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Abstract

In this thesis, we define the spectrum problem for packings (coverings) of G to be
the problem of finding all graphs H such that a maximum G-packing (minimum G-
covering) of the complete graph with the leave (excess) graph H exists. The set of
achievable leave (excess) graphs in G-packings (G-coverings) of the complete graph is
called the spectrum of leave (excess) graphs for G. Then, we consider this problem

for trees with up to five edges.

We will prove that for any tree T with up to five edges, if the leave graph in a
maximum 7-packing of the complete graph K, has ¢ edges, then the spectrum of leave
graphs for T is the set of all simple graphs with ¢ edges. In fact, for these T" and i
and H any simple graph with ¢ edges, we will construct a maximum 7-packing of K,

with the leave graph H.

We will also show that for any tree 7" with k& < 5 edges, if the excess graph in
a minimum 7T-covering of the complete graph K, has i edges, then the spectrum of
excess graphs for T is the set of all simple graphs and multigraphs with i edges, except
for the case that 7" is a 5-star, for which the graph formed by four multiple edges is

not achievable when n = 12.
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In this thesis, we solve the spectrum problem for packings and coverings of the com-
plete graph with trees that have up to five edges. We prove that all possible leave
and excess graphs in packings and coverings of the complete graph with trees that
have up to five edges are achievable, except for the four multiple edges which is not
achievable in covering the complete graph on 12 vertices with 5-stars. Also we use

new techniques in our proofs.
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Chapter 1

Introduction

1.1 History

Graph decompositions were first introduced by Plucker in 1835 [33]. He considered
triangle-decompositions of the complete graph. In 1839, he realized that the necessary
conditions for the existence of a triangle-decomposition of a complete graph on n
vertices are n = 1 or 3 (mod 6) [34]. The generalization of this problem was stated
by Woolhouse in 1844 as follows [50].

Determine the number of combinations that can be made out of n sym-
bols, p symbols in each; with this limitation, that no combination of ¢

symbols which may appear in any of them may appear in any other.

This problem is asking for the maximum size of a Steiner system with parameters
q,p, and n. In 1847, Kirkman solved the problem for the case p = 3 and ¢ = 2[29]. In
fact, he proved that the condition n = 1 or 3 (mod 6) is also sufficient for the existence
of a triangle-decomposition of the complete graph on n vertices. Three years later,
Kirkman posed and solved his schoolgirl problem, in which he considers resolvable

triangle-decompositions of the complete graph [30].

Fifteen young ladies in a school walk out three abreast for seven days
in succession: it is required to arrange them daily so that no two shall walk

twice abreast.



Decomposition of the complete graph with non-clique graphs was first mentioned by
Dudeney in 1917 [12].

Nine schoolboys walk out in triplets on the six week days so that no boy
ever walks side by side with any other boy more than once. How would

you arrange them?

This problem involves resolvable path-decompositions of the complete graph.

The spectrum problem for decomposition for a graph G is to find necessary and
sufficient conditions for n such that the complete graph on n vertices has a G-

decomposition.

For any graph G, if a G-decomposition of the complete graph on n vertices exists,
it is obviously necessary that the number of vertices of G be at most equal to n, the
number of edges of the complete graph be a multiple of the number of edges of G,
and the greatest common divisor of the vertex degrees of G divide the degree of each
vertex of the complete graph, which is n — 1. In 1975, Wilson proved that for any
graph G, there exists an integer N such that for any n > N which satisfies these
necessary conditions, there is a G-decomposition of the complete graph on n vertices
[49]. However, in order to solve the spectrum problem for decomposition for a graph
G completely, it still remains to determine the specific conditions for n such that a
(G-decomposition of the complete graph on n vertices exists. Alternatively, what is

the smallest value for N that makes the statement true?

Since 1835, the spectrum problem for decomposition has been considered for many
graphs [1]. As in this thesis we are studying packings and coverings of the complete

graph with trees, here we will concentrate on trees.

In 1964, Ringel published his famous conjecture about the spectrum problem for
decomposition for trees, stating that for any tree 7" on k+ 1 vertices, the graph Koy,

has a T-decomposition (see [36]).

In 1967 Rosa introduced graph labelings in order to solve this conjecture. These
labelings are powerful tools not only for dealing with trees, but also for solving the

spectrum problem for decomposition for other types of graphs.

Two of the most important graph labelings are p-labelings and p*-labelings (see [5]

for all graph labeling definitions). Many results relating to graph labelings in general



(and p-labelings in particular) can be found in Gallian’s dynamic survey of labelings
[19]. There are two main results on the existence of a G-decomposition of K, the first
of which was given by Rosa and the second by El-Zanati et. al. (see [43] and [16]).

Theorem 1.1.1 [43] If a graph G has a p-labeling, then Ko pcy+1 has a G-decomposition.

Theorem 1.1.2 [16] If a graph G has a p™-labeling, then K, has a G-decomposition
for alln =1 (mod 2|E(G)]).

Several results for special types of GG such as trees have been proved using these two

theorems.

The maximum vertex distance of all pairs of vertices of a graph is called the
diameter of the graph. Removing all the vertices of degree 1 of a graph gives a new
graph called the base of the graph. A graph is called a caterpillar if its base is a path
and a lobster is a graph whose base is a caterpillar. A comet is a graph obtained
from a star by replacing each edge with a path of length k& for some fixed k. A tree
is symmetric if it can be rooted so that any two vertices in the same level have the

same degree.

The following two theorems summarize the main results on the existence of tree-
decompositions of K,. One arises from p-labeling and the other arises from pt-

labelings.
Theorem 1.1.3 [1] Let T be a tree belonging to one of the following families.

o Trees with at most 55 vertices (L. Brankovic and A. Rosa, private communica-
tion).

o Trees with at most 4 leaves [24].
o Trees of diameter at most 5 [23], [52].

o Symmetric trees [35].

Then Kop(r)+1 has a T-decomposition.

Theorem 1.1.4 [1] Let T be a tree belonging to one of the following families.



Trees with at most 21 vertices [20].

Trees of diameter at most 5 [16].

Symmetric trees of diameter 4 [17].

Caterpillars [43].

Comets [16].

Then K,, has a T-decomposition for alln =1 (mod 2|E(T)]).

The following theorems are a few other results in the approach to the solution of the

spectrum problem for decomposition for some classes of trees.

Theorem 1.1.5 [25] Let T be a caterpillar or lobster with m + 1 vertices. If n =
0 or 1 (mod 2m), then K, has a T-decomposition. Moreover, if m = 2% for some

integer a > 0, then n =0 or 1 (mod 2m) is also necessary for existence.

Theorem 1.1.6 [25] Let T be a tree with m + 1 vertices. If T contains a vertex of
degree d such that d > %(m +3), then K41 does not have a T -decomposition.

Theorem 1.1.7 [11] Let T be a tree with n + 1 vertices, let x be a vertex in T and
suppose either of the following holds.

e The graph obtained from T by removing x (and all the edges incident with x)

vn
4422

has at least n — 1solated vertices.

e For a non-negative integer d, the diameter of T is at most d + 2 and the graph
obtained from T by removing x has at least n — cn isolated vertices where ¢ =

(V14 (4+4d)? — 4 —4d)>.
Then Ko,y1 has a T-decomposition.

Paths and stars are two infinite classes of trees for which the spectrum problem for

decomposition is completely solved [46, 51].

Theorem 1.1.8 [47] If n and m > 2 are positive integers, then K, has a P,,-

decomposition if and only if n =1 orn > m, and n(n — 1) =0 (mod 2m — 2).



Theorem 1.1.9 [51] If n and k > 1 are positive integers, then K, has an Sy-
decomposition if and only if n =1 orn > 2k, and n(n — 1) =0 (mod 2k ).

The decomposition result which will be used the most in this thesis is the one estab-
lished by Huang and Rosa in 1978 (Theorem 1.3.1), where they solved the spectrum
problem for decomposition for trees with up to eight edges [25]. In fact, they proved
that for any tree 7" with up to eight edges, a complete graph has a T-decomposition
if and only if the number of edges of the complete graph is a multiple of the number
of edges of T'.

Up to this point, we have discussed graph decompositions. But what can we
say when no decomposition exists? In this case, getting as close as possible to a
decomposition is still desirable. This leads to packing and covering problems. The
earliest result on packing was established by Kirkman in 1847, when he considered
the problem of packing the complete graph with triangles [29]. In fact, he found the
number of triangles in a maximum triangle-packing of the complete graph on any

number of vertices.

Since 1847, the packing and covering problems have been considered for many

graphs, the early results of which were collected in a survey paper by Beineke in 1969
3].
In 1997 and 1998, Caro and Yuster established a Wilson-like result for the packing

and covering problems. In fact, they proved that for any graph H with h edges, there

exists a positive integer ng(H) such that for all integers n > ng(H) the H-packing

number of K, is Lg—z L"T_l

H, unless n = 1 (mod d) and @ = b (mod 2) where 1 < b < d in which case the

packing number is Lg—z L%IH — 1 [9]. They also proved that for any graph H with h

edges, there exists a positive integer no(H) such that for all integers n > ng(H) the

H-covering number of K, is (d—" (”—AH , where d is the greatest common divisor of all

2n |~ d
degrees of H, unless d is even, n = 1 (mod d) and "= 4 1 =0 (mod 21, in which

d
case the covering number is [%w + 1 [10].

H, where d is the greatest common divisor of all degrees of

However, in order to solve the packing and covering problems completely, it is
required to find the smallest possible number ny(H ) in Caro and Yuster’s results. Since
1969, the packing and covering problems have been solved for many other graphs. For

instance, in 1999, Bryant et. al. considered packing and covering the complete graph



with cubes [2].

In papers published from 1975 to 1994, the problem of packing the complete
graph with cycles of the same length was settled for cycles of length at most six
[45, 44, 26, 27]. Moreover, for cycles of lengths four and six, the covering problem
is solved as well [45, 28]. In 2008, Bryant and Horsley considered a generalization of
the packing problem for cycles and solved the problem of packing the complete graph
with cycles of arbitrary specified length [6].

The packing problem has also been considered for paths. In 1983, Tarsi conjectured
that the necessary and sufficient conditions for the existence of a packing of the
complete multigraph on n vertices with multiplicity A with paths of arbitrary specified
lengths, are that the length of each path is at most n — 1 and the sum of the lengths is
at most the number of edges of the complete multigraph [47]. He proved his conjecture
for odd n, even A, and each length being at most n —3. In 2009, Bryant proved Tarsi’s

conjecture for the general case [4].

The problem of packing and covering the complete graph with trees that have
up to six edges was solved by Roditty [37, 38, 39, 40]. In fact, for any tree T" with
up to six edges, Roditty found a maximum 7T-packing of the complete graph on any
number of vertices with a leave graph whose edges could be covered by adding one
more tree 1" to the packing. Using this method, he could obtain maximum 7-packings
and minimum 7T-coverings simultaneously. He proved that except for some small n,
the number of trees T" in a T-packing (7-covering) of the complete graph on n vertices

is equal to V(’;—ZI)J ({%W >, where T is any tree with 7 edges, ¢ < 6.

In papers published from 1993 to 1997, Kennedy solved the problem of packing
and covering the complete graph with hexagons. Moreover, she found necessary and

sufficient conditions for the existence of every possible leave and excess graph [26, 27,
28].

In this thesis, we introduce the spectrum problem for packing (covering), which
is to determine the set of all achievable leave (excess) graphs in maximum packings
(minimum coverings) of the complete graph with isomorphic graphs G. As stated
above, Kennedy in fact solved the spectrum problem for packing and covering for
hexagons. We consider these problems for trees with up to five edges, and prove
that all possible leave (excess) graphs in maximum packings (minimum coverings) of

the complete graph with trees that have up to five edges, are achievable. However,



the graph formed by four multiple edges cannot be obtained as the excess graph in

covering the complete graph on 12 vertices with 5-stars.

In the first chapter, we see the history behind this work as well as definitions and

preliminaries which will be needed in the next chapters.

The second chapter contains two sections. The first section consists of two main
theorems which state that all possible leave and excess graphs in maximum packings
and minimum coverings of the complete graph with 4-stars are achievable. The results
of this section are accepted for publication in the Journal of Combinatorial Mathe-
matics and Combinatorial Computation [13]. The second section also consists of two
theorems which state the same results for 5-stars, except for the graph formed by four
multiple edges which is not achievable as the excess graph in covering the complete
graph on 12 vertices with 5-stars. The results of this section are published in Graphs

and Combinatorics [15].

The third chapter contains two main theorems which state that all leave and ex-
cess graphs in maximum packings and minimum coverings of the complete graph with
trees that have up to five edges are achievable. The results of this chapter are ac-
cepted for publication in the Journal of Combinatorial Mathematics and combinatorial

computation [14].

Finally, in the fourth chapter we will summarize the results and discuss future

directions.

1.2 Basic Definitions

A graph G = (V, E) is formed by a finite set V' of vertices and a set E of edges joining
pairs of distinct vertices. The vertices u and v are called adjacent if there is an edge
between them and the edge is denoted by {u,v}. If there is at most one edge between
every pair of vertices, the graph is called a simple graph. In this thesis, we assume the
graphs are simple, unless otherwise stated. If there is more than one edge between two
vertices, the graph is called a multigraph and those edges are called multiple edges.
The degree of a vertex is the number of edges which are incident with that vertex. A

vertex is isolated if its degree is zero.

A complete graph on n vertices, denoted K, is a graph on n vertices where all



pairs of vertices are adjacent.

We call a graph G = (V, E) bipartite if V' admits a partition into two classes such
that every edge has its ends in different classes. A bipartite graph in which every two
vertices from different partition classes are adjacent is a complete bipartite graph. A

complete bipartite graph with class sizes m and n is denoted by K, .

For each positive integer n the complete bipartite graph S,, = K, is called an
n-star. The vertex of degree n is the center and the vertices of degree 1 are the leaves
of the star.

A path P is a sequence of distinct vertices with each pair of consecutive vertices
in P joined by an edge. We denote a path on n vertices by P,,. If we join the first and
last vertex on this path, we call it a cycle. A cycle on n vertices is denoted by C),.
A connected graph is a graph with at least one path between each pair of vertices. A

tree is a connected graph which contains no cycles.

Two graphs G and G’ are called isomorphic if there exists a one-to-one correspon-
dence between the vertices in G and the vertices in G’ such that a pair of vertices
are adjacent in G if and only if the corresponding pair of vertices are adjacent in G'.
Such a one-to-one correspondence of vertices that preserves adjacency is called an

1somorphism. For example, the graphs in Figure 1.1 are two isomorphic 5-cycles.

a b a d

€ I C v b

d e

Figure 1.1: Two isomorphic graphs

Let m and n be positive integers. The disjoint union of graphs G and H, denoted
G + H, is a graph with the union of vertex sets of G and H as its vertex set and the
union of the edge sets of G and H as its edge set. The join of simple graphs G and
H, denoted G V H is the graph obtained from the disjoint union G + H by adding
the edges {{z,y}|z € V(G),y € V(H)}. Also for any graph G, mG is the graph



consisting of m pairwise disjoint copies of G. Furthermore, we denote the complete

multigraph on n vertices with multiplicity m by K] following West [48].

Consider the graph G V H where G and H are graphs on m and n vertices,
respectively. A (Z,, Z,)-labeling of the vertices of the graph G V H is a labeling such
that the vertices of G are labelled with the elements of Z,, having subscript 1 and the

vertices of H are labelled with the elements of Z, having subscript 2.

For graphs G and H, a G-decomposition of H is a partition of the edge set of
H into graphs isomorphic to G. A G-design of order n is a G-decomposition of the
complete graph K,,. The spectrum problem for decomposition for a graph G is to find
necessary and sufficient conditions on n such that a G-design of order n exists, and
the spectrum of decomposition for a graph G is the set of integers satisfying those

conditions.

For graphs G and H, a G-packing of H is a set of subgraphs of H all isomorphic
to G, such that each edge of H is contained in at most one subgraph. Let P be a
G-packing of H and P be the graph with vertex set V(H) and edge set the union of
the edges of all subgraphs in P. The non-isolated vertices of the graph H\ P together
with the edge set of this graph forms a graph called the leave graph. Hence, if H is a
simple graph, then the leave graph is also a simple graph. A mazimum G-packing of

H is a G-packing with the smallest possible number of edges in the leave graph.

A G-covering of H is a set of subgraphs G of H whose union is H. Let C be a
G-covering of H and C' be the graph with vertex set V(H) and edge set the union
of the edges of all subgraphs in C. Consider the set of edges of C' a multiset with
the multiplicity of each edge e being the number of subgraphs that include e. Then
the graph C\H is called the excess graph. Hence, the excess graph is possibly a
multigraph even when H is simple. A minimum covering of K, with isomorphic
graphs G is a covering with the smallest number of edges in the excess graph. Note
that in a packing, every edge exists in at most one subgraph, while in the covering

every edge exists at least in one subgraph.

Figures 1.2 and 1.3 illustrate a Kj3-packing and a maximum Kj-packing of K,

with the leave graphs K33 and 3K, respectively.
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Figure 1.2: A Kj3-packing of Kj

=

Figure 1.3: A maximum Kj3-packing of K

Figure 1.4 demonstrates a K3-covering of K with the edges {1,2} (twice), {0, 2},
{1,5},{2, 3}, and {2,4} as the edges of the excess graph.

0 1
5@2
4 3

Figure 1.4: A Kjs-covering of K

Figure 1.5 represents a minimum K3-covering of Kg, with the edges {0, 1}, {2, 3},
and {4,5} as the edges of the excess graph.
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4 3

Figure 1.5: A minimum Kj3-covering of K

The G-packing number (G-covering number) of H is the number of graphs G in
a maximum G-packing (minimum G-covering) of H. The G-packing (G-covering)
problem of a graph H is to determine the G-packing number (G-covering number) of
H. Roditty solved the problem for all trees with up to six edges [37, 38, 39, 40].

Different packings (coverings) might lead to different leave (excess) graphs, even
in the case of maximum packings (minimum coverings). The spectrum problem for
packing (covering) for a graph G is to determine the set of all achievable leave (excess)
graphs in maximum G-packings (minimum G-coverings) of the complete graph. We
call this set the spectrum of leave (excess) graphs for G. We consider these problems
for trees with up to five edges. In fact, we prove if the leave graph in a maximum
T-packing of any complete graph has ¢ edges, then the spectrum of leave graphs for
T is the set of all simple graphs with 7 edges, when T is any tree with up to five
edges. We also prove that for any tree T" with up to five edges, if the excess graph in a
minimum 7-covering of the complete graph has i edges, then the spectrum of excess
graphs for T is the set of all simple graphs and multigraphs with ¢ edges, except for

graph K3 which cannot be the excess graph in any Ss-covering of Kis.

1.3 Preliminary Results

In this section, we will present several lemmas which will be used in the proofs of the

theorems in the next chapters.

The non-isomorphic trees with three edges are S3 and P,, the non-isomorphic trees

with four edges are S, Ps, and A, and the non-isomorphic trees with five edges are
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Ss, B,C, D, E, and P as shown in Figure 1.6.

55 P4
T2
h—{—d *—o—o—0—0
r1 T4 s
S xs3 A Py
T2

s Ir1 s Ie

Ss T4 B L3 C
T T3 s
*—0—0—0—0—0
xr1 T2 X3 T4 Ts Ty T4
T3 Ze
D E Ps

Figure 1.6: All non-isomorphic trees with three, four, or five edges

Notation. For any integer k, we denote the star Sy with the center x and leaves
Y1, Y2y - - Yk DY (T591, Y2, - - ., Yk). Also for any integer k, we denote the path P, with
the sequence of vertices xq,%s,...,zx by (z1,%2,...,2%). Now consider the vertex
labels in Figure 1.6. We denote the trees A, B,C, D, and E with (z1; xe, x3, 24 — x5),
(2122, X3, T4, T5 — Tg), (T1;2,%3, T4 — T5 — Te), (T35 Te, T2, T4 — T1,T5), and (@7 —

T, T3; T4 — T, Tg), respectively.

In 1978 Huang and Rosa [25] solved the spectrum problem for decomposition for
trees with up to eight edges.

Theorem 1.3.1 [25] If n is any positive integer and T is any tree with i edges, where
1 < 8, then the complete graph K, has a T-decomposition if and only if @ =
(mod i).

Roditty solved the packing and covering problems for trees with up to six edges

37, 38, 39, 40].
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Theorem 1.3.2 [37, 38, 39, 40| If T is a tree with i edges wherei < 6 andn > 2i—1

s any integer, then the T-packing number of K, is L 5

J and the number of edges

. . . . n(n—1) . | n(n—1)
in the leave graph of a maximum T-packing of K, is =5 —1 L 5 J

Theorem 1.3.3 [37, 38, 39, 40] If T is a tree with i edges where i < 6 and n > 2i
n(n—1)

s any integer, then the T-covering number of K, is { 5

-‘ and the number of edges

. . . .| n(n=1) n(n—1)
i the excess graph of a minimum T-covering of K,, is i [ 5; W - =5

We will use the following lemmas in the proof of our main theorems.

Lemma 1.3.4 Let s be a positive odd integer and sKs be the union of s disjoint edges.
For positive integers s and t with s <t the complete bipartite graph K, 5 can be packed
with (t — 1)-stars with an sKy as the leave graph.

Proof. Label the vertices of K, , with a (Z;, Z,)-labeling. The following stars form a
maximum S;_j-packing of K; s with the s edges {01, 12}, {11,22}, ..., {(s — 2);, (s — 1), },
and {(t —1);,0,} as the leave graph (see Figure 1.7). For numbers with subscript 1
the computations are done modulo ¢ and for those with subscript 2 the computations

are done modulo s.

(ZQ,Zl,(Z+1)1,,(Z+t—2)1), i:O,l,...,S—l.

1, 29 31 4,
\} /
\ PRy
S
7
//\ £

\Y

02 15 295

Figure 1.7: An Ss-packing of K35 with the leave graph 3K

The proof to Lemma 1.3.5 is trivial.
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Lemma 1.3.5 If m, n, and k are positive integers, then the complete bipartite graph

K kn has an Si-decomposition.

Lemma 1.3.6 If k is a positive integer and s is a positive odd integer, then the graph
K,V &2(871)[(1 has an Sy-decomposition.

Proof. Let k be a positive integer and s be a positive odd integer. Label the vertices of

the graph K,V %Kl with a (Zs, Z (s-—yx-1 )-labeling. Then, the following stars
2

form an Si-decomposition for K, V WIQ where ¢ € Z, and j = 0,1,..., %

(see Figure 1.8).

(i;0+7+ 1)1, (KF=1)5)2, (B=1)j+ 1)y, (k=1)j +2)y,...,((k=1)j + k —2),)

01 L 2 31 4q

Figure 1.8: An S;-decomposition of K5V 6K,

Lemma 1.3.7 If k is a positive integer, s is a positive odd integer, and k > %, then

the graph KgV %_—;HKl has an Sy-decomposition.

Proof. Let k be a positive integer and s be a positive odd integer such that k > %
Label the vertices of K,V 2’“’2“”“ K, with a (Zs, Z2k72s+l )-labeling. The following stars

will form an Si-decomposition for the graph K, Vv 2’“‘;“ K (see Figure 1.9).

1 % —s—1
<z’1;(i+1)1,(i+2)1,...,(z’+<S )) ,02,12,...,<—S >),iEZS.
2 1 2 2
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01 11 21 31 41

02 15 29

Figure 1.9: An Ss-decomposition of K5V 3K,

Corollary 1.3.8 If k > 2 is a positive integer, then the graph Ksi_1 has a maximum
Sk-packing with a single edge as the leave graph.

Proof. For k = 2, Ky, is a triangle and the result follows immediately. For k& > 2,
write Kop_1 = Kor_3V Kj. Letting s = 2k — 3, the result follows by Lemma 1.3.7. B

Corollary 1.3.9 Ifn and k are positive integers such that n = 2k —1 (mod 2k), then

K,, has a mazimum packing with k-stars with a single edge as the leave graph.

Proof. Let n be a positive integer such that n = 2k — 1 (mod 2k). If n = 2k — 1, the
result follows from Corollary 1.3.8. If n > 2k — 1, then write K,, = Kop_1 V K;,_og11-
Since n = 2k — 1 (mod 2k), K,,_ox11 has an Si-decomposition, R, by Theorem 1.1.9.
Moreover, Ko,_1 has a maximum packing S with k-stars with a single edge as the
leave graph, by Corollary 1.3.8. Now, Ko;_1 n—2k+1 iS a complete bipartite graph with
one part of size a multiple of k£ and hence, it has an S;-decomposition 7" by Lemma
1.3.5. Therefore, RU S UT is a maximum Si-packing of K, with a single edge as the
leave graph. l

The following lemmas will greatly reduce the number of cases in the proofs of our

main theorems.

Lemma 1.3.10 Ifk is a positive odd integer, n > % 15 an integer, and H 1is the leave

graph (excess graph) in an Sy-packing (Sk-covering) of the complete graph K,, then
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there exists an Sy-packing (Sy-covering) of K,y with H as the leave graph (excess

graph,).

Proof. Let k be a positive odd integer and n > % be a positive integer. Write

Ky = K,V K. Let R be an Sg-packing of K,, with the leave graph H. Label the
vertices of K,V Ky with a (Zy, Z,)-labeling. The set of vertices {01, 11, . . ., (25=2), },
the set of vertices {0q,1s,...,(k —1),}, and the edges between these two sets form

a complete bipartite graph with one part of size a multiple of k. Hence, by Lemma
1.3.5, this complete bipartite graph has an Si-decomposition, S. Moreover, the set of
anbd) (B2 L., (n— 1), the set of vertices 0z, 1s, ..., (k — 1),, the
edges between these two sets, and the edges between the vertices of the second set
form a K V %Kl. Hence, by Lemma 1.3.7, the graph K V %Kl has an Sj-

decomposition, T'. Therefore, R U S UT forms an Si-packing of K, with H as the

vertices (

leave graph.

The proof is similar for the covering case. B

Lemma 1.3.11 Ifk and n are positive integers such that n > 2k, and H is the leave
graph (excess graph) in an Sk-packing (Sy-covering) of the complete graph K, then
there exists an Sy-packing (Sy-covering) of K, o with H as the leave graph (excess

graph,).

Proof. Let k£ and n be positive integers such that n > 2k. Write K, 1o = Ko V K,,.
Let R be an Si-packing of K, with the leave graph H. The graph Ky has an S-
decomposition, S, by Theorem 1.1.9. Moreover, the set of vertices of K,,, the set of
vertices of Ky, and the edges between these two sets form a complete bipartite graph
with one part of size a multiple of k. Hence, this graph has an Si-decomposition, T,
by Lemma 1.3.5. Therefore, R U S UT forms an Sp-packing of K, o, with the leave
graph H.

The proof is similar for the covering case. B

Note that the Lemmas 1.3.10 and 1.3.11 work for maximum packings and minimum

coverings as particular cases, but also work for decompositions.

Lemma 1.3.12 If m and n are positive integers and n > 2, then the graph Ksp, ,

has a Py-decomposition.
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Proof. Let m and n > 2 be positive integers. In order to prove the result, it suffices

to show that K3, and K33 have P;-decompositions.

For K3, label the vertices with a (Zs, Zs)-labeling. The following paths form a

Py-decomposition of K3 .
<017 027 117 12)7 (017 127 217 02)

For K33, label the vertices with a (Zs, Z3)-labeling. The following paths form a Pj-

decomposition of Kj 3.
(017 027 ]-17 ]-2)7 <O27 217 227 11)7 (217 127 017 22)
|

Lemma 1.3.13 If n > 2 is an integer and H is the leave (excess) graph in a Pj-
packing (Py-covering) of K,, then there ezists a Py-packing (Pj-covering) of K3
with the leave (excess) graph H.

Proof. Let n > 2 be an integer and R be a maximum P;-packing of K, with the
leave graph H. Write K,,.3 = K,V K3. Label the vertices of K,V K3 with a (Z,, Z3)-
labeling. The set of vertices {21,31,...,(n — 1), }, the set of vertices {02, 12,25}, and
the edges between these two sets form a graph K, 3 which has a P;-decomposition,
S, by Lemma 1.3.12. The set of vertices {01, 11}, the set of vertices {0, 12,25}, the
edges between these two sets, and the edges within the latter, form a graph 2K V K3.
The following paths form a P;-decomposition, T, for this graph.

(017 027 127 11)7 (017 127 22) 11)7 (017 227 027 11)

Therefore, RU S UT forms a maximum Py-packing of K, 3 with the leave graph H.

The proof of the covering case uses a similar argument. Wl

Lemma 1.3.14 For positive integers m and n, n > 2, the graph Ky, has a T-

decomposition for any tree T" with four edges.

Proof. Let m and n > 2 be positive integers and T be any tree with four edges. The

result is immediate for the case that T is the star Sy, by Lemma 1.3.5.
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Now consider 7" as the tree A. It suffices to show that K,, and K,3 have A-
decompositions. For K, o, label the vertices of K, o with a (Z4,Zs)-labeling. Then,
the following trees form an A-decomposition of the graph Ky 5. (See Figure 1.10.)

(02; 01, 11,27 — 13), (12501, 14,31 — O2)

01 1 21 31

02 1o

Figure 1.10: An A-decomposition of Ky o

For K, 3, label the vertices of K, 3 with a (Z4,Z3)-labeling. Then, the following
trees form an A-decomposition of the graph Ky 3 (See Figure 1.11).

(01509, 19,29 — 11),(21;02,29, 15 — 13), (315 12, 29,05 — 14)

01 1 2, 31

02 1o 2

Figure 1.11: An A-decomposition of K, 3

Now consider T" as the path Ps. For K} 5, label the vertices with a (Z4, Z,)-labeling,.
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The following paths form a Ps-decomposition for the graph K.

(Ola 027 117 127 21)7 (017 127 317 027 21)

For K, 3, label the vertices with a (Z4,Z3)-labeling. The following paths form a

Ps-decomposition of Ky 3.
(01; 027 ]-17 ]-27 21)7 (017 227 217 027 31)7 (017 127 31) 227 11)

Corollary 1.3.15 Ifn > 1 is an integer, T any tree with four edges, and K, has a
T-packing with the leave graph H, then K, g has a T-packing with the leave graph H.

Proof. Let n > 1, T be any tree with four edges, and R be a T-packing of K, with
the leave graph H. Write K, ;s = K,, V Kgs. By Theorem 1.3.1, the complete graph
Kg has a T-decomposition, S. Moreover, the complete bipartite graph K, s has a
T-decomposition, U, by Lemma 1.3.14. Therefore, R U S U U forms a T-packing of
K, g with the leave graph H. B

Lemmas 1.3.16 and 1.3.17 will be used to prove that all possible leave graphs in

T-packings of K, are achievable, where T' is any tree with five edges.

Lemma 1.3.16 For positive integers m and n, the graph Ks,, », has a B-decomposition
and a C'-decomposition if n > 2, a D-decomposition and an E-decomposition if n > 3,

and a Ps-decomposition if n > 4.

Proof. Let m and n be positive integers, n > 2. We first consider B. It suffices
to show that K5, and K53 have B-decompositions. For K79, label the vertices with
a (Zs, Zy)-labeling. The following trees form a B-decomposition of K5 (see Figure
1.12).

(02501, 14,21,31 — 12), (12;04,14,2¢,45 — 0)
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02 19

Figure 1.12: A B-decomposition of Kj

For Kj3, label the vertices with a (Zs, Z3)-labeling. The following trees form a
B-decomposition of K33 (see Figure 1.13).

(02;01, 11, 21,31 — 12), (12501, 11,44, 21 — 22),(29; 04, 14, 31,41 — 03)

Now we consider C'. Again, it suffices to show that the graphs Kj- and Kj53 have

0, 14 2y 31 44

02 15 29

Figure 1.13: A B-decomposition of Kj 3

C-decompositions.

For Kj,, label the vertices with a (Zs, Zs)-labeling. The following trees form a

C-decomposition of K.

(02;01, 11,21 — 13 — 31), (12501, 14,41 — 02 — 31)
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For Kj 3, label the vertices with a (Zs, Zs)-labeling. The following trees form a C-

decomposition of K 3.
(02§ 01,141,271 — 15 — 31), (12; 01,11,41 — 25 — 21)7 (22; 01,11,31 — 02 — 41)

Now let n > 3. First we consider D. It suffices to prove that the graphs K53, K5 4,
and Kj 5 have D-decompositions.

For K3 3, label the vertices with a (Zs, Zs)-labeling. The following graphs form a
D-decomposition of K ;.

(01322,09, 15 — 14,21), (315 09, 19,29 — 14, 21), (415 12, 02,29 — 24, 14)

For K34, label the vertices with a (Zs,Z,)-labeling. The following graphs form a

D-decomposition of Kj 4.

(02; 01, 11,21 — 29, 15), (12504, 31,41 — 22, 32),
(22;01,21,41 — 32,02), (3201, 11,31 — 15,02)

For K35, label the vertices with a (Zs,Z;)-labeling. The following graphs form a

D-decomposition of K 5.

(31; 22,02, 15 — 01,21), (415 02, 15,29 — 01, 21), (01; 22, 32,42 — 31,41),
(11;292,02,32 — 21,41), (42531, 11,21 — 19, 32)

Now consider E. It suffices to prove the existence of an E-decomposition of the graphs
K5,37 K5,4; and K5,5-

For K53, label the vertices with a (Zs, Z3)-labeling. The following trees form an
E-decomposition of the graph K 3.

(02 — 01, 11321 — 12,25), (12 — 01, 11531 — 02,22), (29 — 04, 11; 41 — 09, 12)

For K54, label the vertices with a (Zs,Z,)-labeling. The following trees form an
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E-decomposition of the graph K 4.

(02 — 11,413 21 — 15, 29), (1o — 14,313 41 — 29, 39),
(29 — 01, 11331 — 02,32), (32 — 11,215 01 — 0q, 15)

For Ks5, label the vertices with a (Zs,Zs)-labeling. The following trees form an
E-decomposition of the graph K5 5. Note that the addition is taken modulo 5.

(i1 — (P4 1)y, (1 +2)g;00 — (i + 1), (1 +2),),i € Zs

Finally, let n > 4. Parker proved that there exist FPs-decompositions of K5 4, K55, K5 6,
and K7 [32]. Therefore, for any n > 4, the graph K, 5 has a Ps-decomposition. B

Lemma 1.3.17 If n > 7 is an integer, T any tree with five edges, and K, has a
T-packing (T-covering) with the leave (excess) graph H, then K, .5 has a T-packing
(T-covering) with the leave (excess) graph H. Furthermore, this statement is true if
n==06and T is any of B, C, D, or E, or ifn=>5 and T 1is either of B or C.

Proof. Case 1. n > 5T =B

Let R be a B-packing of K, with the leave graph H. Write K,,,5 = K,V K5. Label
the vertices of K,V K5 with a (Z,,, Zs)-labeling. The set of vertices {01, 11,21}, the set
of vertices {0y, 12,29, 35,45}, the edges between these two sets, and the edges within

the second set form a graph 3K; V K5. The following trees form a B-decomposition,
S, of 3K1 \ K5.

(7/2, 01, 11, (Z + 1)2, (Z -+ 2)2 — 21), 1 € Z5

Now, the set of vertices {31,41,51,...,(n— 1)1}, the set of vertices {02, 12,25, 32,45},
and the edges between these two sets form a complete bipartite graph Kj,_3, which
has a B-decomposition, U, by Lemma 1.3.16. Therefore, RUSUU forms a B-packing
of K, .5 with the leave graph H.

Case 2. n>5T=C

Let R be a C-packing of K,, with the leave graph H. Write K,,.5 = K,V K5. Label
the vertices of K,V K5 with a (Z,, Zs)-labeling. The set of vertices {04, 11, 2, }, the set

of vertices {09, 12,29, 35,45}, the edges between these two sets, and the edges within
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the second set form a graph K5V 3K;. The following trees form a C-decomposition,
S, of the graph K5V 3Kj.

(02; 19,259,071 — 35 — 11), (12; 29,32,11 — 49 — 21)7 (22; 32,42,21 — 09 — 11),
(32;42,09,21 — 19 — 01), (42509, 15,01 — 29 — 1)

Moreover, the set of vertices {31, 41,51, ..., (n—1)1}, the set of vertices {02, 12, 22, 32, 42},
and the edges between these two sets form a complete bipartite graph Kj,_3, which
has a C'-decomposition, U, by Lemma 1.3.16. Therefore, RUSUU forms a C-packing
with the leave graph H for K, 5.

Case 3. n>6,T=D

Let R be a D-packing of K,, with the leave graph H. Write K,, 15 = K,V K5. Label
the vertices of K,V K5 with a (Z,,, Zs)-labeling. The set of vertices {01, 11,21}, the set
of vertices {0y, 12,29, 35,45}, the edges between these two sets, and the edges within

the second set form a graph K5V 3K;. The following graphs form a D-decomposition,
S, of K5 vV 3K1

(22, 01, (Z + 1)2, (Z + 2)2 — 11,21),2. c Z5

The complete bipartite graph Kj,_3 with partite sets {31,44,51,...,(n — 1)1} and
{09, 15,29, 35,45}, has a D-decomposition, U, by Lemma 1.3.16. Therefore, RUSUU
forms a D-packing of K, 5 with the leave graph H.

Case4. n>6,T=F

Let R be an E-packing of K,, with the leave graph H. Write K,,,5 = K, V K.
Label the vertices of K, V K5 with a (Z,,, Zs)-labeling. The set of vertices {01, 11,2},
the set of vertices {0g, 15,29, 32,45}, the edges between these sets, and the edges within
the second set, form a graph K5V 3K;. The following trees form an £ decomposition
of the graph K5V 3Kj;.

(ig - 01, (Z + 2)2, (Z + 1)2 - 11,21),i S Z5

Since n > 6, the complete bipartite graph with partite sets {31,41,51,...,(n —1);}
and {0y, 12,25, 32,42} has an E-decomposition, S, by Lemma 1.3.16. Therefore, RUS
forms an E-packing of K, 5 with the leave graph H.
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Case 5. n>7,T = Fs

Let R be a FPs-packing of K, with the leave graph H. Write K5 = K,, V K.
Label the vertices of K, V K5 with a (Z,,, Zs)-labeling. The set of vertices {01, 11,2},
the set of vertices {0g, 15,29, 32,45}, the edges between these sets, and the edges within
the second set, form a graph K5V 3K;. The following paths form a Ps-decomposition,
S, of K5V 3Kj;.

(117 127 017 027 227 32)7 (017 227 217 ]-27 327 42)7 (217 327 117 227 427 02)7
(217 027 ]-17 427 ]-27 22)7 (217 427 017 327 027 12)

By Lemma 1.3.16, the complete bipartite graph with partite sets {31,44,51,...,(n —
1)1} and {09, 15,25, 35,45} has a Ps-decomposition, U. Consequently, RUSUU forms
a Ps-packing of K, 5 with the leave graph H.

The proof of the covering case uses a similar argument. Wl

Now, we see an example that shows how we can reduce the problem of finding a
maximum A-packing of the complete graph K, for any integer n with a possible leave
graph into the problem of finding a maximum packing of the complete graph K,, for
an integer m < 15, using the lemmas in this chapter. Suppose we desire to find the
leave graph 3K5 in a maximum A-packing of Kgyo. Write Kgoy = Kgog V K14. By
Theorem 1.3.1, the graph Kgps has an A-decomposition, R. Also the graph Kgpg 14 has
an A-decomposition, S, by Lemma 1.3.14. Therefore, we have reduced the problem to
finding a maximum A-packing, T, of the small graph K4 with the leave graph 3K,
such that RU S UT forms a maximum A-packing of Kgos with the leave graph 3K.

Generally, for any tree T' with four edges and any integer n, we have n = 8k -+’ for
some positive integer k and integer &', with 0 < k' < 7. We write K, = K,,_(/48) V
Ky, find a maximum T-packing of Kj g with the desired leave graph, and use
Theorem 1.3.1 and Lemma 1.3.14 to find a maximum A-packing of K, with that
leave graph. In Chapters 2 and 3, we see how to achieve any desired leave graph in
T-packings of K}/ g for any tree T with four edges and any integer 0 < k/ < 7. For
any tree T with five edges and any integer n, we use a similar method to achieve all

leave and excess graphs in T-packings and T-coverings of the complete graph K,,.



Chapter 2

The Spectrum of Leave and Excess
Graphs for Stars with up to Five
Edges

This chapter will discuss different leave and excess graphs in packings and coverings

of the complete graph with stars that have up to five edges.

2.1 The Spectrum of Leave and Excess Graphs for
Stars with up to Three Edges

In this section, we solve the spectrum of leave and excess graphs for stars with up to

three edges.
Since 1-stars consist of only one edge, for any integer n, K,, has an S;-decomposition.

For 2-stars, K, has an Sy-decomposition if n is even [8]. If n is odd, then the leave
(excess) graph in a maximum Sp-packing (minimum covering) of K, has at most one
edge, which has been achieved by Roditty [37].

For 3-stars, K, has an Ss3-decomposition if n = 0 or 1 (mod 3), and n # 3,4.
For n = 2 (mod 3),n > 5, the leave graph in a maximum Ss-packing of K, has one
edge, which has been achieved by Roditty [37]. Also for n = 2 (mod 3),n > 6, the

excess graph in a minimum Sz-covering of K, has two edges. Hence, the possible
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excess graphs are Ps, 2K, and K3. We prove that all these possible excess graphs are

achievable. By Lemma 1.3.10, it suffices to consider n = 8.

The excess graph Pj is achieved by Roditty [37]. In order to obtain the excess
graph K2, write Kz = K5V K3. Label the vertices of K5V K3 with a (Zs, Z3)-labeling.
By Theorem 1.3.2, K5 has an Ss-packing, R, with a single edge, say {31,4:} as the
leave graph. Moreover, the following stars form a minimum S3-covering, S, for the

remaining graph with the edges {02, 1o} used twice, as the excess graph.

(09; 12,01, 11), (025 12,21, 31), (125 02,01, 14), (12; 22, 21, 31),
(22; 02,01, 11), (22521, 31,41), (415 31,02, 1)

Therefore, RU S forms a minimum Sz-covering of Ky with the excess graph K2. The
edges of the excess graph are the edges {0y, 15} used twice. Now, substituting the
stars (0; 01, 11,2;) and (13;04, 11, 34) for (0g; 12,01, 1) and (12; 09,04, 11) respectively
in RU S will result in a minimum S3-covering of Ky with the excess graph 2K5. The

edges of the excess graph are {02,2;} and {15, 3;}.

2.2 The Spectrum of Leave and Excess Graphs for

4-stars

In this section, we find a corresponding maximum packing and minimum covering of

the complete graph with 4-stars for every possible leave and excess graph.

2.2.1 The Spectrum of Leave Graphs for 4-stars

Theorem 2.2.1 Let n > 7 be an integer and let the leave graph in a maximum
packing of the complete graph K, with 4-stars have © edges. For any graph H with i
edges there exists a maximum packing of K, with 4-stars such that the leave graph is

1somorphic to H.

Proof. By Theorem 1.3.1, K,, has an Sy-decomposition for n = 0 or 1 (mod 8). We
show that for the remaining cases we have maximum packings with all the possible

leave graphs.
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Case 1. n =2 or 7 (mod 8)

By Theorem 1.3.2, the leave graph is a single edge and the proof is complete in

this case.
Case 2. n = 3 (mod 8)

In this case, the leave graph has three edges. The non-isomorphic possible leave
graphs are S3, K3, P3 + K5, Py, and 3K,.

In order to get an S; as the leave graph, write K,, = K, 3V Kj3. Since n =
3 (mod 8), we have n — 3 = 0 (mod 8) and hence K,,_3 has an S;-decomposition,
R, by Theorem 1.3.1. Label the vertices of K, 3V K3 with a (Z,_s, Z3)-labeling.
Now, the set of vertices {01, 11,21}, the set of vertices {02, 12,25}, the edges between
these two sets of vertices, and the edges within the second set form a K3 V 3Kj.
By Lemma 1.3.6, K3V 3K; has an Sy-decomposition, S. Now, the set of vertices
{31,441,...,(n —5)1}, the set of vertices {02, 12,25}, and the edges between these two
sets of vertices form a complete bipartite graph which has one part of size a multiple of
4. Therefore, by Lemma 1.3.5 this complete bipartite graph has an Ss-decomposition,
T. Hence, RU S UT forms a maximum packing of K, with 4-stars with the 3-star
((n —4);;04,15,2) as the leave graph.

In order to obtain 3K as the leave graph, again write K,, = K,,_3V K3, if n > 19.
Label the vertices as above and let R and S be the same decompositions. Now,
the set of vertices {31,41,...,(n —9),}, the set of vertices {0, 15,25}, and the edges
between these two sets of vertices form a complete bipartite graph with one part of
size a multiple of 4. Hence, by Lemma 1.3.5, this complete bipartite graph has an
Sy-decomposition, 7. Now, the set of vertices {(n —8),,(n —7),,(n —6),, (n —5),,
(n—4),}, the set of vertices {02, 15,2}, and the edges between these two sets of
vertices form a Ks35. By Lemma 1.3.4, K35 has a maximum packing, (), with the
leave graph 3K,. Hence, RUSUT U(Q forms a maximum packing of K,, with 4-stars
with the leave graph 3Ks.

If n = 11, in order to achieve 3K, as the leave graph, write K13 = Kg V Kj.
Label the vertices of KgV K3 with a (Zs, Z3)-labeling. By Theorem 1.3.1, Kg has an
Ss-decomposition, R. The set of vertices {01, 12,21}, the set of vertices {02, 12,25},
the edges within the latter set, and the edges between these two sets, form a graph

K3V 3Ky, which has an S;-decomposition, S, by Lemma 1.3.6. Moreover, the set of
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vertices {31,41, 51,61, 71}, the set of vertices {0z, 15,25}, and the edges between these
two sets, form a complete bipartite graph Kjss, which has a maximum Sy-packing,
T, with the leave graph 3K5, by Lemma 1.3.4. Therefore, RU S UT is a maximum
Sy-packing of Kg with the leave graph 3Ks.

Now, to achieve K3 as the leave graph, write K,, = K,,_1 V K. Label the ver-
tices of K,_; with the elements of Z,_; and the single vertex of K; with oo. Since
n = 3 (mod 8), by Theorem 1.3.2, K,,_; has a maximum Sy-packing, R, with the
edge {n — 3,n — 2} as the leave graph. Moreover, the set of vertices {0,1,...,n — 4},
the set of vertex {oo}, and the edges between these two sets, form a graph K,_31,
which has an Sy-decomposition, S, by Lemma 1.3.5. Therefore, R U .S forms a max-
imum Sy-packing of K, with the leave graph Kj3. The edges of the leave graph are
{n —3,n—2},{n — 2,00}, and {oo,n — 3}. Figure 2.1 illustrates the last step in
achieving a maximum Sy-packing of K;; with the leave graph Kj3. Each thick line

connected to an oval takes the place of a 4-star.

Figure 2.1: The last step in achieving a maximum Sy-packing of K;; with the leave

graph K3

In order to obtain P, as the leave graph, again write K,, = K, _; V K; and label the
vertices in the same way, and let R be the same maximum packing with the edge
{n—3,n—2} as the leave graph. The set of vertices {1,2,...,n—3}, the set of vertex
{00}, and the edges between these two sets of vertices form a complete bipartite graph
with one part of size a multiple of 4. Hence, by Lemma 1.3.5, this complete bipartite

graph has an S;-decomposition, S. Therefore, R U .S forms a maximum Sy-packing of
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K,, where the three edges {n —3,n — 2}, {n — 2,00}, and {oc0,0} are left, which form
a P;. Figure 2.2 illustrates the last step in achieving a maximum Sy-packing of Ky,
with the leave graph P,;. Each thick line connected to an oval takes the place of a

4-star.

Figure 2.2: The last step in achieving a maximum Sj-packing of Ki; with the leave

graph Py

Finally, to achieve P3 + K5 as the leave graph, again write K, = K,,_1 V Ky, label
the vertices the same way, and let R be the same maximum packing with the same
leave graph. The set of vertices {2, 3,...,n—2}, the set of vertex {oc}, and the edges
between these two sets of vertices form a complete bipartite graph with one part of
size a multiple of 4. Hence, by Lemma 1.3.5, this complete bipartite graph has an
Sy-decomposition, S. Therefore, RUS forms a maximum Ss-packing of K,, where the
three edges {n — 3,n — 2}, {0, 00}, and {oo, 1} are left which form an P; + K5 (see
Figure 2.3, in which each thick line connected to an oval takes the place of a 4-star).
Figure 2.3 illustrates the last step in achieving a maximum Sy-packing of Kj; with
the leave graph P3 + K. Each thick line connected to an oval takes the place of a
4-star. This completes the proof in this case. Case 3. n =4 (mod 8)

By Theorem 1.3.2 the leave graph has two edges in this case. Hence, the possible
leave graphs are P3 and 2K5. In order to obtain Pj as the leave graph, write K,, =
K,_1V K;. Label the vertices of K,_; with the elements of Z,,_; and the single vertex
of Ky with co. Since n = 4 (mod 8), K,_; has a maximum Sy-packing, R, with

an S5 as the leave graph as stated in Case 2. Let the edges in this leave graph be
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Figure 2.3: The last step in achieving a maximum Sy-packing of K;; with the leave
graph Ps; + Ko

{n—2,n-3}, {n—2,n—4}, and {n—2,n—5}. Now, the set of vertices {0, 1,...,n—5},
the set of vertex {oo}, and the edges between these two sets of vertices form a complete
bipartite graph with one part of size a multiple of 4. Hence, by Lemma 1.3.5, this
complete bipartite graph has an S;-decomposition, S. Therefore, we are left with the
edges {n —2,n -3}, {n—2,n—4}, {n —2,n—>5}, {oo,n — 4}, {co,n — 3}, and
{oo,n — 2}. Therefore, RUSU{(n —2;n—3,n—4,n—>5,00)} forms a maximum
Sy-packing of K, where the two edges {oco,n — 3} and {oo,n —4} are left, which form
a Pj.

In order to achieve 2K, as the leave graph, write K,, = K, 4V K4. Label the
vertices of K,,_4 V Ky with a (Z,_4,Z4)-labeling. Since n = 4 (mod 8), K,,_4 has an
Ss-decomposition, R. The set of vertices {01, 11,2}, the set of vertices {02, 12,29, 32},
the edges between these two sets, and the edges within the second set form a graph
which we call H. The following 4-stars form a maximum Sy-packing of H, S, with
the edges {02,25} and {19,352} as the leave graph, which form a 2K5.

(22/ (Z + 1)2, 01, 11, 21),Z S Z4.

Now, the set of vertices {31,41,...,(n —5),}, the set of vertices {0, 12,2, 32}, and
the edges between these two sets of vertices form a complete bipartite graph with one

part of size a multiple of 4. Hence, by Lemma 1.3.5, this complete bipartite graph
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has an Sj-decomposition, T'. Therefore, R U S UT forms a maximum Sy-packing of
K,, where the edges {0s,25} and {1s,32} are left which form a 2K5. This completes

the proof in this case.
Case 4. n =5 (mod 8)

In this case, again by Theorem 1.3.2, the leave graph has two edges. Write K, =
K, 1V Kj. Since n =5 (mod 8), we have both of the possible leave graphs for K,
by Case 3. Let H be one of the leave graphs. Since n—1 is a multiple of 4, by Lemma
1.3.5, K,_11 has an Sj;-decomposition. So, the leave graph is H and the proof is

completed in this case.
Case 5. n =6 (mod 8)

By Theorem 1.3.2, the leave graph has three edges in this case. Write K, =
K, 3V K3. Since n = 6 (mod 8), we have all the possible leave graphs of Sy-packings
of in K,,_3 from Case 2. Let H be one of those leave graphs and R be the corresponding
packing. Label the vertices of K,,_3V K3 with a (Z,,_3, Z3)-labeling. The set of vertices
{01, 11,2, }, the set of vertices {0y, 15, 25}, the edges between these two sets of vertices,
and the edges between the vertices in the second set form a K5V3K;. By Lemma 1.3.4
this graph has an Ss;-decomposition, S. Now, the set of vertices {31,44,...,(n —4),},
the set of vertices {0y, 12,25}, and the edges between these two sets of vertices form
a complete bipartite graph with one part of size n — 6. Since n = 6 (mod 8), n — 6
is a multiple of 4 and hence, this complete bipartite graph has an S;-decomposition,
T, by Lemma 1.3.5. Therefore, R U S UT forms a maximum Sy-packing of K, with
4-stars with the leave graph H and this completes the proof in this case.

Note that for n = 6 the only possible leave graph is K3, which shows that the condition
n > 7 in Theorem 2.2.1 is necessary. In order to prove that for n = 6 the only possible
leave graph is K3, label the vertices of Kg with the elements of Zg. Any maximum
packing contains 3 stars. Without loss of generality we assume the first star to be

(0;1,2,3,4). We have two options for the next star center.

Assume we choose vertex 5 as the center of our next star. We can choose the
leaves of the star to be the vertices 1, 2, 3, and 4 or choose one of the leaves to be
the vertex 0 and the others to be three of the vertices 1, 2, 3, and 4. The first choice

is impossible since every vertex will have degree at least two and we cannot add the
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third star. Hence, without loss of generality assume the second star to be (5;0, 1,2, 3)
and we have to choose (4;1,2,3,5) as the third star and the leave graph will be the
triangle with the edges {1,2}, {2,3}, and {3, 1}.

Now, assume we choose one of the vertices of degree one to be the center of our
second star. Without loss of generality we can take (1;2,3,4,5) as the second star.
Hence, the only possibility for the third star will be (5;0, 2,3, 4) which gives a triangle
with the edges {2,3}, {3,4}, and {4, 2} as the leave graph which completes the proof.

2.2.2 The Spectrum of Excess Graphs for 4-stars

In the previous subsection we illustrated how we can achieve all the possible leave
graphs in an Sy-packing of K,. Now, we show that we can obtain every possible

excess graph in a minimum Sy-covering of K,, as well.

Theorem 2.2.2 Let n > 8 be an integer and let the excess graph in a minimum Sy-
covering of the complete graph K, have i edges. For any graph H with i edges there

exists a minimum Sy-covering of K, such that the excess graph is isomorphic to H.

Proof. Again we know that for n = 0 or 1 (mod 8), K, has an Ss-decomposition. We
show that for the remaining cases we have minimum coverings with all the possible

excess graphs.
Case 1. n =2 (mod 8)

By Theorem 1.3.3, the excess graph has three edges in this case. The possible
excess graphs with three edges are S3, K3, Py, P3s + Ko, 3Ks, K3, K2 + Ky, and F,

where F is the graph K3 with an edge attached to one of its vertices.

We can obtain the excess graph S3 from a maximum S;-packing of K, with the

leave graphs K5, adding a 4-star which has the leave graph of the packing as an edge.

For the excess graphs K3, Py, P3+ K5, and 3K5, we use the following construction.
Write K,, = K,,_3 V K3. Label the vertices of K,,_3V K3 with a (Z,_3, Z3)-labeling.
Since n = 2 (mod 8), by Case 6 in the proof of Theorem 2.2.1, K,,_3 has an S;-packing,
R, with a single edge as the leave graph. Let {(n —5), (n —4),} be that single edge.
Consider the set of vertices {01, 11}, the set of vertices {0q, 15,25}, the edges between

these two sets, and the edges within the second set. The following 4-stars form a
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minimum covering called S with the triangle formed by the edges {02, 12}, {02,252},
and {1s,25} as the excess graph.

(09;12,29,01, 11), (12: 02, 22,01, 11), (22; 02, 15,04, 15)

Now, consider the set of vertices {21,31,...,(n —5),}, the set of vertices {02, 15,25},
and the edges between these two sets. These form a complete bipartite graph with
one part of size a multiple of 4 since n = 2 (mod 8). Hence, by Lemma 1.3.5,
this complete bipartite graph has an S;-decomposition, 7. Therefore, RU S UT U
((n—4);;(n—5)y,02,15,25) forms a minimum Sy-covering of K, with a K3 as the
excess graph. The edges of the excess graph are {0y, 15},{02,25}, and {12,22} (see

Figure 2.4, in which the thick line connected to an oval takes the place of a 4-star).

Figure 2.4: An Sy-covering of Ky with the excess graph K3

Consider the stars in the minimum covering above. Replacing the star (25; 09, 12,04, 11)
with (29;09, (n —4),,01,1;) gives the path P, as the excess graph. In fact, the excess
graph is the path ((n —4),, 2,02, 15).

Replacement of the star (29; 02, 15,01, 1;) with (22;(n —4),, (n — 5);,04, 11) leads
to the excess graph P+ K, with the edges {02, 12}, {(n — 5);,22}, and {(n —4),,2:}.

If we replace the stars (0g;12,22,01,11), (12;02,22,01,11), and (22;02,12,01,11)
with (02, ].2, 21, 01, ].1), (12, 31, 22, 01, 11), and (22, 02, 417 01, 11), then the excess graph
will be a 3K, with the edges {21,052}, {31, 12}, and {44, 2,}.

For the remaining possible excess graphs, we use the following construction. Again
write K,, = K,,_3 V K3. Label the vertices of K,,_3V K3 with a (Z,_3,Z3)-labeling.
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Since n = 2 (mod 8), we have n — 3 = 7 (mod 8). Hence, the leave graph in the Sy-
packing of K,,_3 has one edge by Theorem 1.3.2. Let R be a maximum Sy-packing of
K,,_3 with 4-stars and the single edge {(n — 5),, (n —4),} be the corresponding leave
graph. The following stars along with the ones in R form a minimum S,-covering of
K, with 4-stars with the edges {09, 15}, used three times, as the excess graph, which
is a K3. Figure 2.5 illustrates the last step in achieving a minimum Sy-covering of
K1 with the excess graph K3. Each thick line connected to an oval takes the place

of a 4-star.

(02, 12,i1, (Z + 1)1, ('l + 2)1),2 =0and 3

(12; 09,41, (i 4+ 1), (i 4+ 2),),i =0 and 3

(42; (47 +6)y, (4J + 7)1, (47 +8)1, (45 +9),),0<i<1,0< 5 <
n — 10

n—14

1,] €L

(22§ (4j)17 (4J + 1)17 (4] + 2)17 (49 + 3)1)7 0<y<
((n - 4)1; (n - 5)17 02, 1o, 22)7
(22; 02,12, (n — 6)1, (n —5),).

] EL

For n = 10, the same construction works, ignoring the third line of the above set of

stars, R.

Figure 2.5: The last step in achieving a minimum Sy-covering of Ky with the excess
graph K3

In the same covering as above, replace the star (0z; 19, 01, 11, 21) with (0g; 29, 01, 11, 21)

to achieve the excess graph F. The edges of the excess graph are the edges {0q, 15}
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used twice, and the edge {02, 25}.

Consider the covering with excess graph D and replace the stars (1g; 02,01, 11,21)
and (1g;09,31,41,51) with (1o;(n —4),,01,11,2;) and (1o;(n —4),,31,44,51) to give
the excess graph K3 + K». The edges of the excess graph are the edges {(n —4),, 12}
used twice, and the edge {0z, 25}. This proves the theorem in the first case.

Case 2. n =3 or 6 (mod 8)

By Theorem 1.3.3, the excess graph is a single edge and the proof is complete in

this case.
Case 3. n =4 (mod 8)

Again by Theorem 1.3.3, the excess graph has two edges. The possible graphs
with two edges are P3, 2K5, and K2. The excess graph Pj is easily obtained from a

maximum packing with the leave graph Pj.

In order to obtain the excess graph 2K, write K,, = K, 1 V K;. Label the vertex
K, with oo and the vertices of K,,_; with the elements of Z,,_;. Since n =4 (mod 8),
we have n — 1 = 3 (mod 8) and hence, the excess graph of an Sy-covering of K,,_; has
a single edge. Let that single edge be {n — 3,n — 2}. The following stars along with
those in a minimum Sy-covering of K,,_; form a minimum Sj-covering for K, with

the excess graph 2K,. The edges of the excess graph are {0,c0} and {n — 3,n — 2}.

—8
(00; 4i,4i + 1,40 +2,4i +3),i € {0,1,...,”4 }

(00;0,m —4,n—3,n—2).

The following construction gives the excess graph K7. Write K, = K,,_3 V K3. Since
n =4 (mod 8), K,_3 has an S;-decomposition. Partition the vertices of K, _3 into a
set of three vertices, a set of two vertices, and a set of n — 8 vertices. First, consider
the set of three vertices. By Lemma 1.3.6, K3V 3K; has an Ss-decomposition. Now,
consider the set of n — 8 vertices. Since n = 4 (mod 8), n — 8 is a multiple of 4.
Hence, by Lemma 1.3.5, K3,_g has an S;-decomposition. Consider the two vertices
left from the vertex partition of K,,_3 and the vertices of K3, and label them with a
(Z3, Z3)-labeling. The following stars along with those in the decompositions of K3,
K3V 3K, and K3,,_g form a minimum Sy-covering of K,, with the edges {01, 1;} used
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twice, as the excess graph, which forms a K3.
(017 117 027 12a 22)7 (117 017 027 127 22)

Case 4. n =5 (mod 8)

By Theorem 1.3.3, the excess graph has two edges. Let H be one of the possible
graphs with two edges. Write K,, = K,,_1V K;. Since n = 5 (mod 8), by Case 3, K,,_;
has a minimum covering with the excess graph H. Since n—1 is a multiple of 4, K1 ,,_;
has an Sj;-decomposition by Lemma 1.3.5. Hence, the stars in the decomposition of
K, -1 along with those in the minimum Ss-covering of K,_; form a minimum S;-

covering of K, with the excess graph H.
Case 5. n =7 (mod 8)

In this case, the excess graph has three edges. For n > 8, write K,, = K,,_5 V Kj5.
Let H be any possible graph with three edges where multiple edges are allowed as
well. Since n = 7 (mod 8), K,,_5 has a minimum covering with excess graph H by
Case 1. Partition the vertices of K,,_5 into a set of six vertices and a set of n — 11
vertices. Consider the set of n — 11 vertices. Since n = 7 (mod 8), n— 11 is a multiple
of 4. Hence, by Lemma 1.3.5, K5 ,,_11 has an Sy-decomposition. Now, consider the set
of six vertices. By Lemma 1.3.6, K5V 6K, has an Sj-decomposition. The stars in the
decompositions of K5 ,_1; and K5V 6K, along with those in the minimum Ss-covering

of K,_5 form a minimum Sy-covering of K,, with the excess graph H. B

n (mod 8) Leave graph (for n > 7) Excess graph (for n > 8)

0 0 0

1 0 0

2 Ky S3, K3, Py, 3Ks, P3 + Ky, K3, K3 + Ko, and F
3 Ss, K3, Py,3K2, and Ps + Ko Ky

4 P3 and 2K2 P3,2K2, and K22

5 P3 and 2K, P3,2K5, and K3

6 Ss, K3, Py,3K5, and P3 + Ko Ky

7 Ks Ss, K3, Py, 3K2, P3 + Ko, K3, K3 + Ko and F

Table 2.1: The spectrum of leave and excess graphs for 4-stars

Table 2.1 illustrates the spectrum of leave and excess graphs for 4-stars. In this table,

F denotes the graph K2 with an edge attached to one of its vertices.
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2.3 The Spectrum of Leave and Excess Graphs for

H-stars

In this section, we solve the spectrum problem for packing and covering for 5-stars.

2.3.1 The Spectrum of Leave Graphs for 5-stars

In 1986 Roditty solved the problem of packing the complete graph K, with 5-stars.

We prove that we can achieve all possible non-isomorphic leave graphs.

Theorem 2.3.1 Let n > 9 be an integer and let the leave graph in a mazimum Ss-
packing of the complete graph K, with 5-stars have i edges. For any graph H with 1
edges there exists a mazimum Ss-packing of K,, such that the leave graph is isomorphic
to H.

Proof. The complete graph K, has an Ss-decomposition for n = 0, 1,5, or 6(mod 10)
by Theorem 1.3.1. We show that for the remaining cases we have maximum packings

with all the possible leave graphs.

By Corollary 1.3.9 and Lemma 1.3.10, the proof is complete for n = 4 and 9 (mod 10).
Now, by Lemma 1.3.10, we only need to prove the theorem for the cases when
n = 2 and 3 (mod 10). Again by Lemma 1.3.10, it suffices to prove the theorem
for n =12 and n = 13.

Case 1. n =12

Write K19 = K39V Ky. Label the vertices of KoV Ky with a (Zq0, Zo)-labeling. By
Theorem 1.3.1, K7 has an Ss-decomposition, R. Now, the set of vertices {0y, 11,...,91},
the set of vertices {0z, 15}, and the edges between these two sets form a complete bi-
partite graph with one part of size a multiple of 5. Hence, by Lemma 1.3.5, this
complete bipartite graph has an Ss-decomposition, S. Now, RU S forms a maximum

Ss-packing of K5 with the single edge {02, 15} as the leave graph.
Case 2. n =13

For this case, the leave graph has three edges by Theorem 1.3.2. Hence, the
possible leave graphs are K3, S3, P, 3K,, and P; + K. In order to obtain Kj,
write K13 = Kj9 V K3. The graph Ko has an Ss-decomposition, R, by Theorem
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1.3.1. Moreover, 10 is a multiple of 5 and hence, by Lemma 1.3.5, K30 has an S5-
decomposition, S. Therefore, R U S forms a maximum Ss-packing of Ki3 with a K3

as the leave graph.

In order to obtain S3 as the leave graph, again write K13 = Kjo V K3. The
graph Kjy has an Ss-decomposition, R', by Theorem 1.3.1. Label the vertices of
K0V K3 with a (Zy, Z3)-labeling. The set of vertices {01, 11, 21, 31}, the set of vertices
{04, 15,25}, the edges between these two sets, and the edges between the vertices of the
latter set will form a K3V 4K;. By Lemma 1.3.6, K3V 4K, has an Ss-decomposition,
S’. Let S’ be formed by the stars (0q; 12,01, 11,21,31), (12;22,0q,11,2;,3;), and
(22;09,01,11,21,31). Now, the set of vertices {41, 51,61, 71,81}, the set of vertices
{04, 15,25}, and the edges between these two sets form a complete bipartite graph
with one part of size a multiple of 5. Hence, by Lemma 1.3.5, this graph has an Ss-
decomposition, 7". Let T" be formed by the stars (0s; 41, 51, 61, 71, 81), (12; 41, 51, 61, 71,
81), and (29;44, 51,61, 71,8;). Therefore, R U S’ U T’ forms a maximum packing for
K3 with the 3-star (91; 02, 12,25) as the leave graph.

Substituting the star (09;41,51,61,71,91) for (09;41,51,61,71,81) in the packing
R'US"UT' gives us a maximum packing U of K3 with P3 + K, as the leave graph.
The edges of the leave graph are {02,8:}, {91, 12}, and {91, 2:}.

Substituting the star (1s; 29,01, 11,21, 9;) for (12; 29,01, 11,21, 31) in the packing U
results in a maximum packing for K3 with 3K, as the leave graph. The edges of the
leave graph are {05,81}, {31, 12}, and {9;,25}.

Finally, considering the packing R'US’UT” and substituting the star (0o; 01, 11, 21, 31,
9;) for (0g; 12,01, 11,21, 31) gives us a maximum packing for Ki3 with the leave graph
Py. In fact, the leave graph is the path (0, 12,91,22). This completes the proof in
this case. W

2.3.2 The Spectrum of Excess Graphs for 5-stars

In Section 2.2.1, we showed how to achieve all possible leave graphs in packing a
complete graph with 5-stars. Now, we prove that all possible excess graphs in covering
the complete graph with 5-stars are also achievable. Refer to Table 2.5 at the end of

this section for all possible leave and excess graphs in different congruence classes.
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Theorem 2.3.2 Let n > 10 be an integer and let the excess graph in a minimum
Ss-covering of the complete graph K, have i edges. For any graph H with i edges
there exists a minimum Ss-covering of K, such that the excess graph is isomorphic to

H, except for the excess graph K3 which is not achievable for n = 12.

Proof. The complete graph K, has an Ss-decomposition for n = 0, 1,5, or 6(mod 10)
by Theorem 1.3.1. We show that for the remaining cases we have minimum coverings

with all the possible excess graphs.

By Lemma 1.3.10, we only need to prove the theorem for the cases when n =
2,3, and 4 (mod 10). Also by Lemma 1.3.10, it suffices to consider the cases n = 12,
n = 13, and n = 14. However, for the excess graph K3 we need to consider n = 17 as

well.

Case 1. n = 12. By Theorem 1.3.3, the excess graph has 4 edges in this case.
Figure 2.6 shows all possible excess graphs with 4 edges (F; demonstrates the ith

excess graph). Let P be a maximum Ss-packing of K,,. Since the leave graph in a
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Figure 2.6: All possible 4-edge excess graphs
maximum Ss-packing is a single edge by Theorem 1.3.2; if we add a 5-star including
that single edge, we obtain E; as the excess graph.

In order to achieve E1y4, write K15 = KoV K3. Label the vertices of K¢V K3 with

a (Zg, Z3)-labeling. The following stars form a maximum Ss-packing, R, for K¢ with
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the single edge {71,8,} as the leave graph.

(01314, 21,31, 71,81), (11521, 31,41, 71, 81), (215 31,44, 51, 71, &1),
(31;41, 51, 61, 71,81), (41; 51,61, 01, 71781)> (51; 61,01, 14, 71,81),
(617 017 117 217 71781)

Moreover, the following stars form a minimum Ss-covering, .S, of the remaining edges
with the edges {02, 1o} used three times and the edge {61,8;} as the excess graph,

which forms a graph isomorphic to Ey4.

(025 12,01, 11,21, 31), (125 02,01, 14,21, 31), (025 12,44, 51, 61, 71),
(125 09,44, 51,61, 71), (22; 02,01, 11,21, 31), (225 12,44, 51,61, 71),
(81;61, 71,09, 12, 29)

Therefore, R U S forms a minimum Ss-covering for K5 with the excess graph Fy.
The edges of the excess graph are the edges {0q, 15} used three times and the edge
{61,81}. Figure 2.7 illustrates the last step in achieving a minimum Ss-covering of
K15 with the excess graph E14. Each thick line connected to an oval takes the place

of a 4-star.

Figure 2.7: The last step in achieving a minimum Sj-covering of Kj5 with the excess

graph Eyy

Substituting the stars (01; 11, 21, 31, 71, 02) and (81; 01, 71, 09, 19, 25) for (0q; 11, 21, 31,
71,81) and (81; 61, 71, 02, 15, 25) respectively, leads to a minimum Ss-covering, U, with

the excess graph Fj3. The edges of the excess graph are the edges {0s, 15} used three
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times and the edge {04, 02}.

Now, we obtain all possible excess graphs by substitution of some stars with some
other ones in the coverings RU.S and U. The substitutions are given in Tables 2.2 and
2.3. In fact, the excess graphs Fs, E3, Ey, Es, Eg, B, E1o, Ev1, E17, E1s, Fhg, and FEoy
are achieved from the covering RU S, and the excess graphs Fy, Eg, E15, E16, Eo1, Faa,

and Fsg are achieved from the covering U.

New star(s) Previous star(s) Edges of the excess graph Excess

(02761701a11721;31) (02a12701a11321731)

(02701741751761a71) (02a12741751761771) {61781},{01’02}7{61’02}7{02,12} E2
(02541,01,11,21,31) | (025 12,01, 11,21,31)

(02701,41751,61,71) (02,12,41,51,61,71) {61781}7{01302}7{41702}7{02)12} E3
(02;61,01,11,21,31) | (02;12,01,11,21,31)

(12581,01,11,21,31) | (12;09,01,14,21,34) {61,811, {61,02}, {81, 12}, {02, 1} Ea
(02741701711721;31) (02a12701a11721731)

(12:5,00,11,21,31) | (1:05,0,.15,2,.3,) | (0081) 141,02} {50,121, {02, 12} | By
(02561,01,11,21,31) | (02512,01,11,21,31)

(12751701a11721;31) (12a02701a11321731) {61781}){51’12}7{61’02}7{02,12} EG
(12322,01,11,21,31) | (12;02,01,11,21,31)

(02722741751761771) (02a12741351a61771) {61781}7{02712}’{02’22}7{12’22} E7
(027417017117217 ) (02a12701;11721731)

(12351,01,11,21,31) | (12;02,01,11,21,31) | {61,81},{41,02}, {51, 12}, {12, 22} Eq
(12529,41,51,61,71) | (12509,41,51,61,71)

(02741701711721a31) (02a12701711721731)

(12751701711721)31) (12a02701;11721731)

(12322,41,51,61,71) | (12;02,41,51,61,71) {6181} 431, 221, {41, 02}, {50, 12} | B
(22531,41,51,61,71) | (22512,41,51,61,71)

(02781741751761771) (0 127417517617 1) {61781}7{81702}7{02712}(tWice) E17
(02721741751761371) (0 12741351a617 1) {61781},{02,21},{02,12}(twice) E18
19;29,41,51,61,7 15;09,41,51,61,7 .
e T R BT 61,81 (30,22 {0 Lo (owice) | Ena
02;29,01,11,21,3 02;15,01,11,29,3 .
522,6101,11,21,33 222,02,01,11,21733 (61,81}, {61, 22}, {02, L }(twice) | Eo

Table 2.2: Substitutions in the Ss-covering RU.S to obtain different excess graphs for
n =12

Now, we prove that for n = 12, the excess graph E;» = Kj is not achievable.
Assume to the contrary that () is a minimum Ss-covering of Ki5 with the excess
graph Fj5. Let x and y be the end vertices of the four multiple edges of the excess
graph. Since the four multiple edges form the excess graph, () contains five multiple
edges {z,y}. We claim that each of the vertices  and y can be at most the center
of two stars of @) containing the edge {x,y}. Assume to the contrary that z is the

center of three such stars. Hence, there exist at least three disjoint sets of four vertices
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New star(s) Previous star(s) Edges of the excess graph Excess
12;22,01,11,21,31 12;02,01,11,21,31
502;22,41,51,61,713 502;12,4151761771; {01,021, {02, 12}, {02, 22}, {12, 22} Es
(02541,01,11,21,31) | (02512,0q,11,21,31)
(12321,41,51,61,71) | (12;02,41,51,61,71) | {01,02},{41,02}, {21, 12}, {51, 12} Ey
(12551,01,11,21,31) | (12;02,0q,14,21,31)
(02;01,41,51,61,71) (02; 12,41,51,61,71) {01,02}(twice),{02,12}(twice) E15
(02501,41,51,61,71) | (02512,41,51,61,71)
(12;81701,11,21,31) (12;02,01,11,21,31) {81,12}(twice),{01,02}(twice) E16
(12;81,41,51,61,71) | (12;02,41,51,61,71)
(12;41,01,11,21,31) (12;02,01,11,21,31) {01,02},{41712},{02,12}(tWiC€) E21
(02;11,41,51,61,71) (02;12,41,51,61,71) {01,02},{11,02},{02,12}('5\7&/106) E22
(12;01,41,51,61,71) (12;02,41,51,61,71) {01,02},{01712},{02,12}(twice) E23

Table 2.3: Substitutions in the Ss-covering U to obtain different excess graphs for
n =12

other than z and y. This contradicts n = 12 and hence, our claim is true. Therefore,
there are at most four multiple edges between = and y in (), which shows there is no

minimum Ss-covering of K1, with the excess graph F1s.
Case 2. n = 13.

In this case, the excess graph has two edges by Theorem 1.3.3. Hence, the possible
excess graphs are P3, 2K,, and K3.

The excess graph Pj is easily achievable by adding a 5-star to a maximum packing

of K13 with the leave graph Ss.

In order to obtain the excess graph 2K, write K13 = Ky V K. Label the vertices
of KoV K, with a (Zg,Z4)-labeling. Let R be a maximum Ss-packing of K with the
single edge {71, 8;} as the leave graph. Consider the set of vertices {01, 11,21, 31,41},
the set of vertices {0q, 15,29, 35}, and the edges between these two sets form a complete
bipartite graph with one part of size a multiple of 5. Hence, by Lemma 1.3.5, this
bipartite graph has an Ss-decomposition, S. Furthermore, the following stars form a
minimum covering, 7', for the remaining graph with the edges {05, 25} and {15, 3>} as

the excess graph.

(025 12,29, 51,61, 71), (12529, 32, 51,61, 71), (225 32, 02, 51, 61, 71),
(32509, 19, 51,61, 71), (81; 71, 02, 12, 29, 35)
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Therefore, RUSUT forms a minimum Ss-covering of K;3 with the excess graph 2K.
The edges of the excess graph are {0q,25} and {15,32}. Figure 2.8 illustrates the last

step in achieving a minimum Ss-covering of K3 with the excess graph 2K,.

00 L1t 20 3 4 5 61 71 &

02 12 22 32

Figure 2.8: The last step in achieving a minimum Sj-covering of Ki3 with the excess
graph 2K,

In order to achieve the excess graph K2, partition and label the vertices of K13 as
before and let R be the same Ss-packing of K¢ with the same edge as the leave graph.
The following stars form a minimum covering, R”, of the remaining graph with the

edges {02, 1o} used twice, as the excess graph.

(02; 15,01, 14, 24, 31), (02; 15,441,541, 61, 71), (12; 02,01, 11,24, 31),
(12; 29,44, 51,61, 71), (22; 02,01, 11,21, 31), (225 32,41, 51, 61, T1),
(32; 02,01, 11,21,31), (32; 12,44, 51,61, 71), (815 71, 02, 12, 29, 32)

Therefore, RU R” forms a minimum covering for K3 with the excess graph K3. The
edges of the excess graph are the multiple edges {02, 15}. Figure 2.9 illustrates the

last step in achieving a minimum Ss-covering of K3 with the excess graph K3.
Case 3. n =14

In this case, the excess graph has four edges by Theorem 1.3.3. Hence, the possible
excess graphs are the ones shown in Figure 2.6. Again, since the leave graph in a
maximum Ss-packing is a single edge, if we add a 5-star including that single edge,

we obtain E; as the excess graph.

In order to achieve the excess graph Fiy, write K14y = KoV K5. Label the vertices
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Figure 2.9: The last step in achieving a minimum Ss-covering of K73 with the excess
graph K3

of KoV K5 with a (Zg, Zs)-labeling. Let R be a maximum Ss-packing of Ky and let
the leave graph be the edge {71,8:}. The following stars form a minimum covering,

S, of the remaining edges with the edges {05, 15} used four times, as the excess graph.

(023 19,01, 11,21, 31), (095 12, 41, 51, 61, T1), (12; 02, 01, 11, 21, 31),
(123 09,41, 51,61, 71), (025 12, 25, 35, 42, 81), (22; 12, 01, 11, 21, 31),
(223,41, 51,61, 71), (325 42, 01, 11, 21, 31), (325 12,41, 51, 61, 1)
(423 12,01, 11,21, 31), (425 22, 41, 51,61, T1), (815 71, 12, 22, 32, 42)

? Y Y

Therefore, RU S forms a minimum Sj-covering of K4 with the excess graph E1s.
The edges of the excess graph are the edges {0s, 15} used four times. Figure 2.10
illustrates the last step in achieving a minimum Ss-covering of Ky, with the excess

graph Eis.

Consider the covering R U S. Table 2.4 shows the star substitutions in R U S

needed to achieve each excess graph except for F;.

In order to achieve the excess graph FEj;, write K4 = KoV K4. Label the
vertices of Kig V Ky with a (Z,Z4)-labeling. The complete graph Kjy has an Ss-
decomposition, U. The set of vertices {01, 11, 21, 31, 41 }, the set of vertices {02, 12, 22, 32},
and the edges between these sets form a complete bipartite graph with one part of size

a multiple of 5. Hence, by Lemma 1.3.5, this bipartite graph has an S5-decomposition,



New star(s) Previous star(s) Edges of the excess graph Excess

(02701741a51761;71) (02a12741a51361771)
(02541,01,11,21,31) | (02512,01,11,21,31) | {01,02},{41,02},{02,12},{12,22} Ey
(12522,41,51,61,71) | (12;02,41,51,61,71)
(02501,41,51,61,71) | (02;12,41,51,61,71)
(02741701711721;31) (02a12701a11721731)

47,053, {05,051, {51, 25}, {05, 1 E
(12722741751761771) (12a02741;51761771) { ! 2} { ! 2} { ! 2} { 2 2} 3
(22551,01,11,21,31) | (22512,0q,14,21,31)
(02701741751761;71) (02a12741a51361771)
(02741701711721a31) (02a12701711721731)

0p, 00}, {41, 05}, {01, 15}, {4y, 1 E
(Lody, 00, 11,21, 31) | (12:0,01,15,2,,3,) | (00 02h 141,02}, {00, 12, s, 1o} ‘
(12501,41,51,61,71) | (12;02,41,51,61,71)
(02701741751761;71) (02a12741a51361771)
(02741701711721731) (02a12701;11721731)
(12541,01,11,21,31) | (12;02,01,11,21,31) | {01,02}, {41,02}, {41, 12}, {51,22} Es
(12522,41,51,61,71) | (12;02,41,51,61,71)
(22551,01,11,21,31) | (22512,01,14,21,31)
(02701741751761) 1) (02a12741;51761771)
(02541,01,11,21,31) | (02;12,0q,14,21,31)

01,05}, {41,005}, {4;, 15}, {81, 1 E
(12541,01,11,21,31) | (12;02,01,11,21,31) {01, 02}, {41,021, {4, 12}, {81, 12} 6
(12;841,41,51,61,71) | (12;02,41,51,61,71)
(02522,41,51,61,71) | (02;12,41,51,61,71)
(12522,01,11,21,31) | (12;02,01,11,21,31)

Og, 1}, {09, 25}, {12, 25}, {3, 4 E
(12532,41,51,61,71) | (12;02,41,51,61,71) {02, 12,02, 22}, {12, 22}, {32, 42} T
(32742741a51761;71) (32a12741a51361771)
(02522,41,51,61,71) | (02;12,41,51,61,71)
(12522,01,11,21,31) | (12;02,01,11,21,31) | {02,12}, {02, 22}, {12,202}, {12,32} Eg
(12532,41,51,61,71) | (12;09,41,51,61,71)
(02501,41,51,61,71) | (02;12,41,51,61,71)
(02741701711721)31) (02112701711a21731)

01,09}, {41, 05}, {11, 15}, {5y, 1 E
(12551,01,11,21,31) | (12;02,01,11,21,31) {0102}, {4, 02}, {11, 123, {51, 12} K
(12;11,44,51,61,71) | (12;02,41,51,61,71)
(02501,41,51,61,71) | (02;12,41,51,61,71)
(02541,01,11,21,31) | (02;12,01,14,21,31)
(12551,01,11,21,31) | (12;02,01,11,21,31) | {01,02}, {41,02}, {51, 12}, {61,22} Eio
(12722741751761;71) (12a02741a51361771)
(22761701711721731) (22a12701;11721731)
(0 01,41,51,61,71) (0 12,41,51,61,71) {01,02},{02,12}(313111168) E13
(127227417517617 1) (12a02741;51761771) .
(22541,01,11,21,31) | (22512,0q,14,21,3) {02, 12}(3 times), {41, 22} Eu
(02701741a51761;71) (02a12741a51361771) . .
(02501,81,22,32,42) | (02;12,81,29,32,42) {01, 05} (bwice), {02, 1} (twice) Eis
(12522,41,51,61,71) | (12;02,41,51,61,71)
(22732701711721;31) (22’12701311321731) : :
(12732701711721;31) (12a02701a11721731) {02,12}(tW1ce)7{22’32}(tW1ce) E16
(32722741751761771) (32a12741;51761771)
(12522,41,51,61,71) | (12;02,41,51,61,71)
(12532,01,11,21,31) | (12;02,01,11,21,31) | {02, 12} (twice), {12,22}, {22,32} Eq7
(32522,41,51,61,71) | (32512,41,51,61,71)
(12522,41,51,61,71) | (12;02,41,51,61,71)
(12542,01,11,21,31) | (12;02,01,11,21,31) | {02, 12} (twice), {12,22}, {32,452} Eyg
( ) | ( )

427327017 11721;31

42a 127013 11721731

45
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New star(s) Previous star(s) Edges of the excess graph Excess
(12;29,41,51,61,71) | (12;02,41,51,61,71)
9:41,01,11,21,31) | (22:12,04,11,21,3 .
O | R ol 1o A | 41,22}, {0a.La) twice) (32,42} | Eng
(42;32,01,11,21,31) | (42;12,01,11,21,31)
(12532,41,51,61,71) | (12;02,41,51,61,71)
39:29,41,51,61.71) | (3:12,41,51,6,7 .
21242 01 11 21 33 Elzoz 01 11 21 33 {02,12}(tW1C6),{22,32},{32,42} EQO
(42;32,01,11,21,31) | (42512,01,14,21,31)
0g: 01,41, 51,61, 71) | (0g: 1o, 41,51,61,7 .
g T L 2 0 T | 00, 0a}. 0, Lo} {0, Lo Howice) | By
0g: 01,47, 51,61, 71) | (0g: 19, 41,51, 61,7 .
Eoz;li,ési,z;?);zllg 502;12,81,2;3;43 {01,023, {11, 02}, {0z, Lo} (twice) | F
001,41, 51,61.71) | (0:12,47,51,61,7 .
o a2 o T | 01,02}, {01, 12}, {02, 12} twice) | Eng

Table 2.4: Substitutions in the Ss-covering RU S to obtain different excess graphs for
n =14

V. Moreover, the following stars form a minimum covering, W, for the remaining
graph with the edges {81,01},{91, 11}, {02,225}, and {12,352} as the excess graph.

(093 19,29,51,61,71), (12; 22, 32, 51,61, 71), (225 32, 02, 51, 61, 71),
(32; 02, 12,51,61,71), (81501, 02, 12,22, 32), (915 11, 02, 12, 29, 35)

Therefore, U UV U W is a minimum Sj-covering of Ky, with the excess graph Fj;.
Figure 2.11 illustrates the last step in achieving a minimum Ss-covering of Ky, with

the excess graph Fi;.

In order to achieve the excess graph Ej5 for n > 17 where n = 2 (mod 5), it
suffices to achieve this excess graph for n = 17 by Lemma 1.3.10. Let n = 17. Write
Ki7; = K14V K3 and label the vertices of K14V K3 with a (Zy4, Z3)-labeling. As shown
in Case 3, the graph Ky, has an Ss-covering, R, with the excess graph Ej5. The set
., 91}, the set of vertices {0, 12,25}, and the edges between these

two sets form a complete bipartite graph with one part of size a multiple of 5. Hence,

of vertices {01, 14, ..

by Lemma 1.3.5, this complete bipartite graph has an Ss-decomposition, S. Now, the
set of vertices {10, 11,127,131}, the set of vertices {0y, 15,25}, the edges between
these two sets, and the edges within the second set form a graph K3V 4K, which has
an Ss-decomposition, T, by Lemma 1.3.6. Therefore, R U.S U T forms a minimum

Ss-covering of K7 with the excess graph Fi5. B
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Figure 2.10: The last step in achieving a minimum Sj-covering of K34 with the excess
graph Eip

00 L 20 3 4 5 60 71 8 9

Figure 2.11: The last step in achieving a minimum Ss-covering of K4 with the excess
graph Ey

n (mod 10) Possible leave graphs Possible excess graphs
0 0 0
1 0 0
9 Ks the graphs in Figure 2.6

except for E15 when n = 12

3 S3,K3,P4,3K2, and P3+K2 Pg, ZKQ, and K22
4 K the graphs in Figure 2.6
5 0 0
6 0 0
7 K> the graphs in Figure 2.6
8 S3,K3,P4,3K2, and P3+K2 Pg, 2K2, and K22
9 K> the graphs in Figure 2.6

Table 2.5: The spectrum of the leave graphs (for n > 9) and excess graphs (for n > 10)
for 5-stars
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Table 2.5 illustrates the spectrum of the leave graphs (for n > 9) and excess graphs
(for n > 10) for 5-stars.



Chapter 3

The Spectrum of Leave Graphs for
Trees with up to Five Edges

In this chapter, we will find all possible leave graphs in packings of the complete
graph with trees that have up to five edges. If a tree has one edge, then the tree
is a single edge, and any complete graph can be decomposed into single edges. The
only tree with two edges is P3. The leave graph in a maximum Ps-packing of any
complete graph has at most one edge [37], in which case, the only possible leave graph
is K. Also any tree T with three edges has four vertices, and the leave graph in any
maximum T-packing of any complete graph has at most one edge [37], and the only

possible leave graph will be K.

With the above explanation, we only need to consider trees with four and five

edges.

3.1 The Spectrum of Leave Graphs for Trees with
Four Edges

Theorem 3.1.1 Let n > 7 be an integer, T be any tree with four edges, and let the
leave graph in a mazimum T-packing of the complete graph K,, have i edges. For any
graph H with i edges there exists a maximum T-packing of K, such that the leave

graph s isomorphic to H.
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Proof. Let n > 7 be an integer and 7" be any tree with four edges. For n =
0,1 (mod 8), the complete graph K, has a T-decomposition by Theorem 1.3.1. For
n = 2,7 (mod 8), the leave graph is a single edge by Theorem 1.3.2. We show that
for n = 3,4,5,6 (mod 8), we can achieve every possible leave graph. All trees with

four edges are demonstrated in Figure 3.1, and A is denoted by (z1; xo, x3, 24 — x5).

T2

1T X4 Xy

Sy T3 A P

Figure 3.1: All trees with four edges

The theorem is proved for 7" = S; (see Theorem 2.2.1). We need to prove the
result for A and P5. For both cases, we prove the theorem considering congruency

classes modulo 8.
Case 1. n=3 (mod 8), T'=A

The leave graph has three edges by Theorem 1.3.2. Therefore, the possible leave
graphs are K3, S3, Py, 3K,, and P + K,. By Corollary 1.3.15, it suffices to achieve
all possible leave graphs for K;;. In fact, for n = 8k + 3 where k£ > 1 is an integer,
we write K, = Kgg—1) V K11. Let R be an A-decomposition of Kg;—1) and S be a
maximum A-packing of K;; with the leave graph H where H is any of the possible
leave graphs. By Lemma 1.3.14, the graph Kg;—1),11 has an A-decomposition, U.
Therefore, RU S UU is a maximum A-packing of K,, with the leave graph H.

The leave graph P; was obtained by Roditty [39]. In order to obtain the leave
graph K3, write K73 = Kg V Kj. Label the vertices of Kg V K3 with a (Zg, Zs3)-
labeling. By Theorem 1.3.1, Ky has an A-decomposition, R. By Lemma 1.3.14, Kg3
has an A-decomposition, S. Let S be formed by the following trees.

(02;01, 11,21 — 12), (125 01,31, 11 — 22), (29501, 21, 31 — 02),
(02;44,51,61 — 1a), (12;44, 71,51 — 22), (22541, 61, 71 — 02)

Therefore, R U S forms a maximum A-packing of Kj; with the leave graph K3. The
edges of the leave graph are {02, 15}, {02,25}, and {15, 22}.
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In order to obtain the leave graphs P; + K5 and 3K5, we replace some of the trees

in this packing with others. Table 3.1 shows the required substitutions.

New tree(s) Previous tree(s) Edges of the leave graph | Leave

09:25.11.2, = 1 09:07,11,2, — 1
(0r08 1125 | {10y su 1y g | (0002} a8}, {1222} | Pt K
(

)

02;22,11,21 — 13), | (02;01,11,2; — 12),
) )

)

(12;01,02,11 — 22), | (12;01,31,11 —22), | {01,02}, {12,31}, {21, 22} 3Ky
(22;01,12,31 —02) | (22;01,21,31 — 05

Table 3.1: Substitutions in the A-packing R U S to obtain different leave graphs for
n=11

In order to obtain S3 as the leave graph, label the vertices as before. Let R be the
A-decomposition of Kg. The set of vertices {01, 11,2;}, the set of vertices {0y, 12,25},
the edges between these two sets, and the edges within the second set, form a graph
K3V 3K;. The following trees form an A-decomposition, S, of the graph K3V 3Kj.

(02501, 11,15 —21), (12; 01, 11,29 — 21), (22; 01, 11,09 — 27)

The complete bipartite graph with one part of vertices 31,44, 51,67 and another part
02, 15,25 has an A-decomposition, U, by Lemma 1.3.14. Therefore, R U S U U forms
a maximum A-packing of Ki; with the leave graph S5. The edges of the leave graph
are {71,02}, {71, 12}, and {71,25}.

Case 2. n =3 (mod 8), T' = P

By Corollary 1.3.15, it suffices to achieve all possible leave graphs for n = 11.
The leave graph has three edges by Theorem 1.3.2. Hence, the possible leave graphs
are K3, S3, Py, P3 + Ky, and 3K,. In order to obtain the leave graph K3, write
Ky1 = Kg V Kj. Label the vertices of KgV K3 with a (Zg,Zs3)-labeling. Let R be
a Ps-decomposition of Kg. The graph Kgs has a Ps-decomposition, S, by Lemma
1.3.14. Therefore, RU S forms a maximum Ps-packing with the leave graph K3. The
edges of the leave graph are {02, 12}, {02, 25}, and {15, 25}.

In order to obtain the leave graph Ss, partition and label the vertices as above
and let R be a Ps-decomposition of Kg. Consider the complete bipartite graph with
one partite set {31,44,51,6:1} and the other partite set {0g, 15,22}. This graph has
a Ps-decomposition, S’, by Lemma 1.3.14. The set of vertices {01, 11,2}, the set
of vertices {0q, 12,25}, the edges between these two sets, and the edges within the
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second set form a graph K3V 3K;. The following paths form a Ps-decomposition, U,
for Kg V 3K1

(]-2; OQ, Ola 227 11)7 (227 127 117 027 21)7 (027 227 217 127 01)

Therefore, RU S’ U U forms a maximum Ps-packing of K; with the leave graph Sj.
In fact, the leave graph is the 3-star (71;02, 19, 29).

The other leave graphs can be achieved by substituting some paths with other
ones in the packing RUS"UU. (See Table 3.2.)

New path(s) Previous path(s) | Edges of the leave graph | Leave
(71,22,21,12,01) | (02,22,21,12,01) | {71,02},{71,12},{02,22} Py
(O 22771a127 1) (023227217127 1) {71702}3{21722}7{12721} P3+K2
71,09,17,1 21,00,14,1
( 2,11, 12, 2) ( 2y 411,12, 2) {01712}7{71722},{02’21} 3K2
(02,22,21,12,71) | (02,22,21,15,01)

Table 3.2: Substitutions in the Ps-packing RU .S’ UU to obtain different leave graphs
for n =11

Case 3. n=4 (mod 8), T = A

By Theorem 1.3.2, the leave graph has 2 edges in this case. So, the only possible
leave graphs are P3 and 2K5,. By Corollary 1.3.15, it suffices to achieve all possible

leave graphs for Kio. Roditty showed how to obtain the leave graph P [39].

In order to achieve leave graph 2K, write K15 = Kg V Ky. Label the vertices of
KsV K4 with a (Zs, Z4)-labeling. By Theorem 1.3.1, Kg has an A-decomposition, R.
}, the set of vertices {09, 15,25,32}, the edges

between these two sets, and the edges within the latter.

Consider the set of vertices {04, 11,2,
These vertices and edges
form a graph K,V 3K;. The following trees construct a maximum A-packing, S, of
the graph K4V 3K, with the edges {02,25} and {15, 32}, which make a graph 2K5, as
the leave graph. (See Figure 3.2.)

(025 12,01, 11 — 29), (12; 22,01, 11 — 33), (22; 32, 01,21 — 02), (32502, 01,2, — 15)
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01 1, 21

02 1o 29 32

Figure 3.2: An A-packing of K4V 3K; with the leave graph 2K,

Now, consider the complete bipartite graph with partite sets {31, 44, 51, 61,71} and
{02, 15,25,35}. By Lemma 1.3.14, this bipartite graph has an A-decomposition, U.
Therefore, RU S UU forms a maximum A-packing of K75 with the leave graph 2Kj.
The edges of the leave graph are {02,22} and {12, 32}.

Case 4. n =4 (mod 8), T' = P;

By Corollary 1.3.15, it suffices to achieve all leave graphs for n = 12. The leave
graph has two edges in this case. Hence, the possible leave graphs are P3; and 2K,.
The leave graph 2K, was achieved by Roditty [39]. In order to achieve the leave
graph P, write K5 = KgV K, and label the vertices of Kg VvV K4 with a (Zg, Z4)-
labeling. Let R and S be as above. The complete bipartite graph with the partite
sets {31,41, 51,61} and {09, 15,29, 32} has a Ps-decomposition, 7", by Lemma 1.3.14.
Let U consist of the single path (2,09, 71,32, 15). Therefore, RUSUT" U U forms a
maximum Ps-packing of K5 with the leave graph P3;. The edges of the leave graph
are {71, 1o} and {7, 2,}.

Case 5. n =5 (mod 8), T = A

By Theorem 1.3.2, the leave graph has two edges in this case. The possible leave
graphs are P3 and 2K5. By Corollary 1.3.15 it suffices to obtain all leave graphs for
n = 13. Roditty showed how to achieve the leave graph P; [39]. In order to obtain
the leave graph 2K,, write K13 = Kj; V K,. Label the vertices of Ky, V Ky with
a (Z11,Z2)-labeling. In Case 3, we showed that there is a maximum A-packing of
Ki; with the leave graph 3K5. Let R be that packing and the edges of the leave
graph be {51,671}, {71,81}, and {9y, 10; }. Consider the complete bipartite graph with
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partite sets {01, 11,21,...,71} and {0y, 15}. This graph has an A-decomposition, S,
by Lemma 1.3.14. Let U be formed by the trees (02; 8y, 91,101 —15) and (1; 02, 81,9, —
10;). Therefore, RUS UU forms a maximum A-packing of Kj3 with the leave graph
2K,. The edges of the leave graph are {51,6,} and {7, 8;}.

Case 6. n =5 (mod 8), T'= P

By Corollary 1.3.15, it suffices to achieve all leave graphs for n = 13. The leave
graph has two edges in this case. Hence, the possible leave graphs are P3 and 2K.
The leave graph P; was achieved by Roditty [39]. In order to achieve the leave graph
2K, write K13 = Ky V K. Label the vertices of KoV Ky with a (Zg, Z4)-labeling.
Let R be a Ps-decomposition of Ky. The set of vertices {01, 11,21}, the set of vertices
{09, 12,29,35}, the edges between these two sets, and the edges within the second
set form a graph K4 V 3K;. The following paths form a maximum Ps-packing, S, of
K4V 3K, with the edges {02,252} and {12, 35} as the leave graph which form a graph
2Ks.

(12a 02a Ola 22a 11)a (227 127 117 327 21)7 (327 227 217 027 11)7 (027 327 017 12a 21)

The complete bipartite graph with one partite set {31, 41, 51,61, 71,81} and the other
partite set {0q, 12, 22,32}, has a Ps-decomposition, U, by Lemma 1.3.14. Therefore,
RUSUU forms a maximum Ps-packing of K3 with the leave graph 2K5. The edges
of the leave graph are {02,22} and {13, 32}.

Case 7. n=6 (mod 8), T'=A

By Theorem 1.3.2, the leave graph has three edges in this case. The possible leave
graphs are those mentioned in Case 1. By Corollary 1.3.15, it suffices to obtain all
possible leave graphs for n = 14. Write K14 = K1,V K3. Label the vertices of K11V K3
with a (Zi1,7Zs)-labeling. Let H be any simple graph with three edges. By Case 1,
there is a maximum A-packing of K1y, R, with the leave graph H. The set of vertices
{01, 11,2;}, the set of vertices {0q, 12,25}, the edges between these two sets, and the
edges within the second set, forms a graph K3V 3K;. The following trees form an
A-decomposition, S, of the graph K3V 3K;.

(02501, 11,15 —21), (12; 01, 11,29 — 21), (22; 01, 11,09 — 27)

The complete bipartite graph with one partite set {34, 44, 51, 61, 71, 81,91, 101 } and the
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other partite set {0s, 12,22}, has an A-decomposition, U, by Lemma 1.3.14. Therefore,
RUSUU forms a maximum A-packing of K14 with the leave graph H. This completes

the proof in this case.
Case 8. n =6 (mod 8), T' = Ps

The leave graph has three edges in this case by Theorem 1.3.2. Hence, the possible
leave graphs are those mentioned in Case 1. By Corollary 1.3.15, it suffices to achieve
all possible leave graphs for n = 14. Let H be any possible leave graph with three
edges. Write K14 = K11V K3. Label the vertices of K1y V K3 with a (Z41, Z3)-labeling.
By Case 2, there exists a maximum Ps-packing, R, of Ky; with the leave graph H.
The set of vertices {01, 11,21}, the set of vertices {0, 12,25}, the edges between these
two sets, and the edges within the second set, form a graph K3V 3K;. The following
paths form a Ps-decomposition, S, of the graph K3V 3Kj.

(]-27 027 017 227 ]-1)7 (227 ]-27 117 027 21)7 (027 227 217 127 01)

The complete bipartite graph with partite sets {31,441, 51, ..., 10;} and {02, 12,25}, has
a Ps-decomposition, U, by Lemma 1.3.14. Therefore, R U S U U forms a maximum
Ps-packing of K4 with the leave graph H. B

3.2 The Spectrum of Leave Graphs for Trees with
Five Edges

Theorem 3.2.1 Let n > 9 be an integer, T be any tree with five edges, and let the
leave graph in a T-packing of the complete graph K, have i edges. For any graph
H with i edges there exists a mazimum T-packing of K, such that the leave graph is

1somorphic to H.

Proof. Let n > 9 be an integer and T be any tree with five edges. As previously
stated, the trees with five edges are S5, B, C', D, E, and F;, as shown in Figure 3.3.
The trees B,C, D, and E, are denoted by (x1; 2, 23, T4, x5 — T6), (21; T2, T3, T4 — T5 —

xg), (v3; x6, To, T4 — 1, T5), and (x; — xo, T3; T4 — T5, Tg), TEspectively.
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T2 Z2
r3 |*1 s Te xr1 T4 T5 Te
55 1‘4B s C
Te T2 s
*—o—o0—0—0—90
xr1 T2 X3 T4 Iy Tr1 X4
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Figure 3.3: All trees with five edges

For the tree S5 the result is proved in Theorem 2.3.1. By Lemma 1.3.17, for each
tree, it suffices to show the result for n = 9,10,11,12,13. For n = 10 and 11 there is a
T-decomposition of K,, by Theorem 1.3.1. For n = 9,12, the leave graph has a single
edge by Theorem 1.3.2. Therefore, we only need to achieve all possible leave graphs
for n = 13. By Theorem 1.3.2, the leave graph in a maximum 7-packing of K3 has
three edges. Hence, the possible leave graphs are K3, S3, Py, P34+ K5, and 3K,. Now,

for each tree T', we construct maximum 7-packings with each of these leave graphs.
Case 1. T=B

In order to obtain the leave graph K3, write K13 = K19V K3. Label the vertices of
K0V K3 with a (Zy9, Zs3)-labeling. By Theorem 1.3.1, Ko has a B-decomposition, R.
Moreover, the complete bipartite graph with one partite set {01, 11,2;,...,9;} and
the other partite set {02, 12,25} has a B-decomposition, S, by Corollary 1.3.16. Let

S consist of the following trees:

(02;01,11,21,31 — 12), (12504, 14, 44,21 — 29), (22;01, 11, 31,41 — 0),
(023 51,61, 71,81 — 1), (12;51,61,91, 71 — 22), (22551, 61, 81,91 — 03)

Therefore, RU S is a maximum B-packing of K3 with the leave graph K3. The edges
of the leave graph are {0q, 15}, {02,22}, and {15,25}. We can obtain all the other
possible leave graphs, except S3, by making small changes to this construction. (See

Table 3.3.)
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New tree(s) Previous tree(s) Edges of the leave graph | Leave
02:22,11,21,31 — 02:01,11,21,31 — 15) | {01,02},{0, 1o}, {15, 25} Py

( 1y) | ( )

(02722711321731 ) (02701711721531712)

(22;1,01,11,41 — 02) | (22;01,11,31,4; — 02) {01,023, {02, 12}, {31, 22} | Py + K>
)
02)
)

(02722711,21731—12), (02,01,11721731—12 )
(22712,01;11341 )a (22701711731741 ) {01302}7{11;12}7{31722} 3K2
(12;02701341321 _22) (12701711741721 _22

Table 3.3: Substitutions in the B-packing R U S to obtain different leave graphs for
n=13

In order to obtain the leave graph Ss3, consider the same partition and labeling of
the vertices of K3 and let R be the same B-decomposirion of K. The complete bipar-
tite graph with partite sets {41, 51,61, 71,81} and {02, 12,25}, has a B-decomposition,
S’, by Lemma 1.3.16. The set of vertices {01, 11,21, 31}, the set of vertices {02, 12,25},
the edges between these two sets, and the edges within the second set, form a graph
K3V 4K;. The following trees form a B-decomposition, U, of K3V 4Kj.

(2’2;01, 11,21, (’L + 1)2 — 31)7 ’l € Zg

Therefore, RU S’ U U forms a maximum B-packing of K3 with the leave graph Ss.
In fact, the leave graph is the 3-star (91; 09, 15, 25).

Case 2. T =C

In order to obtain the leave graph K3, write K3 = Kyo V K3. Label the vertices
of K19V K3 with a (Zy, Z3)-labeling. Let R be the C-decomposition of Kjy. The
following trees form a C-decomposition, S, of the bipartite graph with one part of

vertices 01, 11,21, ...,9; and the other part of vertices 0o, 15, 25.

(02301, 14,20 — 1, — 31), (12;01, 11,41 — 29 — 21), (22; 01,11,31 — 02 — 41),
(02; 51,61, 71 — 13 — 81), (12;51,61,91 — 29 — 71), (29;51,61,81 — 02 — 9y)

Therefore, R U S forms a maximum C-packing of K3 with the leave graph Kj.

In order to obtain the leave graphs Py, P;+ K>, and 3K5, we substitute some trees

in the packing R U .S with new ones as shown in Table 3.4.

In order to achieve the leave graph S3, partition and label the vertices of K3 as
above. Let R be the C-decomposition of Kjo. The set of vertices {01, 11, 21,31}, the
set of vertices {02, 12,25}, the edges between these two sets, and the edges within the
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New tree(s) Previous tree(s) The edges of the leave graph | Leave
(82732,%1,31 —%2—31) (82,81711731 —%2—21) {01,027}, {02, 12}, {12, 25} Py
(Lo 0y 11 23 | (o 1 o2 oh) | 00k (k) (12} | Ptk
(02522,11,21 — 13 —31) | (02;01,11,21 — 12 — 3y)

(12;01,02,41 — 22 — 21) | (12501,11,41 — 22 —2y) {01,02}, {11, 12}, {51, 22} 3K3
(22512,61,81 =02 —91) | (22;51,61,81 — 02— 9y)

Table 3.4: Substitutions in the C-packing R U S to obtain different leave graphs for
n=13

second set, form a graph K3V 4K;. The following trees form a C-decomposition, S,
of K3V 4Kj.

(025 15,01, 11 — 29 — 27), (12;29,01,21 — 02 — 31), (22;02,01,31 — 1o — 14)

The complete bipartite graph with partite sets {41, 51,61, 71,81} and {09, 15,25}, have
a C-decomposition, U, by Lemma 1.3.16. Therefore, R U S’ U U forms a maximum

C-packing of Kj3 with the leave graph S3. In fact, the leave graph is the 3-star
(917 027 127 22)

Case 3. T=D

In order to achieve the leave graph K3, write K3 = Kjo VvV K3. Label the vertices
of Ky9V K3 with a (Zy9,7Z3)-labeling. Let R be a D-decomposition of Kj5. The
graph Ko 3 has a D-decomposition, S, by Lemma 1.3.16. Therefore, R U S forms a
maximum D-packing of K3 with the leave graph Kj3. The edges of the leave graph
are {0z, 1o}, {02, 25}, and {15,25}.

In order to obtain the leave graph Ss3, partition and label the vertices of K3 as
above. The set of vertices {01, 11,21,31}, the set of vertices {0q, 15,25}, the edges
between these two sets, and the edges within the second set, form a graph K3V 4Kj.
The following graphs form a D-decomposition, S’, of the graph K3V 4K;.

(025 11,01, 1o — 29, 27), (12504, 29,31 — 21, 02), (22531, 02, 11 — 24, 1)

The complete bipartite graph with partite sets {4, 51,61, 71,8;} and {0z, 15,25} has
a D-decomposition, U, by Lemma 1.3.16. Therefore, R U S’ U U forms a maximum
D-packing of Ki3 with the 3-star (91; 05, 12, 25) as the leave graph.

Substitution of some trees D with some others in the packing RU S’ U U leads to
the leave graphs Py, P3 + K5, and 3K, (see Table 3.5).
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New tree(s) Previous tree(s) The edges of the leave graph Leave
(91502, 12,25 — 01,21) | (12;01,22,3; —21,02) {12,22},{31,12},{31,02} Py
(12;91,22,31 —21,02) | (12;01,22,31 —21,09) {01,12},{91,02},{91, 22} Ps+ Ky
(12;91,22,31 — 21,02) | (12;01,22,31 —21,02)

(02191, 15,01 — 21,25) | (031 13,15,0y — 2,.25) | 100 L2b A0, ik {9, 22} 1 8K

Table 3.5: Substitutions in the D-packing RU .S’ UU to obtain different leave graphs
forn =13

Cased. T=F

In order to obtain the leave graph K3, write K13 = KoV K3. Label the vertices of
Ko V K3 with a (Zy, Z3)-labeling. The graph Kjy has an F-decomposition, R. Let

R contain the following trees. Note that the addition is taken modulo 9.
(=91, +1);(E+2);, —(i+5), (i +6),),7 € Zy

By Lemma 1.3.17, the graph K3 ;¢ has an E-decomposition, S. Therefore, RUS forms
a maximum F-packing of Ki3 with the leave graph K3. The edges of the leave graph

are {02, 12}, {02,22}, and {]_2, 22}

In order to obtain the leave graph S3, partition and label the vertices of K3 as
above. The set of vertices {01, 11,2;,31}, the set of vertices {09, 15,25}, the edges
between these two sets, and the edges within the second set, form a graph K3V 4K;.
The following trees form an E-decomposition, U, of the graph K3V 4Kj;.

(02 — 01, 11515 — 21, 31), (12 — 01, 11529 — 24, 31), (22 — 04, 11; 02 — 24, 34)

The vertices 44, 51,61, 71, 81, the vertices 0s, 15, 29, and the edges between them, form a
graph K35, which has an E-decomposition, V', by Lemma 1.3.16. Therefore, RUUUV

forms a maximum F-packing of K3 with the 3-star (91; 02, 19, 25) as the leave graph.

In order to obtain the remaining leave graphs, we substitute some trees for others
in the packing RUU U V. Table 3.6 illustrates these substitutions.
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Previous tree(s) Leave
02 —01,11;91 — 12,29 02 — 01,1312 — 21,34
21— 91,104 — 71,84 21 —91,31;4 — 71,81

( )| ( )
( ) | ( )
(02 —11,91512 — 24,31) | (02 —0y,15315 — 24,34)
( )| ( )
( ) | ( )

Edges of the leave graph
{21,31}, {31, 12}, {02, 12} Py
{01,02},{91,12},{91,22} | P3 + K>
{01,02}, {11,12},{91,22} 3K

New tree(s)

02 —11,91;12 — 21,34 02 — 01,1151 — 29,34
120 —01,91522 — 21,3 1o —01,11520 — 29,3

Table 3.6: Substitutions in the E-packing R UU UV to obtain different leave graphs
forn =13

Case 5. T = P

In order to obtain the leave graph K3, write K13 = Ky V Ky4. Label the vertices
of KoV K4 with a (Zg,Z4)-labeling. The graph Ky has a maximum Ps-packing, R,
with a single edge as the leave graph. Let the leave graph be the edge {71,8;}. By
Parker’s theorem [32], the complete bipartite graph with partite sets {0y, 11,21, 31,41}
and {09, 15,29, 32} has a Ps-decomposition, S. The set of vertices {51, 61, 71,81}, the
set of vertices {02, 12, 29, 32}, the edges between them, and the edges within the second
set, form a graph K4V 4K;. The following paths form a maximum Fs-packing, U, of
the graph K, vV 4K; U {71,8;} with the leave graph K.

(51; OQ, 617 127 717 81)7 (517 127 027 227 717 32)7
(717 027 327 617 227 12)7 (027 817 127 327 517 22)

Therefore, RUSUU forms a maximum Fgs-packing of K3 with the leave graph K3. The
edges of the leave graph are {81,2:},{81,32}, and {29,35}. Table 3.7 demonstrates
the substitutions needed in the packing R U S UU in order to obtain the other leave

graphs.

New path(s) Previous path(s) Edges of the leave graph Leave
(51,02;61312771722) (51302761712>71781)
(51712)02a22a32771) (51a12a02722771)32) {71,81}’{81722}’{81732} SS
(51,12,02,22,32,81) | (51,12,02,22,71,32) | {81,22},{71,22},{71,32} Py
(02,61,12,71,81,32) | (51,02,61,12,71,81) | {51,02},{81,22},{22,32} | P3+ K>y
(12,02,22,392,81,71) | (51,12,02,29,71,32)
(51702761712771722) (51702761712771781) {51’12}7{71732}7{81722} 3K2

Table 3.7: Substitutions in the Ps-packing RU S UU to obtain different leave graphs

for n =13



Chapter 4

The Spectrum of Excess Graphs
for Trees with up to Five Edges

This chapter will discuss the spectrum of excess graphs for trees with up to five edges.
For trees with one edge, the decomposition always exists. For trees with two edges,
the excess graph has at most one edge [37], and the only possible excess graph will be
K.

4.1 The Spectrum of Excess Graphs for Trees with
Three Edges

In this section, we will find the spectrum of excess graphs for trees with three edges.

Theorem 4.1.1 Let T be any tree with three edges and n > 6. If the excess graph in
a minimum T-covering of K, has i edges and E is any multigraph with © edges, then

there exists a minimum T-covering of K, with the excess graph E.

Proof. Let n be any positive integer such that n > 6. The only trees with three
edges are S3 and Pj.

By Lemma 1.3.10, we only need to prove the theorem for n = 6,7, and 8. The
tree S3 has been considered in Chapter 2. Consider Py. By Lemma 1.3.13, it suffices
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to find the spectrum of excess graphs for Py, in the cases where n = 6,7,8. According

to Theorem 1.3.1, Kg and K7 have P,-decompositions.

For n = 8, by Theorem 1.3.3, the excess graph in a minimum Pj-covering of Ky
has two edges. Hence, the possible excess graphs are Ps, 2K, and K2. Label the
vertices of Kg with the elements of Zg. Let R be a maximum P;-packing of Kg with
the edge {0,1} as the leave graph. Also let S be the set consisting of the single path
(0,1,2,3) and U be the set consisting of the single path (7,0, 1,2). Therefore, RU S
and RUU form Pj-coverings for Kg with the excess graphs P; (with the edges {1,2}
and {2,3}) and 2K, (with the edges {0,7} and {1,2}), respectively.

In order to obtain the excess graph K2, write Ky = K5V K3. Label the vertices of
K5V K3 with a (Zs, Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum
Py-packing of K5 has one edge. Let R be a maximum Pj-packing of K5 with the edge
{31,41} as the leave graph. Consider S as the set consisting of the following paths.

(017 027 127 11)7 (017 127 027 11)7 (217 027 127 31)7 (017 227 127 21)7
(117 227 027 31)7 (217 227 417 02)7 (227 317 417 12)

Therefore, RU S forms a minimum Pj-covering of Kg with the excess graph K2. The

edges of the excess graph are the edges {02, 15} used twice. B

4.2 The Spectrum of Excess GGraphs for Trees with
Four Edges

Theorem 4.2.1 Let T be any tree with four edges and n > 8. If the excess graph in
a minimum T-covering of K,, has i edges and E is any multigraph with i edges, then

there exists a minimum T-covering of K, with the excess graph E.

Proof. Let n be any positive integer such that n > 8. The trees with four edges are
Sy, A, and Ps, where A is a 3-star with one edge joined to one of its end vertices. The
corresponding problem for Sy was solved in Chapter 2. Now consider A. By Corollary
1.3.15, it suffices to achieve all possible excess graphs for n = 8,9, 10, 11, 12, 13, 14, 15.
For n = 8,9, the complete graph K,, has an A-decomposition by Theorem 1.3.1.

Case 1(a). n = 10.
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The excess graph has three edges in this case, by Theorem 1.3.3. The possible
excess graphs with three edges are Ss, K3, Py, P3 + Ko,3Ko, K3, F, and K3 + Ko,

where F'is a K2 with an edge attached to one of its vertices.

In order to achieve the excess graphs S3, Py, and P; + K5, label the vertices of Ky
with the elements of Z;y. By Theorem 1.3.2, the leave graph in a maximum A-packing
of Ko has one edge. Let R be a maximum A-packing of Ko with the edge {0, 1} as the
leave graph. Also let S be the set consisting of the single tree (7;8,9,0— 1), U be the
set consisting of the single tree (1;0,2,3—4), and V' be the set consisting of the single
tree (0;8,9,1 — 2). Therefore, RUS, RUU, and RU YV, form minimum A-coverings
of Ky with the excess graphs S3 (with the edges {0,7},{7,8}, and {7,9}), P, (with
the edges {1,2},{1,3}, and {3,4}), and Ps + K, (with the edges {0,8},{0,9}, and
{1,2}), respectively.

In order to obtain the excess graph K3, write K19 = K7V K3 and label the vertices
of K7V K3 with a (Zr, Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum
A-packing of K7 has one edge. Let R be a maximum A-packing of K7 with the edge
{51,61} as the leave graph, and S be the set consisting the following trees.

(09; 19,01, 11 — 22), (12502, 11,01 — 29), (095 12, 21, 51 — 22),
(12; 02, 51,21 — 22), (025 41,61, 31 — 12), (295 31,44, 61 — 571),
(12;44,61,29 — 0q)

Hence, RU S forms a minimum A-covering of Kj, with the excess graph K3. The

edges of the excess graph are the edges {02, 15} used three times.

The remaining excess graphs will be obtained by substituting some trees for other

trees in the covering R U S. Table 4.1 illustrates these substitutions.
Case 1(b). n = 11.

The excess graph has one edge by Theorem 1.3.3. Hence, the only possible excess
graph is K5. The minimum covering with this excess graph can be achieved easily by

adding one tree A to a maximum A-packing of K;; with the leave graph Ss.
Case 1(c). n = 12.

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess
graphs are K2, P3, and 2K,. All leave graphs in A-packings of K, are achievable as



New tree(s) Previous tree(s ) Edges of the excess graph | Excess
12;01,51,21 — 29 12;02,51,21 — {01, 12}, {02, 12} (twice) F
12;41,61,22 — 51 12;41,61,22 — 02 . 2
02:25.21.51 — 61) | (0a:15.21,5, —2y) | (0001} {0, Ia}(bwice) | K5 + Ko
19;01,51,21 — 2 15;09,51,21 — 2

nobob o 22 S 2L E20 101,00, {01, 12}, {02, 15} K3

12541,61,22 — 51
02;29,21,51 — 61

127413 617 22
027 ]-27 217 51 - 22
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02;01721711 _22 {51a61}7{01302}7{31512} 3K2

12;11,31,01 — 29

02;12,01,11 — 2
12;02,11,01 — 29

( ) | ( 27)
( )| ( )
( ) | ( )
( )| ( )
(02;01,21,51 —22) | (02;12,21,5, —22)
( )| ( 02)
( )| ( )
( )| ( )
( ) | ( )

Table 4.1: Substitutions in the A-covering RU S to obtain different excess graphs for
n =10

we saw in Chapter 3. Hence, there is a maximum A-packing of K5 with the leave
graph P3. Label the vertices of K15 with the elements of Zq5 and let R be a maximum
A-packing of K15 with the leave graph (0,1,2). Also let S be the set consisting of the
single tree (1;0,2,3 — 4) and U be the set consisting of the single tree (1;0,3,2 — 4).
Therefore, RU S and RUU are minimum A-coverings of K5 with the excess graphs
P (with the edges {1,3} and {3,4}) and 2K, (with the edges {1,3} and {2,4}).

In order to obtain K22 as the excess graph, write K15 = KgV K,. Label the vertices
of KgV K, with a (Zs, Z4)-labeling. By Theorem 1.3.1, K3 has an A-decomposition, R.
Moreover, the set of vertices {31, 41, 51,61, 71}, the set of vertices {0g, 12,22, 32}, and
the edges between these two sets, form a graph K35 4, which has an A-decomposition, S,
by Lemma 1.3.14. Also the set of vertices {01, 11,21}, the set of vertices {0q, 15,25, 32},
the edges between these two sets, and the edges within the latter, form a graph
K4V 3K;. The following trees form a minimum A-covering, U, of K,V 3K; with the

excess graph K3.

(09; 19,01, 11 — 22), (12502, 11,21 — 29), (09529, 32, 15 — 04),
(325 12,01,21 — 02), (225 12,07, 35 — 11)

Therefore, RU S UU forms a minimum A-covering of K5 with the excess graph K3.

The edges of the excess graph are the edges {03, 15} used twice.

Case 1(d). n = 13.

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess
graphs are K2, P3, and 2K,.

same argument about those excess graphs in Case 3.

The excess graphs P3 and 2K, are achievable by the
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In order to achieve the excess graph K2, write K3 = Ky V K. Label the
vertices of Ko V Ky with a (Zg,Z4)-labeling. By Theorem 1.3.1, Ko has an A-
decomposition R. Furthemore, the set of vertices {3i,41,51,61, 71,81}, the set of
vertices {02, 12,22,32}, and the edges between these two sets, form a graph Ky,
which has an A-decomposition, S, by Lemma 1.3.14. Also let U be the minimum
A-covering introduced in Case 3. Therefore, RU S UU forms a minimum A-covering
of K13 with the excess graph KZ. The edges of the excess graph are the edges {0s, 15}

used twice.
Case 1(e). n = 14.

The excess graph has one edge by Theorem 1.3.3. Hence, the only possible excess
graph is K5. The minimum covering with this excess graph can be achieved easily by

adding one tree A to a maximum A-packing of Kj, with the leave graph Sj.
Case 1(f). n = 15.

The excess graph has three edges by Theorem 1.3.3. Hence, the possible excess
graphs are Ss, K3, Py, P3+ Ko, 3K,, K3, F, and K3+ K,. We will use Case 1 to achieve
all these excess graphs at once. Write K15 = K9V Kj5. Label the vertices of K19V Kj
with a (Zyo, Zs)-labeling. Let H be any of the possible excess graphs. In Case 1, we
proved that all of these excess graphs are achievable in A-coverings of Kiy. Let R be
a minimum A-covering of K7y with the excess graph H. Moreover, the set of vertices
{21,31,41,...,91}, the set of vertices {0g, 12,29, 35,45}, and the edges between these
two sets, form a graph Kjg, which has an A-decomposition, S, by Lemma 1.3.14.
Now, consider the graph K5V 2K, formed by the set of vertices {01, 11}, the set of
vertices {0y, 12,29, 35,45}, the edges between these two sets, and the edges within the
latter. The following trees form an A-decomposition, U, of K5V 2Kj.

(42; 01, 11, (1 + 1)y — (1 4 3),).1 € Zs

Therefore, RU S UU forms a minimum A-covering of K5 with the excess graph H.

Now consider P5;. By Corollary 1.3.15, it suffices to prove that all excess graphs
are achievable in Ps-coverings of K, for n = 8,9,10,11,12,13,14,15. For n = §,9,
K,, has a Ps-decomposition by Theorem 1.3.1. For the remaining cases, we show how

we can achieve all possible excess graphs.

Case 2(a). n =10
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The excess graph has three edges by Theorem 1.3.3. Therefore, the possible excess
graphs are Ss, K3, Py, Py + Ko, 3K,, K3, F, and K2 + K,. The excess graphs P, and
P; + K5 can be obtained by adding one path to a maximum packing. In fact, by
Theorem 1.3.2, the leave graph in a maximum Ps-packing of ;g has one edge. Label
the vertices of Kj¢ with the elements of Z1q and let R be a maximum Ps-packing of
Ko with the edge {0, 1} as the leave graph. Also let S be the single path (0, 1,2, 3,4)
and U be the single path (9,0, 1,2, 3). Therefore, RUS and RUU form minimum Ps-
coverings of Ky with the excess graphs P, (with the edges {1,2},{2,3}, and {3,4})
and P; + K5 (with the edges {0,9}, {1,2}, and {2, 3}), respectively.

In order to achieve the excess graph K3, write K19 = K7V K3 and label the vertices
of K7V K3 with a (Z7, Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum
Ps-packing of K7 has one edge. Let R be a maximum Ps-packing of K; with the edge
{51,61} as the leave graph. Also let S be the set consisting of the following paths.

(017 027 127 117 22)7 (117 027 127 017 22)7 (217 027 127 317 22)7
(317 027 ]-27 217 22)7 (517 227 027 617 ]-2)7 (417 027 517 127 22)7
(517 617 227 417 12)

Therefore, R U S is a minimum Ps-covering of Ko with the excess graph K3. The

edges of the excess graph are the edges {0, 15} used three times.

The rest of the excess graphs will be achieved by substituting some paths for some
others in the minimum covering R U S. These substitutions are illustrated in Table
4.2.

Case 2(b). n =11

The excess graph has one edge by Theorem 1.3.3. The excess graph Ky can be
achieved by adding one path to a maximum Ps-packing of K;; with the leave graph
Py.

Case 2(c). n =12

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess
graphs are K2, P;, and 2K,. We first obtain the excess graphs P; and 2K,. All
leave graphs in Ps-packings of K, are achievable as illustrated in Chapter 3. Label

the vertices of K5 with the elements of Z;5 and let R be a maximum Ps-packing of
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New path(s) Previous path(s) | Edges of the excess graph | Excess
(11,02,22,01,12) | (11,02,12,01,22) | {02, 12} (twice), {02,252} F
(11,02,22,01,12) | (11,02,12,01,22)

(01,02,22,11,12) (01,02,12,11,22) {02,22}(twice)7{31,12} K22+K2
(02,31,12,21,22) | (31,02,15,21,25)

22,01,12,11,09 29,01,12,02,11

522,31,12,21,02; 522,31,12,027213 {11, 123,421, 12}, {02, 1o} 53
(31,02,22,21,12) | (31,02,12,21,22)

(11,02,22,01,12) | (11,02,12,01,22) | {02,12},{02,22},{12,22} K3
(51,22,12,61,02) | (51,22,02,61,12)

(31741a023517 ) (41,02351712722)

(51,22,12,61,02) | (51,22,02,61,12)

(31,02,22,21,12) (31,02712,21,22> {31,41},{11,12},{21,22} 3K2
(12,31,22,21,02) | (21,02,12,31,22)

(22,01,12,11,02) | (22,01,15,02,11)

Table 4.2: Substitutions in the Ps-covering RU S to obtain different excess graphs for
n =10

K15 with the path (0,1,2) as the leave graph. Let S be the single path (0,1,2,3,4)
and U be the single path (11,0,1,2,3). Therefore, RU .S and R U U are minimum
Ps-coverings of Ko with the excess graphs P; (with the edges {2,3} and {3,4}) and
2K, (with the edges {0,11} and {2,3}), respectively.

In order to achieve the excess graph KQZ, write K13 = KgV K,. Label the vertices
of KgV K, with a (Zg, Z4)-labeling. By Theorem 1.3.1, Ky has a Ps-decomposition,
R. Moreover, the set of vertices {21, 31, 41, 51, 61, 71}, the set of vertices {0, 15, 25,32},
and the edges between these two sets, form a graph K 4, which has a Ps-decomposition,
S, by Lemma 1.3.14. Also the set of vertices {01, 11}, the set of vertices {0y, 12,29, 35},
the edges between these two sets, and the edges within the latter set, form a graph
K4V 2K,. The following paths form a minimum Ps-covering, U, of K4V 2K, with the
excess graph K3.

(01, 02,19, 11,29), (02, 15,01, 29, 32),
(01,32, 02, 12,25), (12, 32, 11, 02, 22)

Therefore, RUS UU forms a minimum Ps-covering of K, with the excess graph K3.

The edges of the excess graph are the edges {0y, 15} used twice.
Case 2(d). n =13

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess
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graphs are K2, P3, and 2K,. We first obtain the excess graphs P; and 2K,. The
excess graphs P3 and 2K, can be obtained from a maximum Ps-packing of K3 in a

similar way as explained in Case 3.

In order to obtain the excess graph K3, write K13 = KoV K4 and label the vertices
of K9V Ky with a (Zg, Z4)-labeling. By Theorem 1.3.1, Ky has a Ps-decomposition,
R. Moreover, the set of vertices {21, 31, ...,8;}, the set of vertices {0y, 15,29, 35}, and
the edges between these two sets, form a graph K74, which has a Ps-decomposition,
S, by Lemma 1.3.14. Also consider U as described in Case 3. Therefore, RU S U U
forms a minimum Ps-covering of K3 with the excess graph K. The edges of the

excess graph are the edges {0q, 1o} used twice.
Case 2(e). n =14

The excess graph has one edge by Theorem 1.3.3. The excess graph K, can be
achieved by adding one path to any maximum Ps-packing of K4 with the leave graph
Py.

Case 2(f). n=15

The excess graph has three edges by Theorem 1.3.3. Therefore, the possible excess
graphs are Sz, K3, Py, P3 + Ky,3K,, K3, F, and K3 + K,. We will achieve all these
excess graphs using Case 1. Write K5 = K9V K5 and label the vertices of KigV K5
with a (Zo, Zs)-labeling. Let H be any of the possible mentioned excess graphs and
R be a minimum Ps-covering of Kjy with the excess graph H. The set of vertices
{21,31,...,91}, the set of vertices {0, 12,29, 32,42}, and the edges between these two
sets, form a graph Ky 5, which has a Ps-decomposition, S, by Lemma 1.3.14. Also the
set of vertices {01, 11}, the set of vertices {0q, 15,29, 32,45}, the edges between these
two sets, and the edges within the latter set, form a graph Ky V 2K;. The following
paths form a Ps-decomposition, U, of K5V 2Kj.

(01,42, (i + 1),, (1 + 3)y, 11),i € Zs

Therefore, RU S UU is a minimum Ps-covering of Kj5 with the excess graph H. B
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4.3 The Spectrum of Excess Graphs for Trees with
Five Edges

Theorem 4.3.1 Let T be any tree with five edges and n > 10. If the excess graph
m a mintmum T-covering of K, has i1 edges and E is any multigraph with © edges,
then there exists a minimum T -covering of K,, with the excess graph E, except for the

excess graph K3 which is not achievable when T = S5 and n = 12.

Proof. Let n > 10 be an integer and T any tree with five edges. For the case T' = Sj,
all excess graphs were achieved as illustrated in Chapter 2, except for the graph K3
which cannot be obtained as the excess graph in any Ss-covering of K;,. For the rest
of the trees, it suffices to achieve all possible excess graphs for n = 10,11,12,13,14
by Lemma 1.3.17. Furthermore, for n = 10,11 the complete graph K, has a T-
decomposition by Theorem 1.3.1. Now, we will prove that for n = 12,13,14 all

possible excess graphs are achievable.
Case 1. T=B,n=12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are the 23 graphs demonstrated in Figure 2.6. We repeat the figure here as
a reminder. The excess graphs Fy, Fs, and E3 can be achieved from a maximum B-
packing of K5 as we will explain. Label the vertices of K15 with the elements of Z,.
By Theorem 1.3.2, the leave graph in a maximum B-packing of Kj5 has one edge.
Let R be a maximum B-packing of Kj, with the edge {0, 1} as the leave graph. Also
consider the sets S,U, and V as the sets consisting of the single trees (2;3,4,5,0 —
1),(0;1,2,3,4 —5), and (0;2,3,4,1 — 5), respectively. Therefore, RU S, RUU, and
R UV are minimum B-coverings of K;5 with the excess graphs F; (with the edges
{0,2},{2,3},{2,4}, and {2,5}), Ey (with the edges {0,2},{0,3},{0,4}, and {4,5}),
and Fj (with the edges {0,2},{0,3},{0,4}, and {1,5}), respectively.

In order to achieve the excess graph Fi,, write K15 = K¢V K3 and label the

vertices of KoV K3 with a (Zg,Z3)-labeling. By Theorem 1.3.2, Ky has a maximum
B-packing, R, with one edge, say {71, 8}, as the leave graph. Consider S to be the
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Figure 4.1: All possible 4-edge excess graphs

set consisting of the following trees.

(09; 19,07, 11,21 — 23), (125 09,01, 11,31 — 22), (02; 19, 31, 41,51 — 23),
(09; 19,61, 71,81 — 23), (12;09,21,41,61 — 22),(22; 01, 11,44, 71 — &),
(12;51771781722 _02)

Therefore, R U S forms a minimum B-covering of K5 with the excess graph FEjs.
The edges of the excess graph are the edges {0s, 15} used four times. Figure 4.2

demonstrates this covering.

All the remaining excess graphs except for Fj; can be obtained by substituting
some trees for some others in the covering RU.S. Table 4.3 illustrates these substitu-

tions.



Figure 4.2: A B-covering of K5 with the excess graph F1o

71

1 51)21?41361*22

1 02721341361*22

New tree(s) Previous tree(s) Edges of the excess graph Excess
(02;22,01,11,21 — 31) | (02512,01,11,2; — 23)
19:51,71,81,20 — 2 19:51,71,81,20 — 0
( 1, 11,01, 42 1) ( 1, 11,01, 42 2) {21’31}7{21702}’{31,12}’{02712} E4
(0 21731741a51_22) (0 12731741a51_22)
(]- 31)21741361*22) (]- 02,21341361*22)
(02;01,11,21,29 — 31) | (02512,01,11,2; — 23)
19:51,71,81,20 — 2 19:51,71,81,20 — 0
(L2: 51,71, 81,22 = 21) | (12351, 71,81, 2, = 0y) {31,220}, {41,02}, {51, 12}, {02, 12} Es
(02;41,61,71,81 —22) | (02;12,61,71,81 —29)
(]- 51,01711331_22) (]- 02,01311331_22)
(12351,21,41,61 — 22) | (12;02,21,41,61 — 23)
09;31,61,71,8, — 2 09;15,64,71,8, — 2
(02:31,61, 71,81 = 20) | (033 12,61,71,8; = 2,) {31,020}, {31,22}, {51, 12}, {02, 12} Eg
(02;01,11,21,29 — 31) | (02;12,01,11,27 — 29)
(1 51,71781a 2_21) (1 51771a81522_ 2)
(0 31761771a81_22) (0 12761771a81_22)
19:31,21,41,67 — 2 19;09,21,41,61 — 2
(12:31,21, 41,61 = 22) | (12302, 21, 4,6, = 2,) {31,020}, {31, 12}, {41,22}, {02, 12} Er
(02;01,11,21,29 —41) | (02;12,01,11,2; — 29)
(1 51,717817 2_21) (]' 51771a81722_ 2)
(0 317017 11a21 - 22) (0 12701a 11a21 22)
(12531,21,41,61 — 29) | (12;02,21,41,61 —22) | {31,02}, {31, 12}, {41, 12}, {02, 12} Eg
(]- 41,01711331_22) (1 02701311331_22)
(02531,01,11,21 — 22) | (02512,01,11,21 —22)
09;41,61,71,8, — 2 09;15,64,71,8 2
E 1,91, 11,01 2; E 2,91, 11,01 — 2; {31’02}7{41,02}7{51,12}’{61712} Eg
( )| ( )

12761,01711a31 _22

12a02701a 11731 - 22
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New tree(s) Previous tree(s) Edges of the excess graph Excess

(12551,21,41,61 — 22) | (12;09,21,41,61 — 22)

(1 61701711a31_22) (1 02701311a31_22)

(02;01,11,21,20 — 31) | (02;12,01,11,21 — 22) | {51,12},{61,12},{41,02},{31,22} | Euo

(1 51771a81322_21) (1 517713817 2_02)

(02541,61,71,81 —22) | (02512,61,71,81 —22)

(02531,01,11,21 —29) | (02;12,01,11,27 — 29) {31,02},{02,12}(3 times) Eis

(02501,11,21,22 — 31) | (02512,01,11,21 —2) (31,25}, {02, 15}(3 times) P>

(12551,71,81,22 —21) | (12551,71,81,22 —02) b H

02;31,01,11,21 — 2 09;15,01,11,27 — 2 . .

EO 31 61 71 81 2“3 EO 12 61 71 81 22; {31, 05} (twice), {02, 1o }(twice) Eus
1,91, 11,01 — 42 2,91, 11,01 — 42

(O 31701711a21_22) (0 12701711a21_22)

02;31,61,71,81 —2 0g;15,64,71,8 2 . .

El 51 01 11 31 223 El 02 01 11 31 2; {31, 05} (twice), {51, 1o }(twice) Ei
1,VY1, 11,91 — 42 2,Y1, 11,91 — 2

(12551,21,41,61 — 22) | (12;02,21,44,61 — 22)

(O 317015 11321 - 22) (0 127017 11a21 22)

(02531,61, 71,81 — 22) | (02;12,61,71,81 —22) | {31,02}(twice), {41,12},{02,12} Enz

(1 41701711731_22) (]‘ 02701111731_22)

(O 01711)21a22_31) (0 12701711a21_22)

(12;51,71,81,22 — 21) | (12;51,71,81,22 — 02) | {21,02}, {31, 22}, {02, 12} (twice) Eqg

(O 21731;41351_22) (0 12731341751_22)

(0 31761)71a81_22) (O 12)61771381_22)

(1 51701711731_22) (1 02701311a31_22)

(]. 51,21,41,61 — 22) (]. 302,21,41,61 — 22) {31,02}, {51, 12}(tWiC6), {61,22} FEig

(02;01,11,21,29 — 61) | (02;12,01,11,2; — 29)

(12551,71,81,22 —21) | (12551,71,81,22 —02)

(0 31701;11721722) (0 12701711a21722)

02;31,61,71,81 —2 02;15,64,71,8 2 .

E]_ 51 01 11 31 22; E]_ 02 01 11 31 22; {31,02}(tW1C€),{51712},{71,12} EQO
1,VY1, 11,91 — 42 2,1, 11,91 — 42

(12571,21,41,61 — 22) | (12;02,21,44,61 —22)

09:31,01,11,21 — 25) | (02;10,01, 11,21 — 2 _

El 21 01 11 31 223 El 02 01 11 31 22; {31,02}, {21, 12}, {02, 12} (twice) Ey
1,VY1, 11,91 — 42 2,1, 11,91 — 42

02;31,07,11,21 — 2 09;15,01,11,27 — 2

EO 21731)41351 22; EO 12731741351 22; {31702}, {21’02}7 {02’ 12}(thce) E22
15915 F1,91 — 42 2991y E1yIJ1 T £2

02;31,01,11,21 — 2 09;15,01,11,21 — 2

( 1,VY1, 11,41 2) ( 2,Y1, 11,41 2) {31702},{31,12}7{02712}(tWiCe) E23

(12531,21,41,61 — 22) | (12;02,21,44,61 — 22)

Table 4.3: Substitutions in the B-covering R U S to obtain different excesse graphs
for n =12

In order to achieve the excess graph Ei;, partition and label the vertices of Ko
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as above and let R be the same B-packing of Ky with the edge {71,8;} as the leave
graph. The set of vertices {01, 11,21, 31,41}, the set of vertices {02, 12,25}, and the
edges between these two sets, form a complete bipartite graph Kj 3, which has a B-
decomposition, U, by Lemma 1.3.16. Also let V' be the set consisting of the following

trees.

(025 19,571,619, 71 — 29), (12;29,61, 71,51 — 03),
(22;02,51,61, 71 — 81), (81;41,02,25, 15 — 64)

Therefore, RUU UV forms a minimum B-covering of K5 with the excess graph Fi;.
The edges of the excess graph are {41,8:}, {51,02}, {61, 12}, and {71,2-}.

Case 2. T'=B,n =13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess
graphs are K2, P3, and 2K5. In order to achieve the excess graphs P3 and 2K5, label
the vertices of K3 with the elements of Z;3. The leave graph in a maximum B-packing
of K3 has three edges by Theorem 1.3.2 and all possible leave graphs are achievable as
we saw in Chapter 3. Let R be a maximum B-packing of Kj3 with the star (0;1,2,3)
as the leave graph. Also let S be the set consisting of the single tree (0;1,2,3,4 — 5)
and U be the set consisting of the single tree (0;5,1,2,3 — 4). Therefore, RU S and
RUU are minimum B-coverings of K3 with the excess graphs P3 (with the edges
{0,4} and {4,5}) and 2K, (with the edges {0,5} and {3,4}), respectively.

In order to obtain the excess graph K2, write K3 = Ko V K3, label the vertices
of K9V K3 with a (Zy, Z3)-labeling. By Theorem 1.3.1, K3, has a B-decomposition,
R. The set of vertices {51,61,71,81,9:}, the set of vertices {0y, 12,25}, and the
edges between these two sets, form a complete bipartite graph Kj 3, which has a
B-decomposition, S, by Lemma 1.3.16. Let U be the set consisting of the following

trees.

(023 29,01, 11,21 — 31), (31521, 12,259,009 — 44),
(12501, 14, 21,41 — 22), (22501, 14,27, 15 — 0y)

Therefore, R U S UU forms a minimum B-covering of K3 with the excess graph K3.

The edges of the excess graph are the edges {21,3;} used twice.
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Case 3. T'=B,n =14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those in Figure 4.1. In order to obtain the excess graphs Fi, F», and Fj,
label the vertices of Ky4 with the elements of Z4. By Theorem 1.3.2, the leave graph
in a maximum B-packing of Kj4 has one edge. Let R be a maximum B-packing of
K4 with the edge {0,1} as the leave graph. Also let S be the set consisting of the
single tree (2;3,4,5,1 —0), U be the set consisting of the single tree (1;0,2,3,4 — 5),
and V' be the set consisting of the single tree (1;2,3,4,0—5). Therefore, RUS, RUU,
and RUV are minimum B-coverings of K14 with the excess graphs F; (with the edges
{1,2},{2,3},{2,4}, and {2,5}), Ey (with the edges {1,2},{1,3},{1,4}, and {4,5}),
and E5 (with the edges {1,2},{1,3},{1,4}, and {0,5}), respectively.

In order to achieve the excess graph Eo, write K14 = Kg V K3, label the vertices
of K¢V K5 with a (Zg, Zs)-labeling. By Theorem 1.3.2, the leave graph in a maximum
B-packing of Ky has one edge. Let R be a maximum B-packing of Ky with the edge
{71,81} as the leave graph. Also let S be the set consisting of the following trees.

025 12,01, 11,21 — 22), (125 02,01, 11,21 — 32), (02; 12, 31, 41,51 — 29),
12; 02, 31,41,51 — 32), (025 12,61, 71,81 — 32), (12; 61, 22, 32,42 — 02
22;01,11,31,41 — 32), (32;01,11,31,61 —45), (42;01,11,21,32 — 25
49;31,41,51,81 — 71), (715 12, 29,49, 32 — 02), (22; 02,42, 61,81 — 12

) I

) 9

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

Therefore, R U S is a minimum B-covering of K4 with the excess graph FEj5. The

edges of the excess graph are the edges {0q, 15} used four times.

All the remaining excess graphs will be achieved by substituting some trees with

others in the covering R U S. Table 4.4 illustrates these substitutions.
Case 4. T=C,n=12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are the ones shown in Figure 4.1. In order to achieve the excess graphs
Es, B3, Eg, and FEy, label the vertices of K5 with the elements of Z,5. By Theo-
rem 1.3.2, the leave graph in a maximum C-packing of K75 has one edge. Let R be a
maximum C-packing of K, with the edge {0, 1} as the leave graph. Also let S be the
set consisting of the single tree (3;4,5,2 —1—0), U be the set consisting of the single
tree (5;3,4,1—0—2), V be the set consisting of the single tree (1;0,2,3 —4—5), and



75

12;61,01,11,21 — 32

12;02,01,11,21 — 32

New tree(s) Previous tree(s ) Edges of the excess graph Excess

(02531,01,11,21 —29) | (02;12,01,11,2; — 29)
(02522,61,71,81 —32) | (02512,61,71,81 — 32)

31,05}, {31, 1o}, {09, 25}, {15, 2 E
(12:31,00, 11,21 — 3) | (120,01, 15,2; — 35 | (5002} 30121, {0222}, {12, 22} | B
(12;22731741351 _32) (12102731741351 _32)
(02;31,01,11,21 — 22) | (02512,01, 11,21 —22)
(12522,31,41,51 — 32) | (12;02,31,41,51 — 32)

31,05}, {19, 00}, {81, 4o}, {12, 2 E
(02;42731)41a51_22) (02112731741351 _22) { ! 2} { 2 2} { ! 2} { 2 2} °
(12;61722;32742781) (12a61722732a42702)
(02531,01,11,21 — 22) | (02512,01, 11,21 —22)
(12522,31,41,51 — 32) | (12;02,31,41,51 — 32)

Peer 31,02},431,42},{02, 12}, {15, 2 E
(02;42,31,41,51 — 22) | (02;12,31,41,51 — 22) {8102}, {31, 42}, {02, 12}, {12, 20} 6
(12;61,22,32,42 — 31) | (12;61,22,32,42 — 02)

(02531,01,11,21 — 22) | (02512,01, 11,21 —22)
(12531,01,11,21 — 32) | (12;02,01,11,24 —32)

P Y 31,02}, 431,12}, {81,452}, {05, 1 E
(02542,31,41,51 — 22) | (02;12,31,41,51 — 22) (81,02}, {31, 12} {81, 42}, {02, 12} !
(12;61,22,32,42 — 81) | (12;61,22,32,42 — 02)

(02531,01,11,21 — 22) | (02512,01,11,21 —2)
(12;31,01,11,21 — 32) | (12;02,01,11,2; — 32) {31,02},{31,12},{02, 12}, {02, 42} Eg
(02;42,31,41,51 — 2) | (02;12,31,41,51 — 22)
(02531,01,11,21 — 22) | (02512,01,11,21 —22)
(02521,31,41,51 — 22) | (02;12,31,41,51 — 22)

oY 31,02}4,421,02},{61,12},{71,1 E
(12;61,31,41,51 —32) | (12;02,31,441,51 — 32) {81,023, {21, 02}, {61, 12}, {71, 12} o
(12;71,01,11,21 — 32) | (12;02,01,11,2; — 32)

(02531,01,11,21 — 22) | (02512,01,11,21 —22)
(02;21731)41351 _22) (02112731741351 _22)
(02522,61,71,81 —32) | (02;12,61,71,81 —32) | {31,02},{21,02},{41,12},{22, 32} Eyo
(22;61732;42381 _]-2) (22a61702342781 _12)
(12541,01,11,21 — 32) | (12;02,01,11,24 —32)
(02;31701511721 _22) (02’12701711a21 )
(12541,01,11,21 — 32) | (12;02,01,11,24 *32)
(02542,31,41,51 — 22) | (02;12,31,41,51 — 29)

’ 31,00},{41,12},{81,42},{22,3 E
(12561,22,32,42 — 81) | (12;61,29,32,42 — 02) {31,023, {41, 12}, {81, 42}, {22, 32} t
(02;29,61, 71,81 —32) | (02;12,61,71,8 — 32)

(22;61732)42381 _12) (22161702742381 _12)
(02;31,01,11,21 —22) | (02512,01,11,2; — 23) {31,02}, {02, 12}(3 times) E3
(02;42,01,11,21 — 29) | (02;12,01,11,21 — 22) ,

oL 81,42}, {02, 15 }(3 times E
(15161, 20,35,42 — 81) | (1561, 25,35,4p — 0) | (5142} {02, 12}(3 times) E
(02531,01,11,21 — 22) | (02512,01,11,21 —22) . .

E
(0223161, 71,81 — 32) | (021 15,6,,71,8, — 35) | ob Oz (twice), {0z, Lo} (twice) 15
(02531,01,11,21 —29) | (02;12,01,11,2; — 29)
goz; 31,61,71,81 — 32% 202, 12,61,71,81 — 32% (31,05} (twice), {61, 1o }(twice) Fie
( ) | ( )

12;61731741751 _32

12a02731741351 - 32




New tree(s) Previous tree(s) Edges of the excess graph Excess

(02;31a01311721*22) (02;12301711721*22)

(02542,31,41,51 — 22) | (02512,31,41,51 —22) | {31,02},{31,42}, {02, 1o }(twice) Eir
(12561,22,32,42 — 31) | (12;61,22,32,42 — 05)

(02531,01,11,21 —22) | (02512,01,11,21 — 29)

(02;42,61,71,81 —32) | (02;12,61,71,81 —32) | {31,02},{81,42}, {02, 12} (twice) Eis
(12;61,29,32,42 — 81) | (12;61,22,32,42 — 02)

(02532,01,11,21 —22) | (02512,01,11,2; — 29)

i 19,29, 49,35 — 31) | (71 12, 2,49, 35 — 0 .
e L
(12561,22,32,42 —41) | (12;61,22,32,42 — 05)

(02732701a11721722) (02;12301711721722)

i 19,29, 49,35 — 31) | (71 12, 2,49, 35 — 0 .

E0§ P 33 50;12 e 33 (31,35, {31, 42}, {02, 1o} (twice) | Fg
(12561,22,32,42 — 31) | (12;61,22,32,42 — 02)

02;31,01,11,27 — 2 09;15,01,1¢,27 — 2 .
b O 1020~ 50 | (om0 1020 — 3 | (120} {41 (O tabowice) | By
09;31,01,11,27 — 2 0g;15,01,11,27 — 2 .

o o T OO T B T | 0 0a . 40,02} {0, Do) | B
02:31,01, 11,21 — 25) | (O9: 12,01, 11,2, — 2 .

Elj T _33 Eli.oi o _33 (31,05}, {41,05}, {05, 1o} (twice) | Fay
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Table 4.4: Substitutions in the B-covering RU S to obtain different excess graphs for
n=14

W be the set consisting of the single tree (1;2,3,0—4—5). Then RUS, RUU, RUV,
and R U W are minimum C-coverings of Ko with the excess graphs Fy (with the
edges {1,2},{2,3},{3,4}, and {3,5}), E5 (with the edges {0,2},{1,5},{3,5}, and
{4,5}), Eg (with the edges {1,2},{1,3},{3,4}, and {4,5}), and Ey (with the edges
{0,4},{0,5},{1,2}, and {1, 3}), respectively.

In order to obtain the excess graph Ejo, write K15 = K¢V K3 and label the vertices
of KoV K3 with a (Zy, Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum

C-packing of Ky has one edge. Let R be a maximum C-packing of K¢ with the edge
{71,81} as the leave graph. Also let S be the set consisting of the following trees.

(02501, 13,15 — 21 — 29), (025 21,31, 13 — 41 — 25), (025 12,44, 51 — 29 — 64),
(021,61, 71 — 81 — 22), (125 04,01, 11 — 29 — 31), (12531, 51,29 — 02 — &),
(12;61,81,71 — 25 — 0y)

The

Therefore, R U S is a minimum C-covering of K5 with the excess graph FEi,.

edges of the excess graph are {0q, 15}.

All the remaining excess graphs will be achieved by substituting some trees for
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others in the covering R U S. Table 4.5 illustrates these substitutions.
Case 5. T=C,n=13

By Theorem 1.3.3, the excess graph has two edges. Hence the possible excess
graphs are K3, P;, and 2K,. The excess graphs P; and 2K, will be obtained from
a maximum C-packing of Ki3. Label the vertices of K3 with the elements of Z3.
By Theorem 1.3.2, the leave graph in a maximum C-packing of K3 has three edges.
Moreover, all simple graphs with three edges can be achieved as the leave graph in
maximum C-packings of K3 as illustrated in Chapter 3. Let R be a maximum C-
packing of K3 with the edges {0, 1},{0,2}, and {3,4} as the edges of the leave graph.
Also let S be the set consisting of the single tree (4;5,3,2 — 0 — 1) and U be the set
consisting of the single tree (0;1,2,3—4—5). Therefore, RUS and RUU are minimum
C-coverings of K3 with the excess graphs P; (with edges {2,4} and {2,5}) and 2K,
(with the edges {0,3} and {4,5}), respectively.

In order to achieve the excess graph K2, write K3 = KoV K3 and label the vertices
of K19V K3 with a (Z, Z3)-labeling. By Theorem 1.3.1, K34 has a C-decomposition,
R. Furthermore, the set of vertices {51, 61, 71,81,91}, the set of vertices {02, 12,25},
and the edges between these two sets, form a graph K35 3, which has a C-decomposition,

S, by Lemma 1.3.16. Now, let U be the set consisting of the following trees.

(09; 12,01, 11 — 25 — 21), (225 31,41, 12 — 02 — 2y),
(12521,31,00 — 25 — 01), (12504, 13,41 — 02 — 34)

Therefore, R U S UU forms a minimum C-covering of K3 with the excess graph K3.

The edges of the excess graph are the edges {0y, 15} used twice.
Case 6. TT=C,n=14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those illustrated in Figure 4.1. Since a maximum C-packing of Ky, has
one edge by Theorem 1.3.2, the excess graphs Fs, F3, Fg, and Fy can be achieved as

explained in Case 4.

In order to obtain the excess graph E1s, write K14 = K71V K3 and label the vertices
of K11V K3 with a (Z11, Z3)-labeling. By Theorem 1.3.1, K3; has a C-decomposition,
R. Moreover, the set of vertices {61, 71, 81,91, 101}, the set of vertices {02, 12,25}, and

the edges between these two sets, form a graph Kj 3, which has a C-decomposition,
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(02501,61,71 — 81 —22) | (02;12,61,71 — 81 — 29)
(02511,41,51 — 29 — 61) | (02;12,41,51 — 22 —61) | {01,02}, {11,02}, {02, 12}, {02, 22} By
(22;02,31,11 — 15— 01) | (12;02,01,11 — 29 — 34)
(22502,31,11 — 12 — 01) | (12;02,01,11 — 22 — 34)
(81512,22,71 — 02 — 61) | (02;12,61,71 — 81 —22) | {81,12},{81,22}, {02, 12}, {02,252} E,
(22;81,61,51 — 02 —41) | (02;12,41,51 — 29 — 61)
(02521,61,71 — 81 —22) | (02;12,61,71 — 81 — 29)
(12;41,01,11 — 22— 31) | (12;02,01,11 — 22 —31) | {21,02}, {41, 12}, {81, 22}, {02, 12} Es
(22;81,61,51 — 02 —41) | (02;12,41,51 — 29 — 61)
(02521,61,71 — 81 —22) | (02512,61,71 — 81 — 29)
(12521,01,11 — 29 —31) | (12;02,01,11 —22 —31) | {21,02},{21,12}, {81, 22}, {02, 12} E;
(22;81,61,51 — 02 —41) | (02;12,41,51 — 29 — 61)
(02521,61,71 — 81 —22) | (02;12,61,71 — 81 — 29)
(12521,01,11 — 29 — 31) | (12;02,01,11 — 22 —31) | {21,02},{21,12}, {02, 1o}, {12,252} Eg
(22,12,61,51—02—41) (0 12,41,51—22—61)
(12;21,01,11 — 22— 31) | (12;02,01,11 — 29 — 31)
(81531,22,71 — 02 — 61) | (02512,61,71 — 81 —22) | {31,811}, {01, 22}, {21, 12}, {02, 1o} Eio
(22501,61,51 — 02 —41) | (02;12,41,51 — 22 — 61)
(21512,22,11 — 02 — 01) | (02;01,11,12 — 27 — 29)
(41512,22,31 — 02 — 21) | (02;21,31,12 — 41 — 22) | {11,21}, {31,441}, {81, 22}, {02, 12} B
(22;81,61,51 — 02 —41) | (02;12,41,51 — 22 — 61)
(O 51,61, 71 — 81 — 22) (0 12,61, 71 — 81 — 22) {51,02}, {02, 12}(3 times) E13
(22:31,41,1; — 15— 01) | (12;02,01,17 — 25 —3y) {41, 22}, {02, 12}(3 times) Ehy
(12581,01,11 — 22 — 31) | (12;09,01,1; — 25— 31) . .
(81512,22,71 — 02 — 61) | (02;12,61,71 — 81 — 29) {81, Lo} (twice), {05, 1o} (twice) Exs
(22;81,61,51 — 02 —41) | (02;12,41,51 — 29 — 61) . .
(25:81. 31,11 — 1y — 01) | (12509, 01,13 — 25 — 31) {81, 22} (twice), {02, 15} (twice) Eig
(29512,61,51 — 02 —41) | (02;12,41,51 — 22 — 61) .
81,22},102, 15} (twice), {12, 2 E
(22531,81,11 — 12 — 01) | (12;02,01,11 — 22 — 34) {81,223, {02, Lo }(twice), {12, 22} 17
(22531,41,11 — 15— 01) | (12;02,01,11 — 29 — 31) .
(022016171 — 81 — 25) | (Oi s, 61,7y — 8 —2,) | 101 O2b {422} {02, Lo} (twice) | Fus
(22731741a11_12_01) (12a02701311_22_31) .
(81551,22,71 — 02 — 61) | (02;12,61,71 — 81 — 29) {51, 81} {41, 22}, {02, 12} (twice) Exg
(22531,41,11 — 12— 01) | (12;02,01,11 — 22 — 31) .
(81;41,22,71 — 02 — 61) | (02;12,61,71 — 81 — 29) {41, 81} {41, 22}, {02, 1o }(twice) Ezo
(22;02,31,1; — 15— 01) | (12;02,01,11 — 29 — 31) .
(81512,29,71 — 02 — 61) | (02;12,61,71 — 81 — 29) {81, 12}, {02, 1o }(twice), {02, 22} Ex
(02;01,61,71 — 81 —22) | (02;12,61,71 — 81 — 29) )
(22;02,31,11 — 15— 01) | (12;02,01,11 — 29 — 31) {01,053, {05, 12} (twice), {0, 22} B2z
(02;21,41,51 — 22 — 61) | (02;12,41,51 — 29 — 61) .
21,02}4,421,12},{02, 12 }(t E.
(12521,01, 13 — 29 —31) | (12;09,01,1; — 25 —34) (20,02}, {21, 12}, {02, 1 }(twice) 23

Table 4.5: Substitutions in the C-covering R U S to obtain different excess graphs for

n=12
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S, by Lemma 1.3.16. Also let U be the set consisting of the following trees.

(02501, 11,15 — 21 — 29), (025 21,31, 13 — 41 — 25), (12502, 01, 11 — 29 — 5y)
(12531,51,00 — 25 — 01), (025 44,51, 15 — 29 — 31)

Therefore, RUSUU forms a minimum C-covering of K4 with the excess graph FEjs.

The edges of the excess graph are the edges {0y, 15} used four times.

In order to achieve the remaining excess graphs, we substitute some trees for others
in the covering RU S U U. Table 4.6 illustrates these substitutions.

Case 7. T=D,n =12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those illustrated in Figure 4.1. In order to achieve the excess graphs
Es, E5, and Eg, label the vertices of K5 with the elements of Zi5. By Theorem
1.3.2, the leave graph in a maximum D-packing of K5 has one edge. Let R be a
maximum D-packing of Ko with the single edge {0,1} as the leave graph. Also let
S be the set consisting of the single tree (3;2,1,4 — 0,5), U be the set consisting
of the single tree (0;3,1,4 — 2,5), and V be the set consisting of the single tree
(1;0,2,3—4,5). Therefore, RUS, RUU, and RUV are minimum D-coverings of Ko
with the excess graphs Fsy (with the edges {1,3},{2,3},{3,4}, and {4,5}), E; (with
the edges {0, 3}, {0,4},{1,2}, and {4,5}), and Eg (with the edges {1,2},{1, 3}, {2, 4},
and {3,5}).

In order to achieve the excess graph Fi,, write K15 = K¢V K3 and label the
vertices of Ky V K3 with a (Zg, Z3)-labeling. By Theorem 1.3.2, the leave graph in a
maximum D-packing of Ky has one edge. Let R be a maximum D-packing of Ky with

the edge {71,81} as the leave graph. Also let S be the set consisting of the following

trees.

(025 71,11, 1o — 29,21), (02521, 31, 1o — 29, 01), (12; 31, 51,00 — 25, 44),
(195 14,44, 00 — 29,57), (12; 71,61, 02 — 29, 87), (225 12, 71,05 — 81, 61),
(227 217 017 8l - 027 12)

Therefore, RU.S forms a minimum D-covering of Ky, with the excess graph Ei5. The

edges of the excess graph are the edges {0q, 15} used four times.
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New tree(s)

Previous tree(s)

Edges of the excess graph

Excess

41519,29,31 — 02 — 24
12;31,01,1; — 25 — 54
22;02,01,31 — 12 — 51
02;41,51,31 — 22 — 19

02;21,31,12 — 41 — 23
19;02,01,11 — 29 — 54
19:31,51,00 — 23 — 0y
02;41,51,12 — 22 — 31

{31741}’ {31702}7 {317 12}5 {31’ 22}

Ey

41;12,29,31 — 02 — 24
19;41,04,11 — 29 — 5

02;41,951,31 — 22 — 1a

02;21,31,12 — 41 — 23
19;02,01,11 — 29 — 54
02;41,51,12 — 22 — 34

{31,41},{31,02}, {41, 12}, {02, 12}

E,

12;41,01,11 — 25 — 5y
02;41,51,31 — 22 — 12
22;02,01,51 — 1o — 34

12;02,01,11 — 25 — 51
02;41,51,12 — 22 — 34
12:31,51,00 — 25 — 0y

{31702}7 {417 12}7 {517 22}7 {027 12}

Es

12;31,01,17 — 29 — 5
02;41,51,31 —22 — 12
22;02,01,51 — 1o — 34

12;02,01,11 — 22 — 51
02;41,51,12 — 292 — 34
19531,51,00 — 25 — 04

{31,02}, {31,12}, {51,22}, {02, 12}

Er

19;31,01,17 — 29 — 5
02;41,51,31 — 22 — 13
02;21,31,20 —41 — 15

12;02,01,11 — 25 — 51
02;41,51,12 —
02;21,31,19 —41 — 29

{31,02}, {31, 12}, {02, 12}, {02, 22}

Eg

19;31,01,17 — 29 — 5
22;02,01,51 — 12 — 31
21;19,29,17 — 05 — 0

12;02,01,11 — 25 — 51
12,31,51, 92— 29 —0

{117 21}7 {317 12}v {517 22}; {027 12}

22a02301751

41;12,29,3; — 03 — 24

12:31,51,00 — 25 — 0y

02;21,31,12 — 41 — 23

{11,21},{31,41}, {51, 22}, {02, 12}

12;21,01,11 — 29 — 5

19;02,01,11 — 25 — 57

{21,152}, {02, 15}(3 times)

29;41,51,11 — 15— 04

12;02,01,11 — 25 — 51

{41,232}, {02, 15} (3 times)

02;01,11,29 — 27 — 13
02;21,31,29 —41 — 15

02a017 11) 12
02;21,31,12 — 41 — 29

{02, 12}(tWiC€), {02, 22}(tWiC€)

29;31,91,11 — 12 -0
22;02301331

19;02,01,11 — 29 — 54
12:31,51,00 — 25 — 0y

{31, 22} (twice), {02, 12} (twice)

12531,01,11 — 22 — 91
22;092,01,31 — 1o — 5

12;02,01,11 — 25 — 51
19531,51,00 — 29 — 0y

{31, 12}7 {31, 22}, {02, 12}(tWiC6)

12521,01,17 — 29 — 5
29;02,01,31 — 15 — 5

12;02,01,11 — 25 — 57
12;31,51,00 — 25 — 0y

{21, 12}7 {31, 22}, {02, 12}(tWiC€)

21;12,29,11 — 02 — 04
22;02,01,31 — 15 — 51

02a017 117 12
12:31,51,00 — 25 — 0y

{11, 21}, {31, 22}, {02, 12}(tWiC€)

41519,29,31 — 02 — 24
22;02,01,31 — 1o — 5¢

02;21,31,12 —41 — 29
19:31,51,00 — 25 — 0y

{31, 4:1}7 {31, 22}, {02, 12}(tWiC€)

02;21,31,29 — 41 — 12
19521,01,11 — 25 — 51

02;21,31,12 — 41 — 23
12;02,01,11 — 25 — 51

{21, 12}, {02, 12} (twice), {02, 22}

12; 21a013 11
19;31,51,01 — 22 — 0

12;02,01,11 — 23 — 57
12:31,51,00 — 25 — 0y

{01,12},{21,12}, {02, 15} (twice)

02;41,951,31 — 22 — 12

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(21512,29,1; — 02 — 01)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(12531,01,1; — 25 —51)

02a417517 12

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(02501,11,13 — 21 —25)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(12502,01,1; — 25 — 51)

{31, 02}7 {31, 12}, {02, 12}(tWiC€)

Table 4.6: Substitutions in the C'-covering RU S UU to obtain different excess graphs

forn=14
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In order to obtain the remaining excess graphs, we substitute some trees for others

in the covering R U .S. These substitutions are illustrated in Table 4.7.
Case 8. T'=D,n=13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess
graphs are K2, P3, and 2K5. In order to achieve the excess graphs P3 and 2K5, label
the vertices of Ki, with the elements of Z;5. By Theorem 1.3.2, the leave graph
in a maximum D-packing of K5 has three edges. Moreover, all simple graphs with
three edges are achievable as the leave graph, as illustrated in Chapter 3. Let R be a
maximum D-packing of K15 with the path (0, 1,2, 3) as the leave graph. Also let S be
the set consisting of the single tree (1;0,2,4 —3,5) and U be the set consisting of the
single tree (1;4,0,2 —5,3). Therefore, RU.S and RUU are minimum D-coverings of
K5 with the excess graphs Py (with the edges {1,4} and {4,5}) and 2K, (with the
edges {0,5} and {1,4}), respectively.

In order to obtain the excess graph K2, write K3 = K19V K3 and label the vertices
of K19V K3 with a (Zy9, Z3)-labeling. By Theorem 1.3.1, K¢ has a D-decomposition,
R. Also the set of vertices {51,061, 71,81,91}, the set of vertices {02, 12,25}, and the
edges between these two sets, form a graph K5 3, which has a D-decomposition, S, by

Lemma 1.3.16. Let U be the set consisting of the following trees.

(12;31,21,00 — 22, 11), (02; 21, 31, 1y — 22,41), (025 41, 12,22 — 01, 11), (22541, 01, 12 — 0o, 11)
Therefore, R USUU forms a minimum D-covering of K3 with the excess graph K3.
The edges of the excess graph are the edges {02, 15} used twice.

Case 9. T=D,n=14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those illustrated in Figure 4.1. Since a maximum D-packing of Ky, has
one edge by Theorem 1.3.2, the excess graphs FEs, F5, and Eg can be obtained as

explained in Case 7.

In order to achieve the excess graph FEis, write K14 = K1 V K3 and label the
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New tree(s) Previous tree(s) Edges of the excess graph Excess

(12531,41,51 — 02,22) | (12531,51,02 —22,44)

(12511,41,51 —22,02) | (12511,41,02 —22,51) | {41, 12}, {51, 12}, {81, 12}, {02, 12} £y
(12;71,61,81 —22,02) | (12;71,61,02 —25,8;)

(12531,41,51 — 02,22) | (12531,51,02 —22,44)

(12511,41,51 —22,02) | (12511,41,02 —22,51) | {41,12},{51,12},{61,81},{02, 12} Es
(61522,81,15 —02,71) | (12;71,61,02 —22,81)

(12511,41,51 —22,02) | (L2511,41,02 —22,51)

91;22,41,12 — 02,31 12;31,51,02 — 22,4

E22,12,71,02 81,413 222,12»71,02 81,61; {4150} {41, 021 {51, 121, {02, 12} Eq
(61522,09,19 — 81, 71) | (12571,61,02 —25,8;)

(12511,41,51 —22,02) | (L2511,41,02 —22,51)

(51522,02,19 —41,31) | (12531,51,02 —22,41) | {11,21},{51,02}, {51, 12}, {02, 12} E;
(11522,21,00 — 15,71) | (02;71,11,10 — 29,2)

(12511,41,51 —22,02) | (L2511,41,02 —22,51)

(51322,02,12 —41,31) | (12531,51,02 —22,41) | {51,02}, {51, 12},{01,02}, {02, 12} Es
(02521,01,31 — 12,22) | (02521,31,12 — 22,0p)

(12531,41,51 — 02,22) | (12531,51,02 — 29,44)

12;11,41,51 — 22,02 12;11,41,02 — 22,51

502,21,01,31 12,22§ 502,21,31,12—22,015 {01,023, {20, 02} {41, 12}, {50, 12} Eo
(02;71,11,21 —29,19) | (02;71,11,10 —22,2)

(12511,41,51 — 22,02) | (12511,41,02 —22,51)

(rion 0n 02 1300 | (Oaon o 0ry | 00200 0032} B002h B1a} |
(11529,21,00 — 12, 71) | (02571,11,12 —29,2y)

(51522,41,12 — 02,31) | (12531,51,02 — 22,44)

(31522,01,02 — 12,21) | (02521,31,12 —22,01) | {11,21},{01,31},{41,51}, {02, 12} by
(11522,21,00 — 15,71) | (02;71,11,10 — 29,2)

(11,22702,12 71,21) (02,71,11,12 22,21) {11,12},{02,12}(3 times) E13
(11,22,02,21 71,12) (02,71,12,11 21,22) {11,21},{02,12}(3 times) E14
(02571,11,21 —29,19) | (02;71,11,10 —29,24)

(22,01,21,81 02,12) (22,21,01,81 02,12) {21,02}(twice),{02,12}(twice) E15
(02521,01,31 — 12,29) | (02521,12,31 —01,22)

hiomse s 0nr1m) | (110 d00s 25y | {40050} (ice) (0 Laowice) | B
51529,41,12 — 02,31 12;31,51,02 — 22,44 .
g12’11,41,51 227023 212’11)41702 22’513 {41,51},{51,12},{02,12}(tWICe) E17
12;31,41,51 — 02,22 12;31,51,02 — 22,44 .
531’22701’02 12,213 202’21731’12 _22’03 {01,31},{41,12},{02,12}(tW1C6) FEis
41;29,51,10 — 09,11 19511,41,00 — 25,54 .
E61,22,81,12 *02,715 512,71,61, 2*22,815 141,51}, {6181}, {02, L2} (twice) Eao
(12571,61,81 — 29,02) | (12;71,61,02 —22,8;)

(22,21701,81 02,51) (22,21,01,81 02,12) {41,51},{51,81},{02,12}(tWiCQ) EQ()
(41522,51,19 — 02,11) | (12511,44,02 — 22,51)

02,21,01,31 12,22 02’21731’12 22701 .
g12’31,41,51 027223 212’31,51’02 22’413 {01,02},{41,12},{02,12}(tWICe) E21
12;31,41,51 — 02,22 12;31,51,02 — 22,44 .
212’11741’51 _22,02; 212’11741’02 _227513 {41,12},{51,12}7{02,12}(tW1C6) E22
19:11,41,51 — 22,09 19511,41,00 — 29,54 .
E51,22,02,12 41,33 E12,31,51,02 22,41§ {51,021, {51, 12} {02, 1} (twice) Eas

Table 4.7: Substitutions in the D-covering R U S to obtain different excess graphs for
n =12
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vertices of K1y V K3 with a (Zi1,Z3)-labeling. By Theorem 1.3.1, Kj; has a D-

decomposition, R. Let S be the set consisting of the following trees.

(02501, 11, 1o — 29,27), (02521, 31, 1o — 29,44), (125 11,01, 05 — 29, 44),
(12331, 51,02 — 22,91), (125101, 71,02 — 29, 81), (22; 21, 02, 15 — 51, 81),
(22;41,91,107 — 15,09), (613 12,092,290 — 71, 87)

Therefore, RU.S forms a minimum D-covering of K14 with the excess graph Ei5. The

edges of the excess graph are the edges {09, 15} used four times.

As in the previous cases, the rest of the excess graphs will be achieved by substi-
tuting some trees for others in the covering RUS. These substitutions are illustrated
in Table 4.8.

Case 10. T=FE,n =12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those shown in Figure 4.1. The leave graph in a maximum FE-packing of
K15 has one edge by Theorem 1.3.2. In order to obtain the excess graphs Fy and Fy,
label the vertices of K5 with the elements of Z, and let R be a maximum FE-packing
of Kjo with the edge {0,1} as the leave graph. Also let S be the set consisting
of the single tree (1 — 0,2;3 — 4,5) and U be the set consisting of the single tree
(0—2,3;1—4,5). Therefore, RUS and RUU form minimum E-coverings of K, with
the excess graphs FEy (with the edges {1,2},{1,3},{3,4}, and {3,5}) and Ey (with
the edges {0,2},{0,3},{1,4}, and {1,5}), respectively.

In order to achieve the excess graph Fi,, write K15 = K¢V K3 and label the
vertices of Ky V K3 with a (Zg, Z3)-labeling. By Theorem 1.3.2, the leave graph in a
maximum F-packing of Kg¢ has one edge. Let R be a maximum FE-packing of Ky with
the edge {71,81} as the leave graph. Also let S be the set consisting of the following

trees.

(02 — 01, 13315 — 24,34), (1 — 04,095 25 — 14, 24), (02 — 41, 12525 — 01, 34),
(1o — 11,02; 81 — 71,22), (02 — 21,315 10 — 44, 51), (71 — 0g, 19; 29 — 44, 59),
(61 — 19,29; 00 — 51, 8)

Therefore, RU S forms a minimum FE-covering of K, with the excess graph Ei5. The
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New tree(s) Previous tree(s) Edges of the excess graph Excess

(12;11,01,41 — 22,02) | (12;11,01,090 — 29,41)

(12531,51,91 —22,02) | (12531,51,02 —22,91) | {41,12}, {81, 12}, {91, 12}, {02, 12} by
(125101,71,81 —22,09) | (12;101,71,02 —22,8;)

(12;11,01,41 — 22,02) | (12;11,01,00 — 29,41)

(12531,51,91 — 22,02) | (12531,51,02 —22,91) | {71,81}, {41,12}, {91, 12}, {02, 12} b3
(71;22781712_027101) (12;101771702_22781)

(31722341702 12721) (02721731712 22741)

(12;11,01,41 — 22,02) | (12;11,01,090 — 29,41)

3,41}, {31, 09}, {4, 15}, {0, 1 E

(51722702712 91731) (12731751702 22791) { ! 1} { ! 2} { ! 2} { 2 2} 4
(22521,02,12 — 31,81) (22521,02,19 — 51, 81)

(12711701741 22702) (12711701702 22741)

(02521331741_2271 ) (02721731712_22a41) {11721}){41302}7{41312}7{02)12} E7
(11722721702 12701) (02701711712 22721)

(12311a01a41_22702) (12711701702_22741)

(02521,31,41 — 29,12) | (02;21,31,12 — 22,41) | {21,02}, {41,02}, {41, 12}, {02, 12} Eg
(02501,11,21 —29,12) | (02;01,11,15 —25,29)

(31722341302 - 12721) (02721731712 22741)

(01522,41,19 — 02,11) | (12;11,01,00 —22,41) | {01,421}, {31,41}, {91, 12}, {02, 12} Ey
(12531,51,91 — 22,02) | (12531,51,02 —29,91)

(31522,41,02 — 12,21) | (02521,31,12 — 22,41)

(12531,51,91 — 22,02) | (12;31,51,02 —22,91) | {11,21},{31,41}, {91, 12}, {02, 12} Eyo
(11522,21,09 — 15,01) | (02;01,11,19 — 29,27)

(11:22,21,02 — 12,01) | (02;01,11,13 —22,29)

(31522,41,00 — 12,21) | (02;21,31,12 — 22,41) | {11,21},{31,41},{51,91}, {02, 12} By
(51522,91,12 — 02,31) | (12531,51,02 —2,91)

(02;01,11,21 —29,12) | (02;01,11,19 —29,24) {21,02},{02,12}(3 times) Ey3
(11;22,21,02 — 15,01) | (02;01,11,15 —29,21) {11,21},{02,12}(3 times) Eiy
(12:31,51,91 —22,02) | (12:31,51,02 —22,91)

(12; 101, 71, 81 — 22, 02) (12; 101, 71, 02 — 22, 81) {91, 12}(twice), {02, 12}(twice) E15
(22521,02,12 —51,91) | (22;21,02,12 —51,81)

(12;31,51,91 — 22,09) (12531,51,02 — 29,91)

(125101,71,81 —22,09) | (12;101,71,02 —22,8;)

(22521,02,12 —51,91) | (22;21,02,12 —51,81) . .

(027 017 117 21 - 227 ) (027 017 117 12 227 ) {21, 02}(tW1ce)7 {917 12}(tW1ce) E16
(02a21331741_227 ) (027217317 2_22,41)

(12711701702_22721) (12711701702_22741)

(12711a01741 22702) (12711701702 22741) .
(31522,41,09 — 19,21) | (02;21,31,12 — 29,41) {Brda}, {41, 12}, {0, 12} (twice) Err
(12:11,01,41 —22,02) | (12:11,01,02 —22,44) :
(11722321302 12701) (02701711712 227 ) {11’21}’{41712}’{02712}(tW1ce) Els
(31522,41,02 — 12,21) | (02521,31,12 — 29,41) .
(11:2,21,05 — 15,0,) | (02105, 11,15 — 25,2,) | (1021} Budih A0z Taj(twice) | B
(31522,41,09 — 12,21) | (02;21,31,12 — 29,41) .
(01224115 — 05 1,) | (15:1,,0,,0, — 25,4y) | (O04uh (Budih {02 Toj(twice) | Eao
(12;11a01a41 22702) (12711701702 22741) .
(02501,11,21 — 29,13) | (02501,14,15 —29,29) {2102}, {41, 12}, {0z, L2} (twice) En
(12;11,01,41 — 22,02) | (12511,01,00 —29,44) .
(125101,71,8;1 —22,09) | (12;101,71,02 —22,8;) {41, 123, {81, 12}, {02, 1o }(twice) Ez
(12;11,01,41 — 22,02) | (12;11,01,092 — 29,41) .
(022213141 — 25.15) | (05:21,31.15 — 25.4y) | (4002} U 12h {02 Toj(twice) | g

Table 4.8: Substitutions in the D-covering RU S to obtain different excess graphs for

n =14
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edges of the excess graph are the edges {0q, 15} used four times.

In order to obtain the rest of the excess graphs, we substitute some trees for others

in the covering R U S. These substitutions are indicated in Table 4.9.
Case 11. T=FE,n=13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess
graphs are K2, P;, and 2K,. The leave graph in a maximum E-packing of K3 has
three edges by Theorem 1.3.2. All simple graphs with three edges can be achieved as
the leave graph in E-packings of K3 as illustrated in Chapter 3. Label the vertices of
K3 with the elements of Z;3. Let R and S be maximum FE-packings of K3 with the
leave graphs (0;1,2,3) and (0, 1,2, 3), respectively. Also let U be the set consisting
of the single tree (0 — 1,2;3 — 4,5) and V' be the set consisting of the single tree
(1—0,4;2—3,5). Therefore, RUU and SUV are minimum FE-coverings of K3 with
the excess graphs Py (with the edges {3,4} and {3,5}) and 2K, (with the edges {1,4}
and {2,5}), respectively.

In order to achieve the excess graph K2, write K13 = K19V K3 and label the vertices
of K10V K3 with a (Zy0, Z3)-labeling. By Theorem 1.3.1, Ko has an E-decomposition,
R. Let S be the set consisting of the following trees.

(0 — 01, 11515 — 21, 31), (02 — 21,315 15 — 04, 11), (0 — 44,513 1o — 61, 71),
(1o —44,51;29 — 01, 11), (02 — 61, 71525 — 24, 31), (81 — 0g, 19; 29 — 44, 57),
(91 — 0g,19;29 — 64, 71)

Therefore, RUS forms a minimum E-covering of K3 with the excess graph K2. The

edges of the excess graph are the edges {09, 15} used twice.
Case 12. T=FE,n=14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those shown in Figure 4.1. Since the leave graph in a maximum FE-packing
of K14 has one edge by Theorem 1.3.2, the excess graphs s and Ey can be obtained

in a similar way as in Case 10.

In order to achieve the excess graph FEis, write K14 = Kjo V K4 and label the
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(13 —21,31522 — 41,51) | (12 —21,31;02 — 01, 14)
(71 — 12,2902 — 01,11) | (71 — 02,12;22 — 44,51)
(12— 01,3152 — 11,21) | (12 —01,02;29 — 14,24) {Bu 1o} {12, {02, 12}, {12, 22} =
(81— 71,205 10 — 11,41) | (81 — 71,2519 — 11,09)
(12 = 01,31522 — 11,21) | (12 —01,02;22 — 11,21)
(81— 71,2910 — 11,41) | (81 — 71,29;12 — 11,02)
(02 —41,71522 —01,31) | (02 —44,12;29 — 01,31) {70801 431 121 {4 1o} {02, 12} Es
(71 —81,19;22 —44,51) | (71 — 09, 12529 — 44, 51)
(02 —41,61522 — 01,31) | (02 —44,12;22 — 01,31)
(12— 01,7152 — 11,21) | (12 —01,02;29 — 11,24)
(81— 71,2910 —11,61) | (81 —71,22;12 — 11,09) {61,713 461, 021 {71 12}, {02, 12} Eq
(61 — 71,2950 — 51,81) | (61 — 12,29;00 — 51,81)
(02 —11,41522 — 01,31) | (02 —44,12;22 — 01,31)
(12— 01,3152 — 11,21) | (12 —01,02;29 — 11,24)
(81 _71,227 2—11,61) (81 _71722712 11,02) {61771}7{11702}a{31712};{02712} E5
( 71722702 51381) (61 - 12722702 51781)
(02 —11,41522 — 01,31) | (02 —44,12;29 — 01,31)
(12 = 01,61522 — 11,21) | (12 —01,02;22 — 14,21) ,
(81 _71722312_11761) (81 _71722;12 11702) {61’71}7{11’02}’{61712}’{02712} E()
(61— 71,29;02 — 51,81) | (61 — 12,29;00 — 51,81)
(02 —41,51522 — 01,31) | (02 —44,12;29 — 01,31)
(12_01751722 11721) (12_01702722 11721)
(81 _71722’ 2—11,61) (81 _71722’12 11702) {61771}7{51702}7{51712}7{02712} E7
(61 — 71,225,020 — 51,81) | (61 — 12,29;02 — 51,81)
(02 —41,51522 —01,31) | (02 —41,12;29 — 01,31)
(12 = 01,51522 — 11,21) | (12 —01,02;22 — 11,21) | {51,02}, {51,12}, {61, 12}, {02, 12} Eg
(81— 71,29519 —14,61) | (81 — 71,225 12 — 14,09)
(02 —11,41522 — 01,31) | (02 —44,12;29 — 01,31)
(12 —01,31;22 — 11,21) | (12 — 01,02; 22 — 11,24)
81 —T1,20: 15— 15,6,) | (81 — 71,29:15 — 15,0
E ! 71 22 02 51 83 561 B 1; 22 02 51 8?; {61,713, {11,02}, {31, 12}, {12,22} | Eio
(13 —21,31522 —41,51) | (02 —01,11;12 —2¢,31)
(71 — 12,295,050 — 01, 11) | (71 — 02,12;29 —41,57)
(02 —44,71522 — 01,31) | (02 —44,12;22 — 01,31)
(71 — 81,2912 — 21,31) | (71 — 02,12;22 — 44,51)
(02 —01,11522 —41,51) | (02 —01,11;12 —21,31)
(81— 71,2951 —11,61) | (81 —71,22;19 — 11,09) {41,601 470 811 {31, 123402, 221 | B
(61 —41,29;02 — 51,81) | (61 — 12,29;02 — 51,87)
(12_01731722 11321) (12_01702722 1172 )
(02 —11,41522 — 01,31) | (02 —44,12;29 — 01, 31) {11,02},{02, 12}(3 times) Eq3
(12 = 01,71522 — 11,21) | (12 —01,02;22 — 14,21) .
(71— 81,09;29 — 41,51) | (71 — 02,12;22 — 44,51) {7181}, {02, 12}(3 times) Eua
To—01.31: 25 —11.21) | (13 —05,09:25 —1,,2 ) .
Elz _ 11 31 8? B 71 23 Elz _ 11 02 8? 71 23 {31, 12} (twice), {02, 15} (twice) Eis
(13 —01,61522 — 11,21) | (12 —01,02;22 — 11,21)

71,29;0 91,8 15,29;0 91,8 . .
Eog Cpmi 33 Eoz SR 33 {61, 71 Htwice), {05, 1o} (twice) | FEug
(71 — 61,1225 —41,51) | (71 —02,19;29 — 44,51)
(02 —11,41522 — 01,31) | (02 —44,12;29 — 01,31)
(71— 11,025,220 —41,51) | (71 —02,12;29 —44,51) | {11,71},{11,02},{02, 12} (twice) Eir
(12_01771722 11321) (12_01702;22 11721)
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12 _01751722

12 _01702722

New tree(s) Previous tree(s) Edges of the excess graph Excess
( 11341722 01731) (02*41712722 01331)
(12 —01,71522 — 11,21) | (12 —01,02;22 — 11,21) | {71,81}, {11, 02}, {02, 12 }(twice) Eig
(71 —81,02529 —41,51) | (71 —02,19;25 — 44, 51)
(12 = 01,61;22 — 11,21) | (12 —01,02;22 — 141,21)
4y,25:00 —51,81) | (61 — 19,29:05 — 51,8 .
§02_41 b 33 EO;_; B 33 {41,613, {71,81}, {02, 1o} (twice) | Bng
(71— 81,1229 — 41,51) | (71 —02,19;25 — 44, 51)
(12 = 01,61;22 — 11,21) | (12 —01,02;22 — 11,21)
71,22:00 — 51,81) | (61 — 12,2505 — 51,8 .
§02_41 b 33 EO;_; e 33 {61,713, {71,81}, {02, 1o H(twice) | Bag
(71— 81,1229 — 41,51) | (71 —02,19;25 — 44, 51)
Oy —41,51:25 — 01,31) | (05 —43,12:25 — 04,3 .
Elz _01 61 22 11 213 E 2 01 0; 22 11 213 {51,02}7{61,12},{02,12}(tW1C€) EQl
1o 01,312 11,2 | (1o~ 01,022, — 11,2 .
e dr it i) | (1 Loty — Ty 2g) | o1z U tah (0 La}ovice |
—41.51:25—01,31) | (02 —41,12:25 — 01,3 .
E Lo 22 = 1 13 E 27 b ez 1% 51,02}, {51, 12}, {02, 15} (twice) | Eas

Table 4.9: Substitutions in the E-covering RU S to obtain different excess graphs for

n=12

vertices of KoV Ky with a (Zyo,Z4)-labeling. By Theorem 1.3.1, Ko has an E-

decomposition, R. Let S be the set consisting of the following trees.

(02 =01, 13515 —
(02 — 31, 1; 32
(91 — 02, 12; 3,
(61 — 02,29; 1,

_Ola

21,31), (12 — 01, 02; 25 —

1), (02 — 44,515 15 —

—41,51), (81 — 09, 19;25 —
1)

_417

14, 21)7 (02 —21,19;25 — 01731),
11,32), (22 — 41,513 32 — 24, 31),
71791)7 (71 - 027 12; 32 - 61781)7

Therefore, RU S forms a minimum FE-covering of K4 with the excess graph Ei5. The

edges of the excess graph are the edges {0q, 15} used four times.

In order to obtain the remaining excess graphs, we substitute some trees for others
in the covering RU S. Table 4.10 illustrates these substitutions.

Case 13. T'= FPg,n =12

The excess graph has four edges by Theorem 1.3.3. Hence the possible excess

graphs are those illustrated in Figure 4.1. A maximum Fs-packing of Ki, has one

edge by Theorem 1.3.2. Label the vertices of K5 with the elements of Zis.

Also

let R be a maximum PFg-packing of Ko with the edge {0,1} as the leave graph,
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(13 = 01,71522 — 11,21) | (12 —01,02;22 — 11,21)
(71 —02,29;32 —61,81) | (71 —02,12;32 — 61,81)
( 02712722 _41791) (81 _02712722 71791)
(20— 51,0035 — 20.31) | (22— 41,5118 — 2,3y | (0 02h {2002} {02, 12} {02, 221 | B4
(02 —11,21529 — 01,31) | (02 — 21,12;22 — 01,31)
( 21731732 017 ) (02_31712a32 017 )
(02_11721722_01731) (02_21712;22 01731)
21,31;3 04, 31,19;3 04,
212_01 71 2_11 ; E 2_01 Oj 2_11 ; {561, 71}, {11,02}, {21, 02}, {02, 12} Es
(71— 51,02;32 — 61,81) | (71 —02,12;32 —61,81)
(02 —21,71522 — 01,31) | (02 —21,12;22 — 01,31)
51, 19:35 — 61,8 0z, 15: 35 — 61,8
E02—31 5? 32—01 13 202—33 12 32—01 1; {50, 71h {51,023, 470, 123 402, Lo} | Bl
(12— 01,71522 — 11,21) | (12 —01,02;29 — 14,24)
(02 —21,71522 — 01,31) | (02 —21,12;22 — 01,31)
(71— 51,12;32 — 61,81) | (71 — 02,12;32 — 61,81)
(Lo — 01,3120 — 11.21) | (I — 01,0525 — 15,2,) | P Tuh {30 12d {40, 02} {02, 12} | B
(02 —31,41532 — 01,11) | (02 —31,12;32 — 0y, 14)
(02 —21,71522 — 01,31) | (02 —21,12;22 — 01,31)
(71— 51,12;32 — 61,81) | (71 — 02,12;32 — 61,81)
(12— 01,3152 — 11,21) | (12 —01,02;29 — 14,24) {51, 7ak {31, 12}, 451,02}, {02, 12} Es
(02 —31,51532 — 01, 11) | (02 —31,12;32 — 01,11)
(02 —21,71522 — 01,31) | (02 —21,12;22 — 01,31)
(71— 51,12;32 = 61,81) | (71 —02,12;32 — 61, 81)
(12 = 01,41522 — 11,21) | (12 —01,02;29 — 11,24) {51, Tuk {41, 12}, {41,021, {02, 12} Er
( 31741732 01711) ( 31712732 01711)
(02 —21,71522 — 01,31) | (02 —21,12;22 — 01,31)
7y — 51,1935 — 61,81) | (71 — Og,19: 35 — 64,8
1 gz o D gz TR | (50 (51,0 (50, 12 0m, 12} | B
( 31751732 01711) ( 31712;32 01711)
(12 —01,91522 — 11,21) | (12 —01,02;22 — 11,24)
(91 —81,02;32 —41,51) | (91 — 02,12;32 — 41,51)
(02 —21,71529 — 01,31) | (02 —21,19;25 — 01,31) | {51,71},{81,91}, {31,02}, {02, 12} Eqo
( 51712732 61781) ( 02712732 61781)
(02 —21,31532 — 01,11) | (02 —21,19;32 — 0q,14)
(12 —01,91520 — 11,21) | (12 —01,02;29 — 11,24)
(91_41702732_41751) (91_02712;32 41751)
(02 —21,71522 — 01,31) | (02 —21,12;22 — 01,31)
(71— 51,12;32 — 61,81) | (71 — 02,12;32 — 61,81) {41,903 {51, 7}, {61,814, {02, 12} En
(02 —31,81532 — 01, 11) | (02 — 31,12;32 — 01,11)
(81— 61,1920 — 71,91) | (81 — 02,12;29 — 71,91)
(13— 01,31522 — 11,21) | (12 —01,09; 22 — 11,24) {31,12},{02,12}(3 times) Eqs
(02 —21,71529 —01,31) | (02 —21,12;29 — 01,31) .
(71 _51712732 61781) (71 _02712532 61781) {51’71}’{02712}(3 tlmeS) E14
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New tree(s) Previous tree(s) Edges of the excess graph Excess

( 2_21741722 01331) ( 21)12722 01331) . .

(02— 31,4135 — 00, 11) | (02— 31, 15335 — 0y, 1,) | U O2}bwice), {0, Iaj(twice) - Ehs
(15— 01,9152 — 11,21) | (12 —01,02;22 — 11,24)

(91 = 71,025 32 —41,51) | (91 — 02,125 32 — 41, 51) . . ,
( 217 717 22 Ola 31) (02 - 217 127 22 017 31) {717 91}(thce)’ {027 12}(tWICe) El()
( 91712732 61381) ( 02712732 61781)

(1o —01,51522 — 11,21) | (12 —01,02;22 — 11,24)

(02 —21,71522 — 01,31) | (02 —21,12;29 — 01,31) | {51,71}, {51, 12}, {02, 12} (twice) Evz
( 51712732 61381) (71 _02712732 61781)

(1o —01,51522 — 11,21) | (12 —01,02;22 — 11,24)

(02 — 21,7152 — 01,31) | (02 —21,19;25 —01,31) | {41,71}, {51, 12}, {02, 12 }(twice) Egg
(71_41712732_61a81) (71_02712732 61781)

(12 —01,91529 — 11,21) | (12 —01,092;22 — 11,24)

(91 —81,02;32 —41,51) | (91 —02,19;35 —44,51) .

(02 —21,71522 — 01,31) | (02 —21,12;29 — 01, 31) {51, 71}, {81, 91}, {02, 12} (twice) Eug
(71 —51,19;32 = 61,81) | (71— 02,12;32 — 61,81)

(02 —21,71522 — 01,31) | (02 —21,19;25 —01,34)

(10— 01,71520 — 11,21) | (12 —01,02;22 — 11,21) | {41,71},{51,71}, {02, 1o} (twice) | Eop
(71_41751732 61381) (71_02712732 61781)

(12 —01,41529 — 11,21) | (12 —01,02;22 — 11,24) .

11,00}, {41, 1o}, {02, 1o} (t E

(02 —11,21529 — 01,31) | (02 —21,19;25 — 01, 34) {11,023, {41, 12}, {02, 12 }(twice) 2!
0y — 11,2125 — 01,31) | (05— 21, 12:25 — 04,3 .

E )= 21315 — 01,1 1% Eoz EENERENEY 1; 1,02}, {21,0}, {0 1o (twice) | Bo
(12_01741722_11a21) (12_01702722 11a21) .

( 21741722 01331) (02 _21712722 01731) {41702}7{41,12}7{02712}(tW1ce) E23

Table 4.10: Substitutions in the E-covering R U S to obtain different excess graphs

forn=14



90

S be the set consisting of the single path (2,0,1,3,4,5), U be the set consisting
of the single path (0,1,2,3,4,5), and V be the set consisting of the single path
(2,3,0,1,4,5). Therefore, RUS, RUU, and RUV form minimum Ps-coverings of Ko
with the excess graphs Fs5 (with the edges {0,2}, {1,3},{3,4}, and {4,5}), Es (with
the edges {1.2},{2,3},{3,4}, and {4,5}), and Ey (with the edges {0,3},{2,3}, {1, 4},
and {4,5}), respectively.

In order to obtain the excess graph Ejo, write K15 = KgV K4 and label the vertices
of KsV K4 with a (Zg, Z4)-labeling. Let R be the set consisting of the following paths.

(]-1; Ola 21a61a 51a41)7 (217 117317 517 71701)7 (317217417 717617 11)7
(01, 31,41, 11,51,21), (51,01, 41,61,31,71)

In fact, R is a maximum Pg-packing of Ky with the edges {01,641}, {11, 71}, and {21, 7;}
as the leave graph. Now the set of vertices {21,31,41,51,61}, the set of vertices
{02, 15,25, 35}, and the edges between these two sets, form a complete bipartite graph
K54, which has a Fs-decomposition, S, by Lemma 1.3.16. Also let U be the set

consisting of the following paths.

(]-1; 71; 22; 32a01a61)7 (Ola 227 127 717 11702)7 (017 127327 117 71702)7
(01, 02,32, 71,11,22), (21, 71, 11, 12, 02, 25)

Therefore, RUSUU forms a minimum Fs-covering of K15 with the excess graph Fis.

The edges of the excess graph are the edges {11, 7;} used four times.

In order to achieve the remaining excess graphs we substitute some paths for others
in the covering RU S UU. Table 4.11 illustrates these substitutions.

Case 14. T'= FPs,n =13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess
graphs are K2, P3, and 2K,. The leave graph in a maximum Ps-packing of K3 has
three edges by Theorem 1.3.2. All simple graphs with three edges are achievable as
the leave graph in a FPs-packing of Ki3 as we saw in Chapter 3. Label the vertices of
K13 with the elements of Z,3 and let R be a maximum PFg-packing of K3 with the
path (0,1,2,3) as the leave graph. Also let S be the set consisting of the single path
(0,1,2,3,4,5) and U be the set consisting of the single path (4,0, 1,2, 3,5). Therefore,



New tree(s) Previous tree(s) Edges of the excess graph Excess
(21771722732701;61) (11771722a32701761)
(01722712771702)11) (01722712;71711302) {11771}7{21771}7{71302}7{71522} El
(01,02,32,71,22,11) | (01,02,32,71,11,22)
(21771722a32701;61) (11>71722a32301761)
(017227127717027 ) (01722712771711702) {01711}7{11371}7{21a71}7{71702} E2
(22,11,01,092,32,71) | (01,02,32,71,11,22)
(21,71,22,32,01,61) | (11,71,22,32,01,61)
(01,22,12,71,02,11) | (01,22,12,71,11,02) | {11,71},{21,71},{01,22},{71,02} Es
(11722701702732)71) (01702732;71711722)
(22,11,01,02,32,71) | (01,02,32,71,11,22)
(01,22,12,71,02,11) | (01,22,12,71,11,02) | {01,11},{11,71},{01,02},{71,02} Ey
(11,32,12,01,02,71) | (01,12,32,1,71,02)
(21,71,22,32,01,61) | (11,71,22,32,01,61)
(22,02,12,11,21,71) | (22,02,12,11,71,21) | {11,2:},{11,71},{21,71},{01,22} Ey
(11722701702732;71) (01702732a71711722)
(21,71,22,32,01,61) | (11,71,22,32,01,61)
(22,02,12,11,21,71) | (22,02,12,11,71,21) | {11,2:}, {11, 71}, {21, 71}, {71,02} Eg
(0172271%71»02; ) (01,2271%71311702)
(01,22,12,71,02,11) | (01,29,12,71,11,02)
(21,61,01,32,22,71) | (11,71,22,32,01,61) | {11,71},{21,61},{01,22},{71,02} Eio
(11,22,01,02,32,71) | (01,09,32,71,11,22)
(51,61,01,32,22,71) | (11,71,22,32,01,61)
(11a12702722)21771) (21771711312a02722) {51761}7{11771}7{01702}7{21722} Ell
(11,32,12,01,02,71) | (01,19,32,14,71,02)
(02,71,22,32,01,61) | (11,71,22,32,01,61) {11, 7, }(3 times), {71,042} Ei3
(71,22,32,01,61,02) | (11,71,22,32,01,61) {11,7:}(3 times), {61,02} FEy
(02,71,22,32,01,61) | (11,71,22,32,01,61) . .
(01,29,12,71,02,11) | (01,22,12,71,11,02) {11, Tab(twice), {71, 0o }(twice) Eis
(11702701722712;71) (01722712a71711702) . .
(11732712701702771) (01712732;11771702) {11’71}(tW1CC)7{01’02}(tW1CC) E16
(02,71,22,32,01,61) | (11,71,22,32,01,61) :
(11702701a22712;71) (01>22712a71311702) {11771}(tW1ce>7{01302}’{71702} E17
(12,71,22,32,01,61) | (11,71,22,32,01,61) .
(11,02,01,22,12,71) | (01,29,12,71,14,02) {1, T (twice), {01, 023, 471, 12} Eis
(71722732701761722) (11771722;32701761) :
(11,02,01,29,12,71) | (01,29,12,71,11,02) {11, Tab(twice), {01, 02}, {61, 22} E1o
(71,22,32,01,61,02) | (11,71,22,32,01,61) .
(11,092,01,29,12,71) | (01,22,12,71,11,09) {11, Ta}(twice), {01, 02}, {61, 02} Ezo
(02,71,22,32,01,61) | (11,71,22,32,01,61) .
(02711701722712771) (01722712371a11702) {01711}7{11771}(tW10e)’{71702} E21
(12,71,22,32,01,61) | (11,71,22,32,01,61) .
(01,25, 15, 71,00, 13) | (01,2, 15,71, 1,,05) | (1 Tib(0wice), {70, 02} {7y, 1o} | B
02,71,22,32,01,6 11,71,29,32,01,6 .
E Bl 1; E ot 1; {11, 71 }(twice), {11,02}, {71,02} Eos

017 127327 117027 71

017 127327 117 71702

91

Table 4.11: Substitutions in the Ps-covering RUSUU to obtain different excess graphs
for n =12
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RUS and RUU are minimum Fg-coverings of K3 with the excess graphs P; (with
the edges {3,4} and {4,5}) and 2K, (with the edges {0,4} and {3,5}), respectively.

In order to obtain the excess graph K2, write K3 = Ky V K4 and label the vertices
of KoV K4 with a (Zg, Z4)-labeling. By Theorem 1.3.2, the leave graph in a maximum
Ps-packing of Ky has one edge. Let R be a maximum FPs-packing of Ky with the edge
{71,81} as the leave graph. The set of vertices {04, 11, 21,31,4;}, the set of vertices
{04, 15,29, 35}, and the edges between these two sets, form a complete bipartite graph
K5 4, which has a Fs-decomposition, S, by Lemma 1.3.16. Let U be the set consisting
of the following paths.

(127 617 227 717 817 32)7 (517 327 ]-27 027 717 81)7 (517 027 227 127 717 81)7
(81; 12; 51; 22; 327 02)7 (717 327 617 027 817 22)

Therefore, RU S UU forms a minimum Pg-covering of K3 with the excess graph K3.

The edges of the excess graph are the edges {71, 8;} used twice.
Case 15. T'= FPs,n =14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess
graphs are those shown in Figure 4.1. Since a maximum Fs-packing of Ky, has one
edge by Theorem 1.3.2, the excess graphs FEs, Eg, and Fg can be achieved in a similar

way as in Case 13.

In order to obtain the excess graph E1s, write K14 = K1¢V K4 and label the vertices
of K10V K4 with a (Zyg, Z4)-labeling. By Theorem 1.3.1, K7 has a Ps-decomposition,
R. Moreover, the set of vertices {01, 11,21, 31,41}, the set of vertices {0q, 15,29, 32},
and the edges between these two sets, form a complete bipartite graph K 4, which has
a Ps-decomposition, S, by Lemma 1.3.16. Let U be the set consisting of the following
paths.

(51; OQ; 12; 61; 22; 71)7 (817 027 127 917 327 71)7 (517 327 617 027 127 22)7
(51, 22,09, 12,81, 32), (81, 22,91, 02, 12, 32), (51, 12, 71, 02, 3, 22)

Therefore, RUSUU forms a minimum Fs-covering of K4 with the excess graph Fis.

The edges of the excess graph are the edges {0y, 15} used four times.

In order to achieve the remaining excess graphs, we substitute some paths for
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others in the excess graph R U S U U. These substitutions are illustrated in Table
4.12.



New tree(s) Previous tree(s) Edges of the excess graph Excess
(51,02,71,29,61,12) | (51,02,12,61,22,71)
(51732761702722;12) (51732761;02712722) {71702}7{02312}7{02322}7{02732} El
(81,22,91,02,32,12) | (81,22,91,02, 12, 32)
(51,02, 71,22,61,12) | (51,02,12,61,22,71)
(81,22,91,02,32,12) | (81,22,91,02,12,32) | {51,12},{71,02}, {02, 12}, {02,32} Es
(02761732751712722) (51732761702712722)
(51,02,71,22,61,12) | (51,02,12,61,22,71)
(81,22,91,02,32,12) | (81,22,91,02,12,32) | {51,22},{71,02}, {02, 12}, {02,32} Es
(02761732751722;]—2) (51732761a02712722)
(02,51,71,22,61,12) | (51,02,12,61,22,71)
(81,02,71,32,91,12) | (71,32,91,12,02,81) | {51, 71}, {51, 12}, {71,02},{02, 12} Ey
(02761732a51712;22) (51>32761a02312722)
(22,12,51,02,61,32) | (51,32,61,02,12,22)
(02,22,51,32,81,12) | (51,22,02,12,81,32) | {51,02}, {51, 12}, {81,32},{02, 12} By
(02,91,29,81,32,12) | (81,22,91,02,12,32)
(22,12,51,02,61,32) | (51,32,61,02,12,22)
(02,22,51,32,81,12) | (51,22,02,12,81,32) | {51,02}, {51, 12}, {02, 12}, {02,32} Eg
(81,22,91,02,32,12) | (81,22,91,02,12,32)
(02,51,71,292,61,12) | (51,02,12,61,22,71)
(51,32,61,02,22,12) | (51,32,61,02,12,22) | {51,71},{81,32},{02,12},{02,22} Eio
(02,91,29,81,32,12) | (81,22,91,02,12,32)
(02751771722761712) (51702712;61722771)
(02,91,22,81,32,12) | (81,22,91,02,12,32)
(02,61.32,51,22, 1) | (51,32,61,00,15,2,) | 100 71} 161,22} (81,30} {02, 12} | By
(61,22,09,12,81,32) | (51,22,02,12,81,32)
(51,02,71,29,61,12) | (51,02,12,61,22,71) {71,02},{02,12}(3 times) Ei3
(02,51, 71,22,61,12) | (51,02,12,61,29,71) {51,71},{02, 12 }(3 times) Eyy
(51,02,71,29,61,12) | (51,02,12,61,22,71) . .
(81,02,71,32,91,12) | (71,32,91,12,02,81) {71, 05} (twice), {05, 12 }(twice) Eis
(02722751732781;12) (51722702a12781732)
(02,71,12,51,32,22) | (51,12,71,02,32,22) {51, 32 }(twice), {02, 12} (twice) Es
(81,22,91,02,32,12) | (81,22,91,02,12,32)
(02751771a22761;12) (51>02712a61322771) .
(81702771732791712) (71732791712702781) {51771}’{71702}’{02’12}(tW1ce) E17
(51,02,71,22,61,12) | (51,02,12,61,22,71) .
(02761732751722;12) (51732761302a12722) {51722}7{71702},{02’12}(tWICe) E18
(02,51,71,292,61,12) | (51,02,12,61,22,71) .
(02,91,29,81,32,12) | (81,22,91,02,12,32) (51,71}, {81, 32}, {02, Lo} (twice) Eio
(02751771722761;12) (51702712a61722771) .
(02,6135, 51,20, 15) | (51,32,61,05,15.2,) | 00 T1h {51,223 10, Lo} (twice) | Bao
(51,02,71,22,61,12) | (51,02,12,61,22,71) .
(71732791712781; 2) (71a32791a12302781) {71702}’{81712},{02’12}(1:“7106) E21
(51a02771722761512) (51702)12761a22571) .
(51,32,61,02,22,12) | (51,32,61,02,12,22) {7102}, {05, Lo} (bwice), {02, 25} Bz
%, 12,51,02,61,32) | (51,342,061, 02, 19,2 .
E 2,12,91,02,61 2; E 1,32,061,02,12 2; {51,002}, {51,132}, {02, 12} (twice) Eas

02,22,51,32,81, 12

91,22,02, 12,81, 32
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Table 4.12: Substitutions in the Ps-covering RUSUU to obtain different excess graphs
forn =14



Chapter 5
Conclusions and Future Work

In this thesis, we constructed the spectrum of leave and excess graphs for trees that
have five edges or less. In the future, we will consider the spectrum of leave graphs

for trees that have a higher number of edges.

A cyclic G-decomposition of the complete graph K, is a G-decomposition of K,
whose automorphism group contains a cycle of length n. Figure 5.1 illustrates a cyclic

K3-decomposition of K.

4
Figure 5.1: A cyclic K3-decomposition of K~
It is natural to define cyclic packings and coverings in a similar way. Cyclic

decompositions of the complete graph have been studied for many graphs (see [7],
(18], [31], [41], and [42]). In the future, we might consider to improve our proofs as
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well as to establish new results by finding cyclic tree-packings and tree-coverings of

the complete graph.

As stated in the first chapter, Roditty proved that except for small integers n,
the T-packing and T-covering numbers of K, are L_”(ZII)J and {”(V;l)

where T is any tree with ¢ < 6 edges. It is of interest to find the T-packing and

-‘, respectively,
T-covering numbers of the complete graph for trees T" with more edges. However,
solving the spectrum problem for packing and covering (especially the covering) for
trees with more than five edges will be difficult, since the number of edges in the leave
and excess graphs are larger. For example, consider Sg as a tree with six edges. For

n = 14, the excess graph in any minimum Sg-covering of K, has five edges and there

are 48 possible excess graphs (see Figure 5.2).

Foeal = A
AN == A
A MW N A
Ay M AN D
AN AL MDD NA N
AML AN I

Figure 5.2: All possible excess graphs with five edges

Another direction that could be pursued is to consider decomposition (packing or
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covering) of the complete graph with different types of trees. For instance, consider
the complete graph K and write K14 = K9 V Kg. Since the graphs Ko, Kg, and
K96 have a D-decomposition, Ss-decomposition, and E-decomposition respectively,
The graph K6 can be decomposed with the trees S3, D, and E. This idea might
lead to a proof of the conjecture made in 1978 by Gyarfas and Lehel [21]. They
conjectured that the complete graph K, can be decomposed into any collection of

trees 1,75, ..., T,_1, where each T; is a tree with i edgles.

In 1975, Yamamoto proved that the necessary and sufficient conditions for the
existence of an Si-decomposition of K, are n = 1 or n > 2k, and n(n — 1) = 0
(mod 2k) [51]. In 2014, Hoffman solved the packing and covering problems for any

k-star [22]. In fact, he proved that for n > 2k, the number of k-stars in a maximum

n(n—1)
2k

might consider generalizing this result for other possible leave graphs.

Si-packing of K, is L J, and a star is always achievable as the leave graph. We

A mazimal G-packing of H is a G-packing of H in which the leave graph contains
no subgraph G. The difference between the maximal and maximum packing is that in
a maximum packing the leave graph has the smallest possible number of edges, while
in a maximal packing the leave graph can have any number of edges as long as it
does not contain any subgraphs G. For example, Figure 5.3 demonstrates a maximal
K3-packing of K which is not maximum. Another subject to consider is the maximal

packing of the complete graph with small trees.

Figure 5.3: A maximal S3-packing of K5
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