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Abstract

In this thesis, we define the spectrum problem for packings (coverings) of G to be

the problem of finding all graphs H such that a maximum G-packing (minimum G-

covering) of the complete graph with the leave (excess) graph H exists. The set of

achievable leave (excess) graphs in G-packings (G-coverings) of the complete graph is

called the spectrum of leave (excess) graphs for G. Then, we consider this problem

for trees with up to five edges.

We will prove that for any tree T with up to five edges, if the leave graph in a

maximum T -packing of the complete graph Kn has i edges, then the spectrum of leave

graphs for T is the set of all simple graphs with i edges. In fact, for these T and i

and H any simple graph with i edges, we will construct a maximum T -packing of Kn

with the leave graph H.

We will also show that for any tree T with k ≤ 5 edges, if the excess graph in

a minimum T -covering of the complete graph Kn has i edges, then the spectrum of

excess graphs for T is the set of all simple graphs and multigraphs with i edges, except

for the case that T is a 5-star, for which the graph formed by four multiple edges is

not achievable when n = 12.
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Statement of contribution

All the original work in this thesis was done in collaboration with my supervisor Dr.

Dyer and my co-supervisor Dr. Shalaby.

In this thesis, we solve the spectrum problem for packings and coverings of the com-

plete graph with trees that have up to five edges. We prove that all possible leave

and excess graphs in packings and coverings of the complete graph with trees that

have up to five edges are achievable, except for the four multiple edges which is not

achievable in covering the complete graph on 12 vertices with 5-stars. Also we use

new techniques in our proofs.
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Chapter 1

Introduction

1.1 History

Graph decompositions were first introduced by Plucker in 1835 [33]. He considered

triangle-decompositions of the complete graph. In 1839, he realized that the necessary

conditions for the existence of a triangle-decomposition of a complete graph on n

vertices are n ≡ 1 or 3 (mod 6) [34]. The generalization of this problem was stated

by Woolhouse in 1844 as follows [50].

Determine the number of combinations that can be made out of n sym-

bols, p symbols in each; with this limitation, that no combination of q

symbols which may appear in any of them may appear in any other.

This problem is asking for the maximum size of a Steiner system with parameters

q, p, and n. In 1847, Kirkman solved the problem for the case p = 3 and q = 2[29]. In

fact, he proved that the condition n ≡ 1 or 3 (mod 6) is also sufficient for the existence

of a triangle-decomposition of the complete graph on n vertices. Three years later,

Kirkman posed and solved his schoolgirl problem, in which he considers resolvable

triangle-decompositions of the complete graph [30].

Fifteen young ladies in a school walk out three abreast for seven days

in succession: it is required to arrange them daily so that no two shall walk

twice abreast.
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Decomposition of the complete graph with non-clique graphs was first mentioned by

Dudeney in 1917 [12].

Nine schoolboys walk out in triplets on the six week days so that no boy

ever walks side by side with any other boy more than once. How would

you arrange them?

This problem involves resolvable path-decompositions of the complete graph.

The spectrum problem for decomposition for a graph G is to find necessary and

sufficient conditions for n such that the complete graph on n vertices has a G-

decomposition.

For any graph G, if a G-decomposition of the complete graph on n vertices exists,

it is obviously necessary that the number of vertices of G be at most equal to n, the

number of edges of the complete graph be a multiple of the number of edges of G,

and the greatest common divisor of the vertex degrees of G divide the degree of each

vertex of the complete graph, which is n − 1. In 1975, Wilson proved that for any

graph G, there exists an integer N such that for any n ≥ N which satisfies these

necessary conditions, there is a G-decomposition of the complete graph on n vertices

[49]. However, in order to solve the spectrum problem for decomposition for a graph

G completely, it still remains to determine the specific conditions for n such that a

G-decomposition of the complete graph on n vertices exists. Alternatively, what is

the smallest value for N that makes the statement true?

Since 1835, the spectrum problem for decomposition has been considered for many

graphs [1]. As in this thesis we are studying packings and coverings of the complete

graph with trees, here we will concentrate on trees.

In 1964, Ringel published his famous conjecture about the spectrum problem for

decomposition for trees, stating that for any tree T on k+1 vertices, the graph K2k+1

has a T -decomposition (see [36]).

In 1967 Rosa introduced graph labelings in order to solve this conjecture. These

labelings are powerful tools not only for dealing with trees, but also for solving the

spectrum problem for decomposition for other types of graphs.

Two of the most important graph labelings are ρ-labelings and ρ+-labelings (see [5]

for all graph labeling definitions). Many results relating to graph labelings in general
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(and ρ-labelings in particular) can be found in Gallian’s dynamic survey of labelings

[19]. There are two main results on the existence of a G-decomposition of Kn the first

of which was given by Rosa and the second by El-Zanati et. al. (see [43] and [16]).

Theorem 1.1.1 [43] If a graph G has a ρ-labeling, then K2|E(G)|+1 has a G-decomposition.

Theorem 1.1.2 [16] If a graph G has a ρ+-labeling, then Kn has a G-decomposition

for all n ≡ 1 (mod 2|E(G)|).

Several results for special types of G such as trees have been proved using these two

theorems.

The maximum vertex distance of all pairs of vertices of a graph is called the

diameter of the graph. Removing all the vertices of degree 1 of a graph gives a new

graph called the base of the graph. A graph is called a caterpillar if its base is a path

and a lobster is a graph whose base is a caterpillar. A comet is a graph obtained

from a star by replacing each edge with a path of length k for some fixed k. A tree

is symmetric if it can be rooted so that any two vertices in the same level have the

same degree.

The following two theorems summarize the main results on the existence of tree-

decompositions of Kn. One arises from ρ-labeling and the other arises from ρ+-

labelings.

Theorem 1.1.3 [1] Let T be a tree belonging to one of the following families.

• Trees with at most 55 vertices (L. Brankovic and A. Rosa, private communica-

tion).

• Trees with at most 4 leaves [24].

• Trees of diameter at most 5 [23], [52].

• Symmetric trees [35].

Then K2|E(T )|+1 has a T -decomposition.

Theorem 1.1.4 [1] Let T be a tree belonging to one of the following families.
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• Trees with at most 21 vertices [20].

• Trees of diameter at most 5 [16].

• Symmetric trees of diameter 4 [17].

• Caterpillars [43].

• Comets [16].

Then Kn has a T -decomposition for all n ≡ 1 (mod 2|E(T )|).

The following theorems are a few other results in the approach to the solution of the

spectrum problem for decomposition for some classes of trees.

Theorem 1.1.5 [25] Let T be a caterpillar or lobster with m + 1 vertices. If n ≡

0 or 1 (mod 2m), then Kn has a T -decomposition. Moreover, if m = 2α for some

integer α ≥ 0, then n ≡ 0 or 1 (mod 2m) is also necessary for existence.

Theorem 1.1.6 [25] Let T be a tree with m + 1 vertices. If T contains a vertex of

degree d such that d ≥ 1
2
(m+ 3), then Km+1 does not have a T -decomposition.

Theorem 1.1.7 [11] Let T be a tree with n + 1 vertices, let x be a vertex in T and

suppose either of the following holds.

• The graph obtained from T by removing x (and all the edges incident with x)

has at least n−
√
n

4+2
√
2
isolated vertices.

• For a non-negative integer d, the diameter of T is at most d+ 2 and the graph

obtained from T by removing x has at least n − cn isolated vertices where c =

(
√

1 + (4 + 4d)2 − 4− 4d)2.

Then K2n+1 has a T -decomposition.

Paths and stars are two infinite classes of trees for which the spectrum problem for

decomposition is completely solved [46, 51].

Theorem 1.1.8 [47] If n and m ≥ 2 are positive integers, then Kn has a Pm-

decomposition if and only if n = 1 or n ≥ m, and n(n− 1) ≡ 0 (mod 2m− 2).
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Theorem 1.1.9 [51] If n and k ≥ 1 are positive integers, then Kn has an Sk-

decomposition if and only if n = 1 or n ≥ 2k, and n(n− 1) ≡ 0 (mod 2k).

The decomposition result which will be used the most in this thesis is the one estab-

lished by Huang and Rosa in 1978 (Theorem 1.3.1), where they solved the spectrum

problem for decomposition for trees with up to eight edges [25]. In fact, they proved

that for any tree T with up to eight edges, a complete graph has a T -decomposition

if and only if the number of edges of the complete graph is a multiple of the number

of edges of T .

Up to this point, we have discussed graph decompositions. But what can we

say when no decomposition exists? In this case, getting as close as possible to a

decomposition is still desirable. This leads to packing and covering problems. The

earliest result on packing was established by Kirkman in 1847, when he considered

the problem of packing the complete graph with triangles [29]. In fact, he found the

number of triangles in a maximum triangle-packing of the complete graph on any

number of vertices.

Since 1847, the packing and covering problems have been considered for many

graphs, the early results of which were collected in a survey paper by Beineke in 1969

[3].

In 1997 and 1998, Caro and Yuster established a Wilson-like result for the packing

and covering problems. In fact, they proved that for any graph H with h edges, there

exists a positive integer n0(H) such that for all integers n > n0(H) the H-packing

number of Kn is
⌊

dn
2h

⌊

n−1
d

⌋⌋

, where d is the greatest common divisor of all degrees of

H, unless n ≡ 1 (mod d) and n(n−1)
d

≡ b (mod 2h
d
) where 1 ≤ b ≤ d in which case the

packing number is
⌊

dn
2h

⌊

n−1
d

⌋⌋

− 1 [9]. They also proved that for any graph H with h

edges, there exists a positive integer n0(H) such that for all integers n > n0(H) the

H-covering number of Kn is
⌈

dn
2h

⌈

n−1
d

⌉⌉

, where d is the greatest common divisor of all

degrees of H, unless d is even, n ≡ 1 (mod d) and n(n−1)
d

+ 1 ≡ 0 (mod 2h
d
), in which

case the covering number is

⌈

(n2)
h

⌉

+ 1 [10].

However, in order to solve the packing and covering problems completely, it is

required to find the smallest possible number n0(H) in Caro and Yuster’s results. Since

1969, the packing and covering problems have been solved for many other graphs. For

instance, in 1999, Bryant et. al. considered packing and covering the complete graph
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with cubes [2].

In papers published from 1975 to 1994, the problem of packing the complete

graph with cycles of the same length was settled for cycles of length at most six

[45, 44, 26, 27]. Moreover, for cycles of lengths four and six, the covering problem

is solved as well [45, 28]. In 2008, Bryant and Horsley considered a generalization of

the packing problem for cycles and solved the problem of packing the complete graph

with cycles of arbitrary specified length [6].

The packing problem has also been considered for paths. In 1983, Tarsi conjectured

that the necessary and sufficient conditions for the existence of a packing of the

complete multigraph on n vertices with multiplicity λ with paths of arbitrary specified

lengths, are that the length of each path is at most n−1 and the sum of the lengths is

at most the number of edges of the complete multigraph [47]. He proved his conjecture

for odd n, even λ, and each length being at most n−3. In 2009, Bryant proved Tarsi’s

conjecture for the general case [4].

The problem of packing and covering the complete graph with trees that have

up to six edges was solved by Roditty [37, 38, 39, 40]. In fact, for any tree T with

up to six edges, Roditty found a maximum T -packing of the complete graph on any

number of vertices with a leave graph whose edges could be covered by adding one

more tree T to the packing. Using this method, he could obtain maximum T -packings

and minimum T -coverings simultaneously. He proved that except for some small n,

the number of trees T in a T -packing (T -covering) of the complete graph on n vertices

is equal to
⌊

n(n−1)
2i

⌋ (⌈

n(n−1)
2i

⌉)

, where T is any tree with i edges, i ≤ 6.

In papers published from 1993 to 1997, Kennedy solved the problem of packing

and covering the complete graph with hexagons. Moreover, she found necessary and

sufficient conditions for the existence of every possible leave and excess graph [26, 27,

28].

In this thesis, we introduce the spectrum problem for packing (covering), which

is to determine the set of all achievable leave (excess) graphs in maximum packings

(minimum coverings) of the complete graph with isomorphic graphs G. As stated

above, Kennedy in fact solved the spectrum problem for packing and covering for

hexagons. We consider these problems for trees with up to five edges, and prove

that all possible leave (excess) graphs in maximum packings (minimum coverings) of

the complete graph with trees that have up to five edges, are achievable. However,
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the graph formed by four multiple edges cannot be obtained as the excess graph in

covering the complete graph on 12 vertices with 5-stars.

In the first chapter, we see the history behind this work as well as definitions and

preliminaries which will be needed in the next chapters.

The second chapter contains two sections. The first section consists of two main

theorems which state that all possible leave and excess graphs in maximum packings

and minimum coverings of the complete graph with 4-stars are achievable. The results

of this section are accepted for publication in the Journal of Combinatorial Mathe-

matics and Combinatorial Computation [13]. The second section also consists of two

theorems which state the same results for 5-stars, except for the graph formed by four

multiple edges which is not achievable as the excess graph in covering the complete

graph on 12 vertices with 5-stars. The results of this section are published in Graphs

and Combinatorics [15].

The third chapter contains two main theorems which state that all leave and ex-

cess graphs in maximum packings and minimum coverings of the complete graph with

trees that have up to five edges are achievable. The results of this chapter are ac-

cepted for publication in the Journal of Combinatorial Mathematics and combinatorial

computation [14].

Finally, in the fourth chapter we will summarize the results and discuss future

directions.

1.2 Basic Definitions

A graph G = (V,E) is formed by a finite set V of vertices and a set E of edges joining

pairs of distinct vertices. The vertices u and v are called adjacent if there is an edge

between them and the edge is denoted by {u, v}. If there is at most one edge between

every pair of vertices, the graph is called a simple graph. In this thesis, we assume the

graphs are simple, unless otherwise stated. If there is more than one edge between two

vertices, the graph is called a multigraph and those edges are called multiple edges.

The degree of a vertex is the number of edges which are incident with that vertex. A

vertex is isolated if its degree is zero.

A complete graph on n vertices, denoted Kn, is a graph on n vertices where all
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pairs of vertices are adjacent.

We call a graph G = (V,E) bipartite if V admits a partition into two classes such

that every edge has its ends in different classes. A bipartite graph in which every two

vertices from different partition classes are adjacent is a complete bipartite graph. A

complete bipartite graph with class sizes m and n is denoted by Km,n.

For each positive integer n the complete bipartite graph Sn = K1,n is called an

n-star. The vertex of degree n is the center and the vertices of degree 1 are the leaves

of the star.

A path P is a sequence of distinct vertices with each pair of consecutive vertices

in P joined by an edge. We denote a path on n vertices by Pn. If we join the first and

last vertex on this path, we call it a cycle. A cycle on n vertices is denoted by Cn.

A connected graph is a graph with at least one path between each pair of vertices. A

tree is a connected graph which contains no cycles.

Two graphs G and G′ are called isomorphic if there exists a one-to-one correspon-

dence between the vertices in G and the vertices in G′ such that a pair of vertices

are adjacent in G if and only if the corresponding pair of vertices are adjacent in G′.

Such a one-to-one correspondence of vertices that preserves adjacency is called an

isomorphism. For example, the graphs in Figure 1.1 are two isomorphic 5-cycles.

a b

c

d

e

a

bc

d

e

Figure 1.1: Two isomorphic graphs

Let m and n be positive integers. The disjoint union of graphs G and H, denoted

G+H, is a graph with the union of vertex sets of G and H as its vertex set and the

union of the edge sets of G and H as its edge set. The join of simple graphs G and

H, denoted G ∨ H is the graph obtained from the disjoint union G + H by adding

the edges {{x, y}|x ∈ V (G), y ∈ V (H)}. Also for any graph G, mG is the graph
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consisting of m pairwise disjoint copies of G. Furthermore, we denote the complete

multigraph on n vertices with multiplicity m by Km
n following West [48].

Consider the graph G ∨ H where G and H are graphs on m and n vertices,

respectively. A (Zm,Zn)-labeling of the vertices of the graph G∨H is a labeling such

that the vertices of G are labelled with the elements of Zm having subscript 1 and the

vertices of H are labelled with the elements of Zn having subscript 2.

For graphs G and H, a G-decomposition of H is a partition of the edge set of

H into graphs isomorphic to G. A G-design of order n is a G-decomposition of the

complete graph Kn. The spectrum problem for decomposition for a graph G is to find

necessary and sufficient conditions on n such that a G-design of order n exists, and

the spectrum of decomposition for a graph G is the set of integers satisfying those

conditions.

For graphs G and H, a G-packing of H is a set of subgraphs of H all isomorphic

to G, such that each edge of H is contained in at most one subgraph. Let P be a

G-packing of H and P be the graph with vertex set V (H) and edge set the union of

the edges of all subgraphs in P. The non-isolated vertices of the graph H\P together

with the edge set of this graph forms a graph called the leave graph. Hence, if H is a

simple graph, then the leave graph is also a simple graph. A maximum G-packing of

H is a G-packing with the smallest possible number of edges in the leave graph.

A G-covering of H is a set of subgraphs G of H whose union is H. Let C be a

G-covering of H and C be the graph with vertex set V (H) and edge set the union

of the edges of all subgraphs in C. Consider the set of edges of C a multiset with

the multiplicity of each edge e being the number of subgraphs that include e. Then

the graph C\H is called the excess graph. Hence, the excess graph is possibly a

multigraph even when H is simple. A minimum covering of Kn with isomorphic

graphs G is a covering with the smallest number of edges in the excess graph. Note

that in a packing, every edge exists in at most one subgraph, while in the covering

every edge exists at least in one subgraph.

Figures 1.2 and 1.3 illustrate a K3-packing and a maximum K3-packing of K6,

with the leave graphs K3,3 and 3K2, respectively.
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Figure 1.2: A K3-packing of K6

Figure 1.3: A maximum K3-packing of K6

Figure 1.4 demonstrates a K3-covering of K6 with the edges {1, 2} (twice), {0, 2},

{1, 5}, {2, 3}, and {2, 4} as the edges of the excess graph.

Figure 1.4: A K3-covering of K6

Figure 1.5 represents a minimum K3-covering of K6, with the edges {0, 1}, {2, 3},

and {4, 5} as the edges of the excess graph.
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Figure 1.5: A minimum K3-covering of K6

The G-packing number (G-covering number) of H is the number of graphs G in

a maximum G-packing (minimum G-covering) of H. The G-packing (G-covering)

problem of a graph H is to determine the G-packing number (G-covering number) of

H. Roditty solved the problem for all trees with up to six edges [37, 38, 39, 40].

Different packings (coverings) might lead to different leave (excess) graphs, even

in the case of maximum packings (minimum coverings). The spectrum problem for

packing (covering) for a graph G is to determine the set of all achievable leave (excess)

graphs in maximum G-packings (minimum G-coverings) of the complete graph. We

call this set the spectrum of leave (excess) graphs for G. We consider these problems

for trees with up to five edges. In fact, we prove if the leave graph in a maximum

T -packing of any complete graph has i edges, then the spectrum of leave graphs for

T is the set of all simple graphs with i edges, when T is any tree with up to five

edges. We also prove that for any tree T with up to five edges, if the excess graph in a

minimum T -covering of the complete graph has i edges, then the spectrum of excess

graphs for T is the set of all simple graphs and multigraphs with i edges, except for

graph K4
2 which cannot be the excess graph in any S5-covering of K12.

1.3 Preliminary Results

In this section, we will present several lemmas which will be used in the proofs of the

theorems in the next chapters.

The non-isomorphic trees with three edges are S3 and P4, the non-isomorphic trees

with four edges are S4, P5, and A, and the non-isomorphic trees with five edges are
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S5, B, C,D,E, and P6 as shown in Figure 1.6.

Figure 1.6: All non-isomorphic trees with three, four, or five edges

Notation. For any integer k, we denote the star Sk with the center x and leaves

y1, y2, . . . , yk by (x; y1, y2, . . . , yk). Also for any integer k, we denote the path Pk with

the sequence of vertices x1, x2, . . . , xk by (x1, x2, . . . , xk). Now consider the vertex

labels in Figure 1.6. We denote the trees A,B,C,D, and E with (x1; x2, x3, x4 − x5),

(x1; x2, x3, x4, x5 − x6), (x1; x2, x3, x4 − x5 − x6), (x3; x6, x2, x4 − x1, x5), and (x1 −

x2, x3; x4 − x5, x6), respectively.

In 1978 Huang and Rosa [25] solved the spectrum problem for decomposition for

trees with up to eight edges.

Theorem 1.3.1 [25] If n is any positive integer and T is any tree with i edges, where

i ≤ 8, then the complete graph Kn has a T -decomposition if and only if n(n−1)
2

≡ 0

(mod i).

Roditty solved the packing and covering problems for trees with up to six edges

[37, 38, 39, 40].
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Theorem 1.3.2 [37, 38, 39, 40] If T is a tree with i edges where i ≤ 6 and n ≥ 2i−1

is any integer, then the T -packing number of Kn is
⌊

n(n−1)
2i

⌋

and the number of edges

in the leave graph of a maximum T -packing of Kn is n(n−1)
2

− i
⌊

n(n−1)
2i

⌋

.

Theorem 1.3.3 [37, 38, 39, 40] If T is a tree with i edges where i ≤ 6 and n ≥ 2i

is any integer, then the T -covering number of Kn is
⌈

n(n−1)
2i

⌉

and the number of edges

in the excess graph of a minimum T -covering of Kn is i
⌈

n(n−1)
2i

⌉

− n(n−1)
2

.

We will use the following lemmas in the proof of our main theorems.

Lemma 1.3.4 Let s be a positive odd integer and sK2 be the union of s disjoint edges.

For positive integers s and t with s ≤ t the complete bipartite graph Kt,s can be packed

with (t− 1)-stars with an sK2 as the leave graph.

Proof. Label the vertices of Kt,s with a (Zt,Zs)-labeling. The following stars form a

maximum St−1-packing ofKt,s with the s edges {01, 12}, {11, 22}, . . . , {(s− 2)1, (s− 1)2},

and {(t− 1)1, 02} as the leave graph (see Figure 1.7). For numbers with subscript 1

the computations are done modulo t and for those with subscript 2 the computations

are done modulo s.

(i2; i1, (i+ 1)1, . . . , (i+ t− 2)1), i = 0, 1, . . . , s− 1.

�

Figure 1.7: An S4-packing of K3,5 with the leave graph 3K2

The proof to Lemma 1.3.5 is trivial.
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Lemma 1.3.5 If m, n, and k are positive integers, then the complete bipartite graph

Km,kn has an Sk-decomposition.

Lemma 1.3.6 If k is a positive integer and s is a positive odd integer, then the graph

Ks ∨
(k−1)(s−1)

2
K1 has an Sk-decomposition.

Proof. Let k be a positive integer and s be a positive odd integer. Label the vertices of

the graph Ks ∨
(s−1)(k−1)

2
K1 with a (Zs,Z (s−1)(k−1)

2

)-labeling. Then, the following stars

form an Sk-decomposition for Ks ∨
(k−1)(s−1)

2
K1 where i ∈ Zs and j = 0, 1, . . . , s−3

2

(see Figure 1.8).

(i1; (i+ j + 1)1, ((k − 1)j)2, ((k − 1)j + 1)2, ((k − 1)j + 2)2, . . . , ((k − 1)j + k − 2)2)

�

02 12 22 32 42 52

01 11 21 31 41

Figure 1.8: An S4-decomposition of K5 ∨ 6K1

Lemma 1.3.7 If k is a positive integer, s is a positive odd integer, and k ≥ s−1
2
, then

the graph Ks ∨
2k−s+1

2
K1 has an Sk-decomposition.

Proof. Let k be a positive integer and s be a positive odd integer such that k ≥ s−1
2
.

Label the vertices of Ks ∨
2k−s+1

2
K1 with a (Zs,Z 2k−s+1

2
)-labeling. The following stars

will form an Sk-decomposition for the graph Ks ∨
2k−s+1

2
K1 (see Figure 1.9).

(

i1; (i+ 1)1, (i+ 2)1, . . . ,

(

i+

(

s− 1

2

))

1

, 02, 12, . . . ,

(

2k − s− 1

2

)

2

)

, i ∈ Zs.

�
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Figure 1.9: An S5-decomposition of K5 ∨ 3K1

Corollary 1.3.8 If k ≥ 2 is a positive integer, then the graph K2k−1 has a maximum

Sk-packing with a single edge as the leave graph.

Proof. For k = 2, K2k−1 is a triangle and the result follows immediately. For k > 2,

write K2k−1 = K2k−3 ∨K2. Letting s = 2k − 3, the result follows by Lemma 1.3.7. �

Corollary 1.3.9 If n and k are positive integers such that n ≡ 2k−1 (mod 2k), then

Kn has a maximum packing with k-stars with a single edge as the leave graph.

Proof. Let n be a positive integer such that n ≡ 2k− 1 (mod 2k). If n = 2k− 1, the

result follows from Corollary 1.3.8. If n > 2k − 1, then write Kn = K2k−1 ∨Kn−2k+1.

Since n ≡ 2k − 1 (mod 2k), Kn−2k+1 has an Sk-decomposition, R, by Theorem 1.1.9.

Moreover, K2k−1 has a maximum packing S with k-stars with a single edge as the

leave graph, by Corollary 1.3.8. Now, K2k−1,n−2k+1 is a complete bipartite graph with

one part of size a multiple of k and hence, it has an Sk-decomposition T by Lemma

1.3.5. Therefore, R∪S ∪ T is a maximum Sk-packing of Kn with a single edge as the

leave graph. �

The following lemmas will greatly reduce the number of cases in the proofs of our

main theorems.

Lemma 1.3.10 If k is a positive odd integer, n ≥ k+1
2

is an integer, and H is the leave

graph (excess graph) in an Sk-packing (Sk-covering) of the complete graph Kn, then
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there exists an Sk-packing (Sk-covering) of Kn+k with H as the leave graph (excess

graph).

Proof. Let k be a positive odd integer and n ≥ k+1
2

be a positive integer. Write

Kn+k = Kn ∨Kk. Let R be an Sk-packing of Kn with the leave graph H. Label the

vertices ofKn∨Kk with a (Zn,Zk)-labeling. The set of vertices {01, 11, . . . , (
2n−k−3

2
)
1
},

the set of vertices {02, 12, . . . , (k − 1)2}, and the edges between these two sets form

a complete bipartite graph with one part of size a multiple of k. Hence, by Lemma

1.3.5, this complete bipartite graph has an Sk-decomposition, S. Moreover, the set of

vertices (2n−k−1
2

)
1
, (2n−k+1

2
)
1
, . . . , (n− 1)1, the set of vertices 02, 12, . . . , (k − 1)2, the

edges between these two sets, and the edges between the vertices of the second set

form a Kk ∨ k+1
2
K1. Hence, by Lemma 1.3.7, the graph Kk ∨ k+1

2
K1 has an Sk-

decomposition, T . Therefore, R ∪ S ∪ T forms an Sk-packing of Kn+k with H as the

leave graph.

The proof is similar for the covering case. �

Lemma 1.3.11 If k and n are positive integers such that n ≥ 2k, and H is the leave

graph (excess graph) in an Sk-packing (Sk-covering) of the complete graph Kn, then

there exists an Sk-packing (Sk-covering) of Kn+2k with H as the leave graph (excess

graph).

Proof. Let k and n be positive integers such that n ≥ 2k. Write Kn+2k = K2k ∨Kn.

Let R be an Sk-packing of Kn with the leave graph H. The graph K2k has an Sk-

decomposition, S, by Theorem 1.1.9. Moreover, the set of vertices of Kn, the set of

vertices of K2k, and the edges between these two sets form a complete bipartite graph

with one part of size a multiple of k. Hence, this graph has an Sk-decomposition, T ,

by Lemma 1.3.5. Therefore, R ∪ S ∪ T forms an Sk-packing of Kn+2k with the leave

graph H.

The proof is similar for the covering case. �

Note that the Lemmas 1.3.10 and 1.3.11 work for maximum packings and minimum

coverings as particular cases, but also work for decompositions.

Lemma 1.3.12 If m and n are positive integers and n ≥ 2, then the graph K3m,n

has a P4-decomposition.
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Proof. Let m and n ≥ 2 be positive integers. In order to prove the result, it suffices

to show that K3,2 and K3,3 have P4-decompositions.

For K3,2, label the vertices with a (Z3,Z2)-labeling. The following paths form a

P4-decomposition of K3,2.

(01, 02, 11, 12), (01, 12, 21, 02)

For K3,3, label the vertices with a (Z3,Z3)-labeling. The following paths form a P4-

decomposition of K3,3.

(01, 02, 11, 12), (02, 21, 22, 11), (21, 12, 01, 22)

�

Lemma 1.3.13 If n ≥ 2 is an integer and H is the leave (excess) graph in a P4-

packing (P4-covering) of Kn, then there exists a P4-packing (P4-covering) of Kn+3

with the leave (excess) graph H.

Proof. Let n ≥ 2 be an integer and R be a maximum P4-packing of Kn with the

leave graph H. Write Kn+3 = Kn∨K3. Label the vertices of Kn∨K3 with a (Zn,Z3)-

labeling. The set of vertices {21, 31, . . . , (n− 1)1}, the set of vertices {02, 12, 22}, and

the edges between these two sets form a graph Kn−2,3 which has a P4-decomposition,

S, by Lemma 1.3.12. The set of vertices {01, 11}, the set of vertices {02, 12, 22}, the

edges between these two sets, and the edges within the latter, form a graph 2K1∨K3.

The following paths form a P4-decomposition, T , for this graph.

(01, 02, 12, 11), (01, 12, 22, 11), (01, 22, 02, 11)

Therefore, R ∪ S ∪ T forms a maximum P4-packing of Kn+3 with the leave graph H.

The proof of the covering case uses a similar argument. �

Lemma 1.3.14 For positive integers m and n, n ≥ 2, the graph K4m,n has a T -

decomposition for any tree T with four edges.

Proof. Let m and n ≥ 2 be positive integers and T be any tree with four edges. The

result is immediate for the case that T is the star S4, by Lemma 1.3.5.
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Now consider T as the tree A. It suffices to show that K4,2 and K4,3 have A-

decompositions. For K4,2, label the vertices of K4,2 with a (Z4,Z2)-labeling. Then,

the following trees form an A-decomposition of the graph K4,2. (See Figure 1.10.)

(02; 01, 11, 21 − 12), (12; 01, 11, 31 − 02)

Figure 1.10: An A-decomposition of K4,2

For K4,3, label the vertices of K4,3 with a (Z4,Z3)-labeling. Then, the following

trees form an A-decomposition of the graph K4,3 (See Figure 1.11).

(01; 02, 12, 22 − 11), (21; 02, 22, 12 − 11), (31; 12, 22, 02 − 11)

Figure 1.11: An A-decomposition of K4,3

Now consider T as the path P5. ForK4,2, label the vertices with a (Z4,Z2)-labeling.
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The following paths form a P5-decomposition for the graph K4,2.

(01, 02, 11, 12, 21), (01, 12, 31, 02, 21)

For K4,3, label the vertices with a (Z4,Z3)-labeling. The following paths form a

P5-decomposition of K4,3.

(01, 02, 11, 12, 21), (01, 22, 21, 02, 31), (01, 12, 31, 22, 11)

�

Corollary 1.3.15 If n ≥ 1 is an integer, T any tree with four edges, and Kn has a

T -packing with the leave graph H, then Kn+8 has a T -packing with the leave graph H.

Proof. Let n ≥ 1, T be any tree with four edges, and R be a T -packing of Kn with

the leave graph H. Write Kn+8 = Kn ∨K8. By Theorem 1.3.1, the complete graph

K8 has a T -decomposition, S. Moreover, the complete bipartite graph Kn,8 has a

T -decomposition, U , by Lemma 1.3.14. Therefore, R ∪ S ∪ U forms a T -packing of

Kn+8 with the leave graph H. �

Lemmas 1.3.16 and 1.3.17 will be used to prove that all possible leave graphs in

T -packings of Kn are achievable, where T is any tree with five edges.

Lemma 1.3.16 For positive integers m and n, the graph K5m,n has a B-decomposition

and a C-decomposition if n ≥ 2, a D-decomposition and an E-decomposition if n ≥ 3,

and a P6-decomposition if n ≥ 4.

Proof. Let m and n be positive integers, n ≥ 2. We first consider B. It suffices

to show that K5,2 and K5,3 have B-decompositions. For K5,2, label the vertices with

a (Z5,Z2)-labeling. The following trees form a B-decomposition of K5,2 (see Figure

1.12).

(02; 01, 11, 21, 31 − 12), (12; 01, 11, 21, 41 − 02)
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Figure 1.12: A B-decomposition of K5,2

For K5,3, label the vertices with a (Z5,Z3)-labeling. The following trees form a

B-decomposition of K5,3 (see Figure 1.13).

(02; 01, 11, 21, 31 − 12), (12; 01, 11, 41, 21 − 22), (22; 01, 11, 31, 41 − 02)

Now we consider C. Again, it suffices to show that the graphs K5,2 and K5,3 have

Figure 1.13: A B-decomposition of K5,3

C-decompositions.

For K5,2, label the vertices with a (Z5,Z2)-labeling. The following trees form a

C-decomposition of K5,2.

(02; 01, 11, 21 − 12 − 31), (12; 01, 11, 41 − 02 − 31)
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For K5,3, label the vertices with a (Z5,Z3)-labeling. The following trees form a C-

decomposition of K5,3.

(02; 01, 11, 21 − 12 − 31), (12; 01, 11, 41 − 22 − 21), (22; 01, 11, 31 − 02 − 41)

Now let n ≥ 3. First we consider D. It suffices to prove that the graphs K5,3, K5,4,

and K5,5 have D-decompositions.

For K5,3, label the vertices with a (Z5,Z3)-labeling. The following graphs form a

D-decomposition of K5,3.

(01; 22, 02, 12 − 11, 21), (31; 02, 12, 22 − 11, 21), (41; 12, 02, 22 − 21, 11)

For K5,4, label the vertices with a (Z5,Z4)-labeling. The following graphs form a

D-decomposition of K5,4.

(02; 01, 11, 21 − 22, 12), (12; 01, 31, 41 − 22, 32),

(22; 01, 21, 41 − 32, 02), (32; 01, 11, 31 − 12, 02)

For K5,5, label the vertices with a (Z5,Z5)-labeling. The following graphs form a

D-decomposition of K5,5.

(31; 22, 02, 12 − 01, 21), (41; 02, 12, 22 − 01, 21), (01; 22, 32, 42 − 31, 41),

(11; 22, 02, 32 − 21, 41), (42; 31, 11, 21 − 12, 32)

Now consider E. It suffices to prove the existence of an E-decomposition of the graphs

K5,3, K5,4, and K5,5.

For K5,3, label the vertices with a (Z5,Z3)-labeling. The following trees form an

E-decomposition of the graph K5,3.

(02 − 01, 11; 21 − 12, 22), (12 − 01, 11; 31 − 02, 22), (22 − 01, 11; 41 − 02, 12)

For K5,4, label the vertices with a (Z5,Z4)-labeling. The following trees form an
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E-decomposition of the graph K5,4.

(02 − 11, 41; 21 − 12, 22), (12 − 11, 31; 41 − 22, 32),

(22 − 01, 11; 31 − 02, 32), (32 − 11, 21; 01 − 02, 12)

For K5,5, label the vertices with a (Z5,Z5)-labeling. The following trees form an

E-decomposition of the graph K5,5. Note that the addition is taken modulo 5.

(i1 − (i+ 1)2, (i+ 2)2; i2 − (i+ 1)1, (i+ 2)1), i ∈ Z5

Finally, let n ≥ 4. Parker proved that there exist P6-decompositions ofK5,4, K5,5, K5,6,

and K5,7 [32]. Therefore, for any n ≥ 4, the graph Kn,5 has a P6-decomposition. �

Lemma 1.3.17 If n ≥ 7 is an integer, T any tree with five edges, and Kn has a

T -packing (T -covering) with the leave (excess) graph H, then Kn+5 has a T -packing

(T -covering) with the leave (excess) graph H. Furthermore, this statement is true if

n = 6 and T is any of B, C, D, or E, or if n = 5 and T is either of B or C.

Proof. Case 1. n ≥ 5, T = B

Let R be a B-packing ofKn with the leave graph H. WriteKn+5 = Kn∨K5. Label

the vertices of Kn∨K5 with a (Zn,Z5)-labeling. The set of vertices {01, 11, 21}, the set

of vertices {02, 12, 22, 32, 42}, the edges between these two sets, and the edges within

the second set form a graph 3K1 ∨K5. The following trees form a B-decomposition,

S, of 3K1 ∨K5.

(i2; 01, 11, (i+ 1)2, (i+ 2)2 − 21), i ∈ Z5

Now, the set of vertices {31, 41, 51, . . . , (n− 1)1}, the set of vertices {02, 12, 22, 32, 42},

and the edges between these two sets form a complete bipartite graph K5,n−3, which

has a B-decomposition, U , by Lemma 1.3.16. Therefore, R∪S∪U forms a B-packing

of Kn+5 with the leave graph H.

Case 2. n ≥ 5, T = C

Let R be a C-packing ofKn with the leave graph H. WriteKn+5 = Kn∨K5. Label

the vertices of Kn∨K5 with a (Zn,Z5)-labeling. The set of vertices {01, 11, 21}, the set

of vertices {02, 12, 22, 32, 42}, the edges between these two sets, and the edges within
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the second set form a graph K5 ∨ 3K1. The following trees form a C-decomposition,

S, of the graph K5 ∨ 3K1.

(02; 12, 22, 01 − 32 − 11), (12; 22, 32, 11 − 42 − 21), (22; 32, 42, 21 − 02 − 11),

(32; 42, 02, 21 − 12 − 01), (42; 02, 12, 01 − 22 − 11)

Moreover, the set of vertices {31, 41, 51, . . . , (n−1)1}, the set of vertices {02, 12, 22, 32, 42},

and the edges between these two sets form a complete bipartite graph K5,n−3, which

has a C-decomposition, U , by Lemma 1.3.16. Therefore, R∪S∪U forms a C-packing

with the leave graph H for Kn+5.

Case 3. n ≥ 6, T = D

Let R be a D-packing ofKn with the leave graph H. WriteKn+5 = Kn∨K5. Label

the vertices of Kn∨K5 with a (Zn,Z5)-labeling. The set of vertices {01, 11, 21}, the set

of vertices {02, 12, 22, 32, 42}, the edges between these two sets, and the edges within

the second set form a graph K5∨3K1. The following graphs form a D-decomposition,

S, of K5 ∨ 3K1.

(i2; 01, (i+ 1)2, (i+ 2)2 − 11, 21), i ∈ Z5

The complete bipartite graph K5,n−3 with partite sets {31, 41, 51, . . . , (n − 1)1} and

{02, 12, 22, 32, 42}, has a D-decomposition, U , by Lemma 1.3.16. Therefore, R∪S ∪U

forms a D-packing of Kn+5 with the leave graph H.

Case 4. n ≥ 6, T = E

Let R be an E-packing of Kn with the leave graph H. Write Kn+5 = Kn ∨ K5.

Label the vertices of Kn∨K5 with a (Zn,Z5)-labeling. The set of vertices {01, 11, 21},

the set of vertices {02, 12, 22, 32, 42}, the edges between these sets, and the edges within

the second set, form a graph K5 ∨ 3K1. The following trees form an E decomposition

of the graph K5 ∨ 3K1.

(i2 − 01, (i+ 2)2; (i+ 1)2 − 11, 21), i ∈ Z5

Since n ≥ 6, the complete bipartite graph with partite sets {31, 41, 51, . . . , (n− 1)1}

and {02, 12, 22, 32, 42} has an E-decomposition, S, by Lemma 1.3.16. Therefore, R∪S

forms an E-packing of Kn+5 with the leave graph H.
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Case 5. n ≥ 7, T = P6

Let R be a P6-packing of Kn with the leave graph H. Write Kn+5 = Kn ∨ K5.

Label the vertices of Kn∨K5 with a (Zn,Z5)-labeling. The set of vertices {01, 11, 21},

the set of vertices {02, 12, 22, 32, 42}, the edges between these sets, and the edges within

the second set, form a graph K5∨3K1. The following paths form a P6-decomposition,

S, of K5 ∨ 3K1.

(11, 12, 01, 02, 22, 32), (01, 22, 21, 12, 32, 42), (21, 32, 11, 22, 42, 02),

(21, 02, 11, 42, 12, 22), (21, 42, 01, 32, 02, 12)

By Lemma 1.3.16, the complete bipartite graph with partite sets {31, 41, 51, . . . , (n−

1)1} and {02, 12, 22, 32, 42} has a P6-decomposition, U . Consequently, R∪S∪U forms

a P6-packing of Kn+5 with the leave graph H.

The proof of the covering case uses a similar argument. �

Now, we see an example that shows how we can reduce the problem of finding a

maximum A-packing of the complete graph Kn for any integer n with a possible leave

graph into the problem of finding a maximum packing of the complete graph Km for

an integer m ≤ 15, using the lemmas in this chapter. Suppose we desire to find the

leave graph 3K2 in a maximum A-packing of K822. Write K822 = K808 ∨ K14. By

Theorem 1.3.1, the graph K808 has an A-decomposition, R. Also the graph K808,14 has

an A-decomposition, S, by Lemma 1.3.14. Therefore, we have reduced the problem to

finding a maximum A-packing, T , of the small graph K14 with the leave graph 3K2,

such that R ∪ S ∪ T forms a maximum A-packing of K822 with the leave graph 3K2.

Generally, for any tree T with four edges and any integer n, we have n = 8k+k′ for

some positive integer k and integer k′, with 0 ≤ k′ ≤ 7. We write Kn = Kn−(k′+8) ∨

Kk′+8, find a maximum T -packing of Kk′+8 with the desired leave graph, and use

Theorem 1.3.1 and Lemma 1.3.14 to find a maximum A-packing of Kn with that

leave graph. In Chapters 2 and 3, we see how to achieve any desired leave graph in

T -packings of Kk′+8 for any tree T with four edges and any integer 0 ≤ k′ ≤ 7. For

any tree T with five edges and any integer n, we use a similar method to achieve all

leave and excess graphs in T -packings and T -coverings of the complete graph Kn.



Chapter 2

The Spectrum of Leave and Excess

Graphs for Stars with up to Five

Edges

This chapter will discuss different leave and excess graphs in packings and coverings

of the complete graph with stars that have up to five edges.

2.1 The Spectrum of Leave and Excess Graphs for

Stars with up to Three Edges

In this section, we solve the spectrum of leave and excess graphs for stars with up to

three edges.

Since 1-stars consist of only one edge, for any integer n,Kn has an S1-decomposition.

For 2-stars, Kn has an S2-decomposition if n is even [8]. If n is odd, then the leave

(excess) graph in a maximum S2-packing (minimum covering) of Kn has at most one

edge, which has been achieved by Roditty [37].

For 3-stars, Kn has an S3-decomposition if n ≡ 0 or 1 (mod 3), and n 6= 3, 4.

For n ≡ 2 (mod 3), n ≥ 5, the leave graph in a maximum S3-packing of Kn has one

edge, which has been achieved by Roditty [37]. Also for n ≡ 2 (mod 3), n ≥ 6, the

excess graph in a minimum S3-covering of Kn has two edges. Hence, the possible
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excess graphs are P3, 2K2, and K2
2 . We prove that all these possible excess graphs are

achievable. By Lemma 1.3.10, it suffices to consider n = 8.

The excess graph P3 is achieved by Roditty [37]. In order to obtain the excess

graph K2
2 , write K8 = K5∨K3. Label the vertices of K5∨K3 with a (Z5,Z3)-labeling.

By Theorem 1.3.2, K5 has an S3-packing, R, with a single edge, say {31, 41} as the

leave graph. Moreover, the following stars form a minimum S3-covering, S, for the

remaining graph with the edges {02, 12} used twice, as the excess graph.

(02; 12, 01, 11), (02; 12, 21, 31), (12; 02, 01, 11), (12; 22, 21, 31),

(22; 02, 01, 11), (22; 21, 31, 41), (41; 31, 02, 12)

Therefore, R∪ S forms a minimum S3-covering of K8 with the excess graph K2
2 . The

edges of the excess graph are the edges {02, 12} used twice. Now, substituting the

stars (02; 01, 11, 21) and (12; 01, 11, 31) for (02; 12, 01, 11) and (12; 02, 01, 11) respectively

in R ∪ S will result in a minimum S3-covering of K8 with the excess graph 2K2. The

edges of the excess graph are {02, 21} and {12, 31}.

2.2 The Spectrum of Leave and Excess Graphs for

4-stars

In this section, we find a corresponding maximum packing and minimum covering of

the complete graph with 4-stars for every possible leave and excess graph.

2.2.1 The Spectrum of Leave Graphs for 4-stars

Theorem 2.2.1 Let n ≥ 7 be an integer and let the leave graph in a maximum

packing of the complete graph Kn with 4-stars have i edges. For any graph H with i

edges there exists a maximum packing of Kn with 4-stars such that the leave graph is

isomorphic to H.

Proof. By Theorem 1.3.1, Kn has an S4-decomposition for n ≡ 0 or 1 (mod 8). We

show that for the remaining cases we have maximum packings with all the possible

leave graphs.
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Case 1. n ≡ 2 or 7 (mod 8)

By Theorem 1.3.2, the leave graph is a single edge and the proof is complete in

this case.

Case 2. n ≡ 3 (mod 8)

In this case, the leave graph has three edges. The non-isomorphic possible leave

graphs are S3, K3, P3 +K2, P4, and 3K2.

In order to get an S3 as the leave graph, write Kn = Kn−3 ∨ K3. Since n ≡

3 (mod 8), we have n − 3 ≡ 0 (mod 8) and hence Kn−3 has an S4-decomposition,

R, by Theorem 1.3.1. Label the vertices of Kn−3 ∨ K3 with a (Zn−3,Z3)-labeling.

Now, the set of vertices {01, 11, 21}, the set of vertices {02, 12, 22}, the edges between

these two sets of vertices, and the edges within the second set form a K3 ∨ 3K1.

By Lemma 1.3.6, K3 ∨ 3K1 has an S4-decomposition, S. Now, the set of vertices

{31, 41, . . . , (n− 5)1}, the set of vertices {02, 12, 22}, and the edges between these two

sets of vertices form a complete bipartite graph which has one part of size a multiple of

4. Therefore, by Lemma 1.3.5 this complete bipartite graph has an S4-decomposition,

T . Hence, R ∪ S ∪ T forms a maximum packing of Kn with 4-stars with the 3-star

((n− 4)1; 02, 12, 22) as the leave graph.

In order to obtain 3K2 as the leave graph, again write Kn = Kn−3∨K3, if n ≥ 19.

Label the vertices as above and let R and S be the same decompositions. Now,

the set of vertices {31, 41, . . . , (n− 9)1}, the set of vertices {02, 12, 22}, and the edges

between these two sets of vertices form a complete bipartite graph with one part of

size a multiple of 4. Hence, by Lemma 1.3.5, this complete bipartite graph has an

S4-decomposition, T . Now, the set of vertices {(n− 8)1, (n− 7)1, (n− 6)1, (n− 5)1,

(n− 4)1}, the set of vertices {02, 12, 22}, and the edges between these two sets of

vertices form a K3,5. By Lemma 1.3.4, K3,5 has a maximum packing, Q, with the

leave graph 3K2. Hence, R∪S ∪ T ∪Q forms a maximum packing of Kn with 4-stars

with the leave graph 3K2.

If n = 11, in order to achieve 3K2 as the leave graph, write K11 = K8 ∨ K3.

Label the vertices of K8 ∨K3 with a (Z8,Z3)-labeling. By Theorem 1.3.1, K8 has an

S4-decomposition, R. The set of vertices {01, 12, 21}, the set of vertices {02, 12, 22},

the edges within the latter set, and the edges between these two sets, form a graph

K3 ∨ 3K1, which has an S4-decomposition, S, by Lemma 1.3.6. Moreover, the set of
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has an S4-decomposition, T . Therefore, R ∪ S ∪ T forms a maximum S4-packing of

Kn where the edges {02, 22} and {12, 32} are left which form a 2K2. This completes

the proof in this case.

Case 4. n ≡ 5 (mod 8)

In this case, again by Theorem 1.3.2, the leave graph has two edges. Write Kn =

Kn−1 ∨K1. Since n ≡ 5 (mod 8), we have both of the possible leave graphs for Kn−1

by Case 3. Let H be one of the leave graphs. Since n−1 is a multiple of 4, by Lemma

1.3.5, Kn−1,1 has an S4-decomposition. So, the leave graph is H and the proof is

completed in this case.

Case 5. n ≡ 6 (mod 8)

By Theorem 1.3.2, the leave graph has three edges in this case. Write Kn =

Kn−3 ∨K3. Since n ≡ 6 (mod 8), we have all the possible leave graphs of S4-packings

of inKn−3 from Case 2. LetH be one of those leave graphs and R be the corresponding

packing. Label the vertices ofKn−3∨K3 with a (Zn−3,Z3)-labeling. The set of vertices

{01, 11, 21}, the set of vertices {02, 12, 22}, the edges between these two sets of vertices,

and the edges between the vertices in the second set form a K3∨3K1. By Lemma 1.3.4

this graph has an S4-decomposition, S. Now, the set of vertices {31, 41, . . . , (n− 4)1},

the set of vertices {02, 12, 22}, and the edges between these two sets of vertices form

a complete bipartite graph with one part of size n − 6. Since n ≡ 6 (mod 8), n − 6

is a multiple of 4 and hence, this complete bipartite graph has an S4-decomposition,

T , by Lemma 1.3.5. Therefore, R ∪ S ∪ T forms a maximum S4-packing of Kn with

4-stars with the leave graph H and this completes the proof in this case.

�

Note that for n = 6 the only possible leave graph isK3, which shows that the condition

n ≥ 7 in Theorem 2.2.1 is necessary. In order to prove that for n = 6 the only possible

leave graph is K3, label the vertices of K6 with the elements of Z6. Any maximum

packing contains 3 stars. Without loss of generality we assume the first star to be

(0; 1, 2, 3, 4). We have two options for the next star center.

Assume we choose vertex 5 as the center of our next star. We can choose the

leaves of the star to be the vertices 1, 2, 3, and 4 or choose one of the leaves to be

the vertex 0 and the others to be three of the vertices 1, 2, 3, and 4. The first choice

is impossible since every vertex will have degree at least two and we cannot add the
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third star. Hence, without loss of generality assume the second star to be (5; 0, 1, 2, 3)

and we have to choose (4; 1, 2, 3, 5) as the third star and the leave graph will be the

triangle with the edges {1, 2}, {2, 3}, and {3, 1}.

Now, assume we choose one of the vertices of degree one to be the center of our

second star. Without loss of generality we can take (1; 2, 3, 4, 5) as the second star.

Hence, the only possibility for the third star will be (5; 0, 2, 3, 4) which gives a triangle

with the edges {2, 3}, {3, 4}, and {4, 2} as the leave graph which completes the proof.

2.2.2 The Spectrum of Excess Graphs for 4-stars

In the previous subsection we illustrated how we can achieve all the possible leave

graphs in an S4-packing of Kn. Now, we show that we can obtain every possible

excess graph in a minimum S4-covering of Kn as well.

Theorem 2.2.2 Let n ≥ 8 be an integer and let the excess graph in a minimum S4-

covering of the complete graph Kn have i edges. For any graph H with i edges there

exists a minimum S4-covering of Kn such that the excess graph is isomorphic to H.

Proof. Again we know that for n ≡ 0 or 1 (mod 8), Kn has an S4-decomposition. We

show that for the remaining cases we have minimum coverings with all the possible

excess graphs.

Case 1. n ≡ 2 (mod 8)

By Theorem 1.3.3, the excess graph has three edges in this case. The possible

excess graphs with three edges are S3, K3, P4, P3 +K2, 3K2, K
3
2 , K

2
2 +K2, and F ,

where F is the graph K2
2 with an edge attached to one of its vertices.

We can obtain the excess graph S3 from a maximum S4-packing of Kn with the

leave graphs K2, adding a 4-star which has the leave graph of the packing as an edge.

For the excess graphs K3, P4, P3+K2, and 3K2, we use the following construction.

Write Kn = Kn−3 ∨K3. Label the vertices of Kn−3 ∨K3 with a (Zn−3,Z3)-labeling.

Since n ≡ 2 (mod 8), by Case 6 in the proof of Theorem 2.2.1, Kn−3 has an S4-packing,

R, with a single edge as the leave graph. Let {(n− 5)1, (n− 4)1} be that single edge.

Consider the set of vertices {01, 11}, the set of vertices {02, 12, 22}, the edges between

these two sets, and the edges within the second set. The following 4-stars form a
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used twice, and the edge {02, 22}.

Consider the covering with excess graph D and replace the stars (12; 02, 01, 11, 21)

and (12; 02, 31, 41, 51) with (12; (n− 4)1, 01, 11, 21) and (12; (n− 4)1, 31, 41, 51) to give

the excess graph K2
2 +K2. The edges of the excess graph are the edges {(n− 4)1, 12}

used twice, and the edge {02, 22}. This proves the theorem in the first case.

Case 2. n ≡ 3 or 6 (mod 8)

By Theorem 1.3.3, the excess graph is a single edge and the proof is complete in

this case.

Case 3. n ≡ 4 (mod 8)

Again by Theorem 1.3.3, the excess graph has two edges. The possible graphs

with two edges are P3, 2K2, and K2
2 . The excess graph P3 is easily obtained from a

maximum packing with the leave graph P3.

In order to obtain the excess graph 2K2 write Kn = Kn−1 ∨K1. Label the vertex

K1 with ∞ and the vertices of Kn−1 with the elements of Zn−1. Since n ≡ 4 (mod 8),

we have n− 1 ≡ 3 (mod 8) and hence, the excess graph of an S4-covering of Kn−1 has

a single edge. Let that single edge be {n− 3, n− 2}. The following stars along with

those in a minimum S4-covering of Kn−1 form a minimum S4-covering for Kn with

the excess graph 2K2. The edges of the excess graph are {0,∞} and {n− 3, n− 2}.

(∞; 4i, 4i+ 1, 4i+ 2, 4i+ 3), i ∈

{

0, 1, . . . ,
n− 8

4

}

,

(∞; 0, n− 4, n− 3, n− 2).

The following construction gives the excess graph K2
2 . Write Kn = Kn−3 ∨K3. Since

n ≡ 4 (mod 8), Kn−3 has an S4-decomposition. Partition the vertices of Kn−3 into a

set of three vertices, a set of two vertices, and a set of n− 8 vertices. First, consider

the set of three vertices. By Lemma 1.3.6, K3 ∨ 3K1 has an S4-decomposition. Now,

consider the set of n − 8 vertices. Since n ≡ 4 (mod 8), n − 8 is a multiple of 4.

Hence, by Lemma 1.3.5, K3,n−8 has an S4-decomposition. Consider the two vertices

left from the vertex partition of Kn−3 and the vertices of K3, and label them with a

(Z2,Z3)-labeling. The following stars along with those in the decompositions of Kn−3,

K3∨3K1, and K3,n−8 form a minimum S4-covering of Kn with the edges {01, 11} used
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twice, as the excess graph, which forms a K2
2 .

(01; 11, 02, 12, 22), (11; 01, 02, 12, 22).

Case 4. n ≡ 5 (mod 8)

By Theorem 1.3.3, the excess graph has two edges. Let H be one of the possible

graphs with two edges. Write Kn = Kn−1∨K1. Since n ≡ 5 (mod 8), by Case 3, Kn−1

has a minimum covering with the excess graph H. Since n−1 is a multiple of 4, K1,n−1

has an S4-decomposition by Lemma 1.3.5. Hence, the stars in the decomposition of

K1,n−1 along with those in the minimum S4-covering of Kn−1 form a minimum S4-

covering of Kn with the excess graph H.

Case 5. n ≡ 7 (mod 8)

In this case, the excess graph has three edges. For n ≥ 8, write Kn = Kn−5 ∨K5.

Let H be any possible graph with three edges where multiple edges are allowed as

well. Since n ≡ 7 (mod 8), Kn−5 has a minimum covering with excess graph H by

Case 1. Partition the vertices of Kn−5 into a set of six vertices and a set of n − 11

vertices. Consider the set of n−11 vertices. Since n ≡ 7 (mod 8), n−11 is a multiple

of 4. Hence, by Lemma 1.3.5, K5,n−11 has an S4-decomposition. Now, consider the set

of six vertices. By Lemma 1.3.6, K5 ∨ 6K1 has an S4-decomposition. The stars in the

decompositions of K5,n−11 and K5∨6K1 along with those in the minimum S4-covering

of Kn−5 form a minimum S4-covering of Kn with the excess graph H. �

n (mod 8) Leave graph (for n ≥ 7) Excess graph (for n ≥ 8)

0 ∅ ∅

1 ∅ ∅

2 K2 S3,K3, P4, 3K2, P3 +K2,K
3
2 ,K

2
2 +K2, and F

3 S3,K3, P4, 3K2, and P3 +K2 K2

4 P3 and 2K2 P3, 2K2, and K2
2

5 P3 and 2K2 P3, 2K2, and K2
2

6 S3,K3, P4, 3K2, and P3 +K2 K2

7 K2 S3,K3, P4, 3K2, P3 +K2,K
3
2 ,K

2
2 +K2 and F

Table 2.1: The spectrum of leave and excess graphs for 4-stars

Table 2.1 illustrates the spectrum of leave and excess graphs for 4-stars. In this table,

F denotes the graph K2
2 with an edge attached to one of its vertices.



37

2.3 The Spectrum of Leave and Excess Graphs for

5-stars

In this section, we solve the spectrum problem for packing and covering for 5-stars.

2.3.1 The Spectrum of Leave Graphs for 5-stars

In 1986 Roditty solved the problem of packing the complete graph Kn with 5-stars.

We prove that we can achieve all possible non-isomorphic leave graphs.

Theorem 2.3.1 Let n ≥ 9 be an integer and let the leave graph in a maximum S5-

packing of the complete graph Kn with 5-stars have i edges. For any graph H with i

edges there exists a maximum S5-packing of Kn such that the leave graph is isomorphic

to H.

Proof. The complete graph Kn has an S5-decomposition for n ≡ 0, 1, 5, or 6(mod 10)

by Theorem 1.3.1. We show that for the remaining cases we have maximum packings

with all the possible leave graphs.

By Corollary 1.3.9 and Lemma 1.3.10, the proof is complete for n ≡ 4 and 9 (mod 10).

Now, by Lemma 1.3.10, we only need to prove the theorem for the cases when

n ≡ 2 and 3 (mod 10). Again by Lemma 1.3.10, it suffices to prove the theorem

for n = 12 and n = 13.

Case 1. n = 12

Write K12 = K10∨K2. Label the vertices of K10∨K2 with a (Z10,Z2)-labeling. By

Theorem 1.3.1,K10 has an S5-decomposition, R. Now, the set of vertices {01, 11, . . . , 91},

the set of vertices {02, 12}, and the edges between these two sets form a complete bi-

partite graph with one part of size a multiple of 5. Hence, by Lemma 1.3.5, this

complete bipartite graph has an S5-decomposition, S. Now, R∪ S forms a maximum

S5-packing of K12 with the single edge {02, 12} as the leave graph.

Case 2. n = 13

For this case, the leave graph has three edges by Theorem 1.3.2. Hence, the

possible leave graphs are K3, S3, P4, 3K2, and P3 + K2. In order to obtain K3,

write K13 = K10 ∨ K3. The graph K10 has an S5-decomposition, R, by Theorem
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1.3.1. Moreover, 10 is a multiple of 5 and hence, by Lemma 1.3.5, K3,10 has an S5-

decomposition, S. Therefore, R ∪ S forms a maximum S5-packing of K13 with a K3

as the leave graph.

In order to obtain S3 as the leave graph, again write K13 = K10 ∨ K3. The

graph K10 has an S5-decomposition, R′, by Theorem 1.3.1. Label the vertices of

K10∨K3 with a (Z10,Z3)-labeling. The set of vertices {01, 11, 21, 31}, the set of vertices

{02, 12, 22}, the edges between these two sets, and the edges between the vertices of the

latter set will form a K3 ∨ 4K1. By Lemma 1.3.6, K3 ∨ 4K1 has an S5-decomposition,

S ′. Let S ′ be formed by the stars (02; 12, 01, 11, 21, 31), (12; 22, 01, 11, 21, 31), and

(22; 02, 01, 11, 21, 31). Now, the set of vertices {41, 51, 61, 71, 81}, the set of vertices

{02, 12, 22}, and the edges between these two sets form a complete bipartite graph

with one part of size a multiple of 5. Hence, by Lemma 1.3.5, this graph has an S5-

decomposition, T ′. Let T ′ be formed by the stars (02; 41, 51, 61, 71, 81), (12; 41, 51, 61, 71,

81), and (22; 41, 51, 61, 71, 81). Therefore, R′ ∪ S ′ ∪ T ′ forms a maximum packing for

K13 with the 3-star (91; 02, 12, 22) as the leave graph.

Substituting the star (02; 41, 51, 61, 71, 91) for (02; 41, 51, 61, 71, 81) in the packing

R′ ∪ S ′ ∪ T ′ gives us a maximum packing U of K13 with P3 +K2 as the leave graph.

The edges of the leave graph are {02, 81}, {91, 12}, and {91, 22}.

Substituting the star (12; 22, 01, 11, 21, 91) for (12; 22, 01, 11, 21, 31) in the packing U

results in a maximum packing for K13 with 3K2 as the leave graph. The edges of the

leave graph are {02, 81}, {31, 12}, and {91, 22}.

Finally, considering the packingR′∪S ′∪T ′ and substituting the star (02; 01, 11, 21, 31,

91) for (02; 12, 01, 11, 21, 31) gives us a maximum packing for K13 with the leave graph

P4. In fact, the leave graph is the path (02, 12, 91, 22). This completes the proof in

this case. �

2.3.2 The Spectrum of Excess Graphs for 5-stars

In Section 2.2.1, we showed how to achieve all possible leave graphs in packing a

complete graph with 5-stars. Now, we prove that all possible excess graphs in covering

the complete graph with 5-stars are also achievable. Refer to Table 2.5 at the end of

this section for all possible leave and excess graphs in different congruence classes.
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Theorem 2.3.2 Let n ≥ 10 be an integer and let the excess graph in a minimum

S5-covering of the complete graph Kn have i edges. For any graph H with i edges

there exists a minimum S5-covering of Kn such that the excess graph is isomorphic to

H, except for the excess graph K4
2 which is not achievable for n = 12.

Proof. The complete graph Kn has an S5-decomposition for n ≡ 0, 1, 5, or 6(mod 10)

by Theorem 1.3.1. We show that for the remaining cases we have minimum coverings

with all the possible excess graphs.

By Lemma 1.3.10, we only need to prove the theorem for the cases when n ≡

2, 3, and 4 (mod 10). Also by Lemma 1.3.10, it suffices to consider the cases n = 12,

n = 13, and n = 14. However, for the excess graph K4
2 we need to consider n = 17 as

well.

Case 1. n = 12. By Theorem 1.3.3, the excess graph has 4 edges in this case.

Figure 2.6 shows all possible excess graphs with 4 edges (Ei demonstrates the ith

excess graph). Let P be a maximum S5-packing of Kn. Since the leave graph in a

E2 E3 E4 E5E1

E6 E7 E8 E9 E10

E11 E12 E13 E14 E15

E16 E17 E18 E19 E20

E21 E22 E23

Figure 2.6: All possible 4-edge excess graphs

maximum S5-packing is a single edge by Theorem 1.3.2, if we add a 5-star including

that single edge, we obtain E1 as the excess graph.

In order to achieve E14, write K12 = K9 ∨K3. Label the vertices of K9 ∨K3 with

a (Z9,Z3)-labeling. The following stars form a maximum S5-packing, R, for K9 with
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the single edge {71, 81} as the leave graph.

(01; 11, 21, 31, 71, 81), (11; 21, 31, 41, 71, 81), (21; 31, 41, 51, 71, 81),

(31; 41, 51, 61, 71, 81), (41; 51, 61, 01, 71, 81), (51; 61, 01, 11, 71, 81),

(61; 01, 11, 21, 71, 81)

Moreover, the following stars form a minimum S5-covering, S, of the remaining edges

with the edges {02, 12} used three times and the edge {61, 81} as the excess graph,

which forms a graph isomorphic to E14.

(02; 12, 01, 11, 21, 31), (12; 02, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71),

(12; 02, 41, 51, 61, 71), (22; 02, 01, 11, 21, 31), (22; 12, 41, 51, 61, 71),

(81; 61, 71, 02, 12, 22)

Therefore, R ∪ S forms a minimum S5-covering for K12 with the excess graph E14.

The edges of the excess graph are the edges {02, 12} used three times and the edge

{61, 81}. Figure 2.7 illustrates the last step in achieving a minimum S5-covering of

K12 with the excess graph E14. Each thick line connected to an oval takes the place

of a 4-star.

02 12

01 11 21 31 41 51 61 71 81

22

Figure 2.7: The last step in achieving a minimum S5-covering of K12 with the excess

graph E14

Substituting the stars (01; 11, 21, 31, 71, 02) and (81; 01, 71, 02, 12, 22) for (01; 11, 21, 31,

71, 81) and (81; 61, 71, 02, 12, 22) respectively, leads to a minimum S5-covering, U , with

the excess graph E13. The edges of the excess graph are the edges {02, 12} used three
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times and the edge {01, 02}.

Now, we obtain all possible excess graphs by substitution of some stars with some

other ones in the coverings R∪S and U . The substitutions are given in Tables 2.2 and

2.3. In fact, the excess graphs E2, E3, E4, E5, E6, E7, E10, E11, E17, E18, E19, and E20

are achieved from the covering R∪S, and the excess graphs E8, E9, E15, E16, E21, E22,

and E23 are achieved from the covering U .

New star(s) Previous star(s) Edges of the excess graph Excess
(02; 61, 01, 11, 21, 31)
(02; 01, 41, 51, 61, 71)

(02; 12, 01, 11, 21, 31)
(02; 12, 41, 51, 61, 71)

{61, 81}, {01, 02}, {61, 02}, {02, 12} E2

(02; 41, 01, 11, 21, 31)
(02; 01, 41, 51, 61, 71)

(02; 12, 01, 11, 21, 31)
(02; 12, 41, 51, 61, 71)

{61, 81}, {01, 02}, {41, 02}, {02, 12} E3

(02; 61, 01, 11, 21, 31)
(12; 81, 01, 11, 21, 31)

(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)

{61, 81}, {61, 02}, {81, 12}, {02, 12} E4

(02; 41, 01, 11, 21, 31)
(12; 51, 01, 11, 21, 31)

(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)

{61, 81}, {41, 02}, {51, 12}, {02, 12} E5

(02; 61, 01, 11, 21, 31)
(12; 51, 01, 11, 21, 31)

(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)

{61, 81}, {51, 12}, {61, 02}, {02, 12} E6

(12; 22, 01, 11, 21, 31)
(02; 22, 41, 51, 61, 71)

(12; 02, 01, 11, 21, 31)
(02; 12, 41, 51, 61, 71)

{61, 81}, {02, 12}, {02, 22}, {12, 22} E7

(02; 41, 01, 11, 21, 31)
(12; 51, 01, 11, 21, 31)
(12; 22, 41, 51, 61, 71)

(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{61, 81}, {41, 02}, {51, 12}, {12, 22} E10

(02; 41, 01, 11, 21, 31)
(12; 51, 01, 11, 21, 31)
(12; 22, 41, 51, 61, 71)
(22; 31, 41, 51, 61, 71)

(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)
(22; 12, 41, 51, 61, 71)

{61, 81}, {31, 22}, {41, 02}, {51, 12} E11

(02; 81, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) {61, 81}, {81, 02}, {02, 12}(twice) E17

(02; 21, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) {61, 81}, {02, 21}, {02, 12}(twice) E18

(12; 22, 41, 51, 61, 71)
(22; 31, 41, 51, 61, 71)

(12; 02, 41, 51, 61, 71)
(22; 12, 41, 51, 61, 71)

{61, 81}, {31, 22}, {02, 12}(twice) E19

(02; 22, 01, 11, 21, 31)
(22; 61, 01, 11, 21, 31)

(02; 12, 01, 11, 21, 31)
(22; 02, 01, 11, 21, 31)

{61, 81}, {61, 22}, {02, 12}(twice) E20

Table 2.2: Substitutions in the S5-covering R∪S to obtain different excess graphs for
n = 12

Now, we prove that for n = 12, the excess graph E12 = K4
2 is not achievable.

Assume to the contrary that Q is a minimum S5-covering of K12 with the excess

graph E12. Let x and y be the end vertices of the four multiple edges of the excess

graph. Since the four multiple edges form the excess graph, Q contains five multiple

edges {x, y}. We claim that each of the vertices x and y can be at most the center

of two stars of Q containing the edge {x, y}. Assume to the contrary that x is the

center of three such stars. Hence, there exist at least three disjoint sets of four vertices
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New star(s) Previous star(s) Edges of the excess graph Excess
(12; 22, 01, 11, 21, 31)
(02; 22, 41, 51, 61, 71)

(12; 02, 01, 11, 21, 31)
(02; 12, 41, 51, 61, 71)

{01, 02}, {02, 12}, {02, 22}, {12, 22} E8

(02; 41, 01, 11, 21, 31)
(12; 21, 41, 51, 61, 71)
(12; 51, 01, 11, 21, 31)

(02; 12, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)

{01, 02}, {41, 02}, {21, 12}, {51, 12} E9

(02; 01, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) {01, 02}(twice), {02, 12}(twice) E15

(02; 01, 41, 51, 61, 71)
(12; 81, 01, 11, 21, 31)
(12; 81, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{81, 12}(twice), {01, 02}(twice) E16

(12; 41, 01, 11, 21, 31) (12; 02, 01, 11, 21, 31) {01, 02}, {41, 12}, {02, 12}(twice) E21

(02; 11, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) {01, 02}, {11, 02}, {02, 12}(twice) E22

(12; 01, 41, 51, 61, 71) (12; 02, 41, 51, 61, 71) {01, 02}, {01, 12}, {02, 12}(twice) E23

Table 2.3: Substitutions in the S5-covering U to obtain different excess graphs for
n = 12

other than x and y. This contradicts n = 12 and hence, our claim is true. Therefore,

there are at most four multiple edges between x and y in Q, which shows there is no

minimum S5-covering of K12 with the excess graph E12.

Case 2. n = 13.

In this case, the excess graph has two edges by Theorem 1.3.3. Hence, the possible

excess graphs are P3, 2K2, and K2
2 .

The excess graph P3 is easily achievable by adding a 5-star to a maximum packing

of K13 with the leave graph S3.

In order to obtain the excess graph 2K2, write K13 = K9 ∨K4. Label the vertices

of K9 ∨K4 with a (Z9,Z4)-labeling. Let R be a maximum S5-packing of K9 with the

single edge {71, 81} as the leave graph. Consider the set of vertices {01, 11, 21, 31, 41},

the set of vertices {02, 12, 22, 32}, and the edges between these two sets form a complete

bipartite graph with one part of size a multiple of 5. Hence, by Lemma 1.3.5, this

bipartite graph has an S5-decomposition, S. Furthermore, the following stars form a

minimum covering, T , for the remaining graph with the edges {02, 22} and {12, 32} as

the excess graph.

(02; 12, 22, 51, 61, 71), (12; 22, 32, 51, 61, 71), (22; 32, 02, 51, 61, 71),

(32; 02, 12, 51, 61, 71), (81; 71, 02, 12, 22, 32)
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Therefore, R∪S ∪T forms a minimum S5-covering of K13 with the excess graph 2K2.

The edges of the excess graph are {02, 22} and {12, 32}. Figure 2.8 illustrates the last

step in achieving a minimum S5-covering of K13 with the excess graph 2K2.

01 11 21 31 41 51 61 71 81

02 12 22 32

Figure 2.8: The last step in achieving a minimum S5-covering of K13 with the excess
graph 2K2

In order to achieve the excess graph K2
2 , partition and label the vertices of K13 as

before and let R be the same S5-packing of K9 with the same edge as the leave graph.

The following stars form a minimum covering, R′′, of the remaining graph with the

edges {02, 12} used twice, as the excess graph.

(02; 12, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),

(12; 22, 41, 51, 61, 71), (22; 02, 01, 11, 21, 31), (22; 32, 41, 51, 61, 71),

(32; 02, 01, 11, 21, 31), (32; 12, 41, 51, 61, 71), (81; 71, 02, 12, 22, 32)

Therefore, R ∪R′′ forms a minimum covering for K13 with the excess graph K2
2 . The

edges of the excess graph are the multiple edges {02, 12}. Figure 2.9 illustrates the

last step in achieving a minimum S5-covering of K13 with the excess graph K2
2 .

Case 3. n = 14

In this case, the excess graph has four edges by Theorem 1.3.3. Hence, the possible

excess graphs are the ones shown in Figure 2.6. Again, since the leave graph in a

maximum S5-packing is a single edge, if we add a 5-star including that single edge,

we obtain E1 as the excess graph.

In order to achieve the excess graph E12, write K14 = K9 ∨K5. Label the vertices
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01 11 21 31 41 51 61 71 81

02 12 22 32

Figure 2.9: The last step in achieving a minimum S5-covering of K13 with the excess
graph K2

2

of K9 ∨K5 with a (Z9,Z5)-labeling. Let R be a maximum S5-packing of K9 and let

the leave graph be the edge {71, 81}. The following stars form a minimum covering,

S, of the remaining edges with the edges {02, 12} used four times, as the excess graph.

(02; 12, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),

(12; 02, 41, 51, 61, 71), (02; 12, 22, 32, 42, 81), (22; 12, 01, 11, 21, 31),

(22; 32, 41, 51, 61, 71), (32; 42, 01, 11, 21, 31), (32; 12, 41, 51, 61, 71),

(42; 12, 01, 11, 21, 31), (42; 22, 41, 51, 61, 71), (81; 71, 12, 22, 32, 42)

Therefore, R ∪ S forms a minimum S5-covering of K14 with the excess graph E12.

The edges of the excess graph are the edges {02, 12} used four times. Figure 2.10

illustrates the last step in achieving a minimum S5-covering of K14 with the excess

graph E12.

Consider the covering R ∪ S. Table 2.4 shows the star substitutions in R ∪ S

needed to achieve each excess graph except for E11.

In order to achieve the excess graph E11, write K14 = K10 ∨ K4. Label the

vertices of K10 ∨ K4 with a (Z10,Z4)-labeling. The complete graph K10 has an S5-

decomposition, U . The set of vertices {01, 11, 21, 31, 41}, the set of vertices {02, 12, 22, 32},

and the edges between these sets form a complete bipartite graph with one part of size

a multiple of 5. Hence, by Lemma 1.3.5, this bipartite graph has an S5-decomposition,
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New star(s) Previous star(s) Edges of the excess graph Excess
(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 22, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{01, 02}, {41, 02}, {02, 12}, {12, 22} E2

(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 22, 41, 51, 61, 71)
(22; 51, 01, 11, 21, 31)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)
(22; 12, 01, 11, 21, 31)

{41, 02}, {01, 02}, {51, 22}, {02, 12} E3

(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 41, 01, 11, 21, 31)
(12; 01, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{01, 02}, {41, 02}, {01, 12}, {41, 12} E4

(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 41, 01, 11, 21, 31)
(12; 22, 41, 51, 61, 71)
(22; 51, 01, 11, 21, 31)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)
(22; 12, 01, 11, 21, 31)

{01, 02}, {41, 02}, {41, 12}, {51, 22} E5

(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 41, 01, 11, 21, 31)
(12; 81, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{01, 02}, {41, 02}, {41, 12}, {81, 12} E6

(02; 22, 41, 51, 61, 71)
(12; 22, 01, 11, 21, 31)
(12; 32, 41, 51, 61, 71)
(32; 42, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)
(32; 12, 41, 51, 61, 71)

{02, 12}, {02, 22}, {12, 22}, {32, 42} E7

(02; 22, 41, 51, 61, 71)
(12; 22, 01, 11, 21, 31)
(12; 32, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{02, 12}, {02, 22}, {12, 22}, {12, 32} E8

(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 51, 01, 11, 21, 31)
(12; 11, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)

{01, 02}, {41, 02}, {11, 12}, {51, 12} E9

(02; 01, 41, 51, 61, 71)
(02; 41, 01, 11, 21, 31)
(12; 51, 01, 11, 21, 31)
(12; 22, 41, 51, 61, 71)
(22; 61, 01, 11, 21, 31)

(02; 12, 41, 51, 61, 71)
(02; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(12; 02, 41, 51, 61, 71)
(22; 12, 01, 11, 21, 31)

{01, 02}, {41, 02}, {51, 12}, {61, 22} E10

(02; 01, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) {01, 02}, {02, 12}(3 times) E13

(12; 22, 41, 51, 61, 71)
(22; 41, 01, 11, 21, 31)

(12; 02, 41, 51, 61, 71)
(22; 12, 01, 11, 21, 31)

{02, 12}(3 times), {41, 22} E14

(02; 01, 41, 51, 61, 71)
(02; 01, 81, 22, 32, 42)

(02; 12, 41, 51, 61, 71)
(02; 12, 81, 22, 32, 42)

{01, 02}(twice), {02, 12}(twice) E15

(12; 22, 41, 51, 61, 71)
(22; 32, 01, 11, 21, 31)
(12; 32, 01, 11, 21, 31)
(32; 22, 41, 51, 61, 71)

(12; 02, 41, 51, 61, 71)
(22; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(32; 12, 41, 51, 61, 71)

{02, 12}(twice), {22, 32}(twice) E16

(12; 22, 41, 51, 61, 71)
(12; 32, 01, 11, 21, 31)
(32; 22, 41, 51, 61, 71)

(12; 02, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)
(32; 12, 41, 51, 61, 71)

{02, 12}(twice), {12, 22}, {22, 32} E17

(12; 22, 41, 51, 61, 71)
(12; 42, 01, 11, 21, 31)
(42; 32, 01, 11, 21, 31)

(12; 02, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)
(42; 12, 01, 11, 21, 31)

{02, 12}(twice), {12, 22}, {32, 42} E18
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New star(s) Previous star(s) Edges of the excess graph Excess
(12; 22, 41, 51, 61, 71)
(22; 41, 01, 11, 21, 31)
(12; 42, 01, 11, 21, 31)
(42; 32, 01, 11, 21, 31)

(12; 02, 41, 51, 61, 71)
(22; 12, 01, 11, 21, 31)
(12; 02, 01, 11, 21, 31)
(42; 12, 01, 11, 21, 31)

{41, 22}, {02, 12}(twice), {32, 42} E19

(12; 32, 41, 51, 61, 71)
(32; 22, 41, 51, 61, 71)
(12; 42, 01, 11, 21, 31)
(42; 32, 01, 11, 21, 31)

(12; 02, 41, 51, 61, 71)
(32; 12, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)
(42; 12, 01, 11, 21, 31)

{02, 12}(twice), {22, 32}, {32, 42} E20

(02; 01, 41, 51, 61, 71)
(12; 41, 01, 11, 21, 31)

(02; 12, 41, 51, 61, 71)
(12; 02, 01, 11, 21, 31)

{01, 02}, {41, 12}, {02, 12}(twice) E21

(02; 01, 41, 51, 61, 71)
(02; 11, 81, 22, 32, 42)

(02; 12, 41, 51, 61, 71)
(02; 12, 81, 22, 32, 42)

{01, 02}, {11, 02}, {02, 12}(twice) E22

(02; 01, 41, 51, 61, 71)
(12; 01, 41, 51, 61, 71)

(02; 12, 41, 51, 61, 71)
(12; 02, 41, 51, 61, 71)

{01, 02}, {01, 12}, {02, 12}(twice) E23

Table 2.4: Substitutions in the S5-covering R∪S to obtain different excess graphs for
n = 14

V . Moreover, the following stars form a minimum covering, W , for the remaining

graph with the edges {81, 01}, {91, 11}, {02, 22}, and {12, 32} as the excess graph.

(02; 12, 22, 51, 61, 71), (12; 22, 32, 51, 61, 71), (22; 32, 02, 51, 61, 71),

(32; 02, 12, 51, 61, 71), (81; 01, 02, 12, 22, 32), (91; 11, 02, 12, 22, 32)

Therefore, U ∪ V ∪ W is a minimum S5-covering of K14 with the excess graph E11.

Figure 2.11 illustrates the last step in achieving a minimum S5-covering of K14 with

the excess graph E11.

In order to achieve the excess graph E12 for n ≥ 17 where n ≡ 2 (mod 5), it

suffices to achieve this excess graph for n = 17 by Lemma 1.3.10. Let n = 17. Write

K17 = K14∨K3 and label the vertices of K14∨K3 with a (Z14,Z3)-labeling. As shown

in Case 3, the graph K14 has an S5-covering, R, with the excess graph E12. The set

of vertices {01, 11, . . . , 91}, the set of vertices {02, 12, 22}, and the edges between these

two sets form a complete bipartite graph with one part of size a multiple of 5. Hence,

by Lemma 1.3.5, this complete bipartite graph has an S5-decomposition, S. Now, the

set of vertices {101, 111, 121, 131}, the set of vertices {02, 12, 22}, the edges between

these two sets, and the edges within the second set form a graph K3∨ 4K1, which has

an S5-decomposition, T , by Lemma 1.3.6. Therefore, R ∪ S ∪ T forms a minimum

S5-covering of K17 with the excess graph E12. �
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01 11 21 31 41 51 61 71 81

02 12 22 32 42

Figure 2.10: The last step in achieving a minimum S5-covering of K14 with the excess
graph E12

01 11 21 31 41 51 61 71 81

02 12 22 32

91

Figure 2.11: The last step in achieving a minimum S5-covering of K14 with the excess
graph E11

n (mod 10) Possible leave graphs Possible excess graphs
0 ∅ ∅
1 ∅ ∅

2 K2

the graphs in Figure 2.6
except for E12 when n = 12

3 S3,K3, P4, 3K2, and P3 +K2 P3, 2K2, and K2

2

4 K2 the graphs in Figure 2.6
5 ∅ ∅
6 ∅ ∅
7 K2 the graphs in Figure 2.6
8 S3,K3, P4, 3K2, and P3 +K2 P3, 2K2, and K2

2

9 K2 the graphs in Figure 2.6

Table 2.5: The spectrum of the leave graphs (for n ≥ 9) and excess graphs (for n ≥ 10)
for 5-stars
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Table 2.5 illustrates the spectrum of the leave graphs (for n ≥ 9) and excess graphs

(for n ≥ 10) for 5-stars.



Chapter 3

The Spectrum of Leave Graphs for

Trees with up to Five Edges

In this chapter, we will find all possible leave graphs in packings of the complete

graph with trees that have up to five edges. If a tree has one edge, then the tree

is a single edge, and any complete graph can be decomposed into single edges. The

only tree with two edges is P3. The leave graph in a maximum P3-packing of any

complete graph has at most one edge [37], in which case, the only possible leave graph

is K2. Also any tree T with three edges has four vertices, and the leave graph in any

maximum T -packing of any complete graph has at most one edge [37], and the only

possible leave graph will be K2.

With the above explanation, we only need to consider trees with four and five

edges.

3.1 The Spectrum of Leave Graphs for Trees with

Four Edges

Theorem 3.1.1 Let n ≥ 7 be an integer, T be any tree with four edges, and let the

leave graph in a maximum T -packing of the complete graph Kn have i edges. For any

graph H with i edges there exists a maximum T -packing of Kn such that the leave

graph is isomorphic to H.
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Proof. Let n ≥ 7 be an integer and T be any tree with four edges. For n ≡

0, 1 (mod 8), the complete graph Kn has a T -decomposition by Theorem 1.3.1. For

n ≡ 2, 7 (mod 8), the leave graph is a single edge by Theorem 1.3.2. We show that

for n ≡ 3, 4, 5, 6 (mod 8), we can achieve every possible leave graph. All trees with

four edges are demonstrated in Figure 3.1, and A is denoted by (x1; x2, x3, x4 − x5).

Figure 3.1: All trees with four edges

The theorem is proved for T = S4 (see Theorem 2.2.1). We need to prove the

result for A and P5. For both cases, we prove the theorem considering congruency

classes modulo 8.

Case 1. n ≡ 3 (mod 8), T = A

The leave graph has three edges by Theorem 1.3.2. Therefore, the possible leave

graphs are K3, S3, P4, 3K2, and P3 +K2. By Corollary 1.3.15, it suffices to achieve

all possible leave graphs for K11. In fact, for n = 8k + 3 where k ≥ 1 is an integer,

we write Kn = K8(k−1) ∨ K11. Let R be an A-decomposition of K8(k−1) and S be a

maximum A-packing of K11 with the leave graph H where H is any of the possible

leave graphs. By Lemma 1.3.14, the graph K8(k−1),11 has an A-decomposition, U .

Therefore, R ∪ S ∪ U is a maximum A-packing of Kn with the leave graph H.

The leave graph P4 was obtained by Roditty [39]. In order to obtain the leave

graph K3, write K11 = K8 ∨ K3. Label the vertices of K8 ∨ K3 with a (Z8,Z3)-

labeling. By Theorem 1.3.1, K8 has an A-decomposition, R. By Lemma 1.3.14, K8,3

has an A-decomposition, S. Let S be formed by the following trees.

(02; 01, 11, 21 − 12), (12; 01, 31, 11 − 22), (22; 01, 21, 31 − 02),

(02; 41, 51, 61 − 12), (12; 41, 71, 51 − 22), (22; 41, 61, 71 − 02)

Therefore, R ∪ S forms a maximum A-packing of K11 with the leave graph K3. The

edges of the leave graph are {02, 12}, {02, 22}, and {12, 22}.
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In order to obtain the leave graphs P3+K2 and 3K2, we replace some of the trees

in this packing with others. Table 3.1 shows the required substitutions.

New tree(s) Previous tree(s) Edges of the leave graph Leave
(02; 22, 11, 21 − 12)
(12; 01, 02, 11 − 22)

(02; 01, 11, 21 − 12)
(12; 01, 31, 11 − 22)

{01, 02}, {12, 31}, {12, 22} P3 +K2

(02; 22, 11, 21 − 12), (02; 01, 11, 21 − 12),
(12; 01, 02, 11 − 22), (12; 01, 31, 11 − 22), {01, 02}, {12, 31}, {21, 22} 3K2

(22; 01, 12, 31 − 02) (22; 01, 21, 31 − 02)

Table 3.1: Substitutions in the A-packing R ∪ S to obtain different leave graphs for

n = 11

In order to obtain S3 as the leave graph, label the vertices as before. Let R be the

A-decomposition of K8. The set of vertices {01, 11, 21}, the set of vertices {02, 12, 22},

the edges between these two sets, and the edges within the second set, form a graph

K3 ∨ 3K1. The following trees form an A-decomposition, S, of the graph K3 ∨ 3K1.

(02; 01, 11, 12 − 21), (12; 01, 11, 22 − 21), (22; 01, 11, 02 − 21)

The complete bipartite graph with one part of vertices 31, 41, 51, 61 and another part

02, 12, 22 has an A-decomposition, U , by Lemma 1.3.14. Therefore, R ∪ S ∪ U forms

a maximum A-packing of K11 with the leave graph S3. The edges of the leave graph

are {71, 02}, {71, 12}, and {71, 22}.

Case 2. n ≡ 3 (mod 8), T = P5

By Corollary 1.3.15, it suffices to achieve all possible leave graphs for n = 11.

The leave graph has three edges by Theorem 1.3.2. Hence, the possible leave graphs

are K3, S3, P4, P3 + K2, and 3K2. In order to obtain the leave graph K3, write

K11 = K8 ∨ K3. Label the vertices of K8 ∨ K3 with a (Z8,Z3)-labeling. Let R be

a P5-decomposition of K8. The graph K8,3 has a P5-decomposition, S, by Lemma

1.3.14. Therefore, R∪ S forms a maximum P5-packing with the leave graph K3. The

edges of the leave graph are {02, 12}, {02, 22}, and {12, 22}.

In order to obtain the leave graph S3, partition and label the vertices as above

and let R be a P5-decomposition of K8. Consider the complete bipartite graph with

one partite set {31, 41, 51, 61} and the other partite set {02, 12, 22}. This graph has

a P5-decomposition, S ′, by Lemma 1.3.14. The set of vertices {01, 11, 21}, the set

of vertices {02, 12, 22}, the edges between these two sets, and the edges within the
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second set form a graph K3 ∨ 3K1. The following paths form a P5-decomposition, U ,

for K3 ∨ 3K1.

(12, 02, 01, 22, 11), (22, 12, 11, 02, 21), (02, 22, 21, 12, 01)

Therefore, R ∪ S ′ ∪ U forms a maximum P5-packing of K11 with the leave graph S3.

In fact, the leave graph is the 3-star (71; 02, 12, 22).

The other leave graphs can be achieved by substituting some paths with other

ones in the packing R ∪ S ′ ∪ U . (See Table 3.2.)

New path(s) Previous path(s) Edges of the leave graph Leave

(71, 22, 21, 12, 01) (02, 22, 21, 12, 01) {71, 02}, {71, 12}, {02, 22} P4

(02, 22, 71, 12, 01) (02, 22, 21, 12, 01) {71, 02}, {21, 22}, {12, 21} P3 +K2

(71, 02, 11, 12, 22)

(02, 22, 21, 12, 71)

(21, 02, 11, 12, 22)

(02, 22, 21, 12, 01)
{01, 12}, {71, 22}, {02, 21} 3K2

Table 3.2: Substitutions in the P5-packing R∪S ′ ∪U to obtain different leave graphs

for n = 11

Case 3. n ≡ 4 (mod 8), T = A

By Theorem 1.3.2, the leave graph has 2 edges in this case. So, the only possible

leave graphs are P3 and 2K2. By Corollary 1.3.15, it suffices to achieve all possible

leave graphs for K12. Roditty showed how to obtain the leave graph P3 [39].

In order to achieve leave graph 2K2, write K12 = K8 ∨K4. Label the vertices of

K8 ∨K4 with a (Z8,Z4)-labeling. By Theorem 1.3.1, K8 has an A-decomposition, R.

Consider the set of vertices {01, 11, 21}, the set of vertices {02, 12, 22, 32}, the edges

between these two sets, and the edges within the latter. These vertices and edges

form a graph K4 ∨ 3K1. The following trees construct a maximum A-packing, S, of

the graph K4 ∨ 3K1 with the edges {02, 22} and {12, 32}, which make a graph 2K2, as

the leave graph. (See Figure 3.2.)

(02; 12, 01, 11 − 22), (12; 22, 01, 11 − 32), (22; 32, 01, 21 − 02), (32; 02, 01, 21 − 12)
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Figure 3.2: An A-packing of K4 ∨ 3K1 with the leave graph 2K2

Now, consider the complete bipartite graph with partite sets {31, 41, 51, 61, 71} and

{02, 12, 22, 32}. By Lemma 1.3.14, this bipartite graph has an A-decomposition, U .

Therefore, R ∪ S ∪ U forms a maximum A-packing of K12 with the leave graph 2K2.

The edges of the leave graph are {02, 22} and {12, 32}.

Case 4. n ≡ 4 (mod 8), T = P5

By Corollary 1.3.15, it suffices to achieve all leave graphs for n = 12. The leave

graph has two edges in this case. Hence, the possible leave graphs are P3 and 2K2.

The leave graph 2K2 was achieved by Roditty [39]. In order to achieve the leave

graph P3, write K12 = K8 ∨ K4 and label the vertices of K8 ∨ K4 with a (Z8,Z4)-

labeling. Let R and S be as above. The complete bipartite graph with the partite

sets {31, 41, 51, 61} and {02, 12, 22, 32} has a P5-decomposition, T ′, by Lemma 1.3.14.

Let U consist of the single path (22, 02, 71, 32, 12). Therefore, R ∪ S ∪ T ′ ∪ U forms a

maximum P5-packing of K12 with the leave graph P3. The edges of the leave graph

are {71, 12} and {71, 22}.

Case 5. n ≡ 5 (mod 8), T = A

By Theorem 1.3.2, the leave graph has two edges in this case. The possible leave

graphs are P3 and 2K2. By Corollary 1.3.15 it suffices to obtain all leave graphs for

n = 13. Roditty showed how to achieve the leave graph P3 [39]. In order to obtain

the leave graph 2K2, write K13 = K11 ∨ K2. Label the vertices of K11 ∨ K2 with

a (Z11,Z2)-labeling. In Case 3, we showed that there is a maximum A-packing of

K11 with the leave graph 3K2. Let R be that packing and the edges of the leave

graph be {51, 61}, {71, 81}, and {91, 101}. Consider the complete bipartite graph with
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partite sets {01, 11, 21, . . . , 71} and {02, 12}. This graph has an A-decomposition, S,

by Lemma 1.3.14. Let U be formed by the trees (02; 81, 91, 101−12) and (12; 02, 81, 91−

101). Therefore, R ∪ S ∪ U forms a maximum A-packing of K13 with the leave graph

2K2. The edges of the leave graph are {51, 61} and {71, 81}.

Case 6. n ≡ 5 (mod 8), T = P5

By Corollary 1.3.15, it suffices to achieve all leave graphs for n = 13. The leave

graph has two edges in this case. Hence, the possible leave graphs are P3 and 2K2.

The leave graph P3 was achieved by Roditty [39]. In order to achieve the leave graph

2K2, write K13 = K9 ∨ K4. Label the vertices of K9 ∨ K4 with a (Z9,Z4)-labeling.

Let R be a P5-decomposition of K9. The set of vertices {01, 11, 21}, the set of vertices

{02, 12, 22, 32}, the edges between these two sets, and the edges within the second

set form a graph K4 ∨ 3K1. The following paths form a maximum P5-packing, S, of

K4 ∨ 3K1 with the edges {02, 22} and {12, 32} as the leave graph which form a graph

2K2.

(12, 02, 01, 22, 11), (22, 12, 11, 32, 21), (32, 22, 21, 02, 11), (02, 32, 01, 12, 21)

The complete bipartite graph with one partite set {31, 41, 51, 61, 71, 81} and the other

partite set {02, 12, 22, 32}, has a P5-decomposition, U , by Lemma 1.3.14. Therefore,

R∪ S ∪U forms a maximum P5-packing of K13 with the leave graph 2K2. The edges

of the leave graph are {02, 22} and {12, 32}.

Case 7. n ≡ 6 (mod 8), T = A

By Theorem 1.3.2, the leave graph has three edges in this case. The possible leave

graphs are those mentioned in Case 1. By Corollary 1.3.15, it suffices to obtain all

possible leave graphs for n = 14. Write K14 = K11∨K3. Label the vertices of K11∨K3

with a (Z11,Z3)-labeling. Let H be any simple graph with three edges. By Case 1,

there is a maximum A-packing of K11, R, with the leave graph H. The set of vertices

{01, 11, 21}, the set of vertices {02, 12, 22}, the edges between these two sets, and the

edges within the second set, forms a graph K3 ∨ 3K1. The following trees form an

A-decomposition, S, of the graph K3 ∨ 3K1.

(02; 01, 11, 12 − 21), (12; 01, 11, 22 − 21), (22; 01, 11, 02 − 21)

The complete bipartite graph with one partite set {31, 41, 51, 61, 71, 81, 91, 101} and the
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other partite set {02, 12, 22}, has an A-decomposition, U , by Lemma 1.3.14. Therefore,

R∪S∪U forms a maximum A-packing of K14 with the leave graph H. This completes

the proof in this case.

Case 8. n ≡ 6 (mod 8), T = P5

The leave graph has three edges in this case by Theorem 1.3.2. Hence, the possible

leave graphs are those mentioned in Case 1. By Corollary 1.3.15, it suffices to achieve

all possible leave graphs for n = 14. Let H be any possible leave graph with three

edges. Write K14 = K11∨K3. Label the vertices of K11∨K3 with a (Z11,Z3)-labeling.

By Case 2, there exists a maximum P5-packing, R, of K11 with the leave graph H.

The set of vertices {01, 11, 21}, the set of vertices {02, 12, 22}, the edges between these

two sets, and the edges within the second set, form a graph K3 ∨ 3K1. The following

paths form a P5-decomposition, S, of the graph K3 ∨ 3K1.

(12, 02, 01, 22, 11), (22, 12, 11, 02, 21), (02, 22, 21, 12, 01)

The complete bipartite graph with partite sets {31, 41, 51, . . . , 101} and {02, 12, 22}, has

a P5-decomposition, U , by Lemma 1.3.14. Therefore, R ∪ S ∪ U forms a maximum

P5-packing of K14 with the leave graph H. �

3.2 The Spectrum of Leave Graphs for Trees with

Five Edges

Theorem 3.2.1 Let n ≥ 9 be an integer, T be any tree with five edges, and let the

leave graph in a T -packing of the complete graph Kn have i edges. For any graph

H with i edges there exists a maximum T -packing of Kn such that the leave graph is

isomorphic to H.

Proof. Let n ≥ 9 be an integer and T be any tree with five edges. As previously

stated, the trees with five edges are S5, B, C, D, E, and P6, as shown in Figure 3.3.

The trees B,C,D, and E, are denoted by (x1; x2, x3, x4, x5 − x6), (x1; x2, x3, x4 − x5 −

x6), (x3; x6, x2, x4 − x1, x5), and (x1 − x2, x3; x4 − x5, x6), respectively.
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Figure 3.3: All trees with five edges

For the tree S5 the result is proved in Theorem 2.3.1. By Lemma 1.3.17, for each

tree, it suffices to show the result for n = 9, 10, 11, 12, 13. For n = 10 and 11 there is a

T -decomposition of Kn by Theorem 1.3.1. For n = 9, 12, the leave graph has a single

edge by Theorem 1.3.2. Therefore, we only need to achieve all possible leave graphs

for n = 13. By Theorem 1.3.2, the leave graph in a maximum T -packing of K13 has

three edges. Hence, the possible leave graphs are K3, S3, P4, P3+K2, and 3K2. Now,

for each tree T , we construct maximum T -packings with each of these leave graphs.

Case 1. T = B

In order to obtain the leave graph K3, write K13 = K10∨K3. Label the vertices of

K10∨K3 with a (Z10,Z3)-labeling. By Theorem 1.3.1, K10 has a B-decomposition, R.

Moreover, the complete bipartite graph with one partite set {01, 11, 21, . . . , 91} and

the other partite set {02, 12, 22} has a B-decomposition, S, by Corollary 1.3.16. Let

S consist of the following trees:

(02; 01, 11, 21, 31 − 12), (12; 01, 11, 41, 21 − 22), (22; 01, 11, 31, 41 − 02),

(02; 51, 61, 71, 81 − 12), (12; 51, 61, 91, 71 − 22), (22; 51, 61, 81, 91 − 02)

Therefore, R∪S is a maximum B-packing of K13 with the leave graph K3. The edges

of the leave graph are {02, 12}, {02, 22}, and {12, 22}. We can obtain all the other

possible leave graphs, except S3, by making small changes to this construction. (See

Table 3.3.)
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New tree(s) Previous tree(s) Edges of the leave graph Leave
(02; 22, 11, 21, 31 − 12) (02; 01, 11, 21, 31 − 12) {01, 02}, {02, 12}, {12, 22} P4

(02; 22, 11, 21, 31 − 12)
(22; 12, 01, 11, 41 − 02)

(02; 01, 11, 21, 31 − 12)
(22; 01, 11, 31, 41 − 02)

{01, 02}, {02, 12}, {31, 22} P3 +K2

(02; 22, 11, 21, 31 − 12), (02; 01, 11, 21, 31 − 12),
(22; 12, 01, 11, 41 − 02), (22; 01, 11, 31, 41 − 02), {01, 02}, {11, 12}, {31, 22} 3K2

(12; 02, 01, 41, 21 − 22) (12; 01, 11, 41, 21 − 22)

Table 3.3: Substitutions in the B-packing R ∪ S to obtain different leave graphs for

n = 13

In order to obtain the leave graph S3, consider the same partition and labeling of

the vertices ofK13 and letR be the sameB-decomposirion ofK10. The complete bipar-

tite graph with partite sets {41, 51, 61, 71, 81} and {02, 12, 22}, has a B-decomposition,

S ′, by Lemma 1.3.16. The set of vertices {01, 11, 21, 31}, the set of vertices {02, 12, 22},

the edges between these two sets, and the edges within the second set, form a graph

K3 ∨ 4K1. The following trees form a B-decomposition, U , of K3 ∨ 4K1.

(i2; 01, 11, 21, (i+ 1)2 − 31), i ∈ Z3

Therefore, R ∪ S ′ ∪ U forms a maximum B-packing of K13 with the leave graph S3.

In fact, the leave graph is the 3-star (91; 02, 12, 22).

Case 2. T = C

In order to obtain the leave graph K3, write K13 = K10 ∨K3. Label the vertices

of K10 ∨ K3 with a (Z10,Z3)-labeling. Let R be the C-decomposition of K10. The

following trees form a C-decomposition, S, of the bipartite graph with one part of

vertices 01, 11, 21, . . . , 91 and the other part of vertices 02, 12, 22.

(02; 01, 11, 21 − 12 − 31), (12; 01, 11, 41 − 22 − 21), (22; 01, 11, 31 − 02 − 41),

(02; 51, 61, 71 − 12 − 81), (12; 51, 61, 91 − 22 − 71), (22; 51, 61, 81 − 02 − 91)

Therefore, R ∪ S forms a maximum C-packing of K13 with the leave graph K3.

In order to obtain the leave graphs P4, P3+K2, and 3K2, we substitute some trees

in the packing R ∪ S with new ones as shown in Table 3.4.

In order to achieve the leave graph S3, partition and label the vertices of K13 as

above. Let R be the C-decomposition of K10. The set of vertices {01, 11, 21, 31}, the

set of vertices {02, 12, 22}, the edges between these two sets, and the edges within the
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New tree(s) Previous tree(s) The edges of the leave graph Leave
(02; 22, 11, 21 − 12 − 31) (02; 01, 11, 21 − 12 − 31) {01, 02}, {02, 12}, {12, 22} P4

(02; 22, 11, 21 − 12 − 31)
(12; 01, 02, 41 − 22 − 21)

(02; 01, 11, 21 − 12 − 31)
(12; 01, 11, 41 − 22 − 21)

{01, 02}, {11, 12}, {12, 22} P3 +K2

(02; 22, 11, 21 − 12 − 31) (02; 01, 11, 21 − 12 − 31)
(12; 01, 02, 41 − 22 − 21) (12; 01, 11, 41 − 22 − 21) {01, 02}, {11, 12}, {51, 22} 3K2

(22; 12, 61, 81 − 02 − 91) (22; 51, 61, 81 − 02 − 91)

Table 3.4: Substitutions in the C-packing R ∪ S to obtain different leave graphs for
n = 13

second set, form a graph K3 ∨ 4K1. The following trees form a C-decomposition, S ′,

of K3 ∨ 4K1.

(02; 12, 01, 11 − 22 − 21), (12; 22, 01, 21 − 02 − 31), (22; 02, 01, 31 − 12 − 11)

The complete bipartite graph with partite sets {41, 51, 61, 71, 81} and {02, 12, 22}, have

a C-decomposition, U , by Lemma 1.3.16. Therefore, R ∪ S ′ ∪ U forms a maximum

C-packing of K13 with the leave graph S3. In fact, the leave graph is the 3-star

(91; 02, 12, 22).

Case 3. T = D

In order to achieve the leave graph K3, write K13 = K10 ∨K3. Label the vertices

of K10 ∨ K3 with a (Z10,Z3)-labeling. Let R be a D-decomposition of K10. The

graph K10,3 has a D-decomposition, S, by Lemma 1.3.16. Therefore, R ∪ S forms a

maximum D-packing of K13 with the leave graph K3. The edges of the leave graph

are {02, 12}, {02, 22}, and {12, 22}.

In order to obtain the leave graph S3, partition and label the vertices of K13 as

above. The set of vertices {01, 11, 21, 31}, the set of vertices {02, 12, 22}, the edges

between these two sets, and the edges within the second set, form a graph K3 ∨ 4K1.

The following graphs form a D-decomposition, S ′, of the graph K3 ∨ 4K1.

(02; 11, 01, 12 − 22, 21), (12; 01, 22, 31 − 21, 02), (22; 31, 02, 11 − 21, 12)

The complete bipartite graph with partite sets {41, 51, 61, 71, 81} and {02, 12, 22} has

a D-decomposition, U , by Lemma 1.3.16. Therefore, R ∪ S ′ ∪ U forms a maximum

D-packing of K13 with the 3-star (91; 02, 12, 22) as the leave graph.

Substitution of some trees D with some others in the packing R ∪ S ′ ∪ U leads to

the leave graphs P4, P3 +K2, and 3K2 (see Table 3.5).
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New tree(s) Previous tree(s) The edges of the leave graph Leave
(91; 02, 12, 22 − 01, 21) (12; 01, 22, 31 − 21, 02) {12, 22}, {31, 12}, {31, 02} P4

(12; 91, 22, 31 − 21, 02) (12; 01, 22, 31 − 21, 02) {01, 12}, {91, 02}, {91, 22} P3 +K2

(12; 91, 22, 31 − 21, 02)
(02; 91, 12, 01 − 21, 22)

(12; 01, 22, 31 − 21, 02)
(02; 11, 12, 01 − 21, 22)

{01, 12}, {02, 11}, {91, 22} 3K2

Table 3.5: Substitutions in the D-packing R ∪ S ′ ∪U to obtain different leave graphs

for n = 13

Case 4. T = E

In order to obtain the leave graph K3, write K13 = K10∨K3. Label the vertices of

K10 ∨K3 with a (Z10,Z3)-labeling. The graph K10 has an E-decomposition, R. Let

R contain the following trees. Note that the addition is taken modulo 9.

(i1 − 91, (i+ 1)1; (i+ 2)1 − (i+ 5)1, (i+ 6)1), i ∈ Z9

By Lemma 1.3.17, the graph K3,10 has an E-decomposition, S. Therefore, R∪S forms

a maximum E-packing of K13 with the leave graph K3. The edges of the leave graph

are {02, 12}, {02, 22}, and {12, 22}.

In order to obtain the leave graph S3, partition and label the vertices of K13 as

above. The set of vertices {01, 11, 21, 31}, the set of vertices {02, 12, 22}, the edges

between these two sets, and the edges within the second set, form a graph K3 ∨ 4K1.

The following trees form an E-decomposition, U , of the graph K3 ∨ 4K1.

(02 − 01, 11; 12 − 21, 31), (12 − 01, 11; 22 − 21, 31), (22 − 01, 11; 02 − 21, 31)

The vertices 41, 51, 61, 71, 81, the vertices 02, 12, 22, and the edges between them, form a

graph K3,5, which has an E-decomposition, V , by Lemma 1.3.16. Therefore, R∪U∪V

forms a maximum E-packing of K13 with the 3-star (91; 02, 12, 22) as the leave graph.

In order to obtain the remaining leave graphs, we substitute some trees for others

in the packing R ∪ U ∪ V . Table 3.6 illustrates these substitutions.
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New tree(s) Previous tree(s) Edges of the leave graph Leave
(02 − 01, 11; 91 − 12, 22)
(21 − 91, 12; 41 − 71, 81)

(02 − 01, 11; 12 − 21, 31)
(21 − 91, 31; 41 − 71, 81)

{21, 31}, {31, 12}, {02, 12} P4

(02 − 11, 91; 12 − 21, 31) (02 − 01, 11; 12 − 21, 31) {01, 02}, {91, 12}, {91, 22} P3 +K2

(02 − 11, 91; 12 − 21, 31)
(12 − 01, 91; 22 − 21, 31)

(02 − 01, 11; 12 − 21, 31)
(12 − 01, 11; 22 − 21, 31)

{01, 02}, {11, 12}, {91, 22} 3K2

Table 3.6: Substitutions in the E-packing R ∪ U ∪ V to obtain different leave graphs

for n = 13

Case 5. T = P6

In order to obtain the leave graph K3, write K13 = K9 ∨ K4. Label the vertices

of K9 ∨ K4 with a (Z9,Z4)-labeling. The graph K9 has a maximum P6-packing, R,

with a single edge as the leave graph. Let the leave graph be the edge {71, 81}. By

Parker’s theorem [32], the complete bipartite graph with partite sets {01, 11, 21, 31, 41}

and {02, 12, 22, 32} has a P6-decomposition, S. The set of vertices {51, 61, 71, 81}, the

set of vertices {02, 12, 22, 32}, the edges between them, and the edges within the second

set, form a graph K4 ∨ 4K1. The following paths form a maximum P6-packing, U , of

the graph K4 ∨ 4K1 ∪ {71, 81} with the leave graph K3.

(51, 02, 61, 12, 71, 81), (51, 12, 02, 22, 71, 32),

(71, 02, 32, 61, 22, 12), (02, 81, 12, 32, 51, 22)

Therefore, R∪S∪U forms a maximum P6-packing ofK13 with the leave graphK3. The

edges of the leave graph are {81, 22}, {81, 32}, and {22, 32}. Table 3.7 demonstrates

the substitutions needed in the packing R ∪ S ∪ U in order to obtain the other leave

graphs.

New path(s) Previous path(s) Edges of the leave graph Leave
(51, 02, 61, 12, 71, 22)
(51, 12, 02, 22, 32, 71)

(51, 02, 61, 12, 71, 81)
(51, 12, 02, 22, 71, 32)

{71, 81}, {81, 22}, {81, 32} S3

(51, 12, 02, 22, 32, 81) (51, 12, 02, 22, 71, 32) {81, 22}, {71, 22}, {71, 32} P4

(02, 61, 12, 71, 81, 32) (51, 02, 61, 12, 71, 81) {51, 02}, {81, 22}, {22, 32} P3 +K2

(12, 02, 22, 32, 81, 71)
(51, 02, 61, 12, 71, 22)

(51, 12, 02, 22, 71, 32)
(51, 02, 61, 12, 71, 81)

{51, 12}, {71, 32}, {81, 22} 3K2

Table 3.7: Substitutions in the P6-packing R ∪ S ∪U to obtain different leave graphs

for n = 13

�



Chapter 4

The Spectrum of Excess Graphs

for Trees with up to Five Edges

This chapter will discuss the spectrum of excess graphs for trees with up to five edges.

For trees with one edge, the decomposition always exists. For trees with two edges,

the excess graph has at most one edge [37], and the only possible excess graph will be

K2.

4.1 The Spectrum of Excess Graphs for Trees with

Three Edges

In this section, we will find the spectrum of excess graphs for trees with three edges.

Theorem 4.1.1 Let T be any tree with three edges and n ≥ 6. If the excess graph in

a minimum T -covering of Kn has i edges and E is any multigraph with i edges, then

there exists a minimum T -covering of Kn with the excess graph E.

Proof. Let n be any positive integer such that n ≥ 6. The only trees with three

edges are S3 and P4.

By Lemma 1.3.10, we only need to prove the theorem for n = 6, 7, and 8. The

tree S3 has been considered in Chapter 2. Consider P4. By Lemma 1.3.13, it suffices
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to find the spectrum of excess graphs for P4, in the cases where n = 6, 7, 8. According

to Theorem 1.3.1, K6 and K7 have P4-decompositions.

For n = 8, by Theorem 1.3.3, the excess graph in a minimum P4-covering of K8

has two edges. Hence, the possible excess graphs are P3, 2K2, and K2
2 . Label the

vertices of K8 with the elements of Z8. Let R be a maximum P4-packing of K8 with

the edge {0, 1} as the leave graph. Also let S be the set consisting of the single path

(0, 1, 2, 3) and U be the set consisting of the single path (7, 0, 1, 2). Therefore, R ∪ S

and R ∪U form P4-coverings for K8 with the excess graphs P3 (with the edges {1, 2}

and {2, 3}) and 2K2 (with the edges {0, 7} and {1, 2}), respectively.

In order to obtain the excess graph K2
2 , write K8 = K5∨K3. Label the vertices of

K5 ∨K3 with a (Z5,Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum

P4-packing of K5 has one edge. Let R be a maximum P4-packing of K5 with the edge

{31, 41} as the leave graph. Consider S as the set consisting of the following paths.

(01, 02, 12, 11), (01, 12, 02, 11), (21, 02, 12, 31), (01, 22, 12, 21),

(11, 22, 02, 31), (21, 22, 41, 02), (22, 31, 41, 12)

Therefore, R∪S forms a minimum P4-covering of K8 with the excess graph K2
2 . The

edges of the excess graph are the edges {02, 12} used twice. �

4.2 The Spectrum of Excess Graphs for Trees with

Four Edges

Theorem 4.2.1 Let T be any tree with four edges and n ≥ 8. If the excess graph in

a minimum T -covering of Kn has i edges and E is any multigraph with i edges, then

there exists a minimum T -covering of Kn with the excess graph E.

Proof. Let n be any positive integer such that n ≥ 8. The trees with four edges are

S4, A, and P5, where A is a 3-star with one edge joined to one of its end vertices. The

corresponding problem for S4 was solved in Chapter 2. Now consider A. By Corollary

1.3.15, it suffices to achieve all possible excess graphs for n = 8, 9, 10, 11, 12, 13, 14, 15.

For n = 8, 9, the complete graph Kn has an A-decomposition by Theorem 1.3.1.

Case 1(a). n = 10.



63

The excess graph has three edges in this case, by Theorem 1.3.3. The possible

excess graphs with three edges are S3, K3, P4, P3 + K2, 3K2, K
3
2 , F , and K2

2 + K2,

where F is a K2
2 with an edge attached to one of its vertices.

In order to achieve the excess graphs S3, P4, and P3+K2, label the vertices of K10

with the elements of Z10. By Theorem 1.3.2, the leave graph in a maximum A-packing

ofK10 has one edge. Let R be a maximum A-packing ofK10 with the edge {0, 1} as the

leave graph. Also let S be the set consisting of the single tree (7; 8, 9, 0− 1), U be the

set consisting of the single tree (1; 0, 2, 3−4), and V be the set consisting of the single

tree (0; 8, 9, 1− 2). Therefore, R ∪ S, R ∪ U , and R ∪ V , form minimum A-coverings

of K10 with the excess graphs S3 (with the edges {0, 7}, {7, 8}, and {7, 9}), P4 (with

the edges {1, 2}, {1, 3}, and {3, 4}), and P3 + K2 (with the edges {0, 8}, {0, 9}, and

{1, 2}), respectively.

In order to obtain the excess graph K3
2 , write K10 = K7∨K3 and label the vertices

of K7∨K3 with a (Z7,Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum

A-packing of K7 has one edge. Let R be a maximum A-packing of K7 with the edge

{51, 61} as the leave graph, and S be the set consisting the following trees.

(02; 12, 01, 11 − 22), (12; 02, 11, 01 − 22), (02; 12, 21, 51 − 22),

(12; 02, 51, 21 − 22), (02; 41, 61, 31 − 12), (22; 31, 41, 61 − 51),

(12; 41, 61, 22 − 02)

Hence, R ∪ S forms a minimum A-covering of K10 with the excess graph K3
2 . The

edges of the excess graph are the edges {02, 12} used three times.

The remaining excess graphs will be obtained by substituting some trees for other

trees in the covering R ∪ S. Table 4.1 illustrates these substitutions.

Case 1(b). n = 11.

The excess graph has one edge by Theorem 1.3.3. Hence, the only possible excess

graph is K2. The minimum covering with this excess graph can be achieved easily by

adding one tree A to a maximum A-packing of K11 with the leave graph S3.

Case 1(c). n = 12.

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. All leave graphs in A-packings of K12 are achievable as
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(12; 01, 51, 21 − 22) (12; 02, 51, 21 − 22) {01, 12}, {02, 12}(twice) F

(12; 41, 61, 22 − 51)
(02; 22, 21, 51 − 61)

(12; 41, 61, 22 − 02)
(02; 12, 21, 51 − 22)

{51, 61}, {02, 12}(twice) K2

2
+K2

(12; 01, 51, 21 − 22)
(02; 01, 21, 51 − 22)

(12; 02, 51, 21 − 22)
(02; 12, 21, 51 − 22)

{01, 02}, {01, 12}, {02, 12} K3

(12; 41, 61, 22 − 51)
(02; 22, 21, 51 − 61)
(02; 01, 21, 11 − 22)
(12; 11, 31, 01 − 22)

(12; 41, 61, 22 − 02)
(02; 12, 21, 51 − 22)
(02; 12, 01, 11 − 22)
(12; 02, 11, 01 − 22)

{51, 61}, {01, 02}, {31, 12} 3K2

Table 4.1: Substitutions in the A-covering R∪ S to obtain different excess graphs for
n = 10

we saw in Chapter 3. Hence, there is a maximum A-packing of K12 with the leave

graph P3. Label the vertices of K12 with the elements of Z12 and let R be a maximum

A-packing of K12 with the leave graph (0, 1, 2). Also let S be the set consisting of the

single tree (1; 0, 2, 3− 4) and U be the set consisting of the single tree (1; 0, 3, 2− 4).

Therefore, R ∪ S and R ∪ U are minimum A-coverings of K12 with the excess graphs

P3 (with the edges {1, 3} and {3, 4}) and 2K2 (with the edges {1, 3} and {2, 4}).

In order to obtain K2
2 as the excess graph, write K12 = K8∨K4. Label the vertices

ofK8∨K4 with a (Z8,Z4)-labeling. By Theorem 1.3.1, K8 has an A-decomposition, R.

Moreover, the set of vertices {31, 41, 51, 61, 71}, the set of vertices {02, 12, 22, 32}, and

the edges between these two sets, form a graphK5,4, which has an A-decomposition, S,

by Lemma 1.3.14. Also the set of vertices {01, 11, 21}, the set of vertices {02, 12, 22, 32},

the edges between these two sets, and the edges within the latter, form a graph

K4 ∨ 3K1. The following trees form a minimum A-covering, U , of K4 ∨ 3K1 with the

excess graph K2
2 .

(02; 12, 01, 11 − 22), (12; 02, 11, 21 − 22), (02; 22, 32, 12 − 01),

(32; 12, 01, 21 − 02), (22; 12, 01, 32 − 11)

Therefore, R ∪ S ∪ U forms a minimum A-covering of K12 with the excess graph K2
2 .

The edges of the excess graph are the edges {02, 12} used twice.

Case 1(d). n = 13.

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. The excess graphs P3 and 2K2 are achievable by the

same argument about those excess graphs in Case 3.
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In order to achieve the excess graph K2
2 , write K13 = K9 ∨ K4. Label the

vertices of K9 ∨ K4 with a (Z9,Z4)-labeling. By Theorem 1.3.1, K9 has an A-

decomposition R. Furthemore, the set of vertices {31, 41, 51, 61, 71, 81}, the set of

vertices {02, 12, 22, 32}, and the edges between these two sets, form a graph K6,4,

which has an A-decomposition, S, by Lemma 1.3.14. Also let U be the minimum

A-covering introduced in Case 3. Therefore, R ∪ S ∪ U forms a minimum A-covering

of K13 with the excess graph K2
2 . The edges of the excess graph are the edges {02, 12}

used twice.

Case 1(e). n = 14.

The excess graph has one edge by Theorem 1.3.3. Hence, the only possible excess

graph is K2. The minimum covering with this excess graph can be achieved easily by

adding one tree A to a maximum A-packing of K14 with the leave graph S3.

Case 1(f). n = 15.

The excess graph has three edges by Theorem 1.3.3. Hence, the possible excess

graphs are S3, K3, P4, P3+K2, 3K2, K
3
2 , F , and K2

2+K2. We will use Case 1 to achieve

all these excess graphs at once. Write K15 = K10∨K5. Label the vertices of K10∨K5

with a (Z10,Z5)-labeling. Let H be any of the possible excess graphs. In Case 1, we

proved that all of these excess graphs are achievable in A-coverings of K10. Let R be

a minimum A-covering of K10 with the excess graph H. Moreover, the set of vertices

{21, 31, 41, . . . , 91}, the set of vertices {02, 12, 22, 32, 42}, and the edges between these

two sets, form a graph K5,8, which has an A-decomposition, S, by Lemma 1.3.14.

Now, consider the graph K5 ∨ 2K1, formed by the set of vertices {01, 11}, the set of

vertices {02, 12, 22, 32, 42}, the edges between these two sets, and the edges within the

latter. The following trees form an A-decomposition, U , of K5 ∨ 2K1.

(i2; 01, 11, (i+ 1)2 − (i+ 3)2), i ∈ Z5

Therefore, R ∪ S ∪ U forms a minimum A-covering of K15 with the excess graph H.

Now consider P5. By Corollary 1.3.15, it suffices to prove that all excess graphs

are achievable in P5-coverings of Kn for n = 8, 9, 10, 11, 12, 13, 14, 15. For n = 8, 9,

Kn has a P5-decomposition by Theorem 1.3.1. For the remaining cases, we show how

we can achieve all possible excess graphs.

Case 2(a). n = 10
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The excess graph has three edges by Theorem 1.3.3. Therefore, the possible excess

graphs are S3, K3, P4, P3 +K2, 3K2, K
3
2 , F , and K2

2 +K2. The excess graphs P4 and

P3 + K2 can be obtained by adding one path to a maximum packing. In fact, by

Theorem 1.3.2, the leave graph in a maximum P5-packing of K10 has one edge. Label

the vertices of K10 with the elements of Z10 and let R be a maximum P5-packing of

K10 with the edge {0, 1} as the leave graph. Also let S be the single path (0, 1, 2, 3, 4)

and U be the single path (9, 0, 1, 2, 3). Therefore, R∪S and R∪U form minimum P5-

coverings of K10 with the excess graphs P4 (with the edges {1, 2}, {2, 3}, and {3, 4})

and P3 +K2 (with the edges {0, 9}, {1, 2}, and {2, 3}), respectively.

In order to achieve the excess graphK3
2 , writeK10 = K7∨K3 and label the vertices

of K7∨K3 with a (Z7,Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum

P5-packing of K7 has one edge. Let R be a maximum P5-packing of K7 with the edge

{51, 61} as the leave graph. Also let S be the set consisting of the following paths.

(01, 02, 12, 11, 22), (11, 02, 12, 01, 22), (21, 02, 12, 31, 22),

(31, 02, 12, 21, 22), (51, 22, 02, 61, 12), (41, 02, 51, 12, 22),

(51, 61, 22, 41, 12)

Therefore, R ∪ S is a minimum P5-covering of K10 with the excess graph K3
2 . The

edges of the excess graph are the edges {02, 12} used three times.

The rest of the excess graphs will be achieved by substituting some paths for some

others in the minimum covering R ∪ S. These substitutions are illustrated in Table

4.2.

Case 2(b). n = 11

The excess graph has one edge by Theorem 1.3.3. The excess graph K2 can be

achieved by adding one path to a maximum P5-packing of K11 with the leave graph

P4.

Case 2(c). n = 12

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. We first obtain the excess graphs P3 and 2K2. All

leave graphs in P5-packings of K12 are achievable as illustrated in Chapter 3. Label

the vertices of K12 with the elements of Z12 and let R be a maximum P5-packing of
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New path(s) Previous path(s) Edges of the excess graph Excess
(11, 02, 22, 01, 12) (11, 02, 12, 01, 22) {02, 12}(twice), {02, 22} F

(11, 02, 22, 01, 12)
(01, 02, 22, 11, 12)
(02, 31, 12, 21, 22)

(11, 02, 12, 01, 22)
(01, 02, 12, 11, 22)
(31, 02, 12, 21, 22)

{02, 22}(twice), {31, 12} K2

2
+K2

(22, 01, 12, 11, 02)
(22, 31, 12, 21, 02)

(22, 01, 12, 02, 11)
(22, 31, 12, 02, 21)

{11, 12}, {21, 12}, {02, 12} S3

(31, 02, 22, 21, 12)
(11, 02, 22, 01, 12)
(51, 22, 12, 61, 02)

(31, 02, 12, 21, 22)
(11, 02, 12, 01, 22)
(51, 22, 02, 61, 12)

{02, 12}, {02, 22}, {12, 22} K3

(31, 41, 02, 51, 12)
(51, 22, 12, 61, 02)
(31, 02, 22, 21, 12)
(12, 31, 22, 21, 02)
(22, 01, 12, 11, 02)

(41, 02, 51, 12, 22)
(51, 22, 02, 61, 12)
(31, 02, 12, 21, 22)
(21, 02, 12, 31, 22)
(22, 01, 12, 02, 11)

{31, 41}, {11, 12}, {21, 22} 3K2

Table 4.2: Substitutions in the P5-covering R∪S to obtain different excess graphs for
n = 10

K12 with the path (0, 1, 2) as the leave graph. Let S be the single path (0, 1, 2, 3, 4)

and U be the single path (11, 0, 1, 2, 3). Therefore, R ∪ S and R ∪ U are minimum

P5-coverings of K12 with the excess graphs P3 (with the edges {2, 3} and {3, 4}) and

2K2 (with the edges {0, 11} and {2, 3}), respectively.

In order to achieve the excess graph K2
2 , write K12 = K8 ∨K4. Label the vertices

of K8 ∨K4 with a (Z8,Z4)-labeling. By Theorem 1.3.1, K8 has a P5-decomposition,

R. Moreover, the set of vertices {21, 31, 41, 51, 61, 71}, the set of vertices {02, 12, 22, 32},

and the edges between these two sets, form a graphK6,4, which has a P5-decomposition,

S, by Lemma 1.3.14. Also the set of vertices {01, 11}, the set of vertices {02, 12, 22, 32},

the edges between these two sets, and the edges within the latter set, form a graph

K4∨2K1. The following paths form a minimum P5-covering, U , of K4∨2K1 with the

excess graph K2
2 .

(01, 02, 12, 11, 22), (02, 12, 01, 22, 32),

(01, 32, 02, 12, 22), (12, 32, 11, 02, 22)

Therefore, R∪S ∪U forms a minimum P5-covering of K12 with the excess graph K2
2 .

The edges of the excess graph are the edges {02, 12} used twice.

Case 2(d). n = 13

By Theorem 1.3.3, the excess graph has two edges. Hence, the possible excess
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graphs are K2
2 , P3, and 2K2. We first obtain the excess graphs P3 and 2K2. The

excess graphs P3 and 2K2 can be obtained from a maximum P5-packing of K13 in a

similar way as explained in Case 3.

In order to obtain the excess graph K2
2 , write K13 = K9∨K4 and label the vertices

of K9 ∨K4 with a (Z9,Z4)-labeling. By Theorem 1.3.1, K9 has a P5-decomposition,

R. Moreover, the set of vertices {21, 31, . . . , 81}, the set of vertices {02, 12, 22, 32}, and

the edges between these two sets, form a graph K7,4, which has a P5-decomposition,

S, by Lemma 1.3.14. Also consider U as described in Case 3. Therefore, R ∪ S ∪ U

forms a minimum P5-covering of K13 with the excess graph K2
2 . The edges of the

excess graph are the edges {02, 12} used twice.

Case 2(e). n = 14

The excess graph has one edge by Theorem 1.3.3. The excess graph K2 can be

achieved by adding one path to any maximum P5-packing of K14 with the leave graph

P4.

Case 2(f). n = 15

The excess graph has three edges by Theorem 1.3.3. Therefore, the possible excess

graphs are S3, K3, P4, P3 + K2, 3K2, K
3
2 , F , and K2

2 + K2. We will achieve all these

excess graphs using Case 1. Write K15 = K10 ∨K5 and label the vertices of K10 ∨K5

with a (Z10,Z5)-labeling. Let H be any of the possible mentioned excess graphs and

R be a minimum P5-covering of K10 with the excess graph H. The set of vertices

{21, 31, . . . , 91}, the set of vertices {02, 12, 22, 32, 42}, and the edges between these two

sets, form a graph K8,5, which has a P5-decomposition, S, by Lemma 1.3.14. Also the

set of vertices {01, 11}, the set of vertices {02, 12, 22, 32, 42}, the edges between these

two sets, and the edges within the latter set, form a graph K5 ∨ 2K1. The following

paths form a P5-decomposition, U , of K5 ∨ 2K1.

(01, i2, (i+ 1)2, (i+ 3)2, 11), i ∈ Z5

Therefore, R ∪ S ∪ U is a minimum P5-covering of K15 with the excess graph H. �
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4.3 The Spectrum of Excess Graphs for Trees with

Five Edges

Theorem 4.3.1 Let T be any tree with five edges and n ≥ 10. If the excess graph

in a minimum T -covering of Kn has i edges and E is any multigraph with i edges,

then there exists a minimum T -covering of Kn with the excess graph E, except for the

excess graph K4
2 which is not achievable when T = S5 and n = 12.

Proof. Let n ≥ 10 be an integer and T any tree with five edges. For the case T = S5,

all excess graphs were achieved as illustrated in Chapter 2, except for the graph K4
2

which cannot be obtained as the excess graph in any S5-covering of K12. For the rest

of the trees, it suffices to achieve all possible excess graphs for n = 10, 11, 12, 13, 14

by Lemma 1.3.17. Furthermore, for n = 10, 11 the complete graph Kn has a T -

decomposition by Theorem 1.3.1. Now, we will prove that for n = 12, 13, 14 all

possible excess graphs are achievable.

Case 1. T = B, n = 12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are the 23 graphs demonstrated in Figure 2.6. We repeat the figure here as

a reminder. The excess graphs E1, E2, and E3 can be achieved from a maximum B-

packing of K12 as we will explain. Label the vertices of K12 with the elements of Z12.

By Theorem 1.3.2, the leave graph in a maximum B-packing of K12 has one edge.

Let R be a maximum B-packing of K12 with the edge {0, 1} as the leave graph. Also

consider the sets S, U , and V as the sets consisting of the single trees (2; 3, 4, 5, 0 −

1), (0; 1, 2, 3, 4 − 5), and (0; 2, 3, 4, 1 − 5), respectively. Therefore, R ∪ S,R ∪ U , and

R ∪ V are minimum B-coverings of K12 with the excess graphs E1 (with the edges

{0, 2}, {2, 3}, {2, 4}, and {2, 5}), E2 (with the edges {0, 2}, {0, 3}, {0, 4}, and {4, 5}),

and E3 (with the edges {0, 2}, {0, 3}, {0, 4}, and {1, 5}), respectively.

In order to achieve the excess graph E12, write K12 = K9 ∨ K3 and label the

vertices of K9 ∨K3 with a (Z9,Z3)-labeling. By Theorem 1.3.2, K9 has a maximum

B-packing, R, with one edge, say {71, 81}, as the leave graph. Consider S to be the
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E2 E3 E4 E5E1

E6 E7 E8 E9 E10

E11 E12 E13 E14 E15

E16 E17 E18 E19 E20

E21 E22 E23

Figure 4.1: All possible 4-edge excess graphs

set consisting of the following trees.

(02; 12, 01, 11, 21 − 22), (12; 02, 01, 11, 31 − 22), (02; 12, 31, 41, 51 − 22),

(02; 12, 61, 71, 81 − 22), (12; 02, 21, 41, 61 − 22), (22; 01, 11, 41, 71 − 81),

(12; 51, 71, 81, 22 − 02)

Therefore, R ∪ S forms a minimum B-covering of K12 with the excess graph E12.

The edges of the excess graph are the edges {02, 12} used four times. Figure 4.2

demonstrates this covering.

All the remaining excess graphs except for E11 can be obtained by substituting

some trees for some others in the covering R∪S. Table 4.3 illustrates these substitu-

tions.



71

01 11 21 31 41 51 61 71 81

02 12 22

Figure 4.2: A B-covering of K12 with the excess graph E12

New tree(s) Previous tree(s) Edges of the excess graph Excess

(02; 22, 01, 11, 21 − 31)

(12; 51, 71, 81, 22 − 21)

(02; 21, 31, 41, 51 − 22)

(12; 31, 21, 41, 61 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

(02; 12, 31, 41, 51 − 22)

(12; 02, 21, 41, 61 − 22)

{21, 31}, {21, 02}, {31, 12}, {02, 12} E4

(02; 01, 11, 21, 22 − 31)

(12; 51, 71, 81, 22 − 21)

(02; 41, 61, 71, 81 − 22)

(12; 51, 01, 11, 31 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

(02; 12, 61, 71, 81 − 22)

(12; 02, 01, 11, 31 − 22)

{31, 22}, {41, 02}, {51, 12}, {02, 12} E5

(12; 51, 21, 41, 61 − 22)

(02; 31, 61, 71, 81 − 22)

(02; 01, 11, 21, 22 − 31)

(12; 51, 71, 81, 22 − 21)

(12; 02, 21, 41, 61 − 22)

(02; 12, 61, 71, 81 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

{31, 02}, {31, 22}, {51, 12}, {02, 12} E6

(02; 31, 61, 71, 81 − 22)

(12; 31, 21, 41, 61 − 22)

(02; 01, 11, 21, 22 − 41)

(12; 51, 71, 81, 22 − 21)

(02; 12, 61, 71, 81 − 22)

(12; 02, 21, 41, 61 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

{31, 02}, {31, 12}, {41, 22}, {02, 12} E7

(02; 31, 01, 11, 21 − 22)

(12; 31, 21, 41, 61 − 22)

(12; 41, 01, 11, 31 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 02, 21, 41, 61 − 22)

(12; 02, 01, 11, 31 − 22)

{31, 02}, {31, 12}, {41, 12}, {02, 12} E8

(02; 31, 01, 11, 21 − 22)

(02; 41, 61, 71, 81 − 22)

(12; 51, 21, 41, 61 − 22)

(12; 61, 01, 11, 31 − 22)

(02; 12, 01, 11, 21 − 22)

(02; 12, 61, 71, 81 − 22)

(12; 02, 21, 41, 61 − 22)

(12; 02, 01, 11, 31 − 22)

{31, 02}, {41, 02}, {51, 12}, {61, 12} E9
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New tree(s) Previous tree(s) Edges of the excess graph Excess

(12; 51, 21, 41, 61 − 22)

(12; 61, 01, 11, 31 − 22)

(02; 01, 11, 21, 22 − 31)

(12; 51, 71, 81, 22 − 21)

(02; 41, 61, 71, 81 − 22)

(12; 02, 21, 41, 61 − 22)

(12; 02, 01, 11, 31 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

(02; 12, 61, 71, 81 − 22)

{51, 12}, {61, 12}, {41, 02}, {31, 22} E10

(02; 31, 01, 11, 21 − 22) (02; 12, 01, 11, 21 − 22) {31, 02}, {02, 12}(3 times) E13

(02; 01, 11, 21, 22 − 31)

(12; 51, 71, 81, 22 − 21)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)
{31, 22}, {02, 12}(3 times) E14

(02; 31, 01, 11, 21 − 22)

(02; 31, 61, 71, 81 − 22)

(02; 12, 01, 11, 21 − 22)

(02; 12, 61, 71, 81 − 22)
{31, 02}(twice), {02, 12}(twice) E15

(02; 31, 01, 11, 21 − 22)

(02; 31, 61, 71, 81 − 22)

(12; 51, 01, 11, 31 − 22)

(12; 51, 21, 41, 61 − 22)

(02; 12, 01, 11, 21 − 22)

(02; 12, 61, 71, 81 − 22)

(12; 02, 01, 11, 31 − 22)

(12; 02, 21, 41, 61 − 22)

{31, 02}(twice), {51, 12}(twice) E16

(02; 31, 01, 11, 21 − 22)

(02; 31, 61, 71, 81 − 22)

(12; 41, 01, 11, 31 − 22)

(02; 12, 01, 11, 21 − 22)

(02; 12, 61, 71, 81 − 22)

(12; 02, 01, 11, 31 − 22)

{31, 02}(twice), {41, 12}, {02, 12} E17

(02; 01, 11, 21, 22 − 31)

(12; 51, 71, 81, 22 − 21)

(02; 21, 31, 41, 51 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

(02; 12, 31, 41, 51 − 22)

{21, 02}, {31, 22}, {02, 12}(twice) E18

(02; 31, 61, 71, 81 − 22)

(12; 51, 01, 11, 31 − 22)

(12; 51, 21, 41, 61 − 22)

(02; 01, 11, 21, 22 − 61)

(12; 51, 71, 81, 22 − 21)

(02; 12, 61, 71, 81 − 22)

(12; 02, 01, 11, 31 − 22)

(12; 02, 21, 41, 61 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 51, 71, 81, 22 − 02)

{31, 02}, {51, 12}(twice), {61, 22} E19

(02; 31, 01, 11, 21 − 22)

(02; 31, 61, 71, 81 − 22)

(12; 51, 01, 11, 31 − 22)

(12; 71, 21, 41, 61 − 22)

(02; 12, 01, 11, 21 − 22)

(02; 12, 61, 71, 81 − 22)

(12; 02, 01, 11, 31 − 22)

(12; 02, 21, 41, 61 − 22)

{31, 02}(twice), {51, 12}, {71, 12} E20

(02; 31, 01, 11, 21 − 22)

(12; 21, 01, 11, 31 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 02, 01, 11, 31 − 22)
{31, 02}, {21, 12}, {02, 12}(twice) E21

(02; 31, 01, 11, 21 − 22)

(02; 21, 31, 41, 51 − 22)

(02; 12, 01, 11, 21 − 22)

(02; 12, 31, 41, 51 − 22)
{31, 02}, {21, 02}, {02, 12}(twice) E22

(02; 31, 01, 11, 21 − 22)

(12; 31, 21, 41, 61 − 22)

(02; 12, 01, 11, 21 − 22)

(12; 02, 21, 41, 61 − 22)
{31, 02}, {31, 12}, {02, 12}(twice) E23

Table 4.3: Substitutions in the B-covering R ∪ S to obtain different excesse graphs

for n = 12

In order to achieve the excess graph E11, partition and label the vertices of K12
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as above and let R be the same B-packing of K9 with the edge {71, 81} as the leave

graph. The set of vertices {01, 11, 21, 31, 41}, the set of vertices {02, 12, 22}, and the

edges between these two sets, form a complete bipartite graph K5,3, which has a B-

decomposition, U , by Lemma 1.3.16. Also let V be the set consisting of the following

trees.

(02; 12, 51, 61, 71 − 22), (12; 22, 61, 71, 51 − 02),

(22; 02, 51, 61, 71 − 81), (81; 41, 02, 22, 12 − 61)

Therefore, R∪U ∪V forms a minimum B-covering of K12 with the excess graph E11.

The edges of the excess graph are {41, 81}, {51, 02}, {61, 12}, and {71, 22}.

Case 2. T = B, n = 13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. In order to achieve the excess graphs P3 and 2K2, label

the vertices ofK13 with the elements of Z13. The leave graph in a maximum B-packing

ofK13 has three edges by Theorem 1.3.2 and all possible leave graphs are achievable as

we saw in Chapter 3. Let R be a maximum B-packing of K13 with the star (0; 1, 2, 3)

as the leave graph. Also let S be the set consisting of the single tree (0; 1, 2, 3, 4− 5)

and U be the set consisting of the single tree (0; 5, 1, 2, 3− 4). Therefore, R ∪ S and

R ∪ U are minimum B-coverings of K13 with the excess graphs P3 (with the edges

{0, 4} and {4, 5}) and 2K2 (with the edges {0, 5} and {3, 4}), respectively.

In order to obtain the excess graph K2
2 , write K13 = K10 ∨K3, label the vertices

of K10∨K3 with a (Z10,Z3)-labeling. By Theorem 1.3.1, K10 has a B-decomposition,

R. The set of vertices {51, 61, 71, 81, 91}, the set of vertices {02, 12, 22}, and the

edges between these two sets, form a complete bipartite graph K5,3, which has a

B-decomposition, S, by Lemma 1.3.16. Let U be the set consisting of the following

trees.

(02; 22, 01, 11, 21 − 31), (31; 21, 12, 22, 02 − 41),

(12; 01, 11, 21, 41 − 22), (22; 01, 11, 21, 12 − 02)

Therefore, R ∪ S ∪ U forms a minimum B-covering of K13 with the excess graph K2
2 .

The edges of the excess graph are the edges {21, 31} used twice.
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Case 3. T = B, n = 14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those in Figure 4.1. In order to obtain the excess graphs E1, E2, and E3,

label the vertices of K14 with the elements of Z14. By Theorem 1.3.2, the leave graph

in a maximum B-packing of K14 has one edge. Let R be a maximum B-packing of

K14 with the edge {0, 1} as the leave graph. Also let S be the set consisting of the

single tree (2; 3, 4, 5, 1− 0), U be the set consisting of the single tree (1; 0, 2, 3, 4− 5),

and V be the set consisting of the single tree (1; 2, 3, 4, 0−5). Therefore, R∪S, R∪U ,

and R∪V are minimum B-coverings of K14 with the excess graphs E1 (with the edges

{1, 2}, {2, 3}, {2, 4}, and {2, 5}), E2 (with the edges {1, 2}, {1, 3}, {1, 4}, and {4, 5}),

and E3 (with the edges {1, 2}, {1, 3}, {1, 4}, and {0, 5}), respectively.

In order to achieve the excess graph E12, write K14 = K9 ∨K5, label the vertices

of K9∨K5 with a (Z9,Z5)-labeling. By Theorem 1.3.2, the leave graph in a maximum

B-packing of K9 has one edge. Let R be a maximum B-packing of K9 with the edge

{71, 81} as the leave graph. Also let S be the set consisting of the following trees.

(02; 12, 01, 11, 21 − 22), (12; 02, 01, 11, 21 − 32), (02; 12, 31, 41, 51 − 22),

(12; 02, 31, 41, 51 − 32), (02; 12, 61, 71, 81 − 32), (12; 61, 22, 32, 42 − 02),

(22; 01, 11, 31, 41 − 32), (32; 01, 11, 31, 61 − 42), (42; 01, 11, 21, 32 − 22),

(42; 31, 41, 51, 81 − 71), (71; 12, 22, 42, 32 − 02), (22; 02, 42, 61, 81 − 12)

Therefore, R ∪ S is a minimum B-covering of K14 with the excess graph E12. The

edges of the excess graph are the edges {02, 12} used four times.

All the remaining excess graphs will be achieved by substituting some trees with

others in the covering R ∪ S. Table 4.4 illustrates these substitutions.

Case 4. T = C, n = 12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are the ones shown in Figure 4.1. In order to achieve the excess graphs

E2, E3, E6, and E9, label the vertices of K12 with the elements of Z12. By Theo-

rem 1.3.2, the leave graph in a maximum C-packing of K12 has one edge. Let R be a

maximum C-packing of K12 with the edge {0, 1} as the leave graph. Also let S be the

set consisting of the single tree (3; 4, 5, 2− 1− 0), U be the set consisting of the single

tree (5; 3, 4, 1−0−2), V be the set consisting of the single tree (1; 0, 2, 3−4−5), and
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(02; 31, 01, 11, 21 − 22)
(02; 22, 61, 71, 81 − 32)
(12; 31, 01, 11, 21 − 32)
(12; 22, 31, 41, 51 − 32)

(02; 12, 01, 11, 21 − 22)
(02; 12, 61, 71, 81 − 32)
(12; 02, 01, 11, 21 − 32)
(12; 02, 31, 41, 51 − 32)

{31, 02}, {31, 12}, {02, 22}, {12, 22} E4

(02; 31, 01, 11, 21 − 22)
(12; 22, 31, 41, 51 − 32)
(02; 42, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 81)

(02; 12, 01, 11, 21 − 22)
(12; 02, 31, 41, 51 − 32)
(02; 12, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 02)

{31, 02}, {12, 02}, {81, 42}, {12, 22} E5

(02; 31, 01, 11, 21 − 22)
(12; 22, 31, 41, 51 − 32)
(02; 42, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 31)

(02; 12, 01, 11, 21 − 22)
(12; 02, 31, 41, 51 − 32)
(02; 12, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 02)

{31, 02}, {31, 42}, {02, 12}, {12, 22} E6

(02; 31, 01, 11, 21 − 22)
(12; 31, 01, 11, 21 − 32)
(02; 42, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 81)

(02; 12, 01, 11, 21 − 22)
(12; 02, 01, 11, 21 − 32)
(02; 12, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 02)

{31, 02}, {31, 12}, {81, 42}, {02, 12} E7

(02; 31, 01, 11, 21 − 22)
(12; 31, 01, 11, 21 − 32)
(02; 42, 31, 41, 51 − 22)

(02; 12, 01, 11, 21 − 22)
(12; 02, 01, 11, 21 − 32)
(02; 12, 31, 41, 51 − 22)

{31, 02}, {31, 12}, {02, 12}, {02, 42} E8

(02; 31, 01, 11, 21 − 22)
(02; 21, 31, 41, 51 − 22)
(12; 61, 31, 41, 51 − 32)
(12; 71, 01, 11, 21 − 32)

(02; 12, 01, 11, 21 − 22)
(02; 12, 31, 41, 51 − 22)
(12; 02, 31, 41, 51 − 32)
(12; 02, 01, 11, 21 − 32)

{31, 02}, {21, 02}, {61, 12}, {71, 12} E9

(02; 31, 01, 11, 21 − 22)
(02; 21, 31, 41, 51 − 22)
(02; 22, 61, 71, 81 − 32)
(22; 61, 32, 42, 81 − 12)
(12; 41, 01, 11, 21 − 32)

(02; 12, 01, 11, 21 − 22)
(02; 12, 31, 41, 51 − 22)
(02; 12, 61, 71, 81 − 32)
(22; 61, 02, 42, 81 − 12)
(12; 02, 01, 11, 21 − 32)

{31, 02}, {21, 02}, {41, 12}, {22, 32} E10

(02; 31, 01, 11, 21 − 22)
(12; 41, 01, 11, 21 − 32)
(02; 42, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 81)
(02; 22, 61, 71, 81 − 32)
(22; 61, 32, 42, 81 − 12)

(02; 12, 01, 11, 21 − 22)
(12; 02, 01, 11, 21 − 32)
(02; 12, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 02)
(02; 12, 61, 71, 81 − 32)
(22; 61, 02, 42, 81 − 12)

{31, 02}, {41, 12}, {81, 42}, {22, 32} E11

(02; 31, 01, 11, 21 − 22) (02; 12, 01, 11, 21 − 22) {31, 02}, {02, 12}(3 times) E13

(02; 42, 01, 11, 21 − 22)
(12; 61, 22, 32, 42 − 81)

(02; 12, 01, 11, 21 − 22)
(12; 61, 22, 32, 42 − 02)

{81, 42}, {02, 12}(3 times) E14

(02; 31, 01, 11, 21 − 22)
(02; 31, 61, 71, 81 − 32)

(02; 12, 01, 11, 21 − 22)
(02; 12, 61, 71, 81 − 32)

{31, 02}(twice), {02, 12}(twice) E15

(02; 31, 01, 11, 21 − 22)
(02; 31, 61, 71, 81 − 32)
(12; 61, 01, 11, 21 − 32)
(12; 61, 31, 41, 51 − 32)

(02; 12, 01, 11, 21 − 22)
(02; 12, 61, 71, 81 − 32)
(12; 02, 01, 11, 21 − 32)
(12; 02, 31, 41, 51 − 32)

{31, 02}(twice), {61, 12}(twice) E16
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(02; 31, 01, 11, 21 − 22)
(02; 42, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 31)

(02; 12, 01, 11, 21 − 22)
(02; 12, 31, 41, 51 − 22)
(12; 61, 22, 32, 42 − 02)

{31, 02}, {31, 42}, {02, 12}(twice) E17

(02; 31, 01, 11, 21 − 22)
(02; 42, 61, 71, 81 − 32)
(12; 61, 22, 32, 42 − 81)

(02; 12, 01, 11, 21 − 22)
(02; 12, 61, 71, 81 − 32)
(12; 61, 22, 32, 42 − 02)

{31, 02}, {81, 42}, {02, 12}(twice) E18

(02; 32, 01, 11, 21 − 22)
(71; 12, 22, 42, 32 − 31)
(02; 42, 61, 71, 81 − 32)
(12; 61, 22, 32, 42 − 41)

(02; 12, 01, 11, 21 − 22)
(71; 12, 22, 42, 32 − 02)
(02; 12, 61, 71, 81 − 32)
(12; 61, 22, 32, 42 − 02)

{31, 32}, {41, 42}, {02, 12}(twice) E19

(02; 32, 01, 11, 21 − 22)
(71; 12, 22, 42, 32 − 31)
(02; 42, 61, 71, 81 − 32)
(12; 61, 22, 32, 42 − 31)

(02; 12, 01, 11, 21 − 22)
(71; 12, 22, 42, 32 − 02)
(02; 12, 61, 71, 81 − 32)
(12; 61, 22, 32, 42 − 02)

{31, 32}, {31, 42}, {02, 12}(twice) E20

(02; 31, 01, 11, 21 − 22)
(12; 41, 01, 11, 21 − 32)

(02; 12, 01, 11, 21 − 22)
(12; 02, 01, 11, 21 − 32)

{31, 02}, {41, 12}, {02, 12}(twice) E21

(02; 31, 01, 11, 21 − 22)
(02; 41, 61, 71, 81 − 32)

(02; 12, 01, 11, 21 − 22)
(02; 12, 61, 71, 81 − 32)

{31, 02}, {41, 02}, {02, 12}(twice) E22

(02; 31, 01, 11, 21 − 22)
(12; 31, 01, 11, 21 − 32)

(02; 12, 01, 11, 21 − 22)
(12; 02, 01, 11, 21 − 32)

{31, 02}, {41, 02}, {02, 12}(twice) E23

Table 4.4: Substitutions in the B-covering R∪S to obtain different excess graphs for
n = 14

W be the set consisting of the single tree (1; 2, 3, 0−4−5). Then R∪S,R∪U,R∪V ,

and R ∪ W are minimum C-coverings of K12 with the excess graphs E2 (with the

edges {1, 2}, {2, 3}, {3, 4}, and {3, 5}), E3 (with the edges {0, 2}, {1, 5}, {3, 5}, and

{4, 5}), E6 (with the edges {1, 2}, {1, 3}, {3, 4}, and {4, 5}), and E9 (with the edges

{0, 4}, {0, 5}, {1, 2}, and {1, 3}), respectively.

In order to obtain the excess graph E12, write K12 = K9∨K3 and label the vertices

of K9∨K3 with a (Z9,Z3)-labeling. By Theorem 1.3.2, the leave graph in a maximum

C-packing of K9 has one edge. Let R be a maximum C-packing of K9 with the edge

{71, 81} as the leave graph. Also let S be the set consisting of the following trees.

(02; 01, 11, 12 − 21 − 22), (02; 21, 31, 12 − 41 − 22), (02; 12, 41, 51 − 22 − 61),

(02; 12, 61, 71 − 81 − 22), (12; 02, 01, 11 − 22 − 31), (12; 31, 51, 22 − 02 − 81),

(12; 61, 81, 71 − 22 − 01)

Therefore, R ∪ S is a minimum C-covering of K12 with the excess graph E12. The

edges of the excess graph are {02, 12}.

All the remaining excess graphs will be achieved by substituting some trees for
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others in the covering R ∪ S. Table 4.5 illustrates these substitutions.

Case 5. T = C, n = 13

By Theorem 1.3.3, the excess graph has two edges. Hence the possible excess

graphs are K2
2 , P3, and 2K2. The excess graphs P3 and 2K2 will be obtained from

a maximum C-packing of K13. Label the vertices of K13 with the elements of Z13.

By Theorem 1.3.2, the leave graph in a maximum C-packing of K13 has three edges.

Moreover, all simple graphs with three edges can be achieved as the leave graph in

maximum C-packings of K13 as illustrated in Chapter 3. Let R be a maximum C-

packing of K13 with the edges {0, 1}, {0, 2}, and {3, 4} as the edges of the leave graph.

Also let S be the set consisting of the single tree (4; 5, 3, 2− 0− 1) and U be the set

consisting of the single tree (0; 1, 2, 3−4−5). Therefore, R∪S and R∪U are minimum

C-coverings of K13 with the excess graphs P3 (with edges {2, 4} and {2, 5}) and 2K2

(with the edges {0, 3} and {4, 5}), respectively.

In order to achieve the excess graphK2
2 , writeK13 = K10∨K3 and label the vertices

of K10 ∨K3 with a (Z10,Z3)-labeling. By Theorem 1.3.1, K10 has a C-decomposition,

R. Furthermore, the set of vertices {51, 61, 71, 81, 91}, the set of vertices {02, 12, 22},

and the edges between these two sets, form a graphK5,3, which has a C-decomposition,

S, by Lemma 1.3.16. Now, let U be the set consisting of the following trees.

(02; 12, 01, 11 − 22 − 21), (22; 31, 41, 12 − 02 − 21),

(12; 21, 31, 02 − 22 − 01), (12; 01, 11, 41 − 02 − 31)

Therefore, R ∪ S ∪ U forms a minimum C-covering of K13 with the excess graph K2
2 .

The edges of the excess graph are the edges {02, 12} used twice.

Case 6. T = C, n = 14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those illustrated in Figure 4.1. Since a maximum C-packing of K14 has

one edge by Theorem 1.3.2, the excess graphs E2, E3, E6, and E9 can be achieved as

explained in Case 4.

In order to obtain the excess graph E12, writeK14 = K11∨K3 and label the vertices

of K11 ∨K3 with a (Z11,Z3)-labeling. By Theorem 1.3.1, K11 has a C-decomposition,

R. Moreover, the set of vertices {61, 71, 81, 91, 101}, the set of vertices {02, 12, 22}, and

the edges between these two sets, form a graph K5,3, which has a C-decomposition,
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(02; 01, 61, 71 − 81 − 22)
(02; 11, 41, 51 − 22 − 61)
(22; 02, 31, 11 − 12 − 01)

(02; 12, 61, 71 − 81 − 22)
(02; 12, 41, 51 − 22 − 61)
(12; 02, 01, 11 − 22 − 31)

{01, 02}, {11, 02}, {02, 12}, {02, 22} E1

(22; 02, 31, 11 − 12 − 01)
(81; 12, 22, 71 − 02 − 61)
(22; 81, 61, 51 − 02 − 41)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)
(02; 12, 41, 51 − 22 − 61)

{81, 12}, {81, 22}, {02, 12}, {02, 22} E4

(02; 21, 61, 71 − 81 − 22)
(12; 41, 01, 11 − 22 − 31)
(22; 81, 61, 51 − 02 − 41)

(02; 12, 61, 71 − 81 − 22)
(12; 02, 01, 11 − 22 − 31)
(02; 12, 41, 51 − 22 − 61)

{21, 02}, {41, 12}, {81, 22}, {02, 12} E5

(02; 21, 61, 71 − 81 − 22)
(12; 21, 01, 11 − 22 − 31)
(22; 81, 61, 51 − 02 − 41)

(02; 12, 61, 71 − 81 − 22)
(12; 02, 01, 11 − 22 − 31)
(02; 12, 41, 51 − 22 − 61)

{21, 02}, {21, 12}, {81, 22}, {02, 12} E7

(02; 21, 61, 71 − 81 − 22)
(12; 21, 01, 11 − 22 − 31)
(22; 12, 61, 51 − 02 − 41)

(02; 12, 61, 71 − 81 − 22)
(12; 02, 01, 11 − 22 − 31)
(02; 12, 41, 51 − 22 − 61)

{21, 02}, {21, 12}, {02, 12}, {12, 22} E8

(12; 21, 01, 11 − 22 − 31)
(81; 31, 22, 71 − 02 − 61)
(22; 01, 61, 51 − 02 − 41)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)
(02; 12, 41, 51 − 22 − 61)

{31, 81}, {01, 22}, {21, 12}, {02, 12} E10

(21; 12, 22, 11 − 02 − 01)
(41; 12, 22, 31 − 02 − 21)
(22; 81, 61, 51 − 02 − 41)

(02; 01, 11, 12 − 21 − 22)
(02; 21, 31, 12 − 41 − 22)
(02; 12, 41, 51 − 22 − 61)

{11, 21}, {31, 41}, {81, 22}, {02, 12} E11

(02; 51, 61, 71 − 81 − 22) (02; 12, 61, 71 − 81 − 22) {51, 02}, {02, 12}(3 times) E13

(22; 31, 41, 11 − 12 − 01) (12; 02, 01, 11 − 22 − 31) {41, 22}, {02, 12}(3 times) E14

(12; 81, 01, 11 − 22 − 31)
(81; 12, 22, 71 − 02 − 61)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)

{81, 12}(twice), {02, 12}(twice) E15

(22; 81, 61, 51 − 02 − 41)
(22; 81, 31, 11 − 12 − 01)

(02; 12, 41, 51 − 22 − 61)
(12; 02, 01, 11 − 22 − 31)

{81, 22}(twice), {02, 12}(twice) E16

(22; 12, 61, 51 − 02 − 41)
(22; 31, 81, 11 − 12 − 01)

(02; 12, 41, 51 − 22 − 61)
(12; 02, 01, 11 − 22 − 31)

{81, 22}, {02, 12}(twice), {12, 22} E17

(22; 31, 41, 11 − 12 − 01)
(02; 01, 61, 71 − 81 − 22)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)

{01, 02}, {41, 22}, {02, 12}(twice) E18

(22; 31, 41, 11 − 12 − 01)
(81; 51, 22, 71 − 02 − 61)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)

{51, 81}, {41, 22}, {02, 12}(twice) E19

(22; 31, 41, 11 − 12 − 01)
(81; 41, 22, 71 − 02 − 61)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)

{41, 81}, {41, 22}, {02, 12}(twice) E20

(22; 02, 31, 11 − 12 − 01)
(81; 12, 22, 71 − 02 − 61)

(12; 02, 01, 11 − 22 − 31)
(02; 12, 61, 71 − 81 − 22)

{81, 12}, {02, 12}(twice), {02, 22} E21

(02; 01, 61, 71 − 81 − 22)
(22; 02, 31, 11 − 12 − 01)

(02; 12, 61, 71 − 81 − 22)
(12; 02, 01, 11 − 22 − 31)

{01, 02}, {02, 12}(twice), {02, 22} E22

(02; 21, 41, 51 − 22 − 61)
(12; 21, 01, 11 − 22 − 31)

(02; 12, 41, 51 − 22 − 61)
(12; 02, 01, 11 − 22 − 31)

{21, 02}, {21, 12}, {02, 12}(twice) E23

Table 4.5: Substitutions in the C-covering R∪S to obtain different excess graphs for
n = 12
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S, by Lemma 1.3.16. Also let U be the set consisting of the following trees.

(02; 01, 11, 12 − 21 − 22), (02; 21, 31, 12 − 41 − 22), (12; 02, 01, 11 − 22 − 51)

(12; 31, 51, 02 − 22 − 01), (02; 41, 51, 12 − 22 − 31)

Therefore, R∪ S ∪U forms a minimum C-covering of K14 with the excess graph E12.

The edges of the excess graph are the edges {02, 12} used four times.

In order to achieve the remaining excess graphs, we substitute some trees for others

in the covering R ∪ S ∪ U . Table 4.6 illustrates these substitutions.

Case 7. T = D,n = 12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those illustrated in Figure 4.1. In order to achieve the excess graphs

E2, E5, and E6, label the vertices of K12 with the elements of Z12. By Theorem

1.3.2, the leave graph in a maximum D-packing of K12 has one edge. Let R be a

maximum D-packing of K12 with the single edge {0, 1} as the leave graph. Also let

S be the set consisting of the single tree (3; 2, 1, 4 − 0, 5), U be the set consisting

of the single tree (0; 3, 1, 4 − 2, 5), and V be the set consisting of the single tree

(1; 0, 2, 3− 4, 5). Therefore, R∪S,R∪U, and R∪V are minimum D-coverings of K12

with the excess graphs E2 (with the edges {1, 3}, {2, 3}, {3, 4}, and {4, 5}), E5 (with

the edges {0, 3}, {0, 4}, {1, 2}, and {4, 5}), and E6 (with the edges {1, 2}, {1, 3}, {2, 4},

and {3, 5}).

In order to achieve the excess graph E12, write K12 = K9 ∨ K3 and label the

vertices of K9 ∨K3 with a (Z9,Z3)-labeling. By Theorem 1.3.2, the leave graph in a

maximum D-packing of K9 has one edge. Let R be a maximum D-packing of K9 with

the edge {71, 81} as the leave graph. Also let S be the set consisting of the following

trees.

(02; 71, 11, 12 − 22, 21), (02; 21, 31, 12 − 22, 01), (12; 31, 51, 02 − 22, 41),

(12; 11, 41, 02 − 22, 51), (12; 71, 61, 02 − 22, 81), (22; 12, 71, 02 − 81, 61),

(22; 21, 01, 81 − 02, 12)

Therefore, R∪S forms a minimum D-covering of K12 with the excess graph E12. The

edges of the excess graph are the edges {02, 12} used four times.
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(41; 12, 22, 31 − 02 − 21)
(12; 31, 01, 11 − 22 − 51)
(22; 02, 01, 31 − 12 − 51)
(02; 41, 51, 31 − 22 − 12)

(02; 21, 31, 12 − 41 − 22)
(12; 02, 01, 11 − 22 − 51)
(12; 31, 51, 02 − 22 − 01)
(02; 41, 51, 12 − 22 − 31)

{31, 41}, {31, 02}, {31, 12}, {31, 22} E1

(41; 12, 22, 31 − 02 − 21)
(12; 41, 01, 11 − 22 − 51)
(02; 41, 51, 31 − 22 − 12)

(02; 21, 31, 12 − 41 − 22)
(12; 02, 01, 11 − 22 − 51)
(02; 41, 51, 12 − 22 − 31)

{31, 41}, {31, 02}, {41, 12}, {02, 12} E4

(12; 41, 01, 11 − 22 − 51)
(02; 41, 51, 31 − 22 − 12)
(22; 02, 01, 51 − 12 − 31)

(12; 02, 01, 11 − 22 − 51)
(02; 41, 51, 12 − 22 − 31)
(12; 31, 51, 02 − 22 − 01)

{31, 02}, {41, 12}, {51, 22}, {02, 12} E5

(12; 31, 01, 11 − 22 − 51)
(02; 41, 51, 31 − 22 − 12)
(22; 02, 01, 51 − 12 − 31)

(12; 02, 01, 11 − 22 − 51)
(02; 41, 51, 12 − 22 − 31)
(12; 31, 51, 02 − 22 − 01)

{31, 02}, {31, 12}, {51, 22}, {02, 12} E7

(12; 31, 01, 11 − 22 − 51)
(02; 41, 51, 31 − 22 − 12)
(02; 21, 31, 22 − 41 − 12)

(12; 02, 01, 11 − 22 − 51)
(02; 41, 51, 12 − 22 − 31)
(02; 21, 31, 12 − 41 − 22)

{31, 02}, {31, 12}, {02, 12}, {02, 22} E8

(12; 31, 01, 11 − 22 − 51)
(22; 02, 01, 51 − 12 − 31)
(21; 12, 22, 11 − 02 − 01)

(12; 02, 01, 11 − 22 − 51)
(12; 31, 51, 02 − 22 − 01)
(02; 01, 11, 12 − 21 − 22)

{11, 21}, {31, 12}, {51, 22}, {02, 12} E10

(22; 02, 01, 51 − 12 − 31)
(21; 12, 22, 11 − 02 − 01)
(41; 12, 22, 31 − 02 − 21)

(12; 31, 51, 02 − 22 − 01)
(02; 01, 11, 12 − 21 − 22)
(02; 21, 31, 12 − 41 − 22)

{11, 21}, {31, 41}, {51, 22}, {02, 12} E11

(12; 21, 01, 11 − 22 − 51) (12; 02, 01, 11 − 22 − 51) {21, 12}, {02, 12}(3 times) E13

(22; 41, 51, 11 − 12 − 01) (12; 02, 01, 11 − 22 − 51) {41, 22}, {02, 12}(3 times) E14

(02; 01, 11, 22 − 21 − 12)
(02; 21, 31, 22 − 41 − 12)

(02; 01, 11, 12 − 21 − 22)
(02; 21, 31, 12 − 41 − 22)

{02, 12}(twice), {02, 22}(twice) E15

(22; 31, 51, 11 − 12 − 01)
(22; 02, 01, 31 − 12 − 51)

(12; 02, 01, 11 − 22 − 51)
(12; 31, 51, 02 − 22 − 01)

{31, 22}(twice), {02, 12}(twice) E16

(12; 31, 01, 11 − 22 − 51)
(22; 02, 01, 31 − 12 − 51)

(12; 02, 01, 11 − 22 − 51)
(12; 31, 51, 02 − 22 − 01)

{31, 12}, {31, 22}, {02, 12}(twice) E17

(12; 21, 01, 11 − 22 − 51)
(22; 02, 01, 31 − 12 − 51)

(12; 02, 01, 11 − 22 − 51)
(12; 31, 51, 02 − 22 − 01)

{21, 12}, {31, 22}, {02, 12}(twice) E18

(21; 12, 22, 11 − 02 − 01)
(22; 02, 01, 31 − 12 − 51)

(02; 01, 11, 12 − 21 − 22)
(12; 31, 51, 02 − 22 − 01)

{11, 21}, {31, 22}, {02, 12}(twice) E19

(41; 12, 22, 31 − 02 − 21)
(22; 02, 01, 31 − 12 − 51)

(02; 21, 31, 12 − 41 − 22)
(12; 31, 51, 02 − 22 − 01)

{31, 41}, {31, 22}, {02, 12}(twice) E20

(02; 21, 31, 22 − 41 − 12)
(12; 21, 01, 11 − 22 − 51)

(02; 21, 31, 12 − 41 − 22)
(12; 02, 01, 11 − 22 − 51)

{21, 12}, {02, 12}(twice), {02, 22} E21

(12; 21, 01, 11 − 22 − 51)
(12; 31, 51, 01 − 22 − 02)

(12; 02, 01, 11 − 22 − 51)
(12; 31, 51, 02 − 22 − 01)

{01, 12}, {21, 12}, {02, 12}(twice) E22

(02; 41, 51, 31 − 22 − 12)
(12; 31, 01, 11 − 22 − 51)

(02; 41, 51, 12 − 22 − 31)
(12; 02, 01, 11 − 22 − 51)

{31, 02}, {31, 12}, {02, 12}(twice) E23

Table 4.6: Substitutions in the C-covering R∪S ∪U to obtain different excess graphs
for n = 14
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In order to obtain the remaining excess graphs, we substitute some trees for others

in the covering R ∪ S. These substitutions are illustrated in Table 4.7.

Case 8. T = D,n = 13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. In order to achieve the excess graphs P3 and 2K2, label

the vertices of K12 with the elements of Z12. By Theorem 1.3.2, the leave graph

in a maximum D-packing of K12 has three edges. Moreover, all simple graphs with

three edges are achievable as the leave graph, as illustrated in Chapter 3. Let R be a

maximum D-packing of K12 with the path (0, 1, 2, 3) as the leave graph. Also let S be

the set consisting of the single tree (1; 0, 2, 4− 3, 5) and U be the set consisting of the

single tree (1; 4, 0, 2− 5, 3). Therefore, R∪ S and R∪U are minimum D-coverings of

K12 with the excess graphs P3 (with the edges {1, 4} and {4, 5}) and 2K2 (with the

edges {0, 5} and {1, 4}), respectively.

In order to obtain the excess graphK2
2 , writeK13 = K10∨K3 and label the vertices

of K10∨K3 with a (Z10,Z3)-labeling. By Theorem 1.3.1, K10 has a D-decomposition,

R. Also the set of vertices {51, 61, 71, 81, 91}, the set of vertices {02, 12, 22}, and the

edges between these two sets, form a graph K5,3, which has a D-decomposition, S, by

Lemma 1.3.16. Let U be the set consisting of the following trees.

(12; 31, 21, 02 − 22, 11), (02; 21, 31, 12 − 22, 41), (02; 41, 12, 22 − 01, 11), (22; 41, 01, 12 − 02, 11)

Therefore, R ∪ S ∪U forms a minimum D-covering of K13 with the excess graph K2
2 .

The edges of the excess graph are the edges {02, 12} used twice.

Case 9. T = D,n = 14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those illustrated in Figure 4.1. Since a maximum D-packing of K14 has

one edge by Theorem 1.3.2, the excess graphs E2, E5, and E6 can be obtained as

explained in Case 7.

In order to achieve the excess graph E12, write K14 = K11 ∨ K3 and label the
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(12; 31, 41, 51 − 02, 22)
(12; 11, 41, 51 − 22, 02)
(12; 71, 61, 81 − 22, 02)

(12; 31, 51, 02 − 22, 41)
(12; 11, 41, 02 − 22, 51)
(12; 71, 61, 02 − 22, 81)

{41, 12}, {51, 12}, {81, 12}, {02, 12} E1

(12; 31, 41, 51 − 02, 22)
(12; 11, 41, 51 − 22, 02)
(61; 22, 81, 12 − 02, 71)

(12; 31, 51, 02 − 22, 41)
(12; 11, 41, 02 − 22, 51)
(12; 71, 61, 02 − 22, 81)

{41, 12}, {51, 12}, {61, 81}, {02, 12} E3

(12; 11, 41, 51 − 22, 02)
(51; 22, 41, 12 − 02, 31)
(22; 12, 71, 02 − 81, 41)
(61; 22, 02, 12 − 81, 71)

(12; 11, 41, 02 − 22, 51)
(12; 31, 51, 02 − 22, 41)
(22; 12, 71, 02 − 81, 61)
(12; 71, 61, 02 − 22, 81)

{41, 51}, {41, 02}, {51, 12}, {02, 12} E4

(12; 11, 41, 51 − 22, 02)
(51; 22, 02, 12 − 41, 31)
(11; 22, 21, 02 − 12, 71)

(12; 11, 41, 02 − 22, 51)
(12; 31, 51, 02 − 22, 41)
(02; 71, 11, 12 − 22, 21)

{11, 21}, {51, 02}, {51, 12}, {02, 12} E7

(12; 11, 41, 51 − 22, 02)
(51; 22, 02, 12 − 41, 31)
(02; 21, 01, 31 − 12, 22)

(12; 11, 41, 02 − 22, 51)
(12; 31, 51, 02 − 22, 41)
(02; 21, 31, 12 − 22, 01)

{51, 02}, {51, 12}, {01, 02}, {02, 12} E8

(12; 31, 41, 51 − 02, 22)
(12; 11, 41, 51 − 22, 02)
(02; 21, 01, 31 − 12, 22)
(02; 71, 11, 21 − 22, 12)

(12; 31, 51, 02 − 22, 41)
(12; 11, 41, 02 − 22, 51)
(02; 21, 31, 12 − 22, 01)
(02; 71, 11, 12 − 22, 21)

{01, 02}, {21, 02}, {41, 12}, {51, 12} E9

(12; 11, 41, 51 − 22, 02)
(51; 22, 02, 12 − 41, 31)
(31; 22, 01, 02 − 12, 21)
(11; 22, 21, 02 − 12, 71)

(12; 11, 41, 02 − 22, 51)
(12; 31, 51, 02 − 22, 41)
(02; 21, 31, 12 − 22, 01)
(02; 71, 11, 12 − 22, 21)

{11, 21}, {01, 31}, {51, 02}, {51, 12} E10

(51; 22, 41, 12 − 02, 31)
(31; 22, 01, 02 − 12, 21)
(11; 22, 21, 02 − 12, 71)

(12; 31, 51, 02 − 22, 41)
(02; 21, 31, 12 − 22, 01)
(02; 71, 11, 12 − 22, 21)

{11, 21}, {01, 31}, {41, 51}, {02, 12} E11

(11; 22, 02, 12 − 71, 21) (02; 71, 11, 12 − 22, 21) {11, 12}, {02, 12}(3 times) E13

(11; 22, 02, 21 − 71, 12) (02; 71, 12, 11 − 21, 22) {11, 21}, {02, 12}(3 times) E14

(02; 71, 11, 21 − 22, 12)
(22; 01, 21, 81 − 02, 12)
(02; 21, 01, 31 − 12, 22)

(02; 71, 11, 12 − 22, 21)
(22; 21, 01, 81 − 02, 12)
(02; 21, 12, 31 − 01, 22)

{21, 02}(twice), {02, 12}(twice) E15

(51; 22, 41, 12 − 02, 31)
(41; 22, 51, 12 − 02, 11)

(12; 31, 51, 02 − 22, 41)
(12; 11, 41, 02 − 22, 51)

{41, 51}(twice), {02, 12}(twice) E16

(51; 22, 41, 12 − 02, 31)
(12; 11, 41, 51 − 22, 02)

(12; 31, 51, 02 − 22, 41)
(12; 11, 41, 02 − 22, 51)

{41, 51}, {51, 12}, {02, 12}(twice) E17

(12; 31, 41, 51 − 02, 22)
(31; 22, 01, 02 − 12, 21)

(12; 31, 51, 02 − 22, 41)
(02; 21, 31, 12 − 22, 01)

{01, 31}, {41, 12}, {02, 12}(twice) E18

(41; 22, 51, 12 − 02, 11)
(61; 22, 81, 12 − 02, 71)

(12; 11, 41, 02 − 22, 51)
(12; 71, 61, 02 − 22, 81)

{41, 51}, {61, 81}, {02, 12}(twice) E19

(12; 71, 61, 81 − 22, 02)
(22; 21, 01, 81 − 02, 51)
(41; 22, 51, 12 − 02, 11)

(12; 71, 61, 02 − 22, 81)
(22; 21, 01, 81 − 02, 12)
(12; 11, 41, 02 − 22, 51)

{41, 51}, {51, 81}, {02, 12}(twice) E20

(02; 21, 01, 31 − 12, 22)
(12; 31, 41, 51 − 02, 22)

(02; 21, 31, 12 − 22, 01)
(12; 31, 51, 02 − 22, 41)

{01, 02}, {41, 12}, {02, 12}(twice) E21

(12; 31, 41, 51 − 02, 22)
(12; 11, 41, 51 − 22, 02)

(12; 31, 51, 02 − 22, 41)
(12; 11, 41, 02 − 22, 51)

{41, 12}, {51, 12}, {02, 12}(twice) E22

(12; 11, 41, 51 − 22, 02)
(51; 22, 02, 12 − 41, 31)

(12; 11, 41, 02 − 22, 51)
(12; 31, 51, 02 − 22, 41)

{51, 02}, {51, 12}, {02, 12}(twice) E23

Table 4.7: Substitutions in the D-covering R∪S to obtain different excess graphs for
n = 12
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vertices of K11 ∨ K3 with a (Z11,Z3)-labeling. By Theorem 1.3.1, K11 has a D-

decomposition, R. Let S be the set consisting of the following trees.

(02; 01, 11, 12 − 22, 21), (02; 21, 31, 12 − 22, 41), (12; 11, 01, 02 − 22, 41),

(12; 31, 51, 02 − 22, 91), (12; 101, 71, 02 − 22, 81), (22; 21, 02, 12 − 51, 81),

(22; 41, 91, 101 − 12, 02), (61; 12, 02, 22 − 71, 81)

Therefore, R∪S forms a minimum D-covering of K14 with the excess graph E12. The

edges of the excess graph are the edges {02, 12} used four times.

As in the previous cases, the rest of the excess graphs will be achieved by substi-

tuting some trees for others in the covering R∪S. These substitutions are illustrated

in Table 4.8.

Case 10. T = E, n = 12

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those shown in Figure 4.1. The leave graph in a maximum E-packing of

K12 has one edge by Theorem 1.3.2. In order to obtain the excess graphs E2 and E9,

label the vertices of K12 with the elements of Z12 and let R be a maximum E-packing

of K12 with the edge {0, 1} as the leave graph. Also let S be the set consisting

of the single tree (1 − 0, 2; 3 − 4, 5) and U be the set consisting of the single tree

(0−2, 3; 1−4, 5). Therefore, R∪S and R∪U form minimum E-coverings of K12 with

the excess graphs E2 (with the edges {1, 2}, {1, 3}, {3, 4}, and {3, 5}) and E9 (with

the edges {0, 2}, {0, 3}, {1, 4}, and {1, 5}), respectively.

In order to achieve the excess graph E12, write K12 = K9 ∨ K3 and label the

vertices of K9 ∨K3 with a (Z9,Z3)-labeling. By Theorem 1.3.2, the leave graph in a

maximum E-packing of K9 has one edge. Let R be a maximum E-packing of K9 with

the edge {71, 81} as the leave graph. Also let S be the set consisting of the following

trees.

(02 − 01, 11; 12 − 21, 31), (12 − 01, 02; 22 − 11, 21), (02 − 41, 12; 22 − 01, 31),

(12 − 11, 02; 81 − 71, 22), (02 − 21, 31; 12 − 41, 51), (71 − 02, 12; 22 − 41, 51),

(61 − 12, 22; 02 − 51, 81)

Therefore, R∪S forms a minimum E-covering of K12 with the excess graph E12. The
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(12; 11, 01, 41 − 22, 02)
(12; 31, 51, 91 − 22, 02)
(12; 101, 71, 81 − 22, 02)

(12; 11, 01, 02 − 22, 41)
(12; 31, 51, 02 − 22, 91)
(12; 101, 71, 02 − 22, 81)

{41, 12}, {81, 12}, {91, 12}, {02, 12} E1

(12; 11, 01, 41 − 22, 02)
(12; 31, 51, 91 − 22, 02)
(71; 22, 81, 12 − 02, 101)

(12; 11, 01, 02 − 22, 41)
(12; 31, 51, 02 − 22, 91)
(12; 101, 71, 02 − 22, 81)

{71, 81}, {41, 12}, {91, 12}, {02, 12} E3

(31; 22, 41, 02 − 12, 21)
(12; 11, 01, 41 − 22, 02)
(51; 22, 02, 12 − 91, 31)
(22; 21, 02, 12 − 31, 81)

(02; 21, 31, 12 − 22, 41)
(12; 11, 01, 02 − 22, 41)
(12; 31, 51, 02 − 22, 91)
(22; 21, 02, 12 − 51, 81)

{31, 41}, {31, 02}, {41, 12}, {02, 12} E4

(12; 11, 01, 41 − 22, 02)
(02; 21, 31, 41 − 22, 12)
(11; 22, 21, 02 − 12, 01)

(12; 11, 01, 02 − 22, 41)
(02; 21, 31, 12 − 22, 41)
(02; 01, 11, 12 − 22, 21)

{11, 21}, {41, 02}, {41, 12}, {02, 12} E7

(12; 11, 01, 41 − 22, 02)
(02; 21, 31, 41 − 22, 12)
(02; 01, 11, 21 − 22, 12)

(12; 11, 01, 02 − 22, 41)
(02; 21, 31, 12 − 22, 41)
(02; 01, 11, 12 − 22, 21)

{21, 02}, {41, 02}, {41, 12}, {02, 12} E8

(31; 22, 41, 02 − 12, 21)
(01; 22, 41, 12 − 02, 11)
(12; 31, 51, 91 − 22, 02)

(02; 21, 31, 12 − 22, 41)
(12; 11, 01, 02 − 22, 41)
(12; 31, 51, 02 − 22, 91)

{01, 41}, {31, 41}, {91, 12}, {02, 12} E9

(31; 22, 41, 02 − 12, 21)
(12; 31, 51, 91 − 22, 02)
(11; 22, 21, 02 − 12, 01)

(02; 21, 31, 12 − 22, 41)
(12; 31, 51, 02 − 22, 91)
(02; 01, 11, 12 − 22, 21)

{11, 21}, {31, 41}, {91, 12}, {02, 12} E10

(11; 22, 21, 02 − 12, 01)
(31; 22, 41, 02 − 12, 21)
(51; 22, 91, 12 − 02, 31)

(02; 01, 11, 12 − 22, 21)
(02; 21, 31, 12 − 22, 41)
(12; 31, 51, 02 − 22, 91)

{11, 21}, {31, 41}, {51, 91}, {02, 12} E11

(02; 01, 11, 21 − 22, 12) (02; 01, 11, 12 − 22, 21) {21, 02}, {02, 12}(3 times) E13

(11; 22, 21, 02 − 12, 01) (02; 01, 11, 12 − 22, 21) {11, 21}, {02, 12}(3 times) E14

(12; 31, 51, 91 − 22, 02)
(12; 101, 71, 81 − 22, 02)
(22; 21, 02, 12 − 51, 91)

(12; 31, 51, 02 − 22, 91)
(12; 101, 71, 02 − 22, 81)
(22; 21, 02, 12 − 51, 81)

{91, 12}(twice), {02, 12}(twice) E15

(12; 31, 51, 91 − 22, 02)
(12; 101, 71, 81 − 22, 02)
(22; 21, 02, 12 − 51, 91)
(02; 01, 11, 21 − 22, 12)
(02; 21, 31, 41 − 22, 12)
(12; 11, 01, 02 − 22, 21)

(12; 31, 51, 02 − 22, 91)
(12; 101, 71, 02 − 22, 81)
(22; 21, 02, 12 − 51, 81)
(02; 01, 11, 12 − 22, 21)
(02; 21, 31, 12 − 22, 41)
(12; 11, 01, 02 − 22, 41)

{21, 02}(twice), {91, 12}(twice) E16

(12; 11, 01, 41 − 22, 02)
(31; 22, 41, 02 − 12, 21)

(12; 11, 01, 02 − 22, 41)
(02; 21, 31, 12 − 22, 41)

{31, 41}, {41, 12}, {02, 12}(twice) E17

(12; 11, 01, 41 − 22, 02)
(11; 22, 21, 02 − 12, 01)

(12; 11, 01, 02 − 22, 41)
(02; 01, 11, 12 − 22, 21)

{11, 21}, {41, 12}, {02, 12}(twice) E18

(31; 22, 41, 02 − 12, 21)
(11; 22, 21, 02 − 12, 01)

(02; 21, 31, 12 − 22, 41)
(02; 01, 11, 12 − 22, 21)

{11, 21}, {31, 41}, {02, 12}(twice) E19

(31; 22, 41, 02 − 12, 21)
(01; 22, 41, 12 − 02, 11)

(02; 21, 31, 12 − 22, 41)
(12; 11, 01, 02 − 22, 41)

{01, 41}, {31, 41}, {02, 12}(twice) E20

(12; 11, 01, 41 − 22, 02)
(02; 01, 11, 21 − 22, 12)

(12; 11, 01, 02 − 22, 41)
(02; 01, 11, 12 − 22, 21)

{21, 02}, {41, 12}, {02, 12}(twice) E21

(12; 11, 01, 41 − 22, 02)
(12; 101, 71, 81 − 22, 02)

(12; 11, 01, 02 − 22, 41)
(12; 101, 71, 02 − 22, 81)

{41, 12}, {81, 12}, {02, 12}(twice) E22

(12; 11, 01, 41 − 22, 02)
(02; 21, 31, 41 − 22, 12)

(12; 11, 01, 02 − 22, 41)
(02; 21, 31, 12 − 22, 41)

{41, 02}, {41, 12}, {02, 12}(twice) E23

Table 4.8: Substitutions in the D-covering R∪S to obtain different excess graphs for
n = 14
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edges of the excess graph are the edges {02, 12} used four times.

In order to obtain the rest of the excess graphs, we substitute some trees for others

in the covering R ∪ S. These substitutions are indicated in Table 4.9.

Case 11. T = E, n = 13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. The leave graph in a maximum E-packing of K13 has

three edges by Theorem 1.3.2. All simple graphs with three edges can be achieved as

the leave graph in E-packings of K13 as illustrated in Chapter 3. Label the vertices of

K13 with the elements of Z13. Let R and S be maximum E-packings of K13 with the

leave graphs (0; 1, 2, 3) and (0, 1, 2, 3), respectively. Also let U be the set consisting

of the single tree (0 − 1, 2; 3 − 4, 5) and V be the set consisting of the single tree

(1− 0, 4; 2− 3, 5). Therefore, R∪U and S ∪ V are minimum E-coverings of K13 with

the excess graphs P3 (with the edges {3, 4} and {3, 5}) and 2K2 (with the edges {1, 4}

and {2, 5}), respectively.

In order to achieve the excess graphK2
2 , writeK13 = K10∨K3 and label the vertices

of K10∨K3 with a (Z10,Z3)-labeling. By Theorem 1.3.1, K10 has an E-decomposition,

R. Let S be the set consisting of the following trees.

(02 − 01, 11; 12 − 21, 31), (02 − 21, 31; 12 − 01, 11), (02 − 41, 51; 12 − 61, 71),

(12 − 41, 51; 22 − 01, 11), (02 − 61, 71; 22 − 21, 31), (81 − 02, 12; 22 − 41, 51),

(91 − 02, 12; 22 − 61, 71)

Therefore, R∪S forms a minimum E-covering of K13 with the excess graph K2
2 . The

edges of the excess graph are the edges {02, 12} used twice.

Case 12. T = E, n = 14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those shown in Figure 4.1. Since the leave graph in a maximum E-packing

of K14 has one edge by Theorem 1.3.2, the excess graphs E2 and E9 can be obtained

in a similar way as in Case 10.

In order to achieve the excess graph E12, write K14 = K10 ∨ K4 and label the
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(12 − 21, 31; 22 − 41, 51)
(71 − 12, 22; 02 − 01, 11)
(12 − 01, 31; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 41)

(12 − 21, 31; 02 − 01, 11)
(71 − 02, 12; 22 − 41, 51)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)

{31, 12}, {41, 12}, {02, 12}, {12, 22} E1

(12 − 01, 31; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 41)
(02 − 41, 71; 22 − 01, 31)
(71 − 81, 12; 22 − 41, 51)

(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)
(02 − 41, 12; 22 − 01, 31)
(71 − 02, 12; 22 − 41, 51)

{71, 81}, {31, 12}, {41, 12}, {02, 12} E3

(02 − 41, 61; 22 − 01, 31)
(12 − 01, 71; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 61)
(61 − 71, 22; 02 − 51, 81)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)
(61 − 12, 22; 02 − 51, 81)

{61, 71}, {61, 02}, {71, 12}, {02, 12} E4

(02 − 11, 41; 22 − 01, 31)
(12 − 01, 31; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 61)
(61 − 71, 22; 02 − 51, 81)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)
(61 − 12, 22; 02 − 51, 81)

{61, 71}, {11, 02}, {31, 12}, {02, 12} E5

(02 − 11, 41; 22 − 01, 31)
(12 − 01, 61; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 61)
(61 − 71, 22; 02 − 51, 81)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)
(61 − 12, 22; 02 − 51, 81)

{61, 71}, {11, 02}, {61, 12}, {02, 12} E6

(02 − 41, 51; 22 − 01, 31)
(12 − 01, 51; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 61)
(61 − 71, 22; 02 − 51, 81)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)
(61 − 12, 22; 02 − 51, 81)

{61, 71}, {51, 02}, {51, 12}, {02, 12} E7

(02 − 41, 51; 22 − 01, 31)
(12 − 01, 51; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 61)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)

{51, 02}, {51, 12}, {61, 12}, {02, 12} E8

(02 − 11, 41; 22 − 01, 31)
(12 − 01, 31; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 61)
(61 − 71, 22; 02 − 51, 81)
(12 − 21, 31; 22 − 41, 51)
(71 − 12, 22; 02 − 01, 11)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(81 − 71, 22; 12 − 11, 02)
(61 − 12, 22; 02 − 51, 81)
(02 − 01, 11; 12 − 21, 31)
(71 − 02, 12; 22 − 41, 51)

{61, 71}, {11, 02}, {31, 12}, {12, 22} E10

(02 − 41, 71; 22 − 01, 31)
(71 − 81, 22; 12 − 21, 31)
(02 − 01, 11; 22 − 41, 51)
(81 − 71, 22; 12 − 11, 61)
(61 − 41, 22; 02 − 51, 81)
(12 − 01, 31; 22 − 11, 21)

(02 − 41, 12; 22 − 01, 31)
(71 − 02, 12; 22 − 41, 51)
(02 − 01, 11; 12 − 21, 31)
(81 − 71, 22; 12 − 11, 02)
(61 − 12, 22; 02 − 51, 81)
(12 − 01, 02; 22 − 11, 21)

{41, 61}, {71, 81}, {31, 12}, {02, 22} E11

(02 − 11, 41; 22 − 01, 31) (02 − 41, 12; 22 − 01, 31) {11, 02}, {02, 12}(3 times) E13

(12 − 01, 71; 22 − 11, 21)
(71 − 81, 02; 22 − 41, 51)

(12 − 01, 02; 22 − 11, 21)
(71 − 02, 12; 22 − 41, 51)

{71, 81}, {02, 12}(3 times) E14

(12 − 01, 31; 22 − 11, 21)
(12 − 11, 31; 81 − 71, 22)

(12 − 01, 02; 22 − 11, 21)
(12 − 11, 02; 81 − 71, 22)

{31, 12}(twice), {02, 12}(twice) E15

(12 − 01, 61; 22 − 11, 21)
(61 − 71, 22; 02 − 51, 81)
(02 − 41, 71; 22 − 01, 31)
(71 − 61, 12; 22 − 41, 51)

(12 − 01, 02; 22 − 11, 21)
(61 − 12, 22; 02 − 51, 81)
(02 − 41, 12; 22 − 01, 31)
(71 − 02, 12; 22 − 41, 51)

{61, 71}(twice), {02, 12}(twice) E16

(02 − 11, 41; 22 − 01, 31)
(71 − 11, 02; 22 − 41, 51)
(12 − 01, 71; 22 − 11, 21)

(02 − 41, 12; 22 − 01, 31)
(71 − 02, 12; 22 − 41, 51)
(12 − 01, 02; 22 − 11, 21)

{11, 71}, {11, 02}, {02, 12}(twice) E17
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(02 − 11, 41; 22 − 01, 31)
(12 − 01, 71; 22 − 11, 21)
(71 − 81, 02; 22 − 41, 51)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(71 − 02, 12; 22 − 41, 51)

{71, 81}, {11, 02}, {02, 12}(twice) E18

(12 − 01, 61; 22 − 11, 21)
(61 − 41, 22; 02 − 51, 81)
(02 − 41, 71; 22 − 01, 31)
(71 − 81, 12; 22 − 41, 51)

(12 − 01, 02; 22 − 11, 21)
(61 − 12, 22; 02 − 51, 81)
(02 − 41, 12; 22 − 01, 31)
(71 − 02, 12; 22 − 41, 51)

{41, 61}, {71, 81}, {02, 12}(twice) E19

(12 − 01, 61; 22 − 11, 21)
(61 − 71, 22; 02 − 51, 81)
(02 − 41, 71; 22 − 01, 31)
(71 − 81, 12; 22 − 41, 51)

(12 − 01, 02; 22 − 11, 21)
(61 − 12, 22; 02 − 51, 81)
(02 − 41, 12; 22 − 01, 31)
(71 − 02, 12; 22 − 41, 51)

{61, 71}, {71, 81}, {02, 12}(twice) E20

(02 − 41, 51; 22 − 01, 31)
(12 − 01, 61; 22 − 11, 21)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)

{51, 02}, {61, 12}, {02, 12}(twice) E21

(12 − 01, 31; 22 − 11, 21)
(12 − 11, 41; 81 − 71, 22)

(12 − 01, 02; 22 − 11, 21)
(12 − 11, 02; 81 − 71, 22)

{31, 12}, {41, 12}, {02, 12}(twice) E22

(02 − 41, 51; 22 − 01, 31)
(12 − 01, 51; 22 − 11, 21)

(02 − 41, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)

{51, 02}, {51, 12}, {02, 12}(twice) E23

Table 4.9: Substitutions in the E-covering R∪S to obtain different excess graphs for
n = 12

vertices of K10 ∨ K4 with a (Z10,Z4)-labeling. By Theorem 1.3.1, K10 has an E-

decomposition, R. Let S be the set consisting of the following trees.

(02 − 01, 11; 12 − 21, 31), (12 − 01, 02; 22 − 11, 21), (02 − 21, 12; 22 − 01, 31),

(02 − 31, 12; 32 − 01, 11), (02 − 41, 51; 12 − 11, 32), (22 − 41, 51; 32 − 21, 31),

(91 − 02, 12; 32 − 41, 51), (81 − 02, 12; 22 − 71, 91), (71 − 02, 12; 32 − 61, 81),

(61 − 02, 22; 12 − 41, 51)

Therefore, R∪S forms a minimum E-covering of K14 with the excess graph E12. The

edges of the excess graph are the edges {02, 12} used four times.

In order to obtain the remaining excess graphs, we substitute some trees for others

in the covering R ∪ S. Table 4.10 illustrates these substitutions.

Case 13. T = P6, n = 12

The excess graph has four edges by Theorem 1.3.3. Hence the possible excess

graphs are those illustrated in Figure 4.1. A maximum P6-packing of K12 has one

edge by Theorem 1.3.2. Label the vertices of K12 with the elements of Z12. Also

let R be a maximum P6-packing of K12 with the edge {0, 1} as the leave graph,
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(12 − 01, 71; 22 − 11, 21)
(71 − 02, 22; 32 − 61, 81)
(81 − 02, 12; 22 − 41, 91)
(22 − 51, 02; 32 − 21, 31)
(02 − 11, 21; 22 − 01, 31)
(02 − 21, 31; 32 − 01, 11)

(12 − 01, 02; 22 − 11, 21)
(71 − 02, 12; 32 − 61, 81)
(81 − 02, 12; 22 − 71, 91)
(22 − 41, 51; 32 − 21, 31)
(02 − 21, 12; 22 − 01, 31)
(02 − 31, 12; 32 − 01, 11)

{11, 02}, {21, 02}, {02, 12}, {02, 22} E1

(02 − 11, 21; 22 − 01, 31)
(02 − 21, 31; 32 − 01, 11)
(12 − 01, 71; 22 − 11, 21)
(71 − 51, 02; 32 − 61, 81)

(02 − 21, 12; 22 − 01, 31)
(02 − 31, 12; 32 − 01, 11)
(12 − 01, 02; 22 − 11, 21)
(71 − 02, 12; 32 − 61, 81)

{51, 71}, {11, 02}, {21, 02}, {02, 12} E3

(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(02 − 31, 51; 32 − 01, 11)
(12 − 01, 71; 22 − 11, 21)

(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(02 − 31, 12; 32 − 01, 11)
(12 − 01, 02; 22 − 11, 21)

{51, 71}, {51, 02}, {71, 12}, {02, 12} E4

(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(12 − 01, 31; 22 − 11, 21)
(02 − 31, 41; 32 − 01, 11)

(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(12 − 01, 02; 22 − 11, 21)
(02 − 31, 12; 32 − 01, 11)

{51, 71}, {31, 12}, {41, 02}, {02, 12} E5

(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(12 − 01, 31; 22 − 11, 21)
(02 − 31, 51; 32 − 01, 11)

(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(12 − 01, 02; 22 − 11, 21)
(02 − 31, 12; 32 − 01, 11)

{51, 71}, {31, 12}, {51, 02}, {02, 12} E6

(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(12 − 01, 41; 22 − 11, 21)
(02 − 31, 41; 32 − 01, 11)

(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(12 − 01, 02; 22 − 11, 21)
(02 − 31, 12; 32 − 01, 11)

{51, 71}, {41, 12}, {41, 02}, {02, 12} E7

(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(12 − 01, 51; 22 − 11, 21)
(02 − 31, 51; 32 − 01, 11)

(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(12 − 01, 02; 22 − 11, 21)
(02 − 31, 12; 32 − 01, 11)

{51, 71}, {51, 02}, {51, 12}, {02, 12} E8

(12 − 01, 91; 22 − 11, 21)
(91 − 81, 02; 32 − 41, 51)
(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(02 − 21, 31; 32 − 01, 11)

(12 − 01, 02; 22 − 11, 21)
(91 − 02, 12; 32 − 41, 51)
(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(02 − 21, 12; 32 − 01, 11)

{51, 71}, {81, 91}, {31, 02}, {02, 12} E10

(12 − 01, 91; 22 − 11, 21)
(91 − 41, 02; 32 − 41, 51)
(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)
(02 − 31, 81; 32 − 01, 11)
(81 − 61, 12; 22 − 71, 91)

(12 − 01, 02; 22 − 11, 21)
(91 − 02, 12; 32 − 41, 51)
(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)
(02 − 31, 12; 32 − 01, 11)
(81 − 02, 12; 22 − 71, 91)

{41, 91}, {51, 71}, {61, 81}, {02, 12} E11

(12 − 01, 31; 22 − 11, 21) (12 − 01, 02; 22 − 11, 21) {31, 12}, {02, 12}(3 times) E13

(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)

(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)

{51, 71}, {02, 12}(3 times) E14
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(02 − 21, 41; 22 − 01, 31)
(02 − 31, 41; 32 − 01, 11)

(02 − 21, 12; 22 − 01, 31)
(02 − 31, 12; 32 − 01, 11)

{41, 02}(twice), {02, 12}(twice) E15

(12 − 01, 91; 22 − 11, 21)
(91 − 71, 02; 32 − 41, 51)
(02 − 21, 71; 22 − 01, 31)
(71 − 91, 12; 32 − 61, 81)

(12 − 01, 02; 22 − 11, 21)
(91 − 02, 12; 32 − 41, 51)
(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)

{71, 91}(twice), {02, 12}(twice) E16

(12 − 01, 51; 22 − 11, 21)
(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)

(12 − 01, 02; 22 − 11, 21)
(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)

{51, 71}, {51, 12}, {02, 12}(twice) E17

(12 − 01, 51; 22 − 11, 21)
(02 − 21, 71; 22 − 01, 31)
(71 − 41, 12; 32 − 61, 81)

(12 − 01, 02; 22 − 11, 21)
(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)

{41, 71}, {51, 12}, {02, 12}(twice) E18

(12 − 01, 91; 22 − 11, 21)
(91 − 81, 02; 32 − 41, 51)
(02 − 21, 71; 22 − 01, 31)
(71 − 51, 12; 32 − 61, 81)

(12 − 01, 02; 22 − 11, 21)
(91 − 02, 12; 32 − 41, 51)
(02 − 21, 12; 22 − 01, 31)
(71 − 02, 12; 32 − 61, 81)

{51, 71}, {81, 91}, {02, 12}(twice) E19

(02 − 21, 71; 22 − 01, 31)
(12 − 01, 71; 22 − 11, 21)
(71 − 41, 51; 32 − 61, 81)

(02 − 21, 12; 22 − 01, 31)
(12 − 01, 02; 22 − 11, 21)
(71 − 02, 12; 32 − 61, 81)

{41, 71}, {51, 71}, {02, 12}(twice) E20

(12 − 01, 41; 22 − 11, 21)
(02 − 11, 21; 22 − 01, 31)

(12 − 01, 02; 22 − 11, 21)
(02 − 21, 12; 22 − 01, 31)

{11, 02}, {41, 12}, {02, 12}(twice) E21

(02 − 11, 21; 22 − 01, 31)
(02 − 21, 31; 32 − 01, 11)

(02 − 21, 12; 22 − 01, 31)
(02 − 31, 12; 32 − 01, 11)

{11, 02}, {21, 02}, {02, 12}(twice) E22

(12 − 01, 41; 22 − 11, 21)
(02 − 21, 41; 22 − 01, 31)

(12 − 01, 02; 22 − 11, 21)
(02 − 21, 12; 22 − 01, 31)

{41, 02}, {41, 12}, {02, 12}(twice) E23

Table 4.10: Substitutions in the E-covering R ∪ S to obtain different excess graphs
for n = 14
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S be the set consisting of the single path (2, 0, 1, 3, 4, 5), U be the set consisting

of the single path (0, 1, 2, 3, 4, 5), and V be the set consisting of the single path

(2, 3, 0, 1, 4, 5). Therefore, R∪S,R∪U, and R∪V form minimum P6-coverings of K12

with the excess graphs E5 (with the edges {0, 2}, {1, 3}, {3, 4}, and {4, 5}), E6 (with

the edges {1.2}, {2, 3}, {3, 4}, and {4, 5}), and E9 (with the edges {0, 3}, {2, 3}, {1, 4},

and {4, 5}), respectively.

In order to obtain the excess graph E12, write K12 = K8∨K4 and label the vertices

of K8∨K4 with a (Z8,Z4)-labeling. Let R be the set consisting of the following paths.

(11, 01, 21, 61, 51, 41), (21, 11, 31, 51, 71, 01), (31, 21, 41, 71, 61, 11),

(01, 31, 41, 11, 51, 21), (51, 01, 41, 61, 31, 71)

In fact, R is a maximum P6-packing ofK8 with the edges {01, 61}, {11, 71}, and {21, 71}

as the leave graph. Now the set of vertices {21, 31, 41, 51, 61}, the set of vertices

{02, 12, 22, 32}, and the edges between these two sets, form a complete bipartite graph

K5,4, which has a P6-decomposition, S, by Lemma 1.3.16. Also let U be the set

consisting of the following paths.

(11, 71, 22, 32, 01, 61), (01, 22, 12, 71, 11, 02), (01, 12, 32, 11, 71, 02),

(01, 02, 32, 71, 11, 22), (21, 71, 11, 12, 02, 22)

Therefore, R∪S ∪U forms a minimum P6-covering of K12 with the excess graph E12.

The edges of the excess graph are the edges {11, 71} used four times.

In order to achieve the remaining excess graphs we substitute some paths for others

in the covering R ∪ S ∪ U . Table 4.11 illustrates these substitutions.

Case 14. T = P6, n = 13

The excess graph has two edges by Theorem 1.3.3. Hence, the possible excess

graphs are K2
2 , P3, and 2K2. The leave graph in a maximum P6-packing of K13 has

three edges by Theorem 1.3.2. All simple graphs with three edges are achievable as

the leave graph in a P6-packing of K13 as we saw in Chapter 3. Label the vertices of

K13 with the elements of Z13 and let R be a maximum P6-packing of K13 with the

path (0, 1, 2, 3) as the leave graph. Also let S be the set consisting of the single path

(0, 1, 2, 3, 4, 5) and U be the set consisting of the single path (4, 0, 1, 2, 3, 5). Therefore,
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(21, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 02, 11)
(01, 02, 32, 71, 22, 11)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)
(01, 02, 32, 71, 11, 22)

{11, 71}, {21, 71}, {71, 02}, {71, 22} E1

(21, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 02, 11)
(22, 11, 01, 02, 32, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)
(01, 02, 32, 71, 11, 22)

{01, 11}, {11, 71}, {21, 71}, {71, 02} E2

(21, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 02, 11)
(11, 22, 01, 02, 32, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)
(01, 02, 32, 71, 11, 22)

{11, 71}, {21, 71}, {01, 22}, {71, 02} E3

(22, 11, 01, 02, 32, 71)
(01, 22, 12, 71, 02, 11)
(11, 32, 12, 01, 02, 71)

(01, 02, 32, 71, 11, 22)
(01, 22, 12, 71, 11, 02)
(01, 12, 32, 11, 71, 02)

{01, 11}, {11, 71}, {01, 02}, {71, 02} E4

(21, 71, 22, 32, 01, 61)
(22, 02, 12, 11, 21, 71)
(11, 22, 01, 02, 32, 71)

(11, 71, 22, 32, 01, 61)
(22, 02, 12, 11, 71, 21)
(01, 02, 32, 71, 11, 22)

{11, 21}, {11, 71}, {21, 71}, {01, 22} E7

(21, 71, 22, 32, 01, 61)
(22, 02, 12, 11, 21, 71)
(01, 22, 12, 71, 02, 11)

(11, 71, 22, 32, 01, 61)
(22, 02, 12, 11, 71, 21)
(01, 22, 12, 71, 11, 02)

{11, 21}, {11, 71}, {21, 71}, {71, 02} E8

(01, 22, 12, 71, 02, 11)
(21, 61, 01, 32, 22, 71)
(11, 22, 01, 02, 32, 71)

(01, 22, 12, 71, 11, 02)
(11, 71, 22, 32, 01, 61)
(01, 02, 32, 71, 11, 22)

{11, 71}, {21, 61}, {01, 22}, {71, 02} E10

(51, 61, 01, 32, 22, 71)
(11, 12, 02, 22, 21, 71)
(11, 32, 12, 01, 02, 71)

(11, 71, 22, 32, 01, 61)
(21, 71, 11, 12, 02, 22)
(01, 12, 32, 11, 71, 02)

{51, 61}, {11, 71}, {01, 02}, {21, 22} E11

(02, 71, 22, 32, 01, 61) (11, 71, 22, 32, 01, 61) {11, 71}(3 times), {71, 02} E13

(71, 22, 32, 01, 61, 02) (11, 71, 22, 32, 01, 61) {11, 71}(3 times), {61, 02} E14

(02, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 02, 11)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{11, 71}(twice), {71, 02}(twice) E15

(11, 02, 01, 22, 12, 71)
(11, 32, 12, 01, 02, 71)

(01, 22, 12, 71, 11, 02)
(01, 12, 32, 11, 71, 02)

{11, 71}(twice), {01, 02}(twice) E16

(02, 71, 22, 32, 01, 61)
(11, 02, 01, 22, 12, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{11, 71}(twice), {01, 02}, {71, 02} E17

(12, 71, 22, 32, 01, 61)
(11, 02, 01, 22, 12, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{11, 71}(twice), {01, 02}, {71, 12} E18

(71, 22, 32, 01, 61, 22)
(11, 02, 01, 22, 12, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{11, 71}(twice), {01, 02}, {61, 22} E19

(71, 22, 32, 01, 61, 02)
(11, 02, 01, 22, 12, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{11, 71}(twice), {01, 02}, {61, 02} E20

(02, 71, 22, 32, 01, 61)
(02, 11, 01, 22, 12, 71)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{01, 11}, {11, 71}(twice), {71, 02} E21

(12, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 02, 11)

(11, 71, 22, 32, 01, 61)
(01, 22, 12, 71, 11, 02)

{11, 71}(twice), {71, 02}, {71, 12} E22

(02, 71, 22, 32, 01, 61)
(01, 12, 32, 11, 02, 71)

(11, 71, 22, 32, 01, 61)
(01, 12, 32, 11, 71, 02)

{11, 71}(twice), {11, 02}, {71, 02} E23

Table 4.11: Substitutions in the P6-covering R∪S∪U to obtain different excess graphs
for n = 12
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R ∪ S and R ∪ U are minimum P6-coverings of K13 with the excess graphs P3 (with

the edges {3, 4} and {4, 5}) and 2K2 (with the edges {0, 4} and {3, 5}), respectively.

In order to obtain the excess graph K2
2 , write K13 = K9∨K4 and label the vertices

of K9∨K4 with a (Z9,Z4)-labeling. By Theorem 1.3.2, the leave graph in a maximum

P6-packing of K9 has one edge. Let R be a maximum P6-packing of K9 with the edge

{71, 81} as the leave graph. The set of vertices {01, 11, 21, 31, 41}, the set of vertices

{02, 12, 22, 32}, and the edges between these two sets, form a complete bipartite graph

K5,4, which has a P6-decomposition, S, by Lemma 1.3.16. Let U be the set consisting

of the following paths.

(12, 61, 22, 71, 81, 32), (51, 32, 12, 02, 71, 81), (51, 02, 22, 12, 71, 81),

(81, 12, 51, 22, 32, 02), (71, 32, 61, 02, 81, 22)

Therefore, R∪S ∪U forms a minimum P6-covering of K13 with the excess graph K2
2 .

The edges of the excess graph are the edges {71, 81} used twice.

Case 15. T = P6, n = 14

The excess graph has four edges by Theorem 1.3.3. Hence, the possible excess

graphs are those shown in Figure 4.1. Since a maximum P6-packing of K14 has one

edge by Theorem 1.3.2, the excess graphs E5, E6, and E9 can be achieved in a similar

way as in Case 13.

In order to obtain the excess graph E12, writeK14 = K10∨K4 and label the vertices

of K10∨K4 with a (Z10,Z4)-labeling. By Theorem 1.3.1, K10 has a P6-decomposition,

R. Moreover, the set of vertices {01, 11, 21, 31, 41}, the set of vertices {02, 12, 22, 32},

and the edges between these two sets, form a complete bipartite graph K5,4, which has

a P6-decomposition, S, by Lemma 1.3.16. Let U be the set consisting of the following

paths.

(51, 02, 12, 61, 22, 71), (81, 02, 12, 91, 32, 71), (51, 32, 61, 02, 12, 22),

(51, 22, 02, 12, 81, 32), (81, 22, 91, 02, 12, 32), (51, 12, 71, 02, 32, 22)

Therefore, R∪S ∪U forms a minimum P6-covering of K14 with the excess graph E12.

The edges of the excess graph are the edges {02, 12} used four times.

In order to achieve the remaining excess graphs, we substitute some paths for
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others in the excess graph R ∪ S ∪ U . These substitutions are illustrated in Table

4.12.

�
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New tree(s) Previous tree(s) Edges of the excess graph Excess
(51, 02, 71, 22, 61, 12)
(51, 32, 61, 02, 22, 12)
(81, 22, 91, 02, 32, 12)

(51, 02, 12, 61, 22, 71)
(51, 32, 61, 02, 12, 22)
(81, 22, 91, 02, 12, 32)

{71, 02}, {02, 12}, {02, 22}, {02, 32} E1

(51, 02, 71, 22, 61, 12)
(81, 22, 91, 02, 32, 12)
(02, 61, 32, 51, 12, 22)

(51, 02, 12, 61, 22, 71)
(81, 22, 91, 02, 12, 32)
(51, 32, 61, 02, 12, 22)

{51, 12}, {71, 02}, {02, 12}, {02, 32} E2

(51, 02, 71, 22, 61, 12)
(81, 22, 91, 02, 32, 12)
(02, 61, 32, 51, 22, 12)

(51, 02, 12, 61, 22, 71)
(81, 22, 91, 02, 12, 32)
(51, 32, 61, 02, 12, 22)

{51, 22}, {71, 02}, {02, 12}, {02, 32} E3

(02, 51, 71, 22, 61, 12)
(81, 02, 71, 32, 91, 12)
(02, 61, 32, 51, 12, 22)

(51, 02, 12, 61, 22, 71)
(71, 32, 91, 12, 02, 81)
(51, 32, 61, 02, 12, 22)

{51, 71}, {51, 12}, {71, 02}, {02, 12} E4

(22, 12, 51, 02, 61, 32)
(02, 22, 51, 32, 81, 12)
(02, 91, 22, 81, 32, 12)

(51, 32, 61, 02, 12, 22)
(51, 22, 02, 12, 81, 32)
(81, 22, 91, 02, 12, 32)

{51, 02}, {51, 12}, {81, 32}, {02, 12} E7

(22, 12, 51, 02, 61, 32)
(02, 22, 51, 32, 81, 12)
(81, 22, 91, 02, 32, 12)

(51, 32, 61, 02, 12, 22)
(51, 22, 02, 12, 81, 32)
(81, 22, 91, 02, 12, 32)

{51, 02}, {51, 12}, {02, 12}, {02, 32} E8

(02, 51, 71, 22, 61, 12)
(51, 32, 61, 02, 22, 12)
(02, 91, 22, 81, 32, 12)

(51, 02, 12, 61, 22, 71)
(51, 32, 61, 02, 12, 22)
(81, 22, 91, 02, 12, 32)

{51, 71}, {81, 32}, {02, 12}, {02, 22} E10

(02, 51, 71, 22, 61, 12)
(02, 91, 22, 81, 32, 12)
(02, 61, 32, 51, 22, 12)
(61, 22, 02, 12, 81, 32)

(51, 02, 12, 61, 22, 71)
(81, 22, 91, 02, 12, 32)
(51, 32, 61, 02, 12, 22)
(51, 22, 02, 12, 81, 32)

{51, 71}, {61, 22}, {81, 32}, {02, 12} E11

(51, 02, 71, 22, 61, 12) (51, 02, 12, 61, 22, 71) {71, 02}, {02, 12}(3 times) E13

(02, 51, 71, 22, 61, 12) (51, 02, 12, 61, 22, 71) {51, 71}, {02, 12}(3 times) E14

(51, 02, 71, 22, 61, 12)
(81, 02, 71, 32, 91, 12)

(51, 02, 12, 61, 22, 71)
(71, 32, 91, 12, 02, 81)

{71, 02}(twice), {02, 12}(twice) E15

(02, 22, 51, 32, 81, 12)
(02, 71, 12, 51, 32, 22)
(81, 22, 91, 02, 32, 12)

(51, 22, 02, 12, 81, 32)
(51, 12, 71, 02, 32, 22)
(81, 22, 91, 02, 12, 32)

{51, 32}(twice), {02, 12}(twice) E16

(02, 51, 71, 22, 61, 12)
(81, 02, 71, 32, 91, 12)

(51, 02, 12, 61, 22, 71)
(71, 32, 91, 12, 02, 81)

{51, 71}, {71, 02}, {02, 12}(twice) E17

(51, 02, 71, 22, 61, 12)
(02, 61, 32, 51, 22, 12)

(51, 02, 12, 61, 22, 71)
(51, 32, 61, 02, 12, 22)

{51, 22}, {71, 02}, {02, 12}(twice) E18

(02, 51, 71, 22, 61, 12)
(02, 91, 22, 81, 32, 12)

(51, 02, 12, 61, 22, 71)
(81, 22, 91, 02, 12, 32)

{51, 71}, {81, 32}, {02, 12}(twice) E19

(02, 51, 71, 22, 61, 12)
(02, 61, 32, 51, 22, 12)

(51, 02, 12, 61, 22, 71)
(51, 32, 61, 02, 12, 22)

{51, 71}, {51, 22}, {02, 12}(twice) E20

(51, 02, 71, 22, 61, 12)
(71, 32, 91, 12, 81, 02)

(51, 02, 12, 61, 22, 71)
(71, 32, 91, 12, 02, 81)

{71, 02}, {81, 12}, {02, 12}(twice) E21

(51, 02, 71, 22, 61, 12)
(51, 32, 61, 02, 22, 12)

(51, 02, 12, 61, 22, 71)
(51, 32, 61, 02, 12, 22)

{71, 02}, {02, 12}(twice), {02, 22} E22

(22, 12, 51, 02, 61, 32)
(02, 22, 51, 32, 81, 12)

(51, 32, 61, 02, 12, 22)
(51, 22, 02, 12, 81, 32)

{51, 02}, {51, 12}, {02, 12}(twice) E23

Table 4.12: Substitutions in the P6-covering R∪S∪U to obtain different excess graphs
for n = 14
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well as to establish new results by finding cyclic tree-packings and tree-coverings of

the complete graph.

As stated in the first chapter, Roditty proved that except for small integers n,

the T -packing and T -covering numbers of Kn are
⌊

n(n−1)
2i

⌋

and
⌈

n(n−1)
2i

⌉

, respectively,

where T is any tree with i ≤ 6 edges. It is of interest to find the T -packing and

T -covering numbers of the complete graph for trees T with more edges. However,

solving the spectrum problem for packing and covering (especially the covering) for

trees with more than five edges will be difficult, since the number of edges in the leave

and excess graphs are larger. For example, consider S6 as a tree with six edges. For

n = 14, the excess graph in any minimum S6-covering of Kn has five edges and there

are 48 possible excess graphs (see Figure 5.2).

Figure 5.2: All possible excess graphs with five edges

Another direction that could be pursued is to consider decomposition (packing or
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covering) of the complete graph with different types of trees. For instance, consider

the complete graph K16 and write K16 = K10 ∨ K6. Since the graphs K10, K6, and

K10,6 have a D-decomposition, S3-decomposition, and E-decomposition respectively,

The graph K16 can be decomposed with the trees S3, D, and E. This idea might

lead to a proof of the conjecture made in 1978 by Gyarfas and Lehel [21]. They

conjectured that the complete graph Kn can be decomposed into any collection of

trees T1, T2, . . . , Tn−1, where each Ti is a tree with i edgles.

In 1975, Yamamoto proved that the necessary and sufficient conditions for the

existence of an Sk-decomposition of Kn are n = 1 or n ≥ 2k, and n(n − 1) ≡ 0

(mod 2k) [51]. In 2014, Hoffman solved the packing and covering problems for any

k-star [22]. In fact, he proved that for n ≥ 2k, the number of k-stars in a maximum

Sk-packing of Kn is
⌊

n(n−1)
2k

⌋

, and a star is always achievable as the leave graph. We

might consider generalizing this result for other possible leave graphs.

A maximal G-packing of H is a G-packing of H in which the leave graph contains

no subgraph G. The difference between the maximal and maximum packing is that in

a maximum packing the leave graph has the smallest possible number of edges, while

in a maximal packing the leave graph can have any number of edges as long as it

does not contain any subgraphs G. For example, Figure 5.3 demonstrates a maximal

K3-packing of K6 which is not maximum. Another subject to consider is the maximal

packing of the complete graph with small trees.

Figure 5.3: A maximal S3-packing of K5
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