found to be as:pec:iflC

property ofOKD, as similar results were not: obtained with other mitogenic:: anti-CD3 antibodies such

as HITJa and UCIITI.lftbere is an in ...ivo significance to the activation-induced death triggered by

phorbol esters in HIV-infection, OKD could potentially be usetf to rescue the T lymphocytes from

AICD and block the rapid depletion ofT lymphocytes.

Many investigatOrS have shown tIwthe~.number and propoctioo ofaaivated COli

lymphocytes in the peripheta! blood ofHIV-infetted indi...iduaIs torrelate with disease progression

(Giorgi et a1. 19S9; Kestens et al. 1992; Levather et al. 1992). This at least partially reflects an

adaptive immune response to increasing HIV replitalion but may also refled the active involvement

orcos' T lymphocytes in the pathogenesis ofAIDS. Several scientists initially proposed a role for

CDS" T lymphocytes in the pathogenesis of AIDS based 00 lymph node histopathology and narwaI
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history ofdisease in H1V·infecled individuals (Ziegler and Stites 1986) and Zinkemagel (1988) also

proposed that COS- T cells cause AIDS based on similar immunopathology in human hepatitis B.

murine lymphocytic ckoriomeningitis virus infection, and HIV infection. Walker et al. (1987)

suggested that COl' en contribute to CD4' T cell depletion by killing HIV·infected CD4' 1«11$.

However, some CDS' en from HIV.infectedsubjects kill even uninf"ected CD4' T Iymphoc)1CS never

cltposed 10 infectious HlV or HIV antigens (Zarling et al. 1990; lsrael·Bifi CI at 1990; Ledcnnan et

al. \988; Moodyet a.l. \988; Grant <:t al. 1993; Granl <:1 al. 1994). Thecharacleristics of these CTl

imply possible autoimmune depletion of activated CD4' T.lymphocytes in HlV inreerieR.

In this srudy we examined the associalions between Ihest autoreactivc CTL in the peripheral

blood of HlV-infecled individuals and disease progression. A signifl(ant percentage of HIV·

seropositive pel50ns (>50%) in our st\ldy cohort. showed cytolysis of PHA·activaled uninfected

lymphocytes. Surprisingly, a high level of killing was often medialed by freshly isolated peripheral

blood lymphocytes.. Gruters et aJ.(I99 I) presented data from SLl: HIV-infecled individuals indicating

• progressive decrease in C028' T lymphocyte subset populalion during the evolution from

seroconvmion to AIDS. Brinchmann et aJ. (1994) reported a functionaJ defect within the COS" but

not CD4' T cells from HJV-infected individuals. They also reported thai this functional derangement

was restricted to the C028* COS- T cells although it was seen in all COS" T cells laIet in the infection.

These observations lead us to investigate the phenotypic characteristics of autoreactive CTL. The

resullS as shown in chapter 3. clearly show that C028- C08" T cells are responsible for the

autoreactivity. We have also confinned the expansion ofC028' CDS- T cells during progression of

disease. A high % ofC028* COS" T cells was seen in all HIV'infected individuals with demonstrable

levels ofcirculating CTL.
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lmmunodominance assocwed with biased feR vp gene repertOires !las been identified among

blood and tissue lymphocytes of AIDS patients (pantaleo et al 1994; Dwyer et aI. 199]) and also with

in vitro response to HIV componen1S(Kalams et al. (994). E;<pansion oran autoreactive C028"C08"

T lymphocyte subset seen in HlV·infected subjects of our study suggested that the T cells may be

oligoclona.l. feR vp genee.'tpre:ssion panen1as shown inchapltt] indicaled dwlhcCOZS-CDS" T·

cells were oligoclonal with respect to their feR VI) gene usage. The expansion of an oligoclonal

autoreactive T ccllsubset population strong.ly suggest that these en. not only playa role in the in 1100

destruction oClhe CD4' T cells but may actually be responsible fortbe progressm ofthe disease as

manifested by the appearance ofopportunistic infections.

Based on our hypothesis that these autorcactive CTL actually contribute to disease progression

we tried to ~laIC lhe autoteaCtivity with markers of disease progression such as plasma viral load.

CD4' T-cell counl. CDS' T cclls count and loW T cell counts. The data sho~n in chapter 5 show that

the autoreaclive CTL are associated with those disellSe progression markers. examined in this study.

As a group those mv·infected individuals with aUloreaclivity had higher plasma viral load. higher P2

mic:rnglobulin. IowerC04 COl1nI5 and higher COS and lOta.I T cell counls. The data is in agreement with

the proposed hypothesis that these crt actually contribute to immunodeficiency and clinical

progression to AIDS. If they do not actually contribute they likely refle<:ta fundamental component of

disease~ion.Further studies based on longitudinal follow upofthesc patienlS may help uncover

the functional significance ofthis T cell subset.
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FUTURE DlRECTIONS

[I has been shown that there is an immunodominance of T cells with biased TCR V~ gene

usage (pantaleo et at 1994, DwyeretaL 1993) indicating a poorprngnosis in HIV infection. It has also

been shown by many invesligators thar there is expansion ofCD28" CDS" T cells in HIV infeclion with

deftttive function in lerms of IL·2 production and cytotoxicity (Brinchman ci al. 1994; Grutrr'$ et al.

1991}. Some investigators have shown that CDS· crt from HlV·infected individuals can lyse

aClivated uninfected CD4" T cells (lsrael.Biel et al. 1990; Zarling et al. 1990; Grant et al. 1993: Granl

et aI. 1994; Lederman el al. 1988). Here we have demonstraled that there is an autortaclivc C028"

C08- T cell subset associattd with rdevane rTLaJters ofdisease progn::ssion in HIV infection. This data

is highly significanl in the pres:nt context as most of the therapeutic measures employed target only

the virus. The host factors responsible for disease progression in HlV infection have always been

obscllfeand complicated (Fauci 1996) and the role ofCDS- en in HIV infection is possibly the most

obscure ofall immunologic features of HIV infection. The possibility of whelher !here could be eTL

populations which function as suppressors of HIV replication in a lytic fashion or in a non lytic fashion

as well as some CTL which possess autoreattivity (Grant et al. 1994) were never properly studied.

This S1Udy focuses on the possible pa!hogenic: role for en. in l-UV infection. The current data indicate

that !he C028'" CDS' T cell subset is autoreactive and may contribute 10 disease progression. Further

investigations into the nature of this subset are nec~ to fully undemand [he immunopathogenic

role ofCTI. in l-UV infection. It will be interesling to further investigate the functional characteristics

of C02.- COS> T cells. One stUdy has repolted that the cms- COS' T cells from mv·infected

individuals have shortened telomera than the C02S> T cells of age-malChed controls (Effros et al.

1996). Shortened telomere length may indiwe replicative exhaustion ofCDS" T cells. It is cctUiIlly
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worthwhile 10 see whether the aUlorea£tive C1l.s ftom our cohort show signs ofsenescence..Te~

can be amplified using. polymerase chain reaction and compared with eitherCD2S" T cells fiom HrV·

infected individuals or with T cells from uninfeeled volunteers. Lymphocyte senescence has been

proposed as a mechanism for unresponsiveness oFT cell subsets in HIV inf«tion (Effios et a1. 1996).

Many invesrigarors have ~r1erl e,\(pansion of C02!'" CDS- T cells in HIV·infection

(Brinchmann et al. 1994: Caruso el al. 1994). Roos et al (1996) have showed that the expansion of

C028' CDS" T cells exists in HIV-I seronegative homosexual control individuals and remained al

comparable levels in HlV.! infected asymptomalic individuals and palients with AIDS. They have

proposed an explanation that the immune system of individuals at high risk. for HIV-I infection is

conlinuously stimulated as a consequence of frequent viral infections. This hypothesis can be tested

by investigating the proportion oreOlS- T cells in homClse.:tual individuals who an: not at high risk for

HlV·1 infection. Several other investigators have demonstraled that COJ- CD28" T cells accumulate

in HIV-infection bUI are aClually unresponsive to anti-CD3 mAb. mitogens. C028 mAb and

staphylococca1 superanrigens (Borthwickelal. 1994; Vingerhoefs eI al. 1995; Brinchmann eI aI. 1994;

Azuma et al. 1993). [I has been suggested by Azuma eI aL (1993) that C02I' CDJ" T cells are

generated as a result of an immunological evenl in the periphery. Subsequently, C028' T cells were

supposed to be & population ofactivaled terminally differentiated effector cells that are CylOfOxie only

in short-term culnues (Borthwickel all994; Azuma eI al, 1993)-

Given Ihe fact Ihat!here is actually an e.'I(pansion ofemS" T cells in HIV infection, !he source

ofthese cells remain a mystery. KotlereiaL (1984) reponed dlat individuals infected with HIV showed

dwacterisric:: himlogical feaD.U'eS in !he intestine. The jejWl.&1 biopsy in all l-UV seropositive

homosexuaJ men showed villous atrophy, crypt hyperplasia and an increased number of inaaepithelial

lymphocytes (Kolleret at 1984). [ntraepitheliallymphocytes (tEL) are almost entirely T cells and Ihey
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differ from peripheral blood Iympbocytes by their high proponjon (80%) ofCD8-postive: T cells and

lacked C028 (lefiancois 1991). The principal in vitro functions of IELs appear to be cy!olysis and

intcrferon-y production (Sydora et al. 1993; Mosley ct at. 1991: Camerini et aI. 1993). In both mice

and humans. the TCR repenolre oflE1.5 is oligoclonal, and limited to about 100 clones (Blumberg et

aI. 1993). IEL oligoclonaliCy in conjunction with che obsmration that tnteslinaJ epithelial cells express

nonpolymorphic. nooclassic class I moleeules (such as COl and thymic leukemia antigen) has led to

the hypothesis that these molecules on intestinal epithelial cells can positively select CDS-positive IELs

(Balk. etaL 1991). The fearun:s oflEL are remtltscentofthe natun:ofaulOmlaive ens we find in the

peripheral blood of KIV·infected individuals. Even though there is no evidence 50 far that lEts

cirtulate, it is possible that some lymphoid replenishment in KIV infection acrually occurs from the gut.

In this scenario. the oligoclonal (028' CDS' T cells from gut reconstitute the continuously

disappearing T cells in HIV infection. Being oligoclonallhey are unable to respond 10 a wide range of

antigens including HIV. This could explain the slow progression ofdisease in HIV infection as well

as the tmninal immunodefICiency stak inspile ofthe absolule inmase in CDS" T cells. Schmidlelal

(1996) have reported that C02&" T cells are expanded in rheumatoid arthrilis and that they are

characlerized by autoreaclivity. This observation suggestS thal the expanded aUlore&Ctive CTL

population seen in HIV infection might be responsible for CO" loss could also contribute to the

development of opportunistic infections.

The fact that these T cells are cytoloxic provokes die question of whether they also possess

anli-HIV CTL activity. [fthey lack anti-HIV aclivity and at the same time are autoreactive. it could be

speculated that they playa major role in the immunopathogenesis of HIV infection. It will be

interesting to test different subsets ofCDS• T cells from HIV infected. individuals for anti-HlV CTL
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activity to establish the functional significance of differenr subsets ofT cells in the peripheral blood

of HIV·infe<:ted subjects.

If has also been argued by 50me investigators mat the expanded C021' CDS" T cells have

actually down-regulated their C028 molecules (Vingerflocts el al. 1995). This argument will certainly

have to be addressed before we conclude thac the COOS- lulorctetivc C11.s ale actually gur-derived.

Since there~ no defmitt surface markers thaI discriminate T cells derived from gut from those in the

peripheral blood with C028 down-regulation. we will have to adopt: indirect way! to detennine the

nature ofCTLs. Since the gut-derived e028" T cells are oligodonal with respect to lheir TCR V~ gene

usage. analysis ofTeR v~ genee."qHeSSion ofeD2S'" and C028' Tc::ells will help to identify whether

the cells may be gUI-derived.~ C028" T cells derived from the gut will definitely be oligoclonal

wherns the C028" T cells will show a polyclonal or unbiased TCR VI3 gene usage. Whereas. T cells

having undergone e028 down-regulation should be no diffemu: from their C028' T cells with respect

to T cell V gene usage. The observations in Chagas disease that TrypanosomaCruzi probably down­

regulates COlS on the surface ofCD4" T cells as well as CDS- Tcells unravels adiffemlt mechanism

of host immune evasion by parasites. If the same holds true in HIV infection. this will be a novel

mechanism by which the virus couWi shut down anti-viral responses.

Finally, we have shown a clear associalion between the presence of autoreactive en. and

many panwnelers ofHIV disease progression, including plasma viral load. This will have 10 be followed

up over the course ofdisease [0 further address the role of autoreaetive CTLs in the pathogenesis of

AIDS. It will also be interesting to look ar: the influence ofand-viral drugs in coatrollingor increasing

the number and funl:tion ofauloreactive CTL



208

A complete characterization of this subset at the cellular and molecular level is necessary to

clearly delineate their functional significance. Correlation ofautoreaclive CTL activity with disease

progression will present a potential immunopathological contribution 10 the course ofdisease in HIV-I

infccted individuals.
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