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Abstract

In this work a multiaxial constitutive theory for brittle, viscoelastic materials is

damage theory and fracture mechanics.

The mxcmslmctural nature of the material and mlcromecha.mcal processes have been
of

modelled by damage usin, with a finite
state variables. The change in the state variable is directly related to the individual
i process Th ‘model includes the effects of damage including
i and pressure melting on the reduction in
elastic modulus and the in creep Damage is
based o h using the ized J integral theory. The influence
of conﬁnmg pressure on damage progress is included. Volumetric deformation under

compression is also mvesnp‘g which is mostly dilatation due to microstructural
changes (damage).

A triaxial test program has been carried out in the laboratory at Memorial Uni-
versity. A description of the test program, test and
procedure used has been presented. The experimental observations and results have
been discussed and are summarized. Triaxial tests were designed to investigate the

of ice and the infl of damage on the mednamcal properties of i ice.
These tests have also served to verify the The
model provides good agreement with test results.
The role of fracture and spalling in i ion has been il

Fracture analysis, using the J-integral, has been carried out in the numerical scheme,
which is based on finite elements and the computer program ABAQUS. This analysis
is consistent with the damage mechanics and has been carried out on the basis of
plane strain and the di of crack was y
maximizing the strain energy release rate. The direction of maximum tensile stress
was also considered. Available data for ice on the tensile and shearing modes (I and
1I) of crack propagation were taken into account.

Analysls showed that ]ocahnuon of damge occurs. if che geometry leads to stress

at the interface. indicate that the load on
a structure would be hlgh if the failure in the ice was by dJstnbuled damage only.
Initial analysis showed that a small crack near the interface would propagate at loads

about one-half of those found using damage analysis only. The analysis included
crack propagation and mnavll of material. These initial results are very promising
for a realistic analysis of ice-structure interaction.

Load oscillations Induced by ice crllshmg ure against a structure have also been
investigated. Evidence of pressure melting has been reported from both laboratory
and medmm-sm.le ﬁdd indentation tests. Possible effects of pressure melting on
damage model using only one
Maxwell unit is pmposgd for the hlghly damaged materials. Two trial test cases are
carried out using the simplified damage model to simulate the extrusion of crushed
ice in the 'y and field i ion tests. P 'y analyses have shown
promising results in the light of i where load have
been observed.
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Chapter 1

Introduction

The deformation of solids under load often results in changes to the structure of the
material. These changes, to a large degree, will depend on the combined effects of

geometry, loading, and most i the of mi le changes in

the structure. The accumulation of these changes, is often termed “the process of

damage” and is associated with changes in the mechanical behavior of the material

and the dissipation of strain energy. The ism of energy dissi;

the material response and failure process. Solids like ceramics, rocks, concrete and ice,
can be failed in two typical modes, ductile or brittle, depending on the loading rate
and temperature. For the analysis of these two types of failures, classical theories,

like plasticity, viscoelasticity and fracture mechanics, are well established. Plasticity

and viscoelasticity focus on the material i i with the

of dislocations, and the material failure is distributed over a plastic zone. Fracture
mechanics, on the other hand, is focused on a very small fracture process zone at
the crack tip. Upon reaching a critical value of stress intensity, the initial crack

may h hout the resulting in a sudden failure, manifested by

spalling, breaking or splitting. But in many cases, brittle solids will fail neither by

collapse due to brittle fracture nor by plastic i ially under

loading rates. Failure often involves the nucleation and growth of microcracks at the

1



)

grain boundaries or between grains, due to possible mechanisms including dislocation
pileup as well as the elastic anisotropy of the material. These are all effective sources
of stress concentration. The nucleation and growth of microcracks are associated with
the release of elastic strain energy from the material. The energy is largely dissipated
but some is stored as surface energy of the crack. For certain materials under favorable

loading conditions, other mechanisms such as dynamic recrystallization and pressure

melting could be the i sources of ion in the material which
will result in the dissipation of energy. The presence of these structure changes
will effectively reduce the strength of the material and also enhance the deformation
process. In this case, the failure of brittle material is a very complex process associated
with the transition from ductile to brittle behaviour. A great deal of research has
been done to study the influence of distributed cracks and other structure changes on

the mechanical properties of solid i Damage hanics was i to

recognize the difference between plastic flow and cracking. It is based on the averaging
procedures that will take into account only the averaged effects of all structure changes
using a set of kinematic state variables. These variables represent different processes
in the change of material structure. It should be noted that fracture mechanics can
be included as a special case of damage mechanics, and these two theories can be

applied to a failure analysis in different situations.

1.1 Nature of the Problem

In the present study a constitutive theory for brittle, viscoelastic materials has been

as well as vi: icity theory.

developed based on damage and fracture
Special attention has been given to ice deformation processes applicable to ice inden-

tation These prob are d in ination of ice forces on a




structure.

1.1.1 The Chall of Ice Envir

I ion for energy and marine ion in the arctic

and subarctic offshore areas has focused ion on the i il of
and building larg: in i red waters. It requires that methods

be developed to design various structures to resist ice forces. Safety, environmental

and ec 1y are of great i and a practical approach to ice load
estimation is advocated to obtain a balance between these objectives. Recent research
on ice-structure interactions shows that safety can be achieved by a combination
of good systems design and a rational approach to design criteria and structural
response. For design purposes and the operation of arctic and subarctic offshore
structures and vessels, such as, the Hibernia GBS structure and oil shuttle tankers,
reliable estimation of the global and local ice loads as well as the frequency and
amplitude of load fluctuations are required. The development of accurate and reliable

methods for the prediction of such ice loads is a great challenge in ice research.
1.1.2  Ice Forces on Offshore Structures

Ice is a viscoelastic material, but under high loading rates, it behaves as a very
brittle solid. Due to a wide range of loading conditions in engineering practice, the
prediction of ice loads on structures can be very difficult. Both heterogeneity and
distributed flaws in natural ice can produce a significant number of microcracks in
the loading zones. When ice impacts with a structure, the ice near the interface will
be damaged and pulverized forming a crushed layer. This layer of crushed ice will
then be extruded out of the interface resulting in a crushing failure (Jordaan and

Timco, 1988). In zones where the stress state and flaw size are favourable, a crack



may propagate to the surface of the ice feature, and a piece may spall off. In the
extreme, splitting of a large feature such as a floe can take place.

Ice forces are limited either by the deformation failure and clearing of the ice in
front of the structure. or by the environmental driving forces on the ice. The modes
of ice failure are varied and complex, such as crushing, spalling, buckling, bending,
shearing and splitting. Ice load can be static, but in most cases, it is dynamic in
character. It can cause severe dynamic responses to the structure. This has been
observed in field programs (Jefferies and Wright, 1988). The other important aspect
of ice loads is the high local pressure induced by the impact of ice feature against
structure. The local pressures have been measured as high as 70 MPa in field test
programs (Frederking et. al., 1990a, b). Reliable prediction of ice loads requires an
good understanding of the formation of local pressure and the process of disintegration

and clearing of ice at the ice-structure interface.

1.2 Objectives

The design of structures and vessels for arctic and subarctic waters requires knowledge
of ice loads and their distribution in space and time. In turn, this requires analysis
of the interaction between the structure and the ice at the appropriate rate, and here

only the interaction at rates fast enough to cause brittle failure of ice in both micro-

and le is d, and ion is on the areas where the ice is under
predominantly compressive stresses. This situation will typically occur in ice-vessel
interaction or the interaction of icebergs with fixed or floating structures.

Under these circumstances, the ice will fail mostly in two types of processes. The

ds to the ion of ks and spalling of ice pieces.

first

The second includes an intense shear-damage process in zones where high pressures



are transmitted to the structure. These zones are termed critical zones (Jordaan et
al.. 1990). These two processes can be combined to explain the main features of
ice-structure interaction. It is important that the processes described can provide
explanations for observations of variation of pressure in time and spaces.

The basic objective of the proposed study is the estimation of ice forces on struc-

tures with d itutive theory i ion on local ice pressures

and new ice force modelling methods. Key factors to be considered include:

e fracture and damage involving mi ing, recry ization, pres-

sure melting, pulverization and sub as well as spalling;

® ice-induced vibration and its effect on the ability of a structure to resist ice

loads;

® local ice pressures and the large variations in pressure which have been measured

over the contact area.

1.3 Approach and Methodology

Medium scale ice indentation tests were conducted on Hobson’s Choice Ice Island
in April, 1989 (Frederking et al., 1990a, b) and in May, 1990, and also earlier in
1984, at Pond Inlet by Mobil Oil Canada (Geotech, 1985). The experiments have
shown a progression of failure from largely creep, at lower rates (3 mm/s), to a
combination of spalls with zones of high pressure, at higher rates (20-400 mm/s).
High-frequency oscillations in load, which are associated with crushing failure in the
contact zones, were observed for loading rates higher than 20 mm/s. Spalls occurred
roughly every tenth cycle, leading to drops in load being superimposed on the high-

frequency oscillations. The results indicate that global loads on structures are lower



than had been anticipated, whereas the local pressures are higher. These are very
significant implications for optimal design from the point of view of economy-

To investigate the ice behaviour under similar loading conditions as in the inden-
tation tests, a special test program has been designed and conducted in the laboratory

at Memorial University.
1.3.1 Laboratory Test Program

The test program included triaxial tests conducted under both strain and load control

at a variety of rates. confining pressures and damage conditions. These tests will

provide the data v to calib the input for analytical modelling
over a broad range of conditions. Thermodynamic aspects of ice behaviour have also
been investigated to study possible pressure melting during ice indentation processes.

Tests designed to address specifically these features utilize a state-of-the-art dig-
ital, dual-axis, servo-hydraulics material test system and triaxial cell. This equip-
ment permits both dependent and independent closed-loop control of both axial
load/displacement and triaxial confining pressure. Complex pre-programmed test

and data isition can be i designed through integrated ap-

plication software.

Triaxial tests have been on y-made ice. The com-
parison of the test results on both intact and damaged ice show clear evidence of an
enhancement of the creep strain due to crack and damage.

1.3.2 Analytical Model Development

An isotropic damage model is used in the present work based on Schapery’s (1981)
theory i ing damage hanics. This i ip is based on

of ice under ion is

the generalized J integral theory. Ad;



modelled as a function of ic stress. creep and von Mises stress.

To verify this model, direct comparisons to the triaxial tests have been performed.
The damage model is implemented to simulate the ice failure process in compres-
sion, in which the elasticity was degraded and the creep enhanced by the presence
of micro-scale structure changes. In addition. a model based on fracture mechanics
has been developed to replicate an initial flaw which propagates at a critical value

of the strain energy release rate. Laboratory tests provided initial input constants,

particularly the modulus of icity and creep factors of ice,
and the medium-scale indentation tests have served to verify model output.
1.3.3 Scope of This Thesis

Finite element analysis with damage mechanics is a new and unique approach, for
modelling ice behaviour under both triaxial loading and medium scale indentation
testing conditions.

As outlined above, the scope of this work may be categorized as follows:

1. a literature review of recent theories on viscoelasticity, damage, fracture me-

chanics and ice ics, as well i | observatis ice beh

2. triaxial tests conducted in the laboratory on the freshwater ice to calibrate the
material for i 1l iption of ice il ion tests
carried out on Hobson'’s Choice Ice Island (1989, 1990).

3. ituti delling of damage including creep due to

the development of structure changes, such as microcracking, recrystallization
and pressure melting; special attention was given to the effects of high shear
stress and confinement on damage processes; finite element implementation and

model verification.
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o

o

Finite element modelling of i i bl including medium scale field

ice tests and comparison with the experimental results.

Fracture analysis of spalling failures in ice-structure interaction.

. Investigation of the effects of pressure melting and friction in ice-structure con-

tact. based on the i ion provided from the damage analysis as

well as the experiments.

. Conclusions and recommendations for further studies.



Chapter 2

Literature Review

2.1 Viscoelasticity
2.1.1 Linear Theory

Because of the central role of viscoelasticity in the present study, some basic theories
will be reviewed briefly. In general, creep strain can be expressed as a function of stress
o. temperature T and time t, € = F(0, T, t). Based on the Boltzmann superposition
principle, creep expressions of uniaxial stress o and strain € can be expressed in

integral forms for linear viscoelastic materials:

(t) = /n' D(t-7) "‘:li") dr, (21)
o) = [ B~ %d‘r (22)

where 7 is a point in time in the interval [0,]. When ¢t < 0, € and o are assumed
to be zero. The lower limit is in fact assumed to be 0~, rather than 0. This is to
allow for a discontinuity in stress at time equal to zero, as in the case of a creep
test under constant stress. D(t) and E(¢) are the creep and relaxation functions,
and they are memory functions that describe the history dependence of strain and

stress, respectively. This integral form was first suggested by Volterra (1909). The
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d are inversely

creep function (or i ) and the ion function (or

related as follows:
$2D(s)E(s) = 1 (2.3)

where the overbar denotes the Laplace transform and “s” is the transform parameter.

Based on the ics of in i (Biot, 1954), the creep

compliance and relaxation modulus can be expressed as:

1t X1 E;
D)= —+—+Y —{1- ——t 2.4
(t) BT ; Ex{ exp( 77 )} (2.49)
N E!
E(t)=E, + Z E} cxp(~#—,‘£) (2:3)
= 3
where Ei, pi, Ef and g2} are material The above i the

classical formulation of viscoelastic theory.

All viscoelastic models can be represented by a series of springs and viscous dash-
pots. Figure 2.1 shows two types of combinations of springs and viscous dashpots,
named (a) Kelvin chain; (b) Maxwell chain. The values of E;, u;, E; and p; can be
interpreted as stiffnesses (moduli) and dashpot viscosities, respectively. The chain
(a) is a Kelvin chain plus a Maxwell unit with elements E; and g;. This chain can
be represented by Eq. (2.4). It is found in practice that chains of Maxwell or Kelvin
units with a spectrum of values for the springs and dashpots are needed for proper
representation of material creep behaviour. For many materials, Eq. (2.4) can be
simplified as:

D(t) = Dy + Dyt + Dat, (2.6)
where Do, Dy, D; and b (0 < b < 1) are material constants. It can be seen that
the summation term in Eq. (2.4) is approximated by a power-law term ¢* in Eq.
(2.6). Under certain conditions, Eq. (2.6) can be very useful in practical applications

instead of using the full expression of Eq. (2.4).



2.1.2 Nonlinear Theory

Based on Biot's (1954) thermodynamic analysis for linear behaviour, Schapery (1968,

1969) showed that i ities in ti d can be taken into ac-

count by generalizing Biot’s equations. An entropy production coefficient, a; was
introduced. This coefficient can reflect many effects, e.g. due to temperature, and
in particular, the nonlinearities in response to stress or strain. The resulting theory
is similar to linear viscoelasticity. except that the time ¢ in Eq. (2.1) and (2.2) is

replaced by w(t), called the reduced time, which is defined as:

o= [T (@7)

where ay4 is a function of stress, temperature or other related effects. The uniaxial
stress and strain functions in Eq. (2.1) and (2.2) can, be rewritten for nonlinear
material as:
t do(T,
= [ D@ - ver) L ur @9
. de(r]
o) = [ Bw@ -9 “ 4 @9

An application of this theory was given in Jordaan and McKenna (1988), in which
a Burgers body (see Figure 2.2) with linear springs and nonlinear dashpots was an-
alyzed. The viscosity of the dashpot is stress dependent, i.e. u = p(c’), where o’ is
the stress in the dashpot. If a constant overall stress o is applied to the body at time

t = 0, the stress equilibrium for Kelvin unit is:
o = Exe® + ppé? (2.10)

where E is the elastic modulus of the spring, and g, is the viscosity of the dashpot

in the Kelvin unit. Solving the equation, the deformation of the Kelvin unit e4(t) can



then be expressed as:

Ee
o pelod)

@0 =5 [ - expf- dt}] (211)

where oy is the stress in the dashpot in Kelvin unit. This equation is similar to the
last term of Eq. (2.4) when N equals to 1, provided that ¢ is substituted by ¥(t) in
Eq. (2.7), and ay is assumed equivalent to p(04), i.e. au = px(oa)-

If the dashpot is assumed to follow a power-law relationship with stress, then

1
04) = 6 2.12
sx(oa) Ao T (2.12)
where A is the viscosity parameter; n is a constant. Using the equation of equilibrium

for the element of the Kelvin unit, i.e.

G—6u_ o
Ex ui(oa)”

It is then found that
e = (n— 1) Ext + pxo- (213)

where pi0 is the viscosity at time ¢ = 0. This equation shows that the viscosity is a
linear function of time.

Substituting Eq. (2.13) into Eq. (2.11), the deformation of Kelvin unit is then
given by

() = Ei, {1 —[(n— Dt + 1)/} (2.14)

where, w = E/peo-
Another nonlinear theory based on generalized linear viscoelastic theory is called
modified superposition principle, which will be discussed later.



2.1.3 The Broad-Spectrum Approach

As mentioned in section (2.1.1), chains of Maxwell or Kelvin units with a spectrum
of values for the springs and dashpots can often model the behaviour of viscoelastic

materials better than a single unit, especially when nonlinearity is involved. But this

and ity for ing and fitting of the experi-

also increases the
mental results. Schapery (1962) proposed a broad-spectrum collocation method for
fitting the experimental data. An example was given to fit the experimental data

using the relaxation modulus as given by Eq. (2.5). i.e.
LA E;
E(t) = E +EE.—exp(-‘:'-l), (2.15)

Let ;

£ and the above equation can be expressed as:
L: t

E(t) - By =3 Eiexp(——) (2.16)
= i

where £\ = E(00). First, a set of collocation points for ¢ will be chosen, for example,

t; =0and t; = 1003, (j=2, 3, ..... n). Then the values of 7; will be chosen in a way

that is somewhat arbitrary, for example, let 7; = 2¢;, i.e. 7, =2 x 100~% (i=1, 2, 3,
.. n). By letting E(t;) equal to the value of experimental data at time ¢; (=1, 2,

3. ..... n), this leads to a set of n linear algebrai ions for the variables

of E; (j=1,2,3, .... n), i.e.

{5} = {a;; HE;} (2.17)

where b, = E(t;) — Ey and ay; = exp(~%) (i, j=1, 2, 3, ... n). By solving the above
equation, the values of E; can be calculated. Substituting E; into Eq. (2.15), the

model response can be by ing with the i results. A few

iterations may be needed by adjusting ¢; and 7; to achieve satisfactory results. In

some cases, very small values of E; can be found by this approach. This means the
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units with small E; values will make little contribution to total response. Therefore

these units can be eliminated to save computation time.

2.2 Dynamic Recrystallization

Dynamic recry ization is a process i ing the ion or migration of grain

boundaries (Vernon. 1981). This process will often result in the creation of new
grains at the cost of existing ones thus lowering their free energy. When the recrys-
tallization process is associated with the progress of deformation, it is called dynamic
recrystallization, otherwise it is called static recrystallization. There are four types
of driving forces for dynamic recrystallization: (1) intragranular lattice defect energy;
(2) grain boundary (surface) energy; (3) chemical free energy, and (4) elastic energy
by external loading (Urai et al., 1980). Dynamic recrystallization will result in the
softening of the material and the enhancement of ductility. This in turn will lead to

the localization of strain and the development of shear zones. The effect of dynamic

recrystallization on i ies has been ized by Urai et al. (1980)
as: (1) changes in grain size; (2) changes in dislocation density and sub 3

of preferred orientation; and (4) changes in impurity concentration and
grain boundary The formation or migration of grain boundaries due to

dynamic recrystallization can either increase or decrease the grain size. One of the

factors of it grain size is the flow stress. The de-

crease of grain size will result in a change of deformation mechanism to diffusive mass

transfer. This process will in turn lead to more significant softening of the material.

The progress of dynamic ization is a process under certain
loading conditions. When the strain reaches a critical value, a wave of recrystalliza-

tion will occur and lead to a wave of accelerated creep deformation (Duval et. al.,



1983). But when loading rates are high, a rapid development of recrystallization will

ibility of

lead to high d ion rates and the di: inuity will di . The

dynamic recrystallization in enhancement of ice creep deformation was also discussed
by Duval et. al. (1983).
Jonas and Muller (1969) studied the deformation of ice under high stresses. The

effect of dynamic recrystallization on the strain rate was proposed to follow the equa-

tion:

é=posp(- o) exp{UT2T2),) @18)
where ¥ is a structure factor; AH is the ivati py: v is the ivation vol-
ume: & is the Bol 's Tis the 7 is the applied stress, and
7g is the so-called internal back stress. The of dynamic recry

can significantly reduce the back stress and result in rapid increase in strain rate.
From the experimental observations, they concluded that dynamic recrystallization

will occur after a critical strain is reached. The critical strain is a function of stress and

t Dynamic recr, ization will not be initiated under very low stresses,

and it will be periodic under intermediate stresses, which leads to periodic increases

in strain rate. Under high stresses, the of dynamic recr ization after
a period of conventional creep deformation will lead to a rapid increase in strain rate.

These ions were i by Duval et. al., (1983).

2.3 Damage Mechanics
2.3.1 Introduction

Most of the early work in damage mechanics was based on the original idea that the
damage of a structure can be measured by a scalar factor (Kachanov, 1958), which

is equal to the ratio of the area of voids to that of the whole cross section, or by the
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density of microcracks and voids which would permanently affect either the elastic
modulus or shear modulus. This was the guideline for most of the early work of the
present group. The importance of this kind of damage model is the establishment of
a rational damage law which defines the rate of damage accumulation in terms of the

current values of state variables and internal variables.
2.3.2 The Concept of Damage

Based on Kachanov’s model (1938), a solid body has an overall section area of 4q and
a fractured (damaged) area of A. In the case of uniaxial loading P without damage,

the stress in the body is given as

P
=—. 2.19
e (2.19)

With isotropic damage, the damage variable D can be defined as
;0<D<1 2.20!
4 UsDs (220

and the effective stress o, is introduced as

T P i (221)

“A-4 A0-D) 1-D
It is assumed that the strain response of the body is modified by damage only through

the effective stress, so the stress-strain relation of the damaged material is

(222)

where Ej is the elastic modulus of virgin material and E = Eo(1 — D) can be termed

the “effective” modulus. So the behaviour of damaged material can be considered

to be i to the i of und: d material, provided that the original

elastic modulus Ej is replaced by

E = Ey(1- D). (2:23)



The “effective” modulus will be reduced due to the accumulation of damage.

An application of continuum damage theory in rock mechanics was proposed by
Resende and Martin (1983, 1984) for rock-like materials which defines the elastic
strain-stress relation of the material as:

s=Go(1 — D)e* (2.29)
and

e=é 4 éP (2.25)
where s is the stress invariant; Gy is the initial shear modulus; D is the damage

measure; e is the total shear strain invariant, and e* and €” are the elastic and

nonlinear of the strain e, ively. The rate form of Eq. (2.24) was
given as:
§=Go(1 — D)é&* — Goe* D; for loading (D > 0), and (2.26)
5= Go(1 — D)é; for unloading (D = 0). (2:27)

The damage evolution law was defined as
D =D(é,e,0m b, &) = Ale,0m)é + Bles)éy (2:28)

where A and B are material constants and depend on the loading situation. The

invariant volumetric strain rate é, was also assumed as

+& (2.29)

where ¢ and & are the elastic and inelastic i ding dam-
age effects, respectively. The strain € is defined as a function of volumetric stress,

04, (7, < 0) in the form of:

€ = (1 — exp(Ad,)|(W — €omas) (2.30)
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where A and W are constants; €.m.. represents the degree of packing of the material.
The inelastic component € is defined as a function of strain and damage and their
rates as:

& = (c1 + c2€) D + c3Dé, (2.31)

where ¢;,¢; and cs are constants. This model has also been generalized to include

the tensile behavi and some ical results were
2.3.3 Effects of Microcracks on Elastic Properties of Solids

A very important aspect of damage mechanics is to relate the concept of damage
to the cracks and other flaws in the solid. A great deal of research has been done
to investigate the effects of these structural defects on the mechanical properties of
solids. Models have been developed to define the evolution of damage as a function of
crack density, by introducing averaging procedures to “smear” out the effect of each
individual crack.

Budiansky and O’Connell (1976) discussed the reduction of elastic moduli due to
the presence of microcracks of a given shape for the three dimensional case. Their
solution gives change of elastic properties from the strain energy loss during the nucle-
ation of individual cracks in an elastic brittle body. Their results include interaction
between cracks but do not account for traction across crack surfaces; all cracks re-
main open. Assuming an isotropic array of similarly shaped flat circular cracks, the
isotropic damage parameter is simply related to the crack density by D = a®N, where
a is the radius of crack surface and N is the crack density. The properties of the solid

as a function of damage are given as
E'[/E =1-[16(1 — v?)(10 - 3")]/[45(2 — )| D (2.32)

K'/K =1-[16(1 — v?)]/[9(1 — 2./)] D (2.33)



where v is the Poisson’s ratio and
D = [45(v - /)(2 = ¥')}/[16(1 — v2)(100 — /(1 + 30))]. (2.39)

where the prime denotes that the property includes the effect of cracks.

Under compression, the effect of traction across cracks cannot be ignored and
the above approach needs to be modified. It is clear that the influence of cracks on
the elastic properties will be reduced in compression due to the crack closure and
difficulty in crack nucleation. Closed cracks can still transmit tractions and shear
stress: therefore, in compression, the existence of cracks will not reduce the strength
of the solid body as much as in tension. Horii and Nemat-Nasser (1983) developed
a general solution for the case of two dimensional, compressive state of stress with a

simple frictional relation for plane strain cracks. Their solution is expressed as
K'/K = f(D.gy/s) (235)
G'/G = g(D,ap/s,m) (2.36)

where o3, s are the applied normal and shear stress respectively; 7 is the frictional

coefficient. Their result is based on an iterative numerical solution and can not be ex-

pressed in analytical form. Simple functional forms have been derived to approximate

these relations for the two dimensional case:
(1 — K'/K)? = [1.8aD(gp/s +1)] (2.37)
(1 = G'/G) = 0.9D{0,/s + 1 +expln(ay/s — 1)]}. (2.38)

All the cracks are closed when 0,/s < —1 and all are open when o,/s > 1. Their
results are only applicable for proportional loading where the ratio of normal and
shear stress remains constant. In practice, the assumption of proportional loading is

generally reasonable.
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The approach taken by Kachanov (1993) also deals with some basic problems
in analysis of solids with multiple cracks or other structural defects. The focus is

on the important physical effects of crack interactions. His method provides simple

solutions for (a) the impact of crack i ions on the iour of individual cracks,
specially on the stress intensity factors at the tips; (b) the effective elastic properties
of solids with multiple cracks: (c) the interactions between a macrocrack and an

ks. His is i to both two and three dimensional

array of
configurations.

Consider an elastic solid with N cracks per unit volume; each crack has a normal
n'. Given an applied stress o° at the remote boundary, this configuration can be
represented by the problem with crack surfaces loaded by tractions of f° = n'c®
and stresses vanishing at infinity. A 3-D solution was proposed by Kachanov (1993)
to approximate the effective elastic modulus of noninteracting cracks with isotropic

random distribution. The effective moduli are given as:

é —+CN)t (2.39)

Gﬁn — 1+ M) (2.40)

Lo éu +CuN) (241)
where

= 16(1 — 13)(1 — 31/10)

9(1-w/2)
¢, = 160 — v)(1 — v/5)
T - w/?)
o 8(1-13)

=B —w/2)
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These forms can provide accurate results at both low and high crack densities. If
the crack density is small, the above equations can be linearized to a form as £ =
(1 — CN), which is similar to Eq. (2.23).

Other on damage ics include Krajcinovic (1983, 1989); Krajci-
novic and Fonseka (1981); Leckie (1978); Schapery (1981, 1984 and 1988).

2.4 Fracture Mechanics
2.4.1 Introduction

For ideally brittle linear materials , a crack will start to propagate if the stress con-
centration at the crack tip, i.e. if the stress intensity factor K reaches a critical value,
termed K. which is called the fracture toughness. The stress intensity factor can be
defined as K = Oymaz/0n, Where opmg: and o, are the local maximum stress and the
applied nominal stress, respectively. The criterion of crack propagation in a linear
elastic solid can also be defined based on the energy-balance approach, i.e. the crack
will propagate in an unstable manner when the strain energy release rate G exceeds
Ge, the critical value of G. For G = G, crack growth is stable; this becomes unstable
for G > G.. For plane-strain conditions, G = &7 (1 —12), where E and v are Young’s

modulus and Poisson’s ratio respectively.
2.4.2 J-Integral Theory

For nonlinear elastic materials, the J-integral theory has been proposed by Rice
(1968a, b) to characterize the stress-strain field at the crack tip by taking a closed-
path integration near the crack tip (see Figure 2.3). The definition of the J-integral

is given as:

J= [(waz, - T(g:)ds), (2.42)



where T and u are traction and displacement vectors respectively: W' = [ ade is the

strain energy density: dS is a small element of C, the path of integration. The J-

integral was also proved to be the energy release rate per unit crack extension (Rice.
1968a, b), i.e.

dU
1=-Z, (2.43)

for unit thickness, where U is the potential energy, and a is the crack length. For
linear elastic materials, the J-integral is identical to G. Therefore. for plane-strain
conditions, J =G = £(1 - »?).

A constitutive theory was developed by Schapery (1981, 1984) for nonlinear vis-
coelastic materials. His study included the influence of distributed damage (flaws) on

the mechanical behaviour of the als. A lized J-integral theory was also

subsequently developed to analyze crack growth in nonlinear viscoelastic materials.
Considering a nonlinear elastic body with distributed cracks, Figure (2.4) shows

an idealized crack with planar surfaces near the tip and the crack tip is straight.
Assuming the crack has a unit thickness and the failure zone is thin compared with
its length . An arbitrary closed surface C shown in the figure consists two parts, C1
and C2 which covers the failure zone. There are no cracks inside C. For any point
inside C, the equilibrium equations are given as:

o5

= +F=0 2.44

az; T (2.44)
‘The surface tractions T; are given as

T, = ayny (2.45)
where n; are the normals on the surface C. The stresses oi; can be expressed by a

potential function W as:

oy = OW/Buyy (2.46)
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where u,; are the displacements.
Assuming the existence of a body force potential Wy, the body forces F; are then

given by

= —OWr /Bu;. (2.47)
Multiplying Eq. (2.44) By —3u;/3z,, and integrating the equation over the vol-
ume 1" included by surface C, this gives
u;
i= [ (W +We) = 5 (a.,az )] dv. (2.48)

Converting the volume integral to surface integral, and using Eq. (2.45), the above

equation can be derived as:

J= /C [(w + We)n, — T"az,] ds. (2.49)

If the failure zone is very thin in direction z; relative to its length c, the normals

n, on surface C2 can be assumed to be zero. Therefore,
J = J-Jg
=0, (2.50)
where
Fjo 2.51,
L / [ 'a:,] (2.:51)
and
_ _q9u] s
Jo= /C . [(w +We)my — Ty az.] ds; (2.52)

thus J; = J,. This condition provides a basic relationship between the failure material
at the crack tip and the material outside the failure zone. The integral J, is also

independent of surface Cl, i.e. Cl is an arbitrary surface as long as it contains no
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cracks inside. The derivation of the integral does not exclude the presence of tractions
on the crack surfaces, while Rice’s J-integral assumes the crack surfaces to be free of

tractions. Eq. (2.52) reduces to Rice’s J-integral if body forces are omitted.
2.4.3 Modelling of Crack Growth

To model the material failure due to fracture, the first step is to predict the prop-
agation of cracks based on the theories discussed in the above sections. It is also
important to analyze the speed and the stability of crack growth. For some brit-
tle solids, the cracking speed can be very high and unstable, therefore it is difficult
to analyze. But under certain loading conditions, stable crack propagation can be
achieved, especially for some nonlinear materials. Proceeding from the elastic case to
the viscoelastic one requires the inclusion of rates of change with time in the theory.
Thus, instead of crack dimension “a” (i.e. half of the crack length) the rate of change
with time, a , is considered. For nonlinear material following a power-law stress-strain
relationship, Schapery’s analysis (1981, 1984) showed that the crack growth speed a
is also following the power-law relationship with the J-integral J,, i.e. & o J7. where

n is a constant. Various experimental and semi-empirical studies (eg. Atkins and
Mai, 1985) had also found that the rate of crack growth can be expressed as follows:
a=cJ* (2.53)
where c; and k are constants.
Assuming a material with a power-law nonlinearity with stress, of degree 7, i.e. € =
Ao", Eq. (2.53) will be applied, under certain loading conditions, such as proportional
stressing, i.e.

0ij = oalj, (2.54)

where o represents the proportionality, and o}; is a constant tensor.



The complementary strain energy is defined as (see also Figure 2.5):

we = [eo

= oe—W, (2.55)

where IV is the strain energy W = f ode.
Under the loading condition of Eq. (2.54), the complementary strain energy W<
is given by
we = /si]da‘,
= [ Aogdoy
= AP /(r+1). (2.56)

Substituting Eq. (2.54) into above equation, it is found that

wWe = |o|M AdhT /(r+1)
= lol"*t [ eydo, (257)
and
We(aal;) = lo| ' W(ol). (2.58)

Based on Schapery (1981), J = —3W/JA where dA = da for unit thickness. Since
We = ge — W, the energy release rate J can be derived from the complementary
energy:

.
J= B;Z g (2.59)

This indicates that energy decrease would, for a particular crack, correspond to the

increase in We. Substituting Eq. (2.58), (2.59) into Eq. (2.53), it is found that:

oy k
@ = ci|ofrD (%) : (2.60)
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For penny-shaped crack of radius a, 9W</da is found to be proportional to a, i..
dW</8a x a, (Schapery 1981), therefore

@ = ci(ca)*07, (2.61)

where g = (r + 1)k, and c, is a constant. Integrating Eq. (2.61), it is found that

a 1
D Ve L el
where ao = initial crack length, and
[ ciotar. (2.63)

A crack will become unstable when the denominator of Eq. (2.62) tends to zero, i.e.

when

'ty
5= L cio%dr

1
E=Dicar (284)

the unstability will occur, where t; is the critical value of time , the failure time.
Thus a crack in a viscoelastic material may propagate either if time ¢ — t;, i.e. Eq.
(2.64) is satisfied, or if the crack length is such that J — J..

For some polycrystalline ials, such as ice, mi often sud-
denly at high speed and are then arrested at grain boundaries. The time for crack
is usually negligibl d to the failure time ¢;. And from crack to

crack, the failure time can be different. Let t; be the failure time of ith crack, thus
si=[ " covdr. (2.65)
o

As mentioned earlier, the decrease of energy due to crack propagation will result in
increase of the complementary strain energy, so each microcrack will cause a jump

in We. Damage mechanics assumes that all the jumps due to microcracking are



o
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small. the effects of individual cracks are smeared out , therefore the damaging of the
material is a smooth process. And total damage S can be defined as the summation
of S; and expressed by Eq (2.63). Figure (2.6) shows the increase in W< as a function
of S. where each small jump in W< a crack ion. In !

the smoothed function can be used. The above approach developed by Schapery
(1981, 1984) provides a link between the fracture mechanics and the damage theory

for nonlinear materials. A large jump is also shown in the figure which corresponds

to a spall or large fracture event (E).
2.4.4 The Trajectory of Crack Propagation

The study of the trajectory of crack propagation is also very important in order to
predict the correct spall size and the failure zone as well as the remaining shape of
the solid. Extensive studies have been done, e.g. by Sih (1973), Palaniswamy and
Knauss (1974), Conrad (1976), Sih and Tzou (1983) and Zou (1997). Three principal
criteria have been proposed: first, that the crack will propagate at right angles to
the maximum tensile stress, second, that it will propagate in the direction which
corresponds to the maximum strain energy release rate (SERR), and third, the crack
direction is that which ds to the mini strain energy density (SED). The

criterion of maximum strain energy release rate is judged to be most fundamental.
It makes sense that a crack would propagate in this direction since the criterion for
propagation itself is the very same: that crack which causes the maximum SERR will
be the first to propagate. The direction of maximum tensile stress is an attractive
and simple rule; it can be tested against the others. Experience has shown that it is
close to the maximum SERR criterion.

When modelling of the crack trajectory, all three fracture modes (I, II and IIT)

should be considered. In many cases, it is appropriate to assume that the strain field
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at the crack tip corresponds a state of plane strain. This is then the natural mode for
analysis using the J-integral method. Only the first two modes of crack propagation.
[ - tensile and II - shearing, need to be considered. Palaniswamy and Knauss (1974)
presented a relationship between the angle of crack propagation and the ratio of stress
intensity factors, as shown in Figure 2.7. The angle 8 represents the direction of crack
propagation, measured from the existing crack direction: the analyses were based on
the maximum SERR criterion. A more detailed analysis was conducted by Conrad
(1976) based on finite elements, as shown in Figure 2.8. His analysis showed a good

with that of P i y and Knauss (1974). except at low K;/Ky;, in

which case shear stress predominates. Figure 2.8 has been used in the present study.
Experimental work was also conducted by Shen and Lin (1986) to study the

fracture behaviour of ice under mixed-mode (mode I and II) loading conditions. Their

test results showed a relationship between K; and K;;. and the data were fitted to
the result of maximum SERR analysis based on Palaniswamy and Knauss (1974), as
shown in Figure 2.9. The data have been normalized with K; = 1 MPa m'/2. Timco
and Frederking (1986) found that the value of K was in the range of 0.1 to 0.14 MPa
m'/? for sea ice, which is consistent with the value 0.107 MPa m'/? from Shen and
Lin (1986). Assuming the elastic modulus of ice is £ = 10 GPa, the critical energy
release rate Grc will be in the range of 1-2 J/m?. In this study Gjc = 1 J/m? has

been used, together with the theoretical interaction curve of Figure 2.9.

2.5 Schapery’s Approach

A continuum damage theory has been developed by Schapery (1981, 1984, 1988,

1989) using the generalized J-integral theory. His approach offers a rigorous solution

to a class of problems involving cracking and d: ing of
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It includes a proper treatment of energy flux into the crack tip zone, and of the
thin laver of damaged material outside the crack tip zone along the crack surface.
In the solution, viscoelastic behaviour of material is modelled using the modified

superposition principle (MSP).
2.5.1 Modified Superposition Principle

Based on linear viscoelastic theory as discussed in the earlier sections. the modified
superposition principle (Findley et al., 1976), is generalized for nonlinear materials. In
the case of uniaxial stress state, the modified superposition principle may be written

in the following form, based on Schapery (1981):
t Be°|
() = E,,/u D(t—7) —l(;'—-rldr, (2.66)

where €’ is referred to as pseudostrain; D(t) is a linear compliance; E is a reference
elastic modulus, included so as to give € the units of strain. The applied stress o is
included in the pseudostrain, €°. Consider the case where €° = g/ERg, then the above
cquation becomes the same as the expression for uniaxial linear viscoelasticity (see
Eq. (2.1)) Cousider another special case: D(t — 7) = 1/Eg, then €(t) = ¢°, i.e. for

the elastic case the strain is equal to the pseudostrain.

Nonlinearity can be included in above tion via the in. ing

that the straif t ip follows a pe 1 i ity, for instance, é =

Ac™, where ¢ =constant (t > 0), let & = o™ and D(t — 7) = A(t — 7)/Eg, and
substitute them into Eq. (2.66), it is found

= n

)= Ex /L At —1) f) d(a 79

If o =constant (¢t > 0), with 7 = 0, then the above equation becomes:

€(t) = Ato™.



Therefore the ion for pe 1; it ip can be derived:

The pseudostrain ¢ can be defined as

awe
o_
L= (267)

where W* is the complementary strain energy. The nonlinear equation can then be

summarized by

g o owe
e(t) = Er || Dt =) 5 () dr, (@68)
in which
awe
3o E
= L [ pe-nl
= 5 /0 E(t-7) % dr, (2.69)

where E(t) is the relaxation function as given in Eq. (2.2).
2.5.2 Modified Superposition Principle with Damage

The modified superposition principle provides a simple method for predicting both

lasti fals. Schapery (1981) also ex-

linear and it i of
tended this method to include the effects of cracking, and other structural changes
on the deformation of the material via the pseudostrain, i.e. € is also a function of
damage parameters: € = f(0,S:), (i = 1,2,3,...), where S represents each individual
process in the change of material structure. For uniaxial or more general proportional

loading, ing quasi- ic mi ing and the cracking rate follows the power-

law in stress, two functions were proposed by Schapery (1981) for the pseudostrain

and damage parameter, respectively, in the form of:

"9(S)sgn(o), (2.70)

5= son(o) [ (@) rdr @)
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where r and g are positive constants; sgn(g) is the sign function: f, reflects the
properties of the material at the crack tip. By using a set of values of ¢ or functions
of f. different S; can be defined. Notice that Eq. (2.71) is similar to Eq. (2.63).
In many cases, one damage parameter may be sufficient, but for complex loading
conditions, so as to the structural changes of the material, more than one parameters
may be required.

An exponential form was proposed by Schapery (1981) for the function g(S):
9(S) = exp(AS). (2.72)

where A is a positive constant. The function g(S) is an enhancement factor of dam-
age on the deformation process. This function and the damage parameters will be

discussed in detail later.

2.6 Ice Mechanics
2.6.1 Introduction

Ice in nature is a polycrystalline material composed of a large number of crystals
usually in different orientations. Michel (1979) provided a detailed description of the
structure and classification of ice. Typically, there are two types of polycrystalline
ice found in nature:

1. Granular ice, which is randomly oriented polycrystalline ice, can be found in ice
features; such as, glaciers and icebergs. The grain size is classified as fine to medium.
In the laboratory, this type of ice can be obtained by freezing water seeded with full
mould of randomly oriented fine ice crystals, and it can be treated as a statistically
isotropic material.

2. Columnar ice is formed with the grains growing parallel to the heat flow and

with c-axis perpendicular to the column length. This type of ice is referred to as S2
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ice which can be found in lake, river and Arctic sea ice. The mechanical properties
of columnar ice are orthotropic, or more usually, transversely isotropic.

Ice is characterized as a viscoelastic material with its deformation response depen-
dent upon the loading rate and temperature; it is also very brittle under high loading
rate. The Burgers’ model, as shown in Figure 2.2 . is often used for polycrystalline
ice. The mechanical properties of ice can be divided into two parts (Sanderson, 1988):

1. Continuum behaviour. This includes elastic and ductile creep deformation,

which can be extended to include the unil istri i king and damage

processes.

2. Fracture behaviour. This includes crack propagation and brittle failure.

2.6.2 Elasticity of Ice

In engi i licati the elasticity of granular ice is typically treated as isotropic

and can be characterized by two constants. the elastic modulus. E. and Poisson’s ra-

tio. v. Following Hooke's law, the elastic strain €. of ice is given as:

&= % (2.73)

where o is the loading stress. For polycrystalline ice of low porosity, the standard
range of elastic modulus is approximately 9 to 9.5 GPa in the temperature range of
-5 °C to -10 °C (Mellor, 1983). The commonly accepted range for Poisson’s ratio is

0.3 to 0.33.

2.6.3 Creep of Ice

A constant stress creep test on polycrystalline ice gives a conventional creep curve
as shown in Figure 2.10. The idealized creep curve can be divided into three phases:

a

primary, secondary and tertiary. Sinha (1978) d
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equation for columnar ice under uniaxial compression. The total strain ¢ is considered

as the sum of three components as shown in Figure 2.10, ie.
e=e el (2.74)

where ¢ is the instantaneous elastic component; € is the delaved elastic compo-
nent, or recoverable primary creep. and € is the permanent viscous component, or
secondary creep strain. The elastic component in Sinha’s equation was defined by
€ = o/E, where E is the elastic modulus. An expression for delayed elastic strain
under constant stress was given as

0 = 228 (2) 1t - expl~(art?}), @)

on the and the grain

where ¢, s, b and er are all
size, d; where E = 9.5 GPa; ¢; = 9, is a constant corresponding to the unit grain size
dy (dy =0.001); s = 1; b= 0.34; ap = 2.5 x 107s™" (T = 263K). The delayed elastic
strain corresponds to the deformation of the Kelvin unit.

The secondary creep strain describes the effect of the viscous flow and dislocation
movement within the grains, and appears to be independent of the grain size (Cole,
1986). The secondary creep strain corresponds to the deformation in the dashpot of
the Maxwell unit. For polycrystalline ice under uniaxial compression or tension, a

power-law relation of strain rate and stress was suggested by Glen (1955) of the form
&= A"
where n is a constant and A is a function of temperature in the form

A=Bexp (_Q) " (2.76)

where R = 8.314 J mol~! K~ is the uni gas T is the in
degrees Kelvin; Q is the activation energy and B is a material constant, both Q and
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B are dependent on the ice type. In Sinha's expression for columnar ice, the creep

strain rate was given by a similar relationship:

e (aiv)" (2.77)
where n = 3, and € = 1.76 x 10~ 7s~! (T = 263K), is the viscous strain rate for unit
stress gg, (0o = 1 MPa). Note that the above equations, Eq. (2.73) to Eq. (2.77)
include only the elastic strain, and primary and secondary creep strains.

Secondary creep can be considered as a transient process between primary and
tertiary creep. The whole process of secondary creep may be very short in time.

Tertiary creep was considered due to the effect of microcracking (Gold, 1970),
but it was found that cracking is not essential for the occurrence of tertiary creep in
polycrystalline ice, even during the transition from primary to tertiary creep (Mellor
and Cole, 1982). Duval (1981) and Duval et. al. (1983) suggested that the increase
of tertiary creep rate was associated with development of fabrics favouring the glide
on basal plane as well as the softening processes due to dynamic recrystallization.
Other possible mechanisms, such as pressure melting under high stress and confining
pressure, were suggested by Barnes and Tabor (1966), Jones and Chew (1983), Meglis
et al. (1997) and Jordaan et al. (1997).

2.7 Cracking of Ice

Ice is a viscoelastic material, but it can be very brittle under certain loading con-
ditions. Crack nucleation in ice is a complex process associated with the transition
from ductile to brittle behavior. The mechanism of nucleation depends on the load
level and loading rate and temperature. Gold (1972) first described the failure of
columnar-grained ice in terms of microcracking during compressive creep tests, with

special attention being given to the crack initiation time, strain and crack density de-
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velopment. Based on statistical analysis, two types of crack distributions were found.

Strai: crack distributi were to be the result of a dislocation
pileup mechanism. Strain-independent crack distributi d to be related to
the elastic anisotropy which causes stress i at grain b d

For fracture of ice in tension, the applied load must be sufficient to nucleate
microcracks, and the load must be increased until the crack begins to propagate.
Crack nucleation is likely to be associated with critical tensile strain (Seng-Kiong and
Shyam Sunder, 1985) or critical delayed elastic strain as proposed by Sinha (1982).

For ice of grain size less than 1 mm, nucleation of cracks may occur at a stress of
about 1 to 1.2 MPa and the propagation stress is about 1.2 to 2 MPa. From test data
obtained at strain rates 107%s" to 10~3s~! by Schulson et al. (1984, 1989), Schulson
(1987, 1989), and Currier et al. (1982), tensile crack nucleation occurs at a critical
stress which can be expressed as

oy =0+ kd™/? (2.78)

where 0 is 0.6 MPa and £ is 0.02 MPa m!/? and d is the grain size. The criterion
for tensile crack propagation is given by
_YKic

()"
where K¢ is the critical stress intensity factor for mode I loading, a is half of the
crack length and Y is a geometrical parameter. Tensile cracks and fracture surfaces

(2.79)

op

are always perpendicular to the tensile stress axis.

In compression, the crack nucleation process is more complicated and highly rate
sensitive. Seng-Kiong and Shyam Sunder (1985), Hallam (1986) proposed that crack
nucleation occurs when the associated lateral tensile strain induced by the Poisson
expansion reaches a critical value. The required compressive nucleation stress should

be about 3 times higher than that for tension.
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Sinha (1984) used the test results of Gold (1972) to relate crack nucleation to a
critical delayed elastic strain associated with grain boundary sliding, i.e., the delayed
elastic strain € is equal to the strain induced by the grain boundary sliding €g., and
when €, reaches a critical value e',,, crack nucleation occurs. The critical value of
grain boundary sliding e;h is related to the critical stress needed to produce a crack
at the end of a sliding interface.

The dislocation pileup mechanism was adopted by Schulson et al. (1984), Cole
(1986) and Kalifa et al. (1989). This mechanism is based on the concept that dislo-
cation pileup at grain boundaries may provide a high stress concentration which can
induce crack nucleation when the stress reaches a critical level.

More tests were carried out by Sinha (1988) on columnar ice, Hallam et al. (1987)
on granular ice at constant load, and by Cole (1986) on granular ice at constant strain
rates. Kalifa et al. (1989) performed a series of triaxial compression tests with strain
rates varying between 2.5 x 10~5s~! and 10~3s~! and confining pressure ranging from
0 MPa to 10 MPa. The test results showed that stress and strain levels for crack

i with the ing pressure, and so did the standard deviation of

the distribution of crack orientation. It should point out that the above observations
were mostly based on low loading rates and moderate confinements.

In fact, only when the strain rate is relatively high, about 10~3s~*, does the ice
become brittle and complete fracture failure occurs. In this case cracks extend to the
free surface or cracks interact to form a larger crack or shear fracture surface. If the
loading rate is low, the stress-strain curve eventually reaches a plateau and ice creeps
without sudden failure.

The elastic anisotropy mechanism has also been applied to ice by Cole (1988) and
Shyam Sunder and Wu (1990). Their work showed that elastic anisotropy of the ice

lattice is an effective source of stress concentration and can be taken as an alternative



for crack nucleation when deformation rate is too high to allow dislocations to pileup.

These models gave good agreement with test results.
2.7.1 Fracture of Ice in Indentation Tests

Microcracking and fracture of ice are very common in ice indentation. As addressed
in the work of Jordaan and Timco (1988), Timco (1986), Tomin ct al. (1986) and
Jordaan and McKenna (1988a), when an ice sheet interacts with a flat indenter. a layer
of crushed ice is formed in front of the indenter and the microcracks are developed
along the maximum shear stress. The ice is idealized into three zones, undamaged
virgin ice; partly damaged ice with relatively high density of cracks and reduced
stiffness; and crushed ice which eventually will be extruded out but this ice can carry

compressive loads due to its frictional ies, i.e. the ive strength of

crushed ice is not zero.

For ice sheet indentation tests, several different failure modes were observed
(Timco 1986) depending on the loading rate and the ratio of the indenter width
to ice thickness. Generally, at low speed, there is mainly crushing and microcracking
in the ice with some short cracks less than a few centimeters in length.

At high speed, there is crushing and spalling right in front of the indenter, but the
failure of ice is mainly due to the occurrence of the radial and circumferential cracks
and possible buckling. In some cases there are mainly 45° - 60° radial cracks extending
from the corners and the cracks would be a couple of meters long. More tests have
been carried out in the ice tank in the Institute for Marine Dynamics, Canada, which
provides similar evidence of ice cracking in interaction (Finn, 1991). In the case of the

ylindrical i ion, crushing, mi king, radial and ci ial cracks can

also be observed similarly to the flat indentation (Hallam, 1986). Both local crushing
and large scale fracture (including spalling) failures were recorded in medium scale
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indentation tests on Hobson's Choice Ice Island (1989) (Frederking et al., 1990a, b).
A possible crushing and damage mode of the spherical indentation tests, as discussed
in the work of Jordaan and McKenna (1988a), is illustrated in Figure 2.11. A layer
of crushed ice is under the indenter and the ice beyond the crushed zone is partly
cracked. The density of the crushed ice is less than the intact ice. Radial cracks could
also form and reach the surface, so large flakes would spall away.

2.8 Pressure Melting of Ice

The melting of ice with i ing pressure. When the melting
point is lower than the ice temperature, pressure melting will occur, and this will
result in changes in mechanical behaviour of ice. Some earlier work on ice pressure
melting was presented by Barnes and Tabor (1966) and Hobbs (1974). A theoretical
relationship between the melting temperature and pressure was given based on the
classical Clausius-Clapeyron equation. When both ice and water are present at a

equilibrium temperature of 0°C, it is found that

dT,, "
o _ oy 2.
B = ~0.0738°C/MPa, (2.80)
where T}, is the melting temperature; P is the hydrostatic pressure.
Evidence of pressure melting and resulting softening of the material was reported

tests. At ice

by Barnes and Tabor (1966) based on their ice i
above -1.2 °C, there was a sharp drop in loading pressure when the hydrostatic pres-
sure reached about 20 MPa, presumably due to pressure melting. This was confirmed

by a thin section study of the ice structure near the contact zone. When temperature

is below -1.2 °C, the loading pressure i with d i It was
concluded that under the experimental conditions, the applied load was not suffi-

cient to produce pressure melting and the dominant process was creep deformation
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for lower temperatures. A recent work on pressure melting has been carried out by
Nordell (1990). Eq. (2.80) and Nordell’s test results are plotted in Fig. 2.12, which
shows that Eq. (2.80) is a good approximation for low pressures. Nordell’s test results
also show that a confining pressure of about 110 MPa is required to lower the melting
temperature to -10°C. This is quite high compared to measured pressures at the in-
dentation interface during the medium scale field tests (these tests will be discussed
later). This discrepancy can be explained by the fact that the measured pressures are
averaged over the area covered by the pressure cells. With rapid loading, high stress
concentrations are developed at the grain boundaries or between ice particles. These
local pressures would be much higher than the measured values. For the medium-
scale indentation and crushed ice tests, the measured pressures at the center of the
contact face were usually between 5 - 20 MPa, and the in-situ temperature was about
-10°C. Therefore the average local pressure between ice grains or particles needs to
be about 5 to 20 times higher than the global pressure or the pressure measured at
the interface, in order to produce pressure melting. This kind of stress concentration
should be common especially in the area that ice is highly damaged (structurally
disordered). This will be discussed later.

2.9 Friction of Ice

Ice friction depends on many factors, such as speed, temperature and the contact
material. The bell-shaped pattern of speed dependence of ice friction between ice has
been reported by Jones et al. (1991) (see Fig. 2.13). It was found that the friction

generally with both i ing speed and i
In most situations the two moving surfaces are not fully contacted over the whole

apparent area, but over finite isolated junctions or asperities. At very low sliding
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speeds, ice friction is il to the ination of creep. recry ization and
adhesion of the asperities (Barnes et al., 1971). With increasing sliding speed, higher
shearing stress is required for creep deformation, which results in a higher friction
coefficient. At even higher speeds, there will not be enough time for the asperities to
creep. Other processes, such as ploughing, shearing or cracking of the asperities on
the surfaces will occur, and a higher shearing force is required. This is responsible
for the maximum friction coefficient in the medium speed range at low temperature.
As the sliding speed increases, frictional heating and melting will result in a layer of
lubricating water at the interface. The friction coefficient will decrease rapidly, and
eventually becomes constant. This is attributed to the shearing of the lubricant film.

Based on the works of Barnes et al. (1971), Saeki et al. (1986) and Jones et
al. (1991), the friction coefficient ranges from 0.01 to 0.3 between ice (sea ice or
freshwater ice) and steel, and varies from 0.05 to 0.7 between ice and ice. Thesc test
data cover a speed range of 10~* m/s to 100 m/s. and a temperature range from 0°C
t0 -40°C. It was also noted that the structure of the ice does not affect the friction

coefficient significantly.
2.9.1 Damage Mechanics in Ice

Damage mechanics has been introduced to ice by Karr (1985), Cormeau et al.(1986),
Sjdlind (1987), Jordaan and McKenna (1988), McKenna et al. (1989), Karr and
Choi (1989), Schapery (1989) and others. Based on thermodynamics, Sjdlind (1987)
defines damage growth rates in terms of dissipation potentials using tensor theory.
The elastic modulus is a function of damage. Karr and Choi (1989) use two damage
measures, one for intergranular cracking and one for intragranular cracking. The
damage evolution law is defined as a function of existing damage, stress and strain

rate. The damage measure is expressed by a second order tensor which also takes
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account of the orientation of distributed cracks. An isotropic damage model with a
single scalar damage measure has been developed by Jordaan and McKenna (1988),
McKenna et al. (1989), Jordaan et al. (1990). It focused on the relation of the
extent of damage and the growing network of microcracks which is often assumed to

be unif lly) di and randomly oriented. A rate expression of

crack formation was proposed, based on rate theory in the form of

.,("’"”‘) A (2.81)
o
where N =0, if 0 < o, o, is the stress; g is a units of stress); r

is a constant and N is a reference rate. Following Budiansky and O'Connell (1976),
damage is defined as D = a’N and the elastic moduli of the solid are approximated
by Eq. (2.37) and (2.38) based on Horii and Nemat-Nasser (1983).

The work mentioned above was focused on the influence of microcracks on the
mechanical properties of the material under mostly moderate loading stresses. As
discussed in Xiao and Jordaan (1996), the measurement of damage only as a function
of crack density may not be appropriate for all brittle solids under complex loading
conditions, such as the crushed ice in the center of indentation interface. In this case,
the crystal structure of intact ice has been broken down to fine grains, or particles.
Figure 2.14 shows the appearance of the crushed layer obtained after medium scale
field indentation experiments. The boundary is very distinct for most of the layer and
the ice in the layer is fine-grained, contains bubbles and is of lower density than the
parent ice. Under high confining pressure, the crushed ice may be sintered into a solid
but microstructurally modified ice mass due to pressure melting or recrystallization.
It will not be appropriate to use crack density as the measurement of damage for this
type of ice. But the ice behind the layer maintains, to a large extent, its original

structure, although microcracks can be observed in the thin sections made from the
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ice samples (Meaney et al.. 1996). This suggests that two or more types of damage

are needed to ize the iour of damaged ice and other solids.
In fact, many micro-processes, such as grain boundary sliding and elastic anisotropy
at triple junctions, can cause stress i at grain b daries, and lead to
king (both i and i ) therefore ing the solid.

Other processes, if applicable, like pressure melting between grains and recrystalliza-
tion can also result in changes in the microstructure of the material. So each of the
n). One individual

processes can correspond to a damage measure S; (i=1. 2. 3,
process may play a more significant or important role than others, under certain load-

ing conditions at a given point of time. For instance, in those critical zones with high

confining pressure, pressure melting and recrystallization may be more signi and
cracking will be suppressed, while at the edges of interface with high shear and low
confinement cracking would be the main source of damage.

As discussed in the previous sections, Schapery’s continuum damage theory using
the generalized J-integral offers a rigorous solution to problems involving cracking

and ing of vi i i ‘The damage measure given by Schapery is

defined as
Lt G0N
s= AE)ae (2.82)

where o is overall stress, op is a unit stress and q is a constant. Parameter f, reflects
the properties of the crack-tip material and is a function of stress.

It should also be mentioned that the confining pressure will also affect the develop-
ment of damage, since the nucleation and growth of microcracks would be suppressed
under certain confinement. The pressure dependence has been investigated by Singh

(1993) based on the data of triaxial tests in laboratory. An expression for damage
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measure was proposed as
3 g9 i
s= [ re D) e (2.83)

where fy(p) = fi/p; fi is a constant and p is the hydrostatic pressure. This model was

then adopted by Xiao and Jordaan (1996). A good agreement was achieved between

derate loading stresses

the theoretical results and the i results under
(less than 10 MPa) and confining pressures (less than 20 MPa).

Recent work by Jordaan et al., (1997) and Meglis et al., (1997) have focused on
the effects of both high shear stress (15 MPa) and high confinement (up to 60 MPa)
on the damage processes of ice. Their work showed that under low pressures mi-
crocracking is the dominant damage process which is suppressed by the increasing
pressure. At high pressures, recrystallization and pressure meiting become the dom-
inant mechanisms leading to the failure of the material. Based on Schapery’s theory
and the experimental results, a damage model with two state variables, S| and S
was proposed, where S is related to the damage processes, such as microcracking,

shear banding, at lower confining pressures. The second state variable S, is mainly

related to the p i eg. dynamic recr ization and pres-
sure melting under high pressures. This leads to higher damage rate with increasing

pressure. Similar to Eq. (2.83), the damage evolution law was defined as:

S=5+5S;and (289)

si= [N e G=12) (285)
where

_Jomz(1-2)" ifp<37MPa 86

Her= { 0 # if p>37MPa, and (228)

£ =01 (2 8)’ , (2:87)



and ¢; and r are constants.

More di: ions will be on the of damage on loading stress

and confining pressure.

2.10 Creep Enhancement due to Damage

The effect of cracks on the steady-state creep rate for the two dimensional case was

by W (1969) using dislocation theory. Approxi ions were

given for materials obeying the power law creep equation. His result for low crack

density was used by Sinha (1988) as

&(1 + 27N a®n'’?)(0/o0)"; @®N < 1

where AV is the number of cracks per unit area and a is half of the crack length. The
creep strain is enhanced by a factor of 2xNa?n'/2. For high crack density (a2N > 1),

Weertman noted that the creep rates must be on the order of
€~ Ag"(a®N)™*1, (2-88)

which indicates that the creep enhancement is on the order of (a?N)"*!. Jordaan
and McKenna (1989) proposed a solution for the three dimensional case. The expo-
nential form models the creep enhancement on inelastic strain, which was redefined
as exp(D) in McKenna et al. (1990). This term is actually equal to the series
Y20 beD*, where b; are constants, so it will approximate the linear solution for
small D (D = Na®) and covers all orders of n for (Na*)"*! at large D. Therefore,
it is 2 more general form of the creep enhancement factor. This exponential form
was also adopted in Xiao and Jordaan (1996) to define the enhancement factor as a

function of damage S, i.e. exp(8S).
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Figure 2.1: Canonic forms of viscoelastic models
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Figure 2.2: Burgers Body; E and yu are elastic modulus and viscosity coefficient,
respectively.

Figure 2.3: Rice’s J-integral: Crack and Contour (after Xiao and Jordaan, 1991).
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Figure 2.4: Schapery’s Idealization of Crack (after Xiao and Jordaan, 1991).

STRESS £

€do w
_
do _—"
| - ode
o :

STRAIN
€
d

Figure 2.5: Nonlinear Elastic Stress-Strain Curve, Strain Energy W and Complemen-
tary Strain Energy W (after Jordaan et al., 1990b).



we

Large perturbation
leading to large
piece breaking off

e

Smoothed
damage
function

mall ¥
perturbations

Figure 2.6: Growth of Damage S and Change in Complementary Strain Energy W*;
Event E Represents a Large Flaw that Reaches Critical Size (after Jordaan et al.,
1990b).
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Figure 2.7: Angle of Crack Propagation for Various Ratios of Stress Intensity
Factors(K;/K1r) Based on Palaniswamy and Knauss (1974).
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Figure 2.9: Data of Shen and Lin (1986) Fitted to the Maximum SERR Analysis of
Palaniswamy and Knauss (1974). Data Normalized with K; = 1 MPa m'/? (after
Xiao and Jordaan, 1991).
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Figure 2.11: Possible mode of pulverization ahead of spherical indenter (Jordaan and
McKenna, 1988a).
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Figure 2.12: Measured Melting-Temperatures and Pressures by Nordell (1990) and
Calculated Curve from Eq. (2.80).
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Figure 2.13: Test results of Friction Coefficients Versus Sliding Speed at Different
‘Temperatures (Jones et al., 1991).



Figure 2.14: Contact face at end of the test, (a) general view of vertical face and hor-
izontal cross section cut into the ice face, (b) thin section of area A (after Frederking
et al., 1990a).
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Chapter 3

Experimentation

3.1 Introduction

Two medium-scale test programs were carried out on Hobson’s Choice Ice Island
Research Station by Memorial University, the National Research Council of Canada
(NRC), Canadian Coast Guard (CCG) and Sandwell Swan Wooster (SSW) in April,
1989 and May, 1990. A hydraulic indentation system was utilized with spherical.
wedge and flat indenters in different sizes. There were eleven tests in April, 1989 and
fifteen successful tests in May, 1990. In most tests (except for very low speed ones).
ice crushing was observed in front of the indenter and the thickness of the crushed
layer was irregular from 30 mm to 50 mm. There was usually less cracking in the
center area due to high confinement and more damage at the edge of the interface.
Maximum pressures measured at the center were in the range of 30 to 50 MPa.
Pressure melting has also been reported (Gagnon and Sinha, 1991). An ice sheet
indentation test program was also conducted in the ice towing basin at the Institute
for Marine Dynamics, NRC. This program was designed to investigate the ice failure
processes in ship-ice interaction. Different failure modes, including crushing, bending
and fracture splitting, were observed (Finn, 1991).

To understand the ice behaviour under such complex loading conditions, espe-
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cially the ice in the zones with high confining pressure, a test program, utilizing
laboratory prepared granular ice under a variety of triaxial confining pressures, has

been at ial Uni ity (see also Stone et al.. 1997). These tests

were designed to investigate the deformation of ice, the influcnce of cracks and level
of damage on the creep response, and to obtain the relevant material constaats for
constitutive modelling. The main focus is on the behaviour of ice in the critical zones,
i.e. ice under high triaxial confining pressure and shear stresses. The test results were

also used to verify the ical model. The objectives of the il | program

were as follows.

* The intrinsic creep response of ice in the state requires
tion. Tests have been conducted to study this aspect, in particular the question
of the minimum creep rate.

e The different types of microstructural changes have been investigated. This
included evidence from thin sections, as well as an analysis of stress, and strain
response.

@ The effect of stress path on the response of ice was studied. particularly under
the unloading conditions.

e Th ) ic aspects were i i by ing the at the
center of ice sample under triaxial confinement.
3.2 Triaxial Tests
3.2.1 Specimen Preparation

All tests were conducted using laboratory prepared granular ice following the proce-

dure detailed by Stone et al. (1989). To minimize the final air content of the ice while
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maintaining control over grain size, the following equipment and procedure was used
(Figure 3.1). Bubble free columnar grained ice was crushed and sieved to produce
2.00 to 3.36 mm seeds. A cylindrical, acrylic mold, 229 mm diameter, 303 mm length,
was filled with this seed. The mold, with seed ice and connecting tubing, was placed
under a vacuum of 270 to 400 Pa (2.0 to 3.0 torr) for a period of 1.5 to 2 hours.
After evacuation, distilled and deionized water cooled to 0°C was transferred to the
deaerator and deaerated for 15 minutes. The mold was then completely flooded with
this deaerated water. After flooding, the freezing process began and it was primarily
unidirectional from the bottom up, and was completed in approximately 3 days, at a
cold room temperature of -10°C.

Typically, the freezing procedure produced larger than desired grains near the
bottom and outside perimeter and a higher density of bubbles near the top. To
ensure consistent repeatable ice quality, the top and bottom 30 mm were removed

and di The i were ined to the desired diameter using a lathe.

The final test specimens were measured 70 + 0.05 mm in diameter and 175 £ 1.0
mm in length.

The crystal structure of each batch of four specimens was checked by taking a thin
section at the immediate top and bottom of random specimens throughout a given
batch. The average number of grains per diameter of 70 mm of the specimens used
was 22 to 29. The ice duced by the above di is through the

70 mm diameter with minimal bubble content.

3.2.2 Test Equi and Pr e

An MTS Test System i d with a 1 four Engineering Laborato-
ries triaxial cell was used for all tests (Figure 3.2). The dual axis (axial load frame and

triaxial cell pressure intensifier) digital control system permitted full uninterrupted
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closed loop feedback control across the full range of control modes for the complete
test sequence.

Two LVDT’s were mounted directly on the specimen. over a gauge length of
approximately 120 mm. The two LVDT outputs were averaged to provide the in-
situ measure of axial strain as well as a closed-loop feedback control signal to the
MTS servo-valve. Lateral strain was also measured to find evidence of compaction
or dilatation during deformation process. For this purpose, three specially designed
strain gauges were mounted on the two sides of the sample and approximately on a

line. Another ique of ing the vol; ic strain is the fluid displacement

method. which measures the volume of the fluid displaced from the triaxial cell, by
means of an LVDT which was built into the confining pressure intensifier.

Several hours before each test, the specimen was placed in the cold room to
allow temperature equalization. During the test, the temperature on the surface
of the specimen were measured. For some specially designed tests, the temperature
at the center of the specimen were also measured to provide evidence of pressure
melting under high confining pressure. A maximum inside temperature of -9.3°C was
measured right after the pressurization for a -10°C tests, i.e. the approximate cold
room temperature.

All the test data were recorded on a mi via a multifunction data

board. An isition rate of 20 le/sec/ch: | was used for the
loading and unloading phases of the test. Between each unloading and loading, i.e.,
during the period of relaxation, where the deformation rate is very low, the acquisition

rate will be set to 10 times lower than that of loading phases, so to reduce greatly the

amount of data stored in the computer without losing all important characteristics.

Data recorded included:
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e Confining stress by a pressure transducer mounted on a port of the triaxial cell;
@ Stress difference by a load cell between piston and cross-head:
* Axial displacement (strain) by averaging of two LVDTs:

* Diametral displacement at mid-height of the sample by three specially designed

strain gauges;
e Time;
® Stroke;
@ Ice temperature on the surface, and inside of the sample for some tests.
3.2.3 Test Program and Summary of Results

The test series undertaken considered four aspects: the intrinsic creep properties of
intact (i.e. undamaged) ice, the enhancement of creep and changes in microstructure
due to damage, the effects of different stress paths, and thermodynamic aspects of
triaxial compression testing.

(1) Intrinsic Creep Properties

The creep properties characteristic of intact (ie. undamaged) granular ice as
defined by a small stress difference applied over a long duration of time was demon-
strated by an extended creep test. A 2 MPa stress difference was applied to an intact
specimen under 20 MPa triaxial confinement for a period of 8 hours. This pulse load
(instant load and unload) was followed by an 8 hour relaxation period. The 8 hour
load, 8 hour relaxation sequence was repeated immediately following the “initial”
test. The creep response of both the initial and repeat tests are shown in Figure 3.3.

The initial test sequence resulted in a maximum total strain of about 2% at the

end of the initial 8 hour, 2 MPa pulse load. Tertiary creep, a gradual increase in creep
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rate following secondary creep, occurs after about 250 min. Beyond the instantaneous
recovery of elastic strain upon unloading at 480 min. (8 hours), the time dependent

recovery of delayed elastic strain occurs at a low rate over the 8 hour relaxation

period.
Transition from delayed elastic strain, through secondary creep. to the tertiary

creep stage has been iated with the of mi I change re-

sulting from crack formation (Gold, 1972} and, ially, dynamic recr. i

(Sanderson. 1988). The repeat load pulse, ion sequence i foll

the initial test indicates that the i has und ignil change. Maxi-

mum total strain at the end of the 8 hour load pulse is 5%. 2.5 times that of the initial
test, with tertiary creep occurring earlier at about 160 min. Typical cross-polarized
horizontal thin sections of the ice prior to testing (Figure 3.4a) and after initial and
repeat tests (Figure 3.4b) shows a change in grain size from a mean grain diameter
of 3 mm to 2.4 mm. A number of small voids between crystals were also observed in
the after test thin section during microtoming.

Compression tests on intact ice utilizing a number of sequential pulse loads of

short duration of 20 seconds and duplicating tests d on

provided the creep properties of ice uniaxially and under different triaxial confine-
ment conditions. These test results form the basis of comparison with damaged ice.
Conducted on an intact ice sample and with a confinement of 10 MPa, Figure 3.5a
shows the applied stress history and strain response of a constant stress creep test,
which is, in fact, a series of creep tests. Each creep test consisted of a 20 second load
pulse. The reason for loading only 20 seconds is that these tests were designed to

the short-ti: of ice, such as, elastic and delayed elastic strain

components. Figure 3.5b shows a creep test conducted on a damaged sample with the

same confinement. The sample was damaged by subjecting to a constant strain rate
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loading of 10~¥5! to a total strain of 2% under uniaxial loading condition. Figure 3.6
shows two thin section photos of intact and damaged ice samples. It can be seen that
the grain structure of intact ice has been broken down due to damage. The average
grain size of damaged ice is much smaller than that of its original dimension.

(2) Damaged Ice and Creep Enhancement

Compression tests were conducted on both intact and damaged specimens under

and triaxial i (5, 10, 20 MPa). A variety of

uniaxial
damage levels were created by compressing otherwise undamaged intact samples at a
strain rate of 107 5™ to a total strain of 2 or 4% under either uniaxial or the triaxial
confinement. conditions (5, 10, and 20 MPa) to be applied in the particular test.
Typical stress-strain curves for each of the 4% total strain damage steps are shown in
Figure 3.7. Following the damage step, the test sequence involved the application of
a number of 1, 2, and 3 MPa pulse loads (instant load and unload) for a period of 20
seconds, followed by either a 200 or 400 seconds of relaxation period. In most cases,
this initial stress sequence was common for all tests was followed by a sequence of

higher pulse loads, up to 10 MPa, for a longer duration (100 s) which were followed by

a longer relaxation period (800 s). A v listing of ion tests cond
is given in Tables 3.1 to 3.3 for each of the triaxial confining pressures applied.

Jordaan et al. (1992) introduced the effect of stress history and related changes in
material constants on the creep response of intact (i.e. undamaged) and damaged ice
(to 2% of total strain at strain rate of 10~* s~ ) under uniaxial conditions (Figure 3.8).
Comparison of the creep response of intact and 2% uniaxial damaged ice shows that
elastic strain was not significantly influenced by the damage state, whereas delayed
elastic strain and its time dependent recovery were increased by several orders of
magnitude. The stress pulses used for these tests (0.25, 0.5, and 0.75 MPa) were

smaller than those used in the triaxial tests presented later resulting in negligible



Table 3.1: Test Matrix, 5 MPa Triaxial Confinement ( // indicates change from 20
sec. pulse loads to 100 sec. pulse loads).

Intact Ice (Zero Damage)

Test Damage Load Pulse
No. % Sequence (MPa)
1T230793 = 172/3/1S/1131VS/VT1L
Uniaxial Damage
Test Damage Load Pulse
No. % Sequence (MPa)
DTi50193 2 1/2/3/1
DTI21193 2 1/2/3/1
Triaxial Damage
Test Damage Load Pulse
No. % Sequence (MPa)
DT200793 2 1/2/3/1/1311/5/1
DTI180194 4 1/2/3/1/13/1/5/1
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Table 3.2: Test Matrix, 10 MPa Triaxial Confinement ( // indicates change from 20
sec. pulse loads to 100 sec. pulse loads).

Intact Ice (Zero Damage)

Test Damage Load
No. % Sequence (MPa)
17290193 = 1/2/3/1/5/1/7/1/10/1
IT110194 - 1/2/3/1/5/1/7/1/10/1
Uniaxial Damage
Test Damage Load Pulse
No. Sequence (MPa)
DT170792 2 17213/1
DT200792 2 1/2/3/1
DT300792 2 1/2/3/1
DT030892 2 127311
DT250193 2 1/2/3/1/5/1/7/1
DT270193 2 172/3/1/5/1/7/1
DT211293 2 172/3/1/5/177/1
DT120293 4 1273/U13/1/5/1
Triaxial Damage
Test Damage Load Pulse
No. % Sequence (MPa)
DT190393 4 1/2/3/1/13/1/5/1
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Table 3.3: Test Matrix, 20 MPa Triaxial Confinement ( // indicates change from 20
sec. pulse loads to 100 sec. pulse loads).

Intact Ice (Zero Predamage)

Test Damage Load Pulse

No. Sequence (MPa)
1T050293 = 1/2/3/1/5/1/7/1/10/1/20/ 1
IT061293 = 1/2/3/1/5/1/7/1/10/1

Uniaxial Damage

Test Damage Load Pulse

No. % Sequence (MPa)
DT091092 2 12/3/1
DT171292 2 12/3/1
DT181292 2 12/3/1
DT160293 4 1/2/3/1/13/1/5/1/10/1

Triaxial Damage

Test Damage Load Pulse

No. % Sequence (MPa)
DT230693 2 11213/1BIVSIN /T
DT240693 2 12/3/B/VI5/1/711
DT090393 4 1/2/3/1/13/1/5/1/10/1
DT110393 4 1/2/3/1/13/1/5/1/10/1
DT180593 4 1/273/1//3/1/5/1/10/1
DT251193 4 12/3/1UBI/S/ /T




additional damage after repeated loadings.
Figures 3.9 to 3.11 show the creep response of intact ice. and 2% and 4% uniaxially
damaged ice, tested under triaxially confining pressures of 5, 10, and 20 MPa. As

in the previous uniaxial tests the damage state has a small effect on the elastic

component under each of the three i . Ata ining pressure of 5
MPa there is virtually no difference in the creep response of intact and 2% uniaxially
damaged ice for all three pulse loads. This is also the case for the 1 MPa pulse load
under 10 and 20 MPa triaxial confinement. The 4% damage state produces a small
increase in delayed elastic creep under a 1 MPa stress difference. and 10 and 20 MPa
confinement. The 2 MPa and 3 MPa load pulse at 10 and 20 MPa, confinement does
illustrate an increasing creep rate as a function of increasing damage state (2% to 4%)
and decreasing confinement (20 MPa to 10 MPa). Unlike the large increases shown
in the previous uniaxial tests, only fractional increases in delayved elastic creep as a
function of uniaxial damage state were observed under triaxial confinement.

Figures 3.12 to 3.14 show the creep response of 2% and 4% triaxially damaged
ice along with that of the intact ice previously shown. In these tests the 2% and 4%
total strain at 10~* s~ damage step was executed under the same triaxial confining

pressure as the pulse loads of the icular test. As iousl there is a

small effect on instantaneous elastic creep occurring immediately upon loading. The
delayed elastic component of creep has increased for the triaxial damage state versus
the previous uniaxial damage state. This would indicate that a specimen compressed
to 2% and 4% total strain at a strain rate of 10~* s~! under triaxial confinement
results in increased damage over that imposed under uniaxial conditions.

The acceleration of creep rates as a function of damage state has been associated
with microcracking increasing as total strain increases and with recrystallization,

the rearrangement of dislocations resulting in the formation of new grains and the
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reoccurrence of an increasing creep rate. A smaller grain size is apparent in the thin
sections shown in Figure 3.4, taken at the end of an extended creep test on an intact
specimen under 20 MPa confining and 2 MPa stress difference. Figure 3.15a shows the

thin section of a specimen have undergone a 2% uniaxial damagestepand a 1, 2, 3,1

MPa 20 sec. pulse load under triaxial of 10 MPa. Cracks along
and across grain boundaries, with fine particles dispersed throughout the section, are
readily apparent on the magnified section (Figure 3.15b).

The creep tests provide information on the viscosity of the ice. Comparing the
creep responses (delaved elastic strain plus secondary creep strain. e?+¢° ) of the tests
of intact to damaged ice under 10 MPa confinement in Figure 3.16. it shows that the
presence of cracks and damage significantly influence creep strain. The creep strain
of damaged ice is more than 3 times that of intact ice. As shown in Figure 3.13,
the strain response of the intact ice has been mostly recovered. especially for those
under lower stresses. This suggests that the elastic and delayed elastic components in
intact ice dominate for short loading period. The strain response of damaged ice has
a significant percentage of secondary creep, and the creep strain rate, e/ +¢¢ ( which is
the slope of the strain versus time curve in Figure 3.13 and 3.16) is much higher than
that of intact ice. This implies that cracking and damage can significantly enhance
the creep response of ice (see also Stone et al., 1989; Jordaan et al., 1990a, b). Figure
3.17 shows the strain responses of damaged ice under same stress difference (o) —o3)
of 3 MPa, but with different confinement, 10 MPa and 20 MPa. It shows clearly that
the increase of confinement will suppress the cracks and close them so that the ice

would become stiffer and less creep strain would be developed.

(3) Pressure Reduction Test

Crushed ice extrusion and spalling may result in sudden reductions in confining
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pressures and a corresponding increase in stress di In addition to

tests to ch ize creep . a preliminary investigation of the effect of
sudden confinement pressure drops on creep rate has been started. A 7 MPa pulse
load for 100 sec. was applied to a specimen damaged to 2% total strain at a triaxial
confining pressure of 10 MPa. Twenty seconds after the initiation of the load pulse,

triaxial pressure was i ly dropped from 10 MPa to 5 MPa

for the remaining duration of the pulse load (or to transducer operational limits).
This pressure drop was executed without a corresponding drop in applied axial stress
cffectively increasing the stress difference load pulse to 12 MPa triaxial at a 5 MPa
confining pressure.

Figure 3.18 shows the strain-time curve for the stress difference load pulse of 7
MPa. At 20 sec. the drop in confinement from 10 MPa to 5 MPa resulted in a

increase in ion rate from a total strain of 0.5% at 20 sec. to a

total strain of 4.0% at 42 sec. A seven fold increase in deformation rate for a 1.71
fold increase in stress difference. At 50 sec. it has been estimated that total strain
for a 7 MPa pulse load at 10 MPa confinement would be 1.1% (€). The pressure drop
and resulting stress difference increase has resulted in a total strain of 7.3% (or Ae
= 6.2%).

(4) Thermodynamic Aspects

The triaxial cell confining fluid temperature at the start of each test was -10°C =
0.9°C. Pressurization of the cell resulted in a warming of the fluid by: 0.7°C for 5 MPa,
1.4°C for 10 MPa, and 2.6°C for 20 MPa. To establish the effect of pressurization on
sample temperature fast response RTD elements were placed in the confining fluid, on
the sample wall and in the sample center. As in all tests the specimen was sealed in a
latex membrane with the center RTD element output being passed through a specially

designed platen and high pressure electrical feed through. Output was recorded on a
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Table 3.4: Temperature Measurements at Specific Peaks Under 40 MPa Triaxial

Confinement.

Prior to Peak After Peak After
Pressurization Pressurization Secondary Warming
C
Sample Center -9.9 -9.3 -7.8 @1002 sec.
Sample Wall 9.7 6.5 -
Fluid -10.2 4.5 -
stripchart.

All three RTD elements showed an immediate increase in temperature upon pres-
surization to a confining pressure of 40 MPa. (Figure 3.19, Table 3.4). The 40 MPa
pressurization at a rate of 4 MPa/sec. warmed the solid ice by 0.6°C and the liquid
confining fluid by 5.7°C. After peaks had been reached, cooling from the -10°C cold
room began immediately with sample cent reaching -9.0°C at 5400 sec.
just prior to depressurization.

A second temperature test to a confining pressure of 20 MPa with a 4% total
strain damage step showed similar results (Table 3.5). The RTD element at the
sample centre failed at the completion of the damage step.




Table 3.5: Temperature Measurements at Specific Peaks Under 20 MPa Triaxial
Confinement.

Prior to Pressurization

Peak After Pressurization

Sample Center -10.5° C -10.1°C
Sample Wall -10.0° C -8.1°C
Fluid -10.3°C I5C

3.2.4 Discussion

As mentioned earlier, the elastic strain is not strongly influenced by the damage state,
whereas the delayed elastic and secondary creep strain are significantly enhanced by
several orders of magnitude, especially when initial damage is introduced under a
triaxial stress state. The creep strain response of uniaxially damaged ice is much
smaller than that of triaxially damaged ice. This effect is shown in the figures 3.9
to 3.14. If the ice is damaged under uniaxial loads and then subjected to triaxial

the initially i cracks will be and closed,
therefore the effects of cracks on the deformation of ice is very limited. If the ice
is damaged under triaxial loads, and the confinement is kept on when the constant
stress pulses are applied to the ice sample, the initially introduced cracks (damage)

will be not suppressed and closed, therefore the effects of cracks on the deformation

of ice is very significant.
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Figure 3.20 shows two strain history curves for creep tests on damaged samples.
Sample I was tested under 10 MPa confinement with triaxial initial damaging. i.e.,
the 10 MPa confining pressure was applied at the beginning of the test and kept
constant throughout the test. The strain history from O to A is the damage period.
iFrom A to B is the creep test period. Sample II was also tested under 10 MPa
confinement. but with uniaxial damaging, i.e., the initial damaging was done under
uniaxial conditions. The 10 MPa confinement was applied after the initial damaging,

were along the

i.e., at point A. Due to the uniaxial

direction of loading stress, therefore i duci i to the material

Upon the application of confinement, sample II was compressed close to the original
volume, which indicates most of the cracks were closed, or nearly closed, the creep
response would also be smaller due to the closure of cracks. In fact, ice with most
of its cracks closed (due to confinement) can behave similarly to intact ice. The
friction between the crack surfaces plays an important role in this type of ice. The
effect of friction between closed crack surfaces may also explain why under 5 MPa
confinement, the creep strain of damaged ice was almost the same as the intact ice.
‘When the confinement was increased to 10 or 20 MPa, due to possible pressure melting
between grains or crack surfaces, the effect of friction is reduced and creep response

of uniaxially damaged ice is i
Sample I was tested after triaxial damaging. Thin sections of the sample after
the test show less evidence of crack orientation. Since the was

applied at the beginning of the test and kept constant thereafter, once the crack is
opened, it will stay open so there are no frictional tractions cross the crack surfaces
during the deformation process, and the creep will be larger than that of uniaxially
damaged ice, as well as intact ice under the same confinement.

As mentioned earlier, temperature at the center of the ice sample was measured
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for two triaxial situations. During the 40 MPa pressurization, the ice was warmed
by 0.6°C at the center, and 0.4°C for the 20 MPa pressurization. Since the temper-
ature was measured at the center of ice, and the sample was covered with a latex
membrane, the pressurization period can be assumed as an adiabatic process, and a
thermodynamic formula can be derived to calculate the increase of temperature in
the form of:
v,
aT

a

where T is ice temperature; C, is specific heat; 7% is the thermal expansion and

AT = (,1;( )sAP (3.1)
AP is the applied pressure. Calculated temperature increases are 0.86°C for 40 MPa
and 0.43°C for 20 MPa. The calculated temperature increases are higher than that
of measured ones. This may be explained by possible pressure melting which will
absorb heat during melting process.

The above sections discussed the experiments for ice under triaxial stress states
with low to moderate pressures. Both intact and damaged samples were used under
a varity of loading conditions, such as loading path and temperature. The tests
provide useful information on the effects of cracks and level of damage on the creep
response. The influence of confining pressure on the development of damage and the

of ice is also investi The proposed damage model was calibrated

using the test results.

3.3 High Stress Triaxial Tests

Creep tests were conducted by Jones and Chew (1983) on polycrystalline ice under
a ination of axial ive stress i ic stress) of 0.47 MPa, and hy-

drostatic pressures up to 60 MPa. The test results showed that the secondary creep

rate was ing when ic pressure was i d from 0 to 15 MPa, and




70

reached a minimum rate under a pressure of around 20 MPa. and then the creep rate
was increasing rapidly when the pressure was between 30 to 60 MPa. Their conclusion

from the test results indicated that more than one mechanism was contributing to

the creep defc ion. One possible ism was the pressure melting at the grain
boundaries under high pressures. The liquid phase formed between the grains would
result in increasing deformation rate. Recent work by Meglis et al., (1997) presented
some test results on polycrystalline ice under high deviatoric stress (15 MPa) and high
confining pressures (up to 60 MPa). The primary purpose of this work is to study ice
behaviour under impact conditions with structures, in which case high stresses and
large strains associated with high deformation rates can be involved. The measured
strain rates were mostly on the order of 10~3s~" at the beginning of the testing. The
strain rates went up to the order of 10~'s™" near the end of the testing. These rates
were much higher than those presented by Jones and Chew (1983), which were on the
order of 1073s~". The difference in strain rates indicates that the damage mechanisms
for high stresses may be different from that of low stresses. The preliminary results

showed that at low pressures, the dominant process of ice failure is microcracking,

and the creep strain rate is ing when ing pressure is i il while at

high i ks are the i isms of ice failure

are dynamic recrystallization and pressure melting, and the creep strain rate is in-
creasing rapidly with pressure. Thin sections of ice samples after testing show that at
low pressures, microcracks are present at the grain boundaries as well as within the
grains, while the primary ice crystal stractures remain largely unchanged. At high

mostly di and ice crystal structures were destroyed.

Replacing them are fine grains and much smaller sized particles. The test program
also indicates that both high deviatoric stress and confining pressure are needed in

order to develop high normal loads and rapid growth, highly damaged ice samples.
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This will also lead to the formation of pulverized, fine grained materials as seen in
the contact zones of medium scale indentation tests. Some test results are shown in
Figure (3.21). Those tests were done under 15 MPa constant deviatoric stress and

various i and Figure (3.22) shows a test curve of

strain rate in logarithm scale versus time. This was done under 15 MPa deviatoric
stress and 50 MPa confinement. The curve has been linearized into three portions:
minimum, linear, and maximum portion. Each of them represents a different stage
of deformation progress. The test curve also shows a rapid increase in deformation
rate. This implies that the test sample has been undergoing a significant softening
process. Figure (3.23) shows the relationship of strain rate (in logarithm scale) versus
hydrostatic pressure. Three strain rates, minimum, linear and maximum rate from

each test were plotted.

3.4 Medium Scale Indentation Experiments
3.4.1 Test Setup

In April, 1989, a total of eleven tests were performed on Hobson’s Choice Ice Island.
Three of them were flat-rigid indentation tests with speeds ranging from 10 mm/s to
80 mm/s. In May, 1990, there were five flat-rigid tests with two loading speeds 100
mm/s and 400 mm/s. The insitu ice temperature was about -10 to —14 °C. The tests
were carried out in an area of 8 m thick multiyear ice which was attached to the edge
of the ice island. A trench 3 m wide, 4 m deep and 100 m long was excavated to
conduct the tests. The walls of the trench were roughly smoothed with a chain saw
and the test areas were specially machined with a vertically mounted circular saw.
The wall opposite the test face was also machined and made parallel to the test face.

The ice indentation system consists of a hydraulic actuator (some tests in May,
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1990 used three actuators) mounted upon a large mobile skid of beam and strut
construction, as shown in Figure 3.24a. The actuator was powered by a bank of

pressure and by a sery | system which provided a

constant displ: rate. The ind ion speeds could be assumed approximately
constant over the whole test period. A flat back plate was attached to the rear end of
the actuator to support the system. This back plate had a larger contact area than
the indenter to force crushing failure on the indentation face only. Eight pressure
cells for measuring local pressures were mounted to the front of the flat rigid indenter
in the 1989 program (see also Figure 3.24b). The truncated wedge ice face is shown
in Figure 3.25. For 1990 test program, the flat rigid indenter was larger and had a
dimension of 1220 x 1500 mm?. A multi-element pressure panel with an area of 150
x 480 mm? and a grid of 36 pressure sensors was utilized. The ice failure was also
recorded with a video camera through a special video window of 160 x 340 mm? area
at the center. In addition, 12 individual pressure cells with a piston diameter of 12.7
mm were spaced in a pattern over an approximate area of 400 x 400 mm?. The ice
contact faces was shaped as pyramids with a slope of 1 : 3 and an initial contact area

of either 100 x 100 mm? or 400 x 400 mm?.

3.4.2 Results and Discussion

Test results of 1989 program were discussed in Frederking et al. (1990a, b). Both large
scale and local crushing under the indenter face typicaily accompanied the indentation
tests. Low speed tests allowed sufficient time for creep deformation and microcracks to
extend into the ice, and the total load versus time curves were relatively smooth, while
high speed tests appeared to produce localized failure near the indenter and dynamic
ice forces on the indenter were recorded. Analysis of crushed layer profiles after the

indentation tests showed that the layer thickness was irregular. The thickness of the
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crushed layer was typically about 20 mm to 50 mm. There was a clear boundary
between the parent ice and crushed ice. For the low speed tests. the ice under the
indenter was partly damaged with short cracks and the interface was smooth. These
observations can also be applied to the 1990 test program.

In the present work, attention is focused on two flat indentation tests. No. 6 and
No. 7 tests (NRC06 and NRCQ7) of 1989 program. The load-time results of the two
tests are shown in Figure 3.26a, b. The loading rate for test NRC06 was about 20
mm/s. The indenter came in contact with the ice at point A and the system stopped
at point C. The loading rate for test NRC07 was 68 mm/s.

Figure 3.26 shows regular load oscillations. The slower test, NRC06 has lower peak
loads than that of faster test, NRCO7, especially the first peak load (first oscillation)
of test NRCO7 is about 3 MN, much high than that of test NRC06. This shows the
typical ice behaviour that, under low loading rates it is more like a ductile material
than a brittle one. Under high loading rates, it will fail mostly by fracturing in a
much shorter time and less creep deformation, therefore much high peak loads.

From the pressure measurements, the maximum pressures were recorded at the
center of the indenter and the average pressures were in the range of 5 MPa to 20
MPa. Around the edge of the interface, there is less confining pressure and higher
shear stress, so the ice has become more damaged and the crushed layer is thicker.
Near the center of the interface, recrystallization and possible pressure melting has
also been reported during indentation tests (Frederking et al., 1990, Gagnon and
Sinha, 1991), which means that friction between the indenter and the ice may be

small.
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3.5 Ice sheet Indentation Experiments

A series of experiments was carried out by Memorial University and the Institute for

Marine Dynamics, NRC in 1989 (Finn, 1991 and McK et. al., 1991).

ice sheets were indented with a variety of i ion speeds, ice this and
indenter angle, using vertical and downward sloping surfaces. The widths of all
indenters were 120 mm. Nominal ice thicknesses were 30 mm, 40 mm and 50 mm.
Indentation speeds (10 mm/s to 400mm/s) covered a range of ice behaviour, from
essentially pure crushing to situations where both flexural failure and crushing took
place. Fracture splitting due to the formation of radial and circumferential cracks
were also evidence of many tests. Axial forces were measured in the vertical and in

two horizontal directions, detailed video imaging of the zone around the indenter was

P ice piece size distributis were and detailed thin sections of the

damaged zone were analyzed. The ice was observed to be damaged and subsequently
cleared out from the face of indenter and, particularly at the slower speeds and for
the sloping indenters, flexural failures were also present and dominated the dynamic
forces that were measured.

In this study a vertical indentation test is modelled, using proposed constitutive
theory and finite elements to investigate the damage and crushing processes, during
ice sheet indentation. The test speed is 50 mm/s, indenter width = 120 mm and the
ice thickness = 35.6 mm. The test result of force vs time trace is shown partially in
Figure 3.27.
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Figure 3.15: (a) Thin section of a specimen after 2% uniaxial damage (2%U) and a
1,2,3,1 MPa 20 sec. pulse load sequence under triaxial confinement of 10 MPa. (b)

Magnification.
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Chapter 4

Constitutive Modelling

In this chapter a three 1 model is for brittle, vis-
coelastic materials, based on damage and fracture h

Schapery’s theory, as well as the broad-sp: h. Special ion has been
given to the di i of ice under ive stress states. This model

has also been applied to ice indentation problems in the following chapters. These

are in the ination of ice forces on structures.

4.1 A Mechanical Model

As discussed in the previous chapters, the deformation of brittle, viscoelastic solids,
such as ice and rock, is a complex process, especially when cracking and other struc-
tural activities take place. The properties of the solid are strongly influenced by the
presence of damage. A idealized mechanical model, called Burgers’ model (see also
Figure 2.2), is practical and applicable to many viscoelastic solids, such as rock, ce-
ment, ice and metal. It consists of a combination of a Maxwell and a Kelvin unit,
with a nonlinear dashpot in each unit (see also Jordaan and McKenna, 1988b).

A great deal of research work has been done to model the primary and secondary

creep in ice and other materials. A Kelvin unit with a power-law stress-dependent



96

creep compliance. as proposed by Jordaan and McKenna (1988b. 1989), Jordaan et
al.. (1990a, b). has been shown to be appropriate for describing the initial primary
creep under rapid loading. This also provides an expedient computational solution for
the primary creep strain. With this model, at the beginning of each time increment,
the program only needs to read the stresses, strains and other model parameters
which are stored as state variables from the previous state, instead of requiring access
to the whole storage of past history. All of the state variables will be updated at the
end of each increment.

In the case of uniaxial stress, total axial strain is given in terms of three compo-

nents. i.e.

=€+l +¢ (a1)
where the elastic component is given by

€ =0,/E, (42)

where 0y is the axial stress and E is the elastic modulus.

The delayed elastic and secondary creep strain rates are defined as
& = o1/, and (4.3)
& =01/ttt (4.4)

where pg; and g, are the viscosity coefficients of the Kelvin unit and Maxwell unit,
respectively. Assuming that the strains of the dashpots in both units follow the

power-law relation with stress, the delayed elastic strain rate is given as

&t = éd(ot/o0 (45)
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where é§ is a creep reference rate; oo = 1 MPa, is a constant with unit stress; and of
is the stress in the dashpot in Kelvin unit, which is calculated by

of=o—Eé (16)

where E} is elastic stiffness in the Kelvin unit. The accumulated delayed elastic strain

et is given by

a=[ ‘ edar. (1)
Comparing Eq. (4.3) with Eq. (4.5), it is found that

i1 = (01/&)(0/of)"- (4.8)
Similarly, the secondary creep strain rate is also defined by the power-law as:

&° = &(01/o0)™ (4.9)

where m is a constant; é§ is a creep parameter, and the viscosity coefficient of Maxwell

unit is derived as

pm1 = (01/€)(00/1) (4.10)
For multi-axial stress state, the deformation of a solid is defined as:
=€ e (411)

If the elastic properties of the material are assumed to be isotropic, the elastic
strain components €; can be presented by

v 1+v
€ = —poady + —5—o (4.12)

where v is Poisson’s ratio and §;; is the delta function.
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Both delayed elastic strain and secondary creep strain can be expressed in terms

of a strain deviator ey and a ic strain €. e
el =ef +et. and (4.13)
& =e + e (4.14)

Note that the volumetric strains here are not the results of elastic deformation. As-

i portion of volu-

suming creep d ion to be i i it is the
metric strain, which is probably due to the cracking and some other mechanisms.
This will be discussed in detail later.

Based on the discussion in the case of uniaxial loading, the deviatoric strain rates
of delayed elastic and secondary creep components are assumed to be proportional to

the deviatoric stresses and are defined in the forms similar to Eq. (4.3) and Eq. (4.4)

é= gs.,/y,‘, and (4.15)

(4.16)

where s;; = 0yj — }0 is the overall stress deviator. These definitions assume that
the creep behaviour of the solid is isotropic, and the viscosity coefficient of shear
deformation follows the same law as that in the principal directions.

The viscosity coefficients, g1 and pim; defined in Eq. (4.3) and Eq. (4.4) are
functions of axial stress. In the case of multi-axial loading, the coefficients, y; and
#tm are defined as functions of von Mises stress in the similar ways, by substituting

the axial stress component with von Mises stress, i.e.
e = (/) (@0/s)", and (4.17)

tim = (8/€5)(00/5)™. (4.18)
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The definition of von Mises stress is given as
= sy (4.19
s= (is.,s.,) - .19)
The internal stress s¢ (the von Mises stress in the dashpot in the Kelvin unit), is
calculated by
s4=5s— Eze? (4.20)
where e is the equivalent (or effective) delaved elastic strain and is calculated by

’
¢ = [eta
o

=1 ¢ e(sY0)" dt. (421)

The definition of equivalent strain is given by
B MR
e=(Feue5) - (4.22)
Reference can be made to Xiao (1991) for more details on the definition of equivalent
strain and its relationship with von Mises stress.
Substituting Eq. (4.17), Eq. (4.20) into Eq. (4.15), and Eq. (4.18) into Eq.
(4.16), it is found that

4 _ 3..()\" 5
4= ()%

s

3.4 (s— Ee®\" sy
= Za{iTae ) 8 4.23
24( = ) 2, and (4.23)
3 [8\™ sy
= ) X
G=3% (u..) s )
In the case of uniaxial loading, deviatoric stresses s;; = 201, s = s33 = —01/3

and s;; = 0, (i # j), so von Mises stress s = oy, therefore, s = of; similarly, the
deviatoric delayed elastic strains ef, = f; — e = ¢f, (assuming e = 0), ef, = ef; =

¢f, = —€4, /2, thus e? = ¢}, = ¢f. Therefore, the above two equations become

"
= (ﬂ—},f‘—‘f) and (4.25)
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€1 = o1/o0)™- (4.26)

These two equations are equivalent to Eq. (4.5) and Eq. (4.9). Thus it is consistent
and convenient to assume that in multiaxial stress state the viscosity coefficients, pe
and p,, are related to the von Mises stress and equivalent strain in a similar way as

the viscosity coefficients, pg, and pm; as defined by Eqgs. (4.8) and (4.10).

4.2 Damage Evolution Law

This section addresses progressive damage in zones under loading such that large
fractures are not active but significant microstructural changes still take place. The
model described in the previous section is for intact (undamaged) materials only, and
the following is developed in an attempt to address the behaviour of damaged solids.
The relation of the extent of damage and the growing network of microcracks has
been discussed in Chapter 2.

Based on Budiansky and O'Connell (1976) and Horii and Nemat-Nasser (1983),

Xiao (1991) proposed an approximate solution for elastic moduli with damage:
G'/G=1-wD, and (4.27)
K'|K=1-wD (4.28)

where w = 16/9 in tension; w = 1 for compressive stress state. The damage measure,
a@®*N (N is the crack density and a is the radius of crack surface), and the crack

is defined, followi et al. (1990), by a rate expression of

N= Nc(‘—;';)' (4.29)

where 7 is a constant.



101

Kachanov (1993) proposed a 3D solution to i the effects of di:

cracks on the elastic properties. His solution is given by Eqs. (2.41) to (2.43) as:

£ =a+an (4:30)
E‘Ciu = (1+GN)"! (431)
i = Eﬁn(l +CsN) (4.32)

where Cy, C; and Cj are constants; N is the crack density.

As discussed in the earlier chapters, the reduction of elastic moduli as well as

the of creep ion were iated with damage in the
material. These processes include not only microcracking but also other possible
microstructural changes, such as, recrystallization and pressure melting depending
on the loading stress and confining pressure. For viscoelastic materials involving
cracking and damaging, Schapery’s continuum damage theory provided a damage

measure which was defined as
¢
s=/[ f.(:—ofdt.

Based on this theory, a single scalar damage model was proposed by Singh (1993)
which was also adopted by Xiao and Jordaan (1996), to include the effect of confining
pressure on damage progress. This model provided good agreement with test results
under moderate loading stresses and confining pressures (see also Chapter 2). For high
loading stresses and confining pressures, a damage model with two state variables was
proposed by Jordaan et al., (1997) and Meglis et al., (1997) as:

S = 5 +85
Lo

o .@

) e /z(p)(%)a)d: where (4.33)

%0
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_Jom2(1-2)" ifp<3rMPa 4.34
5io) { 0 if p>37MPa, and (434

Falp) =01 (;‘%) . (4.35)

and qi, g2 and r are constants. The state variable S; is mostly related to microcrack-
ing. It can represent the damage progress very well under low confining pressures.

The second state variable S, is mainly iated with pi
such as recrystallization as well as pressure melting under high confining pressures,
as addressed by Jordaan et al., (1997) and Meglis et al., (1997).

Since cracks are one form of damage, in the present study, Equations (4.30),
(4.31) and (4.32) have been adopted to define the specifications of elastic moduli
as a function of damage. The crack density N has been substituted by aS where
a is a constant and S is the damage measure which includes all of the possible
microstructural changes.

The derivative of Eq. (4.33) shows that the damage rate:

D" + ()" @36
is a function of stress following the power law.

Jonas and Muller (1969) proposed an expression to take into account of the effect
of dynamic recrystallization on the strain rate, in which the strain rate follows an
exponential function of stress (see also section 2.2). In this study, it is proposed
to substitute the power function with an exponential function to the second term
of Eq. (4.36). This means under high confining pressures, the damage rate will
increase rapidly following an exponential function with stress. It should be pointed
out that the exponential function equals to a series of power functions, thus, it is a

more general form of the power functions. Therefore the proposed model using an
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exponential function in the second state variable is an extension to the recent work
by Jordaan et al., (1997) and Meglis et al.. (1997).
The proposed damage function is defined as:
o o .« a
5= [1@E)" + hp) e (37)

where fi(p) and f»(p) are given by Eqs. (4.34) and (4.35), respectively.
4.3 Creep Enhancement Factor

The effect of damage on the creep deformation was discussed in Chapter 2. An
exponential form was proposed by Jordaan and McKenna (1989) and McKenna et al.
(1990) to define the creep enhancement factor as a function of damage. This term
was also adopted by Xiao and Jordaan (1996). The creep strain rates of damaged

material were then defired as

& = &% exp(B4S), and (4.38)

o,

éf; exp(B.S) (4.39)

i

where S is the damage measure; and the primes refer to the components for damaged
material; and f, f. are creep enhancement factors, and & and é&; are respectively
the delayed elastic strain rate and secondary creep strain rate of the intact material,
as given by Eq. (4.23) and Eq. (4.24).

4.4 Dilatation under Compression

In recent years, more and more attention has been paid to the dilatation of solid
under loading, especially when cracking and damage is induced. As mentioned in
Chapter 2, Resende and Martin (1983, 1984) defined volumetric strain rate (inelastic
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portion ij di ion and dil ion) as a function of stress, strain, damage

for rock-like materials. As addressed in the previous chapter, density of ice in the
crushed layer adjacent to the indenter (Frederking et al., 1990a. b) was less than that
of parent ice, indicating the presence of dilatation due to the cracking and pulverizing
of the ice during the interaction process. The reverse process has also been observed
during crushed ice tests, i.e. the crushed ice has been sintered into a hard block of ice
mass under high confining pressure (Spencer et. al., 1993). Dilatation (volumetric

def ion) was also in small scale i i at constant

strain rates by Wang (1981) and Dorris (1989), at constant stress by Sinha (1989),
and more recently by Singh (1993), Xiao and Jordaan (1994) and Stone et al. (1994)
on intact, damaged and crushed ice.

In the present study, volumetric strain has been measured. Two techniques were

used to obtain ic strain; (a) ing the di ion of the sample

in two orthogonal directions with three specially designed strain gauges at the center
portion of the sample; (b) measuring the fluid volume change within the confining
cell. Singh (1993) presented an expression to estimate inelastic dilatation, based on
thermodynamics (the method of complementary strain energy) and calibrated with
the measurements of volumetric strains for intact, damaged and crushed ice under

different confinements. The proposed function was given as

b= A% s5(é—¢€), a,<0 (4.40)

where f; is a constant, e and e are the equivalent total and elastic strain, respectively.
The compaction is defined as being positive while dilatation is negative.

As mentioned earlier in Eq. (4.13) and Eq. (4.14), there are two volumetric strain
components €f and €S, which are to related to delayed elastic and secondary creep

strain, respectively. They are, again, not the results of elastic bulk deformation,
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rather due to i i The total ic strain it portion),

€u, as in Eq. (4.40), is assumed to include both € and &, i.e. €, = € + €5

Finally, the tensor of total strain rate is expressed by
= € + €5 + €7, + 86, (4.41)

where ¢, é% and €

0 €5 5; are elastic, delayed elastic and secondary creep strain tensor,

€, is the ic strain i part).

4.5 Finite Element Implementation and Model Ver-
ification

The numerical solution of damage equations is performed using an explicit incremental

scheme. For an isotropic material, the stress tensor is given by

i = Kijueg, (4.42)
where the stiffness matrix:

Ko = (K ~ 36)3sbu + Gléudy + ady). (4.43)
The increment of stress tensor is calculated by

8035 = Kijubegy + 0Kijuey (4.44)

where the stiffness matrix is given by

K +4G/3 K-2G/3 K—-2G/3 0 0 0
K+4G/3 K—2G/30 0 0
4G/30 0 0

K = AeeAel G0 o (4.45)
SYMM. 26 0
2G
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The incremental change in the elastic stiffness tensor §Ky;x is obtained by first cal-

culating the increment in damage with:

|

55 = & /c‘u.(p)(i)"+/z(m=xp(%)}dr

HEQ)" + AE ew( )} o, (4.46)

where 6t is the time increment specified by the user. Summing this to the accumulated
total damage and calculating the difference between the elastic moduli for the current

and previous state, i.e.
G’ =Go[1 + Co(S +68))!
G = Goll + C,8]
G=G-G

similarly, 6K can be calculated, therefore

6K +45G/3 6K —26G/3 6K —25G/3 0 0 0
6K +46G/3 6K —25G/3 0 0 0
_ SK+45G/3 0 0 0
§Kiju = %C 0 0 .(447)
SYMM. 265G 0
265G
The increment of elastic strain components 6ef; is calculated by
be5; = Sei; — befy — deg; — bey by (4.48)

where the total strain increment d;; is defined in the boundary conditions, e.g. the
indentation speed or strain rate € and the time increment t; §;; is the delta function.
The delayed elastic strain increment of intact material, Je“,, is calculated by
3.4 (s— Eee?\" sy
d p ik
sk =34 (_) i

Jo

(4.49)
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Substituting this equation into Eq. (4.38), the delayed elastic strain increment of
damaged material is found to be
&
bef =l (ﬂ) exp(BaS) 22 6. (4.50)
0o s
Similarly, the secondary creep strain increment ef; can be obtained from Eq. (4.24)
and Eq. (4.39), ie.
g=—a(2)" s

e =& (a.,) exp(A.5) L st. (4.51)
The volumetric strain increment de, is given by Eq. (4.40),

de, = -% s(é—€)dt; 0, <0. (4.52)
The elastic strain components €; are defined as

& = Couoy

where Cjy is the compliance matrix which is the inverse of stiffness matrix.
In the above equations, the stresses s, s;j, 0w, strain e? and damage S are stored as
state variables from previous states, and at the end of each increment, these variables

will be updated as

i = 0y + 80y, (4.53)

S =S+65. (4.54)

The complete multiaxial model has been developed in FORTRAN code and im-
plemented as a user material specification in the ABAQUS finite element structural

analysis program for ical i The of the damage model

are all calibrated from the triaxial test results. By fitting the time-strain record of
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Table 4.1: Parameters Used in the Mechanical Model

Description Parameter Value
Elastic Modulus E 9500MPa
Elastic Stiffness in Kelvin Unit E. 9500MPa
Poisson’s Ratio v 0.3
Primary Creep Reference Rate & 1.0x1075s~! at -10°C
Creep Exponent for Kelvin unit n

Secondary Creep Ref. Rate &

Creep Exponent for Maxwell unit m

Volumetric Constant b

Reference Stress %0

Damage Parameter a

Creep Enhancement Parameter Ba

Creep Parameter Be

creep test on intact ice (see Figure 4.1), the primary and secondary creep reference
rates, é§ and €, and the creep exponents, n,m can be estimated. Then, by fitting
creep test on damaged ice (see Figure 4.2a, b). the damage exponents. gy, gz, and
the creep enhancement parameters, 5, and f. can be obtained. Figure 4.3 shows
the predictions of strain response of damaged ice under the same loading conditions
except the confinement. The test result of volumetric strain is compared with the
model prediction in Figure 4.4. The stress-strain relation predicted by the model is
then compared with the result of constant strain rate test, as shown in Figure 4.5.
Once the model predictions can fit the results of these three types of test, the model

has been i All are listed in Table 4.1. Note that

for low stress tests, The parameter f; is insignificant, thus the second state variable

S, can be ignored. Vice verser, when stress is high, Sy can be ignored.



4.6 The Broad-Spectrum Approach

As discussed in Chapter 2, a model with chains of Maxwell or Kelvin units can be
a rigorous ion of the b iour of vi i i But the disad-
vantage is its ity. A broad proposed by Schapery (1962)
can somewhat overcome this difficulty. Based on this approach, a modified constitu-
tive model is proposed by introducing a chain of Kelvin units to replace the single

Kelvin unit in the model presented in the previous sections. Assuming all the Kelvin

units have linear springs and nonlinear dashpots following the power-law. The creep

compliance of a Kelvin unit under constant stress can be derived from Eq. (2.14):
Di(t) = Ei {1 = [(n — Vgt +1]/0-™} (4.55)

A

where, wy = Ei/pko. Similar to Eq. (2.4) the total creep compliance can be expressed:

DO =2+ L4301 {1 [ — Dt + 10 (4.56)
B m SE y

where E, is the elastic modulus and assumed to be 9500 MPa.

By choosing a set of collocation points for ¢, such as ¢, = 0 and ¢; = 100/4-9),
G=2.3, <= n), and letting w; = c/t;, i.e. w; = ¢/10/4-3 (i=1,2 3, ... n), where
c is a constant, a set of n linear algebraic equations for the unknown variables of E;
(7=1,2, 3, ... n), can be defined similar to Eq. (2.17) as:

{65} = {as {1/ E;} (4.57)

where b; = D(t;) — 1/E; and ay = {1 - [(n — Dty +1]'/0~"}. At present, n;=3
(i=1, 2, 3, ..... n) are assumed. By solving the above equation, the values of Ej

can be ituting E; into ion (4.56), the model response can

be by ing with the i results. A few iterations may be

needed by adjusting ¢; and w; to achieve satisfactory results.
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An example of such a model with three Kelvin units has been implemented into
a finite element model. As shown in Figure 4.6, the model results are compared with
the same test data as shown in Figure 4.1 with good agreement.
This broad-spectrum approach can be explored further. As discussed in Chapter

2. the creep compliance of a viscoelastic material can be expressed as:

D(t) = Dy + Dy(t) + Ds(t) (4.58)
where Dy = 1/E,, Dy(t) = t/p,, and

Dy(0) = L1 - exp(-Eig). “59)

i "

This expression is the same as Eq. (2.4). Assuming the spring in the ith Kelvin
unit breaks at time t, i.e. E; — 0 at t = t{, then the ith component of Ds(t),
#1{1 — exp(—=E1)} will reduce to 1/p;, ie. {1 — exp(—£:t)} — 1/p;. This event
can be related to a structure break-down of some local high stress zones, such as the
triple point in polycrystalline ice. Such a break-down can be due to microcracking,
dynamic recrystallization and/or pressure melting. As a result, it will reduce the
overall viscosity, and soften the material. With increasing number of structure break-
downs, it may lead to a domino effect, so that all the springs in the Kelvin units will
be broken after time tJ,,., here t3,,, = maz{t?, (i = 1,2,..n)}. Therefore the creep
compliance D(t) can be reduced to:

DO =yE+3 Lt >0, , (4.60)

=t

This means the creep model will be reduced to a spring plus a series of dashpots, or
simply, one spring and one equivalent dashpot (which represents ihe series of dashpots
and it has much lower viscosity), which means the material has been significantly
softened. Thus the Kelvin chain becomes a Maxwell unit. This simplified model can
be very useful in practice to model the crushed layer at the contact interface. This

will be discussed later.
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4.7 A Constitutive Model Using Three Kelvin Units

As discussed in Chapter 3, high loading stress and confinement can significantly
soften the material. A typical test curve of time versus strain rate in logarithm scale
is shown in Figure 3.22. The curve can be linearized into three portions, minimum,
linear and maximum portion, respectively. It can be assumed that each portion
represents a different stage of damage progress in the material. For example, the
minimum portion may represent the initial stage of increasing damage. The linear
portion can represent the stable stage of damage progress. The maximum portion
will be the unstable stage when damage reaches a critical value and leads to a rapid
change in the structure of the material. This structure change can be a shear or
fracture failure under high deviatoric stress and low confinement, or it can be the
formation of pulverized material under high loading stress and confinement. In this
study, it is proposed to model the deformation of materials under high loading stresses
using a combination of three Kelvin units and a Maxwell unit. With an increase of
damage, the springs in the Kelvin units will be broken. Assume that the break-
down events will occur in sequence. Each such event will change a Kelvin unit into a
dashpot, thus will reduce the overall viscosity and lead to a higher strain rate. In this
way, the three stages of the damage progress can be represented by means of three
Kelvin units, respectively. The tensor of the total strain rate is given by Eq. (4.41),
&y = &; + €5 + é + 6,;¢., here é§ will be modified and expressed as a sum of three

terms (each represents one Kelvin unit):

e =l +eZ +é5, and (4.61)

gl

 poaym
a@ =g (%‘—) 4 exp(fus), (k=123) (@.62)

This is the same as Eq. (4.38). Figure 3.22 shows that there are three significant

increases in strain rate at time of 4.5 second, 13 second and 18 second, respectively.
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Based on Eq. (4.37), the calculated damage levels at these three points of time are
2.0, 5.85 and 8.1, respectively. Assume that each jump in strain rate can be related to
a break of a spring in one of the Kelvin units at these damage levels. Therefore, near
the end of the test, when all of the three springs are broken, i.e. Ex — 0 (k = 1,2,3),

the above equations reduce to:

. 3 e
=3 (2)" 22 explBas), (=123). (4.63)
This means the whole model can be reduced to a spring plus four dashpots.

For triaxial creep tests, the deviatoric stress Sy; = (2/3)s, therefore, the deviatoric

strain rates can be expressed by
,.
= (2)" exp(us), (k=123). (4.64)
L]
Under constant stress states, by taking the natural logarithm and substituting Eq.
(4.37) for S, the above equations can be expressed in much simpler forms:
In(efY) = dut + I (4.65)

where the slopes ¢ are given as:

B

e = Bu i) )" + Llp) exp( ). (4.66)

The zero-intercepts Ji of the linear curves are given by:
s
= — é 4.67,
L=nn(Z)+mat (a67)
The constants in the above equations can be calculated based on test results, as
shown in Figure 3.22. Here é&* are assumed to be the same as ¢ as listed in Table

4.1. Figure 4.7 shows the comparison of model result and test result shown in Figure

3.22. In addition to Table 4.1, some more constants are listed in Table 4.2.
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It is worth noting that the above approach is similar to the idea of back-stress
stated in many earlier works, such as Jonas and Muller (1969), Sunder and Wu (1989)
to name a few examples. In their work, the deformation or stain rate is not just a
function of applied stress, it also depends on the so-called internally generated back-
stress. The back-stress will be reduced as the deformation progresses. This in turn
will enhance the subsequent deformation. The term Eie? in the above equations
represents the stress in the spring of the Kelvin units. This is equivalent to the back-
stress. When stress in the spring reduces, more stress is transferred to the dashpot
which will result in the acceleration of deformation.

This broad-spectrum model will be used later in the finite element analyses. This
model is a modification and extension of the model given by Jordaan et al., (1997). It
includes three Kelvin units. An exponential function is used to define the second state
variable for damage. These enables the model to provide a better prediction of large
deformation and high strain rates for viscoelastic materials under extreme loading
conditions. The model was initially calibrated by three types of tests: creep test on
intact ice, on damaged ice and constant strain rate test. Due to the discrepancies in
test results, which can be caused by a number of reasous, e.g. sample discrepancies
and test conditions, for each type of test, one set of test data was selected to be
the best representation of all the tests. Due to limited resources and time, this
was considered as a reasonable approach. The second reason is that these are all low
stress tests with short loading time, the deformation and rates are small. For practical
application of the model, such as medium scale indentation tests, the loading stress
and rates are very high and beyond the range of these low stress tests. Thus the
accuracy of modeling low stress tests is less critical if the goal is to simulate field
tests. High stress tests were conducted by Meglis et al., (1997) to provide information

to calibrate the damage model under extreme loading conditions.



Table 4.2: Parameters Used in the Constitutive Model
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Descripti P: Value
Creep Exponent for Kelvin unit 1 n, 3.38
Creep Exponent for Kelvin unit 2 ny 2.98
Creep Exponent for Kelvin unit 3 ny 0.57
Creep Enhancement Parameter 1 Bal 0.2

Creep Enhancement Parameter 2 B42 0.78
Creep E: Parameter 3 Ba3 2.86

. —
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Figure 4.1: Comparison of creep test results with model results on intact ice
stress differences from 1 to 10 MPa and confinement of 10 MPa.
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Figure 4.2: Comparison of creep test results with model results on damaged ice, under
stress differences from 1 to 5 MPa and confinement of 10 MPa, for a loading period
of: (a) 20 seconds (b) 100 seconds.
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Figure 4.3: Comparison of test and model results on the strain response of damaged
ice under same stress difference of 3 MPa but with different confinement of 10 and
20 MPa.
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Figure 4.4: Comparison of test and model results on the volumetric strain response
of constant strain rate test under 5 MPa confinement
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Figure 4.5: Comparison of constant strain rate test results with model results.
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Figure 4.6: Comparison of creep test results with the broad-spectrum model results.
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Figure 4.7: Comparison of test and model result on the strain rate response of a creep
test under 50 MPa confinement.



Chapter 5

Finite Element Analysis of
Indentation Problems

5.1 Introduction

Brittle, viscoelastic solids under stress can fail in a variety of mechanisms. In this
work, the typical failure mechanisms are related to creep deformation, dynamic re-

cr ization, or mi king as well as ing due to fracture, depending on

the loading conditions. In contact problems, the failure mode can be a combina-

tion of the above hanis In the ice il 5 i are
very common and they present a great challenge in the design of offshore structures.

Estimation of ice forces on the structure is the essence of engineering design.

5.2 Two Modelling Tools

In this study, two ing tools, damage ics and fracture mechan-

ics, have been 1 and i d in the ical analysis (finite element

analysis). Damage mechanics does not deal with each individual crack or failure
event, rather it takes into account the averaged effect of all the cracks and damage
processes on the properties at a point in the material, for instance an average elastic

modulus or viscosity. It is not possible to obtain details of crack sizes or the progress

119
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of each failure event based on analysis using damage theory. Fracture mechanics
on the other hand, can be used to analyze an individual crack. It can predict the
propagation and trajectory of the crack, as well as the size of pieces fractured off.
It is conceivable to implement both tools into one numerical model to simulate the
complex failure processes occurring during ice structure interacticns. In such cases,

both mi le damage and le fracture failures can take place

simultaneously. The two failure mechanisms will also in turn affect and enhance each

other during the failure process.

5.3 Implementation of Damage Models
5.3.1 Modelling of Medi Scale Ind ion Tests

As discussed in Xiao (1991) and Jordaan and Xiao (1992), damage analysis can pro-
vide accurate predictions in terms of force-time curves for medium scale indentation
tests under low loading rates (until the occurrence of a spall). The associated dam-
age distribution as well as the pressure distribution at the interface predicted by the
analysis are also in good agreement with the observations from the tests. Figure
5.1 shows the modelling results of two spherical i ion tests. The test speeds

were 0.3 mm/s and 3 mm/s, ively. The iated damage for the

slower test is shown in Figure 5.1a (The unit for time in all the figures is second).
As noted earlier, stress concentrations play an important part in the analysis of
crack initiation. From the test results (see Figure 3.26), the saw-tooth pattern of load
curves indicate that crushing and possible fracture events were taking place.
In this section, the damage constitutive models described in the previous chap-
ters, are implemented in finite element models to simulate the ice indentation tests

as discussed in Chapter 3. Figure 3.25 shows a cross-section of a test with a flat
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indenter against an ice wall (Test 07 from Frederking et al. 1990 a.b). The situation
corresponds essentially to plane strain with extrusion to the left and the right of the
interface. A symmetric finite element model is shown in Figure 5.2.

First the damage model proposed by Jordaan et al., (1997) has been implemented
in the finite element model shown in Figure 5.2. The damage model was described
in Chapter 2 and given by Eq. (2.84). Different combinations of the power functions
were used as experimental runs to study the influence of the damage parameters on
the results of numerical modelling. Load histories of the simulation results are shown
in Figure 5.3. These results are similar to what were presented by Jordaan et al..
(1997). The damage distributions for the trial runs are shown in Figure 5.4 and
Figure 5.5. The figures show clearly the development of a laver of damaged material
near the indenter.

The damage model proposed in this study (see Chapter 4) and given by Eq. (4.37)
to Eq. (4.41) was then implemented in the same finite element model. As discussed
in the earlier chapters, the first term of the damage function (state variable S, in Eq.
(2.84)) which was directly adopted in this study, can represent the damage progress

very well under low to moderate confining pressures. In this pressure range, damage

is mostly related to mi king, thes it will be under pressure, and
the strain rate will drop with increasing pressure (see also chapter 3). The second
term of the damage function (state variable S, in Eq. (2.84)) represents the damage
progress under high confining pressures. In this case the development of damage as
well as the strain rate will be enhanced by the increase of pressure. An exponential
function was proposed to substitute the power function in Eq. (2.85) to define the
rapid growth of damage, under both high shear stresses and high confining pressures.
The effect of high confining pressures on the progress of damage has been taken into

account by a power function fa(p) as given by Eq. (2.87). To study the influence of
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confining pressure on damage growth as well as the modeling results, different values
of the exponent r have been applied. The model results of the force-time curves are
shown in Figure 5.6. It shows that when the exponent r is larger than 10, the total
force on the indenter will drop rapidly after the peak, which implies a sharp increase
of damage in the material. The model results for exponent r larger than 20 also
show a reasonable agreement with the test results, including the peak load and the
frequency for the first load cycle. Fig. 5.7 shows the comparison of model and test
results. Model result is stiffer than the test result. This is due to that the model with
a rigid indenter has not taken into account the flexibility of the indentation system.

To illustrate the important role of pressure softening on the development of rapid
load drops, two cases were studied: (1) the exponent r in function f(p) was set to
zero. therefore no pressure softening is included; (2) the exponents in both functions
fi(p) and f(p) were set to zero to exclude the effects of pressure softening as well
as hardening. The two force-time curves C1 and C7 are shown in Figure 5.6 for the
two cases respectively. Curve C1 shows that the total load drops only slightly after
the peak. Curve C7 shows that the total load peaks at about 2.4 MN, lower than all
the other cases, in which the peaks are in the range of 3 to 3.6 MN. This shows that
without pressure hardening (f,(p)) damage develops faster resulting in a lower peak
load. Also without pressure softening, no fast load drops will occur, instead, the total
load will go up as contact area increases. It was also found that the damage for both
cases was concentrated near the edge of the interface.

Model results of damage distributions at the end of the analyses are shown in
Figure 5.7 to Figure 5.9 (r ranges from 5 to 25). The figures show a thin layer of
highly damaged material in contact with the indenter (r > 15). For the case of r = 35,
figures 5.10a, b and 5.1 show the progress of damage at the peak load, after the load

drop and at the end of the analysis, respectively. It can be seen that the damage
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starts at the edge of the interface. It then begins to develop towards the center of
the interface. This development of damage leads to the downswing of the total load.
After the load drop, the damage zone will form a crushed layer at the interface. The
center area has higher damage due to high confining pressure. A tensile zone with
tensile stresses higher than 1-2 MPa (this is the typical range of ice tensile strength)
is shown in Figure 5.12 (r = 35). This indicates that possible fractures may occur
in this area. Without modeling of the removal of the crushed material and possible
failures due to fractures (both of which will result in the removal of materials from the
contact surfaces), it is difficult to model further load oscillations. This analysis shows
that the damage and its enhancement of creep deformation can result in sharp load
drops and the formation of highly damaged thin layer of material at the interface.
Figure 5.13 shows that development of viscosity, damage and hydrostatic pressure
in the crushed layer (for the case of r = 35). It shows that the viscosity is reduced as
much as 1,000 to 10.000 times after the load drops. The viscosity near the edge and in
the center areas has been reduced most. The whole process takes place in a very short
time. When load drop occurs, the damage level is between 3 to 4 and the pressure
is in the range of 45 to 50 MPa. These values are important in the development
of a simple model later. It was also found that when the exponent 15 < r < 25
the development of viscosity, damage and hydrostatic pressure in the crushed layer is
similar to the case of exponent r = 35. This can be seen in Figure 5.6 as well from the
load curves. Therefore an exponent of r = 20 will be sufficient in future modeling.

in

It is worth pointing out that based on the analytical and testing It
the previous chapters (see also Xiao, 1991), it was found that the elastic strain is small,
less than 10% of the total strain, as is the delayed elastic strain. The specifications of

elastic and delayed elastic strain are less important than the secondary creep strain,

as far as accuracy is concerned. The creep strain dominates the deformation pro



124

But once the "structure break-down” occurs, the three Kelvin units will break into

three and make signi ibutions to the red of viscosity, as

well as the total deformation. They will play a important role after the peak load,

therefore they can not be ignored. A simplified model is p: d later by

the three Kelvin units into one equivalent dashpot.
5.3.2 Modelling of Ice Sheet Indentation Test

In this section, a 3-D finite element model is developed to simulate the ice sheet
indentation test as discussed in chapter 3 and Finn (1991). It is believed that dynamic
ice forces can result from constant or near constant relative velocities between ice
and structure; far field ice velocities need not vary with time. Consistent with the
analysis discussed in the previous section, constant displacement rate loadings will
be addressed. Two cases are considered; the first assumes a rigid structure, while the
second uses a measured value of the stiffness of the indenter so that the ice is not
subject to a constant loading rate.

using the

Assuming that the is rigid, the i ion test is
finite element geometry shown in Figure 5.14, which is a view from the top, onto the
plane of the ice sheet, with the indenter moving upwards. The modelled conditions
have been set up to duplicate as closely as possible the conditions of the experiment
denoted as Fresh6_HI Run3 where the indentation speed was 50 mm/s. The ambient
temperature was -5°C. The indenter width and the ice thickness were 120 mm and
35.6 mm, respectively.

First, the indentation of the intact ice sheet is modelled to obtain the stress,
the damage development and its distribution. The change in viscosity of ice is also
examined, which is a function of stress and damage. The total load vs time history is

plotted in Figure 5.15. It can be seen that after the peak load at about 0.06 second,
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the total load drops rapidly as a result of damage progressing into the ice adjacent
to the indenter. The predicted peak load is about 34 KN. This is in line with the
measurements of 20 to 30 KN as shown in Figure 3.27. Two points should be noted.
First. the force-time curve shows that after the first load peak. the total force drops
to about two third of the peak value, it then followed by a load build-up instead of
continuous dropping as damage progresses. From the test results it shows in many
cases the load would drop to zero. This is due to the facts that (a) the viscosity
of the material will increase once the pressure is reduced; (b) no removal of material
(extrusion of crushed ice) is modelled in this simulation, while during the tests, a large
amount of crushed ice was extruded out from the interface, which could result in no
direct contact between the indenter and the ice. Therefore zero contact forces can be
measured during the tests. In the modeling, there is always material in contact with
the indenter and the calculated forces can not be zero without removal of material
(elements) from the interface. The second point is that as shown in Figure 5.15, the
slope of the load build-up during the second loading cycle is not as steep as in the first
cycle. This is due to first, the indenter is still directly in contact with highly damaged
material (no material had been removed from the previous load cycle); secondly, the
hardening process is not included in this model, while in reality, a sintering process
can occur at the center of the interface.

The damage distribution shown in Figure 5.16 indicates that most of the damage
occurs adjacent to the indenter in the center of the interface where confining pressure
is high, as well as near the edge of the indenter where the shear stress is greatest and
the mean pressure is least. The pressure distribution in the contact interface changes
as damage progresses. It is initially high at the edge due to stress concentration and

decreases when the ice is highly damaged. High pressure then moves to the center of

the interface due to high ing pressure. The distribution of
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stress (or alternately, the maximum tensile stress) in the X-Y plane ( the plane of
the ice sheet) is given in Figure 5.17. It can be seen that in-plane tensile stresses
which are much higher than 2 MPa have been developed in the area near the edge of
the indenter, so tensile cracks could occur in this area, therefore resulting in radial
fractures. Figure 5.18 shows the tensile stress in Z direction (vertical to the plane of
the ice sheet). It shows that high tensile stress could result in spalling failures from
the top and bottom of the ice sheet near the indenter. These failures, in association
with the extrusion of the crushed ice, would lead to sudden load drops and regular
saw-tooth pattern of load oscillations, in many cases the load can drop to zero.

It is assumed in the above model that the indenter is rigid and moving at a constant

speed and the analyses were static. But the i ion system in th i was

measured to have a static stiffness of about 9.4 MN/m. The measured displacements

of the indenter relative to the carriage of the indentation system were in the range of 1

mm to 2 mm. Accounting for other factors in the of these di:

these values are then lower bounds on the actual displacements. A spring of stiffness
of 9.4 MN/m was added to the rigid indenter model as shown in Figure 5.19. Since
the constant speed was measured at the carriage of the indentation system, the actual
speed of the indenter can vary due to the flexibility of the system. In this case, it is
point B that is moving at a constant speed. Load-time curves are shown in Figure
5.20. It shows that the peak load of model result is higher than the test. This could
be due to the nonlinearity in stiffness of the indentation suystem (which was assumed
to be linear static). The load peaks at about 0.1 second and then drops much more
rapidly. It takes more time to reach the peak load due to the flexibility of the system.
Calculated displacements of the indenter and the carriage are shown in Figure 5.21.

The il relative di: i.e. the diffe between the di at

point A and point B, was calculated to be 2 mm. The measured peak load was about
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the il value ding to the relative displ. of 2 mm,

so the calculated displacement is not far off the measured values noted above. As
shown in the figure, at the point of load drop, the indenter (point A) moves forward
much rapidly at the speed of about 500 mm/second, 10 times faster than the carriage
(point B) (note that point B is still moving at the constant speed of 50 mm/second).
This fast movement of the indenter is the result of rapid growth of damage in the
ice adjacent to the indenter, therefore leading to the clearance (extrusion) of the
highly damaged (crushed) material from the interface. At the valley of the load
drop. the applied force and the reaction force on the indenter will lose its balance.
One of the reason is that the material (elements) in contact with the indenter has
been highly damaged and has very low stiffness. The indenter is pushed forward
by the spring which has stored a large amount of energy during the load build-up
phase. When encountering soft material which means low resistance, the movement
of the indenter will be accelerated resulting in very large deformation in the elements
near the interface. These elements will become highly distorted. Therefore the finite
element model will become unstable. Further simulation is very difficult.

In reality, the indentation is a dynamic i ion process. The and

ice both have mass, viscosity (damping) and other related properties. It is very
important to include the dynamic characteristics of the indentation system as well
as the ice mass in the study of ice-structure interactions. For example, the speed of
the indenter after the load drop should be much slower due to the effects of inertia
and damping of the structure and ice mass, and the analysis should be much more
stable. During the load build-up phase, the indentation process can be regarded as
quasi-static. When the load drops, the process becomes dynamic. Therefore, to fully
capture the behaviour of this complex process, a dynamic analysis is recommended.

Damage distribution near the indenter is shown in Figure 5.22. Calculated maxi-
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mum principal stress near the interface is shown in Figure 5.23. It shows that tensile
stress higher than 2 MPa has occurred. The tensile strength of ice is usually 1 to 2
MPa, therefore crushing failures as well as tensile fractures should have taken place
even before the load has reached the peak. Since no fracture analysis is included
in this analysis, no cut-off values were used for fracture failures. It only shows that

Note that the mea-

spalls or cracks can be developed along with crushing failures
sured frequency of load oscillation is about 10 Hz. The calculated first load drop in

Figure 5.20 is also about 0.1 second.

5.4 Analysis of Fracture and Spalling
5.4.1 Introduction

The analysis of fracture is carried out in ABAQUS (Hibbitt et al. 1997, version
5.6). The direction of virtual crack advance is specified in ABAQUS by means of a
vector n. This makes it possible to consider various angles of crack propagation. The
estimation of the ratio of K; and Kj; can also be made in linear elastic materials;
two J integral requests are made, one in the crack direction (J:) and the other in the

perpendicular direction (J,). This gives

K} + K}, 5

gm0 (5.1)
2

Jy =~ Kk (5:2)

where E' = E/(1 — v2) for plane strain. From these two equations, the ratio of K;

and K/ can be estimated by

J
-2 _ = 5.3,
1) 7 (5.3)

A second method of estimating the ratio of Ky and Kj; is based on the ratio of

displacements in the direction of and perpendicular to the crack direction, taken at
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a pair of nodes near the crack tip. This ratio will be used to estimate the direction

of crack growth later.
5.4.2 Initial Fracture Analysis

A trial case was considered to conduct an initial fracture analysis. Due to the common
existence of flaws in ice features, the geometry and the initial crack are shown in
Figure 5.24. In the initial analysis, linear elastic material behaviour with plane strain

was consi A parabolic load distribution was assumed to be applied

at the contact surface. This is consistent with the kind of load distribution found in
the field tests after some damage has been developed at the ice-structure interface.
The finite element model is shown in Figure 5.25(a). More details of the area
around the crack are shown in Figures 5.25(b) and 5.25(c). The elements around
the crack tips included a singularity (on the order of 1/r, where r is the distance
to the crack tip), which assists in obtaining accurate values of J. The initial crack
length was 40 mm, and the crack orientation angle was a = 0°. First, J values are
calculated with increasing loads. When the J reaches its critical value. The stress
intensity factors at the crack tips are calculated to find out the direction of crack
propagation. The calculation of K; and Kj; showed that K predominated, i.e. the
crack tips were in almost pure shear. The values of K; and K/ at both crack tips
were almost equal. The load on the interface was 3.6 MN when critical K;; = 0.82K;
was reached. Based on Figure 2.7, the propagation would be at an angle of 75° to
the original crack surface, and Figure 5.26 shows the area remeshed for the first crack
extension. Remeshing is necessary after the crack extension, which would lead to
rather unsatisfactory finite element meshes. A further analysis using the remeshed
model showed that J values at both ends of the crack were more than doubled as

extension proceeded. This means the crack would propagate at an accelerated rate.
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Table 5.1: Details of Crack Extension

Total Load Crack J Value at J Valueat K;/K;; Crack Extension
Left Tip _Right Tip Angle 8
36 MN  Initial Crack  0.82 0.83 0 75
(40 mm)
3.6 MN First Crack 1.90 1.87 1.6 45°
Extension
(5 mm)

Based on the analysis similar to that described above, a sccond crack extension
would propagate at an angle of 45° to the original crack surface (Figure 5.27). The
analysis results are summarized in Table 5.1. The evaluation of J integral at the
crack tips of second extension has shown a significant increase in .J values, which will
lead to very unstable crack propagation. The J values for the second extension have
therefore been omitted from Table 5.1; further investigation and analysis of the path
of crack extension would be very difficult.

The ratio of K to Ky shows a significant increase after the second crack exten-
sion, which means that K; became dominant and the crack tips were approaching
the tensile zones. The cracks would follow a trajectory similar to that for “wing”

cracks; after the second extrusion, it was assumed that the cracks continued on the

same trajectory as in the second ion; this was it in the
perpendicular to that of maximum tensile stress in the areas near the crack tips. On
this basis, elements were removed which simulates a spall, see Figure 5.28a. The

results of the loading curve with elements removed are shown in Figure 5.28b.
5.4.3 Analysis Based on Damage and Fracture

In this analysis, the finite element models in the previous section were adopted.

Instead of the parabolic loading, a flat rigid indenter was applied at the contact
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Table 5.2: Details of Crack Extension

Total Load Crack J Valueat J Valueat K;/K;; Crack Extension
Left Tip _ Right Tip Angle
11 MN Initial Crack 0.85 0.85 0 75°
(20 mm)
11 MN First Crack 219 219 3.0 32
Extension
(5 mm)

interface. This is to simulate the ice-structure interaction (see Figure 5.29). A crack
orientation angle of a= -10° was assumed based on a few trial runs at different angles.
This angle gives higher J values for the given loads. The structure was moving at
100 mm/s. A friction coefficient of 0.3 was applied between the structure and ice.
The analysis of the crack propagation (leading to a spall) is similar to the previous

section. Table 5.2 i results ding crack i Due to stress

redistribution caused by the spall, high stress concentration will be developed near
the contact surface which will in turn trigger one or more spalls, most likely in the
arca opposite to the initial spall. Further analysis shows that right after the first
spall, a crack or flaw of size as small as 5 mm (on the order of microcracks) which
most certainly will exist, would (almost) simultaneously grow and extend to the
surface leading to a second spall. Figure 5.30 shows the resulting configuration of
finite element mesh after two spalls. In reality more spalling failures would also be
so that the i effect should be

developed due to further stress
considered in future analyses. It is worth noting that even without crack propzgation
(leading to a spall failure), damage alone can cause high tensile stress zones resulting
in fractures, as discussed in earlier sections.

Figure 5.31 shows the force-time curve after two spalls. Although the immediate
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effect of spalls is relatively small compared with some field test results in terms of

total load drops after spalls, the ive effect is quite signi Figure 5.32

shows the load history of a damage analysis on the same finite element model without
modelling spalls. The peak load from the spall analysis is about 11 MN compared to
28 MN with the damage analysis only. It should be pointed out that the movement
rate of the structure is 100 mm/s, the divisions of the horizontal axis of Figure 5.31
correspond to 50, 100 and 150 mm displacement, etc. The pressure distribution at

the ice-structure interface is shown in Figure 5.33 for various displacements. The

of pressure is ill d. Before the spalls, contact pressure is relatively
low and uniform (when indentation distance is less than 10 mm). After the spalls
(indentation is larger than 12 mm), the pressure is initially high at the edges and

gradually d as damage v, high pressure moves to the

center of the contact surface due to confinement (indentation is between 25 mm to
60 mm).

The above is a preliminary analysis of fractures in ice-structure interaction. It
shows that fracture spalls can be easily developed under impact conditions. The
sources of the spalls can be the existing flaws in the ice with a dimension of a few
centimeters. The propagation of cracks can be very fast. The locations of flaws are
random. Although in this analysis, two flaws were assumed to be near the top and
bottom surfaces of the ice sheet, which result in a symmetric wedge sharp ice profile
after two spalls. No symmetric conditions were used due to the random locations
of flaws. Fractures will result in stress concentration, which will further enhance the
development of damage in the material. The progress of damage will also create more
opportunities for crack growth, which in turn will develop more spalls. Therefore these

two processes will mutually co-exist and lead to load oscillations.
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Figure 5.2: Finite Element Idealization of Test 07.
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Figure 5.4: Damage Distribution for dS/dt = s5(1 — p)? + s'p° .

410,,20

Figure 5.5: Damage Distribution for dS/dt = s°(1 — p)? + s'%
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Study.
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Figure 5.7: Force-time Curve Comparison of Model and Test Results.
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(b)

Figure 5.8: Damage Distribution for: (a) dS/dt = s5(1— p)?+exp(s)p'; (b) dS/dt =

s°(1 — p)* + exp(s)p'®
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(v)

re 5.9: Damage Distribution for: (a) dS/dt = s(1 — p)? + exp(s)p®; (b) dS/dt =
S = p)? + exp(s)p®
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(b)

Figure 5.10: Damage Distribution for dS/dt = s%(1 — p)? + exp(s)p™ : (a) at the peak
load; (b) after the load drop.
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Figure 5.11: Damage Distribution for dS/dt = s3(1 — p)? + exp(s)p™ at the end of
the analysis.

Figure 5.12: Tensile Zone near the Contact Surface.
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Figure 5.14: Finite Element Mesh for the Ice Sheet Indentation Test with Rigid
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Figure 5.15: Total Load versus Time Relation for the Ice Sheet Indentation Test with

Rigid Indenter.



Figure 5.16: Damage Distribution in the Ice Sheet near the Indenter

Figure 5.17: Tensile Stress Distribution near the Indenter in the Plane of the Ice
Sheet



Figure 5.18: Tensile Stress Distribution near the Indenter in the Direction Normal to
the Plane of the Ice Sheet
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Figure 5.19: Finite Element Mesh for the Ice Sheet Indentation Test with Flexible
Indenter
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Figure 5.21: Calculated Displacements for Point A and Point B.
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Figure 5.22: Damage Distribution in the Ice Sheet near the Indenter.

Figure 5.23: Tensile Stress Distribution near the Indenter in the Plane of the Ice
Sheet.
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Parabolic load distribution
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Crack,of length a
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Figure 5.24: Position of Initial Crack: Typical Value of Crack Length of 40 mm, o
Varied from Approximately 0° to 30°.
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Parabalic load distribution
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Figure 5.25: Finite Element Idealization of Trial Test Case with a Crack.
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(a) Finite Element Mesh and the Locations of the Points at the Contact
Face

Total load (MN)

U] 1 15 2 25 3 35 4 X}
Displacement(m) 104

(b) Force-displacement Curve

Figure 5.28: Removal of Elements Due to a Spall.
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Figure 5.29: Finite Element Mesh for the Ice Sheet.

Figure 5.30: Finite Element Mesh after Spalling.
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Figure 5.32: Model Results: Load History with Damage Analysis Only.
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Chapter 6

A Simple Model for Ice-Structure
Interaction

6.1 Introduction

During ice-structure interaction, regular repeated oscillations in load occur at certain
loading rates. Spalling of large pieces of ice near the contact zone will result in a load
decrease as the contact area is reduced. Such events do not explain the regularity of
the oscillations, nor do they account for the occurrence of oscillations observed in a

thin layer of compressed crushed ice particles confined between two plates (Spencer

et al., 1992).

In the medium scale field indentation test program on Hobson’s Choice Ice Island
(Frederking et al., 1990), was d at the ice-indenter interface
(Gagnon and Sinha, 1991). Regular in d during in-

creases in load and vice-versa. Evidence of melting has also been presented. This

requires a i ion of the i ion process. The
possibility of pressure melting in such situations was raised three decades ago by
Barnes and Tabor (1966) and Kheisin and Cherapanov (1970). In full scale ice in-
teractions, although the global measured pressures are usually low, pressure melting

could still take place in the local high pressure zones, the so-called, hot spots (Jor-
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daan et al.. 1997). Laboratory indentation and impact tests performed on freshwater
ice by Gagnon and Molgaard (1990) have also shown evidence of pressure melting.
Triaxial tests in the laboratory (Meglis et al., 1997) including the measurement of
ice temperature under high triaxial confinement (up to 60 MPa) have also provided
similar evidence, as discussed in chapter 3. As shown in Figure 3.22, the measured
strain rate increased more than 600 times from the beginning to the end of the test.
This implies that the material has been highly softened and the overall viscosity of the
material has been reduced significantly, since the strain rate é = o/p, here the stress
is constant during the test. The calculated damage enhancement factor for this test
is about 665, which means the viscosity is reduced by 665 times. This is consistent
with the test results. As discussed in earlier chapters, the softening of the material is

mostly due to the i effects of mi i dynamic recr; ization and

pressure melting. When the damage level is high, the structure break-down in the
material will occur. As a result, the Kelvin units can be equivalent to a single dashpot.
This means a spring plus a dashpot (a Maxwell unit) should be a sufficient idealiza-
tion for highly damaged (crushed) materials. At this stage of material deformation,
dynamic recrystallization and pressure melting should dominate the development of
damage. In this study, a simplified damage model with only one Maxwell unit is
proposed to model vi i i i under itions of high loading
stress and high confining pressure, which will result in extensive damage to the mate-

rial. One example of such conditions is in the crushed layer near the contact interface

in ice-structure interaction.
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6.2 A Simplified Damage Model

As described in the previous chapters, when the structure break-down in the material
occurs, the broad-spectrum damage model with three Kelvin units can be replaced
by a simple model with one Maxwell unit. It is proposed to use this simple model
to represent viscoelastic materials under intact or damaged conditions, as long as
the material will be undergoing extreme loads and will suffer extensive damage after
initial loading. By doing so, the initial loading curve near the origin may not be
accurate. But in many cases, especially under extreme loading conditions, one would
be more interested in the peak loads, the frequency of the load oscillations as well
as the stress and damage distributions when the failure of the material occurs. The
predictions for initial loading period should not affect the final results significantly.
The benefits of using this simple model is that (1) due to much fewer parameters
and variables in the model, it is much easier to calibrate the model with laboratory
high stress test results; (2) without the delayed elastic term, the model can reach the
convergent solution much easier and faster, thus saving computation time.

A trial test case is considered. The damage evolution law given by Eq. (4.37)
and the creep enhancement factors given by Eqs. (4.38) and (4.39) are used in the
simple damage model. This damage model is implemented into the finite element
model used in Chapter 5, as shown in Figure 5.2. As discussed in Section 5.3.1, when
load drops occur, the viscosity in the crushed layer has been reduced as much as 1000
to 10000 times with the edge and center areas of the interface being reduced most.
The damage level is between 3 to 4 and the hydrostatic pressure is in the range of 45
to 50 MPa at the interface. Experimental results in the laboratory and theoretical
analyses on these tests have also shown a reduction in viscosity of more than 600

times (665 times from analysis), as mentioned earlier. Therefore in the simple model,
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it is proposed to reduce the viscosity of the material by a factor of 1000, when either

damage reaches 3.0 or the hydrostatic pressure reaches 50 MPa. A test case without

the ion in viscosity is al: d to show the signi ofsucha

on the development of the total load.

Figure 6.1 shows the force-time curves (The unit for time in all the figures is sec-
ond). Curve Cl is calculated using the simple damage model with viscosity reduction;
curve C3 is using the same model without viscosity reduction; and curve C2 is based
on the broad-spectrum model as shown in Figure 5.6 (curve C4). It can be seen that
C1 and C3 are identical before the peak load. When damage and/or hydrostatic pres-
sure reach the critical values, the viscosity of the material will be reduced resulting
in the load dropping. This also shows the effect of the reduction in viscosity on the
total load. Curves C1 and C2 are also matching closely, which means, for simplicity,

the simple damage model with viscosity reduction can be used to replace the broad-

spectrum model with i results. The di between these two models
is that the simple model has only two components, elastic and secondary creep; the
broad-spectrum model has these two terms plus a delayed elastic component, which
is represented by three Kelvin units. Before the loads drop, the difference between
C1 and C2 is due to the delayed elastic component in C2. This also indicates that
the delayed elastic component is less significant in terms of the total load. Curve C3
represents the broad-spectrum model without the delayed elastic component. In gen-
eral, the model results do not give as sharp load drops as shown in the test results. As
discussed in Chapter 5, the indentation process is a dynamic process. The dynamic
effects and the flexibility of the structure and the whole system lead to sharper load
drops. The indentation process also involves the extrusion and clearance processes,
which also results in sharp load drops. The present study does not include elements

removal.
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Figure 6.2 shows the damage distribution at the peak load for the simple model
with viscosity reduction. Figures 6.3, 6.4 and 6.5 show the damage distributions at
the half way of the load drop, at the bottom of the load drop and at the end of
the analysis, respectively. Figure 6.6 shows a tensile zone with tensile stresses higher
than 2 MPa. Figure 6.7 shows the development of viscosity, damage and hydrostatic

pressure in the crushed layer. This is similar to what is shown in Figure 5.13.

6.3 The Role of Pressure Melting

The above analysis shows the effects of the reduction in viscosity on the development
of the total load. The rebound in viscesity as well as total load are not included. The
recovery in loads in Figure 6.1 are mostly due to the increase in contact area. Field
tests show regular variation of total load, pressure as well as temperature. Evidence
of pressure melting has been presented in both field and laboratory. The melting and
refreezing processes may play an important role in the load oscillations.

Pressure melting will develop a layer of lubricating liquid between the grains of
solid material or particles in the crushed layer, as well as the solids and the contacting
structure, which will reduce both viscosity and friction of the material. The lubricat-
ing liquid can be considered as a dashpot in series to the dashpot of the solid, thus
reducing the total viscosity. It will also change the structure of the material (or in
other term, damaging the material).

The role of pressure melting in the processes noted above may well be significant

with regard to the oscillations within a layer. Two hypotheses are explored as follows:

e pressure melting affects the viscosity in the damaged layer, accelerating the

processes noted above, and

e pressure melting results in a reduction of friction which is a function of pressure,



i.e. basically stick-slip motions.

These hypoth: i ing the simplified damage model (with only one Maxwell

unit) are investigated using numerical models, which are developed and implemented

into the ABAQUS finite element program.

6.4 Experimental Observations

The sawtooth pattern of oscillati in loads is g Ily evident in lab y tests
(Spencer et al., 1992), in medium-scale field indentation tests (GEOTECH, 1985;
Frederking et al., 1990), as well as in full-scale interactions (Jefferies and Wright,
1988). Typically, the frequency range of vibrations is about 20-30 Hz for the medium
scale. Figure 6.8 shows a force-time curve from the 1985 Pond Inlet medium scale
test series, where spherical indenters penetrated a prepared test face, with a loading
speed variation from 100 mm/s to 0 following a sine wave function. A possible spall
event is indicated in the figure by means of an arrow. It is not a reasonable inference
that each drop in load in the high frequency oscillations is associated with a spall.
Spencer et al. (1992) conducted extrusion tests on crushed ice to investigate ice-
induced vibrations. Crushed ice particles of about 1 mm in size were compressed and
squeezed out between two rigid rectangular platens (see Figure 6.9a). The test speed
ranged from 2.5 mm/s to 160 mm/s. In these tests, oscillations in pressure have been
observed (see Figure 6.9b). These observations showed that the repetitive cycling of
load can occur in a thin layer of crushed ice with no evidence of spall failure.
Friction between ice particles, and between ice and indenter may play an important
role in the ice indentation process. Video records of both indentation and crushed ice
tests have shown the sudden forward movement of the indenter as the ice failed in the

layer and extruded out of the interface. This suggests that the viscosity or friction



coefficient of the ice could also vary during the indentation process.

6.5 The Effects of Pressure Melting on the Viscos-
ity and Friction of Ice

The hypotheses of viscosity and friction variation during ice indentation are based
on the above observations and theories on pressure melting and ice friction. Suppose
that during an upswing in load, the local pressure is high enough so that the melting
point is less than the local ice temperature, i.e. T,, < T. Then the ice will start
to melt, taking heat from the surrounding ice. This causes a drop in temperature
as the load increases. Meanwhile the water produced in this process will reduce the
viscosity of the ice, and will also lower the friction between ice particles and the
interface of ice and the indenter. This is equivalent to a reduction of the lateral
confinement within the crushed layer, and the pressure on the indenter will drop
rapidly. As the pressure reduces, the melting temperature increases. The ice will
thus refreeze by releasing heat and the local ice temperature will start to rise. This
pattern of temperature fluctuations opposite to the changes in load was observed
during the field tests (Gagnon and Sinha, 1991). After the load (pressure) drops, the
lateral sliding speed of the ice relative to the indenter will also be reduced along with
refreezing of the ice. Hence, the viscosity and friction of the ice will rebound and the
same processes will repeat. This is illustrated in Figure 6.10.

The release of elastic strain energy when the load drops was found to be about 25 -
40% of the load per cycle (Jordaan and Timco, 1988). The general conclusion based on
the medium scale ind ion tests using dwell” is that roughly equal

amounts of energy are imparted to the ice during upswings and downswings of load.
Since the time periods of downswings are usually shorter than that of the upswings,

the power imparted to the ice during the periods of downswings is higher than that
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of the upswings. Although frictional heating will also affect the processes mentioned

above, a sound thermodynamic analysis is required to explain these processes in detail.

6.6 Finite Element Implementation

The assumption that viscosity and friction vary as a result of pressure melting has

been implemented in finite element models. Two trial test cases have been made to

simulate the crushed ice tests and i ion tests. The simplified dam-

age model proposed in this chapter is applied to represent the behaviour of crushed

ice. Damage evolution is related to the mi 1 changes. The d

of damage will effectively reduce the elastic modulus of ice, and also strongly enhance
the creep process. This damage model has been developed in FORTRAN code and
implemented as a user subroutine in the ABAQUS finite element program. The repre-
sentation of the viscous and frictional coefficients are included in this user subroutine

as a function of pressure.

6.7 Modelling of the Crushed Ice Test

Because of the geometrical symmetry in crushed ice tests, only one half of the struc-
ture has been idealized into a finite element mesh, with the abscissa and ordinate as
the symmetrical axes (see Figure 6.11). The test speed was constant at 125 mm/s
(test 982). Since the modulus (or more precisely, the compressive strength) of the
crushed ice is a function of confining pressure and varies during the compaction, the
only possible way to get the value was to measure the modulus of the compacted ice
after tests, which was estimated to be about 1100 MPa. The stiffness of the test frame
was about 7140 MN/m, and the hydraulic loading system had a minimum stiffness of
about 3000 MN/m; the combined stiffness of the whole test system was calculated to
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Table 6.1: Parameters Used in the Model

Description Value
Elastic Modulus 9500 MPa
Poisson’s Ratio 0.3
Initial Damage for Crushed Ice 1.0
Initial Friction Coefficient 0.25
Reduced Friction Coefficient 0.05
Viscosity Reduction Factor 1000
Ice Temperature -10°C
be 2100 MN/m. A spring element is i to the stiffness.

Plane strain conditions are assumed in this analysis. At the ice-indenter interface,
an initial friction coefficient of 0.25 is applied using interface elements. The material
properties and constants used in the model are listed in Table 6.1.

The simulation using the first hypothesis, i.e. changing of viscosity due to pressure
melting, is illustrated in Figure 6.12. The viscosity of the ice is assumed to be reduced
by a factor of 665, once pressure melting occurs. Pressure oscillations were obtained
at a frequency of about 100 Hz. Note that measured average frequency of pressure
oscillation for test 982 is about 130 Hz (see Figure 6.9). It is found that the magnitude
and 'y of the load i are de on the reduction of viscosity.
Peak pressures of about 3 to 3.5 MPa were obtained which are not far off the measured
values. Due to the lack of the physical measurements, only preliminary results are

presented in this work.

It is conceivable that pressure melting could also affect the frictional properties
of ice as previously mentioned. As the pressure at the interface is building up, the
ice may start to melt. Note that the pressure along the interface is not uniformly

distributed. The center portion of the interface will start to melt first due to higher
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confining pressure. Once melting occurs, the friction coefficient will drop rapidly from
the center towards the edges. For simplicity, the friction reduction is assumed to be
simultaneous along the interface to a value of 0.03, since this value is common for high
speed friction between ice and metals (a layer of water lubricates the interface for high
speed friction tests). As shown in Figure 6.13, the mean pressure on the platen drops
rapidly. Upon reaching the valley of the pressure, the friction at the interface will be
recovered, and the mean pressure will rebound as shown in the figure. Repeating the

same the load oscillation occurs. A of about 120 Hz was obtained

which is very close to the value. C: peak were about 3 to
5 MPa which are more in the line with the measured values (see also Figure 6.9). It
is worth mentioning that without the recovery of the friction, the computation shows
that pressure curve will drop and remain flat at the valley as indicated by the dotted
line in Figure 6.13. This shows the important role of friction on the load fluctuations

during ice indentation.
6.8 Simulation of Ice Sheet Indentation Test

Figure 6.14 shows the initial finite element idealization of the trial test case for ice
sheet indentation. The mesh is on the order of 1.0 m x 1.0 m x 10.0 m. Loading

speed is 0.1 m/s. At the far end, the ice sheet was d on an elastic

At the interface, a layer of crushed ice of 0.1 m in thickness is defined between the
indenter and the solid ice sheet. Interface elements have been defined between the
indenter and the crushed layer, and between the crushed layer and the solid ice sheet.
In this analysis, the crushed layer is modeled using the simplified damage model.
The solid ice sheet is modeled as elastic material without damage, since most of the

damage and d i are d in the crushed layer. Figure 6.15
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shows the d load-time curve. The v of load oscillation is about 6 Hz.

The Peak loads are about 8 MN, which give the average pressures about 8 MPa on
the indenter, with a contact area of 1 m?. These are in the range of the results from
medium scale indentation tests. Again, as shown in the figure, without variation in
viscosity after the third load oscillation. the load curve remains flat without rebound.

The analyses presented in this Chapter are a few trial test cases, not intended to
simulate certain field experiments. The purpose is to try to find a simpler way to
model ice loads based on the analyses using the full scale model, the broad-spectrum
model. By assuming the viscosity of the material will be reduced when either damage
or the hydrostatic pressure reaches a critical value, the full scale model is simplified
to just one Maxwell unit. This will result in an easier model correlation with tests
and saving computation work. Analyses were also performed to specifically investi-
gate the effects of pressure melting on ice load oscillations. All of the analyses have
shown promising results. More laboratory high pressure tests are recommended to
provide detailed information on the effects of damage (structural changes) on the de-
formation processes, e.g. the specific roles of cracking, recrystallization and pressure
melting on the creep responses, at what stage of deformation, and on what kind of
loading and boundary iti With these i i the damage model can
be better calibrated against certain loading conditions. Finite element analyses can

then be performed to investigate the ice loads for a variety of loading and boundary
conditions, as well as the geometry of ice and structure. These may lead to a better

d ing of ice i i A i iri ion may be de-

rived by correlating the analysis results with field observations and test results. This
will be the ultimate goal of finite element analysis to develop a simple formulation

for practical applications.
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C4: model result as shown
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CB: test result (see Fig. 3.26 (L
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Figure 6.1: Force-time Curves for the trial test case.

Figure 6.2: Damage Distribution for the simple damage model at the peak load
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Figure 6.3: Damage Distribution for the simple damage model at the half way of the
load drop

Figure 6.4: Damage Distribution for the simple damage model after the load drop.



Figure 6.6: Tensile Zone near the Contact Surface.
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Chapter 7

Conclusions and Recommendations

The present study is a comprehensive examination of the role of damage and fracture

in brittle, vi: i ials. The and i ion of

the constitutive damage model have been documented. Triaxial compressive tests on

both intact and d: d ice, as well as medi le ice i i il on

Hobson's Choice Ice Island (1989, 1990) have been described. Investigations on the
test results have shown clear evidence of softening of the material and the enhance-
ment on the creep strain due to micro-structure changes (damage). These changes

include mi ing, dynamic recrystallization and pressure melting, which would

also be infl by the Special ion was given to the effects of

high shear stress and high confinement on the development of damage.

A multiaxial constitutive theory for brittle, viscoelastic materials is presented
based on viscoelasticity, continuum damage theory and fracture mechanics. The mi-
crostructural nature of the material and micromechanical processes have been mod-

elled by damage ics using i with a finite collection of

state variables. The change in the state variable is directly related to the individual
deformation process. Damage evolution is based on Schapery’s approach using the
generalized J integral theory. In the work of Xiao (1991) and Xiao and Jordaan
(1996), a damage model which is related to crack density was presented. The model

173
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could provide reasonable predictions for tests under low loading stress and confine-
ment. Jordaan et al., (1997) proposed a damage model which includes two state
variables. The second state variable is related to the damage processes under high
loading stress and confinement. In this study, the second state variable is modified
by using an exponential function to model the rapid growth of damage under high
loading stress (or l;;ading rates) and high confinement. Based on the broad-spectrum

approach, a constitutive model using three Kelvin units was developed. The con-

stitutive model includes the effects of mi king, dynamic ization and
pressure melting on the reduction in elastic modulus and the enhancement in creep

def ion. The model ictions of the strai relation for triaxial tests, as

well as the total load versus time histories for medium scale indentation tests show
good agreement with the measured results. Both the magnitude and distribution of
the contact pressure calculated from the model are realistic. The model predictions
also show clearly thin layers of highly damaged material near the contact surfaces.

Further research is recommended to investigate the effect of each individual micro-

process, such as pressure melting and recr ization on the
of the material.

A theoretical framework for analysis of fractures has been presented. The prop-
agation of flaws and cracks is included in the finite element model, which is also
consistent with the damage analysis. The modelling approach is based on the obser-
vations in the field and laboratory, particularly the medium-scale field tests in which
measurements have been made under controlled conditions.

The analysis of damage showed that, if damage alone occurred, for medium and
high loading speeds, the average stresses are much higher than those found in practice.

The damage analysis does not provide detailed i ion on the distribution of piece

sizes. Separate analysis could be conducted: for example, an upper bound could be
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found on the number of pieces by considering that the energy released upon fracture
was consumed entirely in creating surfaces.

The initial numerical analysis of fractures is believed to be a promising approach.
Propagation of cracks has been studied in terms of initiation and direction, and
spall pieces have been removed from the ice mass. The analysis has been combined

with the vi icity and damage ics that were previously formulated and

implemented. Calibration will require further effort; there is a complex interaction

between damage, spalling and the stress distributi Further

of the model to calibrate with respect to crack growth, size of spalls and associated
load reduction. scale effects, force-time curves (including slope), states of stress, and
frequency of the various activities is needed.

Initial indications are positive: a crack of 40 mm long was found to propagate
at less than one-half of the load found if damage only took place. Localization of
damage was found to follow naturally in geometries where the stress is concentrated;
such geometries would result from spalls.

Approximate solutions for spalling are seen as important. Solutions to the prob-
lem of spalling of ice sheets have been given by Evans et al. (1984) and by Wierzbicki
(1985), the latter based on the well-known solution of Kendall (1978). These solu-
tions are very useful in that they are in closed form; by the same token, the range of
situations for which answers are provided is limited. In the long term, it is impor-
tant to extend such solutions to cover a broader range of practical implementations.

The shear cracks found in the initial i are good candid: for

exploitation in this regard. Figure 7.1 illustrates a possible idealisation; further nu-

merical work is ad d before such idealisations are finally decided upon.

A simplified damage model using one Maxwell unit is proposed to model viscoelas-

tic materials under both intact and/or d d conditi With the reduction in
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Figure 7.1: Shear Crack near Critical Zone, Suggested by Numerical Analysis.

viscosity when either damage or the confining pressure reaches a critical value, the
simple model can provide very similar results as given by the broad-spectrum model
in terms of total load, damage and pressure distributions.

Fluctuations in load during ice-structure interaction arise for several reasons, but
mainly as a result of the crushing and brittle failure processes in ice. Results of tests
in the medium-scale as well as full-scale observations have shown regular force-time
patterns, as well as less regular ones. The regularity is partly related to the structure
response, but also to the failure processes in the ice. The evidence points to activity
in the “crushed layer” as being responsible for the regular variations (about 25 Hz in
the medium scale and 1 Hz in full scale). Spalling and fracturing of large pieces of
ice cause less frequent drops in load.

The physical mechanism of vibration in the crushed layer has been investigated

by means of numerical analyses using finite element models. Two hypotheses have



been explored. i.c (1) the variation of viscosity as a result of pressure melting; (2) the
variation of friction as a result of pressure melting. Two trial test cases have been
studied. Initial analysis shows that the variation of viscosity or friction due to pressure

melting can result in load (j illation. The itude and 'y of the

load ions are il by the ion of viscosity and friction. These

initial results are very promising for a realistic analysis of ice-structure interaction

events. Further exercising of the models, and a linking to the fracture analysis on

spalling and production of discrete ice pieces (as di in chapter 5) is
A detailed thermodynamic analysis is recommended to achieve a sound basis and
more experimental evidence regarding pressure melting are required to verify the
hypotheses noted above.

Based on the analysis of the experimental results and the model simulations de-

tailed in this work. some general conclusions can be made as follows:

1. The presence of cracks and damage signi h the creep
(delayed elastic strain plus secondary strain). The creep strain of damaged ice

can be several times larger than that of intact ice.

o

. The idealized damage model, consisting of combination of a Maxwell unit and
three Kelvin units with a nonlinear dashpot in each unit. has been shown to be

for the ice b i under certain loading conditions,

such as compressive loading.

Due to the domination of creep strain for a high degree of damage, the deter-

»®

of vi ities becomes signi This is i by the

of damage, confining pressure and loading rate.

4. This damage model based on the proposed constitutive theory can provide good
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on time-strain, i histories, damage progression, as well as
pressure distribution, under different loading conditions, such as loading rates,

confinement, stress and initial damage levels.

. Fracture analysis incorporating damage theory has been implemented into fi-

nite element models, which can provide realistic results on load-time histories,
damage distribution and progression, as well as contact pressure distribution
and progression. The peak load predicted by this approach is much smaller
than that of damage analysis alone, and realistic comparisons were made with
test measurements. The estimation of crushed ice layer thickness can be made

possible when more measurements on the distribution of damage are obtained.

. Analyses using a simplified damage model i ing the effects of pres-

sure melting in ice-structure interaction have been shown to be very promising.
The simple model can predict very similar results to those given by the broad-
spectrum model in terms of total load, damage and pressure distributions. Both
the frequency of load oscillation as well as the magnitudes of the peak loads are
in the range of field measurements. The effects of pressure melting on the struc-

ture and hanical ies of ice can be i as one i type

of damage process and require further research.
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